pax_global_header00006660000000000000000000000064117454144520014521gustar00rootroot0000000000000052 comment=e094431b6dd4dc803e5e42ec596a7e9899998625 pymvpa-0.4.8/000077500000000000000000000000001174541445200130465ustar00rootroot00000000000000pymvpa-0.4.8/.gitignore000066400000000000000000000010751174541445200150410ustar00rootroot00000000000000*,cover *-stamp *.bak *.kcache *.kcache.* *.prof *.pstats *.py[cod] *.swp *.o *.a *.valgrind.out* *~ .coverage .nfs* /.emacs.local /coverage /logs /temp /trash /debugs \#* \.\#* /build /build-arch* data/haxby8x6 debian/*.debhelper debian/*.substvars debian/files debian/python-mvpa/* mvpa/*/*/*.dylib mvpa/*/*/*.so profile.out svmc_wrap.cpp tests/.noseids tools/codeswarm tools/pdfbook *_flymake.py .ropeproject logs nobackup_* doc/examples/match_distribution_report doc/examples/match_distribution_report.pdf .eric4project doc/source/examples doc/source/generated /datadb pymvpa-0.4.8/3rd/000077500000000000000000000000001174541445200135365ustar00rootroot00000000000000pymvpa-0.4.8/3rd/libsvm/000077500000000000000000000000001174541445200150325ustar00rootroot00000000000000pymvpa-0.4.8/3rd/libsvm/COPYRIGHT000066400000000000000000000027311174541445200163300ustar00rootroot00000000000000 Copyright (c) 2000-2009 Chih-Chung Chang and Chih-Jen Lin All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither name of copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. pymvpa-0.4.8/3rd/libsvm/Makefile000066400000000000000000000005431174541445200164740ustar00rootroot00000000000000# Minimalistic makefile for libsvm LIB=libsvm.a MISC=svm.cpp LIBFLAGS=-fPIC CFLAGS=-Wall -O2 TDIR=../../build/libsvm all: prep $(LIB) prep: prep-stamp prep-stamp: mkdir -p $(TDIR) touch $@ .cpp.o: g++ $(CFLAGS) $(LIBFLAGS) -c $^ -o $(TDIR)/$(^:.cpp=.o) $(LIB): $(MISC:.cpp=.o) ar cur $(TDIR)/$@ $(TDIR)/$^ clean: rm -rf $(TDIR) rm -f *-stamp pymvpa-0.4.8/3rd/libsvm/Makefile.win000077500000000000000000000005361174541445200172750ustar00rootroot00000000000000# Minimalistic makefile for libsvm LIB=libsvm.a MISC=svm.cpp LIBFLAGS= CFLAGS=-Wall -O2 TDIR=..\\..\\build\\libsvm all: prep $(LIB) prep: -@mkdir ..\\..\\build -@mkdir ..\\..\\build\\libsvm .cpp.o: g++ $(CFLAGS) $(LIBFLAGS) -c $^ -o $(TDIR)\\$(^:.cpp=.o) $(LIB): $(MISC:.cpp=.o) ar cur $(TDIR)\\$@ $(TDIR)\\$^ clean: -rmdir /S /Q $(TDIR) pymvpa-0.4.8/3rd/libsvm/README000066400000000000000000000002611174541445200157110ustar00rootroot00000000000000This is a copy of LIBSVM 2.89. It is only here to be able to easily build a static lib for linking the LIBSVM python wrapper under windows (when building the binary installer). pymvpa-0.4.8/3rd/libsvm/svm.cpp000066400000000000000000001717211174541445200163540ustar00rootroot00000000000000#include #include #include #include #include #include #include #include "svm.h" int libsvm_version = LIBSVM_VERSION; typedef float Qfloat; typedef signed char schar; #ifndef min template inline T min(T x,T y) { return (x inline T max(T x,T y) { return (x>y)?x:y; } #endif template inline void swap(T& x, T& y) { T t=x; x=y; y=t; } template inline void clone(T*& dst, S* src, int n) { dst = new T[n]; memcpy((void *)dst,(void *)src,sizeof(T)*n); } inline double powi(double base, int times) { double tmp = base, ret = 1.0; for(int t=times; t>0; t/=2) { if(t%2==1) ret*=tmp; tmp = tmp * tmp; } return ret; } #define INF HUGE_VAL #define TAU 1e-12 #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) static void print_string_stdout(const char *s) { fputs(s,stdout); fflush(stdout); } void (*svm_print_string) (const char *) = &print_string_stdout; #if 1 static void info(const char *fmt,...) { char buf[BUFSIZ]; va_list ap; va_start(ap,fmt); vsprintf(buf,fmt,ap); va_end(ap); (*svm_print_string)(buf); } #else static void info(const char *fmt,...) {} #endif // // Kernel Cache // // l is the number of total data items // size is the cache size limit in bytes // class Cache { public: Cache(int l,long int size); ~Cache(); // request data [0,len) // return some position p where [p,len) need to be filled // (p >= len if nothing needs to be filled) int get_data(const int index, Qfloat **data, int len); void swap_index(int i, int j); private: int l; long int size; struct head_t { head_t *prev, *next; // a circular list Qfloat *data; int len; // data[0,len) is cached in this entry }; head_t *head; head_t lru_head; void lru_delete(head_t *h); void lru_insert(head_t *h); }; Cache::Cache(int l_,long int size_):l(l_),size(size_) { head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 size /= sizeof(Qfloat); size -= l * sizeof(head_t) / sizeof(Qfloat); size = max(size, 2 * (long int) l); // cache must be large enough for two columns lru_head.next = lru_head.prev = &lru_head; } Cache::~Cache() { for(head_t *h = lru_head.next; h != &lru_head; h=h->next) free(h->data); free(head); } void Cache::lru_delete(head_t *h) { // delete from current location h->prev->next = h->next; h->next->prev = h->prev; } void Cache::lru_insert(head_t *h) { // insert to last position h->next = &lru_head; h->prev = lru_head.prev; h->prev->next = h; h->next->prev = h; } int Cache::get_data(const int index, Qfloat **data, int len) { head_t *h = &head[index]; if(h->len) lru_delete(h); int more = len - h->len; if(more > 0) { // free old space while(size < more) { head_t *old = lru_head.next; lru_delete(old); free(old->data); size += old->len; old->data = 0; old->len = 0; } // allocate new space h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); size -= more; swap(h->len,len); } lru_insert(h); *data = h->data; return len; } void Cache::swap_index(int i, int j) { if(i==j) return; if(head[i].len) lru_delete(&head[i]); if(head[j].len) lru_delete(&head[j]); swap(head[i].data,head[j].data); swap(head[i].len,head[j].len); if(head[i].len) lru_insert(&head[i]); if(head[j].len) lru_insert(&head[j]); if(i>j) swap(i,j); for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) { if(h->len > i) { if(h->len > j) swap(h->data[i],h->data[j]); else { // give up lru_delete(h); free(h->data); size += h->len; h->data = 0; h->len = 0; } } } } // // Kernel evaluation // // the static method k_function is for doing single kernel evaluation // the constructor of Kernel prepares to calculate the l*l kernel matrix // the member function get_Q is for getting one column from the Q Matrix // class QMatrix { public: virtual Qfloat *get_Q(int column, int len) const = 0; virtual Qfloat *get_QD() const = 0; virtual void swap_index(int i, int j) const = 0; virtual ~QMatrix() {} }; class Kernel: public QMatrix { public: Kernel(int l, svm_node * const * x, const svm_parameter& param); virtual ~Kernel(); static double k_function(const svm_node *x, const svm_node *y, const svm_parameter& param); virtual Qfloat *get_Q(int column, int len) const = 0; virtual Qfloat *get_QD() const = 0; virtual void swap_index(int i, int j) const // no so const... { swap(x[i],x[j]); if(x_square) swap(x_square[i],x_square[j]); } protected: double (Kernel::*kernel_function)(int i, int j) const; private: const svm_node **x; double *x_square; // svm_parameter const int kernel_type; const int degree; const double gamma; const double coef0; static double dot(const svm_node *px, const svm_node *py); double kernel_linear(int i, int j) const { return dot(x[i],x[j]); } double kernel_poly(int i, int j) const { return powi(gamma*dot(x[i],x[j])+coef0,degree); } double kernel_rbf(int i, int j) const { return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); } double kernel_sigmoid(int i, int j) const { return tanh(gamma*dot(x[i],x[j])+coef0); } double kernel_precomputed(int i, int j) const { return x[i][(int)(x[j][0].value)].value; } }; Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) :kernel_type(param.kernel_type), degree(param.degree), gamma(param.gamma), coef0(param.coef0) { switch(kernel_type) { case LINEAR: kernel_function = &Kernel::kernel_linear; break; case POLY: kernel_function = &Kernel::kernel_poly; break; case RBF: kernel_function = &Kernel::kernel_rbf; break; case SIGMOID: kernel_function = &Kernel::kernel_sigmoid; break; case PRECOMPUTED: kernel_function = &Kernel::kernel_precomputed; break; } clone(x,x_,l); if(kernel_type == RBF) { x_square = new double[l]; for(int i=0;iindex != -1 && py->index != -1) { if(px->index == py->index) { sum += px->value * py->value; ++px; ++py; } else { if(px->index > py->index) ++py; else ++px; } } return sum; } double Kernel::k_function(const svm_node *x, const svm_node *y, const svm_parameter& param) { switch(param.kernel_type) { case LINEAR: return dot(x,y); case POLY: return powi(param.gamma*dot(x,y)+param.coef0,param.degree); case RBF: { double sum = 0; while(x->index != -1 && y->index !=-1) { if(x->index == y->index) { double d = x->value - y->value; sum += d*d; ++x; ++y; } else { if(x->index > y->index) { sum += y->value * y->value; ++y; } else { sum += x->value * x->value; ++x; } } } while(x->index != -1) { sum += x->value * x->value; ++x; } while(y->index != -1) { sum += y->value * y->value; ++y; } return exp(-param.gamma*sum); } case SIGMOID: return tanh(param.gamma*dot(x,y)+param.coef0); case PRECOMPUTED: //x: test (validation), y: SV return x[(int)(y->value)].value; default: return 0; // Unreachable } } // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 // Solves: // // min 0.5(\alpha^T Q \alpha) + p^T \alpha // // y^T \alpha = \delta // y_i = +1 or -1 // 0 <= alpha_i <= Cp for y_i = 1 // 0 <= alpha_i <= Cn for y_i = -1 // // Given: // // Q, p, y, Cp, Cn, and an initial feasible point \alpha // l is the size of vectors and matrices // eps is the stopping tolerance // // solution will be put in \alpha, objective value will be put in obj // class Solver { public: Solver() {}; virtual ~Solver() {}; struct SolutionInfo { double obj; double rho; double upper_bound_p; double upper_bound_n; double r; // for Solver_NU }; void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, double *alpha_, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking); protected: int active_size; schar *y; double *G; // gradient of objective function enum { LOWER_BOUND, UPPER_BOUND, FREE }; char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE double *alpha; const QMatrix *Q; const Qfloat *QD; double eps; double Cp,Cn; double *p; int *active_set; double *G_bar; // gradient, if we treat free variables as 0 int l; bool unshrink; // XXX double get_C(int i) { return (y[i] > 0)? Cp : Cn; } void update_alpha_status(int i) { if(alpha[i] >= get_C(i)) alpha_status[i] = UPPER_BOUND; else if(alpha[i] <= 0) alpha_status[i] = LOWER_BOUND; else alpha_status[i] = FREE; } bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } bool is_free(int i) { return alpha_status[i] == FREE; } void swap_index(int i, int j); void reconstruct_gradient(); virtual int select_working_set(int &i, int &j); virtual double calculate_rho(); virtual void do_shrinking(); private: bool be_shrunk(int i, double Gmax1, double Gmax2); }; void Solver::swap_index(int i, int j) { Q->swap_index(i,j); swap(y[i],y[j]); swap(G[i],G[j]); swap(alpha_status[i],alpha_status[j]); swap(alpha[i],alpha[j]); swap(p[i],p[j]); swap(active_set[i],active_set[j]); swap(G_bar[i],G_bar[j]); } void Solver::reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if(active_size == l) return; int i,j; int nr_free = 0; for(j=active_size;j 2*active_size*(l-active_size)) { for(i=active_size;iget_Q(i,active_size); for(j=0;jget_Q(i,l); double alpha_i = alpha[i]; for(j=active_size;jl = l; this->Q = &Q; QD=Q.get_QD(); clone(p, p_,l); clone(y, y_,l); clone(alpha,alpha_,l); this->Cp = Cp; this->Cn = Cn; this->eps = eps; unshrink = false; // initialize alpha_status { alpha_status = new char[l]; for(int i=0;i 0) { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = diff; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = -diff; } } if(diff > C_i - C_j) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = C_i - diff; } } else { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = C_j + diff; } } } else { double quad_coef = Q_i[i]+Q_j[j]-2*Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (G[i]-G[j])/quad_coef; double sum = alpha[i] + alpha[j]; alpha[i] -= delta; alpha[j] += delta; if(sum > C_i) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = sum - C_i; } } else { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = sum; } } if(sum > C_j) { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for(int k=0;krho = calculate_rho(); // calculate objective value { double v = 0; int i; for(i=0;iobj = v/2; } // put back the solution { for(int i=0;iupper_bound_p = Cp; si->upper_bound_n = Cn; info("\noptimization finished, #iter = %d\n",iter); delete[] p; delete[] y; delete[] alpha; delete[] alpha_status; delete[] active_set; delete[] G; delete[] G_bar; } // return 1 if already optimal, return 0 otherwise int Solver::select_working_set(int &out_i, int &out_j) { // return i,j such that // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmax = -INF; double Gmax2 = -INF; int Gmax_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t= Gmax) { Gmax = -G[t]; Gmax_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmax) { Gmax = G[t]; Gmax_idx = t; } } int i = Gmax_idx; const Qfloat *Q_i = NULL; if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 Q_i = Q->get_Q(i,active_size); for(int j=0;j= Gmax2) Gmax2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef=Q_i[i]+QD[j]-2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff= Gmax-G[j]; if (-G[j] >= Gmax2) Gmax2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef=Q_i[i]+QD[j]+2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Gmax+Gmax2 < eps) return 1; out_i = Gmax_idx; out_j = Gmin_idx; return 0; } bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax2); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax1); } else return(false); } void Solver::do_shrinking() { int i; double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } // find maximal violating pair first for(i=0;i= Gmax1) Gmax1 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax2) Gmax2 = G[i]; } } else { if(!is_upper_bound(i)) { if(-G[i] >= Gmax2) Gmax2 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax1) Gmax1 = G[i]; } } } if(unshrink == false && Gmax1 + Gmax2 <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; info("*"); } for(i=0;i i) { if (!be_shrunk(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size--; } } } double Solver::calculate_rho() { double r; int nr_free = 0; double ub = INF, lb = -INF, sum_free = 0; for(int i=0;i0) r = sum_free/nr_free; else r = (ub+lb)/2; return r; } // // Solver for nu-svm classification and regression // // additional constraint: e^T \alpha = constant // class Solver_NU : public Solver { public: Solver_NU() {} void Solve(int l, const QMatrix& Q, const double *p, const schar *y, double *alpha, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking) { this->si = si; Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); } private: SolutionInfo *si; int select_working_set(int &i, int &j); double calculate_rho(); bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); void do_shrinking(); }; // return 1 if already optimal, return 0 otherwise int Solver_NU::select_working_set(int &out_i, int &out_j) { // return i,j such that y_i = y_j and // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmaxp = -INF; double Gmaxp2 = -INF; int Gmaxp_idx = -1; double Gmaxn = -INF; double Gmaxn2 = -INF; int Gmaxn_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t= Gmaxp) { Gmaxp = -G[t]; Gmaxp_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmaxn) { Gmaxn = G[t]; Gmaxn_idx = t; } } int ip = Gmaxp_idx; int in = Gmaxn_idx; const Qfloat *Q_ip = NULL; const Qfloat *Q_in = NULL; if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 Q_ip = Q->get_Q(ip,active_size); if(in != -1) Q_in = Q->get_Q(in,active_size); for(int j=0;j= Gmaxp2) Gmaxp2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = Q_ip[ip]+QD[j]-2*Q_ip[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff=Gmaxn-G[j]; if (-G[j] >= Gmaxn2) Gmaxn2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = Q_in[in]+QD[j]-2*Q_in[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) return 1; if (y[Gmin_idx] == +1) out_i = Gmaxp_idx; else out_i = Gmaxn_idx; out_j = Gmin_idx; return 0; } bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax4); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax3); } else return(false); } void Solver_NU::do_shrinking() { double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } // find maximal violating pair first int i; for(i=0;i Gmax1) Gmax1 = -G[i]; } else if(-G[i] > Gmax4) Gmax4 = -G[i]; } if(!is_lower_bound(i)) { if(y[i]==+1) { if(G[i] > Gmax2) Gmax2 = G[i]; } else if(G[i] > Gmax3) Gmax3 = G[i]; } } if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; } for(i=0;i i) { if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size--; } } } double Solver_NU::calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si->r = (r1+r2)/2; return (r1-r2)/2; } // // Q matrices for various formulations // class SVC_Q: public Kernel { public: SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) :Kernel(prob.l, prob.x, param) { clone(y,y_,prob.l); cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); QD = new Qfloat[prob.l]; for(int i=0;i*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if((start = cache->get_data(i,&data,len)) < len) { for(j=start;j*kernel_function)(i,j)); } return data; } Qfloat *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(y[i],y[j]); swap(QD[i],QD[j]); } ~SVC_Q() { delete[] y; delete cache; delete[] QD; } private: schar *y; Cache *cache; Qfloat *QD; }; class ONE_CLASS_Q: public Kernel { public: ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) :Kernel(prob.l, prob.x, param) { cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); QD = new Qfloat[prob.l]; for(int i=0;i*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if((start = cache->get_data(i,&data,len)) < len) { for(j=start;j*kernel_function)(i,j); } return data; } Qfloat *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(QD[i],QD[j]); } ~ONE_CLASS_Q() { delete cache; delete[] QD; } private: Cache *cache; Qfloat *QD; }; class SVR_Q: public Kernel { public: SVR_Q(const svm_problem& prob, const svm_parameter& param) :Kernel(prob.l, prob.x, param) { l = prob.l; cache = new Cache(l,(long int)(param.cache_size*(1<<20))); QD = new Qfloat[2*l]; sign = new schar[2*l]; index = new int[2*l]; for(int k=0;k*kernel_function)(k,k); QD[k+l]=QD[k]; } buffer[0] = new Qfloat[2*l]; buffer[1] = new Qfloat[2*l]; next_buffer = 0; } void swap_index(int i, int j) const { swap(sign[i],sign[j]); swap(index[i],index[j]); swap(QD[i],QD[j]); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int j, real_i = index[i]; if(cache->get_data(real_i,&data,l) < l) { for(j=0;j*kernel_function)(real_i,j); } // reorder and copy Qfloat *buf = buffer[next_buffer]; next_buffer = 1 - next_buffer; schar si = sign[i]; for(j=0;jl; double *minus_ones = new double[l]; schar *y = new schar[l]; int i; for(i=0;iy[i] > 0) y[i] = +1; else y[i]=-1; } Solver s; s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking); double sum_alpha=0; for(i=0;il)); for(i=0;il; double nu = param->nu; schar *y = new schar[l]; for(i=0;iy[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;ieps, si, param->shrinking); double r = si->r; info("C = %f\n",1/r); for(i=0;irho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros; } static void solve_one_class( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double *zeros = new double[l]; schar *ones = new schar[l]; int i; int n = (int)(param->nu*prob->l); // # of alpha's at upper bound for(i=0;il) alpha[n] = param->nu * prob->l - n; for(i=n+1;ieps, si, param->shrinking); delete[] zeros; delete[] ones; } static void solve_epsilon_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; for(i=0;ip - prob->y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param->p + prob->y[i]; y[i+l] = -1; } Solver s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking); double sum_alpha = 0; for(i=0;iC*l)); delete[] alpha2; delete[] linear_term; delete[] y; } static void solve_nu_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = C * param->nu * l / 2; for(i=0;iy[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); info("epsilon = %f\n",-si->r); for(i=0;il); Solver::SolutionInfo si; switch(param->svm_type) { case C_SVC: solve_c_svc(prob,param,alpha,&si,Cp,Cn); break; case NU_SVC: solve_nu_svc(prob,param,alpha,&si); break; case ONE_CLASS: solve_one_class(prob,param,alpha,&si); break; case EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,&si); break; case NU_SVR: solve_nu_svr(prob,param,alpha,&si); break; } info("obj = %f, rho = %f\n",si.obj,si.rho); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;il;i++) { if(fabs(alpha[i]) > 0) { ++nSV; if(prob->y[i] > 0) { if(fabs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(fabs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } info("nSV = %d, nBSV = %d\n",nSV,nBSV); decision_function f; f.alpha = alpha; f.rho = si.rho; return f; } // // svm_model // struct svm_model { svm_parameter param; // parameter int nr_class; // number of classes, = 2 in regression/one class svm int l; // total #SV svm_node **SV; // SVs (SV[l]) double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) double *rho; // constants in decision functions (rho[k*(k-1)/2]) double *probA; // pariwise probability information double *probB; // for classification only int *label; // label of each class (label[k]) int *nSV; // number of SVs for each class (nSV[k]) // nSV[0] + nSV[1] + ... + nSV[k-1] = l // XXX int free_sv; // 1 if svm_model is created by svm_load_model // 0 if svm_model is created by svm_train }; // Platt's binary SVM Probablistic Output: an improvement from Lin et al. void sigmoid_train( int l, const double *dec_values, const double *labels, double& A, double& B) { double prior1=0, prior0 = 0; int i; for (i=0;i 0) prior1+=1; else prior0+=1; int max_iter=100; // Maximal number of iterations double min_step=1e-10; // Minimal step taken in line search double sigma=1e-12; // For numerically strict PD of Hessian double eps=1e-5; double hiTarget=(prior1+1.0)/(prior1+2.0); double loTarget=1/(prior0+2.0); double *t=Malloc(double,l); double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; double newA,newB,newf,d1,d2; int iter; // Initial Point and Initial Fun Value A=0.0; B=log((prior0+1.0)/(prior1+1.0)); double fval = 0.0; for (i=0;i0) t[i]=hiTarget; else t[i]=loTarget; fApB = dec_values[i]*A+B; if (fApB>=0) fval += t[i]*fApB + log(1+exp(-fApB)); else fval += (t[i] - 1)*fApB +log(1+exp(fApB)); } for (iter=0;iter= 0) { p=exp(-fApB)/(1.0+exp(-fApB)); q=1.0/(1.0+exp(-fApB)); } else { p=1.0/(1.0+exp(fApB)); q=exp(fApB)/(1.0+exp(fApB)); } d2=p*q; h11+=dec_values[i]*dec_values[i]*d2; h22+=d2; h21+=dec_values[i]*d2; d1=t[i]-p; g1+=dec_values[i]*d1; g2+=d1; } // Stopping Criteria if (fabs(g1)= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i=0;i= 0) newf += t[i]*fApB + log(1+exp(-fApB)); else newf += (t[i] - 1)*fApB +log(1+exp(fApB)); } // Check sufficient decrease if (newf=max_iter) info("Reaching maximal iterations in two-class probability estimates\n"); free(t); } double sigmoid_predict(double decision_value, double A, double B) { double fApB = decision_value*A+B; if (fApB >= 0) return exp(-fApB)/(1.0+exp(-fApB)); else return 1.0/(1+exp(fApB)) ; } // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng void multiclass_probability(int k, double **r, double *p) { int t,j; int iter = 0, max_iter=max(100,k); double **Q=Malloc(double *,k); double *Qp=Malloc(double,k); double pQp, eps=0.005/k; for (t=0;tmax_error) max_error=error; } if (max_error=max_iter) info("Exceeds max_iter in multiclass_prob\n"); for(t=0;tl); double *dec_values = Malloc(double,prob->l); // random shuffle for(i=0;il;i++) perm[i]=i; for(i=0;il;i++) { int j = i+rand()%(prob->l-i); swap(perm[i],perm[j]); } for(i=0;il/nr_fold; int end = (i+1)*prob->l/nr_fold; int j,k; struct svm_problem subprob; subprob.l = prob->l-(end-begin); subprob.x = Malloc(struct svm_node*,subprob.l); subprob.y = Malloc(double,subprob.l); k=0; for(j=0;jx[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for(j=end;jl;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } int p_count=0,n_count=0; for(j=0;j0) p_count++; else n_count++; if(p_count==0 && n_count==0) for(j=begin;j 0 && n_count == 0) for(j=begin;j 0) for(j=begin;jx[perm[j]],&(dec_values[perm[j]])); // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel->label[0]; } svm_destroy_model(submodel); svm_destroy_param(&subparam); } free(subprob.x); free(subprob.y); } sigmoid_train(prob->l,dec_values,prob->y,probA,probB); free(dec_values); free(perm); } // Return parameter of a Laplace distribution double svm_svr_probability( const svm_problem *prob, const svm_parameter *param) { int i; int nr_fold = 5; double *ymv = Malloc(double,prob->l); double mae = 0; svm_parameter newparam = *param; newparam.probability = 0; svm_cross_validation(prob,&newparam,nr_fold,ymv); for(i=0;il;i++) { ymv[i]=prob->y[i]-ymv[i]; mae += fabs(ymv[i]); } mae /= prob->l; double std=sqrt(2*mae*mae); int count=0; mae=0; for(i=0;il;i++) if (fabs(ymv[i]) > 5*std) count=count+1; else mae+=fabs(ymv[i]); mae /= (prob->l-count); info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); free(ymv); return mae; } // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int *data_label = Malloc(int,l); int i; for(i=0;iy[i]; int j; for(j=0;jparam = *param; model->free_sv = 0; // XXX if(param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR) { // regression or one-class-svm model->nr_class = 2; model->label = NULL; model->nSV = NULL; model->probA = NULL; model->probB = NULL; model->sv_coef = Malloc(double *,1); if(param->probability && (param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR)) { model->probA = Malloc(double,1); model->probA[0] = svm_svr_probability(prob,param); } decision_function f = svm_train_one(prob,param,0,0); model->rho = Malloc(double,1); model->rho[0] = f.rho; int nSV = 0; int i; for(i=0;il;i++) if(fabs(f.alpha[i]) > 0) ++nSV; model->l = nSV; model->SV = Malloc(svm_node *,nSV); model->sv_coef[0] = Malloc(double,nSV); int j = 0; for(i=0;il;i++) if(fabs(f.alpha[i]) > 0) { model->SV[j] = prob->x[i]; model->sv_coef[0][j] = f.alpha[i]; ++j; } free(f.alpha); } else { // classification int l = prob->l; int nr_class; int *label = NULL; int *start = NULL; int *count = NULL; int *perm = Malloc(int,l); // group training data of the same class svm_group_classes(prob,&nr_class,&label,&start,&count,perm); svm_node **x = Malloc(svm_node *,l); int i; for(i=0;ix[perm[i]]; // calculate weighted C double *weighted_C = Malloc(double, nr_class); for(i=0;iC; for(i=0;inr_weight;i++) { int j; for(j=0;jweight_label[i] == label[j]) break; if(j == nr_class) fprintf(stderr,"warning: class label %d specified in weight is not found\n", param->weight_label[i]); else weighted_C[j] *= param->weight[i]; } // train k*(k-1)/2 models bool *nonzero = Malloc(bool,l); for(i=0;iprobability) { probA=Malloc(double,nr_class*(nr_class-1)/2); probB=Malloc(double,nr_class*(nr_class-1)/2); } int p = 0; for(i=0;iprobability) svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k 0) nonzero[si+k] = true; for(k=0;k 0) nonzero[sj+k] = true; free(sub_prob.x); free(sub_prob.y); ++p; } // build output model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;ilabel[i] = label[i]; model->rho = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;irho[i] = f[i].rho; if(param->probability) { model->probA = Malloc(double,nr_class*(nr_class-1)/2); model->probB = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;iprobA[i] = probA[i]; model->probB[i] = probB[i]; } } else { model->probA=NULL; model->probB=NULL; } int total_sv = 0; int *nz_count = Malloc(int,nr_class); model->nSV = Malloc(int,nr_class); for(i=0;inSV[i] = nSV; nz_count[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->SV = Malloc(svm_node *,total_sv); p = 0; for(i=0;iSV[p++] = x[i]; int *nz_start = Malloc(int,nr_class); nz_start[0] = 0; for(i=1;isv_coef = Malloc(double *,nr_class-1); for(i=0;isv_coef[i] = Malloc(double,total_sv); p = 0; for(i=0;isv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;ksv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } free(label); free(probA); free(probB); free(count); free(perm); free(start); free(x); free(weighted_C); free(nonzero); for(i=0;il; int *perm = Malloc(int,l); int nr_class; // stratified cv may not give leave-one-out rate // Each class to l folds -> some folds may have zero elements if((param->svm_type == C_SVC || param->svm_type == NU_SVC) && nr_fold < l) { int *start = NULL; int *label = NULL; int *count = NULL; svm_group_classes(prob,&nr_class,&label,&start,&count,perm); // random shuffle and then data grouped by fold using the array perm int *fold_count = Malloc(int,nr_fold); int c; int *index = Malloc(int,l); for(i=0;ix[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for(j=end;jx[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } struct svm_model *submodel = svm_train(&subprob,param); if(param->probability && (param->svm_type == C_SVC || param->svm_type == NU_SVC)) { double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); for(j=begin;jx[perm[j]],prob_estimates); free(prob_estimates); } else for(j=begin;jx[perm[j]]); svm_destroy_model(submodel); free(subprob.x); free(subprob.y); } free(fold_start); free(perm); } int svm_get_svm_type(const svm_model *model) { return model->param.svm_type; } int svm_get_nr_class(const svm_model *model) { return model->nr_class; } void svm_get_labels(const svm_model *model, int* label) { if (model->label != NULL) for(int i=0;inr_class;i++) label[i] = model->label[i]; } double svm_get_svr_probability(const svm_model *model) { if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA!=NULL) return model->probA[0]; else { fprintf(stderr,"Model doesn't contain information for SVR probability inference\n"); return 0; } } void svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values) { if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double *sv_coef = model->sv_coef[0]; double sum = 0; for(int i=0;il;i++) sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); sum -= model->rho[0]; *dec_values = sum; } else { int i; int nr_class = model->nr_class; int l = model->l; double *kvalue = Malloc(double,l); for(i=0;iSV[i],model->param); int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;inSV[i-1]; int p=0; for(i=0;inSV[i]; int cj = model->nSV[j]; int k; double *coef1 = model->sv_coef[j-1]; double *coef2 = model->sv_coef[i]; for(k=0;krho[p]; dec_values[p] = sum; p++; } free(kvalue); free(start); } } double svm_predict(const svm_model *model, const svm_node *x) { if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double res; svm_predict_values(model, x, &res); if(model->param.svm_type == ONE_CLASS) return (res>0)?1:-1; else return res; } else { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); svm_predict_values(model, x, dec_values); int *vote = Malloc(int,nr_class); for(i=0;i 0) ++vote[i]; else ++vote[j]; } int vote_max_idx = 0; for(i=1;i vote[vote_max_idx]) vote_max_idx = i; free(vote); free(dec_values); return model->label[vote_max_idx]; } } double svm_predict_probability( const svm_model *model, const svm_node *x, double *prob_estimates) { if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA!=NULL && model->probB!=NULL) { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); svm_predict_values(model, x, dec_values); double min_prob=1e-7; double **pairwise_prob=Malloc(double *,nr_class); for(i=0;iprobA[k],model->probB[k]),min_prob),1-min_prob); pairwise_prob[j][i]=1-pairwise_prob[i][j]; k++; } multiclass_probability(nr_class,pairwise_prob,prob_estimates); int prob_max_idx = 0; for(i=1;i prob_estimates[prob_max_idx]) prob_max_idx = i; for(i=0;ilabel[prob_max_idx]; } else return svm_predict(model, x); } const char *svm_type_table[] = { "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL }; const char *kernel_type_table[]= { "linear","polynomial","rbf","sigmoid","precomputed",NULL }; int svm_save_model(const char *model_file_name, const svm_model *model) { FILE *fp = fopen(model_file_name,"w"); if(fp==NULL) return -1; const svm_parameter& param = model->param; fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); if(param.kernel_type == POLY) fprintf(fp,"degree %d\n", param.degree); if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) fprintf(fp,"gamma %g\n", param.gamma); if(param.kernel_type == POLY || param.kernel_type == SIGMOID) fprintf(fp,"coef0 %g\n", param.coef0); int nr_class = model->nr_class; int l = model->l; fprintf(fp, "nr_class %d\n", nr_class); fprintf(fp, "total_sv %d\n",l); { fprintf(fp, "rho"); for(int i=0;irho[i]); fprintf(fp, "\n"); } if(model->label) { fprintf(fp, "label"); for(int i=0;ilabel[i]); fprintf(fp, "\n"); } if(model->probA) // regression has probA only { fprintf(fp, "probA"); for(int i=0;iprobA[i]); fprintf(fp, "\n"); } if(model->probB) { fprintf(fp, "probB"); for(int i=0;iprobB[i]); fprintf(fp, "\n"); } if(model->nSV) { fprintf(fp, "nr_sv"); for(int i=0;inSV[i]); fprintf(fp, "\n"); } fprintf(fp, "SV\n"); const double * const *sv_coef = model->sv_coef; const svm_node * const *SV = model->SV; for(int i=0;ivalue)); else while(p->index != -1) { fprintf(fp,"%d:%.8g ",p->index,p->value); p++; } fprintf(fp, "\n"); } if (ferror(fp) != 0 || fclose(fp) != 0) return -1; else return 0; } static char *line = NULL; static int max_line_len; static char* readline(FILE *input) { int len; if(fgets(line,max_line_len,input) == NULL) return NULL; while(strrchr(line,'\n') == NULL) { max_line_len *= 2; line = (char *) realloc(line,max_line_len); len = (int) strlen(line); if(fgets(line+len,max_line_len-len,input) == NULL) break; } return line; } svm_model *svm_load_model(const char *model_file_name) { FILE *fp = fopen(model_file_name,"rb"); if(fp==NULL) return NULL; // read parameters svm_model *model = Malloc(svm_model,1); svm_parameter& param = model->param; model->rho = NULL; model->probA = NULL; model->probB = NULL; model->label = NULL; model->nSV = NULL; char cmd[81]; while(1) { fscanf(fp,"%80s",cmd); if(strcmp(cmd,"svm_type")==0) { fscanf(fp,"%80s",cmd); int i; for(i=0;svm_type_table[i];i++) { if(strcmp(svm_type_table[i],cmd)==0) { param.svm_type=i; break; } } if(svm_type_table[i] == NULL) { fprintf(stderr,"unknown svm type.\n"); free(model->rho); free(model->label); free(model->nSV); free(model); return NULL; } } else if(strcmp(cmd,"kernel_type")==0) { fscanf(fp,"%80s",cmd); int i; for(i=0;kernel_type_table[i];i++) { if(strcmp(kernel_type_table[i],cmd)==0) { param.kernel_type=i; break; } } if(kernel_type_table[i] == NULL) { fprintf(stderr,"unknown kernel function.\n"); free(model->rho); free(model->label); free(model->nSV); free(model); return NULL; } } else if(strcmp(cmd,"degree")==0) fscanf(fp,"%d",¶m.degree); else if(strcmp(cmd,"gamma")==0) fscanf(fp,"%lf",¶m.gamma); else if(strcmp(cmd,"coef0")==0) fscanf(fp,"%lf",¶m.coef0); else if(strcmp(cmd,"nr_class")==0) fscanf(fp,"%d",&model->nr_class); else if(strcmp(cmd,"total_sv")==0) fscanf(fp,"%d",&model->l); else if(strcmp(cmd,"rho")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->rho = Malloc(double,n); for(int i=0;irho[i]); } else if(strcmp(cmd,"label")==0) { int n = model->nr_class; model->label = Malloc(int,n); for(int i=0;ilabel[i]); } else if(strcmp(cmd,"probA")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->probA = Malloc(double,n); for(int i=0;iprobA[i]); } else if(strcmp(cmd,"probB")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->probB = Malloc(double,n); for(int i=0;iprobB[i]); } else if(strcmp(cmd,"nr_sv")==0) { int n = model->nr_class; model->nSV = Malloc(int,n); for(int i=0;inSV[i]); } else if(strcmp(cmd,"SV")==0) { while(1) { int c = getc(fp); if(c==EOF || c=='\n') break; } break; } else { fprintf(stderr,"unknown text in model file: [%s]\n",cmd); free(model->rho); free(model->label); free(model->nSV); free(model); return NULL; } } // read sv_coef and SV int elements = 0; long pos = ftell(fp); max_line_len = 1024; line = Malloc(char,max_line_len); char *p,*endptr,*idx,*val; while(readline(fp)!=NULL) { p = strtok(line,":"); while(1) { p = strtok(NULL,":"); if(p == NULL) break; ++elements; } } elements += model->l; fseek(fp,pos,SEEK_SET); int m = model->nr_class - 1; int l = model->l; model->sv_coef = Malloc(double *,m); int i; for(i=0;isv_coef[i] = Malloc(double,l); model->SV = Malloc(svm_node*,l); svm_node *x_space = NULL; if(l>0) x_space = Malloc(svm_node,elements); int j=0; for(i=0;iSV[i] = &x_space[j]; p = strtok(line, " \t"); model->sv_coef[0][i] = strtod(p,&endptr); for(int k=1;ksv_coef[k][i] = strtod(p,&endptr); } while(1) { idx = strtok(NULL, ":"); val = strtok(NULL, " \t"); if(val == NULL) break; x_space[j].index = (int) strtol(idx,&endptr,10); x_space[j].value = strtod(val,&endptr); ++j; } x_space[j++].index = -1; } free(line); if (ferror(fp) != 0 || fclose(fp) != 0) return NULL; model->free_sv = 1; // XXX return model; } void svm_destroy_model(svm_model* model) { if(model->free_sv && model->l > 0) free((void *)(model->SV[0])); for(int i=0;inr_class-1;i++) free(model->sv_coef[i]); free(model->SV); free(model->sv_coef); free(model->rho); free(model->label); free(model->probA); free(model->probB); free(model->nSV); free(model); } void svm_destroy_param(svm_parameter* param) { free(param->weight_label); free(param->weight); } const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) { // svm_type int svm_type = param->svm_type; if(svm_type != C_SVC && svm_type != NU_SVC && svm_type != ONE_CLASS && svm_type != EPSILON_SVR && svm_type != NU_SVR) return "unknown svm type"; // kernel_type, degree int kernel_type = param->kernel_type; if(kernel_type != LINEAR && kernel_type != POLY && kernel_type != RBF && kernel_type != SIGMOID && kernel_type != PRECOMPUTED) return "unknown kernel type"; if(param->degree < 0) return "degree of polynomial kernel < 0"; // cache_size,eps,C,nu,p,shrinking if(param->cache_size <= 0) return "cache_size <= 0"; if(param->eps <= 0) return "eps <= 0"; if(svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR) if(param->C <= 0) return "C <= 0"; if(svm_type == NU_SVC || svm_type == ONE_CLASS || svm_type == NU_SVR) if(param->nu <= 0 || param->nu > 1) return "nu <= 0 or nu > 1"; if(svm_type == EPSILON_SVR) if(param->p < 0) return "p < 0"; if(param->shrinking != 0 && param->shrinking != 1) return "shrinking != 0 and shrinking != 1"; if(param->probability != 0 && param->probability != 1) return "probability != 0 and probability != 1"; if(param->probability == 1 && svm_type == ONE_CLASS) return "one-class SVM probability output not supported yet"; // check whether nu-svc is feasible if(svm_type == NU_SVC) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int i; for(i=0;iy[i]; int j; for(j=0;jnu*(n1+n2)/2 > min(n1,n2)) { free(label); free(count); return "specified nu is infeasible"; } } } free(label); free(count); } return NULL; } int svm_check_probability_model(const svm_model *model) { return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA!=NULL && model->probB!=NULL) || ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA!=NULL); } pymvpa-0.4.8/3rd/libsvm/svm.h000066400000000000000000000043251174541445200160140ustar00rootroot00000000000000#ifndef _LIBSVM_H #define _LIBSVM_H #define LIBSVM_VERSION 289 #ifdef __cplusplus extern "C" { #endif extern int libsvm_version; struct svm_node { int index; double value; }; struct svm_problem { int l; double *y; struct svm_node **x; }; enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */ enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */ struct svm_parameter { int svm_type; int kernel_type; int degree; /* for poly */ double gamma; /* for poly/rbf/sigmoid */ double coef0; /* for poly/sigmoid */ /* these are for training only */ double cache_size; /* in MB */ double eps; /* stopping criteria */ double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ int nr_weight; /* for C_SVC */ int *weight_label; /* for C_SVC */ double* weight; /* for C_SVC */ double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ double p; /* for EPSILON_SVR */ int shrinking; /* use the shrinking heuristics */ int probability; /* do probability estimates */ }; struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target); int svm_save_model(const char *model_file_name, const struct svm_model *model); struct svm_model *svm_load_model(const char *model_file_name); int svm_get_svm_type(const struct svm_model *model); int svm_get_nr_class(const struct svm_model *model); void svm_get_labels(const struct svm_model *model, int *label); double svm_get_svr_probability(const struct svm_model *model); void svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values); double svm_predict(const struct svm_model *model, const struct svm_node *x); double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates); void svm_destroy_model(struct svm_model *model); void svm_destroy_param(struct svm_parameter *param); const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param); int svm_check_probability_model(const struct svm_model *model); extern void (*svm_print_string) (const char *); #ifdef __cplusplus } #endif #endif /* _LIBSVM_H */ pymvpa-0.4.8/AUTHOR000066400000000000000000000001761174541445200137770ustar00rootroot00000000000000Michael Hanke Yaroslav O. Halchenko Per B. Sederberg pymvpa-0.4.8/COPYING000066400000000000000000000025671174541445200141130ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: .. _chap_license: ******* License ******* The PyMVPA package, including all examples, code snippets and attached documentation is covered by the MIT license. :: The MIT License Copyright (c) 2006-2009 Michael Hanke 2007-2009 Yaroslav Halchenko Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pymvpa-0.4.8/Changelog000066400000000000000000000521511174541445200146640ustar00rootroot00000000000000.. -*- mode: rst -*- .. _chap_changelog: .. index:: changelog **************************** PyMVPA Development Changelog **************************** This changelog only lists rather macroscopic changes to PyMVPA. The full VCS changelog for 0.4.x series of PyMVPA is available here: https://github.com/PyMVPA/PyMVPA/commits/maint%2F0.4 In addition there is also a somewhat unconventional visual changelog: http://www.pymvpa.org/history.html 'Closes' statement IDs refer to the Debian bug tracking system and can be queried by visiting the URL:: http://bugs.debian.org/ Unreleased changes Changes described here are not yet released, but available from VCS repository. * Many, many, many Releases ======== * 0.4.8 (Tue, Apr 23 2012) (Total: 14 commits) A bugfix release * Fixed - Compatibility with libsvm 3.10, shogun >= 1.0 (Closes: #655643) - import ma directly from numpy - :class:`GPRLinearWeights` -- correct access to weights - :class:`FslEV3` -- gzip import and getNEVs - :func:`read_fsl_design` -- correct splitting of the fields - :func:`score` -- assure std to be an array during application * RF - extensions are built inplace * 0.4.7 (Tue, Mar 07 2011) (Total: 12 commits) A bugfix release * Fixed - Addressed the issue with input NIfTI files having scl_* fields set: it could result in incorrect analyses and map2nifti-produced NIfTI files. Now input files account for scaling/offset if scl_ fields direct to do so. Moreover upon map2nifti, those fields get reset. - :file:`doc/examples/searchlight_minimal.py` - best error is the minimal one * Enhancements - :class:`~mvpa.clfs.gnb.GNB` can now tolerate training datasets with a single label - :class:`~mvpa.clfs.meta.TreeClassifier` can have trailing nodes with no classifier assigned * 0.4.6 (Tue, Feb 01 2011) (Total: 20 commits) A bugfix release * Fixed (few BF commits): - Compatibility with numpy 1.5.1 (histogram) and scipy 0.8.0 (workaround for a regression in legendre) - Compatibility with libsvm 3.0 - :class:`~mvpa.clfs.plr.PLR` robustification * Enhancements - Enforce suppression of numpy warnings while running unittests. Also setting verbosity >= 3 enables all warnings (Python, NumPy, and PyMVPA) - :file:`doc/examples/nested_cv.py` example (adopted from 0.5) - Introduced base class :class:`~mvpa.clfs.base.LearnerError` for classifiers' exceptions (adopted from 0.5) - Adjusted example data to live upto nibabel's warranty of NIfTI standard-compliance - More robust operation of MC iterations -- skip iterations where classifier experienced difficulties and raise an exception (e.g. due to degenerate data) * 0.4.5 (Fri, Oct 01 2010) (Total: 27 commits) A bugfix release * Fixed (13 BF commits): - Compatible with LIBSVM >= 2.91 (Closes: #583018) - No string exceptions raised (Python 2.6 compatibility) - Setting of shrinking parameter in :mod:`~mvpa.clfs.sg` interface - Deducing number of SVs for SVR (LIBSVM) - Correction of significance in the tails of non-parametric tests * Miscellaneous: - Development repository moved to http://github.com/PyMVPA/PyMVPA * 0.4.4 (Mon, Feb 2 2010) (Total: 144 commits) Primarily a bugfix release, probably the last in 0.4 series since development for 0.5 release is leaping forward. * New functionality (19 NF commits): - :class:`~mvpa.clfs.gnb.GNB` implements Gaussian Naïve Bayes Classifier. - :func:`~mvpa.misc.fsl.base.read_fsl_design` to read FSL FEAT design.fsf files (Contributed by Russell A. Poldrack). - :class:`~mvpa.datasets.miscfx.SequenceStats` to provide basic statistics on labels sequence (counter-balancing, autocorrelation). - New exceptions :class:`~mvpa.clfs.base.DegenerateInputError` and :class:`~mvpa.clfs.base.FailedToTrainError` to be thrown by classifiers primarily during training/testing. - Debug target `STATMC` to report on progress of Monte-Carlo sampling (during permutation testing). * Refactored (15 RF commits): - To get users prepared to 0.5 release, internally and in some examples/documentation, access to states and parameters is done via corresponding collections, not from the top level object (e.g. `clf.states.predictions` instead of soon-to-be-deprecated `clf.predictions`). That should lead also to improved performance. - Adopted copy.py from python2.6 (support Ellipsis as well). * Fixed (38 BF commits): - GLM output does not depend on the enabled states any more. - Variety of docstrings fixed and/or improved. - Do not derive NaN scaling for SVM's C whenever data is degenerate (lead to never finishing SVM training). - :mod:`~mvpa.clfs.sg` : + KRR is optional now -- avoids crashing if KRR is not available. + tolerance to absent `set_precompute_matrix` in svmlight in recent shogun versions. + support for recent (present in 0.9.1) API change in exposing debug levels. - Python 2.4 compatibility issues: :class:`~mvpa.clfs.knn.kNN` and :class:`~mvpa.featsel.ifs.IFS` * 0.4.3 (Sat, 5 Sep 2009) (Total: 165 commits) * Online documentation editor is no longer available due to low demand -- please submit changes via email. * Performance (Contributed by Valentin Haenel) (3 OPT commits): - Further optimized LIBSVM bindings. - Copy-if-sorted in :class:`~mvpa.datasets.base.Dataset.selectFeatures`. * New functionality (25 NF commits): - :class:`~mvpa.mappers.procrustean.ProcrusteanMapper` with orthogonal and oblique transformations. - Ability to generate simple reports using :mod:`reportlab`. See/run :file:`examples/match_distribution.py` for example. - :class:`~mvpa.clfs.meta.TreeClassifier` -- construct simple hierarchies of classifiers. - :func:`~mvpa.base.info.wtf` to report information about the system/PyMVPA to be included in the bug reports. - Parameter 'reverse' to swap training/testing splits in :class:`~mvpa.datasets.splitters.Splitter` . - Example code for the analysis of event-related dataset using :class:`~mvpa.datasets.nifti.ERNiftiDataset`. - :meth:`~mvpa.misc.io.base.SampleAttributes.toEvents` to create lists of :class:`~mvpa.misc.support.Event`. - :file:`mvpa-prep-fmri` was extended with plotting of motion correction parameters. - :class:`~mvpa.misc.io.base.ColumnData` can be explicitly told either file contains a header. - In :class:`~mvpa.atlases.base.XMLBasedAtlas` (e.g. :mod:`~mvpa.atlases.fsl` atlases) it is now possible to provide custom 'image_file' to get maps or indexes for the areas given an atlas's volume registered into subject space. - Updated included LIBSVM version to 2.89 and provided support for its "silencing". * Refactored (27 RF commits): - Dataset's :meth:`~mvpa.datasets.base.Dataset.copy` with deep=False allows for shallow copying the dataset. - :class:`~mvpa.clfs.meta.FeatureSelectionClassifier` s in :mod:`~mvpa.clfs.warehouse` not to reuse the same classifiers, but to use clones. * Fixed (70 BF commits): - :class:`~mvpa.measures.anova.OneWayAnova`: previously degrees of freedom were not considered while computing F-scores. - Majority voting strategy in :class:`~mvpa.clfs.knn.kNN`: it was not working. - Various fixes to ensure cross-platform building (:mod:`numpy` header locations, etc). - Stability fixes in :class:`~mvpa.clfs.transerror.ConfusionMatrix`. - :meth:`~mvpa.datasets.base.Dataset.idsonboundaries`: samples at the end of the sequence were not handled properly. - Proper "untraining" of :class:`~mvpa.clfs.meta.FeatureSelectionClassifier` s classifiers which use sensitivities: it could lead to various unpleasant side-effects if the same slave classifier was used simultaneously by multiple :class:`MetaClassifiers` (like :class:`~mvpa.clfs.meta.TreeClassifier`). * Documentation (25 DOC commits): citations, spelling corrections, etc. * 0.4.2 (Mon, 25 May 2009) * New correlation stability measure (:class:`~mvpa.measures.corrstability.CorrStability`). * New elastic net classifier (:class:`~mvpa.clfs.enet.ENET`). * New GLM-Net regression/classifier (:class:`~mvpa.clfs.glmnet.GLMNET`). * New measure :class:`~mvpa.measures.anova.CompoundOneWayAnova`. * New measure :class:`~mvpa.measures.ds.DSMDatasetMeasure`. * New meta-measure :class:`~mvpa.measures.splitmeasure.TScoredFeaturewiseMeasure`. * New basic :class:`~mvpa.measures.glm.GLM` implementation. * New examples for Gaussian process regression. * New example showing a searchlight analysis employing a dissimilarity matrix based measure. * New :class:`~mvpa.mappers.zscore.ZScoreMapper`. * New import helper for FSL design matrices (:class:`~mvpa.misc.fsl.base.FslGLMDesign`). * New implementation of a mapper using a self-organizing map (:class:`~mvpa.mappers.som.SimpleSOMMapper`) and a corresponding example. * Matplotlib backend is now configurable via :envvar:`MVPA_MATPLOTLIB_BACKEND`. * PyMVPA version is now avialable from :data:`mvpa.__version__`. * Renamed `mvpa.misc.plot.errLinePLot` to :func:`~mvpa.misc.plot.plotErrLine` for consistency. * Fixed :class:`~mvpa.datasets.splitters.NFoldSplitter` to support N-3 and larger splits. * Improved speed of LIBSVM backend. Thanks to Valentin Haenel and Tiziano Zito. * Updated included LIBSVM version to 2.89. * Adjust LIBSVM Python interface for recent NumPy API and latest LIBSVM release 2.89. * Refactored examples parser into a standalone tool to turn PyMVPA examples into restructured text sources. * 0.4.1 (Sat, 24 Jan 2009) * Unit tests and example data are now also installed. In conjunction with :func:`mvpa.test`, this allow to easily run unittests from within Python. * :class:`~mvpa.datasets.nifti.NiftiDataset` capable to handle files with less than 4 dimensions, which can, optionally, be provided as a list of filenames or :class:`~nifti.NiftiImage` objects. That makes it easy to load data from a sequence of files. * Changes (code refactorings) which *might impact* any user who imports from :mod:`~mvpa.suite`: - Pre-populated warehouses of classifiers and regressions are renamed from clfs and regrs into :data:`~mvpa.clfs.warehouse.clfswh` and :data:`~mvpa.clfs.warehouse.regrswh` respectively. - :class:`~mvpa.misc.io.hamster.Hamster` is not derived from :class:`dict` any longer -- just from a basic :class:`object` class. API includes methods 'dump', 'asdict' and a property 'registered'. * Changes (code refactorings) which *should not impact* any user who imports from :mod:`~mvpa.suite`: - Meta classifiers definitions moved from :mod:`~mvpa.clfs.base` into :mod:`~mvpa.clfs.meta`. - Splitters definitions moved from :mod:`~mvpa.datasets.splitter` into :mod:`~mvpa.datasets.splitters` * 0.4.0 (Sat, 15 Nov 2008) * Add :class:`~mvpa.misc.io.hamster.Hamster`, as a simple facility to easily store any serializable objects in a compressed file and later on resurrect all of them with a single line of code. * SVM backend is now configurable via :envvar:`MVPA_SVM_BACKEND` (libsvm or shogun). * Non-deterministic tests in the unittest battery are now configurable via :envvar:`MVPA_TESTS_LABILE`. * New helper to determine and plot the best matching distribution(s) for the data (matchDistribution, plotDistributionMatches). It is WiP thus API can change in the upcoming release. * Simplifies API of mappers. * Splitters can now limit the number of splits automatically. * New :class:`~mvpa.mappers.base.CombinedMapper` to map between multiple, independent dataspace and a common feature space. * New :class:`~mvpa.mappers.base.ChainMapper` to create chains of mappers of abitrary lenght (e.g. to build preprocessing pipelines). * New :class:`~mvpa.datasets.event.EventDataset` to rapidly extract boxcar-shaped samples from data array using a simple list of :class:`~mvpa.misc.support.Event` definitions. * Removed obsolete MetricMapper class. :class:`~mvpa.mappers.base.Mapper` itself provides the facilities for dealing with metrics. * :class:`~mvpa.mappers.boxcar.BoxcarMapper` can now handle data with more than four dimensions/axis and also performs reverse mapping of single boxcar samples. * :class:`~mvpa.misc.fsl.base.FslEV3` can now convert EV3 files into a list of :class:`~mvpa.misc.support.Event` instances. * Results of tests for external dependencies are now stored in PyMVPA's config manager (`mvpa.cfg`) and can be stored to a file (not done automatically at the moment). This will significantly decrease the time needed to import the `mvpa` module, as it prevents the repeated and lengthy tests for working externals. * Initial support for ROC computing and AUC as an accuracy measure. * Weights of LARS are now available via :class:`~mvpa.clfs.lars.LARSWeights`. * Added an initial list of MVPA-related references to the manual, tagged with keywords and comments as well is DOI or similar URL reference to the original document. * Added initial glossary to the manual. * New 'Module reference', as a middle-ground between manual and API reference. * New manual section about meta-classifiers (contributed by James M. Hughes). * New minimal example for a 'getting started' section in the manual. * Former :envvar:`MVPA_QUICKTEST` was renamed to :envvar:`MVPA_TESTS_QUICK`. * Update installation instructions for RPM-based distributions to make use of the OpenSUSE Build Service. * Updated install instructions for several RPM-based GNU/Linux distributions. * Switch from distutils to numpy.distutils (no change in dependencies). * Depend on PyNIfTI >= 0.20081017.1 and gain a smaller memory footprint when accessing NIfTI files via all datasets with NIfTI support. * Added workaround to make PyMVPA work with older Shogun releases and those from 0.6.4 on, which introduced backward-incompatible API changes. * 0.3.1 (Sun, 14 Sep 2008) * New manual section about feature selection with a focus on RFE. Contributed by James M. Hughes. * New dataset type :class:`~mvpa.datasets.channel.ChannelDataset` for data structured in channels. Might be useful for data modalities like EEG and MEG. This dataset includes support for common preprocessing steps like resampling and baseline signal substraction. * Plotting of topographies on heads. Thanks to Ingo Fründ for contributing this code. Additionally, a new example shows how to do such plots. * New general purpose function for generating barplots and candlestick plots with error bars (:func:`~mvpa.misc.plot.base.plotBars`). * Dataset supports mapping of string labels onto numerical labels, removing the need to perform this mapping manually in user code. 'clfs_examples.py' is adjusted accordingly to demonstrate the new feature. * New :meth:`mvpa.clfs.base.Classifier.summary` method to dump classifier settings. * Improved and more flexible :func:`~mvpa.misc.plot.erp.plotERPs`. * New :class:`~mvpa.measures.irelief.IterativeRelief` sensitivity analyzer. * Added visualization of confusion matrices via :meth:`mvpa.clfs.transerror.ConfusionMatrix.plot` inspired by Ingo Fründ. * The PyMVPA version is now globally available in :data:`mvpa.pymvpa_version`. * BugFix: :class:`~mvpa.misc.io.meg.TuebingenMEG` reader failed in some cases. * Several improvements (docs and implementation) for building PyMVPA on MacOS X. * New convenience accessor methods (:meth:`~mvpa.datasets.base.Dataset.select`, :meth:`~mvpa.datasets.base.Dataset.where` and :meth:`~mvpa.datasets.base.Dataset.__getitem__`) for :class`~mvpa.datasets.base.Dataset`. * New :func:`mvpa.seed()` function to configure the random number generators from user code. * Added reader for a MEG sensor locations format (:class:`~mvpa.misc.io.meg.TuebingenMEGSensorLocations`). * Initial model selection support for GRP (using openopt). * And tons of minor bugfixes, additional tests and improved documentation. * 0.3.0 (Mon, 18 Aug 2008) * Import of binary EEP files (used by EEProbe) and EEPDataset class. * Initial version of a meta dataset class (MetaDataset). This is a container for multiple datasets, which behaves like a dataset itself. * Regression performance is summarized now within RegressionStatistics. * Error functions: CorrErrorPFx, RelativeRMSErrorFx. * Measures: CorrCoef. * Data generators: chirp, wr1996 * Few more examples: curvefitting, kerneldemo, smellit, projections * Updated kNN classifier. kNN is now able to use custom distance function to determine that nearest neighbors. It also (re)gained the ability to do simple majority or weighted voting. * Some initial convenience functions for plotting typical results and data exploration. * Unified configuration handling with support for user-specific and analysis-specific config files, as well as the ability to override all config settings via environment variables. The configuration handling is used for PyMVPA internal settings, but can also be easily used for custom (user-)settings. * Improved modularity, e.g. SciPy is not required anymore, but still very useful. * Initial implementations of ICA and PCA mapper using functionality provided by MDP. These mappers are more or less untested and should be used with great care. * Further improved docstrings of some classes, but still a long way to go. * New 'boxcar' mapper, which is the similar to the already present transformWithBoxCar() function, but implemented as a mapper. * New SampleGroupMapper that can be used for e.g. block averaging of samples. See new FAQ item. * Stripped redundant suffixes from module names, e.g. mvpa.datasets.niftidataset -> mvpa.datasets.nifti * mvpa.misc.cmdline variables opt* and opts* were groupped within opt and optss class instances. Also names of the options were changed to match 'dest' of the options. Use tools/refactor.py to quickly fix your custom code. * Change all references to PyMVPA website to www.pymvpa.org. * Make website stylesheet compatible with sphinx 0.4. * Several minor improvements of the compatibility with MacOS. * Extended FAQ section of the manual. * Bugfix: doubleGammaHRF() ignoring K2 argument. * 0.2.2 (Tue, 17 Jun 2008) * Extended build instructions: Added section on OpenSUSE. * Replaced ugly PYMVPA_LIBSVM environment variable to trigger compiling the LIBSVM wrapper with a proper '--with-libsvm' switch in setup.py. Additionally, setup.py now detects if included LIBSVM has been built and enables LIBSVM wrapper automatically in this case. * Added proper Makefiles for LIBSVM copy, with configurable compiler flags. * Added 'setup.cfg' to remove the need to manually specify swig-opts (Windows specific configuration is in 'setup.cfg.win'). * 0.2.1 (Sun, 15 Jun 2008) * Several improvements to make building PyMVPA on Windows systems easy (e.g. added dedicated Makefile.win to build a binary installer). * Improved and extended documentation for building and installing PyMVPA. * Include a minimal copy of the required (patched) LIBSVM library (currently version 2.85.0) for convenience. This copy is automatically compiled and used for the LIBSVM wrapper when PyMVPA built using the `Make` approach. * 0.2.0 (Wed, 29 May 2008) * New Splitter class (HalfSplitter) to split into first and second half. * New Splitter class (CustomSplitter) to allow for splits with an arbitrary number of datasets per split and the ability to specify the association of samples with any of those datasets (not just the validation set). * New sparse multinomial logistic regression (SMLR) classifier and associated sensitivity analyzer. * New least angle regression classifier (LARS). * New Gaussian process regression classifier (GPR). * Initial documentation on extending PyMVPA. * Switch to Sphinx for documentation handling. * New example comparing the performance of all classifiers on some artificial datasets. * New data mapper performing singular value decomposition (SVDMapper) and an example showing its usage. * More sophisticated data preprocessing: removal of non-linear trends and other arbitrary confounding regressors. * New `Harvester` class to feed data from arbitrary generators into multiple objects and store results of returned values and arbitrary properties. * Added documentation about how to build patched libsvm version with sane debug output. * libsvm bindings are not build by default anymore. Instructions on how to reenable them are available in the manual. * New wrapper from SVM implementation of the Shogun toolbox. * Important bugfix in RFE, which reported incorrect feature ids in some cases. * Added ability to compute stats/probabilities for all measures and transfer errors. * 0.1.0 (Wed, 20 Feb 2008) * First public release. pymvpa-0.4.8/MANIFEST.in000066400000000000000000000002261174541445200146040ustar00rootroot00000000000000include AUTHOR COPYING MANIFEST.in setup.* include Changelog TODO Makefile* recursive-include doc * recursive-include tools * recursive-include 3rd * pymvpa-0.4.8/Makefile000066400000000000000000000372131174541445200145140ustar00rootroot00000000000000PROFILE_FILE=$(CURDIR)/$(BUILDDIR)/main.pstats COVERAGE_REPORT=$(CURDIR)/$(BUILDDIR)/coverage BUILDDIR=$(CURDIR)/build HTML_DIR=$(BUILDDIR)/html DOCSRC_DIR=$(BUILDDIR)/doc MAN_DIR=$(BUILDDIR)/man APIDOC_DIR=$(HTML_DIR)/api PDF_DIR=$(BUILDDIR)/pdf LATEX_DIR=$(BUILDDIR)/latex WWW_DIR=$(BUILDDIR)/website SWARM_DIR=$(BUILDDIR)/swarm WWW_UPLOAD_URI=www.pymvpa.org:/home/www/v04.pymvpa.org/pymvpa DATA_URI=apsy.gse.uni-magdeburg.de:/home/hanke/public_html/software/pymvpa/data SWARMTOOL_DIR=tools/codeswarm SWARMTOOL_DIRFULL=$(CURDIR)/$(SWARMTOOL_DIR) RSYNC_OPTS=-az -H --no-perms --no-owner --verbose --progress --no-g # # Conditional depends regulated from outside # ifdef PYMVPA_NO_3RD build_depends := else build_depends := endif # # Details on the Python/system # PYVER := $(shell python -V 2>&1 | cut -d ' ' -f 2,2 | cut -d '.' -f 1,2) DISTUTILS_PLATFORM := $(shell python -c "import distutils.util; print distutils.util.get_platform()") # # Little helpers # mkdir-%: if [ ! -d $($*) ]; then mkdir -p $($*); fi # # Building # all: build # build included 3rd party pieces (if present) 3rd: 3rd-stamp 3rd-stamp: find 3rd -mindepth 1 -maxdepth 1 -type d | \ while read d; do \ [ -f "$$d/Makefile" ] && $(MAKE) -C "$$d" || :; \ done touch $@ debian-build: # reuse is better than duplication (yoh) debian/rules build build: build-stamp build-stamp: $(build_depends) python setup.py config --noisy python setup.py build_ext --inplace # # Cleaning # # this target is used to clean things for a fresh build clean: # clean 3rd party pieces find 3rd -mindepth 1 -maxdepth 1 -type d | \ while read d; do \ [ -f "$$d/Makefile" ] && $(MAKE) -C "$$d" clean || : ; \ done # clean tools $(MAKE) -C tools clean # clean all bits and pieces -@rm -f MANIFEST -@rm -f mvpa/clfs/lib*/*.so \ mvpa/clfs/lib*/*.dylib \ mvpa/clfs/lib*/*_wrap.* \ mvpa/clfs/lib*/*c.py \ mvpa/tests/*.{prof,pstats,kcache} @find . -name '*.py[co]' \ -o -name '*,cover' \ -o -name '.coverage' \ -o -name 'iterate.dat' \ -o -iname '*~' \ -o -iname '*.kcache' \ -o -iname '*.gch' \ -o -iname '*_flymake.*' \ -o -iname '#*#' | xargs -L 10 rm -f -@rm -rf build -@rm -rf dist *report -@rm -f *-stamp *_report.pdf *_report.log pymvpa.cfg # this target should put the source tree into shape for building the source # distribution distclean: clean # if we are on debian system - we might have left-overs from build -@$(MAKE) debian-clean -@rm -rf tools/codeswarm debian-clean: # remove stamps for builds since state is not really built any longer -fakeroot debian/rules clean # # Documentation # doc: website manpages manpages: mkdir-MAN_DIR PYTHONPATH=.:$(PYTHONPATH) help2man -N -n 'preprocess fMRI data for PyMVPA' \ bin/mvpa-prep-fmri > $(MAN_DIR)/mvpa-prep-fmri.1 PYTHONPATH=. help2man -N -n 'query stereotaxic atlases' \ bin/atlaslabeler > $(MAN_DIR)/atlaslabeler.1 prepare-docsrc: mkdir-BUILDDIR rsync --copy-unsafe-links -rvuhp doc/ $(BUILDDIR)/doc rsync --copy-unsafe-links -rvhup doc/pics/ $(DOCSRC_DIR)/examples/pics references: tools/bib2rst_ref.py htmldoc: modref-templates examples2rst build cd $(DOCSRC_DIR) && MVPA_EXTERNALS_RAISE_EXCEPTION=off PYTHONPATH=$(CURDIR):$(PYTHONPATH) $(MAKE) html BUILDROOT=$(BUILDDIR) cd $(HTML_DIR)/modref && ln -sf ../_static cd $(HTML_DIR)/examples && ln -sf ../_static cp $(DOCSRC_DIR)/pics/history_splash.png $(HTML_DIR)/_images/ pdfdoc: modref-templates examples2rst build pdfdoc-stamp pdfdoc-stamp: cd $(DOCSRC_DIR) && MVPA_EXTERNALS_RAISE_EXCEPTION=off PYTHONPATH=../..:$(PYTHONPATH) $(MAKE) latex BUILDROOT=$(BUILDDIR) cd $(LATEX_DIR) && $(MAKE) all-pdf touch $@ # Create a handy .pdf of the manual to be printed as a book handbook: pdfdoc cd tools && $(MAKE) pdfbook build/tools/pdfbook -2 \ $(LATEX_DIR)/PyMVPA-Manual.pdf $(LATEX_DIR)/PyMVPA-Manual-Handbook.pdf modref-templates: prepare-docsrc modref-templates-stamp modref-templates-stamp: PYTHONPATH=.:$(PYTHONPATH) tools/build_modref_templates.py touch $@ examples2rst: prepare-docsrc examples2rst-stamp examples2rst-stamp: tools/ex2rst \ --project PyMVPA \ --outdir $(DOCSRC_DIR)/examples \ --exclude doc/examples/searchlight.py \ doc/examples touch $@ apidoc: apidoc-stamp apidoc-stamp: build # Disabled profiling for now, it consumes huge amounts of memory, so I doubt # that all buildds can do it. In theory it would only be done on a single # developer machine, because it is only necessary for the arch-all package, # but e.g. dpkg-buildpackage runs the indep target anyway -- not sure about # the buildds, though. #apidoc-stamp: profile mkdir -p $(HTML_DIR)/api LC_ALL=C MVPA_EPYDOC_WARNINGS=once tools/epydoc --config doc/api/epydoc.conf touch $@ # this takes some minutes !! profile: build mvpa/tests/main.py @PYTHONPATH=.:$(PYTHONPATH) tools/profile -K -O $(PROFILE_FILE) mvpa/tests/main.py # # Website # website: website-stamp website-stamp: mkdir-WWW_DIR apidoc htmldoc pdfdoc cp -r $(HTML_DIR)/* $(WWW_DIR) cp $(LATEX_DIR)/*.pdf $(WWW_DIR) tools/sitemap.sh > $(WWW_DIR)/sitemap.xml # main icon of the website cp $(DOCSRC_DIR)/pics/favicon.png $(WWW_DIR)/_images/ # for those who do not care about and just trying to download it cp $(DOCSRC_DIR)/pics/favicon.png $(WWW_DIR)/favicon.ico # provide robots.txt to minimize unnecessary traffic cp $(DOCSRC_DIR)/_static/robots.txt $(WWW_DIR)/ # provide promised pylintrc mkdir -p $(WWW_DIR)/misc && cp $(DOCSRC_DIR)/misc/pylintrc $(WWW_DIR)/misc touch $@ upload-website: website chmod a+rX -R $(WWW_DIR) rsync -rzlhvp --delete --chmod=Dg+s,g+rw $(WWW_DIR)/* $(WWW_UPLOAD_URI)/ upload-htmldoc: htmldoc rsync -rzlhvp --delete --chmod=Dg+s,g+rw $(HTML_DIR)/* $(WWW_UPLOAD_URI)/ # # Tests (unittests, docs, examples) # ut-%: build @PYTHONPATH=.:$(PYTHONPATH) nosetests --nocapture mvpa/tests/test_$*.py unittest: build @echo "I: Running unittests (without optimization nor debug output)" PYTHONPATH=.:$(PYTHONPATH) python mvpa/tests/main.py # test if PyMVPA is working if optional externals are missing unittest-badexternals: build @echo "I: Running unittests under assumption of missing optional externals." @PYTHONPATH=mvpa/tests/badexternals:.:$(PYTHONPATH) python mvpa/tests/main.py 2>&1 \ | grep -v -e 'WARNING: Known dependency' -e 'Please note: w' \ -e 'WARNING:.*SMLR.* implementation' # only non-labile tests unittest-nonlabile: build @echo "I: Running only non labile unittests. None of them should ever fail." @PYTHONPATH=.:$(PYTHONPATH) MVPA_TESTS_LABILE=no python mvpa/tests/main.py # test if no errors would result if we force enabling of all states unittest-states: build @echo "I: Running unittests with all states enabled." @PYTHONPATH=.:$(PYTHONPATH) MVPA_DEBUG=ENFORCE_STATES_ENABLED python mvpa/tests/main.py # Run unittests with optimization on -- helps to catch unconditional # debug calls unittest-optimization: build @echo "I: Running unittests with python -O." @PYTHONPATH=.:$(PYTHONPATH) python -O mvpa/tests/main.py # Run unittests with all debug ids and some metrics (crossplatform ones) on. # That does: # additional checking, # debug() calls validation, etc unittest-debug: build @echo "I: Running unittests with debug output. No progress output." @PYTHONPATH=.:$(PYTHONPATH) MVPA_DEBUG=.* MVPA_DEBUG_METRICS=ALL \ python mvpa/tests/main.py 2>&1 \ | sed -n -e '/^[=-]\{60,\}$$/,/^\(MVPA_SEED=\|OK\)/p' # Run all unittests # Run with 'make -k' if you like to sweep through all of them, so # failure in one of them does not stop the full sweep unittests: unittest-nonlabile unittest unittest-badexternals \ unittest-optimization unittest-states unittest-debug te-%: build @echo -n "I: Testing example $*: " @MVPA_EXAMPLES_INTERACTIVE=no PYTHONPATH=.:$(PYTHONPATH) MVPA_MATPLOTLIB_BACKEND=agg \ python doc/examples/$*.py >| temp-$@.log 2>&1 \ && echo "passed" || { echo "failed:"; cat temp-$@.log; } @rm -f temp-$@.log testexamples: te-svdclf te-smlr te-searchlight_2d te-sensanas te-pylab_2d \ te-curvefitting te-projections te-kerneldemo te-clfs_examples \ te-erp_plot te-match_distribution te-permutation_test \ te-searchlight_minimal te-smlr te-start_easy te-topo_plot \ te-gpr te-gpr_model_selection0 tm-%: build PYTHONPATH=.:$(PYTHONPATH) nosetests --with-doctest --doctest-extension .rst \ --doctest-tests doc/$*.rst testmanual: build @echo "I: Testing code samples found in documentation" @PYTHONPATH=.:$(PYTHONPATH) MVPA_MATPLOTLIB_BACKEND=agg \ nosetests --with-doctest --doctest-extension .rst --doctest-tests doc/ # Check if everything (with few exclusions) is imported in unitests is # known to the mvpa.suite() testsuite: @echo "I: Running full testsuite" @tfile=`mktemp -u testsuiteXXXXXXX`; \ git grep -h '^\W*from mvpa.*import' mvpa/tests | \ grep -v '^\W*#' | \ sed -e 's/^.*from *\(mvpa[^ ]*\) im.*/from \1 import/g' | \ sort | uniq | \ grep -v -e 'mvpa\.base\.dochelpers' \ -e 'mvpa\.\(tests\|support\)' \ -e 'mvpa\.misc\.args' \ -e 'mvpa\.clfs\.\(libsvmc\|sg\)' \ | while read i; do \ grep -q "^ *$$i" mvpa/suite.py || \ { echo "E: '$$i' is missing from mvpa.suite()"; touch "$$tfile"; }; \ done; \ [ -f "$$tfile" ] && { rm -f "$$tfile"; exit 1; } || : # Check if links to api/ within documentation are broken. testapiref: apidoc @for tf in doc/*.rst; do \ out=$$(for f in `grep api/mvpa $$tf | sed -e 's|.*\(api/mvpa.*html\).*|\1|g' `; do \ ff=build/html/$$f; [ ! -f $$ff ] && echo "E: $$f missing!"; done; ); \ [ "x$$out" == "x" ] || echo -e "$$tf:\n$$out"; done # Check if there is no WARNINGs from sphinx testsphinx: htmldoc { grep -A1 system-message build/html/modref/*html && exit 1 || exit 0 ; } # Check if stored cfg after whole suite is imported is safe to be # reloaded testcfg: build @echo "I: Running test to check that stored configuration is acceptable." -@rm -f pymvpa.cfg @PYTHONPATH=.:$(PYTHONPATH) python -c 'from mvpa.suite import *; cfg.save("pymvpa.cfg");' @PYTHONPATH=.:$(PYTHONPATH) python -c 'from mvpa.suite import *;' @echo "+I: Run non-labile testing to verify safety of stored configuration" @PYTHONPATH=.:$(PYTHONPATH) MVPA_TESTS_LABILE=no python mvpa/tests/main.py @echo "+I: Check all known dependencies and store them" @PYTHONPATH=.:$(PYTHONPATH) python -c \ 'from mvpa.suite import *; mvpa.base.externals.testAllDependencies(force=False); cfg.save("pymvpa.cfg");' @echo "+I: Run non-labile testing to verify safety of stored configuration" @PYTHONPATH=.:$(PYTHONPATH) MVPA_TESTS_LABILE=no python mvpa/tests/main.py -@rm -f pymvpa.cfg test: unittests testmanual testsuite testapiref testexamples testcfg # Target to be called after some major refactoring # It skips some flavors of unittests testrefactor: unittest testmanual testsuite testapiref testexamples coverage: $(COVERAGE_REPORT) $(COVERAGE_REPORT): build @echo "I: Generating coverage data and report. Takes awhile. No progress output." @{ \ export PYTHONPATH=.:$(PYTHONPATH) MVPA_DEBUG=.* MVPA_DEBUG_METRICS=ALL; \ python-coverage -x mvpa/tests/main.py >/dev/null 2>&1; \ python-coverage -r -i -o /usr,/var >| $(COVERAGE_REPORT); \ grep -v '100%$$' $(COVERAGE_REPORT); \ python-coverage -a -i -o /usr,/var ; } # # Sources # pylint: pylint -e --rcfile doc/misc/pylintrc mvpa # # Generate new source distribution # (not to be run by users, depends on debian environment) orig-src: distclean debian-clean # clean existing dist dir first to have a single source tarball to process -rm -rf dist if [ -f debian/changelog ]; then \ if [ ! "$$(dpkg-parsechangelog | egrep ^Version | cut -d ' ' -f 2,2 | cut -d '-' -f 1,1)" == "$$(python setup.py -V)" ]; then \ printf "WARNING: Changelog version does not match tarball version!\n" ;\ exit 1; \ fi \ fi # let python create the source tarball # enable libsvm to get all sources! python setup.py sdist --formats=gztar # rename to proper Debian orig source tarball and move upwards # to keep it out of the Debian diff file=$$(ls -1 dist); ver=$${file%*.tar.gz}; ver=$${ver#pymvpa-*}; mv dist/$$file ../pymvpa_$$ver.orig.tar.gz # clean leftover rm MANIFEST # make Debian source package # # DO NOT depend on orig-src here as it would generate a source tarball in a # Debian branch and might miss patches! debsrc: cd .. && dpkg-source -i'\.(gbp.conf|git\.*)' -b $(CURDIR) bdist_rpm: 3rd python setup.py bdist_rpm \ --doc-files "doc data" \ --packager "PyMVPA Authors " \ --vendor "PyMVPA Authors " # build MacOS installer -- depends on patched bdist_mpkg for Leopard bdist_mpkg: 3rd python tools/mpkg_wrapper.py setup.py build_ext python tools/mpkg_wrapper.py setup.py install # # Data # fetch-data: rsync $(RSYNC_OPTS) $(DATA_URI) . # Various other data which might be sensitive and not distribu fetch-data-nonfree: fetch-data-nonfree-stamp fetch-data-nonfree-stamp: @mkdir -p temp # clean up previous location to make sure we don't have it @rm -f data/nonfree/audio/Peter_Nalitch-Guitar.mp3 # remove directories which should be bogus now @rmdir data/nonfree/audio data/nonfree 2>/dev/null || : rsync $(RSYNC_OPTS) dev.pymvpa.org:/home/data/nonfree temp/ && touch $@ # # Various sugarings (e.g. swarm) # AUDIO_TRACK=temp/nonfree/audio/Peter_Nalitch-Guitar.mp3 # With permission of the author, we can use Gitar for our visual history $(AUDIO_TRACK): fetch-data-nonfree # Nice visual git log # Requires: sun-java5-jdk, ffmpeg, ant codeswarm: $(SWARM_DIR)/pymvpa-codeswarm.flv $(SWARM_DIR)/frames: $(SWARMTOOL_DIR) $(SWARM_DIR)/git.xml @echo "I: Visualizing git history using codeswarm" @mkdir -p $(SWARM_DIR)/frames cd $(SWARMTOOL_DIR) && ./run.sh ../../doc/misc/codeswarm.config $(SWARM_DIR)/pymvpa-codeswarm.flv: $(SWARM_DIR)/frames $(AUDIO_TRACK) @echo "I: Generating codeswarm video" @cd $(SWARM_DIR) && \ ffmpeg -r $$(echo "scale=2; $$(ls -1 frames/ |wc -l) / 154" | bc) -f image2 \ -i frames/code_swarm-%05d.png -r 15 -b 250k \ -i ../../$(AUDIO_TRACK) -ar 22050 -ab 128k -acodec libmp3lame \ -y -ac 2 pymvpa-codeswarm.flv $(SWARM_DIR)/git.log: Makefile @echo "I: Dumping git log in codeswarm preferred format" @mkdir -p $(SWARM_DIR) @git log --name-status --branches \ --pretty=format:'%n------------------------------------------------------------------------%nr%h | %ae | %ai (%aD) | x lines%nChanged paths:' | \ sed -e 's,[a-z]*@onerussian.com,Yarik,g' \ -e 's,\(michael\.*hanke@\(gmail.com\|mvpa1.dartmouth.edu\)\|neukom-data@neukom-data-desktop\.(none)\),Michael,g' \ -e 's,\(per@parsec.Princeton.EDU\|per@sync.(none)\|psederberg@gmail.com\),Per,g' \ -e 's,emanuele@relativita.com,Emanuele,g' \ -e 's,jhughes@austin.cs.dartmouth.edu,James,g' \ -e 's,valentin.haenel@gmx.de,Valentin,g' \ -e 's,gorlins@mit.edu,Scott,g' \ -e 's,Ingo.Fruend@gmail.com,Ingo,g' >| $@ $(SWARM_DIR)/git.xml: $(SWARMTOOL_DIR)/run.sh $(SWARM_DIR)/git.log @python $(SWARMTOOL_DIR)/convert_logs/convert_logs.py \ -g $(SWARM_DIR)/git.log -o $(SWARM_DIR)/git.xml $(SWARMTOOL_DIR)/run.sh: @echo "I: Checking out codeswarm tool source code" @svn checkout http://codeswarm.googlecode.com/svn/trunk/ $(SWARMTOOL_DIR) upload-codeswarm: codeswarm rsync -rzhvp --delete --chmod=Dg+s,g+rw,o+r $(SWARM_DIR)/*.flv $(WWW_UPLOAD_URI)/files/ # # Trailer # .PHONY: fetch-data debsrc orig-src pylint apidoc pdfdoc htmldoc doc manual \ all profile website fetch-data-misc upload-website \ test testsuite testmanual testapiref testexamples testrefactor \ unittest unittest-debug unittest-optimization unittest-nonlabile \ unittest-badexternals unittests \ distclean debian-clean \ handbook codeswarm upload-codeswarm coverage pymvpa-0.4.8/Makefile.win000066400000000000000000000021751174541445200153070ustar00rootroot00000000000000# Makefile to build PyMVPA under Windows using a standard Python # distribution and MinGW # # Adjust this path to match the version and location of your Python # installation PYTHON_VERSION=2.6 PYTHON_PATH=C:\\Python26 # # Building # all: build configure-inplace-use # build included 3rd party pieces (if present) 3rd: 3rd-stamp 3rd-stamp: cd 3rd\libsvm & $(MAKE) -f Makefile.win build: 3rd # build pymvpa extensions including libsvm set PYTHON_INCLUDE="$(PYTHON_PATH)\\include" \ & python setup.py build_ext installer: 3rd build # now build the installer python setup.py bdist_wininst --bitmap doc\pics\logo.bmp configure-inplace-use: copy build\\lib.win32-$(PYTHON_VERSION)\\mvpa\\clfs\\libsmlrc\\smlrc.pyd \ mvpa\\clfs\\libsmlrc copy build\\lib.win32-$(PYTHON_VERSION)\\mvpa\\clfs\\libsvmc\\_svmc.pyd \ mvpa\\clfs\\libsvmc # # Cleaning # clean: -rmdir /S /Q build -del /S *.a *.o *.gch *.pyd # # Testing # ut-%: build configure-inplace-use @set PYTHONPATH=$(CURDIR) & cd tests & python test_$*.py unittest: build configure-inplace-use @set PYTHONPATH=$(CURDIR) & cd tests & python main.py # # Trailer # .PHONY: all pymvpa-0.4.8/README000066400000000000000000000003651174541445200137320ustar00rootroot00000000000000This is PyMVPA -- Multivariate Pattern Analysis in Python. For information how to install PyMVPA please see doc/installation.rst. Further information and access to binary packages is available from the project website at http://www.pymvpa.org pymvpa-0.4.8/TODO000066400000000000000000000014461174541445200135430ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 79 -*- .. ex: set tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_todo: .. index:: todo **** TODO **** * OptimizedClassifier: to automatically select the model in an easy and non-biased(i.e. non-cheating) way, so it could become a part of any more advanced pipeline as a regular classifier * Add ability to add/modify custom attributes to a dataset instance * IPython mode * Possibly make NiftiDataset default to float32 when it sees that the data are ints * Along with ICA mapper, we should add a PLS mapper pymvpa-0.4.8/bin/000077500000000000000000000000001174541445200136165ustar00rootroot00000000000000pymvpa-0.4.8/bin/atlaslabeler000077500000000000000000000652631174541445200162130ustar00rootroot00000000000000#!/usr/bin/python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Script to provide anatomical labels for the voxels, or their statistics """ import re, sys import mvpa from mvpa.misc.cmdline import parser, opts, opt from mvpa.base import verbose, warning, externals if externals.exists('nifti', raiseException=True): from nifti import NiftiImage if __debug__: from mvpa.base import debug # from rumba.tools.misc import * from mvpa.atlases.transformation import * from mvpa.atlases import Atlas, ReferencesAtlas, FSLProbabilisticAtlas, \ KNOWN_ATLASES, KNOWN_ATLAS_FAMILIES, XMLAtlasException from optparse import OptionParser, Option import numpy as N #import numpy.linalg as la # to read in transformation matrix try: import psyco psyco.profile() except: pass def selectVoxelsFromVolumeIteratorNumPY(volFileName, lt=None, ut=None): """ Generator which returns value + coordinates with values of non-0 entries from the `volFileName` :Returns: tuple with 0th entry value, the others are voxel coordinates More effective than previous loopy iteration since uses numpy's where function, but for now is limited only to non-0 voxels selection """ try: volFile = NiftiImage(volFileName) except: raise IOError("Cannot open image file %s" % volFileName) volData = volFile.data voxdim = volFile.voxdim if lt is None and ut is None: mask = volData != 0.0 elif lt is None and ut is not None: mask = volData <= ut elif lt is not None and ut is None: mask = volData >= lt else: mask = N.logical_and(volData >= lt, volData <= ut) matchingVoxels = N.where(mask) # qf = volFile.qform # qfi = la.inv(qf) for ivoxel in xrange(len(matchingVoxels[0])): # in reverse order since numpy struct has order t, z, y, x voxel = ( matchingVoxels[2][ivoxel], matchingVoxels[1][ivoxel], matchingVoxels[0][ivoxel] ) value = volData[ voxel[-1], voxel[-2], voxel[-3] ] yield (value, voxel[0], voxel[1], voxel[2], 0) #voxel[-4]) def parsedCoordinatesIterator( parseString="^\s*(?P\S+)[ \t,](?P\S+)[ \t,](?P\S+)\s*$", inputStream=sys.stdin): """Iterator to provide coordinates/values parsed from the string stream, most often from the stdin """ parser = re.compile(parseString) for line in inputStream.readlines(): line = line.strip() match = parser.match(line) if not match: if __debug__: debug('ATL', "Line '%s' did not match '%s'" % (line, parseString)) else: r = match.groupdict() if r.has_key('v'): v = float(r['v']) else: v = 0.0 if r.has_key('t'): t = float(r['t']) else: t = 0.0 yield (v, float(r['x']), float(r['y']), float(r['z']), t) # XXX helper to process labels... move me def presentLabels(labels): if isinstance(labels, list): res = [] for label in labels: # XXX warning -- some inconsistencies in atlas.py # need refactoring s = label['label'] #.text if label.has_key('prob') and not options.createSummary: s += "(%d%%%%)" % label['prob'] res += [s] if res == []: res = ['None'] return '/'.join(res) else: if options.abbreviatedLabels: return labels['label'].abbr else: return labels['label'].text #def processCmdLine(): parser.usage = "%s [OPTIONS] [input_file.nii.gz]" % sys.argv[0] + """ Examples: %s -s -A talairach-dist -d 10 -R Closest\ Gray -l Structure,Brodmann\ area -cC mask.nii.gz produces a summary per each structure and brodmann area, for each voxel looking within 10mm radius for the closest gray matter voxel. """ % (sys.argv[0], ) parser.version = "%prog " + mvpa.__version__ # can't use due to conflict with -d (debug and distance) #parser.option_groups = [opts.common] parser.add_option(opt.verbose) parser.add_option(opt.help) parser.add_option("-a", "--atlas-file", action="store", type="string", dest="atlasFile", default=None, help="Atlas file to use. Overrides --atlas-path and --atlas") parser.add_option("--atlas-path", action="store", type="string", dest="atlasPath", default=None, help=r"Path to the atlas files. '%(name)s' will be replaced" " with the atlas name. See -A. Defaults depend on the" " atlas family.") parser.add_option("-A", "--atlas", action="store", type="choice", dest="atlasName", default="talairach", choices=KNOWN_ATLASES.keys(), help="Atlas to use. Choices: %s" % ', '.join(KNOWN_ATLASES.keys())) parser.add_option("-i", "--input-coordinates-file", action="store", type="string", dest="inputCoordFile", default=None, help="Fetch coordinates from ASCII file") parser.add_option("-o", "--output-file", action="store", type="string", dest="outputFile", default=None, help="Output file. Otherwise standard output") parser.add_option("-d", "--max-distance", action="store", type="float", dest="maxDistance", default=0, help="When working with reference/distance atlases, what" " maximal distance to use to look for the voxel of interest") parser.add_option("-T", "--transformation-file", type="string", dest="transformationFile", help="First transformation to apply to the data. Usually"+ " should be subject -> standard(MNI) transformation") parser.add_option("-s", "--summary", action="count", dest="createSummary", default=0, help="Either to create a summary instead of dumping voxels." " Use multiple -s for greater verbose summary") parser.add_option("--ss", "--sort-summary-by", type="choice", dest="sortSummaryBy", default="name", choices=['name', 'count', 'a-p'], help="How to sort summary entries. " " a-p sorts anterior-posterior order") parser.add_option("--dumpmap-file", action="store", dest="dumpmapFile", default=None, help="If original data is given as image file, dump indexes" " per each treholded voxels into provided here output file") parser.add_option("-l", "--levels", type="string", dest="levels", default=None, help="Indexes of levels which to print, or based on which " "to create a summary (for a summary levels=4 is default). " "To get listing of known for the atlas levels, use '-l list'") parser.add_option("--mni2tal", type="choice", choices=["matthewbrett", "lancaster07fsl", "lancaster07pooled", "meyerlindenberg98"], dest="MNI2TalTransformation", default="matthewbrett", help="Choose between available transformations from mni " "2 talairach space") parser.add_option("--thr", "--lthr", "--lower-threshold", action="store", type="float", dest="lowerThreshold", default=None, help="Lower threshold for voxels to output") parser.add_option("--uthr", "--upper-threshold", action="store", type="float", dest="upperThreshold", default=None, help="Upper threshold for voxels to output") parser.add_option("--abbr", "--abbreviated-labels", action="store_true", dest="abbreviatedLabels", help="Manipulate with abbreviations for labels instead of" " full names, if the atlas has such") # Parameters to be inline with older talairachlabel parser.add_option("-c", "--tc", "--show-target-coord", action="store_true", dest="showTargetCoordinates", help="Show target coordinates") parser.add_option("--tv", "--show-target-voxel", action="store_true", dest="showTargetVoxel", help="Show target coordinates") parser.add_option("--rc", "--show-referenced-coord", action="store_true", dest="showReferencedCoordinates", help="Show referenced coordinates/distance in case if we are" " working with reference atlas") parser.add_option("-C", "--oc", "--show-orig-coord", action="store_true", dest="showOriginalCoordinates", help="Show original coordinates") parser.add_option("-V", "--show-values", action="store_true", dest="showValues", help="Show values") parser.add_option("-I", "--input-space", action="store", type="string", dest="inputSpace", default="MNI", help="Space in which input volume/coordinates provided in. For instance Talairach/MNI") parser.add_option("-F", "--forbid-direct-mapping", action="store_true", dest="forbidDirectMapping", default=False, help="If volume is provided it first tries to do direct " "mapping voxel-2-voxel if there is no transformation file " "given. This option forbids such behavior and does " "coordinates mapping anyway.") parser.add_option("-t", "--talairach", action="store_true", dest="coordInTalairachSpace", default=False, help="Coordinates are in talairach space (1x1x1mm)," + " otherwise assumes in mni space (2x2x2mm)." " Shortcut for '-I Talairach'") parser.add_option("-H", "--half-voxel-correction", action="store_false", dest="halfVoxelCorrection", default=True, help="Adjust coord by 0.5mm after transformation to " + \ "Tal space. Please use -H to turn such adjustment off") parser.add_option("-r", "--relative-to-origin", action="store_true", dest="coordRelativeToOrigin", help="Coords are relative to the origin standard form" + " ie in spatial units (mm), otherwise the default assumes" + " raw voxel dimensions") parser.add_option("--input-line-format", action="store", type="string", dest="inputLineFormat", default=r"^\s*(?P\S+)[ \t,]+(?P\S+)[ \t,]+(?P\S+)\s*$", help="Format of the input lines (if ASCII input is provided)") # Specific atlas options # TODO : group into options groups # Reference atlas parser.add_option("-R", "--reference", action="store", type="string", dest="referenceLevel", default="Closest Gray", help="Which level to reference in the case of reference" " atlas") # Probabilistic atlases parser.add_option("--prob-thr", action="store", type="float", dest="probThr", default=25.0, help="At what probability (in %) to threshold in " "probabilistic atlases (e.g. FSL)") parser.add_option("--prob-strategy", action="store", type="choice", dest="probStrategy", choices=['all', 'max'], default='max', help="What strategy to use for reporting. 'max' would report" " single area (above threshold) with maximal probabilitity") (options, infiles) = parser.parse_args() #atlas.relativeToOrigin = options.coordRelativeToOrigin if len(infiles)>1: print "We cannot handle multiple input files at once" sys.exit(1) fileIn = None coordT = None niftiInput = None # Setup coordinates read-in # # compatibility with older talairachlabel if options.inputCoordFile: fileIn = file(options.inputCoordFile) coordsIterator = parsedCoordinatesIterator(options.inputLineFormat, fileIn) # input is stdin elif len(infiles)==0: coordsIterator = parsedCoordinatesIterator(options.inputLineFormat) else: if len(infiles)>1: print "Just a single file should be provided at the command line" sys.exit(1) infile = infiles[0] # got a volume/file to process try: if __debug__: debug('ATL', "Testing if 0th element in the list a volume") niftiInput = NiftiImage(infile) if __debug__: debug('ATL', "Yes it is") # if we got here -- it is a proper volume # XXX ask Michael to remove nasty warning message coordsIterator = selectVoxelsFromVolumeIteratorNumPY( infile, options.lowerThreshold, options.upperThreshold) assert(coordT is None) coordT = Linear(niftiInput.qform) # previous iterator returns space coordinates options.coordRelativeToOrigin = True except: if __debug__: debug('ATL', "No it is not") fileIn = file(infile) coordsIterator = parsedCoordinatesIterator( options.inputLineFormat, fileIn) # Open and initialize atlas lookup if options.atlasFile is None: if options.atlasPath is None: options.atlasPath = KNOWN_ATLASES[options.atlasName] options.atlasFile = options.atlasPath % ( {'name': options.atlasName} ) if not options.forbidDirectMapping \ and niftiInput is not None and not options.transformationFile: akwargs = { 'resolution': niftiInput.pixdim[0], 'query_voxel': True } verbose(1, "Will attempt direct mapping from input voxels into atlas " "voxels at resolution %.2f" % akwargs['resolution']) atlas = Atlas(options.atlasFile, **akwargs) # verify that we got the same qforms in atlas and in the data file if atlas.space != options.inputSpace: verbose(0, "Cannot do direct mapping between input image in %s space and" " atlas in %s space. Use -I switch to override input space if" " it misspecified, or use -T to provide transformation. Trying" " to proceed" %(options.inputSpace, atlas.space), 1) atlas.query_voxel = False elif not (niftiInput.qform == atlas._image.qform).all(): warning( "Cannot do direct mapping between files with different qforms." " Please provide original transformation (-T)." "\n Input qform:\n%s\n Atlas qform: \n%s" %(niftiInput.qform, atlas._image.qform), 1) # reset variables atlas.query_voxel = False else: coordT = None else: atlas = Atlas(options.atlasFile) if isinstance(atlas, ReferencesAtlas): options.referenceLevel = options.referenceLevel.replace('/', ' ') atlas.setReferenceLevel(options.referenceLevel) atlas.distance = options.maxDistance else: options.showReferencedCoordinates = False if isinstance(atlas, FSLProbabilisticAtlas): atlas.strategy = options.probStrategy atlas.thr = options.probThr ## If not in Talairach -- in MNI with voxel size 2x2x2 # Original talairachlabel assumed that if respective to origin -- voxels were # scaled already. #if options.coordInTalairachSpace: # voxelSizeOriginal = N.array([1, 1, 1]) #else: # voxelSizeOriginal = N.array([2, 2, 2]) if options.coordInTalairachSpace: options.inputSpace = "Talairach" if not (options.inputSpace == atlas.space or (options.inputSpace in ["MNI", "Talairach"] and atlas.space == "Talairach")): raise XMLAtlasException("Unknown space '%s' which is not the same as atlas" "space '%s' either" % ( inputSpace, atlas.space )) if atlas.query_voxel: # we do direct mapping coordT = None else: verbose(2, "Chaining needed transformations") # by default -- no transformation if options.transformationFile: externals.exists('scipy', raiseException=True) from scipy.io import read_array transfMatrix = read_array(options.transformationFile) coordT = Linear(transfMatrix, previous=coordT) verbose(2, "coordT got linear transformation from file %s" % options.transformationFile) voxelOriginOriginal = None voxelSizeOriginal = None if not options.coordRelativeToOrigin: if options.inputSpace == "Talairach": # assume that atlas is in Talairach space already voxelOriginOriginal = atlas.origin voxelSizeOriginal = N.array([1, 1, 1]) elif options.inputSpace == "MNI": # need to adjust for MNI origin as it was thought to be at # in terms of voxels #voxelOriginOriginal = N.array([46, 64, 37]) voxelOriginOriginal = N.array([45, 63, 36]) voxelSizeOriginal = N.array([2.0, 2.0, 2.0]) warning("Assuming elderly sizes for MNI volumes with" " origin %s and sizes %s" %\ ( `voxelOriginOriginal`, `voxelSizeOriginal`)) if not (voxelOriginOriginal is None and voxelSizeOriginal is None): verbose(2, "Assigning origin adjusting transformation with"+\ " origin=%s and voxelSize=%s" %\ ( `voxelOriginOriginal`, `voxelSizeOriginal`)) coordT = SpaceTransformation(origin=voxelOriginOriginal, voxelSize=voxelSizeOriginal, toRealSpace=True, previous=coordT) # besides adjusting for different origin we need to transform into # Talairach space if options.inputSpace == "MNI" and atlas.space == "Talairach": verbose(2, "Assigning transformation %s" % options.MNI2TalTransformation) # What transformation to use coordT = {"matthewbrett": MNI2Tal_MatthewBrett, "lancaster07fsl": MNI2Tal_Lancaster07FSL, "lancaster07pooled": MNI2Tal_Lancaster07pooled, "meyerlindenberg98": MNI2Tal_MeyerLindenberg98, "yohflirt": MNI2Tal_YOHflirt }\ [options.MNI2TalTransformation](previous=coordT) if options.inputSpace == "MNI" and options.halfVoxelCorrection: originCorrection = N.array([0.5, 0.5, 0.5]) else: # perform transformation any way to convert to voxel space (integers) originCorrection = None # To be closer to what original talairachlabel did -- add 0.5 to each coord coordT = SpaceTransformation(origin=originCorrection, voxelSize=None, toRealSpace=False, previous = coordT) if options.createSummary: summary = {} if options.levels is None: options.levels = str(min(4, atlas.Nlevels-1)) if options.levels is None: options.levels = range(atlas.Nlevels) elif isinstance(options.levels, basestring): if options.levels == 'list': print "Known levels and their indicies:\n" + atlas.levelsListing() sys.exit(0) slevels = options.levels.split(',') options.levels = [] for level in slevels: try: int_level = int(level) except: if atlas.levels_dict.has_key(level): int_level = atlas.levels_dict[level].index else: raise RuntimeError( "Unknown level '%s'. " % level + "Known levels and their indicies:\n" + atlas.levelsListing()) options.levels += [int_level] else: raise ValueError("Don't know how to handle list of levels %s." "Example is '1,2,3'" % (options.levels,)) verbose(3, "Operating on following levels: %s" % options.levels) # assign levels to the atlas atlas.levels = options.levels if options.outputFile: output = open(options.outputFile, 'w') else: output = sys.stdout # validity check if options.dumpmapFile: if niftiInput is None: raise RuntimeError, "You asked to dump indexes into the volume, " \ "but input wasn't a volume" sys.exit(1) ni_dump = NiftiImage(infile) ni_dump_data = N.zeros((len(options.levels),) + ni_dump.data.shape[:3]) # Read coordinates numVoxels = 0 for c in coordsIterator: value, coord_orig, t = c[0], c[1:4], c[4] if __debug__: debug('ATL', "Obtained coord_orig=%s with value %s" % (repr(coord_orig), value)) lt, ut = options.lowerThreshold, options.upperThreshold if lt is not None and value < lt: verbose(5, "Value %s is less than lower threshold %s, thus voxel " "is skipped" % (value, options.lowerThreshold)) continue if ut is not None and value > ut: verbose(5, "Value %s is greater than upper threshold %s, thus voxel " "is skipped" % (value, options.upperThreshold)) continue numVoxels += 1 # Apply necessary transformations coord = coord_orig = N.array(coord_orig) if coordT: coord = coordT[ coord_orig ] # Query label voxel = atlas[ coord ] voxel['coord_orig'] = coord_orig voxel['value'] = value voxel['t'] = t if options.createSummary: summaryIndex = "" voxel_labels = voxel["labels"] for i,ind in enumerate(options.levels): voxel_label = voxel_labels[i] text = presentLabels(voxel_label) #if len(voxel_label): # assert(voxel_label['index'] == ind) summaryIndex += text + " / " if not summary.has_key(summaryIndex): summary[summaryIndex] = {'values':[], 'max':value, 'maxcoord':coord_orig} if voxel.has_key('voxel_referenced'): summary[summaryIndex]['distances'] = [] summary_ = summary[summaryIndex] summary_['values'].append(value) if summary_['max'] < value: summary_['max'] = value summary_['maxcoord'] = coord_orig if voxel.has_key('voxel_referenced'): if voxel['voxel_referenced'] and voxel['distance']>=1e-3: verbose(5, 'Appending distance %e for voxel at %s' % (voxel['distance'], voxel['coord_orig'])) summary_['distances'].append(voxel['distance']) else: # Display while reading/processing first, out = True, "" if options.showValues: out += "%(value)5.2f " if options.showOriginalCoordinates: out += "%(coord_orig)s ->" if options.showReferencedCoordinates: out += " %(voxel_referenced)s=>%(distance).2f=>%(voxel_queried)s ->" if options.showTargetCoordinates: out += " %(coord_queried)s: " #out += "(%d,%d,%d): " % tuple(map(lambda x:int(round(x)),coord)) if options.showTargetVoxel: out += " %(voxel_queried)s ->" if options.levels is None: options.levels = range(len(voxel['labels'])) labels = [presentLabels(voxel['labels'][i]) for i in options.levels] out += ','.join(labels) #if options.abbreviatedLabels: # out += ','.join([l.abbr for l in labels]) #else: # out += ','.join([l.text for l in labels]) #try: output.write(out % voxel + "\n") #except: # import pydb # pydb.debugger() if options.dumpmapFile: try: ni_dump_data[:, coord_orig[-1], coord_orig[-2], coord_orig[-3]] = \ [voxel['labels'][i]['label'].index for i,ind in enumerate(options.levels)] except Exception, e: import pydb pydb.debugger() # if we opened any file -- close it if fileIn: fileIn.close() if options.dumpmapFile: ni_dump = NiftiImage(ni_dump_data, ni_dump.header) ni_dump.save(options.dumpmapFile) def statistics(values): N_ = len(values) if N_==0: return 0, None, None, None, None, "" mean = N.mean(values) std = N.std(values) minv = N.min(values) maxv = N.max(values) ssummary = "[%3.2f : %3.2f] %3.2f+-%3.2f" % (minv, maxv, mean, std) return N_, mean, std, minv, maxv, ssummary def generateSummary(summary, output): """Output the summary """ # Sort either by the name (then ascending) or by the number of # elements (then descending) sort_keys = [(k, len(v['values']), v['maxcoord'][1]) for k,v in summary.iteritems()] sort_index, sort_reverse = { 'name' : (0, False), 'count': (1, True), 'a-p': (2, True)}[options.sortSummaryBy] sort_keys.sort(cmp=lambda x,y: cmp(x[sort_index], y[sort_index]), reverse=sort_reverse) # and here are the keys keys = [x[0] for x in sort_keys] maxkeylength = max (map(len, keys)) # may be I should have simply made a counter ;-) total = sum(map(lambda x:len(x['values']), summary.values())) for index in keys: summary_ = summary[index] values = summary_['values'] N, mean, std, minv, maxv, ssummary = statistics(values) # print "N=", N msg = "%%%ds:" % maxkeylength output.write(msg % index) output.write("%4d/%4.1f%% items" \ % (N, 100.0*N/total )) if options.createSummary>1: output.write(" %s" % ssummary) if options.createSummary>2: output.write(" max at %s" % summary_['maxcoord']) if options.createSummary>3 and summary_.has_key('distances'): # if we got statistics over referenced voxels Nr, mean, std, minv, maxv, ssummary = \ statistics(summary_['distances']) Nr = len(summary_['distances']) # print "N=", N, " Nr=", Nr output.write(" Referenced: %d/%d%% Distances: %s" \ % (Nr, int(Nr*100.0 / N), \ ssummary)) output.write("\n") # output might fail to flush, like in the case with broken pipe # -- imho that is not a big deal, ie not worth scaring the user try: output.flush() except IOError: pass output.write("-----\n") output.write("TOTAL: %d items\n" % total) if options.createSummary: if numVoxels == 0: verbose(1, "No matching voxels were found.") else: generateSummary(summary, output) if options.outputFile: output.close() pymvpa-0.4.8/bin/mvpa-prep-fmri000077500000000000000000000161061174541445200164120ustar00rootroot00000000000000#!/usr/bin/python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Tiny tool to prepare a directory for a typical analysis of fMRI data with PyMVPA. Tools from the FSL suite will be used for preprocessing. It takes a 4D fMRI timeseries as input and performs the following steps: - extract an example volume - perform motion correction using the example volume as reference - conservative skull-stripping and brain mask generation - masking of the motion-corrected timeseries with the brain mask All results will be stored either in the current directory, or in a subdirectory with the subject ID (if specified).""" import sys import os from subprocess import call import numpy as N from mvpa.misc.cmdline import parser, opt from mvpa.base import verbose, externals, error import mvpa if __debug__: from mvpa.base import debug _EXFUNC_CONV_DICT = {'last' : lambda x: x-1, 'first': lambda x: 0, 'middle': lambda x: int(x/2)} """Dictionary to get exemplar volume given a literal string""" def prepParser(parser): # use module docstring for help output parser.usage = "%s [OPTIONS] \n\n" % sys.argv[0] + __doc__ parser.version = "%prog " + mvpa.__version__ parser.add_option(opt.verbose) parser.add_option(opt.help) parser.add_option("-s", "--subject-id", action="store", type="string", dest="subj", default=None, help="Subject ID used as output path") parser.add_option("-e", "--example-func-vol", action="store", type="string", dest="exfunc", default='middle', help="Volume (numeric ID or 'last', 'first', 'middle') " "to be used as an example functional image. " "Default: 10") parser.add_option("-m", "--mcflirt-options", action="store", type="string", dest="mcflirt_opts", default='', help="Options for MCFLIRT. '-plots' is auto-added ") parser.add_option("-p", "--mcflirt-plots", action="store_true", dest="mcflirt_plots", help="Create a .pdf with plots of motion parameters") parser.add_option("-b", "--bet-options", action="store", type="string", dest="bet_opts", default='-f 0.3', help="Options for BET. '-m' is auto-added. " "Default: '-f 0.3' for a safe guess of the brain " "outline") def main(): """ """ prepParser(parser) (options, infiles) = parser.parse_args() # late import of pynifti to be able to get help output without a big # external dep. externals.exists('nifti', raiseException=True) from nifti import NiftiImage if len(infiles) > 1 or not len(infiles): error("%s needs exactly one input fMRI image as argument. " "Got %s" % (sys.argv[0], str(infiles))) func_fname = infiles[0] # compressed or uncompressed? decide by input image # XXX maybe add override option if func_fname.lower().endswith('nii.gz'): nii_ext = '.nii.gz' verbose(2, "Output files will be compressed NIfTI images") else: nii_ext = '.nii' verbose(2, "Output files will be uncompressed NIfTI images") # determine output path if not options.subj is None: opath = options.subj else: opath = os.path.curdir if not os.path.exists(opath): verbose(1, "Create output directory '%s'" % opath) os.makedirs(opath) else: verbose(2, "Using output path '%s'" % opath) verbose(2, "Load image file from '%s'" % func_fname) func_nim = NiftiImage(func_fname, load=True) # process exfunc option exfunc = options.exfunc.lower() timepoints = func_nim.timepoints if exfunc in _EXFUNC_CONV_DICT.keys(): exfuncid = _EXFUNC_CONV_DICT[exfunc](timepoints) else: try: exfuncid = int(exfunc) except ValueError, e: error("Failed to convert '%s' into numerical id of " "volume." % (exfunc)) if exfuncid >= timepoints or exfuncid < 0: error("Example functional volume id must be in the " "range 0 .. %d. Got %d." % (timepoints-1, exfuncid)) verbose(2, "Extract volume %i as example volume" % exfuncid) ef_nim = NiftiImage(func_nim.data[exfuncid], func_nim.header) ef_nim.save(os.path.join(opath, 'example_func' + nii_ext)) # close input file -- will operate on motion-corrected one later on del func_nim mcflirt_call = \ ' '.join( ['mcflirt', '-in ' + func_fname, '-out ' + os.path.join(opath, 'func_mc'), '-reffile ' + os.path.join(opath, 'example_func'), '-verbose 0', '-plots', options.mcflirt_opts]).strip() verbose(2, "Perform motion correction ('%s')" % mcflirt_call) # run MCFLIRT (silence stderr; 5 being some random file descriptor) if call(mcflirt_call, shell=True, stderr=None): error("MCFLIRT failed to perform the motion correction.") if options.mcflirt_plots: verbose(2, "Plot motion parameters estimates") externals.exists('pylab', raiseException=True) mc = McFlirtParams(os.path.join(opath, 'func_mc.par')) for k, (title, fields, ylabel) in enumerate( (('Translation', ('x', 'y', 'z'), 'mm'), ('Rotation', ('rot1', 'rot2', 'rot3'), 'radians'))): P.subplot(211+k) P.title(title) P.plot([0, timepoints], [0, 0], '0.6') for dim in fields: P.plot(mc[dim], label=dim) P.legend() P.axis('tight') P.ylabel(ylabel) P.gcf().savefig(os.path.join(opath, 'func_mc.pdf')) bet_call = \ ' '.join( ['bet', os.path.join(opath, 'example_func'), os.path.join(opath, 'example_func_brain'), '-m', options.bet_opts]).strip() verbose(2, "Determine brain mask in functional space ('%s')" % bet_call) # run BET (silence stderr; 5 being some random file descriptor) if call(bet_call, shell=True, stderr=None): error("BET failed to perform the skull stripping.") verbose(2, "Threshold image background using brain mask") mask_nim = NiftiImage(os.path.join(opath, 'example_func_brain_mask')) func_nim = NiftiImage(os.path.join(opath, 'func_mc')) # special case: single slice mask if len(mask_nim.extent) < 3: func_nim.data[:, N.asarray([mask_nim.data]) == 0] = 0 else: func_nim.data[:, mask_nim.data == 0] = 0 func_nim.save() if __name__ == '__main__': main() pymvpa-0.4.8/doc/000077500000000000000000000000001174541445200136135ustar00rootroot00000000000000pymvpa-0.4.8/doc/Makefile000066400000000000000000000047471174541445200152670ustar00rootroot00000000000000# Makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = sphinx-build PAPER = # Internal variables. BUILDROOT = ../build PAPEROPT_a4 = -D latex_paper_size=a4 PAPEROPT_letter = -D latex_paper_size=letter ALLSPHINXOPTS = -d $(BUILDROOT)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) . .PHONY: help clean html web pickle htmlhelp latex changes linkcheck help: @echo "Please use \`make ' where is one of" @echo " html to make standalone HTML files" @echo " pickle to make pickle files (usable by e.g. sphinx-web)" @echo " htmlhelp to make HTML files and a HTML help project" @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" @echo " changes to make an overview over all changed/added/deprecated items" @echo " linkcheck to check all external links for integrity" clean: -rm -rf $(BUILDROOT)/html -rm -rf $(BUILDROOT)/latex distclean: clean -rm -rf $(BUILDROOT)/doctrees html: mkdir -p $(BUILDROOT)/html $(BUILDROOT)/doctrees $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDROOT)/html @echo @echo "Build finished. The HTML pages are in $(BUILDROOT)/html." pickle: mkdir -p $(BUILDROOT)/pickle $(BUILDROOT)/doctrees $(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDROOT)/pickle @echo @echo "Build finished; now you can process the pickle files or run" @echo " sphinx-web $(BUILDROOT)/pickle" @echo "to start the sphinx-web server." web: pickle htmlhelp: mkdir -p $(BUILDROOT)/htmlhelp $(BUILDROOT)/doctrees $(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDROOT)/htmlhelp @echo @echo "Build finished; now you can run HTML Help Workshop with the" \ ".hhp project file in $(BUILDROOT)/htmlhelp." latex: mkdir -p $(BUILDROOT)/latex $(BUILDROOT)/doctrees $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDROOT)/latex @echo @echo "Build finished; the LaTeX files are in $(BUILDROOT)/latex." @echo "Run \`make all-pdf' or \`make all-ps' in that directory to" \ "run these through (pdf)latex." changes: mkdir -p $(BUILDROOT)/changes $(BUILDROOT)/doctrees $(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDROOT)/changes @echo @echo "The overview file is in $(BUILDROOT)/changes." linkcheck: mkdir -p $(BUILDROOT)/linkcheck $(BUILDROOT)/doctrees $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDROOT)/linkcheck @echo @echo "Link check complete; look for any errors in the above output " \ "or in $(BUILDROOT)/linkcheck/output.txt." pymvpa-0.4.8/doc/_static/000077500000000000000000000000001174541445200152415ustar00rootroot00000000000000pymvpa-0.4.8/doc/_static/logo.pdf000066400000000000000000000042331174541445200166760ustar00rootroot00000000000000%PDF-1.4 %µí®û 3 0 obj << /Length 4 0 R /Filter /FlateDecode /Type /XObject /Subtype /Form /BBox [ 0 0 266.007996 80.919998 ] /Group << /Type /Group /S /Transparency /CS /DeviceRGB >> /Resources 2 0 R >> stream xœVA®,' Üs .l|Œ!éý,Þ_$¹¿”*è~óéïÆ0å²]î¿C‰9Yó,1Ç~ÄßÿÌñÇ¿¡dO _嗢Ɵ±HNÚÊv|ÂQ“‹nGMÿ·4J9RñC¯IZ|ÁáÉ{½$8^sUcóÔ´Þ¦¦nÊãÛQ“Z‹a_o¯œèÕÓPŸÑ¯×ëHµôƒ­ZêÕö°lœ/š¤·}àó8Ä’·JÇ"à›#Ü ¬;=§&ƒ-G“d¹Ï@]Ÿ)I¤Æ°´m‡­*¬ë#™ÞÑ}â}×2È.ÝJh£_æë=a¤Skª¨⳨ $[t¢Ú’ŽÚùã­£ÞŽP_šFéHÆç”·Ff’}3X’²–ù@Å)`Ç=¢{âª.Â]‚ód,4$kc›l5°·ÍÏeJK%ÛƒžjuܦØFÛÆ¦ŒË´2è‚Sf¾Ùä¬Ó&C0y`¢ƒÅ Ê<Ž´Êì;¦óãÏø2ª?e°Ö9ÁZ»x{0Xu-Ö†ãú`Ë“'öÙœ†ò"£s"”,º<î,Ç=†‰CQ¾9·èÄKD2cè˜ÏÜ6ºGÏí81O2÷+_³#0ÜF§ßé:…èíP&öÚS™DJFe푯üõ`H2j”ý Ä Uxàøú,CŒÔUo"”þÄQ%qžàiTÚK8’THùÒMAûyi[7Íglî%œÛ> p—pîë—nîàG7Ã~} çÆ¶tqƒ?º)èZ°tëæv„CÉfà›ãæhÝ9ºy‚ü@SÞì4ßvHÅP-›´dËæä¸ƒ®¥›43¼tó˜7iËa«×ípéæ ¿us½¾TsC[élèG5Ã[¾¿:ÁÒ59âÛÒD¼€µ éyëªQFéþ 2SzŒà—µ§Cû”;Ho]ÿ†„)Ðx®€¯Ÿ3jÅå`’ ÌSì§#¼ÝùUÜO´<°íšû+žqlvƒTa—ã°a’º±U|Œ¨=‚ü¾ŽC¬²Æ5—ês£šÌ™¬¹¢h?;ö'S¨Ûú?79äÞïØZí‹=€¨_ºÎÅŠÓ@ß¡„a®e†MÐù¤Ð@CúA3s‹ Å/¼â_ïŒ|üÏŽ©éÄÈýü€…MˆÿpñH_6לNLCÓ0޵‚½²MX—Ûbnì~4°$ý­@/ÚT~4QÜýê 6_‰_®Ô¾`þµÁ—"ö#÷)¶ÊϹ9ç·ƒóBÂmŒ÷Ý"x^g£5Ùk±OÑ 5Ç ¨`Ø\g’0F똟™J!ä7gôT²Ù}~†~õÞgyîá=ö‹U, 燮²ºŽƒD/*»V¾¯È‚úܘ¨Sz1ºj‹¿*޲›2<~Éž$¾ÑñþÿC€U‚ endstream endobj 4 0 obj 1144 endobj 2 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> >> >> endobj 5 0 obj << /Type /Page /Parent 1 0 R /MediaBox [ 0 0 266.007996 80.919998 ] /Contents 3 0 R /Group << /Type /Group /S /Transparency /CS /DeviceRGB >> /Resources 2 0 R >> endobj 1 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 >> endobj 6 0 obj << /Creator (cairo 1.6.4 (http://cairographics.org)) /Producer (cairo 1.6.4 (http://cairographics.org)) >> endobj 7 0 obj << /Type /Catalog /Pages 1 0 R >> endobj xref 0 8 0000000000 65535 f 0000001719 00000 n 0000001434 00000 n 0000000015 00000 n 0000001411 00000 n 0000001506 00000 n 0000001784 00000 n 0000001909 00000 n trailer << /Size 8 /Root 7 0 R /Info 6 0 R >> startxref 1961 %%EOF pymvpa-0.4.8/doc/_static/logo_blue.png000066400000000000000000000121531174541445200177200ustar00rootroot00000000000000‰PNG  IHDR·GEüÖ†sBIT|dˆ pHYs × ×B(›xtEXtSoftwarewww.inkscape.org›î<èIDATxœíwxTe¾Ç¿gzzï½B !…B,(âåbEd{õz}TpW×åîê¢zYwW\WAP”"Á©„tRI™LzïÉL¦œûÇ3s¦·èu<Ÿžäœó¶ÉùÍ{~í}qïÎÃ$ìÖ/=†ù‚n»…n»…n»…n»…n»…n»…3߸¹‘ޏ(?„z@A’ÉÉåÉKd¸&ÀÕÆ^4  “+æ{H ¿ˆù âp¹lÜ~ÃbÜ’ß´ïdV†Æ–~\mêEU}:ºGçch ¿æE¸|þû‘ÄÇø[Õε¶œ¹Ø€’JäÌŒÎ`&6n‹Àïw݈‘¾6kst|çò›[Є± ±ÍÚe°ol.Ü·­[„{7&Û²I ™\’Šv?Sƒ®¾±yéƒÁ~°©Aéåá„;Ö/1«ŽT&Çgß”¡¦±¾^ÎH[ŠUéQ`³µ96 ™©ÈHÇÅ’|ýC†Ç¦m5|;ƒ¾éU[5–•‰”„³êœÊkÀñ³5˜œ’ opåW;Qp¥ ~>®ðuÕY‡ „‡xb]Ö8¸h A*“Ûâ#0Ø6õs/‰2»N§HÿÐ$Þ‚üÜ,®ácR¹/¾­@CKŸYm§'…áÍ=·#;=Ê’¡1üб‰p‡{XU?ÖDá&Iï.Àô̬Yí;9òðØ}+ðâkáãélÉ~…ØD¸Ãƒ=­ª¿ Ò4အ‘)|x¤Ø¢~⯻oÃÍ«‚ ‹Ú`øõ`“¥µÂê›erºkIE;.ĵ`ÕróU >ƒm›Ó‘Ž_¡«×ô0¾3oݹ-r’…Q±;¤íSä]Zž(¹\a0:ëìȇƒ€K;§ I L<ÜÀa«Ü°S3LÏH ÃE>W5މ“SpØ,x¸9ê¬C‚ÄäÔ,ÄÃmÏÁã²áæâ@;gì³êÃìÜ’àw¼üÔ àpT>Ÿ6˺™pF,¥¹û.WµãÀçE´~¥29ú&”}rYxvÅðs $(”? ÍŸj×ç~' IÇê7âtË Iããpé'Xñ“Þër’Ái/\ŠÆÑ†Mè›4ß﯋۳‘N;§PØõÊ1½7ý//ÜŠ° ú¤36!Æã{¾<¶u²—©&‡Ò*Þþè‚Þ1°ÿµÍðTâÿ]‚sùM òÄ_^¸ÕàgŸ£w`g.4 ¸B¨×µ»y}"6k¤pÈ$žØó&¦$ûÐÄìi¦³gßž«…£—úo­`€ƒ@ÕÞŒxŸW¹þ8lžÜ¶ÏìXE}$R>«X~üDðuè€C¼ºá%è…§ ü¸óáÆ‚+o.¼Q8sÇàć#gNÜ ÜŸøžÏx ®üq«?›ÃÏ©+C ñæºqsô«ÛÔ‹E`UF´ÎkQaÞZ‚­IQ™v¼$>È`Þ}l„/M°å %í&×ÕY€ØìÜž…?=w‹ÖSeŽ)ZçØ,éKÃLîk‹ž¡§òêPY×eIU£($þv(SÓ*£ñ® I ò@X¶ß±Œ:ß1ŒOª¶YÝg’5^_»‰¾†ÃýæÀfÉq_ÂDz´Ù¬MMr–Gë´Ö®ˆ1Z÷jcm&äqÙH^¬·üòdºpÕ4t›=“Îê…ßÝ‘¦u><ØSo>ÑŠ”p³û±H¸Ixÿ_…Ÿ±¤ºAŽ®Fck?uã‡[×ÄSÇ9ÑÈJ‹¤Ž/³qI´Òê~Ýcx!s¶$›eZVÝ@^ÊÝ‹—r÷âKžÄå®4šzÃ&ä¸kÑWVMÞžNH\@;ç à"ÃAÐ5óê› ‚@zýšæÌ¯É_ß?—Þø¯¾}'~¼Š‘1º¬d/‹B †ûØ/ˆôƒ§»n½^”ã“b¼w8»Ÿ\g3ÏC}s¾9SC;:pñØÖL­öwÜŽÖŽ!Êü¸b;"=ÚäbÝÓ„ Hlˆù‹|ê°ÿòè4œ§2#s@û˜2 Ú>Šâ®tüaÕÿ`¡W#U&ÜM)@ŽÜi<šò!X„RÙœšuÂûekµé̛ģ)ÿ¤ŽÇÄ®²hedr8×S‚׬ˆAU}7u-35‚2>ÕË颰Lˆu+c©ã¤¸ ø\-ãoa”/Ü]UFžT*Giu‡Þv «w Ó€¦¶;†ñôŽlZ™@wt_ÏË'`¹†]QqµK¯?MÈHÇ÷çë ö«ŽU¦}mS/ŽÉÜ3•É) Þ;”RÍÒxàÎtx{8i•åó8xæÁUÔM”Èyx§ø)Hä¶É'‰pâÏkþ€ìÐ|³ëw¤ÓŽ]ùpæMbZê'î4RÊ‘PŽì°KˆölÖªŸPA•I (‡T¡­›^Q¬ä„šà­ÍŒÑYN­}4ƒ”Ëe#%A[5Y®1£—×všìýP¯£é ðQ© ±¾´{ÝÞ5Œ“‚l®jbµßêè©*4©©–òÁç…´?tFr82Sµ‹9‚üÜðÐ=˩㮉 |\±ÝêqÌ!àˆñXê<™ö8pLW¿Â=„´c©œ‹i©òqšÛ¶†v-;´@«~Z =‡&_”©UæZÛµxšÍ"¨è«º!I’$~*ºfp¬$ —ÓÇ«)È,e*I¡•DÁþnZO‘ñI•[USp/WŠÐÐÒqµe…!^ð÷q1¹O«…[—h.g/6¢¬¦“:ötwăw§¨¡$35kÔŒ§K¢•ÈkÏ6PÃ|2CŠðúÚ—íÑb°—-EJ@9–]¦ïœ¢|ߥ])—¨nNFp18„Œ:æ³%HôU©e=“þhQÙêä6Q¿çdDƒ è†de]7†FŒû†5uçÄ…ðUO‹¸h?ZnÎŒXj¶3!Èß ›nJÔ:ßy]­déð†\®$I\©¡?}tySôa“ ÎàÈ|^„gZevÝö®šÛ €Ç·fšœ²ú»Íih AØ9 8X¹ Q­qí4RÓt|œðÊ꽸6Dw½-ò©Ã[7¾ðŒ@ #ÀSб‚ú]Frp±= b8ñ¦XË]JÏA’5¸lÕã^׬M]+mŽ“Áçqàçí‚ÔÄPš!™[Ф·®:-¢!ô NÀÏ[ù¥›SM ®(½<š3ù•êH¥Æ î=;o€\®Ë†—Õ²§mC€Å±´ä¹žþqÊž*­Ñ&°Œ”p;]mÒg³Y8­´Z„/5/¨†dV†ý/Ñ–ˆ­_Ef,8àrÙxzG6”³Í¬œ‡wKvB,³m&`ëpgè¹çŽÎ=pîÑ)Øuq8Õ|í\®0‡æQÉRSMR¯P¿“$|µ/†&Ó3Rš·ãÑ-” 2<:mÖìZ¤¥š„Ч’˜æÚôõrF€¯«NÁ–+Hüýp>õ%Ñ¥’Ìqµ©—–Kä熰 Ór™l+þ×ñ2ˆºGL.èh)e-JëùîÛ’Ìî×ÏÛnQ B÷D>²¡þ}^˜ƒ?]Ü ‰Ì´§‰X&À×uÿ‰}…ÿ¥ùì›ôCí Êµ™äWWþØ,9–úWQ盆c00e8çæœÚì¬þ¤û©¨ #«—ÔÑÔ¡ãà àbQ¬?\œøÔùñI1®6ö˜Ü®.ªë»ñò¾Ð"RÎÚ\iKèy÷—«TÂ-—+P~•þ6U5±éêw©TŽýŸ\ÂÞço1º*§¨\ˆ¼"•·€ËaãÉm+ÁåX¶2mI(Ö¯ŽÃ©¼zJu λk"ò,jPª+·á|Ûj×{&PØ¡4j$ ƒÓ^èŸòEÇx0eDêâ|ëj,öQ榳Yr¬.B÷d¹*ÙJ2G³p¢î„ªf2…‚D^±¶Æ=£èèEH€;å½HIA\4=}àr¥Èè’¿9Nç5`jf‰‰) ú'Ñ;0ŽÞëés$ÅiE+Ÿ}®Þj^ÏHÇ‘ïʮβù^]}c8ôu)Ù’¡·ÌÀÐ$>ú’žÙw׆$ÚM²„-·'ãšpÍÂAÀ¡êûåÙŠ07‘‘šÚŒŠÝñvÉ.-=[ßdvÛ¥=©—¸R!ÿ¬°|´Ž¨f#ÉAq×2}Õiœ/¸†íwªÊVÕuQÉQæPXÖ†»7,¥Ž3S#æ¥UÆTNåÕS~nCèrïy{j«2š×cÂ}ÐÔ6`°Ü¼ìòšWܬ¥ÇÍ!WØð-->Æ·äÄë,ol6 »ȆóõG©TÎÅ»%O™­7 Ç`÷ù× ¶5Èl\hWf"Ü…È Q%‰Uô,ÁÔ¬á{3µ{ÔÕÆ|wŽ>øw¥ë´¨­!)>×-¦þPEéˆónÀºÈ\½uŒé×¶¦oʵñXìK_:5ë„Ê^óŒê97¨µ•µén3TSÑò’T‰(›I>ƒÕË£©/ƒ«‹‹býQÓ ßÀ×Íç[DCøò» JKûïŸоý™©e{™Â·&Ñ ¢O«ïƒpTwbЈØ¯]Øý³ ö¹Â­s%ÝË UÌû¶é:).o§¥?Ì¡ôIÛæ 4‡³ èI_—+õ§ÐJfe¨iè¦[‘lX5™÷¿â÷?Õ!>Ög/6Ò²½<œðÀ¦M–Àbع= /½qcbH¼[²^û{Z8½i8ïïÂ¨Øøçö±0”õ¨6ùl¶nÑñ•îŒIÜàÆW¹C/µk«$­¢!Úã»opB«Œ.Äb)ÊÔ"|Æ¢ÈÃcÓ8•WOtæPëbZé¢Y8ˆ6¨îK@u_‚Å}Ø $²B h‹¾i¸l¢S¸Ëj:ÁãrðØ}+,Þ\rë¦T´©H”)Ô7÷Y%ÜæDG)ÂÜDØ•þÜ£4õ¨e$lœôõ[G¯ÖRT.ÄÞ¿ýHKK4›…];²ÍÚ³¯ÞˆÎeŒ_Ã;t¸ìY8÷Л$ ¬ÜÆÌÚ6Æ J~­m¿ë”Åo1ðñtÆã[õ'ÿhÒØÒo•/ÕV.±ù„$Y*8*8—¸¢n ¯>¯7µ•ÁrL2(xxúl$h¬×3•Ÿ¬Äñ³5Æ Ø·{#‚üÍßš­§Ïí=av=ûÅ$?÷ôÌ,^ÿÇ9>ZJ õšÊ]’pSöB“ÊZªšÔX™­Æ`˜Ä!Iàô…¼øÆI‹r ¶mNÃj=ûl¨c©p×6öZTÁ~1;BÙ70×Þ=‹O]Á¬ +2æ àá{–ÓVUèbnu†9$‰ÚkŒp3бpß§òêñâëß™µ8˜ ÆÏ"µ¥Y8ˆÃGKiKÕtñ³&2Ë$*j»PQ«LR÷tsDxˆ'"B<¬üïîæ‰D ñ¬ ‰ b‰ 3âYÔ7÷£¬¦ãW‘?Âðÿƒ_.KÊ•ÃcÓZ›®00Ø‚y]CÉÀðKÂ7ƒÝÂ7ƒÝÂ7ƒÝÂ7ƒÝÂ7ƒÝÂ7ƒÝÂ7ƒÝÂ7ƒÝÂ7ƒÝÂ7ƒÝò,ñpŽcÛŽ•IEND®B`‚pymvpa-0.4.8/doc/_static/pymvpa.css000066400000000000000000000202601174541445200172670ustar00rootroot00000000000000/** * PyMVPA stylesheet derived from: * * Alternate Sphinx design * Originally created by Armin Ronacher for Werkzeug, adapted by Georg Brandl. */ #header { margin: 0px; padding: 20px 15px 15px 15px; background-color: #596DA2; font-size: 1.75em; color: #fff; font-weight: bold; border-bottom: 5px solid #822; } body { font-family: 'Lucida Grande', 'Lucida Sans Unicode', 'Geneva', 'Verdana', sans-serif; font-size: 14px; letter-spacing: -0.01em; line-height: 150%; text-align: center; /*background-color: #AFC1C4; */ background-color: #ccc; color: black; padding: 0; border: 1px solid #aaa; margin: 0px 40px 0px 40px; min-width: 740px; } a { color: #822; text-decoration: none; } a:hover { color: #596DA2; } pre { font-family: 'Consolas', 'Deja Vu Sans Mono', 'Bitstream Vera Sans Mono', monospace; font-size: 0.95em; letter-spacing: 0.015em; padding: 0.5em; border: 1px solid #ccc; background-color: #f8f8f8; } td.linenos pre { padding: 0; border: 0; background-color: transparent; color: #aaa; } table.highlighttable { margin-left: 0.5em; } table.highlighttable td { padding: 0 0.5em 0 0.5em; } cite, code, tt { font-family: 'Consolas', 'Deja Vu Sans Mono', 'Bitstream Vera Sans Mono', monospace; font-size: 0.95em; letter-spacing: 0.01em; } hr { border: 1px solid #abc; margin: 2em; } tt { background-color: #f2f2f2; border-bottom: 1px solid #ddd; color: #333; } tt.descname { background-color: transparent; font-weight: bold; font-size: 1.2em; border: 0; } tt.descclassname { background-color: transparent; border: 0; } tt.xref { background-color: transparent; font-weight: bold; border: 0; } a tt { background-color: transparent; font-weight: bold; border: 0; color: #CA7900; } a tt:hover { color: #2491CF; } dl { margin-bottom: 15px; } dd p { margin-top: 0px; } dd ul, dd table { margin-bottom: 10px; } dd { margin-top: 3px; margin-bottom: 10px; margin-left: 30px; } .refcount { color: #060; } dt:target, .highlight { background-color: #fbe54e; } dl.glossary dt { font-weight: bold; font-size: 1.1em; } pre { line-height: 120%; } pre a { color: inherit; text-decoration: underline; } div.document { background-color: white; text-align: left; background-image: url(contents.png); background-repeat: repeat-x; } /* div.documentwrapper { width: 100%; } */ div.clearer { clear: both; } div.related h3 { display: none; } div.related ul { background-image: url(navigation.png); height: 2em; list-style: none; border-top: 1px solid #ddd; border-bottom: 1px solid #ddd; margin: 0; padding-left: 10px; } div.related ul li { margin: 0; padding: 0; height: 2em; float: left; } div.related ul li.right { float: right; margin-right: 5px; } div.related ul li a { margin: 0; padding: 0 5px 0 5px; line-height: 1.75em; color: #335; border: 1px solid transparent; } div.related ul li a:hover { border: 1px solid #666; } div.body { margin: 0; padding: 0; } div.bodywrapper { margin: 0 240px 0 0; padding: 0.5em 20px 20px 20px; border-right: 1px solid #ccc; } div.body a { text-decoration: underline; } div.sidebar, div.sphinxsidebar { margin: 0; padding: 0.5em 15px 15px 0; width: 210px; float: right; text-align: left; /* margin-left: -100%; */ } div.sidebar h4, div.sidebar h3, div.sphinxsidebar h4, div.sphinxsidebar h3 { margin: 1em 0 0.5em 0; font-size: 0.9em; padding: 0.1em 0 0.1em 0.5em; color: white; border: 1px solid #86989B; background-color: #596DA2; } div.sidebar ul, div.sphinxsidebar ul { padding-left: 1.5em; margin-top: 7px; list-style: none; padding: 0; line-height: 130%; } div.sidebar ul ul, div.sphinxsidebar ul ul { list-style: square; margin-left: 20px; margin-bottom: 0.5em; } p { margin: 0.8em 0 0.5em 0; } h1 { margin: 0; padding: 0.7em 0 0.3em 0; font-size: 1.5em; color: #335; } h2 { margin: 1.3em 0 0.2em 0; font-size: 1.35em; padding: 0; color: #335; } h3 { margin: 1em 0 -0.3em 0; font-size: 1.2em; color: #335; } h4 { color: #335; } h1 a, h2 a, h3 a, h4 a, h5 a, h6 a { color: black!important; } h1 a.anchor, h2 a.anchor, h3 a.anchor, h4 a.anchor, h5 a.anchor, h6 a.anchor { display: none; margin: 0 0 0 0.3em; padding: 0 0.2em 0 0.2em; color: #aaa!important; } h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor, h5:hover a.anchor, h6:hover a.anchor { display: inline; } h1 a.anchor:hover, h2 a.anchor:hover, h3 a.anchor:hover, h4 a.anchor:hover, h5 a.anchor:hover, h6 a.anchor:hover { color: #777; background-color: #eee; } table { border-collapse: collapse; margin: 0 -0.5em 0 -0.5em; } table td, table th { padding: 0.2em 0.5em 0.2em 0.5em; } div.footer { background-color: #999; color: #666; padding: 3px 8px 3px 0; clear: both; font-size: 0.8em; text-align: right; } div.footer a { color: #86989B; text-decoration: underline; } div.pagination { margin-top: 2em; padding-top: 0.5em; border-top: 1px solid black; text-align: center; } div.sphinxsidebar ul.toc { margin: 1em 0 1em 0; padding: 0 0 0 0.5em; list-style: none; } div.sphinxsidebar ul.toc li { margin: 0.5em 0 0.5em 0; font-size: 0.9em; line-height: 130%; } div.sphinxsidebar ul.toc li p { margin: 0; padding: 0; } div.sphinxsidebar ul.toc ul { margin: 0.2em 0 0.2em 0; padding: 0 0 0 1.8em; } div.sphinxsidebar ul.toc ul li { padding: 0; } div.admonition, div.warning { font-size: 0.9em; margin: 1em 0 0 0; border: 1px solid #86989B; background-color: #f7f7f7; } div.admonition p, div.warning p { margin: 0.5em 1em 0.5em 1em; padding: 0; } div.admonition pre, div.warning pre { margin: 0.4em 1em 0.4em 1em; } div.admonition p.admonition-title, div.warning p.admonition-title { margin: 0; padding: 0.1em 0 0.1em 0.5em; color: white; border-bottom: 1px solid #86989B; font-weight: bold; background-color: #596DA2; } div.warning { border: 1px solid #940000; } div.warning p.admonition-title { background-color: #CF0000; border-bottom-color: #940000; } div.admonition ul, div.admonition ol, div.warning ul, div.warning ol { margin: 0.1em 0.5em 0.5em 3em; padding: 0; } div.versioninfo { margin: 1em 0 0 0; border: 1px solid #ccc; background-color: #DDEAF0; padding: 8px; line-height: 1.3em; font-size: 0.9em; } a.headerlink { color: #c60f0f!important; font-size: 1em; margin-left: 6px; padding: 0 4px 0 4px; text-decoration: none!important; visibility: hidden; } h1:hover > a.headerlink, h2:hover > a.headerlink, h3:hover > a.headerlink, h4:hover > a.headerlink, h5:hover > a.headerlink, h6:hover > a.headerlink, dt:hover > a.headerlink { visibility: visible; } a.headerlink:hover { background-color: #ccc; color: white!important; } table.indextable td { text-align: left; vertical-align: top; } table.indextable dl, table.indextable dd { margin-top: 0; margin-bottom: 0; } table.indextable tr.pcap { height: 10px; } table.indextable tr.cap { margin-top: 10px; background-color: #f2f2f2; } img.toggler { margin-right: 3px; margin-top: 3px; cursor: pointer; } form.pfform { margin: 10px 0 20px 0; } table.contentstable { width: 90%; } table.contentstable p.biglink { line-height: 150%; } a.biglink { font-size: 1.3em; } span.linkdescr { font-style: italic; padding-top: 5px; font-size: 90%; } ul.search { margin: 10px 0 0 20px; padding: 0; } ul.search li { padding: 5px 0 5px 20px; background-image: url(file.png); background-repeat: no-repeat; background-position: 0 7px; } ul.search li a { font-weight: bold; } ul.search li div.context { color: #888; margin: 2px 0 0 30px; text-align: left; } ul.keywordmatches li.goodmatch a { font-weight: bold; } pymvpa-0.4.8/doc/_static/robots.txt000066400000000000000000000001431174541445200173100ustar00rootroot00000000000000# robots.txt for http://www.pymvpa.org User-agent: * Disallow: /files/pymvpa_exampledata.tar.bz2 pymvpa-0.4.8/doc/_templates/000077500000000000000000000000001174541445200157505ustar00rootroot00000000000000pymvpa-0.4.8/doc/_templates/indexsidebar.html000066400000000000000000000021651174541445200213030ustar00rootroot00000000000000

Quick links

Search mailing list archive

pymvpa-0.4.8/doc/_templates/layout.html000066400000000000000000000027711174541445200201620ustar00rootroot00000000000000{% extends "!layout.html" %} {% block extrahead %} {% endblock %} {% block rootrellink %}
  • ExpPsy Project
  • NeuroDebian Project
  • PyMVPA 0.4.x Home
  • PyMVPA Home
  • Documentation »
  • {% endblock %} {% block relbar1 %} {{ super() }} {% endblock %} {% block sidebar1 %}{{ sidebar() }}{% endblock %} {% block sidebar2 %}{% endblock %} {% block footer %} {{ super() }} {% endblock %} pymvpa-0.4.8/doc/_templates/page.html000066400000000000000000000005051174541445200175520ustar00rootroot00000000000000{% extends "!page.html" %} {% block body %}
    This content refers to the previous stable release of PyMVPA. Please visit www.pymvpa.org for the most recent version of PyMVPA and its documentation.
    {{ super() }} {% endblock %} pymvpa-0.4.8/doc/api/000077500000000000000000000000001174541445200143645ustar00rootroot00000000000000pymvpa-0.4.8/doc/api/TREE000066400000000000000000000025451174541445200150540ustar00rootroot00000000000000XXX Dataset might need to get labelweights parameter which could be used by some classifiers Mapper Dataset (S1) | \- appendtohistory(item) | \-ICAMapper \ | MaskMapper \------- MappedDataset (S1, Mapper) \ forward(ndarray) | MaskedDataset (S1, mask) | NiftiDataset Splitter ErrorFunction | | NFoldSplitter(S2) CrossValidation \ call(dataset) Clf (LinearSVM) train \- weights predict | BoostedClassifier Clf <- optimizeClassifier(optimizer, clf, parameter_to_optimize) default combiner = average OptimizerAlgorithm | LineSearchOptimizer GridSearch FeatureStrip(SensitivityAnalyzer) after train return ErrorFunction, sensitivity, Optimizer | ParameterOptimizer(optimizeralgorithm, parameter, classifier) BoostedOptimizer(splitter, optimizer) # NOTES Sensitivity -> RankList (N.argsort) sens <- Combine dataset <- selectImportantFeature RFE(dataset, sensAnalyzer): do sens <- sensAnalyzer(dataset) dataset <- selectImportantFeature(dataset, sens) until the world collapses into pymvpa-0.4.8/doc/api/epydoc.conf000066400000000000000000000105311174541445200165160ustar00rootroot00000000000000[epydoc] # Epydoc section marker (required by ConfigParser) # The list of objects to document. Objects can be named using # dotted names, module filenames, or package directory names. # Alases for this option include "objects" and "values". modules: mvpa # The type of output that should be generated. Should be one # of: html, text, latex, dvi, ps, pdf. output: html # The path to the output directory. May be relative or absolute. target: build/html/api # An integer indicating how verbose epydoc should be. The default # value is 0; negative values will supress warnings and errors; # positive values will give more verbose output. verbosity: 0 # A boolean value indicating that Epydoc should show a tracaback # in case of unexpected error. By default don't show tracebacks debug: 0 # If True, don't try to use colors or cursor control when doing # textual output. The default False assumes a rich text prompt simple-term: 0 ### Generation options # The default markup language for docstrings, for modules that do # not define __docformat__. Defaults to epytext. docformat: restructuredtext # Whether or not parsing should be used to examine objects. parse: yes # Whether or not introspection should be used to examine objects. introspect: no # Don't examine in any way the modules whose dotted name match this # regular expression pattern. #exclude # Don't perform introspection on the modules whose dotted name match this # regular expression pattern. #exclude-introspect # Don't perform parsing on the modules whose dotted name match this # regular expression pattern. #exclude-parse # The format for showing inheritance objects. # It should be one of: 'grouped', 'listed', 'included'. inheritance: listed # Whether or not to inclue private variables. (Even if included, # private variables will be hidden by default.) private: yes # Whether or not to list each module's imports. imports: yes # Whether or not to include syntax highlighted source code in # the output (HTML only). sourcecode: yes # Whether or not to includea a page with Epydoc log, containing # effective option at the time of generation and the reported logs. include-log: no ### Output options # The documented project's name. name: PyMVPA: Python MultiVariate Pattern Analysis # The CSS stylesheet for HTML output. Can be the name of a builtin # stylesheet, or the name of a file. css: white # The documented project's URL. url: http://v04.pymvpa.org # HTML code for the project link in the navigation bar. If left # unspecified, the project link will be generated based on the # project's name and URL. #link: My Cool Project # The "top" page for the documentation. Can be a URL, the name # of a module or class, or one of the special names "trees.html", # "indices.html", or "help.html" #top: os.path # An alternative help file. The named file should contain the # body of an HTML file; navigation bars will be added to it. #help: my_helpfile.html # Whether or not to include a frames-based table of contents. frames: yes # Whether each class should be listed in its own section when # generating LaTeX or PDF output. separate-classes: no ### API linking options # Define a new API document. A new interpreted text role # will be created #external-api: epydoc # Use the records in this file to resolve objects in the API named NAME. #external-api-file: epydoc:api-objects.txt # Use this URL prefix to configure the string returned for external API. #external-api-root: epydoc:http://epydoc.sourceforge.net/api ### Graph options # The list of graph types that should be automatically included # in the output. Graphs are generated using the Graphviz "dot" # executable. Graph types include: "classtree", "callgraph", # "umlclass". Use "all" to include all graph types graph: all # The path to the Graphviz "dot" executable, used to generate # graphs. dotpath: /usr/bin/dot # The name of one or more pstat files (generated by the profile # or hotshot module). These are used to generate call graphs. pstat: build/main.pstats # Specify the font used to generate Graphviz graphs. # (e.g., helvetica or times). graph-font: Helvetica # Specify the font size used to generate Graphviz graphs. graph-font-size: 10 ### Return value options # The condition upon which Epydoc should exit with a non-zero # exit status. Possible values are error, warning, docstring_warning #fail-on: error pymvpa-0.4.8/doc/authors.rst000066400000000000000000000025041174541445200160330ustar00rootroot00000000000000.. -*- mode: rst -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: The PyMVPA developers team currently consists of: * `Michael Hanke`_, Dartmouth College, USA * `Yaroslav O. Halchenko`_, Dartmouth College, USA * `Per B. Sederberg`_, Princeton University, USA * `Emanuele Olivetti`_, Fondazione Bruno Kessler, Italy .. _Michael Hanke: http://apsy.gse.uni-magdeburg.de/hanke .. _Yaroslav O. Halchenko: http://www.onerussian.com .. _Per B. Sederberg: http://www.princeton.edu/~persed/ .. _Emanuele Olivetti: http://sra.fbk.eu/people/olivetti/ We are very grateful to the following people, who have contributed valuable advice, code or documentation to PyMVPA: * `Greg Detre`_, Princeton University, USA * `Ingo Fründ`_, TU Berlin, Germany * `Scott Gorlin`_, MIT, USA * `Valentin Haenel`_, TU Berlin, Germany * `James M. Hughes`_, Dartmouth College, USA * `James Kyle`_, UCLA, USA * `Tiziano Zito`_, BCCN, Germany .. _Greg Detre: http://www.princeton.edu/~gdetre/ .. _James M. Hughes: http://www.cs.dartmouth.edu/~hughes/index.html .. _Ingo Fründ: http://www.cognition.tu-berlin.de/menue/members/ingo_fruend/ .. _James Kyle: http://www.ccn.ucla.edu/users/jkyle .. _Scott Gorlin: http://www.scottgorlin.com .. _Valentin Haenel: http://www.cognition.tu-berlin.de/menue/members/valentin_haenel/ .. _Tiziano Zito: http://itb.biologie.hu-berlin.de/~zito/ pymvpa-0.4.8/doc/changelog.rst000077700000000000000000000000001174541445200203142../Changelogustar00rootroot00000000000000pymvpa-0.4.8/doc/classifiers.rst000066400000000000000000000624631174541445200166670ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_classifiers: .. index:: classifier *********** Classifiers *********** PyMVPA includes a number of ready-to-use classifiers, which are described in the following sections. All classifiers implement the same, very simple interface. Each classifier object takes all relevant parameters as arguments to its constructor. Once instantiated, the classifier object's :meth:`~mvpa.clfs.base.Classifier.train` method can be called with some dataset. This trains the classifier using *all* samples in the respective dataset. The major task for a classifier is to make predictions. Predictions are made by calling the classifier's :meth:`~mvpa.clfs.base.Classifier.predict` method with one or multiple data samples. :meth:`~mvpa.clfs.base.Classifier.predict` operates on pure sample data and not datasets, as in some cases the true label for a sample might be totally unknown. This examples demonstrates the typical daily life of a classifier. >>> import numpy as N >>> from mvpa.clfs.knn import kNN >>> from mvpa.datasets import Dataset >>> training = Dataset(samples=N.array( ... N.arange(100),ndmin=2, dtype='float').T, ... labels=[0] * 50 + [1] * 50) >>> rand100 = N.random.rand(10)*100 >>> validation = Dataset(samples=N.array(rand100, ndmin=2, dtype='float').T, ... labels=[ int(i>50) for i in rand100 ]) >>> clf = kNN(k=10) >>> clf.train(training) >>> N.mean(clf.predict(training.samples) == training.labels) 1.0 >>> N.mean(clf.predict(validation.samples) == validation.labels) 1.0 Two datasets with 100 and 10 samples each are generated. Both datasets only have one feature and the associated label is 0 if the feature value is below 50 or 1 otherwise. The larger dataset contains all integers in the interval (0,100) and is used to train the classifier. The smaller is used as a validation dataset, to check whether the classifier learned something that generalizes well across samples not included in the training dataset. In this case the validation dataset consists of 10 random floating point values in the interval (0,100). The classifier in this example is a :class:`~mvpa.clfs.knn.kNN` (k-Nearest-Neighbour) classifier that makes use of the 10 nearest neighbours of a data sample to make its predictions (k=10). One can see that after the training the classifier performs optimally on the training dataset as well as on the validation data samples. The choice of the classifier in the above example is more or less arbitrary. Any classifier in PyMVPA could be used in place of kNN. This demonstrates another useful feature of PyMVPA's classifiers. Due to the high-level abstraction and the simple interface, almost all classifiers can be combined with most algorithms in PyMVPA. This makes it very easy to test different classifiers on some dataset (see Fig. 1). .. image:: pics/classifier_comparison_plot.png :align: center :alt: Classifier comparison A comparison of the behavior of different classifiers (k-Nearest-Neighbour, linear SVM, logistic regression, ridge regression and SVM with radial basis function kernel) on a simple classification problem. The code to generate these figure can be found in the `pylab_2d.py` example in the :ref:`example_pylab_2d` section. .. index:: states Stateful objects ================ Before looking at the different classifiers in more detail, it is important to mention another feature common to all of them. While their interface is simple, classifiers are in no way limited to report only predictions. All classifiers implement an additional interface: Objects of any class that are derived from :class:`~mvpa.misc.state.ClassWithCollections` have attributes (we refer to such attributes as state variables), which are conditionally computed and stored by PyMVPA. Such conditional storage and access is handy if a variable of interest might consume a lot of memory or needs intensive computation, and not needed in most (or in some) of the use cases. For instance, the :class:`~mvpa.clfs.base.Classifier` class defines the `trained_labels` state variable, which just stores the unique labels for which the classifier was trained. Since `trained_labels` stores meaningful information only for a trained classifier, attempt to access 'clf.trained_labels' before training would result in an error, >>> from mvpa.misc.exceptions import UnknownStateError >>> try: ... untrained_clf = kNN() ... labels = untrained_clf.trained_labels ... except UnknownStateError: ... "Does not work" 'Does not work' since the classifier has not seen the data yet and, thus, does not know the labels. In other words, it is not yet in the state to know anything about the labels. Any state variable can be enabled or disabled on per instance basis at any time of the execution (see :class:`~mvpa.misc.state.ClassWithCollections`). To continue the last example, each classifier, or more precisely every stateful object, can be asked to report existing state-related attributes: >>> list_with_verbose_explanations = clf.states.listing 'clf.states' is an instance of :class:`~mvpa.misc.state.StateCollection` class which is a container for all state variables of the given class. Although values can be queried or set (if state is enabled) operating directly on the stateful object >>> clf.trained_labels array([0, 1]) any other operation on the state (e.g. enabling, disabling) has to be carried out through the `states` attribute. >>> print clf.states states{trained_dataset predicting_time*+ training_confusion predictions*+...} >>> clf.states.enable('values') >>> print clf.states states{trained_dataset predicting_time*+ training_confusion predictions*+...} >>> clf.states.disable('values') A string representation of the state collection mentioned above lists all state variables present accompanied with 2 markers: '+' for an enabled state variable, and '*' for a variable that stores some value (but might have been disabled already and, therefore, would have no '+' and attempts to reassign it would result in no action). .. TODO: Refactor By default all classifiers provide state variables `values`, `predictions`. The latter is simply the set of predictions that was returned by the last call to the objects :meth:`~mvpa.clfs.base.Classifier.predict` method. The former is heavily classifier-specific. By convention the `values` key provides access to the raw values that a classifier prediction is based on. Depending on the classifier, this information might required significant resources when stored. Therefore all states can be disabled or enabled (`states.disable()`, `states.enable()`) and their current status can be queried like this: >>> clf.states.isActive('predictions') True >>> clf.states.isActive('values') False States can be enabled or disabled during stateful object construction, if `enable_states` or `disable_states` (or both) arguments, which store the list of desired state variables names, passed to the object constructor. Keyword 'all' can be used to select all known states for that stateful object. .. index:: error, classifier error, transfer error .. _transfer_error: Error Calculation ================= The :class:`~mvpa.clfs.transerror.TransferError` class provides a convenient way to determine the transfer error of a trained classifier on some validation dataset, i.e. the accuracy of the classifier's predictions on a novel, independent dataset. A :class:`~mvpa.clfs.transerror.TransferError` object is instanciated by passing a classifier object to the constructor. Optionally a custom error function can be specified (see `errorfx` argument). To compute the transfer error simply call the object with a validation dataset. The computed error value is returned. :class:`~mvpa.clfs.transerror.TransferError` also supports a state variable `confusion` that contains the full confusion matrix of the predictions made on the validation dataset. The confusion matrix is disabled by default. If the :class:`~mvpa.clfs.transerror.TransferError` object is called with an optional training dataset, the contained classifier is first training using this dataset before predictions on the validation dataset are made. >>> from mvpa.clfs.transerror import TransferError >>> clf = kNN(k=10) >>> terr = TransferError(clf) >>> terr(validation, training ) 0.0 .. index:: cross-validation .. _cross-validation: Cross-validated Transfer Error ------------------------------ Often one is not only interested in a single transfer error on one validation or test dataset, but on a cross-validated estimate of the transfer error. A popular method is the so-called leave-one-out cross-validation. The :class:`~mvpa.algorithms.cvtranserror.CrossValidatedTransferError` class provides a simple way to compute such measure. It utilizes a :class:`~mvpa.clfs.transerror.TransferError` object and a :class:`~mvpa.datasets.splitters.Splitter`. When called with a :class:`~mvpa.datasets.base.Dataset` the splitter generates splits of the Dataset and the transfer error for all splits is computed by training on one of the splitted datasets and making predictions on the other. By default the mean of transfer errors is returned (but the actual `combiner` function is customizable). The following example shows the minimal code for a leave-one-out cross-validation reusing the transfer error object from the previous example and some :class:`~mvpa.datasets.base.Dataset` `data`. >>> # create some dataset >>> from mvpa.misc.data_generators import normalFeatureDataset >>> data = normalFeatureDataset(perlabel=50, nlabels=2, ... nfeatures=20, nonbogus_features=[3, 7], ... snr=3.0) >>> # now cross-validation >>> from mvpa.algorithms.cvtranserror import CrossValidatedTransferError >>> from mvpa.datasets.splitters import NFoldSplitter >>> cvterr = CrossValidatedTransferError(terr, ... NFoldSplitter(cvtype=1), ... enable_states=['confusion']) >>> error = cvterr(data) Error Reporting =============== PyMVPA is equipped with easy ways to have a glance overview over the generalization performance of a cross-validated classifier. Such summary is provided by instances of a :class:`~mvpa.clfs.transerror.ConfusionMatrix` class, and is accompanied by various performance metrics. For example, the 8-fold cross-validation of the dataset with 8 labels with the SMLR classifier produced the following confusion matrix:: >>> # Simple 'print cvterr.confusion' provides the same output >>> # without the description of abbreviations >>> print cvterr.confusion.asstring(description=True) \ ... # doctest: +SKIP --------. 3kHz 7kHz 12kHz 20kHz 30kHz song1 song2 song3 song4 song5 predict.\targets 38 39 40 41 42 43 44 45 46 47 `------ ---- ----- ----- ----- ----- ----- ----- ----- ----- ----- P' N' FP FN PPV NPV TPR SPC FDR MCC 3kHz / 38 84 42 27 4 4 2 1 0 15 19 198 1351 114 90 0.42 0.93 0.48 0.92 0.58 0.36 7kHz / 39 43 94 16 0 1 1 1 2 1 24 183 1331 89 80 0.51 0.94 0.54 0.93 0.49 0.43 12kHz / 40 21 16 103 5 2 2 0 0 6 13 168 1312 65 70 0.61 0.95 0.6 0.95 0.39 0.51 20kHz / 41 1 2 13 158 1 0 0 1 3 1 180 1202 22 15 0.88 0.99 0.91 0.98 0.12 0.77 30kHz / 42 3 0 2 3 162 0 0 0 0 0 170 1194 8 11 0.95 0.99 0.94 0.99 0.05 0.82 song1 / 43 3 1 1 0 1 160 0 0 2 5 173 1199 13 14 0.92 0.99 0.92 0.99 0.08 0.8 song2 / 44 1 1 0 0 0 0 171 0 0 0 173 1176 2 2 0.99 1 0.99 1 0.01 0.86 song3 / 45 1 1 1 0 0 0 0 170 2 0 175 1179 5 4 0.97 1 0.98 1 0.03 0.84 song4 / 46 7 3 3 2 2 2 0 0 139 7 165 1240 26 34 0.84 0.97 0.8 0.98 0.16 0.71 song5 / 47 10 14 7 1 0 7 0 1 5 104 149 1310 45 69 0.7 0.95 0.6 0.97 0.3 0.55 Per target: ---- ----- ----- ----- ----- ----- ----- ----- ----- ----- P 174 174 173 173 173 174 173 174 173 173 N 1560 1560 1561 1561 1561 1560 1561 1560 1561 1561 TP 84 94 103 158 162 160 171 170 139 104 TN 1261 1251 1242 1187 1183 1185 1174 1175 1206 1241 Summary\Means: ---- ----- ----- ----- ----- ----- ----- ----- ----- ----- 173 1249 38 39 0.78 0.97 0.78 0.97 0.22 0.66 ACC 0.78 ACC% 77.57 # of sets 8 Statistics computed in 1-vs-rest fashion per each target. Abbreviations (for details see http://en.wikipedia.org/wiki/ROC_curve): TP : true positive (AKA hit) TN : true negative (AKA correct rejection) FP : false positive (AKA false alarm, Type I error) FN : false negative (AKA miss, Type II error) TPR: true positive rate (AKA hit rate, recall, sensitivity) TPR = TP / P = TP / (TP + FN) FPR: false positive rate (AKA false alarm rate, fall-out) FPR = FP / N = FP / (FP + TN) ACC: accuracy ACC = (TP + TN) / (P + N) SPC: specificity SPC = TN / (FP + TN) = 1 - FPR PPV: positive predictive value (AKA precision) PPV = TP / (TP + FP) NPV: negative predictive value NPV = TN / (TN + FN) FDR: false discovery rate FDR = FP / (FP + TP) MCC: Matthews Correlation Coefficient MCC = (TP*TN - FP*FN)/sqrt(P N P' N') # of sets: number of target/prediction sets which were provided In addition to the abusively informative textual representation, there is an alternative graphical representation of the confusion matrix via the :meth:`~mvpa.clfs.transerror.ConfusionMatrix.plot` method of a :class:`~mvpa.clfs.transerror.ConfusionMatrix`:: >>> import pylab as P >>> cvterr.confusion.plot() \ ... # doctest: +SKIP >>> P.show() \ ... # doctest: +SKIP .. image:: pics/confusion_matrix.* :align: center :alt: Classification confusion matrix Basic Supervised Learning Methods ================================= PyMVPA provides a number of learning methods (i.e. classifiers or regression algorithms) that can be plug into the various algorithms that are also part of the framework. Most importantly they all can be combined or enhanced with :ref:`metaclassifiers`. .. index:: Gaussian process regression, GPR Gaussian Process Regression --------------------------- :class:`~mvpa.clfs.gpr.GPR` (`Wikipedia entry about Gaussian process regression`_). .. _Wikipedia entry about Gaussian process regression: http://en.wikipedia.org/wiki/Gaussian_process_regression .. index:: k-nearest-neighbour, kNN k-Nearest-Neighbour ------------------- The :class:`~mvpa.clfs.knn.kNN` classifier makes predictions based on the labels of nearby samples. It currently uses Euclidean distance to determine the nearest neighbours, but future enhancements may include support for other kernels. .. index:: least angle regression, LARS Least Angle Regression ---------------------- :class:`~mvpa.clfs.lars.LARS` :ref:`Efron et al. (2004) ` .. index:: logistic regression, penalized logistic regression Penalized Logistic Regression ----------------------------- The penalized logistic regression (:class:`~mvpa.clfs.plr.PLR`) is similar to the ridge in that it has a penalty term, however, it is trained to predict a binary outcome by means of the logistic function (`Wikipedia entry about logistic regression`_). .. _Wikipedia entry about logistic regression: http://en.wikipedia.org/wiki/Logistic_regression .. index:: ridge regression Ridge Regression ---------------- Ridge regression (aka Tikhonov regularization) is a variant of a linear regression (`Wikipedia entry about ridge regression`_). The ridge regression classifier (:class:`~mvpa.clfs.ridge.RidgeReg`) performs a simple linear regression with a penalty parameter to help avoid over-fitting. The regression inserts an intercept term so that you do not have to center your data. .. _Wikipedia entry about ridge regression: http://en.wikipedia.org/wiki/Ridge_regression .. index:: sparse multinomial logistic regression, SMLR Sparse Multinomial Logistic Regression -------------------------------------- Sparse Multinomial Logistic Regression (:class:`~mvpa.clfs.smlr.SMLR`; :ref:`Krishnapuram et al., 2005 `) is a fast multi-class classifier that can easily deal with high-dimensional problems (`research paper about SMLR`_). PyMVPA includes two implementations: one in pure Python and a faster one that makes use of a C extension for the performance critical pieces of the code. .. _research paper about SMLR: http://www.cs.duke.edu/~amink/publications/manuscripts/hartemink05.pami.pdf .. index:: support vector machine, SVM Support Vector Machines ----------------------- Support vector machine (:ref:`Vapnik, 1995 `) classifiers (and regressions) are popular since they can deal with very high dimensional problems (`Wikipedia entry about SVM`_), while maintaining reasonable generalization performance. The support vector machine classes provide a family of classifiers by wrapping LIBSVM_ and Shogun_ libraries, with corresponding base classes :class:`~mvpa.clfs.svm.libsvm.SVM` and :class:`~mvpa.clfs.svm.sg.SVM` accordingly. By default SVM class is bound to LIBSVM's implementation if such is available (shogun otherwise). While any SVM class provides a complete interface, the others child classes make it easy to run some subset of standard classifiers, such as linear SVM, with a default set of parameters (see :class:`~mvpa.clfs.svm.LinearCSVMC`, :class:`~mvpa.clfs.svm.LinearNuSVMC`, :class:`~mvpa.clfs.svm.RbfNuSVMC` and :class:`~mvpa.clfs.svm.RbfCSVMC`). .. _LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ .. _Shogun: http://www.shogun-toolbox.org .. _Wikipedia entry about SVM: http://en.wikipedia.org/wiki/Support_Vector_Machine .. _metaclassifiers: Meta-Classifiers ================ *This section has been contributed by James M. Hughes.* A meta-classifier is essentially a blanket term used to describe all classes that appear functionally equivalent to a regular :class:`~mvpa.clfs.base.Classifier`, but which in reality provide some extra amount of functionality on top of a normal classifier. Furthermore, they generally do not implement a :class:`~mvpa.clfs.base.Classifier` *per se*, but rather take a :class:`~mvpa.clfs.base.Classifier` as input. The methods then typically called on a classifier (e.g., `train` or `predict`) can be called on the meta-classifier, but will call the input classifier's routines, before or after some other function that the meta-classifier provides. Examples of Meta-Classifiers ---------------------------- At present, there are two primary meta-classifiers implemented in the PyMVPA package, beneath which there are several specific options: :class:`~mvpa.clfs.meta.BoostedClassifier` typically uses multiple classifiers internally :class:`~mvpa.clfs.meta.ProxyClassifier` typically performs some action on the data/labels before classification is performed Within these more general categories, specific classifiers are implemented. For example, there are several :class:`~mvpa.clfs.meta.BoostedClassifier` subclasses: :class:`~mvpa.clfs.meta.CombinedClassifier` combines predictions using a :class:`~mvpa.clfs.meta.PredictionsCombiner` functor :class:`~mvpa.clfs.meta.MulticlassClassifier` performs multi-class classification by means of a list of :class:`~mvpa.clfs.meta.BinaryClassifier` instances. Typical use-case is to wrap a binary classifier to give it ability to operate on multiple classes via voting over classifiers for all possible pairs of the categories :class:`~mvpa.clfs.meta.SplitClassifier` combines a :class:`~mvpa.clfs.base.Classifier` and an arbitrary :class:`~mvpa.datasets.splitters.Splitter` Furthermore, there are also several :class:`~mvpa.clfs.meta.ProxyClassifier` subclasses: :class:`~mvpa.clfs.meta.BinaryClassifier` maps a set of labels into two categories (+1 and -1) :class:`~mvpa.clfs.meta.MappedClassifier` uses a mapper on input data prior to training/testing :class:`~mvpa.clfs.meta.FeatureSelectionClassifier` performs some kind of :class:`~mvpa.featsel.base.FeatureSelection` prior to training/testing Implementation Examples ----------------------- Classifiers such as the :class:`~mvpa.clfs.meta.FeatureSelectionClassifier` are particularly useful because they simplify the process of selecting features and then using only that subset of features to classify novel exemplars (the `predict` stage). They become even more powerful when combined with :class:`~mvpa.clfs.meta.SplitClassifier`, so that even the task of withholding certain data points to create statistically valid training and testing datasets is abstracted and wrapped up within a single object (and, ultimately, very few method calls). Consider the following code, which can be found in `mvpa/clfs/warehouse.py`_: .. _mvpa/clfs/warehouse.py: api/mvpa.clfs.warehouse-pysrc.html >>> from mvpa.clfs.meta import SplitClassifier, FeatureSelectionClassifier >>> from mvpa.clfs.svm import LinearCSVMC >>> from mvpa.clfs.transerror import ConfusionBasedError >>> from mvpa.featsel.rfe import RFE >>> from mvpa.featsel.helpers import FractionTailSelector >>> >>> rfesvm_split = SplitClassifier(LinearCSVMC()) >>> clf = \ ... FeatureSelectionClassifier( ... clf = LinearCSVMC(), ... # on features selected via RFE ... feature_selection = RFE( ... # based on sensitivity of a clf which does ... # splitting internally ... sensitivity_analyzer=rfesvm_split.getSensitivityAnalyzer(), ... transfer_error=ConfusionBasedError( ... rfesvm_split, ... confusion_state="confusion"), ... # and whose internal error we use ... feature_selector=FractionTailSelector( ... 0.2, mode='discard', tail='lower'), ... # remove 20% of features at each step ... update_sensitivity=True), ... # update sensitivity at each step ... descr='LinSVM+RFE(splits_avg)' ) This analysis combines the :class:`~mvpa.clfs.meta.FeatureSelectionClassifier` and the :class:`~mvpa.clfs.meta.SplitClassifier` to perform internal splitting of the data and then perform FeatureSelection based on those splits. Such analyses can be easily created due to the straightforward way that classifier and meta-classifiers can be combined. Please refer to the relevant documentation sections for more information about the specifics of each meta-classifier. Retrainable Classifiers ======================= Some classifiers have ability to provide quick (i.e in terms of performance) re-training if they were previously trained, and only part of their specification got changed. For instance, for kernel-based classifier (e.g. GPR) it makes no sense to recompute kernel matrix, if only a classifier (not kernel) parameter (e.g. ``sigma_noise``) was changed. Another similar usecase: for :ref:`null-hypothesis statistical testing ` it might be needed to train classifier multiple times on a randomized set of labels. Only classifiers which have ``retrainable`` in their ``_clf_internals`` are capable of efficient retraining. To enable retraining, just provide ``retrainable=True`` to the constructor of the classifier. Internally retrainable classifiers will try to deduce what was changed in the specification of the classifier (e.g. training/testing datasets, parameters) and act accordingly. To reduce training/prediction time even more, classifier might directly be instructed with what aspects were changed. It must be previously trained / predicted, so later on :meth:`~mvpa.clfs.base.Classifier.retrain` and :meth:`~mvpa.clfs.base.Classifier.repredict` methods could be called. :meth:`~mvpa.clfs.base.Classifier.repredict` can be called only with the same data, for which it was earlier predicted. See API doc for more information. Implementation of efficient retraining is not straightforward, thus it is strongly advised to * enable ``CHECK_RETRAIN`` debug target while developing the code for analysis. That might guard you against obvious misuses of retraining feature, as well as to spot bugs in the code * validate on a simple dataset that analysis code provides the same results if classifier was created retrainable or not Classifiers "Warehouse" ======================= To facilitate easy trial of different classifiers for any specific task, :class:`~mvpa.clfs.warehouse.Warehouse` of classifiers clfs.warehouse.clfs was defined to create a sample collection of some commonly used parameterizations of the classifiers present in PyMVPA. Such collection can be queried by any set of known keywords/tags with tags prefixed with ``!`` being excluded:: >>> from mvpa.clfs.warehouse import clfswh >>> tryme = clfswh['multiclass', '!svm'] to simply sweep through classifiers which are capable of multiclass classification and are not SVM based. pymvpa-0.4.8/doc/conf.py000066400000000000000000000303461174541445200151200ustar00rootroot00000000000000# -*- coding: utf-8 -*- # # PyMVPA documentation build configuration file, created by # sphinx-quickstart on Sun May 4 09:06:06 2008. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed automatically). # # All configuration values have a default value; values that are commented out # serve to show the default value. import sys, os, re import numpy as N import mvpa try: import matplotlib matplotlib.use('svg') except: pass ################################################## # Config settings are at the bottom of the file! # ################################################## # If your extensions are in another directory, add it here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.append(os.path.abspath('some/directory')) def extractItemListBlock(blocktypes, lines): """Extract a number of lines belonging to an indented block. The block is defined by a minimum indentation level, in turn defined by a line starting with any string given by the 'blocktypes' sequence. It returns the lines matching the block and the start and endline index wrt the original line sequence. WARNING: It may explode if there is more than one block with the same identifier. """ param = None in_block = False indent = None start_line = None end_line = None for i, line in enumerate(lines): # ignore empty lines if line.isspace() or not len(line.strip()): continue # strip leading whitespace sline = line.lstrip() # look for block start if N.any([sline.startswith(bt) for bt in blocktypes]): in_block = True indent = len(line) - len(sline) start_line = i continue # check if end is reached if in_block and len(line) - len(sline) <= indent: end_line = i return param, start_line, end_line # store param block line if in_block: if not param: param = [] param.append(line) # when nothing follows param block if start_line: end_line = len(lines) - 1 return param, start_line, end_line def smoothName(s): """Handle all kinds of voodoo cases, that might disturb RsT """ s = s.strip() s = re.sub('\*', '\*', s) return s def segmentItemList(lines, name): """Parse the lines of a block into segment items of the format used in PyMVPA:: name[: type] (multiline) description """ # assumes no empty lines left! items = [] last_item = None # determine indentation level indent = len(lines[0]) - len(lines[0].lstrip()) for line in lines: # if top level indent, we have a parameter def if indent == len(line) - len(line.lstrip()): # rescue previous one if last_item is not None: items.append(last_item) last_item = None last_item = {'name': None, 'type': None, 'descr': []} # try splitting param def l = line.split(':') if len(l) >= 2: last_item['name'] = smoothName(l[0]) last_item['type'] = u':'.join(l[1:]).strip() elif len(l) == 1: last_item['name'] = smoothName(line) else: print line raise RuntimeError, \ 'Should not have happend, inspect %s' % name else: # it must belong to last_item and be its description if last_item is None: print line raise ValueError, \ 'Parameter description, without parameter in %s' % name last_item['descr'].append(line.strip()) if last_item is not None: items.append(last_item) return items def reformatParameterBlock(lines, name): """Format a proper parameters block from the lines of a docstring version of this block. """ params = segmentItemList(lines, name) out = [] # collection is done, now pretty print for p in params: out.append(':param ' + p['name'] + ': ') if len(p['descr']): # append first description line to previous one out[-1] += p['descr'][0] for l in p['descr'][1:]: out.append(' ' + l) if p['type']: out.append(':type ' + p['name'] + ': ' + p['type']) # safety line out.append(u'') return out def reformatReturnsBlock(lines, name): """Format a proper returns block from the lines of a docstring version of this block. """ ret = segmentItemList(lines, name) if not len(ret) == 1: raise ValueError, \ '%s docstring specifies more than one return value' % name ret = ret[0] out = [] out.append(':rtype: ' + ret['name']) if len(ret['descr']): out.append(':returns:') for l in ret['descr']: out.append(' ' + l) # safety line out.append(u'') return out def reformatExampleBlock(lines, name): """Turn an example block into a verbatim text. """ out = [u'::', u''] out += lines # safety line out.append(u'') return out # demo function to access docstrings for processing def dumpit(app, what, name, obj, options, lines): """ For each docstring this function is called with the following set of arguments: app the Sphinx application object what the type of the object which the docstring belongs to (one of "module", "class", "exception", "function", "method", "attribute") name the fully qualified name of the object obj the object itself options the options given to the directive: an object with attributes inherited_members, undoc_members, show_inheritance and noindex that are true if the flag option of same name was given to the auto directive lines the lines of the docstring (as a list) """ param, pstart, pend = extractItemListBlock([':Parameters:', ':Parameter:'], lines) if param: # make it beautiful param = reformatParameterBlock(param, name) # replace old block with new one lines[pstart:pend] = param returns, rstart, rend = extractItemListBlock([':Returns:'], lines) if returns: returns = reformatReturnsBlock(returns, name) lines[rstart:rend] = returns examples, exstart, exend = extractItemListBlock([':Examples:', ':Example:'], lines) if examples: print 'WARNING: Example in %s should become a proper snippet' % name examples = reformatExampleBlock(examples, name) lines[exstart:exend] = examples # kill things that sphinx does not know ls, lstart, lend = extractItemListBlock(['.. packagetree::'], lines) if ls: del(lines[lstart:lend]) # add empty line at begining of class docs to separate base class list from # class docs (should actually be done by sphinx IMHO) if what == 'class': lines.insert(0, u'') # make this file a sphinx extension itself, to be able to do docstring # post-processing def setup(app): app.connect('autodoc-process-docstring', dumpit) # General configuration # --------------------- # If your extensions are in another directory, add it here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.append(os.path.abspath('sphinxext')) # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'inheritance_diagram'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8' # The master toctree document. master_doc = 'contents' # General substitutions. project = 'PyMVPA' copyright = '2006-2009, Michael Hanke, Yaroslav Halchenko, Per B. Sederberg' # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. # # The short X.Y version. version = mvpa.__version__ # The full version, including alpha/beta/rc tags. release = mvpa.__version__ # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. unused_docs = [] # what to put into API doc (just class doc, just init, or both autoclass_content = 'both' # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Options for HTML output # ----------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'pymvpa.css' # The name for this set of Sphinx documents. If None, it defaults to # " v documentation". html_title = 'PyMVPA Home' # The name of an image file (within the static path) to place at the top of # the sidebar. #html_logo = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = {'index': 'indexsidebar.html'} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {'index': 'index.html'} # If false, no module index is generated. html_use_modindex = False # If true, the reST sources are included in the HTML build as _sources/. html_copy_source = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, an OpenSearch description file will be output, and all pages will # contain a tag referring to it. #html_use_opensearch = False # Output file base name for HTML help builder. htmlhelp_basename = 'PyMVPAdoc' # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). latex_paper_size = 'a4' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). latex_documents = [ ('manual', 'PyMVPA-Manual.tex', 'PyMVPA Manual', 'Michael~Hanke, Yaroslav~O.~Halchenko, Per~B.~Sederberg, ' 'James M. Hughes', 'manual'), ('devguide', 'PyMVPA-DevGuide.tex', 'PyMVPA Developer Guidelines', 'Michael~Hanke, Yaroslav~O.~Halchenko, Per~B.~Sederberg', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = os.path.join('_static', 'logo.pdf') # Additional stuff for the LaTeX preamble. latex_preamble = """ \usepackage{enumitem} \setdescription{style=nextline,font=\\normalfont} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True pymvpa-0.4.8/doc/contents.rst000066400000000000000000000005011174541445200161760ustar00rootroot00000000000000.. _contents: ***************************** PyMVPA Documentation Contents ***************************** .. toctree:: intro installation overview datasets classifiers measures featsel misc examples matlab faq glossary references legal changelog history todo modref pymvpa-0.4.8/doc/datasets.rst000066400000000000000000000401551174541445200161620ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. index:: dataset, sample attribute, dataset attribute .. _chap_datasets: ******** Datasets ******** The first step of any analysis in PyMVPA involves reading the data and putting it into the necessary shape for the intended analysis. But even after the initial setup, many algorithms have to modify datasets, e.g. by selecting a subset of it, or simple transformations of the data (e.g. z-scoring), or more complex things like projections into alternative representations/spaces. This section introduces the basic concepts of a dataset in PyMVPA and shows useful operations typically performed on datasets. The Basic Concepts ================== A minimal dataset in PyMVPA consists of a number of :term:`sample`\ s, where each individual sample is nothing more than a vector of values. Each sample is associated with a :term:`label`, which defines the category the respective sample belongs to, or in more general terms, defines the model that should be learned by a classifier. Moreover, samples can be grouped into so-called :term:`chunk`\ s, where each chunk is assumed to be statistically independent from all other data chunks. The foundation of PyMVPA's data handling is the :class:`~mvpa.datasets.base.Dataset` class. Basically, this class stores data samples, sample attributes and dataset attributes. By definition, sample attributes assign a value to each data sample (e.g. labels, or chunks) and dataset attributes are additional information or functionality that apply to the whole dataset. Most likely the :class:`~mvpa.datasets.base.Dataset` class will not be used directly, but through one of the derived classes. However, it is perfectly possible to use it directly. In the simplest case a dataset can be constructed by specifying some data samples and the corresponding class labels. >>> import numpy as N >>> from mvpa.datasets import Dataset >>> data = Dataset(samples=N.random.normal(size=(10,5)), labels=1) >>> data .. index:: chunks, labels, feature, sample The above example creates a dataset with 10 samples and 5 features each. The values of all features stem from normally distributed random noise. The class label '1' is assigned to all samples. Instead of a single scalar value `labels` can also be a sequence with individual labels for each data sample. In this case the length of this sequence has to match the number of samples. Interestingly, the dataset object tells us about 10 `chunks`. In PyMVPA chunks are used to group subsets of data samples. However, if no grouping information is provided all data samples are assumed to be in their own group, hence no sample grouping is performed. Both `labels` and `chunks` are so called *sample attributes*. All sample attributes are stored in sequence-type containers consisting of one value per sample. These containers can be accessed by properties with the same as the attribute: >>> data.labels array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) >>> data.chunks array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) The *data samples* themselves are stored as a two-dimensional matrix where each row vector is a `sample` and each column vector contains the values of a `feature` across all `samples`. The :class:`~mvpa.datasets.base.Dataset` class provides access to the samples matrix via the `samples` property. >>> data.samples.shape (10, 5) The :class:`~mvpa.datasets.base.Dataset` class itself can only deal with 2d sample matrices. However, PyMVPA provides a very easy way to deal with data where each data sample is more than a 1d vector: `Data Mapping`_ .. index:: mapper, sample, feature Data Mapping ============ It was already mentioned that the :class:`~mvpa.datasets.base.Dataset` class cannot deal with data samples that are more than simple vectors. This could be a problem in cases where the data has a higher dimensionality, e.g. functional brain-imaging data where each data sample is typically a three-dimensional volume. One approach to deal with this situation would be to concatenate the whole volume into a 1d vector. While this would work in certain cases there is definitely information lost. Especially for brain-imaging data one would most likely want keep information about neighborhood and distances between data sample elements. In PyMVPA this is done by mappers that transform data samples from their original *dataspace* into the so-called *features space*. In the above neuro-imaging example the *dataspace* is three-dimensional and the *feature space* always refers to the 2d `samples x features` representation that is required by the :class:`~mvpa.datasets.base.Dataset` class. In the context of mappers the dataspace is sometimes also referred to as *in-space* (i.e. the initial data that goes into the mapper) while the feature space is labeled as *out-space* (i.e. the mapper output when doing forward mapping). The task of a mapper, besides transforming samples into 1d vectors, is to retain as much information of the dataspace as possible. Some mappers provide information about dataspace metrics and feature neighbourhood, but all mappers are able to do reverse mapping from feature space into the original dataspace. Usually one does not have to deal with mappers directly. PyMVPA provides some convenience subclasses of :class:`~mvpa.datasets.base.Dataset` that automatically perform the necessary mapping operations internally. .. index:: MaskedDataset For an introduction into to concept of a dataset with mapping capabilities we can take a look at the :class:`~mvpa.datasets.masked.MaskedDataset` class. This dataset class works almost exactly like the basic :class:`~mvpa.datasets.base.Dataset` class, except that it provides some additional methods and is more flexible with respect to the format of the sample data. A masked dataset can be created just like a normal dataset. >>> from mvpa.datasets.masked import MaskedDataset >>> mdata = MaskedDataset(samples=N.random.normal(size=(5,3,4)), ... labels=[1,2,3,4,5]) >>> mdata However, unlike :class:`~mvpa.datasets.base.Dataset` the :class:`~mvpa.datasets.masked.MaskedDataset` class can deal with sample data arrays with more than two dimensions. More precisely it handles arrays of any dimensionality. The only assumption that is made is that the first axis of a sample array separates the sample data points. In the above example we therefore have 5 samples, where each sample is a 3x4 plane. .. index:: forward mapping, reverse mapping If we look at the self-description of the created dataset we can see that it doesn't tell us about 3x4 plane, but simply 12 features. That is because internally the sample array is automatically reshaped into the aforementioned 2d matrix representation of the :class:`~mvpa.datasets.base.Dataset` class. However, the information about the original dataspace is not lost, but kept inside the mapper used by :class:`~mvpa.datasets.masked.MaskedDataset`. Two useful methods of :class:`~mvpa.datasets.masked.MaskedDataset` make use of the mapper: `mapForward()` and `mapReverse()`. The former can be used to transform additional data from dataspace into the feature space and the latter performs the same in the opposite direction. >>> mdata.mapForward(N.arange(12).reshape(3,4)).shape (12,) >>> mdata.mapReverse(N.array([1]*mdata.nfeatures)).shape (3, 4) Especially reverse mapping can be very useful when visualizing classification results and information maps on the original dataspace. Another feature of mapped datasets is that valid mapping information is maintained even when the feature space changes. When running some feature selection algorithm (see :ref:`chap_featsel`) some features of the original features set will be removed, but after feature selection one will most likely want to know where the selected (or removed) features are in the original dataspace. To make use of the neuro-imaging example again: The most convenient way to access this kind of information would be a map of the selected features that can be overlayed over some anatomical image. This is trivial with PyMVPA, because the mapping is automatically updated upon feature selection. >>> mdata.mapReverse(N.arange(1,mdata.nfeatures+1)) array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]]) >>> sdata = mdata.selectFeatures([2,7,9,10]) >>> sdata >>> sdata.mapReverse(N.arange(1,sdata.nfeatures+1)) array([[0, 0, 1, 0], [0, 0, 0, 2], [0, 3, 4, 0]]) .. index:: feature selection The above example selects four features from the set of the 12 original ones, by passing their ids to the `selectFeatures()` method. The method returns a new dataset only containing the four selected features. Resultant dataset contains a copy of the corresponding features of the original dataset. All other information like class labels and chunks are maintained. By calling `mapReverse()` on the new dataset one can see that the remaining four features are precisely mapped back onto their original locations in the data space. .. index:: syntactic sugaring .. _data_sugaring: Data Access Sugaring ==================== Complementary to self-descriptive attribute names (e.g. `labels`, `samples`) datasets have a few concise shortcuts to get quick access to some attributes or perform some common action ================ ============ ================ Attribute Abbreviation Definition class ---------------- ------------ ---------------- samples S :class:`~mvpa.datasets.base.Dataset` labels L :class:`~mvpa.datasets.base.Dataset` uniquelabels UL :class:`~mvpa.datasets.base.Dataset` chunks C :class:`~mvpa.datasets.base.Dataset` uniquechunks UC :class:`~mvpa.datasets.base.Dataset` origids I :class:`~mvpa.datasets.base.Dataset` samples_original O :class:`~mvpa.datasets.mapped.MappedDataset` ================ ============ ================ .. index:: data formats .. _data_formats: Data Formats ============ The concept of mappers in conjunction with the functionality provided by the :class:`~mvpa.datasets.base.Dataset` class, makes it very easy to create new dataset types with support for specialized data types and formats. The following is a non-exhaustive list of data formats currently supported by PyMVPA (for additional formats take a look at the subclasses of :class:`~mvpa.datasets.base.Dataset`): * NumPy arrays PyMVPA builds its dataset facilities on NumPy arrays. Basically, anything that can be converted into a NumPy array can also be converted into a dataset. Together with the corresponding labels, NumPy arrays can simply be passed to the :class:`~mvpa.datasets.base.Dataset` constructor to create a dataset. With arrays it is possible to use the classes :class:`~mvpa.datasets.base.Dataset`, :class:`~mvpa.datasets.mapped.MappedDataset` (to combine the samples with any custom mapping algorithm) or :class:`~mvpa.datasets.masked.MaskedDataset` (readily provides a :class:`~mvpa.mappers.array.DenseArrayMapper`). * Plain text Using the NumPy function `fromfile()` a variety of text file formats (e.g. CSV) can be read and converted into NumPy arrays. * NIfTI/Analyze images PyMVPA provides a specialized dataset for MRI data in the NIfTI format. :class:`~mvpa.datasets.nifti.NiftiDataset` uses PyNIfTI_ to read the data and automatically configures an appropriate :class:`~mvpa.mappers.array.DenseArrayMapper` with metric information read from the NIfTI file header. * EEP binary files Another special dataset type is :class:`~mvpa.datasets.eep.EEPDataset`. It reads data from binary EEP file (written by eeprobe_) .. _PyNIfTI: http://niftilib.sf.net/pynifti .. _eeprobe: http://www.ant-neuro.com/products/eeprobe .. index:: data splitting, splitter, leave-one-out .. _data_splitter: Data Splitting ============== In many cases some algorithm should not run on a complete dataset, but just some parts of it. One well-known example is leave-one-out cross-validation, where a dataset is typically split into a number of training and validation datasets. A classifier is trained on the training set and its generalization performance is tested using the validation set. It is important to strictly separate training and validation datasets as otherwise no valid statement can be made whether a classifier really generated an appropriate model of the training data. Violating this requirement spuriously elevates the classification performance, often termed 'peeking' in the literature. However, they provide no relevant information because they are based on cheating or peeking and do not describe signal similarities between training and validation datasets. .. this point about 'peeking' is a critical one and maybe deserves emphasis. i was just looking at how we deal with it in our documentation, and we need to improve ours too! With the splitter classes derived from the base :class:`~mvpa.datasets.splitters.Splitter`, PyMVPA makes dataset splitting easy. All dataset splitters in PyMVPA are implemented as Python generators, meaning that when called with a dataset once, they return one dataset split per iteration and an appropriate Exception when they are done. This is exactly the same behavior as of e.g. the Python `xrange()` function. .. index:: working data, validation data To perform data splitting for the already mentioned cross-validation, PyMVPA provides the :class:`~mvpa.datasets.splitters.NFoldSplitter` class. It implements a method to generate arbitrary N-M splits, where N is the number of different chunks in a dataset and M is any non-negative integer smaller than N. Doing a leave-one-out split of our example dataset looks like this: >>> from mvpa.datasets.splitters import NFoldSplitter >>> splitter = NFoldSplitter(cvtype=1) # Do N-1 >>> for wdata, vdata in splitter(data): ... pass where `wdata` is the *working dataset* and `vdata` is the *validation dataset*. If we have a look a those datasets we can see that the splitter did what we intended: >>> split = [ i for i in splitter(data)][0] >>> for s in split: ... print s Dataset / float64 9 x 5 uniq: 1 labels 9 chunks Dataset / float64 1 x 5 uniq: 1 labels 1 chunks >>> split[0].uniquechunks array([1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> split[1].uniquechunks array([0]) In the first split, the working dataset contains nine chunks of the original dataset and the validation set contains the remaining chunk. Behavior of the splitters can be heavily customized by additional arguments to the constructor (see :class:`~mvpa.datasets.splitters.Splitter` for extended help on the arguments). For instance, in the analysis in fMRI data it might be important to assure that samples in the training and testing parts of the split are not neighboring samples (unless it is otherwise assured by the presence of baseline condition on the boundaries between chunks, samples of which are discarded prior the statistical learning analysis). Providing argument `discard_boundary=1` to the splitter, would remove from both training and testing parts a single sample, which lie on the boundary between chunks. Providing `discard_boundary=(2,0)` would remove 2 samples only from training part of the split (which is desired strategy for `NFoldSplitter` where training part contains majority of the data). .. index:: processing object The usage of the splitter, creating a splitter object and calling it with a dataset, is a very common design pattern in the PyMVPA package. Like splitters, there are many more so called *processing objects*. These classes or objects are instantiated by passing all relevant parameters to the constructor. Processing objects can then be called multiple times with different datasets to perform their algorithm on the respective dataset. This design applies to the majority of the algorithms implemented in PyMVPA. pymvpa-0.4.8/doc/devguide.rst000066400000000000000000000673621174541445200161570ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 79 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_devguide: *************************** PyMVPA Developer Guidelines *************************** Documentation ============= Documentation of the code and supplementary material (such as this file) should be done in reST_ (reStructuredText) light markup language. See `Demo `__ or a `Cheatsheet `__ for a quick demo. Code Documentation ------------------ Code must be documented in accordance to `epydoc + reST usage guidelines `__ However, the main focus should be put on a properly rendering *Module reference*. The module reference is also generated from the docstrings and there very similar to the API docs generated by epydoc. The main difference is that epydoc generates a much richer set of information (e.g. inheritance graphs), which might not be useful, but even counter-productive in a user-centered documentation. The module reference tries to limit the amount of information to a reasonable extent. it embeds technical docs into the user manual and therefore allows for easy (and automatic) cross-references between manual and module reference. A bunch of functions in `doc/conf.py` take care of converting the docstrings into the proper format to be processed by Sphinx. This is done to ensure both *human-readable* plain text docs (e.g. when using within IPython, and at the same time, an extensive use of Sphinx's markup capabilities. Parameter lists should be written as definition lists and not bulleted lists. For an example how to do it right, please see mvpa/datasets/dataset.py. Basically, it should look like this:: :Parameters: : : optional multiline description The textwidth of all docstrings should not exceed **72** characters, to ensure nicely looking docs on a 80 characters terminal in IPython. Examples -------- Examples should be complete and stand-alone scripts located in `doc/examples`. If an example involves any kind of interactive step, it should honor the :envvar:`MVPA_EXAMPLES_INTERACTIVE` setting, to allow for automatic testing of all examples. In case of a matplotlib-based visualization such snippet should be sufficient:: from mvpa import cfg if cfg.getboolean('examples', 'interactive', True): P.show() All examples are automatically converted into RsT documents for inclusion in the manual. Each of them is preprocessed in the following way: * Any header till the first docstring is stripped. * Each top-level (non-assigned) docstring is taken as a text block in the generated RsT source file. Such a docstring might appear anywhere in the example, not just at the beginning. In this case, the code snippet is properly split and the text block is inserted at the corresponding location. * All remaining lines are treated as code and inserted in the RsT source with appropriate markup. The first docstring in each example must have a proper section heading (with '=' markup). Finally, each example should be added to the appropriate `toctree` in `doc/examples.rst`. Code Formatting =============== pylint Code should be conformant with Pylint_ driven by config located at `doc/misc/pylintrc `__. It assumes camelback notation (classes start with capitals, functions with lowercase) and indentation using 4 spaces (i.e. no tabs) Variables are low-case and can have up to 2 _s. To engage, use 1 of 3 methods: - place it in *~/.pylintrc* for user-wide installation - use within a call to pylint:: pylint --rcfile=$PWD/doc/misc/pylintrc - export environment variable from mvpa sources top directory:: export PYLINTRC=$PWD/doc/misc/pylintrc 2 empty lines According to original python style guidelines: single empty line to separate methods within class, and 2 empty lines between classes **BUT** we do 2 empty between methods, 3 empty between classes module docstring Each module should start with a docstring describing the module (which is not inside the hashed-comment of each file) look at mapper or neighbor for tentative organization if copyright/license has to be present in each file. header Each file should contain a header from `doc/misc/header.py `__. notes Use following keywords will be caught by pylint to provide a summary of what yet to be done in the given file FIXME something which needs fixing (sooner than later) TODO future plan (i.e. later than sooner) XXX some concern/question YYY comment/answer to above mentioned XXX concern WiP Work in Progress: API and functionality might rapidly change Coding Conventions ================== __repr__ most of the classes should provide meaningful and concise summary over their identity (name + parameters + some summary over results if any) Naming Conventions ================== Function Arguments ------------------ dataset vs data Ones which are supposed to be derived from :class:`~mvpa.datasets.base.Dataset` class should have suffix (or whole name) ``dataset``. In contrast, if argument is expected to be simply a NumPy_ array, suffix should be ``data``. For example:: class Classifier(ClassWithCollections): ... def train(self, dataset): ... def predict(self, data): class FeatureSelection(ClassWithCollections): ... def __call__(self, dataset, testdataset): Such convention should be enforced in all ``*train``, ``*predict`` functions of classifiers. .. _NumPy: http://numpy.scipy.org/ Tests ===== * Every more or less "interesting" bugfix should be accompanied by a unittest which might help to prevent it in the future refactoring * Every new feature should have a unittest * Unit tests that might be non-deterministic (e.g. depending on classifier performance, which is turn is randomly initialized) should be made conditional like this: >>> from mvpa import cfg >>> if cfg.getboolean('tests', 'labile', default='yes'): ... pass Extending PyMVPA ================ This section shall provide a developer with the necessary pieces of information for writing extensions to PyMVPA. The guidelines given here, must be obeyed to ensure a maximum of compatibilty and inter-operability. As a consequence, all modifications that introduce changes to the basic interfaces outlined below have to be documented here and also should be announced in the changelog. Adding an External Dependency ----------------------------- Introducing new external dependencies should be done in a completely optional fashion. This includes both build-dependencies and runtime dependencies. With `mvpa.base.externals` PyMVPA provides a simple framework to test the availability of certain external components and publish the results of the tests throughout PyMVPA. Adding a new Dataset type ------------------------- * Required interface for Mapper. * only new subclasses of MappedDataset + new Mappers (all other as improvements into the Dataset base class)? go into `mvpa/datasets/` Adding a new Classifier ----------------------- To add a new classifier implementation it is sufficient to create a new sub-class of :class:`~mvpa.clfs.base.Classifier` and add implementations of the following methods: `__init__(**kwargs)` Additional arguments and keyword arguments may be added, but the base-class contructor has to be called with `**kwargs`! `_train(dataset)` Has to train the classifier when it is called with a :class:`~mvpa.datasets.base.Dataset`. Successive calls to this methods always have to train the classifier on the respective datasets. An eventually existing prior training status has to be cleared automatically. Nothing is returned. `_predict(data)` Unlike `_train()` the method is not called with a :class:`~mvpa.datasets.base.Dataset` instance, but with any sequence of data samples (e.g. arrays). It has to return a sequence of predictions, one for each data sample. With this minimal implementation the classifier provides some useful functionality, by automatically storing some relevant information upon request in state variables. .. IncludeStates: clfs.base Classifier Supported states: ================== ============================================== ========= State Name Description Default ------------------ ---------------------------------------------- --------- feature_ids Feature IDS which were used for the actual Disabled training. predicting_time Time (in seconds) which took classifier to Enabled predict. predictions Most recent set of predictions. Enabled trained_dataset The dataset it has been trained on. Disabled trained_labels Set of unique labels it has been trained on. Enabled training_confusion Confusion matrix of learning performance. Disabled training_time Time (in seconds) which took classifier to Enabled train. values Internal classifier values the most recent Disabled predictions are based on. ================== ============================================== ========= If any intended functionality cannot be realized be implementing above methods. The :class:`~mvpa.clfs.base.Classifier` class offers some additionals methods that might be overriden by sub-classes. For all methods described below it is strongly recommended to call the base-class methods at the end of the implementation in the sub-class to preserve the full functionality. `_pretrain(dataset)` Called with the :class:`~mvpa.datasets.base.Dataset` instance that shall be trained with, but before the actual training is performed. `_posttrain(dataset)` Called with the :class:`~mvpa.datasets.base.Dataset` instance the classifier was trained on, just after training was performed. `_prepredict(data)` Called with the data samples the classifier should do a prediction with, just before the actual `_prediction()` call. `_postpredict(data, result)` Called with the data sample for which predictions were made and the resulting predictions themselves. Source code files of all classifier implementations go into `mvpa/clfs/`. Outstanding Questions: * when states and when properties? Adding a new DatasetMeasure --------------------------- There are few possible base-classes for new measures (former sensitivity analyzers). First, :class:`~mvpa.measures.base.DatasetMeasure` can directly be sub-classed. It is a base class for any measure to be computed on a :class:`~mvpa.datasets.base.Dataset`. This is the more generic approach. In the most of the cases, measures are to be reported per each feature, thus :class:`~mvpa.measures.base.FeaturewiseDatasetMeasure` should serve as a base class in those cases. Furthermore, for measures that make use of some classifier and extract the sensitivities from it, :class:`~mvpa.measures.base.Sensitivity` (derived from :class:`~mvpa.measures.base.FeaturewiseDatasetMeasure`) is a more appropriate base-class, as it provides some additional useful functionality for this use case (e.g. training a classifier if needed). All measures (actually all objects based on :class:`~mvpa.measures.base.DatasetMeasure`) support a `transformer` keyword argument to their constructor. The functor passed as its value is called with the to be returned results and its outcome is returned as the final results. By default no transformation is performed. If a :class:`~mvpa.measures.base.DatasetMeasure` computes a characteristic, were both large positive and large negative values indicate high relevance, it should nevertheless *not* return absolute sensitivities, but set a default transformer instead that takes the absolute (e.g. plain `N.absolute` or a convinience wrapper Absolute_). To add a new measure implementation it is sufficient to create a new sub-class of :class:`~mvpa.measures.base.DatasetMeasure` (or :class:`~mvpa.measures.base.FeaturewiseDatasetMeasure`, or :class:`~mvpa.measures.base.Sensitivity`) and add an implementation of the `_call(dataset)` method. It will be called with an instance of :class:`~mvpa.datasets.base.Dataset`. :class:`~mvpa.measures.base.FeaturewiseDatasetMeasure` (e.g. :class:`~mvpa.measures.base.Sensitivity` as well) has to return a vector of featurewise sensitivity scores. .. IncludeStates: measures.base DatasetMeasure Supported states: ================== ============================================== ========= State Name Description Default ------------------ ---------------------------------------------- --------- null_prob State variable. Enabled raw_results Computed results before applying any Disabled transformation algorithm. ================== ============================================== ========= Source code files of all sensitivity analyzer implementations go into `mvpa/measures/`. Classifier-independent Sensitivity Analyzers ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Nothing special. Classifier-based Sensitivity Analyzers ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ A :class:`~mvpa.measures.base.Sensitivity` behaves exactly like its classifier-independent sibling, but additionally provides support for embedding the necessary classifier and handles its training upon request (boolean `force_training` keyword argument of the constructor). Access to the embedded classifier object is provided via the `clf` property. .. IncludeStates: measures.base Sensitivity Supported states: ================== ============================================== ========= State Name Description Default ------------------ ---------------------------------------------- --------- base_sensitivities Stores basic sensitivities if the sensitivity Disabled relies on combining multiple ones. null_prob State variable. Enabled raw_results Computed results before applying any Disabled transformation algorithm. ================== ============================================== ========= Outstanding Questions: * What is a :class:`mvpa.measures.base.ProxyClassifierSensitivityAnalyzer` useful for? * Shouldn't there be a `sensitivities` state? .. _Absolute: api/mvpa.misc.transformers-module.html#Absolute Adding a new Algorithm ---------------------- go into `mvpa/algorithms/` Git Repository ============== Layout ------ The repository is structured by a number of branches. Each developer should prefix his/her branches with a unique string plus '/' (maybe initials or similar). Currently there are: :mh: Michael Hanke :per: Per B. Sederberg :yoh: Yaroslav Halchenko Each developer can have an infinite number of branches. If the number of branches causes gitk output to exceed a usual 19" screen, the respective developer has to spend some bucks (or euros) on new screens for all others ;-) The main release branch is called *master*. This is a merge-only branch. Features finished or updated by some developer are merged from the corresponding branch into *master*. At a certain point the current state of *master* is tagged -- a release is done. Only usable feature should end-up in *master*. Ideally *master* should be releasable at all times. Something must not be merged into master if *any* unit test fails. Additionally, there are packaging branches. They are labeled after the package target (e.g. *debian* for a Debian package). Releases are merged into the packaging branches, packaging get updated if necessary and the branch gets tagged when a package version is released. Maintenance (as well as backport) releases should be gone under *maint/codename.flavor* (e.g. *maint/lenny*, *maint/lenny.security*, *maint/sarge.bpo*). Commits ------- Please prefix all commit summaries with one (or more) of the following labels. This should help others to easily classify the commits into meaningful categories: * *BF* : bug fix * *RF* : refactoring * *NF* : new feature * *BW* : addresses backward-compatibility * *OPT* : optimization * *BK* : breaks something and/or tests fail * *PL* : making pylint happier * *DOC*: for all kinds of documentation related commits .. _reST: http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html .. _EmacsreST: http://docutils.sourceforge.net/docs/user/emacs.html .. _Pylint: http://packages.debian.org/unstable/python/pylint Merges ------ For easy tracking of what changes were absorbed during merge, we advice to enable merge summary within git: git-config merge.summary true Changelog ========= The PyMVPA changelog is located in the toplevel directory of the source tree in the `Changelog` file. The content of this file should be formated as restructured text to make it easy to put it into manual appendix and on the website. This changelog should neither replicate the VCS commit log nor the distribution packaging changelogs (e.g. debian/changelog). It should be focused on the user perspective and is intended to list rather macroscopic and/or important changes to the module, like feature additions or bugfixes in the algorithms with implications to the performance or validity of results. It may list references to 3rd party bugtrackers, in case the reported bugs match the criteria listed above. Changelog entries should be tagged with the name of the developer(s) (mainly) involved in the modification -- initials are sufficient for people contributing regularly. Changelog entries should be added whenever something is ready to be merged into the master branch, not necessarily with a release already approaching. Developer-TODO ============== Things to implement for the next release (Release goals) -------------------------------------------------------- * A part of below restructuring TODO but is separate due to it importance: come up with cleaner hierarchy and tagging of classifiers and regressions -- now they are all `Classifier` * Unify parameter naming across all classifiers and come up with a labeling guideline for future classifier implementations and wrappers:: Numeric parameters can be part of .params Collection now, so they are joined together. * Provide sufficient documentation about internal variable naming to make Harvester/Harvesting functionality usable. Currently the user is supposed to know, how a particular *local* variable is called to be able to harvest e.g. `feature_ids` of classifiers over cross-validation folds:: class.HARVESTABLE={'blah' : ' some description'} Add information on HARVESTABLE and StateVariable Collectable -> Attribute base.attributes * Restructure code base (incl. renaming and moving pieces) Let's use the following list to come up with a nice structure for all logical components we have: * Datasets * Sensitivity analyzers (maybe: featurewise measures) * Classifier sensitivities (SVM, SMLR) -> respective classifiers * ANOVA -> mvpa.measures.anova * Noise perturbation -> -> mvpa.measures.noisepertrubation * meta-algorithms (splitting) -> mvpa.measures DatasetMeasure -> Measure (transformers) FeaturewiseDatasetMeasure? combiners to be absorbed withing transformers? and then gone? {Classifier?}Sensitivity? * Mappers:: mvpa.mappers (AKA mvpa.projections mvpa.transformers) * Along with PCA/ICA mappers, we should add a PLS mapper:: PCA.train(learningdataset) .forward, .backward Package pychem for Debian, see how to use from PyMVPA! ;-) Same for MDP (i.e. use from pymvpa) * Feature selection algorithms * Simple thresholding * RFE * IFS * .mapper state variable mvpa.featsel (NB no featsel.featsel.featsel more than 4 times!) mvpa.featsel.rfe mvpa.featsel.ifs * several base classes with framework infrastructure (Harvester, ClassWithCollections, virtual properties, ...) * Transfer error calculation * Cross-validation support * Monte-Carlo-based significance testing * Dataset splitter * Metrics and distance functions * Functions operating on dataset for preprocessing or transformations * Commandline interface support * Functions to generate artificial datasets * Error functions (i.e. for TransferError) * Custom exception types * Python 2.5 copy() aka external code shipped with PyMVPA * Several helpers for data IO * Left-over from the last attempt to establish a generic parameter interface * Detrending (operating on Datasets) * Result 'Transformers' to be used with 'transformer=' kwarg * Debugging and verbosity infrastructure * plus additional helpers, ranging from simple to complex scattered all over the place * Resultant hierarchy: - mvpa + datasets + clfs + measures + featsel * Add ability to add/modify custom attributes to a dataset. * Possibly make NiftiDataset default to float32 when it sees that the data are ints. * Add kernel methods as option to all classifiers, not just SVMs. For example, you should be able to run a predefined or custom kernel on the samples going into SMLR. * TransferError needs to know what type of data to send to any specific ErrorFX. Right now there is only support for predictions and labels, but the area under the ROC and the correlation-based error functions expect to receive the "values" or "probabilities" from a classifier. Just to make this harder, every classifier is different. For example, a ridge regression's predictions are continuous values, whereas for a SVM you need to pass in the probabilities. For binary: 1 value multiclass: 1 value, or N values * In a related issue, the predictions and values states of the classifiers need to have a consitent format. Currently, SVM returns a list of dictionaries for values and SMLR returns a numpy ndarray. Long and medium term TODOs (aka stuff that has been here forever) ----------------------------------------------------------------- * Agree upon sensitivities returned by the classifiers. Now SMLR/libsvm.SVM returns (nfeatures x X), (where X is either just 1 for binary problems, or nclasses in full multiclass in SMLR, or nclasses-1 for libsvm(?) or not-full SMLR). In case of sg.SVM and GPR (I believe) it is just (nfeatures,). MaskMapper puked on reverse in the first specification... think about combiner -- should it or should not be there... etc * selected_ids -> implement via MaskMapper? yoh: it might be preferable to manipulate/expose MaskMapper instead of plain list of selected_ids within FeatureSelection classes * unify naming of working/testing * transerror.py for instance uses testdata/trainingdata * rfe.py dataset, testdataset * implement proper cloning of classifiers. untrain() doesn't work in some cases, since we can create somewhat convolved object definitions so it is hard, if not impossible, to get to all used classifiers. See for instance clfswh['SVM/Multiclass+RFE']. We can't get all the way into classifier-based sensitivity analyzer. Thus instead of tracking all the way down in hierarchy, we should finally create proper 'parametrization' handling of classifiers, so we could easily clone basic ones (which might have active SWIG bindings), and top-level ones should implement .clone() themselves. or may be some other way, but things should be done. Or may be via proper implementation of __reduce__ etc * mvpa.misc.warning may be should use stock python warnings module instead of custom one? * ConfusionBasedError -> InternalError ? * Think about how to deal with Transformers to serve them with basic_analyzers... May be transformer can be a an argument for any analyzer! Ha! Indeed... may be later * Renaming of the modules transerror.py -> errors.py * SVM: getSV and getSVCoef return very 'packed' presentation whenever classifier is multiclass. Thus they have to be unpacked before proper use (unless it is simply a binary classifier). * Regression tests: for instance using sample dataset which we have already, run doc/examples/searchlight.py and store output to validate against. Probably the best would be to create a regression test suite within unit tests which would load the dataset and run various algorithms on it a verify the results against previousely obtained (and dumped to the disk) * Agree on how to describe parameters to functions. Describe in NOTES.coding. * feature_selector -- may be we should return a tuple (selected_ids, discarded_ids)? Michael: Is there any use case for that? ElementSelector can 'select' and 'discard' already. DO we need both simultaneously? * Basic documentation: Examples (more is better) describing various use cases (everything in the cncre should be done in examples) * Non-linear SVM RFE * ParameterOptimizer (might be also OptimizedClassifier which uses parameterOptimizer internally but as the result there is a classifier which automatically optimizes its parameters. It is close in idea to classifier based on RFE) * provide for Dataset -- Dataset.__featattr which has attributes for features similar to __dsattr way. in --> data -> dataShape out --> features -> Building a binary installer on MacOS X 10.5 =========================================== A simple way to build a binary installer for Mac OS is bdist_mpkg_. This is a setuptools extension that uses the proper native parts of MacOS to build the installer. However, for PyMVPA there are two problems with bdist_mpkg_: 1. PyMVPA uses distutils not setuptools and 2. current bdist_mpkg_ 0.4.3 does not work for MacOS X 10.5 (Leopard). But both can be solved. Per 1) A simple wrapper script in `tools/mpkg_wrapper.py` will enable the use of setuptools on top of distutils, while keeping the distutils part in a usable state. Per 2) The following patch (against 0.4.3.) makes bdist_mpkg_ compatible with MacOS 10.5. It basically changes the way bdist_mpkg_ determined the GID of the admin group. 10.5 removed the `nidump` command:: diff -rNu bdist_mpkg-0.4.3/bdist_mpkg/tools.py bdist_mpkg-0.4.3.leopard/bdist_mpkg/tools.py --- bdist_mpkg-0.4.3/bdist_mpkg/tools.py 2006-07-09 00:39:00.000000000 -0400 +++ bdist_mpkg-0.4.3.leopard/bdist_mpkg/tools.py 2008-08-21 07:43:35.000000000 -0400 @@ -79,15 +79,12 @@ yield os.path.join(root, fn) def get_gid(name, _cache={}): - if not _cache: - for line in os.popen('/usr/bin/nidump group .'): - fields = line.split(':') - if len(fields) >= 3: - _cache[fields[0]] = int(fields[2]) - try: - return _cache[name] - except KeyError: - raise ValueError('group %s not found' % (name,)) + for line in os.popen("dscl . -read /Groups/" + name + " PrimaryGroupID"): + fields = [f.strip() for f in line.split(':')] + if fields[0] == "PrimaryGroupID": + return fields[1] + + raise ValueError('group %s not found' % (name,)) def find_root(path, base='/'): """ .. _bdist_mpkg: http://undefined.org/python/#bdist_mpkg pymvpa-0.4.8/doc/examples.rst000066400000000000000000000033051174541445200161640ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. index:: example .. _chap_examples: ************* Full Examples ************* Each of the examples in this section is a stand-alone script containing all necessary code to run some analysis. All examples are shipped with PyMVPA and can be found in the `doc/examples/` directory in the source package. This directory might include some more special-interest examples which are not listed here. Some examples need to access a sample dataset available in the `data/` directory within the root of the PyMVPA hierarchy, and thus have to be invoked directly from PyMVPA root (e.g. `doc/examples/searchlight_2d.py`). Alternatively, one can download a full example dataset, which is explained in the next section. .. include:: misc/exampledata.readme Preprocessing ============= .. toctree:: examples/projections examples/smellit Analysis ======== .. toctree:: examples/start_easy examples/smlr examples/clfs_examples examples/gpr examples/searchlight_minimal examples/searchlight_2d examples/searchlight_dsm examples/sensanas examples/svdclf examples/permutation_test examples/match_distribution examples/eventrelated Visualization ============= .. toctree:: examples/erp_plot examples/pylab_2d examples/topo_plot examples/som Miscellaneous ============= .. toctree:: examples/kerneldemo examples/curvefitting pymvpa-0.4.8/doc/examples/000077500000000000000000000000001174541445200154315ustar00rootroot00000000000000pymvpa-0.4.8/doc/examples/clfs_examples.py000077500000000000000000000074311174541445200206400ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Classifier Sweep ================ This examples shows a test of various classifiers on different datasets. """ from mvpa.suite import * # no MVPA warnings during whole testsuite warning.handlers = [] def main(): # fix seed or set to None for new each time N.random.seed(44) # Load Haxby dataset example attrs = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes_literal.txt')) haxby8 = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), labels=attrs.labels, labels_map=True, chunks=attrs.chunks, mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz'), dtype=N.float32) # preprocess slightly rest_label = haxby8.labels_map['rest'] detrend(haxby8, perchunk=True, model='linear') zscore(haxby8, perchunk=True, baselinelabels=[rest_label], targetdtype='float32') haxby8_no0 = haxby8.selectSamples(haxby8.labels != rest_label) dummy2 = normalFeatureDataset(perlabel=30, nlabels=2, nfeatures=100, nchunks=6, nonbogus_features=[11, 10], snr=3.0) for (dataset, datasetdescr), clfs_ in \ [ ((dummy2, "Dummy 2-class univariate with 2 useful features out of 100"), clfswh[:]), ((pureMultivariateSignal(8, 3), "Dummy XOR-pattern"), clfswh['non-linear']), ((haxby8_no0, "Haxby 8-cat subject 1"), clfswh['multiclass']), ]: print "%s\n %s" % (datasetdescr, dataset.summary(idhash=False)) print " Classifier " \ "%corr #features\t train predict full" for clf in clfs_: print " %-40s: " % clf.descr, # Lets do splits/train/predict explicitely so we could track # timing otherwise could be just #cv = CrossValidatedTransferError( # TransferError(clf), # NFoldSplitter(), # enable_states=['confusion']) #error = cv(dataset) #print cv.confusion # to report transfer error confusion = ConfusionMatrix(labels_map=dataset.labels_map) times = [] nf = [] t0 = time.time() clf.states.enable('feature_ids') for nfold, (training_ds, validation_ds) in \ enumerate(NFoldSplitter()(dataset)): clf.train(training_ds) nf.append(len(clf.feature_ids)) if nf[-1] == 0: break predictions = clf.predict(validation_ds.samples) confusion.add(validation_ds.labels, predictions) times.append([clf.training_time, clf.predicting_time]) if nf[-1] == 0: print "no features were selected. skipped" continue tfull = time.time() - t0 times = N.mean(times, axis=0) nf = N.mean(nf) # print "\n", confusion print "%5.1f%% %-4d\t %.2fs %.2fs %.2fs" % \ (confusion.percentCorrect, nf, times[0], times[1], tfull) if __name__ == "__main__": main() pymvpa-0.4.8/doc/examples/curvefitting.py000077500000000000000000000034521174541445200205230ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Curve-Fitting ============= An example showing how to fit an HRF model to noisy peristimulus time-series data. First, importing the necessary pieces: """ import numpy as N import pylab as P from mvpa.misc.plot import plotErrLine from mvpa.misc.fx import singleGammaHRF, leastSqFit from mvpa import cfg """ Now, we generate some noisy "trial time courses" from a simple gamma function (40 samples, 6s time-to-peak, 7s FWHM and no additional scaling: """ a = N.asarray([singleGammaHRF(N.arange(20), A=6, W=7, K=1)] * 40) # get closer to reality with noise a += N.random.normal(size=a.shape) """ Fitting a gamma function to this data is easy (using resonable seeds for the parameter search (5s time-to-peak, 5s FWHM, and no scaling): """ fpar, succ = leastSqFit(singleGammaHRF, [5,5,1], a) """ Generate high-resultion curves for the 'true' time course and the fitted one for visualization and plot them together with the data: """ x = N.linspace(0,20) curves = [(x, singleGammaHRF(x, 6, 7, 1)), (x, singleGammaHRF(x, *fpar))] # plot data (with error bars) and both curves plotErrLine(a, curves=curves, linestyle='-') # add legend to plot P.legend(('original', 'fit')) if cfg.getboolean('examples', 'interactive', True): # show the cool figure P.show() """ The ouput of the provided example should look like .. image:: ../pics/ex_curvefitting.* :align: center :alt: Curve fitting example """ pymvpa-0.4.8/doc/examples/erp_plot.py000077500000000000000000000051671174541445200176430ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ ERP/ERF-Plots ============= Example demonstrating an ERP-style plots. Actually, this code can be used to plot various time-locked data types. This example uses MEG data and therefore generates an ERF-plot. """ from mvpa.suite import * # load data meg = TuebingenMEG(os.path.join(pymvpa_dataroot, 'tueb_meg.dat.gz')) # Define plots for easy feeding into plotERP plots = [] colors = ['r', 'b', 'g'] # figure out pre-stimulus onset interval t0 = -meg.timepoints[0] plots = [ {'label' : meg.channelids[i], 'color' : colors[i], 'data' : meg.data[:, i, :]} for i in xrange(len(meg.channelids)) ] # Common arguments for all plots cargs = { 'SR' : meg.samplingrate, 'pre_onset' : t0, # Plot only 50ms before and 100ms after the onset since we have # just few trials 'pre' : 0.05, 'post' : 0.1, # Plot all 'errors' in different degrees of shadings 'errtype' : ['ste', 'ci95', 'std'], # Set to None if legend manages to obscure the plot 'legend' : 'best', 'alinewidth' : 1 # assume that we like thin lines } # Create a new figure fig = P.figure(figsize=(12, 8)) # Following plots are plotted inverted (negative up) for the # demonstration of this capability and elderly convention for ERP # plots. That is controlled with ymult (negative gives negative up) # Plot MEG sensors # frame_on=False guarantees abent outside rectangular axis with # labels. plotERP recreates its own axes centered at (0,0) ax = fig.add_subplot(2, 1, 1, frame_on=False) plotERPs(plots[:2], ylabel='$pT$', ymult=-1e12, ax=ax, **cargs) # Plot EEG sensor ax = fig.add_subplot(2, 1, 2, frame_on=False) plotERPs(plots[2:3], ax=ax, ymult=-1e6, **cargs) # Additional example: plotting a single ERP on an existing plot # without drawing axis: # # plotERP(data=meg.data[:, 0, :], SR=meg.samplingrate, pre=pre, # pre_mean=pre, errtype=errtype, ymult=-1.0) if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() """ The ouput of the provided example is presented below. It is not a very fascinating one due to the limited number of samples provided in the dataset shipped within the toolbox. .. image:: ../pics/ex_erp_plot.* :align: center :alt: ERP plot example """ pymvpa-0.4.8/doc/examples/eventrelated.py000077500000000000000000000146211174541445200204740ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Spatio-temporal Analysis of event-related fMRI data =================================================== .. index:: event-related fMRI The purpose of this example is to show how to use spatio-temporal samples in an event-related fMRI data analysis. We start as usual by loading the PyMVPA suite. The tiny fMRI dataset, included in the sources will server as an example dataset. Although the original paradigm of this dataset is a block-design experiment, we'll analyze it in an event-related fashion, where each block will be considered as an individual event. """ from mvpa.suite import * # filename of the source fMRI timeseries image fmri_src = os.path.join(pymvpa_dataroot, 'bold.nii.gz') mask = NiftiImage(os.path.join(pymvpa_dataroot, 'mask.nii.gz')) # load the samples attributes as usual and preserve the # literal labels attr = SampleAttributes( os.path.join(pymvpa_dataroot, 'attributes_literal.txt'), literallabels=True) """ For an event-related analysis most of the processing is done on data samples that are somehow derived from a set of events. The rest of the data could be considered irrelevant. However, some e.g. preprocessing is only meaningful when performed on the full timeseries and not the segmented event samples. An example is the detrending that typically needs to be done on the original, continuous timeseries. Therefore we are going to load the data twice: first as a simple volume-based dataset for an initial preprocessing, and second to extract the events of interest. """ verbose(1, "Load data for preprocessing") pre_ds = NiftiImage(fmri_src) # actual labels are not important here, could be 'labels=1' pre_ds = NiftiDataset(samples=fmri_src, labels=attr.labels, chunks=attr.chunks, mask=mask) # convert to floats pre_ds.setSamplesDType('float') # detrend on full timeseries detrend(pre_ds, perchunk=True, model='linear') """ After the detrending, we can now segment the timeseries into a set of events. To achieve this we have to compile a list of event definitions first. In this example we will simply convert the block-design setup defined by the samples attributes into events, so that each block become an event with an associated onset and duration. The necessary chunk settings are taken from these attributes as well. Finally, we are only interested in `face` or `house` blocks. """ evs = [ev for ev in attr.toEvents() if ev['label'] in ['face', 'house']] """ Since we might want to take a look at the sensitivity profile ranging from just before until a little after each block, we are slightly moving the event onsets (one volume prior the actual event) and request to extract a set of twelve consecutive volume a as sample for each event. """ for ev in evs: ev['onset'] -= 1 ev['duration'] = 12 """ A :class:`~mvpa.datasets.nifti.ERNiftiDataset` can now be used to segment the timeseries and automatically extract boxcar-shaped multi-volume samples. It is also capable of applying a volume mask. """ # could use evconv... verbose(1, "Segmenting timeseries into events") ds = ERNiftiDataset(samples=pre_ds.map2Nifti(), events=evs, mask=mask, labels_map={'face': 1, 'house': 2}) """ For demonstration purposes we copy the pristine dataset before any further processing is done. """ # preserve orig_ds = deepcopy(ds) """ The rest is pretty much standard. A dataset with spatio-temporal fMRI samples behaves just as any other dataset type. We perform normalization by Z-scoring the data and settle on a linear SVM classifier to perform a cross-validated sensitivity analysis. """ # using rest as baseline zscore(ds, perchunk=True) clf = LinearCSVMC() sclf = SplitClassifier(clf, NFoldSplitter(), enable_states=['confusion', 'training_confusion']) # Compute sensitivity, which in turn trains the sclf sensitivities = \ sclf.getSensitivityAnalyzer(combiner=None, slave_combiner=None)(ds) """ Before looking at the sensitivity profile we first have to inspect the classifier performance in the cross-validation, since only for a model with reasonable generalization performance it would make sense to interpret the model parameters, i.e. classifier weights. If this is done we could dump the spatio-temporal sensitivity profile, which covers all voxels in the dataset for the full duration of the events, into a NIfTI file. """ print sclf.confusion #ds.map2Nifti(N.mean(sensitivities, axis=0)).save('fs_sens.nii.gz') """ However, we are going to plot it for some target voxel right away, and compare it to the actual signal timecourse prior and after normalization. We can use the dataset's mapper to convert the sensitivity vector for each CV-fold back into a 4D snippet. """ # reverse map sensitivities -> fold x volumes x Z x Y x X smaps = N.array([ds.mapReverse(s) for s in sensitivities]) # extract sensitivity profile for target voxel ijk(33,10,0) v = (0, 3, 15) smap = smaps[:,:,v[0],v[1],v[2]] """ Now, we plot the orginal signal after initial detrending, """ P.subplot(311) P.title('Voxel zyx%s\nblock-onset@1, block-offset@8' % `v`) for l in ds.uniquelabels: P.plot( ds.mapReverse( orig_ds.samples[ds.labels==l].mean(axis=0) )[:,v[0],v[1],v[2]]) P.ylabel('Signal after detrending') P.axhline(linestyle='--', color='0.6') """ the peristimulus timecourse after Z-scoring, """ P.subplot(312) for l in ds.uniquelabels: P.plot( ds.mapReverse( ds.samples[ds.labels==l].mean(axis=0) )[:,v[0],v[1],v[2]]) P.ylabel('Signal after normalization') P.axhline(linestyle='--', color='0.6') """ and finally the associated SVM weight profile for each peristimulus timepoint of the voxel. """ P.subplot(313) plotErrLine(smap) P.ylabel('Sensitivity') P.xlabel('Peristimulus volumes') P.axhline(linestyle='--', color='0.6') if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() pymvpa-0.4.8/doc/examples/gpr.py000077500000000000000000000102721174541445200166000ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Copyright (c) 2008 Emanuele Olivetti # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ The effect of different hyperparameters in GPR ============================================== .. index:: GPR The following example runs Gaussian Process Regression (GPR) on a simple 1D dataset using squared exponential (i.e., Gaussian or RBF) kernel and different hyperparameters. The resulting classifier solutions are finally visualized in a single figure. As usual we start by importing all of PyMVPA: """ # Lets use LaTeX for proper rendering of greek from matplotlib import rc rc('text', usetex=True) from mvpa.suite import * """ The next lines build two datasets using one of PyMVPA's data generators. """ # Generate dataset for training: train_size = 40 F = 1 dataset = data_generators.sinModulated(train_size, F) # Generate dataset for testing: test_size = 100 dataset_test = data_generators.sinModulated(test_size, F, flat=True) """ The last configuration step is the definition of four sets of hyperparameters to be used for GPR. """ # Hyperparameters. Each row is [sigma_f, length_scale, sigma_noise] hyperparameters = N.array([[1.0, 0.2, 0.4], [1.0, 0.1, 0.1], [1.0, 1.0, 0.1], [1.0, 0.1, 1.0]]) """ The plotting of the final figure and the actually GPR runs are performed in a single loop. """ rows = 2 columns = 2 P.figure(figsize=(12, 12)) for i in range(rows*columns): P.subplot(rows, columns, i+1) regression = True logml = True data_train = dataset.samples label_train = dataset.labels data_test = dataset_test.samples label_test = dataset_test.labels """ The next lines configure a squared exponential kernel with the set of hyperparameters for the current subplot and assign the kernel to the GPR instance. """ sigma_f, length_scale, sigma_noise = hyperparameters[i, :] kse = KernelSquaredExponential(length_scale=length_scale, sigma_f=sigma_f) g = GPR(kse, sigma_noise=sigma_noise, regression=regression) print g if regression: g.states.enable("predicted_variances") if logml: g.states.enable("log_marginal_likelihood") """ After training GPR the predictions are queried by passing the test dataset samples and accuracy measures are computed. """ g.train(dataset) prediction = g.predict(data_test) # print label_test # print prediction accuracy = None if regression: accuracy = N.sqrt(((prediction-label_test)**2).sum()/prediction.size) print "RMSE:", accuracy else: accuracy = (prediction.astype('l')==label_test.astype('l')).sum() \ / float(prediction.size) print "accuracy:", accuracy """ The remaining code simply plots both training and test datasets, as well as the GPR solutions. """ if F == 1: P.title(r"$\sigma_f=%0.2f$, $length_s=%0.2f$, $\sigma_n=%0.2f$" \ % (sigma_f,length_scale,sigma_noise)) P.plot(data_train, label_train, "ro", label="train") P.plot(data_test, prediction, "b-", label="prediction") P.plot(data_test, label_test, "g+", label="test") if regression: P.plot(data_test, prediction-N.sqrt(g.predicted_variances), "b--", label=None) P.plot(data_test, prediction+N.sqrt(g.predicted_variances), "b--", label=None) P.text(0.5, -0.8, "$RMSE=%.3f$" %(accuracy)) P.text(0.5, -0.95, "$LML=%.3f$" %(g.log_marginal_likelihood)) else: P.text(0.5, -0.8, "$accuracy=%s" % accuracy) P.legend(loc='lower right') print "LML:", g.log_marginal_likelihood if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() pymvpa-0.4.8/doc/examples/gpr_model_selection0.py000077500000000000000000000057101174541445200221060ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Copyright (c) 2008 Emanuele Olivetti # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Run simple model selection (grid search over hyperparameters' space) of Gaussian Process Regression (GPR) on a simple 1D example. """ __docformat__ = 'restructuredtext' import numpy as N from mvpa.suite import * import pylab as P # Generate train and test dataset: train_size = 40 test_size = 100 F = 1 dataset = data_generators.sinModulated(train_size, F) dataset_test = data_generators.sinModulated(test_size, F, flat=True) print "Looking for better hyperparameters: grid search" # definition of the search grid: sigma_noise_steps = N.linspace(0.1, 0.5, num=20) length_scale_steps = N.linspace(0.05, 0.6, num=20) # Evaluation of log maringal likelohood spanning the hyperparameters' grid: lml = N.zeros((len(sigma_noise_steps), len(length_scale_steps))) lml_best = -N.inf length_scale_best = 0.0 sigma_noise_best = 0.0 i = 0 for x in sigma_noise_steps: j = 0 for y in length_scale_steps: kse = KernelSquaredExponential(length_scale=y) g = GPR(kse, sigma_noise=x, regression=True) g.states.enable("log_marginal_likelihood") g.train(dataset) lml[i, j] = g.log_marginal_likelihood if lml[i, j] > lml_best: lml_best = lml[i, j] length_scale_best = y sigma_noise_best = x # print x,y,lml_best pass j += 1 pass i += 1 pass # Log marginal likelihood contour plot: P.figure() X = N.repeat(sigma_noise_steps[:, N.newaxis], sigma_noise_steps.size, axis=1) Y = N.repeat(length_scale_steps[N.newaxis, :], length_scale_steps.size, axis=0) step = (lml.max()-lml.min())/30 P.contour(X, Y, lml, N.arange(lml.min(), lml.max()+step, step), colors='k') P.plot([sigma_noise_best], [length_scale_best], "k+", markeredgewidth=2, markersize=8) P.xlabel("noise standard deviation") P.ylabel("characteristic length_scale") P.title("log marginal likelihood") P.axis("tight") print "lml_best", lml_best print "sigma_noise_best", sigma_noise_best print "length_scale_best", length_scale_best print "number of expected upcrossing on the unitary intervale:", \ 1.0/(2*N.pi*length_scale_best) # TODO: reincarnate by providing a function within gpr.py # # Plot predicted values using best hyperparameters: # P.figure() # compute_prediction(1.0, length_scale_best, sigma_noise_best, True, dataset, # dataset_test.samples, dataset_test.labels, F, True) if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() pymvpa-0.4.8/doc/examples/kerneldemo.py000077500000000000000000000037751174541445200201470ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Kernel-Demo =========== This is an example demonstrating various kernel implementation in PyMVPA. """ from mvpa.suite import * from mvpa.clfs.kernel import * import pylab as P # N.random.seed(1) data = N.random.rand(4, 2) for kernel_class, kernel_args in ( (KernelConstant, {'sigma_0':1.0}), (KernelConstant, {'sigma_0':1.0}), (KernelLinear, {'Sigma_p':N.eye(data.shape[1])}), (KernelLinear, {'Sigma_p':N.ones(data.shape[1])}), (KernelLinear, {'Sigma_p':2.0}), (KernelLinear, {}), (KernelExponential, {}), (KernelSquaredExponential, {}), (KernelMatern_3_2, {}), (KernelMatern_5_2, {}), (KernelRationalQuadratic, {}), ): kernel = kernel_class(**kernel_args) print kernel result = kernel.compute(data) # In the following we draw some 2D functions at random from the # distribution N(O,kernel) defined by each available kernel and # plot them. These plots shows the flexibility of a given kernel # (with default parameters) when doing interpolation. The choice # of a kernel defines a prior probability over the function space # used for regression/classfication with GPR/GPC. count = 1 for k in kernel_dictionary.keys(): P.subplot(3,4,count) # X = N.random.rand(size)*12.0-6.0 # X.sort() X = N.arange(-1,1,.02) X = X[:,N.newaxis] ker = kernel_dictionary[k]() K = ker.compute(X,X) for i in range(10): f = N.random.multivariate_normal(N.zeros(X.shape[0]),K) P.plot(X[:,0],f,"b-") P.title(k) P.axis('tight') count += 1 if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() pymvpa-0.4.8/doc/examples/match_distribution.py000077500000000000000000000065061174541445200217100ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Determine the Distribution of some Variable =========================================== This is an example demonstrating discovery of the distribution facility. """ from mvpa.suite import * verbose.level = 2 if __debug__: # report useful debug information for the example debug.active += ['STAT', 'STAT_'] report = Report(name='match_distribution_report', title='PyMVPA Example: match_distribution.py') verbose.handlers += [report] # Lets add verbose output to the report. # Similar action could be done to 'debug' # # Figure for just normal distribution # # generate random signal from normal distribution verbose(1, "Random signal with normal distribution") data = N.random.normal(size=(1000, 1)) # find matching distributions # NOTE: since kstest is broken in older versions of scipy # p-roc testing is done here, which aims to minimize # false positives/negatives while doing H0-testing test = 'p-roc' figsize = (15, 10) verbose(1, "Find matching datasets") matches = matchDistribution(data, test=test, p=0.05) P.figure(figsize=figsize) P.subplot(2, 1, 1) plotDistributionMatches(data, matches, legend=1, nbest=5) P.title('Normal: 5 best distributions') P.subplot(2, 1, 2) plotDistributionMatches(data, matches, nbest=5, p=0.05, tail='any', legend=4) P.title('Accept regions for two-tailed test') # we are done with the figure -- add it to report report.figure() # # Figure for fMRI data sample we have # verbose(1, "Load sample fMRI dataset") attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt')) dataset = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), labels=attr.labels, chunks=attr.chunks, mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz')) # select random voxel dataset = dataset.selectFeatures( [int(N.random.uniform()*dataset.nfeatures)]) verbose(2, "Minimal preprocessing to remove the bias per each voxel") detrend(dataset, perchunk=True, model='linear') zscore(dataset, perchunk=True, baselinelabels=[0], targetdtype='float32') # on all voxels at once, just for the sake of visualization data = dataset.samples.ravel() verbose(2, "Find matching distribution") matches = matchDistribution(data, test=test, p=0.05) P.figure(figsize=figsize) P.subplot(2, 1, 1) plotDistributionMatches(data, matches, legend=1, nbest=5) P.title('Random voxel: 5 best distributions') P.subplot(2, 1, 2) plotDistributionMatches(data, matches, nbest=5, p=0.05, tail='any', legend=4) P.title('Accept regions for two-tailed test') report.figure() if cfg.getboolean('examples', 'interactive', True): # store the report report.save() # show the cool figure P.show() """ Example output for a random voxel is .. image:: ../pics/ex_match_distribution.* :align: center :alt: Matching distributions for a random voxel """ pymvpa-0.4.8/doc/examples/mri_plot.py000077500000000000000000000043011174541445200176310ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Basic (f)MRI plotting ===================== .. index:: plotting Estimate basic univariate sensitivity (ANOVA) an plot it overlayed on top of the anatomical. We start with basic steps: loading PyMVPA and the example fMRI dataset, basic preprocessing, estimation of the ANOVA scores and plotting. """ from mvpa.suite import * # load PyMVPA example dataset attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes_literal.txt')) dataset = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), labels=attr.labels, labels_map=True, chunks=attr.chunks, mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz')) # since we don't have a proper anatomical -- lets overlay on BOLD nianat = NiftiImage(dataset.O[0], header=dataset.niftihdr) # do chunkswise linear detrending on dataset detrend(dataset, perchunk=True, model='linear') # define sensitivity analyzer sensana = OneWayAnova(transformer=N.abs) sens = sensana(dataset) """ It might be convinient to pre-define common arguments for multiple calls to plotMRI """ mri_args = { 'background' : nianat, # could be a filename 'background_mask' : os.path.join(pymvpa_dataroot, 'mask.nii.gz'), 'overlay_mask' : os.path.join(pymvpa_dataroot, 'mask.nii.gz'), 'do_stretch_colors' : False, 'cmap_bg' : 'gray', 'cmap_overlay' : 'autumn', # YlOrRd_r # P.cm.autumn 'fig' : None, # create new figure 'interactive' : cfg.getboolean('examples', 'interactive', True), } fig = plotMRI(overlay=dataset.map2Nifti(sens), vlim=(0.5, None), #vlim_type="symneg_z", **mri_args) """ Output of the example analysis: .. image:: ../pics/ex_plotMRI.* :align: center :alt: Simple plotting facility for (f)MRI """ pymvpa-0.4.8/doc/examples/nested_cv.py000077500000000000000000000117161174541445200177660ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Nested Cross-Validation ======================= .. index:: model selection, cross-validation Often it is desired to explore multiple models (classifiers, parameterizations) but it becomes an easy trap for introducing an optimistic bias into generalization estimate. The easiest but computationally intensive solution to overcome such a bias is to carry model selection by estimating the same (or different) performance characteristic while operating only on training data. If such performance is a cross-validation, then it leads to the so called "nested cross-validation" procedure. This example will demonstrate on how to implement such nested cross-validation while selecting the best performing classifier from the warehouse of available within PyMVPA. """ from mvpa.suite import * # increase verbosity a bit for now verbose.level = 3 # pre-seed RNG if you want to investigate the effects, thus # needing reproducible results #mvpa.seed(3) # To minimize divergence from code for >= 0.5 np = N """ For this simple example lets generate some fresh random data with 2 relevant features and low SNR. """ dataset = normalFeatureDataset(perlabel=24, nlabels=2, nchunks=3, nonbogus_features=[0, 1], nfeatures=100, snr=3.0) """ For the demonstration of model selection benefit, lets first compute cross-validated error using simple and popular kNN. """ clf_sample = kNN() cv_sample = CrossValidatedTransferError( TransferError(clf_sample), NFoldSplitter()) verbose(1, "Estimating error using a sample classifier") error_sample = np.mean(cv_sample(dataset)) """ For the convenience lets define a helpful function which we will use twice -- once within cross-validation, and once on the whole dataset """ def select_best_clf(dataset_, clfs): """Select best model according to CVTE Helper function which we will use twice -- once for proper nested cross-validation, and once to see how big an optimistic bias due to model selection could be if we simply provide an entire dataset. Parameters ---------- dataset_ : Dataset clfs : list of Classifiers Which classifiers to explore Returns ------- best_clf, best_error """ best_error = None for clf in clfs: cv = CrossValidatedTransferError(TransferError(clf), NFoldSplitter()) # unfortunately we don't have ability to reassign clf atm # cv.transerror.clf = clf try: error = np.mean(cv(dataset_)) except LearnerError, e: # skip the classifier if data was not appropriate and it # failed to learn/predict at all continue if best_error is None or error < best_error: best_clf = clf best_error = error verbose(4, "Classifier %s cv error=%.2f" % (clf.descr, error)) verbose(3, "Selected the best out of %i classifiers %s with error %.2f" % (len(clfs), best_clf.descr, best_error)) return best_clf, best_error """ First lets select a classifier within cross-validation, thus eliminating model-selection bias """ errors = [] best_clfs = {} confusion = ConfusionMatrix() verbose(1, "Estimating error using nested CV for model selection") for isplit, (dstrain, dstest) in enumerate(NFoldSplitter()(dataset)): verbose(2, "Processing split #%i" % isplit) best_clf, best_error = select_best_clf(dstrain, clfswh['!gnpp']) best_clfs[best_clf.descr] = best_clfs.get(best_clf.descr, 0) + 1 # now that we have the best classifier, lets assess its transfer # to the testing dataset while training on entire training te = TransferError(best_clf, enable_states=['confusion']) errors.append(te(dstest, dstrain)) confusion += te.states.confusion """ And for comparison, lets assess what would be the best performance if we simply explore all available classifiers, providing all the data at once """ verbose(1, "Estimating error via fishing expedition (best clf on entire dataset)") cheating_clf, cheating_error = select_best_clf(dataset, clfswh['!gnpp']) print """Errors: sample classifier (kNN): %.2f model selection within cross-validation: %.2f model selection via fishing expedition: %.2f with %s """ % (error_sample, np.mean(errors), cheating_error, cheating_clf.descr) print "# of times following classifiers were selected within " \ "nested cross-validation:" for c, count in sorted(best_clfs.items(), key=lambda x:x[1], reverse=True): print " %i times %s" % (count, c) print "\nConfusion table for the nested cross-validation results:" print confusion pymvpa-0.4.8/doc/examples/permutation_test.py000077500000000000000000000113151174541445200214150ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Monte-Carlo testing of Classifier-based Analyses ================================================ .. index:: statistical testing, monte-carlo, permutation It is often desirable to be able to make statements like *"Performance is significantly above chance-level"*. PyMVPA supports *NULL* (aka *H0*) hypothesis testing for :ref:`transfer errors ` and all :ref:`dataset measures `. In both cases the object computing the measure or transfer error takes an optional constructor argument `null_dist`. The value of this argument is an instance of some :class:`~mvpa.clfs.stats.NullDist` estimator. If *NULL* distribution is luckily a-priori known, it is possible to reuse any distribution specified in `scipy.stats` module. If the parameters of the distribution are known, such distribution instance can be used to initialize FixedNullDist_ instance to be specified in `null_dist` parameter. However, as with other applications of statistics in classifier-based analyses there is the problem that we do not know the distribution of a variable like error or performance under the *NULL* hypothesis to assign the adored p-values, i.e. the probability of a result given that there is no signal. Even worse, the chance-level or guess probability of a classifier depends on the content of a validation dataset, e.g. balanced or unbalanced number of samples per label and total number of labels). One approach to deal with this situation is to estimate the *NULL* distribution. A generic way to do this are permutation tests (aka *Monte Carlo*, :ref:`Nichols et al. (2006) `). Then *NULL* distribution is estimated by computing some measure multiple times using datasets with no relevant signal in them. These datasets are generated by permuting the labels of all samples in the training dataset each time the measure is computed, and therefore randomizing/removing any possible relevant information. Given the measures computed using the permuted datasets one can now determine the probability of the empirical measure (i.e. the one computed from the original training dataset) under the *no signal* condition. This is simply the fraction of measures from the permutation runs that is larger or smaller than the emprical (depending on whether on is looking at performances or errors). If the family of the distribution is known (e.g. Gaussian/Normal) and provided in `dist_class` parameter of MCNullDist, then permutation tests done by MCNullDist_ allow to determine the distribution parameters. Under strong assumption of Gaussian distribution, 20-30 permutations should be sufficient to get sensible estimates of the distribution parameters. If no distribution family can be assumed, with a larger number of permutations, derivation of CDF out of population is possible with Nonparametric_ probability function (which is the default value of `dist_class` for MCNullDist_). If `null_dist` is provided, the respective :class:`~mvpa.clfs.transerror.TransferError` or :class:`~mvpa.measures.base.DatasetMeasure` instance will automatically use it to estimate the *NULL* distribution and store the associated *p*-values in a state variable named `null_prob`. .. _Distribution: api/mvpa.clfs.stats.NullDist-class.html .. _Nonparametric: api/mvpa.clfs.stats.Nonparametric-class.html .. _MCNullDist: api/mvpa.clfs.stats.MCNullDist-class.html .. _FixedNullDist: api/mvpa.clfs.stats.FixedNullDist-class.html """ # lazy import from mvpa.suite import * # enable progress output for MC estimation if __debug__: debug.active += ["STATMC"] # some example data with signal train = normalFeatureDataset(perlabel=50, nlabels=2, nfeatures=3, nonbogus_features=[0,1], snr=0.3, nchunks=1) # define class to estimate NULL distribution of errors # use left tail of the distribution since we use MeanMatchFx as error # function and lower is better # in a real analysis the number of permutations should be larger # to get stable estimates terr = TransferError(clf=SMLR(), null_dist=MCNullDist(permutations=100, tail='left')) # compute classifier error on training dataset (should be low :) err = terr(train, train) print 'Error on training set:', err # check that the result is highly significant since we know that the # data has signal print 'Corresponding p-value: ', terr.null_prob pymvpa-0.4.8/doc/examples/projections.py000077500000000000000000000040771174541445200203550ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Visualization of Data Projection Methods ======================================== """ from mvpa.misc.data_generators import noisy_2d_fx from mvpa.mappers.pca import PCAMapper from mvpa.mappers.svd import SVDMapper from mvpa.mappers.ica import ICAMapper from mvpa import cfg import pylab as P import numpy as N center = [10, 20] axis_range = 7 def plotProjDir(mproj): p = mproj + N.array(center).T P.plot([center[0], p[0,0]], [center[1], p[0,1]], hold=True) P.plot([center[0], p[1,0]], [center[1], p[1,1]], hold=True) mappers = { 'PCA': PCAMapper(), 'SVD': SVDMapper(), 'ICA': ICAMapper(), } datasets = [ noisy_2d_fx(100, lambda x: x, [lambda x: x], center, noise_std=.5), noisy_2d_fx(50, lambda x: x, [lambda x: x, lambda x: -x], center, noise_std=.5), noisy_2d_fx(50, lambda x: x, [lambda x: x, lambda x: 0], center, noise_std=.5), ] ndatasets = len(datasets) nmappers = len(mappers.keys()) P.figure(figsize=(8,8)) fig = 1 for ds in datasets: for mname, mapper in mappers.iteritems(): mapper.train(ds) dproj = mapper.forward(ds.samples) mproj = mapper.proj print mproj P.subplot(ndatasets, nmappers, fig) if fig <= 3: P.title(mname) P.axis('equal') P.scatter(ds.samples[:, 0], ds.samples[:, 1], s=30, c=(ds.labels) * 200) plotProjDir(mproj) fig += 1 if cfg.getboolean('examples', 'interactive', True): P.show() """ Output of the example: .. image:: ../pics/ex_projections.* :align: center :alt: SVD/ICA/PCA projections """ pymvpa-0.4.8/doc/examples/pylab_2d.py000077500000000000000000000121311174541445200175000ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Simple Plotting of Classifier Behavior ====================================== .. index:: plotting example This example runs a number of classifiers on a simple 2D dataset and plots the decision surface of each classifier. First compose some sample data -- no PyMVPA involved. """ import numpy as N # set up the labeled data # two skewed 2-D distributions num_dat = 200 dist = 4 # Absolute max value allowed. Just to assure proper plots xyamax = 10 feat_pos=N.random.randn(2, num_dat) feat_pos[0, :] *= 2. feat_pos[1, :] *= .5 feat_pos[0, :] += dist feat_pos = feat_pos.clip(-xyamax, xyamax) feat_neg=N.random.randn(2, num_dat) feat_neg[0, :] *= .5 feat_neg[1, :] *= 2. feat_neg[0, :] -= dist feat_neg = feat_neg.clip(-xyamax, xyamax) # set up the testing features npoints = 101 x1 = N.linspace(-xyamax, xyamax, npoints) x2 = N.linspace(-xyamax, xyamax, npoints) x,y = N.meshgrid(x1, x2); feat_test = N.array((N.ravel(x), N.ravel(y))) """Now load PyMVPA and convert the data into a proper :class:`~mvpa.datasets.base.Dataset`.""" from mvpa.suite import * # create the pymvpa dataset from the labeled features patternsPos = Dataset(samples=feat_pos.T, labels=1) patternsNeg = Dataset(samples=feat_neg.T, labels=0) ds_lin = patternsPos + patternsNeg """Let's add another dataset: XOR. This problem is not linear separable and therefore need a non-linear classifier to be solved. The dataset is provided by the PyMVPA dataset warehouse. """ # 30 samples per condition, SNR 3 ds_nl = pureMultivariateSignal(30,3) datasets = {'linear': ds_lin, 'non-linear': ds_nl} """This demo utilizes a number of classifiers. The instantiation of a classifier involves almost no runtime costs, so it is easily possible compile a long list, if necessary.""" # set up classifiers to try out clfs = {'Ridge Regression': RidgeReg(), 'Linear SVM': LinearNuSVMC(probability=1, enable_states=['probabilities']), 'RBF SVM': RbfNuSVMC(probability=1, enable_states=['probabilities']), 'SMLR': SMLR(lm=0.01), 'Logistic Regression': PLR(criterion=0.00001), 'k-Nearest-Neighbour': kNN(k=10), 'GNB': GNB(common_variance=True), 'GNB(common_variance=False)': GNB(common_variance=False), } """Now we are ready to run the classifiers. The following loop trains and queries each classifier to finally generate a nice plot showing the decision surface of each individual classifier, both for the linear and the non-linear dataset.""" for id, ds in datasets.iteritems(): # loop over classifiers and show how they do fig = 0 # make a new figure P.figure(figsize=(9, 9)) print "Processing %s problem..." % id for c in clfs: # tell which one we are doing print "Running %s classifier..." % (c) # make a new subplot for each classifier fig += 1 P.subplot(3, 3, fig) # plot the training points P.plot(ds.samples[ds.labels == 1, 0], ds.samples[ds.labels == 1, 1], "r.") P.plot(ds.samples[ds.labels == 0, 0], ds.samples[ds.labels == 0, 1], "b.") # select the clasifier clf = clfs[c] # enable saving of the values used for the prediction clf.states.enable('values') # train with the known points clf.train(ds) # run the predictions on the test values pre = clf.predict(feat_test.T) # if ridge, use the prediction, otherwise use the values if c == 'Ridge Regression' or c.startswith('k-Nearest'): # use the prediction res = N.asarray(pre) elif c == 'Logistic Regression': # get out the values used for the prediction res = N.asarray(clf.values) elif c in ['SMLR']: res = N.asarray(clf.values[:, 1]) elif c.startswith('GNB'): # Since probabilities are raw: for visualization lets # operate on logprobs and in comparison one to another res = clf.values[:, 1] - clf.values[:, 0] # Scale and position around 0.5 res = 0.5 + res/max(N.abs(res)) else: # get the probabilities from the svm res = N.asarray([(q[1][1] - q[1][0] + 1) / 2 for q in clf.probabilities]) # reshape the results z = N.asarray(res).reshape((npoints, npoints)) # plot the predictions P.pcolor(x, y, z, shading='interp') P.clim(0, 1) P.colorbar() P.contour(x, y, z, linewidths=1, colors='black', hold=True) P.axis('tight') # add the title P.title(c) if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() pymvpa-0.4.8/doc/examples/pymvpa.cfg000066400000000000000000000050631174541445200174320ustar00rootroot00000000000000### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Example configuration file to be used with PyMVPA # # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # This is a comprehensive list of all settings currently recognized by PyMVPA. # Users can add arbitrary additional settings, both in new and already existing # sections. [general] #debug = #verbose = #seed = 12345 [verbose] # comma-separated list of handlers, e.g. stdout #output = [error] #output = [warnings] # integer #bt = # integer #count = # comma-separated list of handlers, e.g. stdout #output = # Boolean (former: MVPA_NO_WARNINGS) suppress = no [debug] # comma-separated list of handlers, e.g. stdout #output = #metrics = # either to use custom (improved) exception handler to report # information about pymvpa useful during bug reporting #wtf = no [examples] interactive = yes [svm] # which SVM implementation to use by default: libsvm or shogun backend = libsvm [matplotlib] # override the default matplotlib's backend # backend = pdf [rpy] # to prevent stalled exectution of PyMVPA upon problems in R # session of R is always responding '1' whenever R asks for input. # 1 corresponds to "abort (with core dump, if enabled)". # Unfortunately such callback does not work reliably, thus disabled # by default interactive = yes [externals] # whether to really raise an exception when an externals test fails _and_ # raising an exception was requested raise exception = True # whether to issue warning when an externals test fails _and_ # issuing a warning was requested issue warning = True # whether to retest the availability of an external dependency, depite an # already present (but possibly outdated) test result retest = no # options starting with 'have ' indicate the presence or absence of external # dependencies #have scipy = no [tests] # whether to perform tests where the outcome is not deterministic labile = yes # if enabled, the unit tests will not run multiple classifiers on the same # test, which reduces the time to run a full test significantly. quick = no # if enabled, unit tests consuming lots of memory will not automatically run # as part of the main unittest battery lowmem = no # verbosity level of the unittest runner verbosity = 1 # scale SNR of simulated data more than 1 to reduce failures of labile tests snr scale = 1.0 [doc] # whether to enhance the docstrings with base class and state information pimp docstrings = yes pymvpa-0.4.8/doc/examples/searchlight.py000077500000000000000000000075031174541445200203100ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Searchlight Analysis on an fMRI Dataset ======================================= Example demonstrating a searchlight analysis on an fMRI dataset. """ from mvpa.suite import * def main(): """ Wrapped into a function call for easy profiling later on """ parser.usage = """\ %s [options] [] where labels+blocks is a text file that lists the class label and the associated block of each data sample/volume as a tuple of two integer values (separated by a single space). -- one tuple per line.""" \ % sys.argv[0] parser.option_groups = [opts.SVM, opts.KNN, opts.general, opts.common] # Set a set of available classifiers for this example opt.clf.choices=['knn', 'lin_nu_svmc', 'rbf_nu_svmc'] opt.clf.default='lin_nu_svmc' parser.add_options([opt.clf, opt.zscore]) (options, files) = parser.parse_args() if not len(files) in [3, 4]: parser.error("Please provide 3 or 4 files in the command line") sys.exit(1) verbose(1, "Loading data") # data filename dfile = files[0] # text file with labels and block definitions (chunks) cfile = files[1] # mask volume filename mfile = files[2] ofile = None if len(files)>=4: # outfile name ofile = files[3] # read conditions into an array (assumed to be two columns of integers) # TODO: We need some generic helper to read conditions stored in some # common formats verbose(2, "Reading conditions from file %s" % cfile) attrs = SampleAttributes(cfile) verbose(2, "Loading volume file %s" % dfile) data = NiftiDataset(samples=dfile, labels=attrs.labels, chunks=attrs.chunks, mask=mfile, dtype=N.float32) # do not try to classify baseline condition # XXX this is only valid for our haxby8 example dataset and should # probably be turned into a proper --baselinelabel option that can # be used for zscoring as well. data = data.selectSamples(data.labels != 0) if options.zscore: verbose(1, "Zscoring data samples") zscore(data, perchunk=True) if options.clf == 'knn': clf = kNN(k=options.knearestdegree) elif options.clf == 'lin_nu_svmc': clf = LinearNuSVMC(nu=options.svm_nu) elif options.clf == 'rbf_nu_svmc': clf = RbfNuSVMC(nu=options.svm_nu) else: raise ValueError, 'Unknown classifier type: %s' % `options.clf` verbose(3, "Using '%s' classifier" % options.clf) verbose(1, "Computing") verbose(3, "Assigning a measure to be CrossValidation") # compute N-1 cross-validation with the selected classifier in each sphere cv = CrossValidatedTransferError(TransferError(clf), NFoldSplitter(cvtype=options.crossfolddegree)) verbose(3, "Generating Searchlight instance") # contruct searchlight with 5mm radius # this assumes that the spatial pixdim values in the source NIfTI file # are specified in mm sl = Searchlight(cv, radius=options.radius) # run searchlight verbose(3, "Running searchlight on loaded data") results = sl(data) if not ofile is None: # map the result vector back into a nifti image rimg = data.map2Nifti(results) # save to file rimg.save(ofile) else: print results if __name__ == "__main__": main() pymvpa-0.4.8/doc/examples/searchlight_2d.py000077500000000000000000000103121174541445200206650ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Searchlight on fMRI data ======================== .. index:: searchlight, NIfTI The example shows how to run a searchlight analysis on the example fMRI dataset that is shipped with PyMVPA. As always, we first have to import PyMVPA. """ from mvpa.suite import * """As searchlight analyses are usually quite expensive in term of computational ressources, we are going to enable some progress output, to entertain us while we are waiting.""" # enable debug output for searchlight call if __debug__: debug.active += ["SLC"] """The next section simply loads the example dataset and performs some standard preprocessing steps on it.""" # # load PyMVPA example dataset # attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt')) dataset = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), labels=attr.labels, chunks=attr.chunks, mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz')) # # preprocessing # # do chunkswise linear detrending on dataset detrend(dataset, perchunk=True, model='linear') # only use 'rest', 'house' and 'scrambled' samples from dataset dataset = dataset.selectSamples( N.array([ l in [0,2,6] for l in dataset.labels], dtype='bool')) # zscore dataset relative to baseline ('rest') mean zscore(dataset, perchunk=True, baselinelabels=[0], targetdtype='float32') # remove baseline samples from dataset for final analysis dataset = dataset.selectSamples(N.array([l != 0 for l in dataset.labels], dtype='bool')) """But now for the interesting part: Next we define the measure that shall be computed for each sphere. Theoretically, this can be anything, but here we choose to compute a full leave-one-out cross-validation using a linear Nu-SVM classifier.""" # # Run Searchlight # # choose classifier clf = LinearNuSVMC() # setup measure to be computed by Searchlight # cross-validated mean transfer using an N-fold dataset splitter cv = CrossValidatedTransferError(TransferError(clf), NFoldSplitter()) """Finally, we run the searchlight analysis for three different radii, each time computing an error for each sphere. To achieve this, we simply use the :class:`~mvpa.measures.searchlight.Searchlight` class, which takes any :term:`processing object` and a radius as arguments. The :term:`processing object` has to compute the intended measure, when called with a dataset. The :class:`~mvpa.measures.searchlight.Searchlight` object will do nothing more than generating small datasets for each sphere, feeding it to the processing object and storing its result. After the errors are computed for all spheres, the resulting vector is then mapped back into the original fMRI dataspace and plotted.""" # setup plotting fig = 0 P.figure(figsize=(12,4)) for radius in [1,5,10]: # tell which one we are doing print "Running searchlight with radius: %i ..." % (radius) # setup Searchlight with a custom radius # radius has to be in the same unit as the nifti file's pixdim # property. sl = Searchlight(cv, radius=radius) # run searchlight on example dataset and retrieve error map sl_map = sl(dataset) # map sensitivity map into original dataspace orig_sl_map = dataset.mapReverse(N.array(sl_map)) masked_orig_sl_map = N.ma.masked_array(orig_sl_map, mask=orig_sl_map == 0) # make a new subplot for each classifier fig += 1 P.subplot(1,3,fig) P.title('Radius %i' % radius) P.imshow(masked_orig_sl_map[0], interpolation='nearest', aspect=1.25, cmap=P.cm.autumn) P.clim(0.5, 0.65) P.colorbar(shrink=0.6) if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() pymvpa-0.4.8/doc/examples/searchlight_dsm.py000077500000000000000000000050551174541445200211530ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ A searchlight computing a dissimilarity matrix measure ====================================================== .. index:: searchlight, cross-validation, dissimilarity matrix This example extends the minimal Searchlight example to use a dissimilarity matrix-based DatasetMetric to compute Searchlight-center significance. This is based on representational similarity analysis (RSA) as presented in :ref:`Kriegeskorte et al. (2008) `. First import all necessary parts of PyMVPA. """ from mvpa.suite import * """Create a small artificial dataset.""" # overcomplicated way to generate an example dataset ds = normalFeatureDataset(perlabel=10, nlabels=2, nchunks=2, nfeatures=10, nonbogus_features=[3, 7], snr=5.0) dataset = MaskedDataset(samples=ds.samples, labels=ds.labels, chunks=ds.chunks) """Create a dissimilarity matrix based on the labels of the data points in our test dataset. This will allow us to see if there is a correlation between any given searchlight sphere and the experimental conditions.""" # create dissimilarity matrix using the 'confusion' distance # metric dsm = DSMatrix(dataset.labels, 'confusion') """Now it only takes three lines for a searchlight analysis.""" # setup measure to be computed in each sphere (correlation # distance between dissimilarity matrix and the dissimilarities # of a particular searchlight sphere across experimental # conditions), N.B. in this example between-condition # dissimilarity is also pearson's r (i.e., correlation distance) dsmetric = DSMDatasetMeasure(dsm, 'pearson', 'pearson') # setup searchlight with 5 mm radius and measure configured above sl = Searchlight(dsmetric, radius=5) # run searchlight on dataset sl_map = sl(dataset) print 'Best performing sphere error:', max(sl_map) """ If this analysis is done on a fMRI dataset using `NiftiDataset` the resulting searchlight map (`sl_map`) can be mapped back into the original dataspace and viewed as a brain overlay. :ref:`Another example ` shows a typical application of this algorithm. .. Mention the fact that it also is a special `SensitivityAnalyzer` """ pymvpa-0.4.8/doc/examples/searchlight_minimal.py000077500000000000000000000054001174541445200220100ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Minimal Searchlight Example =========================== .. index:: searchlight, cross-validation The term :class:`~mvpa.measures.searchlight.Searchlight` refers to an algorithm that runs a scalar :class:`~mvpa.measures.base.DatasetMeasure` on all possible spheres of a certain size within a dataset (that provides information about distances between feature locations). The measure typically computed is a cross-validated transfer error (see :ref:`CrossValidatedTransferError `). The idea to use a searchlight as a sensitivity analyzer on fMRI datasets stems from :ref:`Kriegeskorte et al. (2006) `. A searchlight analysis is can be easily performed. This examples shows a minimal draft of a complete analysis. First import a necessary pieces of PyMVPA -- this time each bit individually. """ from mvpa.datasets.masked import MaskedDataset from mvpa.datasets.splitters import OddEvenSplitter from mvpa.clfs.svm import LinearCSVMC from mvpa.clfs.transerror import TransferError from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.measures.searchlight import Searchlight from mvpa.misc.data_generators import normalFeatureDataset """For the sake of simplicity, let's use a small artificial dataset.""" # overcomplicated way to generate an example dataset ds = normalFeatureDataset(perlabel=10, nlabels=2, nchunks=2, nfeatures=10, nonbogus_features=[3, 7], snr=5.0) dataset = MaskedDataset(samples=ds.samples, labels=ds.labels, chunks=ds.chunks) """Now it only takes three lines for a searchlight analysis.""" # setup measure to be computed in each sphere (cross-validated # generalization error on odd/even splits) cv = CrossValidatedTransferError( TransferError(LinearCSVMC()), OddEvenSplitter()) # setup searchlight with 5 mm radius and measure configured above sl = Searchlight(cv, radius=5) # run searchlight on dataset sl_map = sl(dataset) print 'Best performing sphere error:', min(sl_map) """ If this analysis is done on a fMRI dataset using `NiftiDataset` the resulting searchlight map (`sl_map`) can be mapped back into the original dataspace and viewed as a brain overlay. :ref:`Another example ` shows a typical application of this algorithm. .. Mention the fact that it also is a special `SensitivityAnalyzer` """ pymvpa-0.4.8/doc/examples/sensanas.py000077500000000000000000000111041174541445200176160ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Sensitivity Measure =================== .. index:: sensitivity Run some basic and meta sensitivity measures on the example fMRI dataset that comes with PyMVPA and plot the computed featurewise measures for each. The generated figure shows sensitivity maps computed by six sensitivity analyzers. We start by loading PyMVPA and the example fMRI dataset. """ from mvpa.suite import * # load PyMVPA example dataset attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt')) dataset = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), labels=attr.labels, chunks=attr.chunks, mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz')) """As with classifiers it is easy to define a bunch of sensitivity analyzers. It is usually possible to simply call `getSensitivityAnalyzer()` on any classifier to get an instance of an appropriate sensitivity analyzer that uses this particular classifier to compute and extract sensitivity scores. """ # define sensitivity analyzer sensanas = { 'a) ANOVA': OneWayAnova(transformer=N.abs), 'b) Linear SVM weights': LinearNuSVMC().getSensitivityAnalyzer( transformer=N.abs), 'c) I-RELIEF': IterativeRelief(transformer=N.abs), 'd) Splitting ANOVA (odd-even)': SplitFeaturewiseMeasure(OneWayAnova(transformer=N.abs), OddEvenSplitter()), 'e) Splitting SVM (odd-even)': SplitFeaturewiseMeasure( LinearNuSVMC().getSensitivityAnalyzer(transformer=N.abs), OddEvenSplitter()), 'f) I-RELIEF Online': IterativeReliefOnline(transformer=N.abs), 'g) Splitting ANOVA (nfold)': SplitFeaturewiseMeasure(OneWayAnova(transformer=N.abs), NFoldSplitter()), 'h) Splitting SVM (nfold)': SplitFeaturewiseMeasure( LinearNuSVMC().getSensitivityAnalyzer(transformer=N.abs), NFoldSplitter()), } """Now, we are performing some a more or less standard preprocessing steps: detrending, selecting a subset of the experimental conditions, normalization of each feature to a standard mean and variance.""" # do chunkswise linear detrending on dataset detrend(dataset, perchunk=True, model='linear') # only use 'rest', 'shoe' and 'bottle' samples from dataset dataset = dataset.selectSamples( N.array([ l in [0,3,7] for l in dataset.labels], dtype='bool')) # zscore dataset relative to baseline ('rest') mean zscore(dataset, perchunk=True, baselinelabels=[0], targetdtype='float32') # remove baseline samples from dataset for final analysis dataset = dataset.selectSamples(N.array([l != 0 for l in dataset.labels], dtype='bool')) """Finally, we will loop over all defined analyzers and let them compute the sensitivity scores. The resulting vectors are then mapped back into the dataspace of the original fMRI samples, which are then plotted.""" fig = 0 P.figure(figsize=(14, 8)) keys = sensanas.keys() keys.sort() for s in keys: # tell which one we are doing print "Running %s ..." % (s) # compute sensitivies # I-RELIEF assigns zeros, which corrupts voxel masking for pylab's # imshow, so adding some epsilon :) smap = sensanas[s](dataset)+0.00001 # map sensitivity map into original dataspace orig_smap = dataset.mapReverse(smap) masked_orig_smap = N.ma.masked_array(orig_smap, mask=orig_smap == 0) # make a new subplot for each classifier fig += 1 P.subplot(3, 3, fig) P.title(s) P.imshow(masked_orig_smap[0], interpolation='nearest', aspect=1.25, cmap=P.cm.autumn) # uniform scaling per base sensitivity analyzer if s.count('ANOVA'): P.clim(0, 30) elif s.count('SVM'): P.clim(0, 0.055) else: pass P.colorbar(shrink=0.6) if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() """ Output of the example analysis: .. image:: ../pics/ex_sensanas.* :align: center :alt: Various sensitivity analysis results """ pymvpa-0.4.8/doc/examples/smellit.py000077500000000000000000000057251174541445200174700ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Simple Data-Exploration ======================= Example showing some possibilities of data exploration (i.e. to 'smell' data). """ import numpy as N import pylab as P import os from mvpa import pymvpa_dataroot from mvpa.misc.plot import plotFeatureHist, plotSamplesDistance from mvpa import cfg from mvpa.datasets.nifti import NiftiDataset from mvpa.misc.io import SampleAttributes from mvpa.datasets.miscfx import zscore, detrend # load example fmri dataset attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt')) ds = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), labels=attr.labels, chunks=attr.chunks, mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz')) # only use the first 5 chunks to save some cpu-cycles ds = ds.selectSamples(ds.chunks < 5) # take a look at the distribution of the feature values in all # sample categories and chunks plotFeatureHist(ds, perchunk=True, bins=20, normed=True, xlim=(0, ds.samples.max())) if cfg.getboolean('examples', 'interactive', True): P.show() # next only works with floating point data ds.setSamplesDType('float') # look at sample similiarity # Note, the decreasing similarity with increasing temporal distance # of the samples P.subplot(121) plotSamplesDistance(ds, sortbyattr='chunks') P.title('Sample distances (sorted by chunks)') # similar distance plot, but now samples sorted by their # respective labels, i.e. samples with same labels are plotted # in adjacent columns/rows. # Note, that the first and largest group corresponds to the # 'rest' condition in the dataset P.subplot(122) plotSamplesDistance(ds, sortbyattr='labels') P.title('Sample distances (sorted by labels)') if cfg.getboolean('examples', 'interactive', True): P.show() # z-score features individually per chunk print 'Detrending data' detrend(ds, perchunk=True, model='regress', polyord=2) print 'Z-Scoring data' zscore(ds) P.subplot(121) plotSamplesDistance(ds, sortbyattr='chunks') P.title('Distances: z-scored, detrended (sorted by chunks)') P.subplot(122) plotSamplesDistance(ds, sortbyattr='labels') P.title('Distances: z-scored, detrended (sorted by labels)') if cfg.getboolean('examples', 'interactive', True): P.show() # XXX add some more, maybe show effect of preprocessing """ Outputs of the example script. Data prior to preprocessing .. image:: ../pics/ex_smellit2.* :align: center :alt: Data prior preprocessing Data after minimal preprocessing .. image:: ../pics/ex_smellit3.* :align: center :alt: Data after z-scoring and detrending """ pymvpa-0.4.8/doc/examples/smlr.py000077500000000000000000000064121174541445200167660ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Compare SMLR to Linear SVM Classifier ===================================== .. index:: SMLR, SVM Runs both classifiers on the the same dataset and compare their performance. This example also shows an example usage of confusion matrices and how two classifers can be combined. """ from mvpa.suite import * if __debug__: debug.active.append('SMLR_') # features of sample data print "Generating samples..." nfeat = 10000 nsamp = 100 ntrain = 90 goodfeat = 10 offset = .5 # create the sample datasets samp1 = N.random.randn(nsamp,nfeat) samp1[:,:goodfeat] += offset samp2 = N.random.randn(nsamp,nfeat) samp2[:,:goodfeat] -= offset # create the pymvpa training dataset from the labeled features patternsPos = Dataset(samples=samp1[:ntrain,:], labels=1) patternsNeg = Dataset(samples=samp2[:ntrain,:], labels=0) trainpat = patternsPos + patternsNeg # create patters for the testing dataset patternsPos = Dataset(samples=samp1[ntrain:,:], labels=1) patternsNeg = Dataset(samples=samp2[ntrain:,:], labels=0) testpat = patternsPos + patternsNeg # set up the SMLR classifier print "Evaluating SMLR classifier..." smlr = SMLR(fit_all_weights=True) # enable saving of the values used for the prediction smlr.states.enable('values') # train with the known points smlr.train(trainpat) # run the predictions on the test values pre = smlr.predict(testpat.samples) # calculate the confusion matrix smlr_confusion = ConfusionMatrix( labels=trainpat.uniquelabels, targets=testpat.labels, predictions=pre) # now do the same for a linear SVM print "Evaluating Linear SVM classifier..." lsvm = LinearNuSVMC(probability=1) # enable saving of the values used for the prediction lsvm.states.enable('values') # train with the known points lsvm.train(trainpat) # run the predictions on the test values pre = lsvm.predict(testpat.samples) # calculate the confusion matrix lsvm_confusion = ConfusionMatrix( labels=trainpat.uniquelabels, targets=testpat.labels, predictions=pre) # now train SVM with selected features print "Evaluating Linear SVM classifier with SMLR's features..." keepInd = (N.abs(smlr.weights).mean(axis=1)!=0) newtrainpat = trainpat.selectFeatures(keepInd, sort=False) newtestpat = testpat.selectFeatures(keepInd, sort=False) # train with the known points lsvm.train(newtrainpat) # run the predictions on the test values pre = lsvm.predict(newtestpat.samples) # calculate the confusion matrix lsvm_confusion_sparse = ConfusionMatrix( labels=newtrainpat.uniquelabels, targets=newtestpat.labels, predictions=pre) print "SMLR Percent Correct:\t%g%% (Retained %d/%d features)" % \ (smlr_confusion.percentCorrect, (smlr.weights!=0).sum(), N.prod(smlr.weights.shape)) print "linear-SVM Percent Correct:\t%g%%" % \ (lsvm_confusion.percentCorrect) print "linear-SVM Percent Correct (with %d features from SMLR):\t%g%%" % \ (keepInd.sum(), lsvm_confusion_sparse.percentCorrect) pymvpa-0.4.8/doc/examples/som.py000077500000000000000000000102551174541445200166070ustar00rootroot00000000000000#!/usr/bin/env python #emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- #ex: set sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Self-organizing Maps ==================== .. index:: mapper, self-organizing map, SOM, SimpleSOMMapper This is a demonstration of how a self-organizing map (SOM), also known as a Kohonen network, can be used to map high-dimensional data into a two-dimensional representation. For the sake of an easy visualization 'high-dimensional' in this case is 3D. In general, SOMs might be useful for visualizing high-dimensional data in terms of its similarity structure. Especially large SOMs (i.e. with large number of Kohonen units) are known to perform mappings that preserve the topology of the original data, i.e. neighboring data points in input space will also be represented in adjacent locations on the SOM. The following code shows the 'classic' color mapping example, i.e. the SOM will map a number of colors into a rectangular area. """ from mvpa.suite import * """ First, we define some colors as RGB values from the interval (0,1), i.e. with white being (1, 1, 1) and black being (0, 0, 0). Please note, that a substantial proportion of the defined colors represent variations of 'blue', which are supposed to be represented in more detail in the SOM. """ colors = [[0., 0., 0.], [0., 0., 1.], [0., 0., 0.5], [0.125, 0.529, 1.0], [0.33, 0.4, 0.67], [0.6, 0.5, 1.0], [0., 1., 0.], [1., 0., 0.], [0., 1., 1.], [1., 0., 1.], [1., 1., 0.], [1., 1., 1.], [.33, .33, .33], [.5, .5, .5], [.66, .66, .66]] # store the names of the colors for visualization later on color_names = \ ['black', 'blue', 'darkblue', 'skyblue', 'greyblue', 'lilac', 'green', 'red', 'cyan', 'violet', 'yellow', 'white', 'darkgrey', 'mediumgrey', 'lightgrey'] """ Since we are going to use a mapper, we will put the color vectors into a dataset. To be able to do this, we will assign an arbitrary label, although it will not be used at all, since this SOM mapper uses an unsupervised training algorithm. """ ds = Dataset(samples=colors, labels=1) """ Now we can instantiate the mapper. It will internally use a so-called Kohonen layer to map the data onto. We tell the mapper to use a rectangular layer with 20 x 30 units. This will be the output space of the mapper. Additionally, we tell it to train the network using 400 iterations and to use custom learning rate. """ som = SimpleSOMMapper((20, 30), 400, learning_rate=0.05) """ Finally, we train the mapper with the previously defined 'color' dataset. """ som.train(ds) """ Each unit in the Kohonen layer can be treated as a pointer into the high-dimensional input space, that can be queried to inspect which input subspaces the SOM maps onto certain sections of its 2D output space. The color-mapping generated by this example's SOM can be shown with a single matplotlib call: """ P.imshow(som.K, origin='lower') """ And now, let's take a look onto which coordinates the initial training prototypes were mapped to. The get those coordinates we can simply feed the training data to the mapper and plot the output. """ mapped = som(colors) P.title('Color SOM') # SOM's kshape is (rows x columns), while matplotlib wants (X x Y) for i, m in enumerate(mapped): P.text(m[1], m[0], color_names[i], ha='center', va='center', bbox=dict(facecolor='white', alpha=0.5, lw=0)) """ The text labels of the original training colors will appear at the 'mapped' locations in the SOM -- and should match with the underlying color. """ # show the figure if cfg.getboolean('examples', 'interactive', True): P.show() """ The following figure shows an exemplary solution of the SOM mapping of the 3D color-space onto the 2D SOM node layer: .. image:: ../pics/ex_som.* :align: center :alt: Color-space mapping by a self-organizing map. """ pymvpa-0.4.8/doc/examples/start_easy.py000077500000000000000000000033701174541445200201670ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Tiny Example of a Full Cross-Validation ======================================= Very, very simple example showing a complete cross-validation procedure with no fancy additions whatsoever. """ # get PyMVPA running from mvpa.suite import * # load PyMVPA example dataset attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt')) dataset = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), labels=attr.labels, chunks=attr.chunks, mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz')) # do chunkswise linear detrending on dataset detrend(dataset, perchunk=True, model='linear') # zscore dataset relative to baseline ('rest') mean zscore(dataset, perchunk=True, baselinelabels=[0], targetdtype='float32') # select class 1 and 2 for this demo analysis # would work with full datasets (just a little slower) dataset = dataset.selectSamples( N.array([l in [1, 2] for l in dataset.labels], dtype='bool')) # setup cross validation procedure, using SMLR classifier cv = CrossValidatedTransferError( TransferError(SMLR()), OddEvenSplitter()) # and run it error = cv(dataset) print "Error for %i-fold cross-validation on %i-class problem: %f" \ % (len(dataset.uniquechunks), len(dataset.uniquelabels), error) pymvpa-0.4.8/doc/examples/svdclf.py000077500000000000000000000063541174541445200172770ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Classification of SVD-mapped Datasets ===================================== .. index:: mapper, SVD, MappedClassifier Demonstrate the usage of a dataset mapper performing data projection onto singular value components within a cross-validation -- for *any* clasifier. """ from mvpa.suite import * if __debug__: debug.active += ["CROSSC"] # # load PyMVPA example dataset # attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt')) dataset = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), labels=attr.labels, chunks=attr.chunks, mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz')) # # preprocessing # # do chunkswise linear detrending on dataset detrend(dataset, perchunk=True, model='linear') # only use 'rest', 'cats' and 'scissors' samples from dataset dataset = dataset.selectSamples( N.array([ l in [0,4,5] for l in dataset.labels], dtype='bool')) # zscore dataset relative to baseline ('rest') mean zscore(dataset, perchunk=True, baselinelabels=[0], targetdtype='float32') # remove baseline samples from dataset for final analysis dataset = dataset.selectSamples(N.array([l != 0 for l in dataset.labels], dtype='bool')) print dataset # Specify the base classifier to be used # To parametrize the classifier to be used # Clf = lambda *args:LinearCSVMC(C=-10, *args) # Just to assign a particular classifier class Clf = LinearCSVMC # define some classifiers: a simple one and several classifiers with # built-in SVDs clfs = [('All orig.\nfeatures (%i)' % dataset.nfeatures, Clf()), ('All Comps\n(%i)' % (dataset.nsamples \ - (dataset.nsamples / len(dataset.uniquechunks)),), MappedClassifier(Clf(), SVDMapper())), ('First 5\nComp.', MappedClassifier(Clf(), SVDMapper(selector=range(5)))), ('First 30\nComp.', MappedClassifier(Clf(), SVDMapper(selector=range(30)))), ('Comp.\n6-30', MappedClassifier(Clf(), SVDMapper(selector=range(5,30))))] # run and visualize in barplot results = [] labels = [] for desc, clf in clfs: print desc cv = CrossValidatedTransferError( TransferError(clf), NFoldSplitter(), enable_states=['results']) cv(dataset) results.append(cv.results) labels.append(desc) plotBars(results, labels=labels, title='Linear C-SVM classification (cats vs. scissors)', ylabel='Mean classification error (N-1 cross-validation, 12-fold)', distance=0.5) if cfg.getboolean('examples', 'interactive', True): P.show() """ Output of the example analysis: .. image:: ../pics/ex_svdclf.* :align: center :alt: Generalization performance on the selected PCs. """ pymvpa-0.4.8/doc/examples/topo_plot.py000077500000000000000000000033641174541445200200330ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ Generating Topography plots =========================== Example demonstrating a topography plot.""" from mvpa.suite import * # Sanity check if we have griddata available externals.exists("griddata", raiseException=True) # EEG example splot P.subplot(1, 2, 1) # load the sensor information from their definition file. # This file has sensor names, as well as their 3D coordinates sensors=XAVRSensorLocations(os.path.join(pymvpa_dataroot, 'xavr1010.dat')) # make up some artifical topography # 'enable' to channels, all others set to off ;-) topo = N.zeros(len(sensors.names)) topo[sensors.names.index('O1')] = 1 topo[sensors.names.index('F4')] = 1 # plot with sensor locations shown plotHeadTopography(topo, sensors.locations(), plotsensors=True) # MEG example plot P.subplot(1, 2, 2) # load MEG sensor locations sensors=TuebingenMEGSensorLocations( os.path.join(pymvpa_dataroot, 'tueb_meg_coord.xyz')) # random values this time topo = N.random.randn(len(sensors.names)) # plot without additional interpolation plotHeadTopography(topo, sensors.locations(), interpolation='nearest') if cfg.getboolean('examples', 'interactive', True): # show all the cool figures P.show() """ The ouput of the provided example should look like .. image:: ../pics/ex_topo_plot.* :align: center :alt: Topography plot of MEG data """ pymvpa-0.4.8/doc/faq.rst000066400000000000000000000341011174541445200151130ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_faq: ************************** Frequently Asked Questions ************************** General ======= .. index:: optimization It is sloooooow. What can I do? ------------------------------- Have you tried running the Python interpreter with `-O`? PyMVPA provides lots of debug messages with information that is computed in addition to the work that really has to be done. However, if Python is running in *optimized* mode, PyMVPA will not waste time on this and really tries to be fast. If you are already running it optimized, then maybe you are doing something really demanding... I am tired of writing these endless import blocks. Any alternative? ------------------------------------------------------------------- Sure. Instead of individually importing all pieces that are required by a script, you can import them all at once. A simple: >>> import mvpa.suite as mvpa makes everything directly accessible through the mvpa namespace, e.g. `mvpa.datasets.base.Dataset` becomes `mvpa.Dataset`. Really lazy people can even do: >>> from mvpa.suite import * However, as always there is a price to pay for this convenience. In contrast to the individual imports there is some initial performance and memory cost. In the worst case you'll get all external dependencies loaded (e.g. a full R session), just because you have them installed. Therefore, it might be better to limit this use to case where individual key presses matter and use individual imports for production scripts. I feel like I want to contribute something, do you mind? -------------------------------------------------------- Not at all! If you think there is something that is not well explained in the documentation, send us an improvement. If you implemented a new algorithm using PyMVPA that you want to share, please share. If you have an idea for some other improvement (e.g. speed, functionality), but you have no time/cannot/do not want to implement it yourself, please post your idea to the PyMVPA mailing list. .. index:: Git, development I want to develop a new feature for PyMVPA. How can I do it efficiently? ------------------------------------------------------------------------ The best way is to use Git for both, getting the latest code from the repository and preparing the patch. Here is a quick sketch of the workflow. First get the latest code:: git clone git://github.com/PyMVPA/PyMVPA.git This will create a new `PyMVPA` subdirectory, that contains the complete repository. Enter this directory and run `gitk --all` to browse the full history and *all* branches that have ever been published. You can run:: git fetch origin in this directory at any time to get the latest changes from the main repository. Next, you have to decide what you want to base your new feature on. In the simplest case this is the `master` branch (the one that contains the code that will become the next release). Creating a local branch based on the (remote) `master` branch is:: git checkout -b my_hack origin/master Now you are ready to start hacking. You are free to use all powers of Git (and yours, of course). You can do multiple commits, fetch new stuff from the repository, and merge it into your local branch, ... To get a feeling what can be done, take a look `very short description of Git`_ or `a more comprehensive Git tutorial`_. .. _very short description of Git: http://sysmonblog.co.uk/misc/git_by_example/ .. _a more comprehensive Git tutorial: http://www-cs-students.stanford.edu/~blynn/gitmagic/ When you are done with the new feature, you can prepare the patch for inclusion into PyMVPA. If you have done multiple commits you might want to squash them into a single patch containing the new feature. You can do this with `git-rebase`. In recent version `git-rebase` has an option `--interactive`, which allows you to easily pick, squash or even further edit any of the previous commits you have made. Rebase your local branch against the remote branch you started hacking on (`origin/master` in this example):: git rebase --interactive origin/master When you are done, you can generate the final patch file:: git-format-patch origin/master Above command will generate a file for each commit in you local branch that is not yet part of `origin/master`. The patch files can then be easily emailed. The manual is quite insufficient. When will you improve it? ----------------------------------------------------------- Writing a manual can be a tricky task if you already know the details and have to imagine what might be the most interesting information for someone who is just starting. If you feel that something is missing which has cost you some time to figure out, please drop us a note and we will add it as soon as possible. If you have developed some code snippets to demonstrate some feature or non-trivial behavior (maybe even trivial ones, which are not as obvious as they should be), please consider sharing this snippet with us and we will put it into the example collection or the manual. Thanks! Data import, export and storage =============================== What file formats are understood by PyMVPA? ------------------------------------------- Please see the :ref:`data_formats` section. What if there is no special file format for some particular datatype? --------------------------------------------------------------------- With the :class:`~mvpa.misc.io.hamster.Hamster` class, PyMVPA supports storing *any* kind of serializable data into a (compressed) file (see the class documentation for a trivial usage example). The facility is particularly useful for storing any number of intermediate analysis results, e.g. for post-processing. Data preprocessing ================== .. index:: invariant features Is there an easy way to remove invariant features from a dataset? ----------------------------------------------------------------- You might have to deal with invariant features in case like an fMRI dataset, where the *brain mask* is slightly larger than the thresholded fMRI timeseries image. Such invariant features (i.e. features with zero variance) are sometime a problem, e.g. they will lead to numerical difficulties when z-scoring the features of a dataset (i.e. division by zero). The `mvpa.datasets.miscfx` module provides a convenience function `removeInvariantFeatures()` that strips such features from a dataset. .. index:: block-averaging How can I do :term:`block-averaging` of my block-design fMRI dataset? --------------------------------------------------------------------- The easiest way is to use a mapper to transform/average the respective samples. Suppose you have a dataset: >>> dataset = normalFeatureDataset() >>> dataset Averaging all samples with the same label in each chunk individually is done by applying a samples mapper to the dataset. >>> from mvpa.mappers.samplegroup import SampleGroupMapper >>> from mvpa.misc.transformers import FirstAxisMean >>> >>> m = SampleGroupMapper(fx=FirstAxisMean) >>> mapped_dataset = dataset.applyMapper(samplesmapper=m) >>> mapped_dataset `SampleGroupMapper` applies a function to every group of samples in each chunk individually. Using `FirstAxisMean` as function, therefore yields one sample of each label per chunk. Data analysis ============= .. index:: feature selection, feature_ids How do I know which features were finally selected by a classifier doing feature selection? ------------------------------------------------------------------------------------------- All classifier possess a state variable `feature_ids`. When enable, the classifier stores the ids of all features that were finally used to train the classifier. >>> clf = FeatureSelectionClassifier( ... kNN(k=5), ... SensitivityBasedFeatureSelection( ... SMLRWeights(SMLR(lm=1.0), transformer=Absolute), ... FixedNElementTailSelector(1, tail='upper', mode='select')), ... enable_states = ['feature_ids']) >>> clf.train(dataset) >>> final_dataset = dataset.selectFeatures(clf.feature_ids) >>> final_dataset In the above code snippet a kNN classifier is defined, that performs a feature selection step prior training. Features are selected according to the absolute magnitude of the weights of a SMLR classifier trained on the data (same training data that will also go into kNN). Absolute SMLR weights are used for feature selection as large negative values also indicate important information. Finally, the classifier is configured to select the single most important feature (given the SMLR weights). After enabling the `feature_ids` state, the classifier provides the desired information, that can e.g. be applied to generate a stripped dataset for an analysis of the similarity structure. .. index:: sensitivity, cross-validation How do I extract sensitivities from a classifier used within a cross-validation? -------------------------------------------------------------------------------- .. The answer depends on size of the classification problem and the used classifier. If you can afford to keep a copy of the trained classifier for each data split, the most elegant solution is probably a :class:`~mvpa.clfs.meta.SplitClassifier`... ...BUT no yet :class:`~mvpa.algorithms.cvtranserror.CrossValidatedTransferError` provides an interface to access any classifier-related information: `harvest_attribs`. Harvesting the sensitivities computed by all classifiers (without recomputing them again) looks like this: >>> cv = CrossValidatedTransferError( ... TransferError(SMLR()), ... OddEvenSplitter(), ... harvest_attribs=\ ... ['transerror.clf.getSensitivityAnalyzer(force_training=False)()']) >>> merror = cv(dataset) >>> sensitivities = cv.harvested.values()[0] >>> N.array(sensitivities).shape == (2, dataset.nfeatures) True First, we define an instance of :class:`~mvpa.algorithms.cvtranserror.CrossValidatedTransferError` that uses an SMLR_ classifier to perform the cross-validation on odd-even splits of a dataset. The important piece is the definition of the `harvest_attribs`. It takes a list of code snippets that will be executed in the local context of the cross-validation function. The :class:`~mvpa.clfs.transerror.TransferError` instance used to train and test the classifier on each split is available via `transerror`. The rest is easy: :class:`~mvpa.clfs.transerror.TransferError` provides access to its classifier and any classifier can in turn generate an appropriate :class:`~mvpa.measures.base.Sensitivity` instance via `getSensitivityAnalyzer()`. This generator method takes additional arguments to the constructor of the :class:`mvpa.measures.base.Sensitivity` class. In this case we want to prevent retraining the classifiers, as they will be trained anyway by the :class:`~mvpa.clfs.transerror.TransferError` instance they belong to. The return values of all code snippets defined in `harvest_attribs` are available in the `harvested` state variable. `harvested` is a dictionary where the keys are the code snippets used to compute the value. As the key in this case is pretty long, we simply take the first (and only) value from the dictionary. The value is actually a list of sensitivity vectors, one per split. .. _SMLR : api/mvpa.clfs.smlr.SMLR-class.html .. _faq_literal_labels: Can PyMVPA deal with literal class labels? ------------------------------------------ Yes and no. In general the classifiers wrapped or implemented in PyMVPA are not capable of handling literal labels, some even might require binary labels. However, PyMVPA datasets provide functionality to map any set of literal labels to a corresponding set of numerical labels. Let's take a look: >>> # invent some samples (arbitrary in this example) >>> samples = N.random.randn(3).reshape(3,1) First we will construct a Dataset the usual way (3 samples with unique numerical labels, all in one chunk: >>> Dataset(samples=samples, labels=range(3), chunks=1) Now, we are trying to create the same dataset using literal labels: >>> # now create the same dataset using literal labels >>> ds = Dataset(samples=samples, ... labels=['one', 'two', 'three'], ... chunks=1) >>> ds.labels[0] 'one' This approach simply stored the literal labels in the dataset and will most likely lead to unpredictable behavior of classifiers that cannot handle them. A more flexible approach is to let the dataset map the literal labels to numerical ones: >>> ds = Dataset(samples=samples, ... labels=['one', 'two', 'three'], ... chunks=1, ... labels_map=True) >>> ds >>> ds.labels[0] 0 >>> for k in sorted(ds.labels_map.keys()): ... print k, ds.labels_map[k] one 0 three 1 two 2 With this approach the labels stored in the dataset are now numerical. However, the mapping between literal and numerical labels is somewhat arbitrary. If a fixed mapping is possible or intended (e.g. same mapping for multiple dataset), the mapping can be set explicitly: >>> ds = Dataset(samples=samples, ... labels=['one', 'two', 'three'], ... chunks=1, ... labels_map={'one': 1, 'two': 2, 'three': 3}) >>> for k in sorted(ds.labels_map.keys()): ... print k, ds.labels_map[k] one 1 three 3 two 2 PyMVPA will use the labels mapping to display literal instead of numerical labels e.g. in confusion matrices. pymvpa-0.4.8/doc/featsel.rst000066400000000000000000000242261174541445200157760ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. index:: feature selection .. _chap_featsel: ***************** Feature Selection ***************** *This section has been contributed by James M. Hughes.* It is often the case in machine learning problems that we wish to reduce a feature space of high dimensionality into something more manageable by selecting only those features that contribute most to classification performance. Feature selection methods attempt to achieve this goal in an algorithmic fashion. .. index:: FeatureSelectionClassifier PyMVPA's flexible framework allows various feature selection methods to take place within a small block of code. :class:`~mvpa.clfs.meta.FeatureSelectionClassifier` extends the basic classifier framework to allow for the use of arbitrary methods of feature selection according to whatever ranking metric, feature selection criteria, and stopping criterion the user chooses for a given application. Examples of the code/classification algorithms presented here can be found in `mvpa/clfs/warehouse.py`_. More formally, a :class:`~mvpa.clfs.meta.FeatureSelectionClassifier` is a meta-classifier. That is, it is not a classifier itself -- it can take any *slave* :class:`~mvpa.clfs.base.Classifier`, perform some feature selection in advance, select those features, and then train the provided *slave* :class:`~mvpa.clfs.base.Classifier` on those features. Externally, however, it looks like a :class:`~mvpa.clfs.base.Classifier`, in that it fulfills the specialization of the Classifier base class. The following are the relevant arguments to the constructor of such a :class:`~mvpa.clfs.base.Classifier`: `clf`: :class:`~mvpa.clfs.base.Classifier` classifier based on which mask classifiers is created `feature_selection`: FeatureSelection_ whatever feature selection is considered best `testdataset`: :class:`~mvpa.datasets.base.Dataset` (optional) dataset which would be given on call to feature_selection .. index:: FeatureSelection Let us turn out attention to the second argument, FeatureSelection_. As noted above, this feature selection can be arbitrary and should be chosen appropriately for the task at hand. For example, we could perform a one-way ANOVA statistic to select features, then keep only the most important 5% of them. It is crucial to note that, in PyMVPA, the way in which features are selected (in this example by keeping only 5% of them) is wholly independent of the way features are ranked (in this example, by using a one-way ANOVA). Feature selection using this method could be accomplished using the following code (from `mvpa/clfs/warehouse.py`_): >>> from mvpa.suite import * >>> FeatureSelection = SensitivityBasedFeatureSelection( ... OneWayAnova(), ... FractionTailSelector(0.05, mode='select', tail='upper')) A more interesting analysis is one in which we use the weights (hyperplane coefficients) to rank features. This allows us to use the same classifier to train the selected features as we used to select them: .. here we'll put the warehouse.py example of linear svm weights from yarik's email >>> sample_linear_svm = clfswh['linear', 'svm'][0] >>> clf = \ ... FeatureSelectionClassifier( ... sample_linear_svm, ... SensitivityBasedFeatureSelection( ... sample_linear_svm.getSensitivityAnalyzer(transformer=Absolute), ... FractionTailSelector(0.05, mode='select', tail='upper')), ... descr="LinSVM on 5%(SVM)") It bears mentioning at this point that caution must be exercised when selecting features. The process of feature selection must be performed on an independent training dataset: it is not possible to select features using the entire dataset, re-train a classifier on a subset of the original data (but using only the selected features) and then test on a held-out testing dataset. This results in an obvious positive bias in classification performance. PyMVPA allows for easy dataset splitting, however, so creating independent training and testing datasets is easily accomplished, for instance using an :class:`~mvpa.datasets.splitters.NFoldSplitter`, :class:`~mvpa.datasets.splitters.OddEvenSplitter`, etc. .. fill in end of last paragraph with suggestions for how to take in an entire original dataset and split it: should we just do a cross-validated outer loop that uses multiple training/testing splits and does RFE on each of these splits? .. index:: recursive feature selection, RFE .. _recursive_feature_elimination: Recursive Feature Elimination ============================= Recursive feature elimination (RFE_, applied to fMRI data in (:ref:`Hanson et al., 2008 `)) is a technique that falls under the larger umbrella of feature selection. Recursive feature elimination specifically attempts to reduce the number of selected features used for classification in the following way: * A classifier is trained on a subset of the data and features are ranked according to an arbitrary metric. * Some amount of those features is either selected or discarded according to a pre-selected rule. * The classifier is retrained and features are once again ranked; this process continues until some criterion determined \textit{a priori} (such as classification error) is reached. * One or more classifiers trained only on the final set of selected features are used on a generalization dataset and performance is calculated. PyMVPA's flexible framework allows each of these steps to take place within a small block of code. To actually perform recursive feature elimination, we consider two separate analysis scenarios that deal with a pre-selected training dataset: * We split the training dataset into an arbitrary number of independent datasets and perform RFE on each of these; the sensitivity analysis of features is performed independently for each split and features are selected based on those independent measures. * We split the training dataset into an arbitrary number of independent datasets (as before), but we average the feature sensitivities and select which features to prune/select based on that one average measure. .. index:: SplitClassifier We will concentrate on the second approach. The following code can be used to perform such an analysis: >>> rfesvm_split = SplitClassifier(LinearCSVMC()) >>> clf = \ ... FeatureSelectionClassifier( ... clf = LinearCSVMC(), ... # on features selected via RFE ... feature_selection = RFE( ... # based on sensitivity of a clf which does splitting internally ... sensitivity_analyzer=rfesvm_split.getSensitivityAnalyzer(), ... transfer_error=ConfusionBasedError( ... rfesvm_split, ... confusion_state="confusion"), ... # and whose internal error we use ... feature_selector=FractionTailSelector( ... 0.2, mode='discard', tail='lower'), ... # remove 20% of features at each step ... update_sensitivity=True), ... # update sensitivity at each step ... descr='LinSVM+RFE(splits_avg)' ) The code above introduces the :class:`~mvpa.clfs.meta.SplitClassifier`, which in this case is yet another *meta-classifier* that takes in a :class:`~mvpa.clfs.base.Classifier` (in this case a LinearCSVMC_) and an arbitrary :class:`~mvpa.datasets.splitters.Splitter` object, so that the dataset can be split in whatever way the user desires. Prior to training, the :class:`~mvpa.clfs.meta.SplitClassifier` splits the training dataset, dedicates a separate classifier to each split, trains each on the training part of the split, and then computes transfer error on the testing part of the split. If a :class:`~mvpa.clfs.meta.SplitClassifier` instance is later on asked to *predict* some new data, it uses (by default) the MaximalVote_ strategy to derive an answer. A summary about the performance of a :class:`~mvpa.clfs.meta.SplitClassifier` internally on each split of the training dataset is available by accessing the `confusion` state variable. To summarize somewhat, RFE_ is just one method of feature selection, so we use a :class:`~mvpa.clfs.meta.FeatureSelectionClassifier` to facilitate this. To parameterize the RFE process, we refer above to the following: `sensitivity_analyzer` in this case just the default from a linear C-SVM (the SVM weights), taken as an average over all splits (in accordance with scenario 2 as above) `transfer_error` confusion-based error that relies on the confusion matrices computed during splitting of the dataset by the :class:`~mvpa.clfs.meta.SplitClassifier`; this is used to provide a value that can be compared against a stopping criterion to stop eliminating features `feature_selector` in this example we simply discard the 20% of features deemed least important `update_sensitivity` true to retrain the classifiers each time we eliminate features; should be false if a non-classifier-based sensitivity measure (such as one-way ANOVA) is used As has been shown, recursive feature elimination is an easy-to-implement, flexible, and powerful tool within the PyMVPA framework. Various ranking methods for selecting features have been discussed. Additionally, several analysis scenarios have been presented, along with enough requisite knowledge that the user can plug in whatever classifiers, error metrics, or sensitivity measures are most appropriate for the task at hand. .. _RFE: api/mvpa.featsel.rfe.RFE-class.html .. _MaximalVote: api/mvpa.clfs.meta.MaximalVote-class.html .. _FeatureSelection: api/mvpa.featsel.base.FeatureSelection-class.html .. _LinearCSVMC: api/mvpa.clfs.svm.LinearCSVMC-class.html .. _mvpa/clfs/warehouse.py: api/mvpa.clfs.warehouse-pysrc.html .. index:: incremental feature search, IFS .. _incremental_feature_search: Incremental Feature Search ========================== IFS_ (to be written) .. _IFS: api/mvpa.featsel.ifs.IFS-class.html .. What are the practical differences (besides speed) between RFE and IFS? pymvpa-0.4.8/doc/glossary.rst000066400000000000000000000123261174541445200162140ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_glossary: ******** Glossary ******** The literature concerning the application of multivariate pattern analysis procedures to neuro-scientific datasets contains a lot of specific terms to refer to procedures or types of data, that are of particular importance. Unfortunately, sometimes various terms refer to the same construct and even worse these terms do not necessarily match the terminology used in the machine learning literature. The following glossary is an attempt to map the various terms found in the literature to the terminology used in this manual. .. glossary:: Block-averaging Averaging all samples recorded during a block of continuous stimulation in a block-design fMRI experiment. The rationale behind this technique is, that a averaging might lead to an improved signal-to-noise ratio. However, averaging further decreases the number of samples in a dataset, which is already very low in typical fMRI datasets, especially in comparison to the number of features/voxels. Block-averaging might nevertheless improve the classifier performance, *if* it indeed improves signal-to-noise *and* the respective classifier benefits more from few high-quality samples than from a larger set of lower-quality samples. Chunk A chunk is a group of samples. In PyMVPA chunks define *independent* groups of samples (note: the groups are independent from each other, not the samples in each particular group). This information is important in the context of a cross-validation procedure, as it is required to measure the classifier performance on independent test datasets to be able to compute unbiased generalization estimates. This is of particular importance in the case of fMRI data, where two successively recorded volumes cannot be considered as independent measurements. This is due to the significant temporal forward contamination of the hemodynamic response whose correlate is measured by the MR scanner. Dataset In PyMVPA a dataset is the combination of samples, their ... Decoding This term is usually used to refer to the application of machine learning or pattern recognition techniques to brainimaging datasets, and therefore is another term for :term:`MVPA`. Sometimes also 'brain-reading' is used as another alternative. Epoch Sometimes used to refer to a group of successively acquired samples, and, thus, related to a :term:`chunk`. Example Another term for :term:`sample`. Feature This is a name for a variable in the :term:`dataset`. fMRI This abbrevation stands for *functional magnetic resonance imaging*. Label A label associates each :term:`sample` in the :term:`dataset` with a certain category, experimental condition or, in case of a regression problem, with some metric variable. The label therefore defines the model that a classifier has to learn. The labels also provide the "true" model value when computing classifier errors. MVPA This term originally stems from the authors of the Matlab MVPA toolbox, and in that context stands for *multi-voxel pattern analysis* (see :ref:`Norman et al., 2006 `). PyMVPA obviously adopted this acronym. However, as PyMVPA is explicitly designed to operate on non-fMRI data as well, the 'voxel' term is not appropriate and therefore MVPA in this context stands for the more general term *multivariate pattern analysis*. Processing object Most objects dealing with data are implemented as processing objects. Such objects are instantiated *once*, with all appropriate parameters configured as desired. When created, they can be used multiple time by simply calling them with new data. Sample A sample a vector with observations for all :term:`feature` variables. Sensitivity The sensitivity is a score assigned to a particular :term:`feature` with respect to its impact on a classifier's decision. The sensitivity is often available from a classifier's :term:`weight vector`. There are some more scores which are similar to a sensitivity in terms of indicating the "importance" of a particular feature -- examples are a univariate :ref:`anova` score or a :ref:`noise_perturbation` measure. Sensitivity Map A vector of several sensitivity scores -- one for each feature in a dataset. Spatial Discrimination Map (SDM) This is another term for a :term:`sensitivity map`, used in e.g. :ref:`Wang et al. (2007) `. Statistical Discrimination Map (SDM) This is another term for a :term:`sensitivity map`, used in e.g. :ref:`Sato et al. (2008) `, where instead of raw sensitivity significance testing result is assigned. Time-compression This usually refers to the :term:`block-averaging` of samples from a block-design fMRI dataset. Weight Vector See :term:`sensitivity`. pymvpa-0.4.8/doc/history.rst000066400000000000000000000034541174541445200160540ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_code_swarm: .. index:: code swarm ****************** PyMVPA - The Movie ****************** If you are interested in the evolution of PyMVPA you might also be interested in the following movie. It is a visualization of the activity in the PyMVPA source repository since it first has been published in May 2007. The movie is generated with tools from the `code_swarm project`_. .. _code_swarm project: http://vis.cs.ucdavis.edu/~ogawa/codeswarm/ In the movie, each file in the PyMVPA sources that is changed appears as a particle on the screen centered around the name of the developer that contributed this change. The colors indicate which part of PyMVPA the respective file belongs to (see the legend on the left). The animation is regenerated every couple of weeks to include the more recent commits. .. raw:: html Play video Music by `Peter Nalitch`_. Many thanks for his special permission to use his song *Gitar* (© Peter Nalitch) for our project history. Please be sure to also watch the `outstanding video clip`_! .. _Peter Nalitch: http://peternalitch.ru .. _outstanding video clip: http://www.youtube.com/watch?v=AOzkN8dHnjk pymvpa-0.4.8/doc/index.rst000066400000000000000000000235201174541445200154560ustar00rootroot00000000000000.. -*- mode: rst -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: PyMVPA is a Python_ module intended to ease pattern classification analyses of large datasets. In the neuroimaging contexts such analysis techniques are also known as :term:`decoding` or :term:`MVPA` analysis. PyMVPA provides high-level abstraction of typical processing steps and a number of implementations of some popular algorithms. While it is not limited to the neuroimaging domain, it is eminently suited for such datasets. PyMVPA is truly free software (in every respect) and additionally requires nothing but free-software to run. .. _Python: http://www.python.org PyMVPA stands for **M**\ ulti\ **V**\ ariate **P**\ attern **A**\ nalysis (:term:`MVPA`) in **Py**\ thon. PyMVPA is developed inside the `Debian Experimental Psychology Project`_. This website, the source code repository and download services are hosted on Alioth_, a service that is kindly provided by the `Debian project`_. .. _Debian Experimental Psychology Project: http://pkg-exppsy.alioth.debian.org .. _Alioth: http://alioth.debian.org .. _Debian project: http://www.debian.org News ==== PyMVPA 0.4.8 is out [24 Apr 2012] This release brings a set of bug fixes, including compatibility with recent shogun (>=1.0) and libsvm >= 3.10. See the :ref:`changelog ` for details. .. raw:: html
    PyMVPA Extravaganza 2009 at Dartmouth College [30th Nov -- 4th Dec] :ref:`Read more ` about the topics and achievements. First publication from outside the PyMVPA team employing PyMVPA [19 Jul 2009] :ref:`Sun et al. (2009) `: *Elucidating an MRI-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning Algorithms.* .. _pydocweb: https://code.launchpad.net/~pauli-virtanen/scipy/pydocweb Documentation ============= For users --------- * :ref:`User Documentation ` [PDF-manual_] (**the** documentation). * :ref:`Installation Instructions ` * :ref:`FAQ ` (short answers to common problems) * :ref:`Module Reference ` (user-oriented reference) * :ref:`Bibliography ` (references to interesting literature) * :ref:`Development Changelog ` [:ref:`Movie version `] (see what has changed) .. _PDF-manual: PyMVPA-Manual.pdf * :ref:`exampledata` (single subject dataset from :ref:`Haxby et al., 2001 `) .. comment to separate the two lists * :ref:`genindex` (access by keywords) * :ref:`search` (online and offline full-text search) For developers -------------- * :ref:`Developer Guidelines ` [PDF-guide_] (information for people contributing code) * `API Reference`_ (comprehensive and up-to-date information about the details of the implementation) .. _PDF-guide: PyMVPA-DevGuide.pdf .. _API Reference: api/index.html License ======= PyMVPA is free-software (beer and speech) and covered by the `MIT License`_. This applies to all source code, documentation, examples and snippets inside the source distribution (including this website). Please see the :ref:`appendix of the manual ` for the copyright statement and the full text of the license. .. _MIT License: http://www.opensource.org/licenses/mit-license.php .. _appendix of the manual: manual.html#license Download ======== Binary packages --------------- Binary packages are available for: * Debian and Ubuntu (:ref:`installation instructions `) PyMVPA is an `official Debian package`_ (`python-mvpa`). Additionally, backports for some Debian and Ubuntu releases are also available. Please read the `package repository instructions`_ to learn about how to obtain them. * RPM-based GNU/Linux distributions (:ref:`installation instructions `) RPM packages are provided through the `OpenSUSE Build Service`_. The currently supported distributions include: CentOS 5, Fedora 9-12, RedHat Enterprise Linux 5, OpenSUSE 11.0 up to 11.2 (but also OpenSUSE Factory). The build service supports RPM-package repositories (`SUSE-related`_ and `Fedora, Redhat and CentOS-related`_) and `1-click-installations`_. * MacOS X (:ref:`installation instructions `) PyMVPA is available from the MacPorts_ framework. * Windows (:ref:`installation instructions `) An installer for Python 2.5 is available from the `download area`_. If there are no binary packages for your particular operating system or platform, you need to compile your own. The manual contains :ref:`instructions ` to build PyMVPA in various environments. .. _MacPorts: http://www.macports.org .. _official Debian package: http://packages.debian.org/python-mvpa .. _package repository instructions: http://neuro.debian.net/#how-to-use-this-repository .. _SUSE-related: http://download.opensuse.org/repositories/home:/hankem:/suse/ .. _Fedora, Redhat and CentOS-related: http://download.opensuse.org/repositories/home:/hankem:/rh5/ .. _1-click-installations: http://software.opensuse.org/search?baseproject=ALL&p=1&q=python-mvpa .. _OpenSUSE Build Service: https://build.opensuse.org/ Source code ----------- Source code tarballs of PyMVPA releases are available from the `download area`_. Alternatively, one can also download a tarball of the latest development snapshot_ (i.e. the current state of the *master* branch of the PyMVPA source code repository). To get access to both the full PyMVPA history and the latest development code, the PyMVPA Git_ repository is publicly available. To view the repository, please point your webbrowser to gitweb: http://github.com/PyMVPA/PyMVPA To clone (aka checkout) the PyMVPA repository simply do: :: git clone http://github.com/PyMVPA/PyMVPA After a short while you will have a `PyMVPA` directory below your current working directory, that contains the PyMVPA repository. More detailed instructions on :ref:`installation requirements ` and on how to :ref:`build PyMVPA from source ` are provided in the manual. .. _download area: http://alioth.debian.org/frs/?group_id=30954 .. _Git: http://git.or.cz/ .. _snapshot: http://github.com/PyMVPA/PyMVPA/archives/master Support ======= If you have problems installing the software or questions about usage, documentation or something else related to PyMVPA, you can post to the PyMVPA mailing list (preferred) or contact the authors on IRC: :Mailing list: pkg-exppsy-pymvpa@lists.alioth.debian.org [subscription_, archive_] :IRC: #exppsy on OTFC/Freenode All users should subscribe to the mailing list. PyMVPA is still a young project that is under heavy development. Significant modifications (hopefully improvements) are very likely to happen frequently. The mailing list is the preferred way to announce such changes. The mailing list archive can also be searched using the *mailing list archive search* located in the sidebar of the PyMVPA home page. .. _subscription: http://lists.alioth.debian.org/mailman/listinfo/pkg-exppsy-pymvpa .. _archive: http://lists.alioth.debian.org/pipermail/pkg-exppsy-pymvpa/ Publications ============ .. include:: publications.rst Authors & Contributors ====================== .. include:: authors.rst Similar or Related Projects =========================== .. in alphanumerical order There are a number other projects with -- in comparison to PyMVPA -- partially overlapping features or a similar purpose. Some of their functionality is already available through and within the PyMVPA framework. *Only* free software projects are listed here. * 3dsvm_: AFNI_ plugin to apply support vector machine classifiers to fMRI data. * Elefant_: Efficient Learning, Large-scale Inference, and Optimization Toolkit. Multi-purpose open source library for machine learning. * MDP_: Python data processing framework. MDP_ provides various algorithms. *PyMVPA makes use of MDP's PCA and ICA implementations.* * `MVPA Toolbox`_: Matlab-based toolbox to facilitate multi-voxel pattern analysis of fMRI neuroimaging data. * NiPy_: Project with growing functionality to analyze brain imaging data. NiPy_ is heavily connected to SciPy and lots of functionality developed within NiPy becomes part of SciPy. * OpenMEEG_: Software package for low-frequency bio-electromagnetism solving forward problems in the field of EEG and MEG. OpenMEEG includes Python bindings. * Orange_: Powerful general-purpose data mining software. Orange also has Python bindings. * `PyMGH/PyFSIO`_: Python IO library to for FreeSurfer's `.mgh` data format. * PyML_: Interactive object oriented framework for machine learning written in Python. PyML focuses on SVMs and other kernel methods. * PyNIfTI_: Read and write NIfTI images from within Python. *PyMVPA uses PyNIfTI to access MRI datasets.* * `scikits.learn`_: Python module integrating classic machine learning algorithms in the tightly-knit world of scientific Python packages. * Shogun_: Comprehensive machine learning toolbox with bindings to various programming languages. *PyMVPA can optionally use implementations of Support Vector Machines from Shogun.* .. _3dsvm: http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dsvm.html .. _AFNI: http://afni.nimh.nih.gov/ .. _Elefant: http://elefant.developer.nicta.com.au .. _Shogun: http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun .. _Orange: http://magix.fri.uni-lj.si/orange .. _PyML: http://pyml.sourceforge.net .. _MDP: http://mdp-toolkit.sourceforge.net .. _MVPA Toolbox: http://www.csbmb.princeton.edu/mvpa/ .. _NiPy: http://neuroimaging.scipy.org .. _PyMGH/PyFSIO: http://code.google.com/p/pyfsio .. _PyNIfTI: http://niftilib.sourceforge.net/pynifti .. _OpenMEEG: http://openmeeg.gforge.inria.fr .. _scikits.learn: http://scikit-learn.sourceforge.net pymvpa-0.4.8/doc/installation.rst000066400000000000000000000702431174541445200170540ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_installation: ************ Installation ************ This section covers the necessary steps to install and run PyMVPA. It contains a comprehensive list of software dependencies, as well as recommendation for additional software packages that further enhance the functionality provided by PyMVPA. .. _requirements: Dependencies ============ PyMVPA is designed to be able to easily interface with various libraries and computing environments. However, most of these external software packages only enhance functionality built into PyMVPA or add a different flavor of some algorithm (e.g. yet another classifier). In fact, the framework itself has only two mandatory dependencies (see below), which are known to be very portable. It is therefore possible to run PyMVPA on a wide variety of platforms and operating systems, ranging from computing mainframes, to regular desktop machines. It even runs on a cell phone. .. image:: pics/pymvpa_on_phone.jpg :alt: Picture showing PyMVPA running on an OpenMoko This picture shows PyMVPA on an OpenMoko_ cell phone --- running the `pylab_2d.py` example in an IPython_ session. .. note:: In general a phone might not be the optimal environment for data analysis with PyMVPA, but PyMVPA itself does not restrict the user's choice of the platform to the usual suspects. (A `highres image`_ is available, if you want to double check. ;-) .. _OpenMoko: http://www.openmoko.com .. _highres image: http://www.onerussian.com/php/album.php?page=Photos/Geek/20081015FR/&image=img_1107.jpg .. index:: required software, NumPy Must Have --------- The following software packages are required or PyMVPA will not work at all. Python_ 2.4 with ctypes_ 1.0.1 or a later Python 2.X release With some modifications PyMVPA could probably work with Python 2.3, but as it is quite old already and Python 2.4 is widely available there should be no need to do this. NumPy_ PyMVPA makes extensive use of NumPy to store and handle data. There is no way around it. .. _Python: http://www.python.org .. _NumPy: http://numpy.scipy.org/ .. _ctypes: http://python.net/crew/theller/ctypes/ .. index:: recommended software, SciPy, PyNIfTI, Shogun, R, RPy Strong Recommendations ---------------------- While most parts of PyMVPA will work without any additional software, some functionality makes use (or can optionally make use) of external software packages. It is strongly recommended to install these packages as well, if they are available on a particular target platform. SciPy_: linear algebra, standard distributions, signal processing, data IO SciPy_ is mainly used by the statistical testing and the logistic regression classifier code. However, the SciPy package provides a lot of functionality that might be relevant in the context of PyMVPA, e.g. IO support for Matlab .mat files. PyNIfTI_ (>= 0.20081017.1): access to NIfTI files PyMVPA provides a convenient wrapper for datasets stored in the NIfTI format, that internally uses PyNIfTI. If you don't need that, PyNIfTI is not necessary, but otherwise it makes it really easy to read from and write to NIfTI images. All dataset types dealing with NIfTI data will not be available without a functional PyNIfTI installation. Since PyMVPA 0.4.0 at least PyNIfTI version 0.20081017.1 (or later) is required. .. _SciPy: http://www.scipy.org/ .. _PyNIfTI: http://niftilib.sourceforge.net/pynifti/ .. index:: suggested software, IPython, FSL, AFNI, LIBSVM, matplotlib, hlcuster Suggestions ----------- The following list of software is again not required by PyMVPA, but these packages add additional functionality (e.g. classifiers implemented in external libraries) and might make life a lot easier by leading to more efficiency when using PyMVPA. IPython_: frontend If you want to use PyMVPA interactively it is strongly recommend to use IPython_. If you think: *"Oh no, not another one, I already have to learn about PyMVPA."* please invest a tiny bit of time to watch the `Five Minutes with IPython`_ screencasts at showmedo.com_, so at least you know what you are missing. In the context of cluster computing IPython_ is also the way to go. FSL_: preprocessing and analysis of (f)MRI data PyMVPA provides some simple bindings to FSL output and filetypes (e.g. EV files, estimated motion correct parameters and MELODIC output directories). This makes it fairly easy to e.g. use FSL's implementation of ICA for data reduction and proceed with analyzing the estimated ICs in PyMVPA. AFNI_: preprocessing and analysis of (f)MRI data Similar to FSL, AFNI is a free package for processing (f)MRI data. Though its primary data file format is BRIK files, it has the ability to read and write NIFTI files, which easily integrate with PyMVPA. Shogun_: various classifiers PyMVPA currently can make use of several SVM implementations of the Shogun_ toolbox. It requires the modular python interface of Shogun to be installed. Any version from 0.6 on should work. LIBSVM_: fast SVM classifier Only the C library is required and none of the Python bindings that are available on the upstream website. PyMVPA provides its own Python wrapper for LIBSVM which is a fork based on the one included in the LIBSVM package. Additionally the upstream LIBSVM distribution causes flooding of the console with a huge amount of debugging messages. Please see the `Building from Source`_ section for information on how to build an alternative version that does not have this problem. Since version 0.2.2, PyMVPA contains a minimal copy of LIBSVM in its source distribution. R_ and RPy_: more classifiers Currently PyMVPA provides wrappers around LARS, ElasticNet, and GLMNet R libraries available from CRAN_. On Debian-based machines you might like to install r-cran-* packages from cran2deb_ repository. matplotlib_: Matlab-style plotting library for Python This is a very powerful plotting library that allows you to export into a large variety of raster and vector formats (e.g. SVG), and thus, is ideal to produce publication quality figures. The examples shipped with PyMVPA show a number of possibilities how to use matplotlib for data visualization. hcluster_: generating, visualizing, and analyzing hierarchical clusters This module is a nice addition to SciPy_ and can be used to perform cluster analyses and plot dendrograms of their results. .. _Shogun: http://www.shogun-toolbox.org .. _LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ .. _hcluster: http://code.google.com/p/scipy-cluster/ .. _matplotlib: http://matplotlib.sourceforge.net/ .. _IPython: http://ipython.scipy.org .. _Five Minutes with IPython: http://showmedo.com/videos/series?name=CnluURUTV .. _showmedo.com: http://showmedo.com .. _FSL: http://www.fmrib.ox.ac.uk/fsl/ .. _AFNI: http://afni.nimh.nih.gov/afni/ .. _RPy: http://rpy.sourceforge.net .. _R: http://www.r-project.org .. _cran2deb: http://debian.cran.r-project.org .. _CRAN: http://cran.r-project.org .. index:: installation, binary packages .. _obtaining: Installing Binary Packages ========================== .. Don't forget to mention that the only reasonable way to use this piece of software (like every other piece) is under Debian! Also mention that Ubuntu is no excuse ;-) The easiest way to obtain PyMVPA is to use pre-built binary packages. Currently we provide such packages or installers for the Debian/Ubuntu family, several RPM-based GNU/Linux distributions, MacOS X and 32-bit Windows (see below). If there are no binary packages for your operating system or platform yet, you can build PyMVPA from source. Please refer to `Building from Source`_ for more information. .. note:: If you have difficulties deploying PyMVPA itself or third-party modules, such as Shogun, on non Debian-based systems, we would advise you to give a try to `NeuroDebian virtual machine`_ which would allow you to benefit from Debian packaging of PyMVPA and its dependencies by running Debian in a virtualized environment. .. _NeuroDebian virtual machine: http://neuro.debian.net/vm.html .. index:: binary packages .. index:: Debian .. _install_debian: Debian ------ PyMVPA is available as an `official Debian package`_ (`python-mvpa`; since *lenny*). The documentation is provided by the optional `python-mvpa-doc` package. To install PyMVPA simply do:: sudo aptitude install python-mvpa .. _official Debian package: http://packages.debian.org/python-mvpa .. index:: backports, Debian, Ubuntu .. _install_debianbackports: Debian backports and inofficial Ubuntu packages ----------------------------------------------- Backports for the current Debian stable release and binary packages for recent Ubuntu releases are available from a `Debian Neuroscience Repository`_. Please read the `package repository instructions`_ to learn about how to obtain them. Otherwise install as you would do with any other Debian package. .. _Debian Neuroscience Repository: http://neuro.debian.net .. _package repository instructions: http://neuro.debian.net/#how-to-use-this-repository .. index:: Windows, Windows installer .. _install_win: Windows ------- There are a few Python distributions for Windows. In theory all of them should work equally well. However, we only tested the standard Python distribution from www.python.org (with version 2.5.2). First you need to download and install Python. Use the Python installer for this job. Yo do not need to install the Python test suite and utility scripts. From now on we will assume that Python was installed in `C:\\Python25` and that this directory has been added to the `PATH` environment variable. For a minimal installation of PyMVPA the only thing you need in addition is NumPy_. Download a matching NumPy windows installer for your Python version (in this case 2.5) from the `SciPy download page`_ and install it. Now, you can use the PyMVPA windows installer to install PyMVPA on your system. If done, verify that everything went fine by opening a command prompt and start Python by typing `python` and hit enter. Now you should see the Python prompt. Import the mvpa module, which should cause no error messages. >>> import mvpa >>> Although you have a working installation already, most likely you want to install some additional software. First and foremost install SciPy_ -- download from the same page where you also got the NumPy installer. If you want to use PyMVPA to analyze fMRI datasets, you probably also want to install PyNIfTI_. Download the corresponding installer from the website of the `NIfTI libraries`_ and install it. PyNIfTI does not come with the required `zlib` library, so you also need to download and install it. A binary installer is available from the `GnuWin32 project`_. Install it in some arbitrary folder (just the binaries nothing else), find the `zlib1.dll` file in the `bin` subdirectory and move it in the Windows `system32` (or `system` on 64-bit Windows 7) directory. Verify that it works by importing the `nifti` module in Python. >>> import nifti >>> Another piece of software you might want to install is matplotlib_. The project website offers a binary installer for Windows. If you are using the standard Python distribution and matplotlib complains about a missing `msvcp71.dll`, be sure to obey the installation instructions for Windows on the matplotlib website. With this set of packages you should be able to run most of the PyMVPA examples which are shipped with the source code in the `doc/examples` directory. .. _SciPy download page: http://scipy.org/Download .. _NIfTI libraries: http://niftilib.sourceforge.net/ .. _GnuWin32 project: http://gnuwin32.sourceforge.net/ .. index:: MacOS X .. _install_macos: MacOS X ------- The easiest installation method for OSX is via MacPorts_. MacPorts is a package management system for MacOS, which is in some respects very similiar to RPM or APT which are used in most GNU/Linux distributions. However, rather than installing binary packages, it compiles software from source on the target machine. *The MacPort of PyMVPA is kindly maintained by James Kyle .* .. note:: MacPorts_ needs `XCode developer tools`_ to be installed first, as the operating system does not come with a compiler by default. .. _XCode developer tools: http://developer.apple.com/tools/xcode/ .. _MacPorts: http://www.macports.org In the context of PyMVPA MacPorts is much easier to handle than the previously available PyMVPA installer for Macs (which was discontinued with PyMVPA 0.4.1). Although the initial overhead to setup MacPorts on a machine is higher than simply installing PyMVPA using the former installer, MacPorts saves the user a significant amount of time (in the long run). This is due to the fact that this framework will not only take care of updating a PyMVPA installation automatically whenever a new release is available. It will also provide many of the optional dependencies of PyMVPA (e.g. NumPy_, SciPy_, matplotlib_, IPython_, Shogun_, and pywt_) in the same environment and therefore abolishes the need to manually check dozens of websites for updates and deal with an unbelievable number of different installation methods. .. _Shogun: http://www.shogun-toolbox.org .. _pywt: http://www.pybytes.com/pywavelets MacPorts provides a universal binary package installer that is downloadable at http://www.macports.org/install.php After downloading, simply mount the dmg image and double click `MacPorts.pkg`. By default, MacPorts installs to `/opt/local`. After the installation is completed, you must ensure that your paths are set up correctly in order to access the programs and utilities installed by MacPorts. For exhaustive details on editing shell paths please see: http://www.debian.org/doc/manuals/reference/ch01.en.html#_customizing_bash A typical `.bash_profile` set up for MacPorts might look like:: > export PATH=/opt/local/bin:/opt/local/sbin:$PATH Be sure to source your .bash_profile or close Terminal.app and reopen it for these changes to take effect. Once MacPorts is installed and your environment is properly configured, PyMVPA is installed using a single command:: > $ sudo port install py25-pymvpa +scipy +pynifti +hcluster +libsvm > +matplotlib +pywavelet The `+foo` arguments add support within PyMVPA for these packages. For a full list of available 3rd party packages please see:: > $ port variants py25-pymvpa If this is your first time using MacPorts Python 2.5 will be automatically installed for you. However, an additional step is needed:: $ sudo port install python_select $ sudo python_select python25 MacPorts has the ability of installing several Python versions at a time, the `python_select` utility ensures that the default Python (located at `/opt/local/bin/python`) points to your preferred version. Upon success, open a terminal window and start Python by typing `python` and hit return. Now try to import the PyMVPA module by doing: >>> import mvpa >>> If no error messages appear, you have succesfully installed PyMVPA. .. index:: OpenSUSE .. _install_rpm: RPM-based GNU/Linux Distributions --------------------------------- To install one of the RPM packages provided through the `OpenSUSE Build Service`_, first download it from the `OpenSUSE software website`_. .. note:: This site does not only offer OpenSUSE packages, but also binaries for other distributions, including: CentOS 5, Fedora 9-12, RedHat Enterprise Linux 5, OpenSUSE 11.0 up to 11.2. Once downloaded, open a console and invoke (the example command refers to PyMVPA 0.4.4):: rpm -i python-mvpa-0.4.4-1.1.i386.rpm The OpenSUSE website also offers `1-click-installations`_ for distributions supporting it. A more convenient way to install PyMVPA and automatically receive software updates is to included one of the RPM-package repositories in the system's package management configuration. For e.g. OpenSUSE 11.0, simply use Yast to add another repository, using the following URL: http://download.opensuse.org/repositories/home:/hankem:/suse/openSUSE_11.0/ For other distributions use the respective package managers (e.g. Yum) to setup the repository URL. The repositories include all core dependencies of PyMVPA (usually Numpy and PyNIfTI), if they are not available from other repositories of the respective distribution. There are two different repository groups, one for `SUSE-related packages`_ and another one for `Fedora, Redhat and CentOS-related packages`_. Please note that on Redhat and CentOS systems you will also have to enable the `Extra Packages for Enterprise Linux (EPEL)`_ repository. .. _Extra Packages for Enterprise Linux (EPEL): http://fedoraproject.org/wiki/EPEL .. _SUSE-related packages: http://download.opensuse.org/repositories/home:/hankem:/suse/ .. _Fedora, Redhat and CentOS-related packages: http://download.opensuse.org/repositories/home://hankem://rh5/ .. _1-click-installations: http://software.opensuse.org/search?baseproject=ALL&p=1&q=python-mvpa .. _OpenSUSE software website: http://software.opensuse.org/search?baseproject=ALL&p=1&q=python-mvpa .. _OpenSUSE Build Service: https://build.opensuse.org/ .. _buildfromsource: .. index:: building from source, source package, MacOS X Building from Source ==================== If a binary package for your platform and operating system is provided, you do not have to build the packages on your own -- use the corresponding pre-build packages instead. However, if there are no binary packages for your system, or you want to try a new (unreleased) version of PyMVPA, you can easily build PyMVPA on your own. Any recent GNU/Linux distribution should be capable of doing it (e.g. RedHat). Additionally, building PyMVPA also works on Mac OS X and Windows systems. .. _PyMVPA project website: http://www.pymvpa.org .. index:: releases, development snapshot Three Ways to Obtain the Sources -------------------------------- The first step is obtaining the sources. The source code tarballs of all PyMVPA releases are available from the `PyMVPA project website`_. Alternatively, one can also download a tarball of the latest development snapshot_ (i.e. the current state of the *master* branch of the PyMVPA source code repository). .. _snapshot: http://github.com/PyMVPA/PyMVPA/archives/master .. index:: Git, Git repository If you want to have access to both, the full PyMVPA history and the latest development code, you can use the PyMVPA Git_ repository, which is publicly available. To view the repository, please point your web browser to gitweb: http://github.com/PyMVPA/PyMVPA The gitweb browser also allows to download arbitrary development snapshots of PyMVPA. For a full clone (aka checkout) of the PyMVPA repository simply do: :command:`git clone git://github.com/PyMVPA/PyMVPA.git` After a short while you will have a `PyMVPA` directory below your current working directory, that contains the PyMVPA repository. .. _Git: http://git.or.cz/ .. index:: build instructions Build it (General instructions) ------------------------------- In general you can build PyMVPA like any other Python module (using the Python *distutils*). This general method will be outline first. However, in some situations or on some platforms alternative ways of building PyMVPA might be more convenient -- alternative approaches are listed at the end of this section. To build PyMVPA from source simply enter the root of the source tree (obtained by either extracting the source package or cloning the repository) and run: :command:`python setup.py build_ext` If you are using a Python version older than 2.5, you need to have python-ctypes (>= 1.0.1) installed to be able to do this. Now, you are ready to install the package. Do this by invoking: :command:`python setup.py install` Most likely you need superuser privileges for this step. If you want to install in a non-standard location, please take a look at the :command:`--prefix` option. You also might want to consider :command:`--optimize`. Now you should be ready to use PyMVPA on your system. .. index:: LIBSVM, SWIG Build with enabled LIBSVM bindings ---------------------------------- From the 0.2 release of PyMVPA on, the LIBSVM_ classifier extension is not build by default anymore. However, it is still shipped with PyMVPA and can be enabled at build time. To be able to do this you need to have SWIG_ installed on your system. PyMVPA needs a patched LIBSVM version, as the original distribution generates a huge amount of debugging messages and therefore makes the console and PyMVPA output almost unusable. Debian (since lenny: 2.84.0-1) and Ubuntu (since gutsy) already include the patched version. For all other systems a minimal copy of the patched sources is included in the PyMVPA source package (`3rd/libsvm`). If you do not have a proper LIBSVM_ package, you can build the library from the copy of the code that is shipped with PyMVPA. To do this, simply invoke:: make 3rd Now build PyMVPA as described above. The build script will automatically detect that LIBSVM_ is available and builds the LIBSVM wrapper module for you. If your system provides an appropriate LIBSVM_ version, you need to have the development files (headers and library) installed. Depending on where you installed them, it might be necessary to specify the full path to that location with the `--include-dirs`, `--library-dirs` and `--swig` options. Now add the '--with-libsvm' flag when building PyMVPA:: python setup.py build_ext --with-libsvm \ [ -I -L ] The installation procedure is equivalent to the build setup without LIBSVM_, except that the '--with--libsvm' flag also has to be set when installing:: python setup.py install --with-libsvm .. _SWIG: http://www.swig.org/ .. index:: alternative build procedure Alternative build procedure --------------------------- Alternatively, if you are doing development in PyMVPA or if you simply do not want (or do not have sufficient permissions to do so) to install PyMVPA system wide, you can simply call `make` (same `make build`) in the top-level directory of the source tree to build PyMVPA. Then extend or define your environment variable `PYTHONPATH` to point to the root of PyMVPA sources (i.e. where you invoked all previous commands from): export PYTHONPATH=$PWD .. note:: This procedure also always builds the LIBSVM_ extension and therefore also requires the patched LIBSVM version and SWIG to be available. .. index:: building on Windows .. _build_win: Windows ------- On Windows the whole situation is a little more tricky, as the system doesn't come with a compiler by default. Nevertheless, it is easily possible to build PyMVPA from source. One could use the Microsoft compiler that comes with Visual Studio to do it, but as this is commercial software and not everybody has access to it, we will outline a way that exclusively involves free and open source software. First one needs to install the packages required to run PyMVPA as explained :ref:`above `. Next we need to obtain and install the MinGW compiler collection. Download the *Automated MinGW Installer* from the `MinGW project website`_. Now, run it and choose to install the `current` package. You will need the *MinGW base tools*, *g++* compiler and *MinGW Make*. For the remaining parts of the section, we will assume that MinGW got installed in `C:\\MinGW` and the directory `C:\\MinGW\\bin` has been added to the `PATH` environment variable, to be able to easily access all MinGW tools. .. note:: It is not necessary to install `MSYS`_ to build PyMVPA, but it might handy to have it. If you want to build the LIBSVM wrapper for PyMVPA, you also need to download SWIG_ (actually *swigwin*, the distribution for Windows). SWIG does not have to be installed, just unzip the file you downloaded and add the root directory of the extracted sources to the `PATH` environment variable (make sure that this directory contains `swig.exe`, if not, you haven't downloaded `swigwin`). PyMVPA comes with a specific build setup configuration for Windows -- `setup.cfg.win` in the root of the source tarball. Please rename this file to `setup.cfg`. This is only necessary, if you have *not* configured your Python distutils installation to always use MinGW instead of the Microsoft compilers. Now, we are ready to build PyMVPA. The easiest way to do this, is to make use of the `Makefile.win` that is shipped with PyMVPA to build a binary installer package (`.exe`). Make sure, that the settings at the top of `Makefile.win` (the file is located in the root directory of the source distribution) correspond to your Python installation -- if not, first adjust them accordingly before your proceed. When everything is set, do:: mingw32-make -f Makefile.win installer Upon success you can find the installer in the `dist` subdirectory. Install it as described :ref:`above `. .. _MinGW project website: http://www.mingw.org/ .. _MSYS: http://www.mingw.org/msys.shtml .. index:: OpenSUSE .. _build_suse: OpenSUSE -------- Building PyMVPA on OpenSUSE involves the following steps (tested with 10.3): First add the OpenSUSE science repository, that contains most of the required packages (e.g. NumPy, SciPy, matplotlib), to the Yast configuration. The URL for OpenSUSE 10.3 is:: http://download.opensuse.org/repositories/science/openSUSE_10.3/ Now, install the following required packages: * a recent C and C++ compiler (e.g. GCC 4.1) * `python-devel` (Python development package) * `python-numpy` (NumPy) * `swig` (SWIG is only necessary, if you want to make use of LIBSVM) Now you can simply compile and install PyMVPA, as outlined above, in the general build instructions (or alternatively using the method with LIBSVM). If you have problems compiling the NIfTI libraries and PyNIfTI on OpenSUSE, try the following: Download the `nifticlib` source tarball, extract it and run `make` in the top-level source directory. Be sure to install the `zlib-devel` package before. Now, download the `pynifti` source tarball extract it, and edit `setup.py`. Change the line:: libraries = [ 'niftiio' ], to:: libraries = [ 'niftiio', 'znz', 'z' ], as mentioned in the PyNIfTI installation instructions. This is necessary, as the above approach does only generate static NIfTI libraries which are not properly linked with all dependencies. Now, compile PyNIfTI with:: python setup.py build_ext -I /include \ -L /lib --swig-opts="-I/include" where `` is the directory that contains the extracted `nifticlibs` sources. Finally, install PyNIfTI with:: sudo python setup.py install If you want to run the PyMVPA examples including the ones that make use of the plotting capabilities of `matplotlib` you need to install of few more packages (mostly due to broken dependencies in the corresponding OpenSUSE packages): * `python-scipy` * `python-gobject2` * `python-gtk` .. index:: Fedora .. _build_fedora: Fedora ------ On Fedora (tested with Fedora 9) you first have to install a few required packages, that are not installed by default. Simply do:: yum install numpy gcc gcc-c++ python-devel swig You might also want to consider installing some more packages, that will make your life significantly easier:: yum install scipy ipython python-matplotlib Now, you are ready to compile and install PyMVPA as describe in the :ref:`general build instructions `. .. index:: MacOS X .. _build_macos: MacOS X ------- Since the MacPorts_ system basically compiles from source there should be no need to perform this step manually. However, if one intends to compile without MacPorts_ the `XCode developer tools`_, have to be installed first, as the operating system does not come with a compiler by default. If you want to use or even work on the latest development code, you should also install Git_. There is a `MacOS installer for Git`_, that make this step very easy. .. _MacOS installer for Git: http://code.google.com/p/git-osx-installer/ Otherwise follow the :ref:`general build instructions `. pymvpa-0.4.8/doc/intro.rst000066400000000000000000000211601174541445200155000ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_intro: ************ Introduction ************ .. index:: MVPA PyMVPA is a Python_ module intended to ease pattern classification analysis of large datasets. It provides high-level abstraction of typical processing steps and a number of implementations of some popular algorithms. While it is not limited to neuroimaging data it is eminently suited for such datasets. PyMVPA is truly free software (in every respect) and additionally requires nothing but free software to run. Theoretically PyMVPA should run on anything that can run a Python_ interpreter, although the proof is yet to come. PyMVPA stands for *Multivariate Pattern Analysis* in Python_. .. _Python: http://www.python.org What this Manual is NOT ======================= .. index:: textbook, review, API reference, examples This manual does not make an attempt to be a comprehensive introduction into machine learning *theory*. There is a wealth of high-quality text books about this field available. Two very good examples are: `Pattern Recognition and Machine Learning`_ by `Christopher M. Bishop`_, and `The Elements of Statistical Learning: Data Mining, Inference, and Prediction`_ by `Trevor Hastie`_, `Robert Tibshirani`_, and `Jerome Friedman`_ (PDF was generously made available online_ free of charge). There is a growing number of introductory papers about the application of machine learning algorithms to (f)MRI data. A very high-level overview about the basic principles is available in :ref:`Mur et al. (2009) `. A more detailed tutorial covering a wide variety of aspects is provided in :ref:`Pereira et al. (in press) `. Two reviews by :ref:`Norman et al. (2006) ` and :ref:`Haynes and Rees (2006) ` give a broad overview about the literature. This manual also does not describe every technical bit and piece of the PyMVPA package, but is instead focused on the user perspective. Developers should have a look at the `API documentation`_, which is a detailed, comprehensive and up-to-date description of the whole package. Users looking for an overview of the public programming interface of the framework are referred to the :ref:`chap_modref`. The :ref:`chap_modref` is similar to the API reference, but hides overly technical information, which are only relevant for people intending to extend the framework by adding more functionality. More examples and usage patterns extending the ones described here can be taken from the examples shipped with the PyMVPA source distribution (`doc/examples/`; some of them are also available in the :ref:`chap_examples` chapter of this manual) or even the unit test battery, also part of the source distribution (in the `tests/` directory). .. _API Documentation: api/index.html .. _Christopher M. Bishop: http://research.microsoft.com/~cmbishop/ .. _Pattern Recognition and Machine Learning: http://research.microsoft.com/~cmbishop/PRML .. _online: .. _The Elements of Statistical Learning\: Data Mining, Inference, and Prediction: http://www-stat.stanford.edu/~tibs/ElemStatLearn/ .. _Trevor Hastie: http://www-stat.stanford.edu/~hastie/ .. _Robert Tibshirani: http://www-stat.stanford.edu/~tibs/ .. _Jerome Friedman: http://www-stat.stanford.edu/~jhf/ .. _history: .. index:: history, MVPA toolbox for Matlab, license, free software A bit of History ================ The roots of PyMVPA date back to early 2005. At that time it was a C++ library (no Python_ yet) developed by Michael Hanke and Sebastian Krüger, intended to make it easy to apply artificial neural networks to pattern recognition problems. During a visit to `Princeton University`_ in spring 2005, Michael Hanke was introduced to the `MVPA toolbox`_ for `Matlab `_, which had several advantages over a C++ library. Most importantly it was easier to use. While a user of a C++ library is forced to write a significant amount of front-end code, users of the MVPA toolbox could simply load their data and start analyzing it, providing a common interface to functions drawn from a variety of libraries. .. _Princeton University: http://www.princeton.edu .. _MVPA toolbox: http://www.csbmb.princeton.edu/mvpa/ However, there are some disadvantages when writing a toolbox in Matlab. While users in general benefit from the powers of Matlab, they are at the same time bound to the goodwill of a commercial company. That this is indeed a problem becomes obvious when one considers the time when the vendor of Matlab was not willing to support the Mac platform. Therefore even if the MVPA toolbox is `GPL-licensed`_ it cannot fully benefit from the enormous advantages of the free software development model environment (free as in free speech, not only free beer). .. _GPL-licensed: http://www.gnu.org/copyleft/gpl.html For these reasons, Michael thought that a successor to the C++ library should remain truly free software, remain fully object-oriented (in contrast to the MVPA toolbox), but should be at least as easy to use and extensible as the MVPA toolbox. After evaluating some possibilities Michael decided that `Python`_ is the most promising candidate that was fully capable of fulfilling the intended development goal. Python is a very powerful language that magically combines the possibility to write really fast code and a simplicity that allows one to learn the basic concepts within a few days. .. index:: RPy, PyMatlab One of the major advantages of Python is the availability of a huge amount of so called *modules*. Modules can include extensions written in a hardcore language like C (or even FORTRAN) and therefore allow one to incorporate high-performance code without having to leave the Python environment. Additionally some Python modules even provide links to other toolkits. For example `RPy`_ allows to use the full functionality of R_ from inside Python. Even Matlab can be used via some Python modules (see PyMatlab_ for an example). .. _RPy: http://rpy.sourceforge.net/ .. _R: http://www.r-project.org .. _PyMatlab: http://code.google.com/p/pymatlab/ After the decision for Python was made, Michael started development with a simple k-Nearest-Neighbor classifier and a cross-validation class. Using the mighty NumPy_ package made it easy to support data of any dimensionality. Therefore PyMVPA can easily be used with 4d fMRI dataset, but equally well with EEG/MEG data (3d) or even non-neuroimaging datasets. .. _NumPy: http://numpy.scipy.org/ .. index:: NIfTI By September 2007 PyMVPA included support for reading and writing datasets from and to the `NIfTI format`_, kNN and Support Vector Machine classifiers, as well as several analysis algorithms (e.g. searchlight and incremental feature search). .. _NIfTI format: http://nifti.nimh.nih.gov/ During another visit in Princeton in October 2007 Michael met with `Yaroslav Halchenko`_ and `Per B. Sederberg`_. That incident and the following discussions and hacking sessions of Michael and Yaroslav lead to a major refactoring of the PyMVPA codebase, making it much more flexible/extensible, faster and easier than it has ever been before. .. _Yaroslav Halchenko: http://www.onerussian.com/ .. _Per B. Sederberg: http://www.princeton.edu/~persed/ .. index:: citation, PyMVPA poster Authors & Contributors ====================== .. include:: authors.rst How to cite PyMVPA ================== .. include:: publications.rst Acknowledgements ================ We are greatful to the developers and contributers of NumPy_, SciPy_ and IPython_ for providing an excellent Python-based computing environment. Additionally, as PyMVPA makes use of a lot of external software packages (e.g. classifier implementations), we want to acknowledge the authors of the respective tools and libraries (e.g. LIBSVM_ or Shogun_) and thank them for developing their packages as free and open source software. Finally, we would like to express our acknowledgements to the `Debian project`_ for providing us with hosting facilities for mailing lists and source code repositories. But most of all for developing the *universal operating system*. .. Please add some notes when you think that you should give credits to someone that enables or motivates you to work on PyMVPA ;-) .. _Debian project: http://www.debian.org .. _SciPy: http://www.scipy.org/ .. _Shogun: http://www.shogun-toolbox.org .. _IPython: http://ipython.scipy.org .. _LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ pymvpa-0.4.8/doc/legal.rst000077700000000000000000000000001174541445200166722../COPYINGustar00rootroot00000000000000pymvpa-0.4.8/doc/manual.rst000066400000000000000000000043471174541445200156320ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ********************************** PDF version of the PyMVPA Manual ********************************** The PDF version of the manual is available for download_. .. _download: PyMVPA-Manual.pdf .. toctree:: intro installation overview datasets classifiers measures featsel misc examples matlab faq glossary references legal changelog modref .. high-level comments .. incorporate a standalone section on file formats and interoperability. clearly, Nifti is one, but i'm still unclear about what else PyMVPA can/can't import .. for us (Matlab MVPA), the tutorial_easy quickstart was an enormous success. i strongly recommend having some similar quick, hands-on guide. feel free to borrow/steal/adapt anything from tutorial_easy for your needs if you like it (though you should probably check with jim before re-distributing the sample data). .. you dive straight into the nitty-gritty of the different kinds of datasets, attributes and other data structures. having a high-level summary of the most important points might make it easier for a new reader to get the big picture, and makes it more likely that people who don't like documentation will at least read the most important points .. use more examples .. i know that i would personally benefit from a 'PyMVPA for Matlab MVPA users' section. perhaps this is something that per and i will end up hammering out over the next few months .. i'm a big fan of Howtos... it sounds like you're creating a collection of snippets, but maybe consider embedding them into the manual with a little description of what they're doing, alternatives etc. .. maybe a glossary might help. i'm starting to see how you're using 'samples' vs 'datasets' etc. but it would be nice to have a quick reference .. this is a really, really good start for a 0.1 release. good job! pymvpa-0.4.8/doc/math/000077500000000000000000000000001174541445200145445ustar00rootroot00000000000000pymvpa-0.4.8/doc/math/kernels.tex000066400000000000000000000374561174541445200167500ustar00rootroot00000000000000\documentclass[a4paper,11pt]{article} \usepackage[latin1]{inputenc} \usepackage[english]{babel} \usepackage{epsfig} \usepackage{amsmath} \usepackage{amsfonts} \newcommand\R{{\mathbb R}} \newcommand\x{{\mathbf x}} \newcommand\X{{\mathbf X}} \newcommand\K{{\mathbf K}} \newcommand\J{{\mathbf J}} \newcommand\LL{{\mathbf L}} \newcommand\ELL{{\Ivec \ell}} %%\newcommand\L{{\mathbf L}} %%\DeclareMathOperator*{\argmax}{arg\,max} %% \DeclareMathOperator*{\argmax}{argmax} %% (argmax wihtouth mid space) \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\var}{var} \DeclareMathOperator*{\dm}{dm} \newcommand{\Rvec}[1]{{\bf #1}} \newcommand{\Ivec}[1]{\mbox{\boldmath $#1$}} \title{Kernels} \author{Emanuele Olivetti} \begin{document} \maketitle \section{Introduction} This document gives a detailed description of kernels implemented in PyMVPA together with derivation of their gradients. Gradients are useful when trying to maximize the marginal likelihood of a Gaussian, i.e., during model selection. The following notation and definitions are used: \begin{itemize} \item $\x \in \R^D$ : a $D$-dimensional column vector, $\x = (x_1,\ldots,x_D)$. \item $\X = (\x_1^{\top},\ldots,\x_N^{\top})$ : a $N \times D$ matrix where each row is a $D$-dimensional vector. $\X$ is also called set of \emph{samples}. $\X_{* i}$ indicates the $i$-th column of $\X$ and is a column vector. $\X_{j *}$ indicates the $j$-th row of $\X$ and is a row vector. \item $k: \R^D \times \R^D \rightarrow \R$ : a covariance (or kernel) function. \item $\K(\X,\X')$ : the matrix extension of $k$, i.e., $\K_{pq} = k(\X_{*p},\X'_{*q})$. If $\X$ is a $N \times D$ matrix and $\X'$ is $N' \times D$ then $\K(\X,\X')$ is a $N \times N'$ matrix. \item $\J_{n,m}$ : the $n \times m$ matrix of ones, i.e., a matrix where each element is 1. \item $\|\mathbf{z}\|_p$ : the $p$-norm of vector $\mathbf{z}$ defined as $\|\mathbf{z}\|_p = (\sum_{i=1}^D \|z_i\|^p)^{\frac{1}{p}}$. Euclidean norm is $p=2$, then $\|\mathbf{z}\|_2 = \sqrt{\mathbf{z}^{\top}\mathbf{z}} = \sqrt{\sum_{i=1}^D z_i^2}$. \item $\|\mathbf{z},\mathbf{w}\|_p$ : the \emph{weighted} $p$-norm of vector $\mathbf{z}$ defined as $\|\mathbf{z},\mathbf{w}\|_p = (\sum_{i=1}^D w_i|z_i|^p)^{\frac{1}{p}}$. Euclidean norm is $p=2$, then $\|\mathbf{z},\mathbf{w}\|_2 = \sqrt{\mathbf{z}^{\top} \mathbf{W}^{-1} \mathbf{z}} = \sqrt{\sum_{i=1}^D w_i z_i^2}$, where $\mathbf{W} = diag(\mathbf{w})$. \item $\dm(\X,\X')$ : the \emph{Euclidean distance matrix} between $\X$ and $\X'$ defined element by element as $\dm(\X,\X')_{pq} = \|\X_{p *} - \X'_{q *}\|_2 = \sqrt{\sum_{i=1}^D (\X_{p i} - \X'_{q i})^2}$. If $\X$ is a $N \times D$ matrix and $\X'$ is $N' \times D$ then $\dm(\X,\X1)$ is a $N \times N'$ matrix. Note that $\dm(\X,X')$ is the square root of what it is usually called ``distance matrix''. \item $\dm(\X,\X',\mathbf{w})$ : the \emph{weighted} Euclidean distance matrix between $\X$ and $\X'$ defined element by element as $\dm(\X,\X',\mathbf{w})_{pq} = \|(\X_{p *} - \X'_{q *})^{\top}, \mathbf{w}\|_2 = \sqrt{\sum_{i=1}^D w_i(\X_{p i} - \X'_{q i})^2}$ through the weight vector $\mathbf{w} \in \R^D$. It is straightforward that $\dm(\X,\X') = \dm(\X,\X',\mathbf{J}_{D,1})$. \item $\X \bullet \mathbf{Y}$ : the Hadamard (or Schur) matrix product, i.e. the entrywise product between matrices of the same size. Let $\mathbf{Z} = \X \bullet \mathbf{Y}$, then $z_{ij} = x_{ij} y_{ij}$. \item $\X^{\alpha}$ : $(\X^{\alpha})_{ij} = (X_{ij})^{\alpha}$. \end{itemize} \section{Constant kernel} $$k(\x,\x') = \sigma_0^2$$ where $\sigma_0 \ge 0$ is the standard deviation of the Gaussian prior probability $\mathcal{N}(0,\sigma_0^2)$ of the value of the constant. $$\K(\X,\X') = \sigma_0^2 \J_{N,N'}$$ $$\mathbf{\Theta} = \{\sigma_0\}$$ $$\frac{\partial k}{\partial \sigma_0}(\x,\x') = 2\sigma_0$$ $$\frac{\partial \K}{\partial \sigma_0} = 2\sigma_0 \J_{N,N'}$$ $$A = \sigma_0^2$$ $$A \ge 0$$ $$\mathbf{\Theta}^* = \{A\}$$ $$k(\x,\x') = A$$ $$\K(\X,\X') = A \J_{N,N'}$$ $$\frac{\partial k}{\partial A} = 1$$ $$\nabla_A \K = \frac{\partial \K}{\partial A} = \J_{N,N'}$$ Note that using $A$ as hyperparameter the gradient becomes constant. \section{Linear kernel} Let $\Ivec{\Sigma}_p$ be the $D \times D$ covariance matrix of the Gaussian prior probability $\mathcal{N}(\Ivec{0},\Ivec{\Sigma}_p)$ of the weights of the Bayesian linear regression. $$k(\x,\x') = \x^{\top} \Ivec{\Sigma}_p \x'$$ $$\K(\X,\X') = \X \Ivec{\Sigma}_p \X'^{\top}$$ In order to simplify formulas we assume $\Ivec{\Sigma}_p$ is diagonal, i.e., $\Ivec{\Sigma}_p = diag(\Ivec{\sigma}^2_p)$ where $\Ivec{\sigma}^2_p = ({\sigma^2_p}_1,\ldots,{\sigma^2_p}_D)$: $$k(\x,\x') = \sum_{i=1}^D {\sigma^2_p}_i x_i x'_i$$ $$\mathbf{\Theta} = \{{\sigma_p}_1,\ldots,{\sigma_p}_D\}$$ $$\frac{\partial k}{\partial {\sigma_p}_i} = 2 {\sigma_p}_i x_i x'_i$$ $$A_i = {\sigma_p^2}_i$$ $$A_i \ge 0$$ $$\mathbf{A} = (A_1,\ldots,A_D)^{\top}$$ $$\mathbf{\Theta}^* = \{ \mathbf{A} \}$$ $$k(\x,\x') = \x^{\top} diag(\mathbf{A}) \x'$$ $$\K(\X,\X') = \X diag(\mathbf{A}) \X'^{\top}$$ $$\frac{\partial k}{\partial A_i} = x_i x'_i$$ $$\frac{\partial \K}{\partial A_i} = \X_{* i} {\X'_{* i}}^{\top}$$ $$\nabla_{\mathbf{A}} \K = ( \X_{* 1} {\X'_{* 1}}^{\top}, \ldots, \X_{* D} {\X'_{* D}}^{\top})$$ As expected the gradient is independent of the hyperparameters values and can be computed once for all at the beginning. \section{Polynomial kernel} $$k(\x,\x') = (\sigma_0^2 + \x^{\top} \Ivec{\Sigma}_p \x')^p = (\sigma_0^2 + \sum_{i=1}^D {\sigma^2_p}_i x_i x'_i)^p$$ $$\K(\X,\X') = (\sigma_0^2 \mathbf{J}_{N,N'} + \X \Ivec{\Sigma}_p \X'^{\top})^p$$ In order to simplify formulas we assume $\Ivec{\Sigma}_p$ is diagonal, i.e., $\Ivec{\Sigma}_p = diag(\Ivec{\sigma}^2_p)$ where $\Ivec{\sigma}^2_p = ({\sigma^2_p}_1,\ldots,{\sigma^2_p}_D)$. $$\sigma_0 \ge 0$$ $$\Ivec{\sigma}_p = ({\sigma_p}_1,\ldots,{\sigma_p}_D)$$ $${\sigma_p}_i \ge 0$$ $$\mathbf{\Theta} = \{\sigma_0,\Ivec{\sigma}_p, p\}$$ $$A = \sigma_0^2$$ $$B_i = {\sigma^2_p}_i$$ $$\mathbf{B} = (B_1,\ldots,B_D)$$ $$\mathbf{\Theta}^* = \{A,\mathbf{B}, p\}$$ $$k(\x,\x') = (A + \x^{\top} diag(\mathbf{B}) \x')^p = (A + \sum_{i=1}^D B_i x_i x'_i)^p$$ $$\frac{\partial k}{\partial A} = p(A + \sum_{i=1}^D B_i x_i x'_i)^{p-1}$$ $$\frac{\partial \K}{\partial A} = p(A\mathbf{J}_{N,N'} + \sum_{i=1}^D B_i \X_{*i} {\X'_{*i}}^{\top})^{p-1}$$ $$\frac{\partial k}{\partial B_i} = p(A + \sum_{i=1}^D B_i x_i x'_i)^{p-1} x_i x'_i = \frac{\partial k}{\partial A} x_i x'_i$$ $$\frac{\partial \K}{\partial B_i} = \frac{\partial \K}{\partial A} \X_{*i} {\X'_{*i}}^{\top}$$ $$\frac{\partial k}{\partial p} = k(\x,\x') \ln(A + \sum_{i=1}^D B_i x_i x'_i)$$ $$\frac{\partial \K}{\partial p} = \K(\X,\X') \bullet \ln(A \mathbf{J}_{N,N'}+ \sum_{i=1}^D B_i \X_{*i} \X'_{*i})$$ $$\mathbf{M} = A \mathbf{J}_{N,N'}+ \sum_{i=1}^D B_i \X_{*i} \X'_{*i}$$ $$\nabla_{A,\mathbf{B},p} \K = \left(p\mathbf{M}^{p-1},\left\{p\mathbf{M}^{p-1} \X_{*i} {\X'_{*i}}^{\top} \right\}_{i=1,\ldots,D}, \K(\X,\X') \bullet \ln(\mathbf{M}) \right)$$ \section{Exponential kernel} \subsection{Scalar Lengthscale $\ell$} $$k(\x,\x') = \sigma_f^2 e^{-\frac{\|\x-\x'\|_2}{\ell}}$$ $$\ell > 0$$ $$\sigma_f \ge 0$$ $$\mathbf{\Theta} = \{ \sigma_f, \ell \}$$ $$\K(\X,\X') = \sigma_f^2 e^{-\frac{1}{\ell}\dm(\X,\X')}$$ $$A = \sigma_f^2$$ $$A \ge 0$$ $$B = -\frac{1}{\ell}$$ $$B < 0$$ $$\mathbf{\Theta}^* = \{ A, B \}$$ $$k(\x,\x') = A e^{B\|\x-\x'\|_2}$$ $$\K(\X,\X') = A e^{B \dm(\X-\X')}$$ $$\frac{\partial k}{\partial A} = e^{B\|\x-\x'\|_2} = \frac{1}{A}k(\x,\x')$$ $$\frac{\partial \K}{\partial A} = e^{B \dm(\X,\X')} = \frac{1}{A} \K(\X,\X')$$ $$\frac{\partial k}{\partial B} = A e^{B\|\x-\x'\|_2} \|\x-\x'\|_2 = k(\x,\x') \|\x-\x'\|_2$$ $$\frac{\partial \K}{\partial B} = \K(\X,\X') \bullet \dm(\X-\X')$$ $$\nabla_{A,B} \K = (\frac{1}{A} \K(\X,\X'), \K(\X,\X') \bullet \dm(\X-\X'))$$ Note that if $\K(\X,\X')$ is precomputed, then the gradient consists in just two element-by-element products, the second being against a constant matrix independent of the hyperparameters. \subsection{Vector of Lengthscales $\Ivec{\ell}$} Given $\Ivec{\ell} = (\ell_1,\ldots,\ell_D)$, $\ell_i \ge 0$ and $\ELL^{-1} = (1/\ell_1,\ldots,1/\ell_D)$ $$k(\x,\x') = \sigma_f^2 e^{-\|\x-\x',\ELL^{-2}\|_2}= \sigma_f^2 e^{-\sqrt{\sum_{i=1}^D \left(\frac{x_i - x'_i}{\ell_i}\right)^2}}$$ $$K(\X,\X') = \sigma_f^2 e^{-\dm(\X,\X',\ELL^{-2})}$$ $$\mathbf{\Theta} = \{ \sigma_f, \ELL\}$$ $$\sigma_f \ge 0$$ $$\ell_i > 0$$ $$A = \sigma_f^2$$ $$\mathbf{B} = \ELL^{-2}$$ $$A \ge 0$$ $$B_i > 0$$ $$\mathbf{\Theta}^* = \{ A, \mathbf{B}\}$$ $$k(\x,\x') = A e^{-\|\x-\x',\mathbf{B}\|_2} = A e^{-\sqrt{\sum_{i=1}^D B_i(x_i - x'_i)^2}}$$ $$K(\X,\X') = A e^{-\dm(\X,\X',\mathbf{B})}$$ $$\frac{\partial k}{\partial A} = e^{-\sqrt{\sum_{i=1}^D B_i(x_i - x'_i)^2}} = \frac{k(\x,\x')}{A}$$ $$\frac{\partial \K}{\partial A} = e^{-\dm(\X,\X',\mathbf{B})} = \frac{1}{A}\K(\X,\X')$$ $$\frac{\partial k}{\partial B_i} = A e^{-\|\x-\x',\mathbf{B}\|_2} \left( -\frac{1}{2} \|\x-\x',\mathbf{B}\|_2^3 \right) (x_i - x'_i)^2 = -\frac{1}{2} k(\x,\x') \|\x-\x',\mathbf{B}\|_2^3 (x_i - x'_i)^2 $$ $$\frac{\partial \K}{\partial B_i} = -\frac{1}{2} K(\X,\X') \bullet \dm(\X-\X',\mathbf{B})^3 \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$$ $$\nabla_{A,\mathbf{B}} \K = \left(\frac{1}{A}\K(\X,\X'), \left\{-\frac{1}{2} K(\X,\X') \bullet \dm(\X-\X',\mathbf{B})^3 \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2 \right\}_{i=1 \ldots D} \right)$$ Note that $\frac{\partial \K}{\partial A}$ requires just the multiplication of a constant by the kernel matrix $\K(\X,\X')$ whose values usually already available. Instead $\frac{\partial \K}{\partial B_i}$ is a entrywise product of 3 matrices: $\K(\X,\X')$ (usually already available), $\dm(\X-\X',\mathbf{B})^3$ (which is, apart the cube, part of the computation of $\K(\X,\X')$ so it can be stored in advance), and $(\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$ which does not depend upon $A$ and $\mathbf{B}$ so it can be computed once for all. Note that in NumPy $(\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$ can be computed as {\ttfamily numpy.subtract.outer($X_{*i},X'_{*i}$)**2}. \section{Squared Exponential kernel} \subsection{Scalar Lengthscale $\ell$} $$k(\x,\x') = \sigma_f^2 e^{-\frac{1}{2\ell^2} (\x-\x')^{\top}(\x-\x')} = \sigma_f^2 e^{-\frac{1}{2\ell^2} \sum_{i=1}^D (x_i - x'_i)^2} = \sigma_f^2 e^{-\frac{1}{2\ell^2} \|\x-\x'\|_2^2}$$ $$\K(\X,\X') = \sigma_f^2 e^{-\frac{1}{2\ell^2} \dm(\X,\X')^2}$$ $$\sigma_f \ge 0$$ $$\ell > 0$$ $$\mathbf{\Theta} = \{ \sigma_f, \ell \}$$ $$\frac{\partial k}{\partial \sigma_f} = \frac{2}{\sigma_f}k$$ $$\frac{\partial \K}{\partial \sigma_f} = \frac{2}{\sigma_f}\K$$ $$\frac{\partial k}{\partial \ell} = \ell^{-3} k \|\x-\x'\|_2^2 $$ $$\frac{\partial \K}{\partial \ell} = \ell^{-3} \K \bullet \dm(\X,\X')^2$$ $$\nabla_{\sigma_f,\ell} \K = \left(\frac{2}{\sigma_f}K(\X,\X'), \ell^{-3} \K \bullet \dm(\X-\X')^2 \right)$$ Logscale: $$A = \ln{\sigma_f}$$ $$\sigma_f = e^A$$ $$\frac{\partial k}{\partial A} = 2k$$ $$\frac{\partial \K}{\partial \sigma_f} = 2\K$$ $$B = \ln{\ell}$$ $$\ell = e^B$$ $$\frac{\partial k}{\partial B} = \ell^{-2} k \|\x-\x'\|_2^2$$ $$\frac{\partial \K}{\partial B} = \ell^{-2} \K \bullet \dm(\X,\X')^2 = \K \bullet \dm(\X,\X',\ell^{-2}\J_N)^2$$ $$\nabla_{A,B} \K = \left( 2\K(\X,\X'), \ell^{-2} \K \bullet \dm(\X-\X')^2 \right)$$ Another mapping: $$A = \sigma_f^2$$ $$B = -\frac{1}{\ell^2}$$ $$A \ge 0$$ $$B < 0$$ $$\mathbf{\Theta}^* = \{ A, B\}$$ $$k(\x,\x') = A e^{B (\x-\x')^{\top}(\x-\x')}$$ $$\K(\X,\X') = A e^{B \dm(\X,\X')^2}$$ $$\frac{\partial k}{\partial A} = \frac{k(\x,\x')}{A}$$ $$\frac{\partial \K}{\partial A} = \frac{1}{A}\K(\X,\X')$$ $$\frac{\partial k}{\partial B} = k(\x,\x') \|\x-\x'\|_2^2$$ $$\frac{\partial \K}{\partial B} = K(\X,\X') \bullet \dm(\X,\X')^2$$ $$\nabla_{A,B} \K = (\frac{1}{A} \K(\X,\X'), \dm(\X-\X')^2 \bullet \K(\X,\X'))$$ Note that $\nabla_{A,B} \K$ is similar to that of the exponential kernel so almost all comments made before applies here as well. \subsection{Vector of Lengthscales $\ELL$} Let $\mathbf{L} = diag(\ELL)$: $$k(\x,\x') = \sigma_f^2 e^{-\frac{1}{2}(\x-\x')^{\top} \LL^{-2} (\x-\x')} = \sigma_f e^{-\frac{1}{2}\sum_{i=1}^D \frac{(x_i - x'_i)^2}{\ell_i^2}} = \sigma_f^2 e^{-\frac{1}{2}\|\x-\x',\ELL^{-2}\|_2^2}$$ $$\K(\X,\X') = \sigma_f^2 e^{-\frac{1}{2} \dm(\X,\X',\ELL^{-2})^2}$$ $$\sigma_f \ge 0$$ $$\ell_i > 0$$ $$\mathbf{\Theta} = \{ \sigma_f, \ELL\}$$ $$\frac{\partial k}{\partial \sigma_f} = \frac{2}{\sigma_f}k$$ $$\frac{\partial \K}{\partial \sigma_f} = \frac{2}{\sigma_f}\K$$ $$\frac{\partial k}{\partial \ell_i} = \ell_i^{-3} k \|\x_i-\x_i'\|_2^2 $$ $$\frac{\partial \K}{\partial \ell_i} = \ell_i^{-3} \K \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$$ $$\nabla_{\sigma_f,\ell} \K = \left(\frac{2}{\sigma_f}K(\X,\X'), \ell_i^{-3} \K \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2 \right)$$ Logscale: $$A = \ln{\sigma_f}$$ $$\sigma_f = e^A$$ $$\frac{\partial k}{\partial A} = 2k$$ $$\frac{\partial \K}{\partial \sigma_f} = 2\K$$ $$B_i = \ln{\ell_i}$$ $$\ell_i = e^B_i$$ $$\frac{\partial k}{\partial B_i} = \ell_i^{-2} k \|\x_i-\x'_i\|_2^2$$ $$\frac{\partial \K}{\partial B_i} = \ell^{-2} \K \bullet \dm(\X,\X')^2 = \ell_i^{-2} \K \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$$ $$\nabla_{A,\mathbf{B}} \K = \left( 2\K(\X,\X'), \left\{ \ell_i^{-2} \K \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2 \right\}_{i=1 \ldots D} \right)$$ Another mapping: $$A = \sigma_f$$ $$\mathbf{B} = -\frac{1}{2}\ELL^{-2} = \left(-\frac{1}{2\ell_1^2},\ldots,-\frac{1}{2\ell_D^2} \right)$$ $$A \ge 0$$ $$B_i < 0$$ $$\mathbf{\Theta}^* = \{ A, \mathbf{B}\}$$ $$k(\x,\x') = A e^{(\x-\x')^{\top} diag(\mathbf{B}) (\x-\x')} = A e^{\sum_{i=1}^D B_i (x_i - x'_i)^2}$$ $$\K(\X,\X') = A e^{\dm(\X,\X',\mathbf{B})}$$ $$\frac{\partial k}{\partial A} = \frac{k(\x,x')}{A}$$ $$\frac{\partial \K}{\partial A} = \frac{1}{A}\K(\X,X')$$ $$\frac{\partial k}{\partial B_i} = k(\x,\x') (x_i -x'_i)^2$$ $$\frac{\partial \K}{\partial B_i} = \K(\X,\X') \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$$ $$\nabla_{A,\mathbf{B}} \K = \left(\frac{\K(\X,\X')}{A}, \left\{ K(\X,\X') \bullet (\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2 \right\}_{i=1 \ldots D} \right)$$ Note that $\nabla_{A,\mathbf{B}} \K$ requires to compute $K(\X,\X')$ (which is usually already available), and its entrywise product with $(\X_{*i}J_{1,N'}- (\X'_{*i}J_{1,N})^{\top})^2$ which is independent of the value of the hyperparameters and can be precomputed once for all. \section{$\gamma$-Exponential kernels} $$k(\x,\x') = \sigma_f^2 e^{-(\frac{\x-\x'}{\ell})^\gamma}$$ $$k(\x,\x') = \sigma_f^2 e^{-(\frac{\x-\x'}{\ELL})^\gamma}$$ \section{Mat\'ern kernels} %% $$k_{\mbox{Mat\'ern}}(\x,\x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\|\x-\x'\|_2}{\ell}\right)^{\nu} \K_{\nu}\left(\sqrt{2}\nu \frac{\|\x-\x'\|_2}{\ell} \right)$$ %% $$\ell > 0$$ %% $$\nu > 0$$ %% where $K_{\nu}$ is a modified Bessel function (REMOVE?). Let $\nu$ be half integer, i.e., $\nu = p + 1/2$ ($p \in \mathbb{Z}^+$), then $$k_{\nu=p+1/2}(\x,\x') = e^{-\sqrt{2\nu}\frac{\|\x-\x'\|}{\ell}} \frac{\Gamma(p+1)}{\Gamma(2p+1)} \sum_{i=0}^p \frac{(p+i)!}{i!(p-i)!}\left(\sqrt{8\nu}\frac{\|\x-\x'\|}{\ell}\right)^{p-i}$$ is the class of Mat\'ern covariance functions with half-integer $\nu$. $$\nu > 0$$ $$\ell > 0$$ When $\nu \rightarrow \infty$ we obtain the squared exponential covariance function. Most popular cases of the Mat\'ern functions are $p=0$ (exponential kernel), $p=1$ and $p=2$: $$k_{\nu=1/2}(\x,\x') = e^{-\frac{\|\x-\x'\|_2}{\ell}}$$ $$k_{\nu=3/2}(\x,\x') = \left(1+\sqrt{3}\frac{\|\x-\x'\|_2}{\ell} \right) e^{-\sqrt{3}\frac{\|\x-\x'\|_2}{\ell}}$$ $$k_{\nu=5/2}(\x,\x') = \left(1+\sqrt{5}\frac{\|\x-\x'\|_2}{\ell} + \frac{5\|\x-\x'\|_2^2}{3\ell^2}\right) e^{-\sqrt{5}\frac{\|\x-\x'\|_2}{\ell}}$$ \section{Rational Quadratic kernels} $$k_{RQ} = \left(1+\frac{\|\x-\x'\|_2^2}{2\alpha\ell^2} \right)^{-\alpha}$$ $$\alpha > 0$$ $$\ell > 0$$ \end{document} pymvpa-0.4.8/doc/matlab.rst000066400000000000000000000027211174541445200156070ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_matlab: .. index:: Matlab *********************** PyMVPA for Matlab Users *********************** If you are coming from Matlab, you will soon notice a lot of similarities between Matlab and Python (besides the huge advantages of Python over Matlab). For an easy transition you might want to have a look at a `basic comparison of Matlab and NumPy`_. .. _basic comparison of Matlab and NumPy: http://www.scipy.org/NumPy_for_Matlab_Users .. index:: MVPA toolbox for Matlab It would be nice to have some guidelines on how to use PyMVPA for users who are already familiar with the `Matlab MVPA toolbox`_. If you are using both packages and could compile a few tips, your contribution would be most welcome. .. _Matlab MVPA toolbox: http://www.csbmb.princeton.edu/mvpa/ A recent paper by :ref:`Jurica and van Leeuwen (2009) ` describes an open-source MATLAB®-to-Python compiler which might be a very useful tool to migrate a substantial amount of Matlab-based source code to Python and therefore also aids the migration of developers from Matlab to the new *"general open-source lingua franca for scientific computation"*. pymvpa-0.4.8/doc/measures.rst000066400000000000000000000201351174541445200161720ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. index:: measure, sensitivity .. _chap_measures: ******** Measures ******** PyMVPA provides a number of useful measures. The vast majority of them are dedicated to feature selection. To increase analysis flexibility, PyMVPA distinguishes two parts of a feature selection procedure. First, the impact of each individual feature on a classification has to be determined. The resulting map reflects the sensitivities of all features with respect to a certain decision and, therefore, algorithms generating these maps are summarized as :class:`~mvpa.measures.base.Sensitivity` in PyMVPA. .. index:: feature selection Second, once the feature sensitivities are known, they can be used as criteria for feature selection. However, possible selection strategies range from very simple *Go with the 10% best features* to more complicated algorithms like :ref:`recursive_feature_elimination`. Because :ref:`sensitivity_measures` and selections strategies can be arbitrarily combined, PyMVPA offers a quite flexible framework for feature selection. .. index:: processing object Similar to dataset splitters, all PyMVPA algorithms are implemented and behave like :term:`processing object`\ s. To recap, this means that they are instantiated by passing all relevant arguments to the constructor. Once created, they can be used multiple times by calling them with different datasets. .. Again general overview first. What is a `SensitivityAnalyzer`, what is the difference between a `FeatureSelection` and an `ElementSelector`. Finally more detailed note and references for each larger algorithm. .. index:: sensitivity .. _sensitivity_measures: Sensitivity Measures ==================== It was already mentioned that a :class:`~mvpa.measures.base.Sensitivity` computes a featurewise score that indicates how much interesting signal each feature contains -- hoping that this score somehow correlates with the impact of the features on a classifier's decision for a certain problem. Every sensitivity analyzer object computes a one-dimensional array with the respective score for every feature, when called with a :class:`~mvpa.datasets.base.Dataset`. Due to this common behavior all :class:`~mvpa.measures.base.Sensitivity` types are interchangeable and can be combined with any other algorithm requiring a sensitivity analyzer. By convention higher sensitivity values indicate more interesting features. There are two types of sensitivity analyzers in PyMVPA. Basic sensitivity analyzers directly compute a score from a Dataset. Meta sensitivity analyzers on the other hand utilize another sensitivity analyzer to compute their sensitivity maps. Basic Sensitivity (and related Measures) ---------------------------------------- .. index:: anova, F-score, univariate, measure .. _anova: ANOVA ^^^^^ The :class:`~mvpa.measures.anova.OneWayAnova` class provides a simple (and fast) univariate measure, that can be used for feature selection, although it is not a proper sensitivity measure. For each feature an individual F-score is computed as the fraction of between and within group variances. Groups are defined by samples with unique labels. Higher F-scores indicate higher sensitivities, as with all other sensitivity analyzers. .. index:: classifier weights, weights, SVM, measure Linear SVM Weights ^^^^^^^^^^^^^^^^^^ The featurewise weights of a trained support vector machine are another possible sensitivity measure. The :class:`mvpa.clfs.libsvmc.sens.LinearSVMWeights` and :class:`mvpa.clfs.sg.sens.LinearSVMWeights` classes can internally train all types of *linear* support vector machines and report those weights. In contrast to the F-scores computed by an ANOVA, the weights can be positive or negative, with both extremes indicating higher sensitivities. To deal with this property all subclasses of :class:`~mvpa.measures.base.DatasetMeasure` support a `transformer` arguments in the constructor. A transformer is a functor that is finally called with the computed sensitivity map. PyMVPA already comes with some convenience functors which can be used for this purpose (see :mod:`~mvpa.misc.transformers`). >>> from mvpa.misc.data_generators import normalFeatureDataset >>> from mvpa.clfs.svm import LinearCSVMC >>> from mvpa.misc.transformers import Absolute >>> >>> ds = normalFeatureDataset() >>> ds >>> >>> clf = LinearCSVMC() >>> sensana = clf.getSensitivityAnalyzer() >>> sens = sensana(ds) >>> sens.shape (4,) >>> (sens < 0).any() True >>> sensana_abs = clf.getSensitivityAnalyzer(transformer=Absolute) >>> (sensana_abs(ds) < 0).any() False Above example shows how to use an existing classifier instance to report sensitivity values (a linear SVM in this case). The computed sensitivity vector contains one element for each feature in the dataset. :mod:`~mvpa.misc.transformers` can be used to post-process the sensitivity scores, e.g. reporting absolute values for feature selection purposes, instead of raw sensitivities. .. note:: The `SVMWeights` classes *cannot* extract reasonable weights from non-linear SVMs (e.g. with RBF kernels). Other linear Classifier Weights ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Any linear classifier in PyMVPA can report its weights. The procedure is identical for all of them. As outlined in the example using linear SVM weights, simply call :meth:`~mvpa.clfs.base.Classifier.getSensitivityAnalyzer` on a classifier instance and you'll get an appropriate :class:`~mvpa.measures.base.Sensitivity` object. Additionally, it is possible to force (re)training of the underlying classifier or simply report the weights computed during a previous training run. Examples of other classifier-based linear sensitivity analyzers are: :class:`~mvpa.clfs.smlr.SMLRWeights` and :class:`~mvpa.clfs.gpr.GPRLinearWeights`. .. index:: noise perturbation, measure .. _noise_perturbation: Noise Perturbation ^^^^^^^^^^^^^^^^^^ Noise perturbation is a generic approach to determine feature sensitivity. The sensitivity analyzer :class:`~mvpa.measures.noiseperturbation.NoisePerturbationSensitivity`) computes a scalar :class:`~mvpa.measures.base.DatasetMeasure` using the original dataset. Afterwards, for each single feature a noise pattern is added to the respective feature and the dataset measure is recomputed. The sensitivity of each feature is the difference between the dataset measure of the original dataset and the one with added noise. The reasoning behind this algorithm is that adding noise to *important* features will impair a dataset measure like cross-validated classifier transfer error. However, adding noise to a feature that already only contains noise, will not change such a measure. Depending on the used scalar :class:`~mvpa.measures.base.DatasetMeasure` using the sensitivity analyzer might be really CPU-intensive! Also depending on the measure, it might be necessary to use appropriate :mod:`~mvpa.misc.transformers` (see :mod:`~mvpa.misc.transformers` constructor arguments) to ensure that higher values represent higher sensitivities. .. index:: meta measures Meta Sensitivity Measures ------------------------- Meta Sensitivity Measures are FeaturewiseDatasetMeasures that internally use one of the `Basic Sensitivity (and related Measures)`_ to compute their sensitivity scores. .. index:: splitting measures, measure Splitting Measures ^^^^^^^^^^^^^^^^^^ The SplittingFeaturewiseMeasure uses a :class:`~mvpa.datasets.splitters.Splitter` to generate dataset splits. A FeaturewiseDatasetMeasure is then used to compute sensitivity maps for all these dataset splits. At the end a `combiner` function is called with all sensitivity maps to produce the final sensitivity map. By default the mean sensitivity maps across all splits is computed. .. _SplitFeaturewiseMeasure: api/mvpa.measures.splitmeasure.SplitFeaturewiseMeasure-class.html pymvpa-0.4.8/doc/misc.rst000066400000000000000000000346301174541445200153060ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_misc: .. index:: misc ************* Miscellaneous ************* .. index:: settings, configuration, cfg Managing (Custom) Configurations ================================ PyMVPA provides a facility to handle arbitrary configuration settings. This facility can be used to control some aspects of the behavior of PyMVPA itself, as well as to store and query custom configuration items, e.g. to control one's own analysis scripts. An instance of this configuration manager is loaded whenever the `mvpa` module is imported. It can be used from any script like this: >>> from mvpa import cfg By default the config manager reads settings from two config files (if any of them exists). The first is a file named `.pymvpa.cfg` and located in the user's home directory. The second is `pymvpa.cfg` in the current directory. Please note, that settings found in the second file override the ones in the first. The syntax of both files is the one also known from the Windows INI files. Basically, `Python's ConfigParser`_ is used to read those file and the config supports whatever this parser can read. A minimal example config file might look like this:: [general] verbose = 1 It consists of a section `general` containing a single setting `verbose`, which is set to `1`. PyMVPA recognizes a number of such sections and configuration variables. A full list is shown at the end of this section and is also available in the source package (`doc/examples/pymvpa.cfg`). .. _Python's ConfigParser: http://docs.python.org/lib/module-ConfigParser.html In addition to configuration files, the config manager also looks for special environment variables to read settings from. Names of such variables have to start with `MVPA_` following by the an optional section name and the variable name itself (with `_` as delimiter). If no section name is provided, the variables will be associated with section `general`. Some examples:: MVPA_VERBOSE=1 will become:: [general] verbose = 1 However, :envvar:`MVPA_VERBOSE_OUTPUT` `= stdout` becomes:: [verbose] output = stdout Any lenght of variable name is allowed, e.g. `MVPA_SEC1_LONG_VARIABLE_NAME=1` becomes:: [sec1] long variable name = 1 Settings read from environment variables have the highest priority and override settings found in the config files. Therefore environment variables can be used to quickly adjust some setting without having to edit the config files. The config manager can easily be queried from inside scripts. In addition to the interface of `Python's ConfigParser`_ it has a few convenience functions mostly to allow for a default value in case no setting was found. For example: >>> cfg.getboolean('warnings', 'suppress', default=False) False queries the config manager whether warnings should be suppressed (i.e. if there is a variable `suppress` in section `warnings`). In case, there is now such setting, i.e. neither config files nor environment variables defined it, the `default` values is returned. Please see the documentation of `ConfigManager`_ for its full functionality. .. _ConfigManager: api/mvpa.base.config.ConfigManager-class.html .. index:: config file The source tarballs includes an example configuration file (`doc/examples/pymvpa.cfg`) with the comprehensive list of settings recognized by PyMVPA itself: .. literalinclude:: examples/pymvpa.cfg :language: ini .. index:: progress tracking, verbosity, debug, warning Progress Tracking ================= .. some parts should migrate into developer reference I guess There are 3 types of messages PyMVPA can produce: verbose_ regular informative messages about generic actions being performed debug_ messages about the progress of computation, manipulation on data structures warning_ messages which are reported by mvpa if something goes a little unexpected but not critical .. _verbose: api/mvpa.misc-module.html#verbose .. _debug: api/mvpa.misc-module.html#debug .. _warning: api/mvpa.misc-module.html#warning .. index:: redirecting output Redirecting Output ------------------ By default, all types of messages are printed by PyMVPA to the standard output. It is possible to redirect them to standard error, or a file, or a list of multiple such targets, by using environment variable ``MVPA_?_OUTPUT``, where X is either ``VERBOSE``, ``DEBUG``, or ``WARNING`` correspondingly. E.g.:: export MVPA_VERBOSE_OUTPUT=stdout,/tmp/1 MVPA_WARNING_OUTPUT=/tmp/3 MVPA_DEBUG_OUTPUT=stderr,/tmp/2 would direct verbose messages to standard output as well as to ``/tmp/1`` file, warnings will be stored only in ``/tmp/3``, and debug output would appear on standard error output, as well as in the file ``/tmp/2``. PyMVPA output redirection though has no effect on external libraries debug output if corresponding debug_ target is enabled shogun debug output (if any of internal ``SG_`` debug_ targets is enabled) appears on standard output SMLR debug output (if ``SMLR_`` debug_ target is enabled) appears on standard output LIBSVM debug output (if ``LIBSVM`` debug_ target is enabled) appears on standard error One of the possible redirections is Python's ``StringIO`` class. Instance of such class can be added to the ``handlers`` and queried later on for the information to be dumped to a file later on. It is useful if output path is specified at run time, thus it is impossible to redirect verbose or debug from the start of the program: >>> import sys >>> from mvpa.base import verbose >>> from StringIO import StringIO >>> stringout = StringIO() >>> verbose.handlers = [sys.stdout, stringout] >>> verbose.level = 3 >>> >>> verbose(1, 'msg1') msg1 >>> out_prefix='/tmp/' >>> >>> verbose(2, 'msg2') msg2 >>> # open('%sverbose.log' % out_prefix, 'w').write(stringout.getvalue()) >>> print stringout.getvalue(), msg1 msg2 >>> .. index:: verbosity Verbose Messages ---------------- Primarily for a user of PyMVPA to provide information about the progress of their scripts. Such messages are printed out if their level specified as the first parameter to verbose_ function call is less than specified. There are two easy ways to specify verbosity level: * command line: you can use opt.verbose_ for precrafted command line option for to give facility to change it from your script (see examples) * environment variable :envvar:`MVPA_VERBOSE` * code: verbose.level property The following verbosity levels are supported: :0: nothing besides errors :1: high level stuff -- top level operation or file operations :2: cmdline handling :3: n.a. :4: computation/algorithm relevant thing .. index:: warning Warning Messages ---------------- Reported by PyMVPA if something goes a little unexpected but not critical. By default they are printed just once per occasion, i.e. once per piece of code where it is called. Following environment variables control the behavior of warnings: * :envvar:`MVPA_WARNINGS_COUNT` `=` controls for how many invocations of specific warning it gets printed (default behavior is 1 for once). Specification of negative count results in all invocations being printed, and value of 0 obviously suppresses the warnings * :envvar:`MVPA_WARNINGS_SUPPRESS` analogous to :envvar:`MVPA_WARNINGS_COUNT` `=0` it resultant behavior * :envvar:`MVPA_WARNINGS_BT` `=` controls up to how many lines of traceback is printed for the warnings In python code, invocation of warning with argument ``bt = True`` enforces printout of traceback whenever warning tracebacks are disabled by default. .. index:: debug Debug Messages -------------- Debug messages are used to track progress of any computation inside PyMVPA while the code run by python without optimization (i.e. without ``-O`` switch to python). They are specified not by the level but by some id usually specific for a particular PyMVPA routine. For example ``RFEC`` id causes debugging information about `Recursive Feature Elimination call`_ to be printed (See `base module sources`_ for the list of all ids, or print ``debug.registered`` property). Analogous to verbosity level there are two easy ways to specify set of ids to be enabled (reported): * command line: you can use optDebug_ for precrafted command line option to provide it from your script (see examples). If in command line if optDebug_ is used, ``-d list`` is given, PyMVPA will print out list of known ids. * environment: variable :envvar:`MVPA_DEBUG` can contain comma-separated list of ids or python regular expressions to match multiple ids. Thus specifying :envvar:`MVPA_DEBUG` `=CLF.*` would enable all ids which start with ``CLF``, and :envvar:`MVPA_DEBUG` `=.*` would enable all known ids. * code: debug.active property (e.g. ``debug.active = [ 'RFEC', 'CLF' ]``) Besides printing debug messages, it is also possible to print some metric. You can define new metrics or select predefined ones: vmem (Linux specific): amount of virtual memory consumed by the task pid (Linux specific): PID of the process reltime How many seconds passed since previous debug printout asctime Time stamp tb Traceback (``module1:line_number1[,line_number2...]>module2:line_number..``) where this debug statement was requested tbc Concise traceback printout -- prefix common with the previous invocation is replaced with ``...`` To enable list of metrics you can use :envvar:`MVPA_DEBUG_METRICS` environment variable to list desired metric names comma-separated. If ``ALL`` is provided, it enables all the metrics. As it was mentioned earlier, debug messages are printed only in non-optimized python invocation. That was done to eliminate any slowdown introduced by such 'debugging' output, which might appear at some computational bottleneck places in the code. Some of the debug ids are defined to facilitate additional checking of the validity of the analysis. Their debug ids a prefixed by ``CHECK_``. E.g. ``CHECK_RETRAIN`` id would cause additional checking of the data in retraining phase. Such additional testing might spot out some bugs in the internal logic, thus enabled when full test suite is ran. .. TODO: Unify loggers behind verbose and debug. imho debug should have also way to specify the level for the message so we could provide more debugging information if desired. .. _opt.verbose: api/mvpa.misc.cmdline-module.html#opt.verbose .. _optDebug: api/mvpa.misc.cmdline-module.html#optDebug .. _base module sources: api/mvpa.base-pysrc.html .. _Recursive Feature Elimination call: api/mvpa.featsel.rfe.RFE-class.html#__call__ PyMVPA Status Summary --------------------- While reporting found bugs, it is advised to provide information about the operating system/environment and availability of PyMVPA externals. Please use :func:`~mvpa.base.info.wtf` to collect such useful information to be included with the bug reports. Alternatively, same printout can be obtained upon not handled exception automagically, if environment variable :envvar:`MVPA_DEBUG_WTF` is set. Additional Little Helpers ========================= .. index:: random number generation, RNG Random Number Generation ------------------------ To facilitate reproducible troubleshooting, a seed value of random generator of NumPy can be provided in debug mode (python is called without ``-O``) via environment variable :envvar:`MVPA_SEED` `=`. Otherwise it gets seeded with random integer which can be displayed with debug id ``RANDOM`` e.g.:: > MVPA_SEED=123 MVPA_DEBUG=RANDOM python test_clf.py [RANDOM] DBG: Seeding RNG with 123 ... > MVPA_DEBUG=RANDOM python test_clf.py [RANDOM] DBG: Seeding RNG with 1447286079 ... Unittests at a Grasp -------------------- .. index:: unittests If it is needed to just quickly grasp through all unittests without making them to test multiple classifiers (implemented with sweeparg), define environmental variable :envvar:`MVPA_TESTS_QUICK` e.g.:: > MVPA_WARNINGS_SUPPRESS=no MVPA_TESTS_QUICK=yes python test_clf.py ............... ---------------------------------------------------------------------- Ran 15 tests in 0.845s Some tests are not 100% deterministic as they operate on random data (e.g. the performance of a randomly initialized classifier). Therefore, in some cases, specific unit tests might fail when running the full test battery. To exclude these test cases (and only those where non-deterministic behavior immanent) one can use the :envvar:`MVPA_TESTS_LABILE` configuration and set it to 'off'. Others ------ (to be written) .. put information about IO helpers, external bindings, etc here .. index:: FSL, detrending, motion correction FSL Bindings ============ PyMVPA contains a few little helpers to make interfacing with FSL_ easier. The purpose of these helpers is to increase the efficiency when doing an analysis by (re)using useful information that is already available from some FSL output. FSL usually stores most interesting information in the NIfTI format. Therefore it can be easily imported into PyMVPA using PyNIfTI. However, some information is stored in text files, e.g. estimated motion correction parameters and *FEAT's three-column custom EV* files. PyMVPA provides import and export helpers for both of them (among other stuff like a *MELODIC* results import helper). .. _motion-aware_detrending: Here is an example how the *McFlirt* parameter output can be used to perform motion-aware data detrending: >>> from os import path >>> import numpy as N >>> >>> # some dummy dataset >>> from mvpa.datasets import Dataset >>> ds = Dataset(samples=N.random.normal(size=(19, 3)), labels=1) >>> >>> # load motion correction output >>> from mvpa.misc.fsl.base import McFlirtParams >>> mc = McFlirtParams(path.join('mvpa', 'data', 'bold_mc.par')) >>> >>> # simple plot using pylab (use pylab.show() or pylab.savefig() >>> # afterwards) >>> mc.plot() >>> >>> # detrend some dataset with mc params as additonal regressors >>> from mvpa.datasets.miscfx import detrend >>> res = detrend(ds, model='regress', opt_reg=mc.toarray()) >>> # 'res' contains all regressors and their associated weights All FSL bindings are located in the `mvpa.misc.fsl`_ module. .. _FSL: http://www.fmrib.ox.ac.uk .. _mvpa.misc.fsl: api/mvpa.misc.fsl-module.html pymvpa-0.4.8/doc/misc/000077500000000000000000000000001174541445200145465ustar00rootroot00000000000000pymvpa-0.4.8/doc/misc/codeswarm.config000066400000000000000000000051031174541445200177200ustar00rootroot00000000000000# This is a sample configuration file for code_swarm # Frame width Width=480 # Frame height Height=360 # Input file InputFile=../../build/swarm/git.xml # Particle sprite file ParticleSpriteFile=src/particle.png #Font Settings Font=SansSerif FontSize=10 BoldFontSize=12 # Project time per frame MillisecondsPerFrame=21600000 # Maximum number of Background processes MaxThreads=4 # Optional Method instead of MillisecondsPerFrame #FramesPerDay=4 # Background in R,G,B Background=0,0,0 # Color assignment rules # Keep in order, do not skip numbers. Numbers start # at 1. # # Pattern: "Label", "regex", R,G,B, R,G,B # Label is optional. If it is omitted, the regex # will be used. # ColorAssign1="Examples","doc/examples/.*", 0,255,255, 0,255,255 ColorAssign2="Docs","doc/.*\.(rst,txt)", 0,0,255, 0,0,255 ColorAssign3="Tests",".*test_.*\.py", 0,255,0, 0,255,0 ColorAssign4="Datasets","mvpa/dataset.*", 255,0,0, 255,0,0 ColorAssign5="Classifiers","mvpa/clf.*", 255,160,65, 255,160,65 ColorAssign6="Mappers","mvpa/.*mapper.*\.py", 255,255,0, 255,255,0 ColorAssign7="MVPA Generic",".*", 255,0,255, 255,0,255 # Save each frame to an image? TakeSnapshots=True # Where to save each frame SnapshotLocation=../../build/swarm/frames/code_swarm-#####.png # Draw names (combinatory) : # Draw sharp names? DrawNamesSharp=true # And draw a glow around names? (Runs slower) DrawNamesHalos=true # Draw files (combinatory) : # Draw sharp files DrawFilesSharp=false # Draw fuzzy files DrawFilesFuzzy=true # Draw jelly files DrawFilesJelly=false # Show the Legend at start ShowLegend=true # Show the History at start ShowHistory=true # Show the Date at start ShowDate=true # Show edges between authors and files, mostly for debug purpose ShowEdges=false # Turn on Debug counts. ShowDebug=false # Natural distance of files to people EdgeLength=35 # Amount of life to decrement EdgeDecrement=-2 FileDecrement=-2 PersonDecrement=-1 #Speeds. #Optional: NodeSpeed=7.0, If used, FileSpeed and PersonSpeed need not be set. # FileSpeed=7.0 PersonSpeed=2.0 #Masses FileMass=1.0 PersonMass=10.0 # Life of an Edge EdgeLife=250 # Life of a File FileLife=200 # Life of a Person PersonLife=255 # Highlight percent. # This is the amount of time that the person or # file will be highlighted. HighlightPct=5 ## Physics engine selection and configuration # Directory physics engine config files reside in. PhysicsEngineConfigDir=physics_engine # Force calculation algorithms ("PhysicsEngineLegacy", "PhysicsEngineSimple"...) : PhysicsEngineSelection=PhysicsEngineLegacy # OpenGL is experimental. Use at your own risk. UseOpenGL=false pymvpa-0.4.8/doc/misc/emacs000066400000000000000000000122101174541445200155550ustar00rootroot00000000000000;; emacs: -*- mode: emacs-lisp; indent-tabs-mode: nil -*- ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;; ; ; See COPYING file distributed along with the PyMVPA package for the ; copyright and license terms. ; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;; ;; ;; This file is to help PyMVPA users who use emacs for their needs. ;; It enables suggested modes (if available), and sets up environment ;; variables needed by Python and pylint ;; ;; Recommended usage: ;; ;; * symlink this file as .emacs.local into the root of PyMVPA project: ;; ln -s doc/misc/emacs .emacs.local ;; ;; * add following snippet into your .emacs to enable loading of local ;; emacs configuration: ;; (push "." load-path) ;add current path ;; (load ".emacs.local" t) ;; (pop load-path) ;clean up ;; * for flymake to work correctly, you would need to have epylint script ;; installed anywhere in the PATH. You can obtain the script from ;; ;; http://git.onerussian.com/?p=etc/emacs.git;a=blob;f=.emacs.d/bin/epylint;hb=HEAD ;; ;; Now, whenever you start emacs in the root directory of PyMVPA project, ;; it should load .emacs.local and setup suggested Emacs environment. ;; ;; Disclaimer: this config file is not extensively tested and was ripped away ;; from Yaroslav's .emacs configuration available from ;; http://git.onerussian.com/?p=etc/emacs.git;a=summary (setenv "PYTHONPATH" (expand-file-name default-directory)) (setenv "PYLINTRC" (concat (expand-file-name default-directory) "doc/misc/pylintrc")) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Python ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Set IPython to be the python command and give it arguments (when (locate-library "python-mode") (when (locate-library "ipython") (require 'ipython) (when (locate-library "ansi-color") (add-hook 'py-shell-hook 'my-activate-ansi-colors))) ;; We want pylint call (add-hook 'python-mode-hook '(lambda () (when (and (stringp (buffer-file-name)) (not (string-match ".*/tmp/python-.*" (buffer-file-name)))) (when (locate-library "pylint") (load-library "pylint") (local-set-key "\C-xc" 'pylint) ) (when (locate-library "pymacs") (load-library "pymacs") (when (pymacs-load "ropemacs" "rope-" t) (ropemacs-mode t) (set ropemacs-guess-project t))) (when (not indent-tabs-mode) (when (locate-library "show-wspace") (when (not show-ws-highlight-tabs-p) (show-ws-toggle-show-tabs)))) (when (locate-library "outline") (defun py-outline-level () "This is so that `current-column` DTRT in otherwise-hidden text" ;; from ada-mode.el (let (buffer-invisibility-spec) (save-excursion (beginning-of-line) (skip-chars-forward "\t ") (/ (current-column) py-indent-offset)))) ;; this fragment originally came from the web somewhere, but the outline-regexp ;; was horribly broken and is broken in all instances of this code floating ;; around. Finally fixed by Charl P. Botha ;; enable our level computation (setq outline-level 'py-outline-level) ;;(setq outline-regexp "[^ tn]|[ t]*(def[ t]+|class[ t]+)") ;;(setq outline-regexp "\\([ \t]*\n\\)?[ \t]*\\(if\\|for\\|def\\|class\\)[ \t]+.*[:\\\][ \t]*\\(#.*\\)?$") ;; (setq outline-regexp "\\(^[ \t]*\n\\)?[ \t]*\\(if\\|for\\|def\\|class\\|else\\|elif\\|try\\|except\\|finally\\)") ;; (setq outline-regexp "\\(^[ \t]*\n\\)?[ \t]*\\(def\\|class\\|@\\)") (setq outline-regexp "\\([ \t]*\\(def\\|class\\|@\\)\\|^#\\)") ;; without explicit keywords: ;;(setq outline-regexp "^[ \t\n]*\\([^ \t]+\\)[ \t]+.*[:\\\][ \t]*\\(#.*\\)?$") ;; custom shortcuts ;;(outline-shortcuts) ;; turn on outline mode (outline-minor-mode t) ;; initially hide all but the headers (hide-body) ) (show-paren-mode 1) (flymake-mode 1) ))) ;hook ) ;python-mode ;; Lets enable flymake + pylint tandem (when (load "flymake" t) (defun flymake-pylint-init () (let* ((temp-file (flymake-init-create-temp-buffer-copy 'flymake-create-temp-inplace)) (local-file (file-relative-name temp-file (file-name-directory buffer-file-name)))) (list "epylint" (list local-file)))) (add-to-list 'flymake-allowed-file-name-masks '("\\.py\\'" flymake-pylint-init)) ;; helper to put pylint errors into the status line ;; borrowed from ;; http://plope.com/Members/chrism/flymake-mode (load "flymake-cursor" t) (add-hook 'find-file-hook 'flymake-find-file-hook) ) (setq enable-local-variables t enable-local-eval t search-highlight t ;highlight found matches query-replace-highlight t ;highlight found matches tab-width 4 show-trailing-whitespace t ;show trailing spaces by default inhibit-startup-message t ;ok I've seen the copyleft &c ) (custom-set-variables '(safe-local-variable-values (quote ((py-indent-offset . 4))))) pymvpa-0.4.8/doc/misc/exampledata.readme000066400000000000000000000104451174541445200202160ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. index:: example fMRI dataset .. _exampledata: Example fMRI Dataset ==================== For an easy start with PyMVPA an `example fMRI dataset`_ is provided. This is a single subject from a study published by :ref:`Haxby et al. (2001) `. This dataset has already been repeatedly reanalyzed since its first publication (e.g. :ref:`Hanson et al (2004) ` and :ref:`O'Toole et al. (2005) < OJA+05`). .. note:: The orginal authors of :ref:`Haxby et al. (2001) ` hold the copyright of this dataset and made it available under the terms of the `Creative Commons Attribution-Share Alike 3.0`_ license. .. _Creative Commons Attribution-Share Alike 3.0: http://creativecommons.org/licenses/by-sa/3.0/ The subset of the dataset that is available here has been converted into the NIfTI dataformat and is preprocessed to a degree that should allow people without prior fMRI experience to perform meaningful analyses. Moreover, it should not require further preprocessing with external tools. All preprocessing has been performed using tools from FSL_. Specifically, the 4D fMRI timeseries has been skull-stripped and thresholded to zero-out non-brain voxels (using a brain outline estimate significantly larger than the brain, to prevent removal of edge voxels actually covering brain tissue). The corresponding commandline call to BET was:: bet bold bold_brain -F -f 0.5 -g 0 Afterwards the timeseries has been motion-corrected using MCFLIRT:: mcflirt -in bold_brain -out bold_mc -plots The following files are available in the `example fMRI dataset`_ download (approx. 100 MB): .. _example FMRI dataset: http://www.pymvpa.org/files/pymvpa_exampledata.tar.bz2 bold.nii.gz The motion-corrected and skull-stripped 4D timeseries (1452 volumes with 40 x 64 x 64 voxels, corresponding to a voxel size of 3.5 x 3.75 x 3.75 mm and a volume repetition time of 2.5 seconds). The timeseries contains all 12 runs of the original experiment, concatenated in a single file. Please note, that the timeseries signal is *not* detrended. bold_mc.par The motion correction parameter output. This is a 6-column textfile with three rotation and three translation parameters respectively. This information can be used e.g. as additional regressors for :ref:`motion-aware timeseries detrending `. mask.nii.gz A binary mask with a conservative brain outline estimate, i.e. including some non-brain voxels to prevent the exclusion of brain tissue. attributes_literal.txt A two-column text file with the stimulation condition and the corresponding experimental run for each volume in the timeseries image. The labels are given in literal form (e.g. 'face'). attributes.txt Similar to `attributes_literal.txt`, but with the condition labels encoded as integers. This file is only provided for earlier PyMVPA version, that could not handle :ref:`literal labels `. Once downloaded and extracted (e.g. into a folder `data/`), the dataset can be easily loaded like this: >>> from mvpa.misc.io.base import SampleAttributes >>> from mvpa.datasets.nifti import NiftiDataset >>> attrs = SampleAttributes('data/attributes_literal.txt', ... literallabels=True) >>> ds = NiftiDataset(samples='data/bold.nii.gz', ... labels=attrs.labels, ... chunks=attrs.chunks, ... labels_map=True, ... mask='data/mask.nii.gz') Note, that instead of specific import statements, it is usually more convinient, but slower, to import all functionality from PyMVPA at once with `from mvpa.suite import *` statement. .. note:: The dataset used in the :ref:`examples ` shipped with PyMVPA is actually a minimal version (posterior half of a single brain slice) of this full dataset. After appropriately adjusting the path, it is possible to run several of the examples on this full dataset. .. _FSL: http://www.fmrib.ox.ac.uk/fsl pymvpa-0.4.8/doc/misc/header.py000066400000000000000000000006501174541445200163510ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """""" __docformat__ = 'restructuredtext' pymvpa-0.4.8/doc/misc/ipy_profile_pymvpa.py000066400000000000000000000021331174541445200210340ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """PyMVPA mode for IPython. """ __docformat__ = 'restructuredtext' from IPython import ipapi # The import below effectively obsoletes your old-style ipythonrc[.ini], # so consider yourself warned! import ipy_defaults import mvpa def main(): ip = ipapi.get() # PyMVPA specific ip.ex('import mvpa') # and now the whole suite # but no, since ipython segfaults (tested with version 0.8.4) # the whole things seems to be related to RPy and friends # running the same command after IPython startup is completed # is no problem, though. #ip.ex('from mvpa.suite import *') print """ ########################### # Welcome to PyMVPA %s # ########################### """ % mvpa.__version__ main() pymvpa-0.4.8/doc/misc/pylintrc000066400000000000000000000055341174541445200163440ustar00rootroot00000000000000# PyLint configuration file for the project pymvpa. # # Agreed formatting (per yoh+michael voice dialog) is camel. # # This pylintrc file will use the default settings except for the # naming conventions, which will allow for camel case naming as found # in Java code or several libraries such as PyQt, etc. # # At some moment it was modified by yoh from the original one # which can be found on debian systems at # /usr/share/doc/pylint/examples/pylintrc_camelcase # # Just place it in ~/.pylintrc for user-wide installation or simply # use within a call to pylint or export environment variable # export PYLINTRC=$PWD/doc/misc/pylintrc [BASIC] # Regular expression which should only match correct module names module-rgx=(([a-z][a-z0-9_]*)|([A-Z][a-zA-Z0-9_]+))$ attr-rgx=[a-z_][a-zA-Z0-9_]{2,30} # Regular expression which should only match correct class names class-rgx=[A-Z_]+[a-zA-Z0-9]+$ # Regular expression which should only match correct function names function-rgx=[a-z_]+[a-z_][a-zA-Z0-9]*$ # Regular expression which should only match correct method names method-rgx=([a-z_]|__)[a-zA-Z0-9]*(__)?$ # Regular expression which should only match correct argument names argument-rgx=[a-z][a-zA-Z0-9]*_*[a-zA-Z0-9]*_*[a-zA-Z0-9]*_?$ # Regular expression which should only match correct variable names variable-rgx=([a-z_]+[a-zA-Z0-9]*_*[a-zA-Z0-9]*_*[a-zA-Z0-9]*_?||(__.*__))$||[A-Z] # Regular expression which should only match correct module level names # Default: (([A-Z_][A-Z1-9_]*)|(__.*__))$ const-rgx=([a-z_]+[a-zA-Z0-9]*_*[a-zA-Z0-9]*_*[a-zA-Z0-9]*_?|__.*__)$||[A-Z] [FORMAT] indent-string=' ' [DESIGN] # We are capable to follow that many, yes! max-branchs = 20 # some base class constructors have quite a few arguments max-args = 14 # and due to ClassWithCollections and state variables classes by default have lots # of attributes max-attributes = 14 # some sci computation can't be handled efficiently without having #lots of locals max-locals = 35 [MESSAGES CONTROL] # Disable the following PyLint messages: # R0903 - Not enough public methods # W0105 - String statement has no effect # often used for after-line doc # W0142 - Used * or ** magic # W0232 - Class has no __init__ method # W0212 - Access to a protected member ... of a client class # W0613 - Unused argument # E1101 - Has no member (countless false-positives) disable-msg=R0903,W0142,W0105,W0212,W0613,E1101 [REPORTS] # set the output format. Available formats are text, parseable, colorized and # html output-format=colorized # Include message's id in output include-ids=yes # Tells wether to display a full report or only the messages reports=no [MISCELLANEOUS] # List of note tags to take in consideration, separated by a comma. # FIXME -- something which needs fixing # TODO -- future plan # XXX -- some concern # YYY -- comment/answer to above mentioned concern notes=FIXME,TODO,XXX,YYY pymvpa-0.4.8/doc/misc/references.bib000066400000000000000000000377501174541445200173610ustar00rootroot00000000000000@Comment{x-kbibtex-encoding=utf-8} @Comment{ This file is used to autogenerate doc/references.rst using tools/bib2rst\_ref.py . Due to external dependency on pybliographer (which is discontinued project), automatic regeneration is not enabled, thus you are required to run make references to regenerate doc/references.rst if you modified this file. } @Article{ HGF+01, Author = "James V. Haxby and M. I. Gobbini and M. L. Furey and A. Ishai and J. L. Schouten and P. Pietrini", Title = "Distributed and overlapping representations of faces and objects in ventral temporal cortex.", Journal = "Science", Volume = "293", Pages = "2425–2430", year = 2001, doi = "10.1126/science.1063736", pymvpa-keywords = "split-correlation classifier" } @Article{ CPL+06, Author = "X. Chen and F. Pereira and W. Lee and Stephen Strother and Tom Mitchell", Title = "Exploring predictive and reproducible modeling with the single-subject {FIAC} dataset.", Journal = "Human Brain Mapping", Volume = "27", Pages = "452–461", url = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16565951", year = 2006, doi = "10.1002/hbm.20243", pymvpa-keywords = "feature selection stability", pymvpa-summary = "This paper illustrates the necessity to consider the stability or reproducibility of a classifier's feature selection as at least equally important to it's generalization performance." } @Article{ LSC+05, issn = "1053-8119", volume = "26", year = "2005", journal = "Neuroimage", title = "Support vector machines for temporal classification of block design fMRI data.", pages = "317–329", affiliation = "Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, 30322, USA.", author = "Stephen LaConte and Stephen Strother and Vladimir Cherkassky and Jon Anderson and Xiaoping Hu", doi = "10.1016/j.neuroimage.2005.01.048", pymvpa-summary = "Comprehensive evaluation of preprocessing options with respect to SVM-classifier (and others) performance on block-design fMRI data.", pymvpa-keywords = "SVM" } @Article{ KGB06, issn = "0027-8424", volume = "103", year = "2006", journal = "Proceedings of the National Academy of Sciences of the USA", title = "Information-based functional brain mapping.", pages = "3863–3868", author = "Nikolaus Kriegeskorte and Rainer Goebel and Peter A. Bandettini", doi = "10.1073/pnas.0600244103", pymvpa-keywords = "searchlight", pymvpa-summary = "Paper introducing the searchlight algorithm.", affiliation = "Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Building 10, Room 1D80B, 10 Center Drive MSC 1148, Bethesda, MD 20892-1148, USA. niko@nih.gov" } @Article{ HR06, issn = "1471-003X", volume = "7", year = "2006", journal = "Nature Reviews Neuroscience", title = "Decoding mental states from brain activity in humans.", pages = "523–534", author = "John-Dylan Haynes and Geraint Rees", doi = "10.1038/nrn1931", pymvpa-summary = "Review of decoding studies, emphasizing the importance of ethical issues concerning the privacy of personal thought." } @Book{ Vap95, title = "The Nature of Statistical Learning Theory", author = "Vladimir Vapnik", publisher = "Springer", address = "New York", isbn = "0-387-94559-8", year = "1995", pymvpa-keywords = "support vector machine, SVM" } @Article{ KCF+05, Author = "B. Krishnapuram and L. Carin and M. A. Figueiredo and A. J. Hartemink", Title = "Sparse multinomial logistic regression: fast algorithms and generalization bounds.", Journal = "IEEE Transactions on Pattern Analysis and Machine Intelligence", Volume = "27", Pages = "957–968", url = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=15943426", year = 2005, pymvpa-keywords = "sparse multinomial logistic regression, SMLR", doi = "10.1109/TPAMI.2005.127" } @Article{ EHJ+04, title = "Least Angle Regression", author = "Bradley Efron and Hastie. Trevor and Iain Johnstone and Robert Tibshirani", journal = "Annals of Statistics", pages = "407–499", volume = "32", year = "2004", doi = "10.1214/009053604000000067", pymvpa-keywords = "least angle regression, LARS" } @Article{ HH08, issn = "0899-7667", volume = "20", year = "2008", journal = "Neural Computation", title = "Brain reading using full brain support vector machines for object recognition: there is no ``face'' identification area.", pages = "486–503", author = "Stephen José Hanson and Yaroslav O. Halchenko", doi = "10.1162/neco.2007.09-06-340", pymvpa-keywords = "support vector machine, SVM, recursive feature elimination, RFE", affiliation = "Rutgers Mind/Brain Analysis Laboratories, Psychology Department, Rutgers University, Newark, NJ 07102, U.S.A. jose@tractatus.rutgers.edu." } @Article{ NPD+06, issn = "1364-6613", volume = "10", year = "2006", journal = "Trends in Cognitive Science", title = "Beyond mind-reading: multi-voxel pattern analysis of fMRI data.", pages = "424–430", author = "Kenneth A. Norman and Sean M. Polyn and Greg J. Detre and James V. Haxby", doi = "10.1016/j.tics.2006.07.005" } @Article{ Dem06, author = "Janez DemÅ¡ar", title = "Statistical Comparisons of Classifiers over Multiple Data Sets", journal = "Journal of Machine Learning Research", volume = "7", year = "2006", issn = "1533-7928", pages = "1–30", publisher = "MIT Press", address = "Cambridge, MA, USA", url = "http://portal.acm.org/citation.cfm?id=1248548", pymvpa-summary = "This is a review of several classifier benchmark procedures." } @Article{ NH02, issn = "1065-9471", volume = "15", number = "1", year = "2002", Journal = "Human Brain Mapping", title = "Nonparametric permutation tests for functional neuroimaging: a primer with examples.", pages = "1–25", author = "Thomas E Nichols and Andrew P Holmes", doi = "10.1002/hbm.1058", affiliation = "Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.", pymvpa-summary = "Overview of standard nonparametric randomization and permutation testing applied to neuroimaging data (e.g. fMRI)" } @Article{ SMM+08, volume = "172", number = "1", year = "2008", journal = "Journal of Neuroscience Methods", title = "The impact of functional connectivity changes on support vector machines mapping of fMRI data.", pages = "94–104", doi = "10.1016/j.jneumeth.2008.04.008", author = "João Ricardo Sato and Janaina Mourão-Miranda and Maria da Graça {Morais Martin} and Edson Amaro and Pedro Alberto Morettin and Michael John Brammer", pymvpa-summary = "Discussion of possible scenarios where univariate and multivariate (SVM) sensitivity maps derived from the same dataset could differ. Including the case were univariate methods would assign a substantially larger score to some features.", pymvpa-keywords = "support vector machine, SVM, sensitivity" } @Article{ WCW+07, issn = "1053-8119", volume = "36", number = "4", year = "2007", journal = "Neuroimage", title = "Support vector machine learning-based fMRI data group analysis.", pages = "1139–51", author = "Ze Wang and Anna R. Childress and Jiongjiong Wang and John A. Detre", doi = "10.1016/j.neuroimage.2007.03.072", pymvpa-keywords = "support vector machine, SVM, group analysis" } @Article{ OJA+05, title = "Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex ", author = "A. J. O'Toole and F. Jiang and H. Abdi and James V. Haxby", journal = "Journal of Cognitive Neuroscience", pages = "580–590", volume = "17", year = "2005", doi = "10.1162/0898929053467550" } @Article{ OJA+07, Author = "A. J. O'Toole and F. Jiang and H. Abdi and N. Penard and J. P. Dunlop and M. A. Parent", Title = "Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data.", Journal = "Journal of Cognitive Neuroscience", Volume = "19", Pages = "1735–1752", doi = "10.1162/jocn.2007.19.11.1735", year = 2007 } @Article{ GE03, author = "I. Guyon and A. Elisseeff", title = "An Introduction to Variable and Feature Selection", volume = "3", year = "2003", pages = "1157–1182", journal = "Journal of Machine Learning", url = "http://www.jmlr.org/papers/v3/guyon03a.html" } @Article{ HMH04, Author = "Stephen José Hanson and T. Matsuka and James V. Haxby", Title = "Combinatorial codes in ventral temporal lobe for object recognition: {H}axby (2001) revisited: is there a ``face'' area?", Journal = "Neuroimage", Volume = "23", Pages = "156–166", year = 2004, doi = "10.1016/j.neuroimage.2004.05.020" } @Article{ ZH05, title = "Regularization and variable selection via the elastic net", author = "H. Zou and T. Hastie", journal = "Journal of the Royal Statistical Society Series B", volume = "67", number = "2", pages = "301–320", year = "2005", publisher = "Blackwell Synergy", keywords = "Feature Selection, Machine Learning", url = "http://www-stat.stanford.edu/%7Ehastie/Papers/B67.2%20(2005)%20301-320%20Zou%20%26%20Hastie.pdf" } @Article{ MHN+04, title = "Learning to Decode Cognitive States from Brain Images", author = "Tom Mitchell and Rebecca Hutchinson and Radu S. Niculescu and Francisco Pereira and Xuerui Wang and Marcel Just and Sharlene Newman", doi = "10.1023/B:MACH.0000035475.85309.1b", journal = "Machine Learning", volume = "57", pages = "145–175", year = "2004" } @Article{ PP07, issn = "1047-3211", volume = "17", year = "2007", journal = "Cerebral Cortex", title = "Decoding near-threshold perception of fear from distributed single-trial brain activation.", pages = "691–701", author = "Luiz Pessoa and Srikanth Padmala", pymvpa-summary = "Analysis of slow event-related fMRI data using patter classification techniques.", doi = "10.1093/cercor/bhk020" } @Article{ KT05, issn = "1097-6256", volume = "8", year = "2005", journal = "Nature Neuroscience", title = "Decoding the visual and subjective contents of the human brain.", pages = "679–685", author = "Yukiyasu Kamitani and Frank Tong", pymvpa-summary = "One of the two studies showing the possibility to read out orientation information from visual cortex.", doi = "10.1038/nn1444" } @Manual{ HHS+latest, title = "The PyMVPA Manual", author = "Michael Hanke and Yaroslav O. Halchenko and Per B. Sederberg and James M. Hughes", address = "Available online at http://www.pymvpa.org/PyMVPA-Manual.pdf" } @Article{ HHS+09a, title = "PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data", author = "Michael Hanke and Yaroslav O. Halchenko and Per B. Sederberg and Stephen José Hanson and James V. Haxby and Stefan Pollmann", journal = "Neuroinformatics", year = "2009", pymvpa-summary = "Introduction into the analysis of fMRI data using PyMVPA.", pages = "37–53", volume = "7", number = "1", doi = "10.1007/s12021-008-9041-y", pymvpa-keywords = "PyMVPA, fMRI" } @Article{ PMB+IP, title = "Machine learning classifiers and fMRI: A tutorial overview", author = "Francisco Pereira and Tom Mitchell and Matthew Botvinick", journal = "Neuroimage", year = "in press", doi = "10.1016/j.neuroimage.2008.11.007" } @Article{ HHS+09b, issn = "1662-5196", volume = "3", year = "2009", journal = "Frontiers in Neuroinformatics", title = "PyMVPA: A Unifying Approach to the Analysis of Neuroscientific Data.", pages = "3", author = "Michael Hanke and Yaroslav O. Halchenko and Per B. Sederberg and Emanuele Olivetti and Ingo Fründ and Jochem W. Rieger and Christoph S. Herrmann and James V. Haxby and Stephen José Hanson and Stefan Pollmann", doi = "10.3389/neuro.11.003.2009", pymvpa-keywords = "PyMVPA, fMRI, EEG, MEG, extracellular recordings", pymvpa-summary = "Demonstration of PyMVPA capabilities concerning multi-modal or modality-agnostic data analysis." } @Article{ MBK09, year = "2009", journal = "Social Cognitive and Affective Neuroscience", title = "Revealing representational content with pattern-information fMRI–an introductory guide.", author = "Marieke Mur and Peter A. Bandettini and Nikolaus Kriegeskorte", doi = "10.1093/scan/nsn044" } @Article{ JL09, title = "OMPC: an open-source MATLAB-to-Python compiler.", author = "Peter Jurica and Cees {van Leeuwen}", journal = "Frontiers in Neuroinformatics", pages = "5", volume = "3", year = "2009", doi = "10.3389/neuro.11.005.2009" } @Article{ KFS+09, title = "Center-surround patterns emerge as optimal predictors for human saccade targets", author = "Wolf Kienzle and Matthias O. Franz and Bernhard Schölkopf and Felix A. Wichmann", journal = "Journal of Vision", year = "in press", pymvpa-summary = "This paper offers an approach to make sense out of feature sensitivities of non-linear classifiers." } @Article{ KMB08, volume = "2", year = "2008", journal = "Frontiers in Systems Neuroscience", title = "Representational similarity analysis - connecting the branches of systems neuroscience.", pages = "4", author = "Nikolaus Kriegeskorte and Marieke Mur and Peter A. Bandettini", doi = "10.3389/neuro.06.004.2008" } @Article{ SET+09, title = "Elucidating an MRI-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning Algorithms", author = "Daqiang Sun and Theo G.M. {van Erp} and Paul M. Thompson and Carrie E. Bearden and Melita Daley and Leila Kushan and Molly E. Hardt and Keith H. Nuechterlein and Arthur W. Toga and Tyrone D. Cannon", journal = "Biological Psychiatry", year = "2009", doi = "10.1016/j.biopsych.2009.07.019", pymvpa-keywords = "PyMVPA, psychosis, MRI", pymvpa-summary = "First published study employing PyMVPA for MRI-based analysis of Psychosis." } @Article{ JSW09, title = "Does Cognitive Science Need Kernels?", volume = "13", url = "http://www.sciencedirect.com/science/article/B6VH9-4X4R9BC-1/2/e2e90008d0a8887878c72777462335fd", author = "Frank Jäkel and Bernhard Schölkopf and Felix A. Wichmann", journal = "Trends in Cognitive Sciences", pages = "381–388", year = "2009", doi = "10.1016/j.tics.2009.06.002", pymvpa-summary = "A summary of the relationship of machine learning and cognitive science. Moreover it also points out the role of kernel-based methods in this context.", pymvpa-keywords = "kernel, similarity" } @Article{ HHH+10, title = "Statistical learning analysis in neuroscience: aiming for transparency.", author = "Michael Hanke and Yaroslav O. Halchenko and James V. Haxby and Stefan Pollmann", journal = "Frontiers in Neuroscience", year = "accepted", pymvpa-summary = "Focused review article emphasizing the role of transparency to facilitate adoption and evaluation of statistical learning techniques in neuroimaging research." } @Article{ MHH10, title = "Implicit memory for object locations depends on reactivation of encoding-related brain regions", author = "Anna Manelis and Catherine Hanson and Stephen José Hanson", journal = "Human Brain Mapping", number = "(In press)", year = "2010", pymvpa-keywords = "PyMVPA, implicit memory, MRI" } @Book{ HTF09, title = "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", author = "Trevor Hastie and Robert Tibshirani and Jerome H. Friedman", publisher = "Springer", address = "New York", edition = "2", year = "2009", isbn = "978-0-387-84857-0", url = "http://www-stat.stanford.edu/~tibs/ElemStatLearn/", doi = "10.1007/b94608", pymvpa-summary = "Excellent summary of virtually all techniques relevant to the field. A free PDF version of this book is available from the authors' website at http://www-stat.stanford.edu/~tibs/ElemStatLearn/" } @Article{ LBB+98, title = "Gradient-based learning applied to document recognition", author = "Y. Lecun and L. Bottou and Y. Bengio and P. Haffner", journal = "Proceedings of the IEEE", pages = "2278–2324", volume = "86", number = "11", month = "Nov", year = 1998, issn = "0018-9219", doi = "10.1109/5.726791", pymvpa-keywords = "handwritten character recognition, multilayer neural networks, MNIST", pymvpa-summary = "Paper introducing Modified NIST (MNIST) dataset for performance comparisons of character recognition performance across a variety of classifiers." } pymvpa-0.4.8/doc/misc/references.in000066400000000000000000000012751174541445200172240ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. index:: references .. _chap_references: ********** References ********** This list aims to be a collection of literature, that is of particular interest in the context of multivariate pattern analysis. It includes all references cited throughout this manual, but also a number of additional manuscripts containing descriptions of interesting analysis methods or fruitful experiments. pymvpa-0.4.8/doc/misc/replace_header.sh000066400000000000000000000026251174541445200200320ustar00rootroot00000000000000#!/bin/bash # emacs: -*- mode: shell-script; c-basic-offset: 4; tab-width: 4; indent-tabs-mode: t -*- # vi: set ft=sh sts=4 ts=4 sw=4 noet: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## #echo "./tests/crossval.py" | \ #echo "tests/test_algorithms.py" | \ #echo "mvpa/datasets/mapper.py" | \ find -iname '*.py' | \ while read fname; do grep -q 'This package is distributed in the hope' $fname || continue descr="`grep '[#"]* *PyMVPA: ' "$fname" | head -1 | sed -e 's/^.*PyMVPA: //g' -e 's/"""//g'`" [ "$descr" == "" ] && \ descr="`sed -n -e '/###/,/^[^#]/p' "$fname" | grep '"""' | head -1 | sed -e 's/^"""\(PyMVPA: *\)*\(.*\)"""/\2/g'`" [ "$descr" == "" ] && \ descr="`sed -n -e '/###/,/^[^#]/p' $fname | sed -n -e '3s/^# *//gp'`" echo "$fname:$descr" cat $fname \ | sed -e '0,/### ###/d' -e '0,/### ###/d' \ | sed -e '1rdoc/misc/header.py' \ | sed -e 's/\t/ /g' \ | sed -n -e "s/\(\"PyMVPA: \)\"/\1${descr}\"/g" -e '2,$p' \ | sed -e 's/ -- loosely implemented//g' \ | sponge $fname done exit 0 problematic: mvpa/misc/fsl/__init__.py -- removed header completely for some reason... tests/test_algorithms.py os gone! mvpa/datasets/mapper.py is gone pymvpa-0.4.8/doc/modref.rst000066400000000000000000000032201174541445200156160ustar00rootroot00000000000000.. -*- mode: rst -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: .. _chap_modref: **************** Module Reference **************** This module reference extends the manual with a comprehensive overview of the currently available functionality, that is built into PyMVPA. However, instead of a full list including every single line of the PyMVPA code base, this reference limits itself to the relevant pieces of the application programming interface (API) that are of particular interest to users of this framework. Each module in the package is documented by a general summary of its purpose and the list of classes and functions it provides. For developers, more detailed (technical) information is available in the `API reference`_. .. _API Reference: api/index.html Global Facilities ================= .. toctree:: modref/mvpa Datasets: Input, Output, Storage and Preprocessing ================================================== .. toctree:: :glob: modref/mvpa.datasets* Mappers: Data Transformations ============================= .. toctree:: :glob: modref/mvpa.mappers* Classifiers and Errors ====================== .. toctree:: :glob: modref/mvpa.clfs* Measures: Searchlights and Sensitivties ======================================= .. toctree:: :glob: modref/mvpa.measures* Feature Selection ================= .. toctree:: :glob: modref/mvpa.featsel* Additional Algorithms ===================== .. toctree:: :glob: modref/mvpa.algorithms* Common Facilities ================= .. toctree:: :glob: modref/mvpa.base* Miscellaneous ============= .. toctree:: :glob: modref/mvpa.misc* modref/mvpa.atlases* pymvpa-0.4.8/doc/overview.rst000066400000000000000000000077651174541445200162320ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### *************** Getting Started *************** For the Impatient ================= If you only have five minutes to decide whether you want to use PyMVPA, take the first minute to look at the following example of a cross-validation procedure on an fMRI dataset (the full source code!). It is not heavily commented, but should simply give you an idea how PyMVPA feels like. First import the whole PyMVPA module: >>> from mvpa.suite import * Now, load the dataset from a NIfTI file. An additional 2-column textfile has the label and associated experimental run of each volume in the dataset (one volume per line). Finally, a mask is loaded to exclude non-brain voxels. >>> attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt')) >>> dataset = NiftiDataset( ... samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), ... labels=attr.labels, ... chunks=attr.chunks, ... mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz')) Perform linear detrending and afterwards zscore the timeseries of each voxel using the mean and standard deviation determined from *rest* volumes (all done for each experimental run individually). >>> detrend(dataset, perchunk=True, model='linear') >>> zscore(dataset, perchunk=True, baselinelabels=[0], ... targetdtype='float32') Select a subset of two stimulation conditions from the whole dataset. >>> dataset = dataset['labels', [1,2]] Finally, setup the cross-validation procedure using an odd-even split of the dataset and a *SMLR* classifier -- and run it. >>> cv = CrossValidatedTransferError( ... TransferError(SMLR()), ... OddEvenSplitter()) >>> error = cv(dataset) Done. The mean error of classifier predictions on the test dataset across dataset splits is stored in `error`. If you think that is a good start, take the remaining four minutes to take a look at the examples shipped in the source distribution of PyMVPA (`doc/examples/`; some of them are also listed in :ref:`chap_examples` section of this manual). The examples provide a coarse overview of a substantial portion of the functionality provided by PyMVPA, ranging from basic classifier usage, over more sophisticated analysis strategies to simple visualization demos. All examples are executable scripts that are meant to be run from to toplevel directory of the extracted source tarball, e.g.:: $ doc/examples/start_easy.py which would run the example shown in the first part of this section. However, once you found something interesting in the examples you should consider skipping through this manual, as it contains a lot of information that is complementary to the API reference and the examples. And now for the details ... .. index:: introduction, modular architecture Module Overview =============== The PyMVPA package consists of three major parts: :ref:`Data handling `, :ref:`Classifiers ` and various algorithms and measures that operate on datasets and classifiers. In the following sections the basic concept of all three parts will be described and examples using certain parts of the PyMVPA package will be given. .. image:: pics/design.* :alt: PyMVPA architecture The manual does not cover all bits and pieces of PyMVPA. Detailed information about the module layout and additional documentation about all included functionality is available from the :ref:`Module Reference ` -- or the `API Reference`_ if you are interested in a more technical document. The main purpose of the manual is to give an idea how the individual parts of PyMVPA can be combined to perform complex analyses -- easily. .. _API Reference: api/index.html pymvpa-0.4.8/doc/pics/000077500000000000000000000000001174541445200145515ustar00rootroot00000000000000pymvpa-0.4.8/doc/pics/classifier_comparison_plot.png000066400000000000000000004163151174541445200227050ustar00rootroot00000000000000‰PNG  IHDRô›Û8sRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ 8½ú] IDATxÚìyxUöþ?UÕ{wö=@XE@öˆl "8¨ŒëFGÑaÐq\TÔqTEÆu”aæ ¢¢*²#$@VH:½WÕïªÞ’@¤ƒ÷}žz’îyï{î¹çHº®ë4P3räHžþyÎ<óÌ£ž«iß}÷;vì`È!´k×.öÚ'Ÿ|B§NèÚµkJý>¯×ËþóÎ?ÿ|\.×ÏÛºu+_ý5 à´ÓN‹=¿fͬV+¬ö³¾ûî;n¿ýv^}õU:uêtÔs#‘3gÎÄjµò׿þµÊsþò—¿°wï^^xá$I7ë †,š@@@àT@MCUU^ýu®½öZæÍ›‡¦i±×|ðAV¬X‘r¿+??Ÿ3fpèС£ž·bÅ &OžÌÿøGB¡Pìù_|‘×_½FŸÕ±cGþüç?Ó¼ysqC5@XDœJ,Y²„-Z0jÔ(d¹²néܹ3K—.å†nHR³•ñªU«øùçŸÉÌÌäì³Ï¦C‡”••ñõ×_³eË4M£S§NŒ=«Õ À—_~Iii)ééé¬_¿žîÝ»3räHöíÛÇÊ•+),,$;;›sÎ9‡ôôt8ÀòåË9xð ‡>}úpúé§óî»ïRZZʳÏ>Kzz:çw}ûö­ò;ggg³uëVÞ{ï=.½ôÒ*'9‘H„Õ«W³qãF¬V+ƒ¦wïÞ„B! QU56úòË/Y¿~= 8/¾ø‚I“&a±Xbç|ûí·¬Y³†´´4ÆO³fÍ’>󫯾bݺu¸ÝnÆŒC«V­b¯íܹ“ÿýï>|˜nݺ1bÄ\.ªªòÞ{ïÑ­[7zöì €ßïç7Þ`„ 4kÖŒÏ?ÿ<ö=~üñG P­—F(tŠC‡ñüóÏsñÅ3vìX.¹äî½÷^òòò8xð ãÇ笳Î"///iPΙ3‡Þ½{Çfß¡Pˆ^½z±nݺJŸQ^^ÎСC1bcÆŒaüøñÜyçìß¿_t€À)]×)**â`éÒ¥´k×½_¿~Œ?žÇœòòòJ¯ûý~¦NÊ‚ (**bõêÕLž<™íÛ·°eËÞyç}:¡PˆC‡qÓM7ñþûïSVVÆ–-[øè£ÐuH$‚®ë„ÃaÂáp’W¡*BŸ4iÏ=÷¬r²óÈ#ððówï^6nÜÈÔ©SY¹r%º®“››ËsÏ=GQQº®³dÉn¹å~þùg~øán»í6î¿ÿ~|>_ìš«V­âoû………¼ýöÛ•¼ ß|ó O=õû÷ïçwÞaÊ”)äææÆÚñòË/ç³Ï>ãàÁƒ<úè£üéO" ¢ª*¯¼ò ß~ûm’{â‰'bvëƒ>àöÛogÑ¢EVëÅ ]à„BÓ4ž}öYÞyçfΜIÛ¶m)++ã§Ÿ~Âçóáp8øå—_8xð ÿþ÷¿¹ñÆ(--eéÒ¥äææRTT»Ö¦M›’[âçlÞ¼™{ï½—Áƒ³ÿ~æÌ™ÃáÇ™7oÞQ׿¼^/·Ýv , M›6G<×ét2}útFÍêÕ«3fLÒëŸ~ú)Û¶mã­·Þ¢]»vƒAþô§?ñâ‹/2gÎúôéóÏ>‹¢(lÛ¶+®¸‚Ë.»,¶¯ª*sæÌ!++‹H$ÂM7ÝÄ€˜={6‡ƒ½{÷rÅW°víZÚ·oÏ×_ÍêÕ«éܹslÒn±X¸üòËyá…˜6m­[·>ºB“e®¸â >üðC>üðC¦L™’ôú–-[øç?ÿÉâÅ‹éÝ»7š¦ñòË/óÌ3Ïпÿ¤s yþùç¹ñƹõÖ[Q…ùóçóå—_&gµZyâ‰'hÚ´)¿üò Æ cß¾}dffPTTÄ‚ hÑ¢\tÑE¼ûî»Ü|óÍÌ›7îÝ»óì³Ï’––Æš5k¸òÊ+™YÉ+ ]à¤#‰°bÅ ÆŽËW\{~̘1H’Dnn.N§“ &ðþûïs饗’‘‘ÁÊ•+iÛ¶mÒZYu$‰îÝ»“““ƒ®ëìÞ½›7ß|“‚‚Ú·o/:C Á¢´´”[o½•0oÞ<š6mŠ×ëeáÂ…lÞ¼I’7nãÆ‹½§cÇŽLš4‰ÇœáÇ']oùòåóàƒÆžÛ¶miii„B! bäUР¸¸8vþ AƒbkÑùùùlܸ‘ôôt¦Nó(ÌO<Íf ¤¤„;wrøðá¤s÷ìÙáC‡8çœsb—ÁƒW"ÎAƒÑ´iÓØgÛl6ü~ìõ¡C‡ÆÚ¡Y³fäääðý÷ßsðàA¶lÙÂõ×_OZZÝ»wç´ÓNcíÚµ5&ô¡C‡Ò¨Q#1¡×?E¡k×®|òÉ'ôë׳Î:‹fÍša±X’Ü…#GŽä™gžaýúõ 2„÷Þ{Ñ£Góæ›oÖÚ# ª*¡Pˆ;w’™™‰Ûí!Рa³ÙèÕ«;wî$//¦M›bµZéß¿?mÛ¶E’¤*£¶¯ºê*>þøc>þøãJí¬¬,Î;ï¼Øsçw-[¶D’$^xá6mÚÄC=D£F‡Ã\tÑEIîp‡Ãêª"Ë2ýúõ£_¿~I÷3Î8ƒôôtæÎËÚµkÙ°a³gϦM›6¼ýöÛU.ôìÙǃ$I´k×.)N@’$ÆÏßÿþwÞxãØzxôw5oÞœ‘#Gât:cÏgddиqcòóócÏ麎®ë•®]1&!7xNE¯AE›§iZìúÑÉBâõ£íXñZ‘H¤R[$¶³ tz'ô|çž{Ž pçwâp8¸á†¸á†b祥¥qþùç³dÉ»víâ©§žbñâÅ5þ,]×™={6Ï?ÿ<¹¹¹”••ñÆoÄf× ‡ƒ;իWsýõ×óì³Ï2pà@Î>ûì¤óÂápÒã.]ºpË-·ðøã'Å“Œ5ЧŸ~šœœœX œ®ëx½^$IbË–- 6ŒáÇ£iK—.=êÚvË–-éÚµ+áp˜ &àp8#î%ºNîp8¸à‚ ¸à‚ :t(×\s yyy1²J¼~NN999Gü<ÇÃÌ™3¹þúëiÓ¦MLÁæää0þ|úôéCŸ>}b¿Ëçó%<@ûöíÉÌÌdåÊ•tïÞEQøú믓H¿&X½z5………4kÖŒ¢¢"¾úê+&NœHË–-éÖ­Ÿ}ö&LÀív³mÛ66oÞÌìÙ³‘e™-Z°yóæØï_±bÅQÛYº@½£Y³fÜsÏ=üîw¿£  €~øY³fa³Ù˜8qb’B¸ùæ›ÉÈÈ oß¾µ&bI’˜8q" à믿æ7Þ  ¢ëº˜á 4xȲ̭·ÞŠÝngÚ´i<õÔS 4¨Ê(÷DL˜0E‹QPP@4-Ǹqãxï½÷¸å–[8묳P…íÛ·3tèP&OžÌÈ‘#yñÅñù|„ÃavïÞ}T¢±Z­ÜqÇL:•ßÿþ÷œvÚix½^¶mÛÆ<€Ãá`Ú´iôîÝ›´´4V¯^M=hÑ¢¥¥¥dggóè£Ò­[7Î9çzõêUm{ 0€#FðÖ[oż=zô`âĉÜu×] 4ˆŒŒ öîÝKëÖ­™>}z%»4yòdž|òIöîÝ‹ÍfcõêÕx<žjÛ4Ñæ¤§§3mÚ4zöìÉwß}‡Ãáàâ‹/Æf³1uêT&MšÄm·ÝFÇŽY±b£F¢gÏž(ŠÂرcyä‘G˜5kŠ¢°k×.DꔣÄxàÑ ©aŒ<-Z´ wïÞ|ÿý÷ìÙ³‡Ñ£GóöÛo3bÄȪU«øàƒ¸÷Þ{éС¯¾ú*§vgžy&‘H„‡~˜ë®»Ž¬¬¬¤ë‡B!æÍ›ÇÍ7ß̹çžËàÁƒñûý,\¸1cÆÄÖ°ª§kàÀ4iÒ„~ýú‘™™ÉèÑ£Gl[S”`:uêD÷îÝcê¾k×®´mÛ–#FЦMl6çŸ>Í›7'??I’èÛ·/cÆŒÁãñЫW/²²²((( ++‹[o½•ôôtÎ<óL222Ðu¬¬,ºwï#¿–-[rþùç‰D(..&##ƒsÏ=—~ýúár¹ÈÈÈ ¬¬ ¿ßÏðáùóÎ;IKKÃét2pà@Š‹‹)))¡cÇŽUüéºN«V­èÝ»7V«›ÍÆi§F£F>|8]ºtÁjµröÙg“••EII Á`®]»rá…Æ‚ÛíŽ}§ž={Ò£GŠ‹‹iÞ¼9£Gæ¿ÿý/wÜqGìwuêÔ)i9C’$rrrHOOG×u† ˆ#ÈÍÍ¥{÷îÌœ93fŸ¢[ ~¿Ÿ /¼[o½§Ó‰$ItëÖÎ;SPP@‡˜2e  4ǃ®ëtîÜ™N: QH"S\ý"‰°xñb:vìHëÖ­Q…ƒrÝu×qÝu×qÅW0qâDî»ï>ÆÇO?ýÄÞ½{2d‡³Ï>›‹/¾˜iÓ¦p¹\,^¼˜Ä>Ãívãr¹ÈÎÎæõ×_çüóÏŒ@¢Aƒ1}útnºé&ÑI((( //ÌÌL‚Á =ö@ Æ‰jN.„˽¾gT’D~~>/½ôR,2TÓ4&NœÈµ×^K0L:¿GôèÑã¨×œ9sfÒzبQ£˜={v¥óÒÓÓ¹á†X¸p!W^ye,Á…€€€ÀÞ½{™:uj,¶GÜ{ï½¢a²B?pàÛ¶m£¤¤„¾}ûÆò«ªÊöíÛÙ¾};‡3Ï<»Ý.Zµ–PU•p8Œªª±¨O›Í†¢(躎ßïÇf³%¹£ðûýX,–X¤©×ë­Ë²eËbчW]uëÖ­ãÞ{ï¥ÿþlß¾þýûsÛm·‰8FÒ¼ñÆ ìÚµ‹·ß~›nݺU:oÕªU<þøã 0€Í›7“““ÃÔ©S«œðÕ¾úê+î»ï>¼^/:uâÿø`ìaž6m™™™hšÆ¡C‡X¸p¡Ø ) p ‡Ã<þøã|ùå—lÚ´‰ $åNˆ¢¤¤„)S¦••E0DÓ4~øaÐkˆp8¬OžhÐ }Æ º€€À±£¬¬L0`€þóÏ?Wùú%—\¢ÿóŸÿÔu]×wìØ¡4Hß¿ÿIùno¼ñ†>iÒ¤Øã… êS¦LÑ#‘ˆ õ믿^å•WD' ‚Á >qâDý£>ªòõgŸ}V¿õÖ[õ`0¨kš¦_zé¥úâÅ‹õçr¯(äKKKÉËË£W¯^H’„Ûí¦Y³fIùÆê»wmܸ1-Z´`ÇŽõ¢&~úé'ú÷ï[&êÓ§?üðƒØZ$ Pî÷#aýúõôíÛ›Ís¹oܸñ؃â|>š¦%­ñ¥¥¥UZÃýë_ÿZeñ†ˆ?ÿùÏ5ŠÉÏÏgÁ‚Õžg±X¸ÿþûkõB¡Pì;X­V<O½¥PU•²²2222bÏeddàõz‰D"IKo"JàT¢(Ôt·÷Oûì*vLXXo;¥v«*䙟zƯ¼•kòm© 8–ðÑþýû³~ýz‚Á 6›uëÖq饗֌ÐW­ZÅûï¿Ï·ß~K~~>›6mâÏþ3Ó¦McÖ¬Ylݺ•;w2iÒ¤j÷HÿJ4 j½*„ †¶R,Vl”ƒÄí‘ÁïÇãÒÐ#:6Ùdi|cŠ š°ŽjΩxGÌŸ?ŸíÛ·³oß>þú׿2f̆ ÂÅ_ÌË/¿L¯^½˜1c?ü0?üð[·nåšk®9áùø÷ïßÏßþö76lØÀ®]»¸óÎ;¹þúë¹ì²Ëøâ‹/¸õÖ[c….½ôRÑù§t`ð>V‚ DÕ‡ÚA® ¨8AX¶lË–-cãÆ,Z´ˆ 60cÆ ¦NÊi§ÆwÜÁW\ÁòåË™1cÁ`–-[2zôèšz»ví5j#GŽŒÍÌ- ={ödþüùìܹ·ÛMÿþýOèÖ™“‡æ'ùó|æ\Pà [ BŠD°º¬hv„#:…˜¿< ƒÃB]E+§$¡WçœW*<0`;wŽeókÛ¶-Mš4aîܹ±"!ƒ bîܹìÚµ‹‹.º(–÷úDÂãñ0bĆ {®iÓ¦¤§§3gÎ~úé'$I¢G'|O¼¸;OÖwk€§ƒ«¸_… ¨žÐí5°‰ÈÎÎæ¼óÎãÜsÏ5¼N'‹…?üᤥ¥ÅòãÏŸ??V¸wïÞdffÖŒÐ;tè3&Q1ï©ì|} q—¼xAÊ0ºNd-j—GG÷ûIsEˆulŠ¡Î‰€O§d¸Ôs€|ÑÊ ŽÐ+*ô³Î:«Êó† ,Ó¥KºtérÒ~KZZ£G®Ú(7o«w-lÀ©ô5¢®ö¬ÜË¡WTèGÛgœqFÒã–-[VJ:#R¿žtT\[Ôr ­ñRÈ 67R$ˆ.é(VÍÂá(öjØ-æ[tðë¡'^©º`7±™èäA9B8µ¬}múñŠ“jâ•*(Ö ¤/E¼àð`Ñ}¨v+r$Œ¤ª8:~¯†ÇN,l݉9êÑI|;Úœ[úÉëíêh¡ ¤.j"ªßÕÙ€º\Æ„žƒ¦Ì ô¨B·{ B²ÛPý!$]ÃåÔñ•©¤;++t1ì¡ Ô½]úÈÇ4 rÌ ]ú¯nàøAr=.— )B¶[ @AÅíTñ—©x¬Qîø4pêÆº&2åp,kè©Àÿa%Ây@[Ñ Ç¬Ðk»†.=åæd‰ÔÍÑCàd›ñ–°ì‘‚°ÛÐü!$Ýp¹{K5::Œ9€®AqM䪧B±§¡W·eEÍ$rЀ­@„Ó€¾¢AŽ‹Ð«³b =å»PªÁ9Ñõt cõÛb-¨É¶5“Kè"(N a¡ÓX¨ó:#t±ýWGè .÷p¬vðzQÒœ¨þb¬I× –ë8-&¡ë‰Ä;PG(õTñÅ}øá‡üãÿ  ѵkWî¹çž¤ò¤kÖ¬áÅ_¤¤¤„ÌÌL¦M›FŸ>}ª(ˆ" P"@5"êÐÂ×6—ûöíÛy衇8|ø05âöÛo§wïÞIçýôSJKKc甕•QXXȈ#hÕªçž{.ëׯ§¨¨H4¸Àq` °•‹€.¢AêŒÐ«³– “úõë×3yòdÚ´iÃe—]ÆþýûÙ¾}{Ü òÍ7ß0~üx²²²2dV«•¯¿þZú‰…D|kÄä0HvP, ë †Ài‡r/6ͬ´&#« €Ý\r×TÐ" i"±L*÷¾EJ>tà0Pbá„ó iÒ$ž“«uëÖ”””$©o‡Ãpà8pUUÙ¿?ÅÅÅœ'Ÿ|’ï¿ÿžçŸžž={ÒªU+^{í5>ûì3òòòÈËË#==?þ˜fÍš1dÈÑwõlò Œä0{Õk°€Û ¡ „¼Aœ,”—šAVæzYÐ(ª‚Æ*˜*5u¦q ÈÕ¥‰ ÆÿÍÈÈ`þüù¼üò˼òÊ+\{íµ\rÉ%>|˜¢¢""‘Hl0ðÁH’ĸqã¸à‚ °XÄP8ø€€]´.B¤{­[F¯ÞÈ FÛf³qß}÷±páB,XÀgœÁ¤I“8|ø0éééèºN(bñâÅ”——sÆg0þ|ÒÓӡןbÂ$t$P}1—»Ž YB>‡ÇŽ?`nPݨ´f“Db’TÌÕºP*8n:vìÈìÙ³“žkÔ¨O>ùdìñرc;v¬h_:@°4n÷º‡R;‘§ÓÉí·ß^é´?üá±ÿ³³³yúé§«”ˆõÒÖ„²Ç0ìº\p)H¡ 6«FØÂãqãó’6sÛzyìU„¶kĪ« ¤B7×B¡ œ|1ü{.Aæ'fR_ ÕÝÇ B?)*<ñ9©Âã€Q  …îtÄR …îW±¹|…Æn6 S¡«†kL¬¡§8¡[á68)(V"$æ(xIÞD%P'4P ¨C#.ý„Zs¹ŠéšR¡ùƒ ¸N×ËÁå6N …‘-2ªªa³€¯ \vC£‚/R91‰@Tè¢êàS —,à·$M4ʉ!ôêl@²° ôz‡äæf–8“еº®!½a™c IDAT[e"ªŽÅ>¸œÄ6—«f€œ.ö¡ B¨-‚…X 2?Q8ÉõS¡§ÂLYvªùÀ傈Å*cµè„4›¢á÷ÓWèÕ¸OT3SœˆnOÑÁ\Ë 8“&$ðÕ{„ŽS¡×2(NzƒƒÕlz«AèŠéf×Ê!ÃjŠÝ‚Å"ªaWT ËÀm3'Öa#ÊÝ%‹~‹VUÄžb Ýzò³€@ÍP,Êè t rb ]¬¡ÿš:ÜTèfP\S”#Û$‹‚¦é(ðŒ ¸(ü8k@z…¿'Y¡ BH)D€¯€BÚ£@”J­oBkè§’„óÅŠj9x:@À‹Å&c³j誆UÑ)÷As{\†ûTh&U¯È5âõÜN2¢åÖ¡ ¤ 4Œú:·h?©¯ÎBo¨SµŠ[ÖÂ@¤tÐUPýàN¿ÅnARd4ÕHóî [Ô£p~ œR< N(侮.RÈö¢ež: ]¸Ü¢e·\FU1ÈœÈi†ìÖ|™2l+–pEÖ±J*~?x2â ݯ„ŽñP$’IÕÙ¹¥>ÑÜæç³dÉ >|8gŸ}v¥·>|˜?þ˜M›6Ñ¢E .ºè"²²²D{ Tƒýi^Ë88“yR½:PÐ#‘K–,á§Ÿ~¢gÏžŒ7·;Ù—¢ª*+V¬`Íš5ȲÌùçŸÏÀ…>¨_•6ÙTè‘rðxÀïÅê±.óãpIH²±†îIضæÓÀ% eÞ ýhGÂôù|LŸ>‚‚zõêÅc=ÆòåË+]ö/ù Ÿþ9çž{.åååL™2¯×+Ú[à(П|Ú#1jAœ$B¯¡ ˆD"<õÔS,_¾œ³Î:‹O>ù„¹sçVºì²eËxä‘G8ãŒ3èÚµ+wÞy'kÖ¬ ½~,|”ÔUƒÐ-i E —{šåX=64¯»CBB'O¶5¿¹]Dµ§¸cÆVƒoâ›o¾áðáÃÜqǤ¥¥áõzyë­·:t(‡#vÞ÷ßÏŸþô'Î9ç:vìÈ;ï¼C0Äãñˆ68 ?^Z nK:4ùµH,“ŸŸÏ|À«¯¾J§NhÞ¼9üã¹å–[hÒ¤Iì¼ü‘œœ&L˜€$I¼ûî»ìÛ·Ozý"h 2Ù5.øcO·¡––ãpIȲŽÏiæzD7Òÿºå#ÏÅ5ÄÚz½ÃB­’JüüóÏIõÏsrrxùå—)--M"ô›o¾™_|‘mÛ¶ñã?rá…Vª™. " ½„^RRB$¡eË–têÔ ‹ÅÂÎ;“ýÒK/eƌ̙3‡`0ˆËååSS‚Ð%»aÔ%5>› kèš×ÃФâ‚ÇLýRAÕ«Þ¶fÖnA3ÿ B¯çÙy…€˜ˆe¡x¿„:(cµÆß`³ÙˆD"hZr„ÄþýûÑuMÓP…üü|Âá06›Ð]G‚Ž‘îµòŸÀɵà ¶À›0¼5MC’â½c±X$‰p8œt¢¢"‚A£²“,Ë”——sèÐ!Aèõ×Ë2ÆºÝøWR I–ÐËK±ylDJ}8]º®QÁ®wCP3n§'ïÄC …z…-+Å~X™As­d þZ“&M(..Ž=>pà™™™Iêॗ^âÕW_¥oß¾sÕUW±qãFrrrD› ÌÖa:"Š:T…^Á„"ðE øÇ߆ÓÍ×GÒ$þðáÃD"‘$uðÜsÏqÉ%—pã7pÿý÷óÎ;¸ú#t%™ÐQAIÉçÅæ±¢–py$tMG2ß…fªA-Q%® EžšƒYI>š{àònpMãhŸà)8p ………|óÍ7ñ¯ý‹³Î: §ÓÉO?ý„ßï ú={öPZZJnn.^¯—KlB8~þ…À>ˆÝ’õivÛ1n†´ŽŸÞ¼ys:uêħŸ~Ê¡C‡øüóÏÉÈÈ ;;›Ý»wsàÀ233Ù³gÅÅÅ’››KzzºPè'‡¸äàŠÄ ]×@EÑPå8Ò<öp¹@WUCÓkÉ„î"êDHI$–½?Ú-b¢S§N\~ùåÌž=‹ÅBFF3f̈©ð×^{Þ½{3cÆ -ZÄâÅ‹ñù|Œ9’®]»Šö8¼@^ˆ½Ê'Ðka222¸ë®»˜={6o¿ý6ªªrÇw`µZyàèÑ£wÝu¿ûÝï¸çž{˜2e š¦Ñ¨Q#&Nœ(úöÄ÷¦|BãÕPè ´‡§j¹O&èªWè:4C‰;ÄBXêz-3Å]sÍ5üö·¿EUU‡MÓø¿ÿû¿Ø^Ôßþö·\pÁD"dYÆåra±ˆ¡,PtŒd2FxޏKêAÓÕ2S\¿~ýxýõ×c15QïÛ3Ï<ƒ¢(H’D÷îÝyýõ×cëèN§»Ý~üý‡QÕøæ)«ÕŠ¢ˆš£+öè¬fa#(N"á Œæ ân­#iƒÐMÿzH›IæbÍ<Å ½–™âE©±.Ë2éééISi‹šªªIA;Š¢$÷ Ô'™o¾ÂôGd‡«Mw ¹Ü+&’©ê9§Ó‰Óé¬îR5‡Ïç㦛nbÛ¶m´jÕ €›nº‰óÏ?_tä{7ñðfaÌ 8Mƒ@Gº±†îvƒ¦jÈÈR\¡'dHUüJr¹¿òÊ+±$C‡eêÔ©ØívqÔ+ò±d$ÐW4HƒPèÇkrŽÓ¦Mcüøñ•"r•yEy9f¾Å‚E px,¨¾ n·±=IdsOZP5ï-y›ÚÑ ö¥×ÓüM®Á9§FŽÉ“O>‰,ËX­V±….5|'@;ÐV4Fýšÿ“4©¯B_¶l»wïfÀ€ 6L¸Ûjl¹Kñ’æ»I@$ŒÕa!RÂé’ˆDt,ròzâ´©&D-ȼð+*βeË,X@»víøÍo~#&öõØhØI¶'ÙìŸDp\„n±X¸øâ‹‘$ MÓ˜?>ëÖ­cæÌ™ g…€Â„_—^ƒ_økÈ47…zÁîBÒT$‹‚E¡C¤»UBå:. Èfa– f(tM¥QO$"æ”+êý¨õŽ‚š¤~=ýŒ3Î`Ê”)4nܘ•+W²|ùræÍ›GãÆÎ &ØÙ´"DëÄ@èy¾'pÐT4Ê1# ”%Ø`mÕy-2ÅÕ+¡Ûl6.¹ä’ØãÆsÏ=÷p×]w!Ër‚Y<”ðë\‚Ðc(ÚÆºÕ ª†d± …T´°ŠÓ¥s WÃmÛþ€.fÜ'ªIè‘cÈ5Uè§€Ë}àÀ 8€áÇ3zôhvïÞ]ÐC v Z¼Sú‰ø ™ 9@wDf¸ãµ‡‰×ÍÕµBOÕzèqO„ è|Šu±ŒQâ <ÁÜË5[³w£G9H³¼àpcQCH=†H„4ÆŽÃ*›å@$^:5 Ýü&"ê½î`:$<Þz,„n¯Á9§$I:‚H;Å쀸M3ïOA…B 2?n80²ëEñSm©¢¡Å•””ðî»ïÒµkWTUeþüùŒ5êúT"óA)~–sì5ÏBqŒæ«"†Ë] ©h — ʽ:n›åÎÑK§Šuò»U~)¹Þ|óM5jDzz:Ë–-£E‹´k×îÿÕaæþד*zò; ˆÛ$t°ÕÍ SÐm6‹…>øI’¸ñÆ5jÔ)Þ;i&™·6ÿß<Æké›C­»\HjÙ"#‡ŽÐÈ&Pª„n*ôÃAH×A×EùԔƯd ½Q£F|ñÅø|>ºtéÂôéÓiÔ¨Ñ)n¡{bøot“Ü¿O‘ï¶ XE:"¢ÛSâV©EÅÅz%t·ÛÍäÉ“e=Tì<@.Pr ׈îC7ºè°¹!‹-MÃn¿W§¹-.¿Ë"ÐA2]D¯ŸZ„ …8pà¡PˆÆWX‡6°k×.B¡ä•¼ìììzÛ]2vìXÆŽû+êX Ø ´Ç™ÊK‘ï¥c, ©ô@&[,ÀÕ?jY>@×u8€×ë%--fÍšUJÖVPPTÈ  E‹"*¥öˆŸ›3òCÔ2D"ÁŠ+qBWü`oŠ%D±HH¡«„E×”i¸,Ä*°”†Á­QîÑo$”zŠz-·¬,\¸+VžžN0äÉ'Ÿ¤M›6Içüãÿˆi8xð ÿûßÿظqc¬†²ÀÉÀÀ>â1ЩBè>@†$ °¤ŠB¯ePÜš5k˜3gÍ›7§  €©S§rÞyç%ûaV­bùò們©qéҥ̟?_ú±AåØÝìIz,A¡ûÀîD‘ìVÔŠÅ® k~/¡'(ô4éèÃZ¨ö†§Ð7mÚÄG}ļyóh×®sçÎå¹çžãÁLš¡Ïš5 ]7zø‰'ž ==ýwq§"t 8…¾OX& h ìÝÔz‚ø...æñÇgêÔ© 6Œÿüç?ÌŸ?ŸaÆ%åv˜0aB,™Û_|Á–-[|˜@ ê”6+V¬@Ó´Jî8‰tŒ¬èªI¢å)ò½ Y@'ÑI©7±¯¡ X,–ØN±ôôtE©´^ÅþýûY¶l/¿ü2’$ B¯9ÀPà4Œ}§û€‚j¦f‰„^¡Ê=2HÍjkzœ¤r/V— B¬V Y…±¼[CE@Ñ¡7…ž€¼Bøð ð™Yj¶íK¸Ãüþøžæòòr£$b¥QC¡Ë–-cذadffж>i艱]Íœ„³.¾Sˆh‰T ‹Q±Q µz|Aøp5ä×n†ß™õÌ, ªªÆ–Ô‚Á š¦UªªÅÚµkiÚ´)ÙÙÙÆûE‹×FLÅÿ«›ziU#`X|Ùfœ¢ûÁáB+óaIs¢…"X2’8óc5FÀª„.â„^ÁÞº ÜtYüñúOZ=Xºt)‡"33“¯¾úŠ.]º‘‘QYò¿ÿý·ÞzK´óIE˜x”J8¾ø7°&@Wš"q@tSª@ªl\v¸ü‚øãW?Šÿ߸qc¹¹¹tëÖíÛ·£iZŒ°“îÄp˜·Þz‹K.¹$VNYúQáÂp`A'û0Ü[‡ðž&ûS 0¢àe*g0K§JPl … ãàp¢û°´p¡‡Âج„ ÀXC7ë¡#¦¨Oض&¸=a¡VAqýû÷'++‹‡zˆ®]»òþûïóç?ÿ™ÒÒR¦NÊìÙ³éÒ¥ `D:ýôÓÉÊÊí|ÂáÆÈrç6™Ê\vÅnt6Év''vÊ`茲™§žB¯EP\³f͸ꪫ˜={6£GæÓO?å /$33“ûî»N:qÍ5× Ißÿ=ùùùœwÞyH’$½ú©Õ@ ÷š ¼oôú£ P0#ÑDF©Àz0 ’Õ$ô QÕå„`«#H0ŒÕ!ôçTˆ¹Üƒ*Ø”xœØ¶– ½¹Üív;<òË–-£¤¤„û￟Aƒáõz;vl’k½uëÖLŸ>´´4ÑÎ'¼‡`d‡T·1¢ÛRõ‚— œ œežÿFFÉ… ‘†á#‚4R‹mkŠ¢pà 7жm[vìØÁ5×\È#”«à’ºDB®÷T$t…M©†Ð£§.ÒÍ1~0ÿö0mÃ&±axñºMK€7ÍçüDS²Ö4àŸHq:ÆfZ—è¨Ô%tY"d³Uc'êÎÏ*½J8s0¶ª6Ù4 L;wî¤sçÎ\ýõ´mÛ6ùººÎÆY¼x1¿üò :tছn›fŽŒB`MÂ`ŒfN·'̃$s}‡±]-ÓœL.ÀX_W*(sɼޤtƒðÃ^°¦A°E‘°Ø"! › üÁ…®ƒW‹zÔ— ªƒYF«æHt¹s÷ÝwÓ§O¦OŸÎgŸ}Æ’%K*]÷£>â¹çžãÚk¯åþûï笳ΊÕO¨K”›c{wÂsasÒî"^F«#ºÝbyFäûEÀ…ÔÝ*÷§@Ý0áDRÙ†©6 >v=ô‘H„»ï¾¿ßÏ#ú(n·›™3gòöÛo B?2Z`lQ±˜8Ж]Fesà‡€OLõ.U3Mê•Í5¸ˆ™ú5àÃê²)bµ™ =§Aèš~=y =ñ› T{ŠºL¸Â‹Hš¢¡iFOéR|vÖ²eKV®\‰ªª(ŠÂž={hÖ¬Ng²ƒµC‡´oßEQðx<4mÚ”¢¢"Ñàu0#È5XÁt!^ÓÁiÚ ø ø‰ºõ¡­¼´ÅÈ'¢%’G"\a sU1쀮Ä_w¹\¨ªJ(ÂívSTT„ªª´hÑ¢’ x<E!++‹Ý»w‹{ãhæ8¹r’Lå-iaó5›©ØU1ÃÏHPéŒu6Ýøß"ƒ¢ƒ›)P†Í­ –ú°ÛÁnÕð–CšÝ˜D"4]îa’힊³s %ép¤YéÚÏM=r<¤7Žæ¡C‡âõzy÷ÝwÙ¼y3/½ôãÇGQÞzë­iOš4‰%K–°cÇV­ZEnnn¥ºÈucŽã#+Zi§¢È3'ñ`¬¯·®@äÆò[:ÇVBE7•¿qu±¨Òð¼<m€lµÐ¡‡+fZgÇw±´jÕŠAƒñüóϳsçN^{í5:tè@ÇŽY¾|9ëÖ­à²Ë.cÆ ¬Y³†Í›7³|ùr,ú‘Q€Qã<#­kâkèÑY„Ùbu§™Ä¾ÇœÙ÷1ÕûWzt=NMÙŠða3ºÝ² 8Í%˜°A<"IRèÖjI?ŠfÍš1kÖ,þþ÷¿³téRúöíËe—]†ÏçãŸÿü'}ûö¥I“&L™2…^x»ï¾ÇÃ}÷ÝG«V­Dƒ×9Ê1"Ë;šcvñ@רpa,ÁEcileVÛb$™Ò€sÍëýÇ´ µ!ó@VŒì mR_“5ô8 ;NfÍšÅã?άY³hÛ¶-3gÎàóÏ?§sçÎôíÛ—~ýúqÓM7±páBTUeüøñŒ7NúÑÓVsÀ^RaÇæS çœ47‰¿FTj¦9¨3*Ìü- ˜ =A²)È!/Ž&2xËq»Á¢GÐTc™Bª¡Ð=¢sˆ¾«IP\²“lذa 6,é9·ÛÍ¿þõ¯Øã¦M›r÷Ýw‹>)8h=ˆoAÕìAÛ 6 ‹9‰8Þ‘`':Ö’Ðþ?CÌ« 44‘kкukžzê©Jç=ú裱ÿ- W_}5W_}uÒ9‚ЫEGó¨ŠÐ²„±îž¸5-—x&¹Ã¦Ò—â ]’Œ²iº ²ü>ì o·ÇˆR5Ã3n(ô€©Ð½¢c€B¯]”»@ªBÂHñj­âùŠv qâ.cb\¥ IDAT”XŽ&hÝ^ËÏÝøICf(š0Ö rR/ÕšÐâ©v ·M¸RR7Ä·²Etô(ĈpýÅœ¡Û‰Ó(6 (’éÅWA‘Bn…@‰·KGÒUC¡›Võr§dL´S u›ϳuªôÕÖå.Ê“úÈ[ªbBŸçè÷°#¨ âkí5§ãÊÒ)m¨% ¿f#שdtAè©„FëaU©(¹Â߈‘-*ÃEg5‰ÜK<ÉL£éeÉ(›¦GdÉ_Ž=ÝFÙ/‡ð¤º†ªU1>"¤Vq qôêȃ¨†/£–TÅsæ·.­ãAfÅX6èä˜×Þ|AÝÔ¦²aD<¸LSZ\o³s¥Ú´B¡§:¬@_“r**s½ þcúA¢ûÆã¹,R毋˜ÄWÅ9N³ÊêÐH¦¥ a¤äék¶Þ'À÷uð9F: Ž©§‰BÍR¿ B?I(ÇŽkBåä0R¥n1¨¯Ì|-šN©âÜP¡ë GÀ"!}ØÝ¨¾îÆ:ŠAÕÌ•;S¡[ã÷¤2G#ôªÎqîæ¿#Ä/‘/6‰w½Iø5ÝßVpËáÀl’pö2¯ÿÆÂ„lN4"ÇÐkí16E}"ËëÉ›¡!¡V£ÀEµµÔ÷³‘ìˆg;’ Í;vW|n„xÚi 'jK`¨i'JÍqžˆ4à7æ/ÿcÑ@«ÁxŠZ¾ª*>J@o`9ÕÉ"p¦Ùz6Œœ{ˆÆø×™¦ hbÚ“w©ŸeJ½6 .'õ‚Њ ð F ‹µíÛܼ…Ö™CãhðnƒÐu“²$|>œéMˆx¤µ×‘t -Jâ¦B·é ëÇ_=Z 2j²"Ⱦ»ù«£î°.««ÍÏmŒáöU¡Ž‡˜oÍ÷$¢±yíô ­-sÓg~î§fk‹)Œ¦ Q.<­ŠÄ2•¼p¹§64Œ¬o.óή8þ¥ Sç–&Eí=Ž;OþØHp:«IuƒèøÐìA¢2ïGÜG9#40#¦ŒáÃp•ùYäcñ¦­vžDE|' ܹ%©e·_†Š:¯ì¨· P88žÖ^ƒùçWÊ·[¢HŸ/W±Tøébáë×ERåêÃ>`‹Üh)x 8ËgÒl£tâ{5~¢|Wµ|ÿd‘U!YÉwÄC0SÎ?Z®=%«0øŒ¼îf2Ù.RIq bŠÈ¶i朅š8L3† dk=.Ω;µxÍc"ö•_ñ D¢ÖÐ4Ðm;oR“´H§âáÒ²µ0žËÝöY×5ò+FâU¾»¿*.âèã>M¸^€{…{g„‰\Ñ2RVB/Su\Ê óÅu«ÅP1´£Q.ü„OùÐPè®r_›"+ØVac¦º¹c¹ºãêäúÄn:Pf¶ƒ¤¸AB:^ȬMø÷B¼ ÛþÙµoÏAŹ7 ÷-“ı:VÔäžî6™‘,¥·¾›aÂß*>í¦ÒÁsmhÞñË·…ô á§°ð]HòPïùw­k9—s»ÙðSE~$}ž?¿/ãX1‘\-+Öè»#¦\K½¬zq?w¬'2 *ÇìäÐÕJ:1T>÷TT„øaJ Â\æÖgUè .TU‰}¹Y{ã>´~]Þ©xÝé€h ÇPºn›X¹"µU6»¶Ú$Â*nŽ£f¡'Û.­zß#L5IÀÝYTRÙ¹òѬ6*–=/?'ξ·dÓT˜ÑßNÇÏŒ–XÔ§‰%]~+À</oÊ_GìzQ‹Ü4"Ý'ò¢ÍÏõýŽÚýܱVùíïù¾sU%`8ð"Œ–‹eáÀ¢œôX<Ë}ЀùÄŸeàe~8x•.n!gT8Ê”ñqÆpÔt4G¸ïÐÙ”ÛñFÅlñyß^—«w]صr定r†EU´<%Ç"jKˆÊ-t|-²¸@x6%ü7YßJšÂoq9f¦Ïdr]ùî¹çÈ9C¾U ¿¥üŽY¨›ë^"¿£<ü>)R{ð;ùÍ™~÷ž¸ÜÍb¡›¦ÉÒ¥KùãÿÀÂ… 9å”S0 c1s/E+!7ð&+M“íä߯†°‡ siaêu‹.¬Æ*]¶OTþ4DâàØh8h¶…•7©NØdÚa¯¤#e©+µm\K½M¾q‚Ýj¹²·ä&Ÿ%ßñÙã)þ8L´ãxî•lˆ÷äøÙx®úˆ€ieà¿LÎ5ŠÒ±îß·D!iA3¯HÐuù한(€¯‹`rcƒCPwÒئï:jðºp+×™?K{?í¬é÷úë¯óË_þ’ÖÖV>ððÙÏ~–H¤4ÐrçwòÜsÏuNa»ôÒK¹ä’KJF¯JêÉ5|÷zì ]vâÛÀewí. 6i>n ûvkQlÎ'è‘|i˜,GÊ•P!®'„_O§t6ÜhJ›×ŽF%§µŠÏ!¼å¡I@ùd¼ÖYUÀ™tuÑo¯CÄ÷ž»[wËj» ³ä»C>O`Z~GB MdŠ+fÉë®ÑC…ò>c"æ“ôÕ¢Lùóx?©^½íåÐÖÖÆ]wÝÅúõë™>}:ŸûÜçºÌjX¾|9·Ür ÕÕÕhšÆŒ3øêW¿zp€þòË/óýo¾˲¸þúë¹÷Þ{™5kÖ bævTÄi&*ÒíYö/ÙÞó*@›k£î”ãSbwnÂk$Sïs•SVm/°ÓKvŠvǶ Gm2mUQá¼,:<A9|n¡L›^#~ƒ¸h½c|àªù˜àXy@×jÛ¼0£á³Sb² iÑœ3ÞþÆ7uò£âfWת‹¥ïºåÒ>%å!qá œè³ Þ“÷G “†}VÀd¼<·aÎTîpXònªãùÀŸÅ-ØF×2¼ƒt½1tOôµ¶¶rã7²`ÁŽ?þxn¾ùfâñ8—]vYÉ1œvÚi\~ùåJY©©9l`ÞÒÒ 7ÜÀ'?ùIŽ;î8n¾ùf‰ŸùÌg‘ °„ßC²‹7É®Y+;÷l*OK‹ÈN ËÃ⦃VË9û¦ÿYTTæ}8ñ‹>3$_ö™¬ìÿ"ÑŽõyÞüJöxŸe]IÆøñ’l-áÓ·}оã3ª+Xú® ‹,'À<ÚÜÈ‹Ç`“<¿@Îï*¢r ´Óþùl›FŠòüETVÔN‘Uõ"&°èÛzõÞÆÐóù<7ß|3Ñh”o¼‘û￟ï|ç;üä'?)9f÷îÝD"‘NF …BèúÓŸøð‡?̼yóÐuãŽ;ŽçŸ~º#pÔèsBùݬàhr·÷J٧ʶ7TP©g!àY¼\òób•®*7Z€ÿ•+0Pضˆp•ý&T\Fd£‚dó7±Íûxv“ðÝX¼’4Ëg%»<›ó·#^¶å¢´»„¸O™&×\ ì£>?ç©xS5\9ñ®xOðÉ’7å¸c|2è]Ÿq³V¤õX¼pà‘9_•ÈÔÖƒF—žXèžR¿cÇ–/_Îã?N}}=‹-bñâÅlݺ•qãÆ•¢H>OSSC† aâĉhÚA¶Þ¼y3\pº®.hêÔ©lذÁGN…(Š›¥tÜ©KuâÈÞë³Ýv¯GÉûŽèŽ{)-[ËîºÜ3H&ººma„4tri¨2Df¤ Z´®uèŸX‰ˆþ;ºŽƒHù´l‡®ñ°FŸ Ø—ç[——[î?6泞mÑœ[Dã]'¯åe%æ”1;eJ€_°„Å?©‚…ï •Çĵv¼X.kDÓ&D®$V¥«ä»ÇÈÒž‚WïꆞE5Ñ98@ï]§¸-[¶0jÔ¨NwõôéÓÙ±cétºÐ]>»ÿþûY¿~=W]u ,èäÃCI›7o.¹æiÓ¦±}ûvÒéô töáŸqÛt…'ö(|¨á>ÕwÂAúÙóI9ÛËb—K1×·p¹Ïåþ¥å[iy„¨‰Ÿ‡,/úTWðákýx¼Ì‡Ê=4Ÿ:õº°®•Õ¡*{\|*ž?Y®#U“J䘔ȑx98“s6 jr…,=é§—(ꚦuòûèÑ£ …BlÛ¶­Ðkkk1b=öœ|òÉ\ýõèŽã”¸út]ǶËA®£ÃÝìÓèšæ4i,^E¦åÛzþ-/slÅdk7⥞4û"Lî#š¸Ü­$ÆA1‚e ièŽF&í0ÒÝYÃ`]»šçRåTn¿h”ŧ*óT|ýT9¾®Ìo°Jô·<Ž—÷Ë“ã\Í?ä{­NîxJq^ÆËìþò˜Í@ÛuÇöðpÿFEøü]ΙƒŠ|f÷á`}/9!¯å|îÆ½·}ªÞβÐKcÉÛ;XÿäzŠ¥65¯oÛ'?išš¸WN_üâ;Ÿ¿øâ‹|å+_áCú555‡^® Ç©pÝÍ>99P=äÀÙú> 'ä >¹ªr½¨ÒïÈo}ã ¯b·xƈ?qc^Be^°JràùUÃʬ`ä{Þ®ÐÝ€Wb:œ®!5w®ä¼,Cîøkr= äûÜØ}«()®õŸòyµ2%<—3S ô#r ËäyZÀz#^óîJ&Üf¹î¸\[ȦÑ>¹§‰âä7tš{m¡—Ê€b¦ÈÛO®'µ]©Û_ÚWW>Þå­r~úà?ØéooogÁ‚|à88@¯¯¯§©©©ÄÂhhh(ûTÀÇ`" Ïàj¹ÅµezM™}”è¤m>˽¬r[Ë+ Ý =–€B #A³-Œè6dÓ0qކûáäv8ÕwouŸf¹]DDZ„-AFE s¾ €[â¶[4é >{£cNw¼% @{®Ï5îgÂJ‘Äx™ÈËïØ"×5Í÷žåc´¢ZN’ß…ä5q™ïFÈ5‚j\ã¦AÎ’ï\#w~n™K³7¤bè¥,3„Ùלì êWZJøéÙgŸÅ¶mt]gË–- >¼3ù­s×…=ÞØ±c) ˜¦yX8eÔ¨Q¼ð ׼yóæŠ×¬ `°É] 'W4Õ&»ÇçÛÁ†pÐk¨Î½Ÿ²VY ý?”ùYá-²O]å{ •›ÆîB¥ü}Jö{Føª(@X‹úCiÿ ÅŠ«àï90¯än^Óìê2 Yf"…Ë| –¸É7Éoš Sû‹ªzqïÒvY«žtÔ-~V ø‡„$&É}] ‚jñ@ºÔ›R•†³h‰Ó?=»óÿÈ/_õäC<Žiš‹*EoÏž=X–ÅÈ‘#K7ÃèL>2dC‡¥µµõàýcû·Þz+gžy& âiwÝuƒ›ÜJé1¢ó"JIØç’3}°¦— €±èia¿HehÔâ’['Iq¹ŒdÛv0º£½ÊMœ5ÔFŠ êÐýòd¹šç…)ÝÕØ2íÔ­Gß+ª‡›7¹\\ã»ñ&·›>«Û‘cÝr˜wñò{ÝŒtK*/ÇÖ”iî2Qô©7y±¶‰MòYÝoÉëÿæsñ?+bòÃä1T‚‹ß Wë£;:7Cž›éðbî$U¶éÖ-ï׺ö³Ÿñ‡?üc=–%K–pá… …xì±Ç˜?>C‡å¹çžcüøñhšÆoû[&L˜P@ ù¯yÖ¬Yüüç?ç /<,Þ‚¾• ¨&Q»VfÈNl@wa§’ ³Uޱ«äýòü¿ŸÓþÛŠ×ÍΕ¬Í¨ºø³}¾Fñ0†PÉ}S(­q×ÄÀy•žu¿?F‘kï‰Lz³v’*[Û¿ ðþ˜1c8ùä“ùéOʧ?ýizè!ÆϤI“xöÙg2dsæÌá•W^!‘HL&yõÕWÙ½{7G}ôÁú)§œÂ¥—^Êm·Ý†mÛ\wÝuÌœ9súp¼>HM;iÙbÕ²mÞ“m;¡`“-•Ú‡Æ/ÎrM,t; ‰$tì!€#ÒЊÛ 'ú¦¡äŠ^£I·EÔ'ª…1Øv–1ý'„Á–Ë/sÕ“­òÐE•ù@™Û.%¿Òý¥¯Š%|´¸æçøÄ`Nc*]‹öŠ¢4Œó¹®–‰Bò¹ð÷ˆ@™'Œì† Þa³•dù´·1Æf*Ǽ\¥Àµc·‰¸ÕDIéêIRœ?Ë}Ĉ\ýõ<ðÀ<òÈ#Ìž=›O}êS¤R)î¿ÿ~Ž9æ†ÊÿøG¶mÛ†mÛ444pë­·‹Å ·Œ9’믿ž_ýêW<òÈ#Ì™3‡K/½tË€8ªÂyŠ@ÓN¼Ìu¿·í=“dä O]o½VlÑ•,EãNä?XÁ¹¨xðÛ¢x–ûb’x%™Õò­Í²çßóYó!T]ùñ`­ðö.á7ÉíTŸRàš0~y³IÌ–"WŽÂk£^ ך²•q{íù‹ýž¦4Çå÷6‘ ³|ÊúV¹N¸]7DΕÙÖ²uÉ 4Sb³(÷n'º>Iõ²—{<ç†nà¶Ûnã+_ù cÆŒáúë¯àÏþ3S§NeöìÙ¬Y³†¥K—R,I&“ÜtÓMè±XŒE‹±hÑ"Ž*øXf¤l«e²ÅݘyƒÏî”mÙ"û.~rõ[w>ºvÕ°û=ô!l+‹ahàÀÑP¿Û;}¾èÅ‹ÜÇV¼ŒÑ7…‘¶ˆ²·Ìµt”|nš0¤î_n`ÀŸáàþ27ކ¸¡Üùè­>Åý¼›äv£ò»Ù"Äîy÷Šû0ç[½Ñþ/Âë0g‰åá&ä¼)Ì“Ϲ蟵+¨h§Éyþ)׿øµï:úÐõnÛ:–w‰š?>óçÏ/µÀªªøÓŸþÔùÿøÃÅ1gŸ}6gŸ}ö$,ß®Œ T½ ªèTßnw:eãÚ¨½%Õæ¥@ŠUx•jàaxÅ´å`µ[L”Š„O™†Òö²ŽOErg@¸FC‹ |×°M<‰îÿ«åµÊg-T ê&*§8Ÿ%²b•¬r>÷·ôG? •gt+'üÔÐÐPÑÓ}Çwt>_¸p! .ìò™ S\ Eö6ÊVr›…žŠ×<±/“Õµ3÷ú7njoyuŸS“ÕŒq»*+Åžš$Ž&¡ „#Ŭ4áS£ ¦¨üQz†‰•òi²Ëe3g|@[jÛE[‹¦Ÿô‰¢˜Ïþ6Þh™ˆØa±º_ue¸¿;ØaŽOóމ`É Sº­(5û6o0Ë,Iñ¸×´E„ØzJSÝsû= {¨\Ÿ{"*î–Ð,ÃTÑŸdWˆ¡ïÏåÐ@!]Äüx*CøÙmÅdÊnYæ—r@ÛEÕÖ(m¬Z™IPdq¢Â«,­x× èLëtìa[d@ÈgJtTøž½xU/ë)-/‹ú<㓎ÏÜ¡)n ØTÙÛ>>ï«–ã›EŽÔøÝoÞDPe´O‰¥>¯q¶_É_.îöt XzF…ë¦o݇‡n¢(õ®B±Kd”ÃÁ—¦uèÝÉ«»E€^BSPý›uærû)Ó)Ý©½¶l³f±Ú5Ù*cQ©Z¦8¨ý[Y¥«„4ƒ[ßøÇìy™{Ö­ä‰|#¡1‰& EIR»j¤TþäÍ0ÃñÆ»´úÜÈÝÍûM£Z³FåXwXüªY7aî]±/ÎÃkÀâ&Ï%äõ)"\öú´òÏsàÆ¿ÜþZ)qÓ}×­¹Õ§\„Dl¦eõWŠ^‰Ü¦å7ì«!ḐTÊþez¯\î š‰×[q§ðxµÏ—å¦nÚ¾Ïæ3 6ËûU"CÆáåÛhe vQ®¯J®Y&Wt–¼¹€@ÅÉ[|Ǻ }»¬ìj*'ÔæåZó"GšöcªùeÀ¡R£ƒñ©‡]3×|Û÷5ym^êE€ý¡µ_îL¢½y®³h—j µý5ãµ7¹ò½¨¶Sð‡Y>a ¡d”|GDµA!­Q,8$¥W¡i‚íT.ÝØ·æ¯2ÞÝLôêQ¨7Î.Óz]—Þk"@ >—»?ÃÝM¿/²˜E%¯½%Ï'È÷­fs}nÁR< ¢\Ô ÃíDÕ—§÷Ë,*ð&ûá–âYò›ÙÁ<ôA.±?_ŽñçdÇd÷”ÖüBlÕ-ÂY'ˆêkËÎÛÜå›Nc ÿÁ+è8d ±‚ñ]\¿®?Àe~>Üi¨¨|½\ÁN9WUŠõxé¾TŸË‰' &ž­¼ï¼þx·%^|ž°Çå» ´k…W'Š7Î4í¶p®å]‰–•|“ý÷ÙÛ.¿ËÙÏçÖ‹¤®’»y¨³€~XéT¥ˆlõOŠÞç/ºr{8»‘¥vTÁƒerû1M”ç”°ª¬ÞhLgs¼†ìz^›|,)­ÀˆX˜|Ê$š4(Á2!R³•Ûi»Q§gµÓÄ…å2ìrŸë­ÍçzÚWã„÷P^Ë÷™ *V½S˜µEl¨¬Ä³¢<¸Œõx™°‹÷ã».·‰î㨸ûa¾žût7Ëjjœ£Ã¡í®­z¹.÷ÁGnË×ñ¨èì˜ ðéæv»é›.ˆ»rÀîš$»®eg([©¡–kE¶›ýÒ üEñXåÃļHxºRò"¥ÆŠ,hÛgï ¼¾ .¥ÄÚŸ"ü5WÝ–ëzS䃛Àû'yÿl¼V±F™H‹7¢MV~„œ+×2  ¿="×î¢d£w+@ï7Ê¡:טÁ+î*_6Ç·]§‹ Ùæ¯ˆ†¶nø#·žÚ$¨¬’«0?G׸t¯sy隉ŠÍ¿&ƆëyëkÊBËÜo¡›Ýzé@ïgʈv=/s=%Û÷¼(ŒÛHÐÔäNönÍ|¨8«ÖúX)¯ºÄi°;gwl(„C„ Œøri“aà ‚’áï¬í‰žÒÛx #åV²ì;6ÝjG5¨#ß·/mz“¬HDV,„ŠÕÿ“¾h»10é@²ÜH´´Šàe®o…”ïs}w–ØxTríñÔÇ«ÍèJÛ©f{I×¼¡@“^@c.U ­˜æÖ=µ‰wj¥]]e¡/JµòâµÛ&Šù¾¬ý"Ukä]Vt*^Ÿ?BwQo³Ü@ïs2Qi"nß°7PëVÙ®s} ~*ÚÔ,l3™ÒfŠn ˆ-MÐã‚ÿyE! Z1C$ÂÌ‰Ç ˆ¸©¥d‹ ;êj >†´ºq3u_îŽÂb§ìÙ‡{Ïm¡¸¹›ó¼) ”s%ä¯u$Å.÷Lo  OD9¨Ÿœ„JzmÀ›v’Ȇ‘#ÀmÂíÅ÷>ŠÍŸy k™È0ûÃA%—n<ˆUpç‘ç`ŸjEÊ·¹?j~ƒ ´ÈФ“÷ìP*õA }@ŽŠ©§Py–nôõŸ²}/Æ+K‹—_©á|¸É-ŸƒIú¸ØÐUe¹VÈJD(dm¢1|"®`+—»!›ï÷EŒÈ-)™"áɃТÝÌw7öŸzì +HŠädˆÝ™°K^w È.Åkµ2¯ÇbLn-ûÔ¥O5y9}„ê< 5%/€|0e^ûQ ŽDêIRœzSÕSiªlß•Ângc—qâ[9«…‘7 tGE©‹xƒó Ig)§¡ØE4»H$®cæ,"QÂ^±Ð êðœåÝ,{¿QyûP•ˆ©ÊÁXÍ‘ëëíÜÊÖ5Jxs³ÔwùìÕ¨¥þÜî]"#&‹Üø;*¿fUûƒRÿ<²Ã§ÒŒÞ¯BZƒÑ§€ÄйŽê–ªœ'L^Äk<êZå1T¦Z”s9ŠrÏEñ:ž£LF•d†äÁˆB1ƒæX„“²9‹xÜ ß1ߜҴ ßà·CÁâm¨ô¾£Å&i 6C/-t½×Yîííí¬\¹’öövf̘±ßVÊ»wïfÙ²eÌ™3‡‰' ÞçäŸY&õ£ÌF5<ÖEøÓ»êP qËÀ3¢è^*¢ªV(÷ø¦`S ‡ze¡Û¶Í‹/¾È¶mÛhhh`îܹD£•C6¹\ŽçŸžššN=õÔÀ<¨LYaÊ‚òd±°‡ŠÎêºÔüzìlym]g'x-2 '¤“Šk¡çѰ' ̼I,jS,øbè6dMˆk˜[\l¼g¦Š‹ý•¸b£—̬ccì÷áOг,‹[n¹…Gy„µk×rýõ×óÆ•Go‹E~þóŸó¥/}‰^x!Xì~¡¡\ÞET¿Ácñ’ßÜ àþ’Ô‘¨zŽ]#Ãú µŸÞE%Öý™ÀCw €Þ½ ð`Øq{ì1¾ÿýï³iÓ&n¿ývyä‘}žÅŠ\{íµ,Y²$°Ð»w6¹ÙìF¹ÙªdK‡ñjÎ]föþðkøÕxùÝ2¨Ð+‡ä ƒb ‹H"D!k‹käsQ Ý‚„VyzÿZ™ï¯˜Wß[è=w¹¯ZµŠ5kÖðë_ÿšáÇsï½÷rÏ=÷pçw‰”ö¸û׿þÅ»ï¾ËqÇW2< ¾¤”=Š :]ˆò¾|Jºw'=Ž1+€ùÄ øý7¨¿@éÈ­D94zϓ⚚š¸çž{øÑ~ıÇËŠ+øÆ7¾Á%—\BuuuÉq;vìà—¿ü%_|1étºs§¨D¶ãP)`º0òÙκhèõxó¾Ê‡®£«SÚ-aicãÊú7ªeB bU`fѱ‰ÆtŠ9IŠËCÄðYè6Ä´ÒºÒ€6¹1ôý=üIqk×®eܸq ®ÆgÌ›7õë×ÓÞ^Ú;l×®]Üwß},^¼x)ˆT «MþÞ×d9„7íû_>+Ü•ͨÔÑòq?õ¨"³ñÚ0ô~ôý=ü€ÞÒÒB&“é ¡M›6 Ã0x÷ÝÒÐM±Xä¾ûîcþüùL:µóõÀBï´Æç ³YÀ¯P®ó? :óYä5”ö:Ë¢Ê[Víjs‚ÊîÔð45ÒL*‘j03háVÑ&³Éå ^–åžÐ÷ÈL Ý P¦›»ZÈ<½;§Šó›¼©Íétšd2Ùùmm-™L†b±t°Çý÷ßϬY³ë¼Ï) œ‰*K-÷ ˜¿ŒJ’5(‘êŸ-¨V-ïTàÆŒœO[× –ú}£Ôë]d€“Í“~ú%Ì&ef–½GÝ Ô†atòu<G×uR©Òº U«Vñî»ïòÅ/~‘ßþö· Wff·ëSÈÖîÈ—‘Ýs·8lª«Ô$TKØõ”–¨¸Ý‰ã¨„¹”èÅHTA1 ±(N6‡¡ÛÄc{ÒP÷º£\î•Üa \@/–ƒ>‚è…ç‚£îXáoÿ*ð½{=ënÏž=TUU•$ÄìÚµ‹ÿýßÿåšk®á÷¿ÿ=›7ofÕªUÌ›7É“'‹~P¤UnIšáûŒ.üî0º^äÂx½]Ú ü•4÷=¯CQóXì@9ýõm0Zèe2 &2ÿ4¦ žš9/ˆF1MÛV¯¥R),Ë¢¶¶¶ó3|ÿûßgöìÙ<óÌ3¼òÊ+lܸ‘åË—.wWôªô¯¨R“m>@oÇkáâo÷ºÕßèY”[ýlTçô£+œÛmŸ ÍCÕ2§%Ñ*´bbQìL–î9¤3P%#Ó] =®y½Ï-Jãwü@df½ôa„¡¦jkÔ#ìiï³fÍbÇŽìØ±Çqxá…˜1cÕÕÕX–…ã8†ÁÅ_ÌÎ;Y³f ­­­lÞ¼™Ý»w ~ÐT@%Á­k{·pX ÞLCwÚb^^kÙ±•ý~¦€z¹[½‰®½Úº£YÀѤ€ß£åbGŠ Ð œd•'ñÎÏ:”ºº:q‡·Þz €I“&aÛ6¶m£ë:\p¶m³fͶnÝÊž={ذaC`¡{Ô,`î§ð(*6øˆ¼þ²|ÖÍfwÛ@ê¨Ñ‹Q¼ÉÃ~­^Æ.êq™Ó¢|bQÌTÃpˆÅ4ÚÓ0Q zÇVek ¾¤8ÿŸªú@Rõ^5–™;w.gžy&_ü⩯¯gË–-üèG?¢¹¹™|ä#<ðÀÌž=››nº©ó˜M›6qÎ9çpê©§ Þ'´ 5çÏï{AÀ8„j&S…JŽ{VøÜF¹à]îœ+r¢é ®%†<úv³†‡Q&ꃛ4È,ôž'Å1‚¯|å+|ó›ßäè£fݺu|þóŸ'‘H°páBŽ9æþû¿ÿ›E‹usß}÷±zõj®¸âŠÐ{¦µo v—k¬0íV¼„8Õ»y´€®’eè òÊÖ"BV;F<‚–ËÒmQ“Tª†«ÓÛ¶š¶– nÆ ¢ž5–)u¢~éK_bݺud³Y?~<…Bûî»I“&u9þÆodÈ!Áb÷ó¤ÓéíºäëQ-a7‹âß‚Jˆ›!–õñò¹§8¸VOQQ 4³Žßbð9LqÆt¤:ÀÙgŸÍرcinnfĈ¡´n¸d2Ù%oæÂ /äÌ3Ï‚z/h;ÊÕæfº^†øÙ( ½'‰×òµ’`p@3$G.¡Z!‹‹be „ ‡HÒ9HFÕÇM²T’Af¡˜NweJoj"‘àøã/y-‰pÒI'U<~ÆŒÁB2jBU¸ÌAiä'ËëG¹ãסâåÓENäéŸY5pÛØC;¯¡Rx€Þ °œR@×u½"_ï‹×ÇŒÓù<ô.äÎ;wǦn }÷i¢™GðÚ>º´ÕTÂF¹ðx3’Ý YdzÐMe¡kÅ,z< ™ ñ¸CH³T/wé gY Ы´CÓP& >tS§PèÆåniN“† òatT¦ûzQèÿ& }–¼7DĨ›¹¾ xå–ß@ße´':ŵ«&;gøvœîe€i­_û‘êPƒWÜ"þTK×½ÂÔ“Ð+E¬ó¨˜š!ÖºVö ]7ÔGŠ´h½˜AODp²í$â6!LŠÅ2@· »YíÝe¶1õÁÌ–Õ ‹9ÛeàQ åæž7>ùwx‚·•qZ©Ïåàf›í&-¼ŽÉ1œ×/SÃêc½[`ÛÁøÔ~$Ò¶­(‰q¬E¹Õmaðý§\‡¶<@×Q.÷p-ÓQ“ÀL7S•t0°È›•Ö¯¦ÄЫ|ú~O=°ä3 [:faÿ,fú$­ŒçCPÝŠòØU¡†¶Ñu ìáeVñ³ ä<žÛZ·2À¶ ½©•½z¦ÏJwÉmþT9[jöq›À÷' Ë,t»!åj×GTcgó$âN§…T¶lU¶l8Jt@=HÝ4(÷ÏbZèrÀsÂß#ËU0TFûJ”×.JMáu”ƒþñÅQå±íäiäQÂLe6æ_Á-¨€îhÝÊÇ ,ôþõ‘°5:u¥“Õ>Œê"•B58 otªí{}_MønRœ)ÃYRiôšQX-’ U­˜+@TÂî¦#ª‚4‘\ºùH7|àr˜2`ðªbÅ­=5 å#ò™'Q™ï§ŠX#ŸÍ£jÓû£z Õ½ò)šy ‡78C > h¡ëXÝÈ̾ƒáÐ+’…è Æ!¶£Ük#Äáu2P±6×7åðºM¹¬:Ö0@·Á)B$ŒÖœ"TÅÚV ·Ñ±(šékY^  \ìÖú@ÞF:tãn#ôJ*Ám=*&îÆÅë|bs$*)N9p¢O¸Ã‡ûƒÀ Àk˜äI€>€]ë^.÷þ¦cQ®-ð±ŒwD[Šž w{µçÊ„‚ÿ‘R¬§jÒš#Œ“Π'ã3E5Ží`Z]-tCë èµ>]ƒb7€hd”ꀣrh:|œæçï òw›XêºOdûùúT'º*H8<¸a×ÙÓ 0û.ìzEŠùìá*T£ˆÙx3ͨ6/í¨2–¤0XF´ú}Q‡:Ö0@k‡pHM`)0":v&GÍ( 3S ¤{Yî¦%*íµ| hë°éŽá€õñ{LÀ»¯Ï„ŽêGa‹Ü§ETÙþ¤aÀIdYÍãLe—ðrpÛ" ›= ÷'½7€%ŠY…ÄÂNâµqÍ ú=¿‡r¹étÍŠ÷SZÎk€#¬’âL t3g’HB&å5d|ª–ã¹Üù?˜,tºO€,ôJMÀ3(—úà<”'n¯ð}ž·®‰C?ã<Œò"Éð*[x•xÝ3@J}w2À컯 ½"íEe²Lö©Zo¢¢UCQõæ¯áÍDÞé>…@,t'­sD"èf‘nceòÔ&mÒ- Уâ‰):*!α¼=R °`à“I÷³8Ênâc=ƯýkLÓdâĉ|ë[ßêÒÚõž{îáé§Ÿ¦P(‡ù÷ÿw.¼ðBt=ˆÇ÷­$^!ÏkñªWÚPñô©ä+E©?G%ê´ð KHr³¸ˆ•ÁíHÛ(ß9á£uëÖñ­o}‹t:Muu5×]w]—î‘+V¬àÎ;ï$ŸÏcš&çž{.W_}uèû÷•€ª9ý›XÖkQns×½¾¿ØGBôe,-£Î£i`eÀáaËM£˜5I&!•rˆ„ÄBGÕ G:CéúÖ­[ùÙÏ~Æu×]ÇŒ3øÎw¾Ãƒ>Ⱦð…’þÍùÈG¸è¢‹ˆÅb<ÿüóüà?`þüùTWWkÞ/2 xåb3UøyæUDŽiïGУfµ7a±…"«ƒ.rm õÂBO¥RÜ~ûíœuÖY|üãçÑGå?ø>ø`‰Â>mÚ4¾÷½ïQSSCss3W]u'Ÿ|r0>uÿ45µJlâ3ðjNn˜l>ªMì±xM)2@R<ò)ˆF!¬ƒe¡éf¦HMÜ"»×"¦Kº{óP­uMŠs÷‹[XдРÝ<|€¾|ùr†ÊyçǸqã¸âŠ+øûßÿ^2#ਣŽbìØ±ÔÖÖ‡©ªª ¬ó~£¨ðýdTúÙ\à‘ûóÈ€þ•d×_”À­—w(a¹f¡w'|ÛhçμñÆ\vÙeŒ5ŠK.¹„¦¦&6lØPrÚaÆ1iÒ$† B,#‹‰D }ߤ¡&&ˆ—OjP£3û8F!•çÕ¨ÌØ‚#*¬ $"øM4±Ð«’°c$"Þ×¶›*r¯9A }ÐiçåšV1íÍj„@Îóà4773lذÎÿGMkk+¹\®Ë©ýë_óøãÓÚÚÊâÅ‹‰ÅbÁz÷ >€ ›E9/ âêûK€ÕÅpåÁL`ý×Unb3&ë 3ŽÉ~©ƒ¨×T.l Ú÷(Y°·8 €l6K(Â0”{¶®®Ã0hnnfêÔ©%§y饗¸ë®»xï½÷øÐ‡>ÄŒ3@ß?¥ñ:§›(Ó:·ÍÜ­I×P1ø·PS™â¨q«;@Ë–Ì… Ä’ ;h–©bè–M(´;$ Ïôn/@ÂQsÑÍÀ\Œ\.¿Û;`Ýj3ïñva`YÞݵ, Ã0ºŒK¸øâ‹™?>ÿøÇ?¸ûî»9ï¼ó¨­­ Ö¼Ï)+ü’›’ÿsÝW@5—Š ½%çê¯Úôãvöò"SÅÅ9¼ܾb¡—(õExçMèÞß¶AO=õ‰D‚‘#G²víZY´hQèû×ÔV5ëy*–î·ÐSÊBϵ£Ç"hº†æ8èšF*U> =eÂXÍ;«Ûò5À÷A`¡wW²b•ZÝ÷Þ{/¿øÅ/xøá‡Y¼x1^x!mmm‹ÅN÷›ã8üêW¿"ŸÏsì±ÇòÐCî–:PÞ•Ì:há_A”9ÝnÀ€úÐ{Q¶‰D¸é¦›X²d ?ýéO9ᄸì²Ë”¨°¬Î\mm-¿ÿýïimmeôèÑÜwß}Ìœ9óà=ŸÏÓÖÖV⨭­­óôð”hº}©M‹Õîä”¶®vC ˜Æˆ†ÑuÐml FÈèT,Èš^›Ë÷êÐ8õ¤Ù~™V6vìX¾ño”ÚŒuuÜzë­ÿ/\¸…  '„eÑÒÒÒ©lhšÆ°aÃ*ÆüµE¹ÜߤûXù@£“Y–ówl†£2x:Ì Þ‹÷Ãá0×^{m—]sÍ5Ïç͛Ǽyó*úh˜þú׿òå/™SO=Ã0˜={6ÿùŸÿIÂÍÞt”‡"4PÝ“;ºñ§hxým/)NÌv¨ªBz<Œ¦ih8è¤Òb¡‹žµ Z!Ã=Î2Àé}Ð)nË–-\pÁ}ôÑTUUÇùîw¿[’­?ø´°Fytg סBi©týQT¹ìj²dÙúáóBäDÑA»ÜO>ùdîºë.b±†a‰DŽð;Be¬ÎB5˜øó~î˜ èÐYtlÄUSv;ÕUPHaDàƒ†ƒ¦id20èL°Ï[©C}z/;Å F=z4·Þz+Guš¦½OJèŽÎ@ÿ=Ð<€®M"Ødi94š9Œúa/;Å t7ŠuëÖqË-·pï½÷²wïÞAìnï)%‰¨v ¨²£Ëè¾×dÊ Žº v’5OJDÐm M,\ªB ç¬þÍ ¨Ÿ¨—e+íÙ³‡ÿøÇÜyç¬]»ö} t`ÊK7jÚÀ1à$lÂ,þEUÀ‹‡ÛBïac™~³ÐÇ¡±±‘7v=(âƒü 3fÌàÿý¿ÿG}}=ÿüç?Y¸p!?ýéOihh8‚ïP*¶¦£²_[ö¡•ºHo=®´z+ UÕ°s¡ª(dsDb:– ¹TÕy€žµ@´ú w¹ïÙ³‡—^z©â{Çw555|ík_£¡¡µk×ò¥/}‰ï}ï{œ~úéG¸”^‹jæR@•¨$2Pnw‹ϰŒ ¨â¹€ƒ…>P†³¬]»–¿ýío]õ¿XŒ“O>™éÓ§3}útN?ýt–.]ʺuëʽ xѷѦ‰u;˜™ùE`ªQ„ÝCGGQµz3bb¡ç ª­&<4 ©±¸†mjä ¨Æ2–xllÙA2Ü¡¦4ªs·ë1Ûy [eOݽ{7O<ñDÅ÷FŒÁ‰'žÈ§?ýiN;í4vìØÁO<Á¼yóÊ,õfŸ‹Ì™ùn§8“þŸ}~  >xŽvë~&\£•{\(ãS5McÁ‚,X° g×í8ض]ÁÝVœzjèmx5ç=¡‚‚c=ìU­_«j ×A(ÅjOKêX¶XèR¶V°U—Јãõ¬ ÊÕ %qû7)jyZèG}4÷ÜsO¯d@å¾òÃ09à–¥d qr¤ÙˆjqPï©ÕÜ¥¦ÞBÅ`ŸúðÃ+È®«cÅŠ >œ™3g; “ܱ©bnk:„BÊBÇQÝc i"Uœt†XBÃ.häóP%Iqyùh´l–ú K9f3 wGË—/ç­·Þ¢¡¡ÆÆFžyæî¸ãŽ÷A}0Ð`>c ª™G{0‘ëPë}Åȉ>Dœ¦ &°uëVV®\ICCK–,a̘1ÁM,õuÐ9ØA‹¨Ñ©Ž šº¹¡ª(V{–hÜÀ²¡hB<¤6CÎÇñzMù÷I`©prËìï1È}̘1äóy–-[†mÛüä'?ᤓN îý€ Ø–'SÀá-ÚTÝû‚ìÈ€b¡ŸvÚiœvÚiÁMë‘Þd‚Œ/‚n€¡£åRD“5dv·’H8X5&U“Á,9Sí‰P7²ß Õ ?À,ô#¼}„ ,^¼8¸×šFÁ˜åÃf¡—{@½!éãÊB× e¼gS„’#p29b ¢ !CåÏᨄ8ˆtÃŒÅ>@-ô^úÎ;yøá‡ijjâì³Ïæ¼óÎërÈßÿþwV¬XA[[sçÎå’K.!™LëÐ>¨ HÒBš7€ rh-ô^ºišüæ7¿áõ×_gΜ9ù»±±‘?ýéOlß¾Q£Fqùå—3f̘ œÒ÷B%£¸®ö<Ï©„¸ßB·ÀÌ­ãd2T%Ì‚£Ýò,tÐ]+<ˆ"íÜêæáÓÂÒé4_øÂÈårœqÆüð‡?ä¯ýk—Ó>÷Üs}ôÑ,X°€åË—óµ¯}B¡¬w@û ñÀ…˜Äx†OSÈ$|7£X,rÛm·±lÙ2.¼ðBž}öY¾÷½ïu9íŠ+¨©©aÁ‚D£Q-ZĶmÛ ½IóýÍ+µÐÍ"Z±@¨*ŠÉë˜&„|%ìy¢ZÐéiPR/]î/½ô¹\Ž/|á TUUÑÖÖÆ£>ÊüùóKº¯}ó›ß$R¬›L&Y¼x1¹\î}Ð¥1 —Cәج¦…L”‘Ð!ô^XèMMMüõ¯åÁdâĉÔÖÖòßÿýß4773|øðÎÏ}ö³Ÿí”§œr ¿ÿýïyçw ½-uwy  FB=5L0 u§­‰*-&‘„bÎ!¤I"¼©³DÕÑ}j èPP/“âÞ~ûm¨ªR½N8áÞ}÷]ÚÛÛKw–0²ã8¼ð L™2…h4h=Pw ®êþS±ôCF½LŠkkkò,FŽ Àĉ …B]¼¹2à•W^AÓ4 ýÐQVµ}5P@ ƒ–Eî6à, IDAT³òÄ«tœlŽdÂÆj ]jÓrÄô}+ëlYè¹í°ëIÕË }½‡ÿ¦Y2¥,cYVç$³9aÛüå/aéÒ¥Ü|óÍ Ô@? ¨c+m<ÈÎÄf:ïKs¨-t+£d@~» øKÀÕ|í/ù …BhšF±X¹öíí·ßæÛßþ6×\s &LýÐÝÕ0j_3N€Y€bp2Œ•ÉOh¥Iq(@kû?s@ƒÐõ10ÚƒHê•Χǧ¥Åk_³sçNêêê*;yúé§ùÁ~Àw¾óæÎ¬u@= IÀùX<ÁvÞ£ƒéÁ¢ô¿…ÞÅ垀áŸöéZ¿ì|‹Å0M³sîy[[¦i–¸Û]Ú°a7ÜpýèGùä'?‰®ë˽ÉMŠ iÕH™ˆV¡Y94C#¤ÛËS•tÈç¢!S f‰‰WÆ}¸îw7§*h23€™¹»„rÊ)ìÙ³‡eË–±k×.~ûÛßrÆg‹Åxå•WH§Ó<þøãÜrË-|õ«_eÖ¬Y¤R)'Píê MD •*’'‡Â–ëER\}}=Ó¦Mã‰'ž`Ïž=,]º”¡C‡2iÒ$Þ~ûm¶nÝ À»ï¾ËâÅ‹9ýôÓ¹ôÒKÉf³˜¦XèýK^:[ ô*±ÐSI‚YÄ ‡±ò&X6ѸN:ɨwTN’âܲ4§‚e0å¶Ð{Ñ)n„ |ö³ŸíÌj­¯¯çsŸû­­­|îsŸãW¿ú³gÏæë_ÿ:Ùl–{»ï¾›êêjî¹çžÎØ{@íßÈPép;F«@ïNøbè555\ýõÜtÓM<ú裄Ãa®»î:B¡·Þz+3gÎä+_ù wß}7«V­B×uþùωDøò—¿zß‘W¢V齄kÕG̈UaØyôX#—FwLj’Û:ª£žö–µ ,îà$7)®;Ð÷Ñå—_Χ>õ)ÇÁ0 B¡ŽãðÒK/‡X½zu‰E®iZáP) œìà𹕹|šf¦²%Xšþ ›^ÏCŸ={6<òHç\7îg?ûš¦¡ißýîwùÎw¾S"Âápè}kï²^ÙZ! ‰šY„p;g¢Ù6ÑXˆTÖg¡;’¨Ðƒ×Bïec™Jà\þZÐÁÑ8à\þˆÉ_ÿZèÐ)ÎUÞ÷õZ8®ø™ÐûÝbw­öéášè( ² ¡å2èŽIUB£= 51ÐràXv Jóbæ 2@ïN;’:,45 sGçÌB? ’âúÅR¯dRˆzËÌA8ÅD%†î8DcÎBB 0Û´­Ý¯ðuÇ€ƒ fîE§¸€:t­K_4QMRÕŠ}“â@päÎH׺ºVoÙ9ˆÇÐÍz$Œ“+ kÄt“\ÁQ“ÖLÕP.m¹l׳Œö`´êcäb7àFtX( œ åm4îf »;%M@}ªÔw'úÐõ¨d‡„$ÕQ —Zè…=hÑ0v®H(BÃ$[€˜„FRTkÁð•A è…l€:,Tœ<¼h—ý%ú»“ F2A ÝÊC$†QH£UG!Ÿ#ÕѱÉ f¨›lÛÊåžp‚¡,G, 75 Ãn©‡B [ö—…~ǧ.÷¢}ÅÉ+}Æ]â‚ÏBÏB$ííÕI¬l‘pÜ@Ç"ëºÜe¡U‡^®ôûàÐáºíãd:tX©5/ÝáÿÐi",I_[èÝÉ€bß}]èæFÝÍr7ŸgĈÔ××w9¤££ƒ¦¦&R©cÇŽ­8¸! €zoÛ¬úЋ=øŒÿ_ÇaóæÍìÝ»—ºº:ÆŒS2. X,²mÛ6R©UUUŒ?^u• V¼?É¡§¨²ÐÉ¡A,¹F,ŒÕV$Õ)¦Mtb!Ÿrç€î”*{¥>Ⱥt÷Ýw³lÙ2† ÂÞ½{¹óÎ;7n\Égyäzè!6nÜÈ 7ÜÀµ×^¬s@!2àùçŸçûßÿ> lݺ•Å‹sþùç—|¦±±‘Ïþó´··3uêT~ùË_Ç—û¡ôèzœ è еB#b`f Ä’Ù ˆKØÝõØ>@\ïG.½öÚk,]º”Ûo¿Ÿüä'œp Üu×]˜fiì¿ýÛ¿ñ»ßýŽ~ô£Á¢ÔGt @K°‡öìÙÃwÜÁu×]ÇÿüÏÿpíµ×òãÿ˜l6[ò¹éÓ§óøãóµ¯}­d~z臄ÄB×Cª§«XèN¡€60ÓbUù´î8Ät<—;ûŽ‹à>ЩwAô×^{Q£F1yòd¢Ñ(çž{.¯½öííí%gM$ÔÔÔTìåP@FGS0?e‰`IúŒzDonnf÷îÝœp D"æÎ‹išlܸ±Tý ‡©««#+­J\R@4쬲У1(Ð"aòé±ê¹´jºYSéÍáýxr@ÈäеÈt/ª‰‡›K¼«ó¶¶6êêê:ÿ1bíííäóù`)êgJEšYÏsÀ„`QúIDì•ÿß@Í©‡|>O(Bו­]SSƒa´¶¶öèÛ@?h*/cóeqŸg@KJ[B„ÃP(Ž€™.HF1;t"bص hvÐXfp’I×®PëcroŠZ<'“Éxj`*E,ë’P@ýCqÔЖõd‚Åè#ªÔYƪðäÉËÛ²¬Îñȹ\Û¶I$zæ1 \î}èZ…ÿÝø¹ZZº8ÒTF×pòEô°A!U$– ‘Ë@T—$8ö!!jAÐHf°zy ClŸ)ò¨êüôÌ™3Ù¶m[§6¾bÅ ¦NJmmm°”b™Pßz¥nRc|2`d秇 B<gË5Ÿ~ýúõضͤI“ ýÐÒ¾†²¤A¯’¶¯YˆÇ HRœ•·ˆÆtò» !m_±`o⎲Ь€žëæ3^W‰O<‘)S¦ðÍo~“É“'ó·¿ý›nº‰½{÷rÕUWqÛm·1}útyê©§X³f ;wîIJ,-ZÔ%žP@CõÕJv'¼º¶‘#G²páB¾ýíosÖYgñüƒO|âÔÖÖrã72eÊ®¼òJòùûÙÏ2vìX6nÜÈ5×\üyó8ï¼ó:t(š¦¡iº®sì±Çrì±ÇvÊ…ÐûÝj÷ÅÐu÷dœš¡‰–I4d‘í’5KÝ㎂š…î¦U˜ôù´½€ú];·zÀð>q:d ,(y-™LòéOºóÿiÓ¦1mÚ´`yêšìÅd9ÿ‹ÁÅXÌ šÁ$ [=†Á¹çžÛåSçœsNçóh4ÊâÅ‹»|&ôCBi ¡,t+ ±ä3èa-l`™FH#—÷jв–²Ðq*‰þ€>Y=ÐÎõ, f„œ lÅäÞf‹rJ}Ï-ôƒ¥Ðû :s4UÒ”= ÕIpRè#¬cY±M& ]Òþµ|‹ â\Ÿzçr( AÄ”vç!ô¾ëžúAQO³A3 IÙ•xriô°1°ÅBoÏ•ÆÐ³¶*p (ô€ h0Rïbè 6ÒK­ð}~FSX(©z¸ÚiH…B#¬ ;¤,›pÈ!›†á:YîSM*h°RàrhpS‡@RPÈÖŸzßzP‡Þ/V»Vv³Š '¥CL’ÕKcÄBh:Ø–ƒ‚l’nÑ9ÊBÔ n =ˆÐ`4Væq6Ï¢@úAzw2 ôA`¹k¥€n$@·ÀÎ@U5Ó„aŒ|–îÖ,è!ÏhËXªkœiu†ÕtÌlvóTµ€"MΡHŒçÐÙú’ÓÐw’=p¹÷«¥îúÏ‹ª± 6˜)¨®…Ý[Wǰ:2Dâ:š¡‘ÉBu˜Î&íÛMMñ¶F þ›…ÞóÆ24°èàU`+©`1л“A }!±ÒBqÐm•W“„íB‰0N*C$¦£kÙ$«”Œ·,ȋ˽\üÛûØ6 4² ÛÞÀåP@G.Ù= "*ª¦%@OƒS€X r)¢CÂÐÑA,Ý$›ê* L[XÝèÅ`‘±…z@Ù€ÞóÖ¯ýè;vìà‡?ü!Lž<™;súS[[¿øÅ/X½z5Éd’ÿú¯ÿbúôé%×'mÆÀqZ…ÿ 2]ÇVlMÁêÈ’ˆjh:äò—{ÁÓñ\îݹÛôŠã*.@ï…¾råJxàÚÛÛ9餓¸ú꫉Çã%Ÿiiiáç?ÿ9¯¾ú*#FŒàª«®bæÌ™ýÆw…B»îº‹Õ«W“Ïç¹ýöÛ™8Q{´,‹Çœ'Ÿ|MÓøØÇ>ÆÇ?þñÎñï?p$]³+ÑK5#è@ïCà‘/zo¡755qçw²yóf&L˜ÀUW]Å„ J0M}ôQ–.] Àe—]Æ9çœÓ}Rœ¦iLŸ>SO=• 6tŽux衇xå•Wøú׿ιçžË—¿üešššŽ€›°õ7ˆÒ1ªÒÇUÉ¿"¼£Ò„«ÂØ© ñ„0±mѰl(•…Çk¸?[nóûd•3[Ý<<~jnnæ[ßúóæÍãÆodùòå<úè£]Îzï½÷òÎ;ïpÓM71sæL¾úÕ¯–Œ]íkr‡úúz>þñ³qãFr9ÏâXµj÷Þ{/W_}5 .äÇ?þ1o¼ñÆûTi׿ÃhDã&ëc§î‘/è ð${.—ã–[n!‹qÓM7¡ë:ßýîwKp`õêÕüìg?ãꫯîÜôÚk¯uè£FbÑ¢Eœx≥N‚b‘¥K—rÅW0cÆ >ñ‰OÍfill|Ÿ»XüekRƒ®Eå%4te¡GªÅB¯Ö±Åx×5±Ðme¡ÇâãƒÛBÏuóð*Ë–-#™Lò™Ï|†Y³fqå•Wòä“OÒÑÑQrÖ§žzŠ+®¸‚©S§rñÅ“J¥Ø¼¹ÿTºh4Êå—_ÎG>ò ÃëMlÛ6O=õgžy&óæÍãŒ3ÎàŒ3Îà‰'žnýC££ÆC¾A{à;¥¾;à­éŽ;X¹r%ÿùŸÿÉÔ©SY¸p!6lèÂßøÃ8ÿüó9í´Ó8ýôÓ™;w.Ï=÷Ü—­µ¶¶’Ëå3f  ¦Ä >œ={ö¼Ïo ßR×Õ 5¢2§EÝòYbÉN:C"©ãضzKÌñ¢EG)ȃÌšyÏëзoßN}}}gHkòäÉ455u±¾ÛÚÚ2d‰D‚#Fô+ ï‹ŠÅ"Û·oïtjÿŸ½3o¢Nÿø{&Iïû¾9ÊQ(wPN•Và'‚¢‚Èz®"®¨Ë ¸ë…Ȫ°*àŠ¢(¸ë… ˆ‚t9åZ @zÑ+msÍïLÓ$M/hBRæóz $™édò=žÏ÷y¾Ï!´iÓ† .`4*£¶õ((a€0)—EèMC¯¨¨@EË6[TTjµšÜÜ\›»fee‘””dÙfk×®gÏžEýöÛo³fÍš:¡Ñhذa‘‘‘WôsþøÇÞ”•exX'D-ùÌþÀ4óË¡ð¯gÌLý¡P¡e(ýB’{óg#æZ.¡ ð|¿!8q·²³ÑYžMAHHwß kð:¦»Í{{ÓšCÛÂ{åtX¹ `áÂ…Œ5ꊿcêÔÖÛž6:ýÌwPÙÂßà‰­ÜSÝôm‡ñã{SXx¬‘«üˆŽŽnÞ2« ž2e ·Ýv›Ã“aaa ,²³³éÖ­&“‰ÂÂBÂÃÃm®[±b…²HSpÍ!!!ÁáB¹!ÄÇdzmÛ6 jµšÌÌL¢¢¢ðóó«3÷Š‹‹Ðjµäçç“””tÙÏÚ¥K‡{õ5ßUÿbDC\\gΜ±,F²²²ˆ·1ÍÍn  Z^}õÕæ©~þþ˜L&*++ñ÷÷çâÅ‹Fbbl“€'%%‘••…$I‚À™3ghÛ¶-ê   ‚‚‚êýƒÁÀ™3g8þ<åååüþûï$$$ÌÈ‘#Y»v-‰‰‰>|___:wî¬ô¢—òÏþ“O>ù„=z°jÕ*n»í6Aàƒ>`ôèÑDFFZæ]tt4?þø#WDè^^^–­³úpîÜ9 ©ªªâôéÓ„„„ÃÈ‘#Y¸p!C‡E¯×³}ûv^ýu¥3(¸ ÄÆÆÒ¿Þzë-¦L™ÂÚµkiß¾=mڴ᫯¾"""‚~ýú1nÜ8žzê) „$Iìß¿Ÿ»îº AjÄÆWPPÀüùó)**¢¬¬ŒˆˆæÍ›Ç°aÃ,ak{÷­¥¤¤ :ŽììlJKK ´„¹€Ù™&//üü|üüüÌ+ µ{…ÄWVVrüøqË{:vìèVÏ)IÙÙÙ@BB^^^n;X%I²C âââšmnrÅssñâEôz=mÛ¶%000‡iåääPXXHPPIIIu´Ñ+ÁîÝ»yÿý÷)--¥_¿~Ìœ9“ŠŠ æÎË‹/¾HÇŽ),,´„­EEEqÿý÷“ššêÔpÑ päÈòóó cذaÌ;Qùâ‹/ؼy3¢(rÛm·1nÜ8DQ´ŒÏ’’DQ¤]»vx{{[îY\\Lvv6¢(’˜˜H@@€[½^Off¦CçÎëXLÜe^B||¼ÛÉSk˜L&Ξ=Ë¥K—l4N{ëîÕFEEyyy”••m£%››‹Z­¦M›6uBK¯/^ä•W^±„­Íœ9“¶mÛò—¿ü…ääd¦M›†Ñhä“O>± [>|xã„~¹Ø»w/?þ8ÅÅÅtîÜ™?þØrîÀ<÷ÜsÄÅÅqáÂþïÿþ;ï¼Ó­bW<Èí·ßÎèÑ£ñõõ%66–Ù³g»•ÐÙ»w/‹/&&&†ììl&NœÈÔ©SÝv"WWW3oÞ<Î;G—.];v,C‡u»ç|þùçÙ½{7™™™¬^½ÚòŒÛ·oçÿø‰‰‰œ?žx€1cÆ´‚Ü -òòr¦NJYYEEE|öÙg´o߀²²2þô§?¡×ëÑét$%%ñ׿þÕ­¤¹¹¹Lœ8‘ääd Ù<úè£$$¸WäôÏ?ÿ̲eËHLL$++‹x€Ûo¿Ý­ÇÅ}÷ÝgY,Lš4‰ë¯¿Þ­žsÆ ¬\¹’sçÎ1mÚ4ž}öYÀœâÁ$ €ÒÒRÒÒÒxüñÇ›ì_ãìÕS Óé¤ââbiíÚµÒ¤I“,Ÿ›L&iÚ´iÒ»ï¾+UWWK§N’(effJî„HÆ “rrr$½^/ ·z>­V+M:Uú÷¿ÿ-UWWK»ví’n¸á©¼¼\rWTUUI<ð€ôÞ{ïIz½^Òëõ’Ñht»ç4™LRYY™”ŸŸ/9RÚºu«åóÑ£GKŸ}ö™¥Í‡*H ·ã¥K—¤œœ©W¯^RFF†åÜ?ÿùOiÖ¬YRyy¹TTT$M˜0AÚ¼y³[=NNŽ4|øpéÀ–ñj2™Üê‹‹‹¥;î¸CúöÛo¥êêjiË–-Ò-·Ü"iµZ·eeeÒwÞ)}ùå—n-*++¥¢¢"é™gž‘^|ñEËçûÛߤ'Ÿ|RÒjµ±}ûv·xf§©Ä†[ÍêìüùóôéÓ///‹™8//Ï­Vg‚ ‘‘Ác=ÆÓO?ÍÑ£G›äìÊ-ŒŒ úöí‹——;w&88˜cÇŽáÎE‘?ü™3gòþûï׉±v—¾ ÀÆœ^RRBqq1©©©xyyѾ}{*++)--UÔñzÚ188ÿ:¦ì}ûö1`Àüýý ¥[·n|8mÚ´qxN§ÓQRRbÎÙ³g1™L-ê“ÐJJJظq#&SÝèêë®»Ž:ð /Ë… xá…(..fÚ´inÓ:Q-mˆF£±DA¸#¼½½™7oAAAèõz/^Ìo¿ýƲeËÜ~ÌWVVR^^NDD„å³°°0.]ºdñ8÷HB/))!''§Î9___‡Äú¼$I–ô‘’$QYYérG­VëðùkÈ2::šaÆбcG~øáöìÙã6„.Š"‚ `0,[§Ó¹c‘5T*ýúõ³¼Ÿ;w.÷ß?F£ÑeBüJàïïÁ`@§3çf6ètºuˆñ$TUUÕ;‡¬ÓÃ:¾¾¾”—×嬨¨À×××¥~4ƒœœ‡òª¼¼† @§N¸pá_ý5S§NuµZÉd²ü†ªª*ŒF£Û9îYC£Ñ0`À9ðì³Ïz„ðòòÂÛÛ›ŠŠ ›±ë~4—Eè¢(2bÄFŒÑì¿ #$$„'NЭ[7ÊËË)--%**Ê¥?üºë®«“ζ>˜L&***ÜÊaÇ××—˜˜222hß¾=.\   €®]»z!‚à1e5Y›Îž=Kûöí)((@’$‚ƒƒ¯IBïØ±# .lößùøøÐµkWöìÙÄ 0 =z”Q£F¹t,„‡‡³`Á‚&__VV†···[×àà`9{ö,aaadffR]]MÇŽ=fUVV¢R©|I’,»» ¬{ï½—·ß~›ÌÌL~ýõWFÕ`2 «ÒÒR^}õUKøÇÿû_¦M›æ–•¹~úé'öîÝË™3gøüóϹxñ"&L`ÆŒ¼ù曜:uŠ;v0yòd·nó«>úȲØ\³f C† aðàÁL™2…‡zˆ¥K—RQQÑhl‘Œt-‰ƒòŸÿü‡¸¸8òòòزe /¼ð‚[OXX÷Þ{/K–,aذaüðÃŒ7έ™¹¹¹¼ýöÛÄÇÇ£Ó騼y3÷ÜsÛÉÌÌL¾ùæÒÓÓåË—s÷ÝwóÀ0gÎDQ$//¸¸8 äÏì´°µââb>ûì3ôúÚÄó#FŒ }ûö öíÛÇo¿ýFTT·Þz+>>>n×™;w¢‚ððp T'[ÏÕ†Édâ×_åèÑ£$$$0hÐ ·6¹ëõz~úé'Μ9ƒ$ItíÚ•´´´:Ž“î€Ÿþ™C‡ÙhsøÃ$‰ôôtŽ;F›6m¸é¦›ÜòùÝü1EEE–÷©©© 4Q9uê»víB­VsÓM75šÜÆÕ(,,ä—_~!''???úôéãÔ2µW"¶oßNFFíÚµcÀ€n½ TYYÉŽ;8{ö,¢(Ò³gOzöìéa_V8}ú4[¶l±q„œ2e !!!9r„={öàëë˰aÃÜ&†Þi„®@ (pD¥ (P @…Ð(P @ ¡+P @ BW @ („®@ („®@ (P] (P º \6.]ºDaa!………QQQaSéíܹs<üðÃäææ:üûS§NñØcqñâE§<ŸV«µy¾ÒÒRKÝOÂG}Äo¼’îÄ5P+M @‚k }úôAE¢¢¢ÐëõøùùñÔSOYÒϪT*BCCë-RRRÂÎ;©¬/…B IDAT¬tÊó-\¸÷ߟ””L&ÕÕÕÜu×]<ôÐCn]xÅþþþ êQ ºG ªªŠ¬¬,’““=¢’˜×zè!¦L™BUUK—.eÑ¢EÜpà „„„ÆäÉ“-ežM&âíím©¸g‹/RTT„F£!22’ÜÜ\ÚµkgIiZQQAnn.:âãã” iii¬Y³“ÉÄ÷ßÏ /¼@ïÞ½-5%jªÝUVVâïïOLLŒMâ‚‚ Ðh4DGG“Mbb"¾¾¾äçç£Óéðöö¦°°   bcc-U(««« $&&Æòü•••dggS]]Z­&,,ŒˆˆL&EEE`2™ðõõ%66úöí‹N§³¤Ë5 äææRVV†——ÑÑÑ–tÕeeeINNF£‘èèhBBB<¦€“BèŒüü|þñðÔSObsî÷ßg„ üïÿ«sîjÁd2±{÷n~úé'JKK !--þýû“žžÎ¡C‡˜={6jµÚæo¾þúkrss™1c+V¬ 77—Y³f‘˜˜h¹nÿþý|òÉ'¤¥¥1qâDep(p{ À7ÞÈöíÛ¹xñ"!!!dffr×]w±qãFÚµkÇþýûyì±ÇÐétEuuµÍ|Ÿ={6eee„‡‡Ï×_Mzz:ñññäææòÒK/‘žžŽ¿¿?Z­–|»îº«^R÷öö¶<߈#X¸p!ÙÙÙ€Ù$ÿÜsϱsçNüüüÐjµŒ3ÆR=îĉ<ñÄdggI§Nøâ‹/ظq#iii¬ZµŠmÛ¶„V«eèС̘1ƒçŸž={öXž±Æ*PQQÁ+¯¼Â¦M› Á`0Э[7Þ|óMŽ?Σ>JEE>>>hµZ^zé%Ì»ï¾Ë¹sçxçw0|øá‡¬\¹ÒR>·{÷î,_¾~üñGž}öYnºé&N:Enn.;väµ×^s»: ¡·B±lÙ2æÌ™S‡´;vìȦM› t2_±bï½÷Æ #11‘üü|Ö®]K›6mXµj}ûö¥ÿþ–¿»téýë_™ŸV«%33ƒÁÀ7ß|CHHˆ¥,ê»ï¾Ë±cÇX³f QQQdff2{ölLZZK—.%<<œÕ«W£V«ù׿þEII‰Íý<ÈW_}E§NÐh4,^¼˜¼¼<6lØ@PPGŽáñÇçúë¯' €Õ«Wóå—_Ò¶m[ŒF£eAóùçŸÀ‡~ˆ——UUU·N:Å_þò^{í5† Æ… x衇X¾|9O>ù$`ÞÊèÝ»7/¼ð•••Œ7Žo¿ý–éÓ§+V!tç£>SPAAï½÷Ï?ÿ<¾¾¾¼þú뤤¤P\\ÌŽ;ˆeîܹ„††Z÷àÁƒ|òÉ'2pà@ÆO`` &“‰Ã‡óÅ_••Edd$ãÇ·O>ù$ãÇgûöíäääð裒””d#”Ö­[Çĉyúé§-Ï]QQF£!..ŽÐÐP¶lÙBß¾}-ZÃÑ£G9wî#GŽ´ÜkäÈ‘lÙ²…ûî»ÈÈHΞ=ËÞ½{:t¨2 x Þzë-Ö¯_OEE¼ýöÛøûû×¹.##ƒ‹/²`ÁKU­?üáüüóÏäåå±ÿ~V¯^MTTwÞy'¯¼òŠå_|ñ“'Oæ—_~±™“'Nœ¨—Ð÷îÝËøñãÑëõð÷¿ÿ´´4*++ùöÛo‰‹‹ã·ß~³È???~úé'RRRرc+W®$22€iÓ¦ñ·¿ýÍæþ×_=½zõB­VSQQÁÖ­[éׯééé–{ÖT3f !!!¬]»–±cÇÒ¯_?‹ÇÚµkùòË/8p`½µØþùg:tèÀ7ÞHPPAAAŒ;–~øÙ³g[î5räH‚ƒƒ  --ŒŒ e°6Š—»“P\\Ì_|N§C’$~üñG,XÀo¿ýÆ 7ÜÀ¾}ûxðÁ©¨¨`ýúõLŸ>ÐÐPn¾ùf6mÚÄÌ™3ÑëõèõzvîÜIPP#FŒ €û￟­[·Z¾ïÃ?䡇ÂÛÛ›o¼±N9ZQ 䨱c?~ÜâÌãïï——¾¾¾Ü{ï½üûßÿ¦´´0ïw­ZµŠÑ£G[´x€~ýúa4Ù·oß|ó ½{÷&::Zéxƒçž{Ž}ûöñå—_âççÇÿû_L&SëÊÊÊP©T–ýt€   ËÓétTTTa9ïëëkSÊ8??Ÿ}ûöñÅ_XŽž={ZLêŽpã7ràÀ~üñG¦L™ÂG}DQQZ­–òòrŽ?n¹×æÍ›IHH 99£ÑHii©…ÌêÈ„¨¨(˾¼¼­VË¡C‡lîÙ¹sg’’’HJJâÓO?EE–.]JïÞ½yþùç1 üßÿý/¿ü2?üðÓ§OgÀ€ìܹӡL ÁËËËòYtt4Z­Ö¢ík4›EU}þ  ýª£gÏž¼ð h4zôèÁŒ3ÈÊÊ"66–÷ߟ™3gr÷Ýw#Š")))<ôÐC>|˜^½z1cÆ ÊËËÑétÜpà ðÕW_qÓM7¡V«ÑëõÜ}÷ÝüéOrøÝÞÞÞ<ñÄ,Z´ˆéÓ§NJJ 3fÌ k×®¨T* d©±>jÔ(Nž<É¡C‡xöÙgm„——cÇŽåóÏ?gÈ!|ýõ×Ìœ9Óf¡@Gh4¢HçÎyòÉ'Y´hwÜq½{÷¶¹&66“ÉÄ™3gèÙ³'gÏžµ,|ˆŠŠâÈ‘#tèÐAÈÎΦ°°ÐrÎ;3iÒ$î½÷^ ‰:Z<8Bdd$ ,`ôèÑ|úé§Ìœ9“¸¸8ºtéÂÂ… -Ö4I’$‰’’8|ø0=zô@NŸ>V«­÷;BCC‰ŽŽfìØ±Ì;Qmî)Iíڵ㥗^¢´´”7òÊ+¯0uêTÚ¶mËØ±c9r$999<ñļ÷Þ{ 0Àæ;Ú·oÏÇÌ¥K— Âh4røðaÇ8 ¡{ úöíkñMHH@§Ó¡ÕjÉÊÊâìÙ³¬]»–M›6`4ÉÊÊâÔ©S¤¦¦òá‡òî»ï"Ijµšœœn¸át:jµš   zôèQïw ‚Àˆ#,«þC‡ñË/¿0zôhÖ¬YÃÍ7ßLbb"#GŽdíÚµ :”-[¶ Š"·Þzk!8räHæÌ™Ãš5kúè#6mÚ„ŸŸ×]wŇÆ‰‰‰F›ÏFŶmÛØ±c£Gfùòå¬_¿žíÛ·ãëëKrr2ÑÑѨÕjfÍš…J¥²<ÏĉIOO·D°ÄÄÄ ×ëm~ìØ±²~ýz¾úê+üýýIMM%22I’¨¬¬dõêÕTWW“””Ä믿NDDaaa|ÿý÷lÚ´ FÃþð¦M›fYìÔ´Ahh(ï¿ÿ>ï¼ó¯¿þ:ÁÁÁ,Y²Ä†L§N,rLlF ¤à²qüøqIE)++«Î¹ƒJ:tŠ‹‹%£Ñ(ÝqÇÒÊ•+-ç ¥ÔÔTiÏž=’V«•Æ'=óÌ3Ruuµåš’’©ººZ:v옔`ùžœœiÈ!Ò]wÝ%UTTH’$I;v”~øá‡zŸÕ`0H°¹YY™”šš*½ôÒK–Ïôz½Ô¿iÊ”)RRR’tàÀ›ûôíÛWzûí·%I’¤;wJ3gΔΜ9#I’$Í™3Gºï¾û”¡àšCuuµd2™,ï?øàiÀ€RqqñU{£Ñ(I’$™L&iãÆRÿþý¥óçÏ+ÕŠ¡hèW¾ âþûïÇ×××òÙ˜1cêx®6”Á××—Å‹óÄOpÇwcqRyï½÷ˆeôèÑLš4‰Î;STTÔl•^¯çÕW_åôéÓ$$$ Š"§OŸ¦{÷îLš4©Öd£VsÏ=÷ð§?ý‰É“'Ó©S§zïÙ¿®»î:›¸u ®E9r„ Å¥K—(((à©§ž"88øª<Ï¡C‡X¼x1AAA\ºt‰ììl,X@\\œÒY­yûHjB’]“É„Ñh´ìßZ›ŽF#F£AP«Õ×TFŸ²²2¾þúë:ŸwèÐvíÚ±k×.†ŽF£açÎÄÄÄœœ ˜=c·mÛÆõ×_Ohh(’$qñâE~ûí7JJJð÷÷§M›6¤¤¤ Š"………¤§§SUUe1K]ºtÉB¨_}õ×]w%lÆÑÂ#77—S§NQPP€$I„††Ò«W¯:f¿üü|~þùgRRRèÒ¥‹Í¹ï¿ÿžvíÚY~‡5öíÛ‡Ñh¬7 GA㨙O5[1õÍ'WÏ;I’0˜L&DQ¬“|¨&ϸ½|¸V ÕjIOO§¨¨µZMrr2]ºt¹jmQQQÁþýûÉËËC­VÓ¶m[‹ƒœ÷FC|ký¼k”ÐF#|ðëÖ­ãÈ‘#¼òÊ+Üu×]deeñÜsÏQXXˆN§ãá‡fäÈ‘×ä„V  %Haîܹœ8q‚²²26lØàÐaêÔ©Süõ¯¥¸¸€™3g2jÔ(§Î»ýû÷óôÓO“™™I¿~ýX·n`Ž¥^¶l»wïÌ±Í ,P¬6 \ +V¬àóÏ?çøñã¬^½š1cÆÔ¹®ªªŠçŸžÃ‡c0¸õÖ[yðÁwŠE‘›o¾™Þ½{³xñb›ÞêÕ«‰‰‰aéÒ¥œ;wŽÇ{Œ.]ºÐ®];¥g(h&¼¼¼xøá‡1™LÌœ9³^mêÍ7ߤC‡Ìž=›={ö°téRèÔÃmÛ¶eñâÅüôÓO–ü[·neÿþý¬X±ƒÁÀ£>ÊöíÛ-ŽN (h:DQdôèÑ <Ø’Æ×¶nÝʉ'xýõ×Q©TÌš5‹^½z5žXFÚµkG·nÝlÒ˜VVV’žžÎèÑ£‰ŠŠ"-- ///233•^Q à2 V«éÕ«:ujÐ4ºk×.FŒAxx¸%òôéÓN}¶ÐÐPÒÒÒl’FvìØÁàÁƒiÛ¶-:t`РAlݺU)—©@ÁezÇŽIMMmÐOêÛo¿eèС´oßž6mÚЯ_?víÚuùak¥¥¥F›Ð°°0‹°{öì±Äk*Pàéèׯ_“µZ-lÒ¾þúë›õ Z­Ö’MËÛÛ›ÐÐÐzëv;z½žÂÂBK²0gþÊÈÈÀh4Ú˜ÝýõW…ä´ÒmêœÝ·oŸMŸúššj“‰°1äçç3hÐ Ëû˜˜Ž?~ù„^#Ôj6åk&¸}ÌàèÑÓÉÏ÷4üiÀú™j³äZ¿­Þ«äÿÕògÞò¡ü/ 8šCà7âjþì'*aÄBƒ2(×ÏëƒZ å_ï$4ÄĈ%˜J$>Ze`LWˆ3e@PK a´ h%¨t€0ʯ€A>Lòü¹5ŒW©•ÝG€ƒ%%Mšx™™™Ì0€äF®;êãCf3kj«T*K–±š««[ãg½`×ëõô ø#’ÔÓIORd=œ8:3åù øÈóÙO~í/¿Öȯe™à#‹ù”¯<߬D‚,2¼u¾úÞ‰fQ!AÁ„_~*-¢ á‹ ?´ˆ˜,ÿl;L›¡íð¦/tøP…7Õ¨1àCÕ¥:¶­Ëåöiñ¦ ¼uzD“ ±„*YhTÊ‚B+ - É2GÊe¢*äÏ*à¢6–Àdèôµª³ú¿R>.Wœ“ÿ¾“Çöo˜Å³£ìG¼¼8Ý’¸ÿ Î*_ˆ#œ^ݶ›o¾¹ÉϧÑhêÌ;Fsù„FXX'Nœ Gèt:rssä&<ÍëÙh÷Ì¢‰«¬>«yí%¿®ùß_ž¹¾@¨<ƒc€m 2‚ßlH/W @ŒŸM`ì/Tmù‘®÷_@~Ñâc ̸¿c®‰Ýÿ5ðǾÐÃ\”åŒÞ+†Q&èKæ9VTYM&f¢¯¶#uƒ<k`¸J­ìîÈoæõ‰@¿F®¹½:..ŽsçÎÑ­[7KHRCá…΂F£¡S§NüöÛo–B‡&%%Å#܉½!³P_'ŽNÌÊ×òü‘_‡aò\«• 5kù ùT<ß#d‘à/ÿ¹7 …3¿Â ;!¹DË·‰®FPñ )%È«Q0Â%DL„RŒ!\BuU9=g_Oåø¢%2)à A”Q–SÎÑŸŠ¸ãÞb#t âCþZ#ƒ U¥2[–ÊÂã’üÓ/ÉMR ÿŸ/ b³BѼ09Q ûKaº*ôµª5K8´@‰|\® PËïLÙ‘-/-ÈsšqŸÀ&È€ËYŠwëÖ#GŽ`4E‘ß~û6ÐÏ;lj'ÈÉÉáÈ‘#lß¾2aÂ>øàBCCÙ»w/íÛ·oRÃkv{£`j)UI2¿j^מÂÙ–K•‹5õÖ µ,«ÔríÞïÙ³‡¼¼<ÊÊÊØµkF£‘¨¨(/^ÌüùóiÓ¦ ãÇgõêÕøùù±uëVRRRê Wl)”——³wï^Ž9Bnn.Û¶m£GŒ=š¹sçòñÇc08xð <òˆ‹[Zr¿).ÖêMú.+sæWH­¨·[¢™Ä&È{>}ú4'Ož$??ŸƒJ¿~ýX¹r%‰‰‰ÜqÇŒ7Žû￟Ï>û ½^Ï… ¸ñÆ›FèlÞ¼™:PRR—_~Iß¾}7nAAA|÷ÝwDEEñÖ[o¹Mýï+ƒ¿“‡‰©îg–Ì„n’]Édu 09Ñ>BË t¡´²§º½ûã?ræÌ†Îÿþ÷?T*£G&22Ò²'=}útbccùòË/INNæ‘G©SI«¥Q3﫪ªèܹ37n$22’îÝ»óꫯ²aÃDQdÅŠ6•ù®ÚBùjŽNÁêh.S]ÛúÅ4,{­EŒ3ɶ9?ÝßÍeTKŒÊÆd€½†~ôèQ¾ùæzôèAvv6ß~û-½{÷&88Øâ;Ó±cGÞxã 6n܈(Š–È—&ú!C2dˆÃs#FŒ`Ĉ­L_Ž•Á(gÍe EÁæ¥`Eðf\jTCOTƒdlý­ÜÚ5ôÇÜáuO?ýt­Ðh3fŒÃøTg!>>ž¿ÿýïÏuëÖnݺ]Å–Ö`ÞÞræè”œÌ„R“uO"u+µµ½-µQ¶mtÍ`²eW@èΔ®²\- ½¾¹]“¿½zõ¢W¯^ ÞK`Þ躜!Д¡æ@C0Y©á"²†.›ÜMµ— ‚c ]#¸áÑ)­ìIP]††®àrÐF><|tJM3¹ õÌtM€7f™ˆ°)Bâ ‰ä¢Vö ½)„Þ’î¬ ¡_#ŒÔ †µ•Ø›p¡f1/4<™¬ýí\½É¬jÂhPà ð$½°áŸ \E“{îµÒBd@KæwTÝ]ì6ÊkÕp ]þÇä`´)Äàžº— '³WÌÝ«¯¡_ÉíArj>w ×È"OÚCoL´$ +„~5ºØ$Õ„‹Èörɼw%/o%I²p»dåæná~±îm•´î…šÐãÆH_'¡Æö匥˜³½Ü%§³akðroIßA± 2@1¹·F Ýú¼µVnåå^cÊr´‡®h芆~í¢&£‚'‹3銽ܛÌç.0¹+zíüV4ôkЩ5¹›I1JFT–˜t#*e‚švWWj̉ÀBw6Îbηu£“õ6gÓˆ*ÁyfÙ“^t¢¤œoð8/wŸ&È …Ð=qÞ †^{ÞÞ³½&Íf½¾«¢ª»¡+º+P9'©§‹'ï¡Súê4#ƒkrã({è ¡_MÔdQ—ÐÐí2Åɬ- *L²J.V^îFŽ QBIñæF“Yñrwek»bAîÌÛKN·‡KÎ44͆Fï‰QŠ—û5!xÛC·J&cçìfI,£x¹{„†Þ˜¹MqŠ»ÖD|c?ÃÙ^îÂU [ó„žZpD5Åä®8ŵ6B·ÚC·Ogöj—lÝTÃbÃwUpõ ½¹&÷ììlþõ¯‘››ËÈ‘#;vl¿)..æ£>bÿþý¤¥¥1uêT”yåÑ‹ÉéßQ¶æìïP–oÖó»¹&w½^ÏêÕ«9pàiiiLž<¹NJu£ÑÈæÍ›Ù²e aaaÌš5‹ÄÄDe 睊á=tk“»½Š^_êWA [s[ ½¡ÃZC/--eÖ¬Y0eÊV¬XÁçŸ^ç¾sæÌáܹsÌ›7ãÇóØc¡Óé®á–Žºº¿ˆqSš+öé=|ùÖ’„Þ˜ °ÖÐu:‹-âÈ‘#Ìœ9“}ûö±hÑ¢:÷ýàƒxï½÷˜6míÚµãÞ{ï%++K!t÷ÑбÓЭ ¼özQPÂÖ<‰Ð½9¬'àîÝ»E‘™3g2pà@î»ï>>ÿüs´Z­åšÊÊJŽ;ÆôéÓéÑ£÷ß??ü𥥥×pK‡Iž1õÝÀ©ÂÙæjWØJ<Å#4AXkèyyyüøã<ùä“ôéÓ‡9sæpðàAòòòl4øo¿ý–{þýû3}útt:Y~(b× ÝJC¯Éâd³‡Þ ECw7Ô¤~mè°L™™™ÄÇÇãçç@Ïž=ÉÊÊ¢¼¼Üæ¾5µÇkÆKQQçÏŸWÜ#D¼sèV@²õþ+™rY?¿ »®ŠCwEO·¤S\C‡5 —––b2™  )) µZÍÙ³gëô¥I®ÿ!Z­–S§N){è›¬HÛJ ·Uõiè.•9 š•ÞvKæ* Oª D¨´ê_£ÑˆJU«Â©T*ŒF£eâøúúÒ¯_?Þ~ûmÆdž ¨®®¶¹F'ê¶-±€45HèWÄT`jÚe­Á Ðb}"€·ËeP%¿¿$Ù.Ö­SóŠ¢h‘ 5Ðh4Ü~ûí¬]»???NžoÊwH.É.ëôŸá)‹A¬+‚¼aˆO­ ècEø111tëÖõëד››Ë_|ATTÉÉÉ勆z /©ÔWžSUª‡mEˆÆ–iA¥Úšƒu¡ PÝÝQ.÷zöÐ;eÞãøµFèåuT¼XW¼Ü]ý;š"ìÎoݺ•×^{””Ž?άY³¸ýöÛm®9~ü8óçϧsçÎèõzŠ‹‹Y²d‰BèWO(Øí¡[Ç [%“¬¼Ü-º «ÕVATr¹»§†Þ “û¾}ûؾ};ï¿ÿ>ÑÑѼñƼöÚk¼üò˨յSuÍš5<ñÄÜzë­dff2~üxž~úék˜ÐÝtWU¬;O¯*UIR«ñro­‰eòóóyùå—Y¼x1×]wÛ·oçoûÇÇÏÏÏrÝæÍ›éÙ³'K–,A&NœHzzº²ƒçú5ž£=ôZ ]@°)Îb¯‘‹‚ãâ,Ö:¾7#ô†«xäÈâââˆEE̱cÇ(--µ¹mÿþýùé§ŸÈÊÊbçÎtèСNÍtž¦{º zs˜Pºü_¡T[³[Ô5&¬LîEEE”””’’‚ tíÚ€ÌÌL›Û^wÝudddpøðaöîÝ‹N§#99YÑÐ[jÖSFE Öµ ëî¡#9[£~“»ˆ¢¡»ÔÍÓÐKJJlöÂÃÃÃ)//§ººÚæOÌßÿþwN:Eqq1cÆŒÁËËënèh ÄSD| =‰„ b3“ª6y ÝÔ€»ªË¬¶Ö ½ººµZ(šC@@*•Š’[‘Î;£R©øË_þ‚Á` }ûö$%%)„~õÖ}R=³Ì6Sœ½·[C^îfp%*»¾< ZƒùýI+åÛßßŸŠŠ ‚÷óó«ã³xñbüqn¾ùf²²²xøá‡¹å–[,«ùkñ­Ç à‚È8g“¡+¼Ü–Z|y²µæ÷éa¦|N£Ñ`4-ŽÐ•••˜L&lî±bÅ ºuëÆüùó‘$‰gžy†O>ùD!t·1äØhèÔëå®hèFèv¬qA0«{íûýeµ¯SSSùä“O(,,$<<œ]»vÑ©S'‚ƒƒmîQXXH||<DGG;\Á+ð4½ÐEÒ§$–ñôLq~*˜Ô¹öýûÇk_‡……áïïÏéÓ§éÞ½;¿ÿþ;&“‰öíÛÛÜ#''‡b¶L…‡‡“——§º{hèµ¹Ü%DD$H–â,VQÏz}UØ\E4Å)ÎJj¤¥¥Ñ£Gžzê)’’’ؽ{7K–,¡¨¨ˆ»îº‹7Þxƒ®]»2qâD^zé% ÄÉ“' "55Uio—Šx¡euQÉùº§«2ÅyÙºbQß “{TT>ø ‹-¢ÿþìÚµ‹©S§ÈüùóéÔ©=ôwÝuË–-ãâÅ‹FöìÙâE‹B¿:BÁ~—¦vxš•™Ð%¢C“»¤$–i=„nµ‡®R©xæ™gøõ×_)--e„ tíÚ•ÊÊJyäbccxüñÇÙ·oÙÙÙtèд´´k<ýjÍcU R‹kìá.ˆCÐ×{0Ø1‰è„±!Õ’¹ “se½Ùº»är7=z”Q£F1bÄBCC¯1í[¼Ìa"9 ckuÛ6]BDB°>Uç®Êº›¡)«óV@èÙÙÙ„††òâ‹/"Š"~~~.£Ócޱj p溋ê¡KõW„ô¥Uˆ­¹P´È­ÊÊÊÈÏÏG|}}¯1B—.s(6 v ¢—;˜‘ÔÐBwCBW5r´’½‘êêj.^¼ˆV«% Àé9ïÎ|wòoròæ³$9ßËÝ%ÕГîR]RRR8}ú4§NâäÉ“<ú裌9RæÍÒÐë¼dËÚ×¢¨„­y ®‘jkQQQøúú²nÝ:Nž<É­·Þʃ>èÂìu­)?™ó× ¡Ù^å¥[‹º'ÕC÷õõå‰'ž°¬Æ7mÚIJeË1b„Õ ýð«•„ë„sW<ÐÛ©‚U š`_>µ!§8E®µ(*€ßšçÏŸÌÛ^çÏŸç»ï¾³¤†Uà ý­f«­¦ƒ½[àžNftÜ^Q*´w33Å;wŽeË–‘——Gll,sæÌ¡S§N6×|ðÁlÞ¼Ùl41™ÈÈÈà/ù‹’PìòP¦™þŽõ}¡þ„í‚Uå5;å½Î2A™LnHè^V3ðâÅ‹,[¶Œ1cÆðâ‹/rìØ1>þøã:·}î¹çX¹r%+W®äŽ;î **êÏåžœv‰[Cä…-7óœ<]UœEÙCw ¡7tXYé*++Y²d ñññ,[¶ŒÈÈH–.]jÃ&L°È€§Ÿ~FCûöíBw=êÑÐí<ß$S=\oí'ÔÞN”ß«”u¯®Ö4rXõ×Ï?ÿLpp0ãǧS§N<ðÀü÷¿ÿ¥´´Ôæ¶aaaDEE·ß~Ë”)Sðóó»†:fú;IÄרc*çܾ˜°µ-žò;„&È«á’Íÿþ÷?|ðAÚ¶mËÝwßMVV§OÛ.XˆŠŠ"""‚ü‘ž={Ò£G…Л/ÌŽ0!-»lß uгH6—Jõì¡+pCBoF¦¸¼¼<"""Eó´LLL¤  €ÊÊJ‡·?tè……… 2¤ffs#Õ¶N§FcÃó¼6op˜H-ÓÊ¢ÁŽÐ›‘)®²²µZFc¶Ó‡‡‡£R©¸xÑñ‚µ¸¸˜ï¿ÿžñãÇ£V«•=ô¦C zbN9²–æy·Û/Ã%³/( ™¥MˆH¢ “$aDUGC·8¿Ù eÝ á ½¨ öÞü>§Ç 9d'¦z$°ÑhdóæÍtïÞ:(mí²T#]€Qòëý˜+½µäW '#âÌòFMîÆ+"­AC—ZzXÚÉ€j½YËÑŽϘ¡÷Ymø²#>|˜’’hYn*hÔ˜cOkzÈï zØÎUThžSœIÉåîY„nuø@r[è˜l>ýk/OLL$77NÀï¿ÿN\\þþþun]ZZÊwß}ÇwÞ©´³K Ô–BkÁÔ¶®H±†‹ê¡7pÎSü|Zlaâ`]í‰ µ2 :²öòÀÀ@$I¢¼Ü¬,æää`4†šL&>ýôSFeñ¡Q½Ñ aönOŽ»1ÇŸ×'Åéߵ±žLq6ù]k÷ÔM‚h[—M“I!tYÚz ´o’͇µû€¨ªªbݺuìÛ·U«Vqûí·#Io¾ù&¹¹µÉg÷ìÙƒ¯¯/©©©J;!Ï9gÊòwŽ'©7°t™ìådõÖ%Nqõ¬KjÂ×[‚Ð=ÊùW¨+T¾˜X+b¢j/‰‰aàÀ¼ñÆ=z”Õ«WÓ¹sgøì³Ïرc‡åÚ¬¬,<Ș1c,ÉÜBo=»å#³Wû×2±;VÌé-oúá8œ­¾8t+! Öjè ±ÕÝCäÏ•s{ ½!/÷ÐÐP–,Y‘#GX¾|9cÆŒa„ èt:8`“NõèÑ£LŸ>ððp¥é´sÒ½Ey.¯ž’çø`PY?ã1ÃèÝHë”<È;¼µ|GS¼Ü­hÂÛÛ›… âããÃ’%Kæ™gžàäÉ“\¸pÁb†ÏÌ̤ÿþôîÝÛF‡PPow&b.$#CåÿÈroÄÅò ö"1›â‚å÷ú& Ùän°RÃ¥Z²·QÞ±#tÙéB ÝíPã× ©Ñ½{wþñØ|ΪU«l>»6¹4§¡¹*K”­f? æ0¹"¹ýwtM*wkÎ\4 x¹;B;!!!3®>õÔS6ï‡ÊСCm>S½Á.ý ³¹ÝO&nLâYòL½CžìYÀ÷v €ÌNsÞ kè`l¨ºù”&Œ ærWÝ yFӼɬÀÝ —5ò* ³ûRée¿<ç“å‰lç$«¦éÛì'×–§C FÉèB÷pF—\-T-ûu êE°Ú€o#æ˜×JYû?gnˆÜ;’¼z—X"7þM°5¹Ó„LqJb7DM¦¸†%Üм+Ï2³)­H^BûQë$g'™5Í‘°.˜½Î2¹K.ýž…fÆ¡_) ½Ñ‘šÄÈ=sNÖÄM˜ë¼ïÃì,sšÚª¹þ2ñg[õ”‰Ú¼ï&™‘Hýj°Ý.”IlÔ¯5áÏ:¥ƒ 5gU)ÍtåÐÒâ^çuäÀ@ ­üþKÀ±`µŽw§Ié"{¸²‡n'Ú‘’Bè®ÄI`—LÎ{åYZ£ãv—5ôLÌÅZº}åáð? ¤án‡ný¶6ö\°ö‚@TÕ¯¡+„îfBAFu㤯àJQEã•WŠÿ`Þ+ŽÛ żÝ&ÙNírÙhèthörwr‰VejÛBã2Àä.åS¯añ£Lâ–Ônòîƒ965s.iµÕpV535É~j"[¼/©kNpÓ HM'êVPmMò ûKBã2À¤j¹oT½Á¦‰—'r¥<"äÏ‹äÏÊ0y Þó¾šZ&þ\•;×(Õ¯µ ‚ÕË&–OULîn£JDï¥j„ôÝ}E¼DQzj’‰;–Zv=f߯ºÓÙW¾\Ài¾fw]S“]rÉ] [³'t½—º9Ñrª˜BèጺaÎ÷æð”[ånþsùÔÃòêÜsіØÍò*y_¡KvB¨f’Õhå¢h•úo(SœQé8÷"tQ…^ݰ)Ø$(*zËQ[K£/0L&ò}˜d§Ë ø³˜3ÆiäŽO-k×ÅxÓt/wIrÏV’h–/€G9¬¹à;$AhTT…ÐOèAr—†ãäI\Ó1qòäí+“¹ s‘†âf { ]p¨†;ÔÐëÑ% ݽ`B…¾‘½]IÙ(iôr’( •ï+OÊïkr¹`ÞjK¦6ílKЙ“÷Ð…fâfíå){èöí!4*Œ(&w'£øóþ¹?fÓ»@­é=èa5„/[åóÞ˜mm4˜&wÉ„„¢ˆÉ&‡ÕÖêÍå®0º›ºˆ¡‘)fr§Ü ‹'Ý÷€¬y`¶Àya6±WËó¼<×k‚FµòµÔ¦mîœt&º"Ô]RݞЗ-g[U½Þ‘8#káñòge˜÷Ì­›í"°s˜š—<¡‡Éþœ|¾ ÝÊ)΄ˆ$ˆ²Ïœ(;ÅIŽ”wÛ» ŠSœ;º±‘ÍS [sÛŽ;øàƒ¨¨¨ W¯^Ì›7??ÛÊ~•••üç?ÿ᫯¾¢ªªŠÞ½{3þ|¼½½•FoQä_aÎ+ÏoÀxÌžìòÜ®)Æ/_c°#u¡6hEl.3Hué@0-¦¡ ör£e)X’œ/wU‘b8ÒÑŸÝgÛÏ?6 ;Ôš™b)GŒF¶³CõØhDÝrä£"Bp“² 2Wd[OØ*=ùRÿñvã3™@¢l­kHâä뤄]±ÙF‘L}1½QŸÚ‰H–kD¸år¢á7dŠn,£[“âÂߊ™åÞ]Ê’êJ-±'·§bè‹qÞã€S¥VÿbÊ´?Iç W|„o$ÝÚy<ÀÖe(•J‘˜…hóÉm]d²©˜5èy˜bÓ¦,ëö–m¤‰Þ¬ÒÃ÷íÌînD½FÑïX`¶äÓD÷Ö<¿Í@`_7…ä{‘jRw«C]ÞÚ öM\·¾ ‘@çÁœ¶ÖäX>Œ]¶è ¨îØ€ÞŒR‰8NªËå_«<:EI¦Ð“²½a ¢÷Ö‹šs"ûàßÙ×ÒÃkÈ»ððŸ^ò^ˆNqnÐû ˆo%‚—“yº]²–ÛÓÆåžýdÏš`–‡¥î ø¯J­ÿdLgeÀ^à$j¡“*R«¼¤aÃΗ²H“´žeÊçWJ™² 1ɾ£î‚p¹»ãÊ ÐÓB­ÀJàrËRé„ÕúÍoi IDATœ†È(];’€:+†.­vE 7É#,ôd “a8(˜ãd-ªÊ0à4ÌÊû­4ö`6ÀôÛ0›ayçKE¤+½TZåe„)Œ>ó0‡Ôîê¡_ÅðfÒ{áCw\î™MAĬ†ˆ©‹Š t)}§7=x-‰öëæH÷È.Õ~©Í¿.½Mš¼%˜éCð뀢ƒK‡5Ú\3[Zäã±ÏJ*”2 ÑÙcu„œI„—(‡ÖótГEJ\L" ;€—rå2Ù1¯µ~ìx G«¥NÏ'e—5¯£é*:®ð:t̆#ÖÛÙ Ý¡É,^ Ôµ’™Ê…vÃ-FF™d0°T>Ÿ,Áý¿Ì6¸B®Ø*iq[Õ¦ \‘×Ý%™|-æ €‘=ôjù½r¤"Ò[-qµ„’â =9P•Êulµp„DFXêzBªWÉf™|_tá9ÄåÑÅL© °Ñ óMÄxƒ?F8!³ÇÖHfË•BÁPÎuÈ÷‹@cPo£"y-м.u‰#Rrz“糤oÝϱ©—jØñˆ:…Ö^Û™ÝOŠs=e¤^g¢K(tÞHB·Ø§FC¥›:½Ü¥;VZïas[l@¶Å6…Ÿ†Þ)ÔíµK@þT2Xpž´Ì³åqmòQ,_Ë’bm’ü;Ñ£ëH„†í²\×øå7{§´¼çÊïqX~~+ÂÅÄìˆ_„¨/ØBœ^eåMyÝ@/îž`BóÐ ýèÁümDxLŠ®1œ²^³°,ضaK;ªgµùÈomC¯TÂòu= ~<ÐKJ‡Ž«AC£¢ýXÅ ÿö¯€ßIë¼]~¥l)òŒò»€DÌ­ˆRýlÌ©±zx´Á}È–1’çßD¤VHÿÇ{òu7¢HÐÈ!œ&õˆÆn,­.•ùõÑN„´êV‰º“— /—°2ÎÀÀß1£ÀVí¼G,•€-ÝØ6rEAÓElE‰H¦U ]‡IMP©Eçã‘À[/}S¤èÛ)7¼‘„V(½i¹–Ëí’Êúly¤õ^‚YŒ™l²_Zå…R¹Ï‘ל*W4üx˜ƒË`aÀCÀŸä{3¥[. µìî:J{›´F':1ôdPGŠT·B„ãw’‰X¡*–÷äî-Іƒ9´žÊž®ÉEÐ6éÍÝࢯ¾JùÞ:6.žÀáó+AÂõ-L¼ïJwwP7#:¥÷7“¿ÒKàz.ÑÍnÕls´Då¡/ ,à=„ šÓðºÁïrÇ/ …2ÌööAà÷’߯”+¬KéêþŠ(¾XZÙň„¹îÜeä$Ù- Ç—N =Éä’ŒÙ"·ÌDà|¢[½ÖÊ÷vKј´¦!r´ËçÜõÀBW²ÜíÊÖ¢È %ÍP¢C[쩆ëªD‚i"û;OþoxÖ ÕÉ<ŠüöMˆVn‹ý1ÒâxtKuIU§C2Ð6 à'Híº”ð€Åt);Ê-öÍ)RjÇ솯ZîN¼;ÖÉè×õ1Ž…ž<%<Þ8?憛$§øÃ™F©þ®“Ö{¶äy ²i’) Ò·Ç¿¿‡ϬCÕtÔ<·N=ŠaÄ0àå:èPRï£è¶ ÅË[q5ê¸|ªÐKÉŸ|‘´M¼Òž)EÄάèN©¹[õ—`DE&ÞT±jR)/':DXEx'ü‰ˆý ê~‹(½Vk;òŽõMÿ‘W8.÷¤ƒùéü©þ%·Ÿ‘õц™b5Tn£Òžo—;?ˆ}:H @Çšå®Ê:tcº*~£çŒC·~< ô,Ð;Âû'¥GÌà·†h“s¾üe>É·Êc'Hû#‹èä5ã#²8EžïeÉx3¥(Ö Íòù1R~¸0»á{$ówH%`l¢ÚzÇHoÃ‹Ì ÆXñò{1×)•ñu 5.3;zrÄæÑƒùXD È ¼"mB£Þ¢Sî:T‡óäÞ.Õå{…ÂÝ=ãè½5c+ð–äÓÜAÝø2¹.²€ú™ÅtÎÂsÄÏȽ~ø¿&tè*è¹:ÊûR´í“ÌwœÔ”×Ï'ˆ–uÀ8+uÈÕÄ ºb±˜]ò1K®¬!'TÌÏ —wÃCäWÜnsÇ:¤óÀß©](ùEò\äOtÅÉnýÚ5 ÷ ]×uvìØÁ[o½…¢(œwÞyQMäû>Ir Ô´×!¼Fóü|ɰÊ4̶(%r Þ²ø¢ ºèJxº¦GXïöŸ4îb°ôCâŠòhˆ0W'f€À J‹õd´w1ñ ˯³ûÆÌÄ–éR´éÀ9d­úæ&Éœ–×¹êFõ~»ôày%³M´¬¾_~ÅbÑçH…c€¼kÓ¤ÁpH¿J*2‘¿÷Z)’·J¦x7…~OËÔ×׳bÅ ˜1c3gÎŒúÌ?ÿùOÖ¯_z>gÎfÍše;™-TWWÇ?þñ.¿sß¶ÐU)†É]9\zÜÖHˆÙލÍ(‰øÌPÌá-– ˜Ñ4&+½z‰ÇëG h(:xÚ(R†¼| k&OeÈß2âéC¸ý ø#¹>ÔQÞ¶hÊgKçd.¢Þó@[ÈÐì}â1UòoV˜AÌì##¦ÞˆÈ¯kA„ù %O·¬¬&y[E¸çGK`ܱ* ìÊ;òÔO¬”\"õ•O‰³ã¤"°*EÊ}"e"³ÜƒÁ +V¬`çÎŒ3†ÓN;ÜÜܰcvîÜÉK/½z>lØ0.»ì²£S víÚÅâÅ‹ñz½466²xñböíÛ—a€Þ"]èÒÎk”®õ×äm."zÂ’aSzåçÛåv¨—Û£Ur´«.wéWÀsÚ4”=ô–q:E3¿¥+BFì”›wÜôŠd8·å—yejWŸ³hÊ^ãnd¤º¥û½Üâ밸όGNÑ¥¹ºT 6Êë- W(¯×‚¨Ý%­þ«äã ·ÜPà$©õ—òH`fã;Œ•^…¹ˆ.ý›ã“è~<]>¬€ÞÙÙÉw¾óÖ¬YƒËåâ¾ûîcÕªUQçýÓŸþÄÎ;5j£F¢¤¤¤×¸ÇúUUùS 䓤ZÙs±+vY­D°òµJ¿“ ûÖ²¹˜&-\ëVIlÊÑz}LÀöù)®o u$Ô¶ãé è[ãEõ›}-ÚÆåñògKùÍÜ|ZOÉCQÅ×VZ¤›Ü(Aûp7ðD .–Δ'×`TŸxÿ]ä–+ä&º¿Ž¡l‘+ù`¡Z#ù=DÞÍé™{X$=ŒõÏ\"t7EÊ¢‹5 ³”­XÊ»IRUBÜ™y=¶ÐãÉ«Ë= òÔSOñûßÿž¢¢"–-[Æ“O>uÞM›6ñòË/3tèPFÅ!CPUõè,ô¿þõ¯Œ?ž¯|å+¸Ýn®¸â þóŸÿpå•Wf $ã~`äÅ¢kê6>¦ÿJø™Ù¬Ù-·Ú$yÜž¬‰ˆÌ7E ë—[¯3ðŽ Zìár—ÂcW>lUàLÙÞcñ”ù¥ÊbÌ…šb±­r$Knh»JÛOå¦wËÏZãèõRY¨àžáÿh±0 XV.+âŽÇ’ÖõB•1èÒ~zâû f-B@j룱üäñû¥ÁQ$5ø1ò7ŒÌ?BŠô­òõú$8AƒÝβvíZ>ýôSž}öYJJJp»Ý<ýôÓL›6ììðöÁS§Nå’K.éuîY³f ûöíãø%%%¸\.–-[ÆôéÓC£SOÃ’à²ß€ÆtžÎ­H›.R(ÒÞüTÂÔàpUÚ@*/f§¸„,t{Dw‚|éÇOsÒ{²â†³xçÒ¹Qè¾éCù×·ç1°ú0{?7”Áo¢cj6áBÌ7x¶MÏã³Wå¡üàyou¢´ Y¢X™¯!Æ÷$E¤WWñÝ=°Q\ŸàU%b¥4‹Ü°¾7TÊ»¢@—”;$OO”ò)ËVJsê4ùõTyDÕN"ˆê“ÿ¯” ý!)S ¨JÊ"/¢ì~²ÅŸ @§ø‡Â&55<ûì³üú׿fܸqŒ7Žï|ç;\sÍ5QŠû°aøð ÉËËKŽË}Ó¦MÌ›7·[œfÆŒ¬_¿>ÃÝØÅGlÜpƒ,æHû²LÂÈ0‹öž/ál¬ÅÔhãÔa¡k–á,—û)uek¼(”¶ïå~H×8Onè2©õ¶E0È^¹‘]„Ot7ޯÌ)–L”#]ç-’¡ò#ÄZ©ôÒ‰l-˜}(VIY+EÞè׻dži\õèTÌŽrÖŸ=V ¿ ²êgJùù±Ôâ+$SïÂÌ´}Çâ[9Wºìõ$Åögäùÿ…!-3»ÑúuË–- ><ĸ³gÏæøÍÍÍTVVš;¯¬Œ_|‘W_}•òòrn½õV¦NÚ+.w»ïüÜsÏÑÜÜšÙž¤]1òCXd€Ž<’ÓüÑ¢4haû†—W¬Ë+±­ô>ÞÊÂ_,gÀáZŠÚšÙô™ñø‡D¸j=.ÞüÞ©³Ñ‘Ô¿EÊŠe€µECC &”Ô1cÆàr¹ØµkÓ§›í‡srrؽ{7 ,àšk®á‚ .8:@÷z½ää˜öX~~>{÷î8ªQŠuCTM`w÷ª”Îgr"·]–´íšm€ºÙ²Ë;lô¦1tKmšÕBßãVæ+¸ü:ƒÅî´³+”pkÛ®ù¬Onà Ì$5Å¢ñ¾-_?Y~^“+07ÂrŽd<«ýâ•àyPª<'J ؃Ù1ÒmùÅŸJ0µ P”ÇøF–{"ë¡Úâz3¬y#bu¬‚æUyÞyìùž‘õ0Dºú¶aÖÀê¶#×E B;o9жWvhb¢v»™<ÙÑÑÅOá áM7Ý„ªª¨ªÊŸþô'î¹çžþù0M=]d'ì¾³PéVY€p,]Ïí+4LzÛÔžµ {EÀŠý9‰‰þÐÆ¶‘Ê5ƒP7 Œ²º?ˆö¢|<6Ý4·J鎊öµ èàÞ èãZªD¢ˆ‡ÿDz¾mzôЖ³€ÏJßv£dàFDìNÐÀ#´q·ååFÌæ ÌaÓ"gÔUý­’#k‹\˜³"uŸ\É«k¥[)r$0ûOOÖ-zÖ‡ò'u3,²ÉH",Ïc”Ü,;¹;€)üí~¶½²Ö¢ÝÍþÕáFiZ¨ªRγ³³QU¯7<3qÆŒ<óÌ3°yófî¹çFŽyt€^VVFCCC˜»`À€G•HgF&“SF{c»eG('årën”j­¡OÇ·Ðu hícÆãvïbË3• î褳º }I„>àÕ»Ð\ Åæ‹T5T NoJë{ t52¤E‚ðtù:–t'Ñ .uTP¥ ”+ÿΑ«SbctDª2y„·çðKð<(ý&#BÖ;R ½Mà?BÔ±B#VCš,z0Z̾'™®¼Öz øÖA¦õÝv¹G7–ÉRÆä›N6yf]C—üT\\˜Çw\èÿ /¼eË–ÑÑÑÑ+€^^^Î|õ#CB|ÏÎPÞ·zò¼µÏØÙ6Љ¨ÍIŽýR; ‚kß|ŠÑ[v°ÖYnŠ-»;§¥ƒÊCµ´ŽÊgÿ)Ch/Ë%·¡ƒÃgTPsz%¹x…k]2QÛE¹Ô®,¤ôŽ\›u¨۸gHÔÚ`q2¶[Ú*¾ @/6L['äiBƒæ]ÙkÓa0hR‚ÖH‹Úèa¡Dx ãg¥ü*–^·ÿHe¼ûÁSÖï0Gžû9ùS'cvj•ww†U¹:Z—{ž‡±WL1• ¥…YÞ~¿Mzk››› ƒ”••Eñ]yy9ä¿ø;vì8º< SN9…Õ«WS__OKK «V­âä“O&ói „#Bcl·¶ˆÝìŠP¿U¹õtK°ÉŽb”­¥¶¬ª¡,wwP'ðW¹ñMö ºÍÆ2‚3Ý0öLÑMdŒLã1\Í‹ï JÛvùKWH¦¨³ ré0fv#h§ÀZù<(™¸,".¦[˜ÒðJ‘®­áå++õC-Z§ÕƒujŽÝÓ¥"2G~~/]w—;Q‚÷i+î•¿íoˆ¦“°‹Œz¢IqS§N¥¦¦†­[·ÒÖÖÆo¼Á´iÓÈÏÏçðáÃøýþ[ÎëõâõzÙ¶myyy¡°WºiêÔ©>|8ì;OŸ>¢¢¢4îA’ßÜ3O˜‚rw|zÄ"êÓ4ËËÝM#° ›¨Z¼¶všÊŠøàÔéø³Â"«ÝÇ57>Ë—.^Ê©¿ÇÀjÈnñ¡ Ó2¦€`ŽÙõEÕ@i ÍfÆý_õ ü©_¾Ù}*ß2èŒ0ÇÞ[Σ:ä2yÙ#•ìb7Ì6|˜5RbZ¥âNɤû\•r§AÊ£DíDDBìéRœ!•‰ƒ]€¹AS¤+®ü®õˆ¢ÅÅÒ,Ózwv/)®¢¢‚!C†°jÕ*¼^/«W¯&;;›Q£F…p ¥¥…¶¶6:::Ø¿?µµµTVV…~ÁðÞ{ïñµ¯} ŸÏǬY³8å”S2Ì‹¹ÔEÒöl“ÌmŒ0Ñåö+þÐt„ŒÔtɵØg¹‡ÇÐ=­~N{d “>i§`½ ¦›Æ¼®ZäK›°NRE—&+xZypœÅúôaÆÎ>•Êx@òéÔˆ_Ö!?g”¼&Wc¢¥óÿX]°RüIgzÄ{ ˜Õüõˆ,ö,Mã{wÈ8ØD̺Ò×$“O•^ãXkã‰%²ø,ƆUVu&q'êånúøñã9ÿüóùö·¿Maa!,Y²„ºº:Î;ï<–-[ÆäÉ“ùÚ×¾J8;|ø0wÝu½Â-&Là¼óÎãÛßþ6øý~–,Y‚ËåJÓ70z Ž“NÖdP6"Ü6Aª¸‡,Á_Ø63>,Qèîf·wAªäê?=ÇEoÿw.™ËkW•=6tó~&½¾™üF/ÿ¼™5·LGËRQÑñ•g‡ŽWt˜þ—a_ì ãÂ,˜ ºáú |Yþ¼6ÌzWÃ1¡jCP?A.͉œ Té¦[ÛEôÔxãtVùò†êÏGXèÍÌgÉã5y§!eÃ|̆5Ö; ñ¸w'f}B§E6Ôœ Z‰±Ö²µ²²2¾ùÍoòãÿ˜çŸž#GŽpÛm·‘ÍM7ÝÄ„ ¸ãŽ;xâ‰'Ø´iYYYìß¿Ÿùóç3kÖ¬£ô’’~üãsøðaEaÈ!Qõr™G9–í6Lêÿ‘Ž˜by›óˆNÑ-ªª'ΖŠS‡.cè£Wîdú¯·¡4š—ºhŸ'Ýšeee”——xñÅC=|ðAÚÚÚÐu¢¢"*++QÕÞë8·hÑ".ºè"|>åååQîÁôP2 Ï›"íË!ÀÿIh91¶‡-Ô“@#?ÝÃ7~ñã·naÌάûÌ:F†‡`ŽÌÖyc¾iŸœ7–çWñ—?ŸOE] Ÿ-A—[p¨O㌵^н:9Û|´>• 9Š@úR)¶Œ ó+"ÌPRò$cñÖ¨-ß*°(ö á%·ÖðZqÄ< Áü3˜µˆ|¼ÍòøU˜½;Gɯþ®4Ã"ûP¨RÝ+’®xãýuRž¤LLÅ“‘š>ó™Ïðë_ÿšÖÖV Caìÿ÷ÿþYYY(ŠÂõ×_O]]Á`ÜÜ\ DVVÖÑwŠ+,,¤°0’[ yËÇbŽañ?ù0Gpè•;\—Û³ ûºUËu4 MSÑtº¦Ó4°ˆ@® w»†° ]…ü¥Y2Ý ÄnÞÖ «Âu’‘Ú"ø«Ã¢5·a&¤†í¤Û,–o'fÞþz æ• j¬”Q–bd°ú,š¸±²F# ãב–öV©ìÌ?³¨Y^wµÅ6ê@d³Àìt§ÊßÐb³ÚÓ¤AGTo”çÚ–âÝ”Hë×È>ÎYYYa1r·ÛÍÈ‘#CÏûZó&»ïœÙÔ!U¾ˆj¾Ü1ƒäÖä1†*jXïs³ÛéW*ÝnvÐTXD}I)ºªÒX^B[Q•‡j¸¯†š©à†ŽÂ~»ìZ†ØGÓØbr]^>ýìp(¡²$ç´¨ ͽS'X®¢¥VG ‚þ±dUþÄr‹n£[´ÿ™’Á›13ÝKd¼Jº@1f\ÝFõ±æÃdIKû5D’ÚTù~)f>#¬÷f¥œÑŸsfÕN6"îm× gp™”G¥W eÜ–ª‡‰tŠÓ"ß0Ž#iðàÁ¡ÿKKK)--:ÆiýFÇ—Êe©•À¬K@·f°»DADƒ´‘>ð̶°u6wYAÕ\Qû,“}xö¸ËÙ„Ž®éhš"„¼'æù—ÏàÃï½Ï›óþ–ãïû½½³ Ó#8Cëb6!zFÝÙÆc6¨Ýaq…½iÑ`O‘~ $S#V?'?_'W„Žüü‡ˆ¸V–Åf•g%ò\û0[GçJöK þ¿R+·kçZ'µõãåßæ¿ÝZ!l¤,¦ƒzÒ)Ρž¸Ü“=>u¬Tsä®:$!f ÅÕ^/ÕZƒ;ZU_Þ3?f`8ÇèÝÁ׬ZÆñGÖð‡`€mX[^ÁÕÿ·”Sw®¤zöHÜ~?¿žs%µ¼ö•sxþ¾Ë!¼Å9Ô·5¸þï ÅT^˜ƒ6ò÷´¡çJùq™dÈfi‹,’à½1I ùóÆJÑg´d<nG6ŽÙ/ã)’?Ï–‚¡å[T«RvÙMMë”ïçɯ«±5±vfÅMª)‘Nqgzª¨3ƒõ f§¸«,¶e™tÒéJ82:ïA”¹½ŽìR+Æh[ytÏý”kõŒZ½•µfš,íát‚ª›#ãŠy¿ØÃU9 žMÔ&É4-€Ã}k´XõIÆhÄ̘b±€­‰#>Ìäû-Öw% Q!AºP~ÖjÿS®Ê>yr¹šÛ¥ÓÒ:i4•ŠÙâ5[¾wXjíºð^5èù˜µïv´SºÛ´º×í¿Ÿš€vîôr?z¯š›äöùhñ°}Œ(ÂÌ‹›ù’CŠ%g)Ò7Vd"W›Åí#GpÒÁ <öÒmäø½ 9n*·ýQ³¿ÄŠñgSª6pÒ{2`_ _€ã7ì!»­Ã´-bPîn/åÛëQÛ‚´—ºh™ŸO^C;yùP›@/Ed”Z—0Wz.bZ§<ÆèvÝ9ïØÄΊPyšäaFr«º3‚—ȇpv?ŒxúcÈ9£¶üSËgíÈ—%]ë¾8*bòÔÍ êåÞÿh›ÜViuŸ*·à^DN¸#Y¡}DÿVÌÔ -îöâ"¨»1 zÐuÕLŠSE/w%¬+lÇ%Y´ý¶m‰“ÃÛ*6—*Å’²V„çìt5+xeó ß"Ïå—ªË.¹y’Ç7Hw–qþg¤ Ô)-ïíà‡G¬P3"lw‚´¢?ŠæX¾¼LÖõR¹ÐˆÝ+uº3=µ¤J?O2i³T[Kåc¦äo=BUÎÃl¢Ü;Jb>\¿ê `ò«jÜa=gNä•ÎcØÎýü}ÑÙ´–PÒäî÷rÆi+É;àeÿ G®*6—ÍcñÇ2"‡wI¼Ââq(Zrµü|«ðë@£jƒ‚ç|Àû˜y7YòcÃ->Ã÷wÉÏ¥œX‹} ùÑ5Oȯ}˜ÔeŠt_7:Å9€žTj’va¢qà(ÌOk¥õó{N•ï} µz£hÃOt‡`…]Ê(®ù[&ø6ñ—“/¢eí¡À¸biýª)âÚº.¾Îá›á‘¯ËÁSojÕvC[²-J·µ9K µ^H"ëè‚Qjl^Û€pÓw`Ö‡"}/‚YÚåãli[õ]* »$à~*ÿæÈÏèIcªî5ƒH&3kÎ<ô ¤ZDë¡3¥Y:³ Ò —E.Þ¹ˆJƒ<ÉþEÄl.³eÐx®¹j#ެá/û?ÂëêZøwŸFÜ> ¤Ád›Eô½/µíºÐ”;,ö”õ<„hÙX¦­†·«ÍdÒ*[s½oR‡e7[³DZ±Öâ2Í\ÃIgô<÷!·vÖ™êâDVD IDAT/“/}&üþ愪3/_^Å]ŽhÔ8¹˜­·¦rC-k‹\4¹‚!DÔF«tÞéÁÝ¢ãò÷@¨˜ *¯@½“l~‡ðZ ãµ·zc„ç-Ћw?™Iqñe€c¡§™×`v߃(pØ'Ý{Ã-öïd ImÒIø\¡,‹R <+±æ¡Ûµ~U"ß²íång¡™ÜطݰjÈ=µ†5DâÚR³Žužµˆ˜ûH©}ï”ÖyS?ÞE¢½{Yîõ%úQ¦6sÈæDðè̇nù¿&žõXV&‰ÛàÀè¿jßÙÜ¥{ô t·ÂÖoæPG%Gþz}sŠ|UEBl®j‚±1Ô RªVIÜ&¹ª‡º Þzí èî¸rÂô”Ó>DAƒ†(š2ìÈ—ÎãÏ`&ÉK[5_xeÄÒZÌ:]×±ªÕcÕÚsFÇ>N·Ý,][áñ4Ñ,Ì6ª¾.@Ýç<^D'ºbi÷ø”È´5'˽/Sƒ„fà—˜9Ù¤*z fOмpÔ{`ò¥©tBÐãBWèÙ ádŒ×õNé:6­Ikü#B!÷> ÂÉIee%O=õTh”¢•öíÛÇ?ÿùOFݳ¸¨C ÐDÔ×\,”æ¶Ñè¸ëÞ‚pàuö¢T뉅®HærD%oVï¨Vé–þɵП¶ÖÔÔÄÃ?ÌUW]Å“O>É%—\ÂÏ~ö³Ð¤ÅH+þé§Ÿfüøñx<Уwn%ælc¯…iK$CÖ÷>¢SÓj­hÐDsÒ¡À·ƒ_Õ¢¥«QÜDECXŸFpÕŽFÍÙ =X»øãS­úš5k¨¬¬dÖ¬Y”——s饗²råJš›Ã‹;::øùÏÎ¥—^ÊðáÃ…N*Œ¨Òú6:74Yä@9ÂKg4PöG@@ ®ìDDä¶ ­ƒ½µLzÏ–I‘¢ËÓ{¾’LUº è555ìܹ“Ï}îs”””pæ™gÒÔÔÄ®]»Âe‹¦ñÇ?þ‘‚‚Î:ë¬RïzhÇž ü/p-"ö]h.aô7tY,ñ€åsƼ µ6°§[>g-W±u¹kÖ,wÝÌj×L¬O´l͡ޥ€…ÞÙ õã½´l¨¦eC5þ&³ê¾¾¾>lRÙÀijj¢£# p¿+õ‘ˆþîÆXÕZ©Ôç!¼zª‰÷î2¤ž$L&¢Í/#”†tÜ¥L9"­_­ek `þüù<øàƒ\vÙe¼ð œvÚi”••±dÉŽ;î8.½ôRxàáå[ºt)6là®»îr=ü6¶Ù¼¶áv;‹p›Ñê_E”¶”#Üu#þµÕ˜M­óÍyEE×Ef{¬Ö¯ŽË=ÝÕ­Nqyyyüô§?åü#ëׯçÎ;ïäôÓO§¹¹™ªª*rrrp¹\”–š…À_|1cÆŒ!''ÇYð¤ÉÈFÉõˆ¶J7ç"|æ%R.4K¹à—J|®+÷³ïŒ­ùlÌRO¥…ž†ÕK‹^’!»IK@©·6–q»ÝÜ~ûí¼ð ¬\¹’sÏ=—óÏ?€¡C‡R^^Žªªš9#§œr #FŒ   ÀôÄ© 3ÛuÂöÂÞ„˜™üÄà?á¾5 33Ðí\îáãS*¶z‚•íõ:3w8Ë€¸å–[Â^+**âöÛo·ýü•W^é0w·'…×ÑçðˆTØd¼ýOÁsÃÙ¾[zrcè½¶NR\,t=¼õ«Ëå⪫®J˜×gÏžm*Î’ÛQf;¤:ɨK¡1FZ㕈VFü#€˜£ì–à}bõèUb¹Ü·'×C%l!^zãõÞw˜¨ZèA¿?ŽË]w MŽŽˆaÀŸA4}J©ò| µn$¾½ŠÈ—9³£äÁhíZExæ] 2§Þ}(TÑPº¡58Yî½èºW4§—{ŠÁ|mqõ?"Üëÿ–V@yŒÏ6"\íªÔÔó»pÙ¹Ü#Ëè Ëyè‘s[t‡k2€™U‚A5.Ã;” Jæ:z±ò©òy;"†nÌlØ.½ ]ÀCxÅj"€®tç×ê¨òÑ ™I¸FÒ’ât%¾ Ð’·w@¢ ؆˼ѪF®ÑØX“š{”]–àv±Ïrÿ«fݪ^¦¦Äð­;.÷¾i¡âhçŠæzßñ9ˆA/† ÈB”Æɲ ˆxyÉm»¤¤|•¶Ð´½×È0õ-•»Iו¸2 p,ôÒ!ÄxÄI’¡˜Ér "In¹dnc”Rg¶£}–»a¡ë˜eÄÆ0{¹GÕ¡«¦àPô€ ½³kfÎÒ—{rÄo2E¼1Ë¡ fÓ™ï•ò:Aà-„N—à”××ûX ½‡í(uÝq¹GZß¾82@8ÓÖRH¢3Ô DŒÜpŸ{iˆ  ˆ>޳Ù­Ûäîï@dÄÆã„xºÙß5V–{Ø©@ï›;)èB÷ÅIŠs= ¶ZÉmz©#æ /y^G´pFÊ…3åõ¶ rmF üë£GÛLÏrWR§Ï(@ׂqd€t,ôS3"ÁM—`}Djêã$c—!bíƒå1F?í ð_DŒ­€®INˆr¹ë1³Üõ®Œ‡úˆ‰Ðq= "ìt¯ë.¨—!ú¶¿ ÌCT¸à>XÊ#³=Ëݽ­‘h«’šÆÜJÜúΦ ãï¸2Àq¹§šF3™-å6­ŒlXâ~„«=(ÚHmÍNЪˆtTB±8%zÚš‘‡S‡Þ÷) €/³:So’`¡¥à¼¹ÀÙˆvЛ1kÓ­ƒrò¤en´|UŽB¹Ž€ÂDÇ®ö5 ô\#c~ƒN|HÞvÝ–F`f²E¸ØO°w.¢kT3° 19‘ ³«û€âFºÕ,×t͈©ë]æÈ;ÔWȦ“–ãUɪČ–úqò¯ÁqC$בÀïVºuzwÐ6¶­"6(yÓSw‰tüŒþ"’(¸@·¥O$k´¯ÃL~˶pk‘$·E02.ÉÔjÛ±‹¤8E4è·ºÙ5]xÒ=>Õ¡£±Ð‰Ÿ/t–©oÒÉ×…ˆv°¿N”J»OÊ#‰Í/-ø!z’Û–†¤8]ΆPÐCL´Ð3N©ïL@N8€žJ:¼(ïÆ(Ì¡ ÕRsÏÇ™Úd±u|ÇôˆvpÆô5«!1œÉq¹÷A bŽÌNÐB¯®®æé§Ÿ¦¦¦†³Î:‹K/½4lÚÀ«¯¾ÊŠ+hnnf̘1,\¸#FãR3Ù0^–À­gÈÿÛ¤E>HûaD®ìhÑ6õ«”ŽNq:hšã- ³¾ý l5 y½^žxâ 6mÚÄ”)SX°`AX»g€­[·òÛßþ–#GŽP\\ÌÕW_ÍŒ3œyè±D¦ }"Ñí=`)ð{àYùšÞ…®”ÃZOÀånmØntÕR¢èŽjÜ÷½3ÎÃb¡755që­·2pà@¾øÅ/²téR^|ñŨÓqÕUWq×]w¡( 7ß|3íííǰd-ÑýדAÝÉóÛ5ˆMoJy°7¶›ÅÆLP椡[::Å¡÷œ²kd Ç“@÷ù|ÜÿýìÞ½›¯~õ«lÛ¶ûï¿?A…sÎ9‡o}ë[œqÆÜvÛm|ôÑG wM9ˆøÙV)4Ênõt­ƒºuì'!bíjº˜‹ªU9q K+X³Í»¢Ø+óJÆíôcÈBïêa¹g«V­Âãñpýõ×3{öln¸á^zé¥(°>õÔS™={6cÆŒáì³Ï¦¹¹94yéØ\ä]t¿D¢¤Uˆ:ôHé[Žh ÇôjEô£ú4PO×p–~ÒúUɔߠ' ,{ãСC¼óÎ;ÜqÇL™2…E‹±iÓ& o/«`Ë–-üùÏfëÖ­œtÒILŸ>Ýô®)WjèŠåa$¿uE-ˆûqòÇ–ý®+Â'e­WUh²Ý«1>Uµ·Ê{õÃô>hßµ.ŒAß}÷ÝÐóPZZ²Ø­TUUEUU&LàÒK/¥®®îôdSfC™OIyàF”¯zCZŠ»>M¾üH‹ÜÄî›´"qXu0º3>5ý¤ÙÈ%f_a>ÏYjš¹¹øýþ€744 ©¬¬Œ:uEEóæÍcÞ¼y¬[·Ž÷ß߉¡‡ÓñÀ—€ë-ëq³w1ôWÝ Bg"+¾A>Úm¶~ H–#SÑu¸Â\îV} ìÓ²å¢Ë¹£}‡Œ²µ®wÛܹsihhàµ×^c÷îÝ,]º”sÏ=—¬¬,þñÐÔÔÀ|ÀÞ½{9|ø0«W¯FUU ÑEVy.YI:_>p p-pžäÉ?Ö+0»H&`ÊSã@aªÝáɸ„F—éCéj,“1qún&Å <˜iÓ¦ñÌ3ϰÿ~þøÇ?2xð`ªªªX³f [·nD–û®]»¨©©aãÆìÙ³‡áÇ;z8•KKZÁ xYkÄônn»yÇò lÈ}ü^îºn1Ñ#|îŠãrÏ ÝŸÃ[˜ù–[naéÒ¥tvv2vìX®¾újšššxàøÕ¯~Eqq1Ë—/§ººš`0Hqq1÷Þ{/EEEÇè"{³Ð“E…òá–Vz6æè1ºÏeYˆÎÐ9tÝV¨CM &-)N£4døŽJIR\<9a¨“ùùÜyç<ðÀüóŸÿ¤¬¬Œo|ã(ŠÂÓO?͸qã;v,kÖ¬áå—_Æçóáñxøüç?Ï©§žêz8mC$Á¸õIº›F3O„UaŸå.þ w¹+À+„:è=Ô&Ýrÿ8u¢i nwŠ›?>óçÏ{­¸¸˜wÞy'ôü'?ù‰³¶)£„7nð!æ¤Å£Ô9âIZmSœ¾–²5‡Â¤›âFͲeË¢ûå/úáÂ…,\¸ÐV¾÷˜Þzë-î¿ÿ~***P…©S§²xñâ Žå5—ðØÇ“}°«±LDmšudªN\ Ýa¨>h¡ûºÇÌ™F`Ñ¢E¸ÝnÜn7¹¹¹,Y²„ŠŠŠ ÖÂÞ‘¦uáñèHÆsÑý¯]]W‰#5zÎÝbÖ“Šæe„uÛ”=ÐW:Å566RVVÆücrssÉÎζMàÉ,Š·ú ¢äDDS‰uÉtÅòšÑÌârtt›iLŽÛ½z¼òè tŸÏGSS=ô#FŒ@Q”¨®V™yã¼qŽ)&H&lJ‚ào>«h¨G±aúSÙZƸõ52«õkkk+Û¶m£¬¬Œ‰'¦|Ãô> êÓ‡!²\ö ’Þ’a¡GÄб·Ð±ÿtTÇX‡z™ýßBðûýìÚµ‹`0ȨQ£ÂJïÒc5!âÞ®^#’ÛF"ÜòIº‰ºžr¨Š«3$IxôHî´µ ô²²2FŒÁ»ï¾ËÆ™fèõs@÷xaÈ!lÛ¶ŸýìgTUU…}ä¾û°òòrÖ­[Ǿð,XµèPÚ„§ SèF¹›î4–±Ý:ÝLŒ}ýõ×ùå/É”)SX¿~=×]w—]vYØ1¿ûÝïøè£1b;vì`øðáÜsÏ= §ÿîÆô5œt èÖɪÆs½‹+¨8ZrŸ±Ð;8FÒ|À{ï½Çï~÷; Àã?Σ>Ê’%KÂ,ð'žx‚œáb^»v-_ûÚ׸øâ‹á‰kýD6(©…ª”ÅÐuÂgO873\Ù‰',Ã[jjjxä‘Gxøá‡™6mÿùϸï¾û8÷ÜsÉÏÏ·hÑ¢ èìì䬳ÎâÃ?t ¹Þ!•è™Åªeº*ùDGÃ…®¨a‡*6Z“åÞ) ™µ«‡%F²yóf†Ê€"§vîܹlݺ•æææ°ÓŒl€ÂÂBÇ:O e¦Ë=üJ&¯RÚÌ®¤O[ëêaQêëëëiiia̘1œp ¨ªÊ®]»bÊ€†Ñ©4??ß±Ð{O0h]ZèF–».·–¦um¡ƒš4 ¹O[è¾ZhX š|£}_è­–––0+»´´”¶¶6|>û ÜöíÛyì±ÇX´hQD:Zò[ó28@O±³ZÚJê/á$Åųе¨üµâyíjà8!|>ÜnwHñÊÏÏÇårE)õ577s÷Ýwsæ™g2iÒ$Ð{ÏBFƒ|XÙ–ÆqŠ=ö•4ºè}Ð#g!ëEw²©Ð¹ÿz«°°ÖÖÖÐóÆÆFòóó£b@”ŒÞqÇ|þóŸçüóÏ?f(tèëÑ)týèÙÝ1{޶.‚ mI‡Î. =£bèQ2 r&A¶TÔ[ö‡ÞÊÊÊ"„º„¶··£išm8­©©‰üàäææòµ¯} Çã¸Ü¿+Z’·£fèöÃYBek²Ñ^ˆï•è×—{Ó΃= <ƒÁ3T<³MÅøñãÙ¿?GŽ`åÊ•Œ;–¢¢¢°ÓVWWóÍo~“Ï~ö³,\¸ðÎpO7)©ûh_Îkw£g«cPØ,H¤ ÐTpWš2ÀeN',++£°°;w°mÛ64M‹ªvéììäÞ{凉¹™{ï½7Ô¹Õ±Ð{ÅÉcÓË]Q£Z¿êÖyèšd5ÂB7Ng¸ÜõÔÍœr¨z7:ÅtÒI̘1ƒ;aƱaÃ~ò“ŸPWWÇå—_Îo~ó&L˜Àu×]‡×륽½Çœœœn¸á†°¸šC}™ÿ»@[%µ×è¶'§¶ŒîXöüÝNq•••Üzë­Ü{ï½LŸ>>ø€n¸‚‚n¾ùfÆÇm·ÝÆOúS^zé%,XÀÒ¥Kq»ÝœwÞy ÷ž¦ßÕp–ðÂsEQÂŽvZ¿f w£Sœªª|ë[ßâÃ?¤µµ•k¯½–±cÇÒÑÑÁý÷ßϰaÃøæ7¿Ig§)%²²²œ¤8GiHHgpˤÜýe»Ñ\JQæÏŸÏСC9pàçŸ>“&Mà†n ¨¨EQ8ûì³;vlès.—ËIŠë=Ré*)NhÑJXPJ—‡ÓX¦ÏQ€n÷r/,,dÞ¼ya¯åääpæ™g†žŸþùÎÚ†ñÒÒã—Jq–{†O[KטœŒRºY¶f(ö3f̈:ÌúÚ;»œ[ IDATI'ÄI'uŒè}ÉB·¢¶etšÑI&Êåná"Ð3×Bw¨'” ÌEôsï ¯&I™°G[—[ÃåÒ’ö3œá,i¦¾2>Õ¡T[‘E‘W",ôDǧ:‹Û·=^ŸfГ Ú³3ÿg„4ôÈŠ–äõ_×ûAÙZÆÉ7=àz?±Ðƒ˜=Z#´ £ÜŒ©uM¬cåUÐû4i 0³sÃ2ŒoSè)o,Þ)NÑt\zEw6aJ=`;€Þ,t-B GN`Á’#§Ä4Þ#]sx³oYèŽË½ŸHåtXè©üz¿i,“Q.ýD¦­9€Þ]~M×Tð+ãHh|ªcð9€~l‚m;GfW@§§õk:üáÆ%ü$:pºï’z2g|j?'%NëרÕPMzèãvºâàƒèÇuoÿCjg¢§FBÓÖRÝX&…ç·Y¥cÞÀp案N—u耮¨u—­…n—$çÄÐû `f‡’ 1ëS¬¥À´U¥ôUÒi¡ë)oœjù“‘Iq ÷wR# Ë£-t%¤µ‹^î1ÂëŽÁ××±&³:mýŽ5ß……ž&["z†ý„Ô,J+]@ïA/!YŸª£vm:jTº3>5(˜³f;Ëä( $=Ë]EØ’†Dú~Q¶–Ô߈Ë=‰?ÊéÙ[ºmcÝÖb·¶yŠèZœGÄ {ã7X°`—]vwß}7---Q§}å•W¸òÊ+™4iÏ<óŒ³Î™nÚ†,t…ÔgQ’··õÞ±Ð3ÎJï¦ ¨®®æÆoä²Ë.cÑ¢ElÞ¼9ê”ÕÕÕ\{íµÌ;—E‹ÑÑÑázï ;—{xW+ˆG&ÅÙyèœÖ¯™M‡æ§?ý)Ÿÿüçy衇سgË—/:î¸ãŽcáÂ…Lœ8‘¶¶¶c|Õr€9ýÀÕ‘žš²¤]¢ ï“ÓX¦çÔÞÞÎC=Ä 'œÀÏ~ö3FŽÉÃ?&ÿ ¸ôÒK¹ä’Khll ½ïz_°Ðu@—(m¸fÜDUX/øXYî8€žÑôÎ;ïPZZÊE]DUU_þò—yíµ×hjj ;nòäÉœsÎ9 8ÐY4ÜÀHR›ŒŽ©&Zʧ­éºŽ¢¦v•ôƒJºÆ³ö–àÀ¬]»–/ùË >œ«¯¾šýû÷‡Æ©TYYÉE]Ä 'œ…,õŠ…®‡k»ºAÝvG…5–QíëЗ{_$#+Îúèê€Zù0lGŽ¡¼¼<ä:t(õõõx½^g)û;¥iZ:†³¤K‚fŒç%Jø‹ 0Ãj^¯ǃË%ÔÒÒR\.µµµ «·%ýƳ“m¦­Ee¾‡O_sÊÖ2‘ìÆ­Õ ê¦;äó}æPU4ÍÜÁ`EQR^jäP’¡ÊhͬtóJbP¥ ¡ô€Ó¤¸Þ¸†n#¼R‘Ï×-²Þü†|x‚{á4‚¼Åož@–{Ï ½ A¡Ýb•謒ÙM13Ð;â–-[Æš5kxê©§¸è¢‹ƒ,Y²„ƒÐÐÐÀ† ¨­­eÿþý¬_¿ž@ pŒ®±ØIò›Œ¦[D¤«õ«Ò=QÕ“Ÿ‘ázrIK@˜¼;pà@æÎËOúS6nÜÈO<Á‰'žÈ!CX¾|9ÿþ÷¿á½[¿~=»w鈴±‘7ÒÐÐàzïXíŠ ×ØÍHÕC¨¬kæÿªÛå®%ÁXp(ÙzWˆJJJxä‘Gصk¿ùÍoøÂ¾À¥—^J  ºº:Tš²yóf~øaÚÚÚØ²e >øà1gïV“Ú–|éHÅJG ]¯3$â`Œ¶™.kRc¡wõð‡ŽÎÎÎæž{î¡¢¢‚Gy„¡C‡r÷ÝwpðàAêêêÐu¯×˃>ÈÛo¿MNN<ò›6mr\î½Cvz¸†nÍrO4~âÄÐû¢vÞ½ù©cÇŽåÁ {­¬¬ŒÇ<ô|îܹÌ;×YÞ°uÎtÑÍ ™ëˆ èúQÞ­ÌSºß*®  €;ï¼3ê¨Ûo¿=ì»’VÐû( ‡ÊK®”mºQñâ”­õ%r¦³ôJ×øÔÔ»Ü{{|ªž„ŸY¾’ô6sw½W(†s\ÑßUMWÐŒ‰õ ¡ò[%}¢Ç¡„É.)ÎôÌåY+Ó%;Z)ÑV%u™M©pgœõœÒ ÷á`cbG˜Ý¡q节¦‡ìQ ½S¶–©€t–é¨HJHo~o K×SŽˆ}ÁBOÆ5RM©Ïr$¿è™/„ºŸŠ¢ )ëuèJŒL7ÇåÞ×(èXè)§<Ä,ô¬Ì†=õ¶­®ƒ[ÑQSü{œ^~ Zèq\î(1÷XâP ½ïz÷’âê /åöIO×—tXè™c=§ãn'’—œ /¼ââÔ­d0äwÞaÓ¦M\yå•TVV†Þߺu+¯½öªªrÞyç1f̘4¯qÉ÷MYwgšËÚê´ï­'wxnL\I×´µTʀ̛¶Ö} =ð׿þ•­[·râ‰'rÎ9ç——±]t¶lÙÂo¼¢(\rÉ%wÜqñ‹7kjjxíµ×øøãyþùçÃÆ;¾þúë<ôÐCTUU±gÏî¼óNZZZú Þ–ýOÆ™a )jD]±ó¾ÇôWê3/)ný4Ì›ëaÞI¯×ËwÜAuu5#FŒàG?úo½õVÔY_xáüqÆÏúõë¹ûî»éììLÙ¯èììäÕW_eß¾}üö·¿ ›Í\]]Í7¾ñ rssq¹\Üzë­8p Ê€¾ßŸlç+ŸÄ½DÝ(ØÐ“k¡oëÁ*ÑçïDäÙâÉ- Ìüqþö·¿1~üx^zé%{챨³îÞ½›Ûn»‚‚<‹/f÷îÝñ-ôªª*žzê)V¬XÖOZ×už}öY,XÀå—_Î…^Èé§ŸÎÖ­[™1cF†3sªÝ Ÿ¹iµËídEqU‰Nv‹xÞ©e^ ½ÿ;›»—å¾víZjkkùùÏNQQ>Ÿ?üáœrÊ)dg›îägŸ}–›nº‰ùóç3}út®¸â Ž9°aÃRò+òòòøÉO~B[[[”‚ñÊ+¯PUUÅ7Þˆ¦ilÙ²…¿þõ¯Ü|óÍýHd‚…ÁÎ`œKè Ï…8ZéæÈ+'žå^SSË/¾ÈSO=Ř1c>|8ßúÖ·¸ñÆ)++ ÷—¿ü…iÓ¦qÝu×ár¹X½z5o¿ývÏÛ+Õ××S[[ËøñãQ…ììl ÔO´ódÞL¿Ýlo‹…ÖŽ.cèv"ÆIŠëk”ÈøTS¤mÙ²…áÇSTTÀ¬Y³Ø±cMMMagÝ·oÇ<¥¥¥ :”mÛÒïïðù||òÉ'L›6 UUq»ÝL™2…Í›7‡yòê¶gª+ãÒÑ)ΩΤO®…O˜1ô††ü~?C† `ôèѸÝnvíÚvÖõë×3eÊÜn7Š¢0mÚ46n܈û¹çžã¥—^Šún·›Ç{,L+°’ßïG×u<Oèµììì(×_I‰—`ðõ c® 1ŽîiÝVÖÿn.ÌžÏnù¶|Þ ìï  *°h?®&”;?7x¶æð/ñJq ÕÍö¬ ï+cý6xx?<å‘§j‡j7´Â.žÏ7=d†C'`qþh„WÁëQ¶bzDL¬Uî«TKâ“ï\.ee»âþœœæ0€ÌÊʲ¼—ƒßïÇ`0ÊcQUÇ­Úúä“O¸ï¾ûlß»ùæ›™7ož½ºªiø|>rrrÂd€ñUÕ´ÊÊšÑõTÈàÞ$¹í_­»³h^•|ì‘ÝòáAtª“¼nôcWå×k’|Ú(_óDœBš>ÍlâCn5;€¢è¸Ü¼’‹ýÒâ«Å‚އ mÕGø×ºz\qÄMT4\z€O7¸øý¼ú¤‚ 9¨z® Ž¢éWü„{‚ý#S·`!æý¦Úé‚O‹áN]ü´NÝLIIIã‚p··· !ÚÙIcc#ìñw:t(_ÿú×mß«ªªŠù9ÇCYY‡½väÈJKKC GHªÝål ‡Ž9Z¿þýn©Ä755 £ ëÊÊJŽ9&+ˆ{øðá ><æ4M£­­¶¶6ÍÍÍ‘——ÇäÉ“yóÍ7™0a‡Æëõ†\9äP÷褓NbÙ²e¬[·Ž‘#GòòË/3kÖ,òòòعs'C‡%''‡éÓ§óî»ïr 'ðñÇãõzm•òD©°°Y³fuyL[[ÍÍ̓AZ[[ñz½äææ2{öl^xᮼòJ«V­âúë¯OK¬Ö!‡úUVVrüñÇóæ›orÆgðî»ïRPPÀ¨Q£Ø¿?ÙÙÙTTTpúé§ó§?ý‰‹/¾·ÛÍÚµk¹õÖ[Qt½ëÞbµµµ,^¼˜êêjª««9ù䓹õÖ[9óÌ3©®®æ{ßûš¦ÑÜÜÌõ×_Ï%—\æ2pÈ!‡§'Ÿ|’¿ýíodgg“““ÃC=„®ë|îsŸã™gžaòäÉlÙ²…x€öövþ÷ÿ7å|÷Ýï~—7²råJ¦M›Æ\À-·ÜB àûßÿ>[·n`ìØ±<ðÀa¡8‡r(qZ³f ?üáÉËËÃëõ²xñbæÍ›Ç¿øEÆÏ7¿ùM:::¸ë®»8pà~¿Ÿ“O>™Å‹Çô`0È‘#G°V\\L^^º®‡¬w3, •mÛ¶ñÃþmÛ¶1eÊ~ýë_‡>¿oß>}ôQvíÚEnn.·ß~;Ó¦MëSZýÇÌe—]FUU‡#Fðýï?¥õ¾Ý¥ýû÷³dÉöìÙCqq17Þx#³gÏî³ÕçóñÝï~—U«VQQQÀ5×\Ã%—\Ò§¾§ßïç©§žâïÿ;{÷îåç?ÿ9sæÌ`ûöí<öØc8p€ÒÒR¾þõ¯‡C“A@€¦¦&ùùù ©¯¯§¤¤ÇÃÿgï¼Ã£(·?þ™²%½'”@è¡Io¢bA@DEiÂE¯¨(¢\‘ŸR¥ "^‘bEŠW,Àõ"ˆ^,€¢tDJD„$„ôl²mÊï-d!x)œïó̳™ÝÙÙɼóžïû=ç¼çÕu›ÍFii)f³™¨¨¨³\Ü—yyyq¼¢¢¢§ÓIQQ‚ éØív^xá8€ÛíæwÞ!%%Åÿ,ÌŸ?ŸM›6!Š"wß}7ýû÷¿ìÿÇÅàÔ©S :·ÛíŸüÊ+¯üaâj ==3f““C\\O<ñÍ›7Z;PZZʳÏ>ËÁƒ‰ŽŽà‰'žàöÛoªëܸq#o¿ý6¿þú+C† áé§Ÿö?ׯ¼ò »víB’$ D=.Ù€Z×uŠŠŠp8X­V"##E‘ÂÂBdYö‡ÂÅÅžœèèhÌfóù§­I’D•*U*üÌg¯(ÖIïÞ½ùå—_سgOÀgï¼ón·›9sæ°mÛ6ÆÏâÅ‹ŠUƒQOJJâÕW_%66Y–‰ˆˆªë[°`f³™×^{õë×3iÒ$Ö®]´îN߃úàƒÒ§O‚î:EQ¤I“&Ô­[—)S¦$z¾úê«T©R…1cưvíZ¦NÊ[o½uÉ *ɲL\\ÜY}°|߈ˆˆ+ú<žyMåa±XHLL¬ÐvtîÜ™îÝ»óÜsÏ¡ª§3ú¿ýö[¾üòKfΜ‰ÍfãÅ_¤Y³fAEDªªâp8˜8q" 6ôÎ`‚Ãá`öìÙÔ¬Y“^x>úˆ—_~™eË–µ(((`øðátîÜ ( ’U«V°zõjl6›ÿýµkײcÇf̘ÁÉ“'™gg¾gµZRáò% R¥Jî¹çž³ªF9¾ÿþ{úõëGÍš5¹óÎ;)))!===è´  €7²eËœNgP…l67ndèСԨQƒž={¢( ûöí z—ÒþýûùòË/9|øpP†g$I⦛n⦛n Ͳ²2vîÜÉý÷ßOrr2÷ÜsGŽ!??ßðV³ÙL=Îò©ªÊš5kèÕ«M›6¥C‡´mÛ–õë×Ýÿ ( ?üð7näÔ©SAåAO2ÔÖ­[yøá‡INNö×$HKK úçc×®]lذcÇŽÝ}HMM¥{÷îT¯^=@H}òÉ' <˜ÔÔT:uêDJJ ?üðCP\óŸ®å^\\Liii…ê&!!ᜆÚgü|Y{¢(Iaá•ÀTVVvÖü^âã㉈ˆ {÷Ê_|Á¿þõ/fΜиWÛÐ(Šâ¡…‡‡AVVM›6 Ê,Š":t   €“'O²téRîºë.üñJAP§Nò»À|„eµZýn¯¿œNç93111g©‡òßËËËóϵHJJ"333`JÞ•èC¹¹¹TuŒˆˆÀb±Ð­[7ÂÂÂØ³g ,`ÆŒ´k×.¨ÚÀWÀ§âÌf39994hÐ (ŸI’¸ùæ›Q…'N°hÑ"†Jÿþýƒþ™÷ñFùg7!!Áÿ]m¯ÈŸ"tUUY±b«W¯®°#,X°àœó×}D_¾9÷îJà믿fÁ‚~öÆoP§Nf̘áÿû÷ïφ 2dHй¯|¯š¦åHדÉÄßþö7ÿ~Û¶myê©§>|x¥H¤”$ ]מ]]׃úž_NìÞ½ûœó×ÇÇõ×_ÿ‡ƒ»òóë}6àJÄììlüqåìÕ®zè!úöíËØ±cýíºüuI ]’$샞ùû̹ԯÅb!##ƒÔÔTB/IêJ¡k×®.|œuý>/ÂÿR¼ãRÃl6A^^µjÕ"//ÂÂBêÔ©SiÁ—X©W’EÜ“’’PU•“'OR³fMJJJp¹\ø¼_ËhÙ²%Ë–-«ð³?ЉZ­Vj֬ɸûî»Ñu#GŽÐ¸qã+j«V­Ê’%K*|þBBBβk111Øíö Pb>„……!Ë2EEEÄÄÄÓé¤fÍš•æ9Šˆˆ@UÕJa¨V­äúë¯GÓ4222hÓ¦MP<ÚårÖC_‡ƒß~ûôôt Ù½{7µjÕ"**Š®]»²hÑ"øöÛoINNög¿^)X,–³ v”ÇæÍ›ýî”;wò믿òè£̓N·nÝX¸p!O=õ«W¯&111¨ë”••±~ýzêÕ«ÀÂ… iÑ¢EP*Ü'N™™Iqq1‡&99™zõêÑ©S'/^LXX+W®¤Y³fçôF]ë0™Lg’:‡"//»ÝÎþýû1›ÍT¯^^½z1fÌÚ¶mKqq1ûöíóg_IË%¹9r„P·n]233Y¼x1 *ÏÍ7ßÌ?ÿùO† Æ’%K¨_¿þe«ë)PPPÀwß}GýúõýɽíÛ·:;PTTÄÑ£GÉÎÎFEvïÞMÆ éׯS§N¥AƒdddŸŸÿ‡Þ¨+êAÐ/Ó°èĉŒ7Ž’’¬wÔ¨Q´k×›ÍÆG}ĦM›¨V­O>ùäÿTéêr`óæÍ¬X±‚ââbyðÁý5«ƒ‰ ?øà¶nÝJݺuãäÉ“ý]§ÓÉÊ•+ÉÎÎþËÞ¿ôôtV­Z…Ûí6& 0ýüx÷Ýw>|ø%?oqq1Ë—/'++ëËÏÏçïÿ;»víò¿g·ÛY²d 'Nœ¸èßýú믹ýöÛ¹óÎ;¹çž{0`+V¬Àn·Wªv9|ø0~ø!.—Ëè} 0p !_«ÿXFF¿þúë%?oÕªUy÷Ýw ýÃãÜn7ûöí XZ3**Š¥K—vÑ¿›——Gvv6ãÆ#))‰={ö0jÔ(DQ¤oß¾•¦]n¼ñFÚ´isÞûgÀ€ B?/Ž?Μ9sسg¢(rà 7ðä“OúÙøî»ï˜;w.………4nܘ˜˜²²²xóÍ7ÉÊÊbäÈ‘¼øâ‹4kÖŒŸþ™9sæ““ƒÉd¢^½z¼þúë¼ôÒKìÛ·‘#GE÷îÝyôÑG8p “&M¢uëÖ8¾úê+Þ}÷]Š‹‹ cÀ€ç$èÐÐPÚ¶mK:uhݺ5_|ñ7n¤oß¾hšÆîÝ»yíµ×ÈÌÌÄl6sÿý÷Ó·o_BCCq»Ý¼ÿþû¬\¹Y–éÔ©{÷î¥{÷î 0€o¾ù†Ù³gs×]wñå—_Æâŋٲe o¾ù&'OžÄb±0dÈîºë.¬V+;vì`Μ9dff"Š"-Z´`ôèÑDEE±dÉ>ûì3\.!!! 8~ýú±iÓ&Þ|óM-ZDXX™™™Ìš5‹_~ù]×¹ùæ›>|8 ”””pÇwððÃóí·ßrìØ1jÕªÅÌ™3ƒ²þ»g¢°°={öø÷CBB¨Y³f@­õãÇsäÈÿ¾Ùl&99™jÕª!Š"Š¢pðàAòòòΜœ\áꊺ®“““ñcÇp8X­Vbbb¨]»6§N"##ƒæÍ›c2™¾wìØ1 hܸ1iiiäååÑ´iÓ€xòóóÙ·oñññ¤¦¦VŠe B¿†QRR„ ÈÏÏçÅ_¤¬¬ŒiÓ¦¡i/¼ðEEE<óÌ3Ü|óÍŒ=šC‡1yòdš4i€¢(þ% ‹‹‹™|˜U«V1bÄ$IbÚ´iÌŸ?ŸqãÆÕB T„;vpûí·sÏ=÷ ë:Ç'99™™3gÒ°aCt]gÅŠ̘1ƒN:¡ë:¹¹¹È²ÌôéÓ騱#eeeŒ;–C‡ѰaCÿ¹{öìY!¡ïÛ·§žzв²2ÿÀØáp°råJ~ÿýwúöíËæÍ›©[·nÀ `üøñ‚Àœ9s?~<«W¯æŸÿü‘ IDATgÀÚåK—.eôèÑôîݛŋcµZF6ýêáĉ|þùçlÚ´‰ øGÄ#FŒ`ذalܸ‘ððpÆŒCbb"­[·f×®]üöÛogKÓ4œN'V«•¨¨(jժŠ7Ü@­Zµ £Aƒ´lÙÒ?º-ùóçÓ·o_†zA䔑‘ÁSO=…ÕjeÿþýÔ®]ÛßÙÖ¬YƒÙl¦k×®‚@DD·ß~;~ø!={ödñâÅôèу!C† Ë2)))|óÍ7çOJJbÔ¨Q4hÐ]×3f U«Våæ›oFÂÃÃ騱#}ô·Ür .— ³ÙLtt45jÔð‡\.š¦JµjÕhÙ²e…K#îß¿Ÿÿþ÷¿¬^½šÆû ËÀ™0a‚ÿÙgŸ¥S§Nþ{ðñÇc³Ùˆˆˆ0z° ‡ ¬\¹Q),,¤[·n,Z´ˆiÓ¦ùûE:uøä“OüÏü<Àüùó騱£ÿ<<ð'N 8ï™PU• &P»vm^{í5BCCýƒ„ˆˆÂÃÃiÚ´)Ë—/gܸqþïýòË/ìÚµ‹iÓ¦ù—•nÓ¦ ü1Æ Ãb±àt:ùä“OhݺµÑ¨¡ Ìb±¸‘êׯOnn.N§“¬¬,ÂÃÃýîwY–©^½z€K̇¨¨(ÆŽË+¯¼Âºuë¨Zµ*½zõ¢_¿~t-ééé 0à‚•ftt4÷ÝwQQQ¬^½šÂÂBÿw=Ê¡C‡Öl·ÙlÔ¬Y§ÓI^^×]w²ìiòÈÈȳÜÖ¡¡¡~W ®ë¤§§³}ûö€sÑ¢E L&Ï=÷3gÎäá‡&66–~ýúqß}÷Ñ®];|ðA¦M›†Õj%%%…çž{ŽÔÔÔ³¼%6›-@)$&&"6› «ÕJHHH@[EDDàr¹PÅè½* $IBEbbbHLL$??MÓü„®ë:N§ÓOʪªúmŠ¢øÁO¼gzQQ)))ˆ¢ˆ H’D•*UËÿÎ;ïdÍš5<þøã~Ïá×_MHH7Þx£ÿ\mÛ¶åÀlݺ•N:ñÃ?`µZiÒ¤ F£„~õŽÃá ´´”„„²²²ˆŒŒÄd2ƒÃá ¤¤„˜˜TU%//MÓ*ì¤;wæ¶Ûn#77—>úˆ‰'R«V-êÕ«w^¢NLL$##㢮ý–[n¡N:téÒ…{ï½—ùóç3yòd¸é¦›X¹re…<<<œÜÜ\4MCEìv{@žÏH”wùÇÇÇsÏ=÷0oÞ¼ ¯§S§NtêÔ‰œœ¾ûî;ž|òIâââèÖ­cÆŒaôèÑüúë¯Ì›7'Ÿ|’+V|?$$«ÕJvv6)))€gªª„††¢išáV7Pé¡ë:?þø#àq‡§¥¥1hР€öáÇéÝ»·?,ÎÌ™3γråJÿ¬™^~ùeêׯpŒÙlfÈ!¼ð :tˆÖ­[Ó¼ys:vìH•*UE‘ûî»wß}—ï¿ÿž^½za·ÛY±býúõ#22Ò?s&))‰5j°råJZ´hÁ‡~H÷îÝ)((0=HqMg48N222üÛ‰'ˆ¥U«V¼ùæ›?~œÃ‡3oÞ|Aÿ[DDÇgíÚµüòË/téÒ…´´4þóŸÿpâÄ ²²²Ø¿?@EzôèÁ† غu+YYY¬[·Ž={öœ“0}ßÙ¶m6l 33“¬¬,öîÝËáDZÛíüøã¤§§£iÍ›7G–eEáÈ‘#ìÙ³‡“'OGjj*ªªž¥ªëÕ«G³f͘;w.G%==·ß~›Î;bôN× &NœÈ¸qã˜6mwÞy'=zôè{Õ«WgÚ´iLŸ>™3gÅ;ï¼`wn»í6¦M›Æ´iÓ˜0aÕ«W¯ð·úôéÃgŸ}FçÎ9|ø0S¦L¡wïÞ8p€””ÚµkÇgŸ}†ªªìÚµ‹S§Nѵk׳ÎÕ«W/~úé'~üñG¶oßν÷Þk4¦¡Ð¯öíÛG÷îÝýêà½÷ÞcÚ´iŒ?žÞ½{£ë:õêÕcÒ¤I„‡‡“ššÊ³Ï>Ëo¼Á¢E‹HJJ¢Q£F*t‡ÃÁÂ… IKKCEáöÛo§cÇŽþ,ó¹sç²hÑ"zôèÁßÿþ÷€NÜ¿l6>ú(‹“ÉÄý÷ßÏ“O>yÖo ‚ð]AèÑ£ï¾û.K–,aòäɼôÒKÌž=‡Ã$I˜L&yäRSSyàعs'>ú(ñññÔ©S‡zõêù“Õ*B—.]ÈÏÏgêÔ©¸ÝnDQÄb±0jÔ(Y´h¿üò ¢(ât:8p :t`ïÞ½L™2»ÝŽ®ë‚À /¼àw§ûþøøx^zé%ÆŒCß¾}QU•ÔÔT^zé%h ¢û`À@e‚ ¬[·UUÙ°acÇŽå‡~ [·nþcBCCý¹6à G=þøãŒ;Ö¯ä«T©p̹`6›iÕª­Zµ<á¸ÁƒóöÛo3kÖ,DQäÁdÈ!äää°téR:uêDíÚµÏ:Wrr2µk׿•W^¡Aƒ~×½ }ÖôФç5›Í†Íf;ëýØØXÌf3%%%ØívA ,,,`^´Ó餬¬Ì_üdìØ±Ô¨QƒI“&¡ª*………DFF"Ë2eee”••¡ªª_•ûHÒívSTT„¢(„„„A~~>‘‘‘þcEñ#IÆÆ|a‚èè耳¢¢"t]'** ð¸¬N'º®c6› ÷„²²2JKKÑu“'O2tèPÞxã :tè€ÓéÄf³@šš¦ù³d¬V+aaaH’DYYv»EQeÙÿ)Š‚ÍfóÇû, QQQ‚€Ó餴´”˜˜ÿïøÚûŒððpÿˆßb±T8E‘¨¨¨ Ï{®ÿ]–e¢££+¼ŽŠ~ç\m!‚?Ïá|÷Á€ÊQéׯË—/çÛo¿å®»î   €O?ýÔOÈóçϧK—.ÄÇÇW®;Eaüøñ˜ÍfZ¶lIhh(›6mâçŸfÑ¢E~’OHH [·nLž<™””n¹å–sžóŽ;î }ûöÉ©‚ÒÄòó PZZÊöíÛùå—_HHH`êÔ©þyè•YYYlß¾#GŽpÓM71iÒ$cê——v»›ÍF¯^½ü©˜˜âââÈÈÈ M›6þÙàСC2tèPž}öYÌf3š¦‘ŸŸOjj*5úcƒ.IÔ«WÂÂBöîÝËo¿ýF­Zµ˜2e íÛ·,ׯ_Ÿììl†z–+?77— ššŠ,Ë„‡‡û½d………ÄÅÅѦM› §£¸z8¯Ë]×u6oÞ̪U«HKKã©§ž¢sçÎ~âûðÃÙ¼y3ÑÑÑ<ýôÓÔ¨QÈs0ð'àv»Y´h;vì@Ó4&L˜@rròYÇ•””°bÅ ¶lÙBrr2Æ «0þy)qìØ1Þ{ï=öíÛGË–-yþùçüSž>ùäDQ¤wïÞÜvÛm† 0`àOÀןþóŸÿžžÎóÏ?0óAUUÖ¯_Ïš5k}ú——wQõ þ êׯϨQ£ü¥†}ƒýuëÖqã7rë­·Ò¥Kn¼ñF¿j0`ÀÀÅA–eî½÷^PïÿL¬ZµŠnݺqóÍ7Ó¹sgš6mÊwß}wáóÐÏôÌPZZJÍš5Oì&!!œœ£U ¸ŒÈÏÏ÷'W†‡‡“˜˜ÈÑ£G¯øu¸\.Ž?î/¢$Š"uëÖ娱c¨ªj4”— ¿ÿþ;uêÔñÏô©_¿>‡þóYî>‚/+Eñ,âoР%yy•-+¹¸ØŒN¡‚}Ñû*y_eï«ÕûY§ ¢)àm/BË&è'ŽnÇaA;zœÍœø¥”„HÔ=‡þžº ªéPdñ€(€^ÁF¹×Êz—¯&r€]G^P"áþýûéuãÄžœ­Vž8qÑ}ïÌšÕI¸ðU,o4M;Ë4ižD£æ•gRÍñ#*5jW®„/㚯 Ò~Ý;.¬ÏvhÞá<Þ³b`áªUþ…²þŒ ðõ»?Ý⢢0™Lœ:uÊÿùùùgÕ., !?¿[%#ôù‘ÀÂ{2`ö¾Zá}­î}= â×Pã Ð2Á9qÒ,ô÷Ò´y&‘õÐÞzÿ{%Š¥§G]èî²aÆ7 C7–·{¸žR/©»½¯j¹W½ß嫉µÀ…–mPU•”ü|n8ÏqÿþSð"""üS™yyy&Ï]n˜L¦³ÊŸ8q‚¤¤¤³ 5h^ÊŒ%•gø¶xN)CGU® Æ5_<7øÂ§Z ¹íŒE¹ÎÄ.¸èµ)ªU«FVV–?##ƒäää s¹“žžŽÍf#''‡ôôtL&]»veÙ²e>|˜µk×"IÒY p¨ˆô}›°œÖ΢N;rˆŒZæÄdöhz—¬¦ÓrÛ©ƒY.Åm ’wH÷GÛ™033“ôôtœN'Ç'77—ÒÒR>ûì3ÿj}ݺucÅŠ¤§§³nÝ:,ËeÏrw¹\¤§§sêÔ)l6GŽÁápн{w6nÜÈŽ;غu+7n¤gÏžFã0€ÇvŸÏœéŸ(((àèÑ£”••qòäIŽ?ަi|ûí·ìÙ³€{ï½—µkײ}ûvvìØÁO?ýÄ-·Üra }ãÆ¼óÎ;ddd••ŦM›xï½÷0`sçÎåùçŸÇl63mÚ´k¤4àår‰Þsû6à­Y®{\¦¢ ºËl•Ð.¡ n¡kBw&Á³‹Wïw9¸ —®ýÑQ¯¼ò û÷ïGQ¦OŸN=èÓ§o¿ý65"66–¿ÿýï¼ñÆ<ûì³DGG3qâÄ€J‡—'NœàÿøÙÙÙØl6FŒÁøñãi×®}ûöåå—_F DóæÍ+}Û™-‚qÍÆ5_‹>p¦í^»v-Ë—/'33“÷ߟï¿ÿžyóæ±fÍ4hÀu×]GÛ¶méÝ»7³fÍB×u†N‹-.ŒÐ{öìYá¨;<<œI“&]ƒÍÐà ýްzZ]õP³ èN&Kî³€€îQè2~ºKõ(t:w¹Rú™ƒšW_}µÂãÖ®]ëÿ»J•*L™2åŠþ/µk׿ã?®ð³¡C‡2tèÐkªín»;ĸf㚯¡ŸI `À€g7{öìÓƒ“‰áÇ3|øð?<—¢® ¡‡xsç4D4TÅ)$ç)7+ é§]î^BwêP~p›w9è<«Ð ªÖŒk6®ù†ð'úÿ*" \¶±ÙùÜI<‰r€®ƒèq¯ ª Ù*¢9]˜-º^N¡{áÒº~šë Ñ _@‡7`ÀÀµKèç³—rPoúemÊó™k»W[º‚ˆ «àvc²ÊèNB×½ ÝRžÐÏPèà¯øæ9 Ý€¿î þ|6àR’°AèWÞºNM¨ ¸1YE4§‹tïcQÀ3ïLõº„gzšj(ó Ä…¸Ü¥- ¸¶ ýbcè¡WvBݲA×<„"£9ݘ£< ]¼„î›¶¦y”3 ǘ<­k(tþ„~>`ÄÐ+ |UâdNW‰óé2Ÿ¾–½ ݲQPf¯B·Ztt]õ8ð½•aTÕ£ÊÍF¶Ò+tƒÐ ¸¶ÀPè×Ts–ßÎüLAöü©y]Ðup+H ÍáÆdöLQφŠšfƒ ‚žÐ¯dBŒ‚Îg.eØÍ ô« ¿ÃEw€É‚ˆªâ‰;Ý„XMCÐAôÊÝš‡Ð-Æ zB?Ÿ;Í t®]ˆ` B¿¦ÝÛœšd³‡©EAP] f‹¯¿W¡{¿¥a¸Ü+¡.wþÚ Ýp¹_³½ã5»=û2žºÙ‚¨©’ˆ$¨h7!ݯÐo†»[=Mèç+é¯rþc \¾Ö>_BÌ™£óââb~þùgŠ‹‹iذ!5:ë;v»;w’™™Irr2­ZµÂl67Ü€ Tè›§i?ýô'Nœ 99™-Z`±XÎ:æ×_%--ÐÐP:tè@TT”!‚J¡K&Ï5ÉÓ,šKÅdÐÊÇÐ9C7 =è ýbgQU•iÓ¦±lÙ2öìÙÃ?þñöíÛwÖy.\Èܹs9zô(³fÍbÉ’%Æúã )¡ŸÏ”WÕº®óé§ŸòòË/óÛo¿1cÆ V®\yÖyúé'ž{î9öíÛÇÇÌĉ)))1úå1ãç+*ãSêêéñ™î³QU$ Íé&Ī®{VW÷.vîV¼1tÝSšÆ@åUèå }Û¶mìÚµ‹¥K—Ï‚ X°`sæÌÁdò<'n·›÷ߟ%K–ЬY3¶oßÎ!C¸ÿþû‰ŽŽ6nº•X¡çää0þ|^{í5š5kÆ–-[?~<={ö$""Â?ðŸ?>}ûö塇ÂétrÛm·±iÓ&C¡_}…îÍr×]ÞºŠ I誆®iX,x:Žz€…W ig–ϳ•ï€û÷ï'99™øøxn¸á:DQQ‘ÿ§Ó‰(Š„„xµ'//ììlã†0d.ÒäççSVVF:uhР’$ñû￟f EÁf³ùí„ÙlFE8`(ô  t \ ‡"*nPÜ誊Ŭ{ Ë‚—¹ï«è]ÝW-Î@pAΟ¸(–ûÜf³æßŠŠ¢¬¬ ·Ûí/,,ŒÈÈH¾ùæªV­ÊºuëÈÍÍ¥¸¸Ø¸á !¡Ÿoz±\N‘¹Ýn$IBðÆWCCCE›Íæ?Æb±Ð¬Y3>ÿüsÚ·oÏ8tèÅÅÅ¡_uB÷ÍCÇr4x]¡«V«Ni‰Ž,ž®çÖ½õõÓê\¯`3pu!Ë`9#ë- øB=*ù½¡GFFs~~>ááá o‚ 0gÎæÏŸÏúõëINN¦Aƒ$$$7Ü€ ƒ(‚åŒ|Õ2`Y^#½]ƒ¦åÈZQ4o¹o›Í†ªªDE®M9räH¦OŸÎ£>JÕªUiÖ¬UªT1ýêß%o^œ LfO–»(€¢€ªa1k:5,&/ï{³Üe< ´iåݧÔUƒÐƒƒÐ+è̵€ÇÊíÿR®¡š6mʲeË8yò$IIIlÚ´‰† åºèaÿ–-[²`Áìv;Û¶mãàÁƒ¡0Œ„.œm,Àƒåö—¸NÿKTTiii´jÕŠƒP§Nt]÷êcbb˜1ceeeØívú÷ïOË–- B¿ò˜òÑðò…e<„Žª Ⱥ¢¢«!VG™ŽU>k²› ‡$Ãùf“‰§½é´jÕŠN:ñä“O’””Dzz:¯¿þ:§NâÎ;ïäý÷ß§Y³f,[¶Œ½{÷âv»ÉÈÈ`Ê”)„‡‡7Ü€`³øâùm@y—{BBÿøÇ?7n5bÿþý<ñÄ„††2dÈš4iÂèÑ£ÙµkË–-Ãd2‘––Æ!Ch×®AèWx¼Æé™Ç¾ÙáÞ}Ý &3‚ªx¦§)*¨V³ŽË¡a‘Aô6¼Û˜²VyÆoâSO?ý4 ´´”””RRRp:,\¸ÐŸ(Ó©S'jÖ¬‰ ¤¤¤P£F ã^0Ìfÿ"l@çΩV­¹¹¹üío£~ýú<÷Üs„……!õêÕã¾ûîÃív3hÐ RSS=ƒãn_­v{È\”½ îS襧º¦a±‚½ B÷ÇÝúùºŽ±>úÕ—èœ1dwànXX­[·xÏb±Ð¾}{ÿ~5 7` ²˜ú‹´¢(Ò¤I“³kܸ±ÿ:vìx¶Ú7îøÕ’n*å]wÉäu¹‹èŠ ªŽÙ,àt觺æ©å. ¡_„n0`àÚ6õç³ÎK÷s¡_±ašH oÅ…=.Ï´5³œD‹ Õ“/'h8í:VÉ«Ð5P40©ì•ƒÐÕY øk›þ+¸:‹AèWl˜&V0,+G躗ÐN‹ MQM":N»G¡ûÝ¥ž¶f ˆ!c¬ÎbÀ€¡Ð¯ „~Õàö¸Ü%_Rœ·RœÓ‰d5ƒêB’DMÃíÐ /×R —»·,*§§¯òq\EÇJ¨—h´%¢#£oÃ\A½AèW .ÏídÏ„rÝ ²ÝîD´šÐ;’, è:N»Fœ)ð›¾AŸQH&ˆq!1tC¡-ôK6Ú2z§¡ÐÏc' B¯Ì½ºZòº¨xüé^—»dõÄÐ%Y@TU»ŽEÄ_5Æ­1ôJCèF ½Ò@Cüƒ.% ]`c èå|fžïé†jÿ«úùl€ár¿ZÙ;m Oª³²­Ô‰l1£)’äQè.‡î)!ê%q‡ VÁ tC¡¸´Šüܪ\¿(Åx¤îïóåßÓhË_2mÍPè•ÙÂûn¹ D“'.¸BÇïr·«hzåÏï)‡O?ý”¥K—¢( uêÔaâĉDGGóý÷ß3oÞ<ÊÊÊE‘ž={2hÐ dÙèÎNègºÀ ½Ì¦±‡“]›ílÿÞŽ$‹¤4´P¿y(‰É&beLfUÑ)ÎWÉ9áæ÷}N~|%Ÿâ<…ÔæVÚu£Q+ñI""º÷7|„î)ûtf$]À˜øpÍQÀEÚ€ƒ2yòdl6‘‘‘<óÌ3´lÙ2à˜ììl&L˜@ff&º®Ó²eKFeúÕ“n*ˆf¯€wƒ ÕŠ‚hý ]TAqy+Õs¹›5ϺèÆx¾’ÎËu挌 Þzë-FEãÆ™2e |ð#FŒð¯´0gÎn½õVúõëÇ®]»3f ÷Þ{ïYÄo be®ìKŸ¹œ:[ÿ[Æ–a³A³BùÛÄjÔl`!,ÚäSÒ«©ÀM÷ë¸ì*'»øõç2>_^ÌG èÐ%Œ{†Å&" º_…{´y ËÝç)Œž}íúE–±ÙlÌœ9“o¼‘^½z±råJfϞ͒%KÅÓÏÝêÕ«±ÙlÌ›7MÓxä‘Gؼy³AèWÏÒ»@0{\wz³Ü-èn7¢IBskÈ&A÷*ôr‰²eª'†®ë†Hj\da™-[¶K·nÝ£¯9B·\€(§¼÷îÝËœ9sˆŒŒä¾ûîãßÿþ7‡ö/ÒžZî&“‰ððpEÁjµbúÕƒÛC÷ý-Jž´Ý ’IDs+Ȳ×åî“/Ë]õÄšþáØ IDATЭ*£ÀL:b."†ž››K\\ÜiåWµ*8Ž€¯ 6ŒéÓ§óå—_RRRÂÀ 3î÷(s?{e‘†HQÆÇo—°k‹.ý¢i{G,Ñ.orœ“—È¥óº/ÉÍGÿÕ›ùÛ”0üdã‹Å¹üôß“ M£fLrùxºïqPÓEm ¥~ h·‹ˆ¡ÛívdYFò‹ŽŽF’$rss½sçά[·ŽAƒ¡( -Z´ uëÖ¡_=”+£»Aò¨u]QMj©ŠlA—Ë›çen·Zñò©ÆÔô $ô32\sìðm&8=v›ô²r‡Kªªú÷UUE’¤³Ô÷ܹs¹õÖ[éÓ§»wïæµ×^£[·n$''÷ü"•ù‘CnÞ~)™Ñs«“TÄ­œ"WýD~~B×½ntÑ;\Ù,ÒìÆpš´ aãÊ^{ŠÛï ã¾aQXÌB’ΘÔvM)ô3l€CõØ€SÞ…™¶äBŠïpA@×Ë…`4ÍoÊãÓO?EfÍš…¦iL˜0¯¿þÚ ô+gÙår›( Y<»šËO—A÷*tÕ®`¶ ènËÝ„W‚+B5Ð4¡ò•5„ùŒ„˜˜P¸­æiOÊçÙ§?«S§_|ñv»öìÙCÍš5‰ˆˆ8Ǿ}ûø¿ÿû?ÿg .äèÑ£¡ŸC™—O€ó‘²KÙ¹ÙÎ[SòéÒ'Š.CÌ8py¹Ëë+ubFG@ñ+uÑOøbLÄâWê**2Šç3³›NZ©ß&‚339š–ÇC£ãH¬&Ÿ•Ý.¡  ! Jý²fÚWõ,ƒ P œþ,** Q)(( ,,ŒãÇ£( )))çØ²e ;wö/©Ú²eKvîÜiLš¹r­*œ±_N¡kÞ9邇ÐEYÂíT1[%Å#/Låb芒¨> é8θ™, ÞÍ\Î×¾}{TUåwÞaóæÍ¼ûî»Ü{ク\.&MšDFF†Ÿø—/_ί¿þÊš5kÈÌ̤V­ZÆý¾lZ[Ê/äòð¸zÆâ«Ý¸iˆ_ÌVÑùj¦Z9»‚ 0cD6EùÚy¹¡Ö+µé?Èfˆ?m"ÊÅO“’’¸å–[˜5k;wîdþüù4kÖŒ¤¤$-ZĺuëÐu¶mÛòÉ'Ÿðã?òý÷ßóÕW_qÝu× ýêÁB‚÷oïÂ,’W¡›»B¨UÀe÷xîÌå²Ü}ë¡ûg¹¨ñ_yÈ\Ta™ÈÈH,XÀ¢E‹X¶lÇçî»ï¦°°»Ýîw¿½ýöÛ,_¾œÙ³g“˜˜È’%K¨^½ºq¿”¹pÆÜr¯2w‹|ñ¯Ö./a̼ª¤4€+nLhˆØ±¢#`'Ôû‚æ=FG,S½6ûtìÜ£ÒÝx÷enÁ‰„êµâÀ-ñÈŒ¾\rŠÿ˜ÉÈ—©¥‚1¡b4feÆ…TŠ+ÇÂf³™ &ðöÛo³`ÁZ·n̓>èñ9¸Ýn{ì1âââxÿý÷E‘çž{Ž®]»„~y‡fçé¤8ÍíQèxc貄ۡb QO6»ÉWXPµKZ-ÐÀåìÌYX&99™ñãǼÌ3Fñ£F2îïÅ’¼[ÿ[Æ¿—óäŒ$ê7·âôöÓ3³ØÏ|=½Iåbê§ Ý;×½ƒg Õ_YNCô£û'ª È&‘;ŠÅQª°pÂ)ž™DZ‚` ½¯9…~„î#õ'žxâ¬Ã{ì1ÿß&“‰0`À€?:ÕÅAQ6lØÀüïÝvÛm4oÞÜhH$þ¸ ˜äPO .OR….›‡‚%DÆåð(s‹7ìî‹¡#±J¢Ðÿë¡ïÝ»—¯¾úʿߠAºvíŠÉdºê׿!eMÙ¾ÉÎû³ 1-‘º­"qùU·G…—ŠŠ„ptJˆ@C¤˜H4DXP‘pa ðøbÜ"2 f\Xpú•º&Ü„`GB! 2 ÙÉÝ#j`<Éô9²ôÇ Åà ¡_Á¥¯BCCÙ·o½{÷Æl6óÈ#pë­·^ñÚòú3I|sÏ?[TDI1<="ÝìqŽûâà>5î„ 3*¬(nô-é\¶“¬ ØN©>yæI8Íh’h «*¢âD/*¢tó.ö-ú‰´×7P÷ÎzÔìÕ9)ÌG—Q°àÄ…Ùï¢÷X Ñ,ÐïÙ$<ŸÉÇ ¸xŒ—Ô ˆÑJ½¡2­¶f6›9r$f³çŠçÍ›ÇÔ©SY¶lY¹£ ËY¯@”Aè¸@ ñŒàT7È&ÐÜ"H&·ª!ËàöM[ó}Í[Ã]:§:ñ„Ú ñþ¿£88½ûÙ†B¯·ß~;íÛ·',,ŒmÛ¶1nÜ8>üðÀ©t‡÷»Y<§ð¬NÖùn+ U/íhÆ—læ#= ‘´}nþ»ÆÎ¨×ª"Zdœ~7£!úãåÅDRD4 2' BÙ;o3G7¦S¥ÿÍÔœÒ â9%D£è2=Å-ãr˜ÑuÏošÌnä* !ý[uoo„mÛI[º†ßÖ}FÑ©vs=b„B̸PQË]ƒ§7¯£1ðÅÌœFf!t¼Å\îqò‘¿¡Ô¯$r2U¾þ·G™guäÐEÌ<¸ÈZîW•Ð%I¢víÚþýÞ½{óøã£(J¹Ñy4Ðá‚]¨e½›—Ð}.wÝ ²'¢’YÄ©èȲ€«$ÑÛæ:hÞÍÈr¿üʯq”9ú5—˜˜Hbb"àIŠ={6'Ož ôºL ueòk|™äE:óÆçÑÿ™8ê^êWæ*’?>îÄ⵩¡dþ”Á'®ÂÚ2•úkgÙBŽ# µL¢Ô¦‰¸fT·ˆjÑu$Å,¢É&°J¸e+æ‰i×ç¦-lŸþ>yßì£Éc7žfÜ€€:&Ühˆ˜qWÃÊC/Vá½é'iÚ¢*Ѿ9í"œµ>›Ëþ|W“xðÑpÿþþ%þå ™¶v sGÿ'BWU›Í†ÅbA×uöïßOTTTPÄÑ./ÂñëË .Â*ûÖÓÔ¼„nõ²´d ¨NÁ£Ð5EC’tÜ.¯{Ý«ÎÝúùóç  þ"ë¡#Ë2¢(’™™IIIÉUMŽÕ½S̾ù܆)T¦õmå\ë§Ýê…îq‡«aì]ŸÅ®W77òA¢º´æ„%U“È,ª Ev´ƒÅ°õ[H;ÙPrH¥P%wõšÐüFÊêÕƒ¤ˆ‘°FÚ°ÜKü»©ä¼²€‚gþM£ý’cAðÔˆ÷Mo;!ïDD£É QÔoeã_ <:‹éô‚.ÆÜôJ¦÷®  øŸ=//_|ÑãîÒ4Nž<ÉóÏ?¯üdzàY01X”]@«Š&Ü …z»Lñ 8½.wÏ:˲ì­ã^®•œ*ȺgµUÍ»|ªo3„ù/å>{ölŽ?Ž,ËdffòÈ#P·nÝ+HàgkÖ‚\•uÿ*aØø$Ì!²·¤‹„ORœŠ„PM`÷ÇGرøug £¤ÕÍ2E9qè%¥èk>Fÿr sBb ˆo ÊPøµ>ˆ*D~ G÷À–¹`Ê…öíá¦Pš¦BT8¥‘ ǽ„û_ËØõð›˜gõÂÜ,Ò¯Ð5¿B÷¼†Å*Ógtu&?pö]#¸®µ) ާ×t+bÿ_¼ •º®ý…Ø€`!ô¸¸8&L˜€Íf 666`µ¨k2žÅK}Ù–‹ tÁßAõÌ=uÐ`²‚Û… ‚ìUè²ì]iM>=p*Þ%Ô½®wc•µ ~Tþ.÷'Ÿ|’‚‚TU%44”ªU«^Ñ9è>»Ÿè4Xÿ¯j7²’Ú*Ô?MAÆÉ¯ÐU$lZ‡7eû¢½T›ú8´iÌ)-Å …«÷Â'oƒ;Ú„¶M@Žb {Çåš–.а 4.ý$Y³_DiÚ¥ç0×%BT U÷G´°m¿‘_êFõ&Q˜OLÝêÍxwcFCEA&,V¤s¿V½[DÃæ HgXk_¢]eIÿ¤•:sÖB¥#ôÊ’'IÒ_°äd)° (Žâ‰¬ Hä>¨ž÷DÁó‘â¡«NDd“€¦jȲÇån–½Œ­ƒS?½¼‹AâAŽ¿H =>>žøøø ¹žÂ|«Ë1³*Ȳ‰Ù¯ÌK CEâÈ®¾{y5güâ×S¤X±ýnAYõ,ù:> Õ{‚j‚,<’…Þvò¶qp0‡AD¨ú4Ä÷„Ý !íq4šu¤¸fòí#Û¶Y‰üÞØ"Q‘°âÄ‚Ó?µÍ‚Aйù¾X6~”½?9iÓQöÎkÿßÕreŠÃ_ÈõjÁÚ‘.$†,IqMèÀoÀ/¥ ’ÐE¡‹º×åŠÃ“' hn¯ËÝíUèúiB—¼Ï€ÛhŒkŽÐ׬YÃÒ¥Kq¹\Ô¯_Ÿ_|‘¨¨ÀY!#FŒàøñã”””––ÆÖ­[©V­šqÏ/?¶Q·Yµ[á|Ép 2,Ø U¾{ñkê=~jÛæ¸c(ËwR6a z~!ôÿ̱pXðy† Aîq(;‚ t §€¥„ׇ˜D“ ²6´› E_Á?'ÀÝ#(íÓb#©: º³€íÿ·†ˆWî@Œ õχ÷e¾»1!¢o¢ûÐx>y+ŸÆ- ýß•je$ôJ‹?¡ÐÓÒÒ˜2e EEEÄÄÄðôÓOŸU}uñâŬZµÊë‘ÒØ½{73fÌ0ýÏC-×b3\“8Xñ~Wuz–áRœHf QÐQ “7)Î_Ç]—â©?£«†B¯„~ 1™™™ÌŸ?Ÿ§žzŠ&Mš0yòd–-[Æc=—2uêTÿºé+V¬àóÏ?'::Új#RR¬óãWv|6 É쉻‘qaÆ ;¡¸0Qäc˼0]×€Ð7sH¨NIš ç?_EÏ’àî×à·8ÏÐ4'®…ÌÁ– ŽÐÕ½Ãê} ­kœ¼†Ad ˆ“!º\— «ž±nL¡¥ñ¢xäs¤}´‡úÜ„V„QŠŒB(¥ˆh(È4¹!š5 O‘“á&¥ _êßù-ŽvmäEüŸA¡æ/¤°L9.--eæÌ™´iÓ†Þ½{óá‡òÊ+¯øañ¡oß¾ôìÙ€C‡ùm†‘,}ÑíXÎ_œ÷¾ï[6ÍKèz9…îv [=ëkÞik~—»W¡ÛÕÓ1tݘ½ü‹tž­ÜxpÓ¦MÄÆÆrçw’’’ÂСCY¿~=ÅÅÅ§ŠŠ"66–°°0¾øâ úõëGhh¨AèìúÁ‰(‹4é°°ŠZ.)Ή#ßerô›ãÔ÷ ÎhŠfœó_GÉqÃ3@‰‡S¤ý;ûÁáÕ`ûèÿý-`$0x˜ êÇPú>äÅBÆCpt 䜂<¬Máú·àßÁ—Ÿb/²â0Å3þqö}°›œC…8±ø¾)u¾-2ÞDÛ.løØæÿ?õ 0ÝB… ¸ê×hWÓ/x»*û ´YYYìÚµ‹‡zˆjÕªñÀÍáÇNJll,QQQ|õÕW´hт뮻Πô‹jµú÷^€å|ê^Ið4¨îõ««$³ˆˆæÍr×qùº®r1ô@cf” Z…^ns pªNÚ<›³\Ü$777 ©´Zµj`·Û+<ýŽ;())á–[nù˸ê]¸@×u¶l(£mç0Að¹‡ÀX)#:Cؽx7)Ãn%?¬&§”x ßüuÇ1¸q2 ùöÎ<Îβ¼ûßg9ëì“ÉÌd™,3IB!„UÙP,o©R»ØÖ"Úº¼ÖO±T°¯}-ÅVky+Õ"Y"RY%Äd_g&³og{–÷ûºÏsŸ3g2™$l2÷çsr&gyÎsžs_×ïº~×/à¹ïÃon€á« ð!¿’â5nõy^Ù‹¡ÿZx†Ú•pÔ5pçW(t’õÓÔà|²ýº~¹©˜oÞ4Ô,Z‘Æq-^z.;%¯õµôtßÈÛkåÍ¿&,]™È[ðÜÖH¼´Ëx¹eÔk ;&êí²~ýzr¹'t0w¿FB,ò,ªh ª™Ìþ¼g2úSº%j)ׯòÐs9bn (w#†žõ!aIÙL7|3¯ ek3›áòó¢ÿÿü™èïööv~þóŸ“ÍfI&“lذ¶¶¶ŠMZxðÁ¹å–[Þö—9Ÿí׿È0oIœ–ù‰b‰Z^n9dIÒÛïò›ßDÝ'®¦/ÝÆîÎz²_¼N¼ ²Ç‹<ùï°ÿ^È}z›PÕ,!Ћ*Y#:a3ªÚEÇVô¼Ü$P Á;Ô îý,ìÿ`1Ô\ ÁÓ„ÿömÂ?ü,}ËfÁ]͆ïßAú¼S¨OÕ'O=Øøä%9ηã,?½šçŸÈ²æì$–VL޶*ÄÖ­Iâí¯­'ÁOeŠ޹9Ô8¹SA£VÙ\…,÷dÎ;Í`]ËRWW‡mÛ PUUÅîÝ»ñ}Ÿyóæ?¯ à®»îâ’K.)êˆiý€kð^à]ÒO?~,–x%0?¸Õ4Ôšp«=Â@yè…îfHàÉ'ŸŒïûÜ~ûíüú׿æ;ßù—^z)…B/~ñ‹ìÙ³§øÚ§Ÿ~šúúz–,Y2 è@X<ñÀ(§œ_E, f)¿u­ïÇ¡ve;.ùÇŸÁÛÛ§^ž{Ÿƒž@Ý!hUq,\  ˜+ÆüóÀsðžq+È-Ìfçƒ5d?¹.(Äà¸?…_ývlÇܳN#c§ÙÿØ+%pXuîKW¥Ø¼>KY¹½bËS÷Ä}8Òßå°Žg„0Üê––Î<óLnºé&Ö­[Çm·ÝƱÇKkk+ßûÞ÷x衇Šü¶mÛxùå—¹à‚ Šü´‡~À_bŠf× œ6ŠPëËWƒ*DõQ…©+V c™ØCw-•²øX1ÛËKX„Ù,® q7 §]ºÇäBˆ[Óñò·Ì²â5†uþo|ƒÛo¿ï}ï{|øÃæ²Ë.cppþþ~õ- z‚p|J\¹nþ"]ñaG #Äúá‹‘ã”<÷ÚzñzpÎ!üu@<çïþîïøÖ·¾Å7¿ùMV¬XÁUW]¨ÕÑÑÑâk÷ìÙÃùçŸÏÊ•+KHÁé5¡Ýß…Š‹ƒÊj˜)z8CÑh¼xä? wm€9'’:q£·ÝN®{ÄB5]ƒ°þ.é‡ „ÜXˆ[k–Wiv˜‹®á©\?RÆe…ãŽ}“³”‡P‡žL&ùøÇ?>îe×\sMÉÿÏ<óLÎ<óÌjz•®gBŸ+€®…¼8VÝ^ÅÏ·ˆGg|º³/ï‘¶@QîV!K<é@6G,1×'—ƒd2²1²¾ò¦×ï& O¯C[;^-0§#.\šGŒ¼”‚åH!É+¿Úƒ³´ƒ\ó\:‡êèÿçû Oú0ìo€^…]÷߀pD@|ŸÈz*“½ 8Y~Øœõó•õ"×u"ÛûÝòÿ4„WCæ«°í;PÓMï‚{“Y>pÅñl{t .d„j\-õ-³¥–àWÊ‹¡Ó†ÏBaØôˆÜzâkïúEñÄmÑæLò4*ܶYÞ»8E^óQÒl¿r‚CÿFˆ-‡¹ÃÓ÷ãí¿šÛHÍ™Kï†.²‹ªpñ(¯Ò!È„Œø4Πø -B\®çávnðC,m£Ê'±<pMæHÎe+{8 ³¥ý'³1‹ –91,-ˆ'U4äÔG¸|¡²=Ç.jßq]oÛbEšÔ“¯äµOöüêÖä: ˜¦Ü_ϵ¸K0ÝÆN¬VÖ6³PY­w£ÊÜtÍpó=§¼wKR:B™¾–/à$üœG<¡ÚÂæ<ñЉ<ôkÚ+Kx‘¶ô!™Dà§×á­¯¨k´©or0}W O½ÌTç) IDATûÙ]Ô;;ÀÉÁ¾Ýpé1°'„Wï…Ä;¡®€hö¢’amT²¬–À:àTNÍ\ðÙ¢Ba÷önop,xƒ´ßB8Ô M³HÓÎØK; Þ{4¡UZÀ• ¼êšñSñê›xßAt_<ßZ¯‚‡>øNÕS?#!4ØóŒ~¼!ñƇD²²¨ÜW¼ìa¢¹©ƒºhÆ®E<õõ¢+ò(:^#ãˆ÷tèÿàü! ×CX»ö@Ý,ìãŽaøûÿAÖ[NSßE—– ÷ä©ippm‡8yl’d±ƒ·PÀBb…Û;oY9ÈSZBï ȇärª=±WP¹» †Dº6¸¸quï˜C'CBÈûê½ÙŒå`, £YÈä —‡‚¯æQX–*ÍMÇ¡. uUÐT©¤á¡' O]çÛòóØ’Y unB$Ü B; BÛ'°Á‹Gñ÷жñ‡ÀöV±À¡zèe‘Ø÷œ#çžMú„`~ª}ð *VþNyîTBÜ#ÀEbŸ†J–¹ß0-'â"1t,%5ÚU+äq.Ù¾ ñ¸² ó¾Ô¡kß>Ÿ7½Þ¬€îàÅœI<ôiÎýpWçέóâ㜼¢´ í¡í¨Yt†ù·¶,Û…Ñ`§£n3<òP·U¨­Ãþ"Ñ¿Ö °ÿ*ÔV§Àš;Ÿ®c²ì¸³!ßþ0„MjÔjçV8fvCþà¡@¬TÐwoÉ1kA ÛÆh7SÙ§<^î‘û ÈóyÈe`,Û÷¦°³:û¡wX¯çƒïGà,K&?Û*ϧø·€z*ð÷}(àyPððWÅ!åBÒQ3*,y}Þƒ± åÔ{jRÐZǶÁŠvX2ÒUÔyÄ6¥4¾9÷ ãûÚeæ—(µkY@b[!¡yí–ŽÑËu>/=´,¼Xl=qä‚§Ó€^qU£êÎuƒ]Þ*Ï- \q?EówL3MJ­´u{Ȭr²àÄÁ²° 9©™\žT*Ä }B_õžÑ–tÖW›zz½›¼u`ažntx«PéÞçsüé®qMbc™ z{ÆÆB¬¶9ŒdŒ­ßNØt¾ÂâÎmà¶CÎÙÕ=Ù}TB¬–ù3D~ÈýѨæ2ͨ›‰0yúXä=~¡áƒ0ð" ž©cáÅ °êæ×áå| ƒ% rl1O^xt˜Õg§HZy,BRd°ƒ€d6‡íC,+dÌø*Y9…äÇà¥ðÂVxr ìîU€:3 óªa^ W 3[ Î…*WŠoõ´çPnÞ‡œ¯œ /Ïðàc¶î*j\ÕK#f—¬‘¶ÁÖøívøçuЕ…ú”šD{J3f5 a¢»m[ñ7žßIÿV,âIEÑã¨A̧ˆ¼öÀqð\·dj_p€r·Ê,’5©ð >ŸôŠkL(óÙ ÇB9‚ª=]*»(.TÜ/€>¢^~婿¯–®È‚ 'i«*†î&kð³ñ†!8väräÂi@«¬o’aÈátÐä°V>Ò¿ß§¥->®¼Hg¼íÃj¬'t\‚‘ÁŽÝ°z™•‘PuŒA‹›qó¨ÕPF÷FåÓœ,1<ðg—PU/6ш°ìø1eø 8 ’s¡ó ãN& ó_Úõm¸'Ͼí9Ž:¾‹‚‚_• Y¾$·Ê(u¹èëƒWöÀ/Ÿ‡ç6—…ÅMpQ;,^ ¨ !€eÆÕ+ÅÒ­Rš{Ò:jIÀ+¹ØöÕ18. ÇÕÁ{Ú cA{2ðL'Üñ(ôç¡¥V.‚Õ0·ÒÖžzù¹RÁ“wŒ×Ês–«@ÞÕ¶(Í ÔK,{J~zˆ5©ð Y? è—‡ª3Ý –øYòËïi™KT’¢Ol‘¿ãÀ™âå¿* ï–:²»ðƒ,¸1Õ6Ÿ#ž´ r’IU;†ŠÎÒýgòLSîo•¥³“üšRW¥»»›ýèGtwwóŽw¼ƒ³Ï>»âû^}õU~üã344ÄŠ+¸ôÒK‹5¸o§•Ë…dÇBj]£º.àr±Éôe`Æ 5BµÏ »6 Œl‡ºs#÷•QPy*¡­ 8O€xn›%Þ{\ä><…*Wu€PñôWä¦å^ô ÿªòªfÂþÏMAãAü`º¯†eF‚? *IœÜr ƒtæÄ`õLø‹Ù°Ï‡u}ðÂNøÇç` MU°fœØÇ/„ªzî2=õ4QlÞU¸ŽÉÇB'Àw=|ÇÂs-|×Åwœ)Ušœ(=¢çyüð‡?äÅ_äØcåâ‹/¦ªªjÜûz{{¹÷Þ{Ù¼y3óçÏçòË/Ÿô›•C¨ŒU½“g»Aïò‘ˆSˆQ,7Lç+…²[0+5äóÄ’~Ö#™V?uDT—'ÔVÒš|Tª±›^oåîP`2Ê=rUÆÆÆøÄ'>ÁÒ¥KY±b_ýêWñ<óÎ;¯ä==ö7ÝtøÀ˜5kÃÃÃÅ1‹o;=b;àºÖ8Eª«²vŸ×¢À>›SµOnB€«ìڔ߆„R×Àv.f¼F3z+÷¡bïºt§0{¦§>ø%8*S,3¦‚Òñ~&Taz>ígÍ™qb¶ë{Ê3ω7­©v¹ïï…_¿ÿõKسÎ逛ÎUtzÊ++¯Õ¶Ë¨ÐI²(—%”~3EgRÇñ t˪¬ˆB¢¯ê[@·äË‘›ŽVÆEeJ½®‡9 ˜ÓÍ…l£1x¥~±nù-ôûÐܤ¨ù“‚ùÐÖ,£¨õ9ûe,ƒÎ®7"¤ú¥ŽZÒ ié!Ö¤:À§PæÿøÿÈ+¯¼ÂW\Á]wÝŦM›øüç??Ì?úѲråJ.¼ðBúûûÉçóÓ€~àUEiS™*ƒ£ÉÈ«E%ÏY²C6ˆTÄ €¯ÄÄEr Ðm <7fáç $C¬0P€F&…G4œe2@Ÿ&sßh@·)L"báÚ<óÌ3 ñWõWÔÔÔ022Â]wÝÅgœA25)ºí¶ÛxÏ{ÞÕW^©ŒeUœ™þ¶ô\ˆíZØŽe\ÓhbY};Fˆ{,.Áhbqb0Z/^-QÚ·_æB:¨8¹y˜2ùÈ•d©ñš-r¼@<ú¬á$è{“2üªT1òÐAXÚÊ4FL†GøË¿ˆ“ GMn+§W'žyÐÿ¾ýxyø½£áÌc 5Ö0*¬Ÿ1n倞WþEXP§:@gúñ£³8Pm©òÙWq‘Ž®;ÞQBó 7„¾öÐëÃ@ *v4ó]mA“ ólXà@£ˆKG`’(ÛÝôªS¶!] 3-8í(È/]>lÍÀ†^¸íÇÐ5 ‹šá¼¥pÞ ÐP–.`ÐéNIùyõ·' N,TÙü®‡ï‚Äz*@w'5üM†î¾ûîãŽ;î ££ƒ™3gò™Ï|†ÞÞÞ’AL?ýéOI§Ó|ìc#™LbÛ6–eMúW+k2€|¿ÔKʸ'=3ùNú1Ù)Df-¶tLý¬ª¯…lÙ–òГcè¶Ä|ü a)Ù?í¿Ù=ôøAÓm›6m*™¾zõj¾óï044Tè?þ8¾ïsß}÷‘Éd8ï¼ó¸öÚk‰M’Mû»¸†|)7VÞ/-¢ÞG»G‰·Ô+Źw44+7¯7XÕŠ~Ÿ°H:@•žµˆq¯Më.ñ¼W2~DHø™¼~?%…ÓÅc6 /> V„äFEÈ ¸q§ØêgØÌn•RµŒxæc ˆƒ!øåoáÛÿ ÞüÙ)pî|±%°‡EíèD¹¬Jß+ÀŽ lñ`s6f`_ú|•ü–œ“.¬E“D‡éµMC%å»Vt5¼P=ÊqRÂoÖZŠ·HŽò ôûåTklhuae–`aæIi›í€“T÷då ž\æœrx:ÒÐQç5(+ãÃÚðàópÛ#0{œ¿Î9 涨D¹"Iã?³m +.Ñ…)(]eTXxEƒâTÅÖV•ŒÙÑÑëºlݺµÐ~øa:;;ùã?þciooçºë®›ô‰W¸L¬óÀZ]‡ZeñªŸûT·(Í]¥ËŽiËn)D€NV™¶ŽJ¶°­Pyè Õ¯(dª|¤D€0Ý-îͼ©‡6W÷^ÿ¹o˜ì˜Ú;Û_è¶B¡PʱX ÏóÆÑéÝÝÝÌž=›Ï}îslß¾k¯½–K.¹äm9}ïæ9.n F6r”™ìΓ¨IãáîÛ53•‡Þ·GÉrP…Êu)î:¨a,†g3Ø»Eò¸F€^T/ŠõKcTžÎa”²9æXà{P(æ $ª\<\?ÇK÷måôóÓÔ§‰áˆ<óž^¸ãnxôE¸r\|&Ôå…õD!d^3 Á(Œd`ëü<Oåa(€Y¡jn{Š˜!‰È Æ%ÊÒs|1,.õç6¥ÞôHƒ„ü„³ŠzäÍPƒyØ”‡gPÍ*àhÎuayR±É´tÓYîšDMըתÞ7ÀE«a¯­<÷û×ÁQYó<æÌx½|Ym¥È½GT¾5¥«’âJu@v,äÑû†Ù¿Wq¨ŸÎrÚGdgA Ûæº.–eQ(JŽ122‚çy\ýõÔ××ó©O}Š{î¹gÐ'^ºœe˜ŽXó¦¬wÓT=j†É3D  B ´ü5å¡'TàÊŒ¡kË8iAaúzÓ/s„^3fǹìÏ"K{Óó=Ñs3fÐ××WüWWõõõ%Þ9@KK çž{.MMM$“IÚÚÚØºuëÛЃ²LöÝ[=Zçű\»¤;œ 깡< µi|žýP?SµïØÖ,TÐJ…Û´›(-xÖM§¼Vàª^Ø»>J›ô›íÌ´q¦ë¨ %ÞV.‹í8ÄÕʵïÕ>6÷qöçëHe ¸¯€Ú‡—^‚¿û´àÛ—@‹¦Ï‡Ä–T æUÉûú,¬ƒGÇ —…å|ÈVÍ«ŒÏ‰ O|¢¥AÛL&·+˜/:H2q³8€“+Þ‚*ÔÝ<¶¿ àëyÈxÐæÂJ–Ù°<u$²ê î¨ü|¶X ¶º&Ž m5ÐV§âï[á¿6ß|N<>üX:[@;.'ª½wUb,³\ÄÒðÎß«/þÿ¾;"72™,1âñ<¯Ä;hmmeîܹ,Y²Û¶Y³f /½ôÒ4 O¼:QÙ¬Úôk4€\ß¡"H®á¹çŒF‰ Dë¶è±8ºý¿e…ø9E¹[a¨²Ü55#Iq©i@ÿ¤ÜO:é$î¸ãž~úiÚÛÛ¹ûî»9í´ÓH¥Rlܸ‘öövR©—\r ?þ8§žz*;wîdß¾}´··¿- ¤ò±–Ý{=Ž95%¾îò•Ëøø~ˆS›&C8ÐÍ‹” íkvÙìsó~•ì¦Ç¥Î¤¤ˆ+ì£2ÞÑ1‘}=”e‘¼¯‡Ò´qásCɈqãXc£X‰1Ç#Zl¢“ùËRÌj*ê.àú>A?<µ®ÿø_+ámö„ š]î‡à‰QøÑìõáøþBÓ ë7*ß´<Ç_{â1ÌÚ$)Õ ±ˆû˜(¿Çf|ò¼NROm¨TÂóQ‰p{ò°1¯ †sÂ¥ž“€ãhOB}Ðò£†÷.ÀŽ«,ŒŽ|êø_GÁ=»á¯ï€ ß;Z›å¤“†R˜  ånŽwmnn¦££ƒû￟óÏ?Ÿµk×R__O{{;Û¶m#•JÑÚÚÊ»Þõ.n½õV¶nÝJ}}=Ï=÷'Ÿ|ò4 O¼2ÀD0A•¢ÙÆVŽ~Žh[·¢ÊUªÅ¨ÓCGzG åîhÊ=a€e©ŽOaÁ'• ÇQî:†KËB}C§cêo&@·"Ë=¨ŽŽ®¼òJn¼ñFÇ)Ri}}}\uÕUüÛ¿ýË—/çÚk¯å†nàOÿôOñ}Ÿ÷½ï},\¸ðmÉ€ìïô™Ñê#M¹«Æ2.£Ýc¸ÉvM ‡p ÚU|¨X. º’ôxºýFøÛ÷Sšg‰ÁîPUšñЂʿéݪâå•2’ÙR¥«–é4öÈ N*FÒ.à|^x¸‹Kþ°žš`VxòiøÛ;á³'À9íàv Oݹ7 ÀwÅ~ðç¶Â&5hs]*î•é“Éj'ìƒôòJüðºmümÉùjÚß6‚í¨qX\åW_äàûT`eNµaͰ*õM׌tb`WC[®YÎ…[ž?Þ_º Ž[$?¹Wvq¦°G'Ïr̘ºº:>ó™Ïð…/|ÿüÏÿ$þú¯ÿšX,Æßÿýß³lÙ2>ýéOóÎw¾“_ýêW|ò“ŸÄqæÍ›Çe—]6 蓃z=°†¨®ÁózJSÓN5À½ÆðÊ­²÷I †„9ˆ% u`) ñ ÉdHªÍ»èOÏ/+·«˜ô7=|0ek¥á™}èC¼ÿýï'‰‰D‚ xì±ÇH§UNÆ¢E‹øÖ·¾E.—ömÒé4Žã¼í®ïØHÀèpÈÌÙ®ÑÈT‡‘}#¸5Iìê~hÃ@/Ô4Á®FöCØlz¥å RžF±T LU—yìK Hj˜± Ÿ“2gÀQ™îøP]K°cñ¶fâNÀèÎ>F{³,Y'f°†B~û|î{ð¹ ༔d¯êõ) ® n/—ûª'òÆ O\;›yƒI.ç)¦²b%“ã¡Sf(8e`®½vGÎÝFõóùjaâ¹æåo¶DY×eåyGí [{è9ˆÇÁÕªºÓT2ÄÏû¸Ni–»ó;VTN`þîQî“uŠ+¥mÛ¦ººzÜc:ó]¯d29.¶þvòÌClz»•gÜØìLHÏvo¬&päG}‚lÍC~üÃ.=VN,×—íV«ÂÿÍi-óëPt€Jš5¡Í“’Õ铚 xv+鎪íQ^¼w=«N1¯1KªÇ£sKÈu·Áµ+àÜF°¶ *ïS•ë‚›‡áçp±ï°Õ™ËÍ3€¼Päq_îQˆr·ËLŸÉ»‰½óJWÖxËt×Ézå]^«P3ðÎv‡ð\ÿ{Z\¸"§9Ð0ªºn»#¢âGÕE‰Çáüz˜¹ nXÃøèÙP5C>8dÝ«ÐxFïz,‹«l™ô®p\…mgZôÚsïŠ-‰Š»m•-7 öc:ÚªV^%źR**MÔÏ+@Ïf áF­_½ðÈþ`Ú²Õñ³×{5'Ê•|•µp¤€=MÔ à2ìq®“yèÓk*t{@ªÊ¢ªÆ®è4…XŒí"9«Nýý#…ª› Ÿü°òÐ}“r+HÉšèŸÒÞ¢û…Óíª~Uc k§°Ì|°à:p, [v“>ó¼¾ÍìxàU>ú*R–JEÿÊà¸V¸¬¬ŒnAݯ‚ë÷Àܾî)Þ`Ð/b”®p#oxæº\RîÇ*|{@wÊ^{(k†\ݼ¸@™¸MÐãó-Ø0ë‘t×€vTãÞð\îÌ÷,ø`.M«zz<Ãõ—ˆèÊz¸ýBøø/à‹Ãð·—KkÙÃÌr¯Ää©5 è\ ˆË½ñò\ÎݨôŒ8Qb\ú4ž‘O)]ù^@*02qÇh,Š…¶€†.s€Õ¨ˆ7pãít¹Éó@&]3Qs¬N$êÃw4ð+à…#À À{åÜCu×~cý`Ú>Nú¡®þý3]¡Ø||ƒn°ë!Þ² 2ƒc¾±:ÈvAa ü†I K꞊Ý!­ Ï›·xÒpã&ê*6¢t€¿Z ž%èé¡~~ c›öŠû¬h#–õùù½Ð¹ >÷°¶‰@î?¿Þ _‚Óóp¹­´Ï~ùí™g‰ ïÃ3oC }à!1ªËuGÌðŠ+eLTth0- ;‚ša9SŽ]ü\Ž«Á:(ÓI–quÝ2^×U£âëMò^!ªYøðBwåá><+“P1T·ŒÛ¨o€¯®‚Ï<ß|>qîÔ=ôÉtÀ‘4ê§ý€kP¬ìó*\*«ÂÿÓ²E™dKûFÙZbõQ = >É$ôì [‘ð¸èˆ)Tº^“lþ™J?”Î9¨®õÀFT1ÎÈA»Z¬þÞ çR\Ž d˜Wq*úøQÉC÷¹¨šZK޹‰7fªÙÁµ~Ÿz¨«¯Û§a¦c e±J´!dºGH_O¯˜0) ¾ Y™Äá½I'2¾#pÐ> Y¬áj¬‚ÿZ¾†rXI(ô@óLèÚ‚¨š?ƒ÷wÒ¾º‘¤½ƒ¡€oý>{4ǵ¥„¯õÁ']`Ù b… ‚K¼Ž®ÅÛTv¸–›½e²’Fe•WOeÄߺ’ЉaÝWú:(q*¶oÎH±ÄЯ‘ã׋ &1¡*iâ¤è6³×gÞxî$à”~âÁßxðçÀâ×ñr‘Ó\ 7žy–5OM)\ ýÈÁð4 OòsDãPË“aÊ·Ô‰_¢(w½õÊS< ª+œ“«ŸƒDlUaKè|Òñ€ühyè¾Jj9RäLF€®J<ôýr¦)Tþ"ñ ùVÇŠµÿbÀ.NbgÙÕh®nãWÀseÏëî–A<ÊÚ$û»åù(Í >Ø¥Ï+.œ‡CŸ^)™!ôï÷™Ñâ–G¾xêbd²c}yÒ³šÈ§Ð7B˜¡”u&«À4/ƒJ Ïä¸B¹Ñ º zà9Æ“ed¶hq)ŽW'!»æÏƒžM4,¬bFj”Oìåý×̤¡oŒ{þ3d^N´QÅ3ûT¥Û/vÃ? Á_ú°$Pr¬éõ¬œq¹gnº?Ó*ëiðšWœ#TøRùfM†)r§Èz;*3`¥Åx JÌ6ì_HÔ¹Ug'„Æ9o,ý€úóbHøØC»ÂãÚcïÐ lGe1$ @×¼ÏOþ[yØÔÏAmâž\v3§¾p"\ÿô䦢ì)'ÅMúkºâ€yùc yílÐ+yòJ*8IŠ |°-Â/ ‡l&$îJR\¨(÷#õƒù¨ÙP¯ˆÅí õÖ!ß f|3³ñÒTß"±žÿ’ {š‰ªuç£R‚t[ž™ò÷s¨ùu¡(”çEùôË9èŠÿcÄИª§ÞüP®ðиsüCÈrŸ^©(ýþŸË’2g…œOv0G¢E5 ú‡ “—ʪøuhzùM¯Z1kËsh*ÍæL ?ôƒ›µ*ÜFÔk-[zË)ðêzê7’ïê#;œ§mI’þýÿýcøüéê§X(¾; ÿ0×Ä`e^f’Sš¥î—yãA…o¸Ud,ìïÕ=`¦øé&l)ù†§^ý ö®Zœ‚*9F•ȤûaâbB»ƒš€±N^×"72ËN¹“˜Tæcyq(ªÅy °÷ ¨õÔÿá_=¸%Ÿv n¦ýû*~U |`)|éé#í¡Oúk¼´`Ɖf¡ë-°^`kNÙëGÅ×Ý#[¾Òvs"x³â†‡ž?‹w±CKwìpHÂŽbèªW²Ùß@oÊÅ¢v6–Qç-beï“3×–©ñ^yÝLñÈë÷C,]MËi +ÆøáNÖ4*î‹PŸ)Æ€'Âÿm¡ÜV õÿßBϽ"Êb–a8ü—(ž©¬Ñ7Á.:˜:ôiý¯­¯<ôÆÖXÑ3×T»‡Cv4 — qjÉ\òû Þ"]YÇ Ô~bXæ¡›Æ|Jv¢)9T}ú*'ÓÈ35ÆÛ? )‰…àB}:_aÞ»ª}à)Ž_pts}fÅáDG¨§œjp÷7=piN((ï³ ÚlQê/‹Œ{ò ŽPû­È†-Ôö°€h(žëвÀB(Þn^äñ¤[‰&\X”Ž8ß/²¿HΣW>ëxÑóåxÿOŒûËEä…ßÜ-ß&úë ñÒEÔ›s²œž‚qMbFðÄ’ÇuN€QµÆG€[@ኯ IDAT ð/Ãð—!ÄRà˜¥>|p<Ô8 èo±5AŽ£¢»Ú"ß-äÍï„lOxVDã$Ù"¿® ÐV=±x9¬xŒ0 ±KÍÈBܘ`äQ™r¯E%¸%‰’JÆäÿ§ e¦›IÌ«øå2*kX5mífÊZÃÿ8¾ìt¤Ðlïx¿€÷ˆä†2ˆ‹ð˜œ«në¸Z>o?p/*Qf…(£¦ €®}£7sí½®‡žLà§×¡xèŠÁJW;%-_M/ÝËz‰$ضb¾ö÷Bí2¦apk?XÅTçËî×YšÞ'†û˜Ë}ro£Huˆ#ðŒÈá&gZ¨·¬jEÛÛMÕì¥l¿gï>7A„¬} .>YZ‘ŠË}ߨúþ— úRhï»ZLMð÷ˆ¶9•§|â‹r¶³ÅȆ¨Ýk—È®-ÿß-¦L½¡¢W4]þŠèÇ`ž0 ¤0rú ig`&ÑXr 5tz?½¥“[gQl”[²l&Î2‹ µÑafÈ—3 À'¿`MNNŒ§8¬)Il¥î†¯%K7 èÅËP/ÖuA|Æ…´i»pžÜFPÓ”Nm;,°³@ …­•mGË]?èg ™PzÂÅ ÇÂõ cªóP“í^ }:)îÐ)wß7n•(OC± Ç“œùœ‹ßÙ­­`Þ¶Ùʵ &¦^ͲË,1Sõ–´ö|1]»„­Û.;½Eø2ÍÚí âÔÌ]7¦>ÏUXnÜ# Gª0ÌØÖNNûlg(ÇöpÂÙ‚ÂÝ0oÀ 1eNxDÕkf @{¨YCƒ9"—+)­íÞ' Þáe‘ó”h¸™ef™Q¤)ì69n—°í¨\=­ªìü,1ÚÍXh×^yýƒ\ ¿È.C¿µ«8*ÎÀ¥%o!¥%m®|ÇzyMè‘[ªy÷|e¾@½cX®qq¨‡þ&JЦ«« ˲˜={v±«Í[ ÌÏ{p»Ø†;‰r´3²]ËéøsˆÒDtû×1ÙVÚÖ-‡!“ø‰©-æ!‘‚̈xèj„*Xä²! 㚨}X,âvJ“SrBa%D™Öl5ð.C¸r¨ä•.ñIN*órK×—ÏZ!jO Þ2gkX{Ös °åX#òÙ§Ê· *ÐlQœ.Ç8Z„s“üj¾üŠå•%ÕBÝ¥PÑÍŒ!•bsG tpÈO1†žÏçÙ·où|žÆÆÆqC:;;ˆ:455ÑÔÔô†IP.—£³³ó€ç|Ä¥<b1«¢ ±ðra<¡âÔ„cH ´x}à6ïš!»)'ÆzŸHCJ óŲ‹ôçÅd÷Ï¡´‹¤'Ln$ãQ9;§Žg…ä±BµÛ Ù‚€Æxü9:š¡µFmì0€ÿêWžì21dµ\"?/ (½dÙFÕc0]ðÅ Ö¼áSÆ{Ï1L“°âÞèêwˆ TÏ©'š1—6t@–¨ß^Ü4{˜E… cb¬2®œk\}Ô¶Š¨Å Ñ¼:n¾•¨ÌÎ24ýrž»å{ΕÏ6®åT ß«Àª¬ ìBOÑCÏO è¥F}†ìÛ·‘‘jjjhnn× rdd„Ý»wGÎJ:M[[ÛáúÀÀŸûÜç!ŸÏsÔQGñ©O}j\W«7÷ª¸k4|Ó-¨<Î4ª/sù–¶)Ö¢Éð]¨~ͺ®¤Ê°iÝ2Ê=¶¸ÞÉ$ ÷`Ç'ÄñUeMÜl†‚Ï„mþ«DXÛÄ¬Ø kå>)›YSÝIJ‹n.`­!ª·ÊL’PT](•‚qZÅŠ6;l%JŒ©D‰=m|æYòºZƒyAkQ²NÁðúuyÌ*y>~"T¢¹fFÂ9ò‹ø¨ØýÆ×ÈcŸêp€Ûn»Gy„ºº:²Ù,7ÝtsæÌ)yÍõ×_ϦM›X¶LÑÇ_|1^xaÉØÅ×sÝvÛm<úè£ÔÖÖ’Ëå¸é¦›˜={ökî¡>Äâ•ÝÃel$é£wòšlèùA5˜¥µFp©Y|¾ŠH‹ÙJDÌf|Ý*ëÃI ©,µy5“p\Ü0C˜t°rRi›gîñŽyV<<ÿÝõaLšÆø"'Ò …£DFú‰riÆ„ÊÞ'¡­Æ7Õò£×¹B‹¼Tš^ûDŸœRæ´Î® 1u€¡’Ø'ì^JôÊIrŽÚý‘Ä~¶KðƒqÐ4z½¼÷ yüyàaJ:~€:¢ä¼Y¢­5ŒŠ´„~äÁñUä$äBƘbc™© gxâ‰'øò—¿LKK ÝÝÝ\sÍ5œwÞy%¯Y»v-ŸùÌg8묳p]—E‹qÍ5× ßwß}d2n¾ùfb±W\qO<ñ\pÁ[ЇĿ³PÙé:Ed@~ÚÚ28Ów Ôb'&Ä/Ô‘èåÆv5!ÑS”»íB˜Uõ'±$䳨‰„¶cc…ÏAÒ‰‚Yµ½j£‡áø¸‘™ 6CTˆ¦ŸzÅû¶4—ËëË©³:ù¶VÕ•!*û0Í“˜Äê ¬ƒÒº€a¹R¨0K,ñ”öÐÊÜÈãòyk o!~JˆÏÅeŸ¹@|›Xâ¡D<·ŠBq„[‰‰!ÁÞ)çj4åáyèSë·qãF~úÓŸòõ¯yóæqÓM7që­·ò…/|aœ…~ÅWð'ò'Ê\”þÎoÄÚ°a?ûÙϸå–[hkkãk_ûÿüÏÿÌõ×_ÿšö—¤²{ç';Å­«"´-%4¾ŽÔû°S†ÛÕ'»:+»@ïú‚À`º´„«’]Ø"Ú~PŽ{œìÌ­DÃCCÃv!?¤²¯úqjÉå©jŒ“¶Ø¾>¾†böka.Ë+¸`œ¹³Å ½Š¨\WYuŦO™s)͉IŠLUÚû9JšW—ôV‰ñ4*g&]v¥úß _¯¹¨|€˜ÁÄ™,ÀÓâb5 ÐÎ7‚šk峎'š{©uà)ò¹ZKŠ™Ö!:K‡D ¾u«Üs€¯…j.{à ÂCŸL˜z___ùÊWøØÇ>Æé§ŸÎC=Ä-·ÜÂgœ1®Õó 'œÀ—¿üeÒé4¶mãºîáðž|òIÖ¬YCcc#555¬Y³†gžyæ-F¹û9ºK¶‡™?é• b¹g¿MÄFÃà ¥DdÖEƒ1lJGõsµ=èñ$²8q5ÝÄC·åc^‚Up© i)ï·Y¬ps!ÑØýMr½”–p”ïÓPŽÓMÔ"òDé=æDxÛ¨“ÊhýPB ½ÕSf$Xrõ @ÖfË•\\L”™ ßß.Àý¤ÂQ–üY¢XªËü¦»Ä+2Ôê;äõ—ï rÖ¡Ü­âô¯‰nfRܺuëhiiaéÒ¥¤Ói.¼ðBÖ­[ÇÐÐøâ»»ï¾›}ìc|ÿûß/hx#Öºuëhmm娣Ž"NsÁðüóÏW<ç#¹¼B¨Ú9¸Ö„×>;RÀ®JX’8ˆìy€Ÿƒ0A”ÙÞ+„í£”ÖHF`¨\¸†ñßlìÚ²;/$JïÔºÆlRjƒ? N{x·>E¶g„ÆÖÙ®±˜—ÓéƒÆ^¸ÚS†wÁ8s=l¥•àöŠç¡ZbÅÊLõÂ|¹F° \þµÎèŽì ¶I¸Ê—ã·õƒ×^òª Ç̉þгævWpFt3ªD™~ˆ£bø EÌ2ŽÛ,ŒÄvÑ3”¹P§£âøº\V—²Ý <"ßM‡êÄÐÑÙ«€³èõTâ„­þ't&ÕfMOO¬Y³†T*ÅêÕ«ÉårlÛ¶­¢ì}ò“ŸäK_ú‡Cïë룾>*çhnnæå—_.{UF.¹¦ª›™xØÉ ê}eÕWu:.¿Tµ¢ú{˶ Åó ªd ((@¯JŸÅN8X‡ã*5ŸËA¢¬F#UaÃxFô!ÇÁu]þõ_ÿ•'žx‚[o½•D"ñºKN___ÅsÎåJ»oôvù<ý¨z,·X|ŒKuí¡û¹LH,naÓŠÌÆ2!6ÞX+UG€KàÛB•:¢˜óQ·ÆbXO׿r“HU%¹Ž dn(cáì²×[«{?§ØºÑ v:I¦/ËŒ.#ýŒAÂ[çЄ°¾Èû¢t¾&»ò¡­£Œo¥Ÿ{F…üÿIñŒ—Mx§,¤–Qêy¡Ñ{Eèéðº·|Zt”c€~Aܤò©­L÷Ä|‡å³4=*¯Ÿg˜]1Cÿ È/ô˜xï9Ñ%ú:4Êó—ËõòaS Cêû§Ðú5À§ü¼Ïþ=䆔wÜqüÓ?ýÍÍͬ]»–~ðƒÜ~ûí‡è©TªDÙŒŽŽRUUUA-'*ÀÇ›}Õ•«èô«ì;T•ùÉš´ÖM%̈³ è²½BÃC÷rØñJRäóâ¡ÏWÒô‹nØ7¦’ÙÊÕh#šÚbGC ‘‘ÞNi¯æ.óeê¨Æ ðÃ2ž¹Jê Ÿ+ï­6”NXfþxvEVo›Xåãç[剒ߞÏ£Z:„蜨UmÎ`~)×!#œŠ-ô¡öƒ_™š‡îŒ£Û|'Ī®ÂöÔ¾±bÑóÉd²ÄÛ%‘HລÇ8õÔS‹§Óiþàþ€±±±7Ð+é€JçìÆ,ªj¬âßÎaŽ ,B×Â:€Màç},³î3 À¶#ÕnÌ/ZoðGAİw°ŽBŠì;"°ÏI *!üY¹.ø`Ù„¹<$bäÇ|3]²9UübráwÇàØÒ…ñ€®KÕ´k’—³!ê5a®—åù¥rö5†Ù+2¹BtÄnq$ôr3d–68ŠZãÊÄDd\%êˆPš®¯ì€èú±aãóƒ fU`\ùgä¾ Fþ°|ÿ® ß_³“=ržâ„8¢oRâ-j-¨±¡ ±Fw [·åîÛ6V:…ªÇ­TôC»®‹ïû„¡Ò’¹\Ž Æ%›···ÓÞ®:,]º”|õë× wÜqlذÏóp]—gŸ}–Ë/¿¼ìU‰#D`¾ž+)*½Øq¢’¶™e¶£™R’aÖcFj £ ÌCwKˆ³t ËÏáÆ,ßÇqTfe.+º49^ïAllü™®’OX'Ôö‰F\«¤£ÿ—È¡wÊ7Û"›®¡rLrÑ!*ùª7,Þr)Ãê>Éœ°‚bÒq]²CLïÿgæ'•¸‚è â ˆÚøXrÕï—ït µTèu䳑÷¿,çß'ׯÙxOú<ô²_¡:FÃòèHñúHP—-[ÆÝwßÍÀÀõõõ<ùä“,^¼˜ººº›JGz£bèË–-ãž{î)9ç%K–P[[[j7ÚsBüˆ}nà+l¶ˆÊÕÊkúC/ÀrL‘0Tù+% Zi¹˜wËMÇÇ÷ˆŒ›us (Óå­Ïˆao—™…D$uào©¦óAˆeYAˆíZx>”ØD<PÍd(£¥ ˜½( ªÏn#ã»%êóM¨¬ï”°dƒDEé2Ž"VfHˆ&Ôöy¼]4¢-FuGŽÂ6Äââ¡»„~€-ºŸ…¦3[2~”¢§×,±~µ×©7­cV] E6%‡!@þÅBšb¦:†­+õ÷ˆ‡?Sw%¥ "r"P•2]ób1ëz‚AT²^U™×®-ó”x :óà1D–±:»ì\Ór®“±bÕÆ÷7•ËÀ äØSÊr?ñÄ™?>7Üp‹/æ¾ûîãºë®cppk®¹†o¼‘Å‹óùÏžööv,Ëâg?ûï{ßû*0c¯ÏZµjmmmÜxã,Z´ˆŸüä'\wÝuÄãñ×õ<¬ Íð³ñ+—Ên@·)2ª½u· ²še—ï=ÀgH'9;¦t€…ÐäZE»£xþ=Jðš<¶Æ“ú5r¦ºœk‹Áh%˼ڙB]ï4øKTÌòí e2©½c]‰ï•ÃÖŠ±D®”n»O®˜O7=cÛÐO‰Q¥çvН&êYñ2Q߉cQ¹;åÁ¸¼~¤LûVº¥ ž2xÕµÀÑ6Ô:ªê±$p KÕ¡|–ûÌ™3¹êª«¸ñÆ9ï¼óxà¸ä’K¨««ãºë®£££ƒ«¯¾š;|>Omm-O>ù$­­­¬^½úð}áÂ…Ü|óÍ<òÈ#¤Óin¾ùæ×¼\åµ_3dËëÞìÃbçÎ%‚Óa¢ôòÂ.æ5\s)™´f{*~³°‚BTWW“„³P%®Ðf_K@:#Â}–€¨é-gˆ’߆EX·ÉëâF@E[Ð:ImV™)“7yÝvTÚk¼½(¨6ƒ‚ëD¥.êa.ºp¡(Ž>9¯ß0~ž²Ž‹™ùÇ/¥2n|vR(1ÝɾhJ&|ñ‹_äÁ¤¿¿Ÿë¯¿ž“N:‰ÑÑQÞýîwóUV¯^ÍŽ;Ã|ä#œ~úéÄb±7ÆüM$ø‡ø‡’s^µjÕkþ¹¶ªð¯LõäÓ nK:¢e£Ï&؇¦L`èÚÄ%«&Ê•NŠ©ª9¦BYÐ ÃDœ3  K€ÈN€ïÆãøy;­èöxÒ"WÍü° βàÁdD{k3BOTÓŒ×naëâ¨&/º'J •(7G^s¯ÈSªNM¢Ê×’eÌžâ¼ÈÚÈž®0¹H_B^ ‰âþ–qÕÆù>%W»ÑxM—ã}D%´#¨r´í:¼#¿`«œGž¨²¥×0j\# š2ô‡#.›7 Éy‰ÁòU€@ùÍ™Š8˜ñ©Ñþq‡?ú£?bîܹlÙ²…«¯¾š3Ï<€ÓN;3f`Y+W®äé§Ÿ¦»»›SO=•óÏ?Ÿ†††Ãt˲X´h‹-âwg ÄÍ%*¾Økغý˜l==ÏHûÃûe;MÏ̃•3Tݼ,vÜÅËù¸ Bpr`-à @2ŒL7d¹_ÎLZ=ó ¢Vަ?`·Û&‚`¶aÔYqQOÿ#B¦­æ¹J"LAk-'šîdN‘®¢tº|\^¿ •”¢sŽsB£i_çg ‡å¢V ZÉ<:A¼ðXTêR(Jl+Q}¾V>¯Åò§X¶¦)·+¯¼²ªªøÐ‡>TüÿÅ_ü¦’˜JçüZ/×µð¥ÙÊDžºå8„ž¯³4݈î¦pyRkFvú Ù•3„ˆ^HÔUG©õ̯Œ±»‡*&cÇÀ­R‰qé$ÁÞ‰¹1Æ=R5!cYe¼Û²A›,Øä«¯áM¦ñ„¾Ê­«ÔhD,˜· V¢šmMƒõÄhKºÜ÷Ø‹j´P+Öûlãu½e¯gJÏ7Ï<êæ²³3KºÑeæì€uÝï\®²îe5æ³~TÉÉ ‘1Jû7˜Ì˜ Äìv`v޼gTtƒY–ºO öù";–„³tSÛF¹"M†|ÚDíY=‘݇åÏçólzQ$qýN¿®Kÿ—AoõÀ=ú?öÏt c&ªÓÖ±÷è¶YúãúÛíx%ñA휼ÑÌå.KîûÐ…"ÜÞ^.+fã§û2ˆ›‡%÷ˆj.SÒ^A¢ækç|¡¾"Ã’(Ríj5—mЫ£]ßV걓ÂNæ1 Íßêç»É6¦ÌžÀm˜XUAzÐc cù‰®º1Å.š+ÔËmú[áš]p¬ÇšªEtàZ„«\‚DÖI¸fêu$“­Õ¯éÐëТ0n\™§°ßÚ¸_ÿçš8´è½à·ú ØrUF6Uf:]ƒv¸+\—ï‡õëžÒîЮ¢Ï5BÀ%J™ hgúïíYA>OxEÀµÀq ø| Äo'¡½ ýݯí…ëžøú¢©úHIqeÉ}™ÔÞµº ‚3Jˆ•àîi›I>†îê…äVÏ%Ÿíª+@E5®aqÕ¬÷§ƒ¾#ߎõû[0#&nÚ#3ðtËÁ𴵌î‹á²g³Ö…ƒ\ƒyÅA¬{¬Õ=Á¤5ÈǺ´«2¬\,èζ ´Àd( ð{Íă¿#Ma÷ûñ}5#Êiåyè¯Í C`ày{¾zí„…Let\µx¤§³¾bÍìåzC"­Ò”ÂÃ8˜ Xü‘!Î×­5²:òQZŠÝÁ‘_®žOäcç3p÷œ™ˆc×$ظÙeÚL1l6 IDAT‹êx¾š«ô6äÀ¤Z8; —µCÊPy(1ò!«€™L½SØöØùäs`ò‰p^‘ô^ÌØ)ÚGv‘/— ž×­?×(ÚÉç”»«§ßãšN¹!i>x³HG1öè6…ÙDH Ok pþ*¯à‚¼·bUú ªÑ/Ôßû®| >}ܽvl€î˜[fèû؆P¹m! €z>ùôŽ /Únòíag‘Ï„‘o0jj(ÏÇŽƒ%®ƒ1Ȧ=ªâ×Ñ’{¨AUÖßó “%ÝvàN}_‰Å˜y¾©Ý¨,ɨ¤–¡=<ïò%f=Z&_O~p›ÑÊ1ô}ËÐ…¡ûl—ÛM<¢ o(R"L‰° ¤ïj”ˆƒLàÎnÐyeh†ôÎ 1ôjTÿ‰ íÉTÏÁ†l$ 65À«4ýŒ'M‚'ã[$g´ðìÓ}L:(ÉIo…_>+WjÀчVÁ7\ø¯Ý𾃺,8¾êWá„À3h–Ô«ÿš 6œ…Ü¢[ä°‡åùWõº·…-¶@¦V3ö®ã~Mqÿ³È‹3ØÃ²zÐc¡Ÿ}ý÷=¬–PoÀ×’pX"Iò©õUúÔT¨z§€¯ü à?Þ‘ʱ¡æhæ¡»e@ßç‚*?;B>âHmݨùüÐsÃ2| >ûäó+3!2«ä>“|ºtøX?ëa[Š¡û®êôÊr}ÕÖ“cú󚿅嚣lÐLÜß‹:0’ ê÷9PLÅÐËekûŒ¡‹Ò =wýšá{ÒÅ0‚ !É]fJÀFxsmÕšR•RÕ‚¸WP…[•!h ˺ªWéý ›áE[zñX•П‚šVº¶<ÏÔ­à¥oßÅËÛ£6Ïâý“\û]oƒšHÈ–PãÂg#°<wï‚ {a… gYÐà©yAIWP—LPô‹Ý ¹GaSªƒô{<z¾¤p6¥7›lGÑ7þFŒ"`\Ÿp»Ö@ß0B·Á*K†@<ˆ »µ£RJ›õþôd+á [5ÐÓ MSè}ùDm Õ¼ô|÷Dƒ·Ÿ(Ys·ÇuOÁÅÇB4ÐÍ“ Q4# ØV?ë‚KRPí©¿t¡VÆ‚¸r01-ÓÉ…—ÃMÏÃÇgƒèËYò³I‡`b>×gfàïƒðP|w@m‡š°ÜP¨¶ž›!ŸS ŽÍ†@=bø&ùùâ2ä` … ®FðáØxø°C m…~ÒƒÏêž¶`¯Ž*%áœj˜fÁäÄ }¯Ôoô(x h—pý#°®®>=HGHƒúÀèØúXZ¿ìÞ½›ï~÷»lÚ´‰™3grÞyç1iÒ¤ÒjÇŽ\vÙeÌœ9“Ë.»¬ è¥ÍEE…Ó<õdTiqqD`A3Õz½€‹…¤ùÌ™< {i°bàfÒÇŒ˜¤³>¶mâº`™yàúª„Ö,á ï+sPY “ïHU¶Ñ[©yè¥@?°®®.¾üå/sÆg°hÑ"®¼òJ*++ùà?8ÜÙছnbÓ¦MìÚµë€ûn…}b@ްäR9±(dua#: @²ŸNBÅË[ÈO0‹¨ZPÎ0÷Q8f5¡•ºAòa9Cµ 5„ÆI8=™¾ “mäw÷¼DFÚ`¦N†kÎ… ¯Ws¹Ï; ªbzKŠ…tnCµŠ`ÁÞ* ]ëáO)¸#¾j!=UªVZ“PYA©Wà¦|‡Ö$]òí Ãã’K…ÿŠÙ»?3z˜™òzàÕ.ÓT,>˜]18ÎV a&Y`þWÀÈEÑïfH>Ö4üäøÝf8ù¸õ,hl _ÛöÉÆ4>Õq~:檫®"™Lrùå—³jÕ*®ºê*®»îº’NýO~òÖ®]›W\ô‚#i²C—Ø4àýÚµ Ò̪‹Xz/…“wƒË²I_n†–è2`1ôDâ 3|쨟õ‰D ÜtáøDGJKo”e)=O¸l£ôÑHîyPxøá‡I$œuÖYضÍùçŸÏ­·ÞÊ»ßýn***òî¦ëòãÿ˜ Ì"?Ж«(ô<@¨ö¯Â4”¬%%†)CJéJ´hQ§¸ð>4ƒ ƇÑÝÙzoŽÖv ø÷pŒïÖ@¿AóÝ ÷»¡c!¨nÁu ú;Ò$g¶ ’q{Ê`á’$­´æsó×á«ß‚Oü>4Ìo…h•FÚAýç¥ô­þ˜˜ ‡Á†²Ðï@GÖöóCðPú¾f×è!ŽaD brZž$…r+ZbÀ“*­àÕ¬b©›øGó¡Ë‡”Ôãi¤ @N µ!º§œ¹Æ^ ÐÃ3)]½Ë>¢] )a±€Eáˆ(4U‚ú¶†ó’#E¢hÑc¾PÉn÷m‚ÚAðÖ9ðÝÃŒ©`TEFÌǘúÈeká,÷ ÃÈCniiÁ²,¶oß^èCCCÜrË-üÛ¿ýÏ=÷\îþ2>來%¨ô`êvu¨„˜à²Œ…~Gó×?j¿1QÂ}•üt6‚ K/ ‰øiž8áxDmI6–‘×¹W Œ’ÞðØT–7 Ø›Erw_ÝEÿoþ„RrofÃÖaRrøgY4ÔÛq¾ùÍorÞyç‘L&ñ}×uñ}Ã8p2æ…€hLI«,&Þ°™è†e <Cº˜–‡Y…W‡4Ô3Š ÌF¥PMÔhø¬^¿»)*µZ ­Âµz(µãw¢&Ô ¢¼Q½`6蚪,˜jÓ7ªqv0@ÓO[Äïßÿ /¶ÇhžQO´µ Ó÷Hœ§ ?[ =5qX9V´Áô z*c # ƒ¢ñ,ù.PY°²0Ň)©«k|ÝØÊËB‡a“/e` »²*I·Z@„I†J ®G)@ÜË·W5KìQAKž~í>í2`ƒk¥ryZ,xk .®‚¶*%ªÁa†Š"Y=©ž lJÁ¦ÝðÈs°ax–Ïÿ<æMU‚©¦³ãQƒBvý»´À³Á³ÀsÙZáà¥øÍŸp_U)Æé¿=·÷÷ ížçqýõ׳`Á-ZÄÓO?ÛÊ€žseƒŽoùùcÁ-nûZzmÐöÿdýøc¨(O`}z1'CÞ|ÐÍjpUœa)†nÚ"C×W¾# )”m<\UbX‹1¡™êŸžû½ûés?·¶¶²zõj<ÏÃ4M6oÞLcc#ñx<ï¾ú*=öƒƒƒÜxã<ñļøâ‹´´´”¹øft;"pÒ{Î"1B’»‹£cèÂTÞqWRŽy£FÃ`®Cmˆq«pYˆþv½ÆŸD•¶æ];5Ü·Qï5ÓÔ#t[9fU¯‰ VaÒÜ$ÿX3À‘3 | ÂP©”Õ•pÁ;à}Kà‰ ð§gáÎ5P‡c¦À1aJT5§²MÝù gšúY…Bÿ·ú_žjÂTÞªÅHOBw z|èÒ€¿Åƒg=Åê» H%kÇô˜×¸ÌKé~(2ê6*Ôxع¦*¹›mÔ8ăAîvH‹·C^‚fѾ©ŒŒ Ûàñ.xª6ö¨Ç§ÕÊÙðÁ#aúd¨­Ò©LÁ{ëþ¡C‡)ÆV•"uªf%Tœ‘_«}«~z(çyd2’É$xžGsssþù}}¬^½ÇqX³f ›6m¢§§‡k®¹¦ èy@LoŠ|>w–ÖæèçLAj—þ¿i¹¾-MÞ=\á ˜†Ö•ÒÊ=ôSˆˆ…‰‡çøD#בØC÷´ä.ó ¢ÌÊÇ‹ä>ú²µ£Ž:Šo¼‘_üârÈ!Ü|óÍœrÊ)˜¦ÉOúSN8á&NœÈ<óÚ¿øÅ/²bÅ V¬XqÀIîѸÀt‡1s…EÛ–ÒE¸YLÃÃHF!;¨7ñ`|jà¨Yeë´B7@¾Ê3A\Íàí5>¼KËèLJ «S? D@‹£Š(Ȉ¦˜`_?Tµ)Y<ÃÊ’%°$ Þ9‘‡ò2ï=­–Xuz9 ÆºGU_ŠÆ8ù 8y%¤R°æøãSð•ÇUÊ@s•е/œ³`r˜~~o)(RwBL>¸ XËù&І ÚN7Ð~‘”0 ™|oVÍžÈx t ©fTT*þÝDT¨KÝ ò ƒøµ¾Ï7aKžÝ Om†¿ï„® TDaÎd8z\4Ú&«&D¹æñ¥ŠØƒzw—¶z×Ï4q-ß0BàU)É}ô1ôÖÖV–.]Êõ×_Ï>ðn¿ývÚÚÚ˜6m<ðuuu,\¸n¸!—?óÓŸþ”uëÖqÎ9甽Ôw–…žBÕ—. ßî±Õ…¼/tïÖ2Ü í‰?FéfAÛ* bèXJr bèY·(†.óÛŽS>YãFrÏŽáfð \vÙe¬ZµŠ_þò—,Y²„ÓO?ÁÁAîºë.–,YBCC3fÌȽfΜ9Ìž=›êêê Ð A,.H•ʯV·†m`Ç,¼4ÔêºÛ«£^¶Ž¡\¸½³ˆ¾¶k¯–üà>-É?K¾DmªgE* î T é0‹’çºÀš¢3ͺ¡r10"2ë"µº3ci«oØÄ?žsh^d x¦Ã’ ØCÌ㽎š}=йÚwÁÓ/ÃOCg$M˜S óêaATPa«íHTƒ´º ÏcÍ–5¦¾OH¨ô¡RRØ¥¦xÊ LÃŒ»Ðu2ZÖVÎÁÖxüðÈNØí*‡åˆðöÅ0¡j’PU­ž‚¸ºº5BŸ£o¥fäß@"\?!òãxG è£ÏrÇã\zé¥|ë[ßâÒK/eòäÉ|éK_àü#3gÎdñâÅLœ81÷šÙ³gãº.&L(úè€~(t€êþt(j6PZ/ø;Q‰rsõجï/~/©º©cg¶ð20ô¬OÄ– ãC½ãå¯Á2 —+gäñ©ÅrÜQGÅQGU¤Ð%¸çž{J¾þë_ÿúùÝ ±„`hбrK·ð0ñ°-_PÄÄÃLDÞÒB-“ŽêÔ„7œ E '!CaÃâ T¬}#ùÝÏQI´oCE“§£RºÌV¬S¾D/$'+FèuA]­®q6Áóqˆ Ø UÌ~ÛdîýÙvœ jûØÕY„”T˜i„fªˆig•øPÝÕSa†ÇiÆÝÕ /¼ß Ïlƒ»‡Œîµ3±f6ÀÜ&˜^£ŽX°my¡¯!|ë…¾’tä ½&|[p^¯f1¬½Ë€‡wÀê—àµaAœõvX<šêÈÇЃ´+ÄȼŒ¼™gãÒPŒÜ3Á7 ²¶…B±rí\ùº~ÂÇõu*G5½òO˜0oûÛ£^ë§Ÿžá•½¤YÏ* ¹¬µ¨²µNí…Kí±?§ï÷ÉÏ9%؃ÞÄeL á:`ÛHÏÃ÷%¶ ® vh SP¶*M/ÛþÎÐ}“¬7‚ä.Ë­__‹ÄCý¥+œ`ÚvÂÂíR[ke‘íG¨ +ßQ ¹€A‡ß!¨,fõiù}¹^‰Óôþ°]S×´VófkívùÙçáÀì Š™[IåP¸ƒ«„”ŠÞ†Þ¢wNàgldwG’æ‰&.Ï2t‡i©âêxEPD.B [g¥Õ5‘µpä!àf †ôô †m°nüf#ììQUYЇִUÃĸ’´+MHD i)¹3j Q¥óƒÑi±€)t©—š©KS% HK …bãž RøBÉë>y@úØœz1âàúåNqûr«V¢Ú¶òújTéJ¥–Õš(]DÖÜzŸj ;øE€®PÛ„mã` I$â+†š´æøù¨_>IメûÏ¡S\Ù;{ÍKôõÉ=º$bC$aáö `âcVÄN¿ÚècQ¶F;Ç,’Åg :˜ƒê1ñ*ö)½R¤ßš!ðÿ_ èéž ƒ­…¸­²Æü!¨HB „—Ųb!@0©i‰Ñ:=ÎßõyÛû¤ˆ+É=¡ÚÚÚ¶ƒáƒ•7ι»8&.Uv{…§Ž Ó†·ëçÀö]ÐÑ­À}G'<¿ ~·SµLC: 1 jbP—„IÕÐR©À¿1 õI¨Ce•ä^÷YèLÁæ^ØÔëvÂK»¡' •pÐ$8u%4Ú¦€ ±÷ m$äÅ€nÀ­ý ½+ÐÏ ´ÍüõL³À= ÝÐ9Yc`è’÷ß+O݇Ö, ]õ¨D™¨LUWK륆’JT2M0£,ì$yº-LCwCÏö!"62Å0$‘ˆJ( 3ôŒ¯G©–mº‰›Ý»Ü&ü2C­–¨ìØVz @b«KàtöcàcÕU œ…x‘¤•Úb ……ÆIT÷À©ŸlÖ`Þ‡Jz§ŸÛWBKš¨ÚŽ ôäÇ ±"Cªc]EØ~:¯DhqW"°£&GœRÏCwmã˜wW‘´U,]1uôð…¢À†‰D#Õ'á)æ.4CáÉ)v‘œäýyŒÀ̘<–Õ}óÝ<ñ|èê‡WwÃö^ØÒ ÛúaÍ6è‚¡4 e”¤V…Ð §[ë'bPW Sëàðùð±)0½l]G.ö€yq×™€uë[_‡«¥)–Ú0ÌÓ¿+B,ð Cm¯"Ͼ}­ª2x8v^(-ŒÐ}cÄ=À÷Ê }Z7*&Ö¢OœKáÄu!×÷å¦5ë7 õB¥«›Âs¶‰ º%É:Ú«ÕåxºsÙÆäîàì}‰YeÉýµz…ÁЀ_bµÉ\Ä3VŸ «³ »&aNÄk!VÛÀœB¾I°¶w£’[Í"ç]è=â~Tàv}h‡g<„„`ýiÔ› v‚ÊBsÚ!YÕ ˆ¹øC)¬D$÷÷ûzÀœ#ëøíuÛX¿Ögù Ä!‚i ð>BJ ßGø>¦çcú!U;Xს'6”ª 4Ásó,>ÿ¡¦5Bçô4·B³‹Ã m<Èz ÈÓ5ñ-›UµíUg@<ɸêó“ó}ì°a„NMqc÷ªvpëšÏ ×ê)övù¬;\bªÛósÇ"ªI)ÈŽ°”}ŸZJKf§¢Û‚†2KP­ÛQsÑSZŽ ß&r§ŽÂ:t7C?£º­B,”éÈá ý˜¸V¶‚¡»&¾³÷ WÃ+{i¯Å>U5‚?Çf #êH´Vñê3=T⭯ˆ™Ð³ MP; :_{9…­ž}`¦†3ôš®ÒŸ\‹Ää¡‘VGëýá9-χ¥û 4g…(ñf°RàÔõ4LÁHÄ–‡×ÓO¤:>¬/Qm³ð¨ ûý ‡/Žb‰‡‰@’ÅÎ%ª¾õ†á#…/}ä†v!Aø2„bÛÂRâ…ðB[UࣸE·~¼‡=Ç×dÚ×Yáìöâ”…â‰,‚ÂŒwýõI[5w‘ú1i踷­z{f˜}ƒ'LõœPwYÊÅ -‚†ÁPÄȃ«êµ1tAv„=· èoKߤ=𭨚ó*&èç<…|g¹¨ØÙ“è÷4ÆD'Õek2‹zÄ'‹!$‘ˆ$“Qñ©`8"¢°•¢¤OߟMz&dFÍT–Ü_˜«-ºªÚ ¿×_bùn!?L;âj/‰MToûêã°äpˆƒ%²¤7l¢vv=®ä“ý›8=ÂÆ'{‹.!¡qX²íŒ´Ô}ŠÑ>ãtê—Ì}†¿€ãYÃËÂÂg²8Ym´ÿ×ësʼn’zƘ=3Š}"ìœx?ü0ííí´µµqØa‡‹Å žÓÑÑÁ#ûì°·}ê©§hooghhˆ;«¯¾Çyó7ññ¼ð:yšÅŽWU¦jЩZÀ*–>ñÐ&RkþNŒ4-&ÑE3aÛÃ*‚6i=Põ XšeW jу¾)½¤PãTÿ„šÕpªéT6àaOè÷«Ö{ÁïÀzTF ZÂî5°àp¨ÛÄéeêj$‚ƒ…‹‰›û«j°èÙít$ §†¥çðý{;Ô7¥Žà[ ß>"8DJ>–{ŽÓ‘vÑgØ8DÈbçþ¦àïñ ÎòØŽ×æ¥ÞGŽJFÚB‚†ïûüüç?ç{ßû]]]\{íµÜqÇÃÞö•W^aݺu¤R)þö·¿qñųeË–2Cy q{ôÏž–×þN¾ÎbO¯›šÂ¶k8  C¥‹J©z*ˆ%ñ—hTmTN"E­_¢Ü)nÜ1ô1HîkÖ¬aýúõÜ~ûíÔ××SSSà 7ÜÀµ×^K$’wç>üáç~>öØcùÈG>Â¥—^ZðœÅf-ˆðóÉ:2×­9ÌÎm²4Ï®Â}ù,gˆX$Kåñ‡“¾æ~üwœ 'ÀÜ·ÂÚ›@\¦Á8©O^g‡”¹€ÇQqù6ýûï!êCõ1*<Ÿ~ ¼^ŒÙ!¬t/ÞÖÔÌ<‹l®½¡U‰€uWT›¤‡$ž·g}U1õÑ2Y5vdtìÓÛ‡ƒœKIꯥíê?ÇÂ_'Ö?Fɽ££ƒ›o¾™ï~÷»ÌŸ?Ÿ¥K—rùå—sÚi§¨pK—.eéÒ¥êï”’N8õë×—}ï6xKhg®B5–ypX­RÒ5¨D™íúH+0·LHg0b|'KL3t× µ~Õ ½Fäû<”mœ=Þ(ž£mýúõLš4‰úúz–/_Î]wÝE__ /Û¼y3íííÜÿýwÜq3Ó$klµèëvqI$èfˆc6NMPUo1ðÔËfQ³b.]òNüWŸ††åpćᙃ»Õ%2©O\\s4zjö> :§¥2}Wéu߆*kxê>ªš£Wûðâ=pÈ1-5É bÛ, b5Ql²¹²»07T NõJÙÓXîp¶{1 ŠÁgŒÈÞXqwx-øëæû<¶îøÏ嬻»›¡¡!ÚÚÚ”Ã:k¦i²iÓ&-ZTð²®®.6lØÀÚµkilldÞ¼ye@ß;;oCéráâÉ)zÁ÷…q•@K‘ZvkBIørí ýŒv 2 ÐåK4¢–ëi@×›¾ãNr7w*Û¿ØJ%Åu~NJýþê¦ÜCCCC$‰¼[XUE*•"›Þ×àùçŸçÁdíÚµœtÒIÆ=KTxYŸlÊ%Z%‡Õ¢ÛdIÄ#L:j2÷?KÕG#âXljûè/‘KŽ€ŠF˜v ¼p3Ô^ ]µ 9éCÉåÕz}'ÈOiÑê›bæÁ¬Ï¸t3¿*Å™P;Um'ñ°í¸àĪÒD)†þ¼†Ú…“IVDIc‘Uýç‹€=Ý狌æt@U Ü÷æ ¼Ìß_¢É¥º“‚§~Ýz\÷ ÂIgÍf1M¡=¶x<Ža {ëíÛ·sï½÷²nÝ:𛛉Åbe@ß;4®Ó€îh0®×Ò[‘§Z|ñ¤Pñõ£õkjÈw’Ó=âýŒêwh˜NcÄ#x=.ѨZV®—Ÿê£=6Ê¿º,Éï'V*).ÞKOËÇ@×þ9÷PMM ½½ù„§ÎÎN*++‰F£ÃÞú¤“NâÄOdÓ¦MœuÖY|à µµõ€ûŠ+ª [-6ÿ#Âæ¸NðÊÇÑMÍÒg½wë?z•Û;HL00ßq|æ8d;ÔL„yçÀöÏ‚{ˆOjpJкõï'ß52M~ÔWxîgÀêǬSíržÚFª-÷ÀÒ0k‘Än¢ÙNú|‚i_<žˆéåzð?¨,t•×µ3K]³¹gŠçBz2:@óìÞbùCJ$ÅÅ`þ‰Úi¤@rF£¸®‹¯ëïïÇó}:™L&§Öe³Y<](„Èíe†^`Ó÷k`ÿƒïð`–Þ1îæ/i¯¾ZŸ´ŒòÜ ÓŠëÆ2FÄÂËxDô¹Íúz8‹Ô€.!n^'e'€>Ò‚×¶páBV®\Éç>÷9èèèàÚk¯¥³³““O>™Ûn»C9„ /¼H$‚eY¼òÊ+|èCÊÅÝ4®ˆqçõ}¼7ãcFEÁÖHÖQ[²ðÃó×›dâÛ"Ïb\ôz¿ùÜýPó.hó¾ 5iÖ”íÈ.ùd¹ .° v=‚’Úp/p#Ô^ M¶é&Âc_ƒãÞ‰˜;#á1Rtÿä7Ì9õ¢™û{­\ÙZ¾€Ës%[^Ì°è¬ø¨÷HŒUŒãÀܸ Œ1)®¡¡/|á \uÕU̘1ƒ7òéOšx<Î9çœÃÁÌ%—\ÂM7ÝÄóÏ?O2™dÇŽ455q '”½ÐªB µúuÒ[ú´UgVÔèNŽ¢à–‰ð=LSà;Y¢µy.˜:±Þ÷ ÇÄðkÅ+³õý{1!!à3Ÿù 7n$•J1aÂ&Nœˆã8¬ZµŠ™3gð…/|®®®œ×ÖÖ†mÛ˜kž9‰ÍÍ]Û6f˜6/j,“%‚ƒA‚!æUϳ·¯gà÷Ñø® dcv\|éïÿÿì%0gD“Rãö¨÷ ·QµñÍTQ8¦,hý¬ewÓk¸ß‡è6˜ñÿ þ0EÚ+xå&h´à¬Ó¨jªû™';v2íØåTÓK%j2\Œ4>6Ùœs2Ðå°s‹Ã¬5¯ÓåiŒꣿ¿Ñ`=®Ô…1îÇw“'O¦»»›ººº\‚Üå—_N<GÁ駟βeËp‡xsæLÞÿþ÷+‚?¶A³rUsþzï@ˆˆrà}-¹›x>Â4ðh’\ ÝÖ-£}YЃ­¥œ7ŽzÑÉ‹ÇãÌŸ?¿à¾H$ÂÂ… ó:ÒôéLŸ>}¿ø{zz¸ùæ›Èý­ŸúÔ§¨®®~C>_ IT̘g³ö±ÓçE‡5— ŽxÒààsãñoÿ•©Ç¼•hm5‘ÆßÖNúÖÏÁÊïA[ ̰SBêq軼•`œL¾dØ[3P¡´§Áÿ5¸O@ʼnÐô¨ªË—´o¼:„Oß µX‘X}l»æ§ÌþÄ $'Tb‘Îe懅ñ lm×¶,¦ 5 ¯ ÿ,þÍ”œ7*†î«N‚Y³f {ZàÐL¾¸òþÉNqÿøÇ?øë_ÿÊÅ_L4¥¾¾ËϤ¿x@KfÙ½<¯ 5um;ªÅãh-”çi@˜à{&ÈL–X­’Ü\OæNއNŠ“e6þ¦ôq~2{zz¸ûî»ùô§?MKK –e•Lâ{½AÜÄÓp­6þ£ONpçý¼÷ÜJ=yÌE"põ<ó$ƒ˜xÌ^VÃæYôÝòKæ^x<ÓãU¸ç-g}ÇîŸÿÎþœ526œƒsà™» ó2¥ïÛÓ@ÔS!sø€_@Ô‚¦ã¡õ|¨iƒSåÃÆû`ýÿ@ÿcðŸWÁÜ&š&m£5º¾oÿˆ¦Ú,óNšL DÉd0§.(†îäBÏýµŸCŽˆé w™—ºoñ¨œfõOz'ã«õkKKË›¬v¤o7œ€j³•(70Ê÷vÈIú~™Ôó†Àsœíðè¨Ntü7Lo†¨Ä´\úÿü4½x’£¾*–Ű´®âÁ,nV²fõg~¦&”à^Þ Þ }ôx÷>ù\ú²íG =3ŠçŒc3M˲¸è¢‹Èd2,Y²„K/½”ÊÊÊ7ôïhšh±ì„8¿ZÕLJ¾Ã2\=¸ÄÀÄGbÅÆÇ bªÍ[¾z$«/ý%ó[IΛŒllùƇ¼¿Ô·>\|,9*›a«·ºëÀ=\%½? <§—ÿaÓ•*%d·Á‹¿‚ÇÏ@|ètD}„æºv⑱~KÇÕ«8ò;ïaælA‚íTÓ‹M6§$$B ‰â <ù‡Ý$“’%+¢Ãƪ–m?ô1örß'€.¥äŽ;îàÞ{ïöX,ã;ßùË–-ãÇ?þ1Éd’—_~™O~ò“Ì;· Þ7ÜE±`\Ë8C¨þÍ;Pr{ïþ±†®cè2vTùؾT‡ŸH|_"e¨]æÝƒ²½±j™âAþkYÌþ(>d?¶µk×rÕUW•|쳟ý,‡z(×_=ÕÕÕìܹ“Ë.»Œ»ï¾›sÎ9§Ðoq%Cº»€hL`¼ŽÝC…€Ϩâ«çï䄳\¦ØzÜT xÂYò©Ãyò ?åàoœ‰9 VD{çJœèü»oÿá8øm0åýo+¢r^$°D‹u1 “]•äº{+<ûxù0eâ3ßD,<#™EX.¦ï^ýÝßù‡|þx™€IWÁ–bU 3äñ§ÿíã-§T)Ohzã1ÙƒLZæZGxîkØÞ =ÀÚósÌ1ø°WžL&‰D"¹ä—††š››Ùºuk  ¦—4ƒüLáñºÍoCÅσ¦%¹K v@DõK2‚%‘žÂÀs\q'¥À<èçB‚Q¦ßo¨¥€M!wt÷¾`èûù92e ]tQÉÇfÍšE4ÍIíuuu¬\¹’'Ÿ|’³Ï>» 6~ë+¿ùéRö‚#OˆQßôú¸¨†öœ&·|h”Õ¿èáÌ‹#€À&›cê.UA«˦áŒôq0m¨oƒ–©‚j;0°6½=¯‚iÀ’åˆÏ}1w•ƒ$“[©¢è`©ý’Ý?_Íò+OdΑuTð*ô%CX¸TÒ¯øH!Dpx᩺¶gYþöú´Ab–u¹}j]ÿ!C:¥w[û’ý…¡‹yÊ”){|¼³³˲°,‹ÎÎN:::hll,zV•vgˆ æ¡£cèA×8xŽG, ™”ê7“«C—yq_RŽ£¿Q–@uólÇkôqC¯®®fÙ²e{|¼¿¿ÇqˆÅbô÷÷³fÍ=ôÐan¦Î´8ãcÉ×ý „àgUðß_îæ­§ei˜lÄÏEQ}:ÀÁ§Ï%YkóðåwRù‘ õï^N¬²“ÄAS‘³.ÄÝœ‚ŽøÛaó‹øýЦ™Q¨¯C,~/bâDDs3¢¡ #ácØbF†HvwÓ&vÿ¿›Hxý,¹ñ\Z§[XôäjÎÃGáÀPÉ@ËÿÞÐÉ;?RME•‘#ežþÆYC³É»?”oÉüä_úÇÆÿÆK ý¶ÛnãÉ'ŸÄ0 º»»9ï¼óJÎo.[°ãd”§º)¾aH|Ç%‘8ƒžbè¹:t:÷åÚóqb@RÜ£>Ê~ô#„ ÐÚÚÊ?øÁ7ä³ =¹Àe»ÏYeÉÑ1î¹®“_шA3t‰êòn© nšNª£bÒqüõ`Çÿ=ȤϟJÕâiÔÔ÷âcÐ×\¥£ÚKðüÃÉd#HiàûBøX–KÌÎ`ÑOœÝå-ƒ±µÝ7ýŠÞ?=Ç̳—qð©Ç¨r©¡“ ˆ’&Á*5C…˜¹ô%÷ÝÑE<o}OKxZû+ÇÐǧ¤¸O|â àû>¶mSSS3ÎËÖö’‡([4_‡®ÇC)É]àf|âQIzH±sK3tOŽœ~W¶ýÐÞ’ûHö–·¼…Å‹“Íf±,‹ÊÊÊYÅ‹@bxïG«¸ü£;yêσ,9ÞÖŒÜD - î6¾0˜tH=o½î=lþÝ‹¬¿âvhl â#ï&9£…ŠÖ‰ø¦‰‡‡AÔˆ ¥À&†ð1…«Ú´ºÆ®†^l§ó¾¿ Ÿ]KË[ç²ø¶S3¹’Jc›4=ñÛ&‹MVÏ>W=ÛóMY}^X3ÄC÷ôòÅï·è–Ð…Ì\”™úþo’ýGrÉ’É$Éd²|ÒF´ðÔ%[ÿê@Dõu¾¯³Ü=b¶GvHÇÐ 1t©âË6ÎýMÎÐ#‘H‰0Û¿ÊmV<½¡ÉäÌOUs纙>?Nm‹Ô_µ¡›1¹ô8‚ÉHU­§MdÊQ“hp/\{+]½i’s&R»|6 g“˜9‘L¨×K¯o€ôÆm >÷2=]OzÓv¢5qÚŽŸMÛy§Ð0³š¤‘"Âv⤰pI2HœœÜ}QÝ.†êIßùÊ ·|õU>tqÓçØz`Ká®RÖèÊ ýuô²†™q¯¬t#`èiˆÔ€ïêÇàe=bèïQ Ý c)3ôqº˜Ç˜áú³ŸýŒÛo¿ß÷™2e W_}5uuuÏùÜç>ÇK/½„”’x<ÎE]ÄŠ+Ø-y¦ªò !9æä_p¸ö’\z}+‘ %wYxøÈ\ã™AŒ4.6&Í­4~p³ÏZBºkˆ-ÝBç£/Ðñ«¿0Ô™Â÷$Ò´Àó°"ñ†3™{ê\š—¾D]”¨PV" #M–8)ÕWžŒ~ÌÉ1t+4"µ{§Ã·>»cßUÉ1ïHŽëžëe†>Š= èñuëÖñÕ¯~•t:M"‘à’K.aéÒ¥Ϲýö۹뮻ð<ß÷9ãŒ38óÌ3Ë€¾ïÝÔ·º«“¡ºŸ†X dÃ61¦«jõ´ÄyFî…Þ­lo^†ÞÞÞΪU«øÒ—¾Äœ9s¸ú꫹í¶Û¸è¢‹ Àú}ï{“'O¦¢¢‚ûî»o|ãüìg?+˜¥~ º‰ÄSc ø˜Þ~%×^ÚÅ]ÿ½‹3>×H$aåRä¼\CUuk ±qñ0‰‘R /ÒÈzAó»[ñß5ŒEº'ƒëHJ}}=Çw&LଳÎbõêÕ3ÒŽ>úhÚÚÚhhh`îܹtwwçF)Ø+Oj]YUÉÅßh`Óú ·\݉ïúz©§Ç«º9¦Õ 'E‚! QÁ  PÁ•b€úØ Z<&MLžf2iŠ ¥Ñ£.:H5½TÑG$ ‚A’úH0DœTîˆé8zôªw»ÇöM)®½x;“¦Yœ}I‰ú…ÿgèÇJ7Ò’ÜwìØÁ /¼Ài§FSS§œr lܸ±àm.\Èœ9sr{@___™¡ï@7KðiW#tP¶–†hÜ4†miÕ]bH“–Dͼ\ãû9U¾lã¡ûiÈì©ØÌ=ÔÙÙY ¯·¶¶ÒÝÝM:.ùö½½½Üpà ¼ë]ï:`Ùy1SÈX¯¨\ôõz~ø_ÝÜòµÎøl•uvŽ¡«#(S‰rY$Bw˜d±C1w¡Ù½¡§•#ZýøæG º¹[?ÄÆìÐcÒõXÿ·V]µ“cßUÁ)©Æ¶¤ÞM|í臽 æãš¡KOí¾^׃»€©¤Ói,Ëʱñ Ñ|÷îÒ]0Çᦛn¢­­ ”ýyM·Í|G1tO1t!h›@6­z„)G–-Û~ èÎô¬WçÀɳo˲ ˜v6›Å4M c¸6“N§ùêW¿J"‘à‚ .(ãÊF%‚Ö)Ÿ¿¦o]²‹~y'ÿj5-B?K8> Oººu°‡Y”LgLtË‹ù~n„k>{]•¢ƒc,ä&]_^·›?ÿo/¾¸–£ÞÇ´òn1órŠqÈЇ9õ.to„l—ú}` p˜:dž”ùsìyRÊ=®ï;3{ï½—ï}ï{ÿüøÔ²Ðõ S#ÂS­_cqȦ0"fnà‚À)ô´¯FºH¿<.uÜ-æb%ܬƒú“ò¿wÝûqÖ¬Yüö·¿eppd2É3ÏÜËTTTpÝu×qÛm·ñ«_ýŠ /¼O<‘žž¢ÑhNz—R2mÚ4n½õV@õƒ¸úê«Ë=! s°6‚tµ£¶ä-ä˜8¿üŸ>¾øÞÍûžJN8£†ºÖB(f®NŸ©ý2+ô¥Ú¹äñp[¸í¬ô$[^LñÀ]}<ýÐËVÆùÎÝ-TV›Ú É·}-vNòŠCÙÆ¥J7ÒÍÿhÛ6_ùÊWXµj?þñ9âˆ#8í´ÓrÒû®]»8ì°Ãx衇x衇°m›}ìce@ßwV<œÅ,}—Š¡g0#–bBÅÊ3iˆùÍ>åéT:Y¨â”—ø8`èÙÑ:¨D¸ÿ÷/¸¯¦¦†+®¸"÷û·¿ýíòw; Pƒ`Pž4Ÿ©¬²øÐ…ÕvlŒ{ïèçkçmeá‘IŽ}w“¦Gˆ% º_Ý{’êvÃIDATÜó¿+¦í¹’þÏ¥X}wÛ^vX|dŒË¾ßÄ´9–™×ØÉ~¸ÚPfæãž¡gG±O„̲,Î?ÿüaO;ï¼ór?Ÿ{{î¹ÃžSô}ÎÒ }냰ògÐwT–»“ƈÚzFªÚr2H„²ÜS®bèbŒ×Q9…f?ô7ù<ôñb*.žgê>€ƒ—ØÌ[\Ç+}Vÿï?ø÷Ä«,YgÑQI¦Ì¶‰Wä;Í ^ʾ¤c«Ã†gS<÷hŠ<•¢®Apì;+øäÔPßl…Ü/Ø)ÂŒœºP¶79C/wŠo€nª³Ô  OM^‹ÄÀIcÆ,~N¤Ï¤¡Î$§«’ûX½ìÛ Øûc/fêÁ2m›iqöÅ5¼÷£•lXïñÄCCÜ|eÙŒ¤¶Ñ¤¾Å¤ºÞ¦q‚Ee­I,!p³0Ôï±{‡G÷.—®—Îí.YGÒ4ÁbÁ1N=·‘æVƒDRH2Å€f÷åòÔ7¡c?Ò>Qôý”®?,«Ý@•­I"6d31 |µ ©zÔ̟씫’â‚~se G 9ûÆ-æ²–©ËÐ×oäÖ0 ®^°ôh›Ã®&“lowÙÑž¥s‡Go—Gû߇è•dR>¦-ˆ'u&&™Ì_§¾ÕbÒ4›ê:ƒ Ú°4xË#—ØzÙ §¾ÌÐ÷W@ß[Ñ€£JÖ }…†È¦±jl¤ç! •7—΄ÊÖ|H{ õu/ qãÐßäÓÖÆ'Sþõ—’¿£Q‹¶YêÈ=ßW²º ž'†^·¥;Ϻå^•ƒ²½ImÔöUêÖoà¥1£&d2X¶ºÛqBek@Ƈ˜£Z¶2C/Ûëgár0¿(‚m” VÆkèÁ\ ØFHV/ƒùÀÐǘWôqÀ r’;¨ÖB÷owÒ1™Ê`G „¤3‹äü´Õ¨NqeG6Ʋµ²ýk{!{â×s7(y™¡—ú¸¶l^ržrõMn+jA:C$">d³’ ˜;n®|ÉëÅ¥,Ãï· ÝÅ‚/Û~a{k­ÌQ­“`ìåÄ–ÁücèåyèoR@M_[>²Ï¯¾b¡Ü4ÃÖoá+†þÿ·wæÑQ•wÿÜY“I†l#$1&LØQYZáRáÅ£-PŠT<#´…²´K5`)”ä=µ †"’UÁˆ¯4(’h 5!@ØBÂd_&™¹÷ÎûÇLnfL …8ƒ÷{Μ3s—™gžç>¿ïó[® 8£§­½QÀ)º5t‘q¸k¹«ðC ½=¹®¬ß½¶ƒÎNu¦Â‹ÐÛÓÐUB÷RïøZÝû·|èn ÝÑ„ÆhBªoBoÐ ;¢GÚ. ](?ÕÐåÎÍÀ’’þñPZZÊøñã™8qb«[òóó9räL:•GyDíkšõ*Txz'Mê¢(²}ûvrss4h?ùÉOöº¦²²’ôôtΜ9CŸ>}˜={6ƒAÝœåÎÁ3']ë"t­É%À5h´ ÀnèÃikÄ`DÑÐ÷ƒ ‚C ¢¤ÂZ³änC]])))‚À¤I“ظq#{÷îmuÝ7ß|ƒÕj¥°°3gΨ§BÅ]‡ÃÁªU«øüóÏ™>}:'Nœ`ÕªU­®³Z­|óÍ7466rôèQes&Uñë²u¼ „  ]p…­;ìhŒ:ä&‡KC—i¥¡;du ¾ÈÎÎF’$RRR âúõ뤧§ó裨\÷ä“O2yòd–,Y¢vš wJKKùàƒHKK#..Ž   -ZDYYÝ»wW®KHH`ݺuìÛ·wÞyG9®jè·ž~sO4‚Æäz+7›ÜEè]yèF£ÉáÖÐ=òÐíNÕÕêŸðÜïF¯œ={–˜˜e×´AƒqáÂjkkÕ®T¡Âo!wXTWW#I‹€øøxt:.\èÐ/©Š_— vh]<ït›Üe AÑu8›è $DѽۚûV5(Î_ÑV"úU`¿ëyà›–«EQÙ\Û%J’„,«Éê*Tø/™[4¸e@‰ûóçÀ ®«eÁ£ì V«EŤ®ºÏ ´.w:vÐ\´È"† ØíMNd‡§ ºætI%ô»‹Ð#€Ÿz|>­¼³X,TTT(ŸKJJ # @íJ*îB×ÿãñ¹%à-00Q¯ªªBE""":ôkªÉýŽBðx¹Mî 5‚>d$m€g“ƒQ@ÁCICv—|Õ9[WŠSóÏýÐÛyµ¬¼GŽIyy9YYY”””°sçNÆŒC@@ÙÙÙÔÕÕ¹–†”••ÑÐÐ@mm-eeeª¯B…Ïz{2 ¥6l=èׯ{öìáúõëìÛ·‹ÅBïÞ½ÉÏϧ¸¸XÑäËÊʨ®®VäAcc£ª¡ßY4ïÀæŽr×]oåFÐ\)9Ð5`w 7€$‚FhñÀ7WäÖQí©Y â»Dçvg‰åÙgŸeíڵȲLll,³fÍ¢²²’ääd¶oßNRRŸ|ò «V­âܹsràÀ233 Q»\… ŸBçj¿šÍf–.]Êï~÷;vïÞÉdbÉ’%hµZÖ®]KÿþýY²d õõõL›6òòrJKK™5k¿ýíoUBïZmÍÝÝ’ ô²AѺ*Å›5tM‹úmwo¯¦÷ÿªVîO«s©¾3fÌ`úôé.ûއ/íôéÓÊçG}”qãÆyÛ‚5KZ… ß$ôΕŠ0`ééé8N¯y½uëV/â?zôh+ z—jkn[ºÜ:#‚ìYDgÔ‚ÝÁ²èD+´pCr™Úõ†j\õ§E\çËDµEÎß>¦¸ þ²¨¿µbîíÍñ¶Î«„Þ•„.è\VxÑæ2¿»´Z¹Éáò¡×»|è‚[Cw¸85(Î_ ½± =*Tܽ„Þž pܶ_S ½+…»Fë&ôF4ºJ¿éthqÚŒ Õº|èxºS(ÿ]Ä©û§ªPñ=F×ò㆖ 8/“»Ôz#ÖEèMvWa·]p? ÷ZUôû©†®º ßo ½= jè~BèZZ2¥–î–í 3#È"‚^‡à©¡Kn ½y¨e—]‹jœõO ½ ·ZR¡B…jèíÉ€Û'ÙUBïJá®ÑºUmèôhdè´¢²L€Á‰ä'·˜ÜõîÇùÓê¼sQî*T¨¸Û½= ºBtÅ n ]«Ñ:N‡A–15-&wº§žßüˆ¨EeüZJ¼ÞùɬB… _\Ô·'T“»AÀ{«Ôhè¢ z48@¯‡ˆà”1d—†Þ\öUR#ÜýªÉ]… •Ðo-mM%ôïŒÐ;’, uÇǹk¹K.“»lÁ)c0hqˆ.ŽW¢ÜeЫ)Ç~ŠŽÅ©º w7¡ûP”»ÝnçÒ¥KTUULbb¢’Ð.Ë2%%%\»v€€Ñëï}Ònã÷5ûQš+Å9@«G#Ûq굇[C—©ht wm—Þܽàr‘ûΛüpuv»{ùnÐÐm6çÏŸÇf³Etttë;d™«W¯ríÚ5‚ƒƒéÕ«ÃëI§ÓÉ•+W(// 11ÑköÊÊJŠ‹‹¸¸8BCCý~äêëœ j›Õ6ßÙß9 ]–eΟ?Oee%áááÄÆÆ¢Óµ–î\¼x€Þ½{c6›Ûç€sçΑœœLCCQQQ¤§§+¤]PPÀ²eˈ‰‰áòåËL™2…Ù³g{méŸøØÉ{<ÓÔ´Ú»¦Eh î¿…{R×ÐbŠ×તo),ã&tdA×BèF°5A€¥h»ÃÙ1zí÷¤—ý 3¹çääðᇲeË¢¢¢Ø¸q#¯½ökÖ¬ñZ¡ÿéOâ‰'ž`æÌ™0gÎ&MšD÷îÝïÈ¿0™L¼õÖ[Øl6üq¯séééØl66oÞŒ(Ф¤¤‘‘¡Ô£÷WX¯Ij›Õ6ߦE}ÇóЭV+k×®eÅŠ >œcÇŽ±~ýzÆŒƒÉÔ²ðÙ½{7ƒ?ÿùÏ f̘Á‘#GÚß>U«ÕÔʤW__Ï… :t(z½‹ÅBxx8W®\A¤Ž{@õ-š»ì Š$‚NƒÓ!"8õ2M0´Üéïv³ô÷ÐoöjYçååEll,z½ž1cÆðõ×_SSSãõ­………$%%¡Ó鈊Š"""‚óçÏß±!&“©Õ¾ì¢(òå—_òÐCˆÙlfðàÁœ:u §SÍÁP¡¢…ÐoöjÑàËËË©¨¨PæwRR’b‚÷ÄÉ“':t(f³£ÑÈàÁƒùòË/ÑeggóÅ_´IäÏ<ó AAAmk„µµH’äµecHHÕÕÕߺ²øÌÏáb ù¶©‰{ú|´/ .úÕA€pkaW |+4BÍ o/Žš¸p–¯Ó T\¶±s³üÏdìuðº N×CïàòÄTÓ’ %ºß‹Àw œ-ʽϧµÝ¬—}e¾ãp¼=EyWUUå5Ÿ, µµµ45y¯ð¶Á` [·nX­Ö[þ_%%%dff¶ynìØ±ôéÓ§íåŠ(RUUEDD„r,""‚3gÎ Š¢W<Íù‘´×ëüf¬¿ø?;†€:¿’Zj›»Åg;ÄVÝpIy×ÔÔ„N§C£qéÚf³­VKUU•×ÍþuOY‘——‡®©©‰ÚÚÚ6 ]–oœRˆF£¡¡¡ÁKk÷4 ìß¿ QQáiªüßÖ§Ý.’Çy¤vœOáF Üo£W¯^œ8ñfûvM‹‘Ìd2yͧÚÚZ[š ìv»Bª ˜Íæ[þO’$µ)ŽçÈ6[ï<ï­««Ãd2µòçÿmÃG~5ÎùáÄSÛÜ5˜8¸ãA|o(sõfèß¿?z½I’ —ÍfC–åVr'88˜úúz/Ya6›Ñ=šÑ£GwúO…„„I^^ƒÆf³QVVÖ**wèС* ¨øÞÁd21bĈNÝ3`ÀvïÞMEEáááœ8q‚„„ºuëæu]ll,EEE<ðÀTTTPZZJBBÂ-·5&&†¥K—vú>½^Oÿþý9}ú4²,#I999 >Ük¡tº/T¨¸0xðàN]ŽÉd¢¸¸˜PXXˆ,ËôêÕË[Ñ4ˆœœ:ŽÓ§O3yòd´¿ÿýﳨ­­eË–-|ôÑGäææb³Ù ¡GtïÞ¿ýío”••‘––Æ AƒxòÉ'Û ±W¡BÅÍINN‡&??ŸC‡±dÉôz=S§NeÈ!X,ÂÂÂxã7°Z­ìÚµ‹aÆ1a„;š]òî»ïrðàA>úè#‡ƒ^½zÇž={ÈËËãØ±c\¹r…eË–µò·«P¡¢cŠ€^¯góæÍ\»v;wòÄO0räH/^Ìùóç2dñññlÛ¶¢¢"Ž9‚ÍfcîܹÎv¢WêëëÙ³g—Ù`Ô¨Q$&&"I_}õ_}õ!!!Œ?^ñíY­V233ÉËË£_¿~$''+÷755qðàAŽ=J\\sçÎ%88ا:öòå˼üòËÊç{ï½—E‹µÒ–¾KH’Äž={8~ü8}ûöeúôé^~_ƒ(ŠìرƒãÇ[|J?þñ™8q¢OµS–e²³³ùàƒ¨¨¨ 99™¾}û.Xff&Ÿ~ú)dæÌ™­ÜLÿ ªªªøä“O¨®®fàÀ$%%ÑÐÐÀÁƒyä‘GG’$rssÉËË£G<üðÃvÜ*öíÛGii©ò¹wïÞŒ5 ­VËÅ‹9q↑#G£Œwff&999èõzRRR¸çž{”ïøì³Ïxï½÷0Ìœ9“ÄÄDŸzjjjxíµ×(..VŽ­X±‚¸¸8Ÿ›Wiiiœ:uŠx€©S§ú”œú6šššØºu+Ÿþ¹rìÙgŸåá‡ö©vqàÀþóŸÿ0qâD&Ož ¸2¼>þøcöíÛ‡Ùlæ¹çžSžùÛ%>þøc.^¼H||<Æ # €¬¬,ÂÂÂHJJÂétR\\Lvv6‚ 0zôh"##Û'ô[E~~>o¿ý6µµµTUU±sçNåÜæÍ›9tè‹/æØ±c²iÓ¦ÿÊx»‘››Ë /¼Àúõë % €ØØXŸÉ±—$‰¿þõ¯üûßÿfÁ‚dffRRR¶mÛ|z"/X°€Þ½{3eʺwïîTå °ÛílÙ²…ÚÚZÒÓÓùãÿÈØ±cHMMåìÙ³¼øâ‹ìÚµ I’X³fßç]ß Ô×׳zõjÂÃÃIKK#==]1æææòóŸÿœE‹QSSÃÖ­[yûí·[åÜ—¸víÏ<ó ¿üå/¹ÿþûèÙ³§OYk×®¥¸¸˜9sæ°}ûv ùË_|ö¹¨««cΜ9Œ7ŽQ£Fíê 8räYYYäåå1tèPV¬XÀ§Ÿ~ʯýk–/_ÎÅ‹ù׿þÅ›o¾IddäwÞfÍúâþýû³nÝ:Æ׊ˆöîÝËóÏ?Ï~ðæÏŸOAARñÆ—`4±X,DGGãSsØ·oóçÏgĈÌ;—sçÎùEÚ`³Ë&66Ö'- ƒ_|‘… Ò£G¯g÷СCÌ›7aÆ‘’’Bvv6*{·   ^}õUæÍ›çuÜét’‘‘Á¸qã˜2e O?ý4÷ß?‡ö¹ÿ Ñh'22ÒçÈ\iN‡fñâÅ >œ””rss½¬)¾ŠÐÐPzôèA\\œOZÆÏ+¯¼Â Aƒ¼´ç;v0}út{ì1ž{î9L&'Nœð絫Ðjµb³Ù”•z`` ¡¡¡\¿~Ý焺N§cåÊ•L›6?üá7Œþ.ÐØØHuu5QQQ€ËÿAAAÏN`A¸ï¾û8zô(ÉÉÉ<ýôÓ=zÔgÛûmãÕµk×ÐjµJàgHHz½¾TM7ëÇÆÆF%¨O´Z-‰‰‰Ý4³¦«¡Õj¹÷Þ{yýõ×™={6sæÌáÒ¥K>Õ·µµµØívÅ•K@@çÎóÙçA£ÑOFFsçÎeæÌ™œÓß·Dè†I“&µ9aµZíMÍ'¡¡¡8N*++•ª©©éò FŒqC]tt4ƒA)¥LBB‚O¹ôz=:N):RWWG]]Oøqn¦¡‡……)Ÿzè!6lØ€$I~‘a±Xð¬Ûàp8°Ùl>€t'Ñ·o_V¯^Ýæ¹›ŽFÂÃÃ)))QŽ•––Ñ¥n-‹Åâøê‰ÈÈH´Z­¢ù3jÔ(ÒÒÒe¹UZÞw£Ñ¨,ÀÈ穱ûª†î73bÄÞ}÷]dYöù}@L&ݺuózv­V+ >±¹%)*ÑÑÑmîÕ Q©¬¬¤ººšÆÆFJKK Åd21dÈÞÿ}âããÉËËÃh4ÞÖ(ÁŽ ""â¦ÁX—/_VðêÕ«äçç+Q޾€   †NFF?ûÙÏÈÊÊÂét* |UÃ=wîœb½ùðÃ‰ŠŠòI2oæljj¢ªªŠŠŠ ÂÂÂèÓ§‡¦{÷îdeeíµHù>Ál63pàͷש¨¨ ªª Q±Z­ÜsÏ=˜Íf&L˜À;ï¼Ã¸qãhhhàôéÓ¼ôÒK]N†7kUUååå„……QSSÃxðÁ}†Ì›%III¤§§óÔSO±ÿ~BBBþ«ºw\¼xQÉØ8|ø0={öô92ožûuuuhµZJKK±X,üèG?bÏž= <˜òòrŠ‹‹Y°`o(Mw*ʽ¸¸˜””Š‹‹¹~ý:ýúõã•W^aôèÑ‘ššJYY‚ °dÉFíSeÇŽüóŸÿD’$dYæñÇçù矿­)Jÿ-ŠŠŠxùå—±Z­F^xá&L˜à³¹¦¦†_ýêW\½z§ÓIHH¿øÅ/|²èȦM›Ø½{7ùùùÄÄÄ0tèP6mÚDaa!kÖ¬¡ºº£ÑȲeË6l˜_¸ ¾ Ì™3‡‚‚rsséß¿?Ó¦MSÌÜ©©©œ:u €‰'2þ|ŸZÜ}ñŬ[·ŽššdY¦gÏž¬\¹Ò+PÒpæÌV®\©Té[¸p!?üá}ö™())aùò唕•át:±X,,^¼˜¤¤$ŸjçñãÇIMM¥°°PÙxûöí„……ñ›ßü†³gÏât:™1c3gÎô‰Éÿ¡‚i?Êë’IEND®B`‚pymvpa-0.4.8/doc/pics/confusion_matrix.png000066400000000000000000001454051174541445200206570ustar00rootroot00000000000000‰PNG  IHDRôºqæ#ÁsRGB®ÎébKGDÿÿÿ ½§“ pHYs  šœtIMEØ 2ñšû IDATxÚì}w|Õúþ{ffûnv³)›Þ ¡†Þ =ÒQAA@PÔkãzý©WÍU”¢*_”ŽÒ¤ !¤Ò{Ûl¶·™9¿?Ö(f£Áy>ü±ÌnöÝ3çÌsÞóV„1þN iúÂ… ÇGµ˜ÜíÛ·GGGwêÔI˜÷áø»ÁårmÙ²åÃ?la¹o¼ñÆ®]»„û/àþ%Ü7”——WVVÆ3gÎ „"##ƒ‚‚****++Íf3BÈßß?&&F©T€Éd*)) ¨¯¯¯­­ ILL4 ùùùf³Y©T†††644ûûû#„ÜnwYYYee¥ÓéT(QQQ$IfddØíöòòò3gÎH¥Òˆˆ…BQZZZYYér¹$‰N§KLLfG€@îÜ%~ùå— . †+V „}ôÑ!C†lÚ´)==Ýb±¸Ýn‰DòðÃOž}ëÖ­ýúõ›5k–D"Ñh4|ðÁ`x饗âããÍfóÕ«W…© »wàààÀÀÀÊÊÊäädCuèСYYYYYY.—K­V›L¦ÌÌÌÎ;sïŽ7.55U.—[­ÖO>ù$ `öìÙAAAœÝæØ±cÜÇΟ?éÒ¥wß}7::’““ãããO:õð÷iÓF*•%''€ÕjecL„¿¿|||×®]…© »|¢¡¡aÕªUééé~~~J¥Òh4Ò4m±X<ˆ•Éd@ÓtYYY@@€N§ãÞŠŽŽöññá^geeÆo¿ýÖã8-,,ôõõ¥iú‰2™lôèÑUUUË–-Ójµñññ?ü°Àïr €O>|xÏž=sæÌéÒ¥‹D")..ÎÌÌdYö·uLQœŽ‰Dn·cÌ]q»ÝžO¡Ñh¦M›Æ)õ”J¥g'ð€ ˆ~ýú…‡‡çææ9räÅ_\³fMBB‚0r à.A’$˲4M‹D"N¿–J¥}ûö‹‹c¦°°P¯×ßòE"Q»víöìÙ“““Ó®];8þ|mm-÷nçÎY–%IràÀ·x(ª© /•Jãããûõë7zôè=zœ?^ w¹ p·‹’¢¢££·lÙ²víÚøøøøøøÐÐЪªª;wN˜0!++ë7Þø£ä&©T:vìØÍ›7ÿç?ÿyì±Çêëëøá‡††¹÷èÑcÉ’% ÃôêÕËáp¤§§«ÕêÁƒ+•ʈˆˆtíÚ5 @.—Ÿ9sF.—÷ìÙS$íÙ³„Ù »w ±XEQ°hÑ¢×_ý¥—^ Ÿ={¶^¯ÿßÿþ§×ë1ÆË—/ïׯŸ0;Z P~@@kÁ`°X,AAAœ­æÀ²¬Ãá‹ÅE9Îï¿ÿþ½÷Þûâ‹/zôèÁéûc«ÕÚØØ(“ÉÔj5Çì·„ÓélhhàÈýÏ…  hîÜ%|}}}}}oû1“É´wï^‰Dâëë[^^þÍ7ß$''GDDx,9!¥RÉ%¸þ9$Ipp°pçä.@À_ŒqEEÅÑ£GišF%$$Ìž=;00P¸3þQÌ2îC8Îêêj“É$—˃ƒƒår¹pOä.@€Z=„’¿ »È]€ä.àÖ0›Íÿýï8àqœ;wî§Ÿ~jZ9ëÞQ[[»zõêÝ»wÛívÜ%K–ðî•Y½zõªU«<õ^***vïÞ]TT$L´¹ÿ³àt:ׯ_ÿúë¯ñÅ\]ò¢¢¢ÌÌL‡ÃÁ£“ÉtòäÉgžyfÅŠõõõc»Ý¾sçNÞÉýçŸNKK{î¹çêêê0ƃáÂ… uuu÷ÇdaŒ‡Ëåâñ;Y–µÛív»aÏE—Ëů—Ëe2™, ˲\öVCCƒÍfójÌEmmmeeeÓp¼L˲ÜÏæ–qcc£Á`ðh-ÿqî­ƒ/"""þõ¯}õÕW Ó§Oç÷að ...99ùèÑ£z½~îܹžœ~Þ±téÒ­[·ÎŸ?ÿßÿþ7W«ë¾‰ÚjhhøþûïÃÃÃGŒÁ˺Ýî³gÏîÚµ‹ ˆþýû÷éÓÇÇÇ!ÄU-ž0a/R,ËŽ;vîÜ©ÑhæÌ™sìØ±õëד$ùÀ<ûì³7Wͼ;Øíöššš¦[ÔúõëM&ÓÌ™3ƒ‚‚|}}I’¼w)F£±´´4**J¥R|ùå—§OŸfYvÀ€óæÍãk,¹ à"‘hРAAAA«V­úôÓOårùUκGôèÑcôèÑ .\¸páã?î%Î ]¶lYZZÚ{ï½×»wïVªRUUU566Þp‹êëë/_¾Ìcd}QQÑ‹/¾$•JOŸ>=räÈ©S§åääð¸N:µyóæððpš¦-ZT\\üì³ÏºÝî={ö|óÍ7/½ô/²._¾üÜsÏÉd2O-‡²²2·Û™™9~üøÇÜSyÿ^PPP°nݺ9sæDEE}üñÇùùù£F"Iò‡~°ÙlK—.%ˆ„ÅB ÷V’$ûôé£P(>ÿü󃦤¤xIPbbâ²eËÞÿýwß}÷æ.¼€kž7þü/¿üróæÍ­qF6mÚtâÄ ‘HÔ”øG}}}=ø’ròäÉððð¯¾úŠ$ÉC‡}óÍ7.—kúôéž‚õ¼ °°°M›6/¿ü²J¥JMM1cÆ“O>ér¹T*ÕþýûN§T*½w)*•Š+æÓ·o_®Äæl6Ûˆ#:tè ‘Hø ‚‚‚úúú—_~yРA$IvéÒeþüù&“I£Ñä.ào™L6a‰D‚JNN~á…6mÚÉïàÑhzõê ÁÁÁï¼óÎ'Ÿ|b6›yÎÈ‘#¹£±N§›={¶N§«ªªò÷÷oš»R©ìÖ­[Ó‰0™Léééú¨B¡àñ¦¹\®úúz›Íæçç§Óé8kORR’H$jllÈ]ÀßJ¥rîܹž³dBBÂË/¿Œ1æ÷yð÷÷>|¸ç¿>>>¯¼òŠÙlæý ûÄOxTN??¿)S¦8ŽÖX! **ÊßßêÔ©Z­Ös±¶¶cÌã¾uäȧÓ)‘H(Šêß¿?EQ+W®¼té_wN§®©©1›Í …âñÇš¦M&“X,æ…Ù¹[×®]###÷îÝûÓO?]ºt©¨¨Èç¶¢¢¢ÿýïc³Ùì‰;0™Ln·ûN Æ äþ·†Ãá0›Í¾¾¾ž‚®&“‰ ~§Ön·[­VFÃIá"%œN'_ªAiiéÖ­[oÓ¥K—ð‰ÕÕÕ»wïö´+jŠÀÀÀ™3gòrü·Z­?üðCYYÙÍo…††6,$$¤u­±ÔÔT®R|Ó‹>>>cÆŒáq™uëÖíØ±c555pÝ:'‹W¬XÁ]áÝ»w×étÜ2ö´©r»Ýœ—ß3¢¿¿ÿ#<’””tðàÁÌÌÌáÇóë@ ãú´p§^OKÅúúúþCÔöû™Ü³³³-Z4vìØ‰'rîŽ;|||ÆÇ£”‹/®\¹²ÿþ?þ¸T*eæÜ¹sÏ>û,_›G^^žÍfs»ÝeeeãØØXî­¦Q÷¸q´{õêU‘HÆ=ç\ä%/ iº¤¤$//ôz}AAÇ0Í0Lkô©ÆÆÆbŒo8ÙH¥Ò¤¤$¥¿ð ~~~ž+AtïÞýí·ßæ1œ)!!!::ú‹Å}ûö%‚wï½D"áTøêt:~7€€€G}ÔQæùò„„„çŸþOÊ÷ äÞ:`4¯^½º}ûvƒÁ0cÆ FS^^ÞôøÌ ƒÃáøüóÏËËËÿûßÿbŒŠ‹‹y<’¿ùæ›,ËšL¦ï¾ûŽeÙ9sæxl5|™eBBBž{î9·Û Ë—/W«Õ&Làtϼ…÷h\zê©§œN'œ>}ú³Ï>[¼x±çñkúB!TSSS^^Þ48•$ÉÀÀ@NÇK’$#"",ËÅ‹¹9jzJðóóã…­D"‘H$2›Í%%%M7Z„T*åÑnFÓtff&ç«§(J¯×ëõz¥RÅËvE„T*u8eeeMß’ÉdJ¥R­V ä޺ѵkשS§._¾Ü`0<÷Üs^’Ò¶mÛ§Ÿ~zÑ¢EÏ=÷Ü{ï½Ç»‚Ãy89/˲ááá¼A,{Ž®>>>¾¾¾aaaœGp”ǽÎÏÏ—J¥ÞKËãàÁƒ‹/®¯¯W©T Ã8®¥ß AƒÞxãèèh^¤äåå=óÌ3EEEÜ—Ûl6…BÁ²lTTÔ‡~صkW¾¤¼ñÆçÏŸ—J¥‰¤±±Q*•ŠÅ∈ˆ×^{mÈ!¼8`Ìfó¼yó¸5 ‰¬V«D"!Â××÷ý÷ß6l/c©©©IKKÛ±cAr¹Üc••ËåóæÍ›>}ú}ßZë~Ž÷‹Å|ÿý÷sss_ýõÒÒR¯lÕ¶mÛmÛ¶ÕÔÔL:UH£ÿ§¡C‡aaa¼råÊ¥K—–,Y2qâÄuëÖÙl¶Í›7›L&^¤h4š¼÷Þ{—/_ÎËËÛ²eKÛ¶m÷ìÙ3tèЗ_~™/£VdddHHÈ|••µsçÎÔÔÔ>ø`Ĉ›6mÊÍÍåë‘é۷﫯¾zùòåÜÜÜ={ö 2dõêÕO=õÔ³Ï>ËíîþþþáááÏ>ûlzzzNNÎÅ‹‡:þü ìÝ»÷ðáÃ÷ýʼoÉ]$©T*„PRRRZZìß¿Ÿ÷ÄN±X,—ËI’T«Õ_~ùellìgŸ}Æ£Ñét–———–––——s)Ô¥×ÑÐÐÀ×p\.Wuu5÷µF£Ñ`0”••qÿ­®®æk, ÃÔÔÔp_[[[ëp8''gÒ¤I"‘¨  €¯SˆÉd8p`pp0I’AAAÏ?ÿüÆ{ö왜œÌ—Á,ó ..n„ Ü)2,,ìý÷ßß´iSrr2¿RÚ´iÀ™§Õjõ‚ ºuëÆcÈvAAÁ’%K¬V+MÓ\Œ]NN÷Vjjê£>ÊKF_yyù'Ÿ|RRR½¦(*== ŽŒŒLKKãÅìn6›—/_Îý~£ÑXYYù /po%&&>ùä“\ø]«B¨¤¤¤±±Q­VÓ4]SS£×ë9ý”߃¿Ùl.//‹‹#¢¡¡¡¦¦&::š »ä%kŸC}}}MMM`` I’œ›$I‘HÄWP,MÓ4M%&&’$i4kjjüüüx‹Ùl®®®¶Ûíœ >//!D„X,þ'$©Þ‡än³ÙŒF#DGG7U<|ðA^¨Ð#Ål6sv䯯FßfèС<ºžÔjuÿþýoyPMHHà‹;T*U÷îÝcbbn~«iƽŸr:wîì1î7EPPSÓÂHMM}ë­·>þøã„„›Í–žžÎYêÎ;צM^œÞ¡¨¨(­VûÑGõèÑC,geeUVVöíÛ×f³…††òEšœœ¼}ûöÕ«W÷êÕK"‘äææfggϘ1Ãáp„††òU•%  {÷îï½÷^JJŠ\.ÏÏÏÏÎΞ7oMÓ\æ*/&&N÷ý÷ßWVVúûû×ÔÔüøã'NäÒµî{r¿Ûì;vlãÆ·|kâĉC† áEʉ'¾ÿþû›mb±8%%…ÇìA£él³Ù¸EM@\À¥B¡ðD_¸Ýî«W¯&%%ñ WVVÖÔ•JÓtuuµR©l¥È,ËîÝ»w÷îÝEEGG7®K—.J¥R§Óñ¢$ºÝŒ~ø¡¤¤„eYÿÑ£G<Øh4VWW·oßž¯á\¸paÛ¶m Ãøûû6ì0‹%$$„—l&–eóóó7nܘŸŸOÓ´¯¯ïСC‡ Ʋlqq1Ç뢢¢;v\¸pór÷ë×oòäÉPYYÙªõ‰.¹§§§ïÞ½222BCC=»ô<лwo^¤üúë¯ûöíãt꯿þzèС\X‹H$êÞ½{jj*¿çñ´´´™3grJÝnçö•‰'òHˆåååGŽéСC‡8>:xðàŽ;>þøc~ϰ˖-|øäɓߩR©5jT—.]ø%©ìììC‡ÕÖÖzéƒæW€¬¬¬ŸþÙSc ˆnݺñ{eY¶¤¤dÏž=•••žD¼Þ½{6ŒßŠeee?ÿüs~~¾Ç]Ïe„ äÞZA’$G¯b±˜sñ^m®©î‹ÅÞÂA&“M™2å³Ï>[¹reLLÌ?þ8f̘~ýú‰Åb¥¨Tª|pÅŠ_~ùeŸ>}ÒÒÒ&Nœ8iÒ$ÞÉý(..^¼xñ´iÓ¶nÝ:iÒ$ÞóËZ ‡^²dIÏž=ýýý¹{%—ËyWÞóóóÓÒÒ(ŠŠ‹‹óè(üR!.]ºT*•FGGsRB¼gø ®®ÎÓB«Õ>óÌ3M‹ãß;233_yå•ââb•Jå¡ÚiӦ͞=›_³ÌâÅ‹Ï;ç‰ù!IräÈ‘óçÏçQJccã”)S®^½ªR©<‘ñãÇÏœ9“Ç’^åååüñÎ;år¹R©äÖXllìºuëZõzûG“;“ÉT__ï1@qq±ÑhìÔ©R¸„lî©fY¶²²R¯×ó(…+oIÓ´N§ ã4ÊÊJ—ËÊ‹=cl2™rrr²²²JKK¹Ö111ÉÉÉ <vívûÕ«W/]ºtõêU®ûDdddûöí[o¡¾ªª*.ö¼©q#**Šß ž3aÝP2,,ŒÇ’ÂÂB›ÍÖôÐè)4Í Ün÷Í.ƒ‚‚ÂÃÃy´ï;ÎìÞô¢\.ç=Mýo rÁ‚÷åÀrss¿ùæ›èèhÎ?^PPðá‡j4~kmgddìÞ½[§ÓqRÊËË¿ú꫚ššž={òòýN§“ëˆ}äÈ‘K—.Éåò‘H´yóæ3gδoßž—ó²Édúá‡V­ZuåÊ»Ýîp8jjjΞ={äȵZÀ‹¦Ã0ÌÎ;?þøã .Øl6‡ÃQWWwáÂ…ãÇã½p#¯‚  6™LV«cìïïŸÀû^%‘HüýýY–5›Í\;¡¤¤¤€€~•P‰DÀ0ŒÉdr¹\J¥2>>ž÷&*$Irna£Ñèr¹äry\\\pp0¿•Ö)ŠÒjµEq͘(ŠŠ‰‰‰‹‹ƒ îÛh???’$¿ùæ›'Ÿ|Òét®X±‚¢¨^½zñ+%11ñÇüòË/9›û_|QWW÷ðÃóõý9996lxñÅýüüNœ8±fÍ£Ñ8räH–ey,‚VTTtàÀqãÆ3†+*ÂenÞ¼yÅŠä%“¥¦¦fÓ¦M)))>ø`XX'¥¦¦fûöíÇoß¾=_uk[6›mýúõÇçxV&“ 4hÔ¨Qüò»Õj=|øðîÝ»Íf3BcÜ©S§Y³fñë-dfÿþý;vìà\#A´mÛöÑGŒŒäQ MÓ§OŸþöÛo¹›–˜˜8uêÔ¨¨(÷*Œñùóç·lÙÂ…W`Œƒ‚‚f̘Ác6¯ ¹ÿeúTppð/¿ürþüùÇSõì³ÏFDDð«épJÇÑ£G/]ºtêÔ©šššýë_íÚµãëû:ÔØØøÎ;ï$$$téÒÅn·ïÛ·ôz½ÛíîÖ­/š{~~þùóçg̘ɵÝáê\†‡‡¯_¿~ܸq¼ðTaaáÑ£Gç̙Õ¾â¤øøøÈd²ÌÌÌÈÈÈ[·ùûãСC«W¯~ðÁܱcG§ÓyêÔ)NÇoðO^^ÞgŸ}:zôèîÝ»lÛ¶M­VóKUùùù}ôQddä¨Q£zõê¥Õjùå—†††^½zñøà˜L¦·ÞzË××wܸq½zõ >zô(Ã0III<ºyjkk×®]k6›GÕ¿ÿøøøÌÌÌ3gÎŒ1âyjî•••œ9O"‘ôêÕëË/¿”H$³fÍ"Âb±ðâ+§iº±±Ñ“‘8vìØeË–¹Ýî—_~ÙÇÇÇ`0ð•+!•J=¦I­V;yòd‰D²cǃÁЭ[7¾î˜Z­fYvûöíãÆ “H$\=Þ7ð5–àà`‚ ¾ûî» &ÄÄÄH¥R§ÓYZZº{÷n›ÍÖzSÃ=š’’2cÆ Žþ’““—-[–››;xð`•ÐŠŠ —Ë5oÞ<®ò˲õõõÇ犥ð…ììl__ßéÓ§s;SïÞ½¥Réž={¬V+A& W¯^MKKã >,Ë:ÎÌÌL³ÙÌc gyy¹ÝnŸ0a Aƒ¸ô¨˜˜˜§žzª¾¾ž¯HeÜ[¯¿þº§ ³Ûí.--‹Åï¿ÿ>EQO?ý4/‰ÔõõõëÖ­ûù矛ª<––&‘HÆŽËWÀe—.]Þ|óÍÒÒRÎo¦Ñhzè!’$?úè#³ÙÌ׋‰‰?~üúõëwîÜ)“ÉH’dÆl6‡„„¼üòË|=oþþþ³fÍZ³fÍþýû•J%EQ4MÛív­V;uêÔVZï—³]Ð4íQl¹Þã1¸<2È IDAT[Ü BùBˆkŠÝt_áâšø4dS»"A ÃðÙâD‹W1bÄ®ïDÏž=].×Áƒ¯^½:zôh~y*44!ôöÛo3F¥R?~Æ ‹-âw,]»výòË/.\8~üxF“‘‘±k×®‘#Gò›… V«_yå•É“'kµÚìììM›6M:•_/ELLŒB¡øôÓO«ªª¢££«ªªÖ®]ÛµkW«XÿÍq߆BÞ7àBéoP8M‡$I~P ÃÐ4ÍåˆD"/é8 øÝnN¤(ªµw£w»Ýû÷ïOKKËÏωD]ºt™9sæ AƒøÍ iúܹs«V­:sæŒÃáˆŠŠš9sæ„ ø-/òlffæ§Ÿ~züøq«Õ3yòäÇ{ŒßÚ,Ë^½zõ£>:vì˜Åb }ôÑGyä~ƒ¸\ëuëÖíÞ½»®®Ž3ñ?ÿüó­1E ÷kp¹\GŽÙ»woRRÒðáÃ=ºeË‘H4{öìaÆñõÈ;vìüùóƒ Љ‰‘Éd-ÌP‡6C† áÅŠ16 gÏž-))éܹs»víär9B¨¡¡áÛo¿}úé§ùzäjjjÖ¯__RR2uêÔ€€€´´´ÜÜÜ=zLŸ>¯€Ë–˲Ü̲¬ÛífÆù_ÜÖ˽p»Ý4M‹D"~S:oBÓ´Ëå‰D\Kn~‡CÓ´GŠÛí¦(J*•ò^õ×cíaÆétr²ÿ =˜®™¿î¿h™ .̘1ƒ$ÉœœœmÛ¶&&&ŠD¢Ï?ÿ<%%å–€îû÷ï_¶lÙ¶mÛÎ;Ç0Œ\.çÚªñû¸ÝnÎskû=öíÛWZZÚ¥K^¬ Ÿ|òÉÒ¥K/^¼¸mÛ6‹Å¯T*«««çÏŸ?gÎ^år¹þýï=zT"‘¬]»öêÕ«555=zô8{öliiirr²W«¦xùùù™™™±±±ëׯ߸q£Åb‰ŒŒä·0@}}ý… |||(ŠÚ±cÇš5k®\¹’””į9«¡¡áÌ™3r¹üÇüä“O®\¹Éo©‡ÃqèÐ!___©TzìØ±U«V]ºt)<<\£ÑðøøX­Ösç΀V«½xñâ‡~xìØ1ûIýýqÚÜ:4dÈU«V={váÂ…£Fš9s&Bhîܹà1?mÒ¤I½{÷>~üø§Ÿ~ÊõyIII‰ŽŽÖét|Ù(‹ŠŠ–/_î©yíANNާ|ùÄn·Ï;—ßy)..æ2»uë–––¶qãÆ½{÷êtº£G~ûí·|í»-ŒÍ›7;Δ””³gÏnذaèС?þø£Z­æ×ì~ùòåuëÖ-[¶,==}ëÖ­mÚ´Ù¿``àŒ3x”rîܹíÛ·sÍm^}õÕ‡z¨¨¨hݺuo½õ oCC ¶oßž——÷í·ßÊåò‹/*•Ê™3gòhÿ)**Úºuë˜1c‚‚‚Þ~ûíèèh’$,X°iÓ&/ÕÕø»á><¡˜L¦„„®:c—.]BBBH’$¢C‡µµµ< ’Ëå)))iii6l˜2eÊ•+W/^¼dÉ’cÇŽñ%Âl6ïÞ½[*•Ê~~«°Úív™L–œœ,•JxàE‹ååå}ôÑG•••hÐ ¾"%t:]lllYY™çéjß¾ý‚ (Šâ«=wíÚ•¢(ŒqLLÌ´iÓ<›®N§k¥6HMM-((HKK“Ëå½zõª««ãÎ(ü’{dddhhhZZšÉdêܹ³T*½xñ"ïð;vì(—Ë9#ø„ ìv{qq±F£áײ¯Õjûõë÷á‡^¾|¹OŸ> …"//O­Vó륈ˆˆˆˆˆØ¾}ûþýû‡.“Éòòò(ŠB![1ìv{CCà !í,Ër_ù–UUUN§“¯ºŒ~†•J¥^Æq¹\¥¥¥EEFF6õhTUUõíÛ—/7WUU•Ï {RMMÉd k¥%ÝÝn÷©S§ª««’““õz}NNNDD¿õX\.W^^^nnnHHHÇŽ ž}û¢¢¢Ú´iãŒqVVVnn®J¥2dÃ0—/_fY–G÷0^¼xQ«ÕvîÜY£Ñœ:uJ©T¶mÛ–ß§©¤¤$##!Ô·o_î€UXXxËôÜp{~ä¼Ùɲl HñRÂí}<Ü @€ÑjªœWGØŠà]…!¾r³9ʺCÖâQn+Óܯ^½:cÆŒ‹—/"²N`Ì`@d3b´»™·˜¥AbhÎq4×iYÕÜßÖÜÉ- ¯ž^¹ñ7ï>K$ü\¸åìM³.Ws£P˜æŽånoxy^¸ÐÜÙGÍ> À6_¹DÍŸÔ̰fȾ˗/ç¥ùÔc=¶{ÇN i øv· 9båÊ•ž°Iµ>抎Yÿ'uHÆí«Š#•…övßm &Ö¾/È•!ÆÀ`¤"®ÈÇ©p%Sí8¤¢«¸ U1•¥’þ™ÊGyœD)ØüQÄÕ8Ì{+^.TÍbB:7´Ö{$b¤`#Œ‘ $.xƒ| `( °7ˆpk롦}8:§òÈ;ŽŸ3@$7¨ø%²c "ÈT=Ü}Å.1²$Á÷J¨-ÆVà€öƒ+ma«L,FˆÈƒÑ&»±„§‰Ã@Þ.°”…[”Ë*..®ªªâúØ´k×ÎsÝd2egg³,Õ§O·Û]ZZš——g0$I\\\RR’X,æ™ÜåryçÎŒFãÇ\__ÿ¿ÿýeY—Ëåi]È5~t:ûöí öûåË—³³³GåëëÛ´9$Bè;¯£BõæAö…¾LÏP"»ŽØ” rŠ™Ûƒ›Dâl9õs{´=”Ä:ã lsu‡A“Õf"Hµ2»^ä¶—…öeIQ\ÁÉk­rÿš€Žw»&XºÜB5ˆâ”tuë¶œVÏw#™‘ w!%ÈÙú®æÕ¥’þ¼åÜÐ˰U„\^ÕvÕÈ 3¤ Õ‚\X‚‰ÁÁˆö‰]×@ `h Z]Ê RD¶Å{Ä× æ!ÀJ¨#€.‡.vP€üïIi 2± ò‡+•¸úú9»Âg"°_À3$È”» …§hس;2¹Ü2‰é§Ÿ~ÊÏÏ?qâDJJÊûï¿ídc±lݺõرc‰„$ɼ¼¼>}ú466îß¿ÿüùó"‘Èd2¹\®_|±G<“{jjªçuzzúÍÝÙ/^¼xâĉQ£F55ÑÜ€úúúU«Vyv‚   ‘#GÞ‘øz+˜ø‘l€(ˆcÅPo½v‹«-èë 0%Ÿ.æa¥²txùI™ÃPЮr«÷ks¬ï4)A AõøõSsÅ]“;‹¨ åtš²@Š±Í—ÎqþJ`ÚJʆqŸikÝj% eCx<øû€á@rÓÞ[ñr°Ê°ÕZ%˜ZµEÕÅnp+€R  ÜÞ wHH¸( [ã2A° ËÁÐ>¿á-$NPZÁß þ̽áìàû <§ƒË8ÇC˜r¨ †‹ÇàÿU@O;åH?æâñ¦–È¢„€¼]•ê[še:wîÜ«W¯ÂÂB«ÕÚ”T÷ìÙ3vìØñãÇËd²êêjJ¥=zô6lXxxxuuõsÏ=·{÷îN:ñïP-))ÉÍÍ­©©ÉÎÎ~øá‡›‰Ž?þÍ7ß$$$pÝ2].WFFÆîÝ»¹äæær Åb1×ù×h4îÝ»W¥R 6ìºa Fèúy £ßi081‹'–Ÿ&“ƒQqÂ}"1D³äÆ âÃà§­¥¶± ´òLuPgŒH_CÁµ5JI=Ô¯´Õ²„Èyñï‹¸æ ±KM—™©ý¦PØ•hÛY"h#xä\)²±V ï‘ Œª1b-´ÌÁØ›hjáŒ3ì_šÙêÀ©„ºxt˜—/ãqV¸—L=øÆÀ,ËÅM „ ”P}ÜÙ&Ÿg›ßfá¶G–;0Ë [,šž={@ÓÆÂ,Ëž:uJ­Vk4š¨Õêþýû€J¥êÚµ+÷™ððp­Vk2™X–åŸÜ+++OŸ>••UTTä1Ñ4ýÓO?ÕÖÖöéÓçÁÔjµ \Ï_‰äÚᨨ¨( Ôjõ´iÓœNçîÝ»U*ÕO<QTT€ò¿ÏÒgÖx<ê8mDjœHy]QÒÊpœ–Ø‘C6ØP™‘UKq˜'JÑ=ótB!¾w6‘:Q%‡R\>À_cáo„±®îR\Á•ÁÝëüx°ÿ Àí¬ßª™’#ªwØ&>’w–ŸûÊyÕl¾,¼¸U¨Ñ 2È} Ñ{§T?Tã‘Ô*h¼o*ò@ˑŅ%­×ð—0{ ô©‡Kä ïÛYD¦ã'ø•bƒ€ˆo›Í(X¦xø‘·9€ ¡í€J~; áK
    ÍDøeFòë‹ä®+ –ßeB”/*j5V¶Þ†ýäwÁŠãÀú¬°ŠÓ™í§bDP´dR§É¬d1"`?C^÷sŸš•A—ÛMqH5÷ÎìIÖ­,N¨ÿ_•¸kÓë1öF*¢NÜ–¯‰S‚I N((pS@#ÄJÀéÂb~݃R°©¡¡‡‹‹Œ»Ü jÕ /B¬4²@Ú@‰ÿ1%±ø8÷fÀaˆÆUÆã#ç`¿îb7–F/tµƒà¿vÐÚÀ_Œ-ôµdo ã~€»\ŸG7€࿚;u+U½!ÃuÒgjï äüZ‡œœœåË—÷ë×oàÀ"‘ˆrW©T*• †úÚk¯éõzˆŠŠ >qâDÏž=SRR(Š’$ýüü"#¯™J4Mee%÷º´´tÁ‚©©©?ü°TêɇÆÊ•&NûGÍ:ˆ‹Uˆ"é¾@!V+#"ÔèJT‘ÉA|›AnËB€@oߥcš¥ŸïuWû0#·ÖF.?ÔҮ§§¦>oã£lrsEßÓKRr¶Û FUØ=>çp¢m{_ãû‡}I3è7K®Œ­wœÈ—r"~¬` 9XdØŠ‰°ŠŠJ žá•vEÈI e4 îTU‹C¬ j­Ì¬0FfP³­-ˆå¯¡ô[ÙµX ]XI"'?ñ ¯ë!éü—6~V ZóµºuDÓv»Òñ>à›×„ãÎø· 7B¡²Û*FR©L&kß¾}‡ÂÃÃCCCƒƒƒ3228r/((Xºt©N§{ê©§8Ÿän·ÛN§H$"‚eÙ£GjµÚââb‰D2yòäòòòwß}—a˜AƒýÉ÷X­ÖY³fµiÓföìÙ,Ë:æ~›S^¤†¨6S¹õt´•™PN-ŽÖâ¶®¯Å Ôæìk˜‰íÝME–  âF­›sÍ.v6ͯáʱ~oÙe~ {ýÃÿ¦ç¡AoؤZж3¤„%¨»¦Œ6¶ýR¿R&éC€ a†F„G:Ž‘Ø]"éÏðTmj€€|-V!•IÀQ‚ãy×CÍX“jn;ñA-ÔUA„d­”¨`Õ`ÀFðÅ€Ð5÷º7”wŒ#ÀÐ:«å"`Eà#+`M V¤8eÈàÂr¤ ÐÇÂÑ*hïA™@ÀŠU6ÑØÅ`¡AÂ)+$ j_(Ž„cåÐËܼn…÷°BPèåšò‚°ô¦OxškcŒ†AI$’èèh“Éät:1Æn·Ûl6«T*ŒqAAÁ{ï½'‰žþùððð›EÜ+*++?üðCƒÁàïï_ZZZ]]½téR‰D"‹ÕjµB¡xüñÇÅbñ‡~¨ÕjcccýýýåryS•ß××—$É£G½ôÒK7qâÄ;bÞØñm‰i›Å Pg…3©–þ6FÌ"SƒZ ÔÝ7€v"·øš§Ô" Èmb F(¼ìDXå/&Uذƒ/€K¤8×íÙ²ÐÞwÇÖ”dýµ³ná^Ô‰ÚV¿â$”3®ì iO ¥ãñIg›´E¦ADë =_ÏÁA€YLÒHÌb¢õZÞ%ÈAb7‹I5€Âr§jo‘ÀHÀÁå1I€e€òR@½— „úžh­Š\àÓV[‘ÿYü„|ÛãëF26PįxÚ½,1² ƒù>P!S2¬‹‚#¿ÂSÕÐ1öÆÁ>7HUPS=2ñc¸¥Ì€€¸ƒ8÷›j._¾\QQQWWg³Ù<Ù¦M›Aƒ9sfç΃Þ·oA©©©uuu«W¯¾téÒ´iÓrsssss;wîÌ'¹GGGÿç?ÿÉÊÊ2 ©©©}úôáÒ‘fÍšåç燚ø ÍfóóóëÙ³çÆ›’¾N§óXlþŒ8$$ýñ(”YU&ð•ã6þØGò{S†o&B€‚/NÌMxPDÛì2-”…õýăß~ A41wýø¹åqÍÿ³fÏ'áã&¤œmè²â'áãà51µ) ñ6p3Ë[ÀÇŽî¿´"ë= úw¥kãÖ`€t€¼©­¡u÷-àž%€á~5Ârȳ0Cõblw€ÊŠ˜{S7]Xqý?âzÇ:(ø +x\=J’Á!ö`Ùße†êÉ“'Oœ8ÁQèÆxà6mÚtêÔé™gžY·nÝÎ;W­Z]YYéëë}âĉ'N@çÎÛµkÇç ‚ˆˆˆˆˆ¸1ùÓc…„PRÒµ’öíWÑ;44”{áçç×»wï»?»vÔAGݽ 1|¢Iú›5I`•ó•ÈU'jûo‰ô¢¯®H·Äêçb·[µý˜ÅdK¹‚Ûš]µ'¾…[Å ²FþâÍ1F|‹pgd5¸Ó_d¸C"@·¹›×ÐÓO?ýôÓOßüÉôë×ÏårI$.2%$$äõ×_‡?µü @€^÷dt{ã&jfm‚ š„™ü!r @€¯‘;Ü"ÎýfµyÁ¿%»x‘ÜoKÛ×;hólvÈ]€¼FîH@Þ‹‰:1  @@ë8«ËŸ½æPå9$X wð¢æNÝŽµ‰kXÍ]€Zæ~û°b¦U´Ù @€¿iî·ê²tHï””È]€¼¦¹ºÍ š{‹ e  ûl<„gFÀ­tꆦB·bañÏ­ŠÜ*/ wd%!’ôÞ*u›E}:÷öP ¤¦äB˜Íêíjˆ,€€i‘5ÜûÛ"ë ·[µ˜Ay[ JÀF/…ʼYìyaZšçþÏÖÜ3íŒ,Ã0òÖÛ&,{ΘO½= ªÝÛFÛt^–Ãbl¯wÝD^3Þt~mrÇ-$¨E¢–¨ËfÅ8ËÛ !1wÀHâÝ•L#Þ'€ºâÌØåïrw8¤¬E„×ȱŒ›R+½=…ÔB`oW^d½ÑòÔv¡OÅßÖ0Ð'*Úûgöz¹h/¦x·ŽˆÛ=„Ä$@€­îèDQèöš»0Ü À‹ä~Gš;þ‡;T  µ‘;y;G-€r @€€VEp}‚þŒ…IÁ,#@€­‹ÜÉÛÅ “ˆ¡ä¯´ $yÛfˆ`A¨ )@€­¾mä6öJˆ§@îàEÍÈ;PÊ‘àP @€€ÖÄîœ=ý6A^Èbj rw:‹E¡PÜIÇn¾C$Æ€½æ§Àf(—ÀŒS¢Âˆ¸÷SK.ARX$aÁ“^Œ‰ëéšbùXËþ¾¤ ÀMƒ "Ü‚uÈøš ëw Ý/ñý4Ï*íðG³ÄÞTƒkˆÑÒ ºƒr8Ø+)ª|’{}}ýž={ŠŠŠ®Ÿ3PHHÈìÙ³óóó80hРN:y>l³Ù¾ýöÛäää.]ºpWŽ?^WW7tèPŸ{º™˜õÓ_évvEeh˦b@!#¾3 IDATém/oR™*ËØ”ºË+ï}×sŒ1ªº"9º^S™'Kq·±–.£Œë0“[ß 4ÖQÜlEurô~¤Qê¾ë(¡6ý¢…è_ñஓ@‡ÃÙ(t\ F¨ x¤·k]O Ü0@ƒˆiåÇGhháoU>!€¡ÀÍIqƒØ …€• ‡; IJ@8°ÜKÃA€EàBÀb@4ˆXþjÅÑ{"Ùc ¶Î‰T%äÀ"rˆýF&2¬ïê^eB™¢©¬7 Ý8Zò¶”˜ðÆšáq•“¤F£ ¸ŽÝ»wgdd€ÉdÊÏÏ7W4ÎáplÙ²%++Ës%==}ß¾}‹å†ÄeévveTÑáàÊsœæáÉK¢Ÿï1ï\¯çJÜÿÈB•©â®¿ßPIZã×X-2ÓÔq¨íçuš‚tË · åS*}™ž{>dLèc•ùÜSý))2Qà°€.ÿ,³g©DÂé6hO޾„']Á¸AÖê‘#)²õ—èâHŠLz³@§u"À$0È; 5 ŒÄv,g€ôA"pyo,·)òøµ‘ìqŠËM4 Øô†Xfq}!ÀÜ_%Ò;¢˜Ã³-¸>еÚ1þïoîPU«Õ©©© À^¯_¼xñ°aÃnøŒÛí>{ö¬N§óõõµX,.—«©õÆf³±,k±XNœ8á¹®ÑhÚ´isç?#ºð©´<²Á2ÜÒû'6ø%² €œ2ßñ›'©‹M>aw7̆rqeŽ$å CÇáFÆòÎÈÝíÓÝ €H";8;4"€ îiáp¤ BPß ¾ôL½ "щz—©NðAÀ¶ÆbÚn#` `îS" ƒÀØ›R(H¸H`¼d-a€²a€\X*‡nó.ˆ b~·C è´è7’3 ®"ºø¸Êƒ™óEä;Ò@{9š9TLñÁ¥-¼ù#Ýþ§ÿÍÉ U}ýúõ©©©MŽØ`0¼ûî»UUU|ðwÅívÛívïcŒÀl6oÛ¶ †ÉÏÏ—Éd .T©T€aaú·}Ýè­PZjºŸþßÑ¡‹r¶S´ãÚb"D³ÚF¹íqWvY•A ~‰w=LÚ…hÉ}i‚Ä•¾Lþ/rÆ…°ËAžÝ¦)º( Kr$0ûG8ïeÎ1 ’þ¾d«*dÐh‚Ðöh› •¸c1¤´:BÄ-Tÿ½ÅÆÒ–\ì墈7L ,öZ¥O/ Ćü=z:n'’³@€,)ÎgÄ/1n"wæ÷¯ùVêïl¥ãÖâPu:ÿ÷ÿ7mÚ4×3 STT´uëVX¶lYPP^¯7™L+W®Ü¹s'÷™‚‚‚¤¤$þì³Ï†9wî\ZZÚ€:vìXTT„éËx+tLP'L]“"rÛSŽ,ÈîøhRloz^SXjFîzJ«¿ŠHòç¡K2Í]N¡¥¥J¦ðœ<²£Ãa&‹/Iõ•Ë"1Ûut£&„qÛÑÙí>™‡”ߪ ï`ç÷ÞŠÁª€úXôs °‚o´JÕñ”ûΛ'à¯4š)ÀŒr`Yküý¶GÑGÔ¸ìWj¤©Hpuq®'“JÉ~AÌÅΈMGPïÑÜ0{‘çm a|»$&À¨ÕĹŸ9s¦¬¬lâĉž+õõõiiiýúõ{íµ×‚ƒƒ¹‹r¹|È!cÆŒáþûõ×_76^+¤Î²l^^Þš5k§M›&‹°ˆÄù[³Žßv-ø) &ãl¯çÕÆR‰ÓD1…µÖ*÷g ʪÔízèÿÄ.KûÌ }.6hbjÛßÝè£\ÝÇ™NlÔÔ‰]vd7R2‹–ª˜‰ïTsŸIìkýîM]áyyh['ÁkÙ &̆q ˆ]HÑ 6gÂà HVÀ ³K‘M‚f¬i9¯#ŸŒæˆf'2Û¯’#KÉþ(˜9M<.~SÉV‹±™‡ ô6ðgâbY0nJƒï7Ht×ÂGËÐ4"oê=‡1f†$Iô{ã˲,Ër×ù'w†a¶lÙÒ§OŸˆˆˆ¦?E«ÕR¥×냃ƒ)Š‘HÓ«W/î3‡öxS«ªª¾øâ ‘HôÌ3Ï4 žÁ¡Ý˜ØT§#ø]“ ê‹Ÿ°N¾¤h»®&ƒ`阂ýy £í2-F„]ª±K5ÉÓÛdÿTuþ®É]¢`{?ÒÙÉ^uU¢ bN§±[Iýnò|Ý25k7‘ Ísg¨l u€†d¡bd£À)»>ˆˆ•‚]†mP¹ZáŠ"ÁÉkïÞPBȦ&Ñ € ö¼ùÆÒûAû«WÇÒûò©‘V@a¢g“/p!lÈäó–ÞAœû-Ãh/_¾\QQ¡×ëccc{öìyû/^ÌÎÎîß¿SšµÙl¿üò‹Á`àbù'÷²²²S§N½ñÆM·”   ñãÇçææ®Y³æÉ'Ÿly3¬VëêÕ««««ßyç   nBS#Ö »aNÒCªÐ „±Äiò1–“¬»> -MIÕÆRL©†`éàÊs3UÐ]eˆüÂh]Œ»ô²´*_Ôÿ±F‘”µH³žò bþ*· MûÒo ¥`–A,ƒ  4CB4¨Dëi„  Öêf`0Ì¥g_ŸÖ֪굱¼fGÀzd!/d¬#ÀR°ËÕ 7HÌb¯åÚ ¾¤D2ǺºWUÝòȱ¶ÑHZJö·  œ¾lÌfJ{ÁQü‡·õöf™[,ÿC‡]¹råÈ‘#ƒ¾Ü+++W¯^ýõ×_ûí·rÇŸ9sfÉ’%íÛ·÷ ¹ïûÿìy|U¶Ç·ª÷%=!Y! [@@E•MQÅý9.øôë8ÎøÜÞŒ»¾Ôax↣‚ * âȾY„¬dëôÞ]UçýQ¡‰IH‡Ðç~?ýG§ºSÕU÷Öïž{êÜsV®t8cÇŽm³=++k„ ¯½öÚ_ÿú×[n¹%''çd{ؾ}û‹/¾8qâÄwß}@zzúĉ»rèš”¡5)C˜} u{E9PÕo1–^ñ}jÕf¢ H×ÑùS«ÒJº}‚Ríß`ÙµÚFD͵úüѾ!ç»uªØcøâ•SŒ$K¬©RŸ?Ê—WâÄî‹»MØgvÔ`ÍÇç tàÎó ñ “ÇVc‹AB,m£Ë•ž¨“ݹsP€ÂZÂ)ºÁÎ=n-Ê"BÉ d@P†(iÐjœ»©GH†"E{ñš’ ^Ò!d… C@»AsW;€IПþÃ[eDð•8:ÐÈr‡IP# =$N¨†Ô CTE©—ÝaݹrÝ2Œ1!r´Lû"ªÓ¦M»üòËÞê0@`É’%¹¹¹ª³:Ì‘#GÖ®]›˜˜èõz7h´2dHnnnBBBxKNNÎ¥—^šŸŸŸ––vÓM7­^½Úb±X­Ößþö·­c/¼ðÂQ£FÅÆÆúýþGyDuÝp8zý©µDÐ`--šÍH&Ƭ6y“¯`åÙã+ÓJ|¦øîßÌzJÌ eBA çËís$‡Ä¥…ŠÆ{¼N ƒÎñf÷Î &Œ ”ëB¿J „M‚‰ Tbxlq8$@>DãÔOû D‚^¾D}ùi°ˆ2tÇ×%kaB` Dud-åD£~"‚6aL!QãsÑ#ª¡S»ô—éÈ>އ¥(Lßêõeº‰Õ4¬G- Fˆhá)¬}¯)((P‡†6Û×­[wèС›o¾ù™gžiíùüóÏM&ÓØ±ckkkµ÷qãÆµÙ’ššö®¤¤¤\vÙeêž5kVëŸ>räHõM~~~^^^ë‘@û¬dÑX“zÂóS—XXŸ8áxB‚Ó²Ôt”^äO/ ÷%´´\L’4ö²F;þ,àtï¾ì‡1®ƒ³ƒ¡ƒk1 ê›e©å_PR£°æj A4nk¢ sÏ,›ÐbrCJusÚÄ­‡ b­PŒövT:>@l“›5ò¶ùºô«ÊËË?ýôÓsÏ=7''',žD´uëÖ]»vÍ™3§¢¢¢ÕT¬ç}”Ç;y8‹vL?Qt÷y2Ë)²ÞÅ3âáN»›"¢Öö´ÞµúA¯Œa%$è»à¿ ƒ~ø¡Ãá7n\ë<]UUU«V­ÊÍÍ9rdUUÕÏ)î‡óï‰m‡=Ñ0›‘(( û#…åååßÿ}EEÅáÇAhnn^¸p¡ÏçËÉÉùä“ORSS·lÙrèСÒÒÒßÿþ÷=öw‡ÃÑPÜÛσ¡µ” ¬½å.Ë2‘¢(’$ ‚””tà 7TVVªŽ÷ß¿¸¸xÀ€™™™÷Þ{¯šÊåû￯®®3fLll,w‡ÃÑ Aɤ°öÑ2«W¯.--=räȱcÇ^}õÕ¡C‡Ž7n„ ê§DôÀŒ?^}T9wî\u»ÉdÚ¿ÿÅ_œœœÌÅÃáp´³Ü»ð°Oè s˜Ëå:v옪æuuu§Ín¼ñÆÖ'* ¸ä’KbccÁ}¥¸#b($S:¨Ä4{öìÙ³gŸô_»ï¾ûÚo/....nY{ÏÅÃáp´÷®„°FÝw‡ÃùYÅÐëËìq8§¸“©-õ•”¿‡Ã@ èJE6.îB³ÂêeíV™ L YuU{Sµ>“)9í˜(KZw­#ûD¢X•÷ [.ÛçÒC+™£_Z¨ãË%jÑt £ –‡‚¤¨_ÖËýßÝ-ÃÊ—ŒtÚ\‰–û€íÓç<òüoµ>—ágo»õÁWÓûWi}?\T0W ´—/C°GD¤':ë‰\1 õÀÉôÈbfˆ‡ÖyI„¯’4MÕËB Ç¢ÞgIˆd^Ñ¿½åNy¡±Ê0¯õ¹݆¸Ä¦Ô¬/™žAÔ¾•eÆÍöÞ¬½=At3‘HÒ¶u(&k1«‰ÜÌü*§·ÊOaÆáaÇÓ@&váî¢qqçp8-ͱk_ãâÎáp8}IÜ…ÚÍÆÝ2‡Ó÷Ľsn¹s8NßB`]zXÊ-w‡ÃéS–;AŒMF2#.î‡Ó§ÄAG]ø–áp8œ¾e¹ ‘¿Â}î‡Ó— 0ЏÆõJq'¢6s µîŸº1¼]–eƘ íÿ½ÍÿžöôDaLa ‚@ô“‡Ð EíBh7.“E=uï)8A!FAøI "(2#@ OE¤(Œ1ÆHÀ:í“:Ñß¾4é ´_ÐjÓº` @Œ¢ÝÍXKÞž{f vü†UºbKGñÇ`º.tž^åsolllnn®¯¯‰‰ÉÏÏW7º\®#GŽìÛ·/çääX,¿ß¿lÙ2«ÕzÑE…µ[Q”êêꦦ¦¢¢"u£×ëÝ¿ÿþýG÷~’€Pö¤a£ nô;Š1Nd)Ð ¬¨qàp,W¡¤§yÕŒpÅ£,‡dŽàLâÔí"‚‰ØŸ fælFZã©å ÄÊC¶};bª›ÇO¯é? YÕëPPüqk캩¯nȘú’ójcbƒ`ønUêöoš vGpè¸úag×Yl¡n+{,êcXµt7ÔSªÖ¨÷9²=dB0„` >;Š0AB ºŒ²öyiú:+šâXA?³5 ÕOÖhu­XTÄ¢Âw- ê‘­nÇát¶Ó‚b=²+hˆ1=7êGnÒDÜ»¿Ë… ^}õÕsæÌyì±ÇÂ?øàƒßþö·ï¼óÎ?ÿùÏyóæ-Z´H’¤P(´mÛ¶={öüDÅ‚ÁÅ‹ß~ûíŠÒ’µ®¬¬ìºë®Û²eKxË©be5ãñh<‰¹øü<ößIl7@Ô‰ÿ…—&àì›Ó·8R±s{«ˆ}:ŸYÐîXøa,{ÁÌœM诃ßשî¼ü€å²?y£ÿâÿÍ?°+V!€¶o{ì³÷ qÖ-1Òÿ½·ò,ŸW°]ãLVyÀЦ`P|å±¢‹³¹ûmj‡ÓŽF“H‚N£,>æµ0/‰L¶ÃianÖg^= X™[„ ÀÂý’K.yá…œNgxãÈ‘#'L˜žž.ŠâK/½ôâ‹/Ι3Çn··v¼üÔSO©ïëêêjjZRàN:Õçó9Î÷Þ{¯®®N ß1PG{©DÃS›[ËÈ\ýñƒR‰‘=v³YPoBS v7³~F¸2°±”.*Çhù´ó\+2kn48Z&’Ö˜P0 „jy:´×¾ú£Œòý6YÂìëéôÝÃ܈!b D= Æã°@J4¬[¢CH`¥ïû©(&xeèB¤§ëùH 2³¡X«EV¥jýÜÅwûÚŠ&;jvaòq«Kv°ãžU0Ø­[&‚p3bLˆ~UMÄÝãñ<÷ÜsuuuúÓŸÌf³ËåðùçŸïß¿„ sæÌ‰‰‰ñûýÌfs^^žj¹›Íf£QµFѯ_?¿ß¿eË–²²²«¯¾zäÈ‘eeeÀt C«Z ºöQ :(ÀòL|³›æCQö["èjQ¸‹fáÅ^Kg›j©Ð‹„(h£pÛý¤Vzj–w܅յſMk’·_0¤Édé^æD¼ ‘¤t”¥°£ ”¬hZ ƒdan¢ŸÌÔÇ­]²0·Ž$ì  AÈ@`._Cýõf²½±¨mF|FM‚¥’Î0À›Âö$c_ Š<ˆÀ˜Ç €0HõæS}îÔ¹[†‘Àú€¸{½ÞgŸ}výúõ<òÈgœp»ÝŠÄÄD³ù„G2--íšk®EÀ®]»–-[Ö2s—å7.^¼xæÌ™çŸ¾Áp¼ü $šüÓšm#ÐÇ…øp»ì Η5î1­ñ!.[r%˜d]è‹#:ø£ ì"9u-W“Áh"ƒYR‡µÔLoj¦7àÓ;ëMÛ¾8ËØ¯7Kü„…I†Îƒ˜Ôhß'2ÙŠfó‘Mîã‹-Te7PÀ˜`ö·>J&b‚q Ä L~XlpŠ´wSŠ(2é±vVë¡8@GTÜê[A0PÝ9ÝÏ•ò7ÊF™Ïç{þùçׯ_ÿÀŒ5ªµGþ‚ .˜3gÎßþö·õëׇ}ë'ãàÁƒO<ñĸqãæÌ™c±XÚy°Z¿~¢ìùX9¯íÄeûiJ–VÚD`DŒÀ¢ãÞbíšÄ‹„f¤9p =¼VÔa“~â2ê&z£2`XÓÞ­W£I–Ļބ@lB@‘™$µ(c0 ¸õôF¥Û"%@Vm Šƒ5`Ô""˜1²£ €‡ìÒ/@Ùá6‘Ï Wö®à‡-@f šˆá— jü(;q˃©m¤Cè¸ñ¬è™W€ÒÊYÊÂ/Ò"=c{Å:Ù+ú“ãî²iÓ¦-[¶ìÙ³Çëõ¾ù曃1bÄ믿þ÷¿ÿý‚ .Ø·o_YY™Íf;ûì³US=>>~þüùF£ñÁ|ôÑGGÕÉÎï¾ûn§Ó™‘‘ñõ×_(,,ìÊOŠgÆã… iØœ‚] ÄrŒ=„sEHƒØ{ñØo¥š¶ÂŠº26¡ŠFvûܱ¯}šŒ=6Í^«CÁVš€­”¦žÁÞu°r#¹¨ÜJ¿ö#ö”öÜPcúüƒÌ_¦”í‰[ú’~Ýò”«ï*Í.t3­ê»UIÞ2<>)¸wkÌœÊR3½ÎýC7ŒÊâ2[¥ƒ»c*ÊÌ—/8ŸÔÍ/©(703yMä+C¡… Í&òûa¶À£Î0õÑðp#ó[È-C4Ák‚O À‚œ“ C¬`éØoaÍzLðV _ŠÒ¸¨C`û4e 8lAc,ŽîǹÈÃ^—¡÷ Þ†úD(LjFJï¹sŽ˜~@ëU¡eee›6mJOO'¢o¾ùÆf³1"&&füøñ¡PhÆ †3bÄ‹Åb³Ù®ºêª¸¸¸•+W2dðàÁD^¶;}úôÔÔTÆXvvvBBš5k0Æ CFFFÄŸ„m+® «ö&A 2+ó#ÖMý6b‘bf §¬æGl†ÕR‚ŸÅ(è`b3¥÷cÛܬߺ´9§ê5Zä‚b§Ý·~ò¥GŠF6L²¨Wæÿvß®Mq>·~ä¹Ç®ÿ]}VA³ vÓrÂxŒõ³À¥#ÉÍnŠ Â¨…S&ƒ öð°¡0¨ïJ•Î {x‚H`Ä_ªÚ9µ”éc6ê‚0W"ßC1Ñzè¢@<†<’a4À$fÀöàÂ$Úoa ÍH9@gס¿Üc°Šô@•$D?¿ £>rcíÝ»wþü«6múÑ”“;±è$ó":/WhÒútαþöÇ_Î-:¤íaH?Ê´ 4i|62ƒÑxºÐ9ï½?sæÌ:†kÇÝîàË/o¾çîµZŸ AB¿””†$h.—a i0Rˆ±ÏÎ?õK/½˜——wú»»ôÒK3ë?~ê"çíØ[›…z¦.|å•~ýúýü–{¯„âv‡ÃÑR’XäzŒ:þN(òù|z½>„BD^¯×ãñ‘Ýnoýý7ÞØ´iSIIÉã?Àf³Ý}÷ÝIIIÓ¦M{â‰'îºë®ÔÔÔýë_×_}LLLŸw/à„¶I¦B€[ëÓðû”ºJ‡Ùš¤íaH—ŠF‰i».\\¤ø9÷#õHV€K<Ð3˳•è›è i|KÐ1tžå…€v¡ùùù¢(Ž=€N§ËÊÊaúôé­ó"F“É`äÈ‘=öØ_|ÑØØøç?ÿù¬³Î2™L}NÜ73&‚Æwæ5Ž÷ï W™a±i{ÊÝôW iªµ°„![(Cûã ô IDATÖïA”)êwxÇjاôO1BˆùÖgÂh—Æc•Ñà§GJŒÖQ¦á±cÇŽ;¶ÍÆ’’’’’’Žæ¬      õÆ>'î•DVÅ]`ÐüQDCMJ}M ­ºëzFØm$Ÿ¦G9Œ„õÈÒñK€zftïIÇ€öû'@ÒÚr'Шñˆ(38£y"ÊIoËçÎé3bÅáôíñ£_›ˆ^dÐ Q4w‡ÃÑÎÐ5qç–;‡Ãáô¥™sW²BʤàâÎáp8½¹†žÀzW™=‡ÃáD°Ê5÷n§u…[î‡Ó×L÷ö ”ÚYÏÅÃápúжw%±:E.ÅÇÅÃápzĺàrašD“rqçp8í,wêÊ"&úfœ»¢(Š¢‚ < eô:MKºŠž[?¢®¡f|Y‡s*êÎÄ7)Óõ¦h™êêêÝ»wWUUÆÂ¢¢"QȲ¼k×®ÒÒRÆØèÑ£Õ‚~‡Ú¹sgIIIZZZxÁ`pãÆùùù)))ê–½{÷J’”ŸŸo4£%d¤€)I$$B‚„AŽÞx©C •VÔé¬Ä`b0(ñ8œˆ2=|±)•(–¡?¥=ËÊP‰XLQcêöÃ,¡”RüÇ÷65E¨Ðë6dT  ,4Ž@¹ §•(L€,@ @P´MÇ9å[F¿¥SìT]Ç ¯~Š!cfEƒ5< Ä P’¡§Ÿkm—ÒP/ZÄôæ›o=zÔáp¸\®O?ýôòË/Ÿ36™L999õõõ«V­Š_°`Ýn?.î; '. %ƒãÏÞ_E&ÇPS–L=p¸FÊØ‡scYå ¬Èb›vÒEQ™-\@¥°O E†ðº0æYš8’•a/’0C™Ì„/©àG–\@5Â/*é9§,câ ð[á6Áì‘»¦Ã9$a;Рúm¨úGód R˜#‰½,Òãñ<üðÃ[·n}å•Wrrr¨žô`°eèkll4 v»]µÁ;vÛm·egg‡"­VëôéÓgÏž­þYQQvÁ»\®E‹íرãùçŸOOo]b¨ l¹÷­’ƒÌ覘¹7àA¼ñÕ4ÈÏìgâÍ=˜$Á|ú{6"dŸoÖ¬YªË%99yøðá±±±#GŽÔëõ|ðAEEEvvöùçŸß:ò½¸¸ØëõÆêêê±cÇz<ž÷Þ{ÀÀããã»+î²úÐ\Õbt‡HF$3=A0°€º!H†è‰{(‰í7ÁY†3Mp&±nJòÃa„;‰í!X%†üˆ Ýè²{‘r„âGá[Y†~höÂðeHÐPB‡ç²Í))pÍÅ–•T´ù¡j&vœæU2;n¾©'.î½ÂÊ$52½zïD]܈lh@`ؽ°k´ˆI„Ì HЫïeÍ"÷#ˆ{—j¨F ÛMq¿ï¾û$I ÿ©×ëm6€ÜÜÜûï¿ÿèÑ£¢(æää¨îõœœ“ÉଳÎ*..fŒÙl¶?þñˉؒ9sæ‘Åb9ï¼óFÕzçV«ÕårêT  hœ_A‚®Ÿ=Ц¶-4›ýį$Ø>:÷ ÆŠÉÐK0to¸º’6Q«ÿHa  ±ç\¶/Š™‚ŒHµæPM.ê|LÏ@f ‰tº¥ƒ?ùÙÄ"{ ²ö‹}¬IR½‚H]þÚÌÈ•˜DPïqËt²ªÈb± 0 õ½^¯×Ÿ3U/<€6žw«Õª¾1›Íf³¹¯ÜšNô"utD Féô:®¹½»›L2ud•ë ÛIŽj—ïð=çß‚#/uÉ-ÓkÄÃáp8]wÖ· ÏçÎáp8} ña©Èx>w‡ÃéK¨­"Z÷ÄzM´ ‡Ãáp"‹»À”H*«È¼@6‡Ãáô1q'E@ç‹õdÔ{B!9‡YÜY]Û™¸3¹[F’$Çã÷ûÍfsL̉xë`0ØÐÐà÷û-KRR’ºJTQ”æææææfEQl6[\\œ(Š\Ü9G3qgL‰T^”DÖ>¹ÌêÕ«KKK÷íÛ7räÈ«¯¾ZÝè÷ûW¯^½zõj—Ëe±X®½öÚââbEQöíÛ÷ÑG•••ˆ‹‹»ä’K† Æ—r8޶âñÕ>¢fëÖ­n·{óæÍ7n oܶmÛ+¯¼b³Ù.¾øb¯×{ÿý÷»\.§ÓùÎ;ï¬^½úÜsÏ>}úÞ½{ŸyæÇÃ-w‡ÓW`}.Ó1¦ˆb»Ÿ­JyËFEdJ;q¿ë®»c;wî<±+¢uëÖÙíö_ÿú×ÅÅÅcƌٺukNNNEEÅðáÃçΫÓéŽ=úÖ[o…B!]ßl`M×4Rt µøŸÖ"‰‰:Ÿ¬È‘Øé݉g‘ì ÖcwM_”+EÚþr:þ…u°ÐµsÔòòòÔÔTumFFFrròÎ;‡^RRòÍ7ß¼ÿþû‹eãÆ“&M2™L}NÜ `Fm“L‘LhßöBãLF èp±ÖU5ôå²êbì׺íóp–€\JOIûC( ¹GÒHh] U¦ÓΛÔn8dj›=ÉïV}*TW¶l–Bز)ò >Ÿ/...œÍÅáp455Y,–ÂÂÂeË–-Y²Äb±QEQ’$Eiù‘¡PH¯××ÖÖ®\¹2??Þ¼yF£ñÃ?|ë­·ÆÏ}îí&Q=t˜šÆJ'ù “Hr\4§O®¥½ËE‡ÌVUˆ‚Ú¾•voŠÐ½Ífs|||cc£×ë‹‹“$©²²2++«¾¾~ß¾}'N=z4cÌét.^¼¸¾¾žGËp8ŽfâÎD™éÛ¿”V/zbb»QT ]}CD¢(2äСCGŽQeÅŠ’$?Þ`0‚PQQˆhß¾}¢(Z­Vn¹s8Žvê9¿±´¯[ùøã¯ZµêСC¢(N›6mΜ97ÞxãôéÓ·nÝzÏ=÷¤¥¥ýðÃ?þxjjj||ü%—\òøãoܸÑl6ïÞ½ûÖ[o‹‹ãâÎáp8Z¡€)‘*q(`í]7—_~ù…^HjÁAHNN`·Ûzè¡-[¶=zôÁ4hƒÁ0gΜ’’’;v„B¡Aƒåååéõz.Œ),Âs/…¡ýÓ¾ììììììö_6cÆŒi³Q„ößçâÎáp8ZÑ•R‚ :xèzúpqçp8 Å]Ž$ÜrGn.î‡ÓË-w1Òw4)Åܱ¸={öÑСC‡Kr8N÷Är$·Œ¬©[Æãñ,_¾ÜårÍ›7O„§Ÿ~zÙ²e¡PèÒK/½ï¾ûã 9§{–»ÐùŠÅC!£&îuuuëÖ­ËËË3 6løä“O.»ì2‡Ãñ?ÿó?]tÑ!CÚÿgCCÑ#GAÈÊÊŠ oƒ ¢ÂÂBÕ꯬¬Ü³gÏÀ322Nœ3‘Çã1 ƒ!<]eÙd2Ei®@"$=B" º úöD„,0E @Ú¬¤ èÔC"°Œr4¼v!¦o†I„b'ŸØjm·Ÿ!É}?8©Y„LŒÕÃ~ñ"”ÔÙÉG|I*§ÏÃ" 7©7Ÿv–»ÛíNJJaÓ¦Mýúõ›5kVffæ¢E‹¶lÙÒ^Ü—.]úÇ?þQ]+IÒwÜqå•WŠ¢xèСßýîw¥¥¥~¿ðàÁ¯¾új\\\yyù'Ÿ|b4[‹{SSÓUW]uùå—_qÅê–—_~yïÞ½<ð@ZZÚ韘ÁÔŠ:„‚0×!YÒ8Q—V½dgMˆaòÀ.G;¯Å¢Þ†f z’¹i~X»­¯~è¿bƒ–¡Ä ë8üxÖ'Â¥~TÎÿ‚É~ìÌKž™lÓªZ‚³Ö¢(‘¹ý0ÈŠp-[=Œs}çôu·ÌÏ-#‚¢(.—ËãñlÛ¶-???..Î`0X,¯×Ûþß&Mš4cÆ ³Ùì÷ûßzë­×_½¸¸xèСÏ=÷œÁ`øôÓOãããg̘ñØc=ù䓊¢„B!u)­,ËÇl6+ŠÒÔÔä÷ûÃûôz½.—KQY–].׉Ÿ¨Ó™L¦S6a¨AºzY ð§ Â BŸt1ÉèFŒQ N|^X£{.Öˆ„F$% :µÈîv¾ä3px0«XCƒª[]ùÓ=‹ig üJ¬Ó‘$C€3px ¶Å)îÓ¿!Œ‡Æ°* ¸@pú¾[‘Ü2ѧEÜãââ?ýôÓêêêmÛ¶Ýyç6›Íçó>|¸C;:!!AõÀ(Š’””d6›%I:tèPiié5×\“””¤×민òÊçŸÞãñœ0åüþ 6|üñÇóæÍËÊÊRµ> ªŸÊrKæ©ÚÚÚ‡~€:Þ¤§§ßpà ݸ¦ªH1ÀÔ—û‡õ½ ‘A(êiÎ1( ¤@GÄNç:(©Ô$“(²ŸäÛËÒª”¸¿ª)V$ů*¦ò–$9µ{)ÝÏ pqçôar¤2HCË=))iΜ9Ï>ûìgŸ}6nܸ1cÆ †íÛ·÷ë×oèСÿ Y~ÿý÷›ššÖ­[7lذAƒmß¾]’¤ÔÔT5ÝðÀÝnwee¥úýæææ+V,]ºtæÌ™ƒv¹\@`óæÍáÚ¯»víR­ûØØØ«¯¾šˆª««—.]ÚÜÜl2™ŽÛøÍÀ±°ŠÁ@°ŸÌ]Å@FøŒð™àS óÃÒGÍöÖè aÔ(¥A|zmp5°$-®ØJÕ3e-Š*Y¼6•ig"šÃ_p2ëVôÏfµ1äãêÀÑØkâBaUcð Úbbçû$†TA;vlaaaSSSrr²ÍfÿôÓOgffv<")Êš5k¼^¯ÇãIKKSmpAD±Å¬ú^€ªì}ô‘,ËW\qÅù矯>D ƒ¥¥¥jòLOOWÿq̘1N§sÓ¦Mz½þúë¯ïß¿ÿÞ½{U©jÎ 0†“‰»É€ )…¾ï½ÕA2Á'31HFíž©êÒC’¡Ó(Å®7L ÌÇÚ,õsüÐvõq«Æ•ìŒ&²\…¯t=‘XŸóomX3Ԯ㕑 Hж¸GL5wŒ1«Õª««Ã‚ï÷û-K&¤^¿páB¯×ûᇾýöÛƒ6™Lª{]ý‚ËåEÑb±¸Ýn§Ó¹gÏž3f”””„èv»}þüù×_½úçŸþô§Ý»w«ïÀG}ôÕW_Ýxã£FjuØþ ¦:µÔî8é„ȃbô&£ÒW†¾k¼‹Ìð0—l²f«Ï0`f âPçM‰ö“[|F Mf;bÉßndT"!Èôf x™q†ï¦Ì_áÛªæÚÃÑɘ|\¢(×êQãÜY„PH-W¨ÑÞ{ï½;wz<ž°¸[,–{î¹gذa'û‹Å2`ÀAjkkÇŒc2™Ž9ŒFãŽ;SRRjkk“’’ŠŠŠª««ß{ï½ùóç;ŽÎÖ矾téÒk®¹f„ ?²7¬§6$A¯@!1Pw²…y’½°‡´ù!° ê‹úÎsX-#E‚îÖø`\á›YÎeôí:ÌË¥r´‡F¢V64 Ñ.Ħºe:wÒp…jCCÃ’%KV¬Xqæ™g6,ìZ1j1Ö6¬ZµÊd2¥¥¥566~ðÁŒ±ôëׯ¤¤dÅŠÙÙÙf³ùwÞ™>}ºÕj`2™&Mš$¢E‹ÀM7ÝÔÉoÚ¿ÿ£>ZRR’‘‘±sçN«ÕÚàH‚xB0˜ >‚.ÄôQeg +sÉïcŠ™DbtOG„l‚€ Ù¬§c¶+`u,fúAb=ì?°Ü¨Ê¤º\ªÉfuËP2†í+cÉ5ä‚#„>a#–cÄtÃô`…¿€ªÌrâô]¨Å*g‘Ä]ËEL?þøã´iÓn¼ñF›Í6–cáEF­©¯¯ÿòË/AHMM½õÖ[‹ŠŠ Ã5×\³hÑ¢_|QQ”³Ï>ûºë®cŒÙíö¼¼¼äääAƒ©¢¿~ýú1cÆ :4555¼ÏÌÌLY–Fã‘#GÌf³×ë]²d €œœœ‹/¾¸#²A3¼ ¤@p"Þ[_õÉ0ˆ$+LÔARÝÐ0k1?0ÃË ,óiFŽX#l;Y¦%î2¤ØH£F3¯fk¿Äàl¸Òx¶g•1P€ésQ#€v²LIhÎB½™¸¸sú¶¸G¼‰ºòî‹»êpÏÊÊRSÂGdêÔ©cÆŒ ‚ Øíöøøxu èß¿ÿí·ßÞØØHD‰‰‰ªÕ_PP––f±Xôzý™gž™““c6›m6Û< >¹U™1cF(Š‹‹:tèßÿþ÷ðvuöpèСSuÅ8‘À 0@“!RŸ]¡JÄ\Ì¡uo!za÷ÃÊ ¨øOs”ÊÆ±¹Êw'|j,d@@U%£)½ºrÕ„€)´m"v¶êšŠ~®œ>.îˆXÇXÒ4255µ  `Ïž=n·»µàž ‡Ãѡߜ1– FÁ·Vg£ÑØrËb¿~ýÂm³OõÕjU9§9`J¿ œ—2‰=q”Óô6`¤ ±µ_…ÂS%ž6~H;¼\ 8¿0]XÄDuy?ñ@5&&æí·ßÞ´iÓèÑ£Ãá1F£ñ’K.ÉÉÉáÄáp8§£HVfKœ{´ZŽêõz<(IRMMÍÇ|˜²ÛÏ>ûl.î‡Ó-Bä¼1Ú¦üíׯßc=ö裶ÿÏçÎáp8ÝwAî’[FËEL‚ øýþÊÊÊÚÚZI’l6[vvvë\¾‡Ã9Eq\‰I¢m%¦ºººåË—¯\¹²²²R–e³ÙŸ/--mĈf³¹W]ý+¯(š6m\8#±–ôÀÝM=rÔ§ÁpAAš·ŠÁ ;ëœì³Ïɸ¼ÿÛ ÿïÿjßzkKt;-E*àÜa(¤ßﯭ­õù|&“)111œnËãñÔÕÕ©5”ÒÒÒ:C]SS“(ŠV«ÕçóƒÁøøø³Î:+¼÷@ `µZÕš¨½bŠÓ"X¿Œý2ŽÂ~i׋Ëú¿3Q/:Ï"ZåDýdJþùÏ~øá‡^¯7&&fÒ¤IsçεÙln·ûƒ>X¹r¥Çã1 ,8çœsN*î/½ôRRRÒܹsW­ZµukÛùˆÉdúõ¯ŸŸÏÛœÃápº1ZE0”v¦ý®]»žxâ‰k®¹fÚ´ißÿýo¼‘šš:eÊ”ï¾ûîÝwß1cÆøñãßyç{ï½÷ã?n“…÷„¸WTT(Š"IR]]Ý‘#GÚ|l±Xü~žS›Ãápºi¹wåj›U¬7n4›Í—_~ybb¢ÅbY³fÍ—_~yÁ|ÿý÷)))^xavvöm·Ý¶hÑ¢M›6Mž<¹cqðÁu:]LL̼yóæÌ™ÓæcA"Ö;åp8ÎÉÄ]fb[q'HA…ä{] @ ýÄvgŒ)Š¢( "r:n·ÛétVUU%%%Ùívñññ))){÷î=©¸«Á0õõõ«W¯NIIiãÁ¹ï¾û®ºêªAƒñFâp8œné{Û¯ _Ù»ªÚUåSÿ”%åÐ÷u‰8±¢èÌ3Ï|õÕW.\xá…nÞ¼yÓ¦MÆ óx<Á`Ðh4†—"Y­V·Û}²ã¶ÕãñlܸñÇlóñ{ï½WYYÉ›‡Ãápº&Chóbz1eH\ÖÙÉ-¯qÉ ŽÖÖ}QQѶX,÷ÜsϰaÃx#q8Ω‹» G*R/w”8 âžžžž’’¢Óé²²²Ú|l6›{[l‡ÃéC–{WÒhò@õ±ÇSß]uÕUW]uo ‡Ã‰]wE‹òïºêêjµ˜SÇ¿‹±øøxž[†Ãápºe¹#²¸“¨âþðÃ777Ÿìc‹ÅòŸÿùŸÅÅż‘8çÔÅ)Ùr×d…jÿþýssssssFãÆËËË333Aøâ‹/ª««¹ÏÃápº-î2”Î_å–¹ùæ›Einn~ûí·Fã 7Ü‘‘¡ÓéÜn÷¬Y³žxâ Ax q8N÷P tn–+LP˜–{LLLlll (///))>|xrrr|||VVÖŒ3 Æ xóp8N·”)åH/ ³BJ’ÔØØèóùX«„1ÖÐÐàr¹x q8N7  ÄÎ]êJºv_Ü“’’rrrþñÄÇÇŸwÞy&“©¦¦æ‰'žðx<`åp8N§t%’i˜211ñÊ+¯¬¨¨¸÷Þ{AÐét^¯×n·?ùä“äíÃáp8Ý@ëBâ0-Sþ4hÐóÏ?¿aÆ;wú|¾ÔÔÔ &äææòæáp8œÓÐ÷ŸÕrW1™LLNNNIIINN…BN§Óápðæáp8œn@]²ÜEESq?vìØŠ+Ö¬YsôèÑùóç_rÉ%µµµo¾ùæwÞi±XzÇ…bkÖmj*Õ8:“ùe7D;•hûvA¤¼wQáœñ™™Æ4<I’ïÇ=[¶h}.GIAü2ò­2D®$•£4íf’úhß~]ñ¹ké–ñù|Ÿ}öÙ[o½5dȲ²²êêjY–-Ë¢E‹¦M›6räÈ^Ò‰ým·ÁÈMÅ]ùAâêq×õ€¸ÿmÑô´~1:†R¦5k*zHësù'†¿ƒÑM°ü"ú˜È ×ø® b5= ‘”yf4;˜šÏ"|GÑ0Z¦¶¶ö»ï¾+))¹ë®»}ôQ5{rrrZZÚîÝ»{¸;A‚_{q÷ý‚Ľꛫ†›æ‹Ý‚ígTDäõʵµZ_1k¬#oƒö#bO‰»¤y`‘Iã)‚ HQÿÝr¤ßLP´ˆsoÙ£Çãñz½EEEñññ­§½F£Ñãñ€Ãáp8ݲÜéE [Æh42Æjkk‰NL ËÊÊÒÓÓy q8N÷Ä=¢[F¢áÕÔÔÔâââ÷ß?//Ïëõ*вoß¾ÇÜf³ñEL‡Ó]º管¸[­Ö_ýêWG޹馛<(Š<òHRRÒ’%Kbccyûp8N7PÀd:jPˆi&î¡PÈh4Þÿý—^zé† ÜnwffæÔ©S“““yóp8N·-w…E²Ü™B?ýŽ×ë­««“å–ƘÃላ‹óx< ^¯—ˆl6[jjªüÒ™¸9räå—_=zô¯~õ«qãÆñáp8œÓ§+5T©]œû®]»^{íµ††~¿ÿرc×^{ío~ó›Õ«W/]º´²²R’$»Ý~×]w{î¹Ä1šššˆHÓE"‡óï$î!°ÎÝ2`m|î………wÝu—$IŠ¢lÚ´é/ùK~~>‹Åò«_ýª¤¤„ˆþüç?ß{ï½k×®=YÔqOHH8pàÖ­[¿ûî;µ*SXô­Vk'–?‡Ãáp:±Ü u*î-–{+y·Ûív»€Ïç{ÿý÷û÷ï_RR`âĉáïLž<ùÝwßõûýÄ]–e§Ó¹råÊ;väç燿m6›ÿã?þ£¨¨¨‡¯H]]]UU•ÙlVÇ+‡Ãé‹tœRVBU Š/Ð"îA)XãìPÿ›šš¾üòËË.»¬MŽ/¿ß¿bÅŠQ£FY­Ö“ú„Iž‘‘1}úô6 †ž/³·xñâ/¾øB}¨ûÔSOu{? QË2í`Ú/ñçôX«ÙöO¶û™^‚`BHGáe´,ÈtAˆ"ÞCÚßž¤å]bPÚZÇ?‡åÞÞçN!ÉWZ!Õ9Ãú×v¸Ä÷Ûo¿mnnž2eJë¡PèÿøÇæÍ›Ÿ~úéÈTÇÅ_ÁÐÈf@:g³ÍÔ Cøžå}‰Âf˜“ྚ­O&'tó)À˜Ld À¤íEq8–„ªðýS,'Åý,£Xw«Þ¨’¯ Ö»¯Ê‰ªŠöÿüÎ;ïŒ;6+++¼E’¤7ß|óÝwß½ûî»GÝé]EÑápÄÄÄTVVîÛ·Ïçó¥¥¥ 4H¯×Ÿì?Ýn÷ý×íØ±Ã`0$''ß|óÍ“&M*--}î¹çvíÚ 'Nœxÿý÷Ûíö5kÖ,_¾ÀæÍ›½^ï¼yón¸á“ÉTQQñØcmÙ²%>>~À€ óæÍËÍÍ9rd(Ú±cÇNgÀ Àì‡E`‚/ ô^X¢¾Ì—AµÊ=‚˜´´‰ ƒ‚>.î‚ "DÐGĽ‘YuÐ6Êœ‚³ƒ˜°˜¹‹2æ²6CL$l7KÿÃÎÀÑBVõ1†-¤sïgŸŠôKÊ6Úý¾lD ½LfBfæà§è'P3ÂǘrŒÒ‚0õg9[µÌ^Û­¢(¤$œøN (&Ä€ÚŠ{yyù7ß|óÆoˆ¢6/^¼dÉ’›o¾yêÔ©áíÜ2µµµ¯¼òÊ›o¾ÙÐÐ@D:nàÀ/½ôÒ Aƒ:üÏ?ü°¬¬ì7Þ0›ÍÍÍÍv»Ýét>ýôÓ¢(¾ð ‚ Üzë­Ï>ûìÿøÇººº?þøúë¯ùå—·oßþÐCM™2%--íoû[EEÅ /¼@DO?ýôöíÛgÍš¥Ž4¡Pè4¯© 6c@+šõ0X¢>7–¡S Šõhê¹ Á(B´\9"€Æ)¶YV<›~ÌPbÏmtE™”OÕ\Úr‘ƒÀ,½É€PPƒ´ˆ `ð ÆóÏí‹ØÉ;.Öñî»ïfddœuÖYaOÉ|ðòË/Ï;wðàÁµµµ‚ têÞrA].×믿þúë¯_|ñÅK—.]¹rå3Ï<#IÒܹs««;î‘’$ùý~ŸÏçp8òòò222¶nÝZ[[{ÅW 2¤¸¸ø¶Ûn[¶l™×ë0lذéÓ§çççÏš5Ën·ïÝ»×çó­]»ö²Ë.>|øˆ#¦NšššÚ%•ƒÜê¥tn¼ PD„¬p  LIIÏøòìãµí‹çb€d¢`ë{'Ò-5Ãò»àeá¼È ^¦¯Bl29cáa lª·²à>$<ÈX½‡[Üß ` …4©CD€ÍÙ¬4;Q%ž´HÃO%…)Qïê bç¯öc›¢(«W¯¾ñÆ CXrKKKkjj^~ùåY³f]xá…sçέ¬¬Œ`¹WUUmÞ¼ùºë®»ûî»UWÌÈ‘#§L™RRRòùçŸ_yå•íÿóÒK/ݸqãüùó&L˜0oÞ<§Ó©Fð¨Þó¼¼<ŸÏרØÀf³Ùl6‚ ˜ÍæP(¤(JsssJJŠúåøøøNû¶ž©0P«›$æÿÛ;óðªªsÿß=œyJN摌„DˆŒZ© ¢V´èUQé£R«¿VíÓZ¥ýY{ï¯O«½zí@­mõz¯­¶µT¼Z½ « @BBæäÌçì½Öï“Ä0ȉÉÙ!‰ëóDŸä°ÏYgï½öw½ë]ïz_Ž@ýŒKw£Û‰÷ÁƒI,i ’ì«­ Îÿåg_H5ŸðôßaÉ×é³Ð檕¢ñÅUâÌNÑ>nkªÇ[³ÜLa ,³âN~¸u®Ä`²‘?7˜(Ú Ožxú†ýì˜IO¹Ø+IÒºu놾¢ªêüãÿøÇÃlZ4øNgnnîP'»ÇãÉÏÏÜ{V«õ‘GéééÙ¶mÛ“O>ùÔSO-X°  õõõ1Æ$I:tèÝnkúÉȲìõz>Ì㜷¶¶öõõ ã ËCëBœþª1È=HíƒÇŠ` :b0ûáâÂz$\ãòÒÆRÖÚ ÇÓ‚í(©B‹Llhy ’Úïƒú> ì›y( k f#šðÁãƒ@OŽ–žÊa" ± Þ0qFøƒ‘•˜¼^oiii]]]cccNNŽ,ËÁ`p÷îÝœóxðüÉìÚµ+x<·Û——'IRyy¹Ûíþç?ÿi2™ˆèoûÛ\ðYÁ6V«uÑ¢EëׯÏÌÌ䜿ù曽½½ƒÓˆÚÚÚÇ÷ôôlÙ²%++«¨¨hà}yÃ/ À!ép:ÐgF(§wAÉ@Ÿ‹B)<@…–‚àQî1‘îD¨¶0™l< ‹–,êÊþ©²[ˆ‡<}Q8( ‹ÌµS_Jœ 5äp8¹­'ý34Ÿ»Ýnæ™gš››Ï>ûl³ÙÜÖÖ¶~ýz—ËõÎ;ïlݺÕn·Ïž={êÔ©ƒï¬««{çw‡¦if³yéÒ¥ùùù+W®|î¹çžyæMÓ²²²n»í6™™™•••ƒ±’³fÍÊÈȰX,_ûÚ×|>ß‹/¾èv»EÉÌÌŒ/þï‰I` b€TDdha£|îœÀãÛ‹ †…Ói…#<·Ô:ŒÀø˜”`%¨äð“%Ê•N²›yÌŽHŽZýò¿Äë’çRó©ËŠH Úß¡ÒC<ÝDú*³ñH™XMÀLa÷GaŽÀïÒIïÌ2t"q«YEÔM~î:#Cë°ÄKœVf/ ƒÁÔÔÔC‡555I’‹Åìv»Édzá…¤¥¥¥¥¥ ÷Ë/¿|Ú´i===f³yÊ”)ÙÙÙ.\X\\|øða"ª¬¬LMM0cÆŒâââÁÔÁ·Ýv›×ë%¢ÌÌÌ[n¹EÓ´X,¶víÚH$âr¹L›6íæ›ol(55upIáóÜݘ ݃w:5§Ãc|‘ÀRe4˜¸—*"ñ8HÇ rHôñV8QêøÜ?$yÿ‰-ðøÉ²gÏ”çñƒy辿‰òÊôÃj£ØB^'s6›†w¦oAÉî½;Ó¸_Èz;|éWlðˆÁœô "tº¬à qÞŠœ¡MLÃèÛ²5T=Ïòåˇ&.8UUO(Éäp8fΜy¢ ¹àv»‡:gâ>ÎyssóüÇX­Ö@ Ð××·råÊ´´´¸ÈëõŽòÄt(AØhäÌLÆÜxbÜD`rÖÎTœ; C¸ô¹›L¦ââââââ±›˜¥§§_y啪ªuÖYŸ•gdò„s`ýŠ ½y:Ô1è"šñ­Œ:&^*ºLÞ—‰S¬ùÛxdIÄù ‚xïÎF'’8ƒ`aØŒn"¾)=Ç?Y>ŒJL ‰‘aâ~Fp¹\K—.Åb’$)ŠbLªa±|* N©àNbõ‹ ΰå~Æ IJ¢µ.ãLܥĖ{™½$ë»HÔ.Ɖû0|î$',Å'Ä] Æ•¸#qT—ŒØà&Ä] Œ´Üù0|îÂ-# ‰Q¢XO’IÂr‚ d¹#±åÎeÎ)éñ2BÜÀ0qç’ÎXîÄân!î@0aÄXBáfÃñË qF?‘ˆû’4qÓŠ»Ä˜XPoøš$ˆO®'O‚‹Æ@}d9LiFŸFˆ7z$„ m%Sƒ4×|L:4ÀÐ:´:HK¾å®'rËèÒÔ_\q€‡&ERè“EßyÂ’‡É{¼½õQ(›0í§|¥Ñg2 {.á묋ûa*ü;®ƒû£ÇßXtðÞ$?LÒµ2KšÎ™$Tù@µ”ÉaêN2ã}2œC¦ãNE!Ù´#`h+V'×Ý×ÿüd×PåàŒ &61 Á281–Èe1›˜`‰»žHÜuIb"ZF &’ºƒ1éô—þU!î@0q,w‰'ZPÓ!,w@ ˜PêN‰…Û‡»w@ 0F¤' sÔea¹ ÁD³ÜuÂikˆ’nHùt!î@`œ¸ó„qîÐ)ñ1BÜ`ÁZ¢ÕŒƒ%ßtwâ®ëúÓO?½~ýúæææÜÜÜk¯½ö²Ë.E´_ S/Ì&õïZ$b\úô¸4°—’Câ §±È!‰ñž`½´‡êñ¯1Æyÿ='"I’Nœ0&I}¶ÃgTâ®ëz àœ«ªj6›eY‹ÅB¡›Í¦(Jü0Æ€H$Â9·Ùlñ#–eÙd2qÎE‰F£ëÖ­»âŠ+Š‹‹·lÙ²zõêP(týõ×àë¸]‚Î!éP JŸ4Ð #ðL|2作1"dî„·é!²Lç{íÜ S=•`K¿%íEü¢]”ÚŽônxÒÑQÂDNËñg¹'ÎEF'ÎOÖM›6ƒÁ¸¦»Ýî™3g:ÎÁêëëkjjæÍ›—“““|qF£›7oþè£t]ÏÈȘ?þÔ©S»ºº¶mÛV[[«ëzuuõyççr¹Ž9RSS£(ÊÁƒûúúÎ9çœùó竪êóù¶lÙòÑGy<žüü|sæÌIOO_³fM|TÈÍÍÝ·oßÞ½{9A—å241‚Î 3ÈÉ® MAŒÀeh1˜DgŒ†cÈøÓ}puð´"¶Ã€sŠ’) €0,xÉY´w °s|ÜÕG®\4£AXãp"–pBÅ8;Q]W­Zåt:‹ŠŠ•”” Š{GGǃ>¸fÍšgžyæ_þå_’/îûöí»ë®»–/_žššzôèÑÆÆÆ)S¦¬Y³fÆ sæÌQUõÞ{ï½å–[n¹å–½{÷þüç?/)))++kkk»çž{žzê©)S¦lܸqõêÕçw^(Ú°aCooï¯~õ«ŒŒŒ¸²sÎûúúü~EEÅÈLj ªÕ„ˆdd¾¡x+ 4šèÉ‚Q’Ç›sÑÒHù›±xðE ³ø®øï TÜI©ù8bBÒæL[0_LÇ­¸óDùÜI?…[Àí·ß~ã7ž8·‹Dž~úéââb“))9rq?tèÅbY¾|yAAËå"¢†††M›6]{íµ+V¬°X,ÙÙÙO<ñÄòåË8Ž+V\|ñÅápø²Ë.ûðÃ333_zé¥óÏ?ÿ¾ûî#¢'Ÿ|ò¹çžúùÝÝÝëÖ­ãœ/Y²dˆ_Iô`Ád&îI§Ï´$”fä:áOå]ñè9…Ç¢PÅu¿Ú·‘Ëò3’oß¾]Ó´´´´êêê‚‚‚ø‹ï¾ûnMMÍw¾óßýîwF‰ûÌ™3«ªª}ôQ§ÓYYY¹dÉ’––"š:uªÅb°xñâ_üâ­­­qK~~>Y­ÖôôôžžMÓš››/ºè¢¸^RR’‘‘1øá@à©§žÚ±cÇ7¿ùÍ3f i¶ÒùàÙ"æGð¡—ÜíH+À£sa`@(Ø¿n \ɵÜédq×bth/ü½ƒâpÝqc¼$-\¸Ðf³ÕÔÔ´´´lÞ¼ù»ßýnQQQSSÓºuë-ZTTTDDF‰{~~þüã}ûö}òÉ'›6mêíí­®®Öu]×õÁéŵ[’¤ÁÕÞøw""³Ùô÷Ñp8öçûgŒ=þøã¯½öÚ·¿ýí /¼ppõ5þ… êq—Åú‘à 3¿§Vdé3qLEL\¤@¤ê€¢0@Nòç3@?Ñ.—4&ûýÔÛ3`¹Çxè¸ÌûªªÞu×]n·›ˆ¶oßþÛßþvÆ 7ß|óºuël6Ûüùó­Vk¦G.îGŽÉÉÉ)//ïíííë뫯¯Ç,nݺµººÚn·¯]»¶°°0''gÿþý'2f³¹ººúÕW_½è¢‹¬Vëo¼ÑÔÔ4¨ì/¼ðÂ~ô£ .¸@UO˜rfq^2DÜI8j_°E–}©¼K\$!qž=Ä'¢A$µ<ç'.–`² %gcÀ¦X„Ú[qððP˽¤¤$þûœ9s¦L™R__ìØ±­[·677;vL–eŸÏ÷ä“Ojšw}'SÜßzë­Ç{¬   ‹ùýþ•+W^ýõ<òÈöíÛcííí÷Þ{¯Ífpr¸‹Åb¹îºëî¿ÿþk¯½Öãñ¤¤¤x½^"jkk{衇Ž=zï½÷>ðÀ®ºêªoûÛÇ«ùçÊà Œ{ÁÄ´Ô§ )=ð”£Þv õ&ÎÈmë!W'ÿJ2ýä%¦:×JH Kªå³> ‰´··OŸ>Ýív¯\¹²µµ5îY³fMYYY<œ&Éâ¾lÙ²²²²¦¦&³Ù\ZZZPP`2™.¹ä’ªªª}ûöÅC!sss|ùË_>묳233ão|àœN§$IÓ¦MûÍo~ÓÕÕ%Ëò–-[¶mÛf±XRSS×®];èÛžž÷í|^dh*¢t7#¤C‰Â”ô›'CWZ± ¨CŽÁ,B#£“¼{QuyÝ<õ Zh£ÀWðš‰GtÈí”P6Z?ݬDøÕPr ™à|}uö•òƒb7Óørü0â ÇñãïØ›o¾ùÖ[o•––X·n][[ÛW¿úU·Û½hÑ¢øž!ÎùªU«Î9çœêêêä‹»Ëåš;wîìÙ³i€¸³¥´´´¸¸8>³ˆév»ãá4ñ?—:::žy晳Î:«½½ýÙgŸ]°`Ann®Éd:ùë&\:8õ IƒJã#ƒd„à éPu(1˜Å4A0J¬åãH:8Å7r¹?Ø‚²Ñš‰6/ïúd¤£]E¬ûAÀRÐ-úàø’vè‰tç¤h™ÂÂB³ÙüÊ+¯hš6}úô{ï½·¤¤„ˆÝÔœó;ï¼³ªªê4†ï¨âLˆèøÕÎOF§QçÁ߉¨¥¥eÆ ªª^vÙe×\sÛí±”Ÿj8”4ãKiÇw ŠN,H 6,Â't’kF†–É[Oê|<-¹h9µG0`à‰B!I;ÑrŸ2eÊÝwß}zíýÑ~tú=“ª”‘‘ñàƒŠ»/œ ¦ ¬z²3¡O’N9f IDATÎÌ)a™=0CÎLˆûTviL•]Ç#‡xa/¹d#«ûðPï2l0ú\Z÷>ŸÛÑ2É›xú>ŒU ª“NÜEZà/.=ðôp£Õ¥h(çD‚ü14n¹sLÄúSœƒ%H?À…¸ Á„³Ü¹ŽÓ¯Ä!î@0¡ÄÀûܹ…‚‰´Dn1M$‚ f¹óáå–I~ËBÜÀ8q±DÒ-|î@0ÑÄ}qî: Rþ ÁIJ܇³CU¸e`Bi;çH˜7FÿÂ,¨rÎ@,3›ÍV«•Hlöâ4ŒÙ,ù;ÖǸkš¶víÚ£Gêºn6›gÍš5wî\›Í&z‰@p¦ ‹lEŸï¢ g±T§/„[†1VWWçp8¬VëÞyçÛo¿}É’%#3Á$0ãdnÌv— býy  é$ò@Ð!ó1ÊK#˜œDa:†Œ¸á°~!X‘燣¿cwÀÏ^à‡½]ä±ðH1>IAÏhÔHALALã LšOÍx°Üá$c”ôô #÷X,öü£¾¾žˆJKKçÏŸŸžžÞÝÝýöÛo×ÕÕY­Ö‹.º¨¼¼\×õúúú¶¶6ÎùîÝ»m6ÛÒ¥KóòòˆÈçómÚ´éÀyyyÙÙÙv»½¢¢Âf³}ÿûßw¹\jkkúÓŸ¾ÿþû#w ,Þ‡(‹Aâ.A—¡I`2t Ša­p1'p³.Ä]0 Áé%WJ#07"σ÷Ð!ÉæƒjPQ‚OÊq0 ˪lB®]í”Ö‚ì ù6FܼœIÐMˆ„àˆÂ4i-÷aúÜ Èù;røßÿýß'žx‚sND--->Ÿï±Ç{öÙg5M;tèÐ~ðƒ}ûö麾}ûö{ï½wãÆº®¿õÖ[?üp ˆD"k×®ýãÿ …öîÝ»zõêgŸ}¶§§‡ˆÜnw(êììŸOUÕK/½´¼¼|Ö¬Y?øÁV­Ze2™Ö¬Y³bÅŠ«¯¾:<øàƒÇŽÓ´þü´«W¯Þ°aC4]²dÉ\0bAŒÿ±÷Nâ€dpïä YȺ )½ÉŠ¡.xO˜éZŠÿ¾åv ñCÔKn J6ŽY¶ð¶Tê>ŒüJì…SÈ<¨?’DœOÚ$©Ã …4@ÜGn¹/\¸ð¹çžûáøÒK/ƒA›ÍvðàÁÔÔÔéÓ§§¥¥åææ.Y²dûöíñƒ‹‹‹§OŸÿ×p8 ;;;[[[/^œžž^XX8}útçÓ ¨ßúÖ·þð‡?|ë[ßúè£6mÚ4ÔD€pü‡&b P`|à €³¦aŸ à p ÂñY£þ>¸’dZÆdè1¨gn ‰b@ˆB„’^ÿ€ô?\g–ûÕW_]QQñú믿ð ùË_þíßþMÓ4Y–%©ÿ>™Íæh4Úߌ¢¨ª @–eŒ1Î9ç<~0 ¾+Nfffff¦×ëÝ¿ÿ¶mÛ®¸âŠù˜èÈA>ü,|j‚Ñr„r;¹÷*Z78kìÿ/nrÆHJ†ôÄlðÇ †¹åÌ«úÐ=ÄN 8¹mž`ÆM§ÚÄÄ‹ë$ɲ<4"<þO$I:A9“#î~¿¿´´tÚ´iW]uÕï~÷»]»vUUU½úê«yyy±XìwÞ©®®îÿö'¹FÒÒÒ²²²Þx㌌Œ@ ðñǃA‘H$‰˜Íf½½½}}}©©©ñ!0‹ó2ˆåDÀ(³]úUt$…w ÀÄ£ Šñþ5ÏÙìŽ^Ùð1Èî<£¡_ çsŽÓzìŨÏîø Êùçß¡‰D^ýõÚÚÚ¾¾¾ŒŒŒ TTT˜L¦¸*nß¾}×®]º®Ïš5ëÒK/M¾¸ÿ×ý—ÙlÎÊÊ:zôhWW×\pÎ9ç¼öÚkþóŸ>ÜÚÚZSSóðÃÇMx«Õ:¨ò.—K–e§Óyã7þíokjj |ðAuu5ÕÖÖ¾üòË………víÚÕÞÞ~íµ×ÆÏjÔ®¯ ØÍ%HžÉ*Ç«žêtÈXÜ6ï#W#Ï[@[ºwÂO`HÉ@{€lö@õiæÀÈš6!XˆZ/ZâÚiB8ç\z w>ŒôNãkÓ¯ýëÇ|þüù‘H$55õ{ßû^JJÊ}÷Ý·cÇŽòòò={ö”——?þøã‘Hä±Çûç?ÿY\\LD»víúö·¿}ë­·2Æ~ùË_®]»¶ºº:îß¿ÿšk®¹ãŽ;RSS[ZZ~ýë_ßwß}O>ù䈿ž©ïó¯Ä÷RK >èA:K¶TéPŽ!—A"@F, M.ôt"#éæO'29 ±4³Ã—tû€(,!nÓI!ÎSx§½½ð&ݨCîBºÎ‰˜ûlðëPô±ÈÕeˆeÖGžW² ä@ŸFjÒ'ˆ”L‹ÿGU[ކ]¿«›cŸÎin+ßµjÚN , ›VïûÒ‹G¦žíiÕ¸üëÚsvöÛWçí9Hù×ÿå“wUlYJ™0ìu|N¿F±YØØŽ¼3ä–áN(ä¸ZP}ñÅï¹çžk®¹Æfë7!×®]ÛØØøðÃÏ›7¯««kÉ’%Ï=÷ܲeË"‘Hiiéƒ>XPPð׿þuíÚµ+W®looöÙgûÛß^tÑEõõõwß}w, ï¿ÿþ¯}íkeee£vv€D,Gýð„¹ÝQõr®Cá 2àN1H„þÜL ²Î)ŸsppP ªŠ¨.Â-ý-rI#Uá1ÃÄ÷ÔÁ+¤Aá$®Cp©‘Jµ=¤+'äsÈQÆ) «a&[¤˜M‰IÄ÷õ¦)’þåôFRLÁ WÇ®®ì€fr(‘Ñ<þRpLA´œ± ¡ëñGâ~ÁlذÁï÷WTTL™2åàÁƒEEEDäõz.\øÞ{ï-[¶Ìb±TVV(++ëëëÓu½¦¦Æd2þùJJJ¦M›&Ë2€õë××ÕÕýë¿þkwww$ …B@`pü:€æ!ëÀÀsz]°Âç@Ï1Æ KÒmAPEÄ‚°=§!ö!¸Š¨ " ¢~x 5u%è*¢2š‰O†® ª“̸<Ñ…,~ƒ8A"÷‚Ï¢3j¡©üHÀýaOÖUùµy6ß'Ó±°=ËÜajkØÙ³vE-#÷žÌÒÐÜ‹´0¬Ÿ¡©]@dˆ w'Ûh"ޏ+Ë}ÕªUÏ?ÿüž={Þ~ûíÜÜÜÛn»1&I d@SU5î1—$)îIÿÎyÿyQü÷øÿão|饗ÒÓÓÿú׿öõõÕ××wwwoÙ²eÑ¢EͶÉCÄÝ˹ã4âNà´3H>¤2!u1× H`ܨV˜‚1Èñ‰‚A‹·t;ù„¸ ƒ JH`„d®á`˜ðë&D¬ sk ªÐîij7&7ÜÝQ«C‰J„ˆ.Ïp·U¸º­›}IÎÁ£ALJ=™.%ª±Ñv ùœènäÓ>ÃbDMCG“C8ÌÅR–ügyäâFo¾ùfMÓ¶oßþè£îÙ³'77wóæÍ­­­™™™½½½»wï¾üòϬSZZªëúÛo¿½xñâƒÖÖÖVVV¸úê«[ZZ8ç±XLQUUM&}š2³œó³†\}§µÇUD]èÀ†Ý¸ž€+—‚XŽ9Ñ‚5ée%8( kVZ*ÚmðG`Ñ Ð Ì¿Ìu\ ²AÊNàM‡`_öh ”Ý„[ÂÉ^垬äY{6ã núÃÁ™¯´”Ìp·žÒzwåÖçT¼Óžo–´©ÎÎÞ¨Ù¡FGùܤ⨓)üÔ’-s>uÐoB¤:p(¹îpuãkAõþûï÷z½n·»±±Ñb±͘1cçοÿýï§M›vðàA«ÕºlÙ²Ïz{QQÑW\ñÛßþöå—_–$©­­­ººšˆ®¼òÊøÍÍÍõõõ¥¥¥‹/>ÎÇð‡VzÌu!;Æ WYƒ¢"–t[wè2ÈñÈ#jÄ•]$G̰UA¬˜)âvã‚GÇRÙä‹rs.*ÖÏR‰O=mr4Óâ09¤+æ¦6Wº::£–®>¼^†+b îÖDÝhïEZôÔ>™Î8øÅ¸FdIúÙ‚ ÃØãÉœG.î‹-úä“O¢ÑhiiiuuuUU•ªªßýîw·mÛÖÓÓ3uêÔo~ó›EEEápøÒK/ûÓÞyçv»Ýb±Üzë­Û·oïééIKKëèèp:&Ó§ìñxn¸áÇ3÷‚:?÷ôÔ™QÖ¡pHf„,úáNz[æFo*ƒdBÔŠ`ö¤ûÜ ÜŠ€¡(¬Ä¹2¬6SÐÎýná ¢ ’e‚Ê¢JQú8HƒbB”9ò'Éø4ÓG=™Û:ò†œ;ºrÒdIUƒþ¤:Ëâ÷šCÍAçKMSs­¾<›À¦cEŠÄdb[‹[‚ޝWmUiT«ÓNt©ˆô ];ƒz8è -±üœ¯¸â ŸÏ§išÙl¶ÛíqÏÉôéÓKJJB¡Åb±Ûí,ˬY³ß•––¶lÙ²xü{sssNNδiÓvîÜÙÕÕUZZïw–Ùl‹-"ù3/Cc¤t /lXè1T³“ŸÀ¤>¤`H_ ºA œƒpàdˆ;qH24 t:d#Ä]æºN’Ä™!:«>13aHœÅ#¦Ìà°qÒÕš¾ŒÆ »ÜÙå™¶µçÎò¶¥¨!I/5Oõk&“¤Ïð»,·>Ûêб¿qlJHWs¬¾ïO{wfÊÑQNeÒºàî3i:pÎq&¾ÀÈŸ(I’ÜîS«µÙlC‚[@Dƒ«©ñw šçMMM?þxwwwJJÊUW]µ`ÁI’†¾QUGåSÖ`:ʧpHÆ=lL}”2éE:$nÀÚ ƒÔ‹O[a˜1­á ñöôH„`sÛÐV&®7# óЕpˆMªý¤šBËóö^ž³ðò¤šÃ~mÁÞKsê5&És(Q‡•‰¸4»þü´Fd“cSXš<» YgÜnˆGœþ¢ñä–í|VU/»ì²%K–Äcl,Ë(¥ü”ó!ÍàÅ:Ò!AŒöØ´26Q+lÉß@œJ\ˆÒiîR#.52ü×GñÔLàĈ|"jõrÎcƒ¯ŸÆ·q&OÞd2 u²  ÎǼ{÷îšššÙ³g_{íµñƒÁ૯¾úꫯvttddd|ãߘ9sæPé?ι".¢@ Œ7³ý‰'žxï½÷6oÞüÖ[o ¾þâ‹/®^½:++ë†nPåºë®;räÈx´Ü@p2DôÐCÑõ×_?ôõÝpà ÅÅÅ‹-úÛßþV[[[XX(Ä] Æž‘d;¥3½²²²¡¡açÎÝÝÝuuu%%%Âr‚3¢ì'‹{˜h'Ð9ðg Ø=œÏš9sæúõë׬Y3eÊ”-[¶\zé¥ÅÅÅBÜ`ì9e…lÈø4ˆ–'Ž1¶}ûvÆØå—_^XXXYYùüóÏôÑG3gÎâ.c,í 8¹Z‡Äùì!;›ÂDí@ãé?* mÛ¶-##ãŠ+®HOO_°`ÁÿøÇ-[¶q‚qb¹ŸÀ°Š¨*Šb2™ÚÛÛC¡ŸÏ×ÝÝ=tǨw@ #üT–û h'‹ûo~ó›Í›7¿÷Þ{ªª=ztÙ²e_ÿú×—.]zÿý÷ß~ûíS¦LÙ½{÷”)S¾úÕ¯Nqçcq;ŒÏÁ'e7|ž‹5iú8ˆ\è\qI↟Jò?3¡UÎNn÷’K.9ûì³u] ªjnn.-Z´¨¬¬ìý÷ßooo¿ä’KÎ?ÿüS怙 ânY Þ{e%8~òQNÁáàeÇ /#ܨ*gfh·©ÆŸ‰è3þŒh 6*6ø²ÿëÀâ KØÐVtWÝñn1ðttÆî=_róI°a<槈¨©¨¨¨¨¨8Q¯¥°°ð³Û'¸¸“ Ühq7qî1þLüàíCê{¥!GÇDÜuCª@žâƒÄÌwãðÉžú¦Þ—Uï+‡Á%¨¬vß+ÿøkjV§qMhQüó‚ÿ2=¹–»ebFØyÂç.ÆÎ:†q@ò‡y!î@`ÜDñaˆ; q‚ tAUˆ»@ ŒoÛ]¸e`ÒÁz"³\–»@ L8Ë=a´Œ.¢e`‚‰û0T5á–‚ &îÃpˈU@ ˜`0@O”™á ³ ZWWâ¿Ûl¶ÜÜ\‡Ã!úˆ@ ˜xv;8 ó™—Ø%Îý¦›nêìì,((P^^~Ûm·MŸ>Ü Á˜ŠŠ‡„‹$* 0úL2(x4˜Fó %è*B& £C@àVôZÐ'CÓ¡„à ÃÁ“‘)A"næiˆçNƒ……†À àÌømë“•¢*ÓÀœšƒb°ÄF×»Î,̰$f Ë<€)³6 !âœB~¥¯Ç *iÙA»+6øO}ݦö[4*y3ÂiÙ¡¡IÇbQ©«ÍB„ÔŒ°¢š‚ñÄÂ=΢e8çµµµÍÍÍŒ±´´´ÒÒR·Û‰D8ÐÜܬ(JEEENN€ŽŽŽîîn"jll”e¹ªªÊëõQ4ìr¹¼^¯¢(YYY‹À7¾ñï~÷»$I2™>Ç£âÆ±lÔ[Ñ«C©Å¢¬ñ/ëÅ‘|ì•¡¬9‡Q= }çN´åÓNã@ ¿¤Y$hyôA*%è´R?áçö"‡:]¢–I‡ÍÅ3‚½ÈháÅ1˜“Û$0š&AÀ"ô=!vôx©EòÄZPÒɳ'èéÈÐ%h‡a3¨•4´:Ð-n¦t#]ƒsÄŸÖ×eÚ²!çHƒ³f—gå]ûæ,l‹¿ÞÑj}ýïùöz8‡Åª]õJ*{ǃ{=ÿû§â´ÌÈ•ß8–2t°Å¥¯h™={ö¬^½:%%E–å´´4UU§M›öÊ+¯¼òÊ+&“IÓ4EQî¼ó΢¢¢;w®]»¶¬¬Ìï÷777WUUÝqÇ&“iûöíO>ù¤Ýnw8@ ==ýßøF~~>€ƒ¾úê«©©©•••éé韧wÆb0™ xqDˆ@² P†í!¸?Át':K°3O+ÊFqÃô¸µîA³ ÁÁ—ûه̬N´MŦY܃e´C?¨éq±ÂçFG7вæ :MÊ´ÄÉ&ÂíÝ”%˜m´kÙl8@ȉ£÷Fމ‡$ðNdÆç‘Ñ= šF(( <ýHIû k¿%¬I゙õî¦Ì%W6åþöûò§_öÿ}/n wµYvlÊ|ÿ­ŒÒªÞpH6ü’r–ÈÀg>÷—_~¹··÷î»ïVU5§§§744<ýôÓÕÕÕË–- ‡Ã?ýéOÿô§?ýô§?mooß³gÏ…^8wîÜÚÚÚŸýìg×]w×ëýóŸÿl·Û¿ùÍo†B¡ÿüÏÿlmmW)++3›Í;vìhmmÍËË»ùæ›‹ŠŠ>í{§¥]ÈËÃ^/o¼ ´Záß/w!§ø$õÇP6Rõ¢äõò¼"ÚfGÇû£´òiñßýHË£ÌJÉ—zŸÆfàpŒ,}HÕ p©1H & ºjxºÊIBö·PHó¢Åž‰{::¢†Š;ŒK:9 ó(ý?ÞÌÈWoƒ¢öO =IDAT8.?üÿ*‹ øzL{ßO),÷-ZÖâpGü}¦¾3ËßcvxÂшüÁÖ4_:㜮hd Š0@K$\:(ùâ>òËZPPpøðá 6:t(333++«¶¶ÀÅ_|ÖYgÍ™3窫®Ú¸qc,P^^¾xñâŠŠŠ¥K—jšÖÞÞ‡wíÚuå•WVWWŸsÎ9óçÏ÷xúŸŠU«V}ï{ß»ùæ›—.]º{÷î—_~™óÁkà ,î¤aç·£'s6€d?Rè¦ÑÉ.ÿŒNëAóTÚt½,AoEÅèÍöãç%Q:ðáÂ:®0!äA{'ru.|Y I¥h&ɧÙ8lFxÔxâãØÛ­vw˜2²Ãvg @iU_( =b§¦ƒÎÝ[Òª¿Ô™[è'\".—‰Ë€d@Í>®ýô?ãÉç¾téR]×÷ìÙóÇ?þÑb±ÜvÛm@ÀjµZ­ý3£ììlŸÏ§i›Í¯õg±X$IŠF£Œ±P(t"r8fs¿¹ºº:þ‹ÛíÞ¶mÛþýûã=Ð@ýÀ âyç ß±~š“Œê}ßT™Çˆ’5 \E؉¶4IÐtnJîš§|6ø:ItÊ‚1&G9¨ ÙâR$|JŽñ\ YdCÀ‹Vår“»~«Ee¦É&³N`sèx Oñõš¶¼’íJ‰ÎYÐv`G‹ÒKO…%¹?6é8°'é%G&`nÇsÍ5×|å+_ijjúÓŸþ´iÓ¦™3göôôø|¾øûöíKKK‹K67$ªªš‘‘±oß¾Ù³g3ÆŽ9ÒÕÕu’7M …B6›MQ¾'ŸÅQ=dÂaÆ0u(Ò@ :#…PŽAêF¾Ÿ§›á¯¢—óiW/Ï%ÉÊ&0zÌÇS¹¨i7®ä < Ÿt";šì%îIIý‘ÍaØ-ÚЧ"=’Ü9®ÂHâš·Äy4L`’jÖÖºÞùgæ ß;ÐÖbëj7‡‚ji•gÚ¬¨jb´Þ\§¿ÿ¤»e&š¸?ùä“éééåååmmmEEEsæÌY³fÍc=&IRww÷ÿ÷¯ZµJ’Nã*o·Û—-[öÐCù|¾ÞÞÞçŸ>ûØÐаqãÆsÏ=W’¤^xáƒ>XµjÕ§3äÏø¼Þ¤\&„ânD³¢7”¤ Å“s & ¦0œ~¤»Ñ¢ „$‰»a:‚p&²WwRâ z÷ñybÐýœ²G:d#j4:Ü1‡;ÚÝnŽ„d³•i°ôÜÂÈÇï¹›\ÿk5ëj³Fò¿W½ï‰mYùZoÒea„²Ï¤¸;ÎG}´©©)55õꫯ¾ñÆ=Ïý÷ßÿÈ#Ü~ûí‹åž{îY¹r%Ξ=[Uû«p-Y²ÄëõÆ=9™™™›6m*..¾ð Ãá°¢(f³ùÝwß}ì±Ç4M«ªªºï¾û.¼ðÂÏ1bC7# ""C·  CÁ܉\ jöÅ`±¡×‹¦Z,Ís(C‹Ç¹+ˆ™á· /§æFs)ÙÑ™ŠÃ>dÆ’Of…ß_¦êFF(†9@àB­†qÅ‹ú^¤2ñφÓ@ 0€’ÞÜ…î ìÙásQWOÍÎÎÉ×kŠEML‡¿ÏÔÓaµ:¢ÞŒHåìž·_ÎúxGjñ´¾uOM™·¸Ã“<iàüú—âo|âUŸÔºnýñÇ9S^ÐáYî|\‰ûòåË—/_~‹………¿øÅ/NxqáÂ… .üóW¿úÎ9çü¼óÎ[²d‰Ïç{ä‘GrrrRRRRRRþð‡?ŒÜY„ÖxUFL"m&þц☆³_šŠ­©h1#p ¥GQ>š«–‚#U´Á…V‘³é…¼[ùÍ6Öh0kP­è ­ŸEï ƒ–…a8z‘f\G”ÀTD%è™æ ¬Ìø Ë š}G0uœ‹ ]ETã BRÖ¤¯MåÒ'à\’¡÷qw'²F×Éÿõ³ªº={éÏS¶¿–qÍ­ν°õË—´4Ö9žøy¥$³X”þïêN˜¸S#iY!ƒw0Å‹u §@ö$Ê-ÃÛ¿ÿ#<’žžÞÖÖFD]tÑ`À̈¯d/2vâŠ!³S6­(ëA¦QØz‘1ÊÛ=È}Ÿ_;æÈ9É1XzƒÇEÇ ÃåCzCeäNätñìäº&OjEŠÁ„Á¥fNÂr†i&ÕâÜl“`_€™“åS¡áÉ:à ý¼Ú„ˆDLãj£ :0[ô¯¿6ê—2Yæo@FnðÖŸì=\ç úå’i~Wê‰+¥-oÔ¢’+%jüdhY!ù$J? Ëreeå­·ÞzôèQ»Ý^UU•››{¢ë®£ÕªÒõÁ•¬µM &ÿP zà ÃæNcQ>‹u ’ؽôy¯X;&ËHŒ~*:””du3Iâ9§ÞbjµÅ*Îîú¬7º<ѱé ü ˜ÏÝn·éK_ê ˜ö»@pÊŽwËœvÈ$QfO &œ¼S"qeö`¢Á†áOgDÂr‚‰d¸'ZF”Ù‚‰}ñB!à  íŒ0Â|îƒ GF(ö§q 3+ä‰n™úúú›nºiúôé—\rÉsÏ=O¯+Ä] Æ‹é>Æ~úŸãÜ2~¿ÿûßÿ¾¢(ÿûß—/_þðÃoÙ²åó¶<ÑÜ2cN,öd~Ñ{€@<Oéxbœûûï¿ðàÁ_þò—S§Nu»Ý;vìxíµ×-Zô¹ü3ÎçÞ6rÂA€Jp"A  ˆÜ çhÁ5dÆ 46Ø»—ɲÓÍPH?Öz„Ðl¸ýÀ»]ÜЂGýSsÙx{Å ÎyðP}¤§ÛÀ+¦ÅÐÖ’ô¢!±DÇè@/`ü»¾¾>----- €ÍfËÏϯ««‹F£ƒE/&›¸«ªb±¼Aô¡ÁUTã-Dˆ/ˆœsÿØÔcPsõ¹çÞ~Û>ê§½+:ol ZmÑG€ˆÑ݌Ǔ{ŽL¤Ý$kOýºS5hq†¶='Åœ¬>&˲ÅÒÆÍï$º8è³Xf¶ëóùìv{<_º,Ëv»=G"‘É)îwÜqGGG‡¡Ï¶@ ø‚“——çõz“òQ+W®\°`Á0%«°°ÐåêO~e2™b±X> /Resources 2 0 R >> stream xœÄ½Ë®-?Ò'4ϧØ/P‡´Ó·œ2ABbSÄ-º¡}ý1àõÉß%l¯½W} R×_¥³#V¦Ó‡Ãqsø?é ÿýÛúúoþ×óë?ýŸÇù…ÿþ§ÿ.àüç¬WïéëÿzýïŸÿÿÇÿü¿|ίÿí(_ÿÃ×~ÞÆÿÀ?WêÊ8óh_¯¿Çý§•ñ•ÿ´\¿þ~•ûþ3&üýUÏëO¿®gû3ž¯Ô?½Ž ©…ã5y”?m¾˜ñ§ö²š»ÓŸ~öõ9ï¯èßþVÀêG4>÷2ìþ|G§ÕY5³= ¿__ÿûü·_ÿ£é»èž~ÖÜ¿®g3zùB—þÜåV?ŸùZ\øLä#n~råë#çw+?#ãâY…,øŒàÎ;¢zðéá ýªRoD$,¯.i³ïÚÙÓú§5"(R{&¿n`y¸ú0ü"\2èl˜ï§D¸fý<’^èÏ‚¨jâÆ2{†‘É’éÏ9·6gqäÄœž'ŸŒÒ1¦.Qú (B!Å»hñų‹×*?Ð( ¬Ž„¨€¥P<ÂoàÉ>M¦ÜªVóÅGE¹/€y˜ô×>“w&~"0ÏšÁ²Âû× º\ZøF­ä™‹kèæ²¤ÉÓB .lxâä,F}†žÚöHÿÓº¹Ëï¡ejâý+åÖêFj—]f™76Ô7ðÙ]¢öèÈóÎ]Õ["¤Ô‹=½5ôVJpQ–¥ˆÏôü]’f(2š¡QëÄ®wq ]3ßhE3ô0ÿp/0ÿXU‹0gÑóLy[„?‡öiCù°Póå®Äž˜Û~'¶ÄÜ5:Â9cA`,‡§ù¦TÅ$R„=ðU5ï&~&ñ.~˜C£ßZx6Ÿ»Ï`\Þ'¢`Ϻz(±tÌÆó ïzâ{b–ü66ÿN˜ï­•Êð(˜¾I¼ë®†½é¥Mz+.Ú'”Ïî™ç*x0Ñ(æƒ{Ää‚Qâ±pa¨]Í åx|ƒK ûÿkë„Våê¤Æ¶Æ!xÑðÔG}åzvô¢ä†…®GáËñèzÙ%ùy5ª"W±"áGžVš;·½4¬ô¤nE÷³¥‚G{`.f N ÞþçnÀõlïW!¦çFø¢ŽÚ© «Ø&Æ|†3ÀÃFá»Ü1¾ù§õ > ÌÔ"já—Ï«ÆêWß Ù€¹¡=°w ®võiè/‰1`†ž(ÃÛ(ÿyr°³ì+ýº­Ò‡—g“k•ëä¾Hçò臭­GŽ\aü&ŒXK©XöþDHŽ'µ’¼ÿ$N“¾-¦˜kpûZ¯f[¤ÓúÖû ?Ò¡T¶·èPžéM»Pªvõ®&ªn5t¦I‡Œ/ÕóR߇=¸†6ÄÛ‡?ö­b«Î[ßj·ØŸŸéVÎ$ë#ó=r}VÈYßr•"1ò\–@žð”'ÆL<[°@öG6<{a‰ìN!q×0¦L®1Zße²1‹^&Æñ ³Q#Z™2yb¦L® ûØQDLKL.Þ±Õ{éS&?4z„P®’*S&opÐpa(“W Êó#S&ÏNX&ÏNZ&¯qL¡ücøYª=¶EíSk~HÔBß曘t§ô ÷¾ÒžGî¶3bƒu°Köì!iç÷ç‰q¿™M?ú‚gY8´—?³ËÞ+ñÂà™Ë² ‚,Ú¯ý‹ºN>Ëu««Wjpk 1íÿžmƒ.û¢ U0½ÖÚ'D¦Sbo&0³™E/wïâßã¤Ñ*Î}FôÀÕÚÃC`€¥ØäΉðuZѬæ–Öú³·–^ùÔç÷{®'À/bÊUÞžHgVf{ó0ò‹qÜÅÆWé® ø!_ŽW`6J4©Ú?KGˆ6¦±0~ôL.Û‰à=Ô„Ü3ŠlS\¶ß”6©§Í®G XOûä!•]:6`@ݼlqÎŽü(•Ö§£Ú×ÎùÊFˆúÍÚ3TÍïes>Ý~cÍøgž•Azªaã X_¹ÜÏDNE{/$ Æ>²Y/Q1<†ô6òÕ/Ê» Á]ï×nù%~CVÕùG^¾!G’Œï›p1Œù·+ƒà‰QìÚñ塾MX¬š.ÃÞ›¦ô(dPÚæÆw1RžûúšüʰUJ}ý$&8k<ö…%D8è+ÌbO·ó ÞJ>ö¦™å©ð‰Ë.%j‹nµ§@n¨§+!/R7Á´;VÏêi­ÑŽgÊX~‘)?Ù"î¢Ê9 æJôæC—ÂH¶)å'˜`¢Ø}MÌAÒGüèç(Hü¥^d«ÕèF–öÀÝœ’lÃwê Áû¬\sV&ɹfŒvyèÐC;¯¼æÛÎE÷ýá !áˆuÍ©nöÐLDzÑGlÇc¡´¯õ{ž=Õ”=Ú²‡Säð`Ý º4rÜ)ü“‚›¿QåÓ˜˜§ÿC»&.Y6u-.)îeö£_†c¸£§mUË‘‡*ÔGBv]S áUþô¾=P-ªÂKø †?Z¼¾}^ò¦¯µ.0–úõs|ôÞÙË«ð³ÏZº—µ-`1T¡Ž ¸ÝË,€°zP÷°ÁÛ±„žWÏMPßE»ñë]-ìCP?¹tŠÝsKeºD8¼o\ͲC›;ƨ%ž^Œ\~#ðŽõRb†š˜ýôïV0—ýø÷:vDá¢8\ìT2I*ë—¬àUíy¢*{kb¦ËýSI~qŠl/Èm_öÊžxÀðpà_½³z£Š<`—Öê!Äe}/^f£fbàáb‘÷X¨‹?‡«F#Oææ90ÉOhà‰~‰cü´û~üô&¶žHÓ±Gp¶`CaÀ3¬‘sß¼9âù;aÌfAçb)G³•ˆcÆ"€¹«”ZqÞéÁé…™ š!FÙ¢QlïÌ[˜ô-oGÿÖ™–Z@øãÎ^·eÒ3{,Ò_¸ßêå… ÉâãùñIÆØ^6ŒE,D„àF9ó%btÇo±8ô/íçŠEpíå+‚ÜéÓ Fp“6ÐÓÏMôì RÁŒ¤=ö¾ô¾R™×÷W#¸Ì‡}&a ÷=±0Fèy³Î(Z_K–™¨ÅÍhÇçà—î²”vþ¾w¥m•-q+"7£÷€Rr¬h}t¶ 9§ÝšŸ‚œÁcޏÃ'â`>Ñö`Ľtý©–Ió+rçŠN¼âëëØ&_Š ¼Þ¤wúEj…"“Å~öÆ…úB;—ÿ¯”¨æ¨_rÄðòf 7Ô× EmXÁ—Ý+Ò8" ÒaH÷þöÀy®P„xãÜcœÉps;%÷˜C€óŠ8~Ží“™¢½´†PúKZ¿I)Ú½á,¦]}¡ 3ï:Ÿ©Ím ýí®MûJ§9(IyF@ÝÊó5©¡hEûãDŒg°4Õ2ôåÚ#èÿ[˜øÇ?!Uû‰.Fˆ*064¯Ó›ˆŒ¸a°ˆHj½`ƒ¥bÌ¢Äk-L¢8ÝšH̘yØKŒ6»qÊŽ^žŠxG ðF3‘ã‘æ%-4óÙúFcDø˜½èZsêä×(&BÃl(‹ ÇúBjõ!ˆ}\ÄÞgƒÄ Tµ‚Êf·x:ºQ½ÛÒ&IÃAaãldL*ÄPsÏo¸fD¢%o‹¸mÿÂÉ`ôköABöž}œb:ægÉé+Ù'1yºk‹š¸æ‘Û`ëÇe=#:ðI`b¨³ S">´Šn,jV–ƒÚ“Óê?ßñó5ç‘k*/™Œ&_SÉ…VØZN1 àþœ^1 ¼øéQx@¹Ã)vå<í8=‘CRÃ%vŽ7ä»rš1aw¬=XN±†W ldÔ0ù¤?üb‰ºÙÊuFŽ1`¦ê—Øõ|JÆbêrVtuúÅ€‰¬øÅH{iz€å‰™›iŽtÛ[œ¹ßVÍH?X÷+ÓñUDrqŠ-ZÎqµ6IçÅû¬”¶¹xoPN8£ÙéY: sqcfX“›4¼N»I&™»E <ÜžGê®”£•z¥}¿˜_’ëd}{{Iþ…Xý}Fù¬×ò¬›¯ßüó\C(ëîØþ r S©ÉàNˆtÃËÞ"oQ"È ¤nöHù1¡ã’Ùùš„v `o˜¡W:ãxóC†fœ1êûë±EG2&]ƒ.··@}måN}ÏgÔéÙ FôcøH=üE‘Ù‡•¦VoTFþ~¥  sÐ¥ŸË£Î<#{ð€×Ð|Ž“ÛMøù,x°©& mAxúdFfüzr¢íg]>Ý}Dþ³†z'‡?—Aoïƒ÷Dû`áo:$_q<øô÷‘¾Jx¶¶ö¬Lø²óÍçoþ0ä»ÿ¹­††×½Wè/ôz¸/ˆ˜ ¼m…C…"W÷ °öxµ«(utH °O ½äÛ~†\J[Ô,/·…Ç ÃºðV÷‹à­ß¡´¤ZK«£k0`_D€¦GA€7`õ>ˆÇ¸KÓn@~ `¦í¬Þu5Rìíó]ÀãâÏÐ( Š-ŠÐ?3Aš'#M6:ésBág`ôy¾ c!¯…Ô—Àà“ÁýÍ#cïayÜù½GHwhäÊgbÁVWe_AÃð™úÞ‡Y ð.+TR1ðä>² ‚ÁøºÈXÔ¯\šgm­µO[Aj'» ž°>€@¸AJûµãe©B&ñÇëÒdeCi±€±ÿ;àv³A=yþ>ÄüØ,ûÐBýÅßáSë²S“ãé¨ÞtººÒ!^D Ø—¾É‡\³ ÑèV€w9 1b.€!!Ž+ ¼YÏ#Ø”ÙiP(Mš ‡¿;­ ±ØàÎǯE¹¨¾Á×ïÐŒ†ÔÎÏÃa?ް#`ÈvRLš/$~<ãñm~?³€T „àŠX࢑cDjyN:Öú îÚž^DÀ 1Xë œK–œ¬ NˆÞÈoã뉫ƒa}ÀHÆâÏàƒ9I*«=ØøÈÎÉÿ)èEúƱ~†YŒÆÈÎ…¾¦çÓÒ•€€øCç ‡šœëˆ‰r|ÇJ]t`­’øI yé´rËàLOß$ìáÕù±Xå¯>·˜åéO…Ób$¿_ƒe9¦Öh^ :a‘¡7gŸ §IBÖ®±ÄD 3bcÚ1„\ë~üÔv 1ÇÎ K¹šÙèø½“M^DpžÕcŒê…Ñ-Ê#›«7G|8W7¥l Îdʱwƒ ÇÚØ›âI‚Ÿ®$ºfBkhòN"8ž‹WäÌÓ7xj¸†Y |€ÇÆ¢~€(×Xå¤ÇÛèxw?M޼9PöæWh ôVA ¸ôx¢ü Ðb(Ø*ŸYäÎ ö¿´sfì‘á»DVZe,yñÆ3ŸÌÀÔ3Ùsȉû°U—&¶eо(æ+Áœ8ˆãÔOºCÁÆUŠR?9×@<»@ÄAÇéUv3Îà‹¸Qη›në¡] Ü|øœöÏøÀàiŒÔäÚ⪺'ˆÞ$éUëð'ÁN¶†ÄÆžÍà™Ý:Û¹èÑ›.ƒŸm|VÏS+þ›ÃÇw\µ Œ`a=B +}÷E¤"‰ÿ¹ëÔÏ&&YÓ%N»âÐRA¬×3X¢CSÑ„ÀWÙÙ¢-Ëææ[kÝ øâ×Áp îî5¦´ò˜§À`so*'VY½(¸þû÷âïP ɹ×!‘#Ý06_Œ¬óëØ :Ó–Õ7èp šfÄ,N8KI»@ˆ¹_Št}’tH½+÷S.{’µN’mìÐ7|c¨/*V0Â6viÒÎàpD)<‹ìLæ>ãI€á ÈãVŠ6dkM¤Ô°{H@Y94mÈë'٠ǰ+Aè*¹À"-‰ªüA×DxùrV¹Z8´6”¶ùÓb9U)4su.qÓÏMuéRNæöÔÏØ¨Œ€Uõ³ò(dÏL‚øån†u!)uXL}–d,·I²N ´I²N^ž’¬Á31™üž» k<Ð1YåRA†ôµQ6Aö .©·d ¦ AÖå>^‚ìA #Á‚ìš) 2ƒ› [P¼ëdhìî› ë…AŽ)ÈÜ›d謶w ²^À A¦…=™’ɦ ëLÉÜ™ÖÖd BLA6Á)ÈŒ AÖ©MA֘;I²ÆÈPH2å† ëJs˜‚ìÉäóWø8Bu¥Û$Y—Ã5$YW¼4$ÙB[’¬çÁ–d]yS’u&Yõ‹©WSõ2E•¦¹È~£œÂ@$†,Çžq"6>¯ÔCŽ WßåX¥CØbŒ“~Kj6ÍÐˆÆ KŽÕ°˜ Ç2ü½ä>§’›ƒFd9†žJ ZŽu%bL1v# ë—&Mb¬Ëû¹ÄXW ÉrŒ4nä>Š1KŠ !Öåš)Ö™j1e˜:ÒÚb]9¸SŠU&Ûm’¬QI˜¿·©„I’5ºÄ6IÖ¹f§(ãÔOIö&¥> ²Á5–î‰hJbKw ¾‰€Éj,8bâg#m»rka(íê/=ðxñMçÔÊ&·ì÷ôôÌ'ØÌå™±í¥å Ó¹ÉB–¸]ˆ÷ï~ìšüMÆÇ_ïxÖ€XàM€HnwÙÔg Id1ôñYD+~Aá½ ˜\ èY¯MVàÁ¶æ€ú“Ü6ôœÖÝ´ÎAy) æÜ ‡º{̵a¼nwl k;¯é?x™#Tï1ˆ †aÍ‘^~Q{FþˆE¹oÙ'I¥I>§°MРû†@24‰nh_Ðñ.õ*Jër³hr‡gû;/‚°:°qâš\B†E}äkÌ*wI¼a èyÊ|ØГήTêbMtŸàpTeCÐ#Rk0òjù5dà6˜kî äq“ÿ"&¶ü*g¯Ayspшoùsh{ê„ñ7µûr’áÀw—çeå6‚.ìå3sÂgf°œy{ÞŠ>;”ù5̶ø…¿™é`/¨¢'hœWˆp'ˆõdP“ n<悯Ó/Ü¥¤Ÿ!†á@ÓçÈÜMBIéÙPºÒ-<÷c‰Vj8àØ*5U•zž_‡«íÝ£– #ûbýA°ˆ«¡&²ç­Þ†9Q÷Ň‘yCWv”  yv…þu,£Á®ž­MÓTí,òÊh"ØIl‡«8§Eó >œ6g®[ì?VíÇ]â±íÉ:‘ § Þ5â›Ö?…Ë\×Mžï‰øÙÈg`K!¿¶ò;]J†ß´õàcݾSi6ìßykDï@•XZ7«ó=æGîi¶Ïõļ·ñ±ï42jH[97 ?„øç]â"¬Œ“·0Ƹ›|=Pw!Q >VÏk¬¿gò*ù£„z ~±Ž¥.j8É«¯œ5:êeaƒ3‚¶”¹‹R«?‡P±í•Ë—í}¬d®²U?Pñºl°ÛfŸ%ò4‰dÍN./Î »~í4Ýhn}êuâôý•zÖ¶¹–qR76¤’~íJ(Tvã\qK‚ñm×HáV–¦k¤“û‘ñB>Ým2cDSì)Í.Ç./`ìLÉxmTX‹c"èÒëѯÔH“D=áv`SÖ Uz¢1 ìšâ@„¿U6?w¦$^²¶U:(K~[~°~ÎÞ%sPqwn1dbt†£©Ñ, I+vƒ9‡(×q2, ËV³µ%[ÑŒ–·½õ*5{„ݾÌáÔ¾åÄ„¨íZtÐ11]5ýä–¦Ã&XÚ! ¯E:èÛK7„2~×¥Â臺!,Í~OåpÖBFO#E§zƒµµ¥v1@¨‡°ÔVía»M;„éSbþ>¦rÉ¥´xFÚ!•ú2µC¹ §rØ‘_Ê!‹§d&l”ƒ!µ»+‡C¾­m ÚToø!–r ¯§©vqx“­CÉ0•CLM«S9±®k.)R×®Âfï}=P¹Ç†rØ«©iݰ+Ќ۪¡':TCÅK5„áZÛ®v»–§jÄ(S5ìS™¤j¸R `FUCá.ЪáBP5DÈí.K5óÜcÓ Û9¯©†IiÕÓŠHòÔ éT(K7¤bLÝ CŠi˜è´¡ÂÛ"}IÊa×aì¥â+oÊaW•—PñrMå¬u¶M9$óõ©b‚j›"jÈ©3Ø-÷’•Ã.5,”CÇì–r_+S9J[åÐà¦ÆV‡cBV‡t¿¥¥³Oå™}*‡o‹ö£„̹‚Oå,t Èw¸Ô¯ÑB^º¥ôe°+΂maŽ~É2Æ ÑdœÂaPÒª €ÿ²)Íüe Ÿ.×µƒtèm ¸q!2Už¡óKÃXÌC§Ê×bÌIiŠ?º¨ Àøĸ¯a<]¹ñMåös8H8~ ‹cRmô,t€ÞîUSˆKâI“œå£@Ô$a<9|Î/Ú· Ò’)+„8xÇŽu>Ô½âw)lPø MÌí§»lИJaØg[ËdcˆÌÙÜ—"¶bªï¯w&û¨~û„§é0îiйQiÞ•en¦Ã{#x¤sf–íð´Ê¤€©=Ž[vú²žw Ù.Ûὑ½¿•°dêùÚ\5-ϹwßI÷)¯oe`“p‘šRv0 œlš ·"ïõ›»©ˆœLÉãµ½Ác‚Œ ‚$dÿÎJ›è`Úƒü¼u´¸)ÙáEÜ è\œW;CP¢7´®a„M¾=ªìô`žLÖãOY¯ˆ×6Òn¤×ã°Ì$Ÿÿêkb Êk¿ãÆÀ—U=¢Ëኗ+O±! Wòâlpì‹9M …Óùx@4¥©‚X„Ò QÂs’M‚Œ}©T<­´¡7ð©.ïVŸ]¿Û¿Èì²['J eîyÖz€eˆ³]¥M…è‹_ x³(ÄÓ»šçü¤¼hJuxq¥ÀÊ GÞä}Ä”:‹ÆïÖ‘†‚IŠCŽsÒ¾uÔ‹ÊŠ{™D“5ógnÀ‰Ñ,=?ä â~€“†2óLæG3h’i·ì?ˆ¨wÞ¼=ïìòñL-Jª4²ocI”SIKáˆOÝ Î|JÏWPÞÀ rؘwL¨<_°iTUa<™î†M½ëq´ƒ)0ÖOi~Þ4«æ«¸6©7[CÐü¥ÞØ8ôyè"vp4í ðåZ›ûϰ™kcé±þŠÂ¾·ST/ e“Šà´íª Êg¶•Œ·‘³i•,„~S¬ßί ÄÌÈa jJ`¶„¥xËA;ò"Hƒ8 Í ÁaC”$»C礯‘C0ÿtÓúÇôgiGQ©ôpLOç0—y˜ G ‡<÷ ŽT½vDåÁÀSÛ9Èë·íâ­w<ž¸TXE³¥4wqîaÖ}ý—&·#Á(á‘ÿ÷Éí¨Ë•µ-=¢Uµp®Úd†'*aI(D†'.>P¡«)§*©‘º0Jí˜ÎŒu}öXyîèÖÌpGm3¼nÄóvmhž‚³3ßþÙv<–mèHj£ÚÿŸÊC‘OPþ ¨>è›aY³“ú Ð剸žˆ¢ÄÀg$~e"~6ò1ül÷Sb>²áOMƒ‡þ0ñï¡ô±l‰ §H+\¥As®òáÁP¤JRsÄüÑ;Æ •"ÐwhPa0ÌÅÑâUçd»afr@vú›Lu,Ñ÷¾FÎl¦ûо¿˜¦ÏØ-ÖÊÜcWDñýÓIãp÷¢wƒ‰%ª ƒ,m%¹AB!Iû¼”z± ÙˆÎ A¿ "=`ÃLMÌw­²Há‹xb”À…H½zkèC1ü>´O /«m1¼1Û{Á:Uq²Á]ЪJÜLäxÀªãÝg•·Ó8á…¨^ϑ퉰Ð9!¤1‘fý\ ‚¿‡25:•¸dš}vDë4`f¹ÕÎ-®Sã³j|ô½=Œ,76¤Œ‘‡S¥”YW}¡É›-Ž¡@Ÿ| Ó¿1Ã!ÆkÌ_ ¬ÃÞ ÄÏûj-1õhÉú92b bˆd (rHÝWrœ¹ Ê‹¿RÕ³°L‡’Ú@ùzGÞ1#žÙ_¦deQ¼øµ)BÞચ˜h·™ÚUYå î@ *¼3ffåÿü¬ÜiùwŠ•b¾™wÛôµ/¥"eÎVÆ&"—ŽØ"µ‘Ü{¬ŸMîÊ)%º¿"‹R91«à^23ŠIHʹc¡‚÷Þ\,ª É<ˆÄ€UËâû‹IÅ×/,ö~û4Âg?½Áì­³Õ¯*TùkX0·—È#*p €F«ã¤ûÞÐköBð÷S€|o/Hf åWåâòÀ!Ë"ÌÖC4YŠ`u³Ž°°T«&<‡¯c)>Œ˜ô ¿`MÀ¤×„OYãqZo ¿+E™ÉÚÙ2ØŠÌáUMf›·8i‚†|#¤\OàyÖ~ÿ˜µ,8AÈÞÖ'­&7ùiœDײÜÁCNó i³ 8fYí8ãù±8N/ü„Ñ•>«ßœ4ôíVFÕc¤49Œð.ëQaPJU3âXÅ=%ŠSñ ¢V­ÛÏí4”U¥kóÄ &AÉäÈÍÒ”P6Á‚¾¨@èü]Ó÷q~»’|cÿZ°ö«ö,òÖÞá{î_ˆžç6÷/„°[YûW“Ùï ‡+ÊÜ¡xbßÀZ£$[?·æ †¸ŽiC¼P{660øêÚÀZ÷É/m`cãÃ56°æ|Ì0¡¨›˜ÞÀš}ïÚ¢ÐýëZÎjHºð×ÊU\ÛÖTaÎÄ–;v0±ƒ Œ ïµ;Z•¤Ö†Éhsí¯ÉOáÜ¿ óþ»‘70G‚æÖ”¬ aãGn7îyÉ!SÖùëÚÁð¡m[X“@;Èm’ÉŒŒh‹â¶ìhuž)¸8X8`¼·þ™;®È¢äm.ÃòGiàØÁpóðÉ_Ýÿ´\ºü…]eiÿ~òÁÜ~ÃÃuž SP\¹jsUX™ìí33ŒŒLztç¾Üt1›@'$ ïçT;ä]eñUæñ“i¨ ÛCùÙ˜í‚nÐ馯 Oy9úOyyø…%@ÝÀ wr%u ‘TÇBŽ)A}fÀ´ŸÑt–“´-yú ?BHÔžâœ$NrõÊ’LžB!²ÿ‹“xK"½MññÉÖU*‚ØÜ0O˜gVüý ^\áR?N'<”¸Í÷œBÜŠ â¦j?èL–êì\ Òrˆùî÷’RÈáÍSjuíÔLžv.9ꥈ¼ðkÖñX‹ý !µ€Aÿ×khíˆ÷$¤¢ÕR}îO\iêOLiÙ§ôxÅ`âg 4¸Ad°Ðz‘Æ9‰w«äÝûd±LâPïÿN¸kwR§ t•ÊR׆àwýê-çåŒ:PŸ½uðH}¢Ü(yvùvÖv hþêåYƒ³á#HåïN²²OoDþ¸†”!Œ€Â54$ßOXU s[ªÔé¿ã°ö‚ÝÞöüÖþ¿VÇYB»1TëÓŠÎ~ãœþfDów¨ŽŸˆ¹Ä+ìù,«ÁUyC«tð\žà?óCŒ.»BPŠªýãä>öoÿáÃó÷'¡)ÿý Xg*¿¿n †7¨Õ/WËJȼuÁ½AtÝ*µ>”Å€›Nk#ÛA¸ÕaÄ(z€Ç}†ê_Ô­ w®!ðúr¼zúrŸ±âŸ}}ˆÇ¯@`+yd.Þ Fn€|¼PŸû Íĺu¨ŠÇ$VºuÈ€GQ‡1nÒE”¡R«d1× Ä~Ž“ª·*ŠÃÑh/ú±Ÿ>üuÆeÐ#Çé„dº X•ÜŸ "{‰Z†Ž5c:¬u¨CÇ ¢†ƒ»o+ÑY#‚ÁŒ;…#ZŽ˜\z1â’¤M×)yW´¡x‘•¥Æ³ ÊvŠW¡Ré·6¢ Ùû ˜§ïpîïæ²Çbb«Y¦>¼k-éôÍ¿°—ßÊø< šÜóW& =ZgÊa6“Çhr”¡š4Ã˯{Kgž6Ä­cYë×êÚmRš64-.ÐI^ß!úÉmôÈÓ7Æþ˜jvžÑÁ‡ïïØœÈ*uü8ÖkE¸÷Vµ3Äzå…ÿoA¦’a%Qܳ„ùm[§“(XB>²oŽÔ—f9v7¸1s“ðoÊqä*¹ª,[f”’÷îè»7!ŸäD= ¹ˆ6 r^âe>‰¶o×ô‹wŽˆ®…_{#3Ÿ‰ýË']n~æÔü!©ôLÐëå¤\@ùKºÄ‹–,P؈.Ù:_WÞs´¿ÑTß·»(zçuƒžsMݺ$#ÖÔs/ÞºµnIŽ¡˜>{ø+÷* ] cLñª {¿yÅwcQ©O“šçZRŸ˜¿NÉNŸ2ç˜êÁ³„[9%âò+'Š>¼)î28yø´³-|Ë@ä¾~VJ¤œËGr=íé^¢®bû<-FˈO¨Z7?Ó¢7~€v‚Ýuf±àïôŽ`P9¦w„«a‚Ê{ÌY(QËé.A¿ý΂c> Áš‹×r2sž\[‡uá8K-Ä¡f1OGóYý˜xjO_ó†s9ùr©7D’ߊê˜ù”Ýfnú›»‡8#b”îÍ~­».õj=p;„ÙQGng |BJì,iÏ3@Ÿ —ëy"Âù¬rxŸÙž öÀÿ 8ÉÏ•S‡þÈÕƒ]àæÍápÊæÜ!uÆ&6¸O™¢æ6öº9Ê)Ü¥ OGô†`RÞîSSbëróÉÍ£™?ÁÑÙ)m1_ç{sö( £ß•´{ؽØ~ŠS1´J‘D½øè&§¾ñÙK3åÎË/-Ä ­¼¤@²°Ó©£ºÓ3͉HV³¥µ¯¹Í¨ÐÀ¶[P5˜?·Y$¦™V›¸jT-”N­ã5à¢Ö ÈÓEC9þ'uJN ßJJ)´Q9C&"¼%x…æN¸S¸Z¹µf¶º¿³}æ_s±¤4HxIWýC—~tT¤4kàü«/X•ùW_hºOù›©+ÆÉ#qÃwZûn1Ã'8 ¾3¦¥üöÎ4ƜѪ!ä¥Ã5¤EìwÁ 8¼;ºÄ`CUó_ÂÉ9U Á? 3aˆMU$è8ò8Xb2rQK%L,, A1BȳðE±K¥3ùÔÈ<[AЧêeÅ‹›ª94%1ÎÔÚ€ЖñSŸƒAþ*žªøÍÍ_½Á:Ñ'Dóù˜Oì9bPÕÖ<îÓ»Ø5U(q£Z Äxu‡Êô#ö*¼çÓ[…“ë•3‹¯èl=>†0v×a3Îè¥|Õîó=ïÃûo½OmòÊþýrm,LoføŠŸ ¿5E‚ZµçºÉ `ì+ëÐÕ)F¹ºŽîµ€^ŒÌ¤4ÁUééØPЮs7>Ì€¤ÒüÁ>)ã±Å•·A=ߦ¸R/ÀA3Ço â¤,ºx<ùWªmÜfœGiº¹±¦Zx½š,˜&qŠÑ¯£&̦Nóœ i…­výŒø!Ò•Ø:Çgy&€”v²ƒ2ubU²ý}þ>†¥zü¥Oô;©!æ—ÚG¸p˜ »ª¬JŽq±ìƒ–쵺C,‘r,„O]!¿©b=+ 1Y@å|xH«põu&3§B¸ˆy2ˆuq»íF់‹‘¶+²äQì¼NÙÜú ûPt¶ø²S–‡ÈG:"ÙU˱钮+} Œ.÷;˜ŽÓ+3ó?˜¦è-Ï€Þ•2eʘ?3÷»É·åÄq®ã¢¤;…xa“ƒ­éâ¨cw°Ñ-á¨óî<ØekíHBG`óæzã1•®ªßX5)ã9ÄŸå¡`åèæ“h>íÒ\ò`·VÛæ!Ôžc³ÑAÇ„Ëi.çÕ•bךåCWUN,ÛÎb ]Û»;!9ø ƒ‡é´ž›ÐP ¹S Êp<‹Y~º" [SQ4Ð1zm>ýŠ•rî¸wð– ®KPØ ‡,[]XúèªïÝdÃÒ¶™ÓÔæ¯hCj<§ÅÌJ'ZáÙ×êrþýšûºÒâ‡'îRÅ oïºZíX?ËWú¿õ°®²Ãz¬ÊáhLÖgß^åÏ‹™ÞèòQ$ÉWÞ²S‘#ýEîÿoÆYÁõ¯…ІMpI¸\T©âd%ê®kŽ[‹¬í¦E!ÊSõêÐÚQ¹¦+Ÿ·® ù•Eçâ_§ 1`X0«tÖйP°¨RŠ6´ª€’!±¨á£é ª¡3V\LB÷òÃ\«:Ù5tvS´æVú®åæK. Š—/%™3÷o;± ÏhÝu•clºh–¥R¯%”†¯Yð—Ý}þªcäÇáY»$À*µ?Ç>šŠœÓ:•Dk_ïŒðŠ *¹|¡Sq‡àÈñªJ’è"R•½ß]¢¨DQH,´¨ý+dÑVñó¥•]yF—òP:-zl·å¹øËTQêcÓÍ+ÝŠ‰ vŸŠ¯U­kVs%„EŠí¥3HàÜqß óêæ¢¡o}B:˜°#øÃ¤„¢!-G]çæ¢aX¼#B¦àNÞO¾°¡ìÚ© ]`mûÔq·nÚ Ž_KÞv¤ïá`oß´AÞÊ8¼¤lJº8d)ƒ mOe0NìRpnÊ éïº Âºç¦ Ž{>ÕÚ’¬ â×»Oepˆ?¬ bç¦ ÆQf)ƒü:ˆ<Ø×¥ û¯#¤ ©Jí5tÁ¡$:ë‚Cw‚XÚ0¦.ø>{ÿ$*Oû¨òËÏüvzU …J)õ4Eò¿ 'ó•é”QdføR?e`b]l~T¬F%€ WÒÑä!ÃÆ"ltp!І|ņ1ž¡ÕIï"¥-îóz`©wt YÍ…†Ç‚nåVB+lèF{狎!6©N{ªYßTlst—›DÜHÌûð¦IÎ[ábîå¶ÓÆç¦UäpÌlB¸^†R š3 ‹NئF(µŒšŠ•æüêãX Ó‡®› ÆMUù˜êõpje¦Ÿd %WgÉ€!Y)¬ÀLBPIñ1I›;Xdí/£úEÎcUi¢ìZŒ`{V6Ê”‚Cþøæë- MÖ›0¤î¨‘ÒÊ“§Ã…äŠ4ä¡»¾,iñba7Ø#Ú™Õ¥††sä ˆåâËüh‘"*GÊh1­Ð*Gâ‡% >¢‹æNjô_„›øíb­R«ä%bý 'xÑÞ2ã"•it½À—Àª1“h®P¢ÕäŠ(Q02 º¤2Cܪ÷ÓD1¥ØPCüºsdþê¯t)%„~«ìÔòšRuì¦PÌ2˼ÑîŠ/žW,ntçÚ–¾rP¶_Y„FÇ®níª€š“WpÔªIí6Q¤#1xÛ»ÜI¡"Éö+Þº©Éʼ~iºÑé3¸Â€šNч;Ótº)w žFþ†–Šp§XH”]qÊ[ä­²#àùË©FMMÁrë~SIÔñŠ¡×DÈ•¨ÓlÂq«bs‹“oU1ÁDú³5yÓ®½ Æí\#›zƒ™ö<e§Øß!¡ˆin’lŠ˜½iͧµÅi.)ä_½ZXcó£ãðºàÜ./Ë#«¸ôqû¶P>.¥;)9?|åÒôv {¡·p ¼7ïà6Âû±A­î¼ Áa4ÙSò< rŸ7ïÇ­´ïàtïÑö~øNÐ)žqH{”€oUîµ÷aÒœ–÷ãVáÑCþœ—ø§~ªœ´;ØSîÜnzO÷b·¶ÈFv”…ûã!ì¹:{xNb<÷t([ƧlœÁ‘F¸?‰rnî»F§°å2‹E[ì?ƒáþPz(ÊG¤yòí,÷Ç­ý°ÿÃwd{¿ ²Lø?¤‘¦ÿãnQr›çÍ‚ÇdHŸ·ÿãîq”„l?=‘=h檿wx…ä¶#6 àãéÿ@|žNð˜öå|@.‚’Ða z“Ô},@Ôð‚s?Èû’b¿½dä¹]ÞŒ{ì-[ä°äV6îôƒÜv©Ê rØr™µ² :BŽ…¸”Ð®é ¹G„#ä AºÀ˜ž[9vu !;}å ¹UyNàíÒ·r„€YÏÍrËV<ì ¹[¸üá ¹c†‹­Þ(ó9­+SæVŸt!šgÚkâåðfSPÝ& ÄHŠÛp¹½+Ô§È1fŽØS sÉý#GF@——‚”I§k›"A½ë»À¼ïQ&›Àd·F ©£Ò$ë–>?å\½.ÏáË æ|ôèNV@IÝvª©zÆ£ßO…yað­˜) <%TtŒR/È×ú^Ñd‹È$¾ÌI–ƒ ðrÀýØ0‘£ ss07¨È”ãÖtFG!zØYä¯ZÐqôe©€1Šù³}à™ “éMÐÕJ‘š$áÈb¥¨…1nù]RAʾ–¹IÒ‘t6”þ´ôds·Ç¦Ä¨¢}EyvìO—væ¹Ð¹IîJLß¶% À¢FpꤑéíK†ìÅ·h•†d¹r”plg«{3¬ÿsª›<ª,;bֲϣ²$O#²«‰}“ÖÃÁ4‘Ú×7osŠeõ}]5å­¸“–¨Ú‡ü)«`p_“Ôð^…kÜâ¶]­{gH§fž"6]màt.E¢X÷óÔ=€QÓìTÝœ¹±ÁjGÞYÈ—Þ‡Šø’EÙBáâ*q‘T ™5XÛ)¦‡È:þ­ ±úv]»XÓ±«M®Ýẖ\šk:Ÿ¶Ëµa7¸ÄÚˆu/±&ï’j=––jËÍA©ÖÅéKªõð0Iª5¦ÝL©&p—jóI5‹ŸB­«¦íj]Fçj}Ë/õ¦Êì ¡ÖyÒdj–†P“¿o µ[kiI5Ýj8¥šò¦T3¸Iµ‰Ñ”ä9ÅšŽÔmbmD4KbM_¦ØR¢å&Ö¦W¿?<±„Z Ã~ µ*V5ÍÁjõ¢j!Ó\ ~É´J…b µJu| µf2dšµ·JÊ]B­+(²„2­‡ÊÉÂÜK¦õ©nG>’\¦L›`È´‰LãeMS¤u9—Hë:²"­+¾c‘ÖU#l‰4]g±‹4;-B¤)Z2EZS@s‰49B–HsvHˆ´™,"m"(ÒªLœi:ѱ‹4ú`§Dëâ‹hvó-‰6ÈLK¢Y’–Me•7‰vG…ÄËí@¤š¡þ=†ü¤žb$0M‘«¼À¤+¼¦£¹HŒGLWô{zåRZöµÙkÀß„«ŠM朣 ¦üæGŸs¯zÕ–zÄjƒºZyP`Cè¨sSÁM~¸iÉ]–’”§ßxÑ ¡4"Ýç%„¦žœ•Ts÷ ^_'lyøÚˆñc÷ŸS4ðê‹“Rÿc¯H-öä—p4ÎtJêÍL\Šß¯®Þ0G;UGÂÇʼnÉwå2*všT‚ëË¥"i¸Æ=½QO‡£6Ä¥9ñ5˜7¨+BÍø%û¨ÿÌtMö‡ê@E fwR¬.u µ½ û‹ p®*yä‡Ý!¿èâÝlØÉ)¬˜,†ªrL(gZ ¸YBÜž¾K‚Úç±Õøù&¿»[×F}Fg6æý¸2³S¾.gpQ\ýÄË*¯ÔdItò…+ÚæÓ5³6ó|ªP¤¦`V!'†¦;¶CþžtŒí!‚ ØnU™Ki(ýK– @ûX4Àâzdž™d€Lþ4fÊ4“¤ê, ‡6ÀäjጂòãNׂç°9_ ÃévìÛWÒ©ÚÖæÀÍ•v=°ÎfÇTæSþLîκÝrFª@Ú¸"ˆ¿§pYpGæDÉÒíñ¸]dêœCç%Ëç+ÀeÁ³ýNså+â*–TC€ï›/Ür±Ò\¶ŽŸhðü\c:Þ¡îPL¸,F‡×O¥gª3h6àæ’ª4ù^Iù~EƒžçÞ~ò¢¬dJW?€!;ícâø|òi[Ntc©ó%^Ù×’ÙâvPr­à¤bžMwsä²’IÇÁŒ ¾Ï qpð'ˆ5Ã""‰aKÏô­ÞÁý”׿‡«¶³¯EÆ~ý¾F¿Õ€Ò,çç#HM>»g`™½áæ^c fÕTÄ*0_&瓎¶ƒØ+_ÁÒAØ_²ïÉ«€lîøÄä{)y8ùÎÞèç‹:aVÙoÃ\Añ£ø%/žË.ø{…<ÈIV7W<Øð”'2VA×[„öÊX3ÕUjsŠ _^œS(]-&F¿“®;ÑUrò‘àªßlEV/EвYÿ~edvÞå®$#²³L.# 𸠊>Ÿ DRäæ{"tùs´–òô· >ª;#Ä7ë6bYûé\ti§Z2ä½&Â]ùžˆèª‹¼•"Ñâ?þª™/E…³*S<äº:m #ž¯>Ÿƒ6›/Ú@"ž8rIÜNÖ;`¶^ÁâX°.ÅÌŠ]¢‰ÀÌ'ܯŸp|âÃPŠ®Ïò[=C DeÀæ›5)±×~BÀË¡L̳ =k/š¨¼B `R Ä`hÌ—«C,ü3¿$'@ôû-vRöÁÀ„"ˆ’²™^:Ö×+e/&"À< ˆW.ä<¿6XSÔr˜šYebsÑ!2€G¨AöF«v{v\–žeô†«¦4•¥Í.ªsG L̇ðZˆ51JUú ?ßë•`ëê °gÄf‡A¾¤€9ž“,©êráØbE~ð4ý ~ Š~¼¾w>pQí@{¹„ â½æEÄI\œ™µþ`Ý×'î®°¤A¬Â‡¹«.’âWKÝ# _®\ª/"XF%7*”€‡Ë: –«å_D_âwÕJÈJí8?@®v²æãÕëº3d‘Å„­ qÌÙ«ºdô|¹4/R¨sÔ „E½Áƒñ~!HQ”ß@¬®ä¡È@<3Áj¶U§v²—¨“‡“‚:°é²Ž„C.Kï?@\({9ì ¸x„_Töc˜»"±¢§afgØùKL£¿NÈz§qMĤ›'²:X‹#«K.sÈÏÍ…tkLp†Ï•”‘m!e–îØ~†/<« æuF°P[÷Œ²(£Ì‘Ðe>ÄK |–ƒçX׆ÞdQ®Í™6Æ@ŽGG®2cñÝAO`¨o(=`¿5BÈ»«o°ž3ž¯›çÝ~ŽTƒùý‹úðì‚ÑûÃ0ž?õa!¾b®Sà|lðòÜü]y ¿UÂ{´wÏ “›¬†¬h€^ñòésyª Τ"ð\býðƒfÃH›ïz‹¶Uâ5¿}¸ô¶»æÑÌ® |ýíGÕ‰¢«ѽãkÙÀ‰'íò9ñæGö=qoïÀ{’ÏùN§¢Ÿ•°°ò?½1À#©`zÞ¸Xà´¸ A3M:¹GcoûfÐg?‚=‹Døþ‚‚J´IENdÆFÖJêÜq°@ Àv‚ÉñÍþñ7UÉËvØóÀ½Ñùû_6jXef,Eþʺ²fZ5Ow¹\¸.yËm*8­š@L«&²E¢5Ù)ñ±eÖ¸;Ó¬•^3›5C'§lÖZfˬ1"Ì7fÍûÐiÖü¤Æo†¾N]Ä’;Mχ`h4¡¾‰R”^§êCfÝÐP2CéÓ/b‡Ÿ0ûn‹¤Òî|ƒ/"à¦5â鲊‰d¹²óLкd,BR…½uº}íâÁ¬¢ù»*šl’&`¿[weåjŸoö=Yá?öì!táÜSò­“ËYJÍ7‡Þµ‹?»|k%¡á*åHòˆ!‚'oéZñ¸ÁÄÔ—cbT1 ¢!Ô”A¸õ HwÏðÖ³òq¨á·ª-=ýVÅèùûÐ~š(<¹‚½BY›ùž† À[ç)²î>ÏL !¨ØDȉþ=_€Ý¯›“ܤ-‡ïYñ§Ç„ý‘‘‡ô$òÉM+N‚çVÙ4ÃŽÍ>âÁ‡·^O¢e¿ŒÀ×FžÌÀ$`ŽGb|µO„f‡àÉÉÂ?A§þ)yÈêéˆE¡;´ /úrKº\K$; ï°Zþ-‚$îþêƒ\ B;%ï+ö }ñ¹zhÚ¸aþ ýϦ5}m ÊºN„òÝð:µ0• ÈT…Ü'ïëàl'f'SŒôäñœ)@ÏHD>§”/h—o˜ƒ¼ÝºXoSñÀ)¡ˬOÊÝuö°“G‘X3‚¦Ã7áS†FÇ÷UÆÊZ @¦)d•ÚzCIRh]ŒoSt`É\§êÞ|Ar¸<3`ÊÐÂÐûuÊÏÁ`îS¢Á¿sí©K€G¾l Ì”3_Ï\‘³ùì´õùy¥ö³{òÍÏîgïÞ}¯ß“<²’¡I¢•««VH>ûLH¾îkYèÛš¤Ï³÷=<¬~äÙ°áÙõÑ^·« ‚U’I×wacæìúýä$Ñ…ñ؃!Ñ‚Œ{Š6€tÍ$.ùëTö|N^ 0¼Ü'ûûYr>Sëœàš # Užxû°J;Û}f~¿Ò¤›½“á3{†Ñã›è¶&ìz£-ê4Ÿ#õ¬;q6äøú¹*>/•œ î…€wêK›[ ó°¤4±=¡àÖ¦[›.»½‘Àühä“r~%UGœÝ• wiÏ\IÉ;F$ßÊ¢»’Îx.‹ºeÑäÂ’E7Á°N&ÂÝ|]]´?-ºù}Yt³w2Ø¢÷Ë¢»’O‹n"b.‚?àc£€ß‹n"€Ãg-)¢¶<-:À#M‹à=ʲè.FÞàã J›ÝÑ&‚«Ëoˤ›‡I·I}ópfßäû1ÜÏ\ÃÊýÃë"³Å¾Y7ÉM‹î‚V³™oÇ•}ÕzE7çMƒmèâ9‰Ð¬ËÆlФ$œÝ•O_Pƒ]j2ï ¿¯$]gtW’‰¹ ºÀLû ¬ù qûÆ2"Øæ}…A">ì9 ¨~Áž»†´=§î¥eÏA¾ŸöÜ;‘eÎÝþ÷õû~AŠ =æ@ûçtýãŸÞÐõÒ•ÀU{ý÷ë9ëZbc¾Ñ]Æü#'•B©'7Úc! ݨ¯õïê eØlþOÖ!™ŸÌÓPô/Pß@u†*ŒùGáVi6|,Œ¿þZ¹‹ßF£ˆf=È_”éø›Z¼xì¿Â¤ .ð’|ü?pZ_NšŠxóLÉT¾øá¤b8“ibC=Šï%Ýn6 W)s7æ§ÃISÿEj_V-…zÊÔ‰– £Ï¿ÖCîã÷†Ñ0f»æ/ÚxÚ~Ðë¿Ò´á ô³®êJíd!‚_*ônÌ?p©r“.'=LD¡+÷µžÈðÁÍZ Š2­g«Œâ”Ëür`Hìâ5+©=˜/¨”;[åWËÇÂøó¯õºø½ÄlÖƒüEMÚOj}ºä{9½(Ã_“ÕtÇ©7 yv•Ïúæ´P՜ϔäз׌ÁU²Æt†‡>`P[§k×KMV…ïÕ÷iän˜K~¼ùÚÄ̦×ȶ¯½õS$6]®¼.7 |}Êÿ Ìek=wåÝÆI‡Ì{m¥Z3;Øc:QŸ‚‹Þa9¬v GˆèBÐÃWHòÓ9NÀÈ»yRg¹­&fæ Ä‹À2 `™7ßWÖq!~Sî˜+›¥Ñ/¨BYe²ou^°*ò½Þ0ª¬þ‹¦ßtiRÂݾ¥Û£JÌš­hh›Ò‰R®¢çÅÅ’†D£™ 0Ⲏú¢ÕÆ]nqaÂUÃé&]åOŽ*øÀ¤s=q@C2)»ÛÌ6'¾št¿(S”„Á¼RSódðÜýDôSu"1‡‡Ê}ÊA\ÌvÊ«b7èÕä/â!¦Žd3êE^ÀûÜä57 u± ⎻‚,%‚Ns ¼K(Å„-’þ·ÜunæŠ`RW‰ À :Iéæ3†ü®á]ž¸<_±÷#;Ã’]"¢°ì¢›—-ov|\~E˜Ë÷^pæ°Eú:À uå±tUÑ¢§ò‰‘]†ÞÈ×Fd‚±d÷Ïkå|¢OÚí¡Kµ»‚ÈZYâÕò)±õºt:‡zqEM $ c In´nïã¥>ži ²øE›g‰¡a_×)ÿb×a{Àâ8ÁýÅRaó‰|;º™%¤ng*e§ž“Ü ð`{Ã`á–×AÏ~E­±Õ„îÉŽZ¬´½º!(z‰Õùã0ü"†y¾ë}'ü“´ê„n3†NØ®¢¯$7“nºJ¯ 9]Ùubšœäš£&Ùƒ3”$fÙC/ C¬°9Èõ;¤à‘]öm’©GÌŠt<½ÊÑeP¹ fFŸçáˆÕóy… ¿¤àVؘ›‹÷¬KwÄ}Âܶ㎉êÉ);ÛÉ¥cÙ·˜®‚á|¹ i8Cž’ÑõR HáÝÖÙ¥:бøÙRM¹2±s^Í2;;g ˜Ò¯%p/¥~nUMd/n]_r]u~—‹÷ªÖb$£_Þ±jÕì_U1®3\€%/U?b‡íè ̦\—ƒï‹îƸœô÷ÖÐoŒ }«7b6Öºaÿoðr|fMïJWS¤±¯È/J‚9XÌË3aógw˜›Ã5LQe³‘>ƒn¡®„á áÌþÉ•9÷±5è¿"û“sKRF¥1ß ³(omdþÑÐö‰º7=ɼ} ¹º?êgCuó‚êÝû4bës§¶ü ³Ö_ Xbôí!.$l‡ °è澋 Å,Ý6Š`iÖ+æ,¼¹wn¾E—åsý–mß–|$©¯åWš²_cm•æ€òZ~¥Î¯ê§#ÆòCÒeÞVLŠÅWª ;/¾ öâ ÌFaeÿQ;ŸDC¿1±ø€¼9bñݸ:_qÒÖZ|Eésñdyª^iÞîmõ‹å÷ð}*±üÊP¼s[~E— Íõ·xËï%?®¾ZÝ)4zØvܲ‡"©íÃÁëLÈSõ¬Ô\Î ¤º¡è&r {uÕ…¾Ë ¬Š*o!²Ûβ Â*J†u‡»Ê/ý®r@PLÀꪌÕâ­ë¤÷ccâm?}djbš.mùV#¶;¡^Tî™´äcÆ&*ß½œ™¥ø5`¨ØÇTbjvž×´ÙjÖ‚œO(˅߀þVO TðÌÚUCí*NĽrÂSÑ1†ëG®–SôÅÀ#?Ò¤ëcê_ìF¶M]§.ûƒ[³7òàØê0Ÿ9¶ê”¶Þ'¨ýèòáœcM@æÄ,fËæ›wvÔ'By\=v޵1N[$ÏË€›äˆ6d4JɳÝ(µáH¼\&`͡ƗÕÂ3HB7Ø É_ÑU*‹kÄ2óºEÌnsÅ…sŽí_«ò5ç],§XÓ›{kbNÊ1`ª­ÍÀµDc4ýóïy¥ºÎVm2dÃXb4Þêðqß›AB`)K„ œùh»iÃö‚DHÓK„` Ÿ÷.B°|ZZ"ÿæ%Azä. ÒO{ƒ,AºnOœ¤;ãhIÀl¤ëÀÝ!=,8‰|¶Ô]„4Õ4 ¡\u3•šÓ²–qµ÷õ„s0-Bž&"Ž;E2펢‰üÆ!r,”EHÓ­^S†´f¦ž2¤9ÞnÂye×-#Úpü9dÜecízý´/‚ ÝWÓ¶+!²¦À2d2›eÈvÔ'XKxSÎŒš2Äµç§ i÷f¸ë¶FKóíí˜"‚Ë» iÃ6÷zBéÊ–"œCw"¡382…® È} ‘Æ(Ö±„È>&C.Üîë Ünc^N»œž€e_ÙmÜY h÷wï¶á5î>—^ã ¶×xÃÈkÜ^ã^ìÍš^ctcúŒ}eñ\¼])>Ƕ¾1°¾=á,Çpw\ã««„Æ1=ƽé€UxŒ'<=ÆÆîaSóØQNä[ãÀ,I ý›Çb¶Œå1î:8:=ƽ:Q><ÆÀÀ—uL±Ë¾OÁª‡z"ÑÑuèl=áó ÓcL =íc/‹é1î*[2E‰ácyŒã‰ð÷lUÕãžÊð£|X{ŒÁ?ËÌÚ`‡ñœš<ç!(ºÆÛCtuF ‡qWq´å0&Ík¬t¸a1áû:îåÍ=,¾eºÄö«ÖM‡1HÞCn¶¸4 ú£¥1Ô•4zlþb£61KèÛàgGB±¿0ô·cù‹ç’³¿˜ ,á§›Tm›¾O¢Ž¼ÿÎ3¼j¾yVláJÔ`Úl8ÓÚ¿4Óê€$Í©ÿ¸Ÿ¡¶ô¶ç=ŒY4ÝÚáoÌr¶j9[6 -Ãz«}-¯wgçèÓ_ËèÓSI_ àË;º|-&V¾œ£O£ˆÎ–aUny[F÷yt ‹Ñílg' œ7g§ •OoËÐMhSÀŒ6upvŽ:U ú[FˆFû[6Øe`6/Ü(?üŸ³±n4ô³œÃ'œìo>dþŒÏ¼i‰ ”åì$]S[š%fâÜ]õÃéåñûÉgÑ6t§Á±ü-à2懻eãCZþ?øò£hÃ%á›sóáÝ;ψ©˜EÃxk#ô†¶‡–»s6=ÝÛÇÂݹ5dwç†>®AœjÙW à­Ç]“0kýj­¿ ÃõwG†`œÀØ OQ,gç½Tf.À[ùdký‘6gçJô÷úCÙÔ´/?”¾½7g'N ô-pk9îÎN×[^8™>–ß½¢övÞ+ÌðŒ©Ú3ॷÁ^zÙè[¤¦ì‡90¬5“R]÷¿¼-y÷Õ½hm uΆï™"qœYxÉêø„i·¯X˜AzÅÅþx¾ô9tß Ï“²Î>Dfm:€Xë¦ÉéÊñ¦4šGn¯ÆV ¶êA’‚U§<•Ûx€ÊòØèQñ5Õ„‘—G×Zw­Ì…´õ¿ÕHsÞQÎj„&îö;Õäl¡Ós•¥ôÁë‚ì] (IÎ<Ï]‡=5™eý^ÜZaxÐ Ÿ¯1¯ÕR¾•µªeå¾Ê”E˜#Þ·>y9{&i)^rª#tòǸ÷Ñ-W´†g¤‹ηLšàZ&Dpáœuø}%D`ùðI+­”9éΓ‘ÙÉî” d Ïaœ’\ãúš¿G!e¾ìa–¦ÉYôFOùÐÉ^ÞàF`4Îc5tˆ¯,J•©<Š˜×t˃ØÇÏùP9¥ñ,»ŠÇ?ÿøÿ’>ûO³gYâçÙb«.dø«£œÏú1â{"RXG,ÞY˜ŸÍ|³ÎÑ–?%š¢ò{Õf–Ä_ £ߪrÂò%%ŠÈÔËeÃB,ÌŸrLHµIÈEošUª¢€v†-êO¸PAòIÜsUóØ»üIIÃé~U¯Ðå*fÅ7n5ãc÷*Ÿ²!ÀzÕ&Re¹š×‚Œ¸é(€Ü®;B§”7LuMßJ®jÒ¥ºFÎÞÖ¡S¹U·‹¦‹|VèP=þ€_Ä0úgÌÓÄ-=®Ê­ ˜¢ÙäÀÌÚ$ $ûì¿ûEŠÒ«P“ ¬ÃàR=]˜ó†Îº§Q7õt…‡ªË¯9—ÍŸe¼¾âÍΞÓC8Æê±¬DšR^ÍGºgž®ÝÒ\Ûä´è G½1˜ÄVUÁ€ƒCøË#²0ÙÇ4Ò®:fÉ&Š7&Vw¨°v‰˜SÇˈX›é§~9ìªD'ÿõñZ„wÍ·jùTtõfûg0>]y߈©jGE×;‹þóçvÎï)¼|ú¨#»ÝSÊíE&°¹jFÕ5M Ö6õš®ÛÁ¼rÓä’¾ýJ3åTݦ9gë¸ù •‰i?׮ơ…˜}—˜¡ù¡#¦ÞV«t8ÃK6n•š!‹¨ Æ¬w”æã– ÄÈ"7U‚º ñ¨Ž(0~]}ܲy±%‡N‰0¯Éið“¢ßT~iõbUôæZ2´üæ¶ÖTƒx"¶º('Mg=#qtª0•/*¢À¥Åó© 5IF#êéDþKy}!=›|¾KÀfVÕ]ò•eyèê®Q1Ç)/ø¨Å†Uüªx*`ª˜è8«ÁMDâRz}íeàË6ã¢gˆFDZ%p={pÀÊW67\sE7eÔ¼¨úZÖO‚j°ô©‹žÚ¸/ž6Ï.„žgNÎë;¢nËù!ö˜0åÝ‚³Ê!l˜‹~5^Ù£e+›¢˜|WŽke¶Ru)u• à¬JKAÒ±$i! . áË\Odž‰9Bx Ñ;¶/VÎcX‹ÕÊk#Ôâí^œÚ¢ª«Xiÿ/“=U’¥/\+éVb¡ôµE÷;v°V-1ý»®MähÌUçƒ#'G-"I ÙÎ\y!c[}ƒ/ "aMÙm„™Â-Ô2· ¿Qb˜%v;”ÿXíŸÜ2ÙwÉC)î.Iv{¹ëNÖoZGfrjä)-É@¬¼0œžâ:¼´S‡kc/‡Ó8íԓɼô¦ºº!ìpš;œÀ~Y%Wü8í ÓžhYÉã4\†& D@¨ÐºŠ AU•gÿJŽm\Æe` '^ ‡0]lΕïB¯¨Á“óÇ% ÇŽR™Mݛě,¼³«¶ «À‡Îx]ÇuÙ€Àš*áKÊž¢6—…aÛôI–æû/¼)žw„à¹(ÕÕ¶Õ»üûhyÔÛåÕ§vYUDŽó:¬eYˆæà×D¿TiF5BÎѦ2*eF57Ä ~FQͦي ¦K~—-¨ÙÈ%Í ë—ˆýD‰ÛÓŒ¸3¦éã5%bšC‡ºÊŠiŽIEa†™+"ˆ×œBX½¬6MÊÔ/«®¡¤˜àF9| ÆŒi_U3cš]»S‰˜f—ºRVÀR×=l1Í&v>‚ÓúF–k†mY!Í*Ok±†YY…ZÁYË”h–¸b%Û…À½¬X½¬Î/.:¢OH8 éŒ%šÕÄêe­ó‚©—UUĹə+¨ã–ÑlâÁbõ¤â5V/«“"ËŒh¯LaÆü$Õˈ·•¥^"J§Qhûºç6)Ÿ[ÀS»Ü0Ò.« k—€“içû:n—·vÑÉBõò׺Õ8´WD“w#k›½ ÷K\6a4‡ï0r@3Àhn°N]î(͇£%šC1—²šCÊb™Í>ˆ ‰õ]?s+ÒT]pj$Òlò¼”ˆXø¬x‰¦îs B-ÒúÒ”ã÷UÅ4CõF—WÐW¦³øT¦IY¸÷f>Ê®Ù%”áU¶$º#lGöüˆ PÞL#ãy°)’'8rÒVb{ßð± äí 䦻e¦Dn%į þ¦Ë¼Ž)‘u™çÈM5 –6q<±<Žû_B7/ÑÅö¾púyìë²§hµä1/…îS3¸F7[Èãf3jÉcLº¯QSAæªî”~Sõ_‰gMiµáÒœÓéO*ŤË0/+ä/3…îG„dRYyÂ+Åda”aÒeñXkzs‹ß±9N—g˜¼/Ù—¸U p äæ[,B"óféÈ;Têl!÷)'hy¼Ã¾Aha2Ëÿóæ”ºä1/uÝÅqk6Hlìã²—²Ä-–¤$ã ëÒáíiv–Ǽ½^Â7®Ü)Ï1å1xäîK3Ù¡¾1æ;å>Ç\Ñœö×!±¯bC9ÎM–k0u$Üø9´™Ô–#Æpz{q!¶îWrˆb5 Ù¥÷XœÊÑ*׬òXLð¤°[XÇØ“8µïpÀ@ãI—RUùT–¨ävj$‰®vä\²1ΟÖe£ZÀ•&ìðÈÒ—9ñJ’X‹x\Ia†w§iŽËÑ'jê=û Œ’œ®“&’ñ×)²¢Ri¤¨µÎäð Ü–ña)ç,bÀ!Mû9Mý·7UÑc \W£›"ýò6GpššXÑyæÀ' Ø(ì µ»6Ä1W³Ò4†7ÄìL‚—ìÈBàV—¢æ§jø X·¢âðm¯Ë-Hrßqº~s‰Pp÷-IôqÍôç©ÿNý·;Pey‹p[?ŽóÀV§ÆïNþƇàæ÷¾~.Ë6g×ý¼)Ry =4ÿò‰û5öH¥®¸\y ÏkåÜQÀH|Í<žé—rxu.å)a÷J pÃtƒ‚˜¾@en!;‰ ºêÐDq’B¯öäÍ$… ‚ý78ˆ^ÝDÒÕ]v–‚ï«(iEÑb]¡¬¢ã ^Šó%™¦ÐîSfž‚ƒ¸lB%_.2PqšB€3KaC¸Ð ƒ¬%V0#ØêõúD›Æ±$Y[Ó)²k–µV’‚ÎÕÜïS|ÙÂÞ1ïœR¦‘89Å¥NËÌQøÁ„Ÿ÷˜ÐÔÐ_ ™ÃTöØdˆ–Ñ<¯7•ÿG3zI0m‰î’øË–è·ëGWúƒÜÖf ~6ô9€èÜmQí^/s϶¼-Ö‚^jˆO…¾Tºmœ:\%8ÍxÊÂ4Þcç½Á Y). î[写 ØóÖnÂA²ß-9Cã´ãà åîÁ¸ »4¯Ûªˆƒ/,.>Ê)¤€­ªòÌÚ8UÈ[Ð5ôßt;.éÍI¡`íÍ·‚Ú¡RŠj­¾*¡Sr ÝKT”÷ø¶í­¨ê`×tÕzê'ñJÚ¡ÃÁ7·¹yFÞ}¶&tÇîyí~€Y£¢èVáçûTVú„e>ó|©ôÔ†°°a˜yŸa¤Qï¾ÏOL]¦PEòŽª-à0“¡òü`îO à÷=>ÿÀcˆl|YôÿåíxPŒøžˆt%_“ï,ÌÏfxïgËà•¡ êQÃ__°”ÁX ®Áì SÒ§Š[Ž0¥ë² t½!Pn¢ (»,Æ3BiøEuDÓ=Ñ•²9îå,á“Z†{euJÞ¸” EÓKšÀMæè†)”¹Í—2úrt(EÜ ²Tp½Â¨4jµ[o¢Û¦èìnrâ=Ø#óŽuMUWX7¾Ù‡B-¨§Oi2|u¤Oè!Ï”ïAg`›y…wÁV®'ÆÉC,? Ç¿o äB^çp–¸ò2Yè:¼•eù–6xˆtÖ­X:;À[|?Ú+”E~OÔçgÎQ©Òßsøª<®µÿÚ0ó:c¼ƒ­"+-—pOõuü,yM¹ê§ø-›_›¢%9ÇEy1´X.ö˜dœÔëšo|ÔRe’/Ï9Ñ aÑ|9(·!tÏZèžÕ¤ÄL5uKú¢ù.çGŽðVÒeD %;²B¹ßbj3_v„Yä+æS¸Š…›óªÄ8˜ú–ÉCÝ5G8nÁ-"Þrůâp!%‚^¡Î’[¸†#lojá¤ðRÈ®"ð¨¬Lò Þçh=Aÿ]îÎDµn½¢Êy’TY¹½`—d•\~|ŸÃݧƃ¡Þ7ƒdöØó½a§íûk½˜_ íuf>îM ³7ÝØï·†õ³¡6]µS!˹úWÁÔ˜T_F ‘QIWˆÆÅyšãjÁÊK\J#;äê‹æí­6ìØj^7%¿VŸäíÒ¶rYI]je\ŽHö²Óá¿@¤8Î,Ä"_‚í¦LÛxC‡ûùÁ¬J<Š ë÷»Æh†ÇÇêpµY2Õ`˜o¼Ñ—*.ÞÎ w³h†VÙpôš†W¢âÝÔ[xÑgÚà+ÎýsìCõYÁ˜üŽQà^ùzsè¾§dº³d5tfoBŸ›cSàçØ‡î˜ÐöHûðU@4dŒòYÄ$D3•r?à5üÀ¬±ª¸óñµ¯¼xíæ Ä`µ~pæå I/{e7©vZ®®ôÀ{~#1°õ}Nr[…&Ê\>e.Àî wÚY7%p 8+0H™(êE$iì«üŸ%ðèî^™Ë¿æ¤Íò­Þý$ÛZT\ÕŒ†‰O¤bcx{RQ·jž?È'úƒŒ8ó?y2»_!¯×öHúcN£dz£ÝDšÇK½k*gç ‡=ñ_”t¯7ŒÊGÙæó+Ù:\ô"éFëÙÉáï>Á×ç±=P¬kõ(† ç•šµH™$§&©3د‰V—x‡õwÃè‚vÚꬎ÷#A[ çN³C.W_¡ë A*Ñ…ýiÁ/MrñœÅ#üÚlâTæÕúCQ;Ë Ä`ÜÑ ÏÚ0:*M(vz¬¯ä°äg?òäNõ3›1”-F£Í“`Åz¡šz­¤Ùˆû±fAÔxŸ•Ï'5å ô¯€Í?t)¿ý‡r´SÜqQ¼êhg`@Rå10˜ôŽéê ¯ÍQµ:»" ÂÃUª5N®6+κèÌÕsöY*Ö~ZÇßÏ…a0=Ôu_ë&µ8Û×ǃÅi:úÙüFqen&Öðj¼ˆµ £ì–oµ!u1ùv¼!gpNó ÎS ?[ëžÙ7 cÞ±DíaYkØ7éÄïM¹MY@¦.0Ãt#…ƒãî8£ã]L|ö7°ÝñÂÕm]ŠáT07ÖðÞ"BÚ9eÊÃæ0ã”—.·v&$'\m“¨a¹ø†€6œƒŒ¯Èï"TÚzÒÆnåk*ïü¨”L’©ük”U²ËŸíj£ûf‘PÑî+ú9¬w$1 g+J™5¶\‚wÝŸh4ÉÝB‡‡ÚW"GÂцÔd}Ð~º½f¢oÇY ì£>ŽÄ}´’$¥àt¹Õ#c¾ß0*±L ú‰9JSËà#—~À¬†ÖçgCï=úlE¨NrRÊä߯‰˜ŸŠ³B0ͱ Õ}„Îå’®«¶¹“|«Òóhâ§n'pu·4õ¡rƒ/"8óÛ §î³ê¸}êq¾Ç­Á`òž»xkbŽý[#ŒCª=OÿuãÔéyܳ}z<]¿+l~Ì"Ui(u¿úì`×nÒ Yé÷2†Ã,Z­š†3Ð ¹âtKR…¿É}‹ gÃòYmªÈä&TîKƒí¼cM†•'‹¹¬Jt8<Ö&eÓ{*­7Àôóöæ:²ìÈ–¨î_‘ruÀ™tµÅ§¶ÜRWÊýÿj‡­µÌHŒ]¯„¾BaZ2èmøP’ì©ùèœn˜Ä¢èuó“òòítÒÈoÚé›UÝIm,uTw>f—}÷÷ñÄòìüœÃ<ÇMè±Æ wª02sóÀ ´:®ÛËq¤j‰›ÀÄQÇEª¯tô€ËëÙžüh_C?"4ˉ¥Y33ùâ”õ‹îŽÖç¹ÿ-gtQ¶©wWÎ4‡RýÙ‚aø9‚'TÎ$+ƒW9“Ü]Eh¼…=ø¾H×}2|[LW–Uøé·G8æÙÌO%Sô¿‘¹„.o&‚dî*¤¾!ÍEב”$Ks<’Ð}uŒç½u¿ªçP;¥ZFxAæŒ>–Qö‚òðg/åk÷ªÓ¾‰ˆò 屓šÞìAŽ ÈzeѪâ<8Ï}@VvZûJá•7[—e–¿½ÜÏKºh¿:îñM_ËèqSÏlCž-\ö¹i&zÒe9…Æ}›T—¾ÝHlÖËW& -²Ô[–É.q¸iA6!zŸã4 8C´Ê"K¬6O èÑ%a9o0)¢ $hLꦠ›%þ;¶ŽyKó•ý-S—0CÕ☰´Ò³SÌJ6Œ'ôÒ ð¹;C[ìÔÚ]­íÞÌmF[Ƀf™GF|‘"4´ùÀ§G› FbZ¸ŠCÞœÄùg“ÉzO½Uy8O]£át*ô Ÿì~×F‰ "ã˜q¶ÃCê ¦6(Ce?äLše·*]åéìÈkj¼$rÎ.D”™æÕîfIó‚ïÆ`Ú%y8gŠ‘<ø¯Ú¾y âæ™î-ëzØÃª®ó.`Im¢íÄ8ûRnŸ&jp‘ßC¯}£~<«ù`i†òHGªgÅŸ,‡PložÀŒxj‘&R)n˜ˆîrÔ÷YQ³XLl‹H  ¤ËGÈ–‘$i.ºŒÉWX·{ˆ‚cwbš)ã8uÒéaËHceƒí.ŒkaTí–‘Løu®x Ü%óòXˆû#gp÷jeaú Ù2’ô rmÎØ“¢¹Œdó?P•vÍOØcK†²¯:glÚªû¼GS˜`ß#ÅiD¥°ø¸‹¡•[F2E“É¥ŸðHHRûßKI“ÎÄ"÷ÌvUDxYOVÉ„3S´¢˜ˆ™|Ñ’ž¥Ö4žžçñßÃýÙHê èξUƒ”)|kDGPÄ Å#s 'ߍР»Gaš§¡Ð›»Ÿóf³(T7Æ4wÛ²!^ñÖ%=èãÓ嶘…vÒ'éý8‰ëû„t °Sé)ý’ÌâRóTê÷ÉÎÁOq4Y2䟆‡4Žö^—Cú.RD ¢‚è‹o·OCœ|LÓ ¶/$èµ9ÿ‹æA{EÆA‰ â—W!‹i ˜_‰yîv¬$ \ë1„öÂ?ÌoLÃ÷Ó§éûí7ÍŸí§Õ¤Ø#Fùtè–#ÊuF©Èé•Ì {}n;† töGé©nþìV.-Ù&T1-vDB™¢\–4\M¼–43~täÇ÷áÂÜ9è*Hãàb%„ÍóŽ 0R俞º=>>iÙõ}LAB^LÑOÖW9ÖéJ«ØV¡Ø[E¹öûØMõŒÝ^à4çEŽkûó€€+˜ŠfâæÂ°cò¹S)«ìTu*çÍ;³ß\ Þу¼Éa‰Æïo,º¬Ç,|%>ËÝö3Úkõop„)ËB|„§ö}LcÆí,:È^¾-ÅRwWér߬ý ßΘ†ï·Ïóy"ŸÓâeɯ¦LûÃñº5oÆCŒþûµ>†8ºè…ïA÷“÷a·.= …ûÛ0Ÿã.TekóŽÙ3ît6ûÙ¼c€Ä;®.ôIÞqɽkóŽæaÉ>[ù¹ŸÚÄØaxGæÚ‡€¬OðØà.v£ñ£ø©Zg›•{±£IÄÓ‰c’âühßBþ©b˜t ´ÒÑóèüȤ[œ]0ɾ¨¼^¼¬¡ë»Ö"&i„$ÝõÑßtÖpÍÌX¡Ì pZJ:”ÑáY IMQ ¡˜‘øÈòdR1¸f\{žŽ×;Jô•zß UÛ»Œ[ìçb¸]ì7··‘o;ž›¨A<­÷vÿkÉîr—`ÜÌuÅheŒ® ?¤©àŸýª-ÝëÁëQ¤³qÐùüÕù­ÏÎÌ¡]Ò ]#4 &¾ o’9ëÕö(Ô_mG†æëlh3ÝÊ“År÷Öf@¢^UZîÒT¡'M%›Å ðGfbï%ñ•þl/vñu2Æ¥ÜÈå±!67˜°˜n¥Ù‘`íUvˆ…ÚXË „(¼ÜÙS=òß\8*ï ê‚Ç0)EÑ¥Kvª±¦£+ö„8Oqm#!ÍfŨï¶Lƒ±Ä[Û í}RÊ•SÊÉM7 7/ôvàÚÆb>¯È÷Þ‘ÌKøç€0抋åò‚Áú<.Ë·Ã3RGb¥ ÔÜ´š?×– µÙâäcÏy.ß!ŒÆ÷!²)&×”—ò}Ì"+{ÚôCÀû:NQ¶C-õrÐgo–¤=åQÓqjû:DN¾3 F®€$ù#ø ÿ†ØñÌ| €fßWŸßoHÌïsSr,{Ur’8Vµ!¾*å³=—å ¤ðM?Clš¢~=PšªN[åg€¯T«8pÏÛÂ>/^IÊÓŠœ[‰<¾ ?dF ¸›šÒDÑRÎÍÀŠÚCŸ?;?ö&™5+CÙË`ñÁÁTõWÎ._§8P”±8¯Á Ñʱí<Ðŵ*uö²/ªÿ긩Šãò9þ†ü»Óš êÎŒäúóµ! !û¡V³Y°Ì©›æ²Â†¦JÉg–S—>7 (/ ½¼àCŽ­aƘ‹%âÏ.é P_¼Niò›R»$úmf¯ê®²’ð¢’ðzÍÙã€˾+ù{N*üä‰hˆ³z±zly‚ŒW’>æm§×½€ý!_ 3Grÿ(ÑЕû©1™G|Lbäúwä˸@]'uÓ°«¯g{y‚€ÂÒÃî ^¸—³(Eg¸nz‰`Syé¤Iãè¤_õå.ŽîŠ…„,[1«™ÈŸõõz³%ê{U Oò>dp,"?ϨBeUvôò6,vå×§þoïÊ ç)4Ým^MÈúË.¼¦ MßÍ:7¾ð³̉Éá^Š˜:u1™«»RPk‚[¡µ_à·!m~}å?\ÿ—©¸Òxá6ÿ׎üGû±=+c9ì–4q6ýlÝ¥ ®[4É›¬ÚPuQ¬±âÓžŠ÷0]1dé:i»·¤A昄ö iM"è·±Cïùoß!OÕ˜qÖnŒƒJÂuµ‡d&‰–Ð碛ë]°/Ü!Tî© Þã%IÊY®Nú_ß7myh¿ñm–Ýòõ6$·èí+¶EÿKn¿h¸ŠîæÅjE3^ë.o8À”G†¬w—?’CÞ‡±Œ¿Fþ”ñ£æ[up:Ø?xœ¬˜Ñå|\‘…`P+Lƒ€\òr²ö†ù3ºëžUçh‰#+Ù}@.Ѱäûö¦j^J€ç”? †s˜ƒ›á!ÄBMå/ÀT‹óQÝ¢ß ‹"àË«¤MCBh«ø…½°GûÅz›µÀTž]LY=ßHgâÌŠp^H÷ ·®Õò(•×57ÀR‰ “‹ sB—ªö7 ˆ>z¨,%³EÕ"w8eˆèÌ$em\õ ý4¯2<®TÏÚQp;3¢:w[úAQn€ÆþŽ< eâî«¿B§ .¡‚Ä™šö"êˆ2Sº–Ͻûˆ'«òiªÄåkkecÅX…±«ÖžÕÑ&§V“Ž5óHjÚ5«Ç³Í<¦'Ä ‡ òÀC®^p,)ÿ-?K¤özÖôJÑ@r5+‘àÆƒ5³HÁÑ…·3Av³6iO–×Aî©’+vеDMG3C¡=––Îu(¯6ëçË7ô:A^f¸@Øÿ ó8I«Y9À€â“B²1_ “€ä¬Í=¤ÓÚ¤ÉIû…HFY;<66µ&T–v½•}Ò‘«*Ì7úä]ðjủe¬c«@¦·b,œyv;»“à êƒ_a¥QŠyøêB·]+ɪÒjz¢+®Ÿs•žMžIUÝyÒõªPdòQK”h³[Ķx*Ïvöƒˆ–@^Æ 6t?´UüÌ#†àîUäšÐ\ uòÈ{ ‰š½ôqˆ½Ô¦êj/•…”ÉâM±‰ˆ0¹&P+Yòº[M  jMó'^aOd¾*)¥òÀàZ©mƒ_Äl÷¬i:¯XožWíA˜jŽrœÍ· A¼CQ­4¥ØÛaQË·‡o@3š)ïmi_Ì!Ò¬m·ôç;ÁœX[wÊTÛhHè'›ÌÔ*,ÈŒÝïoü“GN­“ücÇO (ÈvÅIk]JpsBs\¹ìg³ ƒð†3µˆ “Ï ›¨äuÆwšO^†Xwo¨æ‰åd4 îÑÆ†\'(ƒ2 ½‘Œm¶vS!c¾~ƒ°|2‘†ªî«8V¿ù–•挀ª˜B0Ä.ev¬I:™ïkm²ÜI•f/±X%}kjmQa˜ôl·ým;„*ü .ÕYl’Rð#€¨¸¯ °hK>í–½ÞoÌÔù97z³< PÇ…Áj¼Ê¥wêºÝ¼yÜÆã*~æ –r/eWRÔ[üD l r×xƒSrkëPæÂŒÕ…ÓÍ`‚æ$?Áx4@t7x@€.ókÿmØžOˆ±Uü…ï&¡*¶Œ7Hѽ°kbé…ÓŽK›ëà@0ëÖ{i-Uc¶z5ý¤‹Ø™N÷2ÀsÅÅËjÔ‹žÕR)Ïç–VÍd±RÆÆ•Ç—Ÿmfn³Eàõþˆ¥[ŠŠØ& Z{x%Z2C¨rü6°—à.» Ln D½•7ÞYŒ[ù8É@Øâ£H*]ŽK‹@§î—.Ýb Žf–9ÿ„  Ý®\¿Ä9z} @ª¸º¥8cVöùuÓ?âîæònÅ™¿^œYDÞÇBÛ±²"¬Í‰Te–Ä ‘1Ì$ËØ1I¡!Zš¿KѶC´ r@4u\$ÇUO†Úi™¨¦l#ÉŠXÓ++3˜AÚ:oOSýÏಧ_ÀAóÆqK‡ƒçÖGŸÁ¹ƒßÆÔyŸµc{¯ÇcU؆·¶ÊnÜŸ•¢©]ªÌ­,?Ú(F5OÑQx:r §ÍXÓÙêFÞNþ#®4¶!‹‰¥¶ •^¿¶n©ÝÊ-ø eS»¥¶‘¶élã@( ꦳M·’ÔMíŽ °ÆJ5YÊBÝ„1(íIÝÔU\Å…(Ã(y+—¾!ÓHÈk36Z„ºIÈïP7Ùšm“—ò aИ(‘B©›ÍÎG®ìû$AÀüî„È5*ð~›§üïü¶›cc;Ÿƒ¹pÕztÊ#Ä€L¿$j@J·gÈiªŠCLª¸Ý:Ä÷tÜbÀTy%P…ó°:Ïìµ"\ ˜¬ðåR€{h:‚šr¬?Ð×­T!Ãcæ’€¹\ ‹J+æ I@ f·$àg·$p@ˆWU}È%±<ÿq°](<¹ÍΞwÕEK´*ûƒdqËwÔe¡ÊM. L×¼…0àUH]À¹¯­Ÿ9ÌÍ·wÝ[½/wÕ^mêÉ) ¿é~Ç.˜Ë°óŸF£âÀ¡8`€B²q`Ö Ïf +1ÄY…H%¼=\-¤<,ÏîôéâÚ.§ØÌ󽥩t¿’Ð$ã qàhS¸6H=šuž'Ì·<0Ýš¢J"UUP²gÙOÃóTMFÿ{ 2äIòk[ž †¸#»ÌV†6†çé6¢¸˜Úº¸«ÿY<¬êªâ®H jÛ馮®ñ2Ð,ÊÚ½Þç2c $÷Ï*Í2¥nû꣡ZmMe3d 34X˳µ¢P$b³ÇÆ×`Ï­üÑ“øÎÛÿ¦v÷jí$ Õk§9½¨=Êõþ€€Ð¿X 3=ÚC–Ì 9Ûx@gz@@BÌÊ i[×.Ænë’Ìc"x ©#*÷Ñ ï¦·É^‰A›³]uFµ]˜øQ‘*Ç–&*R—~žŠFmAEê’¢'¨H1SP‘ª”Õ•IUN'Õ©Heþ(€ŒT9xÔ{¯Õ׺•I•jÖèÑä<**RU‘¯yA|ž(1g€¤ÚÍ "G[T䀀ŠXeª‹ôǵE3?ØöêÞ²©h*ˆHmQ•ºù±6©›ˆˆ™©Tt2éf Õe©CumID®° ¶æÖÉ;Z²ú•ýשT†‰£rŸ”Þ¦Á÷²¤FBª‚SU;{·ƒ„ÂúÙ} À} ñ|©fpªr‚¢ Ö„™Qäùp¹ >Ë UÒY©Ro7:õ ‚‚Â1àë0µo¢ GÛ)H€DA*³*¨ž5½*©(ˆ]m8­#»Íºˆl³.cxx…õø»FO¼÷´lÇ%C‹]@?ÌÙ¸‘ UÁÇ•|îÜG<Ù¼TY8.µ ŽK*‰¬ªÛU¢Ïlyª›‘Ã’WümrXj$ü—“ý$§.P¬7y+½=îÏï[_ õ.r|yÝŸT=š&o¦iÅaA»ë¹Z=¬©ÓÏ›pg7mèqd2š©: Ujöß¡ËPî6g*]¹kfè;o^àhK¹)w“â7×íšá:ûË»õ ˜²[ Ó6§%ÝnSÖóºÝæÞð¡ÛmJ'ª‚ÐØ<¯‘̽tèÊ]³8NÎÊ]³õ©˜6-{»-õn@’/E%Ž¥Þukw õ®Ï-®ÉùD°mÐbu `é(£G§a¶RÃÛÀ€¦Œü,b|‘pT\T:žJÇÛäåÔBÇkI:)–t¼ÍÓ25*y ÷ç&oëBf¡ãõh-nLis‚ÖÊ;í ÆC&ïqŠ#rØÈâ–p‡ÄÀ&¯ÝðJ6:Þ£­ý#àòšèáæb¡riÊ9ÞòñˆŠ¸üÆ!™k«QÉ‹ëè«Æ…mä–¤ãm26¸ŒØÈµ_›_êÁ[JÇÛ¼8.u¼­Ë#H:Þ£mÇû}@¤ãmªýÖ¤ãmÊ„ÖBÇÛXB§¹Š7Zøw{ Ü;E¶ƒÈ¼7æö ½-t¼m—±¦GÄ">¢Š÷ çý /Âk¥…_\÷rñÛ"™£.û†TÑs÷‹“‡6|Òº\ÄÑbwä)ˆÉ–›…DÜ1Nvr­ùëѦ¿ËcœL«¸~InD~á×'ƒ_œ´ÊÎÕri'— SzšG/”+·¸®çnq½lf›>EçæK/r^·8™ ÎmšÈaÑ•M!8R|º>Cì4ãhIsþ3Ñܳ,þŒA ·8iÝIÅþõÍ£bC#6†ìÊáæÞòw0©°Ákî'—9Ì Q%ìýâ¢~q„~qRVs×yµa½hágÊüšÊ6÷‹{»é_C¿™àµ…_œ—irQóÎ$ô¥‰l¿¸®¼nM~q}mÆsñ'¤…á×™¾¹[\ÙŠNùö„_Ü REnágÆ~±¿ô‹ë*çÓÂ/ň׉5ÎÀ Ñ£=Üh?8ݪ¸=yÆuZ]›ãú “Žq^À£…cœU<éÄSpŒC‘šx¯+Ç_ Ǹ8…襣¡ÛÇM{v Ç8s™¨M¨sqWë.í þhá÷vôŸ}¥¶6s(Áf(/Í1ã¾ÿ 9L®©N©Î6 4‰9²\›y¶ã€›N6„±¤ìiî‡$ÏC›9ø²B›9²d<·ÿr¾÷`NéÔfŽ¡Í´ší¡Íôê®Í´bùÔfšµ{>´™¨˜òÐfŽ3…6sP@ÙÚÌ!K[h3“„6s°dn`,«ÒÛC›9„=T@Óµ™ý–J=´™¨Èsj3íÆÍC›y´¥Í< `FíÖS›icö‡6³ÓÃQÚL«¶Óm¦Uã™Om&ª©ÚÌá^ÒfÚM¨m¦|:µ™¨ƒ±µ™¶™Á²|kû÷_«¾'mæ`p÷©ÍtÓ¸k3Í4žmf´C›)ÈÖfph3ÇÖK›é~Òfz… ×f>.WÁgÚÌ¡Ü'®Í2í¹6í‡6­ÍDážC›y´]› i3‡”ÒfZÑ’úÐfŽâêNдÊ19yž8WH 9àûßé¡çÚÌ‘eéÝÚLCõÐfÚý¸mæp-à6Ó>wî3ž\úÕö¥Ú*m÷¥Z¾4ºR­˜ˆ\©Üˆ±]©˜Ì(¤excíµªâÅÞ‹!hxZ1kávÄjÝÇ ]L“µá®‚Ê*qS‡ˆÊv¤rˆ;R± ÛÒõò+ ¯¼ü1ñJI”ƒ,]u‹œ=ùA¢DF¤†k'Äû\ZÊ̶FHrð„Kí‘§zZÊÎumÐîäsü ¹ÿî\T„ÓÒñµ¢œ PŠ GîbN·²'d¤Ød<$L`ÖÏ¡0ñ¡wCI5¼ÝU*ý„ÐW2†hÔKÅRÙf&O{ÂTƒvgYÒ¥ûXßL›ar˜ HmU–FhJh‘u`åË¢²ÓàO˜àÚ´³í+qÈ€vöb»‹¯ ejÜó˜JáóœÚý<.Þ!óö 9 Å‚à³™ƒPŽBìþýä¦*#±€˜µ;gŽ@ZoúÒ®b\Íþ}ƒdáÜqN¢‚ÀiŽ—µÍ¶—Q•O’É:Ö×î1¨eô+}ßQYt†›Ä,wÛ¨«^¬Ô‡ð‘#ַʧ1•ˆÓ¼öv?äs¹nmTÅEt}mù9 ñhãWù5ÐÙÉ‘8#úE·A>;8uåÓ¥êöÏ׆ ȧŒj¾¹tÇ‘ŠÝîªXéî:%´¸ÿVëÞÚžÙ·0@$UÈw%1ÚjgÖMc­—¿'ú¤0ñæd9j— éêwæð¶œ¬6ÀÌÅ!¥U¦`ÂGk'O1n$ ¹˜Tz"hhB¥—x×äîƒè墭ƒE-‘¾#@\OpÒÓ‹)ÔûáØE«}êòétéLº´h7(¾Æ™X”èÊ>9ù$ï94O¦x­ò[i õ'jö‹Õùp黓‰¢'öÒIU)Úm¨Ü“27 Dç,Sz0—|U€ iÒWI“¶¬vsˆÉµw 1¹{hÉ5!ã'ݵHzðüÁÎw¯Ãï»{sˆÛ}@©dww ´Y¹€9Ï6ÕϹüb¤©eâ_|RìY[ž·E Çé Yw`æªT‚ÒÅÚgÛTÐö& -O¶™Ÿ$ÍÈ´ñÓLÊþõÕ^¾ÞQÞgÌ~S›’,뙲-8Àˆsz x@_·1ªp¬[º@î/ µ²º~;ijLóñdqàÆ–Ûƒç©LßÅ+߬Û+÷2î{åãiÒÞÄèë7hoÆç¬¦»>D$€HBa÷'ÄÞ˜AH$ ã^r´òvÊÖ‘@äF#,W!>Ò%ô²5 pc.» s4+ó'©G[ 'œ0HDáíµ¶çŽ4Ý&å‚ M$‚M‰À ™û¼˜ÙÑØ)´k¤Dì!ä8$,ïÐ]¯`&ƒÝƒÚ;|”²"ž…¸hÞÈ©ÝCúPªlûA!ŽöPT‡L:¶cœ!µLøF­¸Ã"±0 ójzÏw¥î£·é:fp"K#å½ùwˆ‹ÎY€BÄ]cÑÆ·Ë¨3ÍÄf$“ ãU~ÖôÄÄ^:!a·»„ô^2±²8>#̬ñ6š*ÓÛ<¡¬µ°Çbˆ¦ëmGÝ1*o²§Ër٠ȾèùØo8~뀈è@œ»7ÑiL8íD§1×ÎAuLÕiLö$¥e݇Mu ´ž]œ.-Æ•Ë ¢ƒpМª`¬+hºŸ4çíè?_ñŠÆ‹?_˜ ˆè0U@ü™ôÊFiqŸX C>qa2=öMá…³g¸Š‹%BOê½ÿnÙu¹þÜ"bŽTX­û1…*¤åSdûòE|]†Â)££ô‰®ÂÀ{]D>Å®OøB)‹Ü=¹‡ðÚñ­ôYÄÖ—GËÖp‹à“Q]æà7è†{ õ*á‚|;縕Ð#ï×$x†кÄxïA´u…(!ŸüCÖh#Ž Y;Ÿl}´GXøÓ‡ íP?'ÿŽïSšš1¿-Åû£ÃFã±;ÓÇ6H¨{ƒ;œ$÷ôˆþrȦ9rq;°Ž &­Sû­_ýøÙ~~š7Ì6ؾê1V–õÑ!a(’ br¤ûIEgáChmçÅ¥«íhSFü~@LrÀNRÇõ¬šØ“›xFüÁ`ŠÁ’æñ.”I×ùtèã½»ÜxøT(ÐÝyK–F¦Å¦÷¹ú“% q]»Û;¹¥Cfå¡p;¯Ô™®‚uNÙgé½C¤èQrõ{s ÿû½º%-ûÕÃ&¬*OæÆQ>ö›»B‚ò«=E·½Å9ÀVÀGoÿE'V #ÑnçŒáÅ6VŠ•»Ë £ß¨AåS„Ráô_L^àcðëIí¥ ¢ñæy4„¹þâRlÿ%¢õ§wB$Èö¢gç‚,x9Öb~¾Bе€ŸI )åz´¿549QŠ H „øÙ i‡B„‘CNÉz޵‡Ûs0b{Uq)6!ÅdoQyýqøøÙˆN„„ÛßåÚOGݤ([înbI;ßÖ!{küW›€¾ ´;‰^î‘7ow7‰Qyäóf°®rFë®%N°ø)ƒðàäxWdˆñžôFë gò§ýh{z@èCtEÉùWº[2ú”6ÚÈ=Mi–÷JBëÞ—È´îÝqó¨"ÔJ:t÷FëôÛã4fqžëÑö•8dʽ#†˜ôF‹¯L—ÚúÆU`cžK6¼·Cáâ"ÉׂÀú¡Ö³8²»Je€ÒÛ9UÊ`²„YøÇÍ6œ´¢½¹ÕÍE AûþȹéœG£‰8æ)š+ ªÞ zK±â0ÅíØÒÕÑ>…A[ŠÏ0šûªå‹¼âç¾ Ãåcß%}^¤)fçû<]ÌqJó9®+k§íß?_hÀ“îò21v †xn@5?˜H’ÊÜ(U±b}°@•˜Ä®æ7C@æþsŽ[6n(ó ¶Kñ%F¶Ùý²,%ºDѶmô´õ4æ!Wï×@à¿ærZбµ2•S![mJ IJH#-…R_!Z4ÌñªN3öYs7Ú=*ý0ªù®XþÕ%E‰¢>D¹æë¼ c}½_ŒëóíébT:¾ñ‡Nó-?' ±b‰ÅàWp]?î6_Ð9ðþÙù©ÏVUžR¾©°úóÅÔt©MÐîÁ„ŒÙ$î8ªÞì Ï-³"ƒÚ'Ð(Ø+¿Ò³ ùµF·"{‘w)´Ù%:ŽÆ*Ù¬îqËÔŒúÍë–§H‘íãHðdõöòx†€ØyÍcF>\û+ÿÓxÜÔY®!s›¢¶œ°Ö£ öÂÚ²¡c·lHо¡k Êå¾$”ĉ„Pr@23zfåÅÌ»4ô›úau™ê+µeVUwù!™Ö ãæ¡˜Ä‹v×¹¦;ÚÜ s‘sˆmÄ…E£#+£rwê’!5ÅŽ"WKa@m9]:¼½É!7¤ºcˆ[NäúÊüUúÖ±|¾¤¿H;¿î#:ZAà)]ùú<<bÝZgx€= yx@Á-^Pt«wx€C"<€CŒ€Ïnœ\KèA„£lÇ4ÇàJF¸AÐÐ!¨’:§F ÷zæ•=¢ 1\#¢LׂY®³¹c`âÿù…ÐòÒV¹›?§p+2À§è›ÍE\øþ:OÈ#(ê:„…À«ð5H×1ˆ¸D›‰"` Y+BØÞKsé~ÍàCnùüʹß>N_ NóÚÓWÒoð{ÑcÀE0F,¯}~ƒ%¸÷,hÛ³Üí`k¯Õ‡X€AïÃ…Óð å4¯½ãÏ3ùìBÊ0LûŒ©¤þ|¹C2>DgWh\^MºÂU*^mӑʤ 5–}§ÐyØ–ó0çâ9ŽyÀе6ä K˜­EîáP7.êsøèJUÖ(²‰#GÙ ð´méa÷‘—ÆÈ öòµ›ž¸¶ãÖvwø¬¿+ó5ʰ齀½4çÞ¹·îõj²çÃõÄ~U0é}н4ƒ¸øK;£¼ß…7§s—\ç:ÅÅ}€øÊOˆÍ×ÚÆf^{å…Ú¶cåLæ+‡á;ß{i¬Hªæåµk—^K—ãÆ>æE×É‹5mv{/Þ!{©Iôµo‹°ƒî#–e9~úq·“,ìr{RR¹ÚØkHòιyoGq§®Ó¥W8«ÏÜpçë “û~?%žàÌôX_éSù2åša¯”W êvÛe…œ¯üsŽ"²©Ž“þ|mÈRÜÁ !ÐÈÆdÖCØ"× ›Ÿ9ß:Mº_WÑhzöj#”wvQlÞ¶½ö¯YÅrOß9Èÿ/&èÎ}¯FÅìlâÊ"®þáæ¸=¡Š§>ÍyaïÍï½Ê»$/Oߦý‰ÛG Áoo|y6]ዸÝäg‹…B|’ûÒ¿¾Þù¸‡¬X'Ë‹¸¡ò–ñ Ÿ÷ð¦XWUáß.:ÀDžô¼‹ÛÞù‘%Û_‚–ßënžçヿÒïûFÿ8‡‹Ôw³uŽuýŽ•zîÑ£|Ϋ8zÙab?;-5±ßCx*nÚˆ’µ~Hí ÔÊoÀ=8.œQß ~Òsݰ$€Ž¨þ|19ë}¢®€Ä·ãW¾ ttâ|Ž‘c‚H®`ßò6Èç%L˜TœVÿùÚ=aúÞ‚lZ}€šÒ0V]8¨‚Úà,×5jÄ6©n”óœ 5*Ð6­¶våø;³Á2ƒÐj3>·¹iuk1Ū¬›lÁä$×0JϯO}X>Ð;ä:(–åEÔ«—ƒùOp1·¸®éúÈ{K´qÛÿÌjÕ†P¨÷`è"†€6È2 6áªÈ·éü’ ]~d¯>/ÇguŠ¡KÒ«ýȇ‰,ûdA›òjoÌ3æz ˜Ç¥7y­µ[ ÎàþÝb‘\žCEàüuðþ=m=FbÉÀ¡fe15ï¯À'³ÅhðùR](:ÚÙô(L¸G\¬>õ¬{ßéÕÞs Axµ[•[‰^íy‘ødóNecɞĊEeÃCa¦óÂ@«mæÆ>νPrWMu3IŒáÖ~´=ð)@KÕ<}›ƒ 0ì$9ÁVPe'Öö µuÀigßXV¸=;Ü¢ |RRE|cîç†[{\¶E·öçmôCÍÄ< |BYa¡ªÊ#raDUsH:=ð©³]p×fiu\Õ˜>Ù[&T=‡`7œ!ÍM<Ö¡ÝÍ÷Ž|½˜d£ûÁJÂorQ|[ÙgZÿGl¿ø‚Œtw9}äÉ è’\Џ9 ãÎ (Nµaüók/ÂÞ›6H¤ß¬ú o}£GsÜzÚzçù0*£eœA}·vò((ƶ‚‹—Ú(±9G{ÆO\_E3œ±”ï%¾?æ!n,æé÷Ú—âÿÚ«Ý]üºÐRîûâKl)Ëkï¹8ÏçQkZi~rÄAl™*‘lå¿þØr !â•fPç°QkKÌ—xp[H[.·´f>Ëœçã#rvÞ³è.D—G˨»ÈÍÈŽ QäÚ_i%æ y&æHyG«yèÚëTßÿ=·iïÛ(iHÛ|í9>ObÓÑ¿æÂI– ç+€–F,>ÿ÷×”g€5X¬‚£2f/iT€Ÿd+¦BW+ýfCÞ‡anœ·‘ÿ×§Ü8•¡j¯Çœ†,@QAÈ^#ñZfÕ]úôZ$ht? ÿ€ý+ä_¯_ wì2Ï‚T7ÄvYXka-ˆ \fž(™±Oü<ò,–âg«I!5C³xÊýøÚÛZÿæÂ‹„/y!Ý}x‘fÔ “¾¨Hð”o$xz´2jIe9cF¹Õöí…ÁҙϽ3è?“u‹iáÒùßÂŽÌ>%ÉQ¬1¼þÕ.L@N‹È1䯷ð^aû Û–Ì)Jög Áسâ?UÞ€[å‹8öîÇ]T@ÆÅR6BR4A(!™]¯Ár È/‘—Ü ”~€êÅg3“š²]Ù.óhÓÂþ­A…E£(»-³ Z;«‚ !ØBJ6 ‰h»˜€v«ÍF^££î2Môî®|R6¥w{}–3Â4Ê-ÉÓ*Šïhª+™GÔGô¨XÚ¡3X<¸[àÆåeŽÊ2yÈÑ´1Íy–Ñ2d¶mߌì'r fZßPÂÏ„a<¤’9 DÔXÎ5l×Tà`þ[ßG©)-+uå¹RJ¢© ÇÃ)”˜"ßrhWH{(ºå èŒõK¸Ìëi|)ÌQj÷‰Gö‡„Çšôr˜Œž-¬½ªÞ|”à¹"X^ZÑ<æ¥×[Ur€NÜ1928¸ûÙtŒ(ö›ÎOõx¤Æ‹.ÿEææRÄf0§µÝvišËÉŽ„Iiÿ|1uµðÐôZÈŒx@&RƒdF¾þÐÚî@‰®ž¨™ƒíÆ¿÷é΢|:Ó1¤jQg–rz´U“aCŠ÷XMO\¢QgDìÊ5tñ] ÞLc˜”¿×(ÃïÂ+I½m‘ñù s‹VäA„¾å ,hyȾ dŽêÊEˆ!1‡øú~ti*ฆj7Èótq/Ú2k¢[1Î)«,À(q”üˆ9ÅïÓÆ ÈŠü¸–ˆƒ—†mDàoÀBîÇ’Acx6 ÂærØ?zÜÅ¿¹U¢ö‚½‚žÅVwGŽÝ]a—PÛ† L†ím¾ÝƒÙ?3ëæ1ß=q°‘ç®âyøå3§Tq?‰éQÁ1¬W)ØÖêyà`ckD G`jjQD•$ȧ“™Jël7Öäʵ[d…TEHëìR»´À\Ì^Ò«KH—g~“œJÎ.Ëœºù6ä‘îE4²D°4üÖîùÙž]£"+¦Aîm 'st0 äó'0±v§è¬]eíŒÊ¹†tk–D Ddw—½Üy&[l['SeÎȰ¾»dæò/I«L²MFÍõ"ÈXWxÐ ˜b ó‚£bm½=ÓEWîc#Q5ËÍ|²Q)F:ÊÙkHÒ¶,~W!lª! š”x‡ÁÞ9’4}d̪£öƒŒuV ÚÑ)Zê‡Äšv¶SâtÉÁ·žíNUñá1²<5¯F•r!ñÔ¼ªEsF”÷œ ¶3TZïOþ’p=È…ÚÛ§=™ö•2T:á~rËÃEýV%¹¬QmIx2c$TÀÙÙ™³í6ÿäoé8íÅJ#†Ôw†xšß•,”›«,ïÍaz‘ŒÍƒÚ)—ƒíªR—Un•9†È¢W !'?aý]`%Eº›JPïæR÷¹¥ÿiÝÙ#ÛœVU¢h‚¡"†¸[˜­ï„<õs¸Îuæìf‚XÙ{dñ.Lè–½¥9´Y1W-„µQÃ÷0(ÙO@?Ç0\ÒŸc<çòÙñ‘áXç|-~ÌW¾Ü¦¬½ó ‰>Wd~8~&ȱÌÎÀœ…¶E::iŠ¿!ÿnaUóldÓ1ÍDœ2Û,[)5¼®©çŒÀ2ó?ÊÕÁãβh{›“¿7ĮȺŒ‹”7¶R"} ½>Iãïà™.ÞÛô±º{0Ù¡ÿ¾1DùŸ’ßµ§ ‡=Í1ÚÇ*âëô!|ô‘Ø©˜Dì¥&{ý8Œë{C˜ÅŸ~J°Ôy™k8Õð7ît”8bSó:2õSÏ2êvúvæOÙí½0AL­^ú1Ôæ}EñŒß{Ƣϱ§Éh®}>S‰ç«B€üï™þ¨ñsV:?À¨ó+Kud'É'y´e8ÄêCÄNè+±Y1ßMÍ26ûqŸMt–t!í‡É|ð…ÙO¾Òeû,º´¥ZÝ*ÇùøUóõœ?ãÄ“ûúgYa˜ÞFâ¦ü»Ç‰²Q¥òxþèÇÅÿ±¥äfZ­ñ@n¦Ä*÷C/³œm9çW?‰éGŽa›Ç0ÏùüM=8u±ÜÝgÐÉLŸÄõ3f3îÍmRólÐ9òþÕù­ÏtEæGÓP¼æLÖï_–ïúo©ò AÙú#¹ÞúÛ/”kªÑ¾GUN,‡c+qk¦*²P¸Í(­CUa²‹ìõy‹ò˜Ð Æ6ŲÁÝ —¨kÚŤNÂLÌΉŠ<³$%˜cÉ?|wtzÃ)* ‘ÁloúD#ÔÕ‹å”!ZÂ6VÃÈi‘TrL  •¨0&Ó‚˜O†k ‚âžT* ädkιÃ`Ý„‹;KºS—àí²³»9[°­•WعÈxlY3š»BóÍQÆÀ'®Ÿš¼·;ò½7Ħu3%ãÞ´Q«Ø’YÀå©Ó¼¼TìFŽfˆõE¿¬ÃÃmVíÝÌ ‹帪±ú €ýʨr€÷/°ïõ}LB…n|Ž\X,¢z^ ·•暨´÷c–ÿ°Ùß÷UH #‡R¥äÚ ¬:iÆ|nWaøý‹ªwå  7HþWä7 .³¯àxžo‹ú¼p™N…3óÁ¹pAöש Àµ!{>ø7äßN‡!aúÌùߢO3?¦ß…µ§8·¦ätǹÈÏIU…?trÇoüä[eŠüT?ÖAùl ÇÁ=õ7ºO™cáòþ;î½pæ›~,ÜA¾ü™S¤ßú'{¶.‡ËÒ Cþíº˜ÒȼMeuAäçqÂÌY)tä0bÎû:FÞ¿:>õ™šW:Á1)ÿŸ¯`Ä",ÄÆêe0*„k³À§¥‹5Þ§ÒÄóMÉXƒ0‚§Ð.<£môMÍoI´©=XK<«…v~Cʹ"o ›(l*…%J `rænGé'p¢³M/ñ’9¯ñ!p{ÉÈjÇIÓi9ân†‡q¼¢d×^)5¼T%Õ壤f#ÃG_¡ƒ‹mOZ`uF+µgP"˜{ÍÔ³m•Ì HRú1}«,_ ­ƒ9‰Æ,q¼ÜʯZ(Hs1á^Xå-µ¹`t°¦-ÃZ¡qàÀÊ®"h;»8RhV-K$ø¹äYŽHVU8 n¶±áöIéhƒ.…ì»مĘš&O !IS5ãá&ÊÕ¾0µy]ÍË`÷éö½ã¿¹»:2ß¼šâD Aª*™í,¥íu‚Pǹ¸EV¬fÑeÊÝU˜üÇ spˆø±{±ø¬à©V‹J`ÙMÞ>¥f)òY´ÛÕ³e° ªÑ#±êz.D»Õƒ=€kõ¢0ü4X¹¬”@ møVZ…u7à%%9‘ª mÈ­†!°ÁlŸ‡Dj“æ¾êY«ö£S"€ÉyYP6×hîâûÌ8¨²)·ËÅyõ1àr;'dèÐRÈÅETêèÄÚS'„Æwÿ:¿þ{ßtÓ8†Ó#Û]°oS$Ïщ@‰èC&éH¼ÌÝÏ ^MíD”@)6!ƒÁCŸ ‹èH0&í$Þ ;¶ã¹Ô¿%æ„ZÔÞÇ&iV}Ï ¤>ã܉ûG@¬Öh+9÷¯)@wÿ Î_U`Á³KCÊ9Œ"ìe«‚ñ QŒ7ʉh:PMÛgFyÕs¡Ÿ9Vb¾Ý– b§úóå…ãŸÈ/†êR¥¢×‹QYp<˜ÄÐfà•'z‚•ã¥ì´+Ã#ºBÚ|ùbiz̲›´HÕc¦a¦€ Ê{ï`…'èÒ }? ©*fB?*ª¯(+26¶ÓXWW.ó$‹;‚BTÓVÖ¢ ‰MTå{ƒïezõWdR?v¢ÁZÓ†º*‘¬ägs²Œ —½ ¨pm€)®%/wåz¿ÝAh8~GB«Aÿ~ðD)€ª)³__»Ãd i­r%¡FðD|ò8¯¤¤ûª±²ÏûeäGb!™™%š›×¢ŠSh¬(L@²u8gTgïrÖÙ˜F®²3×Õ¢Íã!‹¿{P¨žUQ)Z†v¯‹Lò¼+šc¦«”3‘ôúº|e¾°¿‰ `Ï*KSnÀ»ägCdqS¢×s £“*?C÷¨sî¶å*ÿY áë9Ð_Ý#p3œ²ÿ|m hWaðAƒûƒã•Þ«’µW¯ú,sxxúc#TFm9y·õèQ C“_É’-4 eܲ}ù"¾.ÔOí2ü9ö7’¿Ë=Di¤oÒIÇ_I:ü¸Vï›áCø~í¯´c{ë9ÇçQÈï!@ö…¢Ã (F¨7ZŒƒQ8³¬í¸ÿšPÍÊ_ŒÅ-Š¡Â›ÜH}GJKÜjóR–nÀÖl/ÐTˆ¥hã3Û“m$º°49Ó;èvç ø‘¹²qÌÉÏBۋȧGá^‘®0| ‡UµîI“7 Ãr=agYi‡À~Ýù ù’@lJçTÝ‘áæ[åÊt<.a©MZ &?ÁäuºÜ5ÝúÜôEwÑŤLÂ*’ƒÈ¥pOŸâµèŒ±P†û*y[7×êlí.9> ÿäîÜP‚åEþ'âP“Æ \eò1ÚŠ€ç‹*›­Ïcfëó¦dwâ6´‚­ô Ç ¯q&·íûqDíÏìréå}F·ÖS@¿ìu ²~_zQ¿ u{Î º’)V‹ÆBkR#QÝ ÜiÞá´&ªf…«[Z±%¢*jcþã8Wá”Ë6ƒƒkñtG–TO¸¢ûˆI"õíÑöü‰CùŽÅf]ÿ 9H™ô!E‚¬NVªÍ·Þ:u.Gç7„–&n)o¼ï”Š%n–ÚË·`°Œëý}"+2ñqÓUØ©ßÒU&z?îÕó~|ÎΕ% ²`ퟯ ‰»hYÖ ©ø1[òsퟴ!ô-;!òþYz¤@ËŠ–…¿ø„G–PŸhú°$ië Š–âÍu3“†¾˜AÇt÷-ðŸ= í€`.0ÊyqÖæ¤:a$²½‰y®F 9g0W¸ßG—½IJÒú2rüÌÀ!<¶soò9Û­‡ì©Ø6$Q[oõË¡‹ƒé$]ŠA䢒ž}G}øxÜCiÇÁ²"ô©,ØÅ:ôÈÔR)ï"ëÜtœÉbî•1Y6ÑÉÔËñEõ¦ëT¿O€ÉchЧ„§öhR'Qœ6#Ûh²–ÒÁßÚH£×cíÀ›ä ­ {!çΠmf©[RÑ!á’‰Œa¿!–’X}#÷3]Hh€,Δ0Ú ;ðý€@c<¥ÑrYLé/i/Æ¡…"aðˆæ–Bõò!†^\}?;À¢Þƒ§‘Ô?R ޵™„ÁœpDņ0kìâ5ʼnæµ×þ¨H"7þÔÆ D.:¢6QfœYÒÍÓ¬kŠ{„j¨àOÖšG—šZ^E•TÓGµw|ƒyUÞoš¼³ î¦X½€dêëÇV’ä¥[Òy |V]¨œµŠpµ&ï˜ÁbÕPÚµ}B§ßSûw»vfUß?ܽ¬3Yºšz… D¤¾8ÒCÚ£¸×£=Ó#d¥eŸ#¸´Õud©;Žáj.U>žº‘9¬ƒ Ò „¶x±m „vD7‡ðGDsXž¹£Ž¥PMX¬õ|Ç|ŸI¡*ßOJKÜ`´—C~ÙÔÆ¤‹gYa‰ Þ sèý³ócÿÖWú›-ÎÊþ=mq¥?mq¨úwÚâJ·Å•þ´Å•þ°Å•þË=d‹+ýi‹+ýÝWú›-Îôã§-®´w[\iO[\iO[\io¶¸Ò¶¸RŸ¶¸RÙâJ}·Å•ú´Å•ú´Å•úËsÍa{³NÏö›-ζña‹3ËÔi‹³}|³Å¥7[\z³Å¥w[\zØâÒ›-.ý¶Å¥7[\zÚâJ~·ÅÙ2Þlq%?mq%?mq0朶8Ìï´Åà´Å©}˜y¢mqÚ»m‹³‘ž¶¸’Ÿ¶8 ã9mq6ò›-Î j§-®”§-Îþ}ÚâJy³ÅÙOO[\©o¶¸Rßmq¥¾Ùâìú¶8ݹÃWêÓg¯âa‹³2“[œ¹~¶8 „ÃWú/[œ9hŸ¶8+½xÚâÔ>i¼ÙâÊxÚâ¬ý°Å•ñ´Å•qØâJÿ»-NJë2ovx«"O¶Á3’¥«,©ÓG˜XŒ…9¢e‰tØš{複¥«¨4KÉ2ly Ñ è Çñ›¤mçòeí/=ú·b”d®b3*«I« Hv—¦F#‹® ‰ÇÀ¿!ÿn:“¥°ìLUØL¦Ü}U~V¬ZÒÔ1•p×´ ü)¼ª*× ‹tV[7ª¸»¦¹p…öv²Rö9}»Aü½°L(Ï1ÊË%v ·¦*PãéÓ[³²Üm¡:ÕåÌ­Ø.4 rÂ5|5k·\ÝW3 {b]4ô7dßÕª|¦Ç©²X¸C¸¾F–¡³ä¶…ÑàuË[³Ê×Ò®açÆv]eæçôv”kßzkÖ¥=Råu ©æ‰ÛPRÚ^raÖ5°³*=ýëŠ|[ÒÝ[óØ6ykÆúk¸kÚa´ ½!Uâ&ÉEuÞü »1ùë¾›¬fy¶µþ `êA~ú°U^Æœ“èTZÄ$»òsú:v%Ç®ÒÄ}~W¬âŽ{ôŸ™³á?[NÄàNðû YÎ…Aì–éF“÷qóšŠè?¿~¦Z:GjéÑuu_óF’qB:»t·gWq‚û]·ºš°‚Ÿ+ý¬/¥Œcղĭ×÷?"ë€D††ghξ™CÝÐúP!žI4ïælkÁ£ÜŒÂ+ä‚H£V;ðÍ0¾²!¹m3=¦ëòvk¶¢î„¾aÁ“ ž¼ËåAÇóý€¸5;~$/%ʼnb[Ï„fŠÖ¤Fz€ä…p’,'d<»ôRÁ˜Z¸ïæ\·ý1Éž}ƒºŽ½hKœi–A{ÉÂThÐÞM7hrå"{£æ´TÙ³Œ.ƒö­ÛÜdоá“rá‰.6Zµ¹p˜†£G–B…n1 uÍ¢î(H ,yâ®UE8>o#¿ ‘A $ºR(,Ô€Âíl~:‰“¤AÛN§uWŇB1¡6ÏI½‡—‘*Í Ú·A ƒ¶ò´ÙD¼8¸Væâƒ%¿Ô0hke¾°Ï¯³Ò_Z´kˆ€nyGûW9¼ tvaÐöFèüÒà?sÐû@«ADW¥m‡Èi ÏMÆšpU±ûZevÈYõZ ÒN?š,ÖÌzèmš>íQÔ…ñsåý€›´»šD—Lêsdûòe|]ŠÌÅ>B‘9YŸOÍ›æhŸe–½Úבâí+õ“ù°cß«ýßLŸÅÞ~ÎrÊ6,dÉ Ý¨í€$£¶Ê±•$£¶’ËwXµõÙŒ|œN>..Ÿ?µ¹=Ú8ˆq‘j@n$Ö^¾Ùx‡Ù¿vk3\n#6 ×Ù9/üGˆò瘓_5ÎõŠÜ}ˆŒÏš'R–ÚÖNL+£Y{B¨­» íst‘Ô…LhöÉ9¸]{êÔ–v¼©+¢Ã®½!nמ¡j(HqlßáU¢]{²Ô‚Q;™µ§^D¢Y{М#Ä•USصóðE—ߤYÛ™¢fí¾oš²w›¦ìkƒõžã²ºÎ,‰4Ê”í ®&ÝðñÜIë–ì5›®`›¼ £ Ï7žšÒ&[ö¨hɾë~>qßÿ‹ÜÀÊ`ŠK,7dA~RKÿ|ù¯6ä×@‘ø1øçüÀr'L&Ls.™ ?ÒÁ®€„a H 9¡³Cc¢ÏÊœ“Rô@ŸAUìÙ¦’ö:A2l3¥M½©m‡ys4Ï,V™Ö ,DgÊc[ò ÕÚ5Å£yö·ÊòëYä+12:8Ê-%—µYVK3aÕT¿¼Ž5ݶÂvñQ)gP§I+Í‚JTΡ£m³ã¬À2ƒh"Œ†Œ4 ©)°Íª ö7¢Ê³#-çAÂÌ׃)ÐÿÀ,{®1šÕs&#¦îAÎuA`‚ö|HgXUoydˆU…o­Žª %Ð¥óu‰æuî’÷¨HŽ·¹rh¹lׇŸ½`áCK¨™gmè ÕþŽõ;„;2 þ™S×ôì…WÄ.—–o¢Æê!&‡K"iÍæ¾ø æÛ׌¬ G¸Ù©Ô³iƯëû„tí\ÌŒ]ygí1Ç›Ûk>!eý`š/šjŸ i#*#ŸØúŽ• ð9æ¥RdG°¼Ì ü8÷%SN‘'ÇnKWž þ¨‘#Áí¶Å5³Ùk$M8+ûZÜ›µQ`MÕÔü ‡úÚÏ…~rYN¦Í—PõÚ£k¬ÒçŠA6ülßÌ-‚ûÀ„K m`0û¦±Ò浕|VP[á_®¢s;Q»¯ÉAÅß_ž²Ú!ÜMpÅt°t¿B{ˆE>p”ÚD»¡%ÏÊê=øN˜Þœm\_ èÑ¥±T¦Í‹X”©jÉLà~Ë(P˜ÕÖ@ 9£6~°h)ÖÚ£ÉF~‘£CÑ'àrc›Uˆëå¹Ù˜ŠTÑÑÀ&‘ÙV“HY. WŒf¬fP”Á:[@*]I°em‡S¢’4g½y|5³X{ðî¢rŸÚÜ pO‚0ovÓ¨Xj¥Ä¦E"d©¶çN%c3Úu€¤z;¡ºí¸“íÄC—|‹”B•=P¡jÈûåíµs%`ÀÅ”?Üø<Ž\ì©ö Á–^Ø„µ˜¿)1¿G9Ù¹à'LµŠ“Ël3›ùn+¿l@ÌËà}m4sȵ†s¦ßr(9ÆœzÎ(êŠ V{x%¡¶wv°ÍˆUe ³IÈ;­19l¹x ši S2QƇ=ý[ 0EKÁ@KbLºŒÐú;ýöw†^úk Á¢-õÀ¤[jò“´'Ö˜ |éÖy 0>¶•¢œ¼Žwéä§åœxYMÂCWIÄ›ÊâtÚ2D2îà"7ÿ‰_;ÆŒvÊÛv-=+z–lQ› >­£ê+ƒ/¿ ; ]Ž*78³ EÚ½£ܼª‘2Þ7«z¡-ÇôRÔ7j顆 €žº£ý­]›§/Ÿ~gƒr;ÊßWÚæš¨gCìM²už\§j,*v„OŠ­£ ÷&ižM'Jú ‰ŽH#j¡‘ÔÂÑ’5¾ ?¡¦KqBŠœ‡ÇØÈªp¥Ñ|øˆ‡aëÚà ¦Ùî‰þŽ L¬ìžà^8“ ]ñÄáGc·µswœm¬މv^J%9ä³]\=t@T`èöeCW¨ü`A þ$鉠ç^@‘݃} T´®“vÙöõk%.m¾Ö¨/0uÇYàq·W !nJntƒÀƒW"$å4d<Ï!ÊS¸…pQZæ‹wZ†ýdIF®ÃŸÏf‰ÔEø=Ãí ÊYz dÆ•Ÿ¸ío`ù#GP3ÑŒ‡†š±ý˃ŸÇù5޼K†O¯hdx "—”rò¸@ÈÐÆLîs ¿…Z#œÝèük›ÍÛÉ1#&êL ¯Óß iYMšm‹]¬·Ø …Ëüø™©y´ÍZ!_w]ÑöÌÍi]ÊÆâ ŽΪz”/âD]›Š»¼)Ûr(3÷‹*Ì>Æö± ›T-Îo°¼°Ìÿ%Kt¾™Ùº‹/X âövïá†ã E‚þÁ“Ž<Ë‘Âô`Y”~#&òlîWydù?¹€ÎøÖÝ¡R™ ÌÅoøÔ0=é<…1ÉÇ*X¥¹å}þ…×€e•ݽ’ÅN2C:?G?}œ¡HÃò{°e¢›QÔ\»(AWÞ¦8¢ûèAo ×å½EŠ"÷èÿ¥÷F>ò±;«„"wXý¿… ¹ØG%rÄÃgÒÆ—»úP2k‘Zc”>ì/†O/¦4 =Ö ¨ƒÑåkQ……Ôb«ƒ…GŽû›ƒxò_’”Á¹=¼ tvèPIÛ¼sÜŸÈxï…òg{Mö÷l,òÿ£l̦lü߯þ'ÊE«ºø¢%E&ÿ|µ5pØþ‰v©4>¿.¥~±!oƒ@­ø6ìÿü Tlˆfx Ýé–ðú¸ù/4LÜT¡ ÂšvFE¾}¯§ß2ÓüÈ(`C6_§gM3xûûa&X‡¼F,DÕ™`ÆÚvšÖ¦N©eºlÜZ4Mv)º‘×0§î÷× 1/k£tjª¬9wiø±C÷ÖÔß G6”äØíë ‘ž]¬F5_;n‡‡ª2ð̱C¶Àñ¢ºKg¡ª¦P k3O¶õ°HL¬XMÞ?E4ƒ˜än³BáÎ4¶éS‰;cåOô˜0Y‘š<~À½@e'AboÈÁÚÞßeí„+®`@vv)~¢õ>ÚÎéoH†2Cà›Œ´&Î/K«€¯òïF2mNYoÁp¦µ‘vÜ\j—E½N®Ïgð¦’koY Êæ6lgÒ,^Ûš(Õ³ÈñûýÄÓ43áФû×;6{VGˆ,íâíVè¼€_Ã|þ³0sWù©ŠCšyÝ[™@kc…µ6ŒbT¾µÂdX¥Ó¡ÄÚ¨(ÔY~ðl]í 1å$‡HĦ.kòíŽXU?q¼2±µŒ@Û’JØÄù’<ö bKÀZÇâ˜xqCXÃÝ©^c0YRaykfÝ!S´[»t-ë  Á7ëçë׎ÚɰʚÝå†Lƒ;ìã²ÿ<<ÖŸ**öá0 ÖÚÜCf»ÄÁÝØ­=¡èŒ ‰aGÇÊ ]°TnÁ6`ô çŠ!n,¿±ˆ^÷’;­•Æœ^?µ¶©~Kgü³·¯¢úÂßG— š¦XHk› _Åý+ˆ9¯Œâ7ïû*@aŠ/Ý›<TÓ!à‡€Á¦édòLì±=Ñ6 úhg?ꀘ'œ§)ëÎ&Éœh²²&/S`ãê˜vA£©_àÎSÅ‚ûY‹¨Ï;G“G bLÞª ª˜ÞÔäP ¯•S¨•û˜+?ˆ"w¶÷D€ Ô¹ AŸ¦uÐÓÚ IÆ÷ÍD6?œWž¢I¼û­{S¯ÐXæè°XoKi˜šRM‚œ ˆ^XâN 6‘œ!0µëÙNÂ@an´»®Èô!À·)ꩼv¸¸Kˆ±ÇïÏü“ÐÝýí@·Þœb< ‚2VŽ-ÖÎ@(Lô¤°¹kL«tGãÁw´ë¾)Öôk…¥[Ú¼»òæáïÔçîŸg¢Íª¸Œ¦¼€¤Ì¶F4ZvÖn¥`´7Ët´Ö®ÚKF a“ý²ÛÓ¢àlmrþÌ+3ZáNÇTî˜ß¯o®Ü<å¸ÚøòxbD¬ª££æÅ}pé@†DCÜ•žIh’b)· iñî5¬é ß}ƉLÌuâD¦½;qâ’”â8qJ„ œ8õ(7RœÂ0ŽÕ¦°…Þ`uJÇŠ—Az¿Ï”[ý÷LPs¢ÅÁºB‹¯:š/žmG‹q´èR*Ñ"&Azëxß]Vôi9V{„1‚Ó-bE[9”#Eé).½8GŠ8’" 2|¥ÛFŠ»íHÑ!ɲX­UX±ÉGèDŠ6‡éihl婜je§éÆX±“]¬ø£ñ%;Z´lÝbš«*4o¬hãuXƒÅq´ØBôà ]Äm£Å%¥ãE\ ÊîŽö+0oaÅiÊxôµÂk °=1£sND¸âå@ŒÑÔî¡}m¼8XUxp÷Z,§ìhqÐ>·ñâ`ÕÄÀ‹X—D$G‹]ܹ£EL®UV;0#mãÅÚ¤\^<Úë&Örˆ#Ʀ}ãE¦?:cµÂWã• ï  u–´É÷*þ>EK…¡ºN¼¸Äw/âyÔ²Ñâå}D‹- 54Å÷µ–¥3iŠ„h*ó´åH+‹ñ#ßFáo°W¡[P=¢C·ÐT£³³J˜Æ¡Ôæ ·q>*ÌÔnlk eîomÝ ÖÒÀÙD[ä¾-èÚ<»¹2ââœÍF €fJ·EƒÔþÜn¨OÕ×>µ¶Eqh%eáírèzrŽRH:NÀìíñ£"öì„*°Úryl‹ -‚!ç@E»µ­/Ô¥=[•¤ËFd¼é°UÀo<Á˪0\SðvƯ˜òC{Сòî>ý,á¿m6÷7ÀÂk£¨³ Ì©xá¢øôG;Ý>‚”‘0<œ`+Ùר63BÓ s[Ë’ç­KwÈ„FÖtÅ9jHoò È}Щ>/’Œ Ú^”­õ¼)†r¥ŽY)=3i¥,Taä4¤` 8H¦±^g¸vƒ5“3ë£à¼Ü¦`Ó«mSñÎ$·ÍJz"è‚ÚïBl¦´¡’Á¤íµTꚦ1‚Ö¦v—Qjeø>à>P”Œ”ɺ¯ˆiºá-j Þļ±_63l[›{Ë G.ƒ‚S\âšô*Í….Ô~A$Êb4Ù–s‡r䲽̡Ï׿š¹Ó)SwY‡¾Ù­—`j‡’ˆKÌtÙÄe×í"kø ¡ºÉîR”0mq¡a¦€h¯Œ©D»°óön¹¾JnøB$ÞÝf±Æ?°­¿ß݇¸ÉÉš^Mé_èõl˵lƒˆášxQ)Qk÷$¹ƒìaÏ¡¡A¥ç8䆾B¦ÀM/sÿ-IÙ@.~Êà¯e Wöd\ã^˜ó"Úpµ•öírÐg49É(Û°™hr«#íêY»Ü‡Ö©³t6Ú•‚¢9·‚ý„Û šöbºó§UIâ­W@®†¨Þ||´ë*zRúÖ{ÜÓÿ[»K@‚C@ƒ±‹÷¦uýd>Èîõ}Ú?íd›0ˆËÅ"qfu ɺۘ›˜H^ŠH.ªƒŽÅCP5ÊõR Ù ÎÁ†åãmÎ`¤èŒCˆ´5Ýéò¼¹…|°Ä^Ü<4S^ΈZ@³8ø·ƒÿx9̯#o,ôº#‹z‡>¤¡òë1òæ$ €$ígàCÚÉÏ#I÷Æ·ðj¦­¼Æf8…Ôcq\©ß[âçõPK*Ut¨%;˜ßk#²Ûy&IßðÝo™â¤“´ñ–«€)YØGÕ˜¼>)Iß6gH-G aÚu’¶·ä£—# õQüôÌ8t’ƒÞÐ['9²¸Äï£-ñ; ÒI×N¹N^ÿ”{%~Cv08(oª|“58t’^» ƒõ\üîÒl¥dgÅZ—¾qág%Ëñ©0ä  ü:C\”R²»®‡Ò7¦á†>ˆß}“~‰ß¡Ÿ¡–쌂ݶB;×­¦äA|Ø û-Q!ÅAßË¿ÁÇ;Rˆð¾G’Ê[â÷Ñ&Ws7Õ”;ð‘DgC·ÏÊøj¸ÍªÈi†,ÜÇÁ¿K·•eŽ!¼/YËÄÝv–ûuùûYštà-έðZ›¸Ú§ÔÂ’À6ø7D¸‘ÔqÀí›ÒJ·Yɦ<^QáHR 8Ÿ3Ò‰<­9©ß|Su=Dð‘¥Ù‘ó/—ÀßpÞ' ü¿®üeÿûïqºéܲ*Öi~Bôcà'¥Vy øo6ä}x ½¼]…þ{¢)ïżæ4Ç¥L#ä' U}r£_mȯ¸˜÷Á?ES¶(G½Àéý¡µÃ2 õ|´h>‰²î9¯/–µÏRœßú¹‰Ç°k,Vt‡±÷hËH+Ã{wqsêk# ðMkƒnüMõl ³f¥gÈ•ÛÅøfýØñI6óš4Hâð ntj*ݘQÛŠš1–Þ5ˆmÚæµo¾ÒëhR1òý€”N|T­2öâÎE^ò_fhRáfó ´6ë~‡|1EÚƒ‘àK™ã$ÉIäÿ‡fa܅Ƥô¬€_þ‚ÈRAl6^e©Ÿ ÐU;—Ò©í2 77…`eñø]Xáw›{tm¥Ÿå:CaØÌ“Ùhù8šêo•Kçê`K¾{´¿­ŸKƒ#¹•ñÍÓwdò>0äË·èšr«"^EqÅi3Ð…gò¸¦r((~¾*ÚÐÍe† 6UÉQ“f¶¥€¿&¹Ò¤Ü€‰ïÉ\XX!lÍóÞ6ä9ÛMú±? ðM¥ï2\ÙTLÎvŠêÊÃ¥Å/˜X_B¶æ¬ jí‹:ôDU?ë›§9¡e¤:YJЮ4‹D›j€Š 0Çnð gsîÞ@™ôLèô#·Û½hì?Ò-Ó"ÔÉŽ:Ž`gˆ…ê}X›§‹(ðèQœØèßTPCÌì?Tø 6ädÈǘ<>Bßþ•|PÇÊzÌp7ød[{iú{îf>XŒÁk"êF.÷xÔhËÒ2ï£G^âÚPD¥·DˆÎW؎η° }l“Œ¥ìVÏö˜‚áÞ­%ÀD<]ig©äg;ÿ !5Þ2”Ì  òF0No·ømA–­V5(Ù;´u¿úô楃nkw`v®¬¤·°`ò¯+ìiž’ÂHܵßëÐGªS[ÿÜÏÏÖ%ÊoHýÇ-B¸2!K _†m Q­mðHol)ŸMåÞÝ ¯4®8e™Mˆnq]CyEÌfü͵»,rvCFÔ¥­îçíY›!ÚpÐÎ t@VÜÖ÷éà0háõ5s(­yºœ<¥Ô@Ø ­C··­˜4šshþ Lñĉ@ÐÀ27{âòÞáM&ÿÆ~Çõm2ÙénQ>š¤¨òc¢"×àV=+ØK§9ËFžEN혨átL‰¹7›HÓ¥èy8i uoø«÷^~6ÄÞ¨+,ØþwšŒËÆ“•/hÐæÃ7í²eSö¦„Ãî¿È]åkžbÅÚ…+â‚ÙæQ!1öÑß³ÑpÜQ1̣Ŧݜ缹¯-i)t!<·>²!ý³®ÅpÙQN~Ô°2ðswââëIÛ«ÿ9æÃý@8Õ.ñAéãJÑ'Wn¹.¶»ÐdÝëÑV´1Š·Â.b7ëtœ0ù¤ˆjS×n(Á¡‹ÒbœPP$_ú¦Y7ë!=ºK^–ÿOÃ)cïþ4*×i‹lïœÄ;¡²K¸ì³=¾H®¹Áöý¡ù.¡é‘rÆ£"lÕLé·B~ ÄN$Lª MÙöAúŽ`\ñÀïz@ÞÇùŒµýYf(|J)£úëöi¡qXŇÖ4$»XÇ!‹ˆê¦ÐpgˆÈ¿d—£ßGu5`Îúè‚òk6‚ñGvS© aݹ8ÚáM¬¸‡Û³Ð”IHìÝhŠ¶Õ ÁÕ$g°@Š\_ävÝrˆcû´Qz{æ»ÙÉ¡€hSÅï'©®|ŠP‘:¼ea£ÂÌT{BÆSõ@ŠQy›ê:P•ü0žÜ¶šª…4–íĹt‰ ƒmbª)›é?È(GyZ ¾y·4ˆ„ÄÑiƒê9Jµš[ò1TÓêAp2=(†íZ› 4,’äÈêZáíM²TѦÁ\R»ý:Œ·ç¾0@&w ñÜ6p’œOÿÅÓ<ؘä×Ë ¿41ù’ìË(|4wÜ@=*ú6MÙõ.îŒpÒÍ]û?¼½;,9Ð%æç¯h[À\$ߤ+GÀ2$™‚¬’„B·±rô÷·âœAVuÍhv!׸ͨL&$ƒñŽƒï®Ê4µ©\íºKý úý‰Êq-+?¡)ñ<ø(< ºø-Ü‚oÿúHãî©ÊgŒ³{R‡€XN£·×ç<M%ça–½©µ*R¤§[>½ÒŸAX%µ¯¬™UGA j£j®nÐã,yôÀT_ûYy 4TR/ƒTaÌ"»Òãmê6±¡”êƒþs¼VT«ŒÚ•µä&'©9â%o•ŽcmM´¨\ÝnîÉryÅÍÝÃM™„ß@m?òî>†›‚c ñf,󹄒éŽU&!HÐbntlÈ @LJ-õ¾—„SVµÓ@¢C¬œ57U’^ ×ň¼ëßÐäñ7|1FÖ 3»‚½jg{©~+mTˆ€«ab¶&Ä}Sb™²$­¨3)Ãm¾Ušr#/I¸9F?I‡òR 4Œµ³¨7ÕW¹ø!cþ1™T8Vé¢Ò éAU¾åq«hNÆY¢Gµ)Û×~äû+ ÇÐTjð7$P})ó\שj˜~8f”|ÅÉŸÌ[ÊxáÕËa‘4©6vr´“ÂÚORœ ‡Å“ÐF'Öâ@Ëéq»^qÞqªíÐ`È~ÝMŒ aCSw¡’ä0Ù*ÆÕ[<ö‘ÖE•…{å@ V&,<Û>{‡°vÙî"+ž+¾’•®k#“»óaz`µæádñzŸýç Ò¤TќނQ™Â–ïˆ]‰„°¤ÆP jF8×rö¼ß:¿õi<ŸF¨\À* ÌÌ!º[@Æ„FÂíTîÉ0²™•´©è½ [1ëï"p:?ÚÌ(ÛÉYÄ<]QDY'Ç'å,-%¬›œÁ6 ‡[+Äxco{vÛÒE„¯·h<•Pç`q²7!6޽ÁR®4‰Œè’Ñs ~ä~A0ý<¢Û31vÊcøÄ$Tm,3U¤*²CkóÎ.Åï¶X¢€LfÆd ßà-a,NVöÓ<#ÎXÛÝÖΤóì9Š¥õa˜í‘Á\´CéH­½ˆqæN¦)PñÏ,¼=éE†x•mÆa ÓvÔãâá¾tH7ÈPÈ4BÛ‚?™|¢M—&}rWZÞ‰ì1{jS9éie«/O ¿esñ-N ÷WüÁZoM¿n…@z›)Ÿ¯ïÂ,-D&‚mÒØf|T;±ÂX$ÑììQ×S¥ —¡Å•½­¢ëB†ðWná¯QizÆU IÄo U›MŠ‘ºN€´ÉÔU¨Ü$)‚Bã óJ~àU4|%‚®1¸ ‹>¡%*îW•UTÎîÐɳȉ±â¦ÖZnO c¼e“`Oâ÷9‹i 6MœÇu^”wÏ–9Á¡ˆVcgLµ\_¸‡lÞ¡TUÖü±U('¶…‘Ñõ}kÝUzˆ×r0Z>µãk¯“ýlJ”l| d‡;f&Èæ[-Y©n'ç[´?¯®Cþi@&1‹Çà &ûcð­´ÛZéw²­µ¨ÈÙÖZT‡Klkõ*ÀÁ¶ºåÀ&t«/¼aõòÌÁ¶V%Ir¶ÕÔb³l«©·òɵ*³ip­5ï’Ôp{MT]l«¥–” )¶Õ!ÇÐnåeÿ9v¬©èƉ| ïXiÎ0ØV×'l¶µk²­°ôÌͶF;·B¶†Üº‰‘4ÔÛj_#Oœ²êØæ[_÷Çc£có­ÊÄ·ÆÜ7ãjK¡}„›(!ÎÕ¢Jj?9Wè†òÁ¹ÆÎçz´7ç]8ç_ Î5Æ!Î5Æ)Ö5¦²y×7 |>VM×{ð®ÐšÕ“w= âBi– ô0dŒù³^é›NûD˜ƒàº®]ÆÔ½µ13âq`@p’ÿŽóùùã˜qÌ¿1äO>êUg>(®¢‹Ž“Ù”ñÜ0˜ë 94œ_® ‡Ó*¡±!4¥8«Žzyˆ5•~Aþ‰t›—f~¹K:âè"Ñå:'æcbJêw¾&È¥ñ+/SíÔsÐ1 ñ7äŸ&fyÖê8R§ŸâÙ Ñ1P–Êóô(iâqzŽ®÷kçÇþåéI ϰÊmCú'AT™þ›úÃöw³q@ OQ• €XZ(ævK‰œDï%k«Ð9ÛÄ,8puʦ&JCÖFÝÉDÑÆtu`žÔ~P}.™<êö3¦Ü“÷±Ñ£Òý*+ÍsÅë¥#©Än&eÒßLË_ôP4ÿˆðYR!V¹9îäµÅŒÀû<¢àÛ5å*ûC…—4íÔsz}·$ÕM’èUqKŸªÑ g¡”Teµ8Ç~@äU›”ÝÊ1›Ybný¬8û¬Š/·æêç®’ö°¾Ú©ð÷@¬;ôÏ3Ô?SÀ#İà ¤²­ßsãS¢Â=5…ܪ²aehÖ8Ú{‘Âð¾£ FÆWPµÐ½^1U>δä èS@Údu‚X¯D m-Sç m/,œŠ „ÔxÊF©DrïGò£<’ŠŠ—Pº9$Éð* »ÝÄç'"RS­›$KD£çg”jBÁÎ’<7‚ÉÌŒb»N€+ã7„–ï¡Èáß(^ñlCKÃ,R¹iÅ-oSí)’þk(ÑõV ]k‹Ê>Ôµ¶¨’‹‚I¦ÈK:,nŠèTx©x/T}·jhõ£é³¿N•ËÞC’)¿‘ÂáÃàš¿¬ŠmÞce‹8ÖY¶‡tíª w}ÖSnª.% “ðy5:$GôÑv¶«jy¹ •w1h%øc½XÆiV‚QTšÙíÁgfe9¯Ü8¸¡l¨^½µ3 #‹®Ý®ù_t"BÝÎ,]8œŒ³Û‰¼„q’ê©Ë´UÿóŠä¹æŸ€­"ü¿!èËó$ž»qé\h7fg8*5b· ¯¡2+Kê>UŽ"T´³K„"T–YÌöæÍW¼& g¼wu÷Î\´q%‰P¯ûãè8ˆP Ìÿ>õ´5ÿ^UNÑZ‹$Õÿ’j/»•©ùÂÐ!@ž¤ôs¶÷ô ¡ µ»ðTnñ•ªÿ´Šªÿ‹@BäS)[ùÿ2ÿ¿ËU ‹½mPéþUâBïˆkñ™eͶUèþ3½tv½_;?öo•ÿ#ÊÈWÔc n(*ÿ×k‹¥c¡{z¯ûÞ̪闘eë\ŒPvX*;Ÿ½õ´ÈÎäA™bk|$§ÁõqÁZuTS«*Ø)âû6ñï€\Ç–Ž‡˜“LA©¾@ä/â2 èÁ¿Æ†5Å«0º0s…üx"Ê ªBÞ¨ÑVk½á|ØØè©%ö7(B>ŽQÈï5F© óˆ«5æêXvW+BHΛºçAÍ–®¨Ê¡NÁH®¡Nn&ó‹iX¶–EGF!‰ÿºPN…Âux†ä"mkäæõk‡¦Ÿ}ß?báÎKÔEúàLß4÷½ôCÿì5ÎÕvHZ¡ÕmÔNäÚ ø¼wýòšÁ”*bE.µÎ’—Ä’˜iöåPŽ«EÀW‘×tß,‰9“övò$Uþ3OâîÆÇè‘Ðú`Iàù:7Kb§w?X’Â8Òƒ%1ïNqw`Iàº6Kâ–¤Ð%ðàIr M%5~C¦Ä|MU„ÒÖMS:Æ6ÃÚƒ))ÎSRVz°¼±'¡óvÜÊ„L‰;ò:SR–4‰Á”ØâÝ.Æ«S%QÉ”¼îÇÆÇ&áÎÄ–Ää7[R¼®çÎáFlˆ-) Ñ=Ø’BÛãfK Ó|[r´[]8[_ ¶$Æ!¶$Æ)*SÙlÉ>ëu%Öo¾ÄÄódK6Àõ³‰Úσ+©wè_\­»;Þ¯Ÿú·j]¸úK7üÐÿb‡ÿûÿø8£Éýùïß°ü"%ÿW¼ñ&l²N55É}€32™X‘›ž¦¬Yb*½Î¬‚TÖÍ÷’«š’×JÞóÔGð<êÓÒøgx|ÅÐù†s¤Ýè©röN¯ žÌÉ™$‡hðѧ&÷ #¯ÿø€%‹Ö~;G1Ó¡Þ 7èôéðkäû€$·‰7jÇpäÆåÅy³ãßïøw<’²·žé ¯$¡%*÷Ý3óDm,°%îIXµ…{½@‚ptÓhs>ûy¿'Ž›IÄiK€‚ ÔÜÃÇþ®*E½¿öyò ]½©@¤2Œ‡ žªÀÚžÖew çä™5å/0Ñì.à”Ž¦¢"À(LýÂØ{9>Q¡”{ƒ@Õ¸=ƪ¤OKaO<˜ðcxäû€pbß_ï“ßÏ\†³Â´MþÖ^²Áø¿XçN[ðõ ‚´'HUÁk“Z°à·µ•=©³2:aŽLÿr›Së/ms†~‚ªÖ…E¦beÐC¢WÍMs:?³ùM¯ùªÚ¦†¨ð;•üÀȤ—UD]ÜWÈ?€ô, mh”QøÇZ-2À ÖHLžôÎPb”•;~Ò‡«Ëƾqlèª@Æݬ¡t»Îû¦à9L §vEK0ŽÄ[]¬º‘Å”$pÓàò#ÊôÖ¹©¸>ž(+R^´®´p„YÐxS@¶ .*ßt"Œk¸ kÂÞÏV£L;ÞüËzÓB²ªµ›¶ÂPü„•Â2ù# !@X¦J%Õí‡ Ó€ ku^6>.ÃùÙV†·bŒ<ºH_èÊñÖ[œÓ†Zå† ¨joåë}Ÿdd T ÝY¶¬ 7ܨÞeÍÊ¥Eµ’ d‚6@ȱùöµLÐôhe̳¹ }©­ÔuVÊBÍðàÌ{>©¬ÏiíIl¿”†µ\Ñ †]„\&ߨ]EamX™óp Ç;—ÚâgÁ‰ÝI›±ê8'ն¢4^ Afª*içmÎÍ/1šå›É÷­MÉíUÔ6ÆSjuð8ÝFã¶BÙ¹|ÙÈ$=·¯¶Vv››}V7âà)êHRrÓo«4¸I!iÛUÄÍî¶oâ§F@båt"~³rU2’ÔªU€çîP. I®wPxsßÚïà*ln–€¬]Ó7Ó8HˆÀwSJC•@Æe³Hà>¥¶h½<-¾µ%d¸\z£øúÀ:ãM9Ó YWË+ÝûdûÀß­<…±ÿ†üÉ©"_Õ͈!VB†QAäF¹R@à­iy¬ïÉüJHÎê^‡0-˜÷ Úm}Vši14A¾a˜4݉CÌT‚ìóÚíá9¿‘}oˆ}jr¿0†ü–>2äIÕíl){—y’/lQ-äof±6y>ÄŠ]Ö.ºèÈ™TEñ A,{JbÅ+µy‰ ¡¼ýñ:—ãd„Eóf oŽê¡šð7Ø| ŒµäfXûl+ãå1ž‰æpvÊ|l‰uâíc¡”t‹xKšWAÌŸ9EdÝfM«?Iè½ »¡¢:{œˆÊÅq«²+©ƒ²Ã$Rm’”ÁG €zm+Ó\@kÄ$f{q´}b_E¤È}+_(•$@5‰£÷ÍàL^PøÖùÄ,~%Öñ@sx|óHÙ7 Mô›ýÈdÖGJœ¶DóÓåêÍT·tü žgÈÿfˆ-‚"ÀpË›*SåeèŸÜ«ðp—Š›²änWyÿ_'ëcщ…W‹iç±7(Ic›d?µ»ež9.X£[}JºbÙ&6ÈWî'` ±ö݈PJÄQpÐ(T¦À5´½uGâÖ}#zO¼|ªÚj–Ot±1³ßð MJž.Í=&Ôñò’" oøÍ±—;Ÿí—ï~32Ã"cd9éxûGÌò4¹Lúæ©+]#3‡þ{/õÐsp$VC«äO/E'Eœo‚{ ›b’ ØÄ[ ~÷„âCç?*EoU¿¸YÿÖ"Z yîLWcݬ¼wBÄf rôcÑÉËÚiÖòÌ¿Oüùž$Q»;Ý@Öâݧös zZ-0{zÙšðR÷ÖÖ-¦\¢œÊ¦hb> o?¾Þ§þg'ÆuÈÈ7uïD2¨¿@PÁEû2˸À,›wÇ¡µ¶”â6~Ën;^óCjx#myDûÊ’©/À5'º [ôþHöp–=fÚ-tÈó™¥ÎŠÉ`3c¢côÐÉ ÞÊÆ,÷jÎ ‚Z.VÜÔ mH)PHË““BzÑ›îóÆXÅt »Ûž>`n6@"JÁÖÜ(nM•]¸ ØñÉD‹_Ýʾ3XÊÚ&viÏ÷•)ÊúÔJ£\¨¾‰-&ã©9A&nSK-üÙ²$ß O÷¶mò•}ꨀsÐ9rD`,÷Õ”¿Öôš.6.“;ž$»¸‘Óâ²¶qØÙfdSûëæ½’{Ù>‡ú#+¬ä8·›îÐ!ß9{æ[ò«£ý}Þ¬ígׄ|¿@THþ|M¾šo}çf*P‚Ôå‡kj:IüñÅ•KYÓJð¸*Ì*l{ÊH˜9˜YvhI×d Q>QÛ7*R†ß,Q v1§h‹«éýx"1£òTä'ñP“î.¬N=Š¤Ô¡¼UŒ(Ú7XIÐó%v~CŽe‹Žrßî=‹üøÆ¦Í*ƽ$rqÈ~-m?žþ ½PÊ:ˆr,Nù¾©Dx†æ<Ž È*ˆŽr*±ßì[ÞýÕG9¿ö–HTQ¨}ùùìpʬöŒŠ´¦)‡ µîäI*eÔ—\=‘ÙûöØ{©–Ò즗ZÞ°LKf7©;T¦ô‚N›™K‹B ‰Ѽ9F$¸vÀ¬”x„9çq›C¶dFöåÍÂÉ ZÕ k©p5Û˜x¼áʺÓBçu‚fK«gýsWú§Þ!‚Tl|"‘S¥¹~e$|*ïk{­næä%-äAÉ.S> '¯7‰eþÎÌoxêóó]¤1ƒ×ij´·¬ék‹Öñlu­"ÀË]7&·¿ž†‚ç‖žGúqì`-{a›EŸ3äÉ»ýî9ÖDÜì ™õ’Ü~ˆKTjÕV-Ó)銪q'e'•q€ÈlsCpººô"Fet9ã$‰ø"¥”ùYg¾Â T¡aœŽ 2†£„!<¿Yy $¯à²!ÖF€§µá"Êp·ûp†FlL°µ¡¿Yõc0ƒ›dÙƒã•wM#€^2z{£P™sBUË¥ï¦}|l8çηN”^GÏÍýMsÞï2µ¼L‰béT >Ͳ{>ß:¿õ/“P£”’¢!‘Y´—6`c6¢r9&ÄeâÔsÑ=¥UäVå CŸäà."Áj[®^+k¡ö‰5w?RP­ ÖIxV²Ãì¼8*,g{¥Ô®:!E5p7O¹LˆâçÕØœ–â#`Îdå(Bï¡Qâί+æáíGÌÔ!—£ÜŒ2ï"ËÌbˆà#P Ö.ºD5‘Žä\ƒ›È„6@ë#6e”¬Sq8©XmƒÐ@#ªIy±×Ü%h˜é`‘€ —2““7n¬*fê9ÉùÌÆæÆ‘‰TAð>_–'S)Ï¥%h*EŒâ±&,¦åµ‹'7³cWmbÏóMŠÉ¶–æÎáÒ@¿ÙÆ›»¸–¡¨L£[%°2hÖ‹pù¹ùÛZÇÒ2+D_—™!}l‰P)S‡ÄÎvË-u„D!Áò¶J„éãhGõRßR°»†ßíbˆ(?µ‘ÒÆáÚêÉ;Iƒ}êc& #ç’¶`)/+¶Im_Xé>Чµ_ô‚_LáŠ$ÇRò@­Ðj&€TçÞCv«¹>t锿 trÝœÆu°«±F¼±裻&Ï>ZÆæ, ‹´T•û¾Ý¡ð¶ù~iûÌ€œ½˜z#>r"œÃÀn-†yí¹×HrMaýÕýÄ9†] eÕu~„5†÷0¨Z‹aª},Ñ¡{ãÖQ•bG¿q"œƒØèä ¯ï×ùœž·nI妿o A„G«±Á¹‰IgsáýÍ •‹…XWˆðÑ-ÿ_Uñ{óÿH†»9@8Š™a+J¯K€YW‡¾« Éª²p7K¬]àê ‡ 02ãÎS¥ Ä’4µ‡> ùŸ?—¾®Q¤mvM«¦“´xŽÄé²› nQ̟ȨҪL.¨´le)J—jâÃ>ÞÞ*-ÎùV:Îÿ‚l l€nèÏ´ 6Ó%ÆÂÔÄtK÷é!¹‰¶¯# ‡¬Jd D€µ«HNSö´Jƒ`¶ÉÐ7RÜzÛçïSïZi€8矤Ÿ†4:ú ‘LÄ|/¹n¡H©§)qpÆäP(>á*=`¥Þã”0CñyJ JÄ„$Îô7Uìb6µwˆÛ7T©9a2wòyØ?„FïP&–uäÛ–BÁ›½|®ÚÉÞRlV»csàŠ³‚ž©FûˆÄp^“VÉv•c3,Ñ:ÿˆAж †QW(")d]ò©\‚½rV5¾‹ÖnsTú-fè5Ck¨™:$P±{P.†øˆã3†!|û0ßWäqL5yÙ®ºä²“è¸eU”ï¥Í89‘™ÏÍØîP9kby[ÍRÓŒyìEΤÛµ¥Ø®9êoÎó8·–19¨ÕÈ}q'•QNç%(d‰;EÄ–ªÆ’Ó™Qù4m]øµ¸ª5““×dÏGî"= «TÏ|ªA…ÍP” ÛWhRÅD²©Ì ®ãræXÙߤ _ŸŽ,C=›T+  &Èñy½uÒÆ·ŽöC‡M*ºŽ!{G(øk²I½uôySLiؤ9GÍŒ”¿!ç Ù¤¼Ì¢Û¤¬œ¦ì3îÄ?¤¡r›”åGº.¨ E©ÄýÕúÞïx¢o£WíõÛJxëNåp7Z-âþŽö¾¿[ îÕ§ÛÞ–Í!çªyG[ër|‹¢në¡é„Iªuò–Iªu”}<,R­‡î£ÿY‹×X⸼ ÉéÐàYqLK0)«{zs“Ê"Õ&TZa‘Š !‹”Úÿl‘êE†q–àûù:!™¦N{ÁD—Š$ VD„›QŠç5†¾ytÂýr`°²†¬×S\tÍuZæCÖë9Èü/zÚKjí°ôÑŒC—\ªê½ ;ëLSΠ÷¬C&ô€J€åú=\1=Ç-¥:GDõKÏ!µÂ#LÁ[BòèŽ-!Y¨FÞŠ„L¤CÈê·¢*62,(f¤:c 8hÅÕvEÓ# ”‘RV\{•è+É:,#Ë{\R=½ÉH9UÑ6Ù4ëÞ·!¢ƒAŸtZ«)µªÈj ˆ7¾áXuþ}Kò#£È¶j“ýˆïïÖsP$%ë¼ïäÌm‘܃f*Îg-!bjâöÄXh‹”"|‚%•.î?No[qמª7P¼ûæróØ4ÍCÇ"‹NpfŸ 0ÄÁ$®•>D_ß!ç¥×jÞÅ;Z2nëî¢8¯sx Sƒ7~ïô4GТ¸7wsÁY s{/‡åÓ¤Òfñê·¿ø–^õ†³6îZï¼Ú›9 €¸'õ°Ù+}äÜý5ì=Y!0|Å÷vs¶Ð¹¼îјþ1áT_¨:ɾw²šœ*^ôm­9*žZ1Ø,¯»»Ò“A©9²ØG£Ã©óÕ½m1o ÀØ~­i>lþGãES#µÞß²æc{_-ò¸Ô¬åÙÈI}„pryç‡ü¢Ï‡„£á…ŒÄñoéò)žO©†"]Rë/ߨ±ÆÆ<Çø²Ÿ¯S*°ÃËpv9 /c3Ð2¡ôÅÀÖÃðÒ§T£ay‰®Ï×Î}öÀr¿­ŠiÓÿ¥X‘».°ä÷»×܈gà8EÍýš “ ?!¸9CVmÿ¦W&R¯ÛC0͉›eCªnv- ÑõžÚñµ×É~våRΫ•Tš*ÅÆ“BB?@È"+ 2Òh¶wã‰×ý'ÂO€¿[´U_¯âîîjó ’E"ËbÇpn¸9åÎ.J¸~qánÚGR–]çFÁ¨h&/¾&ÈuN¶à–úÙ˜öŽ~A0¥‡ML˜mÑ(Ó˜;—P–a\œKyàåѤ %00M¦ýƒ§˜)÷§§d(Ê<ž¸aÂDHÉž˜cÈ…@Ͻ{×õ©B™JYûÒá¸à¿Xîùçäï|„ñD“îüÕ0ýÏYÌŃŽy$¼½×`ÊzòÂÕÁ[ À­$º» 2ÜvëAL»ÆE ¯+D£¬]Û…^J7kC$e½Uûãºt õØ.zí€ Þ0‚À¹«q%Qø"©>Ä\QdEÑ¥ z&¸¥±e+~4'"°‘Óeüø ÙHÖKØÝ`¥”ªýim¹½¦D‚ý‡øÐ[Å{ëèxhµ—nÛÙåbåÖýôõÄW>W]AùÚ•¸ì jÑ7ùóN¶Jì¤øæÆC×½+8 T”Ͼ¥¬ ¯D©.¦=~|±:CúËܥب¬ œÝRQ@Ï"&c4饪Š7uÉ’¹tã ú €œÂ»…LŽÂ½ŽvR]w‡ÈQ?º ]ºöWn/ÄãP ý'c²öTØÖT8[dD§‰%`ˆ.ùˆn„2&ߎÙT ^·‚ìÔpÓ÷Â^±Ûhz¡”ÁZgv+D@àŸKáàTã•€ht;ˆw¦ÿuPï,ÇxD~ ¡e†Ld©Z´Þ?™ËAf1rÃ?RTDû\!BX@àè¢ ¤v¥zÆ3ƪJñÖbrøLxp²= F^/†å]¢#–å%C‚¹F$#u|½¢Ïþy‹„ç_Ý/æT2ÈÁ4JÐEÉïÙ®éý,îkyø爾Ä&68KPIdO¢}{ÃÂü es4îÍŒZëö”~¨JÏ}Óƒúj]ʵx [™ª wª (¸=t!¡t‘“ £ åTBGuªY|¹ë٬ʚ€ÖyѾ¡ó›¾,“è´…ýÙMÒÕÏAѽç;Ž@q6—Š#+NĤ3DmëbtŸ Rò8ÓT”õÒ•ªÇ®¨î… X\L•Ó)éN®ò~”$iðŽ¥Îbf *÷|qH"³Z’DP9ýšçM#¾˜ÎZŒÄ”ŽHagùn\%dVûX—,åÅu@³ËlËøÆ.”×ByûLr¡àÛÂB©à :˵# tí®,W‰ý——¶Ÿ` M$%ìéì¡Ë >ÀÄÒ µyZVFئð¢[I9ò’¢sXGÝ9“Ò‰·äÜ©lŒ…¢@ÍKÌÏ``Y/~3´ŽˆýÍŠ‚äUZ†âŒŸ•„ׂÍÖŽ#‘UìèíŒüó"]“[Óy‰ì¹2Ê”V?“(S')¾¼$øÊÊ£e®G)éPJÀ›< ½†Fð}̆ôoÎ ð‘ÎL¿ªŽ(ÉÅêAôG¡ÌÄlšk“˜Kz—ìv¸Y9 °*•“ Ž;ƒPœô±¦­>IZ'n‰ØŸ½éc½%é€púh•.Îéã"÷ô‘’ÞA^|ÒGA6}\AúI=·ÓG¬ãI«;‰¾Ñ¾Ïô±„¾ÛR\ÐA·j·(é…Cì|-æÖ-4@Ì ëœ*‚— PtýòÚù±ùÒ’Œ=Õ}ˆRX¨Õ¾™WÎ\®Ö¶†À% iÄsLÓAg Ê;@ÇʯÇ(r³õôÖ£w?’©×„{]¬§cc`Â:u$ Nr‰ˆÏ9Ú•EHÖóv>»± ¤˜ÔÝD_°[ÂÇ(5*¨.)Õs„kÅT³gRo7ù^&À¦®&“õ\YkBƒsb¾ysœÓéFî½£mʤÇÑQ€ß¡´M~ž5k·L-‘ýEËšn !^â9"¾¨?A9ŽÉL>@ž (òr€“\9Ì•j¤‰|BHî,¥ÝôçéoÉ$(t³3Iÿ 5zÁ|"C -á’††)ë,'ðE·Óò ƒ[9Š×ÖÙ Ç4þD»ÅM9önçánqôÙ¸†<“Œ†«½´'' náW\¯¿¶ÛKѬvK3«ŒV¶D¡ûÎ<2k©åÔ›Œ‰‹ ùºÄeȧر—¡ņ'oŸ=³Æ’ aÔ©‰(ÅÊÑf2óëAЮ“·ªRÎ?›tQ2B÷rr+#íTÝi+0áÄ9©ž”B³Ý•ž0\L’Ä­µ{›”ÖÐë†åÞ^¨r¾¾ÏþÔ*5¸x¨•ôÙ sbË|ÃÍ•Zã_ÃJ…©$ äJ ¡±”5Œ­íÔ‰aÕ­2Q¥u"/¬úÇï9c”[ýsjQžMÚ€ý„'!jÇ#*Á-< ›øhz¥›#d§b†«dâ–âáè!Ö{ªñLx“èâV¼H|åV^†Ñ ¬†é¤ÆgÄèò¹Oä²µŽŽªPL6]u)l_Tm¦¯÷µæ¨\©Z‡òi‹’C“Öšº0©À\ô[s{§J§Ù< qEßyw‘˜Ò*ÎãµEL¤ÂŽ9è®|tQ¤ñÛaIãc{kqœÞÞ+´!$xÑÓMí¯ÜΧÅ8díqŠíÝS Î8fë86¼‹æÖ_ÿF Ô‡+Àa¾,Èç; œüWFTûÜÖTe5Ÿ/M‡l­¹¿u¨Íß::Zí¥Ûvv¹­žzúú ú[ChWªÀ°Ð`½HÓõ²MôñZâFúਲ‰„#öìÆ:Ùèéí&zù`†‰ÞмÎm¥²u¥œLôÙx÷×^ .w"ã\]µ4°Ñ÷=Ù車•ÊFß¹“œ»¸NÀô¬älüxŒÂoȦ÷ñÚÆ½CÜPÿº‚Ÿ¹†è(ñÁÜÆê‹øà-t…âC§Ñù¼ë—×Îý£ûÖl`õ÷-A÷­ÉŒ”‡ûV<³Ý·Ž×rÃxºoý†4•*Øî[“FˆÃ}뀸³–¿¶!Þõ1µýµ×É~ö¥H4¡‘Y¢+\Ñ›¾”ÁÒGvÚéyï™Ö2ózŠÜ(X1s85NÇ+x /¦Se]„™Âé–Ô™"ÇË(»‚åû…vÚT³1l^t1‚IÇÈšD¢l–H&³3Òm‹¢AÚy6¡˜ûæ~Ã!}yš­•^ð²Wv0á0!±HÑÏoCK¿9DiMUšG~®Ž—VV /p÷YCwi7ÞªbÜô¹’„Ÿ;ʤ²8Ø~â¦>zÒ¹šµÕÅò$¶pªœì )P;±Ø^ZSŽÊÊQ=Œ÷¤ù0Q:±¦=Æ1Ñ A] ‹1ãp*ÀÕFjžëBÈ÷ $ˬy€XD5³Ô¤µø…‚°¸ÃtRY°Y‘‰!;V} Ò•M.4›þ;µ—h6íqè¿Ô¡ŽÈ^UŽ8z›`H…$­Ñ,ž=[tb_§g%] +eÚt‹¼T¥ðU–gkWèMW”'ž´V¼øòôš @ho”³¼þí«ƒÇ…ðno…>J“\Ø>¾l_~V>§{cF®Ië9óÔ`0†Ã¦Â)¿6·¬C©NrîâØmôÊA©Ô° E%©jœ¿ç$V¤”õÊdY0‚:sÎ]¶"õØ|dP œUÙ³¨#7Œç„ã…±úðù«Ä!1ÑÎÈ7üxÜòOdIFèø ½ Ç8nZÏcœN|*N7®=[Ä‘qËÓÐѵ©“c”ôëÚ(g¼·•æ°HŒ8·ŸR¤Å³‘×£(Ï÷ cªðõà\:Ãíµ“uX4wñ"»zyó™ãõ&Fz IÛcÐ<ŠN½š{àõŸá2™ðëÚŸ`>ÉÇ1ˆ$Ú÷-ç£ONƒ8¿ëx€ó÷wC»wÇ¡—½%’¯=Â×uø|LZuœSAŽs¹hü 9ªw´Ïê†è°fÕ>÷ÚeيÚŠÈÚéï‡5o’HW¼¤C³k–>3q>]‡UÅÇÚ³ÞðÃjÉ¢Í%Âk´c/ÖèÂk|%kŒC‡5Æ©“SÙ‡5fë82tX]qX£~Xå~X_×›ãJ÷Ëi ˆŸVT,œû´fr^ÇaÊÌÇ-“Ú§5»³zœÖLwõ8±Y–Óè‚>lû#,¹Ü×A5|2~d½½Ïì†Ø‘8ºÐ¡‰¯Ä±ŠqèàÅ8É°î™øÉ¹òà*ü}G–áÀ§b/Ëß¾.ÉgHæÿÿ¥b#â à*Íp/¢žowó­š VÚògrÓ”¹õŠ¼Ë•X$ òvnäYðˆÎ¯þH—gkÒì:½«fòÈ0s*…Ê[l4\J9($†µLlU(¬îpKH$·WèÒr ©ÌðÃbûl;Ïž6°AvFÞLÙëÚç­EbÀr‹CÌ'jpêÌYqˆ_Ðá^ÊΓåÕ(Sýnú'Àµ£ƒ½ß7+ ÷úU%9…«ò# ؘƒ~s…æx½Ù©5ݵ6=tgXÙ€qž5&¯ôÝV”Cñu?jUR ÑýTxÇByhß-$$ËΓTÜ %ªÎzƒÐ6)fȪgÕt V>«Â˜ÿ^exªªwiû{ô˜†°×8÷‰&å––:×˜è•Ø³‹$pbŸëËåB·ßÏ׆t¨Üé̈•ýØš‚x)D΀$/ÝV˜£?h¼º^é¸ÊýG7‹®‰ÂB~Xuè|lj٬ΛhɤçL:HÅe6Å$îënJhˆ‘NÞqcFÓ¯TüÎ!tpÛó ×¹ï}¾ï}¾«}±í9Ñ}0d.MÁ|"«Ü>Ñä_~-2Ç4¤êâ’¿«E¾13ïòy©Îz\!KÇD7Œ,V~aóV±–^‹×Ë-mW| È\åæ±YǘX,O@t×Fº‹õ‘ë` bºÑ}”~á¯ã(Í›¾Ç#ÙÅìÆ&ª6ãáØtքؾbœo òÙﶈkJà]¾è:½!ß/žyø£›nl,冫1ÜGtv½_;?öªÏAçÏV-0VOïÂiß»ÔH@® bx÷w¾ø ñúû-Ï  &ˆ:4– >ÆÏ:LXÝG1½ÔÏ× 0¿)^MRz…uI½­m7ùȨ̀òl¯rdÏ¡ý„pJYÕQ®ÁT\Pní€ú1È—‚@_VôJ£æÌÂðÁkK2<þ’o ¨$Ñ} Ú®!sÈ=µ(7¨áùþ³9Òé[¡G)ª°-ž;ƒ À­#E9$ïA¡(·Ž@<1iðŒ9@­7dÉ?°1¨GÒØQ¬Ã„ÝQXr´9Pe‚Ó[~æ¶ÑPƒiP˜-j°LÉ• uEø×Ûþ½èš®6goŒI<‘ö…¦*¥A/7š×§LÌÙiØ'c¿Uz•½nH-+4ÔƒE& ‡½“ôÕ&S%ý}›ÙçÊ ‘Á³L58Œ ‚@;húùQ”9>kIJ¸%©,‡Zq#šàîwóÞúy-–È2,%•µFŽØg:2`ÇBÝ£bØÖF úÉ] VsøÆ#Uó w µ3Ï_^õ¢"Zî ZzšèÁ¨³½_q½j…Îë„0+¦-‚‰`?$(iôó¹œÚCÃ`zL@XºAê§$LÖc@%éAS%J@'+Â`X4Im“Ž$=G<‘¥c» ì #{zeT\!šU¿¤ówš¤¼]è ôx¡¾[b&n0*øaiåoV†Q¡³Çv„W訪:Y›ç¢òý ¡=r£·‚’¹\$8B$eg¶Ó7Ô)l £ ù…R~œß¤‚íû„›Ú<­MPýP]L΂¢ºÔArr&ÓX uÓoVa}†h#ÙO $Œ àáä0à•rÐe׌\O ²Es•!¨nÑít9q3ï'$[§ U*M0O€œÇŸ»Þ_ñZ.~.¸¯çäokÊ`ËwO:¦œB¦WG äGHŸt¼FІØ÷Ȫª¸))©´ ˆ«;Ù‘í2ˆAÀ ™˜lÎÛš ÚÚœƒÝ¤À_;!¼a±Ýø^Äfjln è(#î§”D0—Ñ£}iö㉠ÎÀˆÇtôóò%;Ûÿ>á_Zq U¥.qHôlªNßÈo†í©ˆ…ƒn©ÿ2—h¨zb[G–ŸžAœ¹¬®Q%Ç–¥«º7£Xº‚(çO°pošF5Oz0¬™ì6פƧ¥HŠ&ó^Ùsõ;ò7$ö‰¿ä€ÝMö¤X™†ñÁ”ÍiͺS4•B1`µâúv*@€‘_™¥]+%#)̾Q3‹¡ËL%.,P#»“­«3Š m±ôYåmؾ|wŸˆš=úùùœðAZF’z• fÛä7•Šð7$NÐOéçV]7äd Ià²SøFå•H±¢ r :éOдŠ!PÁåLœœÄM¥E¶Þ‹¹j…jdHŸg mdà#{#TQøß½}¢£w'€³¹Ô•15®l—†kó"ƒîæW–´Çc߆»ùr¯dªÆrŸRTÂËÏÚ¡u ™Aµ±Û¾Ë\ ŒMן‹þY™ÇâÂ[j=’Qó ·þ+d‘ †ÔjyÄ*uz¶)–m* ßf[-‚cŠ­¦ÌÐ#A-3'Yˆ­¦1™¢NÒ˜´W©5«€‹­™0ÄVÓÒd'©~6ÄÅÖxIbkf eI­öÑ[÷¥VVä¦ ‹ § Ó;p2¡$9ñÀ íKB+ôÍe£† ‰8n—YeU™õh»òÈ!UÕᲪ¨ºÌj¹u<)³z¾ɬ^ŠýØ [nó=¼¤9ð]¾‚ý£c¸$a**Uä¼ã2kì6ɬ¯Ûñ±5!²r™“ÞIü*%P ­–ACÛžB+Ö(»Ä™8ø8ÃjS«)ÚRòŽC¬Íã3V°¶a‹ë#zCÉ@\hÍκ¸w°òm­×ûäþNÛŽ8{Æv Hß?¦ê±@cˆ­¬8öóuBëqÆŸ²”öBÄ8¯WÂ÷w¡öÒÀ“ÝÙmñ6V §¦wHŸ›Û)K„PÜŽÅêÖ™§¨d‚s;UaWÁíTÒïƒÛ±8âÍ!ô¶ï=Øð;½p;™ìÜNMqpÀíÔ–q;Ĺ¼´™Êâ‹NE,Üw¦“Û©®SNòOR'#6³ƒòÐV˜(V·*Î&γ•6r1ç¹Ë0çyH4Þçy0ùHèñG<Ïóiá8Ï3Ž<Ïó”!ÅÏó”‚bŸç ‰óì/ùžZYè!]î>ÐÎõ»ÑÍ~J'6µö"¿Ô:9>Ñþè|ÓæfUJ{AÐ8ϵþY‡Ém7ÝâææÚ¶6س}ážçaVm©8̶bõ<Ë]ª¬}–UØ.ž²»øYf¥—³ÏƒV¯}žÇŸ|H&UUÖŽãL~û|Â$ç}œmƒK×£ãlø“UçÙª—¹ŒU¸Æ¢larÓäþñ@·rUg!Ùb8d˜oQE yË¡ˆBI:ÀÑt2³Ðµth›ƒ 7ŸpK¡Å/G9¦ÃBÑn© Õí–£zxPS ½Ašv« ¸qb«ìÇ™;€•MîТ¯Ñã¸çFäw…Ec‚‚ûÐxÄ4â i¢×ùÈtÛ~%òˆ«ì¹£^‚$ûMÉЩ½"Qõ€È³£)a£,nÞ)eÓ¿K*R}¤s8£À°qRa/‡Å°ñë +–  žÜ¬%¢EîêPߦ`´Š3÷¶¬ÊÂ+¥yeÚösI‰%‰’ÜkñDEæÔûÛ{eä^·Æõ9ðF¥ç2Bü|¹©Å!ôÈGÉÑ4=Ö·0i×~&’ Ÿ¯© V¢ñ€Îþ¨¦}@s›3B¾i-2–+›{‰,‹…Ö_ V©Ù^’‚ß_´Wž ÷©~¶¼ ìÜœpM; ÊQ¤3e«gkÆ~¶[\ǤÝ"Ïv©¯MÕ†Ì[ÎQ«£dîMÖ‚ç¨ò­:&f°Bæ}Ù¥98X›š°Nu½¨Hµ­z>beQZ‚º[Qˑ٫(Êët¡ÅÅڭ𻪈+O+{bï*8”!±½ãÙê,ù&ä.Ü_²;ÚÚp‡„^y²…ùTñHîËUÏh¦—fÚcA݇/Z™Ý4b*(…l^Ož/•¼-N•zjÓ:[ó–5DÞnŒ9ž ÏÚƒÖ£ì0ì=–9Õ@43:cÔ^Z­ißz'”GÏ „ä^Òæ¬ØH]Öï!4õ#Ýò⸎ C˜Ðf¾mºˆ8@¨°½%p7ø -|U¤ËhD ž†ŽÀÜgÿ€ÑÊý?ÿ±]Ô糃ÿçJ_ÿéùóÿuý¯_´¸Œ»·ñ¿=ßù߯úõ?~ý範þ²ÿŠwÞÙ¾ÿs=n»¹ s¶r¬ôïà;ÉÔÌÙ þΆ¼wóýõ¿{þ_¾þ§çpíßžÛÿËÌ’Íì9?ÿb&É,Éf¾7-ÊmŒT¾+sŠ òÔ›F|”¿µ!¿:²Éüîü¿Îæ}¥RSN±Ê_?_1åƒÖ„5ÃöšÁ›ª Uꌞ{(µB_];FöS+TOT%C<Ú̱¼!Œ•a¦³¬ÊnÚšfmêáð]³™eJ|¾zN© KöJ‚öJ€o ­Òܾ¿Þ§o¸lÒ*>ïE»Ú #ôÎ1N0-¬À¢|C<Ùµ‘,Fc€æ„ ›$_#$5ÅVÕ*Ø›P%iI½ „LG•T¬ ¿;¥k¼´Y{aChp1CŒí¦OHð;5Ý¥•X@áh }±0L¹‰…âϰ×ñ8²Vª²6ÜéDÎÐÃä+>¤¢•˪FcßÄâÒj£ÂÖªY"†µ\ôŒCˆ` /Ëmsj¬²ž5Ö3ÇÀM õ쳌61\ ªê«5UÝÒÚc•½¸§ÎÝñ‰ú¥¶h“¯t'´ÄŒñ©ÒêjCíBôG;Â|"ºÍtó8z´AÛ¤Ú@ ôäÙÅd$”Ä"kÛú ÜÆÄSøIŒ‘iÊx¡a¥ÐðÉ u p!ga‚è™Ð)üªrG¬DÇZú.be bÎíM©èê½çZ£ùJûñ€â8ì¦â7eãD¨<3|%ẅfF^¡ª´ºp«Þp<·¬m}C `‡¨ž"1oð±©ñ‚Æ!7£lkB.ãh¹ èÎPé»b€*"këAä4N† æ*“k£8q`×L#çãm"P‰] bÐ9Œ‰«½³\…lœÔ¿öÞ¼Þø‘bšM$õØoO$wò+ ߀h~ø›Ã`âÒÔ™i[)‘¤tÅ€WÖ>±vÖ+˜lgrþ=ÿ~Yâ fchòâ«ô0D…ßN§3'öª­Ý¦YçÀêß³Žyá-Ø©CãU )ŸÜH ô1¢úÙX­]ÅI“žÓ_Àƒnx“T¬§J'C%Üø++q>©:°èÊ‚…‹ÉˆÅѦà¼!IS#¨šcvmõÊJVSeD®«¨V`c½^3¯|<’èpW•^vqïÁJô[¯œ/£ô«J3ÜåäkWÔ©án¥ å7 ˆÁÆ8ÈRYRÄÚÈW`×Yú.Üøjòuºó¾0;ÊŸ]Ç…iÉÝÓxywÃ~äòRÑ%‚˜¶¹ov€œ·G›âÿ†°@ºàÀp ,Àä 'ˆkœ¸¹á$[é©„ØÉ8Q¯ÁÍšØqqß@ÃÄâ[¨Æ1€€vÕÓ‘:KkìwD§R»7¿45FÐ1ks냃´ožÚy7-| ÷¯}ÈtMuÕ1:n²NWŒóçÆ*9¶½‹ÚeèDÀgð„䢻'ä$xŸÔì©`>Í'Õˆ¢òâ bí$íÁX·Lêû -vzWh -$ónß•Cwˆó^Ö73Xœ®ú¶GÖË9@cïúPåÛ.«/~Áð'pËYŸ tÔ.㛋ý„ý @.}|»Áu¢«Oeh¾‚º§ÂÖ÷—cô:A+.0ýy4¬g7„ÙÀuïš‘ÐÚä !PÏ&¼î1±„À›¢WWHQ·þ§ÐØmñ½v/,@&ùvi¥· Ä…âݬp[yi"ÊãeÝò墨jºÒ‚­Uñ¥ðºœ­×éƒRø¾¤&ÓB|¶¥k޲]Ÿqk9SScJš³=n_mJƒÅiý(õõöö–ξ)ŽÀL¼è¡ˆ öc=I*)°ê hÎ2 ÊÁTà#ÒþxäÖ…ç;_‰±ìY»z—³­ +àíJz#kÜ’„¬Dm $"ÛZÉ™õ›ç [»j7"¢¿Â<Ž5ev‚ÇLj^Ä\Äã Õ1³OÚÙïÊmP«Ì!Ý€—Ú…“'™òd´ r÷=^ ªºRýcS¨‡Î}ÓÄb©Þ¥Xq´Å‰ƒw|;íÉîh± ìlÿШjäòõá8”± “”"l~ˆq-º02éæÎq Ÿ7ÌŒip `úÚ3Tl¬c`çgáì7:­Q{‚‘qMãËtŠ)ýÌðí^ä›HHf'L|5Ji‡3¶ÊÝnQt ºPmb9ºäÅê“ßѧÃÍpðë†á9V:lÀ€+•RBÏ€b8ÚJÜ¿C—Z宩G„?ëØm¾€{F‹»€}ú¯¥´!$b¯…Ó”9£Š]‡ß&]ÈÄhÃË€>o/—Ï8ødAªŸPÊAjüü`FX Ä_že(©ö%¿‘|XUAsܾÈG{úp£ìO h¤‡´:~6šã×UŽ_&³ ô2ÇÉ_žàm'²7]Žáæ<” ÂgUk¼‰²6ÁŽèuußF&­û§ZqHÏ%Ý4׀ߕQ’QÏ$ ¿ó—ÇéìÉbqèDûCi%Å5r©NP_¸N.„”ä$#UHndG“2ª‚Ezh‹5k*fJ—Q—7ïIë>ÒÃ)ñÊxäì4ˆ}¶°šè7È‚OÈ¢Â:PÆØí¯Sµš7-1vå!óÌ®¸þmø°Xb×%8ŠãÈ,¢bÒÁÎ[~Ô>,2…êF•ÿàmÉ$ÎS+ã:²¶Ê~ÁLÛÕ¯dÉÒz©‚££|Óà£_¿Bêº(e½‚°uÀPš¨„*–õjŠÄÝä át…“—%žÒÖ'%óÎ’\oÅû!aºL ¦Gò8O9“ØØà:•Îõ|"”¨ªÛÀú/`mùÊ­Å÷TºÌTŽq-æ|>wÔCiÛ¥LÔ²Yâö" ¢¤ÀÔJT¬¼g]'•*þYh^\Õ1•"ºúüÒ.Ko8ÀK°´uMª›-Wz[š¡¦"nìËZ¤`ý)®Îå¾²Ú!ÜL~ŠàY×B]&6çUqŠ…”œŒ² jÚÀ,äYJh˜‹u³d÷ÒfcÆIr™|¥ˆ9#¶¹ ÞþLœ% kk6x@ùF ð\NújÛœToSÜ·Ž>jç”’¥)»¤ ÞžäDAÞÇ·Fl÷øÖk?| rížÆR,ß1 W 7\1êÈY<‚Þ;ú8Õd m²UVÍ㵕Íõ B!žWþ’N؈‹J•jù³*•’~yMm¯)Kµ`gÔ³ªô޶6íAÖk»z3U Â¥%ê —¶Ÿ+e­<ê]÷nó*û†°Ú–ü‘Ò˜ª•Cë-íÍÊa~´Ëõ:ݤ ùj½šô,ýûº­êâÛ´ ï¯Ûɾ½Þ®r×ueÃMKוj˜êÔ‘_²AìËÊP²¯ªUDu©4ø©y²r¿=½<2F Êš.C1ç6iG¥F~5ÉçUEŠ[Èë’ Njý*Õ'YY²öÛÐ<š´³E¥Y<£Ö }Ù㣠ž“ѵ0A;óìd$׌ëô~M'nß¾ÒšR]ßTN¬AÕ–ÕÚnÍcž|ƒzò좋/ÕM°\rNªåfWå&>àº-Ö¢Ͷ¯‚ͼ:—»VAw’Xä‹>ŠNlGQO†k¸­gu±0Õî6lm4!›—tމ*½Ä"׿†]:GîÛ¹ª®ÄbæË€F./,ç6m‹X7C»<_¡ïÿ%œÇÃÚ~\ì*ç$U~ÈÌ©Å6Ïu‚nÉÆL?IH‘n b·ì‚ð˜åw‹­9¢6ÿ4!–™bb*èÀò‚ ¯Ò¨M|ñÅ# ´WÂ,ŠaEÒhsH–ge’¸@Êä›6cÛ™Á$ž¡%Úpp¼&ˆ¥â»½#Ûf@Œba’æoºCôò†øßúì Ý‚e×3 mÑ_¬Ìü1Ó l·¶«7*ºÒÙí9„LÕ7­fõ\a*pZµ!›|€$Pä£D7{Ö>¾ßÂCWæÎˆ&"¨òoÎE ä%IÓ M³Q87üvÆP?Ûˆ‚ŒöíjË‚-Œ¬uà3¢dž™E& pQñ!>ÛP'øÔ–ʵSâ‘ɤ^ÖÅ¢¢£ËKŽ`Pýãzpw³ Ô¦aö¯³=·õôGÖöà9:ü#À•Ûp=d:Uø(×/k¡i8ÄÈÓÕ𳄠vAù$ù:úPŽÎ¢"}}‘ó-IÆoïym,˜Þ²UæýÀwŒÂöÞœ{”V¤1–h† –, ƒEtÁ«óeQ9´‡rÔ¨øÎÑô‰8„SÝ=.ôÇVŒ"ЩQ Ý¿Vä³ùàÖ¯¸ÉY;å¯+ôgÚ2ÄÄTþùÚªøTè’Ëø‰¿;ÚD ¼@ ·/weOàÏÊiÉÂÖ=(†ôXy*…€”T¾p–µIk¯¥EŽDö1=O^eZ ç‡B;{ürrw]!ž ;õºߟu}ÄÚ$EúHtQÒKÎß kº_Œ‹ëÃŒ“äóˆ•õ™^û¡¢äHÁÏë°‡z–ëØ•¯ÊOc_¿ÖÙUØ›ªü¼@"¸}¬á»˜ß]´+ð=Šè#ÕÌUä°*½ÂÜíǵk<"Ÿsï¡’±Ý_¨äh4ŸÇµéÛëãŸ`r™Ñ7._°Ç…aGÉrvò8÷DÔ~ÄT¯ó‘¬aÂÕñG§ƒè¾ö@_Wäó ºk˜Ä½œ6M°*'„À‘eñ¤ÜƒÇµÓÅ!gÇû¥óSÿkqêÊ䇱™•)oªÍ¬„ ¥˜é€\´_kÔ¨ý†l¢ão”):J¸NÏïÿ‚igG¯Sû;U!èH¡S×4s¹1½ ‡Ãê–Ö†€­Zo°(çn¹YÆR5‰mËC?ºÛ¬œ[ª>Ôƒ¸Ž®W9Öú4Xp;wfƒò¡Î%&“cœ](“;'õzÖ ~RÃIª©JSY¦ó¹‚ý*ù¥)w×2çpMç‰OêÏn1;Ú`9O‹ç ¦QçC¹íëÈÆ¯›%U1®#ŒÖ¿æ$‹ç·Í”|ßGsÄ=InÄ*iÃ&.¾ST™zg'w½T¼“‘°…d5×¼†Dÿ"6»x;–‘´oÀ=ÍŠ ŠŸ™ŒÁ2¢¦2%‚‘dòjSû\š¤ê>× 2}Ï÷ËC¬w¾è]!–ÝÚI,½+a'oFEQ¼WîÍâKmÎtpISI%ý÷!·Hkwîó®«•ÙmhØRÄTòyJ–º~$º/æùÀ;õ`ͬK‘z˜¤í£âå°„&vÂužTÃù}n[§ÎóÊŸs¿Áâ¬K<<«¨XÛ§VQ—†[·T\ûdú¯÷£òYšHT–±ý3˸Tª^oü|mHa¢rhŠ[}´ìíËšTÑuÚÚ¸n‹ÇF¬J+o¡Öd):©°æŒ·/¸bÃaV¸oŒ úÖR}\êètP“EWúã-rx×oÐùýýÚ;„r¹àµ=ä.¥Š[ÊT<áAÀxU¦6ì’{ä a9zŽ{|½¯ágsQÚ$VcÉÁ~³D\4Ìód5k`mVãèx¿t~ê_²­‹ûì°,ýìA®RÙi²²çzü¦ò+VCEñ`¸)+qº›t5åýõ˰"Å'²+bôMÞƒÌÔ†i—ŒŒÂÍéÈt] qÍû#˜;Æ¡€‹¨·÷L6„S.þÇÖ‡ãÓÇéøŽ©ðøÚ‹äUWÆ;P9ÔÛ »e–9¤ñE'ŒêGÀÉä@l·ypOVrÞhï¹MyÂdX…ü}j®šßÓ<ªcIÑ[>D7¨Ç,Âÿ¡)ÕpöÈ4†±ï.*¬ñl5¤YÎò°o…W}!š½¹'!€Ï²ª(_ Á?±ñäƒpTú Õ±>|výÖ&ËtàüùÚDrÓM=hSÿ$%!_qІdÈ"„T0®¡ àÀL'ú|r˜I™&uÑ´.ò¸¯÷^'xà§s™uAÌaqÓœÚ$_¡œU÷Ñ~«Äð¨-c¦g>›8UÃC ÕÉâeeóe\1•ñÉÏ3¦Ðœ+ŽI6‘šÀB#sxjJX±1ÙhŠ L{騷5~`PGkf?/zÙÞR•dÕ±·(ÒÂêa“á  ARÝ4REFS0áOPaà([íñ…Ì;nÂgâ£ÜmpHÕG¼ •­Ø_©áðïãhÚ™>Nw8ÖL¶[—Oµ®„¾ï˜Ú_pd*6£{’çåëz|>©2 'Õ!q2%ø½·“ÚƒpùIuÈ>©òa“ÚãPñ¤vböI•_xœÔFçÒ8†öó¤*qB_w<í8*} DõqP_WãóAUDI¦‰ô°ùÍ¿ÓË'nêçM® Ôáš-B¾_ &M}KȵAŒAãkão!YÚÀýVv¡ƒ2R5JÁ_êGHÐ’˜Ç&8oSû({ ×8OE¯ð¸ª&õ“dn;[žÀ¢º|ä2Wàªûw¿å„h„æ.äõëŸ}¬µdK:鸶Q¾ézZê;#dR-ø7ÓÀ˜¹‰Ìóðz“CûxÚA³­3eíÌY®¯æƒ\SÛ YðÀtibºUÄm˜Í­qPSXw>K» 7eŽBTAyoöÁwXσ}­†…™¥qNá3˼a€@Ÿ*Åì7€MíÞmb¾2ñÄMÏûn"sïÕM娏è©¡[›\x‘/ïn÷"ý«ƒT z*²ßó–ÚÙ¹:Œ£ÄMUñɳÁ wí¶œ`Ï2׬:SÓÉ®†ÓM…ëgùôÇ~«¼R^7$_¼@ÇîÑÛÅYí„%¾„þÔYû3"}l˜pÈŠ­š¬ôN âø›ëã·M’}I¼ÀK“æqKMõ-‘²J©B˜D‰Íªå±yýž:a¦( ž8æsH%üBQë[[è­J_¶°}ÀYaB”‘'sq: ±Ž± õlsæqJK§ýÞ¨‹Í žÍEÙª 0{cpén1B¬L´‹ªÛ:ä:gÊmŸ A*££wwCin‚1æÈ6*èSÑk¤¼6šNŽÇæÛ$ÇrÉ™¼mŸ…NïÑã°(Ö8žHMÄ.î´U°ÙR6é È[ŠdßðþÛ‡›èÇäZ·§ {M®õ×ßf×úËRg!‹<ì¾þÊYnÍ}#Å×ûÎÍi[]ÍQñç+ƒÐþδû™¥›%[)x(Æi×»¨Ò,ί÷^_ÿñáKÿç÷ÿ=`š8‘@›ˆ¡ èg$ rÁJãøDʳ>'˜,[Ï)çÂø¿ÌElöö?rF# mƒ;-ŸÝ ïŸúÿ –¿î¦çÓG}Æ‚P4$XrBÓ“¶¢Ü¦ùžr†îPm'HV­¬Šàþ¸ éA_z%Þ>d(x’áZž”ù÷ÿ˜îI³ÖS>:¦¶ïÅýPLÛþÜ•|ÓÎôÜþ@?þ\öÎÜÞ¼ à‚J ‚|ÞôesHfN5u˜¥Eõ/^°>0(<» œh¤SjèsÏ‹Š è[¿ûxÙQL朼-É;:>åÏCb¯¦ÀŸ/Ó>ÉfI5ºå©j27>{³$U2[´k#¿|AŸ«3=é ×9JÊÃX(S§͇Èpµ!5M‰*ç8¦ÍjŒw<#ý£æ7®&œwxSX*ÚÆ4·Ö4>³m$»mJaIøÍRÚFØqŒ‰ _Ñ©,0M¦Ä<¨öýÕ”Àê+?qÞ&‹Ê¥Ì|ÆMAæ–ÑÌhsÙ‚eêL8@ìþÛ­Âì"`@[˜<ýη d’1)u6Õ(7¦ãâƒ0q ‰ÒZHg˜;ìµûwê™tË %øKŸÍôÀ÷ ¾ö쥉¯ÈŒ8€òBS’ã¦RÔ¸Ÿ”ÍÔ̇Òr~M©4º–±v;w,$ܳb=š ÖÙK’´±ŸO˜¾®vìüÓ”jC ßÈ <Ù†æW;«ÙG³Ë\vì#ö:Œ,ÔkÛfÊì¬"h/ŽeòqÞ›*.gdfÃL)Êd2}ßX‹ÁžKÛšœˆ<£›¢´Qç˜jdÌQ˜=a¥ÜzbÖáhNÝ_À¸¦ê„ðêÀã ®Ùæ”Ì9jd{.¡ù0‹ÏÀ]W²©Žl8ÍPoê}ü"-3³œtwkº.z¡W „¿ëë¦wë²âå.±¶™¼€šï¯Ì}u¥2µmˆ«áT[$¡íÌjt¶Qþ+£&ÚYêR;ã}‹ŠÐš÷¼mn¸o{–Ës(á˜(R˜(œb!oÕÜ$ ¹“r)Ë{¥ç™µ§»\OÏS¨K¯gK}m&Ç>ÏÙXê­[–b»u“T&"3FÀ¾ÌÒ±ÔtAf³M`Ÿš·¡ÔðÉ † dñ£ahN6ëK Gá“P ba¢9µw î›¤›ÚÑšºAL²~;¸Ÿˆä¸µZ¬çúó5\iÈ ¼#1Q—Mè9Ñ! LžÊ7’+â',+C©…Ÿ¡<?K~QöϾu&›ZêŒNt7øh §L„eøÖähÇÞ©Ê Èf=w’uðJ4·Â¡pc ë’ÇM4\…;€Ó¡ÌÄd—*z+Hs$#m¦a¢I®Ý­/ËÉŸ{[ž÷ô¸Ã‰ƒæ‡"÷Õ0¹Ø6â¦ü·2Ë[–‰1# ÖlE›º¢ÙÅ)#_èÕ—H€iÏX9õh¡ÀÜJÔ=÷ /¢ÆºÙÝñ”øìЏºžÍ½6š›p+ýš²ÉC©K£hã„¿ ØsëÒ<96Mþ»ë‰Í.úvö„ÚùäDà^U b~W V;ec”„0¡ŽëS~“it k»¦öoƒ$.éìüÈ WV;ô·ˆÞÄVwÄÔtÈC©-MR{bzУ1Z÷F±>µ.DU*øÁÜÿ¦¶çÊb²áQ¤ktÉQŠ ´ ny í‰àÁ¢9ÄÚ´f™Ai£C²ñ6Ä!;Z&=k7©œAká‡=\àž`4ÆÇÉ3¥I2 z¬ mFÕ$Wƒït _7Z•Ç’§#ï¿nbšÙ’‡Ûn`¨)ô‹™ÃG²(³1‰…†ðHê•«Ä:Ë &¿ Ó® Ey‹£t¼ Žo s”"xlã.y×à+]}K^|.»eÀªr¬±Î»r¶dO74\0´ÇYȃˆì³u×µó<CñÓF` /¾PCV4ñy­ŽƒØ»ÉS`¹™a‘žso“€4)[ÇÖhO0z8ì€K Ë^eü2ÜÕ—†ŒC¦fS ðœ–Y\}Læx•ÈÊ&Y[­²Úfܲw//£È¶¥³hÔ*—­ò-µHçÈ5ðú‚õOÛ‚&š¼Ó§©W§Ê ðý5ýsz8ßïŸ÷N>Y|¦³COüüŽÒ#Úi@a¬Ye›ú0¡}Öãü¬¯£ÉtêSƃÌ2|góyŸ¨IñˆŽ~fÝš‹ç&˜5´$̤3›ˆã5׉⣙úüÚò¥VzÛ¿wy5±j¡ÙP`qËä?qCŒ!ÈœÚçÚ£Qˆ;l2ÍqÐVøyé›a‹«bêäÙe.ª¸€žÍêòÛ­Ï… µbøƒ*#ÿÙbI Y}`º6“ƒÍV@ïš*a ¿-³sÍ®äáÀ^›´`±ŒžÌ,ÙFKoå,È“O—¿Ð1·¸Æ¢"¶w©Ê´ ÓÃÚ&‘U¥°›Jq3›,}6Ewèâ˜=8z^,†mÝÿø}H>e•9Ö8zëát¹¶£±êünòV @‡‘zN.™{RüÉü›†)ÈoˆÁྷ[ Q/Ĭê·shƒéº‡ÌÐaßPCOåü•@dM¢–:i´ÅLÛm«6è×]^š †Àhèì!ÊÏl£ak€ÔšíQ ?¹É'QðJ¶‚±mc*©ãçlM[¶ëK˜ª¯›™bº jkÚ¦AØÞu¯¨úDç“^'«Ô4Qv‘ðmxŒ¤.ߪtž¸Z¢r&«@ªU¼¹ó P¡áxŪ›¼6m×þj»yç%f7ù±Gp“ð|‚ÎfŒ#§W®ýȇénçc® ûÅàf¨íÉ›¨’Ù¡o(˜¡ ˆ)¤'qf, F= ðçq¶ÜðáS‘Ùx "HTÿ4å]ICuª›˜C.~F Ok™Zµ‹+T›f˜¿[»¼¬wSÉæ  ârHS8HâÀš4 ɽø›ÒBXeÁç-a›»ÃÈÌí¡âæšJÃO¢†¤Ñ­ÒZˆŒm<˜”êLm‹BË­æk%•wZçbÊ3ïXo\÷–hb&éyRHÏÛ>û´ûö5âVìîß彚Τ' |ÛCë7µ+q?ߨŠÄNìTžûNìªÓ¹w" )vâÑ4Éøha'ìÄÎlšÚˆpJÎÇFì¬xªØY#Ó7|œç¹ÝS=vbWÂÂØxVÅ {'.i^}'²~uìDÉê{'*ÖÒwâ$#;ÑÛ±7;qÒOÄw¢Ìð{+RPÛ[Qi¨|/N^ñשiJû.Àù±õÖ;½Zò ñ­÷¶Ñ>îEYø¬:a±;‰¹ùa›‰9"k¶Ý,Å䙡iµ7_»âb^±E‡êypU¶Í›xQMþ»|^õ5Ó¡rO³Œ­yVw¾n«geêÑ×Âõ±V%»I›Ž«ùØ&™*¬ O÷>Y•=Gº©¤jÅ€ ˤU€4¾»7Ý ¶6!(î­õ¥ŽÎ²“BKÁŸ9z»3Ûl>ßþ»°YÓZ ¹‰ó­JVÝù *Jº‡‘‚X^š®&Òëò^·ÀƒMü@%ôJ}¤¼ØXìoÇñ½¼C#[–e)Wr 4O+•™¿PÕ6ä­“O£7§©&3ªüPM=0”é51‹š«¸m‹!5Ø`zWðƤU1ï‹'ŒæÀcЩ ÒbìTêºr¨°ï%’:Ûˆ6š›TÄ.Ró`.»‰ÇçÙÀYN²†j¤¥!öß²EW,oÈí2IÅr´'õDXØË#‹lQñ9è£ \ÝÒ?37ob8’)œÇFí+ê¤í°ÒéÑL·vl¥Æ ȸåfï+p7™*7ŸÄÛ^uœfJK—*×”7V vB¿ãzš‡\hu| _kb0M ³& ¨Ýž½T¸ýqìzª‰)®ÀFS9ú£\£Ç½oŒÍÃJb:0›NYÑ„.²hÅõ;T(ATpƾž\‘z‹­¨PØ‘çÓl•@ÄH[w•œŸ *²nI™ÏEåç>¯Cä/ŽôÁÒOÈ^ƒEcŒ±º¡‡A'A³9˜/ué’Fwz§]DmS챈ö`û³Ž-Øxƒ$^G¶aèÚÙå 1šÀbôÙ¸ÐDkÐÕWm`×^ª;ìf4Û þ˜Ï»¤Ç¾'ÙmDJ½mÞM¥ø9`Ê÷"–£J)prß\¡)4³Dr‡˜oh+‡0åN!9À𥆀æ) ÷˜æÑ|NþlQ…³¬-‚Éæôï(†0å@9`²†©ŸSè¶rÊž->䀩4±ý<ßÎ$åOdª8“ä‹#Hù,9úì!xˆËÑv9àØ5‚tíqà•¼}‹X}‹ö5P£èSnÅ.LYÜ÷jÞ’:B °@ŸYÎ=‘ˆy´i»r¦ÿm›}ÔyË‹013èÏ2î$R¸çCIüwKLgí&Rº¨ðòf—ki_Z0ÁÙ|ž55'†?E0-°Hc¡n/ß¾,Ò¾Íw!T…¢¼6\SYk]nx¹ÒÚº6è|þEö—3gèq A–]&•=š{¢IÊ}ÝÉ~Ù‘ì.”ª“›,ããC¢ir9wµ-s(¨ô’õ Іª•0ŠÞÑô‹¹ÁoÑ´…äú:¸ÂY™00IC½›p!ö„·œ5)gOÜã¦n‡ <é>k¤L=åÊ↰êYÌ«,ض¡~û¹|6uÿ`(ž@ñ?:»riÝPüÎ\Ú噈‚3K"1€gºgY™¦³q˜¦\ÁÆ=7Þ\bµ5ro:#wL#&ZfÛÂVèb€IÆÏ8~k6ê4M>~;ØÌNG´Òµ¸ fâŸ>”P“›ˆ `:°XÌÚI2ô“ÐM–’=Ækxþ.›·5¦pB#ž‡Ç$¤Õ›#f“¦($ÔÄӷ䨩$ó@s³­æŠgæòºÒ£B…Neç"!÷hŸØi*¯Çö'²¦l@Ú>?_HMϹ1]R༚ÖÂsýÛtëßsò̧fyñ›ÄŸçq_9pa³[”•öìW–BN³_ImA}½”Ù>®•$Ë-0++ma,ob8Eûïv£ÙÛI‚míh.Ž&yï°øÀÐxŒÆlü˹ÿ¥|KåÇ €4gKUY%'[z!ÒÈ éo±’ö÷ÃÚH–˜àô²ª6%ý¢9dx¾ˆ‰þ«„vΨɢdCIÆ—b‰‘,Ä}ù/œ½I’ÜJ %¸Sèõ¤Ï‡©UZµõBÚôýoÜ#¿úW›)  ÒŽáaKH¼«œ$ä b~n#góåÆ. »æÚôÛdB'b›wr«kâºA€Že‰ ­ÿ ¡£X¤®Ë§ŽÁÌuICC»0»\Ìx Äm©±¡uÓ+:?¤òZÊOÆz2(Ào«_ºÕB/3;Møi1àýòËÚÛE§ôPr½c•\F )>ð¦At:ùíK?XÉÀ sés¬éqƺ;÷|܉‰ nF‚ñíI:×Ñèá"ÕQR+ånžÉ‡^çÛ_§ÝÈT útÏÑû-_fÓR!ò¯¹6cNð m¾ÑÌ„‹è1C·pîšT>@pa¸‘±"ì÷×rjr ]:Ñ Už «ŽÅæH4ffƒ9]UxC5@ÝöûhF#è2¶¹X/eѲÌO‹(™h èÔÖC÷®/Cn¼¾ÜçpÚȬZKµœl¢Ó;·a$rv¯$9è/0ä°{„D0Kk9Iùü“ìq¿` ¾i¸ëÚPêðAª&æ``ÙCh°vèÒ9éô'B¬( §ÝÁód¸þE)#}䧯Î Y½‘^ Ò›.~zrXy~êÃÜå©aúj7æÚ@+˜< psØë$ʇbAU@˜ó×W®9pª½.¿¹>é»åPKËOJl!ˆÔ],Iü8HÁJI¤ê^Œh‡ ƒ8É(uyz+ÕqZS®PÂÒ§v$Ûñ6¨Fqw¸0ä}·~ôÝ·ä»ù?ôô£¤°»æpºÍÉ ÇtDÿÍ×pBWrÂ<”²%ÆeÑCï1Óa†ƒgéIJ´¶ºÜ>ƒí«O 2ò ïv^-?ÉË¢Fx<¨‚ÚÄ`¸•²S‹Ã’Q¦ðd¥Hå—üøwúúSÀõÐx¢á_¶ nÿ0L Ô¡…«ìKÜåaPjZ?PÛˆäÃx“î `ÖWê2@Q~@ÔèûölÊ9tÂ4¾§¿~ižtúMþ³=“r#½1Xaº—C³-s0¢ªÐä~¬±ŽÍË ;Ôôt"Šð5B>ÕôbÚÆVÓK§£PÓ›´š†ÕôRÌ+Õô²|J5½lJMs·—ÔËS]ARK.H’;?W¯ ©éèXšjzº6x0¤¥‡º#£m”ÿ‡š^ÊÎ5½ò,¢¥G˜¥PÓ¨5=oC@…šŽÜu«iýI5}’=î ¨iÒ=ÕôAJ ¨ééÚJëi,ŽçTÓî˜jzº2GŠ u%ÅiäÙÈjÚ'ªTÓ˦]¨éµz>ƒ´žÆ:WROóê©§—* CO/›®Xstˆo=«NzzºÆWš!šro= `ª™>êXh-MpSKO7J¶–F€Ë]éA¦–>8ÐÒ3š¶HKOÕO¦’ž®¶•’žK}­¤lÖȱ œ{ÊËÌò+<Ë¿£Ä†à“–Utg©€¬”±ŽëfãMÅe¯ƒÙsÉhU4?¡WE³ëï6ÅF:ª›å“\”ˆ%x8ð&µ,n§XÇ0ìðõ0S‡®=x*=w>ÇÃØ_¯¸sîU¹ I+N×ÃÁN¿éD¿Ù?ˆ…]tŒ7©5¶›ÃÚoð°;Gú,€,w‚ñ~%GÑn¤\‹é”ÓÑÜ!fv niÌYd–ŠÓI¬)6çn½ÎÏÂaxŸËv‡`íP¢BŸ%2š-EÎNÙê moŒb«Ðq¨Çð4Ü<-!ÆŒ$ˆºs§wY Å…¡“œ” CHíMM6eè…–li q*åõÕío–Ú‡»¸ ‹ÖVÜ(µ|q©Vø CÚà$ #èÛæhìzv9•rnäô¬ÕÎ-¥¯LãpÅ×§jhÂ\™î†;¢3CÎIb¢ãP狃¤ó%ií\LAÑFÅd#¨ÇRô¡†ˆ¼~… }†7‹…`W²rJH›Á¢ô± •–7o³"ÖÙ|†j®‚çåúõC8}lÀ‹M×x@dÿaÌæ^6j0~kßOº7‘·œã»,p‡0[@íSû$vÆA ™ýààmØ>„¼‰Oº|˜í\ððw³c˜×í7Í{®kú§k2V(x ®;ých/zbm¿ ¦òäõ|÷“õ´ëñ™°Y.õB‘qv3V ÖYëAˆÉ.¸îÇ“”ƒØ ²\ÛVƒ·¾ŸŒÕئÚ4ÒpÛ’’Šû+¦~yt˜Z2}¶ïôó&9ì=C¥Kr µ QQí½é¹›î«”¨é~¹ÃáÖå‘\Qd¶Ü\ƒ¾Ð¥˜¶ÓÐÄÛRÇZ„šÏ2cjfÓ€€7½0ÎwÒ rã™±Á,ñ¦B¤ÇþãPºÇõϯˆ3ºê—ä›T·^å¹’Œ4‚¤´ù“ç$#b {¸%b´T*£•ªK6ŒÖÎëëö-a{÷´îüä2¾ÙP?Ú¥&«¼/ÁuW[ÔÊjÙO„µT´ñË8ÖÚËܱk)»í@YÖ5yvçß7F{Â@¢e¹>9Kþðí@#N…”Å'ì—µ–é@!ç¶Â{£¾­'I5v ¬ö]¶ ˜;Ö‘Ç«ÕÒ«Ìx]ÏÃ0æª+ît²nùéoÐ: û乚M¬MîÄ›§½-ðŸ|“áþ•ƒ­o"Ú€` |í?1yøOŽ ú¬KɲŒŸþÜþòPÁÂN;Æpi¬jOSøOð|óm"ëAÍr8OV`û^{âiˆ¤¯äÇúúX2wɹڵûþ ðŽ~|3X½ÇƒV¯6íÐiä9.`Eæ|%…Õúdðôö7#ðôPªÈÉê2ù»´á6ãRè.¿“Œ¸ë~›ü÷×û8SíN¦CôÄæ-fFsÁ±Y½GéŸÞ/á²ÜãÃz>õ0P ÉA*ö~0'М,Œ)ÒP±ˆIEøÊˆrŒ|Ó°T›»‹uùvñ¨Ð¿&@Gu8;˜O…%L<^õjl€´ÁØDEL­YñÔ…¯üJZ‰®_¿†€6Œž*–ªó¹ž^ÁÈ)‰[|` QZØŠUc+§M›(ÙUÒôx»‰ˆRÍÙɸã#D¿3&®ÉÎò‹cÌþÜéÈÄXª¯Ôݪ޺7DAöCën¶Š!,-hÎïí˃1UÞy»¥¶/Š5›Ö– Ç^­»…/ L~EϤ®sV&WoãïZÔéâÌÞC0.QYPsNï1ÃŤ²¶¯ë`ôjŠØö@ ÛÃÝØ|ÌÝŸkp:96gÔÆÝ6,'ª}Õ£5]qOe–Ý'Íœæ–Ó·¾ k²Ü‰Kò€º¼)÷…ôàÞPòRWb2–EÕÇ.œuÓÊø\Šœwo,¤ã¥w‡›±£lìX׿·eÿ®ðöÛÞðϯdÜTO,åÓÂý‹1²¶æÎ!r•ÖcˆUü;°òÔƒèuZÝÆª»  ÕãôÚmð㎕Ȅ4<(Ýç‰4¢Û­d+vmWRnwwb¬ÌI¯¾»êQP܇`OܦIusaŽX^ ]_¯œÿ¼{qJYþº ÞW>¶v>}lý|»ü\·—àØƒ’%GO’'ǶÐ;ûcFù8t£øu^N t‹›´ Õ)P{Tëàùo}Îx¨C^Úm|ÞhEïòn±ÃÏ ­_wÑTÞžËÇ»Ÿ¿/à§Û¤g#5n¯Ú£®ŽyÿÊ-°¡ý0 µî§“.ʧeõòûåñöþzŒNÞ>FÏ?_\¸÷>ú÷`KÃÄ{0¹åœ½ü7cïÁøNîÁ`äì:Çd6KnÁnܨ½]³[ÐXűCÄæ¹¥µ6[P®á½çÛ*|Y=¶àŒ%–“x Îc’Ǿ{nÁøõØ‚#· ·ØHíé-oçÏãݽspr zð¼cd½ßç“/{oïÀÍáòHÄLó=v 1Šb çQÄër‘íh$ªý9Ý=ñõÐþ{ÚQ¿/à§Û¤'#^âúöÞqÿÜ"ñû%V^Ûåûé÷4úC\oï¯ÇèäícôüóÓ¹mñxï£ÿ1g È‘ØÕâϯƒQÆ}ÿ`ØDfqÜô™ÕÓ«‘ã^·«” Ó6òÝT{ê6î¨Çíc_à>2 k<£nF 8êgm­"3fúr8=†Ñ_󸵂¾d&S‹{ÉzÜn¥ó`³Ø–­†{¤“ ûEÅŦ0ªA¸5“2ttÆ©“éõ3#NgúÆë'#Dî†M´Hv&6“~mqŽ'Ò±^ngo>.×öc=³Är›pÈ !ä†ÕÍбk«£QÓk€¿¨®î-•Y’! ^ê0¿.·÷zöÏçrÖÃå#Ÿ>×s¼?w—¢± ;à•c'K!GV*ó}.ù0îz™?ÁHqŒ§-)¬‡{̤0ŽZØ£°vÝ© ^‘‹”Êbô”DN}¢W9¾®ì–ãöݹvñû~|?›©˜ˆMû2¼"Ò’¯¼y–µÇ÷XtWSg¦Q¥–ö»½Ž ôêþz MÞÞ#§Ÿ?š‹ïÇÀTs*!ãhÀ§Ä£ôïM«o7ÑoTÑfÖmóœ¼g~çíGþ[l×nïÞ–SF†ƒlÚc›î¾9|$KßtùþN0BF öísØFúû"¢˜î½ÙÒÏhFõ$Åw’‘þ¾x›ü™··ûèr¿­ÂÛ·\kkÆr:©½}ëÒµ³^þçÞÎ>ÿìëÛ”Ël’vEÐeCšž¾åVsáéÃOÙ ÆÒ±KåªÞmxÌ~šn®«IO"…¶ŒáécŽ­¢Ù#jsÿ OâOM$=}I‡§ï`ȱ÷cä~«6ÎÊT®¾äÄ|äM>0äëc8çù¾>BÝûÄ·:´Ã7[yDøÑÊa©çµµÆxnchýή¾ylÂ+ê=—Ǽ¨ÀshŒX@¼I¹úÆT¨¸i­ÀPC´ðöÁªF€PÖ=}.´'åau“oãÏÚ£ß'Gž¾dÈQ8{ú0’MBPž¾W“íœ[*( ëËšx…ëΟ«šÁ¾>ÀmWߺv¿ß›£+3Ü‹¡áðõ½‚_ßtâœ]}ËIöõasT}ª¸¢sR¼˜ÉeTrëÙµ½z®¡<>Ú‡åÆp7[0l7ŸKéÂË—KÚcü¾æ?æ+„®"*cz¡»€FÀ¨L‰_`ŒX 4)câÈѸÇùª×Vm«åy3ãkWÝ ÆÀ.­è®eÛ®` :Y¢ †1;‹¿·§I>7Ô¾ˆ«¦;»xÕLMB¡DD«³§žE.ÕFëyµ4o›ß´ÚPŸº¥@wv{W›$, Kè”ÍXŸBÂ7R•†¯äÖ¬À¯4\•9‹H¥íZ,ûÕÂÖ²ìqìm‹žªþWñyÍ ×sõíg–1Ûµø0Vi©Ç*Âp’et?4: £Î0ltp/ËP&ã8¯;¦%Œæy>) ?¼J݆ &¦¶­Š]%¥þü˜Š™_]åŒOÿ ƒ|S%&Ít{Œ+%ÈbBžÌY`[6߯™{Ágm„žñÜÅÊœéî¢HyµŠlz”&kþjß±V›ª›»ä5s]¤—i)=hî˜ÓÜJEî®ü7„o9jómSuîQ‹(7Ù¬Ù&ÉÏYÙ…¦º ÒÑ “‘Å¥ÀÝ!?ÿß„ÓGñ5„æá·ürt“!0èß¿îË ÷ÛGz£cã8CK‰¾<Œ³!.aMs¸Oœælà¿u iQÄóþňçýÐðõ2^Fz¡NŽ6Õ÷ÁÎ~ 7Ž˜Ú¯ÇLž(ÐZ`áŠ'6/£Û—+ˆíyA0ªtÈ€QmVó\Þš¸ÍUÓЖ7 57µEFØ`LÂAkѰÃ>úêQ¯B4®õRÝy@—›)¤O ÏŽD¦»á™ŸC‚Q@‹Fâôû‚Žã#SX kžn9pÒ±‡1»T2oÏT’Ù¬]ŒW¸¦ø}»W˜ …_¨‡sŠpíÓ<'k[ œ)êØˆàÌøÀÈ»â)ý/ ®í zÝ×>[2÷íXh<¼ýXŠžÒðóÀ€x‰ó+¼TüÕGJ Є•ŸŠóS}¾eo™«X[çáÕú¶íô•ˆYèŠÇ†¸³½±¶e ÈWÅÅoó‘ç˜K=¼ì¬"ùhûÈ[ïõ¿sWÝ׌ƒ·üUɈÍü=QÂ?þÀI©‘ßÚ’%rZ¡°¸¼V #’(4DôJ½Ï³8qÚÀáã¾FnT­hçÑo_ì}õ Žè’î%齫gQî+p.‹›nêKåÎáÁÚt8N\Xûòf¼ö¯äÂLj…ßßÜ®ûMbá¿öËÆ%1ó?3ø.gÖQ9³^{ÈzŸk=V&ÞСµ9rñU8]ö)žÏ¯ítÂsž1DÐZ¥6nÀè6ÔdÝ€³úæðUÊ8cO€žó}B>™ ­ šÉ7²³“1­ç››n9Õ¨Yá5uTk…ïùºÙ ’iÞ èÐùÐÚ4¶sbh_‰ÉX=ZM…ZØmô¥[ ª€òxŽÁ¤á º«Æ^›B•øªyWunãè+AÏò*­´|àjh¿É|UÙ³ ÞI¹D«~ŒoCéd¢êè ™ŒÊ#¹Æ¾éŽ •7ƒ´J‘ÙÜî¬)uQcï' ¾ö£”™&ãïÂ&•¦ùîtëÅ—N P4#Z50m»ø¬l˜Y]¯ÕÔ~ó 5þÉ æ ¿©>HyW•°½¾ö¯.ê´|¦Eé‡R3Pçù¹²™Õs·¹¸ -W‡bD¢·®m³&輋ÿãþpsÞ¦þ²[o«‘þ¦äõ mÏßÌÉ ä42™ŠÆ& Û[´pkªU¸›:Cµ(TjêcÑÜøªE[‹æbŽý9°M"¦Y´@_AŸYM4Õ.µ–O?íA&½ý|ÁÆ„Õ×_ ¤”z~ç/F4ÈnÍåÍHy,ìt@ÇG“bbíõhøL4 $}UõE¸t5m½Æ†ŠA~)y,é6¼YéÕŒÆÖä—V"™d˜ñæ;Oí} üKnñ;ñÔÕÝè*1£ÛYؤ}“êz6 =|+‘ü/˨¡o)ÇôÁ€ÙíkkGí‚=–Ò匪›*ç%yñYغÔ$“€Ô-'.Ø2‚ÝþŒñÑšÓh{ÀÁm\µÑг©ðì•t·›ç`ÈýcðoYb¿t0b¹å->0ä–ÆCYbð¡õJÎcœb4òĘÚ*‘ìòˆ1Çå’/>Å&F¸<Ççúæ`  ˜Ù§B†ã`2Ë>ø&ŸÆë ­6ƒÙ§.ž¦»ÙU¹jUeã[uˆàÚä2[ü˜0õ·?-ÎÇÈ»ûÄfÈ#½gK9îÑÒ‰½[%8ÜîÐdMÍ» Ûˆ¾½t×›äã²tu®±tHw ·èìˆa¾âö÷PSi 6¦Ÿ.\j¯mzÚ%ÝPé%Óäv· Y±§d=xÝÁ|ÐCÛâÙò¥»Â8 3 ÷Ý]<¯ÝŸ|ç5¢M#¯t,hòÛzÿ(_ØHx+¡ sýPëoFê ƒÔ |aDçö8tP7ކuPW—´ÔA] ©‚ºƒûcÖ [Á£·ú©‚`i¯’*‡#?;oR*(ù~ÂýÅáü]n Ëá#TüŽunm"¬‚z³9:/YWê ¸Á×}¬·ØkDÛ4׈ízi¡îìçÔB}8 h-s즩o+àcÈúþ'fœk$è ÀGõç#×ÈÁY˜º×^#Àñ©ç!<Ó^#CÍ4b D2L®‘aàŒX#ËÆ°×ˆº•œkd)6kdåÃqlÒkdýx¿>Ýiä'çXñ¿¹F!»×ÈÒ!8ÖȲ)kd(fì%2®¼?—ÈpC \"Ã`Ôf:éÉ%2ïË%â|¥\"1Å#P˜Žð/}Wézk=’÷6ùzîDÿÆÀq»5'ï…­ãÓÐñʼn{êþ'KáIø˜¦Vˆ£9®`Z€3­ž˯)?\õæÃ•påûJž™H¶\˜^墭Eæ^0jdîu¯çªÌ½À³nNDô©¹ÕHÝ3ºMSéÖp/*ký@ïÙVÁ¨!•ù¹Ýø5¡CU1#à›è¼ñó&šTS„дT?'3˜¯ST6Ø„âŽÛWëZeOËèô±Ð\®¿bžu|Þ8èÒÓÀn+4gîÅàŽH‹…´Ôõ\h_ÌFZÖqK]"XòÓÔ§?÷HØ1q¯yÑHÜkô¯háWåÿÌ´#)íŒÁEûÓ<1k¯leT=ú{¶( ‰GSB¨e¬½f«¢ÿkÒÞ°…­Ã@ßÿ‡šþ?ÿëÓŒV ¿@’Lî¦Ä ¤ëÎ6’ª)™m´ì– NÞóøÎñ#ÿ1Û¨ª\­­H7jª62ÉA¾ëóÆXgº‘ä;ÝÈ)³‹ÞEw´Nl,ôþM¤„õfñä“ýÅXÿš;„”…0ñ®¡Ü¡gÓ¿“Î{Æ‚ñóÇ%+Âm¾G|÷oà@ø~ q~ÜâcÖS±¿²Ì%Yö£%C¶örÑø£âú¶"qBž¤E[sai-ÃmÂÍ·F”­9¿(.ðàK„¿*<ÿ}Üäg0Q¡Ç'F~å6áOÎñÃñ "L˜~Åæ[+ÔHÕD[oËâÇp¹t9Fx¨˜!¹ÜäØôׯÓõ/°çrÍ-â:÷\Œ|èæý‹/¾o’C á5¼1#g‰çO®³gZÝ5Ï¥Ò‘B¬l“ Ÿ$Æë÷Éñîï˜áþf,÷OšÄ)Š´!·„P™aÀ4Ñ $½Ë{B¬0ã\%üÄïô±Lu‹ŒWÌÍ1ŠÁø˜5Äñ–-D39îj:‡!¾²åÇ-ŽKr×û)[ò7,[Ž[ˆóã¿ÿhõó´ïõ|€VÿJ&ºÁŒÑÊÿüõ@¬k“ßmãc}*éçwržKÀÄ¿ùK›ñó6À±þëά@)+¼rÆf.j§ð;½E ËÝ9­Em4œõm?QÓ¢!_8b‹1ºìà ujõí„h VÜnªS"{£O®ÖÇ-?Æl*ê¡`ò_ç°0˜ˆZI"G¤­¿(ø•‹¢¼º@?ì™HQ¢‹Ž#ó`ƒurÌh(‘ÎÔŸH¢Aw¡’å ª,F`Dg7àUiñí ÕXâ•åæbnöT*݃½ypªNãÐ`¥¨Yjæ‹Úu§™TãÉž4‚À¶•Bl˜þðìJ¨ã.,)ü:Tý–\g R Ááýiz—›qø˜ wö÷T>¼ÊFµPjt€,:*—ªª³¢ƒHQ¦Ä‹¯²iÎ$ƒRf`5ݾxûi¿³ðù4Oÿåd>îÕN²<9ñb`åtç“UGÀÏA?À7Ý…@® ƒ{÷ -ô9Û–Ó~ùe'Ó3¾×…p/ºñmв»3J‡2Ž% ð®Š+0ØI¸» Ö)/ʽ>ƒ1™eÑŸÜ”°ëÙoÞã+× r@ÊŠ’gjK6WÕ\¬Xår{ƒ½D!,ËèðüïvªÝ câÌ[þ’ªõM`yõñoh‘¾ûC/ /!¯«†ž?¾ì/êðJ‰òß‹Žï€À.^¸å k`Ño¾³¹Ðè ¹½lõïÉÒÊà ãaª>çëªgJÂnfy˜9Ãíq?ºø*ÕÞà@rÆR%œÆ¹Q ·gæ«FP~˜B?†î·e®#|ð‡þ/-µÂŒÁßéÃ:Ì+Õ±ŠáXKq'Q¿%8àªÁôÌÛrdêéó.Bàëšê”J„zRk¦ ò<IP±U€î.IWŸ; I4üB=èÒãÂ;È>Ük@ % RãÖbÂZšî¶Tš;/Â6$⟶g;{GÒEPâÌ?œnÆ‹ƒ%AÑyFÓ-Œ€¯÷afõIMO)”t9¾P”°~’La9S—³R¤>„+æ–z»¢Ë,ƒtÔw-áå‹ú7tµ6 R•—[ax‡Ùœ/TŠ~„¶H¬d©wÙlÓ­´éfa²’iÎÔ#’ýJnÞ}9ÓñkhmçŽáx5VJ-M“@—úÄÖT×ùKrAPÐ>¥³a›~Ïúúáã<6¬‰áºI9-FS5/™é,è}tbøètO”"éYò`Ì7Ó¶! k™üPpÇ´];U»ªºû ïKã—fâjQ)¹H¾R 4mÑ8'MQ’je34_¢í9žD:^AûYS¸pDßGü㎞^‹–7›÷2èdƒ"ô§$Žûyöøy“q+k-5.A¹•%{a…ì*àŒY¢ ãK[geWF:èò5ªÇ ’…œÉ¡x%§r¹ÎõW(‰õjÏÅclY½—ÀSò„ÈN†ºÞµt¥œ?/–ašâèú@YU¸U4ªZ5/çÓ8¼h7eÑÎWBè,j®ÏÇÔœñveSÃ1§Š q¹ºc㣟çs †e|23PÑë³£êíÏZQ~÷ØøCÀ×SC7„v,²97ø``¬—³1ŠR_KÙQi®+ í&8ä0UX“¨|ê2œö€Ge"ZQȵÉ6úf½Wm˜YNøäâ®’Ïy$ÁÀD3u ú0ºá¡¯-uÉÚŽÌ~9ŠÑCÛÃõ¸ –χ')er0Xé_*‚û঒ «kµqÕŸd¹d€Æ k1Ïý§'¿ºÏ/Ç«Ø!&¬`’öv=3ƒfE@PºÁã‡Å)z "Á祃¢4Þ4‡ÝUBE)«Ä¾»á7V¬Ï>l·ù串¹gx-ãÈË|'ƒàå¿®®¦W‰{¦2¢ôè¦ËÒ6Z°ÜümÍ=49XÁøˆöº¤?À° ì• ú7Ñ@Ù´Yj6997)Ýi¬7û­ôÙû oö-Ô`è¼ÅÛS(å+äÑ‘òá$Ùñ] ÞƒNÍG‘{'…ßùô²ð=òr»]'<ÁX¨¸Ëp/JÚ­'ƒ¥g†!ë}rP"uõ ¾·¼‰:$€„z„Ý£‰ðŽ’®EöôˆKÕï“*åíZH—«A3åÓ}(ž)—s===áìÞ9òˆpÐ=fZ!–±/`N-¿œ«(‚ÜŒ'zÊŠw2rlŸÆŠýîNxO³;ÎÿKŒ€‚‡ÞÓGÒ Ä©×ºècf†ùãȈãÉOß·¼DSh‚„O\tyõüÜáÁ¾ÞfÐ 'ƒ‹½ YK'ƒ©Ã^J¨sm}\~—?–ŸŽ8Ç]Ý<édAîX~†mÝÏê2§½ü|–Šå7¤:bù)7ä\~Cþ†XÙï7²”÷˵‡„—àpà¾}¢Ôt±sªcGÌ÷ œÿ´sý)êXnR‘Ckd¯?Á•çúÓ¹|/¿¦Ós,?Ãûx ¾ÚËp3¸Õ7—b#LÓ^‰ÍQ3¯ÅîZÄXІ/ÜK±ËÚß³Ù¼ƒÅx)JXæ¹&ì˜8l¸×âûBû˜SUäcøþ¼q/ÿ0LŠá6L:Ÿ¤ïñs^ÆZ“·œR8uA]ÙÙÑäWô¼ÌÏð¯½è$Õõ29˜¹Iº¸‘©¾ÌÆv°>Ã%L‘)»×Ä’±• ¸lqÈË1îiüĈx}pÞïññÑ'OúÏòQÜM‚ÁÖvZ¥S½ìxPÔž$…ü)ЩuÄxÆ&u?ؼø¶µN¥ÇбËzJµ*{´á 1I¹F¸ó$ήy¦^îF$ۇ틤âÈDœ’ßE]VjÁÌ)5H½âyÁäY=S¼‘™¼ä Á57’ã zÔý…ýûîvé1âêàiÝKWš»K¥ ·`3Æ?ï !<ÊCÁ ×ãTÙË£7†¿T9´²¹õ–[çéìsÉõ¸ØòÑ»ëýsûE¿I3¦¢7XÈÏ“þÿg…íÖ~¦X€#ÍímEÒ~´`è †¯/‹*ˆ¨é&Ô˜ÌæøËŸÆZv·ÄªRôB"¨‡«ë⩆ú…ž4Œ>ò—K=-j–R®b TOÌÑ*Ò´¼ý4´ÄàÖ—+ž O³#Âsͪn4€‡ýÇRù¿¬ 9ÑË1ûœö\XOgÐE€]ÍŽYÙƒËÄwßÎ}Ó‡Co9ã2Ñ+dÁ”oŽ"gº×ã–€ ࣻû~Ù¦ˆüCAõEq{;ÞÌî8ש'ù‹§ ‡Wz.OâÔÚÂë˜5nkÇ#ëÓœe€žõäƒwó*ÇœÏÛŠDsÉÏÃV‘¡Ö…Ü„daé†!“Ñçé ±V¾‚ñ’õÆv¢Ë¦©ÛÒ_út§®L—b>:΃œZ;l=ócù~Dreišü„Á;'<;õƒòi›üS•Ù›ƒÖ\M-“Œúü “dÑç¸ÕT¯Émñƒáu‹:É~¿‘¥¼_N‹´¥,þ©t›mñ6ðÑÆgÓÖ%¹ØËëiòÃÖ÷Êñ~[•Ë ;JœH-O®½؈sZ¥†Ñ¾z—ž"ls6úÚ}17ƒQaaô“Ôóæí…mh«Ÿd8Ì8æ…Õ?u²'t¤V¶Õ?ôÚ;Õ^–“Áƒ`ù?ÖÚ¿dÕÆÉØîl£î` Ë}ý(Wî#ÃÀ˜z0õ<ÉÇ>­°OèÏÞ$ýÙO˜+#|TqA—?ûáÎäP+mž -^Jò°ÙZ’Ï·Øþèá°^ªvh×p ðc#=j;¿f‹¥ÉÑ˦=Ð-¯çÓ4åº==Ú-½#8¼vÏ)j`º/§U¦üãRU-Ú†W~Ÿ˜já«LñEñ¹óè!hÚ;ø4{´ î:48ü…e¹{Šöh z´on*ÎÕö¨l‰Sw+­–æ˜Ø´iÔ¿9uD’O›îMY–ÕYÿZà}lW)¬ºâÄóâå¾.G§™­6wÿÚVGz3€çÓÚMiYÏòéòPаê&1ùè²ä£“´C{3A)Þ·îñã›ëZ†Ú]q´G‡‰;PØwÚ`3Ú5½Qòä-rhÛ#þÌph³žÏ‚»”×’íƒì+.ƒã?áÃ0üݾ så 6 q£GÛIÁ&úGôþ¸ ¨zéYQ^ÞŽ€ óy(þ#?ŸŠbXr=çŠ{«ÏY—¿¤•ô‡0zL„Ư´_ÆÕ{üÒp]W>CKì'[(®ôþôté¬ï¸òüâAP'é=ÎˆŠ¯O«»å6Ÿk†¯ƒø3=Î,Ëy-ïn- C¢?:6®'Ýáß%tª£›ó¦º¸¤Ò¹’¡] OªŒGÖ)~®ù¤Ï†ãkì£fm±mR¡,&í¿³\Î Ü“cŽk6üvÆo¼˜4ì¨Bײ Â­¯œ’ë#|Òeóè¢ÝËö”:!]\3ãnÑž²Ê,LÆëà ’Z#q׿y×O¢ ã·°à<ý!àö½†‰ÚŸ¦Ú’­¹ù-Äk–Ñ~ß­ívª 88Í`·430˜xPÇ[NߟȮ·P›Ú°ÞòT†“IµÚƒ°=.`Ñ2n÷½ÏšÒ¦økú"^,誋”S·{_&ÍìƆaÕsôñ¤ñv (áo"NNJÜäÃS=rbéœoŠÏƒ†¸a,W×goFÚ—·rOš|J ÙèS¸¾¯ 9¦tì ¸!o¥¶D—Ó;*šÁµ1¨fD â£AÐXR†ÅJi°Í®[ÎXT2UõpËÏBÿê­p/ñ° I£_Ñ”5ù6ÔÍ¿ß8BÐ ÆÄÝQwOÍq׿¼§³ç_ÑÊñ¦YÑ•¹gÂo™ä—ð¹ÚþÜø¤µži’èfz=ß¶ Ê3/ÝÈ=ÂpàÃË>9‹ÑAˆqý/½MSPð^¹)%=%%C²;9°Øà˜(–FmIªå½;x™o¹ÚÈ·YÅ}X5=Ó]=µ´s¤Ïµÿ°çñ†”¡~ œ°º»`ß‚¹¥“1uîÃ×x>Çè^E\š ¡*ù«Ó JD ÉO©$ýMA(Í}k`"yY Í-ÑýTYoÆ‹R®ôým¡±åͬñµ]‰ÑùhR¯|ôcñb¢ýÚù핼»í•?cª‡û1æ_ûu&½,ÌÊ`ð–‚ç‘@¿Æ¨^w4'>ÕКáË0ñÇ+ˆPŒKçÃã{û‚ë™ÏJŸ·[?63ª`Ò¬}–kÔŽ Z~Áü¦¬Mß™boÞȦIÀ‰*KBÐϽ…d¾—¯|k Ù”Á9f–Ñ1¤’g{Á´ØI1 ©VJíwÆ·òvܸÉONÌäÇd9«(pÑ;¼Ê_k{§‡Ö2$ƒí¹¸`Ž£–Ãfxø^ÓæX Œó€} ÑQð¶Iõ ¤G..#sô°òÏC¬CHWµFhÆ­—ný» f¨Îu¹h9©•S`Eç.‹aSáUPYKÿëžÛžxTá9Ž5ÑU=x,‘êœõ¸  ,†+,“’òå‘ÄŠ“9>ÕOü•¤åaûúu0¸í‹€·îîpl¢ì¼rc9Y/vòZ]Ùbòc÷ò:ö­Ã«‡Öšê{Mîš‹L_ôfÜ ˜±Æ¼ú¨Ær'X^Ýàþ÷4ÖaÄ%®þÓ zd­ÛU͸µrÔÞÆçUá·›øÄX²ì'LJwûÞ¢_ÓÅ¬çÆ“.ðÛ‹Âc~—x•Éb8Fûò?Û¸ØöÖYŒ ûºgÓ¨4W¾Ž_¬þ²YñŠ6èn¬eM=‘%µNå‡ ßlFÿ¾™´Z+jeAÛ¡pÞ6Y ÆÅèü-Ïê«T)N÷&ù,Ž\ï .7²¤rÿ¨RO'—|ì a\")¤iÕcæ‡Ó°oÕòóÙY-{ ê‹#u‰Æ;fkE(‰Î|–~&|´©ÄqE×O«j‚"mRew¯ƒÃ¼Ç+Kík†3?ïÀÙ.‰¿Ua1nçEYBInëÕ¶• †íòÞ4pË'š`ÒKnl+™Ê²âÒ'ßÄènΦä‹OUrv[%•u ôÚÜ-`ÕbjZ¬©xVZ-Ã}–ÒjÁ2ÛŸ§¬ßÍKPâªÙåŽbù-¤d0–šÚû KÌ[0°Crœ¥û1M„¸³…¦‘NoűlD!ê2ÜoëŽ"T¾›Ï%Pã,I@&r¬ ¡œ6u5R2ë•Öýêö`É«Â[¤ž¾NF[´ðú©Ë&¼3.Õ¢ÜJ‡J*Ù=Ô0"%;^µoQy"<è½bGÐ5EëmþúÚ²En£áf·@,™^!«>V–Ö´w²ŒªuÁæ uXú-Ô5üd¥FýMô1©«àä=ïœ?òºGN.*Ef&TŸŸPƒÏ ±Ç$†êï¬&¡Gf"ÝËËvºáQnFNôÅã²@êL’yòñŠ,’n4˜Ö!R>Ëh—h%>”ÌCQ܃â"•S??Wªh~[Y'y÷+#~]aöW<Ý­ÜÈxz“_ùvñ¹ßæY9§ñ)¾rði<÷Ž…1•#Ž‚d4¹ó™`éÇÃø–n;Ý‹¨Œ˜ Ÿšà#˜·ƒ9–¥xØ®mºæY»R–"§ CiÊÊî˜9|ñCeÿO;Éœ 1dùÛ\:,¡û/¾ÕWþþ#'y<Ý£Êäxz“H¹íÑ÷·3bdm`t轜#ÇÑ[ºýÔ\èäÏmñ1§Çîrêa–Ëõ”ç:Ÿ TqôOŒâJŽ<÷S ƒv×÷rŸn©)ÈÊTƒµ°r¦R _aÔ̦…I•úü\5]<â3……µ10ShõµÏœGåiñ¸KÕ‰A M&ù~JzýÅÙ²øÎ_Œ{ºuŠ÷TºégŸÕg …妃„´Ã]µ˜þä¾Eû4ònÊþÙìˆcº‡eùì9$Š,Ï[È=ÅÂyú±þ¥~/Ô.~÷ϯd,JoXë£sC¨~/8‚SADÊ ÔoMëÊn`õ¹ò¤ËlªgÁ+Ü“HS¶;h5ÍeÓX t…·õžjOj¡ÅU JoU±[¤ž¦«gø'¯æö¦bÄû!ÜÞìyãìe“ßùÀ@"­†ý ·©7:ÞÁ¾žãk˜ŠLý‘‹È¾ dò_f®¬¹ÌAq$Ay7!Y…΂DæéܪŠ;¦âä}ðq äÏúcF‹A¢SÜ$#ÇH¬÷/87Ë5?7íó™RâI"­¤¸qD=Å "æõ7«æ øya±ÅÍrÆà7QÁfqƒ˜ù½ÅÍAJÜ$#ßïQ®é_œceÅwþb„¸Y%â7+\Îp+À7xÅ‘âfÕ¼=Å ’ Ni³¶oŒÕ¬Q ÙrDV4ÂTQ…¤Mΰ¤Íð/=üž²ÏÙþã 'Åm0nÕî3ì=ßFhÇ­÷ Í âÈ&Ä%ãm¯ã‡²=ßû%ñ°1òa?%=ïãp lNxÔHÏsÌf®T÷2V·¡¯È9ν.z˜-ë¶j{ò†Z¹àäÒ×½þ´¯Çóô #¶Œ]쓞IÞé %NÎÅn|·Jlä&à–ÏhS/‘}ˆqv¹{~…ŸdÄ)å(à[èஎLÕEtˆ\ÂÈ gûàuûF§[bUkù Ø”®ÿ ÁAÊ_p0à.à×oKNº“ÝRp{ ØSй°ÏYIŸ(Å:Ô•ûŒßå»ï+t¤“߀C9,ίéÁîµmY¦‚Wø¯IÞ6ýeœoŽ`@7¤÷€÷|"ly{EË3ÖrÙ•»ïà,߬Ú<£ùÞl;2¢¾’>¡h¾Ž_|yðn2x†½4þJ9Ù´ü'§5÷¬>§t¥ÄÏÜ>6P¸Ê¯'} LóÔ­_ÛŸ wõiᎶ „¡´CAÃqvo™jG|ô‰dz® j=j‚%^…×ÉÂV”]Œè^j~NY„v¸8¹C¢sWÍÓm¬wÿµ/(>"®ÜAøûÚî…-Ÿœ§r1•<´ÄO‘÷õ X‘Y}C§P¬ÿó×÷êÿzõ6„Ì%8ª?JF*›ó{süÀqÂx0~ÞЫÝùô*Aì=¸ö®*Ó†Œß¿Øáà›q-+ Ä•Ê8®` õ{v7§…öû;ÃÍ Ðü½Ä7£«Üä¹µ‡Uì³ÐdOmø;ÉPvÑþŽ{ïì»"XsüðÛëýKé6$,Þö3K·Û“´«oñìÆ"s¤B…6ÿ ˆÓ.·H£VY Ö´ª¦õjJñêÂU}Ó^ƒ¯ñÒÕG$~ÔדdÂØ¾Ž VÑ·pV$Œ?ÖŒ‘ ‰æ‚êú\`¦Êbã«:>‘óûבc-þÒvÿ0jƒÃÿ1ïJ¶ycà°Æ(¢uá:hÄWbû›JË$v¹'—®G²OPÈs)ðÖ¥Û‚üâN€/ÀÑ·G ôWþØt7 h0 žQrŽ2?>­Â¿ 9¤< š‘ʇ6Æã&-¢o Vþr Tpð³1Ù‹2Ý¡¼ 9þãø\õ»ð¡€w—+z¿Wû¥±¢ÉÖÞÈáû•)z:¢ôçÇj¹w0`¥vÊ‚$f¨ôô t ­-äd¤£~_¬ÿD4l$ÅI¬3é—ã_¤/î¡¥·j5¢–þá)D^}·p¾Ùf‹9|1ŽZM…Öèª[W}ŠX 7;)õ{q¹-q@…Ú"Ùôƒd REÚñ¹`K^¼½¢½ñÛÏ“áaݦ\WÕ ß»¿‘»²¿þv©rÍ7 ðïK’k©ésÉ$¹ÅçrwãÇný˜£ž:\îÂP&ñsé˜Ï-¯ žŒéUrÓGú›!¢;Ƹ¹dšáŽc Y5Œc Hä S2 A * ²‡9àC?±'d¨.+B¸Ô£\ uÏ· *Á¥ñ`ˆ7¢œšKçŠÆ-l¦šð+/¸ˆå;”cÎÝ®éº$]•s9TFùz·(ä¦&xø,uXX÷µÃK`tE«ºDYP‘T|ü¢’<šTGBÊ1Äybƒ¼iNQë[ˆ*Q•B6T‹Ö³VJu wt^Še¢8ÝÞ²ÈçJU '\¢ˆñ"«¸Žë\Ô!YGAªPHŠž g´«Û £)#6ÿ’fc´k6ü-¥-„%êÙÆ8c(%öĹˆþ¤¢œ_ä7Õ3ïW«Úsuãà{2Âr™jþԥÔ4mZbßá1Ónæ…1â&_\áõ‘ ´=ÂgTy€CÍ¿,<¶çØŒŽ5®Ð½­‡@ßö.Âb9Bk9·µUǶfÔäØÕm ·0޹­•ßznën}r BöZîkeXûz0ô²÷µük¹±'½€ÇÆVI[îl¹ rg‹Œ mí¡œ¥ØÚCi@±µ“Œ­}0: ðÐÜÚ8vöP¶iîlyäsãvæœ;›`–Ççcì}=Î=Íj‹ÜÒj³;úuÐÚÒ›æ–2rcK‰ÛÜÒC5ú¯ÜÒ]+Æô}Ì?†=*/¸D¯X’qP!ð(ûd~¤¿xQVdÌNmb’·á‡§Ï ,T=Èþ¼‘ô½æk^ž{€]`yÂcý‚Å3%?ó3on´}ЙOÎ#?|rÑ1iÊ{¨S”"•%Ë)ܬx¡«òQWò·)ñH“q{äfyùÜÁ h8ãt‡‘5ÆžŸ·xoÆ)p˜½[10Åb…¡úÖDœ@<€»±:DÛfìÇ&L+,æƒÌØK†*ÉoÃG"‹áeð8éÈ01› µr‘pï+0,âº5ÈEˆebHÜ6 î¢Z‡hRë!Âçc­2~ÊY &X¦C@bÖ®a¯°¤¬3ˆx£â–ýä¢R¾ov(“8o¼ ž é×%C9‚S ©ÜýUaÛcïéÉ©“A\s24 DwxÜIG†9I '·75z/’5íú“$Ø0nCbõ[Ö`)}“¬D¦h!`Ò”÷–Ò„Ï‚)Œ³vÖqãœM«užÍ¦"ùíÆ­Ì#,îNø¦)ýÎCK›‘ÁU´óïchb¬‚þØ nënø’Ñ  è©Í_ùãÒyÐñÃïÑ‚ÉÂüå›Ë]>‰"v|üøìIGñy$,d?=ü8³Ë¢_4v§ð8éYŽm‡™,ßǬ¶r“¡vŠÛ¦šR C_-ó+.ñq¢P˜iÜ‹Ív+<à*RL0¶wß[ uœÇœÌ•>>Eâ"ÉÆÔä¾*4ç?6 È¡ò’…ó’»™BùÇ´¾>FŸ< 7 ®?¿þ…§‚}Ø*(?o߀_´k=Âý­¢]‰é`|ÅÑû%,Žo†Áž’ñB„¡‡5ݳ‘):ï4c1ûí;îñþ Ÿ^÷QOïçÒRýóëQ¡ƒ'Þ%§Ô-)qÑ0ú:ð×ã:Ùçö¡H~“GÝ"‚äõjþü’ÉíæïÛÐ>­ÈÓã&à+N‡*ñr óARš~C"”¥¿˜,Mž¿óã¥#^¢SmÚ0¿,_שÜ8¼"õMuö½V­ø•¹ÄKJ#¸Êù±mȰðôÞ6[žÛêùf½ñ#ÔþÔ¤ ‘I²jíÇô~\ñOµç<—€ºeåç,–@•¾Ýk  ©5×€ºÛç‡Ç8×@õIÖŸZ{ ”n¯Sr „b lRk ¸3§ü{8ó“qLyñaúãX%_‚k XÌz „5—k Úík@9W9ÉUˆ\Õ‡»üX#ì5 ŽYç¨{Í\pÙs^•*ûXïóûy uŸƒP#t.ê¨Çf<ÂB'‰É튩­I<Ñ~MÖ’?®!YB«;H¹H‚èa&–Ú¬¼„²Rmb.Á@d]à¤~™áR“ßW ë•(ª’³7”´†áÖUáY0iÓ?Ȧò Ëï_?Fî7®`´p îo"N®À¸ÉFçI KÏÈî€t– ñF¾£BqQqG¸Tå~/?Ò ãXPÄPûse\ñÛXÈnåǪu\mÍ#L²×£ YNtuSÈhˆ­ ´ræ¯'zG/Á:yéhiñ  nO A õ²õ6ür ŒNµx0øôè|FqÒ9õU[AµN¨Ïo·w:|EÊ!¦pâ³ÄÎi^å=Ô?­Œ¬ýÀ RŒèVZäM¿ •W¯’t 4yæ¯Ë fðYpáo~cZ°.ô;—7a±”©~¼fÁAð2°[Êdrgäõü|ØCyÉ2·–Q8øc O÷¾î?y €’¨U) l€j{~[TE>ÆÛp6å6î |´r¹%ûb²btCâá€âªiêÑø¨{œéß›–7æ{áW£&w›Q\w²T”UÜ:iɤâÓx!£jŒç€éYä®)HÕâ,ò%'Ÿ(' 5>ÀSŸC #­á’øòØm—WÑo3~ ñ'QÏ–™Ú¾ Ú¾¸¡£èß']˜’Ž~w‰Y"Í–ƒŽæŽ_øo5 Ũ4ØØ„ HFœU9ÄF,1*£kú¸®Þ*äI)_U…D•ó­’ªÓƒ€äqÍ“Ô!ôup«ž_W–`Þ^æ_þy>ÿ·ìô³½â}òᗫ¼ïï``*GÛïÿ’äòÐ[½–fÔ[^ÑK‘Ž*ÏÇe Ÿ°Ûˆ!rJþ Åá •šŸ Eýmš!0ÔâöqË_¿©ÂòÙø:ùè·^ïoûýö“È¡ûÈT#|G—Êjð kF£º¬«Ê$p¿ED…ú8‡â¦Á_p7#})Ô¢Wrt©b2ëÔ"-}hõ¡g .õÞZÍ‹…ÅêKb‡£3mÄ~‹XÜÎZcå6wÐ€ì Œ§i×ÚÀçÌ!(ÍAyä7ÖDU5ž6†æQ}ÜŠV¿xI¢G+•5¨¶EªëMbª45ÛXù1WŸöwÔœå÷lV¥<¬ÕIR‹µ:çã’_£Öcµ@2ír©7æA*õ<Âmó·iÀSu¡`DUÜ)¥ŸŒ¶Í÷ÙÅÏäÂfܰê,¾Ý•¸†-ÿڕ原ÿ^¾µ[ªgã+é|ú͠؈¯+ÕÖ·ßC£_åÐééb\ßýkÓRïÀ˜Ö,œ­Êó¢ö”/ú~gî)=$Þ`íZA¾Žw‰ ”8ï¯ßFFòÝ¡u¿[hDle?]ؤ9a³bâú¶i«ª—ýíZóÎtjä¿\ìDðs•ô)ø¹7ƒ/Æ/¿òµë1"üͯjŸ¿†óÇp<ºS(]œ®KÅ¥+Nî\€ÚlÍ(Û©SúMõ-u¨Ú—Ôa“;+m⛆嫹TÓp¨sKD1$Œ8*„em¶·­ñãu>+©û3MÚL·ƒñt#: [ÍC­:rÑÅÚÔýJ‹È:ϽÝ€² þž¢VÒ?Ex õË1ýj’¹˜ ÕÊäPŸ_`t‹e[¾ÉâXW&ŸLþv|Û80%>—|–Ëö\d/?[¬Z=ùÞ~¯üXoMòÛüŒaáÝèÿ÷¸éŒÛcT©¾m:w£ƒÝê~Ÿß€¡Šû ¯!"Óa\Z«i$BÍ·â>sÞœMÙ­¹w¿i¦äÆÇOžfa[·GÍ(×°‹èՌֲ”åÛœ¡‹ü½ô“Ì‰Ø ˜2þ¶L§ïÍûÛ Élóö¤Ÿ¹)³9v.¦Â>5mdbŒœ±š›ÇeO†¼=9>˜}ÿL£ÿŒOƒóË-ñQN ›žáiC)ûf4 cxcZ·Îo ¹ØÓÝÞ˜ÖÃu Y²)ùb6 WL€y…+&€¡Ò®ð¾,Â…+R´tdËÓ”6ñ:.`I¦1Hõµ'Cfz4`’7¦Mûè9(yc’Η#'üía;c‚‘6nñ!_L›v@ÊÃ'Öû|Êm¶ÓÓäcW RŠ}¬äÒ>ÆÖà·ýy×9Vž˜Östw+58‰·flN»bL§+æ q‚o‚±'¦…(1DÁZVðÄ4·5•¯¥}`ïCOOŒé×öÄWp—M&mÚ˜iÓyÅá‰ùf(‹Vj†°ÒÕÒ†·Xöáq}ÚsG5­`;LË{^`5Np°îåðà ¢È2 <ÈÒ÷ãä®Ýâ²Ñ4»aЄ¬Ù}{óUj¿éÒ”2ŸOÇËå…i3à rÂ`û B¬²\ß|²·Õþ/Øc#¼ùtö÷ð)\›ÅüDëÛþ8Í(¼ýÈNne{ûû![+³“qÊÄÙÛ6§?¼3{ûû½Åôõù´·¿+Ñ,¼ý`VLÜ»·_é3ycl#Åßù‹±½ýýΗ€ˆÂ3=#Œµ~;Þþ.GAzûÑìpç÷ÇÙR1á™àŸkˆåîIç]ºû1%Õ†åukÂF./N¨ßoz†Îþèîg'µÃ„Œöqø€Z.$µ¯ÃÔ‹p–:n˜_8~á¿ù€º3ê|°”àüú3€PuJc”L) :2 㼕2 Ó£ á9,~)³vÙc0×N½™!@$”äks äGVÛÓÝ鑺\`äãòÍ @˜_\E©,m­è¾ãâLHj$ a©ªv„ßkzAùÇ©¢IÃòw( õ´$2%8?=ÌÒçÎQ Ãñ+F*¦ÖSZ xЧÆIZŠ—&a¬PaÃÂË€2‚Ð^ÃKO§‡ƒNÜ ëÆÀJÝ9nÎÏ0òJ“x(—Ø?¹Åœby6„dLƒ’] IcÜ÷çœ/cÎ0ø‚JÄ9âé@ÖoJ˜JÚ¸ú¸¨ã¡¡ÍqñNP±b±,wu¹¿ˆ.õ¶>æßnç¿òØÔÝÇ`ŠAdˆ¶7ÆûWÔÀ^†mxés¸N/]4`Jñ;\Ÿ»Ï¯è4tjR"&LLFx|“}¸‰›¼?ÉÇžpð[ÆÍpÉ["´Dš'µŒFV·¤ƒwÌo?ñÁxª#L1†³z˜ãUÐÆÆ[rêIŠœW 'h­3¡$šŠäw ð°¯`¿àùv“¥F9ªs¦kÌŒÁ+¸ªž¬ž_`OžyZÓ?Þî#È‹%ópƒ‚þg‡TÑXÁ} ?úÆö~n–\©y¸A§†þäéæ u¼98ß°±Ä>Þ,Cråñfmw)蟼tzYOF%t¼ªoûxƒ6ºNÂÁº_†/Ìã {LÏ8Þ,eøxsPÙQ@Œ8Íü»ß‚g¸ÏóMrbJò&:à,Õ'e°™­—$&rQ÷ 'iû„³Œg)ÌvÍõŒ6/·0 j}G¹Šqkd~ £¤kæ¡Ì,õ_éý~K•ñãý'ÿ Ú‚ 2k¹…ÖæLKn6Œàxãt]ê~q¥&`áÓ3Pna˜,!A°®ÞR­¦ î°†a f?®xv(âÕývû¨y3–mÅ>UÓ>Ë@y ªùŠú“#Ô}Ç7ÑÄ»N ½Úã|Hug}~4c`¶ÐòE §(H€íu¹½Î"z?ŽñX†.ö³Ã&lÛemj¹ÂÁ@Ê—©„~».E¢­“nuàd­: *œÛgà—¾×qÉãœ1à ^Oæ¹È!¬±®dôöë\{žkÑ3ÚŠs©ÛŒd»Î&^$"úÉfíÅ_ó“úøÙõ`Ê…“žïvºrˆÏPòŽE „:®LGµ5)Q« ^t§¨ÎoÍÊ|¸ÐÛÀ¯½¯•nçØÌ+n±uÃ[úÆ™ãÜÌãŸpxrÁ«™Ø¹—‡OpÚÉòáï:wÆcìåéÀľdØ(Ñ^žiôÄ^^,G8öòòÆ^^<öòæÄ^^jܲ÷òbtï噾ߨËSƹ—'3‚޽<‡xìåa³5®Î‹½Ü`uŒGÏ7al¯.àRíæM®ìn"ÎËš7ˆ¤TîèžN³ØÑÎÒíÌõÞ×ÌÜ­ØÑNFϽœ$;z¹¼6vôKCþkoè½þ´¡ß×£æèöÎІ~‰¥—Õ†^™!¬ =3ç,6ôÌ[iê^.ˆ;Ó_Úb,FöçøØÑã]0yôʹ£»³©bGw;öŽÖ›½þ·[úŽÒ'ØôØŸÉ}ß%þæ\ì;„4úüZ°‚Ã4ËŽ ’î  ±›rV w['¶%Û–Ý·`¹-Ÿä‰T…GØ6~¸`íÇÝfÈùµàÜo;>K¤pëÖÖYÃmØnUvp ºþ²Ì" U¯xý¯dCäzï¿{¤¯ðbüdyÆ~ÿú1…Ÿg¹äÃñ øÜ7ßãÉÐÁ6—‰£=ïbåÑ%û¶ñ¥·úoÇ}âîy(¿ÿ\Œ ýõIþ¬U múð…çŸÿ“(ŽèuйÈ,LìTõfš¡ÏK3Íx!í¢© H¯yœk¥ùb† \µ2Ð^ª¼Dȵù&_Oªñ×¾žPt¿WÁ‰Å–A о`å›Áâ< ,¿P¶y_¿~¼0-™èZ'Ók¾¥byè Ž+Ÿ}I±'ä·,ÆúrÿD• ¿<Ï"LV_Eýo@ªÌ©4WV¨svi )Tˆ_¥y@»›&uÄæ|dŠ ž«z%Ùøk_Áàã¼W Z„Œ‘<êÕê& xœGó‹PV1jOUŠ2F¡¤A«Çæ %¦•…tœ J ¾Ý"8XjnTŠA@çö-Å‹þü^UÅá“ÌÝeù‰Í×LjF™ª‹Á;MæOºtÌŒ2‰ÂQY„Y”é_+ßóû •ùüâ þÖœeÈñ‹ñhod¯U׆gQKQtž‚ƒV¶`ü‹A§@> ÓjLòb¢åçêÏ»} Ò²¼–ŠŠ ‹T"h,á²\„£©D¢%+&ø®M×Ó“ìqa:ß9rÊ«-ÚΓâUe 3Âfzo4 ,0³zŠ:Ì`U™®cBb#VØô ”»›/ÿ€“ ¨J›ä·â*j,$’Þ°J¥ p®¨D²>vÒ—EVuœ-j˜Ë†Æ´†´êú``hJWšÒ¿°~yS«Û‚ãi¨¤BÀ í »–]™¹=eú}ëwÌàh q ûõñ€Jâ Ìä#j®ƒRp€tCSždéoŸÖñ~yÓ‚bMDUùA4ŸE bDžªö4˜Ú¡Gƒá©…ák’S)Y*vštŧ—_LåâEéÚdÜÜ:õpPÙ…Ž>Œzƒ•¥CôAiýæ÷¹³tTM¯²Ð±®Š's¾´ôš8Óãë¿EoY~X‘|yÀà£F•~n’Ž_¯‘5­½/Ðid-s· ’ú #Óws`‘‘,žw^/EÚìz­ÂªB,Õ%¶Üúcã~r‹aÍRø :Ò˜™«+ »ßHcd1ÛÉ`3BnÂì‹äT#ÌU&±™¶úþ[‹×{¡å‹?³iûi…™Cò‹ÊÉ•‰yRƒÍÀ®{Õ¢í d³*p¼½™±‰MW¦†mÑUåg|ͬY桘ñ—h»„°«å‡4„d&ö9‚—¤NÕóA1BÏ m /œ“𭦀òy´6ìÁ¨¯×h)Q½ëqóæÂ‹ÃcbøëêÂDüGà ¥â<ùÑÞæòùÇë1fûQbÿ^›¾§Ÿùs^T²s•}ÌŸi"J_×ÁÔMÓÕEäÒ×5¤}(ì:„ ©ÇÏJ…}RØÊä¬[aW¹0¶ÂΤƮjæ FWˆ4¶ÍÀÔØuJ;JaWŸ–CaWCùXaשü×PØß4ý]©°Á°ñfýü>tÌÌ•9¾¶`Ž%:-V©±« ‡ÆæÝÓ㥱«BcW£ÏX!Ã’eM\ªl¬–gëpd_wjlXþ­*»ª B¨ì—×c¨ìƒô.ß ¨ì³TvU©Ükëì*Økìê8¶5r)…¥±‘@ýŒd¼”R]-¨ŸÈ±nwjl’-UöAJg¿ÈY¡´O å-YãÌhZSK6¢”v­ÐÙuúD!] *ëuë_òÚŸÛy%]‡Vs(läõÏÔ×U…f¯Pص[¶…ÂÆ¼~(ìÚóðÂG>KIa¿¸óSaiá­Ô×UÙÕ©§5ôu]éÏ –üÕ¡¯Wþ¸ôu»¼õ¥¯ÛåÍ*}ý:h)ìƒÁ6±—ªû­¯›Ìƒ­¯›*_¡±Û•’Œaßwî'ý!;؎ª¦+#8™ó. !F™–¶`œ€ŠÃ ªNWVFúc!‰\Ë©ãò­ö¦2ÅEªYj©É@Ö¨FD˜a¥Ûú5ç^^qZLQeBU§q“œ.wŠY `<7ÌŽò˜µ‹º¡·š dÀ¸Õ#ØÖ˜S™%r¢› R1mk ©×ŽJ döÖ;¬ÍÊÄß¡ïËÚ¦e^£ÀGnfõA@_²ð˜üJŽT1&æ’ÚQ¬°öUÆKx(ÒZßG&£¦Î[ 65ÅÈÏ ~ ²°B@Jú‰¶i‘•îSx3Œeì³ÆÊã„ÛçÊ ÷]SQ§ìŠÅŠ„°Ù˜tÛ¼LŠa£Ø^yÛ]­y¨‹Ú²»¥pÐnß¼/hö°[E7ƒóáדÚTþ ߆WyQÇí Ã%u0°tšSj Cáqaäj}¡MA¢*½˜À|U[·ï¦ÆH¹£Ý+Ú-w9†è^lá‹îÆ¥ºí¡oif<4#hP«·ôU-¢\¼ X;Mt&©×øòþ±P:Íu¤WrÒŸ\Ôxñ1“üÊTk3˜‡Àce¾-JÀiƒhGHXÈZÀ‚÷Å|SIªWˆªIHÖÉ?N$ýÉ=-ó²mãdľ´Ú¹šœÎ.|y é3]ßOH@²Ò=$æÄ¤ È’“ôfð@Ò|áIg‚é6Uú[;ƒÒÚH0ͺ[ŽIw&jžHúcó:Œ¹®ZÜ“VŒ9]€¶q éWž?tfè—å¢$D[×Þãä eŒú<‰ÎÎI7ônHÀhÏ>t#Ÿê@ê< Áp9gÝ}Ûó6Ù—M¯\†ä9kþÚÇkìcF´Á|üýÃÞ«c$ÐÓözMºm3à2ö´0¿ ÙG‚OCf´yP*X ZŽónlTŸ€ŠÍ|ZÜØÈ^)u½7W‘GDx¾—Ï×¼ ¸§P§¢°½¹ëZíRW[I üƒV›d´„ŒHWt›²LÓß¹¦äOú¶”{øâ<®ïã®F³u{`þ$Ä´xÂ÷`¶ _Îán­Û Äj­ß§Õª,g“š'bÓå’ç=NJÒ ¸[·+PÕóp§&—ÆvÓé®;ÃâhØíVÆ×‡'V9þ]JÛTðì]ÅWTⓃyÛÓà™–N  7[‚b¼©Þ>`šëÛÊOî.lóª;§˜‡â ^Ç"-é)fwäb!Rå],•šc À5¬ÖžÉ‡¹Âotw¦Nn3ÐlµÞl0¢„jª™©}£œÇ¤5NfAž×Ä5ó1ÿùI ÑÔj8¼–±ñ¤²­!n !žÁ‡Á:å4æÔ¯rˆ4àf·¤˜.‘îïô áǦœG¿hEì¸W°)•ê‰èÊZ Êv’ö¬[¼ÿF¦úew2VxE)ÇýÏOšñsn“W ÛÚ-²²slœÂÔ¨ T}j{r^ûž(žÈ ÉñÎÏ×ýFâ3ÛŒ:€âË'Ëd\ê 2΀ÝÓ³'÷“t„ï#Ó\Þ¦oÆ5¶»iT;0énÕÓî& Q·²ÝM£¦Ó our7 vÕ¬v ÛÝ4Ôí#½Mù{ô6 Y‘!CFò!R†ÛÙåÍKÊî&bfß©\Æv5¡@’9\M£§,ÏÒqc‘@DÕäjjz~¬Å€C>²wÃÕ„Gt8ÖÒýûØÁ¡Ñ2ø#Wf'¤bçpG4RoÔª}–áÅѹš€3>u{¹š°Øªn€ÓÓÓwtÈô¶ß\MXަ}ºü㳃ƒChÙ{iP ž]-UåJ-.æ1¶u‡†ê4à8Ó¾¥ÞDú˜:×Iºv$,~…‡N²ô·Oëx¿ ä-Kîš¡SGxh´ÔøSèØŠ¯È—4šéálÂÎ+ûs O8 QÂS3üc4a—ûÛÝ4Šƒ•ò6¡,f­3>„ ÎðШvåÉÛ„µó+|MÜõ&‹Z‹7G,hÚ?u;—6¿CA©ê¨NÓ².(óXÇxc6 Þ1Ëõ©\!À ¯ä10‹½ÅÉxìnyäü xs` ]+ÀÏ¿ïp vø4g½½§`–„GßV_¿Øé=‚—°Ú0´2îâcE».r1î\6—OÛ˜˜jÆb#áRá·ÚT†Ægõ¼êt~ûðÇF zZ,¬a`ªæÑxB©×Ûþ±l]ÞZhËÛò&dðÒ¯M~Ų/÷Ó¶YTïwÀÜß鈃M‹É^Þ50£§0òêxý¹KYÈv{ã#.ú'ÚfcDw{èQ´ú᎖àÖ8,é\6¦ä•:Huox%§¨úe[œÎ‘¹]¹ð•Í%Õ©â¹7ŠàÛÃ;€íq»¢æó—¶)…—wìMBãCüXî{Ê(foâôªëƒÔi/…”óÞ™Hruízc‹7aÛoû»<´ïCÿ/Í¡ãt]ªÄµµªõûÜÙX3°EÊøü¶{f³¬.Å9ß*rÊCAódõ7’Ów0 ;g˜k…šw†6—sŠâ×ámø&Ë}XŸÓ Qiž~3¤¡ýù°9CÛvû K$óÏ‘ŽÝ¢¶×¹Z¦¿oû*ܱ¹Úi.õ>gذ7éŒØ¬` æÈDµGxè#m=”S¹õw ñvaiªóxXÓb õx„þ{˜ºæÃÿ*«‚­»ÓÿÄà–±Éê3óÁˆ–ŽJÝnÖ-šº¼EVÐjõîs¥Ú¦k(›%žVçDå Ζ~cX²³9¤ÛL½ÿcE1»w¦ý.ÓÀÒü™êÏ àºÏHÄ!»ƒP:ãŒ},= åÜŽ—òá7)ïC2´sgÄ[åßòYùvÚ9îƒH¯«û ¤R£Õl!<|“Õì.x¬WœJžüÑ¢}D5äÛx ->Žôhɬõ8¡íñZcé¦ÓU]êéEЈ)¸“dTžQ¦êàÖ ?=ÔWH{Ë5"ר*ie+@ôZ%la,ÒUþq"4<>«d¶]¹£@:ŽX*¾ y‡72ý8ák3´ÂVñ*ô;¬šyâS!ÓU3rÛó0”öå¸"S.Bg9­þ<î“Êf…È) ¼^êCµàÙ‹þ±‘q:º/v[W¸Ûc·º3ƒ”ýŠeW•uu“ªŽ ª12G–—:CáiE!^Mã>/^‘ö—k—IŸc‡ËŠÏÃàt=ËàØ\>£@z¤N8fäß.>/áUšÏ‚]-ló×äY-Þ¬gy7ªŽÀ=¦—»çP€sÉÆ¬Q´½.‹<ÙØ®ê¦H˜*ÓwdæÇA憋8?]GÜ€2jørUÕMµø¤Œ•±qŒm=%ÎíEÁ¶7†ú@–póYk¸äQ¾5¥@¡Å!¬„›™íS7¤Ÿ¿¨/Áã»UgùµG|ŃÁó[É´Ò[Z­DZé¥dšâ´R÷Œ)™VêZùâ´ÒKÿ½X#_o ;§¨c^0)).™Ê*Y2£*N)eIFU ›tÈf° Ä~¤â*0¸VäéGÄ£eN©ÚOb­2§ô’².™SjWCÙ9¥’Ç9¥·DuqNéí7rNé&#§ôÖ‰¬(§ô ™ždõ£iA±ÛÅYž~×Ó8§ôVóâœRwT,Nu¿Ú²³J/ïí¼à–ð,"ÑbÎ2%£½¸ dѪ‡yHóðY²d¥dqˆëšJ2zK¤•^[R)¯ôRTÈ¢¦º)¢%•ë,R®3}Zr-B²ë£8­ôÉwˆáŠË@Š7«ÓJZÎþƒÁ2cÑ—e\”,!ZG‡u %ë@Þ7îÇ:™ñÐçuæ¾õFv;ÐÍp—7(¡E,X†ì~¤ªÂêc~õ[Fƒìþe\y±ñÌcFŠ=ßáî™q_šÍÕƒ¯ÕáͨC_õ‰ËÃk_é¨äžœ¶8ÖSe~9ýñ&™–̰ýyÑüf3[¢”æ‚sPnïÖÉ"p'ò7ý0¥aÿÅÍiÚT‡$7£zóe…QG“›Ð…QÔF†—x‘a¿Wµdâš[O$´ãëwÑøAª½bÅÓŽo{Û·WøÈ_sbuX<ý2ÑZ?ÆÝcXR¬ïÎ|ôéÙÁddsɃ2$½}ë´ªiÌŽŽ’‡Ò|¬«Jh.:Tõ¿åÐ_z”cí~ÄOvýQ‘gë²[›÷fè7ŦÜEðí´…­ L,Ú@ú¾,¼¾EiS¾‡›á¦·äk·Ž©f'½=þòCˆ÷nIÇÃFä)Ù¢·èŠc&ù0•½7 #›kÄU|0dˆbØaØsÆ[O†ô¹Èâ–>Sù,²¾}ƒÒ]HAC‘–oêþ/<Ê£€¶Ùk•Š %>Ã%cØ24£[ˆd/ ;žSA6åDmÚ¾¶};IŽ{TæUïŸm¬£êA#M70kŒY‘ÀªÍ"@%T$ð(2Wå‹25•ÌMï“€4yjéÓÂÏYú˜d¬¾q%sŒ/¹¹Ìh‹¹+Eºæ8sš÷m9ê^”büM3µ¦(Çø Ý!Ê29%n˜eÜ–í‡È2ÆÆyU×OɧWJ'Ÿ²ãÚëø\ÒÒYÆj#Eq¢,c·~-Î2¾m@G–ñ¦e eß¡q™d|ïÓ@ä˜/vo/N2v+xìû¸)~oá?ü±²­!< ç|­dŽñ“ösŒ ¹í“TOû!sŒŸ4Y˜cü(Rœcü¤`wŽñãµIÆ[ÔY§£ûHkŸ\óê$c…¨©$d¼àL2¾# %é‚÷­D— ÇHQãá¯Ã°þ%²Œ£DÄÇjtdhz\l:Q¯c•Æç:VC˜_i¥ÏfŒšþe1¹?Çã÷¨vG+„‚ÜG¯—rjƒlNIžq:gN®óó‹æäHG“.÷™æñÇ>ÿ±+ð0„BœØFµi›)Â>ñöém $ºÙؼDö4o:Tk¥óù8IY„f¼ò +¢ñzE8ôOM1ÂË{³†RˆeÊË[Àj‚õ$Íœàác—sˆåu–*G¹€åÃYã1’|Q¯Íqûv•9 e Ë|ÿy:gÆe/rÚszg†zéœÆ–•ÛpA¢@ýÇe2\ø¹ß—óyÍͨFÚ_œÀA<.« Ne}åp^qúæ`]iêi0_¨^°¯œ®¶Ná›ù&cp —Sw*¦Ï´=JÀéž!®ÿåw×xöé@NÊ1ˤ§;‚l9¶<¾CÇÁpÎà!«€ÐU¶¦SÆäˆ^¾^I›ƒP5E#~¸g†šCí펢’/0j–5ª5|7i²á<·Âê¸Ã>R6÷Qõ±`F[ËåîœmÆWžÊ%$Wwe¤ëÉå=!,—ؤË%6ƒå²×3Ž‚Û9Òáz‰øAÕK„ßÑåÆbJóè›á“q”1Xt½Ä´'1ê%¦%‡ë%ÔV2ã(‘6œq”‹)K$æA Òa×K,ÚÇVŬsõmQ¹^€Ž¡Œá.Ž¡`rB<¨^bxm¸^b(¿ÅÜØžÝ¨—pÿ¾@ZØõÍ+)ë%šE…ë%”Uö ƒÏôŽ£ ÖK´4~Y/á·² &úv9õ•iôvQ™*LÌŽ0 G‹€›^а´8s+«¹NÒõÓ{ÏõYúÛ§u¼_Þ´žd»^b:)¾d½ÄTrVq½Dœå]/ñÿ÷í¼’ìHz~þŠc/pI2“WŽ€d¬Öd•4X§ ÉÙ¿¯úA²ª«GwG³Ø\ô‰¨L&ŸÁxGSa™©Llw e"¶{±åâQ³þÎñJH„¢7d_s¼D¸¤”/Q}·Ì€‰:ùößÁž¶£4;T–™O«5g‡Lt+CM¦ú Ãч†o53ÚÒÆüº )}ÑMRú9õþã|4±aèz†Ü¦§«22÷ŠüÔCÑd?¿38DRÞNïG÷^»Î—_ïŧwúÒ_Vvoˆjý­5=TDé—+Ž_lSd—K¿ÅC°¦€è±W"|Ý"l­ß’‡öi‚áëÝ p‹X¦ZØ8Ï=ÌKÒÖöò#dSDyˆM;¦Óª‰µÈ[/>/Aïz–÷âŽÈŒ4á·Ä6x| çÜ—À ]6èmÖ…êrƒu`7Ä%ðËÒ7ÝÇ}ͶYD‹³UéOn}uÓÞ¯G ÆZÇ4ÍH±ÔaDÝB-¤öÝb=#Xým‹}¬usÛr¬FèÏšÎݼdßÞ5ÇÁ¢â½ Õ¡ÉKãÅFu¯„† ÎÝIN?8tjD–—À¼5ò± Ìé <Ôb},îŽÅûò1ÍÊ¢×ݹËC/Ö‡Ç.½ØNÏâdÅ:ƒS†…XëÅМ)¤ÃíJ‘õ|õët óhÚLJ½©{ÂRøJ16”¡w)ÆF)¤iq«X6Xб‰ bl„…4ch,œ¸Ç¹Ù²àÎyN­æömîù¼n§PØÂV¡NHö6ïœdN©Åàj±j±¡’q3ÜÔbó©Å†d)ņóÖM¥˜ëM¥K’L˜¨W2Ù¾áøekÅF¸ÇH+6˜¦}SŠ «¥ÎQaŽè¹ÆbYfXÀ˜˜âz¼ •XwŽª©ëmRX,VxTK%6}Ñ×m“Çd]³ÒC*16öµ4b½™{¶J¬;Ó¼…¯Þ¿@•úê5É3þÔMÚ:TL` Øî^oÌÁsfÎÍãëm»|¬Ä¢ìxÓÕþÚc—¾F•ÒfƒÅ³LÙÔéz Ùpñ/{ÀïõôÈAŽ¥8Ã*êHÈrÛ1¶Zm6cþy,cÝ˃Ašžðæ¶ë1êMòç`–èJgÌp"äï' Ž Ec|eŒ1¡"ƒ®ž§9kjGíi0кæ.üH6ƒµ&Uï>ƒtåõ’J”Ž(·£F­ÅÂa„qaÑÓ{Lá¨öóQ2Þ¹CXoÛAmúáPqÅ"†Öv=>¬(ƒô7œo#HÌ©·2<\ÀöœW6úd—KÄ œÓ:žÚk„®¯{wíîÿúŸgöõçqxJ_õë_Ÿ?ýãó¿ÿuü·ÿþõ<$_ÿ㸾þË×ÿþJ|ãüS,Og~>þøy¤Kñ9©Ë¶ŽÌõ¬ˆï¯þú§_󽕟NpÝì)Ó%ÏÒTT+çûk>“ÅŽÃãžÊI>û Œœÿ 2È„ÿÖêãë_>|é/ÿpÀxp•ç\þúÇêã‡Yz¢çjÿ둞³”þ-³Ä ‰Ü©ÓùÉÐ2-Ä7MPˆ„kàPMƒGQÇÄ0/ß7¬<ƒÑ¬eõ9ƒ(ÁÀþFÑù€VÉ7e€ßyr7pêäÉênª•Ã>d.Äëü§»âvTÞ·r36þ¬uU<-èË©€RLÍ-ú€:æUå j)ZÔºfãx_©r»XåoPÅDvg ˰£Ñ Ûf±j‰öØš~…O«2À™ZC®N†‰“˜ÔŒfß^¬cDo›Žäº)†Ï¤'€fìu7ô¹ìô~pÂ]óÑqÉÓ½Ëý’•¾YRª+~”)…†éÕDPhòóM#dn;†©b.Îb#ÙâԱљäqÐkÊלe•­‰úâ]Eí]”™¬çðv ç@@æ„E“>PXEä•pž g<…×ÄÚ+Þå.Ú"ÔÜ0õìô0‚¹oÆN^[k½# 5‡ÆÀM‚pr%aÔìÚu"°`7m˪rÜ™ÃwÂôÕy|m0îŠ(€m}[d ëi5®(è®úìy’>h¿ðiÏŽü÷a2®/Ë™}h„8ˆ¡CØÚ*/þ‚&§WšÞwÚG37Õ™›Ñ®Ò«Õñãusº&˶»r®Î7i…Ö^tY‹Ø‹Í÷µ÷b³oÆÚ‹NÓ{ѱù±7P{q!´-uÅ^lR ¯½ØæYá^´OìÅîÐÒµû¼˜¼Õº’'­½çȲÁıås[±Êºº¶¢…ðØ‹N‰5÷bÀ±̽èY±Å]l{±ºR¯÷b5ô^¬¾øæ^”ìº-g¼_ìEE0o›¢šx\k ÐÇ`íÅ×ö›纣Ô36Qu:[í® ²¦yxcMë­-ÇÆ§ý„Jšã &¬[õÖ•î@mÐ91om|ì|ófò?¡+f’ÁÙµgk*6pã[ÝLí.¶‹©QÄùɹ`÷š\èæaÅ4@Éì4È‚arG´coì–î2[fÏ#}F/6¥¡7’# ¯Ù.7.‚ÓmP«ÒÃì¹÷úýrbv2ª‰ÉĘZÏ-®)¤¤î¢iÌÍ4žš –Z•tßÌÙ³[áBØËf­üe2¤ ‘˜X¬’èRº‰kkD±Ü¡œ"%vµ²!©´¹ÊßuçY—YeÉŸw¯þÜü]Œ‰úÃ$—š/+Q†X ÈÆ°Px‰°69ñˆCk(P3J;S“éßæ8=~é\C¥ÚÛjqºß7ðGågZt‰R!ôõUd¦¹"¡ª$ŽSªLP=*œF$“bÖ&)¦ÓZSÖŠR[KubüdXÁ¥Ð 3¢Ÿ6>tçïfÖ%¥ß)–fž«=AÙ¨ ÎÜb®íÔ¥Uï®âÕ³yîîâf˜ÀÎöè6ÔU`ÝéšÏ–­kfNWÀ<“´úÓð¢µVŠù>!ÝrrörŽÝĹ¢ ”AN¦N¬Osë2ðq(E*·® Ñßî ¶öHq«Óªc{Î-Ï#‘Øëì Õ…å#òjbÁ·Ù-°]On°‰«;¼TÚpôR\ :G‡—æ.Ôô½°ÕפٸU´ÒÜ9­GòŸ.ÊæC÷$|¬Ê¨pêkír&&’$sãåÔºm—®’ý3”âp¶ …Ô¯©ÐpÙšŠa8÷sã£!%´§ƒCö·[ «Z÷ÐØ®A.ž,†ä4µû1ýæV ÚÌ» Ó}§‰ÀV«uk˜EL›çAì&ÇÏEìšžÛeñ9&&ñ éÃÜ’Ø74ÖÌ®\ÞÉ!+PCÏÐZ±_…Æ­+˜5J§ãœÍñw—ئ!œc7g9dßH?Ü·“v3äìg’>…îPCüå!½ß¾â¼=®Kªðµá<‡kR÷I=M_øÿïËt“Ãíù7(–eCqØóϯgÿA ŒÀ@zú:æÃÿòKsŸ”´ÙD‘_ú„‚Úei!¾w„²^d›ï&âLU±Þç#®Äô b5²¾¼öäc. —ËЋ\M}í¢8Q;)1*B2=Ï}:‰¼;‘Ã:¥Ñvûä±òÞòëÙÙØ‘€DƒîN‰Ÿ¯²~|TåîqßkdòÚÖït3ªr¥+‰Š(6Î4Y~?U×ÂÑ·ÁD&‚gç”=^o²"»uNMQg”ߥ‰pçæÄ¾ÌûcÂÉ^xJ@#Ðú/@¿……°Ü¼ÞÏ¢DÌþE§ÂÁ®Â~fðx‹è<„ñ6ôœOé:Z_3ë¯W±JGô®*OÐZˆ¬Â·§ŒÏñ³9~;{2Íæó5ÇŸÏCBwn‚Ñù 1èì×5v7¿M?SçÎyf‹«+üÄÞÁ$KCm¶àM„J·0g U*¿ ÐêIûk¼31qRö'‚ ;(LUOYw[¢{}Q¨;š³SÇk k²ãÌ×-¦zŽ«X–ž;ÊoZšÅU»wdvR5RsÕO1é Ü·T<еßýºÏr4_å$ÁîðóUìøÝ‹=ãî¯=åá­ßÕ¼Ô–svÏñ˜³WUo)æ¶Jò¶¢ì õLÍñsÇÀÛ‹"šžJ™çF“ ¦³‰CÙ•šê›Yú9ÞÖêø„íwmÑ3º7^šgqæš×ç£ÿîܽèjþruº¶ WÓ(âÒÐqB¹õÜ»ªŠqÑ{ƒ.«â>^×ä¬Ö=wñõêêèÝëÜLdá ëuMÙ˜ÔÔQŽqMY¤X÷ÔPˆÊ¼§¬œŽ{jž¿@ôH ”LuO 18ëž"îqO¹w&pÑûIï3…JÐõ@LßÅìEt„œ.×yQ1ûN,®ØÁÑû ‹*^÷EÍÏ›J_Ÿ•;Sû6õ…ˆ«Ê)š'a‰µ¦·—í«_Ë"×HØŒKÁÄÜàñ2= Û Þö]­¯¹õ×㪊ޙnlkaº2´YMV;è·Qö˜çxÝ„.7eWv”¸Gœi!xUÅ뾦ÕüvUùóqU©ožXwý¯^UHR ®*³Îϯ IÐ5ïðEœMV0×@#Žëh3  ­HM§oìtÌù¢çïE"Œß>.§b\íKG3¿_d‚Þ-PõÙŒ ©i¾Íb>|»z-2#ýâóUå¡£sµ9{oø1Gg„?_¿×)Wóß¹Uç^§žÉghŠd¹ h…6¹ËNd´Û±˜©®(e'žŸNÈjm¼y &Yegs4T³Åò Ø‹ê)‚ƒ²62Æý;ç¾~9 4?ÜôdÀP×}¯uªÔ"¸ØA8ëS¤÷•xÙ=­ªú×Å#}N€+ÞøàBQ­¸ŒKU.¦î×ײêöºÖ¨ «\ñUç´õ|¬t.,~}™Y`Î+%^}óá|’ä%h4¾.ï³F5ÅåÊ.Í”~8 íÊÛD¤ha¨$kÂÙcÖÊÚl§½¤ÈÖ¾K¬Ýœµ+¥Ñ€ç>[8ÈÄë8s-Ïæ[dÊ÷çIŸÕ½IeÔûIcbpëgp1sn&W“×äÛSÛdÓŽ©7ÓûX‹5ùâ8%¿ |Ž>&t!†&bÿ“Y]º Qaêüªl¯Dç“÷43‰Èë³tòyZ«›¤ad…¹&ôˆÂ¼óçî ð”êðšJ:OX—T/gÖ‚ñd.PÜŠsÃ0-ã|A¬Ir#ï ¾€ªý¬Q@9ïTO±LÎôÔ´‡!Þe[ç!»tl;×6±×Èú½æØT„º×˜*ŸËæ)V£âï g"˜˜bçö·”YêuyO[ùZ¨;ÊÀÉjß.UQÏÔ­Dpàpâ•»©Ê?ŽŒB—(¿vè¾]M8ÊôÄmpEy tžõ‰þbØ»•¹Œ8mæ›oÕ¦XŒõÆ!Èrc"c ˆêÒe9³´ÓtvRN±"0‹ç!^pšúu¾˜+«zN¤µº£TÜÜtѯ°Ô©·’,dÝ2×…vp0_SBCz­sIpH5T–üw§©îŸÆüY0wóutÀ¯ÚÊ·3o’“Q:¡¶À}öo°ÓÜäPaRnÙšB€ÁLšª±OBýÃÌGÙscFòNó¼øër Ø~çÜPÖçÌže6¦ Yc,qê>§°…«àf—Ì`t§mòi…Aõ[‰–®uÁ`ªL«âì5S**nj¢}öq$6:sÜrpœtæÎ?Ö]Y˜ìôiÊÚi©þ.NýÑ´;bÇ,¿nùI™T„sj~=ÏíœÍ¿ &ÖÇ;b©}˜¡¨Lµê [š‚̉Ú×gž÷«23‰geFÖ¥{M“8õ}š(Pü.—#Ô>·}ß§Ú¹VBv~^HüR-ž½‚pމ‘Ú'^·hÍOµ¿j÷nê:9r{oý.žÜDó4åˆÙ3͉¹ Šô²šêLs4?q„båvØ«Õ.w›Ò‹ëÄ;“²õ6·“»[BùëÚ—t¤µÛÄ¥(¯ßSzróJ9yÌï»ÿîÜ„´K«âwCérDãS+·Ò&º7»¾®¦÷<ôx½MÑÌÍ{êüý9ÕÝSó:õ¿©M阶«ft?w.¨æÐ;¿Â ä ˜Ów*£’5œÌ]e½èØíÜULVgž±Êƒ”ku5üËÍRöé¨Êz žKŸ«¬B¡öP:øªIì Ý?Ïè,“KM^: Ï»vi˜„8Ótë~Ç+¿ÀÁÿÁ›Û'{({Ö5¬PFLAZ,`µs M 5’‰«QO:ÃlZ}aM+[ t¼¬ÒTø"|´ÀÓym5;=}½-þÇýqûNV& s­¨LãLHM H§k7Kªu½åS*ì›[¸†ŽX´¼ÊC`É×U¥–­ŸEÕL•$E¨0DРlD½|(TÊÉ—º;\¨X­ª%OQ[åtã 4"{ ßk=È_vî&EÎÛ†yw³Cu™h’êÛ}>Ñht?^ÞÙgú£¾ªmü„ï¥V…,™ú[ÞÒÖ!dnhºç 3ÛÜÞÙ?òçªÔ4W4†Y4Cw«[éz›35⎾n·+±€w<•Ë¢”Év+»B+–Йù¤Z£É4* #R_ÔkmýxÝìR4ß"–ÉßÏM\:wÄx¢ó_oãýVáÝöµìÑp*¦Ï´ 7e ÝeŸfMEUVAtv™kDLÉÍ„&0PBz¥šÞ ÀxûòÍ”³Z—¼t<¦%½ÏYgTl¸Èž{¾t+1¶EßFûß^qÏÚßL×kmø@Ìfã•í;¯¬GL·Vƒ oè·w„ykä£CeM`mç"¿ÍauÃm¿Ín: ©çÉôBP{`ö¥¨jv°°™8‚!OfQX‘v/¼SƲ\ÝÆ†vîÕCmK`îaÉý¼UM4O͈AýêTñ}ñÎÛNê!iË#L4}´(qtɼ4.>/^sp"ø¼¸ueqâT‹at—Êde|hcÈœ2tw‰jìdxø_)RÍmàÅÈ÷cÃЙӞé`GQ±+ÿðÞ½y!…çfU¾Ö.~eòÆiY¼qwŽéõ{¨»³ B À’³è¾;– I?çÙbQD;¥ ;”ˆ'B¦ŽoUuì"„N¤RCsy«æåi=ÝðtÇ)ê*òÝe2ܨp:YLìµ±xN„ø„Ùì&ZY¥Hpè–ºƒñg“q‰(µò†i™³­ 8W %ª2Ê#·Iº?!”dZnÌÓü$ök =µ¾ÂE¾ØÙn'…Žäg²•\ùòàölñ’Õ •/ÌE(´x-ð1;ö¦ï£kc{g"è gò^•êùˆZd¾è>õ‰ Ö×P=ÖªNÉCb¶fÑA¿"攪…7øˆUY8K¡öp×q)ÔMÑØèoE,²^h+‹HáÒÆg·ô°tG@z…Çñ¦¶OTÒÖzØÞç¬w98—éWÆ–Mzl [‰½X­áý©cJˆº…ÌvƒiEÀ±Ý úÑJ××¹¢CªHx(a'BÛ[J Ìý T°án…Gd½±:¤w„¾þ»yé`»ë4Å…Ò}½Î §‰L)&°¶; qê`»SþYÛ•#Â*XAÇÒÀ®ŸyØêtaÍ ³u'—MÙB¬Ŷ£³¬5¬áè<°sâ¥àH¡„—ò¹ÜG-å &Š–†·I•t˜‡`Eoû©}í}:`°kmé ²jÙ¶MûÚU§ðíkoÓxÄÂÎM,ÈT¿NDè_»‹¨Xž8z›¦™8rc׿bæòTÀF4@Ü ÝU×Õ0æãø=,eRÁö1G#}˜5Xh`ØÐžê· ÿ1¸Båú–h"â  îß9>!BtFš –ê»§&h8Âsj‚Xé¯NMм³Mi`dFñ…&h(bþî¤ Ö¡væ®BN£lk$A#ÏÞ:ŸR€RMÄ^rmƒwÌ"ÜñίˆÐ1Ñ’·ÙPÐXHhƒ†mMS4‰imÐ(ò a}×aRËÚ'¬Í¸X‚¡¸Ö¥BÎË0êE¶:èmü&Q·;¤ªNÄé|)£[Ãu2kØêUÒ5¥cWe&œòP£´ÙS‡ lúîÕ4£T`´¹ÇpŠGÎÒíŽéA˜˜L'Ì“0?Üœ æ]_Ÿv0ñGÛS÷ß®rG;¢oöbоO§¦[üÞ§7 ·sÌ `²ož¹ªTu1­Uºþ˜vkK aÂæ…°VÙZãaì“Ãy}yla'4UߌKƒIû%5ÚT’ñw×K¥Á‰žBŠPqšq+ñ!º«¥ÍºnÃçB,¦lØ{&¼-Fy[àó›ó±«ÏSÑèø·”¨Cœæü½+ÀÙîa)jw¥1Wïy•q§|½ˆO‡&Å~´ƒâÈϯ#±/Ž4yÅØ'šBÀ¼b(kñçn#.¾Çc`Õê.cmAÀýÅ%üÉw«Å|"O˲)yFô/ÐîÌNœ`ö3/¨åÙdž/ñíwl‚— [u782%¡ Xª?Bøö;ì$ØZœ6mP`â|é‰Óv}9FSÛl ×¹s×Ç0¦@¿ Ž( »PlC%Gš~¶r±GÎKm£ —«-&pãò¸¥#ŒG²b·m¨<ÂÙDC³­£z<7ZSžó÷­è% } U]ÂØ¢ ÇÏÚ²]ôÕ+Œ:Ô¨s}L†/­F˜¶I¦9´¶Gbpo¦õ'à 25qN¯M•ÖÕþíÇ®àñ¨zB;ωÑ9Žû$F¥³Ú <ô| cEÍ~HPp¾{ð-×ÛŬt}À¤PÕfLº£§­ÎMJßw¦›x$änÌàÓªéüÒé:ÖMD¤¥÷Ûá8 Åá¶TlBê—Pþá»)\[óEX~„Ãët³rÐÔþq$ÃoHÿÇ ² @ÀÕ_ab°ÓÁêS~{6Ò¦kt€€%cI ¸ÃÒca–Eët¨u/Óu…œ×Ÿ×ºÔ8”°YÄ ÆðƒªÜ“mĽÉíe»X9§u^½šôç.Ré+Œ·‰²¡deìDVµ»BKǯ†ÒÏ„ã¶Û«¸ E>Ò’µ9´{è•>ù—¤ÙÍ!tÐ@d‹Ò rM1OÎFµ3­”ƒ;l§Ó…Ël­„Ü+Ù~÷Tò³VïâÒ³g6«†bËG‹Ñ«‘PrcgmJŠkšBó—ån›ä L¶Ö¼©Ó'eÎÿó?? *ÝSÁôgßpŽƒß¾ñÿ ±Ý2\þÛCloNÈ ¬7ù=ñ=ƒ÷kõFÀïM(Òö­ÕO¡¶ >   9ɾV‡»°öócQâìW ˜‹@¸TAEÿuÚ`™î.ͽ«¿$§(gÄãVÌÀzβK~‚€YZä:],1ÑõI½BÐ*`^«—¤Ó–™yÇðÀÜ¢ôù’¡†MPûâCæ¢ä€U€¾âU  ¢Ç¡ZŠM×ô1‹YQîÀ´Á¹+§YÁNYíšPUvé”­°&*DÒÕÄ«ŒåÂ4s X4§G+ÀÅ%¾úžFúZp~w¤cfùGNEgîgÂšŠ¨YÀêÌxŒ» pvFZîL·'ؾXYP9kÁáÞ÷÷èf%A ”2XÊùob\ì«yòª3Ùªb#`•lÎ< ŒÊÊúÚF·•O»}æÀ\´‘ê?î´4¾æïê@ñ>ÌíÊ(Àõåò*/—»¨5Dî°¤ª‰èÜR|Ÿ—KQ6( Èb–îd»ü*K(<9w¹9á j­{梆—®Úo-›%swW'4Ö$ªNÓ ÃÈ¡©Wáf{ãÚqû(ÀoÂ×é«dÇÐåKC² ÿT.ÍÐ!¯—WIQŸŸäF⑱ï9Œ£3B3ÁAÌG†R ] §æ¦†UâÊ®rÂÃÔÕRòÖ3^øz'uoÃꈨKyK@Ë$؀ϙ­®êõ‚‰, Ry‚1²Ž;¥µÀ4m<ìXÁÚm ƒ ¢j³©èË æò+·}j/ð-ÉjÃÀÖCØg ç°òê7«DÐõÓoàq,ªy«j€‹û øÁ  $1ëàeدQó_jÎhåYl[ §Yõ¤\‚Uv¹2‡“L^U&6Ù‹®(ri‚Ò%¨J¨Ö¡™9SµÃÔ¬áz%šÓ<‘æÌ‹%¬ V–ÝÃÚ…DTo Ÿy¯J«º¾+ c²“都æ¥\¨°é07É9E•š9­mî~\¾Ùèåy¡¢2×H¢aYSuJè«¶%yª¾¿b:5¼%­‡löfÛʶ¦½`H‰°5ÏhY凡QÕ‡’¡VÉÑwÜýÒ*9^PõÈN­ÂåªÉ¸‚YÚ2}­+~†g[¿ÛÓWòDryDV‘˜¹.H঩…Á džéú]'¶ë†¯·Ëút›£+Wš•9«† RFJØ”,^üàìªòÈpx!1YÏ@& Œ›ï–ìƒÀ; ¢÷_9š5ëY7`63ÒËý~{"dª‘_¦%î/&;-cR覲;CüÖ¼‹P×S­Ê0¬EÆ-p¬G¢Pà }á9ÊzŜ߼rëuúþjE4B˜ïí [z/¹×$º)¨E)€‘Ð%} nMØ’)nCPÌ®ÎdR¤n:ˆÐN~\U5T_‹°)!èëÛIÿÈ"À?2õE€§dßI{³±tÃÕª\ ·î«]¦?&•Å>ï?hQÛeò;æº _‹?Ø`ó†üA³ÓXð-OØüAË®üA“GääšÍ·‹?˜uJ'ÀR¡;3ðl&½Õ–f‰ 5œViŽît ÄÅ4g­þÀšÝÉ Lxr†™à„Ð’Eh§¹»É"´¨plÁ&×`Ô‹kÉ} ÕP{Yî¨'½chš»†Sb™7žq¯Å!¼mÇBëæù:ù lÙ.7ÑÜ å[ÿ¦pb6΋2ÆÍµ‡^0 —„¿¢$—A^Ï ¡ß¨~€Aˆæ)«"®¶š^p‰ÎÆ+®…Ô)…üÆDô‘ÖïMFr 0¼!¿n&E+Õ<5M$¥…\}ŠâÙá¤Ãùu‘QÓV—„5íUíQ5'­…‹«‡#Êk³¬E³ÁÕ—x«>nqÉc’RY¿;€¼ˆƒ;R$gž•g€‰’ÍìÂåJ—’„wX§Ž…R}bVíÛ÷º^Qå>Wò2s3”äÕ¿TêAÀݤºÍµ$Ńneh$äÅqP±åORÇØ ïönZ{{®Îí‚iö× Ä®Öéè‘>¿ŠÝœ¢Ðä5M)-ª¡+dë;|‰c³,Xÿ>^0½ÇºFhß\=2è6LJé‹ ¼’z¹Y$Žß ‡'1V ˆ¸5ï~ßn–¥%fÃ̹¯/ `Æ‹ÒL”q³º¬7¨9ù†y[‘päÌ»‘½Á~g:Òŵê:Éë‘+8 ¢`âiëNcµ˜C*4‘‰¦OÐ6€ö²9_§î#‘dÞþ¹×ž³‹œ•U½P,Rr†cv¶S–xÔØÁH&ø£[èWr`˜ ˆìà ¬Ì# 7á9Gr*óý‘à ÕDò]:œ‰2±hFð·šãàýºÁ´·¾  ÑíM#kLPùk˪èŒàÜ`9·^%÷Òl¯™øž‚¬¨­ÿñÛ*)PÆY2S\!¦“Z{‰1à )‹A{Å5I¾·ÆµÁR‰=^0Y/”äÓ4¾FH+·U¯Ñm=$i]_|N"s¹O™ º2¸¥o¾âfe œÖTU'·JÎ\+>ªjg•¨4d±fôAŒv¬˜ŽobT­T¾¢GbUŒi×w­`²Š®/Îü(;nù›ò6†¶`-Ú=åq®i÷e›µXþ¦DÀ¯Ë§Qœ|³\m•0~CööÄE¤Ù^¨SçÆTê}uJ:ÝZÐå¬eÈQU_gd‘IØ ò-ˆÐ6¤6„a·7YKžýkiÉÄÜ7íÔNªðp†±Àqö¹æ¾‰èœfÙHtïw9‘ó*;Ó’Dä\kê’Ú7u§&Bš<™±úðæpi)¨·«’^mV‹Xìí÷a1‰yµ›L ÈãÓ„¡±ŽIÔe×€èÅ£aSʨÞû&Î0ªÄN\•lN¯G “Þp’cí\}¨†‹¢ÄWÔêâlU5r’דîu Ë¢å˜ñI³¥~DKŸH—)©XãùU‘röÊ„~BïKŸÐ9?óS‡&ˆ:_BX‚eê†zw©Ü>¯þCðíç¡lÓ=rM˜Ä%N©ºªtj-ýfmwÕ ›L’ *Û&#_+€²É¸¬w®Óç+z–Ã&ãº@Ù6ù”EšÂ©‡ó ó^eeè<3ô Ûdn QìS“óÌ(î5$@Ã'¹L›¢iïr1¡ù1Û,s[šÈË,s:V3‡]F "NžÌ2IÄ*/³L¦22/«L¶›u^fë†sXesœÃ*³ÁW,6n6"³Œ„[y…û½½Œ¬2ªÙ„Læó²Ê$9Ôæ0˨Dé̩ѪÄ[^v3qóK9Ì2Ž?ÎË,sº^F¶]nNa—)«a˜Q 0²ËØ2m˜Y`Xf„ÑÂ’^rƒY¦‚UoxK)sØfÊ$‰½Ùa;óŸý7´á9Ã¥ÙT‹E!œwuÝ÷l À£zlâl&X(Ê"‹Þ­ŽV›ðD2†K'{ ††lQÍøh5)¡c¬uîpê´¾ßE(³Jkú-ŠW§!õÞo"_i¬Ú0·NFY&|úl ˜Û§Ãœ#ž¹´§DÄ«õâªåbpÕ¹M5äØÕ†ÐR· Õ­ÊYzØXˆí:;&X¼#ÅV—„-J…LX~±Ï»õs‘ õ}õ?ßÌý‡Ï¦ã'M~â‡ÎÝ“tkBF¶%®^/óÚ”³wM î¾Nò¹a^¾þ;c Eš¼k踔wÓ Õ.Ÿ1a¬™kÄ€ìÆš‰±±†1+YÖšã1Í5 { ç%/{ Í9ì52zÄÖ ºôäi¯ÑU¿ÙkÈ\­ß•e°¡‚¿$s0a¯Ñì´i`¡þ4/{ÍÉ8Íšx.q‡a°‘‡>ïymh¦Ïaµ©tkO»Nð2Û$ŸO”¾,y3ÛHÆTïJŸh6±è4‡Ù¦ÌÏ>Á”ÙæØ²Û,L˜mŠ”.9Ì6…:—Šq¶W½aø1VÍî²Ú8Ÿq‘Õ††ž8@t$Å&ÐÁ£Ímmç2ÚHûQ6MºØí‚R•ËI+Z›ß”ͦM•M´›Ã³Œ6)oé¼ì6ЍçÖ Ýfõ*tú ÅÏ»áÉF–áæô†Úzs_zè>O…Õ²ñåe·ñ³©þ²Ú‘­ÇÝStSn ±l6 ËËf#MÂ4É´Mã̪ÇówºKg›l¶’§É¦É¯(ËbzH”Õ¸‡ 8-6Ú¬»Å¦½N+k¨ä6•P²l’¥ç0Ø\ë2쯲¹Ö*îcl$]-ƒd¸0ؤH•›õw®”ÌN^j"à0Ù,Œl6I´8ËdÃ&¨|λÍ&4a³¡Ý4/›Íi5„l6\ †…çÍh“M|Å¿XR …I¾æÃhC«šnäeµ¡‹M^VÁ»Õ&0âºÛ˜7­6øªÙÒiµ‘ËrXm|¾æ]†ÙH/wYd€+ËjCÒ\–Õ¦„ðÕr˜Õä¼V›l{Ô²ÚìDï£(Ô«=›§ŸZ—ÆbcY{³á}Ç0Ò6/Oµî*Í•P­ÖûÊ®jÀX¤1Þk“ÐUm‰°Lm˜Ë¯$5AWµ ¶«Ú†¡«ZTÎvUCaá8p%¾ÑÍÉËU-*!g»ªõ*7´<]ÕDç^O|ó¢d+oêFd¡ÚÔ„)*g{ª! • ˜1XˆXü!Õº# ³Õ&<Õ6ŒM4—üò³ÕIô ='²Õzð˜á¨ÆüT—W²øQˆµÚENÓæ²—á‡0àñº“n›r§«ÚÛŽüx õSúM®I¶¬%xÜ&¿b(ýìˆ$›Ái±ÂÒÏŽôCØÌ4¥Ÿ‘¦ÍÀJYáBЀèês³Ù.q[9*«}M­£Vë”}¢ éú]ÉCöÉ<Ü”}F¨+-û '.Á~Ùú‹ì3ÒT_ZöÝÈw)e؉bwO˺dŸqNq‰²Ï8§¸äêØMûä°«u< =ä”}z÷6œ²OWž±}lIœ¢Ï‚-ù‚O$Ú ÁÍÝ÷×.ù0‘šu26×HgjɧwÏí”|ÐëëÞ$Ÿ^]–|°¬±èÓ]7%DšËÆv]`&û®(áô·íº@íX•÷¯+(ﲎÈ&úDÁä`#'o'×# Á&…›€¤‹>#Ôë!úLÄ}Xüvé¡_àñ†è³¡¸*QK\¢O˜<—è3¬Q ÑÕů{}l¬_’Ïžl±úCQ }:ÿÙ%Ÿ>Ì"Iòa¾»ûkJ>}Xk>%Ÿ·©ûL*ëüªuÈcdf_^Õ⿟aoÉM׉¼H6¸ÑÁ1;¡ëD¶Ÿü¢ëöµ›ºÎaŸßùÑ̩ۚë÷’gé rÉjê:Çå;w*;‘Þª¾hΆ£Ò^0ãU׉O§]½ÆO[@ +ù­ßÐu¢û>€Òub€÷½ë:‡™ë:‡ÓÌê°ûM× ±=¢Ø?é:±rÖ˜XÙ‰„Si);"z]L"ò…BÕ´ÿuù×ù“~~ýãó¿_bÒÿømPúy&˜D£ûùõGÎ/c¾¿þùSíæT•’®„—ƒÙ¥¾8”ï¯õ swqIŽA]VúBŽþ¼šÞ}|ýˇýåþþn YKù?²+á"ÿHavéßMNdém1—ƒ(Êó޹8b'€ÊÉ™“€ËxÙ“,•`/hõxk5æàõKÿns ÌAêTž:$ëwSàá]rº¦ 9¶ób¦MvÞþ(Ùû¦psÁ)àœÐ/æâíþÖª¦àýKÓü>7´ZÕ9ŸNf L’3J ë¸/̧9It*{nêSYUJZ d9A;ñDRn&`nÙUÎàù‹Ã鞇 â{£˜’_?ôï3%UYé׌<—@9דñy>œÕ³^d§\ZÞiÏ\\>žA¸<éè§d¡Œ£'ÂuèþÖ¬fäýSß¹Ìm¢Ê7‰‘ªÒ&ÿÅãÝi>ÕIùÑRwm0(‰ôû·ÊÃuä©ìªà?O@' Ζ0Ü×–ÿ΋:ø;ÑÁÆéîdª,4¿YìSq¶C…üÚ`ÊåN1d¨¯øfÖ0Äà'‹zªü`lü×¹Êïßø0r(2K{ò/ÿö‘é¬"+3U‚=bö_Ÿè/xžõI¶ãgþÄÄ+L%eeÏ‚:gf¬Ážþ !¦^~AµøþeR‰ÃDFÌ?ÃÁ™`R·~ªâJ.TsÖfß[äÈß?òw^òa1?]^ò@xäH†„Kü×?¶r,Ìû}]¾|À† ,Àˆç±N É2âɶQ„s8U€GAgHF$Uüžˆ¦n-35f|Ljóô¿¿˜S;ž¥ãI4cÀy¬N ˜‘auÒíx/ÆZ½ÍÀ¯Ùºôd‰Š‚IýnÿH4ž}Ìî5äöX.¸ò™~ÂУBíö<>O¤ ýFO)ègàPnJCÎiE|ôPÖUCLò â¿ÚŠ U#4$lÈMÊJ,îznÌqÑr‡ kiƒÜ°añoæÌÆAžˆ€³K,ÄÐMis%»Â2?c:*J_¼ È¾m˜es†Šš>Áª\ÝX "»a¸4=áç\ù>Ç —Xè2Q`^ÐÁ‰nmþ*#^Ĥ«N.>BS«=îч›¿Âú‡ m”ýâ‹v?&3å ¦ýγj†…B!u=-í»¬vå7л¼$cHV'œE Ó{x¦E.ÒjþÉ£(x(ÓE‘¥nH_rd –ÉǬ*”=û \V@)2OR=^ÅdÈ` ¥RÏ€•fîX| ÇP!ˆC9ÎJb|ÔhÔ¡â³ðá4|8óu‘éuлŸa}¤½.|”etMœ¤×€”‹èxlˆ‹¬ÈËL)—5ìR8ð…®ØX´Ç-LÚ3?Ã"amG&zï:Êö?œ½ã‰awÆ¢áQ…–o´øKÙá'¾ÒÔÃ6ýf½>è÷hyÂÐlæòt^Â¬Õ ^OàQäà ÅásCƒ $¦=çìçHÇ_9Ö¢JXôÁ)BwSÄ†Ö þÞ`H¸;Œ~Œ>)]âÔÂè‘YÞH£P¹Ø•Èvi†VĵCÑ®&‰î¨  u=I§Iä@âx¶Œà¹¤d‡z‘<ÿ7ÓøƒSÃÖöÇÝJ&¯„:Œó§ŸÓ¶®ND­½K}u"a7Çem)xŽñvkË*óËþD(®¢Ae/²üzŽE#gó¯¥PÕãÇ T’«ÎlH9oî<º€ŸE¤?‘:2ÕnÑò$ç–е$åX/TÇz°#ð¹ü=ácžÇù…Pù<#˜ü$È䧪¬%Jã”}QFP¦lWw˜Ò8 i¨¾,åƒÖZs¨Gßa­Â6oøÀù9ÃÏí²XÃQÒ·ë/Á:D[6/-ÂLN>Ï"ý…›†c+naÁ£UØðë?u)ÊŸÌ.]²<Î/ž_ðóoðÖ%?Pé5¨N»> Åýêàã½}vÝè”î?qr•¥r·Óèêu¥ä"7ýáÏäB¡sØKØ\5žŒµ" åöq»Øaq %¾Ê_Á gŸ,$X£Ú\²È—2 >ÂêUH,Ã,Vl¸ ³YᦟææÚ\PSæÌ…P]¤×‰âmI?%ùjüœp,æ ÌÕð æoØý„z²aƒHÖTVG¦f[ç†Ë¥ÉÁ‘S–0Øa媠‡î¯0ÊxÈû’Ö¼qÓþ’ ‹]@x¼Çe‡&3„Íx<6DS¡,›d&N m¸L©ë§'ãˆôd Q˜å‹¹D¿(C‚1 C¡G¾¢l ­' ªÃHZú4`3¦#Ôå€gL ¾ûç;²kã*²ª  ﻂ¹Lìy˜ÌÊoÖË|áÛ5ËnEÜ$LÃÅnZÓÇ-';€—}Â猪Bù#Å´ÝvÝÃTÜ=àc¨è1¿Sf¹[%؆SɈ™^›²Úë>>ÝͶsI%,ÝJX~Ƭ܊ÕNÒ"5¥}KJÆÔ\?2…ß \¹°¯Ú?‰hγÛ—Ô¤*…tOºþñ¸7™]Ñ0³$7åSLšˆ¦<{IYíÔŠëèƱÄ諨¸«LÚ:Á?&jû©’è6%LÕ*µÖÊ64$Ž¿S ?¸02JP®M±eOP>`]élÓ¥r®boŸ^k/ >’ÄRx2Bõ¡²àÍ**þ`eÝÄ_ñOS¨MR÷&äas™-~–ç8 Î}ˆ²Eئ‹í>Gëü_‰E;Â0øß ˜Èo?šdCûÒ $¦9Q!Fª×¸f4Þ_ô®ï„.Nþ] °ã]ÁoЛ³( š‡ÊâUâ ˆ/¢ @Õäè¬_#ðð´:¹Xä&¢R'>rqù4­ s»èJåTMhç±§ð‹â7G —o Õˆ.aŽsj„šŠb¦;ª Á•žÛ†å±å~8Ú)4`9Ã'ŸäCÑN£#zlÞê< d;›Hmê¤0‚ø[SÍ„.„Q§™ 8Yyð7½p›FØžÑäE—”¥á•®|¢<]IÃtn~x3VåA•e›®£ðIdŽofØž¸ngüä™W}zxhv>ŒÂÝÊÓ;jó ^0Œ:Ö.dL?ÛŽ˜N:„s\Y™ä㢲zAÌ‹úØ,‘ìW‹t+nX'½àgeuŸ°§YýÓ]¤Ú§:þ•Y o=ÌÅ¥“A÷8–UTÏæ,ˆ®ÓÑçöø1aeŠäœ+¾²ûІašp«@« ©ƒtÛtÞå(aÒÏÓzo”§K]?gÛ Hèºô®){cw…Áb|p)AŠ+ÍÂfºb)¨² AóUÝÿѰ¨½ˆß­*Pê>UJ˜î²!ÕMæ` JÙ8梺¤­=©ê»·c¨I´^öùǃ ZFIédU6–)yíù°Ê‚Qé×Dš_àc½à:Y³Õ àÕ`£óB<-èx}ù7‚™Òj;ù©¢-`Ê$ý2ÅÛ\Ú¤îaÈ™šÍä2yï›{å)iR ªæ&ï8›Ìoj²Ý0¨l1ãËÏ^b·Ü¥KÅâÜaARHƒí6â{Âs†=âw8F|Ä rùþ9¸éY÷-íxzUt€ðþý óÀú’LäORGKUÚÓCâ.xL焊Tà&åˆ7¥ÃŠvÕ9øjO=ÒÜß#…ûë?Ê™7ÓÚÌ]<”Gbnʡܾ‹¿Y©-õ;4ʱ6ß°oZoÐHšÈ)¢âëóÅU%Åî»Ð®©’e#jX¡."±µ6Í4Ž,”dOà ^Ò›²-5H¢-øN¦Pt„¥d¶ÁúÂ$«ÓP-à”ÈÁ e ~BÍ*½¡Ávz‘¼Nç§ §ŸEâ•ÒþŒeŒÚ£³¬b'ñú±FÄ>Ÿ¯â½‘í‘ 6³‘ a3ßüÖÀǑ­*Ç­BGµ ˆT]:€YwvìƒÖ!3žXË1¨éRͨ éBÙ¬uá·±o)Dó…AŠõù".Þ}+Þ3êy\ä€Vwl¿sÇøå¤’«ñtM/ô¤b’îÛ±ÁîüBŒ²ÞöÀ£õ93þúSçÞÅľLûcº†K›ì’&¸5¥…›ÂÊAQé)-@%Ûßà± Æ0ýÄ|»ðn˜­ç<ˆ¯«ÂÈ1{'–#: Kcõõó)ÊßfM, &°f¦ ‚ K¶c\Àñ;LuˆŠyGL56=Ûô&\A¤R^ÇBÈ2À¤m¿€¸âÉýïi™dÎÖÍT0–SÑËß³}?ð±rÆ_0ŽS‘ðμõ\h*áÜNY¹ˆ³BÐ!ócÎêÐãëu>.©ªõÍmyIè› àÛÜ+‡áê^æ¡Kæç_àx!>øëƒÇ§>^7ÕÛ¶Ë}Ûeyý†É¤Hèš[ò¦fÿ”·ßoyŸ,Ä¥8ÞÐºÃøznZø×~œf×½ž]ªŠ™_0<[ôóoð±÷Q…´mʼnÂ(³> +Îꀭ8¯ üfkœRÍËŠãâ`†á…د°â'Æ´‰ÉGžVœÒË UÎdÅY0¬8¥«Òùr–,›§tgO–kG¤@¤®Ê™[§‡Ù¥Ó´â¸È‡­8Îe=­8Ê n#Ëšõ0â,ÈFœ…Ñæuž¾áXÉÛp Ε.éö†˜&œâôβá0C~˜pð%FðÛ‚WP…õp™»‡‘¦¨Ð{XpJ¤¶ÒÍ)+(“@2€M8Åa$2á”({@΂¤U2|Ø„S\óu™9tK2 w#NqvÚiœ“þ#N̉8 ”gÁ$CQè²á`¡e¦i±²Œj– §Ø1[VLX¿—§(ǬÀƒÙõăé»ò4áð¦ºÂ„ã6ḎǴà° ‡DzÌë¶+èL&œÒÃÐ" Î<2á ,6ÒxÖ¦ Qïù«ó Ê‚oß*šÆUCR\šÚx3Ì-K&gß¿ý4¥S“í(ª l£ù3Î5CÖlÌeˆC“Q]7T1X`0¡RÅdEC€NÃ÷kbÜìÔÄÄG¥‰q¤i‰Î^öÇš®»¡ˆ x ¤í;Ô03k¤/§ÍóYMB “•'ÜJ˜¬b^VÂdÅj/-Lnvƒ‘…Ze:q^yܧ&Ë k*a¦–å ÇLÓ¢•0Ìú™ fåø²¼õu/%L¶ožµ0™ ª¬„A—r›J€mé`^çò㵜”2N<¿ÒµöcQTÈë=oðü½©ÈÁ;bnp°?  ¸ÈŽn3ë÷ƒ’{4_xéáÇ1È­ÓOl‚DÿÌÑ]t¦›úƒ7ò7¤.U£Z0¦Pà¥ô8žØ/¥¬Œ¿Šôõº¬'¤Š, € P˜#±6×Ò¹¿ÀÁsÅóoð1'êÊ2_½Ãó…亱o°‹À­f 7I.ŒÁ¢¶BÅe¯ÌÓ€}Pš§BÅ})…§ç‚-3¿z|½,Èoxv:ƒÅ.½“àÆž˜ç“Ñ56Åïà6SÎQñÇóþÚøû xgUhþÝüsÚŽBÛ슥¨*ʼb)Pƨ—©6€Á¾®X ƒ+–ˆKa„c)Üšc)ü±KáÞL­Uϧ³Ð-šª@¡ýÄ ûPc1—+hòu*>0 ×¥òdÌ>A׊? }ÿ|à?¼ŸJeñ·7Д^ãsjÅË8÷à˜'%ÊŒ{Ÿ+~Á/¹Îè’«çó,šëmx.·a­Q´¤õówæbGGbµ 3ñ„’«tªïÔ¹Ö†Õ PoÃêc4ä¼ KýË|’Ž ½¶ ?*Æß(Š.i».óP>yçˆï‰@ƒ&±I¯LÄ{#ëwckµz¹¶Ï(Å÷Þˆ0o|¤u§"ýáñZoŠ|LÅfP£â Œ  !÷Xy\§ò²ábq ‰îºÏ{}»Èt 2]uâõ´zÇl^¢Ûc~]ÚþèY¡v~v¼Øc¢ Ô<àeÀÈÀ¦Ð»Š‚~”w\3ørÓï”Ê3pÇ„£ãtv¾ÎÒ³õ˜ûð´¹gÛ”n3¾µ]ÇöèuéíPk ‡¢’wŒøÀ­Y’ ¸æôŒ˜-ø@p !âÖ¹¿ëùÓ“,}ÐŒ·â–n`ÊÊ2 Op-ñD€Óš¯«ÂF4©?ßgJó<{‡œ6`jÜ}ƒ9<#>Ë,æ&'hŒ¹Ë´2yb‘#¥·9ïG ¦:0ÛAUåö7x;ƒÑÄ;Æ‹ùùÈu ýÐøvê-qq÷}ÁsqñŠ¿N%›+Ò„ªç z¼pRMpQ£|•úå‹ ˆ¡f—³úƈg”ªoãñ;v[Õ¿c?Á õÞŠÍ ¡¥øy„àþáëøXQ´ñyû ·x˜á ʀήhó!q7:ŠÐQƇ\î9u…2à7îˆ4œÌ[:¹Â­­ˆî’ç^V"‡7ìŠ>œæ JqLŒêܬŽH‰`ÖÞTrGô&¶ré˜8÷²Šm{ùV^ÌøÝÙö'übZ‚¢Ïî(îŒYŽÐþ¥ú%JÂE3†°QRÜÑ~^¾¨&ÝÒ÷JŠè$uÄN ¹MN¤“W#|ðöpª‚Ú„à.T¸Qõ6ºJ” hN>Ïç•-4Õ³gP6t®|}(Vd°;Ma“ÉA¤ü bÁ åÈ ÃD73€Œ¹Ì± /Å}&í«;âÂ0IŒ@Ét˜á–©Y H=ÕBG ìáóúšàe7° ¹çëŽ@¼´$äeo«>À¥Âü(ÙkBÓÛyj èè5¸J ¸HCöéÊE»TL*£T•슄§È4ÕÇ$L‡IÕ'…ÚuŠÖ¢…ÎdÐ+ÈbÕi¼»n]^Lxñì¿tŸñÀqÁ¡øåCtm2óD¼~õ#™Mªô²ul†Nù3Yåg„ßS,ÓÕ¼z]Ý}íï±zBývÿá •(c²SZéÃdƒ&"É"1ß Äâc8Ûœ¼Œï³är­/—&šˆêB@eHÅ`O¼2¤‡¶ 'y8Ö!Ež„â²pIg·Ð ªJWZ›a~y¯@¹¦¦O5›Èk}κó¤ü•±¿é¥[uA„²í.·Ÿ÷ 6v‰:l'˜]‡Â@¡tÌÑ|•† »œÝéò£y…÷BeÙÜý.u§´3>ôzð²=gKU.#t1½r­9õ½KN[‰@úÁ]ói§èV¶/ ÍããúQ§£gq¤{ÊN7‡Ît¹h%eÞ¨í 2C×™©)¬"ˆÖO_óWEØdl˜¼©”¦‚öŸÝ=(7µ®­Å¥ÎÐÒÚ‰(œ—ïù}×Ék)„În¶ü ’"¤s.<åIþÉ`EMå¢TªS†Ì C áõ3½ò ]|BÒNÅY=-øîE—YÍìW¼õòÓ†eqQy˜d=¤e‚Ëj¾ñs˜â€s $›‰†ê÷¤`½¹ÿ¨Þ¼‹¬ò˜êþ%…(gLød}²pØÔ$S$Zœqû"‘ÀN²-?BŠs4vÚ‰tS©Ÿv:¼S›ËZ óO#O³Á™c 䤿ÓÝÁê8N“™*Æ€§†Y_èNš#/ðW"õùŽQì"&æ”]ÒˆH°K>ÿN™¼Õ·Å(Ín:ïý‘KÈ!¶*)ª‹ —Fq΄q¥b=H›þŸ¥KÛY«Äãvi¢ml¨¨×Nâ¥\îTÁóçfQ ¸BT×ß±GUÖóX?Óuó–ÆdÈW žTjZK ’„ìCÖRï¸cƒ94k"þD§‰ù{k$0ÁÔYßêT¦W&waÍJΖ*rõŸU›|À%Õ]Þg²¸ÝÔôÙsÊ„ GQi€¶éä3íhÊ‘=7“Ü:<¼Û>oHqe <ÜÕ&“¨ð êÎNÅ̤ÛéºÉ™Óî¦Ú5ä åC‰ñn`¶˜dDQR4¿ž”åã˜í'õŸßÏJWçÎeóÙî»@q¿é‰í!‡¤k½}ÿ¸_gÑqœ2Œ~F׎ ¯¾O„Ʀ·càj{MÌí$»1sw£Ä¼nÓ¾¸c¯üOsò}Û N¼\Ý^uY4sdˆåy^iinÒb+Ëy€Ç6šjî̳<ß;¥a7Ÿí_0?Ÿ8•Çìž®áÙý¸¥% äõ;ëþúmèNTl5Ÿéø:?¯Â«³sWçÐèŽùz ^ío“£ÏÇܹošÚèû1á'<ÉÂ)É´’> Pñ4”ÞSrÚ&¥ ¿’ÔŒŠ9I’4%ºh& èA‘À,‹DWæË´8K–—©P)%ÜqÈM¼ü”¥Ö2xÍ),uz›4x¶-ëöc}\®ñ³k §<¢ëÕáXsdBÄÀÍ¥Ïy©Ž˜ó´IFç¤*aðœôÛ7×DT.³Ä+sÙ@&SY³!dµ»èp k3v:ÞçRo>ˆ ï©’yìßsÇ v£>`Ì1ýë©pM¥­ 4 )>¼WñLÅ"ˆ`Èå.)©1'>³'²ˆÆ–O!AÑœ"›»Ã.ί%î¡dÕ˜ª›Ã\_’Šöâø#Æb3¼~OÞ’Ø€Ä1$ñ@0ë…R8ÍuI¼¡·ÃRȼžouÇÑÖ&©UãÛsÔÚxLš.¶ØÄÃŒÚMe‡+ß“æmjp=OD¡K;_3{þPû,ç•­Y\½è­–|v>;9;÷u•¥TÈj”ˉӧÖcÓ7¹¿V¤4595¿Š­%FÉP«¯œêÃi²ôy¼'®½*>¡ÌÏQµçÙQ’d+!Cy• \Ù‡ÐCê«l¿:h¤Ü„ÌÉå Ãîåîç©øâÌhåîç‰XK3TöqL.x¾ó Böég†.gpþì³/·®ñ”áx ö&»¶ߦÄœ@’^oq ä­—¼yãZÐ{¾5ÆKQØ™<öÚ­,ððºy?nï\7ñ+×màpn»ËDˆ^ ÜœÊþˆ ¯;D/‚úž¯ Ĩ€S+Ç,Ù‹`ÉSöºì˜'ÑëÊ*'CÑ î‘cÊ^Wf†º8d¹„îõ¬LT!z]t5xbÍaÙ¼ápÚ6É FÜIò"x–¼<¦ä5Xóhô bnËÙÈ;&$/öJ<(3»ÜCðâpj+¹‹Cr¸™uÎÍä¦9ÏbSÄñ]v0¿ß®>dÁ+{ONÁ+ß“5à%y™B×Ú^k÷íéG¯Òž#ÿ[²^Tegh6;Eµì²ÜÆü¿àÇŸNxügSþBCg:ùþüš˜|Ù±úÓ'‘"þLmž¿ý¯j&ÿøøË¯Ið`A¿e(„óú ›è ”t¢Eή 'wÓÙJÃ8¿“ƒü.üEaÈÛÆ›å‘¸œ/óä1à‰Øõ:ä?ã·sÁ_¬ôÍo§+ÓêrÜéºiÂqÇ5mÂsÇàrÝ1bùîaç·ækÙ›Þ;ÑðÞy^~¼¨žlø šþ;˜¾Zˆ¾º±ÉëЙú}6>\Uõv>:F|=' %¦KÀKˆ6OÈÙ4Ua ˆF“¶jÆ•€ü{XãZøYئãuXà ñGóÕž˜óë‘Z]S¶ÀÙõjM+‰1JÂ|OŒóýõ6Üí Ù*~n(e&)Rÿ‚hVà£cg{…a7=Œ¹P»0|€2hm馌W¥ò—_!Ez1Þ>@Ù4_ ¦V ªÒ)v‚´ž]&Ç@Ð¸ÉØ§›ß®Ê. πΦ«|¡ìj’à ‹Œ)Û?×ú¾bmZT±Ò06‹Ÿoa¥×Zê²w,”׺ErLßjÈ*’d±æ}pËãÉZÓjSŽnòtK…ró,Ìd:½ÇµfDwé×FûKMßW*ëÙ9ë"Ü÷#•IlîHyÓz07D¬¹B3ùŠ8Ö ÌdIªx8s¬gÛ„ö0&.²¤ ¯¤·×ØtÓ¦· 9¾±í7ulpŸ<:Jg<_¯ÞÈ-ÜÖìjêÏ“hœev/hLtÒ˜×Ü6MéV’£¨’L‚ÁŽdí#ù,Q¤R'žmÜ2ǬwÊ¥¾šoÐ¬êæ™+énŽja i™™‹ÿ€€ÙGçÓÀT‘¦ØÁßb•hZ>©nüæE–³… vN¶ÈT=l «3Âò!eßÃü:§âžݡS†LeìÝ­Ì^RP7;Ó%î€ÃüÜšá¿­ŽçïµjwW êåQ™31YÞÿ‘Z5š î;TjXu€T•áʽeÊY°£Kÿ¹w×û¸ ¬Lcó‚ÿ#•ið½ŒQ‚çÅ¿­3£–ws"bœÇ†‹F1ÐøÂ_èÿOÅ?„פ̓ºýç—á»þ²{öTk*Ì‘ïÓ ¡ùªåeR0ÍñŠG€;Ï‘©Yx~ø” 2¿½5Ê Å_>ô—8þéø¿ìÏõ endstream endobj 4 0 obj 133723 endobj 2 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> >> >> endobj 5 0 obj << /Type /Page /Parent 1 0 R /MediaBox [ 0 0 510.236237 317.480286 ] /Contents 3 0 R /Group << /Type /Group /S /Transparency /CS /DeviceRGB >> /Resources 2 0 R >> endobj 1 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 >> endobj 6 0 obj << /Creator (cairo 1.6.4 (http://cairographics.org)) /Producer (cairo 1.6.4 (http://cairographics.org)) >> endobj 7 0 obj << /Type /Catalog /Pages 1 0 R >> endobj xref 0 8 0000000000 65535 f 0000134302 00000 n 0000134016 00000 n 0000000015 00000 n 0000133991 00000 n 0000134088 00000 n 0000134367 00000 n 0000134492 00000 n trailer << /Size 8 /Root 7 0 R /Info 6 0 R >> startxref 134544 %%EOF pymvpa-0.4.8/doc/pics/design.png000066400000000000000000002641761174541445200165500ustar00rootroot00000000000000‰PNG  IHDRXu4¼”©sBIT|dˆ pHYs  ®ÐÁtEXtSoftwarewww.inkscape.org›î< IDATxœìÝw\UõÿÀñ×e# ( ,EI÷\%)¨iYî½WjÃ25ÔŒÜfd¦æH·¹r%®Ü Gh†D@dsïç÷?Î׫PÔÏóñð!÷ŒÏyŸs×û~Îg¨„H’$I’$IÅGïI7T©T:€= ûâ‘$I’$I*u'„ÈyÒTÿVƒ¥R©Z€€ÉóF(I’$I’ô Ê.瀿„[þmãB,•Je̾€%I’$I’^uû€!BˆÛ…­|,ÁR©TM@%+++š6mJ£F¨W¯FFF/:`I’$I’¤R#//+W®ð÷ßsêÔ)nßVrªûÀ!ÄöG÷ÑJ°T*•p°×ñòòò8wîœòX__{{{lllžhÿpùòeììì¨\¹²²îòåË^bbb¡Çiß¾½xðàÁîòäIeŸ† *Ëããã…D¹rå„BtêÔIbÞ¼yZe¼ÿþû‹/‡~,]]]1räH¡Ñh„B)ë\\\þ5¾5kÖz~«W¯~ÚKõÊINN€°±±)éP$éµúðçÈ»B„ZÜ%I*¥š5kF@@4iÒ€.]º(˪T©¢µ}dd$.\x¬œììlþþûo} ¦OŸ®µ¼ «[·nʯ©¦M›*5}Z¢yóæÊ>½zõ€ Tj°ªW¯.,,,DÏž=Enn®°··7ÖªÁÊÉÉ–––¡¡¡B!æÏŸ¯œ‹B©ÁrttTŽ×¢E ˆiÓ¦‰ììlQ¾|y¡§§'f̘!1bĈ"¯aA –‡‡‡ˆ‹‹SþåææŠï¿ÿ^âý÷ßæææQQQÂÝÝ]«¶ËÂÂBVƒUp½Zµj¥<×’$=¹¢j°d‚%I¯˜ÿJ°š6m*8 êÔ©#qöìY!„NNN[·nQQQ¢J•*B___ùÒØÃ Ö’%KĬY³„•••Ä÷ß/„J¢"222„©©©pppjµZI°4h ÆŒ#ôõõżyó Ö­[§•` !ħŸ~*1qâD!„»víBü/Á²´´bâĉB___ÙfóæÍíÚµ‰‰‰B___XXXˆ¬¬¬B¯aQ·/]º¤$Xb„ býúõ"%%EìÙ³GÄÆÆŠôôt $%Bü/ÁÒÑÑbðàÁZ(1gÎ!„C‡€;v¬¸sçŽèܹ³ÄòåË…F£VVVÂÂÂB¨ÕjÑ´iS¡««+ºví*’’’„J¥µk×B1~üxˆ¶mÛŠÓ§O‹.]º@ :Tëµbee%~øá±víZ­kÊ”);v,òZI’ôïd‚%I¯‰ÿJ°¶mÛ&„bĈ¿üò‹¸uë–„¾¾¾ðôôžžž¢bÅŠ+V¬xì…µÁÒÓÓýúõÙÙÙB!Ö®]+ñå—_Š-[¶@Lš4I!´¬ÈÈH¡££#tuu…‹‹‹HJJz,Á:{ö¬RC¦$yyyBQh¬2eÊ(Çûðà –-[&233E›6m 6lØPè5,H°*Uª$|}}•ñññJ‚Õ¾}{­}Ö¯_/ºté"*W®,Ê–-+Q¹re!„v –B¹·nÝ*ѵkW!„ÎÎÎîîîÂÓÓS¸ºº @ôë×O!D÷îÝ Ž?®\÷ *(å~ñÅB!š5k&±sçN!„'Nœ€prrÒz­|ýõ×Êy$X*•J¢eË–Êu–$éé•`ô"”$é5ñÖ[o §—ÿöÖh4Jï`]]]Ú¶m‹J¥â½÷Þ fÍšÿZÞßÿ……(Ë»uëÆØ±cYµjQQQ¨T* ôØþNNN´oßž?ÿü“Ï>û •JõØ6nnnÔ¨QƒÐÐPFŽ @Ÿ>}íƒÀØØtuuIHH`÷îÝ 6ŒaÆ)Û¯\¹’îÝ»yn•+Wæ»ï¾+t]£F”¿ïÝ»ÇСC177gÑ¢Eäääн{wòòò´öqppÀØØXë±øÿvQí° žeÈïÅàííÍÆ™9s&_ý5«W¯fñâÅxyyi•“‘‘ ´Ó222ÒŠë¡qz&&&”-[–ãdzk×.>üðÃB¯ƒ$IÏF6r—¤7@… hÔ¨YYY¤¦¦ÒªU+jÖ¬ÉåË—ÿsè…êÕ«ãä䤕\AþÐ #FŒ ))‰íÛ·ãéé©$wš3g‹/fàÀE§ ±û¡C‡ ÝV__WWW•äkýúõäææâî¯¯òÏØØ˜½{÷rçÎ=¿¢<œÆÅÅ‘žžŽ©©)åÊ•cË–-ÏTföíÛpãÆ š5k†»»;)))èèä$$P4jÔˆZµjQ©R%þúë/ôôôðôôP’äÙ³g³jÕ*%YìСC‘çRÀÔÔ”ýû÷cnnN·nÝ”$U’¤â!,IzClذV­Zñý÷ßÓ¸qc:vìHHHÈcµOãã?V¯Áƒ¹]51b&&&EnÓ·o_%Áhذ!µk×~¢V­ZÀ„ øî»ï”:t@­V³fÍš'="ÕªU‹aÆqãÆ ¼¼¼¨T©Òs•÷Ýwß1|øpöïß§§'ÞÞÞ¬_¿ž²eËùµ~U«V E‹JRÕ¸qce:³/¿ü’O?ý”+W®0`ÀNŸ>Í€øöÛoŸ(Žš5k²oß>Œéܹ3x®ó’$éTBT*Uà:ÀîÝ»•_E’$½~233‰ÇÊÊJk`Ïg‘““ƒ‹‹ <àÖ­[Ê­±×Õýû÷144|®¤ôajµšÛ·ocjjŠ¥¥å3—“——Gll,666Õ4J’ôb………Q£F‚‡-…‡AÖ`IÒÇØØ˜*Uª}øùçŸ_܉”BVVVÄÇǺÎÏÏØØXÆ÷’£’$I’¤ÇuîÜ™ºuë2|øð§ÞW6j)Ä©S§¸wï:uÂÂÂvîÜ @XXÕªUCWW€ÌÌL®^½JNN޲LL +W®äâÅ‹ÄÅÅ‘’’ÂÞ½{Ùºu+)))Ü»wììl¦L™ÂÈ‘#”íRSS‰ŒŒÔJàrss•c$$$˜˜ø¯ÆË³cǺuë&k®$I’¤Rcذaù„víÚáááÁ”)S˜;w.úúútîÜ™jÕªCff&;vÄÇLJÆŒCjj*•+W&!! àççW’—©Ø©Õjþùç PÒ¡H’$I’ÂÙÙ]]]‚ƒƒyçwžx?Yƒõˆ«W¯"„ 66–ñãÇ3uêTŒŒŒøè£ÀÅÅ…‹/2wî\Ú´iÃ_ýE:uX¹r%*•Š/¿ü€ùóçsôèQÆŒCùòå©_¿>Gå›o¾Ñ*«àoGGG¶oߎ……W®\A£Ñàë닾¾>ëׯ§cÇŽ¤§§ãìì\2ç #++ WW×’E’$I’zzzT¯^sçÎ=Ý~/(žWVXXßëÍ‚޽{Ó®];lll8~ü8®®®ìÞ½€îÝ»cllLnn®R}xíÚ5T*µjÕÂÀÀ€ÄÄDîÝ»GÛ¶m100 <<+++,--•kÈ!“––†‡‡7oÞ$::šÎ;ãèèȉ'€ü¤ìu“€¾¾>ÆÆÆ%ŠT 222ˆˆˆàæÍ›äåå•t8’$½¡tuuqtt¤zõê”)Sæ™Ë±²²âþýûOµL°QìŒ?‡ÇÖéëëãää¤4ø¿sçÑÑÑ\ºtII nݺ…±±17oÞ¤råÊܺu È¿ V°,<<œ ùI©©)U«V%<<µZ³³3VVVèééÉظq#Õ«WY—C’žXZZ¿þú+gΜáÖ­[èêêRµjUåG…$IÒË–››Ëõë×ÉËË£R¥Jxxx0|øpÊ–-ûÂ-¬G„‡‡cbb‚½½}¡ëªV­Š¾¾>íÛ·çÔ©S|óÍ7¨T*Ú¶mËØ±cxï½÷ˆŒŒdðàÁøûûS³fMj֬ɦM›¸uë_}õJMTxx8...¨T*"""€üZ*333>þøc6lØÀ¶mÛ€ü,úM*C*}Ž9‚ŸŸ–––Œ3†ºuëR£F ™\I’Târrr ãÒ¥K,]º”ž={òÕW_áååõB+¬G¬_¿¾Èu5HfffÌ›7ÌÌL ”^…}ô}ô‘־˗/×züðXP·:tè@‡€üÛf...øûûsäÈ~úé'†úl'&I/ÈÌ™3Ù»w/ãÆã³Ï>C__¿¤C’$IRP·n]êÖ­K=X´hÓ¦MãØ±cøúú¢R©^Èqe‚õœ^d›¡›7oâããCff&––– 8Áƒ¿°ãIÒÓÚ¾};‡âÈ‘#òÖµ$I¥žžžŸþ9íÚµÃËˋ͛7Ó­[·s¬RªT,ÜÜÜ8xð`I‡!I…º}û6óæÍcîܹ2¹’$é•âììÌœ9s3f îîîT©R¥Ø!‡i$é™Ì™3ooozôèQÒ¡H’$=µž={ÒºukfÍšõBÊî¬ÈÈHþøãâˆEzÅ©T*ºu놣£cI‡"½@`ß¾}œ;wNÖ°¾æöîÝK^^ï¿ÿ~¡ë8@VVmÛ¶EOïõ¾!Ϲsç°³³Sz€K¯¾±cÇÒ²eK222žk‡Â<÷;âСC¤¤¤ðÁG<Ò+lëÖ­9r„þýû—t(Ò Àœ9sV¾PkÔ¨QÒa½‘~ýõW|}}ðññaôèÑ„††ÒªU+ZµjÅÚµkŸë8ƒ&33“ÄÄDtt¿á1jÔ(¸yóf±OqµgÏ D­Zµøë¯¿ŠµìgqîÜ9úõëGçÎñ÷÷/ép¤bRÐÛ944”FkÙÅò“ÃÍÍ/¾ø¢8Š’^acH¯ŸÃ‡3cÆ ÜÝÝ9uêþù'ׯ_—=KˆZ­&;;€eË–ñé§Ÿ¢««Ë¯¿þª,x~TÈŸ`>77CCÃ"ËÍÎÎ.r½!„V¢åïïONNN¡}4 *•ªÐZjµ•JUhÒöè9æææ¹ äsTÔë°`ßÿzvÞjµZ«w¸‡‡›6m¢bÅŠEÆûðöòòò^ûÚ½W™žžuêÔ!$$¤Ø,ÙK’¤ÃÔ©SñññaóæÍ888JÍš5K:´7žƒƒ±±±rÿþ}6nÜH¥J•´¶‰ŒŒ¤AƒT¨P[[[ªU«ÆÌ™3•õ©©©Œ;–jÕªakkË[o½ÅÑ£GµÊX¾|9ÕªU£~ýú¬X±BYîããèQ£ÈÊÊ";;ÜÝÝùùçŸqrrÂÝÝM›6)Û_ºt‰víÚaoo½½=}ûöåîÝ»Ïtî;wîÄÝÝ[[[ªV­Ê¤I“”¤rݺuT¯^Š+bccƒ››ʾîî¸€³³3Ÿ|ò ;wîÄÅÅ…Ï>ûŒ>}ú`ooOçιzõ*/^dÔ¨Q°zõj\\\øúë¯éÔ©öööôîÝ[X:77—Ñ£Gãàà€««+óçÏÇÅÅ…Î;?ÓùJ/N:u¸yóf±—[b ÖíÛ· Óú—˜˜XRáhBöËòMvæÌ>ýôSnܸQÒ¡H…Ðh4L™2oooFŽ©,ÏËË“µW¥€——ŽŽŽüú믬]»–ÌÌL† ¢µŽŽ½zõbÍš5øûûcii‰ŸŸŸ’D3†åË—cggÇÌ™36lB­2–-[ÆÐ¡CIHHÀ××W©JLL$!!AÙ>!!ÈÈH¶lÙÂ!C¸qãS¦L %%…®]»rþüyf̘Á˜1c |,Þ'qöìY „Z­fñâÅxyy±xñbüüü077ç믿fÓ¦MüðÃDGG3räH¥v/!!„„¦L™Â{g‡‡™™™$$$°víZÌÌÌðööæðáì\¹€¬¬,”éR222HHHà·ß~£råÊ4kÖŒ={ö°aÃ~ûí7V¯^MÅŠ2d«W¯&!!äää§>_éÅ200xì5_J,ÁÚ¿?+V¬`РALš4‰+VpáÂ…’ G‹‚_~ùå™÷¿zõ*]»veÉ’%´jÕŠV­Zqýúu ÿCF£Ñº_ëÖ­Ÿù˜¯’ôôtfΜ‰««+7&""â…t‘•žßúõë¹sçsçÎ-éP¤Bèèè0tèPNœ8ÁO?ýD‹-«Yttt¤~ýúœ?žíÛ·+Ë/]ºD^^þù'»oĈøøøàéé©UÆ¢E‹˜0auëÖ%--í??«W¬XÁäÉ“qrr"66–ÈÈHNœ8ABBvvv$&&¢Ñh066æÄ‰O]‹µcÇ4 •*U"**ŠòåË(?Œ›5k†¹¹9ýõ‡ÂÄÄ„´´4¢¢¢;¯ 0|øpeYíÚµY²d 'Nòg)ø7o¿ý6?ÿü3_}õÇŽò;@~;nÜ8¾ýöÛ§:GéÕWb7† À„ hܸ1;väÀ <˜f͚ѯ_? ™>}:YYY¤¤¤ðÕW_QµjURRRX¶lׯ_gذa4hЀ¬¬,–,YBpp0-Z´ F4hЀŋs÷î]ìíí©W¯¿ýöfff :” pìØ1ÂÃÃ9räM›6eèСèéé¡V«ùî»ïˆŽŽæ«¯¾ÂÉɉyóæáããä€xzzRµjÕBϯAƒʯ©Õ«W3räHöìÙCrr2BbbbðóóãÎ;|ôÑG”)S†‹/2bÄú÷ïOZZkÖ¬¡\¹r|üñÇÔªU‹}ûöq÷î]vïÞMݺuùꫯÐÓÓãâÅ‹,_¾œääd|}}©R¥ þù'Û¶mÃÛÛ›^½z‘ÍôéÓ•ÛãÇ9OôÿËÌÌäàÁƒ‘””ÄæÍ›•u“'O–m·J¡ÌÌLöîÝËðáÕ/0©ôéÓ§3gÎ$))I+Q(Hÿþý©]»6ï¿ÿ>÷ïß'""‚ŒŒ rrrÈÉÉAWWkkë"Q¯^=à+gff¹­™™NNNùµ=éééʾgÏž iÓ¦@þ<–*Txâs~ðàwïÞUÊjÕª•ÒŽjÚ´i¬X±‚öíÛÓ¨Q#Ο?OJJÊcq¿óÎ;EžkAYYYYÿKÁöŸ+ü¯ \Áœw&&&O|~Òë¡Ô´¼+H86lØÀ/¿üªU«6lS¦L!((sssFÅîÝ»™6mÍ›7§ÿþtéÒE«wáÂ…têÔ‰þýûS«V-|}} ¢fÍš$$$°bÅ RRR2d[·n%""‚uëÖ±uëV-ZÄÚµk0`§OŸfÑ¢E!øî»ïظq#AAAÄÄÄP±bE–.]úĽå:vìȘ1c8xð  `Á‚ôêÕ RRR°°°`æÌ™,Y²ÈŸDºM›6ܽ{—Ï>ûŒ7BPPË–-cüøñáááÁ¨Q£X¿~=+V$++‹½{÷röìY–,YÂwß}ÇñãǹuëUªTaúô餤¤¼˜'ñ†sçÎÈáÇ ý ÒÕÕÅÃÓ'O¾”˜¤ÿ&„`Û¶müòË/dff{ÃO©xYXXðÍ7ßÂ{ï½÷ØÐ5)Æ ãƒ>Кš«L™2Ô¨QƒÐÐPeÐÅû÷ï£R©xë­·”íþ­1ú£nÔþðß 4@GGµZŸŸUªT!&&†Ý»wkëQ)))ZM6\\\hÔ¨+W®¤B… ,[¶ sssBBB”¹\÷ìÙÀìÙ³IMMeöìÙ…–]Ø\™çú¤Ó§l÷èöMš4áÔ©S,]º”2eʰhÑ¢'*Oz}”škÏž=|ôÑG”-[–¾}û2zôh† †«««ò¯R©HMM娱cøùù¡R©pssãôéÓüõ×_ÌŸ?Ÿ²eËÒ¾}{¥ÜfÍšQ»vmÂÂÂðõõE­Vsþüyå ÿÃ?ÄÜÜœ¾}û2~üx €›››RÕ ä@P³fM:tèðÄ:mûá‡2vìXêÖ­Ë—_~‰………Öú .°mÛ6Ôj5gΜQ–wéÒ333ÞyçΟ?Ozz:žžžJÃVþøãÒÓÓ=z4ÉÉÉœ>}šnݺ1|øp>ÌçŸއ‡Ç?7O+88˜;vpúôéÿlo`kkKpp0!!!!¸|ùò ‹«¸YܸM/ IDAT[[Ù£èUͬY³ˆŠŠbôèÑÌœ9“† –tXÒx¸}Ü£ºvíÊï¿ÿÎèÑ£ñññ¡V­ZZë.\Hß¾}Yºt)K—.òµÿ[Òó,œ™—/_ÆÖÖ–+W®(m®–9s&›7oÆÔÔ{{{å¶Tdd¤òÁ¸>ÿ²)hüÖ®];üüü8uê¿ýö_ ,„(²k³Z­Æßߟ¶mÛj-oÖ¬GåôéÓ|úé§ìÞ½[«‹ïìٳٷo€Ö—xA\:::h4êԩï¿þªUvýúõ±··§cÇŽZË÷îÝKTTÝ»wçܹsdee¡«««ÕX9//ÜÜ\ŒÉÌÌD__===ÒÒÒžhœ›Ë—/+]·ŸDll,ï¾û®Ò…üß¾(JµZMŸ>}øä“OJ:”bÏ!ChÞ¼9ë֭㯿þÂÉÉ©ØÇ7’žßG}D:u°µµ}l]£Fرc‡r[×ÓÓ“Ž?Nݺu144äÆÊ€À 4àï¿ÿæôéÓÄÄÄ`ggG“&Mؼy3jµZI jÀëÔ©ä7ÈÉÉ¡L™2èèè°cÇ­! ~þùgýôSz÷î͸qãØ½{7ÙÙÙôèу¸¸8Nž<‰¡¡¡’|Ž7Ž÷ߟ÷Þ{O)ïÈ‘#¬_¿&L˜@Ë–-ù裨W¯‘‘‘ÿYm^»vm¦OŸÎÑ£G äôéÓ¨Õê"··±±!&&†Ã‡Ó¶mÛǺ‡—V/» Û‹&„`Ú´i4jÔˆ5kÖ R©ÈÎÎ~¡“™KÏÎÎÎ;;»Bו+WŽ·ß~[k™µµ5:uR$ŒŒŒkØÿk#U àn@GkÂ=nýúõ+³`ˆ†ÿbiiùXyªY³f‘Ã…<¼îÑ6„ äì­­µ>kŒŒ´Žÿh<¶¶¶Z ®©©©ÖúÔÔT6lHÓ¦MIHHàüùóòùçŸÿë9I¯O°žhÙ²edffj}¨ÛÙÙ±eË­û·ß~›·ß~›¬¬,¥a¡¥¥%þþþ¨Õjºwïλヒ……[·nUÊúâ‹/xðà&&&Z‰Â Aƒèܹ³Vm×”¿ƒ‚‚”¿´Þ QQQJo“µk×Vn+>jÛ¶mL:•äädLMM•¤‡¯E‹-HKKÃÔÔT‰õáÁ\{öì©üíëëKvv6yyyÊ9øûû“––†žžžrݺwïŽJ¥R¶IOOÇÛÛ[+>///¼¼¼´’ÂG{ßü¼½½ñööæÞ½{ìÛ·ÀÀ@e<™‡ÅÆÆ’ššúÄeK/Æúõë¹ví'Ož|â¶'’$ÍÔÔ”1cÆ‚™™­Zµ¢_¿~%·Òë«Ä¬G=ú‹¹~ýúèèèúKº ¹¸wï&L@__Ÿ#F`iiYhùÖlÙÚÚ¢««ûD=<¦OŸŽ¥¥¥Ö/½çé¾þp-ZažæÖŒ¡¡ác·)ÝÿÑs_¾|ù—ÿ¬Ê—/OÏž=éÙ³'QQQLž<™¸¸8­ñÁöìÙóT=ˆ¤â¥V«Y¶lóæÍSjf%Iz>úúú|öÙg%†T‚J]‚õ¨Go­ÅÎÎNéIø4Úµk÷ÄÛ~óÍ7O]¾ô?NNN¸ººÒ¼ysúõëǪU«øã?˜2e .,éðÞX‘‘‘dgg?Õ{A’$Iúw²;ƒôÒ©T*¼½½Yµjñññøøø(ÓKH/_HHo½õV¡í%I’¤gS,5XAAAEŽ3"½9þþûo¥Ï“211¡_¿~>|øÅ%ý§1‹¼$Iқ÷Þ{œœ¥«¬ôæHOO×j»V­Z5Ú´iS‚IÏ"%%ENU$I’TÌž8ÁR©T…N†èààÀ¨Q£Š5(©ôKMMå»ï¾{¦Fþ²—Úë/##ƒ½{÷¾ T_7:::´k×N«“Jrr2·oß.Á¨Þ<Õ«W×z„DFFÊ×ðkÂÜÜü¥w¦zâ«R¥J?~üEÆ"½BÖ¬YÃÉ“'¹{÷îS½hãââäÈào€ü‘%K–È9 Ÿ@bb"&LÐþ¥`0Néå6lßÿ½òxáÂ…øúú–`DRq211áï¿ÿ~©IÖ'Xžžžøúú†««ë‹ŒIz$Û{öìyâ9###¹tésæÌy‘¡I¥@ff&žžžüðÃ%J©7bĈÇ&!NHHàÇ,tðO©ø-\¸ÄÄD­eqqq´oß^ö ¤¥¥Ñ¶m[îß¿_:¬æÍ›ÓµkW|||˜0aîîîrN¥7Ttt´2ðè®]»þ3ÁÒh43sæLÞÿ}e SI’Ц§§Wä\Rñ*ê»L___N%=³§jä¾|ùr|||øâ‹/066~í&º•žÌÃ8ß¼y“Î;ÿëÁÝ»wÉÈÈàã?ÆÏÏïe„(I’$I%ê©,ccc~þùg&L˜ÀÙ³gIJJzQqI¥”â±yøjÔ¨¡ÌY˜òåËãææVäÜi’$I’ôºy¦alllèСCqÇ"½Ž=úX[… .°{÷neNEI’$IzÓ•ú©r¤ÒeÕªU-KJJb×®]tìØ±"’^g·oß~lÎ̦M›Òºuë§.+$$„›7oâííýÆü8~ü8iiiÊc]]Ýg«N­V“œœŒ‰‰I¡ó¾H.\`íÚµ 8Zµj½Ôc—&ÑÑÑ\ºt‰û÷ïS«V-êÖ­Kvv6“'OÆÃî]»Ëq"##Y²d ]»v¥qãÆÄÆÆ²k×.®]»F—.]8|ø0†††Œ=ºXŽ÷:{®ëúõëDDD ÑhŠ+©ËÉÉaýúõ…®›3gŽÖäÛßp´Zµj899½Œð¤×йsçØ´i5jÔP†|xÖ†ß ,àÂ… ¼÷Þ{Åb©%„`ܸqddd §—ÿQ_½zõgJ°N:ÅÈ‘#™>}:}ôQq‡ú¯îÞ½Kvv6–––/õ¸¥…Z­fþüù ««‹µµ5qqqrÿþ}vïÞMíÚµ‹íx×»\¹røøøOïÞ½qpp >>þNtŸÆS'XyyyÌ;—Ù³g“œœŒ………òæ•^oÙÙÙdddºîÔ©SôíÛWkÑ‚_½æææ|ùå—Lœ8ñ©9ŠGHHÓ§O§zõêÊòððp~øáBBBpvvfÔ¨Q4nܘ#GŽ0mÚ4’’’°µµ¥S§N 6Œ‰'äÏ>1jÔ(®_¿ÎÞ½{Ù¾};iiiôîÝ›.]º0|øpˆåÊ•ãÔ©S>|˜5kÖ°eË’““iÑ¢ß|óÍc?*J“[·nñàÁ:wîÌ”)S´Öýõ×_:t•JE»víhÞ¼9ßÿ=7oÞD__Ÿºuë2hÐ ÂÂÂX¼x1?,ËÍ›7éÚµ+‹-âƒ> I“&¬Y³†ÈÈH|}}9~ü8{öìÁÛÛ›½{÷òÁP¯^=V­ZEXX5jÔ S§NØØØ°páBÌÍÍéׯ 4ˆ5kÖ·o߯Î΢¢¢øóÏ? ¥L™2tëÖ&MšpïÞ=V­ZETTõêÕ£sçÎJ‚ðª[ºt)Ë—/§cÇŽ|úé§T¬X‘ÐÐP8uê5kÖäÞ½{üüóÏܽ{333š7o®$ÃàØ±cÄÅÅQ±bEÆŒƒŽŽ›7oæŸþA­VÓ¼yszõêEtt48991~üxΟ?““DDD`llLÍš5ˆ‰‰aݺuܾ}www:uꄉ‰‰RnëÖ­Ù¶m£Gæüùóœ9s†{÷îáààÀĉ_û‘ž*3JKKÃÓÓ“¸¸8ÆŒƒ»»;/*6©”3f 'Ož,rý Aƒ«¦NMMåܹsüòË/lÙ²…#G޼6|Ò‹W`uéÒggg,X@ß¾}iÖ¬«V­Â××—ü‘7beeÅ‚ (S¦ ?þø#‹-¢W¯^´jÕŠ;wÒ¦M:uêD5øý÷ßÑÕÕÅÀÀ€bcc±±±!==àà`Œøà®^½Ê€¨_¿>Í›7ÇÏϬ¬,†ÊæÍ› %<<gggnݺŷß~ËØ±c166æêÕ«¯}rO™`}þùçdgg³~ýú—~^*Y÷îÝãôéÓÿºM``àc_8eË–¥U«V4k֌ѣG3lØ06oÞü"C•^†ððpùä“O€ü6_.\à“O>!99Fƒ‚C‡qôèQ¢££ÉÈÈ@WWccc hÙ²%o¿ý6yyy\½z•V­ZðÏ?ÿù5aaa!èÕ«ü1ßîK¥R±páBeꔂ±àJ«‚ùak×®¹¹9,[¶ŒòåË̓P«Õáææ†™™ 66€û÷ïÓ®];T*ÎÎÎ|ùå—Ê`Á®®®¤¦¦­¼÷CCC166fÍš5XXX°téR¢££qssãÊ•+èëë+›››“””ĺuëpss#11‘7¢Ñhèׯ $&&*‰\JJŠR‹Ò¥Kš7oÎŒ3HJJ¢F\¹r##£×fÖ‘[·n‘M‹-´æ}-B¥J•055ò²]»v‹‚´´4tuuÑh4âééÉ!C000 %%…»wï²uëVÚ·oO×®]ÉÍÍåÚµk´iÓ333ªU«Æ‰'øê«¯¨P¡3gÎäôéÓ¸ººòí·ßòàÁŒŒŒ ÃØØ˜ãÇ3pà@"""pttä÷ßGGGG™6kÓ¦Mxyy1|øð—})KÄ'Xááá¬ZµŠ 6Èäê ´wï^Ôj5îîîÔ®]]]]V¬XÁ¸qã¸qãgΜQ;::>¶¿‘‘S¦L¡gÏžœ9s8 éUrýúu²²²pss£]»vÊòÇ0oÞ<*V¬HNN©©©œ?ž¥K—âëëK»víxï½÷°µµEWW—ððpªV­ äqåää`kkKJJ Û¶mÃÐÐ'''Ö®]  $_jµ]]]5jÄôéÓˆ¥Zµj/ëR<“ttt˜6meÊ”àÊ•+h4ÜÜÜpww M›64iÒ„o¾ùF©ùÙ½{7ááḸ¸––Ftt4ݺuSÊ £\¹r”/_ž 6ùÉVNN‘‘‘´nÝZ¹»£ÜŠ444ÄÝÝ]¹µjaaÁÕ«WÙºu+~~~Œ?žßÿvíÚQ±bEŽ= ü¯ÆfÅŠlÞ¼™]»v1zôhöíÛGLL FFF´mÛ•JõZÝY)ø® #//===rssIMMÅÜÜœˆˆ¼¼¼ÈÉÉá³Ï>ÃÅÅ…‘#G2oÞ<¢££qvv¦L™2¬ZµŠíÛ·³uëV"""`„ ÔªU‹ÀÀ@fΜIÙ²e©Zµ*yyyZ5dåË—WF? ÁÎÎ bcc±¶¶æÝwßÀÝÝ"##ÉÉÉ¡C‡J-U›6mX´hþù'$&&*ï¥×Ù'XÇç­·Þ¢R¥J/2©”JMM% @yã]¾|™•+W*÷ø…þøcúöí‹‘‘+W®dÿþý¤¤¤àâ₎Ž¡¡¡èèèàââä÷¼ëÝ»7K—.eôèÑh4îݻǡC‡^Ö¥x&¡¡¡T®\YI® ¿†ÎÑÑ‘ .`ooOrr2÷ïßçÃ?äÊ•+”)S†#GŽpäÈåh4 8tè™™™Ìš5 ###RRR1b/^ò_äåå)mtÚ·oÏÖ­[9|ø0®®®„„„(=Ž-,,ˆ‰‰¡mÛ¶8;;+c+8P9‡‚²W®\IHHŽŽŽ”+W}}}¬­­iß¾=ÇŽãøñã888ðÏ?ÿ0jÔ¨—q‰_8{{{¼¼¼8pà^^^Ô¬Y“ÐÐPüüü011!77—5jpçÎîÞ½‹µµ5»víâÊ•+TªT‰2eÊ0räHªT©‚¥¥%FFF4iÒ„þù‡… R¯^=*T¨€¾¾> 6äĉ€ö-Èzõêÿ«Q.h¯×®];æÍ›Gpp0æææœ={–Ù³g+sh¼4 }úôÁÍÍ ôôôhÒ¤É˾”%≬åGzóÜ*)ŠJ¥z¢)pœœœ¸téÒSÛ¶mÌ;WëË¢$i4nܸÁÙ³gKäøÙÙÙ4mÚ”Ù³g?W9ñññ¨ÕêbŠªx5jÔˆåË—k5n¨\¹2ÇŽãܹs¤¥¥áì쬴ÑÙºu+wîÜ¡N:\½z{{{¼¼¼Ø·o·o߯ÑÑvìØAxx85"<<\iØ¿zôè¡Õ[qÔ¨QtïÞàà`LLL”/Ò*++‹>}ú(×¥€J¥" €Ã‡Š­­-}ûöEWW—ùóçsðàAêׯ‹‹ ÷ïßWÞoþþþœ={V©7nÕªU£R¥JôèуÐÐP\\\ˆŽŽfäÈ‘J­ 4‚?räéééx{{óÎ;ïùsÜÔ>™™™1räHÊ—/¯<çÕªUcÔ¨QT­Z•û÷˜HRR;w¦yóæèèèо}{¥¶+;;›N:•úççiÌ;—]»vqéÒ%tuu•N7oÞdäÈ‘´lÙ’Ê•+ãççÇÅ‹ñööÆÆÆFعeË–DDD››ËŒ3hÒ¤ ‰‰‰4hЀ„„jÕªÅСC±µµÅÞÞž‘#GR«V-233éÛ·/uëÖ ##ƒAƒѰaC ÿ}âââÂÉ“'Q«Õ 8Ê•+sçÎFŽ©ì———G»ví¸yó&,Z´H©=}Ý=q‚¥V«•v ’ô¬ôõõÉÉÉyêýøàƒÇŽ·råJÊ–-ËöíÛÑÕÕ%99‚‚‚زe ?.HXX={öäèÑ£FFF:tˆ¸¸8  ¼·ß~µZ«««2 axx8ÙÙÙìÝ»—¸¸8eеGMš4‰ªU«rèÐ!V¬XÁÉ“'YµjMš4!33OOO>ùäÔj5­[·¦zõêüðÃDDDpðàAŽ;†±±1¹¹¹x{{+c{\½zµZÍþýû•XSSS9tè©©©,X°wwwþþûonß¾ƒƒ3fÌ ++ }}}nܸ¡ ЩS'%Þ0pà@Z´hAµjÕX½z5U«Vå×_¥E‹/îÉ‘^K–,!77???üýýùî»ïˆŠŠbéÒ¥¼õÖ[%á¿KNNfüøñ4mÚ”¯¿þš¤¤$233µ¶‰E£Ñààà , ¡ZµjJonn.QQQJwõ‡ÅÇÇO¥J•044d÷îÝlÚ´‰Ö­[“˜˜ˆ‰‰ ³fÍRÆÍ‚üIÍïÝ»GµjÕ”Ûª©©©œöíÛãééÉ×_Íüùó±³³ãÛo¿%00]]]&¢ R IDAT,--ùá‡hذ!3fÌ 00zõêñÏ?ÿ ¯¯Ïž={”K»lllHNN&88˜ŒŒ .]ºDÙ²e©P¡†††äææ²páBöíÛGNNmÛ¶eüøñ@~WýððpT*µk×fÖ¬YX[[³cÇÖ­[GDDffføúúÒ¸qc:uêD‡øôÓOùõ×ÿcï¼£¢ºÚ·}ÍÐĆ X@4 bÁ5‚ "v¬Ä[ÀšÄ}#vågï {¥ ˆR¥¨ˆ€þýÁšý1QÔ¹Ör9³çœ³÷ gæ~ü8)))L™2…fÍš@zz:çΣuëÖtéÒ…5kÖÿ¿¼;11‘¸¸8*V¬ˆAAAèéé¡¡¡AÛ¶mñððÀÞÞž·oß’››+‚¶®]»²oß>‚ƒƒQUUåúõë¬[·NnÌ2; nܸ!îìUUU‹%ïDÁ—MA+ÉÉɘ››SµjÕRÕ£mÛ¶4hЀC‡qèÐ!~øáV­Z%n²Ø·o!!!üöÛo ©©Inn. 4àîݻ̛7+++&MšÄ’%Kزe Æ cÆŒDEE±sçNš5kFLL 5kÖäèÑ£èëë³uëV”••qvvòÅ7oÞŒ‡‡‹/¦K—.XXX°{÷nš7oNpp0***Ìš5‹›7o²zõjBBB¾ˆ+;;›ððpÌÍÍyõê~~~\¸p‰'âää$¤,X€k×®%66–E‹ѱcGš5kƘ1cøî»ïÆÁÁ#GŽ`gg‡““:ubÕªUDFFR»vmBCC‰¥Zµj\»v´´4´µµ9|ø0±±±Ü¹s‡±cÇbddÄðáÃÑÕÕeóæÍlÚ´ '''ºtéÂæÍ›‰ŠŠb×®]¢Ò[‚²H™ °Ú´iCÆ )_¾<šššÊ)/_¾œË—/Ó¼ysêÔ©CVVÊÊÊhii±nÝ:nß¾¶¶65jÔ`É’%annŽžžžøRÄÒÒ’Ê•+K‹-˜?¾X>122bÍš5B9òs<.\¸ÀÇ™?>]»vE*•Ò°aCtuu…_µjÕøóÏ?¹sç?þø#Õ«W"†;wF__Ÿ°°0bccÙ³gXÚ?~¨««³k×.Ο?Oll,Ó§O§bÅŠÜ»wÐÐP9ýùÞ\—.]âîÝ»èééÑ¡CªW¯.rì*UªT¤ÇWAÞ¾}KJJ šššrⓟBjj*gÏž%&&†–-[ÊiÏ|,W®\y§ðé±cÇxòä S¦L)$ÜYÖÐÔÔÄÝÝ]¯xyyqöìY¾ÿþ{BCCÑÐÐ`òäÉ"]VéÛ°aCΞ=K^^ׯ_&Ç<~ü˜   úöí+ô” IJJ"!!®]»Š¿oHHšššT«V ´´´èÛ·/iiideeñæÍÒÒÒˆ‰‰¡G4iÒ€2¿+C&>ibb‚D"aíÚµüðØ˜˜——Gƒ HNNæÔ©S¨©©±hÑ"aüèÑ#ÔÕÕ9xð AAAâF¯|ùò¨©©ahhȉ'¸xñ"Æ £}ûöÂâÈØØ˜œœ‚ƒƒiذ!€TW­Z…®®.ÇŽ#!!ŒŒ ¦NÊëׯyýúµX¢=}ú4ƒ ¢S§Nüþûï¥òù)Pðo”©«(A´‚¼OLîŸBxêÞ¥êkhhøN[(,º¦¡¡QHì (2aØÜÜ\T×ï¿ÿŽŠŠ ¯^½âÆtîÜYˆªªªÒ¡C¡rü.ôõõ2dˆ\[Aa7ù<|ø¦M›ùŸYtt4NNNüòË/xyyѧOöìÙðaÃÞ{œ 6ðË/¿påÊ•bùœ“““ùî»ïÐÓÓ£víÚÜ¿ÿ“¬¼¼<Ö¯_ÿÞm®_¿ÎÈ‘#iÖ¬‹-*“³,999ÌŸ?KKKa$•Jiݺ5•+WFMMvíÚ±hÑ"^¿~-¾C¿ýö›°v¹ÿ>Ÿ_Ù¶m[~ü333ÆŒÃÛ·oñññaãÆlÞ¼RRRØ»w/W®\aãÆ¸¹¹1|øp>|äÅGŽáõë×â:$$SSSqNÊfaçÎK³fÍÈÍÍåÙ³ghjjbkk‹¹¹9ÇŽcÇŽ˜››ù»¬@AiS¦¬oÞ½{sÿþ}ÔÔÔ2dˆÂôø3²bÅ ²²²ˆGCCƒ—/_’™™Éµk×X¼x1ûöí#,,ŒéÓ§3gÎ?~Œ††;wfܸqœ>}šM›6°fÍÚ·oÏäÉ“ñòòâСC¼}û–ˆB„={öàëëK\\†††¸¸¸¾uww'))‰íÛ·ceeU,ÞÞÞ„‡‡¿w›&Mš`eeEçÎˬa{RRwïÞåäÉ“H$LLL˜={¶HfŸ:u*»ví¢U«V(++3hÐ ,-- ¦N:¨©©aeeÅ_ý…ƒƒ™™™hii±råJ455™0aû÷ï§{÷îT®\™óçÏÓ°aCš4i‚»»;=bÑ¢E¼zõJÛŒ?ž¥K—Ò»wo444˜;w.={ö¦Ð²íBCC166þbtÅd–‰‰ :::ÂXYæÅhbbBùòåéÝ»7§OŸæÑ£G¼~ýšÊ•+³wï^þôÓO$&&Šc­\¹’«W¯R½zuÂÃÃéׯåË—7³–––"P6K'–$eÛ¬_¿ž%K–P¯^=bbb1b™™™Ì˜1ƒúõë‹Jí.]º”äǦ@Á£°J˜Ί)ø|¨©©‘‘‘AÓ¦MéÛ·/³fÍ¢zõê„……‘€ºº:7¦N:<}ú”ZµjÑ®];NŸ>ÍøñãiÙ²%ÙÙÙÄÆÆR½zuj×®¡¡!ÎÎÎ8880{öl±±±áþýû¼zõŠ#FàääD»ví¸~ýz¡à*;;››7o0{öl,,,xùò%K–,ÁÑÑ‘zõêýç÷™••ņ Š|MSS“ž={bee%.peY3MGG‡S§N½óõ‘#Gi»qìØ1ñ¸B… ïœÍ7nãÆ“kSVVÁ’Œ‚~™Íš5ãàÁƒ…Ž5lØ0¹ÙϲnþüO D= > >œþýû‹œÕÿýïLœ8‘   ´´´ÄŠ€ÌŸð»ï¾#==]_“'OÆÂ‚¬¬,ÌÌÌDzÆÈ‘#155¥\¹rèéé©©)‰„mÛ¶Éô¨««söìYîÝ»'ª=MLLÈÈÈÀÅÅ…ÄÄDŒŒŒ„A·eE€¥à«eéÒ¥T¯^www\\\pww'&&†öíÛ“——‡™™™0K¾sçÙÙÙìß¿_,%%%ѽ{wRSS±²²ÂÉɉ´´4Œ††Ïž=ãåË—@þ ’,8Ú²e ÖÖÖÌŸ?¿Ð˜Æ‡ŸŸëׯÇÞÞžQ£FQ»vmŽ?.§Eô_8pàqqqâ¹T*¥M›6ôéÓ‡öíÛ£¬œÿ5ŽŽÆÓÓ“¸¸8.\øQ})øzxW0/+º)HÍš5å$1 ?-hê,CWW·Èåg©T*7c_p›¢R?¤Ri¡ôŽråÊ)fý|1”©ëúõë"Q´ 2)…ÏųgÏX·nAAAtîÜ™©S§~¶¾þIBBwîÜÁÌÌLüà :”:uêð¿ÿý¯ÄÆñµ‘˜˜ˆªª*³gÏföìÙôìÙ“ .ššJNNÑÑÑBV#;;›~ýúQ·n],XÀÂ… ÃÌÌLÉÊ’¢HOO§S§NââÒ§OÌÍÍ©S§>>>ìÞ½¢££åf>òòò8vì­ZµbÒ¤IDEE±bÅ ¤R)§N•«ÿ…ׯ_ ±Y===¬­­éÕ«—˜•xõêgÏžÅÃÃCä&)i(P àóS¦¬èèhž={F||<‘‘‘Ô­[­òúTÖ¯_ϵk×XµjU¡»´ÏëÖ­cçÎèêê’••Eß¾}‹t¤Wðá9r„Y³fѪU+ÒÓÓ¹|ù2S§N¥J•*$%%¡ªªÊÑ£Gyóæ K–,!:: öïßÏ•+W¨U«U«VåñãÇ@þ9’ÀŸþIëÖ­¹~ý:¦¦¦¼~ýšðÓO?Ñ®];Ú´iCÍš5QQQ)”"‘H°±±açÎX[[“œœ,Úÿ«A¹ wwwÌÌÌ2díÛ·G"‘ÍùóçñôôN26l¨¨4U @‚ LX `À€¸¹¹‰££#Í›7gß¾}X[[Ó£GaTëããÃÕ«WÉÉÉÁØØ˜Ù³gS§Nöïß»»;x{{£©©Éš5kÐÕÕeË–-øúúòôéSªV­Š‹‹ ëÖ­ãÒ¥K())±`ÁvíÚÅ‘#GpwwçåË—´nÝš‰'¢§§‡‹‹ .\ K—.œ8q‚5kÖ°`Á IKK#<<œqãÆÌ¥K—èÑ£$&&2iÒ$âââ(_¾<-Z´`ñâÅ?~œmÛ¶åjsss8ÀÌ™3|®ýû÷“œœ,Æ¢¯¯ÏúõëñõõÅ‚3gÎP£F Ö¯__f“—KKKK233 §jÕª¬^½ZTkjiiáççÇùóçÑÑÑ¡fÍš:tˆ¿þú‹¾}ûbdd$f›6mÊ©S§ O§NâÔ©S\»v ~úé'rrr8p <@UU•ãÇÓ©S§BãZ·n½zõâüùó´oß777>Lppp‘Ûÿ#FŒ`ìØ±@~©»§§'>>>béòŸµü£@ ŠŸ2`ÉùÉr‰‹‹ãñãÇLš4 333¤R)ööö$$$`ooÏÁƒ™3gŽØVII‰^½z±{÷nþþûoš6mÊÖ­[™8q";wb€:tàâÅ‹ôìÙ“îÝ»sîÜ9V¬X mÛ¶eæÌ™hii1mÚ4®_¿ÎÓ§Oyýú5S¦LAII‰˜˜$ cÇŽeáÂ…8;;3cÆ ¢££9|ø0S¦L!''‡¹sçR­Z5¼¼¼Ø´i={ö¤y󿍫«£­­ƒƒzzz¢­fÍšœ9s'''úöíË?þÈÌ™3ÑÐÐÀÑÑ‘ëׯ‹²åŽ;ròäIi×®]iþéÊ L™2寷oßžöíÛ‹ç666ØØØÐ±cG¹m{÷î-g®­­ÐX’1}úôWùòåéß¿?ýû÷m2- !%%…M›6qõêUQÉõ>222ä”Þ!ÙóÁƒ=zT®=&&æ£ÇU¹¹¹øûûËͨ}khii}’ÔGzzº\¾‚ÿŽ’’½VV¹¹¹Å8"ÅŠŠJ™(~(“VXXÕ«Wž^¡¡¡Ô¨QƒÅ‹#•J‰ŽŽÆÃà  RSSÉÍÍ37aaaÔ®]›É“'súôi _øSKK‹*UªàææÆÉ“'7nêêêBXÐÜÜœ–-[2bÄ*T¨€££#¹¹¹¨¨¨Jff&‘‘‘4mÚTØDxzzˆå¡ÜÜ\,,,èׯ¾¾¾T¬XîÝ»ÇÑ£G çíÛ·@þ…¶Zµj$''Ó¶m[Z·n-Ư®®N­ZµX¸p!êêê̘1‰D‚šš¡¡¡dggóðáC1Þ;vù98 ¾²³³Ù±c^^^lp|éÒ%QÅ(#%%…'Ož$×^Ü‚™§NbÑ¢Eèëëëq¿$bbb8yò¤œÇáaæÌ™œ?¾˜Gõí±jÕ*a­ö_¸té“&MRXe Ö®][ÚÃ({Vbb"ÉÉÉ¢z$))‰ÄÄD $"Ò 6p÷î]:„··7Ë—/§~ýú¤¤¤ÀÀÿ?V¿~}rss…²°››Û¶m£{÷îrþ‡—­©©‰’’^^^dffÒ®];"""ÈÉÉ‘3T–Yû´hÑ‚°°0òòòÄ2Txx8&&&¤¥¥±|ùrÚ´iƒ««+ŽŽŽ\½z•zõêAnn®œØiXXõêÕC*•’““ƒ††***øøøžžN»ví„O¢¬ò&,, j×®ý¹þ, Ê ÊÊÊÌž=›_~ù…‹/âééÉßÿýÞ`ËÆÆ¦gåìÙ³iÚ´) ,kß¾};Û·o/¶ñfdd`bbÂÝ»w‹í˜_‰„ŒŒŒÞ?!!Õ«Wš=UðátéÒ…øøøÚ÷Ñ£Gb5DAÙÄÛÛû£+²‹›2`É‚Y®È?ŸC~5Vrr2S¦L!55È¢þ,Éòo´´´=z4™™™T®\™ÄÄD±|†––ÚÚÚ <'''z÷îMbb";wfðàÁb6LvlÙ¾ÚÚÚhkk‹ebccyõê•° ÈÉÉáòåËØÛÛóðáCªW¯.ŸUTTpssãúõë,Z´ˆ„„±D5xð`þüóO1ssslmmñöö–ûL>>xxxˆïCA¢££Kzˆ ŠuuõBZ >œO]:ªP¡‚PïWPö(êw¯´(s–±±1nnnb6¦^½z¸¹¹Éù§-Z´ˆÀÀ@ôôôPRR¢s¸¹¹‰Ü­É“'  Å‹²²2fffT®\{{{± €••?þø#wïÞ¥Fb™ä‡~ÀÍÍF‰míííQUU C‡S¿~}ÒÓÓqssÃÀÀuuuÜÝÝ…õÆãÇEŘ––žžž„‡‡S¥JTUUqss•Œ½zõ¢C‡ܾ}[n,ßÿ=nnn"wç÷ß¶"ß:›6m"00eË–¡¡¡Á½{÷X¿~=}ûöÅÒÒ²TÆÊíÛ·éÞ½»ð¤,.~øá „‹‹ }úô¡oß¾ 4ˆAƒ…‡‡ÞÞÞâŽýÚµk¼yó†Š+ë8(P @|x¡öŒŒ <==™8q"d÷îݤ¥¥‰ÙT (PðùPX ¾d³Uìß¿_XÈÈ–]¯_¿ÎªU«hÕª•ЬªX±" <}úkkkV®\ÉèÑ£E5è7˜={6–––ôéÓ‡µk×’››Ë©S§èÝ»7qqq#•Jiذ!ÇŽ£eË–œ={SSS*T¨@NN]ºt¡G¤¦¦âããÃÛ·o6l˜¨v ã_½z5“'OþO£¶¶¶hii½óõdz~ýzúôéÜ9sHHHøŸ®‚/ääd’’’äÚ^¼xÁ«W¯äÚâããIKKÏsrrˆ‹‹#33S´½}û–øøx9I‚7oÞ:wRRR õ™˜˜(×g^^ñññ¤§§‹¶¬¬,âââätÑÒÓÓ‰—3$ýú5ÏŸ?/ô>eN2ž?Îëׯ)-^¾|ÉêÕ«å* ###Y¶l™œù7prrâÒ¥K¢ÍÃÃeË–É%hïÞ½›åË—‹Ô‚ÌÌL\]]qqq•¨III¬\¹RHõ@~qײeËäLÓ¯^½Š““W¯^m'OždÙ²eDDDˆ¶íÛ·³bÅ RRR€üsÀÅÅWWWñwzþü9+W®dÏž=b¿ÐÐP–-[†‡‡‡h»téNNNr²0GeÙ²eDFFж-[¶°råJñ·KKKÃÙÙ™õë׋Šè¸¸8V¬XÁþýûßó({(,_ ²eìØ± 2DT|6oÞœœœìííÉÎÎæéÓ§ØÚÚùùk²ý¬¬¬Ä±6lH¹råøõ×_ ÃÅÅÈ¿P¨««ãëëK@@ׯ_çСC$%%áééɹsçøá‡X¶l±±±Ü¹s@,ËÉ.&L €+W®àëë‹••(++Ó«W¯ÿüÞÕÕÕ3fÌ{·©T©#FŒ`Ê”)Ešñ*ø²yñâ:::èêê ‹§7n ­­M:uĹ·sçNôôôèÑ£‡ØwΜ9èëëˉåöë×===6lØ Ú4h@µjÕ¸pá±ÕÕÕEOOOR\ºt ¹ŠëM›6¡§§Gß¾}E›ƒƒúúúÌž=[´õìÙ===9yºu뢫«Ëµk×xúô):::èëë‹ ËÏÏ]]ÝBæÐ%‰¿¿?¿þú«¨òˆŠŠÂËË‹¿þúK´ãåå%'Wråʼ¼¼xøð¡hóóóÃÇÇG|®oß¾ÅËË ‘ÚðâÅ <==åă=z„———/_m÷îÝÃËËKNëîòåËxyyÉ;gÏžÅÇÇG´iiixyyáíí-òçÏŸãá៟ŸØ/""///¹îÎ;x{{,Úþúë/¼¼¼„ˆq^^ÞÞÞøøø¡äׯ_ãé鉷··ÐŒÇÃÀ€ ÿ†QöZY¦Ì%¹+Pð±R¡B!_Q0ÿJæÑwåÊ,,,ˆŒŒ¤|ùòÔ¯__Ü]̹’U›^½z•9sæˆÊÔI“&qâÄ ºwïN5 Âßߟ¥K—âîîN:u¸ÿ>  zõê#‘H:t(ÞÞÞlÞ¼™îÝ»ãêêÊ¥K—HHH qãÆtîÜ™ÀÀ@4hðѾ„ÖÖÖ8p@\\ bddÄÊ•+©Q£ÆGûs‘““ƒ³³3—/_FUU•©S§Ò¦Mz÷î-¤Q>†OÝÿK¤jÕªÄÄÄ •J…èð÷ßÏãÇ)_¾¼ÈK1bææær3žK–,ÁÞÞ^®xæàÁƒ$%%Éݹs‡´´4QУ££#Ü,ªU«@»v툉‰‘«T;v,=zô jÕª¢mÅŠ8::Ê8q‚ääd9¥õÞ¾}+ÎÝ5jðøñc”””DUnçÎ‰ŽŽÕá³gÏfòäÉE6}.TTT¨S§ŽœÁ»……E¡\Ê‘#G2räH¹¶?þø£Ðñ ÎJA~ÁÓ™3gäÚêÕ«'ètïÞîݻ˵;VXjÉprr*Ô§,eB†¬Ò½ ¦¦¦øûû˵ýÓíò+'Mš$×¶zõj¹ç‰„C‡ɵU«VM.H033ãܹsâùСC;v,£G.ôÊ_l€%¢xŸUUU9™Œ²Êºuëä,úôéCÓ¦MiÞ¼9R©”›7oò×_ѼysâããÉÉÉAII‰жm[á5(cÛ¶m$$$ЪU+ÑÖ¡C  33“æÍ›c``€¡¡!æææ¤¦¦Ò²eK¡Ôݼysâââ ?ö^^^„„„pçÎjÔ¨!Tü7nÜøI2JJJL˜0ß~ûM®]"‘о}û2\Aþ’Abb"‡"==]ÌH¸¹¹ùwè*T <<ccc”•• s2'‡gÏža`` ‚Ó‚¿ 999DGGS§N’ƒ%Ì?+BöR©TNÜò+³ÿ)T\©R%á¦!CKK«ÐRtQÿ l””” õY®\¹B}V®\YI2 e2Šr(”mܸ ‹ °zöìùI6H >œ *ÈÉ+•UÊþ‹àŽú÷ô IDATÉ“' >ü›¶Ü(IâããY³fÜ OYäŸ>ŒuëÖ•³{ÑÒÒË€/:õë×/2€455-tA¾ÍQÏž=åÚtuuß¹´§««[hI®Aƒ…ªùŠ#ù¼sçÎìÝ»WLË«©©ñû￳|ùr’’’øõ×_Ë” mvv6DFFR·n]*T¨äßåð믿òâÅ ŒŒŒ¸zõ*M›6EMMˆˆŽ;Æ©S§X½z5?þø#ÁÁÁ,^¼Xî< `ëÖ­î]»Jë­~vrssñõõý( ˜¯ ‡•J¥èèè”hŸß*'Nœ6we™/2ÀJKK£|ùòÅnF« hZ¶l©˜-ü‚˜GGG9鋲Š"ÀR à+ä»ï¾cæÌ™…Ú+T¨Àš5k033cܸqBF¢´¨Y³&^^^¬X±ccc1fYuPŸ>}D’sÁÇýúõmllØ·omÛ¶ûÉþwtt¤U«VüïÿÃÏÏï‹ÈÛ(«ôë×qãÆ‰çÑÑÑ4lØ-[¶¼w¿Õ«W—¸>ÕÅ‹K<…ÄÜÜ\NÛª´¹{÷.5kÖdÛ¶m¢mæÌ™Ô¨QCH"E\\Ü¿J¾”6õêÕ+² £¬¡¸ÕQ à+å]•ŸÊÊÊ,\¸ÿû¿ÿcÊ”)|÷Ýw%<²ÿOýúõ…UPAdRÁ©‚­­­Åc~þùç"÷—H$têÔé?‰¶~©¤§§³nݺ"ëO%++‹   9/Õ¹s碤¤$WEVV–5yþü9nnnØØØ¦¦&ÑÑÑÄÇÇcfföÙÞ7*zùÖ ¤GÜ»wÈ—»ˆˆˆ zõê¢ò3""‚3gÎP¯^=QáììLdd$;vì oß¾$&&âáኊ ={ö,TùYìÞ½»´‡ðA(f°(øF™8q"Ó§O'$$„Û·o—xÿYYY„††ú÷âÅ‹BÚ>ï¢S§Nr±ÿäðáÃtœ'OžÈ‰$þsÿK—.÷AÇ*-¢££™5kÖg`¼ÿ>¦¦¦hiiñòåK.\¸@åÊ•ÉÉÉN 'NdÖ¬Y8;;3lØ0¶nÝŠD"aÆ ܾ}›‹/²|ùrΜ9C³fÍxòäI±`РAr:\%ÁóçÏqww/Ñ>ßG`` #FŒųgÏÆÖÖVˆ±Þ¸q;;;j×®¿¿?þù'YYY<~ü˜6mÚ §§‡ºº:wîÜ¡Q£Fèééѯ_?9eïG`)Pð cccCÆ ¹téóæÍ“³(ùܼ~ýš;v°cÇÚµk'?}úôƒ/Tºººï•kY·nÝ'<<¼¸aÁý_¿~-géRÑ××ÇÚÚ•b?öÍ›7iÖ¬fffܹs‡ 0wî\Þ¼yCµjÕ8tèìÚµ‹U«VO\\fffôéÓ''',,,èСË—/§[·n˜››ù™%yËð÷÷gΜ9%Þï» ¤M›6deeqòäIŒyõꕈííí2djjjüøãœ9suuu222°µµ¥G”+WŽöíÛǽ{÷HNN–³;*-víÚ%gñSVQ,*øbxøð! .,ía” Zo|*U«V¥ÿþ¸»»óìÙ3Ö¯__"¹JZZZ¢jðøñãâqxx8©©©üòË/dff2wî\jÖ¬‰““Õ«WçܹslÙ²…£GâááAïÞ½éß¿?/_¾déÒ¥DGGÓ®];&Ož ä/]¸pñãÇÓ±cG222ؽ{7ÿý7Æ +´|xïÞ=\\\ä¬^dÖ£Gðóó#00uuuæÎ‹ŽŽaaa8;;£««‹ªªj!±×’@CCã³%þÒ­[7Þ¼yÃÌ™34h  ß×.++‹ &ù¹uåÊ•ãÖ­[4kÖLg̘1”/_žï¾ûŽK—.1hРÏ2^cccöîÝ[Hòãsbll\Hµ½´ÈÉÉáÉ“'P»vmæÍ›ÇÅ‹™1c½zõ"==7oÞP¡B13+S“ çþõë×ùý÷ß™>}:ìÝ»W®p¦´pss#--­TÓ>„°¢¢¢ptt”«P()rrrÈÌÌ,RAXAñóúõk–.]ÊŠ+D[^^åÊ•+Tµ5dȆ^ìchß¾=wîÜ‘óÜ*MRSS‘J¥¥ª'UÐ×íSÑÓÓÃËË‹2`À9#×ÒàâÅ‹\ºt‰Û·o³nÝ:œœœ8}ú4¶¶¶lÞ¼™ƒòäÉ6n܈ƒƒõë×çâÅ‹|ÿý÷899 ³ÚçÏŸ£¯¯ÏÚµkéׯ.\`çÎ$''³fÍ $HA¾Ž˜»»;W®\‰Ò7oÞJá...øúúâååÅŽ;˜9s&S¦LaëÖ­$$$СC‡R °>'Ìž=›¬¬,<==™:u*[¶l³!JJJŒ;–Ž;ù¿‰„   aÛrãÆ ÒÒÒØºu+OŸ>eîܹbÿâ&%%…—/_~–c¿‹¦M›Ê%”—&aaa"sòäÉdeeQ¹renݺżyó(W®R©”.]ºP³fM^¼xšš¹¹¹dee‘››‹’’{öìa„ ˜››óË/¿ÈË¥I¯^½¾=»°ÂÃÃÉÈÈ`óæÍÅ9_0»wïææÍ›Ÿ%ÀªS§«V­*öã~,³fÍÂÐÐ{{ûÒJ±Q§N¼½½2d––– 8°ÔÆÒ©S'jÕª…†††X¦“J¥üôÓO(++sôèQ*T¨À´iÓHHHàï¿ÿ¦S§NØÛÛsæÌ¦OŸN•*U¨R¥ŠÈÑ’J¥dddàé鉫«+•+WÆÊÊ ooo‘¸Œ±±±0&^°`A¡±uïÞ===:vìÈo¿ýÆ‹/PWW§V­ZÔªU«Ôîª_¾|‰ƒƒ[¶l¾ƒÅAÁÙ@ß·nÝ¢OŸ>@þr“ƒƒ5jÔ --!C†`kkKŸ>}˜>}:Ý»wgÚ´i„……1`À*V¬ˆ¡¡a![œâÂÇÇç£$?¾Ä X›6mD»°ZµjÓ¦MãÍ›7hjj²iÓ&¤R)¿üò ýúõcÖ¬YŒ7GGGöìÙCëÖ­Ë̤ƼyóJ{Ä'-ª««ËUó(ø¶¹rå Ïž=+ía(ø´µµ9uêcÆŒaíÚµ¥fý!S"—H$"ŸF*• ç¦M›Ò®];ÌÍÍåöóóó#,,ŒÑ£Gó÷ßËå#I¥Rrss155åáÇԬY“‡2hÐ ÒÒÒ€|QÓØØX ß"ª(yÙ1eÇ«Zµ*¯_¿&//ÔÔT¡/–MVVV‰Ír>{öŒmÛ¶±~ýúbUºVRR*Ò@|Ó¦MâqË–-¹xñb¡m†ÊСCÅs™û禤mr ¿"oÿþýeââonn^è»päÈñ¸[·nEÚ*M˜0A,õŸ-Oî[@‘ä®@9ÔÕÕÙ½{7¦¦¦•øøxzöìɵk×PRR*Õ±”6AAA…‚o_#GŽ,í!|ß|€•››ËíÛ·QQQIš§OŸæèÑ£´hÑÈ/{õóóãåË—˜˜˜`aaA•*UHLLäôéÓ4mÚ”[·n¡¡¡AŸ>}PQQáÞ½{ܼy“V­ZáççÇ÷ß/WÑqùòe®_¿NÆ 177GYY™ÈÈHΟ?OÛ¶m¹rå FFFtèСä? бcG<<<„þQqiáÄÇÇS­Z5–,Y‚‹‹ ëׯgΜ9DFFÒ¢E ¦L™ä/ѯ_?Qõ>AÍsçÎ1yòdÐÖÖfåÊ•@~ò¼½½=ÖÖÖ,]º”ØØØbM/MRRR $++ë›°J#¸ºyó&ÎÎÎ_Œ‹‚ÏÏ7Ÿä*ÊŠ¸~ý:“&Mx2– 6pþüy‚‚‚°µµeüøñøúúbggG×®]quu¥ÿþ8::àêꊽzõÂÕÕ•¶mÛrüøq ?I·{÷î\¼x‘þýû3vìXöîÝ‹]ºtaáÂ…eÞžCÁ·C£Fðññ!""¢Xß•••©T©¦¦¦r½IIIDEEñäÉ!;’’B\\qqq¬¬þêÕ+¢¢¢ˆŠŠB"‘M`` /^¼ zõê"-àK§^½z8pà« ?…óçÏË ÷Q¬À ÞÍÈ‘#ñòò*íaü+ßü –¬l¸ÿþ\¸pR£F Ú´iÃÞ½{E€5}út._¾LPPzzz¢‚A¶ÿƱ±±ÁÀÀ@”µ¢¦¦ÆßÿÍ›7o¨W¯^^^dee±}ûvú÷ïOïÞ½‰ÇÝÝÍ›7‹ãmÚ´‰=z”ôÇQâܸqÿ/b=]A¾B·———¸!(Nœ8Á­[·xðà×®]í—/_&==J•*±xñb v9$$ÈPüÍ©{÷î±aÃV®\ɲeËØ¼y3Ý»wÇÀÀ€Í›7pµ`YF*•2xðàÒF™ÀÚÚšƒ¾·š´¸éÚµëg±)RP˜ˆˆ¢¢¢J{ÿÊ7?ƒ% hš5kFçΉeÓ¦Mܽ{ÈŸÁº{÷.FFF=z”J•*C£FÄþªªªôêÕ‹W¯^ñìÙ3jÔ¨!Üçe¦™aaa@þJv—£¦¦F@@uëÖeÔ¨Q¨¨¨H³f;êà*-- '''LMMiÙ²¥"Wâ CCC]]Ýb;^ß¾}ñ÷÷ÇÞÞ^N »_¿~8;;‹à òg~qvvþ`AÏŽ;Š}”••ÑÒÒböìÙܸqƒF‰JÀ¯ìììBm\¿~]<Ÿvpp0û÷ïÿ,c+Iêׯ_âÅIZZZØØØ”hŸß*+W®ü">ëo>Àºyó&U«VÅÀÀ€)S¦pøða7nÌ­[·022BSS“Ý»w“——GïÞ½yüø1¹¹¹Â2àÖ­[dffâììÌÀÉÎÎfêÔ©“‘‘App0®®®888P©R%ìììD9¸Ç§qãÆtëÖ¤¤$¢££iݺui~$Ÿ…ôôt<<<àÈ‘#Ì;— øé§ŸJ{x ʳfÍâøñã¼xñâÛDFFrûömnß¾MBBðÿ=Ô>”ýû÷ʃ¸sçÎa¹ñ!<~ümmíBA–««+cÆŒKª2‰¢Ð××/Qÿ¾ÏÅÕ«WKåïZ&Óß"mÛ¶-Ö›¼ÏÅ7¿DX¥J† ä«ÿÊ€«V­J—.]€üŠÂÛ·o³sçNzõêEÇŽ±°° ::š¤¤$ƌÅ HIIaÇŽX[[³}ûv _€pÏž=²gÏjÔ¨žž+V¬àäÉ“œ>}SSSúôéÓ'OèØ±£ðîúÒÉÍÍåæÍ›xzzrîܹ"]Ø;v쨘Vÿ†122ç»’’kÖ¬!::š¦M›:_:vìȹsçDc—.]PRR’[V”1jÔ(ÔÕÕ©]»v¡ÙàjÕª±yófTTT˜eØe###îß¿/l† òóÏ?3dÈñ¹ìÚµ‹^½zammÍäÉ“ äíÛ·¤¤¤ðìÙ3¢¢¢8xð Ð [½z5  mÛ¶899qíÚµ2+ô¸qãFˆ––V‰õ™œœLrrr‰õ÷-Ó»woÆŒ#gÃTùæ¬O!##ƒîÝ»¹¤W¾|y\j^n¥Azz:¡¡¡ØÙÙ}ð>‹/–˱)ɤÔO¥nݺ¥=„ožOß: 4(²]UU•ŸþWWWÑvõêU† äç ^½zUä–êëëcmm¥¥%&&&¬[·ŽóçÏÉîÝ»ÉÉÉ¡Y³f,_¾œË—/Ó«W/Æ÷ùßà2{öl K4—µW¯^Ô¯_¿Äúû–ÉÊÊ"55µ´‡ñ¯(¬O`È!âêŸ´ÖøVPWWÇØØ˜.]ºàïïÏ7ÈÌÌ|ï>ŽŽŽŒ;–k×®1vìXöìÙSB£ýtÉù Ê!!!ï ²FŒAÇŽÅl±……gÏžÅÎÎæÏŸ/òÚÒÒÒ5jcÆŒaìØ±Ü¿Ÿ^½z¡­­­­-¹¹¹¤¥¥•ÙtkkkêÕ«W¢}–+WŽÆ—hŸß*»víú"V–‚bE"‘лwoz÷îMjj*~~~xzzrûöí"@_¼x‰‰ qqqH$ÅŒ„Ixx87&==].¯±I“&¨ªª"•Jùõ×_Y¿~=¯%´råJ† B·nÝ066&33“ÚµkóôéS~ûí7TUU144ÄÌÌŒºuë²~ýz±,óûï¿Ó°aÃRy¯ÿÆŽ;J¼Ï¼¼<âââÐ××/ôZnn.¯^½ò휤Òüú²øøxJ40ËÉÉ!**ŠªU«R¥J•>΃(W®rí¾¾¾"ùc m¿/7÷K¹N(,Ÿ *`ee…••±±±xzz²ÿ~q péÒ¥w½W àk¤|ùò¨©©j/hmdii‰¥¥%¡ÿgfãÆÅž -@ÅŠ™={vqû«áäɓ̙3Gè´$&&†ü‘ž={òüùsLMMY¼x1/^¼qIpôèQfÍš………ééé4hЀß~ûí£ŽåééIµjÕ Xÿý÷'Xþù'|ï Á£GÐÓÓ£|ùòÝOIPl2 ÙÙÙŒ9²DÄ¿BBB2dC‡eÑ¢EDFF~ö>ßEAsÏ€€†Š••üñ‡PNKKÃÖÖ–øøø=–¬”zïÞ½b¹,++ë“MD###™:uê;_÷õõ%))é“úxÕ«Wg̘1ôêÕ KKK~þùgªT©Bxx8îî_ ¾jÔ¨ÁóçÏU¹À´iÓˆŽŽ.Ñ>UTTÞkQÔ°aC6lØÀ‘#G8xð ¹¹¹¨¨¨å}gggöìÙôiÓD‘TDDS§NÅÑÑQh™ÅÆÆ²{÷n.\ȶmÛÄŒ$À©S§ *²ÿøøx¦L™ÂÝ»wÙ¼y³è òM~ýõWvîÜ)ªw9vì'NäêÕ«œ>}š)S¦póæMq̈ˆ¦L™ÂÈÉÉ·âÌ™3ØÛÛËiÍEFF²`Á6nÜ(n¶ããã™?>+W®ü î#F|×b °Îœ9Cll¬œP`||<ܾ}›7oÞššÊƒxùò%©©©Ü¸qCü1333å.ðIIIdddÙWBB:::lÛ¶6mÚˆª>Èô \Ož<Ÿ?.Ž™‘‘ÁÍ›7Åó¤¤$ÅIùeÌ©©©Ü¿ÿï[&×áÂ~ûí78qâíÚµ%‡&!!á_ó‹ž?.JÎOœ8ÁÉ“'|µóçÏŸ“——GPPOŸ>û<{öL<~ûö­\KDD„X–“åLÈHKKÇÉÊÊbóæÍܼyó_ƒÀâ@GG‡ 6Ç¡C‡„Ø« >²~G_Rìܹ³È™¤Ï‰¥¥å{­rBBB˜>}:}ûöeĈH¥Rbbb¸|ù2+V¬ \¹rLŸ>éÓ§ù«üñsçÎeÑ¢Edff’˜˜È¬Y³°±±ÁÖÖ///ž={F^^üñ‡\UnA®\¹B‡äΑŠ+òöí[FŽÉøñãÉÍÍeÁ‚@~žSBB³fÍbРADFF2cÆ 16È¿1Ÿ;w.ÁÁÁìܹ@Sþþþœ>}šyóæ±gÏ"##IMMeüøñL˜0Zµj1oÞ< ß,ÝÚÚšÖ­[ W¥J•Šœ­-k[€µcǶoߎ¯¯¯ˆ@‡ †žžž8p€=z°iÓ&âââX¾|9çÏŸgĈøúú’••…µµµ8^¿~ýÞ› ššJ\\Ïž=CSSÈ?úõ뇛›$//7²cÇ>|ˆ­­-R©”`kk‹¿¿?ûöí#//ùóçãççGïÞ½yøð!ÿ…3fŒø¼777¦NJË–-‘H$tîÜY¬ÅËf£d²ïÂÜÜœsçΑ‘‘ªª*jjj¼}û–sçÎaaaÁ¡C‡8}ú4«W¯fÖ¬Y@¾]ˆ, \»v-^^^ÄÇÇ3tèPvïÞM¿~ýˆ•ëgóæÍ8::âììÌüùóyùò%=B %…šš `ÅŠ%Ö§_+999œ:uªÔúþ˜Õ‹ŒŒ ¹›àââ×_6g%…D"yoNS:u˜3g¿ÿþ;§OŸ&%%Eîu]]] €‘‘yyydeeñòåK~ûí7æÌ™Cll¬¸·°° I“&”+WŽ &°yóf|}}iÓ¦Í;Ø¥Ri‘þtíÚ•Úµk3jÔ(à())1fÌŒŒŒ¨V­ãÆÃÐÐuuu!§Ó¿ªW¯ÎÏ?ÿ\ä¹7jÔ(ôôôèÔ©7nÜÀÃÃÔÔT-ZÄÉ“'¹qã/^¼@YY™æÍ›Ó¾}ûZ.=}ú4¶¶¶ÿº]iS,Ö³gÏÈÎΦV­ZtèÐ???ñÚܹs™;w.¯c³råJŒ™6mõêÕ£y󿏻»S¡BÌÌ̸ví7oÞÄØØø½&¬·nÝÂÅÅ…åámÛ¶±téRV¬XAÍš5¹~ý: .dÿþýŒ=Zˆ þßÿýûöícæÌ™ØÙÙ!‘H˜;w.|÷ÝwbæèÍ›7lÚ´éƒÊ?~Ì÷ß_¨=<<---ôôôhÔ¨Q‘¢ˆ2dBŠW¯^å‡~ uëÖ\¹r…sçÎann޵µ5:tÀØØ???rss5j”po?~ü8ÖÖÖìß¿Ÿ–-[biiÉ?þÈ‘#GDyyyìÞ½›Q£FÑ¿þúë/*V¬ˆ™™cÇŽUx™)Pð…Ž••U¡™[[[¡wµvíÚ:Ö;wØ·oß÷œœÌÌ™3?hÛ}ûö +²¸¸¸ÿÔχ2kÖ¬WúNKKãâÅ‹ï|]MM ===Z¶l‰®®n¡€´àŒŒD"!//WWW~þùg¶lÙ‚¶¶¶øÛb% IDAT¼6ZZZâççǺuë„lnnn!­¾6mÚpõêU¹•¢ÄÄDŒÅ¤ÂóçÏ©Y³&`)++‹Ç²¥L%%%±Ò#{QQQzÏÿÜÇÔÔ”&Mš°aÃ6lØÀÅ‹ÑÔÔK…yyyÂð]d…l\ebåÎ;yòä ÖÖÖ$''#ôŒ – Ëçää0`Àf̘AóæÍ¹pá/ʹfÍ”””øùçŸßÛ§Ì_ ÀÔÔ”‘#GòôéSQº©««Ë“'OhÕªÚÚÚDFFR­Z5òòòHOO—;™°³³cÖ¬Y4hÐ@œl5jÔ råÊôÔ¯_ŸóçÏÒFÚ¶m>ÄÚÚš„„¶mÛöNccâââðööfðàÁH¥RöíÛ'NúiӦѠAZ´hAFFéééôìÙ“eË–aiiI£FPWW'22 ¨ZµªÜ‰Ÿ––FJJŠðF5jÔ¿J)(P  ì£­­MÓ¦M å%''³}ûvôôôhß¾=ƒ BWW///$ =zô@"‘àåå…¤¤¤põêU233:t(B’ÁËË‹=zpíÚ5*V¬ˆ¯¯/VVV@þMžD"ÁÊÊ ‰DBpp0ÞÞÞÔ­[KKKrss9pà&&&´k×sss~üñG ?(8sæ jjjtíÚ‰DB@@úúúøúúÒ³gÏw.•NŸ>ÍܹsÅõãŸbmmD"¡nݺ4mÚTn2¢(,,,˜7oêêêïÔ}’J¥XYYqúôiquwwçÖ­[,_¾\l§­­Í¶mÛhÛ¶-7&;;›víÚ1cÆ jÖ¬ÉðáÃIMM•K¹ù7nß¾ÍèÑ£INNþ •ˆ† ¢««‹åË—§jÕªüñÇØÚÚ2hÐ òòò„8ì;w˜7o^‘3cçΣAƒèéé}ðXKƒb °:ÄåË—…âo›6mÄôgQRö²éÅFÉ ß™ššKZZ-Z´àìÙ³TªT©˜çóçϹ}û6÷îÝ£bÅŠ”/_+++V¯^ÍðáÃ9yò$gÏžeëÖ­Ô®]›‘#G2}út6nÜHË–-Ù¸q#666¼xñ‚ÔÔTªU«FݺuÙ¸qc¡ªÈ¿Ó:uêÔ;g³fΜÉðáÃQQQ¡C‡œ9sKKK¼¼¼¸qã†øÑkÞ¼9éééxzzbll\¨Ìù‡~ààÁƒÂ/ìðáû022’Ÿ~ú‰Ç‹/±²²2mÚ´ÁÞÞž5kÖ0|øpV¯^¹¹¹rw´²™ÂJ•*annN`` •+W¢¶¶6•+Wfýúõ…”æ]\\°³³CII‰7âààÀµk×HNN.³z8 |+hkk‹äè¢xõꕸ¹2d ==éÓ§ãââÂÿcï¼ãrÜÿ?þ¬»©Ò J²2R6GfF„r”²7qì¯}Žuì½"3[’óB„de'’ÝÖýû£Ç}ý\Ýe¶p=ÝŸk|>×ÕÝ}¿¯Ïçý~½fÍšE•*Uèܹ3)RTUU™3gŽð7>{ölœœœØ²e >dذa¨©© Aлwï6lK—.åÙ³gÔ¯_Ÿððp¼¼¼X´hE‹Å‚R¥JñôéS6nÜH:uèÒ¥ Í›7çýû÷ìܹ“uëÖ±bÅ ŒŒŒhÛ¶-nnn\¸pA8øM›6eÑ¢E‚pj^`jjš­|€••U–ù­ŽŽŽ8::). Ëtnnn8;;#“ÉD ý«W¯çÅ‹Œ9RxžåwUóæÍ¹yó&/_¾¤páÂBAļyóxÿþ½ðžyœáÇ'šQS·råJ¡M‘LÞ¡)))ÄÅÅ ÁÔàÁƒñôôDSSSø® Y;}ÌøñãñôôüìDL~óÝÖ«W¯ðòòýb¦M›Æ³gÏèÞ½»ðÇP­Z5á—i``À¸qãX¼x1...ØÙÙ ÇÖ¯__dopàÀºwï.êÓÊÊŠ²e˲ÿ~Ê•+‡¿¿?ýúõ# €;w²mÛ6 *Dbb"Ó§OG&“ñâÅ ^¼xÁ¢E‹ðóócúôé´oßžFÑ¢E V¬XÁàÁƒ…ž={ }^¿~=˪”Ááîݻټy3çÏŸ§~ýúhhh0qâDÑ¥âÞìÞ½;KÓÕþýûÓ A!08q¢„-Z´ˆuëÖammͺuë„?¸ÁƒS¤HêÕ«@Íš5ùßÿþÇÚµkQQQ¡W¯^‡Àºuë8pà“&MÂÖÖ–¦M›Ò¯_?öîÝK`` 5jÔ ""Bilzzz¨¨¨ ªªŠ®®.¡­˜–(˜xzzbddÄĉ‰‹‹#22RÈÝP¤H–,Y"T/gELL S§NeäÈ‘‚Фšš‡-Õ®]›Õ«W³ÿ~¡MSS“*Uª0eÊÆŒCÆ ³] |ûöíg+È\\\ò\²"&&†M›6åØù’““E¢Ì âãã¿*o67õ ¿v oß¾Ò?;*Àª^½ú'•KHHHHü?ææætêÔI”«0wî\¥å˜+VЭ[7är¹à§ª(‚ŒY£ÿý—råÊ!“ÉØ±cåË—gôèÑ‚ÞѰaÄYx}}}Ž;FÛ¶méÞ½»0‹¶gÏŠ/ÎØ±cÙµkQõ¶xñbÌÍͱ´´r‡–,Y‚››½{÷fß§N*<Ø6 ®_¿ž­ß¢‚ÌtyÁÉ“'•V0DGGSµjU‚ƒƒ…¶N:}r)ïĉÌ›7€ í«V­ââÅ‹JûGFFÒ®];7nL›6mðõõ%55—o½¤O²iÓ&:vìH‡D+9™IOOVnf̘ÁljŒŒü.I‘uëÖ …Z™£ÖQBBBBâ“èééáëë«Ôž]ÎR™2e(S¦Œð:ór¿¾¾¾h™M1뮘ÝþøXuuua ðc´µµqvvÄþq%J”Îó±)sæ±~|NEeË–¥jÕªY^“‚råʱmÛ6¥â¨Ü¤bÅŠ899e¹-99 Ö®]K½zõˆˆˆ **JÐp<}ú´PM**~ºuëëׯÇÚÚ[[[œ166?)) ggg¼½½qpp@.—+GéÒ¥122Rš»xñ"ááᘙ™‘ðÙªºÒ¥K³{÷nîÞ½ËéÓ§IIIA__Ÿÿþû;;;š5k&è+†‡‡Ó±cÇl —UUU Â××—Q£F¡¥¥ÅîÝ»Œ‚±N:QªT)¶mÛ¦T¤EXÑÑÑÙÎø}Ž%±ÿ›¬"EŠðäÉ“o.í”ø9iݺu~ABâ—$&&†mÛ¶áíí­´äòáî]»†ªª*vvvŸ4%þaaaèé鉕ÓÓÓÙ¿?íÚµû¦s~øð£GæègGVË•¹ÍíÛ·Ù°a³fÍÊvŸV­ZQ¾|y&Nœ(j×ÔÔ$5555µ,õ²² ˜µµµ100@GG‡òåË3xð`ÒÓÓ³-øã?˜={6åÊ•£\¹r$%%1`Àš5kÆÎ;ñööfçÎ?~œÃ‡ãææÆêÕ«³•ºÐÑÑ¡OŸ>ôéÓ‡†  ²Šü·ÔÔÔlÇUUU?)ÿñ³ðÍVµjÕØ¾}{–†Ì+W®¤Y³f¢5ú9zô(*TøæJµG1kÖ¬OkJä]»v¥Y³f‚øë§ÈNhOBB"w±¶¶föìÙJ&¸aaatëÖMȉùû￳ÌÕúNŸ>………(À’Ëå"醯åýû÷x{{çh€I©R¥¾9ü.]º„¯¯ï',555BCCÑÕÕ%ª7mڔɓ' ™)Z´(K—.¥I“&B[¥J•D¹Z^^^888Ð¥KÞ¿Ï«W¯˜1c†°]EE…   Ö¯_ÏÛ·oŒ\&###Š)‚¾¾>‘‘‘:tˆÒ¥K£¯¯ŽŽøøøˆTá=zÄÌ™3qpp ::šÔÔTAeçÎèêê²k×®,å~ CÇjÔ¨QXYYÑ¥K¦M›F·nݾX·l„ 8;; Ú•ïZ"ÌîËôÖ­[¸ººR®\¹,·9’»wïŠ*#¾™L&i0å… ÂÌÌ,Ûß§„„Dþ£¡¡‘åÒÉ€ðööôõ%þ÷îÝcåÊ•‚a°¹¹9K—.ÅÈÈ???ºwïNjj*»ví¢oß¾‚£DXX{öì¡Q£F‚V "ÀZ¸p!¦¦¦øùùѱcGaVëÈ‘#ìܹ<<\\\ dÔ¨Qüûï¿´lÙ’µk×âääDëÖ­ åСC¬X±‚Å‹ãïïO:uøûï¿Ù¹s'‹/ÎñëÖÖÖÎs‡‰’%Kâåå•å6---%[´Â… ‹d‰2 B %“ɾ(©ÛÚÚZIÀZ1¡©©I«V­”Æœy¢¤aÆ¢×5ÂÌÌL©¯ *(Ée¨©©¡§§§$"®ûÇZáÂ……¤üU«V)ͼ~Š?þøCäSPÉ•ËÐÐ0Û›¥°µILLäüùóyZF+!!!ñ³òìÙ3…YÈøbNII!-- 5µÿÿ¸ECCCXꋉ‰rgºvíŠåË—§S§N ©©),+µk×===ºté‚ ”t–ºu놞žåÊ•ãîÝ»ìÝ»—'Ož0bÄâã㉋‹#>>ž¶mÛR¸paºtéÂ¥K—rô^ܸq#Ï…FV,,,¾xß̹e_Š••ÕWíŸÙ!¥ ’+ÖÖ­[³lOOO' @x­x’‘øùQQQáÑ£G‚5˯JnUø½{÷ŽˆˆRRR„K]]5jpèÐ!!zþü9E‹TÂÓÓÓÑÐÐ0Eb²ªªªèg…½ÂhþîÝ»Y ~*fÈÇØÛÛS¡BÁ§àòåËlÞ¼Yt¾œ$?‚«óçÏ3oÞ¼,•ñ%~Mòt‰044”çÏŸ ¯O:EBB‚ ¡!!!ñóÒ²eK¢¢¢¾Êæãgcøðá"aÍœ¤lÙ²øùù)-­^½-Z„‰‰ zzz¬Y³:vìHjj*C† ùâ~.^¼H—.]HLLdùòåŸÝ¿]»vŒ1‚3gΖ–FË–-qwwgåÊ•téÒ%WT×qppÈÓ@ëÁƒÙÊ.$&&H“&M„eÁ³gÏR¨P¡)NšS¼~ýš“'Oþ4VTTQQQù=ŒÏ’+Ö®]»¨S§Žhíöýû÷Yþ‘ûûûK–„„„D‡žž^~#ß©R¥J–‰Ù¹‰Á'gT ÄËË‹={öàìì,ÌÞ-Y²„‹/¢®®NïÞ½ùí·ßX³f áááDGGciiÉÔ©SÑÔÔ¤[·nhjj’œœÌÀiܸ1111,]º”'Ož`ccÃØ±cùðá3fÌàæÍ›/^<¯nCž°xñbA¢ “+%|6làÞ½{¢¶ãÇg)»ÆÓ§Osc¿ >ÄÌÌ,_ŒŽ §NúbM¥œäS÷^&“Q»vm‚ƒƒÙ»w/íÛ·¶ 2„uëÖ1zôhþþûo £hA.—³{÷nlmmÙ¶mééé}ÊñãÇY»v- àùóç<}ú”³gÏŠŽÿ™ˆÿ!¬Ùò$ëÙ³g„††f»Ýßß_d|YIJJâÍ›7Èd2 ²µÈàýû÷DGGç÷0ò„ïÑôËÊ ã[°²²âÎ;B߯ÌÂ… éÚµ+ÅŠ˳>ãâ∋‹ûä>–––8::Ò®];Aöà¿ÿþ#88˜ˆˆ‘ü©S§èÒ¥ §N¢Q£FDDDK¡B…ˆ‹‹ÃÔÔ”æÍ›S¯^=Z¶lIzz:IIIÈd2N:EóæÍEé9ááᘘ˜P´hѽþ¼¤mÛ¶ôîÝ›®]»æ÷P>I®XkÖ¬Mß|Òw(**Šk×®akk›ÃÉ–.]*r<733cÒ¤I 0à“ǽ{÷ŽÚµkÓ¹sg&Ožœ£cº|ù2;wæÿûݺuËÑsKH|¬ZµŠS§Nå÷P~ŠèßKf‘É_•iÓ¦Q¡B…o6þœ•ÄDhii K–&L2%…;FÏž=騱#ÆÆÆ"UUUÜÜÜ([¶¬ 1U¥JÆŒCRR’ ?räH–/_ΦM›ËåLš4‰¦M›réÒ%ÜÜܨT©’ ò9cÆ ÆŽûCXr¹<ÇLr“\ °2{ *–---±²²"22###tuu‰ŒŒäÅ‹øûûèK1m»oß>îß¿Ïܹs4hvvvÔ­[—Ó§OJjj*ÕªU£Aƒ$''3þ|nÞ¼É7ðññÁÃÃÇsóæMd2µjÕ|ß¼yCPP×®]ÃÈÈgggJ”(Arr2Ü¿ŸÆS¥J¢££Y±b·nÝâòåËhiiý0âk??ÄÍÍ-W ]—-[F§N Ì„‡‡IIIìڵ뛎WQQÁØØ8GÆ‚±±±h¥¦¦rýúuŒ…¤ïÄÄDnß¾¥¥%FFF¼|ù’ÇS®\9AÚàÉ“'¼xñ[[[av.22’””‘þUDDÚÚÚBÒqJJ +V SSS cI'22+++Á*&66–èèhÊ—//,—EEEñêÕ+lmm½°;wî––&r¹œëׯ£§§'¨'''sãÆ LLL(^¼8;vT²wÉm455k›Ì˜˜˜ˆ|!Ã*GaJUE'dÌÔ´lÙRxýþý{ôôôذaƒh?###&Mš¤tüÿþ÷?¥¶ªU«R­ZµÏ_PÆ××Wxïdr}‰0""sss&Ož,D÷#FŒ råÊôéÓ¹\Ή'صk)))véíÒ¥Káêê @BB“&MâÔ©SÔ­[—éÓ§cffÆ‹/3f Ë–-£AƒB©ò7xõênnnüùçŸØØØÉÈ‘#  E‹´lÙ’¸¸8jÔ¨Áõë×±´´DCC'''^½z…½½=#FŒ`Ë–-.\X(£&>>^ °$ 94|Œ\.gÆ ÄÇÇ——iNñáî\¹BZZšššèëëçÛXnß¾M:u044äéÓ§hjjâç燻»;5kÖäüùóÌ›7)S¦àééÉúõëèß¿?{öìaþüù‚?^óæÍ¹q㇦E‹¼}û;;;RSS¹uëVVV\¹r…ªU«R´hQž>}ŠL&cÇŽxxxP¿~}NŸ> ÀÌ™3™5k–`½àééÉ¡C‡X¾|9ƒ 2lZîß¿ÏñãÇiÔ¨±±±Âƒ÷½{÷033ãüùóÔ­[SSSžôë×=zäëúþýû?~<7oÞÌ‘óeed¬¦¦FçÎsäü?2·nÝÂÜÜ]]ÝüÊ'É•*B///aIíKßð***"¯¬‚ÄåË—‘ËåT¯^Èx’òõõE__Ÿ&Mš°bÅ ªV­Ê;wxûö-iiiÂSWhh(*T@[[Èp›7o&--AƒakkKJJ AAA-Z”‡ròäI\\\hݺ5)))\»vM“„ÄÈÞ½{…Yá/aûöí@ÆNxxxn ë‹ñõõÍòçü@EE---¥ÏQMMM¥|---‘eªªª’¼L&SJ˜WWWWúL×ÐÐ;Yõ©[æ>3{ÖædŸy¶¶öOY`ðêÕ«|=>+<==K¢ü{7þ@(‚ųgÏR¯^=J—.Mbb"7n¤X±blÚ´‰"EŠÐ¨Q#áéEáþâÅ Þ½{Ç‚ xûö-›7o¦dÉ’ÔªUK´¯)))Ìž=›fÍš¡««‹L&£I“&ÄÅÅѼysÜÝÝ166¦U«V¼{÷Žäädî޽˲eËòçÆHHä!III8p@xßMll,'Nœ^Ÿ?^IÿOâ×ÁÉɉ³gÏf¹-::šß~û WWW\]]E*ùŸãõë×øøøäÐ(3ˆŒŒ¤gÏžtèжmÛ‘í¾­ZµúªsŸ={V´ªÒŽ`•$ IDAT§OŸogvý{sʨ€‘’’BÆ ÑÒÒÂÒÒ’Fѯ_?a­}ܸqÌ™3‡-[¶P¯^=är¹`-^¼˜M›6qðàA†ÊôéÓY¿~=þþþ4iÒ ¬¬¬ˆeÛ¶m¤¤¤ðÛo¿ñ矢ªªÊ„ ÐÑÑaîܹÈd2A!_]] àïïϹsç¾ÊKLBâGäСC¢2øÝ»w3mÚ´|›ùÞ½{·’°äÎ;Љo#»/ýäädôõõñóóµ?yò„+W®Ð¬Y3ÔÕÕIHH 00š7oN¡B…ÆÇÇ4h@xx8 42VH*UªÄëׯy÷î‘‘‘”,Y’Ê•+sùòe’’’-¬™9s&  N:¤§§ yr¹œÓ§OS´hÑ,+"8vì²~zz:§NâÅ‹´jÕŠ;w’žžNll,mÚ´aĈÂñwïÞåÞ½{8::¢ªªÊÇIMMåÚµk”.]ú‹ Ý<øEûå7¹2ƒ5dÈ¡üôg`ôèÑœÌv™HâçÆßßÿ«*ü6nÜHñâÅ1Þÿþû ž?Α#Gxýú5çΣR¥J˜™™áää$H\dE“&MèÕ«ººº\ºt‰ÄÄD>|ø@PPqqqøøøàããCLL 'NdÈ!ìß¿Ÿš5kÆÙ³g‰çùóç*=ÐlÚ´ 333îß¿……Û¶mãèÑ£4jÔˆþýûãêꊵµ5+VÄÖÖV¢ìÞ½›E‹áééIùòåñq<<<:th–~ÅYqäȡЬ #å`IHHxvïÞe•ñáÇy÷î]žG‘lÿµÛr“ÄÄDjÖ¬‰­­-wîÜàÁƒØÛÛ •w'Ož¤bÅŠ"/;v,ÁÁÁ@Æ,páÂ…سgW¯^åÎ;¸¸¸ç¨P¡ûöíãØ±c¨¨¨P·n]TUU9zô(gΜ!..Ž’%K¢©©É–-[„àOq|¿~ýhݺ5÷ïßÇËË È˜THwØÚÚ nŸcéÒ¥_vãó™\ °’““ ¬h¨„„DÁáÝ»w<|øð“ûd^ªÈLHH÷ï߬ZrÅlš¡¡!åÊ•t~ŒŒŒ¸}û6¯_¿fûöíy`ù*tZ011ÉsUýèèhüýý³”%ÐÒÒʲBÎÀÀ@é}’•À¨¶¶¶¨0ó>YÙF•*U*Û¿ œ³ÜV¥Ja†Ùꨩ©Ñ¢E ¥c~ûí7ÑkcccavQQQ¾Qçjëëëç«Bn å`IHHXËq2™ŒªU«Ò¡CŒŒŒptt¤Y³f‡u^‰¾{÷Ž;wîàííMdd$‡¦^½zÂòPdd$6làÙ³g‚p^"U0fðäÉÊ–-›§}ž>}Z0_–È]V¬XQ „†?G®Ì`5lØbÅŠåÆ©X=z„©©i®Y9Èårîß¿ÿUëÒÉÉÉÄÄÄùyMvz; þûï?êÕ«Çøñã…å¤ZµjÑ®];ºtéBzz:{÷îeûöíÈår‘Rxn “É8~ü¸’Џ\\\hÓ¦ ¹:–̼yókkk>|ˆžž^žö-‘1óó5®ßΦM›PUU¥råÊù=”O’+3XcÇŽ¹­ž={†™™™ ³¡°¾É¬õ‘[L˜0á“yµjÕ­Ñ÷íÛ÷«–RRR8pàWéñãÇL›6í«Ž‘ÈIš7oÎÊ•+³Ý^·n]Ö­[§”«£@UU777vìØ‘eåRN£££“mp•y\y䤦¦òúõë/®Äú™Ù°aCžß‡Š+²hÑ¢<íóW¥cÇŽ‚VdAæ—Y"LOOÇÒÒRH¦=uêzzz‚2ô¹sç˜7o'Ož>¨O:Exx8+W®äåË—@ÆÔó¥K—ðööʆ!#`;zô(}ÐÿóÏ?ìÙ³ç³S÷ÉÉÉ#—Ëyûö-?æõë×@†úí’%Kؽ{·PjÀŽ;˜;w.ׯ_ëåË—B5ËóçÏY·n?¶ÇÄİbÅ ;¾úõësòäIvìØ!rLŽŽ¦N:ÈårAÈnúôéÈårš5kFrr²°ïÝ»wñôôÄÆÆ†K—.1tèPÊ”)ðaøsçÏŸ?ÇÝÝÒ¥Kræ@BBâÇ£N:9~Î'Ož`ggG£F¨_¿>“'Oþ¦ótèÐ!×—p4kÖLÐ…Ê+®_¿ÎÈ‘#ó´O‰‚M®XãÆãÊ•+¹qêï¦C‡¬]»–øøxQƒ¡¡!¾¾¾<|øÀÀ@¡}Ĉ´lÙ’:íÍ›7ÇÅÅ…¿þú‹={öðâÅ ®\¹BTT” äœššÊ… 9r$={öüdž‰‚nݺ±iÓ&>,2Ø455% €ÀÀ@A7¤D‰ìÞ½›¨¨(ìì쀌àjРAlܸ‘R¥J±yófŠ+FHH†††ìÝ»—C‡áééI‹-1óÊÝ»wEÇÈår®^½JDDéé餤¤pèÐ!a{BB/^Ì5sìÀÀ@J”(‘+çÎŽk×®}•‰³Ä·óÇb·™\Ir¿zõ*-[¶ÌS7-[¶dðàÁ¢µò¤¤$¦L™Â¾}ûxóæhöH±$—””„¶¶¶¨-99---ÔÔÔ055¥cÇŽ@Æú°L&=­)Žù&&&¼yó†Ò¥K‹ lGÅâÅ‹±²²ÂÊÊ €¡C‡âììŒ,\¸333ttt8wî-[¶D[[[¤+£¯¯/X0|é˜$$r“;wî°ÿ~F•ßCùáyñâ¥K—&66CCÃ;ï¥K—°µµ%11‘³gÏ¢§§'ˆ”Nœ8]]]îÞ½‹––kÖ¬áþýûôéÓ‡† òìÙ3† ƒ8vìóçÏÇÏÏŋӤI®\¹ÂƳ5Iþ‘pppùJäÁÁÁ”)SF0½.¨ürJîêêêܼymmmaÙNáb¾oß>Nž<)Rÿ]¸p!W¯^åðáà >œãÇÌâÅ‹ ÆÃÃ*UªÄºuë¨V­7nÜ`âĉ´jÕŠ#F`hh(ø&ÅÄÄ0a¼½½³Ÿ¯¯/2™Œøøx¡MKK‹€€nß¾-$n._¾tttÍ1mmm¶oߎ‡‡>|ÀÓÓ///âããINN¦L™2´lÙTUU9xð ŋϕû,!!‘·¨««£¦¦–ãyN¡¡¡¼}û"""ذaƒðù÷ßITT” ÿ´yófìíí™4i’ð¹wï^ªU«FLL Ó§O'88Xx`Í FÍ„ r4Ðü%J”`РAyÖß¯Ìøñã |!äÒañâÅóÜ&âs-ZT¨ÔÑÑAUU•:uêЧOd2þþþ2gΖ,Y"7cÆ ¬¬¬8zô¨pM=zô råÊÌŸ?Ÿ6mÚ°`ÁúôéCZZš06vìXzõê…³³3ÿþû/ÆÆÆ\»vŠ+*oݺu@F0¥®®Žžž .2JR­¬¬8p GŽf›4iÂŒ3PWWçï¿ÿFCCƒ­[·R¬X1Ê–-‹ŸŸÅ‹ÇÚÚšzõꡯ¯O@@¬Y³†Ñ£GçÆí–ø¥Ø·oµjÕʱßR©¯¯OLL FFF9zmW¯^åÈ‘#=z”C‡1a #ðrqqaãÆœeÊ\]]9wîQ„Õ³gO~ÿýwÁÓ166–N:Ñ­[7>|ø@XX¿ÿþ;#FŒÎåïï««+‹/Ú–/_Ž««+{öìÚÆ««+—.]2V`zôèAûöíOǧOŸÒ±cGºwï.ø^¸pvíÚ‰fçüüüpuuåñ.\¸WWW8 ´ýñÇ´k׎k×®Þ•¸»» dHuèÐOOOááàÌ™3´k׎‰' çÚµk®®®¬[·Ž¶mÛþºV96lÈÓ~JJºFFF‡‘¡¡¡,)h!#0Ë,9¡ªªŠ£££R/á)øX råÊÔ¯__éØÌ–jjjBn•¦¦&NNN¢íÖÖÖJo0E_jjj‚²®šššÒ±ZZZBŽ×ÇyhyMÇŽqssËïa|9n 6eÊ”o:.§•°cbbÐ××¢sçÎѤIfϞʹiÓ°··g̘1Ô¨Q¹\޹¹9kÖ¬áÌ™3L˜0nݺEùòå *·s///‘^^allŒ½½=666B›¥¥%U«V©ª—-[™L&ZA¨R¥ III‚¼‡¶¶6¶¶¶*THÐO400ÀÎÎNä#Y¬X1ìííEFÓ%K–¤jÕª¢ýÊ—/¶¶¶ ú.“ɰµµ%%%…B… P¨P!*W®LáÂ……4CCCìííER)&&&ØÛÛ‹Ä\K•*Å»wï°´´ÚlllÐ××¾gÕÔÔ°µµ%==]xOéêêR¹reŒŒŒ„O###¥k255¥jÕª”)SæK~‚_n‰ðkÈJºU«V¢ô¯ÅÄÄä{†$!ñSñ3È+T­ZUd’L:õ›Ž;räH–V&ßÊ¥K—ˆŽŽ¦Q£FhjjR¦L!østtdÈ!ðþý{ºuëFhh(C† ¡råʼ~ýš©S§òêÕ+ PUU¥uëÖ¬]»Vð¹3fL–Ö0ßË‚ rüœ_BVþNNNJ¹û&BÆC{æ D]]]Ñ d<Äg¾kÔ¨¡ô€ÞºukZ·n-jËì5)“Éøã?DmúúúLš4IÔöñï\A:u”*V]]]•„V3Û©««+å©)U¦ÚØØ(õéààðÃùK–„„„ÄO@LL NNN<þ\4 ÿ=´lÙ’/^d¹mÀ€tëÖB… ‰òVOžåðáÃ=zCCC‚ƒƒ9r$o޼ɕû&!!!ñ£áíí­T`$!‘×ü2V9ÁÁÁ8;;‹Ú444„m3fÌ L™2lݺ777|}}©_¿¾PŠzâÄ žûöí`àÀ 0€!C†|•øÜäÉ“™>}º¨-((ˆøøx¼¼¼pppàÏ?ÿÄÕÕ•AƒñçŸOPPÐ7ß ‰ŸÔÔTæÏŸŸg~™^½zåºDfž={F¿~ý=z´ð;¸|ù2žžž"·‚ÇÓ³gOvíÚ%´­^½OOOÑçøÔ©SéÕ«—°”˜˜È!C8p P‰Eß¾}?~¼pÜùóçñôôÉ 8p€ž={âçç'´-[¶ OOOQŠÌĉéÝ»·°¼ÇàÁƒ}D‰égΜÁÓÓS$Û°gÏzöì)Rð_¸p!žžž„†† mcÆŒ¡OŸ><{ö €×¯_3pà@†*¤ÂDFFÒ»wof̘ñ™ßBÁ"×drº\ø{ÑÐÐÞ ™iÙ²%ÅŠ£aÆ̙3ÈÐܸ~ý:r¹\°…€Œê===*W®ÌÍ›7ŒŠ ###6lˆ¯¯/Ü»w¿þú ÈxC*4E>‡ƒƒóæÍãöíÛßs¹?7þ¡Ê® 2/^¼à?þ [·n’€p> ªªŠºº:ššš‚Ü€ªª*ZZZÂÃüÇm éÈ/P¸‚(PWW§P¡B¹TTTÐÔÔЪªªhhhˆòî²êS&“}sŸ¢<;™LöÅ}jkk‹ÎŸ¹O¹\ަ¦¦¨OÅ5ihh(µ)ú¼páÖÖÖ‚öZA%W¬‚øÇݤIæÎK||<ººº@FÂ; ¼éTUUIOO'..¸xñ¢¨”5ó¾ðÿ3a***Èår,,,°¶¶ÎÖL9==÷ïßgk1mÚ´Ï €êèèHV7?<¦¦¦’[ahhˆ««« £ô+caaÁ‰'ò4x¿ví!!!\¼xQh³³³SúhÑ¢…’”FïÞ½éÝ»·¨-³Dƒ¶¶¶’o§™™Ë—/µe%Ûàì쬴‚3`À¥kÈœ©««+^+°°°`ÅŠ¢¶/•m:t¨èµŠŠŠÒ¬”¾¾¾H4Pú>6l½zõ¢oß¾J×Pøer°¬¬¬˜1cvvvÔ©S‡7oÞЧOŸ,#`===ôôôèÕ«×7M·khhàææ†‡‡†††$%%±fÍa»ÂJçãéÚ±³³£H‘"‚ÒmV4oޜѣGsáÂ¥7­„„ᇦ¦¦¢ð«óôéSÁs5¯xóæ” ›GX[[S¬X±üÆgÉ•ëÚµkXXX```§ÿfÜÝÝqwwWjWF–+WŽ7ˆÖÇ|l; xj¨V­šÐ¦°¹ðôôª(ªþù‡*?,,Løùc[…õë× ?+5þùç¡]1n ‰oá[¬Yr‚„„âââ$^‰åôéÓJ³8¹MëÖ­E "Wº “+ÖØ±c;v, 6ÌÓÿðdVñ•ør"##³>ü)V¬Øwyr]¸pððð|3NÝ¿?«V­âôéÓùÒÿÏDRRdõêÕ¢\€éÓ§S³fMÁÃ4 €Ã‡ K1ëׯ§~ýú”-[–Ç3cÆ ¢¢¢¨Zµ*'NäÑ£G?~\dfš6mJ›6m¸xñ"*TÀÌÌŒV­ZñçŸÒ´iSV¯^MÇŽÙ·oîîîôéÓ âââðõõe̘1\¾|™ˆˆ–-[†O>]½˜'Ož`nnž§}¦§§M‰%ò´ß____jÖ¬Yà d¤OU‰†äädRRRxôè‘´¤DFuj©R¥¾¸B2ªv>̲eËxõêÀi´I|Œ?~¼R^é¦M›4h{öìáÞ½{ÂŒçðáÃùûï¿EÉϤB… ‚WàÈ‘#Y°`Ïž=ÃÙÙ™àææÆÎ;騱#¡95sæLÆG\\\H²/S¦ çÎÃÎÎ.Ïú}ªd\mooÏÓ§OéÕ«—0Cµe˺wïNRRaaaÔªU 777vìØ‘{ø¨ªªæù,·†††4œG4kÖì‡XŽÍ•wCÓ¦Msã´ß@\\kÖ¬aÏž=JÉì5">>>ŸF–`ÙÚÚæ[ÿ?;gΜáñãÇtìØ‘ÔÔTn޼ɴiÓ„í#FŒ}YY[[³jÕ*A¸2--J•*EÑ¢EIHHà¿ÿþCGG333|}}‰ÅÕÕ•ÄÄD’’’èÓ§O¾\ëÇ>žš5kŠüN½½½Ù¾};~~~œ3gÎÀ¸qã˜1cF®X]»vÅÙÙ™«W¯âããCDDD–û5kÖ,ÇûþZâãã“W‰ïGQÙ—ßägpÎy-tmnnþ]št9Ezz:W¯^¥_¿~¼}û–´´4N:dXßüóÏ?¨¨¨Èš5kX¶lÿûßÿðöö¦téÒ‚{ɉ'0`çÏŸgíÚµ|8¦¦¦9r€sçÎaff&É«V­eÊ”ò¦OŸŽ©©) $$sssQÂæçŽ¹|ù2æææ¢éغuëbmmÍ»wä>>\¿~íÛ·³nÝ:ÑÏ‘#GX²d <ÀÇLJ3gÎ|Ñ}100 Aƒx{{ãää¤TQehh( L%~¾F²ãgæÞ½{y^ÂïààÀÑ£Gó´Ï¬¸uëÕªUãôéÓ„„„P«V-AùüĉôíÛ—:0aÂ!uqq¡eË–Lž<™×¯_#—Ëyþü9Å‹gíÚµL˜0A0ZÎ,b›ôìÙó×®"ÌO¢GáååE“&M¨Y³&‡ÆÌÌLØg÷îݤ¥¥ C† ÁÅÅ… *ÇøûûÕ1vvvøûû‹Ìk·mÛFrr2… ŽiÛ¶­è˜C‡‰îWæcú÷ï“““`ÃP±bEüýýE^L[¶l!))I(¹ïׯ-Z´–²:fãÆ¼ÿ^˜>þQXõë×çåË—¤¥¥ ÃŒ3øë¯¿hÙ²%!!!X[[Ć 6l¿ÿþ;oß¾%,,Œ† ²|ùr^½z…ŠŠ S¦L¡sçÎlܸ‘C‡Ñ»woÌÌÌÐÔÔäþýû,Y²„„„nÞ¼ÉåË—Y¹r%«V­béÒ¥XZZ¢­­Í­[·ðõõ¥S§N\ºt‰òåËS¨P!–-[ÆêÕ«yýú5þþþxzzbbb‚‘‘Ü»w™3g2jÔ(,X@ÅŠY°`>dæÌ™_¥R}ùòeþý÷_ €d6nÜUÕü¾*^¼8öööù=ŒŸ‚7oÞ`iiITT”ðÙ‘””ÄÛ·oEˆÑÑѼ{÷ccc‘LÇÇEIòeË–%..ôõõ…ö¨¨(LLLHMMåÁƒB{áÂ…133ãÞ½{ÂL‡žž^ž‹~þÊ\ºtIø ÔÒÒBSS“âÅ‹“’’¤I“8qâÚÚÚ4oÞ\ØÏËË‹þýûÓ³gOÖ®]Kûöí)]º4Ïž=ÃÈÈ(ß®çG&W¬ìÖïó tuu‘ÉdÂÌÁÇdžÊ522½‰TUUsä˜R¥J‰^Šò„¾äÑt·ŠŠ UªTíS²dÉo:F.—óþýû¯V/(„††dä„LŸ>K—.1eÊpqqAUU•½{÷rÿþ}Ž;†––Œ=Z¸/üñgΜ!""‚âÅ‹ü·iÓ&’’’hݺ5uëÖeñâÅhjj d3jjj¡ªªJ‰%ÀÅÅ…7nйsgá|ÖÖÖç^½z5uëÖ¥X±bÄÆÆrëÖ-.\H§NðõõeìØ±Ì;WI£èS<{öŒ &еkWzôè ^^^¤§§ˆåAGGGó{?iiiÄÅÅñáá-,,Œ7²råJѾ^^^––FLL @EE…Î;óÛo¿ ¹y'NdëÖ­hjjŠfó ÀêÕ«‰ŽŽ¦oß¾899P¥JºtéB›6mhÓ¦ •+WÎs{°åË—ãééI¡B…ò¬Ï§OŸïºn¡¡¡Ü¾}›©S§Nzz:nnn@FnÜš5k¸yó&W®\¡F¬]»–7oÞP¤Hž>}J§N |vÝÝÝ>|8]ºtþòûá¬wïÞ¸»» ﻂÊO™ƒõñ“–ħٵk~~~lÛ¶-¿‡òÕ¤¦¦rõêUìííY»v-Ý»wgëÖ­Ì™3‡àà`är9œO:Å´iÓò=ÀêÝ»7±±±Èd2F%’Ž "((wwwzõê………mÛ¶åܹshhh¤ªªª4hЀîݻӸqcΞ=K‡ò=¸‚ŒtŒgN *?e€µeËjÖ¬)©ÉÚÚÚyú”—“ܸqƒ¤¤$jÕªE5:t(ƒ âàÁƒÂŒ–‘‘ݺuãÎ;¨¨¨ðâÅ ¶oߎ§§'5kÖÄËË }}}6mÚ@›6m8~ü8U«V%==+W®3>¡¡¡hhhP¥JöíÛ@õêÕ¹sçñññܹs‡¥K—²råJ *DŸ>}8|ø0‘ÃARRÕªý{gåúÿñ÷ØÆžJ²R¡%K”êDE)ZHJ§Óªs*i‘6-Zη}߈¤Z´I{h¡““%Ù²D’}gæ÷‡kîŸÇØ£š×uu]Í3Ïsß÷̘g>÷gyF€Éd"**  Ñhx÷î™—Ê=vìîÝ»‡{÷îAVV¶Å¡÷;v ¼¼Û¶m£ÜçÍ›‡îÝ»w‰›$ާ5†ó³gÏðòåK¤§§CUU•_¼x1øùù!((ˆÓ§O7;Γ'OH©™™fÍš…ÊÊJØÚڨ͗élOƒ……E§÷2dÙ8q“¦r“zôè©S§IéÝ»7iÄ¢oß¾lëã&»víú!~ß9"´³³kU8£#¹|ù2jjj~ˆ€ÛÔuåÿh|ýúFFF˜4i€ÚDM???¤¥¥aöìÙ8{ö,üýý±råJ 0ëׯGaa!BCCáííâØ±c3f ÄÅѳgÏbÒ¤I022‚‘‘²²²0jÔ(ò‰ˆˆ`Μ9BII ŒŒŒ ££Côo–/_ŽË—/C^^gΜ²²2***0nÜ8hiiáÕ«Wd윜hii‘›[uu5ƇáÇCBB>>>¸~ý:†Šëׯ·XÔËË aaa8wîÄÅÅ)Ï©ªª²åãp“ððp„¯¯/TUUÖlþUZZ6oÞŒE‹ÁÐÐòÜ“'OpêÔ)¤¥¥uÈúxt=õ<Ñh4 ãª.®®®øßÿþG”Ïmll`ii KKK$''¨Mg«/Epÿþ}òÜÆ]Ÿ¡¡!JKKÛó[ÌŠ+ˆdMgÇÛ(tfff¸rå ·—Ñ,1ûöíËÕ¼žäädôîÝ»ÃÖ——‡‘#GBII úúúøüù3?~Œ9sætÈøñæÍdggsTÏ%11/^¼Àš5k86ǯÀ¶mÛ:tøã?°oß>:t;wîÄ‘#GˆR}{’’¢Tu –––8xð ²³³;uK—.áßÿÅÞ½{›Ì©¯ƒVUU…ÐÐPü÷ß8{ö,6lØ€÷ïßsz¹<8“ÉDPP·—Ñ%ðððèôV9}ûöeëýȃ3ôëׯËn&êÂõ,1EEEHHHÀÍÍ bbbøí·ß`jj MMÍW±Ô§n3ÒŽ`ôèш‡··7Î;‡Õ«WCCCãÇÇ?ÿüƒ{÷î!%%%%%ƒ°°0ñ>íß¿ŸTr999ÁÎÎnnnD==** 4 'OžDÏž=!**J„+###¡§§‡‚‚œ;wBBBXºt)i‡Óîòç/_¾ %%úúúí§5ðññaÊ”)X¼x1Ö­[‡I“&uù¦]8;;#//´íiˆº Ýõ)--ʼn'pâÄ (++ÃØØ¸SÃ+<ÚOvv6,--‘MéØÀƒÇÏFjj*zõêÕå,Žx°.\¸@’#[‚ ¤¤7nÜÀü3fàôéÓÈÈÈàÄ[Lii)._¾ 999¸ººUpyyyܽ{žžžX·n’““!**J‘###!&&]]]¢6>aÂäçç#%%…´(`×½{w¢  ÆÆÆHJJB~~>  `ÆŒxüø1ž?Ž" ÙîÝ»‡½{÷¶{œÖâàà€Þ½{£ºº·o֭߯[QYY‰]»váßÿíôõüÈ0 8p‹-jò«’±9RRRpúôi9rÅÅÅ];«ŠGû‘À Aƒ(^L&“IŠslmmñôéS\»v–e0X½z5ÊÊÊ`kkKùþ¹ººââÅ‹”y®^½JºÄÅÅ‘ÊW ¶ojNNNƒëk*§ðÞ½{ JÔÍk cÆŒéô‚ŽˆˆLŸ>½SçüU™3gN›ÿ6:ŽXW¯^ÅçÏŸ[|¾ŠŠ )Ç233qöìY̘1‹/F```‹“ÚþøãÜ¿¿UknŒ˜˜Ì›7¢¢¢ÀÑ£G±dɨ©©‘¼•-[¶ÀÂÂEEEDû‹¥–ÍÇÇGÉ¥býäÈ‘øþý;RSSÑ»woÈÉÉÁÚÚ#FŒÀÚµk)×HKKcþüùðóóìY³`jj ˆ‰‰µûõ9’Ïu&‚‚‚ VÅá÷ßÇŒ3pæÌ™6Ø·o߯›7oÈãk×®±“””D<6'Nœh´áõ±cÇðåËʱ¸¸8Ò<µ!Þ½{‡OŸ>‘Ç?n2ºiÓ&µeìnnnl2Í1räHHIIáСCoô_KÂG"""˜5k®_¿www6­Ž&<<œ—ÜAˆ‰‰!&&†R¸Œ””øùùáüùóPVV†ªª*É€ ¢¢UUUxûö-ѯJMMEPP¹± Óé$Ç588¡¡¡¤Að¥K—ˆw>%%UUU人9X999ÈÌÌDnn.ª««Q]]òòr$''#??PPP€Ý»w#%%…Üû“’’ÕlSëçÏŸ“H@g‘ššŠ¨¨¨NóWE\\œÍfèŠp%DXSSƒ”” <¸ÙpRVV¾ÿÞ!kÕÖÖFjj*ÉM122"70333DEE!;;ÚÚÚˆŽŽ&ÞÞÞÄM¿xñbÌœ9½zõÂàÁƒñèÑ#hhh—‹‹ † ‚ââbŒ3"""ÐÕÕÅ£GÈk=}ú46n܈ˆˆôêÕ«ÃBzÆ ðaÚ=ïÇ2_FFØä$##gΜ!bcÇŽmqUÝ¡C‡7oÞ@@@;vì ½¸X¼}ûááá$ñ»±ñQQQ011¡ûþý;bbbÿþýûèÛ·/ù[¸t霜œød5¡_¿~­nµ±k×.øûûãÏ?ÿ„ƒƒTjOMMmtŒ>}ú`ýúõ˜6m1Ü[ã…æÑ5©®®FRR¡ªª EEE(**";;_¿~…ŒŒ .^¼H¼PòòòÈÍÍEYY¼¼¼0þ|6Ce̘1Ä(~óæ V­Z…gÏž¡_¿~2djjj°`Á())áãÇX·n´µµaooÇãâÅ‹¸{÷.zôè‡âÖ­[€ÀÀ@ddd ** {÷îEuu5rssqåʘ˜˜àòåˇ˜˜¹W6†··w§7711i•Æ\hh(>~üˆÞ½{“ŠÞˆˆÈËËSTÓýýý‘›› eee5™gYYY‰‡âÍ›7PVVÆÌ™3QVV???Ì;—üvùøø`È!ÐÐÐÀµk×(÷Ç‚‚øúú‚ŸŸ£F‚††F“é:›6mÂŽ;(ÇX‚Í}úôAII ž={†É“'ãñãÇ Ñh022Pû™[XX¾Á-%((t:½U×p®XUUUxñâegÔï«÷\rr2egTV³çŽ‚uSjˆº_âºê²¬?  ¶Ù)‹ºíNêz©X!C µ&PVV†²²r›^Cc0™LTVV6ùÇÊd2qýúur#l,œ˜˜”””´èš””ddd´J¼vÊ”)8{öl“aTUUUJÛ½{÷pæÌÐh4,\¸(ĵùKkÖ¬AZZÄÅÅÛTD‘ŸŸ¥K—‚Á` [·n8tèyßSRRpäÈôìÙRRR°²²jñ¸¬õ>nnnø÷ß±}ûv¶$ßððpÊcEEE˜™™áÝ»wÐÕÕå¸ìÎRUU…½{÷ÂÕÕ•Øæææ(//‡³³3rrrð÷ßÃÀÀöööðööÆÂ… ñéÓ'Œ5Š|¿,--qíÚ5DDD`Íš5¸~ý:***ˆÁ­ªªŠêêjäç磺º'NÄßÿÔÔTŒ?<@Ïž=annŽôôt\¼x‘²)öòòÂÝ»w! €Ñ£G“ãZZZ8xð BBBHÚ€¼¼<Ö¯_pwwÇìÙ³aaaÑìýfRRR”{Fsœ;wcÆŒAaa!ôõõñæÍ`üøñ”{ÿÎ;±{÷n¤¦¦b„  ktÌ;w‚ŸŸæææˆEQQrrr°yófðóóÃÉÉ IIIpvvÆÚµk¡¡¡Á¶ÍÉÉÖ¯_cÇŽ‘â­Æ`mëâêêŠGÁÛÛyyy8zô(&OžŒ‹/"44ÑÑÑ””Äž={0yòäVX é¹uE8b`ùøø4¾ÆÜ¹s)ÝÙ-,,Ý€¤¤$&Nœ333 aùòåžÛ¥êÄÄD¼~ýrrrÄHb0øúõ+ÄÅÅÉ»°°¥¥¥Mö†óòòÂíÛ·qâÄ $$$`ÿþýpvv&º4k×®¥(†7Ä÷ïßÁ`0ˆÛ½£ñ÷÷GPPP“!/†Í›7SŒÆ¶rðàAÐét\¼xlùu€LMMa``€ÂÂB¶hž%K–ÀÆÆöööžsáÂ<}ú¢¢¢¸~ý:<<< Vç§îÍòîÝ»8p Ž=Š;v4™0 9QQQprr‚””|||™™‰ãÇãÑ£GÄÀSVVÆôéÓ1lØ0˜šš¶è5ÖgÔ¨Qðòò¦M›`gg‡;vÞtùùù ߣ)S¦že...mš¯#˜8q"¯ëB‘››‹M›6aáÂ…ä¾ÄÏÏØØØàõë×pssÃ;w0{öl˜˜˜@BB‚xqYXYYaäÈ‘˜?>ñ\|ÿþ(Á»»»ÃÐÐGŽÁðáᨨˆÏŸ?#%% Eii)âãã°ç^UTTVçîÝ»‘кž///\¸pæææX¿~}“>L&³ÍERí¡µ ㆆ†2dBBBØB±ua½Ö#GŽ //Ý»woð¼ÈÈHlذ#FŒÀˆ#ÔL&L@pp0œœœpéÒ¥f7S½{÷†™™ú÷ïeË–5i`±ðññAbb"6oÞ yyyâ©ßU`Þ¼yØ·o_»´_¼xUUÕ76çÉÁ’’’jU|´¬¬¬AãJPPFFFؽ{7nß¾uëÖQ¼AqåÊ$$$´jÍ@í—rΜ9˜={6–,YBŽGDD@NNŽÒ&eÖ¬Yüüü(=¿Z‚††,--[÷BZAcêÎAlllƒÇ‡ ‚µk×âöíÛØ³gÆ×êx;N‡““%qvÕªU°´´Dpp0€ÚDû»wïâúõë(**É\u¼_¿~MnX-é±ùçŸ"00¤5Nnn.ÌÌÌpòäI¤§§sDAZZšì—-[F çøøxlÙ²…|šjÛ™ÈÈÈp­géÏF=`kkKÙ`>}ú/^¼@zz:=zD¤:ºuëUUUxxx9,DDDpúôi,^¼˜“““ÃîÝ»±{÷n ÃÈÈ$›®nݺ!66êêê˜5k’’’ ­­‰'²U£Ž=ĵk×HPcˆ‹‹ãßÿEQQ¢¢¢`ooùóç“ïNc?Ò½{÷ÆÇ[øÎu ÷ïßo±þ# ???lÙ²ñññÐÑÑiô¼õë×cæÌ™˜0aB£ÆPkünݺÚÚÚ8räÉU€ŠŠ bbbðöíÛ&çjµòÖ­[GGljPïÙ³Ÿ>}ÂæÍ›É±­[·6XÑomm§OŸ6éPiŽ¿þú m¾¾³àºL6¡Á!C†ÀÔÔÆÆÆmòF]¸pååå 6=mŠË—/ãÕ«Wèß¿?P^^ޤ¤$²Ã¿qãRRRЫW/„……A@@X°`’““ñäÉÌœ9çÏŸ‡»»;ÒÒÒˆ·êíÛ·ÃÓ§O±iÓ&XXX`Á‚¨©©““ áèèˆëׯãÆسg¶nÝŠôôt ÁÁÁ›6m‚œœ<ˆ·oßbèСX¸p!”••ñWÌŽ‹ IDATùóg\¸p¯^½‚   fÏžY³f5ûš§NÊ•$÷””JB¨¬¬,rrràëëÛaífìííaddDÂ’ÿûßÿÈsþþþ”s%$$ÀÏÏïß¿ƒÉdB@@€†022BHHÆŽ‹RAƒµÈp~ôè~ûí7üùçŸprrjR(699555mRñçççDzeË ¡¡­[·âÝ»wpssã©¶ÿä Á××—rLAAÞÞÞøöíôõõñÇç\\\0nÜ8’+J§ÓIþŸ€Z¯RCÕñãÇcåÊ•ä‡ÚÉÉ &LPkäŸ;w^^^ÈËËÃìÙ³€tسgnß¾üü|Œ5 ŠŠŠ`2™Äp——‡™™àðáÃFee%âããáïï!C†`éÒ¥ÈÏÏo4\–ŸŸßéýpKJJZ]u«  ¸»»7éqsppÀÛ·oqñâÅ&½s#GŽÄÝ»wñíÛ7899AAAjjjjï‡NNN-J?PVV†ŠŠŠÐ¤·0++ W¯^eëñª¦¦iii¼xñ‚rœF£aÆ عsg³ëhŒÁƒC^^¾Í×w1°Þ¾} •&-m5558sæ dee1yòd˜šš6Ú¤¶¥´¥Ùsii)Ö¯_}}}ØØØÀÙÙ™$2ûö 4´ËIMMEaa! ++ 999lÚ´ /_¾Ä»wï ¡¡&“‰“'O’`dd$ÊÊÊðøñcdffÂÑÑ:::`2™8þ} ]]]Jþl\\ÔÕÕ!-- J‡ ÃÞÞž¤B4†„„† †Ã‡CWWóæÍƒˆˆ^¿~ÍV\ ++ OOOÌœ9¾¾¾” ››¦L™Âö7dbb‚ŠÒÒRDEEþ9êF“º21°6oÞ —åìdeeÁÕÕZZZ3¯_õÕöîÝ‹ŒŒ øúú’Þ÷ïßÃÁÁ"""0`i)sóæMìÝ»K—.Åœ9sÀ`0ðîÝ;())áõë× %ñ#FŒ@nn.RSSajjŠ+W®ÀÛÛ¤ÿðÿ?²oÞ¼Á°aà ""`ëÖ­ÐÐÐÀþýû ¼yó‚‚‚¸ÿ> ¾}û†˜˜øøø`þüù-NXŽˆˆ@XXX‹5’:‚ššXXXàØ±c$<ùøñ㟥„Ô&»O™2…휆þ6GŒ³gÏRŽÕu7ÔÈuÒ¤Il;©ú9-ëÖ­#ÿ?þ<Û¬Îu¯e§-ÈÉÉáÔ©Søßÿþ'''¬^½ºKiõܺu 'NœàµËéÊÊÊàè舋/6ZÛ044D÷îÝakkÛdksÔ/ªKgW@mJKk¢&ƒ bËUVQQÁáÇqüøqµ@u Ö¯_íÛ·cÖ¬YpqqÁƒ(VPPþúë/Ðét 2–––HOO'wwwµ!TV!İaÃHа°0öïßOŒ>lܸ< Eõ ,MMMŒ5 žžžØ±c<==Éšûö틹s碠 @­¡ÈŠ lݺ...àããCBBŽ=ÚbëGë!B(((tè˜ééé––nqnQzz:ùQ;v,9ÊÊJDGGcÆŒäx]-+HHH@qq1V¯^MëV²Ba¬ëÇDKK‹$Ž6 /_¾Djj*qÇFFF’/ ÒTÕÖÖâââ7nèt:øøøpýúuœ9s>>>°³³ÃÀ¡««ÛìkÇ“'O:ÕÀâççg“MàM¹Ò RSSÙªSRRзoßWµpª÷XG¶ÜÄš5k ©©‰;wâÝ»wpuum²Ü›ÇGAA®\¹‚ƒ¶Ëpá4ÂÂÂ7€’““;´]ZK¨©©Ajj*TTTZt~C‰ã‹/¦ä¾À™3gÈÿ{õê…C‡¡²²sçÎe«¦tqqa+ZQRR"Z{,Xy¡@mñ@}X†²!{üø1Û8Àÿo‡N<Šu×\w=uÿ¯««K6Ö_¾|Á† ØÆnŒ .@__Ÿ„?»*\ïEÈ –,Y‚þù§Å绸¸ ¼¼×®]ãGðèÑ#tïÞïß¿“É„ˆˆBBB`mm &“Iv ŽŽŽð÷÷g3¸€ZãHBB$‰œ^^^055ÅéÓ§1gÎhhh¹Ù³g£ƒ•LM§ÓQQQsssDDD\†7nàÓ§Oð÷÷GEE|||°páBCVV222-Ò¶js°Ú ïŠdeeÁÜÜcÆŒÁСC)_vEEEj«W¯f“ yùò%´´´`ii KKK>|˜ckç$'NÄ… ˜˜$%%5znc<º.½zõÂÖ­[lqÔá;š/_¾üȆ¨+ÖÛZÔÕÕñîÝ»6_ß‚‚‚Ú\ÜZš«¤çãÆ#¿M‰‰I«Â«'Nœ`ËùêŠpăµ~ýz®–^khh4é>®Kii)ÔÔÔpæÌŠ—ÊÃÃèC…„„Äf†eË–¡wïÞHMM…ªª*òóó±eËŠ{sÒ¤I077FàAƒàîîSSSøøø`Ú´iprr8;;CHHÂÂÂpwwÇãÇIˆÓÓÓzzzÈÉÉAß¾}!//ˆˆܼyùùù°°°€••RRRðßÿ!++ S§NÅÑ£G[Ü£IJJªÓ›¢r'''Ì;³gÏFQQ&OžŒ!C†@__yyyðóó£Ü(˜L&õZUVVbܸqõ븸8ðóó“ÀÍ›7aaa&“‰{÷¦¦¦¦àããÃýû÷¡¤¤„‡bêÔ©èÓ§g߀&PRRÂÙ³gáéé GGGJø².Çoµ6M[ÐÔÔì–O>>˜››ÃÑÑ‘àÓ§O7Ü¬Ü ¶ãïï bH³’žY²555¤E K{ª¨¨•••”q¾ÿŽÐÐP0™LhjjÂÆÆ†ä‰ˆˆ ¸¸ß¿‡€€ñø[YY!$$„xö_¿~?ÂÚÚt::::$”™™™‰ÀÀ@Œ3EEED€ôßÿEXXf̘iiiøúúBFFééé˜9s&ž}úp½9 œ={ùùùðóó#!ô´4|øðEEE¤’•G×§¨¨Æ £„Ý oooœ:u YYY”J'NÄýû÷ñÏ?ÿ`æÌ™ÍŽ_^^Ž> ´´”­óØ1cðäÉ<þVVV¤íÙ“'O`dd„7âùóç’’‚ àŸþABB¾|ù‚Ù³gcàÀرc)),,Äõë×!++KÒ#ddd   €àÅ‹ðó󃉉 ›Ç¾³+­ñ`ÀÁÁ°²²ÂôéÓ‘––†¼¼<¨©©ÁÒÒ¶¶¶xõê€Ú¤x+++X[[ãöíÛM޽`Á˜™™aÚ´iX¸p!é|2qâDÊyñññ6l¬¬¬0gÎDGG·òóh ŽXUUU”òÐÎfÅŠxðà׿ÿ‘ÐÒÒ"š3?D\\9vçÎhkkCTT”(°———øøø(ù)¬ã²²²PVV&áÓþýû“,Vb¥­­-®^½Š;wî`Ê”)‚¼¼²²²àç燔” „ 6 ÿþPQQÁرcáááCCCÒÍ‚%;bkkKYc=ˆW7??Ÿ%žhTUUŸŸ555j©ƒƒƒqãÆ üöÛoxõêñÐãÕ«W­VVoÁÁÁpuum²x¤.·nÝBTTY3«8uj›Þ³*™L&ÊËËñæÍ›U_»v t:±±±l©&ua0())ADDÄ“{÷î]ÈÊÊvùÔ®Ë4p‚3gÎpÍEü£Ñ’fÏ?ÆÆÆ Exx8 ```~~~Ü¿>„••1·nÝŠÈÈHðññaöìÙl¥Ïššš”<9Ö°[·n¸ví¥ âðáÃHJJBdd$ kìß¿Ÿ$Œoܸ±ÃeI: --- ±X‰‰‰ðôôl°D»½”••Q~Px´úž(ooo¤¦¦BII lò(.\Fc‹8¡åººit:›6m‚‡‡Ž=J¹†N§“‘ìííqíÚ5Ðh4X[[ÃÓÓ&L@tt4eã1iÒ$Ìœ9yyyxõêU“¢³ºººðððPÛŸ633"""èÙ³'%‡iРA VSrEEÅVåÖÔÔƒfÍš5 ³³3,,,ðþý{XZZBII‰¼Þ¬¬,ÌŸ?¯_¿¦´k IIIˆ‰‰AHHŸ>}jô}}ùò%ìììùCTæµ26œªhìH~J«±/Vtt4Þ¿ßl§õS§NANNŽ’4Ùæææ¸uëV«ÖçííM’°MLL°dÉ’6S—Å‹cëÖ­D¹¥øûûãÆðöönóÜ]YYÙ{8 ±ºZAM}Y¥¤¤M^mè:ŠN]aWmlÓ§O7Z6øðaLŸ>—ÞÅ)--¥ä#ÙØØàåË—øöí:DDqYÒ%¬ƒÁÀ±cÇ¿ÿþ;>þLÆ H˜››7Ød÷Â… ij"''‡ÐÐP’à¾råJäääàÉ“'˜1c„……±hÑ"ôìÙâââƇ(t,1P»IΞ=‹””¨««#,, 4 ׯ_§X,ã°3Ñ××oÕ=\]]=‚‰‰ öíÛ‡}ûöïÜðáÃÙÛËÉÉÁÏÏ999055Åøñã›ôd™˜˜@II RRRð÷÷'­Œêchhooo¼zõ Ë—/o6¿«+ÐR!mnÃkÊ”)\ítåÊhkk³µÉÎÎÆ»wï(ƒÁÀ‡ --MŒ“ÊÊJTTT 66  $LgeeALLŒôu«Û{*##_¾|Á°aÃõ9rÏž=ƒ§§'”””HO¼ââbTTT 11‘üˆBPP"""(--EMM $$$ !!!@YY@m,V.QNNÄÅÅ!""‚ØØX0 <¸Á*!!¡.­ú̃³¼|ù¯_¿nR¨Í«\¹r%îß¿OI”n/òòò]ÞÍÿ£——‡>}ú 33“xðLÕ¨Ÿ³ÄÇÇGšn×ß 4t~CŸYý6L†††”ǽzõ¢xÐê Î;4 ¢¢¢¤è†ÕÝ nRdeeÉæ¨³t§8Á¾}û°`Á˜˜˜@[[>¤ä 5F¯^½0wî\œÅáÇ1oÞ< 2555àçço°+q›Ç¯‰žžTUUÁÇLJ‚‚$&&6zndd$N:E‘0i/ãÆksi;*L&eeel!ÞŸoÿþýøý÷ßÙÂýœ$##7oÞlñ÷cäÈ‘xöìÂÃÃQ^^Ž3gÎ@AAÕÕÕØ¿?Ûùu½ˆK—.Ell,rrrŒØìرß¾}ƒˆˆÖ¬YC6ѬßF ÖøîׯEQþï¿ÿFaa!Þ¿ß`DÐétHKKcÐÈȨÓ%&æÎ‹9sæ4Ø­+ñS†W­ZÕbUXkkk¼zõ ±±±8}ú41°&Nœˆ­[·"44~~~ppp@||<6lØ€ššìܹ“b`ÅÄÄ@OO³fÍj²Éu~~~ƒòþ îîîPPPÀ¤I“ØÔÄë"((ˆ“'O¢²²&&&ÄÀÚ»w/zöì‰'NRSSaccƒI“&ñ¼T<„ݺuƒ¦¦&¶lÙ‚?"88ÁÁÁxûö-›ø¶mÛÝ<ðà.=zô@LL ¤¥¥¹½®³fÍPPsšgÏža÷îÝ­Ú€tëÖ “&M¢h°ð¨®‘N§CSSEEE”P*‹Æ~ÿz?ê¦-ôêÕ ½zõ‚˜˜Xƒ!EVÑ€°°0Y#7„““““)•¨]•ŸÒÀjÛxåÊ•ÐÕÕň#ŸŸO~PXU.222ÈÈÈ@JJ ª««°··§ŒsìØ1x{{ÃÆÆvvv°³³kp>999DFF²åîðóó“äg ‚ŸŸŸ”—””sYÉ…„„(%ÿIIIu[œ={{öìÁ±cÇT¾åF³çöòòåKJÇö_NhT©ªªBUUÎÎÎ8tèNŸ>!C†àÉ“'¨¨¨@yy9¦OŸÞ©ÕY ¢¬¬ „ªª*[¯¶7oÞ`ÆŒèÓ§îÞ½ ;;;ìܹ®®®”œ777¬^½...PUU…··7¥B­.zzz8~ü8 ///XYY5ùº;†Ý»w£¼¼NNNˆÇÒ¥KQYY‰„„„ ,n4{n+âââPQQ!aUµ§ÚsHHH {÷î¸rå JKKñðáCœ;w‘‘ªªj»çxñâBBB°eË–X1Ë—/ãÙ³g°±±ÁøñãÔz¶“’’°jÕ* 4UUUØ´iJKK±mÛ6tïÞÙÙÙØ¹s'„……±k×.ðóóã¿ÿþÃÑ£G¡¦¦Fî÷îÝC@@ŒŒŒÈ÷ðâÅ‹ üyóHNÏÎ;‘žžŽ¿þú  @yy96oÞŒŠŠ ìܹÈÈÈÀ®]» !!Ðh4¼{÷'OžÄ!CH7ŒÛ·oãæÍ›011!gΜÁ›7o°`Á’æîîŽììl¬_¿W¯^íÔ÷¨um(´Ç£ãa)ýwu8b`%&&R’¿;›%K–`öìÙlÕ‚***èׯ©Î000À¡C‡pîÜ9¨««ãôéÓ ÑhÐÑÑÁÀqáÂX[[ÃØØ@­ò°¯¯/|}}‰8§ƒƒ€Z£ÎÏÏýû÷ÇæÍ›QSSƒ;wî°uL·²²‚¼¼<ððáCna³fÍ‚¤¤$tuu‘’’‚óçÏcãÆÅ{¶hÑ"ÀŒ3Э[79r§NBvv6"""àïï‘#G6šg5uêT¶Ö® Nïð\ -CTT°°°@MM æÏŸß!㦦¦âáÇ<«ƒ`å_ÕíÃW]] >>>²Ñc0¨®®???Éa2™ä뼪ª*0™LJOJV•[Ýñ+++A£Ñœ“5~Ý9Y0™L0 Ê:XsÖ e£Êš³þÚ:£&îS^^:ÞåÛ ý”!ÂÆš=³*#êS¿U «×_ýØx=ØøY†ÑìÙ³)ž•¼¼<8p Áõéêê²UáÔ7°XÔ%üÈ2°êjÕ,^¼mä[—Ÿ±Ù3ÎÂÏÏÏÓ™ë¢888Pî%ØT¿ét:›§EVV–È4°ÐÒÒ"ùœ,ÌÌÌØ:?°××¥¾Á,**Ji–ÔæîÔŸ³~ßW VÛ«¾¾WCÕv¬üYnñáÜ={¶Ñû>ŽÃÜÜ .ìòÑ Ž´Êéß¿§VoÔgçÎ\o8ݽ{w¶¦Ì]‘¯_¿’~{}ú„˜˜L:•ÛKùaxöì·—ðC“““Ñq_¾|‰;w¶º—ß7àãヘ˜R¥Ùzöì‰ &ÀÙÙ¹S —=z„§OŸâ¿ÿþ#•žm…N§cäÈ‘øí·ßZÔÄÙÞÞ‹-‚££c»æå41°¡¦¦Æ5«gÏžð÷÷ÇDZ|ùr :IIIØ·otttH• K f÷îÝB`` îÞ½‹%K–@SS)))ðôôĈ#°páBÀæÍ›QRRÒè5Ÿ?Æž={ ©©Iªk¶nÝŠ¼¼<ìÞ½¸qゃƒ±hÑ"hkk#-- »wïnò–ÌÂ… 1jÔ(dffÂÃÃ&5Û·oGNNvíÚ111ãÆptt„ŽŽNƒ×,]ºEEEðòòêäO‰àÕ«W8qâÏÀj!fff Á‡¸½”–=zpDá===½UM¦«ªª`ff†ÈÈH|ÿþ½CÖðâÅ \¸p.\àX ªÏŸ?cæÌ™HHH@^^^‡{õêUHKKCGG—/_nŸ2û IDAT²RYRR’"ä&ÒÒÒèׯñd‰ŠŠBII‰4t€¾}û¢²²’xozôèA¹FLL ŠŠŠ”kúôéƒŠŠ ¢ÉRÿ(**Rš]÷éÓRRRdÖÚX» aaa(**RÔsë_Ó½{÷¯©Û¦@QQ’’’DC†µ6ÖjC×èêê’&¯~üء㵺h999¸sç,,,ðäÉ“Fu®nݺEÑJëªtý¶‘ñãÇ%c VçÅÅÅ…rÎï¿ÿNy?‚qp¨ŠÐßßœš?&&&lb–ÿèÑ#Žôbíh8b`‰‰‰ý0&<¸‡´´4ÌíeðàÑnîܹ}}ý›““ƒÊÊJò˜£F‚¶¶6i‰¦®®N 9Šˆˆ@]]’’’PRR‚ºº:ÄÄÄÈójjjPWW'i%ôÊþŸŽÊkˆúáÀOŸ>5z®««k“XWá§ÔÁâÁƒ<:“ÊÊJ”••µú:555|ýú¡¡¡ Å«W¯À`0@€þã? \½z±±±¤×­¾¾>ââ⋞={vØkjŒ… "++«Á†ïgΜAVVvìØAŽ­^½YYYøòå ÂÂÂ(=z—,Y‚ØØXTWW#%%¥EÑ/MMM(**vÌ‹á q3…‡‡cÀ€?„Ò*<¸G^^rss1`Àn/¥KA§Ó±wï^?~œÛKù%ÈÉÉÁĉÛ5Æ”)SÚ¤)hggAAAôìÙ•••4hàÒ¥Kððð€ŠŠ ’’’0oÞ<¼xñ‚xvŠŠŠàää„mÛ¶aåÊ•(**‚„„D»^CKEïÞ½Ù"UݺuÃܹsQRR‚E‹aË–-¨©©˜˜z÷îY³faÊ”)رc®]»†ŒŒ ìÝ»gΜÁôéÓ¡®®Þ¢ÊÄ%­€#Ö¶mÛàââ###N σŸ„;wîàĉxúô)·—Ò¥¸xñ"Þ½{×)s#..ÚÚÚ2_C„……¡ººcÆŒáÚÚk` @II©Õ×=þ®®®øüù3>|HZÍyyyaÇŽ˜;w.þùçhiiQ”â_¼xüõ×_°²²ÂÙ³gl‚ݙ̚5 °··ÇÕ«W1iÒ$“ç QQQòòr ¼¼eee°°°@EE|}}[%uÑÕá%JñàÁƒGcðàÁ–›¶iÓ&„……áÀ2_C¼yó sæÌáÚÚKuu5>}úuuõV]w÷î]¨©©ÁÎÎsçÎÅôéÓ!++‹ôôt„††bÞ¼yAyy9®^½J®c2™8tè>Œààà&s–:‹ùóçãÍ›7¸yó&’’’0þ|ŠuõêUHJJbûöí$I}üøñøóÏ?1þ|¬_¿ŽŽŽ8þ|“óœ>><{ö¬Eò- Ê)Zl`ñóóSt;º:?~Dnn.àþýû˜5k—WĨõ¨uV¥ <‡Á`ÀßߟîäÉ“9žËâââ˜6mZ£Ïoذ/^¼àø:ÚK‹ ¬Ñ£G#11iiiÍž;sæL®¾øššÜ»w<ŽEJJ ×ÖÓ™´4pvv6âââtoóø5¹víÌÌ̸½Œ_’ºáA\‰T„……aÈ!$d¼k×.Êófffä¹ú9=îîîä9555TTT炃ƒ¡¦¦Öl[•ÂÂB\ºt fff1bΞ=Ûê×pïÞ½VÉ$¸¹¹PG£ªª {{ûwíÚµO5¡Ñh4h&MšÔè9=¢„(»*-<¶¶¶Ø¶mŽ9ÂQ뻽„‡‡³Iús]#¤3ðõõEqq1æÎÛ`(®ªª HJJêÔ8vUU¶nÝ ccãNÉÑãñcPYY‰ââbn/ã—£¸¸·nÝb;ž——‡{÷îÁ¢S×Ó£G:tˆ<®¯Òíææ†’’`3JfÏžMÑÏ$ÿ×ÖÖÆ±cǰvíÚf7ÙBBB055… &Nœ77·V½•V…WñíÛ7:tß¾}£†mF£¡gÏžPUU…¿¿?GÚÕIJJâÎ;˜>}:RSS;ü»Û£G <ׯ__ãþŸ5kÖ`øðá:7'hÕ'pôèQÂÎÎ+V¬Àˆ#(½º ÅsïÞ½‹%K–4ù¡ý Œ7ÖÖÖð÷÷ÇàÁƒ‰kÜËË ¹¹¹ˆ‹‹C^^Û‘S”––"** ‡Nǹsç:e^þŒ€€¬ZµªCÆ[°`þüóOœ8q‚H:TWWÃÙٹ˧»())aêÔ©pttıcÇЭ[70™L;v !!!dãßVfΜ ;;;L:µƒVÌÚ¤¥Ñh0`@›EOœ8uuuXZZ¶uúFÙ·o_£Ï½~ýÆÆÆ]2¬Ù‘Œ7çÏŸo4¦ïîîÎ˃âÁãÅÏÏHHHH@RRÅÅÅ Óéøúõ+€Ú0áÏ``%&&¢²²/^ĤI“ $$ı¹^¾|‰ƒv˜åææ†ùóçc̘1˜0a)ÞÒÑÑÁòåË;dN²{÷nàÝ»wä1ƒÁ ¯›UÝYQQˆˆ¤§§“óòòòتÿ333A)Æøôé^¿~‘#Gþ9‚1°šíØÑ0™LøûûcÙ²eˆGII V­Z---äååáË—/ðôôDtt4233;umÜ`òäÉl;Æ3°xt)ÒÓÓñìÙ3n/ã—AXX¸E=I…„„ //ß +úù°¶¶†¾¾>nÞ¼  Ö Ð××ÇèÑ£ˆ‡ŽŽFÒÒRµÕﺺº”d÷ÇC__Ÿbœ­Zµ úúú8}ú496uêTèëëãîÝ»€¢¢"èééA__IIIjìutt`hhH ±€€èééaÞ¼yd¬}ûöA__6l ÇþøãèééáâÅ‹äØäÉ“¡¯¯ÐÐPÀ÷ïß¡««‹Ñ£G•÷·oßBWWß¿'aé+W®@OOŽŽŽd,èëëÃÝÝ[¸p!ôôô(â·ãLJ¾¾>ÂÂÂZøipŽô"ì(***ޏ¸8òá4u®½½=¤¤¤ŠÐÐPDDD 33“$|‹‹‹cýúõ¸téÒ/Ñ›pèСäØéªö4 ***000€¨¨h§ÎÍãç%%%oÞ¼áö2~ *++!##Ã{?ë‘ÝìïNCÔOà¦ÓéÈËË£SWWg+›6mÛ|7nÄÆáàà@Žùúú²)î×Ý”@aa!åØðáÃÙälllØ„[·oߎíÛ·SŽ5”Z“@yÜ£G6]¬Q£F¡¦¦²²²$¬9þ|ÌŸ?Ÿrž§§'<==)Çú­j‰ÐyW‚#ÖÈ‘#Ñ£GvqëÖ-Ì™3L&l“<VV Ú¤Êû3ÀÚ±¨¬¬ìô÷‚Éd"11eee8uêGÔ…yü¸ A\\¼U×Ðét>|˜ã2#¿œÍù‘©®®†©©)·—Áã†#ÖíÛ·Ûuý­[·`mmU«VÁÒÒ²Í%þ—.]BØÿ±wÞaQ\Ýÿì.U* (VˆEc×(*öDå5vMÔ¼6Ô`ï½ÄJ,‰Á•Ø ¢HUìTAÚîï~;/+EP–EœÏóøÈ̹÷ìl™3÷žó=W®hT/DÓ 8°°0AäS³H …‚þù‡±cÇ’žž®25,òeãââRà`UqIQ¤(øé§Ÿ>‹L5‘âK±Ë"Tê|Œ=šÞ½{‹úIŸH§N€Ì©ZM-ÑI$:tèÀŒ3˜9s¦XEDDDD¤ÄSì¼—K—.ñúõkúöí«iSJ;vD"‘àìì¬iSèØ±#¥J•‚?EDDDDDJ*jY"œ1c¤Aƒ>÷þýûXYY©ì|ooo•TÓÜ ãÝ»w¹*»)XYYV$סbÅŠ¹Ö‰’H$X[[çë½ù2 ÂÏÏO| QwîÜáÅ‹´oß^-EDrC-Ÿ¶]»váèèøQÖ“'O>(D¶sçNüA QP3{{û"«Á8yòä< qššš~v™ "êãÖ­[lܸQt°DÔ†  @¡PЧOú÷ïÿQ÷&%AAA*Y}E2™¬ÈÇ-,âããY½z5ÇŽSûXáááj#¿;w^.—çK¥vРA/Ò)’üñƒÇd¦Q'úúúLž<™Y³f±qãF6n܈µµ5®®®ôíÛ·@z_;w&222[†¶ºÉÈÈ@¡Pù¸……B¡ %%¥Hì755¥gÏžj'?;KD¤ sòäIILLÄÒÒ’¾}ûR¿~}M›&""R pvvfÖ¬YÂvPPóçÏç¿ÿý/­Zµ¢ÿþôèÑド@ÆÆÆ*œEÅœ9sÐÑÑá—_~)ò± ///ú÷ïO»ví4mJ‘¢ëÑ£GyÆP‰ˆÇgùòåÈårêÖ­Kùòåù÷ß±°°¬Ï€Î;Ó¬Y3M›!R©Q£:::*åk s6ýÂ… \¸piӦѽ{w\]]iÕª•†,)I¨%‹PWW·XÉ+lÚ´ WWWFŲeËxýúužÇ~üX¥ÍÍÍMeŒ mÝ»wWi7nœÊ¹YÙ·oŸJ›Ð¬Ò¶råJ•s­­­…¶÷u¾FŒ!´UªTI¥mÇŽ*ýfUèö÷÷Wi{?i¥FB[ÖÒ'ƒÚޭذaƒJ¿YºoÞ¼©Ò¶cÇ•s+Uª$´1B¥ÍÅÅEh³¶¶Vi[¹r¥J¿Ykáùøø¨´íÛ·OåܬmãÆSiëÞ½»Ð–5ÎJ&“a``@^$%%qðàA¾ùæjÕª%”˜ùX¾ˆ%Âëׯ3qâD*W®Ì‰'pttäßÿÅÄÄÈ”ß711AOOØØX–,YBóæÍ166æÝ»wòàÁlmm‘J¥„††R£F d2ÄÄÄ —ËIKK£J•*¸Ϟ=C"‘”””kÜ‘­­-;wî2¿à]ºt¡aÆ*Çœ={–û÷ï³ÿ~ÒÓÓyþü¹Ð–@hh(¶¶¶‚Ú}HH–––H$ /_¾DKK‹7oÞ`eeEJJ ÏŸ?§Zµj…y™‹¥€ìˆ#°³³ö …j:DBB×®]£\¹r4iÒ„+W®0sæLÒÒÒhÖ¬þù'‡ÂÃÃ*Uª°dÉüýýéÒ¥ r¹œ›7o’ššÊÛ·o™4i*T eË–ÄÄÄpûömttt4òú5I¥J•TœÒÂ`âĉ 8PØÎz]Û¶mË™3g„íÚµk ›ššª´½S³gÏÁ ~¿€ñ´iÓøî»ïr´§cÇŽ*ýfuªU«¦Òfnn®rî¡C‡„R(eÊ”Qi›={6cÇŽÈö Ú­[7lmm…m¥ó©ü;ë˜ï=JFFé¸feþüùLš4 [UŒ>}úдiÓû­S§ŽÊ˜ïˆþûï¿…ß¶÷ÔÅ‹mEÃÕÕ•–-[ ÛYë#6hÐ@eÌ÷¬mï':-_¾\¨ƒûþ÷2?B&&&8;;óÝwßqäÈüýý³•¾Ñ¯^½B[[»XØò1¤¥¥¬±âŠýzüø±ZÊç©ÅÁ:~ü8Mš4Qq6²’’’‚‡‡‡Pø2+~~~ÄÅÅ1gΜ\ûŠŠR©°tuu©^½:ãÆãúõë8p€ñãÇ3räH*V¬HDD£FB&“ñúõk8@çÎY±b1114lØ333&MšDíÚµñ÷÷gÙ²eèêêÒ±cGœœœˆŠŠ¢W¯^ 6Œ7rùòe´µµ¹}ûv®vI¥Rôôô>|8S¦LQù…ÌLjˆBBB°±±~ä–.]J@@õêÕãÉ“'´k׎~ýúQ¿~}üüüX±bæææ888вeKz÷/'Ož¤bÅŠ$''g{òþ\HKK#((GGÇ‰ŠŠ"!!‰DÂÒ¥K±··'==RRRX¹r%lÚ´‰;vðçŸ2räHnÞ¼‰‘‘&&&8991uêT 7nÜ >>žêÕ«S½zu† &<¯_¿^˜qiÚ´©ÊÍ£$Ò¨Q£gZ?åu͉œf˜”èêêÒ¤I“\ûÍê|¿……9¶cllüQcæ•¥V³fMjÖ¬™c›‰‰‰ðà÷>úúúyŽiooŸk›¥¥e®m+VÌ5sÛÀÀ Ï15j”k[­Zµrm333ÃÌÌ,Ç6CCÃ<ÇÌ«íý™2%QQQ¼}û6Ç6zôèAÿþýiÙ²¥àôFDD°oß>&Nœ˜ëxEÅ»wïTŠ>N$&&²mÛ6•bÑEMíÚµsýœßºu‹ñãÇú˜jq°FÍÆsu°$ ¥K—Îñ Ê»wïò”`ÉdùÊ4ÌæÍ›óøñc®^½ŠB¡ GÄÆÆ²mÛ6öìÙCåÊ•™9s¦püرcéÔ©;vì N:tìØ‘Ê•+³ÿ~¾ýö[*T¨Àºuëxùò%#GŽdذaŽ;F›6m˜>}:gΜaÿþýLŸ>È,СCæÍ›‡L&ã×_ååË—¹þ gâââ„§õÜœm¥ߢE áæÁ³gÏ022b².kkkóý÷ß³cÇÖ®]˺uëèׯ“'O¦qãÆ´mÛ–‹/ öüùóiРp}!ïKI¡qãÆ¼|ù’¨¨¨ea‰ˆh‚ëׯ«lK¥RZµj…««+Ý»wÏ1¸ýcÊ8©‹qãÆ¡««‹»»»¦Mù(¬­­qww§k×®š6%Ïž=ãùóçÔ­[·ÐûÖÈ¡ŽŽ­[·fÞ¼yÙÚfΜI@@“'OÎõü»wï ³>ÃÙ³géÖ­ááᤤ¤3!Jçæ}ç­N:@¦¾Frr2AAAèééѺukàSØåÊ•ãÍ›7Èåráæ|P×ëôéÓx{{sâÄ aß¹sç ¤U«VtíÚ•¾}ûÒ·o_î޽˔)S8pà@¶"¹Y5ÄLMMyúô)€ðÁQ(DGG 1ýúõû¨jñÅcccÊ—/Ï›7oØ»w/S§N¥B… óôéSÚ¶m+8XYŸx ‘J¥Â2ÉÓ§O¹|ù2R©'''^½zÅàÁƒéÓ§ׯ_ççŸæìÙ³Lž<™˜˜–,YÂË—/9rä;vìàÂ… ´nÝš³gÏ chª$QQbjjй¹9žžžŒ9RÓæˆˆäŠB¡“ÚµkãêêJ¿~ýÄ ³öqùòåÕòyø"b° 3-÷åË—œ8q‚¨¨(ˆ\.gÓ¦M4hÐ333"""€Ì¤ŸŸ_¶iüAƒñã?2zôh´´´ˆÏq,©TJµjÕøûï¿ÑÕÕåÎ;@æ:úáÇ…ø È ¶3f Û·obZÊ•+ÇСC…c|||P(XXXàåå…­­-&&&H¥Rþúë/š5kFRR=zôà»ï¾£yóæ¬Y³&›ˆD"¡}ûö¬]`` FFFÌ7ß|#«P(X¸p!sæÌÁß väÜ IDATߟÐÐPzõêÅþýûiÚ´©Jlˆ¦øñÇ™3g^^^x{{£¯¯ÏÛ·o-.¥ãœuÙÀÔÔ”-ZpéÒ%zõêELL üðÃØØØ0{ölîÝ»‡¥¥%ñññ¤¥¥ Ž÷€„¥ el¿~ýJ¥‹-Ð$sæÌaêÔ©8;;‹št"Å–Ë—/ãèèȪU«ò\Fùòˆˆˆ`þüùj[V‹ƒµÿ~êÕ«§Ž®?Šž={rûömŒŒŒèر#+W®f0öïßÏž={ˆŽŽ¦ƒ×¬YÃÉ“'qrr¢W¯^B𛵵5Ë–-c÷îݤ¦¦2lØ0ŒŒŒèÝ»7éX >ÈÌ^Û´i‰„mÛ¶QªT)nݺ•-3%>>žaÆqáÂaŸ­­­J,й¹9»wïæàÁƒ888Ù:àÀ,^¼˜#F`kkËêÕ«Ù»w/C‡¥uëÖ¤¥¥©ÿöÛoœ$99™иqã\ãw¾úõ뇧§'ÿùÏ8qâD±ÊQÒ¢E á7ADDIFF£G¦Q£FôèÑC-c¨åNéä䤎n?š=zäz+Uª”M}¼nݺ²ÚûAœµk׿×_UÙ§œù‘J¥BF’¾¾¾µ£D___%¶  aÆٲß§F9 Ì•.]:ÛòL½zõX°`°­­­­â`iiiѽ{w•tuKKKÚ¶m«ÒD"a„ @f© ¥“R\r•T¯^Q£FåØÖ¿ÿ÷kkkãèè˜cp|³fÍrÕez?Å¿¤cll¬’±šîîî´hÑWWWÜÝݳeÓ‰ˆˆˆ7¢¢¢˜2e !!!üþûïjG|ä,B7nüÁú‰š }ûöÙR·EDìííyùò¥ŠFÑû”/_ž³gÏ"—Ëqpp`Æ ¤§§¡•""""ù###ƒ­[·âàà@ll,[·nÍ5;¹0PË ÖË—/122Rká””!uUäËÄÇLJ°°0Zµj¥²T÷ðáC®^½Š‰‰ ;wÎõüèèh~üñGí«¥K—bkk›cM۰0æÎKÍš5™?þí‹%..ŽòåË 1Z£8annމ‰ ·nÝÊS3ÍÜÜ8ÀìÙ³ùõ×_©[·.vvvØØØ|‘:a""…IHHZZZÙ„^?Þ½{‡——/^¼(ò±•’>ׯ_'$$mmm&L˜ ¶eÁ¬¨ÅÁ²µµeãÆôêÕKÝS»ví|é ÉårÒÓÓÅø"¤(ÅKïݻǎ;„È Î_°`>TÛs#00àà`Áæ/^ ££CÕªUs<^™  Ì*ýîîîœ9s†… Ò¾}û|QÜhÒ¤ >>>* ¹áêêJ·nݸsç~~~øùùqðàAqFKDäyòä R©ô³u°’““9wîœF„Re2•*UâÞ½{üüóÏ899Y¦wñˆV. ù-¶¹nÝ:|}}Ù²e‹š-ÑÊLÆððpaß©S§xøð!666899qúôižâËJ—.M×®]ùꫯHOOçÂ… „‡‡ãèè(È>(ð྾¾¼yó†òåËcgg'Äî>}ZÈ !..ŽÎ;g2eGÐÖÖ¦M›6‚ªµ\.çøñãhkkãààÀÙ³gÑÕÕ¥C‡E–µ8~üxzõêÅÀiܸñ/]º4­Zµk¹‰ˆ"%AkáÂ…ÑÁÊÈÈ k×®‚äQQòY:XùåôéÓ¼|ù’„„„/2¾¤£T§VÊk¤¦¦²qãF ³ìŠŸŸË—/§jÕªÄÄİsçNêÔ©#<*e”ÓÚµk æàÁƒ¤¥¥1kÖ,|||ÐÖÖfÏž=BV¥RöaÙ²e$&&RªT)ÂÂÂHIIaÕªU4jÔˆ_ýUÐBÛ±czzzôêÕKe ¹\Ž››ÇGWW—ôôtÜÝÝ™={6Ý»w'""777 Y»v-ñññÈårBBBŠlyÑÁÁ1cÆ0zôh.^¼øEh|‰ˆˆ”V­ZEppp¶š–EZ‚ÜÇŸ/õru΋/P(*""%‡ªU«¢­­Í£GP(8p€çÏŸÓ¶m[ìíí©S§þù' ,ÀÍÍ SSSîß¿/mgÕÉJMM%,,ŒR¥JQ­Z5Ž?Ž 4àÈ‘#ÌŸ?Ÿ—/_"“É„™³åË—³iÓ&æÌ™#è–>}mmm¡oãÆ¹zõ*ÞÞÞddd޾¾>U«VåÏ?ÿäøñãØÚÚâáá!œsøðaàJôÊbÖ .T±»°H$*¸ïóÓO?¡¯¯ÏÀyôèQ¡Ž-"""¢”:—K–,aæÌ™Ùêsj™Áš={¶:º-žžžÂß'Ož´ªDJ2™Œ5jÌýû÷ÙµkÚÚÚŒ?¹\ζmÛ8vìïÞ½C[[›´´4d2fff¼|ù’˜˜*Uª„‘‘ddd`mmD"œò>}ú…À!S2CWW–,YBhh(2™LPÄWªß¿P-“Lzz:õë×G*•rêÔ) SúÂÄÄ„ÄÄD 3…þç`¹ººbaa!8V¹ÕëûXªU«&Ø›:::>|˜I“&ñÕW_ñÓO?1fÌ1óTDD¤XÈ„  ã矦M›6±£D.Êåráæ™™[Ož<5zò@.—‰¡¡¡ZÓV KKK‚ƒƒY°`oß¾eÀ€T©R…Ó§OsàÀ7nÌÂ… eܸqÔ¨Ql*ïJgF¹ |f”5•ˉ¿üò ÑÑÑüöÛo8::2zôhüýý…ó•ýg­Kø~ —²†¢²f§r e¬“²¦M›ªlöìpݺuùûï¿ó<ÆÌÌŒàááÁ¬Y³X½z5 6ÄÎÎ[[[¡èµˆˆHá¶¶6çÎÓ´)Ejj*~~~ŸTâ./ áááøùùqýúuBCCiß¾=‹-bn5A‰t°nÞ¼ÉË—/Uö9Ñ·o_š7o^,œ+P“ƒ)Ìú5ÉÉÉx{{gÛÅÝ»w?X–&+Ê''' Dtt4<{öŒ;wrúôiìíí¹}û6»wïfÿþýìÚµ CCC222˜7o-[¶dõêÕüõ×_Ô®]›àà`ŒŒŒØ´i5jÔàûï¿'##mmm^¿~ͱcǘ;w.W¯^E&“ajjÊŠ+¨^½:—.]bÑ¢EÄÅÅ!“É5j...,Y²„³gÏb``€®®.kÖ¬Á‚iÓ¦qëÖ-Ê”)Ë/ظq#†††Œ=ÒÒÒ(W®`Ïž=üñÇœ9s///æÎKýúõ D.—3gκu놧§' .D¡PP§Nîݻǘ1cøöÛo é,vvvBpxVôôôøùçŸUö 0@ø{äÈ‘*e†¦OŸ®rlÅŠ™:uj®ã:99©”„Rê\)©R¥ Ó¦MSÙ÷þzzz¸¸¸50³bllœíu-]º4W{>•Ù³g3jÔ(¾þúk=‰ˆˆˆ|,Û¶mãÚµkìÝ»WÓ¦”¸R9^^^¹.Wä4³•Êe£‹/2~üxŽ;†¥¥%7&((‰DB÷îÝ9vì÷ïßgÇŽŒ3†;wR¦L¡ÆQPPÚÚÚLž<™+VǹsçHHH **ŠŒŒ fÏžÍþýûY»v-×®]cåÊ•xxx…‡‡Ož}ú°yóf´µµqvvÆÄÄ„éÓ§Ó½{w"##‘Ëå ñGAAA1hÐ Þ¾} €……×®]#--=zP¶lYA¡[t°Jß~û-õêÕ㫯¾b×®]š6GDDD$OÒÒÒpss£cÇŽôèÑ#ÏÒhš@-K„GŽQG·äÙ³gB0rN$&&réÒ¥lË9¹DåÊ•ùå—_Töûûû#—ËU”­+Uª„L&cÕªU˜™™áïïOÅŠ '--ääd¡r·T*¥}ûö\ºt ø_Ö˜D"¡R¥J¼{÷ŽÈÈH¶nÝ dÆ)S÷ýüü°µµ%22;;;*UªÄ›7oضmÚÚÚ\»vfÍšq÷î]¦NÊ”)S˜6m·oß&--øøxvïÞÍ;w˜4i>¤B… ¤¤¤¨€×­[---a6«V­Z‚CåëëKRRÿþû/åʕӘ3-R¸H¥R–,Y©S§˜7oGŽaðàÁØÙÙaee%Ê2ˆˆˆhœ””ñõõeëÖ­ÄÄİlÙ24mZ6JTá©S§„"™L†¡¡!)))( aÙÐÓÓ3_–R')§˜­œ²¹\]] gÀ€( *W®Ìúõëñõõ2cj† ‚¾¾>¿üò ÕªU#((---A¸`̘1¬Y³†¾}ûbll̯¿þн½=õêÕÃËˋdzwï^:wFbõêÕ‚çnccCÛ¶mÙµkW¯^E*•baaÁĉ‰ŽŽfÆŒ¤¦¦¢§§‡ƒƒ½{÷bÖ¬­­‰ŠŠ"!!A˜Í F"‘P»vmôôôèÖ­.\àíÛ·Èår4hPз)GLMMIKKãíÛ·bÊ¿†éÔ©Íš5cãÆ,X°€'Ož ««‹•••X×SDDÊ¥·#Fзo_µf8*+%ááᘛ›S¦L™õ“[íDgrê?'é™LöÑKz¾¾¾¬_¿¹\N•*UøùçŸ <-+—ËÙ¬H¥R4h@`` è`3”òJ9 ‘¢åÞ½{èèè|¶I¶nÝŠƒƒƒÆÕ?•‡ Ò>ᓃÜOœ8Á¾}ûTœ¢ƒ õÞ SÄò§Ÿ~–ïò¢zõê<{ö¬Àv”*Uêƒ"‰éte–Áúõëñðð(²ñÔÉ€¸téÿþû/‡ú(M“gÏžeÓöRâââÂÁƒuM¢P(ؼy3;wVY!ÊŸì`5mÚ”¡C‡R¿~}f̘ÁŽ;HKKãúõ븹¹Ñ¯_?lllHKKË—Èg½zõ ʈˆ”222áÖœ˜0aVVVjÕ{É/‡&((ˆ7øÜO^"455¥cÇŽœ|˜ÀÀÀé—‰ˆˆˆˆˆ¹\NDD§OŸfäÈ‘9r„Ç3pàÀê¯P‚Ü{ö쉑‘ñññ9¶çwöJI›6mðòòÂÅÅ…;v`nnþQ<±±±$''«”H)Z Ož<ÁÈȈ£GæKÎÚÚšÿý—5kÖ°uëVV­Z…B¡ bÅŠª%)"""Rˆý¬‹=ÇÆÆâææÆªU«4mJžÄÄÄœœLµjÕèÒ¥ ‹-ú$ÅBq°ôõõéÛ·/Û¶mË>€–ÖGyŽŽŽ…BñYW°¸zõ*ÕªU#,,Œ„„ 5mR‘‘o«M›6´iÓF¶ˆˆˆˆˆˆˆü?‡fúô阛›“––F­ZµX½zu¾jºjšèèh† Bzz:­[·æÆ¬[·ŽÍ›7Ó¾}{M›W$Z©‘ÂáäÉ“,Y²„ .P½zuîß¿OïÞ½)W®œŠ$RqäÛo¿¥W¯^üðþû÷ïÓ¥K.^¼HÕªU5h]ÑPèY„"""""""ŸÆôéÓÙ¿¿à\Ô©S‡-[¶ðã?jвsûömUœ+È´òäÉlÞ¼YC–-…6ƒ•œœÌ½{÷ðóóÃÏÏ€€ «{µ “ɨU«vvvÂ?SSÓBé;::Z¸~~~„††’‘‘Q(}« CCCêׯOƒ °³³£^½zèéé}r¿r¹œüüüð÷÷ÇÏÏèèèbW ‘H033>¶¶¶XYY!“É4mZ±!&&Fx?ýüüxðà)))š6+Oôôô¨S§ŽÊwÞÈÈè“ûMMMåþýûÂõð÷÷çÍ›7…`±úJ¥T¯^]å3žõfþ%“žžNPPÊoø‡· ¹\Nddd¶ê(JiÞ¼¹Ê>‰DBÕªUUÞO $É'Ù¢P(Wù®GFFæùûýöí[’’’²ÙðîÝ;âãã9sæÌ'Ùõ!ŒU¾çÖÖÖhií¢D¡P ‘Hjá9-Ù©S§|w””ÄÂ… Ù³gO±w òƒ­­-+V¬ N:u¾¿¿?“'Oæþýû…lYÑ#“É>|83gÎühGËÃùsç–ˆ,»²eË2þ|\\\4mŠF‰ŽŽfúôéœ?^Ó¦ ;wfÉ’%øÜôôtÖ®]˪U«HMMUƒuEKÕªUY¾|9-[¶Ô´)A¡P°}ûv–,YBRR’¦ÍùdLMMY²d ;vü¨óÏœ9ÃÌ™3yþüy![Vô”*UŠ™3g2|øðOv:ßçÁƒY}'…Bá Ÿè`]¿~I“&™ÜBQ¡­­Í”)S7n\¾g,ÒÓÓYµj«W¯&==]Í-–––¬\¹’Fåûœ/^0cÆ µ?¥h‚Ž;âææFÅŠ5mJ‘sèÐ!~ùå—b?;]PÊ—/ÏâÅ‹éÖ­[¾Ï fâĉܽ{W–=‰„o¿ý–Ù³g£¯¯¯isŠŒÇ3eÊ®\¹¢iS þûßÿæ{¶6>>žŸþ5[Vô8::âîîNµjÕ ­ÏܬŽÁZ°`}úô)qÎ@ZZnnnôèу¨¨¨ÿøñcºv튻»{‰s®BCCéÕ«K—.Í×ñçΣ]»v%Ò¹‚̧ºvíÚå*¤[ILLdذaLž<¹Ä9W©Ë7zôhÆŽ›¯™¨Ý»wóõ×_—8ç 2gqvìØA‡JÄL|~øã?pvv.‘Îd®$899qýúõ{ýúuœœœJ¤spåÊœùã?Ô>ÖGÍ`8p€©S§ªÝ¸â€ƒƒ¹N)ÊårzõêÅ­[·ŠØ2ͰvíZ¾ùæ›\ÛŸ>}J»víHLL,B«4CéÒ¥ù矾ˆl˜3f°wï^M›Q$Œ;–9sæäÚ~íÚ5\\\ËåEh•f¨Y³&gÏž-”XÌâʽ{÷èÒ¥K‰|8~ŸŠ+rþüyÊ–-›c{ll,NNN¼xñ¢ˆ-+z´´´ðôô¤^½zŸÜW¡Í`=yò„yóæ}²AŸ W¯^ͳʦM›¾ç `öìÙ¹®Ç+ ¦L™òE8W9«3yòäb¬_\¸pá‹q® ó;}ãÆÛ’’’˜¥N…L&CWWW%‹ÏÀÀ€víÚѳgOôôô„>²þÓÑÑPù»0¸qãöÇ IDAT†Ê4rzzz¾K*—/_VÙ¾sçoß¾Õ5šåÝ»wܹsGÓf¨…/ñJÉû¿w%u'?DDD­i3 •k×®•i¡áåË—<|øPØ~øð!/_¾Ôˆ-·nÝ",,Œ°°0صk¶¶¶E6~FF×®]SKßr°üüü ePKKKá‚~ýõרÛÛ&,¹?ž°°0Æ@åÊ•¹wï›6mbêÔ©„†† }dýçççG™2e +Ô‹–’’¢ò¼ÿ~±×½qttÄÃÃ>}úzßïJb6UA(¬ïFq"%%å‹[>Éʽ{÷Tb­Jâ{\JÚëÿ˜×ckkKÏž=©P¡‰„ž={ 5z­¬¬èÙ³'æææyöQ¥JLMM…Ä)ådÂû"˜Y÷kiiå8iÛþüõ7»8ü~Ïœ9““'Oâìì\äJõêúlçÛÁJMM%((¨Ð ˜9s&RiÞf2dÈ´µµY½z5C† aî̛ܹ7O;§_¿~¬_¿+++¤R)ëׯgæÌ™8;;³~ýzš5k–ã¹={öäâÅ‹\¿~Û·oD“&M¨[·.aaaüþûï*ǯZµŠ°°0œ™2e aaa„‡‡Ó°aCá˜'NöQ³«¾¾¾9þ­)Ž9Âo¿ý€™™Y‘Žý1Ÿ…üoÝxuüØFEEQ»vm\\\r "WÒ¥K&L˜d:dÄÑÑÈt¾œœœ¸zõ*[¶l L™2…j§???\]]õ:_}õ;wîÄ××—zõê¡­­——r¹ggg’’’7ngΜaРA,Z´ˆ„„ yôè#FŒÀÐÐùóç0räHFŽÉøñã9räH¡ØøîÝ;‚ƒƒ±±±D«¤Ý|@|O!ó}­]»6 DDDhÚR’>ãééé~Rr¹œÁƒŸ­­jÕªÈd2á3#•Jùé§ŸËåŒ=š´´46lHjj*þþþñÕW_ajjÊóçÏ100 S§N¼yó†þù;;;¡ïáÇ3aš6múIKiYßÏâðÞnذkkk^¼xÁÂ… ‹tl¥SØ¥tò=ƒõøñãB2ßÔþù‡iÓ¦åàvâÄ Ö¯_d–ç¥Ã¤N²^ƒððpµW¡BzôèÁÇi×®/_¾dðàÁ”*UJ¸çΣnݺ4jÔˆï¿ÿžêÕ«Ó§O|}}ù駟ظq#œ:uªPíSfS¥¦¦–¸øŒ‚òüùób¿d\P¾t‡þ÷ÿPíµ/uÜ4ųgÏ>ùû*•JÙ»wo¶äžråÊ|||زe 2™ LMMIII!!!ÿý777Á±9|ø0R©Tø]ïܹ3úúú=zTebãÎ;ôèцNPPÐG—ôÉz+ŠûÙ‡ÈÈÈ T©Rèëëyl\jj*Ïž=+ô~•–ðIËÉÔöã²xñb*UªÄ·ß~›ë1oß¾ìzõê•Z.D~(êØ .àççGpp0û÷ïçüùó( jÕª@µjÕðððàÁƒ¬[·ÈŒ½JMMŠ“ÆÅÅYèµµ”×ãK¿ñ()iס¤½žAüŒÿ’t ÔýZZµjÅéÓ§éÒ¥ M›6%!!;wbiiɾ}ûðóócÙ²eB¹­#GŽ‘‘!ÄËöîÝÈ,M••ýû÷“žžÎÔ©SéÒ¥ Û·oÿè×’õ¼âðÞþðà 0~ûí·BMRËŸr ’““³n þ”ôÿ;Žb è×b~ü™LÆ/¿ü"Ì`)¹qãŒ5Š¿ÿþ++«Â2YDDDD$,,,Tþøð!¥K—ÆÉɉˆˆV¯^-ÆWªTI8ïðáÃ@fp»L&Ë6{¥D)l¼oß¾÷gN>KÖ¯_»»»0‘°lÙ2ÜÝÝÕª°^Ød©æ¡P(b”Y#ºnΗ.]"""‚5j¨Í˜7oÞàîî.,}EFF2iÒ$,--ýêÕ«¸»» R ×®]ÃÝÝ]E*2µiÜÝÝUÊÕ¼{÷ww÷Ϧd‹\.ÇÝÝ]ˆc ÅÝÝ](ס|"RŠYº»» ÏŸ?Ÿû÷ïS¹re–-[F·nÝ„R6qqqtèÐÖ­[cdd”ëò¯ˆˆˆˆHáзo_ìíí±³³ãíÛ·œ;wöîÝK\\=¢fÍš@¦“¤äÔ©S$$$P±bEÒÓÓsUUøð!666%¹²‰½†‡‡ Ù„Ÿ‰‰‰üõ×_ÊÍÛYÛ²:X»©oß¾Õ1bÿüóO®Ž?•7oÞd»€ÇŽSÙ¾zõ*W¯^¶¯_¿ž£°ç•+W²¥¨¦¤¤|VoPFF†Š½aaa*Ûžžžxzz Û+V¬þŽeóæÍÂöûRAAAj‘×ùÒ8þ<±±±ÐÞ¼ywww¼¼¼hÙ²%ÞÞÞlß¾øøxéß¿?ŽŽŽ˜™™qüøq¼½½UtæÞ½{ǬY³¨Y³&Ïž=Sþôññ!##C˜”ÈZ®nÍš5_dE‘âÂäÉ“³–ÏR)\,8X …âD"™,ôòòbÖ¬Y,X° ÐÓEDDDDD>G¼¼¼ðòò¶³>ß¼y“›7oÙCmär9>>>¬ÕšÛ¬ÕåË—³UÏPò~I'‘¢cýúõlÝ*øT; …J‘Ç÷½§¥À7@777Ξ=ËÖ­[±··/SEDDJÍ›7§T©R u [´hné‰DBÛ¶m…íW¯^P,2¢>„žž-[¶ÄØØ˜ÈÈHˆ‹‹ËõøråÊ1sæLسg5jÔb|222ð÷÷'&&&×óEDD ˆˆÆŽ›Uú(˜ôþq*–B¡H—H$½€=€ÓíÛ·iÔ¨fffXZZªÝ輨\¹²0Õª)BBB˜7o Y CCCJ—.­qí©põêÕ/¶ž×û,X°@¥væçNÖ%ú‚àîîN5¸r劻qãF$ õë×/4ûd2{÷îUÙ÷êÕ+ÜÜÜTb[>ooo µ˜·££#{÷îUÉîݵk— [—zzz*Îdß¾}™4é¿çr¹œ;wî0pà@µýF¾zõJøýûÜɺÄö¥òîÝ;áý|÷îf4h€žžžÚê~ˆ•+WæYíD¡PððáC®_¿NXXXÖ¦`€B¡Èö„$ÉéiO’|5–Ì-}}}Ê•+÷i¯à˜={6^^^-¸š’’"üйN‡’Ö­[ãè舛››FÆWòæÍÞ½{‡D"QɆùR‰ŽŽþ,fOòK™2e000(ðyÿþû¯$3hÐ ¼½½ñ÷÷¬ªU«Ò¶m[üüü¸{÷.6664mڔ˗/Š‹‹ 2™Œ[·nñõ×_s÷î]|||èÒ¥ åË—çÏ?ÿ$>>---=zDrr2NNNÔ®]›íÛ·óúõkš5kFß¾}yûö-þù'vvv4hÐooo"##óõZHHH@[[“_‹œØºu+:t sç΄……Q£F Ê•+'ü¶•*UŠnݺQµjUbbb8zô(iii|óÍ7DFFâííÍôéÓ™4ik×®ÅÃÃiӦѭ[7~þùg®\¹B“&MP&,)߇¸¸8Nœ8ñÑv§§§óâŋ¸G&“ajjªi34Š\.4%ÍÌÌ>X²®°©P¡‚0k[¦Lììì000ÀÓÓsssâââòœÕ-lž?^ÐÉ‚t2}¤ù …"GÕÚ¬™w‰õ‰ä(ð5ÐX*•~ Ô*˜É‡ŽŽGeÀ€ :TȬÐ××gøðá´k×…BÁÌ™3yúôiQ˜¤$xûÿP€RCŸÂŒ3 Å××—ÿþ÷¿ìÞ½ccc¬¬¬˜;w.ººº/Šî× hÐr/±0kÖ,.\¸ ÒV·n]–,Y‚»»;wïÞ¥eË–ÌŸ?ŸÉ“'ÊìÙ³)W®oÞ¼¡L™2èêêâããƒeÊ”áûï¿´… óFItt4ñññ”+WCCCZ·nM÷îÝñõõåñãÇÌœ9GGÇ‚†<¤ïPúc®E¶SRÐÒÒbôèÑ\¸p3gÎÁÎ&&&xzzR¹re=z„®®.³dÉN:…···ÐWll,ÁÁÁ\¿~]pÊ.\¸ÀâÅ‹ùã?˜8q"ööö,]º”M›6}’ƒÈ’2õ# ¯8ëç‰P¦–êÉjË…%K–púôi¤R)ÎÎÎabbÂëׯéÚµ+õë×çøñãìØ±£¨LJ ó3ž ¸ùÿÿþQ(¡yu˜§ƒ P(¢ÀÎ*Uª¸û `ìG“ššJpp0=zô`èСôíÛ—îÝ»chhH`` µjÕÂÉɉîÝ»³qãÆ¢0 ]]Ýs …¢€¹¹¹·B¡hó¡s ƒK—.ñã?beeÅÍ›7144¤R¥J¼yó???š5kÆþóŸ"w°Ê—/?èéÓ§Ç,,,ôRSSÕ–3\«V-¾þúk^¾|ÉÁƒUÚ6lHË–-Ì¥Û÷o"_}õ52kNe R-LªW¯n®ù¹öBÂÜÜ|¥B¡˜ø±ç/Z´ˆƒÒ£GŸ«­­Íðáñ´´dõêÕT¨P °uëVœ©Zµª°D®¯¯Ï‰'¨Zµ*åË—ÇÃØ˜¶mÛF=8p ›6m¢E‹xzz›o; —ÄÇÇÏ377o¨P( E$pÍš5˜ššâââ‚‹‹ ,Z´ˆÝ»w3jÔ(*W®Ì† X°`R©”R¥JåºzðÝwßÑ»wo¬­­Q(ìÞ½›ððp¼½½éÞ½;¿üò Ý»w2—ô?--­`…BaóI*UªTøäú03fÌÀÚÚúÓ úH–.]ª’‰X¤Ri¼B¡( P¥J•XŠø!yß¾}Œ=©TʺuëhÒ¤ ¹W­Z5¤R);w.2ËÄÄÄ.:::¢0û,¶)‚ûöícÛ¶mfMä§Ÿ~âĉX[[«­¨sqãÊ•+˜˜˜0`Àºté" wéÒ…æÍ›sîÜ9FŒ¡a+ÕG½zõ˜5k©ôû¾ƒÕ¬Y3¡ÝËË+›ƒÕ®];ÆŽ dÞdÔå`‰¨âããÃ¥K—˜1cZZZ٦ߕK9-C&''s÷î]ôõõL!¿´´4Á©211þ–Ëå„„„põêU¼½½…Ž›7or÷î]ú÷ïOTTZZZŸìd<ÀÅÅKKKÚµkÇìÙ³™2e ¿ÿþ;ÕªU²Íär9‰‰‰¹:X¯_¿&00Ý»wsþüyž ,ÈVU¤hX´hžžžH$!ËMÿdii‰±±1;vÌv^zzºJ<[^:?)))*ßYÙ¾};«V­ .]ºô)/§P˜4iwîÜÁ××—sçÎ1yòdËåÑ­[7z÷îÍÍ›7‘H$‚“™þùg6¡FÈÔk cÊ”)”)S†Õ«W«ó%}±¼_ÞL$ÿÈår† ‚B¡@.—sèÐ!´´´xòä Í›7çÉ“'Zœ(¶ RúEYFTdé¿Ο?/ü}ïÞ=îÝ»dfl‰ˆWüüü8qâ„°L™Ë´!!!tïÞ®]»~ôG~8~ü8sæÌÁÄÄ„íÛ·#—çbQ4´lÙ’éÓ§ Û©©©lÚ´ …BÁæÍ›iß¾=}úô¡{÷îÈd2¾ýö[A`2¿( ¶oß΂ HNNê≈'²~®³&ž|H/ìs¡X;X"""ŸãÆS™u™={6»víR©7Ú¾}{Ú´iCTT111XXXš/:räHAî" a9pÓ¦M?~œàà`222pqqÉ3ó'-- .ðÍ7ßd[ZÖýúõ£^½zXXX˜˜È•+W„²'‰‰‰tëÖÆS£F ^½zÅÕ«WQ(¸¸¸ðæÍ s©ÛÇÇG%|â}þùç,XÀ_ý%ʈˆhÑÁ)T|}}U¶_¿~M^%==sçÎ ÛÊtqP¡NHHP97<<œððÿÅ&ç%Ûbjj*ÏnÛ¶-ßÒ êF.—ãïï¿¿Ží …BE\IÖ×™çë3f C‡%11‘eË–Žá"""Bt°DDDJ$ïÞ½ãüùólذ!›TDI'88˜Í›7sþüù/&VUD¤¸¡6«qãÆBj½\.çÞ½{\¼x1_ÂaãÇÇÐгgÏrãÆ ¦OŸNrr2k×®¥J•* 6ŒGñûï¿™Á†}úô¡J•*œ9s&×X‹;vйsgÌÌÌØ¼y3¯^½*¤Wœ;¶¶¶tèÐA(âyùòåf²:uŠ˜˜ € ½{÷2Ÿnƒƒƒñöö.°íÀÈȈ.]º|ôkù\ˆ‹‹S‰ãü’È:;(R8H¥R5j„ Ïž=#00¨¨(d2‹-âñãÇ_ìç-/$‰ Ê-—ËIKK˵òNhùÜP›ƒÕ AÆGBBÉÉÉT¬X‘ŒŒ :uêD```žç~ûí·˜™™áì쌳³3r¹œQ£FÇÚµk133cܸq\¾|™ßÿ2eʰtéRÂÃÃY±b}úô¡I“&H¥R HOObþüóOúõ뇭­-jw°êׯϩS§ˆ‹‹#<<5jôAË××W(yaiiɸqãHJJ"..ŽJ•*¡P(4hPžÌïÝ»G©R¥>éõˆˆˆˆ|irñâE*V¬(ì ¢]»vH$Œ¯¯¯è`å@:u8{ö¬°ýøñcnܸÁ¬Y³xûö-5ª-@f¸ÀùóçY½z5?Ö„É…†Úµñ÷îÝ‹½½=³fÍB&“1bÄ6lȆ èܹ³pÜo¿ý¦RçJ¡P`mmýÁ4ØråʱqãFtuuÑ××§cÇŽLš4  dêmØØØ`ccC@@€Z^gnôíÛ€еkWš4iÂ?ü ´›››³páB:Äž={M]]]´µµUú:yò$Mš4aäÈ‘H$FŽI5ذaýû÷Ž›7o¿ýö™þ‡ŽŽººÿævttdýúõ>|777AƒGDDDDäôë׊+2}út,--iÞ¼9Ë—/Ïvœ cÇŽÅÎÎNeýúõ3f ãÆôž”˜™™1zôhš5kFÛ¶m2d”-[–!C†º‡æææ 2„† àììÌ!C055eĈtêÔ -­âõóèÑ#~üñG¢¢¢èÓ§Ti aÊ”)ܼy“ðÃ? ««‹•••J™*SSS¬¬¬²Ý‹#jw°´´´(]º´P«.&&†ЪU+¦L™€½½=®®®*S‡IIIüóÏ?L›6-Ïš …‚ÔÔÌ2@r¹œ”””bUîþýûìÙ³‡uëÖÑ¥K! ×ØØOOOLll,ÑÑÑÔª•Y¨k×®tèÐA¥/™LF©R¥0772¯å£G°³³cÆŒÈd2ÌÍÍùþûïÑÒÒÊvœ…åA>ŒƒƒOŸ>ÅÅÅ…¿þú¿öÎ=8ª:ËãŸ_w:Dˆ!ý8.Ø…l`·| ¸Š(àH´qY|@fvU„2bI´`†]J†@b%0ˆ%²UË"B` -S‘W6IȽ·›ôð0„gwßßþAº'’tbwn§éÏ?Ißç¹·oÝßéß9ç{¶Úo2Nœ8q¢‘@ØjâĉLž<)%_}õÕuÛôíÛ—¢¢"rssÙ±c£F ''‡;v››ËìÙ³Ù¶m/½ô>ø `Þ¼y¬^½šåË—“ŸŸÏwÜAjj*ùùù<ýôÓÀµ™ üüüà¸0sæLòóóùòË/™3gkÖ¬aÑ¢EíuKZÍ™3gظqcPì·qÿÚšš6oÞ¼†Q£Fa2™øâ‹/øôÓ¿5‘),,¤¨¨(ªÆù¦ˆ¸ƒ5sæLÊÊʘ3gn·›‚‚._¾ÌÆ0`C† ¶Òh¬²¼dɬV+Ï=÷\“Ç?wî\P jÿþýäææ2GEEE¼ùæ›üôÓOL˜0Õ«W§CüqzöìÉgŸ}Æ‹/¾È믿Îúõë›<Ö„ (//'//Ó§OóÉ'Ÿõnz÷îÍèÑ£yâ‰'€–Ûb<óÌ3!xë­·ÈÍÍåÓO?%%%…‡~8|'Nœ81À¶mÛ(,,$;;›wß}—ââb–-[vÝ6]»veôèÑÁñ*à`ºLÜÿýŒ1‚‹/òÚk¯‘ÀäÉ“±X,Œ7ŽáÇßu…¥K—2tèPjkky衇~æ•FŽŒŒ 6lØÀâÅ‹9tèëÖ­»n}ZZ ,ŠFoݺ•K—.±iÓ&233ÉÊÊ"33“ŒŒ ŠŠŠ®“}‰V"î`íÚµ‹¹sç2zôh²³³ƒ¥Å]œ©S§2vìXJJJ‚:8Ž?Ζ-[˜3gN‡˜¼^¯—õë×sß}÷1räHŽ=JVVwß}7ݺujü´„Óé$77—±cÇ2xð`JKKk*÷uuuL™2…'Ÿ|’ªª*8Ð챺v½Ö·6àŒþvtåÜ8qâÄ 7çÏŸgîܹÁ—ËENNÎu}ËËËq¹\x<àZ(«sçΤ¤¤àv»©©©¡®®ŽŠŠ éÑ£Äï÷süøq._¾|Ã5áïìÆìÞ½¯×˹sç® ¥E³¤¤$ºwïÌ‹’’¸qã¸|ù2‹/fåÊ•¬[·¿ßßàç÷Õl/BØJ)¯´Å».++£°°ð†åš¦ñõ×_3iÒ$Ìfs“ŠäK—.eüøñÑâ`ˤ”!•:äå员˜ì–’’‚Ç㡪ªŠýû÷#¥$''‡òòò ˆ`SÚ>•••×)Ú¨««ãóÏ?gúôé˜L&Þ{ï=¤”¼ÿþûLš4‰±cÇÞPX°oß>{ì1^xá:uêĸqãÐu=Xµ º®_©·Ëg³Ùü€9äceeeôÿ¤j¡>ã±LàèºÞ¦÷_Œ3ÏC§N®4®fkމ'¢ë:ÅÅÅìÙ³‡)S¦`³Ù®p „V°_ºt‰ªª*ÒÒÒ8p çÏŸ§_¿~ÔÖÖâñxصk3gÎdÚ´i9r„Áƒ÷Õ4 ŸÏGzz:ݺu»®BC)2m™]iâÿˆPYYÉÔ©S™5k .dáÂ…¼úê«ÁõN§3˜³ÜEQعs'ãÇÇãñðý÷ßG¤¯f§NÂ~BžÁ2›Í7WÅû¬Y³³ÙÌ… ؾ}ûM·©®®n6lÖžH)ÞƒÒPö©¬¬d̘1¬\¹’?üÇÃ;#ÏçÃét2þ|n¿ýv>þøc éß¿mÍê×®]‹"ØÓ Àb±˜˜xÓiç‚‚Ö¯_Ï#<¦M›°Z­Ì›7¯Å φž )¥Oq¬M†ÇÇ¥”±æ`…ôŒÇ2&“é—ËU\6Ø£ û`•••. ä\’´´4V¬XÓ餴´”ádzeË–4ÆæÏŸÏùóçÙ¹s'{÷îE×uÞxã ¤”lذÒÒRÞ~ûmV­ZŒðèºNmm-{öìaÈ!;v »ÝÞæëm‚Ò&þ(k×®Åív3aÂ222BÞ§sçÎôéÓ'R³W§ëŸ‰°"Bõz…Âf³º‡ëä}úôaïÞ½lܸ1§Žf¤”¿Ò4m+€ÃáxZJrïäädL&Sp–ª!Bz÷îÍÅ‹©­­m“m=zô ¸¸˜}ûö1cÆŒ÷³X,¤¤¤pêÔ©Ööi«QUµwàƒÝn_ <ßšÄRÊõš¦5,Øq8'¥,3Ú#±X,¶À‹×f³ýIñK£m2 !ÄoEù½Ñv„ »Ý¾¸±Óx¤¥¥‘™™‰Åbaÿþý‰s§wIDATA‰!#FŒ ®®Ž~ø¤¤$²²²8}útp¦¥gÏž 6 ³ÙŒÓé :ÝvÛm\½z•ŒŒ <ûöíÃb±Ð¯_?ü~?Bî½÷^®\¹BEEýû÷GQª««0`Ý»w§¤¤ŸÏGVV‹…ï¾û.¤ëB,Qe>€ÃáxWJ‘AøÎ;ïdÚ´i¸\.6mÚ\KîÏÎΦ¸¸˜ÊÊJž}öYNžØíö•Àlí1)嚦í1ÚŽpI§"TFŽÉG}Ä?þÈ€èܹ3yyy¬Y³&âçn8a`³ÙžBl‰øIÛÀ=÷ÜäI“˜5k+V¬¸©<ÆÏ¥¡³NZ+šá$LVAA[·n¥¬¬,*:܇€'à\¸Ýîv»ý¯@Š6×*\8À±cÇÚ­²B×ug£Ï%·xŽŠ³åM:RJi·ÛÀ­ZZÚø;¹ï¸è^¯÷ÑF„]×F¿³JKKY°`V«•Í›7sðàAÊËËÛåÜ&“©¤áÿÑ*{’’BÿþýY¶l«V­ŠÈ9gá¢U3X6›-[ñ'nÁdf!ÄrEQ~Ýp™ÃáX.¥œk”Mâ5™LÙÕÕÕÁœ !D‚Ýn?$¥d¤aQÖ¥K—Áååå1“ÀápL—RþÁh; "GUÕ`@¯^½R-Ë1nͽ?ªªú”ÑF„“ôôôä«W¯R¶¥½B|£(ʃ —9ŽÝRÊ 2ÉH܉‰‰™'Nœ{­U2 š¦9…ï…Ûˆ@¹”rAã…>Ÿopc]mŒ#„XÜй‚k‰îº®?ÄT¢wø…ÓcѹPeðµÑv´7Bˆ- +€šš·”rŽQ6Èi¯×s¡ÑúõE£í0€ &“é†DÝúe °Çh^Œ„smÐÁJNNþ-1TM:𼪪¯p»Ýt]ŸDçÜjdpªªºäf+4M;(„x¿½ 2˜¥Š¢4/:ÖÁBÌZîÒ;xü~ÿ¿Þl…¦i€mílѼRSSã6ÚˆH ªêv Àh;Ú™7OžŸïû[yÀi!„p8¿Ðu}(0X‘d´MÍ!¥¼üÙï÷—¸Ýî° ;Žžº®5™LCèí¼ èº® !þ¢ëzI×®]Ko•pwkHOOOöz½ÙRÊaBˆh—sRÊ…%‹åÏ'Nœkk§ôôô$¯×;¤þ^dÝïo¤”îú{áŒT•`K„ÝÁŠ'Nœ8qâĹÕéˆáš8qâĉ'Nœ¨&î`ʼn'Nœ8qâ„™ÿ7’Öºô°IEND®B`‚pymvpa-0.4.8/doc/pics/ex_curvefitting.pdf000066400000000000000000000336221174541445200204570ustar00rootroot00000000000000%PDF-1.4 %¬Ü «º 1 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 2 0 obj << /CreationDate (D:20081113011735-04'00') /Producer (matplotlib pdf backend) /Creator (matplotlib 0.98.1, http://matplotlib.sf.net) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Type /Page /Resources 10 0 R /Parent 3 0 R /MediaBox [ 0 0 576 432 ] >> endobj 10 0 obj << /Pattern 8 0 R /XObject 9 0 R /Font 6 0 R /ExtGState 7 0 R /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] >> endobj 5 0 obj << /Filter /FlateDecode /Length 11 0 R >> stream xœ¥šK·…÷÷WÜe²˜6YÅçÖHb@@Ž…dm$¶ @’!%ÿ~¾CvÏ}v[€ò̰‹d=Ï©ê¶ßœãùÿ¾;…s8<çZøùaüLnü^²~ú¹ïNÕX\Lò±-iþñaýÃ[[!tõëaÿç׿R*Oy)ç/?ÿqþÄRHWýmÜCX,ëÑ,è>­¥¾„’[ð\SâÌN=-ès\¼ZÌ–«„×e~$ìi9‡àC>Ʋ”Ć´”œ[Õ²³a[ï}©%§R“µ¹ÁÛÒË™³dJ(øDêlëKbòæ¥Y™;J\Øl޲Á­÷bÒŽ¹î¡-µÕ`ͺ­J5dž˜ ©´Ò†±ì—ž,3_å-ä¥ãc«‹»…s) ÛzÅúò-ǹÃÚb‰+êR°1çî­jÇ\W$¼áT+¹ÛܑÒQª¤¥UœšSŽQ;溬ðnµòÏòÜQmiØÓbîÜP²;Öõ–dÝ= ±ÚÑóbÃçH GÉð_/¸$· uÉ< ĪY¬¥¤¨hoë88Äh9¥–úÜAaÅŠì9[´âŠÅºÎßKï©•lM/¶ph´Ž™¹Fï#û¶åV–ˆ÷R©L×z#ÉùÚqHáö‚•Ú±®WÇúìÅ{÷騄þ<ˆN°È>C[yv].$'4ÏÖ¦Jüµà%³[ ©š‚½®ÆÄrÈ5—ÎSžj #Ái|ÑúÄ'ìa àRSÍ@ïÙƒ¾˜ŸàÊ#‘îÙCd èǸèO؃È*Éòÿó wœN3ÓI$xFªä¦¡¤ íoøã$vñÂñ×Ü~G ðKÅ÷ª iwË'ñKÉèªÕ?ò¥Ñ˜p 0â†@NâœE¥'’ÔUöªÔ¹œo dή‰¶èËPzµÒxä0´»á“ø…b*ï×üŒ?¨, ‡¼Çz~C 'ñ °C[ÔësqR»7ü_¬Þ2ÈI Ò§À–¬Æè‘AL•õúJ ƒWšk˜ýJy3(ä×Ë ˆÏ§¸Ž$¯"þùñüÍ_ÃùO¿¼Ê¨y7®×hF9å»+…„0ƒâv…&a7îÚ•2M–ë¸+7èã*¹¾¯ÖhÒ4Y1ÂíJ½ ÆD¦öÅø¡¾â§´÷ŲÌ!:¦Š}½ !œ cÿ4—ñ‹áÞ?+©))%g'gì¤0i A‰§ùJS䣰Λ&Ç}+éÂq]€z„=1RœbÕ$Å<·ŸŠªÚÖ Ù|ÿJ°³3±ÑÄ~}Ø÷¿»bn_Ô“ãÇÀTr‹Ý¶Ô|"%º¨UBµî éõý<™Ê¾”é5!ˆRhÊw¥¨+ 9¸÷ÕEâd[ ÙöU±&€´ÉdȾ@Û;,ì´Úûz½ÀÈL<´ƒÓÄ ¤oo9ïû‚ª"ôЖ¿íGÐE¥| ]ˆ3åª >P-ÒY2¯4š2ÛWí¥ >Dë%Fõ1TÃPôÑT·Zh€ ùýxÒ0c ŒWªŒÊÚ§Y¾ûªŠ™g}y7Kç®bè’¹?¤ê"³q²=I;zm14Ù`ú™ˆ¯×Ù·,"¤·™¾‰¡íJÑAÄá“ðZ ϤÔ(Tò2hPÝU‹xY§áu½çÝ“Rújœ(9Ú¾ö/ tÔ 2´ptX×;õ¢°í»õE–òƒÖ÷ý㢳yÖÓüÐHðÐ-îûìÅé|9‰¨3ùì‹Eù6¨ãyß·/ðc~Ó$r _Ñ2‡ÒìŠIJ@„ÇÚ¾þ ®>¹ ×Pæª_Ê•˜*æ•FnkaÔÐô)yót~YÓ|Æw¬_Oß¾=óÚJ;¿ýù$n£ëw™xÆ«Ý|~û¯ÓÂÏoÿ}þóÛÓýÅókËåî|÷ú9ær}9¸^sMéÏûÓ¼<ï]>?y\.¯÷—O«ËÛÁåú’Dߌ»ÖÏú½SàJ4H´Ìðçùq×þ«‰óðxÿõÆ)b÷gJ•^Öã½l×7‰2ïAû䛒/ÃU†å(ë4Ê#ñïò#,A/Ü«Þ\¼\†sNhöÝ„ºøò'|ó÷Ÿ¾üøòñý§ÿýg-¡gVÌ7`Sɇ$^g¤+‘£,Ö·>~%õV3¦¦G>´­E9<ï¾¥°æêŒld˜¿¾z7ƒ„ ¦l=û!×ü¹ˆØQþf}I1ð—p¥B<´þ*?í·SØŽSx±¿D —*¾xÁÎo~Ç'ùPíÝøÉtØiX ú’§Y;i×eñÃe‘A~HÚ6Ÿ—n¶Žÿ}`ýħ— AómokbÂJÙö‘Æ Ø(O¤êÕkÞë2¾ÑK„b÷\?™À6xZÿÃæiÚ¹WcHNc[Q‹Õ’Þ¸ oÿòåý»÷Ÿ~ü°¹ü`«~Õ»´-P?¿ÿï¶ëô眹¼ endstream endobj 11 0 obj 2974 endobj 39 0 obj << /Filter /FlateDecode /Length 304 >> stream xœ=’;’Ã0 C{‚ÈŒø“äód'•÷þí>2ÉV€I‰(/u™²¦< i& ÿÑááb;åwØžÍÌÀµD/Ë)Ï¡+ÄÜEù²™º²:ŪÃ0[ô¨œ‹†M“šç*K· žÃµ‰ç–}Ä74¨uK ÝÕhY Ípuÿ;½GÙw5<›TêÔQæù!O¢‡éJâ|<(!\{0FäSÑ@޳\­ò^Bö·²ÂAjIç³'<ØuzO.nÍd¹TøNQìíÐ3¾ìJ =¶áXî};š±é›8ì~ïFÖÊŒ®h!~ÈW'ë%`ÜS&EdN¶Xn‹Õžî¡(¦s†s êÙŠ†RæbW« ;o,/Ù,È”Ì 2F§Mž8xÈ~šôy•çxýlós; endstream endobj 40 0 obj << /Filter /FlateDecode /Length 338 >> stream xœERKrÅ0Ûç\ 3ægãó¼NWéý·•p:Ý<ô  2=eH¦Ü6–d„äò¥WdˆÕŸFŽDÄß)¡À®ò¹¼–Ä\Èn‰Jñ¡?—¥72ͮЪ·G§6‹F5+#ç C„zVèÌîQÛdÃëv!é:S‡p,ÿC²”uÊ)”mAߨ#èo<ܳær³¹Lnõ¿î[ ž×:[±m@ –sÞ`Äà ÚÄÜÚÞ)(UºŠI­ò\';P¶Ðªt¼7€9`Ã’­×hoÃ>ô¢FÅö ¨, þÎÙfÁÞ1ÉH°'æN=q:Å‘pI8Æ@Š­âºñØâ/®ˆšð u:eM¼ÂžÚâÇB“ïRqð"n]EµlOç ´?*’3b¤ÄÑ ‘ԒΗõÐû¸‰¯Äæž¾Ý?Â9Ÿëû¸ƒà endstream endobj 41 0 obj << /Filter /FlateDecode /Length 133 >> stream xœMAÃ0ï~…ž€±óžtzJþ-6î팀‘†03× endstream endobj 42 0 obj << /Filter /FlateDecode /Length 68 >> stream xœ32·P0P°4†& æf )†\@¾©‰¹B.H Äʳ €´%œ‚ˆ[B4A”‚X¥f&fI8"—É´å endstream endobj 43 0 obj << /Filter /FlateDecode /Length 45 >> stream xœ32·P0P°4†& æf )†\–V.L,ÌÑ–p "žŸ} µ endstream endobj 44 0 obj << /Filter /FlateDecode /Length 214 >> stream xœ=P»C1ë= äÎ|í7ÏË¥Ëþm$œ¤B6B”šLÉ”‡:Ê’¬)O>Kb‡¼‡ånd6%*E/“°%÷Ð ñ}‰æ÷ÝÕ–³C4—h9~ 3*ªÓK6šp*º ÜÃ3ú mtV‡±[ Ф`×¶ rÇ Á™‹" JMÿ­r÷RÜï=o¢ˆ”tð®ùåôËÏ-¼N=ŽDº½ùŠkq¦: DpFjòŠtaŲÈC¤Õ5=kµ®Þzù7hGt€ì‰ã4¥CÿÖ¸Ç뇊Rô endstream endobj 45 0 obj << /Filter /FlateDecode /Length 161 >> stream xœEKà C÷œBGðG|žtºJï¿­!M³€§±@w'©µÑ/mKº >[ ÎÆxè6n5äu€V¤ãh”R}¹Åi•tñh6s+ ­fz”£ :Þí¢är¦îÎùGpõ_õG±îœÍÄÀdå„fõ)î|›Q]ÝdÒcnÖköª°´¬¥å„ÛÎ]3 î©íý©s:„ endstream endobj 46 0 obj << /Filter /FlateDecode /Length 210 >> stream xœ5PË C1»g ¨džV½uÿkmÐ;aÿBXÈ”y©ÉÎ)éK>:L¶.¿±" ­u%ìÊš ž+ï¡™²±ÑØâ`p&^€7`èi5tႦ.•BÅ%ð™|u{è¾OxjrvCÉ` jºMX´<ŸNâÿ~Ãî-ä¡’óÊžùœíð;³ná'jv"Ñr2Ô³4ÇE> stream xœE¹C1DsUA °ê±ÇÑwÿ©ùJ´o-‡¯%Sª'"¦Ü×hô0yŸM%V,Ø&¶“rAJ1˜xN1«£·¡™‡Ô븨ª¸uf•ÓiËÊÅóhW3“=Â5ê'ðMèøŸ<´©è[ ¯ ”}@µ8IP1}¯b£œv"œà>G™)#qbn ì÷f¾W¸ÆãÝ7y endstream endobj 48 0 obj << /Filter /FlateDecode /Length 49 >> stream xœ36´P0P040’F†@–‘‰BŠ!HÄÌå‚ æ€Y@¢8®&‡+ Æè & endstream endobj 49 0 obj << /Filter /FlateDecode /Length 248 >> stream xœ-Q9’AËçzBsÓï±Ë‘÷ÿé ʃ†C :-qPÆO–+ÞòÈU´áï™ÁwÁ¡ßÊu9HÒTM¨]¼½vfó¤5,ƒë?c 7zqxLÆÙíu5{×kOfP2+qÉÄSuØÈ™ÃO¦Œ í\Ï È¹Öe¤›•ÆŒ„#M!RH¡ê&©3A£«Q£Å~éË#aU#j û\KÛ×sÎ4;«<9¥GWœËÉÅ +ý¼ÍÀET«<p¿ÛCýœìä7ÞÒ¹³Åôø^s²¼0XñæµMµø7/âø=ãëùü¨¥[ endstream endobj 50 0 obj << /Filter /FlateDecode /Length 247 >> stream xœMQ»mD1 ëß\àëkyž R]öoCÉ ¡/)§%öÆK á[¾ä‘UC?1ì3,=ÉäÔ?æ¹ÉT¾ª›˜Pbáýh¼t/"+Êße sÎ÷ࣗ`&4`¬oI&Õ¼3d‰¡ŽÃA›TwM,®Í3ÈíV7²:³ lx%âÆDÙÍ`£Œ±•År¨ ’Z`×éQ‹‚+”Ö t¢ÖĺÌà«çöv7C/ò਺x} ëK°Âè¥{,|®BÌôL;wI#½ð¦fR™‘•:=b}·@ÿŸe+øûÉÏóý (\* endstream endobj 51 0 obj << /Filter /FlateDecode /Length 80 >> stream xœEŒ» À0D{¦`~&fŸ(•³ JÜpOº{¸:2SÞa†‡ž ,†Sñ™£`5¸FR죰n_uæzS«õ÷*Ovvq=ÍËô endstream endobj 52 0 obj << /Filter /FlateDecode /Subtype /Form /Length 37 /Type /XObject /BBox [ -184 -236 1288 929 ] >> stream xœã240S065UÈå276³rÀ,#s# $‹`AdÓ_ endstream endobj 53 0 obj << /Filter /FlateDecode /Length 131 >> stream xœEË ! CïTáò>©‡ÕžØþ¯ë0šABøA";ñ0¬óò6ÐÅðÑ¢Ã7þ6Õ«c•,ºzRV釼òPi0QÄ…YLCaΘÊÈ–2·á¶Mƒ¬l•T­ƒv<¶§e«~©maê,ñ ÂU^¸Ç ?K­w½U¾BS0— endstream endobj 37 0 obj << /FontMatrix [ 0.001 0 0 0.001 0 0 ] /Name /BitstreamVeraSans-Roman /FontBBox [ -184 -236 1288 929 ] /Encoding << /Differences [ 46 /period 48 /zero /one /two 53 /five 97 /a 102 /f /g 105 /i 108 /l 110 /n /o 114 /r 116 /t ] /Type /Encoding >> /BaseFont /BitstreamVeraSans-Roman /Type /Font /CharProcs 38 0 R /Subtype /Type3 /FontDescriptor 36 0 R /Widths 35 0 R /LastChar 255 /FirstChar 0 >> endobj 36 0 obj << /FontName /BitstreamVeraSans-Roman /Descent -236 /FontBBox [ -184 -236 1288 929 ] /CapHeight 730 /Ascent 929 /MaxWidth 1342 /StemV 0 /Flags 32 /XHeight 547 /ItalicAngle 0 /Type /FontDescriptor >> endobj 35 0 obj [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 318 401 460 838 636 950 780 275 390 390 500 838 318 361 318 337 636 636 636 636 636 636 636 636 636 636 337 337 838 838 838 531 1000 684 686 698 770 632 575 775 752 295 295 656 557 863 748 787 603 787 695 635 611 732 684 989 685 611 685 390 337 390 838 500 500 613 635 550 635 615 352 635 634 278 278 579 278 974 634 612 635 635 411 521 392 634 592 818 592 592 525 636 337 636 838 600 636 600 318 636 518 1000 500 500 500 1342 635 400 1070 600 685 600 600 318 318 518 518 590 500 1000 500 1000 521 400 1023 600 525 611 636 401 636 636 636 636 337 500 500 1000 471 612 838 361 1000 500 500 838 401 401 500 636 636 318 500 401 471 612 969 969 969 531 684 684 684 684 684 684 974 698 632 632 632 632 295 295 295 295 775 748 787 787 787 787 787 838 787 732 732 732 732 611 605 630 613 613 613 613 613 613 982 550 615 615 615 615 278 278 278 278 612 634 612 612 612 612 612 838 612 634 634 634 634 592 635 592 ] endobj 38 0 obj << /a 39 0 R /g 40 0 R /f 41 0 R /i 42 0 R /l 43 0 R /o 44 0 R /n 45 0 R /zero 46 0 R /r 47 0 R /period 48 0 R /two 49 0 R /five 50 0 R /one 51 0 R /t 53 0 R >> endobj 6 0 obj << /F1 37 0 R >> endobj 7 0 obj << >> endobj 8 0 obj << >> endobj 9 0 obj << /M17 29 0 R /M1 13 0 R /M6 18 0 R /M9 21 0 R /M18 30 0 R /M16 28 0 R /M0 12 0 R /M2 14 0 R /M4 16 0 R /M14 26 0 R /M20 32 0 R /M8 20 0 R /M15 27 0 R /M11 23 0 R /M22 34 0 R /M3 15 0 R /M21 33 0 R /M19 31 0 R /M13 25 0 R /M10 22 0 R /Vera-minus 52 0 R /M7 19 0 R /M5 17 0 R /M12 24 0 R >> endobj 29 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 13 0 obj << /Filter /FlateDecode /Subtype /Form /Length 24 /Type /XObject /BBox [ -3.25 -0.25 3.25 0.25 ] >> stream xœ3VÐ5PÈUÐ5V0PÈá æÀ endstream endobj 25 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 15 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 30 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 27 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 14 0 obj << /Filter /FlateDecode /Subtype /Form /Length 139 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ}P¹ 1 ë5…¡Ço›UܤÉþmNMÎpi Ðâ’‘ ?Èe¬Öy™C)­Ía«‹V$-}ÚbáQ'jS¶jÝO7‚IÁåò½# ·¿¿ŸS Aؘˆ‡E̲‹âéQ™:¥À¸EœÉâ†ÞÎÖ@æ¡ç]ÝçäfŸ”J^ö /øŒî[ endstream endobj 23 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 34 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 28 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 26 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 16 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 17 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 32 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 33 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 19 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 24 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 21 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 31 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 12 0 obj << /Filter /FlateDecode /Subtype /Form /Length 24 /Type /XObject /BBox [ -3.25 -0.25 3.25 0.25 ] >> stream xœ3VÐ5PÈUÐ5V0PÈá æÀ endstream endobj 20 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 18 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 22 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj xref 0 54 0000000000 65535 n 0000000016 00000 n 0000000065 00000 n 0000000216 00000 n 0000000275 00000 n 0000000511 00000 n 0000009007 00000 n 0000009039 00000 n 0000009060 00000 n 0000009081 00000 n 0000000382 00000 n 0000003560 00000 n 0000012444 00000 n 0000009541 00000 n 0000010316 00000 n 0000009853 00000 n 0000011209 00000 n 0000011364 00000 n 0000012757 00000 n 0000011827 00000 n 0000012602 00000 n 0000012136 00000 n 0000012912 00000 n 0000010590 00000 n 0000011981 00000 n 0000009699 00000 n 0000011054 00000 n 0000010162 00000 n 0000010899 00000 n 0000009387 00000 n 0000010007 00000 n 0000012290 00000 n 0000011518 00000 n 0000011673 00000 n 0000010744 00000 n 0000007777 00000 n 0000007562 00000 n 0000007152 00000 n 0000008830 00000 n 0000003581 00000 n 0000003958 00000 n 0000004369 00000 n 0000004575 00000 n 0000004715 00000 n 0000004832 00000 n 0000005119 00000 n 0000005353 00000 n 0000005636 00000 n 0000005866 00000 n 0000005987 00000 n 0000006308 00000 n 0000006628 00000 n 0000006780 00000 n 0000006948 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 54 >> startxref 13067 %%EOF pymvpa-0.4.8/doc/pics/ex_curvefitting.png000066400000000000000000000701641174541445200204740ustar00rootroot00000000000000‰PNG  IHDRôv˜®jYsRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ ¤èÚ IDATxÚìÝwxTÕÖÀáßÌd&½÷„Jè-t=t°ÐÁ^Q”"EPšT. ú! r¥Ko""B %”@zHÏdæûc_@€ ¤¬÷yæa˜9s’¬s’uö>{¯­1›Ífr!%%…±cÇràÀN:Å Aƒøè£rÜöÔ©SôêÕ‹äädlmm(_¾<‹-ÂÚÚ!„Bä-‹Ün¨Ñh¨R¥ µk×fÉ’%¹ú̧Ÿ~Jpp0z½+++‰¸Bñ<ºµµ5}ûö%== 6äê3NNN¸ºº¢Õj±°°@£ÑHÄ…Bˆç™Ðk§øúú2nÜ8ÒÒÒ°²²bÀ€¼ð XZZJÔ…BˆÂн¼¼˜0aÎÎÎdee±gÏ&OžŒ§§'5º½ÙlfôèÑr„Bˆ\š4iRŽã|Ièööö·ïòÍ7ßðÇܗзmÛÆ_|!G¨øúë¯éÞ½» |,:DFFõêÕ“`rF£‘%K–ðÖ[oI0Š€aÆ‘™™ùìú½²²²0ètºûÞspp V­Zr”Š€Í›7Œ£KNN&==]~7‹HBß°aƒË"ÂÑÑñï=VB?þ<±±±ÄÅÅaccÑ#GðññÁÊÊŠ¥K—R£F BBB8yò$ááá‘™™ÉæÍ›IHHÈÖ:B!DÞy¬„>cÆ 666 2NGLL ŽŽŽ 0KKKÂÃÙ7oIII 0à¹Tç“„. ®óçá·ß 5.]//°´„²e¡}{0$FB1«V­Âd21aÂjÖ¬‰F£¡ZµjtìØ‘_ý•’••E¥J•;v,ÞÞÞ9î'**ŠŸþ™ºuë2~üx F£‘ÔÔT>úè£G~5jÔ`̘1ØÛÛc2™8zô($!!BBBhذa¶ûõ)))lݺ•îÝ»ãåå% ]ˆÛ o_0›áÝw¡cG  ÚÔBI{öì¡bÅŠTªTéöÚ5kÖÄËË‹“'O’™™‰N§£ZµjMšQQQœ9s†‘#GbøßÅ¿……Åí®úGiÔ¨Ñí•#µZ-åÊ•cûöí¤¤¤àììÌÍ›7Y¶lëׯ'>>“ÉDBB>>>$%%=—ØIB—…ü³«Á ž?§{SB_ ññù³oƒ xø6éééXXX`aq'=i4¬¬¬ÈÌÌÄd2¡Óé°²²zèbPYYYdffbeeuÏŸ•ìû~ð÷jȶ­V{»;?99™Y³f±mÛ6úöí‹¿¿?–––lÙ²…­[·>·u$¡ !„¸ÍÏ\\òïýQ¹~ý:ÑÑÑ·»Ó“’’¸ví7¾ÝÚ~;;;ÜÝÝ9sæÌí×Ìf37oÞ$!!á©~ޏ¸8þüóO^yå €V«JºìÞ½ûù¶äôBñÐÐçûõ_{í5úôéòeËèÖ­&“‰Å‹cmmMûöís½D³ŸŸ¡¡¡,[¶Œ-ZàïïOLL ,xê´¥¥%®®®>|˜ððp aaa,_¾777IèB!Dýúõ:t(+V¬`ݺuFÌf3ǧ~ýú¹Þ••}ûö导ùæ›”(QƒÁ@PPçÏŸ¿Ýª~{çß}!áêêJŸ>}˜2e ¯¿þ:NNNèt::vìÈ®]»ø9IèB!Š kkkú÷ïO‹-¸qãZ­OOOÊ–-{;9~ùå—9Žn2d¶¶¶”*UŠ)S¦púôi222puuåܹsìØ±ãv×½¯¯/ .¼=ÇÝÅÅ…Å‹SºtélûîÒ¥ M›6ÅÝÝNGÛ¶m)[¶,W¯^E¯×ãëë‹­­-ݺuÃ××Pë–-[†£££$t!„Å3©W®\™Ê•+çø~HHHޝ߻}tt4—/_ÆÇÇNÇÍ›7ùâ‹/hÒ¤Éí®q[[Ûlû³´´¤aÆ÷í;00ÀÀÀÛÿ7 T¨P *dÛîî //¯g:}MºBˆ")::š?þ˜¸¸8¨P¡|f­ægIºBˆ"©dÉ’LŸ>¨¨(ŒF#ÖÖÖàááñLïmKBB!ž‚¥¥%eË–¥lÙ²Åâç•õÐ…BIèB!„„.„BIèB!„„.„¢2™LüþûïtïÞÆóÉ'ŸÐ¦M~üñG@UqKII!##C‚% ]!DAuüøqFމ»»;ï¼ó-Z´ÀÅÅKKK"##騱#sçÎ}n+›D2mM!DÉ76l%K–૯¾ºÐ…´Ð…BpÿùÏxï½÷ˆŠŠ¢K—.Ô¯_ÿv÷ûªU«0``Á‚„„„P¿~}þüóOi¡Ëé#„¢ ¨_¿>:uâ‹/¾ ÿþ¸¸¸P®\9ˆ‰‰ {÷î\¸p*Uªðâ‹/¢Ñh„.§Bˆ‚¢bÅŠ4lØ%K–о}ûÛ+—Ý­I“&,]º”*UªÐ¹sçG.…* ]ˆçÌl6só&‡¶nåÊ_Q鯿¨äꊭ½}‘¬Ã,DAðÚê׸–t-_öm«·emϵdI袸9þ÷߬ûmª;F£´4õí˶mé4c¾Ò½&D¾ø¶Ó·„BJú)D”œœÌžeËxùðaZ¥¥t½u‹rëÖqhãFŒF£IˆbLzé$¡‹BâêÅ‹8ïÛ‡off¶“µrr2Q6–’"A¢˜Òëõ8::rùòebbbˆ—‹|I袠2XZ’igGÖ=WáiZ-NNhu: ’Å”££#­ZµbçμñÆôíÛ—“'Oû¸È=tQ yûù‘T¯ç÷ì!øåÀa{{<[´ÀÊÚZ‚$DU­Z5,X€³³óí×æÌ™Cùòåo·Ð»téBPP×®]Ãd2ááá! ]NQYZZÒmèPþsó&Gwì dDG‚‚°åZ¿ø¢LS¢óññ¡S§NÙ^{饗îk¥7nÜX‚% ].nn ]¸GrmÄ:LžLÉúõ%0B! ]6:ŽªÁÁT // ˆBHBâ.çÏêU˜ûöA™2àîAAÐ¥ ØÚJŒD‘àïïOóæÍ%…@rr2z½^º¥ti9R=>^yjÔ¸ˆ"ç믿– 2²H!„„.„BIèB!„„.„BIèB!„$t!„BHBB!„$t!„BHBB!$¡ !„BºB!$¡ !„â~²8‹x:'N¨UË22àï¿¡reÐë¡jUèÜt:‰‘BHB^¥Jê* ÎÎ!„xƤË]!„ºyÃd6‘ž•®NJ:­­F®7…Bº(IüJâ.'\ætôiþ¸òfÌxÛ{ãïèO\¨gµY‡Å,þØ‹þJZ7w([VîÏ !„$tñ<]Œ¿È«8põ'¢NeÊ¢„C jz×D¯Ós3ù&‡®âpT á7ˆ¿u“xÇ+˜·þAoE`¹:tuLG ¦BHBÏJš131gØyi'»#vs>ö<ÎVÎÔö©Í˜†c(éT+ì öh4ŒYFÒ³ÒÉÈÊ #+ƒtc:©ÆT®ÝºFxl8»"vÑ{m?BK…Ò£RJ¹”ÂÚÂZ-„„.D~0›Í\ˆ¿À¿ý›ßç¢{Eù5â£&QÚ¥4ÚœO?½N^§¿ïõònåi^²9ýjöcÄ~–YÆÛ¿½M]ߺ¼XîE‚½‚±·´—À !$¡ ‘—öFìeÚži8X:°è…E”w+•…ÕSïWƒ†ú~õ©æUc7Žñó響m<Nô îKˆ_È/„Bº¹i•·ÒYuj_üŠ®»Ò»ZoÜmÝóükÙèm¨[¢.U½ª‘ÁêÓ«µe¥œJѧzBüC°ÕÛÊABHBâqŠ:Åü³ßp6æ,SB§Ð<°9&_¿¦µ…5e]Ë2:d4=+÷dűLÚ1‰†þ é_³?Nùþ=!Äó&}Ež0™Mìð7óþ¶˜Ì&æ¶™Kó’ÍŸy" p `Dƒ,ì°+‰WxoÃ{üyíO9@BIèBÇíSRRXµj«W¯F¯×Ó¥K:uê„……\?™¦LVž\‰ÁŽ>Õû }HIWƒÁÀ‹½zס©¯¿ŽóСØúøú¸Ù¸1"d3÷Îdôï£ù´å§Tt¯˜Ë»AÛ¶êùÙ³P¯„†Ê‰%„ÈW¹º‡n49uê:ÂÂÂ09n›‘‘Á—_~É’%Kx÷ÝwéÑ£Ó§OgõêÕíBâTÔ)V\Eÿšýñ°õxôI¤ÕâêæF l­­‹Lœ¬œÛh,U<ª0vëXÂãÂåäBî„niiÉ Aƒ˜>}:7~è¶111lÚ´‰~ýúѼys:vìÈ«¯¾ÊòåËI¿k1 Q0¥ÓøìÏh^²9u|ëûxXë­\w0ÎVÎLÛ=¸4Y¸EQˆúãHJJ"66–Ò¥K£ÕjÑh4Ô«Wëׯsýúu‰xf6›Ywv'£N2¨î ¬,¬ À÷&deAf&dd¨‡ù.ÓêcïÃäf“¹vë3÷ÎäVú-9Y„NžßÔ6F¬ïêzuqq!33“ÄÄÄû¶OHH`ÿþý·ÿïèèHéÒ¥1ÈÀ¡gîBü–ü½„wj½ƒ¯½ï3ýÚ&\ºqq–¦Æ•¥¥©ãqqê `i µkCÙ²àë ^^j y~òuðe~ÛùôÿoæîŸËðñÖ[ËI#„È7F£‘sçÎûµ¸‡,ïœç5 Z­6Û=öôôt´ZmŽI:33“èèè{þ¸›äH>cY¦,ÖœZƒÁŽÖeZ?Óø… °z5üþ;h4*9ÿó°²õpu…€•ä7o†o¾QÆË—‡š5!8X (ϯÙrNŒm<–ñÛÆãçèGïê½Ñ ‘“G‘O ‰‰‰ÙrdFFƳKèÖÖÖX[[{ûµ³gÏbkk‹——×}Û»¹¹Ñ¡C9rÏÙ•[WøéÔOŒm47·|Oâ ¶màïC‡BéÒw¦mçô¯N§ºßU«ýÒ%õùåËaöl5+¬~}hÜXÍÔ³µU yA«Ñ☆c˜´cî¶î´)ÓFVgBä=ƒÁ@:ÙÇ2-Z´èézbb"ñññÄÅÅ‘ššÊÕ«W1™L¸¸¸ð×_‘••E­Zµpuu¥N:¬ZµŠ2eÊ‘‘Á·ß~Kûöíqrr’#T¥f¦2u×TBüBhUºÕC§©=­¤$ؿ֯‡}û zu˜5Ku¡ëõ¹Û‡NÎÎêQª4k¦ºì¯\;Ô~GVÝñ¯¿ B^-qn¡µ M™6ĦÆòéžO1è „– Íט !D®þ>åvÃ5kÖðã?réÒ%¢££Úµƒ¾}ážS%_ j$üĉо=,Zo¼={ªBnªeÿ¤,˜Ðdƒ×æƒß?`jèT||åÄB<r㯻‘|ƒŽÿ@Ê=rUîqýßÿÁ§ŸB×®0lسMæ÷ª][Ý«7¶n…`éRuÑñ4¬õÖ|ÐèÒŒiÌýc.™Y™rb !$¡‹g'#+ƒ™{gRų íƒÚçé ®¤$øâ øê+xÿ}èß¿`¬Gâà ºÝ-‚~ýàÇá_ÿ‚S¬ÈâÉGª:òA£8týßû£É('˜BºÈf³™­¶²ëò.F‡ŒÎÓ)QÑ0eŠˆ6s&tì¨ ÁšÏÞµ+üðƒšÖ6dçˬ;Z‚'- Ñh¨îUqÇñÕÁ¯Øt~Y¦,9Ñ„’ÐEþŠJ‰â›£ßб|GJ:—̳ý&àÀ¸qZNœPI½nÝ‚øäèÐÚÈÔOÌ|ýµªN÷¤š4ᵪ¯1{ßlNGŸ–M! ]ä¯ç6’˜žHÊ=òd&œ> ï\O²ÖŽùó¡N¼›"–Ÿœ¡¿×/|úþ–.…±cáòå'o©÷ªÖ‹º%ê2vëXbScådBHBù#CË.§cùŽø;úçÉ>PÓÒíá³™øû?ÝèñgMO& ê™X¸nÞTë≺à,X{ ¶z[fì™! ¹!$¡‹ü±3R2Rò¬"ÜþýðÁªhˤš¿àlV(ã¢Ñ@ÅŠ0cT©ƒÃo¿ñ Æ·yÛ{3±éD6ïÞÀÔí«8týšœxBˆ|g!!(>Ó™œNß}Ÿz¾´Ù Gލ"1ݺ©9憞…QooÕÛP¶¬pú4¼ù¦êšÏ­¨ÈHÖ~8~?_ F\"'Nã÷Í[è5mžÞÞr" !$¡‹§HÀ¨‘íÑ‘át«Øí©+šÅĨ²ªU\¯ÑÛío ëpýº*Ònk %J¨åÏ´…¯ÈÊ ºwW¥dgÌ€‹aÄUˆæQ233ÙºbÕøfÉÉh€zQQìúé'¶T¬H×!Cdi`!„$tñ­ó´DÖ]G‡]7±·´êý-^¬V;›8Ák—ºáüÑGj²·V NN{TÜ… ðë¯jÙ¶ýûU±yoo(S^|­­-!!*¡ü1Œóæ©’µKÆŽTLMÍvÉT>5•K;wûÚkxùJ59!„$tñ„GæBüÞ{ºrmF#¬Yÿý/,X%«:ƒ¦fá H@¼ý¶ºw0lØž­6Û²oåÊ©jw¬ŠÐÌ«ZêºV1›L™‰ÎlÎöº3×ã"HLKÄ IèBˆ¼'ƒâЉÇWP×·.¥Ÿxf³ý½` ”·«—=û3_«*ÞXYú×ÊJ•´»ç‡òòR*÷Ÿ8¡b‘'WWôÍšqÊÚš»79mÐó“ûMþ{m½œŒBIèâÉ\Œ¿ÈÁkéP¶VVO¼ŸøxÕZ­W^x¡xÅÐÕUæ÷õU÷Ó#"rÞÎ`0аkWöµnͶ¶œþÏÆ†-[ñ¯ùþÔ÷üyõO9)…’ÐÅãÉÌÊdîþ¹4hL]ß'/Ý–šªF}[YÁ!ªQ[ÜxzÞ©€×»7>¬–‡½W‰€F¬\IÐæÍêЀÏ>cÔϿЯEÞ«ûC7åøÍã˜1Ë *„„.rçDÔ öFì¥_p?4OØ?n4ÂÊ•w È<ÏUÓž7{{ÕBoÔFV1É©V§£Výú¼V¯uÑéth4zTîAÏ*ÌÞ7›è”h9A…’ÐEîZçÎm œk9ʹ•{âý<¨VN2*U’¸ÚÚªjruêÀÈ‘j®znéuzÞ¯÷>Q)Q,?¼\‚)„È32ʽ;wžÍá›ßd<Ú';Ô—.Áĉju²ví ñ ¸<æä¤Šêxzª¢:S¦¨Vû]䨬kYÆ5ÇÀu)ïVž6AmÐir¹|kjª*6Ÿ–¦žÿ3¸ÏÆFMœ/HKÛ !$¡‹¼±éü&¼í¼©ì^ù‰>Ÿ’¢¦iy{믌5Í ƒÞz 22Ôªm£FA‹¹«¥SÛ§6CêaúžéøØû윻/𖦮²`ãFptT£]\Ôp|IèBHBEKjf*?ü‰µàbíòØŸÏÊ‚o¾QÝíË—?º Jq¥×«¤ª'£D ¨PáÑ=†Žå;ò×µ¿˜½6³ZÍÂÃ6Avv†V­Ôó¨(ÕEй³!„ÜC/ŠÌf3Ë,ÇÙÊ™ʽ€F£Áh4rýÊÎ¥¤œœüˆÏî]ðí·0u*”,)1}[[5/ÿÕWUrÿë¯Ü­ÔfeaÅÐúCÉÌÊdÎþ9ddeH0…’ÐxÞ3ˆ IDATÅ‘I‘¬:µŠÞÕ{c«·%==ogÏfó€üuò$?ŒÇÁ={0= 뤥©ÖyãÆP£†Ä37,,Ô".ÍšÁ„ pòdî>çcïÈ#Øyi'¿†ýŠÙ,SÙ„’ÐÅÿZçÛ/nÇŒ™ÐR¡˜L&–ΚEÉI“h÷Ûot¸u‹† °ð`.„…å¸]»àÜ9èÙ³xÎ7R––ðþûP¾¼ºŸ“»Ï{32d$söÏáÀÕ2?]! ]@TJkN¯¡gåžØì¹pîšß~£ar2n&¶@¹Œ jœ8Á‘ß~»¿u Ó¦A¿~P¹²Äóq¹ºÂ¸q¤JÅ_ºœ‹_B–vAíhW¦Ó÷LçRü% ¤Bzq÷÷õ¿ILO¤‘#´-7¯^Å÷Úµût‰ôtn9’íµÌLøþ{U<¥S'‰å“úgJ›•L^U‘H]‰G¯ÕóFðØèm˜`>F“Q)„„^\™Ì&¾9ú M›PÒYdó+]šðҥɼk;3pÆÆÿF²}þøqX»;;‰çÓpsS÷Ò“ê„2ùû2¤¥=ú3ÞöÞŒm4–¿®ýÅ·G¿%Ë”%BHB/ŽŽÝ8FXL]*t¹]H¦„¿?î=z°ÖÅ…pŽh`¯ §CB¨öÏô'Ô\êÅ‹¡fMU«\<½2eàãõ\ù=ŒO>QëÇ?Œ Ü+0¾ÉxZ̶‹Û0™MH!„$ôâÄl6³òäJjùÔ¢´KélïuéÝ›ùóÙÛ§k]\¸>i­æÌÁÇßÿö6ª¥Q{ö”Öyž&uÎ1}D4»vÁ¢E”ôèÏ4ôoHÛ ¶|öÇgD&EJ…’Ћ“ð¸pv]ÞE¯ª½Ðj²V½^Oë=xiöl^ªX‘ ¢l¥JhÿWÒìŸeQ»wWkœ‹¼U¾¼ª$·q#,]ª»yƒÎÀ¿jü 77¦ížFº1]‚(„„^˜Ì&v]Þ…³•3U=«æ| µZìpÑë1ÜUÃ53¾ûN•yý׿Ô|j‘÷4P÷Ô¿ý~þùÑIÝÃփȩèS|}øk):#„„^$¦'²ýâvZ–j‰•ÞêñZöá*Á¼õ–ªx&ò‡F£o7¦O‡­[]M®”s)†ÕÆò£ËÙe¿BHB/ê.Æ_ärÂeú7Ìýª]¨zíË–AéÒм¹Ä1ßٴж­ª(7uª·ð(ÍJ6£K….LÛ=ˆÄ ¢BzQ¶êÔ**{T~ì5σ͛¡woµæ‡È:ªùÞ²¥j­_¼øðí-u–ôªÖ ??fì™ARF’Q! ½(ŠO‹gûÅí´.Ó+‹Üw·''ìYjóš5%ŽyêêUøÏ`æLؽV®TÏÿïÿ 1;;èßÊ–U÷Õ#1ÝÕÆ•!#8vã+Ž­ùéBˆÉ¨Bî×°_±3ØZ24ןÉÊ‚U«àÂøüsYç<ÏyzB×®*Ð}ú¨èZ­ZkõÅñ]]aÒ$5vaÚ4UYÎÍíÁ»,ãR†IÍ&1vëXüýiYº¥\ !¤…^”Z翆ýJ׊]«u~ñ"üø£j%::Jóþ2ÙÔ} 77•½Õí_9ggøøcµ΂jÆÁÃÔó«G׊]™÷Ç<.'\–8 !$¡Go%*%Š¥Z<Öçþû_U¯ý®Bqâ9 R÷Ò7nTuô6òÝRgÉ«U_ÅÓÖ“Ùûf“‘%óÓ…wµ%$…Sº1-á[¨íS[\.¾ûÆŽ‰ãs¿¢ÖB:êûСj Ö.]\ÀÍÆ)¡Sèõs/Ûο X†4.NÝç¹x._VkË«ŒÎÁÏON!$¡OÑ)Ñ컲áõ‡?Vwûr^ÇÏš5S·vÅó§Ñ¨úùÀ¿ÿ ^^д郷÷¶÷fLÃ1L:÷åœbic6ÝW°ÀqvVóõÖ¯W+!_ˆ¼l H §?®þ•…U½ªæú3ðCB[ú÷W·xEÁ¡Ó©†jË–ê¾ú£¦³…ø…ðBט}üßD%GI…’Ð £Ì¬L¾=ú-mË´ÅËÎ+WŸ1á§ŸÀ5l/-ZH "[[6LµÖ‡ QUüTÎÒÂ’þ×}©|6›GŸ/Bº(lþŽü›k·®Ñ>¨=r×o~å lÙ¯—Þ=ÐZ0z= ®-Θ¡Îy» <ˆè”hþ}èߤf¦J…(ÆäzAqà€~pêT¨ ž7l˜m8ºÉlâ—Ó¿PÓ§&þŽþ¹ÞýŽjÀUýÀëëÎÉ FV­õ/¿„>xð¶ÞöÞ ¯1œq[ÇQݳ:-J·ÈõEžBºÈµkß)ÙÖ²¥*!÷\;}š={˜Ùj&š\ŽjKJRƒ­Þ}|ÿ-¡.è4¨XQ|ç5¼wouA–“Æy«æ[ŒÛ6Ž’Î%)ãRF‚(D1$¯鯸N§pçù]ýã&³‰?¯ý‰»;¥]Jçz×?ÿ¬jš´l)a.L*UR-õo¿U5÷³PñÕBkAÇ iИÉ;'-ÁBº(È’3’Ù¾…¦%›â`ÈÝ0õ¨(øæÕÂ{XiQQ0µh¡ªÈNŸçÏ?x;KF4ÁÕÄ«,ù{ éF):#„$tQ`=Ë¥øK4 l†NûèeR³²`Íõ¼K‰_ad0¨zï:¨yê›ÎænëÎìÖ³ùï™ÿòÓ©Ÿdýt!$¡‹‚jõ©ÕT÷ªžëîö›7UIÑ=\yL|––ê^zÙ²jA—ë×áÒ… l?q‚Ó11˜îª[Á­ýjô㫃_q6ö¬OI袠‰JŽbûÅí¼Tî%,u¹+öùÇ–¦ªŽIU¸ÂÍÁAV‹Mãóø¹ç«d|÷»gÏfþœ¤ÖI×ëôt©Ð…~ ˜¸}"±©±…$'DQ&C¥ 8£ÉÈîˆÝ”q)ƒƒÏ#·7™`ÃU2ô•W¤u^”ØÚÛãØº5§vîÄ-9ùöÕøƒ[!!xûg¯h¡µ [¥nD¥D1pÝ@¾jÿA®Aþ©©pD”–¦ É[[«"óeÊ€!¤….žTJf ».í¢Q@#lõ¶¹jÿö›ºw.‹½^Oõ¶m9Ú¬¿ÙÚrج³d¡s5C{`k{ÿù¡Õhy³Æ›ø;ú3gÿœ‡’ËÊ‚„µVùºuª"QLŒº:4å! ]<ð¸p¢S¢©íS;Wk^:7n@ëÖwŠÎ‰¢£dP=/Ævɶ4iBêûïq©ÎJ6l­E\\Ο±¶°fdƒ‘D$F°ìð2²Ì(9gg§ÖèЂƒ¡jUõ¼qcYoWIèâiýpüjz×$È%è‘Û°p!´iAA»¢H£ÑàæéIónÝøW·n¼X¿3çpò¤–Ï?‡ŒŒœ?WÁ½£BF±âø 6Û„Él’` ! ]<+Ñ)ÑìØKû²ís5ºýÐ!ˆˆ€—^’Öyq£F©±¿þúàíêûÕghý¡|²ëG–À ! ]<+[/lE¯ÓÓÈ¿Ñ#·ÍÈ€eËTíïR¥$vÅê—X«zÊÇŽ…Y³Ô”ÅœrÑitt¬Ð‘&Møtï§D$DHð„„.ò[rF2›Îo¢]™vXZ<º2ÜáÃêÑ»w¶ÚD1aaíÚÁ«¯ÂŒª·&'–:KÖˆ…Ö‚9ûçÈ".BHBùí|Üy.Æ_$´Th®ZçÛ·Cùòàç'±+Î^ªW‡É“ÕàôœxÛy3¢Áþ¼ö'?œøAî§ QT.ì%CVVÂÂ8ºe ñ/reÝwxYyâïèÿÈÏFFÂÖ­0p XY= ù¾j•šWœž~¨^¯UKÍoE†£#Œ©£FÁ´iàì|ÿvU<ª0%t #7ÄÓÖ“V¥[åj…Bºx„ëÖqøí·©E%c&ëͦR÷.èÚjÀúáŸÝ¹SÍ9¯]û…dªWWQ,¸¹©õÓûôQ÷ÔG޼Ö™F£¡_^©ü Ÿýñ~~Tò¨”ïß[\l,ÃÂpLNÆßhÄB–"ÏÈ%yÃþÏ?ç­kרŸ™I93 H6âýó&Î9úÐÏðãв%xxH,…âî|û÷Ê9o£Óèx¥Ê+”t*É´=ÓHÉLÉ·ï'++‹­ëÖñÍ A\œ=›«WóÕ„ ¤¥¥ÉÁBzÑq⯿¨~ò$vw½fÄÅqdíÚ‡~vófUÜ«sg)ó*²«W† ƒÅ‹Õy’ÓÈwWW&4@Zf“vLâVÆ­|ù^Ž8ÀÙéñÃtˆˆ ûñãÔŸ=›E“&a”*tBHB/*ìIÈ¡Nk‚…öiv'%Á?À /Hë\äÐש"C£FÁ¸q°k—ªõ/[> ý„ƒ×òõá¯ó~ä»ÙÌ©uë¨uå &zÀÚl¦Jz:v;wrñüy9XBHB/ÊW©BX•*DÞõZ2°ßÍ*­Z=¸Õs Ο—qmâÁ4èØQ]ôM™gÏæ¼]—2 ª;ˆ•'V²ûòî¼Íç@\Xžÿ[¯ýö‡ÙŒÛÄݼ)Jˆ< #R Þž7ù驸ÚG@t"Ç4¢Æ;ïP¦rå?“–¦a©SG¦ª‰G·Ô„”2D rw¿çÊ^£¥}P{âRã¿m<žIM©d[’¼¸‹£Ñh(Ù¶-ÇÖ¯Ç')év+"I£!¼Jê—//Ii¡^¾¾tÿj*«ß®Ld€3ÿZ¹’Öݺ=ppd$ìÛ§Š‰ä8UMˆ»8:Â{ïA‰ªû=§F±…Ö‚W«¼J› 6Œ=·p§¼[?½J³f\hÞœÍvv\Žêõ¬öñ¡Ük¯á~ïÕ…BzafÆLXBNeÝéàä››ÛC·ÿýw5¿88Xb'rÇÃƇðpµˆOròýÛèuzÞ©õN B™Í>n¥çÍ 9߀:Ì‹iÞ<~mЀãíÛSqùrZ¾ø¢!òˆt¹™Y™ü|êgš6ÅÝ6æ¡ÛÞºß~ €««ÄNä^‰0s¦êzwp€wßUecïæfãÆ8Ƕö]æ{–aXýa¹*?ü0ÿ’%)@–»;ÚS§Ð5o.Di¡=7’np>î<õJÔC÷ˆŠ]ë׫û¢-[JÜÄã«\YÍQ_±Ö®Íy:[™x c½º±þìzVŸZÑ”7SË´Z-z t2ÇRIèEÕÆóñuð¥²Gå‡n—˜¨–È|ápr’¸‰'IªÐ¤‰ª 7e ìÝ«ªß«¶Om†Öʼ?æ±ÿÊ~̘%xBHBs+ã?ÿW«¼ŠµþÁu^ÍfõÇ÷êUèÚUâ&žœ…¼ôôë§î«ÿùçýÛh4:”í@ïê½·m§¢NIà„„.æÀ•$g&Zòá+«¥¥©Š_!!àâ"qOG§ƒž=ÕZêŸ|—.©×¯]½Ê®cÇ8Ƭ¡GåÔô®É”]S¸‘tC'„$t‘£ÉÈŽK;¨á]G+LJn@h¨LUyÃÑQ óô„ÇfòÕ§_³¢W/’-bÏâÅÌ9K“%#CF’’™Â§{?%!-A'„$tq¯‹ñ9põÝ+uä¶ß|eËBݺ7‘w\\`Ö,3Ñë0ŽÆ ­[iK¿°0Z~þ9ÿùè#œ Î|ÞîsNFdÆÞ$g&Kà„„.îv:ú4––”r.õÈÖù¦MЩ“Z*Uˆ¼d0dÐ&p ÍHÄp×ë¥FàÊ¥KxÛy3¡ÉöFì廣ßa2›$pBHB&³‰ç7쌇íÃWWY¿¬­A¦îŠ|9³²0Þ¸‚‹9ûô4½ÙŒmL ɉ‰h4jùÔb|“ñ,>´˜_Ã~•¤.„$t–Àþ+ûi^²9á¡­óŸ†×^SI]ˆ-ôK—.±|ùrH×ÿU42d_~ù%Ÿþ9––÷×y®^½:Ý»wàjaÅÝß×ÿæ\ì9æ·ÿÐí"#á?`êT™ª&ò—F£ÁÝË‹f]ºÐ,#RRðÑUà£ÔºêMš¨*sÿp°tࣦ1pÝ@FoÍ´Ðiø9ÊZ¾¢;rDóX¼Þ|S=oÐ@àÅ!¡_»v„„‚ïZÚ+44”9sæpãÆ üýýïûÌÆ‰ˆˆÀÛÛ›¶mÛRµjU4R¿Yõx˜Mì¹¼‡r®å9nÝ:µ FÕª7ñìõèW®Àôéàí ÷.]nÐÛh,£¶ŒbÆžÌl5ó©r"ßÔª¥ û˜1EêÇËU—{rr2z½>[·¹··7·nÝâÖ­ìË+êõzBCCéܹ3õêÕãòåËôíÛ—ãÇç¸o£ÑH||üíGRR&SÑds3ù&{¯ìå¥r/=t»„Xµ :wV+c ñ¬Y[àAP­Œ÷×}÷wôg\ãqœ‰=ÃüóÉÈÊÀ ‘Ìf3ÉÉÉÙr¤Ñh|ººF£Á|Ïo±ÉdB£Ñ Õf¿&°µµ¥OŸ>·ÿß©S' ÀüùóY´hÑ}û¾zõ*‹/¾ýÿ€€Ú¶m‹]‘=HgcÎr+ý5|jÜyñúu8{öN&ß¹“{Á3ÅöíKÊ™-ž''˜8Q-æ2dˆZÐ%(HuÃÿó÷¡’G%f·šÍÛ¿½•…}ƒûb£—‚ B<´´46nÜHxxøí×.ýS£ùIº½½=™™™¤§§ß~-""GGÇûF¿ÞËÒÒ’R¥J±ÿþß`øðáÅê m»¸²®eñ±÷¹»«RSÕó÷Þ#!2•­¿ÁËí3eªš¸#* ~ÿbb`çN°·W-<=¡E‹|[‚ÏÚÆŽ…?TÉý³ÏÀÍ-û6•<*1*d³öÍÂÞÒž^U{Ém6!žê÷ΚN:e{mçÎO—ÐðóócãÆøúúb4ùå—_¨^½:^^^ÄÆÆb6›qqqÁd2‘€••Z­–˜˜8@U¹ @fV&›Ã7ó~½÷±ÕÛÞyÃÏO=þçØnØfUÕDÍåÐPuøÂ ª™laz=äs¯–§§Jæ~¨ZëŸ~ ®®Ù·iS¦ YLÛ= /[/BK…b¡Íç±&ܺ¥F*›Íjw µúŒ½½ŠÅ@®~Ó¼½½yûí·™={6çÏŸ'!!¤¤$ÆN§c̘1¤¤¤°páBbcc;v,nnn Μ9ƒV«åÝwß•h{#öb6›iè×ðÁI?6l€êÕ³åx!Trrw._Z£Q4?ýVã‰&NŸ»:š,´t,ß­FËøíãÉ0eЦtôº|Lª©©°u«Z.îÒ%8~Ú·WOZµRß´’ÐïhÑ¢îîî„……¡×ë ¦T)U¼OŸ>F ®®®ôéÓ‡›7o’™™I£F¨V­ÞÞÞÅ>Øf³™•'WÒ$° vÝ~ë–êM5Jê¶‹‚ÇÝ>úHuÁO 3fd¯`¨Ñhx±Ü‹\M¼Ê¬½³p°t I@>N ²µ…ŽÕóýûÕ7óþûr „$ôÑjµg›ºöúõëßÙ¡…Íš5“ÈæàlìY\=À×/†ß[\»œÕÔH! ¢  ˜4IµÒ'M‚>P½Û·ÿ^h´ô î‹ £6â?/ý‡ nÐj¤Ú´ùE~»žaë|÷åݸٸQÁ­Â·KL„T÷Î%n¢`Òh B˜9S•&ž1ââ²oc­·æ­šoѳJOþ6C×IÝw!$¡~‰é‰ìØKëÒ­:òwï^ˆW·…(èÊ” àÏ?áË/Õx´»Yê,é_³?uKÔe¶ œ‹='ABzáv)á—.Ó8 ñ·IJR«ªµm+­sQxÔ©£’úæÍðÕWwf_þÃÊŠ‘!#©êU•Áës-éºMIè…מË{ð¶ó&Ð9ðÛœ> gÎÀK/I¼D!ú#¢…úõaÚ4u»hñbuqz7³#4 ix4žµÿ7™äs§à·ß`ûvÕ%%„„^X¬?·ž~ p²Ì¹ð‡É;v@éÒ ñ…Oݺ0z´*W¼dÉ=%bu:\<þÂTRêÖd¬ÛnXÕ¼zYÀIIè…Åñ›Ç‰LŠ$´TèïŸßº¥F··k'uÛEáÕ¦ Lž ?ýŸ~WKÝÒ*UªQ3º¾5—äz5ÿ7Êxç{A!$¡‹mù)®Ö®¼µö-""0c–À ! ½àIÉLaOÄ4Æ 3ä¸MjªªÛÞ¤‰LUE‹F5kœ9ªÔúìÙ÷h÷´ód\“q80lÓ0ÎDŸ‘¤.„$ô‚çfòMND I`“–¼¼xQUÚ’©j¢¨ªZU-â²w/Ìšu÷»§­'cÅÑÒ‘1¿!ò–t¿ ñ$d¾ÈãØ±CUÏX±zöTÏ[¶TMì{컲½ •Ý+ç¸;³Ö¯¨\YÂ+ž÷èM5çìêUõÜdRWœ^^Ð¥‹ú÷ 5l¨ÖP6LÕ1"ûÒ«^v^Lo9)»¦ðÆ/o° ÝJ¹”zèšB<®ŒŒ ïÙÙ H>{–òkÖP©A\=<ZÁSzQԤɼw/|üñ75cfÍ©54ôoˆ»mÎË]¦¥©©jýûƒ££„Wž#k×JB9»vë;/í¤{åîÜfß>u›òå—%^¢øñö†éÓÕÌŽ1càĉìï;Z:2"dí‚Ú1zËh¶„o!Ë”%OÌÍÛ›ë9t«_7p/]ºHüŒEïú† °{·z~èÔ¨¡ž¿ø¢ªvñ ¸z½VO ï9¾Ÿ’7BãÆÙ Qœxz¤IªªÜ!jÐ\… wn?ÙìXg ÖÖLÜ>€V¥[=ð–S¾J~ æâÙ³”0™Ðñ |}騢…$ô©MõUÙâ!×òCbz"›Îo¢m™¶ØêmsÜæôiu­1s¦ü’‰âÍËK­Ò6ož:j´n­Ê ÿ“ÔÕ„¿£?·OärÂezV¥½O<KKK-XÀWöö”8tû°0ζoOHÿþIB÷»~ë:gbÎЧztZ]ŽÛlÙ¥J©‡Å… :*>“š ]»Þy_«Ñòrù—Ñiu|öÇgD§D3´þP¬,¬²í'**Š£{öàœ˜HÅ´4¬¬¬$¸"g†ÎŸÏù°0Rúõ£éW_áTF·KBÏ'[/nÅÇÞ‡rnår|?=~ùÞ_¦ª q§õ¤Zè^^*©§¥A÷î`ø_EFC» v8Z:2yçdR©Œ …ÁŽÌÌL6­\ɱE‹¨uìa––ürå ƒ-ÂMG9´Ô+V­ ööjùÞ¢tq,ïe¦ IDAT‡7ï¤ÓYsj ½ªõÂÙ*ç:®«V©åQ[µ’©jBÜÍÚzôP÷ÖLJˆx÷Ý;¾Z š6ÁÏÑ÷7¼Ï°ÃÓh ‰§#¹4t(ƒoÜÀæûºþË/,°µeäâÅX[[KpE± £KòÐÁk¹•~‹æ%›çø~BüðƒjyHë\ˆœ5n }¤ 3N™±±Ùß/å\ŠO[}Jrf2c¶ŒaÏ/?R/&æv2ðJ9™{‡Ï ! ]<ŠÑdäÿNþMK6ÅÛÎû¾÷Íf5øþÆ èÜYâ%ăètª ãgŸ©4C†¨¹êw×€/ëR–i-¦ádíÄ/|}ÖýóÔ“’H¾w1v!$¡‹G9}šC×ñJåWr¬ |ëü÷¿ð êÖâáI½\9X¼XÝ¢<¶o¿S€F£ÑP¡óÚÌ£nçWøÝFOæÝ¿oÀ±ªU©,ÁņÜCÏ&³‰?¯þ‰»;%Kæ¸Í… pæ ¼ñ†ÄKˆÜrqQÝïË—«ûꃫ• ÿ,gÐÜã–ÿË uR7õzö{xÐhà@œŸvMâôt5-åÂõ<:|}ÁÆZ´P++ ! ½èHHK`KøÚµÅFo“ã6¿ü¢Z*H¼„xܤþÎ;3f¨àÞzëÎ8WWwúÍúŒ}]_fègÃqðtçíw>!¤f³§ÿâz=4h  T?¯º ­¶È…Ÿt¹çð¸p"“#©_¢~ŽU¬âãÕ2©ÒÝ.Ä“±´T-óY³þ¿½;‹ªÞÿ8þ:³13 #;ˆˆ† æšKîšK™VW­,ë—–·k‹-f«Vv-Í«f]+¯•ZÚfWÍÄ\J33KÜQAHQ6…a›aæ÷Ç·0®v¯åôy>çááÌaÀïæ=ßóÝ૯`âDÈÊ:ó¸½A®»n3^úš)ƒd¼ÎÞ“{ñüçâë¿ûR§æ§mØ‚‚TͼaCÕßËK.Œ@¯o’%çG¿sÏüùçê=¡sg)+!.$[;v„™3UÏ÷ǃ={jv–‹-·ðŠi -ƒ[ò@ò¬ÉX# » tq~NWœfÕ¡UÜÐì,Ƴǻæçè¶s»]ÊKˆ ¡iªéjÚ4õï}÷©Ñ#gÎ ·5äÉkŸä¶ÄÛ˜øõDæmŸG™³L OÔ{Ò†~j磅nQÝÎzÌ㯿V‹±  e%ÄÅO=«ÕÚn¾FŒ€ Ÿ7ÌüßÕÿGTƒ(^Þô2ÙÅÙŒºz "ЄÔÐP\\̆իù¢¨ˆ¬ì,’&Ó¯I?¼MÞç8Wuíß_Í‚%„¸x¬V¸ë.xúiX·yrr~U[ÑèÓ¤¯õ{='öðЪ‡Øž³] NH  Øùý÷Lïу’[ožgózödÛ'«wîEÍ÷íScôï¯Úÿ„—^¯Vg›3aÄc YUÒ™²Ÿï°ë4‰!‰Ì8‡¶amù늿²x÷bNWÈ„3¢þ‘[îçéôéÓ,›0SRðÿùØÕièó|ðäUB`Íó=5v¶];ÕÖ'„¸Dµ4j¤ÚÕçøòÊ[ÍØ þ 1Q^\BÔþþj]õví`Æ Ø¼Y-ðÒ³§ºEïeðâÖ„[iÒ’9[çpÿÊû¹-ñ6n‰¿o£÷%z÷5¨OÆAn®j˜ùDí_u•zã®ãêÕ-÷ÆññìÿeœÊ¯ìµZ‰mÕꂟßévòuæ×4ökL¬ëìŸs䈚àâæ›Õí>!Dí¡×C×®0k–zï~â øç?Áá8ó=!8—z¾Äm ·ñ¯mÿâÑ/%»8[ ¯¾ðóƒ¸8µ½þú™ý€€zñß«WžÔº5¹ýú±Ñj夦Q il±X8Ô½;í.ÂÊ(¹%¹|~às†¶ŠÝ«æ²iN§êÙÞ¦êÝ.„¨}4M-ÃúÌ30o,_·Ý6À/b|;Œl5’φ~†—Þ‹[>¾…mûù¥ùR€u]` $%©­[·3û Ö‹ÿž¡~ý±jÜù÷¿³¦Y3²6n„mÛàþû~ë­/BƒöšŒ5ø™ýhÖîì»{á»ïÔJPšL-D­ö¤$Õ®>><û, ·Þ ¡¡êœ ï ^îó2KS—²`×~,þ7c‚"hé©B¯é¥…ÔÐ/µàÐP†>ò½ßz‹ž±±üåñljnÒ䂟×Qé`ñîÅ n>˜kÍÛ3••°jÄÆJ?!ê’ðpÕ¶þâ‹êoøÿþOuju»Õヅ¡-†òÆ€7°…Ç0Æk5ó¶Í£ÜU.…'$Ð/£ÑHhx8a^^^ü|‡Oö©ÎC[ =kµ¦Ã‡Õ›Á]w©#„u‡Å¢î¾~ú) ¤ÖYè!5ÄÍéT3ÌÅøÅ0µÙX¦l`YÚ2nùø¾8ðEåER€B½.É+Íã‹_0¬Å0ÌóY/]ªÚå.B¿;!Äâ㣆µ½ù¦º%?~¼êsò¤z\ïžAíygÐ;ôŠéÅÌïg2~Íx¶ål“ i„z]àÁCJN …å…ôŠéuÖã¹¹°l  ¾¾R^BÔeš¦>˜Ož¬ÖY_·î¾[MLóËô±!¶ƶËŒ~3ð·ø3fŦ}7ŽìƒË¥ »¢BÏÿe¿ªJÊæÕÖþ‡2gîù~±ý÷ ?ëu÷öÛФ ôë'e%ÄátªUXNŸVkçäÀ?ªYebbTÕûw²Û¡woèÜYuš›4 ZúYt-*ÀËËHBp/÷~™-G·ðïÿÁç>çoíþFÆ=¶£]éÞ±‡C^žZú±¨H ÙÒ4U&þþµ÷z~÷vðî»ê¨ Ò±£¼Þ%Ðÿ¸ƒùI/HçÁbÔkÝ÷)Ïoxž•‡V2ºõhš4ÃËàuùË¥ukµUVÂܹpãòZ©ç¤ ý¿Ø»›YÕz&}ÍqìÇò¼X¾\­æt!Da39éÕò$‹Á£ª¾3ÇÃÀÑ£àñhÄøÅ0¾óx>ú)1+Æ0îËqüpì•)D!5ô+ÁYåä³ýŸ‘’H|Ðك˗U\‡¿?tè ÉQßååå±sýzlÅÅ$–—rà V®¹¾úJ-üòé§jbšáÃÕ ƒ{/÷~™9;øüÀç<¶ú1Z7lÍ퉷Ó.¼¨úåt°à ßþô-w%ÝuV;ØÞ½ð¡ù.FV3 !ê'—ËÅ—}ÄÜÁƒñ<ý4G““™:d™‡¬ÖUyóM¸é&X°@M#»zµêŸç¥÷¢CDžîú43úÍ@Ó4Æ&åéuO³?o?® )`!~©U¹«X¾š{ !5ÛÎ aÚ4èæ\KŸ>R;¢>ËLKc߸q<°i½óó¹9?ŸûW¯fÁCQZZЦAXŒ©nÁwN=’“áÄ 0ë-´i؆×Í`Þ yœ,=ÉèÏGóü†çÙ–³Rg©´@¿TN_ø‚~MúÑÀë̪jn·zô(ÜcZ(a.D=·síZ:ååñëŃ©©ìÙ¶­Æ¹>>ððêÆÞ¹3LŸcÆÀ{ïYÑ-!8ýf0¹Çd•Æ}9ŽñkÆóMÖ7¸åýD\ iC?‡U‡VaÐèÓvæ3ONüë_0b4~·X Jˆúþá>?»ËuÖqŸòrÅg¿èõЬ™š›bð`ÕÆ¾x±Ú† ƒë®ƒoºEw£mX[ä“}ŸðDÊË4iîæŽC_Ò6¼-~f¿ï=BH ý8é8ɼíó¸=ñvB¼Cª»\ðÖ[êöÚ A2î\ˆ?ƒ«äÛ€~ÝÚ] ¤4oNËöí»¦d€ÈHµ¾ÃÒ¥ª°r¥º5?{6ìØF¼iÚŠ—z¾ÄG×Ï'þ`!¯n~•QËG±`çÂíqËEè„Ëíâý¢ÓtÜwCǾÿ^;;¶vÏÉ „¸xš$$`¸ûnÞ dŸ¦ñÑÈ[áátxðAÎë9,¸ãu+þÑGaçNµøËSOÁž=j^œHSOT¶çíëßfp³Á,Ý¿”ûVÜÇÔMSÉ,ÊăL)+þ7¹åþ+Ûr¶ñÙ¾Ïx¦Û340Ÿi;?~^Æ\µÖŸ­¥¨ÉžyFЧZ®IQ¯X½½>i‡‡gëüùØ33ùË«¯ó»žGÓ (ú÷‡k¯…T¯ø»ï†¦MáÖ>zÚ»ƒ÷nÌIQ j6ˆÇwðÎŽwþép®½šÛ[ÞNóÀæøš}1èä­»ÖÙ¾–,Qû«WCß¾j¿}{u[Wýò©pU0çÇ9tˆèÀ5áל©µ»ÔÓÒR0«º n!þL,V+ñ­[ïí ³f©þƒ4MužkÓFMâ––Ÿo.¶óVúßèô*tﮣU+?z4îÁµQײ5{+_ü‚Ië'ÑÀ«#;Ó-º-‚ZœsõGq…\}µÚ@ÍG?y²ÔЯ”µk9XpñÇãmò®>ž Ÿ|û›Œ9B\<šÍ›«Nt·ösðÃÈ%¬;Ïã«Ï ƒA¿~®‰¸†vaíÈ(Ê`köVÖe¬cIêš6çú¸ë;àÊL-+júè……ðKïÓòrøé'µïï6Û9¿%£0ƒ©ßMåák¦Y`³3µö x嵜âõ×KG8!Ä¥ öˆàJÂãöÑÿU5vý“OàŸÿ„×^SÁÞ«—žFšò—«špc³9V|ŒÏö}Æì-³ymËk l:Þ1½‰lI¯èuòf%^¤¥Á®]j¿[7XµJíwé¢VXø%•%¼•òQ ¢Ò|HõP¾øB=Õ‚`µÊ‹EqiƒÝb¨(xì159Íš5j‚š•+!$:wÖѦ•¤¤¦<Ñå Æ´êôU¬M_˪C«ñ¡CDZ7lM놭±åK½.»æµ§­Ù[Ùrt SzO©ñ©ö§ŸÔR¼wÜË Eqy5h·Üýú©¥ÍSR`íZUÁˆŽ†¡oß ÆÀ¦É,Ê$%;…õ™ëY´{öz6îÉ€¨ÞDKqJ _é骷¸N7ß II—íG—T–ðʦWÜ|0m¶­>îtÂÂ…àë«æhBˆ+ÅfƒÄDhÑB-þRPË—«Ûò3gBÛ¶0`€-ÏÐÃq8‹ù<ís’%3/e.Í’Šé»ã=Ú…·£¡­¡Ü–—@¿Dš4¹"½Ý7ówÎÇ ÖbF½±ú±½{Õíö¿ÿ]­u,„WšN§Vr SSÊŽ »w«ù1Þ{Oĉ‰ÑѺµ‰‰^ Oº›;’î -w/«ÇÝÈ—é_²x÷b‚mÁ´ iERhI!IZÏZ€JH ×);ïäÝíï2³ßLú4¬>~ú4¼ú*ôè;Êâ+BˆÚÉbQCœÛ´Ü\ÕL¸e‹jwûmhغv5зûU³˜Mï˜ÞtŽì\}üÄ xþyµÂ“OªOÃBq)UTTP“ƒÞåÂÏéÄh4þ®ï×ëU­=,Lüý÷«>«V©pÿä##¶ìY\3ÙŸîÝýéÝŠþ×ÜŽÅVɶã?²&c S¾Â³_?KóÀæôŠéE«VX°`1Xä"I ×^É“É.ÎfB— h¨*xy¹ZõØ15TÍÇG^BˆKÇãñyèß}ü1žµkñää`œ=›¾wÞ‰ÿœôB§S›¿¿Z›}øp8–UÅwý±Íõ³gƒË¥d >Þ@RR7F5ïÆ£×œfç‰mlÏÙκŒu,Ú½/½Mš’”@³ÀfÄÅãköU?hÇ8xPí= j¿m[éE,~ùWófʛܕt1~júF·[ͳ¼e üã4”Bœ—òÒR>yè!®]¿ž¸òr\šÆ¾çžcAF¿þúEù:4 w3,ú¿'OªJKZššÌlùr5ßFÓ¦vzõê΀k»qGb!'ÊŽ“SœÃ÷Ǿgùådý…ÝËN«ÐVt‰ìBw[qqê‡L›sçªý äÂJ _e®2&~=‘«¯bDËt5ÃÒ¥ªc‰„¹ârHÙ¸‘¦6б¬ì—*;!™+V°gôh.pÄÏ©¢"voÚDÚ²e莣Ù׫hÙ©v:tPCr].5$îë¯ÕôãsæhX,þÄÇû“”ϵ-{rs+°ø”q°t ®gÞöyL.É!ØLÓ€¦\Ó¬‚¦eX´jØÝUÔƒ¾¬´”›6‘¶r%•™™4[¶Œ„Îÿð] ôz¨²ª’eû—ñMÖ7,¾y1fƒ>ø@õ4IÂ\qù¤oßÎ5¥¥go^P@FjêúG/¾ˆí½÷¸¶¨·¦±uÄÜ?w½ð :ü§¶{îQS]ïÞ ©©êßU«4ªªÀn·׃¸¸ôj\t€ç~Ò ±ÖšÃ‡^Ä› kMü›ëK|P<1¾1ØÍöê¦Íó±|î\Ê&O¦]a!f·›”»î"õÖ[9}:f‹´çÿéÝãñ°,m3¿ŸÉßÚÿXÿX<øê+u§è‰' {wy1!.Ÿ&mÚ°×j¥Ù¯BݤÐá³Zþ™™™”.XÀ]˜~>“ŸÏëóçsdôh5jtvü¼†{d$  :çç«-3S-!ýá‡pì˜6["±±‰$$º¹ew6¡£ÊTÀüýlÏÝÆâÝ‹ùéÔOؽìDûFÓ6¬- Á $†$` @Ó4tèÎ.—Í‘÷Þã¼<~™>²¨ˆ÷>úˆôQ£hѺµ¼pþÌ^RYÂG{>âÍ”7y¾ûóô‹í‡Ë¥‘œ /¼ ¶ä… „¸¼ÚtéÂì=øî«¯Î´¡[,_=-Z¶¼ çþvÕ*úäåU‡9€ è‘“Ãæµkit÷Ýÿõû5MMhc³©©h[·>3ÉVi)lÛ[·ÂîÝ:–íEÉÐìöbbÚÒ´éºÇƒOÔiŽTîæ§Šl?–Âò´å–b÷²îNÓ€¦´ nICŸ†øYüð5ûòÝúµ\sø0¿^jÆt+(à»/¾@ÿ3zIe on}“åiË™Òk ½÷BÓ46|«VA¼ë. s!Ä•a¶X:s&›?ý”ôÕ«!'Ó}÷qLjüÜ11dšÍ´(/¯q<Ëj%,:ú‚žÛjUKct颾.Úÿ$GÞ\É‘#jâϬ,Õ”YZj§ªª3v{g"yˆ t ùÅc>ŒÇ|„2çO,I]Bqe1Uî*Lze§¹^_N—ÿø™G¼¼mÒD^4Ö@wV9™¾y:ßd}ÃsÝž£g㞀ÆáÃj¦ÙAƒà|HBˆKFÓ4¢cci8n…ýû£Ÿ<¿±c1.üm¹Ãµ×òRãÆ´NK#ØíÆäêtl‹‹ã©Ž/êÿÃ׫ßD5=­Ç£zÍCQ‘š¨ëèQسG#3ÝÆ‘#ÍÉÍmŽÑÞöJFŸ¦id1 £‹ñ =AQÀA6Gç†Â4"x<½±Ú1"x"]ò·aw—±:à*Œq§;Xwp.cxÆÛb ÀêO5ˆP[(‘ "‰j…ÝlÇÛèÝKýëmòÆf²ý)¾ÞznI.×Oä„ã¯ö}•«¯"#æÌQm>Ý»ÃØ±æBˆúíªÄD½ñé»v¡=ó 7¼þ:ÞÞÞWü÷²XફÔ6x°:æp¨™:óóáĉpNœ˜MáÉ4Ž¿ö> »…>ÇÉð=Á¾©h>_ãeu¢é]¸Ü.Œz#~f?­Z ö&Ä¢¾¶¨cv/{½Y¨¦Þº¥<ºúQÜ7/õ˜B€§ÿü',Z¤–BŸ:U­X$Sº !þ l6Imۂɵ Ì‹··š`îÌ$sÜîV”¯x’²×í”—«Îxåå: }ÉÌôåèÑ8Nœ€œ8¾×EnQ9åî2*ÝåèM4,Ã'¨òà£÷ËÄc=A¥q§ªŽSâ<…Þf“«ÉD°w a B ö&ÔBCŸ†„ÚB ñ¡¹zMÎÛû¿lµeq›ót·ÛMjj* Z´hAddä9Ï­ªª"== ×ëiÖ¬7¾dÿig•“]¹»øû·'ÐÄC‰“Ù»!¹sÕ å™g o_5k’BˆÚO§«¾ë9V¼ìÚõì(«¬´qì˜Ü\ªƒþäIµpMîn()Jx•ƒ·—£½l98'ùI—Kª.‡ç$EÎï)× 1z—b´–b±Váo7h÷Æ×Û‚Ýb¥Å†¿Å‹?Ö@|¼|0ÌX ¼ ^˜m§±œLUû3fƒ“Þ„—Þ«ÆÊžW,Ðׯ_ÏôéÓ‰ŽŽ¦¸¸§ÓÉ”)Sˆþ“‡-[¶ðÊ+¯Fii)EEE̘1ƒ˜˜˜‹úË–²åèV§¯&%'…Ä $Ú—?à ),„#àºë $Dþ8„¢>3™þ³–ÿë ©º­ú4œ:ÅÅFŽŠ‹Cp8TØ©Ç ¡¨¤œòÒbÊŠ‹q¸J(©p]Z̾ÒÊÝÊ=§ñ˜N9£}?»›Ý…ÍVŽ¥¤ïŠL´þ†ÉWÃlôÂj´b1X0UèÛL¶êí—6~“£o£7V£«ÑŠ·Ñ‹Ñ‚ÕhÅ ûßq}^ž››Ë›o¾I÷îݹï¾ûp:Œ;–¹sçò / ×Ÿi8uêsçÎ¥eË–Œ7·ÛÍ„ ˜5k3gμ Zº³ÊI‰³„Œ‚ –î_ÆÚCë)+÷Ð!´+æ°eY æìnÀСªã[£Fj%"!„îÚ¾ÚÂÃÏ}NU•š ×é§ÓŒËeÆå Âå¢z«¬T=øóó=œª¢°ÈIQ±‹b‡‹#GŽ’÷éHúŸÎ ÆYÂû[SÙdº Wð 4[ Ó)ÜÆÓàU„ÞâÀäs£÷atfšW C1UúRÐ\hš†¦ièu:ú×l0ãmòfÖ¶ ôÇsøða^zé%ìv;7ß|3o¿ý6Ç'üW%TPPÀ¾}û9r$þþþÕçNœ8‘¼¼<‚~éúø?¸ÜªSƒÓí¤¨ìiyù!û{’÷ndWj¦ÂDZž%Äq >¤V¨É-’Å~„Bü>z½Ú¼¼ÎçlíçøTZVVÆ´{§2úØvþ|F¿òã, ~Ÿ«¦¡Iâ@JK©¾ðËþneePZQI©ÓAy•ƒJ85N8µœš­øø…zqq1F£¯_ýO###9uê§OŸ®è•••8Îêàˆˆ—c ÐIDATˆ ¢¢‚“'Ožèr³xðã)Té*pëÊpkå¸u帨ÄYåÄév’_rš}©.òö%cMW{‘ c , 6TkGDH‡7!„—×Á}ûh²c¡¿:fÚ°oã*®½®Ëïx6ÓÏ›n·º+àtžù÷ÎÔèn·û¬[僷ÛÛí®qÜãñàñxjœ¯×ëñx}úœ÷/Ò¤´”Ôƒ%Ð…Bˆ? VL†ê¾ ¢]÷îrE„¢p¹\äå‘_UU£Ã´¸r®øâ,E:ËìvôÆÑ$6V®ˆBÔry'N°á“Op|ý5>Œ÷œ9t2„°F¤pþÌîŒÅ÷ÅéÙ»·\ !„¨ÞöYZ,ZDÇÒRt©O=Å¢M›xdÑ"t29ÈsÅo¹FDÐó/ÁïcÔ…BÔ.{víÂþùçô*)!Ìí&Ôã¡»ÃAhr2;RR¤€þÌþË$ôB!j¿´íÛI*,¬к¸˜½[¶Hý™]!DÝÑ8>žý¿Z«ã{­Vb“’¤€$Ð…BÔ­Ú´áh¯^l¶XÈ×4 5ÍfvíJ»N¤€® ƒBˆó®êtŒœ6Õññ¤û-Ú®]¸î»ÛFŒÀ`H‘@BQg„†‡3|üxNÞy'ž#š0¡ÆòÚB]!Da2™Œƒ$Ì%Ð…B\"›7ÃáÃàrAN,Z:tìQQR>èB!ꄨ(hÐ<xûmðñM_ßÚý{õ•Ú~ú žyFí÷ë]ºÈu•@Bˆ?™°0µÕ5={ª `òd¹Ž¿ƒ [B!¤†.„âs:¡ª **Ô¿ååê¸Ñ2'º@Bˆ:Àå‚Ï?‡}ûT°{{믪ãƒA³fRFB]!jÿ»¯nºImB\Ò†.„BH  !„B]!„…´¡ !„ª²µïrAa¡Ú÷ò«U]!„¨‚ädµï¼£ö[µ‚^½$Ð…Bˆ:!>^mW´¡ !„õÀ•¯¡ÀÚµjÑ€- 4T®ŠBQç]ÓÔ‡š¦6!„BÔÁ@÷óƒ=äJ!„@ÚÐ…B t!„BH  !„â¢qèB!~Ÿ½{!#Cíçç«e`’’ 2RÊG]!D`³APÚùeÕ¹Àl–²‘@BQgDE©MÔ*Ò†.„BH  !„B]!„èB!„@B!$Ð…B!.„B t!„BH  !„èB!„@B!„ºB!$Ð…B t!„BH  !„B]!„èB!„ºB!$Ð…B!.„B t!„B]!„èB!„@B!„ºB!.„B t!„BH  !„B]!„@B!„ºB!$Ð…B!.„BH  !„B]!„èB!„@B!$Ð…B!.„B t!„BH  !„èB!„@B!„ºB!$Ð…BÎ÷DÇCII ‡MÓ°ÛíX,–sžër¹(,,ÄétV3¢iš”z=UYY‰Ñh”k\TUUáñx0 RõäoÓd2IAH +ûöíã•W^!//ªª*Z¶lÉOøàƒß<ᡇ¢ªª N‡Nw¦Bo6›q¹\¸\®³¾',,ŒI“&áããƒÛífÛ¶m<õÔS4nܘ޽{×8wïÞ½ÜqÇr%ê={ö°k×.éHUäææâv»Y¸p¡Fçv»Ù³géééRõÀöíÛ;Ð#""èÞ½ûož„Ãá8+¼ ±X,ç¬q[­Vââ⪿nذ!o¼ñ)))5]§Ó‘’’"WH!„8OÞÞÞçô„„þë7———ãååEFF7à»ï¾#22’ÿùÃN'‡«ÕzÎÚ¼B!.ÌyÝŠŠ¢[·nÌœ9‹ÅÂÉ“'Y¾|9?þ86›S§N1}útºtéBïÞ½Ù¾};û÷ï'!!ÊÊJ–/_NYYÙ½ „BˆKèf³™ñãÇ3wî\^|ñEÌf3=öC† ÔD2YYYÄÇÇWÏ7ß|Ã{gN§#66–÷ß¿ú6üºuëxûí·9~ü8‘‘‘Ü{ï½tìØQÚ^ë ´´4ŒÕj­ž¸¢oß¾<öØcøøøHÕbL˜0ôôt²²²˜>}:7Þx# Æ.oß¾™3gräÈüüü;v,={ö¬Ñ—FÔ‡ƒñãÇsàÀÒÒÒ˜6mZõØóÔÔTÆŒCqqqõðḸ8æÏŸ/W ¯ãܹsÙ°ayyyØl6z÷îͨQ£hРN§“>ø€>úˆÒÒR®¾újxàbbbÎbyäy䑳 ¨ñÂhÓ¦ o½õÖ9Ÿ'77—'Ÿ|’aÆ1`À>ûì3&OžÌœ9sˆ‰‰‘«YÇTUU¡×ëy饗ª?ÐY­Ößl㵇Ûí&<<œvíÚ1}út*++«ËÊÊâ¹çž£K—.<ùä“lÞ¼™§Ÿ~šwß}·ÆwQ»®gHHIIIÌš5«Æ<.—‹’’^|ñE5IÔÎ÷T“ÉÄ=÷ÜCÓ¦M9|ø0/¼ðV«•¿þõ¯|óÍ7Ìž=›gŸ}–ØØX^{í5¦L™ÂÔ©S¹ìUâ/¿üoooFÝngĈlܸ‘”” ôºz›Ç` 44”ÈÈH)Œ:$00‰'V×~m×®]”””0räHÂÃÃiÚ´)K—.%99Y½–òññá¹çž£´´”÷ßÿ¬Ç5M“¿Ó:rï½÷Þê;Öqqqlذ 60fÌ/^L·nÝ4h:ŽQ£FñðÓ••uùgÙºu+Í›7Çn·W¿©DGG³cǹ’uÐ/·_xà:uêĈ#Ø´iÓ9‡3ŠºÁårqèÐ!¢££«›ML&ñññìß¿Ÿªª*)¤:F¯×ãëë˸qãèÔ©7Ýt«V­ÂívKáÔ2š¦Õh~.(( 55•æÍ›SXXÈáÇiß¾}õ{opp0F£‘'N\þzII 5jwf³™ââb¹’uPHH³fÍ"""‚ŠŠ .\È3Ï<Ü9shÞ¼¹Päv»«G¥üº½Üf³qüøqœN'z½^ ª ã…^ ((§ÓÉÒ¥KyòÉ'‰‰‰©1ÄXÔ.¥¥¥¼ýöÛœ>}š‘#GR^^Nee%6›­F†zyyáp8. [­VJKK«¿®ªª¢²²²ºÆ.ê???ºuëVýõèÑ£Y¿~=éééèu”N§Ãb±P^^^£WZZŠÑh”Ϋu¯¯/:uªþ:22’ääd6lØ ^‹-\¸äädžzê)¢¢¢(((Àh4ž3C-Ëå¿åÞºuköïßÃáÔ´²YYY²ªS=¡išÌÙ_Ç bccÉÊʪþ;u¹\ìß¿Ÿ¸¸8 ôzò¡MÓ4¹å^K9fÏžÍÂ… ™2e ×]w:"##Ù¶m€¼¼<*++ ¾ü5ôë®»Ž9sæ°`ÁúôéÊ+¨¨¨ mÛ¶rë ””ÊËË £¢¢‚Å‹c2™¤ƒcàv»IOO§¸¸˜òòrŽ;Fjj*QQQ$&&b2™øøã0`[·n%;;›~ýúIÁÕb‡¢¸¸˜ÒÒR²³³IMM%""‚ÜÜ\233iܸ1•••|ñÅÓµkW)´Z¦¼¼œwß}—yóæ1nÜ8¢££ÉÎÎÆh4̰aØ8q"kÖ¬!::š… GTTšç—˜¿Œþýï3wî\  á¾ûî£OŸ>2Œ¢úøãyçw(,,D§ÓŘ1cèܹ³\ÏZ®¬¬Œþýû“——Gff&4hЀwÞy‡V­Zñí·ß2cÆ rssñööæþûïgðàÁÒ~^‹õíÛ—ììl²²²ðõõÅÏÏ3f Óé˜2e §OŸFÓ4BBB¸çž{8p Ì+PËäææ2pà@8@lllõß[\\|ð¼ñÆ,]º§ÓI³fÍxôÑGIHHàÿøjG&Çù®>IEND®B`‚pymvpa-0.4.8/doc/pics/ex_erp_plot.pdf000066400000000000000000001052041174541445200175660ustar00rootroot00000000000000%PDF-1.4 %¬Ü «º 1 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 2 0 obj << /CreationDate (D:20081113012040-04'00') /Producer (matplotlib pdf backend) /Creator (matplotlib 0.98.1, http://matplotlib.sf.net) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Type /Page /Resources 10 0 R /Parent 3 0 R /MediaBox [ 0 0 864 576 ] >> endobj 10 0 obj << /Pattern 8 0 R /XObject 9 0 R /Font 6 0 R /ExtGState 7 0 R /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] >> endobj 5 0 obj << /Filter /FlateDecode /Length 11 0 R >> stream xœí½ËÒ,Ëq¥7¯§¨!{€q¿ E5f0q@&MzFµ`’á¨E¶Ìôlz;­Ï=7°+Â’š²–™ˆbŸ]••™~Yî¾¼¼ûÎïßë¿¿y¥wzÿò^£éÿ`ÿÛçПÒÿWÿú[}ï·úÓo^ÿüÊöwùWùjïVúWMÛÿ“ßÿôËûןÞÿö?þñk³}ñÛÿ¥ð¯òþí+·þUÎwúå=S½ÿú¯dU~Z‘Z³¾VÓúÚ­ûºß"ÿ|ïô.ú¹ùã?ÿÿ7¾ý†oJ¸¬¿<«ÝóÒN²ÿüÎi_cwIûëÇßµþþ—ÿðþïßÿËû×ÿ•ÁzûcüËïŸ?ü·¿‘¤¯Ôû^©6Ix®_k••z–xèÆ¹¯”Ò«¦6ßm¤¯¹ç˜{ÔÌ£äžy„ÚG]×÷ñµòìiï.©yç>¿ÖN©µRÆ»Õþ•ôÁ˜úA»zèvµÍZòúõ¶¿j_u×ÌÇ﬚s·’r›úñ:tóUuEá×_ºÑ×,MKÁ?ï¦åÈs¤6ÊNv÷•¿ôäzØ4ÖÒ˵¯ºõ—ú;¸~ͯ‘k[-•ÝõûZ¹Uz×ÖÊõ»~õ®ï罓ÎD+:kýß\¿÷WOeu½mÚþòzþ¥µÓZýA[Ñ¿ô§ÞæÎY¿?ÓWmzh-X麾ä¬*E×Ì¢ß×jl½nkz(î_òüªuì¢W.ü¾^wIljž÷/ÈÒÊ#繫–·ksrj¹ÌY7×—ý¥u/{ëê»îñUµ¹ºWåù^º±,í5'WÖ× ´¶V·Û·ü¥ç“Ømujk”œ*W·ù•Fªƒÿ õíµö^}6´iéU¢Ó%J}OíNÖÓ÷QWÓ?l~éHïÖ£ö>ùùù¥—xô!ÙÖõ£Iv´èSrßLxÖFÒô8¬~ÑrJVô„¬ï»N=Žž†ýHë§ÄEÒ"Á®{Ùãë^[R4¦=¿tú,«m] EwQ-]_àú¥õ˜ÕÖ6kwôs«ÉP$ ŸÝ7IÏ”àJ|·=ߨ’ÓTó.º¾¦ô¥c!qÒ†Ý_‚Sªoæ^5 Iä·òI7ϯå/­wͲ9]K’Kªü¾6[Ÿ þAz«´¶tä­Ó2Lzµ+i}~ý*ÒVÓÌÚ Ý^O[gÊúδËkúzDw ?º·d]™Ëõ8Eȹçhj3«N‚ÖÏžMGA‚\%ni¶—©­[Ú’5{÷¦£X´¬:-œÌ­¯wýþ®Z/>ïM²£Å’p¯ùÒ´v»åÝõ7|®LI{%YÜÍÔŽV.I|²§Ïû—¾› ›_-µ¯Ò“7éLòùd3×rÕàk?gÓëê÷ìsé%ýº‹þ Ù“ž¨­å¿¿ªdgeÛ\¬¡D½—l«ø\š©êÑyýâ÷õÝ:›ÞÏÖgwnhZÑN¦dSZ¤è¤°øRUz RôÌÚΪëµ{K/®f«ßÒ”ìŒ]9Lœü¦ßO’{ 5›‹ž–жŸïCë¯õKRJsÎ2ìsŒ:ºISëúÂÙ“­ís™w=CÒût-¿$MZA ž%«|,sSu½Ž{æhʤè Igë¼Vû|êy“^–÷}éDk5$&RX¶ý­IV«^NzTGÑDGdLž=¾½¾*­¤·^/žF*PÂ.UÏÑCÓåÒÌj$¶_×§)áÕûÙç:«z] ·NÛ¯çÓi-µ?ö¹Ö;K^í?¶ý¦$´x¶}m‰Ï²Õ/Ú~mO]’|©{¼)ÍÄ1–iádÊQÒË­Õly–4“¾´JU»ÏI›ZjIõ²ŸßXÉÒ'ë;ìdïŒáÓõþ¹4SÕ‘5ëÚ})B-µ~AVŠ×“M‘8êöXŠm«e`x€âŸë‚b‹«%ÖöÍ/ ²Ì*+Èç:Ì}f·ªÕvS'HšPŠÍ®/ÒLyh¿e ^˜µÌjIös·ß{Nž‡ÅÌÒì<_¶Ë«Sê.›Ú}¹2Úy¸¬ò¹S—b@=dÛ쥕/¹È:ò¹T‘”§þ wá—ÒÒ™)þx²cÚ ÝÜL¤*ôþ² Ë>: :²¤E»/»¥YIË^ìþC/$ííªW²®³.›µd…lûô+:µgûçe†EªK1ízi£$ß¼?üŠªN6Ñ>ß_{4“4ˆ®G˜$®:à&Ý,‰L&¦MÛ?ðzäT׬}K7õâGW»_åž/iq=`.öù”ô ™:Ù;;za¹*S/ µ‘_2ÿvš¦6á’ƒãë¬Hó$Ê:i»­©/˜èkuµ/85¶÷ø;z€j¢)ã.Ñ‘äšÕ6Ñ×V#)R·ö¹ö«ÄÞ'¹,r¸ôí­dR²ÓÝ#ÓÞwytE‡Z¢g{3ð±’4)ª…“¯¯Ëc•]˜æ² ÝPǨÙÙéæri]PMÛ\¢!a“Îp½–ýèt™Wí~·××Q–Xþþæ’i•*6Ð ‹ ^Š^aɘKqòû²DÇÇ>×zÕêÓ³²ìföß—Ë™Ø Ý±kýP4:wEjÕdGÇöKJ©K=HcHsJvô}¶ì»·´]ãñþµù,÷Òò˸ùû|nvN¯79Z½\¿ÿÂÎ4I’þ¥×|=ŸÖON…®ÜÚ]S-Ÿï÷ÒúÒBéþºi¿ÖG²ŸP´rèµûZß¿¯Ëµ÷2ëÚS}RìYz¢úûì¯Þ_G¹ãêoùxc™’~=ãŽK¾ìðÈ£‘£-c0.ùÔóo-‡do):™—|ÛÙÕYzzöëx¼ÑìÌÄao÷éz±<²ÿÉY×u8µ}ü¸^©žgûUÍÃ,½46èR æà3链OÍ"Å¿´úC_“îÍ—f2/C‡WoWÝð|j6]/; Í'#©xiFÛ}ZYùäÏ÷¡Yew%¯©VÿüC3ÛóËÉ‘æ~v÷S³ÛýõM-˜Ôs»,ƒ¹¼ˆÞÒ:ö˰Høõ´¨e _žÃ$'lâvȬt-ÊeØÌpèp*ÔrõÓ.šìi-7.UºÍê‹€F @ÿï6Ëòõ2òÌ'Ñ]»Ìº ÏÖþèøØõŸn9Qz#‹fgóÓ­Ðëë((D–Ë›l÷>Ý’7ÒUµ”IB>ÆåÖØîIªå•îü¸=?{Eo–W–\IÙ¥vyUv½ÂA zsÝöé•Iø¥ ´Z²eº÷Ó«{®ëùü —WhºWÑ ÕÔ/¯Ò¤G‚¹–ÎË+•ôEèç‹´ðíÕ¾ìs-­¼Öâ^íÏN±BÝMúI¿Ýj¾|jÛ~‰™Þ^Û½.Ÿ\wc·ô› YÜ'ÿðéMõëäÈ2ê‚rņfH`å(º)WL¡ûËRh-¥¸@_1‰Et ߤ†"—+¦yq:dS¥}±7WLôÆ«ÔÓ*–ÓÙ¯˜ê…iÓŸäzLC3Ž˜L·“4gô®Yâ3¦s· ¤딯˜ÐÁ ÄÑU |…”/„]6G2­ð~]!©Áúá.[¶êÏÚêï&ŸO«g†÷3® XÑãòz,Ø?¢i8ª›^Ö|Ò3/¸ìZ<9H©\Áü‹½¶‘Þ4Ÿñôõ²µÎÒž­_`‚".-w2Ÿö#Šž_á\)ìðû3Ün*-f xO0Ä .9 ’g{¾O0å…pëݬ¬=#YÀ&ÉŒN{þO0Ç-‡ …,‰Ž ÒrD-h¼O0é…,+˜ª¯ÿþFIÕæÕµúz ö>±, Ùdˆð1´úü€Âôú{¢–”ŸHÚËD}!¸+›ê9‘¸‚DqéÛž$ÏÞa•Ó4ýóO$˜ ¢˜µåˆÏ'’h!S—þÒé°£s‘È~6¼¦Ü@¦Ž¾Ü-3ž‰­Î „f"2Ü®b8â'ŽªÅ—ž—ŠÕi[f–ωæ lõ>q\i.íEBsÊs¶?Q`ÂÕ•ƺùt ²^œ¥%¿È/? hé=BñÛÍÇö -^ñž7vÇ>ÿ7­(½ ½kHÄŸƒÇ_äŠþáýŸ‹ÝX<®ª4µ©©`ñ+}™s!Ÿ—3pañ¤÷”Ę8ÀxYã½¥møõ€ñ•H@’¶ž`<ÆZÞQF+Œ—w£MÄ‘7¸õãÑ r³%Gë{ñ:ðRÅ:÷É!ÁŒ—+ª¸Ne7)¹Áx-ýÖÉ{5ûp‚ñ²ÒÔ5UÜŒ—³”õÇ,·äà ÆKá%~9 ÛÞÿTƒ#¬3¸-ºÀxΘԩœ6n0¾²Zz—õCƒ`¼ åSni“íŽç¨JdÎ×®—\7ùhÚn¶ÿrÝ,PW­ƒÞü쮟EN8~¬Áå9šliu,¬þáyÊH2¤ ,N4ž“¢ûT4Ñxi‚œßíçtýwq;­Št…m¹ž¼»yÏ\þö´Ko,¤£á/ÅœHÆ(œ%—ñ:Âζ ŽÕi¶¼ÂV‡SçôI½`8ް×r=Š9é˜q…ÍvöIóH¸-n{a7²,éí Êý ÛílË·¬j¯Ùý#ì7×Zj”TÕÑxV[k%Õ†a}¨C×Q×ËiuµÑhaË£;ʳ;àòOЫß,ª*ž„>Ñø)Ý"ª­(¦:OÌEÂ"½¸ô>ÝA“Ÿ–¦MÈz¶ȩ̈Z2ƒDq0#û¼KåÁMÓ׉9!¬ò ô‹îZŸh<šr4,U!l}˜—Tôæ$™æÛÆËÍèÚÝ¿a^'æ†êWd´Zq¯é€ãÉÑcÅ´ãöøâ‡0b¾!‘œb(aÂðION¶ïåÂ)l“ê»]p¥}Ü'Ю¤˜Å?áÎë,UlÁñRÄ MÈ šñu­ bÚ¹ž‹¸àx­ì»”«ßÿ€{A—%ºl9'OŽ]Ro¢ÄâŸp³¼b.9`ž8Ðx‰zA«fùDh®í6—Õ‘™p´ý@ã'ª05™Ïx íÈŽŽ جåDãÉs¢™²|ÛüÏß'4áTgi˃žÏWÍLÊ .V ñ:Þ¯vð^ùœŠnZ€Æ[Üœ/ed% çòâ#N,‰.´ç?¶UV- Ű½Îí•#wP/Œ'÷¾Ñx¼$¹DEïPMxñRØK¦fãsšˆ'¿/ͺqDlÿñÖóIT³&öüŸ‡#ãik³ÎŽ=þçÙ´‘&PÈ"õo—h¼¤»è ƒ0ÀTçÇÑ–9AóJç©ådÈ_’O"õáŠóC±òxry–vvšÓv(f"Û¤eFžÍë9;NTÁLkó¬Æàã­CKA‰‰žÃ^J›pÔ ×ÆK÷Pa1–üz»ÿaØQ¥åÈíÊR-õ Ñ÷LÓë4«äJ™‘;@ãm5åÔpìñ³žq’È„éhøáà‚wŠDLXp>ÜŠŠO¬5–ÏãYàŸhv)Vy®V>u¸5À¥»má @‘52vÿO·ªb×@iýŠ£í/'Q?×Ð~î5~ºuÒê_ÄR­Ý³‡W˜€‹uš‹y^¥—5U§jÝh¼éƵ 法O]5&øÀS¢‹B¸Ñx|úÂZôdµs‡Om¸œ–eQ[€Æ#-ƒÅ'6ŸÿÓ§çö‹ê.ùψ€TKÁe((g"ŽÏˆÂ2Mæ´"®o‰8‰×³9¯#¢A5(П¤ Î=#"jr‘k96øÔ¯#¢"ÕD‘€‚GWÜ'/Y³§Óy·Ú¹3 +òjJߤKlõ΀  8tÀ=â:JÙA‰U'žš¯£V1ƒÏÿˆgÉÄ( ¡Æd`üâr­ŽN‹ßý3šfw$Éz˜åIî ŒÏVdÀÁάó,þ&&É(ŸÒ—\2jãÚr°àL0³S$D}U¯›<À™­feƒRuŽu|bä¹Öƒœí‹—] Df© jùÄRtP¤Ø+–±ô‹×bZ8`ñÂäp.õCÅíÅC'D–@¼ØÚ0’¿:…ò#j„ÅëaôªúîX/çC«ÆÞA]<…ã2eº]58ð‚âq\ñ“§Ç?HU릋—Xã×(®¡x<…E¶Èâ Š—1ØTIݶНàÉŽJçŠçTò];‚â;™v=a±º÷ŠG½ê¯=¤ øA…›ìWvŸP<*¬R‚ã¹Ê‰·,IòƒfÞH<¯ÜåÚ¿AâqëqåGTßL2 ó>#$´“ÒSìq„ÄËzáWë ùêH¼ùP×~éþ¦“ê'I˜¯s¦ã§s>.Ûó0‹¯Ï]8ü"Ƙ:§ÝŠ>mŸ×–Rš»=‹páð”˜+¹½û2½V—½pÛt/¯ë>qxóQ%Œ^wþaù_”/&y­ø6^SâðZ{½(p”ç ~v< —ÕQÒ©ÚS\8üþ¢Ó%Éolûò{^Á‡ÿ±:/¹¥þn»âV%‡m))*‹WÈ•ŠÞ… x_nŸáÒI·ÇmšQYü ’?’W!eñ䨍qà¿âẤ"GeññwòÞ“î÷úXݽr–ÙË —=Å"MZY®íñ²/|`éáqWÃ>N­¬ô†Tg·DcÓ*˰£}áïD!4)œ·zqýðÀšûá¸ñ÷œiGx²7Ÿ½"/w!¡%¯£e«¯ƒ:H¬íëd¾äÞSïYÉ ^¥ðV)—! Ñz½´Â‹X²Ð| 0/­âè·G\)ï?›typÕpúÝ^œè;M>•”yu­w4 Éñ¤k8á¹”K«Úý«UzË—˜—R~ÊS’FVÑï¢ïÒK²?z„j®âÙ$E¹ÔÖÁÀ‘÷Z÷}§‰koY¬5iy¬Nçíx’‡Ic/;‰«aݹGç’æÂÛÉ Ð÷J^NËéöôÓ;N¤“›îÀœkyQ O›žî€eÎh²«º}¢ïÙŠ•% ž9:¼^¯Œj[w¦Nô¢ƒŽÉòí=¼!²zd›5½üDß­5]¹–zûbÄ Š¯:U%^q‚ïK»«Í+˪¹._ä­«[z)(é°Ôe|œ ÛI±:/:—sàÊ*×ÊH–uЯJø—´É—žL½Ô`½ýh„C› :šÕƒž~¸UM¢…KýøÔ¬¼(&óF‚Ï8€•_î -wÁÑZ‹N„ägBÌ©£AÁªsÝà;FCNIÙw!ü ôzÐF¡ã’óEùÏiM–D/hNæç6ñ®QËlà;Ã@¼|·¿þïɲ|Otö ®(4¡ä JiQ+«beìú·~¡ïVí+ÅS AnÐXÎîàmI񼂿G n¼g|ìuÇð¶ürLtš—~`‰ ZV"ý’oøréÝ–îRxë“(rµeçëŒúúi~.fä«ã3B‹˜õÀ5/d½àw¹#[IÊû†`ØíÒ-q8îRxƒ9Ë­¯[µØ'þc½í@¡STó¾ð£ªHiÊs“˜zµÝ'þä§gU*^Z‹h2g]AÙÆKð‰Á[ž"yÚ›½ŽöÄै¥Ú$<Ù; >À·—×\à•¥>ïRx £YÝA¡¾×Ùþ þÙý©¦È®|—›ªlÔ¦¨ê}bð/+Õ”(⶯•?0øõe}´÷ò|Ÿà§gúÈžÈú»Þª, ãkņŸØ«Y¹%“蚀Áƒëá÷º1ø¼"5yåÕ²Ot Ä:©ïq|"ÏÖ$¡Eõ2Ý·æî€I¦?{µüO°·V¢7>åÏ¡âÿÏ xçÇù—ßû"þûK;× Ác³*z>σçóQ’Áy÷BZmŒd4ÀÚƒ§£§`åz{½v…ž‘b½Ž7/-Naˆ×-Fö1P­¾%Àày¯P[ÉßèiþEüå±ýUCG£Ï?q×Äê)²$ÓYÏÙnÕýès>¢vW’Ò¨mŠêá¹¾Óg<íó ˆ‡„ óA9¼-N' sT_p0´ ùG7ÁQOÕaWlÅî¡£Ó“H«èx´Ôó¸`ôñ]¹>y =Xêáy~jÎÊÚ펜íö2˜²âÖÉy•Ãs¶, …G¹£9:$3‡åðæŸ)¼ |gÈŸƒšh}Lv$»"³Žƒaˆé‰[ 8…ÄA9<˜Ä–*†€CÀÆÂ&¦áU™Ïê£$êð^ÇŠgõ%{ôñ÷”ÛðìTyª:/rÝ-Sàåì'ÛSÐÍÕ‚ß‹œFëÃGrÃu¢ñ(ny%2Þˆ{–Ûê¡UGÕƒrxS]“>ænïQt€ vZÙƒrx4ç ½Ùü椧aù“á¥ÃšANþAQcª<Á7€¥u™ùö žÛÓl yé7ÿÇÇ_Þw¡ñðåé#ú`[ײv™äcÝ#ª†çóI+Àöôð ÛÞÉF 9fP OyQ²V‡<å(‡7³cå´Ó*N8^Fv: wϯrxÓ±ìuu'ìN@“ìÀÅõy§ »£ÉkPo¢4!önuWº@Ï—äˆÈ£É^Ž¿ZðÀk}$+8Í”o­ ^.¨ÌcÇ.8÷ѹ?òð¥ƒÑ.=çþVÌ" Û»1NùPd^€úiÕŠÊáÙ`S]x“'ùú­!ʨQ9–AFuä4,\ÈŽtµ ¾X£ŽžŽê¸yß}ù{dÿíìf=‘;§rd]€¼.¹’Ûggã,‡7ÍÜŸüüå•°´h.ï帼š¨Kñån9K@q.ÕË«2á‡ñ0§€œÆt»#ÍÔîjxW]h>ȇ.@Þ_?Q– eé] oÒÓŠÂßùpçœ>©z÷æñêåÓvÚ·¥0‰‡ODþ>ýEcA5¼Ý^;GùЧ3N‡œÊ¹ÃÙâ“»Þœ¾L£ÖŽêá]xi%Y=ª‡7»M'C«ê]I”£Þˆx¯xfOH7¥‘>ã!’ Uð[û]ï†I%b\ˆ¼GÓÒ]Ç¿ô¨^ºŽÝ¤à|_ˆ¼ï€ÙÒÕ ÝYIK€Ç…È?†¹S!áÝïW<ÛγCÚNDÞe?CZ¶žn‚3šîôJèé8<"ïË— ¦Áü.ˆ·ÏÛ •dDõðÅjú`¦Y~ûK€;§X™¹-Ñè •ÍÅï êáÝ,Â'Ûíñ/,„·ÕáÛÖ_|—ÃWÒÔ²È塯9¡…-)¤`tÝñij½º×rAAFbÝh¯µ&ºJÂkC\x/(ª‘*ܰ Y#Óeujæ¡:^Nq aX}z÷åbÔ»&Þì®K¬í«qÍÚŸYà°&žëi?tD\x¼-ŸŒà‚†ÛË]O ±Z ÜKPy‘z|J ·/ ³AU‹‘J=⦱çÓQ*{x­ó ¤ÂI'«ÓÖ¶ ‡ÕáIt©{¿³&Þ×/[#æ'ÜLuiA­fÿuÂÈ(ÚDïw-ùÂã}ù(¿W®Þ5ñæ³jµaÊ6N»‡—©q{©ôŸÅÈÿµymLàÊX@~à-Ó“}§Ï¥ xÃŒ €¼"ã"…)/É<„k# ·“‡Ú’SH])‹[ÑÐ{šƒz |áÔjý”7"OÏü%{…Uñ?½+— ãpéeVo9Däèzª#DÖà…Í®ç΃h ¦–ÞÙìoDÐRÁÐEÄÏöáî§îyÙ‘™XÏ9=Õwh  ‰ªâüð–µV ?1r5É-G€¼d 1,ú¸ñxãô%oå•Ë—Ç]ƒÀ¤YEÄÇkñºĬÁñFK®Æ' p<Ýv:ãOÎõ6adZàõuš@­Ük­xd™ÐAm/µ8ÛËK6 t­a2†ãíÏ”EäŽßЇäîå8—_ù¦Ô88<"wÙ¡‡îüÆã­‰5ã«H³…)ä¦ám͸x2àÏÆx LÉè1†‡ÞÓ/&;㌮7ß0›z龡ñ6N]¬ÈoDòÃüñ£ñŠ”2 Š“»ÜhÆ>‡ /ÁÁP#(žÁ[Vz㎗GBáÊÌÎlsCñÚ}.yEPL¶ MÙ!3PVÆgÒ´zÁâýŽa¬]´&í鸌l/; I¸Áx˜ƒðˆò'ŸHŠtE¥b{ùbôºÔ¦P¤Q#4ž{1¦ÙÑÓ« ž—3h|‚¸¢öº†Ûþ ň1 Ü`|µ€C¢ì³§n0>Ëáaî× Áx K¦8äí—Ÿ\e…q8›Ù¾0<Ý(AGg‡5ð%2bb/'‘¾Áø„F‡E`|&ìgƒ„t}öíùº‡‡Š³qÉ ]ÁZQ|±!KŠ»)8úCÀ +Ï •ú70|g>Ü|&aý)„¥ô×íö1€á!µ3†«r©€—×Öh¦Š3¨0äg7¯Å‚»çé¾:º³°¿eAA²Í9xù]FÔ>.ûçÒC‘•#DH¼–K Ÿ‹zt§!ÝanïΊøÁîH½•›íkj넆†ßzžÿDŒ6ˆ–^¯ºpœ„ l>ÍN ðºg¾]3Ò04Û]~êËGi°†u  xæÈ'Ч/Àíå•éÒúpKÝtfÅw$â.¸Ïßž¸@ñCñÐÄ,éÎ|‚¯§4@ÇM%Ÿ+Šå½ôúË¡tùOµ>ô]_˜’М”ïÚú¯ÂÈ·Òm—|ûÆÀ‰éížâýðiブ}™E‡3¥ø&ÅÝó²ª^̰˜¬8<œŠÀxJÞ)ÿ½§¿øòè"†§`#0^ÿª&ßÃgÜa…×¾‹›§æñïð÷ŠÓ—3[-‰˜¨Ì^—~cñs[ÓFÛ—GõzеôÙc劗O  ž™cd«ƒ½¤)·S&P<¥Çàywq‡¯¾ä°ýh ‰ x°ÚúåÐÚóW\¾ü ,¾¡x$ ¢¯º?F¶"ÛÖÓ‘ÇwP<$ðÕ”»ÏÕ=Éгhd«íN7¼j߃§ž±ƺûwX|§OR±®pæÑ|†ê””£ ÆÍTãªOÞ<@>WìÆâÉÀu›KwEsðCåC«ò úûëѪñ\ѤëNp'rüýŠF8‘ØØ§m_3[úõâÙ~ÆÂÅc™Ù6¯Pú~9”8Üd±Ž&2÷ˆ¶•{è›=½¤X"[ýèGP|”&p"›Ï™­@ñèËN’ ñ<èåó]Sèd´¯1•6ÙjXq–lîô#[Ì[rÂLº`d«•ë˜â‘:ü1²•ÕdæãgœBáBâöšÃ)úÙjVÔ±¹ÑÈV„WNå¶âèw0²µÂ i¶c_<5Å7(Üœ?î˜ØjH{ÂDn6!ñ  O,x l…ŠÕ/É >³úÌg°ë­8:(•n;ŸÈzñ‰½òt þcb«»TŽ-›=ñÒÁt£Z›ï1²Õ«)Qˆ5ß1™án×î/«•ŒÍ6dЧª_•â {¾™­îq&†y>MœÁÏà<3ŸC[‘MÙ{68`Š·“GqG}æGütüÚšÞ¿ÕÿúÛß½ýïò[Ïü»ÿñ%߇3k3+($ïªÓñ»ÿáõ7¿¢²ðß¼÷?¿ÿîwŸôذZéï.,á…FÏCMR|Ço¯Ã®×ïoøíƒJ×Ëû²ÉÁß\7Âë$Z(îo¯[ñuÛæH·¢ïô•Ïë×M¦ñؾ*ÐŒP®øßþ§_þÃûßÿÍú÷ÿ&ÞˆMs޽ž2R™ÃD–Ån÷Îé›Ë(ü“ÁOK›"B¿ä¿—,–Ÿ!¹TæiRú\/#Á”¦«äÕƒ*»öûqÕ7Ò%]Qy£mô§…¨O ó¹&{¼d·b`¡Ô j~Ù¯¾¿¬LG(¥kŸ„ÔsÙwOH/†K#¯¼qB"…ÂÏeß/GƒÎµ››žžƒð\óÇuÿçS~E ¬¢gäòëº÷?ý¢_{¥7 5Ó®úõ¿+üüÍÿÊÅ/ºüˆ_²ßýý½~ô^ÿ—“qE:£¼ÿ÷gXÄ„KV G}ßHAߦ߿‘† ²p°©Ãð™<s$ár5Ž›I*9šÑŸOšÌF˜†#“ ?T²*¤³W5á·VX­/ bÂû'µ Vôe-f’K xÖŒ°V8d<Õ{ΈÀ“¬¸êcÝÔF£m£LºaˆPû:ÈĔˀÛòÈoÕ³ÏtŸö¿úh¼B ½/ÿÁfš3åe1ù2×lõkÆ/êœÎ4ÌÉÓŠpfÈOÅ${XGÄOó0 u¦V”:_ÐBî#˜Ý¼œ7Ó¤¤˜@1¼Ìã˜4‰³tsƒ\/çÑ–G1¥â‚æJNç³ÛÈÞì{ðHÃ1Ržø"vÔÃöáj×ò?wz˜±VÔÓ ¼ ¹\w-/€'9Üf3]¯~fÖâº%¦\¡ƒ’:„VãuD Q×Ñ­5¡ —65øî¨çÅÔFYÝzBC~O´$½0kø…#©710<)WÐæQõŒ»÷!=éiL»9l†)Fl§÷wÑ:spÌIÐFÖÚ|ŠÃ™ƒË8g m#õhH„JèôÑ<è=rp•>=kk·¾‚nGS%6Œ0Ñ9spºžfQˆ£ àÈÁé$ʱ9u/­=spµ1> æ¾–ï16âŠÏšžÿ¿¸uéæ‘\OÒ•ƒÓAb’Nîdò~˜Hd%'Ï=’pðc›;WzDOU7mÍžo\c÷ Ú-ùdäž½,e2ãžKèõ QPdkïÓÖ2?Ç“€GNs¦PÔýPY¸¬×alœVÀ‡„i8Ü/¦0â&_€ç‘¬ÛÏ( —p߀>Ñ`è`6i$…Åýšá©úUjªžG:ÒpL3`SnÆw¾¼>Pâ—¨O¹àÒËlß¼à?ŽzÁµ¦Ù ¶…é¤Fi¸ŒË ½Ù .¶áuTÏ`9[Ä‹N ¹Û4?]g.3.ÚŽz÷v¥#—§ùHSf(¼î6ÍÛxíópÕÃQ{zŽ<#` Œ, }^Ág®ï]í™Wð™‡ë6O€¥õÊï3‡å’^ØòƒZ@P)þ†C¤—gù<\gž0[¥a‚*¼T¨~ æ1›îíô1¶dóž_ÿø§Æî‡[ïEvAmSìJÖ²cëƒâ:ì©://¿‹ëÅwr"õ¸ï,ú=5F(åµ¹÷/£ýÄ~ôȯ·Á¥vÀ¬Õ8à-F›ÿ Ò ˆgq&èÊ1ÏêòëOAO4|fÅå×;"]ÙãŠÙ¢zž9:ËÍóU_×(“°ê¸¶¹3u™²<ÏÏË¥’2ŒÚܵí–½g絛S—õÅe ¦¿QF€zù©;ëë O/rV2¦ Õ$]–™¡VMÿõÉÝøõH˜GîôÁK/H"ZX_7¾Ó¥räØ{ߑܗä{{9¸¿ùõ¶ú6÷£ ¼®7³6Ź\N¿^»CsÈ|&]~= ±þ’ñt5òëËaÜçË'Þåu€âÐÇoï–½0}œ!†Šd‹nÇžíYû?æW£;ÏÈ3˜öj „Òß\¢FwÂ&97¥ø@˜«¼®cÃíðij´²’Бooåqäâ˜ê5ºCÎɈÓí,ZAyž|šs;£Nwš/`OoÏ|¾›¨Iê\1Õò¶±+¡EB-AÁX<´¹‰g™–³˜k¾£VwhŸy÷<=ßxÖ×É^éóiów£^÷ùes'f‹}{+o”/¯KŒíÌ'2²†Dq{ÆBŸõuRÚ|™¯ñ¾Ò™fµEg‘oOé³–šãRÏRÃÔ¨ÜuØüêŒ2VlÓ¾a«ûd<Ÿ‘ò–е·Ér¬9mQ«;µ©(#¯àº<{§$oÒÃÎSpS¼YØç÷7̳úF8ÃKÔé ƒsÿ¨d¸ ì*íð—ä¨ÕÎ#,Ͼ»€yVV‚ÀÙhnæYØe$¿=luçhH²‰ÌBâYÉŽÜŒEhÖ"ÇÞ(:˜^la÷ÝêN Ô`ÕJÁÀ çØØmÉyµyì¿!Ù:Χ€í¬¯ÓóÁ½ÍÃŒzÝ¡§‘ã¦åñ:–›x¶1 ¼<Ô«W –CV‚ÄÀ¯ÇíLŸº÷µºSÙ[aè{²£¾Žv[‘•,×z÷ºS…bÅ^àvÖ×éå´Sý™q—×e‹IŸiìAy$ò>Ϥ^åuŒù‚á y;hEf– uù-óeJÈNáô§?Ëë À’dl†ön=1¥tD&evº›ÖÝbгºòøG²JílbâKkqu/Ja:CÆU]‡Q+æÈ«w—Š¢ÿf !æÕã¤ç÷ï_¹˜w(?Äî®ü/ï€[™§òùÉ~úDÆ™!4ž€zÉ•ýñc¼úàø­×ß¾>ÚØê¯•% ”|ûãJ”’º>ámþhüñr]‰Ìµ%º~¾üó¿ÜR—ú b–ßü)qöe©¼ö”¹tÓ¶Ãà¡ œ¿ýÍn;¯bÊÅwʹýýó_çü™Œá¤ t­l-y‰¥ÿôËû×_Þÿö?þñk“;¤ÿâ?øíìoúÉ!:ßé—·Vãþëg/~Z©&²S²ºþÃõç;&‰™¶òùOþÿä7|‘~zÍ_žw.è¤ÿtPþñI¯Ù·þº·¯î#ØüñŠÄsG1“ÉaÎw$.³³ãÎPêÖ;'²í݈÷¬UúˆÄ3S[åkñ/>íþ3/ ¹L1— µƒI>$S¡Ÿœ›ÑqFâRvå4Û8TxDâÜNö¢Ùƒ G´0—”AãýŽÄyœ¾;€Ž7C~âv\iÕI$Èï@<[|mú=ò‡g ≎‡þäˆÃÅQ4,·VöyÝq¸‚â|›£´¹eù†ÔV%©Ckÿ Ã3®!Û²+^<õ†ËÖé]`íqB·3 G4¸·¢Œ’‚!ìÚUŲ́<Œf°+Ä„ 2¿åÓs>£pÔ†•“Ë6 ƒ# Grqf°ð+èr“9äVôûȆË:Q]“˜^Ì0ÓK@Ld’l G.a µ?>óÃõÛtáEc†çeLö Â_Ï!}†á%RÛŠy†ƒ8G®/É#É6D£Ý¥yV¤°‹6ªÚî0œåÕ†vðÃQÌ$ßèƒowž‘ :-ð3 ›ãr@Ž ŒŒádúë{qïˆÂ9Çòì4ëĶ; GC¨k} ~DáEq uu«<ÌEGÎïÓ"™aãÆ¿dý+át†qlßQ¸ÞÅ „(;¢pŽv)ÓJS0þ…ÃÁ”ïU¦³Qx&ù«Olòí„g@t¶Ýሔ….¿ráè-Íü$€>ƒp´ ÕÎ:²5·;G¶ Cñp}ùg®ÌëQ¢á\VàQéÏd×#çìZIu¸kŽ(³7)[ÕÏ¥ Ë­0P ýÊG®w„¾ìÇ ö0\2ÁóSYr@8'?*L£• çlqpàAíŽÂ¥ó© €ðÍi§Ž(œ×/DØ’ýDá?§€ #=ȯi¥áÌL?rº(œÕŸp¶x{ö†óó£Çh² 7›o.4¨ßax±Â¶6,?;ï0œ³¥óa£·|üÍgžmØú‚U¬¯q‡áÙ§?6^7hÇÐòSr )Rv¦Ï# ׺}m›œùƒ²î3 çý¨KckAîÛÃP[oÑ<Âp|Ö™F,ýÏ0³,Qf*rÛw~Mw„PlÌä­; ·ÕÓ¹‘›àøÝ‡Â&†M§…:(çÌ£*ÝÌÆq3{֨Ѭè礜csÊbf²nVï@œ££‹ #œò쳑 ÿRFVz}{ûñˆã±M‚—ÏS?)çðÀŠÚ•éù³Ï@áMh}zYÊ9½ÚèéS»‚ü>Õ¤KKVÎÿÑH†O&OS| À‰çE-ÔU÷E9Wrbœ½.§EÿŠÔ]¸Ñ;’*3ÛçïGØD9æŸ^H 7Éa¹-νs¾ùÇ…ÍÍ–c}ÊÒûÃЫP9ÖW×3¶÷}~ÇþLÏæ‡Y뤜“’& ­×¶ÜÛ)2d ümx ïÉ9G|/K·wÇŸò™X.#PI=“© aþÑ À<Û;ŠçË÷yº°|ƒ§ÃGœ§C&½H+ž Ÿ‡[»kNäíʽëíéfÑý!Z5Íÿ©[p2ÈÞf'†:Ýx:›§YðmÞåŸÏå#8‚ù/Sû}ÍÃÕù©X«q O8xŸëŸŠÙêSF4‡s…~*v£œ£d9ï«ÏÍ‚CrÎbeO'åg{4ª6¦ÇK§aj¬žœ¬U׿¿à”.|~ÐÝç–q22i¯å³N³j¼zò^²¿þa–Y<ŽêÝ&'髯sÐáö(wÙ-ð£~ÑTÃI:—35ád†~¦^‰NÒ¶q•ŠñÒ9ޖޝõƒô»ìHËóÑ’reÀÕû"#b"«Dú¢¤sDDú|"ù) ôt¨ºT?|ÂIaE"ç]-i~ú”m7<üì^uø¤Ù†"7êw@9‡G¾ÛÒ)ÏÞ(v¸ÄƒØÊ,ý?O{}zÔªLi é'f8Ã)°Su&š²¤ãŽUëÍ'­ä±îÍ)8dÒ¢Ù„`ø Ñ3pêfdJg4©­)¢|îqìZ<ôsXAÝI8—mÀz1ï›ñP  ÝJH8'ÝH=Hí<~@8'¡ –Ù#ÛÉÍ?CyôTm4ùí(@wZÞ°zÇ“pŽÍév®ËvB¢Š0XhÃW½ú€2’±v`T|~Ç …Ð8‘A±ª¶HÊàöº%}Þ÷‰ÄÐ'-@ñ¬\ä@r¨ö”3&§j· ËMA2×ëÍè O¾9-"3ï <«“@Ô I‘@Y^Cj>,ƒÑ`¡Ôûîrãh4^¤äþT»|Âhƒqß™.‡8ON² /¿é1º…êNGs}nì>axþúˆÈfU&åRÔò¾úÜ€ ˜±‹^´:öä¢2$j6îiìÄe¾äÃêO¹l̆¤X¹à Á6€m²fÓ£¥Âån6H˜`ך >!`¬¥Út ú”îO¹ÙÀ>j¥†÷Pô@“óe®ÃûbœËpš,ÚO³ÓÔ~âßr¿:|N\]n¯ÿ™pî?+¿,¯MîV*öá é(&¶jï€ð4&UÀ¸íõÐÇnŽ7¥Ä2-5á«qúÉðvw‹N>C)Ø­ZÙ°¸S°ÜÒ=Ðï÷ ÍÎÌc¼TÂÓ°Çè ˜òZ³< à½Y§â…ÂãF¡ñ™ƒr8BÞÉÔy"Ñv‡h]Ó…¤¥p¦@ü&Q0qªW€Ãsöª1Õ2`"Àá¥eV%š(8¼é¯Jñ¨àp»YMÜøæáüéµKÔ‡%¥Ûr€Ãör í«Þì0T‘¡B&ûGÐ!óÃàLXàðhT­MzÒGÌÃâ3—&û<¬‡G47@åûÆáI¿2õ„b¯°Íñ¹\¾M³†!±'ïL—šÍ'"üÄáŸ>¢Õž¹|gĹmn_²f€nŽ£ë$¤Å§I_8üæëÅíÅ€GÄLuCê¥Ýr €xý\!¨‘vÜA£‹åØÊ'‰rü#âß0“ÂSx—o ÕÇìm@4ˆý‡aE=”›—Çìh³ f±±‡'æÂ«ÖÁ6žî ˆ¯ÐÝ)¤6žôˆ×Ùkp{ì§÷Äk<›°r„Ì:î;Àá ¹mÙûSO´jS§-Ãlåš7ÏîLHÚ±]OŽ‘BF™ýhôK¡bM&pÁÆ|ãð{kÑdÐy0ú…Ï»ž†ãõ¹X‰”!ÙÙza/°[$Ù”[pøIÐUd„u¶[€Ãã€Ê«€ˆ9 ³ˆÝ ž¬¨¥°Nœ5_èUŸŠ´§¤Ÿ³;¦§!>q^œ^F:-–?ÂáEþP9ê$­‡Ç®H´å4“ý§6œ'eáð œPZ±GÀ7ÇÙbùtR§ †¯PüÕIÏÝsæ4IrÈ“tóyOÞza”êôÎçãUêbà^‘¤Í†¯Ô=A"œm´ÊÃã£Ð}á³òÎÅmÉ,È?:ˆ~€ð”ºÑC™}ÂÛÀÎ ïÊÃ…xGbob\ܲAÞ§p‹?$Õ|ᔃǔóDи >ÙØÒ«F<¢M•°” §p ^Ñ%®L/™wšce:Öm{wë‰ÁËA6Úá)þÔ +Éù&ôjË9™æX\SH‹ S€ÀS.ã{ú¢¹lÓ ŠMÖØ7þ¾é‹ŸöäÈ ¿“{¡{P~ôëß‘ xA‹ ®?½èm|çI¹zøà„c¨­1~¿Ožh±sdZpGòV²*ŸätØGQ¬@¾ –ü@ÜSc%ÕÕîüI›3av´Ê3þiŒslã¹ïø‰è»Ñ‰,ýgehgüE¾4Ñ(íÍPGôF«2Þé^4†ÜÀ:Û²³«±c¦BWÙÝ, Ëpa swTBFq§™°ôä>"_-½÷–Ö‰xÝq3ÄA¤™-ö @÷}—O mÁÄu³À©[ œû »å‹hà#Ð=Aÿ-ÞtTé€R2 Žîãp?a‹EºiÓà>j@-‡‰†ÀÂê jºƒ*S *VÐ=Ñé“Éã[®ímà§Ä£Cî<*uì²§ÉQÆ@c¼©ë w)Eüà ÐÀ½7nQm ¸‹ÊrÎgÂʸc² ô1g+Ü+ÍðÊäRn¼}S@1૲ý‚Ûi,xnzŸnŸŒ®¢w·xmÚ‰6VéHŠ~ÖÀí™Á ÖëbÎÏ·7ÜÎmÜ –&ë!ê8vNËv€­8™ ³Ò¸}RX ¼Dip;Ž/Ô]"’o¸Ý6ƒCœ±ð„š{AJ«q´n7å*QV X夆1 '+o8áöOü_n'Ý T  àöî•»Ó}œnß|Ž ·öEÌg Æ†¼`¤;tÀí~ˆÖ}zW·OÞ[rùàvF?l¦”çn§?‘WßÁíÌghj­Ü>é?ÞdrÐ}nÅ›¦§W`]p;ƒ®Æ@Ûº#¸i½ÝÒy-˜îb¥»zz ë£!ëD†‹ÁŒùé¥ àöÅ×5v@O¸=ÓžLÂaùpšn‡Ýƒù¸]m(Oûö ·K˜(¯“n³þånߌÞhÏÌÎ n×ãìmM†ܾpP‘Ç€V Ìióô?ã n‡Îú`•n§»}2a*å ýÜ®—™@ì#´Ý(K™>³FÀ*eÔ­UsÐ}í#¨ÛºÏý—œáNÅ ·Wp W·ómæ"îá.Ïá³Ð’¨ÿiÙº.¸?2™Ô Dp;¯˜ïó7"¸]^1…ÇÝáòn¶áù·q#Üp;ˆ¥l€Ápàvæ{ v´Dp;ÉlxÄ‹gs/¼½Ë’ã }S„·CGÌ ù¾¢îs”G#Õ mZ¢ºw¶·OÖ\€{6¶ìIk@äìk¹ q§ëÀÞ?Ü!^̰lô ¸KóÈü¶g¸Ì ¸3÷“"§ÜvTø¾K:›!)#Ü8¬½LÓ(q#À]aºökì0KaÛ¼3úºG€»Î*ÔOiïô àN”%uTlû/ÀÎ8˜Êçòóܺyƒ8´¨ð]º¨¢ÙöôÓ{î6p˜ÖL‹!oÀÂbð -r¸C.\ñL¾¼÷F÷?¦ú/¼)¦ïgVú·’=²Þ»~£íZ[¨c•é“UÊ-Àë!åºÀv#&eÙyÃ]ÛW!Dáv ¶ÏåÕðXí`•"ú§á…é´]Ñ‚ÔæÓ v°J¶³S¦y[Œ¶CS]…}#[/¶¦dŠk¢u£írÎôM™þÙú¤•BtÉcÑiWz·/ÜŽìçI+…bÌ<™íX·[—LÇòýçÀírzÚ~ÊŠo¸sÎäÁzOÏÈL+í”<%Ûrgœ#ÞÝþÙ}ŽÖ’G=¶ÍˆˆÁöÁ´\©þ`¶‹È×ÝÌnÉ1ÖnµÕ0]`²­ÝêËhÌ©¿°öüeåЩ·»¤ü•ÎÆ’á6ë‚Ú™ßÍ$µ}aé/NF­tƒi«C¬]Æ‚\ÒÖ®ßêÊ—élȸ)¯,Ò—ƒW“г]¨Ä]ð©ŸÖneÅdJ¢Ñ9/««Å‚1ýæ0Ÿ Ù¨àìlÇl—ìtJ”ÀÂa·G²©¬N7µµçËóÖ\p¾W¶$\M?Zÿ?G»dãlÖÉ£¼â:»$­Ãfb»Î•uo»sÔÀöLíYóy¡ÇhÀöl\)Ùeç@Û'åô0ä[öýP)Ø>ÒcWúbíŠB©Æî†ÕÃÒ‚¹ò²=æ(ïú`Ýg¹;q`…ÍJÇ®ôgBgȴщitJäH1o¬ÙWžlÖÄŠõOƒbµOx<BíV±l}R3`S±ªQ/F ¥›‹Å<1E 8W;È]ÉSÛšc<§%έE k9Ât»;cc¼ý÷‚Úa¤°$Ð*7Ô,‹SÔi?2ÿŠù&É{:äéÈ(*±9ò€À*æè@è3*ÏZw‚*-„5è@‘$,‰¿S¨µîÍáné<«Ì¸: %j£D{õíH‚‘Q?- ¾QZÐt‚+jàÔÏ7Ë>.oÛ¿ñv†«K„œ?ôÀÛ>ºD\¾Ž9yŸì®†œR–£ÔÀ¹ sêÉKjN¼C¥ÇÖv¾¼P™“:½žéÆÛÀ)3g<@9ðöeíoÚúä̾'ÞÞ8Ò^ËJV®Jwí“6}p°G0Ï…l>uûŒ¾«Ôê^j©0=/ÈÝJZt#¬•³6˜;Õ°Ä(+˜ç" Ih'ŒVG'‘ì |ðJûðWkY©ãlÍ*=¯Bw³,4×,´uaîôåÚ(¦ìɈs§”ZO,C;W„¹3djQ$)ÆÜ™×±½óÆÜÞŒ.Z·_äže§Éåx•ø ¸K•n&w曵ïEöl®¬4V¸Û«t "gýûœå’m²g5i>Ôø€Ü'½G”€{äyŒrrOø$0Írp£Ž<Ý°Õ k"UÄóǘ;ut tõ™ü9˱´,Wgä½ w >´Íˆ&2¿ýàDN2ô;ÆÜ‘aÙ§ƒàs” a§.'5[S‹0w’lüv*ã†,mñ&ß`Ä[€¹SbeÚö†L_Ö?"[£§™ßî)Óx·|:à1Ê…èAz™JAŸ.xî:f̳°É­'bü˜UÆßQÐÒcÐ]Ÿ*ôžH;F¹`ìšÕßêî©ê b­QÂe<ùï?‡†ÿµ£\XÑÆŒ_wáÿúQ.ß\ø—G¹þU£\âëþò(—øº¿<Ê%¾î/r ®û £\¢ ‹ñŸÆ‚ü£\ª¿ž´4Á~¦|0Æ¥ÿ¥é/ îΟX¬þÌðº mù9ú QÚ?Ïùî^8¾Š0@4†öå?ÍeùÕw—á¸v«FÇtš_}û€RÞºO1žÆký‘ÐK×ôpLо)£ðAÊôc^J‹æ¥ü6eQ±2Ÿ¥ö)ÿÝ90å/f·~âSþ&§Å¤/ù‹D-Èi¹ÂÖ¾ §¥CÑ3Í秆2Ã/ ÓaÎlÁ¤£K¡BŸá¹·‚tt6xbà(§Õ)N2orÉ祠ÝkKRáËaÕS¿SÏ ¯ÌT…Ë>Ž–6È‚ü«?jhD$~È1XÄùõrͬ‚a ‰´ž‹Ê)Ký2àuUÏH)­JUÙ²ÃrBgJ«‘S¢ 9ˆQÙ¢)ÆZËýÛAN‹Ïd%ÀA œ§81æñÎi!^òzG¥G'`T¦p ·ºûTNÐŽÂYÁ0Ž€Q™Ë)D¦ÁÏjaÏœ´§yÑ=û0!‰-OVõ˜ïœ–=>®Œ²æ}ç´¨ó€’á°:î3¤2G? F0*[F’¥§9y9­±¬u6-oN>BÂW”~IÁÕâž!%Df*øí³“ÏÔ 2}ªˆyE=$™œ Ä‹ªÍ ÍBBÔO+ÞBsæ´ Tg­— 8rZÐÖêüTš ÖÌÓßdTIÚ­ X´ŸÉø¢Â §…t1q¾ÒC@޼l݃#h"¦§)žM™ÓÄ9¢LzÙ`ö J±éfrާãdWN+¡,¥ôIPŽI[ÄtF ¢lC³Æ  $¸´ÚœeÓ‡p#Q,ÿĬÁJå´Pî:Í“I[¶h_¶Áó-DÒ:™ ­€6jÝE¯VÖÉJ2ŒÇˆìåHa%xE”Ö §¿‹1M;€e;9OB»E0¤µÂ$6 éº`L‰躄»öån»OoÂ8@Ô†nE{Tl~¥µ2ªÚŒêM ˆË<™®NÉÕ@`é fÇj÷srJ”O™„?šY÷H•©é¥yŒô…eTOÆi½\aÒ×…ëVOªÔ6÷ê"aw&4€µE]$–°nú…±›ÓÙ|¢÷Òd`5ô7ÞcÝ-ÒÓÚSîe#X¯&I’^À¼µˆÌ©Ù¨‚mok…üGêB›»¦Åå­EdNVC¹hÌÚ>'2ÓŒQðj¸ ¯5Ž—X«s‰›N¡¿^F4î´–qb –2 Ɔs椇ØZ2¢)¢r‚q ›w¯y+òbüI1Àþ3©²®Ó>Ra(3yÙÏØ”_ÞSÞ£ Žþ𧨕?­¼X—?þØÇG{ˆ• lùZ2´€Ï§M­º?•TÀµ´Á‡Cò$E‰ý°«3mm?ž‘ˆçïþî7 Õ_ÿ'QtÏ endstream endobj 11 0 obj 21644 endobj 20 0 obj << /Filter /FlateDecode /Length 149 >> stream xœ5K! C÷9…/0R~„pª®¦÷ß6aZ Û/Áƒ‘ŒKL`ì˜cá%TO­>$#ºI9©P7OhL 3lÒ%ðÊtß2ž[¼œVê‚NHäé¬6¢Œf^ÃÑSÎ ›þËÜ$jeF™2ëT·²²`æµ<÷3î¨\脇ʰèN1¢ÜfF~ÿÛôþ{20c endstream endobj 21 0 obj << /Filter /FlateDecode /Length 52 >> stream xœ363T0P0±T026Q064b…C. ˆ•Ë˳@ªr¸ Ês`ªr¸Òé À endstream endobj 22 0 obj << /Filter /FlateDecode /Length 49 >> stream xœ36´P0P040’F†@–‘‰BŠ!HÄÌå‚ æ€Y@¢8®&‡+ Æè & endstream endobj 23 0 obj << /Filter /FlateDecode /Length 80 >> stream xœEŒ» À0D{¦`~&fŸ(•³ JÜpOº{¸:2SÞa†‡ž ,†Sñ™£`5¸FR죰n_uæzS«õ÷*Ovvq=ÍËô endstream endobj 24 0 obj << /Filter /FlateDecode /Length 90 >> stream xœMAÀ ï¼"OPDÐÿtzÒÿ_«Ô½ÀN‰E‚ô5jK0î¸2kP)˜”—ÀU0\ Úî¢Êþ2IL†Ó{·ƒ²ñqƒÒIûöqz«ýzÝÒ"X endstream endobj 25 0 obj << /Filter /FlateDecode /Length 210 >> stream xœ5PË C1»g ¨džV½uÿkmÐ;aÿBXÈ”y©ÉÎ)éK>:L¶.¿±" ­u%ìÊš ž+ï¡™²±ÑØâ`p&^€7`èi5tႦ.•BÅ%ð™|u{è¾OxjrvCÉ` jºMX´<ŸNâÿ~Ãî-ä¡’óÊžùœíð;³ná'jv"Ñr2Ô³4ÇE> stream xœ=O¹ 1 ë=8Àz,[ó\ê²ÊFR"@ñ‘eGÇ \b“Ž9/i?øiX5Gô„ŠaXàn’ƒ,JWž-^ ‘ÚB]HøÖÞ­Ld¢<¯;p'£>TYz@;DY®IÃXÕV]j°²ÎÂu=̪åÑ'k)PTB½tÿŸ{Úû o/ë endstream endobj 27 0 obj << /Filter /FlateDecode /Length 17 >> stream xœ36´P0€ÃC.”ì endstream endobj 28 0 obj << /Filter /FlateDecode /Length 317 >> stream xœ5RKrC1Û¿SpΘ¿}žt²jî¿­„'+°-@B./YÒK~Ô%Û¥ÃäW÷%±B>íšÌRÅ÷³Ï-¯GÏ·- Q=ø2'"ÔÏÔè:xa—>¯N)x“¯á_x”NƒÀ;2Þ“‘$ÁšK‹MH”=Iü+åõ¤•4t~&+sù{r©j£É X¹Ø¤+)$=‰H²r½7VˆÞW’Çg%&Ý&±M´ÀãÜ•´„™˜BæX€Õt³ºúLXã°„ñ*aÕƒMž5©„f´ŽcdÃx÷ÂL‰…†ÃP›}• ª—ÓÜ #¦GMví²[6ï!D£ù3,”ÁÇ($‡Nc$ Ò°€9½°Š½æ 9Àˆeš, mh%»zŽ…ÀМ³¥aÆ×ž×óþE[{£ endstream endobj 29 0 obj << /Filter /FlateDecode /Length 248 >> stream xœ-Q9’AËçzBsÓï±Ë‘÷ÿé ʃ†C :-qPÆO–+ÞòÈU´áï™ÁwÁ¡ßÊu9HÒTM¨]¼½vfó¤5,ƒë?c 7zqxLÆÙíu5{×kOfP2+qÉÄSuØÈ™ÃO¦Œ í\Ï È¹Öe¤›•ÆŒ„#M!RH¡ê&©3A£«Q£Å~éË#aU#j û\KÛ×sÎ4;«<9¥GWœËÉÅ +ý¼ÍÀET«<p¿ÛCýœìä7ÞÒ¹³Åôø^s²¼0XñæµMµø7/âø=ãëùü¨¥[ endstream endobj 30 0 obj << /Filter /FlateDecode /Length 232 >> stream xœ5Q;r1ë} ] 3æoŸg3¯JîßF°“fa ç=؈ėÒåŠoYf~'‹¼øY)œ¼QTEX!íàYÎj†Ás#Sàr&>ËÌ'ÓbǪ‰8ÎŽœf01ëh9fš=!×#nì4ËU i½[ª×÷ZþSEùȺ›åÖ)›Z©[ôŒ=‰ËÎë©-í £Žâ¦ Òác‡÷ _ÄœÅE'ÒÍ~3å°’4§ð#1”êÙá5ÂÄÏŒOÙÓé}”†×>hº¾w/èÈÍ„LåÊHÅ“•Ƙ1T¿Í$õý?г>š0TG endstream endobj 31 0 obj << /Filter /FlateDecode /Length 259 >> stream xœ=RIrÃ0 »û|wIïI§'çÿ×ôÔ—cЦw‹ÊÙøi+Y~äÇ.;K"·|m“ûŠª¤n‚Ì%Ç%WˆYÊçJX´”™XŸ©ÊÏ5¨UøÂOÌLL‡$KÈI=а~^÷ ~½¤ó[dü£cƒÒ[’Lî•£”ذTŸä4Ý”VŸ™ve,7d¥&uúõÓãK0¥/ÑAˆÄŸär‡, )ñv®Þ@xW» ÕS+;Dš‘ÞR«93KFÓ#`mÖ˜ U¼Ek´âò…N+">97t0MUž…ȰRáX{Ïh º†¼Òpz’qÿù¼+Þ×ïÚófd endstream endobj 32 0 obj << /Filter /FlateDecode /Length 79 >> stream xœMÍ» À О)<àÿ>Qª°"Bc?éN:ÁÜâ°hw¸Zñ¥Q˜}ê™’Ps=DX3%:„¤_úË0ØØÈ¶ï·VîÞ endstream endobj 33 0 obj << /Filter /FlateDecode /Length 244 >> stream xœMQInÄ0 »ûüÀ–¬ÅyOŠžÚÿ_K:L†Yâw'&²ð²…º:_6òJØ ü´æÄψÿÑ6"­|PmLÄD‘ÐEÝhÜ#Ýð*Dû‘ ^©ÞcÍGÜ­4oéØÅþÞÓšGª¬ ñcsd#i]EÇ÷ÐzÏ Ñ)ƒúÜ„¥9z’þÚ×µÑìÖÚÌž¨™Ê'ÍjhN§˜!³¡·©XÉ(ܨ2*îSi=ÈÛ8ËNŽÊh=Ù±šˆòSŸ\B^LÄ »ììXˆM,lÒ~TúÄòó­7ão¦µ–BƉЗÞÏxï?ÝX[´ endstream endobj 34 0 obj << /Filter /FlateDecode /Length 87 >> stream xœ=Ž»À0C{¦`ó †}r©œýÛ€?iÐC:N¸ 6 ÏÑíÂÎ7AîE/°.o€ !‹$ùöÎÅ¢V™Å¯¦Eê„4Iœ7QèN‹Jçãôx>ºuz endstream endobj 35 0 obj << /Filter /FlateDecode /Length 59 >> stream xœ355W0P°´¦¦F æF– )†\@>ˆ•Ëehifå€YÆ@Hœa¤Ášs`zr¸Ò©áZ endstream endobj 36 0 obj << /Filter /FlateDecode /Length 247 >> stream xœMQ»mD1 ëß\àëkyž R]öoCÉ ¡/)§%öÆK á[¾ä‘UC?1ì3,=ÉäÔ?æ¹ÉT¾ª›˜Pbáýh¼t/"+Êße sÎ÷ࣗ`&4`¬oI&Õ¼3d‰¡ŽÃA›TwM,®Í3ÈíV7²:³ lx%âÆDÙÍ`£Œ±•År¨ ’Z`×éQ‹‚+”Ö t¢ÖĺÌà«çöv7C/ò਺x} ëK°Âè¥{,|®BÌôL;wI#½ð¦fR™‘•:=b}·@ÿŸe+øûÉÏóý (\* endstream endobj 37 0 obj << /Filter /FlateDecode /Length 245 >> stream xœEP»C1 ë=`ý,{žwH•Û¿=JFp…!Z?’Z˜ˆÀK ±”oâGFA= ¿…â3ÄÏ…A΄¤@œõ™x†ÚFnèvpμÃ3Œ9ÅZp¦Ó™ö\Øäœ'Îm”ñŒBºITqTŸqLñª²Ï×¥µl³Ó‘ì!„KI%&—~S*ÿ´)[*èÚE°Hä“M4á,?C’bÌ ”Q÷0µŽôq²‘GuÐÉÙœ9-™Ùî§íL|X&™Qå)ç2>'©ó\N}î³Ñ䢥UûœýÞ‘–ò"µÛ¡ÕéW%Q™Õ§¸<ÿŒŸñþŽ Y> endstream endobj 38 0 obj << /Filter /FlateDecode /Length 68 >> stream xœ32·P0P°4†& æf )†\@¾©‰¹B.H Äʳ €´%œ‚ˆ[B4A”‚X¥f&fI8"—É´å endstream endobj 39 0 obj << /Filter /FlateDecode /Length 255 >> stream xœE‘K’ D÷ž‚#€üä<™šUrÿí4˜L6v—¨ý„J#¦,çy0ýÈòÍd¶éµ«Š"Ìä*ôXÕ)â̵Dµõ±2rÜéƒâ 箜T²¸QÆ:ª:8¦çÊúªîü¸,ʾ#‡2lÖ96på¶aŒ£ÍVw‡ûD§“©£âvløƒ“ƾÊÕ¸N6ûê%‚~¡ LòM u†@ãæ)zr öñq»ó@°·¼ ¤läÈŒA»N®qëüÞÿ:ÃçÚ WŽwñ;Lk»ã/1ÉŠ¹€EîÔó=­ë ïÉ™crÓ}Cç\°ËÝA¦Ïüë÷PŠfˆ endstream endobj 40 0 obj << /Filter /FlateDecode /Length 332 >> stream xœ-R9Ž$1 Ëý ~`ëòñžLÔûÿtIUªlË<ärÃD%~,ÛQkâ×Ff Âð¯«Ì…ïHÛÈ:ˆkÈE\É–ÂgD,ä1Ä<Ä‚ïÛøù¬ÌɳÆ/Ù÷Vì© ËBÆ‹3´Ã*ŽÃ*ȱ`ë"ª{xS¤Ã©$Øã‹ÿ>Ås‚¾#hÀ/ùç«#x¾¤EÚ=fÛ´[–iG•–ƒíiÎËäKë,WÇãù ÙÞ;BjW€¢0wÆy.Ž2meDkagƒ¤ÆÅöæØ¥]èÆe¤8ù™*ÂJšÌl¢ þÈé!§2¦®éJ'·QwêÉ\³¹¼I2[÷EŠÍÎë™õw˜2«Í;y–¥NEø{¶ ãêÙk™…F·9Á+%|6vzrò½šYÉ©HHÓº N£ÈKØ–øšŠšÒÔËðß—÷ÿ3â| endstream endobj 41 0 obj << /Filter /FlateDecode /Length 131 >> stream xœEË ! CïTáò>©‡ÕžØþ¯ë0šABøA";ñ0¬óò6ÐÅðÑ¢Ã7þ6Õ«c•,ºzRV釼òPi0QÄ…YLCaΘÊÈ–2·á¶Mƒ¬l•T­ƒv<¶§e«~©maê,ñ ÂU^¸Ç ?K­w½U¾BS0— endstream endobj 42 0 obj << /Filter /FlateDecode /Length 392 >> stream xœ=RKn1ÛÏ)¸@¥ðMrž©ÞîÝ[›ÌTª /¶1”— ©%?ê’ˆ3L~õr]âQò½ljgæ!î.6¦øXr_º†ØrÑšb±OÉ/È´TX¡VÝ£Cñ…(-àá¾ÿñ¨Á×°…rÃ{d`JÔn@ÆCÑHYAaû‘è¤P¯láï( WÔ¬…¡tbˆ –)¾« ‰˜¨Ù ‡„•’ªÒñŒ¤ð[Á]‰aP[[ÛxfÐÙÞ‘3íÑqYk?=é£Q2µQMg|ñÝ2RóÑè¤ÒÈÝÊCgÏB'`$æI˜çp#ážÛA 1ôq¯–Ol÷˜)V‘ð;ʽýÞ’Ï{à,Œ\ÛìL'ðÑi§­¾býƒ?lK›\Ç+‡E¨¼(~×Aq|XÅ÷d£Dw´Ö#Õh% ÂÎí0òxÆyÙÞ´æôDh£DÔŽ=(²Å地§ü¬Í±ž&{o´”Į̀„Ôvz¨¶ÏcÔwžûúü.¡ endstream endobj 18 0 obj << /FontMatrix [ 0.001 0 0 0.001 0 0 ] /Name /BitstreamVeraSans-Roman /FontBBox [ -184 -236 1288 929 ] /Encoding << /Differences [ 32 /space 40 /parenleft /parenright 45 /hyphen /period 48 /zero /one /two 52 /four /five /six 56 /eight 66 /B /C 69 /E 71 /G 76 /L /M 101 /e 105 /i 109 /m 115 /s /t ] /Type /Encoding >> /BaseFont /BitstreamVeraSans-Roman /Type /Font /CharProcs 19 0 R /Subtype /Type3 /FontDescriptor 17 0 R /Widths 16 0 R /LastChar 255 /FirstChar 0 >> endobj 17 0 obj << /FontName /BitstreamVeraSans-Roman /Descent -236 /FontBBox [ -184 -236 1288 929 ] /CapHeight 730 /Ascent 929 /MaxWidth 1342 /StemV 0 /Flags 32 /XHeight 547 /ItalicAngle 0 /Type /FontDescriptor >> endobj 16 0 obj [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 318 401 460 838 636 950 780 275 390 390 500 838 318 361 318 337 636 636 636 636 636 636 636 636 636 636 337 337 838 838 838 531 1000 684 686 698 770 632 575 775 752 295 295 656 557 863 748 787 603 787 695 635 611 732 684 989 685 611 685 390 337 390 838 500 500 613 635 550 635 615 352 635 634 278 278 579 278 974 634 612 635 635 411 521 392 634 592 818 592 592 525 636 337 636 838 600 636 600 318 636 518 1000 500 500 500 1342 635 400 1070 600 685 600 600 318 318 518 518 590 500 1000 500 1000 521 400 1023 600 525 611 636 401 636 636 636 636 337 500 500 1000 471 612 838 361 1000 500 500 838 401 401 500 636 636 318 500 401 471 612 969 969 969 531 684 684 684 684 684 684 974 698 632 632 632 632 295 295 295 295 775 748 787 787 787 787 787 838 787 732 732 732 732 611 605 630 613 613 613 613 613 613 982 550 615 615 615 615 278 278 278 278 612 634 612 612 612 612 612 838 612 634 634 634 634 592 635 592 ] endobj 19 0 obj << /parenright 20 0 R /hyphen 21 0 R /period 22 0 R /one 23 0 R /four 24 0 R /zero 25 0 R /parenleft 26 0 R /space 27 0 R /six 28 0 R /two 29 0 R /C 30 0 R /B 31 0 R /E 32 0 R /G 33 0 R /M 34 0 R /L 35 0 R /five 36 0 R /e 37 0 R /i 38 0 R /m 39 0 R /s 40 0 R /t 41 0 R /eight 42 0 R >> endobj 47 0 obj << /Filter /FlateDecode /Length 444 >> stream xœ=SA®+1ÛÏ)¸ÀH@ÎÓ§·ê¿ÿöÛ0ó¤V¦„‚m’5L†Ø‘Û4$vˆ»É^LéÙò4¢8;åsé^â:ä‹è JaÛMŸ“5™ˆRlœjmÚø¹ÌVgPW“•Î Œ1G­Y£ö £73G¾'˜a¾ûÁEçˆn#Ë£¢îB¶j£qŒRrÚI?2«)A¹!h™¤s3˜>LçÆ¯šôFûßf8ñ<ȳì<¬˜{PXðÇ”5ÛËU?¨˜p6?W€=£àÿ° PúOßÛpxðÏUG âÄ@ï™ëAêr D'pK§ç Åãú=”ú}kûáYI€epj‚©˜3¡» _pŸn„Ó?p‚v Zî…8fF_D§ÏöèZðP§c7؇—U=ìO¡ –s.ü.“`Áª4|e!Õì΀ôíuŸ(r&6Ž¥ÀìÙ; Ž‹¹Z: ƒÈº!˜w£ìîç>vsÃ=`¤`Kø²yf?¦ï•ŽEâs¸'òáUá5š¬÷U>ÈuwµU~·õSFÖË|ŸïçúýL=¸. endstream endobj 48 0 obj << /Filter /FlateDecode /Length 550 >> stream xœE“˱\1D÷7 ˜*úÆ3.¯žóßú4š±W @üº-­Ù+Ó^~Òúqë=ì—?¯è×öçye»êÛû«4{ãtÔ9ìeàŒv•÷óQ\©Æ´ÉÀQû¶\È<Öå¡âûñ1,cØÚ±$ÀgX޼r¥bÐzsS®îÓœv$ñøµœI@ÚžüP#kVЉ ‰±,¶Š•Òlt Âú)Aw«”Ÿ'G))?ÍÑ~»ÄS¡D}#»/ëÉŠ4Ë©Y]³î•xŒÞ¦)ád“Cõaû=â … ’ÌWÓ´¯^É ZÖÂPÐ^B\T ¡åúàI]/zåWWdÄ–ñaåš_žúþÚ¶lÀv•åå}U½¢Ø€˜_w ®Ô,38;ª#qæ+åýÿ†~ˆÿƒcŠR+Þ¤ûžµ Ø :„QNÄñv©È:C4æn€õ:‚<¢†€æ…}hS{ ÚÏRàJÆõ u1†"¼ðÀÓV±TMz™”Y4ñq:­äZî±e|,MÕïMå)ëTéK·0¼úÓQ Ü{‚ År#–6l1ßéߥزH®…ݾŸß\ÈÞ} endstream endobj 49 0 obj << /Filter /FlateDecode /Length 402 >> stream xœ5SA–%!Û×)rA@=Ïï׫?÷ßN‚Õ›±LBÄÜ×gBí‰{¢`ÿ:&ô݈ w|ž8ðBòÐA:¦±–9‘…™¨¡ïç1[J,“+Cå㈀G*ó°> stream xœMRKŽ,1Û×)¸@K$çéѬúÝûl’–fQ2ÅטÄrQ‰— ©Ü’püŒÇLå5Tþ=cª¤¥|žá!‰¿Î% ï'Vè’a 9èNp#Z.‰¢*¸Ó0d Ô³ÊÞãøÀ:4”˜é†êÚÌ1ô®„'»çAír0¹kÁŇ_r.´Ìáñ ä>äg;e/ L[iq5ÅÇrÝA ¬iVÑB›D>pöš $fHÔ<2¤~u ¿ÂèUF¿Ò@x¹@g–wdöŠAõе˜¹´åDõB—ô–'²®tÕJW_UyITÔÎɨ(?8û7ËÒc‘Λw枘8ü_¤¨ÙÏãÓò¾F‰Ý7d³‘Ái!ÇnÌnî}\ïç÷?Vox, endstream endobj 45 0 obj << /FontMatrix [ 0.001 0 0 0.001 0 0 ] /Name /Cmmi10 /FontBBox [ -35 -250 1048 750 ] /Encoding << /Differences [ 84 /T 86 /V 112 /p 185 /mu ] /Type /Encoding >> /BaseFont /Cmmi10 /Type /Font /CharProcs 46 0 R /Subtype /Type3 /FontDescriptor 44 0 R /Widths 43 0 R /LastChar 255 /FirstChar 0 >> endobj 44 0 obj << /FontName /Cmmi10 /Descent -215 /FontBBox [ -35 -250 1048 750 ] /CapHeight 706 /Ascent 706 /MaxWidth 1000 /StemV 0 /Flags 32 /XHeight 443 /ItalicAngle 0 /Type /FontDescriptor >> endobj 43 0 obj [ 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 0 622 466 591 828 517 362 654 1000 1000 1000 1000 277 277 500 500 500 500 500 500 500 500 500 500 500 500 277 277 777 500 777 500 530 750 758 714 827 738 643 786 831 439 554 849 680 970 803 762 642 790 759 613 584 682 583 944 828 580 682 388 388 388 1000 1000 416 528 429 432 520 465 489 477 576 344 411 520 298 878 600 484 503 446 451 468 361 572 484 715 571 490 465 322 384 636 500 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 0 615 833 762 694 742 831 779 583 666 612 750 750 772 639 565 517 444 405 437 496 469 353 750 583 602 494 437 570 517 571 437 540 595 625 651 277 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 ] endobj 46 0 obj << /mu 47 0 R /p 48 0 R /T 49 0 R /V 50 0 R >> endobj 6 0 obj << /F1 18 0 R /F2 45 0 R >> endobj 7 0 obj << /A1 << /CA 0.2 /Type /ExtGState /ca 0.2 >> >> endobj 8 0 obj << >> endobj 9 0 obj << /M2 14 0 R /M1 13 0 R /M3 15 0 R /M0 12 0 R >> endobj 14 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.5 -6.5 0.5 0.5 ] >> stream xœ3P0PÈb]3…®`.ËÔ endstream endobj 13 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -6.5 -0.5 0.5 0.5 ] >> stream xœ3P0PÈUÐ5R9\Á\áÔ endstream endobj 15 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -6.5 -0.5 0.5 0.5 ] >> stream xœ3P0PÈUÐ5R9\Á\áÔ endstream endobj 12 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.5 -6.5 0.5 0.5 ] >> stream xœ3P0PÈb]3…®`.ËÔ endstream endobj xref 0 51 0000000000 65535 n 0000000016 00000 n 0000000065 00000 n 0000000216 00000 n 0000000275 00000 n 0000000511 00000 n 0000033564 00000 n 0000033607 00000 n 0000033671 00000 n 0000033692 00000 n 0000000382 00000 n 0000022230 00000 n 0000034210 00000 n 0000033908 00000 n 0000033757 00000 n 0000034059 00000 n 0000028608 00000 n 0000028393 00000 n 0000027911 00000 n 0000029661 00000 n 0000022252 00000 n 0000022474 00000 n 0000022598 00000 n 0000022719 00000 n 0000022871 00000 n 0000023033 00000 n 0000023316 00000 n 0000023536 00000 n 0000023625 00000 n 0000024015 00000 n 0000024336 00000 n 0000024641 00000 n 0000024973 00000 n 0000025124 00000 n 0000025441 00000 n 0000025600 00000 n 0000025731 00000 n 0000026051 00000 n 0000026369 00000 n 0000026509 00000 n 0000026837 00000 n 0000027242 00000 n 0000027446 00000 n 0000032455 00000 n 0000032258 00000 n 0000031949 00000 n 0000033501 00000 n 0000029963 00000 n 0000030480 00000 n 0000031103 00000 n 0000031578 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 51 >> startxref 34361 %%EOF pymvpa-0.4.8/doc/pics/ex_erp_plot.png000066400000000000000000003015611174541445200176050ustar00rootroot00000000000000‰PNG  IHDRôzïlª"sRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ .ü€– IDATxÚì½y”\gu/ú;C]ÕÕsKjÍ3–'y”Ä13Ƙ`'8VîÊ{7ð¸‹,ÞÍJx°|!, —ñ0° 6`°åI¶,K¶æY­V«ç®ê®y<ãûckë;uºªº[ê–[òÙ,-ÜÝ5œóïÛÃoÿöÞ’mÛ6<ñäu”Ÿþô§Ø¶m®¿þzüâ¿@GG¶nÝŠ;wâ]ïzþìÏþÌ[$O<ñÄ“iDõ–À“×St]‡mÛøÆ7¾¿ßÇ{ Ÿþô§që­·âÖ[o…®ëÞ"yâ‰'žxÝ“…$š¦a||‘Hår†a ãæ›o†ßïG¡P@*•²eË‘HÞÂyâ‰'žxÝ“…$ÇŽî]»°ÿ~Üwß}xæ™gðö·¿×]w`ß¾}X¾|9ÚÚÚkÖ¬ñÍO<ñd†"{KàÉÅ’`0ˆÖÖV,^¼7Ýtb±žþùså•Wpå•W¢©©É[,O<ñÄÏ {²Peݺu8zô(n¼ñFÀ«¯¾z. ×u»ví›ßüfo¡<ñÄO<ƒîÉBÓ4qâÄ ,^¼ccc(—˸í¶ÛårGŵ×^ë-”'žxâÉyˆ—C÷ä¢ÉÀÀJ¥Ž=ŠÉÉIüó?ÿ3ÚÚÚðÄO`ß¾}ˆD"øÑ~„÷¾÷½Xµj•·`žxâ‰'³É«C÷äbÉïÿ{ìÞ½Ÿÿüç½ÅðÄO<™cñ wO.ŠŒáG?ú&&&L&½ñÄO<ñ"tO.E1M…B’$¡©© ²ìù’žxâ‰'žA÷ÄO<ñÄOªÄ “<ñÄO<ñä2åîɼÈÐÐ~øa$“IÜvÛmx×»ÞI’¼…ñÄO<ñ"tO.%ùÄ'>%K–àÃþ0¾ùÍoâ™gžñÅO<ñÄ3èž\j¢ª*Ö­[‡Õ«W£§§Ç›šæ‰'žx2ßz×[OæJ˜_)I>ô¡áK_ú¢Ñ(`Ë–-U¯Ç /¼pîgI’°yófo ‹'žx≡{òzÊ÷¿ÿ}<øàƒøò—¿Œb±ˆ‡~ÿøÿˆ/ùËèééÁ£>Zõúr¹Œááa ahhÇÇüco!=ñÄO¼Ý“×Sî¾ûnÜu×]ðù|( ¨T*ذa:;;±qãFôöö¶ísĸ+Và3Ÿù̹÷§R)|ýë_÷ÒO<ñÄ3èž¼ž‹Å‹ÅÎý|Ûm·áïÿþïÑÚÚŠÓ§O㡇òXîžxâ‰'žA÷äR“Ïþ󘘘€aˆF£hkkóÅO<ñÄ3èž\jÐÓÓã-„'žxâÉEç‰'žxòF¯Ë·gÐ=ñÄO<¹ db°,o<ƒî‰'žxâÉ%-}}€×àÉ3èžxâ‰'ž\¢iÀè(`šÞZxÝO<ñÄ“KVòy2è†á­…gÐ=ñÄO<¹d%&'=ÈÝ3èžxâ‰'ž\Ò’H!®TòÖÂ3èžxâÉe-¦ ‹Þ:\ŽbY@<„B@.ç­‡gÐ=¹¬Å¶½Õ7º”ËÀð°·—«AŸœü~Ïi»ÌÅëç ÉŠœu:R,ñÈ#`Ïž=‡Ãøô§?®®.o­ªT*Ë®[ç­Åå&¦I‘¹,…‚·žA÷ä²–‘ µuN úC=]×ñ©O} š¦!xë¼E×TŠoˆÎå%ù<=_r¿ìŃÜßèbY@ÿœzî•JO<ñÖ®]‹ßýîwˆÇãU“ØæÔyâÜH¹ $“^YÓå(©ý¿ÏGÆÝ«E÷"tO.cE>8,^|Ac;rðèííÅ¡C‡ðÖ·¾_ûÚ×P©Tðö·¿ýÜkΜ9ƒG}ôÜÏÅó1Ì'O§Oò''zrþR*‰HÎçóÖãr’‰ z¦>=g]§›'žA÷ä2“|žjT³Ù ú˜ï|ç;ؽ{7V®\‰xápûØÇ°qãFd2<õÔS¸óÎ;ÏÍDçilì  Îü 8|èíV­Þô&*¾)韦á°·—‹˜&q#rz‹E2èÁ ·6žA÷䲓D‚z6{AùÓ?ÿó?Ç=÷ÜEQF±fÍ$ ¬\¹ÃÃÃhoo¯zý¢E‹ðÁ~ðÜÏ©T _ÿú×gþ…““”*‡gŸzz€ù€õß(R(¢÷\^b¹t¶ Ã{ÆžA÷䲕±1:ìùü}LSSšššÎýüÅ/~_ùÊW !Ë2zè¡sÑùœÈÉ“ÀÞ½@SpíµÀsÏwÝåÁÅç+¥9tå²·—“T*D„cg×4½gìtO.[ï ú—³Ü~ûíØ²e ,Ë‚¢(Pæ2g§iÀñã”8_I¥ª\E¹`4ÎÏ {²%™¤hW–)¯¦i—Æu:¨ª81>NŒ$/¾xéÜÇB†ÚýþÙ+ûR‰-t¹TŽtú z2YÍhW¯Ý3è—¹2{£F££¤Ä%éÒâJ%*U3 QfÕ×Gϰ©‰îéÌïdÏFØ™;ŸÖ é4=….CC—fd:>N©¥óub&'Éù=§ñer÷ úe,©å^߈½ÌGFè°3$w)´…Ž]øÌé={½¹ÔÞ‰­ñùšF—³K£$-|ÇÆcá{ý‚<÷'ž šæ7R¤®iä½3ÙF’¾ç®ëÀ@K )ªr™±xœ EÛ&å5쪺ðs¡É$o¿Ÿ®•;^AÎ0È(ù|”g¿”ž¥i¾~-95MôÙ8u†A$°°'µår´×£Q`÷n:ó—‚è:9­•Êùô|žž‘›W©,Ü(øBR žÌ¡A èºX¼ti¥BÑE,F‘ÝsÏQ³’7‚Q§ƒÎ‡ÝïÍe¢Ø69\ŠBÿHеwu‘s’ÍŠè²¹8rdöÑæë)½½´÷^áR5YðûL F>OiŽ…Ì[H&Éa iϼðÂwF¼(Â}× ãüör2YmÌÙáÕuzÎ ñŒ÷õ‘A÷Æ9¿Î}hxê)à Ã}) y(éÐH’8ìO=uùC>¶MQгÅ'ô…švÈç©ö<¥½Åé‚•+é~FG)³m_*ä¸|ؾxé¥×GÑrÉš,“™é5LNÒ³iý¢‘D¯€ö|2 ìÜy~×{1›ïd2°OÞÛMˆcvûBm.cšÄ‘I§§G«¼RÉy4è–E›¯¹™öo lÛFj!{ZnÃÍî±Ç. þBdtTvÛ¦ÿ^È“˜Ž¡ëSU‚S)¹v-ö±1RXìH67û÷_ü6ލf#û÷“QM¥(Çûz8lÐ-kæ†nx˜ ¥ª’X¨Žðð°è].IÄÁ8v xíµÙ£R• / YPUúw>¥kNƒnÛ”O窞…ˆ^e³ô/—›^9âõy3è¶MJÁï§*&Oë·¿]Ø5ÁN£æ4ê¶M‘úåÚ5«X¤ƒÃÊxS¹¼0I:Méž×^.ÓïB! »èì¤Üz¹,˜úÁ ˜‹md2™Ù}g:M=%'d×®‹_'œË‰s`Y3ß÷##¢G¸ßOåk ÍçÒ-'ô,ËTâxð ó×^°üLÖjttþï“ÓJ¡]ïlù-šFïáçjšÂa—å…YÑ28(rüœbænx}#ôRIU%•H,\¶±¦QT Mý[$B^ø¾}—çìàx\@Ó¬ð8¯6‡©’J¥‚/~ñ‹øÔ§>uaŠíÀÑø„#Ê\Ž `{;ô‰ z¦NdÅç#Oþb™ÁAÊõÏôܼú*]·´m"n]Ì}çfBÏ$zc¥ÊNa(D€…¦dóyºw·Â@€þMLPIÛÓOÓºOçLe2äÈÌ7©Ì4ÉÉèÚg[EP(ˆ¶±ü¼ÊeA$]hÍe ƒ¦&:ÇÖ7Ÿ'4Ë3èó¡—ËÕ^°$‘a_¨ŒRÊFÂ)’DD¹W_½ü𔨶ˆ¬Ø±I§…1ŸCEõì³Ï¢¿¿'Nœ¸°ˆ÷Ð!:è,©]g[EèÝݤÀr91 ÷œ>}ñJªl›¾ïĉ™9FÉ$Ý[$"~×ÜL‘ãÅDÊea˜gÊtÏf««$…îg¡E~̘®Õß_Ui´Gvíš¾IÎÄ92óÍ0MÚÏ\µ‘ËÍîl2†Ÿ«®ÓþÔ4ú¼…VÑR,’^ §Ïñçó ?{ItÓ¬ ­G"db‰D*ÕXéª*û矿4Z[ÎÆF„• 9RȉD<òî¿ÿþ 3{öbâzyË"ÃašÂ wu‘ÂÊŒŒ®ƒübH©DèGÓ=‡Ý»i9£GY¦ß½òÊÅKW9#rUÙ§keC)ËÂY\HÂ݉¢PªMU§¿þñqZ¯ùNdžp¬T•¾s6yïÑQaÌ .£ûÔ4Á—¹Pçu®/M£ý$Ë„LffÄ9Ï _€‡_ þðû…‚[h288ýA‡éPmÛvùt/Ò4:<ªJ‚Q îé~žÏʶmX–ûìAÿÊW¾‚{î¹K–,©sâñø¹µjOS)‘_fÑuq˜;:È wtä;0 "EV8ÁàÅkM:1AgÁç£ki$ÃÃDÌjn®ï_²1Ûèˆ ³Ï7=Q̲èúœ¨ #"½½ GѥΜH#a¾‘#Å¥`ó Ys„Í¥¥†1sg;™¤&:LtöêŸ Ç»×Í¥ô÷ }‘s¯åìë:¿ŸŒæêÕówí™ÌT}šÍÒ>o$¼·J¥êûf¨]×陟¯A7MB-ׯ'gz¶{­–þ,—IÇò~jÔž–¹Œ¾y2ÝIˆ«¥ 7.œ9Õ\"ÓÁ‰Ç©ž¹–â”eÁ>+¯œÊŒ¿”dtTÈtZôrçŽRçiüî¿ÿ~|ô£…¢(Èd2øÄ'>Ó4¡ë:,Ë‚áJo\qÅøæ7¿éð3ÒøÞ÷¾W?>Õäî>=—¶6R‹‘RÈdè¿''ɨ(Š ïLé™:‰Œú¨*¼J¥öž!Ã×ÈÉå¼n¡0¿Ñ5.W Å(Ýzçµ\¦unoŸêˆ”Jt¶‚A/§¶F"I´ùL¨ØùDá--tfÝ÷šÉˆó ªõˆ¹DÚç»´G]R½QT ’+—k3Ê_ᱡᰠW Ë—×öÌ™µÿüót ¯¹f~Ã|FcCCd 4M ž¶ÆJë<$è@8B¡î»ï>@__vïÞ·½ímU¯W‡¢ÕÝÞö©SSQVDI²1oj"¦»idºt)ÝG%ÌðÏgV*ÑwG£¤H5Åe˦*Å#Gĸ×FÆ…'ʹà\tgmrK‹ø]=iÄ0V:KK—¾þûÝY®Æ]Ò¦CØ…Þ×ÓSû¾ù5óiÐm›®ÁéÈù|Óôxœ8'>_uÐaÛt6¸Š‚Û ÏI)©R{;­ÅlÛ&”Ó²€w¿»ú{‡†ªÏ“ cjðă™ oj\ ™ü8›­ÿ`ùá\ÈLß¹ž2ÆJ? 24TŸ(çó‘×þâ‹_ ðjÈx\DµÒ$ ÃÏ‘¬^½¿øÅ/ÎO¡¹+†‡9ïßÖF º¥… z ª*d™^ÇÝÏæ›Ä4>.&–I­ñ©SS c:M‘J=¸ÝÍ7!“Ñ5vzfÒt„ÓUµ$:"l©4·çj|\è¥Lff$CŸ¯~~x|œöó æ òežë%.1m´ÊeQvçœø:ù¼s”>ƒhÛT}‘N26Ûû¯T•!ê|ÎÎü9?ƒb±öóâ}Z©xú¼tÛy¥F^ïB*_ ëM¥DÔÆyäúd U%XèÕW©ô¥fÔ3¡À÷ÎÆƒsk¯wnŠëÉÝP³aгátIK Ý CïÍÍä”Y=Oæ Øöü–q¹š“‡R_j·R:zTœ ÷g¸¿ß/†ŸÌg„Î —×J×ëŸÓ¬î¼æ–@€œ±Ù"=ù<ð»ßÍcd€C!º§drfŸ-˵{‰3(ñæ«DOÓDWÄJ…þ±A¯…ŒØ6ñ-ª ¤ÎµpÞŸ…Ùôñqа[[EiãlôÄÐ ²;&ú/ärä@9Ï:#\µ :—ïéºgÐçÅ ›&mìFp¦ßO^ûÅ®dïÖý»xœ6K±Xi°Qg£PÏ9á¶¢‹==W2<,c A:ï‹Ñëí¨hVwÈ×V(Ð3éÚÚȰ÷ôˆ’1I¢g˜ËÑÏg}´mÓþv9VÀN¶®®Ü^+õ”NO5‚ó í2"Ã;ø¼Øv}eY*‰†'µ„×}6uô¦Iƒ‘Nœ˜»²·rY\'÷WÈf§gFs¶Û˜pE§Jt}þöT¹,­rY=Yg¹%•¢&X|j'Fâ$iö-†A"Yލ¦ÍÜI¶,z¶‘ˆèñ±kåúÇÇE³÷wÖú|fÿÏçú¿¡ :×KNgÐ''/nùše©êðáj¸5•¢Ÿs¹Úi¿Ÿî'‘¨ï€pú|GOn£q¡ïçTC*5Qáh žg<—2]6G%µ].GÏ6#Ã(I"Ǽd ½Ÿ‹Ï' âlöžaÐ÷Ì´4©P {r+SY®+:0@Ÿé>+š&ÆF:IŅ#Ì×Ãѹe5@’Ï ' ‘Qœé8UË"(÷äIrÒ¦+÷›£ÂÍ®x/9k»¡‰•ÊTçŠù NÇe¾Ò!Îïá|1#hµöqo¯HÖsX×±AŸÍ¸ä¾>‚ÅÝùö™ž©r™ž+§™¸¡Ïþ@] ްsÖr*èb9ôe¡Oç©q‰ÁØØÅ»³TŠÏ> <ù$±»9ràÍP/Èõ¨<@žÉ}±P‡ÑÑ «»,—E«ÎZ÷ÎyÔzžñ\¢&'O6FJ¥© p6²­­BA´´ˆtˆÏ'ºû9ûBOí™cǨïÀý5w™‰ð¾v¹`!“öïQŠS¸=23¬ç¦Xœ¿çÁ3Ø K]'³Õk‰³Ýk#ƒ>::3¤gt”Ȧ­­ä ŽÎ ßÁÙrš[ÛªêôˆDݯãèÞ9nx¾ÚZ;î¡óypïc\ê‘Û˜wŸ'Ë‚ë1“Á4šFS¹§üù GS+¡¸¥í¡C"¸°m:ƒ™ }W­3›J‰k.¼Zôy‰Ð™¨×_à`HBCtÆ#ê:)ûÑQàç?'ã~ì˜P^õXÆ’Dnd¤~´z1Dz1˜iðzN©Ô8ú6ŒÙ“ef+Ù,âFÑo*5=Ñu1îÖ¶é¹²‹Dèyµ·»zÿ~a…ÞÓÈ ›&u~ö3Š8÷=00ýóµ,z}-’[8L{¯P óá†åYa3bÃÉ KQæ7áˆOQc™p=ƒÞˆç>Ó)ütš†£p^š‰ªs| $¤P Ïv¦›¦»~wð‘LV4U_ƒÎ÷t]8Ú~¿heë<+ñxýgŸÁ×ÎK£œ¼ó½{öгt¦‰f[sútm7!TMUÅ0šÁA‘bp#ÌŸaDË9]Ñ“92èœ×ä¶—ýýµ#[®Gwo ù0ˆ'Nó‹ÑŽFÉ=J|­ül-TÐÔºFÎË^Œ]Ó(¯¿}ûùAFFD‡«z *—»\¨œ9Cpìt­×hšd%I°#a£Q1ÆóºëÈðóRŽHŠÅúϪR!£P¤ÈóùéaI§Y+Bb¸w|œrç\óï\ÓÑQ‘—e2Ó€ÛöüA»Î#Üôƒó™µœ&šM×aq&yôJ…œ¨|^8C -÷÷_8òÀFާÇ9øéÖ3˜jЉj1_Làã1Á¼gyî¼sʘmStî÷×GM,«ö¹å3ÑHÿ¦R„Rµ´L=Ÿ•Êô©3vX®g2›;г,ÒOÜ;‚_ãÞƒš&*¦^xA”Îy2‡›Pp·)Ë"/k|¼z±yÂÏä$ýÿÀ•Y<ö)µ¹ônwí"%áTžŠB³¹Yx¨Ó‰ßOJ¦ž'^ ž)•DC•ƒÏï;¹‹Ùt|‡z-&''/ !àÏ>yRtÚª'Lds*göÚ³Yz¶á°¸@@4ÒXº”ºiíÛGJ‡aäF¨OšsÖ†;'Ñ5εóûÜóÐ}>r$kµyÍç§3ƒÁj¤Ë盿HáXgi”aˆRÓZ÷šÍVôz)š`°ñ`£S§HÑóš°!“¤ 7èÅ"¿Ÿ®ÍÙ$Ç竆më9$ÎöÁ_µsÍÁóL¦»®.àrÀ¾>Òýióçår†gÕ½™ÙžÍ’Žšë2GÏ ;¼jî4Æ„±d’ŒofH>û,ðë_O¬Ê)¹tZ@ÒÌZoj0-?‹æfRpõÕ„pà Î7Š"j•àpÚe:äÃé Õ‘[ @NŒ{D)W[¸‰L\VÄ×Ë|Žù@‚Ø 3ë™;²î½’LŠsî¼ßx|êkyÐI-ƒaY´Ÿœ‘%³Ðu¾çBÒ ™Œ ‚‹Õχ׷/¡yÎåólq¿_”@²á™ët;ïœ~ྌ2äóbM''E·ÇFèž;µè\ƒzúk``ª³àDʸºi:¾ÏW0Mz¾\ò7>NÆýôiú™\ñ÷ðÌvçþaÒn.Gë4Ç=3<ƒÎš ÓØƒSk››ir;ÆÖV¡Ü÷î½ðhwpE½V¥€Þ^r"~ö3àÿoà»ß­ßLB–ÅX÷æµí‹S:‘HRaÐZÍÆ‘H&éÞ¹žÕ¹Û·ßÿ>Õ…2äêvpŠEa”öí;ÿçÔ×'œ¤zFŠ;Øñ„)õÊJ$—ºS‘E£"b¿újúŽ={Ä:5òæeªe6bk3å$õ$“Õ£9JtçØ¹4ª^¥Åä¤èî5]DéÞ“œwå´zïå)‰¼/x}¾Ú„£‘‘©èN:-ZÔº z=g9“!ÃàtfŠE‘ºcöBÒ:œ2«Õ#ƒ ]õÖ…Ñv¤+1À†{$°ñ™ë!-¥’ЙœtNCä¦*¶MzlºÔa-G•Z×°sçT”“Ÿs(DŸË×Òè|pÓ6Î<–çÑsè~§«œ:—?#“¡½9ÓfAžAŸ%¼Å½ Ýž $UG{~?)^w½d[” Ú4ØÉ‘Hm%iÛDÆúú×ÿüO`ÇòvW®¤÷þô§õYølLOŸ˜srómÐ9ÏŠ4#§ehhæŸÁÊ‘=~Ó¤Hÿ[ߢ¨»R!Ošº3 D볓óéúÇlÜ`PäÂë)4ŽèÐ;£Çl–Ãp¸ú9·¶Šœi8 \{-)@ãÑGëy…îgh¨:ºœoƒÎ<8… Ët0^yefšØKæÒ¤ñqàÿüà7¿!çêƒn¾YDñ\Æž1ÃílX}>QAÐ@^|ñE|üãÇý÷ßûï¿·m£ï`˜µÞLéRI4ñ°¬j¥Ï{s3íçßœýÎ% ؼ™Þ¿ýT‚S‰Ö3è<±«ÞžsŒlV :N‡Å '²BžŽÇÁ½»¹&|¦Š«T%ެ„'g¶–3ÎMRxÝLS(Sç¹.— 5pF„\^äó‰NijöV(7 IDAT¢½ç4Ì–EA§±`ÃÒ×'ÐFm˜§C³œ#ëé¦é&Ž…Ã"eÀㆹœ`pîÓ!¼ÆÜ‘Ÿ ?vðFG—Þòºòþ,— ]s~ž›[Â÷ºgO5ßÃ0èûœ¤N®oD d'’¿§VwÄZåœÂu·læ.qüÜ2¯¹Ìœôér“Š2sâB8Lìå—gï™óp•F/²Y: ~?MLki$Œ5k€»î¢{ùÕ¯ê“E4”?¿¹È³õ*™ ç< á0Eí3!©qËJ†é^|‘ÖáÎ;{﮸XµŠþÆÑçªøz‡‡E„É-M§ASV¯^Ï}îsx衇pï½÷âÿý§B™a]†4k)®e;’¶íÚzssõðE‹}9q‚¾Ç5»ÅIjs#LŠRßÉs–ãØ¶p ˜ZKÑó}ϤʂaQþìÙ f~?œp˜žÙèèTxÒÙÇï—«ÜÆ0™¬îèåæ:ð¹pž]NY8?gb‚>Ëék¹dRôà‰ˆ³Õ'O =à¬}æ~N‡ibB4šr~f”ó¸NnwÊ‚JE¤Fæ’›J †»{/ò€¡dRK§sæù™årDÌt"GºNU?Û¶¿ý-”{ŒþæÜ×LpvïYN1Õ“Þ^ZG·`ÇèÉ' -­Õq“;Y:ßë>ÇLŽ«'Ó ò zEŸnÔ"Ã^ !^ôh”"‰FìØz×10P~â)\<¢¯–×~Ådä’Ià‘GêoŽ''é¾fÓ\†Îlì$“S†$‘¢®uÕ2V…‚¨…¤{½å±^Ýݤ¸å­“4Ĩ†³ÓT0H nÉP€%K–`Íš5hiiAK,³X¬ŽÊ¸ Z-…æ,Ÿrt6Þî=£K9ý³y3)„ÞÞúì}§!®çh:ÉN´`pPÀˆ\ã¯("¨×éªVîܱvU¿ãf&3mâáÌï:·Äu+<ŽÔ8…Ä×áfë ‚–ÓécŠÓÎ5f+e&ù‹Bö)§~ØíüÓMV¸Ÿ¯óÑ£ÕÆGUYôôirP¹%4_;_Óä¤0¤~¿T˜é>—kйBÃéà1yl`€tätÓ+Ï6›%çŠÉ¨Œ$Ž’Ó;0@:R’„^`Â,³Ôk¡WõMFЏžœß¯ë¤·~òJ³V*ԸƉ°³áìfgYÂÙwôz¨z}ƒ‘æ.Ì 3¡†Y‰µÄGw/z"!`cÇìD©DŸS¯‹™Çù<5᜿û:¯¹xç;Iyýæ7õaefó³1˜)AMÓnìí¹àláŽàfµ‰n~´V›6U¿&ººèµÜ(ˆë¶kõ‡éð:$š“ ÁzõUX/¿ Û¡ÔÇÆÆð?>ÿy|öŽ;täÐtEÁÄ‘#Âðð0F¹t‘›Ê8»r¹ z$2•° Ñ}øýbï¬^MÏ›‰|µ†âëEÌÜƽ‰jÂGVN#Z‹xÅ5Ænéz0y©VC‘é"<÷çHÒT¢™=s®%—:9Ó.ÎÖÎZi÷>r–«ògò³­TÈà:á\>C<hhˆöS0HÎäl€0ë›÷³ßÄÞ½S‰¯LÎâtÖÄ„è(ÉÆ'©†¸ôæ²[—‚±ñv:}¡óDÁZV-ÇÙaNÓ("g‡Æ²èYD£âL±³eYtï\®ç>‹Üì¦ä>6&Ò6|/©Kãr™ÒC3›?ínÊã\ŸS§µp¢µÖ™áNV–ÎIcõî—1× ·¶Šï=sظ‘ŠB¡©aÃËÐu>OûnÕ*úÿBajc“z üØ1aØà0ŸË¤®¼²>ò ÑóI§ÅhÞ©\g:„ÅzÓçf#‰­E 0Õ`³‘ãýâäŒ4B?ÈeÑ`b©»FßùLFGEÏ·pã®;îym§.c$2<‹JøÞ÷„î»åZ3M£Àॗ€µkéYsôÏ#t÷ØÔFÍml{î ‹—}„ÎägkÁz¹ÀZž6CÎzF&æÌ†I=4Tß òÈåès—/§×ú|µY&’Øš5”o®ÿ3¬Z.ÏM`rZ>?3UÓDÄ•NW{ÃN¦i#rRDׂÏxRG•é´ˆÎk94>AÃ",_½_½ï>üÇ'?‰ÛV­ÂàÃã³ûþøúëqûâÅȪ*lG´Ú³b>ýÑâ;ßú¾÷½ïáßÿýßÅv×:ó^Ëç‰å¯(µ±æfZ«PH<Ûöva4jÁ£œ?uCÀÜüÂý9¥Ó§…AãŽîk¶,NñŒww·8€*FGi;afVâ< v&ûŒh-Ç:¯Þ/ÅâT'•)ggÚ†?·Q‡DîAÁ×êl{ìØÔçÆFebBÜ/GÅ ‰ÏDÊer²8úwæÏè{µrv^"!ŠS§DËQvàXGñZÎUǸS§è\±îÜ'Nb\,6}þœ×–[È2š—LŠ fº»uÆð°@IÜ2 a¤9 K2)zp½r-´ÅÙÙ‹KîÜŽçÄ)²¶6úf";!wN[M·Ï¸ï{­a\vL˜ï6èì€;Ïl<^coDêã÷ó{9Ï<2B{ÞÝ"—…D‚ÐŒ–‘GçRÑ™À¦œa§ƒsÜEæŒ*L×ußÃ%ZœBpòœO/¼Pá£áp5¯ˆ#`'bÓÞ>=RÃFl–U%ãÊ\ v¼¸®û̺/¿êŒÇ‰4Ì|œBa*o‚õV6+t£®Ó¾îêÖ¯ëÈPüš5Àºu”ásÆdPvÙ°³cÒÖFŸ[ÏÑå.Œ^„> á<ëtÎ ß9ßË.—·q” Õï2å–\®~#w†SUуzÓ&Ñ*4ªõtw“'96F‘z-Oa½™47ÈdH郟:5½‚æ²%'I‰74+×FšXi—J/^L÷UK::ĺs.³V©É åƒ[¶à…Ï?¸ï>|ç¯þ _¼ûn„8'68(ÊRœ,Ö|^¬©[™p^?¥çY+zhn¦µŠDhOY–p:2™Ú­zF€Ç<2Ë— ‚Á ptiaò×·×2pÜ …# w¯Ë¢RMàÈeÍjíËgÅY/ì4’Î#Æt ß#Î&.üŒýÜÙ‰à2^o~RLîó.ˤ¬ÝHwþccÛÓC醹ý~Šº§#‘r“vªájŠS§¼;“ˆŸùָܾX®ÕçN~Óéª|¾±3Á™\Èû¤¯ODÔü3MEòsdƒ¾h4ýýtØAH§éwÃô–µŒy&C¼¢TŠÒXLv¬5ÉppPLKS:;ƒƒÄQâ}dšô=­­ôÚ[n¡ïܾ]DçŒT0´ÎÎ!@÷¢ëõ›Ëp¿yÏ ÏBfZ²ånTÁcòdYÔ4K’ðtC!:x31”õòçlÌ–N&iótta³mR¾cófʹ½ú*Á…µ¾ƒëtÂÐ=3œ9?ØHFGE=-ç„ݰi#ƒÎ¤•þ~:\W^Y ¥º•ðÒ¥¢íf<>5¯|>ðw„b$“ôX¹;£ž¤V«]%Gèl¬kôÖV‘ÿmkpu($šq¸8.¡*•h˜ýËû–¡GîpÈLj^›™œL†¾Çítž9Cuò›7ïÆi]^{MÔ©3ÌZ¯*ÀmСe‘ˆˆVý{žá{×4RôYÏ„ˆÉi4Þ/ªJkë~fº.`SÛ¦g¶r%íé‘‘GÞ¹³±Á,龘WÁQ!Ÿ³L† 55ͬ‚Æ9m‘7Ãz0Xb¨ålŒ?Lm¯ë9ñ§N‰®pNƒÎÝ/y]ëu5¬õ½¬WrDh¯•Jäqºrd„^ã®q¢VO—[þ:aoà{á2dN)©*}7_¦‘öûé:—,¡¿àìm³œŽW©ÐAàžÌ«V‰®Ö=/[FÏk¨nçÉYgΜß!aÆéÄ)@ã6èl°Ü$Ë|žºiнVŠ…áu@k8šwB€nxPQDY–3úá~Ú¬Ôs9ºž¼Å0e#r£¢ƒ3Ê+§Ÿ¦ýwÛmô·Å‹ioîÛ'œ=†ëgbЧ›oÍHט;›Ç¤Óä¨0§€[ï²2u¶Ri =ï1~VnƒÎ{—»ÌuwS”®(dhxlçà 0@õΉ³W~*%öÁñãôûë¯'‡ÁÝèf&÷à,×sê4†ÆÙñ©åP8@û$‰Î{­–¶šFF;¨ï•þ~–q f&6N‹t&zzH8 œÝz†œ ?N©;î (»«‹ÞË÷âl®S, §çôõÑûØ)Ô4z\-Ãü“[o¥5ؾ]8{|þÙÖ0G¤»[œ ÷™æ9ç‰.¾±sè ¾ò ÕööÖ>0NŽD¥B‡ùðaY°·ç4\"Pî/ͤ£¾>«1¡‹sÑmmdzzÄììl<4ÞñºÞŸýŒîÓyx§›äå„Û¹ž8›¥kv:µÓ䤈¨ù€3AŠM#t€ë{{{ÉP„äTW¬×î”E‹·YÊ\‹:9Ik888»R"fÌrU7k)«zºKT6Î^Î{÷?ü!Õ½¯YC(“Ý Šß«ªh6 xÐý¬˜é]«ª‚¯¡èx\@Öü·zýØFÔýÛ&£=2BiŽ,ý~2<ÎÉv¬Äez¢(·œÍaxò÷àÉa eòþc‡ËmÐ¥?ŒvÍDQ:Û"«*7lÍPöÄ„˜gÒk¹|ͲȼôRí}Ç­^ý`x–§•9Cû:£}ÏÙL$Óçjݼåÿæ~ïÏ> <ÿ<íÃ`žÍSõc&#“üܸ²…›íð$:'Ï©ÝåsœªaýgÛ´‘£¡!:“îPo/Ô_þøö·ï|‡ÐÉ-[€n}(ÚÚ躊ÅjÔ†Dæ‹BÆÛ6ŠÖ˜I„>4$6#wœâ|u=ØV|?L†c¨¸‘AÏçÅ4£+¯°f @Ñ “|"åYМÃJ$DëY.§žY:„YÊ\Öã,ǪTDOmMƒ ÂèŒiRdòóŸÔ§(À{ÞC-zc1A¤t wGc…Éù9žmîlé\çzerŒˆ0ª1<,ÊqÜùw'jå.—qŽzåˆt×.BD®¾ºZ©nØ@×½oŸËùäé˜î““"gÙ×Gÿxþ¥gÛÒBÑ×ð° tò>9v¬z¿ê:­#çÈy¿2¿{í¯XQ}Îg:»6ªàažÁoKFð‘GˆþÈ#t½±˜xö ù» &ƘƒÖìH;<çp£™3gä4úŒìÄbôþ+® Ÿë©ëä4ýô§ôÿŒ|nØ@gïÍo®ÞÃ==¢›Ÿ³ßOWãû±c´Ï—,Ñyg§@é/¦gÃNsk« €ê:]Ãø¸ Ë–Ë´Ž--¢ú§áº9Ô3èÓtÎchA&‹‘Ñc6¤3Bçigüðx“ærdxØXq©Öøxcxi|\(Žbk=ÄñqÚ4mm´Aü~Aª`…ÛÓSÝ?Ù}°»º¨Uêõ×ÓAøÉODŠéúÕŸ8!67>a¯ºQfrRöTQÒzµÄl¬Nž¤û^²„Ö€s¿Ñ( §rˆÅ(šàü%GæÎÎ^€PôŒºe‘cP«F—;A1”]©@ÐÄä¿Bœ¦áaàþø‹¿ ÃÇQX#ƒ‰ˆë DÃŒr™¾Ëyø9¢ª53Ú¹oM`ã ‰šiwä½s'ðÔSÕŸç¾Ö={è3·nŠ ¨*í1ÿÊH–ß/:—5rpï¸iJ0Hkªi´Õåº.š¸ðú0!ÐÙ £üi¹q¾—ÓœƒFé9„ÃdxËeÚ?œòhm%Cã,czæ ¸\±\®fà ÑïÖ¬ŸÑÜL÷4Ø:—#§’ }µÐg<è8šli™Z¨(¥; ro¯pyïr;k¿Ÿ )7£rO^ãnh¼'ãqrpä}Áç›QÉ%KÈØ²c÷ì³´žkÖý(ð× |âÀ»ßM¹m7ÿcñbúþTJ8˼_ :~œþ¶y³€þ››éŸ®S”¾fˆÐù™hÊuýàÔOôs£nî¡.žAŸp‰{Åy~÷ÞKŽ'¸† ÃE<}‡áòÖVR2‡‰È3Ë™ˆTONŸžy.W?—96F¯kmsùòjƒ‰œ[Ϩ3„ÿŽwwßMõé§EÔW†Ö4ÚäìɳÇ_(Ð:ðHQwÎyx˜®Õ9Ë©xHC£Ö“Üsž;ÃutT·påˆÜY³lÙ¹Îou»D1‘¥¿_ÙÜÆœs µÈkNbÌÙf+2€fŽF9_}ûí”_v–Îq?ýzÍ~–.œ•8+2V>NÃIЫ%~¿H‘¤R"zª·÷÷²¯¯~Yb*E{}Õ*JƒÔf¿új5Ië~tçD-çz3é”yñ¸0è²–47“ƈçC½¨Ç')ëŸFu˜ÄÊ‘¢Ðóc²ª1Œ©c‘g¡ówÖ:¿\nÄ)¶JEtÔãÉÒ¥äˆ3úÇÑÛÞ½d̹s.¹³¤+—£÷¯ZUÍ«X¶LžF¢ëdzzII$€ïxá…j‡±VN»–®¦ýÄ0þþý¢ß¸s1–Sˆ‹S Äý¸åóð°˜]P/ÿÏ-ps9Á'aኗ_ü‚£­[‰Á>“’8&§†ÃÏçEtΈk2INB(D÷ÓÙ)‚9U¥|97ŠâVÚœ`$—u;;2š&RXMMb¥S˜ïôYˆ³iLÞ ²LPJ[[5‰ÊYn”ÏÓa^´ˆ $2œŸÏD·z>CžÜ±®^D¤ë¨±Aon®ÍpDè72”²LšaÌzð˜°ÃLe]§ÙÔ‡ &+bÜÊÙY“ªiô9ÇO}“¶jEùlü~á »I|Á )SŽìÚÛÅ Šé”·¢¨od„”ÓÀ­ çÅž}– h÷úp¶ªž+• ƒôº‰ ú;óÜ÷ Õ?°±ð¦7UÏ­ç½P¨NQ°QvÂà¼æÓO gGÓèzÂaaøœ“Çví¢õ~ÛÛ¨N÷ر©¹RM#¸}É2,„Ï“ÒØøÖ#Š2RS«ä÷,§‡|>¡+Ѝ‚‡…ÃÃN„³¶»–ãÓHêOæ½Å„8Þw‘}oSôDB;¨ªV·A6 úgž~r’ÖjÍšêïæh}ši8r„ æM„}ä#ä¼ðåǼ™F¨ ë°rY8öÑ(ÁîÌqaäwʆrùrÒ‘ápuDÞÈ©­åèE£ÕÏ.£µ$àÿ˜räŒt4JGpß Ÿ>c|\Ø€3gšxèEÛk׊H›Ïs¹LèT$BÏš‘³]'Ï9ŸNr'—ì±AE§J÷™¨×-Ñ3èÓDè »g³d0œFU‰ŒW7Ê`£Ï5Œ±)¸¶6R‚¬4˜T¯©„ÓÛu¶y¬•‹6 ú|§Èpׂô™ Ó(GÜÜ,š}èzíC­i¤8¸¤f÷nŠÐ8:âëæi^Ü®»59×9™¬žÎùuž˜Uëà±Aio¨j9ÍÍéà<úl&]qiÃÃì´%“¤„ví¢üœs=9çyÖé’r9(δL P»‡7ôzÏ[Q(*àu‘e‘cÍç‘“=vÝQÒK/QÄL`†øœåLüžÉIj>´r%}÷ 7ÐëvíªFUŽ¥õß¼yúÞßÑ(½†•³ðëõ§vôzÊ,ÃÊÎf錭[GßÉùw~Ž|ŒZÍVQºÇ–rY©SÈ2=ëövÁ{`ÒæØXuZ§©i*rÄLg'2qú4ý¼|ùT¨8m\‚Y.“ãÕÙI=Ë¢ë¹çâ õ÷‹zv64xF¼ŸÙyåuÙ½[4›âgÈúïÌ‘ki¡€äÔ)Ñ,i¦ÏS‚î§¾÷½Ôÿ€#dNëÔZ&Ñ.]J÷½h‘ræŒ0îÅ¢¨¬‰FE@ÅÏGÓ1/é nrÔÜ,f:0RäÅÍYK‹èçâTu^ g¹\F"‘¨jg=×R©T01M?úd2‰¢#@;ƒÎps¥BJÀ=|E’È g³µËm˜=ÛÑ!òï““â÷\§ìžÄJ¡·W@Èβ.·°çÎ…œÂðz-8˜ëëEþÜf”YÒµ5—›hÆíÛé3GFDËÄp˜ŒüóÏ“çÿðÃ4'˜û‘s H¥""`§q«¡³×¬(bð l.OsAŽÒÃar~œÑf*œßv*ÕB§;¦6Öp6—I¥`1Ò21!J}܈+õF ­½ž-GÞ<¸…{’³’`ƒî6TGŽÐZ3ùÏÉffÅË<]'gÅ0¨N7¢=½a=W&$qÃ˜ŽŽÚíw3膋ɑ̴ç_·8!ÊzkÃégËÏ“'éç«®|®±æ1µ¬„g«¼ju3dâ#““¢%iW;I¢=ã÷‹çPÖæyî^}}ô¹]]SSE==¢y-áÜòUW ”Œ#ã›n¢½Ä9ëªZgPÓD/ f*rPZZˆ@É¥e\ÞéäutˆˆuõjÚw3ímï÷œ€õúû…Òf6<“Œ‚!Èrñb±wn¿†3j“ IDATöíîÝ‚±ÜßòU7 £¶a²B¢Æx¾ £™F2MˆgCÈUü0­³¥—ÜxƒÏGØnˆq“¥,[BÙPÖ›(cÀXŒÃ‰N¤ YŽï܉“Úr”' ØvzŽ4#^#[ "Sô!3i ­7!U b²B<ÆH.‚ÁL3ÆrM¨J}'awFœ$;'º×ÒB{϶é/[&"ôz¥¡Ì(w:1\j¹n]uTÈäºåËEï÷Zð•W€`å+¯GÊnAÅr›HDÊÆÆ{Ûád•4Æ{sÉ4a¸Ð‚ø@ ¥Ó£°UŸàqcî&Ç.}dH©ƒF vj £ˆµ ºÛ¡li¡ó‹‘ÓÉz£P }´b…Ø÷MMôZŸô1ïÓl–ôFW9ÕšV݃ X$Cï4¸­­ÕC‹ÚÚÄDMA;ÒÁ HC0³ßyαÆs$Ï=÷ŸÇOúS|èCjøº|àxñÅqâÄ R=ç««ã§Ëh3TâqHŠ2•ÀĪ­ ö™ @ÚŒ`²‚4‘À†L ‹nÂáS›Ð$—Ñ-beûJD…yÇÛ![$~@é´ˆJ%ŠöΖ.˜š«bÁôû¡› r?â…0ÆòÄs!üé` Jk+4µ±Pª¶t(D×íèmÛ€aIPdr8L›‰;œý{ÉPQñu¡€–*† _6{î³mÐóè‡ûaå€èo~ƒ¼æÇžþ }Þé߆üáŽ7-AØŒ¡¥µ Á ¢~²„)¹9{<Ãß„¡w`ÅáßáÏÈØÙŒrÉFç«–ko&{rYãÈ>•‹m"àœƬ÷áaØ«VÃŒµA}ì1r¼¶l™Úv:¢u»ùfZÛw¼ƒ¾cï^:„ï|§ˆp v6 £¦3èCÁd1„3éÆÓ>t4•±"Û‚–Ü4úÒ¥d(xe8,àA}ÉÃ%œ]ÿvì ß¿÷½äôõ6)úpêdñbì¦D$?Š-Û_F*¼Ï7}¥½MÐL†%Á¶€M±tìÃni)ÖöAT¾?›|é?´£l¨(é>4?òeE;Ÿ­£3RÄÒXK¢yܪŸÄÊÜn;¶Á¨‘b+ü%ös)”—uœ+Ó¶MòNòÐrHz’ª¢l(Èk~dË~¤+A”u’dC‘lÀ4`Bˆ¦‡ð‰á38Üþœ*.B³t ?Ù³ =†â¶f}Z¢F µŒ°ß€ º)Á0%,K@weZçDG°¨ËFO3ÊT)€Ñlñ|“¡¥ÐŠ&Œô"²¦%c™=€{’&ÔõÝì0‘($ŽÃa2 ‚ÌX‹$Éýœ20@ûŠóågõ†jBÁð£Ð¾ ]ö6ìÙm£õF¨’U6áSlâƒèêãpÛ'°cÇ»Q(*hiÒ°º#‹ÕY¬iK¡}õfDöBéàiŒù¯@9ob"îG¢C¢Ø„‰R¥" —» ø$¨²»N}ËJ'ðÂÖOccW =¨NÆ·SÇ¥Ót–.{³¹™ÎçéÓÔ÷Ü)– Í¡™ *¦Š’®¢l¨ $°ÂÖ"Ñ» Ý‘<º#EDý„ý†pbüþj'Z–Ïv± ©9R}Ø"Ò‰±ìñq†µ¢AJ&)UuË-ô|¢Qá€[VuÕ3˜à€Å²È±`Â/72âi‹²LŸÇ:ª +1‰Ä°ŽDʇ찉ÂþNÕfXÅ2ÞeȸPÓþÚk¯áñÇÇ3Ï<ƒÇ{ <ð:;;ñÃþ=ôŽ9‚/|á ¸á†°{÷ntwwãÁÄüc8p×]w>÷¹Ï!‹!™Lâ_ÿõ_qøðaȲŒw¿ûÝø«¿ú+H.gkûöíhkkê³£®?Ž/|á Èf³ðûýøð‡?Œ{ï½X±b^xá¬_¿þü z¡üä·-h›Ü„;z·¡GöcHZ…P¾úãtS†Òq%ZNíÁov¶áŒL[Љ4U¼hÝŠWû×A–l(¶«¤{ð'¹ÿÀ®§ýh¾vo+ ÍBrôlg¦©w”ðzøT ²V†YIU ™*2å*¦ŠŠ© T‘ñ¦\&ÃWàØÑ›°ré2¬^,œjMóA›ÜíDJ¾ʺÍ¡›|Ц€¨¿áä0H”£ÍE/„Q(•ÃéÞ8¶ý*´ÆÛÐ2)f0Äáç7#<Ø„¥q?úc×àtßu% 'ÕÏ s8ŽWö^ôÅ †héXÛúEy,i-AUlÄOKè?ÓŠî¡£˜”7á—ٱƺûÞŒCë 2–·d°>äÇ¢cä´¶·“^ˆæ5l+Cöµ!~ÂDë-7#´x ü–¥µ•ªa¢d/ûPÑeËŒ„0’#¿ñzÜÜû¼éå—`õ áø•ÀXç•Ð,L[†aɰl ’dÃ'[Pe >Ù‚"Û€lÚó"bVû”Û?¾e9„R÷ztvüûŽ`$àG¥g5B‰> å|‡&7!fÄ ê7"Ÿ¿#{Þ„£‰Ä M(é*lÓB,¤!ü£Ntì }ßÑ!¸n<ö:zz´&· éô!„B@›}%B¹ALöu»€ð"‘!B–аFHµáKÅ)¢^¿ظæd•ÞüzçrKƒÚÖ ¥ßE²aÛ䬕 %MeˈtÄÂ:¢AA¿ É0  †°'Ð22ˆß½ígJ¸õäóXbÙ˜\¶’èXTÔ§*›ƒ¶t=2cQ¤Ž‹‰ÐMã=h:™€jÄ ó+×ÀÐò(÷¯B¥´úd–Xšö¡CñAŽFövh¡ µ/èÀÿH¤«ä‡5r ,ÕÙ2±¦WÁÕ×^˜Aß´iÞö¶·aýúõøÈG>‚––ìÞ½°mš¦açÎxàpß}÷á‹_ü">ó™ÏàK_úxàüÍßü vìØ;ï¼ÿò/ÿ¿ß¯~õ«ÈårøÜç>‡«¯¾[¶l©úÎ}ûöaÅŠ0MßúÖ·°~ýz|ü㇦i4ò¬\sÍ5xå•WðÉO~òü º®g†dóä&uœRÖá·äR’`Ÿu {J 6—uìêëÀ‘à*¤JA ³ÿamÁÉÁMH PnE•M„° ÿn½…=1ŒËKP2Tè¦À‚2$ÈÐ 7œ=42TÙ&E¥èPS…f(ÐM¶mã×x]© Z+äf¬HØgÑ ™Œ„ÌØ:T†bð…|ð©üŠŸb¡¬+È•}È—UJ7¢R¶Q±|ÐMº%Ã0eüÀ~ ʘòs-Pw(&zKT*>ìµb)òx쌜E¹ŸÃÿô£*lI¦ª Ù†,Ûð)¢Aªl!™#C ónhPaŸ|¸-¥|z%9ˆ]CÝØ=æCG‘p»ºHiú2>œL¼E5‚—ûV4Ÿ^†–?(ho‚ñ„ĸ…D¡ ‰\…ŠŠ²&Ã0lø #è3Ѽokþ îý>ÚÇÿ ©Î¤cŠ.C!ØSV‘³Â(AL–š0”iÆd1 ÀµIþ‡öÝŠ¼FÑ  l¨Ðô?L•—¨ÀvÏØ ó`àÖ|–•#«Ç³ªR’:!#Ü$ÛB+¶,ضy.›¤È«á“W§Xh2nEÐ,"û‹NØ¡ú%D­?E,PBK Œ–P­™ÓXTé†mmBhG3Ò£[pÜþ{<ÿ‡·¡hùV hRs([* %³'ðvX–Œ¨”C{°ˆŽPM¾2 z%à ™½hÕR€dcOÛí€/Ÿb" êˆúÊh÷g°x…‚îV –acì´†þ\;†s1ØÙ6äáˆ|5âJ ‰Œt>ÀÈ„ÃTÎ®Ž H°aP$ !UG“/‡%¾V§`AÆ!yÒå Z–­ ŠšáCI‰¢YMa¥|o/<“Ý[iêÄÚUeÈŠ„c#-ˆÇ}HéÍÈUh³RX[:Œ]ÀHxÆ‚« k6ü¥$ ¥Ò™ ÙÐTaµŒˆOCHÕ¡Ê&9~Š U²ȧ‘ÉñdêFè©üÇd*£¶Þˆ_G§}ºÌ»¡îˆ@?Ú %‚¬Ê°lÀ0TŠ&ò y#@Î¥®!”…ϾF ‚Âo!ä3Ðì+"Æ3! äZ1Q ¢Ù^ë­ýhSòÐe?l h¶R¸ªü*&B]èo¾~[B~躄rYBÑð¡\Q1fÊKÍX¬%P°U””fH’„€LçX‘mªü3e&ÐQI n¶á 6Âó¡8ÂÚ^ÔÐ.!‚<š‚æÙ¨YÇÌuxeçGa+*ŠºÉRùÉ÷¡TÑ1ôãU0%Ù>»ž|²uÎ-± Á¶%tJ•ëaÚÀŒÓ_h¿HÇCÂÔ¤šûìßœ'< 6dðÉ&:Í·¡ÓGbÇ„d [óy¬•®Á±ïG{³m†m“gJ¨¬\ý¹jzëH_FN¶ U¢ôNÅ¡À‚ý4`Ÿý_Ð'á lÂuò>\{¤Ë_ëÆïw}§+oǾÞ+1Ô+öµ³6¢G@å/¤Ñ½Ø˜•}ëêꪊ˜ƒÁ "‘Z[[±¬NuÊÊ•+ñž÷¼°uëV˜¦‰­[·®»î:œC©0t›àÚ‰¢‚£‰N<‡Ïà‹ø;ôX#X>zÑÑšP€Œ ’PqË‘Bt„HPe ª­£×~?tÉ+%ø5DübÑ2þ(÷+,-ŸÄ©M[S³P£€‘Gr"‰Ëy¨–‰‰k·bˆa(ÁD>Ã’tèj3²­ëÌùÎu ni6m²±vm‹eÎvKmB¥Da¤ˆä±8Âè;€Óí·¡°l 9€òh¥²„Ñ|§ãaäŠHâ°HÀÚ«Ë1€5=Ž®~lîA@®`Òê@0LJN|/w¿;—ÞžHíꘄ‚ a „åéq\¹÷¤{Öàéõ½è;uí-MènoFPOBjõ¡èW“ŽÎÕÝØ‘*ËZД¯àÖÝOâpÏU[º ù–fèþ&˜¹0,}+†JKHø`—+èéC‹œG4¬£I-!–ìÃâþ¸¥xÝȢ݅疿E#€V3¿ý7h¡þ×âOC‚…U…^üCáÿÃÓÑ»a-ñÊV`ùÜôÃnkÂéÊNÁÝ C)ã¥÷âùÀõ”CœuRÖ¨ãxËáŸ#•H⿖݉•kVB±t(Z R@‚$™¡C†‰•'öcUé4¾{åÿÀ+æí8¸#£ @O—0Û‘Âd'›Ovôä«ÊZ%¬oŸÄµ¥³iT䯻¯BÂjCªB&@Q÷ò¥sïéiÎà-Ëð7æÿÂGþZ^B>d!#=Aû6oÅhS”’‰ÕN%*¦Ù8{í [ö<]y ÿ†»àt£dEÕ#Èiaäµ2e"ÙüÓÐÿÄþحغ7Æ_À¯Â†m-Äd>ŒÑT9½C¨âãlßó³)[Y²ñWÐÌã&ål ïÃ©Ž›1”‹!¯QªQ3avÏÝî¦<Þaÿ×k;ðÄÊcEó"~UB@±à7‰}n$HÙ¬+®„O#/£ ÇP¨ø‘)ý§O`Ó›Ö#¡*@¶ÆÉá&”ƲXœéG¾ÔŽ1«ßÕÿT`…º½Ö/ƒª*ºšK¸gãA\;ŠöמÑÕmõrèm‹wã¥]!ü¨ügøö“MÀ“ÐeÀfÿA¬»1%\‚œ˜„š/ÀTT„å réøÁ’3L%xì±Çð»ßýœ·Ÿ¡43§ €ªªˆ:R”>Ÿº®Ã²,är9är9TÎ-·lÙ‚[n¹eÊçE"‘sìuY–ñÙÏ~kÖ¬Á /¼€ÿùÿ³÷Ýñq•WÚϽÓ{Õ¨Ër‘d¹É± Ø`¶ƒ1Åô¶›„|$Y6a³K _²$!…%l „õGXÈn²1 !5`Š ®Ø¸Ê¶ä&Y½OŸûýqæè½3š‘FÍXhÎï§Ÿ‹¦ÜûÞ÷=õ9Ïùþ÷qà 7à®»îŠ4}ß7*ƒ.I€‹ÂÌVv¢Õ6 ùÖdIQ•dÉdzꃸ´é ”EêðzͰëüøÊö[qÚ^ç*¿& cž ºžvèÆÌ¶Í8÷½‡pòœ/ÁU•KE>äžn`ÍtÀ| p¹ È½èhïÄÿô<…—­AgÈçsÿ[û1H±(Âm>0]¯¾eú­0ÕÌÅ ¡Á9Ý–Êo¦6O¶ t²ŠVE–!K€Í†×D¡Ë2o4r Š?¥½0÷ý Ðu·bÇ…w!œ[iÍjä—gî…ë¯BóÿÞ†¤kÃý«>BXÒ£Mò %ìBOS/ÿe –êcû§l€×‹üb-|ö \Ö´rœìäÐ!H§ŸCór?BåmÐÈ1¸Þ‰¼­ïâÚmد〷§}yhi!ï±m¸âݯcoáÅØ¹ú_a±ˆn<Ÿ¨™Bù;OÁdÓBÒÓ6èêÓáÐiö1ãT}a+šû¬hé³ ±×Š“¡jDb”ZŒÄ$B=˜9 ‡­J^. l½(w´bížGQÿ!ü~þwÑm΃Ñ"£H:…R_y¶^øv¼ Ýk/!¶"Ébòóqª¡ »^—9)7¸07žš•Ðî7áD—'ZÍmˆ­.GD£C$B÷4s&PT$Áf3C’®”Ž>(OýÒ¶ížþ/Ä–^|å(/ñowvB‰FßþжmŸù*õ ®Í9Áeþ®Ö:H+ÿ¤X0 BÀkÛ!Spñ:/.*j‡,É%“ÀF%@wœK—âšé¼ ´Ä‡eÅ€¦ŒÒ*êúY @ R“‰r’ûÞÆ¯sΙMíÐÕ…ëklPΛ‡Þ> ±ú˜7þÚèì€ôç?Mô:`Æ4`æJ ûŸÇå3»Ð°p=:5£ôäIì›u.©0@#+Èíµ@nÑaMY7°¨–Àc Õ©OŸ†rj/°ã· ÝÀº°¼ Ëãi' $쀱 º—^•%¨X¾@´3&Ó‡žØ Xôø‡Õø¢óôÜPÅi‚¡§Úÿy R4<ó "ûëpøª»ðQO1ŽhfÂi c©m/f˜OÁxì ä?lÊ €Õk+8E‘Ðæ7á`« žôà`w>Zbä*M˜—wç•B…ÎéÐe0tv"§·9Œ¯ÈËÂUK±€ÁªW®$À*®áz}4 ô5aþ¶m¨¬qÂQ”Ï#E¥ z¡D¢ˆýùy蚢(¹ò\ä˜Ü(y¹ š¾ƒ¾¼ :£Ý1Nô9q Õ­ȧN`ÍÑ_ádÕÅðWÌA‰£ÅޏL~ص~èžù-¤ÎD¯ü{ti=hì±âH» ½"Z#dÜ )„v<Š\kÖ^W‡1Dñx(HhA` RDpi|®šÎÄ3Ïz½=½½xê©§ð¹?s¼Î¯ôDбùòþûÇØ’w Áäw|„Gg<„˜‰nÙIyÔH’Ý)Ç‹hTÀ0êtñIǶ„¶àâ¹-˜éÿr4ì°çK×ÓP½ŒØG¿F[Á4üiî7°§øRÔô¾‡Ë_øì±Nôÿômh¦—ÁÿÜŽ5ï±"ÜÚ‰ª;ÿZ‹1ãV´½{÷"”¢]Y¯×§üÿ‘ˆÑhDmm-æÌ™ƒ+¯¼’$!wµÔÔÔà…^@4…,˃¸úê«qõÕWã­·Þ—¿ü僾{÷n,Z´hôý²‹ú±mæ,é|ë>Œ¿N»¥óà0)Y#‰8=•Qµÿ(*ö¿ˆ q$I=ÖÈt'®­Ü¯3 ½×9†ÜÙM0ÍæJú÷ Dh„Çq”w4á ìú Üš& ï”ÙÀ¢Eо½ Ëë~%Jý£×Î=€F­'>U–8°Ë%¦©êtz:=èÞÙ‰Ž-Ñ«XávFQæíC˳! V¤´ŠMíÀ¡ÐÕ•Eu@YÒy~Àeúº€BðÊ%E0˜Í(ÐjQúãÀÌ2äìßÕ9;ÂBHÉý²‘ Å€ÖÓˆêupçi wÆ‘ô «€½Û‘ûÑð]áÀ’……h9gŽ•ÐÕExßë‡0û½wQ³b®û>ÙNqzà´@o2V<¶ܶ6,(iG×á;mD]—M½Vô…tǨ6U%&ÁìÀûïƒ;Ô‚M¹_Å´¦k`~ç] fþþœ:(ºhœvè:NCcŠÓa–¯Kê ñ‹A¶Ù ‹ÓÀr Ï£ähÈñt`ž P\(×j­ÕÁ&™Œ€Å8mhº:€@Ы¤(ý4ŸNŸ.¼ù9QäçÇùeÇ 3¨xº÷Îö¡R,ìÛ ø||9¤!: "î`¶:sE£ÔE‘Œ<æÞoY­„jgF»8ÂXª? éÜs`·k©õÒë·¾´·œOkëtÒƒŸ=’ÅËŽ·Q¥ôÒ½4¨^lEµºP¤ŽvZ¯^*]QؤÎ@‰¿~aa¼E&Ž—”Àh2Á§æŸH6æLêñ@ÒÈИôpzµ€ €ÕØã$Cù^èöìÀy/ª*».샬×Bw,NÈr¢0è€5«€Â|P¡FAžµ¹–>,ñA»w&Žõ{áé?†bm &€ø¬¥7ªîÃg‡în2øjšÕ¹saܾòÑ£`Kpl4„æà^`Þ<MÓr°| ðÛß³ë `Õ*Øå~¹ûñ©ÂF£Zàw`nüÑ%³ •Ptž ÓJWAÛÙO‰sU¾6„£„ˈÄËý-,‘.Ø?jƒì´Ao ŠÜóÏuØXŒîoÍš*éüóW^ävÇ5*‹IQêD‘´Z˜-˜óc€Ç‰%Ñ÷ õ´eŸóâÑïëFÐh‡ä÷C2è!­½°JX—¶6ÑÑ;¿FƒÊ½§`‰ö-  ‡6^ã•úú ‰ásEpÛòƒˆ|åRh^î„´EŽuÁˆvÀ^ ‡Ü äúC 59÷Üsñÿñ8|ø0®¾úêTøH úý÷ßo~ó›øÓŸþ“É„öövÜyçX¼xqÂk—/_Ž'žxÇGQQyä8pv»õõõøÌg>3€†?pà®»îºÑt³1†®VÌê<“QÁÊ0ƒ6:H?Å ŠÙ Í.³¾èu0 „ü6ÀÓG]÷‘ÂíVm8fÈâþÇ`pÒZÇdñ‘¤RaPT¬_é£ ½ý6àu£ØÝb_;]Íé¦oj€¹ePªÚ©ÐŸŠ IDATÙ¼ZÐû©D¯¼ÀBC?¤`œž5ý×€ÔÓ c´Åù—¨nê£@ ÃSîÒeÊË©-KõÙƒ^¯ÈŸr ó‹ZÑ"´rS¯zBzøÃZ„£:48®GÅæïáò#?…¼àÊø0w¡hµ´ÀlŒQn7­É±c´>Á ¤h:&“àÞáâb„‡!+  Õ éYÒé9˜¡Pð?uJôØ&e¢P^N¯=zTàãÇ­e²¡J%É-x‘HbwªîæfA²ÂmjìÉ3‡6÷3½n<«ƒŠ ¢òT{: °z5Ýç¶mä”äåAÎñl4ô:º&nçbšX¦ÞänT„?I<’× AI¥øz{©9Ôw˜´¤±Qð[47C.)!Є“dÜnÑÚ¤~~Jl`°`¾Ô´æ0Ãà6GÕÏÈl¦õw8g~³_VXˆˆÛ }]µeªy¢Q"¢¼ª`<+.¦”Òöí4„'~ÝYY‡«¯K<—ä3«Õ‘ÑW dI+l!hïB~ÀQ$î©°p0kœßOÑúŒbãÏšEÓ={ŽöKo/=§™3©5Íj¥½àrAÃã~«gÃaWà(”X7 ï.¹(·jP‡iYŒF ¤V+p¼ƒ>“ûô™öØïm£ñT­¤7íöxÛU³01Kåpc­G ëÖ­CYY:;;QVV«ÕŠûUUUx衇^»fÍš„šøç?ÿyèâ{«¶¶6lÀ‘#G‰Dàõz1ƒ×]%ùùùX²d ^{í5Üzë­øâ¿ˆ#GŽ ÀívcöìÙ€7Þxeee˜;wîè ºÞ¤Á-•;à<¾ ²É—ODz˜ƒX¸6?÷bëõ Ú!éÉ¡×CúÔ"è"a:pÏÐŒdÌ‚ä÷‹~xæ2éÿy {Ã’Dk“C÷^_OF1°²ìï§×¶µ!d±@ÇãL™¯¬Œˆ):;Å÷ª÷®3íi*)(tÉa®ÅhµÐÊ1¸M¸MTçR¯s4&Š:¢…Í…ä½ÒŸþDC,˜;¾°PT@ÐD²CSP@N[œeO‹AÓÙIvšû[yª’ZÉ5m,Ÿ\ÕëéÀ«IX42Ð¥"©q8ˆ7àœsèõû÷Óç¦8ˆÃÚvŸ6îáM··l6Á f·‹>ÜnÇS O¢×2ùÌþý´çæÍK¶0Ȩ Ôž7cFâët*ƒÎºšv¶µ5õL€d1™-*‚nëVržR9lÐy¸ŠÚ Ë²p6NºGžÛÀü L+{ú4‘½¤r¬¢QÁ Î÷Ÿ)¯“ưђeÁ¦ÆŸ§Ó!4s&ÝgS9鼞ǓsU]Msih4ÄQ°?=ƒK/Mì•?uŠÎGáëåïÌÍ¥Eo½E³Ö®MÏŠÆó6ú£1‘-“£sž”©þ­–öûÉ“Ð>êÂBh‹ŠèÚssÅ #»ÎÈôg~>}Ÿ,Ó¾<ï¼Ámj]j N¬zØ–Ë%3yJb8L{•¸ËEÏ&¥õWs½óþh4,]º4eo¹^¯ÇÂ… “ünW\µ9~—ŸŸ?h# 郌µú÷éäöÛoÇ I|>|É$Irssqçw ÞGeÐ5À­éZ›…é ÷ô$ξfåó‘bŠ{t°Zé‰Úí¢ÆfµR¤šŸ/˜‡Ôu+5hÀdÂr¦Øä1ƒÉ‘Ó)¦8™‘ èt´‘™“<òÒj¹ G4LÑÝMF"ЯS–é>ù =Ên*f¦©e¾`Öª*ÁXÅQ+ÉÎNúÿdö°“'éÕ©Þdá‚zkëàû”ez¯š„Ÿ¿¬Àªú0÷uÐý½ü2]ÿÊ•‚IÍbΓghµ”¢ø€öÒ…¦7èÌøÇ:&ùþ»ºˆ¥³°0¥c†µka|ã \°~=í5v>ª«© j³‰LZi©˜ißÝMç†G§*ºõ³Ü±QÅè~y-ìvÚ?L.ÃtÆLþ4BÑétøÊW¾‚³EÒqµ$§êGÏÇ5%6¢ÌÎìBj#Ëþéï§ íó‰IAV+mžsOî'±0%Ôà8%ßÚJN@*O•§EéÇ«¦R¨«V =I‰£_Y FÌîÑÐ}jµD¯Èó¼;;iÍxÒôé´ ›š„Rki¡÷2ç53-15"{ì&­!+TS¹†Bô9:]ê¨3ù¹$ƒ=˜;ž†LF.ZDŠÆ` ÃΞÅÎŒmü,§M£Ï=~ˆF!÷÷SšÐéÄj1]Mz¤Â Óf£ýÒÑ!æ-··‹ÔorZœŸ}Y=§ÖVÁŠ5{ö`‘ÐP©¾htèè\íŒr¶ h‡k½œA9qBŒ­<~œžyMÍð£/%‰öcr”ÀNO\ã<ù°¯®'£èõÒÞ««K}~ÙQäRˆÕšÈÚèv‹Áêˆ,OŒ³ÙR³TF£b”©úþ8ÊÎ$:çsêr‰ cÉúÀí&–@‡ƒœó—_þë¿è¾çϧk §ˆ—-£{{ýuš÷Ì3ô^æJW?+ª¤¾•+éœmÚìÜ™úžz{…S͘ õ³ãqÕCMþóx€õëIW©ŸÏ´i°2#hU•8kÁ Eç™ê\—KLa“eAëÊTÍÌ:@¾ Ñ>÷xÁPG½—'ÌMÁ-£g°oo§…óùhÁ9 RÓª=.~èÑ(mX6´¥ªvíoœ’Õü8>2™‡1§¼Nµ¢Š<‰´µAîêÂq¯žPV•’U¼wìŠ-›Í#›åóQd±y3)×ä÷òµ«i_;;ééõ‚ 1?ŸÔòå”F|ë-‘ň{ÅʱcØ£×£#À4‡ÅÝÝ´v¼ADôzìnmEoc#fú|È;C--Øsàt[¶`öâÅp:d;:DT0”°òà, Ïlæ´®Ý.8”‡KÛœs½Þë¥ÍSÞÜnŠÖáèäåÑ44ÕÕÐD£TêgWª(#ô‚Q`³‰,Ï÷xDt‰niv`8“ÂuG½^ ÇÐéÇ´F"@4 ÅlÆaI©'o4b†ú3ãNB+€ 0¨.,„A§C·ßCMMè à±Z1§¨;lìTµ·Ó9‰DĬíþ~r;:ˆ7žiI3mUI—µaC®×‹9 ­­F(ÅîÓ§á‡Q™“O’S  Y­(ç´©jŽÂéîn8§éz\V±&1‘É2=“ÖVZ.1Ìœ)úãÇé5\UÓ‡F"ƒ¦ MG­Þgz=ÚB!ìß¼¦hU‘Œ©ÇÓî¡h65!PZŠÊšxâc¡•ÆFlxóMüòµ×Û»ÿóÊ+عoxþyl|ÿ}(Œ 7ÄΞ¨Ë>û÷“²?r„œŒL(zÕõñTÙ .ñèMž©"êñàñ­[ñøÖ­xýèQÜûê«hMÊHl9qÿöƨóx€þ~t«øÇÃÑ(^~á„…RV&ŒŒªw@JKE´¯×S‰¥§‡öNa¡˜ÓÀÃ<ø¾’ׂõËpû9C@’ðO¿ý-^{óMløýïñ‹7ßhZEA4ï¶nņíÛñêáÃø¿o¿6ÈÏÇ3~l6cG0ˆ7A¯^/†Ñ Âáå!%……t¯ôÃY¨PˆöÃAû>9;`·Ólƒ¢ûäù t½|f’3˜Ñ(Þoj¿Ýw6oÞŒý×ÅöíÛ÷l?þå_þ¯¼ò žxâ üìg?ìÞ³w=ý4Þ¯«Ão÷ïÇcz=‚6]K0HÁÐH"d¡Êzƒ»=xŒ*ZÖëÅý bB_S.]¤4/½ô¾÷½ïaóæÍ¸çž{p y<5€§Ÿ~¿úÕ¯ðÅ/~]Éëû‰1è<©Š§X1Ð)¹þµuJžëç¬ô:x\3á”T~>fh4¸éR|ó‚ Ð a×Ìp¶´àÔиaåJìinFC¼vÒé÷ãç[¶à¦¹sEÍq¤b0PÚˆÛX’•£»»ÅÔ!ž@×ÕE÷•¬Tx  ÉÍ…»¹ß=ÿ|ÜsþùXZT„göî3‘­V´* þ{÷nüðæ›ñU«k2áÕ†ÀjÅ“ ÿT[‹o|éKèêê¾}ûèZ¹þ?œ‚×ë)UVU\uEÙ.—¬À)®TSç¸^•Ê`p‰ 'GDJZ-Ý3Vi)í£ž »›6#;w©Ê'<+{¤ÂC0\.Úc<ôA’(mm·'ÖZyŒ,œe"÷ÛÌžMÏ q1`±àÿmÚ„¿;ï<Ü}ÙeøÒªUxtËDxÿÇbx¹¾·ÿ÷Š+ð+®À¶nE ÆÚ™3ñ£ë¯ÇW/¸ÿºnþû½÷` %g‚xªZÞŸGŽ£á÷tE–¾L5©O=Eg_ËòÀØÕ“Š‚¿:„V­Â¿­X,ã=õ@Oî܉çÎÅê‹/ D@4…¢(xõ£°lÿ~ô[,èáÚ:ós'K^žÈÖ¸ÝtøÞY””Ð/,¤ ˜Ã!¦¦ÂÌd‚ÁˆFñ·#G`›5 ÷Þsî½÷^¼ÜÒ‚ŽÞ^º–X M½½øã¾}øÑš5øÖ…B'ËØÔЀ`$‚¿û.î9ÿ|ܾx1þ©¶®‚rŽyœ±Ë%¦ü åtqi…#ûTgÐã¡H½­0)ÉõqµAWïx¶ë‰?þ7ß|3î¾ûn|éK_Âc=†°ÊqxõÕWáp8ðo|ßüæ7ñì³ÏÂï÷ã£>Bù¬YøÚu×áë×ãéÖVôrI‹)+GVÀ™ž÷έkÌwÏÿ¯vPØ 768 í…i¤¯¯¿þõ¯qÏ=÷àî»ïƲe˰qãÆA¯»ë®»°aÃh'xëÇkÐyä%Ïlæ9Ñ©¼}ÞŒ\Í͈v6l<.‘ÜÇb@a!¬¡¡¤@ JK±»¡¼ôÞ^ÀhÄáŽ,‡‹ÚœTy<ØÛÒ2à=_UU7§G;Çë¥ Ÿ¥/ƒ¤${z‡ßO7ÙÑáš {û°˜?ì °ûôiôp:щ@1à±Z¯ |>ìnk£µŠiØ·())¡ƒÌ’†Jõ+_tQbm—¯‘§É3­YŸ uÎ-?<ÛØdÏUíäqéåôi]0}*ïž?w¤Âµ7—KôU³aki†ƒïAy:­Ÿ¢’â”§µyD|ÍŽ·µ¡,^Ï­5 ÛÚĬâ`õöbNq1´² ‡ÉŸÝŽúÓ§¡ ‡!­^¨Ï‡×wì@uQô¼?¸†Ëe˜¾>šñÄ®æfB%Ö^S9_œj./§û)-À7uƆE!ƒa³¡%Q«…3~žæçåaOÒˆã“]](s:i­ÊË¡=y‘înœho‡æ•WP¦ÑàÇV+z¸ÊÝ.ÉÂ#d 2§O LÍÑ£´§rs…‘ÖëéYΜIY!uÊ•[ðøy#»š›1wölhõzx}>x‹ŠpäÔ©€£+„A£(ñÕäæb_K ¶µ¡¥¿÷¾ú*þnãFÜöÒKèb0·di4t}@úka³™öZ*r“Ù³éÜìØ!@t ãÏP—?9ËšŸc(‹£Ð.\ˆººº„ùÚ{÷îEuuõûYnn.êëë±bÅ ´twãž_Äm6àV¬€Óí¦Ï]²dÅ_­ ‘koƒ•Ô†^ Tšéêø­aÒíhjjBuu5 ªª*e„>Ùdô¨ŽÚÜ:Ýà9ãjoX=žrÚ42Ü Náˆ-®Ü[ÚÚð›>ÀoöíÃQŽtâÀ8IQãÞÛøvF£DÔ’—È2ä`1EÁ¦cÇÐØÛ‹OϘh4Š(€ØhÐÑlð**ˆ„>TLü‹:³Å"ú‚½ÞÁ]£A¨¸ÿûÞ{øÍ¾}Ø¡Óá¤NG5æPr¼9ð=\#ä j6C¶Xãzs?š›qÿ/~;”=·«dŠìO>\Åèžt::(¬0Š‹éyr =•áå ’D‘:§ÌÙXçåÑáMפ®…B¤X¸7Ùn§ÿËÉ¡¿——Ó52èJu=êU% ŠÑHŸÇÄ,Ȫév’$!ÖÑ,\ˆhi)žkiÁû÷ãîK/…FVµ€:"27é{ÛÚ(:¯¯§ßÕÖ¦_³@€®£¤„Œ8ŸK‹…uE@2u¯¾Ê 'ïgY’h¿ªƒKÄI7dÁ²2˜{zinÆö×_ÇŠ®.tÏ›‡f³È^°Ã•JÄÛ'€qÌèvú4eMžl’#´ÖVºGfh`\üžc² YÝj*ËP¸ëA¯'þ‰ëŽFÑà;+Wâ×ëÖÁm6ã¹;hï­Y#Œ©Õšd§6¸ê2$‘>‰Å_»VKÙ™ÖVÑâÈ¥7§SÂowïÆ[¼ÑGÔÒu¯_OŠ3£Æœ{Ñ‘ÜÞNÿÇ#þ’7Qq1L’³ÃÅd¹¹«¯Ç¡¶6Lw»)òЧ¬­&b±ú‚A@–qÈïGó¸* ~ùÖ[X¿v-Ö®]K_À@/—kôsÙp»4t»I‘òüôœœÔóØ1ÍÆ£°P[Ø 2™HQ;F)3îûoƒ.Ë´j  “Qð¼xVæMbú—3 v;½®²2±Î®Ê$äØlh‰$46¢Øë…¡¨ˆ>×ãAyn.Ž47#¦(è ÐÞÝÂòrÄæÎųþ3~ÿÆøÉUWÁÎ÷È /—‹§Ï$–{$‰ˆ?l6ÒS&Žf}>2äjBþ^O¿³Zéù2°¯O”b1ÚÓœv;‚‘üqC4°_U’c±àto/Ex6BBgEuuè´Xð•žìimÅ#ヒ~ ¦Ò! íq&šaÌCg'wÚW« …hí8r*Jë¦^/êNB,Cww7ºÚÚPhµ’N+)%?ÁH¡x”}¸½å.JœN¸Íf8F˜´ZxsrÐÝÒBÎoq1E¯]]b\1gò5¤Zv²SEéܹcÝ[o/íQθ¨y<CQXŸÏ‡æx†åàÁƒ(,,„QuþÊËËqôèQÄb1ô÷÷£¥¥EEEØ´i.¸à\ôéOãﯽ‡šš¨$1þÈA«,Œ×In]kk®£« ºÃA÷Ëz8ƒnµZáv»ÑÐÐ8vìXÚÁ+Ÿ|ƒ^W'ê£zýÐFƒ‡Ð³°ÇÈuw6xV+À¶ãÇqayù{ÜR‹>I–-[ÐÑÑAžz$’öû3¾ß’aD\.BÑr*^ý<µZ‘FçgË©z5YP$"@“ê:zOZÔ€¸TõùAl#¸·[ôââGS]#ðpX5Ž‚ ëܹ´&|ŸIø„k/Æ›6á…;ñÓ—_ÆÍç‡S¡¾»s'‚&>=w.v;†ßoÙ‚ o¾‰¹yyp¬Yƒ×¶lÁ<€ÕëÖḢ`ב#ˆ0é ;#ìDª¥¹™îaÖ,qΘ& ½YVFF ¹~zú´(—pÌY «•ö3gÒ¸eÍãA±Ó‰šÜ\üøÝw±ñ£p¸½ç–”àÅC‡ð›?„àÊÙ³ñÔ®]xéÐ!ühï^tÛlpÕ×£PQ`½ôR|kíZÌòzqÛÂ…01¡LºvDâf&ã§ÑPÉ­¡®­¨ˆ~§®­§’înŠÃaÑî”îõq„ûÅå娳k6n܈ÿüÏÿDEa!òÍfÜ÷‡? ®½yÓ¦¡¶²¿÷~·};Ž´µá¼âbxL&œ_ZŠÿüàüñÈl>~+JKÉàj4ÔjVT4P6Li y|ªº-QÉN€ËEßÑÐ@N·{¥2èÜ“îvãšk®Á“O>‰^x?ýéOqã7¢±±÷ß?‚Á V­Z…={öàw¿û6lØ€šš8,Z´/¿ü2þò׿bÞ=È5`¯©]tÎb³%ò9³­8uJ” 8HT;ܼ†Ü‡žÏáp`ݺuøÑ~„^xþóŸqùå—#‹áá‡îß¿Ï?ÿ<º»»ñòË/ãøñãŸ@ƒ¾¿Ø\êjjWh0ªTÍÂ¤Žæ ÈÃ2›¡Õj¡ÉÍÚÚÐÑׇG/¿^³zU990h4!Ûlh­Ÿö³0åäÀÀk±Àk±`í¬Y¸¤ª ÆteÑD{99䉪ïkÊ¡E¬$Óíâ_ÖëqMm-¢ Âzò$î›1‹óóÖVDìvL&hÍfÜ}É%˜WR‚–ž|ïÚk1sæLD㑜#ÂŽ?ĶmÛÐÉÑ s…EX‰2ekªÈY–éu¬”âiÛæÞ^<þÚk¸÷Þ{ñØc!À8 VV¼g J,† Ý.ÃZ[)*TuNCÖûgpGèœ`v*Îj$;l,gÏýáLޝ’Ë.Äg—/GCk+¾xá…XSS‹ÑˆÊŠ È:îtûì,‘ÑA÷‚A:\\óJÔutu*&Uí½°RFû k2 IDAT1Áqð n+)ؘV½×Í™ƒxž¯W/^,R“ <‰÷!Ö––’ÒïþAFŸ2{‡~?ERzýÐÞjYÙŠ]îè€÷‚ €0mß>2­­°3¢^}k+®^°@lØHúxô²ÒnÇÊ•+Ï~V´qT<1›Ii2*:½»KßïdžÆS§`)+Ã-+WâÕW_ÅíwßGÏ9zFoÛí´fqjÕhK Z#šÍÂ(UTòf²Š±tN×Ùítð;;Éa¨­¥ÿgÅŸ*Rt: Ï “ý$!Y’°|Ö,,W¥¿}v;®V1¥•û|(çûY¹$,]ºTp?ƒÀ£&ò‹sÛV¾†]»èÖÔ¤&WIg°Âaj+Ú¹3ÑPp¦Åf£2Fg{½@O,‹8ƒqYÀí™Ñ(4–`Ù´iâ§NçŸHô ®ªª¢ëPcS‰Ó)ö^QÝs,FšSÓÓ§Óºõ÷'¦©‹²j­ÎP{ˆs±ʪªp[œ#›Û¯[²dàZMz=nPÏ±Ž·1Z{zp=·¤…B€Së·›žýoКæåŽ„™yM†2|ƒuZn.­ÅŽ"³Gå'8ã~ÿ@@"Ë2–-[†eË–‰’IN®¹æšO›6 ·Ýv[’/ã¼óÎÃyç'ÊŒCÑLg"œ±åLã'NœXžäŒ0goÒ'#h•Óh4¸ä’KúuëÖ ü{ùòåX¾|ù'<å~à Ä!l± ßÂuòd¦#V² Å·‘rÕ銊Zz{iSçå%F:uP¯›ç˜JL&º7ÞtêNg'mÌ¡ˆ …×Éžô¼yD–QWGÄíë¡(‰)WVöLüÂßÏ©XfF«¦®Ù%GÜV¾-*(ÀM×_ªª*Üxã8pð Eàyr},ŽÜheЃÐ.ºˆŒ§ÓÆbÐm6áD†ÃD£fåâ~s5(‰£T5ÑוGÓ>ÇÒßOŽDªÏ0¨ÞÊ m ¬c§‰S­uuiÏš•9OGç3gÒO* $—ü~Á#ÑÚJÏ…³,¡PúvÅP(‘g‚KÖ©ŒçP:„ g˜¿‚K1ee"=Ëãýý‰ßËûkæLqý‘ˆh‹LÕ6ÆÎ$Dõyã6Æ¡²w&˜‚æš5+q­¹³$7—ž3§Þ™ñQnOgøtºÁ×Ïà¸Pˆh€¹—›õ :å΃ñÖUcÍ~rÚŸ‘Å"ðDLßÌ9Ï™H.MaÝÝsKOº:Oº”¥:ݞ̳̊“Üãm±Pš-Yé3‹‹EMH1Í<=>ðe€\FmÐÓõ '§€yýø Í›G÷ýöÛô92"™• ¯«Á@= ”#ô'èÚÆÃ 3-o& Vx¤8< â—¿ü%.»ì2˜ËË®1f0 ¬(‡Ãˆ"ªÕ¢›ï)ÎCƒ"‰U«„’m¦…é6}þ‘#"‹Â MµÁ DD¬vJYáŽVqN*+vA¥n·ÆÅbÄ g±PMÖëÍl…¢P¤¹p!í›d| ¯­Í&ÊH‘ígæ\·ÙDÖ&Õ½ù|"¬æ HåܲA*Bg]Ñ÷+çæŠ’„ÃAû´¦Fpxs‹_m­pêU>0ŽÇ§&GÈ ÐªVŸ¬÷"úžT¥/­–λß/b5·Ápº‡{¶“¥¨ˆŒ5×è™&—Ÿ-Œ6­’^O{ ‘3ó¬]KÆ}´†”•…ËE륞)ÀFZíôñÔ&vf+ÁÏV’ÑËH"äÞ^RäC¥T‹Š3Ÿ·›”¿ßOŸqè½®´”`ÄQåCJ_í!¯—öN²aæz4£á»»éþ»ºG³s9‰ïe2ðØqÊÄÉêœp¯×Ó5èõ‚Ý׆™K–ПÌg±|ƒ¬ØéM5yÓÝ© :ŸÁTŽL:álEºgÍ >þ^¦CΤÅ66‰ïkÞ<¡ø>Õ='gtCŽ&ÜÉ´ÆL­Ñˆ,.OKLõ\¸=“35èC¤ÒÕ‹«žÊ”j“±"VGÓÉ)8I"O; #žP¤Þ¼‘EíLB’ ýl±ˆº"÷·7ɤf³ sa@šË5¼§]\,ÈI‚AúÌÚZQ3eÆ }ÁÁSÌÑ‹Å"¦ñ¸Ù®.AD1Va¿d™@€¾G átc ÅíÆÏ{ Û·oÇÃ? 3sRǃüü|\vóÍX³r%Îûô§áX¼5шš²–#˜t½Ö™ Âäè‰Ó¢Ì §Þ_ )FV©÷=? æð®•™ÓMS¯cYYâ¤A6èýý4¥+¦èÜí&#ÍÀ¾t‹Ñû—.(â¼¼DÅ¥5[\(Dr„®ÓÑ{óóé:C!Z/N‰³ƒo³ ?Ô‡¢äùÜÉ]ñxȉQ\e‡ÀjV¬|ýóç'¶92±ë„dƒÈ™Aþ}*ƒ>’ñ½€àžO%Ü ÉÙ›-ý©T{$•N“$Ú·ÌâÉû‡?3š€èãF¬³AçgËü©Îv2ÿGÖ BÔÔŠ¬Ô::R%08ƒkr\I@ÊËJ]–ƒœš* ¨ÛæÔ³Ô“=7îçmoäPʈ§½ý~R~×H„¾ç £0Ž ü~üùƒðÈO~½^x>ø ü\ … ÕjaÏÍ…Õå‚%'ºO} 1½žî…Á©Rcn]cT5ã’E?9[sç ¥Ïyž°Çû𢋀k¯¥çÖÑAë’®¾ÜÑA³»3饟5K€Æ8»Àì{÷ÒõñT“‰Œƒ!S Ì`®€ö“Úèòb´qW—ØWü>5ÙJQ½'¦µTŸAfúJgÔÕíCát:±æÑ(óòòDò"ufÖ,ú½Ó9xPÛ-ö+;@Š"ZýxúgaRŽL&²s.Ý®>/ÂIàòd¦%?æÀHU¦X° 1­Îg'ÿúùx #ÛÕ-›êLM*ƒîtîäðaàÍ7Ó“õL}šQÞ3èaìÞ-†¨7®Å"È*8­•Ê ‚°ƒ§rdÀÍfJ5nÛFʆ=MFF2ÀD­ ¸¯v"ê=ªô2b11RV£¡M6\Z‹9Ä™¡‹W‹ £m0ˆˆ_–ÉȼöšPdjªNõ¨Kè0RXH3ŸYwuJzî\:D}}‰Ï2ÃW^‰¿^½êQè çþÀÑý`³Ô¶ÆŒe3fŒW+t®§F£bh ¯­:’f^pnÉãQ°|ŸmÇyÜqé¥t_»wÓ>HNásZ¿¢"3çÒçýúŒt×jɘ75®€»$‰¢õ÷Þ-†ÉÆ%œáH®£2øŒ—®.*ßptª6úü÷ÂBQ—Mþ,‡ƒ®5•Ãif5>$¨ëìÙ‰œß¼.êï=÷\rD’¯IíàªqŒðçZ0˜Úfì£ëY˜eOÝ~ÐþΩ.,ŽÍH‚>;Ìמ,55ÔÍÁ:…ëóVëØÑè)ê2.ëQuÊ=•Nu8hše0HŒ›Ñug úÓͼ™u:bbµÒÂoß.P‰êG.Lטʠs-–ç%skÜæÍôÓÑAŠõÓŸ&ƒÂßÃQ|qqâÁP”Ñó¸'v»¨F£"íÎ#þ†Cd ä-:DŸÁ#OÝnZOvJÔÊhÚ4Z62L„ÂiÆ`PÐ¾Ž—QdC¨(ôÅÅp½îÅ)RäöDE£´ŽTQŽÏGFI½†ííP⮘czž—I8ÂJNmh¸·U«¥ì¦MdиÁ˜?_ “‰öcQíÿèwü]==ôL3çÎ@27kµŠ®z½ÃûÂn§4=#ÒÕû¿§'5%§Ñ(PÅÜÿË΀Ý.Ƴrù'™>”?#ãj³ÑûS+^gÎB WöQ— ˜=£ç’œãYì©‚^­VI’øáRJª €A¬jƒÎéìvrä[ ’S8æÃá´¶©ôOÅcp,?'Þsé>?/O³°£ÖßOÄDéÃñuæ—ˆüìÒµóqgÓsoÙBë4V2±)“rgo–‘¤<¡K§£(àÜsâ[­ 82ç4sªZ‘š&”£ÐœRTF# üÜçè;lg2‰6›ä”X²c1ž¢®Ýñ ’ÎN¦Π2f NodžPÆhzÞÈf3¥Nûûš, ƒ~êݳÃ1~@@‹…¾§·—¾ó‚ „R(//¯w*ð ·"ª÷…NEQfå3¶©áâÙ0¨ëŒœš.,sº+*ľR³mÅbƒÛ‘Ø]±"±Ý.¢û¬ªÊ< ãÖ>®ëªË‚__Ó˜??1åÏ”­T;OVþZ-=Nùr+$·Q>5™ßÂH@‰§+ApYm8'‡ïQÝ„GLœ¼v©®“÷¥úœñ=%F:*Z56@Qh}—/®»¸ürÊ.1oC&µj­–ÎP:„6ÓÄreW—Àé°NŽãR#gDÚ‡8x¸ñÆÄ~mž>ÆYv&ÒÕ»­Vá ²â™‰1@p"Ÿ·×’!K&ˆéï'¥¬ŽTssÅ(Žàxp*Ñë)s‘›K5½cÇÈÀô¾8ÄQ¾ËE„kûÜåÀRR"Œ ‰ Ș§rj5r(%Ndxâ<×ÈÏ­O#1LöÔÔ4øû9êLÇ@˜¼ܳ‹5áv¾‘ìcÎz UŽÊÉp8ƒaW9sDÄ_RB=ñ]]ÃbYÊÊ€·Þüÿ½½´ö«V‰¬D?ðÎ;"àq:…Ó5Ô}³~:›ëçêçÍ:ì„qv,[¥ÇC­¨<#^’ˆ¸gãFàóŸÏFèà +¸sÏl8¸Õ¨¼\Ô‚¹æœá®žÌŽ@M˜¬”¬xÄ$@uÝT¤ãUKN&—aD>“ÝX­b]&ŸÁè[µ÷¯b¬@«×§¢B´÷Ùí÷ö †dÎõ±Ji)9UÓ§Žfª«E—C8,²©Äh$c¨n1a$}o/˜Ñ’Çd²Ö¼Þ<—^½9jL2UW'FP==dT‡{¾yy¤\V¯¦è|¤¢ŽÐ¹DàñPÙ…Ïz­´Z2.]]t½^HÑãP3//1Ša̧ÜûûEV…±*#µ³Ëâ÷Óµs+“Ò×OyÚ¯ÉHêÁ¬ø‡j=ãÈ7Ýšñ(a¾‡+Ÿ3“I^ešéóùŸgü–/§ït:é5eetöY¯ªµ©D¡s‰ål^cu["w:¤r´Í#r9“[[KŒ|Ù”{†‡cùòô­Q²LŠG­Íf‘ ¨Æ©QuÿdºÃÇ)=½ž6ºË5¸u!Óºåh  äù‡B¤d8E™IÔPP ÆrúŒGe*Êà5–e2q:ÊŸ--‚ï{¼=ñ¼<ë¥Rè>ýð\x&ýH—b\°@‰x ìvH¡Ð` Äx§óÁÒ•LÃ4É ;“Ѩàqçúk&YššÑ3ù=êÖµªªÄÖªäó1}:»5kè{‡ÛƒÌðÅûŽ[×xm§néiv‡ÑîŠB†Ðå`°d¢tÏgÔó3àúûH ÔpHuÛ¥»W·›Îj4JÆ|,Œê31s¦heÜCuuêyjã?TYCô¨Ç Ÿíâñ$r0LŸN랎XJ ÚäuÐë ³’nžFÖ 'ÉâÅ”šê02BnކJÕq9·»¥Û¬üyN'ŠŠÁdã݃®N­êt¢Š'ñØí™+pžjÆ)4ݰáH¦$eñzë¨á0Eç<4žÂ™ˆt ·²’îçÀçÌž-˜,CÒé`büDŠÓ)ÈO¸']âœ5kð~áèˆSž³f̸¥ªÑf"\†áÚqa!­›zÌkrtèp1Ÿ>=³ô8³ òåïâÏæÑ¹ì\ff4;œÁ à.WêÉÄcY­°Óáp†{þCtÖ)ét†ÃAgsÁÊZ‡H’hŋſâSŸJý ¹¤ÅkÁç?]„ÎdM™gCÊI¢’C^ž8 é²ÉsîG{AW³2 wx,aÕèøá²šE-§Þ¢QaD**D4À k¢@ ¬øL&R0==‰÷©p?0£8Õýú©"tvŽ<QGD¨îÔÜ,È8Τ”•ežÕhÔ‰ ì €)/oâÊ#É?™‰G–•¥~ÎÌÒ Ž Ü6V'ŠkÛà"à½Ü²¥Þ“#¹>ŸOœQVŠŒ_áÖ8þ]ò×L3 :e?|¾ÄkËW ÑJh5Ÿ[öFúü¹#AêìZ­”Ê ka:]É©æ¾>ʆ¥;GVkâÄ8«uè~µAŸ \çj&_/s“¤³9ÌÕ?ÖÆ¬AW“L –FC©ßä;]-$9Šc¢‡¡¢½ž”,§˜½^1ô€?‘›˜'tq͹¥Gb˜ìvÑ[Ëhwû1q*e_XH÷évÓ{x>6÷Óži¯zúôáê(cÑ¢'H áºöD ã3˜¸‡…É{Ò]{i©˜q¦Òxê싚Ð%†ñØÛÅÅâ¼°"UtõLí¶¶áÙ¸úû#FŽÊÉŽi¦:§T™‡Á£©ZÓ2ɪ õÃÝØí䌎wçŒ,SÚ½µ•ÎuuõÐ÷ ž£žnX‹ZW„ÃC3òM­kÖcÉ’á‚êöOfhLuOœÑˆFǧÞ&„õ'ã8 Lž´¦ÆX •}ÉôqHñ"3Øk8¥oµŠ©6·4¦N ²Ác':ͤ&öPGì#9<Üî÷‹T°NG×ït¦?ÜìÄ0Z¸½êÀ6Û™7èœIš“=lv£¶èíE4Ãé3qŒtW;IꑜC‚ùóÂüL9I.—ÈT©ûŸÇ³¬Â{Œ3C™›L¢”Å3ã9-œN‚A: ¼¦C xÊôœq)€ÓÍ£™¦ÑPF+';gÉ>ÉÉ!Tv&ÄJ99‰Ï!yrïN[óÚM «$nUärmº $y’gÖ O0§8§àxFñpºV+˜¼˜ .Ù s}žkJêï,,¤h5Ó‰pc‰øÔ2[ÞH½øü|ºæí¶XÈ §"ÎP;=܋̽ø}}‚³üãð¬U/‹á7¿ù î¹çžôï™=ðxÓéÐ}¦®QµaÊÞ™3‡OáœyeÏd%<îu¬NŽúŒòwÙít  ÒtF½¿Ÿzð½Þᙌ„#‚Ï1ìŒáÎNÒPãfGâdŒ·0Ú=“²S2 3ƒ~6NXêþ¸-JÄ_ µG†+Ñf úE¯'cŇ›YÑ2‰š9ÈÅü~ú ¤„x–°ú`ÌšEõÙ‰6èüùê”;£ÞG"L¯ÊŽ ·÷ 51k‹ü==b&õDõrgò¼ã²gÏüþ÷¿Ç¦M›Ò¿Þh¤ö’™3;×ÇÎï¡övJµŸþðY#5=虎LÙV£ÇËð0;Gè< Äá ³¥nÍÍ%ÿ£5ì|¤2¨“!’5I70ž;"Ô™“d³™Ã=Y3Ám¼é†y%?×d§&kÐ'@ÔôšÃ‘Ê$`¦›dF4ŸŒ5ÓÀF"©{—M&"Ö˜èMÌÆ›#?—+3Œ@*á´;GM™D!ùù¢Ÿë–ÉÓÃ>yòÉ'Q[[‹ÙÉ#,ã‰DÐÕÕE?}}è>“‡Ðé¤È|æLŠÌ'Šxh<„ûÿÙ G"b¯§Óæõ&ý°qãèŽQÔ6eÎR¥x{zÈÐjéuååé£tŽ35è<]Œß;Tæ*“¬ŠäìqÏzÍ- nu„š|ŽØÀ©5'ƒ˜ÍB2—ÈpŽ–ºcŠŠöŒ| ìczÐLkêÚžú©SŸj„yòF®¬œøÔ3ãÔéh2ÁÍh6UA°sgâ¦N¹0Ó—ZÁy½«Aojj³Ï>‹þçÆ®]»ÐÓÓƒ}ûöaÖ¬Yã×µoß><øàƒÄß  ¡¦¦æÌ\ ÛMÎÞEýј,Óya¥Ì#‚ÍæñMÿ3®…éo“)§ùMÌó§ÕF `!gªª€}ûR÷Ås:u$Æ“±áJQÉN'z·Õç”3“Á ƒqÉóçÕÏÒhœ=èê@I=/“R—?H—5èøp €ýûG¡ëõ´iM}ȸޜ. çy×}o ÔY¶Œm¡ašÑ¶ÃEú‡È ¤Êˆ| ¢( –/_ŽÍ›7£££íííxÿý÷QQQ1`ÐgÏžGydà=]]]xúé§ÏÌ–—Sw2¤Vy®xKKb/z2míxìcÆpdÎÑžùμ³fÑìwV¢L›«.qåç :ãä}ÌmT#1žn·Ð!£éAOv::ë“Lg0œ âv'ðdÎ 5»ßD·ïN„^5›Is´>\¶Uýºt Ç¬A‘$J“ïÞY-Dý¾¼<š-JBݦû¼¡˜…Æmµ‚)®ª*qJÜHÅf#åÍ3͹ýn8§Çá\…Öäc<¼ùùùøæ7¿ ¨¯¯Ç®]»ð™Ï|&)HÒÁ£RÊò™t@&À µA÷xˆV˜©/¹Ä2žÏ˜[?››¥j|¶ýÀäÚ=g“˜[]«%tûâʼnE§#‚”;GÔÑèȳ N'/žÐ7VcØÒ’¨;&› €q,¬[Ù)ã» &“AgR¥ÆFÑc?œAç™éŒ³˜‚ræv.³k´¾¬&½H–pxèA gÒ@Ȳh+-²^§#† z2MæPkÄ©PY>«F$–””àÅ_DVÆh|˜ß›Á’ÉøÆÃéfïE5o:·›òÙÕé(ÓÁ]'Íà>~&â*É}¤(u>WÉSòF#©Úê#0iÂ1­prØùKn)Ôhij›L]’h߇ÃÂP—9árÉhgd úÄl€±‘xÀCÍÖ-ýãDxÊ<±j¬íDyybHC¦QH^ž ဳ&À”ažLí2g£8"}j±dN¯;šïQiÄ÷†Bôjg|Æ á|¦ëÑw¹(õÎà-E¡ýͬˆ#~ýx°µñ½F"tý~¿H¹O&ƒžŸŸ8ÑR]GgÆÉÉDûª&—a|Çp š‚{2á&¥A×é¨=)ÓtN¦‹Ò‡jëú8 zòБŠÏ'î5Óö>GDo<¤ +ŸaP™ºŽ8N’:BçÖ5ŠñX`µQÈÏ'Úߟ~ò¢$Q)ª¯PðÜZétŽœ_]#kg“0yIN͸/,œ\Ql^^"¯zf=ƒ‡GB±{¶9²±=óLPúj)¶šb¢=£›¯¬ 8qbd]«¥ƒìØàÈÓl>;€MœÎbF¯±\sgƒ™+mî"à”hÖ ò :·îhµd' «#l53^OF#ÙÁ4›)2¯¯'g=”–Ši|99ä´2âHD£¡=>m™L;l6SPàpˆÔîdn7TQŽ`V?®'O&÷ä²V›Ù3·Z a6Ó ¡¬AŸ@ÉË£ÔÖHR?²Là°Ý»‰ @i$·ûì@¤Z­‰½žc1¨F#­S[[æJËbI¬£gSÜŸ°SªmVÜ›;Ϙ築uHŽÎm²Qà±²Fãеg› ¸ôÒñ9«¹¹ã“•Óë Ä7ÙÅálÀ-Bð«ëæ“ÑÉçi“(eâl±.ž¢:ðÌÌæ¡=ùtRQAƒ1:;Ez©·— ŸVûñ¯"÷³‡?–Í$ËÑäåì=ÌÐUX8¥‰>±ÂÑ Oà›ˆ¡ºFʵzÁ IDATÏ犣¾äž¥ €RÕÃ]Ïx9Þ99ô“‘µ`ÞsµQ …ÄšÜt¶cqd¹u-Óì ŸVwdd ú+¦ÑÌ•++èßÝÝ´aGbô&Ú“Ô邬õ½üü‘·žy½À‚À¹çN>ðKV2‹Ä˜ p¢ê¡:)ÄPH(OŽúÒõ[,©©—'J¼ÞñûIŸ/‘oƒy÷¹em2t‡ƒ0™2#²A)iQÖ ŸaÑéˆÝkíZ1 ølÄñµ "E4ÖÙå9`ÈëÓ±²ý“'.Zæ1Ÿ¨hG‹2¹ ÿ™.Bbc¦$7wrµ–M´Hj`wŒ„ý¬´NñÙ½½™÷Ñ«_7ïy¬>ФۼÀºuÀž=g§Î@´@@ÐŽ5âOÅO?œgj6ON4kV†F ó´‰txŒ/3׿©dñ!©ùä. f¼‹Å&oú™§Iö÷gþÜ9 âý›Ð'˜L4ël©37´šx<¼Ó‘ˆÑHN@6Bÿd ÷‡ÃcgIÎq`ãÀía‘ÈÈÛM³rf=fdQsóOf'ˆÙLïгdHUÖ OFa2œñqTn0—vV>9ÂóÀÙ¸N”0øŽÇ´b$oÖQ<{÷†ÙœhÐy¿Lvƒn³¬dÀå5[Þmö4ŒãÆ >>.hI:ëH1š››qêÔ)ȲŒ3fÀ”í½ð ‘¤Çâ8p´£ÑPËZ2©LV΢°,Îm¯î»ægÈ<î“UÌfÒ­#1èKú±½Yƒž•Œ7s&\ižœœDÈQvïÞ‡~ÅÅÅ$ ×_=*++³ûd´ÂŠª½}bËÌ“®èÑÓ“E–ŸíârÑ`d™¬¤2êýèóe¾ç%‰€S§²=+c‹…R“'(Íã9kRîßýîwñÿðXÁ­†Y»0Ði"Ñ»²L{¨·7±íg2…© ^/…“e²Ò¾ª tnîȲRv;Ýw¶=+£«uâë›™(ã³ ß4 aÇŽxüñÇqÓM7áÚk¯Åñãǽ¦µµ---hiiAÛ¤i±8)O$z—ǵò$2f§Ëô³?BO5ï"›üÏ.'gd{~ ïÕl„>^b4fiW‚‚ÚÚÚpÝu×ᢋ.Âo~ó<ú裸ÿþûæž8p>ø bq% …PSS“ÝGÃ)í‰îbàV¡`PÐÍfçLŽ€‚ÑÝêý1Ùkè<d$$1¼o³=+£_I-)Ü)Hf,&“ EEE˜6m¬V+***°uëVÄb±ƒ^YY‰_üâïéììÄO<‘ÝGC‰ÃqfhO].˜fªÙ,ðÙ~èº[müdyò뤑22d J6å>^Â,[“‘bqÜj 7Þx#~ýë_ãí·ßÆ“O>‰Õ«WC«ªiiµZØl¶k–'3¥}&hVy¨·¯e[!Ï~ÑëÉáã¹ók4S`e<Ø:³}Р׳©IÀwÞ‰óÏ?o¿ý6n¹å\{íµÙE«Øl@QÑ™ù†¢óX,Ë>89¼h (Ô½è\.™j}<æiLÖ[Ïž„qŒÐ]®)9 •èt:\yå•Ù…ï=v&"N•L43]VÆO’ :)™j'_ööf#ô¬Œ!BŸ1#»YùdˆÃA)Û‰æŽÏÊøI2Ò=Í|ìè'Í s×QÖ geL*+Yù¤ô‰ך•ñ‹%±÷šSáO–iÿªGÊf zV²’•)+¬d9ÛŠ9Y„Ûf9Jgƒ>ÕD’È OÁÖµ¬AÏJV²2X\.Šp´ÚlçÆd‘TH÷©êŒ9Sr:`Ö g%+Y,LÎÁײrö‹FC™•@€þ=’±£ŸÄý;ÊYƒž•¬de°˜Íá˜LS’{ÒŠÇ#À`ŸÚ×±ìß©†î ½õÖ[áÈ¢X'TúúúðíoùùùÙÅÈÊ䓉"ó,‡ûä5Ò}²Ó¾ŽÕ OÁÌ’ÖápàᇞTÝÛÛ‹o}ë[ˆ•ÌívcíÚµ˜7o^Âk^|ñEìÚµ ÕÕÕX½z5œN'EÁ;#mÛ¶¡©© ÿøÿˆ¢ $ìøÅ/~Þ)Ø™•I, ±ÒeýÉ%v;eV˜Ó}ªRQkµS²;cR¦ÜûûûñðÃcùòåX¹r%t:Ö¯_;v YÜ_|1þú׿bÞ¼y˜3g¶mÛ†;î¸ yæ™gpäÈlܸÍ©æg%+S]òòˆ¬$+“GôzQ7×j§.Ñ•$!ÒkÙ›Ôű5kÖÀh4âœsÎÁ‹/¾ˆÃ‡£¦¦ßþö·±|ùr|ï{߃>^G¹êª«ÐÕÕ€XÌ~øÃ¢££[·nÍ* ¾¾>lß¾]]](--ÍNR›ŒâñdyÜ'›h4dÈúúȘOeƒîre údEQð£ýuuuP+V¬ÀÉ“'QWW‡/ùËƼ¥¥‘H²,LüÒëõ¦á”ïÿûðûý˜5küqÜ{ï½X²dIva&“ø|Y@Üd4èÐÜLé÷©úü$ (.žr,yÃ?í`¸í¶3wEðøã½´°°º¸zâÄ Ô××Ãd2A–å„é]_ûÚ×ÐÐÐY–ñ§?ý ¶lÔ1áòÁàá‡Fee%Z[[±}ûö¬AŸl’e>œœ†Ìç¶nÍ:dyySî–‡Ú‘ðÔSg֌ º$I¸é¦›`4¡( º»»ñóŸÿ÷ß?¢Ñ(Z[[^ûä“Obÿþý¸æškU/ÈÊ„Ém·Ý†ï~÷»ðù|hllÄÏ~ö³ì¢LÆh/+“O< ĸõ0+Yƒ> Ë™Z3Š4x$Agg'4 rss±fÍüìg?âE‹àÏV±)Høqˆ¢(xî¹ç°råJÔÖÖâÑGÅßþö7\wÝu¯©««ÃSO=EQ@ ;=+YáÁ:S‘Ç=kÐ3³°UQÜ}÷Ýe­­­¨¯¯ÇC=N‡¯}íkøÁ~€›o¾Ó¦Mƒ^¯ÇÉ“'±téR˜â}™?þñ±eËÔÕÕá¾ûîCee%¾þõ¯ÃãñdwÅ% ¾¾>ø òóóqÅWàÅ_ÄÕW_ M<ês¹\X¾|ù€AïííÅîÝ»³‹—•¬ŒUL&3f9²}2ˆÓéÄK/½EQ I ¦M›†’’€ÏçÃøC:tMMMe999¨¨¨€!Þ—¹bÅ Ì™3ŸÿüçãgÀKöŒ‹F”——cÆ ¨¬¬ÄƱ~ýúc_|ñÀ¿;::²=+Y‘e 77kг}rˆ^¯ÇêÕ«‡}Muu5ª««Sþ~áÂ…Ù§?A"Iyä¼õÖ[èèèÀí·ßŽeË–e&+Y9SRX˜{›5èYÉÊøˆËåÂW\‘]ˆ¬dåãÜܬAŸ‚2)!---ðù|¸å–[Ðß߀jê=ôrssñì³Ï~õ«_á¶ÛnCH=N0.ÄW¿úU\tÑEXµj®¼òJ<ñÄ…B8x𠮸â Ì™3kÖ¬¨óÀ±cÇpë­·¢¶¶óçÏÏRºf%+Y9ûÄçËô¬AŸ¢( êêêP__ðûýxöÙgáv» x @OOO‚A€ãÇãK_úìv;{ì1<ù䓸Îw¾ƒp8Œ@ ›Í†;î¸_þò—á÷ûÞk±XpË-·à@ggç ÏÎJV²’•]œÎ©Ëã>…eÒ¦Ü5 Ö®]‹çž{•••غu+òòòˆf†’7B¯×ã®»î ™)((Àܹs¡( ìv;òóó ±Éy<\xá…hhhÈd%+g«‚Ì®A6BO-Ñè™ýÉT.»ì2¼÷Þ{hjjÂï~÷;\wÝu(ö¡dÛ¶m˜;wnJƸ,lV²’•¬dåiÐûúˆ=ðLý8™_|UUþ÷ÿ;vìÀe—]–}¢YÉJV²’•))æܵZàÚkÏÜt&ý5×\ƒ¯|å+¸ùæ›aÌðÍ‹/Æ /¼€îîÿÏÞ›Éu–çâÏÙz›éYµË#kµdûJްM •`~à„ä—à%„r±II%)°SáH T’Ê .0 †\È¥—Ć2—ŘJlblŒdm–d­#iö¥÷ýôÙ×ïþqt>MOwÏŒ¤i4ú•ª¤™î™>ßùÎ÷nÏû¼utuuѯ‡õp¥30000¬8ƒÏ>»|/àmo{>÷¹ÏáÞ{ïmù}UU166F'¯%“I¼ç=ïÁóÏ?ø‡À£>ŠD"b±ˆƒâÑGEGG&&&ÍfaÆÆÆÐÕÕ…Õ«WÃu]d³YLNNÂu]ŒcÕªUذaÛM Ë× /Gð<µk×TãÞ;#…Ð××Gå];::044„}èC4êþµ_û5|ò“ŸÄW¾ò|õ«_Åc=èììÄC=„x<EQðè£Â0 ȲŒG}=ôþüÏÿ•JŸøÄ'022AðGôG¸ûî»ñÔSO±ÝÄÀÀÀÀpÝÀ=öØcä _ø[‰%Ä?ÿó?ã—ù—±cǶmP­VñÔSOáÓŸþ4[ †›%BgX^†øµ×^C*•»ßýnlܸ@ÀG8räΜ9ƒíÛ·ã¾ûîc‹ÅÀÀÀ°”½\.ãñÇg+±„¨×ëx衇V䵌ŒàÀx饗°sçNjÐÿë¿þ O?ý4|ðA|ýë_‡,ËxàØf````X*ƒþÍo~“­ÃãÞ{ïŽ÷Þ‹L&ÓðõoûÛxä‘Gpÿý÷cÛ¶mø»¿û;¼ë]ïZNÃåƒgKÀ°H§ÓìܹSSS°,‹~ŸÏóþ20000\E„Ζ€a©έŸÙßîÜ9üÓ?ýíý·m[·ne‹ÅÀÀÀÀ :ÃrÂöíÛ144„;wâĉرcGCºýÖ[oÅc=Ö æÖߘAg¸ÆÈçóxúé§qöìY<û쳨T*xÏ{Þƒ~ðƒøâ¿ˆ‘‘>|ò'BÅ}€@#àöÛog ÈÀÀÀ°Hà›ÿÉpe ‘öêÕ«©jßÐЦ¦¦°~ýzÜyçl±˜Ag``````˜ ŒåÎÀÀÀÀÀÀ :3è Ì 30000000ƒÎÀÀÀÀÀÀ :3è Ì 30000000ƒÎÀÀÀÀÀÀ :3è Ì 3¬Çëºxæ™gðž÷¼/¿ü2[$†yÀ†³0, ŒŽŽâw~çw°ÿ~Äb1ø¾—^z ›6m®]»Ø1000°a9Ó4›þÝßßZ­Ïó…B–e1cÎÀÀÀÀ :ÃrÄøø8üqÀôô4>ö±Áu]ˆ¢ˆh4 ]×áº.öíÛ‡·¿ýílÁ‘-õÄðð0Ö­[8~ü8n¹åˆ¢Q±qãFLNNbbbÛ¶mC2™d ÆÀÀÀÀ"t†åˆcÇŽáî»ï¦ÿÞ»w/Ð7n܈'N •Ja÷îÝl±˜AgXŽp]ƒƒƒØ¸q#lÛÆ™3gÇ1== A°qãFüçþ'î¹çH’ÄŒá2ÀRî × ÓÓÓ˜ššÂ+¯¼‚ÑÑQlÛ¶ .\Àm·ÝŽãpë­·b×®]¸å–[Øb1000\&XÛÃ5ÃüÇàØ±cøÔ§>Ńa‘ÁRî × ƒƒƒxó›ßÌ‚Eè 722™ zzzH$Øb00000ƒÎÀÀÀÀÀÀ0,åÎÀÀÀÀÀ°ÀXî W…B¡€ ŸÏãÀúõëÄÑ£G¯‘çñÁ~lÁ˜AgXŽ8wîŽ?Ž^x{öì¡ýG?úxžÇý÷ߎãX_93è Ë÷Ýwî»ï> 5}¯££½½½X¿~=¢Ñ([,fÐn4ìÚµ çÏŸÇ7¿ùM ãK_úè÷EÁøø8BN&ÇqØ´izzzØâ10000ƒÎ°Ô8räžþy$“IüÞïýÖ¬YÓòu<ò€`Dê—¾ô%|ãßh”I¥Rø—ùjÐ-˦M›ðéOš-23è KÛn» øÀ Š"º»»ôAàû~SÿÅ/~‘þ¿Z­âË_þ2[`fЮzzzÒâøÎw¾ƒóçÏãé§ŸF©T»ßýn<ñÄt¾ùÁƒñ¹Ï}®áçpŽãèÿyžuP20000ƒÎpÝL&±gÏìÙ³è¬ów¿ûÝÈd2ày<ò¸ÂÀp“ã;ßùöíÛAn˜Ïìº.FFF¾Æó<¶mÛÏó055×u¾·yófD"€®ë(‹0M’$¡··½½½ôõ¦i"“ÉÀ÷}¬Y³]]]ô÷–J%(ŠŽã¾×…Bt†«C?Þõ®w5}ýöÛoÇí·ßΈ066†O~ò“Ôé¿0==[o½¿ù›¿I¿–H$ð·û·Èçóøõ_ÿulÞ¼™–;;;ññ˜˜˜ÀÇ>ö1”Ëeôöö¶mär9üáþ!ÞúÖ·BUUüÍßü ªÕ*¢Ñ(TUÅ_ÿõ_cÓ¦MøñŒ¿ÿû¿G2™„aH§ÓøÌg>Ó@,žÇœt†và8Ï>ûlSY0ŸÏ£¯¯O>ù$vïÞÝð½jµŠ÷¾÷½øíßþm|ô£¥ûøø8êõ:à…^ÀË/¿Œýû÷C’$|øÃÆ?þã?âÉ'ŸÄwÞ‰çž{ÝÝÝpüÇŒ'Ÿ|O>ùdC©r6˜Ag`````hBN:E i$¡ÙGÇq044DI¿±X [·nÅk¯½†b±ˆÇ{¬ATkË–-ôß/¾ø"~ã7~±X ððÃãcû!ظq#}ÏóH&“XÈØfЖ¾rô+øßÇÿ÷5ù]]Ñ.¼òÁWôÚÏ~ö³ôß}}}´#GQ|ík_£Dá 6à“Ÿü$FGG±uëVˆb`b'''ñÕ¯~pï½÷âá‡F>ŸÇ›Þô&ús{zz`LÓD<§ÎÄáÇñãÿÿþïÿ>gtÎ :òᨕkò»|â/èuÇáé§ŸnÙ‰Ó×ׇ'žx¢)åÞÑÑUUéÿ“É$~þç?øÁð /àá‡F4…eYô5!¹.t!8rä>ñ‰Oà3Ÿù ~îç~ŽEè 7Ëãxü-ßð×ñ–·¼ñ‰‰ lÙ²}}}xðÁ1<MßsáÂlÙ²…¦è=Š?û³?Ãc=†÷¾÷½ ú½Ì 300000´!¤énAhDnYNœ8EQh4¿{÷nìÚµ ù—‰‡~ùÈG°mÛ6躎}ûöaç΀÷¿ÿýxðÁño|ÝÝÝøÊW¾‚üãÔ˜¿ÿýïÇ>ðlܸ@__n»í¶95;˜Ag`````hD"ßú­ß¿þë¿Ò¯Åb1|üãG2™Ä[ßúV¼òÊ+xõÕWé÷ÿê¯þ ›7oÆŸþéŸâî»ïÆ‹/¾ˆ#GŽ ™Lâw÷wñ«¿ú«€;và[ßúþíßþ ®ëâÓŸþ4m.‹¸÷Þ{155…¯ýë€»îº [·n¥ŒùVàÈB¨s KŒjµŠ§žzŠi¹30¬P|ö³ŸÅž={ÐßßÏc ð…/|Eè Kx'Ož„,Ël1–>ø 3è K¦¹ô`1˜Ag```````aEÁ'>L×d ÁÀÀÀÀ :à ۳‘Q2l!˜Ag¸‘a¹.”.°…`````áFFݪc¸< ÝÑÙb00000ƒÎp£¢bTP5«(ëe¶ 7V¶Æ–ë»ì&3ƒÎÀ°pƒ.ò"Òõ4[ †º­¯èìRJN-xÂØJ€lÊðˆwSía&,ÃpU˜˜˜ÀøCLNMbýÿ·=«{0]ŸÆ^{/žûÁs8qâî½÷^<ôÐCóÎòe`¸Þ)Á¦îM+îÚ|âãdá$úýHF“+þ^LʓصjA`úµ\x†…B‰DÇŽÃÄôR­€ùÚ¿`ÿþýxßûÞ‡ïÿûøÞ÷¾Ç‹aY#«dQÒK+òÚ ÇÀ…âLÔ&nŠ{éùÆ*c¸ÙF•\wƒ^ÖË7UÈpŒ•Ö{ó›ßŒßÿýßÇ굫áÇȋ°\ ß{î{øƒ?øìÙ³ýèGñÝï~¶m3«Á°l1)O¢ Väµ)¶—¸8W<Û[ùÏaÕ¨"£dnº€ñºt‚‰ÚK¹)Û'>ÎΠbTnèë „4y¾>ñ"àÀçxÔ•::;;Èçópç’íyPU•þÕ4Y†ëÑy5ªQ]‘†lʈ‹q´rjnEßËЮ܌Ý6×µ†îSµ)ˆœˆ»Öß+»ÆZ3k8”:„·o~;néºå†¼†}ûöáÙgŸEww7>üácýúõÇs〸‡Cx~@H1M‘H¤¡†>88ˆ'žx¾ž¶mc÷îÝ̲0\ŸÖR`{6 Ç€íÙˆ‰±u}£‚ˆÏñ8W<‡î{Þºž‹Ñê(Dþ棈]_ƒîû(%Xž…;Ö܈Yñѹfk(hòºçž{°sçNð<žžúuÇs  !& õKÅömÛqøðaÜyçˆÅ.’;wîÄç?ÿùKÎN­†oûÛ̲0\”õ28ŽƒåY°\kYtxà9~Áç‡O|”ôbb <Çc¼:ÅRÐíZ‘÷Rs4äÕ<$^býZÂñè¶ÍÖP5ªXÛ¹vÅ.tI/álá,V'V£¨áwã±/ãñ8âñ8ýÿÙ³gñä“OâÔ§«æ°÷m{ñŽßzÞñþwàŸþùŸð½ï}ù|_þò—Áó—*<‘HkÖ¬¡ÿ—¤›ïỌœG<¬N¬^Ñ éz1!Çs`¸ºÑ½|ï‹VFo¢wÁ‹‚šYƒÈ‹8ª¯b¨4„{6Þ³"ïgºžÊ&7aSÍu5読Â'‘j¬:¶b ºO|œÌ!’ A¶äÖ ÏÆ¶mÛð?>ù?°õÁ­ˆKqıØ6€>û6wlF2™lˆæn ÏÇXu {×íÅîµ»—â+Ó ‚¬šELŠÁ±¨¶º¬?ïXu »#»!EfÐ}âC±tFNKBJàtá4önØ»"ΠÙ×:Y›DLˆÝTdëוW3kà8‘ŒUÇV줮¢VÄHe )tG‡í® ¦i,Cߺ>$×$±zÃj${‚W‘aH˜1¿aº&¦ä)Bp$}?ú&k“+RmÌõ]”ôN€À ¨™µeýYG*#М…“H-7(#„)úAÕ¨"«dWܽÔl Y%pÎnF\Wƒ^5ª8Q!вQ^‘= „Ë!"/‚ã8Å쯙µ&N@LŒ!¯æay³Ž7 Zš­¡3Ò‰îh7ÊzÏ_xGRGVœQW-50x‘—µAWmi%ªQ]ð{êV=x>/–M8ŽCBJàdîäŠSR+é%hŽ‘»95Ó®›A‰Q1 8#å‘•ëE •‡Ðé _ãÀ¡jVWÎ5jEDøFBcDˆ@6e¨– †c•1Jrä8‘N$£I¼‘{cŵ™ôÀÏ%u³¾| –V‚åZ(jÅ¿G¶ä&DG¤#•‘÷|NÖ&!ðÂMûÜ^7ƒîx*F1!HÄÅøŠK»»¾‹Ã©Ãˆ цZ•ÄK+*‘×ò-;|â_ÖÁð<à#•D…hÃ×N€ë»-yÅ\+!™z†žC/í2T# ȨªÆ¸Ð躬—›t8B0V[1÷ÒölLÕ§è½dýZtßæhÔ›Š¨¶Š¬ºrê:£‚±Ê:¤Ž†¯ÇÄJz‰öi¯„ë乿­$ ÒÊ1¨…Mˆk\ ÅVZöñмˆ¼š_1×êø²j )\'ÂpeXøÄGNÉ¡+Ú…šYƒåÎ_Îòˆ‡²QnÙ†£(ê+Çá®UÔÍ:Í,1ƒ~ aºfÓ†Œˆ •†V†ç‚ñê88žk2vQ!ŠšYƒã;+Â+Vmµ¡%mf&"¯æ—=ÛÔ#ƪcp<7;Ækãy±µ“ÆK+JÕr-ȦLàxβTs=e½Œ¨…îí¾ ylÊ-3haYl¥p"¦åéÀ¨q7ïÑëvåu«¹N¢+æ`µ]#•‘¦èj’š£­MåºU‡ë»-¢ˆAͬ-è๞0#•‘–{r¥­…Fœžïa¸‡¡î·OüËb‘_+¨¶ Ó3Áƒ‡Oü‘÷ÂLhË瓲¢+!°‚v¾•¦Ü]«’ IDATðwÝ úåÖœ*F¥©Râ%ŽT=uÃ/lŨ¤¿YuÈ™žór7t ½ÎLä¿ÁÛç9¶o£l,ïtvݪc¢6±b'm¥ê)œÈXVm­ÐV6Sâ%¨¶º¬‰q„;0y5OË~–kÁò,œÙ\~<Âq$AB^›¿ô¶¬µÇq0\cEPš­!¯ÝœêpKbЫfõ²6FÕ¬¶ô“Ñ$ÎÎÞðÀXulNÑžçoü!- È«yÚ©à%£Ô0áHäÄËj±¹È)9œ@Sv—c8n„zòxu§bª65ïk'k“ÔAk¹o9ñ–u—FNÍa¼:¾àý:/–d2$QZvœŠPü& NXáT¶dz/[Ms…åZ¨šU‰¼ÝÑçÝ{5³F³*95‡ªYmÌ ñâ²î»÷Ý|ßÏ*٦ʓ~½â(  0VƒbÏx‡m!-Ó#\ðónäY¶cµ±–Ó|â£l”¡;:"Bä²ËË ¶g7ð,×¢<”¶ ´å Ù’¡Ùbb0˜c¡õ~˵p¶pŽï,ë’B^ÍÃ÷ƒ¹ݱnÍE¦Þ:“–U²p}·ißhކ y"ƒY–íNžïápú0:¤èŽÞ)j½†„0Ÿøp|ŽïPíóåäl×­:lϦ÷†çxxž7g–8¼Çs‚û¦žGžãtf/Öý¹’5M×Ósž“žïµäd…³B˜A¿L„ž¢ã9 ª]i¶Ö–YÉÇqË’”2­Ð²ÇÚõ]Œ”GZ¦Û-Ï‚é˜Ðl ’ A³µyå Ù”áû>©0\"'BäņZúrd ‡'ß…D£vÆn6F*#¨™5$#É—š®f–~N@2’ÄËã/7â„&1jÈk˜¨MÀ÷}øÄ!tñ\éûëT=…ñê8:¤ÚN9²j–Fç¶gƒŸ×hyÖ²º¾¢Vlr´DanM˳P7눘® žã!ò"2J†–‰xîÚ•þRõÔeϰð|¦ÌùÃst¦Yvûó†1è%-`wD:0Tš—dj¸‡ ßʨ/纫j«xyüe¼0üB1¥¨![rËrBݪCà˜ž BHÐïj߸™ˆ™‚2.qa{6^@Dˆ nÕa¹xއnë˶´0]Ÿ¦¯#Ò)yj^þ†O|¼‘{R¢btÙtŸøÈ(™ÆzLŒ¡nÕqpú Rõ†ËÃ8™;‰ƒ©ƒ˜’§&ªU*È’x88~í-§îÓ5ñzæutD:ÀqAP0_æd&!.4áõ`Ù”Š!-Ü!ßh®,’áxºpD^ j´‚ùu«~M"Ù¬’ dv/ç=jçKçç¼Î²Qn"r†å!fÐ/w³PO7&ÆPÔŠó¦ãÊF™Ö‚ÊzY5 ÍÑhÝ<"D®œ€\VÝÔó=œÈ@A+Àr-üdì' šáò0$^jÒNö|/à JŒ £Ü3%%]ßm8xŽGÕ¬‚ã8¸¾»,{î ²J–ê/¡¨çåo¤ëé@¿^ˆ€çøeÛ—­X «Yñ­+Ú…sÅsxîüsøñè±j?ŽgÓÆ.:Ú>‚>çˆix?Ïó°\kÙã&k“H×ÓTñMâ¥9Ï!Û³Q1*—êçŽN‡'Yžp¸f©èù`û6Jz ±1Hx¡©«d&tG§™PÓ1齕 u3àVH¼ÝÑ—œéNÁ¤<¹ N‹®ïâtþ4R%Óö+ªÅ¦=n¸ÆŠÐù¸æÝõ\äÔâRU´ù†¬ÔÌxð „@¶dÈ–Œ)y cµ1äµ<*zåš°‡ jJ.+…y* ]‘.tE»PÔ‹øÙÄÏ 9|âc¸2Ürn´áp|‡F´¦kB$”Œ³÷99¨L×lðCv»ã5Ék•þ*h…* Ç€lÊ”ËÁqTGSÀ#ÞȾ„˜R˜œÃ1–¥(MVÍ‚€4µ‡ œ€¾xº¢]èŽv£;ÚžhOƒ˜ íÉžÅsáÀÁöltJH×ÓË¢EwtœÈ@\Œ7Ô˜çŠÐëV=0₤g]'€ç.9,Ë¥­T·uÔ­zSÖçx(–ËimŒ[H`LmßFøxràcÈ)98¾ÛµazK+uK@PÒK˜¨M,˜7$›2F+£XXœški =ßCNË!.Æ›®}9êñ/{ƒnz&ÊF™J ÆÄF«£mð¨Áó<|ø°=!‚˜ƒÀ ¨Uõ m½Ô F¶gã§?ʼn܉9Š¥ààôAœ@=žh&k“Ø7±y5ªQm9º¯nש‡Ìs< ÇêWFmI¢¥:”lϦ\hÐgÊ¿†é˰öu-ˆq>ñq4sÃåá½¾¤—àú.½/8ðàçŒìjF £ÕQ †™˜å6„&ì< [ gc®^s ¶Ò‰#؈AQ+.‹–½ÑÊ(òj¾Á‘»HÚ9wE­BD²½Àà…×£¨è•e‘y©™58žÓ”õ8>ñÛ¶ØUŒ D^ ˆ~¹.3ï#AÝ”Mgi z¨VX1* : †ÊCð‰O™ø­ÞgyÊF¹¡£È#T[½){Ò¯Ú ×Í:mW. Y™”'ÛzÓ†cPæ¥O.m4Žãƒ”´nëKÎ, Òôé|šœ!›2=ÌÃÏÜëÁ…ò<áyÄÄXsºéöpƒI¼È1‚GÙ(/™'éxMZcc8tW§÷nv„ª5³Û³¯‰A7“µI¼4öÒ¼÷“€ UOQXxpK¼„t=Ý2é'ó'›J*q)ŽT=u]"‚ ¥ -î\ßÅ´<ݶm¾µ©›õ–jq–9†„”hʮѶÇzZ¾Ä°<  F×w©Cp- ºã9©Œ4{y-ßÖ8 ¼Ð–W5ªx¡mêYäEØ® ²äå…0°ðˆ·  ÕR1XD2š ž=´žÜh8t[o¸÷ŽïÐ+3ès¤8g{òq1޳…³mÓ@¡ö·åYMÆÏ÷`zæ’N<ª¼žy=±ðÉÚdûî"x¨Ì5Ÿ½QxŽGO´5«†®hWÓû5;HLJëÄsÜ¿³í 3è ôäsj®É“ Q¤ê©–‡øÌYú£·–GåÖôR1Ý}âãhú(M÷wF:1\n›â× ‡S‡“bm5®^ÀºŽu-œšUkzŸGñaºfËêû><ß[2xªžÂùòyJ’ Y%Û’ >l£ÒD¼hõ€Ì†ç{Ðl­9zE@¾! K½†me=ÑìŸÚÕZ<Ç¡l”†Z4E@ÃY<÷¹ç0rxC‡01>±ä)é° ‰‡îh7öMíkKŒªYÁ<é0’«™5jÄmßn:à2J§ò§Ð)u685«pÁ!t-;\ßÅ‰Ü tF:—âØ?µŸ’>ñRÊ—ëì*–ÒҜʟÂXuŒf•¶©¥HK{ÄÃDm=ñ •†šRïžïáhæ(|ßo94 , j¡¥3r'Âö&‘AÀFÐó½kR*ªUü×è¡+Ú…¨EW´ %ƒŸŒýçKç¡Új[ƒÎqªÝlgRwtXžE³í œïûKz…{5ÌäJ‚„šY›ó÷eÕ, Z¡aÿF…(ªFµAÓ‚Ò4HÈó=z?™A¿Ü§¥¢nµ(ßí±ì±&YÁ‚V@DŒÀ#M;Ï6 çJç ;ú’®ïâ§ã?E\ˆCà8¾C…Rró”7˵p:ºí8Éy×ÈQòÍìÒÇÁp‚·TiËŠ¨'…¼†ãÙã‹bT=ßkhYÓ½e¯ocÞö·áí¾½Û{—´öêÚ^PŒX®…ƒÓ[F9%GÕüB]€°Ž(rbƒ´©éšxuâUpàöºá¨å\KbÜxmœÊ ÇÄ ZƒÅAB`¹VC ×eeu.F¥³#^Ù’±oj_àĘ3—â(é¥%©£—´êV11†¸Ç+ã¯4­œšÃÙÂYZc½|â·m]Ë(Ê÷|–W2ju«N™îK¹†{ëåñ—á—F<Ç#M¢fÖp$}žïµ-pÚBgŸ•ª£Âó½¦ ˆ­–0sºTp|'Ð¥ð,ªÆ7WfçTþ$^j¸æ°D;S`Æò‚ìÅLÃoyVËýË ú#Àv‹'ò"ÏÁ³gŸÅpy˜Ö¢jf '4õ-SÏÒÖñ³ÉŸÁöìE'ŒBp2w2ØÉBu«ŽºUGTˆb¤2Òô™Rr µpEÑ!Ë|vÿh¸>¡.öRLì" (è—¼×ÞX/NåO-ÊhÚP°á>»5*"À1|ÿ~ÏüÕ3=;Ú°¶Žã T*Ñ¿•ÊÕ±ñ5G£©àÐÀtG»1ZÅéüé†C-Œ`CVtèX…ut‰—‚–¯‹Û¡éC¨tD:šŒœë=ö11†´’¾&Ä8Ï÷pxú0º"]”­ÞïÇkS¯Ñèg®´cÈk˜½× ‚6ÒÙÑO|¼:ñ*mí*ëeý©¶ºèQ,Áhu4 ^l±’M'²'hfïPêbR¬¥¡³< ª­‚㸦y žïaRžDG´ƒ¾6Ä´<ÑÊ襯sK+.ã‘€h›®§Ñéj2ÔÉH’ŠúÌhÇíÙ0]%­DK ÉÊ®±dGà ¤¾UK…nëˆ QLÔ&Zg+ÌjÛ¹æߨä¨Ùt[oدíf¿ß,¸ª¼DN͵LÍÍŒÒ ×ÀGŒ=êì]¿u«Ž®HWKV4Á©Â)È– ÅR¨W·XCë«f‡S‡Ñë ÈwÇ@ú¾õë‘Ss¨[uôÄzh4?X¼â)>º0úg¶Ó´úâ}y‘z“K1ÙÉvmT*ýì<Ç#"Dp`úî|¸mšræCÞîÁÐ –kÑ©\¶gÃ3=d‡²ð\k·¬Åºmëðð_< Nà0y~?øÊð‘ßø"Éà÷ž?O<ñ|?0*¶mc÷îÝW|½²)Ãp hŽ‘i·Ag¤¦  °wý^ô'úa»6òZž–PÂÒíÙÔ8—õ2 ×@Y/ãÜèõ6ì×°C6uo¬µ°¨ûu®”d^ËcMbMƒƒèú.Žgû·M€bz&Jz Š¥ CêÀºÎut/¸¾Ûà¨Q§VIádþ$îZ{ÒJ³× rßÚ¦úý‹v}¾ïc´‚[{nEA+ UO¡/Þ×òýŠ­@wttD:`¹4[£6×wQÒJtïÎìÐɨ¹lﺽA­–`Iuú‡JC8S8CÏ›VèŒtb>êI„àpú0ΗÎÃ%Á}¡’¯ž9g´ÊqAÛñ.ÁRL, î†k€€`mÇZd•lÓãod߀¡eÊ\â%dÔK½fÖH‹šÍ ú{Ñs±/CÄÅ8D^Ä‰Ü dÕlðE9Z¿l0¶†“ù“ôf…žÝb®ïâhú(ík fÛ³áú.UŒË*Yú€µ"RõÔ¥Û ×@ºžn8 ÎÎ`kïVlîÙ åÚ‹ßËk¸4[k`d'ÄòjçŠçp׺»æŒ³j·tÝÒòû3Ó^ŽïC\µ¬Âµ]ô­ïƒ¸J„(¢k¶­Á¾Ò>8Î¥”éí·ßŽ/ùË—~f­†o|ãW|½-¨•:žÙ’±*± 8ªæ6RAªžÂ«ïÄšÎ5Pmýñ~xÄ †Êð"xއæhè‹õ¡nÖ‘U²xmê5tF:›ÍÑà/hr ¬Š¯Bͬ-Ú~kËC‡ÔA{‰C£ª:#MÏ¥ã;¨šUTôJÐ*D`¸&åIlHn@BJPq¤Ù)áW'^ELŒá7ý"^žx“µI˜ž Çs " jÛû¶/Ú5ª¶Š’QBü’“ p/gÿä~(¶Ò–t˵¨î|ͬÑgXµU®AÃ5h7FFÉ€G£<Žã¨ÑX ’Õ™ÂĄ؜?›‡ù²Ç‘ÚI¾>&ÆhÛè\.LÙ ¼ÝÑÑï]ƒÎs<Í®ðºYož€€Ûp¶p¶e§Pè´–õ2Ï$HMõsÇs!Ü|š2W—rŸ}9Û³ê‰õŒD^ÇqÁ´µYy¼6Nk—%£Ó5¬0æùòj¾-«yZžÆùÒytG»|×wq¦p¦k"*FiÊ ‹ƒ4º½¬µñ,¤ê)p×P[¶\ “ò$†ÊC´®nºÁÁ¸Ø=÷ª­6ÕΈõµé׿l ,êEì›Ü×¶5”= 3‰îöÜ¿oúÿß„þ[ú‘>ŸÆè±Qd‡²8ô­CØ=_¼d,DQDWWý›L&¯êz3J&¼XÓ™jy‘Þ÷×3¯ãÅ‘¡jЇ{hßÔ>TÍjK2¤lÊT*4\KxKÞþSÒK¯Ž7¨ð> \ðl¥•tƒSa¸Æ«ã”:9!&k“(åÕ¼çKç1VÃ[ÞŠÞX/úãýp|'˜¨çÛA’’^T~DH€ mˆd$‰Ñê(jf­-AÕñJ6µ<«‰£RÐ ´Láfg4[£ª•3 Pݪ/‰†OüéÙ«:Ä9q1°ÈÅ(¢B!B×`.•P»~©FÆÎœÌ¾ñˆx ¥F×wq,{ <Ç·upD!(SÖ¬½—3íOÈ…¹YëçWeÐkfí²Ø„!óxUb\ßmÚh–kÑá 11†’V¢ÇBp¡|Ïœ~Óòts_¢kàÀôÑ×wQ·ê(é%LÊ“A/«EZIÃp (–‚¡òPK×™›³é@ñLÖ&éàƒÙˆœšÃùòyÚçÖ2»YÒ‚.Ó3Ö#"Dàz.^O¿ÞúóûŽfŽb¬:Ö’!•ðÞi®ÖòÀˆ$"Èäpáà¬Þº¿ò‡¿Ã_:ù×¼–‡åZ8”:Ó1[*£B½±^ˆ¼ˆd$IË"3åB Ç€OætJN¡7Ö±xăæhÔ€†YU—nN¸O|œÈ Î”ã;t¿ÒhMê@2’l0áAÝJôHàÄ¥8 j²)7¼¯fÖ°ojVw¬Æ[6¾Ç¡?ÑOSóº£óôâ¢×wq¡|Ög²š9ŽÃªø*ôD{ætd€Ø¨ÙR‚¦w Ä„f–пpM¤”$^‚éšúôºUo:?C ÚÅ‚ç{ çLZI7±áC¼È‹KVú«è•`(ÕE5:ÝÑ‘ “9ÓJçKç[Fçá0 P#  àe£Ü°~­æ0ƒ¾Ð§Zh9ó{!†½!.ŒÎß¼ñÍè÷£n×<ŸZµUš>„¨Åÿ'¦kFýdî$*z¥\b¸\ßÅDm²ÔìyއéšH×ÓAϱç¶õ kV Ê0%O¡l”iÏ÷„<phù¾´’¦uÙœš£ÓRL*êAfVÉbZžnˆ¶{b=8ž=ÞRv¬2†ÉÚ$º¢]«Ž59G!ÑOàZ÷ð†X5° ÷¼çÜý¾»1ð ð¸¥kÒl ŠÔM+f³Ù’ÛFq1NõÙ ýp lLŒacׯ–ÙÕÈs¡¼m˜•‘x)È-1®jT1Z¥ÎHÙÚ¯fÏ·îŽu7:´ ÚˆKñ¦ÒÒÁÔAÔí:Þ±ù RÇá}7\ƒ>Ï‹5¨E³5ä”\0ŸÞwPÖË ÷Q¤¶'¡rÄaù$t8Â®šœš£éö™$°œ–'`¬:`yVS¶g1ÓÐÄ¿Ôýâ%ƒ¬’WÌÆöíi:ؾM÷âxmÿçäÿÁSGžÂwÏ}oäÞ s3<ߣ™ŒÅÖŠ0\ƒ >½ž}ª­‚1‚„éútЕáY8š>Š˜kiOÊú%!£„”À¤<<ï3qáž¼™ëçÀUÔÐÓJº©ÿ|¡˜Mˆó‰ã¹ãHH ì^³µ€‚^€éšó¶œ+žƒb+è÷Cs4¼4þ~eÛ¯à–®[PÖË8™;Ù’¡ì/ ùè®xˆ‰1:®oö{f~Þ0åjy =ˆêÀýå­gcµ1Ú£®t]ðüà Yìá%e½L£G˜'°:±ÝÑn:ùhæ(îßz?}(tGÇñìqH¼I0^Ç/ø¿ÐÄ"5]Ñ®`èƒkÓV®´’Æ‘ôhŽFgÞ»¾‹µkñ𮇗l.zŨPýæºUGNÍaCrLל—!<›¡Ïó|@¢’:[¦þÂYá=6œ€ù­;:zc½¨˜˜®Ù6³sU÷Ô(Óˆr¦–¾îê4‚ æ™oèlÌëlÏ0úe£ŒÁâ ¶÷nÇŽ¾ 勘CÍ ôÅ ¢BãÕqìZµëª¯1£dà—ƒºU_Ð} ¯5tÆffNBçÝr-ȦLë¶áÈTŸøÈ©9ôÄ‚5y5O{¿=²4Žh^Í_*[y6²j†cP+íÓäY%‹®h%÷η· rÖëEªžÂ¹Ò9DÅ(¶ölÅý[ïnIýš­Qéç¢^DA+ 'ÖC{ßU[EªžBºžn› +êEDÄúb}AŠ’ ¸ 3Úùlφã;ój…°½•%G¦ WVÿ gô†HÕS˜’§pûªÛÑëC2š„îè´i.ȦŒ“¹“4jé:`»6~2öäÕ<¥Áó½#ëøÝh­@Çs¢® ·í¯ßÖÞD^¤Ãe¢|´-{Üp d•,nIÞ‚MÝ›0^§…íÙ‹ªg¹—2¡ðÏñÈ©9¤Õ íÖ ÔÔfÊ0QÖË‘‘ ´¬g‹í„Šj<ÇÃ%nCþ|金ŒÄKPíö’Ÿ.qi$ÎEy1HÁóB-X"]ì’^¢]%á è°=´]Z8Ì]®æùÒy˜®‰½ëöÒg•\ü“tbØïVÒW-/ìãµq(„ë\·¶otG§šìá=5]3˜ îÔñ›mðÂ=Úïëï€á´m1dŒ/vé$«d—â0\ÓõiÊá ³=s¥ÑÃÒ]ͬ͹¿g 'MÖ'±¾s=~çÎßÁ£w=Šß¾ã·ÑïGªž ´ˆ·$ÊÊF™¼©UL×§áúÁ¹ÁÃDmÇ2Ç‚i-öhxþÔÍ:eÅË–Œ©ÚTc ak7uíüª ºé™têlCö€–ôòZ¾eÚsv¿ã¹7Às<ö¬ÝCšaýJ¶ä¶ò‹§r§h?wˆÎH'tGÇ/üçKç›R‰º£SŠŒ*uJz@Âx¦k"M¶Ý í"͹ÍŠQAͬaGßìì߉‚V@É(Ñv£ÅôŽU[ jóð)CVàÄÄ= 8ŽƒÄKx=ý:lφb)8š>°‡9Ž^KJI5]Gø=Û½4’Ñ'>ÒJàeäÍÁ‡ö~ï»ó}ØÃFÓl IDATÑ·Š­Ð5‹-.ã?²"FQ5«°=Óõiˆ¼üÞ9¤;mϦ½æSõKD¬0²k·¶a,[2†+ÃÐ]= BÈ’ ÕŒà™³½ %Q¤†”;#×* YÐ mïÐQYÓ±]—œ/艎‰1ªaûA†FµÕ«žì§9Zƒ Žé˜xiAû&Œøf:á/@±p‡ªQENÉQç$ìnïwÑ(bUb6uo‚È‹”ÔêúËÙ³e£ Ó51Y›lP»›I²li¤/ÞçˆAVÍΙÁ´\ §áù@åÀôC«=ç¿adlA+ «féV×w"´…n1: /  hé&Ü3í²ªÓ,0£9~8ôCŒVG[¾g´2Š’^Â]kïj(xÄCg¤ÉH’r[lצµçvb!—“†ç;„Šb¢d æ+׸¾ ÍÖžK¨ìrI/5(Ä…%·0såùºÐëA¼#•*̲ةh˵¨$ðBƒ–GX¾™kÏ |0·=&ΧZu×wÈó˜'àú.¶÷moRºcÝT{Áñý/vV‰BËE%½DÏôŽH²jP>h<9¾C¯w¦3#tíÂsÈôKgŽïàPêíTb}ˆœØph‡‚øQ!Š„”@BJ *F©4äÌúðÌ`8¿îYxއã;è÷³ÂÍl·õèMBޤmkg¤³Éó ½Cß÷)‹¹;Ö8¶N{‹Û>Œ¾ÕVƒ~.ŒÖFÑéÄšŽ5è‰õ`cr#&k“ÁAuQ‘j±Ò]­‰—`»vS%Œ:”WBJàPúΕÎ!iÌJÄ¥8²J–:B‚”ˆ!ªsIcZ¶d¨¶ÚÔ»Þï Æ3ZJÀSXä`&éf&Kwº>¤kÛ¤ù æ¤X RJвnÃÔy«ˆ~f»åXu †k2–衲µHÝÑ¡¹Íæ„NÅhuÕá–Œ0å<Û©›¨M «dñÊÄ+MÑ ç{8‘?d$‰ý; ŽG2’D_¢/(9*;¤ŒUÆ®Ê)¯ŽÓë²\ëRä¢þ÷|ëãÃoÚëŽLß›¨MÐHÐ'>máîÇ]rä7$7 «fˆçΛھ\TŒ !ô³Í„Àd¼VŽoxΆÏÇqˆ‹q¤•tÐæë™týß¡ÌþñÚxp]šÎGŽãhûnøïÅt\d3({…R¯u«NKc„ $Úž·ª£ÒóHäEJFMF’Tµ0<{f;­©z ‡Ò‡0Vc}!˜yð‡úÑ<Ï7½Fàäµ<­]ÍL·[®…Ó…ÓØÚ³k;×Ò(hMÇš@bÒ(Sà&o^Ëc¸2LŸæûŒ!+HÁÉ–ŒŠYÁæžÍèŠvA±hŽ6oy%¬fkÈ«y¬ï\O1v­Ú…ªY¥½˜­D=®8ÒÑò)çlqOÂþT ˜Öd¹A á쇂Ge$Ã%,µ8¾þÔvF¥k:Ö4üŒ0ÛR1*°\kÑ#ô¢V¤Æ´jé¹îh7ÒJ:`:_$çµ2va±l”¡Z*ÎÏR‡5$R…×my˜µ`àLNÍÓ1çt"®*mk—¦„]¼Oš£ág“?CFÉ´”rµ|«¥âßéÂé n¬åñzúõ†ïÉ–Œ¡Ênë¿­¡…Èñ$£IÄÅ8úbB=˜/¶h†ÓÁ®Žç4muW‡b+˜–§!pœ¼†0z9±iÿ†â;%CËŠ­ÐômØÝí¦$Ø­=[áùq¯XÊ¢¶®µ"HÀEiáp{¾×Ú ÏØ³3¬¨EI+a¢:ñÚ82j¦A-«"Q³SÒÉH2jÖ‚õÀâîÝPÄÇ'~0 ñâÙ“VÒ” tD:P5ªT€av¤t`ú@ ²Ä —õ9ÃZKÙ(CwtlLnDO´‡²içª_…‘æåüN”Áºµw+ýÚ–ž-y#•‘¶ÆGçG;~ãŒò°N¶Ï…‡^O´§aŠØìû }ŽA[ TGáHƒGã ê^@Ðf"ñªf•ÎÙ^LäÕ<$N‚n`UbVw¬æ“_NÑŠp83K‘Q2 ® äš‹‡ªéš0\%ƒñê8[¡ÑDA+PâaFÉ@Ä dÃq-E}®²%ÓTmX9–9†T=E#¾Ù{×pŒ¦g²jV1^ é·vߊýÓûéóE@pºp¶gd¸{Çõ]tE»"TrU¶dšq ×+KP5«P,’ Q OÕV1X ²yðÛ:Ó!É5ñQÔŠÔq°ÜÀQ[Û±–:ë“ëc˜'@¸ “3×¹p¹geNÍÑëlÅ»áÀµlcµý‹ÙÍY÷”çø@PæbMY±ªÉ¯X Jz ›º75[¡A§£ƒiQ¥nëV¾ïÃp ȦŒîX7R‚¶«ÍÕªk{6LÇl©å€ž3ºdUg®‰íÙH×ÓX×¹®%sžôy’‹Ú!"D‚Ô»kÐ(&Lr‡m}Û‚ÍŽ€’èõÒ€3'óøÄÇ™ÂLT'šÚÊæ;D × ÌÖ)y !‚Õ«±¶c-%’ÍÕ>æxNC!˜®OCà¬ï\O¿¶¦c V'Vc¨2Û³ƒÝ¿zƒîxe«†émÃ1p* Ï]xÿëèÿÂ3§Ÿ¡©°0ÅÜ®3.Å1)OD¬‹)ípdcx†„¸îXwŸAâ%tF:ƒt±¯w¡×1_ÆÂõ]d” ‘D@ˆómô'ú±¶c-Šz‘êºWÌJSt¦¢Ãˆ!Ôr,]Rœ”'1V ÊI¸(Y°ž‚ë»èOô}ξGëÉa›Î¢f"ôbCkZA+à@êØû®g§gg§3ÏÏÁñÜ»á^¼sË;A@ðÒØKÔ(†í”ë“ë~–À Hˆ ¼@ÅŸÊzP ÷YLŒ¼”+(…Ý!;Ýò,È–Œ y†Œj­˜•–?ÛtMªöJs¡c!ò£E¡ä½p°Lx&TŒ Öu®£Ù¬¸Çúäz¤ä-³,ÖàÇsPÔŠMلЩ9œ>ôø·8‡¢U*†’Û©z ñpkÏ­M¯I²œlɴçl–ç탿œ=¦ñC©åÍ=›çÞ5æLï+¶Ò丄$Çð:ÃaB³3‹†k §æ°©kÓwbÝÔ½Unö&y1H ^†`º&¦ä)lèÜ@Yè„DÅ(lÏFO¬' ¤ØJCýlJžÂkS¯¡/Þ×ä•…­&í<ã’^¢³ØÇ«ãèŠvaU|M‡9æÛd—Û1RA¼¿a˜Ïñ¸sõ¨[uLÉSA:É·¯ú^TÍj@Z¼È*ÿÖ™oáó‡>ïžÿ.&k“ˆ‰1ZÓZÈÁ"¨UT*JZ‰2Và ea:]s4lêÚÔ´BU¶°Î½Ðö¼ó¥ó #LÛÕèÂNŠ é÷cS÷&øÄÇ”´¶¸ž‹)yªá  •ÞÂhf{ßv¬ë\‡3…3V4/!&Æ-[‡+Ãè‰õàçÖþV %-—bŽvQ+R¹`Ï÷ðÂè à9]0ƒª·…N!†c4”\\ßÅÉüIlLnÄúÎõX×¹¿8ð‹8[:‹Áâ &åIäµ<Þ´îM ‡¤ã9”\*p¢B=±ž ý"y j²ãÕñ+b«ŽQ"ªíÙÙQ/¢fÖP6ÊYÌÖ[fxêV½ÁÉ©Œà¥ñ—¨ƒçd>žãQÔ‹ H*F¶gc}çzú\G…(ºQ3Ðm:ÜsEÝ ­±›®‰º ¸À@ÈŸÀ¿Ÿúw¨U£Jï×éÂé@_ý–·âöU·Sã™ut×wá’Æ2XVÍ"§å°kÕ.Ä¥8xŽÇ[ny Ö$Ö`ßÔ>ì›Ú‡N©³I Æó=ª>§Ø!/IB6ƒÎŒÐ€‡„ÀË!îxN %0chRØyb8U¡›MÚ²=%˜a>óü™®Oc¼:Žs¥sÔp‰œHUßf¾6£dÀs<åð„ØÖ» ®ïÒw®ÚrÕ¨.X*LokކG_Ä׎ ?úªf›{6ƒBåfgü ÷ìB¡X Šz‘¶âµBO´‡f”<â-*qµbTèçê¬îX xU¡DÓóå™°]»É ‡5Ú›~ñžÌ°ÆkãàÁcUbn6\µA'èÌÞ0žïᕉW$GcbŒnÈpòÚ­=·ÒªN¹ÄEO¬‡F™¡òØéM¹I5Ê#dKF‡Ô‚^hÚAŸbx@çÔ,Ï ªEw¬;Ð×KA[]‹H9“iuÈ{ÄÔ<…ï ~§i¦údmñ°¥wKÓûúãýX×¹#•˜®9§±›å^g^Ë#&Æh¯2Ïñø¥M¿DINá˜ËŠYi;|¥U”>RAA æÂ+–Ò2Ì©9D…(%KÍFTˆBµU˜ž¹ Ra^Ë£bT‚Am†øÄÇ…Òš*W,' /Þ‡ˆÁ†ääµ<ÕŽ QÚƒoyVç8š©XÓ±»×ìp¦xfNGbºHénëÛ†d$‰®hW £y±Ž-r" ±(iZß¡=õ5³†ŸMý ’p÷ú»±ºcu@ ²dø¾Oï©éš §|âãTþ"|w¬¾£áÞ¾sË;!›2²Jw¬¾£áùò‰Ibô9šYFñˆG×8{°NJI¡;Úd4Ù2-Þí [›×  •‡¢8'ó'[ÖÒËz MÚé "+8ØcR ¢ b 9€ŠQiÈØÄÄ[Aºž¦å†ŒšAG¤#pvâýèÀHe¤íç$„`¬:†¨Å-É[£è÷S¡Ã5 %&.KåYAomújf ïÜòN$¤’‘d žeÊ ¢$3ûw€q<\ƶ¾mèŠ4À¸­ÿ6ܱúÄ¥8î\}gÓžJF“Ú×ÅÈYàtG»æùÅ^ÿðÅĦjS Žò&åI*’– Lפº)%ÇshÊu¼6Ž’^‚ÄKÁĸÏd^ÍÃölléÝ‚’QÂÑÌQjÐgº«£fÖ°¾s=˜ ™$HèfÇÛÊœâ2Óò4òÚÂÈ€E­H³„ܳáì^³;rÃ5«΃+!å¥ëA§Ç†ä†ö=ÚMy!*œŽvµ™ÂP¯¤d ÷5kcèOôsÍ ¨hP(ÊäNâ1€+¢9-ÌÎÔVŒ {érÕ™AG{òÒ`q0è3Ïmò,5GCFÉ`cr#<âѹIDøH`Ð}¯§_GW´«e„,[—Æ>F…(Šz±¡Öª›…ŽÀXm }ñ>z°B°*¾Š’QfGÊ>ñQ1+ Úõ„ ÿ{o$ÙUŸ‰~w_rÏʬµ»ªºzQ·ºÕÝ’h­ÖŠÀ!k ÙÆÆ1`ûçíóþ°#ÆðæaL€yÏ››@¶¢-ÉêER·zUwuuí[VUfå¾Üý¼?NS™•Y%pŒ'ìK!u§2ï½çœßúý¾}ö¯qlîF#øÅƒ¿ˆ„‘ÀScOáØÜ14¼fK³è‹ôñçt·¥w=Ü7s"~@…šÁ›•üó}V×w‘oä¡Ëz S7ÕÝ:jNíMõþ$Q‚xp<u7”€X(/ Ëìj¯œ>D‘N-0&¯7*ÇÖœ¦ S0Q-Š ËÚæº !8µx „ÎìW´‹Ðe³cõEúèÈ݆wƪ‚(p£Õ¢|o]×sVj+-hóÅ}úÂ}«a¨’ŠT(…•Ú nרd–ÊU%«/ð0žÇ…• 8Üs;;ùó„ÔWžªºa_wê-€ ©âŠV»rgÁέ(ˆ¸kè.ì>ˆè@ÛžbÒ³¶oó^tÒHRMƒµ ˜9BS6‘©fÞTE‰í‘ÉÂ$S²q¦ÕÆ*‚ @o¤—¶­j´ì®ÉÇ7t2Ø Z¸kè.ŒÄGðÒÜK(Ù%ÚÊÕe»ŒŠSáñ˜çH|…F«õÕ-3ð™Ò æËóoÊVfëY.„ ¥ªVÂ\ÃœÑ 7·¡~Ò~ðxaa5ŒžPϦŸ ka^ °}šD%¤ß '!„sÅ;¾Ã«I3 A0¤`D‹²g^Í_ÅxaÅ L'áΦÏ*íäô™Œ âßâõ–ºå[m³” ·Á™–Æóãm_¶–å@¤fÇ +:¼À£…²Aé<H¢„ˆéØ?òU{Í˸™ý¦P'Äþžql‹nƒ"Ñ1–BÂH á6Pu«ë #·ŠL5ƒ‰ÂD :ß|<;ù,¾yé›PDïßÿ~<²÷ìˆïÀãÇîän:„uÐÊdqs¥9kÞd ,Cñ!.g/ó½Usj\Z˜ÙC6Ðevq‚™­®¥êò<ŽÍk ›G›š¢]¤Éš ý»CÿiÏõ݇jy& H™)ô„{pCß (;eŒ­Ž àœåÚ2"<cÔ‘ 4—2Rçþ¦ìEnàr+!¤eÁeQFÉ)µP_º‹…òzB=Ðejø ™"\zª¨Rá‹-Êz¬êK°‰&i¸kè.¼ÿûù¡%„@WhÐîƒëSúÉBÍ­ñê@§ …e~›9'Çw0]šFH Ár-:ú8ˆkqn{ýPD1-Fç9}——87þ^Ù.c¹¶Œ‰Â²õ,lßFÙ*sãËÞçruéPºí€î|4YCT¢êVùøZÇÒaešÏ:7_!%„×W^GÉ*áÄÜ D´H‹rÑ*‚‚˜F™¨DAä º[ï¨Æ»bZ¬­ú3B\‹ãÜò¹0RÍ©!SÉ`8>Ì÷œ"*¡ï6ßÈÃömøÏ)C7 \N-žj 6;c»ÂõÇó•íÙè ÷ ªS0Sd#‹ì„ü¤‘äýñ€0eq=¾¥ìjT‹rÜHÍ­a{l;Ïf%‘N0~?ðÛÈWQAÂH WÏáûW¾•êJ[iv®<Çß?û"rõï×ŇPwêo˜5.T¼E“Œ IDAT E!.ªEqÛöÛ0]œÆóÓÏó¶ëí¦LjkÜÀ…)›-øQ‘Ô“T·Û­¶9tÚËÕebmuek´ÎJïa5ÜViF³>úVýó¥•Q½mÛmøåƒ¿ŒzoÀ•Õ+8»|I#‰¸o9¯žïa 2@[R’ÂÛO ‰š¬a¶<ûSñ Tœ ¦‹”ôËöi Ðò,Dõ(I&ÑÖG¤«õÕ7,íå©ß˜¯ÌãÂÊ…-?»\[†åYŠ áßêõ–º¸mQóJm+µH€»»6Ó89 ×w1WšƒíÙØÕµ«Åhi²"GK3GËî;õŽ‘†ÊÇ}|þ8ø0$£eö»îÖ‘©R^cY”¡IFa-Ì/WϽa_y¶4 I¶tè,Siî-3À34,`asÚ›õ´‹E½J¢´)X«êTyu99Y”Ñ"°]Û¢Û IªJ`±Yï±0dФ WÏaœæU4b-?ðá”1®l•7  Vë«›îí©Â·É–kqÀrBKp@­")ŒÒ5+ÎlÙÎ.Nc[túÃý81bKþli¦l"m¦ÿÅçÌÌ ¾óïÀuݱߘŸŸÇÓO?½ågŽ=Š«W¯þlz§þùxa¢ ò¾±&k¸¾÷zäyŒ­Žaº8 C1Z—~àÔMDõ($QBT‹"¬†×YÀ:d®E«ÈÉDa¯¯¼Þâ,$Qj¹¿«ù«ð#„eQ¦Q¬A:”æ‡m« f©¶ÄA?éÕŒ”O™)ŠÁÁ#U§Úq¾Ð(@$„äe<ëàôË‹<˜q|ùzª¨Bô†{ù½Vœ wˆ»½^´‹\V’zæÜ7JÊ.×èˆÐ¶è¶Gï^ “CÚ7Ü^£cTž·òw…7þŠK¹K-#W¬^q*í×ã4ë5$ô"j¤cÿÕñdëY*$JLÈ®[·ÝŠ÷ï?4YÓ—žÄ“—ŸÄéÌiÈ’Œáø0Ø¢j=áN á´¹™>øJm¦l¢l—qqùâ–eÇB£ë € #ÐêJ~×ã\̈•»yVXÏÂò¬ñùÞeÞI©Ì|:Š§ÇžnÃj8¾ƒ+«W¸­±}«õUÞ>e`]C64’0d³åÙM÷Å®`±²ˆ]‰]¸oä>8¾ƒcsÇ6ÝcSÅ)$Œǘü,¯üãø»¿û»uìD©„ÑÑÑŸ ]÷f×g?ûY”Ë[·q!øó?ÿsX–õ³qè-‘‹±Õ1$$zýÜñìNîFT‹âtæ4&‹“H›é–ž+¥|m.)Fõ("Zº¬óYô–Í8hx . 1SšAÁ*l*—g{6Fs£è2º0 ™Ìš²Ûi3Ý&ÃÙi“•írG*Å7ê…Ê¢ÜbldQFo¸1¨|#ßf\™ Œ")ÐËÕå¶2ysvÂf?óVª¤"¦¯Ò pÒ†-Ù¥e'ŸÐöF'V)Xi‰ Ëó¡å]øÄçhÖæçŒjQª[ìZm¥è€¸œ½L¹Ò7¡ÕÕ%ÊÐü½ŒÔˆŒ Ùà|ò 9ÛîE¶žmËSÕ@d€NXÈz˨£,ÊØ—ڇǯ{·n»³¥Y\Ê]BÚLSÒ£Àç 6c+ –ªKü(Éœ)k£Ñ[m¬òµyeá•-9­™ð s¦bÒý»vî˜0GD‹ðßk^¿¥êRKï­†­QÂ2cÎŒ$á½y¶>è¿3†F]¦¢Ha5ÌAx‚ ðvÃfWD`º8Mñ­Ö1}r†‘+÷¥Ì=3¢‚¾H§Žîè0×dlûÂ}yÒ‰~Ç;GÞ‰_>ôËxxïÃ8Ø}ÊÈ’ÜbËQA\#¤„àU·ŠB£ÐâLªN•«Ÿ1¤øfkY´ŠôýõbÒHBEÞ"’E™l¼@ÐÂS¿ñ;—ªKIŒ´1²(·d¢(v¬~É¢LíÏš:«i²†©üTËþ% Ïc®4‡l-‹ãsÇ[ìr®žãUB¶×Ý6 -×¢Ø$‰&KÕ¥Í[pM:îÃña\›º—³—;fõlþ| 2ð3ço/‹ÃÅ‹qìØ1d2lß¾ïyÏ{ Ë2*• .\¸€L&ƒW^yð}3338yò$Z‚–¥¥%¼úê«8sæ *•ʦ€×_wÜq¯\¹‚“'Oâµ×^Ãê*ÁÞvÛmÈf³xíµ×èz¾@ÜÆÒi¦’A¡QÀmÛoƒ$J¨ÚU„Õ0âz{S{q|î8®M]Û†îÔ$ U·ÊË| ´cÈJV •î(TI¥Rˆ©2Q=äù•óØÓµ§mQsæËó8Ò„—}Ø¡òf[k¥¨B£l’,Y%ÔœZÇr{'©ÊfGÇzmŸ›U+ B[öÊÊ}¬|]wë¨Ø•–,¬îÔ‘©d¸SòÕpŽjQ²±.Dá6°-²*Ö·}º¬óÌa#EíÆˆI?fªªÔÖ”8žƒm±õŒ [Äõ8gwj.×äy\]½ ÁÙœB„6E8Ö eì,+¯:tÜ0E£_Ì^Ä+ ¯àÞ÷òûZ¨,@€€¾H!ˆhø†ÛhÙ;5‚ûv܇=]{ðâÌ‹¼…ÂÔǘÃa¸ÅÊ"çB/X…–j ëNâ  âWpnén¼½mïB«å¸Ä%+'7WJ˜›ñ¯ål5ÏÙóꉜ„åYœd(¤„hUao€µKš÷×î´â!5IxÉ>ßȯ“ÂxŽŽƒÝkÂHàäüIè’ŽL-Ã÷Z@~¦³µ, Ù@X¥­0Çw0Ĺ¥sÈ[ù6Q&€V0ع܊P„ýöÄîü¾›…wx¦k¤RC¼JX²K”}OX¶˜¶×+Y¥6€(Ìi›Îõ]ä-Z¹é2»Ú؈JÇsy•PÀ¦¯‰Â|âcOrÏ–únà"®Ç;êªHKîŒö•õÍ-r¡Qà“2»‚—f_âß5š¥ Ò }7@\]½ÊA³>ñÑð(ÛeZ5[‹avPdôEúpvé,^£ ƒããy:šÊØ›·ÝŒñÂ8^˜yÛcÛ[ÞË|i~àoÉŠ÷Ó^ ÅÒÒŠÅ">ð@|þóŸÇ—¿üe\¼x¿ú«¿Š[o½Žã`vv=öNž<‰F£r¹Œ/|á ƹsçð‡ø‡H&“°, ‘H_øÂ ë­6÷¥—^Boo/úúhûè?ø>ó™Ï`ÇŽp]÷Þ{/>üáÃ0 ìß¿/¼ðn»í¶Ÿ>CH'pZ^*ËŽY¹ñf ‚€Ã=‡¡ˆ !\]­9J”D‰V<#0“ƒÂjN +µÌ•i„ÈZ‹Š‡D4št7ÍR¤ozüÀ§L¢s6 ÉÆ8¶"pY©­Ð9çPºÍø2Ö£ÍáÆ’530,{b’« Í•Q±TYjíi5V¹²,°}]FW‹s²}‡ûÃTM.˜ÂF¯(CÔf3«c«cø‡ñÀ®þO=…ï^ù.fK³ˆpCÈhB›/C_'ŒDA¤†·)hY©®à¹‰çÚ*0ÍY㦆jïºh)"YÒÖÂè2»è(ìéÚƒ=É=86wŒ‹½øÄ§€8=†°F€¦b¢;Ô /ðÚ~W ņðÁÄ-ÛnáãC×ê Ò¡4rõ,©»í¼ØÌÉ3×ã8»t¶ãžs¹í‹—í2ÍÄ78ËŠ]8·úFþïùÊ<F‚€ ˜™«ç¸ñNšI¸¾ËµØ–ga0>ÈYâØ=°€†7ET¨Òßë& ô¿~úùmÆ„ç‹:Y ç3 Fâ#-4°mýƵjÑÆñIV&fºÜ †P7³Í)ª’ŠžPTQåä2ÍÏÆÆ ›[|äc /EÛ¾BƒJ8³Ñ¿PERx°­ˆJK›®yoL&Ób-Êx~›Ñ®vºIáAÝ­Ãñ^5`ï; Î-CÕ©B•Tˆ‚ˆˆÁ±Ùc˜+ÏÁömŒçÇy€f{6ÊvŽïЉ"I¡çM ó}4DÃmtl‰•¬–kËØ•ØÅßq·Ù·õ½ … \É]áû™± Šñ/Ò?ß¿?î¹ç<þøãøÒ—¾„·¿ýíí¸‚ÕUüÙŸýžxâ Ü}÷Ýø›¿ù|îsŸÃ7¾ñ Äb1;v –eáþèð[¿õ[øò—¿Œ'žx„|ÿûßoû¾Ë—/chh’$Áó<|ÿûßÇc=†¿ýÛ¿ÅW¾ò|èCâŸÝ·oÎ;÷Ö2t7p©Ñ”Öæ»ggqvñ,GÁäùIÌIsÅ-‰!Ã|Dí(JB S§°(.ò ' Ò,b¡v¼†BÎËáŒ{¶m£$”ðòË/c3;1#Ì€‚¾JÆ•q<éy ùëHÇ@ pÎ9Ù’1{q“da1 …(hkÀ#NÚ'QÊ ÁÄòNdOtü­‹ä"à“ç'±(¯Ô|øÜ‚"@îðZ=xˆ 1èB{ö[ôŠÆçÇñ?¿ö?ñ¢ôâºC$eœµÏÂh_Ê ,Œj£¸F¼f½4…iÌ7æ¡‹:ª¨"ãg`¹Ê™2N®žÄ%ñ<Áƒh‹hoà”s ¾í#gçðò©—aBR«ÎjK ´ùývO#gå@@K§îàdé$ý(DÁ¤´Þö(EÊmîø®Î]Å·W¾Ëß»ŒÅÆ"®zWaÙd_ÆÊÊ ~øÃRƒ Úˆ™l¾EëBù ªSE-[ë'^…ôš+°pÑ¿ˆF@[2q'ßòñÝËßÅ!‚øXð »2^}ùUøÄGBL@Tœ<ŃH¶Žu=âaJœ¢s»~ U¡ŠÀP‹8ùÚIŒ‰c‰ŒÒK%¨X§Ódó]+þ~c¯ŒavÑw˪ppÊ9—¸Xr–øN?…Ë"ñ$ÅzžìQUB±ˆWN½ Ô4DJzâdœÿ,¼—éÞ ¸ä_BÉ)ñ3ãç•ó8.om³HŽ×Ž#$„P ,¸ < ¯žxW¥«­Ž,(Á±¬È+8qâÄ–{Ñ]DÒIâ䉓[:tÑ1§ÌuÆsÞOÀÕ™« s]"]?x8«žÅAñ ,ÅÂéÚi¨Ú„8¾ƒ“'Nb±çKçèzV„ 2^†ŽãfJ8‘?Ið{¯x 6é…‰P©Bô׿wU\E±^D£' ëï!𨶊§ÆžÂsSÏÑ„a-M.¼vO4‚>?úy¨‚ú¦ýš$Iøßø ¨ªúùý{÷¢§‡VZGFFpèÐ!D"þïËË˰, ¯¼ò ,Ë¿øEšONbhhï{ßûZÏG­Æ³sY–ñ¾÷½ð€£Gâî»ïÆÃ?ÌÏ0 Ôjµ·æÐ¯3wh†¢[ăwàPêßALqf1QÑmwãLö ä›Âò,t‡º’Bðˆ‡‡w= UTQ´‹ ãõ¥:æL·dÕj/¾ð"î}ǽ¸0}I#‰÷\ÿ|{òÛXj,áö·ólÿJþ js5Ü»û^ì‹ïƒå[è6º‘2Rx`Ç”nrÔA¶‘ÅâÜ"æ+óØ»oG泓£'ÑëÅõ;®oÉUYE¯Ù‹©ÒTÇòã;Œ vd»«¸<æy@ßtwo»›ÿÝ…Ì|óÿû&>ðÐ …8Ù;GÞ C6ß¾úmô¡Ѝ`¾6;oƒÌìÚƒÓ7"ªF‘·òxûÐÛ1`@ž”1zys•9 í‚!ˆ€e £!ž,N¢4S½;ïÅáôáfkøàÆÕölô…û¸‘f¢",9uá]ÀðÞa ˜›ŸÃaý0dÈX^YF­VÃõ×_fÊTêu <й…ø˜­ÌB¬‹ {‡öâ†îðÐî‡hv?Fà«L×ÒxêêSXN,cz?jã5Ü4p­ØÛÃÛiI>fÊ3[Ž.B(RhDA„å[˜­ÌB¯éX˜^@¼7Ž]ñ]0÷ŒÜƒ”±¾oÿëßþW¤úR¸f×5-F·h±#½Òøï®6VQž(Ãò-{XŽì>‚>“¶è3ûPõª‰È1+y'l=‹áèp‹cs|š¬á¡ñu¾Z¼Š^ügä9LÍM¡d—0²kš¬Áò,loÇÌÄ ¦¦¦pÿý÷ó 9¤†6uô3å þ³ xáÊ 8ØÒÐêÇB•r’/,.PÚÝá¾àSÅ®àåÉ—±3½×^Ë9’fª¨B(ÙÒleЍ´œMBè>Žwì½WÜ ._¾Œ\=‡á]øgÿ=œü¥~µŽ§¿÷4n¸å öSé`ÇwðÐÞ‡Z¾ãµ¥×P/ÔVÂ+ŒáÌô¤Í4öïÚ”‘j)…g­,&§&1UšÂŽÝ;6m]9 oÉÃ-×Ü‚~³®ï¶Ñá2Åm‘mm`¸æõ B˜˜™€¤JØ5¸ Ña^1Í[yìOîÇÇ¿ôq¼û‘w#n¶Îê~«ÕUÜ4B÷¦O|L•§`-`Ø3´ûûð¶Þ·Qn‚Ì)ø 8¥¦àÙ©ga'mÜÐ{ÿΜúG„ünÛsÂrk«-YOâ套aÈ1ÕéÄGJK!„õJTÙ)ã=7¼§ce´ã»püþïÿ>yäîL›«to´TÄöö™(Š0MŸúÔ§J­Û„x¼ýö÷÷cyy½Úsß}÷á™gžÁØØžxâ üøÇ?Æ“O>É{òÛ¶m{‹ݵ[!fj3E×ö^‹x8Nûµñm0ê´&‹2¢$ ]בŒ­—êný‰~ЦVtìÞ±‚  êTÑWêCŸÕ2Oàk~˃‹¢H£(¨UìIîA<Ç¡ÞCxfü…"¶Çé<ê\f!-„½={7¨\`W¨ »»vcxˆ"–òðË>º‹Ý˜(M@ ©móÉ+µ8p0ä÷Âì`t¦bÂR,θÔ\ú  'ÞÓÑI˜®‰¨…/øPc*†‡‡×§œqÈ¢Œ®®.„ÃaÞkOô&øì³º¬rW”ŠðË>TIEW´ =éh’†b8rͪõ\ߎÄlå aÚ«”©… ¯ÙÙÌ.ÏBWtè>Ðñ@³Ï9¾ƒ¾x/Û×Ý:ú”>N3Õ£pàÀÕ]äŒÞvàmܘ†ñ«ãH¥R¨y5D*’èJtì!V*ÂbKSÚ¾DúÒ},ÉèZíâከàpì0®¯âjñ*tSG€ƒÉADcQÈ’ŒžXw6RHB®–ëH^ÁŒ`L§ä2–g!.ÅQ–ÊðU꼊ºPG8FRO"Ñ“Àpr˜!®ì"‰¶hˆù1̺³HI)8ERà¬:è*va¹¶ —¸H…SH§(p3©&ñàž±XYÄ•úô“~`pñ8Å+T²„Õ0ú“ýˆé1xǃƒú ªN•+•EüâVéPºÅéV*®I]ÃÏ Ý€ÀÅÆE ¿ÜìRD'ˆ‡©£3¢Ñ( Ó@(¢À'ÉA¼¿cKÇ <¬ªä—/ä @o¬édéH®îÂölŒX#¸œ¿Üf *å ~ÉaÄãô"7Àö§«»°\«¥  Лìí¸Ö¦k"Ic©¾@²/‰ÁØ ŠVæŠ ]×!š"´(Õˆ_m¬¢g §…øèÅÒ‹҆茷£Á&6ÒfzD‡b(Ç "ÐR+)L”& ›rÇóFÁâü"ÂZ»{vs"-?ðy9œ½WERZÚbmvÜ·‘Ò-…Ð „£a$’‰õuª))&¡/Õ‡Ù™±3£ fÆ¢p*tYGw¼±D ×_‹ˆÁ„=UVá•<ŽÆÙìY\©^ÁÍ¡›RBàèæÐîÅ@ª=ɈƢØÞMÙ"7™Š HÉ‘044ô¦§‘,Ë‚išQ÷±X ³³³Èd2ˆÅb?•Ï4 =ô¾ýíoãÃþ0TUE¡P€$ImNýÆoÄ¿øEÔëuhš†³gÏ"‹axx·ß~;þê¯þŠï…3gÎàÎ;ï|k(wË_ç6÷|… ô…ûxÄ¡ p¬3H5“æ$à="/ðèÈÆÚÆc¬BL4c³ l=‹º[ÇPœ–Øw%w!¤†8wÉ.aª0…ÁØ ’z’«¹h¡Œh‘uêGB:Î`2¾æf@œã;œj’õD7öƒ½Àƒ®è›f|²$#ªSx¾ÞŠŒ.Y¥öVƒÞ«cR•Œ÷œÍ‘3<{¸®û:ŠÈ„Õ0Âjnàråf˜HÚÉÂ$¶Ç¶o9ÂPßÍÆÒ Çqð‘|¿ök¿†?ýÓ?ååòæë–[nA£Ñà3æÇÇG?úQüʯü ¾õ­oáOþäO‹‹‹XYYÁÏýÜÏýô:ë¹ëâ‹åÚ2÷æ‚"D(’ÂK ›šRfŠÊ¦‚´ C%QB\C—u˜ŠÉÚÆž.NC“5N&ÓbØÜ +°R[Ál™ÊŽì>ÈKblLŒÑÊÁ®ˆ UdëY>oÌQüÕ %£Y ZØP3GX sE f°ØVÚ¼² #¡'°P^à#zš¬µé¸7ÿ…ÊöÄÕÕ«mJnÌ¡3c/Š"ö¥÷q4®©šœ…«d•¶D†^]½Šº[ǵ©k©3VåM#âÀ"7p1ä$.1-†ùò<ç ïØ›^˪eQæèâ˜kyŒR’ñ›3¾‚°Bi,Ah€ Ä”2S¸gøü`ì|fÝñœ¶L\(iÊBe†h´í}p2^nFŒ$@@\c¹FùÉ´êhçê9ø¾¿)De¤ÌFs£(X¾^Lj“ñn¿wß{y0Ê%¦bÒÏ‚–‘—ªK¸¡ïîÜÀ 4¼âF½á^ŒæFQ)_ûÆJ ¸7‚äXpªH R!¾¾ IDATŠŸ.NãPÏ!îгn–dñ÷âƒj¹7ó°÷Y²Kü—kËEq=QQuªHšIÎ×ã89žïáîỡË:æÊs-€(QÛÊçKµ%.5»ñue=àñ‰Ï'J˜J™)ÊØçTøÈ+B¢¸×wy°µ\]æà¼©ÂG~;¾ƒš[ƒP]C1°=¶;“;±PYÀ‹3/"[ÈÒq@ÒÎÉÏ®¹2OÙ“ÜÓ‚Vg4®ó¥yH¢DªjxÓ³]²Jpª¤"¢Fx°RuªœïA—u$´Ö*î1±,M¦ª—º¬#¢F¸†EH !nÄùÔÁ¾ô>¼¶ôNÌŸÀážÃ˜.NC¤Æ¿Ÿãå»?Óyô믿ÿðÿÐòg̉9rßýîwùŸ?úè£xôÑGù¿üãçÿÜÕÕ…OúÓoø{¦iâƒü ¾ùÍoâСCøØÇ>†}ìcmŸûÖ·¾…»ï¾;vìøé3tÛ³ác}6²d—`yz´lI@¸¾1Co$„`èwöÒýÀo[–ñ„Õ0'Öh~à#·Ály =ÑâT¯ë¹ paåÎ.E:”æYµøÉ!ŽÒl‘ ¦b"nÄq){©m>r¾<¸GT£d"®ï¢?Üß²Ù™ØJs&À…gÖ2úª[EÁ*`µ±Š‚UÀ|e)3E°Vÿ®íÙpˆƒÞõ4}ýð(¢BÅ\ ó•ùuÈ1G®ž£] ¡á6p } ¥ìÄþŽVm¸‚3K´ßÇæµ·šzhnQ.|Ñî¥Hwrów2T‘H¡Pu¯ÎG½DAä(ÿæ‹©Qy>ƒÅ5jü£Z”b<èbÁ"ßÝ×á@÷ Dh)/@б¿Q#-":͸6ãîtæÞò,>ú•¥)Â×)C„ˆ¢UäÅ|ywÞv'††6§¦d¤&…F“ùI.Å*@@L‹áÚÔµ-¨"*4ˆhÀRq*p<‡ë‚F):Tª’ ?ð‘4’èöo™åØž„‘hÓ¹g³èª¤"ªRêÙ©âßó‰T×_w}‹cdT ÷MÝ©CD¸•üM™)>"' "ŽYC^?vÝc¸®û:¼ºø*¾ôÚ—0šÅliq=΃8ERZ7—D„¶5õ‰ÏƒíŠS¸(Ûe¬6VQ±)ÑJROr✼•‡O|¬ÔV H n¼íF$IH"- «aÌ•æ¨N‚gãJî /ý[žÅùF¦brÈÁØ Ù÷LÕ„*SB¨ÍªSc«cˆ¨‘ÙWVuŒªQŒ$F@A—ѵéÈ›íÛ<‰a³è ¸Ð³µ¤£iÜÿý(¶ÚXÅbe±£=`Õ¦±0ôy$!•ÚÝÞp/,MÞºuÛ­(ÛeœÊœÂèê(ºÌ®¶@ò'M:·ª¼tºTUÅïþîï"™Lâ_Ãõè£â“Ÿüä–ŸùÈG>‚ßþíß^¯^ü4?Ä[soºCÝÜè©’Ê7dX ·•ºšçxÙÁŠé­½ F,ÓêÆLi¦¥ .Ë2´]‰PV¥5ÃßêÁ¶è6œÎœÆBe»“»[fWUY….é-=cLŠ›úoÂTq £¹Ñ–2k¦šAÒ¤ GŽç Ju­Ä´XKð!‰Î’]Â@d·n¿ïÙó<´÷!Ü7rvuí‚íQ¬¡|<¶á6°Z§ôÈ‘®ÂF˜÷ŽEˆÈÖ³TƒÂ*´ˆC9Ã306Tº¬svGC6hມœãø& “è õr›%­Õ]Ö1’é8Ï‚¨²]Æ­Ûoå öYF6Õ\v—e#;F I”Œ«fS~ù¶ƒ©«±Ê™øô'È-ú Œt,¬†¹=IŒ`06ˆcsǰR[¡´µ?¡Cn~>Y7mémv‰¢ˆ#GŽ´Í„ÿ¯º8Nl‹KQ”@ÞϤÁÀú^,sð‰ÏK.1»AÅ[(73¼Í7k3þìóÅÅ•‹P$×t]à 9:Vrn>@–O+6ŠD{Ëì¿—™÷y;•ëX±Ùa±L‰e¬äÇfîÃj¸M[:i$ù}m¤gLšIìéÚÃ3›Íúlš¬q.ïæ{äeLB1~àóŠ”áð|…jcœ€Òëæy8 K³KÈ.fáyô™ÛAv1‹Å©Eä—ó”£J*—bet¶º$H”4“€˜©fhÖº¶G_Yå଀ð‰ßQè‚ø\ÙÙ,¬†…ÁØ WNcc­PCn6‡Z¡Úg‘Ê—ÊX™_ïѲ2C3e.Fù*@àågUVy`¦H ö§÷ãñƒc_zTIåÔ¶>ñ[u&6r¨—¶ Åà½Þ€¥uÃÏæÎ·E·a÷~ÜÜ}3Œ²+gAu*ÔâTi•‰KóKÈÏçáY”s£êVQ±+˜]˜ÅK¯½„ÂRApÐ(+5³µlÞëLÈH•hÁ‰lš®…Ê^»»vó}Ë„­6¶å6Û׌v_j4IC½XGx°Ì8?øY®[Xš]Bn1‡ªUåm‰¹¥9ÌMÎaenžëµˆÊ0Æ'Ò\t™]€@[7ìù ÙÀÍ7ó ήĮ¶6×›ÎÎ׸Þht’‚……\¹rù|gŒV±XÄää$gû×~Éoõ üÀÇj} =Á$sby?OHiK=ʧF±¹w©Jj‹ƒ%„à™o>ƒ=õ#H†MÕpE¼‚ÉîIìMíåýsR&˜º0…Ùú,B©ÞþKo‡,Ëœn¶|¹Œ¥ú†æYŠã;ئokp™ ÍX%A‚,ɸkè.|÷Êwq&sw ß……ÊáˆôÓ &´ëG{Ç{¿!5„ŠMI6"F„; ÖB`›M¬Œ®àå'^¹…àÜËç°xd}×ôqQ/ððúK¯ãüÎ#Õ“‚.êxà7ÀdqÏþßÏ"Ñ—@¶…aè˜Þ+·±@eãage¶ªS¥£I¢aÛ·ñzöu dž×ãð3ê5ãØs3§Ýüg ×`(ï¥)’‚l#ËßÕFä:{'ÍT@T*z%«Ä{’L"6¦Å ‹r‹Ch@ L|TÚÊÚÍx V–ßhH)”ßž_¦%Îz 'çOÒJÂl¯>ù*ÄEœüáIì×÷CRáxlØh8 |ë³ßD`µ°Šý·ìÇ¿p'^ÿç×qþŸÏ#–Œ!3Á}¸n9@¹ê½jN³$nÁ‘D‰gèq=Î+5«Õ–ìšµX@Âöîp|˜«l5;€ª[ÅP|ýÑþ6#ø÷ßø{|õë_ À\yìâz³¥Yé?‚ìT/|ùĺcX]XÅ=¿~Î{çq×Ð]‚_ýìW±py¿óÿüªj•Ïq—2×`jv}‘>,–a*&ò|Ë>Mè À«¬ÕÓÜž9Ô{i3BÇ>#ZU» àÀ)/ðÓcÜ&ù¾ÿò{ÿ¿‚Ñ…Q”KPGTT*¥qõlœ9zÇ|fÔ„¬Ê¸ë—ïBA* ÷z¿÷?~nˆòpôüRôˆ˳¨®ãà·6$´bpÉaFdÓ¼/™0T³¨ “ ~³ÙkÃoàžm÷@‘Ô3u|ç³ßÔ#AÜ-¢P§º5§†À @|‚¯ý¯AEÔ«utïïÆu?Š‹Eüðÿý!ºzº@ªƒ{qÓ#7šFa¬ªEé´JSòRB|²†Qp‹‚ˆ]É]ØÝކ×àìte¸ @•Õ7%‹ê1å‘èÇǧ?ýiŒŒŒ —Ëáÿø18Ø ý‹¿ø œ>}SSS8zôhÛtÊ¿¶ë-gè–Gu˜Nrsy-¤†h¾¶°Œ+Û'>çgÆßTÌdêÜÜžþǧñðï<Œûû~ ׇAÊ/̾€º[G@L'ÑïÃ~÷}ô>¬\ZA~‰FZЧ –‹¡«ÔEÉPÖÊUŒ»ºyÃ4g­Œžpz?Fâ#xuñU,V±PY@DP!—5±ŠærcåbÑ$ûfHÙgºÌ®–÷T«Õðõ¿ú:ÞùØ;a˜²Õ,žûÞs½«I ù^}êU<ø<ˆ»?r7 —N^‚i˜øèÿ(îú»pÿº•\—.]‚"* ³1£¨“SŠ:gQu§>3†¬Åâù´dé‘ xm#o„·`ÐÍ(EW뫘-϶¶a FDZ&†Ôg¬pÍ ‚ pºæŠIX S2’5vÂÍ‚QS6¹jV'8QѦeiŸøÜZž….“j‘³ŒýÜÎaß‘}ˆGâº%œøæ 8BekY\ !0?:®¾.ÜùëwâÑ?ŠWž{Ë«ËD >ñ1WžãSÌî5W¾ºCݰ\‹£ô™Ï¸cð ņZð8Œ‡_$4ÜlÏÞ2kgÝ-ßC½ŽÏ}îsøÄ'>Ï|æ3¸ñÆñõ¯½ísŸüä'ñ½ï}Š¢à‡ë-;ô†× $fš—¢™„ã@t¡Tša%Ì©%G{s6Õ¢-,eSSSˆÇâè¥Fi`ÛV­eq:s™ju§Ž„€¦kPdû‡±{劖E…BB šŒB„ˆèp™ñ ú#ý¨úUš©,4j á€cX™»S)Y–(êÔöÚJŽïàÂÊ$ôvÄwÐF” Š"ÏÖ7ÕæÌ‰µ#ø¡Zl±‰ÖWž)Íð Ï#]éX&”E–gaµ±Jòkïel̬ÙÙ²]Ñy6¿ÙÅD4Yã%ÿWX S0•çÀ”MŽXî Óÿ®-Ëç3yôlï¡ÙG¯„Ìt¾MÑÝ‹•E¬L¬`ûîí° fÄD8†½jÃÐ 4ÜæKó¿0ŽîíÝeÚ²±}›ÿÖ¢«B’(ñž>˼/¯^æÙ-ï)®qÎÛ¾”™j *w'wó`†MV8ÒFo Ùlªªb×¶]H€þ=ýÈMçÖûèÕWŠHP`Q÷În”w”Q²K¸2uÿé">tWdÄ&´R[¡ô½k-MÖè½®egoT~% Ùj3iÕ®ä.~Ò¡4çgBFÌÙ¾¾H/gΜÁáÇ‘%ìJ"¥§ÙZSÅ)85žà! л³¹™*KÔJ5|þÓŸÇ—ÿ¯/㫟ù* åæÊs¼ÓcPEµ#ïƒ*ÓöIL‹¡æÔZF`ßÁ|y¾…Ïß(Er§~{'Gçn¸‘'#ó³óèìæRË+¹ض QQu«˜ŸÇö]Û!ɈF Å5—ŠÜ?ˆZ±†Óß9'>ónøù W.œ(L`06ÈfÀ³(ˆˆ Àò-ÚG÷×íÉ®ä.Ü¶í¶–YzS1×㎠c$9‚„‘@Ãmt ÔY²µ…5» …2™ :8tè.]º„ÿݯ·ìÐkN –gñƒª¨Âó=ìˆï è_ßãÈXÛ·yFÕì zårGÅÑ£GQ(`¨Æ:PNFô FñòÂË8»tÀÈS0’&kP¾çc~t¹™n¿÷vè’B|ßçN6 âF¼­ mÈ/@¤‡{c²0‰L5Ãå# !m©5·†½©½Ü!H=” ÅÊž³;Ü Ïóðâ‹/âèÑ£˜™™YWÌR#pEõ Î* P±+¼Ï¨H DE„íØœ;Ú)9xék/áÚ{®…«»tÖSÖÚp -úÚH ão¾rõfK³8Ð}€Îr¯!‡Ù²wØÜ£l.…YžE9°åu9Êîp7E?ë >wìú.æËó|V–ä-˜Ùz¶¥L¿ÚX¥ïYµÍÀ ‚€˜ãØŒ½†šVD¡šÛïÚý.Þ?l6ްšªÉ&½Úî§ï0ç:/y%8žÃg׫˔µLøx“(‰”.dAÆØé1œxîÞõK^bóÄlÎ~c[ÀTM®Ä¦J**v²$siP†ia8ŽàÓÉ4cã9ˆ¨ì9Ø1¸ò}¢(òª„®éð=Cñ!ˆ‚ˆÉâ$¥„©c\Æ2ünÊ]~â<Ýwª¢R¹Î5¾¶rõå,(/‚.ëˆhŽÏ`Ü[xtŠeXµ< ‡úñ¿N›iø½6©¢H ï§7g‘Žã@UUDŠôy²õ,ïDaÅ/Kð=Ä%¨ª8ðÀ<þ£Þ¨ãù瞇,È´"áÙœób#q;›Œïž9jveªXžÅõáÙÚB ÁQ'Yâæ«âT°3¹³…ïž„÷ÄÃj Ò@€’ QìŠçQg¾x“%u«ŽòjÄ'ˆ$"ˆ¤"˜Ÿžñh{`²0 Û³±'¹‡ŸËø¨îPw‹lv³³o^7pU£¼M¦K:zB=màÆæê’&kYÿZ‚›€êÃ3@ãLÿ7ïгõlË"B³W7 3æ½á^xÄãºÍŒicäÕ£¨×ëÅèè(Âá0êµ:tB³ÛüR==¸}ðv8¾ƒÓ™Ó0…|nÈü ýÌô…i¬.¬â™¿|¯¿ð:.þÓELž›äÑ"sÞK«¬·Í6˜(ˆx[ÿÛ(±Ä± ZšÑíŽïÀP é?Ò"*Õ¢´·ÜÔ/Oè A€±±1ŒŽŽ¢^¯C×uHÎZ NºvtÁõ]ÔÜEY+Às醫ekã"+‹¨–ª8ú×G1°w×Þ{-Šv‘NH:Õ—ï¡«Ò’vh¦C@paåP5*-C6мËÊŸŽïðÙûæž×@t ÅÉ3`^\Ã#yp|så9äëyJ#»våù–@C$€p‡fy²õ,Íü¥µêʆ¬¨åÕ¶rm“ñ÷éPCñ!<°çŠÁñÍœÞp/ß7 U=áx‡H,«j!i&Ñð0z ‰’­"zúzYÌÀõ]øŽF¥H*B¦ÎNáÌSgpǯÝ5ªrcÆÄ-ÂÇŒÚ*J˜;_À%õd‹ ‹!ŒºÑ¡§Í4Âj¶g£êVqÛöÛ6-YF£QX–Eõ  ²RA¬;†¨¥šå¥9(¦‚F¹Ÿø8—?‡BO¨U£Šó/Çs_x™© Ž?yðl½îÖ9±“a%Ì1'^àmJ_ÊqÄãr¶–o!J·8¯f"©¨EH ñ^=#>b×ðð0fg)Ul!Tgª48k¬ÒñPE€ïúü50ÙJ±îb錘ž¦¥KU´¨úäš^|T¶a>6:tv/E{I>U¤3íƒÑÁ F\ľÔ>Z’ö›áAà\ìêïîG¹T¦] ÃS=BÀGFcéòËTÖ¹T-Á©:˜ò§ðʱW°ãðzÇ!ÜùÁ;1{in•Š%­Ž!ªEÿÿöÞ4È®³<}¾5{íy÷´»w«©å–Ù–-ð„1\0Æ.lî9NR ©"pÊ'Ô —SŹ7©J%7?H*$ü‚T.Iêª ç…o8åPa8ãøH² –,K²&k²¦VO{\Ãýñí÷ëµöн[êÝ’¥õò„Ô»÷Zß÷ŽÏû<qF„Œkëw͘NhÕsvZ :v2²f6"wŽ%½P½Ú¶d2‰³g¹`Ó¹sç044ôóËç!3Y8·t‰W‡ -Rª$Úy -A{°À¼M<<<ŒÏ|æ3øÌg>ƒ‡~¶mã_¾ÿ/8õëS¸ðÖŒíà2ˆì<ŸùMO¢>WÇë?{G_>ŠåùelÛ¾ w}ä.<ý?÷òýØzßVlݽÃÛ†9Ã~‘;TƒŽîp|È‘gÍ,{…@á±ÃtvÅd1r8I8<ëJh hš†OúÓøÌg>ƒGyO|ä ü¿ûÐ*dKÆØ®1,ÖñóïýLJ¶1²mÿöÝÉ_ŸÀ±WŽaâî \X¼€þúØiãwãòùËX¨.ðñE@ÒIj’1&Úßš¤EÖO®T¯àृ(¥JÔÆƒ¥Z(¥J\ú³‰ gѺî.†œ¡¶g«I2Fžï‰Êƒö¢~#‚èÝsfOD…©u âbù"æ*s˜ÎL‹ïÓz®2F®çŠJ/ì q®ïŠyÿ°3Œ'gžDÆÌ¬hR7-m¤E¢dk¶ $!„»¹¯¿ð:ØOnб8·ˆÿþÿ•Zw>x'í;„·_{¯ÿäu$ I˜Ž‰·¼ÿ¿?ÆÎï„i˜xãØhx Ц¶?É•vš»ÒŸSbMg5âä´a èŒ&Gq¥v#ζå¶u½ïãããÇýæÅñ׎ãèþ£½}g^?÷(—Ô-ÞSÄ+/¼‚ƒ‡âÐåC˜ÍÎr‰M›aûÿ¾üö#H §pûo‡ª«ÂTÜ †Ã"iNI‘HÖÜLÕ\• !ÜB¯¸Ü1pG$xª!f¶†lDØÍ’F2ÒýøÐ‡>„ŸÿüçøÙÏ~†?9KçÌ‹‡~u—ß¹ Ù‘‘Î`ï÷âØ+ÇpöðY”n/ÁÎØš¯~ò+ìyiŽ¿z¥%ù õJ"j5Cå|ì”tѬ{uœ^<ÁÄ è`Nb¶¤·à±‰ÇPu«m®ÜನŒ>aÓ€'Ÿ|{þiÎ>¹Cs¨¡†¹‹sxùû/í»˜ºo ‡^=„}¿Ü‡ý?ÝD.Óîiœ0NàÈ+GpæÐüÅAhºÍÔ°X_ÄÉù“˜ÊL‰„¹öC•TÑ%µT«s@ÁüضI¤X0d£#¿I/T¯™L=öþê¯þ {öìÁ·¿ým|ô£…ïûøæ7¿‰ýû÷ ÌÈÞ½{Q.—ñÚk¯ ò›2 ûw–ߣ;à—®r†¥ZbX¡‚íôâZw&u]Ç—¿üeäŒξ~ýÏ…áʶ¶fcfhO}ö),]\ÂüÛóxîÿyéDVÂB"—@2ŸÄÄ=(ÝUBÂæs93u¬tBèß°Ý9p'vî—ŒsèûA€ÛnçâfNN‰IÂÁÔ½:Ýiï H>ÿŸ?îy‹o-B²$”í2Gs+2ª^ª¦âŸút[DZ}ÇðO}Åé",ÉB®˜Càx凯à—?ú¥JÔ$NæÐiOž jXMÖ"ä2o^|‹µEÜ7rŸp’ÔÎÝ’Þ‚º_xƒ†ß€$I‘ËJ«`­rŽæÀT¹sö/øiÍàçkó8tù\<ЖˆÐäÂÛðc©1‘0´»œ•CÃ猆ƒö Pe¢ïE aÂIÜG¶~¤­r ¶_µQ〳 Zª…ÝÙ{ÞæßàßÍçÁ¿p™át>'ÿÏ'qæ3`Œá‰?x‚Wâ_@, IDAT•J·—ðöëocßóûðÆÏßÀ™¹3œ ¸zY°àuÛ+6TC´ó&g^ tƘ`å"}ïV›ÎNÃP <<þðªd3º®ãK_útUÇÉ×NâãŸû8œ!ž'DZP_Àà{±í¡mxáµ Ë:˜x¥T ’$á’t é¡4îþßîÆÀè öÐ¥CÐe£É•µP¢--ر!Ò©* Ÿ=]ÖQ÷êHjÉ6™fC60Ž1&žgÍ­µù|_ÿú×ñâ‹/ð±Ï~ )=…ªTåRý?> ßõqð•ƒxô?<Šl1 Æžù¿žAà8ýÚi|à÷>€‘™‘&&¥§ÉJÛ»T q?Ã2ªKõ%œ[:‡ñÔ¸x×´†+K2 •ïžpòƒ˜«Î‰•Ùù*gá{ræIÜ5|WÛ»}â™'pïc÷âð/#¥§ÄF‰¬ÈPHŸøÃOàÐk‡ CÆãŸ}'çO¢>YÇÀ{pð_âÒÛ—ðïþèßÁJZ0ØXÂöüv!“š2Rm8ER0šÅrcY2uŠ/Æ¢ÛifÚþ]7»Nÿþ³Ÿý,î½÷^<ÿüóøÜç>‡÷¿ÿý<ÙPU1â|íµ×ðíoO=õ^xá=zô†è×´¶F;¯ƒö`äAÑúZÚ_S*¶fk„0²Ù,žûýç`¾ÊŸA@·u<ô‘‡ Ÿ’ùŒ^³ñÞgß‹©Ì”Ø]µT ågŸÚr×Ô¼šXߪ4*°:^&Gw¨"òûÉ*Ÿ~œg󟽒S\n,c<=.(-‡C8:w´ãJ[+)<þøo|o½øŽ8‚‹•‹8³x<ù€h¹ÉšŒ]OîŠ:WSLJþã‡ÄÿÞwvö¿¹Ÿï K'ÏéÒ~2¶jC“5ñu¯.˜á&Ó“¢’5d -!ª?Æ8¢úüòy>¿ å…´AÐÚ!*ß´ÉÁ]ÇæŽáÎÁ;;ž‡3‹gp©| Kõ%Ô¼ZÇ zøòaÑæï–÷Fô¶”4$õ$*Š˜›ê²/à¼ì­Ï)©'1íÃHÅã–QtVF øÈi©¾„Û¼ö¬ýûösö’»Ÿ¼ºÖü¬ïû÷EÎÁÔ®)LíšjûŒåÊ2'ÎÑ>ªÒ:;7Z½b`BãX¶ˆ¾•’“0ÁGëLó±‰ÇVÈ¡V1Çqðû¿ÿû°^µ°P[àæŽq¤·¥ñ«ûŽÏÇìŽYT½*îº[PæÌŽÎÅ#¥G"gÙó=¼tkA˜+4£´¡‘6¸ØL7ÿ!‚[“Žv©¾„Ûno«ÔdIÆPbgÏ’ªæ‹N»€ÉÌÌ ¾øÅ/âìâY|óÕo"e¤P®ÃÊðÄB7uÜõÔ]ø‡×þ¯Ÿ}Îe9“3œåÌcgvg$¡¾\¹,Ρ©˜}ý9uRë‹ð_t0J©RÛ6TcØ–Û†Åú"~qâ%™ #éÆêc*¦à¦9(c ÷Ü'D Ù€I€U͉‰A 2=×wÛVÖ„Púm-ž¦sðOPRœ-ÌŠSL;®?y¾×õsÉiY G1Ÿ_>Ó §!K2—ÿì°{ILT´GNî„U °T+ˆŠPçD`a©–Øw}ëò[¸\¹Œ»ï µ½Ýèy?ðáGë…«68ùN§ ‘13ÈYE¼tPè´ÎÍÞ¸ð|ø¨ºU¹|¤íï,Ôp~ù0ù6þüÖ™=%)=%q¨#åû¾ ‚b`8qåcØ’Þ‚#sGpjáTd\wvé,&3\J—À‰€¹”D>& ´ ºÉÇR•ŸÔ“bÀ 8"~£Yn¹úBmu¯..O˜1ËVmqÑ‹Éb›YØ‘Qßí¥™*Gš†Qá–·¡Be,@©¶( Ѻ©VusŒ²$C“´ŽÊp[‚yÆÌDÔ×èY´®x·*7qBO i¬ìiŸ[:'øî;ý¯œ{÷Úßá¿üú¿à[¯ ß9ð¸p@Р†é»U脯¹5Tì;· -™¡Qq¿Ó>áZ[b5¯Æå;8‚U€,ɸ-Ê2ŽÌuÖ'æO`Ô…£;8xñ`Û»8µpJਣÒ)“7>3¥µ1K÷Pž”5¼F׎͠=ˆ´žŽ|>½“Vö½¡ÄjnMTÃi=…ú‚HTYÅb}±srxøå©_bïÙ½ *«¨4*HèMñ™.Õ  ršT¸Â€8vëKâzŒ¸óuYèñ‰ôÎ,žÁÁ‹±=·]ÐçV½*&Òbõ*|–ß¼ô&tY䊬 ˜š)Î4m]¬v/;éB„ïgâ~z¾'Îu×1Cû’3s|°¹u2WËo¿ˆ‰Ìþýì¿Ç'w~¿·ó÷ð‰;>ÙÂ,öžÝ‹WϽʕçêK¨ûuÜD”%[»•2“E@_npö¼S‹§³r‘nmŸ†$ì3ß7ñ>ìݽæ|ßð«YJOÁ‡ßvÖã€~v©r)ÒR¡O0DœÏPb¨+ñAÕ­FÚlm¿`³êÐdMdß­Ùµ©šÝI‡ÜTM^õøu!¼Bm¹Ns|jËjŠK³º& ´êBÁçÎ;8J§”v°uºt5!hç«óB™©ÓúÅÛ oãÇÇ,@f ¯S‹§p¥z93'ÆÝ¡ÖÁ Ö±+ÇpäòlËm‹ %HbÍ ‚„„ö¿[÷ÏiæÙÉˆŽ¶”*!¥§°ÿÂþ¶çtâÊ ,5–pÿÈý˜HOàÈÜTQäî±+Ç`)ø0QNï3©%7>͘iŒt<І;"ภà›­cª‚h1e¤ø{tù¨ ŸƒvrPûÎîÃÏNü /~)²q@{ñ„Šî6O$>zªX}på ‰iiþ¼°ˆÑµZÚHÃõxUDII­ª²ŠûGîŸ+3ÃÎ04YÃѹ£" Ö½:_:Œ±ä˜è¸Ñ]§@CDI±ŽÙiÞJÁ*àNfkM€V°’L9ºÓI>GY++˜ËN¾ò?OüOÔ¼Ûò˜è‚ت¡Ä{C‰!üèèprþ$ë‹p=WtÏ„P‡Ï¢NCBK`©¾„ e¾%Ac°pÐ+}­cBIí©R¥qƒ S™)œ_>/0.´¯/1 U¯Šw–ÞÁˆ3‚ñô8¶å¶áàŃ8·tpðâAت±Ô˜h+²Ò5©`Œ!kf-ìÛI¡²ëˆ¥ù)Ù"?²ZEô5ìÜÒ9˜Š)º˜Kú^TÉLw13-«U ”åeÍ,ÅhV[µÆ¯*nE¬UÑ…q}WÌ é¤t×ni³wC]†;Ľ5Õì%…±p ¢YÐjNƒØ“4YÃ|}ž“P4*mÏe¡¶€:üOP%ÏÎ>‹gw<‹Oßýiü§Ýÿ _|ø‹ø¿!ÚÌ«UètÉXòãc?†")¸wøÞÈ÷?« lqF"[ ­²¦ŽætM$Ý.ëИŸÁ[soµñˆ¿~þu¤õ4¶¤·àöÂíX®/ã­¹·"ùÍKobÀ-B"Wéd3YY3CЀR€îÖ9a`¸­p›8G_%²‡Úœ%цR@Ê,ÖyËÝõ]¸+öÒöÿü~¼ðÖ °5Ëõeì9»'r7ª^i“'‰Ýª"öQ$¾J>g$h’&öî»%³Wc)#%Úœô|ŠN–ja:3ÑÔÊVˆ©púßg'Nжû¹ås¸P¾€™ü 4Y$¦fŠ %K2÷î Óc§UgĶ֭ã—12â÷õoÕv;U©ƒö ¸ õ™;‚_ÿÞS|Ø÷'«{8úÄÖ'`k6þÛÿ 'çOrzY=ÅGD]Þ 9I×_n,ãôÂiTÝj›.=uÏtY ®«1GwD2:•™ÂbmQèÛ“BÃbmË1š…*©Ø]Ü ERð‹·ùÚ“†b´1©¹?Ç“DųÖLr=f¨ü ÉL†!ð>G¸ô°X›£;J‰ÄDf5·†Ó‹§±ÜXUµÔ)ˆ;jO«k Y#+ð0t7hìPskH›éU“Ÿp—‰H…z 躬#i$qôÊQœ_>‡K·%HžÏ•á¨S9‘žÀcñw¡ðäQaJ×YoXΗÚòç—Ï#kf# :u\èÝw+RzªÐC`à´‘FÞÊãäüIÔ¼ZÄÿœœ? MÖ"`¶ûFîƒ")xéÔKp4Éaq/ +°ÚýÊšYøð±WÃkˆB"|_‚ ÀbmŽæà©™§0ä Eæüy+/: a|À­à¯úÛÎ×x[8ìܨUDû®­­•pYu«¨ºUÜ?zG„r$ 7Mˆz”^$µòü€Ó &a*¦¨lSzJ´e=߃")³ÜÖŠ®á7àhN„c˜> c¬£ð ‘He¬Žp‡ÛâU@ðL4ì|Ï.Å¿ûŒ¥Æð`éAH’$´¤Ãæ®@°¯¶IŽžðö@[0>³$Ímj³ŠÑ&ÐBŽ»µýØêLóV^ÐçÎfqfñ .–/pE¹‚¬™?ƒa&7ƒr£Œ“ó'Ñð8~å8¬áÜÈ9v«PVÃ-ІÆj”³„TYEÝ­C•Ô®¨Ý!‡os¨²*ŸK•K¨ºU”eáØ.U.áùÃÏ£âVðñÛ>.¾ïdškBï9³Ëe!eIŒiÝÚ‰aÒpêîÊhÁª›«1SY‘"µ5[$±E§(¾+%÷”d–R%(’‚£sGq¡|–/t=fÏoŠ7…‚1iŽž12bK",ƒJݰÕ\ÞÊ‹=mE^»  s/x|£ÉQÜ9xgÛß«y5Á=N Ö}#÷á®Á»„bž&k]ÛЊÄT°•µ=ªŠÃ>Å|)ê¶Ó¾Þ îåtfZl’ˆ»â–q¡|E§?ðÅø4gåpÇÀhø Œ8#‚ ’’„n€¸ðs%„»­ÚðáÃóù*)çækóÈ[y<¾õq &1âŒDŽ”žŠ$InÀ»Äq@ïÑ®T¹¤$‰M‚!T _þ¬•…xXn,à <<<þ0î½M!zGsÄÜ:Üv÷áÃPùŸgÍ,TYÅ ½Òî¦}Oš}æ­|×¹Lø³‚ -ûÖñ€!bÞÔ­ÍKsdrpA´¡¢;YÚH ÈrmYTdWªWðƒC?€Ä$<¹õIÁŸµ²m+ržïA“4á8V«–IÄ ¡%°kdW[HI:’Ãé$ÐRójL ®ÙÒ͘Ar²=·~àãðåèù5 Le¦PW~Ædf¶fãÀ…(×y`Kr!›Ýtsà¶fG”þZ; C‰¡5¥'ÍÁxzK%~¦ºt>òf^´Üe&#cf°P[ˆè¹ÀK§^Â¥Ê%<=ótd IWt<0ú.–/âWç…¹êMB¦n: ³øù.”Q` S6¤BW Q‰ÚªÝU,ƒÆÄú5–ÃÙ¥³ØwvdIƶì¶"©¢sþ.)¯{_gÊš+U:­®Ò]ë{R°­ºU$ÔDOcÿذT Ž?Úv¿è÷×$ ‰‘øJLÂãÓã¶ümâ.…´­ŸCûö¶j -ˆñôxÛsUeUàs®¥B'Ö:MÖà.ÆÓãðoÏ¿½RÀUç1WÖô®ÆÖT<“™ŒÇ„")˜-ÌBb>דè%‰Lh AD¤:­los•9”R%<¾õqwN Gî4*È–ëËKŽÝr3õ«èäl¨µNíYÚmÍ@YÁdfç–ÎAWt|hêCØ1°£'}[BNS6*¸Ö›€ŸšWUN)]™Uä¼[/E·FˆYUR£+K¾/ÈHº©%·òâ÷ õ©^2eB!W¼Š¸Hß=ø]\*_ÂSÛž•¾y3éX„1mt3[Ñ%Cön/ÜÞö3¨Â }ãpǤµ3Pój|œÑt,¯½övïÞßþí߯'>ñ üã?þ£zô΋É"òV.À«ï¼ &1Ü1pGÄ9i²†í¹í8»t{ÏîEÅ­`kn« ’ ™ÞÕ:·náï·Ú¾r«Ý–¿‹Î$W¯âš ¤$ñ6 ÉŸÒwZ¨-àÐ¥C˜HMDæÆd3¹Œ&Gñòé—qvé,¯LY t¥»Z:mtˆPx½tÜG³3 'Á4ÃW$ç—Ï‹îÙdfï,¿ƒýöc81ܦá^[ u@:wª¤¢`PskðÁWœWý·&kœõ­ ÈíÅéË’Œœ•CÎÌáÞá{CaØ^CÜÙüldÅÎP !GÛm>‡ü!ÐÓzºm;*ê†ßWkDì¥Ë:|Ÿß‰´‘ÆáˇÅß9¿|®ïò]†ˆßÉšY¼oü}KŽñ®SĦOZO¯y†²fV¬ê².€ÎáÑ£FƸÄß ¼\÷êIŽ\Ós¹å*ô0rÛó=qaÃda§SJ—0šÅãÓcKz˺Ú!4÷¢Ãç|V%1I°°œ‹;ðÛ+×w;^ÂŽz“ÔÀTÍHÕA—È|$ôD×ߟ `œë»H«Ï‘Â] Z«4*Xª/áùÃÏã¥wð¡©a{n»È`‹µEÌ›¢,«9*Z ’%»FvµÅ€_tÏ÷Ô’mã“0‚2õð>¾ïûÃW¿úU|ýë_ÇÓO?-‚ž&kÂií(ìÀÅÊE¼tú% ØçÓ[s[ÑðxùÌËÐdM€r(éX+ØÑ^}$Ø4+œ^QßC‰! %†„$i·ä!ep„/1£•e”e‘ľ|ËeÎ’ú©ÌÃ{Gß‹ÅÚ"k‹|¥¨‹ n[" _ЦRkš>ƒ6<6ÚZBˆ©´®”¹ž+:UÕFªÌðXrŒÁ·åo‹&Ò Eë{$ ¡pêFF$v†lA³[¡¯]qÓL¾—ù9žÁÄ ƒ¸¿xÛݧwGã…ÑÔ(WÇk¿ÐÏXmý0Ü© +ãå­|Û¤9uÃk\3Б 0ŸXª…¢SÄ™Å3BÁíÄü  W:S?Ûá®Ó£ˆ„ËVm1ßïåwËš¼sKïÎR-q_\ßEÞηm±$´„P‹l5?ðEB}«Ù5tG[á&§`ç,ÍêØF´9 !1´î!‰p¡\/ó=ÅæÎ59¼Œ‘©™mkc–fõ´ƒk¨†ÈêlÍŽ¢ê›ßÁê³Y z^à¡âVP° kŽ(‹ÏÛ¼ê¾T¾„ç=ó'ðÈø#\Ü"äœuYÇ|u 5±’-7Å7z©RT‰Éttjî ´9HBs“UÝ* V!t$IÂåË—ñÅ/~ög&TtE‡¥YÐ%µz %§]ÒQn”1™šìÚ*:E¤4Ê2J©’Xku³”žÂDf"‚4§g´Öü<¬wílÓ³ouúy›+»é²Ž”žBÅåªc²Äå¯ßù5²F¶m©êVE’4“›§¤ž\³ ð 0ñ9añJ¸6á èÍÑŒ£90(ÍÏi‹Îæˆ3S1‘PØ’ÞM²š½ÓbÞÊGI™ÉÂi¯©˜mÒÆÝ´šWë9 œ)kf;Úè»Jà Æ”žx :(LY“ìE<«æêi)UjKÎI¦:@ÐS÷o­€n«¶H–¦³Óhø œ¼Â±+§O#kfEBN°¢cÒ$¸q}WÌþ ËÓKrEÏÈVíH‚^n”1šmûþ„ë´qãùÍY3qŠ:µWÝë‹È™9±§Lt¯^àu vÄc|5–5²‘0iBD }f•ï‡àU·Š!{¨§ƒOhª˜Ãq‚ظ¼À[È—2RP$…v ŒÄ$ ÙCÐo\zo^z=„ÝÅÝ‘ÑYA#h `D•NAn­*…æ™,`gŸžï Ak  ÷¹Ï¡R©†¹K/áÿßðâ?¿Á|À\4E`&Ñ V“™IŽnÏL‰êŽ6ºÃmÌC;±T[?“0ëY÷ÙšÛºf•Kô²¦bŠñPÍ«áÂòœ\8‰éìtäÐ\˜~7MÖpñ~¡Ì&YY-€AȺþ Ž×½¨P­×’ZR8Uj¿‡[þ”lÚ_%V³g« ¨”xÐÚZ'ÇBÑ<<4öP[uO+&¥T Õت-Z›ª¬ 6³µæˆš¬ ¾åNJWøL­õg÷Uc^àµ9d2‰™™‹E<ûì³xûí·Q.—E+º/àÑ÷?Š<þ¼öýH«i 4æ®6¢2·åoCBM`"=!œ‡ ¬ì!/&‹ÈXÁWvËqFÖué-ÕZ3°æ­<|Ÿ“9ß½¾X¾ˆ ðê;¯Bfr:ºîs a¢¥¥*öðY‰»ô I·ÙL°Ã€¸„–XuøZî%ÝC6×:Ve&à ¼ƒ\€S™)®JTi{¤j;kfÛÎ*Ué¤{5²=½Ó”žÂdvr]INÊH‰$·Ò¨ âVPsk‚#ÃPƒ ¬ IDAT ”Ý2ÆRc˜Ä7($Eü>ô^ÖœñKš¨Ðï¾§ãžÇVm¸+föŒ±ž*tBºö [ÎÊ!kfñžÑ÷à‘Ò#m­&šKLÂŽ™æMþlAÞË;Ðe;à–}{j¡Rë²Õ驒ЬÁÙûˆ¨ÄtêÔ)¡%Ú$mé<20!ÜK…žÐ(¥J=µ„í霕Ãdf™ ¢hCgͬ8¿t®h³ÅTM±£ßJ‹Ý-Ù–™ ‚Hm> )‚EÏüšß£žà¸™fE­Ê*¶¤¶àbù"~ýίa«+€]zfÔq¥1‰6Q«¼”*õô.LÕ„£9m<%tn»%]DÁܺAOªq@oÚ\e)=%*7šéR+t=m¬õÍVèÀ¸ð‹¶5>r=#Ós’!3##ÖÁ¨}äz®X« @¿š1Æ0œæ„먌ÒFw݇Ku©iß[‘Œ¥ÆD›ÓTLN@"‘±Áš­=´“ÄA Ö@TYíØ6ËY9x‡¥Ú&3“mŸwîÜ9üÍßü þôOÿ{÷îÅ_ÿõ_ò,Q ^î&€o¶0»r‘›üÚag`ª&*=´BÚlÍ®E ¶éÜ4TIEÍ« 6C1P¢µœÐ¸\¹Œ·.¿…¹Êî¸#ò¬<ßë_–b‰ Æ’cÈ[yA¨´VP˜Y’HLŒ/°ö>ðUWèz’S27K[ã p®pHF» i….Üùñ|Oœ‹nwÕVíŽ: ᤠW®zZ[o[–8û‰òzÀÀhrTðÙ[ª%~Bï§tÎlGxŸµºT8t3ß÷Eå®h¯Åh<¬N8p|þ8ÒFšcš$EÔžOéÈÂR-A À½&JY+ÛÐ]ßÅprxÕä9œP„ýc?îöMПÝñ,><õáIQß‹ìUö£åNjÃRÖê^Û%6UN“Xq+Xnð}Ä^ƒ*c ö€è„þ¤t v½‘ÁÄ ¶¤·¬«2²T ã©ñ®¨xâ’WeŽæ%;Ƙԭ&G©Ð½cÒàù+²¨”<´t3×sQõª˜ÊNµœ]»vá+_ù ¾öµ¯áK_ú&&&"IKpÊPß÷ÛX$3oÊÉ’ófXQ8ó|oEaLVzn9:ºƒ‰Ì–jK°»/ UV…ö€*ñÿ¾P[ÀËg^†£9ØšÛÚÞno¢µeIŽÐšRÛ|µ=ûð¹%¡Z# º^ˆ®¶#Q° â¾Ø çH ‘N¹QÆPbŽîˆNµž[;(¤¸Õmw™žO§6U®kuÎZ“‘õ¡ã#Ͼù]HQ‘Þ•¥ZB©ˆ`HJwÍnË*>ƒô™è´Ð ¯£e ΋QtŠbW}©¾$4LÅ„®èhx|œV}SFj]ï"gæÚÞkÕåR̫ݵ¼à¥~C0+Æ}U$9¡p…N³³:úÜpI•Ik!1Iè’×ý:ÆRcë ªDáI‰Í’‰x¡ÓZ^7‡±%½e]Žˆ^ZÛHáì\•TŠKµ0•™BÙåmd]Ò…éE¬AS´Î½ÙF'`\'Å·´É)juY_“}¯S"Aà—VZVb ³U»+g7ÍêÕÜëú#Ãlau¿Ž¬•í hFb’ØÖd 93‡…ÚNΟÄla6ÂOM-Ü‚%ÒZCì5y¤D–4ÂU Ñ¥öÃc(:EMÐ ’$ ^í†ßÀPbˆw 4K´ŠÃ]¡ºÇEWh¾ i£w r¤¾Œû"Ý*tUb¬¹µÈꦮ¬PO“pÎZ ŽÄév‡}ø‚ÕíZîâ3›x[µ…€")³RJ•QQp9XÁåÌ–K¢«Vq+˜ÈL¬‹Ô%gå"ì“t7«·Îi›(Яf‹ê–è.µ*©¢º- nYdDÐ~³b²(V›V£#íè4šLSÔVr4nà ñ[µ{úŽš¬uE¨®öo vžïu«É’ÌÇ:O¨ˆ<æŠ5¯†Œ™é„;9ŽV"25¯ÖuŸh,ÇÓã=¯~…¿CBOðÖbK¢ÕðBÿ›Ä?Z“¾àXï*Ö°3Œ‰ôĺÏÄz,gæD'…hbIÁÎÁGãz®x¾u¯ŽšWƒ.ëb-ˆRHÞ²—v¿,ɼj"mðf¸_]3ºkT]ÑÈŠ’Ò P° B…°æÖ*|æˆŽØ Wû¬V¤{¸KØo=쌙“XGB“ºWG1YŒT‰T§0cÍ‚GS4ñ,»V§ÍÞF}_…)ÐUvyEjz*;Gs§¥X"¡§÷Ô“•Åj£Š­Ù­ë*¢Z™^–f­Ù:3ƒÒ¿ë/ô.í‰IPdEÌûÐUYå+i̓Tu«\ŬÃÞ©£óù{`ÝS1G</¢Wô|¯çVÒzæ»âb57i#ª×NëJ-6ªb’z’KÓ6“œš[ã =d¨á=åðg$ @j^Snv¨€u™Ë½Ng§× ¶’™Ìƒ^sΰ½`…Ȇ‚SkbðÂ$µÞU,ER8r¸—>cfD@§¶k'Ršù20ÌUç„R`ÖÌ¢á5DBI‚6½¼OJ|Éá×\ÎmÞÏ$ÍÑ饌”X)4U¾¾ÇCÞÌ‹Ö,Ý-Ú¦ ;Þ2é–[ck’—ÒS}¯Ì²f£ÉÑ6õ<¢¾óü30AÂäh\:x5Õ¼ð%b–Ž£…&)±ê,7¿¡âùާÆQLrI\+ïŠÔéß;ÃP%NEk¨ÆªŒŠÝ’ÑprÒð"\µÈÓâPGk£)Žo©€Ndø:ÉöË¢ ]âN—X“5Œ$G0™™\?Ÿ/ƒàЦŸEd€ µ©UYá¹RÃop°Ÿ¿Âú%1 £ÉQÑòt}·gT«ã$t;­H­6ÏTd[2["ÉzœáÂΈ7è‚20¡~þ LšõÚhjtÝc‚õ˜¥ZÐMŒƒlÍÆw¶ ö„G7®ï |ˆ£9œñÍ÷¹HGmd[³E SØ}©0Cö*ŠH,N;âTÕyàq‡½F¤:ïDÝš< '†QmTÛêFj½¯vvï¾u¯I4‰‚µuÇ<§0¥ckŸ@¤®çnØ(…Ô)ë^] Õɶ緋d;_±Ì™9 ;Ã"‰#[mpY髹3y+/ª~ß÷{‹©’ŠÁÄ Ê2j^ ö€YÄý*+tz€^Ðÿ`—Ô“+-ö«^âÑäèU£{Aq¸XDÍi£e(;Uèä˜m£†©zÖe½#¹`Vªùö\Ã1&0únÔ‰h ‚òÕ¶8“F`<©íWøm4®­"9‘ª<@ßÐÛ×àòV^p™Ïf#ç”­wVlImÁÖÜV,Õ—xR§§VeMëV¡“`M(ãÞNëg„ã>¥.:Å•²,É\•‘IpWŒ$(ù°4kMv±b²((nÃòÕ$wW›°Ý;roDé°á5: ]Ñù6E€6°âjÁ•VF  NIJ—4î7Âã+hu·MÖ"Â'DÙ«+:j Vª¬b&? A&1Œ&G×ÿùMý ê|èŠÞ“Ÿ¥õàºWçóóÄð-'Ȳ¡Ö¹¨Zï_tk{0ÖR1K©žÔܺÕN 4Z¯é§YÚ ˆ‰¨Di¥„æÇáïíhì."É=¯cw]XMÒVæX¿d«9Œk™WªYfœ$ ° « ä#”Ä|_8pšñ銾)mÖ«©v†œ!”e芎Ùüläÿ¯ûu!âAl,5†©ì”è´¦öz:q&„»g½°Ûm„¥4_] ‘1Æ" —*«‚F•¸¾|xæÜk÷ËÑŒ&GEuHçd=kR×jÃÎ0¦²SX¬/ŠïÛin,3Y3ËÉ©|oMšb€£Û¹s…Þ¸4i'™Ñx‡u¿.xÿã.Â:Ôüþ{’1¦ß‘4®vœÆœ·‚œ™ëÙì‚€Q­…ŠzFµïû}誤b(1„ÅúbÏ*fWÛ àIëwí×Z^¸(ØђΚY,×—ÅŒËÒ¬H[’1†±Ôj^ ¶j÷hIÚ’´¡ÓFZ$@´±Ð¯ç«HœÎTbœÑ¬æÖ`+)?©íNx ERĪÓf««1JÄZIB¼€ËD†E^‚ À`b«ÀÑûM&0[³{b‰ Wƒ­mhÒŸï{Õ*+¼Rjb9¼Àã `¡¦0E¬""¿MEKímÆ<À4RÛ̳ H vw ñ]Õ;ŽŸdIư3Œr½ ½Í¼%& šéÖ X•yÑFY8y·´hrH¼°ð“­Ù‘¤¦îÕ1ž¿ê‘+uk^ ÃÎpÏØ'GsÄ*l¿×oê€NZµ‚ ôu=†ñ3„…ê v¡o<ªlÂ|âýFñ‡³úRª„¥Æ—Tm¶î(µ¶%‹É¢ÉôÚr¢`.3nàFCšÕ]?QÃ”É›Š‰J£ÅSºvedªæ C ï+^c#¾›&iBÎ7@€†×À =á«&fC]Ñ1žŠVœz=o4Ž!+7ÊN ¯z•gv<=.F¤«þ}$IBÁ* âV`ª&²f6r‰!°MŽŠÎ’pv0Z©Ú,°0™™Ä\u=ÓµZ´Qój õ€e&‹ä¬UòW—u±’JÉðFú<úCn'¬Q˜ÁIL¶Ü6ÑUòïš8Ô5™ u_¬æÇ2fy+ß÷bë¦è„J¥ªN‘”5I6ªú©yµ¾*êHL žp«4¡&zRºæ–^bX¬¢i²†agXÐ^vZËH)$T¾§ßë‰è]©Mv4ïëgÀÌZY>:Q9õ)B|·"µknM$Œ^à­*ez½d&ID(´R®"8FÁx&7ƒ¥ÚRä¬Ç!ÊL•Uݯc01¸i3ÅQgTÌÑë^½Í)ÓWÕ­ÂR¬6Šh’ íµšL ¢î×;‚97Ãd&ãþâýX®/c 1Ð5q"ü„,õFÓ*1©£mx ÎIÐÔ¼ïõçõ\¡7‘êD«Ë+|¤Ñ:î´9»_‡£;×´2&1.=Û:ªéåß '†;ʬÆ}=½ÉžFN_—õ¾®¬‘%õ$òV¾ï€(â+_¨k™Ë¯ÇòVžSÎ6×{Ëhúð;‚ELÅÄxz93·® ]‘¨LmN5ü•Y]?+œšWƒ©˜mÁùrå²`À£ïᄄÂú%®²‘¤Œ™áŠXMhUV1`D’Ъ[ˆXŒ¥Æ{ktÍ ½IåKÒ³Al .|_ˆ:´î×;®ÑŽ>µH;ê^Ïîöüv,Ö…téõ°ag;‡v¢èt_ß$Rj¥÷н#¡­Åy…)ÐiœH¤2$˜âù4IüaŸ Éf ³8³p¥TéšÆ“0˜DÆÌ¬‹0‡1†b²ˆÑÔè- ˆ»æ€ ™¤pö®ÍÈIÁÖìÖ ¦_'ÌÛ¼÷°sΘ‘P¡ ßGFÏt¼ ÓÙéueÈÄͬ*íû±5·†´™î{Ëæâáj­îÕ¡HJ„bÓTL¤Œ”p`º¢÷¯±Ii7üŠN1Òñ"ò˜š¬a49ІßšÒ=;dI¸¾‡Ù´ŠU’1˜àz ²$w¼Ÿ‚Ï¡pJôÑëqä™ €ñäózt†û‹÷G(_;=—¤žä˜”»ôÂ'á}?ð¡)Ú†c\jbe·¼)pE£.Rl ¦Û ÛÁÃDzâš*à=ˆñôøº•{à†îؽ;z“±ˆœpëq?[]“™É¾ÏKÒF4 A°© ‹Nz¿DÑÉF’#ërl´B¤Ëz[×a½²¯Wå<´„àöwvj^ é‰È¥V$Eè@œbÞЗ‹h)M•3¶þ¾AÀÑXZ´­¾-· •FEð:¬§R!Ô± uÙäd)UÂbm¶jw¼+º¢GVÉ–ëËB=°WstNIZu«}Oî×JÜZßa«ìÍ鹃):c@h‰=ÉopÂÐWt$¨ãJÉVÍ«uìødÌ î¹wCæ3ƒñäúUð’zò–déK…^÷êHéM)1Æ0žï;Í#Í•ÉùlÆž}ØF“£‘]WrˆÝˆLÕ\W‹u5-ñÍXA´U ‹2|´1[˜tH¨ðùzÁ.lúÌt½F#R­jµª[E1Ylsòc©10ÆeèzŒV×jnÏÏ7Y¤bÄAÍ«!gå:¾†´™nk'×¼v ìX×ÈŽa:;Íùßõë‡nfŒ­Y™;ÃA«^:tš;àxr: ½²."H½Œ1Æ“/ŸH\ßí¸ëO]ŠH°SzjÝ´±äb»Æ€®¬¨jÚ¬ñ÷õ3T -!îkíeo´ÑŒ˜œItk³1°uWd¦b¶‘WÒÑZUǵIÀ†»$&RL1‘™+1áKK¬\7º%õ$_?벎·ÜXÆxº}Í'm¤¹‰W[÷y#§Zój×…d#kfáèΪï'cd"ï¼îÕ‘·ó‘ÑC¯¶%³ƒöà ß­É›ùu%ÛÔ’¥¡”ÖÞŠt,9ñwŽælE®º[â´QÝ ^ÙôbëC@§•'ÊoD’k1J¡*Q—õMÙé ;vS5…ó«ºUdì†ÎÍLÅlß4w6c (kf#í×å:r -ñÔ¸ ÛŽp'Kh ˜ŠÙ66¡gŒg¯Œ1Le§.e=f¨§UE€¼ßôïlª&¦3Ó«gj““]©^Á=Ã÷\Õ-kd±½°ý†_WJ›éux5Y|´–¾÷Aô%‰É[y±MC]4*Ô:IUÇv“t/ðÂ$.¯gÛ«_–3sbg³@áKMœçªå¬Ü†¶Q;µï}ßïIæq#,c¶Wk“™I¾oòÝÞÖ‚*©ïŠäQ‘¤ÍtÇ€îùz¢mu‹l<=Î÷j×¹j«6ênº¬wýÙý¶™ü̪àÑœ•(~Ò¶¿þo**¦3Ó›šh_mr7ä ­ëîÓºX'Ï÷ú\MÕÄ =(ŠMÖ±©Æv“t]ÖÁ-¡u|U½9Â!lsAFa`œx. ¨Ëíë1´r´ó׬™ß*Rš¡É’Q’£¿“2R7üü<üý㬙ÅTvjÝÊVm.{ÚØlqFVEç'ô„(–K˜˜½¦ä1keoøj¯+kâ^6×Çd&wä#ðàõ­ZMF¶{zžïu•RŽí&èD 𙫡›B*³ÙFË5¯Æ©Q¥Í褸Á†W¦º¢·!Žën[³[{ú÷F/^ÄéÓ§Q«E°pæÌ\¹r¥ë¿wtRó.×—1ž_¡¶Ãdf2ÂÙ]iT0hn ßÁFX¸Ã6Ú?_­BO­}‡F4×s$±ÖzVBå¤;u— qì(츦YÿÍdè½ÁKë9 m‡~%daŸ@œò½Ê2Çö. è2“E‚ =±éˆÚÍ0C1`*œ¥,cf6d”6ÓP%•ï33¶áÝT¢+D®ïBWõž“þõ_ÿ¿ù›¿‰Ý»wãÅ_~ôèQ<÷Üsøã?þcüîïþ.Ž9Ò5i o/Öü¶å¶Eº 4c¦ß±ì6%9ß%N¼#@ 0clMzËñôøºªì®)¼™?¡'°ÔXB)UBÖÊ"¶¨©² Æ/ɶΠ‰4õÅçé6q×w¯Û®l›ÐIÞ^vÖÈÞ”,=º¢#m¤QvË×e×5¡&2R‚Qm£[Ía=r€¯„%Ç`ë½µó}ôQüó?ÿ3>øÁFþü«_ý*>ö±áë_ÿ:þàþþçŽF£Ñ1¡ êÈ|&‘d$–2RHi4<Þ¥ð|ï]pï¯IKæ–êKp4gÍŠçjºº¬ÃÑ4˜5³¨ºUìÚy˳{uë:%½øHAµÁ´¯­Iö°3,ôíéÜn–$@p³CÁ*\WÐßPb{ÏìåÄØØ€×q}¶f¯K騛¹® EáÇK×u4H'àÂ… x饗ÞX|{/îÅ]Ò]–ñÔ8^çuøŠÏ•æ$õ]s~4EÃDzóÕy”Ò% %† h?ÀUVVœi{#sãӯ›ßa ªÌ©|[“k?àŠÜ?I‘Ox©˜‰í&èšÕy¾ÙvÐ[«‰¬™½nΧ`xKÚÊoxDf²ú•elÍmÝL<“ÉàòåË€3gΠP(@UWñÒÒöïß p‰]ÂreÌèüÝòVš¢¡îÕWE†ß¨ á{ÇÞyÎ}íèH*ŠÉâ¦oc¬×1bz­€Þ%q%ç~&¶ ú¼À‰~ÐoÒ€døIº9WÖÈRF cɱëHZ93×u9IZѳ¯y5lÍm]—£­T*8zô(®\¹‚ãÇãĉÇÓO?¿ýÛ¿…eYøÆ7¾gžy†±â&&&ð‡ø‡€óËçñÓ7~Šƒ?<Øñ3h&|äòìÙõ®;?›™*²Ò3 ñzZ¼Ï¼¶Ue®ç¶ù×çD3ýLÚtYÇXr o^|Œ1 '†ß5›%·²]UЬHЏžïÁ¾Åw­y<=~ÝÀ;š¬a*;Õ—.ˆÌ¸@‹p®èõÎ.\¸€o|ãÁ¾}ûðÃþðì³Ïâ‰'žÀ·¾õ-ìÞ½Ÿüä'»&D¶fcÇÀŽî‡”I(¥J¨{õw îz‚ØÞýº¡ùæp…nkv_ ƶ¤· êUáùÞM;R+ôÐ 8úñz®lêC’ЯS…®H¼êêG„ÖÏ/ǃw¬»­V*•ð•¯|¥ýçÊ2žyæ<óÌ3kþ S1× ÔÅd9+¯ÎÄvË$f†bà’©­µÞ/a–V£±ˆ¸›&Ûu¨Ð[×Íîd%&]wdu1YìË K’$h²†åÆ2fò3×e®I+:«YÊHa[n[Œ´í–©ÐMŹa#"¯~›©˜œÉÑ‹wÐo™€îùÞ-ñ²¯÷®,1Öõ«B_K!ëz›©˜˜ÉÍÄ@ªØn© ½“éJôÛdIF)YB€ ïÊ‹±Ý ýf^Y»U,¡'0[˜½¡g¯“ÚHgb‹íf6Kµ:ÎÐýÀß%D†‰Ìß2‰× ß¶!°Å›yeíV°Œ‘é ‚¾Ý„Øb»UÌPŒÎ-÷ €©myÀÀ–ô–w÷CЯÒPd%^Ay—Û€=ð®è±Åv+™®´+!6KçMÂ2Uã©ñM¥Ší:tÏ÷`*fL8ð.·‚]ˆwLc‹í³NmîtYßÔŠ¹”.Å|ûﻦzÝ«·‰OÄö.Ìêâ`[l7œu´ÔÜrf®oÔÁ±¸…ºp„ûÍ(Ê[l±Åv]+t‰Ók‡5–˘ÎMÇäA±m|@¿vÐc‹-¶Ø®K@—5001G÷ ã©ñ¸[*ô[d=¶Øb‹ízt ’¨Ð‰ú8fm‹­/=@pÃë.Ç[l±½M–¸BUè·‚éÜtŒ8­?]“5˜Š?ÅØb‹-¶>UéAÀ <0™™ŒÛí±m|@÷ aIDAT¦jBSb„{l±Å[?ŒvÑ©Ý8cëK@¯{u$µ$4)è±Å[lýªÐ¾®6™Žµ bë_@Ϙ™xž[l±ÅÖÇ€îdIÆxz<~ ±õ' ®»¤hl±ÅÛÍlº¬£êV‘·òH›q»=¶>tERâyNl±Å[?º¢£Ü(c*3 ¤ÄÖ¿€n(Rz¼[l±ÅÖ/³T †l`,5?ŒØúГZ¦¯¬Å[l±õ3 ¥Çb2™Øz²«fÝÏšÙŽ9‚¿ÿû¿Ç›o¾‰?ú£?ÂwÞ øîw¿‹ï}ï{p’$á _øŠÅbüÀb‹m}&7 `Ŷ ÅýV7ÆvíÚ…½{÷âÒ¥KâÏ;†ÙÙY|êSŸâç%›Vl±­ÓÒF:î„ÆÖ߀ÎCÞÊÇzl˜ššÂÔÔ¾÷½ïµý{öìa¸ÿþûñàƒÆ+¶ØÖi3Ë—ÆÖ߀®Jj,zÛªöØcá®»î‚ïûø‹¿ø <÷Üsxâ‰'Äÿüøq|ç;ßÿ»\.C’bÒŒØb [Üj­ï]–däÌ\üôbëjwß}·øïÕj?üáñá²Ì»:–eaffF(I1ÆÄü=¶Øb‹-¶M è±ÅFæû>ªÕ*\×E­VC­Vƒ®ë˜ŸŸ‡ªª‚‡Æàà`¤ÀÇ>ö±øÆ[l±Å=¶ÁÞzë-|þóŸÇ+¯¼‚£Gâ—¿ü%þäOþù—‰C‡Áó<˜¦‰/ùË`,ÑÄ[l±õËþHÕ6}¯ IEND®B`‚pymvpa-0.4.8/doc/pics/ex_match_distribution.pdf000066400000000000000000001200771174541445200216420ustar00rootroot00000000000000%PDF-1.4 %¬Ü «º 1 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 2 0 obj << /CreationDate (D:20081112170628-04'00') /Producer (matplotlib pdf backend) /Creator (matplotlib 0.98.1, http://matplotlib.sf.net) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Type /Page /Resources 10 0 R /Parent 3 0 R /MediaBox [ 0 0 1080 720 ] >> endobj 10 0 obj << /Pattern 8 0 R /XObject 9 0 R /Font 6 0 R /ExtGState 7 0 R /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] >> endobj 5 0 obj << /Filter /FlateDecode /Length 11 0 R >> stream xœÕ}KÓ%ÇqÝþþŠ»lÔûá-¬ÍFxA‰a/L/(¤© Mÿ|Ÿ“u¿™é̬¾3æýBv@ P·»*«³2óT¾Òý—÷xÿþ÷‹[¸‡û·÷ÿò§õ—žø×ÿÞþ¿üÅ­öcÔKâŸ÷<ÆÑòãŸ"¯©åH~¡ð§›þAõx{]ɘì<¾žŸ‹ü·ûåOælGy›¿ÝÓìGè}¦Ä?ï?|sÿo÷ïn©ŒcäÞrŸ%OKejãˆ9â¡€Gí*ôø G,uŒÛl Q¿_?™ŸTþêþ:/é£ã%e„”°>‡N=>ÆL=¦éáÐy/±ïÏ9ea[µ çá'³¿ÊK*¾Åöç#b§g ÿÁ¬C“ŒP1Uš­ ™v>2ÿë輦t&ˆ>Gï±EÇ@P㥤cö‰£7r$×ê}PãOæ!—t€ÎpY©Ï;û­ÆKîG›µ0[å÷Ôû ÆŸÌÿB:/é-¡õP`Ÿ%oÏ㥶£¶Ò¬› tª}PãOæ!—t€ÎŽÜBK¹¶îñíy¼ôz”LœXI§Ú5þdþÒyIèœó‡AâwXi–ÌÓpé퀉š¡6`åJ½ çñ'³¿Ê+*¾½×8°®.ƒ¹âP©Æ¡¡ñf˜RÔ.¨áëÙ_Gä5 2#•˜Ûœ=7‡ÊóxMÿÚqÊDCüIï’2ÿ 鼤tbŠ ›³¦´t&KÆ1`ÖÔ–„ÊóÛõø“Ù_Hå ëÂ!Â/R)ËžÇ ¬ó>s¡¤.¸ú¼ jøzöyI¨ÄK€c$öõXö<^°¢g…¾˜].Λp~2û ©¼¤âÛ{ƒq­ÍQcqv[—L]kت´ô.¨ñ'ó¿ŽÎk:@g.G\Ö`9tžÇiÒ´¡Y[Ó]ïƒ2ÿ 鼤tÖrX -u‡ÎóxÜ ú¯ä 6Þ5þdþÒyIèìùž(âÓj¼„zÌYG™½ "k½jüÉü/¤ó’Ð éX'VÒ”€C§‡ºOß úa ҩޯƟÌÿB:/éøöÞc<Æ€=6ãŒÎ~ëqÐÒlsÁ(Î>|:þdþ×ÑyMèÌñˆJ@ù©9_ëûZ³ê¾öÙ>¾ŒÎK:@g À„¼Ü(´],zü|_k^¾¯}¶‹/£ò’ PÙæÑ”^­³;HIÏc¼–€w&žNý~5þdþÒyIè$¬¨°Ò°’äq­7\«÷Así“}|—t|{a¹ÆçhÃÙï'ã_¼OïEçõ:AgêG+5†BvöûÉøßºO¯£ór ³ôg¬ i8_k¾Õï×|ûl_Dç=Üyûï÷†þþþõ-†rÄ\)“c4@Nâš/4\`ª£'ü Åéå÷ØÒA>ŽœG– 1PNÙ×ß±0Ža`¤ekŸOq@A©•^›ã)ÄðqF÷tuªã(£€Â:nàE0Õ`óùÞÞciS”G(µ¶ˆ×F¯=Ž• 3-g`ª 7Lùè9¶#ƒø^ þ'À¶}]×cØHéÑaüWv‘T\°üñD›ä~{(L˜'ÿ‡ÍñÑÓÀIÇ×E ®†ÐJsàùBiÛŸ¼Ìñf”s†bÌCáþŽ1Á©ÜŸ>ÁL8öi œþc"r¨ateÎO5  }VHÅy¤E0âô0 ì`«ÑjïF é€Õ¬ëwƒQpV±v0^jÙÃ(š_jB>WƒQ ({ ÜÎìiÈÝûi´ä!”HÒ!¶ð/BšB(%sàE¶ÌpJ›ÐE<ÝG(˜-áCQè¡Ä)™¯+~CP å`k- -†‡P`PàÕPÉ=9j……Gø¡6,BÁâ€ÞJÉã n߸ˆF(Ðé-A΄,ÇÒA( Äw ÙE(¢vBtIxR8@­á?‰X7… _¼#ô;¥BagdG­pRü<`qù¥ÍŒs†³26ø˜±3íJ¬%=´‡PpZ!Ðåó»3Om‹P"˜¡ËÁöJå . LŽ‘® vgzzå#BIß«ä,û«HJÆVIrƒsU€ 櫱Êm²½ûÂט±;°Éy­?6ú§Ä÷±+âßžâ„uõI§S¡ˆÄôô âhnÀ ̈–!_ÆÑ'ÌqÛµîc•T`Ž’­Ç«àaý¡n±Je‚ÑrB:X¥Ô6Kb1zX\UÂCr/¿&¶?À`šViÎ=ÐCÖo° Žm ÊD2ªtšã³Ói”}¨‚# ÒW ¢ƒT:­‘n*8@ Ûœ!wêF@àÀÊeö ,T& %Lr Îw¤5×rr¼ó:tt…¶Ä­*` jiÞ¿¨P\ÆL™²bUP)àB€ (ÒåÑ0@Ò©FÌâ9ç£ Áˆ¹ñ@ö€J„ö`n ôÙð‘JKa69•>R!Кâ ôJ'õµÉÍ’*oúœBÓ*ƒ"n:Ú„ÇfðZ†ÒxT2ÎìhP!ßö\×¼x2Ðc±Á)<€ŒÝÎÅ— N‹e%·8@…×~ƒSn€ }°sq¦‡SÈ€Ýzæ>æŠí€Úá+lWÙá”Mq>Né8xU|ÐïSž«þZe÷EK¦nÝÁð:…ØsÞŒ=ˆ¨¼‹ûª8žÀ¹mS>2ÌÝuåÀ”‰M¦ßfã©Ç'oTKr‡äÁúƒÀ6yƒSðWHºYw@¥ŠZjËÚv€ ä84ÌÅ PY—«¼)ôJ°ö\§ ØkÀîÕÓ+!P"Âq5{@%q~bP‰Ã°@n@?€¢ç«—tVI¨€ LõD[—¿Ë*teç©k©4¦âAµØ+0 ‹#óæÞ\¨t,\«aÅI  ÁK"ˆ71´MØ$iâÙÏE\ý¨€³ä¯] ‚õAŽ1rkùâ TÈ>P‰÷jêP POàòZ_=þ m5ìGtJ¢(fbòØE}á`aª(—@NÔWÉCÙïã”ÈÛO78¼Jƒ¯Éòœ‚À˺ôpJƒbkùD,N&€à*Ë’wp qÄ}O>N¡Ñ‘N ôÔÏ_ý üäz׃)8Eq‹;˜’!“„7\˜ÆƒÇ½KûK5Q_ïRvÙi. öÔV“ŒÆ9;o DKa6uÜh’ ;U(ô5I£ K,n4 ǃá€B~€.hèØxà¶*·Šž7…Þóö`h×›s‚â`ƒPp ¾,Q¡à8^{ä±A(qÒQÅ›ä ˆ€9ñ^¹ðsJajn³¸Q_8?·DÏÄ FûAPÃÇ( |P^¬Üy RÆÁJ¬ž”=¸ Þg»Q_ >U6ð‹ RèËÁi€žöÒ‹†RŸ>»a_´"FÆ[›D´9(…ŒÕÉŽÉC)ø™QGÁûJÁWOìæ8è%#6‚a`†yzÉ$…paˆÁpÝ)‰îfì-ìï Úh´£—Ý¢^öÂ’]—JJœÁûS ;˜^ 8D+DÙ)tP¶ L1˜6É¥¢S"41¤LHJc‡Sr‚,˜Q®{=œ"˜ó(gÓÃ)t¯³tTóq „5;vG™,# ÄÑ([ ‚µcòå1q*¼¨Ç'š; 2h‚/KÁ*¼ùÉbÃn*4ÕZxe±ãPÙkúó2Ùcç§— ï[Œ1T  vš%p¿Ãû®:R»°¯Ú)¢2ô呸 ÒÔâm¶ŸË³á:‰>œߤãóÄ·énÿðëûWÿ9BÝý{%,8Ä÷ÿë¯o×~vÿõ¿ÞþÓ¯ñF áGA¢˜ßþ†ç¿ú¯ßüðÛŸûÇïþòãZV¡(¦‚z‚¡Þ Õ\’“&Y=ãÑœ·4GÞƒèÆZ]]ˆ¦©}&ÑåDg¦ƒH•a ÊE­žñˆ®[¢s¦Ó€š`Ê„_ø¥Ó+ˆ.R»£ó… ßÑM­žñˆîg¢O„zAÊÐñÙdÊ3Ù¤,²;(Ó«mд8ðkrÿ ½ZõŒ·Úy±Z‡añ”ò˜Ò®6íVËze²GMB½ÕF#9ÔC®èˆë…â>²òÛ¤ç“ôá°xë uË@@ÂÑþzͱW¹ëÍëëóÂ"RÉwÛn½Oz÷¬¹Í‘}ÒÐg=U/VŒÄÓ´vÉc·äçª$šãöYd^¸Ü§òqR¼­±ÜRüpÞŽí‰;/ÇB(Î2øçcjsâô‚ݧ®ÎÜi2¾MÊ‹Æ_U>¾¼=tç³²ÓYe‚si.sæô‚ݧ®LÏã‡IóA›¨0¸¤>¼=ujÁ8¾°~"d#þ|LmY°÷ÔÕ©#K0qåmRh±È„ŒÌÇׂ·ÇNÙ6 ´ÏÁlüù˜úù¡óžº:t\0«å¼MJ¡Û?3Þû±àÏ|ư0X¾pÛÉšß}ÿ÷oÌ÷äaÖØmÀ’Mü.|ø§Ï|’€9Œ½”i÷¹Ï& k°çÂCõýë÷ÿó»qfþò™oàÝ0å‚h Ê?ÿ×o~ø”ð·S§$@:ÞÄCšž:[ùPs¬«Vº“ŒüÑ׳»mO¿ø¬»^á»Û0í ©ºÏŸZ‹άñ¥Š¸\¾ª—Ÿ‡¯çÞÔ‚ý[H½¢Å6LÔ¤šaf%2¨Y.lìË?¾žûH½¢ÅvMT«ÑÃj¬1{·¯Êêåçáë¹_Oê%-¶q¢&U +R¯wâzîw õŠÛ;Q“ªZB¯³‚”ø§ï¦s¢¾žûH½¢Å¶OÔ¤ž‡«Ô6‘¯$ÁÊêåjøzîw õŠÛAQ“z®Œ -)5|9‰P;q¾žûU¤šö…ŠBÝõO-B WFK†P_ÅÔœ‡¯ç~…—$ؾ‰šÂó0=KD0ÈY\pç—«áë¹_Gá ¶c¢¦ð<–Jo! ½førî—xI‚패)<Ç&Y׌֘+›E퀿žýu4^aº"*6=Þ`”±»l÷µ¶­vàzü½ØôŠÛQÄóp䥲”z¥Pœûu^‘`»!j ÏÃÔ a‚p|Ô¸S; Æ¯gWDØ^ˆjj˜Õ-ðšÉhÉ€>¿\ _Ïý2 /I°]5…çᆆ‰°ZÝÝô@TÃ×s¿ŽÂ+lÿCMáy¸¥#g`Aèt1kôœ‡¯ç~=”º¤Å¶@Ô¤ªˆ¬SÌp#¢RgX5@<_Ïý¤^Ñb» jRÏà ÐdÍ@ýU÷EíÄyøzîw õŠÛQ­F öa VÖ¾›6ˆjøzîדzI‹í…¨IUÃê6V¿\ÝÆ>ÙÇ—“zE‹m‡¨I5çÛXûòÓmì“}|9©W´ØžˆšT5Ì,®8˜('ù•úåçáë¹ßÔ+Zl[DMªÖ ¬^®øz_Nê-¶3¢ZÍõð—nÔ;“z¹XÛQ“z9ü·mÔëI½Z¬í¨«†ë—+~²/"õIkDE°NîPkŠ*·C}[•Ú¡GUn‡Ö©zXe ~:|³‰úi•+Èxê^ ã›„=è´†¶¦P¥N¬ÎÄ&Ô o:©#3[ 𪗡Ó °Zeˆ¶ØâMJĦœ×L:-³)ÉÞezÙý™UÝñžäT1!JŽ9–!µt*kÇbXì*šLŽãññŒßœu=øÈ$î4Ãõ»Í刉I(_=†q3ÙQ¦Â¯u»)†u=Ó_€ÓÂÒç\ŽY ‰MØÛÊ;U¹äŒÂÆU•um.”%”*6ÑüŽ£uHéÎÂ*6—#M¹øŒAŠ Ø\ì?x‘8pH5&Ë!Ü“¹ÓZ·Å°Àm‘ý'Gd‹ds9ðÃ\Í$ÿà4®OßÄÖ³"z²©4ì4ùØÖ/‘ñ:ðsœ©å­“ñ± «G€7¢m0"ãgn¬ò0:“C ëDó´J Ô¡*ÃÄZ¨Ü@ý¸Êã0ëÜ@óü)Ã>®rÍãç<ó¼É Ô?ps¿\gH×mרŠï{ACW¯`‰ V^È^’9‡Áu®ªŽÊ€PÁYL^: †¥Îm]-®•1¸ÚWR•U‰ˆXvVWedü¶a¢•ÊgTFc׈Mv•ÊFf Ëœ$Ge0ò˜c¹Hî»Ví`Ž#$ؤ–c¡slé(O«Ìr&ñ±¦Öœ$@ª…É $ø6¯üÖ˜ †¯U磚ûYiP-´Ê ¶YœŠ ñF€´½™@Þc²A DÖ*’zҬؒ$î©ß¨õ^ÎVˆ‘zçnõ÷<³è3µ(ØÏz#KµñÄÛ¶áô*dâM`-ú¥Îz³jiˆü¹›¬ò(i)°æ3»)×ÏzC:U¦À”’7¬Ôk­ãñê«»é @ö†ü¬vp7)åƒÀî‘å7%ÃKéŒ2ðÕÀØl„éԼ‘Ä€ŒôP Jc`n¹i-y¯*Ý^à¸^¤ØšVù`Í‘ÒçòØ}Á\zð>^/-ßµº8|^X0j8©ä8¤,¨ÂÌ!‰WÕê§­¾úŽ1êÂ-D4¹ÑìöOv›HNÙ„'{[U®u¹60•D‘Ø4r‹‰b±›2W=Ù3¦¶›M"_"œµ’³-rõ6,MQ³«&–˜,°ð:-ñù­ ˇ ”v#M–PrË’¬c™êâô ‘mO1.±ëa †‘– ¶‰£0Xy Çh^·ƒNû:!È]…‘"{­–.–¼ƒ1¤…/´‚§0˜xÀžriǵNBáâc îNZõ BTi+ LtÚxgújb*̈ì$Ї£TÜ»é¤qس°D[zô‘µ0#³f.å ”¼R8ƒR3ƒ-F^¥Ï2¶±ÚÌÎvÖ`ªÎk¼Êê¡ÓÖÜÙ@41rÚè‹[d©x|‚´UHÀ:õ(̲H¬ÅfôÅ ß|—Ù |ÛkÜÁ®0Uò¢Ô9ë‹Î>쨌f«g@Ê2" ؾS·DÄKúJŸÁìKèåÕ×å¬2ÀAÌifcöžòqÎN}4À=) œ%ªkÀ€Ê.·>Îè:!Ú¶S7ˆÙXI¡JûR 3?°ouÚãÞ8>Á§lj6l§u1…ƒ¤B\MÅΊãÆqæÎ%y@¦4(a§Éf˹Ëó¬"ÑsZÅì=¤Ù7ê‚OÊãñ¸”›Zåy|¤ÁjU«¢ñY}Üãà­¹Exý ì8+Û À2-WHƒ N=«/]RÎ_¨C> þð!ÿüWÿ?¼ýy[“…”Ø®ÈmÁ(õ²õ†×$K4ÛäM¨”¨ðk.ÕUPØAJ¬yYW§)Aê ^mR!û@ülÒHÔi”€ÑØÂλ[#Pšûêä¥Á*Axgµwœ$)R–ÃÃIL÷˜ìeîÖ' |ópäà„¸ÛRß®(+À®•š (E6Y Ì`öÛ¯„âö… $õÂmR5Pbm¦ÔÁö‚íF ÁìVÙœbóJûÂ@Y§X ‹øóFòæÂ¤,â’D9x0 œ±›+΃Iƒeé–Ö¢$¨TFR©èË5puÀ™ÀïWP‹’ËGr…½Zƒ‡‚ e²ÆÕxDI‘ BqIJ½XcmÍNy¾ši9 ‰бÔÍÑwI@—°¢l',ÁHЧì"8½šÀ¼çfÃÆß]Çòñ,ØÝâ#±'óªïb$|y|Òá4죗d.ÓPÛ¢\)¼_÷ˆÄš'mF[ øÍVg'àB±âB¤ÌÒhZ–¼ S,LÚÓÛ»4¬rëTDyCH“¢ö‰­<ʶ]É ÒSm `þ5¯z㢢3¯ÂüÚ~¤÷z·4tqTÜ,ô#犫™öÐØ¹Ó›W»8GÇUFïÈý†wôÌxŠäu,-ƦÔCÎ…£äØèK¼¸îM â°²ØKŽß$•Œ²Ë>&âùâÕuvìU »ðyw¬;Æ&Y)8W,Â’¨4hÜ[ÇV¾£I3ÖéùØz¿f›åäØáð±Ã}IR¨ÜB"È öKn€›³Eô¸D2“—iÕ¹ ¤Ø£%•J±­Ba÷Éèر' s šÓ¶…"~Š Ç °Ã±(ü"UžHÄ E¶ÖsbJì’\ÝWˆŒ‰XÜŸ]9Š`JÒÁ²NÇ–"—Þ|óŠý±ˆ½tø)º×¯…ê_Ÿø³s :°?Ÿ9:w€l6ÊGb‚HÄIìÜîô&–°$éåu&¦!š)ÀØpÂõ%©ú_W]z'¾ŽžßÌk“›ç<âÍs꩸j ’ Z+¬6œ6Ÿsvö ‘‹a1€½…lÛÝ?b÷بbY+"¢¬e M£ÑVlŽt{a¶BD®–€!Àž¿;w8"Ê=¯„JçUló•+¶²ÊlÞ¡”;q”ˆy‹„Ø3„=_7AuP:¬ú÷føÀl^½œðnâc•×»O:‚dU^—uGâ8‹È`Äpr³å„ÔeFžçNLí„Ô‹ÕQÄtbaÇuˆíÜ9AARB7V©ãà ^Kã¸ÉU¤ÅA9°AfžNk/À p!ÅhX1Ö6u‡a„ôð[oø=ìÙû©y0ˆÞ"œ²™h8;Þ"|Äðð´I4™ë4¤½ŽMÝa›F§¯ôö`Dlå&·lê{áå³®¨(ƒØ²­wËÖØÔÆ9ºÂó&¢ŽBUü‡næÛRwÖŠÍÁÍÜ Ø]~ü{Ùdîv âÓõPP¤Ä Û̶"ÐÈnæÎ`ïÓÀ.÷}ú™;¼‰åýW²‡—3)a·kNAAЛ2}ƒ`ÍUžâçî`óð÷Ùýû3ñ5±9îd(‚—»ƒ8†«lÀqFÔ¤ÕùÕs1(ŽÞïÁ bÔ±p}g¯L“+±pî¼ÊÝi€ØÎùÚˆºw ¥{·P¸*@»±ã=°ƒø6vœ—öàFEÄ(Ù}=‡ï]ËêŒí—Ñ!.vÁã• *9ù1tW ³ý°ÚÎlxïßø1Pf÷â{ãÇßfƒáÞøÁŒÊÌÚ‹^¶¯û ñ ¢ †*Û½§$‘º¢5ßtÝêLÕÒ*l¤³ àïÔæºÕ`GÂ3¶sÀ¶â,Ix¡†Ê!ÙÔbŠ0ÔiÆVîM² œ,ÕÁ03¶ØdAî°Õšè†2{PŽ‚}ÏN`±/iYº_Jh0»XÙDPâ.,j‡ôÁw[pÆ€¡ÀáEœS Aîc%à±P­ž»q%0ö@hÊb‡¦¶ÅäÅ(Yƒ£3?Š…Bƒý«¡¥‚FÇÞŽØ„±Zw:Þ!¹äL#ïžO o'ZÕËM¥yPÙˆ¬÷ž1—™yÚÓ»åoµ<$9Îu±¸}$åá ýæ"!¦)>ŠzX ê€ß¢ä¥yQt|\›}×PaSêÜo^²ïE«ëV5 ô¡óª¯R²^²GZÙ~²û93LÛ÷EÞð×0we g¥žv"^ô·b;.8â5^äeXC‚ª7at<7rK¸Í5¢úúT£7Õñ~éF›>£ÁæiÎÕ8Òô»ì&²ž™ŸÙa*‡Ž§zÍ÷ïÑ`Ó’\L—2󌥹컊ª› úÑL볈~—›ѦәyÆ!zßVTuØüÂ/ý. 6¢M·4óŒCôU³4ÕaóLö5ØtVkZ¥™gœÕ^uJS6íj?»Á¦³Z#8Ì3Îj¯zªþšçsôEí5íj«9óæ»ÚzÕ˜Pu×´{ûùÍ5å>íKè®÷ª/¡î­iü¹­5å>íJè=ô¬)áÇ)Ñ;Ì·ÇìsûjÂ6`>}‰üó1ñÓ–„ÞCO:~ÒUsÈuG"äÓ_ÔT3²–lÍ$%'×ÄO›€z=éúIKM˜¤0µ»õòe5äzLh埖ÆO[€ºO=iúIGMX†01`üÒ–k_ÖQ*úoýRÓcê§GÍ}êY Ð5S« 3¶#¶ÿ²ŽšÞ)oŸqØœ§žœ¶O:j2É(‹y|üyGÍÓÙþ÷îgwÑN“&6ÃM¤fdŠ,µ^K*ÿãï~÷ÍŸ‚µý¶Î¼ÿþûî?ýõûŸÿôÛ?þ雯ï?}óãO¦±M¿‘>À¾ÁÜuénkûiª؆š¦éÍîÜ}žA?YÓQ³e)+óÆôAö¶úéæÄRß@ÒXÔzeÓãNLõÂ4¦$QðÖedûB5~êZ©_ÕqP¨acãUŽ}Õy|}{û–šxÛÄÌ^Êcû–ó¸Ó3T¿Í“è¹:/<F;Í"Ãq?~¾âb&îù[;ÍßüÝ?þ=ô^ùÍÏî?ýù«ßãÿ¾ûûXûWá+ ßßülÓµR½;± MfÑ364^Ý6_óbXoÐÏ92À¡¼5ã|¼zœ_]äÕù³_]ÆQf *}hÔ½:×1œ'H2Aýì 2ÖÈà1ùÅN½<ÔÓeÊãã·ÿ†é† endstream endobj 11 0 obj 13555 endobj 82 0 obj << /Filter /FlateDecode /Length 149 >> stream xœ5K! C÷9…/0R~„pª®¦÷ß6aZ Û/Áƒ‘ŒKL`ì˜cá%TO­>$#ºI9©P7OhL 3lÒ%ðÊtß2ž[¼œVê‚NHäé¬6¢Œf^ÃÑSÎ ›þËÜ$jeF™2ëT·²²`æµ<÷3î¨\脇ʰèN1¢ÜfF~ÿÛôþ{20c endstream endobj 83 0 obj << /Filter /FlateDecode /Length 68 >> stream xœ336S0P°0¦¦† æF– )†\@>ˆ•Ë˳Ì,Ì,# –.C c0mbl¤`fbdY 1 ºÒrø‘ endstream endobj 84 0 obj << /Filter /FlateDecode /Length 52 >> stream xœ363T0P0±T026Q064b…C. ˆ•Ë˳@ªr¸ Ês`ªr¸Òé À endstream endobj 85 0 obj << /Filter /FlateDecode /Length 49 >> stream xœ36´P0P040’F†@–‘‰BŠ!HÄÌå‚ æ€Y@¢8®&‡+ Æè & endstream endobj 86 0 obj << /Filter /FlateDecode /Length 80 >> stream xœEŒ» À0D{¦`~&fŸ(•³ JÜpOº{¸:2SÞa†‡ž ,†Sñ™£`5¸FR죰n_uæzS«õ÷*Ovvq=ÍËô endstream endobj 87 0 obj << /Filter /FlateDecode /Length 90 >> stream xœMAÀ ï¼"OPDÐÿtzÒÿ_«Ô½ÀN‰E‚ô5jK0î¸2kP)˜”—ÀU0\ Úî¢Êþ2IL†Ó{·ƒ²ñqƒÒIûöqz«ýzÝÒ"X endstream endobj 88 0 obj << /Filter /FlateDecode /Length 210 >> stream xœ5PË C1»g ¨džV½uÿkmÐ;aÿBXÈ”y©ÉÎ)éK>:L¶.¿±" ­u%ìÊš ž+ï¡™²±ÑØâ`p&^€7`èi5tႦ.•BÅ%ð™|u{è¾OxjrvCÉ` jºMX´<ŸNâÿ~Ãî-ä¡’óÊžùœíð;³ná'jv"Ñr2Ô³4ÇE> stream xœ366W0P04‘FF ¦@VŠ!HÀÐÈD!— $bå€Y@¢8®Âi„¨± ª-¡²D6 G¢Ë endstream endobj 90 0 obj << /Filter /FlateDecode /Length 147 >> stream xœ=O¹ 1 ë=8Àz,[ó\ê²ÊFR"@ñ‘eGÇ \b“Ž9/i?øiX5Gô„ŠaXàn’ƒ,JWž-^ ‘ÚB]HøÖÞ­Ld¢<¯;p'£>TYz@;DY®IÃXÕV]j°²ÎÂu=̪åÑ'k)PTB½tÿŸ{Úû o/ë endstream endobj 91 0 obj << /Filter /FlateDecode /Length 17 >> stream xœ36´P0€ÃC.”ì endstream endobj 92 0 obj << /Filter /FlateDecode /Length 317 >> stream xœ5RKrC1Û¿SpΘ¿}žt²jî¿­„'+°-@B./YÒK~Ô%Û¥ÃäW÷%±B>íšÌRÅ÷³Ï-¯GÏ·- Q=ø2'"ÔÏÔè:xa—>¯N)x“¯á_x”NƒÀ;2Þ“‘$ÁšK‹MH”=Iü+åõ¤•4t~&+sù{r©j£É X¹Ø¤+)$=‰H²r½7VˆÞW’Çg%&Ý&±M´ÀãÜ•´„™˜BæX€Õt³ºúLXã°„ñ*aÕƒMž5©„f´ŽcdÃx÷ÂL‰…†ÃP›}• ª—ÓÜ #¦GMví²[6ï!D£ù3,”ÁÇ($‡Nc$ Ò°€9½°Š½æ 9Àˆeš, mh%»zŽ…ÀМ³¥aÆ×ž×óþE[{£ endstream endobj 93 0 obj << /Filter /FlateDecode /Length 248 >> stream xœ-Q9’AËçzBsÓï±Ë‘÷ÿé ʃ†C :-qPÆO–+ÞòÈU´áï™ÁwÁ¡ßÊu9HÒTM¨]¼½vfó¤5,ƒë?c 7zqxLÆÙíu5{×kOfP2+qÉÄSuØÈ™ÃO¦Œ í\Ï È¹Öe¤›•ÆŒ„#M!RH¡ê&©3A£«Q£Å~éË#aU#j û\KÛ×sÎ4;«<9¥GWœËÉÅ +ý¼ÍÀET«<p¿ÛCýœìä7ÞÒ¹³Åôø^s²¼0XñæµMµø7/âø=ãëùü¨¥[ endstream endobj 94 0 obj << /Filter /FlateDecode /Length 52 >> stream xœ366W0B]K#c ÛÜÈR!ÅËÈÔÌÌå‚ æpYƒUåp@i˜¢®4ߪ ­ endstream endobj 95 0 obj << /Filter /FlateDecode /Length 163 >> stream xœM;Ã0 CwŸ‚ êãÏyRtjï¿Vr ƒÁÊ(usfà !¼ÞÀ‹-eÇ· ¬Oãø'庉}€ù‹º ’*†³©Æ€F ;tõ’³™{MÃXp¤¤ï¶@'<,›ÙVµQ•°{ì“î"I­Ú£Ó Œg í° °»›O㵦¦_š)雨3˜·ðH›BdˆZÊ÷qêg{ÿ?ë83 endstream endobj 96 0 obj << /Filter /FlateDecode /Length 131 >> stream xœEË ! CïTáò>©‡ÕžØþ¯ë0šABøA";ñ0¬óò6ÐÅðÑ¢Ã7þ6Õ«c•,ºzRV釼òPi0QÄ…YLCaΘÊÈ–2·á¶Mƒ¬l•T­ƒv<¶§e«~©maê,ñ ÂU^¸Ç ?K­w½U¾BS0— endstream endobj 97 0 obj << /Filter /FlateDecode /Length 88 >> stream xœ5Œ» À0D{¦¸ø8€÷‰R‘ýÛ[.¸{Òç9ÀÈ>GèÄ-dCá¦xI9¡>Q4Zo:¶Hs¿¼d3ý3Ü}…íæ€d4Iä!ÑåråY)z>—Ú~ endstream endobj 98 0 obj << /Filter /FlateDecode /Length 160 >> stream xœ=Kà C÷œBGÀøžtºJî¿­ l°„ôÀ}b"£'‚¯Ä‡¥Ã$ðl„{0Ùr„äM†²ƒ$q ¥Â¦c™ïɦuÒJ¬¼Ñ~Ùw4ftŠ-E‡v!ÿçõ"Ü£àë<`1ÈÚJ¥ì™0Ze¦®ò¨èµÓá=D«Ååõ®ðÚG7©(*KêþDw4Øþ‘·ûß™e8$ endstream endobj 99 0 obj << /Filter /FlateDecode /Length 227 >> stream xœEKŽ!C÷œÂG þpžŽ²êÜ;.:Ñl°%(×3¹{ñÈL”n¼d¸;ÌŸá0søJ˜lÄLèN\#”®áTŸŽË޼頉{DΣžYÕÎ jg’æ‚í‚.çŒ7ÎÉ­FåÍô£×¾iw×y‡öHãÞÃT¾Î9ÕλŠi YÕ´¾lÉk?*MÛÎ˱àlVèÞ»Ww'K~¿ò0%?ÝúQ|]7£ëg'W&kÏyèIé_õÊ£Åq)è±íÌ$÷_§S’©S{gïiý§¸ÇûnV9 endstream endobj 100 0 obj << /Filter /FlateDecode /Length 247 >> stream xœMQ»mD1 ëß\àëkyž R]öoCÉ ¡/)§%öÆK á[¾ä‘UC?1ì3,=ÉäÔ?æ¹ÉT¾ª›˜Pbáýh¼t/"+Êße sÎ÷ࣗ`&4`¬oI&Õ¼3d‰¡ŽÃA›TwM,®Í3ÈíV7²:³ lx%âÆDÙÍ`£Œ±•År¨ ’Z`×éQ‹‚+”Ö t¢ÖĺÌà«çöv7C/ò਺x} ëK°Âè¥{,|®BÌôL;wI#½ð¦fR™‘•:=b}·@ÿŸe+øûÉÏóý (\* endstream endobj 101 0 obj << /Filter /FlateDecode /Length 87 >> stream xœ5M¹À0뙂Ì£Øì“Kåìßì¸A:} ”kä‚áo!ø¦/„uO*»%:l¡†³ ’‰áW6xU®Šöµ’‰ìl¦1Ø eúÑηIÏ¥Þ˜ endstream endobj 102 0 obj << /Filter /FlateDecode /Length 45 >> stream xœ32·P0P°4†& æf )†\–V.L,ÌÑ–p "žŸ} µ endstream endobj 103 0 obj << /Filter /FlateDecode /Length 304 >> stream xœ=’;’Ã0 C{‚ÈŒø“äód'•÷þí>2ÉV€I‰(/u™²¦< i& ÿÑááb;åwØžÍÌÀµD/Ë)Ï¡+ÄÜEù²™º²:ŪÃ0[ô¨œ‹†M“šç*K· žÃµ‰ç–}Ä74¨uK ÝÕhY Ípuÿ;½GÙw5<›TêÔQæù!O¢‡éJâ|<(!\{0FäSÑ@޳\­ò^Bö·²ÂAjIç³'<ØuzO.nÍd¹TøNQìíÐ3¾ìJ =¶áXî};š±é›8ì~ïFÖÊŒ®h!~ÈW'ë%`ÜS&EdN¶Xn‹Õžî¡(¦s†s êÙŠ†RæbW« ;o,/Ù,È”Ì 2F§Mž8xÈ~šôy•çxýlós; endstream endobj 104 0 obj << /Filter /FlateDecode /Length 230 >> stream xœ5QInÃ0 ¼ëóâ.¿ÇAOíÿ¯Ò ``hKœÍx‰ÁÏAäÆ[ÖŒšø›É]ñ»< ·‚'Q^†{Ù .o—ý8Ì|ð^Z9“O2 ÙôðDÈ`—@èÀìÔa›i'ú†„ÏŽH5YN_KÐK«(OÙ~§ J´­êÏí³.´íkO8Ùí©'•O ž[²—WLcôDå.ÅôAª³…ž„ò¢|²ù¨!]¢œ'£@;°ç¶Ÿ‰W… uuŸ¶¡)Oÿ645I"ä%œÙÒ¸[øþž{ýü¦TSŸ endstream endobj 105 0 obj << /Filter /FlateDecode /Length 237 >> stream xœEQIr! »÷+ô©Â+ðžNÍ©óÿk,3IN`k1i-x‰!ÖÀÌ/¹|Mè4|72Ûð:ÙpO¸.Ü—Ë‚g–ÀWT—w½/]ÙH}w‡ª~fd{³HÍ••:õB4&Ø!=#2ÉV,sƒ¤)­Rå¾([€.ê•¶N;’ #áo”#áéJvMl«Ô: ¡˶.ˆ:™$¢vaqjñ–!"Ÿuc5Çø‹N"vÇãþ¬0ëQ$’ÒgÝq&£M–]9¹yª°V*9ˆ>^ÑÆ„êtªc¼×¶ôià¹ö_á>}ÿú¹Þ?Æî\" endstream endobj 106 0 obj << /Filter /FlateDecode /Length 245 >> stream xœEP»C1 ë=`ý,{žwH•Û¿=JFp…!Z?’Z˜ˆÀK ±”oâGFA= ¿…â3ÄÏ…A΄¤@œõ™x†ÚFnèvpμÃ3Œ9ÅZp¦Ó™ö\Øäœ'Îm”ñŒBºITqTŸqLñª²Ï×¥µl³Ó‘ì!„KI%&—~S*ÿ´)[*èÚE°Hä“M4á,?C’bÌ ”Q÷0µŽôq²‘GuÐÉÙœ9-™Ùî§íL|X&™Qå)ç2>'©ó\N}î³Ñ䢥UûœýÞ‘–ò"µÛ¡ÕéW%Q™Õ§¸<ÿŒŸñþŽ Y> endstream endobj 107 0 obj << /Filter /FlateDecode /Length 227 >> stream xœ5O;²! ë9….Œm`ϳ™T/÷oŸd² þHòôDG&^æÈ¬Ùñ¶ˆøSñ¯=íÄê=¸‡åâB˜a$œ5븛§ãÅ¿]å3ÖÁ» ¾b–¶0“õ•Å™ËvÁX'qN²c×Dlc]ëéÖL(!í0%È)}²£Œ9:Nä‰çbªÅ.¿ïa}Á¦1¢ÂWOÐdP–=ï& ôßÕßI4‹^2‘`a$æÎYNøÕkGÇQ‹"1'¤ä2Òœ®b ¡ Å:; *—êsÊÝ>ÿh][M endstream endobj 108 0 obj << /Filter /FlateDecode /Length 338 >> stream xœERKrÅ0Ûç\ 3ægãó¼NWéý·•p:Ý<ô  2=eH¦Ü6–d„äò¥WdˆÕŸFŽDÄß)¡À®ò¹¼–Ä\Èn‰Jñ¡?—¥72ͮЪ·G§6‹F5+#ç C„zVèÌîQÛdÃëv!é:S‡p,ÿC²”uÊ)”mAߨ#èo<ܳær³¹Lnõ¿î[ ž×:[±m@ –sÞ`Äà ÚÄÜÚÞ)(UºŠI­ò\';P¶Ðªt¼7€9`Ã’­×hoÃ>ô¢FÅö ¨, þÎÙfÁÞ1ÉH°'æN=q:Å‘pI8Æ@Š­âºñØâ/®ˆšð u:eM¼ÂžÚâÇB“ïRqð"n]EµlOç ´?*’3b¤ÄÑ ‘ԒΗõÐû¸‰¯Äæž¾Ý?Â9Ÿëû¸ƒà endstream endobj 109 0 obj << /Filter /FlateDecode /Length 133 >> stream xœMAÃ0ï~…ž€±óžtzJþ-6î팀‘†03× endstream endobj 110 0 obj << /Filter /FlateDecode /Length 68 >> stream xœ32·P0P°4†& æf )†\@¾©‰¹B.H Äʳ €´%œ‚ˆ[B4A”‚X¥f&fI8"—É´å endstream endobj 111 0 obj << /Filter /FlateDecode /Length 163 >> stream xœE¹u1 CsUx€:ê?G³ý§ i¼Þ@úx„xˆ= Ãr]Å…Ñ ?Þ¶Ì4¼Ž2ÜõeÆø¨±@NÐ"W£IõíŠ3TéáÕb®£¢\/:"Ì’ã«@#|:²ÇC[Û™~:¯ì!ïÿ**çna.ªî@ùRñÔÙQêš¡*+kjÚ¿»"”¶}\Neœº{´Âg+Wû}¨ç:€ endstream endobj 112 0 obj << /Filter /FlateDecode /Length 126 >> stream xœ=ŽA!ツXeAÞ3[sšýÿuAÖ9¥+˜˜®‹U(ÕÞ”°˜T}PŒi²Ò·„ôlªvÀ“ÐÈvv¼ ¢ RþwJêUÞožD 8ÊnI2¢tN×\þØ}Rk‹¹kg—å蜔 …%/äíþî . endstream endobj 113 0 obj << /Filter /FlateDecode /Length 255 >> stream xœE‘K’ D÷ž‚#€üä<™šUrÿí4˜L6v—¨ý„J#¦,çy0ýÈòÍd¶éµ«Š"Ìä*ôXÕ)â̵Dµõ±2rÜéƒâ 箜T²¸QÆ:ª:8¦çÊúªîü¸,ʾ#‡2lÖ96på¶aŒ£ÍVw‡ûD§“©£âvløƒ“ƾÊÕ¸N6ûê%‚~¡ LòM u†@ãæ)zr öñq»ó@°·¼ ¤läÈŒA»N®qëüÞÿ:ÃçÚ WŽwñ;Lk»ã/1ÉŠ¹€EîÔó=­ë ïÉ™crÓ}Cç\°ËÝA¦Ïüë÷PŠfˆ endstream endobj 114 0 obj << /Filter /FlateDecode /Length 71 >> stream xœ³0¶P0P040S047R076R015QH1ä ˜¹\0Á0˨,,‹`AdA,#SS¨ ¢Ã®Á‚Ȧëç2 endstream endobj 115 0 obj << /Filter /FlateDecode /Length 214 >> stream xœ=P»C1ë= äÎ|í7ÏË¥Ëþm$œ¤B6B”šLÉ”‡:Ê’¬)O>Kb‡¼‡ånd6%*E/“°%÷Ð ñ}‰æ÷ÝÕ–³C4—h9~ 3*ªÓK6šp*º ÜÃ3ú mtV‡±[ Ф`×¶ rÇ Á™‹" JMÿ­r÷RÜï=o¢ˆ”tð®ùåôËÏ-¼N=ŽDº½ùŠkq¦: DpFjòŠtaŲÈC¤Õ5=kµ®Þzù7hGt€ì‰ã4¥CÿÖ¸Ç뇊Rô endstream endobj 116 0 obj << /Filter /FlateDecode /Length 161 >> stream xœEKà C÷œBGðG|žtºJï¿­!M³€§±@w'©µÑ/mKº >[ ÎÆxè6n5äu€V¤ãh”R}¹Åi•tñh6s+ ­fz”£ :Þí¢är¦îÎùGpõ_õG±îœÍÄÀdå„fõ)î|›Q]ÝdÒcnÖköª°´¬¥å„ÛÎ]3 î©íý©s:„ endstream endobj 117 0 obj << /Filter /FlateDecode /Length 236 >> stream xœMPKnD! ÛsŠ\àI$!ÎCÕUçþÛ±ÃTí*†Hé²UëSbu‰ìò¥M—Ê2y¨åOÛÿQ nÿÐÈA´·ŒbæÖÅÂ$<å4#'×,;Of…ÆÄã.`Ÿ5[•Í9m:7@º·ª³ÞdP "êBÍ“.œ§Ñ—ˆ9ž¨`Jw&µ\>Õ¡qZ½ ¹c‹“oÄY¡ÀaÐLqÖ_֨ɲYÈ I†!Î}£{” ¨Êy+“¡õ†Õ •¹…¢©å’üÚ0¶Œué JªÁß*§}¿$]S endstream endobj 118 0 obj << /Filter /FlateDecode /Length 332 >> stream xœ-R9Ž$1 Ëý ~`ëòñžLÔûÿtIUªlË<ärÃD%~,ÛQkâ×Ff Âð¯«Ì…ïHÛÈ:ˆkÈE\É–ÂgD,ä1Ä<Ä‚ïÛøù¬ÌɳÆ/Ù÷Vì© ËBÆ‹3´Ã*ŽÃ*ȱ`ë"ª{xS¤Ã©$Øã‹ÿ>Ås‚¾#hÀ/ùç«#x¾¤EÚ=fÛ´[–iG•–ƒíiÎËäKë,WÇãù ÙÞ;BjW€¢0wÆy.Ž2meDkagƒ¤ÆÅöæØ¥]èÆe¤8ù™*ÂJšÌl¢ þÈé!§2¦®éJ'·QwêÉ\³¹¼I2[÷EŠÍÎë™õw˜2«Í;y–¥NEø{¶ ãêÙk™…F·9Á+%|6vzrò½šYÉ©HHÓº N£ÈKØ–øšŠšÒÔËðß—÷ÿ3â| endstream endobj 119 0 obj << /Filter /FlateDecode /Length 157 >> stream xœE¹C1DsUA °ê±ÇÑwÿ©ùJ´o-‡¯%Sª'"¦Ü×hô0yŸM%V,Ø&¶“rAJ1˜xN1«£·¡™‡Ô븨ª¸uf•ÓiËÊÅóhW3“=Â5ê'ðMèøŸ<´©è[ ¯ ”}@µ8IP1}¯b£œv"œà>G™)#qbn ì÷f¾W¸ÆãÝ7y endstream endobj 120 0 obj << /Filter /FlateDecode /Length 320 >> stream xœ5Q»qÅ0 ë5ðø•4s¯ÊÛ¿ @;a@ª¼dJ¹\ê’U²ÂäG‡êMù>`¦üõãèÙ!ºSÖ–{ËÄ<¥ŽXM–{¸/ M‰¹…ó÷è+£0ºÅß?@³$0ipðSk­Zb‰<,X³+Ì­)TÈU|;6¹rq³Ð§š·Ü‚ðeˆdGj±¯Ëe)ò»õ „æˆO‰…çf"ñ'b{öÙbWW/ªÖI‡RÒln04E²êƒØWÇ5?OGÙÁÉA¿ŠÁø68™/Iy_¡þÏÙȱ’C$ò}µÀˆ#l€¡Oí#e 4E÷î™R>&UŠïF!}ªW2¼‘Ùj†Íÿ]Ù* UYŸFp&ƒI8ód£ ÓRµÓ¿ûÜãóccz€ endstream endobj 121 0 obj << /Filter /FlateDecode /Length 338 >> stream xœ5R9®Ý@ ë} ] €vÍœç©~î߆”_ C´VŠšŽ•iùe!U-“.¿íIm‰ò÷É ‰’W%Ú¥ ‘Pù<…T¿g˼¾Öœ K• ““’Ç% þ —Þ.çck?#w=z`UŒ„Ë£kY:»Ãšü<¦?âr®X·cH ºqÚïCóyÈ f˜–Š ]V‰~Añ G­}÷XTX ÑíIpŒP‘€vÚH 9³»¨/úY”˜ tí‹"î¢ÀIÌœb]:ú>t,¨¿6ã˯ŽJúH+kLÚw£IiÌ"“®—Eo7o}=¸@ó.Ê^Í ASÖ(i|Ъc(še…wš 4LJÌ<‡3”ô}(~_K&º(‘? ¡_£ŒœosÑŸ¶ŠñÙa¯`…ÒÅšä}@*z`úÿ×øyþü¶€T endstream endobj 122 0 obj << /Filter /FlateDecode /Length 88 >> stream xœ5Œ»À0C{OÁ‹÷É¥JöoƒíЀ¤w÷‚ƒ:Aò¸)œ.nÙWz“ž&±ôLCíß`EÕ‹Z-_ncÐb*¾?ú$ –uò^8ôÞÅ{ endstream endobj 123 0 obj << /Filter /FlateDecode /Length 72 >> stream xœ5Œ±À0{¦Ð6X`ï“KEöoC|N/—¢ÁZ º‚#pu©üÑ#]¹)E—c΂áqª_H1F=¨#ãÞÇO¹_p} endstream endobj 124 0 obj << /Filter /FlateDecode /Length 392 >> stream xœ=RKn1ÛÏ)¸@¥ðMrž©ÞîÝ[›ÌTª /¶1”— ©%?ê’ˆ3L~õr]âQò½ljgæ!î.6¦øXr_º†ØrÑšb±OÉ/È´TX¡VÝ£Cñ…(-àá¾ÿñ¨Á×°…rÃ{d`JÔn@ÆCÑHYAaû‘è¤P¯láï( WÔ¬…¡tbˆ –)¾« ‰˜¨Ù ‡„•’ªÒñŒ¤ð[Á]‰aP[[ÛxfÐÙÞ‘3íÑqYk?=é£Q2µQMg|ñÝ2RóÑè¤ÒÈÝÊCgÏB'`$æI˜çp#ážÛA 1ôq¯–Ol÷˜)V‘ð;ʽýÞ’Ï{à,Œ\ÛìL'ðÑi§­¾býƒ?lK›\Ç+‡E¨¼(~×Aq|XÅ÷d£Dw´Ö#Õh% ÂÎí0òxÆyÙÞ´æôDh£DÔŽ=(²Å地§ü¬Í±ž&{o´”Į̀„Ôvz¨¶ÏcÔwžûúü.¡ endstream endobj 125 0 obj << /Filter /FlateDecode /Subtype /Form /Length 37 /Type /XObject /BBox [ -184 -236 1288 929 ] >> stream xœã240S065UÈå276³rÀ,#s# $‹`AdÓ_ endstream endobj 80 0 obj << /FontMatrix [ 0.001 0 0 0.001 0 0 ] /Name /BitstreamVeraSans-Roman /FontBBox [ -184 -236 1288 929 ] /Encoding << /Differences [ 32 /space 40 /parenleft /parenright 45 /hyphen /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon 61 /equal 65 /A 68 /D 82 /R 97 /a /b /c /d /e /f /g /h /i /j 108 /l /m /n /o /p 114 /r /s /t /u /v /w /x ] /Type /Encoding >> /BaseFont /BitstreamVeraSans-Roman /Type /Font /CharProcs 81 0 R /Subtype /Type3 /FontDescriptor 79 0 R /Widths 78 0 R /LastChar 255 /FirstChar 0 >> endobj 79 0 obj << /FontName /BitstreamVeraSans-Roman /Descent -236 /FontBBox [ -184 -236 1288 929 ] /CapHeight 730 /Ascent 929 /MaxWidth 1342 /StemV 0 /Flags 32 /XHeight 547 /ItalicAngle 0 /Type /FontDescriptor >> endobj 78 0 obj [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 318 401 460 838 636 950 780 275 390 390 500 838 318 361 318 337 636 636 636 636 636 636 636 636 636 636 337 337 838 838 838 531 1000 684 686 698 770 632 575 775 752 295 295 656 557 863 748 787 603 787 695 635 611 732 684 989 685 611 685 390 337 390 838 500 500 613 635 550 635 615 352 635 634 278 278 579 278 974 634 612 635 635 411 521 392 634 592 818 592 592 525 636 337 636 838 600 636 600 318 636 518 1000 500 500 500 1342 635 400 1070 600 685 600 600 318 318 518 518 590 500 1000 500 1000 521 400 1023 600 525 611 636 401 636 636 636 636 337 500 500 1000 471 612 838 361 1000 500 500 838 401 401 500 636 636 318 500 401 471 612 969 969 969 531 684 684 684 684 684 684 974 698 632 632 632 632 295 295 295 295 775 748 787 787 787 787 787 838 787 732 732 732 732 611 605 630 613 613 613 613 613 613 982 550 615 615 615 615 278 278 278 278 612 634 612 612 612 612 612 838 612 634 634 634 634 592 635 592 ] endobj 81 0 obj << /parenright 82 0 R /seven 83 0 R /hyphen 84 0 R /period 85 0 R /one 86 0 R /four 87 0 R /zero 88 0 R /colon 89 0 R /parenleft 90 0 R /space 91 0 R /six 92 0 R /two 93 0 R /equal 114 0 R /slash 94 0 R /nine 120 0 R /three 121 0 R /eight 124 0 R /A 97 0 R /D 98 0 R /R 99 0 R /five 100 0 R /a 103 0 R /c 104 0 R /b 105 0 R /e 106 0 R /d 107 0 R /g 108 0 R /f 109 0 R /i 110 0 R /h 111 0 R /j 112 0 R /m 113 0 R /l 102 0 R /o 115 0 R /n 116 0 R /p 117 0 R /s 118 0 R /r 119 0 R /u 95 0 R /t 96 0 R /w 122 0 R /v 123 0 R /x 101 0 R >> endobj 6 0 obj << /F1 80 0 R >> endobj 7 0 obj << >> endobj 8 0 obj << >> endobj 9 0 obj << /M11 23 0 R /Vera-minus 125 0 R /M40 52 0 R /M30 42 0 R /M43 55 0 R /M49 61 0 R /M50 62 0 R /M16 28 0 R /M12 24 0 R /M21 33 0 R /M19 31 0 R /M32 44 0 R /M2 14 0 R /M33 45 0 R /M45 57 0 R /M22 34 0 R /M8 20 0 R /M23 35 0 R /M64 76 0 R /M3 15 0 R /M9 21 0 R /M60 72 0 R /M14 26 0 R /M51 63 0 R /M36 48 0 R /M54 66 0 R /M17 29 0 R /M7 19 0 R /M31 43 0 R /M56 68 0 R /M18 30 0 R /M10 22 0 R /M55 67 0 R /M5 17 0 R /M39 51 0 R /M46 58 0 R /M1 13 0 R /M53 65 0 R /M63 75 0 R /M26 38 0 R /M20 32 0 R /M6 18 0 R /M57 69 0 R /M65 77 0 R /M27 39 0 R /M41 53 0 R /M48 60 0 R /M13 25 0 R /M58 70 0 R /M59 71 0 R /M34 46 0 R /M52 64 0 R /M29 41 0 R /M35 47 0 R /M44 56 0 R /M24 36 0 R /M4 16 0 R /M61 73 0 R /M15 27 0 R /M0 12 0 R /M37 49 0 R /M28 40 0 R /M47 59 0 R /M38 50 0 R /M25 37 0 R /M42 54 0 R /M62 74 0 R >> endobj 62 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 51 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 23 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 38 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 44 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3P0VÈUÐ5¡(edäp9qSÉ endstream endobj 55 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 26 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 17 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 50 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 75 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 42 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3P0VÈUÐ5¡(edäp9qSÉ endstream endobj 40 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3P0VÈUÐ5¡(edäp9qSÉ endstream endobj 33 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 59 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 60 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 52 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 36 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 22 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 16 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 49 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3PÐ5VÈÆ 9 ÒÄÍárâSÅ endstream endobj 18 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 43 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3PÐ5VÈÆ 9 ÒÄÍárâSÅ endstream endobj 64 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 13 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 45 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3PÐ5VÈÆ 9 ÒÄÍárâSÅ endstream endobj 37 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 72 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 66 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 74 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 57 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 73 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 20 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 34 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 46 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3P0VÈUÐ5¡(edäp9qSÉ endstream endobj 67 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 63 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 53 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 15 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 70 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 12 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 28 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 54 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 47 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3PÐ5VÈÆ 9 ÒÄÍárâSÅ endstream endobj 71 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 19 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 27 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 39 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 61 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 76 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 56 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 58 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 41 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3PÐ5VÈÆ 9 ÒÄÍárâSÅ endstream endobj 32 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 14 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 65 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 77 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 68 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 31 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 35 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 69 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 30 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 25 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 48 0 obj << /Filter /FlateDecode /Subtype /Form /Length 28 /Type /XObject /BBox [ -3.25 -3.25 3.25 3.25 ] >> stream xœ3P0VÈUÐ5¡(edäp9qSÉ endstream endobj 29 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 21 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 24 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj xref 0 126 0000000000 65535 n 0000000016 00000 n 0000000065 00000 n 0000000216 00000 n 0000000275 00000 n 0000000512 00000 n 0000027253 00000 n 0000027285 00000 n 0000027306 00000 n 0000027327 00000 n 0000000383 00000 n 0000014142 00000 n 0000034227 00000 n 0000031739 00000 n 0000036404 00000 n 0000033918 00000 n 0000030953 00000 n 0000029239 00000 n 0000031269 00000 n 0000035006 00000 n 0000032983 00000 n 0000038113 00000 n 0000030799 00000 n 0000028459 00000 n 0000038268 00000 n 0000037641 00000 n 0000029085 00000 n 0000035161 00000 n 0000034381 00000 n 0000037958 00000 n 0000037487 00000 n 0000037022 00000 n 0000036250 00000 n 0000030027 00000 n 0000033137 00000 n 0000037177 00000 n 0000030645 00000 n 0000032056 00000 n 0000028614 00000 n 0000035316 00000 n 0000029865 00000 n 0000036088 00000 n 0000029703 00000 n 0000031423 00000 n 0000028768 00000 n 0000031894 00000 n 0000033291 00000 n 0000034689 00000 n 0000037796 00000 n 0000031107 00000 n 0000029394 00000 n 0000028304 00000 n 0000030491 00000 n 0000033763 00000 n 0000034535 00000 n 0000028930 00000 n 0000035780 00000 n 0000032673 00000 n 0000035934 00000 n 0000030182 00000 n 0000030337 00000 n 0000035471 00000 n 0000028150 00000 n 0000033608 00000 n 0000031585 00000 n 0000036558 00000 n 0000032365 00000 n 0000033453 00000 n 0000036868 00000 n 0000037332 00000 n 0000034073 00000 n 0000034851 00000 n 0000032211 00000 n 0000032828 00000 n 0000032519 00000 n 0000029548 00000 n 0000035626 00000 n 0000036713 00000 n 0000025650 00000 n 0000025435 00000 n 0000024884 00000 n 0000026703 00000 n 0000014164 00000 n 0000014386 00000 n 0000014526 00000 n 0000014650 00000 n 0000014771 00000 n 0000014923 00000 n 0000015085 00000 n 0000015368 00000 n 0000015508 00000 n 0000015728 00000 n 0000015817 00000 n 0000016207 00000 n 0000016528 00000 n 0000016652 00000 n 0000016888 00000 n 0000017092 00000 n 0000017252 00000 n 0000017485 00000 n 0000017785 00000 n 0000018106 00000 n 0000018266 00000 n 0000018384 00000 n 0000018762 00000 n 0000019066 00000 n 0000019377 00000 n 0000019696 00000 n 0000019997 00000 n 0000020409 00000 n 0000020616 00000 n 0000020757 00000 n 0000020994 00000 n 0000021194 00000 n 0000021523 00000 n 0000021667 00000 n 0000021955 00000 n 0000022190 00000 n 0000022500 00000 n 0000022906 00000 n 0000023137 00000 n 0000023531 00000 n 0000023943 00000 n 0000024104 00000 n 0000024249 00000 n 0000024715 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 126 >> startxref 38422 %%EOF pymvpa-0.4.8/doc/pics/ex_match_distribution.png000066400000000000000000001023531174541445200216520ustar00rootroot00000000000000‰PNG  IHDRôMö7sRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ %pÀˆ IDATxÚìÝwxTeÚÇñï”L2©¤'¤7BMZUPEЕ""®•ÅŠ`ÙUY`U`m/ŠJMEz‡„–Cé½'“Lyÿ@G#‚²’äþ\p%sæ9çÌüÎÉÜóœª0™L&„BÑ¢)%!„B ºB!¤  !„B ºB!¤  !„RÐ…B!]!„RÐ…¸!Ö®]Kll,™™™W=î§Ÿ~ú—½æªªªK†—••±víZÖ®]KVVÖÿüZu:§OŸ¾âû®ªª"&&æ’ç’’’.¶gÏ222øòË/Ñét—®^¯çøñãlݺ•œœYA…‚.ÄóÙgŸÊŒ3¨®®¦  € 6pêÔ)ÒÒÒHMMåÛo¿¥±±€#GŽpàÀ’““ÈÍÍeÆ ›‹ÚîÝ»III!##ƒ-[¶ðËë;=zÔ<­„„ó°ï¿ÿž¦¦&Ž;Fuu5œ8q½^϶mÛHLL 55Nǯ¯•‘‘AFF]»vÅÑѱÙsGeûöí¤¦¦ÐÔÔÄ–-[8zô(ÅÅÅ|ýõ×;vŒÄÄDæÍ›Çž={šMcß¾};vŒääd4 AAA455±yóf¶nÝJAA/¿ü2k×®¥¬¬Œääd¾ýö[¼¼¼°··çäÉ“¤¤¤°mÛ6ŒF#.\ ¨¨ÈœÙ‰'˜3g;vìÀ××[[[šššøþûïͯóÔ©S¤¦¦²yófôz}³ùFY¡…t!Ú*“É„^¯ÇÂÂ¥RIII ~~~|ñÅœ={–M›6ñý÷ßc2™xï½÷ˆ‹‹#66–††Ξ=KMM Ï=÷ÞÞÞ̘1½^ÏóÏ?••o¾ù&{÷î%''§Yoöܹs|ÿý÷”——³jÕ*víÚņ P©T¼ð 8::òòË/óâ‹/âääÄ+¯¼‚J¥"11‘-[¶˜§³jÕ*²³³Í­¬¬ÈÍÍåÃ?$==ý’ž³­­- ,àܹs¼ð hµZvíÚž}û˜={6 \]]qww'00Ð<þš5k8zô(™™™TTTP]]ͦM›Xºt)uuuØØØ`ee…³³3ݺu#//×^{ :ĹsçHLL¤¢¢‚ùóçoþ‚ñÙgŸáêꊫ«+ÁÁÁìÞ½›¼¼<^xáÔj5ëׯg×®]¬[·Ž={öP[[ËG}ÔlþƒAVhѪ©%!.¯¦¦†ÔÔTÜÝÝÑjµlݺ•ÊÊJòòòÌEñž{îÁßߟ­[·baaÁý÷ßODDk×®åìÙ³ôíÛ—^½zÑ¡C éܹ3ýúõcëÖ­ÜyçÔÖÖkžç¨Q£˜9s&Œ?ž]»vñàƒÒ¡CV¬X¿¿?NNNx{{“””„µµ5ƒ///ót&NœØì½tëÖÅ‹£Óé˜4i«W¯6?×½{wúõëGaa!ÇŽãÈ‘#888ÐÔÔDMM ÷Þ{/k×®ÅÓÓ“ &àâ₯¯¯yü¸¸8^{í5Ùºuk³÷òÉ'Ÿ`2™èÞ½;ŽŽŽtêÔ‰Ó§O3bÄÂÃÃÍ[2ƃƒ?ü0æ­ &“ '''œÍï ´´”áÇãççgþR4vìX¬­­yýõ×™6mZ³ù[XXÈJ-¤‡.D[äååÅĉ6l111œ9s†‘#G¢ÑhÌÅF¡P˜Û÷ëו+W²e˲³³ !>>ž¸¸8Ξ=‹‡‡‡¹ý/Çû%Fƒ½½=;vì oß¾DEE±|ùr6oÞŒ»»;ñññxzz¢×ëIMM¥wïÞôêÕ‹#Fеk×f½îòòróã””ˆ‰‰!$$¤Ù<“““Ù·o7n¤gÏžôîÝ›¾}û2bÄ:v숅…cÇŽeïÞ½X[[“Ýl?ü€ø¿ÿû?Ö®]K]]yxEE÷Üs deeÑØØÈ‰'0™L(•—~ü¬\¹’+VеkWüýýÙ±c›6m¢´´KKKòóóÉÈÈ0·wsscóæÍ,_¾œ\2½_Ï_ˆÖLq-nÎræÌÎ;Ç­·ÞjVTTDBB·Ür Z­V’-Rbb"½{÷Æh4räÈ‚‚‚ˆ'88ª««ñòòÂÚÚšãÇÎñãÇihhÀÊÊŠððp HJJ¢_¿~899™Û¥¦¦ˆÁ` 77·Y‘ÍÍÍ¥¨¨ˆˆˆNœ8AQQƒæèÑ£ôìÙ“¦¦&RSS gÿþý466Ò¿²³³ $33oooììì())!!!¢¢¢š}¡HNN¦¢¢///BBB0 ìÛ·ƒÁ@TTYYYdddгgOÚ·oORRuuuDGG›§qèÐ!ììì0tìØ‘ÌÌLœ9|ø0ÞÞÞ„‡‡sáÂ’’’4hååårþüyìííÉÍÍÅ‚ÜÜ\† ‚B¡ >>kkkL&“¹7_QQ¯¯/®®®hµZöìÙƒ››aaaæLÕj5©©©¸¹¹5›¿RÐDZcÇX¶l|ðyØóÏ?ÏôéÓYµj¯¾úª$-„B\G×dzDDööö͆YZZLCCpq˜”"„Bü1*•ê²»æ®[A7™LÍþ+•JŒFc³ÓDbccQ«å¼´´4:vì(9H’C ÊÁh2a2),.âBy!~”Ôè¸pô0ùµ* ±×ú1pd4‡×îáxU1Þyä8†òü`k1ä")³•ºˆžá·9¼+ù?”óÝÁï°Wj±riG?|ƒƒ©«*çB~66ÖxyµÇÁ¡`¢²² ¥R‰F£ÁÒÒRÖ‡VN¯×3nܸ?Üþšlrß¾};Û¶m#::šÚÚZî½÷^öïßo>’µcÇŽÄÄÄ\Õ k­¼%ÉáÆæ`0™È8›Îæ“ÉÏžAUïͽ“ï¢zë”þ܉݃]P(ÜÑ JÖ‡_Q*•Ò!»Üß+èWK º¢UÑét$ŸRF'ÃY†i;Ñí‰;ÀÆïÉ£%,ѪHAB´h&“ ƒÑˆRi"6é§7nÁMeGô˜ûèZ^BÄÝ=žT+¦×ë9zô(EEEtêÔ‰   NŸ>ÍÙ³g:t(Z­–#GŽP\\Lpp0MMMdee1lØ0öîÝK§Nš]ʸ¥’+Å !Z$£ÑÈŽƒû™³àf½ºÃùsô.€ys_à‰×ž$,Ìe·.T Óéxþùçñòòâ•W^!55•¥K—âîîÎßÿþwt:Ï>û,ÞÞÞúè£6ŸôÐ…¹ºº:Ôj5uuuüp®†oÿš<:H8âw³lÙ2 xê©§h×®t!„¸‘Y¶låååØºGð·á¡ pź½- ż¥ØWYÉùï¬y= tpÀÏÊê²Ï»ººÉk¯½&=t!„ø+äääàêFXp-½û @­0€­Óœ¨©!±ªêºM?T«½bARÐ…úúzŠ‹‹ñññ&~û)î{p(j`#×µo©fzy—×_ú|||˜;w.Ï<ó RÐ…âzŠçÛo¿eèÐû¨.-eü· ´Ö º›™h½fÏž-=tY „7‚Éd¢¬¬”;F?@‡ oìê*QÚZK0B\#rÚšâºñììlªªªèѯÞ&%íÔF4ÞÞ¸!¾þúkŠŠŠ¤‡.„ÿ‹¦¦&.\H§Npvq¡¢Bö\ >ƒäœrqmét:Þxã ,--ñôôdòäÉ,Y²„’’Ì—_~ɘ4iáááRÐ…âj8p€qãÆâçÀŽ˜zGyà(żUÊÎ~›ÊÊëws_ßÙ88 ¸ìóz½ž¬¬,V¬XÁ´iÓ D¥R1wî\ŒF#‡æ¾ûîÃÏÏOzèBqµ† ÂÙ³…$¯ÛÌ­ãGI ­˜£ãllº]·ékµA¿ÛÆûÇ]8†ŠŠ ÜÝÝ‹7eQ(­æ,RÐ…7Dmm-{öìáŽ;î`צãtõ7|ŸóÖÎήÇ_:…B……ÜvÛmÌš5‹ãÇ3xð`ÂÃÃY´h>ú¨lrBˆßSUUÅ[o½Å³Ï>IüÚƒDßÛ •|ĈëÏÚÚš7ß|€E‹°dÉ’fm†Þês£Ü…×DJJ 3g>‰Öž€~RÌÅ ¥×ë1— olll3üé‚n2™Xºt) , ºº¸x£…ùóçóî»ïRRR"kšm@ïÞ½1èÛQ˜œŒ»§"n¨™™yÉðgŸ}¶Ídð§¿B;v WWWzõêÅêÕ«™:u*ÙÙÙØÛÛãââBJJ ”µMˆV¨  €½{÷rÿý÷sdÛiܼtÈß»ø‹zè&“‰˜˜Ž?NPP<òµµµÌŸ?ŸêêjæÌ™Ã_|ASS<õÔS”••±jÕ*Ôj5sçÎeÓ¦M>|___¦M›Æ¢E‹0”••1gÎvîÜI||<žžžLœ8‘ï¾ûމ'²téRf̘Ѳ zII ®®®¸¹¹™{㆜œJKK›&pðàA¬­­‰ˆˆµOˆ.77—%K–ðòËÿ`ûè?ý6l,äm‘Nzýõ›¾¥%¨Õ¿¿>*•J¶nÝʧŸ~ÊsÏ=Gvv6µµµ<ýôÓ,_¾œ£G’––Æ”)S6l+W®Äd2ѧO†JSS±±±|ùå—¼úꫜ9s†„„>ÿüs¾þúkâââØ¸q#S§N¥K—.TWW“žžÀéÓ§¯Ùû=vìuuuW=ÞŸÞäÎþýûùæ›oèÛ·/ äååáëëK—.]šm‰ŠŠ’b.D+QYYÉôéOÑ[BÔc·K1oæNw÷ë÷Ó¦?úÅB‡ÎÎÎÔÖÖâææ†……Ô××Oqspp ®®Ž§žz FÃc=Æùóç±±±ÀÅÅ…êêj\\\°²²2·ÿ׿þEFF=ô*• ýßdþ—|9DEEÝøº»»;ãǧ²²’^½z‘’’BçÎÑjµèt:úõ“ IÑ…‡PQÞDEUÎK ¤ ûâ‹‹ÿÿj...ØÙÙñÊ+¯ÐÐÐ@ÇŽ±´¼¸nªÕjT*•ù±B¡@£Ñ°uëV’’’°µµÅÕÕ^yåjjj˜9s&«V­2°jÕ* iß¾=NNN”””ðÖ[o‘ŸŸÿ—¿…émøqãdÍ¢…KLL¤k×®¤ì=‹ÖWO—.=$”VîfÿüÖét¼ôÒKÌœ9“€€€V“éÕæ.ç•!þ°ÊÊJ¾ûî;ªã³èøè¼l%ñ—3L˜0¡ÅóëE ºâ[±âKî6’½P+ä2âæ ÕjéÕ«W›ÏA ºâ1™LLyôQH££BR¡PÄMA¯×sèÐ!JKKéܹ3¡¡¡;vŒŒŒ n¹å***Ðh4444P[[‹¯¯/.\ C‡lÛ¶ kkkÌéÓ§ill¤¾¾¥RIcc#J¥’¢Ó騲e ŽŽŽDGGsêÔ©fm°²²ÂÝÝäädFeÞ_£ÈWl!Äï2 de•±ÿ»Í ¾¥*é‹›ˆN§ã…^ ((ˆ×_¸¸8–/_N@@O?ý4 ¬]»–+V°bÅ vìØA~~>óæÍÃÊÊŠóçÏË–-[8pàþþþüë_ÿB£Ñ°qãFÒÓÓ™3g¶¶¶>|˜o¾ùæ’¶Z­–/¾ø‚íÛ·ceeÅÇ|Ãs¿J!ÄïöÌß}åm,kÏ3ìÞ±ˆ¸T}=TW_¿ÿà$÷>}úFdd$ëׯçöÛo§gÏž˜L&:vìHZZ ¨Õj8@TTÉÉÉ>|˜üü|T*wÝuÞÞÞøúúÒ¿úôéC^^ 6Œû￟Ç_Ò¶_¿~„……ÍàÁƒÉÉɹá‹A6¹ !®hãÚ¢úRçå%aˆß6}:lØpý¦¿|9Ü}÷›e'}ýü% !¤  !Z¢²}q*IeÊmc$ !¤  !Z$Ž"'?nŸò¨d!„t!DKudõ^ Ý ôr”+Á Ñ’ÉAqB´aqÿý”ÐG'âdi-a!=t!DK´mýzκPk4HBHAB´DF£‘“§Š|k|´vˆ­€lr¢1™Lÿz3O½<µR%!=ôŸ%$$°uëVŒF£yXJJ ëÖ­£ªªJRâæ©æ”feÒÔ«z“QòB úϲ³³Ù¿?F£‘Í›7““Cll,Ý»w—ËG q9ÏÒ¯÷éç‚•ÜtE)è¿”ššJdd$ƒ âĉ9r„¼¼<Ö­[ÇÑ£GÍm«««©­­•Ô…ø 4•—³îÿ–óʳ¡PÈ-Q…¸YÕÖÖR]]}ã ºçÎ###êêêðöö¦GŒ=š””sÛÌÌLrrrdi q£ét•*FÌz¥RŽ…âf–““Cffæ/è;wÆÒÒ’øøxÆǦM›èÕ«666ìÙ³‡ñãǛۆ‡‡*KKˆ¬<¯„w$04Ô[Ââ&JxxøUwMŽrÿeѾÿþûxàd©q3tÎSàx^>OŒ&aъɶ7!Z³šêÝÚóåÞC²©]ˆVNÎC¢Ë9žÅÜý;˜~ç-†RÐ…-QýÁØ:òzÀý´oß^¢•“mpB´FUUT†Q¤3H1B º¢¥JٞʮÒShËK$ !¤  !Z¢ê‡pÙ•ú„d,--%!ÚÙ‡.DkRUE_E¥E$™!]ÑÒįK¦ò6o†¹úÒmæL D)èBˆ–¦zç!:=Ø‹‹›Ùííí%!ÚÙ‡.DkP[K¦KÎÕUqðàAÉC)èBˆ–èÀÊ}õ´o„ÄÄD Dˆ6H6¹ ÑÂÕì9D‡`¥¶à½ÿü‡GyDBBzèBˆ¥¾žãV^\h¨A©PðøãÓ®];ÉE)èBˆ–dûòýxtµ§ƒ­#VVVŠRÐ…-†ÉDÍxú=<_+;–.]*™ÑÆÉ>t!Z"Ž=z‚+JÙ½þ[(,,üͦVVV888HfBHABÜT 6}±Ÿ¨‡£Xýéçh4lmm9sæÌo6?uê3fÌÜ„‚.„¸iÔ×Ss&þãûऱÆÕÕ•qãÆ]q”ËõÜ…­‹ìC¢¥0A­fckk+²²²$!„ôÐ…hqjjØøÝq?öí§¬¬L2BH]ˆ¥ €ºŠ zÜÒ•†ºzöïßÏ=÷Ü#¹!¤  Ñb45³3+Ž—ãåÚ­VËsÏ='¹!®mA7üç?ÿáÝwߥ¼¼Ü<¼¦¦†‡~XâϺpoöœdêá(P R©°¶¶–\„×¶ =z___ÆÏš5kÌ×/_.·oâÏJK£ÖÕ•ÝüIOOg×®]’‰âúôŠŠ qrr¢¢¢¸x·'­V‹Ñh48xð ÇŽ“Ô…ø#1ùs0G[ Ë–-#::Zr¢•;vìØÿtä?}”{÷îÝY¼x1YYYDGG³wï^|}}qrr¢  €¼¼<óÍ"¢¢¢dI ñO§² G¾­ ‰‰‰<óÌ3XXXH0B´rÄÄÄÜØ‚îââ£>JMM ;w&33“€€ˆˆˆÀÏÏO–ŽW+9™ÚÎèZÞ@ïÞ½%!Äõ-è¾¾¾æßÍ¿K1âÐØH­o0›ÎlSM{·”J9!Eqeò)!ÄM¦&ñ8GK+‰ð€={öH1BܸºâÚ0%'ÓØ½+u–}úÏ>ûìïŒaÀ`¨ÅdjÂhlÄ`Ð£ÑØ¢RÉ&BHABü59¯õ!;;ŸùÇ?þB¡ ®®”£GÓÈÊj¢¼ÜHE…‘òr#çÏkX½újjjÕÔ7(ð÷­aàÀ RÒ…B'Ù !]q£œßq˜úÈP"¬\0ÉÊ:ÇÚµ¬_g¡<˜ÎÁê­j©°¨ÀdcBg£D嬣*°´ 4‡*=Ø| Šmñ±È¡c€=……ß2`€°±qG©´l6ïþóŸ„„„\ñõ9;;3tèPYPBHAB\¶sž”„eïžÚ¹Ó*%FcGÖ|¡'g##ˆg‰ÍV\9Fm\5 ÀB©ÀÒ í}|@¥¥L&ŠJŠ9êäÈîaìvëA\uw¾ÿÎ Íüm²éÛã{Ì‚>}"Q©.^q.$$äwoÃzµ§Ð!¤  Ñv˜LÐÐÀÁ*gr%²bA!^ùŽ„å,c¶Õ,¼ÊÉìAí¨û° {›šòZ0ý<ú‰'˜>}z³IºUTp[r2·íÞ »¾";{炃8xWgNz c_f1øsWŸ$^zÉŠ®]Ãe9!]ñ§ôìX¶ƒs_§à±o lÓIïâJâøž|ì{/Ü7ž;]½Ñ(û‚2¹¹¹—l×¾øÞ<Žò wzy1pçNXó.†&6ëÇ{†Gx§÷Ýz˜[oÕa2éQ(ä#A)èBˆ«Ò•MÆüÏq[±Žê0{>ýרz>Î]ÁÁ<ëêÅîM[âðççÓ®Œyñ¿É„&=±K–pﶇØ;d( «¦1uæââóäSÎøz‡ @! H)èBˆ+1éõT}»…ÊÙoPfYÏë¯?Œï¾¼Ðv.×wæ tèg";›Á‹3xÓ¶w‰à³æ0p >tˆ‡§yì$e]ˆD®X!Ä «ä&Œ‰‡ÑMú“³y¡ß]Üù䞸u(ÿÖÿúó_óõ…wß…;±W³ò‡1l [Äù}Ü2HÅ»_죺±N–›ÒCB˜¥¥azó-Î|{ŒÝºðú¿_gÀÙ“Üwô4Mí<‰9™~É(999×dÖuuu\¸páŠm²§M£ÏÀtúðC¾Z=Š8çÌ|åy¾ßžÄ¼7݉ö ‘e(„t!Ú–åË—cm}ñt0jjüê+\óy¯Ã=l›s;=ú¸2+ÕȬ—ç^q:×ê4±úúúß>xî×ÜÝáµ×à‰'è÷Áì^6‚×öÌåo·»rÿ[ûè®ÕÈÂB ºm‡µµõÅsº¥iê >KïÌ?§Ï"t¬–¯Ðr¬Ê†¼Â À­7äõ8;;Ó·oß+¶iÖƒwqyó°¿ç=ݳť IDATý4wwæ¹ÉsÙ3É€eX:wû¡VÈÞ:!n6òW)ĵ֨ =èAª˜Â»LàŸO‡ðE‡ÁœÙùŽŽŽ7ÿû‡­[¹åõÁ쵸—Þ‹Syæþ¦lßOV]¥,g!¤  ÑŠefýï…¬›uˆÛû|@ͲvëÃ8½ŠÆÎ}Ù³i'ãÇOÀÕÕµe¼fΤ]Ü÷<î·ˆåI³I™¨fäÂ$>>—F“Ñ Ë\)èB´"¬XAyßÛ™›:™çg<ÅÃÿuáëèøXÚ°ýX5FM<4ŽîÝ»·¼÷Hê›o2ô³IìÔNåÞ¹‡xóÉr&ÅÇQ¬«—å/„t!Zâbxäö?ü ·(—‘ø–7+^aVH8ºF¶}·“ðÞŽø:9·ì÷©RÁ`wxo>x–u[Ÿ#÷‘ †}}ˆƒe²!]ˆlçNúáõ5Á<þ>ýWx¼}ýžºº:ª²sØVoÇ”»ÂÑÝÚKKËÿÞãââ~û‰ñãÑê–³å›g™ýÃL½\ÏG:3ȹ½¬0BHAâæ”²r%γ^`…z:ï8>Ä“KŠâÕjõÖКNzŸÞ óuhÅ _¿~—¿gú„ pü8¯ Á¾éÃy襉<>²Œg:¢QÊÇŒ-¦ gdd˜˜È!Cððð`óæÍTUUqë­·¶Œsn…¸£V®$àÅ7xAû ‚ùüS=·tŠú¹^OEzŸ×X»z s^y¥meÎñ¿ÍäS§è÷ò‹ÌHŸÉÁ¿•óq·<­leâ:»&ûÐ?ùä† Æ’%KÌÃBCC0`‹/–”EËVWÏù$[¾æý[¹÷ÙrǶmì+•MðB\ŽŸŸ!!WËâk²]0,,Œ°°0˜={¶,qÓØ±cåååWlsæÌ^™<{Œ¸L²žául[ìH;‡_]å­© £^ÏŽÔzª««˜1m‚„|Ö="PïÛɰY/ÓkúóÌzf ÷Œàé€.X(U×€œO"Ú„òòòËŸrõ£|@ãÐ!üÇz,‹*Ÿä¥Ù9<>½juóMì˜L4––²bo:ß…B&ÿ{;Åýë×g6k‡}aiN^<|Çpr_ð«¢P(ð{à^ z†3rÒ?ˆžüS^x‚™·ßÆ7_ H)èBüŠ‹aÆ v$3Åj+Qá¾g‡‹Ë˿ٕDÛ£ÓÁÂ…äÜ;‘ѯc1“o×W0fŒÇ%żªªŠùóæRa0°?¾gûJ)æ×B¡¢ïÝ}é’°œœÓùû3qò±™,:²—:}£$„t!.#%ÃÈ‘¬[²•(åw8GvdÏ.-½{wº¤iaa! üo—4ÚØ3vdWÉï:qusbì§Qºz%NÉŽÜ2z ‹ÞŸÏ‰²| G)èBüLðÞ{ä¿“‡³ïe¦a9/¼TÏòåÁ¸¸¸_:‚É„‹½=‘Þ½¸ÿñQ¸;;Hˆ×½·®fàÝÿoâï˜Ç-/oäÜýY¿¡IâwÈ>tÑú¥¦2üƒX—fÏ,Õ&zv‡ƒïÔØã’¦•••$$$à«ËÈHúŒ¹•JΓ¾‘\\œ˜òÑýì¾;œÜ§¿`ÈÈ©Ä>9–nÓ'Ì3@B ºhst:øøc Þú€4Í"Ámó߬æî»ƒQ©¬.i^SSÃûï¼Cˆg(}'MD¡0`gg%9^côHø¡#»Þg6Ë_&ø1¬¼oŸ™Bäƒânï$A !]´ gÎ`|òï|sÐ’-7àÛë$Wjqq¹ü¥‡5yÌøÇlêkTØÛ[’ãup5GÂ;;;ñÌ’Û‰{ #›^#êéÏ(øtç_|š®w݇µ¥VB ºh•ÊËá¿ÿ¥pÑrf×üƒôîƒù¿ÉÍ·Kš×ÖÖ¢¯¨àTRڎݰ±ÒâÜN#9Þ„½ø‡!uä³”¬ÊaÄÄ9õÚ¹óðŽ‚Z%eBÈ_¸©¥¥¥qòäÉ+¶©©©á‘ûîƒ/¿¤æÅ|ž?Oì¾æooÀÒnX[Û“|Éxééé,k!OÍŸðHò·be%ÅüfïÅ7Ô}•ƨ[ga1Ê«9spï%Á )èBܬNžW¯«§ n…OE¿a? å]86¿ù½yùAwœí.'áÈa²²Ïê핵 ® íìDèv+sÅçu>©Œ>9‡m±°nÙNú‰ôXކâÎ;!, läŽyB º×E“Ñ@^v&Õë×a»"×Sz¾í0Óô¯è=&€Ñ]ìQ©,̽÷ÄÄD¾Ù´‘±cÇr$= W<š4x‡ P[àÝ?\Bm¥þȹì.<4Ó…Æi¡ÄË'kO£Ywˆ® Ÿ§›w=öÃ"aôhèÓœ%T!]ˆÿ• yµ•fePw8 Ëï6a¿û$e.½É¼ûeRï®æ™ŒGó›IÿoíB½¼éã€B¡À· ÷ HrÍi4Ö âÏÀ!þ44 "%åI6m;KÝæ}¬YD˜¶·¨0ú.8<<ÀRîË.¤  À?üpé@……“=eyùTM¦)v-EsæÑ®L‡•Gg ưþßDFú¡ÕZ¢‹‰A£ÑpøÈŽ9LBɘ[F`ª×3Î/ûÈÊò/8ç>P6«‹K{é—-òApv˜Žê{î#ß"ýÁT\_ÞHÇÊwpó´"ÇJOª=Ùž<ýÁb®. ”ûY )è¢ Z³~úS[ZÇÙ Y(ÒÎAÜújµ—烂q›?M·.øù8¡T*1ä•”@Y#ÕÕï‰}bÓNÆ=9™ú¸ãxyz€Á€²kÈÅï–r“øm¿¿Yþmž¸…’Ê¿q6½†Ôä(N<‰Ë‰“ôÞ}‚üð¡8û8`Ù'}ÏHÔ=ºcprAåâZ¹ü¬‚.ZzC#Uõu4ÖA~A9¥ç²hJ+¢î‡dº&Çþ£õt¬¯àV­µ»#ê[G`2Sç.àjKÚª\Ã;bídEFú:Ö½_Tô}h,í«ª˜üÂß/~pÞ9LB׋C;\zµƒ^Þ0e(:CËWÇPк“?P–„ç’ ´Ë]ˆ‡©;{4Î6XtBL½—6aÑ;¹€½v(,äcV´‚®×ëY¸p!z½ž)S¦àææFcc# .Äh4òøããèè(IÿèÌ™3„††Þt¯Ëd2P«k ¾¡‰¯¾ZƒÉ †&*=XÛ[âìà€m“eFŠ/œEQ˜Cy5Ê¢Œey8Õ⮫&Š:jëð=†n÷Ì¢ª=™¨(ÓãâBñÑs¸W—qüÓ5ìËNÆ«¨žÿ /]Ú`?fÍú;X_ìõ$z¹\|­´t³®’ÃE–* 5ÜÒ¿3ôï ÝMYc¥5uVs$÷ÖùÅ”ŸJGž…ÇÖChrsqÒUa«¶ÂÞÞ“¥=*OWlƒ|©³u¥Þ¾*Ol¼ÝÐØ;Ф´@¯P‘ž›M‡ŽQi-±°¶D­VËú n\AOJJ"44”^½zÃO<ÁÁƒéÙ³'~~~|óÍ7<üðÃ×åÅוPštäZU´Ÿm6ü’†¿nÎÅC»~~úâs¦ÿ™ÌÓ0É©)(C;a2ýø¼éâ&¿xüãO£ “ñâÌLFÀøã´ŒÛ*Œ&0€Âxñ÷‹?üýÇçúztuUÔÖVÒT_‹¡¡Sc# …”&Ôõ&ÔõMèëJQÔ—3¨¾ K X4ÑXÚP_Z^Q‹« Ø¡prátÖy²l-i§±ÇûÉQ46âûÔ$Ö.ZN‘¯ UpÚ^I'gWœøáø1ÚÛZáêB§ÛÝ9xú4÷½úŠØX†ý´É3¬S›û,))‘®ÕöÅ×XAC¨QŽ¡º©]UçåRYU©¾Çª33 ¬¨D“ka ÚÂTՕФÃdÐcj2‘ÖØˆ‹µV–j¬´VÔ¶4ª,Ы,0¨Õ˜4`eR«Aec‰…­5 …Æ “Ê ƒBA¡Â¨PbP*/þT)1)˜” L (èMF &F˜`Ä„Iñó'šIVZ-jŠÇA¡+àâƒ_þ¯Ñz¢õÀµÓ_·+L&ÓŸz/;wîD¡PЫW/þûßÿ2{öl6n܈»»;~~~ÄÆÆ2sæLN:Ejjê5}ñ†ÊTç3[ÔW-p³ŸùjBÁââ©aj{ªÊÊ)U*p´ÒbëîŽÂh¤²¢[g4FãÅsyuºKŽ ®¬¬ÄÁÁá·s¨­ÅÆÆæŠm~o­¡ÍO9´Å÷þ[ëÃÎÍøžÎŸ?Å6øùù™ fUS5úFtF#½uƒUm6Fš&=CcŠkVnäsòzktvEãåyͦשS'ºvízã zyy9‹-ÂÃÃ^½zQ^^N÷îÝùðÃqpp`ذatëÖÍÜ>??ŸÆÆFóŠÝV555Q\\LûöíÛl555äççãáá]›{ÿ äææâçç×f7­ÂÅËûÖÖÖâïïJ¥jÓŸ eeeXXX´É¿‡ŸTWWSPP€¯¯/–møÔÁÿ¥VªæÎ;÷OmbÐjéܹ3téÒkkk<== %44”:˜Û8p€C‡ЦÿpW®\Éš5k9rd›Í ))‰¢¢">ûì³+^þµµzçwP©TlÛ¶>}ú´Ùõ`ûöí”––²{÷n"##Ûô—ügžy•JE§NÚduuuÌŸ?ŸvíÚÑ®]»Ën½jírssYºt)ùùùÔÕÕáÿïEpMNªtww7Ïð§§§çÅÍiii¤¥¥qáÂÖ®]K]]qqq †6³p²³³›åpæÌlllÚÜ·ð_çЯ_?ئօ_x5ŠÂÂÂ6ýåv̘1„„„´Ùõà'«V­jÓ_ðÉÎÎ&11‘ÒÒÒ6›ƒ½½=•••dggãîîþ‡Ç»®WIÈÉÉ!==ôôtrssÑh4L˜0.\¸ÐfίsX¹r%%%%?~¼M}˜ÿ:NÇ;ï¼ÃO<Ñ&ÿhÿäÞ®V#33“5kÖ0mÚ´6Ý;ß½{7IIIÄÅŵÙ´Z-‘‘‘L›6M›6µÙN:ETT“&Mbß¾}x¼?½ýjœ9s†¯¿þ…BÁ¬Y³Úìþ²†† K–,áùçŸGÙF¯>µlÙ2RRR á±ÇksïõêÕÊm·ÝÖf?¼&MšD=èܹs›Üõò“ÚÚZRRR(..n³=u½^ϻヒR©äž{îi¶Ë¶-)--åƒ>ÀÒÒ’Q£F5;í¦)èB!„¸>äÂÄB!„t!„BHAB!„t!„BHAB!¤  !„B ºB!¤  !„B ºB!]!„RÐ…B!]yyyjüââb²²²þ²×_[[Kee%eeeètºË¶3ÈB º×Î[o½ÅG}tM¦õÆoü©ñÿÔø³gÏæüùó¨í›o¾ù?ÏçrãpþüyV¯^MFFÆeǯ¯¯gÑ¢EæÇeee,]ºôº¿n!Z"µD Äï«««#;;›ôôt¦NJyy9o¿ý6666Œ;–ÒÒR6oÞŒ••óæÍãƒ> ¤¤ž}öYfΜ‰‡‡¥¥¥¼öÚk|ûí·F&Mš„¿¿?3gΤ}ûöŒ1‚o¾ù…BA=9r$¯¼ò vvvdee±lÙ2N:Å]wÝÅ[o½…N§ÃÇLJÇ{Œ©S§@EEï¼óóçϧ®®Ž.]º0nÜ8¶oßÎéÓ§©¬¬$66–£Gb4™;w®ù=õèуaÆQ\\̦M›0 tíÚ777233ijj",,Œ’’T*»wïF¯×3gÎìíí8tè›6mÂÙÙ™!C†°víZª««™9s&¥¥¥”——›ógãÆFž|òIJKKY¶lîîîÍ–Ãþýû‰ÅÆÆ†~ýú±lÙ2 >ø yyyìÚµ +++ÆǦM›P©T¼øâ‹² )èBˆ‹Ö¯_ÏwÞINN !! &УGL&=ôË–-C­V“••Å®]»?~<ëÖ­ãÂ… ñþûïóí·ß²eË"##yíµ×šÍ£´´”÷ߟ/¿ü½^O÷îÝùüóϱ³³£cÇŽ<òÈ#Üwß}æî©S§P«Õ¼úê«Lž<™‡zˆÚÚZ^|ñEÞxã 8sæ cÇŽ¥_¿~æù >œ 60zôhxà¾úê+V¯^ÍöíÛÉÍÍeÁ‚æ¢ìêêj~­EEE,^¼ƒÁ@aa!=ô/½ôŸþ9»wï&66–àà`òóó;v,‘‘‘<þøããááÉdbíÚµDFFR]]m~M ,àî»ï¦¼¼œÏ?ÿœóçϳpáB ùøãÍíú÷ïOrr2“&MbêÔ©ôïßµZÍÒ¥K "88˜!C†Hdd¤s!]Ñ\ll,AAA455qìØ1BBB0™Læç E³ö„‡‡›{µ&“Éü_¡P P(0(•?ïõrvv6? "<<œððpòòòÌóúõ<ùÀÉÉ …BV«¥±±‘ùóçsâÄ žyæ>ûì³Ë¾¿Ÿ^—F£1ó_sss#/////”J%gÏžÅÇÇç’iâææÖ,“÷Þ{û￟ÒÒRöîÝ{É´--- ÃÂÂæÎ‹ÉdÂh46k÷Ë÷¬R©èÚµ+vvv 4777ÒÓÓyíµ×x÷Ýwe¥mŽjîܹs%!./??ŸÒÒR^ýun¿ývâãã™üðC<Ș1cÈÉÉ!..ŽÔÔT̺uë8{ö,iiiLŸ>¥RÉW_}EPPíÚµ 99™èèh:tèÀ–-[8uê•••Üu×]ÄÆÆOvv6'N$99™{°uëVÂÂÂèÝ»·yééétèÐ?þ˜³gÏF=ÌïéøñãDGG£T*ùòË/)..æÑGåÔ©SDGG7{ÿ………|óÍ7DDD‘‘AïÞ½ ¤¢¢‚ÁƒcooϧŸ~Jff&Ó§OÇÕÕ ûöí#==¾}ûCYY...øùù™¿øúúÒ½{wbbbHMMÅËË‹þýû³`Áòòò°··7oa°²²bãÆ1~üxV¬XAZZ¶¶¶œ>}šÝ»wcmmÍÈ‘#IIIaÿþý—¼!Z+…é×_ñ…×ÜÌ™3Y¼xñÿ<þŠ+hhh ;;›yóæI BˆëSÐwïÞMFFS¦LiÖHNNføðá´oß^’mZaaá%x]ÜÜ\ðõõÅÂÂBB\âšœ¶Ö©S'ÒÒÒš [¹r%wÝu~ø¡¤,Ú¼?S̼¼¼ ’b.„¸¬krPœ‡‡–––Í'¬Vãèèh>"¶²²òŸ÷*„B´u~~~888ÜØ‚^WWGCCµµµTUUáîîŽ^¯§¸¸µúâ,¶mÛFXXX›_@Gmvp’ä 9H7õº*ÊJ+(-ϧ(ÿ]ú¤$7…3™µäæCSïLcû&ޏ›ÏÏìÆ´?ƒâWÜNœ£÷Ë/Ѹo/YZ;2wï@íêA—@î4”äÜóýn+:{ÜPáѹ#>~EgÎ`áèH€»;®>>èëë)./GXZYáèäd~}?í9ýå™—; ã·Úþ4ü×Ãd}økmÛ¶Í|ýˆVГ’’ðõõåСC¨T*\\\˜4i[·neÆŒæv¡¡¡m~UVVJ’ƒäp“åÐd¨CŠœÂã(Lí9ua75iÊç|>ï ‚è‚ “\¸p€°°0ˆŽŽ~,7ýïeggLii©ÎrµZMHH:˃‚‚ˆŽŽ&<<\組„„gn+)) ¥RÉ–-[~j™òIyâããÿÔq«T*"""HJJÊæ´÷÷÷Çßß_^vÿþ}yYqq1P–<©|›áááro|FCjj*‘‘‘„……éÌmðè¾?ºnQQׯ_]áu¤ÕjIHH 44”¬¬,Š‹‹ ’OHH !!´´4âãã %77—ÄÄDbbbˆ‰‰!$$€Y³f͹sç˜5kO뇬T*™5k~~~|þùç:¯­\¹’;wîðÙgŸ‘––üÿ&I’pttdûöí:Ç1gÎüýýQ*•ÄÇÇóàÁù‚@’$Ö¯_ÏÏ?ÿL~~>vvv$$$Bnn.P6ýwß}Ǻuë°°°ÀÄÄ„””‚ƒƒ)((xjÆÇÇsèÐ!yû¢¢"¾øâ bccå)sãââˆåã?F­V°~ýz‚ƒƒYµjçÏŸ—gÙ»uë·nÝbëÖ­\½zT*Pöz„ ­kjjÊñãÇÿð"JtA„ ¨¨¨ˆQ£F̧ŸØÝHÀ IDAT~ ÀìÙ³ äÓO?%''‡9sæpñâE’’’5jAAA|ðÁ\¸pµk×ÅéÓ§éÞ½;VVV 4ˆ)S¦ ¯¯Ohh(žžžìÛ·Oþ äæÍ›¼ù曌;–ÄÄD@Âûï¿Ï€¸rå øøøÐ®];ŒŒŒÈÏÏ—yI’D~~>±±±3dȘ={6ÙÙÙÒ¼ys’““Ñh4deeÉÇ=cÆ Ôj5—/_¦G¤¦¦Êw>ùä‚‚‚X²d Ç×9ޤ¤$œ™8q¢¼ïå3 Þ½{¥R @ÿþýiÙ²%mÚ´Á‚ÄÄD9~ü8'Ndúôé\»v €K—.Ñ«W/Ž=JFFqqqÄÆÆ’””DãÆå}ùýºNNNò…Õë@t5ᥘÈ/¿<·÷o^µ9£šúÃrmÚ´aèС\»v •JEII £FB­Vãë답µ5&L   €¶mÛ2lØ0._¾Ì„ °··çÁƒ$%%aooÿØ{[YY¡T*©R¥ŠÎrkkk¢££155-kiéé¡Ñht¦×…²Ùæ233Y¹r%ƒ ÂÛÛ›ÈÈHêÕ«‡™™¹¹¹ØØØ ¯¯O:u8p -Z´`øðá”””p÷î]|||˜4iW¯^ÅÞÞ;;;:uêİaà #&&///V¬XÁÝ»wéÕ«iiiôîÝ›#Fàéé ”¥$.¿e^¾¿gjjÊÐh4Œ7Ž£G°k×.ÆÀ©S§xçwؽ{7&&&òAI’(,,ÄÜÜœ´´4f͚Ů]»¸xñ"'Ožäý÷ßçêÕ«ò…Ë£ëBYÊåÄÄļ7¹h¡ ‚ <ƒ¡ž!–Æ–ÏíÇÄÀäϵrþ;”P¡P```@AA111øúúâì쬓O¿¼lù²òùÚkÖ¬Irr2Pöü;99™{÷îáïïÏo¼!ßÞ.ÿIOOÇÕÕ•ëׯ)¿gùø~ ¸|ù2mÛ¶¥OŸ>¤¤¤››+?+/((ÐIjbbBLL ¥¥¥„††-Cff&¶¶¶:Ç@ll,ØÚÚÊÇÿ(}}}ß#""tŽC©T¢R©HHH //ÌÌL²³³IJJ"&&FN®V« ÂÅÅ€‡R¯^=:uêÄéÓ§ñöö¦fÍšТE ZµjEBBÉÉÉØØØÐ¿âââÈËË#99ù±u¡lêãZµj‰º ‹ÔÈ® :-øW÷ÁÈȈ>}ú0`À +V¬àÒ¥K 6 ggg ðIJ5à7Þà—_~¡U«VôïߟS§NaiiÉöíÛ111¡gÏžôìÙó±í¿÷Þ{\»vU«VðàÁ7n̪U«8uê}ûö¥iÓ¦4mÚTô]»v¥¸¸˜J•*éÜiÓ¦qñâEÞyçêׯÏ74h’$Q·nݲ»Í›cff@ݺu¹zõ*3fÌÀßߟN:йsg*Uª„‘‘‘Ü/?ÞÑ£G?v YYYxyyѰaCüýýiÑ¢òsõ¬¬,¦OŸŽB¡ ++ ›ÿ¦±íÕ«—|²dÉ6mÚÄÇ ÀêÕ«9}ú4íÛ·§}ûörKÜÜÜœvíÚ¡ÕjuÖ…²gõåŸÉkAzA~ýõWI„ŠGœÛOvíÚµ¶­˜˜)**ꩯ¯ZµJþAATPP ózVV–ôÃ?È¿çææJ¥¥¥/dß‹‹‹¥¼¼¼'¾–žžþ?¿oaa¡tûöíWú¼ù«ç–h¡ ‚ <]»v}aÛrrrzæëóçÏ—ÿ_Þ"TåÊ•™4i’ü»••Õ ÛwccãÇfë,ggg÷?¿¯©©)mÛ¶}­¾s⺠‚ ˆ€.‚Pq”––rîÜ9ù÷¯¿þ€;v°iÓ&~øá¢¢¢žù7nÜ`ãÆê,OOOgóæÍüúë¯:ISÖ¬YƒR©$99™ŸþYg+W®}èØ±#ƒfìØ±øøøÈÃð._¾Ì;w ãí·ßfñâÅxzz¢R©X¹r%7¦oß¾r»ï¿ÿOOO$IâæÍ›:ëêëëSTT$gŠžM뱃 º /kë.¼ñÆ¥çöþúúæXÆØØ˜„„Î;‡‹‹ !!!´jÕŠââb~þùg²³³ÉÈÈ }ûöäääèd|³²²¢råÊò³vsss¬­­Ù±c|ðÝ»wgíÚµDDD°hÑ"ƇJ¥"11‘^½z’’¢Óc½víÚìÙ³‡wß}—èèh¶oߎ——_}õwïÞÕI$àïïÏO?ýÄíÛ·5j%ƒù½-Zè\DT©R…¢¢"vïÞMxx8çΣU«V9rI’äD-EEE$$$P¿~} ,«““ýúõcÑ¢EѱcG|}}iݺ5ÄÝÝ0uêTFF£áÞ½{ôìÙ“ââbu¡lr›·ÞzKœ †«*‚8·uÇ>'&&JjµZš7ož$I’”””$EEEIIII’F£ùÃñÏ111RII‰$I’”šš*I’$iµZ)>>^ÊÊÊÒ)Ÿ™™)©Õj)++KZ±b…Îk*•JЉ‰‘”J¥4uêT)))IÊÊÊ’’’’¤H’$IEEE’R©”$I’¦L™"ÅÇÇKyyyÒ½{÷¤ß~ûM’$IÊËË“Š‹‹%•J%åääüáoµZ-EEEIQQQRrr²¤V«¥øøx)..NR©T’$IRii©”™™)I’$)•JiÛ¶mòúÙÙÙR\\œ¤Ñh¤;vÈãÌËë ##Cg{iiiO\W£ÑHsçΕ´ZíkyÞüÕsK!=mêŸØ¡C‡6l˜¸‚„ ¦"ŸÛÙÙÙT®\ù…l«¸¸­VûÄÛôPÖáìIÙåU>‘Ijp’››K¥J•^Ëóæ¯ž[â–» ÂS¼¨`OžØäQÌ Ì¡,7~E æÏ‹¶&‚ð'•””Èc«yxXpp0¾¾¾<|øðçßÎÊÊ" €ÒÒRåjµšû÷ïËókµZBBB •çiÿý8ò„„„gn/>>^ž×Üßßÿ©e222ذaƒ<1ÌQ©T>^Þï¹ã[ù6ááá˯I’Äýû÷(,,äþýûräçç?uü½è‚ ¯1­VKll,dffeÉfîß¿Oll,~~~¬ZµŠˆˆ¢££yðàsçÎ%55•+W®0cÆŒ§Ùüü|fÍšEhh¨N:V€/¿ü’€€,X@jj*;wîäâÅ‹œ?ž;wâààÀ®]»tÖY¸p!7oÞ$77—ØØXBBBt.86lØÀþýûIOO§jÕªò±eeeÉǶuëV6n܈‘‘–––$$$ {’””Ξ=+'ÞX¾|9iii:ëmܸQî_¾?AAA|ýõ×\»v­[·pëÖ-¼½½Ù¼y3^^^„„„ R©8x𠜖6%%…ÈÈH®\¹ÂÖ­[±´´äðáü 'Ç? «T*¾üòK¾üòKy,cff&‹/fÙ²eDGG‹Z„ ¬"ý1-**bìØ±<|øO?ýTÖ¡¡¡PXXHAA¹¹¹œ>}šîÝ»`iiI¿~ýøè£066&44”ß~ûM7¾{÷n¸yó&]ºtaäÈ‘¤¤¤èþ°°0ÆÇÀ¹rå ŽŽŽddd™™‰££#úúú¨T*ŠŠŠäu IOO§¤¤„‘#G"_DDDP¿~}233Q(”””0|øp"""˜9s&ÅÅÅ\¿~Î;Ëe¢££™>}:‘‘‘,\¸€'NèGLL 5kÖÔÉý^þ=¸uë–|!tòäIÚ·o/÷²OHH Fœ8q‚‰'2eÊ®_¿üÿ³ÿãÇ“œœLDD’$Mjjª|˜éÓ§“™™Izz:§NâwÞa×®]ËÓŸJ’$ÙÏÌÌdöìÙìÞ½›‹/râÄ ÆÏåË—‰ŠŠÂÙٙƣV«ñððàÝwߥJ•*$''ËSŠ€þ7cjjŠ©©©|å˜-ÁLOO—ËzyyaffFË–-Å_BAxÅqúôiD#‹±1FõêÅw7¯0úŸxÆ aîÜõ˜ŒŒŒxûí·²¨P6AËÅ‹qtt¤W¯^´mÛ___ ÀÞ½{quueРAœ;wNN$cllL=èÑ£ÇcÛøðùqãkÖ¬ ::šfÍš±zõjNŸ>ÍÀiܸ1K—.åĉ( –.]ŠJ¥ÂÌÌL'ôÑGòv6lȽ{÷èׯVVV8::褖mذ!^^^L™2…‡âææ@‡¨Zµ*íÛ·×9þ¡C‡>v ùùù\¿~Ö­[€››·oßF«Õ²qãF,,,ä =333¬¬¬°µµÊzë«Õj¢¢¢X²d îîîL:€5kÖpæÌºtéB»víäV¼™™mÚ´!""‚7n`ff&?›ÏÌÌ”“ÝTå8NŽó§üä³³³åä å‰RSS¥¤¤$‘XF*¨ôÄD)-+]rÿiók[å‰[^„ÄÄD)""⩯ýõ×òÿ‹‹‹¥‚‚×‹ŠŠ¤M›6É¿+•J9ùÍóVRR"'¿ù½ß'Úù+ÊèˆÄ2eþ‘q莴±±ÀÞÞ^4a¡:þ<;w&:!³ºæT·x}ÏõÎ;¿°mU¯^ý™¯Ï}äîÆïo£CÙ8÷iӦɿ—Ï$÷¢î|<)/>ü½±þ–––âî?yË]„×Grr2÷ˆÎJ`ä ¾T6s$„0Q1‚ðãÐAøÓ.œ8AînLñ•L«WÈcüá‡[–À?þøB÷cçΤ¤¤àááÁÚµkÙ¸q#×®]{æ:qqq¸»»sìØ±ÇöíÚµ\¼xQ^vþüyÖ¯_Oxx8«V­Ò‚˜ššúÌ9Óƒ‚‚ˆ‰‰añâÅO¬3€ëׯ“““ÃŒ38xðàŸ>öƒêŒ_ÿõ×_qwwgóæÍ@Y§± 6°}ûvŠ‹‹²¾AAAøûû³~ýzyH”ÍpæÌ6nܨ“dgïÞ½°nÝ:ÜÝÝ9~ü8îîî:ÃE@¡BÔjFŽ“½9úz†r‡¥ŠÆÖÖ­VËÞ½{qww'>>µZM`` ›6mÂÓÓ€}ûö±cÇöíÛ€‡‡îîîœ?I’øå—_pww'::¥RÉ®]»Ø¼y³<ìÀlذ???nÞ¼Ijj*GE’$îÝ»GµjÕðññ¡uëÖŒ=Nž<ùÔ}_¼x1Æ Ãßß_§w»¹¹9:ttLL çÎc̘1,]º(Ï}ïÞ½ÿ¿x»põë×söìYNŸ>ÍÑ£GÙ°aƒ<ù×_%** j֬ɑ#G8pà[¶l‘ƒì©S§ðôô$((GGG<ÈîݻٱcÇ3ó´jÕŠ°°ÿ¿óãááAß¾}5jPö˜w̘1sàÀ lØœ «V­bܸqìܹ“ììlÔj5^^^\¸pøøxúöí+qóööæÊ•+òEMPPo¿ý¶œf·]»v>|XtA*ŽÂÂBBB8öð.uÚVØ`^<Μ9Caa!C‡eÉ’%@Ù<æ£G–³µíß¿ŸþýûHbb"Û¶m£_¿~´iÓ†«W¯’––ƈ#Xºt)EEEœ;wŽQ£F±wï^ 8yò$ƒÆÙÙ9!Ë•+WHHHû#AÙØv;;;&L˜Àùó版ˆ`ùòåòφ €²Ô´ŽŽŽtêÔI'8W®\YîõeÓ¬¶k×{{{ P©T¸¹¹é´j›5kFûöíéÚµ+ׯ_ÇÊÊŠîÝ»Ë-ù¢¢":vìH£FèÚµ+ÇŽ£yóæ8;;³mÛ6 033£C‡¼ñÆ´nÝšУG²²² äæÍ›:DZÿ~êׯ¯“Û¾cÇŽxxx0{öl²²²¨S§vvv„‡‡Ë½øË/ˆ±³³ÃÅÅ…°°0nܸA§N¸té<ààÁƒìß¿¥RÉ©S§2dˆ¼&MšpîÜ9>ÿüs\]]_©Ô²âº ϤÑhølÚ4F¬œÌ(‡ÁÏm;gΜaÊ”)ÏíýûõëÇ–-[þTÙØØXÚ¶mK5Ðh44mÚ[[[LMM¨S§U«V¥V­Zäææ2gÎNœ8ANNÎÎδhÑ`Q¾¾¹¹9ãÇç§Ÿ~¢Fr’­V‹F£¡´´CCÃÇö+--J•*abbBÍš5åååÉ^Ê[½ùùùXXX<õøÊÇÓCYu}}} uæE711ÁÔÔTžýÍÅÅÒÒÒð÷÷ÇÅÅcccŒ133ÃÄÄ„ÆcooÏ¥K—¸xñ"½{÷ÆÄÄcccLLLptt¤FÔ®]›ììlllltŽ£ÊSòŒ3(ë\wóæMú÷ïÏÆiÚ´)mÛ¶%..ŽZµjaff&O/¯ƒ³gϲpáB|||èÛ·/mÛ¶eĈ¡T*9v쥥¥ 0€9sæ0~üx”J%fff¨ÕjÐA¨¶íÙÃȉhaó|3quëÖM¾ý<JJJhРzzzÓªU+àêãã#ïÿ?þHQQýúõãìÙ³]|i46lØ@LL ÇçäÉ“|õÕWòí÷'©]»¶Î(©òVù±cÇ cóæÍLž<™Ý»w£Õj¹qãk×®eÇŽ\¾|™AƒÉ,Þyç*Uª„……ß}÷qqq4nܘ’’LMM5j[¶lá·ß~£sçÎŒ9’réÒ% å¼ö†††òEWxx8Í›7uNÖ—iÌ /ŸsW.Iñ™·_‹s;77Wš8q¢$I’”““#%%%IFR©TR^^žÎ¸éòóóó¥ÒÒR)++KŠ—Š‹‹å÷JLL”Ôjµ¤Ñh¤œœy=­V+¥¦¦Ê¯—çîÈÍÍ•ßwåÊ•Rff¦”——'ÅÅÅI‰‰‰8n\£ÑHIIIR~~¾¼oÅÅÅRII‰'ÅÅÅÉï_PP %&&J*•J’$Iš?¾üÿriiiRFF†4wî\)%%EJNN–$I’6nÜøØ8ò©S§JÙÙÙRZZš¤Õjå1ïZ­VÊÎÎÖ)[PP ×Ó“¤¦¦Êû«Õjåº-Ëž••%¿ž““£³?¥¥¥RBB‚TTT$EGGK§NÒÉ™’””$iµZyYaa¡TPP iµZ)%%EJLL”JKKå±ýå9V^…qè éͬðW'jáß÷ý±íŒèÝ“Êæµ_‹s;00ââb9ƒÚ¿©¨¨==½'Ž)rss±¶¶~âkžžž´oßþ±´°ºzõª~o‘æ/‘}ûö‘‘‘Á­[·9r$Ë–-cΜ9ÄÆÆ>uÀÀ@fΜÉôéÓILL”—çåå1kÖ,9ÍGŒÁòåËåqõÇì½-ZôÔmÝ¿Ÿ“'O²|ùrÙÙuöìYîݻǒ%KP*•úØwíÚEïÞ½‰——………Ñ®];ÂÃÙ>}:sçΕÇß—ïÏÏ?ÿÌÂ… Y¸p¡<ÿüŠ+P©T¬\¹’åË—sþüy l”À'Ÿ|ÂîÝ»²d;K–,aÆŒãáá!'¡y‰³UYdd$6j¾·Vî9ý:)**’çó.))aåÊ•lݺ•ÄÄDT*+V¬`Ù²e|úé§ >œ«W¯²`ÁæÎËêÕ«166¦eË–´iÓ†yóæÑ AªU«Fjj*YYY :”¦M›²lÙ2LLLèØ±#®®®:eSRRHOO§qãÆdddP©R%>ùänß¾Íøñãñðð K—.|üñÇÄÅÅñù石{÷n€ eã±7lØÀºuëˆgÛ¶mrö5KKK¾ùæ>øà¹¼Z­¦nݺtíÚ€ðË/¿0þ|n޼ɥK—äqÞ·oßFOOöíÛ3dÈΜ9C§N¸yó& 4`ýúõäææ’ͰaÃèÔ©ׯ_çí·ßÆßߟ®]»²`Álmmyøð!óçϧZµj:SnàààÀرc‰•‡•––²wï^êÕ«”åøè£¨_¿>ï¿ÿ>û÷ïçÌ™3Lš4‰)S¦pàÀ¾ýö[|}}qqq¡¨¨ˆãÇcllL:uhÝÕ(• IDATÓ¦ GŽ¡N:òÅÆÃ‡ùüóÏqww'//Aƒ±bÅ Z´h!Zè‚ ¼¼Š5LMLp25yâèç-S¥âV^Þsû ÿóKkµZlllXºt)&&&„††rçÎV®\IíÚµñññ!;;›k×®Q·n]<==±¶¶fÿþýèëëãääÄž={P«ÕÔ©S‡eË–‘ŸŸÏàÁƒY³f GåÈ‘# 2„Õ«WsøðáÇÊ2„ ͲeËä,fŽ/W«V-²²²(--åâÅ‹òÏ¥K—(--%??+++jÖ¬©ð ÅclK—.¥U«VL›6 µZ“““¼m(›bÕÍÍ?þ˜ÂÂBzöìÉš5kä4³™™™¼ùæ›r™¼¼}ú V«uf³¶¶ÆÄÄ•J…±±1EEEòí_à±²ÆÆÆXYY•µºôôtþ}T`` Õ«WG£ÑðØÅ‰©©©ÄÇÇËcܵZícR«ÕÒ¬Y3¹W}ii)zzzÏì˜÷è1DFFÊ­åß—Q©TèëëãééùXçºò1ßÆÆÆ¨T*Š‹‹uŽãÑ1êJOOgÛ¶mÜ»w={ö0vìXÞxã RSSIJJ’÷§¼®%I"<<œAƒqàÀ–-[Fvv6’$Ѽys”J%‘‘‘$''³yóf’““y÷ÝwILLÄÝÝõë×sÿþ}:wîüRß¹]Nß¹ƒÊ(¾.Kÿµ}è^¹2ÝÿÆTšÿ”¼¼<–/_޽½=uëÖeðàÁ|þùçX[[ãêꊥ¥%ñññ4nܘʕ+ÓªU+š5kƺuë ¢^½zôèÑCžîÔÑÑQzæììÌСCùꫯ¸~ý:“'OÆØØø±²†††r5ggg9¸cmm-'˜100`õêÕ˜››Ë9Ù5oÞ<¾ýö[ôôôøì³ÏˆŠŠ"88˜2oÞ<òòòØ´i&L`åÊ•( ú÷ï™™×®]£G:ïgggÇÖ­[133ÃÛÛ›;wîðá‡ròäI†®³¿/^dÿþý|òÉ'8p@~_^¦ü_333ªU«FýúõŸxÇ',, wwwæÌ™ÃŠ+€²”¸ãÆ#..Ž;v°páBöìÙ#ïÏ„ øüóϱ³³£I“&h4ŒŒŒ4hkÖ¬aÑ¢E|üñÇtéÒ….]ºJhh(ÕªU£Gò>·k׎àà`Z·nýòžÈ"±Œ ¼ÞÒKJ¤Ä¸8)KõÚŸÛJ¥Rš7oÞK¹oAAA’‡‡Ç ÛÞ¶mÛä+¿·k×.ÉÛÛ[þýúõë•Y¶l™”––öÌ2ÏËÓ¶•““#ùûûÿÏï»{÷n9iH,#ËÂKçäås´laJÍ*]_ûs[’$ù¹³ðt………`dôôùùù˜››?ñQð|ˈš„×”$I|ùó÷tëØüæB¡ÁüO033{f0‡²e"˜¿X¢¶á5õã‘#t©åŒ¾™¨ A]„W‘V«E›@3·F˜Ùˆ „ @ôr„׌¤Ñ°Ãc/¾÷9†ú&ûýììì8tè¨XAø‹çÍKÐ>L~~>£G–‡g\¸päädÞyçlmmŧ'/µ$˜È».]Ñ×ûg’ÇtëÖMT¬ ¼þö-÷ÐÐPòòòpqqáðáÃò²;wîШQ£Wn¶A¨È®=Ëí뛩lS =…¾¨AýÿÅÅÅQ·n]6l('ò C©Tùsçä²!!!DFFŠZ„AfV»½0eÌ …¨AxIEFFòâz£F¸wï^^^4kÖŒÈÈHš4i‚5kÖ$//O.ëàà@•*Uħ%/XžZÖÄ„¯'/Á\^rUªTÁÁÁáÅt'''Ú´iCii)ýúõ#!!† Ò®];233åô{P–¯XŒñ„¯(%…ß<Ý©îÐPT† ¼ä¬¬¬tòûÿYÿH§¸Ž;ÊÿïÒ¥ P6û ÿ>ÿøx„œgX¯ù¢2¡ãСK)-¥–¥%a·CDÖ.A]„WUfd$ß®}#>•!œH,#Ô…‡idQÀ‚û±°°""  ‚ðª‰+.¦£ %(D0ÐAxUÅøù¯„±~KlEªvAx-ˆgè‚PÁ ¤Ikîyáèè(*DD@áU_\Ì›ÖÖ©4¨Têÿ)9… ¯&qË]*€+Whâb@mû^L›&’È‚è‚ ¼rŽùûÓ³k3,Ík ŒŒŒD¥ÂkDÜr„ ©¤7}4h9s欨A]„WÑ­sg0t,&/SŸøøxQ!‚ º ¯šÓÁ÷éûV'ì+µæäÉ“üç?ÿ•"¯!ñ ]^ai¥¥4Tæ£Æ…BÁäÉ“10§µ ˆº ¯” Ç÷c×´*ÆÕË®ÐE0ÐAxuHÀ¹ˆû }g æF5Y³f¨A]„W-˜g«ÕTKLB«§åûï`ذa¢bá5'îÏ Â+F+Iÿõ;FÇÎm¿`nnŽŸŸ~~~O,Ÿ––ÆÔ©SEÅ ‚è‚ ¼,еZ¼“0fÐŒ,±··ÿÃÖù¡C‡DÅ Âk@Ür„W„F’ÐHèr÷î]Q)‚ ˆ€.¯š"­–C¿~KÛ·†rêÄYòóóE¥‚ º ¼J’KK‰ÏMbä€ÉC×®]EÅ‚ º ¼* µZì I¼z sKÌÍÍ™1c†¨AþÙ€^ZZÊâÅ‹Y¶lqqqòò””ºwï.jXþ¦L•ŠÖÒsè@žžžH #Â?н½½éСS§NåèÑ£òò}ûöáêê*jXþ† ‚LT9ôë÷wïÞåÒ¥K¢RAx>]¥Rahhˆ¡¡!*• €óçÏ£V«‰'""B.ëååõÔ±²‚ èRj4425%ðì1”%¥œ8q‚=zˆŠ„ ÎÏÏ//¯¿¼Þß¾oçææÆÊ•+¹sçƒæÀôéÓggg¢££©\¹²\¶cÇŽâ“„?)¦ €tÏ_è>|2Ì›7==ÑíE*º–-[=‡Äßè,Y²Fƒ……µkׯÌÌŒJ•*±~ýzLMMŧ#‘o~> Š©÷æHš7o.*E„gúG.÷MMM±°°ÀÌÌLg¹ R£¡¡VKÈõ+xÞñF«ÕŠJáù·ÐAøgùÇÇašâ‡žM]âÅmvAD@„WO^.-ª˜cdÛ“ûö3iÒ¤g–Wh4™ yy› ùùàì ŽŽ¢2AtAþ  U’“HÎK¦[w>úè# E\Ý¿Ÿèˆr²²ÈÉÊ";+‹ôÌL¶êé‘£V“«ÕRjh@ º7jD—îÝiÝ­F"E¬ ˆ€.‹sÑÿn•õ0rlTÖúÎËÃÿØ1öíØÁñÀ@ ÝÞ zã˜7¬‚Ö ³,õKp®jŽÂ8S%F ‰O$ÙÏ…ž~$mû–z%Æ„íÜI—îÝqéÚ77øoŸ—róçÏÿü††† 4H|P‚ º Oã••LÏúõ9¼ÿv*N„„°ëôiîW¯Žq÷n}6¤t"¢2A%¡ ú }ªU©Š[«Öè)èV%›Ì‘¸ ÷§]¡úáaß¿Á‘S7H[·‚–†ÖL›8‘sæ@•*¸ººŠiXAtAþW£V£wý&G£nïáâÄWˆ¸ „D OIÁõöm~?ÃØ ùt‹ÜM§º{iÕ`Ésæ¿g¡¯ÏTGG|]]©™©$xà8ê:JTÛŽô=™uãߢ0;F|p‚ Zè‚ ”óÈÉaqTa>t3¼Áð*Þ$Ø"=ÅšïX¼c['!!áÙvJJ .\xf™!FFìtuå@ZîcÞú[O¶¬YÍ¥6-XóãW4ïú±øAtAx½lÚ´‰jÕªVZÊšâbRÕjz?ø‰Åírpk4†ç]ùdÞçÏ|Ÿj˜˜­­-íÛ·f™ .`¢§ÇøjÕeoÏ>GG¾Xó5!G2èÝyÌŸ|]Æ‹WD@„×GµjÕ6lg33Yˆzß÷|Uóþ3+ûÙ;LDná ÛCCC¬¬þüí|c==&88Ð×Ö–9¶¶œiÙ’¹k¿æß¦SÓ6•&­f£¯'zà ÂËFž¬EóYat€Å[¢½Ûvô ,É»÷Zu.ƒßŸ@íÚµ_¹ã«d`Àl##.@Í[ØXk*Sÿóçw!· J|á% ž¡ ÂßYTÄàuìõön`ƤjŒšæM%óºiµìóØN§ª°­Ñè•>Nð¦µ5wÜÜXSµ*_·oÏä-kùüAkú¾ÿu†‰/ƒ ˆº ¼šö¦¦ÒÞÓ“[ òÖ‰UìÙ3›:K©d^—°ÂBRóд *ÇOœ§B}Õ™éë³¼NnôéƒÍÊ|š<’Í‹Æã8RM‘øR‚è‚ðê(Öj™ÁÔóç)4‰O­‚ùñüZwø=…±ÅÅ405åá™\½Èì¹s+\¸ZZrËÍgÌbC;w¯<ËÕËÈVFˆ/ˆ ü Ä-wAø RRRðg•¾>GRyË:v«Lë«ð+&€s¤¤¤ )ÉçÚ™ïé9æºkµèU€Üè·nÝzâò΀dfÆ‘‰Û˜qô;>kC§··P×q”øÂ‚è‚ðr:Éš’ÔÛ·Qïê1~üe MÞüí#Sšzf‡ïçM‡·>¨Á }ûöO3}8ðyI RS™‘ìÆì½3éÓï7Z4Z‡±™øâ«ÐoÞ¼‰¿¿?]ºt¡éçfÞ¾};%%%ôë×ï•ìÕ+ÒJ«ãâø:5ão¾¡[i"n\£Z½ÿÏÀ¦’$n¥‡‘{5˜ çb:wyûµª£êÆÆ¬60 mÄ8ÝmD艵|ÙV­bcÙP|‰á9ûGš§NbâĉìÛ·O^6fÌÆÏŽ;D- ¯´,•Š!ÁÁüøÛ5L>ù„Oœ­ÙyÍG'˜j4\º„¡™9S,¨0àþ }…‚5jàÙ½'!ݾanp.\éÌÃÄýâ‹$¯B ]OOCCC?`¦¦¦¬]»–#FÈË|}}155•[ñ‚ð²óS*‚Þ• ¨¿Zɸní˜ÿóizº§NŽZÍ•£k7z1J£Ã¯e0T KKnµmË|KK¦…¾ÁlÏ/éÑì:-­ÃHÜ‚„g ¦¨è¯ùGºF£!66¨_¿>ëÖ­£Y³f8;;Ëåš7oþÚÿ¡^;SRXú0«m›0<K‡”¯z,˜ÿ–™@ÌÙý ë?Ä÷[f¦¯Ï†fÍèmeÅGaÕñÞÃ9]psÙE}QA‚ðõë×G’$¢££ÿZãúŸØø¬Y³ðóócöìÙ I5jÔ //   ¹œ±±1FFbRáåV ÑðწðÆ`þ4šøãqËÆ}=VÖ+3†¨穪_³Ê•EåýŽB¡ ¿“>mÚ‘_y<3³Gsâö;ç~&,[ƘÐP4þWP.]ÍÔ6ùììÏèÿn¶²B­•F⇓m%º**ùªW®Ìé=X÷›³ò–11x'Cs®Ó²Ñ·雈 „€¶&¼4ÍS‡\•‹¨Qƒž÷î`sø;”;ΰwù ºÎü…¾¾N9 È/(àÒÑuŒ}o‰¸Íþ'éëë3·[7ÞôócLØ8|õ˜™×—.Í·SÙ¢®¨ A]þžb­–¹‘‘H ÃbãW8Ä–2dÚ'dÔ¬Åá£GuÊÞºu ß‚ê–(ùàý"˜ÿU íZµÂ×ÞžI's™\oŸøNd óXך êGD@„ÿMTQcBCÉð>ŠÞ—ëøÀ­7óîÀÀÖö‰å/&Ýäמ8ÙÚ¢/úƒ<æiÙäåääD›6m8øá‡lÙµ‹ùFcð’B˜œ1ŽÎ×biZMT¤ ˆ€.ÞÉŒ ¦„ùcqpš]×øàÍn,:r~‹]’xXT„‰*‘.úuʆ]ê‰ižäYÙäÊ:tˆ6mÚ gdÄ´‰éêáÁ¤k±Œï؇”3ùO½aÔ¯.ú$Â_%þ* ¯¥FÃ̇™xë ‹&QçL(7/]£åûï?ÌSRR˜´d•KJˆ;wãª"˜ÿ“ šuëÆoŸ~ʼ»±lðïÀøðpŽÌ¡ $KÔ ˆ€.Ov='7_o.ž[ÞäÉ|X¹§||©Ö®Ýce“““ùi×.zutEO™MÇ‘ãD>'†•*1wÁ¼›6Cïh ãâ\ùÌg9Qi—EåŸ$n¹ ¯f=|Ⱦ°ÛXmû“ßb8ðźL›öÔ·MÕª;ê3ì­Q"!Ò j­7îуk­[³é›oXbdËUU8KÒï3¨Á$L -D ‚h¡ ¯³¹¹,©bËÁýëQL˜Èh©6Þ÷üé2cÆcÁ<99™#GŽpÀï2IáþÌ6]óÝʰ¶fÖ_p·CGìwÞæ?!U™àýþIEå‚h¡ ¯£B†Å11l÷¿…áÆµ4‹Îâ»-{h:dÈ[åéééü°s'uM™Ùøcô$ }‘ôäŸö§{Â÷èÁe77¶¬XÁ¥’󜸅 zàh-foÐ…×ÂÍÜ\&=%öð>,·í¤_Ãf|?ýJ•žºN¾“ 3ÃÄÄCÈŸ›¿ÒÞÀÊŠkÖ0Ü×—¯6l`[õêê}™ÕØêÜk;Q¡‚ ºPÅ—”°"&†=þ¾h¿YËßž¿ÂØØ'óÌÌLrT%\»{‘F…–Tªâ€Â@œ/c+þÍwÞaRÉŽ­‡YÒ¢?vV±ÄÉqµÜ0Ô9Aüå^jIIIøúúþa¹N}û²6>ž-¡Á”ØKÍóWÙðÙgô9…¡!ÄÅ=¶Ž··7Knäà ŒnÛŸ3×®‰`þ ´â»ÏÛ_~É^÷½|Ø¥3›Úåñeí:ôwh$*N]^V^^^ >ü©¯3Ð †©T¨/œ£ö©3Ì1gwwòŒŒ8|ü¸Üâ+ZIK¢2›7Oqh;–66"…ë+D¡¯QÓ¦œY°€kÛ·³pÍ ì÷6o¶LešcMU«ƒø<Ðáåó¤IÕúúììó+F&îî]Οϼ¡Cãç‡qµÇS‡æææâ¾u%Ý:öÇóá ¦™ÊüÑÓ±´Ï`_UzÆÆô˜:•›ï½Çá X³üÃ;u©c&רÁû5°76%ˆ€./‰'žùºÞxÕ*îÚ‘eï½OXt,M,`Z|<ë²²0|Ê|ä!ƒ8yõ#g.¢¦M%¦ œŒ°´·@ oiɈE‹ZPÀÇù~ãV¾¨R…å}z3²^=>v¬›•µ¨(AtAxž  âÝg½þߣjز·WovöêCl|2-׬åЃ ”$ŽÌ5 W®\ÁÛۛɓ'ãŸéG›:iT»£Û¾)*¼"vss:üç?t7Žoïßçç={ØöËAvwëF›V.Lu¬ÉP{{LDê^AtAx>_À§õOηÐçA7z½õ6¿Ù×ÅäŠýæ.dKR½% ý'¬sÇÇ C- ú»b¤'ádX+#cÜZ¶•]Á26~æëÉ@PF×~ù…6næƒZµ˜Ùµ }ª3ÀÎŽ·ll¨$:A "  Âó¡Ño7~îÕ‡Ãíz’ïCïƒgÙåíÍ;*–”UÇS *IxŸ§V&dæÑÉ©.XÙT•ZA +-ýã?p––ôš4‰ž~H¢¯/‡ãlf&ïÛÚB»öt®]›¶¶ô³µ¥–È= ˆ€.O²“‚€N\wuáL뎄W¥ó…K|õý'h32˜$I<©Ïò¾jtKSÒµ …‚ª•šS·j êVu*èRèéQ£M>iÓ†™ yÑQ\¹t‰37½XYZ W7Z6jÄ;;zW®L ŒÅ­yAtA(sü¿CÆ~¯ZÈÕªñ*Îãøþ…Ä™¿qR&üø`å~Þ½Ÿê à Ž`h­ ¥5JCc\õÌ©•ƒËµ4©QCTº ãИ1Ï|½r|<<=±7Òãr'ŽwîÈŠÆ­Ð:;Cj*ö¡¡T åÀÑ£Ô33C †D@^KùÃÓ©&d« ¸Ó :±µœ¹Ú¾%a¥-±*PÑ9à>½îÝcBÀfæçc Ih‡– Î‡´ú¶‘IZ»F|v;Œë iú $ ½ÿ–d…§¶ÿ–y TË›¢YM†Å>B%}¼Öį~c;4£ùþýXÖ­K[[[ÜÌÍiaaA##ê[Ya¦¯/*Z]xõi´*²2ÃÉŽ%*SIP~qÅÜ-M%õëeÄÛÖÂÀŠÆÉ)ÔeÒ‘ºÜÛƒsVjC-ûK@eù&zDX[€G$U­*óŸÈhôsÊn{N¾óÐ-4LTºðÜèI`Ÿ/aš.w£‘îEsXq–6á× ŠÀ;á6^E)•H6p ×¾:6––4±³ÃI¡ÀÙȈÆ66T+.¦ž ö––è‰$7«Ћ‹‹Yºt)†††L˜0ggg”J%_~ùíÝOY‡Ÿª¦¿X umb+³†ÕE‹Ä K4ºWfcŒgW&¨W¹Û£lúhbD.üŠ™ 3ÁxAbt—¸COdŒ#¨ Ó3Ðò%ÒÝÐôG³Ý0ÀÎÑë!Sk‘<ŸCH IrA#!A !4¡éºNÂbÁÐtâ±(áð(‘0“ÑÑD‚¸!ˆ °neÜê âpbØíÈE·ÛЭVrÆ'L³  à²ZùS?9¡0áh”¼ïž³&+“š~ÉKw5ÿ~Äß7}Bþ¾Eüa#ŽÞ^ì+rqÄb¬Ä`ÝX””úºø8Ýñ”Ïýß| @ÁÀ€ép||\ÕBK@‡Ï?ûìÍؼ?›œI_Oe8ØIbx„Øëþ Á«@EY:Û2O”Æ;IDATz6_åg3–—A<ËɤtI8 =ëðiĬN 4Òb1lñ6!pHphéiidØld8¤;ØívtMC3 4Ã@º!°] ,B&%:Ð5Ðøä$‰xRõ"YO%ë5‰”—»‚ŒŒ t]G×t4]O~×Ï.:šþÓ6hhÓi´¹ÛI妛,ÚOéîg]|íʘyôgï­MŸkî1kS{o÷å Ó,”äÿîWl€Ê·ëúÏÔ suÐu¢¢"úûûMUHçê°}ûv‚Á “ÎÐe±X(,,$¶€Ï>f¶mÛFkk+¦ÖáòåËTUU166fZ |>½½½466²{÷nÊËËM©C~~>ÝÝÝøý~jkkßo@ÿ%Ö­[7=tät:Y¾|9ÕÕÕÓ=u³8ð\®]»†ÃáÀçóÈÏÏ7¥¡Pˆ³gÏrêÔ)S:íÌ)ÍŒ×ëÅçóqâÄ Ój‹ÅèêêÂï÷“H$Ø»w¯)uÈËË£¼¼œƒråÊÓô¶¶68@qq1·nÝâøñã úÜ[ßCÿäêÕ«¸\.>lêJLJÉ7øÛ<3Y}Ì\¿~¾¾>\.555¦»þû÷ïóøñc***زe‹iËAmm-ëׯÇãñ°k×.S× /^¼`dd„²²2ÓêpéÒ%Âá0UUUäæšó] ‘H„ . ¥äСC¬^½úÃ è …B¡P(Þ êí …B¡P¨€®P( …Bt…B¡P(* + …B¡P]¡P( Ð …B¡P¨€®P( …Bt…B¡P(3ù/ëòþˆ¦QßIEND®B`‚pymvpa-0.4.8/doc/pics/ex_projections.pdf000066400000000000000000007564551174541445200203250ustar00rootroot00000000000000%PDF-1.4 %¬Ü «º 1 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 2 0 obj << /CreationDate (D:20081113013352-04'00') /Producer (matplotlib pdf backend) /Creator (matplotlib 0.98.1, http://matplotlib.sf.net) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Type /Page /Resources 10 0 R /Parent 3 0 R /MediaBox [ 0 0 576 576 ] >> endobj 10 0 obj << /Pattern 8 0 R /XObject 9 0 R /Font 6 0 R /ExtGState 7 0 R /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] >> endobj 5 0 obj << /Filter /FlateDecode /Length 11 0 R >> stream xœ¤½ËŽoKrÞ7¯§¨¡=)åý2d à,Âz[&`œ–ANôúþ~‘¹j׊̮`’§›û¬ÿŒŒ¼Åõ‹ôùOŸñó_ôÏüŸáóoŸµ7ý÷_ößüó—þôü·þýÇ¿×ßû=}摾FuŒ”ke ù+Íco¥Gÿý/ÿ½ÆñUôƒú©ýÿ~ž¿Êxÿzù÷1ÇŸ¿sýªßþü·ÿúù_>ÿ›Øý§ÏðUñû—XÂWJ}ŽžëÈŸ¥–¯Þó,"ŒðóüJ=‡VC¬ö¹é¯‡Pj€Ï˜ÅdŒ-ö˜Š}Ž#÷FjU¼ÇÜ¿º~½ÚÔ÷üUCˆ)Î0yÿJc†<Öàé«åÑz q”M®ú̽¤¨ïñ«éçklúçB4˜d1sŽã2z™_úñ¹\ø×}ÿµÌüŽéë»ØÓþJ1Uèøbÿš­‰:÷ØŒ^+ÞJŽ­Ž’nôÂÔ5ÝÆ/ð_´}fÊþõ½•‘KÖúÇËüõ½kÁFõ&>OîÅï†?–ϱ,¿›¾ß=¿n¾uå»I¹EÓÐ^:#½®£:F¯Ú©©ÛU2Cº·ù.>+g-$KÍn¢’êlë{СÔéÍD•ªÝd:¬]ÌkK}å2ÅnÑù5úja+¡2×R¾ŠÆÖĵX›^·áÐnÕ±×wÉB¿ÏUSoäéK„«*öÛðMÿºB»±}‰J[ÅèÝô%¶Yš–¦N[j/¾ð%YIÐè§]%¹F]€úì*µvÌeülwcÈqJþõpr¶Øty_æ¯ïºJõŠheú)>Oî¥ï‡÷«çÙ?VßMÿØ=¿í>»Iõmå¬Û·s/Ý;ºÊcÐyåõ“C3÷U¶ï:”z7’. ã°ò“¡jy}×AÏZòõÒ–/ŽŠ®<Ûµëhé\VØ4úÂãQ†vgµ¶/±;‹äSú¦—HRæ<¢GÔ¯¡ßOµÌXnôE7cŠ’¨þÕmü" êÒäüÇÿÙø-/5ÃÍ>}Í0$™ÎÅó×)==ŒUoi\,ÐKú¬í ×îF¯›Å@*Îsôi¼kªs¬òLêäêÿFJóãœ:‡!iÖY‡èNúCôïáß+÷ùæýã²ònîïóù–݇Ûy¶7uç½% UÒoºÖ›Î.äµ7×i%誷ÏRh§NÃ\[SóÓYÖP“V¾å/=q:\½§¹ù×aìE×A-qËg=¹šÔ^}жÐ?ö™÷$H å™Þ˜Cï†Æá»Nº~~èÉõBŽJ£Kt¤>Òeô:¿tm4­ÞXûòͼ„óMMˆ[…ú1u}FоŸFý–œ¾ýQW0Û M’oC Ül7ú¬½PcNSwÿmx»Èx6t4nÜëÔ¥Þc¬ .º sÚMáyz/|7þ±vŽÿcíÝüÏ­óÛγ'þ‡¡¤S­ƒ KW,êïö¯ª³&æRìR©×Úã#¢Ñtûή/I›u!J=×9È’l@YlíkÖŠòÒ–¨¦î:i8\1úœ:v›þÇÈõ]2Òë‹0õ½êÁ è.5ÏMÏ4®^›Já“´ªõÂyzSæQeRÜÆÇÐJä¹µ!Ï~„}TWiLÐûéÇ/¨¾Ë`õÒÓßnUš³žq»¤t%©v×à~?Éu+Â\¨=çÛðÅØ×ÏIǸ±/ýGƒÞsÓŽéWžd™oºøP€ñyz/~?¾_>Ï¿[}?ýcóü²÷¼**5_'¬è¡L˜}è*I¾^¤n}ÔPµž:Y1Ùwé"©´¥µW²€*.š.$DFˆŒ73ëô=….Gû®oZŠ.Ýq«íX‘}hêKÔ¦cŽáúhýQÏUF;[ºž~_fAñBÏ Š…”õôËø#L‰ †ç_ïNüMÚ—=Hnþ¼OzŒªô·%k'?}Ï\îqÔ5}=p°èV?òif.6÷—áeeÓ#%²ya_ßEÊGÜçôõ]WtKA¯B¿ˆÏÑâwãŸË÷æÿ\þ÷üÏíóÛö[V}þ’¦š¦¶/f+^*=²GN¶Aõ è”È´%ÚwCé¾A÷ò6ÌdjJ:¯|×#2’þJÙ~ ™Å-ñÉ@Xß&eª!.z½¹²«uRíÑÍYìYüëDoz½p yusÒ#¤g-¥õhxr]UIÛuÎí¶ñÃëM6cÒÿõ ûÒížtmÜÇ*ÿ9}}×-¨-f‹âÓw©Ú­†±Ï—¶‹þlÕq£—¼´üM«Çm|TeýQ¦ø˜7þeè•Ñ/ý‹Ëüu÷i%¤0ÜJ‡øù!}7ü±zoöÏÕOÿÜ=¿í>ÛŸ!êÈ•%Ói†×=?[Åí¡ýtÓjCKͰ ê»4& €0u€ª. ](=ø ´–úµŽÒó9¥ë׿ÜrJ±0ºÊªO}–†3;N©Ë‰‡,à\Æ‚>ë8˘”ж|&M?®K¦±yjìN]tzu¸\üØ:êz_ôëÒìóOÎ?ø,ε3Dl+ë&ÎM ƒMÏXYêÚKpæ/Ò/Ýë‘ Ú ZL½‰9¤=®p»)§˜nãgc¿D¶ëɾ–X¯²tS ŸÒ9{¾×&“Xw<'¼ƒÞÉÞï—ÎóïWÞÏßmœC~ïçÕQÙ¬±qõêÜw»çõ¤¡Ã謘E_¿ô;²Asèe½Ò²CŒëÇ–Å-Þ5Vìщâ4®{^S†`“©7çz¦±ŸGeYäe_*‰ŒàbïTnRÓÍ6Üôz ËÔÕaÏ(®öyæÖ;åéõŽJ—ÓS{¿Œ¯é25|“­_ø×tá?ëžZ﬛?÷€¬õëØvß[~úž¥.J©2m…¤ꦞWr½ëýuŒz}À½vÒ.Nî'¾Pì×ù9yŒîÌ•ÔÚ¼ ïM~Èþ=ú¹v/æÏ¥MýÜ9¿í<¯f¼¨âB‡±¤ÈVí‰(,š ?›º’,‚í»”­Ü‹^ÓftÆp.e€&&CåLmϘ¬ˆ(þ¥oÛwÝê}¶4·_Lo°,Ö¡cl‰1ë·§-qB÷uÃ{bMB•&Ô/äx^d ƒ—þÕt²¥˜§å´rÌ—fÌ-Uùv þ˜»¾k^¥ã*,Û­øSvú®eÖå¢_ë¤ ªšù›â¸Ñg¬¨:d–¥qºæ)sy^ø×wYQ‘¨6ã1ÿŒÿ>àœit‘Ÿ£÷âwÿÖîóÍüǹònòïóù–݇Ûwþ.ÕÌ¥J¶-â¿ÕXú‹¨Ý¨Øx $9ÙÅ]KZ‘4ÉAG*>‘<é42ìN×jmAOGÀ Ü~é8ºŠ}˜ tÉ7›Þxü ºÌ {¥Úw)7ºlzëwÝÄ·±"‰2“4zTì ½Î¯$£· ç2~ÃÛ/S6Îå?vü믋ÿ„°„鿝ïQ?¦Ë í¯C~¸}¢¬»>Âò‹á‘t¡ÈhØÑ G/ÅcF5ÄËø¦¶,ê=yó¯ïši+Dvâeþú>uYêYßçø->OîÅï‡?–ïÍþ¹üïéŸÛç·íç/ÔÚ¿1°¤­¬µì• V ˜·´êv–†Á ¹tô]×z—Srßž Ôß–Pí»žé‘µòslO†LǬ7—\×+; KÒc;2´´Úh„’ôóNÌw=}“‡0%I]i’U'’BÌZ {¹ÑK‹cp«ÕxžgÇ‹’K¼qà¾O]kô÷ä›F÷ÖiæµQÞÂkxgsã–HË 4tJª¼wýF/ÚÔGÌ‹ËðÓ˜¯xÑÆ…ûf–¥v^/Ø>Çä›™–Ò7+q«Sxžþ¾ÿX<Çþ±öïéŸ{ç·½g¶Ž3q§s+µùSÇA MeƒÝÙ¤37o8uíûŠ_Çf'¿&Cà-¬Ïü:jË:Èøý"îI ¬Ê Y–£-7ôhв9 ñµOý£ÑdJ®Ý²èeÅ&­± ¬¥€mšÇ:ˆž¼IYÏY ïáõžèÜë^ Ú–ådŸï°Ÿ°ìÁ|Ï^×ì‘)“AWÚþKz|/6¸l 3Í÷8Zji('½.FÂYw_»ßŒÝ^½µÿ]ª^+¤xðŽœó׿"Õê¥;åçèñ¿Æ¿,ß‹ÿËò¿æîžß6ÛsXŠØ—@$Ù{²ù$†:,×i IÒ™äk`îUަŒËɲü©+!”õ¹J‘xmøÏnéMöæÀ± cx.ÊÜŸuJ;±—,Ó\ÌM­´ü`kÓ-9C¼óê}ò9DÌD1/Ôº¤VY$ecK¿Ò ÒugÉø±Ï?9ÿȬ›?©¦Ñ\6ïyó9Èî–ÐmY?ßRÓÞ×ó§+؇¾ZZ†nH©éBlYzK5µõùçÐÃ’2ÚÀ[ŸOƇådW¤høir2DL@(~BóÔN䯱?Ž{s~,÷kÞ~³|þºÕ¼þ ŒéÁZ%Iç¶ãÐBÝÞyN /­# F’µÉ NÄ·íD!Ùf‘8ã\߉”˰ËË%QI¿Ÿ‡y,ñ+L©&ºÛÓ“§d‰;zŠb’“ ¦ò ìôŸ”d=жŒ1ò^’‘mJº^F'W¢ r¢ž$¨?¼›ÓÞQGÛÜîÔ×ÜI•àþ9º²x~ÊΜFºîò”wj&ïN*i¿Ñ§•öÓ‰1ÞÆÏÆ}oºèÆÉ~$¦¨…’b=úÇ1÷h!Å.QÙÑä^ô~ô÷ÒÜû•÷³ïœCzïw$9Á½^½/{Tªq×k™ƒ=î6»€1sÞ ˜Yú\!0}•®c/#s}­²õˆ´¶LyÝæº7Æè ¿¹lšÑQ«réðw˜ž×•á¤gKOq¨ßaýI½Å•ठ©¯šM¿‘‹OÙ'}eIøÑeŒê?îÃrã>÷øÌóJ°rsוšt;DR+Œþ-;’.¤‡Iu›Ã6J"­#py¥0nôUºd$ã¸ßà¿&KZºñß¾pméJªiÜæ/Õ.I5”‘’ûM~ŽÞ‹ß ïÏq¬½›½Û9¿í»Rêäg¢Zæ l¼–zÓ$à¹cžcKi…Œôûxºeö2¬!ÍoyëÈ›ÆÛþ$$©Ÿ×¡6gŸþ¤MÐ;¯åŠHdX­¸Ì,¢¡3®§$´ï+@6K%÷q…›tCp\Ów<æEž8‚Ú¹4~‰W=ßx'¨ézAÍßá˜×Ôuÿ q>æŸxÝOÑÊ; |Ç;Ñßšn1²€OúÉ ##eXDâûMÓ±x©ç_SûNö"yê—és!½Ñ?üE|žÞKß ï×Îq¬¼›½ß8¿í»gg2:i±þq­&¬ÍN ÌŽÆëZÑ9LF†Ò%¾•v@°,aÑÉæ]^d)$ÒŸëÊ­".ƒbH‹ÇžÈ¤~5)y9ÏggJR¹’þDJ«ä¨¡í­Õ¥ñ`Øð–zÆ;j¾ÑãÒ¯E²_Y ~ø¤¥•r>ÇòÐýdþÃâ„úq½÷;eâ=s©Kü!®ÛÌKM—·Ô7ÉXkYHw”ÝZ?©e¶·ÔÄåì;BùcdÛ2â›À—ÛÁ7q#ÄT¤¥6?ëõ’ˆ½&ÚD‡ÐNò·ÐÏÑß‹vrÿ^ôcîï=sÊîµãÖž$z@¦wDéæHû1Y²2‰àR«»Œ§½çƒT?RÒÞôI ôäZ×®“2¤K:Ö^öÂJãî:ƒyGpI>èäQ罩#¾2غ,nà¦)>–ktú^Ö}ˆ:JØÓûAýa×s‰ˆì6¸ônšÜŸœ÷ŸÌ°³ sÓèöÿ9÷Àm#ó8åÐ÷âüÝ·¥^EôÍeí°¸zVõ6U«©8èÙ<âVA:íexb’ú}íÇû…}ôKmÅ$“v™>j ‰œuXÉ€ž'÷²÷ÿ—îdß/½Ÿþ{ëâ{ï<ۛ蠇 K&ð2¦c긠èéAÈue»6Ù÷ºƒãØšF°9/ë;iÜ_}nM#“[%º®‚¥ž-{!¬¢t ý^Í•ŸQdp˜…½Àù aä°R'i]²Ý—ÂÓcs6i>×óeüˆ]HÙK^E žÿÿaJÕ[.B7ÿbÙœ–ŸB‚Ÿò£hHZ‰é{»,ˆBzKñF?« Ì•oãOã¿óœ¦ÿóKßlíŠ-7œçÚ})?™Öoñ9òCünøcùûÇò¿§nŸß¶tZ:M7G 55•¿/µ–À’ö'þ ÝÄd«ð8Ì"UHß’=Ó Ò8Íi¬Ï©L²¯‚ùŸõYJp§ÿZ´|‚´Ãžüu¶ž“ÑÉÏÐV”™F@¯ìÏi‘ïžL¿NÈKû5ù ŽH¢MMß ýؼrYF§nÔýùç|N„3æv–¸yS¹D>#»œ{ï%µ>7"…úóÎüÐ6ÃM„õåÉÉŒÈxVeúöxŽNfÌk™§Ç3o™#Q¡¡¥?çÎw’Þ5°¶É!¹ƒÜ þÞ­ÛÁ¾[v?}·k¼ôÞ{îÈ ¡T‡jb1X,Œh¥ sì€{–ù7©Ó[±2 =´¸1÷ ,8ô%Ûw-IlHs_ƒ¢-^ K+©¤óãeMÏùË$vYÑäŠvòWÊÊ £PE—IÒó4—¯'§EÉ}9²<¹U(’’ýÜ^ïÁÓi :ÎuWA9Þ#¼““[–/ÈÏÝ µj9Ž'àþ’Ù÷ZQbêOÀ=‘®-#éB/~õØ“1ûmülì‹ßÞÆ…"⾆fØ/Ó'çePñŠU”zñyz'}?¼[;Ͻ_y?{¿s~Ýy+³]xàÐÝ:©lUâ ¡X^št¦.k Øê{"ÔÔ%A{‚ø£l«4K1Í®rª ëŸC®ñª^‡fßõ²â—âm§tJ»‹Ý.Ø)Ô^Ó½Öö):ÿ²3"Ñ@æ¡¥+Px¡Ïö%]ª?n‰ãë²3Q æ¼ño—P¶t±'=í5ònd±è–šûó#G~ß ,žcÿX|7ýsóü¶ùŽl:~è¬è¨Z‹>¾€H-}XU‹¡è$7ûž¥ãhîß©ƒ–þ4g¶“ɧӫkeÅW™=fjçì{$PšºS» ãd_Úzúÿ*ÅE CE–2“Þ‚´2²d‚Kq“ÚnôE‘…šâ:¶~ü¬ÇŒ|›œú¼ñŸŒÜë±ôó—^¨u¤š¼=…‰/ùIØÃR–;³f=¾äU,  ¹.|LÝh9݆§ìX€„ta¿‚YC"fÇð>§_¿:“U`œÒóä^ú~x¿zžýcõÝôÝóÛîó—*YR¡€óÁǠסJ›æXÙŠÊÛÇÊ ëö] ^Æ•º(µ¥¤BÂâúž v­Aë-Äë‘plF 6Ï$C{«5dH3µ1hãÉêÕ‹—kWßõHtÐ|Hbû¦Qª­›aÞè)”Å­Ö.ã‹]m:Ý•æI>ùG #7к-ˆŸó×ÏIýªTA¦ö$©ü_0­3GÜšK«¤ØH÷ÿ._È­(bq—/ÃÅ#% €¤\.ì“haÉz¸q.Ó§*òiª.ÓE|žÞ‹ß,Ÿãÿ\þ÷üÏíóËî[J)ꈴMÉêu(~Å GêŒ6>‘©5K:”ÚíÛïl¾–©«h…3ý <Ø(®¯Pã”BŒ³2À¥¥OËHVìcþ8Ùñ¨g;îÐëˆ8Á-JHxÙ¿‹v’p•;ªòº ;°o'óÉ|¡ºÍ•ôžz"¤]Bßà9oÉIÓâ-Ö忣TóÜÊ¢0œ­“¾†Ûºçvž0íÈZó ÜsIödažv›=~"âR0êExžÞ ߬ãÿ\û÷üÏ­óÛÎ;ªãÉ%¡n>„ý—3’šR6žâcÙ^™D—5V2W´¹»L˜cvL`ãÀƒ„ß·ìc¬Žü®Ú×wrQœëS{uì“‚¤_kZÝv›>)Lú„ºY/Âsä‡ìßû¥;Ø?—þ=}·uñ½wÞºB'® 4¬8F$í'˜çžƒ/Í|²° <^Ýù˿Ȗ䩚ä?¾K/×M’— MÖ±N<¡¾”®çL´{îÐ& µéc!x4=¥x6vèŒtŽ’A%“¦ôr½Ú‹íB_¹rñë ƒó;Ưأ±ÿùÂ>`5ú}™ÃcGßÓ¯ý‹ 3Ýœÿ?¤ŽQìüñm}ËLdVæ 99&2AÈ¥å2|ŽÆ¾6“y·ö¹ö*\Ýn¡cúì7Y%²¤tŸ£?ÄïÆ?–ÏñïWßMÿÜ<¿ì½A,êfÀ«lhŽšŸ´Þ–ítÿmÛÔÒ³s4†RB‰c݆À…¿¹î_ßcáïöc£X°àÇCÁ6ùêïTjúòxblíuÔIî“hÃ@¦Ë¦”¨U)¹5l?¢„õFo1¶ŽÚJfòãë4§fw5Ýø/Æ åA só·!錩<>—üH>OäòŽ•´”©Jãºö²œôãk6üˆ2åçmüiüS‘/ìãÒm$•1´q™¾Õ“©‹A=yñyúCüïáÕsÜ«ïfìžßvߥœ“ ïÐGå!Ó\pþRÕ¿Þx<&Ä÷)]`t¤Z‘"¸ùBÝ ïšîþ´’€‡(zX–¢ ¯8îêú»&”UF£ï:¹Íê×Zd¾Žþö€˜´ðp›N¼‘Ëh&¿@µ~>~¾R ·Ýýû¤lÖíÿqÓ§,—è3ëoôN|ÿR#E®<åŒ2ÒªÕ/Î=hºÃµ=¼?á¿;.ì›Ã¨Q™añcúTc¢K’%?NéyòCøïѵsÌkï&ìßöÞzå#©÷#†2ŽUB5i„í½—¼>À{[­dòª·âI^ĦK¸†W­H¡|K,.?nèK<"/–ñß3¨©eyÉÄ}‡m¡“à~–¼Á[H•`¸«WÈ ‚È;s¿‘“_F¦á¨Ë‡íGO Z•ÌNcwÜGã^G¿¤ÇÎ{M^Z§¼ì»žþºøöáœÂ¹ªÇ=Þè3ek!ÞÆg»u¬}—º8þɘš'…x™~"aV"@?/âsäNø~ð×Ò}¾yÿ8WÞÏýµq>ߢûpûn…çÙRÉr«£ÅÉs–!-Â\L¤ûYîeG¤ünÊ.Ìc×(Ù Åîì¶¾Kù¶zÀùÊ–íEj åzÿdèÎ9ˤo$r˵¸ƒI¹. R÷_%DQ"`ŠVKFm Õ3ñFßa‡zºÆ9¾¬Ž/Z±c;ö“¾Ã‹;òøšž oÇŽ\¾äÇw^™C‚èì¬@4òF/$. rÊmüÿɼýõÆÿ´4#²Ó[¹Í‚c™uÞäçèù¿Æ¿¬ß‹ÿËú¿æÙ?¿í¿XD›!$уÁž‚¥—B‡oå9%ðat·KÕ^a`ʵqjz²U´ÌÒд^aŠj ~B7‹~ž:¯ b+ ñQ·³ÁZÊä\ –±lxG›^S‘9nÂÂÖÐÏW³Inô”ââGùä5>9_º™u å|aH’B{H[}OXO­å‚Árâ+¤¬‘Ì/l~£Ýè+õPJ³‘nãW㦨xò¯‡“GUƒÌx›Ö Àt“ž£>¤ïF?VïÍý±øïÉŸ{ç·½·¬%Rñ§–¼lY²¬ÓJu„¸Âs§ö <Ÿm¬3Q2´l]ƒQ!¸ñXsèî–ŒÙì{ʉ‹)Œ'ì ‰¨Å¥Íƒ„ιŸÉiIÖaiA[¶†¾Œ O_t“á~ëùÏîþ9~w@Í‚v9ùO_ûMÛZpó'݈w-í'>íå„©¬b3\/²öÎÅp¡¶ÍÜ@¢ß ´ì#¦"ܸͮÇ8j òÆ 6ífo›¹ &åt‘ž§÷Ò÷ãûÕóü«ïæìž_6ßzè»T+ÂZ}2®ôuF rí¡§4G§ Åh•èžé\Eý‰Å6‡–™6ºU²C~ʬß³Ü AÇ2ôÙ±"Ìdcá\Ó±õ]¹“ä½³¹@>#\1,ÏÓžj]gëòñôù‹šUŠtæmx‚’`7î häì…?¹r?gO䥂ßÔÈð)ÐZIïé 1BËàrÊ{(`k½ÏËè1ó$דwÂ<§©E8™G+”’ÖHºÑEpžÜ Þ ~¬›ãýXw7õcßü¶ïŽx',q'Km2Z—f‹{zçáñzê¤D*! uRÚr XÒ5EQƒs³s§>k¼'ç¼SÖ€‹xEÌì·ð¾/zìÞFª—"¡MÊqJlzÒePý-`9HW}¡Eôd8VÃe_efnü` ýRžZX ñŽ2õû;Ûö˜>YgøòfhõQ†Š/Xσ#ܙģQˆÞè)DÁ8,—ú¾÷ʯ<¸7$]QVr™=†³vO7á9òCøïáÏÅ{s.þ{öçæùmó-ÔúN˜*Xºn\—|Ö—¶ÛÊv25 ”É^•$h‚9Ö±pv¥QÔU,ˆjH'{8ζÒ$oË’œBtûÎʈ‹²üÅå$ép˜÷f¶ µrÀNä4·²{H%E7.µ§'MFª6h3·á -IåJ Óêdht²lvó#7}P‡§4а:fxé¡€J’O‰ÛÍ¢­ P{°~ž\ ^7œ…©\F¯x+õ86íœzá¾Z•2†t&ç'‚`TŠ‹ì<¹—½þX;Çþ±önöÇÞùmï­žÒ‚†![öñË$Wg]¹öä‡S¼Àõdß#X%:@k«H ÙJ±ÆÊµ§h:Qjøi)_àÎW2†¦:J3؈‰!ÙÙ=mß= ÅqÏuQ' Ó¹6ŠnNpØå.¨-×6ÚÚ‹õ•ê®_¯™”^ûî¦ñ¶âe¯å¹XÿˆÎè#Fí,ñäµéM¸¡ÜÈ)Ê ø­ýXnÃcŸ æzcåPFçìM¹!´Ÿ#ŸÂ;èìñßKwòïVþ˜ÿ{çœâ{í¼ïòãÌyKqÇØ©D [`¦§üÿ®åU­@ªÆ)vÁÍXѽîe©%¿[O$0k­|×óƒIöÒ…Ÿ(Y¾4¼™—ñ©Öï€3.ì'h¦·ÍËô韤 JKéyr/ü÷èÇÚ9æµw“?÷Îo{ïp1¦5\ëXàó‡3%ó’ÔÓUë ðu7YÎâÁQ ì$ÕõÈYð¼a+³¥)QݺžH¯R•q¯€8)^;ɪXQ¨ÊÉßùìzbwŽN€> ñFßÅßãôXÀÔd Ôqá(Lù<ùæ?gOÔ)éÈŒÖvÈî-½R’†~ ?mpðt-™à¤èlwÊý2>°$‚‚ìpãÜQ“0SúeúPƒ„—¬]Äçé½øÝøÇò9þÕwó?vϯ»ïȸÇu¶’ÒvçQAÞé¡f=hÚȵd»óòÇ…'û‡ …'s}'çw¢?ÂFJ%¬ª‘lÉôP™O5ÃH¥åŒ[-u+u§ÐÐeÁKÅ­5`£Š›ƒ|£VâZqc\†7ô¤r5¼°o)à[¤åLøçô)ý¨z>cøÆ9þ!<}%*3ZÜ™C Âà©”äžÔx­µJY$é6v7Þ®ñtãn.„læœñ2õŽgtfª‹¼Ü>ßĹ¿wëöùfþã²îï©»}óù݇Ûw—ûT\‡0ü(0½„Y©ù‹û>ÕÍ)Œ«€Ô ü&Ø…ûF*4¯¤>rÁ‹ ­9IûBë5XÝ8Žê[CÔ-˜áÄˉ§¶n¤@NA2rÑë¬é-(èÙ†qEF‡¬‚2oôzœÈ…áÞÆ×ÛÖŸL9´ÿ¸~Ä\4 þ¯sþxŽ"…bc>1ƒ—üð<ÉèÀ„{ºêòÓ_(»~È‘'R€˜qn—Ñ9CÞê ÷¼ÅôÚ-+ á'OÜÔX²¸/Âsä^ö~t¿vŽy¿ônê~çüºóü]j°ï9ƒ"WZÍx—GÞ$–»](±´Ð ^ؾ| –gàŒµÐù©'¹õ;‘N•~>J*€¿³Ôð@˜cHvN[uh‹’7†å®E—)_¢Ü¨0`Ú0¨ž^G|ÒƒŽÛøuYêÃôÑ ÿÅøgcï8ó{þx«Y7̈ç˜þ”‰Ž ÖÂS'×-‡‚àæ…>[î:Pt£¥ËøÙr×3~·œ/üô;qmàÊ/óÏ–¼^QÞx‘Ÿ§÷ò÷ãûõóüëÿžÿ¹~Û˺ŸÖ[C[‘X‰*—r™sá…†±P%5á¸JˆÍ¹–Âü°`ýŒ³ÆÀÊX„ù”ØJŽÒC¾S쀅ÿÿB•ñÓJluÎHnÜwÎB«H 73™µ¥ƒÐÕ7`¨£—ê‡ôgØ&ªž6Ö=­,ü.Ï~†ý@ßßö£¿¦O³7ÐÞ[xÚB¿¤GQÃ=oùâ«ÿ½èÅå$'GœÐøËet|…Ù «O;¸`6%ü–ýå'O’¶^\ ó1/Ùyr/{?¼_;Ͼ_{?ûcïü¶÷ŽBZp*·ÎÓ¬ÙYXj)€ÑÌ/ÒSœï„hè>Ÿ8/ÖÇúÎ#€YõÄBˆÀ¯í¾yxéô—äI›4EÁŸ´ÚòÕDe ˆªO$¼,gµ¶~ (05òžŽ=zTgêñ6|¶÷Ÿ²ŸG·úfþƒ¯0˜mzÃ×ä±'ðŽü¤Dþ‘ÝŸ 彿“µïÜ;´Ëí³Ô J„au¼ÆþXŸAC Û€òßœz(áß§—äY[faŒ¼§yí ~Ëüãú½fçï%ÿðÓ~ï˜ÏßwÜ Ígvt‹À¯®úÓ4±KƒÔò8b™¯¥:W`HéÂnOâH¥6ʲk—ï™–ªc±’¸Aò¦õÛµÏ@"eƒ¢Ø¯CáaËGßN,ý~ù­O-leUßcgÄv£ï;Y­Ùm|šÆ XMÛƒâØÇÈ#ÎÛè¦ÙÞ¬‡Uh߉#?ÄGâG$yl@dëˤËBÇ¢Í=}™héFzòm|΀'ŽOÏ›7û\€jaæmúôÆnD-е?<Äçèñ¿†?WïÍý±øïÉŸ{ç·½÷4CNÒl‡ùþW‡ k Qq&þmusÎØ¦èõö=‘-ÙÃÝÇ£t<“Ý$›µé}ÄžÖP`E/¨xûÅ.°—3Ì;Î?Ämp‰²=­«Ù¦70 ¢óÓN·ªNÊݼ‘[ã™A.Cí·áÑýd9ŽfسŸý úês9¼¦<‰QÅžŸÚ÷—ø2E8’]Þ87Öî¬ 5oô²R(¦¥Q¹Ÿ \¤‚ºÿÐ: Ø[•†Ÿ?° ”¸tÊXNñyr/}?¼_=Ͼ_}?}¿{~Ý}ÏþÌ@J¦…oØé•Cè¢ï6Èô#%8øh%Í3'^ò½¿(Jm€P­ŠíIÿ?ÿ<šd~gSñMµ›NÜîãëé Ky¡ÕO¾O˜8Z[¸–oìgcD§ù”Q¼¦ŸiØ‚“/ƒ¼Ä—¾¨øwd°h3P)…ºÑã´¤,ˆ$ëÛøþ«ßbðÁ?ûO[K7èÎù[ÇíþZÃö;äçé½üýø~ý<ÿnùýôýîùu÷9;~VËÏà&« :v’5šu™– µMzt·Ï™6§ –"­‡åÁän€…æÙÅÚp&Z7‚”1±ý5p~z•}Vft2>Èn¾šZë°?+—­=®à«ö‰¥{b Бi—­ñÚÇ9tE9K<*–$üb܃0Îsd€×nÚa5X§—²åE¼eXìŽÀòƒ Ú4TÃŒ–'f3Dš #C?4’Ö«‚öq2Nï! ái°Å¯i¯Ï$dhnÁzyüÙÇIìþsèc¹><ã~±Nû²U~ÈìÃí³廊—þ·ÑPû¬S)UA÷¾Yë´ ¤VPÿ2Û÷F%*çcqñŠáñZß55 -ã“o†ã-ì~×dÜØ¶“ªûeŽÝz>¬¦«ú“ŽÔrƄ峎º.sÒ¸)‹l7rp؉8ÛñæG‡MÇ8=ÏŽy /+áê¼ý~nò ì^’¶<æêáaM³2ü•ºÍ]]šŽþwÞèi¨Ó°Û]ãÇå¶”µ0ó…} >»õ,Šm^¦oE½{t+Š=ÄçéôÝ该û|óþq,¼›ºÛ7ŸoÑ}¸}wÔÅSUU,ÍyÕµ¿¸¤½GéÉÔî\qWp¿UuEþ·dN.«ñè0‡Þü?µjçyì´F½kt¨ˆ{›eže ¤WV¤ŽwÕz…`pùÐ÷RÊÚ‚(Ðå ³|¦ësä­u‡Iõ2¼¡K¹Y,î`øî½|7©ù1}}×URx„BÝ»ô§ô’Ù´€Æ„ù8eÈÁˆ8"ëž6-J»Ôñõ6p Ènˆ‡7ÿÚGÉš.å¾{‚¿ç¯ïº»å}–‹üý!~7þ±|ŽÿcùÝüíóÛî{ ï²nUú¦Çe”òù¹¹ú†¼+ÔN;†ÄZiz@Šß.qý üާiÔ:|t.ôV-£P ´=²¤ L ËŠ5ß'<˜xK¥É¡®@;…Õ˜¤ æÇ‘Ó†Q„RÒmt=7ÓzúÕ½òfÞª;Ý|w¾ñ{ê³õH‘NLßA¯’#BG¾þ'>ºÀõerÇÚž–\zç)â¹þ°Ž©_¸ÏV®YZ _î2{ƒÀ§”•àöExžþ¾ÿX»7ÿçÚ¿çnßvžíÍíšÎô`¦+]&/€˜(˜æÚ›'—v&¤ËwýwKfV1‚´Ø´Àë;ÞRqW6`ÇG´t¥»W%ÁªÄüêº(mä$ð(ãn{§é6îž•Hs8=Þ%€+b]÷à ÚåÐ~ÓÓµ2ì:J¸ OÓ?ým2Ìã…{>Ã}³@*äïÙ[OÁi}»×ò¾…ÇgºeÊžÎ+t î’v²µ\ôä&ÌpøÛèŘ¯@óÌ“ùA·QÊ1e©sêú¬‡Jì)¹7ù)ù÷èçʽ¹?Wþ=ùsçüºóŽªøI:PE}˜O‰=~ý€#ìo–tš}VsH}×;«9Zþ²œS<L«߯G…Ú:Ç$üJçÒL¬7e5Cœ„ðÇkLÉV.º”U²TÌuÑ÷=b˜v°¬pšcØy%nôºe&¢h/eÉ_’‹¶—ÿô `5”øô(~M|†sìOÊñK|¼¨RXÇГÿCÙ§9]è×Å0Ú9¾¾7ÌèÐû xóÎ!X!Ú,tà=ÿjñz r‹ùyz/?¾_?Ï¿_?¿}~Û}88 \7ì+«N-è«ÄiWõq²bŽ:¢}Ï~‡Uj)Ï#'a©*T¿‚B˜l~Sc!–Õª}¥­Ó+èKž®D©«WµµègIñµY/T³êìlµ»šlãÞKñFoO¾”ÉUÛëGÏÜ3dI.¿ïÁ{ú²fêGW@ÖÍ=}qXþåWö²#WîßñXL¦ öBÞ¨p#C"×q¾ó$W¥ycŸ|ô¤ÿ¥àmò2‹2uI¸ÝnÂsô‡ðÝøÇâ9þ¥wó?¶Îo[ï°”èÁH.¾E¿2H$ÒÙ–½œ¿9Ž<ˆÝ¾×a¨>a·oB7n}4”}Å*gÆŠ F«EÀg—ûÎþ¨8YèBmôd/ÀÐ,8Nî/‰c£pYö ‘r¡©nËÛTpôÔ*šÑ9F¼ U^yöxã¿ÿ¨X!nSã5j©NuÁ³:ñ Žž¸ÿ lЖOùFN­ ]³ómønì÷UItaŸ­¨Ý£w½äÛôµwÀT&^˜nâsô‡øÝøÇò9þåwó?¶Ï/»ïãäf†D]ma·n ±ÆE3Và]É15øÖv;…§ a¨¬_Þ,áI‘‘@ö°´åpÁ†”ŸÜ¡†þ¦Éµ­ë:39}+37ë ÏuR”)Ž7z­†Uæ”Rëe|¬‰FÕu­«¶ã¥aºåþ`xÿœ?IÅ4Sâ! §HOŸ‘jj$Ÿºk+¤ÐÞ®ùBN¶; øùå2Nã^×@¨;Žüsòú¬% $K.‰¨<€çô¬“Ž0´±ì7zPZÔ¶ºÃc¾ÒAdܸ×)j4é$Wõ6yñ‰¬Né§ðý!|7þ±xoöϵOÿÜ;¿í½ã½çŠ^@‚i]¹Äm:Xý)W"½1Ž¥Ýè4)/a®t@ê}ˆ.Èn+÷¼Xziíéƒiõ/–a/Ê4PÚãî#‘û Ë.š¦}°FcÓÓ1€ƒÝ26Â9®R>OOÊ= æÓ ÛOºfо Ú=¾øÏV®õkåi‘úš?ŸÚÇZ¾¡y_ò£¦®œØæ| Ÿb°¶©¥ =»«òˆcO—ñ©"¾çÉ?G “ñâ¤Ëü)X2@ònù÷‡ü<½—¿߯Ÿç߯¿Ÿÿ±~Û‡‘_@!åÑš@¬ÊSkÔ³´Sâ¯`½’«r•†Fä>nì¸D¦ÁÓ±ª@úã“F[gŒÈ±*c) Ôú§ïÞà¯w-SY…µ3ŒE.}ÓKóoæÝ±³yçŒåFOs€@­rèǧnxÒÛ·ÞØ7Ü—Ú>Ñ1y ÞðæzhíàöOáájÔËlŽÉå⨥“K\ó¼!ëÈX÷c7c¼àXžñO¼´ˆ§2®~\¦M"u«˜ub;È©»Áß«öùâüã²è¯y»=óùÛ‡ÛsOÅgÁ¹c¨+£›çAb]ZiDKÆ9€‰hß;nr¬Ú¾‚ê´¼k©Ã§*â)¹œÁw­.£A“)æëyÚ(ëñM×(â%<ÑEkKk^=²U–ýVøC (9ß¡ä=¥\>ÔoÃCé¹=°Ä˜·–±0¯¡ëÖøß“§ÓʃâþüSv 59ãöy °É½×{;‰½žªÝ¦,ükìõÎñ'Žxpž’w]wÉÏÚîEš S—æ!´ƒú-ócè÷š¬»5ÿxÏÛí˜ÏßwÜr7en¢¬3fq°³y$ rËhgëÞÖ]µïójMãã0’¼YÈ aBçðâ±;š¥u§z}·jÃQzx*ìc£0wÐŒÂ.ȹÖS¾;–±bZËwJƒ~ßÒ^²ö}i^Æ'§~XEMXXŽ ÃMš;¬þÌì;,Qü6O7»Ÿò£,jÑÒt‘¬§ ÷0nÔ,H¥dy¥À£Wã¾Pa4o܃áƒË¬Ä4n³2Af¶VKƒ9¤çèé¿Ç?WïÍÿ¹úïùŸ»ç·Ý·Ò”Ÿ^&1†·#@Õ§¥’®ŠNýQ*n7CYwp$ŠUâSë‹n4K{ îK¬p¬Ó—¤ÒP†8­ØkÒ²§>A7ø‘ʯQV5'KœtÙÄôI‘6Ën£Ù©Ûl;lò“Úú\é  Ökör›>ZÚ‘~ªß…µß¼[Ÿ.Jjy —Âøž9¶B^®Ùïä?‚3r tÀ"+úÖêSV,û oäŒßQ 'þ¾Á~ :öû€*gò6ýNΨnMõ&=Gï…ÿþ½r÷ç¿gÿÞ7‡ðÞ»Îöeµ:i¬­¾¤ƒY»8–9T­ÎHŒžŸ Ê@WYêlµ:í…¼·2$i@ v{Zö  TŒúdPâñšs>-8WÀºÇÕ2(’NLÇ ‡žÔÚZÏžž¬Þ–:ïé ¥‰§'-sÀO ,@CQö@ºð߆ñ_,ËÆèßó×w]³þZ;æ-?Rxs´ÈÔŽãXyaŽ } Ô.FºÇ„q¿Y9 –Êrð߬Î\'+OöÏ1ÿFy1@\`úùyz/7þ±~Žÿsýßó?÷Ïoûïâ«§ãP¡Öq®Ên]d.¬åˆ1 xÉhÛÙÞh'QRxJµçbß•˜Äi:QŸ ,R](®Ët¯ô|«­=®ú`Ý: ]JÍ—¬ë„×§Òj’¨Ý‰h/W´~=Uj„o䣓E—C¹ž¿è Zñ„”÷Ù¸—å;Ò“|öš<¸D`ÚŽ8záq-Ó3ilÃH@rÉ«EOz¼£dNH`é6~3þ5£¶]ýŽÿF*жÕ|ê@Ýü1zR¶Î<ñ&?GïÅï†÷‹ç¸?ÖÞÍÞoßvÞQqÌ-Lã‘wE®®˜Þêêí•h­STè|ißeÿÎF/ŽÇÅ̇©þTÌÖNK½¼ûfÒ;p½ E ‰F¼`éQJ…ÈyÛOxØ Uü(‹ìªÁÊ (¢†H²7ríKëÒKi·á×Þ:î’BǾ¬Ø—¦—WhÝMß²Û¤ JIªöOñaåPÕËÊK&Š\9²Ýò¸ÑƒmGL+÷6>Kt%¡•Ìÿ\#¹ŽÛü;8˜³¤ùC|Žü¾þX½7ûçê¿§îžßvߥ¢³á«Ù ¯–d¥„á¶+:©oê å­6&øµ²Ì˜o´ŒaéÆÑâ_¼6¢ÑìíÑ_b´Ún“"Òj—ävÝ6«x¨#­6+2J©Dl[=¢Ý0Ýã»™ê¤)ðºbgÆ}ÿ²âà­Æe|}G«—i¿½qŽÒ,"é6¹çG{û9ÿJ…¹Ú·7ÐÉmƒ|]œ}«€…¤È/„ÝàMOI&3£~Ò1>ꤕL>ÒÁ>¨µ’gFû1}F0ã¦ÌE|žÞ‹ÿ=ü±zŽûsõß³?wÏo»ïr«’™F‰­5Ó¢’™MMÉ}«»Ô¨*XŽUš_ÍÞœº¾+´F¡^Wø,¹`ˆÍÁAäÖÖë…àHSöú\‹¤ÎÀ؆=0”ùh2¹?ŽãŽ%Xï“®Wi:s–r£¯ô\ô¶Æx·$úNÊõüãõÓ wV?}Êàɯ2Í_§ø@Än~¢Ûµ"c™Ö¬oêIß,9-jøeønÜëbÂ.»pß-s^G­XÊò1ûŽ“3+·Fn‡ôý!}7þ±zŽýcõÝôÝóÛî{PVæd§ð‡( úÛ)mÖ§€ƒZVMºK²Zis! [Þi‰,ö7@·zýN¹g‚zƒr^ŃfeºNƒÐÊö è¿=’º](lO’7ÇDÕ«7ún%8ßïœû×øÀ楨"¯þéO85PoôïùÇjU8YOÙvÁ¼Å‡>FQY}Úƒu,feé¥q!;w²àQ:Gëp~7÷Ý›{ûÎöÒ6•}Ì=šž[Ûî1';Oí%ïÇ~¯Üç‹õsáßwûæó-·÷¶;ì'¢ªc®džÜ&J²¸1û ”ÙÁ:dûà%±ž&c.ÜíÙB˜x²cjx&JC§HòÕBbêÆÙù»¬|k¬ã…ÄHY|ÂXr˜-aCm‰^fýLÅëèró~S×@lî2<ðL'†fpaß(¼­bI7ûu£P‹NsÇ¿éŸ5d}ª2» |Ž9ßÈ¥j4Û2é:z7îqF˜oÿàž>¢4ƒ3h‹sòÔgZš…:oÂ{‘¢îVîóÅûÇeá_3o›Ï·Ü>Ü®;^ù`h> S—ÕN)sÖ‚µ\þ›E("16®Òý }.B|!qÅ%kl]sd3ROÛû#§Œº‘II·ï¸qu“?p0ÝÂad[b…ëYÚvâÎx– 4 (]¢VHeÙ'íFN!ˆŽÖïû2|"u jÆ~c?ûäQ–'òš~¤ù«n­ÄFy‰Oú[¢öËVRpÕÄš¬ ù¤O÷M f¼ŒŸP tYAÅ…ÿd±Èª ¶XK$?Z(ÂóeÄSzžÚ ßîÏsïßÏÞož_7ߓ՜¨è²¬@Æ,};î¬æÔ€ß[åJ Ñ T 0îgœ€+Ð@뽚 q‚¼cz“ kWƒ!‰'ÎÁzuëM\Ž:ÉI"[!mÐ Ô–RÊj; `M þeÞè¹£À_ð=š5K®‡ta>Z ˆDßj~Š“Nž«œè¶Öx>ÅÍ?…§ï-K µ äoo¡7K·åñôäbÓŸXÚ\é—ñ¥ À>¿Ç…ÔL’æq÷ËôÍÃ;ÕÖ.âsô‡øÝøÇò9þýâ»éŸ{ç·½÷”}70˜¬faLé˜yC1rÇÁb]ð¦U V'_¼l#0šFRìúÍ£›úwkôrª´HÞ‡’ˆ,s/”íZÓɈ¾ã-"ûˆ“Ô =ýþ€Z¥„/ÌSsÅ =MRiƒ  ú¸ŒOÞ¤öm+6Øö›ŒTE* ›Ûˆý9¹º]¤#êG×âOùáãnÄtfžâGê×(YóF/í!¢YH…ž—ñ)ÞœôNZhÛž}k¥?[—éŒ 9ƒåâsô‡øßß«÷æþ\ý÷ìÏÝóÛî[h8Á‚D³@' _»ä*»j§ÛÓ5Uªö¼Áºyÿ`ï­0ýÔ¤SlƒyU€Sÿ†K*@¥päìi›¤×ñÀÙHYÓb’³Á´è™^ZàM¾Diùp´ŸÄu´(GomŸ)Çñ6Çÿ±únþçîùm÷y÷§ÁÂÐÈrŒÝªÛOîÅï‡÷ËçÙ?–ßMÿØ>¿m¿¥êo°@º_É\4Éè´óYhŒÖv¤3¾w†hk·ðôhÛGö¹õµd°AÇÂíå…ÇdëÖŠ¨MʨAGLåiWéZÖ-yÍrÑ$ "ß Ðqvj¹!5MP?¶½Ñ}£ ^çñqqûñõÇFŽðØ­c_ßaŸùn4Ä÷ô!9‚Éywqâè—·å÷=m+9ìm\È«ré¶35î½Z3NR3:Þǽ!.P©ÙˆÂS¯Ñ½£Å"áoÑý$vrÿ¸Œü^·OÇø{Õ?ܬݞùü}Ï­ÔeJ_$½<†šMœ;X“’d>O™–ˆ%Ëz‚9…¤¹íäPD¼Ù¾9˜†¸s4hµ ÔÙzb(¥"¿<<Áš´vêõB·@ßÉçS™é4H ÙB²Ðõ_{}šzzÔoÂm–y > Ì“zýæžæ}ÖRµ<ùÇïÙÓü/.]øûGzuÝáxF–Ñl9ôWààBo®ÀËÖ¸{?¿ÇǺ@ùÐjqá3:®µ5„÷ôõžã çvŸ§÷âwãËçø?VßÍÿÜ=¿í¾£É¬¹´ÌC†ºŒ®È¶šoºú$rd¥ Ó÷ܹäM»‘ÿ²* :ÒÕÔ°!iTN!C"Uë¯UÅ¡ß×Ò¬*¶Бu"j€ó\Qf¶STnˆšÓ€:Éã+Á2höœÛç?ÔDÀS(†¸¹3Üà€ f°z{¾ÿa^ôÀ Ò©oÖà&Og7© €Ñ.úŸÂ3ú …œ–g±½û€ÊR*æ¾È¤–’Þ·ñ­IŒ,9+Ç;Ù¯ÓÑhù5oÓ§1‘Y‹ã”ÞAï„ï‡/ÝÉý±ônöï­sJïµõàP‹ûUs.’¦‡_¿ãßÚ®yÞ0|ªr¦ÈÄòh_zÍ:H s»_1©sèn¨ÌVy÷E؉â­X¿»là;4ÎZEÚǶ¥Ý¾@ߥêè /' ‘ðÜ$ßÈ¡/z*©?¬Ïò½Ç4?VSÚSº°/ùÀ>¥°ßÈ¡?§O<›JýòÝëúô„Ư—îÇcOC¶žoä–ÀÍYF¾ oÉ@m/×ÚÁ~¤ò¢­>9ù2}pR¥|Ë·vˆÏÓ{ñ»ñåsüûÕwÓ?6Ïo{ï‚ êFÜÎäŠ@BÔ¾›¤~4’ŸKÙyjôd’•½Ð^-$­Z ä¶¾fOðP¶EÂíý[JÏnœ’û“T4cqe§=[³uÀnLW:ÆÇï¨E« Úño´hªmMŽù=@ÿ€xs“Ÿ£?äïÆ÷ËçØ÷‹ïfìßöÞS%–«7d.œJü"E¢qÉÏiñÕšÖ÷NÓsJ׃C%™Þ‹ÕÈw%ÌJm¦ÔíID’ÕHÍ3GçFÜ~ü•ç#€9З^W«‰2ÂŒ–¡@àyEï8èƒÌý«UØåé#å<Áà8Ûmüh­Uèì»À,=ÿÖéƒ&Êz”þ=‚{ôÞ¥MÖ|N ÑšãZ61¥Ô+zw’ãœjDhÚãøc[?O*`/ö­¨I‹}ß“ïé'+„{6¦xŸ§÷â÷ãûåóüûåwó?·Ï/»ï‰)õDë‡hŽo ò©´cJàe:ï*›>­'ÕønÝì­¹¸¼ze¤;öïÖÍ$ÆHS û™¤J¦êáf½Ïúò†ÕI"Vw\Gv¢zno\Ðyí)ßÈ~ã¡È}öÛðÅš(²£ßØ/ƾXèßm³_Ó¸.ʼš¥?‰r/ñ|Ç;ÃîÆ Ä£î‚\f+7zÝî–gÀëmüjüë'ùì'ÿš0i†:CóÈÍ¿~ Àj²É§ø<¹—¾Þ¯žgÿX}7ýc÷ü¶ûV&÷õ,æk+Ù†ºÕAzÖ~Ü­OIPß¾ßóõ;× G%6ÜúÙb:>¹VÄJ ³Ön̉låyÞ'íX-Ÿxe”S…½ûX»ôgk´Ó(«“AÂoÒœ7zôÿRÛhí6>AäImÍêìq🌞Èñ亽æO²ÀEHu?P/ùE˜Í”Öô­÷‰?<ÑI¯óG[d̬yox¦¹pÀÙ}°Á±Õ¢5rðÓÇÙ¬% Ìã">OïÅï†?VÏq¬¾›ý±{~Û}ëyO_–Æ«4no¡D1ôKoU’}ÐCü¹ßa®üè¹ С•Š ºP£M랟5Ⱥéº_ͽ­Ó¼ç—ñŽ,àEŽ30Vs„G÷*ÖµKÀ´Ûƒj‚Þl¿‘s;ñÅ÷£'j èЛʕûdÜW«ÇxÌÑŸ“'­”Þòmä§–ù%ïk"‘KW6Xhu5PK™Œf l§RªKĺ¹Øw0/‰–§ƒ˜–{Ð!޳Ðï£Aë\n1˜kÌ>XnRÔÇR ¾½jä´Ñ*IOIXè!àPc³§''O Fé\S@Ò²u¶ =èÃî‰Þòe|š£&Òi>ua¿‚çC†x³œ}g‚t´]³@% ™‘(ñ²Æ Äè¤54ñéW†I+pK_sàFˆÛ®½A¼bÒ ¶Ý¨«­-èÀ»¹é{l“dÇ\JÏç?œð=à™'„½Â®næRðËk;Ç·éä¬]r¶YaÓ_VÙß[¡g:PØz’$ k¦z¿û“8ù¸ñϳH‡¤&å6}riIåÞ‡ñ9z'|7º_¹ŸÌ¿—ýã2÷÷®ùü}×­¬»Œ·ËJíÉ…¦³"w… fUËéÀöR¦FOð'ia•ö#¡¬SD§íHÐ%|'3C0„=?¶¦kÔ¬´‰À@=A³Æ‘d/d¬ï7CÖBu5¦¤+%oÈ:yž^–ªQl·ñ •^8­TÏ¿2^nf? ‰‹[®‹ÇË°ÒæXl£§Û!¥Ášèœô$Ñ’~®Ä9~³6H˜¤ºœüSmÝ€M¼ÍŸJ`,¨~ŠÏ‘âwÃËçØ?–ßMÿØ>¿m?ï¦'ä?V{2[ +pn4µ5G9…iu7³¯2ì(´žy§mÕ•_Œ9RÖ èÕ&ca¬îjvR¹/ãÌýEO$vug³¬£¦,%Xq…¥IáœÖÝ Ç6]v¡Ão7zD›+=–­âÇ×E\L sô+l§>-W‰›9AƒE/ýë_9“Řu>)ž1[w7[‹“ž‹|uwKó6~6þñ¬_¸×_·ŒaîæeöÍŒ­·Ûn0ý–ž§÷Òî×Îóî×ÞÍýØ;¿m½e)UàÉšuʈlš4íÇ–¥DVeÖ`€~©!þ§¿t f‡•EmÉú½ô]ÔôLiW4Ðÿgß}ú ߘW¤Yj’´%öP0m}ÓÓÎW;«íþè}–Ý'ÐÓëi€ËèMJ·ñu ʉ›:^ØÏƾ¢ Là&Ÿ¬•çUÍèe—€²•ª¬EúžMvO~´9Ê[f4wy¨¨˜ìóFÞˆKIÈyF¹á}”6&J¿±_Œ}^ì?…Q?¦Ï¥Canž««Ÿ“^³¤ç6´…ˆMßZ?PG—/äT²þö´ ø1|1ÕìV/öaêÜSÛw™~1Õ¶gfž“ž'÷Â÷ÃûÅóì‹ÿžþ¹y~Ù{O“Fɱ«ÙšhèÆL!ÞjSÓ-ëwÿ‚‘Ç•·Û=Y"´a\ ë+þ”ÐÃî"ÞZ¢W«®ŽÝ†„ü½ËßB™?ašJ5êné˜ô5Åñ4©±<pcW—z§bãB¼¹¦-WæŸk#ÓC†.þ Yô} ~å§IÍÏÙsm4YB£KÏZjv) i×—YQR¤<Ͱmzê¤ âžæe|r8Hç5ô™ƒ{+IÂÏMìå2{"›´=@O_¤çèé¿F?ÖÎñ~¬½›»ß9¿í;væúü×O­™nla)Ôäâ˜iLæ>BÐS²@æž?þÛýü/ŸÿÍ´×øù¿ÿǵ¾«¿Vk©Š¢Xëݱ:†àý¥qß\ÎðöE7ˆ±Cÿùÿ'¦Iÿñ!›§6,¦¾:Ò䣎²„áóŸì÷þûÇ¿~Ä=ÃA÷tLŠÄ‹ÿçß>ÿÝÿ>ÿÃÿûñŸþEï~ýŸþbøüý¥ÿþñïÿùóßý¯šWúüçÿûc´Ÿ£ Çµ‚È(ÿü}üOãþüçÿçóùçÏ‘]µ¡€ù1® &Ï £ùÁbþ…E+¯RǵKédrþ]&ßKsc²L¾i~0Yc2é®Ú_ÄÚÚÉþ.—ŪÇP0¦.—íàòMóƒËþ—u±IJ„FâÉHß#—ñïr‰rè ¨–ùpãr\¾i~p9ãR–W¤cGé"Ëôw¹x6÷‹W.ãqpÑÏ£óÛÙ¡'oý1Ö…Ïü÷ø<¯5ÞqfØ-n£+Ño§ÇÚ„È$ÌèJ}­uÿ…»pºÆ¹6Ùè8,Ž»+ÑoǦÊ6 ?ËjJœ[×$¤Æßß½|úÊä­ó9{¨ã˜xþnD¿øë+Ç Hg:cîï^:=ù7`sœÏÜè·sR-\ÉâZ0ІÄÖÓÙøK÷ºé«Ü–¢x»æÚ¾­cáù»ýv>ÄÍ®àÏÐÞiÏl¤Æßß½hàO'«=—Û>Šé+ѯGƒÍÖ·“VSâ¨FjüýÝ+¦¯æÝa¿âk õÇèŽj«;iRé¡q÷ÛÅòãþJÿèDüü»ÿà ¤fÜÔT˜‰Í8)'éóŸ>ÎkíoÿàûëÎÑ_ßùërY¢6™Òôù/ß|ý]{‰3Í›uG»–‘o»vÿóÿñ~ð«yþËG" êÑðêÉj¿<ÿæäÄ}˜v?ûwþõû×>Ðÿõ÷¿ó?ªŸþÓO_oš6Pˆ²Y Úú<lQÖhRI“Ê8ãjHFÏ¿@3‹!“’·Í2wÂú.+UvýH†(Ì÷D¢Ñ$µlµå¶ Lz=EqÊú6ýšÌgC²»A8ñ½Y}´¬ßföˆ°Káëˆ|ÐSR5(#ΨìÇ/Ó|N ™X=¾çßÚdcÔdYW~þø„ô2˜æ\ôoùé{Qu„jH'‰Ž÷¹bË‚ér¡ŸÖÀv*äÎñÅ•ñOÙ‹!$9þùÞ£¨ äÖÏž¯xøé æ!½ÏŸÔ‡ìýØní>ß¼\Öþ=w·w>ß²ûp{Ÿð/7Ù©UmÞI—=| ~Š„w: dÁ`NËéµòäÔ¬Ç:Åó»§VÀÓ`xé ½ÑF'QYk9GŽmiuÙä{¶Öí,äÄã ÄòL;Ý4–aHÑ q^È­Ë 6@1/¾ú¥¢y‘>[NæÉv§ê“»ß3'w;²«÷Ù_‡à¢™."Î+[5QsÁéÖÇ÷ ïšMçnÑøí2|Æ=¥ß£_¸'2Ê Žûv™½¾çJ`Žáyz/|7þ±vŽÿcíÝüóÛ¾sž^m_ÛÆ4mY-E ]µÈ®æ`7ˆVzl‘[–zD Í¥‘íâäl¯6IëÀ:Èß9…:"•YœÐ tk%§%²¦É]^wJé h8á|çµpõX([ú}.˜z#'WM‚ÓecÇð$1ˆ@IÚýhìS’m§ùéÓ œ& ºþ-½ ]Ouñ.J²À¸CH­·6\¹5ZתBÎᇱߩ[-7ö7à ©[?‚súÃnPòl7‚Ý[zŽü¾þX<Çþ±ønúÇæùeïÙ ª÷qN«ÿJVíNàW·ÖÜñ2¾Sd\Xx3]Ê.^,æ¡§€IkŽG c!Ég½¯t!L4oëOµ:h»$w.ú–0žÖòT»’`Æj©«ÞÊ"8‡}õ[@e"lËžVÂ)¿dÞÊc|¦CÑÈŽ9ügã?´üh¯Ù“50h»ZŠÒ#ë@/h«#©iLG€#nôL—þöÅ–ßÞw‚d3¼±Wë¦r›;­ÕR¥ûSÈ7Ù9úCönücí÷ÇÚ»Ù{ç·½·vç¤*HsN+'HWoìày­Ý©wGɈÕЙ‰óÄ> §?ÚÉ|™†Á+'‰fJeçža»ÈZZÑžÐúµíÒ°Vjí{´ÌÀÙÊØÚŸ”&r[#Y/D§;~²–,"yГ@Ê=×Áe|Ë,H³ïþÉ?™ úýf‰¶{…Îß2‚˜Ymù‘až~òí¶W¨€kÉ€H<}‘æyè­ÇsüüÓ«{ Äxþù|a%5žóç;}WÉš§ør'~?¼_>Ͼ_~?ýsûü¶ý\VL·?ÛVc]`:»¡L‹¬Aê­º#ö«h —#t—þ’F\éÓJWõe6(cú\çVVf)@ßèKe‘¢{M,¬¬•bÛ²Zfåg6(cDhI+«„O%­~½)óthj=߯gå&=Œ–Jt°OOy¦ê\ü»éÇ/i^ ÏncØ‹OK×H}­ Ì)S¡\D¦ƒÄ…ž òï£uâ9ǧŽèï€Å…Z>å¬Ï9 b¦OyG¬ßòóô^þ~|¿~ž·ü~úÇîùm÷y´ƒûDpËPÙÑYÄßÝlú^¾ _‡¤Ÿ…«ª¿:i—Ú–ò.ë!¼“Þ ßïïàÿ\ü÷üÝÞ9ä÷ÞyNŲí8UÂj¿Jg@À3ªõžø›YÆ ÓRžx;`B!ÆõcËòâ™ö)+ȨC$Nãºçõ=E7[¯Ë3#=¼’˜º6ú¤à4&Ú¯²4üLf!} ¤|ëPDÁE¡ ­gÊ“ë#™êÿ~>[¹GÇA¹u÷7û&P* àDߎŸÓç°Î uot'>ð°‹}Á‹¥[#«ªï®œŽ¾â TàÇz¿ÿtpõÆ?ýí*Eö!•Ûü1¾ :¾X¦C~Žþÿ{üsùÞüŸËÿžÿ¹}~Û~‡‹”Æ+–Åf† eÉÌœVð·å&£dŽhU³ï ˆw-]Ü^2 3Øs)ˆÄlÀé/ «ð3Vû”û\È/|Ea¡|…—rÈH<<b3ŸIV׃c8iTCêÇÙXË âȉðÁÀ­Q.ƒ“u¬GÓ ”Ê…yËœ`/„òí"ü1wjiÁÑ£ÇӢˎR\àè¹¹ûœæLýHzZ*¡Ìt_ß»­ò\=<ÿ:H@7âRé2ÿ™ dƒ/òsô^ünø×Ú}¾™ÿ8WÞMþ½q>ß²ûpûî0ðQð€I1Yi«‘WV³µV<9P¨A»É`'Nê3ÊíòF€Ô¥)s*m¢ºæi¿jÀœæÍ~‚nc戟䟨c|{C:y¯qíÃ@ã,àgˆ¹†Cì;/4’®èANzAsý2º®‡1'Z@Hî u%xN,ëæ¯cö…V_ð2ý[zúb#òFÞþ‰ŒNG†v£§A(AØZ»ß"Ú;Œâø§/=»ôêÛüÁ‹²®Ôa”›øý!~7þ±zoþÏÕÏÿÜ=¿í>wŸæ¸Ð‡pÍ¢Äv‡ `ü¦ôš2®š"¾ëZ=¢X~¼9; 9Éë;mW2(·c;3"oE¡mžU»éoÒ3X=#ÎŒÎ['ÅÄÊt ÿ ÓCÓ¢&|Ç@œªÂ;Í:»ô†>nXZqi?¾¡WàJÉÖûàßÐ/¤ÓÕ=ü{úÍÀ3d i:¾_3ð–h¾|Al¾ŽüÇ®PsôV­G˜?ç9|7îA&ßrŽ{30 u|ÆÛìÍÂ,­÷v“£>dïF?ÖÎ1¬ý{òçÞùmï±Q3“i^^@sù¬c; (ƒ•מï4æ50õbߩДÑbyÏÙ :qТoŸ zCzË:ÉH°.䎆ðµÌÇ–¶xI§¢=à2–]U0§iÚ¾ÄK‹ÚÄ>§ï³vzþd-„)7{¾ƒˆ lØÊUzKÄ\ÝÎÉ/‹‰æñÝГ|Ìn%y—áÁÖ`ŽÕF:ÿÁ>&YÔ7öËìé`eˆ>¸å/Òóô^úïñÏÕ{óYü×ü/›ç·Íç­{ë) µ.î…¦öhèÞæ$¥q>8XkAð­›:Ø¡+ûhfk³xî5f@ì|®ô#lŠQÇ‚«[)t€=íÕAÔ VàG‚L&.hY"Ð<eÎ+gÒ»Hz¾Ñ§/tK‚Óõ6¼D¯÷¦–ò…û`ÜK—ÊÖ7ï˜=5N‰ _\£“ž5á%Z“ˆM-k“¥Ÿ `ñBOݱ¦ìNÞzßiÇœL¿ móϋÜ0àl霼>ëFÖÞÓ›/²óä^ö~t¿vžûcíÝì½óÛÞ;LûHÊ˪o1µ<‚oK“ÍeÙÓÀË`!£e¨XǛҞK²Ì좞Á–ëµ §„å뀋D†Í®îšVxÈöí»úSp¬£ôñ)Ñ-chÌ}e>Š@™L¿‘Ké •Ì¡…hrŒNw×B½Ñ¶¬=÷Á¸Çž—eïæNQMq>¯Ü×·èÀm’Z!En`™Yø~¤(ÏžoäŒieg#ß†ÏÆ¾¹ØÊ…ý¡·X—+Íg¾LлŒê¿ÖCºˆÏÓ;éûáÝÚyîýÒûÙÿÜ8Ÿ/Ñ}¸]·‚L ‰¦Æ´ ɤGééi¨0Û¼Uº·…‰Åç ËK·ÏòÞ‘JMÙþXÖ¨å/êç›þ'®Ó KîSä„Òì%Óƒp…˜@âÏtNÞ¸ë ž O„}Ö›Öò°ßÈp^å6:®R­ x²ùÆ=ÝM·Kíß1–×äuýáó á½…Gˆà½õ;Je>®?š€Üè©îÒýL¯Ðt¿Ã¿^ÀiP›'ÿò”DƒÚ<çO:k¬´Õ˜ñ&?GïÅï†÷‹ç¸?ÖÞÍÞoßvÞÚ›ô4¨lHÎÝŠížòúÄçµ÷éêÝ–ëE¥“¤Öžøö ¿`=p.¯­?ñq šG8G^˜Î°2ÛBkÒ‹ôo˃wG2.`ÅÏö4“ bßéÚ ¥Ú²ŠNz€ÆeðôÕYá>}'RçÎyòÜGã½u‰üìéQQó]þ);ë´¤£ ¿Ÿè4ýèi Oj¢[µ‘zPâmlØ 3cº°>¾ÌNe'^&N»VbG½ŠÍQbwƒËæ˜?–ÝMýØ6¿m»µ1‰)è×1°VÌ%Pn¢éYã(~ [‡Õ tÙù8ðn>¶µõ ×á _ß‹!>G!¶¥Õ Ñ ×îØ.Y ø:Âsou;ÖÕŠ-²ò£:æ·î-4ìB“Úu/¢Û‡¾ÏÅ‹œ¤ñÉIí6ßÌ\Vþ5õ÷¾ù| îÃí;Û™/ †G*+‘¨ƒij¦¥ní]T`8šŸ+ǽÒD‰àîJ2Fù•âû£Mà~4˜™«*[JCX–'ÚFÍt½H+‡xtˈk]õ9›?)Y›z²€­ãÚ*ä÷äd¦k2däctÌÐB!L^µ ž{ÌÐÈýkÜŠÖŸ¹ 1ãyŸëL:ÉQ@¤Ë=Rn¿´DRÒ;@8Ö£þ¤‚’Û:š.rŽN?VÙΆ%}ãžô©ˆûÔt‘söÀ¡&Цâ,7á9úCønücíÿÇÚ¿çîßvÞÊ1ôé7Õýc‰õŽ¤Ô¿YÊ‘UÍzÖ…ŒÍßÕÇ´’x«•¨eCwYßÉk#µÑ¼Ñ©zMkälMCÞ®­ZOÊõ®TC¿AÇéF.í.`|¦½ ÁòþîÄÀF®¦+{òζÔÂ`IÚçè´„çqŽdD_¸p_ç\^“cöä1Z?ëj¶í¥g8àp¶¼sJω-J™À;éÏÁæ0÷èe|Ïét ³6Užÿfà9ÍÀŸëeþÍÐs4¸9HOñyúCünücõÿÇê¿çîžßvŸ÷*QÍR9ÝíA¦I$ÄtlN»FQAÀŽIu¬ &_Ç{îèÉɹ‚dԛĆ<¿/Ù»€‚Ö°¼&]2KNë,‘$‘ò‰ñ‰˜[Y@ŠYÎâZæ¼ Þ‡k7òüE’ÜŒý¹ÊÜ許4&$ÝñÿcíMvtÛ•$½y"—Ì;­Hèó*sÿáè+Ôí'lEÂ5ëÇg‘žæ¯CtñäEÍõù’ƒý}düïÀÃ,§²ø/áþ RħÂÿúŒ¼ë$Ù NªIÞ'€La”tkŸ%x«l˜·þíeoNü¨9oöë$²¦œtÛkü¬—}ô0ƒ©ù6}9F9m^-Ô@«‰_Hô£yq*Fsù¸õ^e½ª“æÍzRæƒ;·Ñ£“­QÊsöööûìïýï«·Û¬þ6üc÷|Ú}{ÐÙt€||ž¾îðg‹q3y­N@Ű‹TH.m®óÚ*¶ÐÖ]šø`T-Ę«”ŠxtV]7ñgsó*¿e]¹€Ùí¢9dÊÝÝmû=NèȦÀˆ'Ú 5†xkOâÕ¹2øô™ÌŠ8ÒôÇf¿¤;¹qšœ¢cü\ZÝ|&ªâu˜ló‡:'ONË)kÐÅtÊ0[Ÿ·ööò¶+¾’j™·þ³ì·ÍÝë¼ØO¥õ¿Bæ_ÆÏf²_Éq/mË÷üíí÷ùßú?Öo³ÿXÿmüÇþù¸ÿž<àöí;/`Òæ™äZüÁ^±Ið?ž¾­îuZC"'âtZœàŽ·Õ':íÏ{ÙŠV¯g€¦)σ©‰;‹•&ÑYŸ azñT{÷REêPxE»š’2gs|6s ÆèN°÷þ¢"ÔÝWdüm=ØÈí•`/´'2þ{ðYZq³qÕ>‘ñß“"Ŷ–뢇x }’"bƒ³=ê6ä²HÎþ»ì‡"¼¥›ý¨Ûà¡Îâmü¨Û‚Æá2}[ó}ö·Þ÷µ{.ý{ðÇÎù´ñ s#ôjN@UJÕ‰üjVœàª0µQ$ ͇à`¢ý§UÿX ¢ þé<•|v ¯ùÔ÷fÀŒ¸Ä‹i2 Z½> V$[‰Fgš„²›ÇøÂFÚÜTS4ö8F ‹xi.~Zj!`2¸t5›½ªÉQûÛc3B[ îŽ1½ý{ø`Þ`‰ŒÈ}¨ý{úŠBÍÖ=J#j°BS¶gó¡·VA·éÖû”õ<^ì<¬—0A"ê\ÎÁO½´P®sŸ»ïWë¯ËÌ¿;ßVîûeû×eá_#ßöÍ÷{â¾¶}w€í#‹Tµ P5þ@@`g0Ó.éa”•M%Ê‹ñþXXìè#HÑDÄ·•AGó Ó\‰2S“¢ß# ;½Ô‚#A•Û,u±îšƒ?=ÑSiUX°j×V7¯­¶”ÞCÝHDŸóëÒ3ÁU8¶fŽX|žd¸}Õq1ϼ‡mþ`kߥ‹û}̺´¼­fñrJÜS;w‚ü·Ksô–íÁ0ªDÞy‡ã3PmÞ/ÆÛ;œ#1 aÖ¶Á«=¥ø ˆ ®€cæööï™?ûß—m·ÿ½ìçøß»æœ¾×¦;À"ˆI‰TŠbäÊ“ŽQsWìák@-M1ŽÀíWKNË™”“Âqõ;8`Kôè¯ýž$µ1Ñi!†b7'tÌ!¥å;#‰C0Z/“©Rdcôø.Ÿh} Ä^í÷!©L{)9_òѾSëZI=—vé? '¥[^€…·ýƒ.“?ZÈœmüžýóI¶e½=~Ï_» l¼Æ,‡8¥¼ëm²µGÁo04nýÙ_8=çÍ~¬mBƒjè.ã§d0J»0Í9[ûcþßýŸë÷¶ÿ\ÿ÷øÏýóiÿ¹;Šç ±åØÈª*õÌT÷ÈH®®5¶¿2K”’!›õ“"µ‹‡ÝŸŒò´¿uæƒxu¼µ'“iï9ô™ã¥ÿ‘d¿½Fú*}ÛZ^°¡æÇð‡*á€usíÓ·5ßgëýX½Íúcõ·Ñ»çãî;Šç#cIЭ«ðÌ|8æIüîÚª z×*k«&E zûáŽj ŒY×V5;këø”'S·@ýiqÁuû°¹®ú”7W„mˆv¬ô9²¸éœÕúŸ(B.O@-_]Ìîhn/q j·Òû¥û$ì{ÌHÑö‹ùp¡ÏI¹ržsØïá'Ê&(õ±»êÁ®üž>ûPdËS¼o;Ý¿ Zr4ÔíXuë¦.D€]Ìç¢Ï,p‹—ÑÛψVÙÃ:¬úkò¾_­¿Î©ß:ß–îûmü×¹ôï±o;çû=u_ÛÎóc´¶Óç»±s<‚j ¿¯\ÑžŠb¾‡¥ð .r-2.¢Õ$ýw¸ÇÑý}¸ºP- &e:ág°ðãùŒ;€V[Ìê­ñ:ª}åÒ2µ —EÊ9¯Ü¦2¹Æ÷Þ¾NJ¿¬ó!¿£ÿ:xØVÙŸ/æCg4Ùcåßïæà6–ò$ÞÓáÌSv²Œç]mÞ4eŒ“šÑ³=P””qëÊþ²“ßö!F~ê:ÇϰMÉŽè·ù{·?çÿÝÿ¹~oûåÿÜ=ŸvßÃ6¦ä Ú°>>¸²>îøsºØ#«ð=êwª ãð³A¥‚œëöØíÙ·;%BÊâ1d•‚à¶³¯i~ÑdãqÇ“á@yU¨q­_µÑÙ†x«l­%îdd ª9Ò…õÖ^¹63u=·þEmב¨éf‘ý5”‡°k¿r…p7$oÓ—Eöj tN³’ïùÖÖBö®ƒK÷]æ£Èøð‰½ÍG0ǾL[Ñœoǯ“T:|u·éÛÚÓ¿õ,ßfÿ±üÛøíóa÷Åž.DY~²úÄ~ÃhI—<ÕT& ]¿›õæt$øöbK{u›í¨$½rêTž»öØ@ ËQÄêáZUÙ„m­ùg©v§µËÄÚQtójIE@sžË‰ãpØ/º5·{”ÄkýÖ=•·éº%óæw-Œ%¶áS³;Eµˆ·Þ³,5B Å#ÖBž8½å[sŠáÁ'Ž;ºï2¿ tÏnæ+þY¦—^†ß¥¤Y¼¸ôœ½­ù1ù[÷Çâmæ‹¿ ÿØ<öžãð&U@<Ððö©#QéÁ{¢p#àÎ:@Tfg¶ç±R©E$Ïí?À #¯Tmo TÉ”spƒÿï´ùg*IòÚ)Lˆ;£¦÷À Á]ûÔVaJžŠýÖšFÅØX¤¿{çÉ3!ƒºî›ñQÆÛ%TÒÒì÷ØÃŸÙ[%F5Pþkî;Y±ï»'5e÷yêzi?ÈÚÛË—mø;ØÜ ä‚Ë|X§‹‚s¹ëÌf1¥úìža?z€‹ßSNIà­L-Õ•ߺ#o‹ƒ× 8ËÞ¬`f–glÅ¥ºµ/ԃأ´çŸÝýêß2p^/ΗÓþôgÝ É ûøÁ5ˆ\WŽyŸ¿„Ê=\üõyæ%(y3 ·æÐ€µ)ÂòžßÝóŒÃµ½•y1ßöO"¡Ï˽_†Ïþ²•LDgÛeúööûôïýïË·Û¿/ÿ>þ}û|Ü~~ËWÁÏøÀß$y²tLy…Çz5µ§¾pRÕG.ï)Ph §ˆÔ»Ý I ­Ê£S»:ÀÖœˆ*Úvç´Úz"õw¥Šx±>TY¿€¶ÛБH$|7ÃBï¼&î‹ßYPH KZþ¯½[mOÙ¿µ§EïÕÖÛ×Ñ9!E1©Ù6è‡íú½M`pÜÈ_çØí÷¡€¾uQŽ©;ÛïS¿õ¿­Üaþ±òÛð·sLß{߉üÆfÈu…x¤ùáÔ2ê²XÄl_Ûë6¨ÊòéïÔáÀ€³I…«Atiè4²->¡¤Ûæ\’?ð±pÖÃË¿B;)ðͶ:=¸‰å: o‚ 7ˈK’ AŽl¾µcW5ü3·î#¯}{/9ÍÕi>ÎòÍõŽásâ ÙG¿Í®×¨àzг€Ù{®Ö}쥹¤xÉL>¥R[ï]ÖÛ‰·Ä¤6ã¡,±½ngÞ—±KŠ?‰bŸS·5?¦þÝû±r›ñÇÊoc?vΧ÷0Ûâ3£VˆBuŠ{Šö¦N–`¾’},€N„.²ëÊÔºN¸{D\´ö”M£ÜÖÁ—UìB+ýncpñö²ÂNf’Sƒ‰áJ?µBè(ÛkWœ–`Äíïƒüõ<ðÞXn@sÐÐÑ¿ù‘d__ÔÜ»ýQöÃó<žsÿ5~P¶DÀ9Ÿ¾ÿ:çÏnï¬t_ü‰=Ø‹AUóÒœ| '!b;óÒ=~MµÓM1×Ãxû•›VÕ ó2xÜ8;Ðzì—ÉÛÛï“ÿî}_ºÝö}é÷±[çÓÖû)>VXuL™Lljv¦U{Œ]{Ö‘ä©u ›ß"M)èûNæ"I°®µòS{ ¦ÆvVtJó™ü?œ PLàé®ߎ½ÒÛOí1þ4—™gŽÍWB¼#^›ÛÁ÷¡=~8çw+·¸Q©º˜Ÿ†ÌY?µÇ¿‡ŸäNýNÿ©=þ{ö’À˜•äLû)=¶©ËK¾5ç ¨iÈÿ OîÇö/~ÆvÛò-?Q¼_#§ÄÐNãßÓ–‡Šz‡ÍúŒ_áQ¦‘Î?[¥&Á×äˆm]{žjò,ÂЋåö"f7¤Jú_WÕ4 ÖClõ˜¶³ù{Úî·U;ÌßVýkü¶iŽÉ{ï¹Ëi:ðPº$£DÛ‹\«}’K=¤¾9ØE,ƒ*+…Ðo¢(±N#ÂÜ‹ÙÙ±+8ÐÛzûû° £ªÕa×s>ôî†Î+ÔO£@äòš´NÓ|5ÕÊ2±=k/‚2oÍmj™ÇºuojÜ!åÐnæð1Û"¶u˜¾†O¼ˆÓ¹õ…mÓG¼‰rq)…ûa"uJrëÒ~ùɳ‹öýì_¡ÂÌpÓ#õó²ŸÃù]ˆÁêeüÄÂg£2K¹ÌßÞ~Ÿþ½ÿcù6ûå߯lŸOÛ羽‡ ž,½ùG^vV3aå‘ I%,n7IÕ˶²í|Nÿ* Ä)l[|oeÚ O‰î¿„ž£>¥fq&sj4*‡J]D™r"nE€MC.øá[ö©É÷¨m–&ÅE¤±µofLî³/ðÚ»{Êu³TSº_d| á練ßc·ß¹‘ˆ‡Fä÷Üm¬[OI¥Bd±ßÚ?PìC‘ú­ÿ!ë'ØÍq3&ø .ÁÈËèíVöiz_fokÌþÖÿ±z›ýÇâ¿ÇîO{ÏcöÄÚȲ ½0¨IåT¶E[Œ¡ÕY%í¿ ¯Vh#xtâË‹$º¨¡»â0E ,Âb„O I­$¸ø E¼Òõ«dâžSM­}c°®¬£€¸:%‹^oÕäÚç9W_Œ¡[ûŠ›¤àq½u_ÐfA[¤äy3Ÿ!Õãm®àòkøè¿ÁþÞš¹Ï)BÀO]q…‚Ð _o^š#Ê'vð‚ã£÷)ë'Ì7ã) ¶Ï’sk^ÆNA‡½…ìü#ásNÝÖü˜úwïÇÊmÆ+¿ýØ9ŸvÞ‘•Ç_OóÄÝרãk’? u Ò"cE0®¼ì*¥ëÆB²]lØü÷@ÊÅþ$ßÐÕÕÒ]Hw%Òˆm%ÏpáÕÊ®ÓG \Cöôñ^à,έڠ¥lÐfÆ’oÍ‘ð±+u¦o½S?µ>úõ·í_üŠí0¥Gsæ5öô‡÷,¡ÖÇ/ü{ê¾øF.±&xçæ,HÜxöT/Íy8Œ¤ìvë}Èvh¹xî¶«:ÁõÍMþ{à_þ30¨zÎÛÙü=í_GçïeÛŒ?–ýëû{Û|ÞvOR~¢ZÙ#Û¶š™›3üÀE†ÍJ¢‡†èªˆ‹¦¶/áÙ€@Åñ$Z¤ñ°±*•IuA.CäB@±.^"Åг2ò°¿_~rêdï(·…çÚ6Rl·öÈQÞµå»õŒ äðæ‹ù¥Êü áfä×ðy¶7I[…¥ôž>@ ¨ìŸ×Јù€Äs¹µ§ -§¢ÏÑÿ̲–¤X/öOˆÁ‡$ºŒŸo{zæËüíí÷ùßú?Öo³_þmøÇîù¸û|“ËÔO俢0«Û7zûúB\B¯ëw;¸;¤¨ëäÂ÷í*a•@«ý9 ×¹4Á¨ å,$þ…D3ƒ0˜sgN±öcm:ÉfÄÒfzž­PÜü 77~‹åéoÍ)¸…cÎ[÷8€ €ÄbÞÍÏ2ßæÿ)7߆Ÿ)ž±ÁÅžŸb÷×ôÁÜš‹ß†zt{ŠqÇíÑn¤á)lœgÿÒ"††Ïü³qšÏÏhµZƒÇ9|~·õžRïÇìÍ·Éß{ßÖî0þXûmðÇÞù´÷žÝ)‡¼À»ñmÆÎg2ÝÕ‘¥E> ÇtdB¨gžˆ6ƒ˜kyc†\jÀV¥zgP–5ýìã“«Æ€Ny? Š\Öî‚–ÚLè¶U®=‘DGâçêJ«¢’B¹7(äåÖ;vk1CbÈ®|ôO¡R”\\Ë7ó³Ì/ÔF<¥¯áÛÝ›¡ ̹>üš> Iì¶³§< Da1q‚Ž{{³-#GÿYRžÃ>ói¿ %‘È)žãWÖ8£Gd[,žów´ßæÿè[¿Ãþ}ù·á»çÓîÛŸñ5Ïß'5ÕБ“¿4ן…L¾Zƒ” íw˜¶á2sx‘Ê@sÅ,” :D?Ó«ÈÄeùQŠNhõ¾$ο-軎‰‹'‘§ÍôoÑ~'Çä*fI$B†Ÿƒ{s·v.J‘íÒ{ÅM#¥]`7¾Èx›Ù…ñÙê´3ª-µOžýžÍP›¹…}«È»ª27ðT9Ûó w„ñÖ¿tÁ ~ŽuÞì—.˜…ðÂ߆Ï-Ý”¹ÏÞÞ|Ÿü½û}ñvóµÿÜ;Ÿöž?ã-U•ãp%¹€&KKø£dd!'UOüÞf±žW’¹ÁÛIäfÿ¡%©g°Q¯§¹„j¯mOÄ ]ÄX‹˜»mI#δà µ)hvj)l·æhX&à9+·÷^A2™øSûü62LÀöœ¬i½D>òæ·C±é²^²¿'wvÓR•Ÿ‡´yÇA€žriß‘ä–tmì£ÿ®pfÔEÖ‹ý=Bb£Eç2~*|‰%ós¾ÌßÞ~›þ½ûmñ6ë¥þÜ9ŸvÞÁ€gîèÜûJ·WÅláµK©°¯ y[OÈÚ«6 ÏûÔpÛs¢<| pBÉ“žf>¤£ÐÑî;jÞ6@@‹òÉÀáºöBnûu+!¶% ï·9ðÉ“€[{òÙ±;ßJ½ôŸô\ È¿Äz±>BsºÕþ=~û½¢ \U9û×1}IÏ];œa5^µÖºÄxkOÍ‘=V2'Ù­ÿ.û;pt³_Å›°…ˆ{òÿ0ßõÏéÛšÓ¿u,ßÛüsùßÃ?·Ï§í'„(¹`¾0”æßÝU{(’Km@s»Sà9MÒÀÕO ÝoÍ»Ži¹ þ{°…ÔŒÃQy ”÷Q&h¿ë²ùÓõùÝ>&󬡫t=xY²Ó«=Ò4ö¶$uD4E°Ó;Êñ݉?»d:¸îK÷v°$$%Oëùë[–ù¯}ôÒäÙ§“©½æŽ_ÕDnÅá¡h$5;¨zŠ’fÜZ“…ǨF=Gç¤ÒÑ'b÷”Óv’ðþ2«sä$GÁ À|™¸wósâß½Ÿ ÷¶þ\ø÷à/çþ;Êã›hôá€ñ"¥ö|TÁÜ¡˜+ñ°«J&ÂKî‹Äò·W8#ù¬r/`"sh_Ãü! zÆ^€bòèQ] bs<¾Õ#¤²Ì„3º!Ò*†–€ÇPëõÈ­=Rç¢bT~vÒ9º±ºÂên=¬/¥ý1¼ žØ‹Zì ù5y¶tæï…†©«ú#älOÕ%x¨ÎxëÊ|jØyÀf?>HDVåÏáÏ?û¸<Úmú¶öÇôoýË·Ù¬þ6þ}ó|Ú{Sxœ‹MÐT©\U@y1…'ÉN ÁÂï™ ðàUªªÉ"Ë‚…*Xh QrËfÀÉ@¬¸êw$/ ›n˜ÏÚîø¯²B—Ö;0„§=xE±«ˆ—ËÚ®ˆ¥‰±·oH%ŽùžýC«cÓÉt›ý.¢'#xÂn¿y •PÝXÁæ}þ š/ÂG>™ZP"…0Ýš£ôf‡jL\ù—î‹Ì‡rkæ›ùU(‘F {º ¿!)a%Zñ2}{û}ú÷þ÷åÛíß—ÿ±}>m¿ƒNÌ&WåJ„øïè^›ûÑU©Ä“oÆHVr®`r­&ó1Gx6' @ý‹JjFz2Ëxdðš,8Uˆ· V½œm3Û†”6Ï܈»{Ñq5á&¼‚¾6Éz’e‹õÖ¾*I³3â¥{(e€yçÙãÍú"ëíà!®ñkôPÚPµ0ªüî³'J¨#â/Æ­h‡ ds·ö:å½"ê>û‡Q nï Ìùi?[ÑV^ ¯ËðíwB–öZ—3LßÞ~Ÿþ½ÿ}ùvû÷ÕßÇìžO»ÏŸKD®É×Û\ŸÇZWÈvëÂßÁ+®\¾£Q;Ú£½.Bp?É!òè¿'‰éÍüè\€ÞÝÝåFí•m¦ü¼6௅‰5/w¹³ã.†RæQèäi»s/%ãÖÞ¾eÕì@a}éŸ×D£»V¯kØì‡#Ù\´‹£©ßãmŒ65×ùóÜø=}‰°Bb¼/fÄñGÄ¥;Ž[{òævÖP,l¿ÌLÉK¥~JuÑH‘S¨‡L£ŽRî±$‰ˆ¤ û¶f˜*ô PiØô2I~·þ¦¤~~ß]ª‹F‹Æ˜gûš+äYÍf@¢v mHjèyÏ€JEcScom´!oíÃâĶх%÷þaÙ¤¿dÐvûÑ¡·¿o‡AxÊÆû˜a:t,ã>}Q¤²fmZK5ñŠ !¢—ö6ß¶5€Ïté¾Êzt‡TbrXo[[¤¤ÀGo£oÄÊc®­~ÎÞÖþ˜ý­ÿcõÞæŸ«ÿþ¹{>í¾ãÖçL-PVe–Ãg“=ùc«š©@à© Žu´ÌaÕŽý¡4ƒP­‡‹8½´öHdºZô}ºU¦èý‘ÏUsÆ‘ë°^Jˆž·êVò ¡_¾n­(Ñ¥½Xkoo—XD¼`.ùì½Àœ6Xqéb¾õÖà_ˆ­<—æïÁƒ[È ,Lî>w¨lÚ‰cä|¸~[Eº¦K–ùl°<Œ!uæ~ëžwp (T²Ì§õy³Z‡ï£'Ynÿ8Èß¼ÌÞÖþ˜ý­ÿcõ6ûÕ߯lžO{ïxèÛ ¶º¸„¥J·Gb€GkWoM» ¸ÈU @Œ¡F‹tÙF>°ŠT`›r98 Ñ÷›v)ýÀ2%ÄÃt.{ö˜³l‹ç߆Œ?#ñ@ûë…¯¾ÜZ! hn=Œ‡[ï”Û¤Ž¥·/"˜Ú¬èzS§‰×¤=$|¿§ŽH£]˵ŠÜt•JÛ‹Þ»Yoíqf'*Å)Ô³÷"Ó)çìm7]?C)8¬_ÇÈù}@aÎM]Ž™;Ûoó~tÿ^·ï·ñ_ǺïƒßöÍ÷{ò¾¶}÷ÔƒÎÆå ¾Í)arÝ3µßíè¶þ“Tê‘$¥>FËGîÖz´ï&‹(ŽÏœª…– \¿ «”uLd²y1G Wèº ¦RwÝš»Î:D‡ \gw…¼F¾5§Ì‹²ˆÚâ­÷ ¢ž—”ïoÛ¿ÈÐ`;içåö¿ÇN¹¦ ˆâÏÏOÝ—H”E—òój!hΣl Îs4·oÍv´rë}Êö Þ¨¶ƒÕ`¥DÜñ8@Ñaÿšˆ$ÏçrÌÛÙü=í_GçïeÛŒ?–ýkû¶m¾?o;>Ž$k0bvvs÷ K'ëú½’P _‡„9üJ`=Uôƒu¥0Å+íÿ 1[:sãÄî…o§:‡|£tOþAK©by8Û¿í‚ý9>!ÿ£2ye À8Ž Ö—K{Â{°Qîzé¶K)ûrþ§ý¨!àÈ!5öwôêïñ0 ÕJûQÌü=P Bí! i¨½}Ì·ÖûPƳ÷®à9v㫆·ž2"?mágöÑ{¦à4Èì³··ßgëÿX½Íþcõ·ñ»çãîs(žÎz"¶J’P¿×TLJøÎk>yîÚÓ®d¯É²×^ºÿ)颸гäÒ^Yáü_/Â"åÞm* Ãc¶ ìO¡ ¾XH5*?'©®ÍtYïÁê9$½.ýùV«â#—æLߤ"lþ¼‡÷Ž´|,PV–‹õ8OèÃ?8Ü߃'Ý„ bs˜ò1yö;ŠBŠç‘…Öª#?ZsMF´b•x8{×5Y¨öñf½®I²Kì=ø©[R2ui^&ok¾MýÖù{á¾ß¶ëþù{Ó|Üs_Êz‚•‰@*:Äc'O QŽf;¬®³P†êÅ@ XY‚?…ªÖŒÖp%š ´Û#øSÀ®@ãWB²›Ë;çtÁpb¿Ø]p(B‚ƒžÐ#8D´ëZ‚>…?8ÛàÏ«=œÇô‚þ¹ô¯¸)D—5ëU±Ûd Ýö½{êr?’-ÀÔºÓjÿž? ¾n¬¸’:Q¼ºàyDîu¶ï$Lš(v¼õ/^]d\ЏûûUãl ®îÛø'^Ì )ªcþ¶öÇü¿û?×ïmÿ¹þïñŸûçÓþ»h€€ Jzý÷èÊe0 ¸ à–ïJ÷’ÂSÎe®pÇéY¥šd ¢¨OÐú'yEüßö£ð‘J°Å} EßÃïdKaœ³±]¦oo¿ÍþÞý¶v»õûÊï£ß6ÎÇ}w”#CɃ†§&ìlO±ºè—9Ú|0ìeÿ=OhˇCMq¤4É ¬WE-eèöh™e9â‘PÚ@wÔ9S: yAY»^q—µPð§Êü¢n¤V¥ŠC ]`¼@ÈüÖ<Âà‚ˆU)íÖ}€ÁuÂUt¸™oÌÈbzàý=|ÜÉ Hüž=Þ8 õØÒnP<'^ðò­y½¨¿ùÖ}‘ùÉ»r1Ÿ¼D/¸ïÇð‡Þ%CDè霽½ù>ù{÷ûâmæ‹¿ ÿØ<ŸöÞQñI€lï¥CY"÷ ÊÑ1/‘OšÚÿ$€…ª ¸ÿœ³+/KE³f §‰ôò»5?|{â{Ñ\è´TS¬i£ý8e¼¼k® 1àl£‡®0ÝU[D:Yî¹µ·¤Dâð­²õo¿ãÎGû{a\ìnÝ䞟ÀõïñWj+Š6î|d1~Ïr@v ÷=uHÔTn„rkO€QY›&Æ¿£ÿ!û+äVõf?F°²Y/ösüç@7I<ÛÇümíù÷®ßÛþsýßã?÷ϧýwª |Œ§rÃðÐyº¾6ªpªð&´\%6{s‚õ„`·ûD’®œàÔý„‡›˜cËþ>̾¸A\|ÓˆJ'¼am!&(ΑJ &÷§}–êvÈz¿ -"lÎRní+2ì•|rŒ·þy ˆÕ8w·_TÚÈþ•Gýà5|1iSÝç£Ôöš>†  ÷Jõo‚ƒ‡kÊ ;ÛaÔ•çy龕¾¿ÏháŒ(IÀå}ðö»=º©žiÒÛ'oo¿OþÖý¾v»ñûÚïƒ?öΧ½ç¡§=9ÛÊ‘AqÑq‹êžÕ’ õ›9.I…ÔßœaqsQ]¿#" 6`A¯5>¾U‰–Fpb@o{ùAݳ¹*Ó"  ìZ€uÏæäeXõs°?ßÑW·ævÐTH–…Ñ¿tß±/°€¯ÐÇÛ|TãÑÀ €ðÕþ=üÈk™s©çÐýïÙãÅ«\}ÅL)Ⱦ[û $ëYoýëÛ²³(*ïuØ0Þ¶/À¶cüö;Ûª§ÅÀñž¿½ý1ý[ÿÇò½í?—ÿ=þsû|Ø}Øl‘ˆ«5‡ñç6]Tp.Ø_%ÀupŸHJb µ«ÅŠÏDùCxj pl;ÄâÎ%l€¤ÜòOA£vÆž¿KçÏÿ8–cÜ9>ÓèjIÂ/Ø×¯7^ñoJHÑ]:‡L‘ç‰ÖïÿEy†E+úTý;ňQv*qÖ#áï¹Sû8¤ÕúÔgPó)s”°óÙ^bÇøÝÜÌÙ•ýh‘Ê8íÇ#ÇÇz?o&{…ìb­ûümí÷ÉߺßÖî0ÿ\û÷ðß[瘽÷ÎÛ¯{ MY§E»O%ßµÎ:ÚA  ‚:]v5B%eÝLJ7²ÝÊ QÓé62êNû3Q"ÎF¯Ä…˜äwÖÐcçoj®åc5R”m>ë„(tAJ ‘L§S¾¸~þiýÞ!¡L§ÄÇ­s.—PwÆGÇéÇö/>flç|-¢íï‘Gè‰:²XŽñ|MœšÇDD[ÔÇËOiÐbg<í¸¤4E^ß.ÝÛïXϤçÝn=’¯v™ˆ2ô6z•i~ ü õœ»½ù>õ{÷ï•;Í?V~þ{ãœÓ÷Úw~ÕG¸•¶8ì'i¯AqÞ?Â]¯gÏ2qî—ÐýKãY¡~AIÂó 7Ëž"yei(ØBx¬úïðR(O–ˆ,O@× XUÂÚMw“²Ûü ,*Õäyûûé~e‰~µç‚2x,òÇ­ y)Z¿Ó.ö“çA¼Ý˜ÿ:ÆOÉÞ¦H­.‰÷üGqØœú0ÁwõÄÓ­=2î8…ÙÎþ q£’ÇÈû©@ ƒ¿®:¶cü8; Ðõ¸LßÞ|Ÿþ­ûcù6óå߆lŸÛïñE«}8àÜÞj€³ÿúrFy&rˆdŠkm€\ëóGÉʺ™6)ÉOd+~Ä&„¯Bº¬V×Q«(ާÇ3AÐÈ«Ì˘°Ñ¼º!-›*H6¦Îf»““Ì¥]ÚGŠ‹DAb¾ôõª% ×Cº˜©–ý}‚&N(· Ÿð5)nü㼜©ßÓÑÎ4wTõÈ?a^äíoí•;B%®Ätéßœìó>òÅ~9›±eNé2~ÅyíøŒ°]æokÌÿÖÿ¹~oûåÿÜ=ŸvŸ›ëÅ(Ij€åžNÓ\€bO Õƒ³ Úmº”#V„¬“ˆ$é¿GR’ð¤Õõ˜#(VVgÆÄ™•¸ËzÌ5Õ­ŠŠ“\^ ‚\ío@fþ\>aªšî³}VIÉþC÷ø»(h3é½1F¿ØÏcµÂé6ûº@ßãÏ€P½@e½…MqnŠÒ£¦û/á¢í&+lÏ·æHDÙëGÂ[÷Cæ­åf>ë=Rž Ķ Ÿ,‡=͂Ы—é{·?§ÿÝÿ¹|oûÏåÿÜ>vßC˜ƒm•¢jW€ƒ¤ÀÞû xOí¢í}j¶Ÿ5SÙ:œcMGO$vw¾+â[6C?|J锃µÍEçâÁƒ #¤&ÓX|[^iý!L+b»i…,¿•r|(¶ö*¹#ìôÃE÷êžäq¢6ׯÿ%ZY*º9MŸækð(®•Éåaªû{î¾´¸MEžáö§çåh°/+«^lÏÞÁ¦a»s2ï¶‹ÊÆžwaxî÷À¿–r/¡PŠ0Ò1ogó÷¼¿×m3þX÷¯cìï}óýyßùÁ žKre¡y”¬ÛµiDwìòüC±TÙñ¯v4GíÉìà5Ñ¢ŒHÇöÔ¬ØâB^«óPBc·®ú#_ËwM.%:BËž L}ùA·Á>²{!À\—õ©¹ÙÚC¹Ò(‹Äcëßv‡9uæÍžnöGÙo‹øÔ mã·£‡§mîNÀ~ÌuÀümôç3o YÚK{ q±BU˜ýÛÍP•öÆß¼Ø?A±Õ¾Ìx?7‡жsWêè=}{ó}ú÷î÷åÛÍß—þ¾}>n?‡’‡"zϋөڪS$‰%Þ ?jnž1QõIæÞ¼"üßJaž‚y'Ç”€ðr9q¶ŰÅÊÀ‚ùDI”ªé‚r˜kIfS¤ÔMP‡8wA1ƒ‚ù®Ò÷k‚JdÈgø»µ¯(D¢ÜAo×½é¤S@œ¢  »ýàùDe Hîû¯cü¨â$ˆu¥‹þ×1ö»¨){ vI/’w<ÚGìèä™ný‡D;†ƒêb"މï=G?ÆŸäZЧ)^¦ok~Nÿ»ûsùÞæŸËÿþ¹}>m¿ƒ'¢{¶Eý*ªí‹ÐzZ¬ÌdÛ춈ÃcªZÉ)ùaÀ;ñr†°b…IÌi!=pC ~¨f•œ6ˆ•ÚîQÅÜ3WÝå¢í¸G³o…¬‘§FA“«¢›ÉI½w¼4ò\Èô†Þo½g/²×€WìÖS¡4ÁÒ®š}ôdë¼õ•1Øf/ª:-Ø…Y=D¸? úÑ#ñhß•kd{´vëÈ~ëëºÙOézŒsŽÜëmüªÇDg¦KÌû˜¾­ý1ý[ÿÇêmö«¿ÿØ=Ÿvß#W7§’!:¬kحד_'zàņoÎ3…Ð6UÓ}´%™ÐJ §…fïÁ¹b½” H¾ þ.TY…græT¹¸¥ç@2ÞQivÑÛ|{Á´OÝž€Ám¸vHÙV sÑnÍÄö5®H÷ѽ –JÈ1ê¢=|[¯Âs›®‰¾Ý÷_Çè‰Ù„˜ÖÛ¿gO…çæ'ÖâDL’t+¤pl‹Ô[{” 'Y©ï£)v’l-åiÿ€gqEnãëUˆ¹Æžoó·µ?¦ëÿX¾·ýÇ꿇nžO›Ï_Ih„’%-N·MÕHèÄ “¢ <3A%¿#䋸QüÑJ‰•2“¸®jòSœò†Í»±¿ _rìUV Î=BkðÌÅöáWucÑîxX‰g-| ¤ÅUg÷€]ÎKQðh7élʇÞú¯g0×ÍÆ~ÛæŸý}Óù=~Ø®QfôÚûkþ i€Pç’-¶¢GÁy¼´‡ø•¸tK)zëÊ~*š cžö£mƒ~JJËUxŸ× AMbKéz›¿­ý1ÿïþÏõ{Û®ÿ{üçþù´ÿ.¢´ ¸™á¸’+Bm;§Waˆ}Y#§.#¿+ŠŽ1ü¶ªÂìf¾o6!Aù*aF…Ìaªëž—pÊ .ŽœýÒ€ÍÙQ‘ œÕžh;1³ê*l­‰k½µÎPDÎéùá½à Ô˜q>ÜìOØOíeõüô>~{wÃ:Ãáá!Õmþùwž¹ÓÑ6û°½™'‰£}D[Ú5­\úGüuJ–ÉÃÓþ&Ìq÷¤öeü8CöGé’=?æoo¿ÏÿÞÿ¾~»ýûúïãß÷ÏÇý÷‹&ÂT<<+ øÃÛݹ¨Mf@Ô½éd"ËãÈ?Éd­¨lCúC.jw‹}¿<¼D›í”h®˜y&J×{¬^ ïü}éÑèÀW‚›ðIÅàÑ“zÑW{j= Y¬½¥Kÿ8ú’Fs§ÒÅ|› Ì·±¶zÑß÷ß#ñ?ûåQùø=},€|¯ò›Î<.í8€·˜Ê¸ôÏ9WÌí°_ ú¸Œë¸Œ6•¡Z!ÝŽùÛÛïó¿õ¬ßfÿ±üï៻çÓî;NˆéâøÍ¶˜eÌŒnwG_O*«îlS Uš•µÖöA$xÂºãØ‰JØ‹r)[9˜ÈÈc¡ÜmÈŵjí»·o[µ½Kh£Çpà…d¤“Ãw3,i¶_E¿ÚÛ“Õ¶] ö¿ÇÑ;àâÀ•‚ ÕÅvê3SؽA–ßcO° ‰£=L®¿ç.©L Dyä`ð@+8Ÿ~kîAÊ?ê¸tß…´3fæ‹ù¶Í(ÉY%¡çàíwÈ’´T/“··ß'ëÿ\¼·ýçÒ¿ÇnO[ï¸ô̓#X`]”½€]ÁÅTûµOùHdŽ °”‡£üŠÖYß°:•é¿‹d?„ü¨ú"åÇ%çY@F!ÆôS, Au'Wü¥í7XYò›Te%Ý8Òu.èvkoÏÑÕRò¥w}°¶3Û¯$òí_E²?ÏD¶çÂ| u!ªÓóý=w_\Øtäî€9ÿJ¢½hÒ·öÍv–®7{ÅÝúï2ŸÀꢋÞì'ŒŒ¹.ý6|n`˜¿ÂT¥î1}[ûcú·þ÷ÕÛÌß—~ý{眳÷Úy^B}’VdWèb„š?®zð Ý9Ïa•ú}ÝœÙËÇVTLžqý#bÃQV¤˜ÊÔÉ¿xh@`ñc¸Žà®2Ýð¤¨íÃbf!ËðCv G`ÞÚ£1@ ”ê—î£YЮíf}õ zF]y„ߣOœ¤Zü˜ý{ÿÇòmö«ÿÿ¹{>í¾'ÓD~.©é¢Ø°ôvÒUieš2Œ=З­"œ.‰ç9ž$xû²XÏõ»4ÐNôÙgâ¼Ùä@G 2äŽÊ²e>ñâè?$¾ñžÚÃ4CÒ$ˆ`v…çôý«jkÎ~ãžà£¾uOtî­²rÜ»ùEæ› ýGtû5|Èí .˜ž 9¦`,÷d íaš1þÚ¼µy ·"L{ö?@^òq•/æ#8 ÉL|>p÷†Œ2ïñsööæûäo½ïk·¿¯ý>ø}ï|Ü{þX¢è)Ù̓¾#p„]§ºR7;¼•pEƒ‘Öïv8 õ‚:œÿ=&èâÍg{nÏa÷Ý€¿®/U¿dó呂 ÁJ¦„Upóa ¼iµf¬£Ëéb LLHsÞÚSÐìW‚·þíÂs “e»ÙŸd?7äxp¯ñƒB³ÝþÑÏkí÷üEÑÐ"Èìç'׊0”@”[ûþ‡O¯£*ZnýÃÛ™ ª×Oûáí´w’ ºÞÎ$‚è”oó·µ?æëÿX¿Íþcý·ñûçÓþóûè•\¥tOt$œ"[B;T5”æÆðs¾µd ŸÔ2âªôì@„ÈžáѼl¤ÞHS&}À…ʃÞ~lцŠS3òý“ôœ#ü8_’«³óÏs#ÔØQýøØ›s:Á¦Wš|ïÝ–Š+ˆÛ¯Ö'Y_U¯ñäf~„1Å?mä§Äà5y¶=›tGÊBÙÛ}v[kØ&TG¯öÛÜ¡×ݾÊá! °g™Í—=ÏÒ­=ÈÀ¼I0γÿ‚ý £äLûa5£8fè :ƼViÏ!à9{û÷ìソ–îûmü×±ðûØßûæû=w_Û¾s^D¾¹Ak6\®ñR’O1 Fé]'ßxiCÞJ\BvÖêEñÕ>¤]šaÁúA-ðV[Û)±HÄK,Zi]o•¬‚+½CwÊyÀGû€²ôO¥àÓ«´Kù{ëÃ{7‡«vô D·Ýz/ÒµÉM 3ñ6^IÄÆô溮ÇßCOR½á‡Î>sI¢¹àu†cÿ$êmž¨­l»µ·þ‚BÓoÝYoob‘MÖƒ=lÐÅ6Ñÿ£ÒõÆ –6Ê1y{û}ò÷þ÷µÛíß×~ÿ¾u>î¼Üý¼L‰5>:Á­[òÓq¢Àao-:v ô¿}&ŽÞGIZ@àà%ˆºJ~¾g©¼JEsÏUsÍÏÉÏy{Ò‘ö¤­íª¼Òí‹Ó=)8¶(ÑÔ7nž³ëèµ£½9ñp±ÔoýƒÈ·ÛÚ®ßXoö«Þ½!ÖÔþ=~Þóö|µÕá¡ìú=}T÷Ã)F>ýÁy¶‰Æ «qiOyǬ2gÿ…²òÔñÔ‹ýԡ‘ú‡çø“#‰(Åt™¿½ý>ÿ{ÿûúíöëÿÿ¹>l?%%8ËÝ«"ß§F =óø/@?Zw'ïGe5xD¥¡{§æeúï™× }mé§Ð˜Êýiw(º&sP–¨ZƒÞá®/šÉA™Vsñ‚|¬,Á½=·Ä3±¬“xëßΘ:‰QÇ›ýYöÛUô¼D¶ñ£ŠÌ›Œóhy`¯ùKPJÁÑëãÂéGÔ°Ç[{H‰Øô¡Zˆ£Tº)¤àÀ¿Ù_¿¡-¡ Â9~ðzöîA蘽£õ6ûGïÛêÖ«¿þØ=Ÿvß…Ä gmòÇ ™m±;§EâD9Lls9Ó áRˤ³ Õöм{G¢ gŸÛCª1ÂNáêó'ÓRŸ7g½ÀHúB”Ñ&ð¼Ú› hõ*VNð‰ Zß[óFʾ¢¼ª¥¶î+”—•Òoæ™ÏÍýwµÔ¯áÛïˆgžXêóïékÚI¶x¡¥‡' /pŒqk?ìñdÞ%Øßqë_´ª¨::Ní°_¸=½ÛøE« erTÉÂ>}[ócö·îÕÛÌ?Vÿ=üs÷|Ú}Œ |ü£*ºr;¶m&~å26vi@z(ÑBèÎ ä-A(xliáa þ+ñŠˆÚ#bƒj<®8=ˆ”41{‡éO%»K Êv<š `lˆ ÏÂÉÇí"*æÓ™Û5z—ö0ÅÏ4E?P.ýðHÌ´ÊÅþBml8íù±ù=zûÖMܦùˆØüš<)nÚÓJ‘5§?›É>…r?›c¯5µ>Ë­{®‘ŽV/æ£QAY©6ß@Ü *󜾭ý9ýïþÏå{Û.ÿ{ü¯Íóýš¼¯mç±5ÿÃ÷úN¤Ÿ*Ð}øP¿ÍA¤´ŽÿöaHñßìùiÿ³þ©?ÿûûÿý?¾ÿ×ïÿ›£ø+~ÿÏÿƒ—–’E%r›<•£ …½rÔþx#˜lÃÅ‘QdùëùÿÍ¢åkÿl€E¹J@EÙÓ?µ.op#Ñß¿¢||E[£ßv~úŠø¿úºØ™ÿéþüx&©ïr|F¹I§~ý³{£ß0ñ(5gu (cÖ×èÿFƒÍùäf[ßÊêûø 6ƒ¯>~Y„Hx257˜ã as­½ þçÕf0IÏÕ³ÝVÞ÷ùemß}üÄ0˜wÏêÔv2¬1¹€Ýà~dm¿/ïûüÄ6ƒo>}k)*=Jͱ:Í¢r\—öœþéÙµŒT+U\+mõ}~k›Á·F¯.J!¤µæêÊOCš(Í þ§‡Øn0êU¾´DiÔwý×>ºk£í£X±ö0aÆ„bmU{üOO³Ýà š—;»Pãè}ÿ«Ý­Ñ¿öÑÅ¿O‰2a(Ð^ÿ[µ_'iý×¾µßÿöó'ÅÅxvl”¥5„dZyLKßÿþëó)ûå@ýëëjâ_÷Qÿùý×¾ðüä÷}ÿÇŸkÇ ˜žöÍÚ ª* 2¬–Œçúoþ«_²Ùø_ÉõgÓá2üc™³eýçeëþGž!|þÛ¸øÿé_ù7ÿFÿßÿ^óº$¶¯Wo@І<ªmDü•¼’we¶F%1²Ð F²âl¨ý)R Ò”þKÏê4(ç›®ÌVU£?Ãôö¢Üƒ,WWfã8ê®NïíÍen½‰§¤Fm«$nÍ©ýTGg±FïÝ—©Ø<-"ØÍ·ß1ßž±Iè±}øD· ä¥cNoÿž>ûÝ.-»×C ¥Š‰Ì¯õÖL |èä×oýwÙoÿ×R»Ù?HîÉÇøms%²p+ÜæokLÿ»ÿsùÞöŸËÿÿ¹}>m?6= "’“ð~,„ÙSQ$s’4DŽë©°„Œ½ðɪ]æßÛTO›:ëB¯Ú›Ò+^íün—`@#ø5_êtÉõD½Š2>/fŠÑV/;NEˆªDšiö…ï bÒ™Cè×£=µMLF+ÊNìýSŒU`ÜïUø¯Ý~ÐûhZvhaÔþ=|ŠÁ"û+qŒýuLŸyE¼†DDMíA‡8 ¾Ç[{´#"\iÄ[ÿSöƒ—­éfÿü†'QoãGˆ ¹ o³·µ>fÿÝû¹zoëÏÕþØ<ŸöÞ»V\?‹V%:¥ÙV‡ÉnTe«É p”Ø×¦2•XŽuGX›ÎJä(ªÔ¡®@=û³C\bø—|Š`e]":ƒÈµ™N’Ÿ9 mbÃð,›¢È«¹¤lÿC%fžƒ¦Þš'P?¨;êÞ;0E³•v3>Êx›(B‰ƒ§¨.*xÉÕ~›¼ð§HfbsIêÉ!ºhýÖ¾ê"íÕÇ­ÿŠùS8˜q³¿é,¹÷Ûð›ÎQŽ2pÜÇìmÍÉߺ?o3ÿXûmøÇÞù´÷tŒ*܈ÊR bó!nÒŒ*Jr3P桺֤߻ùɈÚ(³nXÄ´]ɨC$Û\‰ÓÃ¥ö%f/0£Ÿ@:XU_ jê›6i«„ß¾»?ŽO0Šduû(./÷@H™£=äE)š·æ`”£ÿb3HÌJ¢ögÙOÕŠZo£j¦»ˆê1{à)ì"ÅmLj¯{‘*Š’ç­}¨Z`(eŽÞ!­Ôˆ×8o¶#(€†V$å|{E=½ÚnÒ¯Ýçno¿ÏýÞÿ¾v»õÇÚo£?öΧ½ç»“LXàCJ<ÁÚÛA}ùîlìȶc½7‡iE lW]´ 6ug̪#±Ýjp\$ŠN¦¸˜&Œ’¥[Œ\ -/&®¨âle¬æèPAí J¸§`oýzii3˜té"*pO¨ƒÄ‹õ¢<…ö—õkðxl69º”å1w-A² — Ê„­Eì*g{Òh’š*¹ÝºŸ2¿I5÷b>|”lå!êcø4Z!Õr™½½ý1ûïþÏÅ{Û.þ{üçæù´÷6¬à¡ö)$X‘/‡$ à!°’d´ÃÑ¿F. ±…©±Š³Þ® ø—ôÏ'ôõÙ+IÅÜc=¨äXÖÎë­8uƒ°/¤ÁsçPrQpŠ«–S¶wIêô•ß-üT’K{íõÝ¢EÕTLpôÏk€Ðú\þÐn~Äü,¢·>NY_‹?a÷Ù‹ö¿ª$ÞÝT­EƒÔ_ª›gsj-$k’Z¾u?e>ðœõ¿Í:à OD%_†Ù°Ý ‘ÚÛx™¾½ý1ý[ÿÇòmöï«¿ ÿØ<öÞîŒæDn•©á¯@Ui·R׳>3w¨Á&©ÑAÓ[$ª2Qó„^*ž6ôDKﺈ‹šÞi‰í'[‰j]~û†üúcDí2þxýÃ\t¢qì)Y6)ÆKû,ܦªýß»GߎŠéJ¥ÉÅúlž¤òÆ(üþ>zŠ ì2ªÂœ©ý{ö²*0Ôç>øÌ+œpzZ¤Æ[ó‚¯Ñ:Mú­ûªÐzî:næÛ^#E>®™wŒ]n{ïÏo—ÙÛÚ³¿õ¬Þfÿ¹øïñŸ›çÓæóG½rÝöЄèەݨ!B+%éQ¯lwÂ}î^Šü®Ší½˜Lyý¤æ O»ýP>ô ¿az|¿¨MzpÅÛ¿ç˜Ñ€©7;å„jPsö5r¼µ—º¹`èìÞú‡oÁ#‘~³Ý¥iMÌÃŒ·ñ“G¢ÞHEçômÍéw.ßÛüsùßÃ?·Ï§í·;¤örMMµjš%ŠäÞÄüÊ»7#:ù„ý.°—XˆÑÿ˜¿»íÛŽ*ÚTÓ¾$³4úY/<ç„d¾¦%žEö¹ŒjU»MÒX%’ÍÜO½W{ó¶æ{´fm™#WßU{{ô€&…{^È·÷ŸUÁÒ O¶~±úJ¿a;è+.ð{üœ’‡¨k¯lóýDRG>›ç ›²9móÖ>£Ô‹>uîóÖ–ýÔhÖ‹ùö7>ûó2|žÞUüøqŽËôíí÷éw¬Þfý±úÛèÝóq÷RâTÂM•j+*`þ%§Šä¹-Q ­øí©ûèËȾS8èy7+>¸ÉyÁø=£È…Š¢ ë¢bÐ*y,v¾PÚ®`M#(üùü DyBåžV,jòÞ¬µ_š“å!ƒ‘»3½»Am—”¨ ž_ÿ6üˉP~‚ƒ¿Æ ?Œ€ÈX•{ü{ÞÔÍ®ØéŸ(|¼<€¹…oíI—B ¼ö[ÿÇBç\cá°_”4vÝv{ÛÝF/JšDÍAo·Ù{·?&ÿÝý¾r¿ßVýëü{Ó|ÞsÇãÞüÖN.arÑЗH+Ìti ‰ãÛLAv»z2cƵÕY@h£Á×mþKÑÑCÈ’c+BéŠÍ¬xrmàæ·µŠÀñx"!¶.1*Šk÷ ÄD0C>‘Š$†y3É“‰0.£OUê­=¹¹ЈéÖ?¹9ˆ£ãô(òf¡RÖ>A~þ:ÆOкÁÙe§«·ÏŸýŽ‚;T”·7ðYi9ÞšÛE'—¤›êè½Êzª¾Wþd³¾JhÓN²r|ƒç³KieÞ&ïÝ|Ÿû½÷cí^ÆŸKÿú¹s>í¼ý¥†×ñȵ—…j1?/ðõKá_„^$ ‹L¢=¡ÿÈ_QŒaŽUBú=È«æXAŒ§_/LÌSâŸ!Ä1^Ue $ä•`<[Ú;œŠÒL^Û¾m×ÄÉîTý$ÿä?ÂdXùÚ­½ª<«¥}½•lBWÁ³y³]SÍÒ\¡ù>ö®geôÞê1ugû}ê÷þß+wš¿¯ü6ümãÓ÷Þwz8uóœ“$ ˆýÚƒ &Z>!>íL»:Ðïß~ÇV{¬©@‚2ÎŽ.ÌÈC?ó×ñUüFr¶¥†«o¿‡?þllimç¢$oªM¸7à ÷ F±B9ER@HÔ¦¨)ÝšS Í4Ç2¼»·OõO³ƒŒª;Soóùó©;[ë÷}™UÅ>6øè'Ð{öø½¨s{Zè]ÓyÜÇziÚ$yJzꥸ¬ìïÛ»D\T‡ý®–)Txm¿k…A„O¼öœ¿½ý>ýïþÏå{Û.ÿ{üçîù´ùT)‰vÒbæ#Öh3s“'%ù‚¤Aƒzƒq€Óö–ÊÇÙ½‚$O hÏ©}°C¨ DY`푳ÁÛ ¹À¨á5Q)Õcæ¹Û¨"êW¬°­öÁ*$Bº~‡#ŸLˆÀ:G{!æIgÿæ^AD †6»¢ÊÛþÌ¢m‰C¡ªð÷øù^_›~_àmþ€O[:{×»à•ýo;‰lI&LÙ—æöïÑ'šƒŠ—K÷CæKS>ß̇z2¬&šÑsø¨WšHqf¼MßÖþ˜þWÿ—å{ÙYþ×ø/ÛçÓöÛ}Ñ„{C¥aP®iØNˆ ×{ÁžÐ)Œ(qè½èYG·Ã†ìþÂá!WHS*²¿JA- T =åHˆÁöܬÈ&|;j)óhŽ. ŒóBB0åø4SÚB18ì>÷ËF¾4ç»oHˆÍÿ诳ØhõADý˜þU\¥í˜,IÀ}àÒ”€¤2¯yS,‡X ¡s±¡*¸jÓ¯€ùŽöø…°’m¼u¯ävA ¸÷‹ñ“3.й¾_çÐí­wa¦2옸³ù1ñ[ïïu;­?Ö}ý{Û³÷ÞuGŽÉ|ä•a ^ЇœVB=T·}&Ý­Ýýý ÎÒ‰iuÀ^a×$ ^¤aÑ+ÉAn º¯§ê¹7hÃWóŒ2ÿúMG@±÷8Œ½©á+ŽvBJÚÙÒo͸ZÐBÝß¼{ïךëE±Ü¬²žzö ö6vê} áF¶GíßsUv7†9<Åbÿa6°È=K{àXðZ‹úüÒ?‘øy-΋ýö&Ú€ ^Æeüü4 `èh—ùÛÛoÓ¿w¿-Þný±öÛè·óißÉ%å`ÿ;5€}.QÉD¹<ûiGL¡{ùq׿¬pJxè»Bv ¨)ÊëJ¾†RÒ3ž\2/ÅÐÚVêqœ”â¹%ûÄ!dn?'@&@(~G~¶Om†ÞSì·æ‰/pê¿”[ïÅñJÀ£ç‹ñã!?ê+¹ò¹~Ôöùwæî÷ÄÑY&ðÃOæÓºUUº¶/‚ìÊýÖ}‘õÚ„~³Þõ±»Ô©.£g1"oì¦ÌÄ1{{ûmò÷î·¥Û­ßW~ý¾o>íºg_Úµ‰örlìæjI€¡ê“•‡©Û9ƒr“ƒÒ¹ Ú“9Ëmì±BáHBLtež¤8¬5“ˆŠÌ³0FžíIœE¢Û­<9Sa9Êhkgd ÁGq"‡j¾4ÇW­pº;xaïÜÞŠö‰"D×¾û1]Áth®<#´ œô}Ä/ôM³ÍZøƒàk†ìG!@VR³g¶³5é°BHç}ï]k˘áæ÷Ú,ö‹á‚›@LAïaë!¯8Ä9wLÚÙü=égïï5;­¯ù×1ö÷–9çîµã|O9ý˜ï*ÈR¦OÚWô€WÝà´[ ŽP`¦R\M{:#s góJ4é#‹AYÞÑ9¨èŽû€†]" ióÚÔúÂì“Õ–qI‚ †Ï‰…W Š/î¼YðóI¼ZÇ"ÄtëÝþgMî‚¿ŸÖ£ìT!Ÿ;ð9úÀcf»zúsdüš=¾¡ÄßÄš„®‚‚­ÞÚ7Bª@7z¯·þöw4ŠK»Ùo Z@kf•œã7?¶êÅþ{LßÖü˜ü­ûcñ6óÅ߆lžO›OÛG£Hz¾o°dŸœËSI#; ÐŽ¤WM"> t ËÕjÐÑGòß Â`©çr5PݲõUþ‘”,0CðœÐ299ÅôUÎ"¬æÊ ®Sœq û„ª·ö<:Ö&)îý#¦S(É^Á°ÛÃA„€:zÐp˜ƒ¨ûŒOUÁïù#W“ÑÕ ÕodÀ=¾â)ßš“?´[ŒO$Þº/2¿yýýÅ|ÊåíY2N£'Ek%»¸ª¿Þ³·5ß'ï}_¼Ýú}ñ߃?÷Χ½çH‘ò‡Ô²íX‰D`þ ¦È/ )’ÿØ—Ó ''÷n0Ø ©£é*OAå"ÿ6ï(Vðˆ4õ ä«œÝnÔfWÓX䤰™Ã;;.ºëöRÇñÔû°-Øs5FñGöScb+9=drŒ?L¸¨ÀɹŒø>ö{#uHÊ‘$x¢IJnkîdèÖ€JНKç]ÆÛ㺩´ém¼ã0pM‡ËÊcïÈÀ"¾’ÉzÏÝÑü˜ú­÷÷Òí¶ ÿø¶o¾ßóöµí»=”Dµˆ}°@ 8bÐr§ÆKr+ïŽnw§]?ã]“Ïs}ƒ(L;¼ÅKK"õ„ex ‚휟þVËHÕgO:ØÏ*óÁ³ê\à"Ím¥€ÂacVòG¾=s›ŽíÒšEœý^[ßH(ú^ýúúmº>g0çT9¥çôù=p;»D™ì5o_^S‹RëOÞ`lB³ÝÚ$£aç©ßºXoþùª›õöT$’kWbn·ÑO8$Žl©·ÉÛÚïs¿u¿/Üfý±îÛèßÛæœ½×®s(TȨÛ2tPª„ƒEÿpØzÙ…£ßíSÔŽW8VƒÄë •Â5ןÏ{å±ÓßÇMŽKS{2Äö½ŠÌ²ÙÊ'˜ì¬J?ß¿í: ¥ÚÀ! ¶0JºµÏ’i1g§ü}>üîÊQ¸l¿Ï›ý:l€i-À>~°7¶Ô0š)Pðž½øGlåðËx”‚óöÏ?>ZÃyˆÌDàè<%© _ýa<Öüs[ru¿žñña¤Ëäíí÷Éßûßo·_ü}øûæù´÷ö8§-Ô¯%‹Bœ_@`„°ƒ2g OdÿÆ#¶+ì´àµ}ì#R8Ú+bUô°ÐävÀ§z-H“©¨;'d£š%ÉÇ€/½ÙsIéuUtnŠÁ³Áåí"€D¼µGm ¡<ŽÝKÿ‘©¬-r7õ‹ýÒå¢iÃcÎÛø¹«º9I”À?hÎ_Ó‡¾I"•–fã Ðª"conóA‘ÈÄ„|é>E™_@Á•‹ù¬PLi¬^†ÏN2Æî˜¸Ô8ßÓ··ß§ëÿX¾Íþsùßã?·Ï‡Ýç/¤Ä½CÎ)„‡6/| 0óý&>é…€Ý1s<±ØŒ¼Ä ΀j Õmõ‰Å6¾!:ƒ~ÕÔ «›)øÎ¼'²‚ŒbS—ô‹×<¸”Œ{ü™ÙóóûOk™bWׄ*Ú‘k{ß.ªùX³Ï§$úoÛe Ï|{¶ôDÁ=KÛnŠïý'Êý3uR‘pñCW—a†ªÄ§´[{êÅáê…'íÖ?Ü©)HífåÊ }[½Œ¿P˜HaŠ½á˜¾½ý6û{÷¯¥;¬?V~ý{ã“÷ÞwLYÚ"鄿ØNÂÕÓC©ÂœÊÃ/;0).Lj«H1IX«àl;H°³‘žÞï†ÊTÄ%ìÞêõª"ìÕ`užR±èR¹·n¿“»Hâe5lj¨4qýøwc •gîÀÉ.ãÙó|¹?4^ÆË•Âxó[‡ù¶Áƒlkb›nõü3yj¯<3òèŽ D°Øžpö6šõÖÞþ(™ë­ÿÆ ¯£(Îi?õOv9˜ã)ê1~‰³ÐÅDxOß»ù9÷ïî·µ;Ì?×þ=ümïÓ÷Þ{ûeÜ–Xg©fškHÂ+<o{6°ïCÁæþ#$ç7íÀ®Â Ô”ìTq§¹-ž,!ãjð{œRSvUY/Á´OhNYÅ场ñëœ!/&Š»¤•;4TníUñYÅR:oýgÄ/…¿ïóf’ý‘ ˆÃ·ñ›c˜©îí®ê{̪º(?Ng6àüx .„³ùä™Á3|´xé^%˜Ð8Åa> ;®Ò‘¤i| ß~œáñÂsööæûìïÝ«·™¬þ6üc÷|Ú}D"ñ<ô&› Þ( |W:SSR]ž]7ƒH”ë`_£b­îÙT´´²d‹ø=Q„عäÙØ\ñÇJt!yTŽzGúhy6ÔBŸŒãˆb•¯æž9^+Qm`¯'‚—<`;uÛÝéžöŒ}THs}¯lý›?‹Mä€yãbàØ³'ØÑºÞ¿Çº Ÿs:µ¥òkþ‚ý[ÿçò½í?—ÿ=þsû|Ú~ûÅŸ@•ÈêÛúÇ™™?½NS=3¥áìêd®3èmqEê}.ó½jvÖı¬¯bÇÌçºääcdºêSÒ Ýæb¬½ŠŒ§=%syj’‰ôÁcá{5áŽV×â;ZBæ#´âud[ïB™d4ÅVy³œH{L¸‹¸ÞþgV}OŠõ­üž=jlyPMñÔ$ÛV'¼ÖV}·7ƒíNU¸{mÕwÿ¤í0M´Ë/ö ±5c^[õ=þ ž F)'Wß§oo¾OþÖý±x›ùç⿇nžO›Ï_ùc÷tTNBu~-:yþ¡·šÝ1OŠŸœżÛø®ÒÍcœ/D‰«½¹è ¸Æó%ÃkVìrâÑN® EY#ƬZ …šÝ<Ä%V"-"Õ ¿¶W ¸èp;¸HùÞ¾BëFgˆæï迺Uöç‹ùpØØßBºòˆïáWŠÂ¦íåR¿Ökö 8B/¥·'R_q‚^ä[sñqÉOŒùÖ}“ù¤ÆEݘO¨¸!±”h<†o/¤ÙTüœ¾wûsúßýŸË÷¶ÿXý÷ðÏÍóaï=äbInG¿Ïë$øº\ ¶ØN’3ú ²~:xI F¥þ{´­`Ï•j£‚ö¥¡R‘Z¢F5)^‘Ð"¥5°Ö¯ÚèÌYUÐjÚÈ“ƒÃÉÇQ'ÞìõÖ^é¶Åš¿ ÷þÑ(oD<[M7û‹ì¯öI'€ð¿r…P6¤òD7^ó—EfÛ5Î+@"L©[{tdýDèò.ýìÇ9s–ÔÃ~Ûvõ’uIë>~^ؔ۟ ý2{û}þ÷þ÷õÛíß×ÿ±>í¿K•g&XÕ`ˆ‡A݃^øªB»W†3ŵ?âöä‰ê,D®¨Í ©¾YÜ O Ä"£S,APæ½H“¼æš(¡ØrñÍbY—:]^íA²_(C€+·ÍÝñÖœ“Ñ. ¸Öú­{n. ôt¿)wóâ ÃérkÇð©Ö˜›\0ô˜¾@°Igoy*¡•°Ï©*’w´gsÚÀs·þ 3Ï´p³_1ÑÀªŒËø)Ô„H'¥;öéۛﳿw¿¯Þnþ¾úûðÝói÷ù£©R•’1ÏæDÒ¥aŒMÀN§î Ap”V¦g¶çÑ‘€%ç]Ö#ÒÎ3qÅó ‰"©çÅU¥jñòNAf©û‚ÄKo@‚ÑúxÕ:Ûô”¤ØÚbÛÍÆ“±ßšƒ7ƒvÔÑßz·'9]•ði¹Ye½]E%=/¾×àÃÈFpò—sò!TÄ=¢Ÿ‰Èv‰rSæð3‹O!æ[ïÈÍÚ–…Ê$Þ¬B›U<<ñ¸Ãª¾•Ëä½›ïS¿uþZ¸ï—é_—eüµi¾ßÓöµí9OÖ‹å'ØV%P!ž<›Ñ<ü‡fgžZÅàÉjûHÊÌcÕ+åŠÂr?Éls•aWŠ?Y°@ú7PU­Ú.sÄ'Ô¾ãáTá+6ëíV©—]·¬„•Eå]»|†×–Q8XC[IЭ}^Cmy ãìŸR­Ž3J2£Ÿöó;ö“7\YÈ×ø©¤kz ÀÚúĪ~¦Ÿa~eîÀ%q$áq’ξ4—«ÝªU»tïO_¬¯åb¾jª'ÀÎsøâ !Þ(¦?§oo¿Oÿ»ÿsùÞöŸËÿÿ¹}>í¾ƒfĶäÍ\f¿`:1fJ ý©ÇŠ9âQÐï• ‰ 4ËY®(Tã©¢*dÁ"¤Ãª@W¨¸„É5ÙDEo®µÈ>¢“4´JŒðjoŸ-4¶âX„mqU=Hní©ÒÅïù‡-äÕ?Ð/[9NÄ|1_ÌÂ6ÚGfl~Q>Áv~ NµM*;“¨‹üa±ÖöШ*8ÚWñÂp8c¼ôo¿c? ‘.ö“‰óÁ”®ò1þª½Ñm={¾LßÞ|Ÿþ½û}ù6óÕþÜ<Ÿ6Ÿ?äQXkI©|á**/èX´=Ɇ٥¿®?…í¦Cû¸Ì‡j ¿`†žÊKdfÒÏcŽénWý.n%Æû@jg,P´FIæ€ØÚàIÇ•ó¦âÀŽi_¢“ ž²DÚÓ­½”šç¤JwÞú·· D׋îå´®@Ý i½Õ¶ñK©y"¸޲Ûü%D;"Žl î,59ÝšÏ?H© ^îó»{ø¢*‚ç³Ä|1ŸµÏË®VÓeøì¯BÖþîx™¾½ý>ý{ÿÇòmöË¿ÿØ>Ÿ¶Ÿßô”ŒØ÷0»Ç²:*˜DÆÌYi¥@u¶®ßø—æ"¡:«£ÝPîþ0v5ó]dÔ2â(wÝ£!‡Àw[i¡ 2ê ½e‚ðö`ó½p}xI° Fé-õÞaÞâ÷ÛÚgDHE;óÖ= JóïpòoÖÃ"€i ṩ_£¨ë Äoý¢Ý&»8Q$}ä"(‚‘pŽKsô/)šÆ­÷*ãI§®r—·ñ@½* Õ㸠b¥†fZLý6s[ó}æ÷Þ•Û¬?V~ü±s>í¼ýË^Œì]˜Ö„t7¿˜‚ÞÖ,/î2ÛšCÛí 6(?XÐsóÁ{~YèpÄOçŒôÜÞ!¼ „P]n!V¯€äŽ©&HŽPÔ³6‘’D‘rö<•½ÄA¥ˆu8ÀÑ EÏ Ï¶þƒ(ýU4ë”ò›ýˆ@Ûßÿßn÷Ÿy9Ìœ aŸ¾ EÑ–´¾²Ô€ªùÒ¨(.gï¼»ì¯SÅ®Ôån|Q]sGcçáeÎ`iúeî¶æûÔo½K·.ýkìçÎù´ót„µáÑÏxûàuZY¦Î€ÒÃiö‘‚Rõáñ “ÐC÷+Ø|06Ù%¸–Æ6y8`ö èB\Š*Rä¼´6ú{>Ô|ëœP%(½NÀæbKwÅ\˜áŒ½D,9ôEͽÛeÍ£ ý”չ¶é£ª²ÂŸ(o…ŠK¾µ†Þc" •f¹õ>e=8¹V.Öƒ˜©¨ùv%jŽÑ…@»©4AÙÛÛ³¿õ¬Þfÿ±úÛøÝóaóý#ƒXôâyR"áàfzŠ‘±Û$ þ¹uMÜˉgT‚O,‹‚‡h¥yG©’ŸbdN.Ü"/b7ç9—é?ÅÈ“Òo²{î_ñõÀ¿úSŒ Ô‘9óBuófz2‡úÚ€S0ýðÎÿîfî$å‚•§ùiÈ|»iZü©Fþ5üÄc3wŠzúO5ò¯éKjV25í§ÙNeë8œ>Û«þ6ÀÈãÖ“ýt?íïÀÄ Äø2~[qÛ?b”é—éÛš³ÿîþ\½·ùç꿇îžO»ï3áß™oš§øE‚¥’Šˆ’4í”›Ææi X€$zâ,™OÁ•á< Ò(b穨g\²OËœå²Òe{e¶îÓpö‹Ü¯‹#^ L Ühú¬öæûÙM3«^… @Gè×{ûNØtÙÚ)[ÿ•àZë)ÔqšOÇ_òü×à iÙ™d4Ï×ms'˜;ùº‘ò“Ï6Ó  Eüپß miýÖ}—õ¶9[î7ëÇ„±í3½ÝF‡ó˜í“z›½­ý1ûïþÏÕ{Û®þ{üçæù´÷ŽòOB×xÒ¢?_%Õ³#¡÷< Ûö!€ÿÉ‘ ø@™š¥PXTÊÕÙXí™l ¯J+W{hQ™â2iµL§]óeÝ‹‰²­Áš/dÖ,q(È$31bÍ·öAµ®@íÓ¥{1)á¡ÕæÅ|*Nû´Wy~†ßëùGŽá‘û=y$YlåÄ“òÈŽ)ÓE¿·®zLjc¼ôwÉUkC£Ën;rœPÅÛÉ•â9tÄMCQ€ÍsâöÖûÄo½ ·Y,ü6ösã|Úx—㪨 ¼†Â¼È"ÆRO,< žMô¸¯ˆý&Âë@ª¢mIÎLì!ØGØb{xiCê[Y07¢Ž´DÊ©,›V·uÆ•®bÅÙÐ3 kBxñ DJóÖžÚ™jnªc/ý'ÈLÐ|MÖf¿éñ•ü„e_ã'p»hrŸ´Ákþ<Ù³£IŒÜ¿2Û•c‚û¹5çêM(±Žyë½Ëúáø‹õƒ½1íOPüs½yí"æü6{[ûcö·þÕ{›,þ{ðÇÞù´÷Žã.xsy3djú&mÝ€cåEH’×+Ä+²fœÿ‹T"™“‚T$ÏBÿæ‹=džÿÒÜ#v Çy^畽]|„‡ÐÄöyäC,®(ûWQÇžd¶3@ÌÒc‰)N”MêÞ^a¤ŠŒ÷²mýó å…ÍμÙ_d á©{?ëA !}ùaù=YÉøžš9{ÀÀÜ]FºµœÄks’ný?ôø½¶t³Fxà yèÄ>Æ¿èñ{Jñ6}[ócú·îåÛÌ?–ÿ=üsû|Ú~¿/RÜ€§|¸zJåTFãÚã÷Ù9&í¤*^O¬ø†ƒ°= ›ºá]XJ{ÓQ¶À̧ඡŸ—-êwÊx#¤'þ/ŽIàv®8lŸ´Òë, 4N,”`§¿¸K‡±«/òЭ½9Ìþ ~íÝÔY¤çóÚÍG£žºraøÿ:‡,ð-ÔV 3®8l´c¹4‡ª°Ÿðjä£÷†õÈë‰qZ‡ì >!ð×1ø.½ ü<˜çÜm͹ߺ?Ön3ÿXûmôÇÞù´÷ö+Ÿ²Gé6¸Oæ®4É mTrwh‚×ÏúÝž'h¯ÿiìR{ôß¡Jÿ¼ÖV‹ æñBˆÒ:_©8*cXºàr|•ï áÓö¤âö¦^¡(t‡ õ%ßÚƒ¡°[u¦oÝgó3C h¥±ÿ6þ‹_1¥‹ô¸†¯Á›/g3IÔƒˆü{îö+Dí˜øA|B ?ÍóÒÜèbÛdÎ[ïU¶C_ÑOÓ9Å ·áïqùÏo{{“EÚ¦ílþžö¯½ï÷ªm¦«þuŒü½k¾?ï:ÏÐ>:Û³Y¤eïò:%ݰ$¼¶:xusˆ1©ðøb¿‡Ï[´IÝ*´ɯéB UN€¤@!gÛòõÞíÑÔì+ÊsôÏw5˜L×,ÚíWHŸw ³.ãçË#ꉤa¿ÌßÞ~Ÿÿ­ÿcý6ûåÿÜ=ŸvŸ£íõÌöYÇÞD&0€‚8äÀN~»Pˆº¹àF‡Å/­c R$`Eíøìûꔩ…G2Š'^éŠúñ{4+ˆƒ-€NVˆI¶î(¸1sõgzÀêö*°G¥¢Ž|ß(MÂ;oÍIƒfHvBí·îñÿˆÊ=ÌûùYæÛô?ÅèÛð3¥4"Yn³— ùÙÔåE|C±zµ :^šøAáH(KCvë~È|øIëžæÃÿ í½?„ϰctŒª£#°>û¤uŒ¹!FŒ7B5ÓÄpæ`™ —À°Ð¼ú]^èQ´V°h‘Æt<üIUZjϧ ¾…ô†0ªX˜q†§}D‘ËÀ3±æÝ7dú­¹½zêYºl·î+No¦è »ùEægÄuŽmÃ·ß ´4.¥òÞÓg¿KÙ%§…ƒ‹¨¼Š ƯKûôçÿcíOvtÛ•-M¬ïOáMeg%뢙*¡ÔHéz)3€Ä>)„:ùú²o§/Ÿ$ÏÑPw/:œ¤ÑŠ1`ʸŒÜ"õuÇôEþ¨à3ŠŒcŸ?7Xá)Чúöî»ö÷á÷ÕÛÅßW›þ±{>î>ÆÛÇ;Î(‚Þ%§çkµû¿”r ûÙh5ª”#xý[â)–H’¶÷‰·Ã(•ãÏàBHŠlçP5iÁêOÂ6¿©H¾e(Z#Ôòc$»7,b1Èv¨®€F¯³Ýºã4Idè,‡Ü>:s%©ô§ú-<¹T•@v^þÀmòöŒ`\ÛMè–My<³Yþ¤®wð ‘45Ùpg*@í»ƒ!{ÞÆwfr˜ùS|»Vm1áxî1ýI¬Ù³€ÚÝÔ·õßµÿýµtßoÙ¿Î…O}Û7ßoÕ}mûî(š'2ì"™uÅÛ+€{ä‘­=jW©5©¦fû028‹æ=S‡b°taÁƒë1tp˜ˆ”­€nR>E„È"._™éü|ŸN†`³Ï`_{t_i|•î݉4q…]ºζ–øHª—ᓞŠ&˜X/âƒÏ`¿oªïå/“Íßé'N¦e³¯B]»ô·ö’žºðº‡ùxk2ÅBf/s8û“Œ×:êŒ?Çï’_ÈHí&?ÉÁÓ¦ÑE¤qΆ¦Ð”Znú{÷?Õÿÿ\¾·üçò¿çnŸ»ïÆ+öUO²íëi·þpâ†ÞUã9z3\1¶Cq{÷‹â_£ï ·KY÷×ä÷}³+oÛwGµ@àô9ûƒëÓHà +ßx¸Û `Ÿ’oòƒëCyP/ Œ`›?6G¨ò0ÝÔ·u?Ô¿ ,ß&þ±üÛô÷Ýóióy:óTR‹2£Š W‹M“=l•Ï Pqpü¨öL5xðÂUe¤Nû°$CTa,H… z­‡C QìC=»š<QÖ£ÁXöÔ«CñUw‹}f§^ÿÁvöÃ,(³ìT×›9ö`ÙŽ·þd’Aâu¿Çð™?å˜Ý|HŸÞ¬7{(ø#x›½mfÂQ¶þíÉG~iz³(œý…ëš@Å–—îTåRN$ÿæex³Ÿ‘Þ¦GÞÝ)¾µ7<£Ž@ΞW¦Ù.ï‡vÑÞÞ×þ>þ¾z»üûâïó?6ϧÍwÁbj±ÿ7e½õlÏÅ:ß›f~àÒ{=Ú£>âelCt Š·Û‹“ššá!;^|\Ñí!*ÀåÔj¨ úvã\‰[êAèRbà 4¡Ü\0^”Q“×caëOƒžcÄÛøä1S“§»üEòsÅ…‡xó50n(^Õ€wý #'Âß°˜¶±=`}ÖcàÝŸÜk[§È³9]ÆÔ ¬ó|‘?³É~ ?æÏë2ïâÖü¡¿½ÿ®ÿ}ü}ývù÷õßçìŸOûï³Ï vêx²ÎUôN a¬ë¬‰)zNj‡¹¼×@‚›½%Jµ•âV"×›%< tÜ[@·—m7ÙÇR~ˆŠ°÷˜Uˇ5É|éç¹"Š“Q¨ !msÀÚÕDÂÞß>fUîàk¾ŒÏ{‚TˆQ«×6lò¢,æ!{O>Xß¿çOᨇBÌO]õ/í‘æl'õ“OYvã·ÁêÎ·îø®ï6C.߆') ®»ËMüN„ßÌóæbž›CVÞ{†Lu3ªÎLèN̬Âi-°SAÿã». í‚iaUS§SBuëŠZ&1Q›ú<Ô” ×jôb­½…= áôEûø$rE¦ˆ!_òCNClåaS}ÍŸ¼¼¡Ètøáü­?˜7íÀ‰:`þq <6Þú·?Ê]ÁØsü&ùí±"ŠæS~À½ åfOÞ?æßÁ´‘¿4ÝÔ·u?Ô¿ ,ß&þ±üÛôíóiûG*• ²!1ExYªø|Ü8åa޶Íeú3s‚rÎ+Ö³ìah†¯=-Å/‰‘OÊoC"D@Ôü$ePtÕ°©ô‚ÐÞ#@v«?ìd­ë/¸ðé—[(°6Û€¸OQ1ÇÄ¢¡ÛÄ(LíiÅò¶É—é&²­õþ­¼¢àýö†¹D`Lš>B»tob„!_xÙ=¿Ç–‚Luå[¾åVZŸœ£â‚Ÿ_ç´›À“UÓnj;ûïjßF¯Ú÷Kò¯sÑßóÞöÌ÷[m_Ûž{ªA©Ñy:^Åä±ÖÁÙ]'¨Ý.ÿDó¨S˜´åCî s!nP,€¯ö€ƒ¦-JÊì'D&óxÈe+¥ãö'Oí ¦57™WÀ÷» éñÍg6+;ßúSæ5ýoÃa…ôÜáþ /óámèºìý÷ä2¤t(®æßºÓëËÌ}@žçJøÈ^¾JCrZY´s›ö@¸´s„Р=rî—Þ ûÏ1“§Äì£Ë_ÃNñEzaûØ»r…ÏÉSy01šçÄìÊÛûïÊ߯?o“ÿ\û÷üϽóiïùžŠl*K”G¢’={÷©äR¯õ¬ƒüWµGÁ¢—øTu³qú /ãj¼Â¨ð{¶¸d¥Æ&ܹT³ôŸ7¬X¤Qt§ãdñ(ºúáÓÌǪP‹Ý‹©ßz£½IØüyÿœè)•‰Àè•‹ðLkÉ®»¼V¿çní JÄæyɇî2þ*;úœËø/Pm»Î꥿çÈÂo³×Ëøv»šü…DŒÒ.ò+㿃Íä†ûüy¼DqG¹èoï¿i~_»Múcé·Ù;çÓÆÓÖ$±ANý„rmÁŠþê LI<½bSn"ü¡¦Ù³=þQ–nêJ[·Ÿƒ<€ða{˜}&™,ö{c¥FR‰Á®º… ¦0áÈ0i„zê=Ýíï  ׫ÃÇ•E2â­?°Ç”ñ’õsOb¬ /VÁt‘ ¼Æ6UŒl³·ö4¥ÛɔشG^/~,ø8µº":*Mãõ[;÷mçØâ„Üoã W×¾Ÿ˜ÂUþ¦y«ùxÏé7Cå¬-Õ¡¾­ÿ¡þ÷øçò½å?Wÿ=ÿs÷|Ú}W}̪hÙO ¨ÉH tfˆV¨ñ&“ØK0D%…§†+S.á¨Ä¡£¨OV³ŸWE£?Ì+X <^–£=b±³Ùý]Þì|'öaò°¯’=%Áâ‡É»Ryën&ŽªÓÂÊlÜGÏ€]6c–›ôYÒÛ¾éI>{MÞ 4›˜õ+â¸+ÏN­À™=À!Æ¢-CQ…µƒm$.âtß Fä/0½ä‹üXÕXo _íeþd!ÙoÅâî­½½÷¦ü}ðmévÙ÷•ßç¾oœOûn²ó 'a¨RwÏÔ fÎþÅýÄi†Ç+(/'¸’÷FÁb†ôÔÑÖë^öÿD"?‡·ÚÁèÀNØ À Í®¯ªP¬Ä¬E™àv?Qi€7’YûàÇ­;\^¦†ÑKi·áÃ5+È·í">+•\‘™=°¾M_¹mf ¦¼ò‡7õñÄæ ÜȧŒ’6ûÄwô÷Qà4!˜yŽO8"‰)–y‘Ÿë¹ÍIÿeþ°Gnß¡Tú]}{÷]ûûðûêmâ«¿MÿÜ=Ÿvߥг'%ÐF<‰ M€xµ­BOÈX0¦ø,ZTþLÎ9üÀhÌ@\¶(ôÕ€e‡KB‡î¶%õ¶*%ÙéS2èÈ}Á²S‚âòp ^x ÂWS–mCâ:àâô-œ,øÜúC+€[q\Æ·vŒzŠàýòÙä'Ë"’l“{~ÜÒ¿çO¤ý)Èî ÜôWÅëV&ž>/« ëƒ M’ÓnýÉúh'u—ñ›äiá¼Éo§`#OÖ¬Íq›?Y ‰ÄÀÔúM[ÿCÿïñÏõ{Ë®ÿ{þçþù´ÿ.ç*N0æšûU38R¢Û:WI=§@P ª’ÃB-C­sèãÓ̧û!n>‘P,D{åu¯?çÏù¨í:]#ØûÄ}ƒsÚ)Ä>p» ¿1V»AÏ&l‡ù˜.ý+Ìì*èŠñ6>^;Ó€xñ&?N¿qmùá\û=}êã+e q>ÃK}0·Eïê:X&€²nåÒŸƒ«¥B5h(çðdUüGÓ)åvé‰âŽBÐ_ Çì †eÃáT8ñ[{{ÿ]ûûøûêíâï«¿OÿØ=Ÿvßï ÌÉfŸ@s4…9ø\SZèS47{x±ÀrŸÆOÊ=ËkŸVÈy!òûëOÊ=¤ð y]¤Èä ý¤Ü³½ÈK^Bˆ$±ù@·²=íÓOÑ‚ý~³`ÜúÛnµ¶vñ‰\ÆÇš5}R\^/òƒç#fÈu弿çñ*CíÖóòÁ¼Õ'¼ÈÀè*§ü!€VT~ö’'só6¾^dIÍ›ø]û ¬2ÚÎéߟ³ë(;Õ·õ?ÔÿþX½·ôçê¿gîž›ïˆ*X„…¸N A“"v*4Ñøœ«28)âpV‰oÏ’k0μÁ3Qúž™RŸ¡iôv~Št®üS\@n=%‚‹ñ/“^´ð¡8É•ÝYî¥ñ©ýâè—îrSÝ@€î2<%9´š”À½µ÷ýêýuÑý6ø{í¾ßÂ]Ö~›ü{ï|¿•÷µí½'»9ãG#Ãz!‘ÏDÂè:ÿzðvI{ðpA.XÈÚ t OàtíJ3+W¢ ÷Øþ;ÔåíXV³ÖV¨ˆXO¦ …›(xþü>Õ¶fÒ'+ÎNCR.þ¯PÑßîP€>¸Ný®5¥É“ýžP©¥f¿{¦Ñkæ„‘ìÛj{)õöE;~Eê¬êŸ@5 tÝ.ýÙǤQcÑ¿ÎÑ1r°L87á=ñ¸aTûñuN#‡“ÚN°YÝýwÝoãoKwÈ,ý6ÿmçú{ï»§:™#;ÀÐë_Þ  6ç¾*?¡.‡ÎL­¿#PöÐYq_8ä)vàIÿ¥™H Ÿ‚ŠBFJ¢ ŽlÂì)•ø…TÆÿ’iñ4ñõœ&*—${(íÒŸ,n;Ý*U¯ù2~Ôs–\锞 œý|33"?µÉ§Ni/‘m[ßùÐ8ÿUœ¶9LCCåÇ{·òb zKŸý9T"Uo:4ÎÑÉ+¶(Úq¿ L›-¥síë2yÜ»üqF÷¦¼£ÿ©ü÷øÛâòkÿžþ¶sõ½÷‡@óQ_ÚÑ[»Â„$Îú¸ŒÏáUcô‹ü¼P+nvJ÷õ‚ý=ÿ¬¨©™†Z©ÿ[¸¸TÞö5=…6"À<ûƒä`‡åÚçøùÉ®qÞäè<ñ€¾òÖ¶ùó¤‚ Ù®~Óß»ÿ©ÿ÷øçú½å?×ÿ=ÿsÿ|ÚDQ€@ùW®K@åŽd0é0•ªmGÄ$AÖ°ÜY8sí{§ìÍÛS5ëÚTôƒ T©¡‰idø"A˾ï:›ÖlulyæuҀƲç‘ò’Àõ­žø^ò­¿ø Ðñ6ºí [)n:·—w飤·%|*„¶ÙÛÉÃ6wG]?´GÆ@$ã6®G3p =¢ ª£ÿ„hÈâQåÇøÜ4ÆK»È,Ѳs/ó×Q —þ£‹úöþ»ú÷ñÕÛä?V›ÿ±{>í>Ï!Áýó/ä•^|k†\#:¬×z‡}˜áuˆæÞÌ"Lß'‰"&>Y°ØtR¸št²w\ê !ó& Ò¿Nö.»’ˆ&驪¤bOÁÀóIUuoÕ£P‚ÿÇ1Ïî¹q­L¾ßËèâH§TmžÂ×.áùc·ËÞSÆ ÕÛ©÷[s¼l83y´¨;¹t‚0J¥Ýúã8 ).ÖÉmø.é;Ù3ý&=~K³ãrԋ㜽ÌJ°ä•~t*ïÝÿTþ{üsíÞòŸkÿžÿ¹u>í¼#\QS^ Þ:Ô‡Þ#Πh=qqÏêN%•©Ø“«=È”eñ"\N§œ„“Òóü‹$‹îN%h©|óL40}ȘµÏTÏ/qV‰¨où¨A›²C`4QÄRæÜ*¥ÝñÖ?SŒEx7ô~?{•Pÿø&?“$ÚU¦³Ï?Rfc£·^ŸçáKQµhÁ.ËQ'-`éÖ䙨‹b|šôšð ŠGû¶2ŠC¼NBZ|öœ£7å½»ºßF?Öî-ü±ôï©;çÓÎsj:³ÎH̳¯ƒCºÃÕ–pNÇgl<~ጚKí6u3)Æ:äEÞ ´“ÙÛYg·‘WÐp6‹¡¨ÈK%§òpÃÜ ¹ÜÂtîvaK;B`;gMe< bÝíÖ/Rûa9¶÷ñI+#Ax¬;vü —æÌޏM¿l$?w¼ÿ[}`ÛΠ:zEEáíÔ -lä­¿\Mv,UABã‹¢Ó^%Í›øò4uŠÓ¼MŸä.ñNÝ€‡ú¶þ‡úßë÷–þXü÷äϽóiïùÓp׊[Ê!µ©é%+’…ú/½-h©`¢ªê^A¥8¹.Ç:õçyú%AÌ` P0·((vÝxžÅT䘇9¸‘¿ @üvšD8)gœOu¤XQ˜£Y4|”õáÜûc€-›rj—ñI›È…{f%ѾŇÛÏ~–ôòTWþš<Ô€Ô7{gþÆý«;’&`ls1|`ìù;oýIÑX{È©xß%=4œ±ß¤7ó-!^Â2¶ÙÛ?Ø;¿‘#\oÚÛúÚ®Þ[þsõßó?7ϧ½w ‡þ‹r“¤+9ý}ñ(’}Ö§C“Ç%w ¨RGî€öœKx‹¾ýç¨e7ü¯ã€½…°¨ŸSæRj,‚¤d-¯09µšÔ”{!÷D”Ÿ,åõsʯ‰¡ÞúÃSY„¿¹<ÀÛø™ZGh&ûOÉK~ô¨¯¬‡ÞçOÒeè$ï×'6ñÒ_"Ì.Ük+GxÛ±Aš—Rý§­>ùx| —ñ)=¦ös^äÇ™-ž›Ëüñ{ ÚxÊÜ>ô·÷ßõ¿¬ß&ÿ±þÛüýóiÿ=z³fæS0*¯4î}Õœ.½Ùhaòzd6€Ñc ’°!wOl a:ô?Ô¾~³!+õ®•H W¬?40è´1”F„OÞf>_zœôf’ üy¬Ë¤twÉl·þèÅÚWˆã=>Ì”xÍ6|ƒlâKŸûöƒ ú{úQŒnäé–òÃ…ýK},€¼ª‡ÇŽ3mã¹æø¹ô׊š6•HtŽO~@Üîd;å'ù7„®D¥sþèø£åe;õ·õ?ôÿÿ\¿·üÇò¿§îžO»ï‚" |®®îɪYÙÝÑÄ)‘ßWÈWškVq‰™ =÷¬Ö^e‰J°ì ð½ Œìºöнí*›‚ÔwZtXPæÂ¢ÔÒÔCNÒƒSÌNÊaåz¤?*s'§iÑVBë‘fû‹Cô»?¥$t߸pŒÞã“K¸Vzêã"?Řöû<5ŽÒ{þ,@È%Ž…ÃôÖ_ReI剩TbU£úãì.T/ûéÜSº ¯ŒÀ:É)Ê7ñÇ®ìŠËïµMøæS[ÿCÿÛøÇúmòëÿžÿ¹>í¿'Ĥ˜—°V\ø‰S¥bàE²Ñ»_6öÀ]5~8žIh…œ×Û£Ý4³þÃñl7CæY'Ÿ¡º’9ü°× K§x¥+´• ç;¤“ 3‡Ã/5Õí¦žoÝÅæÇ“±/†ëmx±ùe–`ô›øÊ"²ÿ0l¿¦Š˜‚Jæ^ê»2†ÅðÙG6ðí·þvÀ*5ìm[.ãÃ7Ha)\§õ"¿Ø%)¹Jcao½çO~;pcéTßÞ}×þ>ü±z›øÇêoÓ?vϧÝçÏ&»’`¾´¯BïÒì%=ZñL*ÌdR°ýá^qûÄ~0ÌNÕ´·ÖU |R¯`Ö$Lý†­h’Âù©Yx—ì‹ìÀ~Àl`¿蜷þÔqœí£µÛøPƒÁÒgm7ù“äç–Oìá5ò h·?úy·ýÖ_à,£ù ʶYk¹Ïþ‚ä耧µy¿JþFTÿ&~%?ÞžRlºÛôíû£j§j¿©oë¿«þX½Múcõ·Ù»çÓîóý‰»¥:‚P(‚•­í©²ÉŸÌH}`-Äý˜ºTð‰ÿre•ƒ5d¯ðÃnÙ•OÕõè‡U… UeÄúô€+¨bÖרÕá±¾@pŸ·;òu](í·îN`(Ä ßG·ÅΪã¼IŸ$}UuÆó(ý=y²‰í#Wì)mþ­;Ð_ÉÀå§ö¢e{¨ŒÿÖ}âþªb+—á³j&1{-ñ øCø’²•ßÓ·vI%¨duWßÞÓþ>ü¾v›ôÇÒo³ßw·}ç%[|3årâZXÞBSèÁ¡øµÃIø£Ö^„s B¯‚ ÜD9`ƒç}Ùk|ýä•S„t«òs^ðf%(yÆŠìèéRV])‘$ÄØ°ªBÔqf¾Lªàìçmôwo$o€µc¼ _u°à®öÊš]|ØÌŒÊ9=8á¿gOn…Y«Q÷·öÀ-²uˆ¸û ìJDwa½õ‡*l00C.Ãw·@´ÙnÒwXíàZXÇì;aJ;š§ö¶þ‡ò·ñÅÛÄ?ÿ=ýsó|Ú|G9ò°gVâq–µ”Én&JA&Ht+D½:Tð—öÝ<|ī̙ @ˆú18ï+Ä$›‡%\ÒÎÉHöÞ$¸ášè%;Ôds§'AnJW ~Hx]g»ô dè”è-ŸÃƒïžHMð"|Lqä”=Q–ß“oï‘–_sSC0ZZ~Q’ÜlÜ‹Þú›ý2ØKöDé—ñK‡S±‰úèŸo ö˜þeú„}ÀLQIJ‡ú¶þ‡ú·ñÏå{Ë,þ{úçÞù´÷'ØÄ·ÆÀ³  —C Âi et­?ËàÀÙ£ìáUမ¼ÉÛ™ =`WúlÇ»E\‘¦>PàÈÓí5km që³æÌ3f®Ö‘0~šOaî¿*ØÛn½«ÖàE}úÛ¬" d =M%×7€ß2Ù½êaŸy¦oA±ì_Íy´tØÖrxœ¨®±ë±.fÐwÐ_3˜ö—ý2>Köûe`ÞòWHÑœ—8öËô•W üâPHâPßÞÿ­ü}ômå^¿—ýë2÷÷®ùþ¼ëü~Ÿøâ€ŸJäEwÅ&Oý¨‡_"ñ" Uí$JجҺ"ø? Þž•¯UB{R(*Á“¤£n7Žm³A.fZW`Â6Ì*À!ràü¹!¡C¢Úv87%äHÜ +waë¯øOŸäç¶ÛøÄ: N+ub“_E ‹5û>ůTq¹žMIð¯$î Ï€Žì‚,:£?Ù“2‰$‰cüØ$¥éQ ‡üEd“–!Fcþ@2ñ¶ž­Ä‹úöî»ú÷á÷åÛÅß—Ÿþ±}>m¿ÝIß—á+K¾*snf¿¸©ã¤!–GLÇ¡¿ jäÍìɆÊ3Æ1Qº_ÁœJW=8 ú°ÆÊ'ÉÍiŽèÖ”Öfb‡%! 8~m(°­Wÿ8‰ø€Á¡;Žbª:ê¸õ7KÞÞ‹öÙ*ûøT4$.µâ‰¼»üªq''-¹—d›+B¿Q ÿêk€h²³Î'Ù“ºi3µgûp[JìËøCòÛ%šW–Ó&?à2 C] ÒÛü•h\#¥çý¦¿­ÿ¡ÿmücý6ùõÏÿÜ?¶ŸŸ¥Ø¯v¢CF–ýbÖÎñ[žB+ QY|`õêÆ<ÔÍ„µq1›eY¾­¤Ÿ"‚ö¿¬:Àì‹¶´ãÁM2‰œÛ¥Ý;9`*ØòîЦe•Ø8SA"‡¬,ÖÀ­»# ¬3rÒmt“«PÔGc>Kx»ŠJx ¨ßSOJûe«{ÞÆ®9^]äß^ó(iÍá­?”0ðŽNqg÷$é õ+ý"=‰¿”:¥ªÂ1{Œ ŠþCñVÞÞWþ>þ¾v»üûÚïóß·ÎÇwÁm¥×¾£îé|ߪ˜ÄlÓ´ãº*ÑOðlìÈw¥•Æw—¨/Ë·óƒôþ{«@`Qgên‹" ηÅU=À„ÑñÁ,„ÌÏeoA¹g&J»Àߘ°Âæ{ëÞG»Pò*“Ú†¯Tuv»^Jé7ñ‹ÄçÎî¹ö{úÖÕ0I‹)þ¥½¦D:E[èD2Ð)å[÷jBÁ¨Úïsx¡©Š~Wø)>‘{¤dà½oÓœj§ÒP½]{[÷CùÛðÇâmâ‹ÿžþ¹y>콇­f #ÔêÌk`çˆæâ«]8‡¼,}µ 'ñœp€¨ö‡¬Ì[ñ§ØÓlQ¿f¿xÎDí>1r ÝßBa´d$œ‡gVUâêOö kv gmUJ³Šqé(<Ø”çÊeüBJ e­„r‘ßÎ “`³ç‡­æ÷ìaoÑ©Áªÿ[{b×ìmÊ«¢þä­“gk·þ¼Û¡Ý‚Âñ6~—ü§y“ìò¬m¼q›?·HL"qÅŸú{÷?õÿÿ\¿·üçú¿ç¿ïžO{Ýù?~ÿ—o»ÀT jf ÉÖfðóÿÎßL‚º ²#z?ÿýýÿýŸ¾ÿŸßÿ+GñWüþ¿ÿ_|½»]TcŠ=«h6<é‹É–¨z›xÚ(ç\ÿüÿM¢egÿ·È¨›vDÑEÄ•èð’)|ÿ'Ý6ÿÛ×±‰r÷Dç’7ã¢Ã¸pHùÿú×÷ÿ³óöÿøÿùúÿ}§íy¼þ¶û߆ïÿl÷¿}ýïÿãû¿ÿ?ÛôÒ÷üÏ_vë¿ÆÂÔk[‘±þãÿýõ¿ÿÝ÷ü/ßÿ§ÿø:ÄÄO\¯°»˜ãóÝé·˜ó“˜Tä°õ9­ûMÌùoÅ|¯ÒMÌ1ß~‰Ùâ'13å ”huŠÿ•¦Íœ˜¡µÜåL‡œïN¿åÌŸä¤6@c=5·KúKrÆ+ç€cm™t—³r¾;ý–³~’³Cš¬;Qc]ô™þœÐÊFRÙIZ¼‹y|Dï>¿¥üø MU?#]„ÌÿNÈÏ’}|C.×õo?}CZe;Ÿ±ì‘Ç æ÷¢÷ÿF9KH¾Év7åèc÷ã#r9¯ûé#r’÷årÂJI3vft9ÿí™´ËIˆsl“}|DKÎÛß~úˆ$'Œ‘k,¨ì!¿¡õ—œÿöPÚå|_>öñ-9oûé#BN{jBĤ±ˆmAv,¾hÉ™þí¡´Ëi¯§Lo²¶Æ>¿"—óö·Ÿ>#ääº|ä嵤QÉùo¥]Î>DͺhÖ'ÜÿÍwtýÛßë.Ì5V 8Žªþ’óßJ»œD„aV_¡ŒVc÷Ýþö¿öµ¿ß»N){¦Ãôbý%çë¹ôë$ÿæóùý'ÿµ¯†HçZå3€Šp0H¢òH”¾ÿÓ×çÓñ_÷ƒðŸ—@ÿì?²þù¿ròbœÉ4ûþÏ?âëÇi_ˆ£ƒž+ôݪ€ ”<ø¿þþ‡_3°éÿç/;piÃù1&MòòoSskÿgkÿÊ<&[qùÞ~óöoûï˜!þ_.ÿþßhzÿ§ï_¾HzDlÀíümgä´¡ÌÐÙêâðé£cú¤Ñ@Î,x,@‰*˜˜Ù³Mí5 øJ“°Ehwj˜­Çž‡Ö‹d{ØS/ ³ËÚ ÀŸyÚëŽýoÚíΘªí®v¢ŒT.‹ßãèŸIÔ$Ü“U»yŒŸ.öü*ü>ä’ŸÔg‘Yótq‹eþú øT!–lzðE¥ê¥ §Ä¥fé|LDøÏñ… IzL¢Ã)?ë¤ÚP£’.ó‡Í0•…£ìTßÞ}Wÿ>ü¾|»øÇòoÓ?¶Ï§íÇF8¥)4Æó?¾3y¬à“â‚!>qJ÷!d\[@Ú[ €ŽA¶&€!8wÕÁG @Ì#a/ð߆X+¨ÝdÉazìE-P‡«½\BÅlÐGl(ec?ý=é âàÊ0)Øï‡˜¥³°‡Ç XÌ—ñI½¦xÓî-%îò“ 2ØŠUýßó§(EÙ"ðô©ÿ[¥t¸vz”¿.ve€’þ¥¿°&í:q˜]ÆŸ’¿ÚœbºÈ?Hߊàpâ;çoí”ÒÚÎÍí¢¾½û¡þ÷ðçò½Å?—ÿ=ýsû|Ú~Ú ÐaÕSb|'z”^@ÅÃô fˆ ¬_%-à…/û8ìâA›©'o7³ü¡’ËÄp!$°G]j]EUMÌtêKˆò¸ÞMj¸¼"Ät›E»fή`Ä“'凰ãÞúCþÊ•¡¨Ò1¾ip€Å òëSüŒøC([ê½ÍžóÉžŒ1xàáО¨oAFS`ã;‚á˜!o€ä^úƒ±kkQÉn?‡IÂ7ØËÓ)|c´^˜S.s§¾D¾I*Ä©º½û®ú}ô}évá÷¥ß'¿o[o Ge@'àÉa2À”ð -C7=ïHP¢HW;¬PÃ)óŒä6ñ`Îæº²ÿ´«9ë3¦4‰DÚVÍ’•¼·Óë |¡Ië´}KܬþÖúbÓÉÚä0ÊÚ­? DÖ †|ßîá1F³«]~÷Cú éûÈí„÷ìÅåÐ8·~ŽlÚ³v¬ÝTœßóì¡Û)œ¾ôOòû(Çmü,ù õšBNù©D5u%°_æ/ àDázá¢?ô·÷ßõ¿¿¯ß.ÿ{õ·Ù{çãÞÛÂsÚ‹8Ïîï Jk @kÊÆŽÀE4oæ%š#ÙÙ HèDmb‚“@@·®”ËN·4Mü €ŸÀ¥ö¡+"ÑSý¹‚&1]¸ÒÂ21QDæM»}ä;èB·ó<> »Kl©D)¶ËÀ³= ònõÏàaëTÍ,óþoõY»Yaƒ ]_+hØýi[Ý&|éßÄþ§ß¸çøŠ™Ø—T¨þ»È¯˜ È-Þæßè›ú¶î‡úßßË÷ÿ\þ÷ôÏíóa÷íG*[6—á¶Ÿø3Lh;ü R³UAS D »»ÚÆqÀÅXã…\wæ£öTÂ*}ø›vjÞ:Äè*$GÙÉŒÒUQÎA͸Ò[ŸÈDôÉ7í”ùÍVHÓÌ𛢗mýÓ4q&¦ÃÙó¶ñmý!˜Å!+LÒM~ÚáNj¤ƒKÕ¯é'<~¡‡Ìgÿ|i¿ÔG»î}€6÷|©5€€Z ¡¸ôWÒÁlBX» Oñ¾r&–É!=ÄΟœ³å2{vB¶û; iåÔÞ»ÿ©ý÷øçê½Å?Wÿ=ýs÷|Ü}û¡ {·çpFNEÂÔQ¬^B Š f6-j·}3!1ŠL$’j§€Ý¿ä^ÑÎfõT‘í™w6„"|V&,…è!Éζþ•¸»PýI¬ÂóšÞߎ¨’„ø¬ÏnPoJÿ¼õ'G‚ë†Èæeü€·Ø<”xÈYj‹eïô) }þv,fW¥½ÿC_ŸÊoýjÿÃ%f>Ÿ*™ùdÅ”qéï\\UÕã2><¥öû$Õâ·:ä'¶r7r¿Îù;‰ŒäŽúÛûïú߯?Öo“ÿ\ÿ÷üÏýóiÿíç*¨„Ö`O P8²ª×Ud÷®Þüöe™ñ ÌGWs¨pŽîf1yˆºŠ[;«vPÃä6DJûu;óìà·v¯ãŸÎn•“šÈ#"ñMívêTÞïnÕˆI=ÈÄð·vj»IÀÁ_{eî÷ȧoã { =Né…\áè¬q¹ ~M]¸âHýiþ«¹¯,Ü@ÈéS;•Ë0„ž÷—þMù©à_–þuŽÞ%º­C‹c]Í“² Ú×eædÛ`6‰œf×ÜÙÿÐü6ü{åéÏ•Ï~Û8‡öÞûn?QÁf—sÚÛÎn·Né¨uYHY¼Ý$g·ó¾ªÒmÜdíyøŠiÚÚО)È€u($øâø€‡»:B»ý¨KÃí”ÀÝ ã¦Ý‰ô'>Cµ0Ëóð6Ñù jìmFއ.Hé[’9!ˆ/Áý:ÛøD oÝ*3©ý>Ÿ…K÷ù70!€ì7êzûþV_ñÅ  ¿´õô&LÔ"•ö·þܾs ö ÞÆ¯’¿’öžnò«Ì¢{ñÜæ^¬Üs^Ô·wßÕ¿ ,ß&þ¹üïéŸÛçÃîs·”  2L¾'û¸8H'¥†Wû¿eJöÒ:{lSô[oãwÉßí±ëMþ' DO d/󇂗`\.êÛºÊ߆?oÿXümúÇæù´ùöÛžÌm=‚‰®Ìh€€KÏvªê‡cñÂPµ7ÀÌÊ­î!pà4³cÝ×"“üÛËO&á}ì\ªú”e6‹$mÅ :xßf=ãzêä$18åºùVŒÂ¾ºéî'¡ˆá†V[o GíÜ”Ìï¤môt-µÊ¦œv‘žròíEªŒÅ}öx™×#úNÙ´§ÂCÌg÷;y‡0½W~éŸÿ€--(€y¿H~ò ãE|A­Ø(8/ÓXæ+@ÖÆ¡¼­÷¡ú÷àÇÊm²+¿ÍýØ9wžNQX9:\Âö³'bÈÈ 3ZüÕTŦ$%ÇР¢bv³PDoÝíØ¦¶do/fògdÜjÇòu€;¬Z͹±p¾hO`$;þ!á1ûK@¡¦jãi'œ7?Qá5ò5ó,mÞúCõeFg„‰ó6>Ta©ÝäçÒ²K²˜º^m¯ùóâ’ŠeWßÈÔJQR›=ºHú­­ŽêFó­;°?‘„rçðCâÅ—yŠ?E¨GÍLÏ·éO|SÀYÆ‘nêÛúê߯?–o“ÿXþmþÇöù°û޾Ýh|w ìyy(:ÅW  –ß@ pÊ[!âá±N|çå†)ØZší+„bÁa"Œ$Y^˜q†¨dvêùøE3>•'OùRì´šâþZ½…ÝFê²ZmÊ18ÄÑ›gBÁ—ìÛà8‚0‹ì·b>ME¡§ØøžÏì×Üi§X¹–.k›ÿÒÝ™Ü~“Ž Á6£ÚmkS®·þ•lÛàú߯o’ÓØnòwetàëmþ"íΈxÓßÖ×þkøsí^Ò_–þ5ûsç|Úx:D“²p‹E¬‰™ å`ì'½æ“ç,àh‹IÍ © 'Ä =ó‰ÙÒ”y†L«ùô’çLŒ¨ïÂn èd¸¸Ÿ/yÎ…=@C¢Ú.¤WèGõ]Ÿ¥>3=j’ƒ8ìýí+…„άóæ§Ð6¾p†‹¶^ä Ø#‡º¾²B/¿çOS‹ÒŒ'tóK}äHउøVWèÇ–›‚•Š›õìïIÄ)Ǹ¯íJÙ!xæù=i£X÷9nó÷¤ è¤C¿éïÝÿÔÿ{üsýÞòŸëÿžÿ¹>l¿ÃóDeÄGFµ4 ss4‹â_ò ØNçá,7câYˆÅQ½DTÙT(@ÂáíTÑG¢O¶‡]0˜/¹¤»xª|?­€»PîÁþ€‚æÝ oGü'U^XÅ”Éu·«þ”Ú›qÔ€K?‡˜5œV«¾c—^0‘ØŠµÿøO~Ï){ð¯Ùua| Àéµ)òÞØ®¬PÞÊwµõ¶7?]„—±§Dï^(}‘}þÿÒè·©“¨r³ÝT·õ?Tÿÿ\º·üçÊ¿gîœO;OÇèT‚Äyeº •¯®¡gÒ˜¢T“Ú7µƒ!H Õ1?ÿÀÀ‚¥ Cp"*)*´§=ÙÂ# Þnw@b—ÎùAø„/ù24H”iU(ÂÕ_áò—'âŒóÌæ“šªƒî…h^Ò"œ€cx{iWwêîâ'‰ŸUi¯þÛô¡µ/AÖK3s™8~vU€Mg«ãÖO%éˬ§0ñÓË mžîhÞûó¤lä÷Soã[;N»rk«ù°ßÇûç~òmþÍï]3è£ûÙ7õ‘ºÓ0ϺS™+ׯ¼—þdƒ”ų=^Æ+VXà2ÓE~2”#´kyÄËüɵ ’X7/êÛ»ïê߆?–oÿ\þ÷ôÏíóa÷íOxRiš2 Zr—¹™)y z•I Zœg(h«6RÖÿq &j•à JD}`Ò¤•Š™ÅºÔ„€¡vØÅjÑJÙ4åéÝV$Ü Ù;ÛþSr†ÂIðHeôÊBÝzãÏàÑgNƒ›cDKee¡n“¶ƒ¹“ˆúos‡¢ÉŒ£!:²NÝÑ­Ð,,²X@$;£Å[ÿ瓲3z¼H—²3bI7ùÍ^ ž±âAÛümŸTÏΘ7õmÝ7åoƒ¿Vîû-û×eá·¹¿öÍ÷[u_Û¶ÛHd¹ˆ@QŒ ’iŠdG³EÄÕðf“I3vp6ž ÛDTUFo¦¸fCËÖ,¤ÊN¢ 5GPl#P`Š^O8•+4°vÙ~%@—›™Ôf"ÕÕl6’žÆl‘LÝÆtõÀÖ‚æjÊ&¢žc;â8h?g^’ÑŒäöÐÎk½'î€ãö÷ ªý·Þ¾’H@í[²Cei'òî#xÔóÖ]tÌuÊ ûü‹Ö"Ù ‡xÊN»­w„¾€æ÷Ìõí øTB$ôPÜÖ}Sû×>ú¾joÙ÷%Mükß0ß÷Û~~‚‹³_5ò3ø!¸'8“ì ÚòS¾,§ØÉÉàOÂzàí%s`MÏá¢$Û¡ä-74öuãàÔ³¿¥Ò¨Ë‹2yÌ{èñ’Ø÷)ºŽ±|Éœwn'ý›€ì7–¯xÚœÄËš/ÒXly ·å«Þfoíð ºøVÞ€àošð)ÕúsO’î†ûÖ¯`C6Ôu¯Â ñâÛƒI¤H@·æËôa@° š¹éÓE}{ÿ]ýûøÛêmâïk¿ÍþØ:ŸvžŒPr{„"Oï2û`Â1Ÿ¤f‚nT½ÈŒÝ¥÷ðV½gÁ‹•½è'H²‹ç S‡™C‚—ÒÏ 8š‹ÝSé_ÌxjJʵ§e-‹T©šä4¤*©—ÜŽ匸ô'ûÁŒÖ)GÐe|ÊdÌîŠr$]ä/’?éP÷mú0âh’ëŸS}TùPu•Vö|µí˜É†«ìŽKΓíå"Ç×1|“ô½(î"=Ïi3J uI·Ùd%©«7ímýíoã«·‰¬þ6ýc÷|Ú}G… ~™H%„ü^•Ì¿ÜýÁ4x$ø1t¥(¥„@aÅX4¸ÉÛ!—´r.ztöû°°'–€$+œ¹,v®¨ÊÛ¨ã=žNnòT”VÛ,¶”Z@MŽøS¬·îØJ:7úH·áÍÒàGé7ñ³Ä/¶W|­÷é㼇>×ÖŠç¿Ô'¼Kî©>Ë Ãz韱,Ô§ue†¼ÇÇs}3™/í"?T2E®­™êeþ„¢D#9좿½ÿ®þ}ü}ùvù÷åßçlŸOÛÏcòØîÜu‘\*âÓ«‚Ÿ«|‘)\ÇHQfW» *åuUQ±Ír©ÝNìNÛã)8Çì÷‰sÓÎ(`?“8¬­™_T·4³Þ†.{ Û5¢§òf…÷ìò¬rÇÈ1áìîž »õ窔ˆÙ¼ŒÏU×m]C›üÖŽüv:DOEÞæoW)ðíf3Í•JýÖŸµÛÖªéÔlM7@cXnÝà«8ÃæÃc "—&}½ˆONÑLe¾_¦v¡‡‰*ÐtQßÖÿPÿ6þ±|›üÇòoó?¶ÏÇí§ Šó7‹e4,—O…/Ô^&Mïxû„lÕ*¬ÔÄLgõª=¹,¨ØrUõQ]Gso }Aö‰`x­ÌH…ƒÚ,Ã…„Ú’;T 1¡ù÷üI…Ø^“+x`>[ž¨¾w·w·ˆsëå6º˜¢§¸NÊMú"é3ÖV^çÇkò\òú”'ûTžää°åñœOê,šü‘g1¼BdÃèe|1¼š„…ìë‹üÔSšÆòwmóW}Q&13÷›þ¶þ»ú·á÷ÅÛ¤?Ö~›ý¾u>í¼#™@iÔJUÏ0Õ/@A$—=š [HOQµ¦–¥¹ë•êTûÌìWõj×CNô~ÄÛB'g²,Ï5îvy<Å«Añ»‚{ÎÌVO€^ž<&“÷ˆî™KöÓv:‚ºvöoz¿›ÁVJ=G¬¸Éªaþçû-û«d²'q-ªù=u’âà°¬x`Ôþ[u_î´œf”Äþ“½k[ª'…«nýy^ ­Óì—á+²(¨²‹ðvgwêø=s¼öRSgo²M6ÅÝ7Åí£o · ¬û×>ùmß|ÞwG‰]ÒC”³ùàô׸ÞMø[I«n¥®ÈIÖÑÔÇóî!Û¬Fº=³‡Úo¸Çz÷dàìD烱öL-L\~Y‘’ Û€¯}–?…´Ÿù¤7RöB Ebž{ 2š6ÃJŽÙú˸bK·õrØÆÎF»l¼É$?èi=»^Ó—m(Aϳë·öðeS–Fž]ö(1cD|*—îv8*dL'—Ñ«„ÇZ$‡û¾ ä”’n“¯þˆÇŒåíýwåïãï‹·‹,þ6ýcó|Ø{ÛaбXqPf?ï÷À÷dª±³'I&?ËZíS¢ÊµÊä1½Ú/ècÜššµ½Ïœyû'½bþ›VSálÀÛOo7%ÃÖJXÙL‘hæØüRk„[™8-®9²âI‹C¶ÎÖlÖ üQVbØ>r$ôf[½¹d~Kí^AûiHèU¼ù{ÆrÕf•EψÛÕŽ/¤·q “¢cáþvéM ÔÀáÄ9t‘ÜðAq¸rWbÛxO !2åÆÉ7•í½+ü2ö¶Z»äï¥~M{Û&_§Ò^{ìHªçT…XP+áL$ u- ÚÌn Dª½8)hOØ­¨`Mµç‚w& ÏWÀ ´ßçbÑýþ ÔÝö˜‘À6x&‚—0;Pó#iñ¿çÏQrfs<õ]}B}fòÇëQ™Vø¼î©N ‰ËèUÒÛ®‹ YœÒÃfTIÛÆu™=E÷ÍìŒÀSw[ïC÷ïÑϵ{K®ý{òçÞù´÷ب\4 ¤µ®` ¼§5Aƒá9(:ãX”‰‰N2ß*­"˺*;±í"›yÍ¡5’ËøS¡×Äj·ç äuÝS ™¬Áž®Ã= fÿ$!þ%P€É1ŸŠ©Oꆤ£ËÐÞûGÑnóŽ´±Ïwn¯žôã yËOùoûu(lódHN15ùcuSß}IÊ>?5ù6rƒJ¿uÇV-ÛèCÒ‹Û)Þ¤Ç ÆÁ–û¼Md9L¿¤ÎSyïî‡î·Ñµ{ .ýkêçÎù°ñ.QMÈ„ ÷§e'”Œ+¬ÙôëðÍ»?.›Qœv¨ÙãtÙåy…æÏ¹=Ymü÷ôv ñÁ/¬}9Ä[)AüÙñP„’´;Ôù$;5/Ò!ë0Ö½fï‹òÎê5ãûð$x5‚ÉúØ¥pœˆUü?çìÉFËô†öäï¼´gfiH”x9ù™ »þìå0ný)ìµ§l €sŸ¸£ý¾½JZ?ÄW…Zi çä3iur±_t·wßu¿¾¯Ý.ý¾öûì÷½óqïm&'E¢Sû€WN[Êžp-WöioÐÆV”_A‚M“…HÂáWnÃ,'«=í1ˆ¤¸Nâ©P2úE0 ;ÖÉ7¬_U”%f†è±ÿ-ÿíäµ²qkÑõ){ù1ù_½uà Œ5à¾Î¡MPœ}‹}o“›Ë¦Ni½g ïxòZÎÆïMeàMŽPó Ÿ“Äjgø×Ñ“AI¸“µßFþAb£œ»Ô_ÖØí´³§ƒ²æ~ÏØ»Ž¡Uš×®®WçSÙÛÀûJ½¥~­ó×6åc—ì {ï1´sÔÚ§¡+ÕDÀÚ˜^lh=Xqé÷¢vbS`Ñ/œûâ†`w Þ$ݵ‘Ç`æ­CDÀ˜A8 ¾7ÏžTÀ¬ýø  .­å…IpИ¹5Ÿþ”yÛ;nªEžCÀÝÃ{ÿ†sº8Ï–Ù‡¯BW„'ݤ/’rÞ½g¯[]ÁZ—_Ú£¤4È}Â(‡k0ŠŠùÒ½ƒ‡h¥inÇèÀ{@LY1þ6á­î¼à¡±¯sæê ©ÍCqGïCïÛØïuû~‰þuYößßwÍ÷[o_Û®Û/tPL`xêÁK2oø.Ö6G´þ—[ˆ”h®f¤öÚÚ—E3„˜Ú!$6…¬&Pj$ܖই#E4r¨Å(†äµÅ§>)“ž­²À\Í("ùx%*¼:K%9/žå¸œÁ.å:ÀËoÙ­Cv2‰Šá6uk‡!ÖµøÄüUúS³ì†gám¶ƒ ‹Àrþ"hž,K«·ñ§ä·ç,§Õ)ÿ€f 4;€@.ó"hÆU˜ï[[ÿ]ùïÑß+· ¿-ü×9ù÷¾ùþ¼íøžÎ³fÈÀñÊgÄ» ˜p½ûK±ÜÆ*„[U€%Â4¡LÃo*ëÖFo|Q^cKôŠÂz#Þàæš½€íð`îŠ~Úm†d¥êU¢UA7Ea/ý‰â:Šã«ß| 7è%9šÇ‹mítÌÆú,CX!÷Ms}U5×\{´ó¬ö÷ÀÑŸG5Qìª:þ×øË£CR¤3!›üvz…Ž GuþÛä=å ò~™ð&]”·õ+ÿÿX¼Mþ÷ÊŸóïœS¯w„„(@å]çÌ‘Tk“¾€=¦+~ü¡4fNGÄJ†âi’Xòº¥l&øÐãÒBÈÕ³e+åÒÉî%GäŽD=Ìt´“Æ·¹µ+[”)µù*±\°ð”$Ú®•«ÕÔ)´xéOö¶]iuŒe”oãƒÏÜ€n› a“?4äÚœWdló·v³ &%±^±éÏÚUnµ¦ À3]ê™Ïþ`ÓÂüç“íö¿EÉ_‚Crò7‚«ÈÀè>¸ ¡Þ¨ùª¾­û¡þmøcù6ñåߦnŸOÛï@e מ¢/À«GJjdÌ<"¡Í #£Ãî‘§2á™òÚ|è¿*¹,âñlEeùàaÏC‚`Å… ¦ ÈÈ=“e=¤L–ÉÚp•ä¡ò #˜2xõLÒcyÒ_¿X ûÎÓÙ¢mpÀI°¯oýýþ‹€ðvÈ–éþ¡÷äÙ(vþ8IÐr¢üUžúƒðHzCù! _½õ'õhÀömæÁmüü|ŠÐg\ä·•†ë™Üz›¿ýC%I3bœê{w?uÿ~[»CüsíßÓßöΡ¾÷ÞóÇÒÜN©B’5ǃ|,['©çðå–UÍ^m«4j|ž“hîm0:Ò!E–T]?†ËYÅV”L›En†‰Ýë 4ó#PÕ½Ú"Qêмà,kÎé&=%Þö©cá®ÇmöéÕlmQʃ:ì£T×ñdÇU#k×îÙ½·² c²ƒ‡Âž¯slx^#ö-¸Ú»èŠ\À=Hò³“Ÿ8 ¸¡‹uèíì¾ë}ý½n‡ðû²o3ïšï·â¾¶]w£M!ÃD†êPýñT>€Ý~„âéOT•؇¦vÁ¯aÞ>©ùð U¨³¼=S2hW\}rT&köŠ 2 ;Æ$·?ŸL¶Õl2öµ[‰2‹å¸ˆx:£ÉŸ5ì÷œ¸åì_d(Ã9ß÷ñåWá„°'sˆ§ü¸e?ŒêwÜ{úöP"Øã>δö¿ê£½S…SžluHÙ3¶Á“mþ ä)جx~Hz1‹§›ôrªúèx›ýTÑ´°ðÑ7彺_”ÿþ²x/é/‹ÿšýeó|Ú|OÝ‘Žw€%aÞ~Ú>˜ÐEµ¦å‚BU;8Hvëæ5C€+) °ÿïÛs´¡´‰ðû}`À°vû1øŸæOÝP…-( æEåÿk×±EVÙs«Ã¡©€'€iãÙŸ(vI‚x^Ç9¾À È•Ãþï§ü‚o°äðóyüš?í¸ÉÌO Ù/ýÑžŽÎK/Çß—zš[2?ìüÓ0ÞÆWæÀ%âß:åp b€9çß)E²cš‹ú^Ý/ê Y¾—ø—åMÿ²}>m¿ý­”äá1ó áu ¶-€‘²ïlÔðäW/L §”ç‹úN2zp†‰-€XØ€{ ®o™sžÂò¶½B±KÛ‚<…ʘˆгûÈßòðË{„BœFYÌ p‡»Ã¾Þ~ëNÕn<ð„n£ƒ!nƒƒøSnÒGIŸÍ2ZåŸÛä©zèÝîÃ!·+À™yöo‘°Î‘å <»ÛÑ1K×kå6z–ôÀÁ†x‘>{ŠôDû6ù$÷N«|¿Cy[÷Mõû௅û~‰þu.û6ñצù~«íkÛsÇ]OÌæ²(àv<‰€>¦öµÀ½^‚s “f /f%V«˜æ)òTÖux¢øHé n Q©äØN8a€m³ìEœ!\€O{ùsXRW;*T¾„tëÓÎ6¦™—mÞÆ'hRyÓ‡À&?yDÐ[ô2ž÷Úkþ¤!¯ú<×Þê¢(Ä2ÊóÞbY“UO‘æ«ûÏzÃK·Ñ'ÒÛá›EpHß5ÚÕÊÙ–.³oÔüèß0Vyμž5ãäz_wÕŽ”ïµÞ¼×î$ÝÛOxêu‰åö:¸†ÒWû—â,>ÄðJÀõ¸àü½»cÍD{gYÕ0"=é1Ç[¼ <ÀW½e_…óglò«d ×4`1z¾çoíf´‚ ¸ŠÞêSÁÅÍvµ?åºb¾>ߺÛí‰4ö¬ªù6|–ø¶ô-•‹øDI[*P÷ÒeúDvÌlé"Õ¸¨oï¿«_¾Mþcù·ùÛçÓîóT‡"EÑ–•g(a1w]ú¤aR¼ZR{HGž;3ƒ ©ôȉMÉp~ç6BkiU«šO®cl®;Û¹à„i-i€âÑáCR'_µåˆ;boU{Œúó€yõï|ÙTF¼mãc`ƒcº\äB;WÛÌÎ_|Lã Ÿê ?bÝZ¿Õ.æI†®ö V‘Va&IL·þö„¶û’bð”oãOÉ}ëÌùíÖæ­dwxËé2nõ†É¡ƒ;õ·÷?ôÿÿ\¿·üçú¿çlŸO»ï^ìT—Œá¸¥½“)§õ¤¶lÄF’æ"v^ÀïfQƒ‹,S2ÔE Ü“<a­vñA.Ï^BˆtíæM.LPoCÂS<˜¦°tÏÔ@Œµ{¯Bù,£…×&,^°ºõ‡”†È|„ù2¾Ójõ òî‹ôaHz6˜W¸m³'dÛ1?È‹¿µ2Ç Ô„òù•A®ºmªKwXc¨ªàLºŒÞ©2µÿiÛ'Ä‹ôÖNâ+£y^fßÅ⥂·2.ÚÛúÚ߯?Vï-þ¾ô¯©oûæû­¹¯mß9ÌÎÇÒ9„Óò#ì Èùräw*ÅTîèRU ÕP˦}óa¡DÚ…AîrÃr}që ÂÜLSuªO=ý1ð'­/"D¸~„Í¿<ñP,Üåe±Ã…;&Æ«»Ü„‰¨R) Sã5<öÒ| 6ÃtŠï^$3>ñ ÆåÉÿ5}챑Á4 O9ÑK}Jà…ÄîûsšÁíRkõÒ¿_Fü¬^Æ/IòS1\ÚE~kodÙI5êeþ‚\°%s¹\ô÷îªÿ=þ¹|oùÏåÏÿ²}>m¿²A{[ÚÜ cœVµa.Ø »ä¶ÑëBå±"À8šlåÏ@x Zø}!RdÚ¹òoxŸØå§ÚÍ>AûÔl¬ü›‰Ýdë–£²ÎV•ÇMþý~™æÊÖ= ;V¡ª¼ /ž žñ9ýpÈüŸ²P ¸ÐO{Œ¨_ÓÏ…­N²^ý_ÚX¼RÃñºl8.líJ¾u7uSJÄËr^AªT‰³_Ä'¹9’ùZ¾M¿Ùžì­×Ë“ýõÒÞÖ}Wþ6ü¹xoñÏÅOÿÜ<öÞñXjŽD,äEø éÕÎò¬D½ìÜNnÎ5ÐFç"ª€¾>*eQîî!~’êÕÖ8¦ì@N¨R(]µý÷SŽ@ú` ÑÀuvX®Ik¢ XuH(›»ùzQrüè·î|¦ ÌEs±Çõ Æq9)wéñÝQN7ÍÆ>yŽ~ =³ß”gеC{ö²h>¸R<Ë\¼õÊgÉ3…åÝÆŸ’ß,¿¸jQ6ùÁ”§ÑéÞÏù“?3^º©oë¾k}_»Møcé·Éï;çÓÆó#´Sm¯zÞéDRþAÙ(~†bšÛ³YS»½²`M ë3ªTÛƒ<%,af€b áÏZ]ÜÍ˜Æ È¸ñÈeògwi¦5—˜8È ÆÙËçÙ]`úL…vüÂ,d£[wðØUº1V©Í6¼½;;¡Ä6s¿‰Ÿ$>É)íÉxMŸÍQ27dzLœ—úd'jVÝíoTòô¨B“³?äB aÄãSc߀‚ ä"?wh Ò¶Ëü©²'iÜ¥xªoï¾kþX½Mücõ·é»çÓîÓþ4c˜ÞäGÇÆë)ñ²R¤È`ª–!•X„‘ š¶V¢˜óFP¥ÿI‡)~ËÁPi¿_„ã„•v`øÖSÃ.Ò 1ys¢7»£(Öˆ®`­í»m1"<µqçð°/·þâ§´gd](¿ûø…‚³Hd¸É_$XP ûìÍœ7{€ç€g]îÚƒž²ÃmYý+Ò[È›óÀýÉ‚ƒr³st…a©aOi^dë-¨}8‡.s¯‘Ù4d ºÛûïºßÇß×n—~_û}öûÞù¸÷ðÎI@¯^Ef>ú>ª;ðæµg"ÔßYíCTá FdÃþ•Ï‹—[¢h¯·qî¥m4tZC$4r“ÓÃçk—Ž#±g_¶K¬¥éye‚Ç„ôÜL”"~å1„^ÙÝžÚû+7Ó5;ÀÚ>¾RPq¬¬­]~jÀ¡¶²‘Íx›¿œý¶6}emíú£d³›­^ Ä3œ’HŽyë?u”P!Ïcñ? Ž$LÛ½õ"~‰=ŸzøK/ýkú$$Ã)GÂò¸¨oï¿«þX½Múcõ·Ù»çÓî;è’:·ÁrôWÊ_ì3„g-¯R¦ßÌáQí$Æîèqã#§~V ´¤¡D­½žÖ ÌÉ”§™ª*€×Ëö4¦|ÇIÈÔ$ð*£vzЛºO3ÕíÌóVÁÄ·bÖoý±qÀ­0uËðõ´ðHÕq“¾Hú ´ÕCGý{ö”Óãù$]ÇÝ/oí‘.M9Z_ñÔBÚmIý8[gwN;°ÅP}ÞìW¤/¥+Êsˆ}Kê,|‰ý2ûsÇÐ\®ãC{{ÿ]ûûøÇêmò‹ÿžÿ¹y>m>÷Ý“@ r`VÙ §°¢~¸ Wrž­=éïu‘ áUe»œç“‡o¼dqD—B¡«Çq®·]c]ÙCÀ”äÓ¨¿Ý‚COáÔn¾}Á{ö6ö‰®öÌ$XóÖ¿SŽ òPjí6>¹ ñ\ÛE~° ß U|æÇü­=@á„ÂüÏ¡?®e³Îz}úÊ>êx™€…¾õç,‰›Çøù£Y¹UFß!?gYR¶ÔâþØæ¯ b;)UK|ªoë~¨þX¾·øçò¿§nŸOÛïBþ‘(â¥t0ØLÞÚCþaÏ„…ð§²0a‘?þ!Ù¤”‚šìY±æJ|¸? à­00{{ÄyÛÃb¯bÏLÔwéÌÇr‡\:¯Î*e³K„t[¯ª_{¬ õWï/.,{’ÚÿuÀÔslÕzšà Îð%û&²SÅ0~ì•_3ϪÄEï¥,sà¯âÔ&k˜½óÃüAÆd+´[Û6™‹–æ6üød}"8ÅŸ"Ã9ÔToÓ·•„z³—ÿÐÞÖWþ6ükåNé…ßfÿÚ7§ò^»Ng¨ißæ+,âì;gTÏýrÂ2üH: þû¤‰½?¬2¸cl9Òôö„ëÕ¾pÿÉY\Z"͇ÙÛu@)ÙÂß°v0æÈv As'Á¢bÿWÿ<ð[à‰‘µdV7/¿à© {ÿBæ¸=‘lÈz߬5Û‰PÑx*Å.–ü †g󾿅4¾pÊ|ÕSÔMémµ­àÑ ¡QO·þ<„aÌÂax_EB8¼bÍ7ùÁÕf–1}ÌßÎ8{©ð¡å¡¿­ÿ¡ÿmücý6ùõßæìŸÛOPbø!¨qá¹/f:» 3i`qbð£ÌAíWÌÀ²ïa¡K‘•!_pü‚ošOüÕùdp¡Ø/ –æG¸S¾>E6¸™vaر§ZŽ[ÍçÔÙY„~Å~<™­#>˽·* ž´é|Eûض Å~ íEò$É!ÍJ Ñë5ïd–vaMNuó[gêm@ «×(‡8ÊAÉiãÒ[±2}"5üÇØ,8µ¾$e\$ï"€¯ÔAõ˼)ã’Ÿ|n‡Ö¶Þ»Î·±÷Û$ß×{›÷¾[þíNûÒAI‘ ÀdQX: æøºo‚SƘ›„P†Ré!„*Š‘ù—Q$Ï…1¦·G…a¾“BÓ‚x›öjEI¡DQ‚Åx8áÞõPväÜìg‡cŽ2·ÍZ ݳ?A^¥>ÐOš½?Ï[´Fœå6>ê AþM~rzÍ4ŸsÕ˜ïóÏ: ;I–ÞÓ„bUþ¥àØÔÏMª)[·þ ŠË±•rÑñÙ ¶¾¹ÉoÖ >“Lýv.”ûSEc]ñ7ÿn†™À>{,•¯Ãô¼KÌ~1M 9s+l¥v˜‚™žný Ï‹ixU§íãCŸBrdJy^ä¯Uò›é¿^¾Ûü+´Èd$Q°¿õG…¸@®w…åA€+—î¦/2…“îÔT÷(ñɆïõ">€šŠ9×Ïé7JÖ)Ba3\Ô·÷ßÕ¿¿/ß&ÿ¹üïùŸÛçÓös`FÐY@':!𑘗ÍC2=†³ÚaâmÉë¨$ˆOWYƒÄ­ÌzI剴Á¯f·†J  ã³KFPÓù‰FØ7)¸ÎÊZ˜‚O³=‘>QSSzäl†Ø˜ÎÕ[w*gê–Üä߆'é’çˆYož×³‰ß(K³£…Ûæ©oü=}ðáíàVYX_ù¿ÕÉ`0ì>1Õ?àA˜™!p©G³-lûÛ h׷Ϩ¨  Ç[ uŽøG<#PüRããaDh0Äšþp¸˜º@AŸÅãpördº åœ÷L=RuXNö);†¸?v.’üÛ„¸; @~ÉlÝÃûu¥+lƒG;GÈ!ïs½e~‰.„0CÈ¿«nì¿&) î*ËMë)ðWmê]né£ÊŽ¢½ßÙ2ÂD¦Íô6xGôìYöÑIC€¾”µ¯sâpÛ²j;»j¾­Ú!ý¹êïÉo›æPÞ{Ï9_|ûÃ/ÚÆWª1É}@W$3T…Ü d²O,p%ÐŽY_Ißì‹A„ÚPªy»Y˜ÚsÕáñ(‘‚õîT—”Óè#yjaÁô+'´·g¢}5Ó rlÆ0¨š<ÕîqåÖŸh2¸y¡¾Ç'W—(5:%žòÓž¨2LÝ_ÓW*pPT¤¯r¨ßÚ£ÙîOÒÏszØ'iøµò­ûøƒ{Ìñœ/£O _ql•›ðл“d-,êsò$Ê‚GUT~qQÞÖÿPþküËâ½Ä¿,þkú—ÍóaïÉÛÙ)*µ§âe穌 xñw’ÑüWfH‘³X Ê_³yñ‰µ¯0%€d’;9IõÚ• ûÞrõ"˜òäÿºhÁø¬8Å Ê\Í]¤¢I¨u‰Ð#Øû<ô.½ñS€Ïãelp­aK D×=w%÷SƒâEhVókÞ4ö)~í´œŠ?Zû¢:Ëî\¿N D"©ÏKo¢ˆ#ËÓ2ϱaþÆ]n×n§ä4“U;ëçÄi· Ú_ýÔÛÑSû>ü¾h›ðû’oSo˜Cq¯íæ‡e惀Äp|ÈÖMLÓV5ámu”yÒN/2·œì5þiPùš¶“·“€É ãèîïÐOp„€û%8½;‰íf¯d¢¸*R±ß‚>'…§Ös¢`r 䨊̴/Òî­¿-}ê2Ñ÷ñãŸ@`Cä’7ñY ‘L'¿k·éSÓsÚ¦äýßêÃkÇÃvÌöÖiì¡;oýý¶å7kÞÆ'µ½ÔìNÁS|hdNÂAt›~ÃËH@&¤~SßÖÿPÿ{øcõ6é÷ÅOþÜ;ŸöÞ‘8?ˆbPÒNÇFQµ¿Òí­¸®Ûªâ­ ¿ˆqùAòâqV†{…OèLù1åR3“N™ÊGdç„Оäf{P+Â8ïDyc}R×í BöfKË@­ÞÓ­;±p¦ÑoÃÃ}~jͽ_Äo2Jø<ÂCyû{úÐJâÎ!ãý_Ú#ý±ÞRþ.;, …µùÒ¯`/gÛØ9_†/bÏ>…r—j§U¾L¿ˆ}¼ÂzXÓ©½½û®ü}ø}ñ6ñÏÅOÿÜ<öž¿Ó©¯‰ Ãà!å!ÙHã)æõÈ[„[`Go1Íán>õ?©€¨ŒIÚI·3.«¥r5Ûµ!"O-O„ý—ÑÃ3x_9Sy//ìTÁ.€{²Ÿ+vjÎvëxoæºp÷á!=z¨ù"=%Ú$‚ÙÁ:ŠŽß³7õc°OJà¼ÿ[{”€¢•áY»’¡VáÛ·þXÔƒÔ²FžÚ9~‘üfÕ2oò[Š™pŽËüÅéÊ_‹ø2wýíýwýïãoË·‰¿/þ6ûsï|Ú{eìàqÛª³S¡]±Cq£(æëŠk?®· uø˜àu¹20$o7¯ã+”d¤‘ŸÇa³xc^u€ØÖfÙ¬ ‘Àº‚ 1ì³£ Ìm%kÇc.tÇk#«–\äâ{õçõ™ËèvãÎs|ÕAb`–ÎS~ÕQÚŸÛÎá òýš¿ê0ðµË‚˜ÙÔ§2NJuÛ€‰S0-„vë C’=¦ÈË—ÑSô0x uc—ÞŒ•@ž3\Ùù2ûñ5ð{¤y^´÷îjÿ=þeõ^ò_Vÿ5ÿËîù°ùüz³æR•7_¨*a²sc,üúJ½ˆM)úã27»¤Šügþ)ð R‰¿d'|mu¹øRáqku¬¶v_Ka<”ƒPùð0^ëc¢‚¯;Xw˜W=9‡Y@híÖ_þ8»‘D¼?+ àoâg‰OÑA~Êó^ÓÏ|ÙèqÎ'ñR\E¤æP·Î1ê{ÁðÖ°¸ˆ 1Ƽß%'}ã&¾3eÛ9–T}L¨»J~g㦾­ÿ¡þ÷ðÇêmÒï‹¿MþØ;ŸöÞ‘6ORÎ0‚y€Ö^lb¦s­d$Í–b»JR¾uá €—ïÍ" “Ыa"xDÃCÜš¦)lǹ2ü;¤:<Ͷž /ƒN2¶÷&š’GœŠmÁ¡t·ÅöÞþôÂ#Òƒkûà|¦ºº‹îÂ' qê9æÁ6wÒ¨€À®+Uu× V]×ñÉùo$+¹òÒŸ„22Ê'¿ËøMò“ êM~’ˆì„yø6¢ñdé“ÜuÓßÖ×þ6ü¾v›ôÇÒo³ßwΧwd$StN…©Š–„!ì³LQÔ¿”:/˜]§”ŒÑn&.‰˜­<©ƒvcâñ!}š×%‰Ú0dúë0Ýt‚݈ßÌ÷ Ü…§9„°_Hzùã`Xû9/º¢HMøÈäÙÚï—AíÒŸ”åvåâãm|Rv¨ižvÈÏpá•M¶ÏŸLÆ"‡XžJœßú#Õ–Ô¨ €‡î;h¶ºÈD˸ôx''àñBI>ÆgA åÏËÏs0œ ¢·sþð°S©^T4wêoëèÿX¿Mþcý·ùŸûçÓþ;Þ÷“`–}4Ô$+V)¹gëa´rPž³ÚŸë|KsÝ”‚|ȱ7Ò<]°A>䭳ʂ"=ӾʟÞMåŽ „jDç(ò¼µª=« !¾ÃVÚ¥{'áÆÄoO¡Á6z'a§$Á³å‹ð½KøžB‡mò¼@ìªv|>Å·¿•gí™óÎ,h\_R½ï¸tçù•§IÆ1:hÞ?¼ŒêCxÀAªÒ ¡T<'/°>Ö¢^w*oë¿ëþ=ú{á¾_¢«þž÷¶g¾ßjûÚöœ[¤ÔÂ6"ÂZ hHÍ@8öngGÄb"5kDT¹JÌfy"àT2DŒ°UU›¡vk‹šxDQM l»´ÕEüÆO¬=p•¶6•蓎Úì…WpºQï*9æ`Wå0õÖx¼­ Œªé2¼à°AÙ€nþ"~?Ÿõ„c~O_pØÊ«jËíõVXY¢¹îjrƒp £nã? DTžðu:<åË“Øt‘ŸÚÌQØ µ^æ¯9¢ö.ºéoï¿«ÿX¾Mþcù·ùŸÛçÓö»\÷pê¤XÚòÄó”NÄl¿í±u'‘g³ kÛ.À8ªn‡Š|’ÂÆ„ƒøŠùbÖm›ìç§RíàøEŠ´Ÿª_BÐ%4Ç1CÏfÙyRzTÆm±¯Qàè¢Ý·ùç[ÿHà:«oÃÛ)RÅ<ý´þþËýðp±åŠÞ&ÏU ½“¨ÿù~©N½…ÙH\ÁÐeCåwï‹uä@›„¤Á™ªýz ‚–ÞE'Ó P¼,`é×¼¿¼Ù>ˆ<ÿ2Ò~«íìþVû×1ø{Ù6áeÿÚç¾m›ï»Î“D¼‘Ó‚í P´ ƒùœ2Å¡˜i…Ë•Ú}èã³1û+bB—H=Iob£åó¡$%<žž³]µì0 EÛ¸aùÞ?öMû{ÃfLHw›»´¦ãªô‘nÝ .ªâ*—y_gŒ¨äy? ~Ùºý¸œþN_ñŽwÚ$y\N¿Ô' ÒÉúcNBBÐâĹt' ^ Ûzè%ÞÃ@³Ÿ§dxyìÞâã3‚é,d‡”Þ§ïøÛð-”åóy«oï¿kÿX½Mþcõ_ó¿ìžO»Où Wn aùŒR<«Â/BÖÓr¸¿óÖ^{I‡ÿÍi5ìò%”Ýjÿ«=ÆÚŠZƒ7ÛÔpP¸Ù•ó»ÊQì¿Í$²3ÉŽ-§KJO­Kçä')Üé#H.v¹ rmï “«YM$?ÖËØPGx¬Žûÿ[pO\H©T³Î¿þÙ'ý5•ëí@›ÂÄzeV]Lë„ o[ ·³{$g"W2’û6¸ú'‰®ó±Ÿ¢Ó>ðüØ.¨î†ú=ó//¬ÄЋœ´›âŽþo½ŸãoËvÈÿ^õsþûžù°ßö7–s…¾!'Ø~»ª½!È3dzè–0Ø{˜iÔ‚“¸öØõöôµ¦‡µìS%Š–^Ùî¸ Ù°gIOXLÛÏ£bÚgClò{Âì=OûXÏ$"AæçA;Óô¥£Ç[ÑC‘I\ò¸ oj³Á»ÊÔ. ÏARŸáï¹7ìzÊfÇzUüÖRÜí ûí‡ „x‚©6ô[¡¼Áäòe|n:˜ñJã&>Ñn&Oo³§D†j®YôªÚµ·÷ßµ¿¿¯Þ.ÿ±øïùŸ{çÓÞ;˜?Hê ‘ïä,2JÉ‚H¬?9w` ¤Q xÜ(¸± 0k©tœ 8fv  %Æè-'Ai-é êV2s'‘Fø°øDpNÛºãpdƒ Z{[WhñYò;âÝßI„"ùŠÃÙ^Ã냶ßHd\¦Cx¹­ IÉcå½ç®ó¬\Q ¨ûKwbP¢ ¨,¾æi· ŽýÖ¦ÕâÔ¯Çøx²JÊ%›ø“7Úò÷³ç B6óº‹ö^ý/ÚY½—ü—ÅÍÿ²w>í½ Ûï |OJ¡pòæp@‘ ;»ÝUS®ŠÉÜà À¸Mñ™ Àîív¸ANšã ¼îU|9î |õàV Wì6Uß´^çv`­¯î‘;¹6&ð´°Q2€ì—î[Íö$ÖmôF„„"ãÜÒEzû¤‘¾Ø‰á7Û{òœ‘›à\uëªðü\¸º(î ;© @ïì)Fø¬ @ï' IÀuÜÄŸ”©€î9ý GòxCÊM{[ÿCûÛøÇâ½å?ÿ=ÿsó|Ú{^5º¥*,õœd¹nß!‚˜ÝÑf¨¡L¯=W–]v\a½xUXt{¨bí«+£øÁoÌd-Þ,KÊþ«UÇ`Ã3F]bynL`À©P-Žá¦ÄÚŠô­?û#¢ð¶@†·ñ¡‡![ª›øxë*’æÑ>ý$TÖBö¯û!ßÚÃÌ«„æ+†Xdó­»3`LðOoÃƒŠ›ìe2tNŸâOøhà’TÍà9};à’ÌuaélêÛúê߯?–o“_ýmúÇæù°÷Žë>ý¡h ÃNÊý² ±‹ìR˜B§XƒGò'}¬ÿ?ÖÞdG³\ÉÎûSøPšD±o¦5@”t=€š„L ¥I½¾ì[Æíé›dz º÷ š±ƒ?ÆÎhÍZ@œÄ…EšfMƒ„·èiÒ7#ˆÃÏ£—BsÚŸôAô†,Ÿõ(4Õ’bS½<âl†ö§¬7¡éñcpk#AÌZKp k%(]sheÜz7’ÒQà-½Ò," iÕœ½G¯øN¾X[ä*oíñ=âÔŠArsÅÞ6ØWní |ÜÖ¨p·þ«äïT´›üD‡`•b½ßLÁL‚3ëᢾ½ý®þ½ÿ}öÞò_fÿ5þËêùiõí¾ ·Z¾ëȨvê7¯X%²Þå!¯¸ö°r} Â6ž\íêaÏ{rè™ ë¤Øï‰Öa+ª_â,ØgR²t¨d¨xû=ÕŽ—Q’%ÛÞ”ê6ç:ßš{ ô}N^±÷Nä?Ûâë©Å‹ôÀm ö#|%~<îó*Y!.ÊãàºäRÓÀW*÷û«}¶GOlx.Kjg÷“`•ß/ÒgB÷S)KòŽï£Ç{>ɇau\”··ß•¿÷¿ÏÝ&þ1÷ÛðϵóÓÚó Ÿø )2ä’zh¬¿ ÿçwùÀHa[W;BåH=dŠëÈ7Kö…d±˜ôä'=4S*Q:¥¾Û‘hš*M‰—ãüÒ¶[ôÔ–mtÓð +v ëwÆ«}À_µ§#wíýcñ/Ç{»üEòò®ì÷øyãÚÐí\‹–à­>ûÎ#‹ÒrOKqÐv)<ò@ìí+,d ª—Îþk”ü,!]ä¯r åÙÇ_Á®jvNæZ/êÛ›ïê߻ߧoŸþmøçòùaõW¾.…)V†¨Pjä>iˆ«s”J(Œ)Gä Û½¹íNÑ›’½—Âg^Ä{ľ+ѱ¹íM%-‚ú7ëÌïPbQmå¢N ?vKÝöo§|èdÐ&±¹e½·Æòï)ñ6Y ”ïÞm"„û„Ï®\¤'~n¿ß³2„~;oß)ŠVÓ}1›òlÀÐjÂvwiR¦An?ßrkoǼ*Åã쟚LëÞlëVoòƒ,ihoŸr?qU »ÈzºéïÝ~×þ»÷sîÞÒŸsÿý±t~ZyOÁ'8< ¢Vb$ÖÈù¿{K‰&?ij¸s«@[ÅP²òˆBâý0Ðëš!3‘ƒÒ÷A…_ñ´VU„ñ °kÜq‡ìÍ €öØ3ƒ#ˆ9·W‚ý|wä­½ÙK<©K÷6þBjî_¾³—ôIÒÃæsð5züõ™$ê¼²Š7íÙ¡c÷[žsUlRR6(¦h+%|kP€®¦~ë~Jz3ÎE|;µ²‡4s¿,šŒ#9—vÓÞÖþÐþÖÿ1{›üÇäoã?ÏO‹Ï Ô¬ýd¥€€Wì?Ü$•.n¶Qbú ìA8Ì™Æ ËD¡…@¸Í;Ϲû¶+Â6ôNúNždÏϱïöä±£‚:9UB gZ3¯À<´ÅÁi,„I±A_°{sVãäø¥/ÝÃGß…#ûM|ù•I[×ïŸÃOÊင;<è—ú€±é MîÎdqiOÚš}6äÒ}LˆŸ“Ç/éE°8RÁr=œ[—Ý#ùPÞÞ|×ýÖû>u›ìûÌïCßWÎ+Ïó›ˆn“òˆR@CȲ²›6 £’á0T£<¥/±yÎñï ÌÁ 5|™B Ѱ®ÝÑ+ŽËOO°±•L,ç°òà:¬½áa¯äÞ¡˜Gž”ƒÜ†žoí+œ¾d–¥rëÞ¤Ujnýb,yI_~9>^‹Ž¤°¾<æ àPê»önÛDQÚŸ„yhéÓ ƒ[{Up(•8—[ÿñí×K õ"¾lRŽRÎÁ›ÌÖØW]Y+‡î¶æ‡î·Þ¹Û¤?æ~ý±v~Z{G(ÔŽq¼ÁM¨À`¡$ARëO¥c{)$(5í5ÒÆ¥uù^ORÕ.½WoX¶ÔŒ^¤¯¾÷5Ëzi¼Goß9׆þ碽½ý®ý­ÿcö6ùÙ߯®žŸVŸ¿äáVðÙêXÎm³®Û—ŸÉ毃œS³+v²&¿|ÎM&@*ËûÌ­‰¯áY¸n)˜êÎD¨à«ø 7ÙáñA?ûÂ]]ŒÐøKrH? S{™Ïú~·Ÿá—¯eë.t*¿|5›üU¹ê”îlã¯]õμ—<8´é¯‚Õ)Ô™•æf3€Ç°þ>/íyë=jHº;ûgØï÷^ß!½}m”á$0/£§Å5à/¿hokhÿÕû1w›ìçÜ¿Ç~®ŸÖÞw'°FÓZ‹Š¯)µ/8¯<ætÁa—¢3 BIÑÈp}¢µ$ËÙë´Mÿnbð Èãq)²‘Áÿ]±‰†Ï Š'Z;ðgØ)FrÑ€½Äî³hË2·m…5|Ý1§FWLmAjíí«3ŸÏÇ%¹÷¿ J!—N7ù ò× 9ò-ò—" ÁôdDW¸ ¼Q£;/åÙ;+%ßš'’`JDîÜš@¦ qHâ“Pl3Dªq¾ì%[Ø\Ô颾½ý®þ½ÿ}úvù÷éßÇ¿/ŸŸVŸ¿å¹Çj!ɺzM ”$Ä Ýó8ÌÒ)h7}v4o[×s¬RjÞŠL^¸x:pa¥»¿ÂAE°ÂùŒÉûJvÔ'¸QZUÁz$ðÎá2­«=G L7h“j gêé־ì` ÎKÿÔ ÕŠM6ӼȪä·ÐëW¼áÛø ~˜]xw|žãßõ‡É8ÌÞ‡…îy œŽKsJùƒ½þM„.ÝãòT•ŒØóE|›ÿL¨ÆŒé2|Jh»ÙÈöJñ¢¾½ý®þ­ÿcú6ùÏéÿ\>?-¿#™„€Â˜8ʪÇL$mÐ9³|Âõ0í* BYž¼-[Œ*h@˜ãŸ©C"ÚXF‰JÝMÔü„ó CË_·F°Ç%TâN‰äì [ö1iìá“ð¼M…“ÉâÞv¿5§r>‹[zñÊo½—_`L0fËMú"é‰î/^÷mð€’ê#‘ÚoÊ#èZ¾c'Š‡Û¢¼‚g{Ñ9&à¼g¹õ_%Æ.¬7ù©æÒ9$a ã‡×Ä[€hoúÛÚïêߺß'o“þ˜ûmôûÒùiåm7>À]fIÛÖÅõ2ü$)Ùð,¬M Ìê3¦÷° Vtd€–2ðD¥¾ü#ݤ®B×þ½I«ì—]U6ãe.j/†EÐ[QL»S@ÖâPÓÚCÀ±UÉ›ã`ï­©Þ)l\‡Üú&êÏ]cïRE^’ &ÉIóË Ïìû¸{h7]õø|iM­©¨—JÀZÕ±jVåãÞ¸92CvV÷ï=(7[„ïÉÖÐElæB‰sô‡2·í̸¨lk½+ü[×çl½Ä>¦ú5ä×:ùØôµ¯2¿ÙU(m7…ãqF±,G;çq ®Réce¤¨P¸¨™k{‚0ä²€:]«ÊÔ0‰}¥ÇÍN*˜2·ëÊžÓ¦¿!6€2UB×ìÕÓ\ Ò‘"I 0¥x5l*­Ž¯Ô«} Œ{,÷qé_EB„º¡å¸È†ä·q.Límü\ª_â…Oä›þp4ÃÐÑ|Â(¤ã‰ØýÖ¾Sýå…(·þ‡äÃ̽z“P5Út-·ñ éÍžs0ØS[ûCÿïþÏù{ËÎÿ{üçúùiý]ÐÆjrÆô•J™[Ñ €ô7fC qáuÙeÀo…|𺨳®ù+×±ã¦næ)( Z`]8d„œmÖöìBÍZõÜüαXÔ¾Êfï äõN‰ì'·ö”fƒÔ‘P¡­ÿHˆÎ!“âM~ì¨TÌ ì×ôkøT–g.§ÒÇæK}¬•d¸škˆ£æÅ-G{J Äk‚ù<º§4À~¾¤…×µK^X«¸Í×m½}¬J†m¼hoo¿k]ücö·á«ç§Õ·_ï QÌoSé MÜh¡ŠŒ"kl6®œ¸Øß£U3 Ã:Ó»xK£-ƒ¾î‡VW‰HZøƒ“<¸f\Câ!uò+ÒLΗ®Û4u;ðIò ¡b;Úî{°ùµ7uQBáјQ˜•d6 ê²¶žAÅ”ÇCr›ÜúlrW@\ýªú>hAn‚pNðÃpô]e<Ùlq˜Öc\ÅQÇ!$mñÒzÁÉÆbµ}Sÿƒè…Ta N7Ñùnû–’_ ?ö‘ë{ƒÑùq¨íhýMé—Î÷{‹~L÷÷¿×ÊÇ¡µ÷B{Þîf ˜U-. ,J­â“kGìtØž0+Ã+âYã¤J®|)ò¬ÃnO†&¼ý.Ü€þäÚáCO`A@Ê÷ ·brí@«¤N+{b$`ÿIÕÝù‰„b‡rù®ìv1 ¨>ÉvïöÃnPA_¦'ÛîÝÿed¶ìñŒM|àÒíç V~Õ1|ý œ‡~’íÞÚ­]óñlºØ)ë3]Ú Lß.`h4ÒÙ½°ôÉu£çSøLÖFä!¯b®cìT¢3»Š¹ÝmíÝoÝs·IÎý{ôçÚùií±:ÿñóŸ?ñ\cPg|))•\ë¿sõèÞüúóçÿþoŸÿùóÊ(ˆŸÿñß;I=pª@ž²ÆJ/Š>t¶ O=-ÚÉÅ®úøOÿ»–Uò§G‘œ•†ü$7»y d¨«óðùú•ùøç¸£·Óú©¼Kö_~ÿü»ÿ`ÏÎó¿>þñOÛdqÏ®¿(«Mõ6áóŸìßÿËÇßÿíóïþ -}þí¿Œùê×P¢Š]]þí¿~ü«ñ¯?ÿö?>ÿíß>vaP ¯å›´m—vkt·ÿ .¡y l\:=å*ï6S7yÇ!ï»ÑUÞù“¼œæFÙÕA§§¼1ü©Àí%áMàßnÛúÿAàJ^T…Ù\‚æ4¾~NÇ?x¨ˆ×ÿõ¸ œß®çŸîxêXŽtzÑpú3Ïíïý›ÌîÚï§ÂµÑO»¬Bá rXg<¼ÔÙ’®¼”ã›j—îÖè§MUAÞ%í3©[›€¬©äûÓ`Õˬ~a¶õ®ŽM´ËwkôÓ&ªÊVžk³Úi'áþt·w]—þãfý•HüÓŸ6þ¿é9Ä1NE‚¤?ÝÅÝÞ_g^|::vÂ&Ó½ÕO[F¼ ˆBvua©ÓVþé¶EÂLã³íž¾þjÜ[ý¸`‡TÔK”´)›Õ§¶’ð§}z;€œù ¯­þb/TQ¬TаI §†ØåË|éó>γã÷¿8&~Û¾lÒývço—3 û!~þÓGâ™ñüíq¡ýþ™PðO.¼ß>¶ïGÏÛïïßÿ¢¬»ÞãÿÍØ2Céãëe-ÜÎzåJ»É¦xk¦båD_@E>úA~•½ÓìÁ¨X§‚»D ÅR!v%ðŸ³â1¿­${LŒÐeïÛy  ×ç;Å–`cxB¥¬¶¤“"µ|Ã3Ýur¨pâ%¹4§v3‹Z¯‰£÷ð±mDð€/ÂG _y-D5Óc õM´‡æaj¨œUÆTO¢—ÖÑ^é6e_º' F Ü•pHO‚‡Œ‹Úmôª5@NËÊçÙ”·µ?”¿õÌÝ&ÿ1÷Ûø¥óÓÊc½Ã»l¯!;6†`›øc¥¶Š,&v$‰9jÔþY$μÖQHŸÙ+8ø :¾HœðaðÙ…;«,h1HCh›Õ#üžšZ¿FΩÔáˆs·ö[oªP·AM°ujáY05… ßâ­ýtüv<Ûíãè\^v3ÔLÙ¥ï¢/'{Pÿ õ>òNÒ›íÐC꡸³ý®ø½û÷¼Òó¾þ½nNí½VÝßQ+<ê“ê9 fLÐt8ÆY¢M`ŒiÑK;;È£¾“îH}>ñi_²Záó²†Ìs˜CÛ@%yk’-Ù`›;,d ‘J?%ü©Ð«~ÝáPöë\ývkoÇi…•r4ÕƒýS¯5†]å]Ò‡ôAÒÙ’Æ>zêv•ÃFQ»Ú¿µW©@³Îµl*3€;³†tiO¥¡ý©PK›/ý“ÿk¿OâúÈùñSsºŒ®‰õ’RŽýííwýïýïó·Ë¿Íþ{ôçÚùiímÑ ‘Ë ”?Ð!C$GsÍ“ÀÅwX1× ®;hiœÕ@>“:HÅ”gC†=ãmöãÜ|u® |›qÒ¬Õ\éWD¾tÑ ÓÆ­<“Õ<ôÈC¥Ÿ"Π_—ä‡áÞÜî%Š©©P¨—Þƒ¸¨ZRý)<©hÔ¶ŠE…æï¡¨¨l†*”jýV‰pv<Ö,?R›Ðní³ÀÁa\}ñÞݤïİG¿I_Mj™3³]F¦šzQÞÞ~WþÖÿ1w›üÇÜoã?—Î o;M%\Ä Æ¢Äv<Ù¹Þït9v–±2f•ËZ³,ÖE)ǶÖÙ¿'À¢9àd’k¿oS+)ñr†ØbF_h˜ËAªFÊ}m2ƒ*Y„ú¨3ÓE"†Ý3”°V1ðlíåD7ã[$?ñìß©%€e˜)ÇS~Çôy((£g>]Pevü³Í¾©Ï©·­eMe\TãÙ¿´<¯È³ÑÑ}Œ’¾*Pw /?·"SmÁ•¼ÏB˜“3äqQÞ»ý©üW÷çܽ…?çþ=øËÚùiíí§i ’*ŒÚcêQÛØ(ˆÿ}¡‹ÁcYÈyRrâ÷hUåþ’ô¢ïYÐcžBâc²)Ð F°k;â2|áþ$¨uKº©ok¨ÿÝÿ9}oùÏéÿ\>?¬¾ýHÍd£MeF6ÏQH*å$3_ï{È™ Ä x0øNEÉPÒ^i"w²ynU4ÎЊT¡îdåÚ¶Š@õ©çäÛvÓÂl¡W” ÌÔ·7IJìApm²æùnÓà•^VyaÚ‚Ð3êhOEÆ9·þ)Àš¤z+Ùl_ˆMUÄ(q9¾> °h­¤ü¡]{€'r{í)–‹œ+Ø‚” v´·©¥ÈZxé¾"<ÉŽ mœÂ“PbÇgÒÌ^ÆNF 5ù5ä‹êöæ»ê÷Þ÷©Û„?§þ=øséü´ô¶•W]"ñ 7¢ƒš•\–ßõ¨c–*·£¾fBÓĪ£žË¤E…D::@fÎw’Ö“NÔɨo®<­bÎô”¾§¡—¸`3¨ü†Y5ÈRs.lN³Wš˜ òï¸4·!™m•9{ïzŸÊà’· Ï{” ;ŠËzÏ~º}F©„æeîŠkÄñÁ؈¹ø+"R¹QÈ™K×övíÓ$\líÒ=4LÀ:M܈é;°]‚ßÍ¥]Fɦه$ÍÕzQÞÞ~WþÖÿ1w›üÇÜoã?–ÎO O^(u àAqÚ»ßÈI5é‰/C²mö=BÑj]¬G28Îc²’s®ØlvÜáñwÀ¤’üº™AÜvÝKE„([&_Eœ-* 4ë}x™rú[‡ÎAYð¨Cƒâ%·GóbïÆÛ—;åÕ}0÷] 5‡ø ñ›øaŸõõ>¶­CºšÇšŸ—ú(¹5 ÷Ej @b`])Å›·ö”ÞÛjSFëÙ?°nÊQ**Oñ+ 0ЊvqÒÃçUMõ †ß©½½ù®ü­÷}îvá¹ß¬ŸÖÞî‹"…7¤5Qš2ƒ;’eW°Á!°f_ÔÂ@¼bßÖ'XRf™!ý»YödË–lXhë(Àr›øÊU$„¡lÈÔ; áO øYS¤¼5ž‰ÖU¾0§Ÿƒ$4êÑ~¶ÆK'vMüÓ—Þ ºpC]¤çL†ÿÐ^¢ªØÚGßT£@íwô…²i¯AÞj›ªLϵ%-QóZU¥ÍÞžL4JgAr+—þÉDƒ‘Žz‘ŸL³°6¬ñ—ñO¸Œ!ð°K:ÚÛZºßz?æn“þ˜ûmôçÚùií)Ð(š’DCý bd3%’›Ë 4*A%HOÉ^á 5J#ß‹jÌí¨w£™ –>É”öô D#¹„Ñn³ÇóD¤™DÖÈ)¶gApV µƒ–<ÌÊ‹"Ú‹´Í[{ß«Þv´[ÿf™¨fŽ¥v“¿ ?Y‹³ú£e?øEqPûz³}×ß°'‰pÀû£ ì0kï帵‡9¼P^¤ƒîì¿I~A)Ì›ü0‡c™Ì¿ËøˆAø,ý¦¿­ý¡ÿ­ÿcþ6ùù߯¬ŸŸÖßñ¾¿¨6mDšX@ØO-V¼`pÒê ×ÜÁŽù±¶yƒ¬Eׄpå‹# OP­öóÔõU'ÐTnO½?DÈ î÷Xq.üwÀý¨µ™pÚÊË]°`š“9Í)ð)@{ÅZÎÞqÁâ’¸æ.Ò_‰žP%”×Nù6x¾Û»Â¾ÇUÝ”qœ4DÒ³Ò[0壵|{0£KçEƒ¨=â!¼/±hÚ íã»@b)$ˆð*º;š¿5¿u¾ÍÛ[ômÖ?¶qoKæóç';”ä…FÑü?øg²ôSÕånÇ—Î8çìµcª}QÜÌ…Ä¿qŠûÂÖ¾4G¥–Ÿ*ò{žž3Ÿt屟`š¸uÏ»6ÙC'Ço2Mph`:c ±½f&Sî·£=‰fDÙ£ªÕz韼q°³ìú-õ"ÿ ˆD„ ïá1~#äì#±{…j¾iDˆ¶%jÎ[·wÊ%ßš›]Ù)–0Ë+ߺ/¿)wä"þP ©xÄ0ÎáÊXLHAãE}[ûCý[ÿÇômòÓ¿ÿX>?,¾Ããd›$ãÙ]^ p›¦ýp,+£ÄÌ@3Cºœ‹‰!¦†¯.·ˆ×¶bT× ñ¸Ö Ú“b¿¯¿*§INkÕùô¤[Í‘£½.–‚,€xžöÁ.6xÏä|åAœì¤ènSí)ÈæÈ°-?/ýÇFŽ Õä3Ì‹ü‘˜Aá—Ûäûøáý²;Ÿbšåtù®=ûZÐŒáËçc–­‹€3L¼ŸÕ\¿i‹f2é—<¿Ÿ N2[8ª!ÔxMS­šmnÍ AŽ.Øò~é=Ba{› ä›ðIÂS1éž}ð@$Ú[‚9$wåáq„—C¹´'.'ÙTýÒ¾†_Z¶IýÒ ¿ÛÉÆæ!?@Å̯Ý/Ã'–pÑÆvjoo¾+ï~Ÿ¼]ücî·ákç§µ§ÕIå˜í{YE‡XÅÏa¿ÆËïîb ãe§È¡&ç1*ÓCCbB>FÑ=3w¶ã±51f²9ô¾•»Eí9öa&#Fö A˜K” ÐKLnBån=UxMZ‘ ¾·—¡ÚG¡<«žÝc»Q1ÛRï[z>ÑRe½ öÑË4´Ç”=B“wþ]w|åî3CUÁMÕWrÐ%³Ê¥µ 3 Ѱ¥_ncßdîã–ÊEöñkŠq¤@“qŽëßFŸæ¢¸Wó‹â_½_&î%ýeâ_ƒ¿,œÖŸMÈÖˆ4ÝË8c¨ ]Ì€?˜&.”jAh:îc% ØÎ`J_ë§c;’Ùš¾’ˆí×:ë^æm+ ÂÖ^ëÅLp’£ƒ˜@ʨϫ¹÷MyÆq¹°c„Ù]Ì[óNÂ9ÂÅ=Ô[ïòöaµz‘¾5IOî£{È߃o~çÚ{ÖñvÕ5ÕÓØØIêýüm%å‚ã«Ë­=|,öš³’Û­û!ñMâúM|²kˆÉ´VÚmøðÉ@„YC-7ímíí¿û?'ï-ÿ9ùïñŸ‹ç‡¥·G‘Yï¼Y®î+Ç%…5 ty¥:¶Ñt´Žo[é²^Èïv¿’ôëža»{Ø28ÌÇ¢½¢¶§2½>‡Nj™í:y~q†á¬$=RÑ•IFÃ~u4@T÷ÆË nÚ(€U\ºŽ”#¡¡²boÉõ@·¡Áp­½‡@™á ܹ·k ²î.úà*0Y²¸AÒµ½-é¬C_L•g÷MÒà úMzR<;娯eü“û µ6«S{û]ÿ{ÿûô½Å?&ÿ=úsíü´öôL"PlAö¬/O°½š „€¿+£ krdÏŠ9´ ÿÉõ³}[IJ²² ö)oÚSdOjž}&Ö‹½>@€W w@ •³iLB±=ß½Ú¿³8ˆkØþC}yz·öæ6{JTgëÙ»§,¦â‘ÎóùüMv1ÎÒW<í¸J~y!Ïá9˜›â¨é‰%±ôB†FÀÀ¢Gì·öÖÀ¬·Ö¤ÉW÷j^ ­¶pîß²GJUÍîå>výïCW{ë{Ú ¦’¢Cu{û·êÏþ÷©ÛÅÏü9ü÷º9Õ÷ZwG824‹y.P°5QÛ×J\ÁÔç!WêPÌF¶¬C(ƒˆŠ7È¿@ôìážC°Áê>¡(WnÁÊnÃP/¿(60ќƔÚ@ x{û:Dm`“ZÅîæ.µ^d;ÄzkÝ ÇÆ­ÿ笭lÓ^ºÉŸ%!Ñ/®Cô5~ªü¥=é/ýQÅŽ'Á:F"™ívæõ[sÓ'Õ$£¥që}JúJÚK¼H/|Á>hó2xâáØ§ ›ú¢¼­ù¡û­÷cîÞÂSÿú±r~ZyzΓú 0µ:bñëÀÍ"Pßå XÙ˜‡£ä@ëF…_PDí"ìhÑý äDÑÓy8e2÷GOŽpû yð7í$gÕÌ»š›¬Üäpøä»ír°°JuøçNާŠ<.í¹ 2„fßÌKÿ\pJB3¿Èoß‘ŸÀŸ×°mãþº& cçJ·xëOIÁïw"°3ñʸ5gúøÎ¢úÞ»Õ¦ý¼=w¢î×M|E`;x]1?÷ó÷áó (…N½ŸêÛÛïêßû?§ï-ÿ9ýïñŸËç§åç |æA­ë[kû«»ŒôŽ'º/ª©d%%–"¯öx ÜôŒÏ G©Qc±<. {ÉÉ‘WNdæl³|y\(‘ @íËcRHžÏÁÓIM€Ê¥uÏ$"ÏÆ.&ñœÍaû#g8·^n½á]ŽfA¹I_$=é“Ë~ÚŸá̱‡•ÜØ‡î²à.›œúŸž 4(ωC5ágs¼òv+}‘/ÝO¼ò`e·\ËEü ɘ ©.×{øSEq ñ¢¾½ý¦ý½ûmîvé÷©ßG¿­œŸÖÝ%e¹ˆXØ·+Ñ•cšðÌÊYVѕßzÝìïQñ„1u“èjжÿO¡*`‰Úƒº_µ »ÃR_n’0@Šnm%º–$B³§•bjÐqª;æ€Û¦•KûæüÀÔ#ÖK÷ÊR†Z®ú2Ù¤W’³j&òWî·Á“g ¾Õó“vû]yòZR2ûWÚnÍð÷‰õýÒ>‰“’‰jéìsf6Úò)¼}®p^Ï¡“–ÙË$69.ŠÛZŠß:?&n“ý˜ømìÇÂùqáíáø>;$ÔdY{ÜcŠnM½¦ŽÐ~aq“\p÷ñÛT ˆÑ@ôl*½›Ð‹½XeRªÂå᯽Eí®š¯žGt&Ó®,ò«ë3WZ£#û'\{Ex|²ÓÈw +™hkC'´D'.ÝÛMÕÕ¾Íx“>Hzà9žÂÕ×àñîÅðùÛ©<þHEX’•èÕŒvø5ÉQ¶‡ózà ñèlbûù‘²ÞÙ‡ôxv[Uqê¤?Ï{k›«Ø.ÊÛÛïÊßûß'oŸû}øûÚùqííÇiÁ‹P°°•Ag°ýW.A!Úíò¡tk}·íD¶O–}‚·ÞLÞl×ç¡pÊ †tñÉg`xÉ[EŸ#A#¹•ÕœüE3ȱ[hNlÙ,’U–Ú“¿hÖ:œxçò/¨Û©'W~äÑ>EÜLºì׿Þ?)‘G§à!¾ÒMmhdùªý6|Šš'çáòùìê ¿(G ö@n?Áí€Æf4^ÚÃÃÀ<”iröu–ý~¢H.]ä·ïmâÎä7/ã·ï£ào+úù]}{ó]ý{÷ûôíâo³¿þXÉzàs&­ÕΠÑóÐ~ÓYÐá—ðHä}Ý¡‚ˆ´:f‚Yù$µ‡'œØ1¾I|‰rªÛÝ4¸Íz¾47KÜÆ)ÐyéݾƒJ ²à%Q?5>‡/Ô:»§ò­;ð pù$´QI&r2ÚKkŒ‰uåÖyGvNßQËEv¸¾L‹Ìs¾Œ|üÂŽa°HNÅmÍÅo½÷–þœø÷àÏ…óúó=¼KÅž€œ±ºa"¾MKø€©Š`­z®1®‰ÏÊw•…ÖH뺛9ømÝw~ÙÕ‘)µVAi‹Äߦ»‘…÷¡”dzœs¦Íè)±Äщã&‘-Lùñ#‹}ålÞðñ™¥æ¹6Gï•Q9Ƕ܅/Þ¬©¤øß6x]uÀáãzüFß”Ç÷À+d/×(W€bmæPoí)sƒx¥[ÿUâSÜ1êE| ä2„®mU¾ß”BG"}Î7ÝmÍwÕï½S·ILýkô—¥óÓÒÛK=³B»0tÛ®š¸¿í…–•2J‘Aà)ϋ׽ÔÈ´f†Áe‘'€òXù[k8‹ûè’çKl‹ù Ou !æ-¼(†6ìø‡ûØí»-•Ašz|f¾ëξÇèVR9Ž 0°víìS5ÏÑœ¸(À¢%_{ïH_ ²ëëì<Ïxƒ|\ÆÓb€'3Šg𭻣ý®ùï}¿'ís“{›òmÔïóùózóØ'n˜žˆk÷A62ؽ Îã°^eSº×u’ð2BG¹dJTðï¡ê¹= ßÙ~?Ž,€s6xHœeÙÈåÑ Æ^±6xaJ?ñK3œ‚XM»ìøªè]\ˆ,{ûôËôvÓPË}ë?¤‹‹y!Âìò£}<âï}¹A¾?¯ÕâtìÜ]vT“Ì×jsÐlB„{oôE1´µ'ë ®,³)Ó­ÿ"ùíïÄ}}Ê_Š…˜Óeü<\"PBÔS^ô··ßõ¿÷¿Ïß.ÿ>ÿûøõóÓú;ÂK ŸV¼9ZêÉž]Âï:멸ÂËàŸñ$raò:êÉãôÊ‘ÖHcü×1°IèÂG‘ÁŒ¿ º"å›+ÀaçòÉé'Hh œk–uQؽ2ñ™ÏĽd[5´x6:35p0ÝPß{'TEÖN˜ Rá-<8¯R¨¥­kîÛÐÁ7€ÞnüàÁ•·æxOñ«éw4áÙ@æŽð³ÏöãWÅDÉñI–ÛºŸ’DîÞoÒ¡-1ÆLzŒ~’$B¢»ósÊ{·?•ÿîÿœ»·üçÜ¿Ç.ŸVÞè`3Mf:èøýsÆÀ5Š==è#•’ЃÔt’ΖI¨JÁ ®¼ùò†â8@òíÀËlvLôïf½p5{RÅʸá'q.ÌYÛ• $Ï…>’ Ùáðm¡,Ò&Ë“¹5W¢³®œÔw÷ÇC‡¬ ›ø¶?AöÛ–ëéûð=(Û& y_à#ßÔx<ÈÜå |¤‘l0ò¥yý°f/å¥÷&éÍÄ‘x‘ÞfÚLqeû¼¾Ëÿå½›ŸºwÎÝKúsê_c?WÎO+Ï_JÚ™"W^´Ü1ƹB=›¹Q/Ã)’VA|í‰áU±Ô€›&p "$%ʶç:Ɔ2µjì^0oÇYf5x6™}/ÄÕp¼yÁ¼ÙÍÔxÔ:V{›Œ®`¢Ì[ßTµz<ëhoû¶ªoš[<[ÿ‘@)úË}ÉßòGê½À†‡Öt=7¾ßþy#úD¦®¿VÞúÓÏ©b6®"DYuu·öS¬²¥ ÙçÒÿ”übíÈù©b§Þ¸œx? ô|ê‹úöæ‡úßÝŸÓ÷ÿœþ÷ðÏåóÓòsƒ”J²ïóSõOfiP%¯ Rât¶ÛíqšœÅœÜ˜ÊóÚ“ª0y¡<‰9.–ó2¡LýË ²ß7Ùár;€vE˜«m4ör³ç[¥$‘ a-'<œ+îfφ ñÊÂLáZL'ùÖJ'*éjÊ·î…ƒ ‰sÀìÒ,lÃbùçoçèÓ/ ãš6œÊÑ Ø¤T¹¿c‹Ý›£Le ñ¦ºô>%<€â½^„§‰Ã4òæ:‡>y)w[CH´‡æ¶æ‡æ·Þ™Û¤?f~ü±r~Zy‡)Šÿ?0Ïq8º÷T 4:G@­¼âzqi!¸aÜöÏ'Û¥'4Â4NÚbÕ“íRÉÌìGìiD(ì\N,8Tµ@lÚòå°š@»OBHRÝ ¼ÛaTŽæhnLuñì]Nγ_C<¥G³Hoæ“_rïÁ£Xâô?ÍÇcôMy|·ó#æ²ÞùNÉ®`3Û­}D™¼TôíÝ7IOa¥JÿéT<¼sf®·ÑCtÄj.妼Wû‹ò_ý_æî%þeî_ÿ¬ŸÖÞã¥ö‘*ÿ˜¼ô¦B»aƒÊË ’É$!ÇñÉÍP"“×ͪ±C4˜æ«ÓÞ€ûÆð° Ô>ñ`OÀ+&’oÃzs+f‚FAÊu_ÐÉ®a+zUÒ­ pû•n?OÙûŒGsô_ì’ €2³wáp$Dê§ôÚ÷ ·T~*s^£ç;î@["mÙµÇ÷Ô)>bÒðå‹`NK»µ.u0ný—_žëÔ„{Ê/ì hR«—ñÃ²ÐæMB¹¨ïÝþTÿ»ÿsöÞòŸ³ÿÿeõü´úŽÄf9x€ ju1@w"¹fχԦ“TœÄ`ßÉM%gÝ¡ºt6L’ÆÃªN´‘ÛûÅ÷²hêyPÆïÕø8IèöìZ0lR¦Jxrñ½tr;¥Ô²ž·ëÎt:í”(v…=8g`Ë…èyÑG{IoGi„GÿÄR3 $ÀÊ^䇒¦c‰d¥ãrîûËAÂì¡¿½ý¦ý½ûmîvé©ßF¿¯œŸÞåº7£{@ÈïøÁ5ž~뺟l¿F N¨).£ÖëCÌl H‰*…;TwGB“¶ãåoÂô¯ÀÛ9®¶®k*ãfP2®òqÑyØ2ÕhÛÎZD±8…%x¶'×'ÚŸkuÀ™­{R…¦(pœƒ`—žT£À,[tÛèIUú7Ûwå…õ¯ÁÝŠë<ÃñOæÒSèùjNí}OŠP÷[ï]ƒŠ,Séž Ù©± ý6ø¥ÍÌøMy[ûCù[ÿÇämòs¿ ÿX;?­½ ˜([P0i‰´Qƒ½™Eÿé—É=»mTLÏf@8‰#hA!Ø ”°h]BâçÂògÛè"ùîá2N°¤3£ðD!2cû€ÈÖ^„cµ7S„ûºð:£ý¾­Ýê»ro_~q~˜¡KºõŸÅX<”7ùñ‡“´SåH<ÇaP¶é ˆ°œW/ý%r¢Ý]f¹óŠdˆ¿ZºµÏ¼ˆ{À¶H·þ³ä·C?-ì×ü¬n^TçtŽŸï>GÜôw´ßôô¿Íß!ÿ6ÿÇø·õóóú;ª–í †ÃÜdë^õk‡Bhj¦•ødû˜ÂB/º2:Ͷÿ€€ó‚+f-g¯«µcÅΠѼ´†+:¾ð…Öµ^†¶ôÓó–:†P¤(Ä+i.øãú‚ò¢A Ø¥5¢Mé«,ho¯8| OÍKk¶îž­f‡,ìÒ«þ HQÜ7Ÿ¿£·ï‘08±ù±B_ßµ§ê³Ø‡u×þ¨û%Œ‰áyiO Î';ùb¾÷?£ÄϠüT€záNüsøÄªìêæ/s»¨oo¿«ïŸ¾Mþsößã?WÏO«ÏŸQ…b)Å\Ê*øIKÞ.ºuëÛä˜M¤œr¾‹ ’—Ù²ƒ'ä½àŸC¦¬ Øîuë’+Ðí”ÌÔäö0–«’L4È~‡ÃÈtaTtø…¯@ª•ê^—L%¶Q×3dkß!·¡t1†rvýCy½=f¹H7.ÿîtÇÇà±Î(&¤G¬kë»òÀ)•c.÷çÚ³/…ç¡÷[{{EÃc’Àš»õ<(‰o#Öq“¿ÃAÛUÍÕo×;hRõÚM}[ûCýïþÏé{ËÎþ{üÇâùií9~£½.°öIÑŽ>¶šÍ ¢g/+G¨îÓ™¡@˜ŒòÕ ±ØÊÁ1ü{ìJu‘z?WHáîÙ#eRZ Zgjaaž*s¬ÅHXºgGoMü\¡; ¦6ûuˆ6F»´7«§'3þa3Ì—þ—«ÃöRòEzh®T¶›²WËm£'T|Ñ…7íï¡TòÞý‘œ:f$´oM6ñÑžŠUh±ìò«·þ‡ä¯ÓÙáOù篈!Ù]n㟿€M7Û¢Ä|Óß»ý©ÿwÿçü½åßgÿ=úsíü´öö'>”ÁÑ‹óñ' Vú€H$±FÂîïŠvј}¾€$?ºŒš— ÒÈÏ-«ÔèÀÿM“¿št¢D ¡",ÂYLŠqº=9g t‹îo!>aöéŒõl/4aC±þÎþ.Q m÷tÊïþ¤ÖT|ç^ù×øå‡ÎDøÂÂâzëO9䑨9›:`…†{sð@»Õsn½S±ßVnâKx"L‘„: ë6xÔå0¬›ò¶öåïþ2wß…¿Lý÷¡_VÎO+ïÁ~¨ð£FÛáES èÉ–N¸„A¡8uPži‹¼ öø1"zzdÿN}«Ý~Ëð=À>ѧß±°C+?rÂ¥Êw=Lõ&­_r"šîÓvW\é?öóe>Ð-[s"÷f°ò6êg流#Ï&§ECó^àœ€7”àtGÛàE“aSc7tîöMyTv]*½ò±+yç”Ò[ûô‹:x`ñÆ»ÿ©8BLø.çE~Ô•ßµä9|’“<=3­ä®—ööæ»ò·îÉÛÄ?æ~þ±v~\{G(é‘dŲ(cp}‘d-–Áäè×û\nRpKçÈÎF²¡eçæ9™šéá1I…æ7gp>–B±kLó!ô!…ŒŒ.¬¦F"s._q°Gû:º—¯ѱ~U~oͤ2= ![ßðbì2œdã%ú‡³\+ˆ¾ê$¿›ã…æÉ>ÞjsŸá †XÊ*säU€ [ä«?ÛWOf „ÂnÝSfž ×üÑ)=u¡¨Â âÏÑwê˜@Kª‹igSÞÖ~×ýÖý>q›ôǼo£­šSy¯5çǧª É7–,töœFpÒ´*¡@£n‡—#gdBY0¯-Ã9—ͼ6\AkîA<'E¦:M[0*¿V5¬B. EZN ŽòjáãLRè1l]#ÝšÃÂK¼‹Kïöê„ÛÌý"{’ìf®:}À1tVFÉ\‹é±j^ªƒÚŽ ( kjUð@Z¿µÇOiK¥EÕ›œýwIÏ{GÈA‡øð¿‘,ŒÏþ6zøß†ý:ÉöåmÍÝoÝs·‰Lý6ücåü´òü} L­¸{Š(%_)BŸxß’%aÝ1dȳxº/—·(\æÙ¿›Ý3‹â2‘Â,\¢Ëƒë2C* ˆŸÚó¾«I$@½"(ñÃ(Ò]Bc‹#.r=Žî ë{ûJ¸UGˆ>úÇKñ#g§ƒÝå/’?,0‘}ô<æÇT-\χ/å ÓÙ/fõ¥êפ,4²KŽæ™Ä¡@”vprlg`Å'7Ë!úbÊ…ç0¥Lë}èdÁ“Ú™¡q>Tw¶ßU¿÷ÿžºSúcê·Ñ¿—Ρ¼×Ê;PÄ«N‘E{K@®„ȽQ Ñ“ïúnO^J]ªcÓ¨E•?5„þÄÐZòë© t…üÿºŠ&`ȨÞ^µ§nÖÌÄNÓšdKÀ9ÓjoçÐxÀðè&Ó~ôÒë¼µWF ðÙ+Ãöþ±¨L/_{§N¦ õRGz"$;ÃW &Q³aæÉCkAàžvtWä]@“†ð)AÏš—æ L‡É­w2†½—J®íDJ&C÷ù>tûàù5e¯øô[sÜÆfïÛßÔüTPÚÒèŸí)&¡ò¤?¿¿u¯ÌŠ ®á~“žSŒgEª‹3d=9ø-Á½)ok(ëÿ˜»·üçÜ¿Ç.ŸVÞqÝ Ögˆð¯»—w LëÞIC’€þAí땄©×ů Éj=å“.ó:Ë/ˆ ŸÊúNÍ 䎣(PŸÑl ¿°Øñ<> þP¨Z®>5”`rÏ×Ù›S– ·+±Û{‡z_óÀ8nÒgIO¢ßx¬•×à3×èíÑó•våAµc—-çÇZÀ†Ìà$ÝšW‘ˆz8Þº§ jP@ãnâ7åO5P@n£7ƒ8ñšøàí½›ïºß:ÍÜç[öËÄ¿‡þZ6ŸoÅ}l«NyX[ˆMjxÕý¨žë5Ö² 5'E¿Ô} SÚ,†¸fÖîM*ÔÉsP,ŽV$J ä³«±Û«‡â±…ÁÑ@°æ)×›åAì ±ú7Ù@í1 þ·TOb2Užu²·/¿ˆaþbËxwôVÀŸßz½IŸ%ý ÿí=„Ó ¾•´vå¦<«›RÙj[ê³Ö~sä~kÚCÇ•‘ü¥<$Kã"?ŒZíãY¿ Ÿ§¢mH"ÛM}[û]ý{ÿÇômò³¿ÿX=?,>­ÎjÖ%P9Ê‚5¢Aô4˜øÈÊ”­ÂQ+Á¹Hlö©†z y1¶YðD[ë550³e«˜S„+ŸUU‚h‡˜þÀë›67ä…¬ö *óI™ŽŠ® …îÀ[{;WH;¨³9ÌÞ¿=¶MzE«ëMþ$ù!Ýò³a¿Y”?Íš†·ß´'´De‡»Ù+ ¼põœíkbÛηþ‹ägª<å­\h–ÜeüUñ±(ÛïÐßÞ~×ÿÞÿ>»üûüïã?ÖÏŸ¯>­N8¤°va6ËÊ ó™¶ßepG¢³žÿG’MÇ^æç{pc›BA¯8Œìµ‘¶Kô_Kfhpz©b1Bݽ¼)Ô"¨t¶±]ßBv&PÜ É‰Ås?[„"-æuø¼›ór n(Ë­wÜ€$ÛÃ4ݤ/HozšÃÏŽmðYG#AþÝuÚq•›)x ´…ö7Äšs»µ§?ó5+ýè¾H|ö›øwDÉ©÷¸ ß¾ƒË’Én­íííwíïýï“·Ë¿Oþ>þcñü´ö.õóÕ3ýÝ¥ ©smy¬úy ×:;%;¦$±›üü•Òã•yøw[Yfj¯­¥0e€q –ªníjMq;§' šÚ7ÇÁ楲uæX¯@A råÓ­pžÚ=;Cºµo@z’G˼õOôƒÌHŽÖ‹üœ+ðÁ¼^ÁÛø«þy€ªcåä¼õgßɲÁs3©HË“`8)ä—æC‰Â fíyëî j&@¹H/uÈçyž£ŸÄŽ÷ùr§ö¶ö‡ößÝ“÷–þœü÷èÏÅóÓâó`’YyÉ¡.Ä~ÍÝC*€H˜õ„hˆÞ=Ÿˆ¹8#=Ÿpà®IíPœ™ÞØ *'`gAàÏŠ·‡¹Jèý39L朷ÝÔžPh­p©+ß[__¹7LJ,œ·4û¥{Ò-y™˜57ÚEüFU)'vÑ<<߇o±RdG9øÊ”ø¦=\‹ökP_¶‡æƒÐ2Öòٜ̋nSÛ=¿îè^4®öóÉóëñ=·Ü˜ÜÏá Ñ=>ì–]{GóMù{÷ûäíâï“¿ÿ\q»c:ÁºâY ˜2&Ë“6@ šÔÁ,„É'Z(tá–óÄD;¤fþÂ#ü£±à×0ïýÒ9Í\?­.Þ×ðž€Ò›§Å1ø¡$É {Ayʯ¿t§æBÁå6µ{=Ú­yÅÅn( •øì^÷óà©·2R6ñ­CÐн-òmøø)«ÝÏ=­„šïºûÞxSüÇÙù6q›ðÇÄìƒßÎçëîIf²õϳQl&Äë‹ê™òX¹L¼á}ô`?dê] -+$)B®e•Ò‘>Mýi‚z`8PÙ$¹€¨@ ðpïr¶ÙäLê‡ôé©L Ü U¶g:Ø’”½}6¢Ý´#ú[ï&Õ‚ÒßÀ»ôQÒÊ=ë=x<]`ÖÒ­—êl¯+w׺lk_t¬Ò^T³y¶‡ÍÍÎÒê8RG÷Ì–ý>ˆÛ¡_ÄVÿfÖñ2|àÀíUeÏè^ËE{{û]û{ÿûäíòï“¿_4íÔ•®°u-6´Œ!_¤7[ ÀhÔq`=pEµËXz^Iß•'S¬‘—¶°ì;³_n=ÐïæPª*vÖKïUÂwèÓEx2¨fG—¡CjL^}Ê󢸽õ®ø­ócâ6áωý\8?-<ç›ôÌ®zH̫ވÿ>…?Mç¦=J š¨ <o¹Þ:z ‚3çèß1¦¿UD™6_,N”IMƒßø)ƒ­b‚å*¦N³Èú›«ÈTŠáhú`RáìnµÜÚæhGëä}õï¦v¹þxÈÏ÷D̓­ïþ5|eEHú*ƒz©O0  ;Ô¾ÂÞaœaŒ[{ 3ïc/çß»ïHPÕü‡ôÄ›à4·ÑSÂÖm™ ú¢½­ý¡ýWÿ—Ù{‰™ý×ð/«ç§ÕçÞOÂô@šºwšúSÛ;AÈå¿ëY*Ûµt¢(‘÷x:ÇY%Çv•‘V @òÇ>l'ç/)˜+GDÂQ™¶Ü_¼òþäîY ìÆ ¹ÁjŸ9Àò 6yôН·öx¯­}1lýgêÄì+Uº7ù“䇩º<î¿×ø©u¦œ±Ï’ØÔG©´6¹-†`˜=€'Äg˜oͱA9°’RÐÏî»Äo@Á—›ø$yd;kGnù6|nŠÇ¤§›ú¶ö‡ú·þéÛä?¦ÿ±|~X}~|F6Há±å°>$ t°£Ýê ¿ìè1;˜Ê)‡ý™Ó­NòÒñO‚n€Gá;5R!LÏðïx[Aë"&È¿„.œè¼òê ¶P2…—ëûÖÜÆ“!Õ*¸Ä.Ýg‰OÊR)ñ˱‘”…5¸ßN'3Ñ]YàPßÞ~WÿÞÿ>}»üÛìoÃ?ÏOkïÈ §‚¢Ç.JˆNA¢Ù ˜di!‹Ù4Š‚{»DW^}<…4ìÅ&ï¢Ù%öº#ó:åÇĸß,³P˯ÙðƒòÉu†•Ä«àL{Y6y=­'FQ‹bL‘ x­¾ªˆ¶æ8PÀÏ)iô[÷„|}‡|BBÝV!Ö[{¼!ÌðÌ/z`»X!—öÔß‚’lâ“ÁvôO-Q”ZÌùy@Û|°ÃÄ£¹ß¹bíÒU%sèoo¿ëMü}ò·ÑŸkç§µw@6UÞ Ä`ԇ떂C;9†(麵ÉÍÓ‹/¨®Šª°wì’ÄFèþÎáÈí‰yÍ;pT.·ýÓÜVÄÍÙÄäHÈí%šÅ[eß›ð­!ðúÂâUV)í>wfcÒÔšñÎSvù A‚äPþŠ÷ý1vÅ ìȱ)«NøÖ\†”ì6ǂѲaÞ#˜›·æ¶l øš°‘ߺ^Äã&>€ €6 ™þ2x‘iSñQôÚ¦¼Wû‹ò_ý_&ï%ÿeê_ã¿,Ÿ–žû@ÉÕ±îm¡GìV•4 Žó÷ÇkKàèþÚôÚTÁyº#ËvÔxsiÈNxáR?%‘¼µIeþãHú³‘"Zµ×5A¹cOS+°Ž1ÜÙAoM04ªHk·öòÓ5Ñšæ[ÿøù@´þ&~–ø‰B†Ç÷~¦¾Ôzs>ÇØK}Ðá–¢(nYf}F°ÃU }´'ðbËö˜rëì92+¨šù«^Û®Ár?€7àì <“ýííwýïýïó·Ë¿Mÿ>ücõü´úŽœz¥ÙD’¡lÁÁ‡ÃÎÙ@4—¡m›õ½êéç7޲øœ"W7‚}(…O O ×Qì¨w^!ƒkzò¿“XØîµwyð`8HE`e?­£ý¦pù‹Çº‹ QºÇ ÷æfö†ÜöÞÙ©à2Q“>Iz;i’üöÁSgójXt"›ò".OÎÉöUP€We¢™·öÌ$nInýgÉuW¿ˆŸÍ>´6žªVáÈ T5Nõíí7ío½¿¦îó-ûÇ9óûØ_ çó­ºmÝ Ë”T`:Š?ŸA.%ݤ*·© ët×-b6p`7–'µ°5”ÄìÏkKÉö÷aÖ) >T±)Q~ÖÇô¤¾Wr½³ªàô¾'¸¶±ÚS”htJ$IvšõÒžü*¿š™ÞéÒ?ù;Tº Ï ;äýÊÊé¹eÇøí;ο9§ðºvõþŽÖ+p j>ø÷m9–þÑÜÆCÕ™Ð[÷RT»ãUÉvŠO>ÁïF%Üeø¼²:ñDUÒêÛÚŸê÷Nß[þsúßã?—Ï«ïx߃l¡B»=ÀX;Èâ}¬›¿ý¢&pà½ú^(ní¶êçº:Ìr+k,¯9Ž.#Ÿz^¥ªÌHŸím¦žÖdPß‘Gu¬OH§Ì@_#ök˜¥Å lžú¶_Ûº·ÞÍ;Ù7ÕY©ò¥wì°Vœ•*_„ÇëEwaAìƒÇ+1ŸrÜïʳŽzŸºžÇv<Ù!ƒ§ìÖžä¡6¼PFÎþÁ±‰ŽBu<äo`¥•süŽÛg?góÕó©¿½ý¡þw÷Çä½¥?¦þ=øsåü´òž·=OòQZ)ÂE™¿¿í«Â`g¯ˆ%`CBv‚ãf‘‡“Wõ¶ö‰;!?$™ö³Cª×ãÂÄÅ‹ÎPx½Øë%²$´ƒ•JBv} êŠöxÇ[òj`W½µ Îæ&·vé¿ò:5ú˜t‘¿ {µ'à´â2‹¿ß¾sU’ÏïÞ›MÖÊX©X¯kh¸çßzûØÖÝ媷Un–BË"¨¿€¦q¨ë®·Ã|– jUÕE‘½ûUŒ‹CHBtüÿÆf¯¬»VÔ&l+[3sbuÏ€C:»:ìí×Äayå©3:²ÉÝ]$<ÌÍPÜ…³·Gq)òoâ­{Zã©qøCøwÄÃå>–'z<7¥26sEyéÎÌA†$®‹ÎD±Þçxì”WsØ®©ø${óÖû”ìÞs²w0–‹œé×À?ü³Àøºl´ïz;›¿õþqtþž·MøcÞ?ö±oëæóçuçÉ#Âá¶syqþ4Û2d×Y“/”¯6!„¨Û¨è÷¿¼6"ƒ€ïZß‹½9È¬Ç ^®–…z¥,q.⸠ˆå3 IUÙ³Ô/3K$>>'Ø®jî–˜´ÒGºµ'ƈk Ö[ÿªÅHªdž7ùò—æ—ýoûø#︧Y±OÆú£É4úc’Í™$„·æ„È»”®½ë4Î`β»'sÕÀ}xŽ]DZ½·A¡9tw¶?tÿêý=sŸ»èß'þãù¾p>^xœ·2A©Uö2ñe8ðt#Á»Ûõéþ¬[tC\ÑÕ†ÙÇT•¿¢UÛ(ðŒ¥܆‹ìüêþ‰¯+ϧ6¥ü‚p¸PÝëx̤q€Þ?žà8×¶ýÚTÒ`µg'ÙŸd1ÞÚ¡ ‹åÚÝû‡QŠd¡Þäã Ðén÷}üI¸‚‰xu]Ñé—úćƒ^ò³…è÷„t]6—öÔ^[ù±ÄxëßÖ2É(>Ž‹üv›‹®›$ýxSí•*òE}{óCý[÷ÇômâÓ¿ ÿX>?¬¾ÝÝľ $ñÕ=BE"p!KÑ©>' v@QxèK?‚›7ÄžAÎá t/¼ÜNJûM–‰WuaÊ¡žvJ Ó÷óÄÀžÍðüû†ìýüäçóG°´»ð삳áıR ·öâŽÊ¦¢’Ç­Š•… V¿‹^òÉ~p}ˆßÇÏ­‡î©°ë‰ñ]Ê€¿¹öàÐØg`äõÝã­=x»€oôÌZØû×ÉG¢’\^§üâÙ ZZ‹ç¿x6”6µÀª_Ú;ZoÚ?zßfï~›ý}ôûêùyõí–(9Qx|íJëN _ –±¾2òà'±]š”3e×+˜ûòŽ•U`¡ìJ,o0쀗™NÃ3âìÏ‘2×òé =IÒõÜŠ¢›½ŠeN ?¼îróçe'‰KeVºO ›8no¼Û;à ”m8lÛ»mkû‘DJf:å×ΰßmÙs†Þã×±ºj×së¥?,U^Ïe¡Ö¶á¾êq[[{•X‰謰Gÿ]òWÊôÒMþγ#ÀgZâmüœsYü=õ¦¾Wó‹ú_Ý_¦ï%þeú_ÿ,ŸŸ–ßQT‡m&ÔÊ><³º½ N‚¢@Gqdù@KdÆR¿Ø†8_I貄fk…¼4Ň¾=˱@2ƒ<#ƒ}owFñöd³¶»žÎöt$’eýXˆB\µ;Æ l÷¼„ =Xí·öûÍ ‚zºõ§ Ñ“‹wùmc#±sÃÑÛø98¬+ý¬OQßwýÙÁ3 >Îþ°yáùâP++gkn²M+é¾I|r’¹AOñ5ë+Õëè!H ž{jïÝüPþÖû1yoéÏÉ þ\;?­=ÁâP0 ?½žý©°ÜsêýᢅjÜî A©Qz¯xÖhŸÃè”!BsmÃô*˒÷èYþ…ïhK ‚—u꓊×(9RÛèàKA{°Üz¦=òƒªÒê/eÞBÐníYQÌ` }xëê˜IIïé&>ž»:áü iÝz¯á’ÈÓxæ/BÕ—ú@n¨‘fýâc­ÀpÛú·öœ4rüªfðì¿I~»áüÈßl}À6ÙÏ?Çß8º(Zõ¢ÁC[ûCÿ[ÿÇümòïÓ¿ ÿX=?­¾ãÒp™ð’ ÕàžU©]dŸvXá°Pì眥(Ö”0!òÆâyÓBl·­CF;xÄÏSдE•õ]Љ¼÷Êzå‚°DŽMwš¢ˆUßûªËë$‚“Ý`OA7*H«µá‡ØÛG3íléÍ‘®÷þ/‡9xË/—5g®3åü¶_yòä¥ iH·ÖKžG@Óì½'—Œ£h¯½vk¡‚!q%÷KïÙlÀ4Ywò[úß2š¶í(º ~@U º‹ò¶æ»î÷Þ÷¹{ NýkèçÊùqå¤5x |ÃÒu¿!Ivæ7¯âžlþ¢ ûn ÆúÉî ƒU&s¢-=ìù6È/vMÙ‡>’KÆá¸„p^ã,Ô àðaz( S‘ØÁ^ííj°•?²ò bÆ¥åÖ>:8}Â\¿õO„§¼µS~{Á"?ì‚Ožà÷áãL¯â˜ á>ÀPÜaøäùÙš!F¬³9i§dÏx,ŽÁ*°««¬[ò»òà%-hŒîHJCtqÌƒŠ Ïöõ¥H\ç­ÿ*ùq[䛸°Õ³îDx>é-¶t‰7õ½ÛïÊu¾ÍÜç[öËÌ¿Çþ^8ŸoÕ}lëî)¥^¦â8KtÛÝÌËéDÂVó¢o {ޤ’^wÚ0í06…•J<<ÄÍ.d!²ìPBtù¬‚b_•’j»¦[)0Fb´§}`GržHôa;Ìñå/ííH-6ñ¦€9nýç_²˜ìáðå4{ÉŸ$4ħô5~ù°Â°ÙóÜâ]Q/ç<çªã¤ŽŒ+åÅZ½5o*(¡u¦[÷Mâd6\¾‰úqm¶ zH·áƒO£qÜñ©¾­ý¡þ­ÿcú6ùé߯,ŸŸ–Ÿc4ÚÂÆƒÑ2d±Ø`¼IiÅçÍ"굩“4ˆœ¬™rhG}Rv›°ÙUéWíBî„V}ÑÁ*Å 9<ñõ†8$2U§gZ^II®…òÙi¿ß»ãÄÍÉÜ›¹òî·î©gêˆý&~’øuøïŸÃOJã€™Û wõ/„)ÓJ¿Èm¿ã­½Ý¢6›‘‹­\úÇ¡Ïr3A…`°ËO®]5ãϹEÎñw’éá¹GÆS}{ó]û{÷Çìm⳿ ÿX=?­>O½gþA¬‘‹äáSÚ „óä)xʉ1O n0ª´¢· AáoöŒ²/ NÚ!ÄöòÓk`ê J)ñ Ø¡ò ¶Mɦñ<?´¡Y=ßÚ×ÅkSR¹uoË5ÃXY¿Ø€^Òk;«ÂÌAöÑBɼn}×qn›J|¢§aòá5- ¾­=Ú¢{üìÙ—øðo÷‹ô ®™ùÇ;“©rp»Cu[óCõïΙÛd?f~û±r~ZyGœ^3ã æÔMBª„'Tï$@zLrêûª¥V „ÅgH\ÍÑ9µ ˜%8w§µ lkz¡ùY©„ò8OfÑK¨f´O#µ#¯Ó5ëz)‘í`Ç@^œñâ…¶MÖÒ­} ·†|`¯Ûûï ;F*zå:äW"&С—±ÞRßÇ h' (ra.âÚSñ4Ép‹Ü˜Úñù—ýø­­Ï{P-º—¾§d‡"–CvŸwò@p‰—±“l·C˜*íÚtw¶?tÿî›»CþsîßãßÖÎçwÝ}l+ïyÂ'ìÿA~‚{ƒ¸Y®%Q›ƒR…Ã+TgXÒ×Ò"‡.ä†åm†!Ã\k‹bj;5FvÊ ¬¹‚‹âqךXäT•èºó|vbý\äÐ-à9sˆ?€T{™¬íïíI~ÀEø8Xöþí;Y>áq-íòWe«S_<–³ä3§¨wª·ü»þ*ˆRB¢ñD7æ'Úz0«üòK{جžÇ6Ë­ÿü#’^oòÛ_&mð´ÞÆoë+ªÜH”»§þÞíOý¿û?çï-ÿ9ÿïñŸëç§õw<äÁV##}ˆ ÷¡¬*˜“wSë‹ÓÊáoKgWàWJ2N¿lÛËÉM^y…… /Œ\.ø%"„º‚³¿Z-<¸+'‘bY‘jCéV½µ¯Î„>¿‘[ÿULêÝæt“¿ e{·'Fþ?ä0fß+™Gí7ýÙÞð ¡Àå/¤ÌÁDÊãÒ^Øt’H©èÑ¿}˜j6q^ä7kÇúè`«`a?Ö–g¿èoo¿ë]þcþ·ñëç§õçz®²!´–äÅ)p–T°/”5Ч{@ÊŠsLßG ¼ÿêz‘Á k·¡,^é@Ìô°ò^ygjÛŒËIg"ÝQ×{z⛞ö‹Q›?‹¹i]Î;,‘ÍæælR%äL=ÝÚ“j{yžÝS:üx­ó"½Hoÿ ×¯8÷Ñô0£Tï…ÌñÖž|¬¸õórÇp—eüŒBõ9›÷_fžÙYO¾ä­{í§á7ñ€ªç—åýüM-™ÊÌ<´·µ?´ÿîÿœ½·üçä¿Ç.žŸß‘C°—m4´UaÑ ½B¢ÍcØPù$B7O=§Æ‘uoæ1åaVXí%WŸ{Ë®…Q`ôI+Š[%~mÀù› ×Á³ÁCÏfÂvap¶4¬¨w A,^ñ$ ÜýÖœ”Ù,ªé•Y¶õ^ì 3ÛOV¹I_$=åNô¾èà ÜVe%°¼”gï¬ +P•áöÃ3oíEó˜2¬6óÒ?¨ÔÈ·öE|r0ˆÜLâ2ü`d  “S}{ûMû[ﯩû|ËþqÎü>ö×Âù|«îc[wû…_ñ¸N‘ÝFÚËL˜–b\4 dQ€åÚÝ¿ƒõ=>s -afBû $&èWl ÐøpOX>Ò¢o •ãIeeò<—&«ûw@ ÈCãN–ªŒˆP%­Äaæ­=u!ÆÃ3Š™B´bKršà6öBåNãVÂ3c˜Õ—̪‰ž¯g/& ¼Sõø¨ÕÁ°Ø• ì¾ú„‡HE2‹eU³,À4¹°À*)3¬jÙÅZ§¾·”ŠlW5×»û†Êã"’߯¹ È·ñsgŠœ‘Hâ^ú¦?ž^bàOˆEå¹Ìyk_@뢒òÞKÿùídŽuÜÄobΪª º ßž'˜Ce¡ êÛÚêuÎÞ[úsöߣ?WÏO«ïFÖ'$}… àÞHÚî 8u#SµOZh^6t~Ë®É?м„&ýA#êIh@+g£MÿÇÁŒ³>k{¨‹#eÜ d´“ýŸ(ºåê´‘•¾AÄéÔ\ô´J¶ö”mƒá‘¸¡w÷„MÇRŠá1­l¬½ö‡”ú5tjÎE®Vúãè|©Žeƒ¶ÍMz|vÐ0ñ¡ßÚÃU_›AÏî‡d§B}Œ›ðäxüèé¡ xG<˜ð%Ýt·µ?t¿õÌÝ&þ1õÛð•óÓÊ;î|› {ªL 9 ÕBD‰¨u€8jùLl»6ü‹Xrµô5À¯ÙêÒ”謂W7Sâ 'T[µ/Iôn0QUá…ØÅl@ïOãàïê&7yú¥uW.R? ¶¾AÍ”'$>uCßD—²‰^|]wÕkÜP5“8ÚÈô]m¢r¶­@ue\UUœTvt€ ÞníÛ/’ŽŠoÝwI?¨Úì7é%š!‚”Øn£⇳·7ðååmíwÝ¿»?&î-ý9ïïÑ¿WÍ¡¼÷šó{^E8‹TM.Nj÷ã“‚%WÁäi,è4ûïÂ×~RèL^êÞ„$h±IÅ'WqÚÏWÒÎ>N›¥? x@ZŠÀ*  ?hKóI³¥ÓjÓ½éŽ/»T̪OÞ»=Àö•ÙKOÞ«{¹‘Ì(¨‹Sø»ìÒ²Èüªlø6rŤÕí‹é¥9OȈ|›Ó«›Ñïå­=Ïì$˜êÉî‡Dö¾Éã";þuE$mß~\F>kÖæ±]sGûSóïî·™;¤?'þ=úmÝÚ{¯;Væ?~þógb·PojšÅK‹Ÿ?FÀwü¿sÙkãWýúóçÿþoŸÿùórþ~ÄÏÿøïå¹W86„/†}ÙR1›Ïþ‚uõŸþë}*{ÿR”¯½’žœjuõ>ÿAWÇ¿|ü³ €‹$®wÕ’aìý—ß?ÿî?3ü7ÿëãÿ¼U®Ô‹ `'Z­¦· Ÿÿd-þåãïÿöùwÿÎF•>ÿöß?à0þÞ-¤DÉ»ºýÛýøWã_þí|þÛ¿} B0zó.q ‡ÄïVW‰ÍNýAb¯($UÝžÏ?•Øçé*h:Õ?¾Ë—’n„x Þ„‹áϤƒÊK´?³ìbn­îòÖä•Ï„qR(¢D.ã«[‰ÿTä¢ÂÞÕÝŸˆÜ‘ß­î"÷ŸDÎ8‹ìö€­5]µœþt ü¸óWçÇ>Ëpú.óŸµúqŸE–}-O·|òðÒrÿ¿¹P^óµe½ótl´]äk«78RÔF4ïòsÐm¢Hõ$òŸŸ ›ÈMQ¤gÓ¯Î-·‹|mõãÞCdøžn±©Ì¦ô£B"ÿùá°‰<¾”tî¹MÎ?þéO-^ÜÕÞ<”EQ ,ýéÁ°IÆ‹¿þ±ãWÏç.{ yoõÓ.C™D’–¼*‚²{,jÕºÈz0ì"Û†ìøÕù_í²{«¿Úe™ºŠ%rR$w? ‘ÿo†ë©”ÿj—Ý[ýÕ.‹ Y,µ¤­Rî"çGäôù?Ÿ_¿ÿÅIõÛÇÏÿöjøí/úǾ‰Ÿÿô‘Á±Ïz;¥¬póý¯?™¶_û‹ï‡LÿñÏûoü¿Ù›ÿ€Õ÷¼úKÁ5 CO ËŒ$Å0Ú··?Qáõº2cäH6å°(Ózúw^ž” (´Ë÷” ¤Pb¹"í‰ü®î¤öø#£E1Ò$÷v¨}°(=’{ô=opâÜÚg\6·1ë•sôŸH ·÷%HÆ7ù£ä¯“û;Äæoí¯­¸oà~ö‡´‰¬±›üì`^…Ô„cü¤{PVQò©¾½ù®þ­ûcú6ñé߆.ŸŸ–Ÿ(¹ÛpôQAël‚—4­È»_ )³ª’¢(ª;í¥’5ô@î¸í8˪ðˆ:ùx ¹çB¡çG3†þ«ÕwÑÈA’c86sž¸‹q†öÕ^#äÄh^6.8`{|–[ûJqîlÝVf¼õ/pÓs¾‰Oáˆ- áÔz=ǦmþÔÈ4 gšˆ.­}“þ)¯XEý[û¾@èƒÞ}G÷]ÂÛ5Ë{|Þ>{sÁ©ÝÈÒ<‡ns\óPÝÑüÐüÖù{æ>ß²\f~û{å|¾u÷±­¼-esOˆ×~ŠÌ3eP­†ÇÇLú_ʦ€ë{'õa´må›%Ñ*hþ=;%¦°üKV€7Šâ¥f…Qˆ9×çD.­ ÷¶lÀl%é;Îy¢ÓÝ¡Hà´[{2àÛMµl{÷Ôš‘*5{ñÏßew /ûyü±Jc%ß•œ½ýwÝ ÈËàʧ¯ƒÜ KÙ³Æ[{r5Kžè÷[ÿ ïJDH;åçÐ¥Gý6|rMÉ.³_h7õmíõoýÓ·É¿Íý{ôÛÊ9´÷^y[ª€¤ðiÀ[’3dqÛ-hç/u,©?Qu;ŽA’Õq\ØcpÇÙjFµÝ6­aô’¦Ÿ6%•–Ê*ÀÏZfñöí—þ Òé¶´§­¥É¨}ì‰øŸízŠƒà]Ò: ÷öÖ-»NuE½ôO&\€U@ØN§üdÒQ› Þ¤VÚ6~’¤É®3¨ý[}$òÙmn'Nñ¹êAçU8ê—öÝÌÏ ’³_·Gÿ=IþªÌ‹üøE©X+ú2üÎÊ,@Þ¤'©à¥¾­ù®ý­÷cö6éÙßF®žß~žª-CvÖÑçÈ“Ÿ8+• Wp¢-|}§fÆÆ”E%YÈ=†””D:}8ÖYÍ4†K†Â' §"ö2ጾÒ` ÃÎ.$áè@ÂŽ¨ËÔ¸yË ÿKà:´¡XE"´µ×4my†ÙoÃT¤=5´›ú¶ö‡úßýŸÓ÷–ÿœý÷øÏÕóÓêÛOU{íŠPkPÖZ|ôàí6(+åµ,$Å$úTÊŠ{8ÑJQ¹º€ƒÍžà£…íö4Uá TúwvÖLŽ\Îþ’¹&b|áÊiìAørnÎã¼ š4âþðœHž™œåÒœ‚4“›§C¼õÃ!M½¹pßdÿ-·ýxì³Æå%øcÜQ€ãMáC}Ý´I—'+ÙDNî#P.|/ž­v´·5cGo ëÿë\o`$¯ÀƒöSrx’À€¦>¡ÿà»Ùšö oÎöþÖÛÙþ­÷³û÷´ÒoÓþ±~[5‡öÞkn?KíÍFˆ`ýê]f;%—åw=Ù̬--\Ü<ÙJÕ«Æx²qIUÁ*alRqüTZO:"?¼éÄLHBYá÷‰ç´^”n/Á-øaõúõçv*_Ùxv…˜Æ­½ Ël+TãÞœ­’Ä‹Éj Aœn»üûžÉûû´­uÏ…²$ù#ÏöÜ»~ À¥˜¤:T‡á©ŽxË/÷“Ù-0 _†ŸÁ᥊Z/£S}[ó]û[ïçì½¥?gÿ=úsõü°øä‹B€ Ú.€ÌÁC |³¸µ< Î ©&›ˆ©?“CƒÊ°‘Ÿ0cì¡ÛqX„²<P¼¡|Dҹ뺺ȣ® …ŒCi#à˜5_ÓÓ„A𙚃;Ù¾n#z½ñÑœÔÑÀ1Ò¾*¯î³P̸ï¥ßħ`¢6 ¯î«k~‚ÝCù™Þ—ú¨6 ÷ÅÌ`/\Pÿ"È~ÊŠ9ÚƒP¨Á’ÑzôŸ“äÇ÷«í7H¡àS|õçøqƒ˜q@Yó̧úöæ»ö÷î÷ÙÛÅßgþ¾z~\}ûMO\´¡iç{“®¼<.‘ÙK܉܂ÁoY ÉP\`ßÖ'nˆ„Aié؉L­ÞËWÜÅ®‘D§P†tf "iE`=0zb²ÝghrùlˆL˜v1ãr*íÒöâ¼´æY”½„ýNÚz7ÒJM[»H[ C£]²{l¶ÑãV˜*_¾R6íñ°SGÄڷᤰ¥˜ý¼µ‡ÛÓ¬ƒÙ!%ù?¬ýÉŽv;Ò¥Îý*|¨š|bßL R H@I?PPj€B YÝ~Ù³ŒÛ?ß$ãU™ˆ?ÎÙΗFcg´f­KÿSò÷ÑÀù=Ň³$2Ùv§ß†oF¬MñÅýRÞ»õ©úWçç̽e?gþ=öså|Zy:F¡õ!‚§R5e}BƒFuDöS0ë„{B¸fŒÖlò eò‚dˆW"ˆïšïö޳åbG½+‘ý n&ϼ°ÙéTÍ Á¯ð]*)ˆøsÀìZMþ¤êµ'‡œê•aJõ-¹ ·ö {Ьn8CnýóYŠÐhÚM~’‰•³Öõb{ø%ÊÔcþäyëoÀ³Éoe/æÉÅ™ˆ‘2ò­=ôç@SsgÿYòƒ¥,`·]~ð#nõ ·ò .nÑ=~èoo¿ë]þ}þ÷ñïëçãúÛ-RP5mi‹kam¡a·R!mŸÉNp@µç‚ê¢>b¬CV‰"…Ws NÐ.Ù4•|óFŦr3Ág§ì|êõøÅg›`\÷E'Ó2ï½µRÛ9Ô YÕ×@±iNIu´¦‰Š¦¦¸uŽ"ÀøËExÊ*á*™žökì^aç®MÝüKw$Kšù€=ét^,ôˆßVN«—ö¤f\„ú´^ú·ï;¶‚£pxwùñMôªº¨Q/ã–þ&uqÑßÞ~Óþ»ûcîÞÒŸSÿý¹r>-<7GyµR·ZwB;“±÷“óbâÌH%.¾]8åAJ•=Ñ1w ‡É9.î5@\³jXw³‘w® p¸±+_oÞ¤œlf_Z¹ýª9$9b57ÊM¾ËˆÔ$ÜÑ^lÍàoS¿pv¯|s°gwWú&=Ï:¹Ñã=€±½‘®öoå‰u„2ª;tÍQ`HÑiì—ööݾöª²õKÿ%"~iY—È.QÑ ‚ø~¡è¾¥6Ä{±«ok¨ëÿ˜¾Mþcö·ñŸ«çÃâ;ÜN&‹ªl•»F¨Í<ȘÿÈEÐIÈÁg¢Ï,8 …å¢PØ©sÑç@Æ)aƒ'Åz|Uî|!°®ªÖÏO‡øÔ”)÷+—o':ØÜƒ/qÂØ~¥j­s[ZÝÍê£=EåXÒáѽw÷±ÓN=ü óÞ>%ÕeI¾‡+(ËE>É'õ&†ƒ¢°ft\7 Š‰¦ Ÿ­©Þ·³[›àëÒu‘à`‹Ë³ø–\ß›jõü~j°¨Hú­¸³ý®ø­ÿmâùyßF¿-›C{ïUÇ­â(‹v_•¹gpú"/°Uþóm»úÀŒc˜NŽ”ÀÉp¨6¾ó(çßy?Ä2l¸B„§Ú u¥ªâJ@3'•™T´)µi¨ªÏNÄjoQhŠÚ“Gì(ª ÄufUñ·æ…(GÞz¿uŸAåLfçWùsñ“ħÀSQžcø <Ús‚y¨ý¦><°‰ð¦V{{ BÝ}^Úw@¿àÓÔÞ8û–&B/ =åÇ0Xžémüãîäñ/êÛšÚߺ?foÿ˜ýmøÇêù´útÁSÞf•P—Lœö¦e¹ëqÝÆ Cq¡`×äaª2â¶©ÕÇ„ Ĩƒ»ÜqÝÚÊ"9ïO\ù\ÔžtðNø7&Ów (,úÑ„Þ]À=ð07õ°#Ÿí½wÀ¬ìWÜ»{Ì·™¦­œÒ{1®M²ÕÍÞ×èeâTÁþ¿våñ™«¯§1ü‚Ô³'b¿ñl:›Wèíì‡Ë6Þzožg—lã]ø&àn¢ëi\†ŽqÓöÝ¢ˆØ4÷j~Ñü«÷Ë̽¤¿Ìükð—•óiåimøHTÖÛª×n˜y3Ú•× 4ZW­6^{£ È}­@6³íæpvÞö^ƒÙw™/°¢šùË*lof-Âwù˜/v®›ÁýGŽìhó—ùb§=ŸBÞ±<Ù1B3í®æ½}'÷ ß]qWõÖ#øT„ÉäžîM~¢|¼ÖCÊî)߯ßüòÍ¡9B®¾¦R~ïî©'³·€àT¼5§8ÕD 9ÈQtß$þ˜ª½ˆ™ àw£ÄÛèáÂI”Hr×_´÷n~(ÿÝû9yoéÏÉ þ\;–ÞPI&¿z ? 2#”)Œ|{Þ²qú÷´œºv„ÛRwã/Â× µšŽ`ü žI,_G°Ñ\!I#¾4€ ÊãlG¡ÖÒx° áÿP^ñ ø1P°·ÖøÃÍV$i¤Ü:Bá‹m1¹“¯CðuË_¿=(bˆnØtÈ"œ“Kf"c&uÆ[{.ìaJãæÙ‘üölh=^äOЫà8jà1|‚q¤pÊÍ‹ú¶æoÝï}¿&îû-ú×9ïûÐ_Ëæû­¹¯mÕí¯#3¼IÉšæ1jð «u–jV½@h›=?‹>wÛƒBj_côwð÷ayã»àº½•–É(Ô®|é¼ íç Fo¾Ä3VTT‘ÌUFî%¡mª=Þ8(C’hiíÝGÍ8°^£°µÏWÁ ‘œÍrï?sÖ€ô˜ì}—ß¾#?àn¾Ê¶ñgò-àTA•â»úì;‘eàf<ª.%™°"Îæ¶É¦6XÒ·Þ'ÒÛá”»zJ–â ¼ÓáS9G´s©BSwÑÞ»ý©ýwÿçì½Ä?'ÿ5øsí|XzûIj‡6Y0©ŽøLçlÕ2-0½„iÆ·À”¬„N-p¬CüÔÊ{Ïý%ãžž&£ûR“bÿ‘;¤‹½/ô¶¼‰ÄóÜ[ ¦D¬Õ-¾#,_„“‚N¬FÂëLÚõgSæYbF¦?taÐÒÏ1UKÙ6¬þ½ûgï†ôœƒà¼÷µ2LF3Nxœþlæ)î›ÎzDþLì­<å¤-’'<Áì±ÞšWd“°3Ò­ûH¶3‚#½ˆŸ%>ùP>Õûð)GÂ&8Ô꣜ À#Á©z\ŸS“ôÉ\oímñÀ­;¹õß%?>ÌØnòƒÖD¼(—¥Ÿmüv 6ŸŠÍ›þ¶ö‡ú·þéÛä?¦ÿ±|>-?¥•¢''jö¨€I3«ÂOÑNøÚ@ Ÿˆ:lG«áU­Îlt§òsXŸlrò¨Jåâ4sσJäÃÀ&éïZûN’76|r+¢CäSBôlÞ*œ €‚ä•J,ïÖz6ìÖž‹JoØœ„Òº÷ÏE‡µ$hö‹ü£K~»¦£g#oã¹Øìbrª|‚Þê¦'Aðk¾ÂÍ‘íj#æ[k¦$69¡.½SñfFNòr“žk@ºŸkú=z îLs` ¤›öÞíOí¿û?gï-ÿ9ûïñŸ«çÃâs§L9vúzΔP~lƒ™}KªÊ?Ú?¢¤ÙÝŸÀ¢æ{r[g-¢ÊÅ¡;íàmÅÌ*ORƒ{=2W`›å¯Ï%Q±2ª;MLlS×ß³>œ(Åù™I¹±k'z¢úÞæB’ˆsëåÒyÁÇ1~r“½HöŒ•×Ññ: ’ú)oö©:´ð]¯­»Ãåq×L O2ΑSº÷Ú'ôu€‰üËDÆ%n ñœS5W’c2='v\ pÆBÑmzšËùU¸LîùµïvZ\Ý'D€XÌlOQkpR阖Ï&ÁàÞ:mkÞœÙxzyé\Ú”&Öú¤'ÿˆ.–+c§Ý½Ozé¯q“ÇQRCÌO5ð_µ}¹Ë’«¸ÌÈ w¬ìÂ&?ÚC[4G©½ç Ñ' ÂýdE@g ¹½þåŸÉ˜cK=Ôv4ßÔþµ÷¾ÍÚ&ü1ë_ûà·Eóýy͵upÚ¥_ÈbóȇÂm.‘ óŠ÷ˆÈ µV x<ÏHy ™ÍÓz¨ønl½7Àè´S»r1è;þ»§>¬’â|PWÊ(ÜÙ$k®ôFJ^  =UO=(Ä„V-·öéI 61m=—¶þíšêú6ãMþ ùÁìxjã^Ç,ήq1¬×ÖK}öš Uqðþ<·&…{vKÖtk?á?°c¢þ³{[[Â'1•ëÞ¥·ïƒ’ÎLÅÊeôL jgñ¢½½ý®ý½ÿcö6ñÙ߆¬žO«o?KAmûtÑüØ%Hú³É:¤Xì5˜qL63Á§¾Û†€µŠÎÁ&¢MžÖø’ݱ*‡Á]ÈD¸íçªþÎŃ7‡|]ËBÁÉcFŠd·®æÉì';BDòS(£¤ÒO”Üšƒu‘sÈ~eî½G‚pÉÌÂâAÀ]x x`r#ÙWí·Á‚€ˆËë³+|3;rìyÜ|ôƒ€¼½¦É̼µ‡ö¾çz½õ?%?h6Û‡ü1C<-Hº÷ø#$àz4¥êÛÛêßú?fo“ŸümøÇÚù´öއ=WDèFlÎ÷e»ÇÞ!¶ÒËc™â2Elo¤°¶{L?9H¨~.}'~;MÈÑëÐ~òá€_o¢Óûd¼ Q4ÙÓÛù´lžìÿ§žŒw»N̸I”ð‚Jlz'6Ÿ{¾µÇÒïS(óÒÔ– Ùy‘_–¾©½âiÌÓ_ã7KßΣIâSz ¬_꼫â²ÊÎX,û¬‹´» BbkŽyp¹QñÒ;Ö!õ ºH_E)CEžrÑcœÚRš _”·7ß•¿uLÞ&þ9ùïÑŸ‹çÓâÓà §.*A|Û_Rz#N ™¤øä"˜ØÂ Çé$ú=…W"Є^ÃŒ*«\•ÝíÎg¨ìˆí„šF$Bm\Ý0#‹‰à³Ýà®Á‡Ô–éMñ¶* ¨|D,¬±×joÍÛŸ`ÿ;&/Y;{§hÇÞöBù:e/’=BÚø\¿_àÃ=…ç­6kN¨«(±ß´GÙh=Yg{[õ„®qX·[÷CÂÛKIÖSx`b)b‡¸ä6x±NÞÿX:§î¶ö‡î·þ©Ûä?¦~ÿ±pÞú{-;÷ÜcÛ%É1† 8ײDm'5H]TÁèÜ¥‚:ƒk9,†‚}@QË–±FÁŒ?•¸!ÈÌôREž­žÄ ú:Æ‘i=zk¡ŒÚ,¿}Wƒ-@Y’ ÚXR–Y¾·ç˜È-@ Poý³ñMÕéÇaò–_Äk`ÏÌõ¬ØÆ¨·)è„…GòVŸˆßìŸàNÈ3ŠÉùh¬ìw&íÁ jÏÑw4Pbè‡ìŽ€Ñ3ØHöÔø:ÇN‡B•µ§qèîl¿ë~ïÿ=w»øÇÔÿú¶n¾?-»¯KÜ'ÙnBÓq¯+ðÙE&ØgðD󤂌6<À¬Z6€«¢»O”~{êùÓ³'ˆ{x1 e-Àzy¶íÊÀcî܉DqL„Zúr¹ÛÕ<Ìy¨P¹)ƒÏ·öö2dÃçêÕå[ïä5»™Zdû+»Hq:„¤¦§ùà¾ÆJ´2*r{ju§öv”pUÍú '6jWliýímÿÁ. ]¿õ?$=`{">ÜÅk(þ`¦cìÃýŸ^ÆCugóCõ[ïï©;¥?f~ý{åœÚ{­¼÷ž™à뀣ŠRkòiÏ2ÍpŠŒRk0ýì  ß–1†'Jaûc r%ë™áDRÆ‹j­ "/H”¬óƒ„-³ï’®’îß2濳H'Å'?±@¨5¶ßgû&ÌZô*<»¯B -;Ýë&=)1HÅζ^uúÅôèÎÉ]ydMŒadz±æb§hLžé£9V„™f²ÎÞ«„‡Õ#΋ðÔ€ "Q±cè"gìÐÜÞ|×üÞû>s›ôçÌ¿®œO+O·¼€º©‹Üe³:¬¨±r8 .W\[<yvUØ>Z-$¹òÊÓ‚jxkñ&öår O?ÂÊ3ž\Œø¸l˃yI•…êÀ&y¡ö4ìËãƒMG×BCŠ`X¥Ö=l¸·ox÷HÝõ$›½{{j¥ÌAç—»ôb1 «&ú½G¯‹Î쥔)Ë[›_Úã{àå1êÔ!o®Q”†ûûÖž*·LŽÐìóÒ?QRû}Îõ”ž)?oËmÕ¾ÆnŸ+Y dŽ‹êöæ»ê·Î÷™Ûeßgþ=öså|\yûMï5P…\Òê`¨™Ç¾YLž+Š+.Ë«˜Iª¦ÞÁŒ[ÐÕ(\‘šF³ ‡°Vy·DòŽ~`dìç/5gxâ¹Ç £i²´î·9„äj·.¼`O‘ἄ"Y¢8°Àظλu¢ÜÌD¥»³cë<±âñPWGìÞ…  ?ma ncOT–V{¥/¦Ùu—(Lr+=Å80 . ˆ\g{øÊÊf¹õ_%?Dm?ä)Yk¾‚ÜwŽß^"tCo¾èok¿iëý=ußoá¿.3ÿü{á|¿u÷µ­;{bØJŸ5û<º ùÊ%š1 À€ÏÕÎï ¹Ù“?†3ïKðï‚ì2cº=ùg.SŽ?pÕ€ÖúÄq¼K4ÝgôB™~²Í¡Ö„ +’á*p0ËÞÞLÖÀ`(é¾táb·«~.X˜]z´7Üþæ±Ã^£'­Ù6<Œ†Þ~Óž™¶¬b£nj¹gÈ”¸÷KûJ-îm[.ýÒŸ¬Ò:.òWxí²`Hf¿ Ÿ¤³M:Çn»¨oo¿«ïŸ¾]þ}ö÷ñ«çÓêÛ¡ ª^Ñ~ˆžHî£øþøÄ¨Gt@í¨ì-³´æ*îõ'Á|:òpR2BÈÕK:›‹µà€ÞQÙ[öÎ,Å…í€ôË\RÕuTöÖ ¦Ë+#Í‘.P<({ ºêÐâ¥}PîœUcí[ÿA©wTd.p…Mþ Ô=AÖyaÇ6þ Ô¿Ii­/–MA©ƒÔ1òt´™â!jŸí™]Û2ŹÏþ9Yé¡Bô>å·Ü.ÖÖˆ·ñãÚz{0Dßê{7?Õÿîþœ¾·øçô¿‡.ŸOËï@n´¹63ƒB´ó\!<òô‘D²Oj_Ø}죉³Ëý¾hK<ûò…²iØü·³¨š."¶WùÉ·A”Bj'>ÐÝÙ/<ø D`/&gq%m²xbäÑ^vqcÎêÆÑÖ=äáÄ‹êm¾‰ºÄO·å%ù=|ñÆÛZhÐ+Ȱ}«Ï¾Cpl?1ʉ=W"êrkŸy´QÕƒŸúÒ?@Êü%ˆæOùÁ¡úúðr?8$^YÓw>Õ·5?´¿uÌÞ&þ1ûÛðÕóqõù»©˜fF©^¯;bc[g)€Äì¼0¾öÁÄX™­Ö#H…£‰ä9‚ŸÈÕ<¨!|5’áQê¯í¤·CkwØI7±»ƒªÇ!T3{I ×ëëHªõNÓ)¸P€/׳uÿcš¤ö¦¹É³õM‚T—»[L¿EWé:U

    µu[U6è[j ¾0€¤–IcÛ ß“ƒ.4ò(£ˆeÒÒ^qš’Õ(ÿ𣃈ÕbUÅÚÌp—»w´–oíËX€qÈ·î…‰Ù©YH7éÖ ?ú‹z}úCM\s؆Sy rŸ”ê€Ky¯óÒ¶Hqš„ué½Iø<Ú,Ùí–Ñ”:/#ï<˜í9«àhÅmÍÅ¿;?æm“ý˜÷mèǺù´îS4*²G9Æ÷TþôÖ:>Ñ«Jq€L¹ä(n·Of?ÜD°9ÿž©=´ëÍ·¡!¬ë­©Š°Å@Bo?ÖU¶¨ýJ¬ª·96˜Ý ^hØï“Z·à‹^íqŽ åo@°vö/ß g„=šC<åÇ7ƒü ^ù)ø>f=µÎ}è:ú×®>¾wƒË“ìng8äD¶Áò¸5üâzÅžd¯T)©öÿ-»¾ÛÍRÈýý:GÞá=²¿·…桹wëSïï¾÷yû~IþuNûkÜûªù~«ík[uO¹45·Ô›Þ~9ÃSó*WÂlÃö*ŽNn¶‘B„k]PÐ>šÙ×%éœä‡‡"”L\!ë{¤4ËôõSndÿÓö­+`&0WËpiÜ—Lçz pRüäÏýjö‹õˆXgÿÂ>¨œ 6#ý”_àó “=‡Ÿ}ñkü|Ç!ØÅÑ´Öõ/ýñÝþ/ÉÆ‹O£ v¢Âä/ÍñÚIÆEºôN=åMüf¼Hß;”LÈ—Á+uÓ·S,Ï‹ò^ÍOÝ¿{?çî%ü9õ¯¡_VΧ•·¿Ž `—óö÷Àe'‚k&ð\”6™ [*°UÈø8št2EÇìé½®= ©Ì(úµÝ6`§m¡¥bW ¿ÈVWw‰ —‡’& H9RB)žL' êê·æ$‘Ø«¼…ê¹o{ï¸P¬s[—nÜïÒGIŸg*^1¹žR {÷Âòö›òL©ÓŽ;é=3ø2Ò‹³’¡Ïæöò öXS¬|GïCÒg æâMz{ AÊ 0ó¼^É¥7ímíwåoÝ¿¦îû%ü×eâßC-›ï·â¾¶UwÜðäÀh_úŽ·!UÖ?˜ƒ;®-¾°¦›÷Vx áÚ"¯z†*g;Ôøð\Øã±7üÊ‘7’ãi;OE$aÁtë…Ÿ,.0o¯7%dµë{ÀG‰C#ÝÚ“ßcF¹ÙùmÞú'?hR°Ó¼`h—Ÿü¢{MÏ#í5~ò“: Ãé¡“ù­¾@z“‚+£<Ϭ´²êSØùjnhÂ|6U-Ýz/’~RP”oÒÛ²¿†¢~¹ªÞ£ï¼Û¨™i\”·7ß•¿w¿OÞ.þ>ùûèÅóiñ0¢C[´“¡ê¶kªÑ´‚\A® =dîf:¤'ÓÈÌŸI-_]„.v $],»R‰jê{Œ±ðÔ"D!aÒl7üå Àz‚CÆ’p9ì©n|!uÚšÂb©~˜ïí NT³ãíý.ÝããÄÓåMzÞOø jhOžÕkô $l›Œ1ÒS˜öÒ^'Ú½U}»üÇìoã?VϧÕw'üDâ`ö"_ÈÏ€–št¸i`æ1® 6ãÜ(c%ÈžàÆßÚÐx"[_þDàÎ&Át–yk_5àÊëfÞú«7bŠù&¾-Wp¼  œ·áÛå ?˜éA°¹‡úÞíOõ¿º?gï-ý>÷ﱟ+çÓÊ;lRêϬJâr&DúrâË·˜(¦tOW´‹†²Ë'¯Áv©„mLR»Ý•¿µò(ó³7f‘ÿ5’æÖFªOÕ ¥AdÎöÇ$e~yáíŒTO÷ò‘ÃXMÝŽ¦ñn//!‘w»ÀÝAùî«iàb:åw?R£L·,?üküXe@S±ªŽ^úS^Äi$v_)ªb¨P¨Œ—ö<}IŒyùg·þ»ä§ˆW¦‡ü¬|;­ÇrLŒÝ)ßô÷jÑÿ«ÿËü½ä¿Ìÿkü—õóiý=x‚>Ãïá©‹Ðãê„K…l€@ÖõÔÆͤ™o)a˜°2¼IÌöü}Ý4à¥À›íÕS=ó†`Åì3?Uqº$³Ÿ†WÛ +[7<3 |ÚÖïžDå|™\ËÖœ;\{ª¶9»Q€ 9ýÐÐüL‰Ÿƒªmþu _D‰ˆëÈ Íoõ â ±(Áò±É€OµGûI½“½$b_ú¯Š €ÓÅYvÊo¶ñ•évŽß¾'êØZ +±ë¥¾½ù®ý­ûsöÞ⟳ÿþ¹z>­¾ýÕT9ç+fv\¤1”Ž’f½xBx©ˆ­×åö³t.ª‹Bz¼Ñòyã4ã†`È’ ½œ¢Ó¨4˜£qþö̦¹(g€^7k(—…7¨c]–Â5ùûº’ ÑÅÞœ:AÒ\D{ï0dã=Ë]¹K.T·Ÿ™ú=øàpqé=j/åáÅ.ä/¢Jàฉ+âhŸ=“%ªpíÒ‘ü]Ÿùí; «öÑÜã·ïd:àˆ¯õíÍ7íï½os· ¿Oý>ømå|\x¬OTìsÊãcþŠÂÍþÇóÅðÓõÞ9#Ñ‚X=À)(^?È@aƒ¶fð"þ+gËâ­KŒçgu€F8”Äå æÄãxâ¬ÕeKÇN²ÅpNHšhÞLãÖ2^‚6ƒýÖ½ÝêP"1ª›øIâ‡ÑÀ>|䱦ÇÌy©2bâ 9Æ'ÚßíWíªí-ÞÚb2Ô¨ªöäì¿J~ˆMKºÉK8öéT!Ü9~°£¹X™ðC{{ë]ù{ïûäíÒ“¿þX<ŸŸ¿–Xð_œxóš RíýP)=uWügؾ]¤“€¯VVê;( vgÁáßÍ šì5¿å´]qnñæAz éÌÅoÙÌ)€CËô6Ji‚øP½½]ß@¦‘í!²7ªºú螺¾·¯ÄÉí-YVðÞ¡\.Úì ¬»ü•˜a¡‰ì£7uÛ:åIà —»ö¬3³¸l€Õ³¢ÍM*± Ôs¶Çmž¡•©cœ½+‰´×y“è ˜ßÆ>Éqƒr³À"sênkè~ëÿ˜»Múcî·ÑkçÓÚ;€’’F”× ˜X}€)-ÞºÄïo}k­¯¦<¬a¶L¨É¿Û#Nê7À-º¯¡€,£’äàí¸7”ZÅèüÌ0¯Px0¬`ám 6Ÿ˜zAï½t·§ööÊ ">{5ûÞ?LÁQààž|³ËŸ_…QåÁŸš»Ñ2(Þ~ÓÕœv©Xí³8ŠœžûÖ¾è(!ñ]5*GÿUòÒPæM~S˜-4ð 㸿œcË{‚'rÑßÖ~×ÿÞÿ1›üÇüoã?Öϧõwp.‘wÂÑ”Ëß.ÁŠG‘¬÷¼Š™ dή>ÛôžKA¶Ï‘s„Íñ°¤‡Ò´BôrR…OÁ¶-dÞšÕ`°^–T™ER….hßÉÜmàN~%ìV¸IØu0ºÏê™K{{`/|Û¡K÷ ^Ú¿³Ù®ã"|‘ð”⎇Ñú×Ð 4¿ä£G7˜vÍÁ5J9Z_°ó”CÎI¼[±–³¹Írÿ«9{ÇݪG‰b=§ð•R –f;îÖb¯ñ SØEw[û]÷{ÿÇÜmòSÿÿ¹r>-}›øÇôoÃ?—ϧåwá±ÝÓY¼Ê±Ž]Úô<ü!Å6&x=í§.3Ù+·=ô°U­ª,±ÏJ.Xñ\X›Šûð²Mjäa%wû(ð‚»ïJ¤0.tªí wü©©$ylÌ~k 'PÁ°x oï¼üÑÈÔRËMø,á)_?öÊï±C7ÖHˆˆåáyé¨ »lÉvyìü1ˆ ?ÙÙß·=M‘ÃKÿYò÷jÔ.òÛ¿€ÎÏZ/㧩İrßô··ß´¿w¿ÍÝ.ý>õûè·•óqáéMò’àÕ‰Í× íd9oÈÄ a åéæýHqIš]«£óì®ÊVÅ,ÞWÛäùa§Á›ƒÃx¾øÌKö‡U ¶Y4|³vì¬ð¥úÒ;Häžðò }qYV14\Ú—?‚r!#¹Þú7㨒búÇMþ,ù ;ÎküðPƒÿVÒRð¦>x¬›Òܪ[ƒÒ‚Á¥:ûKûôhm³벦ßý'•AûÑÄj¹ËŸ Ø²‹œ¢ít’—©ñ˜Ïñ¢¿½ý®ÿ½ÿ}þvù÷ùßÇ¿¯ŸOËÏ1Ç&YÛŽƒZÄoGP+EÏ"9Ì—Ê!äkn¤à†îy²éVÉ.Ú(v½™„ϰ޵T“á¥rYŸí…i¶7ä+jÞ¸URöšÈý@L°w^ñ±Èùúov7 mwÒk‚ǘ÷ö¤ƒòð™‹ûhëÞæ*PšÚ¬7铤‡"=À_¯ÑÛ\à3A-UûMw‚N¤}¸ç= h%Á}y´ U!uõKÿ1!>”რæ!?5'$„ØÍûeø‘Йˆ;+u‡úöö»ú÷þ÷éÛåßgÿ±zþýÚó³“H¨ÂQéä…HФ…>YÍvv€¬”½´°’€c¿¾6õ ¶E’û÷È=LEœ|‚¼í* 39­ s\‘ µ'Ã+6ühJ±ï mWF¸PžñâÂí‡ÙïU¼öûÀú¯ÃgkÏ#ÂæŽÓ"ÝúÇ)Hö°½lÓMþ‚üÕ ¦Q0æ×ø³ÇN¦·ßôÇYTås ž!LÍEå/츺´ÏÔ\4Ò3!Ü:ûgÁ“k‰g1^ä‡+”ºÎäœûðYïDíUDá졾­ù®ý½÷}övé÷ÙßG¬žO«ïRPÍDSOx$ȒЗ”²Š@#ɉ_tpIB'--¢jA¨ˆŸß¡ˆÖVÅü(äâÛ^i×Jƽ²|£`c\BCà—Jä{û)ô T;PÓ=…i»0¼3Ò­=é"1^åj{ÿ8YØ×)åy‘u+v½‡·ñªQªRéynüÖŸ}'•ˆì´’ç¼R”nÍ+YÄpÎo¹tß$~%üSoâ÷?n±¶îÕ9üì,Þw¸ã.êÛÚêßú?¦ï-ÿ9ýïñŸËçÓòóð’zf§Ú ;6:Ô¢@Û{ÓÃKx0 qµËÀó¡øm)-˜`Sp¨ÀaÏ7ÊW¯…Pøl’nDÎetž?»i¬+ù‰Pd—£M'…ÉÊž±=Á?3­›àØèfXOœ~åÞ×’0à’{%·îIÇä…’)Á¹ˆ/ç@SÚH|*"Ÿ¢¿Šº´Üÿu¨æ‚Ð8nJ¤¡9ú¸µÇƒQ8ú·þ•·Þ¼Òü"¿Í(I¤ÙãL;Æoß1{±áÂßÕ·7?´ÿîþœ½·øç쿇®žO«ïÈxâàöâ…EÚó¼+tF…ŒÒ £²w:v:¼P ×'£ËFíÛÊc'Gú'NNÔJJå3`ј, ºiÕ~Pž ¹)ñ~ã}Âô<Öm96O\„7>ÿE+üi,¼Îafáb9ûWÛiÃëéùüWt ":ÌCãÉåø=tÀAÕ .íÉÕø«:µð!ˆ×rE©íÌh€¡ÖqkŸe¢0Æ­ÿ"ñ1YD³ËϹˆm€µ>wTd?¨ý¿t÷j¼)þëì|›¸MøcÞ¿öÁoëæûóº{2²^Iô&Dñ½:-•èdC±C§ô€¬:¨úµ?K•*j6WúH³sƒ¨Øµ”ϰ'á"WÅ®«ö0òfϸP©0 ÑêäI–’ûq® ˆ }aNnÑìíù$8àº?f÷þ#´”Ÿd¯7ù£ä”&úÆÚÆÏb2IiöK}œY”˜š]ÕÖêç„nÀ×_šW`jæŒÍ¦Žîí;âb×ãE|™àA¯@î£mÀS6*Œ‡ö¶æ»ò÷Þ÷ÉÛ¥?&ÿ=øcí|XzZ›fÎf<ü¢Í“§¢ŽVUæï„6ä³wJ «ü„ÔOàŸÑqü<ÇLKÝã ±JTì1Œöz¥<Òý€Ìð€ôöL~¦€›·JîoNvŽ9º:~¹Îü¾ ÀAF\èì[óðG–~]ù [çx¾ýé™—ì_"ÒI%ñ‡Þ{ì‘jᮂݴ^U§æƒ-U á%¢–‰L§³y²—ʼnӞЗÞí»²ín噸 Ÿ†ˆl©_ÇЩ‘P©ÒœvÅÍwÅo½oóvHÌû6ømÝÊ{¯;?5ÓŒqªÒ¼qàè‡ÀM™#¸“¹ ¨u×w¬z{ñ¦•ß"Pˆ„F¾›Ñ”nìïÀÉÃLí©W¸½ríQÞ`†~Êd©\£9ÀD#°hïX¯ÔÉ œ$µ”†³šíÎ+·öl€ã‘®à»x'O£Ã—¿åç{R½dqËí=|å…Jú*ôù­=>sÂÐÝbaÏðvÃSó­9àÐ%O/óß{/^@5å&<$·`,ÖØóeð$ÏÚœäΑ.ÊÛÛïÊ÷NÞ[üsòßÿ,žkO‹YìpýÄ™jÏ­N¥(1Ðñx¸¿È<û4‚Ty,†•Nôæ^GI×0Ìn¡¶ÒE$)jO˜‘߯Zöt…f÷À¤òB>HÒEìh“=]dòî%¼ÞÚãÀN€·v'ØûÏÔ‘ÙWŠxoò'ÉËoy|€¯ñSC©°|ñt‰]¤éuÁ~,úüwx›Ç­=é@#”Ç­Ò5Èâæ&?Oy8º‚êÏñ“.ਹßô·µßõ¿÷Ìß&ÿ1ÿÛøõóiýùÅÎ{ÃN‡›´À~0A:ÀÒ²:sÇof×À„Œô.ù6àZGÛ…Œ }§ˆ*Èéö/•òcB÷JP@PC ÀpîóL©‹,øVe‰ç•«ÁÛÃI£’Ø”ŒR[jwZé½½-€ ¶Õeµïý㨢‚¼OMÜŧNÌn¨ÄÿSû÷ð)O€~åŸêõ<4ÖÊ䪱õ‘Æ¥=„Kì@ˆqÆ¥ÿ©%Î@)\ä·ïp$òÒ/ã2~È|!äÁÙ/úÛÛïúßûßço—Ÿþ÷ðÏÕóiõéõàLcåáá¥&îHúþp·ÓPÒ½&9Á¸Rÿƒ÷EÅl£Ýk’G~GÊ„*€l”t…Eük&¼0´'Ú®ÙDÞ*)Ê ‰U7Æú$¸Ã›ØüÔ­ÞÓ­9>”Ÿd!íÝ\R“ ±Þ/â7¥O%LöðÐêþ>ô•xxŠðáþµk,É@l\xr¸ÀŸ3‰ëãÖ\üfªEù%ÎîR ·|Œ§øöä Gav¯ø=†/Ò¬Z¥xÑÞÖüPþÖý1yoñÏÉÿ\<Öž›¡ _Ú‹ŠDÚ¥F->úýÇñ‘1,"¹•þ:ÍôXž:¡ŒG n6ÿNR!¨çqY2T»Ïê¤ÎšIL\_“é׿à|†]¯Éî\ß íu)÷j·ÁØ>¯-»xoºoæmºÀ·ÞŠ é4®e¦ý•ýKÕÜä‹™•6Šßc¹‹rp²"ÞÚ¿ºûRµ8üÔ)¬ÉQN‚Ü=‰9óho6¶Ý±ƒ×x¿õ»’÷²ü‡»ü<žþ¶ÐÀ›9†ï̱ )ªtæPßÞþPÿÖÿ>{oñ©~[9‡öÞ+ïtÂí \v_H^˜;õ?z¯ п^s‹šÜ¬òºÂ^…t è³ý;|(à¯äç½ÖÁxC«^s¾hožl¯Zà}XüvùR,æŒB€®.Ó€ÇözEûÉ Kg{$d‘Þǘgÿª—´K”"'ô{˯zËÒNá ûý¿ê5Íöo¶îOð­?Õ{V1å®ç.x²f ‚œ—æäáMè®kJ·î«ÄÏûº‰ß€H8–rº _ìÚ¶yˆÜÔ÷jQÿ«ÿËô½ä¿Lÿkü—åóiù=0÷!ƒË逈Un3jWÌ}Ók%7½XAWâ‰fZôs`9˜Qäù›„üfËŸÀfÉähÉqÆç$·YŠŠsÂ+÷‹O@–ÛLP—~”UPýïÇIÇo&¯ç­½ütø…sÌ·þå”&e(¸‹øYâÛ„¥üTñ½†Sº<(£ÿ:ÕÝ>[Jå#E AãG{Ü”6£Xq^ú¯IòSP<æE~ ÕR<.㧈”ÔÓ/úÛÛïúßûßço—›þ}øÇêù´úv{t(ûlbò-ÆHxîDm§¼ÐÁ\âwÁÛ¥ïU¯¿Pè%1ƒºS†^7c·&c³¥ º™…SßU 0p§›u&Š Á3<Û[C»Ÿ™œ’ yÁ§t·Çöæ™u[ƒåÖ;;5 ‡â%‡»ôIÒG’š"a<sC1hOÜ•ñzrN¶ø”ô”Uô'²Ñ½=”ÊÃ^uÁ.ÚréâOxId£»üËâû9Æ?)áãaÞÄ÷sèoo¿©ï~›¼]úcî·ÑïKçÓÊ;Ò—)Pƒ"’âæ…Q&"ªrÝ ufñèé{Ž#°!Ë“d˜j…EOÌa–‰-®âOÄ$,ÔÔgöïqVPÀVö%A“ÌmÕÆé‰ €¬©Öë³VÏÆáX#Næ]Ú“‰\ËÅŸÈ[ÿdòPþ6­¿ãO}– Ò½JÝŽâ‘XúãÁ#aGªAß휯½S<¸Þi¼Àí¾"¼$G1@FŸG2^Úæ\‡ÐNÍŸÖ6¶Q¼ ÉC”ŠùXÃIÌQŠþÆ# ’ˆºµKó.çGí©JØzïäñ˜zpˆä‹ð½Kx€Öåû<ïaÖó©Óý­v‚*èÖ—ü$¼›øšI3(£hxÏáƒðÑö‰Ü©¾wûCû¯ÞßS÷ý–ýëœø÷зuóýVÝ×¶îž~ U½Ë¢â†\RÛÃø?RäR‹jì{ì\'9ö'U"¤jkãa׆¡Fâ¶]èÉ~^ ^õÖœ‚y›™*Û¥{xAb%é+xÚ&>¼"öû‹û=|ûÎ]I »;p6õAkb˜¶îkã@Û Q·³=ð…Ú!œýOÉo†·n§üó»Æ o{k_ÆÏ¾`”(/úÛÚê÷Nß[þsúßã?—ϧåw\ù6vDþ ¸‚uåCçhIXÁÉ/Èë¶G¯è&½ÊŸ,a…æÌ–YW.1KP“¨[‰ºAáßêã©& ©VUωž€êÀ˜WêºØ$8Yâ‹¡‡¤$[›ž$µ·mLÔ—!Þº'ZãùúWø/wɬ9–Oz|P¥ž­Ýä!•—îÔ<> {H\×]'·ÓìÔ‘.ÍD²‰&•=ßz‡‡“HÚSvà˜l%AR¿þåŸg°Ó¿«ln×ÛÙü­÷¯£ó÷¼mÂóþµ}[7ߟׇ›„Ù1A–·ð~áßpþå‚ÍÁÌ^á‰UxG©ö÷x?þUdª.ô½ˆ¤ƒ!-ÿOãun¶`öp?¨l£¤ÇÿD†:>ê«a†ÇnÊ*Ã\þ'È,Brn«•H,}¤[{Ž8ÚìRŸ·þ͘ž”§y“ŸÌI½MAûñ?ý¿"æüµ³?ýkןX’h[W¸ TZ3þ¨/·æ•SFõg‹Žbë^48‰åå¾Ûć‡s·9Æ1|!wkJb¾©ok¨ëÿ˜¾Mþcú_ã¿,ŸOËÏ#öÅN⣶3<ã!ñ8éÙë’Ù2D¸Fw´5ì\‚:~0 ©ÏL¨á¾Ñ[y´Œé³# ?‚<3GwN_y.O/ÑpP*mºÆ—hVa;na îj5›H êŸþKgïÙWœÙOdHÖ[ï ã‹¬‹7`^Œ4׌;áß#Oàxëb¡ï·ÚÔ»OxOmºg±'oæ0¸µW-–-(.Å[ï]ÂWBý&<ÕABò³‡òmð*Æ!rÎzÓÝÖþÐýÖÿ1u›üÇÔoã?VΦ¿ßËîx# Vƒ·Â|Ð|àeÍÃLˆâaR³0hÉ?XÉÊ/”p uå¹Ú´+©PË¥@\cC‡šÃHÊW ¤XÇÃd±#`x¦áÖ\´RÙ̹’Ç­÷@}íèªj»$|"ÎØ×á×ÐÑ%¹‡ãâAPÿ­9åÁ›AVH-Wóz]º\»µ|¢ˆ?¯Ý“O¾’5.ÒÛ÷_€J„v}ƒVT@#ðPÞÞ~WþÞÿ1w›üÇÜ¿Ç.O+o7BK®q¶ºî· ëOfñÛªêK!Á懲w¬ÌðS §;0dV3;Ć2 …¶xnæ·ø$½Gû“·ª]ýO$¬µçk0µ¼Øhç!®”5ǯÖN=Éhæöî[›Y8Ã}¬·Ô/Ñu઱ãb% ½®£Äþ²ˆ—@ŸëMG‘½Zy[- ;’Ò:±¡@ÿÙ^˜6ö`°u×nÝ«ú)€ÅÐúMúÊKà ¨h/£ç%0c‹õ¢»wûS÷ïþÏ™{ËÎü{üûÂÙõ·­» ?XÆ4èžõ !_›ö^8$f7ê~¢gÛi0A‡ªŽwU‰!ÎÖ ›ir`8JqT±Z©ŠÅ'2Øòv‘ºs¬‰ÐsEÏfûnöÍ  zƒ* L.S-,}=Ô[óþG¾Q°—î¡^i#æ–.âö4¨~­mÃçÀ°ã†ZŸßêõ£Z׊/<^TMMáîíEˆ9ÅYoýgÉ?©@où)Ф#Qt?' pXUPw§þöö»ú÷þ÷éÛä?¦ÿ±|>.?' ‹XIç“özNÐŒ#Ãl¤JÐËj@ú°ö\Yö¨°6£. ›E=ÝzY’ŠHO?¸¹ìQJÑÀŠÍq8xÛ  Ö¬®òܘvÛDÊX»ƒ¿)ývp:ÜÚ³@"ÅŒmáoý –JÈ'ïg¿]5£«6?ŒöáœÈ‹Ø¶üÁêoõààÑ¿úCÐ ö„{ûÖÞ[@„~üwôŸ%?¤Ò¦vùñã H(½²ð?~œ,ʸpxÞúÛÛïúßûßço—›þ}øûêù¸úŽÜŒ^â¥vyE¶X'zÛ†„qª@6xÑã¢ûª Zv±ïNüñX$€ù<#J„*†SáÈà÷ðuÙF‚´4d§2‚ [råb–?Tp”…iÏĆ^Kp¼½9• õVÆ­û@äÕËñÞâ+÷"ÂG˜VuÚ{øÊ•§¦V¨CjÿRß#ü1‘¼)µ03¦zko[Õ¥uôoV ò“oÚEþ?™)Ã4Zêeü‚²Ê„°wNýííwõïýÓ÷’ÿ2ý¯ñ_–ϧåwÜP9€);•¨Ó”f î €¬ÿxƜћò|Z¹õ©ˆª±íøýØ×0C§#ô{.‡¹ 5ƒ];öÛ>KZÙ_ëôU°dÊ2[Lúi;=­cß^ÉØÐ"°ìÕŒ±íúp]Á‚Æqs³I)uiæðpeÉiX•7¦@c§X²þ½6^í›ðm9"ìýcöÁ6D¹ïMþ"ù‰Í¬[û=~¬¼ ÛPPëÖü­>XÞtBö&st>àîHkÔùÙ¼QijGè<·î‰ÅØòb<ñ&>΢ˆW_™ÞÇèA½JÔÉ…>oÚ{7?”¿õ~LÞ&ý1ù¯ÁŸkçÃÒ;žøº:öSH‚à=‘wvP»‚€®ÛAL¶5:sãÒ8ª© ‡ðÏ^{)ºÏ-ã«ä6:ÇQ´‡&ž¼8'S¶ÙÀ¤P®Æõ pñcê:häû¬—x×ÈxBûÖÓ¿'È˃åïÞm’B'©¦r‘ž`:¡²íòrü<ƒ)³3»¬ëò—îl‘siOØîÍB~‘IìwižH‰*.—î …›;Û1^.âø> ®äœóeø”ÆQŠb÷µ võmí7åo½S·ILý6ú}å|Zw¬·ësrܧ5áB€¸0·ï¾'ð(…¨‹7²<çc<“cf4åÙ9;k @¨/ú2LÀ)=!©A|`Ù(ýù E$5.-~aˆØsAHí1dôf ¥.ä"3 ©ùÚÙ¾®¹‹~JRõÎMB`îã1Ó~‹ž$z´ÁÆþõ¯sä™¶ÜŸ‚Ÿ—æ°C"È›ó±[ ¡Kˆô[s ˆÈæTvÏ»û•†@I `¹iܤ·’@ î~ïc÷«“dèTÃEw{û·îÏþ÷¹ÛåÏü9þ÷Â9Õ÷Zx;FM+P¤¶}“±À;ñâ¬t¼DVU²Ù1ùì$‡:zlk¥jÞ‚cúÙ“-ÙÍ6½šCû}[>y•Œ’H€Ù³tì;‡€ º²JaÞ3-/©$Ý®“SËá舙•SnÇîÍAFž™ƒ6õ[÷™ja øØÅO¿ÿýsøIyw‡'ýR!pj'`Â\!l …Ÿ4oí‰AµrîÏ[ÿ]YM!«¾á^ã "š·áÛtÁü0r㢽­ù¡üwïÇÜmÂs¿ þX;ŸÖÞÃBþþÊß§ü7›G*j]4!@”á°ŽZ†‰f[±8Ì•2 Æá2ðïÅ1'âxh°ƒš©Co@òX³Í7ì˜+˳„¬â¶¶—}ñ7<¼—ÓöÓÔù§í;ÅéNMð­=©‰‘³TnÝ›:2Ä–õ‡ää%}‘ôT™9ÔÂ>úBôÓßÁ×7åܦ,Õž¼ñIß bj¶ó(ßšƒ{4”R¼ªÑ·î? Î¿·\.Ò+²fkÏԑϱW‚=$òÃ#qQÝÞ|WýÞû>u»ôûÔï£?–·•·¿Þ[]¥'ª& ·r0VA {cv4N3à?âó¾ ïæ'Ûå?á¥V±­÷Íôàs¯+‰”øÒÂCå o§m‡ö¶æ‡ößÝŸ³÷ÿœý÷ðÏÕóiõV)°¬òäÏÅ36(kËÑéåÖ%Å·¹'Ÿ ó¸ôÇ®²¥ñV[¹kÈä:j}ì2V «lO ¿ ê~®¨šÂ%V”½ å«uÆ‚ q(Ž\EzÜ}£Í+â¤^™e[ï¢WÚr“¾HzÂÎÓºøÃ Z}r‡Û¦;{vøÕ\Qt:Å®PH„c¾4ïâ´ š’ÉK÷]ü&q!Ñ!¾àHìœã,Ê—áÛwضgÅ*½¨oo¿iï~›»]úcê·Ñï+çúÛ/|í¹™ØÝ72„¦¦¨üfÊäGÆhÐw¬ïÅKø/‘$* “vF‹ÍQèÍ ÄÔnãÆÝ?p¦/^DÚS隣­§‘ܽx¬=Ø«'x–ÚC!@úåx„ªj%ø2oíÑ\nhá nýGÊ€#ÈÃùã6ù!!4gïÍlã‡]‡ /ì•1›þì;ÅÀ8Í4Mönµ3&„yky%›ø˜\ú½âG¯j¾‹¤‹Án€ÖÏá+‡;QŸ*8¦C}{û]ýïîÙÛ¤?fý±z>®>¿îA¤0ƒÁì /@ᓉkãy"J¶ö¢Ã X”šö`|‚2öVµó߬¶®˜V 2%ƒæ êØÏCx®Â'Á£™ÇÂkË]ø]Y/L2a‡õ·¨6Hä€Mµ²…¬ð:~BR¯öøâák'»òÒ¿Š‡{Ãêq‘? Éoã\@ÜÛøYÍ€£)xøFþªï³MN éqîS2ÕåÀ¾5'SCÒ{æÒ=a@…`¦JþŸ PÀ×”–/Ã/Ð7Aèf¦‹úöö»ú·þéÛä?¦ÿ±|>­¾ YË0¸#­žÙÂ9í#ëBBC©‹üž‰Ï ‚Ý\R;ǵ4O±qô¼¯®ÎõYÛCil÷è3e8\0”QÄjÒ+” ¸ìt½So“ü­=5uàxäUѰ÷í’iªoòcZ¥ÖÃXý>U癫ôÇÙùRK%±-B{³MŠãôxk n‚=»§ÐÈ×”j¥›ô JB*£ î=HŒà€*ÿàÐÝÖúÐýÖû1w›ðÇÜoƒ?ÖΧµw\ù ¢vHx>ñ,®Aš¬Ã”À³ÃûŽ”Ç¢ï¶ jmð͕Ԁ}6£¦q‰Î” à¦ðëÐD¦µ] ~ásb©Ì;G§8³ý‰ësq0M€® p^7ARß¡±öã9Ð[f?U‘ÌŸ½ )gHœž¶I/zWJ˜Sÿ¹±~>ãa£ç ðöoå‰ÞÕf:{ªˆ.ÜVé,@½yi_@ÉCœ[ÿöã¾€¼8ÞäßÊ%’û/ÃÊÌ^àÐØÌ‹ú¶æ›ò·ÎßS÷ý–ýë2óﱿÎ÷[u_ÛºóËž‰3E5åSØ[fåÆ' ÏìÃ`­U}ÔoQÚû£É°—7‡I,CüR+ ?;`9«h-‚æk£îOWÍ ?Ϙ{ –èùä¹Sð–,ï–­¢öOÙ»ý öÇì¥'íÝÿÁ ¢š=ⱉèºý<áÌŸ:‡_£ ”ÝýI¢{kÈ÷È·ùø~È5ÎJüMñÖ òŽº*ÊîãÇ)ßJHáq³ú‘Tçu޽“ ö2Çÿ©ºwóSõïÞÏ©{ Ný{ðçÒù´ôXœÿÃ÷þÎP‡ž ÖüN˜Ûü/Ûf¾F°Ëýs'ÙøSþùûÿ÷¿|ÿ¿¿ÿwŽá¯øý?þwŠoõç»Ëò dŒ~ ôS€mÉa'ÿ§ÿÛÄX¦Ë'A*AÿšKv².øÐñcÊ‘‚ áû?éNù?¿þ³ ‰&ú{‹Ž$Þ.ÚÿçŸïÿú¿;ä¿ù?¾þ‡ß*ÎñüSyZeo¾ÿ7kñ~ý?ÿãû¿þÙðÒ÷ü¯v-”W·¸•€Àñnÿãþú¯Æÿãû?þ¿ßÿí| að§³»ÄåøÝê.qý$1±|ò—FV·§ÄóßJ¼MØUâvHünu—¸’Df¹ÜÔí)q ÿVäϪ/AÊ2®"Cäw«»Èó“Èð“ƒ6”è‰Èeüt+‘ã¿yªøÙ7W‘K8D~·ºŠlçÛ‘'ž¥V'a¿j9ý;‘?Ÿ «ócóU(þÍÚs¹‹N'?½mno»ßÊíÿ¥’ÖyzOçǦ[’^ÿøÓ^Ë0ØCÞ[Æ?ÖHå$é¿=vI‰¯YçÓù±Ù–¤×?þ´Ç$é{Sr^íXtÓ%ý·ÇÂ.éøÑͱ±–xÿâÓ&B&{êoæ¿«·a ”þí¦ßâõÿüƒmï¹;Èe»ÿñ§ƒ˜<–˜DìŽQ+Ò%ý·{}—Tˆ¿·ÉêüßlœûÜ8Lr°GÞ’ÝD˜~@’þ—nñëùRÿÍÆ¹ÿñÿÕÆi·¸©Ól>RÓugIÒüHš¾ÿÓ×çèŸûQó/ÿ×_›xÿú¿ëþýkÿY³Qâ÷ÿöÕÓwíèÝž!¿ #ýÛíÿ6ÂÓõ÷ÿ×wO_—·Z›]øŸþé¿ÐþûOß¿ã0¶êwŒÀ^R‡‚§Àdæ{-/ bŽïöº2C¬ Ù¥1€›E!Á äß–;‰ÑMÆØ½‘+¯Ž>šÊù!o¥ä¶«½™åð â·-ꮤ(äJ4’ÛHÁ‚Õù›îŠý~ŸÓÓÎöfÈE1N·[÷®V{_šaß/Ò“¢†VвØÇÐg§†ÞA0vÝ«u\R1±+#¯F®ÀÙœ§¾-f{ÁÎyô 8 K«š6â.¸>“ÍRË(_Ç £°¾Hû¥~i×Ù«ñ¦ñ¯³çmƾ7±· ÿÚ½­—ïÏëõŒôö*JYLÂöÕç‹Ý»D„$é¬ %°â(v²¹OÎR+/äϵ/äJQ¾ŸŸY±ßBà”²ˆà" i ŽxòXQøtƒYE¤›Õ>ƒ4L¨ªý9mªp=ÚOçò²ÓnýC”–›€ãÚE~å-ÎÉV®ÿ>~©ý©ÁÛ¿õ(¡¢,™>P»"f·æõžÅdt¼u_%~%boâC«ì!\âmðMñ ¯ø<”÷ý»õ×Eõ[ßï©û~Ëþu™ú×з•óýÖÜ×¶ò´6цÃöÝŠ´bg‚ÊOK,»L¸ßEñ6íjmë´‚+ œ:$¯ýeg¹ŒuÚQÚoƒ´ËEßùuJ×yl¯)¼ù©\À§NK€©!.-O++t¯H=šÃitš|wGçP¯ÙE²*»ß²k™#»-UaqCšHJåUAóVšÛ…9„î?Ûª©@’ß³=©\8¾ëÙ½°¨ m%ÖSx†Ê#ÎUËkäÏ‘7a2‰°sìz;[¿Õþutþž¶MöcÚ¿Ž±¿—Í÷çe·Å´ È_™ªsÖØ ¶ÝÄÏÏBq¬GuÒ|·“ 8‡÷õ]ÐÐо †­»òÏåAú§Ñ¿j°ó£(ªT©ëãR0¯¤ü|7™0`\h\Dê†'wí­mEeX5ìøhmïšÕ+›Ý3µýlÞ±1zWªÙ׿ŽQ³B‡gÈ3"v­ª\áS--u¬±?í¿J¿µ‡{ÖV¸{ÿjß%;æiÜÄ7Kd½YYSûØ¿øží¤jïÇ©¹wëMïGïç¼½¥ß&ýý¶fí½×œNÎÄ_PNWêdæ $ö¦ UI™7Â!šúžÔAOФÆÄô ÷ßîMûNYÔÌ`#(Ñ &Ö†µž9tÿNµ5Çwñö¬-0‰^°;Ê(ÝPžßIJ(`¨Ùgp.UÿXÝ(Ø›³a©T13fžÝOÅ5(Q‹n¼¥ÁÈþN™mƒ·Ïf\ØãC»î€b£|È–‚6dbn0yäˆmísùNÙã¹~]w ^;gß.¸}faBÞ™S÷7Ë’4¡Ð97½íµ¿ºß§m—þ2í¯ÁïËæû­º¯mÙmIíÕõSÅbmE€Õq‡ {‰]0"Ñ~•ÉG{ïÍbÙE°ì¦Ó¬„d©wÒw³šE_ç³KÈŠ®rö$ŸRoC¹¢Ú‹¯‚ŠóØÔ&*ž7¥eé ³å…Å}|§ ¾]oíMwxòš˜½/ý7jfwÆç]þH]v¤:qθŒ³ßãÇ>jj‡¾nŽ·þ€Œ„ìS^§Œ’‹l: ºµ§ \„J¶îÙ¿²‹¨¬äÌ<ÅObP®Ö»-îËðèwŽÆúE}{û]ý[÷Çì½¥?gÿ=úsõ|Z}~†‚lF Š P{ßÛÛGHrn°×à[€U +Á>Ã5J©ñÙ€I!ªÅw®(*6´öZ&d5}¶«Ú¬½2‹7Ç<´S#l–wA‰°…ľµ»Ù+V(Ú~-À0§JÙ£=D¿v¦B–R/Ý“F ^Kx.€Mú(é3•e4¯Ñóð¤Ü©<À¦<ñü’ ^Ä3°p"­ 'âlO¸¸ÕäωKÿ9I|³Ð€§9åÏÀÂu0ßa>‡Ÿ…ç*ë‹úöö»ú÷þ÷éÛåßgÿ±z>,>­N*•¾ÊÊØAú•o[ž¸Í;HjäÌè{ê‘ò<)륓Àã߃…jeMP‰DÓC ŠnEÌŽð¸Wp‹2d»y @‰*¬VÚCô«„\*³©(Ÿ¶—ºØl§û öödÓPOª$?ú+“ýJÚìM~1c‚7U|Œ?üiÂc3ó½ý¦?€¸3©ô~“R„I«·äh-u4pÛJ¨öt=;ož½É»|^ß©¸›¬¶¯ËØmïÆ)øzζMwGóCõ[ïï©;„?fþ=ô÷Âù~+îk[xZš¤OÛ¹Ò­{Œg`T›×,2Žl£Í¶KÀúÃëŒ[Ð1ù"L³`7ȇ؀⬠?z"ß©Im¡‚­É~¶MCEóJu$™ÔJ˜¶ÏÝÄ3ËÚ^“š™FŠ P+[;’·N˜ÔÞŠJ,8šW \lŸÎõÛ{‡HrØ«#%6Òƒã_á>\O²}ìð´\pËxûMw¢ FU­\Í~ TÞÎ[{;(;$éøÖýø“²ã›ô$MîMò‰.£àrئƒDû¦½­ý®üwﯙû~‰þu™÷mä¿WÍ÷[o_ÛšÛßìêbª>@ºý¦*©S„Ò©8B¡ü‘å·˜˜È›^’Ås‡•¼_äµPè¤1;sòδ?QÂÚN̵£DþIN >kQ7ÀúÄEAW@®öÚk¿|“c?Œ™®'çÖ¨9|¢ËìÝ~ 3UòLò.ò7« ·’¯ïáÚæÆë‘l µ7UA“Ey!oc¹JÀ}!±âJ9[Gý #ž˜½kÞ'"yì¡}orëùbÿÂΡ‰h´^/€/Ûƒ¥å]cGë·¶¾ßSuH¾Íó>î÷"ù¸Àüò†¸‘» äY`>ójŠzú@˜Å6qJMNŸ½÷}l\PDá’ò‚ýì¹@E©è$ËúϬÎ~ùUq:q¨pybì@!jãÏõÖíLH¸Ôª[_¸ÚÎ_—ÿÖÞîòŠ©ÔrJ—þä)àZØ}”.òÛwà°ìÜM>9Ûø16»=*á÷•ƒeÓŸBªvÊžW{ˆ/) #aölNî3¡DÁ\ž½Wö 45^¤w(¶Ñ1x§* pÌÊÛšïºßz?æî-ü9õ¯¡Ÿ+çÓÊóµYTÕ0^ëâõî¡TVÿèþï4âXúÎTWš–]FIX÷¸ŠØV’Ù.¹Çe—Q“&NI}·WB—-…[‘Š ó"®ÓBJYب¸á%ÚÝJ®L ½·æ”gÛ÷Õa0öî!(»ÇlTw½mâSQíL6ú£z} jj‰ ŽÚ¿µ—Uo@Þ˜í±½(¹Áání!åJäÖ—üã;?åïÂ3»qº^FÊIa¾éok¿«ÿÝý9{oñÏÙÿX<ŸÖÞî?â‰ÏhAþ„Ê‚%Ð!~è„U!žö'–"pXxxFO\»SqÒ=Ñ„jÐrŸ?/dû}¸îyØ÷@å*\+åyaS•ÊÐ!YáߤÇÇSh–Ó,µQ3ÉVK˜–ÔgÅ[{ I% eÜú'P† gªèð?"?0íÝ£SûøyPTUœàÐ_$±äcGð'j%æZ¼´××·Ùž=^ú牌OfràNùõĶ+¾ Ëðy¡›Ac}vA‡ú¶æ»ö÷Þ÷ÙÛ¥ßgý±z>­>÷‘ò> Ë~r™nìAO1ß?Zp3AµÈ=A¶8&šY!³¯õAÔJX$þ"‰^ÓXÎÖB‘‰ÁÌkßꄃnî)ìh³;¦ø*³zÜàf¯6­˜én?nL)·æØò•LeaøÝ£À™oÎ!^ÄgpM·"h„}ô0ÿà™nNCphì²É©ŒËÏê¶sgªØâÖž{0É{®ÝµuoÓ‹ô3CHx‘žéo°^zÚÁ1zª! .ìžvphoo¿+ëÿœ¼·øç俇.žO‹ïq á ž€…¹g°;³ýÉã@ Ä· ‹únÚ¥6·÷ºnZ]$¶:²‡Ôäq÷ð|€{ð÷aØVÔWËÿ Wæ‹zk:úŒiŒðwÈò˜é^·Ÿ§Z%¥[ûä†u™°¯îù5›¯`wŸéí;ÒÛ½äl“ûèm~y#¥XS{ÜG¿µ85ÔÀöšmËL€+Nâr·æâ›¤¢¬ióÝ ¤Õ|Þ7ñáÃ,„ÛèYît)ëE{[û]û[ÿçì½å?'ÿ=þsñ|Z|ûs=/6döŠdú•ÆÎûÇ• ²Åѧº™'ï¶"Pf‘ü{‚ûØ)wÅbÓ@Y'€^me(ÂÈòö¼,¹–xJúQ@®‚½×Q ˜*§†»z;u“”Y[{ªýìÚ Âö¾ô_ äV®7ù‹äw$µßÆ ?ÉA,õeeÆg£bñÕ*„à³=gKe³¥™.ýˤ6›Ž›"_ägqA^ÒqŽ_ ?À§`è\ô··ßõ¿÷¿Ïß.ÿ>ÿûøõóaù6)‚DgS°©„•<ç#™+쎹ax¨<õl—à´}Å­)Oej×@Šnƒ‘¿b><Û/7öá7/ÁÁ#½;.ŸE•'Æ;½ÁiþîTk›r²†ì 8>-Žmy4°“üòy÷ÎSÀ–¥UÊEú¢Ü³A*ZÈËÞø=xŽ(`ª‰a•wÿ¥»¢ä3 §ç¿éŠ„[fä[óå:ï…¼[÷]âÏ¢jï‹øÊ&´ÍËð}]5­œ›ú¶ö»ößÝs÷–þœú÷è•óaÝíÇ©<öf%Ã-æg7ð¼»2–ôFƒ2ÝD©ëlÆh‡Kâçì2P¼Òüc– ®9Ø ÿ¾(J\q±;R4¸ÙãÎü 0¤Ü‹¾ýÅHê–ó w@ Ų}‡ý>€±aÞÚ+ÖVg¬½Ýú4¬©_w×_ùm?#² nþ„G~ß¾yX¤ÚÖ÷·þt·wjr‡ç&UéšÊbjñÖ^©{"¤žnýOÉßà>L7ù'ÅoàhR¶{ÿT´ÉL§õ¬ØÔ·5?Ô¿uLß[üsúßÃ?—ϧ巟§£PR3`U2ÃÅþ‡Ù!ä\8g„ǻ’ p¨>gq:×åŽX'$€#|Î .†EËÇ‚·6;›#K`Ž”œ:­ãßK—‹Ùž­ê ™-$ßíšÁÇÌJ´ÞlÍë_Vß~ªªtž+u/ Ðs3ð|ùGÏe³ØºÏ^P±aÉxžÛQ]àï*§I›~·²HZ£ˆËõBY@6Õ aݾ6ŒAÊ[óá¦ßã—SÝN²@ÂǺò~ë›É¬¢¯ñ+3ãêš±³}¥gy—þ«PJ:$¬òWåyÚ˜EY.ã¯Ü3@%q8^ô··ßõ¿÷¿Ïß&ÿ9ÿïñŸëçÓús_)CÆÝƒIí¹Œ„¿ ʵ6yÄg•z™¬±-tßq@W’a.ñ©œÌIó½@R×BZ%/ª"±O í’mƒ£~hBìA“5)´›@dƒf£¬È1à¸v“6ú+:³ìHcœå©Ê’ꬑª²ÌæIÐ’¥¹ÞÛsäò˜áÖ}®F)§ŸØ¥·Ïv€Ù>öLú÷ÐÉt§ÙÞë¾^ªSb~Ép®´ü·ÞØÆ©TÒ³y£œÇŽö6ê»k•ò€ØhÏŒpH­AÆ™8›(È<ÇLŽ64„¶ÆÆ×®²³ù¡ò_í3¶Ë}Nø¯Qíëåûóz;^GTšŠZ•T 0iî¤VÈS„£/Aaæ²XÏÈ'¿#XÀ5%O( E┘+šhÿÂþ¼ŸðZàŸÌŠêå)V€¬1 ¼MßñÔ²ÈO±B°“Gˆ^ëÃҕ9oí¥xXu§+cï¿ý!UÝ^0Á}>›üà²YkÊ×ÇO=Ô¯ñ»ê!Py܃oýE‚··sÊÏó » Oò¼µÇˉæ­ÿ*ù§HÚ/â³RrI)ÍÛðyhìœÆM}[ûCýïîÙ{KÎþ{ôçêù´ú>Ð`Ú 2WröÊ„9Ÿ´¡â&6xôÜ:*Ì‚^ü·@uí&3|Ø‘îØ•Ë¡ÚT Ù^yAu¦ýÀ“Vªœ:Æ<•¼#{º–š‰c»°æ•{‡! ðÞœä6fÁì1?¶îyz2Ñ-DЦ ›\-…cø$Òš• §õ¸hïÝüTþ«÷sîÞŸsÿü¹v>­½ýL­ÄxÁ‚PB¬PS“ ¦[„ñ©€v{§3ÙïböDBÒqaÿ.#ûwýc\GBÅ,l¿6ùq;¯Š JŸ¿ ±Ê;²$Ç€…6ë­ChäÏ„èOB»¹åÉíÖö©.Š?©÷Þ’æñ5ûMøŒð@쌕„¹ žU›ñT˜åÑ‘@À[ÉŵËëŽyæ­}ÇëŽc¦„Kÿ$„¯ÇM~›-"A@kÛøçgòÈÊÓ<õ·µßÕ¿u¿OÞ&ý>õÛà•óiå¹ÇÉ6<[þî0¡¾¿âÑðÜÁùÚíчH*è)O¬ká oÞÊMŠ]}þ$$æÂ•ÜUÉ“¨M}‹;ž3u²¦I‰‹BÊS«+¹‹:Ù¡ÒÂU½eÙ ¶Ëc{{•NòÏÝÓ ÷þ!-Ôƒq(Oñ?K~{X8—ú1~[]~-áÉNù­¾dúï­yZán¼ð¡Bl¾·õœLÞÇâïKßY²ÛýÌdì²»÷‡÷1hÅ´ßÇNÀö+òIÒ¡»³ý®û½ÿ÷Üòïs¿ÿ½v¾_ºûÚ–Þ~×S#@”0™¡” d& 60—Ã?*°æª'¦ð)p3R›ÄÈkð& þ;Ž ?ÁÞºS){€×3§:CÉf¸×KëBFT%C•èGçUÂÃa×ÛMx˜ƒI(P½\ß@Ï%-'°ÊNåmí7ÝýïS·‰¿Oükð—uóiÝýu9•$nÚ¤óŸg?Ú˜?.'¥ð()¥ålDrJwÚ`C¾ =I*.å¯Ó§(Û¶¹Gß^$'Ì'B‚  Éo·D^H«á §¨zÁž3ž#žÀ,$‘ýÚ:R; ~S\n•­ó€wÖNgsÙ…é™k5¬¹ÝÆŽ;>*>∻î8.fêëÛ…‰Ë#Ö[ûBÂPƒ¸5Õ[ÿ¸}À¤Š?5où+4 —åz?V"‰ÖE¹èoo¿iï~›»Músêߣ?VΧ…ç¾z¸PÛð„ÒlšæµyÍ“œpC<éž›ØCY2n¹ðÔîÉÎ*tªkÌŠu$ÅåìÎNi¡ûwVЉ¿*³쬠ÚJ/²Ä©×(ËÕN-œqxƒñÉÙÏcùx¨ooÞþ t3T{¹uÏËF⾊ÒvñÅÇ©æÏóì×èí{¥´Di½Ï~kÂÓP¶=ž€ÁTÚÍu¶Çým?ÞI©¸õ_$¿YgQï·C~¹¿íÅe·B¼ŒŸì0f WßÞ|ÓþÞû>y»ôûäo£?ÖΧ¥çç&u{„–<ó†â³~ƒ§4“” ˜Éèu™•©ØšËeÅw¬pAø{Nÿˆpþ #gàËHBw³Óô—¡osj‚Ùæ*³5Üì´ÑÛÆü‰D üqv£˜J¼f!ó’p„ßÚ³6löMžÕ»÷;Y¶cšÝ›üIòûóŸPÃküéEëOÌ:W—ît ¤è…½í<à QaáÌ—¶ð¨‚ßffmþºt]$:uÞƒ›èún—«­<“-C'«4ƒ¯ÐcK‡êÎö»ê÷þßSwÊ¿Oý>ü÷Òùþ÷ëîË‘ì„wdW qP޳+²¶³#ÙEÊKÈpU„<¬$ìÊž[i¹Í±1±¡‡íY¥G`^5аÄ3Ïg¢aJ `×Ωâ(‡í!Æô#ng•4Ë=Æ 4}Uÿm­¡ðvmÁ¥ë¨—xú<¸ñoÿN8aû¸ùkXÎHÃY6èKoAï6{Ó®È:5ÀªÐééÚ-·Ã7¶;añ`AúU§dg4´a*öÅnóE¾Æ|œ^-‘ÝW•¥E°š€£2 Ÿ… Û}á, ƒåþ¹‘€$¶-ß{ÎÎÙòs§Ü»db¹óÙ~¿8æå¥=Ê ‰­xéüÑ?I_fÏDân7ù‹äOö`M}ùü~_´P“,´´JuÞú‹â”µÚlÊÐ. 5*îu4·íeš fе[ïSÒƒ  Ô‚]z®ÈNñDÅ“p ž+•Æ{QÞÖüÐýÖû1woá© ý\9ŸVÞþV/@ŸÂî š|ÁŽ-–É?næü® ê}ã $[ìÜ¥(“…¤^>ý{ÁmKN…ß0]•Å“šý"$¤LvæwŸ'®ŒIºy%—kª7+·éXíèXCy¾ÊжßO€ÐÔ[ûº^p¨{ÿ w¡¤‹üeJ~Sõ\ˆDïñã”#¿f:šë¡?¨a‰1/¿ NtpI29ÛGù®ñr¶xéŸ2 /ì ¦Ý!?.T*¤¢}ÏñóÌISY㢾½ù®þ½û}ú6ñé߆,ŸËÏ‘”»¢­œ%JĈ:¶\‡³ãaB0"{*Ú _Êb4s´]x»ƒ|MÀ£U¡ç¦üôH ‚™¿Co¾uáUÉ“1¬["ÛFSŸ wS £ê0SVáeô8nÍûamPAQ/ÝŠZìXq;_ć™ª E~ï‹þ5|αHP&OÏQÛ´¨khØN’'ƒ n>Þ"¡ÞÚ“ÖÀ¿ƒ÷üìŸÃÅ~Ÿ2«Ñ.òT„G2ëz?pv¸ÿ+ìÚýííwõoýŸÓ÷–ÿœþ÷øÏåóaõý,ÏÄÝô—[i$êžÒÜ"‘)XLÀ|ayYYøzý0z(AžœŸ–…qZ‡y3Q¸Zç|Т)ÞíX@SãÚËÆï!è½yçái·èŒ©_ºùº€ù­¤ØS|@ɱ,øš×úü=|r@"ÕË ¶=úý¥>u7À;ÌóÁ„E“L©rk^a­ÀFŒzé_—ŸÙv Õz‘?‰›Òþ–úeüšžTõ±²^êÛ›ïÚߺ?gï-þ9ûï៫çÓê;,Re(ÂõåÙ øjÍ,§ÂCð3„Þý+eÓ”º–¼¬ ^q©T³:(ˆC>;ÛÚ¬awÀØ©XL¢'K@#€ˆ2=§¬sÆØÀ½¼…/Œz6ƒÜC8,¸°Á@_¿þÓÚý¢u2Gns k ðxOÿÈî; ÁHÜÖç¿s„ÀÈàÃ_µiÊzM!ÕŸLA|'6 žD²·ÏT·hfrCëè=kÒ˜¸'á³2;)û,J—Ûoohj’xÈ(ÝnSÝÞ|×üÞý{âNñ‰[7‡úÞ«n·F³RmCÀûà.]ûkØõÒrÏ›5IgUMjý# §t³»ƒ8d/ãêß³b-¤D¯±Ø¬Ô Ì×ÜrÑPÔxÈFÖCKOúUcXcµcôÔ‘à T_btuÜÚã½€'‚b™[ÿÀ]Q›3Bõ.?Ø$‡èàöÛø©Ÿhx0ó <çoõ1¸kÚ¿xÜ1ðeî˜æ­½…'`·yÞú¯’–ôxŸJž]{/ó6|e‚vÌù:.êÛÛïêߺßgo—þ˜ý÷èÏÕóañ±PÌ„+ûÁ\ÛsFy[›Ã~¼ÉÁÜð±zq 7X;…’ÑKß.XÛÄM“ü« ‚í|2«iÖoï²6õ5ª²Tb{ RÜ…1˜«NRýe®_»±†Ðü€·)Ê ÚÚ Í¯‚÷+ëëÕ/ÃÄUB`—9¢ðŒkßoãN‹!¯¦ÜT•©œÈAÎÚ”ÅjwáÞ–1ä ¼.ùê_G¿Påð2î 2Ôc§é´÷˾¶@¼ÔÖc3.?N#¯G¡¢ ‰8±6Fcg´æÿåÌ Æ_Ò ñÝçA*Hòûr¿¤Âàõ­`u¿³å¨' =­Ôn 1à0nŸ@–v¶Î)d„•k‡¹ö3NMŽXÀa{ÿôÈåy¹Ž‹ü²Q^›pØ>~X»†?Àa»þ˜yØy¹>a*|`úýyiOr€Q5Šwô¯Y—0+—‡{cŸð &#ÌE‰µŸÛ\N(Rg'Ö®>ßÞ«ïþ˜='ý9ûûèÏÕómõ J`fD¤Ù_ì¢AJOIöf'm%é Œ©~&Í–B^38³0BZÑ\+ùž4£2 ¿L"ŽÊQ » -ËeYÌgà Ã5<æ¢d#• š»u¦Û.ç„eÆÑI$ R4níá“À’7ìÖ?#ÐKäëMþ¤ò‹ÎêâPrã@Äʪ…\h¥élê Rü"+ˆä†ñü¸ÖvS—Ö”Bé켩ðrÂj–žÞªESrâ—ôºŒ]îmø«Ciº;šªw½ïSwÌü6ò}Ýü|[v¯ã4ÕÔYH˪\HÀôU`ßÿÒWâ¤JÇôª\èu*˜ÅÒ¦ Ãh¬ø%SYÞ…_§"f•úõ²hYLÄSÃrL›À(ë«ú7FKÙ·¼rÀSr5ÙÍ6*µ„oÇÆÖ^N ÐAâ*ÁòÝË? Xæ»ôĨu^û}ôòÜ’RVÛér¸ýJê–ªCA[錖/­ >Ž­Þó­óŠìkf)Ùõ ;K—‘kÊ1 ÖuÆ‹â|s¯xß»Ÿ8'ý9ñûàÏ…óeÝé#(mÒ¼˜ôô…&Ê£ %œ/UX|CYq²øë ¿ "_u9° 8=UòÏF>ŠLª˜  .ÏT ù7Ù¶9ðÓJ@¢“Éö›Ÿ *%^ÌŸ.÷4f¹ü˜8®-EñIÓÎtËný¾zù¥®øNƒù§gY—­Úõûp37*Ð…£f{™}hJó‹h«è1ÇÓ«§ œµü±kÊWy-t|Ö-¿Žn3"Âàr<{‘y0ɵš€‹Ê~¸<6À3ê…'Õ¡*×vWóÞïËOÑ&ó›]7Ü}a|[Sþæn`>` ’•ú;~é&iõã_Š~ŸÈ· 1l*C´ÖnZªSS A´€¡óö07ó77Pà6-ê‡ÕËåE†áª£i@p'ê3F` =q55Û^ò2’ÑHxÐï¢x¹’!ðí£²ñ¨·îYä$¢r‘^”ôüBm½¾‘€2À÷,¹æ”¯;ÙŒµËö‹|Ú;+Á¸£=Ò’$&çKšg÷=ªðº$æ)|§Ú’¬iZ~èò™-Ú5é¢9ßÜkÞ÷îgÎ ̼ü¹r¾­¼'¹xV¸çºòוÆ ÷Ý4˜:µ´À¬œ© 6¹ Œh‚‹¼¤á ±Ï°Žò“\\à:‘?¯–BZ™=Ügï,5yz_54 9ÒGà=¸ìgY” Ïq°ì×<5ÉåýÖ*¸:e,y”[ïbÕ‰jæ|¹IUz ȬòÆOgœYCÕËù¶)Ð#E"mõÉ.c·ƒNv´¶<5 ÒM8ÏΫ /Jñ~¹ú†f–Çùº ž´w˜rIãPÞÙÞéÞw¿ÍÜ.¼›÷×1òmÑü|_sâ'̲2¦>äëZd ÆILÍŠœMx°§å1²pû[VÙ…Y¹ ‘S´Èæ#?ê™b¬$ …‘·ìÒšÈkŠyR‹¥å9A J;äÖ€è ð cÏK{M’…ª¦Kÿ ú * _ä—÷:ò絃ñTе¤hÏž]}¸(¾áék‘P8,˜sþh ²d¤Ýº‡K£GØñEü¡TV›Ûðg%Ü:ÓM}{ûSý{ÿçôíòŸÓ¿ÿ\>_Vß›"”yⳆç#FuŒØîv`ï#=ÙÿVþ&'±ØµF~f$²©*倖/*§‡bèÏw‰W£P¯^ð_ÐSòÄl+•e$-mTrU‹0ýjŠñ¡îj€íŒÑV…V¤@Vð|kO‰Y5ÕKï2)kËÚëÙu©*êˆOùÙ6öŒaDzÀ!ÿ¨N›ü(SQœ둃S³(çÔ¥ySì-ú¸õÞUöBLr\„ïàè¯sä•2I`›íPÜÙüP¼ë}Ÿ¸SúcÞÝà÷us*o[wúæÑâì ðú‚µñ Š”Œm;56€7»ÊÕ"0 érá}Q!]ê¥ÒD•_&"˜õ0(RŽeE3Ä$¡ê<=ñƒÅƒ‹,W%Û{(V|«¯ò:ðs:Ûbü Þ)Z*µ÷ûRÓGô¦=q7™š=å‚’:–-ÿg¼‰Ô"$+ñrºÂÄ”õ 0Àö‚˜üîsß’Ç|ñrzµù::­*0¤àrIó¨÷µF?Ô×hZMN’V˜§š>[î Þû|“ó!îÏ1¯ŸuKâërz¬êT÷ëI/§.Ø(ùáŠá9KQ‚f |Rb©7ËÔ€ø®kÐÌ’Fp3ñUöC\Ù ÔÔ‚}›ó <‰š^Ó /A{'϶ùàB“ƒÒ4#°Z¼?>ÀL¿5ì1ÉJ©Éü{¾÷Œ/³´fLÀ§ôI¥'7·=T1Ûàå‘#YŒ¯™ª˜Myø{3€ÍuàV¶¢Æ[{®1Bu¹´xë¿©üÔÇt“¿‹¾ M‚þ6~yɵFB븩Ï5÷Úw½û¹sÂSïïWη…w zXR´ÑØXyY ­QînМpEóþÆÙ:£e7,O•8»æb 1gh~NÂmðX;Àܤ7.ç¦;l¥ìBµ² d åru-öó͉ ÁÉbIÏgï¤É/3qí"<¥›I ½^†®Ylà:…B94皊w½ç¤?&Þ þX8ßÞSKÉŸ"p6j\:¡W-¥Ø¿ALôDš™æÇCá¬Yˆà>ègŠªˆà¿ +nE‡‚p•ˆ—òŒ®¯˜7«”çØe +ä–l–d€Õ¤Çúº%.íQ¸§` ½£[²ñ>~ùѳ–!òmÆúúí®ÏZxhÂpzËäjQØ¡Çr“j ÛªÄsí„Ôaôê»_{Ù i#ã"=@-˜Á…ÜØuב?An®Ýùö»îþ¹sò»™?ÆïΡ¿}Ý=+SöÈ ¥×`2Ó$Z¸*r(N NÂ+ki·*½ÄÐBÕ‡´ž&óR~_áõ 9Ø*òj³ÛV\lÀY‘9L5B|NeN~~ñKÝ+#ÞÚ¢À$dž2.ýcKc¨ë+ñ"?0òûòhíú?oV‚À£ö7Ó§þx 0—ò]Ar^YðöÍ7>ÛÃn‰ÙL@òÖVù9¯Æ¼È`³,À¤@­—ñë½ ÏpªÝúE¾½×¿ëÿ˜?'ÿ1ÿnüÇúùºþ¼¿(6è;ñ̶J´d/dÀñ4µ¸3òªå¦H_€1ô0êS:!ýø§\B„ôå•W˜•¦È÷(?_ÁÀ·Œ"~£«¡âj=É)‘Ø‚˜†ù¬ÔÂ@q²mòó™—ีWwôPV¼zvO>„Ì(Æ'é¤'‚7êŒu<‰ùŸ£''‘¯æöÊ#£LÐf~ƒßV—ú¥½\k) Œú­ÿ©âãâ\àÙN~¸±”ûMyAÎáƒ~KrOå}QŸk¨ïÿœ¾]þsö÷ñŸ«çËâ³£´àF¿²”ryÐBN,ÖòB”«=Ò´µL.ÿi:Ú'HÜÉ6ïyf{Gˆjålë1>5óð|$¬{‡h"é»È.Â.NÚµ¦°¯`]ê hŠLü¬tOÝ ¸;Ìû~iα¨L¹ø).½s郭@zl¹HQ5Þ¸ôŸƒ§®¡S;ì:‡>•õÕ ©ýŠ¢`TñÖ¾Q€ÌAÒR¼õßU~h41í_~°‘GQ»úÿ%—j$¬]nêÛ›Úß{?ænþœú}ðÇÊù¶ðìO ²Õ­ØöðQØ¡B‘™Tb0Ow‡ˆi€ïËXrꤲn.O80(˜mÏRÌ yã5åáŠ<ÐòzR¤/G»òŒ%pÊŠÆKâó†Å€œ-°)/pOQŸk<±hón݃²¦5†Õ.I/~QñI4T?ü,VWàÁ-TçÕGüŽ3+ 3`õLF˜½\Ú×øK™eÉiiµï¿&•&êZ/òWÈ[`²'/è2þª±ÇJ‘[ȧú|s¯}ß½Ÿ=/¾Ÿ}?ücõ|[}¶>et€*r?7! ´tÀUô+Ï‹á|µâjy34 7ËJ s~Ù˜ÞÄ z™ðø„(“'=¿èÝ€7ƒÄ€²" b—9³åÊAÄ´½¯E"w2ÿ“å…®LmsAñ¸æÔ?c‘ºpé=09ŒI«ÍéÃPéSOŬx7z-)žë-ÙÙç´°A@›#?PiQ¾t£J»´Çè#.+ôèŸð#¤Œ0]äÊ­²à­¿Œ¿M"¢DL‡ú|s§}×»Ÿ;'ü1õnðÇÒùºôZ ¹ã)SVŠJÐÍ1 ~W9|&a5ÐCÍ¿WK+ÖìùNˆ{TÍÑT1üz.ñ!Q/A%båV$cñ„4»E1! ¶’Sôê¼سDžÚ3ëâV–ª8æ¸4Wp鬄îfv¹î#ÄÐz ×Å¿‹Áùƒ-¬P´>”ÏNËg?´æ°–oמ«AåU‡õÒ^Ò”àH]“{ÿb$è× â¸ÈM;P­eŽÇpÙÆ_5¯#Ãîù¢?×þP¿ëÿ˜>'ÿ9ýûøÏåóeõéòlŠš<ɺ^°šX¿Š—Ððü7¹‰ðéÿ¬‚kÀº‘/5M®­eZç•cOH}À6ås†™>GKÜ …{KÎvkþäZmŠIÊþ“÷Ý$bÕˆMÓ´ –µ•˜ÉczZ£eðí£ž¥Ð™{Ê÷å…ªc3Ðg' -[/7~¯ ‹~Ö~S¹—ö„VmØp9Ér!¯4ßš+¡4°–q%gºî»Š_1.ÊM|œÜ«€„Þ†/¦ ÄØæé¦>×þP¿ëÿ˜¾]þsú÷ñŸËçËê»°f‚Âé;Í ‰¸I5~"@Ç(.hÇŒf2T”Žjù& ÷­ë=Ož¡üF`ážQ;-¨HJ~KÍ”Á-ZèDÞTE-3k(IE·Œ+{ÃÀÛ ’Ú>à4ë9¿pôÇgøGqŠ^‘(Ã+úð… ÜßCóÑÏö2Xv¤S±½ŽÞ5–ߨo£²¯X>Xƒ¢¯ö:Ç µèrÝçz¨îh¨Þõïfîÿ˜y7|·põíëîHö0¼ýÖåY‰ü©!ñ—¥€é†ÈJßÅдÉpŒé#YÆ‚+/E_v0©Š6ûÉËöéÙ¬pò@LÖšýS'±²çêŒdÆÍP ®:ò‡=²¨QÇ 2ò1×^}Í„ ý]ú'j…ƒ£Bpv‘^€pÊ}ø@|Ž>ªÇa´ff¨Wž>‚Ø"%=ù°¬À ´vkÞ°"å„Õä«K÷±#Úx¼»Nü©“L{ !߆ßÅTPDÓÓM}{ûSý{ÿçôíòûÉßGï–ÎϦ¼—[yG%¦HBéMä °‘-ïEž|¡Òq=·ƒâ=P`¤¡±%­7EEÒUÊ6QDFõŽÅX–›ZîÒL–«6 “­P…Àwè÷:Õ•†WNªÜëT²¼•\ñò"¤kO½4ÅV#Yb¥ï_þ){•¯–iàÅÏ*~&!íÁk߆.›´âfÓöN}L•eøµ½Øpx–8Pâ­=GdÑ÷x·þÁÛ¢Üç›üÓ¢:²ÌF¼Ÿ2Á®à:ó¦>×üP¿ëþ˜>'¾Ÿ}7úcñ|[|—‚ÌFÔ¶‡'h¬A+¾­ŠLü2š¨bGÞ°ÚûÞ¤)’«fY€Ï%ºsþä6€Ð èKJ(,|âq]sÒxØœ"qbyŒ?l–ä6¦º.n9©ÞÚ`†"Iz3^úçL#ÃIÞ+r½ËÒ›ü~×ï}7ŒŸ¹†š Ž¢´^sŸú©«ÓžÍº|[ޤ(šîÙžâYY$Æ”[ÿUå/†Æz‘0Y+ƒ”ÛøÙj`d.&i¯?ßÞëßõÌŸ“ÿœÿ}üçúù¶þŽc•>΋E@H™Q×j¿(/)\ÀêÄh̹ÆÑ©!À Ü©IŠ 81z²Û2` m1&çÜ4'…îW+ibÂÃö¹+-n›Ã8ç€ØiŒKkä„v¨ÿpïZw,io¸0uÇ n1hùq¸Í{éÎ"¨Ô#ŒZžÊù?zSSŒ¿J±·yOCú¥°ë¥)uüÙ>To%U¹ÿný+Ë é ­Ž›üÀEÊ’Ç,êçèõ¾¬°.ž.§¼£½Ó½ïßO—ßO¼¿[8‡þ¶ugp‰$ëñøËÙ ¤FÓ’ÒYþ2S)NMøÊF$&‡;p8‹Â‡¬ù{™`e¥…ó—Æ\…XÀm*Ö \àu©‡øVmÂTÅ#W‚«â}Pà?W{ÐXœÁhÒT.<ÕѾ=|ê`Zäd`j¾^µ3UÀ[òE|²D;Ù¹—=IÃÇC%/9QŸ²ú]}€µáá7ãI )x^aµ(—öàN* «&¨ý³ (ºà¦^äçÔ¢NÖÈÇøIkÀTªì²‹þ|{¯ß¿Ÿ?'ÿ1ýûðÏÕómõYR ™¸¡C 5¬†¨“D,úéqÝò™pFY\ã—Oî½ö0bÒCÀ¶ï1i™âHωÞ+E]Æ…ºˆ¿b{¼IÓí+C²ýªä å':G~'<ôˆdfrÁ€Ø›ã­9…ˆ„VâèíÖ}óŒÊcœ<Å'ÛŒÊy:< ¢ÛðåNJ°RësImêKº‰å/ú^'&DÔXní‹ú­äe¨üBgÿEåŸ$ìÕ›üà›_|~ü¤Û6Ê’}¨Ï7÷Ú÷ÝûÙóâûÙ÷Ã?VÏ·Õ÷0º%!7"R· ŸâFK‹Ñ½¦F•­1-ÊyOøüŠçiÄ­œQ¾í¹†‡û±LR´´wP΀5[ù§U¹ž¼w PIÑ] ¼LA;MzþeÍË‘w_\ǯk­i=ò·£Ö~éíOä›—s¿HœÈ9ø“Ïòþ=õ DÞ!C|lðOíÉw¼O ½,(O²¶“8Ú3?¼‹±ØøþÉ$ägÑ!?÷)”E+ÎñkÖËGkõùæ^ù®ûcòœøÇä»á‹çëâ;üO®D9sYE"y„°Þpå)dÊ9X¢¯Ê‚_rp3èŒ`B¿`ßqu•bȶ?†Ù€t±DcjeÖyú>`b£ðÒDeEA•³f„eéÀç4&–‘UÃjn!ô¿ãÒž$šÞeê½^ú§&ÿ «õ"¿-%3&Ÿ’òÏñ+-“3K}pí?ÕG%Éé6æì¨LÕ>ÚOꎨzO)ÏÖ?‹©èCšh|ÈOÀ"Ës&EMT>ÆO>%’mj¢ó¡?×þпëÿœ¿]þsþ÷ñŸëçËò;^K€ò7ªÎGÒ嘸¸þZ¹»ò?ƒìds!ûYÞ 0BèsÉ8ÀÐÉö]” O˜…,ˆTlÊšÚÌhR'%ý"X;&«¨ƒ§,5bÐË 4S#íGCè•‘ÊC»»ô|{`SsVŠÁ|ë?iØ0“Ü›oâƒØ>;p•ÚÞ ßxâäÈêfzõERœiÇJ`íÈ%«›áÒ>’Ï–´8¥Kÿ1""R¼²9wù£qÈÅÚr¼ŒŸÔe jÂcïêóͽú}÷~ú¼ø~öÝèÅómñ‡jüEO0Ñws‚8(æÅ*QÄ^È£Á©7->L0>Ä"Ð) … YÏ¢ný)Ó•?I†*–(’·`zBÊdÍÊŠ +¹‹ÚIk«zaÀÇ[ŦnÑ’Ã`èrá,Œkž$€hù©žØ»Á-@8nÒ•žÔÛö mo£×#(PUþ'*ñ©=À4‰A.rL%çŠØ‹–±~4‡+CÓÙoÝg•ž¬â1.âËy-ÆQê—Ñ+™–¼–óÊkôÚóí½ö}ÿ~ö¼ü~òýøýâùºøŽ3u(¦Ólœò?‡Ù³ƒ@a‹]±³zîÕ>` ’#=Žm€·DùmqMBUÔóMF×]±ÚÒ*áàS0¿ ~2(ÐÈ©9LŸ²ŠÊ™©h rËÏ÷‘ʃ_ønm79vû­syd“Ä3Ââ ø”Ýf ²òIyÃòJŽœI IhoØMqF4,M±Þ/Ò“/*OjnZ‚”Çè ˆÁk8uç›{Õûî÷™;Å?fÞ _8§ú¶uwd(D¸»­­l0 ­AžVhÏŽ„9'K ÇélYð““øX@`ÜÚÒ‰ô³¢›ãhDÃ`ÙªxßÖw±µ!~˜YoŽJžùáÝI§€U[q8~Ù|—ÖÔÒð®T¾³sY‘²X!Vkv%ï²eWh²J~àD>Æ Ï®LfOÓê¦6ÝlEó†È´Ôï ú*’´øålOŽ+Ɔ<“Û­û®Ò³&f¿I?”ì‹ çÜn£'Á;ÈÏ[ñË©<×Þë~ïþœ¹]üsæ÷áûe³+o_séÓÜSs¬ î¬^^Á+ŠOzD“¤V2ãÊM¥T+Ž‹N“­eÜúFYUá ãËî#O¾r#P·Áûq$C´É@´5µá1MÀaáq¨v]·øøN©Œ ›Š¸¡™¡—æF.ˆª”[ïàˆŠ?½\¥Ï*½èu.À!7ølÈ “dßu_nÊÓü9³œ¼'eáµ\ní+uÆ¿^ný7ä—y šJ|ÊO\þxÐËmüph…ç›þ\{¯~×½Ÿ<'ý1÷nô~é|[y‡Y `­o¨¦ QMÀ·-?Ÿ¨†dN‹˯äP@ä¬ÐIôç'†~¤ct?é€ËI¼X„jÒÈî45½bГ{Ó šÊÏRõ³Rk…øY3%£Â·ePFʼ5Wø7Æ“b»uOhNî£öà!{ñ~N.±ócXmÃWô:dó&ÛÔ§ØwÑ.ÑÇW15+¹Ö[{×+äºÖ[ÿMåWÞÖv“%Ù§¬´z?¨”™]hÈé‡þ\ûCý®ÿcúœüÇô»ñËçÛò3hÆ@Á[äJ}5±WîãP1c9O#?"ñl"µ°Ó ±Ñfߥo@J~r\Yã8©àÀ_Ðp¼ç(B°æ$ªeÞ3YØ:$^±_°(%¸AŸ¨b˜Vˆ)l‚|{± )?x3ßúO¸IňÝH¼øñaô«v”øáËÁ ˜GÆ•úlOõE½_I~óÒ€öš-9õlž EÀoÒ¥w’±"…<¼SzL\åˆY~~ôø~än†ùsÍvíùö^û¾?{N|7÷nìûÊùÙU÷r+ï©cÎZë›Æ°L<¼jà P¬Ž™ø1 Õ&?+ŽšWW”¤ÅÖË=ÂÊçḼºXàçì¶8(NlÉrt,±É-”·´É­šR“ÇÓ“¼’œVVä„ê¾ZE„kN®Dê—î¾$üaxôâ“Ó)?¯×ôãó9|rB+pÎjœý>Ô§ ƒíÍPi1N\ME“Îær6)¾vMùÖ;g )íEq÷NéItæ=Úuð„CÈš§ Éëîgkýºh~ïÜÍÜÏ&ûë2ñÛÈݺùÙ÷rëîFÌ¥™¦YÙ€µŠ <ÔJÍ¡1s"“X^ ¦r˜´îùûŠ•ûŠW@UaÆ73VœJdTõ3ZS€—ç *¨ŠÙebjQ)ó0òCBVˆœeÂRSŽªY3ob¯­=4ë kVFÏî£"K|]ÇMú ÒC5jmôL3¾ýجjÇk/ü";¯÷ TdfdúyôlO3•µ-ø[×Uñeõ>nòsÁj”ø~å„Ó`Ž·C}¾½W¿ïßOŸ—ÿ˜}7þcõ|[}–WÂÞ!¥·f<‘òúÅH‘Õ¸h€Rƒ°Z²²+œdUk(Í+êÈ` ¤åXcÛ†º²bÆ/h¾•øÇ¸I:)9aaÂÀéÉÂÑŠ­DÉN ù>ò¸éÚ<â3L´×²ï`GfZ†Sxe‚M@¬¡Çáò1rù1¼ËÀcn³Sep?ŸŒ#8ðž¶ØoíyU)“ƒâŸÝg¤ï0jöq‘ž”Ò ’€èº]FÏdˆqˆéÖ‹ö|{§|ß½›:'ý1ónô~Ý|]ugÓ¤6å¼"jTf [ ¢M n‚ñ8£7<\¡`õÈ–“Kd.ÔGx¦€ÎjoŸŽü¾X"#–eB«5Ë|ÊÆe“RÚPWDQíq«d\>£6wP‰e“aßÅEã›cÄëËuù}÷Ê‹L2Äbjõâg?%ìÄåÙ†Yö®Ö‘þ>Õ'g€!?7–×…÷N(M™¨Ïöä"X3[·þìP^ÄESCNù©¶“•+KtÄÛø¡ÝèNí¹Ö‡ò]ïÇä9éÉw£?Ï·ÅgO$¨I¥éJ°”x2'…ƒNOdiR3P,µSPK¿µV¶ ìc‹³~Âö×,}×r%gd+¶$‰¬v ƒžbGPÕ(´MVÑaÔ¦›­'N•©Ü«b£Èï2hÇ­=Α®nöToýW î¤Õ›üEåÇ<*þýçøcѺv¹ïÃÛð©¾H¢%i‚¥Î¨]¬-Ù=Vmy¶Ï”ltþÒ­åm!®Î¢C~Š.†,eà¨Òeü$kð‚ÄTýùö^ÿ¾?^~?ÿnüÇúù¶üc´‘#œˆˆg3‡äN`-‰4+¨/p@#”e.e‘$­ˆ-,Ø.d–en.ØÚߪš„°¼ÔB¤f‚`ÙÛ5¦ÏuKÃae‘¸ ÞGUú< Ýð/¥Ͳ±$Hß^G£Ä))ßú'¼?”;%æ‹øàs’ñÈ£öIù>Ž>hTe)„§:éS}D€5mcÌÇ/)ÿM‘¿z¼µ'J[qcÖtîúŸÈOµ”REœòOîh™ü0çeød†pjóÿæM}{óCû®÷cövéÉß®okïð‹r(ÉkN£+óaTB]Õ^M¼FÁ§»•9–Ó|{ÉôY«Ú÷H1`&çë™i‚Å­ÄE®^<O’ìp@Þf±CYîo€“Û›˜B7tœ iz 6\kñÖ¾ì úr¯ãÒ?Ž7ÒÇJëݲË/ß‘_ßú£ìÏñGe䥚²äg®>õ‡ãp ðb­Çü%W(5˜šcu4ç%—FÕ'û¥{&ìù"~áLÀ”š.ÃW|P|¾q´xQŸoïÕïú?¦ÏÉNÿ>þsù|[~ÖF ùO¥œÔÃŽ…µ#ÿT ýdë#PÎJý·… XÂSFI]€œáJÖ@dfòŽµéŸŠâèê2J†–ÔÈXÂÏŠXg´­\HÅQò>%§º¬Ê©øk»µ‡ÛŠRá”S¾õ'‰ò1ù¿ù&~B|1³J²ƒÌÿË ›‡¦íS{”èC>4×ÓE,ÂdêH‡Ï—æ5`„2öB¾t_£Š/«Çª©½øŠ–‚>nòeø@é”L«â$êóí½ú}ÿ~ú¼ü~öÝðÅóeí™cT‹/åÊC- ät"3ÀÆ©ˆJêç]X2¹@˜RVXÏcš8V \Z¼Žzö‰¤?WÒ¤YÆ“ ßd­uÅ¢é¿S­*ÞÆo³Q¨?Kìy S«$¢ÂwºìÖ'Š(&Ë[÷9(„-Ì›øYÅ—½ÛÒu» Ь/®Mmî´—•¦§óxÐOö'þ¼4‡É À6ê¼õÞTzeæ¼ ¯äÚÂkM@ðc×ÊËT0’ÆMu®ù¡ú½÷cæœðÇÌ»±+çÛÊ;Ð ¨¹¢ÀµktŠzç4 êzÂÁ5‘çJoœ x©Ì"ÿ&ª;a"×ÏUL+½{\2.Â]\ŠEÛ“ü8:—ìlÁìê Èk]fwÔBy'ªÙNA–MšÉbÌ®9%²Äã *—ÞÙ¥2‰òëŠqÒ“à¯y¤$›¾ý/O…ï WUL‚Çý󩼨'²," µ=U™D)¸â¥}ûeIijÍqë¿«übÛjŽÂ)ç"ÛT¡(ÏñS(/).ý¦¿½ý¡þ½ûcòvéϹßG,o+ïb‹ŽAúxZ•]$YÉÌ5ØIMÀ~Vee0!YœÊØŸHˆŠ,O-0ó²HQƒâz?`NT-Æö°O/” èÊ¢\2‰#Œ=Ró̰DW²±ŽÑ´,Ö[{ ‘HþŽbÌ[ÿ2É’Œ œ^ä§ w53dåçø)¤‚$8µ'¹©ÂM²ËÕÜ[¦Ø‚¸‘|iNº¼ÒÍÕ8Ë¥{LEùù¤N¡‹øJ.%Ç(DÆù2| è;µKó9Evõùö^ý¾?}Nþsú÷ñŸËçËê3K4ak‘úW¨©( ËÜû/pI¨©–3¨}¸œàƆ4o:yÉX¦všÐeW²ÉSž­Ï`^hÄÇó(·@2÷\Æ™†å÷L¯VÈOF‹g²»ú¨%ÞÚ“G!g¥–þì^®ŸÆ@Û B:á‰g¹§{X–”;¸/À€½ñzî`6™“„Œþ€qHUbßÚy8ÈÒ°:ÊKÿU¥4tŒ›ø<¼:iÆiUµºÑ ;#4³¹]´çÛ{íûþýìyùÉwã?Öηµg Y‹ÖK¦J¹,'Î_u^ý¥ ‰”E'¥ÕpàTØó°œcÝÕ‡±˜«ì è%-Á¥w_dU:lêR£Bß™÷K^¼êQšZŒ­jJ+µç†Z¨pWƒ;¸Y1^8¼½–ÁàÛrÈ•6¦%ø¸þ•U¨Â‰´œ“N~¬3òmgXˆ·nüò=`+M]ú¨*¬´háËVÀEš wv¹5'<©™pF utßT|QØ,å&>p7–º˜Ýð›V­gÏÒM}®ý¡þ½ÿsúvùÏéßÇ.Ÿ/«ÏOªŸHK„ÐÖn‡¤ [€ÕzÞX¼å±†þõm©¸Z)bák“ÞˆÆj™j·“ØÆP\,òVÎ/±å0,æg‚¬gà›~ŠÍU³)ƒùài°ÜÄ[{žIäúÒ¿V&dœÇ¹‹ü˜MòûE_·+´õ9~«Œ˜(ŽýíS¼”ÉÓÀÎТdÂ$•‡tk\^…ÈcÄtë¿©ü€xt“¿Û ²h<ÞÆß@¯c¶|SŸk~¨ïþœ¾]üsú÷áŸËçÛò³àÄâ&T§a‡•Œ±ÞhdTSÊß+…"[Bý—Ç,À6«}/UcºO~&y$#¯ú<­ÍHF ¤±…ˆG—Ì;ž¦‚ÍŸ­©© !Mû§G¶|x£‘mí o¢ùíF¶õ_”ËýF¶IŸUzbCo4²môYÃÈ ¦älÓžá¢êŒ¾Ó/T²páÜÚƒµà¹"ùÖÓZJ¬GÍ;ä…Áø8I徬Œ“Ô–õãôçÚúwýóçäw³ïF¬okÏMš´'æ\UºþåöÁú‡O0·`4=H‘’ˆn•'½“óÜí˜VlSWdÌ,oãÀz³ýÉ$`¹Z4a1¬S Ã Û ½Y­2 †µ—å…O0qˆýòfÅÚÚsýŸSË·þ1Ï {¥gzñ‹ŠFÄbµÚ‡OhSþá¿å¬ÙÕ¤;èкÂVè•èKáÙoí!\ûŒ(N¼õ?U~1àâòcîòš­Ô·Üâeüd“¸•fïõùæ‡ú]÷Çô9ñýìï£?Ï·ÅwTÕ)IŠPÙ®Jä®ÿFÉÒ/àäE,zÈ ©{&΂œT™Ò¶:W­j D+.ä«@%ÑëbŸÜ…h¦µWÄÈë ÆJa¸E¹å»,$ÐãbÈo?•¶vÓøöægËx¬ã­ÿ&W”lÄ›üIå§2Áà‘Üð#yáÀ¥L 2{õ¿‘S$RF¢íñ *ïñ¸µ§0ml®|÷éSÆÎ›7éÉ,Æ÷ÓB·ÑËF+J.WR¿iϵ?´ïú?fω̾þ±z¾­¾‹¿‰üÃÞ»ñUG4™lþoW´<‘Ý€€ðDiåJŒ š2š©Z1UÞ E#¸ŠxièÄiLÀnœ ™²3{pÉáGZè·‰»dhxÌÒ?åçËL­´K{EGàB›)æKÿ$§Hcè‡Þ\éŸâ£Iùý¬å6Ú~>/–$7®œšóñ6ýQ÷¥g`:ŽÇ1©0 °"\Z«¹Ý¦& åKïÄ-»ÚgíÉۤǙ&õ0£æËè Œšòý¤Õ¹^{®ý¡}×ÿ1{Nþcò÷ỵóó©¼—[yÛ@2ã, Ô•¹8lEZÙ#@…ØŽ‘A(à×ÍKÕ£"`"=Â9Uò( bP.3Œd³e-oÿ½ Q{ÑÏêN±ôPp1.зĒ7¬/¼M‘T×÷wkû-* {_‹Ä÷Mþ ·”\eYd:}”›KTaVƒºØÀŠíž†®OÕå*ÉVz}rÛå‡Á­ôvk˜g"â"Ïà[ÿCå'z­¹‡ü yjOŸõ6~^A ô¥´`œú\{¯}×ý6u§ôÇÌ»Ño çTÞ¶îüI ¥ «]3Õ{„P±Å—ˆ³Â§“Š"±0¯à ËÉVV˜uæÜÔØ_Î=Pùe–çYw¿¨µÙ@ "‰–߉‡`yh{è´e’åž9Åà[¬U¢” )ÖÑoÍ oQË¥w (¤yóáJÚ¥‡^+”Ü÷ü™?=)õòZµÑïºÓðlnɺBÜ`çõùÖœ£‡¼õ xsG÷5‹:œ³u”‹øò‘ §i¾ ¿’*4ç$§‹ú|{§}×½Ÿ;'ý1õnô~å|[wöªÇ/ÀÕLÑná 3|"/wåáu¸x«ÅsÎC @qÖ“³H}©Øâ£FS)Ü5;è‹F"&ŽÝ305ü´ Š‚_½Ù=%Jm ©£fxë ½ô'õžâó?” `ä©f7zm_pés3Ô+ïh¿©þì~Ÿ·Cú}ÖÏÑokæTÞ¶äXŸÿöóï?rjTYçº|E*êHJ·”Úúþ÷Ïÿ÷Ÿ~þÏŸÿGÍøó¿ÿ¯šëžšÖØ4;VH™wݰcóxå.¶¼2Ñh/Vmöú?þ»ºV{ä¿¥så`à ­‚ßBr§œÃõé<üü«þÞ}ýû+®a=âü_ýüËÿ&ÇÈÏÿôÿ¾þmÿ.mŽÑÖ_vûËðó_ä¯þëëüÇÏ¿ü/XË?ÿøÏ¯† ØëþëúóÿøúýøùÇÿýó?ÿãåûŸÜuM sã&Éð’ly—i~‘iôæ.e½›lãïdÓü#Y\à—mjjÁ ·ÿéUº¿H§.Âbä.ìâÍ¿o[Ÿâ¥C¼}ñ\ÅËßÄã•0ä”òw›x1ü­|6`Ê#éS¾rÈ·ýé]¾úM>Pg…t\ÚÿYv1þ­pMl¹uÎ6áŽ-°ÿé]¸o»AÖ%þ ÑWð®¼ô·ò¢7ívÛíØîoï~Û±Ëüçvó߉˜8©ÿœ`"öc¸¿½ŠØ¿n øD•³U1y?¦¸ü|rtÉA5ÕÁrõ­nŽÝá„»6ú¶;j% Z'Ãã` U¸¿=÷DŠ¡,JºäûŸck8ᮾmЦt6…æE^!PÕ™x{ôu»×›v“å>}º:v‡ŸÙk«oÛ oȽž —× ¡Š÷·G_Oþ\{ËwmõmoTž_:½†úOt$Ó Óß~HXÔõaSõô5þéÖ¸¶ú¶5*ÀšÙ@áxP†«mU¿=‘ü"‚¾›W_ÿlÜ[}Ý Àw7å:"ÒA[•ðoÏ@$‘Ú YŠÕ×?Û$÷Vÿd—Tã5< Šz¡ò½Àôó¯¯Ç^úëzüýþ'ÝoÓëò¿­Öb¥ÅŸÿòJŠ_½þ¢>ýeM&²•›ëÓŸû_÷ß–§Šû­£ï[_XÉÿ~ýòßh´þëÏÇ#PÞPbáKJš¬+Ô¾¹¦N9¨[ÿœz ÅIYaµ"Kj–%A¸eúMbˆlJÞÛ|'©-É›vZ¥;5zbýŶ—ÇÁ/œXSé;V¥¼˜p<’UâóHH Ùs„¸rÛ•[s Š[ï5ÖÝûEx …å×!¶ÒÆûÐìSĈþ>T4}³ð’R„^1éTX‚ž‹}ÒµŸD°õj=zïAEWçBó¢ëgyC5ÀÊZ}—ÏØAPǰ×ÛÙÜ«Ýõî¦íg—ýu™ö}ìnÙüìº{¹eÇGy¿3wqe‘ûˆ##‘]¨r®RÜm¥ÅƒRM2BÓÒnÔ,ñÚú™ ûÄràUB|3×/ „‘æhÁÚk>\J$GüuãÊÜšÖn÷ÅAFvEN0 ßšs;‘1oQÁ³ûð‹my’köÝ!>¨ /ÖúLÐÇð/tÞý´wêS¸ Í™·¨hêšN‡çIqòÎö`eâJ Ê~ö¯À8I¶µ@vùå;™j1ÔËø{!²@‘dÒ2*¯?ßÞ«ß÷ï§ÏÉL¿ÿ±|¾.?] ­i~ÁÊÅ‚G[ª,çsrjNÌÊúB^é¹è9|ÄœhƒÚI«]Wxð9sÏÉ'¿ŸIV_…j “‘õœœ€·ß| ÝxèD=µ½¿Ëÿ¤ßʳ@Õq¹µO¿r•9´²þè=j¦ W3ãwá íæÃ¨x²çØuÿ‘ü7-³Úu§ÍS Š±ÑŸÍ¥¬`¦æ­ýøEM Ù®a^ºŸ*|W›Söù‹¼Uãt׉W˜4i¼È?Õv¶ÞÕþò}ï³æ$?fýuŒ|_5?ßW‹‘Ù&è`¨;]퀀té& ŸqŒuJSQ‡B½7ÄBdzUäPˆ¬Ö!ˆlKcì$2ƒakè^D@f×!¹2sä¥KBµà%ľ*ÎH ãÒ: µÈ!ÒÚ¥w®@Xa€·méå…ØœÍTéF“'à¶„­ï}„üÑy&ÄÛ'däë¢ ‘âå˜ní <:à•´”nýƒy«þÿ¾Ø±üõ๲lô=¥€Ù_œò~öƯSõ®s7u?»ð¯ËÔïƒwKçgWÞË-==?QÈ1Ó2xõKOª=Èë‘Å9è’Èhëú=iÊ[/êœÐƒì½­Ò“¬#9Ì‚&Dðÿ‘ï¤7 Œµ}gyátV.™H/–¾ÒÌvñ8 å½áC¤>"·©€‡—ö·k) ‰Ì³ÿIµ$´É=Ú·‹?‡J_qPèüí£'"B¹;&“µÞ”75÷dH;£¥B™ãËgæ–º‡Ñ_gÇUÅ–o£{©õ«œ5`¶̼úeßHø™ª€Cigû]鯽w?g›ä·ÿö˯˜Ÿï+ÎEÇtƒÊ 2€Æ I‘{Ô¤¿t’áŠëVIÖuÉš ÈþàÐoÊŠ¡ß+ˆ@hÏg$€Èsšâ'ßlp^uødy“P ,F/’R 4×áCö4\„j­ŽÂ:9ÌB½µ‡DVLÍVlùèŸ0Q¥¦5¶t‘ i”WaŸãæe“‡T_WǦ>€{ȳª”ÒisÒQyL ÅV=›kXj’UË­û®âWP2ÊM|…—cç©Oý¾ÁËQ°ÐÓM}®ý¡~×ÿ1}»üçôïã?—Ï—Õg§gçâïNKÃ)8¾*”nž$MÂ,Ô•¢Y>'óqg%bŸQÌ+ö”f˜d—Â\êF¨$¯…ÆC ^I¶¬=æ¡l(®ƒf)rNHgA3}øžÉ)ZÜÐt2ð³ ÄÔ[{±²¨n–ÙmõÖ?”yj„çðwòG•_n¯0ìtãçýI¡}Y‡¿W ;C8££°q›çtk309•tëªü0ÞÅ|‘’ó‚ñ"WHºŒ‚zB=_W’æC¾ý¡×ÿ1NþcþÝøõóeù±>sÐÒY™Ç œ5Å6 -CûÛ¹Ý39Ï”>²‰ &ŸüYÊsš)h*Ö<Ø4Ó¡À½žåþJÉÞSKg¹Œ¾\Ôb‡‡¥àØ‚‘C ½êªD»I¦‚C“×KJ/ƒ9Ñíùç›§_Z:×ñ5ݺP +r™²ñ£Š/w^Tþ£cø¸kJWš:ÚêÃ]Dò˜Is9Ý3áŒLÊÖ¥¹\œ ·‚-vë^Á¡å¦<÷ñ3YÔ=“8XÏáó]!yð`”S}G{§ý£7{‡ünöñ»Õó}õéúL†Ì–p“ã5ŸÊs È‹’œdãÛ£ˆýÞD E1†¤µâ²i¢ä´¯ä¿‰}•”ì"r"¿®Ykrüá왊»¡IJ|N0½&Nóɵ¼€[«uPW FZH Çõréö[óªãV¨m~ôNi(…‚"$Òåèî3ÚÛà;Há ¤ú9­½Ó]æ,ÆyT5I$“UŠ]’“Bäœí `á²£&èý+ÙX ßÍ)£_S¬(Ý9ǯG$™K»èϵ÷êwÝûÉsÒsïFïVηuçßïµ£Y@äxìƒx›CÁ)Ä2An1µAä+Éè=¬GtU˜ ,müKøL)‰Oz˜´ò¼þ‘ó^Nª•§ðµ¥H6?Þ!ò3HÏZkOkv´HH£ü‘ÛVìuüÍžî®5ÈÆ¨4‰¾ïòKßpù‹äE%§H³Ãü¸ Wì?;ùÒàîb¥G%ÅÄœŽƒÅµ–ÏS.68°äõ–õÑKªêÆæKªßÚy—Pû­í³ÿµsž»Ménñ«úýã×vƒéÎê೺¶WÞÑ~ÓýѽŸ:/¾›øcøû²9´·¯:ïNÒSùOùRåÁ”«ìr­j|?ØeŒ0«=¨°G2‘…ò~ð6ˆ”3ƒD寧éóσ9ÃH«„©”ê ÔúÜûÁ]¨3jnQ)¤ü!> ›2i¢í÷{ýcø,\‘D6yï÷æ‡úýäÇ©z¿WÅ*K]ñÏö¼w©á½õ?U~P*yòë{,½K½Œ_ßëhæZËE¾ý¡~×ÿ1}NþcúÝøåómù™C T[Bã®{ í@ðÌ£6wwTqaÓ *U²!Éã|æJXì;E ‰ƒ{,ç«ËåüÐ7{],³j~gõhËæ!)º(\Œœ°kð˜V{’È“ _Uê?Ë­=F}¥ö!Åxé *즘hñ"?30!­îôÇ>xys*šW¹7d‹YF~8¥ýoš÷_ãà »tÞ‘=QïãMvfªd¢"7žcŠIJÕr7ݹö‡î÷þϹۤ?§~û¹r¾­<»ßÁTU²‹°œ9”È4àÀ5TDMGÐnSw,õ x¥eWoŽØÿr O.6=È#ØV¥æÇ™„:”w¸š;xb¢¬Ö¾SÈXa vÏÀÛIe¯=ä;ØXÿ—@Ì!"o ¾_ÚÙ½D góÒVç]¨©Ï‹üQŸ)/P{:¸ñæë¸é\Χþä{Ó*Ž6Ì›3¹Z´âìh3ŒòøøÎî¹'u5¸˜OñÕŸ Î¾œYÛðùŽc>C±Oõíú}ÿ~ú¼ü~úýøýòù¾üü›}SÔð{õXVÁ“ƒ±ÏRmxƈ;'5É´^ŒDªší¢Í£boæ©$0YÞË›F~¾Öb3U¡ÝÂ×f­¡â àaù”‹ÉË%¯ƒ`Â{Üô–] ô] ™gïãÖ^KõäàhyyM·ÞµÐJÉbÁ;/» ªÒí}ìÇ®…†3r/>ÛlS*â„nñÙ¦I,@ŸJ¿µ'7\žÏxÊû­ÿ©ÒOjÃÆ)?óLQ˜¾äú9ú¬ÑÎ&ÊèíÔÞÑþоëÿ˜='ÿ1÷nüÇÚù²ô{TëèáÓT$ÕôË€á>Óë>ýÒšJ˜å“ÅÊÍɪvfS¸>«Ó-S9Ó©z¤4r¿kP\®(Šf¡¥$µ­àwhÑ@‘Z‘£‹NíÅ©¡÷ ‚†ŒF7´è[®“ËzkÎñ)çÍréŽX@'äTéå"}i*=©i!/[ásð¸Ÿ!R€ ¤,[áSyÐÈä ¾î\æüK ¹™Åþ#8{¶/àŽ¢/nÈKÿX5pœpʯ°¯^Ì6nãÇ~¥d*¸Ï©?×Þ©ßuLÞ.ý9÷ûè¥ómå¹Ó”' MC4«lÀ°n`×G Rþ2×OVK*¶u2c³¯r\;ùá"R’F¼eG’&¨Xðü JBö¶§¬1âO+Œäš³ƒ^© RRŽ®’Vó1¤EvoQ^XʪEöÍ!†æÕ ®ûè]ÏÀ‚o×Ö[x¥5 ¥ˆ¼ÇëõgèÀ{Í–ã§¶õøýÔœ^ê€aŽQž·³VaƒW;Ûk _k'·[÷ðKsxDúMzðWÄà”Ki·ÑR Ê>\ëMy®ý¡|×ÿ1w»üçÜïã?—η•çNÓ ¶ ݽ˱¸JÖ<;>+rl)ZsK’‹ &²EÕÑ ÊQŠ«†Ý¢c²¦À%œÊ¦šaoE°“ªßS >¦”|I=Ë“tËA4™q‡¡é’njņ+Ù r¼¾ÔåLÑl…£}üUð<ÂPoýCÅÌÒ]eë^~ŽoèÄcUÌ„cü¬"àŸä&³ö»ú:´Ú(Ë”Ë UÊÛ N5ní±bí'Í[ÿ꽂ü*½ú.äÖ„ìþ2z8Øð±Œ4.Úóí½ö÷ÞýÜ9Ù¹wc?×Η¥çmSgT‡êŒzË=ŒT—£˜µ2áCѤ>ù/$Y©.÷"äWÊx·òI¹AÙ½#–; s9XÒü3'1¤0ßÉQ”‡¤@¤í‚x”z^ä¨(s$bDKjŸòûÒù¬—æPõúA¿tOíº,èÀ[¤_Ä]Å'Ù7?ùcŸÃ Låµ½úHè¤^B,®wê z'Årk¯qG‚š4tößTþ©(¨7ù»Æ}å^ï¹ÜÆßa0•k}Äyªoo~jïþœ½]üsö÷៫çÛê³w¾R]ÝZ–€GAŽ-âØ©ÃC…â;µûä½!Geù 4ÉñLm™R ±1;¾ ¤W¦¼MÚrË™CWîðáǺq'Þr8Åí!Y2àæc®´‰ôK)åŽÈf@§Åcê}coí±Œ ŸI1vô/'QUr‘”ÒE~Ò¤@@z—ÃúsüêOá—Ìå/ÿÔw6ð×u¡Gq'¹€DiÞÚwÅ¶é Œ†[ÿùI§ÌWñ¹f”ÕU÷Ï9|³C'uý¦>×þPÿÞý1{»ôçìï£?WÏ·Õg5Iò£F\WËý_Òµ {ê ‚K-*÷À2Ë*ã}dÙZ#,ÌP‹ð’º’¶¡J©i¾}ÖBî8žŒpÙ€ðœ‹Ö•½(sØŸöÐbHîìü°¾’RžníÎX°aÞú'%NSæ¼ÈOʹÂóÆœž¬ÈÏñs@^»–9áÕ'Ÿ;ØÊø¡âzö]!•c¤³9¯¾d¼U3]zðQ´ÝZ¾HÏíRÀwXô2ú¡å“CÖËëPžoî•ï»÷“çÄ?'ý¹x¾->]ž3ü"‹‹ Î4p"8Û3Ž6sá9ÀŽ”ff™ivWµ‚ÜÀ°‰‚)dßŘáMºj ÈIß§dr¢<¹‘,ÂÇ Œé‘çÔ ðoyhè7=í#>øú Ù 5ÒYní©Ø'ûÉSðýgy2Èa $~¼ÉŸUþÄ´b,ÛðNU`QƒM°W_Rš¾*‡ÞSÖ”6‘<Ï[{€O'NÍ´)¶îå³HÏa[Êë.ý”÷œè¸ð/£—ï.Ñ”ÃMy¾¹W¾ïÞOž—ÞO¾½_<_ß‘\ymQ­—ºå77ù?rŽ7«:îä(Dò#G6ÈÙbTì©=Õ‘p]sù$ûNþVd×ridª—k!,z[iU°³;¤ËÑŽÄŒ£’s–w•ôx¼ ©ŠxSŽ¢UvìÚƒ%ʃ`†[÷Q +ª_ÉÈ»H/Ÿå`€iK}èÊ!é¶ 6Õ½÷9kù]xÓ›R{(·ö¤gdzW˜Ñ?¿VV¿üxWW\?w*Z` /~ØZð$¯ü»%çCkgó]ë/ß»›µCt7ë/?t·j~¾¯ºã­Ú :¡lœ8™gª«vnbËý$ÖòZ‚CN–’ó:®G'i¦XV‘ü¸‚}ýcqtœpµ’¼Jº×ËShgk‹£}b|C[8¬ÆQ¾WÈRè‹Ã ßå,ë®víåìJ|<—2\ÿ î$*fê>ÛåWjå®îã]õ1~؈&·ñÇÅû©?*<*ltè¯Û¶QŒÆÒ-·örü{Ã¥\úYÍx§—z‘ŸxnÂáJÀeü u1ÔayËýùö^ÿ¾?NþcþÝøõóuýÞ|êç3å89ZdEËæ|²K@`Â{55@™³–;@U¥\6™­Ó¤°ô£=×Ò-ï±ïžÅb'.§ß#E\Ю•µXHr•û§j€9þÒW%Ïb/òŒ$ml¥àaÕS|4.ÍÉpcò `ïZfšÉëñðªcÌ€Áø>TJ].¿NŒ{™vŸêxV_ =Æ'÷ †ô,*·ö\Íb•D €Ÿý•È1œêE~²kH“ÛfAvîã§ìMŽÔªD¸§ú\óCû®ûcöœøÇì»á«çëêó}±‹Å–3ÛXÆ¡”ùozŠÈ\>еGUF:n53@P·0f9E§¡ÕißÉüÑN>Ëo*f²zu•«N:¥¤‘BîuØÓ#Á£º•®t¥>ñ¿ºH-­¢Èðävk.g·zùè½€¾œ¨ºQÊ!<‰°õ°LL?øLك̼Ùþ>t—àôÀZ¶´jÙ dË iÓ­9ñÙàš_E/®û¦â7€ÃËMüFˆœAÄdoÃoPM0Bº©Ïµ÷ÚwÝû¹sÒû™wƒ?Ηug¯'ÒXÉIÍšlF£,úŠ{Ã"÷²«ù{1†Vì}‚xåѽ`ÅPÆ`É–bÆ‘=Þì}Hô»€Ø‘Š͋¦/቞‹Q˜SÐéPz$”»¥xÉ÷w\íOI—XeÔ¯’Gß^K*EÁò+óÖ?ÄÈúzqÞäÏ*?ä<+ÅÍ?C`OD O’ʦ?Ø¥àyÒ\‰â ãh¬¡õV;(¥3Ž×ѹf²òu:½ðú½“ï>p¼ŽÁóÈ:±úÜåíòþ÷É;å?&ß_ì¦_s#{éÙf“,_3ÌöÑ“U“º¹Í‹½+O Üe•’ͬl°0È6”áËWêÎY¾³¿Î®S ¦À4uˆ®ß•\þËx#—Ï$4P4;桹£¹W¼ï}›·]ö}Ò_~Ü~Éü|_rœO6$MN¡¤[—·Ü|œOI_ošœ"ßãTÎàå;ÂB]ÈqìîéTƒGñÇ÷ƒ° ê÷ ´O!®£!çüV˜nÕ–´zž@Â3ÐêSUÂä–®ÍAœ«Q‰oo½¸Bsåý^.ÒCŒZ9kfÝà³z¢:ô›–Ðá”ÇöoıjYåÀXÿ|3óúhùa†p¥o맃øN溗þÇ\G’‹ù:Ç®~'¹sðµÎCw[ë]ñ¯K×Û´ý8Áݤ¿Ü°÷%óó}Å™¿ÔªÈÍÕàÖEebö*¦Ö_ö,‘eÑš†f1«‡æÈä¶^Ð×–ü…qëNyë ±ý’9RRŠÑleA䃋ì«$«CÈ™AjŠ êæ 6¹>ÂÑ=íÅQx¬§©¡¾­±ØcŽË½­çGײ3…}%º9É‹J.'\°#p6„Jà`ûø<ö>µŘÔ‚—x%“ƒ±Ÿ.íñ£×‘aM]¼¾{÷è- œp¼\¤×LožFØÚnôÏËš<¤ S§î|ûMõg÷~Þ¼øû¼ÃßWÍ¡½}ÍY¦ýÔèšÞfU5¸j–ÍÌaR¨“˜V{È€ ÝÜTFuÀ1J²\þ!7>µw™?¯ÀÙ¡ øÀKÔV·È¤lìôbëÀ&@S}Úg(¨áÒ´\õ aP>éÖžõQ5½Ã.ß?Ù»YbË7ù“Êoh…ÚÞ?)~ÇùòóûT_¢2Bk{—ŸæºLÅîGsÎPv“qÓ½Ë÷¡0#%õy‘~rÊÆ!’3.£—ï…z$\5ý¢=ßÞkß÷ïgÏËïgßÿX=ßVŸ®ÏªÀG˜u! ãÆª =©s^ °.»*¿EÏ ¿¬¥C`àÉæÓ:,l@o‡ì^K“¨ðú°K¨Æßa&Ø¡3T)o¨QþeY °djù‹íoêSpažtpíxðÍÑw†tÝN'ß»Ú=l€|^9z‰c¼«‡·±SÖ3 ¡$;¼î8‘ˆájPLîQ"ÿèÒ¾AåG YŸ±žÝ·¤ÂSï§ÜNxùÜ*@ ²qê9ô¦øG²Sb¨)6Íùæ^ñ¾w?q^x?ñ~ðÇÂù¶ð.¹L&a±$}/…=0ñ…¼ê•¨ãᨘÿ]Žhªjž`#Õ€µ“¸•Í¿Þ:éÒ³¾Á¢Šü~ÅÉ`K“H]" lÝBA¸¤y[ø3ô›Qéõ™bD KÕÀýÜ ÝŽUÎ훣 2Úʪ÷݃ÞJm @lj_T|IÒã2ü>0… Çiôdù ?Õ'ßIu,¤¶?@_"Ëœr5¯T×¾ýÒê1õÚÞúï*¿‚Ú´›ü9„ß5—ÛøåÀŠì¶’oúsíõ»þésòÓ¿ÿ\>ß–Ÿ°Sÿ3IÓ7ªtàJ#õ‹ÅŠBÄz ±BQ¸ £‰qHêÍXž±ŸõÁ ôž[¨¿çr ­š[­?¯6À š}ÔG€]Vf•mŽgzd¥É•Uó¼µ—Ù%ã rÞú‘ä;¥»=ÅLLfQɼ Ÿšcr™úc_íÚsÍåo½Ÿs· Îý>øsí|[{‡)гFñÓÊ4‡ˆ`7V‹¾WÑM‡I=h¨Ÿ]ÞÁÊ/åIŒ¥=`‘zHÈПS[N~Ÿúßa™&?®lâyÙ‚/3,–÷Ö9`0mòJU ðC¶A6ÒØAR/зæTâP¹^Sí·î¹A7 t?¨øDÏWbä>|°2ÁÏÊïè÷®>¨â¸ JÑ»L¹JfE²L’£ý C]+‹KÞõ?Uþ ži¼É¯¹"´Îê¾\Á°§Ïª»ö~¶Ö¯‹î]çûÜýì¿.s¿Þ­Ÿ]y/·ö;”:¢ Ð»«ol”Ù0aÍEɨVcÍê_³&€—øäW‚8ýJ´ïb¿(†§ªŠ¬Më„B*VËM#¦aÍ.³¬…ò;/=Ü'? \†ó4pÓeœ)·öÊ~ ƒuJõÖ?Ë”ê.Ü)?ÍäC†XŽÏñyç ª'< ŸêKS³Ę,óqÝÄ ~P³…ŽöZ )lQ[âè&ä¯Ü ½^äŸ0y³àm½Œ*^ ÷½"fúóí½þ}ÿ~þ¼ü~þÝøõómùé¯ê]v\Ä‘Á,Òª¦h‘Ÿ‡k:ðhãkµrÁh0M%PmYÕ- ÆY>’+Ge£ÖÒk€OËŠT´ØO¿Rlˆ¿=(WÅ9™yàoWîôÞÕ%œ@nƒ˜JYKr­ë/úA:í{×ä@*Ùp0,¼O±ù€³À¶ÿ6æ—å¤U`â,.ä–)¨¡$™ñIžKýgký²ÏƒvRÚû¥ï¢rw (‡\&«R`9åéÈ[Âú‡Ï`-•¦1 §³£õ§Æ/}ïóõò’ûÉvãÞWÊ×ef̤á4Nd˜ÈôÇB©RÓ…Ø¢¨‚è@4ž Ôùް¸_7TRUgÒLz¾‹5}r™p«?6=iõqƒUEÊ_ŒJ2vy/f³\*X SKkˆ”¹§Eåêëû»õK‰ÀNë\úrdRŠHáóýìÊ|‰ì›,Ú›}ìÊŒI‰[ªoãÝi{¼Ý ‚1nê{BW …³}ªsB …üÙ¿©sS ÷C~¢I2T™ÕÛøqJj캅rQŸkïµïºß§îþœù}ônåÚÛWÞÅì”Ð’zÍE¢øì˜fvÊæiЪws½Vùqa‡^I6¦“&û.€ûódØÔvG°\ÐiƒCÞÝ ýýE ða! CT?Šm*añÖ>Àx¤é SlïŸz¹Í€ÑÉã"?\ÄI½P¦×>~`‡Â?˜`»þ(·”× ¬C S 8 °èFY\Ç®=>Ç)¶˜ü/åÖÿPùyê§z“ŸÈ#À•ÉØSŽñËÚ”¥5¶xÓŸkèïÿœ¿]þsþ÷ñŸëçÛú;r–Ɉê¥ÉFv"O6¦½åéÏÒuÖÆãFî­ gÄýT ú/ΰcKÞϘ¼Õ¶5I?DIÀƒ±Ò]Ô¬:i  [s˜'°­Ðÿ­û„°6õÀßÄO*~ŒJÝòû¾æ‰ÊÂÙØ¸¼ö”ð·ç†»dSgZ½µÏJÿ•‡B]ú/*¿b¶›ü`“ò={?Çb&Å£TÍ8óúóí½ú}ÿ~ú¼ü~úýøåóeõ] ?0 Â\Až’”¶º ?1˜JÓUØ@Ü‹Çs‘LZµm¡XÜ€÷å¹È/å´N]YxŽôòdTT¬*é ‚hÊùq»ðº+D–Ì8‰ð«€—oíºIÔc–[ïr½ÉM(»¸>E!dWZ@9-&$Üvc‡ÞŒ' ÀôÄøT6ÇeÂû·<©8 3®_š'|>¤AÖÜ/½á¢œçá"¼Þ'š-æÀë9n9º3áƒv(îlîï{ß'îþ˜w7x·nåíëNíRpÛ:i¹kê(šZ(§Šš¥™U_3,}²ð('dÄlV)òµRµ"Ÿ”ëúܳPûqÒl§)@@>Õ¼>å¢\}8Ê_”ùS¢íù\åf#T,O|k:H>GëŠåÊâÖèùut]¨gKµ“õ°û;«ØÀ9[€Ç :sÇ6$ªµÞU–åMB~hàëi&'˜ÜzÀ>ž­É”“ç.ȇiœ}ó8ÃGaž’dHZ“œì¹ïÃ^­;ŽuyË:”æZï*?úöæ$÷“ý9ì—[)‡Ò¶uæ‘o `±hÉèr4HŸ„ÃþR,}u9LòU¼6§»FÅÞ˜¬#uü'ð jÁÃÙxªQŒægïSe/z\dÇÍJ-JÕ,¯cä À}«äu*Î5?ïz?&nþœø}ðçÂù²îž|d€:&Ç{Ôb“Áð¹Pž|df:,†ÁÖ Àü«B„}ܸÔhÛç¤\7)çRÞÅŽË’O+“‡³m¹*ñ#âðÐJ"¹ €]ä±øxu5¬–ð"“5 “Uì·æ O=r뜱B´ôr“>ªôZìøx¥·Á“¨.ó ‘íå©Û”dRÐÒÌúä#C¸ûÊ­½WÍ뽨ð¸‚c¾_Iøh¸KÜçÐù\€°·x‹§æŽæNóGïnæéÝ̃?Vη•g#-ì@lÊC¿SÓ”§–Oi&=vn!å u t‘£' ¤-03HÞ¢7,[Lu3؃.ƒ¿ÖÐKäÅ‚IpD–ÿÞõªf3P¥Ä¨.¿Ì;³Yö_a•¿0¾À5O¹•ë:(Ô€<ˆ×CxÃO~\nh1Î^¿ý°±)pHOØ®4ÌN‚󷯇…œ“´`ÑòÙÔ·"×p|{ëzfdEƒgè\¡¹›bðËÍ醭­œ¸°åSi®õ®ñ£ï}¾¼än¶ý¸ÝZñJÛWÚCxˆ©‡ÀX¡X ¯ä¹'«;OËHšý$‡õ¢J äRÿd )x¨øâ|°£áøVž¢¡ßÅç¬Ož#ìŒ\KYo±Lfì|€§©.dödI²rÎñþÁïÖ/rÄêƒ)•rë[¦AÔ R~XhþÈþÒ ’i;)ëû6t™Q’˜k3•Ÿ§8÷Q¶O\‡Šàù³`÷d¨>ŽõÖž;Ž×ì­ÿ¢òk$¾Ýä/0^M¸s=ÇÏ9HQeÕì¨S}Gû]ûG÷ÛÔÒ»™?F¿-œSyÛº» ~â*wY‹Ð§GÈs(¢7ÔoàÆ)ì¬Fd ©µG~+ )õE²AÂnÔ7¨ w ¬ÝnåbfK> 0#óR訞€‘oXÃHF;“Ѥ”©üÖ¾½“ëc•¸ûîIl’5¤HJé“J2yâ˃·[(‘÷f8Ù”‡)%ÿW.íá¼ír÷5M½q­- Š÷ hó¯KßMEÇ– Ñ‹nØœ‘< Í¢þ÷˾V3Wõ<Ôv´Þµþ:úÞgmý˜ô—÷¾f~¾¯¹VQ1“Až—aLšqÁ*60¬È†´×┳œÇaPI±¯+eß)Ù"{ÿM6-RË?z[¯Õ4ºò™®d?ù[2WÊC¿Q€àˆÃ²Cº&°õ&¯×j›{Bž–iÞÚHZ€µKÿè—,o\‰í"Ö‚G>.p7~À Èw&õŽ8|è/“FÍåËk/?.ê.ãÒÏ3t,ÀCÇKÿ fX ñ×\äÿ ¯hPEÇøÁåè»i©Æ¡>ßÜ«ßuLŸÿœþ}øçòù¶üž Ú=•V.Ê„K±Y ˜ è̲F+ræ„ç *+$äú-¤b7ã'‘Õ ­§Z)n$T,˜z|иëXèJÏ º2 7•éʱÖ'ÉI‰Jóö2":¯Æ[{®k åÅ4.ýcgcÄë#ò"?àòû`4·wLécü(-\[ò°xÒÌ?ÔÇ36W9ÃãTm]®ùÒ\/…DÜ©Ž|éžÀŠb¾’xû7B{¸”÷áëµ -¨1Žõùö^ý®ÿcúœüçôïã?—Ï—ÕçÝIb·Fð$*ð'“/l+YºRy_¦ÈjЪ(ð* ”£¾«1Š›+Q)ò†€†Ìb±·Ú)Ÿ‰q¥pô“Thí£ÒŠcŒ¬ü–±¡¼sò^ˆJÈ(@8o” ²À¸µWŸõPʽz韔 °G0ªJ/?)•y¥êý}Œ_¾§\@5·±W)!ÒsA…vá.JÂPV72^ì»æ¦>5{º®Ò>'=àDFyÕD‡¥‘Iå?ó¹Eß­_ ^©¼)¶réðËI.d^Å·›ì/ê!=Hõƾÿ3rÊ%:…6rK> §Íy5‘'?ÉZ»‰"Šîœ£}¦®Y:«¹Ýº/ˆ/Gøû7ñå µ«k^œ¾|øà•ûí¹ö^ù®û}æé‰w£ß×Í¡¼}ÕÙë]ôç6Þ}Ã^Œä ŠYó©­ƒAô«RX]e Ì<ò.í;|ó ¿ç‰9Éë])̈~Á¾Gëãè“!(…Ñ/>äRŠÏX5öô *#^ã`ÅRGóªé± n”~ëä6­Â®zEâŸÜÃfž>7ü,&â-šçÕG¤ú4+4SäöLIXpóÖ~’ ZJ*•מX¿Ê%#=Öy POáöÔ¬_Rüe Ù´Ò8Iм5ôF5´ü~Å·íS¸­äL·;…¢¸%Û(fIË›n Ñ¢F¾Üé$ɘ%.pÓ(­|{<›ì´j€•®û ¿¦• é"} [2ÀTŒ“Êž³kæ"gŸµßµG¦f–Ó“³S϶D‚Å€ÿ7hÉÑžH$mæq뿪ørÆ»üï)% i^†KR^z#µ‹ú|{¯~ß¿Ÿ>'ÿ9ûûøÏÕómõ]¼ò€-gJdó‚Ÿ&iV±TÌ+Oü®ûÇÒˆñqkWÅÉŸA·ðHXîo(î²Së0’"›PmeØê?£DžU3®†’^ôùЪðp)EǰͨpÑwk½4—¦˜3/Ýz'¦ ÉÇXÜÈ^ú¨Ò­¯o÷çàAæËKË)¿éN.QÊoCI ò.z žíõÝ"‹âŸ[÷UÅÇÕûMüö‹ !¾ÒXoò¡ˆ-Ù•zïÔžkhßõLž“ÿ˜|7þcñ|[{gЪ¼¡Ðµ¶+åQ²æþðp“–sîVů¦†à±9x´âQ1‹Hl·,ÿ?§?<ØgGš‹ˆ¬Qb}£™('ä ZücN©jzC}â€kÝÊ­=Þ\ê-9û§x pµ®°ë§ü¼š&¥×AyØñ[þ„XÆê-ù}èO´”ÔÇb„1KÔLµ[{ %ä­Y:û7"ì_3cÒxùÕä äØÒ9~#â2¢©xêïhïôïû÷óçå÷óïÇï×Ï÷õwp̰ ô"\¨;“ÄÙ™(ÍS_(¬»0†šÖï ,¹áúƒŸÑ•lSp¢ÊòH‹J}«˜¦Âê'³oÙôm&uK«/ ö°AõŸá ˆQƒë3Ô‡LE. ±¿kW Ü>î°ðp*ìíAÀ æ¡îÄKÿpÙ¢Ào¯ÿ§übª[‡å ü>#DSˆÚåJüTŸ|—· “eÅ cЦ*Ù÷Ù“€'GÑ:Õ£û©ÒWrÍÒEz½UÀ±™m^£“ah‰í¡¼½ù©û½÷sîváϹß®okïHJÍ›!®+¤’®¶Ä_šB õ->âaÎ*™Á•ÉO æÔÊ+°q—)Lþ¢•ÅS%(¿p|0ô ¹"h–+ú6~Éör¤õÌ’—M¯×±¥7hä'ëpjóD˜vi¯<))Ö|é "|ê´‹ôÊ)Ä“UŒ;;“÷ÑGÅ­™%zhOŸA‰GEI¨BÏ ¥RÆ­}Æ’LÀzÕq뿨ü…$Îy‘x´¨h©½Ëøñ€4EK½_ôçÚúwýóçäw³ïF¬¯kï¨áDöDÉÓ‘DŽDUa…5±%ðpàHÐÏA¡#(Îþ±"<â´] Œº<ÌÔïæô”@ö®ÿÄr1u”“ FÑõ=ãž‘S¢¨ÿZ Þ~>k:· Ù²®#œÈíÒògj³FZÀî®wF:@?_–Á§ìZ†ìVôøýsähQ \Û¯*ÎJË䎬_>Uå ×NqàÖùÎë¹Ýºo*½&“:”Szª‡ˆWÊ Øn£ï¿²– %Î;•çÚÊwýsçä÷S/œS}Ûº»”o&-÷a—ë~Ó7:²®}Î#pð‰ÚÙ~šPŽÀ:¶¢­Jª‡cçaá"e®É pžuCž"Rœ(C|Bpr¦)’e¶MBEa'ŸüáÈÄ ÓåM†ÆESE„ToíøA×Ö/ýsž‰šå U»þuÓ’î†ó"¿Ì$òCi¡r7~VBDŒ*ym¿«3'´ ¢Œ…êÈ”4BÔri߀îèò•rŠKÿMc¨“6óÚˆ¬2¸rÝ>~ù1iž=^ôçÛ{ý»þùsòóïÆ®Ÿ/ËÏ’ž`†¤°¡XVšØaÊ,Îöу”愯ƒ"}¾÷ˆƒ¶,> —X*‹]!áט#>dޏ{§Æ5ê%[\Ì衵9`U8¯ ¨sAݰJÑìQ@¿·nœk½íú.Ãwíɱ“ëFÖ|ëŸPÓLd)/À]|ùŽøšPþ¤B|_ô'ÇRÃϵêðwõü–F—›óI’Ψní;ü¼(bŸ·þqØS'…ÕM~Øá1Û“ñO㟠·ÐÁó¾éϵ?ôïú?æo—ÿ˜þ}øçêù¶úr:€&ªXÖeZôÓã"÷û€x‡ÑŒ_:¼Í™Âw€ó  öâ+ù:Òƒ½ ¨±¬/KK$ @vWgJ8ñxÏ•)ïéNõÁ•ïàî21ŒFAîÀs¼5'šDp%ŽÞnÝgÅb%1½µ›øY±Xå|êór؆Ÿdý)g˪óðêSR ±ûg,o6mé\ìÄÑÇ¥=ü•r÷¡Qô³ü¶€å´ Tñ)?7±Ì½üÇx üø[ÈT[PðtªÏ7÷Ú÷ÝûÙóâûÙ÷Ã?VÏ·Õ÷$­ºÁ‘³M_ZZY£ø$ÄVXÌlŽZ¢ÙåY_T7“ãR-™&{± kx²>+xE#*,gV>R¹ÇJÎOÖ¨Xñ ãje»sÕ’–»J\ t¬Yw˜fätBnóÖ\½üCƒº\({÷ìH¼œûEü4Tü¤k~­ïÏáS·ÀûLž²ù±Ã?Õ'ßñ>ÁF›Ì”Õ—E¾5—ù‘'Ìèu”Kïø pk†]tH/ß¹ˆÛ“QïG¯ÙZ…ʦ¶O7åùæ^÷®ûsî6éÏ©ßÆ~®œo+ïð>ñ'¢¦lÌzà[œWê|*¿°áÄP°Ü^xóÙÖò¬FI²ÜàÌ<Ⱥ2 Ü…) cî‹{T´$κXÏÁ÷$ûjn2õ«òr-#´ò80‚¼* ¹aV«é„P K{’gä)*A·ª/×âÖ#+­ ‹¿8ùm™%ùd¿|Ž_®I óäØ.õamüTÕ;Ðk¤%y6£ÄDR}´—k¤%5ånýw•¿føÀnòÓÐSÒääsüâ®MMn>õ··?õ¿÷Îß.ÿ9ÿûøÏõóeùþ'@$'Åæ­ŸµPþ3,HŠÙ ‘ik—æ”|A8— °ïòÿŸ´3Ù™u×Íó¼®â&“eõÍÔHÈÀÉri û$p&¾ýð!õÕ*QÚu 6 ¯ýý*QTG±y_Ñëîùþˆnõqß¶/ÿ1ýnüÇòù¶üŽã´*ÌS&¥ÑX%Åþ©ò•Ý¥Ç)‘‰Z8ž§ÕÕXH}å½(_¦%ûN 1/JVˆ*9kR´º/å3Ë%>lUÀ‚Ú øPóÀuÿ€ú*VÀw3ÎÞ&¿/V¿™h¾9@b‹Óºßº§H—×ëÊ9>Ä/*¾4ŸV‹ê‡Ï±Æ÷ÅvåÔ‡S^^/¥ec0jMA¶êlšbu¶ï@t±ÙÔAtö?Tþ ÖoºÉ?~XC(ã6ü¡ðb™¥4½ö~¶Ö¯‹î]çûÜýì¿.s￯Ÿ]y/·öŽ´ ¿Ê1,„2ZÀ˜•;l!@°6J +‘ˆóVn;)Aš1¸`ƒÀ‡¢–K³%ûzpé +2“iڞƇŒõOmˆ!7  )[R Ÿ’£*?O9§-Sß\nЦÉn/—îC° ¼–ÊEüÐTü¥ê“3ò9x²N‰'&£o=”懦‘nùc9ƒ„‹ie/g{æ”Ã-9:û¯È¯0t-Ýä—… ‘Ïçx?Mra­{ñê;šïÚ÷½ûÉóÒŸ“¿Þ/o ï W@þð ™V¤Ÿ*gO£*ÀÂø-@tÚ5ŸX¾'Í|ª'ÀÚìgü¹…í WN á‰ãvà¸ö^(`§ò:ù¡\½veÅÔó‹âSñ Þr^V˜õ#ðjº47ÖÊ@l¥Üz/p®!ËUú¬ÒËÙ3ß0TÛà3bx º]\^yšFÇ–ÓóŒ“%Eö‰Rí3%àšjÜç쿨üÕ¸íñ'õ3#SÃJÇð)s ©‰œ“~QŸoï´ïzߦîg—ýuμû¶p~vսܺ»äšvDaÍ0ûsPF#+<ƵHWœ‘”_ÉZ…Ö<š"»'¯¤v˜LHânI# WlñnLt¤ëëÒÖ˜ÐúeÔ&Ù®C¾ú¬S¶?ðj_*°[–y°Á펠M20(ß?‡£ÜIíBöò+0\C3Z¥˜¿Û!Þ?Ný)0L2ºt®"X[£Çtk®Às³îÙ{Vؾ\-Õög„wMŽÎU©³ž\~[LÔ2.Úóí½ö}ÿ~öœø~òÝàýÚùºö¬:tPåÖ¨˜( ,NnnC¸…¦}î&%€ù™8¹¼›O?¶e¢–— Ú±. –ÀÏJÍ VÜo¨•µ¸ÀÃjåŒÐ¬R—…zŸð/ù˜U~a(5/81òóPZ¬ÅåÚg­:›ræ[ÿéT*8ꌾՋ¿V0~møäðGðÜs}î€M}Í~óÛ`â½ÝË¥=ü,@9CM<ú'K~¿©÷ç"?ÔÄòs..@?~p³,Ûù¢?ßÞëß÷ïçÏËï§ß ÿX=ßVŸ­OÐõ*Ø3퉹Â/Ðà×õ¨k¤ ÕŠZð-V‚X=<ð5p”4ˆKÆò”°úy@®˜~—H Ͼ'på’åéXL.2¸6æJk¬Qþ\îõ§„™ ¯¼R함\îÈ:ë¥uTâ*yí§û¥w²tÈ-}¸"½ôdtÊÏë%ýøÔ?G•¹jP_ß8 ÚS¶Âöæº4ø‘ËP$¾³½œN‡˜Î­¥â†(3®Œ'¡®S6o*¡\Æ¥«¬>2ëc>ÕçšÊwÝ“çÄ?&ß ÿ\<ßß…é‹”ðôÔfhXý€ÍQ{¸¨¾ä†¤lÕeЀ?£nÏ=«yámBªÜAYŽ“†Í‘ôÁí;€ZS1‚µ=YNj¢¥n(i¬PhY~$]¨³ x{N~?ÎYÞTa[{’%Þ”å¸õ1‘ X„^þ òö5R·müÌ5Ü—±•±Ž’M˜`ï´Ž¢Hô•:…%=ÛãG@ìæž.ýcÓõ¤ìjo{ùõ¦Q«xÿ$Ï)‘çE}¾¹W¿ïÞOŸßO¿¾_>_—Ÿq,Éa…ePŸ”º^Ox}Rl³“E+cm9O”á°Yër´‰±=ÅJŽËÿ FMSÛʸM:©9aAÂ4ytR6,ÆH7“UyZÈòY_Ôrõ5«c!ï'À|m.ï`—[ïœ`|MÍȧôJB¢÷ýq žRÊAÀ®åúùT^ LÐwî ¼™³h¬GõÞ¾‹]šôÁÑ{¼ôߣÊ//î<äï€òöŸ–¾šýøå»˜ T’ÖyQŸoî´ï{wsç„?§~ü±r¾-¼Ãó$&L¤Æ¥†¹‚Ü €¥PbßÓä•-ÁSâ ?Ÿ¾„Í`!%¤„:žóª\¡Ù°“KW¬ù›øÑZÃ&r€—Ý ¡Ýw®åÌŠ“žï¿…×° “¨»ê“÷±k55¾Òüwý­:m.+,ÉÏaž¢Ò$Òe¶>ÛS2I"}/¹Ýºo*¾âàõ›ø$ž’~)s» ¿ýÒ(o•eLîÊsÍÝ»î÷©;Å?¦Þ _:§ú¶•÷<–Ѩ jâ ØEÓ‰ì­4IYÍ2ÀÔeÖ±êÿ!Û”‡UïP„A"¦eñZÙ"QäÒW¦?c‰`=/)Š6äHo3jB7ÕÙ0-Ì÷K+Ê;`i3õ ¸ªø‹Ç­=$¦Ô÷åîqÝW¦úm}|È^Tv1_S)¯?Ž‘ËwÔ(Âã#øTœ|—K.á4>Ø*›•\ígЊ y¶ôÑ]ÿëòDx ×ë¸HÏå òµÞh69ÍH÷«åùö»òÏþýäyù÷¹?ÆïVΡ¿máv(ޱ„ÿ;³ƒpM´N>…ú›€ô%‹SisÙIä¦ai€¤ot"ÑIÉwÕÎ*˜õ‰çñZ„øy¬–æl4{»Éwè–‡£8¸À×ñ˜qEë ÆXp¦òë¤ÙÔvkNJ3” ݺo0tÈÖMÝ"\Nzp9å÷+¯ÚÇßò9ú Ét0=¿ÁÝ?µGH§T¯äªÜ;p_%×[{¢µL[Ï¥Þúo*?ø`±ÝäçÔó@ Œoã+\“8±{oúsíõ»þéÛå?fþ¹x¾-¾K”l1øô=fYxsq˜éJ1@Vy)Êê Yè9Í· ™*6P[WF$ù5“õµæZ¶q†ó©Ú¦ÂÅ‹oãÉC“† ´í@óô‡öv€Ã“™ÉQ´tu’A*7Z¼µ§J$+?Jg÷øÞHœ„Ûo\¤M¥ÇWØUŽ>*k’æ7ÄЇöðŽ`Ìâû‰Žl¢0f¿5'ûì4а¾Ä|?!~—תâœÃÇù2ˆÚ…e‰;õ)°¼®f]]”7Ð~òâ2uíɆ¡oÞÑÿPù©7PÏú!¿\ÂDhÅ^\6…?βØ&497ý¹ö‡þ]ÿÇü9ùýô»á«çÛê{\£¤ß¬{RŠ´Ê›êrŠí.¿ [Ö/áQ)+2‚óQ,{Ùƒ¯’£¬³^ùýÆÃÑ 0W BO:<~ä ´‡„fiYÉZxÒáÙ{8Hââ-4#áî¼µ—«˜0oÝŠn FÛÊ–vâg_¶oKË6|‡då™äM{Y™ y3§hÎ u¦bYÍ¡¿äÍ;(¿ô¯BÀßÕŸà¥rú+ü_ šƒà?´þ’DE²:tç›{ÝûîýÜyñýÜûÑûµóuí°IÑûhèVðå˜äUýN8"l8ÀI©—–ôV¹Âã9; 2û\aK¤å¼}Pc½àd†âPF‹´© a\ämÕîZ׫«i­|#àVíšÛ¸ê—æÊÊyJ¢ø"ÏÞ{g›FˆÛºfœôÔºC?)VCû}>Oï³)Ö•–¾éŽCîÊÔ 6+ñ1{ žÍIq*Qk:ò­û¢âËãE“Nñ«RÈ5;z¾ ¿Wå>€¸a¤‹ú\{¯}×½Ÿ;'ý1õnôÇÊù²î[´ùÒ Ø tüÐy[¶h!,Ǹð0åp¡–#µÇš£ä”²ÿnµi²µª¦íÌe Nò&É^NÔ-ÆöRi1!°A£™°ÅÃþiOÄ»â#µ¡’AcF¬·öZ{Oíï8óÖ¿˜Sr¾ÈC*.œ]~™h‘_ì­üdDìãDL1îÆö¼{>õGí&ðîjò­wK”cÍ;Û=àÝО´ë¨ü<ëì»]~ùAÞ0%å…éàÆ?‰Œâ}N§?×þпëÿ˜¿]þsþ÷ñŸëçÛú3s”¬5àԦѦ(/ƒX€â4$¨¼Ìµ`eZÕ Í£aСžFj2ÔÁKBÀ’åEz²úR ¾åyYF§„Ø’¶3Ã,õÌ0q8¹C·P¿˜B²H«žõíÉŠ“Ç€œŽ¡ßú—³7ÜV,ÒËŸ‘J]Üçø€ì Øëô—)úŸ‰ê¥7­PTPöÄ[{kÍfëß2×äN†ü(ò«½.’àg<ÇÏw±m©Ì/§öŽÖNûGïnöéÝì£w«çûê3ôDz:Q¸hí bF5Ï |Ä<DQ½YÙ ,±¡ãSRøÅ$«_æ·Úw9®ü“F)qePü¥ÀZž ]Å(æã»l'ynÆRVYÙ­” §Õ^ÌA¢U JÛ”õ:8Ú¨–F½æúWN¡ ¾µú(ù©‰ õV&-½ë>~ùjY þmôª»þ¨.ŽIœaô®Ê#H2J[´Š®½2-“ˆV­¢ëÞݨ¹X´Š»üïÂõ*+lÑ*îãOJ¶ÌŠÌ‹Vqןoïõïú?æÏÉÌ¿ÿ±~¾®¿‡/ŒJ)-~2™”@|wäÅFu°¼·ìÀ¼„E Ò\Œk, 9’dªS®ï B6 ¾Gûð_´7?+hTâÆuÿÁÖÒØºÉ„‰˜™ššÎb¥v¦…žâ¥y‡Æz›d‰®w­RÈ8³…àváqI4Üãß#· œ'ùÞõfX6¤ic7×ٓɘëßÚs™R¾$ókX8®÷¬rJ#Ñá ‰½Ümséoƒç{5ælýØuw¶wº÷ý»©;ä÷SïÇïVΡ¿}ÝÚ8iÎ"NŠPÃޢ̼šŒäW*ôô—£hª‘Ǭ ¿ª)ÀHáz N-ÌëhezÕZÒn¬á¨ƒBJ¹Ô »§¾áÈÈ”k©™é \OÆEt¶/¿|·põíëî(¬#X¤¬Ò˜¼?Îl#aª#r\jeÈ+r^i †Éw­vǶ[½Šƒ¶²€Œ”‹S£fXçÀº”,ϱÂà ‹*‹îñ*KU¸q2È÷… Uv†gEµ­¾}þÕ’,,\ÕñÖÒ¤ÓA­F¼ÉŸT~µ¥´¹~T²Ú€igÀF»ö`s£°hQõqEŽTâ”e>»æ |å ¨WÏgïj«×ß‹ðTJ­º•‰ûÁË÷ EÒlq¦‹ò|{¯|ß¿ŸÕÇ])˜ŽãñA&V ƒ·ö¢˜AÍÿªfpýOä—÷GÈOvØ.?µpTº‹ÞoãW4jò›àã¾èooêïÿœ¿]þcú÷៫çÛê»@äSÏ%ç¯X)°ŠäH"«Aä7½:±„lÛXu{§žS(û¤Ù®Ã1KÆŽíj"òó„ì¦íÚ "ºìû‡ ³G–£ú9àK÷nuéŠÚ0ÀØFõÖœÜ],ô¾Šï],x¹gpÃÛcÏKUz¸KÂc9lƒ¥P9Ù£I^yT”FÅÛ4g›\nMfe$%<›×_š4Båã­÷¦Ò÷Ù Hí¾‘ ÊȵÝßÈ›6Î…ƒæ”·7÷ªwo÷³‰þºLû>ðmÑüìj{¹5wdŠBË ð|àÞ²<ý «QÎ àöÀÅ%†ÃÌeX9‡ Ú›ËŸÀâR¹Å·©R…!6-–¸{RžýXVÞ dUé ]³ÔðDÇÙ )MTã®kÄþÖ\¬›Ò㢖KïTN È2WÆ›—çdâä»[t{¼|NZL€±F¿+O?PJÔ’.šDt]0.í•ZiRl¡ ®Gÿ1¨ü­FŪ;䧯à¯ì†uçÇ©¤¢:³Îe²ìúóíú]÷~òœôçÜï£?–η•gzÅRz._ÕäÇHÇ]9x™Ü–&·×‚`‚€Ò,‹F$î °ÒZ¶ï”@9ª×«ìdé[ž‰Íî”È“1<ùŒœEß잢ì`€ùäCR}­ù.+KZ~‚¶–níIއ@z>¬{ÿlãIÐ ’‹üdúÊïÃ=WžÔ¨Ïñs†$ƒóFö¡>Èå"‰»N…x' ‘£±fþÈI)S!†Ly]:o*ü„ ¶Â[ <)J1 }Æ ž`;T¹=.Gñ§òÎö‡ò÷þÝäòŸ“¿ß-žŸMy/·ö.ˆ¸À}@ZÖ¬,‚h8)0m.HÜÿUJÂè'Ä–!‰¥­w‹>©Xä«CnÒ^DÛªÅm²M­*  ¬ô ( -ECžßÑÈ1Ø¢bl[®eå…X`ùÁ’ @ˆ¦ëzu¹æè…[Mn”rë7 L=¾_]›ôY¥'ÛÓ0ºýàÕ (JŽÝJn¼òÄÜ¢xŠ$ê÷³«qÏ’¤viß´D‰m ãÒ‹*?(öXƒ‡üàÕÖl8cã2~yØH#6…]|èÏ·wê÷Ý»ÉóÒsïFï—η•Ç2ýÇŸþIŠ(òàÁ©?ë‚_ÿ¥(Š eÏ¿þïÿøù¯?ÿ[m„øóŸÿ£Á+¥8 øÓ+° @­ì—uCº=ñx‚J!ÖªŠ¸ó_þ¿ÅPƒå_%ˆ’Bæ6V%z TäðÎ]’„ŸÐü—×?¿âãM¶ÿöן¿ûO`ÿ»ÿóúÇ?ÿÛHIÛo™W«n­ÂÏ?I‹yýý_~þî?`ÿüüå¾’¦š’j?PÊ/Y ùï¯ÓÿíÏ_þ×Ï¿ÿËë¯pWbþ50ƒ>ŇxûßÞÅ›ßÄEâ÷<¯¹›„ãO%¤4 €1Æ&á ‡„ûß^%œñ›„ÀÎbØ$œ*á¾t>%L‡„n™]%Ìß$­>Ãö îö.a &¢Æ`ºâmPAñ)bñ"º¿½‹X¿‰8á«W¸¥UãŸÊ§µ½ÍÓñ&ß±KÜßÞåû¶K2iZ5rØñ» ÓŸŠË=-ôö)â±SÜßÞEü¶S2ÇÕïØEÌ*"gþ:³ò§ˆbê"î{Ä‹/"Vp@)¶ÎüÀÇ,—?Ý(ûùJáÔÃ%¿º·Ï.ïµÑ×Ý!öL²H­SŠÚ‹<} È3yÿü¨t÷‡ôÑonñÝ÷¹ŸÜJ¸¶úzë 1˜)O·‰·OA~@Eþó³Ó‰¼_»«ós9‘¯­¾ÞDTàŠíÔÚê."7™@äô§g©¹¨Æ&øé<þÍývmõõjŠú†ÈÈÁ÷’õTä?=^½ÈÒªßô¹¿:ÿ[;ïÞêom½¬¸ Ö-a¼U@EþÓãÖ‹ :¹®H9øßÿ­Íwoõ·v_ü}ZD¸gZƒ×ŒP‘ßÇoúù‡×ͼûëõ þãû‘K™æWóïøn¿*†güù§Wbý²<ƒ—•¤©§{ûÇñ«{Ë×ßøþôú÷¯¾~ùWšÝÿðóñÊ-¸0[id|t£¶­¤[Ã$M¥DÑlÎÙÉ)†W¨¬·ƒla‘¥h6è×r伊ïå™õ…¢ ` 9ÈTÚ÷D˜—´è®íeÎåµ Kj*«ø_^id€vms)“ [ËÖÇèWâ¾rkß)TnÝs¾ÖflïéAÿÄ?¨7Á])´Ù„1+Z´×]ÐÄÔÂ#Q¡ˆ yhbDE¸¨nÍz™Ä¶è3·¾‰¿h•m[@‡‚Ëg}q6¥ô{£#PÉÇ  8”v´>t¾÷íæìgüu™òmØnÅüìZ{¹ÇêF¼ ×BžVò, Š¢U‹˜º&)ô$÷½=%Ó ŠÊÿ´ºæ¾÷º`ÝJ "ýÊìW©f‘™×5 <_ËMÆÒš×&O .¬•ð„àgZ#(…\‘ÜÂç,oQ1ukÏWCÏö<û ËHã¬é„‡üÌqC™užøñÜ ¼“­íwýQE¤+­¨o!C•xIƒýlžÉg•å#›']zÏJj¬µŸkuìÒã”ëCC_ƒÛŸ•Ó8Ëây^”çš{ÝûÞýÜíŸS¿ ý\9ßVž­Í¢_®(+M¤-•£ÓÎËlIEIeµ¡‰zß¹9äN 3 K(Tðó9sy,ÈÂtë™üzxøµ½l{q€8˜<”ç¼ÄQ%2)“ ¥ð1kˆþÖ^¬„*&ú(åÖ{ÔÊRÙêšw² ¯;á[T˜Üsì(  ƒÖíºÓæ€ò -ÿöU ŽVní› ÉAØ{¹tßq›í¡^„ÁKîCèÚÊ6ò—}%Ùk(ÎΡ·³õ®÷×Ñù>oNöcÞ_ÇØ÷uóó}ݹðŸnÈ™à}°MTˆ¶tr&'˜Vyê¨Ü‚µ¾wAQ¢e[䣒/MÈfèÅ(HIéÌ ÔkýiJ¾²NLÊ5ò|—ªûUGtkLõÖXO.‡_gßÜ{°Ü€Ó×ÖÅö[r¹3A—#ü°öÞ6l„òÍTUé9­…¦q30Ž£'ÇÔ ÝníÅ©œH`»tŸ“ ¯/ý"|¦Žaò.QÔÙmðÚžôË É—¡šs­ÞÞisÒ»i?FïÍ¡½}ÍéÑ `@HÀÍZÌ¡€.ÎK/¯,eª *éÏò=i=)9Iö»€T{·˜©T²gB4ýñ܇××@pä{².P¦í©²!8´Ž‰§r_n£ºÚC )”}Ä©øxëjqí°jÃxE]ÿ8Ï$Ð=®‹m•žª‹aó·žlàäÓÖ»ò¦æqƒti§SAVêaId÷å3s«š*­¼Ž®KRÁ³–½zÁå3+K,6Ù³»Ç¸ Õ9 Ë¥sz;Û{½ïÝûyóÒŸó¾Þ¯›Ÿ]u/·î\ÔO· õx‹e§p(˕׺.Ràà 8·á󦲖R}‰@!!<‰ö$tP~ã|¶‰ü>ë¤Yò¹tc†±îÉŠ-,Ö»%'ˆ¨<‰ bœïÞ8-BVR”!hºµ‡·‘5fÒGÿ¾*Yg±¥‹ü@g·£¤Ëþú?e;Ak«þ8ôdŒuLÉ*s5öl»µ**h·þ«Ê?Á¥œ7ù ,/‘Ë;nãW°<’Ô»É{ýùö^ÿ¾?Nþsþ÷ñŸëçÛú³c\±k ê,‹KŽê5˜êþª»½KŽÿ" LCÔ«˜rz°½`á„Äè•dó*n§n6 -!K5Œ‰p¼µÆ@¬–Åh.²=º„šÃÄ^ûE‹åF©6r«Tå=ÚgMeáâjõÒ=4€Ôæ…u8ᣠ/WXe4ÛØyzPÖ àU5•E,,Ãl-E‡<±3eýÖžôÊfkýÖ?Fb‘'~‰‹¥Ð‰$‘q'hŽã1z ËàVJ=}jϵ?´ïú?fÏÉL¾ÿ±v¾,=]›UKå3ÎEÚ”jR7ÜõŠ'™{1J’±!qÊH»‚3ÒiìER ²~‰{ð}Ùüìj{¹e§ S“^)Ù”tÆMм á·%™§tþx)òY¿ÃaVº] ]1æ åP/¢|%ŸOÆš”·ƒïÊp ïC2‰QKÔuV!Iïð—e…ñoö5yú¶¨#ŸYвqç@V#—á©+éÈÑœÁá°™ïhàP:Åz8¤/H/³׋Ì=ÿ’‡Ðrëj{¯;Ý+ÆXUΖ‚£¿ëCZÑ~ÎöƒäËeM8<úYå—u\oâ“øZå¥.ÌòcøCÁš(Ž˜å‡ú|{§}×û6u?»ì¯sæýØ?×ÍÏ®¹—[uþÑ®µ£0y^øÀc/²Q(‘$ÌF|+’–ÇæÕ“9*܇\0,ñYn\~Qy qØL LƯCU¢ì/n;× ¼LLt8ý›vß³L@\­ƒ¬M2Tå¨ÐÚ¥Ž·ij¼o :3'e%—¾µt©R¯¯Ö·—¼¨ärÌÍ´ò㦞…*+y{êÎtJƒ1¢‹2znDòIÓxUÎÖ$#”iàY—¾Y*ƒ²u|:§är[÷^yxÈõŽ›7Å–Ò©µ½õ¡ó½ïcÆvÉùÞÇ}¬–?_jzZRV$ö)ÙiÍ([g ,¹2ƒÕ»@¤R¬øl”¯rvëbcã®Ðš_’¼ÍŽ!ßÈò窑 6hž¬ÑpÂYÕÄÖb .ð¡e÷ÅhdÁ2§€†/Æw Ä + F x˜ °Û¼úö&ˆœÒ¥ÞLÄ(MùñAŒ‚(¶N\wáçø•Ï7ãr6|6¯?ØÊ±á¸muaé'ï‚yi-_aEd;%ž«gçŠF+/™Âx¯ßº·¯ñº ˜K™NðWÆ¡¼³ý¡ü½7y^üsî?ÇîVÎÏ®¹—[yfbNPð:¨«äI`5ó“jb¢Î Ùx/ë'ZXŽ…"‡M6 V ] M~ãTW©Ÿ¢rMk/Ú‘÷ð‹d…/c“«9=¢>Ø!8'0² ¯‘»gX¸Ó7ÍV¦Ú‚ré>O¹~ÄÌ’´\ÄôÙ×óÚ>ƒÆ+ÆE"À£íwíÉ÷ë3ÇC{Ì0Xª2L$—ö ŽJê0·.ýËζCa²ÒE~ ;—·„ãggñ:1ŒñC}¾¹Ó¾ëý˜<'ý1ùnôÇÚù¶ô¼#IßJ²ÅdgT{Ke1¯†¼KÒwzÁó {&)¦o-1I21…ò~êj•ÆÐ3¬± áëó÷KYþ:¥-wÀøAÝû¥ ËøP‚ ªLqPª¼_êî EõÏ4ÌLiÄ[{"ba—1ʸõÏ?•¼SñùÅBƒ9\Û»ñƒü0R†±m¼ßšúUoÑ)¼U¥yÉê¬uÍì©›Ääõu鼫ðpìöxÿcmø/2€àçØ‡Â`ˆç¡»£ù¡z×û>u^öcâ÷ïëæg×ÛË­;s å_bÐÆŠ[Ì‚(šÂ`¤„e¢'l IMűrà64$Ú÷@ì¿°Õ–¿U^yÒ3NâµÇI:6w³º²Å8¡jØ*5åŒ(`v+§ºyÂ1€H›“]µî ?Ü­=–R¥Œ#Åxé*x(u!ùQ?.—¦à¨ÇðeöÀƒ® ·ëZØŸê#ËFÎ+°öG~œP°C–Vní ^—JùZ(—î«JOõZ¯7éaá•ã¸f…Ÿ”Ä“SžD¹òµ|îh.ò$ãgÑÍã»—+é'L¤ã"¾\±nyO,Ö>zùNü ¿Ö.Úóí½ö]ÿçìíòŸ“¿ÿ\<ߟ²WùÊd±Wl.AgiÛB͸ćòdb>àAоÀÛ¡" ."ÓuÂõ  Ê*æL"Z[̶2bhGm#£†X»º‹»n¥Áö5[6RÌ þSŽë LØž³+òÕÑ^ ÷N!uËË[êúÇÇÇÔµÜù”¿¨ü¸„›³nüàGY×øÃµ½S_Ö£¬qÇ?~8`£’áh§£<§ÅLéÖG~±$UcùÁ ‚¥Z¸à?(/”—VnêsÍõ»îésâÓï†,Ÿ/«ï°F€ÓºcVI´ÅÓ’på6ÜÒbk³kdaàŸ†¯§¡ëitϺi*gz.¶YÜ!S ¨|¾M]ɵ ÔÍ—¶çò”$3aPlWd‹v¦×ƒ“0‚¼0eÝÒ ô@XŒýÖlžÁ+¡YÔÅõÝ-her®ôr‘¾(ÒƒbØ{Û ç3”ؽñ¡;îOÐb0Çê2¤Iâè ÿä[sØÒJNTúçK÷\ˆòóbä½0½øEák'ˆ†<™á€(Â+yQŸoï´ïº÷sç¤?¦ÞÞ¯œoëΟ¦rôKO8ªö] YLz‡f-éë R®°ïz4c±¯Êl;ú©žš*,ß³lH’S^G? PÊGkO{˜´EáÙBϼÅ(r={Ú˾T–±’ÖÛÄtÀ{¦]]£Á€²*³öáUó [³Ýú3V C\ÉW×oùóTùSïïý:ý=~YÖðŒMXµÚº:?õ§W»GÀœöõ:–Y—»ÜÐâÎöš¾—y…x뿨üÀ÷,Á]~ùÞ@’_ñ2~ÅY—#†ŽVÑXù×'eècj<ßI„,—# Ï4wp ø¦íe‚ø–µ€xH&)& {€™œÔ¹œÈRÌ=LöÖ¸µ¿ ¾gì¢zëbi9BÂQðò÷©ò¿³G¨'¥L+@ˆµý®>åzU04M•û© ºI‚eR*$ß¾’c”ý—Oåì_?*¿ÉS Xœü|2AiýÊ9~¾ƒ;. §š×ßÑÞéÿèßÍŸ—ßÏ¿ÿ¹~¾,?¬²ÑˆJd9Ç›f¶}n£ æˆ@"Ä£%î ¶g4¦W}nÃ)•c +±OÔ2@+ëú$e6¼l$çrÑÊ9¸à‘¹~‡æW5ƒÈÚíb[cªµë™Àn¯Ã²Ù! ÂwR/Í¡c H‡~éžR|ùCÒïC¿ˆºŠÏóÊù؇ÀÍ¥laS{õ‘ÕI„,ýwò\‡†¸ò޹µ×ðcr)Œyë¿ ?lk©ÝÄ/¿ôõ–H‚º ŸcJ'Y§ö\óCù{ïÇÜ9á¹wƒ?×ηµ÷„šÊ0ð§¦Æ•èV'¨`,ÒD¸5QJÑõ;Ðóux<ºär¸dϹ Nÿ0T$½3»U'æbþýˆ¹3W¤Jv ð¾rcþ•+ ê˜Ïs—Ò¢ ·ÉÐK©I(¦_«·ö˜GPé$CM;ú—ƒ¨*SJz?w?åç9Ýe+È×¥õ9~õ§ËQÈúX—Þ‡úØ ƒ|³…†ÅYx=AŽæd)zÐ ùÖ}Uñ[ã軉Ï=#·.åù6|î0Ødé¦>×þP¿ëÿ˜¾]þsú÷ñŸËçËêÓåÉ›Pr¸²¥3vò 'ùA<œ°"äb©X5Æ€ÄÀZ;¼²"qƒ,gs‡üçÌïÃw çPß¾î̋ߥ ÄÁ–ÕCŒ™ ž6óâËE¥è‰ÂÆ Cù¬–Ã35rR´¼8ôøñË?á_ˆÅñÉÁÐ~¼½ÀC.lü”†`È"#¬6ÖµBeaÁ€ððPs XJk.Û–Ÿpöžå©ÐÔ/Âg>qò,øçÈY0õ‚Mí¦8Å«1ÀojéHòÀ†Í ÔèÙníç/r­^£Þz—4²“g²ðj?e×ï$Aáôï1öʳ©©ª;Û{Õûþ÷™;Å?fÞ _8§ú¶uçŸI$/TpêxZ£ü¯Wu1à½8Ha5xÝ &N«º¸“e(Ï@9Âí;™[ྦྷԔ4–•Ù‚ Ìd •/NJõÎJÒÒ ö:Þ^¹ Ÿª,øœÈëÆñ$-ȃ+\íÛSËU4íû(›šRWyõ‹ô$åȯ÷U̶]9*yÝŠ¢ß?U§Ìd Q¹ø»ÞF§‰¡K{ ˜ÖÙƒá¥þîüe’…¡z¹õ^‘é­(Q­¾mÔz­È*­ç8”v6ß•þr»9;wsþòwkæçûš;*倱 ÐÚ´tû”;é‡Õòš]¨O‹; ²„‚QaWlS¾wöBµH¬ºòsŽçѹ<À_Yöïèå)W­. ºÆ}¡\ò 0¯ö‘TR?mâð zeÝÑ®=°mÊ݉ŸJP¹4g‡â`YdŸÃ‡ ŠLHt­ý®>ÊPy¨ÈÜÅ'kA?<¦—ö¸3“¬­ÔKœ—þ‹‚ÒÉâÀ½ÈOZ\Î8ËÓ¸ŒŸ*7rä'40ëÔçšÚwݳçÄ?fß ÿ\=ßVŸ?U;A^ø‚æg’€¼¤ð¡ÙöÆV÷•Q¯à‰V²…0ÌŒ¹OÒ™Ü ö|­¬ÐWØòó¤ª'·ó¶PÝÙ£Ž¤6¬OÅá à~µ«}µÀJïUC2ÅÒÂ%’Û­9áþ®•õ¦v½ ¤E6æ3ñÂóÄ¡¤Ë¿ôƒÏÔ:@”[‡¥ë;å%hI2Ø–WÜdP¤ÁþÎ#y§üÇä»ñï‹çgWÞË->áS!@~•­gAT©ÈÊèJˆA‰Ï:’]µ^]ážè/™q£<G(ö®c«ÀÛELD^âc•ã‹é5’í$­2P9 §VeW 1Ds­™KbPœµ˜¾*ø@¨fØù怑ë ×m¾õHsktožc/<9z‡`–Ù>xÈ%jRǶb»î´¤]ÖP+Áj34H.ïÝ$gëùk(cr—Ωê»Ø9„ÇÐSÒ—ÁCj ½Q%«ë^y¾½×½ïßOßOü6øËºù¶îÞ¾§ ÎAÖÌÜ5ؼ„›çÛ÷T‘'œ|'Ÿ]öèr±-3IàUquðá¢x»xÕk߃2<<„å,ÐðTKàKÀ'·ž€JWö€ÞíúLJ›*'Àµ5èùiÀ'¾ !×yÀƒœ+Gb¹/[áAÇZ†Ø>v\òQNƒšÇJçØuÇÐ ¨å]lAûžWÒ˜kÿ¦Õ,wv­—þ«’AËQR»È¯þ#ŽäØAÑÿzAé NýùöNû¾{?w»ôçÔï£?Vη…g{ª[ÊÌJp¢f´hN¬àÚ›e:QZªµ? ”bÌì¡©2f¼ðÞîÔï]=Ц0´Ž(Ååô¦°Q ߌ´pÕeÉ÷@k ±ŒI˜×·lÆP–Ë}RÛÐʬFPëMsEû|syc£‹áÝË­{Ùš9Rè-×È‹_TüB Ùûö1z@…×Öäyã}jö±¥ÚÃq¹ ܡ޷Æ[{ E8÷³&¯žý+ü9xæ¹=äŸøéåFê2~^) ÚÃoySŸkîµïz?&ÏILþ>úcí|[zvn6;»fá©SüO°%6cJë÷–i)Ï1+…²`.wjÆ¥‡å{%ý%舡Ù÷Èí ½d[GÔf-ÓRÆÿâ Jh= ÄrCnð-E 3¥[{VG…æ¹Xn¯ïŸÄ3¯äâ›7ù“ʇÓ;è°?)¨Ç!³NÞOíÉÁ­Ê·=EAé¬åKëR\bh=ß:7œ;\á¥Ü„çRƒ—ÒH—Á× XqòîPÐÄSy®ý¡|×ÿ1yNþcòÝðÅóeíé⌠Dê_Άž•9J™V_=Î7-òÓ‡ Âc%E³4Ö,:Q…^–¨Q•âpÈεD H!Kúå;¼t™à‡N12¹ˆä¬·<M÷’K ÞîÕ^.må‚êfQ/ l ]Œ¾=µ`ùZnÝGeh$ ߤ×\;âïBâmðpòÉ•åòzåð¹csXQ¦ËZ+J6Ÿ”)Ü׸t>UtŠþ”¬c]­AŒWl€1_ÇÀ“ÂÉ+YßÀ^ogóCï®÷}Þ~6Ù_—ißG¾¯šŸ]q/·êŽT¦„! ^†2þVÊPäDÁîþ«%£Ê›b*_˜~Ã’ßú8Áäâh²ÏÒb\mÄ€ÉGx¼Íà¯LŠ©øa;ùãñ\Oø(µX¾$çDhx|ßLå¨YA;·1·c0üßeÕVZ·þÉ †›üEåO„ãúr~ŽBæïq"~êO¾ƒW€Ë{#yIØ ïÜÚ“SIåxcÞú¯ê¤¯ÝÄ—=6òoÎÛð1Àéê=Œ‹ú|{¯~×½Ÿ=/ý1ûûèÏÕómõùÇ{­²(Þ7ÊwІJ#G S7SQw6ìš$û’Ë•Ù7ãqóÀ­#¿¥W2¥Êj,¬—ªaiÜÓ…Àü¹üu±Ý¦ª*ñ]§pšÐ‚ü“´Ú ÆXí£Ž&tîbò¶å÷$;õÖžiDÙ!¦[ÿ ÀŠi0HºÈÏí&¿/ºž–7îÆ£Ž¬›i8¯‡þäöƒµ<ãÿÎË“è„q ßÚwõgC09ã­äÍØ7ù5.ÞlãI:Ç?´ÔH¼©Ï5?Ôïº?¦oÿœþ}øçòù¶üì¡”4 +”ƒE6)T1ÎóX++ÊJjvQDÕÄ%#·¯2Tˆß!)¯pÓ>á骜Å}‘؅Γ[^]$»+åq]$xTlFå€ZQ\¸¼Pµ¸§ÜÛ<º{·æý—BoPWQ/Ý—ZPòÙ¬!'~$ÝF޹ˆÖSa>GY$RCEóŠjoW‚¸Öwf¾J«r½µçèl µëú¯*?>%ÍÝ:䯸ÍIwµÞÆ_õ©:W»éÏ·÷êwýÓçä?§ÿ¹|¾¬¾÷òìøR{ÊE¬c@ªI$|pIzXèT‹úH$\\•~ZÅ›@ÁW!\…åY òû™Òµn‡=™ƒb#-OIxž«>æ"n˜,û«™á0Êèu3ª`y)SûUÛ­yç%Š×9¦~é^æÍpëñ &ñ²»ô¬Ïác½R©V€s{ôû¡>âî²>I˜šZ,î>°³C¹µÆ$#Š¢nýW•ŸÌŸQoò£X€÷j©ÜÆ £<¤ÉÛ̧ú|s¯}×ý1{Nüsö÷៫çÛê;¬RuÚP a9" ¢'÷UÒ ‘1‚o)G‘fhjpù¥äeW@¾IUW´ï¿n|ά:f»ìæ”+ ’—š%‰Œ1yûË–ëÆ‡­ð…Ð/ŽtãæÝ ŸãXà­Ÿ_Œ”Ä2²j¿uÎ=ØAËï°õoáŠ>‚L\|UŸƒW×4ô¹áAZøTދ‘‡ŠÏAÙ4g½µ—•BF§èêÖSùÔ¯ÝäW§ ¯¡ ¤¼Çøaþ«$+¿Ä¡>×üнë~Ÿ»Sücî÷ỵs¨o_{Gh—]1Aí««Þ ²)VpZ^{Ì—HAV¶rجéà%>æ79¸Œ‰dŽÑýA”3DTŸ¨zH¸nd†ð GÊ•AfOï†ú$Þ`ЮÔb+C]·z[Q51‘LJí½’{ÂÏR½õOê=e;s!X{ùAÈDBcyÃn|ŒßÈII~šáAïüT7h^ŠÃµ|×°;×iñ¸³=E;Ä«ÚGÿØ ¼XZ å"¾|nšñZÓeøUÁk!c\ÔçÛ{õ»îÙsÒ³¿þ\=_ 5…“·ß̤JjŸX¯{T®­_œ‰ˆJùZ­tЊó¤'j/+Žá®Ÿ¡"L\9Êy<ñ¦|uà ð±åÍ+ïF©KZz¨¸µ ,6i æÆPcˆÏT§Å^É­R¡Sº´ÞA^NÎñKß²ˆ‹²)µä¼äÉåø“w§’=»q¶ÅÈŠÕ\z¥eê+àÖHf††ÛéÁtøÖOŽE[9ú.n€°”sxÉùL¤¡€¤qóœ¹GAÜ•ö³7~y•û®÷ ûñ‚N÷ëö¾X~¾­4ãø CgR–ùÉÿ•kr-ð>Á…jÌX_LÀJåê@- —–Ë[ Ú9vl?`RIÿU7|Ý©²/êò%f͵"CÉüzÌýA%$ö‰RcR‹ÊÔ/Í!ÿ?:©ßøì=@|1œž-_¤§ M~Ÿ;Ð` Üè•mz·T-ä´‡G/³€$XŒ- Í8Ûµyb2Áð¨õÒ»¦ãOŠW»’xé5Ÿb^ ûà•¿RŽ%y§pŠÊÛ›{Õ»Î÷‰ûÙDӾܭšŸ]o/·ê›hs¶Úxê`g‚*+/ §™€-ɹ˜'Pëÿ±ßè`ò|›¤D$­_i„¬ÉU}@ HtIó~èbÔªC¤ 3¼´—Ónr5O\úo*?·ó¼‰ß~p£Ôó6ü§¹§SŸw‡ú\ûCý[÷çìíÒŸ³¿þ\=ßVß‘Æ$ǯÖ>…MP¸À×ì!/Ç \¹:•ðI>cŸçŸÈмÌpnhJ–|O¤c+¶ã Èr7°êäÀ@ËJ¼sE©,72¾ª%[d§°ÜHÄÖ°S'Ýô¦qkcÃJÖe½õŸðÖfÜ`ù“Ê/:«fõùñS1K19–ê mê/K.MJû:6Àß‘‡ëµ9Oרè+Óhï#‹çÊàj<…§8*Ëÿt(.ƒ‡ ¿ljŠ™p(Ï·÷ÊwÝû¹sÂû©wC?VΗ…wÔtHHçÐÊó—$à ®:@X!®BéŠ?l*ôÅûpmfÅ.ÒÈ0YúÍaATÞõ÷eèå34ÈåqxÈ5Ó@ «Pšôâ–²Ew»ˆ,ù3I" +y<×^ r`ã*ÚòÝS#&‹>ߥ—ãªAN†ØSù9zøê'FkŒ±Î§ò ”“;KÞÙ½<ð@ð5Ð9Ò¥9ÀE"bê “V(WkVc4O’ÛŠ ­ØØ>5ÚÃH^‰( ‰| % à\Ÿ„cb<Ïö‚•¨²[®Ï¥¥ÿô¦‰íNš ¶·þéUóÆÉTëùuö](pKOFÖÖ»àY ÜÞlû°Éš 2š×›íSi™´ñ’r½ºˆ-PJÒ¥5öUéù³ï¡’®ü|‘œœ¾¤„۸כ-“†Ñä`Š­í­w}3¶Kî§ûsØ/·V¥m+Í_ëäy‚Q±Y/i "÷þª¸úy¤¬µ•²î»Â’’À:-[ d}a”=Gý®€Ú°Q.?7YÇê‰DÐ:¼9YŸÙ–‡(ß3Lâ¸âøýD*7÷V³}70ÎIƱ„—®ˆ,DÎ Èïh•ˆˆ‡B½uO’±Ò9ÊEú¦x,€;™ùçq:i´wm¾+¯QÆ€+¦«Ñºf¢f®[{9°«’XÎ:.Ý7^3׿Ex.R*TºæyC‡ƒ¯ãÒ4¯Ss®ù¡y×û1s»ðçÌïƒ?Wη•gyvì (Ä‚ráa-3~nËO&yð®–|!rƧeº°%¹†.þ)MÂM~ò“Q§Á°,ÔÊìáj[Ö5¬“;À@)õ <—q öZ‘]™ † %¬ª•¨æš'ütŸç(·Þqä„¥—›ôQ¥§má͹Á“¼å-@pûçSy`'-Ø\i¤‡Ö0¤æ­=.záh½ô_ƒÊ_£é_#ípàYd÷~%w¾Á§«çPŸoï´ïzߦîg—ýu™y7ömáüìª{¹uw€‡¢T*¶j…4DC‹b7ë"z@8I– ù%†ÝRકûQ¶E4òïÁ$µê™g ¨A7’Å‘© /‡¬¼;Jžá)8añ8?8 re,Y‹ð¥FÂÆ—öšl))©]ú§>SNù"¿ÖÒ7Jgú¦?¹À晑¶üÙŸúÓR~ŠñÑöZ(™º! EÒ­}âÑ-ï⌗þkRùAšÇð;ä¯Ð*4Ä çøÉ€»]ËBâE®ý¡×ÿ1NþcþÝøõóuý½©:ù¨#/21ºÉ?vÅC»¤)™EÑø3‰€Uì^£S3²‚ Õ•Oƒ©°¾ÜEó]-¤jµTütd|ÐJk3¤MêZ _5*ê‡ìχ ¬CŠÁÞÐŒÚH¹-LãùÖžð]5ÕKïEÁZe©‚Ý&»VªÕгº=•lÛØ3¨rÚ¬D÷MuÚ<ÔÊARÓÃ40ÀATðã³9°P×Ðñ½CtÀ Oõ8…oD)å”,¿¿Ž‘C²H'`ùíPÜÙÜ+Þ÷¾OÜ)½Ÿw?ø}ÝœÊÛÖ=‰(ö&q/@=×)pʼ‡/«™;[ ¿§¨}.ï-§Ë¨+`j10æY?Ëù‹F_tú júœI/æK"é¯<›JÅK€%3Ik\&£“ÉÑêj-†{~:>ƒcAÎrN—Ö¤! r´öêè;ü˜DžÄúö’cöN Ë_ƒ*nÜXÔ7$+óZÃèê’(àóî$!‰9}cý‹ô@êF-çÙ¥×c Hò*_çØAÞ°Ë€­rènk½+þuéz›¶/ø>é/?ìmÉü|_qGʼ(GB´ìCN]îF]àŸY6*úѸ6Àì¡åÝ’Éë¸+×Y~¸PóãÝPI‰5“í;C§Ðƒ“A†.ÄúõªÁwV¨Ø㨑Ž“T0`U¡lçÖ¼®k!¬roß{ƶ`4›ðI…§ª5<ŽÅmðX@©ÂMý nºÃ€‚z¾ÔUpºœ> ´ÖKóLæБšA}ö®9hŠ,ÕÚ)›׉¦@×Cj‹!ÀÀÉ–@î)kirL hdgÿje.pÇ ¯„¼sy8 „+]d¶æ ¶€Ë=hC!:Éh]ÍeèÄ´E@H€€h"ÞÚ‚ǵâ>g÷L¦»>/ÒƒqÌ4i ïXÒÇèÁ]Ò,åÚß@OŸÚãu „õPx®ù‘ÿŸ—}Y 4®=WÄ”áÝú*>Èô‹ÆÉÏC›Ññp(»ácºQä4º©Ïµ?Ô¿÷Nß.ÿ9ûûøÏÕómõqKøs‚¾TçªøRöt1=t¥’—OˆtÌUïÎC£>Eð‰¹V,( MÁn«q¡@ŠæN•˜¥t¸Îk±z,Å~TŸ…¬ ­É QžÛ5?‡-ÎàBšš@™©øöê¦Ê·W/ý“EQ9%‹æsŸ ùy±¡êxRü?€n!‚ZÍMìUG ˆôKÑLþ®[€]UÚ‘³½LlÂÙ`Ý­û¢Òw¹B2÷.=û h9ùJ»Œ^ñuC¢à¼Ö‹ö|{¯}×ÿ1{NþcöÝøÅóméÙ1J 7óÆSllìïP¡?†‡Ùë E“·2éU|gÛ@sûD•©"¥LµÙãa‚'Û6>ÕøÌ-töÓp^5õ©ÖON.Kª¥øgÚ^(V™Š… Î×SÀf•hºšõæšb© ¼).Ôû½w@0'™9-$„]úØUzé,¼Qï?OD§º¦ò.5ýPI}rÞ4ê=žRU*jÊéÖœ[±†D‰·BCûîA›“ŸW¬¢xŸZGü¤‡v=^ù$OKM÷½hooîuï:ßgîg—ýuNü>ô}ÙüìŠ{¹UgóòÈrXËäuCy Ÿ±(¾ï_3<ä¬&C¶ïî4|`Å §ŠŠÁ%û×<ãóý¬”ŸOÀ›.]È÷",Ú$?*X³²r%ЊPâól•™`CëóOéxážãÖœ¤öuEy³¼lÝßܯتý&~QñI5lKË6|%äÍ °ZôÎiÐ8™)VXfˆír4t-Ľ5'&"c¤–(ߺï*~Ã3[nâwB¥ÔšEw>†­6¼0]ïœC{®ù¡|×ý1yNücòÝðÅóeí™?É*áɉ†(O…2IøšOÝ,è1ZHZíT†-™êU º%Ì=Õk'†C!ÚUš „, ¬uÊ *ÀŠ: !±0AtÒ—ïA¶j¢ˆ ž1½“pñÍ@¸5§„»Hþ:_z—;1‘UIn¾H†JC¬Ùînô¤e‚ÖÚ[²cÏi/`{e ÆJëtêsͽö÷Þ¹Û…?§~ü¹t¾-½çä ÈðEÙÁ­ÁCÛ€ûëäN¥Ç_Ç~\GxæÓjɰ.’XÞñq‹ð¢dD&ªòÊàáXúf<ÊZ%j5…ô^Àôž  ‰UZeúO“ËÇ—ö \MÅÁXÐ[®¹4!NQ¢·z‘?‚Õ[X¡i7~2K3 Ý–ù~¨LЫ=?G/ÀM¢te»8ÛËaô ßåÖSù+ õ&? À+ÌJÍzŽŸJ•L„t„|ÓßÞþÔÿÞÿ9»üçüïã?×Ï—å§ës(³Ø]-¯\ºLЉ¬  $<ºè\Yœ@´v€*³Ü$%¬,ÎG}ºöþ‹b;‘~”uø.. mOjEr¹´•űr€‹Ö˱kZ·6 cËi:9O.Ä·ä·‚ŸVÍ5âûÇì‚ÏEŽŸt‘?PL9Y(†9ïÆÏñ5ñq‘Ï ™5»þHÔ”‡jàøÔhÈ"*CÂbºµÓ¥W'³’.ý“5WqëcerîòËwÑDoT`¦ËøNÉŽk£®\Î]¾½×¿ïßÏŸ“ÿ˜7þcý|]JNÌXÆR_€Ô¤™*˜Šqr‚àÈòŸ Ìããݦ@ŠÍ2,Áµ -nœã0Œ·•ÃŒÒP9ÁÄÐè ÆŸ°­ &èei eÁè«DÜ^0C÷ŸZj¸íô [oí±+Eٱ͜ný'Íz„ÎÔ±¼üQåe¬0?~ À JOþ‹Ó_ÔÄG,©ð bãz ½¡ÝšÛ†J¨Uâ½wL€Ù©<‡Í.>ô WлÈlx6ÓT¾C{®¹W¾ïÝOž—ÞO¾¼_;_×Þ‘¨4´OŒ–Ú­–'©ïOì¦þðq[5Z,VEB>À¬é è­|CFs®d׃ !ÿ›Ó››šÃÞƒùAÀ×”.ÖÊpÊN1K´C‰8,Ñ`1Õ[’+’?&|‹0IU“Ñ©a¾“{QËåŽö IÈ2ê²Yú¥ÿ¦ùy`(éJ:äWBmÌi™’~>„Ü‘ä jÐ/êóí½ú]ÿçôíòŸ³¿ÿ\=ßVßÁ‘ÀZHÜWz€'MÁÂ#È‘ÑuÉ<çªnýŠ{áïûò‰%å0ÐŒh )WÐLÓ"ÏÉÔ³@Ê$&’Y¸lxj©Ú»!&Èñê[Çñ`ìá6 U·ºPèÝŠ…½yÔ 8öéÊpÝGÍ “3d¤·çÿSüH^"q6>ÁÏÑGMà 5(ÈŇöš-©'¢=d$´Y¿¹ÞÚËã@±^J½tßUzÚb»Iß1/©~( “Æž•€¾ÓÂÔS{{ûSù{ÿçäí⟓¿ÿ\<ßßQÀ‰ç¿Ièëú¨P«%ñWÍ$… ¤€ƒknª—[ÄìÇ’/+éb²”r_¦0™‹Ýî.¼ö šk!‚d™¬50ä‘âýð\Æ&âƒjÁ›Pë¸À›”͵Vã¥sí•6…à1Àw—þAÂÉQaP»H¯CFË•÷` |Ž>껄 ¹±O6åé;HVªÌEz€fK.)æKsRˆÉΊšƒuv_£ŠŒÈz'íâãiŠ“Zs¾ ¿’¨¢8©³¤‹ú\ûCý®ÿcúœünòÝèÝÒùÙ”÷r+ïàï’®SÆbæ4בÛôýW­À“× ¥}áôŒÐøZ Œ´zÊ׋sÖ U?ˆÂ—Ÿª¦¢ÀVÛ»žzJ¿â­=yŸrÕ*©ç­ò>ÕµÞzºÉb åѼȦ<¨ßG÷$&»,Ø÷‚ïLFš6KÍi ÐÕàЈ×lO,Nl¶Ø¨Å²‘ÊêN*ùÕٔ®U…ßÞ«ßõNß.ÿ9ýûøÏåóeõåð \ D[·œKRoH#l e9$’_xÎXüvåhŒ¼Æ«÷t£ÃŒŒ©YÐpE ”ºlœAhƒäikŽË®‹1“½z§ü¡XßÝ\xöpQ`šRMÑCß\€¾=€µ‘ría.Ľ{ݳd¼áƼHÔˆü<(™æÁt£g!T™œ æuÊãÈ M )óƒ& B³<å4¾r¶ÄÔåóÖ¿òÇDˆ7ƸÉOÀ&G9¨”öõ¾â$Ž"­î¦>×þPÿÞÿ9}»üçìïã?WÏ—Åg1{¹bdÄü–¤È¸äê“Íc  éš2=±YɶvÜÙØ£\0š‘©ßñßGð¼~¤7}€貓Ünk N˜•ÙŠw‰²ÆU†N)6î¤`˜²ë: ®ïRjמCOî"ØYó­94+å1å7fä§øòñ5™üñ1üJ†(2¾‹ð?•Ô›,»ÔC™O>P1©|k]¡ÇWªùgïM¥gmÄr“¾‰QM‘Åè·Ñ7¨ÆÁwê-Ý´çÚÚwý³·ËLþ>|·v~>•÷r+ÏVfççåFxj‰`•—eÕk7I¡ÛðÁåPÊ–ZŸêS{êG“ÆòÐiƒÃ,‡M+ùÖ\ña9škÍ·î§ŠÏI”ÊE|2­ñ;ôENà‡È SX©S{¾ù¡|×ý1yNücòÝðÅóeí=4ñU,”ªîeKÖ&tŠ--¿Sc’ƒºêµ½‚rñœ]sdR,‘S­õ\ß¼1 pò5ýD~GY…L˜·õ'Ó$UvûÚû‰‹óÆòè5!Dºµu]sMçÔÆ-ÏÉÞ=[Ÿ°7öR¿ˆ/Gâ'”ŸÕý9|J»Ëë8÷÷êþ­>ùŽÛ©’Å;Öêe}pY•[{…—­IVS¨·þ‡ÊßE£‹ÕÇÉO$´Q©«hÓçøIÖûÉÈÎõ¹æ‡ö÷îÏÙÛÅ?gþ¹z¾­¾Ã›Ÿ~)Ý‚¸«® ¤$–¼U߃Ìqª9[v¯Ê¬ù4àçàS¦²fßñq•bȸæ} q«iõu0màϬõA‘ì,…657™¢UPŽGhå)°nZ— ¹Í€`âB£Ü}\Ú“@c7Jïõì^>SÇ(“=,ê⤷…d&äS\þ9úÔµŒGÈTüOåQ¹Ã©›XäJe Ûä~kÖÁP2·§vg↑ø$ÄÇq“~dyÈ”¢¹ÉçðõÚ.ÇeÀíêsíõ»þésòŸ³¿ÿ\=_ßá{"d–ðà–EÈKàV•d¾§l„ÂJSýÞlê’]&c0Ô-Âß0÷Ï¸Û øqȇ§tN òû!R÷÷@©ªtá1çj/Â1ÌxÆœ“‘)*­ÝÚ·J^bZÈ¿¾ÒÈEE}zñâ'£õÓönøØ®bìcdäå¼ÙÔ º¾Q!GÖéÊñÖ^ìË<4—fáF»þ›Ê?I¯K7ùÁj¹U}çÆß)„M=)3÷©>×üP¿ëþ˜>'¾Ÿ}7úcñ|[|‡/¿ý"‹¡ºfîTš– ,^/ØoØVË9yä–•ð_dS±µHýVç ñ1HMçCK¢)ôÄ@?¤)>‘ä¢[>Ô•ÖE•¤Ü«^†>1‹ ¥)–£ˆ´äå|qíÁœað^úlñ¶xOñƒŠOÆm{º?)ÄØ£ÿE|êÄM¢‹i³fÚQ§%©Íî°¤Òo½^®ÃûMx ™­„Æcðð†Ž¾å¹ö‡ò]ÿÇä9ùÉwã?Öη¥wœ¨Yáp¿L£žH.ºÞ_Õ#Kf".èj•A„ä»’_ñ‹Á ÊJZÔÉ8‹(fy˜¤ðî‚€ª¸P WBÁc)AñÀˆ·e+‹Æ<(pÝj]=àäS+ô/ ú­5Ó²ºhÜo½ry@À^™Ç^ú¢ÒKói‘~ôX@|4ì¦=œñbîÂ`1–;<‚–Å¡Qoí«%¨€²ÐnýW•_¬…ÚMþ¦¸`²—“â¹ãoš¡Ëk-õ¹æ‡ò]÷Çä9ñÉwÃ?Ï·ÅçOT* éÐm ÀO…NO­T¶%i`bQÛ™TÀå ùI£­²amö5@¥C¦í“²1µpu´i) äдúkù^(¸šz³ƒ Oožù¡îÉØÚEjš#@t–ÕäÝúE¾…`¯–KçAëLäcnáù-¼¢!<è£ù]þý1tØ{»8,þÖMuÊÇV4oˆTË•ï‘LÔLÞÚ“TJ7pd—þìk”蔿å_Y9ÌäuU/ão계OVÓÆõùöNû®{7w‡øÇÜ»áo+çPÞ¾îŽ>¬s^}€­Ã0…×;A’3WŸh^5ξÃDÖÛ*^I†Œ2%*½#ÖJ á‰áSXr…ï"Hl*¯ƒ?iiŒ-‘_#ž¬”ÍÖ:h¢m3cc›kŠ[øÒÜØ*±7k¹õ³'¯áËUú¬Òr«óº÷¶ÁS²ZÉšìù ûÔfÏqœå7JHÚÓ_ÎæJR È ¬,—îkTñ§¾œâË;$Ô’¾œÃ'B/çn3—S}¾½Ó¾ïÞÍ—ÞO½½_9_ÖÝašI @Þl–rNü †F®!áuy¿Áº-•¢Á`[^€¨Év×ÊAýu èíÉôIl¶™Í~©Ïökí!ò;²ÛQ«hlrÉy8Còµli’QÑÜDÜ`ƒ9Ú+ñšÛ­ÿ¨á+î¨Ðnò+¼6gÌ}µ_Á쎚Ñ?Nýi²ä1ºÔ>ìzºŽ1Ê¥ý‚›KäKÿ5ªü½Y’í!U(%ùè —ñkª¯sK²=ôçÛ{ýûþýüyùùwã?ÖÏ·õgX Ö€"³Ö!Ñ¥HFW(< «§¾`Ø(\—íõÀÐÃ’#?j°š‡ %?rC·'^¿Nmª½“Q%¢ÍARjEK+§dUð ýRÞ ÀJË LÌ 6ZŠœoOQ-6™ÜPùÖ¿ÕÊCŒñ›øñËT;VÛ»áÇ_ á‘[6×¶W¨¦AӀߤ6òf—ë™›àÖÔl Uו±èúeàÜìWñXŸ`§çÍ1üA½UŠzªÏµ?Ô¿wÌž“ÞO¾ü±v¾­½§†¹€ Lv³€+vè§iÕ0˼Ã=6‡M?®Cy]öÔ“Ÿœ¼&å&ÈËKÂÚת`sí´Àƒ5˜~e%àdÐh“jĶ–‡ ‡!çñõd²)'LOF)–“Ì^½4'¼\Èc¬_º'EGfÿMéÅ'£Ó”‹úq¬ŸŒP¹dÍOÜèS}JSØÞ4—†ÀÓ´ˆx,ǽ=à¡„8ËèíÒ=Ø8Åßt¼»ô²73Å)¹Ä6/£/DEp€¦ÚÇ©<×üÐýÞû1u»ìÇÌ»¡Ÿ+çÛÊ»1{a`#¾!ÖŠÑ· u‡Fíɲ˜O¹-s†Œj@ÒŸ}ëîTtxþ•å’Ò„¥uIG,|%ˆÐïÀhME^gÙB!ÌX‘HÔJ¤$®# îip³Á¡dy¦\BñÒpA6+\Ø—Þå“ vრ±Öx˜8>‡ÎÃt›•ìxÍA‚åGÒÛ:€ÛLQHÏöº¨j„Y½_º‡U‹òf.á~‘^/Øü­’ £‡Õ ên’ÂëEy¾½W¾ïÿ˜;'ÿ1÷nüÇÒù¶òŒM‰3ˆç~~51‚¨ø¾¡ï$9óÅhS EÖ¨ ¢-Gl+P;ŽUî Êpú° Ã¥íNÿfÿu/Ÿ÷Q¬¥Ô“'ÃþS2 ¬µþïö0òÒ­54ŠƒJˆj/eßw ¸(~{DÞ¢ÛC6Á:Ðk|.ã\”Üdr •åÎù­¶ßGÿójÄeÖ*õ¨éÚ~¦hLÍíÖý@zo{è7é9”sâÇ8GO•bО<‰Sžkïuïº÷·KÎû>ú}ÕÊÛ×Üálÿœà6VPš³LU«B šI0×( e`Q,ÂðVyŸ‰UÃù³ !¤.«½=:0oÔª\D mV¹ äxŠÆe‹’U«€Y Mþ°‘Çô”}n Ùà\@Èvqq´øæ˜ð…Lžn·œïž'@lvQ½zñ³Š/WW[UÉnø²)Š"Pd»£½ú€¾Ÿú‹ãñØ‘†{wÞšSÅ.6@ñÖ}VñaxŸ¢`¸›rYq¢}ôò™t7QeˆÓ+ïgký:Uï;ß§îgþuN½û¾r~vÕ½Üʳש´œýÑJêa¼‘ xL¬ÈÒJÅÖŠ,tX±ãûj¥Â¥ŒÑ¬¤NìÖ,qתÁ€®Vc µ[3òZ~ŠeQdÅ…®–/‰dÆûuøV¬ê&Â~SÎm*ºníáZ¢Z¸/?ï¿*Rp'ù¨Þä/*",÷`áŽ_¾W…΃ a=ÿ?ÕÁÝ“?ȥ·ݕ—p|¨ŽöƒëNžÌrÆ¥[ÿCÙ`"˜±é&?5L ‰Ùâmü"]_u0N}®ù¡~×ý1}Nücú÷áŸËçËêó&(.1p6Sƒ Cˆ2u¹Þ’厂ËOò&à2eJ™€Ä Ø’¹A!Y*z̨¡Å›¹Õþ֔ܗYÞ—Ù‘@ÛNxuqf<ÙG *ÁZØ-;¾e™?×[¬BÈáqa»S²†îf¼µïDì``èVæàúÇÙþ¾©q‘?6• Ë Ýø£RøRXò[èC8 Ç#&<«pŠTZº5—e)dpjµ^è辩øÊµoâsQ%#ƒˆ·áËKÌ.­Ú¸hÏ5?´¿wÎÞ.þ9ûûðÏÕómõ¼Žlõ‰ n#HœÔ¿êª±¯BѤzþ©n z!)ïû Œ !n\UP#äGÑúªjÂÇnÓ?A?ÎÀ«jsÂAU´ù‰šÖmËwV޽Äu~#Ä~8wÛ­}!—Œ#1§|ëŸ@ • ¥u?ýR"Ôôý} ‡ PS ¹k{§>(BŲ˜s½XÄÖáyDÄ”níåö–Éîò:ÎùÖûE¸>Õ‘B¾Éß~õ ØŽ˜-é6~Q¸–¹§QãM®ý¡×ÿ1N~?ýnøÇêù¶úÌJI€ãa®Îr¡Ib‡ë²)„¤!^˜RV0„‹Emb^< @ª IŽuÔËw2D¬š-²Ž¡z’àûTW|ZÌÅ*ò̉ù•:¯¼±¨…#I_ræ[{1+¯¦Üã­{¹¶&¥ï¢…y?«ø²}[z€m·á“+$’䙟,áM{Yi y2v½Ê7õPqÿœ gï¸9kX@ó"½|oŠûG â9ø¢Õ–Ô×?¬Í»î|s¯{ß½Ÿ;/þ1÷nôÇÚù¶öŽD'ʬ0´ƒ]ÔYv<¥`*ªË çƒ<ñdÿ¬ÜFùgKÀö©ÏI^ÔáUX8S‰ ¹8óA~^ºÉ«˜Tñ'ãb &‡ò’®:P]ë²¹‘” Ò“]3\ŠÓ/Í)‹•§¬èyXhzïœ]‰Â·uË8Ù©m‡j2÷Þ»}~¢^ €ï´ö»ê8dä@V ƒ×¤é!?¸´§†J–|i\úÏZϱ„õwÊL>láò„Îý2|JpGÈ,í¢>×ÞkßuïçÎI̼ý±p¾­»‹5:ABk-QØ!OŒ…ª“Áá”ÄMeå`‰œ£”.JdzŤ%ÐÊ^ÒTD ÿÑ¡ÖïdÓÊß?ôS°;&ö¹md ?‘¤¦ÊO®'exÑðÆz±Ôåvrí#ÖQmìêtë?¨u ëÂÕÙå—‰–_bO„6Ÿà 1©ÀîGóAH2œqâÞ½2ëfè^K/ñ•ZW®ëBIáeø#j‘zT0§‹ú|{¯~×ÿ1}Nþsú÷ñŸËçËê³£Scq:Í…s›y“¹’'XPoÙ_ËÄ»º¼)P”㆕‘Ø>.Locò²3Ç—ÝMb ¥ÜVŽ/™,2‹yý¡åZø¿Ž?xò6ÐTnl°ÄMzŠ·öðý–Yàô—þµ(?…ùq¥©êODêsüV1åboÈ·OýñP¶ÊòZÈ8” #/í9ÀxärÅKÿ-ªü,]äoËÔdÏe#ïãÇQAn?èE}¾¹W¿ëþ˜>'þ9ýûðÏåómùYT ¿xŽ ‹K‰)Û*½ÑÇ(ì¡=öcòòx£å¢ð/mðbO0ON&E€ð«0HÜxï’1)cÑLKÚ óÎúF ø @12ËwVx­Œ€èl/w=6¾¼Þèc[ÿDA¹;r£mÒg•ž Ð}l}Öà±Ìh~£mÚK{îzÇ/ËYÉ.+œL—öU‹” )&9]ú¯Z¤$? CÞËÏ{¶PbïjZúñ“¼,–,ô=5^ôçÛ{ýûþýüyù÷Ù÷£?Öηµg«“W—"œÄ¼Ò²rÀúOM‚7÷`Çcìĵʓ¨%¬O‚55dUGzÀ„BÒ¬ö`–écRÞ2æ§™¿*] hYÌ3j&vˆoþ*¡\^øñF#…öÖ¾‘‘Ó Y)³®Ì3<þåÉÈtâ_~añW¹áÓUø[Ë{W0îs-ÔüÔb—(À_¼µ/ø5“VìÅ[ÿP2(Œw«é&?üP`~‰mo㯿´0 .'å®=ßÚkß÷îgÏKï'ü¹v¾­½ÊiPhÝB³\Rðc_Âù:/È Ðl&ý€Î4[&ÝYV*|ͬX Õ€0þüav:h.pþXsr`Mk|¥>dyv$ZÍ劖þ”|Bß òóØÚ=ãÛç_ò’ø>ÑÞ}ú——NŠ7é“JO-‚!A¹ÁGþŒ®(£MyиÉ5Ð÷‡A!É2Óò/ìí)äïÅfÊuã§É«#ï&½&JOÌœº6÷Á“(-’p2ÖvQžoï•ïû÷“çÅ?æÞ ÿX;ßÖÞájøéÐ’•6Ft3u,_§}¦L×ÐgÀ3ž@_Íuc$-T—Ÿ7“W ·¦1먙šºPÀ=ç¼\Eòü£hMSaaJì?±˜W“²„‘ c°Q "È&o¥]Ú+*÷ÙL1_ú'KGÃ6ôŽ­Š.å÷åÔ‹ùA-ø>–Ô@(ëAº« “z† !õ²§©âTYÈJ®=övÐüsõ|[}ÂÚ÷¦Kð!*x+sÖ&däI¶RúaÛÐ!®ËzˆkZS…w–|ü`£•MBþm4”Óe[*Tà­{Y~¨1£\I²S‹¥¢ál žzk BCx­ß¹",sÐQ(r[ˆDiLÀý›iùå¹GEX\ˆî0šÁÉlœD€BËó “O€«Gi¶Ìñ,ëÞlzÓ©g9¯×èÂr¾~k.Ni mQË¥wE$¬8ÿE’“^ Eg¤¼çfþ¼|ÏÔDP¢WV”ú·ê4ü#Ï€òêŠqeÜ®Ã>Zë='=g™;{É 8†¬ u§ôƒz¿‘ë4»côã—æo†ÞW‡Óžkï•¿wLÝ.ý9óûè÷…ó󩺗[uæwÂ1&ÇsH½Ø=<'dE¤ãê5Oô „Ù©0ªœóPõä'iúŸßÁ¾Ðå¨^{£cVjY»g4^"‹!<`L8ùi÷ÔhT·8ŸZ‚ú¿i÷n_èÙZºµï cv¥Ô˜—þÙÁS™jKœùÉõ•ß§·<µŸãçidKà _vƧþà–‹à~3ØE¦›û¸µîØþ÷ދJŸ©–Ÿ7é jú渌ž˜ŒˆšÄÑžoïµïú?fÏÉ̾ÿ¹z¾­¾ n¥Î4+ÓDB²áH„iz‚’H+“\£&ê*é 'éÁõ.`kèËf,êUÜÁ¤½ÚË¥ú“ÈûŽV'H†â𠛢ÂI©¹ lQ›å )È ïû8š!4À $š®ëÝåšC×-}aN•[ï$ƒ»Ô×5ë¥Ï*=Éž •Ü žÐà%Çn%7NwríÍÎÛEyiíá•ä–m±´|k>€ØÁ\Î=ߺŸ*þLò²)7ñI½ SŽí|þÄ}¤/%‰:ÔçÚ{í»îýÜ9é©w£÷+ç˺cþãÏ?ÿä!""›à—øëÙ-‰rìä¨ù½õýïŸÿû?~þëÏÿVë þüçÿ¨¶¹1g4K… ýÉò€•â¡€RZ~Œs‰áÊ8ÕËð_þ¿ÅPSå_!¾;y4Êå§Õ]!?™z§— áçô÷þåõϯ¸†xí¿ýõçïþUéÿîÿ¼þñÏÿVžè0!="¯VÝZ…Ÿ’ÿòúû¿üüÝà„ÿùËÿ|‰"c:L@ŒDY ùï¯ÓÿíÏ_þ×Ï¿ÿËË‹Wæ)*Ä.Þð⹿½‹7¿ˆ'WÍçP±@`X%*!e,«Iý0…CÀíO¯òÉÊÿ"žŒI´bHûM¼ù§âmËæS¼tˆ·¯°«xù›x²@ô¯ ÂìâÅð§ò5„`#÷M¾rÈ·ýé]¾úM> Ū &¾,¾ÿT¸È$&Þ”Ýü)ܱ7ö?½ ÷mk”^ä,& û]yéOå›WZSÀûM¾sslz—ïëÞ Åÿ+ì\Òa ¼÷=A?)*ž¡giï¿-ˆT!Áu#™Š3¼BRŸ¿â‹¾•­­3®Øq¢˜˜x∠kO²úñ}êÊŃÒh×FÅ:â#7YÕ_Ljδ!/49Ç;d./£ùËóÓÕ»æ.u—Õuæêº#FiÚŽø;“ÐÖ0â‹kéò¦²]éŠ^;:JüFr—¨ïŽ#ÚצñpØ(1)‡7NÅØæÛi@ºú×"½Ž›ê¼c‹"5G,é’ßéœÔñ9·°¥&H_®¶HÙS)Ýy8_<þ˜Æ#þ€t'#©"%h—z,Q¤®,¶H¹:™RQæêÜ!“m> stream xœ5Œ» À0D{¦¸ø8€÷‰R‘ýÛ[.¸{Òç9ÀÈ>GèÄ-dCá¦xI9¡>Q4Zo:¶Hs¿¼d3ý3Ü}…íæ€d4Iä!ÑåråY)z>—Ú~ endstream endobj 263 0 obj << /Filter /FlateDecode /Length 232 >> stream xœ5Q;r1ë} ] 3æoŸg3¯JîßF°“fa ç=؈ėÒåŠoYf~'‹¼øY)œ¼QTEX!íàYÎj†Ás#Sàr&>ËÌ'ÓbǪ‰8ÎŽœf01ëh9fš=!×#nì4ËU i½[ª×÷ZþSEùȺ›åÖ)›Z©[ôŒ=‰ËÎë©-í £Žâ¦ Òác‡÷ _ÄœÅE'ÒÍ~3å°’4§ð#1”êÙá5ÂÄÏŒOÙÓé}”†×>hº¾w/èÈÍ„LåÊHÅ“•Ƙ1T¿Í$õý?г>š0TG endstream endobj 264 0 obj << /Filter /FlateDecode /Length 160 >> stream xœ=Kà C÷œBGÀøžtºJî¿­ l°„ôÀ}b"£'‚¯Ä‡¥Ã$ðl„{0Ùr„äM†²ƒ$q ¥Â¦c™ïɦuÒJ¬¼Ñ~Ùw4ftŠ-E‡v!ÿçõ"Ü£àë<`1ÈÚJ¥ì™0Ze¦®ò¨èµÓá=D«Ååõ®ðÚG7©(*KêþDw4Øþ‘·ûß™e8$ endstream endobj 265 0 obj << /Filter /FlateDecode /Length 49 >> stream xœ3²4U0P°´†–æ æF– )†\@>ˆ•Ë˳ €4XiLEW¥D ä endstream endobj 266 0 obj << /Filter /FlateDecode /Length 210 >> stream xœ5PË C1»g ¨džV½uÿkmÐ;aÿBXÈ”y©ÉÎ)éK>:L¶.¿±" ­u%ìÊš ž+ï¡™²±ÑØâ`p&^€7`èi5tႦ.•BÅ%ð™|u{è¾OxjrvCÉ` jºMX´<ŸNâÿ~Ãî-ä¡’óÊžùœíð;³ná'jv"Ñr2Ô³4ÇE> stream xœ336S0P°0¦¦† æF– )†\@>ˆ•Ë˳Ì,Ì,# –.C c0mbl¤`fbdY 1 ºÒrø‘ endstream endobj 268 0 obj << /Filter /FlateDecode /Length 80 >> stream xœEŒ» À0D{¦`~&fŸ(•³ JÜpOº{¸:2SÞa†‡ž ,†Sñ™£`5¸FR죰n_uæzS«õ÷*Ovvq=ÍËô endstream endobj 269 0 obj << /Filter /FlateDecode /Length 90 >> stream xœMAÀ ï¼"OPDÐÿtzÒÿ_«Ô½ÀN‰E‚ô5jK0î¸2kP)˜”—ÀU0\ Úî¢Êþ2IL†Ó{·ƒ²ñqƒÒIûöqz«ýzÝÒ"X endstream endobj 270 0 obj << /Filter /FlateDecode /Length 165 >> stream xœE;! C{N¡#€Ày6“нË;I,Œ%?¢+:öÊÃccÊÆk´±'ÂîR: §©Œ¯Š§g] Ëa2So\Í\`ª°ÈnN±ú|¡òìæ„¯Už—L 0•;¹‡õúQœ–|$» ‚ê”ÊÂ0GÒ÷@LM›§…ü/yjAP™æk–•GkS4g˜*[ ‚õ :¥úÓÿL§½?Üô=€ endstream endobj 271 0 obj << /Filter /FlateDecode /Length 338 >> stream xœ5RK’[AÛ¿Sè®jþÍyœšÕäþÛ쬠8ÈÄK QrÅy‚ñ:¿ëåiü>Þ…Ô‚§"ýÀµiïÇš5Q°4b)Ì>öý(!ÇSãßè¹Hfd2r ˆûµ>Ö›L9ü¤isú(Iz-ØÝv|YAÒ“–ìä‡u-°ºM˜k"9µ25ÏÇžá2ž#AÕ, IŸ¸OŒH3;g-yáxª/~½×2©—U2¶ æ`;™ §("¿ $¹‰»hê(ŽfÆšÛ…†’"÷Ý=œœôº¿œD^ á,ÖŽzÊ2'; J jå˜a½ö…qš6J¸SÓí]±¯ßg&aÜæ°³R2 Îqp/›Ì${Ý1a‡˜÷îŒÄ¼ù]l\¹Ì¹&Óý(ÚH×ç\M™­(áªä‰×øÿüÞÏÏ?7}± endstream endobj 272 0 obj << /Filter /FlateDecode /Length 392 >> stream xœ=RKn1ÛÏ)¸@¥ðMrž©ÞîÝ[›ÌTª /¶1”— ©%?ê’ˆ3L~õr]âQò½ljgæ!î.6¦øXr_º†ØrÑšb±OÉ/È´TX¡VÝ£Cñ…(-àá¾ÿñ¨Á×°…rÃ{d`JÔn@ÆCÑHYAaû‘è¤P¯láï( WÔ¬…¡tbˆ –)¾« ‰˜¨Ù ‡„•’ªÒñŒ¤ð[Á]‰aP[[ÛxfÐÙÞ‘3íÑqYk?=é£Q2µQMg|ñÝ2RóÑè¤ÒÈÝÊCgÏB'`$æI˜çp#ážÛA 1ôq¯–Ol÷˜)V‘ð;ʽýÞ’Ï{à,Œ\ÛìL'ðÑi§­¾býƒ?lK›\Ç+‡E¨¼(~×Aq|XÅ÷d£Dw´Ö#Õh% ÂÎí0òxÆyÙÞ´æôDh£DÔŽ=(²Å地§ü¬Í±ž&{o´”Į̀„Ôvz¨¶ÏcÔwžûúü.¡ endstream endobj 273 0 obj << /Filter /FlateDecode /Length 248 >> stream xœ-Q9’AËçzBsÓï±Ë‘÷ÿé ʃ†C :-qPÆO–+ÞòÈU´áï™ÁwÁ¡ßÊu9HÒTM¨]¼½vfó¤5,ƒë?c 7zqxLÆÙíu5{×kOfP2+qÉÄSuØÈ™ÃO¦Œ í\Ï È¹Öe¤›•ÆŒ„#M!RH¡ê&©3A£«Q£Å~éË#aU#j û\KÛ×sÎ4;«<9¥GWœËÉÅ +ý¼ÍÀET«<p¿ÛCýœìä7ÞÒ¹³Åôø^s²¼0XñæµMµø7/âø=ãëùü¨¥[ endstream endobj 274 0 obj << /Filter /FlateDecode /Length 70 >> stream xœ3³0Q0P°b3s3s#K…C.# 3 @.—X ‡ËÐÐÊ261R044²LÍ¡b0@YKA9Pý9\iOT/ endstream endobj 275 0 obj << /Filter /FlateDecode /Length 320 >> stream xœ5Q»qÅ0 ë5ðø•4s¯ÊÛ¿ @;a@ª¼dJ¹\ê’U²ÂäG‡êMù>`¦üõãèÙ!ºSÖ–{ËÄ<¥ŽXM–{¸/ M‰¹…ó÷è+£0ºÅß?@³$0ipðSk­Zb‰<,X³+Ì­)TÈU|;6¹rq³Ð§š·Ü‚ðeˆdGj±¯Ëe)ò»õ „æˆO‰…çf"ñ'b{öÙbWW/ªÖI‡RÒln04E²êƒØWÇ5?OGÙÁÉA¿ŠÁø68™/Iy_¡þÏÙȱ’C$ò}µÀˆ#l€¡Oí#e 4E÷î™R>&UŠïF!}ªW2¼‘Ùj†Íÿ]Ù* UYŸFp&ƒI8ód£ ÓRµÓ¿ûÜãóccz€ endstream endobj 276 0 obj << /Filter /FlateDecode /Length 338 >> stream xœ5R9®Ý@ ë} ] €vÍœç©~î߆”_ C´VŠšŽ•iùe!U-“.¿íIm‰ò÷É ‰’W%Ú¥ ‘Pù<…T¿g˼¾Öœ K• ““’Ç% þ —Þ.çck?#w=z`UŒ„Ë£kY:»Ãšü<¦?âr®X·cH ºqÚïCóyÈ f˜–Š ]V‰~Añ G­}÷XTX ÑíIpŒP‘€vÚH 9³»¨/úY”˜ tí‹"î¢ÀIÌœb]:ú>t,¨¿6ã˯ŽJúH+kLÚw£IiÌ"“®—Eo7o}=¸@ó.Ê^Í ASÖ(i|Ъc(še…wš 4LJÌ<‡3”ô}(~_K&º(‘? ¡_£ŒœosÑŸ¶ŠñÙa¯`…ÒÅšä}@*z`úÿ×øyþü¶€T endstream endobj 260 0 obj << /FontMatrix [ 0.001 0 0 0.001 0 0 ] /Name /BitstreamVeraSans-Roman /FontBBox [ -184 -236 1288 929 ] /Encoding << /Differences [ 48 /zero /one /two /three /four 55 /seven /eight /nine 65 /A 67 /C /D 73 /I 80 /P 83 /S 86 /V ] /Type /Encoding >> /BaseFont /BitstreamVeraSans-Roman /Type /Font /CharProcs 261 0 R /Subtype /Type3 /FontDescriptor 259 0 R /Widths 258 0 R /LastChar 255 /FirstChar 0 >> endobj 259 0 obj << /FontName /BitstreamVeraSans-Roman /Descent -236 /FontBBox [ -184 -236 1288 929 ] /CapHeight 730 /Ascent 929 /MaxWidth 1342 /StemV 0 /Flags 32 /XHeight 547 /ItalicAngle 0 /Type /FontDescriptor >> endobj 258 0 obj [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 318 401 460 838 636 950 780 275 390 390 500 838 318 361 318 337 636 636 636 636 636 636 636 636 636 636 337 337 838 838 838 531 1000 684 686 698 770 632 575 775 752 295 295 656 557 863 748 787 603 787 695 635 611 732 684 989 685 611 685 390 337 390 838 500 500 613 635 550 635 615 352 635 634 278 278 579 278 974 634 612 635 635 411 521 392 634 592 818 592 592 525 636 337 636 838 600 636 600 318 636 518 1000 500 500 500 1342 635 400 1070 600 685 600 600 318 318 518 518 590 500 1000 500 1000 521 400 1023 600 525 611 636 401 636 636 636 636 337 500 500 1000 471 612 838 361 1000 500 500 838 401 401 500 636 636 318 500 401 471 612 969 969 969 531 684 684 684 684 684 684 974 698 632 632 632 632 295 295 295 295 775 748 787 787 787 787 787 838 787 732 732 732 732 611 605 630 613 613 613 613 613 613 982 550 615 615 615 615 278 278 278 278 612 634 612 612 612 612 612 838 612 634 634 634 634 592 635 592 ] endobj 261 0 obj << /A 262 0 R /C 263 0 R /D 264 0 R /I 265 0 R /seven 267 0 R /one 268 0 R /four 269 0 R /P 270 0 R /zero 266 0 R /eight 272 0 R /two 273 0 R /V 274 0 R /nine 275 0 R /three 276 0 R /S 271 0 R >> endobj 6 0 obj << /F1 260 0 R >> endobj 7 0 obj << >> endobj 8 0 obj << >> endobj 9 0 obj << /M195 207 0 R /M95 107 0 R /M76 88 0 R /M16 28 0 R /M203 215 0 R /M233 245 0 R /M236 248 0 R /M74 86 0 R /M138 150 0 R /M29 41 0 R /M7 19 0 R /M191 203 0 R /M9 21 0 R /M193 205 0 R /M121 133 0 R /M64 76 0 R /M119 131 0 R /M215 227 0 R /M173 185 0 R /M19 31 0 R /M140 152 0 R /M168 180 0 R /M219 231 0 R /M177 189 0 R /M198 210 0 R /M82 94 0 R /M63 75 0 R /M131 143 0 R /M225 237 0 R /M211 223 0 R /M134 146 0 R /M139 151 0 R /M227 239 0 R /M141 153 0 R /M229 241 0 R /M112 124 0 R /M179 191 0 R /M231 243 0 R /M162 174 0 R /M88 100 0 R /M104 116 0 R /M115 127 0 R /M129 141 0 R /M117 129 0 R /M158 170 0 R /M216 228 0 R /M182 194 0 R /M175 187 0 R /M181 193 0 R /M96 108 0 R /M38 50 0 R /M185 197 0 R /M11 23 0 R /M210 222 0 R /M108 120 0 R /M205 217 0 R /M80 92 0 R /M17 29 0 R /M50 62 0 R /M45 57 0 R /M187 199 0 R /M200 212 0 R /M89 101 0 R /M56 68 0 R /M147 159 0 R /M26 38 0 R /M58 70 0 R /M28 40 0 R /M199 211 0 R /M240 252 0 R /M192 204 0 R /M164 176 0 R /M111 123 0 R /M65 77 0 R /M222 234 0 R /M172 184 0 R /M57 69 0 R /M13 25 0 R /M71 83 0 R /M148 160 0 R /M196 208 0 R /M123 135 0 R /M235 247 0 R /M87 99 0 R /M91 103 0 R /M18 30 0 R /M67 79 0 R /M46 58 0 R /M234 246 0 R /M52 64 0 R /M118 130 0 R /M100 112 0 R /M126 138 0 R /M190 202 0 R /M237 249 0 R /M213 225 0 R /M69 81 0 R /M35 47 0 R /M239 251 0 R /M98 110 0 R /M47 59 0 R /M214 226 0 R /M122 134 0 R /M243 255 0 R /M142 154 0 R /M79 91 0 R /M245 257 0 R /M124 136 0 R /M208 220 0 R /M14 26 0 R /M128 140 0 R /M218 230 0 R /M24 36 0 R /M220 232 0 R /M226 238 0 R /M207 219 0 R /M163 175 0 R /M133 145 0 R /M230 242 0 R /M54 66 0 R /M12 24 0 R /M150 162 0 R /M15 27 0 R /M114 126 0 R /M72 84 0 R /M33 45 0 R /M110 122 0 R /M116 128 0 R /M25 37 0 R /M36 48 0 R /M188 200 0 R /M174 186 0 R /M176 188 0 R /M149 161 0 R /M159 171 0 R /M49 61 0 R /M78 90 0 R /M242 254 0 R /M197 209 0 R /M85 97 0 R /M157 169 0 R /M130 142 0 R /M44 56 0 R /M154 166 0 R /M20 32 0 R /M144 156 0 R /M206 218 0 R /M23 35 0 R /M109 121 0 R /M180 192 0 R /M5 17 0 R /M221 233 0 R /M143 155 0 R /M103 115 0 R /M167 179 0 R /M27 39 0 R /M169 181 0 R /M66 78 0 R /M6 18 0 R /M93 105 0 R /M10 22 0 R /M120 132 0 R /M223 235 0 R /M2 14 0 R /M70 82 0 R /M51 63 0 R /M42 54 0 R /M0 12 0 R /M83 95 0 R /M86 98 0 R /M106 118 0 R /M166 178 0 R /M68 80 0 R /M204 216 0 R /M8 20 0 R /M241 253 0 R /M101 113 0 R /M77 89 0 R /M40 52 0 R /M107 119 0 R /M183 195 0 R /M61 73 0 R /M34 46 0 R /M160 172 0 R /M202 214 0 R /M39 51 0 R /M125 137 0 R /M94 106 0 R /M43 55 0 R /M30 42 0 R /M217 229 0 R /M59 71 0 R /M62 74 0 R /M48 60 0 R /M53 65 0 R /M201 213 0 R /M228 240 0 R /M145 157 0 R /M184 196 0 R /M21 33 0 R /M97 109 0 R /M178 190 0 R /M99 111 0 R /M244 256 0 R /M60 72 0 R /M151 163 0 R /M153 165 0 R /M31 43 0 R /M92 104 0 R /M155 167 0 R /M146 158 0 R /M152 164 0 R /M41 53 0 R /M102 114 0 R /M209 221 0 R /M161 173 0 R /M156 168 0 R /M194 206 0 R /M170 182 0 R /M232 244 0 R /M75 87 0 R /M135 147 0 R /M238 250 0 R /M37 49 0 R /M137 149 0 R /M55 67 0 R /M127 139 0 R /M22 34 0 R /M1 13 0 R /M73 85 0 R /M4 16 0 R /M113 125 0 R /M189 201 0 R /M224 236 0 R /M32 44 0 R /M136 148 0 R /M186 198 0 R /M171 183 0 R /M90 102 0 R /M212 224 0 R /M105 117 0 R /M84 96 0 R /M165 177 0 R /M3 15 0 R /M132 144 0 R /M81 93 0 R >> endobj 252 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 105 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 164 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 200 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 254 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 84 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 204 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 219 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 253 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 19 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 212 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 250 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 229 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 194 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 214 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 76 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 31 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 196 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 169 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 87 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 171 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 246 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 131 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 50 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 225 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 241 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 158 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 51 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 71 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 45 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 79 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 207 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 41 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 62 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 35 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 220 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 135 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 156 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 25 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 148 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 159 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 193 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 162 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 236 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 65 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 119 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 228 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 224 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 231 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 59 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 192 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 80 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 163 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 107 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 175 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 85 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 170 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 83 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 210 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 239 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 213 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 199 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 77 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 181 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 90 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 120 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 91 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 54 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 18 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 217 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 146 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 174 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 243 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 69 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 40 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 110 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 63 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 72 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 223 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 244 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 97 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 180 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 216 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 52 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 26 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 187 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 125 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 30 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 211 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 127 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 256 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 238 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 186 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 95 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 215 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 70 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 195 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 179 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 67 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 88 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 39 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 15 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 188 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 16 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 94 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 68 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 43 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 245 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 221 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 237 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 202 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 124 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 74 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 226 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 73 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 28 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 248 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 173 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 182 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 139 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 209 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 208 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 167 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 96 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 101 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 56 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 29 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 14 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 206 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 255 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 22 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 143 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 191 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 172 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 251 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 185 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 89 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 106 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 60 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 218 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 17 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 27 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 232 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 165 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 257 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 34 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 190 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 184 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 12 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 13 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 227 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 154 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 249 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 242 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 93 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 75 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 49 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 36 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 46 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 92 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 115 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 38 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 20 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 24 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 234 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 176 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 48 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 198 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 57 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 58 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 23 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 66 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 129 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 82 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 205 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 247 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 128 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 32 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 86 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 166 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 61 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 233 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 240 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 150 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 197 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 47 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 44 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 78 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 201 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 33 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 81 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 134 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 189 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 53 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 178 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 160 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 183 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 55 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 42 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 64 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 37 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 168 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 222 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 21 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 235 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 230 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 203 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 121 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj xref 0 277 0000000000 65535 n 0000000016 00000 n 0000000065 00000 n 0000000216 00000 n 0000000275 00000 n 0000000511 00000 n 0000206100 00000 n 0000206133 00000 n 0000206154 00000 n 0000206175 00000 n 0000000382 00000 n 0000200227 00000 n 0000237533 00000 n 0000237687 00000 n 0000233500 00000 n 0000227759 00000 n 0000228380 00000 n 0000236137 00000 n 0000222021 00000 n 0000210839 00000 n 0000239857 00000 n 0000246829 00000 n 0000233965 00000 n 0000241558 00000 n 0000240167 00000 n 0000215963 00000 n 0000224656 00000 n 0000236292 00000 n 0000231015 00000 n 0000233189 00000 n 0000225277 00000 n 0000212080 00000 n 0000242644 00000 n 0000244659 00000 n 0000236914 00000 n 0000215186 00000 n 0000239085 00000 n 0000246364 00000 n 0000239703 00000 n 0000227604 00000 n 0000223108 00000 n 0000214721 00000 n 0000246056 00000 n 0000228997 00000 n 0000244195 00000 n 0000214255 00000 n 0000239239 00000 n 0000244040 00000 n 0000240631 00000 n 0000238930 00000 n 0000213168 00000 n 0000213789 00000 n 0000224502 00000 n 0000245280 00000 n 0000221867 00000 n 0000245901 00000 n 0000233035 00000 n 0000241249 00000 n 0000241404 00000 n 0000218449 00000 n 0000235673 00000 n 0000243263 00000 n 0000214876 00000 n 0000223417 00000 n 0000246210 00000 n 0000217206 00000 n 0000241713 00000 n 0000227295 00000 n 0000228843 00000 n 0000222953 00000 n 0000226829 00000 n 0000213944 00000 n 0000223572 00000 n 0000230860 00000 n 0000230551 00000 n 0000238775 00000 n 0000211926 00000 n 0000221092 00000 n 0000244349 00000 n 0000214410 00000 n 0000218759 00000 n 0000244814 00000 n 0000242023 00000 n 0000219846 00000 n 0000210218 00000 n 0000219381 00000 n 0000242954 00000 n 0000212546 00000 n 0000227450 00000 n 0000235363 00000 n 0000221403 00000 n 0000221712 00000 n 0000239393 00000 n 0000238620 00000 n 0000228534 00000 n 0000226518 00000 n 0000232725 00000 n 0000224037 00000 n 0000240785 00000 n 0000234898 00000 n 0000225122 00000 n 0000232879 00000 n 0000235827 00000 n 0000232413 00000 n 0000240939 00000 n 0000209597 00000 n 0000235518 00000 n 0000219069 00000 n 0000229619 00000 n 0000220624 00000 n 0000223262 00000 n 0000228069 00000 n 0000217051 00000 n 0000215496 00000 n 0000235208 00000 n 0000239547 00000 n 0000229152 00000 n 0000220936 00000 n 0000237378 00000 n 0000217517 00000 n 0000221557 00000 n 0000247451 00000 n 0000218294 00000 n 0000211460 00000 n 0000230396 00000 n 0000224966 00000 n 0000228688 00000 n 0000225587 00000 n 0000242489 00000 n 0000241867 00000 n 0000228225 00000 n 0000213012 00000 n 0000217673 00000 n 0000233344 00000 n 0000244969 00000 n 0000215652 00000 n 0000225743 00000 n 0000242798 00000 n 0000219691 00000 n 0000231635 00000 n 0000232102 00000 n 0000240011 00000 n 0000226053 00000 n 0000234119 00000 n 0000235053 00000 n 0000220468 00000 n 0000222331 00000 n 0000238464 00000 n 0000216274 00000 n 0000215030 00000 n 0000243729 00000 n 0000232257 00000 n 0000230086 00000 n 0000229307 00000 n 0000237998 00000 n 0000216118 00000 n 0000215808 00000 n 0000222797 00000 n 0000213634 00000 n 0000216429 00000 n 0000245590 00000 n 0000214099 00000 n 0000216741 00000 n 0000218913 00000 n 0000209753 00000 n 0000236602 00000 n 0000243108 00000 n 0000232569 00000 n 0000246519 00000 n 0000212390 00000 n 0000219536 00000 n 0000212701 00000 n 0000234431 00000 n 0000231324 00000 n 0000222486 00000 n 0000219225 00000 n 0000240476 00000 n 0000217361 00000 n 0000245435 00000 n 0000227139 00000 n 0000224192 00000 n 0000221247 00000 n 0000231480 00000 n 0000245745 00000 n 0000237223 00000 n 0000234742 00000 n 0000226363 00000 n 0000224810 00000 n 0000227914 00000 n 0000245124 00000 n 0000237068 00000 n 0000234275 00000 n 0000218604 00000 n 0000216585 00000 n 0000211616 00000 n 0000226983 00000 n 0000212235 00000 n 0000243884 00000 n 0000241094 00000 n 0000220780 00000 n 0000209908 00000 n 0000244503 00000 n 0000230241 00000 n 0000247295 00000 n 0000210372 00000 n 0000242177 00000 n 0000233654 00000 n 0000214565 00000 n 0000231947 00000 n 0000231791 00000 n 0000220001 00000 n 0000225431 00000 n 0000210994 00000 n 0000220312 00000 n 0000211771 00000 n 0000226673 00000 n 0000224347 00000 n 0000222175 00000 n 0000235982 00000 n 0000210527 00000 n 0000215341 00000 n 0000229774 00000 n 0000246674 00000 n 0000223726 00000 n 0000217983 00000 n 0000213322 00000 n 0000230705 00000 n 0000237842 00000 n 0000217828 00000 n 0000211304 00000 n 0000247140 00000 n 0000218138 00000 n 0000236447 00000 n 0000243418 00000 n 0000240321 00000 n 0000246984 00000 n 0000216896 00000 n 0000229930 00000 n 0000226208 00000 n 0000220156 00000 n 0000243574 00000 n 0000213478 00000 n 0000238309 00000 n 0000222641 00000 n 0000223882 00000 n 0000229463 00000 n 0000212857 00000 n 0000242333 00000 n 0000231169 00000 n 0000238153 00000 n 0000211149 00000 n 0000234586 00000 n 0000209442 00000 n 0000210683 00000 n 0000210063 00000 n 0000233809 00000 n 0000225898 00000 n 0000236758 00000 n 0000204833 00000 n 0000204617 00000 n 0000204202 00000 n 0000205887 00000 n 0000200250 00000 n 0000200411 00000 n 0000200717 00000 n 0000200951 00000 n 0000201073 00000 n 0000201357 00000 n 0000201498 00000 n 0000201651 00000 n 0000201814 00000 n 0000202053 00000 n 0000202465 00000 n 0000202931 00000 n 0000203253 00000 n 0000203396 00000 n 0000203790 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 277 >> startxref 247607 %%EOF pymvpa-0.4.8/doc/pics/ex_projections.png000066400000000000000000004371471174541445200203320ustar00rootroot00000000000000‰PNG  IHDRô¢d}sRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ %@S IDATxÚìw|Í×ûÀß7÷fY"#‰‘3Ähh¬ØJQ­U³Õ¢:´Zª­¶65J)~5ŠÒaoµ© A’H" Ù;¹¹óüþÈu›k54|ÑÏûõòjóçÞÏóyîóœóœsžG&„Hü#—.]bÁ‚„††RXXˆ••...´oßž¾}ûÒ­[7† ƤI“°°°0¹7;;›®]»âááÁ/¿ü¢E‹øâ‹/prrÂÒÒ…B““¾¾¾¼öÚkS¡BIèeâÇdôèÑxzz¢P(Ë帺ºòÖ[oÑ·o_£.åååqòäI–/_Îõë×)..ÆÆÆ???úöíK=°¶¶6¶ËàÁƒ9}ú4G¥uëÖ’°%›Þ½{sõêU®\¹bÀÒÒWWW&Nœˆ¯¯/ÅÅÅ$''sêÔ)F͈#xÿý÷qvv–„/Q&d2³gÏÆÍÍ‚‚öîÝËgŸ}†L&cÈ!²téR–.]JÇŽéÝ»7®®®pþüyV®\IÓ¦Mñññ1¶Á­[·puueíÚµ´jÕ ™L& [¢\P«Õ¬_¿ž¹sçR¯^=ÆO¥J•P«Õ\¼x‘Í›7S«V-“Ždll,—.]¢råʬ_¿ž7ß|333I˜’C/;¡¡¡ÄÆÆ2}út `4jBòóó±³³£M›6ìØ±ƒððp:uêdÒ=|ø0r¹œ.]º[YYH`` ñXß¾}™7oË–-Ãßߟ×^{M2 e&((ˆjÕªȶmÛ8uê½{÷&,,Œ… Ò¿&OžŒ“““ñ¾=zƒ»»»I{¿ýöT©R…#GŽKÍš5%AK” qqqL:•àà`¦NjÔ]€®]»wÏàè÷ß§zõê³~ýz®\¹B½zõ$aº6eÀÜÜ!III¤§§S\\l988`ffFëÖ­©[·.+V¬@§Óï½zõ*GŽaÀ€888<ôsœ7næææìß¿ŸœœIø………r¹N‡‚5kÖàææÆàÁƒMœ9€¥¥%þþþØØØ%$$pèÐ!Ú·oÏG}Dnn.Û¶mC¯×K•(6lØ€\.gðàÁ&ÎüŽÍ­]»¶I”òöíÛlÛ¶àà`ÆŽKÅŠYµj•‰½•FèÿHË–- fáÂ…œ:uŠ àë닟ŸþþþXYYQµjUÚ¶mËêÕ«¹rå õë×G§ÓqæÌ233éÕ«W™>ËÚÚâãã)((¸ÇøJHÜ!.\ %%¥RÉ((( iÓ¦ØÛÛsîÜ9j×®M¥J•ÊÔÞÚµk©T©mÛ¶ÅËË‹ÀÀ@Ž9Bÿþýñðð.ñ¯9wîîîîxyy•éú;v T*yõÕWñðð }ûöþøc†ÎìÙ³ÑjµÈd2z÷îF£açÎ!P*•lÙ²…-Zàíí]¶bf† J¥RêyJ<&L`äÈ‘Œ;–]»v1qâDúôéƒB¡ ¨¨+++Šî禦²wï^©U«ýû÷çüùóDFFJ‚–(ŠŠŠ0777®+zÙÙÙœ[·nP±bEìììØ»w/­Zµ2 ÏKH<nnn\¿~¼¼¼¼6<<œ³gÏòæ›orûöm $šéééÉèÞ½;+V”Fè’Z•¹\Ž­­-...øûû3|øp*V¬Hxx¸qt=lØ0._¾Lhh(+W®¤fÍš´nݺÌ+1ãâ∌Œ¤^½z&Û5$$þ‰Ê•+S¥J<==©X±¢ÉȧcÇŽ\¹r…ëׯs¿ªwŽåææò矢V«™9s&!!!„„„0räHòòòضmééé’°%þ5;v$11‘ˆˆˆûF#…ÆHç‘#GÈÌÌdݺuF|å•WÈÊÊâøñã\»vM¨4B/ñññ¨T*|}}MFÒñññäååáééi<Þ¸qcã~óˆˆzöìI5þñ3„DGGóÍ7ßàââB§N¤QD¹ñꫯ²mÛ6.\HÍš5Mæ-sssÙ·oíÚµ#>>ž“'Oòæ›oÒ§O“6.\¸Àœ9s8|ø°´ÿW¢\ú²eËX±b~~~4mÚÔxN©TrðàAüüü°²²b×®]tïÞ¡C‡štT˜>}:û÷ï'((è?¿+Hrèe 22’3fàææFݺu±··'::š'NàëëK·nÝŒ×:;;Ó«W/¦M›†µµ5ýúõ»ï¼e^^ë×¯çØ±cÃÅ‹)**bÆŒ´nÝZÚ²&QnÔ¯_ŸéÓ§óÕW_ѧOZ´h§§'999œ={µZM@@GŽ¡¨¨ˆмys“6ê֭˾}ûX³f ƒ *Ó|¼„ăpwwgΜ9Lž<™ÁƒÓºukcŽÐÐPrrr˜?>ÉÉÉܾ}›É“'Ó¡C»˜——Ç_ýźuë˜4iVVVÿi™Ê§L™2ER­‡ãáá——EEE$$$póæMèß¿?_}õ•ÉÖ …Bƒƒ………4iÒ„Q£FÝÓ^jj*ÙÙÙdgg“@VVnnnôìÙ“™3g(K‰2“‘‘A~~>½{÷ÆÖÖöþ?t¹œÚµkÓ§O¬¬¬HLL$>>½^OHH'N¤råÊìÛ·—^z‰Î;›d°±±A¡PMƒ ¤Ä7pqq1€d2ÕªU£W¯^xzz’@\\´jÕŠO?ý”F±gÏj×®MïÞ½ïÉ iii‰••Ô«W77·ÿ´Œeááá"44”ääd,-- ¤U«V÷†„„Ö¯_OÕªU………L›6Î;@jj*€QGïÞò·páB~úé§­Ÿ:ŽÌÌÌr]M›““ƒ……E¹æ(o}/ïöŠŠŠP«Õåš<)-- “(Îã››ËÈ‘#7n\™®¿yó&“&MÂÏÏ¡C‡¢Õjùå—_HOOgΜ9Èd2c’”ûÙNµZMõêÕË%yjj*®®®ÿZOê½k4rrrÊ5«[vv6ÖÖÖϼ¿(***—’ع¹¹\¼xñþ'…"99Y¼ÿþû¢W¯^"**J!D~~¾9r¤ Ó¦M³fÍmÛ¶ 4?ýô“ÈÈÈwÓªU+Q¬ZµÊø=Ê‹O?ý´\Û»xñ¢X·n]¹¶ùý÷ß‹¤¤¤gö¹³³³ÅŒ3Ê¥­víÚ µZý×ét:ñË/¿ˆ¶mÛŠeË– ½^/„bß¾}ÂÛÛ[LžÓú^Þí9sFlÚ´©\Ûœ5kÖ}íÒ£²eË1wîÜ2]{ãÆ 1hÐ 1lØ0/îØÓž={Š×^{MÌœ9SÌš5K4hÐ@´iÓFlܸQäææš´¡R©D»víÊE3fÌÙÙÙÏì{OLL‹-*×6×­['.^¼øLëû•+WÄêÕ«Ë¥­‡ùYEFFsæÌáÚµk|÷Ýwøùù• Ý BBBˆŠŠB£ÑÿiµZŠ‹‹ï›>RB¢¼Ù¿? .dÈ! 8Ð8òöðð`äÈ‘h4”J¥Q'U*Z­VœÄ'!!)S¦ Ñh˜>}:U«VJöë÷îÝ›¸¸8ã"bN‡V«E¥RI¶SâɅܧNÊŽ;1b111ÄÆÆСCz÷îmRÿ¸°°ØØXÞzë-)ñ‰ÄçðáÃ|ôÑGÔ¯_777:@5¨[·.µk×6^{§VòÀiÒ¤‰$<‰'JNN_~ù%¡¡¡¼÷Þ{DDD™™]»v¥ÿþ&ŽûÒ¥Kx{{Ó¿ÉvJ<9‡^¡B^~ùe®_¿Îõë×’ÕšAAA÷dŠ ¤zõêO¼ ˜³³s™Jê= •+W.×ö¬¬¬Ê=S–««k¹Ë¶<Ÿ[.——ËüyYÑét£T*Ù±c‡Q7;wîLݺu±°°0^[¡Bz÷îM•*UÊmþðA2(ïlTŽŽŽåž·¿¼õ½¼Û³±±)—õ6¥qss{jÎR‡‡-Z´ 44”ÐÐЃªPЭ[·{~ÇmÛ¶ÅÍÍí‰ÛN77·rÕÿò~ïæææå¾âßÉÉé_õ_ðRÌr£¼æÐ322„R©,×9Œòž›.**™™™åÚfZZZ™æ•ÿWÏ­ÕjEJJÊSC//Êk]£Ñ”› J¯M(,,|¦õ½¼Û+(((×¹^!„HIIæ©Î¡—å9‡~ûöm¡ÕjŸÙ÷®V«EZZZ¹¶™™™)ŠŠŠži}W*•å²¾ãçПŰ‹‹K¹·Yº"Zy`mm]î½Â'QÏ·<ŸûiПɖBQî2xerË[ßË»½åœÿ7ü×uJ ž<ËïÝÜܼÜí\y¬ÒÏmeeõT ÇHõÐ%$$$$$^$‡.!!!!!!9t É¡KHHHHHHH]BBBBBBBrè’C—ºÄ3ŽN§£¨¨È$õ¯„ijÂjmÏjµš¢¢¢ÿÉg+Ž;ƈ‹‹ÃÊÊŠvíÚÑ­[7HNNæ÷ßçâÅ‹SµjUúõë'åÊ~Á9|ø0ëÖ­'--ggg @Û¶mMR­> ’““Ù½{7¡¡¡áååÅÈ‘#ñöö`ëÖ­Ì‘#G¸yó&*T sç΄„„`mmMtt4üñQQQèt:¼½½6l5jÔ^â JAA+W®äرã¨Õ*ê×oÀ°aCË¥,n™úæÍ›±³³ãµ×^#''‡åË—såÊ&MšDaa! …‚=z`eeÅ¡C‡8p ;vì V­ZÒ|ÆB V«Ñëõ˜››?r^k½^϶mÛ9ò#òòª£Õºaf–ÌŸ~À¤Icyë­‘åžcÿa„……qöìY‚ƒƒqrrâÀ¼ùæ›,[¶Œºuë’™™I“&MðððàÖ­[,^¼˜˜˜>þøã§nà%þ™; Å#w…œ?žqã>æìÙlÔêZÈdEìÞ½”óç/²`Áwåžþaäçç³sçN*UªÄ€HHH`úôéܼy“±cÇ’››‹½½=¯¿þ:BvîÜÉàÁƒÙ¸q#ÕªU“”áC§Ó¡V«‘ÉdXZZ«:>Š3÷Ý1lÚJqq „°fïÞ]>üK—. aÆOÇ¡OŸ>ÝXBB¡`þüùŒ;–Úµk›T´ âØ±c?~\rèÏùùùœ8ñ¡¡gŒ£ÙvíÚS»v­2+gbb"3gÎ&+«)PÏàä))W™?]ºt~ª#ŒN:ѽ{wc±‰Î;Ó¬Y3:Dݺu1b„ÉR¥R±uëVrrr$‡þŒu4ÃÂÂ8|ø0ééé8;;Ó®]{7nTfÇ®V«Y¹r5'O"DgÀ !@©ôcûö]´i³•!C†<µgrrrböìÙF=BŸŸÏ† ;v,M›6¥iÓ¦Æë_zé%‚‚‚8wîœäП1ÝLHHàСC\»v +++6lHHHÈ#Eú6mÚÌöígP*» Øœ:uˆ¥K—³téâGî$<–C/]åéÎO.—›|¸^¯G­VsæÌ”J%õë×—4áB­V³bÅ ,XCR’=BØ`m½—fÍ6³jÕrcˆúŸ¸|ù2©©…€o©£2„¨ÂáDGG?U‡~wîc­V‹V«5©X%„@¯×sûömÂÂÂðóóÃÎÎNRŠgˆ0iÒÂÃUá‚™Y. lgòäOèÙó•2E’T*‡…>@i½°''§ááá 4è‰VÚ+™™™I§ñ޼»ƒ¢×ëQ*•=zi ôŒÇ„ Ù·/Š‚‚J@1•*mâ­·"øê«/ˤ›BNž£‚³gϲwï^“¨@ÇŽÉÍÍE©T2qâDÉ¡?c,]ºŒíÛ£ÑhÚ€ 55eË~套ZÒ¥K—2ëÀý×˜Ë ÿž²COLLdâĉxyy1|øp“¹ÒéÓ§“——Ç©S§˜?>tìØñ¾½è“'OšŒ°jÖ¬‰ƒƒƒ¤9O={ö’—çÔ,¥TvèõÍ9yò(IIIT¯^ýÛ©[·.žž$$\Eˆ:õÐ7ðñ±3™~yŠŠŠˆ‰‰¡  Àx,77·Ì÷²jÕ*~ÿýwæÍ›‡ñ\›6mð÷÷'))‰%K–°hÑ"f̘qß LW¯^5©ôT¥J)üù„‰ŒŒ$2òz}pǦX¢×ûpêÔ.âââÊäÐ--- iÁõë§Ð骶€²qq¹M³f#{t~óæM’’’LôäQê–GFF2eÊ‚ƒƒéӧɹÿû¿ÿ£  €Ã‡3oÞ<¼½½y饗îi#77×ÄvÚÙÙQ³fMJGP%ÊŸw Ñ4J×*÷ +«»ví.“C—ÉdóûïGÈÉÉœ N¼¹<†îÝÛ<ö÷ËËË#&&†ââb?ûP‡~ãÆ ¾þúkììì˜4iÒ=ÅÝ===ñôôÄ××—'N°iÓ¦û:t½^OFF†‰RjµZIkž0ÅÅÅÈdæ÷é!ZCe¡Zµj|ðÁûDE}Jvvª!<šCÅŠ™|ôÑ»xxx<Ö÷Óétäææ’m<¦ÑhÊ|ïêÕ«Ù¼y3ãǧeË–&çííí±··ÇÇÇ¥RÉ_|aœ§½›üü|ý|e%LÑh4hµ÷¥È¬̺iaaÁ!C »Ä™3¢ÓUC&S1ôë׉®]»<öw,**2Ñ‹üüü2ëFdd$“'OÆßߟqãÆÝ³0ÏËËËØYÞ¹s'¼¯C×h4&ßA§Ó¡Óé$zÂ(•jî TFÜæ¨TeßÙ­[WŽ9ÆÊ•{¢&BX —'м¹ o½5â±£›Z­–œœ“ÁÐö+’’’˜2e ,X°€*Uª ×ë133C§ÓÿÿŽãÈÊÊÂ××÷¾Y[[óÊ+¯HZò” VY†Þ!†ÑË5*W®\æÚ¾2™Œž={âèèÄÆ¿KÞ 8‘   Ç^ánooOëÖ­MŽ-\¸ðïÓëõüúë¯üôÓOL˜0=zB[%ßµôzNGNNr¹üó^’~>eªW¯NåÊܾT58vL–E•*xx”]74¨ÏÊ•Køå— 9r ;;zôø˜¾}ûü«Î™ŸŸ~~~&zûÐ{„DEE1iÒ$ÜÝÝ™4iNNNF{©ÕjB —ËBPTTD^^ÞZ¹ººJºù? (¨!;w&¡×{•rì*llnзÌí8::2mÚ74iÒ˜;öRX¨¤M›Wyã×ÿÕ4KÉÒv&ÇæÌ™ó`‡>qâD:ÄàÁƒÙºu«ñÄСCù믿شiµk×FADDùùù¼÷Þ{’&W¥J•7njµšœœãñââb,--éׯ±±±áééÉŒ3hÒ¤ÉSÝ+/ñpÌÌÌxë­‘ØØX³k×ÒÓoâädÇ+¯|«¯¾úÜÎ[XXЭ[7š7oŽ^¯7ÚN¹\Ž™™-[¶D¯×“––†\.§_¿~´oßžJ•*IJñ ѤI/žËƸv-KK ºòöÛo?— ªo½õÖOV¨Pá©îí”x|ªU«ÆøñãÉÈÈ ¸¸gggÓ%Ï#Íš5£Y³f<ߣGéÅ?XZZ2dȺvíJAAÖÖÖ¸»»?µ-fO{{{Þ}÷Ýž¿;Œ/ñlbnnN›6Á4n܈ÌÌL nnnÏm …ôJ_¬¬¬¤è‰Ä3‰\.ÇÝÝ]„Ä3‡L&ÃÑÑGGÇçþY¤â,/’C—º„„„„„„„äÐ%$$$$$$$‡.!!!!!!!9t É¡KHHHHHHH]BBBBBB¢Q!Ðjµh4cassscù@N‡Z­6Vx‘ËåXZZþOkcKü7Ðëõ†j]º°´´4f¿S«ÕhµÚûê­„Ä“æŽnêt:£þ) c± Fc¬˜&ÙM‰§âÐÓÒÒøþûï §   š4iÂ|@åÊ•ùå—_øã?ÈÎÎF&“áääÄgŸ}FóæÍ%å”x¢„††²lÙ2âããÑjµXYY1xð`úöí‹¥¥%ãÇçÚµk(•JÌÍÍiÚ´)£G6–¬”xRäçç3þ|N:EAA …‚úõë3vìXjÕªÅÎ;Y³f ™™™!pttdôèÑtêÔI²›OΡËd2üüüèØ±#Õ«W'11‘¯¿þšŸ~ú‰É“'ãèèÈСC©W¯:Ž 60iÒ$Ö®][沜ƒ\.'$$„úõëcggGDD_|ñîîî´mÛ___úõëG•*U¸}û6Ó§OgÕªU|úé§Ïmщçooo‚‚‚ðöö&--Ù³g³páB-Z„ƒƒýúõ£qãÆÈd2¶lÙ”)Sðóó“:œOΡW¬X‘ %T¯^   NŸ>™™]»vÅÌÌÌØ«>|8ëׯ'>>^rèO”€€š6mjÔ=///¾ûî;"##騱#ï¾û®Qo«V­J‡8~ü8’C—xp›^ IDAT¢ØÙÙ™ØMoooÚ´iÃúõë133#88™LfÔÝÁƒ³fÍ®_¿.9t‰';B/]õ(33“K—.áïïo%ÝA§ÓqàÀÜÜܤ" Oe„^šØØXÒÓÓ©Q£Æ=çóóó9{ö,5kÖÄÖÖVžÄån»™——Ç¥K—ðõõ0©r¨Óé8~ü8ÖÖÖx{{K“xb˜¬r/,,dÅŠdgg3|øp“ õz='NœàÇäÝwߥzõê’ô½^BÄ#’ÀçŸN‡hÛ¶­É9FÃÚµk¹yó&}ûö•úc"„0.~•(;†õë×sýúuFuÏïýܹs,]º”þýûS«V-I`©›’Ý,ýôkÖ¬aÏž=|òÉ'&Š'„àܹs|ýõ×tíÚ•~ýúÝ·±ÜÜ\¦NjüÛÙÙ™=zPµjÕÿ¼ SSSY´h1QQQXXXзoºu놕•ÕïÑjµìÚµ‹Ó§CQ*•¼ôR ºuëöÜ9¬ôôtvîÜIrr²ñX|||™ïOIIaÚ´i¨Õj&Mš„ƒƒÃ=Î|íÚµL›6Æ?°ß~ûK—.ÿnÕªmÚ´ùÏëfnn.[·ncïÞ½èõz›2xð`*UªôÀ{t:—.]bÇŽdeåàåU•Þ½{?—¿õ#GŽpâÄ ãßQQQ”ùþ­[·²víZÞ{ï=š6mjr.::š¯¾úŠ€€FŒñÀ6âããMl§§§'=zôÀÕÕõ?¯Ÿ`ÆdeeãåU‘#G#ÈâÖ­[üñÇÄÅ%P¡‚¯¼ÒƒF™DNžÙ±cYYY&¿×‡õ|Daa¡øá‡DóæÍÅþýû…V«wÐétâܹs¢E‹bÚ´i"77W<ˆ   ‘ŸŸoüWXXhÒÖ•ˆˆ$,- ™¬»É: GÇšâÃÇ‹ììì{®/,,6luëú kë*B¡h"äòÖÂή†èÓçuqãÆçêùu:(**2Ñàà`¡V«ÿñÞÔÔT1pà@ñÆoˆØØØ{ä´xñbѬY3qàÀ¡ÓéØÎœ9sÄÆM¾ƒJ¥úÏëfff¦:t„°¶®)ÌÌ: ™¬³°°ðÍš‰ÔÔÔ{®×ëõ"44TtìØIØÙ¹ sóúB.o-,-뉪Uk‹°°°çN*•ÊD/6nÜ(æÎû÷)•J±fÍ(¶nÝ*4‰œ¢££EëÖ­Å„ DFFÆC??88Øä;=TŸÿ ¨T*±dÉáää#äò`=„BÑLøù5Û·oZ­VkŠE¡ºÐ(óøøñÑGã…‹K%aaQKÈå/ só@Q¹r-±`ÁB¡T*Ÿ+hµZQXXh¢AAA¼^QXXȪU«X¶l&L Aƒddd —Ëqqq!44”?üÀÀ@^{í5”J%*• ,--ï™W²³³“â¥ÈÏÏgéÒ9^ƒVÛ(™wËÉñfݺ}´ió2=zô0.žÑétìܹ“?ü„”” à@AA.Û¶ý‰¿ÿÏ|þùD,,,žy33¬­­MŽÝ=?~?’““ùú믹uëß|ó ¶¶¶¤¦¦bkk‹µµ5«V­bùòåŒ;???ÒÓÓ177§B… ÷mßÊÊJÒÏ»øóÏ?Y»ö:]W "juΞÝËüù ˜>}šÉ6«˜˜Þ~û""®­&€NCRÒY&Lø”7P±bÅçF&¿¥»íÚýP«Õlܸ‘ï¿ÿžÁƒÓ¢E 233‘ÉdT¬X‘‹/òÑGáããðaÃÐjµ¤¥¥aooÏoáÎïAÒMS.\¸À’%?‘Ô0D-u\½z†Å‹—Ó8 1G3‚ ^÷Üì\¾ýv?ÿ¼ÆèX£ÓéII¹Îœ9Ëiٲ͚5{nd —ËïYàû°mФ¤$V®\ÉíÛ·Y»v-¿üò nnn,[¶Œµk×™™ãÆÀÑÑ‘1cÆÐªU+IëþÛ·osåJ4:]=£3/Á•ôtΟ?OçÎE©TòóÏIIÉêy hµ~ìØq€¡Cß|áØ:tˆ-[¶àââ´iÓŒÇûôéCß¾}ùî»ï(,,dÆ lÞ¼___&Mš„›››¤|e`ïÞèõÕÒ¡]„¨Ï±cÇ(,,4q47þJTTšÁùû•šµ3Gˆ&DGÿÁ±cÇèÙ³' …â…•[vv6+V¬ >>ž;v°ÿþƒªP°iÓ&¶lÙÂ_ýE£Føðð¶¶fÔ¨QtêÔIR¼2péR$ Z ô4ŽðáôéÃÄ&Çòãåy§é;˜É̸ví›7ïC£1Zw:NfáCrr;wî¤aÆeê´=(|||رcZ­Öô„B¥¥%_ý5&L¸§×àìì,i\Ðëõ†…Fwe€Ng²ØC­VsîÜ5À°¹Ï=–\ºtöí»0tè@Fz77·2YE¯^½hÓ¦Í= µ°··çèÑ£÷œ³´´”tóÐh´÷ÑME)ÝÅ0:ÒråÊT*G@ ܕϜ[·25ê=Ö¯ßÈìÙ3¨Q£Æ ©›®®®üþûïh4š{FOæææ¼ÿþû 6ìžH•“““¤teD§Ó¡ÓÝoÎÛ ­N°:b5®\éV«f23bbbÈÎÖ¹Í=ú ÌŸÿ‡ã³Ï>¦cÇŽÏM”³ÌÝÜÜü¡ûÉ]]]¥…ÿwwwüü|8sæ*Zm¥R#š œœ²iذ¡IºR¹\N¥JÎܾ]Ü”¥zšjà&Z­–¸8%S§Î$1ñ&Ó§O®BœeÅÞÞ{{ûž—[þ{:tæ×_§£Õfw:BEÀ%š5km²ñNG^¡­V Ü| MÜD§S’™iÇ–-{INNdÅŠåÔ¯_ÿ…sêr¹žwrr’œ÷¿Äß¿.Õ«CTÔm šAÏtÈdñTmhÍÁÔƒ¬é¸G+G\\\P(,ÐjõÀ5 €¿7re©Øò×_‘¼óÎ;̘1ƒAƒ½Pº)gyÂÜÉ´çç§D&;\Îaeu”×^ ¢U«V&+/­­­éÙ3…B€hƒs?ލE¸I¦ˆ}?ÿÌìY³î‰°HH”…®]»Ò­[CŠÀ9d² ÈdhÐ@Á¸qïÝ3úìÞ½;y†ŽéIà"œöS‰bÚq“N.œÏ'M"&&F´Ä#Ó¸qc†}+«£Èd§Ë˜™ÇÝ3Ž A–4«ÝŒVÕþžöõóó£I/Ã( 8m°›WƒØr‹$Ò…LÜ““™:y²ÉîÉ¡K”‰–-[²aÃ*†õÇÛû‘´kçC‹-0333 ¹[XX0|øP^½ööZ,,âQ(v#“mBF8þäÑ’¢V@µš­«WsèÐ!IÐLÅŠùþûï˜6mgP±ây-éÒ¥-ÖÖÖÆâ"wh×®-'Ž£B…",-³17?ŠL¶ 8Œ=©ôCdÐÏŽZ-Éþɯ7¢R©$aK<ÖÖÖŒ=š•+§Ñ¦ ¸»Ÿ§V­tšw÷%Ï9F`nöwt³zõê|ùå'ԫ猵µs󳘙mö`K íÐÒhFÉr9¯›7™öí·dggK]¢ìÈårüýý4¨?NN¸}[°gO<#F|M×®½9þ<………\¿~+W® P(X±b)[·näë¯?fĈ~¸¸¸`Ž@CðIAÉ’¹J99ìÞ¹S´Ä##“ɨV­o¼ñ~~Þ¤§k9{6—Ù³·Ð¼yÖ¯_Oaa!ñññDFF’˜˜È˜1£9qâsæLá‹/> Z5@A :\(™‘—N@M†#ûöQXX( [⑱³³£Gî´mÛ µZ}CËÖë‰9ÄžŸö“››KZZQQQÄÄÄÄ¡C{X¼xS¦|LëÖ ‘Ë+⎺€wV"•8ö¸èh"""^y)$•)„Èd2„ÄÅÅqùòeCu¦¥œ;gôl|ÂÂNñþûÑ´icÂÃ#Q©4xx¸ðÚk}èÕ«íÚµãöíÛÄÅÅsæÏ8䥒%å×D½å‰lÞ¼™N:I™Ò$ÊDvv6¡¡¡äää°{÷n¶l¹„½ ®XORÒy¦M[Dxø9¢¢®‘]„­­íÛ3zô»¼÷Þ{h4T* ³fÍB^jÖGCI 3J²¯^eÍêÕô0wwwIðÿh;•J%$'ß"&&šï¾[K^^s„sðÚ…öX-–ïÛŽ™Z’’FBÂmd2 ú1jÔ(† †L&£~ýDF¾,óïÑ«HnP’êü—õëqvr¢~ƒÏ]âÉ¡?AnݺŢE‹ ÇÖÖ/:JF†FFzz,%ò;[&ì—8yr9gΤ¢Õ67œ»ÅÉ“ß2ÊõÅÝÝéÓ§Ó-,Œ„¬LªÀƒrúúÂ&Cä»ïòå—_J/C„üü|~ýõW¶o߉N§¥ZµªÄÅÅOq±Œ¼¼ÛW4è¤Ì0Îö'&&™%KÖ¢Ó…Õ¢ˆ°°uäçç3eÊWØØØ0räp"/]äÜŽí´pˆ¼€J™™,ÿö[".\`êÔ©ÒbF ôz=ÇŽcéÒedeeQ¥Š'*•гg#((¡Tf“›«l a$d;ÁÍf¨56,]º&¨è '"â=víÚŠ³³3!!øðÃ1,œü)ª:š'J@Ãü|Îþò ÃΜ᧟~h¦IÉ¡ÿ‡z•g΄2jÔ8._V£ÓyS²ã0Ð ð¥¤GÉ"7G žÁpÚ ×Û¡××îì+÷ =]Á¤ISyõÕW‘Ëå4iÀ¶Ý»5t(cb(Ðj±B«’_·SRX6u*mÚ´áå—_–^ŒPR£aðà¡lß~¨‹j`ƒA{SˆÌöû€ÎÜÙæ£×Û¢××-¥ÃPXèÌï¿ï¥C‡ötìØ///–þ¸”÷--ؼu+ IÀëÀ5òÊœv­[ÇJoo>ý쳇¦<–øï T*Y´hS§.¡  &BØôÐèjˆ©K\°Ç^¨UÛúÚju ;;4šJœ9³Õ«×ðÑGbeeÅøñãÑëõ¬_°€”ìlÎ ÁË@]ƒÖ+•œ¹|™÷ÇŒa÷þýÏu‚i½œF??ÿ¼–ÈH3CÆ­”ìÑõê”suÀŸ’@ùý½· ãl÷»: îܸq‹Y3g²~Ý:’’’`ñŠÔ>œ$++êÜqæ*UõzvïÚ%½ #;wîdûöp„èŽ]sšœ9×ÛH2ïh6 ¸L߬¹u Vþ´’%?üÀåË—qsscÞ¼yt~ï=R¼½©e0Éw°êAØéÓÏE-ñŸâÒ¥HV¯ÞD~~B´6ØH´78sJtÔ¼>44ƒ›• ÅÝ`?c z[Ú Z•ùõ×ßY0>`ìØ±|2{69-Z`Ô,¥Ñf@#!HIL$22R¡ÿ×ÉÊÊ",ì BÔ2H %[μïÓr48t5%ûx#“)âî=«*„NÖ/¿Déäĺ&MX¹z5­ZµÂÏÏ?·lÁ¢¸øžïb%Ê¢"é¥HÙ½{Á„¹ŽäP²†ãîµJ·Žœ»ã]]NGØï¿suÇv6ðÙĉtîÒ…‰“&‘™•Ej\œÉ2ÀB&#_¥’*ºI-‚7n]ÜÉ…R`pÖwåÕ¨œ• `OUƒm½\šß¥› D ¡¡¬‰GëáÁ€·ßæÓO?eèС!˜uêÔ=)‘,¡×?÷»1¤z¹"+ÕO²7ŒvJoûÑ d6ðð¯¼Òww+à Plè daF8É£‹^O·ÌL²äÓ?F­VãêêJ@Ë–DËd¨ï(1 $ZXÐJ ·K”v¿zq—Ñs2ż»®Ì¦$ÇŸÀ*¼½ éÔ© E¬ÁÐj%2.S›tzº+•8:ÅŒ)SˆŽŽÆÉɉ€ÆI´±¡ôºöb ^&÷aC)g¹ÄßSÆ]ºig°Ÿ)¥¼­ êEBB.d\~ÂÖ6”¾}C°°HÒ º©¢±$š®èè®VóR|<«æÎeû¶mÈår‚ƒƒÑØÛ“Àß1R8¹¹áçç÷|Я]»Æ•+WÈÈÈÀÜÜœ:uêРA¬­­Q*•\½z•7n––FãÆ ,SaÿNNN4iR‡sç"Ðé< ý½:”,[»@ÉÒ %sè7€—K/0bÄpzöÌdæÌÅÄÆÞ@¯·Á‚$|H¤%zä”$1l©Ó±ïìYbcc©S§ïü1^½Êñèhª Z&ãšBAãŽéÞ½û !לœ.\¸@\\jµ‚ƒƒ™ oÞ¼ÉåË—II)ùñ÷ïß_š›½]»væ—_&"D]J²Á¹Q¦ ¥¤¸ŠÁ™ÿ4üÉNóê«ÝèÓ§rù4öïß‹VëäáÁUZ¢ÇÕ`Škêõì'22___º÷èÁ‰'8¼y35õ%:œ(“A@o¼ñÆC³ÿ=/hµZ®^½ÊÕ«WÉÌÌÄÆÆ†úõëãïï¹¹9\¹r…ØØXrrrhݺ5þþþ/dÜÇwæ2¼½½©UËŠ¨¨$J¦( ÿ=DIñ¨”nQðg5м ÄÒ²¥S¦|…•Õvï>JV–= ÁXɦ %Ë:=€*99ìØ±ƒWzöÄËË‹cư}ɲóóq‚ ™Œ8&~ðÁCK?ý‡~ 33oooŠŠŠX¿~=C† áõ×_'))‰… ’””Dll,o¼ñ7þÏ;ôââbþøc111X[[Ó­[WÞ|s§OŸãÒ¥ýètÕ # Bà8a†¨()hᜥAƒ*øùùáåå…¯omΟ?Ïž={ˆÚOgþ€bïk5òòJFUÍ›7çË9søeíZâ¯^ÅÞÙ™¾íÚ1hðàûVsz9~ü8kÖ¬ÁËË öìÙÃþýûùæ›o¨T©[¶laÓ¦M¨T*RRRèÑ£ÇÞ¡«ÕjΜ9ÃÑ£Ç03“Ø„:ðÊ+›Ù¾}7BÔF¹aÄ}H6t@‹ aN_ …"…¾}ûмys,˜ÏñãÇ9~ü8·ï }–šê¥ÆU€¥ƹqooo¾üê+;;séÌä2õš5cÈС4¹«^øóJnn.‹-B¥RQ­Z5ÒÓÓY»v-}ô;wæÚµkÌœ9“œœ®]»Æ_|A:uþó¶3::š]»v“••…;†0|x?¦N]F^^BØß‰5R²@Ó çB²=¤6r17åå—GS£F æÎEïÞ'‰ŠŠâÇ ©•žM3L«Øéõäåç£×ë177ç½qã°wpàÈþý¤§¥áU·.ƒ{õ¢wŸ>Ï¿€ãââDvv¶P*•¢  @,Z´H´nÝZ¤¥¥ µZ-ÒÓÓErr²4høì³ÏDqqñk±¶jÕê…¯Ñ/^yåUáàP[XX4ÖÖ…¿øñÇÅåË—ÅÇ"Z¶l+4h*œÝ¼, «€Z¬TPI€Ÿ°µõ3gÎ6ÖåÖh4âÏ?ÿ^ææb ˆ¯@Lñ%ˆ ÄíÛ·EzzºøtÂQ»jUááà ªººŠY³f‰ôôt¡×ëŸ 9¶k×îë¡§§§‹””QXX(”J¥HMMõêÕ+W®B‘““#RSSÅo¿ý&êÔ©#ÒÓÓZ}ëÖ­/´næçç‹/¾øJ¸¹ÕVVÂʪ©pv®)Þzk”ˆ‹ÿ BBº‰Æ[ OÏêB¡h( ‡€Æì8 pPC˜™ùˆ>}^3ÖñÖétââÅ‹"¨E ñ¦LfÔÍ) Fðµ³GŽùùùbõªU¢eãÆ¢ª““pwp^]\»ví¹‘ã–-[þ±ºZ­ "''G(•J‘››+>ûì3Ñ©S'!„ÅÅÅ"55UDEE‰nݺ‰¥K— ­VûÀºßíÚµ{¡uS«ÕŠíÛ· oïºÂÖ¶°°h)ꈎ»Š3gΈݻw‹W^é#[‹š5}…¥¥w‰Ýôj"xK!pµ7ØÍ*B&óµk7çÎ3ÖAW©TâÍEk33ñy)ÝüD€¥¥˜üùçB«ÕŠÓ§O‹ÎíÛ /WWáfc#^~é%±oß¾‡úµg‡ùY…———ѹ !pqq¡¸¸ØØ›quuE¥R½pUi‡ÂÂBæÏŸÏ¾}7P©zsguåW˜;wuëú3gÎì’yŽùóç3yò¨TņñL5J¶XTì)*Šfñâ5 2www -[´ ¨ONnÙ‚¿J…µaV󒃟½û.|öÙgœ^½šæ  ³M«fÌ@.—3f̘f”zwQ …Bµµ5T¨P𳳓B™ÀÁƒ‡˜9sZmG„ðd§ñÿ·‹ÀÀ¦Œ3š1cF£ÓéØ¿?~ø!ׯï¤$ó°£!üî8¢×k9vl3{÷îeàÀ˜™™Q·n]^ïߟÅW¯Rœ›K!(–Ɉ´²¢ý›oâïïÏÚŸfÁĉøåç ù@ø¯¿ò•^ÏòŸ~z!ÂíæææT«VÍø·……...äçç—LûZZâææ†â….#[V"##ùòË©ÄÅùR² H†Z]ÌŸÄÃc9óæÍ¡K—.¤¦¦Ò¯ßë?»ÑT@”%dÔ¥d‡;BÀõëXµj 7F&“aaaÁ¨Ñ£y/4”3±±xéõè(©‚aÛ¨C†åìÙ³¼3t(®ÑÑtÒë1.œ:Å”O?åû+hÒ¤ÉsoGLÅegg³{÷nš6m*-\¹III„‡G¢V7Æt«„7nÈ8þ¼±HJrr2aaá”ÌWjÄFÉV ¢"IIy¤¦¦[²±µå«o¾!äý÷¹Q¯§\])lÝšqS§2pÐ BÏœáÌÞ½k4Ô dó‘?P?'‡í6pëÖ­Vþ»wïF©TÒ¼ysIïÃæÍÛÐj}ŒÎ¼7 ›6m2êfQQaaaäææ>MŠ4˜@=`IVV¢£ÿ.¬"—Ë:lã¾ý–ôæÍ9]±"×ýüxeÂÆ““?ΟOü| AECËs‡qìØ±Vö :tˆIïCXX811ņãÝ´pøð9RSӌמ>}†”ÔT¨.+ˆ¬JÉöÞó†iK Àƒ3g.˜|F“&MøvÁ\^}•0"ªWÇgà@f|÷UªTá·_ÅúÆ ^Òë©LIb™ÖB ¹xñ¾%ÄŸG¥çÞæÍ›GZZãÇÇÆÆæ‘B{¨PRÿ×ÊÊê…™7R*•ªù»œ©ÑÔ¡×Û››ƒ^¯G­Vóã?²uë~TªŠü½§Rg0š‡(Ù5®F.[[[„£R©¨èêÊøñãy÷ÝwÑj4ØÚÙáââ‚…… ÈSRp(õé2ƒÙ¾õLîñÕëõ›úx”^¯çèÑ£L›6>ø€€€€ÇúÅÅÅ&úiiiùBEžÒÒ2–{·ñ8—ƒF£A¡PpêÔ)æÎ]H^žx¨b¸'ØOÉv6ÌÍ5F; V«Q*•½žþýûÓã•WP«Õ˜››S±bElllHOO'%6–VB˜Œ*ŽEE\¸pnݺ=srS©T¨Õj=yrrr˜9s&vvv :ô±¾ƒN§3ÑM¹\Ž••ÕsŸŠô(•Š»ÇaAv¶ ¦DþÑÑÑÌš5‹ëI ÐÑ®µ€¼JÖx¥$Ç[Gd2ÎÎFÙ)•J´ -Z´ Q£F(•JÌd2œptt$55•qqxk4&óëÖ”,œ»ráƤ”õ³€N§3FÌKûÙ‡:ô¬¬,.\ÈéÓ§™3g5z¬ÏËËãûï¿7þíììL÷îÝ_˜TnnnT¯^‘ˆˆDL“mäae•Žƒƒiii\ºt‰Í›7£R] óÍ(YðŽ\®¡[·f¸¸¸pæÌ–-Y©={¨Û¼9#G¦K—.&a ;{{ô¶¶èrrL`íäôL:¨¬¬,vìØa=HJJ*³3ß»w/sæÌáµ×^cذamävìØaRʳU«V¿0=((ýûC¯¯WªÓ©¢©\Ù“¬¬,t:Ó¦M'//¢dú~½ иŠL&¨UKжmnݺÅâE‹Ø½q#™™T®U‹acÆðꫯšÔü¶³³ÃÜÆ†¢» ±è¥BAÅ»¦PžN:Å_ýeü;**ªÌ)@SRRøæ›oÈÈÈ`æÌ™”žÂ|Ml§§§'Ý»w¿gÚéyÅÇÇww ÉÉyüAL–‚——=yyy$''³jÕ*""¢ÁKvÕà˜?èí)YÜ ØTÃÆ&Ž7ÞøŒÜÜ\6mÚĺå˹…­³3úôaì¸q&S"ÖÿÏÞy‡GU`müw§d’Iï ! B€ HèHG@Aq±¬€…²«ˆJņJµ (Ÿ(¸¢R¥7!Ò[BBôÞ33™~¿?îMHh못™÷yò$3sgrçΙÓÏ{\\pww§L ŽA´É®BŸßmé<åææ²eËJKKëÙ<žé IDATÙ›ôòòr>þøc:Äܹsÿ—­§§'³fͺkÓFüíopäÈ ˆbÒ„í)”Ê<¾ûî;öìÙC^^!©©i²¢ô¹åŽJ•@×®í™6m ÅÅÅ̘<ËÉ“t‘=±¬­[™‘”DÐ?Ö‹H;tè€{Ë–$=JŒ(¢ª¥’˜>}nËå~~~Œ7®Þ}¿uÝk||<|ðƒ âÙgŸýC_ºQ£F1|øð»V>ydëÖmãìÙƒˆbMj3 HàâE='NÄjµŠ«$GÊkr=^@ÁÁf¦M{&MšðÖ[o±ÿóÏik³á"Š”œ>Íâ30<ýôÓh4Òngggúιï¾Ã‰ÃË$ ö€z÷és[^·Þ½{Ó»wïÚÛ?ýôiiiÿöyyyy¼÷Þ{dgg3þ|"##÷94iÒä®Ö]»veÈ.|ýõ¬Ö¶r(QûŒµk×2~üx4 gÏJu‰Ö­[#Š"ÉÉÉäææ’››‹Á``ïÞ½DDDТE ”J%ÇÃÉIÍ믿GjêQDÑŠÕjF¯ïƱc!H,[ui Šêx¤f¡œgŸ}„©S_&,,ŒóçSvò$ƒívj ýéé|ºd _._^¥GFF2söl&?ý4—Š‹qG¢ªiÇóS¦Ô‹˜îtœ8q‚éÓ§Ó´iSzöìIzzzm¦$88˜‚‚8sæ z½žƒDllìï*Ý鈈ˆàÓOç³`ÁGìܹ£Ñ„(±Û£HHˆ%!ÁœBb)´ µ[ÚêDèv ˜^½ÚóúëoгgvíÚÅþM›ègµÖq6E”%%¬þúk†Z›—_y…éùù¬ÿåìvt‚€ÎÃùï¾KDDÄ]s­u: ,àÀL›6 £ÑÈÙ³gvíÚa49wîqáÂöíÛGdd$ááá N6ýüü˜3gnn‹X¹råå:ÁŒÝîGNN99®HkSÊ Ò®îÔ luÎb¼½µ,_¾€Þ½{ãììÌç QTDŒì¢"ŠÛ~þ™0dÈ@*ÿŽ=šÔ”¾ÿä‚å­nEÎÎŒ~æ|W”7Tééé²qãF6nÜXûÀ?ü€Z­fíÚµÄÇÇR÷áüùó9rdƒ3è¢(’ŸŸOff&~~~|ûíÿaµZ™0a§Nµj®G˜•oAš§ÜÏÕ*·AH MOÞ{o.žžždee±yýzBês˜à#E‘ ))TTTàåå%}`*C† ¡ãÙ³lذ‚‚Z´hÁðáÃïšùóºiHoooòòòêm{ä‘G˜8q"‰‰‰Ì;WNé5cÉ’%„„„ðþûï78ƒ^YYIZÚe,+Ó§¿Ä¼yïòÁóùòËD$Žöšè£ðR“Ñ)¤ÞޤJbM›fñòËïÓ·o***ؽkªœêö¦+€ Qäì¹sT]“þkÛ¶-?nÚÄÞ½{9uêÁÁÁ 4ˆÐÐлjÁh4RRR‚¯¯/_}õÕU…ªR±sçNÊËËùꫯHMME£ÑpîÜ9.\¸À˜1cœA7™L¤§§STTÄÈ‘#˜8q»vídÖ¬©¨¸:-!આn‡à¨ÊO ípÊpq9Æ /<ˈ#°X,ìÛ·¼ÔTºÁu=ž$œ;WkÐk2Èó,`Ô#°ÿ~A`àÀÄÆÆÞ5²©Z¶lÙ-xçwpΞ=Ë[oÍåàÁdªª¬„†ºÒ¶mùùeHLpõüQÙ¨×ðï\Q(ªéÔ©ï½7‹/’’’š5k8sæ ÷ÈñQ]Á¬Dj˜»ÑZ@@&L¸«¯ùˆ#1bÄMïׯýúõkð²™ÍçŸΪUÛÈÉ1à{÷¤¥å Mź©D¥ì|Zd#~©Šø¾¾™¼öÚT"##Ùºu+?ÿü3«¾ù/›kÛpL‚€ÆË Õ šˆ\]]:t(C‡½«#Î+VÜôñ   >ÿüó/›v»/¿ü’¯¿^Mrr ŠÁPŽNH½i!A-Ôì….H¬š[ îî&žxb?þ{öì!áÜ9>üè#¬²ôÖûŸ@µ“^7ÈV* ºtéB—.]îÊëíü (//ç•Wf±cG)m«š´´r22~Eš¿V݉²X…!-h¹ìE+)*Òòñ‡’vé¦ÂBòJK1Ùl¤! tÔ¬((Î*•<ÿý:Sn ƒÁÀ×_͇nB¯Ü)-µ°eËiÔêTÙ©¼V¤2P/ Rs\Fãn6mÌâ«/ÿªœ²ssÑY­’¡måg›ó¢H‡~ý-þ;Ø·oo¾ù!EE±H´Âpð`Š(^“åu¯„¨L8§sw¤ÜSÀqÌfIIIücÒ$r/_FWXHžN‡iEK€Ç‹H¼ìV__úܦ=ƒþ'Ãb³°çÊB=Bié×¥âÖcu[¶láĉ+ÀCu.™3VkS¤¶Š#rjH+G>)H”šÅH´¯E˜i&ÚpMKãÈåË<(Šø"U0#Äþ(Çú {â‰ë"p .òòòùúë  íeÀ‚(¶Ãb9‡(&Éê.Pv2Ë„“òNt0¼y‰vúTlN¥·¼/Z]ÑÝH$œIHéÌ,A I—.LŸ9ó®êÙpàÏ…Ífã£>¦¨(R6Î`—·R^–%ª ‚ š§H÷§Ù‘ÊB -"­LF. ò3=×êjRRSŽ·„Ùl&%%…²2oÙPëeY,–eÓ(Ç5UH=€}ˆX¨BÄ&?r‰)°i4TªÕ4C¢¤ —£öj9þ±XHOOG¯×;>n‰¤¤$JJLH;”²¤]–Âe5D&ƒ>²×É&£CÀŠÔçž*Ëæ@íæF…R‰‡ Ð)yŸŽTR#õ€¤Ÿ?¥Î²†ÇzHÝ_ëϼþóXvr3vÏàùNÏó`ÔƒX T*¥¬C‘Ú3NÉ¢ä.+ÏÙW¬iÆ(Â*X9®P’g³‘ŒT#w‘ÅÚ5/árÌRei«,´-€j¥’F9>n £ÑˆÕjCÌr§{8ÒÈä:Yâ H3GjBÚä£P”sZPâd·s^QÊñ“àl00œ«+…u”*•4ññ¹ë˜ øóM)õm£få©”zÿY’M´LƒCjз–Ÿe 18k8d¬¦\—d½iÑéè'òš¾ùd¤=l‘@• à‚²î wôkàêäÊ„ŽhìÙ˜ý}'öc9j¦°0A(Gû#$œ’•¥NŽ„<‘Z8HÕcÄĶ¢M«l^³†žV+í©aË–H:ê’“z!õ"_’#!Ÿ˜˜?´(Ç»‹…ðã?râÄI! QŒBJ»ÇËRT +È8à%¤nà(ÍšiéÝ{›×¬¡Ie%=ey<"g“üë9»’«ºCŽÔ3==yîP©êÃë!Š"çÏŸçûïàüùDìör¤>õXYû•KP[=TˆÙi–ˆDs‰qÿ˜ÄÞ]»(OHàþšÈ[–Íš‰öÙŒåö<©R1tÔ¨ëlª¶nÝÊ–-[¸té... 4ˆ¿ýíoøúJ Errrøì³Ï8vì!!!Lœ8ñ®¥Í«V­ex‹á|»t_ëV By{Ï UnB‘¶Õ4ÈEÈQÐn9ñ£G«µ1{öªª*9ñÃDɦ¾fVòFªP ä*¸DE1gΚ6mÚ Õ+WX³f ‡F¯×Ó¬Y3¦L™BëÖ­£ÑȦM›X½z5&“‰aÆ1zôh<<<îêëb³ÙX·n=sæÌ%5ÕQŒ øÏHÓâ\­™÷^¾A"ë0 Ñ6l=ö({7oæžÊJÜ®‘MÅ d³D8©Õ2}Æ  Ôà3#›7ofûöí¤§§ãííͰaÃ9r$nnnˆ¢Hzz:ï¿ÿ>W®\¡iÓ¦L:µAdffò÷¿?Í… VŒÆ¤Ç£ræH–MŸjˆaOs0–?È‘|%qqm˜0aééXjËšŽ õ dS޹¸0øÁ?qbÃ[‹§eË–Œ;–²²2/^Ìùóç™7o¼ð xyyñÎ;ïpèÐ!ÆŒÃæÍ›ïªå,6›ââb***P*•qøðaü+Qxú$Àƒç`—Åf°ŸDÀ‰æ VÒ*`J’PcÇd€©/½HŸ~ýÐÈ)Íš”HÒxZ[ "²¥«T<9io¿ý6žžž ÞÓOJJ¢¬¬ŒçŸvîÜÉ£>Êòåˉ‹‹cõêÕ|úé§¼üòËøøø0oÞŠ²2‚AÞ_(¿J‚,õ*Ù¸(|}ùîûïéÛ·/J¥²ÁÊ¥jöìÙµ\á¢(R^^ÎÂ… ©ªªâôéÓäææ2wî\Z´hALL GeÅŠµ[®î†ôК5kX¿~#YY¸¸8ѵë=dgç`4úƒ©9ìòÎÿ‚Avø5ïËUxÚÊÑqœRаÓ¸LWˆÆŽ›œT:—‘ÁºÄÛÕ•2®VqvýÑ‚@SQD®¨T´èߟéÓ§;Œ¹ŒÔ[kˆ øõ×_騱#+W®äá‡fÔ¨Q€´qì£>b̘14kÖì®Í'N°bÅ NŸN "¢1±±±œ;—Äéf“UœCË%ü¨ÀN&Ù´ï_…+Çiƒ9±™\RÂê~ÀY©$Mh'е݉:© à$Šú-øà•Wˆ‰‰q&àååÅœ9sjwÁßsÏ=¤§§³~ýzfϞ͞={E‘éÓ§ãææF»ví8pà7ndòäÉwÅ5ÈËËã³Ï–½ÞD£F> ØŸ_~9ŒÝÞM6¹¹H…šH”dLæ  ŠƒmØwùÅ(‰§:"diÎvlߎ»‡Õ 6‰\Æ©v~(|E‘rA ×Û›‰Ó¦Ñ¿ÿïhªê.þEN‡Z­FE._¾L£Fð‘ËœéÔ©;wîÄn·ßûcwíÚÅ‹/¾NaasD1A0säÈÏxx`±ÈÄ.: ƒ'B¯‹´ÔBÜY0QÅI w ôFOKÙ'µž¢È>‹»û­Vºxȉ'ÑÝ=¨ª¨@¥RñÈ€ümôhG#\\›6³X,èõz´Z-%%%[+‡Mš4Á`0P^^~×d(fΜÅzl¶V€È¯¿^a×®]X,5‘&Yi*ð ‰!èñNð…„"0 gèJ9Z“ì@°½ªŠ€6m8i4b1™h*Š”"Õ)#úôÁ*TVUѲ];žzæ:vìèÊšl†BQkÌAÚ*VUU…‹‹ &“‰K—.],iµZZ·nMbbâ]¡;ív;3gÎbÍšc1ˆ¢ ‚PÈ Ñér€ò‘©€+.ÓB"Õ"Ç£ìxB^áy*)#’+ ÄFÍV€hàG“ ÁÕ•¥’´%ò£\…Ï&MðnÓ†üÌLÂ"#y桇œgǯÍ ‚€B¡ ²²ƒÁ€Z­ÆÛÛÛÑWǸmß¾íÛ·óꫯb2™¨¨¨  ž‘ñ÷÷'55“ÉtÇ7míÝ»— P]=©!D±1¥¥jŠ"á4¢X3eQM+ éŒH®Ÿ…ázî¶Se6°4š#RwÅ›œÅˆ¢­ÝJÌE5ÝÃ\ŽÉ¡•k¡&¾²b¼v‰ª]’rvlÝʇK–0~üxt:¾¾¾× \QQ?ýô{wïÆ ÓÌà!C1bÄïyÖ”oÊÊÊê½ßßŠŠŠ >ýôSNœ8ÁâÅ‹ D¯×#Š"‹¥Þgj³ÙnJûxìØ±z·£¢¢hÙ²åmyÍJKK9qâ$W‡Éj Í ÎÂnO!?¿0 Š&‚‹REq³á“fã‘ »”1rºF6E àÊJËÊø~õj*++ñôôÄÃãžÌÙív6nÜȶ-[(ÈËCëæFÿþàƒøûûßñJ099™Ô:œÇŽ«m þ-8rä‹/fĈôí+±J¨T*Ì×ÌB[,”Jå k¼ÅÅÅõt§··7íÛ·ÇÝÝý¶»^F£‘øøxÌfêí3G@vt":Z 9yv»A,ÃC>òŠK{[¶ “É„B¡ÀÏϯÞõ³Ûíœ=s†ÕkÖpþìYTNN´ŽŽfÌØ±wEbii)§OŸF§ÓÕÞw+ÒU@Ïœ9³¶Óßß»Ý^Ûf4kŸ‘‘A```½tSÝ(3  ö¶³³ómÉ©k±XX¾|9ß~»Šœœ$>¬–²0æVìö|zhááá|÷Ý÷?¦Ä¨8Ë ®äM£ÙBL¥Xê9•‚@žÝ^KQX“lr4©©|¼`›¶oÇËËëºóÑëõ|òÉ'¬_²„ÈòrÜ€+¢È¬;Q«Õ :ôÎöUªë2=¿µ Õf³ñÙgŸ±gÏfΜIl¬´S9((AÈËË«ÅÛl¶^cOOÏzòéêêzÛ]+Q9xð ~ø‡Bò¥Ë嘥iL²”Ž;òä“O²víìÞFi©@‘]$Èb¢ëI7[);‚=—”œ1ÛèZG6s‘úàïÑëùnÅ ztïN‡{î¹á9mÞ´‰×^|‘F`ñ®]deg3mÚ´;>SçêêZO.þ“–'NðÚk¯Ñ»wo&L˜€»»;V«???.]º„Ýn¯5@ÙÙÙøûûßP'ªÕêzçàææv[f@®\¹Â¢E‹Øºu+&SÒ¶´öH.£Df¤VÛY²d!Û·ï`ýúŸ¸|ÉŠÎ.b´mÐå4Gc9AºìX¦ËÙÌšo£iÈ-J9¶iû}”‘=tÃó¹œÌ´—^¢òðaš[­XD‘-[¶p>1‘%Ÿ}vÇïÃP«ÕøøøÔkò½UÖV•ÀÌ™3ñóócÖ¬Yxzzb4Ñh4DGG³|ùrpww'??Ÿ={ö0a„F†®]»ÞÖÈh4òöÛo³xñ§TWÛ¹Êìv8†Ô$ Š&Nœ8…R€K§Ne0Ewây™{ù˜`ãI*±sLŽÂ-ÎÎìEÚø"5vd½Öþm?x³Ù|CCv!9™ï/¦—NG(Wg+“²²X0>:u"00ðŽJ—ëVmþ¥i0Xºt)ëÖ­ãí·ß¦G˜L&”J%Z­–®]»²sçNzöì‰Z­æÐ¡C„††Þ4jŒŠŠº­åÓjµ²nÝ:^yå522 Ei‚"SvýˆŒJÈÈPÍÑýûhT^J ÝÎ$>_ƒ‘¶Ç@W'»ÕÛÆ‰DŠ+ª‰Ýƒd9/ ìMK#55õ†=77—>úˆV™™´”r-Ó§¼œï?úˆû￟N:ÝÑJ3,,Œ°°°ÚÛ¤¥¥ýÛ ßáÇ™5k]»veòäÉ8;;c4qvv&..ŽÍ›7“––Fhh(™™™$&&òæ›oÞPwzzzÞöº3//ûïÊÅ‹YX­v¤±È à'YNýv»#GŽpúÖŒËt°ÛÉDÞ `sÃfs!;ñ€Ÿ éâÂz“‰› ;Òþ'$^ÃãV+÷ï¿¡A·Z­¬\±‚ʃém·£•#ýH›Í{öðÍÊ•¼2sæátww¿ŽäFÁt­Aûí·9~ü8Æ cÉ’%ˆ¢ˆ L›6˜˜FÍ¢E‹Ø±cDDDÔvßîHKK#%EªY…†6¦M›6¬[·Ž¥K¿£ºº3‚ÔTtiŽw 5µt(gÇŽ9µg'ý-|Ä&T0{¹È:ò°c’ï~ ÉÇ! €‰‰[,¸÷!ñv]”jõMëô™3¸èt²+!g;äœAr~>/^¼£ úïÅÓåÿâ IDATöíÛY¸p!­[·æðáÃ:tAèÑ£ƒ bòäɼöÚk̘1WWW._¾ÌóÏ?_/Ò¹]Q\\Lbb"eeåx{{Ѷm[òóóyóÍy¤§{"-ƒ‘h2Ï!ñDÚ5UÍ™3ûxùÅ©ô­t¥´e<°KNm*¬`N„Î:Hî .-|IÙ”Gi‰ /¤Éà(9®Uª›Fƒiii”äåÑ¥Îè¥Dl Μ;wîŽ7è¿7úÎ;ïpåÊ:tèÀüùók³Qo¾ù&}úôaذaL›6¨¨(RRR8p ¼íß›Édâôé3äçç£V«iÛ¶ îîîL™2… lˆâ 9÷˜+ëNO`$ÒR ;K ¯¾ò*-±ó y_”Ã¥2œ1Q‰Ôsä)Šè:w&%9™#ùùxËyÒŽH]#V9J½YöîT|<¡¢XKÒ%È:¹‰^Oâùó †Û2÷_ˆ>ñÄ 2ä†iRgggžzê)ÚµkGVV½zõ¢cÇŽ·}Ã(ŠìÞ½›÷ߟOrrF£@X˜ƒõáäÉ“”—·BbÔª1Ÿ^H¤5ž¨Ân·¢7›9'f¢¥˜,£€*öÈÑw„|´R­føÈ‘,OO'®¬Œ&²Q6ʱU÷o*˜jµW‰jVʯ4Øæ£V­Z1þüzur???Z·nͼyóHHHÀjµòôÓO}Û7¦¤¤ðþûïsð`ee6||tîÜšF‚IN6#-P©QB¡²Ó W{Ô¥6» ¹s£­ì!ñ^GÑ"x]Bƒa¼+ešî®EWëé·ˆZ¶juÃsU*• PH²X7B•êšJ­VËĉ©¨¨¨wì¹¹¹ñòË/søðaJKKéÛ·/ݺu»etu;À`0ðÁóøñÇ­äç[qr‚ŽC‰ŠŠâðáDñ>¨ma ‘3œÉ²lŠ²Æ“J´5û+î‘ÝQàGœpÁL¤¹òD qHAœ_½š~¢ˆ‡¬™ó€,…‚· 1R:9]'›5\¡P4¸¦bÕ°aÃny€««+½zõº£ÞÔ©S§˜5ë Nœð“;„”——šúP‰(>Fý Y^AA j2nˆÆL^¦&´åI|ÈG#›þP9étJ¡ Q›6<öØcX-þµx1Yn6Y ±±L›9ó¦çÛ©S' âJ~~í  pBhA«›(Û†`ÐoõÞ•J%QQQDEEÝ1喙ºš×^{ƒ¯`±t\(+«&337·=HDEu# 'YîCàj. À€-°ÑHvs€!²»ÊQŽ7RÙG_©aÕÈ/øîÊw¬õûåªiœ¥ %¼ö 7mlժ᜺p΢XKæ‘.!! v”M«Õ2bĈ[ãááÁàÁƒï˜÷d³ÙXºt)Ÿ|²š²²{‘Òè"?ÿœÈ¾}_c46¦¦£ýj±Ò•Ô$£¤‘j±Ó©ëc+Ò&É0À ^˜ A¢CJsqa|\<ðOKcwB¡&&A ÃÕ•QãÆÑ½{÷/•оƒ³êðaÂ-–Ú3ÓéÞÞ ëÞºc٠ ßmoÈn·³cÇNNŸ6"б²ÐÙE5ÕÕþ²ê+”Õ²Ž?gDÍ9b°Ó ‰d# '‡/= %Ÿ4YH-r2´ ;t`Î?ÿI³f͘ùê«ÄÄİmÛ6**+Õ®=þ8Mš4¹é97kÖŒæÌá³÷Þ#'+ O»<• Et4ï¿õ–ƒhæ.Â¥K—X·îDqRMܘ±XSV–ŒTá6PŸé_‡Š<Âȧ=R“D'´:r«|ÛiMP-òÏÉ“éÛ‹Ž­;áÁG>‘}ØÌ &ƒ˜÷Ô$ºuëvÓóõööæµÙ³y!7—ígÏl³Q©PPÎs3fáøPïdee±mÛÏ”•u” 5@56›z½³,›•rF³f _vÐIv(«6]”}xÖO •‚Jqtœ®hµt}ì1zè!BBBX³a«V­âÔÉ“jµŒ4ˆ!÷ßÓ”¹R©dôèÑ$&&²{ÃÂu:,@ާ'½FâÑGmp³éwA7›Í”––`µzËQ¸©™ ‹T9¤“ÿÖËê1æØÀÕÄ»‰¾œæ!ù˜¦$s©æ™J%#ÆŒÁf³̰áÃk눆#Gòàˆõ:\oFÃã?Nxx8 ¤¤„®áá 8{nÒyìÀ‰ììlDQ#G? 5¼ý*ǽa²,îºÈ2ªNâ @$X~V(Rñ8ÒLy3$>.…RIl¯^‡„àçëK·îݹï¾û¤l›“+/ÝûAÞA¬h¶‚ˆðæ´½§í¿=çN:ññ石sçN222ˆöñ¡OïÞôèÙ³ÁE@w3***¨¬Ô#¾u¦+Ë!Œ‡¬+w U¸eÓ„‚2z#•}jàŽTú)BêÚŒTÔ´i½ñjÙˆÀöO3¸}{1¢–L+$$„éÓ§c³ÙP(¿É‡……ñÎ;ï°£GΜ=‹R©ä‘víxðÁd t×t'''|||Q©ÊäNÌ4Ù?ìµê°P¯cH4& ŠVÔÔŠiA<¯ÆŒlʵ6–· &L 22ggçö‚ðq »¹¹1hÐ zõê…ÙlÆÅÅ¥Á.¸›‚BaÆn¯”Ó—;‘Rê1HõÈJ¤e«eÙ´!PRͱ YQ‘Õ®BŽë]ívôïÏÓÏ<ƒ‹‹ Z­¶^Q¥Pñh›Giìј¹¿Ì%_—ÏÜ~sñrñBàæ 4..Ž˜˜ª««Q«ÕwW¾<<<ððpEK‘ 7Ge‡r¨æX‘šà6Õ {*ñÆFØ5¯åÔ6W*Ëmµ^iœÜ1bÏ=7ww÷êÈÿ”‹=,,Œ§ž~½^ hµÚËç~×u ( † L§NZᨷD#%'Ý埦²— Œž¢¨DJˆd‹ g­X‚#EHS–=QÄf³áííý§7º¸¸àééé0æw)¢¢¢5ªNNÇäH\ƒÔÎæ-«ÀF@wù«ùð"=1Ë1|]e%©Gª£wÂE«Í†§§'nnn7l R+ÕômÚ—•®¤ÂTÁ˜c8žs«ÝúoeOOO‡1¿KѤI†Ž—×1áRQ±à+˦—,e~@o`03î\+96ÙüƒÔ2ש;»//-^^^ªÑU*•xxxÜÔIpô;íÚµcöìÙôìiAÒäHHyÍÛö”EÎ.{£Í9ƒ3ÙøÏT\) ’HB¤\Ž™Z õq:yyÝUÛæøßffÏ~•Çk‹‡Ç%YQ^ë¼yÉ2j¦fy!ZRêõj¤t»YŽ£œ H^^4kÖì7uŸ‡x„°è¾EDxG0{ßl~¾ø³ãjÀ1cždÊ”Ç »Œ”À½¶+ßIÖ—5“'Ñ„Ú{DàÒréd¤±Ý6HyQ7/±Êwå<”B¡à¾ûâââÌèÑ’Ÿ_,«Â£n—ãmW¤4§hEØÈ£ØiLÓÙN)ErL+ÿ>*Œ™8ñ?¢†tÀºJS·{ŸK—.rèP†k×­EË¿k𼩤»ÙÃeD<‘&€Óeõê4~švíʽ÷Þû››‚Ü‚˜}ïlVž]ÉœsÐYt<Òú” ¥ãÃj€ðôôäå—_D­V2kÖ»²ëX—iÝ$ç„\dgÓ‘n'‹bô!QÍ\”MÒ€pP@@P¸Ã ;"ôß§8[µjEçÎ]äX&©ï² 84Ù²ŽªÆQÎlÌ&DôˆÊœv891êÅyyÚ4‡ä8ð‡dÓßߟ"…HËJ ªáiHíDm¹ºE@Ä3ÒŒÆqYAúʱ|°pëÔ‰ÿûúk7nü‹S:Oaþ€ù,þu1o샒êÇÕ@áææF\\¾¾®H½Fy²l!å*¹Ú ÆŒ‚2¤¶ó²Î ”ãø-@Fh(Ÿ­\‰—WŽ>JG„þ» V« E¥²cµnCªäøÆSö r’(•j0>Þó)/?‡‡Ebz‹MޏºÒ.&æ¶\˜àÀ‹ÅBttkT*;ËI9Þv••¦ˆ”•¨3‹‹K^^ÁTVV`×ëéŽÄ]½‚@‡öí7£  ônÒ›E÷-⛳ßS™ƒ¯‹# Õa·Ûqss£I“&”–žD@ª›W! E¶ãp' Aˆ'8ØN@¯×ÓÚf£?R_¼8xDF‰Å"8"tG„þŸÃd2ñÚk³Y¿~v{s¤Áž ÁŠ%8±X œG­¾—iÓù`^?BBBè sR¢>//çäÉ“ ‡ä8ð»a6›Yµjï¾ûv{ 9SdB WtaÃ…_€uÀ<<2sæS|õõWtîÒ…`®Rc*Z;;‰"‡ö졲²ò÷+AA·ÐnÌí7—(ß(ÇÕ@qîÜ9¦OŸÉÅ‹zD± RQ'ÅaÓTü¬ÆÙy£FµeùWË7n~*]¹:”©EJ¹çž:EZZf3ƒþߎÐu:åååµ»Ž5jT¢°¼¼œ¢¢¢ZÏ-88ø¶¦ÔE‘O?ý”¯¿ÞCuu9/Á…lzb"V”a!:¶aCÑh?͸q¥<3v)ÅYYÄ]ãí(_Q¤  €êêê;~ÃÔ-Ô\s³ÙL`` ÞÞÞõ·ÂÂB NNNøûûãêêzÛJˆ¢H|ü¯¼ñÆ"²²Ú"ŠMec¾‘¶”ÓOŽÉ«1³‡,üî½—ÅLHH æÏçìÑ£4áúV%_ÀPUEII Ȩûiý‚÷`0(++Ã`0 P(hÔ¨Q½©—ªª* ±Z­hµZ‚ƒƒo{犊 &MšÌ±cNØíÃGiD.÷É%H+6„b’|²l}ûöcçÎ|¿r%®f3×Î@h¤¦¬¬ “IÄÉIpÏË [,Ö¯_ϪU«ÈÍÍE«Õòå—_ÖnǺrå .$33…BÉd⥗^¢ÿþ·…Ò4™L¤¦¦b0ððð **ŠÊÊJ6oÞLuu¬œ* š¡çž:Ê0 莩¾)<õT8?üðÇŽÑÜf£@N,Õ|ý¬@®BA°°[’ýWTTpôèQòrsqrr¢]L QQQ –ý¢¸¸˜gžy†ŠŠ X°`Ï>û, Ѩ®ZµŠ­[·ÖF¾:t`Ê”)·EÓ¢Õj%++‹ââb4 M›6ÅÅÅ…ö“™©EêKWY¸R̤ÆË%ØØö,gΜaëÊ•Dët+W[æD¤Úº·¿ÿ-Sî&“‰ÄÄD’Ο <<œ¸NnûÝ ·#l6»víbéÒ¥Q]]ÍòåËk7¦eggóÉ'Ÿ””„R©Äd21vìXyä‘ÛÆÙ,,,$33Q ' €C‡‘–VˆÝ>R–BÎ$'ëËÙì,Šäét¤\¸@÷îÝùà­·hR^NR2¾.¥‹Àb¸½(Š\ºt‰3§O£7ð÷§c\ܱhé¶2è …‚˜˜|}}ÉÍÍåË/¿¬8³ÙÌòåËÉÎÎfþüù¸¸¸°víZÞzë-"""hÖ¬Ù_zòùùù,\¸ˆ~Áh´ãææÄÈ‘2dÈ`y‡ûUŠB|<¯‹lB)â¢0›-šøÃ‡‰¶ZqAªûx"­˜‘Zè*ÂÃé׿ÿM`EE³fÎä—­[òóU*|:tàù)S:lXƒ]dñG Õjyê©§ððð`úôéõKMM嫯¾b„ ôïߟÄÄDÞ}÷]š7oΘ1cþòèí›oþÅÚµ?R\\‰F£&66š—_~‰’’®NXTâƒk{…Ü{EEEEœ?MAªí‡€8Ù¸‚D‘4õ©§n:#^]]Í·ß~Ëò¥K1&'ƒ(¢ eøãóÊÌ™·ýÒÛ ‚ Å?ÿùOÌf3³gÏ®çÈ­]»–“'O²hÑ"¼½½Ù²e .$&&榼ùÿK8p€ ’•U@DDc&MšDii)v»S°Ç†–R¼å%@Wõ)xädg“””Di~>ÈŽË’í‡D“ô‹ }ï½DEµÆn¿qÊýرc¼2u*%‰‰(õzD??: Ä«¯¾JóæÍ÷[ ºR©$&&†˜˜:TïÁ¢¢"NŸ>ÍÈ‘#k`Œ?ž÷Þ{Çÿ¥½´´”×_ŸÃ¿þu£±‚ EËIJZFYY9žžžB:¢è $£"…J¤¡ MȦðôÔâçç‡( j3¤!·xYQšåçuiÖŒŽ;ÞÐöÙl|ôá‡ìÿæúêõ¸v³™”øxÞ-*¢yd$íÚµsHÜ777zè! ÃueŽ'NàååEÿþý ! € 6ðý÷ßÿåýÛoW1}ú|ªªîAšÂ5röì RRþÁСƒQ©bµê T¥3Æ:&¾6²qsÃ××PÎ¢È à`,§Õ€Ýɉ†½éùüúë¯,zí5Ú&ñzRvé?,YBXx8cÇŽmp¼× …‚–-[Ò²eËëv§—˽6ýúõ#::¥RÉ“O>É‚ عsç_nÐ:Ä”)S9{ÖQì (HHH"-íU{ìa4#Ç›;±a¥\ŽÐ…Z3 Á!"R©¨‡¬77ÈÇV*žŒ‹ÃÃ#A¸Þ çææ2í¥—pŽgRySŸ—ǯß~Ë"''}ø¡ƒbø·Êå¿óBAÀj½Êd±X¨ªª"33ó/=ñãdzukùävïÞÍÃ?Ì‘#G8vìÕÕÕ7<~ÇŽäçç×ÞîСqqqúû-**¢°°Q¬ÙP%K^Kû÷`àÀ~¤¦.Á˜•E'ù¨ƒHS¿9:¯prâŸÝ»ãííMûöíñ쳬þðCò*+q¡ffÜ||xlìX<½¼nzN%……¸+(mõ d}€lƒ½^ÿ‡šéîd?~œS§NÕÞ>{öìÚ"çááAÛ¶mÙ´i?ü05â›o¾¡ªª “ÉtÃçäææÖÓôêÕë¦ÄïEUU99ÙØí5ñ¶ HA".fëÖmLœ8¸¸T~§;"!²†=,ë3ëÛƒíÚ‰ ¼üÊ+̘4‰’‚Ø>.!Í¡÷4ˆÎ;£ÓÉ:ñ𽬤£ñºèR Xôú=U”ŸŸÏþýûë95ºš ùŸtFÃ?þñfÏžÍÈ‘#Ñh4DGGÓ¼yóÎb»¸¸0pàÀÚÛjµ¯[(™?-.."z½iCÕn$*ƒ^z¾új7Íš9¼nRĦUÃd”- еF:((ˆ—.eåŠü°r%…ÅÅX€¸˜ýúëÄÆÆÞô|üüüðòö&©®Ycöõ²CÐë@nnntîܹž2[¹rå~ÝÖ­[3~üx–-[Æ_|ŸŸÁÁÁˆ¢xÃãccc0`@=‡ó¿Ôj…üé»Û‘Ø Ûb³udÿþdrs¿£ªªm¨ä>®.OÝ ¸ˆ"J¥Aðôôä¥_¤]»v¼óÆädfb´Û  bêôéümôè[öh4Œd¿(bæ*Ѭä~¾¾ zEoóæÍñóó«aÿ‘Œ…Z­æ‰'ž ++‹ÇFC‹-hÖ¬ÙMeÎÇǧžîÔh4ÿ•Išš×„DÑŒ´¸êfG.]ÊbÁ‚¥øû:£À]”䳋œk*G"Ž)Ô*U­î¼ÿðôôä³%KøõÀªL&œµZÆ<ôoÌ™ƒ»»;%%Ü0åÞ8, »;f½¾žl–î ÖѬÑQ=zôÀb±ÔÞ·bÅŠßgÐAê„]¹r%¥¥¥ˆ¢ˆÁ``àÀtèÐáúS©hÚ´éÿä¶oKÏž¡ìÚu›­©c¸5UH®1 ËQÈQŒ©ÉÍCV±y²§QO`š4iÂsæðÆœ9#Š"¾¾¾ÿvL/88˜'žx‚÷Ξ…¢"üdï4I¥"´W¯z†¤¡¡fòZçïÂÙÙ™‰'2fÌJKKqqqaÆŒ7­QþOäÓÃÃÇ¥K÷a±¸Ê’6Ššî ³9ˆÄÄí@"ÒÕH9"ÑʲY „Ó84´öu=½¼x衇9r$UUUTUUø›&(üqönÛÆ±äd"m¶Zz¥Ü¦M™öôÓ z኷·w½H8 à— 5jÄ'Ÿ|BYY‹‹ÅÂý÷ßO÷îÝo*Ëÿ ÙôôôdÀ€lÛö&*9:ï„×h|òó5äo9Ê’@?Y»³ pOÇŽõ¾ã}úö¥Oß¾X, ðöö®7d4rÔû}÷ÝÇú^½øyíZ:Š"Q¤8çáÁ¸—^jÐÝÙÙù:æÇ[}ßU 5˜åççsùòeª««¹xñ"jµšæÍ›“MII ÞÞÞäçç³lÙ2 T»ÿû¯BÓ¦Myé¥1ærð`Ò>Ÿl®¦àÏ¡­hê’ûÈ4µH#>G³JÅÄçž»i½®×þ[ð·¿ýŠòrÖ÷‰©©¨µZÚõïÏĉÿc:N$ØívRSSÑét rrrHLL$$$ggg’’’pssCEÖ®]Kvv6o½õÖ_~Þ“'?GAA[·nC§k%›O•ìVžFC>Z¤†ËƒHlî5©Ê€Y¡ ]—.7tœAW]þvEײU+Þž?Ÿÿ[¶ŒøC‡°Ùl4j׎Wžy†>}ú8íw ²²’ììl2220™L\¾|Z¶lIaa!¹¹¹øøøPTTÄ7ß|Cll,½{÷þKÏY† Lffï¿ÿ1åå.²ôen Z»ºê¨,µaHpg‘¦*‚BCoÚ„©V«o¨ïL¦Gèîîî¼3w.sµZN8@uQÞÍ›óبQŒ;Ö1ô@°sçNæÏŸOYYL›6°°0Ö¯_OVV‹/&++ 777ºvíÊ /¼ð—«( úö탯¯=zôÁT*숴¡œ`l¤Ë^e’,ˆ*Y‰Ú/æOuLœ™8iƒ‡ ¡¬¬ µJEãÐPüüüÄ¿‹…ñãÇS\\Lff&ùùùµ£“}úôáÇäàÁƒØív¢¢¢˜:uê-K#ÿK‡sÞ¼÷¨(/fÇŽxÔ$cCÀކ@ЉÁBÒ–R`‡ìŠZål’ZMëÖ­ñññùÓ²$ý  m»väåæbEüýýiܸqƒ^7ùGpäÈfÍšEEE¹¹ÿÏÞy†Eum øa†ÞEQ Šì½±K¾DS®Qc‰ñF&&&ÑÄ–hŠI0E£Wc×(`‰QÁ6¤Šô:´éçû10W¬(3j¼ç}aÎaÏ9û¬³ÖÞk¯½VóçÏÇÑÑ‘ƒ’™™ÉŠ+¸zõ*¶¶¶têÔ‰™3g>³M'''Þ~ûmÅ ¾X´9aHÐ!ÇŠrzRŠ¢r"TZ9r¨œ&©A"! M›Þ#®VßÙ 4nܘ¯–.%==Šòrœ]\ðòòKõ>ŒAþùçyþùçï8šëÙ³çmn¢'Å8©T*~\½ï A•.¡ •3YåÏ^¢‚S+gà lÜêÔÁÆÄciiI³fÍDÉ2VVV9r䮳/¾øâ‰”M­VKxxWOb<%4ÅĶƒ{ý†HÞ¦Ö#S*å2Cù ¥åm˵Å“·û¿ÊÀ︔&‘H¨S§ëÖ­{"eS²²²X¿&„gPÒ%:`7æ ‹C>‹®V6`ˆv¿4ððxà`U¬êÝR¸ººšlû?mÐï'hOÚìR­Vsôhûöí M– IDATc×–-ŒÆ°} ÛÑÊ*ÝCÃ+•$âŒÃ+•g* ‘J ìÙó¡‹Yˆ<:î%Ošl ‚ÀåË—Ù¶m;[ÿÜD‹ÂBš`’¬*” ´ÃP\EŽ!Ö"ÃK‚(]ÝÜèÙ³§øðEÙ4)ÙÙÙ„††²}Û6óòèRiJ+½C)¢‘žÁ¨)T:#0ìø¹Ôqp G¯^X>`Rvµ¤R=èf6èÿ4þüóO>úèKÒÒÊqЕ9•#ÉB Kå̼ { †mAe mÚðæÔ©b]s“rêÔ)æÏÿˆÃ‡S±Ö¤Óšÿ&{°Ä°Ô#`ˆ®Òkr p8ƒaWÀœ¹sEOˆI)++cÆŒ÷Ø·ïE @o4’J9-­”Eë›>÷©œµG2kkF¿ø"ƒ zàºJep·‹«æãWmíÚµkÌû9ÉÉmÐéú¢Âš›ãQbØ[{k^!I¥â”YZòÂøñìÝ¿Ÿ®Ýº=ÑEfDþYäææòÍ7«8xPF3%(“f6À°,dAõŒpUFÝÒ‚Î=z°sÏþ5a‚(›"&å§Ÿ~bóæ žA ùHÐÝ4ò­4·Î»-*?spsã§5kXº|9uëÖ}àïW*ïînù5臢¨HŽa%Ò5>Æ$FSi¸Ý€ .Î*4¶õxæ–W ¤¨0ELIffÇŽ]¬,‰êˆ?b±"ÃZ¤¨/‘ H¸^9S§òÿdÀÍLJ¥K—Ò«W/±˜ˆIÑétìØ±®àŒ@°ãBå¬\Si´e Wo’M0ÄÛÛ³páBÆ÷ÐiXU*3¸š—œÖP*•‚¼r,"EG. $›$Ñ¡’ËiÚ½;¥*¢£ñ×é°Â°þSÚ¬ógÌxàíh""5UšJ¥¾rNc´ä:%ì%Š:¨Ð–^^ îу¨;PTTPÈ’H8'•òþ´i};¨ÈÓ‹¡`UÕ¹¥ à\  wueDp0'@——‡—  ÎÊåt>œgGެU\@•Ë]äÜ ëõzŠ‹ŠPk4xyyaeUHiinå\¼:‘A>`¥ÕRrú4nõë“ekËõ’ä>ZZŠ{EL.›ååå”——£ÓiiÖÌ™¼¼,Á CŽ­är<’‘6™™h"#Q¹º‘™‰µ^^¨œÐëõ¢çHĤF¼¤¤½^OË–þœ>}½Þ°DÀŸRò(åh°).æpx8.õës2/8 O¥ `ecƒ´–ÛźhÐ)--%<,Œ_þ™Ü¤$l\]‘É”XZ†£Ñ´EäXŽ%E¸íÛ²22):bØ ¤"ããY´`ÍÖ¯·îˆ˜Ä˜;vŒ?~ÿ‹ÑÑè´ZŠõ––ñ¨Õ*ÀAˆÆŠœ€¶€»FCqZç0Tõ ®| t:Ï›‡¯¯ïcO>"òt””ĺµk9¸{7êÒR¬êÔA*½È„¦B:2N`…žÖ@]A paH¦­Óñ÷ºuüѲ%3Þ}÷¡œâúÿ¸A×h4lÛº•ÅsæÐ4+‹‚€R"!°òòÂ×·„ .RQPD «ò5©t.%Í1¤| B##¹víšhÐEjÍÕ«W™9u*V/âS™?þšTŠ¥LF~RSΑ“œˆTèŽ!S¡†õɺÀ^ Û)Ý*e49/°ÐPúôé#&"©|ñùçÄþñÍ5ä‚@¾D‚“•M˱wÈ"öd$Ö‚? {Ì«¼á^À 1Gî@}A •VËŽÿü‡iÓ§?´AW«EƒnnžhßÞ7ذv--²²-g;•Љ¯¾H‹f ±Ç6óæ•ñªºæ {ÓÁ4A®ÑT«¸%"ò°üðÝwpé½? å"ûéõøèt´lË”)/ላJƒmq“lzaȾ•qÓgÎj5¹yyÕ 1ˆˆ<(‚ pìØ1NlÝJOµš‚@ ƒ ÐE­¦¡§Ÿ~:+¹ ûÌo^Ú¶ÅñžÃ¬ÔÔ»>ª *•hÐÿ§ z~^Ùññ4„jêØääPV^NÔÖÈõ·ü}U5â*EZèkUQD îö¨'hª×s³Ž²|u:®ÄÅáîîŽ`i‰CÊÌ[eSË·¯i€lûú>p‘›Ñh4$$$àR\Ì͉f-/A äÆ \\\°ÉÐTÊÞÍfº*Å«¬Ò˜ë0d9lP«ø¥R\C772½^ϵk×8uêIII¸ºº2vìØj5ÌO:Å¡C‡(--ÅÍÍ#F<’Ê@r¹™Ñ0ß,pZ¹¹\Ž£³3eʲ¤`HØÿ-$På¸Lb--é5z47Ÿü?¥RIhh()))äåå1räÈj‘àYYYìÛ·k×®ammMÇŽéÝ»÷Co­yìíí¹S¥ær‰„º†ê„r9•г@·Ê™C¢Žb r€+ 6-[2jôhñ¡ÿCfÁ©©©œ8q‚ääd¬­­;v,ÞÞÞÆsââ⧨¨‚ƒƒiÕª•ùgiR)¶¶¶(%ô·Ì¨Õ€…!âÝ‚b ©\}*=F`Ȧy¹Ò«T†aKåzõ˜?iR­òþ«T`‚"‹"÷zöZ­–Ý»w³zõj"""X·nyyyÆ"""x÷ÝwÉÎÎÆÝݨ¨(Þyç’““Í~qžž´èÚ•øJ%XÅu@îç‡^¯çÔñã´®¼ðÊÇ­•‚šìÂllèöê«|0w®Ùê`‹˜žÜÜ\>ýôSûŒ¡Ã†‰ÛÖžôº¥¥%3gÎdæÌ™;vŒ™3gV;aïÞ½¸¸¸°|ùrÞxã üýý‰ŒŒ| YºR©$--ââbär9žžž÷­3îææÆûÿþ7³íða\ËÊ(“ÉÐ5oÎì?$%9ëë׆!Õk|¥Ϫt½Qiü“[¶dËÞ½øøøˆOü†——gΜ¡¼¼œAƒU;–ŸŸODD+V¬ ((A˜;w.6l`ܸq¤œ333ÉÌÌB"‘àæVooïûº_›2…ó.ºk®ùùè%ŠêÕã…—_¦[·n,Ÿ9“:ÁÀY uΓ*•eg ¹ÜÿãáÁ⯿fôèÑbÕ³’â”ÉxõÕWyõÕWILLdø-¥D#""P©T¬X±+++t:]»veß¾}4oÞü<¤§§£V«qtt¬Q²^½{3õßÿæ»å˹˜ˆµNGž£#­dÒäÉLŸ>¾ ^•Ð+•º²C¦Ía@ð°páB“$:]î@.ïwB“&MŒn¥ ‡]5×ÒýGf*–/_ζmá$'bg'§_¿¶L›öíÛ·¿§âl×®ß}÷Û·oçÆ8ØÛ3 (ˆnݺñÙÂ…Èt:$ÒjVånÏvñßÌGÖrùc/÷*R{n ȱ±±ÁÃÄ„ºuëFaa!7nÜx ·¦Z­&,,œŸ~ áäɤRhÙÒéÓßdĈá÷Td666|õÕWì0€óçÏ#µ° Cûö  "%%½V‹·zU™-°Ê4Ä€•L†½½½h̟¨^¯'11‘&Mšgæ¿Ï’%Ë9rä<%%j5rá¹ç3eÊ”{V&“ËåLœ8???:„R©ÄÇLJѣG#“ÉÐU&ܲÄPã¢ê9Ša)HVùÏÁÁÁdY Å ¸'À =šäädƃƒ………̘1ƒN:ÕøKþøc=‹­¡´´3І‚ 6Ä‘–ö![¶l¸oÞyçcÒ*·OËV­XooO…JEÕÒŒP9C·©üù† ТC‡G²¦*òh©W¯o½õß}÷[·nE­VÓ´iS&Ož\ã6NŸŽaîÜO¹t©z½Áì9’Inî'8992`À€{þ½««+/ŒÇsÿ÷H$ãàÔÉÑ7??ò/]¢Ž c9J"ÀCÕ5+'§š±‰ü3 "11‘I“&áàà@qq1ãÆ£OŸ>5n£¼¼œ÷Þû€¿ÿÎA§kXRPPÀµkë°´´â½÷Þ½çßËårúõëGŸ>}Á8hÔjµ4òñáÚ©SxêõFÙ,¯Ô>Ò½XZh²>·­=fƒ®×ë9tèà7Þ Y³fœ8q‚Zµju›Q/,,döìÙÆßÝÜÜèÝ»7«Wÿ@ii É$•BåÈÑ£;Ù·o_Ü£‰ä¶YÌСCùkð`ölÝJ`E I‚@PØ ”º¸ðJ÷îb†¸ÇHNN[¶l!--ÍøYbbb­ÛÍËËcݺuøøøð /——GHH›7ofΜ9·¿víZNœ8aü½[·n9r”‹m„@þs^—K— ùóÏ?éÒ¥K¼;·Êf&N›Æ×Œ*7—ú@¡ Q9Ð<ƒÁýþjŸ>b èÇ̾}ûøûï¿¿'$$н{÷Zy’¢¢¢Ø¾};/¿ü2mÛ¶%66–ÿüç?tèÐáŽF=11±šîôööF§Óu n4ÿ-7å†B!°xñ·¼ýö[5Úq«T&“1gî\ÆEEq$-æ‚€Vˆ®4èràЦ[7<==Mä]3Å= )))lÙ²¥Z\[QQÑÃôÒÒR¶mÛÆ€xõÕWèÙ³'‡fÏž=tìØ±Z„‹‹ ‹/®ÖÆùóç)))Áò忀 {$'“úfmllXºbË6$öôiRJK),)Ayñ"ZAÀ p(,dÅ'Ÿ`iiÉK/½$&ìxL3é©S§Vû,::ºÖíÆÅÅ‘žžÎ‚ Œnv•JÅ¢E‹˜5kÖm®ÂW^y…‘#GW(¬[÷$·ÊúÆá#‚àINN%%%µ\S%o¶66lݺ• ¹¹¨t: ãâp­¨À ƒ›sÿÚµØÛÙ1óý÷ʼn2pà@ãï;vì¨Õ€³¢¢‚½{÷Ò¦M¦L™‚L&£gÏžœ={–7Ò«W¯ÛŒl“&MnÓ‹‰ZíDõÚ‘ .ÅÅäææ>´ÁmÛ¶-ß®Yï¿þÊåäd´:ÙÉÉÙÙH1$æÊˆˆ`î¬Y¬üá‡Zï ÒjA§ úƒÒ¨Q#ÞÿýjŸEFF>œA¯mjµÚj¿«Õê'pvvÆÊʪ҉ss…rz}îîõjuÃnnn,X°€ŒŒ JKK™õî»Ø^ºDAÀ Ã6+éé,ûâ ºt邟ŸŸ(%O ‚  ÓéÐét7)-Z­¶F7™LF:.B†à›gÙù88ÔŦûlìííyù•WzæòóóÙ°~=…ññ êTªæ…‚Ý?þH@` Ï=÷œ˜Çý)’MFSMOªÕêòÖ­ë†LVvÙ,ÁÒÒ''§Z]cß~ý $++‹K—.1û7høW…^ÏáøzÅ –-_^+/§Fc0è¢ËݼH._¾ÌºuëØ»w/¹¹¹lß¾M›6aiiÉàÁƒ9pàK–,aË–-|ðÁ(  P#¥Ù°aC†\aS(C*=O“&–ÕFÆ‹••¾¾¾xxxsô(žz=Z Û‚ä@+A€Œ :$>ñ:Ž7²nÝ:rrrˆŒŒä×_åêÕ«´lÙ’:uê°xñb6nÜȪU«X³f cÇŽ­Q™ C‡ÁÝ=‰$¥R6•@)ªµÒ”H$xxxP¿~}ð,7ì\/ÇÉð(.fx8jµZ|àÿ RRRøã?زe ÅÅÅìÙ³‡ßÿ‰D€Ê@ÉÅ‹³uëVæÏŸÏ¥K—9rdmÇÇÛۉ䆹J K˳L˜0ºÖ¾‰üýý¹víäæR§R6µxu×ë‰<~œ”””ZÏеZqº¹‘!ÅêÑ£GQ«ÕôêÕ‹k×®‘ŸŸÏСCyñÅqww'44”Ë—/S¯^=V¯^]ã` ©TÊü›ôôtŠ$#CÀÖV 0ÐY³¾ aÆ&¹‘¢¢"V¯^Z£!ˆÆxÔƒ³_®ÕR¢PˆOühÐ###Q(tíÚA8|ø07¦W¯^Æÿý7VVV¼ñÆ<ûì³5VhôgÞ¼· ù‹ÏWº¹$L™òcÆŒ6ÉF£!<<œ¸˜J1¬Ë0¸Ü+‰„2…¢Vi5E=¹¹¹DDD T* âúõëddd0jÔ(† F:uعs'{÷î¥N:|ýõ×ôêÕ«Æí׫Wï¾[ÆG}Ê… á”–J©__`РÎüûß³LvñññlûóOJ€}•Í&@ i`Õj5µ|D—û#3è ¸g4ï­kLŠƒƒ+V,':ú4éééØÙÙÑ®][š6mj’í::ŽÍþɺåËŽa¥þôc•F]akKÛvíÄ'þÃÒÒ’U«VÝõxãÆoËð ØÙÙ1yò$:wîÄÅ‹—ŒmvíÚÅd”—/_fÙ‚x§¦Ò ƒ«=½rÐiƒa'ÆØÀ@1póF§Nî¹Û§GôèÑ£VßÑ«W/BBVsîÜyJJxzzÒ¡C“Å[dffòÙgŸ!={–á•òXˆ!(.Ãê}ƒúõñòò2‰A]îÀ ? \\\8ð³´}ãÆ víÜI›ÂBšÝô¹-†ä{d2†Ó»woñ‰‹Ü†••Õ}•smøÏúõÈ’“éÌãèëP™ÝP*% K† f²ý¾"Oøùù™-öçxd$ñÿÍ@ΘúÕ¥r–~œœX=mZ­³kV¹ÜÅúSbÐÍIQQÅYYÜ:†´©Tœ‚ƒùzåJq/ºÈcár\õôznžK1,¥6nÌ’o¾½G"…¬¬,ä·ÅÑ;Ör9óW¬`Ĉµþžªº¸†n^žŠZ{{{ì\]«åÔ†ÊÒ©R)ƒÆÑÑQ|Ú"/__ %’jõr%š5kFûöíÅNy,¸ºº¢qt¼M6Ë%œ½¼èÖ­›I¾G\C ziذ!]ºwç´ î"=p W&ÀÝ™"‹ÿ{þy®ÛØp­Ò¨ë1äÍ>#‘ðÊ¿þ%¦}yltéÚ×V­8-‘ Åô¨ 8-•Ò}Ð xx˜ä{ªö¡‹kèæå©°r–––¼?kJ¥’›7c]XˆV.§Ž¿?ŸÎ™c¶µQ‘šÐ¹Kÿø#+–/'þúuƒf«_Ÿw&LàÿþïÿÄyl4nܘUß}Ç»ï¼Ã¶Ë—±,/GíâBïAƒ˜=w®É<›àë+tÑ ×{{{>ûüs‚ "9) kkkº÷èA£Fħ,òX‘Ëå<ÿ röìY4j5mÚ¶¥M›6bæB‘ÇN›6møcÃŽ;FQa! ½¼èÕ«vvv&ûX´Ä•OÑ ×üfd2úõëG¿~ýÄ'+òÄÉf«V­¨œˆÈ£¢~ýúŒ;Ölí[[CÓ¦b?›1ϤˆˆˆˆˆˆhÐEDDDDDDDƒ.""""""bƒ®Óé e„ tèÐ!C†pùòeã _~ù%;w6þ  Y³füöÛof»¨ØØXrssMÚfxx¸IÛËÊÊâìÙ³&móĉ(LœoÞ”÷]QQÁ‘#G©€1mÚ4ˆ¯¯/üñ‡ñXJJJ5ÙìØ±#Mš4aРAf»žòòr"""LÚf||<éééO´¼›º½ôôtâããM򾄣G)¯,~ó(Ðh4lذqãÆÑ¶m[ÆGff¦ñø´iÓªÉgëÖ­iݺµÉûòfŽ9‚R©|bŸ{qq1'Nœ0i›gÏž%;;û‰–÷ÜÜ\bccÍoÐõz=J¥’F1dÈòóó«•K4i7n4þ{íµ×°°° mÛ¶f»¨óçÏ“ŸŸoÒ6M]i-77×ä éôéÓ•µãŸÌûV©T&k¢4---:t(VVVÕŠDxzzV“ͯ¾úŠºuëš5ÅoEE'Ož4i›—/_®fžDy7u{\¹rŤmž}:/¿üòm¯ÓéX¹r¥Øé"5ÂÁÁÉ“'×n†~ùòeRRR˜?þ]Ϲۗˆˆ˜­V˦M›èÖ­Mš4¹ã9:t¨±‚1‚ EEEýû÷¿ã9¼ûî»bg‰Ô)Össs),,D£ÑŸŸO^^ž1bS¥R±uëV:uꄟŸŸØk"T!æåå‘““ƒF£A¡P““S-šùСCܸqƒñãÇ‹UõD)¥¥¥äææ¢P(P«ÕäååQXXh\SÏÍÍ%44”aƃ‹EDÌ… ""‚uëÖ‘‘‘AZZ‹-Â××—¯¾ú  ‰ˆˆàý÷ßÇÙÙÙ,RXXÈÁƒIHHÀ† R«Ò’W¯^åàÁƒâëëKppð­O+ >LZZ%%% >¼ÚRDii)GŽáÂ… 8::Ò¿üüüîêFÖëõ$&&KJJ uêÔaäÈ‘Æõº‚‚¢¢¢HHH ¨¨ˆ^xá¾(­VËñãǹrå 9990tèP£1LYYíÛ·§W¯^÷Œù¨¨¨ààÁƒ¤¥¥‘ŸŸÏðáÃ}ªÑh¸páqqq\¿~¦M›2jÔ(,--ï9KMM%::šÔÔTìíí1b•%9“““‰ŠŠ"%%‰DB“&M2d¶¶¶÷¼ïÓ§OGvv6-Z´`äÈ‘Fy>yò$ÑÑÑ( ,-- ¤[·n&-4r3»ví⯿þ"))‰´´4æÏŸO@@³gÏÆÖÖ–””®\¹ÂäÉ“ïÙWµ!77—={ö‘‘¥¥%:u¢gÏž­;õz=çÎãØ±c”––Òºukúôéó@•ײ³³9~ü8©©©èõzFŽYÍ{VTTDxx8III¸¹¹Œ··÷=¯)..ŽsçΑžžŽ··7#GŽÄÞÞÞø}ÇŽ#-- …BÁÔ©Sï¡ÑhØ¿?©©©äççÓ¿ºwïnœÄ:tˆ„„ …q;ì½ô» ܸqƒ¨¨(RSS‘ËåŒ9Òx_=z”””t:õë×'88˜† šL,,X°ÀÊÊŠFѳgOž{î9zôèAûöíñññÁ©TJ§NèÞ½»Y^ŒÒÒR–.]Ê–-[hÑ¢¥¥¥üòË/XXXо}û‡j3==×^{ŠŠ êÖ­ËŽ;¸rå ;w6*½ûqñâEÞÿ}233Ù¾};:t0t•JÅš5kX³f Mš4áâÅ‹lÚ´‰~ýúáäätÇöÔj5¿ýöëÖ­#99™èèh‚‚‚Œ0ú?; IDAT‚wâÄ ¾üòK®\¹ÂÞ½{éÑ£Ç} ºB¡`ÆŒÄÇÇsèÐ!ôz½Ñ «Õj&NœˆL&£nݺ$&&òÛo¿áëëK£FîjŒ¢¢¢øøãÉÊÊbçÎtíÚÕhÐSSS C&“akkËñãÇY¿~=ƒ 2IÀÇ­H$\\\hß¾=Ï=÷AAAtèÐH$xyy1xð`ÜÝÝÍ¢0£¢¢˜9s&r¹œºuërðàAü®í———³lÙ2ÂÂÂ8þûì³Z¿;¯¾ú*äææ2iÒ$Mv­OÄ ½  €7âææÆ[o½Å”)SÐh4¬_¿¾Æ³é[yùå—‰åûï¿'**Š/¿ü’¼¼<“]³N§C*•V{¸U?ßk†þ¸255•wß}—=z0zôèZGƒ?žéÓ§Äž={ˆ‹‹{j ú‰'ˆ‰‰aÔ¨QLŸ>ÀÀ@¶mÛFZZÚCµ×¬Y3üýýùꫯˆŠŠâ·ß~ãðáÃ&“›ªYÎÍ3‰D‚T*}âd³j&½jÕ*"""X²dÉC{>ªð÷÷ç½÷ÞãÕW_¥¼¼œíÛ·SZZúTÊfff&¿ýöíÛ·çí·ßfâĉ$''³{÷îj59„W^y…°°0Ö­[ÇñãÇùúë¯)..6™lêõúÛt§T*E„{UÁxóæÍã¹çž3Iˆ©S§òÖ[oÑ£G6nÜHbbâÓ5C?{ö,±±±lذÁæããÃĉ3fÌCØûõëǼyóøë¯¿8zô(þþþtïÞ† Ö:m­D"ÁÝÝâââjY{rss±³³{¢fçU9Î?üðCš7oμyóL²S¡ª8O¿~ýHKK#$$„.]º<•Jó§Ÿ~"((ˆ·ß~‰DBÛ¶myýõ× ½c›ûáááÁG}ĺuëX¶l<óÌ3„‡‡Ó AƒZ_¯‹‹ –––ÕÜ÷J¥’òòrœŸ¨Ù¹Z­æÛo¿eÿþý,^¼˜-ZԺͺuë¢\]]™;w./½ôÒSYâàÁƒ¤¦¦²aÃãÌV*•Â!C* òرcQ«Õìß¿ŸÐÐPZ¶lÉõë×ñõõ­µìÈårÜÜÜHHH¨æ¾ÎÊÊÂÙÙÙ,ƒµ1æÑÑÑÌž=›aÆ1uêÔ{îÀ¨);w ((ˆ!C†°yóf>þøã§Ç W­›Ý<:ÓjµèõúZÍ(ÆŒÃСCÑh4\¿~}ûöÕ8Ró~4jÔˆ²²2nܸAãÆQ*•œ>}šöíÛ?ôÚ•9HLLdþüùÔ«WÏ,®G½^V«}ªsûët:ôz½ÑÝXõsmÒÈúùùñé§Ÿ¢P(H$Ìž=›®]»š$娣£#þþþ?~ÜèIKKC“ LiÌþùgvíÚÅ‚ èÙ³§I7?£'m‰Á”ï_•<šJwZYY1ažþyôz='NœàÀ´iÓ¦Öý(“ÉhÒ¤ ›6m¢¨¨ÊÊÊˆŽŽ¦OŸ>OŒî˜˜æÍ›G·nݘ>}ºÉwñTÙ=S޳ł»åq}„XZZÍßÿ¥¥%§OŸfùòåòòË/?”{8##ƒ 6PPPÀ¹sçX±b={ödüøñ56èåååìÞ½›ØØXÂÃñ±±¡¨¨WWW<<LAA2™ ­V‹““ãǧ  €Q£F¡T*IJJ¢°°77·»®±±gÏΜ9Cxx8äççS¿~}bccùå—_(..æêÕ«üúë¯DDD°`Á‚ÛR^>-¨T*Ö¯_Oyy9yyy¬]»–øøxf̘Q­¢VM)//'<<œsçÎqãÆ ~ýõW.]ºÄâÅ‹(O©S§ˆˆˆ ""‚äädlll(++ÃÓÓooo¾ûî;Š‹‹ÉÊÊbÅŠôïßÿžÅA4 »ví"66–}ûö!—Ë)))ÁÞÞΞ=Ëáljˆˆ %%[[[cއ»‘’’Âþýû‰ŽŽæØ±c8;;“M£FX»v-Ÿ~ú)ãÇÇÓÓ“´´4®_¿Žµµµq;Ò8vì‘‘‘=z”ŒŒ ¬­­Q*•¸¸¸ðᇒ““cÜóûý÷ßÓ§Ocùݧ 2dC† aÆŒ·­¥5oÞœ™3gÞu¿|jj*Ÿ|ò eeeÕ>ÿä“O°°°`Æ $''£×ëñõõeÔ¨Q´k×î©)•JÂÂÂ8pàEEEøøø0fÌjt­R© cïÞ½(•JZ·nÍóÏ?ÏÄwâ‡~àÈ‘#Õfg:uâí·ßÆÒÒ’ãdzyófŠŠŠ bÔ¨Q÷TnLŸ>…BQíó©S§Ò¹sgþüóOöîÝ[íX«V­øè£î򾄣G A¥R?³µµeÉ’%lß¾T;ßÞÞž &Ü3ÈréÒ¥DGGWû¬oß¾L˜0õë×Cqq1ÎÎÎ1pàÀ{Þ÷?ªü)))X[[Ó§OÆŽûÐîëÔÔT¾ýö[£|̘1ôêÕë—/_æË/¿¼­ÈÒ¥Kñòò"77—ßÿóçÏãééÉ„ î»|µvíZBCC«yZ¶lɬY³ÈÉÉaΜ9ÕŽ¹¸¸0uêTãòàxóÍ7)((¨öÙ¿þõ/š5kƼyón;¿*iÐÝt]LL +W®¼­&ýêÕ«IJJbûöí¤¦¦baaA³fÍ7nœ±ôSeÐEDDDDDD©Ø""""""¢A ºˆˆˆˆˆˆˆhÐEDDDDDDDƒ.""""""tÑ ‹ˆˆˆˆˆˆˆ]DDDDDDD4è""""""O²ÈÈH>Ljj*ÖÖÖôîÝ›àà`ÈÌÌdûöíÄÇÇ£T*iذ!£F" @ì9³“™™Ixx8±±±Æ:Ïÿú׿ðññ`Ïž=Æüõ¶¶¶ôéÓÇ(»""æD­Vóè§§§ãääDPPýúõÃÚÚšÄÄDvîÜÉ•+WÐét4jÔˆ_|ñžyïEDj‹…­­í­VK=pttä—_~!77—Î;“““Ã¥K—hÙ²%-[¶äòåË,_¾œÁƒ›¼j—ˆÈ­5##ƒ÷Þ{[[[.\ˆ§§g5C_TTıcÇXµj«V­ª¦T«8tèb¯ŠÔˆAƒÕ¨žxyy9ëÖ­#$$„eË–Ñ»woã±’’²³³¹~ý:ß~û-îîî|þùç·Åx$%%qùòe±ÓEj„¿¿Ø.]ºÄÌ™3iݺ5sçÎÅÙÙÙx,99…BÁذa?üð;w¾m&vºH°±±¡_¿~w7è©©©,\¸¥RÉÂ… ï*Èz½žI“&aeeÅêÕ«o;Þ¶m[ÆgÒ‹¿pá®®®Õ¦D¯×sàÀh–öÓÒÒ(--5ë2EXXƒ 2KÛ …‚¸¸8ºwïnÒvCBB¸|ù2r¹üžçét:Ö¬YÃÆ™oÞ<<==™={6w•ãÁƒÓ«W/æÏŸ_í˜Z­¦eË–Lš4ɤ}süøqZ·nm¶ }èß¿¿¨0E ...Lž<•JUM66lˆ••Ï>û,W¯^%##GGG>ÿüsºté‚•••Øy"æUœ2}ûö¥U«VPPP€……R©”Î;SQQAVVŒ1‚ÁƒS¿~}±óDÌ'—÷r¥:;;3eÊ”ÇzÞÞÞ¸ººš­}‰DB»víÌÖ¾›››Ù“œ˜3sŸ­­ímëÑŠîÝ»ßsí~̘1U6-,,L¾>v+Íš53ë6ùd99öèõÖXXìâ§Ÿ~eíÚ5´lé/JÇc@«ÕrðàAfL™ByNr@okËs'òþ¿ÿMݺuMöüsss)..F§ÓaccCÆ ¤²³³)**B¥R!“Épww7Êí£àܹs<÷ÜK¤¦êÑé\JKYµ*„/¾˜Ï /ŽRÙ©TÃòåkyç™3g6¢°< Ÿ|ü1›×¬A¦V#H$¸5i‡ 2tذZˇ,;;›%K–ššŠL&C¥RáææÆìÙ³iÒ¤ 6l <<™L† ”——óæ›o2tèP³õøøx–.ý‘7Zm :Šóç³xñbV­Z)ÎÔ.\`ö{ïÑüúuZ V@šRÉîï¿Ç½A¦M›fÅuâÄ BBBP*•H¥RJJJèß¿?S¦LÁÎÎŽ>ø…BL&C£ÑP§NÞyçZ·nmv£^RR‡~ĵk®BÀ NËõëçøè£ÅôíÛOOOQX1ÅÅÅ,^¸ôÐPÆN@1püèQfð«ü“<ÿ¥K—rõêU£ü9::2}útÙ½{7›6m2)//çùçŸç¥—^2»ÞT«Õlذ;ΠT\Ðé@£ÉfÍšm´nÝšqã^gêafòóÏìþþ{©Õ4´@L|<ŸÏ™C“¦Mk]ŽYfccÃ!ChРuëÖ%77—?üŸ~ú‰/¿ü’víÚѶm[5j„^¯gÇŽ,Z´ˆÖ­[›l´{¯PB‚hT ŸM{.^Œ%))‰ÀÀ@QR1áaaœL;A0axååìÙ¼™É“'›Ä »»»3iÒ$|}}±¶¶&11‘×_fÍš1lØ0ž}öYš5k†››yyy|öÙg¬]»–?þ{{{³öÁÕ«W‰¿Œ Œ¬ª^'ÁŸ¤¤8Μ9#ôÇ@zz:Ñ¡¡Us' — ÃÙ³géׯ_­¿G.—3`ÀƇ»»;EEE,Z´ˆo¾ù†ßÿæÍ›óÎ;ïдiS$ aaa¬\¹’.]ºÐ¼ys³Ï#"¢P©ü€›ë‰×#7·>§NEñì³#±µµæ’››Ë_{öÐI­¦J3XÀž«W9|øpí zU½ëªÑZ½zõh×®111H¥RºvíZm$7tèP¾þúk233ÍjÐA@¡P –@uã ‘X¢Tꨨ¨¥¤–}\PPÀ¡C‡ˆŠŠÆÑÑÞ½{ѹsg£[ûVôz=YÙÙ8)•Õ"*%•ªãjRZ­Ö$××¢E üýÿ»¬R¯^=œœœHNNF&“1räH£lÖ©S‡Î;IEE…Ù zII :À­ë²VH$r E«%åååDGGqŒÒÒ2:vlOß¾}©S§Î]g—YYYHÊ˹աl HJJÈÊÊ2ɵÙÚÚVÓ›îîî´oßžÿüç?H$ª]cpp0Ë–-#--Íì]§ÓQRRŽD⌠Hnyçm)//7Ù;ú¿ŠF£!55•;w’››‡G† J£Fîê)(( ¨¨ˆÀÛ48K$¤$%Õúºd·¾éééœ>}šnݺUOIµ›Ø¶mÞÞÞfŸK$¢*^K IDATZµj…³sEEù@ƒ*‘RðôtÁËËK”¬Z””ÌìÙ²kW :]]ôz%rùÏ|òÉTÞ~û­;E©TŠ·7‡lmÑ–•£*õ@àíïo²uÂ[e366–‚‚Z·n}Ûñ‚‚Ž9B@@€Ù9Pép"==Ah^9¤H2°³ÓЮ];QÀjR©dÉ’e|õÕ/TTÔA"±ÂÂb3Çw`É’/hܸñÿ®aÆHœœ(,.æf)P‚³3ÞÞÞ&ÕQ7ϾN:E‡n;¦Õj ÅñÿÙ;ïè(ÊîfKzï !¡%„½EŠ `ư€T|•"*‚ vÀ‚ ü$ô–¡„¡CBBBé¤×Ýl™ç÷ÇNb!"ú*¼rÏÙ“³™ggŸ¹së÷Þëäô_Wæööö´oÌþýÇ€fŠP…]ÁÁ°··¿ÃdB™oÞ¼™7ß|”3`e|ùåJ–.]Dß¾}ê58===ñôðà²$ÑVˆß W hÙêÏcÂ4W‡j–,YÀرc¯±ú¶mÛÆ÷ßÏœ9sðõõ­×k©>ÀÅÅ…ÖûÙ¡:pÿý½øé§TUµìQ©²qvNäñÇgÝ iþ 2 üôÓOlÚ”€Á0°L E,^¼‚Ö­[3bÄðzÏrャYµŠØãÇi/¶@2ììÌ« µùâ›o¾ ,¸¡ë¬ªª‹/½{÷;wî¬#eY111¢OŸ>bÞ¼y¢¼¼üºkôêÕ«Î5äææÞðóQ #î»o´ððh*ÜÝŽ÷+W®qqq"//ïºÏÊj˜"##…V$`ˆ€¦ŠÜô*š6í v튼••bþ¼y"¸Q#èè(š8;‹»û÷ÑÑÑõÊ[½^/²³³ëðF=®»>BQPP f̘!ÂÃÃűcÇê|Àd2‰mÛ¶‰°°0ñõ×_7¨@{÷îý_ÛD½^/¶nÝ* ¸G¨Õšgç¦bÊ”×EAAÁ.ûƒTXX(BB: pÐIÀx `/&L˜ø»ÆXee¥8~ü¸ˆŽŽW®\ùCß~C+))I :T¼ð ×䢢"ñÎ;ïˆ~ýú‰ãÇ7¸ÎüùóEDDÄe/eYIIIâ±Çžvvš kë@qÿý‰cÇŽÝœ7AO=5NH’Ÿ€æð¢€Qü…½½ó Ý“ .ˆ={öˆäääë:!õÑúõëoH¡‹>úHôìÙS8pà¹#:wî,,Xp]e^­ÐÃÃÃÿk{™““#æÎ+üüZ)FQcѺu˜Ø´iÓŸ2þ­!ÀQ12‡+¼ù¤€6ÂÕÕ[¬YóËïòfNNŽˆŽŽÇÿÃNoCzVSRRÂ’%Kˆˆˆàí·ßÆÝݽ¦„Í××—]»v1mÚ4†J¯^½ÈÍÍE­Vãææö·¢$srrøàƒE:T…,ߨPR’ÇâÅððpçõ×§Ö #™Íf*++±µµ­)¹Cµr- Íšùrþ¼50"o@GEEz½kkëë®akkû_­2HNNæ?ÿù>ú(:Ž´´4œœœprrâ“O>aË–-¼üòË8;;“––†µµ5ë=7 ,]ºŒŸ~ŠCˆA€+UUålØp³ùC–/ÿªN©”,Ëèt:4Mƒûûo&KͶƒaàS´´˜L»)--ÅÉÉ©Áüv‹-hÑ¢Ååút:ß}÷«V­b„ øûû“––†$I4nܘ˜˜¦NJ÷îݹçž{ÈÏϧ°°WW׿ãQ[FEE±páäåµ yë­YxzzÑ­[×k~›[[Û;¥mõ··7vv**+ð`ÔU€'à‚N·òò²ßÅ^x{{ãííý×ËõììlÖ¯_Ozz:sæÌ©Aèùúú²nÝ:6lØ@rr2ëׯgÛ¶m€QÌÌ!''•JÍØ±òøã×('•Jõ·4mºõ…¦'ƒ÷U¼€ÑhÅÅ‹ ýÇ®¯´´”5kÖpéÒ%–.]ÊW_}XÊÙöíÛÇ®]»8{ö,%%%F.\È@ˆ¦W)ƒÙÙYèt:"##?~2¹¹&ETw–Ÿ^C@@K„€.]Ú2yò‹´oßþ_mtÚÙÙáëëÆ•+†«ŽÈh4œœÿ1Ã綉E7oÞI*Cˆ ¨SezGG[\]]Y¸pÛ·'£°„Ž‹Èrññž€+çÏ—søð, yþù‰XYYý+™ÒÊÊŠž={âí½™ÜÜK@uh²{û³tëö°âÁß¡ß#???,Ù§â«”z)ju%7fÇŽ,[¶Žòò^@0–B¿Ìæ823‘™é ˜9uj§NeÙ²Å7…pþ_¡nݺáïï@qñ)„è (õJà={¶ÅßßÿãÝiµZš7÷ãܹb…çTµŒú\<²³ã±„/µŠâÃRŽU]¾–,_æèQ11N€*U,û÷âÃß'<|Àÿôž~õÅÄ­YCƒwÀ ‰çÏ3oæLºwïNóæÍï0Þ PEEË–}ÁW_ýHr²KePŠbd†v‘„——;cÇŽeË–Hâã!DE*8ñ@k,%Y&$é8))¹$'§#„7† ûÈͽÂäÉ“þ§÷t×Î|µ`= ðV´IF~>¿|ú)-š7硇þÇ î[Z¡gdd2oÞB"#ÍÈòPårÍŠÜtÇÚú4v£_¿~„‡‡SVVκu›).ÖQVV€2°OñÜ}Ðj ∟Ÿ/óç—óÑGŸž~œÒÒRÌæ Exþ4G­®B«½@U•£ña,ÀN Y&.î_ý mÛ¶¹åï½^Á`@­VcggwCaH£ÑÈ/Ë—ÓÃ`¨©þWŠŠÊ0Ê”Ýÿh‡$i°µMG§KG–ûy,“““ÊG-áÞ{‡ü×êþÿJ2 5ƒ½ìíío¨¼¬¼¼œ]‘‘øgg DMì×È-*bë–- 6ìç}K+ô´´KìÝ›ˆ,ßÅoS­4@Tªs4mz„ÁƒïbÖ¬8:ZïóæÍe„ñìß¿Ÿ7qþ|ƒ‘FhÒÄ Ÿ6üúk1©©­!\M˜L-ؾ=ò–Wè•••lÙ²•½{÷P\\‚¿¿?#GÞGçÎw0JEETT Å‚@HS|ÊJ § €Ü+WîHÄ ’’6lØŒÉÔ‰º#*ƒ€óxzîfÀ€^Lžü>¨T*ÆŽË AƒØ·o;vìàøñsäåéððÐÒ´©MÉȰgëÖ<,¹ËêÔ‡Yn‰gÈËË»¥ºÁ` ..Ž-[¶pùr:NNNôéÓ›áÇÿ. ¢¢‚ªÊJÓ(]áOPf4’”˜øÕ÷ÞN¤ÓéØ¿ÙÙžµ"•(Q¡0ìíwѾ}&NücÆŒA¥RÑ©S'6lXÇéÓ§Ù²e {÷$;»++#-[ÚãîCK–-[‡Ùܪ֚* eeq9rä–Wè/^dݺuÄÇ' Ë2={öàÞ{ïýÝ¡=UUU–fFÊP•B,qßb,³J/\@§ÓÝQè¿oIÉ\=>TØÚzðüóOòüóëx§†àà`‚ƒƒ>|8‰‰‰F5jDÓ¦MÑjµÄÆ#5UÔû·zþ¸ªªŠ/¿ü’¹s¿æÊ•F€*ÕvîÜËœ9³¸ûîÁ zC>ÞÞH¾¾”\ºÄyE`ú+*©X–YúÙgtíÚŸ;’ñwŒ*£Ñĵ}T¨Tö ΢E ðôô¬ÃS^^^Œ=š{ .ŸŸ§§'M›6ÅÎÎŽÅ‹³uëêzøÒòºÕ)::š×^›NB‚ ³Ù ÈfíÚÝ\º”Æ›o¾Ñàóåèèˆw@Y  A,ˆ«+à&ËÄìÛGdd$ƒ¾Ó|§2›Í”——+ÑGõU|dOÛ¶­™?={ö¬s?éÕ«Ý»w'))‰ììl¬¬¬ ÁÅÅ…øøx¾üòWÌæ«e§¸-ö%55•7Þ˜FD„%B ÿ÷Ÿsôhï¾;«ÁRHûû³[£ÁÇdbbn7Ü„ #1‘•+VðÆ›oþ£:ä–~*ÜÜÜ ´G’Š®bšR4tïÞ­ÁP³——}úô!<<œ–-[bee…$IÜ{ï`Ôê XPðBy•¡V'qï½wÿåá¯êOUUBü9æ?zô(ß|ó#yy=±”â…"Ëý8}Ú•/¾°L|jˆÂ:w¦ÛàÁl³¶&è§¼z#„ ;:šO?þøO_çÿ:yxxÔjÌ#×Î!I¹ÜuW8^^^×}¸èر#ƒ "44ggg´Z­RW…$ÖZ×€$]$,,è/÷ÎM&:N‡,Ëj-Y–™9sññŽ˜Íý±”äõ /¯;K—®h°Xš½8e 'ììØ„ƒ€îÀ !ðKJbé§Ÿ’™™y‡ Z´hF“£Ä7jT=’t™víÚЦM›ëò¦Z­¦U«V„‡‡Ó»wïšVÊÁÁÁ4mê$%awZÖ„œœäš‘ÛɲŒ^¯G§Óýéùí&“‰•+W²eK"fó½ wu¢²²«VŲuëVÌfóuÏ·¶¶fÔ¨QÈ­[³Y1ãïQäæ ¼¬ŒåJ—½’ni…ÄÓOߣãa$é‰$%ao¿‡1c†Ñ©S§›Z÷¹çžeðàfØÙíN'°·ßÅ!­xê©§þRKùСCÌ;—É“'3kÖ,¢¢¢þT ç™3gINJ^¬Úú¶B–›pð`yyù žïììÌœ?¤qX°¦Tc®€0“‰;vPRRrG26@VVVL›6_ßT$é(\D«¦wï&Œ5ê¦ÖíÛ·/Ï<3w÷h,¹Î³¨T»éÑÃÀsÏ=û—•l !¸xñ"_|ñ/¿ü2¯¿þ:«VýLAAÁM¯YXXÈ¡Cçå`~ù©@ŠŠl9pàÀï®ñð#ðÄ+¯à¤Ñ„¥J…%áÖÂl&qï^²²²î0`¤Õj:t(x¡VÇ— $é­[óðÃßð×ÆÆ†yófѼy*Õ^à’t?¿¼ýö+4mÚô/û ………üòË/¼ñÆ›¼öÚ–,YBbbâMœ“É„½½}½Æ«¢F‰þ‘C:Ž5kÖ°qc Fã@Å×TV°|ùf:tåÑGùÿÁÝÝšqúô%„p¯VÁ@.å×Lõº6i‚äïOqB‚‚ó·¬R I¸¶ly‡7o€T*]»v!(¨yyy!pqqi0 t#dmmMxx8Ý»w§²²ìííëuNª ¯êX7Jûöíã›o~¥²òn, >C9ûöíaÉ’¥,^üé¾nwwwZ¶ ÁÊjC‹ZÑÍ2$é2Ý»ß{CÍ´´Z-!:‘~ä~²\â®òììý îÿI…^ÞlÒ¤ÉMŸ_VVFNNB\]]qwwG¥RaeeÕ pHNN&22’ÄÄDlmm¹ë®AtîvCÞשS§HN¾ <Äo >-І¬¬SÄÄÄÔ;uIÑà×»wožyæQ>ùd¹¹ÍgTªLÚ¶­`òäwoxÊØ¨Q£ˆø¿ÿ#*2’Öz=VÀEI¢ I>ž5ë’ø(uŸ›VUU‘^¯ÇÞÞ___4 *•ªÁ°h~~>`ÿþ¨T:t`àÀ7tÿ‹ŠŠØ¿ÿ0FcPÊ•wòóý9rä0#GÞ÷‡»Ó©ÕjæÍ›ÍË/O#%e7&S Pˆ»{*/¼ðÝ»w¿a/hÌã³bÁÚâ"I ^^¼üâ‹5Ó¿îÐï“««ëM²‘e™+W®PTT„••>>>ØÛÛ#Iööö×åƒÁÀÙ·o%%Å4kÖŒAƒ)yýß—+7nB¯À9«&GÌæ¶DDlgáBC½Ê·!Ù©Õjyþù‰œ={Ž;7b2`gÏtbäÈûnØa{{öl¦LœÈK—h"•Àº zÓ©¶¿L>}šcÇŽÕ ;uêD÷îݱ³³£¢¢‚“'O’@VV={ö¤ÿþ·°BpöìY–/_ÁÑ£§0›e};ö† Ö๠¼òÊT"#Óe˘Ñ+61uê8Æÿ»“Ú,Öiuž¦N|I’ê€<„deeµ›ôôtèÝ»íÛ·¿&j`eeÅäÉ“ðõõaÏž=”––Ò¨Q{x`4½{÷ºaKØÑÑ‘ù‹ñýÊ•œˆ‹Ã ÓÑ2(ˆ‡~˜öíÛß÷/??ŸØØXΟ?OUU>>> :´Fy&''Gzz:’$ñ /ÜVݪÊËËY´hû÷ÇRV¦ÃÝÝ‘#†1fÌè ͼ¼|æÌ™Ãòå;()qWøb#=ÅüùsohÎòµHåßø³vTªÚ£ßµkçÎÅбc(ýû÷ÇÆÆæš³ èϲe‹Ø¸q#—.¥âêêGïÞòÐCÞð¾hµZ&Mš„³“‘;w’VT„³§'ÓGbÄ}÷Ým‰F#'OžääÉ“\¹r{{{ºvíJçα²²¢¤¤„cÇŽ‘@~~>C‡%,,ì¶éÂXYYɶmÛX½z iiyØÛk騱S¦¼F£F4~úiï¼3Ÿ¬,GÀf]»FðÑG³¯AÖ×GÙXŸS!DÝÔŽÁ`àÔ©S<£¤§š0p`x½v“&MøôÓY¹ò{ΟO@¥RÑ¥Ë8F~€Æ߂܃ IDATðÞôíÛ—–,á—µkIOIÁÆÁÑ]º0aüøœ75Ÿþ9:޶mÛRRR¬Y³xì±Çxê©§ÈÈÈàóÏ?'//ÔÔTôz=}úô¹mzVV6Ó¦½MddFc@MllqqoáêêJ¯^½ê=O¯×³dÉvï¾¢Ì_WGÉÎNåÃç’žžÎôéÓº­ZµÂÙÙŽìì$,­1ª)kk=aaa5ÿIOO祗&“Lq±=ÖÖš5[ÁûïÏä¾ûî»fm;;;üqFŒ^¯ÇÑÑñºÆ¥K—HLLÄÆÆ†.]ºÔ(>žE‹>%;; T¬“)ŠØØ&LxžÙ³gqß} {Ã}úôfÙ²MP'!hF¥J¥K—ö5†¤,ˬ_¿ž÷Þ›ËÅ‹`0hpu­¤gÏ_øúë¯êMi¶hÑ‚wÞy›ââb$IÂÍÍ­^}Vm°åççãïïO»víê¤î¾çºvëFaa!ÖÖÖxzzÖkàþíTXX(ŒF£0›ÍÂd2‰åË—‹nݺ‰ÜÜ\!˲0 ¢¼¼\Œ7NL›6Mèõzq=êÝ»·¸•héÒ¥B’Ú˜*`–òš)$i°5ê~QQQQïyçÎ]ºtð’€—´"`´€ÑB­n/úô ‰‰‰ ~ÿڵ넷w¤»Œ’4T¸¹µ~ø¡Ðëõ"..N¼ôÒdáíÝLH’§€~^0]HÒháæ ²²²ê][§Ó‰ÂÂBQ^^.dY¾æxAA˜>}ºð³µð×hDhË–bóæÍ¢ªªê¿7áááÂ`04ø™²²2¡Óé„Ùlf³Yèt:Ѿ}{±lÙ2!„F£Q ±iÓ&Ѻuk‘——wݵæÏŸ/"""nÞÜ»w¯hÖ,DÀ«WñæXáç×J\¾|ùºç>ôÐX¡R 0C@ ðP©z _ß`±yó–¿?..Nôï.4šnžðˆ°±i+ÆŽ}Ldgg‹ììl1{ö{¢uë0¡Ñ¸ è `¼€w¼$\\ZŠåË— ³Ù|ÍÚƒA”””ˆââba2™®9n4Å÷+WŠ¶Íš‰Æh¬Ñˆfâýwßååÿø½Y¿~½X°`AƒŸ1™L5¿Ïl6 £Ñ(fÏž-úõë'„Âl6 ƒÁ 222Ĉ#IJeËêÝ !„¨ªªááá· o‹>}î’4\á±jþ|[xx´Ë—¯¸î¹‹/ŽŽ¡Êycø*ríaC„£c31kֻו½Õ{;zôƒÂÁ¡²ÆB«í!Z·î$Nœ8!Š‹‹ÅêÕ«ÅàÁÄVë. ©"›ßð†P©Âijώ¯w¿eY%%%¢¨¨¨^]f6›Å‰ãÇÅ€Þ½…ŸF#4ÑÈÚZ<ùØcâbJJ½²ö閭ô¬¦v~EV«EQ“ÐjµÈ²|[ì8yò *•f³C¢ÍÉɱ„ÊêËÍ›L&dY(áòóÊß{k¬E³9˜¸¸-¬Zõ3o½5íºžÔ}÷@’$6oÞLVV&Üu×4î¿gΜaüøW8y² !B± B¸ì† DeegÙ¾};ãÆ«¹f³™cÇŽ±iÓ&²²²prr¢oß¾ :´æ: ?üðk?ûŒ!:~Êê'“’øàí·ñöö¦sçηüý»ÚûS«ÕhµÚ°Mµe};,IMM¥¸Ø ­6oz•UI^^ÞuÀz}PO®Â3C± †Y"'çsæÌçî»_7šÆ¢E X¹ò{.\HB­ÖбãL˜0€ÿüç?,_~IjŽM±”>Eá€/ÅÅMˆ‰‰aÔ¨Q899!„@¥R‘’’† HJJBAX§N >??¿šï>sæ ï½þ:­òòh- µ €¯çÌ!¨eK|è¡[þþ©Õêk¼T++«ÞT©T¨T*4Ím'; ƒlìwUè[KQ‘ÉÉÉ ž+Ë*Å»> „]kReeÞüôÓ´Ô¸_oo?ûìV¬XA\\:]AA]xä‘GæóÏ—2wîr a™éQ Ä`©‰ï€,wbÏž\¹r___dYF¥RQ\\̶­[ÙÀR¢æïïϘ1chÓ¦ÍoñÓŒ fΘéÐ!1›q L&¬]˧®®¼ûÞ{ÿx7¸CîWç,7lØ@=jZ©ÞÎäà`‡,WaÁo×fLZ­öºŠØßß__$)! €fÔíf…NÌ÷߯D­V1iÒ¤zLZ­–ûïÅ]w ¤¸¸\]]Q©T,[ö5§Nb –ºH€Àz E’ìHHH`îܹœù'EþºnÎW®Ð¾–j!E+¾ûŽ1>xÛ)Á””víÚÅСCo{Þ´€Þ¬))1ÔsL‡Juý{Ó¶mœË©¨ÈT܈¦ÔÅy“šjbæÌYL™òC† ©÷^ûúú2uêT 1 ¸¹¹aooOZZŸ|²œÂÂv@KE®ËX*~öcŠäHU•íÛ·wŒ+Wòðó󥬴„Ø-[ÌËÃ8©Rsð Î[“=qü8—®™uò„u¬ªâÐöí\~î¹:á÷[V¡—––òî»ïb2™n\d6›ÉÈÈømq77· (Я_?-ú^aª@…±*€ƒTT¸péÒ%ŒF#ÖÖÖ¸ººÖ\§««+“'OâܹÉ\º”‡õ@©©:æÌù‘#GŽñå—Kk¼ªª*²²²8þ<²,Ó¤I“šÖžÕ´cÇ~d¹c-eÄqsÅ ÄlÎfÕª5äçk1¼‘¤*Ôêxššô„?–a²¹,ÿâ :vêD¯^½(++£8'‡à«%+ÀÅh$3+ £Ñø·)t£ÑHQQQÚvý¨×4lÞ¼™ùóç3sæÌ›íÔáO''§›®ÿ³ÔªU+ÜÝyyÇŒEuwýsq…‹/âàà€Z­ÆÅÅ¥¢xôèس'š½{c0¸a)êª}§eŒF™¥K£‰Œ<ÀçŸ/¤ÿ~5Q¸œœ’’’(..ÆÏÏ-Zàââ‚$IŠwv†âbŸZùK°´viŠ¥ÙM’”Ξ=)DF¦¼<P¡ÑDál* “x+"¶EI Ûü‘õýúñ¤Ò´éÂùóx\åMH€—œÊΦ¢¢âwA§%•––RZZZ‡Oþeee1cÆ yòÉ'oꪪªê𦕕®®®¿;›á¿AVVV´kט¬¬³Xf 8*Þo&²liWœ––†J¥ÂÑÑ''§¼Fÿþý3æ^¾ùf5Úzå¦É$³gÏeNŸ~™Y³Ryî¹ç°²²BAii)©©©¤¥¥áèèHPP5ªY?>>ž¬,ƒ"Ï«4•¢Ü(Q+W®äðê«ïPQá‰Ùì„Z‡5it0›ñÀ2§³,³g÷n¾üâ æ/X€³³3ù¨ ¹ÚÕsʳ²jÊœÿ.ªªª¢¨¨¨ˆº¡> °Ìtž?>iiiÌ;—ààà›úòÊÊÊ€‹‹Ë —Òü7¨¬¬KëÃý@²"4³-.dðÌ3/b6[ãïïÊ}÷ÝÃ#ùd!_}õ_½šŠŠ´Z® ËØKwL¦!$$âƒ>¢ÿ~!8z4Ž·ÞšÁÞ½IȲ566y¤?¯¿>•–H’„F£¾oš*UvvÉ”—ë1™€< Gc ¾²•+V‚­f3»¶m«Qè­Ú¶eï¿bä78ž dKþp¹ÜŸ¥øøxâââjÞŸ>}ú†›—\¾|™™3g¢ÕjyçwnZÖåååÕ‘ÞÞÞ 8ð«¹W©´HR:BlSäO%‹,7eýú¢£j:u âÉ'£_¿~hµZ¬¬¬˜3çÜÝÝøá‡U$'']Õ“ (GˆAäçëùòË•tëÖÎ;sùòeæÏ_È?î ¤DJe¤sg?>ø`wÝ5°ÆØ°ð¡¹Þ4‰88a0˜()1+×]€•¹F˜©*‰®Þ@!H:{–ÌÌLœñòôDöð@Ÿ›KíY)àð·;………DEEQ\\\GÏ^W¡²`ÁΜ9Ãüùóëäþ(9::òÒK/Ý2áK3/,=¥K•PGÀƒÒÒu”–º¹p¡”cǾ¦¨¨ˆ·ß~»Æs´º´ë‹/>ç7@£Ù¯xæþÀ0,s  v~þ—_Ö‘•etPBUöÑŒÊʬX±¢&Ôü 4È[Û­HÒTªý88lgüø‘ìÝ»‹^½z`0ØÃ?@O?å1Pc™£ª˜g¹I“¯B«ÕòÄOðüôéôóã'~quÅÔ­.ZDÛ¶mo‹û·ÿ~^{í5hÚ´)±±±DFFráÂÒÒÒXµj{÷´”_ý•Í›7SvUËÐ[‘‚ƒƒi×®=’tYp½€v@‰"øº+¼„ÙΖ-§Ù¾}{úp[[[Þ|óu–-{—&M²1å ÁR2d f˲àsˆÃ‡/!Ë]m øPUÕž_~Ù]A>|8=6 ‡Í¨Tû£ØÙm¦gOÆŽàÕWß'3³T1XÛ£¢Š6˜ R|8ë×ÿD—.*,ø‹|, Ê°Z±‹ñf0øê«5ètmî±\¢+ Ålß¾Þyç5ΣÑDǰ²ÚŽ—×iÖ­û™•+¿ÁÞÞ³9LñÁÕø`¢“"+Õµ\¼K@¼$Ñ$$¤¦nÝ××—¹}„ß½÷áæÆ..ìôòbÐøñ¼6eÊ--ÓH’DXXÇçøñã5Š,44­VËálj‹‹«iV±uëVdY®SG}«RÓ¦MyçW˜3g ˜ÍN¨T9‘ŽcµXãGRRb`Û¶m ://¯švšjµšƒc1™\Ÿ£u-¯º;»d:tx'''._ÎDçk2„BxRR’Eii)666³|ù׬^½†£GbkkÃÀOqÿý÷cggGvvåå>Ê÷”F®†ÝY)lŸäèÈkO>I÷ZÓŽxåÕWy`ôhΟ?­­-aaa7ÝÿþŸ ŠŠ :uê„N§ãǬáÍaÆDFF6l W¯^DEEáëëKçÎoùÏÖÖ–>xôôg8yrz½’TŠ$%#ËaŠÂ­ñç)-µ%&&†ž={R“S¬F–ge™q5 SõHRýûwÁÆÆ†‚‚ÊÊ´\;ŽØžüü t:] ï|ôÑd–ìµ=NHˆšiÓfàçç‹››Ì̪:§$•Ò¸±SܵF£á‰'ž¨ ÷¥§«xáxè! ´B­˜ÍF@… O®pž*¨&JS©8.¬7ìâârÛÞ?WWW-ZtÝãžžžÌ™3ç¶åMÞ~ûmºuëÆ©S§$‰ƒebb²\-g À à,ÙÙ:ž}öEºwïȸqO“šz‘²²2–/_IUU+,É£Šsâ”`g—ʳÏN¡]»vȲL` 'ii…Q»Ë›[Ûš5kR‡7{ôèA=0™LuÒ‡ÖÖÖÊûê±±žä¢¥S &€\IÂÑË‹…\/ŽF«Õþ¥Ãþ6…Îÿ8ÙØØÐ«W/ºté‚Ñh¤²²’ãÇOsìØ „Ã’»Ü¡(èÞ$'K\¼xž˜˜—ÑhTèõ6èõTT8(¡ïÁJ 1 KN>›W_]L`` ÷ß?Šo¿ý™ÌÌÈr%ŸŠÍž{ni½ˆÿ«ë¨…tïÞ oï•\¾œ©„½Ú³— 4˜ TØõ JEЀŒŸ0áoEß¡¿ŽZ·nMË–-ÑëõF¬¬¬X°`f³¿"zö)w{yyÖäåsæÌû¸¹9Q^®Ád2RR¢Ã’ l¦ËdåœbFŽ|Ž>}úÔ@aa-ÈÍÆdê­D¨ŠÐj3f̈zÛeªT–v›ß0b¨TîôìÙ‚’ÂA NtÅpK 7æÝ)Snd{‡þYòòòâ‘G©éOŘ1/RU•­®O(ÎKwŒF/bcu?¾ƒ·PY)a4j))¹„,ÇR½ã‚zÐѬ™ãÆÃÚÚ³ÙÌøñc™5ë[ GEæéQ©ŽÐ²¥C† ¹n4¡6¹»»Fll£7ˆ@ ña'—èƒÀ H“$Ž[[3áÕWéÑ£ÇmÙcå_«ÐkÂÓVVXYYaooÏ矄 /‘”´‘ÊÊ…9û+Êׄ,«ÉÎ6cÉEz(Ê; bÒKnF©hµÛë”QµiÓ†+>ç£>"%ef³ÀÝ݆±c§Ð·oßk,Ê«Éh4Íæ±·’‘X… °%Orb“½7''œÝÜèÞ£S_½ÁÞÊwèÖ'µZ]ãOœ8œœl6nÜBQX**îç7pš‘âbÅŰä1ËMŠ'ÑÐagA@@`éááÁW_}Á+¯¼ÊÉ“‘èt*ÞóÏ>sÝʇ¸8øõWøôS™ÒÒ ¬Y½³¾ít†Ë€z8`UI’» Žø5n̲3èׯß|“$I5iºaÆòúëGX±âÿÈζÃl¾Ü£D„@ˆ"ªªŒ¤¤x+òTD`jaÉ7ÆRA±›öí›×Tý¨Õj^xáyT*¿ü²–‚‚8¬­>|øáØÛÛÿîàªÜÜ\6nØÀå‹)hS0H?@rs̲#ñ+2ìqutÄ«Q#¦Œû§A¶wú-B;wæûï¿eÏž½|òɧ¤¦Ö®i¬T° ¿•©`ÉíìÃqÆ‚ã=‚FSyGNëÖ­‰'99™3gÎpâÄ Îœ9C›6m3f žžžckk[gÜæ–-[˜>y2.ø Á%ÀcxFI…ÎÖ;ggºtëÆ[ÿùOƒÈÚK—.±}Û6ŠŠŠpuuåž{î¡IÓ¦w¤Ô-LMš4aîܹôí»uëÖ²m[.Ô) 9­D“BžµÃ’—<Qá«ððI$)÷š& ÞÞÞ|óÍל:uŠÌÌLbcc)))áý÷ßÇ××—|öíÛSRR€ÙìÊ¢EjFŒ‡3¼üÒTò÷ìÁ]\eç à<E;œ\] `êÔ©5‘ú¨  €={öp19kº÷èAÇŽo‰Á+wèúÊ}Ú´7éÖ­Û¶måÛo3¨ªò«õ‰j@q—Zª¥#°]‘¥Õ5‰@ju‹:ë;;;3eÊk 6”¤¤$âããIKKã³Ï>ÃÙÙ™0dÈ :WW×:Ý1ßž6ƒ«W£ñ¨Â0H`u¶?)Û‚BR[£vtÄÙÓ“ÇŸx‚'Ÿ|òºÍ›ŒF#$îÈdY¦eHƒï¾û¶Àý+ºJ¥¢]»v´mÛ–˜˜C¤¦^©uÔ¤¼ù œa P<¡µX2…:  ®Š”””kæûøø`ccÃgŸ-!*êååMƒÃ6mÚŠF£¢¸¸­VËÈ‘#yá…0,œ;—ÀôtBX,°£pÅ„0Ê2çòòˆÍËcwz:v¶¶Ìœ5«Þè±±±Ì˜1ƒ¬Ã‡±Ó騴µeí/¿°`Ñ":vìxG:ÝÂäããøqO¡V«Ù±c>²\»æ¶Hñˆª P­"4‹€Í ¯r*+ dee_²··§S§NìÝÍÏ?o%;»1àˆZ½—;wáïï¯T{HhþŸ½3«ªÞþÿkŸ3È (*Š) ŠbΚsjiju-µÔÔn73m°l²IK®™7˲¼•š9Ï38 8""*¨Ìó<Îüùý±7jÓýu¿)—õ<<aÃY{­Ïz¯÷z/Í“˜ÍO²`‰U«ÖRÍ«•½]JS¦B'[“ŽJ‚?¡øeû:‡Ð`,–3µ}ñ¼¼<Šѵkù1ত¼Z‰>äæÂºu0;W‘×îÉ)*,·úfÍ‘ÃMR/\ °  ^B¯®®æø‰4ÍËç>ë„êõœŒ¥¨¨è¶äÑÆ„~‡˜ÅbEVèj"‚.@H•/¯ì›³’b+€±Üè«ß0{{{²²²øä“OÙ»÷z½@§“HOOW*¦›­f³Æ\ÉÏw@§sÀÑÃK¹¹µ"ÙJØ®1=2ýÉ_ù÷v;¯ ¶ÊÊ[¦Õ€TYù«ÒvçTèBl6%8–(i4Ð#I1‘HHR¥RÉÝò:5þ±lÙ2Ö¬ù‰ââjÔjÐë‹õ®[ž¡„2_ùž`àC||ú÷æpt4 ^Uõä[QüÕ¹èz³VVVb2q½o:óÇuÔí¯1ùh§Ä7³âŸ@’tÈD;Tªjl6wŇëzŠ@§s@Q«™””‰`ggUd‘¥Ûø¦ªN씀@ΦÇ:0‘,h•z8ŽÜ­Ûõ.Tžé$ß`òW½\`¡¬¬ ê¯ò’ß,¬¨¨·âN4ÕÝèLf³™£G2eÊt:wîÀÃùâ‹üá×2d0M† Uv…­ ¡7ô¬¦íoVïyCG~ S§Åikú™fà2Í›»Ä»ï¾ÏÒ¥»¹p¡7×® çâÅÞTVú «Z—*®$”ƒÁEä)òuJÀÌF¥2ÐŒw>ø€‹þþ×hh‚Ü HVξÈë¬JýTäíMDDÄ-[ã¼¼¼p ¢ø¦ßµÐ4oŽ#+þ¿ZY§§§óꫯѭ[?""ú0oÞ«¤¤¤(Aê÷[Ë–- Ñ!IYÌ#A’4ôíÎÎ_qìØ:ž~zMµ’ðkªób|} ïÌO?ýļysòdk®^Æ•+ÉÈh¥Tõyu¤ YšÓ¬Àšk\+iÚÔ—I“'ã9hû»ˆLÅ+U¾.*¸S pY¥bÈðá·ø¦~\§¾w²–{x#¿ã¿jEEE|ýõ7 4’ðð^Lš4•C‡¢0›Íèu|}}éÐ!X9µº#+È9ãä¤eÆåœ>½‘+ÞG§3×Áå¨Ñ\fôè¡ÄÆÆòüó¯°s§•ääá\½:œÄÄ0„0g_Dñ–kŠ¿žGæ2Å‚g ùÒÔ{£|'rLåB©$Q®xnž;¯!'ù C’hÙ£G½•¾ k´mÛ–l­¶vŠqJW©hÞ²å½:õ®­Ð£¢¢™>}ii.!o!;vì#Î;ÏçŸ/ýC:å=4†õë7°wïL¦Ö`Ô Š/!Ü;ŒÐÁÁ|“ó Ç3yÖßøìÝïHK+¢F߸E‹ ,x‰²²2~þù KŸ:¼=B A’V!I»‘YÉ`³]Q’y¨IÛnNhhGzô¸Çï¾cã¦MÄÅÅ‘Ãa¥‚©©ÑB€(•ŠÞÒ·oß[F/Ú´iÃȉÙøñǘªªp‚ I"ÎÁ‡ÇŽý·•5Úo[rr2³gÏeÏžLl¶ @âüùÝœ>}Ž¥K?¢}ûö¿ûµ:uêÄ”)²páJŠ‹ ‘$g„(¡E‹,f̘Ï!CP«Õ888põê|<„ÕÚ 0áä”ÊäÉrï½Ýyüñ‰Ý‘¹ ·’îE’ò‘¤$9b³å 3ÿ¡TèûTªbÆ[J§NXúùç|»j'OBœ:ÅÙ²2.Q³CIæ€ÞLJO?}Ëï¤Õjynî\^¼t U~>~Ê1"Q­¦U¯^ býè\-Xð._}µƒ!ðåüù+ìßÿ4ß|óÉ’ÝU«Õ¼þúË<óÌ<®^=Œ$ù#„gçkLš4šÑ£G#I¡¡¡>|ŒÍ›QYh°³Ë¤wo?¦N}’õë×sáÈýõšÃ_ ;’t°!I¾QŠç •œè].AÿBútdA¿¸ßçΚΑ;v ÇǹšM±’ T©HvwçݱcoIèvvv 6Œ}»v{ä­­VT@¶JEYÛ¶Œ7®1¡ÿ7 žE‹>"5ÕYïZ^»g±²zõ6ž|rÒÚ åääÄ?ÿù1ë×¯çØ±S F""3nÜXZßÓšƒ©Y¿šjm5c_ŒHd¦åмù½ 2˜^½zqâÄ ­Ô_7 àˆ£c3úöm‰N§%##“³g ±ÙîS¼¤¸›þþ6š¡V«é?`z½ž ññ8*`•N9m×€NtëÖí¶ \...Ìœ9~Z¹’ÒìlÜxbòdžxòÉÿh5n£ý¶™L&6oÞLTT6Û`¨«5˜£G°iÓ&Zµjõ«»Îëy£#Ó¦M# € 6S\\A³fþµš5lð°°0>ùd [·n%!á":Ž>}eÔ¨Q”””PZZ‚¬Ÿ]¯A’<éÑËÀ@7 Š9qâUU£G”*¨+àŠ{èÖ­kíañÉ)SHHHÀf³Š<(W¤ø§E©Ö»õìù‹½Æ¡C‡Rºx1k¾ý–è3gpòð Ç°aLŸ9óŽ˜w³%$$ðõ×0+G/ 0“›{Š>ø˜¾}ûþ¡ØÐ¯_?V¬X¦M›¹xñ*^^î 0‹±cÇÖööö|øáBúöÝNlìI #ááý9r$þþþ¤¤¤"IÞqó¸bmÛúÓ¹se\»vM‰ùCe|Ò© ú§£R[é#úÒ¢I Ôj5›0üü|¢¢¢ðSpƒJd"qµRç{Ò-2ò¶Óí;tàÝ… Y¾l'öîÅf±Ð&2’÷gϦoß¾wüg|×%ôœœ¯"vjœ@B_,>ü‡Wb¶lْٳgóÔSU!ppp@§Ó!I´{€>-ú°.aßœû†.÷vaÎŒçhïÛgGg$IR[z ¯ ñxzj˜9s}úôaåÊ•œ>½¹g/Õù:pñâV¢££ñ÷÷çĉ¼5ožW®Ð yº³‡ò,2eÉäëËСCñwòóóãÙgŸåñÇÇl6£ÕjëÍm6ÚŸoÄÇÇS]ÝŠ›‰&SKââ⩨¨øÝ äÙÜñãÇ3lØ0, Z­—z¨ŒJ¥¢}ûöc0$ GGGÔj5ƒµZƒÜ°q«ç›B”3jÔcÌœ9ƒãÇ3uj UUÓ2E9:#Ä)V­ZÅÛo¿ÕjåïÓ§Szô(¡f3)J3 ¹’Ìó€GG=úÙÀvvvümÂî1½^F­ÆÅU–žmhBw’ÅÄÄ`4º#D@ø£EˆP®^ÝNZZÚÒ,·³³£ÿþDFFb0Ðh4899Ý‚úúúòÄOðè£b³ÙÐétØÙÙ¡×ëÑj5Q¦xO])"44”… ßÇ`0ðôÓ³IOwÇfsç èw\,ضÜ˱’c$M&00eK—²îÓO‰¬¨¨ìÛ!OcTGÕjÂ""~Q½P­VÙ½;÷´oOEEBqww¿-_©1¡ÿÿ^°F£pnÞ‡+ëûм¼–J? „6²Ò¡ž#GÓ²e99Vl¶ ï5ȩ㛩è(¢kU»6lÀÅÇOƒ¡¶Û9@ñË4à’$ñÕ'Ÿ0tèP¼¼¼â³¾}ûâàðz}BÔ „f$é¡¡!ê(«^¯'&&†óç/ „^½zQ{à´X,,^ü1‰‰Väþy2¥Rä#D)))¤¦¦’ŸŸ——+’]¢g ¸—ÂÁPªEG]„ØAEJ nB AÓõTÍ  N˜À‹/½Dˬ–©Ù¼y3Û·o'%%NÇ Aƒ˜0aM›6­eì.[¶Œ³gÏâççÇSO=u["Öÿ•ÉdŒWHJšÎÕ«»±XQ«+ppHaöìiÚ «‚ýû0{ö‹de Ìf;œ«èÝ»=¯¿1Ÿ®ùÝØ¹›ÚTvs‡ØP¨ q ™Lä „‘™YͳϾ„ƒÌU•˜«J؆ à‚Š\¹HO’€Ýññô¼ï> ÊØ’¤ÔTM½$JïÞ½±ÙlØl¶»úOíÚµküøãœ8q½^O‹-xî¹ç C¥R¡×ëÙ¸q#ëׯÇd21bÄ{ì1<<<þ’ëÕjµŒ?ž˜˜lß¾ƒ¡×2$”‡ÿ§H› !HJJbÞ¼W9zô••ÎØÛWóÕW«xç7Ðjµœ?Olì NÊGˆ!È,Œlï©@¦VÂâÅ_ðí·?PQñ$ÅùQñ6š-(Àžóô¢Œ–Àõë×Q99¡×hf3’rtí¤¼zž“<ðZ­«ÕÚ ߪ««Ù¸q#{÷î%==wwwFŒÁøñãqssCArr2‹-"---Z0wî\Ú·oÿ—ÅÎ6m‚™7ïi–,YIee:V«+Zm&ÍšxóÍE¨ôkf0xíµ×Y·n'ee€„·÷×<óÌTúõëË‘#GHOÏà矷£•´Ûy†çŠRì´bÏžx.\ÕTM…¡Ñ£´°£;f¡&—î€ENŸ:…ÆÙ“"[l‡LŸóŠ\]éß¿?µ-È™ÐÏ;GçΙ1c¥¥¥|úé§$%%±xñbJKK™3g>>>,Z´ˆ˜˜f̘Á¦M›þÒý°ìØñ3«Wÿ›¸¸sxz¶â¡‡æ2hР?-ˆddd0}ú,ÒÓÛ!DG@Muu%›6ídçΘL¾H’ ¶&ÞÐ?Æþñ÷•d¨ê Tì:,YY‰Ø³›§©Ä ìÂH{ðCФ÷.KM<==n>Œgi)5;·ò€‹vv”ÅÅñä„ 4ñña̸q 0 Á‰’““1™LÌ;öïßÏäÉ“ùꫯèÞ½;k×®åË/¿ä…^ÀÃÃŋ“——Ç+¯¼ò—ÿš5óçÛo¿æ»ïVsðàA„Üwß³Lœ8ñO«ÎKJJX¸ð¶lICˆ1€ƒ ..†‡$5Åfk‚$ٰي€ ÈÒ<äy‰)Ô8‹‹‹(+ÎBGWFó)äp޼‰Å‰ŽZ*G•“?ò_Ÿ”D°4‹€ó’„cÓ¦<:z4NnnôìÓ‡G}??¿é›ƒ+W®Ð¯_?:wîLjj*}ô,X°€ääd¦NÊàÁƒ™9s&{öìáÉ'ŸdíÚµ´jÕê/‚Ü5¼øâ\ºu‹àçŸ7’ŸŸK§N#˜4i"ÁÁÁÚû¬^½šO>ÙŒP"› ªê*/½ô’ô!à‹j„Ð ‹Îô§f?ºœàÛUUÕ$'ï£}ízÚ¸Þ w˜q)8D%YG(5}µ$Ñ3<???.¬[‡½ÙŒrãè¼$‘¯RñÝ7ßðãªU„EFòðÃÓ!4ô?j3ÜÑ ý•W^©=™ !(..fÉ’%TVVGNN‹-¢M›6tìØ‘ãÇóÝwßñ[{Ôÿ›&I­Zµâ­·ÞüÍ <ÿ©8p€âb5B„rCsHž£4;}dff¡¶‡v§ ÃqhQgÛ@¦Vió«€v˜9K*•„}€íj‰jFÒ.£Ægøðá\5‹Ÿÿõ/.`r4,f3n. ¹plIâõ}ûxjþ|¦OŸþ§®ï$»ï¾û2dH- Æúõë‰%22’ÿûߌ;–‡zI’(++ãÓO?åÉ'ŸüË‚&Èìô§ŸžÉÌ™3jýõÏ´¬¬,ŽW ÊÄPyS`0ðTd_k£¦J…Þ±N+ )VFÓ”Sp/df й™ I4 gÔàѤ Ÿ¾û.ÉIIè„ O’(U©hsý:ºëשVlÙÂ¥ÄDÞ_´¨AöÉÝÝÝ™?~m/6<<œëׯ³aÃÞzë-8Àܹsqrr¢cÇŽÍ ¹V'jÁÐ âS M@—r —+àDw08$tµ4£ T¹G’HduîJŽ>ýûãååÅœ9s2dgΜ!//~ø¾éé„(ý!«\ÊÏçë?fäÈ‘iûoÙÍð´Ñh¤²²GGG ÉÏϯ…ßAÞT¦×ë)))¹#®ÿ¿å›ƒ‘âb#BÔ%öØ…bz 7iPŽŠÁÈëqC ¾îuÎ8²5•4ZHg€|!ðDžáÍÕj™JÓ¦Myä‘G %..ŽÜÜ\vîØ1&†~Bà¤ÔZí„`ǦMìèÝ›I“'78ß”$©±ÊjµRZZŠ££#F£¼°©C‡µqpp¨ÝÀØc§Åb¡¸¸!ê¶>-ȃcÍ•èWó¾^Èr°‡•ôìZ?ÞJ:gb×ÞJ×½Ð<t¾‘$*„ ™zœ.­Ú´¡mÛ¶ØÛÛ³tùrNœ8Azz:§NB¿m÷ëõ¸)ïÜÆj%êôiV~õŸ/_Þ &+êyÕÉ“'YµjS¦LÁÕÕ•¢¢"ÜÝÝëõ|||¨ü 넃C òTm™•?ÙÍý ØtPRU°¹xåÁã?@ûËàD>5úlVÀ¬R!)7µy^2Â`àù™3IJJÂÍÍ^½z1kÖ,zö쉛$5uBuKÀ–Fbb" ÝJKKyùå—iÛ¶-£G¦¨¨I’êÍá;88`ooOiiiƒþ[xxxЮ’TÀ ƲEñOçÛÜâÎÈÒ/¹JrWä+là„ZúΠEÖi7&I’ŽJÍ4ÐdbÃW_±níZT*ááá<ñÄ<óÌ3òó ¶Ùjõ$%47+*âDll­–|C5›ÍÆöíÛÙ³gÏ?ÿŒÉdCæO#³3}ö¨TçñõUSQ‘LQÜxì²»âj·€ ülS¡·Ùð¼ç\RSiª×׃HÔ€ÉÄåË—ë]S‡pöóãJZ•Ÿ K’pjÙ’6"¡å¿aZ­??¿zÁé÷ú…Åbá³Ï>#::šùóç+§Y¬B’$²³³k[QQÕjýE’ O=ÿ¬IJw“edd°|ùrÎ;‡‡•êÅÅ<<œèß;vÁhÔ"ËiT#ëa[ûíV<=ËQ«SÉÊJ@ÊÖÒ¤¥ ²w9Qm@s Tj\œJI©ç›5K0/]¾Œ©N…iggǽrìâEZ"³Ýk޹Mš0¥k×;>©»»»×ó‹´´´ßýÜØØX^{í5†ÊSO=…³³3‹ooo’’’°Ùlµ¿ff&>>>·eX;88Ô»''§»Ž‰]\\̆ 8|ø(Z­‰¦M“(.¾ˆV«¡gÏPRR®síÚAd*[ÍÞ«@?Àgçxš65™yS¥„æè8lÅÿàŒ˜ÆE)‡ µš nÝÈ;~œ›õ1=©ªŠ´´´Ú„.I={õâÀš5”—•ÕJ~€ë@ŸßÐJ¸L§ÓP/ÿZ§9wîóæÍ#00W^y'''ôz=„††òõ×_söìYúôéCvv6û÷ïçÙgŸ½mßÁÎÎŽ®]»ÞÕÐÙ²eŸ³`Á§TU`µ:!Iî4kfä‡>'88ïE†A IDAT˜9s^ÄlND^ज6;),–jÒÒ$tøco{„ ¼”9d0bÒ$îíу€À@"""?r$e±±ˆ:P (U« ½iyJ@@o¼ù&ÏϘAvv6~ …*EÍ›3gþ|š·hqGÿ]n™Šø=•Gee%Ÿ}ö[¶laáÂ…tïÞêêj4 ŽŽŽôíÛ—]»vÑ«W/´Z-‡"((è««ààà»Ö?m6QQQ<ûì \½ªÂlöF¥òÁÉ)ƒwÞùS§NåÓO—b2í¢‘WQ¸(ÕúƒÈm¢jrsMh)¦½­š&åzÈŽ >qÖ„k½®ñhûÇ(ˆÎçäÒ¯±™,µI]’„W@š:‰ÆÎÎŽiÓ§såòev>Lkƒj ÕÍÁ<ÂØqãîø¿m³fÍhVçžËÌÌäÚµk¿ú«ÕJtt4¯½ö÷ÝwÏ<ó Z­½^££#Ý»wgëÖ­\¹r…æÍ›“ššJBBï½÷Þmc§‹‹Ë];³³³™6m&&a6Í‘¤dFŒèβeÿäèÑ£¼ðÂ@<ògäe»52´ÉTVZÑë ñ·•,Yyÿ&CÕ]»½Lz†Aƒ:QUUÅĨ4›ëmR«¬:ÞÞõ7Ž7ŽãÇŽ±síZZ”•á ×u:üz÷æÏ=wÇ÷Ï ½%ÏþbBï½÷8wî~~~,Y²¤ö¼úê«tìØ‘Ç{ŒeË–±gÏ233iß¾==ô Ñ®^½Ê;ï|Jyyoe¹„&23±t鿘4éoDG§"D7%h½;9ÕÈJqÎØl£Ðs¾œa¼ØMRµ`ÿæÍ¼ñÖ[µâ ›2…O.^Ä£²’@¥†º&I亻ӱS'ŠŠŠhÒ¤ ’$!IÆ ÃþÛoÙ²y3¹yy„zzòàƒÒ¯_¿;S¹gÏ–.]JHHûöícß¾}€,1räHžyæÞxã ^~ùeÉÌÌdÖ¬Y·ÜÔ ÁòòòX¶ì_\ºäª0…%¬V(/¿Ìš5[iÝ:˜~Ø€=¹ÁŒLD’E;r±Ù†c$ÑtÃF˜ÁÄÁSטöðS4íåËʸ•¤º¦’ÓÅÄÓ•´²´È”¦D{{FtéBIII=)Ì:°ôóÏY·v-q³³ãÁîÝ™8qâo*ˆÝ­&.$==’’Þ{ï=eS«Y¸p!ýúõcìØ±Ì›7Ö­[sýúuFŒñ§ _ÝIöÍ7«Ø½û*BÜÏvä=lÛ¶¡C·s‚œœVÈ­!#ÐE)‚´È-ÌSѫ՛\vò eDŠ2X”ÙšÌÌI‚FSF§9»w/Ýl6\‘…Šc¿-puu¥ºº‡Ú wчòCX±'N`4™x¸}{~ä‘?uTïN1Í´iÓw›S´:ŽÉ“'FVV®®®„‡‡7È)€èèhôzg„¨;:a‡í‰ÝJÛ¶-©®öPê•& x³W9iVPÓG—)nm°°6|XÊÊXµjÓ¦MÃÏϱcÇ’–’Âú/¿ädq1Väq![u5Ë–-cÆ Lž4‰‡ÆŽ­½¾лwoªªªpttüSDJîdëØ±#Ÿ}ö‹åÄ ]»v|ðÁ$&&bµZiÓ¦ !!! Rl'==ƒsçj“u«Šæ$%]dÛ¶mèõ¹õs ¹›vP#åuªòÈZàF>ñS„/àXZÊö­;x=ìu–[ʦ˛ø\µŒ½UøÄ 4Åò³Ë…`×Μ‹cÔ¨QLœ4©–”Ì«óçSQQF£ÁÁÁ¡Aë²;991{öl***êý¼Æ÷œœœxî¹çèÑ£%%%Œ5ŠÈÈȹKAÁÖ­»¢õ¹EÞ@V¯þ«Õy¢"Q)€."s;´ÈD8o%ÉÛaÁʈ)à²ùmöî %((€3\xù7xÏba{t4öf3U’D®ø_¿Î?þñ:´oÏüùó lÞ¼ý˜1c“&MÂb±àììÜ`¹4¿µ2ÏÑÑ‘ž={ò¿`rŸBK}ò¿lèõÕlݺGw\•Ç P‚fò([ 0»û1qxà4`´ZYñá‡lüáž}ñE&MžÌü×_gÂãŲ¥K HJ¢WU§Nq]’xáèQt >¼68jµÚ»²÷ûŸXÛ¶mq‰BM5Ü OÚ·ƒxÍfA}Z$€³ÙÄþýQ”—W'‘×óåÆîèŽ@_åà©ÔX°# ™ýQdîÝËßNžä¡Ç繞çÁ§äµ6¯q¤Û4Ô°/‹1UFš^¾Lá•+üëäI ˜÷ꫵUxöÿ‚988ü¦ü²‹‹Kƒ­ÈoFnŒòÖ˜ !l$&^A-Bd!sÓ½‘Éq»âÂwöé”xkG1²q*`o:I^òLÞ~sM›3n\wV¯[ÇùóçY·n[¾ÿž~z=ÒÒЧ¥q66–iW¯²úÇiÚ´i­oþ/l™TÑhµvï½÷bo_‚<>QÊ,¢±Z=ÉÌl‡LèÐ)aðœR© åôéŽÜO¯6áL%Ç‘ùÅÓ'«ªh›œÌ[³fqôèQéС~~~˜’“‚ÌÜlt‚ŽÅÅ|úÉ'”——Ë·‡Í†Á`hðc@v«ùûûÑ¡CS$)­Žo ä6Oùùm±Xz)>hFæk_ @¦´Õi2°£€sJ Ì0œ—Çöý‹ŸŸÎoú†¹=æRPó0+Ú–àhÁBгªŠ +W’ššZ{F£ñfw£5|“$‰ûîë‹$%+±J.SQBeewäöJ©ÎË‘9H.J!T“ÌóÈ!_‰¼ÿV&[vѺü=æÌÊáØ1»{zõêEAv6ªª¸WÜ‘#CÌf²NŸfýO?Õ^£ÙlÆh4Ö›Øjz£;Þ°.]º0iÒhV¬ØÅÒNU»¬8çp%Õ¢T<[•„î‚ÌéÝ Dž_ˆŽXVZ)gКºê!È7øö›o0`gÏžÅK’p»ÉÙÚ{óòÈÊÊ"%%…ïÿýo qqqáÁdàÀ Z˽ÑnX@@“'?N|üÛäç°Ù¼¨òp¿âw*%™»G”C§ Y+ðÊQs°à†Üª!5:ëõÙ³‡I“'L‹êøî·ÇÃ÷¿lè~š” ¬ùù¤§§ãêêÊOëÖq11FC{ïeô˜1™¦~£ýßÛôéS9|øqqû¢5r;ò,pлN퀼Ÿ/¹utBIÝM•„~Š)W¼º©ò,7lôe#ß—ñæ› øì35ÁÁV.Ÿ>M—›p+-àSQÁ¥K—¨ªªbëÖ­øàc®\IÀl®$/Ï‹¥e€©îA«gäÈžœŽ¥('D>´xùzÓ)¬+ qqxäåÕI%ähbF•JoØÑÁUµŽÈ¹'#aãCpO,˜®ITVU2í‰'ȉÅO¯ÇY¿žS'OòÑ'ŸÔ’“­a[»víXµj9_}µŠ}û£×WQX(a0´¥>ì´`Ð òrr¸zñ"*NbA‹£›;aáí(É·'÷òe¼n*p\1á£ù–ââ!|ðÁÞ~]]1åäÔ{œŒj5‹…÷Þy‡M«Vá_P€½œspàø±c,þøã»Rƒâ·ìº¼BP]]]oÆÏËË‹§ŸžÉÑ£ûIL<ɘ1p{n¬{̓ ¢»uvÖ*Þ[´ˆñ&GýÍí6 W’hÓ¦Mmu=à¾ûÈÖh¸¨ÔS6¥¶: جV¶mÜH“³gf±Ð d³ž’—K—×M¨Fôz}­š•N§cÀ€ìÞ½””x,˜VkÇ­û­ÁjµpúÈÚääð¬ÌÅÌxô¨ 2ùÛßþÆ}„ÁÅãM° ðhÞge‘L§NpiÖŒ8 xdƒ›!ôDEBÉ£.|{ðrâþª*z Ao!TZÊŽ/¿d÷îÝb5‹ÅBUUU-aU¥RƲeŸråÊY6oþ??ß_м‰Auå 3€°2ÍôE´ iˆmÛй¹ÕhÆÕZ`t42k–› >üPK·ûFÌ >• ¤:9‘—ŸÏÖU«˜ŸO_!ïÎx°ºš‚ýûYñÅ·+ô»8‘§§§³iÓ&®\¹‚Z­¦[·Hx`T=˜ÐÁÁ.]ºàèCUU»:Uº ‰8ÊJЉ¼ â4ãéÈ:ÇÁ+¹DEE1ö‘GØ¿q#JJQä “%‰4ggÞ˜2¥^à6§÷JÛ!rØ€‚ÔT,YYô§>·¹ŸœLÒ•+wõüj£Ýj50á±cÇ0›Íµd„¿Ñâ&½^½záèøCÝýÖàj[%Î…F"¹!ö TÚl|ûõ×,]¾ÿÈHNGEÑÅjÅY6Þɉ±Ã‡×nI³X,›Mzw”'€gTv,gOË=´ï)0ăƒ¢¸ë…ÜØµ};cÆŒiü@™L&Ž?Ξ={(,,ÄÇLJáÇӽ{÷zH¡¿¿?áá-HMMFˆ¦u¢W.*Ò°×ëéS'¢z÷Z,œØµ‹ÒéÓõ·¿qèË/ÑX­ø"wÜO­;wæá‡{н;Ìš¥ÆlŒ WÒ±WhªDy€}u5±±±´Îϯ‡­ªöBpéüyòóóÿ´ ˆ ýÿ i×B‰7•Ø………̘ñ411TTø!I<<ösæÌi–,YR;¦Ñh9rûö`ûö˜LPãn\Å yH( hÑÂ6tXð±Bjj*Ó§O祅 ùø½÷8™‘$I8ûûóâË/Ó»wïÚë¹pá¾f3=…«¹ÁûüÖhÄd6ߥH€ÊjÅÒH»«ýóf߬ªªâƒ>dåÊŸÈÉñìqpˆáĉã|øá‡„„„Ô>¶mÛ¶Ìž=wÞYŽÅÒ›ÍHÅ‘D<0â]'™×øL3!¸š›‹»»; Þ{fÍâÇS§ÐJ­–G¦McÆŒµÌõ””ªŠŠ¸_Iè¥@ €ž…pô(\º&(ì%¯/¸÷´»"ïÔÐ QOQ®ÑFìܾ};/½ô&ééN˜ÍM°³‹cݺ­|þù† Rû8¦M{’sç^ =}/6[P†–³4¡œ&ÈšêuÍEôYYòÚî_¤Z¯g×úõ¨ª«±¨Õ„öêÅÂ>ÂÍÍŽáý÷aЀ0ÂÅ(Ù@6Ü€P ßdbWn.÷p+ ­„ÅÒàtÜdB·Z­dddpøða’““qvv¦gÏ^DFv«]¸ðöîÍFˆ‘€! ¸¸eË6sß}÷1zôèÚ× à»ï¾áûï¿gË–­\JLÄœ‘Î8!8\£ ÉŒgÏâB& X¥¢›¿?ùùùXm6ú FAa!‘ݺ1zÌt:iii8;;ãí퇇B’ð‚º5Xàìá³·7i/â!*ZÊ•$4mÛÒ¦M›ÆtYII GŽ!..“ÉD¯^½ˆŒŒÄÓÓ!;wîä‹/ÖSP0„fuµ…mÛvÑ¢ÅrÞÿ=œkaΗ^zˆˆÎ|ÿý\¾œHÊÙsŒ@P€,câÆ0‘ò% 7ev<''‡®={⯨ëM˜0æÍ›SQQÁ` Y³f899!ÙÙá‚Lgª Ú,Ý|"¨Þxÿv6Žõ†k­!ì0¤Tk˜´nÝw*üýï/‘Ÿ®¬•–0™×®Åñì³/Y;R«V«¹ÿþûÙ·¯-K–|D||</^¤GyÞÈ:††›’z`ïíN§#=-f-Z0`Ì$•Š1cÆÐ­[7ª««¹~ý:žžžté¢#²Ç>â£gÓŠJ²›šöS¦J…—yF#EeeøÔb«¤VÓ¾cÇ)@ÕàzBÂEæÍ{C‡®a4zÕ~Ïk¯Íâ©§¦a6›9p !ÚßT¿È@Ꮋê%tå÷fΜɌ3xó7Ø»hî xr”iΚr²—±U+¼¼¼xù…HÙ½O!0ÿމáì¹sTS]Q§¿?÷E×®]qlÝšËW¯ÒIùPô@¬JE¯>}|8ÇçìÙ³Œ‰ˆ ‰aÆ#Ïa„*I= 8§ÑðÄý÷³øÃÙ¿z5MÊÊÀy{{r220[,T vtdððáŒ1‚v:púÒ%zZ­8 ƒú—§¶myåµ×XüöÛž;Gp¦àJ[ÈsÐеß0FŽÕø¡ß%f4Y³f ï¿¿œ”BØ£Vo¢_¿µ,_þOBBB8sæ ÅÅf„hË ]Bˆ{ÈÏ¿@\\ýû÷¯÷ºÁÁÁ|ñÅ¿HMMå±Ç#(&ÀYÝí^ÅÓË€8­–ðAƒ8~ü8_/Y‚k^:d9ìÔ¤$š‘—šŠÚÎŽ6íÛóÄ”)<4ƉS'vrÐø"ž$ãÁUrt77æÎ˵ë×9üí·›Lh‘×kY:uâ±Çoz *¡Ûl6þùÏ¥ìߟƒÅ2™³k"33…Å‹—Òµkùùùäåå!ïá½j²Ãhüå9ZI’hL©›ú¢J@²˜ÃZ¬òæ3^~ñEbOž$oÿ~†+;¢mÀ•Ü\üô’DK!($9ÂË|À³¯¾Ê‡¯½FZn..B8†„ðÖ[oѲeKZµlÉÊ+Ⱥv&¾¾¼9q"#FŒøŸKh(¶iÓ&¾þz+zý`”u”•eòÕW{èÔ©aaa9rDI¿Ò-·ªÕjûU˜ÐÇÇ'ŠsrBPŠ,s¹whrp`ü´ixùøðýÐ[¯¯ÝXUb4²uËœ€’„øöäIòòò˜ùôÓ<á›.]ÂYÓÝèëËËóæ1tèPš5cíš5œ:|˜N:'úÍÂ#<ú‹KríγÔÔTÞ}÷3RSƒmµX­DEañâ%,Xð[·nÃj·IvA½M†·óM?__R$‰`!¨DÞ ˜¡”UFI¢óÀ <˜O–,¡K^-x¼ÒjåXl,‡bc$I¨³ÇŽwæ ËV¬`ܸó¬ý)™Íæwð’f“+ðØÔ©Ì˜9“ŠŠ Ö·kÇÎ1UWÚ¥ OMŸN§Z5¨„n6›ùñÇX,øA·°Gˆ23¯0eÊS¤¥åRVV®œ-ȪEn@M ƒMüÕ÷xàصc«7$Qa{œü“ rÉC–ÇL²ÙÈ/(àÜ©St7›k·S«‘II)òÉ@ P ùlÉö>LÏž=Ù¶u+ÙYYt ãþ#j 4ˆ¾ýúa³Ù$ ­VÛ8ƒ~Yyy9‡¢¤¤-PwyL UU¹¬Xñ5II×(-­Dž wA¦>ÊRÃ*ÕUBCïÁÓÓóßÃÛÛ›©sæðùÛoS\^Îd¹£”‰uƒOooÖ¯YC€^O@cƒ'‰<9ì+dýv½ž]«V1lØ0v:ÄöíÛIˆÇÏߟG¦uëÖ¨ÕjºDDŽÅbA’$4Í]±6µÑnXTTiiV%™×4i\±Ùú°sçZΞ=OBB*6›^9&¶Tb§p//G:uêô‹¯ïèèȬçžcúÙ³\HM%Lv+AÞca²Z¹ré–äd‚¹ÑûvV®* ðVdš Á¶øx6mÜÈ_}À#NðæÁ˜-øü->¼+ööö¸ººòì³Ï2sæL9«Õ v÷EƒKèF£³ÙÊ­„F#$$\ÁfsCOå1§”¤Þ­6›!C:Þ·ßl¼¿èCÚoÙJ[S:m9„‚n¼¾¤„oW­ÂXYy‹H§Jùƒ›k¯J¾-Δ–’žžN—.]yñÅ_Dºv{C¶¥*l¬ï›Bh9yò46›+B¸#+h%qÈ[«ááV{ì±_k±··gâĉÄ;FâæÍ„*ä&gÅÏ€mëÖ‘™—GÇÛ`v ’dU*#W@WRBzz:dJÉŒ›}S£Ñ4ê!ÜÅVUU¥|ê·VßyyääT)žÔD9"^WŽîx{çð ³jeVÉúöíËÔ¿ÿO_z‰påÈZslme³±#)‰²²2„Ét|J:ß·0™8þ<:Žûï@P¼ðB ññ0|øçþÒú†h ªÄsrr¢C‡HR]éV€J„ÈÄj5(É|(0 ܃Nw„I“ºóÏ.ùÍ1†ääd–,>€ÊÒ‡æ|‡ÓMÓ’îV+£•½=7/`,C^ÀRwˆÃH*Õïà°Ùl”••QTTÔ š Ù\]] j‰]êM¾iDˆl¬V rþí§øåH¥fN¢GŸþ)={öøÕ÷¨¬¬dåÊ•ÄÅÅá}‰Kg!Ⱦv {''²‘y5f’”š«æÈaC^7ô{­TWW“ŸŸß(ÿzZXXju©‚åÔµkJ¬ÈlŒß”Ó®]‹¿Ìĉ¿ŽlZ­V6oÞÌ–-[päV†»`)*"3#ƒLI¢î„¸ yÂÂþ¦R­ú¦"'$æÌÝ»aË–ú¯o2™(((@¯×7&ô»æ—Q©xõÕ¹4mšŒJuZqÎtº=7QjŽpdÅ_2ÔÞ! ¡uëÖ¿¸®_¿ÎÜ9ï²j¥?.¶µè‰ÁZ'8[XÈN­ÆÎޞÒD ò\d °z÷VpJdáCŸfÍ~‘­nµZ1 $$$ðè¸qD´kG÷5t(‡þÕ¾U]«Ñ©ªªúÝÏi´?Ï´Z-O<1™ðp{TªJˆ*@­Ž&  äu’­” ÝY63ºwüÕ ØjµòîÛoóÝ;ïàœ’B~$¨&(%-[·&I¥br3 yFò&+2806kFPPÐmï !&“‰´´4Þ˜?ŸÈŽéÙ±#}##YñÅ(xšL&ªªª0 ^oûN4Yöz :]4²4K’t7·“xy5AÖaï¤ÔÔ:äÝ~8;;Ó¹sç_]“k³ÙØðóÏÌŸ=ML Fd˜½~ÉéUU8»¸ óð`#pE)€N! Ŷ¬ƒpæÕjúõï_ë›j5 /¾ GŽX©¨¨`õêÕôŠˆ Gh(CBxmþ|222~·ŸY­Vªªªê‰<Ý©¦BMrr2¹¹¹¸¸¸Ð³gÏzÐÞÕ«W‰‹‹Ãl6ãïïOÏž=ïÈ>„$IŒý Z­†ü‘¬¬Ó8:ꈌ¼Ÿððp&L˜‹7;ž«Õí7“œÍf#:ú8‡ö4ÅËbG/–‹'ä>¥EIÚ—·¢"ú V+¯_'Z ’*åHqTù7H—$Þ3†ÊÊJ\]]kûâ6›K—.qøða²³³ÙøóÏ”D?›ÿÇÞyD]ÿüqîØDQPDÄ…÷ÖÌm¦–e¦¥f–3¿¹Ê‘m3µ4M[–Š[+#æÀ‘X ²d*{ÇÁÝ}~ÜI¢(–’Øïóü îóù¼?Ÿ{^÷ÚøšÍÜ´4>þâ zõêuOE¤¤¤„s¡¡„œ<‰J¥¢qãÆ 0€6mÛÖ{FSYYIXXÙÙÙѹsçjØ ¹|ù27nÜÀÆÆ†¶mÛÒ°aÃz9ºÓÏÏ-[6òᇑ”… èñókI`àdÖ­[GD„=ÕáRÀ†òòÚ-Þ«W¯²wÛ6ú–—cfTÏ-ø+Ãý H$(LMéÜ¥ .\ F§A@gT#B g)+•2¬{wÐjµU … dddpöìY’’’8uêáGÒ]§Ã¸ž“û¯¿Ž^¯gú+¯Ôú..\¸@HH™™™ØÚÚÒ§wo:uî\¯g© ‚@NN±±±deeabbB·nݪ•B¥¦¦Fyy9...ÖÛ$V;;;V¬XF“&[c¤Õ¸¸81zôr~øáŽ-áÎp‘%åå‚1”twäää°w÷nï<ggkï¹nqq1×ããiŽ!£“Q¹ø¹\ÎñãÇyûí·  m=µð$ ŽŽŽØÛÛÌo,%6ÖAhgÔ-Œ¯¶™ìôï߯Ö5­­e¸K¾¢±pS#ó²ö=0LG3J“GŽð£Tе•M}|ôÄ8::òí–-ü j5J• —'P_~ù2‹–.eݧŸ"?}šÁz=r£ ôk{ãÏÊMH¸r…²²²» ô¸¸86}ð~ééx]þŽÐsçXýñÇ|±iS½žaíääÄwß}À„ ª‹ŠŠ"88˜U«VÑ¥K’““yã7ؾ};oÜ%¹°>ÀÒÒ’-ZPXXÈÀC‰ˆ(G£éd|»€1„MÆE<÷ܳµ®immV"¡ÂhÍ4ÂÿC‡…@ãçð{R_ý5­üüpnØ€Ž ä§C‡8´kê’LÔj\Ôj|¢£1‹Ž&ÄÄ„°‹ùhÍ‚vî$æÀúVVbetç'!€§ÑÂ÷.å员˜xW^TTÄŠå˱‹Š¢ƒñ·£Õë‰IJâ“eËèׯ_½Š%•J}šqÔ²1Ì.ÿCCÙ›-n':…^Z­F§ÓñÄSOqö‹/pÕ2åóT B&cˆ±-á±ë×é¢Raiæ­­éÑ«mÛµ£W¯^ôêÕ«Ö›öíÛ3æõ×9¸a­Š‹±HH²<=ù`ΜZC ÎÎÎ̘1ã—ÞƒÂÛÛ›O?ý”õë×sðàA|||èܹs5ÅáVLœ8‘#FÔú?~,?ÿü†È3@>¦¦1<óÌôjç^¿~U+V :r„17…_i)—.\`å[oÑp˼½½IHLäÈÞ½t/-¥µÑb¾6ú©2ÖÌMeÒ’LMMéÔ±#ÁNNää`ktS^.   F>ý4Û7mBŸ—G#CŽËqmÛ–ÞýûÓ¶m[XkÒP£FX¸x1ÿ›1ƒÜ¬,J$qvvL™;//¯å= 8°šbwàÀR8e2“&MB*•²xñbôz=}úô¡eË–wMÖôôô¬7¼S"‘àç× 3"#“£¨(G&‹¢cG/š6mZíšõëÖqzëVžä¯´¹”k×xÞ<:uêD×®]o6o¦ñõëýeºt ¬vþáŸƾ¼œæ·0ýžVOM5j†àà`232°±·g΀Œ=¥RùØÒ¦R©dêÔ©<ûì³èt:®_¿ÎèÙ³çcñü-[ú2sæV®\Gzz&`Ž ähÅ´iÓªy´Z-?îÛ‡?Õsà›M½»wÓµkWöïÛ‡êêU† BUȦ-†æZ猞 áÄ[S|3ë¦MqwwÇÙÙ™Wß|“ +W’—™I¥ pC*iÃŒ n܈­·7nO=Eüµk ÓѤE Þ|ñEz÷éó·:ƵiÓ†W¯fÇŽÄ^¹‚L.çI^™1WW×zùÞä7µÿ¤¤$ÂÃÃ)))!,, •JE@@qqqdddàââBrr2Ÿ}öÏ=÷Üc3å«mÛ6|þùZ>LDD$VVV П=zÜQ皟Ÿ…^‡†hèŒ/©,)ávýîfGxg A*%\"½_A@ DH¥4ëÚ•'‡ A"‘àëëËÚM›Ø»gë>üï’:ïU¦ÕÃuSS¾Ù¹­V‹¹¹9Mš4ùGí5]\\˜6}:£F¦¢¢lmmëeÙáíÐëõ\¼x‘’’Š‹‹‰çôéÓ4oÞKKKΜ9c?+ìÚµ‹’’ÆŽûXЦ™™|ðƒçìÙshµZ'Ò¿ÿ;<`šòrôÅŘÔ`½HÊÊP«Õ”«Õ$DFâ*Õ4u†ìs9†:ô,ssލT´1 ü‰„"ww¦¾ú*,^¼6~þ9êÈHcHÒ)7nËÂwÞÁßß…BAƒ jí²x7kpܸq 4ˆ¢¢"ÌÍÍqtt|,ZuææærõêURSS)++ãÏ?ÿD§ÓѹsgRRRHHHÀÕÕ•ôôt6mÚÄ€ |lhs„ øúúrðàA ŠðòêLjÃïPÚ´Z-¥ÅÅXÕà·„*wqøŸâ¢ÑTË¿Ã?f@€DÂY¥’­ue%vÆDGXZ2{üx<==155e„ 4kÖŒŸÎ郸Ýôy……„„‡3xØ0–-_Ž 899ý£Q©R©”Ž;âëëK^^R©'ãx×ú 92¡×¯_Oyy9VVVlÚ´ ¾ùæ*++Ù³g 8;;3uêÔ;’!ê»çééÉ«¯¾Z5ØD*•Ö(Ì:tà;SSŠ´Ú*MSg´^¸»ãâ₽½=‚©)j£ðå ¼Âh­ëõzÊ0µ¶æbn.r¹œýú±pÑ¢*ëZ&“Ñ¢E zôìÉÖÕ«éf$jŒNÀŽèhrrrèÑ£Gµç¼™\S^^ŽB¡ aƵ6¬Ëå÷¬®¯¨¬¬dÕªUäççcffÆéÓ§ åÿû={ö$**ŠãÇ#=zô`Ö¬Yõ¶Ô©æp„ãÆc̘1UtQm:9;cííMöåËØÞ×,äîî4jع‰ v..”I$·Ä·ÁP‡k4~S(ðìߟ˜ÔTt:~­Zñéܹ´k×®ê|ÈÞ;q‘Hp4ÞSn´º®%'ÏèÑ£Q(ÕÞWVVÅÅÅȤRœœ±µµ½§{RjÌ8¾½Ê¦¾#**ŠU«VQVV†‹‹ Û¶mÃÔÔ”ýû÷£Õj &""{{{žzê)ÆŽûXyÌÍÍéÞ½;]ºtA¤RiïQ©TÒ²uk’’“it‹2Y¤ÊdŒ6æ#8»¸&—£¯¨¨Š‘ ª2”@3A F§Ã·o_Ròòˆ+/ÇÎÎŽgÏfĈU2çfÕÀ½{i!‘ÐüZo´Ñhøqï^.\XMN ‚@~~>ÙÙÙ‚€µµ5 6¬Õuniiyײàz)ÐGŨQ£îbá¶eóæÍ<î¸1ÞŠþýûÓ¶o_Nüò ­ôz”‚Àuàš³3KŒ !|}}iס§èŠ!…IaŒ†Ôh¡'Ñáá¬XµŠ§LÁÄÄ++«µJ¥B*wô`Rµ×âââjŸgff²mÛ6~ܹÕ˜9:Òwøpf¾öÚ¿ÿ·¡P(øñÇïz|þüùwĘ7Ünr/xzz2ò™gØ’€¶¸kA@%‘©Tòä˜1´nÓ ú Äæß~é´7 Aé@ †°P **B©T²=({{{ìììjümhµZ´jõ£Ž¤€RP©TÕª$ôz=ß}÷ûvìàzl,2SSZ÷îÍ´éÓéСÃn:`ïÞ½ï˜ÿ}vvv|úé§ÿ‰ïy?ÆÛÌÙ³yíòeΧ¦ÒCh'V"Á% €1O? À°áÃÙ¹e q7nài 1fa(ÔlŽ1 ½¢‚˜ÈH~9v GGGllljJ%‘H().Æì6Å£a¤Ñh¨¨¨¨J\Óétœ?ž/7m"òäI—-xùÕW:tèfð•8é67Ó{Ì&//Nù„Ö¥¥X ê¬,öÇÇ£©¨`ùòåâ|ôÿ0mNš4 +++¶®[G^j*ÖÎÎLxé%&NœX•€6fÌâãâøé«¯°R«Ña˜hÐÞ¨l¼t:bÏž%=-í®3lmmiàáÁõ pã¯Ìã [©ÄÃãšu~äÈÞóMZææÒѨLĦ¥ñ¿ØXvîÛ‡ËPáa@×®]Y¹nßnÞÌéÐPt}â ^ž>½jäo»v혽d Ÿ,[FxN¦F“3†:ñ(£w²üÆ Ž9¬Y³îy϶lݱƒ[g @ªTŠ—O5oHlL o/^ŒöÌt:$@vf&ËÒÒP( 2ä?ñÄÚ·ÁÛÛ›wß{c—.q>1‘]‡ñì³ÏV‹·ûúú²ûàA–lÙB©§'%à21”5Ú ùÆþã÷‚»»;ÏOŸÎ ®b(­HΘ›óìŒÕÜÇ)))ìÛ²…€’¼W£›ªŸFÃÑC‡î»Gyy9¹¹¹Uµ±â0ŒÇLž<™àÓ§9—˜È±‹™;wnµPŠ««+ïø!ßþú+6Ý»“*‘ÐØ¨p6ZN]]NùµÞoì¸q¤7oΟ  ÙÀ ¹Ïþý4hP•õ¦V«ùdõj|ss«Æ5ºkµd]¸À¾ýûïë;jµZòóóÉÉÉ¡¸¸X¤ÍÇ&&& 6Œowî$4>ž“áá¬Y·Ž€€€[†§Èxéå—9B¯©SIR*±ÂtC¯öŽ@cAàê}4¼z~âD,Ú´á7²€\‰„óR)é..Ìÿßÿªî[YYÉá_~¡àÌ:ët42ÒgÀ51‘   òóók½Ÿ^¯§¤¤„œœòóóïZ‚(ZèõÌý©T*ku9;;3eÊŠ‹‹Y¶`Z-ZlzW$œ6ÄÆÆæÞ•Tʼùó1·°àØ‘#$çåangÇó0mÚ´jÖ}AAeØR½ìÈfg“‘ž^+A&$$°k×..Ÿ?R)-üüxzìØjñSõØ¥&—×Zå`nnN=xÿƒxvÜ8rÒÓÑÍVF/’¼A–Ó½hsØðáHe2¶lÙÂÅÌL¤2Ú·gÖìÙ4kÖ¬êÜÜÜ\²³³éy›•`8I$Ä^¹Rëw+..fÇŽ„;FYI ÜÜ3v,=zôøWj~E< u(•beeuÏäHZúù±vÝ:ÂÃÃIºx© `a µ-†>ï~­ZÕz?GGG¾üö[Ö¯[GTt4ºÊJ\ÝÝùtÊ:vìXu^ee%‰‰‰8;oVñz ±^OJF………÷ÌáP«Õœ>uŠýû÷“™’‚¹¥%=úôa„ µòxQ ?F7n_o܈]Bà €d‰„æNz_qC+++æÌ™ÃرcÉÍÍÅÞÞ77·;â:J¥©¹9·¥Ô:ss,kÉ2ÎÊÊbÁœ9¤?Žge%‚ pôçŸ9¶  ÜÝÝÅú‚q†@èwßѽ¢G }­Ï›šâß³ç}1M™LÆðáÃéÔ©ׯ_G.—ãééyGhÇÒÒ…BA!†¢[iS%Ø×¢<”——³öÓOùþ£ðQ©0ÇP?ü¿“'YòÁŒ1âUxˆ¨ŸP(¼üòË,¿|?­/A0La“HÐ7n̰aÃîËøjÓ¦ Ÿ¬YCZZ¸¹¹áèèX-_I*•bggÇ#=ÞJE%€…‘vïeýúë¯,Ÿ7Ûk×p6Nm[Lfz:ËV¬¨7´)ºÜ 6ä³-[véÂ>[[¶ÛØÖ¸1S–.eÂsÏý-—•‡‡:t Y³f5&i4nܘ¶OyEq1åVV4èЕ«VÕZ–vöäIšètÕš?(?Žß/]B¥R=6å"j‡D"ÁÝÝÍ[¶9kׯ_ÇÕÕ??¿‡^v*‘H˜={6ñW¯ròèQLnÜ@ob‚‰·7Kçέ–ÜY¢£¢0MOÇá–ÞîrÀM¯çØùóÓ ž6óñÏ`eeÅ‚7ßdÂóσµµ5-[¶üGý j£ÍÞ½{3sñb¶lÜHdt4A@ãêʈgžá¥—^º§…]T\ÌÕßg45 »YÑd‘ŸOXX½zõú –––µZȃ0øtíZNŸ:En^ööötëÖížC0ª^¶‰ 5¥qTre}"_ÁÞºukZ·n]§÷133cõ'Ÿzö,‰‰‰˜™™Ñ¶];Z·n]ë\s™\ŽN*åv‘ÊåE$ÿŒ6ÝÜÜþ–EþO T*yqòdÚ´mËåË—Ñét4mÚ”>}úÜÑ`ìvH¥R¤r9ú’àtR)&õ($ ôÇÔêrþyCó¿Áè ̪½{ñÕ鸙þQ\15et¯^b⑈†C†ýÛ´Ù¦m[„&MÈŠÅCÂ’Û ¯Y IDATH‘HðíÑ£Ö¾ð"DÔSSS ü[ôimmMëž=I:y½ åq€ÆÞž.0ÈçaC4Ésáþw0bäHú½ü2Çmm9'‘pøÙÊ þý™;w®h‰xd´È«³gs¦INJ$\~•Ë)ëÒ…Ùóçÿ£Ö"D< úT(,]±uÇŽüjjÊ@ˆD™† ™¹`A½šk"Zèÿ`kk˲eËø©C._¾ŒV«e°Ÿƒæ?þ °°[[[ï™õ)BÄC·,¤R&O™‚³‹ §N¢¨¨ˆö3xð` ‡F.—Ó¦M\\\DåSÄ¿*ü;wîÌÚ øùçŸINNÆËÎŽnݺѦM~ùå´Z-^^^øúúŠ]Ä¿^|ñEƇ^¯§°°•+VpöäIä Z…‚î½{³lŊDz÷»ˆÇr¹œ#F0hÐ 4 ‰„Í›7³ýûï©,(@"“áÒ¬+V®| yå"DüÚlß¾=þþþ¨T* 'OždâóÏS˜‘TP:91mút^˜4©ÖœQ ‹x¨Ö¥¥%¹¹¹,Y´ˆˆ  †iµ(1ÄÔMIa¡FÃê5kptt7LÄ¿j ™™™affÆgë×óù›oÒ_¯§!†˜ú©©<7z4¡þùŸœ] ¢~ÃÄÄBBBøß¬YxÇÇÓCì:%-/F¡Tòì³Ï>’fb ýÿ1¢££‰|˜èèhÌÍÍ™9sfµYáçÎã‡~ ''ggg&L˜ðØÌCqw”——sýúuœõúj±pHÈÎÈ@­V?’g“jµZ.\¸À¥K—J¥œ:uŠ’’’ªöíÛǼyóð÷÷gòäÉ(•J&MšDxxxj@¡¡¡Œÿ]»ögôèqSv[ËSkäNNܾ«e€‰£#Öõ GqAA@«ÕrñâERRRªŽegg3kÖ,¢¢¢˜0a]ºtaíÚµ|ñÅuö]»vñÒK/ÝqÂ¥K—pwwgæÌ™ 4ˆwÞy‡¢¢""##ëä*++Ù»w/cÆLa÷î γäàÁ\žyæu¶nÝúÈ4Ÿÿ"Z¶lIÀ A\65%PÙ@˜©)ƒ?òŒM€FÌG}tG¯ùââb’““™ýô$&L&,ì²ØÚù! ôPîí͉„" =á¯)ÎÎ >ü‘õM¨5†îïïOnn.W®\¡¬¬Œ,--«¹–&RRRزå[nÜhŽ^ß h‡^߃¶nÝAŒ×}hpttdÎܹøŽÏO2€Ÿd2Z>ó sæÌ©w q·3$KKKÜÝÝ £¨¨ˆ„„âââèÔ©S=Ãúõ¹|Y :"Ñé±oßYŽ9"ÕCÄøñã;{6—]]«h³²S'V®^]ï+0¼½½)//'<<œ²²2Ξ=‹N§«³n}‚ pôè1öì ¥²²‚ÐhNן?þÐñÃ?Tó¼Šx0t äÍåËÉðóãpˆtscú’%<ñÄ$!î#Ë}ðàÁÄÅÅ1nÜ8ÌÌÌ(++cÉ’%øûû×É¥¥¥‘ ôä¯!¡À˜˜+$''Ó¾}ûªóµZ-………h4dR)VÖÖ˜››‹uª÷‰DBË–-ùtÝ:’fÏ&;;gggš5k†µµu½ßCGGG^yå>úè#víÚ…V«¥C‡<ûì³uæ= 9 ´Á>x“6Ñéš|„Q· !Ñét”––VYîæææXYY=²ûã{{{Þ\´ˆ‰“&‘””„••M›6},šÌôèуgŸ}–)S¦TñÍéÓ§×Y{èòòr"##((pn¯«D§óâ? s&¬­­«Ž¨T*JJJÐét( lllY¹Õãh¥5Š.]º””„V«¥Y³f¸ºº>Ò÷è:Ž={öpìØ1>úè#<<<¸|ù2kÖ¬ÁÙÙ™~ýúU;_£ÑpæÌ™ªÿÍÌÌhÞ¼y5"º!#•Öì2|þ—)--eÇŽ|¹v-Ù ˜(• |榽ò ­Zµ{“ßç~ÛØØÔé<ô²²2âãã«Y#á.==uëÖÈøñãÉÏÏgݺu|þùç¬^½úŽócbbªMkܸñßk )} û( •þE›„„„ðźu„Ÿ<‰D&çcG¦½þ:Æ ió>annŽ——^^^uv””ÒÒÒªÑIMÓïz½žàà`‚‚‚X¾|9¾¾¾DEE±zõjÜÜÜ9rä×UãVVV4oÞ¼ÆÉv—6AÏíºyBB¾÷§~ü‘òÂBx{3qÆ ÆϹà"nžry÷¡/..&>>¾Z¨Y£Ñü3^RRÂñãÇéß¿?ƒÀ××—Ý»wsòäIúôéS1ÝlTr«õ¬ÕjÿÖhÜØ ÿœ8‘ÜJXéøøXѬYÓª{±záBZççÓ^¨Ôh¸ôÕWäääðñ'ŸÐ¤I‘êêôz=¥¥¥wÐÆƒ"::š’’&NœH‹-CqÙ²e¼ÿþûwX*•ªÚ3ü]KÏÄÄ„¾}{whŒ¡ HâÉ'çW KçÌÁ"6–þ‚€H;q‚¥×®Ñ¨Q£zÕ.òÿ;ÊË˫хJ¥z ®V«9uê >¹\ޝ¯/Ççðáà 6ì/ÍMOã­Š¶^¯ÿ[£¿¿?ŽŽ?‘›[t ï¬@*½JûöÝ«uvv6Ë–-#nǺèõ(€Üèh¾xë-^zé¥úþ"´Z-%%%”––Vã§÷èz½½^N§C„*A,—Ë155%''‡ÊÊJ¤R)Z­–üü| Å.Y333†ú@_ÀÝÝiÓ&“ð6ÅètÎH¥88¤òò˳iÙ²%iiiìÙ½ÿü|Z B•ÝnYQÁ±Ã‡¹8~<7]ïõ–––tëÖ­ÚgkÖ¬ù[D­Õj½^V«E*•bff†Z­¦¨¨¨êx^^R©´F·v‡˜>gÍšÉÅ‹a„‡ÿ‚VÛ ‰Dƒ©éUÆŒéKÿþý«Îûáûïââè"ÜtÀ¹!×®±yÓ&DÚ¬'ðññ©–¤ÕjILL¬õ:AÐétUÊéÍ¿¥R) …‚ôôôªŽw:ŽÜÜ\\]]kôÎ888<mJ$žxâ FŽ<Åöí¿ V7G˜š&`Ëĉ«J9CBBøãØ1†èõÜ,ît„ü|‚¾þšQ£Fá*Žª­°··§wïÞÕ>ûàƒî-Ð/]ºÄ/¿üBRRlذ///fΜÉ3Ï<Ã;ï¼Ã¼yópss#""+++†^' I.—3vìX¼½½Y·n=™™™88¸2uê[ôìÙ³êžÙÙÙݸ·:áÁ°Q«¹zõ*z½^ŒW>樬¬dõêÕ––Æ¡C‡HKKcÔ¨Q´jÕŠÖ­[³ÒØ ´  €sçÎñꫯ֙KÛÇLJýûƒøæ›o8þff<ùäbž~zLµiuQ—.áj´~ný±yèõ$&%‰³çÿˆŽŽfïÞ½dee‘““Ö-[8zô( ,`äÈ‘,]º”yóæÑ¬Y3bccÉÏÏç7Þ¨3EÎÁÁÏ>[G×®Û9tèG**4 ç•W^©& ¯%'c‘—Ç­³¥€³ -V=Æß¢fffÕ4U333$ ÄÁÁ . R©èÑ£}ûö¥y×¶mÛ–­[· ÓéÉdwü,,,0±° Tª¥€T*‰'''Ñúàf+P½^Ï´iÓª>—Éd888°jÕ*N:EZZnnn¼õÖ[ôèÑ£NŸ©qãÆ,]º´Ê«IypjØ4‰Ä0¦ñ–Ï $l¬­Åá7ÿÈd2ÌÍÍiÔ¨sæÌ©ú  [·n¬[·Ž3gÎP\\LÇŽ™={vϤW(¼øâ‹¼ð ‚P£AckkK¹¹9BqqµÏÕ ŽŽÈåbGðÇZ ·oß¾ZæøíèØ±cegÖÆÌïF\M›6Å¿m[N_º„sEE•%” ‘`Ò¢íÚµþ *—3kÖ¬»oذ!ãÇdÏv7Œ3†×wïÆS«¥‘Q¨gWLLX>r¤˜Mü@‹-ªr7j‚¿¿UÕ†{ñ¾nÝ»óE“&DGEÑ ƒ‡S ü)t{òIìììÄ—û8 ôÇfff,[¾œ¹ÅÅì;v ËÂB*ML0óõeéÂ…÷TPDˆ¨k zâ æ|ð[6nD‘™ @¹““^x‰'Š$â‘¡U«V¬Û°×_}•¸´4”j5¥ööt0€7þ÷?¬¬¬ÄMú¿GGG>ß°#GŽœ˜hèå=`ÞÞÞ¢»]Ä#W8g̘Açιtñ":½žöíÛÓ90P¤M=zô`Ç®]œúí7 ñôò¢oß¾¢u. ôG ++«GÞR„ˆš P(èÚµ«8»[D½Dm!Ä ³"Dˆ! t"Dˆ!B„(ÐEˆ!B„uC×ëõܸqƒ¸¸8JJJðôôÄÃÃã¾§Üìv³lML"ñ0!%%%\½zÕØ¸Èooïûj{³“¢ ˜˜˜ˆ´)â¡C­VsíÚ5’’’Ëåøùùáââr_¥ŽZ­¶ª¡–ØTKèa;vŒ·, +"SA@kmͰI“˜;>7¾ëu™™™œ9s†ÄÄDLMMi×¶-Å®Z"mFGGóÁªUœÙ»ÓŠ 4R)>½{óþêÕ´mÛö®×–––ÊŸþIee%^žžôéÛgggqcE<”––òÞªUìùòK„¼<‰»-x}Ñ"ž~úé»6$ª¨¨ ""‚‹.—Ÿ««+]»vÅÇÇGì¢@0ÄÇdzlñbì#"è"(ÅŜز{.ZTcSŽììlæÏžMÔÑ£ØQ)‘ð}ãÆ<3cóæÍ;‰x`±~íZb÷î削 l•^ÏŸ'O²bÅ 6lØ@ƒ ¤¤„7òýúõX¤§#ò--ùíùçY¸pá]•T"þv±kíZº•—ÓÐ 111|¼t)~~~wŠøË/¿ðþ[o¡‰ŽÆJ«¥H¡`G‡¼»z5;w7öÿ ê$†þ믿¢Š¥½ `(€&€oY{¾þú®ãß6nØ@ÔÁƒô-*¢ÐWh•šÊ¦wß%<<\|["ÙÙٜܳ‡Ö¸iÓÔëI¸x‘‹.ÔhÕŸ aÛÚµtÌÈ /Ð PZÊ©o¾aÇöíTTTˆ›+âPRRÂΠ Ú–—ã!˜–@[@žšÊ‡Ýõº·æÏÇ."‚Z-= •çα|ñb*++ÅÍú?GfF–ååÕÌ †Á)¹éé5ŽÎT©Tìß½›v••Ø&FfÛp.-e÷®]âÛñP,ôŠÂBnà˜òâbr²³ï¸F­Vsêôi33i$˜éÓhS^Ω“'ÉÊÊ7WÄ¡°°ÂÂBœnëÿoØi×®Õx]HH%©©´Ç0ÐWnT:éõÄ„…%n®(Ðÿ9š6kF‘…·ŠmÈ—Hhäí]cr‡F£A¯Ó¡¬a=…  ºe¬ÿvvv˜7h@ÑmÉlå@¥ÜÜî¸F§Ó¡V«QR}²ßME@[QN§7WÄÁÞÞ'''Òk Í\AÀÛ×·ÆëT*&ÉñS€ PVV&n®(Ðÿ9ž|òIÌ›6å¬TÊÍA|i —ML7iR‰666¸5iBÊmĬ®mî;!âïÀÅÅ…¾£Gs^"!ßøY "—ãÕ®ï¸ÆÌÌ ÏfÍȔɸձ®ÒFîîØØØˆ›+â`aaÁĉ “ËI0ÒW%pY"AëîÎà'Ÿ¬ñ:J€Û}Ki€ÜܼÎ'cЍ? ‚@aa!7nÜ ¨¨¥RIóæÍ±°° !!ëׯW»H&“áîîN£Fj\ÔÍÍ{ö0óÕW9”˜ˆ´²[[^›8‘—§N­1ëR&“ñöÊ•LŠE—‘A3#1ÿ)—Ó¤kWžyæ™:Û„ÂÂBlmmëdmFƒN§ÃÜÜü±|~NGYYÙ#Ø Õj¹víÅÅÅ”••áååU•´VVVFXXØט››PãzVVV,}ûm,,- 1ɲ2…‚¶|öùç5ö²–Ëå 1‚S§Osì§Ÿh£Ó!’??–<ÿ|õÀ.--E©TÖYBh]ÒŽV«¥¼¼¼N+TŠŠŠ°¶¶~$僂 ››KVVÅÅÅX[[ãíí©©)QQQÜAKÍ›7ÇÑѱÆ5ÇGii)7làr^‚\ŽGóæ|±x1~~~5^ÓªU+ÆÏ˜Að—_ÒF¥ÂÆ(Ü/››3oáÂ:«Â¨KÚ¹ùû–Édu6j¸®Ÿ¿¢¢­V[§¼ÿ^¥ÕjÙ·o;vì ??¶nÝJ«V­ %$$¤ê‚œœ.\¸À'Ÿ|ÂóÏ?×…===Ù±s'QQQãééIóæÍï9Ö¯cÇŽ|´a;wìàjB¦ææ8š˜ðæ›oÖÙ¦èõzöíÛÇäÉ“ëdý¤¤$òóóéÖ­[½Ä={öðÒK/ÕÉÚœ>}šQ£F=ž››Ë+¯¼RU–óá‡òòË/W1ó¯¾úê/oŽZ͹sçðõõ%88ø®k:99±òw;n™™™8::ÒºukÌÌÌîIÏ+W®äËÆ‰¸t A§Ã¹IÚxxгW¯:ûþ!!!tìØ±ÆÌûúN;¹¹¹\ºt‰¡C‡ÖÙþ«vÂÓO?Íðáëþߺu+ééétïÞ½ÖÅmmmïë¼[­ô!C†Hvv6¦¦¦œ>}[[Û:ÓÀA 11±N-ˆœœœ:}‰ uÊ´ÒÓÓ™ ÉÚÚšE‹¡T*yíµ×ªsqqaÍš5Uÿ_¹r…¸¸8ÆW;áËå´k×î®e@w³„ÞYµŠŒŒ ôz=–––|ýõ×uÆ222êt¦v]ÒŽZ­&##£Né#)) ½^ÿHhÓÄÄ„¡C‡Ò»woN:ÅÉ“'«å•Wªe˜/Y² ‹*cé^|°iÓ¦4mÚô¾ŸÅÑɉ9sçò̳ÏRRR‚­­-AAAu깨KÚCEJ]ÖÐ×%ßCõAv I¶u*Ð¥R)Í›7§yóæ‚pÇ fffU–KQQ?þø#C† ÁÃãNH*•âääTÕµëÏ?ÿDÄÿ_˜››Ó§OÊÊÊî° ¥Ri•ËL§Óƒ\.§gÏžuöù„ââb Y¾|9nnnakkKvv6)))¼øâ‹ÿ QêõzÂÃÃY½z5(•J†ÎĉÊý5 û÷ïg×®]ÈK/½DÓ¦MÿQvíÚ…Z­fàÀLš4©Öºç›¨¨(¾ýö[®\¹‚N§cåÊ•U¡¬¬,öìÙÃo¿ýF||<3fÌàÅ_¼ïp‹V«åðáÃüüóÏDEEѲeKV®\Iƒ C‡±ÿ~RSS111¡OŸ>L:õoÓÿ?Åž={ضm[Uã£7Þxƒ€€>ûì3,--INNF£Ñн{÷:Ï:Œ“ÙÖ­[G\\ …‚^½z1sæÌ‡æ***"((ˆüFCŸ>}xá…puuýÛ¼SÂÃÃÙ¶mW®\A"‘°råJ:tèPuüêÕ«|üñÇ$&&âææÆë¯¿N@@À}ßK£ÑðÅ_pþüy=z4 .¬:ÌÁƒ‰ŽŽÆÒÒ’íÛ·ÿ­pKZZŸþ9ÑÑÑäææ²|ùr @rr2_~ù%‘‘‘”””àååÅÿ±wæá1ßÿÌd’L6Ù‰DlAÒØEí”*UUK[kÛ­ª/ZÕÒÖVª¥+Z¥Õ…R­­E-A,A-‘$²I&™Lf’ÉlïïÄ|M-_tp?Ï“çÉÜ;sæÞ÷ž9ç]Î{ÎóÏ?OÛ¶mïÚVW9ÀСC‰‰‰!..ެ¬,Î;ÇÎ;­[‚êÖ­Kllì=%%%1zôh7nÌÒ¥K™..Ž^x¨¨(,X@:u3f ééé·ìÔRSS©W¯Ö}ÐWhÚ´)999×-~ó¿~X*•Š’’:wîLjj*:Îz.##'''¦OŸÎÂ… ©V­#FŒ ''ç®ë‚³³3»wïæï¿ÿ&33“¤¤$N:Å AƒË常¸°bÅ ¾üòË{=¬×ëùøãÙºu+“'OfÁ‚˜L&Fm—ªVÉÉɼôÒKxxx°xñbzõêÅ´iÓØ½{÷É3 $''Ó AªW¯Nff¦ÍöÔM›6ñÑGñì³ÏòÖ[o±oß>,X@qqñ-G~~>z½žÇ{Œ¤¤$«îh4rrrhÒ¤ ...¨Tªën½™COOOÇËË‹ÐÐPÒÓÓ­úm6›9uê:t`Ñ¢EÌš5‹èèh¦OŸ~[×ÿo˜)æÏŸo}žÛ·ouêÔæ_Ë_¿~½hÛ¶­ÈÊÊBa2™Äˆ#ÄðáÃEYYÙË5 â­·ÞÏ>û¬ÐëõVÝìÙ³§˜7ož0›ÍÂb±ˆmÛ¶‰:ˆsçÎÝöwŠzõê‰Ý»w_sN­V‹gžyF|ðÁwô¶X,bݺu¢G"##ÃzüŸm²cÇѦM›;ºþªÎÁƒEhh¨HHH°{ûí·ÅÀÿ•î\Mdd¤X±b…°X,Âb±ˆÍ›7‹&MšüëöÎÊÊ 4ûöí³[½zµèر£ÈÏÏBQRR"zõê%æÏŸÛòõz½;v¬˜>ÞîY§JKKINN¦E‹Ökwuu¥Q£F$$$Ü·,W7ë5_³.£PØL÷ªT*ŒFã]̓\YQ*•´oßž˜˜âããÉÉÉaÏž=ÿ3uì­¢Õjqss³N‰;88P³fM.^¼h÷¬S*•Ь¬,Z¶l‰\.G&“„ÉdB¥RÙEwî¶nþ3åkVV...(•ʇN7CBBhÔ¨?þø#ùùùÄÇÇsøða»N÷«ÕjüüüÉdÈd2¼¼¼0™Lvu–••‘ššJ£F¬K‹...„……qæÌ™;²›wS?¯'ÛÁÁÁÆ_©ÕjJKKïÚlë”{e£FLŸ>+VЭ[7ž~úi"""ì–”!""‚Ç£R©0 œ9s†‹/’ŸŸo÷‡®×ë)..¶f¾»‚¯¯/ÅÅÅ †*e4233ùðà »«Ù*+ŽŽŽôï߆N¯^½8rä“&M²Kg³V­ZœœŒÑh$;;›#GŽXõÈž „°Ùç«T*Q*•¨Õê*õ\, 'Nœà“O>áÙgŸ¥~ýúnúøø0yòd¶lÙÂã?ÎSO=…¯¯/O?ý´Ý–£5jıcÇÐh4èt:N:ENNŽÝ;›ƒµZ¯¯¯Íz³ŸŸZ­ÖfI³*ŸŸÏòåËñ÷÷§gÏžwí{•ñæ;Æœ9sxçwxä‘G(**bþüù|üñÇÌœ9ó_Wo;v,Ó§Oçõ×_' €¸¸8¼¼¼puuµû:ì•^ZYYÙ5=ÐŽ|+;jµÚº¾úþûïó0¢ÓéXºt)J¥’5kÖàááÁo¿ýƼyó û×»@ZµjE÷îÝ™3g-[¶äòåË!P(v¯:uet{u§Òb±`2™îZ…«»åÌOž<É›o¾IŸ>}>|øC©›çÎãÝwßeìØ±tïÞNÇòåËyï½÷˜?¾]öÖOœ8‘eË–1}útÜÜ܈ÇÍÍÍîÁÒr¹GGÇkè”””pìØ1f̘a-ì2tèP¾ûî;Nž<ù¯ºŸŸÓ¦MãÔ©SdddÐ¥KöìÙÃÙ³gí^q­F( ›â;ÅÅÅUn9%99™™3gÒ¬Y3¦L™rOËUV&Ξ=‹^¯ç©§ž²Fù?ûì³L:•K—.ÙÅ¡÷ìÙ“ÚµksþüyiÙ²%ÖúöB©TR½zuŽ?n¨–‘‘AõêÕ«LžzƒÁÀÒ¥KÙ·o .¤eË–w5x·RN¹W¯^•JEJJ •JűcÇðõõµKOÐ`0P£F z÷îM¯^½¸té¾¾¾DFFÞqc_™"*..Æl6£Ñh(**âJ5»ØØX)**"66–ÔÔTºtérËßWRRb]ƒ1 ¡ÓéB`2™P«ÕhµZ, EEEh4šÛŠØ4™LQTT„ÅbA«Õ¢V«1›Íäååñúë¯Ç~H£F(--µKTwUC¡PàééI||<ùùùqúôit:ÿZ¾ÙlÆÁÁÖ­[óä“OR£F >̨Q£îØQét:Ôj5z½£ÑˆZ­¦¤¤¥RI÷îÝùý÷ßÉÌ̤  €={öP«V-k У;‹Åúº¨¨£ÑHii©õZn•+Ÿ)))±~Wqq1‹…ÄÄDFŽIãÆyíµ×pqq¡´´ô¡ÌXéëë‹V«%)) FCAAGŽÁËËËn™ïL&uëÖ¥ÿþ´oßžÄÄDZ´hqÇKF£ñºº#“Éhݺ5/^äÌ™3ÖßYllìm/½£V«1 èõz«½2âW«Õèt:Ìf³ÕvÞêý{ûÏë¿b“ßyç¾ûî;–/_NDDeeewu™U&îv$Ë››Ëûï¿Orr2!!!èt:ÒÓÓ™2e }úôù×=œ¸¸8–/_޳³³ÕXL˜0N:ÝñýàÁƒ¬[·Žììl¢££éر#uêÔ±NM/X°€S§NQ·n]RSSéܹ3¯¾úê-×qþꫯ8|ø0§OŸ¦°°:о}{ÆŒCrr2K–,!;;›C‡ѧO‚‚‚˜4i’Mõ¥›‘””ÄÇŒZ­fË–-´k׎ZµjñöÛo³k×.¦L™B§N¬#ó+…&ºtéòPM£ÑÈÆùæ›o¨]»6J¥’””4hÀG}ô¯—PÔj5_ý5iiiX,²²²hÑ¢ÿùÏîx6ç³Ï>ãèÑ£œ:uŠââb:vìHÇŽ9r$éééÌœ9'''ÜÝÝÉÌÌdÒ¤IôèÑã–ïåüùó¬X±‚¢¢"~ýõW:tè@`` |ðNNN¬\¹’¿ÿþ›Ã‡ãííMDD}úô¹åZÝ¿üò ;vì 11‘ääd:vìHxx8&Lॗ^âÏ?ÿ¤ÿþÖQé•uã‡J7U*K—.%66–† RZZJJJ ãÆ³Û:ú¾}ûøé§Ÿpvv¶:±É“'qGòOŸ>Í_|AAAÛ·o§C‡°xñbœY±b{÷î¥~ýú¤¥¥Ê»ï¾{[KBï¿ÿ>‰‰‰ÄÄÄ P(hÓ¦ ½zõbРA8p€uëÖ‘––Æ©S§èÕ«õêÕcÚ´i·Ô ÊÍÍå½÷ÞC­V³uëVZ´hA½zõxõÕWIMMeÔ¨Q´hÑ‚ÈÈHëg{ì1úõë÷ð8ô+ÊyêÔ)ŠŠŠptt¤~ýú4nÜØ.SÔ†#GŽP\\ŒR©$44”ºuëþ«éö‹/ròäIL&2™ !ÎÎÎôìÙggg45˜ÄÛÛ›V­ZÝÖlÃÑ£GIOO· Ú "**Šüü|8Pþ@+¾ÛÍÍvíÚÝrDe~~>ÑÑÑF« ™LF÷îÝÉÍÍåÌ™36ß-“ɧQ£FÝHH¯×“`ÝíëëKXX˜]¢WF#çÏŸçâÅ‹! ,,ì_M#>|øššöuëÖ%22¹\NZZçÏŸÇh4BãÆokJóòåË:tèÝéÕ«=zÔ&hJ.—Ó¸qã[NÄsæÌmFM¾¾¾´mÛ–£G^ÌêîîNTTÔ5¨jµšÓ§O£R©ppp víÚ„……ÙmŠ:77—“'ORRR‚‡‡M›6%00ðŽ; W‚>ÿ©;}ûöÅÅÅNGll,*• OOO"##o{9hÏž=¨T*«|Àª.\àĉ6¶³ZµjtîÜù–vJ³gÏ ƒÍõwìØ½^Ïñãǯ ´nܸ1ááá—C—¸uäRHHHHHHH]BBBBBBBrè’C—º„„„„„„äÐ%$$$$$$$‡.!!!!!!!9t É¡KHHHHHH]BBBBBBBrè’C—º„„„„„„äÐ%$$$$$$*% { ›:u*R«JÜ+W®ÄÁÁáž|׎;øñÇ¥F—¸%ž~úizõêuO¾Ëd21vìX©Ñ%n ___/^|÷ú¡C‡X»v­]dY,–,YÂ믿nyùùùüöÛoŒ3Æ.òHHH`À€vk;!:t°‹¼ßÿBCCí"oÍš5ôîÝ›êÕ«ÛEÞsÏ=‡Åb¹gýìÙ³´iÓ†îÝ»ÛEÞ?ü@‡ ²‹¼+V0fÌ\]]í"oÑ¢EL›6ÍnígOy%%%|ýõ×¼ôÒKv‘—‘‘ÁÁƒ6l˜]äíÚµ‹sçÎÝ3‡n±XHHHàÛo¿µ‹¼ÜÜ\vîÜÉÈ‘#í"ïüù󤤤Я_?»È‹ŽŽÆÁÁvíÚÙEÞ¯¿þJhh(5²‹¼¯¿þšþýûãççgy‹/fêÔ©Èd2»ÙÎ{2BW(4hÐÀnJîããc7yøùùÙM^ii)jµÚnòÒÒÒ°X,v“W£F êÔ©c7y~~~Ô«WÀÀ@»È³—ãºjÖ¬i·öð÷÷§^½zÛEž!!!¸¹¹ÙEž···ÝîÕÞò´Z-¾¾¾v“'—ËIJJ²›¼³gÏ’’’rOuÓÅÅÅn×ïêêjW[§ÕjÑétv“—ššjW_@PP]m]pp05jÔ°ëoÇ^]¡¸±Û–ÖÐ%$$$$$*µC—Ëå•VžL&³»<{õà®Ü«=å988ØU^•ÿáØY7í½ôPÙåUæß¢¤Ÿw·}ím›ª‚í¼W(*«BÊd2l7yžžžôèÑÃnòj×®m·éQ€¦M›"„°›¼6mÚàééi7yÝ»wÇËËK²”téÒ»Éëß¿?ÎÎÎv“÷ÔSOÙõ~í)O©TÒ¿»Éó÷÷§sçÎ’RVàíím·X€:uêØÕ–4kÖÌ®³]»vx{{ÛM^=¨V­šÝä <øž †*µCoÙ²¥]ˆ½ļ¼¼ìêàìÚ~õêÕ³«¼&MšH–ò*6lhWyaaav•gÏߎ½å) »Þ¯»»»ÝŸGUÆÅÅÅ®¿Wooo»:Ìš5kÚõ~íÇr{ú‰»ñ[¼éoëÏ?ÿdëÖ­$''ãââBï޽̜9úõëßõi¤S§NqñâEF··7;wîdÈ!¬ZµŠÈÈH, O>ù$AAA\ºt‰Å‹“˜˜È[o½uO~<÷•JŧŸ~Æ'Ÿ|MA™ÌL‹õYºt>:t¸ëº©ÕjÙ¿?¡¡¡Œ1‚ .ðᇒ’’ÂŒ3(++£Q£Fôë×!›7ofèСlܸѮ»$*F£‘íÛwðê«3HK+äÔªåÁ¬YSxöÙgï®m*))W°X,âûï¿QQQ"''GüF#Ú´i#V­Z%®GÇŽ…ăJ¥£F E”€‰f/œ[ˆ &‰‚‚‚%¿k×®Â`0Üô=z½^˜Ífëk“É$¢¢¢ÄÇ|Í{M&“øâ‹/D¯^½DVVÖ5ç-Z$6oÞ,=Ø‹Å">þøcáîÞDÈdÏø€ÉB&ë&"#ÛŠÔÔÔ%Ó¦MbñâÅ7}Ùl¥¥¥6×´páBѾ}û뾿  @4iÒDlÚ´éšseee¢k×®Òƒ}@8p Z4h.d²¦ ˜.` ¨Y³¹Ø´i“M»nægå...Vç.„ ¤¤…BaÓõX,”––²oß>´Z-‘‘‘R7ìçÔ©SDGÿÉÔ¨85)+{„M›ö“™™yׯÁÙÙÙ&ºÖh4RZZŠR©´ÑY³ÙÌ¥K—8xð aaaxxxHðFÁ_¬C«mŒ %àmHHбuëÖ»~ r¹ÜF- :îš)‹Å‚V«eÇŽ¸»»Û}}V¢ra6›Ù²åWÒÒ\¢à¸ÍÉÉ©ÁÆ¿b0îÞ”ûÕ/Ξ=˺uëxúé§m¾FE\\z½žçž{N zÈÌÌ"?àŸÓCÕ¸|¹Œüò“÷ NÇ‚  ¤OŸ>Öã¿ýöï½÷¥¥¥4hЀ×_ý¾$­‘¸·F3!! Ãvç­z½7IIÉ÷ôz, {÷îeçÎL™2Åæ\·nÝ(**B¯×3sæL»pIT.t:™™™ÿÐMBø“Ét÷zrr2³gÏ&""‚áÇãääd}Ó¢E‹(..&66– ЬY³ën;)--eçÎÖ×nnn4oÞ\ÚîT©^½:^^ŠŠô£órd2->> |||nY–V«åܹs¨Õjë1•JuËŸ×h4|ñÅüõ×_,]º”ZµjÙÌ-ZÍçŸÎÒ¥KY¸páuÓ6ž}úлwo›sk×®E«ÕrèÐ!>úè#‚‚‚®»Å®  ÀÆvzyyѬY3ÜÝÝ¥^…puu¥zõ(G0™ÄUºiF&SRû¦™ÞþIaa!çÎC§ÓYéõúÿ6™9s&5kÖä7Þ¸&_w@@ 6dèСDEE±eË–ë “Éd899Yÿ¥d$U”ÈÈ–DF† PÄÚ+®¹ü8}ú´±qªÿ ™L†B¡°Ñ[MTa6›ùꫯرcÓ§Oç‘G±9ïææF:uhÓ¦ Ï<ó gÏž½agáŸ×p/>HØÓ¡Ë3æiÏ"“]P†\~‚Zµ,ôë×÷¶ä988ØèÅíÜ“'Oòæ›oÒºuk&NœxÍþåÚµkÓ¤IF¿¿?{÷î½%ÛùÏeO‰ªB¡ OŸ>Ô¨¡ÎWFãÉxy¥1`@›ÁòÿÖu9ŽŽŽ6ºqÓïOLLdÆŒ(•JÞzë-üüü0 8::RVVFYY™u]H£ÑpéÒ%Ú´is]aJ¥’Ç{Lzª~~~,^¼îŽß„Å⌃C]»¶fÖ¬ÿÜÖÝÍÍíG|+ûZËÊÊX½z5ßÿ=³gϦk×®FËå¢T*qppÀh4réÒ%”Jå ·.………Iúù “ÉxñÅçQ«Õ¬[·‘ÒRGd2,[¶ì¶g]êׯOýúõ­¯‹ŠŠþg.w‹ÅBll,3fÌ ,,Œ©S§âææ†Á`ÀÉÉ N‡ÙlÆÙÙ!………¨Tª7òöö–tó¡K—Î,Y2—7Þ˜Fó7 ÃËË—_žÀ€n+ëž§§ç5þöêYÆkúìÙ³9xð O=õ«W¯¶žxùå—‰‰‰áÇ$((!‰‰‰8::2~üxé©=F³~ýúüúëFŽ=Jff&AAA´mÛö¶F0ÿ†íÛ·3wî\ÂÃÃ9{ö,gΜ mÛ¶tìØ‘)S¦€»»;*•Џ¸8ÆŽk·2•>øà=FŽÁ™3gðòò¢U«VøúúÞ“ï/,,döìÙ$%%ÅŠ+¬£ý7Þxƒ 6pðàA1œ;wŽððp»gð“¨|8::2dÈStìØ£Gb4iÕª•Ý“}]ס4ˆG}ôºÓP”––’——@dd$QQQvÏô#QyQ*•têÔé¾|wýúõ™3gF£Ñ渫«+NNNŒ=šôôtJKK©W¯#Gޤyóæ·5¥%Qu‘Ëå4kÖŒf͚ݗßÅsÏ=Gaaá5×$—ËyôÑGqss#??Ú¶mKûöíïY‡Câþˆ8pà=ý^ÅÓO?}Ó 4Hz:÷…ððpÂÃÃox¾k×®R#IÜÜÜÜ>|øM;£WOãKH܇.5ÁƒJ¥âÂ… èõexyyÂÕ¹$$î%%%\¼x‘‚‚B”Jg‚ƒƒ¥¬D¥Àl6“––Fnn.B@PPm+} ­äÐ`RRRx÷Ýy:tÆLíÚn Ò—çŸþ†Á9÷‚Ë—/³zõj6nÜNzz1´kהٳߔ ­HÜW, ?þø#+W~KBÂe„ÄøñcéÑ£ŽŽŽ’C—¸·ðæ›oòÓO‰Ñ!ÉËS“”ô-ŽŽŽ¼üòË÷¬…„ÄÕFÖ®]ˬ¥¸¸%Bøpù² Ž¡ÓÍ`Íš¯¥l÷½{÷2{ö¤¤4Ú2¶nM"9y6µhÙ²E¥½v¹ôøLvìØÉž=c±ôFˆÀ!BÐj£X±b¹¹¹R#IÜ´Z- ~Yá̾@M,–>DGŸã·ß~“Iâ¾PZZÊÊ•«HM Zþ€KññJÖ¬YƒB¡KÜ[rrr)*rl×|„ðàÒ¥"ÊÊʤF’¸/”””pùr1ày9ÒéÜïI ‰ë¡Ñh(,,@ˆn}uD&ó!55½R_¿4B@ñòòÄÕUOy­ÿ"“•âãã‚Bá(5’Ä}ÁÙY‰‡‡3Pò3”ÊÒÛJZ$!aO\]]quu ®ÑM!´øûWî Mi„þa6›ÉÌÌdïÞ½ÄÅC©,ŽP^ÄBhqrú›gŸí¿¿ŸÔ`÷ !*•ŠcÇŽqöìYBB¼9uê啨ªQž"ó4Mšø^“]BânSRR™3g9r$³Ù„R‹^_ð«¥ãïŸÃðáoUꔼ’C@°X,‹Í›PZê^áÀ3‘Ë7!DuÜÝ-´hQ>x_Êô'qOÑh4¬ZµŠ¹s?£°Ð•òeJ9rù ¹\NX˜;ãÇO¡mÛ6Ò]âî“••ÅG-ãÈ€#ŸRà(ÁÁY¼ðÂ0"##‰ŒŒÄßß_j0‰{ʪU«Ù°!£±åFF ™l7¯¿Þ‹¶mÛÒ¬Y3iËšÄ=gïÞ},Y²šÂÂö@å+ÑÙ±‹¾}ƒ2d(Í›7£iÓ¦7Í£^)zaa!ëÖ­cïÞ½äææâååEß¾}>|8ÕªUcçÎüôÓO¤¤¤ —Ë eÆŒIšP‰HHH$::“©p¥¸+BDPXXÀ#}úpöìYÉ¡W"\\\®³óÊÊLÀ•ÂNf ‹† U©x#ù•êWô²³³­Q¡PX¹‚””\\\ðòò’´¡Ñ´iSžx¢+îî€tÊ×Ï/áæv€ºÐ¼y³*wOŽŽŽ6µƒ5 EEEx{{#“ÉlôÖ`0‘‘Tm­ò^{íªUKD&; h<нDDøVÉP2™ÌFÏ ¹¹¹Ö-w …ª»BÒÒÒËåÒ–¼JhcúöíÃ#TC.ß:d²X4P1hÐU*k¡MP\YYk×®åܹs|öÙg6o´X,œ={–yóæ1jÔ(BCC%m¨D¸¹¹ñÖ[oâççdž ÐéJpssaРç™4ib•jÏÏÏçÍ7ß$<<œ¾}ûÚœ3›Ílݺ•C‡±xñb<==%…¨dôêÕ“¯¿^Ê—_~Ifæ.hÙ2’ÿüg:ÕªU«Ò÷f6›Ù¼y3û÷ïçwÞ±9'„ ))‰ зo_Z¶l))C%£yóæ¬^ý%ï¼ó.çÏÀb1Äk¯-å±Ç«R16}óæÍ¬_¿ž‰'Ò¼ys¥LHHàwÞ¡yóæL˜0áºÂ´Z-kÖ¬±¾®V­:t ÜC§>uêk ü$x{{|ßR­VsèÐ!òòò¬Ç²³³oùó*•Š%K–ššÊ²eËl*r™L&¶mÛÆÒ¥K™2e íÛ·¿¡œ¿þú µZm}.Ø{8zâ‰tìØŒŒ \]] ÂÕÕõ¾_ÛÉ“'9}ú´õõ‰'¨S§Î-~ïÞ½|öÙg >œ:ØœËÈÈ`îܹøûûóꫯÞPFNNŽíô÷÷§}ûöÒLè=¢qãÆ¬\ù©©©˜L&êÖ­[)‚k/_¾ÌÁƒÑh4Öc:î;ô?þøƒE‹1nÜ8†j3”ŸŸÏ믿N­Zµ˜5knnn׿ììLëÖ­­¯œœ¤ýÎ÷™LFpp0ÁÁÁ•æš\\\hÚ´)¥¥¥6½[Ád2±dÉŽ=Êœ9shÒ¤‰Í¬Ñ®]»˜;w.ãÇgÈ!7noذ¡~J1 ÷^7ýüü*]»×®]Ûf;Rqqñ-§FŽŽŽæÍ7ßdÈ!Œ3ÆÆ6–””ðúë¯#—Ë™7oÞM×ΫU«f£›...R™ã{Œ«««Í@¶2àîîNxx8ƒÁƯÞС—••±iÓ&æÎËäÉ“6l&“ ­V‹››ÉÉÉL˜0   fÍš…§§'Z­¥R‰B¡¸¦.MÅK\¯£W¯^½kfned¿páBvíÚÅâÅ‹ §¸¸gggœœœØ¼y3³gÏfüøñ 4ˆ²²2L&...6kïWnI?%þ‰¿¿¿MeBB)))ÿ³£¹cÇÞ~ûmž|òI^|ñE, ÅÅŸ»»“––Æk¯½†ÅbáÃ?Äßßßj7¯W~ÓÕÕUÒM‰ëêEHHÈ5~ö†=##ƒeË–¡Ñh8~ü8'OžÊ£2ßzë->ûì3Ž9‚¯¯/óçÏ·ö&‡ &MWJÜUþøãV¯^Mýúõùá‡X¿~=?þ8Ý»wgÖ¬Y”––rüøqâââæÅ_”‚$î*………,]º”¬¬,’’’˜>}z¹AU(X²d ßÿ=;vì G,^¼¥RÉ!Cnº,$!ñoPÔ¨QƒùóçSRb[(ÁÅÅ…BÁ¨Q£èÑ£‡MÉ8gggjÖ¬)µžÄ]¥M›6¬]»öš} ÁÁÁ(•J>ùäŒF£Í9///iªRâ®ãááÁœ9sÐjµ6Çår9<ùä“DFFÚØM…Bq[kó·íÐ=<<èܹó ßADD„ÔR÷œºuëR·nÝžïÞ½»ÔH÷¥RÉ£>zÃóMš4±‰÷¸HåS%$$$$$$‡.q;\=ý&!!馄„¤Ÿ’C¯Bh4Ö¯_O×®½iÔ¨=zôã§Ÿ~F¯×K#q_1›Í>|˜¡C‡Ó¤I$-[¶ç£–‘››+P‰ûŠÅb!%%…Y³Þ¤Y³(š7oÍøñ/w^ÒÍ› •O½‹ –/_ÁüùßP\\hNJŠŠ}û¦òÉ'j^|ñ…ën¯’¸üõ×^ÆŒy™ÌÌêÑ0pþüüý÷Y.|_ʇ/q߸xñ"&üý•Ù ââŽqôèó|ÿýji‹Ÿ4B¿÷äää°|ù·hµ‘@k B´ÅhìÄŠŸsñâE©‘$î |ùådg!Dg  NYYg6nÛŒJ^±¤Ó‹å1Tªp¾ür.\¸fð¤×ë­3K?ÞGÇtd²ü«ÞUŒRyž¶mÛVù }wm„n±XBX“\.· Ô²X,ÖFþç¹­VKLÌ),–àêìcÕP«8}ú4z½¥RIZZŸ}öû÷ïÇÑÑ‘Î;1iÒDfΜÂôésÉÍÍÆb©ŽƒC—™3g·ûì3 Mš4¡aÆüôÓOÝô…»»;íÚµ &æ/ÌæzWÒ5xyå1¥RÉwß­çøq BôÜ*Œm0±±ÛY»vo¼1÷Þ›w²•””àååEµjÕnè”/\¸ÀòE‹¨“žNkÊ×ʀCII,Z¸å+VÜ´,cU¡wêÔ‰ÿû¿ÿÃÝÝ'NXkKwïÞ @VV?üðÃC§ŸÝ»wã›o¶QR’wÕ(½™,‰=:!—ËÙµk7[¶@ˆ€WE»ÖáÂ…C¬^½–öíÛ3uêk×8«‚‚\\\ðóó»áhÆd2±àƒÐ=Ê“€`‚8•Š%ï¼C·îÝiРÁÛþ¼öÚk„„„››ËÂ… ùøãùøãqrr"""‚°°0›:çÐ¥‹'{öøç° lK¥qco4¡°°?^…Z4¢À—_~M÷îÝ8p ´~Ú`0‘‘L&£zõê7ŒC2™LlÙ²…¿¾ûŽ^eeVϵXØõÝw„…‡óüóÏ?p,ÅsÏ=gœÐ·o_>øàJJJ`äÈ‘”••ýÐL††Žpüø6Ìæ†€™ì<ýúu ÿþÈd26nÜ„…ÀÀ‡òµöê Á9ƒÑh´¶qQQ_ý 7n@¯×S­š'ãÆeèС×uêÉÉÉäž>ž³gÏ¡ÑÈÑéÁÍ­=?þØž«'Íf3+V|JJŠÌ—2C€íÀ~œhÙ²¥U—úégNž<þÀQÀ‚0블x™¸ÄD+¬éŠèhN=Ê‚?¤qh(;år™Í\ž ŽŽ<Þ°áéãÿuNÑ,\¸¡C‡Ò«W¯;Z[(**bÁ‚Ö×>>>ôîݛڵkW™‰gÆŒY;–Jq± OOA›6 Y°`þ5½ï'N‘!€ 4i} ކ ”GÄ~ÿýz._VPž5Nœ}øƒÐð«èA†Z,ì?wŽå}Äç+WÒõ©§ØùÕW<¢×ãä§ÜÝ™4xp•äçç³}ûv²²²¬ÇÒÒÒnùó¹¹¹¼ÿþûèt:æÏŸÇÑý¿üò ñññÖ×íÛ·¿i ÌÊFaa! .â§Ÿ~'/O££™ˆ?¦N}Þ½{Û¬ukµZŽMú]åÌjÞÔª¥cðàÖ£-[~#99hø#ã0$à„àÑŠnª¼¢Ãë¯Ñ°fõjÚ¶kÇÄW^aÚÉ“˜ôzê ˆ•Éh;`ÀmEÊßOöïßÏáÇ­¯Ï;w[%£ûí7Ö¬YÃĉiݺõ]CZZší ¤wïÞU&ÈóJ§fùò/HN.Àd†O1n\}ŠÿztFC|üy †&Øîòªígøðw­¶-++› ~­HO dàÁ,˜ˆ:Q¾˜$€:Ûü‘£O?MÿØõûïì?}šf» âår µÖVv.]ºÄ¶mÛléh4š;t“ÉÄ®]»x÷Ýw1b/¼ðÂO·{xx0nÜ8›)SWW×*ÕÃ|é¥)8 Ãdê8S\¬''ç0Ã46nü…B^¯Çd2¡Ñh0™®e,íÚµµ®Ñ\¾|™5k¶Ý€` • òp©ù\½ñH 4‚ÝþIµjÕxkölêÔ­Ë7_~‰A¯§š·7³&Oæ™gž©Éi¼½½8p M†¨­[·ÞÒgU*3fÌ ¸¸˜… þ«‰ž={Ò»wïÿ¶sJžb0X±âS–/ÿ­¶w…!ì݇Fó>5jÔà‘GÁh4RVV†N§«Hy½`K9M›6¡yóæÈd2òòòضm+EE‘@$P¨i‹ °ÍsABŸœLRb" B.—óùòåìNKÃÅÍA0ᥗ¬£ÿÊN«V­lÖj·mÛFNNÎÿü\YY›6mbÉ’%L›6Þ4YÊͨU«–íT(UÊv?Ëÿýߊ‹Û DpÅQbbLlÚ´!Cúb6›)---_ª1çëê&˜2ä)kuóæÍ¤§;U „ÎÒ3iMåUºY4™Ø¿w/ïϟϧ_Í‚÷ßgÿÑ£4oÙ’·ß}—ЦM«D»0lØ0›T·[¶l¹±Cÿã?˜;w.>ú(´z___„¨T*Ôj5Z­gggÒÒÒðóóÃÇÇçÚG!—Wé ƒS§Nqøp&ÓPþ™éŒÉÔ†}û6‹^_Æ®]’››KBB2Y:åëæµ+TÊ\TÔ¬HJJ þþþ[«ä@`ÅûÔxQ>t½DˆfÀ¡Â8øúùñÚÔ©ŒŸ0¢¢"|||ª”3rppÀÃÃÃæØ­¾ììlæÎKjj*sçÎÅÇLJ¼¼<\\\pwwG§Ó‘——Gnn.F£‘ŒŒ ÊÊʨ^½úu廹¹UYýÌÈÈ`Ïž}hµQ\‰V"”“'wrøp NNNlß¾ƒÔÔÌf3r¹³9¥¢»èX1†ÉÒP*RPP€³³3*•ŠììËÛÚä@12Ê#ƒS¸vcœDžjggg† Ê’——‡§§g•qäWpqq±­Ýʶ(ƒÁÀÏ?ÿÌ’%KxöÙgéÒ¥ jµL&yyydffRRR‚J¥"==ŸëÎ0)Š*m;¿ývZm`Eìŕٕ/¾8Nûö-ؽ{7111X,RS¯$–©\鸨Tœ())!==€€NžùäâââpvvfâĉÖ+W®D¡P°|ùr¢££IHHÀÉɉøøxÌK/½ÄƒFjj*‹‚ÿÆì^Á“IÆ÷ßÏŽIIQb±øR¾ÌBùºO3À³Â¹Ç6lØÀ¾}{©[·;v¨pÝúŠ>¥;:dÔEKùnÍ+±êz èøøã6Knnn·¼óA`÷îÝlذ/^l=>pà@ÆŒÑ#Gxÿý÷+R6S¦L¡^½z¼ÿþûÔªUëj‹¢¢"²² (_αéa±TãØ±£üüó/:¤Æl¬ÐMp ÐR¾,Tœô=z”—^z¿Š%Ö‘•@©¢ë™x_5Ö¿x„„иIëU899=pm~3Ôj5Ÿþ9iiiüñÇìß¿ßj€7n܈J¥bîܹœ={–„„2228xð #GŽdذa\{ÄÇ'a±xa‚Vd’’R›¹sçòÃ)*ªUñžÒ [¹£bÆRVa7/"„ŒñãÇãââJ»vm‘Ëeï·rŒ¸aFP8]Ñ]½2ÖÏ2årº=þ¸|X**>ÿüsk:ÈN“Êd2&L˜Àˆ#lÎyyyUú3›Íœ:uŠï¿ÿììËñì³Ãiffl 3Š]¸p‹¥”ò¿Š±HyPYY1¿ü²“¬¬Æ8Qž2Ó‘ò Ø«$éÄŵªP¨x¶oÿ ¥Kz¢¡¬=XýôÓkFþ•ýÇk±XÈÌÌdÆ =z/¯j<ñD?ºtérÙ—âb-yy½æUºYä³eË´ÚF˜Í=+Ì›…òÅœ­”`&UMP›œœNääx!“e°wïçXÌjd¤ Hy.…#ÚÀ!ÊÃäjyr9y¼õÊ+4jÔè¡ÕMÖ­[wM¤ô•]>>>üç?ÿA¯×Ûœ« ÉL4 [·ne÷î½”–êéÞý1ú÷¯ïu·ÖZ,òò²*ôÎTÑ‘´Tüí'#£kÖ,C¯ïP¡E2 1ð\1Ö†ò57 †v< ½w7ÂRFù„zfêpŠ8Úa&†ò=E!@©LFª«+O=ÿxþy:vìøPë¦B¡ ^½z7<ïèèX%w ¨T*¦M›Î7ßìê „?ýô}úüÎG-"88øº®¤¢ÛS1Ê«°Ÿù˜Í}°XZTØRs…íôÚâàðŽŽ77W Lш¨púþèõÕ)ӯƕ"œø ž(p@†…#¿‚L''LÁÁ<Éè~ý0`ÀC5“i£—âM%''³xñÒŠ&€‹‰ ޱdɧ´mÛöº•€€ärÌf=ð{ÅTwÅß劑wB…R:RžÝè2‹2™?NN¢B‰ka½)“Ac7\# ü ¤èŒÔ ‡”¯©€£2m:ubÑâÅÍV´‡‘ÿgï½Ã£,·õÿÏ;3™ô^HbH¤ÍPEETë¶qŽ ¶[,{A±`AETP@6XèR¥‡ @’@zïÉL¦¼ïóûã}&$löùþÎ1AžëââÊL2õ~W¹×½Ör8|þù—ìÙcEˆ±è³×ªZÈ_|OròŒ9òçååI@@¥¥&™“„£ë1<_„¨G¯xçH|^./ïR%“É7·Z%Z5@ê†S#ˆ®q˜©Dò=WM˜$:ÖˆfÍšE¿~ýþãKÿªgéÒ¥,]ºCNÔuRNgÖ¬ÙÈ Aÿâ¹çþþ‡®§§'¾¾Òš¥É¤§³´‘ !:H¶¨ ½üd (a˜Lxx8äï»4F®ã‡B©%Aµ ”`Öø˜ÙÌ3Ï<äI“þò[Ø.Ê õäÔ) B$pz¾š H`Ïž“”––žõïn¹åf||l2’\\)ÿ¿Jf>Cd”¹8‰·bµ^GEŵTT˜¢©…½Ð9 †"h'Dd‚›‡Þ, IDAT #%yŽ>)YÓ8•ž~ÑÎe¿tôc·ÛY½z›yµpªQTT°mÛÙ'2vîÜ™¡C{ (¥èºó±“#âZ™qØì‹^Ú ÀfGmíH**be°z¦ÌMÃH/ŽóFJÈ¥É턎UjkÉÏÏ¿äÌ/âc³Ùعs' ±ÍÎ\re8X»vóÊ_îîîÜ~û­R ì!íåÕŸãÑEÂc$6¯Ff®"p:'ÐÐ0ŠÂÂArÍô™ë|n؈@P^–ˆ.AŽDo²Œ±XÈÉÎþK-ûK9t»Ý®ò7üáíª*çœÔ¹sgfÎ|S‚²§ÌdŒÒð&¡×ˆê%]Ô_š¼$iOéÒ°f§@q@B& _‡qO=2Àªê—Ê™9RPvü8õõõ—,ËEo8-ÍnU3œ›L™ò±±^è·A2HuG¯GÆ¡×"ýÑËE=ÐKB±òöCèB¹‰O›tìV #nL£+›ðâDRÙêÊñüjk9vôè¥/ï">š¦áp8âÌ,WŒX­¶sþíäÉ’œÜ}ê[ŒÌ¶MÒVª—¡2·€Î`vª¤Ý<%) ]¼)$F3ð£€HykÜWއLŠ2ÒÒþ°Êú’C¿HN݉Œ4¢×Og!PH·n¡DDDœóoõa½>YÓ"›QÐ…p®Õ]Ì,t¥f!§… Uúm‘`Ð&8VM—#zK6¶x×±M_~ñ³>þ˜ýû÷·êÛ¾t.Žc2™>¼¯4`-³‘jªÏ;Œ¥cÇŽ²…Å"1æhq›iÝ TëÑIs­Ù0ëx]lLx3ŒÁüÊ >€ áù;Tª*Û¶nåí·Þâ·ß~k%öºt.ŽãááAïÞ½ñòÊ•Éu,@.#F$Ÿ3 vww§GèUí tjÝujd"Ø"Dô@—[îhaÍ(Êaô®¡ÍÀ:̬e0¥ŭ>ãyU ^rrsyû­·X¸`Á͸äÐÛ•CïÁ}÷Ý…›ÛFe¯4ž» <ÈÃÿíœËL„lÙ²EÒš«%è"$ : _Ïéþô&3Go࢙Æé*0_·SQìwb°k¸KªÈláÔ›dþ¤©*;>ûŒo^x￟5kÖ\²2Ùqwwgòäÿ&6¶Ø„NGV2fL2×^;òœÙSFFUUU›ÿBï¨B×m”¡«€]§TâÕ ŒFÊq-p=>>n äA``p ^Ì'ޝð¦‘Hùj[8óC@¹ÓIÉÆü4}:S'Ofæûï_Ô{þŠGQî¾ûnú÷EQÖ wGd£(kéßß›;î¸ýœ½¼¼œ#GÒe†ý“ü—)”Š.$víF¯—ö´Xbsd³í"œä䢣Ob4@¥fôòÏat¹ëG…Àž™ÉŠW_å­§žbò£RQQñ×L.Æ7e6›yúé§‰ŽŽfîÜo)+;Ldd$O<ñ)W_}õY‡Ž8NÞÿ}Þxã[„˜(©¡r`«„M…$w|¥Ýä¡«‰ûÐ<^Sñ€°`ªú7”ïÄs£ FÓ¡ý:9êm2q 8˜ì¦&¼›šÈµÛñ‚ñB&ÂbáHz:ONšÄÀôô Þ¦¦‹«TŒFã¥Z|6š£F⧟˜5ë3>„··7Ý4™G}ä¬ÓÁ„¬[·ŽG™JAAw‰7›4”‹ÑéÌZi0kd›ÞÙSb‰ÑpHÝÝMü o^¡†Õ,B£ ”ùûó³Á@`}=åªJÓÉ8!è$h•'OòÇÃ]wß}ÁµKUUQåR­³ Ÿ¨¨(–.ý‘>øßß‚ª:>üZ&O~äœ]7ÅÅÅÜ~ûßHMÕ€ÐK”é2Ë>,íä`t¡æ*ô] ½lé:A@8{R R!šF-°½p¢(¨ÞÞ¬öö& ¡§ÃÁI»ÀBপX+*ذ|9Ó#"øäÓOÿ#lí^#rÑJ 'Ndüøñ455áééyÞ/7++‹%K~Ân.:BæÓW¢«Šýed¹ ƒÁ‚¦Õqz†»ëq `? ?€{MáÛ GÓÀËduÀhdì-·pûwPYYɱ£GùþË/¹Êbiµæ¯›¤×Ö²~ýú?Ì8[övâÄ ¶mÝJII AÁÁ <˜=züGQ^:ÿ»ØìÛ·/ß}7‹Å‚››Ûy¿'»Ý΂‹ÉÏï€^4¡× ¯’™x•ÄçÉÿ”£×Ð OšØ%›t…‰ ]‡Âëxó½Ñp™ŠB|ïÞ¼ùøã˜ÝÝ9’žÎŠåËéqä9­=:VU±3%…q7Ýôo—\TVV²aò³³q3™èÕ»7W]uÕ¥Žmô„††òöÛo5—UþÝTÊŸ~ú™#GªQÕ›$#º0Ó¤Hëw}åô²O§‡¶ ™ÁïÃtМ8ÐIÿné9@Mh(S¦L¡ëå—“{êëÖ®E]¿žd!šŸÕè«ilY¿žŠŠ ÂÂÂÎûÚ­V+;wîäÀ8:ÅÅqåUWÑ¡C‡v™]ô£ÑxA=‰999TVÚΈ‘Ù«§·‰»{:¡¡aäåUpºØ <¶b±át⽄U—‡4H#8@æû!ÁÁͽðéééü2oK«gu<¥yœäùΑ#GxâÑG©:xŸ†,,LLä¥×^côèÑ—²õ6|.d^·ÓédïÞ#è­@¦3.ßÎ’A”ãë»ÿ0JJ q:ëÐEpQÀaüÙƒp2–ŽLÇ›mTáÄ\!«ÒÛ›¡Ã†OQQéééø9Òª‘È g}}}«Óg;EEE¼õÖ[üþ¯áW^ŽSQø!.Ž{}”Ǽ]0þ« ýnŽ9‚ÅÚ™#v„d‰®C¯€ûÓ¹ó0 6`³YЅĽB ¬%’BÊЕ ¾œƒ4TZß›äAƒ1b Oë«Ù¸óôT§“†††ëÐgϞͼO?ÅœŸQUi bÕ˜1¼?sæ¿ýÛ6éÐëêꨩ©Áf³a0ð÷÷'00°™zp8”——ÓØØˆÙl&44´]- ¸“™™É×_KaáIIe¶Ì–lòèfœÎãüòË¿ÈÈÈàûï`ûŽß°(ÁF¤ãat±F7žž¸¾…:¸\UÙøóÏT¾ò ¾¾¾âæíÍɪ*º ×Ó-òË^½zýÛóïO? ))Ü i˜µ©‰CûöñÜã3hß¾ÿñv²?ûØívª««ihh@Ó4ÜÝÝéСCsf'„ ¶¶–ªª*4M#00ÀÀÀ‹ŠÒ­¯¯ç“O>%+ë§'Ä)-2׿¥@ «5‹×^»ÄÄ^|ûí7¬_¿›Š ³–‰‰g°3ˆ[y˜NEA§4× „í%9™™ìJI¡C‡˜L&BÃÂÈP.UX;g00.>þ¼¶Àf³ñýüùüþõ׌¶Ùð–ßYÅÉ“|ûÉ'tŽç¦›nj—§ {µµµØl6L&Só $þìv;%%%Øl6ÜÝÝ oË”.ô8–/_Ά ¿£i^gÁ¦½†î¡'Ò½–ÀÜ/sF£¸¸8úöíË„ xùíòÉÁY˜¼l¸¯†>­åI—£káÓÑ…•<ûì³DDDè¸ÑÈéøkdäšÜÜp:hšvN'uðàArŽåfMk&°L@Mãpv6»wïfÔ¨Qíò»ÙµksæÌ¡®®EQhjjb̘1<ðÀøùù‘››ËŒ3ÈÍÍÅh4È“O>IRRÒEáÔ_=—wÞùUí‚N™‡I SEïâ8.ÍÙQ ³Yl®¹æj†ÂêÕkxóÍ/Ù¿ï9DÒ—'H £ìÞp)@2ÐŽj«ªøâ‹/HÙµ /OO8ÀQ77,v;id¬îî8Ç9©óªª*¶oÞLO»¿¦>L‚òòعs'×]w]»ÌÒëêê˜1c!Ð4°°0žxâ úôéCSS‹/fáÂ…xxx`³Ù?~<<ðÀESÛ·oS¦ü“ÂBô‰ÿYèÕn} ‘Ž*°¸EÙCCÃ-ôèё޽{3qâm¼òÊ+¬_wFIÔ{µ`)‡ 䣄`ŲeÔÔÖHÖñãT¬’¶¯N>s=0 8˜ÊÊÊóîX²d ‘MM­¶#=œN–-^ÌËÓ§·»ïÊÔ§OFŽITTV«•Ù³góñÇÓ»wo ùä“O˜8q"cÇŽ%33“gŸ}–Aƒµ+'a·ÛillÄ××÷“„²²²Xµjp“¼eºz8@æ#VIúä;Q/®¼²_óHR£ÉHyB™n[{ÝW»(òÑÊÑ+EšFÝ‚Ž* }ô*“;0N^Ù ¯NŸNØìÙôìÙó¬ï­±±¡ªœ9,ÔC‚û|»sÛú âoûñññxzz’™™Éã?N§N¸ñÆùæ›o())áí·ßÆÓÓ“O>ù„Ù³g3cÆŒ³nl‹Ç)©A?8¶¢¢"Ö®]G}}º^czZ°$&ËÑç ˜dàé$>Þ£+&“ 7·84í5 äadAd ´,£Hª¡kŽ­^;w’¹s'{ŠÂ5Bp]v7}fBÕÊÏ_}E¿þý¹ùæ›ÏúÞTUÅÞØH ¢ ˆÖÏé-Ù¥öÚši2™2dãÇ'22’ªª*ÞyçfÍšÅ7ß|Cjj*³fÍâµ×^£wïÞ¤¥¥ñòË/Ó³gOÜ®EQðññù“òÓO¿PTäƒÞAq]$]q•tcѵÞ€ƒúú{9u âãÁ××7“!™Õgò=>2Á)Š… *+‹Â¬,ÖuŠÂHéìÓÐuò¥Cß³y3Ÿþ9/¾øâ9Y¤Úš¼ÎÒ»î%±©ªj»sè†ë¯¿žääd¢¢¢HHH`È!äååaµZ9|ø07ÜpQQQ\uÕU 6ŒE‹µ9ZrÉ’%ÜpÃ-ôé3ˆÛo¿› 6PZZÊÌ™œ<œ¾}3|øHæÍ›OCCC+‡îp¸I3ÕA:ö$ôö´RôOW •t²9r8ìÞ¿››ß½™E[àµÆÆ˜b:øZö™Ûe.UŽ®v$#ÑQ@!¨‚$ô9JM2„“÷ÕìÝËokÖœshB||<~~ärºcÞµ$Óf6Ÿ3h§{÷îŒ5ŠÎ;ÉðáÃñ÷÷—ß™ƒ•+W2nÜ8IHHàæ›o&==ýœ“ÿŒ£ª*{÷îåî»ï#)i0W^9ŠùóçS^^κuë6ì’’‘˜8€W_}ÒÒÒæïºªªŠòò:% =L¼FÏé^£$AyЈټ™þý{âããC^^>Ï=7—I“Ê8”–ÏU<ÊdPŒhÕý®¢‹5«Ðõ½$?5½Ó!áè o¡è}ÀèÚù¨Š ¾>c9NËãííMTBE´î¸·EîîÄÅÆžun}{8ÞÞÞŒ3†þýûI=8p GŽAÓ4¶oßNddds²4fÌâââÚT+ª¦iœ:uŠéÓ_eÀ€¡ t/¼ð2§N"--{¾}‡”4ˆ»ï¾—ýû÷·²C‡EˆP™>ô•λ£´@tAqG閷лw>>VÖ®­å»ï¾cü7²ü—_ˆ±X¸NÚ½ò³Ø±ôÖI_‰ÍÒJû QFÈÛ³åïDƒl66­^ÍÑó Cêß¿?Fc«Ž{ÈUºtïÞ.E›¦–Ôdcc#»wï¦S§N˜L&rss¹ì²Ëš÷ zöìÉüùó±Ûím‚v·ÛíÌœùï¿?ÆÆx #‡±jÕ$FŽÀŠ" !z“›[ÌÓ©¬¬â™gž 66£Ñ‰ªÖÈÑ]!\-)£0tñÆz ÕÕÞüýïŸðñìÏpô²â *Å5t+Ñç™%Áä&Í­ÈPʽ¼p·X%Ds½Æ]Òÿ’Qåe2¾-@¯·›€ ›¹ïûlŸwLL “y„/^}•úº:‚äcex{së¤I$$$´[‡~&m~èÐ!ªªªèÖ­EEEØl6š3‡ÐÐP4M£ºººM¼~!ëׯgÒ¤)”–†¡iQ€•ÔÔ7èÛw.ÇQQÑU޵ðÖ[KÈÎÎá½÷Þ¥C‡äÕ2àt—”f¨4}è›~ìØíá|óÍï¬X± ws7Ê Ã,"x•¡”SŽ>¬xºÈÈ+ {M&œB0Ôéd@ j99ÇÙ³ç~~ûígâããèÚµ3ëÖí– ­Láa6™[ÿŽ.̼Œ´´Ze ÏýÝ‹Pç“D9¬øqZ™%mg’tÌ5Àn77šœNºÁ•œž°$YÍl\öF/iÖÉû|…ÀQVÖ¼ýlçŽ;ïdáüùlܵ‹nN'n@¾¢PÖ±#O›ÖþUîK—.eçμøâ‹øøø`µZqwwo\OOOJk#=//Ï>û‹%YfÑ„аX‚X¾|BŒ‘6ÍæÅgŸÍåÞ{ÿFHH]»veĈÞlذKVlü¥ Û&Áé”TRŒ¤Þý@i¤ àwÜýó¸a‡Bz© PÂ7NFšG%Àìf3¦ÐP‚<<ðÌÉivæguòÙ -~®5› >ïÒzƒÑÈú•+9˜M`Tw^w÷ÝÿE3{;33“—^z‰qãÆ1tèP P¥U­SÌnX­Ö6ñšËËËùâ‹/)-턦 ”߬Àb cÇŽUÑ}„°"ƒÓV¯Þ„ »¹ñƉŒŒdĈ+IIùÆFÉ 9ÑWõZdØ·QfCcd6ä ÜíŠozq3³Ð(•+Xôü~ºpÈ(¡¡ø{y!ÊÊèâtž›*­%OÕŠÂegÙ¾ÕL­+ ÆçÍ™3ùî›o8rð ³™¤aÃxøá‡Ûu°yfR1wî\ŠŠŠx÷ÝwQU›ÍF@@@+§àéé‰ÃáÀét¶ ‡¾dɶn-@ÓFsºPØ…C‡–Ëo{<®%SBDýsæÌåÝwß`üø›Y´h G¢»üû“’~ ‘VðZ\£k|&ñ9^Ä;¬äÉg6ʿ؇>?Ρ(8}|ð Ç7?ŸÎMMg-eº²y‡üÙõi[c`ày·5úøøðñçŸóõW_‘¶c¶†âúôaò]w1dÈöY rQ/«V­âÓO?å©§žâꫯÆ`0àííÝ\KhIo»¹¹•ލ®®æùçŸoþ9$$„ &œwÍàÿëIKK£¢B“×å ÑMÆ{æV"Žòò]œ8q‚ÜÝÝ™1ã ¦M›ÎÖ­?!„B4"D=Ng74mŸ4}ƒe–„þ˜Ž8R'`ÌZ‹·H¡ Ó;ØbÑ—°UU"««1ª*eBP,ãXE^2G% }ä¥P)³öc’n²ÇÆrÕˆçyùøøðè£2qâDðôô$$$¤ÍЙeee,]º”¼¼¼ÙAöÿýÉ“'™>}:AAAüãÿÀÇÇ„XZ´û9ìv{3£tæ™?>)))Í?_}õÕÿ«ZÜÜ\N*FÓ’[`SÂâ2‰––.ÔŸÊJoNœ8ÓéÄÝ݇~„ªª*>ÿüG4ÍC:ôZœÎP4-!JÐûÑ;Ÿæ}ÌÝaèJŒZ9NÔrTè% ƒÌ„¥™Ý ××ã^_O‰ÍÖ¼xÕ e9ºŠÄOü'$™#³§4Eáíûï?ïg`6›=z4ýúõ£¶¦Å` $$¤Mu^¬[·ŽM›65ÿ|âĉ ®s«ªÊ¼yóX¶l/¾ø"}úôÁf³áééICCC+Šº¡¡ww÷³:óìììV¶3::š &ü¯¶Nmذ U¥µêÇ kL?#ßs:³sgJ³H÷Š+®àÍ7§òÖ[Q\|E1 Dš¦àt–"Ä1‰Ë4O`O܃ˆÍ 契.ÒÖˬ:}KA50ðlj"¨¨Ån']Pì.±Ù(³óDéÌ÷IœVI†3ÝhdPÿþ\~ùåçý zöìÉëo¾Iee%N§S²bAm&:uêK—.m5ùî|­Ì&—óÓO?eÚ´iŒ?¾ùÎøøxV¬XAmm-AAA8NöíÛGïÞ½Ï ÊÀÀ@ÞyçÿÓÈX¯ó þ8]kñ¯å±b0èÑr~~> ²xñ÷¤§§³råJE!??ŸC‡Ò©­­%7×—VëPpØ _~c}™F¿€ƒ8ywtÐת*IÒ鬓”gÉäÈX6Q:ÿlooj›šØ¬ªxK°ÿ–1›Ímvw}XX“'OnuÛÞ½{/Ø™O™2…ððp^ýõf±[dd$~~~¤§§3lØ0 1›ÍçÄÝ{ï½ÜtÓMÿ'ïYUUrss)//;6ÏÔE¨z@RQQAMM F£‘—_~™I“&±zõjJKKq:ìØ±“ºº2Nœ0 i­ƒSˆíþœ¼2‹PhÇa«ªãÎ,ƒÆã’·mµb–¹Ôvy_„tØÛeÁ)8êæF…Á@…ÍÖ<‘ÛäéIIq1MMMçUª+ŠBhh(¡¡¡mŸ£FjØýúë¯pÖ××3wî\~üñGf̘ÁðáÛéõN:±jÕ*&“ »ÝNFFÆ ;+ÛÖ¹sçÿSÛY^^N~~® ÑÄ¥óߣ?())AÁM7ãÆDznÝ:ÒÒÒpwwg×®=””“ŸßHccØé`6¢’öÃú8êқǹîq•hÐ5D{P!çpìpP‰>ÚkzÇ]çÚf°Ìdâ”шf³±Y†Év£Õá ¢¢__ßsÒ犢àçç÷o‡#ýY'66–©S§¶ºmÇŽçvè?ÿü3Ÿ~ú)7Üp}ûö%??¿Ù`&&&âããÃÂ… ™8q"dÏž=|õÕWmâÍnذï¾[,a…^é3Nå &“CFŠÑòk¶èÖ-†uëÖ±uëÊËëð÷÷døðÁòbÞ@ff#B@B‚;þþä‘-WV´Œd«ð`]8Äq^!€ö°œÃ4!Ðåtq2ÛvAi¸$ò7±«*²&´Ï` S|¾¾¾pë­·²lÙ2zö쉯¯/‹-¢ÿþ<*÷ó0kÖWW W¢‡ÉŒG÷ŒÆ"@CUm-òŽââ ¨¨˜gŸJNN&“Bbâåôí›Äš5IIÉ¥©É@X˜BtG_Ü”ø qqqäçç£( QQQ >œü‘Å‹3hÐ RRR(++ãúë¯ÿÓ_{cc#ï¿ÿ>99Òywåôâ”:%°#„kÜ5èÒÉ#ôêu7/¾ød i11\sͶmÛβe{¨«S0›UzöôÅìfÂB‚dð²Â §| Ї,8íD_ä-³õ àNN,BM³Xª(˜… Ð…¾¾ÄwîŒwA}**H/ Ông÷Ï?óUTÿœ>ý¢›rN‡>gÎ222°X,¬\¹²ùŽ•+WÇóÏ?ÏÇÌòåËñòòbòäÉ 0àOáÕÕÕ,\¸ÂÂ(™wì@—ì„x{ñÜsSùì³ï(++Q”2<‰‰éÊÛoÏ¡¶¶B$ (õìØ±!Šhjº !ô™ØÙ'–/j¹…L6¢2–Óíl[PÉÇÄ¢ÐÈb*6ÌtçG.ÃI zE³%Qî)©øò  ®7ŽÔ­[qsscüСdeg³oÏnr8š/!OtÈ:HuïÞý/5õmóæÍ¬]»///¦L™Ò|û=÷ÜÔ)S¸çž{¨ªªâ…^@Ó4’’’xì±ÇðõõýÓ_ûêÕ«Ù¹³!®—äv̆êñöÎáÎ;oæàÁtRS—á(Š?¿JúöMfá‘“Ó!ºRRR ø™êê.1 pRVú;ŽÒT†[8€Ú,r©í¦4ps‡##@«‚Ðj=ÀÌ—™xKÒÛ Éјz FyA5å匼â ,6»vî$¶¡¡ÙñÄ Ay}=‹/æÆoüKíJ¯©©aþüùdeeñå—_òÍ7ßàææFJJ ‰‰‰üóŸÿäÃ?döìÙøúúòÒK/µ‰®(—ƒ IDAT“}ûöñË/«Ñ´1’¬^&“! 8Áˆ‰‰‰á‡VátFƒ¡ ®dÍšõ9¢âtöŒìÚ•ËÚµ¯Q_ï‰Ó©‡ˆ6ÛAŽíÛ@"p‚F*•ÝÐÅþu°1´ªpp]ï3]Ô¶Ó÷]EªôÊ~ãÆÑÔØHaV=££éÖ»7«W­Â³ºšþB4 z45±~éRž|òÉ¿ŽCß°aÃY[¢\´ÐðáÃ:t(š¦5/Vh N¥¬¬ŒÜÜšEVÖeèÚ_£Äg$UU?K4ø`àgŒc(‚DÀ‡rRYL4¡¢bçvÈÞ‚nk ¦Ü…þJªÐeu®«¹(±Xhܼ™¦ª*L?~œâ¼< Ñzµ„j%åå444´Û‰„ÿ“NJJÊ9ÛIÝÜÜ3f £GFѦlçñã™”–º¡ëŽ"Ð;Y¸æS¾ûîb¹çž¬_¿MÓ¸öÚ‘ìÞ½‡¥K÷ ª9­MŠ¢ºÚ5‹=؋ۉA—ÂõÆÁÏáë¨ì†#Z]>]„ ÷ ¹¤cå«©Eá•#y×§U TAÕ¾}Ô"³k—-£¦ €9%³%6}ª‚ìÇ_—¦ qƒ¡ÍMÞòôôÄËËS’4Ðå>Q2ÖÛHDDDó,ß'žxƒÁ€‚÷Þ{òòù»-OtiZPF¥TKP¸#øáäN<¥aË“Di,*ÖRƒ­¼L#Þ”3‡ ªØ)ó&7ôšúA!./'Y|êÚZR¶m#H:üÒä’ ¨3›éܹó_nKÕ…à®­~&!!Aè•iU‰#ä=™xzâææFSS÷Ýw_svðàA֯߆.rky]eðY dáÇ1üÐñã$!ðC° “Yò¾xî‚j?Øx%\· ŠÊt¾`z÷°¯|äí€GCý‰‚&«•´pA¤$]-TÄvìxN!âÅ|þíT¥Mà~~¾xz:¨«SeØGþ+ÆËk=îîîX,µ˜›^WWÇ[o½ªFq¦ÐXç"exr˜šš•ë Ñ_P_^¹N¡[lM2D‘Òî¥H–ÈU½ß.¯œ¸ ¥zÚ¯°®2ˆ:yäùrNBz‰Ò½6«…ð„<þBK€Úír–ððpú÷À¶m˰Z#qÍR”üüJÙ¾})))FúöíÇ“O>‡ÆjuM¤n)ä±Ki¸QÊåö¢wPv–€É@et’€9Ž.~› QÁ&~ÃÉ~þ‰‚/Wó.™ÔsLÂÞ&A>Lö¢#¹3úfìôz’— 7lòçÈädxiÉJ;:×]7ŠÙ³—`±ä#DŒD@Fã>,~øal6qqxè¡éׯû÷狀º‚ÖcX\Ç ˜PÈ%F^¸.lºoɰÁ„^‡Üì2ÕÔl‡mWš«Á´ úYu´¯oakзS÷¢¹Tä/?KLž”†5IþþQà¤Ó[%—NÛ?$:Ú‡²²ÃÑGºR;AD„™iÓ¦ÑÔÔ„¯¯·Þz+wß}äçÒºPã:zϹB=¨ ½-Ò t†ãá¶®°ž.XîB/)Ž•h?&ñê'x(ú’U§tþVôÑÄÉB4;í!¨ãt€°}ÀŒ¯ä ö»»sßwxÉ¡·õc6›yæ™§9u*µk¥®.ƒAÅÛ»«µ‘­[}PÕDÀÉæÍ«Ù±c~øuuµá†^sO–18(ݶ 3 =l—ÏwX:Ùa-r§HIe£ÏðòG0Œ­¬b* ¯‘Ï Æð" UhèjáLix[esò1+Ðå}‹å%¦* #Fæ·ß>ç.âK§mžÁƒóÚkOòÉ'_QRrM3âéY†¢Ô²¿U‚13زåAfÍzG R…Äb˜4žBæÆÎô™×]¥ó“ÆÎŠ>2Ø·6‘†ÒÄ4€Ø +®Û ôôlБo“AÁ ¬¶ä<¤qÍ–Fs«|^ƒ¢Íûï½×¬î¾tÚljå£fòÀP\|Ц&_<<ª1J(.6““cCˆH¥’õë_¦¤¤˜N:¡w8%Ñ%‘R‹®9·•¨Òñfë‚ h¨Î(;-Û’…üE:÷HôS¾´}¤eî'q­Ê„'ªEîr^±è‚:OôF»ƒòUyðÈ“O2ù±ÇþRýÚõúÔàà`¾új6+W®äСtÌf7ÒÓÓùé§ã1×\!›­3{÷®bÉ’%„‡‡c2Eàt¢7B„Èܤ}ðe*5Fp4b;¤I½þ "ÔU…:Ö‚|ê€@p…©dñ:0ƒá¼E'1!h”ÔûŒøÖ"ë2taÈQÀâãÃÜï¾kªíKç?;žžž<þød®¸b¿ÿ¾…¦&+uuuüðà Tu®ÂŠªÆpâD |ðwÞ9“)§S ï@‹ùK‰4“M@§ôDŸŒp]àæÚí:éˆ3$¾ü€ FðÚÕ×ëB¹ØÍP¯gß.ª³FþnKÞªAÞÖ]þœ {{3mútÆßzë_®ÔÞ¢( <˜+–²fÍŠ‹Kðòòâûï—’•ÕIÚABt¦±1‚9sæóÌ3àNAAºl-Tº×ÉßÄ"H§#§€áî°ª4ÖAÀˆ§ëአW½$v#¥]õG/”ŽÜGr¨4HçnlÁ*ÕJ†³·ü¿PÚãÑãÆ1ý•Wþr¬f»ß‡îííÍí·ßÎí·ßަi\}õõ2nké2ݱZ;±páBzôè‰OµµQá^ûiD_;ÑSºîMdQ&¬§RãYž¿áŒ¨±Dþ®Á|áx‘“⬼IÓ8n.¢ÖdâÅÂPùáÛÑû0döï+ƒˆH`“ÔÕÕ]rèí˜E2dHóÔ©W^yUî<ãŒaëÖµxxˆ‰ 'G“ƒgJ¥y 9 J …¬Eßê/˵¨’3œ±Ö"ã®l lQ(eâ·!®Ø®;~·à`vWVâ'ñè”WGp›4áÈç]ïtb±Xλ ðÒiÛ§K—.téÒÐt½þú·-2oš¹žÜÜ&¾ûn>¾(Š«„$¤åŠ@ŸñÆÉ6¶a%* ´H0þª¦;è3 œvNWã5iyê½½Yo±ÐS¶ eU^^X…èÆÆf|™dNûËlÞ ƒNw ±¶¶YŒxÉ¡·ã£¼œmXB^^ %%ûðóøúæPWgEQlxzºc³ýŽªî•±a].¿œ“99Øíežä¢ÝC䣗Jƒ—,ÿª H•¡Aƒªr*¸†°ˆE”–ý[ëæóàcHNîÈÇï½ËÏGâãpPi0Pe±0AŠä\ÙUàëp°{÷î ‘©ª*,Z¸=Û·ãÄu7ÜÀ cÇþ%Kmòb3™P”³aSÃfs²jÕ~› 2Q]]ˆú´8U=ŠÃqÊeîðñóÃäëËÞÂBÌÒ0ã´¾C‘¹|ªtø&‰Í½2ÔM.‡”]î”ñágg!GC~ÕH>zôQ>š9“U[¶àoµb5È·Ûîp4ÏHD>fLSéééX,– ÊQ]]ÍŠåËÙ´n uu ½új&LœHdd䥀 ØMÝ÷©ÚØlNvïÎÂݽ‰èè  ª“I`2Ua³-Fw ³Y%0:ŠãɘN€©P$÷qºÀéDW²ÛÑëå è¤=è{ÏwY­{÷&MîšKH`ö”)¤:Ä‚¯¾"­¶„ PU ´Ù$ŸàJÝôJ;32¨¨¨¸ I{MMMìÝ»—æÍ£²´”èN¸oÒ$zöìÙî´!•CW…ë®ÁÖ­ßb·Ç¢&’ØÙx`·RQ!šsi£Ñƒ¤¤^dddP]]„Iѳä“ÇŽˆ®-6ËßÎ3ùIb4}Ìk¹çnIm6I0]XU•»·ÞŒÙΔ)ElÜxqqy¼úö NžÌ¢¼¬ ƒÑȬ×_ǧ¾¾Õ{ÑUˆ šù,„à`ZÏ>þ8{ö­iœRž[°€}S§òÒK/µÙIH¥3tè:tX@nn¡ä` ’÷9 4¡i~TVº4çVŒF_ºv¥ªª‚‚ü|PüGF}]Ý$£S œRV˜Ltv8ð„æ gNôÂ’ ½7w0à)¥Y Ä›î"óæL<0€.µ]HKKãÁG¡þî»É:qÅ``ÕòåxïÜÙjý)òqM&Ó9ãššž›:•ß~K,à!_­YÃÚ+øà³ÏèÖ­Û%püÉ'$$„ÁƒغõBøK«§¢K‹"œ¦¦rsšsë°Ð0:„‡røða4MÃ]€›S£0¼€0't>NUoAÛc0P„iUõ6t݆kdöh™ï+šF‘§'¿,[Æ‘#GÈÎÎ&//^½{3`î\Ž=Š‚û÷s|áBÜÎ‚Í í0°Z­Ìýúk>}í5B«ªðÑ4v( «–,áï¿f̘1í*Ë¿èú„ ·²sçnV®Ü€Ý%á’-ó–±2šÌiRÁYIÓŽ$I3š)NÏV¿š—©Ôë„ Óhä°x A/ICnF_7*#N:áï!k×®åÄÑ£(ÙiX›žåïSúÓ½÷J>øp<“&MÂb±°ê—_ÈØµ‹B4ÏËV>> 4è‚"Ìï¾ý–Æ={¸^Ót½¿t–ÏŸÏrë„ —¬ÖŸ|’““yè¡{yõÕ/p8bdÉ'}jÿPô!À®|z#ŠZEýÁ4â\†. Ð4,’btÕ mÀ^!HQŽ) F!ˆ@_^¹Y²J±›®™t€±Âˆ¡@aŽ÷l‚@Dš‚!6žÿš2…ÇŸxƒÁ@}}=+SS‰³Ùš)Ó Èߟ;’’.h_ÀŠåËÙºt)c…hžþÕMUÙ¸e óçÍãíÿѧ—ÎÙOpp0O=õ(EE¯“•µ!‚e¨˜.Ñ6]IQ#S˜“8‹‹ñ).`(pÊ` ^hxu{w¸n Ä5žîÚh0'åƒ×¢wf€.‚ ç´ 38X^ÎܹsY±p!Æìl BÐÌÐ[náÍwÞ!88˜mÛ¶qçâÅ;\æ²…ÀE¡ÿ A^€º=';›yŸ|BÏŠ zHÛ­ ÁþÒR>™5‹^½zÕn¾Ç‹Šër8¤¦î£¢¢/¯ e‡tÜUèuH×X1sqX…¾gm´ü¿XÀ–C7ü€žš†Ñéd¤ÄHc-Mpˆ  ÍÄ(ÔØllÙ¸‘ÆM›ÕTÆ ¼Ã@ç&Žï»…—_zââbŒF#ÏN›Fvx8kM&›ŒFvùùñôË/Ó±cÇ rè»×¯'ÁåÌå ‚+*سgÏ9`\:ÿ7GUUŽ;FVV¾¾vL¦Ti«%Šz¡WMyƒ¡š†W£…>€Ø(]¿¹ÍØ0Ùít‚+ä}a·~ò\Z;zî¶­[©[u˜±»ÀØ ¢º ²NðÙo°ÿ~Eá¶Ûn#dÐ Vxxª(ìV~óöæŠ[naìØ±ÿ6 BðûæÍtlhhvæ®ë)^ÓØ´bÅ%p´S^^ÎþýiaÅÃã8º8_¢m8zÜ€Þ£Ó0r *W¢kÆj>PÜúeAlL²¤-q:ñWU®—ÉŽ·´—Fy¿o3Á¯—2KKJXôÉ'\ž•ÅH! \]YɶE‹øzÎl6‰‰‰Üòàƒ¬÷ôd›ÁÀ>`µ›j<÷üóÄÏÌÄ’M\ Ûm.×4*²³9qâDû¢Ü…TTTŸŸOUU^^^$&&¶ŸYPPм*$$„ÄÄÄó®óü3ŽÕjåƒ>àå—?.GˆA(Š+ûqB«* ‹œðÅŒw©ñ5¢‹*ŽHƒx&ÑâA¬4H»%(£Ð!$sº(Õd"²{wŠÒÒ"oר&‘w1²”ƒi¥<òðÃx¸¹¡©*׌G]M õ ôìØ‘×n¿!C†\Ý#Îs¬¾T„@UÕv+q:;vŒêêjéÑ£G« §¾¾žÌÌL*++ñöö¦K—.„„„´©÷ªª*¿þú+Ï<ó ùùÞ1@f?’-ò¡õ°€ (¸Ë65W«ÚQô’é,hö@b%9©lôΉÝÒ`¹ø*£K§N8¹ÒÒDìqð°y($•€µ¤„éÓ§„Ãf#¾kWBÃñZ­x¹¹ñÂØ±ÜvÛm” !táÜ9² g;žâU]]Mnn.UUU˜L&[e…¥¥¥;v »ÝNPP=zôh“-T999Ü~û=¤¦Ö¢«wb%68­5oy¼Ì-ph€Ž=à¤tO¥Eþ`”¶³› ,³dvÞM¦[»Ðõ&éÌÓüüèÝ«êŽ$Hœ8döíÓØÈWsæ~ø0–º:|y×]TWW£ª*·À=÷Þ{A‰ëÚä,ÉŽMkµi´]8t§ÓÉ/¿üÂâÅ‹©««Ã`00wîÜæ™Ãééé¼óÎ;Í»§sssùïÿþon»í¶6e4wíÚÅœ9 b,®.\}ßôv ™“´ž×”ÓõFƽîÓ§Eäè”·¹Ë1|®­§€2E!ð £ïµ×2j̦Ý}wsfTìÀIÇ©«ƒœ+ˆ–¥‚f3Ýn¸¯æÌ!""â?zïîô»ê*Žœ©ëäÝwßåÁôu”³gÏ&%%…°°0ÊËˉˆˆàå—_&<<¼Í¼‡ÚÚZ>üp6yy—I¦ÈUX‰~àô¸–âÅ<¼­z5\Ùxú”–}½Ù£¡èÊ‘Áõ®YÙ¿ ÏÂ6¹»啽zõjb§ÓIZZ?þ¸˜’8=Réjãe¸½rx9®– lj}¸oÒ¤v‰KƒÁÀ!Cèܹ3ÕÕÕ<ñÄÍ÷9–,YBaa!Ÿ}ö¾¾¾lذwÞy‡ÁƒÓ§OŸ6ñ***ؾ};7nÄnïzÚB¥S/G_ü|DJ°ª›Ë{B”d°”Cd¤iº 5Il–ÈG)Ao G/ožv( ão»Iÿõ_¸»»JLl,_|ñ©óçc‘Œ”kÍô~tÑqOÀMœ@Fq1¿þ:wÞyç9W'ŸëÄ'$0þøöý÷©®¯'(T²|}yïá‡/8Óo3Ý`0CLL ­;­KKKÉÈÈàoû[ó®í»ï¾›gžy†mÛ¶ý©]Ó4öïßÏSOý;#„ ]ô‹ÌOü¤ëT¤c(ÉÇ­@=aX ~—tŽ¿tÚÛ¼¼ŠŽ¦±ºš¬òrj5péx=e´¹ }Ħ— êÂÃyfÊî½÷ÞV¢Ýnç‘^à»·Þ¢´®ŽôZèjôZ}Ë|,ˆs:Ù¸fÍìÐEaذa,úåfþ9»÷ìÁÛË‹)7ÞÈÃÉGí&SªRƒW]ÅóӦѻwïV¯ñ–[ná·U«Øºu+‡ƒŽ22 ‹A]|£ëñRKKIMMmµ×þBŽ··7ÏO›F¿þýùâóÏÉ©ª"66–·ž|’äääv‡ËóÂÍf3f³™êêêV`mll¤´´ôO}áùùù¼úêìÚ¥"Ä]„UÒEÿ"ó˜8y[€Œé.ªP8J)\%£Ä2»)þvÇLyê)Þ{ï=R-bŒ¦57¿å$M´PÍf `Úpç]wýî1›Íü—Œ<—üø#n»w7‡g«Ì¨ÒPüOOBB|ø!‡EQÚœÎáÿïãããƒÕj¥©©I/¢45aµZ9yòäŸþÚ>ýt6óæmEUÇHn‘,Ñoèzói¢êЗ±„Êìçî¤Ðƒ:¡ë9òd†Óµf¾ÿ>{SSùhút’ív.—Æ­AæQÅè=½Û…è®]¹yÂ~衳âjäÈ‘¼òÎ;ÌýúkwîÄKZwí\ØüÀ§¯¯/S§Nå©§žB\`;f{=&“ ª««›Å¨555455QXXø§¾6!;o^yå#êë‡qºps\²DÇ%>#%òå¿j ˈ£–ŽgëB <<ùòþ«3 fêÓOsYf&ýeùÏ5<+MÚÐÀoH×Þx#<ò½zõúÃëŒŽŽæ­wßå믿fåO?R^ÞìÄUZ«¹5iŸÿ§eE777®¿þz®»î:f³¹Ý¤9ï'LŸ>}ø×¿þÅñãÇ)++cæÌ™ÍT÷Ÿy<ÄŽ9¨j?ôJ·ARBWH€zËŒü§»É}€h¡œ¶( ÞèB"èÚ½;/¼ø"ÑÑÑÔÔÔÐËélVæ*œnÿ±žÁÁLž:•/çÌáþ8§@($$„É“'óñ§Ÿâ4›qíy;"ù„–T.0â?Œ0ÏЋݙ$%%Q^^Ί+¨©©aݺuìØ±»Ýþ§¾®††.üMë'¿m£Äh²Ä Aš¶u’ “TûeÀe4ùc潜÷æ¾óι÷Ü{Ï!//•+WRRR‚þw^XRR¾}ûÈÌô©Ð.E…î…T|*\pl…6ùUèoc :©gär®K$4S€¢ŠàùžÏ3räH ‚Fcv敞6#uµTJhT-]Ê¢E‹j,:%•J‰ŠŠbÁ‚Œ?žÜŠîoe×C¸G7“%dnn Ž|H¥RlmmÿÔÙåär Ó§OÇ`00vìXär9=zô eË–¸»»W9¿  €7ß|Ó™1Âêa5AÈÏÏ£°°2di1n«0ž­€ÖÈdÛ°µýF@Ü‘JÓð÷ÏdÆŒ¥dfdp 6“ 0´[7&M™BóæÍÉÎÎF£ÑШšÞDBx×®|½y37®•qR(DDDð÷©SÙóé§´ÖhH¶Q¾ªÞÜtp Ã! {úéGÎÀegg³uëVRSSÍßý:LYBBB˜7o+V¬`ݺu£ iã IDATVQä¤*ëÖ­ãĉæÏ½zõªsˆ®6äääPT¤A~½³BIùäŠ ‰D²…"£ñ Cs$’"\\nðâ‹ÿÀßÏ—­›6Q\\L@` 3Þxƒèèhär9ùùæ n÷b…„ðÑâÅôìÙ{{ûZ±ÐÐP^xþyæ^¿N`J ÎÀ6þSŠ\Ž<"‚©Ó¦ÕjoïŸØØXéÏÎíÛ·Ùºu+¹¹¹æï ëçÐ+ô½÷Þã_ÿú™™™|ÿý÷DEEU9·rÓoD"ÁÃÃww¹¹,sW¸H;À “© ƒ·ÁÆFNQQžžA<ýôLÀÜÿü§<ËÑ=5sÝÜÜhÑ¢—¦©^on¤R C"aT¿~u^‰.“ɘ1s&NÎÎüKÓ¬,l5Âà鉳³3ÿˆŠbÔ¨QVÿxzzV™Ó>sæŒUB›ƒ¦oß¾!‘H˜1c111ÕžÿÜsÏ1tèЇò{ÝÜ).ÎÄ2o{埀#‚ÌcåÓ©S$©©)899óÄ3>üi5jĤɓ1 UB€á|ggGFcŽ À ‰„Àà`:tèP+gn1R>­NÇ×_}…mZþr94kvvtkÒ„ &ðXXØ#9¢îÛ·¯EÇnÇŽ îp:;;ó¯ý‹—^z ƒÁ@AA¤[·nÕžôPl§““¾¾~H¥—0™‚ï‰ñè)ŸØqì‘HšÓ¬Y1½zu$;;A ȤI/ãïïOÌžÝú,ÃÛ ç¥ö/!—ÊÍl‰³3w22Ì9×ÊgèMÎÎôíÛ·ÎY+X¼lŸ~öÉ—/¨Õbçë‹ÎÙ™ÖÞÞÌ|òIbz÷~$ó¶0cÆ ‹ïŽ?~‡žMjj* ¨T*._¾Œ^¯',,Œääd233ñðð 55•Ï>ûŒ#Fù»þÐððv´oß”³R1:/ßVéììÌŒ3pqq1Øär9z£žUçWájïÊè°ÑfgåëxÆŒǧo¿M{ÀKÌuŠL&v|÷¯LZ'}’J¥tîÒ…à–-IIIA¯×ãé鉣£#ÎÎΩò¨µ ¹9r„ÿþ÷¿¨T*t:}ô>>>lܸ‘¢¢"¾øâ nݺ…››ýû÷gܸqµJ*ñ[âáá··G…‘L¯•k(_óø8 G"¹CëÖö·ÄÅÅŬ˜µ!22’ϾúŠi“&±ýòel)ŸMzF¸vàS&Mbõš54nܸN÷­T* 5¯–èõzÞxã òóó)--eçÎìÛ·Y³fѳgOŽ;ÆÏ?ÿŒ ´oßž>ø€Ö­[ÿî÷ÙXNùòÉÊœín”oرòËo2dÈ”JeöÍûúúòÑÇó¶BÁÎmÛ°5q¢<“\ab"3&MbÝÖ­DÔ±Ó-•J øÓ®<ØüòË/üûßÿF¥R!•JY¶lvvvìÙ³•JŦM›¸rå ...ÄÄÄðÜsÏáààð»Þ³D"!88ww[rsR¾BW¡£=+:›eH¥7éÔ) »iL¸u€½7öò铟âfçV%j6å•W0 üwÁ¤j5JÊçЩT¬úðC”J%ÿ¬ÇžñÆ×ÙÞþ%úˆ#QC®ï:°nݺ?Ü+ üý› P4C§‹ |‘Ñ•ŠŸt(¡Q£›¼üò´k×¶Îò¥R)Hu:zH$„ܳÈÃß``ûÉ“ìß¿ŸQ£F‰ZôbkkKlllÇgÏžÍìÙ³ÿ€¡²æ(•>”•u¬0˜—(_|”¤"—'òÔS>|x½Œ²¿¿?R¹œ0A ÿ¿ No4Rpû6ßlØPg‡.R7bbbjœÞqsscåÊ•Èûöõõ­ØzØ®B'¯UD7K€ËH¥©tìhÏøñã« ‚rÕ¹|sùž yŠÇ<«V¾½½=M›5ÃC«¥GE¼´2öhÊÉáûï¿gÐàÁ4mÚTT"+ó§Žñ<oou…2FPžª%“ò G‡>¼ãdz˜¯ eeeä&'ã}3§âp,**¯€%"R -ZÓ¶¢sÙ´B7)ß½û3íÛ{ñïÏ©wŽ€’’2îÞ¥YEþ~é=ºÙ¸‘ >‘jñññaРAH¥¿P¾(¦b }ˆÅÁ!™Y³Þ"*ªj‡P!S0¸Õ`ž {…¬zÝ5™L$%%ÑÈhÄãWNÆS"¡$/Ïb‘—ˆèÐò°ø¼‹£ã $’¯(oæ"•:áççÏŒ¯×iqЯ±‘ËqpsCó«ï€ÖÎî‘\ñ+b7nÌ[o½NÇŽ¶Èd_Û+FBŽxz6f„ ´lÙ²Þòíííqtt¤@"±ÈuhT u\´)ò×A&“1uêT z …â;`C…3°±Q2|øÓôíÛ·ÚEf®JWž}š¦Î5®Ë-{ –JùõR•  °·ÿݧUþÔ›•år9#Gþ __>þøcRRR€ò9¢éÓ_#88¸AòÝÜÝ0v,?/_޲¬ WÊ÷Ž_“HhÁ½z‰$R}O¹"5èÖ­™7o>çÏŸC«ÕÓ¸±/¾ø"Ï<óLƒrØÚÚòÜØ±¼}ìî……x å‹ã²ÝÝywìXñ!ˆÔˆ³³3ëÖ­eõêÕìܹ“üüBœœˆ‰‰aÆŒ÷]´&“Ȩû=zôà›ví¸|ñ"¡&rÊ÷´³cTŸ>ŠAtè5+Oxx8)))H$š6mZ§p5áààÀ /¼@QA?oÞŒ­J…V&ë}{æ¾óÍ›75Hä¾4iÒ„+–“””„Z­ÆÇǧÎ[kbÐàÁ$$$°mÍŒwî ‘HPòò´itìØQl|‘ûâââÂôéÓ5j™™™¸»»ãïïo• -[¶dÆìÙ|òÑGì9}… PæìL¿çžãÏ?/îšúƒ•³º‚ %88˜÷, aìX’““iìîNHh(-Z´x$÷=ŠX›ßdgƒR©äõ3øä“$&&"—ËiJP‹ šjùë •Jñ÷÷opÀ_£P(4x0mÛµ3o; lÞœÇ~UbVDtè•Êù =zУG±ADþP888о}{Ú·o/6†È®#DPPØ«ƒ&6ˆˆˆˆˆˆèÐEDDDDDDD‡.""""""b ä‚ pçή\¹Bzz:ÎÎÎÄÄÄXT®¹rå gÏžE£ÑàêêJ·nÝêœÇ\D¤>èt:âââÈÈÈ °°=zЦMóñ¼¼ÿüslmmÉÈÈ 00ÐìÐããã™3gÎÎÎpäȶnÝÊ’%KÄí®"¿C·±±a„ <û쳜?ž9sæXœ°k×.L&K–,ÁÆÆ•JE§N8~ü8#GŽlðKa2™ÉdõÚ¦ÓéÐjµØÙÙ5(Q‡È///¾ÿþ{ Ï<óLgÿÃ?0wî\ú÷ïÁ``Ö¬Y¬_¿¾Á]ŒF#R©´^UðŒF#“É„R©¬wŠW‘?&2™ŒaÆѷo_ÒÓÓ3fŒÅñC‡q÷î]V­Z…““jµš˜˜bccùç?ÿÙàë $I œTê¶F£Á`0`ccƒR©·à>*]"‘àää„““Sµéø<==1™L”””àîîNNNvvv¸¹¹Õû¢z½ž„„Î;OAA>>>¾DGw¤yóæµ2ž&“‰ëׯ³{÷n®]»†T"¡CÇŽ <¸NU«Dþ *—ãåå…Z­®b¼ îîî"jµµZÝàé ŒŒ :Dff¦y[X»víjÝaÌËËc×®]œ²³³ñöö&&&†'žxBLöò(ØËðôÓOsýúu^|ñEÜÝÝIKKcâĉtêÔ©Þ=pà³gÏ'>^…V«ÄÁ¡”ÇoÊÂ… j•æöíÛ¼6y2YÇã£Õb’HˆÛ¼™¸£GYµf¨˜<==™8q"›6mâÀ¨Õjììì˜:uj½e&&&2þ|¶m;Fã„DRFd¤3fLeĈátê………,\¸ïW¬ ™J…Ø&—sôðaÞ[°€ˆˆñÁýèÝ»7W®\á•W^ÁÃûwï2pà@z5 ]´Z­fÁ‚øúë½ddØ&|}õŒÝŸùóç=0 d2™øöÛoùïܹ8§¤à"$K$ü¸e ï.^ÌÓO?->¸?9Ò…f®^½Ê¹sçˆŽŽ¦ÿþ„……±oß>ÒÓÓ«U˜ââbóŸJ¥Âh4Véa¾öÚÛœ?ïˆVÛˆ¡´´/2{ö¿«œ_+?ûŒ¬Ã‡‰Ñjétž()áЖ-ìÚµK|ª0L&¥¥¥ºa0,W¥RqäÈìììèÛ·/]»v%##ƒÓ§OW{¾F£±¸‡ÊéšJŠ‹‹ùì³Ïؼ9fƒ à—_|X¼x—.]âAïKll,»¾úŠÞ*Ñ@ÐË` ðÀÖ¯__íhNä÷E«ÕZè…F£i°Ìäädâââ§ÿþ„‡‡sôèQnݺUíùF£ÑâJKK1™LçìÞ½‡¥K·’žÞAè ô%=½Ë—ËîÝ»k5ºÿpölšÝ¾M7A è!4¿}›æÏ'''GT†?F£•Je¡¿Ö‹ZÐKKKY»v-]ºt1ל9r$ `Ë–-¼óÎ;s/%%%,_¾ÜüÙÍÍAƒY,žÛ¿?))%Â@Ê‹=(0ÛsèÐ’’’î[…J~úþ{Ú8V|'¡¼ddNÇî;ÅžæŒüü|vïÞMFF†ù»´´´˽xñ".\à‹/¾ ,, €F±páBÆ_%D¿gÏ’““ÍŸüq‹ì·oßæçŸÏ`0DN÷tHZpîÜ Î;GxxxasNÇ… hœ™I£{zË@ £‘‹qqàää$*ň“'Orüøqóç„„„ER4 ›7o& €¹sçbccèQ£xî¹çX½z5Ë—/¯2g}çÎ ÛéëëË Aƒhܸ±ù»ÿýïk4š@“{þ³ ee­X»vÝíÞ/¿üBiZ¡÷X^Ê«¢_MOçܹsôïß_Tˆ?ìÙ³‡üü| ?[/‡n41 UÂŒ‰½^ ŠéââÂÛo¿}ß,..F"±½G¥*±C$?p$’êbQ þ`4nܘñãÇ[|wàÀËÕétH$ +•JͺùkFŒqßÅrz½µÚˆ üZ7e‚µZÉdºï<¸Éd¢¦åEÂ}zÖ"¿¿Në¼cGùÀ¢!©J»y¯}¼W7íÐh; ‹·jÌžEEù¼/¡Û(T ŠÑvþáhÒ¤ /½ô’Åw?üðCçK+GKàÌ™3Ç‘#GP*•têÔ‰]»vñõ×_sâÄ –,YÂíÛ·‰ŽŽ®×ŸÐÐP$’à× ˜½½ü[:¤R){ô éWµvUÀ-™ŒžO•‘œeË–qäȶmÛÆ—_~I÷îÝëµã¡Q£F4iâ äýzÌ…“S ¾¾¾÷]U¬P( !»Q#Êîí()@ˈ«Tùc••ÅÁƒ9v쥥¥œ>}šýû÷#—ËéСÇŽãË/¿ääÉ“¬X±‚Ó§OÓ³gÏz/Œl×® Ri:pï´¤ ©ômÛ¶yàÿ‡……!qq!¥Â‰W:ó›€ÜÙù7)n%òp‘œ?ž•+W¢Õjñ÷÷góæÍxxxΔ)ShÒ¤ ß~û-øøøðå—_Ò¹sçz]0::š¿ý­›6 ¬,ApD"ÉÅÅå2o¾9Ù"¡MMÌ|óM&ÄÇ{á-´Z´ÀuGG"úôáïÿ»øT!ôz=Ë–-£  ///.]ºÄåË—™>}:ýû÷çÿû_}õ~ø!vvvŒ1‚çž{®^× `ìØÑ\»öwï €‰›³<óLgºwï~ßí=‰„!C‡rúÌv­[Gk• %pS.Ç®K&þã¢C„HLLdÉ’%h4‚ƒƒÙ¹s'{÷î%**Š1cÆàííÍúõëÙ¾};žžž,Y²¤A!íéÓ§qðà3ܼyAh‰ €TšH` †3^¯U¤ìí>âã¹sÉÉÌÄ[ÈHHóöfîþ#& {VŒ³tëÖ£G>𼌌 V¬XÁ‘#§ÉÎVѬ™O>Ù— &àìì\«QÛåË—Ù²e W¯^E¡PÅèÑ£E¥ü“Ã?þøÐv$,Z´ˆàààîOW«ÕlÙò-6l$=½{{911]xñÅjå+''‡õëÖqúôi´:ÁÁÁŒ5Šˆˆq¿ïŸ€Êû믿þP®§Óé0`À§¡ŒF#‡æË/×rùòíŠQwsþñ ôìÙ³Vº¥R©øñljýé'2³²ðõñ¡oß¾ 2DÜô'á~~öwÉÄâëëˬY³?>ÒÒR\]]ñõõ­uò ©TJ»víhÙ²%………Èår\]]E…i0ööö<÷ÜXzöìAQQ6664kÖ¬Ú 5áááÁÔiÓÈÏÏÇh4âêêŠØ¸" B&“ѳgOÂÂÂÈÊÊBÀÛÛ ww÷Zw>|8}úôA¥Ráää„£££˜ááwK­fooOpppƒdØÙÙ‰†RÄêH¥RöbY!‰ˆˆHuºéáᇇG½eH$\\\ÄéŸGQ?Ä&G赦¨¨ˆ½{öù2J{{úõëGdd¤˜]äwÇh4rìèQöïÛ‡Éd"<2’aƉº)ò»c2™HLLdÏž=äfgÌ“O>‰¯¯¯Ø8"¿CÏÍÍeÌÈ‘¤œ>›V‹A*eý§ŸòòÌ™LšbÓêÕ4.(`³­-{wïæ£E‹Úi‚ °óûïycêTìss±7Ù¥P°~Í–,_NûöíÅF±à7¹F¼ÿ>™?ÿÌ •Š~z=´Z¢³²XöïsñâEñ)ˆün£ŸŸ~ü‘í+WÒ3;›þz=ýõz†©TœÚ¾5kÖ ×ëņù]HOOgÖë¯Ó:=ÁeeôÕëRZŠéôiæ¼õV­Òd‹ˆݪäääpøða:‚9™¦©TØ¿_| "¿ Z­–¸'ðÌËÃçžï6*§OŸ&//Ol(‘ß…cÇŽ!äåÑF¨Lg¤Ú —ŽçîÝ»b#‰<\‡®V«Ñétfg.Z@($r²³Å”ƒ"¿Û½¸¨{‰i…nê5 T%%V)Ô!"R ±5™Ìó¢F@CEšVƒÁ"¿·ˆÈCqè>>>pU"¡ ¸l67F._¾Ì¥K—î[AFDä·@¡PðXXwmlPÀOÀ&à yç'NœÃî"¿ ”(•d%Àñ ÝüP›L~øáâããiÓ¦ ï¼óŽ9¡Ðk¯½Æ™3gÌç›L&”J%ï¼óOÔ¢ˆ” ³çÌA&—³qÕ*†étTnV›âb¾ÿæH›6mÄ"‚Ü`0póæMT*mÚ´!..޲²ÿ¯5vìX dþ|èÐ!/^üÀªh‘ËéMŸMSS‘Ý3gnx••qãÆ ÊÊÊê”bSäѧ¤¤„„„Z¶lÉÙ³g-BŒ>>>|ñÅæÏiiiÌ™3Ç\…­6Èd2Ú¶mKPóæ(Žã^í“SM:}í*• GGGñˆ˜Ñëõ\¹r™LF“&M¸qã†ÅôÌôéÓ)--5^·n‡ÂÛÛ»Ö×ðöñ¡ct4‡?ÿœF÷|/<‹‰‰ä‰aw‘J›¥P(7nãÆãرcU‹^^^xyyå[Ð.\H»víh×®].dkk‹Òɉ_‡L@©D‚‹³³˜ÈC¤ >>>lذµZÍÏ?ÿlqL¡PbŽݾ}›¢¢"ž|òÉ:_ÇÝëIy­ê{¾/j]g@䯃3fÌÀd2±aÃ6lØ`q¼I“&£ù³gÏÒ±cGët{{{L -;€ÜÅEÌã!b¦Ns艉‰œ>}š#FÔ9‡º‡‡QÑÑ\T(¸wÝp&PäïOûD£)r_î·B«ÕrèÐ!BBBê=ªäé#¸-“YÔŠ..J$ zê)Q7Eê­›.\ 55•þýû×Ù·yì1Ü{Œ„{tÓ\‚;w¦i³fâ)¡×öD£ÑÈÞ½{1 >¼Úsôz=ׯ_·Ayyyagg‡R©dò”)dff²ãûïqÍÏÇ •¢mÚ”IӦѷo_±´ä#ŠN§#33Ób*ÇÚ yrssÙ½{7¯¿þzÙÝ222,ôÓÝÝwww:tèÀÛK–°òã¹”™‰Ü` ØÝn2õÕWŇø“››k±,##êò 6l I“&ôîÝ»ÚsÔjµ…n*•J¼½½Q(3wþ|Þ~ã ¶'$à ÑPìà@³Îyûwðññâ#ŠF£!++ Ng¡O vèYYY;vŒ¡C‡ÖX¦T«ÕrìØ1ógºvíjÍ{xx°xÉv÷êŵŠ:æÝºw§sçÎâb¸GµZÍÅ‹ÉÉÉ1Wø«ðaC9tèvvvtìØ±ÆŽaBB‚Åè(<<ÜìÐår9/¾ø"ááÄÅÅ¡ÑhhÛ®½zõÂÉÉI|ˆ0)))+¯^½Úàj{÷’œœÌÉ“'™8qbÓŠEEE¶ÓÃÃggg ‰„=zð¿õëÙ»gyyyøøø0ô©§Äœî8ÅÅÅœ={–ââbów÷ŒêíЯ_¿ÎÍ›7™>}zç8::2qâÄûÊqpp`äÈ‘â“ú áêêÊàÁƒ-¾ûõ|cC0lÚ´‰:Ü·$oïÞ½:thÇmmméÚ­]»uÚ_ˆ¨¨(¢¢¢ÌŸwìØARR’Ud ‚ÀéÓ§)**¢OŸ>5žçããó@ÛÌ41Zô—ÂËË‹#FX|·víÚÏ—By¨¼¤¤µZÑh¤´´•JežÒétìÞ½›6mÚЪU+±•E**•Š’’ŒF#eee”””X¬&>yò$ÉÉÉüíoçºE*Z­•JEYYF£•J…Z­6ÛÎüü|bccéÕ«—yq±ˆÈo…àĉlÛ¶ÔÔTÒÒÒX²d AAAÌš5  ‰eÊ”)bõ)‘‡—ØIDATŠ^¯gÞ¼yäçç“’’¶mÛHHHàïÿ;]ºtÁh4²sçN¼½½yüñÇÅy¨üðÃìß¿Ÿ«W¯róæMÞ{ï=Ú¶mËäÉ“±³³#%%… .°`Á”J¥Ø`"¿½C÷òò¢cÇŽDEE™“vØÛÛ›ç{”J%ï¾û.ÑÑÑH¥R±ÕDR©”¨¨(ÊÊÊèvO(¼2yÀÀï»¶CDä·¢iÓ¦DGGÓ±cGówæ5A^^^Ì›7èèhqѯÈÃqè­Zµºo(ÝÙٹƕí""¿%2™Œ¿ýío5+°\.fqù݈ŒŒ$22²Æã~~~øùù‰ %òp@bˆˆˆˆˆˆˆý7åÞ}™ E«Õrûöm«É+))±ê~Õ¼¼<«VNº{÷®ÅV‡†rûöm´Z­øÆTpçΫyó&F£Ñjò­ú{­)Ïh4Zµ“Z­æÎ;¢RÞcëRRR¬&¯¸¸Øªµ×sssÉËË³š¼ŒŒ JJJþ°¶ÎÚïâŸÒ¡ ‚ÀÖ­[­ª”±±±V“—––ÆÉ“'­&/!!+W®XMÞ©S§¬jäöïßoõ½ãf:dÕØ®]»¬jD¬ùîX[^YY»wï¶š¼œœ:$*eì߿ߪ×S§NYMÞ•+W¸zõªÕä8q‚ôôt«É‹µê`hÛ¶mÌ$h-þ°ÉÓA@¥RYMžÉd²(”ÐP Æjòt:UkÂk4šûfª+¥¥¥VAþÙ©Üâi-îÝ&j ¬9b±¶ýôÓ¿LûŠò&kÒ¤IŒ=ú¡è¦^¯§gÏžVÍñ!ÚºGWž‡‡Û·oÿíºˆˆˆˆˆˆÈïƒryhp¼3--¢¢¢*ß7iÒggç:É¢¢"rssÑëõØÚÚâááQïò•&“‰ÂÂBòòò0¸ººÒ¸qã:…yÕj5ùùù¨Õj¤R)¾¾¾ØÛÛ›ët:222Ðh4(•J|}}-Jtþú÷•––RPP@ii)¶¶¶çët:òóóÍÅGš4irßß.ÅÅÅ¢V«±··ÇÏÏÏüûŠŠŠÈÏϧ¬¬ ©TŠ««+5†öA   €¢¢"ÊÊÊprrÂ×××|~~~>ùùùèõz$ÉÛSrss)))A«ÕâêêZcíæÛ·oc0ðóó3—ÛmZ­–´´´*«s õJ«ÓéÈÊÊB¥R!•JqvvÆÛÛ»Þá4­VKFFeee( |||,tëAïJaa!EEEh4ñõõµ(C\TTDvv¶Y÷ïMIZF£‘¬¬,Ôj5:___\]]ÍïRQQ‘Åõüüüî&Öétäää˜wøúúšmBå±ÊÝöööxzzÞ÷Ù—••‘››‹Z­F"‘àë닃ƒƒùX¥U§ •ï»D"¡Q£F¸¹¹ÕºÌuYYyyyæB5¾¾¾8::šëõz233Q©TØÚÚâíí}ß{­´Ã¥¥¥Èd2 ;¡×ë)(( ¸¸N‡5zàûs?[———Gaa!:™LFãÆiÔ¨QµÏ¿Òo¡V«qppÀ×××l‹‹‹ÉÎÎ6ÛMggg<<>ûì3³!Y³f ;w6+íÆÙ¼y3ööö¨Õj†ÊóÏ?_íÃ2 lÙ²…M›6‘‘‘““kÖ¬¡uëÖ\¼x‘E‹‘œœÌõë×Ù°aƒ º¯Cøüóω%%%…-Z°fÍ|}}1|òÉ'œ?©TŠÉdÂÖÖ–W^y…ǼZåÐh4|øá‡œ>}šääd:wîÌš5kÌFqÓ¦M:t“É„Á`@&“ñÏþ“^½zUÛž*•Š7ß|“›7o’˜˜È3Ï<òe˪œ—ššÊßþö7sûFGG7Ø`fee±bÅ ‹çÎÃÅÅ…иqã:;ßo¿ý–o¾ù¥R‰Á`@"‘ðöÛo×ë~KKKùꫯؽ{7J¥•JELL “&MªU¶¬¬ŒÅ‹Ç­[·ˆŠŠbÍš5¸¸¸åÉ;þóŸÿ””„B¡ÀÆÆ†É“'Ó­[·pVVÏ?ÿ<ÅÅÅ\ºt‰¥K—2~üx³QZºt)GŽáæÍ›DEE±nÝ: #ýkxë­·(..&))‰Ï>ûÌ\+âüùó,\¸“É„D"A§ÓѵkW^{íµj;Ä‚ pôèQ/^Laa!ÙÙÙ¬Y³†'žxÂ|­U«V™;便¥tîÜ™™3gVëÔããã™5k–ùÞV®\ÉSO=Uåš;wîäÕW_¥cÇŽlÙ²ÅjÕüöîÝËž={ÌŸóòò8{ö,«W¯fÔ¨Quî8$&&òÑG‘““ƒB¡ ¬¬Œ'žx‚I“&ÕØ©¹_çàÔ©S¬\¹’’’ 5bêÔ©DEE=ðÞAàÔ©S|ðÁ’žžÎ_|Aß¾}Í©;v°nÝ: †®]»2sæÌjÛ×h4òÃ?°jÕ*rrrÐëõ¬Y³Æœ?ÿÚµk,Y²„k×®‘˜˜ÈÂ… ™0aÂ};›† pöìY’’’èÚµ+kÖ¬ÁÎ΃ÁÀœ9sHOO7ÛN777¦NJ»víªü~­V˧Ÿ~ÊÁƒ¹}û6!!!¬Y³Æ\]oÏž=|÷Ýw˜L&ŒF#F£‘ &0hРjý„Z­æ½÷Þãüùó$%%ѽ{w¾øâ‹*Å}222xñŹzõ*Ÿþ9}úôi¸CñÅÍ/½^¯çóÏ?G*•Ò²eË:Ëúé§Ÿ8wîK—.%00S§N1oÞ<ºvíJ¿~ýê,oùòåh4>øà”J%«W¯fñâÅ´iÓooïþ¿D"!$$„)S¦ Óé˜={¶Åñ³gϲ|ùræÏŸOÛ¶m¹téo¿ý6mÛ¶­¶ò—T*%22nß¾Íúõë«ôÎÇGqq1‹-zpxE.§[·n´k׎“'OVItÓ¾}{ˆ¯¯/Z­–+VðÉ'Ÿ\m)G¹\N¿~ýèÝ»7ß}÷ÇcbbèÓ§ÎÎÎh4>ýôSV­ZEXXXµ#o…BÁðáÃQ(|öÙg5¾XË–-£mÛ¶œ}:ݺu#&&¦Ú‘på½Mš4©Z½ËÏÏç믿®—-{#GŽdèСf¸qãFŠ‹‹ «×;°iÓ&rrr˜?>^^^üøãü÷¿ÿeРA„††Ö¹³¹téR|}}y÷ÝwÑëõ,Z´ˆ… ²aƆ$ Íš5cÒ¤IØÙÙñ /Xü¦„„–/_ÎóÏ?OLL ×®]cÆŒDGGÓ»wïjåµnÝš©S§¢R©˜?¾ÅqFŽIYYüqíBÓ¶®oß¾lݺµJ^„˜˜‚‚‚ðôô¤¨¨ˆ÷Þ{/¿ü’yóæ™;Í•Èd2zôèATTGåÂ… Ç£££‰ŒŒÄÕÕNg^ Û®];«Ü›   ÿþlÙ²¥Ú Z­–ÿýï4mÚÔ"IOƒú½£‰œœ>ÌÀëUfµ¸¸777BBBpqq¡E‹8::¢ÓéêµRððáÃ̘1ìЕïæÍ›µrèR©Ô\¸&))©J/öرcøùùÑ«W/lmmñññaÍš5ìÝ»·Z‡.“É'<<œƒV9îïï¿¿?7nÜÀÑÑñ‰Fär9;wÆd2‘™™iáÐe2ýû÷·è¥öë×9sæ——W­CW(ôêÕ ƒÁÀ©S§ª8ô{ ø ¸té:®Úû³µµeàÀhµÚj3™L&öìÙCZZ“'O¶jæ=™Lfœ>}š;wî°xñâz‡ÇµZ-íÚµÃÛÛ£ÑHPPgÏž­WB˜³gÏâççÇã?ŽT*ÅÇLJ   ~úé'üÀizöì‰ÑhäÒ¥KÖ`0°uëVž~úi"""H$ >œýû÷“œœ\£Cwvvfذa”––VÕ)•JºvíjŽtÔÆ¡ûøø0tèPJJJªtxš7oNóæÍÍïtÏž=Yºt)‰‰‰Õ:t‰DB`` äççW9îî»»Y¯"""°µµ­v:ðA÷V9ŠüðÃéСƒ‹/ZÕ¡;88˜ÛX¯×óã?Ò£Gj |mmg¥988ŒM½’i4._¾Ì¸qã  wïÞ̘1ƒììl|}}(# €€€ŠŠŠ,ì¶ üòË/(•Jú÷ï§§'>>>DGGóí·ßVëÐ¥R)¡¡¡„††V›aÎÛÛ›þýû“‘‘Qëi^…BAïÞ½1 ÄÅÅY¤—Ëå<õÔSfÛéååE·nÝØ¹s'*•ªŠC·±±áñÇÇd2‘ššZÅ¡ßûLF#ìܹ³Æd=•÷¦×ë9vìXßS­ºté3gÎä§Ÿ~²žC¿—Ë—/“™™I÷îÝkœG¾Æ ãСCüç?ÿ¡mÛ¶œ:uŠ–-[Y¯^«D"±È–f2™Ðjµ\¿~Ýlœê‹Z­&--àà`ó¼’T*¥E‹¤¦¦¢×ë÷rž÷:sNÇîÝ» ªÖ™×–;wîpôèQòòòØ»w/£G®q^üAܸqƒ­[·2qâD³1þ-P«ÕüüóÏ\/!!!Œ=š… Ò¿ 9räHaÂÚ<›Ê9µJ]Õétdff’ŸŸß  ]YYYj–ïêêŠR©$''ÇêÛhêý×7™Lœ>}š¢¢"ÂÃÃ$wÇŽäååqüøqÚ¶m[íè¼6Sm;vìàÚµklܸ±Ö£¾úróæMxùå—ë=ç=vìXæÍ›Ç‡~H³fÍ8vì½zõ¢iÓ¦õz6‚ XtŒF#Z­–7nÔʡׄN§#55•¦M›š;­R©”öìÙƒN§³Ú´†µl§J¥bÿþý„††Vqæµ%77—ØØXŠŠŠØ³g£Fªwç-++‹¯¾úŠaÆU‘aÕUî›7o&,,Œ°°°zý¿ÑhD&“‘’’B||ùdƒïK&“agggþýeeeõ*Q¹÷7Þ0¿`àÀVi“ÉÄÚµkéÚµ«Å€úÜ/”Ï VöÒÃÃÃY¶l¹¹¹uvèvvvLž<™ &PTT„““ãÆ#,,¬ÁÓžžžøúúrîÜ9úõë‡T*%''­VÛ mvÖÄd2‘˜˜È믿N«V­˜;wî·ÕvtYÙ¾ÞÞÞ¤¦¦Ö9ò¦Õj¹zõ*'N4VJKK™6m~ø¡y^ÙvóÇ$//1cÆ4HVrr2:u¢qãÆæõNNNܺu«Î²¤R):ubÇŽdggckkË®]»¸~ý:mÚ´iÐ}* ‚‚‚Ø¿?%%%8;;£×ëùå—_ {h™#DåÂÀ½{÷òßÿþ·Á;o¤R©ydÞR]WòóóqvvfΜ9f}ÍÉÉaÞ¼yèõzë8ô¼¼<:ÄO<Ñ cÔµkW¶lÙBll,-Z´àÌ™3œ;wŽ)S¦ÔË¥¦¦’••…»»;©©©¬_¿ž>}úÔi¨¸¸˜´´4RRRÐjµ$%%áääDHHݺucãÆlܸ‘Çœ¸¸8²³³ïëŒòòòÈÌÌäöíÛ¨ÕjnܸL&£E‹FnݺÅÍ›7)--%55•«W¯âíí]£±ËÌÌ$''‡´´4T*×®]£¬¬Œ&Mš°cÇ/^Ìøñãyì±ÇHOOÇÆÆ77·{Âiiiäææ’Maa! x{{ãééÉ®]» ÂÕÕ•‚‚Ö¯_¿¿ÿ}&''SXXH~~>r¹œøøx7nL÷îÝ-¦fnÞ¼ÉK/½ÄüùóéÑ£‡Õ^̤¤$nܸÁK/½Ô Qå®72dÈJKKY½z5õš§T©T\¹rwwwó–¸ÂÂBžyæ™Z‡JÓÓÓÉÍÍ%33“¢¢"ðóóÃßߟ1cưlÙ2:tè@“&MøòË/iÙ²å}çíL&ׯ_§¤¤Ä¼F$>>œÉÊÊ"//¬¬,Š‹‹IHHÀÃÃæÍ›W+O«Õ’œœlᦦ¦OóæÍIOOçÍ7ß`âĉ”””PRR‚‹‹Kó”*•ŠÔÔT Ðétܺu ‚ƒƒ¹zõ*™™™a49wî üýïà½UÖ' €iÓ¦ñ /˜Ï]ºt)—.]bÉ’%õ^/REEE9r„èèèzm˽—Ž;KDD>>>æ-T‘‘‘õêl%%%™€9s†íÛ·óÜsÏÕz­V«III¡¨¨½^Ï­[·ˆ'88˜ÈÈH 6l`È!œ?žøøx^}õÕû¶Uzz:7oÞ¤¬¬Œ¤¤$ Ád2‘’’Â;w())!==Ýl·îQ¸sçyyyf[wåʼ½½ñòòbÕªUlÚ´‰É“'ãããCjj* …¢Æ¼wïÞ%77×\›ýêÕ«¨Õjüüüøá‡ðóóÃÍÍ •JŦM›puu½ï»XݽyyyÑ¡C¾üòKsT¸¸¸˜0kÖ¬ò-΂Ø¿¿ÐªU+áÌ™3 ’“-Ìœ9SèÒ¥‹)ôèÑCxÿý÷…ÜÜÜzÉ;tèлwo¡}ûöBïÞ½……  ™™™u’+DEE -Z´”J¥ „…… ¹¹¹‚N§~øáó5zõê%ìØ±C0 5Ê[¿~½.4kÖL°··…Þ½{ Brr²Ð«W/!((Hpppš4i"DGG Û·o¯QÞ¢E‹„°°0Á××Wprr‚ƒƒ…1cÆéééB¿~ý;;;!44TÂÃÃ…!C†çÏŸ¯QÞÌ™3…ÐÐPÁÓÓSpqqBBB„éÓ§ ………Â+¯¼"tíÚUˆŒŒºté"¼üò˹sçîû{ÇŒ#„„„nnn‚›››*|øá‡‚V«µ8ïêÕ«B›6m„S§N Öäý÷ߺté"äçç7HNYY™°cÇaÀ€BTT”СCaøðáÂ… ê%/''G˜6mšÐ±cG¡sçΘ1c„3gÎ&“©Ö2fÍš%´nÝZðòòœ…V­Z S¦LJKK…ââbaþüùÂã?.´oß^˜0a‚pùòåûÊW©TB×®]…V­Z ööö‚¯¯¯*|÷Ýw‚J¥,X`ÖÊë?¾FyIIIB§N„V­Z J¥Rð÷÷Z·n-ÄÅÅ ëׯlmm³n†‡‡ K—.­Q^\\œÐ¡C¡eË–‚­­­Ð¬Y3¡uëÖBJJа{÷naÀ€B‡„: Ö®]+h4šjeݸq£Ú{;}út•sçÍ›' :´ŠÎ6”³gÏ íÚµvíÚÕ`Yׯ_&Ož,têÔIˆŠŠzõê%¬X±B(--­³,½^/|ûí·ÂOûì³ÂíÛ·«•µ`Áá±Ç³°ÃãÇ „wß}WèÞ½»%têÔI7nœ'èõúïíÕW_BBB,îí7ÞÔjµÅy………BóæÍ…ØØXAáÿò¡™&U‚IEND®B`‚pymvpa-0.4.8/doc/pics/ex_sensanas.pdf000066400000000000000000003742311174541445200175650ustar00rootroot00000000000000%PDF-1.4 %¬Ü «º 1 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 2 0 obj << /CreationDate (D:20081113012928-04'00') /Producer (matplotlib pdf backend) /Creator (matplotlib 0.98.1, http://matplotlib.sf.net) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Type /Page /Resources 10 0 R /Parent 3 0 R /MediaBox [ 0 0 1008 576 ] >> endobj 10 0 obj << /Pattern 8 0 R /XObject 9 0 R /Font 6 0 R /ExtGState 7 0 R /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] >> endobj 5 0 obj << /Filter /FlateDecode /Length 11 0 R >> stream xœÌ½M“,·™¥¹_KqQAÿþXMM´V·ÝáµÒF›‘¼#I59²¾àï‹Ç2K#ëš²ž*ÆÉˆóD„;2ƒ;Ü¿¹÷÷Oáÿ}}ëîÝý§{ßu[ø?~|ýóº„ÿ³Ëÿ;·¯ÂO~}ë‡å>îã£ß§¾_—iíÓÇnl¯ÿìæÝë?:ý6wÛ£{ýǶ ‡gxQ|пR€ø…„~K€¾ŸáEÆy?2Üýþþ§ûÏ!Ä7÷#Bx…m~†êû%½Úý/?Ý¿üCÿíßïn^?û˜ïŸo¿Üú×φŸÜÞ=Âñü?váù·×Ïq!ŸÏé_ÏéžoÇçÛWï_þþxâýãa´çǰNC·ÏOË­{ Ûº-/ËßÝ~Ó}qÿø·ûï>Þ*Ú¹?žšðˆv¨hísˆvT´Óö˜Æ­ßºþih§)¿ÚA;_Ò®Óc˜Ÿ>ã<"íTÑÚçí¬h—õ±,Ó2wëÓ²Ûþzp÷õ1 kôFܥµÏ!ÜUáîÝc]–~èǧe=¸ýåèCÈÖ½¾=r7ëžC¸»À ˜qß¶©ßŸ–õè—£;L1ûê¿Yê«5ŒËcîº1|Åîz0—åÑÏÙ )«o–{Òª¯Ö0ïqÛò2­ÇëáÜöGøÐ¼ùÃÚW_.÷$Vß®aSø¼îÑ€¯/ÏÛA¸òué «ï”»ñà“ä—ªŸûüü „ÏÂc×a˜†ã¹úÚC¸Ç´ñ.½ªo‘Ä'©¯Q¸C=Æa;§u8Þ·ué»ã¹úrzNk¸`Œñ.¯øÕ×ÇÒ“ä*|0¶8_ù¥›Öõxnã zöû£{÷óæø2«¾:žž$ïJáùÝú" ó‚uçmzÞNíEs¸ózvóíí5Gù”Lé™!Ìo†ioÌ}ïC—®GŽÿùç/îÿþßÿÇü{ŠóË}úÇxŸÝ~:On™ãÜè¾…èóä$N“†87ì]Ë{ûú†¯ôS2èÃWÛŒÇëáp¿ÚËÄχoÓÞûŸžã‰ÔÐoð²öù5}¾ ñ#Ò1ÑüpÿOáë£ûkÃ0€Ýb-²Ö+ö«H?_©G¸åíC¸mËñ† %Úr~ôMè—Ÿ ÷pF[·iìÇuôh…G‰¶ça4¡S4JœÐ·Záq¢…Ïð”gz€&uŠF‰3Úñf†iûlÑŒG‰–§!£ ¢QâŒnÏ÷Ô£%ZñK¢ ¢Qâ„6ä©­C+ФNÑ(qB[âuÕ’‹’l¼žSÞ:%£À™,þ«Gin8?97”:E£Ä íüÎ:´ÂãD[Êi I¢QâŒ6ů¨E3%ZúÛÏ ¥NÑ(qFÛâ5×£%Ú2©¹¡Ô)%Nhç|á%Ú.ç†R§h”8£ñ7ÔxœhëcsC©S4JœÐö4qµhÆ£Dà )=L ”/ƒäïYŒÿ.ç†V¯ç† ´H“ý·×LgõþÅ+ž Û#Ý"xr(u Bù"ZŸ·°hÆ£D›åäPêg´üD‡Vx”h›œJ¢QâŒßÑÅ£m49ܽœJ¢Qâ„g­»Tm>‡Ñ„NÑ(qFË?‡Vx”héxr(uŠF‰ÚûŸ=Zá‘цð59Ô:E£Ä-N\íÅËz”h“šj¢Q⌖ï”­ð(ÑV5;Ô:E£Ä mLÿŸG+ý§r @¬^Í 3h‘&ûã²}ÅdR“C­SÊÑF^B¶%Úª&‡Z§h”8£å':´ÂãD›Ë;€&uŠF‰3.![mT“C­S4JœÐx…Êz”h«œJ¢Q⌆KÈÖãD[ÊýÉ€&uŠF‰/![m”“C©S4JœÑp Ùz”hÙï=R§h”8£á²õ(ÑDiåÖÐ)%Nh¼„l=N´U—O´NÑ(qFÃ/èŠÝ“ð°ìžh’QàDÆKÈÖ£D“Ý­S4JœÑp Ùzœh›îžh¢Q⌆KÈÖ£D“Ý­S4JœÐÎ[—C£îIx8_´ñ *uŠF‰3®TZmÇî >L ”/ð2òó¥KÙ=qz=9ÜËîÉ뿲?.&ÛW,AdùDë„òe4|‹vìžLîžh’QàDÆ‹ÉÖ£DËß šj¢Q⌆‹ÉÖ£D“Ý­S4JœÐx1Ùzœh½îžh¢Q⌆‹ÉÖ£D“Ý­S4JœÑ2­C£îIxXvO´NÑ(qBãÅdëq¢ º{¢uŠF‰3.&[M–O´NÑ(qD«ˆ¨s–­S" šˆx1Ùzœh£îœh¢Q⌆‹ÉÖ£D“­S4JœÐx1Ùz”hËt9ç»5tŠF‰3.&[MvN´NÑ(qFÃÅdëq¢Mºs¢uŠF‰Úy…3hvNÂÃx¥‡ ”òe\L~¾té/;'N¯æ„´H“üqíѾàÉ1ëʉÖ)ÅËdù• ÚŒ•“𰬜h¢Q⌆‹ÉÖ£D“•­S4JœÐ.ÞÐ+'Ó¢+'Z§h”8£áb²õ(ÑdåDë'4^L¶%ZzžJ¢Q⌆‹ÉÖãD[uåDëg´<á1h+VNÂòr¢uŠF‰.UY‹’L6N´NÉ(p&ÃÅdëq¢mºq¢uŠF‰/&[m’sC©S4JœÑp1Ùz”h²r¢uŠF‰3.&[mו­S4JœÐÎù†AÛ±r–•­S4JœÑøjý{Ý9qz5'Ì Ešä+ŽöKY9Ñ:å x™,¿’C£ÊIxXVN´NÑ(qFÃ%dëq¢ ºr¢uŠF‰/![MVN´NÑ(qFÃ%dëQ¢­jN¨uŠF‰/![mÔ•­S4JœÑp Ùz”h²r¢uŠF‰3Zžð84ªœ„‡‹' šÐ)%Nh¸@e-J2Ù8Ñ:%£À™ —­Ç‰6鯉Ö)%Nh¼„l=J4Y9Ñ:E£Ä —­G‰&+'Z§h”8£á²õ8Ñf]9Ñ:E£Ä íœo´+'áaY9Ñ:E£Ä¿¡3VNÂÃۙфNÑ(qBã%dëq¢-X9Á‡ ”òe\F~¾té/+'N¯ç†KY9yýWöÇÅdûŠ%ˆ¬œh‚P¾ˆ¶òb²õ8ÑVÝ9Ñ:E£Ä-?Ñ ­Ø9 ;wMèg4\L¶%šìœh¢Qâ„Æ‹ÉÖãDÛtçDëg4\L¶%šìœh¢Qâ„Æ‹ÉÖ£D“­S4JœÑp1Ùzœh»îœh¢Q⌆‹ÉÖ£D“­S4JœÐx1Ùz”h²|¢uŠF‰3~Aw재îžh’QàDÆ‹ÉÖ£D“Ý­S4JœÑp1Ùz”hÅ/Ɉ&tŠF‰3.&[MvO´NÑ(qB;o]º'k¯»'Z§h”8£áJ¥õ(ÑèBŠ(åK ¼˜ü|éÒ_vOœ^M3h‘&ûãb²}ÅdÐå­SÊ—Ñð-°{–Ý­S2 œÈx1Ùz”h²{¢uŠF‰3.&[mÔÝ­S4JœÐx1Ùz”h²{¢uŠF‰3.&[-½Î µNÑ(qFË´­ð8Ñ&Ý=Ñ:E£Ä “­G‰&»'Z§h”8£áb²õ(ÑdùDëG´ÍQçduçD딈‚&"^L¶%Ú$ç„R§h”8£áb²õ(ÑdçDë'4^L¶'Ú¢;'Z§h”8£áb²õ(ÑdçDëg4\L¶%šìœh¢Qâ„v^áuNVüá§®‚¤l’×ò£´êΉÓëÙ`ùù)>4¸âh_¬d•­SŠ–Éò+94ªœ„‡eåDëg4\B¶'Ú¦+'Z§h”8¡ñ²õ(Ñò­ o8R§h”8£á²õ(ÑdåDë'4^B¶'Ú®+'Z§h”8£á²õ(ÑdåDëg´<ÍqhT9 ËʉÖ)%Nh¸@e-2ÙÖ鯉Ö)Îd¸„l=J4Ù8Ñ:E£Ä —­G‰&+'Z§h”8£á²õ8Ñz]9Ñ:E£Ä —­G‰&+'Z§h”8¡3 ‡F•“ð𺈡Ö)%Îhø µ'Ú +'Z§h”8¡ñ²õ(Ñp0èa¥|—Ÿ/]úËʉӫya-Òd\B¶¯x‚Œºr¢u Bù"ÚÎKÈÖ£DËâ—Nêg´üD‡Vx”h²s¢uŠF‰3.![MvN´NÑ(qBã%dëq¢Mºs¢uŠF‰3.![MvN´NÑ(qBã%dëQ¢íjr¨uŠF‰3.![mÖ­S4JœÑp Ùz”h²s¢uŠF‰/![M–O´NÑ(qFÃ/èŒÝ“mÑÝ­S2 œÈx Ùz”hóù@4¡S4JœÑp Ùz”h²{¢uŠF‰3.![mÕÝ­S4JœÐÎ[—A[±{–Ý­S4JœÑp}Òz”hx§‡ ”ò%^B~¾ôé¿éî‰ÓëÉáZvO^ÿ•ýq Ù¾b "Ë'Z§ ”/£á[´a÷$<,»'Z§d8‘ñ²õ8ÑvÝ=Ñ:E£Ä —­G‰&»'Z§h”8¡ñ²õ(ÑÖë¹ß­¡S4JœÑp Ùzd´½ÓÝ­S4JœÑ2m‰f=J4Ù=Ñ:E£Ä —­G‰–èÖ£uŠF‰3.![M–O´NÑ(ñ­z©q²÷ºq¢uÊC1χûpÿ&Át;ÂôvDÐã h­h¡®iìómˆLë¾}{ëîß½õûçÛ/Ç'&üO_™Ùgýå§û— ÷Éßþýö!<ýSxÂçÛWï_þ>¼­Ãýãa wûüù±tû°ÝñüßÝ~¾GÝ÷»ÿîã­åÞÛó—ÿå>¿Ã½]™Ý´®Çó£ûôV÷!L„§èº¼Ã5Œ÷¶[P£åöVË1ür¼æ¹÷Ëz}‡õxŒî4¯ëp<ÿåÞouŸ†ÇÜåkÜË}{{x»Æ%\‹öãùÑ}y«»=ï徿Ã} oײõݲϹoþ¨Ía.‘ÿšór»w¸ÏáÛ÷míÇãùÑý͵£Ã‘osѽ‡ûÞ¹±_Æ¥;žÝßü©;ö®Œy²òrÞá~lŸ o{×­Çó_îã›?uÛñÏ1æß ^îã{ÜÃ;·Ïý2OÇó£û›?uöjürÏ.üÞ·Ë>výñü—û”?uáÞ^âS¸(÷åÇ=d.ÿØ0©8³uú7§Ïݦ—Å5Þ½¾×þ?Þ¾ºýâ_ÃýL¿™cÊú~*e~ýþþ§ûÏ÷çåöux±~›_Þ/á…‡ãÕžƒû‡ãsuÿn»t÷™ºéÑåÆGx½9ñúù$—ýõ$uùŸÛ0Y À¯ Ǹ_u[^¦ÏwôêÃtÜ"ö= ò®¯}òª«î4L~ž·áu‘?x§)›¼ó%ï´¿S¦*òî¯}ñNêJùüG'¶aØ_waßþz€×á±§E· §¾¶OB`uy;®Æáª´.Ûø4­¸¿á}>þ–&ãMÍië0„«ex¾¾ [Þcgâ´f25Wß9Ç‹O’ó€}x¤™öÓt8Æ{]ú<{ëø>OÒ_Fó[Î\å/=Iþ’²MÇ™¢™÷¸(ïKù«‘¸ ;àþ8Ž}Hÿùò®¿r˜ž$¹Àá ‘ûãß6çmz^2ìUøøþ¿ú+þ¾&ƒ)æô˜žWïã·Ô0­|~[ ÷áf𺹧_™ÿï?qÿoýùûÿùëýÛÿøãýó÷ýôÿüãÿMá¹Ïûf@çûci³£s¾ºõåÕ8mK³Ô£;xÿþϯoú%ª,Ý%ªçû?jTºý£Èm £ÙmùwÑê&•îþ°ãuÿG¯û¿ŽèüÇ„ùÃýŸøçwåöë§ð¿>‡ÿ÷Ïû¿:öëO‹+\h*¤6'˜µ9ø¤‘ªáRÛ.†¦Bjs¸ P™3Q©þ™ú|èŠÚðRé½=÷¤¢²:Q›Ô­QIÔ¶Á¡©Ú‰Ôæ$•Fª†ÿImË𠩋߉‘ºÔ‰Ú¤nJ¤>—%®¨ W 5Ì®3´Æ 1ÚZ2 š9Œ…ž£qâ„fkÍé+€`mÝ,Ó‚ _òŠÚœ@Sé£=˜¥¢²:Q›Ô­QIÔ¶m¢©:iG¦.õšÚ¥nJ¤žŸÑž[º9ΨÌ)0T ÿ“:_Þ®¨Í‘6•>Ù“^**«µIÝ•Híê+š ©Í!0@mÎŽi¤jøŸÔ¶Ù¢©ÚœTæX™Fª†ÿI®¨Í9•>Û£c**«µIÝ•HmwÛk(„6‡Ê´9‹¦ªáBÛªŒ¦Bjsà P™sj©þ™ú¼ª\Q›Cw*}±gÑTTV'j“º5*‰Úl4R›cj€ÚœnÓHÕð?©m÷FS!uzÿxšou¢6©[£©Ï™ÞuáŠÔæp 2gâ4R5üOêÆ5d±üTújO©¨¬NÔ&ukT"µ+óh*¤®ï7~¸ÎЃĘ¿ŽWŒx'Yí±:À(ôg4[Ò À¸Ù“t*«£9#¨1‘ºwí M…Ôæ 6gó4R5üOê?3WÔ…+R›£‡€ÊœXÔHÕð?©mJSõ`O%ª¨¬NÔ&ukTµmXi*¤6µ9稑ªáŸ©Ï{üµ9´ tsÂP™ƒ‘©þ'µ-ýh* ¦Ñ@Ó(ÏßÊù\] ü Êž—ägøZ¡(i†ÊãxeÝœŽTûÛC•@7?5ògjýNö€(Ð͹IeŽ[j„jøgh×üÒT@=Ù#•**«µIÝ•DïzL=Ùc¥@ŸËi,P—zMíR·F%R»¾˜¦BjsP™ó›©þ'µ­’i* žíM•Õ‰Ú¤nJ¢ÎA˜z¶çTnŽojsêS#UÃ?S»š¦Bjs´P™¡©þ'µí¦i* ^ì©O•Õ‰Ú¤nÊ‹úêұد@7ç@¬9>ª¦áŸa{t¬+RorRou¢6©[£’¨õë Ô«==ª¢²:QorR¿ÐÁYÅq L½Ú´@7Kµ9ª‘ªáRë=:Ö©óÇ/V'j“º5*‰Zïѱ®@½Ùª**«µIÝ•HÝØ£c]‘ºÂ?\ghAbÔ{tžfˆfN»F¡çhœ8¡éÖw{¼U…`uB4'w5† Cç—dêÝñz–ñª`õšÚ¥nJ¢Ö{t¬+R›C±€Êœ¥ÕHÕðÏÔ=:Ö©ÍyY@eŽÙj¤jøŸÔùòvEmÎ óúØÙ£´<•Ó‰Ú¤nJ¤nìѱ®HmNÙjs8W#UÃÿ¤Ö{t¬+R§;(NïNÔ&ukTµÞ£c]º·gsUTV'j“º5*‘Z¯¯[S„6§v´9쫪áBë=:͉֩^@ek¤jøgêóªrEmN5«ôÁöUQY¨MêÖ¨$j½GǺ"uºà4ßé5µKÝ•D­÷èXW¤6G„•9Y¬‘ªáŸ©{t¬+Pöô°ŠÊêDmR·F%Q7®!£=A tsÔP›Ê©þ™º±GǺ"5M¡ñá:Ck cþ:^1âýo²ç–UŒRÏÑ8qFÓ{t¬2š£Ê*«×Œ6CÃ?Q=:Ö©Í)f@e?k¤jøŸÔyŠtEmNr«ôÙpVQY¨MêÖ¨$j½GǺ"µ9û ¨Í‘iT ÿLÝX`·®H½žoR—:Q›Ô­QIÔù'®¨ W ^ì‰i•Õ‰Ú¤nJ¤nìѱ®HmSjs[#UÃÿ¤Ö{t¬+R›sÖ€ÊÏÖHÕð?©ólãŠÚœ5º,í:¨MêÖ¨DêÆë Ô«îÜ:¨eçÖë‰Z_BV]¹ º¬Ü:½†^uåÖëúüÌ\QËÊmÐeåÖéD-+·^OÔzŽuêMWnNÔ²rëõD­÷èXW¤–•[§×Ô›®Üz=RŸ÷ø+jY¹ ú&çù›®ÜúÔ­QIÔzç†uê+·øp¡5‘±±Oçi†h²r«õg´<¢Wh²sô-pèMßuçÖehøŸÔú=ßuåvêtåÖémB·%B7vëXW¤Î_Zšæ;½¢ö©[£’¨óýpEjY¹u:Q›Ô­Q‰ÔÝ:Ö¨{]¹u:QËÊ­×µÞ­c]‘ZVn^S÷ºrëõD­wëXW¤–•[§µ¬Üz=R7vëXW tåÖéD-+·^OÔz·ŽuEjÙ¹uzM=èέ×_Ô×°²jtYµu:Áʪ­×#lc·Žuêñ!«¶N'jYµõz¢Ö»u¬+R˪­Ókj—º5*‘º±[Ǻ"uzÿpzït¢–U[¯'j½[Ǻ"µ¬Ú:¨MêÖ¨$j½[Ǻõ¤«¶N'jYµõz¤nìÖ±®HMU[|¸ÎЃĨwë<ÍMVmµž£qΩ÷bX @œuÓÖé„(›¶^OÐù%™zÖM۠˦­ÓkêY7m½ž¨õnëŠÔ²iët¢–M[¯GêÖ'dÖMÛiÑM[§µlÚz=QçËS/ºitÙ´uzM½è¦­×#uc·ŽuEêí¼"u©µlÚz=QëÝ:Ö¨WÝ´u:Q›Ô­QIÔz·ŽuEjÙ´uzM½ê¦­×#µ^i·¦-‹¶N'hY´õz‚Ö»u¬+Poºhët¢–E[¯GêóªÂÔ›nÚ}’ÓüM7m}êÖ¨$j½[Ǻ"µlÚ:¨'9Íߨi;5vëXW ÞuÓÖéD-›¶^ÔÝ:Ö©eÓÖé5õ®›¶^OÔkÈ®›¶A—M[§µlÚz=R7vëXךzîåx°ÉßÊŸøòWù‚A馭Öc(Jš¡ôûúÈ'›¶N>Ý´õú‹znìѱ®H-«¶N'jYµõz¢Î£+jYµ{]µu:Q˪­×µÞ£c]‘z.ç±@]ê5u¯«¶^Ô=:Ö©eÕÖéDmR·F%Q矸¢–UÛyÐU[§µ¬Úz=R7öèXW¤–U[§×Ôƒ®Úz=Që=:Ö©eÕÖéD-«¶^OÔyŽqE-«¶ó¨«¶N'jYµõz¤nìѱ®H-;·N¯©Gݹõz¢Ö—QWnçQWnNвrëõ}~f®¨eåvžtåÖéD-+·^OÔzŽuEjY¹uzM=éÊ­×µÞ£c]‘:êð2éÊ­OÝ•H}Þ㯨 W ž²rët¢6©[£’¨õ~ ëŠÔT¹Å‡ë ­1ˆŒ=:O3D“•[­çhœ8£å½B“ÛyÑ[§£ìÜz=Që÷|ѕ۠燡K½†^tåÖ뺱GǺ"µ¬Ü:¨MêÖ¨$ê|ÿ»¢–•Û ËÊ­Ó‰ZVn½©{t¬+P¯ºrët¢–•[¯'j½GǺ"µ¬Ü:½¦^uåÖë‰Zïѱ®Hî <Í_uåÖ§nJ¤nìѱ®@½éÊ­Ó‰Ú¤nJ¢Ö{t¬+RËέÓkêMwn½þ¢¾ºàmºj;oºjët‚•U[¯GØÆë Ô»®Ú:¨eÕÖë‰Zïѱ®H]ü ‰Ô¥^SïºjëõHÝØ£c]‘ZVmNÔ&ukTµÞ£c]kê¥ÓU[§µ¬Úz=Që=:Ö©eÕÖéµOÝ•HÝØ£c]‘š¦Îøp¡5‰QïÑyšZ¯«¶ZÏÑ8qBÓ;0¬"ʦ­ÓkÄ^7m½ž óK^Q˦mÐeÓÖéD-›¶^OÔzŽuêA7mNÔ²iëõHÝØ£c]‘Z6m^SºiëõD/oWÔ²iôô8½w:Q˦­×#ucŽuêQ7mNÔ&ukTµÞ£c]‘Z6m^SºiëõD­÷èXW¤–M[§µlÚz=RëõukŠÐ²hët‚–E[¯'h½GǺõ¤‹¶N'jY´õz¤>¯*L=é¦mÐeÓÖé5õ¤›¶^OÔzŽuEjÙ´u:Q˦­×µÞ£c]zÖM[§µlÚz=R7öèXW¤–M[§×Ô³nÚz=Q7®!³nÚ}+§¸@UêD-›¶^Ô=:Ö¨lÚâÃu†Ö$ÆüudÆ›¶áaÙ´ÕzŽÆ‰3šÞ­c=19ò<ÑM[—¡áŸ¨×Ænë Ô«®Ú:¨MêÖ¨$êukTuž"]Q®H-«¶N'j“º5*‰Zïѱ®H-«¶N'jYµõz¤nìѱ®@=骭ӉZVm½ž¨óO0õ¤«¶A—U[§×Ô“®Úz=R7öèXW¤NHœç;¨eÕÖë‰Zïѱ®@=몭ӉڤnJ¢Î³ ¦žuÕ6è²jëôšzÖU[¯GêÆëŠÔ²sët¢–[¯'j} ™uåv[tåÖé-+·^Ðçg†©]¹ ú|~ƺÔkêEWn½ž¨õëŠÔ²rët¢6©[£’¨õë Ô«®Ü:¨eåÖë‘ú¼Ç3õª+·A—•[§×Ô«®Üz=QëýÖ©qM×Zc{tžf€¶éÊ­Ös4NœÑòˆ2Ú¦;·A—[§×Œ›îÜz=Që÷|Ó•Û ËÊ­Ó ZVn½¡{t¬+Pïºrët¢–•[¯'ê|ÿcê]Wnƒ.+·N¯©w]¹õz¤nìѱ®H^”§ù»®ÜúÔ­QIÔzŽu­©÷NWnNÔ&ukTµÞ£c]‘ZVn^QûÔ­Q‰Ô=:Ö©eåÖéD-+·^OÔzŽuEjÙ¹u:QËέ×êë…,Úî½.Ú:PeÑÖë?Ü>܇û7ÕÏu»æì;]õCú¯ÎéuÇW=ßæ«ù½þí­»sîtÿ|ûåøP†ÿé¯ú—Ÿî_þ1Lëû÷Û‡ðôOá Ÿo_}¼ùûðñîÔ³}þüXº}ØÆîxþÇïn¿ ßâ®ûâþño÷ß}¼µìûí˜á†‰î2ö/÷¥{‡{?…i\7ì{žžÌ—·šëcí·¹–uÜ¢{ÿ÷áø{[pžûãùѾÞj?†ßI¶}î·µ_–h?¼Ã~<ƱŽç'ûí­öÓü˜ÂKŽÓ:‡KÀË~|‡ý^nÃÓ‡ãùÑ~˜Þj?O€>Ï]xÿÒ[?½Ç~?æÄã2ŽÇó£ýøæÞ2>†n˜—e ¯íçwØçe…‰ÌºÇó“ý›?zëqÉ8oö­k´_ÞaT»eÜçñx~´ŸÞüÑÛŽß}§yßö±›£ýúû5|t×£M4ÏOöoþè…ùɱ®Ÿöu£ýöû-|t§íøGÌŽçGû9ôÂÝ!¼Æ§Û²®åü~ÜÇG_þÁg[ú²ëîôoNÕð¦•7]ûú^oøÿxûêö‹ ÷3ýfÎ/ã]®MþúýýO÷ŸïÏËüíëðbáböñ~9^øxµçèþáø^ß?„'ÞÖ0]L ¦j^ïN¼%\>Ée>i•WòðZ»}ß™§iøDÛº-/Óç[zõiZ»ãD™üÇâ]{Ïëž„¼ò⻇Ïì®vÓð4=é§lzðΗ¼C¸GæÝÌ;V¼öIÈ«.—k~ßÚ÷ð-ßž¦õøö×~ ÿ¯>ÅŠ¿‡É`Š~c|^ Çpõ_Âô·þÝ&\c{ø…`x½ðô/þâþ‡û¿~÷ßþð»ß§È¿Ü·ð‘[‹wÅþþ<=ºüg•pù+·¸ÇÉZš›¿ªÝ?‡ÿóë›~ÉŸ*Kÿ‡ ¯û?dTz<¶Ô»¯õ{¥»?dxÝÿ!Ãëþ:ÿ1Mþpÿçþù ¹ýú)ü¯Ïáÿýÿ1ìÿÚØ¯?$v®‰¦©ÚÔæ@¹Fª†ÿIm›hš ©ÍÑi@e”k¤jøgêó¡+js \¥÷öè´ŠÊêDíRëQIÔ¶‰¦©ÚÔæ@¹Fª†ÿIm›hš ©‹ß„‘ºÔ‰Ú¥Ö£©Ïõ‰+ꨇG sã‡)ƒƒÄhÛhÈ€hæÀ8`z'4Û8ÒˆXÄà=·:!šóâC¡óO\Q®@=Ú“Ó**«µK­G%QÛNš¦Bêü¥™ºÔkê*µ•H=5>!£=OtsrP™óä©þ'u¾¼]Q›óä*}²'§UTV'j—ZJ¤v4M…Ôæä4 6çÉ5R5üOjÛIÓTHmNN*sž\#UÃÿ¤Îgº¢6çÉUúlON«¨¬NÔ.µ•Hmû$ ¡ÍÁimŽ“k„jøŸÐ¶“¦©ÚœœTæ8¹Fª†¦>¯*WÔæ<¹J_ÊÙ+P[¨]j=*‰ÚvÒ4R›“Ó€Úœ'×HÕð?©m'MS!õ2©i¾Õ‰Ú¥Ö£©]'MS!µ99 ¨ÌyrT ÿ“ºq Yìyr•¾Ú³Ô**«µK­G%R»Nš¦BêúÞqã‡)ƒƒÄ˜¿ŽWŒx'YíyqÀ(ô"%Îh¶“¦€q³G§U V'Fs^\c "uï:iš ©ÍÑi@m”k¤jøŸÔyŠtEm”}“ó|«µK­G%QÛNš¦êÝVQY¨79Ïßè@¹ÞuÒ4R›£Ó€Ú(×HÕð?©óGýŠÚ(zzMžç[¨]j=*‘ÚuÒ4UM=töè4Oåt¢v©õ¨$jÛIÓTHmŽNjs \#UÃÿ¤Î³+js èæ 5 2Ê5R5ü3µë¤i* îíj•Õ‰Ú¥Ö£’¨å%Äš"tzÿpžïôº ­%BŸŸ™+ê©Íj@e–k¤jøŸÔ¶“¦©€z°G¨UTV'j—ZJ¢¶4M…Ôæ5 6Ë5R5ü3õy¿¢6ËnV*s0[#UÃÿ¤¶ý$MÔ4#hUóëü‘ÏõÑÀŸ ìÁq~†¯õªNš¡ò8^@Ù“å@7g¨Õþöd9ÐÍÉqü™Z¿Ó£=Xts„@™ƒå¡þÚ5Ñ4POöµŠÊêDíRëQIÔù®ÇÔ“=XôÙNs+êR¯©«ÔzT"µk¢i*¤Þí4·¢2Ë5R5üOjÛDÓT@=Û#Ô**«õ®&÷^OÔ¶‰¦©Ú¡Ôæ`¹Fª†¦vM4M…Ôæ 5 2Ë5R5üOjÛDÓT@½Ø3Ô**«µK­GåE}uéXìr ›£ÓÖ(×Óðϰ=:Ö©ÍÑi@e”k¤jøŸÔzŽuêÕVQY¨]j=*‘ú|ˆ©W{ èæè4 6Ê5R5üOj½GǺ"uþØá¥ÃêDíRëQIÔzŽuêͦVQY¨]j=*‘º±GǺ"u=„7~˜2è1HŒzÎÓ ÑÌqÀ(ô"%Nhz†µÄÝžœV!XÍyq!ÈÐù'˜z·çÉžÿ ¯ V¯©«ÔzTµÞ£c]‘z‘Ó{«µK­G%R7öèXW¤Þ75½·:Q/rz¿ÓyrÅÄ+jsžœ×ÇΞœæ©œNÔ.µ•HÝØ£c]‘ÚœœÔæ<¹Fª†ÿI­÷èXW¤NwPœÞ;¨]j=*‰Zïѱ®@ÝÛ“Ó**«µK­G%RëõukŠÐæà4€6ÇÉ5B5üOh½GǺ"µ99 ¨ÌqrT ÿLÝØ£c]z°'§UTV'j—ZJ¢Ö{t¬+R§ÿÀi¾Ókê*µ•D­÷èXW¤6'§•9O®‘ªáŸ©{t¬+Pöä´ŠÊêDíRëQIÔkÈhϓݜ¥Ô“"ËT ÿLÝØ£c]‘š¦Ðø0eÐcó×ñŠï“=/®b”zg4½GÇz £9:­b°zÍh34üõØØ£c]‘ÚTæ@¹Fª†ÿI­÷èXW žíÑi•Õ‰Ú¥Ö£’¨õëŠÔ£ñVÔæ@¹Fª†¦n,°[W¤^å<ßêDíRëQIÔù£~E]¸õbN«¨¬NÔ.µ•HÝØ£c]‘ÚÔæ@¹Fª†ÿI­÷èXW¤6G§•9P®‘ªáRçÙÆµ9PtYÚu:Q»ÔzT"ucŽuêUwnNÔ²sëõD­/!«®Ü]Vn^CW¡õ Dèó3sE-+·A—•[§µ¬Üz=Që=:Ö¨7]¹u:QËÊ­×µÞ£c]‘ZVn^SW©õ¨DêóE-+·Aßä<Ó•Û:µ•D­wnXW Þ±r‹S=‘±±Oçi†h²r«õ"%ÎhyD¯Ðdç6è²sëtb”[¯'jýžïºr;uºrët‚–•[¯GèÆnëŠÔùKKÓ|§WÔuj=*‰:ßÿ®¨ W¤–•[§µK­G%R7vëXW îuåÖéD-+·^OÔz·ŽuEjY¹uzM]¥Ö£’¨õnëŠÔ²rët¢–•[¯GêÆnë Ôƒ®Ü:¨eåÖë‰ZïÖ±®H-;·N¯©«ÔzT^Ô×°²jtYµu:Áʪ­×#lc·ŽuêQWmNÔ²jëõD­wëXW¤–U[§×ÔUj=*‘ú|èŠZVmƒžÞ?œÞ;¨eÕÖë‰ZïÖ±®H-«¶N'j—ZJ¢Ö»u¬+POºjët¢–U[¯GêÆnëŠÔTµÅ‡)ƒƒÄ¨wë<ÍMVmµ^D£Ä MïŰ€8ë¦­Ó Q6m½ž óO0õ¬›¶A—M[§×ÔUj=*‰ZïÖ±®H-›¶N'jÙ´õz¤n}BfÝ´Ý´u:Q˦­×µÞ­c]‘Z6m^SW©õ¨DêÆnëŠÔÛy9DêR'jÙ´õz¢Ö»u¬+P¯ºiët¢v©õ¨$j½[Ǻ"µlÚ:½¦®RëQ‰Ôz¥Ýš"´,Ú: eÑÖë ZïÖ±®@½é¢­Ó‰Zm½©»u¬+R³W¤.õšºJ­G%QëÝ:Ö©eÓÖéDíRëQIÔz·Žuê]7mNÔ²iëõHÝØ­c]‘Z6m^SW©õ¨$êÆ5d×M۠˦­Ó‰Z6m½©»u¬kM=w€r<ø~?ñå¯"ò+‚ÒM[­çPuÒ ¥÷èØ×G>Ù´u:ð馭×_ÔscŽuEjYµu:Q˪­×µÞ£c]º×U[§µ¬Úz=Që=:Ö©g;Ï­¨K½¦®RëQ‰Ô=:Ö©eÕÖéDíRëQIÔù£~E-«¶ó «¶N'jYµõz¤nìѱ®H-«¶N¯©«ÔzTµÞ£c]‘ZVmNÔ²jëõDçWÔ²j;ºjët¢–U[¯GêÆëŠÔ²sëôšºJ­G%QëKȨ+·ó¨+·N'hY¹õz„>?3WÔ²r;Oºrët¢–•[¯'j½GǺ"µ¬Ü:½¦®RëQIÔzŽuEêü©ÃKȤ+·uj=*‘ú¼Ç_Q®@=ëÊ­Ó‰Ú¥Ö£’¨õ~ ëŠÔT¹Å‡)ƒƒÈØØ£ó4C4Y¹Õzg´<¢Wh²s;/ºsëtb”[¯'jýž/ºrôñü°#t©×ÐUh=(º±GǺ"µ¬Ü:¨]j=*‰:ßÿ®¨eå6è²rët¢–•[¯GêÆë Ô«®Ü:¨eåÖë‰Zïѱ®H-+·N¯©«ÔzTµÞ£c]‘:ÝAyš¿êÊmZJ¤nìѱ®@½éÊ­Ó‰Ú¥Ö£’¨õëŠÔ²sëôšºJ­GåE}uÁÛtÕöøwŽåì~ÓUÛ:¬ŒÛØ£c]z×U[§µ¬Úz=Që=:Ö©‹_!‘ºÔkê*µ•H}>tE]¸"µ¬Ú:¨]j=*‰Zïѱ®5õÒ骭ӉZVm½ž¨õëŠÔ²jëôŠºN­G%R7öèXW¤¦©3>Lô$F½Gçih½®Új½ˆF‰šÞa-Q6m^#öºiëõâŠZ6mƒ.›¶N'jÙ´õz¢Ö{t¬+Pºiët¢–M[¯GêÆëŠÔ²iëôšºJ­G%Që=:Ö©W5½w:Q˦­×#ucŽuêQ7mNÔ«šÞ{=Që=:Ö©eÓÖé5u•ZJ¢Ö{t¬+R˦­Ó‰Z6m½©õúº5EhY´u:AË¢­×´Þ£c]zÒE[§µ,Úz=R7öèXW¤–M[§×ÔUj=*‰Zïѱ®H-›¶N'jÙ´õz¢Ö{t¬+PϺiët¢–M[¯GêÆëŠÔ²iëôšºJ­G%Q7®!³nÚ}+§¸@µÙ)²LÕðÏÔ=:Ö¨lÚâÔAAbÌ_Gf\°i–M[­Ñ(qFÓ»u¬2ʦ­Ó‰Q6m½þ¢^»u¬+P¯ºjët¢–U[¯'j½[Ǻ"õ´šoE]ê5u•ZJ¢Ö»u¬+R˪­Ó‰Ú¥Ö£©»u¬+Poºjët¢–U[¯'êüQgêMWmƒ.«¶N¯©«ÔzT"uc·ŽuEjYµu:Q˪­×µÞ­c]z×U[§µ¬Úz=QçÙSïºjtYµuzM]¥Ö£©»u¬+RËέӉZvn½ž¨õ%dו۵ӕ[§´¬Üz=BŸŸ¤¶®H-+·N¯¨ëÔzTµÞ­c]‘ºøËR—:QËÊ­×µÞ­c]‘ZVnNÔ.µ•H}Þ㯨eåvíuåÖéD-+·^OÔzç†uEjªÜâÔAAdlìÖyš!š¬Üj½ˆF‰3ZÑ+4Ù¹ ÿ9œÿ oú ;·.CÃÿ¤Öïù +·á?eåÖé5tZJ„nìÖ±®H-+·N'jY¹õz¢Î÷¿+jY¹]G]¹u:QËÊ­×#uc·ŽuEjY¹uzM]¥Ö£’¨õnëŠÔé5qšït¢–•[¯'j½[Ǻõ¤+·N'j—ZJ¤nìÖ±®H-+·N¯©«ÔzTµÞ­c]‘ZvnNÔ²sëõõÕ4hÒUÛuÖU[§¬¬Úz=Â6vëXW¤NïOïg]µ­SëQIÔz·ŽuEjYµu:Q»ÔzT"õùе¬ÚYµu:Q˪­×µÞ­c]‘ZVm^SW©õ¨$j½[Ǻ"µ¬Ú:¨eÕÖ둺±[Ǻ5~Xñ^ñëü‰OïÔYñc»êª­Ös¨:i‚Ò;0ìË#žlÚ:ðtÓÖë :ÿĵlÚ]6mNÔ²iëõD­÷èXW ÞtÓÖéD-›¶^Ô=:Ö©g;½­¨K½¦®RëQIÔzŽuEjÙ´u:Q»ÔzT"ucŽuê]7mNÔ²iëõD­÷èXW¤–M[§×ÔUj=*‰Zïѱ®H-›¶N'jÙ´õz¤ÖëëÖ´†Þ:]´u:AË¢­×´Þ£c]‘Zm^Qשõ¨DêÆëŠÔ²iët¢–M[¯'j½GǺu¯›¶N'jÙ´õz¢Ö{t¬+R˦­Ókê*µ•HÝØ£c]‘ºø›*R—:Q˦­×µ¾†XW tÓÖéDíRëQ‰Ô=:Ö©©i‹S=‰1¯/T6mµ^D£ÄMïѱÀ8ꦭӉQ6m½þ¢Þ{t¬+RçÿÂ˨«¶uj=*‰Zïѱ®H-«¶N'j—ZJ¢Ö{t¬+R˪­Ó‰ZVm½©{t¬+POºjët¢–U[¯'êüQgêIWmƒ.«¶N¯©«ÔzT"ucŽuEêtÄy¾Ó‰ZVm½ž¨õë Ô³®Ú:¨]j=*‰:Ï6˜zÖU۠˪­Ókê*µ•HÝØ£c]‘ZvnNÔ²sëõD­/!³®Ün‹®Ü: eåÖëúüÌ0õ¢+·AŸÏÏR—zM]¥Ö£’¨õëŠÔ²rët¢v©õ¨$j½GǺõª+·N'jY¹õz¤>ïñL½êÊmÐeåÖé5u•ZJ¢Öû5¬+R㚦 z "ccÎÓ Ð6]¹Õzg´<¢Œ¶éÎmÐeçÖé5ã¦;·^OÔú=ßtå6è²rët‚–•[¯GèÆë Ô»®Ü:¨eåÖë‰:ßÿ˜zו۠ËÊ­Ókê*µ•HÝØ£c]‘zµÞŠªÔ‰ZVn½ž¨õëZSï®Ü:¨W9Íß©r[ü¾‚ÔÖ©eåÖéuZJ¤nìѱ®H-+·N'jY¹õz¢Ö{t¬+RËέӉZvn½~P_,dÑvïuÑÖé„*‹¶^ÿáöá>Ü¿©~®Û5gßéjl=¤ÿêœVw|Õóm¾šßëßÞºû7ÇáN÷Ï·_ŽeøŸ¾ñªùéþå÷ñþÛ¿ß>„§ Oø|ûêãýË߇ÇpÿøÃm;þÎ_>~,Ý>lcw<ÿãw·ß„oq×}qÿø·ûï>ÞZöCÿèçnÙÇi—h?½Ã¾_ë6ÎáW‘ãùѾŸßj?qƵ[û.ÙÏï°Ö0Å™ûmŽçGûñÍé§ñ1÷S7­û¾ÎÑ~y‡ý¸?ú)\»éx~´ŸÞœ~žË~œ8lÓí×wا¥Û<®ëñüh¿¼9ýч]שæµOöÛ;ì—>Œ^îÝñüh¿¾9ýº>ÂǦ[÷mÞÆh¿¿Ã~=þU»~ ¼ãùÑ~súíøn`Ÿã¯ïºwøoc¾1Ìœ–ã^þ}—ã‡KdxO·~XîÃxœhZÜnÆðµ/Vëœþ£Óoã4?¦òÖ~¼(>è_éöÕíúÍÌÛ÷S¹èöë÷÷?ݾ?¯_÷¯WØæ×0ös|µþ9d8®÷áŽ@׺~cœ¯n!yÿòËg¹˜ñYƒx£úa~„_z†nŸŸ¶ýîµáCþ²}¾QW’þy¼|¾ 0ñXÛg1±ºªöÇ?‚2n}øx=mñÖeÛƒøò[Õ¯Óc˜ó¼ž‰çŠØ>‹‰Õ•°_ .áÒ­OÛzŒûëAÞ×Ç·] ¯²}#«ËW¿•¥úñi[òõ}kÂä ­H]}’w입ȽºäÔÇ~m˜úýi[òp9ÊÃtÔµ¯¾tñ§Q}ÙÂmÿ1wݾtÈw=¤Ë¦yæÃœÕWÍ=‹yÕWm˜:éÞš—m|=}Âïu}ª^|pûê»æžÅÈê»6 Îá“»G[@¾¾<?? ã®á]¿¯ š¾æˆáƒ¾M[ú¦D³ê åéYƒúB…>¦LOÄðZó¼OÏqÝÙã–·Í~XÓÛͪ/’¿³ã³äÝ«ÛÛ qØ^µÅy\Ž'7®ªã¼ÿ¬oºG·êKäñYò~ÕLz1ÎÃ#Œß°wÓñd{=~Mü?<ÿ‰¿……‰XJ0=¦”a‹7ƒ!|–æãè®0kx½Ú‘ã»?qÿöýø×üã¯?ºÿûÿÿñï÷?ÿæïß}÷oßÿïïþó)å/÷ðëÇ#ܧµüSÄæâùo@[_n·Žó«8E¼¿2Ý?ßûÛ×7|¥Ÿ ó·’×Ãámÿðó|øv<ì~z~Œ'RC¿ÁËšçy¾ ñ#Ò1CýpÿOáë#ýkÃ0€Ýb+d5doôúTçJLÈP¢™?šÐ¯>þáŒf›JÈp¢mö/#šÔ)%NhçeÁ möà¶óas  ¢QâŒf;GÈP¢™C×Mèg4[,B†m·'«UhR§h”8¡S6h»=gí|ØŸhB§h”8£Ùâ2”hÅïȈ&tŠF‰š-‡ B&›»âÃÄIñ2Gþ g ò|éÒßv æ °KÐ"Mö·Ýt,Ảf>ºÖ)åKh¾GÖãDëí±ešÔ)%Îh¶¥ƒ %Zþù‘Ñ„NÑ(qBsUd(ÑÌd€&tŠF‰3šíÛ Ã‰6ØSÆ*4©S4JœÑò=Ü  ö̱óas”  ¢Qâ„fw½#BI¶^Ï)o ’QàLfë1Èp¢öL° Mê'4×A†mTsC­S4JœÑlÑJ4sº  ¢QâŒfÛ,Èp¢Mö ¯ Mê'´óÖiÐ&{¢×ù°9¨ ЄNÑ(qFãoèdí:^&17Ô:E£Ä Í•O¡D3GnšÐ)%Îhù=vhæ®ôðlϤªÐ¤NÑ(qF³d(ÑðJJ(å‹ ½«‘”Ž¥ÿÞ«É¡ÕëÉa-ÒdÿücÎßœ—•^ì1XUt©SÊ—ÑlëJ4sØ  ¢Qâ„æªÈP¢mrr(uŠF‰3ZH‡¶ÑäpµÇVUhR§h”8¡¹’2”hæl*@:E£ÄÍ61¡DK¯À“C©S4JœÑò5ß¡'ÚfO™ªÐ¤NÑ(qBs d(ÑÌQR€&tŠF‰3~A7{®Ôùðz=ù»5tJFÙ ëÐÌ)RéáÝU¡I¢QâŒf+ÈP¢MvU¡ ¢QâŒf{ÈP¢™cžMè'´ó"ìÐÌ¡Oñᥳg9y4­S4JœÑìîud(ÑÌM€&tŠF‰š+* C‰fN54¡S4JœÑòC͜є¦¯  ¢Q⌆KÈÖãDÛì!8šÔ)%ÎhùnÐ6{$Îù°9éЄNÑ(qBÃ*kQ’írJ(uJF3.![m·GÖThR§h”8¡ñ²õ(Ñf;ªÐ„NÑ(qFÃ%dëQ¢™ÃgMèg4\B¶míì3Më'´óÖY¢Y-]qn¨uŠF‰3~C­G‰¶©¹¡Ö)%Nh¼„l=N´ÞžS¡I¢Q⌆KÈÖ£D3G¦šÐ)%Îh¸„l=J4ºÆãÃJù"ÈÈKÈÏ—>ý{€Kbõjr˜A‹4Ù?ÿ˜ñìq.çÃæ”–*ºÔ)åËh¸„l=J4s   ¢Qâ„Æ+TÖãDí+šÔ)%Îh¸„l=J4sª   ¢Qâ„ÆKÈÖ£D[¯'·†NÑ(qFÃ%dëq¢Mö|” Mêg4\B¶%š(­Ü:E£Ä —­G‰–ðÞ#uŠF‰3~A'ìž„‡e÷D딌'2^B¶'Ú¬»'Z§h”8£á²õ(Ñd÷Dëg4\B¶%šìžh¢Qâ„v^„uOÖEwO´NÑ(qFÃ…HëQ¢Éî‰Ö)%Nh¼„l=J´|ÑÆo¨Ô)%Îh¸„l=N´Ë'ø0R¾ ‚ïÞú°ö²{âôzn¸–Ý“×%{^L¶¯X‚Èî‰Ö)åËh¸˜l=N´MwO´NÑ(qBãÅdëQ¢åïÎ ¥NÑ(qFÃÅdëQ¢Éî‰Ö)%Îhù•uOÖ]wO´NÑ(qBãÅdëQ¢Éî‰Ö)%Îh¸˜l=J4Y>Ñ:E£Ä­"¢ÎÉÖéΉÖ)MD¼˜l=J4Ù9Ñ:E£Ä “­G‰&;'Z§h”8¡ñb²õ8ÑzÝ9Ñ:E£Ä “­G‰&;'Z§h”8£áb²õ(Ñ–érÎwkè'´ó»êÐ MvN´NÑ(qFÃÅdëq¢ ºs¢uŠF‰.TZ‹’Œ®Ÿø0qR¼Ì‘'d1þ²râôjN˜A‹4Ù“í+ž £®œh‚P¾„vñX9 ËʉÖ)%Îh¸˜l=J4Y9Ñ:E£Ä “­Ç‰6éʉÖ)%Îh¸˜l=J4Y9Ñ:E£Ä-ßÃUNÂÃépN¨uŠF‰.UY‹“lÖ­S2 œÉp1Ùz”h²q¢uŠF‰/&[MVN´NÑ(qFÃÅdëq¢-ºr¢uŠF‰3.&[m’sC©S4JœÐÎ[§C›hn¸èʉÖ)%Îhü ]°r²­ºr¢uŠF‰/&[MVN´NÑ(qFÃÅdëQ¢ÉʉÖ)%Îh¸˜l=N4¼Âãm¡‚¤lbæ…d3ÛtçÄéõ´°¼Âo…sþ댓ð°ìœhBP¶Œ†KÈÖ£D“­S4JœÐx Ùzœh»îœh¢Q⌆KÈÖ£DË7-¼ãH¢Qâ„ÆKÈÖ£D“­S4JœÑp Ùzd´½Ó­S4JœÑp Ùz”h²s¢uŠF‰/![M–O´NÑ(qF£/¨µ8ÉzÝ=Ñ:%£À‰Œ—­G‰&»'Z§h”8£á²õ(Ñd÷Dëg4\B¶'Ú »'Z§h”8¡aƒ6`÷$<,»'Z§h”8£á"¤õ(Ñòg¿ R§h”8¡ñ²õ8ÑFÝ=Ñ:E£Ä —­G‰†ƒA(åË øî;2²{âôj^˜9‹0Éž—í+ž “îžh‚P¾Œ†KÈÖ£DÏ/)¢ ¢Qâ„ÆKÈÖ£D“Ý­S4JœÑp Ùz”h²{¢uŠF‰3Z~%‡FÝ“}ÖÝ­S4JœÐx Ùz”h²{¢uŠF‰3.![m—sC©S4JÑO´Ó”pÑ­S" šˆx Ùz”h²s¢uŠF‰3.![MvN´NÑ(qBã%dëq¢­ºs¢uŠF‰3.![­øU Ñ„NÑ(qFÃ%dëQ¢ÉΉÖ)%NhçwÕ¡QçdßtçDëg4\B¶%šìœh¢Q℆˓֢$ÃK;=Lœ/sä ‡)/ô»®œ8½žneåäõ_Ù—í+– ²r¢u Bù/![MVN´NÑ(qFÃ%dë‘ÐÆ®“•“†NÑ(qBÃ%dçQ¢©ÊIC§h”8£Ñ²ó(ÑV1'lèg´|whk='»^VN:E£Ä ¨œEI¦' ’QàLFKÈΣD+FÑ„NÑ(qBÃ%dçQ¢©ÊIC§h”8£Ñ²ó8ÑY9ièg4ZBv%šªœ4tŠF‰ÚyëthP99V•“†NÑ(qFãoè@•“±e夡S4JœÐp Ùy”hªrÒÐ)%Îh´„ìÞ¿ü}x_‡ûÇþn_ LÁ×1|…÷ã>~wûM÷èº/îÿvÿÝÇ[Ë~>öçkU´_Þa?÷ÇÖÛu—ã¢ýôVûe|,]¾áGûõ=öûc׹߯ã¢ýöVûµ¬yÉ2Ùoï°?þÙÓe¶±;^àeßo¶ß[^­Löû;ì×ù8M/ àz¼@´_Þjné/ϱ{‡çÞ²ð:>¤/ÃáͶ=L'Æ<…Þý;¼÷þø{â¼®ÃñÑþ­¶g}cÉ×Êh?¼Çþø× —ðu݈öoý°»DÆüëJ²ßnÿÜD¾[–ã^öã[?lÇßùæ¼h˜ì§wØ÷áÝ›÷m c6¦÷~|ë‡Í]”£ý;®sÏßÿö~—îx—ý”?zá^âÓmêúòÏ™Ãxlç+þè0osù»šÓ¼9}œŽK¼¸Ö»×÷zÃÿÇÛW·_ük¸Ÿé#¦Ï_tû~*g~ýþþ§ûÏ÷çåöux±~›_#ÞÏá…‡ðj¯+Éޱ½·_º Má»ÐåŒGˆïN¼ \>Ë…ÏRWï©;¦MùõúãN;ÌëËöùž^}ž¦0«Þ÷<,L¼UÄöYL¬®¸SøØõÁhx]râ­Ë¶ñ|I<íÇ/‘éòŽÄSWÛg!ñ¤®™Ótü»Ã°¿n 0Æýõ ¯Çßóòý˜‘‡ Ù>‹‘Õ…n:þøm\—×]¹¿åãü›!»1òT!Ûg1²º:MÛq,Ã2ÅiŒòõmq>Ö9÷«ï4¯¾|îYŒ¬¾|s¸Î}Þç§- _Žò<õÇÂzúà #Wß>÷,FVß¾yœ]˜^-ѶF¯Gy™ŽÍ:éw]Dž«¯Ÿ{"Ïêë<ý>c´äëϲ¿¹ yÙÓðEóêëWݲèYrž±?WŒž³ªÃvÜœ®ßÇ®?^@_•qî]Óf§XsõíóÄø,97؇ðKÆœ‰»=¼·{¸Œä‰Ù[ÇøyÊþ°Ú_€æúËç¦ ø,ù{ËñO œÄÇ¿tôxŠ_›ÄUÙ!ÏËñÏ0¥A4¯¿|Ÿ%ÙÈáj‘‘çãß>Þ†½›Ž°WåãWüÿêS¯øûx˜$¦˜Ócz}šæã¿ÌÓóó¾¶áWò5L¦ôõ÷þâþíÿúñ¯ÿøÇ_þtÿö?þxÿóoþþÝwÿöýÿþþç?‘á—û¼¯a‚t"Ø_îÃäéœÏÿäÑù“qZ—f±áwØðv„ÿóë›~ÉŸÈr1£jõê ›ç/Çñ&iÿl­ßA7qzõÇÐÍóuþcBýáþÏüóKsûõSø_ŸÃÿûç‡ý_ûõ'ÈÎ34R›“N€ÊÒHÕð?©mgCSõfA©¨¬NÔ&ukT"õù;Soö ÐÍù(@mŽUi¤jøŸÔ¶é¡©ÚTæÄ•Fª†ÿImK š ¨w{ªJEeu¢6©[£©Ï?Ä3õnO–Ý¸Ôæœ–Fª†ÿIm«#š ©‹¿O u©µIÝ•Hm» ª†ž»GÍrã‡ë­!Hˆù/%Èø4C4sÒ 0 =GãÄͶR42š³]€Á º9¶¦1‰zÒoºuêÞûRQY¨MêÖ¨$êü•cêÞ}z~…‘©K½¦v©[£©]ÍES!µ9,¨Ì3T ÿ“Ú6`4Pö™ŠÊêDmR·F%Qç)Sö,ÐÍ3@mN¦i¤jøgj»+_C!´9| Ì™5P ÿÚVj4Pö`šŠÊêDmR·F%RŸŸt¦íá< ›3k€ÚuÓHÕð?©mGS!µ9ΨÌ)8T ÿ“Úvt4POö¤›ŠÊêDmR·F%RŸÓ¦6®HmÁjsvN#UÃÿ¤n\C&{èéýÃi¾Ó‰Ú¤nJ¤v¥M…Ôæè 2'î4R5üOêü¡¹¢6ÇUúlÏÙ©¨¬NÔ&ukTµ­ i*¤®o7~¸ÎЃcïZDÈ€hæÔ`zŽÆ‰3Z¾m_¡™‰*}±çôT V'FsQc 2µíi*¤6Gøµ9ù§‘ªáŸ©]-IS!µ9ݨ̡@T ÿ“:ÿĵ9á¨ÒW{ðOEeu¢6©[£©]™IS!µ9¨ÍQBT ÿ“Úöœ4R§×äy¾Õ‰Ú¤nJ¢ÎwÀ+ê¨7{¤PEeu¢6©[£©];JS!µ9m¨Í!ET ÿ“Z_B6{àèæ"€2Ç5B5ü3ô™ãŠÚœÅTé»=¢¨¢²:Q›Ô­QIÔ¶n¥©z*g´@]ê5µKÝ•Dm›Xš ©ÍÁF@eÎCj¤jøgêó¾sEmwòúÒÙ3<•Ó‰Ú¤nJ¢¶ M…Ôæ8$ 6§(5R5ü3µ«vi*¤6(•9w©‘ªáR燮¨ÍqQ•N†…®&ž¿•?ñé]!–ÞÆä'øZ™(hbr 1í|æè¥Úߞغ9Uª‘?SçKñµ9~ ts*P™Ãœ©þ™ÚõÊ4PöÀ¦ŠÊêDmR·F%QÛÊ™¦B깜Æu©×Ô.ukTu~É+ê©Í1O@eN‡j¤jøgjWTÓT@=Ú# **«µIÝ•Dm;lš ©ÍéP@m•j¤jø'ê«KÇhÆÝœ0昩F˜††mìѱ®@=Ù£¤**«µIÝ•D­÷èXW¤6§Lµ9œª‘ªáŸ©{t¬+RojRït¢6©[£’¨õë Ô³=›ª¢²:QojRïõD­÷èXW¤6ÇVµ9íª‘ªáŸ©{t¬+Rç^C¬NÔ&ukTµÞ£c]z±Ç_UTV'j“º5*‘Zo×°¦]à®#´† !æ©ÞãÅx𣴀Qè9'ÎhzŽõÆÕžU1X͹`1HÔ=:Ö©³ŒW«×Ô.ukTuþÊ]Q®HmŽÜ*sRW#UÃ?S7öèXW¤6§q•9Ä«‘ªáRë=:Ö¨7{PWEeu¢6©[£’¨õëŠÔæ / 6G5R5ü3µ^_·¦n <»·:A›Ð­AIÐzŽuêÝžüUQY¨MêÖ¨Dêó“ÎÔ»=ý ts(P›³Ä©þ'µÞ£c]‘ÚœT昱Fª†ÿI­÷èXךzíìQbžÊéDmR·F%R7öèXW¤N÷œæ;½¢ö©[£’¨õ5ĺ"µ9€ ¨Ì¹eT ÿLÝØ£c]º·g“UTV'j“º5*‰:h˜º·ç³n2jsþY#UÃÿ¤Ö{t¬+RÓ®3´ÆàÅ86öè<Ím°Ç¢UŒRÏÑ8qFË·mFì‰o ›ƒÐ*«×Œ6CÃÿ¤Ö{t¬+R›3ҀʭÖHÕðÏÔvë Ô£=>­¢²:Q›Ô­QIÔù'˜z´GÈnNVjs [#UÃ?S7öèXW¤^ϯR—:Q›Ô­QIÔzŽuêÉžÇVQY¨MêÖ¨$ê|dêÉžIº,í:½¦v©[£©{t¬+RËέӉZvn½ž¨õ%dÒ•Û ËÊ­Ó ZVn½¡ÏWÔ²r»Îºrët¢–•[¯'j½GǺ"µ¬Ü:½¦žuåÖë‰Zïѱ®H-+·N'jY¹õz¤>ï;WÔ²r».ºrët¢–•[¯'j½1ú"µ¬Ü:½¦^tåÖ둺±GǺ"õ&çù‹®ÜúÔ­QIÔù¡+êMÎóWìÜâÃu†Ö$FýqX±r–•[­çd8‘5vëXdÜòw”ÞóUWn]††ÿI/ÊWÔ…+Poºrët¢6©[£©»u¬+Rç/-Nó7]¹õ©[£’¨õnëŠÔ²rët¢6©[£’¨õnë Ô»®Ü:¨eåÖ둺±[Ǻ"µ¬Ü:½¦ÞuåÖë‰ZïÖ±®H-;·N'jÙ¹õú‹úVVm·NWmN°²jëõÛØ­c]‘ZVm^QûÔ­QIÔz·ŽuEjYµu:Q˪­×#uc·Žuꡦ÷N'jYµõz¢Ö»u¬+R˪­Ókj—º5*‰ZïÖ±®HÞ?œÞ;¨eÕÖ둺±[Ǻ"µ¬Ú:¨MêÖ¨$j½[Ǻõ «¶N'jYµõz¤Ö7¬)BSÓ®#´† !æ©Þ#ÞIÝ´ÕzŽÆ‰3šÞ­c=€qÔM[§£lÚz=R·ÞôQ7mƒ.›¶N¯©GÝ´õz¢Î_¹+jÙ´=ØVÓ{§µlÚz=R7vëXW žtÓÖéD-›¶^OÔz·ŽuEjÙ´uzM=馭×µÞ­c]‘z;o=H]êD-›¶^Ôz¥Ýšô¬‹¶N'hº5( ZïÖ±®H-‹¶N¯©g]´õz¤>?éWÔ²itÙ´u:Q˦­×µÞ­c]zÑM[§µlÚz=QëÝ:Ö©'9Í_tÓÖ§nJ¤nìÖ±®H-›¶N'êINójÚNÝ:Ö¨WÝ´u:Q˦­×#uc·ŽuEjÙ´uzM½ê¦­×uþÐ\Q˦mÐeÓÖéD-›¶^OÔz·Žuj¼ßáMrÕM[ŸÿÅ77vêðìyÓU[­ÇP”4Cå›õ”®Ú]Vm|ºjëõD­÷èXW¤–U[§µ¬Úz=R7öèXW ÞuÕÖéD-«¶^OÔù'˜z×UÛ Ïå<¨K½¦ÞuÕÖ둺±GǺ"µ¬Ú:¨MêÖ¨$j½GǺÖÔ{§«¶N'jYµõz¢Î÷=¤¶®H-«¶N¯¨}êÖ¨DêÆëŠÔ²sët¢–[¯'jy ±¦ÝëÊ­Ó ZVn½¡ÏLÝëÊmÐeåÖé5u¯+·^OÔzŽuEjY¹u:QËÊ­×µÞ£c]zЕ[§µ¬Üz=RŸ÷¦tå6è²rëôšzЕ[¯'j½)ú"uþØá%dЕ[Ÿº5*‘º±GǺõø•[§µIÝ•DbjãŠÔÔ¹Å‡ë ­1HŒúã0bå6<,+·ZÏÉ8p"kìѱÀ8éÊ­Ó‰QVn½ž¨óE™©']¹ úx^XºÔkêIWn½©{t¬+RËÊ­Ó‰Ú¤nJ¢Ö{t¬+RËÊ­Ó‰ZVn½ž¨õë Ô³®Ü:¨eåÖ둺±GǺ"µ¬Ü:½¦žuåÖë‰Zïѱ®Hî <ÍŸuçÖ§nÊ‹úê‚7ëªí¾èª­Ó Ö„m F„mìѱ®H-«¶N¯©]µõz¢Ö{t¬+R˪­Ó‰ZVm½©{t¬+P¯ºjët¢–U[¯'j½GǺ"uñë:R—zM½êª­×µÞ£c]‘ZVmNÔ&ukT"ucŽuêMWmNÔ²jëõD­÷èXW¤–U[§×Ô›®Úz=RëíÖ¡qêL×ZCóTïŠo{»nÚj=GãÄMïѱÈ(›¶N¯wÝ´õz¤nìѱ®H-›¶N'jÙ´õz¢Î_¹+jÕ´»N6m½NÔ²iëõH­÷è8W¤VM[¯{ê*ukTµÜ£ã\‘:½(Mï½NÔªi[é‰ZîÑq®@Ý˦­×‰Ú¤nJ¤–ëëΡUÑÖë5t/‹¶•ž åçŠÔòßv:Q«¢m¥Gêó“~E­š¶‡®š¶^'jù/){=QË=:Ψٴõ:Q«¦m¥'j¹Gǹ"µjÚz½¦dÓ¶Ò#µÞ£ã\‘Z5m½NÔªi[鉺q dÓvìFÙ´õ:Q«¦m¥Gj½Gǹ"µjÚz½¦eÓ¶ÒuþÐ\Q«¦í¡oå¨J¨UӶҵܣã\z¢¦-?\ghÁ‹qÕût^fˆ¦ª¶ =GãÄ-ß¶¯ÐTÕöГ#Íó½NŒªj[é‰ZîÖq®@=˪­×‰Ú¤nJ¤Ö»uœ+Rço-ÎógYµ­R·F%Q矸¢.\‘ZUm½NÔ&ukT"µÞ­ã\z‘U[¯µªÚVz¢–»uœ+R«ª­×kêEVm+=Qç;൪ںªÚz¨UÕ¶Ò#µÞ­ã\z•[¯µêÜVz¢Ö—UVn]Un½^C¯²r[éúÌqE­*·‡®*·^'jU¹­ôD-wë8W Þªrëu¢V•ÛJOÔr·ŽsEjU¹õzMíR·F%RŸ÷+jU¹=ôôþñ<“•Û*ukTµÜžá\‘ZUn½NÔ&ukT"µÞ­ã\z—•[¯µªÜVz¢Î1õ.;·‡[~¸ÎЃĨ?;Un‡Uå¶¡çd8‘éÝ:Σfì;Y¹õ:1ªÊm¥'ê|QFjëŠÔªrëõŠÚ§nJ¤Ö»uœ+R«Ê­×‰ZUn+=QËÝ:Ψ{Y¹õ:Q«Êm¥'j¹[ǹ"µªÜz½¦îeå¶Ò#µÞ­ã\‘:½&NóNÔªr[é‰ZîÖq®@=Èέ׉ڤnÊ‹úbdÍVUm½^òj[éVïÖq®H­ª¶^'jUµ­ôD-wë8W eÕÖëD­ª¶•©õnçŠÔ“šÞ;½¦eնҵܭã\‘ZUm½NÔ“šÞ{=QËÝ:Ψ'Yµõ:Q«ªm¥Gj½[ǹ"µªÚz½¦ždնҵܭã\‘ZUm½NÔªj[é‘ZnÜp¦ïúÅGE5m«ø /Oó˜ßÿY6mz EI3”Ü£ã^ùTÓÖëÀ'›¶•©õçŠÔªiëu¢VMÛJOÔù‹vE­š¶c¿È¦­×‰Z5m+=R7öèXW¤žËé+P—zM½È¦m¥'j½GǺ"µjÚz¨MêÖ¨$j½GǺõ*›¶^'jÕ´­ôH­××­)B«¢­×kèUm+=Aë=:Ö©UÑÖëD­Š¶•©ÏOúµjÚŽý&›¶^'jÕ´­ôD­÷èXW¤VM[¯×Ô›lÚVz¢Ö{t¬+R«¦­×‰Z5m+=R7öèXW ÞeÓÖëD­š¶•ž¨×]6m]5m½^Sï²i[鑺±GǺ"uþØá5d—MÛ*ukTuþÐ\Q®5õÐ=TÓÖëDmR·F%Që=:Ö©¡iË×ZcðbÜ{tžfˆ¦ª¶ =GãÄ-ß¶¯ÐTÕvzYµõ:1ªªm¥'j½GǺ"u–é²àôšº—UÛJÔ=:Ö©UÕÖëDmR·F%Q矸¢VUÛCWU[¯µªÚVz¤nìѱ®@=Ȫ­×‰ZUm+=Që=:Ö©UÕÖë5õ «¶•ž¨óðŠZUm=½NôNÔªj[鑺±GǺõ(;·^'j“º5*‰Z_BFY¹=tU¹õz =ÊÊm¥Gè3ǵªÜºªÜz¨Uå¶ÒµÞ£c]z’•[¯µªÜVz¢Ö{t¬+RÏç÷©K½¦ždå¶Ò#õyß¹¢.\‘ZUn½NÔ&ukTµÞ”a]z–•[¯µªÜVz¤nìѱ®H­*·^¯©gY¹­ôDº¢VÛCÇ94=\ghAbÔ‡™*·ã°ÈÊmCÏÉ8p"kìѱȨ*·^¯Y¹­ôD/ÊWÔªr{èªrëu¢V•ÛJÔ=:Ö¨W]¹u:Q«Êm¥'j½GǺ"µ¬Ü:½¦^uåÖë‰Zïѱ®H^”§ù«®ÜúÔ­Q‰Ô=:Ö¨7]¹u:Q›Ô­QIÔzŽuEjÙ¹uzM½éέ×ê«Å¦‹¶A—E[§ª,Úzý‡Û‡ûpÿÆÿÜ0­ú_Þ º¬Æú!ýWçtºç«N°ùêÓ¼þí­»sîtÿ|ûåøP†ÿé¯ú—Ÿî_þ±_ºûoÿ~ûžÿ)<ãóí«÷/>Ãýã{¶/~õZÇpmÙøøÝí7Ý£ëº/îÿvÿÝÇ[Ë^ÂwèÃ/óý8%ÿþþsæms×ÍÝñÉy«ÿò|µ¡Ûæ9ØFÿáþËñG·¥úîxèßoõ_Ç03ž†aš÷mOþã{üã†×n<ªx{ößÞê¿ m˜‡©[¦~MþÓ;üaqÞº9\ê Dÿaz«ÿÞ?–} ƒ%¼‹É~‡ÿqbü°wËÞ/ýÇ·~þŽæežÿ3&ÿåþÇÁYáó¾ÍÃñÉÿ­Ÿ¿cÃõ4nö­k—?ëÛý[·ö}øÈ/ý§·~þŽ¥¤À0vÓÖ[òßÞá߇ðtü–:/üßúù;nŸ}˜¾¾€É‡ÿ>À} Çã¢ÿœ?áN^ãÓmY×rþ9ŒÇæëâ?ÛÒ—]l§ÿxsú8…_jÌ Ø¾¾×þ?Þ¾ºýâ_ÃýLücGç_ú~*×)ýþþ§ûÏ÷ç%ÿöux±~›_CÞÏÇ ‡W{}¼þp|¸ïÂMoÇ¿0™6Õ0¼Þž5Þ.ŸåÂÇgÉ‹úº]â9|qž¶ýq/æõeû|S¯>Pk7OMn`âÁ»g1±¼ ïûc[Çi†§í±hßeÛƒx¾$¿m.y…ÿ‚xªˆí³˜X]8×~tû¾OÓö´­Ç¸¿äi;N‘I6F^*dû,FV׺0¸áân,óô´­¹¿å5ÜYòïÈ[…lŸÅÈêò~ò±…Õ¦‡m=ÊÃõ('¡öWßÿ—ùV}ùܳyS_¾5ÜB÷q^ºeyÚòå(oÇ›=_”¹úö¹g1²úömG %̸úh[#_϶éyœsú=“‘«¯Ÿ{#«¯ß6†eßï[´äËQ®n.Ãÿ×ÜÙôJs\Gzß¿¢—â—]ßUK ú€ˆÑïð…½áNi $e ø÷§ª;Ï©Œs¢"ïµFÃ0lV¼]ñDÞîªì[yw–Í~›]ÌÓÇ/ݲثäTc~~#»íe;¬Ç§qŸ,tÇ äU9ﳄu\í¦]¼Ó§/ÓWÉÉÁN¼ÌƒﳫiÚÆùˆ½ê«r¼ùƒ­_ì–öòÞÒ‡/Nè«äoÿþПÄÇßï=z¡ÓëF¨¯Êyÿ.5>»Üóüá ÈôUòÖ7?ÿà#OýÛ>ºûüy‘Æ«òñEýúÔ«|QÞ'‰s|ŸÆÇ~™Ú?·óðün»ÿû·~·þuâ#è·ß|qÿÝ¿üŸ_ÿ¯ßýú7÷ûñû?ÿø'KþÓ}]ö9Få‹_µÇ·‡Ý¿Iøü*_ær6u=¾ÏÝÞÿßßÞô)`–ð;‹ §ßy=¼~ÞïÀþ‚ô;¢Ãï$‚ž~çAôðz•ÿ˜Eºÿãÿü¤ÜþöÝþ~Þÿ÷ÿŰÿsc¿~çø¥5ME©a—5B{Ï5R5üOj,­i*B½â.k‰ uFRëQ)Ôç1N½âÞsD‡]Ö5ì=×HÕð?©±´¦©(5ì²F¨`ï¹Fª†ÿI¥5ME¨7Üe-Q¡Î¨Cj=*…úüõ:§Þpï9¢Ã.k„öžk¤jøŸÔXZÓT”ºú¥¥®uFRëQ)ÔØdÒPzz¼e–?Ì"è!0Dÿ”ñiFÑ`k9Â(ô*KìhX_Ó ”±ªååŸyÐ#l-×£õ] u‡›¬%*ÔuH­GŨý#Ç©;ÜzŽè~†S×z¦N©õ¨êP_ÓT”6Y#T°õ\#UÃÿ¤Æúš¦"Ô=n²–¨PgÔ!µ£ö)§îqë9¢Ã&k„¶žk¤jø;5VO4…†=Öì<×Õð?¡±¾¦©õ€›¬%*ÔuH­G¥PŸïtN=àÖsD‡MÖ5l=×HÕð?©±¾¦©(5l²F¨`ë¹Fª†ÿIõ5ME¨Çú›¡FQ‡ÔzT õ9ýàÔàJ©a“5B [Ï5R5üOêÆ5dÄ­çˆ>bštFRëQ)Ô¡¾¦©(5l²F¨`ë¹Fª†ÿIíoš+jØz.én»–¨PgÔ!µ£Æúš¦¢Ôùæqã‡Y=/Æ.Ô×(Eƒ½å£Ð«h,±£ùmû öžKúŒ»¬%Ô#ì-×§Æúš¦¢Ô°Ë¡†½ç©þNêkšŠR¯rž:£©õ¨µÿõ*çù î²–¨PgÔ«œçÏlï¹.Ô×4¥†]Ö5ì=×HÕð?©±¾¦©(µ“ÏóQgÔ!µ£ö;àuåJ¨WÜn-Q¡Î¨Cj=*…:Ô×4¥qÊ›¨aºFª†ÿI­/!+îAGtØm@ÁtP ‡>s\QÃtIßp·µD…:£©õ¨5Ö×4¥¶Ü|žz¦N©õ¨5Ö×4¥†ÝÖìA×HÕðwêó¾sE {ÐE}~ànk‘*èŒ:¤Ö£bÔØWÒT”v[#Ô°]#UÃß©C}MSQjØ„PÁ&nT ÿ“Ú]QÃ&tIg†™]M2¿Îo|ú­À®s‡{ÌÅ ¾Ö=SjL¡´¦ý)ì¶–ýq:¢ÃsüNí—â+j؃Žè°Û¡‚=è©þNJkšŠP÷¸ÛZ¢BQ‡ÔzTŒKkšŠRO8ÍMÔµž©Sj=*Fí§¼¢®\)õ¦&÷AgÔ!µ•BJkšŠP¸ÝZ¢BQojru£ÆÒš¦¢Ô°Ý¡†Mè©þF}uépï9¢Ã.köžk„iø;lcºêwYKT¨3êZŠQë5:èJ©a—5B {Ï5R5üúœ{^QÃÞsD‡]Öì=×HÕð?©õt%Ôî²–¨PgÔ!µ£ÖktЕRÃ.k„öžk¤jø;ucºRjÛÑkêŒ:¤Ö£bÔzºê÷]KT¨3êZJ¡ÖË5ДBç¼ñÃ,‚CôqÅx1ž°µaz%v4½F=ã‚›¬%Ô#l-×£n¬ÑAWJíÿE¯ ¨gê”ZŠQë5:èJ©g9½GQ‡ÔzT ucºRêmUÓ{Ôõ,§÷ Ûz®o¬ÑAWB½â&k‰ uFRëQ1j½F])5l²F¨aë¹Fª†¿SëçëhJ¡íÊg÷¨3èZŠAë5:èJ¨7Üd-Q¡Î¨Cj=*…º±F])5l²F¨aë¹Fª†ÿI­×è +¥†MÖl=×HÕð?©õtÍÔË7Y‹TAgÔ!µ•BÝX£ƒ®”ÚþƒN󃞨sj=*F­¯!èJ©a“5B[Ï5R5üº±F] u‡›¬%*ÔuH­GŨýMé;ÜzŽè°í¡qŽ,S5üOj½F])5›CÓÃ,ƒƒãÐX£ó4#h=î-—¥^Ec‰M¯ÑAÊ»¬%Ô3#fhøŸÔzºRjØePÁÞsT §n<`GWB=à.k‰ uFRëQ1j~N=àÞsDpÆ›¨aï¹Fª†¿S7Öè +¥^pÆ›¨jQ‡ÔzTŒZ¯ÑAWB=â.k‰ uFRëQ1j¿rê÷ž#º,í=S§ÔzT ucºRjÙ¹ :£–Û¨µ¾„Œºr»ë²rt-+·Q/ÐgŽ+jY¹]&]¹ :£–•Û¨µ^£ƒ®”ZVnƒž©Sj=*F­×è +¥–•Û 3jY¹z¡>ï;WÔ²r»CÈÊmе¬ÜFݨõ t¥Ô²rôLRëQ)Ô5:èJ©W9ÏŸuå6§Ö£bÔ~èŠz•óü…vnéa–A1ê·ÃB+·ûaY¹Õz•Œ6²Æjô Œ²rtÆ(+·Q7j¿(_QËÊí²êÊmе¬ÜF½P7Vë +¥ö-毺r›SëQ1j½Z])µ¬ÜQ‡ÔzTŒZ¯ÖAWB½éÊmе¬ÜF½P7Vë +¥–•Û gê”ZŠQëÕ:èJ©eç6èŒZvn£þ¢¾†•UÛõ¡«¶Ag°²jõÛX­ƒ®”ZVmƒž¨sj=*F­Wë +¥–UÛ 3jYµz¡>g¡WÔ²j»vºjtF-«¶Q7j½Z])µ¬Ú=S§ÔzTŒZ¯ÖAWJm??:½:£–UÛ¨êÆjt¥Ô²jtFRëQ1j½Z] u¯«¶AgÔ²jõB­n )…fM[z˜EÐC`ˆþ/®é¤×M[­WÑXbGÓ«uЃ0ºitÆ(›¶Q/Ô­ú ›¶».›¶AÏÔ)µ£Ö«uЕR˦mеlÚF½P7Vë +¡uÓ6èŒZ6m£nÔzµºRjÙ´ z¦N©õ¨µ^­ƒ®”z=o=”ºÖµlÚF½Pë'íhJ ']´ :ƒ¡õ ´^­ƒ®”Zmƒž©Sj=*…º±Z])µlÚQ˦mÔZ¯ÖAWB=ë¦mеlÚFݨõjt¥ÔÕ7J]ë™:¥Ö£R¨«uЕR˦mÐuH­GŨ×Y7m×E7mƒÎ¨eÓ6ê…º±Z])µlÚ=S§ÔzTŒÚß4WÔ²i»ë²itF-›¶Q7j½Z] 5½ßÑ›dâ×ù_|Sc¥Ÿ=¯ºj«u•“:”^£ƒç§|²jt§«¶Q7j½F])µ¬ÚQ˪mÔ ucºêMWmƒÎ¨eÕ6êFíÃÏ©7]µ]7]µ z¦N©õ¨êÆt¥Ô²jtFRëQ1j½F]3õöÐUÛ 3jYµºQû}R£+¥–UÛ 'êœZJ¡n¬ÑAWJ-;·AgÔ²su£–—4%ЮÜAËÊmÔ ô™ƒSwºr»ë²rôLRëQ1j½F])µ¬ÜQËÊmÔZ¯ÑAWBÝëÊmе¬ÜF½PŸ÷NÝëÊí®ËÊmÐ3uJ­GŨõ¢ t¥Ôþ¶£—^Wnsj=*…º±F] õ +·AgÔ!µ£öCœzÐÛ]g[z˜eÐc`Œúí0ÐÊí~XVnµ^%c¬±F=ã¨+·AgŒ²ru£ö‹2§uåvׇóÂB©k=S§ÔzT ucºRjY¹ :£©õ¨µ^£ƒ®”ZVnƒÎ¨eå6êF­×è +¡žtå6èŒZVn£^¨ktЕRËÊmÐ3uJ­GŨõt¥ÔvåÓüIwnsj=*/ê« Þ¤«¶Ç_B–³ûYWmsX=¶±F])µ¬Ú=S§ÔzTŒZ¯ÑAWJ-«¶AgÔ²jõB}ÎB¯¨eÕv[tÕ6èŒZVm£nÔzºRêêë:¥®õLRëQ1j½F])µ¬ÚQ‡ÔzT ucºêUWmƒÎ¨eÕ6êF­×è +¥–UÛ gê”ZJ¡ÖË5ДBÓ©3;Ì"è!0DÿWŒô¶·é¦­Ö«h,±£é5:èAeÓ6è™qÓMÛ¨êÆt¥Ô²itF-›¶Q7j½F]õðxȦmÔµlÚF½Pë5:Á•R«¦mÔ#5I­GŨåàJ©1½:£VMÛ¤µ\£\ u'›¶QgÔ‹˜Þ'½PËçëÁ”B«¢mÔ3t ­Å åàJ©åß:£VEÛ¤j½F'¸RjÕ´:£–I9êF-×èWBÝ˦mÔµjÚ&ݨåàJ©UÓ6ê™:¥Ö£R¨õàJ©UÓ6êŒZ5m“nÔkH/›¶ÃcMÛ¨3jÕ´Mz¡Ökt‚+¥VMÛ¨gê”ZŠQû›æŠZ5m}­ç¸„jÅ9²LÕð?©åàJ¨GÖ´å‡Y=/ÆE¯Óy™Q4UµmèU4–ØÑäjàAUÕ6êŒQUm“nÔrµNp%Ô“¬ÚFQ«ªmÒ µ^­\)õ¸¨yþ$«¶$µ£öá¿¢®\)µªÚFQ‡ÔzT µ^­\ õ,«¶QgÔªj›t£–«u‚+¥VUÛ¨gê”ZŠQûðŠZUm]Um£Î¨UÕ6é…Z¯Ö ®„z‘Û¨3jÕ¹MºQëKÈ"+·‡®*·QÏÐ)´”}渢V•ÛCW•Û¨3jU¹MºQËÕ:Á•P¯²ruF­*·I7j¹Z'¸RjU¹z¦N©õ¨êó¾sE­*·‡^ýR×:£V•Û¤µ\ž\)µªÜFQ‡ÔzT µ^­\ õ&+·QgÔªr›t£öCœz“ÛC'[~˜eÐc`Œúí°±ÊíqXUnz•Œ62½Z'xdÆî!+·QgŒªr›t£ö‹2¥FWJ­*·QOÔ9µ•B­WëWJ­*·QgÔªr›t£–«u‚+¡îdå6êŒZUn“nÔrµNp¥ÔªrõLRëQ)ÔzµNp¥ÔvN:Í:£V•Û¤µ\­\ u/;·QgÔ!µ•õÅ4Í(¬ªÚF=æ°z0 ¬^­\)µªÚFQ«ªmÒZ®Ö ®„zUÛ¨3jUµMz¡>g¡œzUÛCÏSPêZÏÔ)µ£–«u‚+¥VUÛ¨3êZŠQËÕ:Á•P²juF­ª¶I/ÔzµNp¥ÔªjõLRëQ1j¹Z'¸RjUµ:£VUÛ¤j¹p#˜húS¿x«¨¦mŠoxþ/8ýùO²iÛÐ=TNêPrN8?åSMÛ¨>Ù´Mz¡Ökt‚+¥VMÛ¨3jÕ´MºQË5:Á•PϲiuF­š¶I/Ô5:èJ©'œÞ&êZÏÔ)µ£ÖktЕR«¦mÔuH­GŨõt%Ô‹lÚFQ«¦mÒ µ~¾Ž¦Zm£ž¡Sh=(­×è +¥VEÛ¨3jU´Mz¡n¬ÑAWB½Ê¦mÔµjÚ&ݨõt¥ÔªiõLRëQ1j½F])µjÚFQ«¦mÒ ucºêM6m£Î¨UÓ6éFݸ†l²i{èªiõLRëQ)Ô5:èJ©«_ISêZgÔªi›t£ö7Íuåš©û‡lÚFQ‡ÔzTŒZ¯ÑAWJMš¶ü0Ë ÇàŸ5Öè<Í(šªÚ6ô*KìhzzÆNVm£ÎUÕ6éF­×è +¥öÿb—… gê”ZJ¡n¬ÑAWJ­ª¶QgÔ!µ£öá¿¢VUÛCWUÛ¨3jUµMz¡n¬ÑAWBÝ˪mÔµªÚ&ݨõt¥ÔªjõLRëQ1j¿^Q«ªí¡Û èD?èŒZUm“^¨ktЕP²suFRëQ1j} dåöÐUå6ê:…ÖƒR ÏWÔªr{èªruF­*·I7j½F] õ(+·QgÔªr›t£ÖktЕROçç™R×z¦N©õ¨êó¾sE]¹RjU¹:£©õ¨µ^”®„z’•Û¨3jU¹Mz¡n¬ÑAWJ­*·QÏÔ)µ£öCWÔªs{ètͳ z ŒQ¿&V¹úYVnz•Œ6²Æô ŒªrõÌ8ËÊmÒÚ/ÊWÔªr{èªruF­*·I/Ô5:èJ¨]¹ :£V•Û¤µ^£ƒ®”ZVnƒž©Sj=*F­×è +¥^ä4ѕۜZJ¡n¬ÑAWB½êÊmÐõ"§ù «Ün5:èJ©eç6è™:¥Ö£rP_½-V]´ÝuY´ :C•EÛ¨{ûtïï_Å׋þË»».«±yHÿÙ9A|ñõ!_âOú×·Çý«cs§ûÏ·ŸŽ7åþ?]ã¬øáþåï»ÝþW½}Ú_ÿÝþŠŸo¿ü|ÿò7ûû£¿þö¶®<ÁþÕkökËvüçç?Þ~ñx{<_Ü?ÿåþëÏ·–ÿ´ß–a\ö×w‹ùOðŸú·î1÷[7'(þÝô^ÿùù‡e×} ?À~îÞúqܯOÅÓïN¿ŒûíåÑÏk??³_>`¿Û uwßOPüÇw§?þ~ʺÎûðãdþëGü·c?æq™ÆãÅ~wþc³ÅãÁó2;—ÿíþÇvÜÓ¶.î8Añ_Þ›ÿ¨ wó4Ný~;ï^þýãñÿm¿úoûOo\ÿí½ù¥’ÃcXÇyÛ?Cæß½ßÿ('müÁxœàåß=ÞÿøõöØ÷c7¯Ýlþýü»ùîÇ4vÇ Šïù÷ëô~Žïn]?ßçåm«oyÇZóê)ÊßùÖ­ýn\Í.ŽSÒƒáD·_Þ~"ǻ㭺wÝX?õûÛŸîÿqÿñþ¼€Þ{œ`^C¸§|žìõnýÝñY½ÚïHìZ»¿'ßzŸ—€2ØÃk°/_"–W© t·™Ù/,ýc›ŽLÓ~9\öêÓõùºzwtSw¼ò5*ç/¾ˆóª+j7®û7ƒµÛßVÇ vÞnq׃÷òÝÜí—Ï~òy.å]/¾ˆóªK`·ûÌó8Oå8Aßîz€=Ô|¡ Þ0¾ˆwêšÕmG#fîún8NøúnÙïˆþáÿ˜w]/âÀê"³ƒ¾3Š±ÛŽäî/G¸‡·+ÐôQ+ÿ˜ªX?ÌoÓã1ì5Fw=œóþÕÝ÷Nà”é^ÄiÕ¬Ÿ¶·aÿÛ¿N¯ç+ÇŸè¬pÇß°]ú„…q`õ ;þð߸¿c·× ðõ%á¸+ì“’ml&] Óç*Üè«zù¹z®õ{¾ ºez›æyæÇñb}•=‹æóãøü®[ÌÒ')"ÒW©OÒ~»zÛ¿x<Ç}ª°ßé_Ù¸°ˆýþCØz»³ôŠˆôUòvõXßÖ‚x¬!ê÷éØëÎÕ¸–îŒÇÞÒKoWÆb–>@‘¾HÞ ö×ï_æÂý=®ýþåþy%Åkçñôÿç<§|ßÛg[F?¾6!˜†uÞÆõxõóvÐÙûèâ»o¾¸ý_ßÿùïÿóßÝÿõÿÛ¿ÿëý›_üøí_¿ÿã7_X¾Ÿ^½ïëXÿÂcܧûþÇÄ=3Y&Qex?¾–ÝÞÿßßÞØ‰~°ÓOøû˜×Ñ}–Ž¿\zÞïÅsü×ÓÛp5ô9-¼>ÃÀË1Á÷t€Ž è§ûwð^ïá¿í£·ÝãÃC§ÂÜ¢ü®0¯_o=B?ŠùWTð{•L¿¶hþHR§Âþó¯¨à·-Ù~Ù£¡yR£:?ûHÁùQØÞ-ÛÂ>hš'u*ì/1§šqû¶h‹2¡ ™HR§Â~ó¯¨`{¶Lû˜ihžÔ¨Î·RÁFm~¶_˶°O™†æI ûEÌß©Ü^-Ú¢L¨B&’Ô¨°TÂì+(Ø=-CÁ6cš™u(ÿ5)RÁ>j~´úE£ªeB2‘¤N…µ!æïTëƒaGo9Ée #ýy­o` »›eØì ñLáÖØäanì^–M`›/ÈsUhê0§Úpw²h‹2¡ ™HR§Â&ó¯¨|dJUˉ*e"IÊo+HUTT°»X¶…m¸44OjT¸ žÙÔöÀÍÂk TˆD‚:6e˜E›ƒe*ØEKCó¤FuŽRÁ6a~tÓ¸ ª‰$u*lº0§êps¯h‹2¡Zò4.F1*l²0ÿŠjÓ¸ 'ª”‰$5ªó’ŽTCžÆíGaw®l ÛXihžÔ©Øg œªÇÝ·¢-Ê„*d"I*4M˜E»ke*؆JCó¤Nå HûlùÑy¼žÆ™P…L$©SaS„ùWT°;V¶…m¤44OZ¨ºÐ aþN5àÎQÑeB2‘¤Nå/«©Ü˲‹';zË H.gÀ’GåVYoÝõ<.Èi@ ñLaÖ¡©ÁÜœaÄí©¢ Ê„!$ ¹œÊÕT#nTåGaû©Lû4ihžÔ¨BÓ‚ùWT«˜Ç™P…L$©Sa“‚ù;Õ„ÛGE[” Õšçq1ŠQùU©¦šp#)? ÛCe*ØGICó¤FšÌ¿¢²×Ӊʄ*d"IŠ}'ܪqw§èŠ2 ‘HPƒ:ÏSS͸á“…mœ2ìw¤¡yR§Â¦ó¯¨œóD[ØÏHCó¤N…MæïT nÃmQ&T!IjTçµ¢¦ZpC&?:âœ'RÕr¢J™HR§Â¥ãÌ¿¢‚m”²-ì7¤¡yR£ MæïT+n“mQ&T!IêT>]©©VÜ0ÉÂ6H™ ö ÒÐ<©S± œ¿‚‚m‚²+줙yPƒ Ëþ™¿S±wx>vËô$“ûûç¯ö¯ÞËnS”üq—ŽgôfÖß3§Ê¶!Êþ°_Æã™œ ××3ÿŠ ¶ʶ°†æIÊgH½Žvî#L‚~kaó¬ÆVÈS‚l:ƒä'¢ZgÁX^GÃeð”¡FÛ®gq·†Î¢±Ä­D[žÀíß7q¯ŸD$u–ˆ5"úP5xÔhÓx9»5t%v4öd5xÔh°mA:‹Æ}¼†}ºö‡-llÿr Z¥qö,6œñ™pŸš]ê,Ëghôlð¨Ñü(ýÌIEc‰=• 5Ú|=#¼5t%v4¿´™Í 'ÜV†  Ec‰ = 'ÙŒ[Ç$2©³d,°“±‡´Á£FƒýašÐY4–ØÐè“ÚàQ£mrn(u%v4ö¸6xœh îô’Ф΢±ÄŽÆžÙm TB:‹ÆÚyh°»Ëy6m!hBgÑXbGãŸÐ·p±Ã+î̒Ф΢±Ä†FáÍ®Œ|n(u%v4ö7xÔh«œJEc‰=Ì 'Ú†©$4©³h,qAèÝàQ£ÁN#Mè,Kìhþ€{§œ‡éEžf ,Ÿƒ°g»¯S»÷ÀO"HÐóäÐ@«4æOŸ.…3Ö °»IŒ®u„ås4ö”7xÔh°… A:‹Æ}Ôa_§®ýUƒ#êinè Uó§ÏÃkQã¸5t„ås4ö9xœh³êrÜ:‹Æ;šÏ.mf}Žã°6èÜPê,Klhüa2zÔh¢Õqkè,Kìhôa2zœh‹êvÜ:‹Æ´@´°ZÇqXô:n %bAˆ?LFM”;n Ec‰>LFmU [CgÑXbCã“Ñ£F5[CgÑXbG£“Ñ£F][CgÑXbG£“ÑãDÛTáãÖÐY4–ØÐη m¬ôq­[CgÑXbG£“Ñ£F›ÇË9ß­¡³h,±¡Ñ§‘hQ“‰úÇ­¡³d,°“ùÍ4 ‘ H×?TäÖÐY4–ØÑèÃdô¨ÑØ…”f ,ŸðßóÔµ¿jƒD=Í ´Jãþôa2žñéT%äÖÐY–ÏÐøÃdô¨ÑD/äÖÐY4–ØÑèÃdô¨ÑD9äÖÐY4–ØÑünÐHAäØH4Dn Ec‰ >ªB‹šL´Dn %cŒ>LFÍÎ@ç†ZgÑXbCã“ÑãDTaäÖÐY4–ØÑèÃdô¨ÑDkäÖÐY4–ØÑèÃdô¨ÑDuäÖÐY4–ØÐΛ@@#õ‘®UäÖÐY4–ØÑø'td’ãð¨æ†ZgÑXbCã“Ñ£FM’[CgÑXbG£“ÑãD›TäÖÐY4–ØÑèÃdô¨ÑD§äÖÐY4–¸ Müa2zÔh¢Yrkè,Kìhþ€FÚ%ÇînÄ^|$ËæôAr__QgÙ1‰zžÖ—ÑóÚ9ñGÈx¶BMn …`Ù>BFM´Mn Ec‰ ?BFmQ“[CgÑXbG£Ñ£Fó›½ãHEc‰>BFMvN´Î¢±Ä†Æ!£Ç‰¶êò‰ÖY4–ØÑèt¥Ý“ý°ìžh%cŒ?BFMvO´Î¢±ÄŽF!£Ç‰¶éî‰ÖY4–ØÑè#dô¨Ñd÷Dë,Klhçå$ ±îI¿éî‰ÖY4–ØÑè#Gôp´á¡»'ZgÑXbCãÑ£F“Ý­³h,±£ÑGÈèQ£-óå”ïÖÐY4–ØÑØÏ-N²NwO´Î’±ÀFÆ!£GFÇ‚f ,ŸƒÐGÈÏS×þ²{ô4/tÐ*ùóGÈxƤ×Ý­³ ,Ÿ£ÑGÈèQ£ L šÐY4–ØÑ|vÐ*MvO´Î¢±Ä†Æ!£G&»'ZgÑXbG£ÑãDtùDë,K\ÐÂe` “ý°ìœh%bAˆ?BFmSsB­³h,±£ÑGÈèq¢ºs¢u%64þ=j4Ù9Ñ:‹Æ;}„Œ5šìœhEc‰>BFmÒ­³h,±¡o?@›hçd?\}¥hBgÑXbG£Ñ£F“­³h,±¡Ñghq’ͺr¢u–Œv2¿™ÚL+'ûaY9Ñ:‹Æ;}„Œ5½Æ³Ã ”å3þùyêÓÑ•“ ç9á\WN^ÿåþô2ž±‘•­³ ,Ÿ¡ñGÈèQ£ÉʉÖY4–ØÑè#dô8ÑV]9Ñ:‹Æ;šßm¥•“ý°¬œhEc‰ > B‹šl‘SB©³d,°“ÑGÈèq¢mºq¢u%64þ=j4Y9Ñ:‹Æ;}„Œ5ZõÞ¤hBgÑXbG£Ñ£F“•­³h,±¡7€Æ*'ãCWN´Î¢±ÄŽF?¡èQ£ÉʉÖY4–ØÐø#dô¨ÑdåDë,Kìhô2zœh®œhEc‰>BFMVN´Î¢±ÄmáÑ£F[ÏÏ E:‹Æ;š¿0 U'ZO;'ô0eù„>F~žºö—“ §É¡ƒViÌŸ?LÆ3Ö ²s¢u„ås4ú0=N´AwN´Î¢±Ä†Æ&£GV­£hBgÑXbG£“Ñ£F“­³h,±£Ñ‡Éèq¢ºs¢u%64þ0=j4Y>Ñ:‹Æ;ý€Ž´{²–Ý­³d,°‘ñ‡Éèq¢Mº{¢u%v4ú0=j4Ù=Ñ:‹Æ;}˜Œ5šìžhEc‰ í¼œ4Ö=gÝ=Ñ:‹Æ;}øˆ5šìžhEc‰ ?LFmÕäPê,Kìhôa2zÔh²|¢u%v´‹Ÿ'람‹îžh%cŒ?LF^HÙaÊò9}˜ü»h¬{²–Ý­³h,±¡ñ‡Éèq¢mº{¢u%v4ú0=j4Y>Ñ:‹Æ´5±ÎÉ~Ø^ȧ„Rg‰XP#â“ÑÃѦ‡îœhEc‰>LFMvN´Î¢±Ä†Æ&£G&;'ZgÑXbG£“ÑãDëtçDë,Kìhôa2zÔh£šjEc‰ í|û´‘Ì ÷òs¢u%v4ú0=N´^wN´Î¢±Ä†FŸF¢EM&+'ZgÉX`'ó›i@c•“ý°¬œhEc‰>LFÝ©éí=C²lÁ$×÷ìiЕ“ §Ù`}£®îÎÕ“t¦•“ý°¬œh…`Ù ?BFMVN´Î¢±ÄŽF!£Ç‰6êʉÖY4–ØÑüh#­œì‡ýßÓŽÔY4–ØÐè*´¨ÉdãDë, ìdô2zœh“nœhEc‰ ?BFMVN´Î¢±ÄŽF!£G&+'ZgÑXbG£ÑãD›uåDë,KlhçåÐfZ9ÙËʉÖY4–ØÑø't¦•“ý°¬œhEc‰ ?BFmÑ•­³h,±£ÑGÈèQ£ÉʉÖY4–ØÑè#dô¨Ñª_+R4¡³h,qAÛø#dô8ÑVÝ9Ñ:‹Æ;š¿ÐVÚ9ÙÓÁ`‡(Ëç ôòóÔµ¿ìœ=O ׺sòú/óçñŒ'Ȧ;'ZgAX>G£Ñ£Fó£ôC'u%64þ=j4Ù9Ñ:‹Æ;}„Œ5šìœhEc‰>BFG›ºs¢u%64þ=j4Y>Ñ:‹Æ;û€¢EM¶©É¡ÖY2ØÈø#dô8Ñ:Ý=Ñ:‹Æ;}„Œ5šìžhEc‰>BFMvO´Î¢±Ä†v^NëžÌ½îžhEc‰>rDm:/6Mè,Klhü2zÔh²{¢u%v4ú=N´A—O´Î¢±ÄŽFžížì‡e÷Dë, ldü2zÔhôÏ3P–ÏAè#äç©OÿQwO‚žæ†Z¥1þÏXƒÈî‰ÖY–ÏÑè#dô¨Ñd÷Dë,Kìh>»h¬{2Oº{¢u%64þ=j4Ù=Ñ:‹Æ;}„Œ5Ú"ç†RgÑXâ'Zy6!œuãDë,‹¹ó|º÷÷¯ Ì:2–u¢ êð°V0=Ð^Ž Œ5½}}{Ü¿:*ë÷Ÿo?o–ýºä/úÃ÷/ßïoó_ýõöiùwû ~¾ýòóýËßì?ÑþþùÛ} 7xýñ·cÖy×ã¿>ÿñö‹ÇÛãñÅýó_î¿þ|k˜oÇ:c¿Fóõæë±âvœ¶éx}1ßiþüÚ¾èÎÜ·÷»oóÛüèû~ì×÷õÝîÛ[gëêæâ><Þïþüc§Ã°_5·ã/û®¯}·¼õƒ_èŠ}÷ûnÿÙÍÓ2 óq‚b?¿×þùŸ>ƒ(öýìÝy·eêÖá8Á˾ïûî(Þ>Ç3ûá#öÛñ;Å~Ç Šý»ßyc·-ôëe±?`?ì?½y,Ëq‚bÿî·Þ¸½-þ–›>`{, ÝCï?½â9¼ûý6Ñ¿ïùÞÓ°OÔÇiYúãÅþÝï7¼û\æŽoWó4c·'xÙþ~Ûo.û)¾»Øf^Þ¶ú— Ó Mw”¿¿¹[÷X}™gºvÿþöËÛOñøOöSýKüðcþö§ûܼ?ï)·ßîçêÖé5ÚݼŸ·¿Ï¯ýÝq¿Úo¹ìö3¾Ú ü\ÊàòE!xy•ºrǵ~Ûçù8Á´ß^»¥_^®ÏæÕiñâ‹8¯º<Žã°Ï÷»ç낔Ƿ»à¥ÛF¿Pà1ã‹8°º²ó±kÁ>÷xÝ?òw×#¼MÇï±íÎMçŒ/âÀêz4®ûgÿzRn÷y„¯o~ûMr¿ö^|æ‹uúÈ…q`õ‘›ºã—>ËV&gør„§£5hýþžÒg.¼ˆOê37 ;â~w›_'ÈÀÃõï_×É¿›Qàô¡ /âÀêC·ë[·ûôûy|ýw’e;~“o¿q-ÞéSïOôUr>±uÇóç=üi»ŸožçaŸFocã:ˆ§nw 8…šÒÇ.ÓWÉiÀv,Ú›œø(Oì—î×07®Ä¸ï÷9g_v¦ü¹ ÄôUòKÊþnªˆ÷Ïñ>_«¿#‰k1"oÇ~ì½ýòå=çÓÉ/ÇWÐÍ×ç_0Þ¶ùø1…Kññþô«|åÞg‚q|Ÿ—ïãïènÓ>‘yÍ´¶£ékoÅgÊÿüæ‹û×ÿõýŸÿþ÷?ÿøÝýëÿýý›_üøí_¿ÿã7_XüŸîÓ¶r³Ç/ïû©újÜÕëËÜͦ©û÷Ôýǰÿ¿¿½É3þ ñ÷ñÕé×IÇ_‹ÜæÇ±¡ä9¿6IzøÅNÐã¯M¢~A"³óåO÷xÈŸŸ’Ûß¾ÛÿÏÏûÿþ£þO üúâ#ô,$†mK20lv¢óhïÛ’ˆûp¤ÀµL€!nc4 pèdH" [œd"ØEçÑÞ'065$Qžqã“H„2†¸Ñ0`ìoH" Û¡d`ØDEçÑÞ|¾­/€a;˜,Ã&)™¶VÑy´÷ Œ]I”Ü:%¡L€!nc4 0Ö$ã…ýT2/ì¢ãhï“×ßq ûÉd¹úÕ ®e q£aÀØ‘Dx}c Ï£-úFö‚7ê7ÀúÆ©`ë¹iÙ2ѤNå?ø *Ø‘&˰OKö‡Ý]² Ðèìš'’(o¸{K$B™CÜÆh0öQ$öŸÐ@k9‡¸Ñ0`¿ÿ^W– vzÉD°?ŒÎ£½WÆK Ä»‚í_P /¤m †ñb£E1`Ø&Ã^2:övàsÌ/€aWœ,Ã^1™v˜Ñy´÷ ŒíI”;ÜA&¡L€!nc4 ;1’ˆþ2v£Ñy´·Ÿ7¸ `ØW'˰ÛL&‚=jtí}Ë«Zfà÷ ‰D(`ˆÛZ5’ˆÃÎ4ö³Ñy´÷ ì.€agž,ÛÏŒÍȃL€!nc4 8’ˆÃ66™6¿Ñy´·w¡—#‰2ð€ÛÝD"” 0ÄmŒ†û½„¸¹O–Ù áy´EßÈnxØáaþŒ vÌ Sr-[&šÔ¨B³Gúg¼·Ç‰þ(<Ø÷Ggw`?DGÜ(˰iN†­vtííÀ¡$‰0l¥“‰`G{ŸÀØ ’Dx v"Êâ6FÀýjK'Ü`(˰ÿN†]{tííÀ¡G$‰°‘ÎÉQ&À·1,/nJå·ê‰@(^HÛŒÂ{žϸUQ–aŸ Ûþè<ÚûÆ&’$bÀ°­O&‚Í€tí}c?Ieà7û‰D(`ˆÛ|^è(ð‚›ey¬'¡¸–pˆÛ Æî‹$bÀ°1P&‚í„tííÀ¡á$‰2ðŠûE"” 0ÄmŒ†û’¯¸_R–a¡ {é<Úû–ïpd¼°áP‚mŠtíí¼¡#%‰20û$±_ oä64¿BP4ö‘ÚpÏ¢8—ò+ Ih<¡E%½lN”¼qK£,îK:·c·J1`ز(ÁFG:ö>}v [6ùèOÀNFq±FÐ 2nŒGAM,ÍD™§zöI˜k=-@‰™[cbÔXÒÒT”¶?"T°kR#UÃߨùu ˜Ø7DJ0¨3XÛŒ«W­WJ {%jØb©‘ªáRË¥+Á•RÃ6J„ v_j¤jø;µ^¿\ u;,%*Ô5¤nŠQËE,Á•RÃæK„ölj¤jøŸÔr%Kp¥Ô«˜¦GQCêÖ¨j½œ%¸ê·lJT¨3êUÌÖ“nÔrMKp¥Ô°›¡†M ©þN-×5S íï:z AACèÖ ´ÏF®¨+WB=â¦P‰ uF ©[£bÔr‰Kp¥ÔyoüpÎЃ¨׹¼Ì(ì0E…îÑxbGó÷Álž•ô ÷”J ¨3FØ.«1F­W¼WJí2½* ž©CêÖ¨µ\ö\)5ìDE¨`«Fª†ÿI-×¾WJ ›T*ØÛª‘ªáïÔòÑv0%Ð3n_• Pgк5(-WÁWJ [[jØ«‘ªáïÔçè_QÃö^D·(Ÿæ£Î¨!ukTŒZ®‡ ®„zÁ ±êŒR·FŨ墘àJ©a¯,B [l5R5üZ¯Œ ®”¶Ñ"T°ûV#UÃÿ¤n\CÜJ,é+î°•¨PgÔº5*…Z¯‘ ®”Úî|šz¦©[£bÔ䊺r¥Ô°/¡‚í¼©þ'µ\-\ õ†{v%*Ô5¤nÊ‹zÐKf‚+¥† ¾5ì ÖHÕð?©ýÆsE [šΡÙᜡ5Æ(ϼÌ2Z÷ÀÝÂ"£Ö=Olhúáx𠌰?Xdzb þ'µº¢†=Òˆ[‡*Øq¬‘ªáïÔz-Mp%Ôî*–¨PgÔº5*F-ÔWJ Žjا¬‘ªáRûUùŠ6]#úr^Y(u­3jHÝ•B­—ÖWBÝëÎnÐ5¤nŠQëKH/[¨‡®j¨QÏн.:G½@Ÿ§¼¢VUÔCW]Ô¨3jÕFMºQË•6Á•R«BjÔµª¤&ݨår›àJ¨ÙJ:£V½Ô¤êóZÈ©ÙL=tUMz¦d95éF-—YWJ­ú©QgÔª¡šôB­WßWB=Ê’jÔµª©&ݨ}:Ê©GÙT=tUUz¦eY5éF­ß £l«†Æ(ôª¦ù1tkP ´^Œ\ õD:«7~8gh1ú5„3N¬·zVÅÕ†îÑxbCÓ t‚e\ýzÈ~蓬¯Æ ÿ“Z®Ò ®„z–Ö¨3jHÝ£–Ku‚+¥ö-æÏ²ÈšR·F¥P7Vë +¥VeÖ¨3jHÝ£Ö«uЕP/²ÒuF­J­IQ_Á.²ÍzèªÎõ »ÈBkÒ lcµºRjÕi:£V­Ö¤µ^­ƒ®„z•ÅÖ¨3jUmMz¡n¬ÖAWJ­Ú­QÏÔ«ì·&ݨõjt¥ÔªâuF­J®I7j½Z] õö¦z®QgÔªéšôBÝX­ƒ®”Z•]£ž©CêÖ¨µ^­ƒ®”Ú~~|z¿ÉÊkJÝ•B­Wg )…V­×¨3h݃ö ɵj¾›u«êkÔµ*¿&ݨõjt¥ÔùÞqã‡s†ÖÆÆûáiFÑT ¶¡{4žØÑü}p…¦Š°]ßÉ&lÔ£êÂ&½P7Vë +¥VuبgêNb“nÔzµºRjÕ‰:£V­Ø¤µ^­ƒ®„º—ÅØ¨3jUMz¡ÖOÚÑ”B«rlÔ3t/ë±I7h½Z])õzÞå)u­3jÕ‘Mz¡>GÿŠºr%ÔƒìÉFQCêÖ¨µ^­ƒ®”Z•e£ž©Y—MºQëÕ:èJ©Uc6êŒZuf“^¨«uЕP²6uF­Š³I7êÆ5d”ÕÙCÕ4?è™z”íÙ¤êÆjt¥Ôª@uF=ªi~ÔÚƒ\Q«íñ—fT‹6êŒZõh“nÔzµºRjU¥z¦žd™6é/ꩱZ])µ*ÔFQ«JmÒÚoÕ¯:á“ Û¤µº¢VÛCW%Û¨3jU³Mz¡n¬ÑAWB½è¢mеjÚ&ݨõt¥ÔS=‘%Ôµž©]µºQûµøŠºr¥Ô²jtF ©[£R¨ktЕP¯ºstF-;·Q7j} Yuåv×eå6èzÕ•Û¨èó”WÔ²r»ë²rtF-+·Q7j½F] õ¦+·AgÔ²ru£ÖktЕRËÊmÐ3õ¦+·Q/ÔçµðŠZVnw]VnƒÎ¨eå6êF­—` k¦ºrtF-+·Q/Ô5:èJ©eå6è‰:¦nŠQû$ôŠZvnw}9OA©kQËÎmÔZ¾AД@ brt ¡[ƒR ktЕR³Ê-=œ3´ÆÀýrÅx1 ²r«uÆZczÆ^WnƒÎeå6êF­×è +¥΋8¥®õLÝëÊmÔZ¯ÑAWJ-+·AgÔº5*…º±F])µ¬ÜQËÊmÔZ¯ÑAWB=èÎmеìÜFýE}u tÕv×eÕ6èvÐU󬯮t¥Ôvã¤Óû 3jYµºQë5:èJ¨G]µ :£†Ô­Q)Ô5:èJ©eÕ6è™zÔUÛ¨µ^£ƒ®”ZVmƒÎ¨eÕ6êF­×è +¡žtÕ6èŒZVm£^¨ktЕRW¿¡Ôµž©']µºQë5:èJ©eÕ6èŒR·F¥Pë5hJ gÝ´ :ƒ–MÛ¨´OH8õ¬›¶Ã¬›¶AÏÔ³nÚFݨõt¥ÔtêÌç ­1(Œ5:O3‚¶è¦­Ö=Oìhþ>àh‹nÚîºlÚ=3.ºiõBÝX£ƒ®”Z6mƒÎ¨eÓ6êF­×è +¡^uÓ6èŒZ6m£nÔzºRjÙ´ z¦^uÓ6ê…Z?_GS mçä³ûUmcèÖ ´^£ƒ®„zÓEÛ 3jHÝ•B}Ž>§ÞtÓv×eÓ6è™zÓMÛ¨µ^£ƒ®”Z6mƒÎ¨eÓ6êF­×è +¥–MÛ 3jÙ´z¡n¬ÑA×L=>tÓ6èŒZ6m£nÔú‚®”Z6mƒž¨cêÖ¨êÆt¥Ô²itF-›¶Q7jrE-›¶c§›¶AgÔ²iu£ÖktЕR˦mÐ3u§›¶QQ/5:èJ©×zŽK¨jQ˪mÔÚoÊ_ß÷¯Ž}î?ß~:Þûÿtúœøáþåïû¹¿ÿ꯷OûË¿Û_ðóí—Ÿï_þfgô÷Ïßîȼþø³Âë¼ëñúϼýâñöx<¾¸þËýןo ÷m8¦¶ë¶Û´˜ûð÷í­lK÷X×›ûüN÷îÑ¿iܺqÖÉìÇ÷ÛoÇïÓK?oÇë‹}׿×þøÛÒݺ qí³ŸÞoß=ŽM†»eì·ã濾׿¼íöÛ8Oýþñ/þóü¿«Ø÷Ë´¹ÞOPüûñÝþÛÛc~ls?ÍójþËüûñmúe™Ç ŠÿðÞ7ß±»Ã6tÛ²æ¿~Àž½Ì­ëŽ˜ÿ»ß~ãü¶>úò0ÿíþcÜá÷w`wœ øï~ÿMÓÑùìo£ýËdñ_ðŸö7ðãX3Ò'0ÿw¿ÿö[ý±ïþ3ìÇ¿U|¿ý¼¿—åX@3øOòwßíÿFÕù endstream endobj 11 0 obj 45156 endobj 296 0 obj << /Filter /FlateDecode /Length 149 >> stream xœ5K! C÷9…/0R~„pª®¦÷ß6aZ Û/Áƒ‘ŒKL`ì˜cá%TO­>$#ºI9©P7OhL 3lÒ%ðÊtß2ž[¼œVê‚NHäé¬6¢Œf^ÃÑSÎ ›þËÜ$jeF™2ëT·²²`æµ<÷3î¨\脇ʰèN1¢ÜfF~ÿÛôþ{20c endstream endobj 297 0 obj << /Filter /FlateDecode /Length 68 >> stream xœ336S0P°0¦¦† æF– )†\@>ˆ•Ë˳Ì,Ì,# –.C c0mbl¤`fbdY 1 ºÒrø‘ endstream endobj 298 0 obj << /Filter /FlateDecode /Length 52 >> stream xœ363T0P0±T026Q064b…C. ˆ•Ë˳@ªr¸ Ês`ªr¸Òé À endstream endobj 299 0 obj << /Filter /FlateDecode /Length 49 >> stream xœ36´P0P040’F†@–‘‰BŠ!HÄÌå‚ æ€Y@¢8®&‡+ Æè & endstream endobj 300 0 obj << /Filter /FlateDecode /Length 80 >> stream xœEŒ» À0D{¦`~&fŸ(•³ JÜpOº{¸:2SÞa†‡ž ,†Sñ™£`5¸FR죰n_uæzS«õ÷*Ovvq=ÍËô endstream endobj 301 0 obj << /Filter /FlateDecode /Length 90 >> stream xœMAÀ ï¼"OPDÐÿtzÒÿ_«Ô½ÀN‰E‚ô5jK0î¸2kP)˜”—ÀU0\ Úî¢Êþ2IL†Ó{·ƒ²ñqƒÒIûöqz«ýzÝÒ"X endstream endobj 302 0 obj << /Filter /FlateDecode /Length 210 >> stream xœ5PË C1»g ¨džV½uÿkmÐ;aÿBXÈ”y©ÉÎ)éK>:L¶.¿±" ­u%ìÊš ž+ï¡™²±ÑØâ`p&^€7`èi5tႦ.•BÅ%ð™|u{è¾OxjrvCÉ` jºMX´<ŸNâÿ~Ãî-ä¡’óÊžùœíð;³ná'jv"Ñr2Ô³4ÇE> stream xœ=O¹ 1 ë=8Àz,[ó\ê²ÊFR"@ñ‘eGÇ \b“Ž9/i?øiX5Gô„ŠaXàn’ƒ,JWž-^ ‘ÚB]HøÖÞ­Ld¢<¯;p'£>TYz@;DY®IÃXÕV]j°²ÎÂu=̪åÑ'k)PTB½tÿŸ{Úû o/ë endstream endobj 304 0 obj << /Filter /FlateDecode /Length 17 >> stream xœ36´P0€ÃC.”ì endstream endobj 305 0 obj << /Filter /FlateDecode /Length 317 >> stream xœ5RKrC1Û¿SpΘ¿}žt²jî¿­„'+°-@B./YÒK~Ô%Û¥ÃäW÷%±B>íšÌRÅ÷³Ï-¯GÏ·- Q=ø2'"ÔÏÔè:xa—>¯N)x“¯á_x”NƒÀ;2Þ“‘$ÁšK‹MH”=Iü+åõ¤•4t~&+sù{r©j£É X¹Ø¤+)$=‰H²r½7VˆÞW’Çg%&Ý&±M´ÀãÜ•´„™˜BæX€Õt³ºúLXã°„ñ*aÕƒMž5©„f´ŽcdÃx÷ÂL‰…†ÃP›}• ª—ÓÜ #¦GMví²[6ï!D£ù3,”ÁÇ($‡Nc$ Ò°€9½°Š½æ 9Àˆeš, mh%»zŽ…ÀМ³¥aÆ×ž×óþE[{£ endstream endobj 306 0 obj << /Filter /FlateDecode /Length 248 >> stream xœ-Q9’AËçzBsÓï±Ë‘÷ÿé ʃ†C :-qPÆO–+ÞòÈU´áï™ÁwÁ¡ßÊu9HÒTM¨]¼½vfó¤5,ƒë?c 7zqxLÆÙíu5{×kOfP2+qÉÄSuØÈ™ÃO¦Œ í\Ï È¹Öe¤›•ÆŒ„#M!RH¡ê&©3A£«Q£Å~éË#aU#j û\KÛ×sÎ4;«<9¥GWœËÉÅ +ý¼ÍÀET«<p¿ÛCýœìä7ÞÒ¹³Åôø^s²¼0XñæµMµø7/âø=ãëùü¨¥[ endstream endobj 307 0 obj << /Filter /FlateDecode /Length 131 >> stream xœEË ! CïTáò>©‡ÕžØþ¯ë0šABøA";ñ0¬óò6ÐÅðÑ¢Ã7þ6Õ«c•,ºzRV釼òPi0QÄ…YLCaΘÊÈ–2·á¶Mƒ¬l•T­ƒv<¶§e«~©maê,ñ ÂU^¸Ç ?K­w½U¾BS0— endstream endobj 308 0 obj << /Filter /FlateDecode /Length 88 >> stream xœ5Œ» À0D{¦¸ø8€÷‰R‘ýÛ[.¸{Òç9ÀÈ>GèÄ-dCá¦xI9¡>Q4Zo:¶Hs¿¼d3ý3Ü}…íæ€d4Iä!ÑåråY)z>—Ú~ endstream endobj 309 0 obj << /Filter /FlateDecode /Length 79 >> stream xœMÍ» À О)<àÿ>Qª°"Bc?éN:ÁÜâ°hw¸Zñ¥Q˜}ê™’Ps=DX3%:„¤_úË0ØØÈ¶ï·VîÞ endstream endobj 310 0 obj << /Filter /FlateDecode /Length 74 >> stream xœ357U0P°´¦†æ æF– )†\@>ˆ•Ë˳ÌLÌ€,CKd–‰±!eba†Ä26±€Ê"X@lMÌô®4q“ endstream endobj 311 0 obj << /Filter /FlateDecode /Length 49 >> stream xœ3²4U0P°´†–æ æF– )†\@>ˆ•Ë˳ €4XiLEW¥D ä endstream endobj 312 0 obj << /Filter /FlateDecode /Length 87 >> stream xœ=Ž»À0C{¦`ó †}r©œýÛ€?iÐC:N¸ 6 ÏÑíÂÎ7AîE/°.o€ !‹$ùöÎÅ¢V™Å¯¦Eê„4Iœ7QèN‹Jçãôx>ºuz endstream endobj 313 0 obj << /Filter /FlateDecode /Length 59 >> stream xœ355W0P°´¦¦F æF– )†\@>ˆ•Ëehifå€YÆ@Hœa¤Ášs`zr¸Ò©áZ endstream endobj 314 0 obj << /Filter /FlateDecode /Length 212 >> stream xœ5P91ìýŠù@$ƒm0ïÙ(]þ߆¥X1ZæÂ~Çð’_ߊ·ŒfŠïXª…Ôl¨.œ«x†\ÁÑ ±‰œË67‰ÔdHDid[nèŠ6E§äïMsK7åö¤IÓmZ˜zrvCÉ` jºMX´=ÿSž:Š÷}Ç+tÜáÓ“õ=Ãg>‡K½Åö¨Ù‰Dº/ÈÓšK M4ÙѯÈÎ<6¤Î AR\‚keíé—£01·,@vW¢œ%iÇÒÿ3žñùÛS© endstream endobj 315 0 obj << /Filter /FlateDecode /Length 75 >> stream xœ5±À0{¦`ËöÉ¥Âû· øh¤ÈäæÁž²t°Mçôç¤MóBQª0Ðtf}qhäV^hJ¯ŠèÏAï™êš endstream endobj 316 0 obj << /Filter /FlateDecode /Length 338 >> stream xœ5RK’[AÛ¿Sè®jþÍyœšÕäþÛ쬠8ÈÄK QrÅy‚ñ:¿ëåiü>Þ…Ô‚§"ýÀµiïÇš5Q°4b)Ì>öý(!ÇSãßè¹Hfd2r ˆûµ>Ö›L9ü¤isú(Iz-ØÝv|YAÒ“–ìä‡u-°ºM˜k"9µ25ÏÇžá2ž#AÕ, IŸ¸OŒH3;g-yáxª/~½×2©—U2¶ æ`;™ §("¿ $¹‰»hê(ŽfÆšÛ…†’"÷Ý=œœôº¿œD^ á,ÖŽzÊ2'; J jå˜a½ö…qš6J¸SÓí]±¯ßg&aÜæ°³R2 Îqp/›Ì${Ý1a‡˜÷îŒÄ¼ù]l\¹Ì¹&Óý(ÚH×ç\M™­(áªä‰×øÿüÞÏÏ?7}± endstream endobj 317 0 obj << /Filter /FlateDecode /Length 227 >> stream xœEKŽ!C÷œÂG þpžŽ²êÜ;.:Ñl°%(×3¹{ñÈL”n¼d¸;ÌŸá0søJ˜lÄLèN\#”®áTŸŽË޼頉{DΣžYÕÎ jg’æ‚í‚.çŒ7ÎÉ­FåÍô£×¾iw×y‡öHãÞÃT¾Î9ÕλŠi YÕ´¾lÉk?*MÛÎ˱àlVèÞ»Ww'K~¿ò0%?ÝúQ|]7£ëg'W&kÏyèIé_õÊ£Åq)è±íÌ$÷_§S’©S{gïiý§¸ÇûnV9 endstream endobj 318 0 obj << /Filter /FlateDecode /Length 247 >> stream xœMQ»mD1 ëß\àëkyž R]öoCÉ ¡/)§%öÆK á[¾ä‘UC?1ì3,=ÉäÔ?æ¹ÉT¾ª›˜Pbáýh¼t/"+Êße sÎ÷ࣗ`&4`¬oI&Õ¼3d‰¡ŽÃA›TwM,®Í3ÈíV7²:³ lx%âÆDÙÍ`£Œ±•År¨ ’Z`×éQ‹‚+”Ö t¢ÖĺÌà«çöv7C/ò਺x} ëK°Âè¥{,|®BÌôL;wI#½ð¦fR™‘•:=b}·@ÿŸe+øûÉÏóý (\* endstream endobj 319 0 obj << /Filter /FlateDecode /Length 70 >> stream xœ3³0Q0P°b3s3s#K…C.# 3 @.—X ‡ËÐÐÊ261R044²LÍ¡b0@YKA9Pý9\iOT/ endstream endobj 320 0 obj << /Filter /FlateDecode /Length 304 >> stream xœ=’;’Ã0 C{‚ÈŒø“äód'•÷þí>2ÉV€I‰(/u™²¦< i& ÿÑááb;åwØžÍÌÀµD/Ë)Ï¡+ÄÜEù²™º²:ŪÃ0[ô¨œ‹†M“šç*K· žÃµ‰ç–}Ä74¨uK ÝÕhY Ípuÿ;½GÙw5<›TêÔQæù!O¢‡éJâ|<(!\{0FäSÑ@޳\­ò^Bö·²ÂAjIç³'<ØuzO.nÍd¹TøNQìíÐ3¾ìJ =¶áXî};š±é›8ì~ïFÖÊŒ®h!~ÈW'ë%`ÜS&EdN¶Xn‹Õžî¡(¦s†s êÙŠ†RæbW« ;o,/Ù,È”Ì 2F§Mž8xÈ~šôy•çxýlós; endstream endobj 321 0 obj << /Filter /FlateDecode /Length 230 >> stream xœ5QInÃ0 ¼ëóâ.¿ÇAOíÿ¯Ò ``hKœÍx‰ÁÏAäÆ[ÖŒšø›É]ñ»< ·‚'Q^†{Ù .o—ý8Ì|ð^Z9“O2 ÙôðDÈ`—@èÀìÔa›i'ú†„ÏŽH5YN_KÐK«(OÙ~§ J´­êÏí³.´íkO8Ùí©'•O ž[²—WLcôDå.ÅôAª³…ž„ò¢|²ù¨!]¢œ'£@;°ç¶Ÿ‰W… uuŸ¶¡)Oÿ645I"ä%œÙÒ¸[øþž{ýü¦TSŸ endstream endobj 322 0 obj << /Filter /FlateDecode /Length 237 >> stream xœEQIr! »÷+ô©Â+ðžNÍ©óÿk,3IN`k1i-x‰!ÖÀÌ/¹|Mè4|72Ûð:ÙpO¸.Ü—Ë‚g–ÀWT—w½/]ÙH}w‡ª~fd{³HÍ••:õB4&Ø!=#2ÉV,sƒ¤)­Rå¾([€.ê•¶N;’ #áo”#áéJvMl«Ô: ¡˶.ˆ:™$¢vaqjñ–!"Ÿuc5Çø‹N"vÇãþ¬0ëQ$’ÒgÝq&£M–]9¹yª°V*9ˆ>^ÑÆ„êtªc¼×¶ôià¹ö_á>}ÿú¹Þ?Æî\" endstream endobj 323 0 obj << /Filter /FlateDecode /Length 245 >> stream xœEP»C1 ë=`ý,{žwH•Û¿=JFp…!Z?’Z˜ˆÀK ±”oâGFA= ¿…â3ÄÏ…A΄¤@œõ™x†ÚFnèvpμÃ3Œ9ÅZp¦Ó™ö\Øäœ'Îm”ñŒBºITqTŸqLñª²Ï×¥µl³Ó‘ì!„KI%&—~S*ÿ´)[*èÚE°Hä“M4á,?C’bÌ ”Q÷0µŽôq²‘GuÐÉÙœ9-™Ùî§íL|X&™Qå)ç2>'©ó\N}î³Ñ䢥UûœýÞ‘–ò"µÛ¡ÕéW%Q™Õ§¸<ÿŒŸñþŽ Y> endstream endobj 324 0 obj << /Filter /FlateDecode /Length 227 >> stream xœ5O;²! ë9….Œm`ϳ™T/÷oŸd² þHòôDG&^æÈ¬Ùñ¶ˆøSñ¯=íÄê=¸‡åâB˜a$œ5븛§ãÅ¿]å3ÖÁ» ¾b–¶0“õ•Å™ËvÁX'qN²c×Dlc]ëéÖL(!í0%È)}²£Œ9:Nä‰çbªÅ.¿ïa}Á¦1¢ÂWOÐdP–=ï& ôßÕßI4‹^2‘`a$æÎYNøÕkGÇQ‹"1'¤ä2Òœ®b ¡ Å:; *—êsÊÝ>ÿh][M endstream endobj 325 0 obj << /Filter /FlateDecode /Length 338 >> stream xœERKrÅ0Ûç\ 3ægãó¼NWéý·•p:Ý<ô  2=eH¦Ü6–d„äò¥WdˆÕŸFŽDÄß)¡À®ò¹¼–Ä\Èn‰Jñ¡?—¥72ͮЪ·G§6‹F5+#ç C„zVèÌîQÛdÃëv!é:S‡p,ÿC²”uÊ)”mAߨ#èo<ܳær³¹Lnõ¿î[ ž×:[±m@ –sÞ`Äà ÚÄÜÚÞ)(UºŠI­ò\';P¶Ðªt¼7€9`Ã’­×hoÃ>ô¢FÅö ¨, þÎÙfÁÞ1ÉH°'æN=q:Å‘pI8Æ@Š­âºñØâ/®ˆšð u:eM¼ÂžÚâÇB“ïRqð"n]EµlOç ´?*’3b¤ÄÑ ‘ԒΗõÐû¸‰¯Äæž¾Ý?Â9Ÿëû¸ƒà endstream endobj 326 0 obj << /Filter /FlateDecode /Length 133 >> stream xœMAÃ0ï~…ž€±óžtzJþ-6î팀‘†03× endstream endobj 327 0 obj << /Filter /FlateDecode /Length 68 >> stream xœ32·P0P°4†& æf )†\@¾©‰¹B.H Äʳ €´%œ‚ˆ[B4A”‚X¥f&fI8"—É´å endstream endobj 328 0 obj << /Filter /FlateDecode /Length 163 >> stream xœE¹u1 CsUx€:ê?G³ý§ i¼Þ@úx„xˆ= Ãr]Å…Ñ ?Þ¶Ì4¼Ž2ÜõeÆø¨±@NÐ"W£IõíŠ3TéáÕb®£¢\/:"Ì’ã«@#|:²ÇC[Û™~:¯ì!ïÿ**çna.ªî@ùRñÔÙQêš¡*+kjÚ¿»"”¶}\Neœº{´Âg+Wû}¨ç:€ endstream endobj 329 0 obj << /Filter /FlateDecode /Length 45 >> stream xœ32·P0P°4†& æf )†\–V.L,ÌÑ–p "žŸ} µ endstream endobj 330 0 obj << /Filter /FlateDecode /Length 214 >> stream xœ=P»C1ë= äÎ|í7ÏË¥Ëþm$œ¤B6B”šLÉ”‡:Ê’¬)O>Kb‡¼‡ånd6%*E/“°%÷Ð ñ}‰æ÷ÝÕ–³C4—h9~ 3*ªÓK6šp*º ÜÃ3ú mtV‡±[ Ф`×¶ rÇ Á™‹" JMÿ­r÷RÜï=o¢ˆ”tð®ùåôËÏ-¼N=ŽDº½ùŠkq¦: DpFjòŠtaŲÈC¤Õ5=kµ®Þzù7hGt€ì‰ã4¥CÿÖ¸Ç뇊Rô endstream endobj 331 0 obj << /Filter /FlateDecode /Length 161 >> stream xœEKà C÷œBGðG|žtºJï¿­!M³€§±@w'©µÑ/mKº >[ ÎÆxè6n5äu€V¤ãh”R}¹Åi•tñh6s+ ­fz”£ :Þí¢är¦îÎùGpõ_õG±îœÍÄÀdå„fõ)î|›Q]ÝdÒcnÖköª°´¬¥å„ÛÎ]3 î©íý©s:„ endstream endobj 332 0 obj << /Filter /FlateDecode /Length 236 >> stream xœMPKnD! ÛsŠ\àI$!ÎCÕUçþÛ±ÃTí*†Hé²UëSbu‰ìò¥M—Ê2y¨åOÛÿQ nÿÐÈA´·ŒbæÖÅÂ$<å4#'×,;Of…ÆÄã.`Ÿ5[•Í9m:7@º·ª³ÞdP "êBÍ“.œ§Ñ—ˆ9ž¨`Jw&µ\>Õ¡qZ½ ¹c‹“oÄY¡ÀaÐLqÖ_֨ɲYÈ I†!Î}£{” ¨Êy+“¡õ†Õ •¹…¢©å’üÚ0¶Œué JªÁß*§}¿$]S endstream endobj 333 0 obj << /Filter /FlateDecode /Length 332 >> stream xœ-R9Ž$1 Ëý ~`ëòñžLÔûÿtIUªlË<ärÃD%~,ÛQkâ×Ff Âð¯«Ì…ïHÛÈ:ˆkÈE\É–ÂgD,ä1Ä<Ä‚ïÛøù¬ÌɳÆ/Ù÷Vì© ËBÆ‹3´Ã*ŽÃ*ȱ`ë"ª{xS¤Ã©$Øã‹ÿ>Ås‚¾#hÀ/ùç«#x¾¤EÚ=fÛ´[–iG•–ƒíiÎËäKë,WÇãù ÙÞ;BjW€¢0wÆy.Ž2meDkagƒ¤ÆÅöæØ¥]èÆe¤8ù™*ÂJšÌl¢ þÈé!§2¦®éJ'·QwêÉ\³¹¼I2[÷EŠÍÎë™õw˜2«Í;y–¥NEø{¶ ãêÙk™…F·9Á+%|6vzrò½šYÉ©HHÓº N£ÈKØ–øšŠšÒÔËðß—÷ÿ3â| endstream endobj 334 0 obj << /Filter /FlateDecode /Length 157 >> stream xœE¹C1DsUA °ê±ÇÑwÿ©ùJ´o-‡¯%Sª'"¦Ü×hô0yŸM%V,Ø&¶“rAJ1˜xN1«£·¡™‡Ô븨ª¸uf•ÓiËÊÅóhW3“=Â5ê'ðMèøŸ<´©è[ ¯ ”}@µ8IP1}¯b£œv"œà>G™)#qbn ì÷f¾W¸ÆãÝ7y endstream endobj 335 0 obj << /Filter /FlateDecode /Length 320 >> stream xœ5Q»qÅ0 ë5ðø•4s¯ÊÛ¿ @;a@ª¼dJ¹\ê’U²ÂäG‡êMù>`¦üõãèÙ!ºSÖ–{ËÄ<¥ŽXM–{¸/ M‰¹…ó÷è+£0ºÅß?@³$0ipðSk­Zb‰<,X³+Ì­)TÈU|;6¹rq³Ð§š·Ü‚ðeˆdGj±¯Ëe)ò»õ „æˆO‰…çf"ñ'b{öÙbWW/ªÖI‡RÒln04E²êƒØWÇ5?OGÙÁÉA¿ŠÁø68™/Iy_¡þÏÙȱ’C$ò}µÀˆ#l€¡Oí#e 4E÷î™R>&UŠïF!}ªW2¼‘Ùj†Íÿ]Ù* UYŸFp&ƒI8ód£ ÓRµÓ¿ûÜãóccz€ endstream endobj 336 0 obj << /Filter /FlateDecode /Length 338 >> stream xœ5R9®Ý@ ë} ] €vÍœç©~î߆”_ C´VŠšŽ•iùe!U-“.¿íIm‰ò÷É ‰’W%Ú¥ ‘Pù<…T¿g˼¾Öœ K• ““’Ç% þ —Þ.çck?#w=z`UŒ„Ë£kY:»Ãšü<¦?âr®X·cH ºqÚïCóyÈ f˜–Š ]V‰~Añ G­}÷XTX ÑíIpŒP‘€vÚH 9³»¨/úY”˜ tí‹"î¢ÀIÌœb]:ú>t,¨¿6ã˯ŽJúH+kLÚw£IiÌ"“®—Eo7o}=¸@ó.Ê^Í ASÖ(i|Ъc(še…wš 4LJÌ<‡3”ô}(~_K&º(‘? ¡_£ŒœosÑŸ¶ŠñÙa¯`…ÒÅšä}@*z`úÿ×øyþü¶€T endstream endobj 337 0 obj << /Filter /FlateDecode /Length 88 >> stream xœ5Œ»À0C{OÁ‹÷É¥JöoƒíЀ¤w÷‚ƒ:Aò¸)œ.nÙWz“ž&±ôLCíß`EÕ‹Z-_ncÐb*¾?ú$ –uò^8ôÞÅ{ endstream endobj 338 0 obj << /Filter /FlateDecode /Length 72 >> stream xœ5Œ±À0{¦Ð6X`ï“KEöoC|N/—¢ÁZ º‚#pu©üÑ#]¹)E—c΂áqª_H1F=¨#ãÞÇO¹_p} endstream endobj 339 0 obj << /Filter /FlateDecode /Length 392 >> stream xœ=RKn1ÛÏ)¸@¥ðMrž©ÞîÝ[›ÌTª /¶1”— ©%?ê’ˆ3L~õr]âQò½ljgæ!î.6¦øXr_º†ØrÑšb±OÉ/È´TX¡VÝ£Cñ…(-àá¾ÿñ¨Á×°…rÃ{d`JÔn@ÆCÑHYAaû‘è¤P¯láï( WÔ¬…¡tbˆ –)¾« ‰˜¨Ù ‡„•’ªÒñŒ¤ð[Á]‰aP[[ÛxfÐÙÞ‘3íÑqYk?=é£Q2µQMg|ñÝ2RóÑè¤ÒÈÝÊCgÏB'`$æI˜çp#ážÛA 1ôq¯–Ol÷˜)V‘ð;ʽýÞ’Ï{à,Œ\ÛìL'ðÑi§­¾býƒ?lK›\Ç+‡E¨¼(~×Aq|XÅ÷d£Dw´Ö#Õh% ÂÎí0òxÆyÙÞ´æôDh£DÔŽ=(²Å地§ü¬Í±ž&{o´”Į̀„Ôvz¨¶ÏcÔwžûúü.¡ endstream endobj 294 0 obj << /FontMatrix [ 0.001 0 0 0.001 0 0 ] /Name /BitstreamVeraSans-Roman /FontBBox [ -184 -236 1288 929 ] /Encoding << /Differences [ 32 /space 40 /parenleft /parenright 45 /hyphen /period 48 /zero /one /two /three /four /five /six /seven /eight /nine 65 /A 69 /E /F 73 /I 76 /L /M /N /O 82 /R /S 86 /V 97 /a /b /c /d /e /f /g /h /i 108 /l 110 /n /o /p 114 /r /s /t 118 /v /w ] /Type /Encoding >> /BaseFont /BitstreamVeraSans-Roman /Type /Font /CharProcs 295 0 R /Subtype /Type3 /FontDescriptor 293 0 R /Widths 292 0 R /LastChar 255 /FirstChar 0 >> endobj 293 0 obj << /FontName /BitstreamVeraSans-Roman /Descent -236 /FontBBox [ -184 -236 1288 929 ] /CapHeight 730 /Ascent 929 /MaxWidth 1342 /StemV 0 /Flags 32 /XHeight 547 /ItalicAngle 0 /Type /FontDescriptor >> endobj 292 0 obj [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 318 401 460 838 636 950 780 275 390 390 500 838 318 361 318 337 636 636 636 636 636 636 636 636 636 636 337 337 838 838 838 531 1000 684 686 698 770 632 575 775 752 295 295 656 557 863 748 787 603 787 695 635 611 732 684 989 685 611 685 390 337 390 838 500 500 613 635 550 635 615 352 635 634 278 278 579 278 974 634 612 635 635 411 521 392 634 592 818 592 592 525 636 337 636 838 600 636 600 318 636 518 1000 500 500 500 1342 635 400 1070 600 685 600 600 318 318 518 518 590 500 1000 500 1000 521 400 1023 600 525 611 636 401 636 636 636 636 337 500 500 1000 471 612 838 361 1000 500 500 838 401 401 500 636 636 318 500 401 471 612 969 969 969 531 684 684 684 684 684 684 974 698 632 632 632 632 295 295 295 295 775 748 787 787 787 787 787 838 787 732 732 732 732 611 605 630 613 613 613 613 613 613 982 550 615 615 615 615 278 278 278 278 612 634 612 612 612 612 612 838 612 634 634 634 634 592 635 592 ] endobj 295 0 obj << /parenright 296 0 R /seven 297 0 R /hyphen 298 0 R /period 299 0 R /one 300 0 R /four 301 0 R /zero 302 0 R /parenleft 303 0 R /space 304 0 R /six 305 0 R /two 306 0 R /three 336 0 R /A 308 0 R /E 309 0 R /F 310 0 R /I 311 0 R /M 312 0 R /L 313 0 R /O 314 0 R /N 315 0 R /S 316 0 R /R 317 0 R /five 318 0 R /V 319 0 R /a 320 0 R /c 321 0 R /b 322 0 R /e 323 0 R /d 324 0 R /g 325 0 R /f 326 0 R /i 327 0 R /h 328 0 R /l 329 0 R /o 330 0 R /n 331 0 R /p 332 0 R /s 333 0 R /r 334 0 R /nine 335 0 R /t 307 0 R /w 337 0 R /v 338 0 R /eight 339 0 R >> endobj 6 0 obj << /F1 294 0 R >> endobj 7 0 obj << >> endobj 8 0 obj << >> endobj 9 0 obj << /M220 239 0 R /M173 191 0 R /M86 101 0 R /M232 251 0 R /M153 170 0 R /M92 107 0 R /M109 125 0 R /M51 65 0 R /M187 205 0 R /M45 59 0 R /M97 112 0 R /M242 262 0 R /M75 90 0 R /M147 164 0 R /M112 128 0 R /M50 64 0 R /I8 257 0 R /M30 43 0 R /M161 178 0 R /M249 269 0 R /M20 33 0 R /M265 285 0 R /M236 255 0 R /M193 211 0 R /M57 71 0 R /M18 31 0 R /M186 204 0 R /M122 138 0 R /M28 41 0 R /M239 259 0 R /M79 94 0 R /M73 88 0 R /M42 56 0 R /M233 252 0 R /M17 30 0 R /M99 114 0 R /M212 231 0 R /M168 185 0 R /M101 117 0 R /M264 284 0 R /M88 103 0 R /M35 49 0 R /M191 209 0 R /M254 274 0 R /M15 28 0 R /M110 126 0 R /M6 19 0 R /M60 74 0 R /M228 247 0 R /M181 199 0 R /M246 266 0 R /M26 39 0 R /M94 109 0 R /M222 241 0 R /M259 279 0 R /M194 212 0 R /M129 145 0 R /M219 238 0 R /M226 245 0 R /I4 116 0 R /M43 57 0 R /M234 253 0 R /M188 206 0 R /M83 98 0 R /M198 216 0 R /M203 222 0 R /M179 197 0 R /M148 165 0 R /M230 249 0 R /M131 147 0 R /M218 237 0 R /M38 52 0 R /M141 158 0 R /M255 275 0 R /M108 124 0 R /M19 32 0 R /M111 127 0 R /M149 166 0 R /M182 200 0 R /M160 177 0 R /M200 218 0 R /M49 63 0 R /M120 136 0 R /M134 150 0 R /M183 201 0 R /M59 73 0 R /M87 102 0 R /M184 202 0 R /M208 227 0 R /M2 15 0 R /M167 184 0 R /M40 54 0 R /M145 162 0 R /I7 221 0 R /I3 83 0 R /M0 13 0 R /M241 261 0 R /M13 26 0 R /M238 258 0 R /M172 190 0 R /M119 135 0 R /M135 151 0 R /M266 286 0 R /M3 16 0 R /M31 44 0 R /M5 18 0 R /M100 115 0 R /M76 91 0 R /M103 119 0 R /M271 291 0 R /M158 175 0 R /M213 232 0 R /M201 219 0 R /M77 92 0 R /M197 215 0 R /M257 277 0 R /M260 280 0 R /M121 137 0 R /M204 223 0 R /M248 268 0 R /M223 242 0 R /M105 121 0 R /M192 210 0 R /M209 228 0 R /M81 96 0 R /M74 89 0 R /M47 61 0 R /M33 46 0 R /M48 62 0 R /M23 36 0 R /M14 27 0 R /M267 287 0 R /M221 240 0 R /M229 248 0 R /M245 265 0 R /M155 172 0 R /M144 161 0 R /M156 173 0 R /M32 45 0 R /M180 198 0 R /M128 144 0 R /M253 273 0 R /M117 133 0 R /M61 75 0 R /M123 139 0 R /M22 35 0 R /M137 154 0 R /M66 80 0 R /M177 195 0 R /M258 278 0 R /M189 207 0 R /M114 130 0 R /M206 225 0 R /M154 171 0 R /M11 24 0 R /M250 270 0 R /M41 55 0 R /M171 189 0 R /M96 111 0 R /M84 99 0 R /M237 256 0 R /I2 48 0 R /M54 68 0 R /M210 229 0 R /M10 23 0 R /M98 113 0 R /M247 267 0 R /M268 288 0 R /M175 193 0 R /M127 143 0 R /M58 72 0 R /M190 208 0 R /M107 123 0 R /M202 220 0 R /M8 21 0 R /M118 134 0 R /M231 250 0 R /M62 76 0 R /M70 85 0 R /M252 272 0 R /M217 236 0 R /M126 142 0 R /M211 230 0 R /M207 226 0 R /M152 169 0 R /M163 180 0 R /M263 283 0 R /M164 181 0 R /M52 66 0 R /M113 129 0 R /M29 42 0 R /M4 17 0 R /M90 105 0 R /M46 60 0 R /M25 38 0 R /M169 186 0 R /M174 192 0 R /M12 25 0 R /M243 263 0 R /M146 163 0 R /I1 12 0 R /M78 93 0 R /M150 167 0 R /M178 196 0 R /M93 108 0 R /M170 188 0 R /M67 81 0 R /M85 100 0 R /M21 34 0 R /M95 110 0 R /M138 155 0 R /M185 203 0 R /M256 276 0 R /M224 243 0 R /I6 187 0 R /M196 214 0 R /M136 153 0 R /M159 176 0 R /M82 97 0 R /M104 120 0 R /M143 160 0 R /M125 141 0 R /M215 234 0 R /M68 82 0 R /M63 77 0 R /M39 53 0 R /M157 174 0 R /M270 290 0 R /M244 264 0 R /M199 217 0 R /M133 149 0 R /M132 148 0 R /M56 70 0 R /M262 282 0 R /M44 58 0 R /M71 86 0 R /M106 122 0 R /M251 271 0 R /M89 104 0 R /M1 14 0 R /M115 131 0 R /M214 233 0 R /M64 78 0 R /M72 87 0 R /M53 67 0 R /M240 260 0 R /M205 224 0 R /M37 51 0 R /M69 84 0 R /M124 140 0 R /M269 289 0 R /M80 95 0 R /M142 159 0 R /M16 29 0 R /M235 254 0 R /M24 37 0 R /M36 50 0 R /M130 146 0 R /M27 40 0 R /M102 118 0 R /M140 157 0 R /M227 246 0 R /M165 182 0 R /M7 20 0 R /M176 194 0 R /M116 132 0 R /M216 235 0 R /M166 183 0 R /I5 152 0 R /M151 168 0 R /M55 69 0 R /M162 179 0 R /M9 22 0 R /M195 213 0 R /M225 244 0 R /M91 106 0 R /M65 79 0 R /M34 47 0 R /M261 281 0 R /M139 156 0 R >> endobj 340 0 obj << /Width 185 /ColorSpace /DeviceGray /Height 116 /Filter /FlateDecode /Subtype /Image /Length 341 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÐ1ƒ0 Aþÿi2I:˜ g›ìµR±Ò¶IҜ퇮χ^^·|?ÓÅMppðÀ|1pppðñàààóÀï²Þ®:¼3ÿX>éàààsÁ‡z××ý|´ô«UŸ ž^·¢ùxxxxxݲðOàuàuàuàuàuàuàuàu‚ ¼¼¼¼¼¼¼¼nYø;ð:ðºµá/ ]¨ endstream endobj 341 0 obj 180 endobj 221 0 obj << /SMask 340 0 R /Width 185 /ColorSpace /DeviceRGB /Height 116 /Filter /FlateDecode /Subtype /Image /Length 342 0 R /Type /XObject /BitsPerComponent 8 >> stream xœí½’TUF»çfFgPE À² ,…ÀÌÄÒLËÄ@_@ŸÌÌ7ð±ðÛ«ël¶šŒ3뫕ݾçwu°ëܾýâ…1ÆcŒ1Ƙ ‘í¦ð4ØTþ]6;í$7sΣ*fU1èŠFUÌ0ªrɳ·)Ü à>yàÒ'ÁaÉö_¯¼Si,º`$ûó_¢*fU1èŠFUÌ*W6…7+¹°Ø‘;•«Á³ÊóàVå½Ê׺û´òC°¿æ¤r\1ÿ(ªb†Q3Œª˜aTÅ £*f”“¨ˆìÝýʯÁŸ•܃ *âÓ›ýþþªÜ P›£»ïóÊ¨Šª £*ª2Œª¨Ê0ª¢*Ã¨Šªd rGàÆ•¼ —~¬äf=¬¬ªï—\«4gŽO*¿¿T¾ ¾¯|XÉ#¹TQUFUTeUQ•aTEU†QU&Ÿ<ª¤W+¨ˆ·kPx~àÒÁtw Îý¹òmð´Ò<Ÿùy%‹} ìREUTeUQ•aTEU†QUFUTelúÝ`³àj>K‰e¿¶æq%«ã^•ÉY]¼½&„´è.¿>§”ê,ª¢*Ã¨Šª £*ª2Œª¨Ê0˜]ª‹n½*y Ç7ÛõÕæR¯JS‹áM)-ÚÌ®q ä: ;üb(ÛD9ùŒª¨Ê0ª¢*Ã¨Šª £*ª2Œª¨J&ÇܬÞa»#¹w˜8^ŒwAEøp=ÀûRÜÕŸ@%ødvý~åµJ¾“‹ùV¥QåÜÖÔª¢*Ã¨Šª £*ª2Œª¨Ê0ª¢*«4àÒv=#ìÈ£`Ù³Áý–<•{PÉ1㉵F?ìÎÓgœ æ]˜N³˜°èÝJê‡FÎOTEU†QUFUTeUQ•aTEUVÁ4õ#*A\M7Ðæê lׇU9|}gm?°wgk½Q®bïV•,jg”í˜]þWfSGߪÏj~YÉ®a¾ª¨Šª¨Šª¨Šª¨Šª¨Šª¼2}}×X„¿òYÕ¼XÌÆm]=,;~Ãu/ÀϯšƒKœNæH0ñgkšFpȈ嘷í÷"K7P૊ª¨Šª¨Šª¨Šª¨Êj—s`7+Ø»¦Ê™¢;/Y+}TÁß\æŽ`ï²ä¹]iF#xJ-×ÅKÞ…Çd›Ó(œše›+Ù F‚rOUTEUTEUTEUTEUTEUvƒúSÈruÓ’cF›¹zøë–“uh»Ü¼x!Ç¿mÉ9mÉ3 ,QŽò‚oÓê®—¼Qɯ .5IhSUTEUTEUTEUTEUTEUvsسÃs«½v̹ãý[¦Ó¢¦lß«#A¿úØî˜Ö vÎÍB›iÑO8œk‚‘`VÅø•ö‹€ùTEUTEUTEUTEUTEU.­*wku¹·æ~¥©^±é«‡'7uaq ‡Gþrâ}%˜`vOœ á8¯/¥“<©ÄŠ}üVCóÛKYÂc‰Ðª¨Šª¨Šª¨Šª¨Šª¨Ê¥UO0æ ]£Í^-q‚†ýÊöñÉ\"¼a ï=ÁÞe×ð!Uÿ¬Urvx´òF%ÝD ü(Àš<¯4¿¿kfò뉻00UQUQUQUQ•‹§ É3t‡eÏ’çA¥ù±ÏÑš~vÍy V¬y±p‚öño’«ÚÞ1…lð¤ýÎg×¼O,wwá,LUTEUTEUTEUTEUTåÒª‚'©š‰ãdg¸#›vâù†Þæ°‹Ù¨xØN!KàæM Çë?Þ™B6‚îý›r`½*9S”íÍÖÞUQUQUQUQUQ• §Êßõ¯Î% endstream endobj 342 0 obj 1369 endobj 343 0 obj << /Width 185 /ColorSpace /DeviceGray /Height 115 /Filter /FlateDecode /Subtype /Image /Length 344 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÐ1Â@ ÁüÿÓA4ˆHDJöî`¶µ‹±·M’æl?t~>,ð:ðº…àû7ÜÌ'_>ü.ëízppppppðéÌëÁÁÁÁ¯½|.øPï!ð:ðº?€–¾µê³Áó~>ú1ð:ð:ð:ð:ð:ð!××××××××­æ}^^^^^^^^·,üxxÝÚðOþØ endstream endobj 344 0 obj 178 endobj 116 0 obj << /SMask 343 0 R /Width 185 /ColorSpace /DeviceRGB /Height 115 /Filter /FlateDecode /Subtype /Image /Length 345 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÍnVU†OKi …""R¤?)¢5 b"j¢‰qâÄ8$ˆqâÌ8ò2¼/Àûð¼ò®§Ù›…Nj¿çÍ;;ýöÙg­ç¼]çœïùs¥”RJ)¥”RçBkKñãðFõ¿ÓîR|¡úFXq‰ŠjJTTS¢¢šÕ”¨¬¸..Åûá׫׫·Æ> c(a¸Uýfu®ì…-xSÿE¢¢šÕ”¨¨¦DEte)F+³Îàê›á¯«¿ ¿]½_ý4Œ¶>¬~>¨Þ ¿V}\­^I¢¢šÕ”¨¨¦DE5%*ª)ÄÉ¥úR‡îWÿþ³:AG¾FXþ¡úð_ÕÉÞµêÕ?‡ÕK%*¢Ò”¨ˆJS¢"*M‰Š¨4%*¢r{ya4(£%nf;Å¡«ÿ?ªN@æÕÉÂò‡Õ¿‡©þ2üSõQufÿ›Õ+%Q•¦DETšQiJTD¥)Q•¦î./|©:¸\ rvÂ8„Iß·áëÕ¹È<›gúFï@æwá“êDß‘'Õ‡a WJ¢"*M‰Š¨4%*¢Ò”¨ˆÊHÛKqöqAGó޲jŒWvÃTçC:oUãt‰"îÇۭά¨rA@‹ÓåwÓ(0vÎ$*¢Ò”¨ˆJS¢"*M‰Š¨4%*¢Ò^Ia9߀<éž9WÃX$w…l>yÖ¿[‡ÐÖ\p³z¯:Çd¨ö™ßAóÿ(Q•¦DETšQiJTD¥)Q•T^Îíj„åŒÀ¶9°Ã…ƒ‡õ±ñÁ\]Î7- ­¸ .»³Ñ6ÉSW¿[ì"„úÜóöØgJ¢"*M‰Š¨4%*¢Ò”¨ˆJS¢"*#‡ì#ö‰ZŽÉÐÖ“0™äÜ Šê©ñ’„<õûÕ“°< ø{ÓXŸÂú5ÿ3G”=—gv’(*¢Ò”¨ˆJS¢"*M‰Š¨Œ„ wY“ƒê­qñ²¬ èøÕñ4çÚ4æ<Ú¬3^±…7ç§Ð¬‡Õy9kcc“¸ØÜ .ü^u>"ôYuó£jQQQQQQy©ÀÈÉÙ’ žyÉŠMðCõPêÃ0ÊöÃx¦¦ùœÑf-;Pù¼:›…ErW %J¼QL¼áN_™,¦Q¢"*¢"*¢"*¢"*¢"*¢òª¨¬›Ž¤‰8™C—'óALͲwªñ3—™ÓÑ»œâî2t$w‚q!.6ÛŠ«Ë=ãu à!ß™ŒC¨C^Ý£êIõpvQQQQQQ9-Ü—ˆKȘ†$ˆØ;zðg£îs±ËÕY¢y¬Î8y¥:÷Eâó–H[\lfsÌIsWøqLô®ÿŸ‡¬ þKŽO២"*¢"*¢"*¢"*+… ª‡Úæ•"h`Ÿy9ˆ9™ð©;ÕaœnÒô[ã»Ô-ÂË$F!åk¨XNŽžU#p寰\BNv°±£0¾>Ȥ¢"*¢"*¢"*¢"*¢"*+‹ÊKq^)RÛAuBÙqu9 Áä%ÙÀ–3¶ïL(bZôIø¨w”%*óYX|TìIø·êÉÏÁ`™Ùû&ŒšÜ¯QQQQQYYT0rÆ­So`ˈŽ`H—øáR²÷¦eÏîL­Õ²ÚDýãj¤×Ü?n{Ã#6ÉÛ{Õ¹>Šù}uf^TeO6Àpö59¬QQQQQYYTŽëä®Q¢<„¡,‰ ¢_Î1õC‰&;Ì“ö EØ$”ŸÂNâsÏ8]†=c‘,,Ãù—@%ûˆbbö**¢"*¢"*¢"*¢rþPÙã`âÉbI‡ÑÖOø… kŽØ»xêf°IVÊÔ†'qÐÊ\dòDÒV]™­cÆ„å!tdŽ'’2paÖ¶>¶¨ˆŠ¨ˆŠ¨ˆŠ¨ˆŠ¨ˆÊ¹Cå°Ó endstream endobj 345 0 obj 1477 endobj 346 0 obj << /Width 185 /ColorSpace /DeviceGray /Height 115 /Filter /FlateDecode /Subtype /Image /Length 347 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÐ1Â@ ÁüÿÓA4ˆHDJöî`¶µ‹±·M’æl?t~>,ð:ðº…àû7ÜÌ'_>ü.ëízppppppðéÌëÁÁÁÁ¯½|.øPï!ð:ðº?€–¾µê³Áó~>ú1ð:ð:ð:ð:ð:ð!××××××××­æ}^^^^^^^^·,üxxÝÚðOþØ endstream endobj 347 0 obj 178 endobj 187 0 obj << /SMask 346 0 R /Width 185 /ColorSpace /DeviceRGB /Height 115 /Filter /FlateDecode /Subtype /Image /Length 348 0 R /Type /XObject /BitsPerComponent 8 >> stream xœí[oUU…·¢!x#^(" ÕjK‰JïŠm-Z!ÜD ¥õB…€FR¯ÅK11RFŒ¯ú¨Â?aâï@ßc˜ S}©=ßÈ÷Ööœ}öúvÒÙ9×ê¹s„B!„BæEžlŒ#ÂÃοKÓ+™ãAR ªbP…ƒ*¤TéðÄ*Ÿ¦ƒÎŒð€3&ÜíDzš¿xÜÙî| w¾·ù/AR ªbP…ƒ*¤-Ë#VdR¸ÞyÊ9)lt´ZyÙu~¶:ÝŽ~é1çeá-'ô&ÿ(¨BŠAR ªbP…ƒ*¤˜ÍQa³ÅQ©~r~œïÛ¹×uÎ ¿;¯ {œ¸f}ArÁ  ªƒ*¨R ª J1¨‚*Å  ªh‰…­výnw¢Îö;}Î9á~çCa•ó³³^ˆkŽÆŸv'Ƕ·þ“—Õ&ž‘Ž ª J1¨‚*Å  ªƒ*¨R ª J1º"w8Úk‹ÚÓŽ¶á¢]8é|%\çL ‹œ'}Á#Nø°[xÅÑ¿Ç9ëè…EßQAT)UP¥TA•bPUÚ²¯1tú+vßhÕÊCŽ–Qw:kݳ3æô;œhôlns8*í¥Î&!6E¥¥ßûÎ!gžUP¥TA•bPUŠAT)UP¥˜XÊÏ„˜þZ,ÜàÄÚív;qÜÁaƒ£÷<¶ól'ºE/8½Âjg¯æ_éè=‰ÍD³Ž>ƒÑ5û?UP¥TA•bPUŠAT)UPE£]¿X‘Ó/-uôEbìírGO¾Â‰ÂS›ŒW9¿3N”Õ#£Έ³PˆïÔ&`mß9(L8q3µçRéŸæTPUŠAT)UP¥TA•bPUÚÕ«®ct¶ÐÑ˪ƒˆ—9ñúÖë8š@jÈÑ“Î8qÛ× ñú±Oç.¡×Y.ÄÀd—£_tâݵ¬½çNPUŠAT)UP¥TA•¶<Ò÷9× ñ[zìÓénutº,z@ÑÙÑ›¹Ä¹ÆQ©â¶k%öÈŸttïùÕÎMÎQ!®Y§ìbÆ/„I!:P±cèmáGg—»¨PUPUPUPUPUPå‚y°1âL*]Ö~gŸs±ú áÛêvÖ9ñUÝg»ot6/Ž>øÈÑ‹ŒO·Ó9%„ºí(‹½EúÁ£oæè(Ýiç[aÚATATATATATA• æÆXáè=‰"ñ=g¥·H÷×D;2n»öòâE6;zøÛÍŽ^dÌ¡ÅoºÓ'¤ UôÂâè9-á‡äÓy¼h†Æ¦*=]ákç˜ðª7ª  ª  ª  ª  ª  ªü=q3£Î= Ä4`ô×tÅ£°]ÕÎbGolTñÑéžwT† ç]G?]œà8]ǽŽn€zщ©K=wv9¨‚*¨‚*¨‚*¨‚*¥Ê&ÿ}{‹£û_âJ¢îè–:ºå¸'bõ +­ŽÞÌïˆ;à„TzX†OžÓÍ)ì7g£OSìëÛ®ÏH<¼*Xøú¡ ª  ª  ª  ª  ªt¬*Ï6†ÞçóËÂ-N8¦C\ãŽÖñSŽ–Ø#Nž:ýuÈ™&cŽ^st¸žqtíâ¯×…SÎGU‰¿<ìqôã,w¾bY?qPUPUPUPUPU:V•~ßä¢Ó_œhnbí¢¿¦³mñvúï)cÊ.ÎL袎ŽÚ\µyÓÑ=AcN¬ˆª2ëD³RÿÝÌ6GKø8k.†î´ïs9jéh;Ï9¡7ª  ª  ª  ª  ª JǪ²Ö×k¦ýÿž :ºv‡˜ñSßG—‹É8> stream xœíÐ1ƒ0 Aþÿi2I:˜ g›ìµR±Ò¶IҜ퇮χ^^·|?ÓÅMppðÀ|1pppðñàààóÀï²Þ®:¼3ÿX>éàààsÁ‡z××ý|´ô«UŸ ž^·¢ùxxxxxݲðOàuàuàuàuàuàuàuàu‚ ¼¼¼¼¼¼¼¼nYø;ð:ðºµá/ ]¨ endstream endobj 350 0 obj 180 endobj 48 0 obj << /SMask 349 0 R /Width 185 /ColorSpace /DeviceRGB /Height 116 /Filter /FlateDecode /Subtype /Image /Length 351 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíKlUe…ÒJA°TIÁ¢AŠ ŠT#ª¼Ô"Ð"*h•)HCL}$ÆhLœ˜úH¨‰'cœ8tj˜8©CÖZäÂuP{¿•oÖÛsï9ç;ƒ}÷þÿ;4D!„B!dDdJe|%Üïü³l­Œ‹6 ó  ) ªÂ  ) ªÂ JgNe¼+,qö8]Â8ç¸0Þ‰¨SËœÑÂ&g@XíÄAÈ¿ ªÂ  ) ªÂ  ©•¨,^a¥ó§³K˜é4 3œ÷œo…±Î6çi!Na¾ð€óŸ”fuT!…ART!…ART!…¹¯2®tô²w;÷:Ï?;ZóÆAâVZçœ/…AgÐxFúrÖ  ªUP¥0¨‚*…AT) ª ÊŠêQiÎf;ç8Ó…ÎIç'!,š&ô8Çœ…x»kœõÂ›ŽžÎÛÎ#Nƒ0Ï©«  ªUP¥0¨‚*…AT) ª JaæV§xÉÑ[p›S9:—¸ÂyÊé;íÂENT¯Í¹N¿ó½ð¼£=ÍNçg¿p«SWAT) ª JaPU ƒ*¨RTA•Zy¢2´:žäèͺÁ¹ÄÑÂ3V“58:²8ࢿÜѲz¯³Á¹Ihq– 7;mÎDáNg‘3‚*¨RTA•  ªUP¥0•ñ²Õ„›õ:jÿõ|çjG/l,áQbÿ„ÉŽ¾r¼³ÐÑFÒDG²ÜÙí,¢å¥ÙF!¶hø?UP¥0¨‚*…AT) ª JaPU4ZiÞát´æ{§·5ÊÕh…è\Ÿú} „oZ½^åÄì™.AŠ:÷g§ªLb•Ó,Gÿk¾Ï>#]Ž~K0¬‚*¨RTA•  ªUP¥0¨‚*µé™^èĔڡÙb냘RÓþàg™£co»}YÌãEÏQoÖtç§MˆƒèÖ ñŒ\àè¼_·Óãè¥ëœáTA•  ªUP¥0¨‚*…AT©•iÞðŠ»¼CøÄ9êô Ÿ9z1cÍÎFGËáN'JõÏ…°H‡'ãíZ…Øú 61Ð…?«õ96IøÑÑ-ŠîçZçRሣÿõªƒ*¨‚*¨‚*¨‚*¨‚*¨‚*gMüìN´±ôšÄ*§¯D¼ÝÑÒ2~"'6FÐþcL0Fm~Bˆ?iW.jóè9êÅⲿœß…ëQB yFoTÛ‘ëψ~Èθڠ ª  ª  ª  ªÔ³*S*#z@º@|æw•* 1–Ãf½ÂÃN»³Oˆí¶Kœ Žº1Ê9éèìÜ^Gû517ÇÙ.ìv¢¦-§ÕŽ\ñðnuPUPUPUPUPUPåôÄñŸt´c3]Ka’³YøÃÙïhپى°:íaÅï¿´9Zɾè|ì¨T3íÝüêÄs¡Ý®ãN<¡úÁÎs´35É6ª  ª  ª  ª  ª  ªœž¹•ÓY-B”f±úFëÇX)³Mˆ­t “=Žn©±?¾ Xãè[?ä<êhEÕë 0ä¼ï\!LuKtôA˜í,wPUPUPUPUPUêV•ï*CÔÄþ']w9ŠY}eœ‚Öz‡X…¤nt¢f\$¼åè˜e‹§ »ÜãÌs´µ«o:…_œßœMÂcNõúõE|G¡¾]ëlqPUPUPUPUPUêV•¸Îß1(×kÂ!§Çѽ¢+§ Áè‹E‘¨×a¡ó¸£sG­£·;QÅëj²xe|i §0àÜ%Œq¾p6±î¬rî¢ÞW7bR4n%ª  ª  ª  ª ÊÈSe–oV¬§͈Î:áS'º$zfGÛCQEÝ¡3.QÜÝp š2ªâ&ç §]x݉SÐÐ1ç!îøXG×Å#Ùëè+ã鲩µÎ*UPUPUPUPUP¥nU‰+¦ jF;1'Ö'ÄAZ½DQ“jÁ³mQî5 qX[¤ s; „ø¡Ÿ o×ähç(nÖéûœ¨÷»…•N|NýæáYGwZèrjƒ*¨‚*¨‚*¨‚*¨‚*¨2âTùr× endstream endobj 351 0 obj 1607 endobj 352 0 obj << /Width 185 /ColorSpace /DeviceGray /Height 116 /Filter /FlateDecode /Subtype /Image /Length 353 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÐ1ƒ0 Aþÿi2I:˜ g›ìµR±Ò¶IҜ퇮χ^^·|?ÓÅMppðÀ|1pppðñàààóÀï²Þ®:¼3ÿX>éàààsÁ‡z××ý|´ô«UŸ ž^·¢ùxxxxxݲðOàuàuàuàuàuàuàuàu‚ ¼¼¼¼¼¼¼¼nYø;ð:ðºµá/ ]¨ endstream endobj 353 0 obj 180 endobj 12 0 obj << /SMask 352 0 R /Width 185 /ColorSpace /DeviceRGB /Height 116 /Filter /FlateDecode /Subtype /Image /Length 354 0 R /Type /XObject /BitsPerComponent 8 >> stream xœí»ŽUEûƒÇ˜‡mlü<Ø`0 œ D"B‚„€#ãø.Cæ]ërÊ…!æ®­u÷yT­–¦æœ>÷É¥”RJ)¥”RçB»­ø£ðVý|ÚöÚI_ «3.QQC‰ŠJTÔP¢¢†•×ÑV|7 6pçI¸¡è¸ʧ^©¾QÝPt+ŒA¾P­þDE %*j(QQC‰ŠZéÅ­øruÆy³úBøóêÇá[Õw«¿ £»«¿ ­ýRõÅjõ$*j(QQC‰ŠJTÔP¢¢†Ba‹ei‰K§Õ?‡¯Îì X~¹úJI~¿…ÿ¨¾Æ‹€î¾ «gJTDe(Q•¡DET†QJTDåÎöÔàájܫΧޮþ¾:“õ^u€»W«›5ÇGÕ¿†ªþ"ümõýêì#9(‰Š¨ %*¢2”¨ˆÊP¢"*C‰Š¨ u{{ê“êdãB5ÈÙ­Âó«0ö:¯î’aÜùcõ×á«s&ŠåO«ß ò^JQ•¡DET†QJTDe(Q••ÀCîfÜž×Ir÷ZuVšïWçª_Júõj³o¬Zt‘ë˜WÚÅÊs&Q•¡DET†QJTDe(Ìî­0Êœ›aÔ5MîÐ>l¾ÊK(42q ÕC•…ó¥ê€~*ÝðÐd;÷°n•¨ ˜×ª³}§#9SQJTDe(Q•¡DET†QYéx/J+#• 2ò0|ÔÖ¹+Àö«rïVçmرÖà†‘ÊœÈ<ö¼¥ÑÈíê$oÓÙ‘¨ˆÊP¢"*C‰Š¨ %*¢2”¨ˆÊJHA“;T‚Û:Ôà¡ fCÊFlóèlS̯{° ²3ÊÕ;Õ«JFÙŽÙåH0œÚÿ À©tÙÈQQQQQ•g “EiÖP„žš)䥞ÌKk㓱ÓðÕê¦ýfv(fWg²ÐH³?ËSï00Ì.ß l…ú‰¨ˆŠ¨ˆŠ¨ˆŠ¨ˆŠ¨¬q¸YÝŒ¿ü3°hÅKî({PŸ¹Ìè!w™TÍL±n…5 $ çSÈ8ºÈÕ(„IÏ6?¨nÞ,”{¢"*¢"*¢"*¢"*¢"*¢²/Ôw˜Âêóü}çŠ껌’0ÙlCžØ•U¾ï| µ?êÜëáæ_ø‘¼MÍÀpg†oS®F5ÑÛDETDETDETDETDETDåï„8£»Œ^³LvTQA#™ñþ”éfA Ý%ŠMa h›F`ÔΙ,Ä!)ú¡%p3L!ƒ‰‘ìÖÆF>QQQQQ•ƒEkmGkŸVçìš{üT“&˜}%˜Æì…QóâÛ¢¦zmjs\ú,üKõõê¦ýæ5Ä¥æÛ(t'*¢"*¢"*¢"*¢"*¢r°¨€‡LAS|íjaÛ|# ¼ ' ô½7©L£»Dý“jà%0¶Vbóáý0ª×‡a ße z2›É®ÖwÿÑd¢"*¢"*¢"*¢"*g4’Q£;„(xP]jÙ&~—dUãl{³kÖkð`shXÓþÅõƒ¸sž»l¿V‰Frv}ûÍyb«wð/ߨQQQQQ9XTPß5G99ÌÈÖN<R›oKŠxpÕõ®–“ÍI H%.a ¹Ô‚î²X¾Ü®…åHzTò½Ã޶椅ÝÚ¢"*¢"*¢"*¢"*¢"*ç•?þd²6 endstream endobj 354 0 obj 1372 endobj 355 0 obj << /Width 185 /ColorSpace /DeviceGray /Height 116 /Filter /FlateDecode /Subtype /Image /Length 356 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÐ1ƒ0 Aþÿi2I:˜ g›ìµR±Ò¶IҜ퇮χ^^·|?ÓÅMppðÀ|1pppðñàààóÀï²Þ®:¼3ÿX>éàààsÁ‡z××ý|´ô«UŸ ž^·¢ùxxxxxݲðOàuàuàuàuàuàuàuàu‚ ¼¼¼¼¼¼¼¼nYø;ð:ðºµá/ ]¨ endstream endobj 356 0 obj 180 endobj 257 0 obj << /SMask 355 0 R /Width 185 /ColorSpace /DeviceRGB /Height 116 /Filter /FlateDecode /Subtype /Image /Length 357 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíI”e…¿½2ˆ´ÚÈ<(Ð * ÝŠ"(¢@@hQ)b *QÒ&hÂL‡ÄDL\‰ú„¿ÀèÚµqÙçœN5×aÑV='Ï®Š¯¾á©„[÷¾o_¹B!„B!¤-2­1¾v8ÿ,c†Ó#QT!Å  )UH1¨BŠA•ÏìÆ8+,q‡-ÂÎ !‹Ìm†˜äÄ?ìÖ9«œëòo‚*¤T!Å  )UH«ÜÜc ç7g§0Ó'Üä|èü Ä™lt^®s Ï:Ûò·‚*¤T!Å  )UH1¨BŠÙÞsœùB¼³ßyM¸ìLâaíqö Ñô9â\>vÖ QßàÈUƒ*¨R ª J1¨‚*Å  ªƒ*¨²¬b“£LuâfÎæ;§œKÂG‚½å¬âãns´p>ãhÏ1^:èhÙ¾È騠 ªƒ*¨R ª J1¨‚*Å  ª3¯⸳Xxȉêr‚°ÆÙí¼+,u´ÝÉñÎDa‚ó†ó½ð¦Ó+Ä9ÿèhm~ŸÓQAT)UP¥TA•bPUŠATi•ñU˜Øú)ô:ñN-<:cŒ:z—ÐåÜêLbÖñGËêX¡v»KÆ¢"ÖŸb s±ÓfAT)UP¥TA•bPUŠYÝ'…¨&ôþ‡œçýBXOY7IˆÅ>“…gœ8±éBÔJË!¢³sËœ§}©Ç ¥µHœäüƒ*¨R ª J1¨‚*Å  ªƒ*¨¢ÑÍÃÎ.GwN‹§¬ÓeSœh u 1BÇüHpô‰ÄlÛ-­¹ÇYëlbO/'Ö.ÍrT°ø)àG‹ñõŽ~FUPUŠAT)UP¥TA•bPUZ%¥–“±fg¥s¯åäŸBl8%ê!&Ö–8úÎŽªÄkÝ„!xÇÑ—ºýèØ&n„¿'œ§>aÔvQUŠAT)UP¥TA•bPUZ%.<¦µHüÜ9æ¼*|åhMm¸˜KÔ~ÌyÐùFˆ}³…x)Zoç…(«_rt·(«µz=ã\tÔ¢è~.uôësÔÑýTATATATATAT¹jîjŒhcécÝà|çh‰E Ûx§7FmÞçh |·£MÀyNTÄZVGû»ó«p‡3VˆŸÂÝ$!.<¾:<Ù神q9¨‚*¨‚*¨‚*¨‚*¬ÊMŸé¾®À9çèm]>âî…ºDè'ê]1—ð¤PŒÒiÍ{ŽÞ“X[¤Í¯ýNTUúÄ·9Q‡j›,¶Ó¯OÌƲ#TATATATATATžø )/:ZxƉ±4­ã‰èåüâ<çhÍsbqL-ÀcÍŽžä&'þt‹N—½í|æ\#ÄÆ zu?; -‡£³÷v¶ÐåèÚ¨Xg‡*¨‚*¨‚*¨‚*¨‚*¨‚*ÃËLbK+¸uÎVG›€±þE«×x¬ûœ—…iN”¨½Bt|+Ä#Xµ·ÃÑ;ÖÑÑk‹ÍÙ´:޲=ÌуĘ¢žÌ%FÏQ›kÛEŽÖѧõB<Ö Ž¾3 üñŽJ;ÃѳŠ&c|:ª  ª  ª  ª Jû©2Ç·óU7º¸cú—G¾pö:Z…~ªJ\]¿ó¸;!Ä}Ð] V9jQŒÒ :zÛcOãøtí[ÅÎf'„qNì® %ÕÎGŽ^XŸMŸè¯¡ ª  ª  ª  ª  ªt¬*±Õ˜^N”i}Î!(QÄi?%îØ—B”«“ÃBi=~£÷96v´¬ãtì-zaÚÒŠ/Z,;Ú-¬pâfªù¯;zè[Å7T…@TATATATATi;Uþ:%¨‡ endstream endobj 357 0 obj 1606 endobj 358 0 obj << /Width 185 /ColorSpace /DeviceGray /Height 116 /Filter /FlateDecode /Subtype /Image /Length 359 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÐ1ƒ0 Aþÿi2I:˜ g›ìµR±Ò¶IҜ퇮χ^^·|?ÓÅMppðÀ|1pppðñàààóÀï²Þ®:¼3ÿX>éàààsÁ‡z××ý|´ô«UŸ ž^·¢ùxxxxxݲðOàuàuàuàuàuàuàuàu‚ ¼¼¼¼¼¼¼¼nYø;ð:ðºµá/ ]¨ endstream endobj 359 0 obj 180 endobj 83 0 obj << /SMask 358 0 R /Width 185 /ColorSpace /DeviceRGB /Height 116 /Filter /FlateDecode /Subtype /Image /Length 360 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíKoUe†ÏHÑÄã/E¯µ"¢B*åfA*R)ä"ã… &^ãj8ràĉÀ‰qX‡¼ïÛœ²ÔIíyÞ<3èîw¾ýì„Åúö:„B!„BFDj½BóïriøÉéÈ0ªbP…ƒ*¤T!Å J‹çƆ±^xÙérN ÎGÂ|'2µqšåÎ*ç ëF9 ‡ü—  )UH1¨BŠAÒ,“Æg«0Õés6 +œãÂ~ç”ón<êìâcùGAR ªbP…ƒ*¤T!Å<Û068³…Nç çmá/g@˜çüìü$į{Üù]øÃÑ•,qv9o äŒAT)UP¥TA•bPUŠATÙÜ8M·£EnÜ»6§]¸ÅyËùS‹vÓý©½Î#Ž~ºÝŽ^ÿ{'Šå…øu-TA•bPUŠAT)UP¥TA•b´Î]èhC0ö9ÞîÑÍŒvaø …íg™0љ묢ŠÿÀé>sô¬æ]Î!Gß]úÅi©  ªƒ*¨R ª J1¨‚*Å  ª4Ktú¾–:ú*V¡s½àÕÎÍÎ áaG'lvb¾³¼×9ÇQ¯s®b%9— _:/9#,¨‚*Å  ªƒ*¨R ª J1Ï4ŒO…˜*0NˆÑãœmÂj'nåh!N¬i…5ÃyÊÙ)Ìt¶;· !­¾=t›s™£ÖçGOÖ=àüƒ*¨R ª J1¨‚*Å  ªƒ*¨¢ÑŽILØâè-¸Ä/ı´ó)Â('¤ÒÎË=ÎÉæ¬t´[ô¤s¿s¡óåtOâ¶F_i­ð¼sÀÑEö:úx«  ªƒ*¨R ª J1¨‚*Å  ª4K»¿Œ£Eâ‹Nl¦VÇãW„à,G/ÇÞâVê²,sº„8±-N½ñ ÜíèËJñéÂ']X|œhkêJºáTA•bPUŠAT)UP¥TA•f™íØB€±Â>çg‘¾é¹Çûœg£p­Óp´\bjÁ«Î{Îa!š€q´RŸ‘øt‹…˜Þk^'<æ|íè¹ßU}§ƒ*¨‚*¨‚*¨‚*¨‚*¨‚*g̬†±ÃÑW¥Bª¸Ac„é͉š4ÎOêJbÛc0‚ˆ÷Îô âz稣×íÌuö !€®ù 'l×Nâ$ç9G¯yÜ9%ă€*¨‚*¨‚*¨‚*¨Òʪį»ÁQUâàÖagš­-yœØv­€âlÛ Žž›æ¨*kœhµè›>qb-†9è+Hc‹…x#)ôÓõG´ØÑ£ÆtÎóÇÎUPUPUPUPUPUg‘·o¢)£gÛâLWì˜ËmÎB!6s¢£s¢}èz7„ ÎkŽþTLZˆ9“…uŽ”‹ëÇEºšû /UÅA>U=þ(þgUPUPUPUPUPU'ª¶§ýÕót¦¢£×¶UèsâoêJnu¶8ÂWÎ&!Jàgis:Â0ÙÑáGgŒ£OVŸpâšZ×D­¥™~œ˜opPˆ¦O|X}Îvb3u*ÂQg—ªTATATATATA•–U%*M]Õ,'¶ý> stream xœíÐ1Â@ ÁüÿÓA4ˆHDJöî`¶µ‹±·M’æl?t~>,ð:ðº…àû7ÜÌ'_>ü.ëízppppppðéÌëÁÁÁÁ¯½|.øPï!ð:ðº?€–¾µê³Áó~>ú1ð:ð:ð:ð:ð:ð!××××××××­æ}^^^^^^^^·,üxxÝÚðOþØ endstream endobj 362 0 obj 178 endobj 152 0 obj << /SMask 361 0 R /Width 185 /ColorSpace /DeviceRGB /Height 115 /Filter /FlateDecode /Subtype /Image /Length 363 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíIUUEŸ *Ø€ˆJ£"ˆ¢tЍ4‚ˆ4¢v‘Ö†‰4:01&&FýŒ Nœ8òêµ·©ÇA’ªµ³fUõ޽笛Ô÷¾sÎûë/cŒ1ÆcŒ1³"Ë&Á×`mòïòô$Xlæ&ª˜Á¨ŠŒª˜Á¨ŠŒªÌñÜ9 >Ï&[’×Á}É!°3©œž\ã‰ä@²”™ÇÀÝÉÂÄü—¨ŠŒª˜Á¨ŠŒª˜™²c<œì÷$W“ `E²tf>I¾ë’*ˆhæ3 ݨ×?œ˜Šª˜Á¨ŠŒª˜Á¨ŠŒª˜Á<9 ªXÞ¶'›’ƒà‡ä!ðxò^r¼žœM¾_&ëÁ’¤|㋘ëFUTe0ª¢*ƒQUŒª¨Ê`TEU8A÷&›AUÇÕdÍ»29šü žO¶*_Kø›Ë“ZÇžã©„­ÃËÉ¡„¿Y×<§¢*ª2UQ•Á¨Šª FUTe0ª¢*ƒÙ0¹ÆK ûƒ¯$Õéã<¾˜Ôk²\­i¥$õvûÀÞäýä 8ŸìõQ@UÜüÍG“9UQ•Á¨Šª FUTe0ª¢*3åø$ /'ìÝlK$ì§”ëÎH] KªsI•9óÁ½wd7ªVÖÑçG’z.ø‚UÐÕʺYUQ•Á¨Šª FUTe0ª¢*ƒQUÌc“€•æüd7¨)(©xôA­(«nß®Ž&Xj'Ní-âÛ]LªGÃêÆ)ØîdcÂÕ#S«ùPÌ‚²ZUTe0ª¢*ƒQUŒª¨Ê`TEU˜5“kÔii5,\·9a±|k².Ùv%µ§æ ¨-BœÖZ‡VíBZZ?*ý¸E¨–º=žJª"æp­JJ*¶8÷'S޶û£*ª2UQ•Á¨Šª FUTe0ª¢*3åãI°T‘ø\Â6YIõ ¨}@w%4àUŸô扪¨Ê`TEU£*ª2UQ•™R ·êÂ8zß$uwÀW —¨ÝžÔ7¹puÙIU@Ÿ÷îÙ©ʆ䨪­T¡Šu ܃_KéjÄøÜÕ×ÁÔsÇÃÎ&4óÏDUTEUTEUTEUTEUTEU®›ª^«¾ãÝíMê¤_î¯9pÏΑ¤øÔ`îL8zÇgÞ´(y0á…I~M®‚*«¹XîR2媃övоsàŒœNTEUTEUTEUTEUTEUTåFUY–°+W˱ª±ÈÑ;–|îOJ•= ¾u¥ŠYþèÉ„‡Ô*»ºYn½9˜Ô,°ÓWÒrk—S­mãƒvd*lŒîK¨J—W_‹£*ª¢*ª¢*ª¢*ª¢*ª¢*ÿLmù¯ãË8#ï$5éü«ú»Š¿%µ ‘wº5Yœ°ÅY·À³jéfuO‚ÚvôE¹«»ããócR%0?…¨þ`‰ÊMU54êBR· *ª¢*ª¢*ª¢*ª2§T©Ê¢Þ޳\ëåêˆ*þ{_çh±ÙñV²'aÝT¤:˜ž*I¸Ÿ}Ar*á°×÷¼×—¼°Â*3?$¥ Ƚܙ°¡V/ò!x5©úKUTEUTEUTEUTEUTeΪòû$àÔ²·jßpCJ^U½‰£ ®™%v5;ª˜å•œMj ¨Áä V¦ºE¼þzj©¯ùÍ„oýmr.aû©Æ¹Æ–[±'窣KoUQUQUQUQUQ•9«Ê”j²ªˆciy>©3X8/OØ«¿Z˜ÜjÿËŠ„×\Å2}«í6õš,ðË·:¢Óz4á*»z|.'ìTVu> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 266 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 228 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 197 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 288 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 222 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 164 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 30 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 19 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 54 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 163 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 217 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 20 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 160 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 61 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 205 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 106 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 239 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 95 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 267 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 71 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 194 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 219 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 282 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 110 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 120 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 38 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 215 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 68 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 285 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 173 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 250 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 192 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 191 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 135 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 259 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 182 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 236 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 270 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 85 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 119 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 220 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 232 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 166 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 29 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 52 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 154 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 60 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 63 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 49 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 31 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 105 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 40 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 275 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 238 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 115 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 97 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 254 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 17 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 146 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 283 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 202 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 179 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 287 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 242 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 184 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 244 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 57 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 224 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 35 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 241 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 200 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 277 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 47 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 46 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 252 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 156 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 58 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 158 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 284 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 214 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 69 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 74 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 32 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 193 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 43 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 278 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 14 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 65 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 181 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 272 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 16 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 94 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 80 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 281 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 67 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 198 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 72 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 101 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 170 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 165 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 209 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 77 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 258 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 13 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 21 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 256 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 33 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 203 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 129 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 107 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 96 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 235 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 148 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 45 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 253 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 260 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 64 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 172 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 36 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 178 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 233 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 59 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 87 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 134 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 243 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 162 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 262 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 189 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 18 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 280 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 204 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 210 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 246 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 56 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 70 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 93 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 199 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 139 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 159 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 174 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 227 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 276 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 248 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 131 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 81 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 39 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 24 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 286 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 237 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 121 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 290 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 171 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 268 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 207 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 225 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 34 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 76 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 240 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 216 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 223 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 212 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 289 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 234 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 255 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 249 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 196 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 263 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 53 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 186 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 22 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 128 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 208 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 213 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 176 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 201 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 42 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 90 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 168 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 190 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 180 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 55 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 125 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 211 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 88 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 218 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 92 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 279 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 265 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 150 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 183 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 51 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 28 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 82 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 229 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 84 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 23 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 175 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 169 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 44 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 247 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 264 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 41 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 62 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 27 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 226 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 89 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 230 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 78 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 251 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 66 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 15 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 26 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 195 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 185 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 79 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 245 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 127 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 269 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 37 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 273 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 274 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 167 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 231 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 271 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 50 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 143 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 25 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 91 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 73 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 75 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 261 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 291 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 188 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 86 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 206 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj xref 0 364 0000000000 65535 n 0000000016 00000 n 0000000065 00000 n 0000000216 00000 n 0000000275 00000 n 0000000512 00000 n 0000058867 00000 n 0000058900 00000 n 0000058921 00000 n 0000058942 00000 n 0000000383 00000 n 0000045743 00000 n 0000071433 00000 n 0000098514 00000 n 0000095409 00000 n 0000116843 00000 n 0000096029 00000 n 0000090440 00000 n 0000102708 00000 n 0000081120 00000 n 0000081740 00000 n 0000098668 00000 n 0000109547 00000 n 0000114206 00000 n 0000105659 00000 n 0000120109 00000 n 0000116997 00000 n 0000115758 00000 n 0000113586 00000 n 0000087802 00000 n 0000080965 00000 n 0000088886 00000 n 0000094788 00000 n 0000098978 00000 n 0000107370 00000 n 0000092148 00000 n 0000101153 00000 n 0000118242 00000 n 0000084226 00000 n 0000105504 00000 n 0000089352 00000 n 0000115292 00000 n 0000110636 00000 n 0000095099 00000 n 0000114826 00000 n 0000100220 00000 n 0000092924 00000 n 0000092769 00000 n 0000069238 00000 n 0000088732 00000 n 0000119798 00000 n 0000113432 00000 n 0000088112 00000 n 0000109237 00000 n 0000081274 00000 n 0000111567 00000 n 0000103640 00000 n 0000091839 00000 n 0000093546 00000 n 0000101620 00000 n 0000088423 00000 n 0000082051 00000 n 0000115603 00000 n 0000088578 00000 n 0000100842 00000 n 0000095564 00000 n 0000116688 00000 n 0000096805 00000 n 0000084537 00000 n 0000094479 00000 n 0000103795 00000 n 0000083138 00000 n 0000097114 00000 n 0000120418 00000 n 0000094633 00000 n 0000120573 00000 n 0000107525 00000 n 0000098048 00000 n 0000116377 00000 n 0000117620 00000 n 0000096338 00000 n 0000105349 00000 n 0000113741 00000 n 0000075588 00000 n 0000114052 00000 n 0000086869 00000 n 0000121351 00000 n 0000101774 00000 n 0000112188 00000 n 0000116067 00000 n 0000110791 00000 n 0000120263 00000 n 0000112498 00000 n 0000103950 00000 n 0000096184 00000 n 0000082827 00000 n 0000099754 00000 n 0000090129 00000 n 0000086559 00000 n 0000121660 00000 n 0000119643 00000 n 0000097425 00000 n 0000099599 00000 n 0000080342 00000 n 0000089663 00000 n 0000089040 00000 n 0000082516 00000 n 0000099443 00000 n 0000111721 00000 n 0000118397 00000 n 0000083914 00000 n 0000087490 00000 n 0000119487 00000 n 0000097269 00000 n 0000086248 00000 n 0000089973 00000 n 0000065002 00000 n 0000094168 00000 n 0000100686 00000 n 0000087024 00000 n 0000084070 00000 n 0000106437 00000 n 0000105969 00000 n 0000083759 00000 n 0000079564 00000 n 0000111877 00000 n 0000103173 00000 n 0000117931 00000 n 0000109702 00000 n 0000099288 00000 n 0000089196 00000 n 0000105194 00000 n 0000096649 00000 n 0000105814 00000 n 0000101929 00000 n 0000085626 00000 n 0000114360 00000 n 0000110481 00000 n 0000118553 00000 n 0000104261 00000 n 0000112808 00000 n 0000117308 00000 n 0000087956 00000 n 0000119953 00000 n 0000084692 00000 n 0000086713 00000 n 0000090594 00000 n 0000079875 00000 n 0000100064 00000 n 0000121195 00000 n 0000113120 00000 n 0000098358 00000 n 0000077775 00000 n 0000093701 00000 n 0000088267 00000 n 0000082361 00000 n 0000093390 00000 n 0000110945 00000 n 0000093856 00000 n 0000104416 00000 n 0000081895 00000 n 0000093079 00000 n 0000102241 00000 n 0000081429 00000 n 0000080809 00000 n 0000097737 00000 n 0000087646 00000 n 0000119020 00000 n 0000111100 00000 n 0000114671 00000 n 0000097581 00000 n 0000106748 00000 n 0000100997 00000 n 0000085004 00000 n 0000104571 00000 n 0000114516 00000 n 0000110169 00000 n 0000115447 00000 n 0000101308 00000 n 0000091061 00000 n 0000111411 00000 n 0000095718 00000 n 0000085937 00000 n 0000113276 00000 n 0000091528 00000 n 0000117464 00000 n 0000109391 00000 n 0000067066 00000 n 0000121040 00000 n 0000102552 00000 n 0000111256 00000 n 0000085470 00000 n 0000085315 00000 n 0000094943 00000 n 0000083292 00000 n 0000117152 00000 n 0000108926 00000 n 0000080186 00000 n 0000096959 00000 n 0000104105 00000 n 0000092458 00000 n 0000110325 00000 n 0000090906 00000 n 0000099132 00000 n 0000103018 00000 n 0000082205 00000 n 0000121505 00000 n 0000107058 00000 n 0000109858 00000 n 0000097892 00000 n 0000103329 00000 n 0000112032 00000 n 0000108147 00000 n 0000110013 00000 n 0000094323 00000 n 0000084381 00000 n 0000107835 00000 n 0000081584 00000 n 0000112342 00000 n 0000083447 00000 n 0000087179 00000 n 0000063046 00000 n 0000080654 00000 n 0000107991 00000 n 0000091993 00000 n 0000107214 00000 n 0000115912 00000 n 0000104727 00000 n 0000080031 00000 n 0000113896 00000 n 0000116222 00000 n 0000119175 00000 n 0000087335 00000 n 0000101464 00000 n 0000108459 00000 n 0000099908 00000 n 0000086093 00000 n 0000106281 00000 n 0000089818 00000 n 0000082671 00000 n 0000107680 00000 n 0000092302 00000 n 0000091373 00000 n 0000102085 00000 n 0000091684 00000 n 0000117775 00000 n 0000103484 00000 n 0000114981 00000 n 0000105038 00000 n 0000108770 00000 n 0000085159 00000 n 0000116532 00000 n 0000093234 00000 n 0000100375 00000 n 0000090284 00000 n 0000108614 00000 n 0000098822 00000 n 0000073393 00000 n 0000098203 00000 n 0000085781 00000 n 0000100531 00000 n 0000120728 00000 n 0000102397 00000 n 0000109081 00000 n 0000115137 00000 n 0000112964 00000 n 0000079720 00000 n 0000082982 00000 n 0000106903 00000 n 0000118086 00000 n 0000086404 00000 n 0000119331 00000 n 0000095874 00000 n 0000118709 00000 n 0000118865 00000 n 0000089507 00000 n 0000104883 00000 n 0000092613 00000 n 0000095254 00000 n 0000112652 00000 n 0000102863 00000 n 0000096493 00000 n 0000083603 00000 n 0000090750 00000 n 0000094012 00000 n 0000084848 00000 n 0000106125 00000 n 0000091217 00000 n 0000080498 00000 n 0000108303 00000 n 0000106592 00000 n 0000120884 00000 n 0000057245 00000 n 0000057029 00000 n 0000056466 00000 n 0000058299 00000 n 0000045765 00000 n 0000045988 00000 n 0000046129 00000 n 0000046254 00000 n 0000046376 00000 n 0000046529 00000 n 0000046692 00000 n 0000046976 00000 n 0000047197 00000 n 0000047287 00000 n 0000047678 00000 n 0000048000 00000 n 0000048205 00000 n 0000048366 00000 n 0000048518 00000 n 0000048665 00000 n 0000048787 00000 n 0000048947 00000 n 0000049079 00000 n 0000049365 00000 n 0000049513 00000 n 0000049925 00000 n 0000050226 00000 n 0000050547 00000 n 0000050690 00000 n 0000051068 00000 n 0000051372 00000 n 0000051683 00000 n 0000052002 00000 n 0000052303 00000 n 0000052715 00000 n 0000052922 00000 n 0000053063 00000 n 0000053300 00000 n 0000053418 00000 n 0000053706 00000 n 0000053941 00000 n 0000054251 00000 n 0000054657 00000 n 0000054888 00000 n 0000055282 00000 n 0000055694 00000 n 0000055855 00000 n 0000056000 00000 n 0000062669 00000 n 0000063025 00000 n 0000064605 00000 n 0000064627 00000 n 0000064981 00000 n 0000066669 00000 n 0000066691 00000 n 0000067045 00000 n 0000068839 00000 n 0000068861 00000 n 0000069217 00000 n 0000071034 00000 n 0000071056 00000 n 0000071412 00000 n 0000072994 00000 n 0000073016 00000 n 0000073372 00000 n 0000075189 00000 n 0000075211 00000 n 0000075567 00000 n 0000077378 00000 n 0000077400 00000 n 0000077754 00000 n 0000079542 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 364 >> startxref 121815 %%EOF pymvpa-0.4.8/doc/pics/ex_sensanas.png000066400000000000000000002620301174541445200175710ustar00rootroot00000000000000‰PNG  IHDRô%´sRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ -å¦ IDATxÚìyœMõÿøŸw™;û¾XcÄØ+k$¡ì‘¾D!%¿”²d_J$*TZm¢lQÙ…"ÌÇ0Ã0a†ÙÇìû̹÷žß÷œsßwŒÙ»¯ÇÃÙsÏyŸ÷9ï×ûµ/H÷ìß¿_ºxñâ5ÏÍÍ•rrrÔ¿Íf³”’’"•––J’$I‹EÊÈÈ,‹ú{FF†”’’"åççK’$IeeeRFF†Ý¸%%%Rvv¶$I’T\\,]¹rErÀ ¥¥¥Ò Aƒ®Z£ŒŒ iĈ’Ùl¶;o6›¥5kÖHIIIê9£Ñ(3FJOO¿©sµX,Ò™3g¤Å‹Ko½õ–´~ýz)//OZ¼x±TRR¢^—--]ºTÊÊÊ’¦N*:uJýmóæÍÒûï¿¯âø¿§Ÿ~ZÊÊʺæï¯¿þºtàÀ«ÎüñÇ’Ñht ß]ÅÅÅÒ×_]éoYYY•®iFF†”””dG3%I’òòò¤¤¤$õ_NNŽd±X¤ôôô«ö\jjªJkÅ{ÒÒÒ$‹Å"åææÚ/++s,–$IZî1ðññá“O>Áb±\õ›Åbaøðá 6 £Ñ@VV5âý÷ßG’$ yâ‰'(--¥´´”Ù³g3aÂÞzë-FŽÉ®]»HOOgÈ!äää¨c¯X±‚•+W°téR:vìHRR¸s!++‹ˆˆÒÓÓ jÕª=zô*¼Ù¶m›z€^¯çå—_ÆÛÛ›ììl’““‰‰‰!::“É€$IÄÇÇAFF†:V||<'Nœ 66VÅÓÄÄD®\¹Bdd$¹¹¹ês’’’?~ÿüsŽ=J\\f³™sçÎqâÄ ‘$ÉŒw(¸ººrèÐ!.\¸pÕoãÆ#<<üªóC‡eÚ´i¼ñÆ 2D½÷wÞaÔ¨Q,Y²„%K–°gÏŒF#½{÷¶£¥<ð‹…¨¨(zè!õžU«VQVVÆ›o¾ÉóÏ?¯ž¿råŠc±ýÝ<ùéÓ§“Á`à•W^¡^½z4nܘ¤¤$ÒÒÒ¨^½ºÝõ—/_Æh4R¥J¢¢¢hÛ¶-µk×æÈ‘#\¾|™€€õúõëד””Ä矎Á`àÂ… <˜ýû÷S¿~}>LïÞ½)..fÏž=,[¶Œ²²2vìØÁSO=ÅÏ?ÿÌóÏ?ïÀ²;òóóYºt)5jÔàĉ,]º”ºuëÆ¶mÛhß¾ýŸÞo2™xóÍ7Y¾|9¿üò «V­¢k×®œ;wއ~˜Q£FñÝwß±{÷nêׯÏéÓ§™7o|ýõ×èõzΟ?O=xòÉ'Y¾|9—/_¦U«V 0 0›ÍÓ¨Q#ZµjÀ³Ï>ËÂ… 0`ååå|÷Ýw¼÷Þ{4jÔˆôôtÒÓÓ9sæ 4°FÁbܸqüðì_¿žÏ>ûŒ={ö°víZªV­J§N˜1cõë×'==¦M›2vìXfΜɚ5kÈÍÍeâĉ´nÝšôôtNŸ>ÍÁƒX³f Í›7çèÑ£¼ú꫸»»“““Ão¿ýF‹-Ø»w/áááÔ«WOOO^xáôz½)ï8xð _ý5:Ž^½zѯ_?zõêÅÆ™6mÚßC£Ñ0uêTš4iÂäɓٵk 4P™ý3Ï<£^[ZZŠF£ùÓñš6mÊûï¿Õù#F0dÈÇ¢ pWkècÆŒaÁ‚ 0€¥K—b±XpqqÁÏÏ‹/^uýW_}ŰaÃèß¿?ßÿ½ªøúú2tèPV¬Xa§-ìܹ“Áƒc0hРõêÕãĉ 2„7b6›‰ˆˆÀÛÛ›úõë³ÿ~ÂÂÂ>|8;vì ¤¤Äew ˜Íf&NœÈìÙ³éÞ½;[¶lQ×øÌ™3ÿx¼6mÚ0}útæÍ›ÇîÝ»)((à믿¦_¿~tëÖ–-[²qãF|||èÝ»7~~~Ô¨QƒÍ›7«ZúÀ™6m5RÇmذ!£GfΜ9tîÜ™7ß|“ââbÚ¶mK~~>.\ 22•h:99ñè£òóÏ?³eË p•l0¨_¿>QQQœ={–&MšÀ¯¿þJ§NذaÁÁÁôìÙ“þýûóÓO?QXX¨Þ¿qãFúôéÃìÙ³yíµ×ì´ÿ~ýú1uêTÆŽËÞ½{iÓ¦ µk×f„ <öØcœ?žÐÐPž}öYÆç`æw$&&2gΦM›Æüùói×®­Zµâ·ß~ûÛãH’ÄéÓ§ùå—_ˆˆˆ iÓ¦êoŸ~ú)O?ý4O?ý4?üðÃß/""B½gÖ¬Yêù?ü§Ÿ~š)S¦Øá¦CC¿ ¡°°Y³fQXXˆ$Iäççc±XÐjµøúú’™™iw}QQ›7oæ‡~ ´´”>øÀîšòÍ7ßpöìY;-F§ÓÙK@Z-‹…öíÛ³hÑ"øâ‹/1b†Õ«WóÌ3Ïàéé‰$IDFFòàƒ:0í¼¼¼¨^½:'Nœ°#HÿªU«†F£ÁÝݣшÑh$;;›S§NáêêŠ$IÜÿýüþûï,^¼˜1cÆàééItt4f³Nw•E ¬¦ý#F0lØ0Š‹‹yî¹çرcO<ñO=õëÖ­£  €Aƒáää¤Þ×·o_† ‚——Mš4©tÎ?ü0?ýô™™™ 6Œ;v——Gpp0iiidgg«ZwïÞ½Ñjmòff&Íš5¬® ñÙÕªUÀÓÓ³RvîܹlذI“&áêêʲeËpsss åm†Ó§OÓºukêÖ­kwÞÍÍ‚‚‚kÞ·sçNV¯^MõêÕ™?>áááH’„-[¶T¯=z4O?ý´ŠÛ¢ x-hÑ¢«W¯Vé¯/¼ðƒF£Ñ¨J—CC¿‹MCµjÕbëÖ­Ì›7ÏnA³²²¨R¥ÊUHçââÂìÙ³Y°`%%%ìÙ³ÇNc™:u*óçÏW5&EsS|¢ñññœ?ž¶mÛâîîÎc=ÆgŸ}FTT?ü0.\ 66– 60eÊÊÊÊøöÛo+õç;àöBVV»ví">>žíÛ·«ÚHll,÷Ýw_¥ZGZZ $&&R\\ü§ãûøøÐ¢E 6l¨Z…7nLzz:õêÕ£yóædffÚS™é1##ƒC‡‘ššª   ó0`[¶l!""‚‡~øªç5ŠI“&]sŽ:tà»ï¾£aÆ4kÖŒM›6Ѻuk•Ù;;;3hÐ žzê)ÚµkgÇtÛ·o϶mÛHHH`Ó¦MI˜¹|ù2ùùùÄÇÇÓ½{wf̘Abb¢]Ì€n‘˜˜¨ÆK(t«°°ooïkÞ׳gO¾ÿþ{–-[†§§'†Q£Fñî»ïrÿý÷³råJUHÖëõ8;;ãìì|•²tM&¥Õª÷ˆ‚£““ÎÎÎf~/hèÍš5cÙ²eL›6ÜÜ\ KJJÈÍ͵“2Íf3ëÖ­ã½÷Þ£C‡ª9þ|yä;"åããÃ¥K—6lgÏžåÅ_ÄßßŸØØXæÍ›‡ŸŸýû÷§S§NŒ;¶lÙ°aØ8q¢Ê4žxâ ²³³í|ó¸ÍR¬VK=(**âÝwßåàÑG`ß¾}ôîÝÛîzFCóæÍÙ°az½FÃèÑ£iÙ²%ÎÎÎT¯^WWW•qµnݽ^Ïœ9sX½z5GŽÁÝÝgžy†nݺÉ’%KhÔ¨]»vE«Õªâ•:ŽÃ‡³qãF4 ½zõR™·¿¿?O=õ...ªÌ^‰ Qü‹™™™êœD¨^½:]»v¥W¯^Ô¨QƒÎ;óøãðè£R\\̲eËÐh4´iÓ†°°0Ú´iƒÁ`àñÇ'%%E}…à7jÔH}___7n À‹/¾ÈŠ+xàpssã×_E’$ÆŽ{•ðí€Û-Z´ $$D¥w­ZµbðàÁ„‡‡Ó¹sçësäÈ‘<ñÄ<ûì³lÞ¼Yu‡Þwß}ôïߣÑÈôéÓqqqA«ÕòꫯÚ£šÚ½¼¼;v¬c±®é.1½rå ùùùRTTDõêÕùßÿþǦM›X°`jž±X,$$$¬J…f³Y=—’’B­ZµÈÍÍ%;;›4 &“‰””ŒF#~~~øùùÙiRqqqáááAjj*^^^¸»»«¿'$$PµjU‡y@vv6¯¼ò k×®ýÛÚà ùõ×_ñõõeË–-þ©5Àw˜L&UK¯R¥ žžžŒ=š™3gbwmJJ ¾¾¾ª0«@bb"AAA8;;«PXXHVV–z§§'Õ«WWƒ•á¹víÚ$''S¯^=JKK¹|ù²MÕë©S§ÙÙÙ¸¸¸¨n3Ü ½2øõ×_©S§ÁÁÁŽÕuÀ?‹ÅByy¹Jˆpm0lß¾K—.Q¿~}úôéãn»¡¤¤„;w2`ÀÇÇp0t8Àp€p+ Ò ¸ÄÄD~ýõW;óˆp§jGåÌ™3Ž%¸+p5::Ú«¸5zJJŠš›»oß>>øàœIKKc÷îÝŽ/v@çΩS§Î]ÿ‹…E‹áççGll,={öTƶoß~Uõ)Ü}H¯^½î \}ûí·ñ÷÷çâÅ‹<öØctíÚ°fV>|رØ÷ôêÕK P½p•Ókß¾}<úè£<ù䓜9s†˜˜š7oÎÙ³g &))éº6ØŽ;®ë¾èèh<==Õ µ[ñÌë½ïÔ©ST©REÍýçš’’ÂñãÇï †^XXÈÙ³gùâ‹/HNNfáÂ…*C?sæ 5kÖ¼®oš––Fjjª]þìŠs‰‰‰äååÙï¸SçzéÒ%ŒF£]᜿‚•+WÞ ½  €˜˜Ö®]KRR‹-Rúo¿ýFÛ¶m‰ŠŠ²Ëº¹ÙëqðàAÚ¶mûksüøqºtérËæºoß>:uêôƒ‹óóó9}ú´šÝôw!..ŽòòrBCCÿö=Ç'66öÎbè999jªI@@€]ñ•S§N‘‘‘AãÆiÓ¦Í?z§§çu¥nùøøàíí}]÷^ï3ÿÍ\ýüüîȹFEEGVV–Z‹ûn“É„V«E«Õâççg§‘§§§SPP€¿¿?:uúGï\VVFIIÉ]sEEEh4š»b®¹¹¹Æ¿¼7??ŸC‡a2™î·Ÿˆ«þþþdggWÊ š5kVi„›±ÞÞÞøûûÛeåü]œ»Õ4ÙËË ÿ°êäät]sÍÉÉ¡¼¼üoÝwìØ1RSS‰‰‰¹.!ç¦2ôêÕ«“œœ¬Jÿ=zôPëÒ¥ ƒá# –¥ü§„‹‹ËuÝÛ A¸xÒRmo«x¥€Y>nÔ©êOçš”ržºè jJYW jUø‡iO×û}þî}aaa„……‘˜˜Èï¿ÿ~OIƒÁ€$I”••‘œœlWi-88˜=z\®zxxPµjÕ›º•ÞWR QrÅ:  (F _>vö„àv„N,¶a’ç…’ù€Å†¯ òÒ 5ªÕº%ïèãã£Ö‹ø+â­Ôˆ‹‹»§pµ¼¼œ¤¤¤«ª>öØcdggÿ#ëÅ¿]Úµk_wþ‚IÖ©S¢¡PL 7‘äÕ›ƒ‹×ß›ëåX¸’b=Ö ãé¡nq2ºóáЬã?𫳳óue<ùúúþ-\k#€#GŽÜv<»Š¡wëÖiÓ¦‘””„V«¥^½zv¿_ü7÷]ùÚî™c_€Ï>³ž‚›  T¥üæ:ôïÍuýz˜<¹.5áñr>xxÞ’ïs½÷Ý àîîNçΙ;w.YYY¼øâ‹7äÛxyy]w~ë¿ZÇ‹10 ³mg~-ÿ˜(.ÖÚm`j¸áñõõ½C7Ã|¡ ȯ² «³âë}EoÀ¸Y·äÿËÅ•<<<èØ±#sæÌ!++‹qãÆÙë:Ýu1ó³×+ ë½oö‚ˆÖ“UÅ!0ô—~…Žo®«–ÁêäÍ ($ÔBO_ؘýæêââr»—qU_™dòî»ïRPP€¯¯ïuIppÀ­FÃÈ‘#ÉÊÊÂÉÉéڌ͸puÔ¨Q\uÀ­eèŠæóOý*pÀíNGPPãC8À«p0ô»zö990N0³ú`õ=–Js ÿ³ž(Òäc¶óë>€ˆmÖãT¬æ¢°0˜:Ýz.- &L°_ŒÅ¥¯F™ðÌgG‚R5Ë«‰Ó"üŽðì6mà5GÉÌÿ|¹ NÉñ M°ùÈ“qÓ˜­ÜÚ''ÇäãšqÐä)ëq4ð‡|þ­%P£¦õxÕ;aõ¡Wìë$ãâùï=ßAY´mÿ(®‹€cX Ï`Þrðw0¥{.ÀG²+F(­1 €Ÿi£5…kvbuíŸIVš¬xŠš? =Ÿ—ñì |jíÐFr48“ïTpôE°ñ)ÛÍ2­Î”° I¦í={‚\CÞÁÐï()ï6Øþ®*3J#Uq*L×, ƒ‘GáòQëñ™à忨za¡í9N¢éÅon”ÇØ´É6v€ü•ÍœÄywö 8±íEÈ8* ·™€Òíõ…àïXÊ{r³`—@óAÓ P¯c+MæÕ®(N ~%í·ÒE#Ö7OCÏN·=§†0†F;«O]*ƒè öô Ø(0t£|\¥ÊŽ¡k˜ë€?³Ù̲eËxñÅéÞ½;+W®´ûýÊ•+ìß¿Ÿ”ktêöíÛñ÷÷gòäÉüôÓO¤¥¥9>¢n2mÚ4^~ùe>ÿüs»ß¢££;v,/½ô‘‘‘ 8©S§òÆo¨©d’$ñÎ;ï8šÍ8À¡¡ßé1Låe¯[dÉÎRAÖT¢­ë±Ebj+\£Lea=——m3-é„ûD‘ÈI8o¬0'‹ü›æîûÔ‹…¼¼þ—„kîøá‡ÍÄÆn 0°Ç!..ŽN:¡Óéhذ!±±±´jÕJÕÞ}||pqq¡¬¬Œââb:vìȪU«¸xñ"³fÍ"((ˆo¿ý–#Fðå—_þ÷ðµOSÈL³ „-Ú¥ÐÙDà¬|üPG8¯” ð¨ 0šåÿï—Ϲ} ¿}m{¦‚óÇÿËœ×Éãü!Ì5L>ßx]xž"Ì6½s>kQQ ¾ˆŸdgôiSZZÊo¿ýƇ~Hdd$+W®T#???¾þúk^~ùeuŒµk×2vìXZµjŨQ£èׯz½žÇ{Œ¦M›Œ£ß¡ìÀÇë[^{¹€}û!'g"5kÖTûÌ_ºt‰–-[’””„$IÔ­[—ÌÌL.\¸@~~>tèП~ú ooo233¯* áÜ(ˆ‰9Ehƒ¯8©Æ`0(+³JM%%%v½º5*˜j4t:3fÌ`ãÆìÙ³Fƒ““¿ÿþ;±±±ÄÅÅQ·n]ÇÇvÀ¿‚²²2ê…|ÅÈg`ÍZ(+[Faa!ÎÎÎ8;;Ó°aC>üðÃ?#!! :޲²2ºvíJVV‹/¶¶0v|jØY–Œe ƒV«å‘GaöìÙF–-[FBBf³™ÆG~~>nnn„††rß}÷ñÉ'ŸpþüyªT©âHtÀM'=ô—Ë‚+åÚ·oϦM›¨Zµ*/^¤V­ZìÝ»—®]»Ò¤IvíÚEYY5kZ3"""ð÷÷çðáÃôîÝ›:uêBRRNNNÿ¸v¸p-8y|=!"ú?a­¸§X3 ÿ²<µ»»;EEV?œÅbA§ÓÑ¿Z·nÍš5kîR†®ø¥s ‚iHI8§X}«JÑ ÖØ¢5b5¥ƒÕ,¯ø»•¯SÈ Éž#¦­Õ” ƒ~Âó÷yò|+óO&ÇÀº¹ÖãûCÝ·ÿÛ Ýl6³iÓ&¾úê+._¾ÌºuëX°`õK’ªáÌš5‹?þøƒääd:vìȨQ£Téó? žØL×iØ|ÚÅXSÃÀj:w—qéGa¼|RúĤß ø¬„'daómæ`KOi„ŸüW DÀáªn+n«l‘õ¢ ëÀ2ðóªÐvìíÿ¾åöûýþûï'//­[·²páB´Z­ì6cÆ >ÿüsôz=&L@«Õrúôi²²²xôÑGéÒ¥ :Žš5k’ššŠ¯¯¯Êøÿ3PGÆ»Š¥\•ØÖ2lY&Ÿ=|m'ÜŒ5{£«I¬¾mwalÑ/.úçºÝ@Æu ¨/üž)Ÿ+è³èÂL8z™¶6~¼Bnë§mÙú÷„¹=J@@...ìÚµ‹C‡Ñ¿4 þÝÀS¶”ët:j׮͡C‡ˆ‹‹ãàâÅ‹H’„¯¯/™™™¸»»SPP€^¯§k×®lÚ´‰¸¸8222Ô”¡›b¨±Xìràû÷ïÝMUp÷É ûZ åì•ÔÔTzè!«a£V-’’’T†^VV†‹‹ ³ÙLII |ðcÆŒaÑ"kê@:uHOOgÊ”)äççßP“{bb"¿üò ¡¡¡j—.üwú®]»Ø³g³gÏVé—$I¼ýöÛdggÓ°aCFŽI\\ü1ƒ¦}ûö?~œõë×£Ñh˜0aÂÕ =!!#GŽðÒK/ÝâxhŒû?ëq>¶Žh^ØÌØIyVé\‡5ÕGdYjwÁæç©ƒ-µ¬5ÖÔ€eØüæØrÅNAbîo©Šà–Ž IDAT°(Êïb‰Ùl)qyÂ5¬eµØÒ@À–bTÿ÷8O´¿2^}ýÖ‹=ÒiµZ^~ùe†JµjÕX³f /^Äb±`07n—.]⥗^¢uëÖ$''“ššJŸ>}X¼xñMõAšÍfÖ­[ÇÈ‘#ñõõ½î6»ÿ ^xRb­¦¾ª>).c™ /ÒñÄf><#ã²ð¸€{ËDZÀûn‰9¾ÊžÂfÎ?Õ¿ö&Ê_äë±ù3ëa3¿§bK zR8ŸŽÕ¤V3g!à ßÊ6V7OØué–zÚ4¶ŸÝÊÜ=77õz­V‹$IF4 ÑÑÑœÈØ±cYµj¸aÕOž€­Êáb.úË4°LÀýBl5R]žPJ¿f {h V—”›Ÿ`¿<—ZÀX~+®¬DÏ3úƒ·¼A] Íž¾í =77—7òÎ;ïpìØ1V­ZÅk¯½X[±šL&Þ|óM¦M›Fll,K—.eâĉ8;;3uêTš7oÎG}Ä;ï¼ÃåË—ùì³Ï®fèZ­–ÔÔTvìØA÷îݯ«—ì¿‚ò2Èɲ¯ÊŠhˆA×JsÖ ˆ¨¼¥ö¥Z‹*ûÏÌ{âÿÏWÌ›¬X|F‡}º8o徂B(’±¾¸øöJ‘ò¦•$‰?ü7Þxƒ¸¸8Ö¯_Ï /¼Xs+—/_ާ§'sæÌáüùó”””0mÚ4ŒF#Ÿ}öݺu»©q†}ûöQ¿~ýënù¯  ò²¬¸å!0ÝÜ ßSÁ³ 8I„H³€«ZW5‚`[ú'ø®Æ6 ÷VÄ3„ñÊ…yˆ÷9 ïS€­Q¾×b²!Qöìm à¥X’ä÷ìÞ½;Ë—/Çh4’MµjÕXµjÏ>û,?ü0Ÿ}ö‹…–-[ª‘Áåååœ?žŽ;b4Ù´i‡"""‚öíÛß°ùêõzbccÙ¹s§|kik)ÉkV$Ð= ûß\qW,ldpN/(. ¾Šõ>\Ú(UB7ÍN{TÀœCF”!…Aº ø¬­ œ”æÛè¯Ùx[ð5/ÒR­ÿäççc0ðõõåàÛo¿U¯=}ú4­ZµÂÅÅ…ÐÐPbcc1™LhµZ´Z-çΣ¨¨ˆÂÂBªT©‚‡‡K—.½š¡×¯_Ÿ?üÒÒR¦L™Â×_­¦8p€øøxjÖ¬I›6m&”»¢¢¢ˆ‹‹#++ëÏÓ#*D¹›L&._¾L÷îÝÉÎÎæµ×^Sº»»;ÕªU#""¼½½iܸ±júÔh4X,–›öNz½ž¹sçâììÌçŸΦM›*÷µOLLdëÖ­ :uêô—)!¸s ??ŸC‡a2™Twʵ™”=ƒ ÁÝÝ ðꫯâääDXXZ­–¾}û2zôhœœœX¶lƒjÕªqöìY’’’ðññ¡´´”òòr¦OŸÎÀohüG‡hÑ¢999Lœ8‘­[·ªîÌ;vàááAƒ ®»¿¹n;vŒÔÔTbbb®òi‹™—/[ÿW”g…>F;ÅÇÙÙ£Ñh÷ÛK/½ÄòåËñññÁÙÙήÄ7]ÅÐÝÜÜpssC’$»<9°:à[¶lys¿ŽTA×V¢](œFв+j™Å‚éFy…8l•µr+h)¦JæaªÄä„ ¡°E|Z°ºÍ“’ Q)ã$ c„û\+ÑànpÕɰ°0ÂÂÂHLLä÷ß¿æu1±°u7D]€~mmZzE$SÀd2QPP@YY%%ÖZRR¢E‹6l˜]a›¡+¤V­Z©õ¹ÁÿqK´ rYSÐa«ü–'hÆN‚v›…½»FÁ??ù:]m$I>¾"àV‰€/ÅÂ5ùÂ^I4¤|a®äç¸b‹Ž÷4$s|uÁq__x–› …Ý@ðòò¢wïÞÖ-«$˜ÿM†~àÀÙ¶mãÆ£OŸ>Ü¿µDÙ¢E‹X¼x1ÅÅŬ\¹’·ß~›òòrÖ®]K@@€*¤.\¸www^yå²³³oXËSooo¼½½©Zµ*eeeH’¤2ô^½zÝ|3|63z9¶RÙ¢ÕÇG>_†-â\Ô˜Ë-À抉Æ]KÎ2~” Ϲ‚Íå˜WÁReî«&ÐJ…ˆr¹^žk pªýW~WLôÕZ}ƒKc(±GŽùÓëêUƒ›À9¹Ò¨²Þ‘‘‘üòË/<òÈ#DGGãïïOÇŽY²d -[¶äôéÓ 4ggg&NœÈ©S§Ðh4xyyQ³fM>L\\mÛ¶½š¡ïÝ»—ü‘ÒÒRÚ´is{RޤJL:ÅÂy'lµØ3+ ²f H§Œ‘‰ÍoÍÏS!PA­_"ÌÃ[@h³@ ë ÏQ”‰é‹sÝŒa»h‚_" ÷m€FÁпxlR¤««+$$$\å‚©R¥ $>>^-ä1iÒ$úöíK×®]oê\‹‹‹™3gf³™ÌÌLÞ|óÍ[ÿÁó¢kê¢ÂDãfç':I`Ì «#_g¨À€ ‚`’pÞWÀ—8á™ ^º 8/Ör,ã±¶X’óØòáÍÂØñغ­õÄš[ŒŒã2áMžw›@*³§‘‘‘´k׎ÀÀ@BCC¹páaaÖÍ–œœÌ}÷ÝGII k×®¥¸¸˜M›6ѵkWòò¬ÜÈÏÏ???òóó±X,899ݰ¹~ÿý÷9r„‚‚xëË" xä,(EbèIY°,ªÀÐMÂ>+ŠÓ9áús‚ ¥“é¤I`øçºmánbóɧa+ÿ*ÆL9ËóϾöÛ£ÂïJO A@¼MÈj¶ç®®®L™2…íÛ·«tô—_~A¯×Ê!Cزe Ï?ÿ<Õ«WçâÅ‹lß¾ªU«òÚk¯áääÄŒ3ظq#îîîŒ9òj†þÈ#ðÈ#8ì(ÿU°Ø[ t:ƒfÈ!j¥¸ï¾û³ÙLýúõY²d‰ˆ4zôhV®\©Jª»wïfΜ97-¸ÒÍÍÅ‹;Öì? å&Øö‹,Ïý=‹ŽIII8p€×_üü|ÒÓÓ $??Ÿ¹sçòÜsÏáëë{Ãæ;xð`ìX¸ÿ*˜+XaeKâ“O>‰³³3z½žîÝ»Ûiþ7ÆÇÇFCPPšâVXXˆ»»;NNNôíÛ×jÐëy踆)KäJjØÌ™3‰‹‹ã—_~aüøñVÁ9-)S¦ÄìÙ³ÉÊÊÂ××—aÆ1hÐ fΜIii©#•Ì7œt6·P¬Ük»E‹üþû†rþüyêÖ­Ë… ¨_¿>5jÔàÌ™3ãëë‹››aaalÛ¶øøxNžJ°Ÿ_’Õ´W(͹J°¹N<±÷5û ø'º“Jeü»I)Êau —¢–bM‹«ßP©¾å/Œ§¤Vj€‡„ñR±Uü:)ÿŸ‚Í´®Ç> DÁÛíÀÏòq¬ü®.ØÜMR1<'¼h×FϼukQ<ôÐCìÙ³‡¾}û2q¢5tË–-¼úê«L™2E Š[¾|9ÁÁÁtèФ¤$š7oNïÞ½¹téIII,_¾œ+V°nݺ»»ÁСàÄz™þ¤Âùü lnI1>鲌7åÓb3W§b‹­H ¤ÇgTK i92}ÕasÛäbKIsÃæÎÌžy[åC7ù~ ¶Î€ÊõgÜ_WÉwÇ~ŠÖZŸþ\¼oÍZTÐÐ333‰ŽŽfÅŠœ={–/¾øB-«½oß>Ú´ià /¼Àܹs‰‰‰¡sçÎtîÜ™uëÖ„‹‹ Z­–š5kÒªU+ªU«v‡0ôÔT8ò›Ðy Îr [©MíçԞѢÈøW¸ '"®IØNT^z¶D¾N "B,´Â<Ä1’!VvRݲ¥8Ÿ?†ÈKл‡üúrPœ““åååWݳxñb:wîL­ZµÔºÃÁÁÁ„‡‡STT„››÷ċٶf²à–(¬©N – cS ±YÞ“*àX}ŒA£5 ¸X.àŽAÀs³Œ÷U„ñ²„g)¾ú+Øê·{ ÏSØ2VÃCØ73DÊû·Æ-,¯)aóÛÊ4áÒ¥K1kÖ,6lØÀàÁƒ™2e ?üðýû÷Çb±°k×.ÆGFFþþþ ¢¢¢h×®AAAŒ=ZM)º«!ë2ÄÊkS[ÂÎb¯8‰Êˆ’B)Æ9 8lðSÁ?AañÆÎ•…U±d¬QX71•·LP¬2°Å¡ÏÏ®× ûÀ Œ,ÌU'Ð[Åßå"dÉ#–[¬TAC/))±F¦ëõÔ®]›ÄÄDõÒ¤¤$BB¬{©zõꤤ¤ÐºukÊËËÙ»w/3fÌ@£Ñðÿ÷˜Íf6oÞL\\[’ì ~ôlmeº¬Õjñòò"--Ó§OÓ AJKK)--Åd21þ|üýýÕt±“'OÒµkW:w“™™™Žê€›J™¡ïÞ½›ðøããïïÏÅ‹ÕK÷ïßϘ1c:t(‘‘‘”––Ò³gOêׯO@@f³™#GŽ`6›‰‹‹£¬¬ì†Å9à¿ 'ÏÃÖß â¼õogggÊË˱X,ddd¨™`mÜ¢Ðά¬,õ·óçÏãää¤2û:йsgFŒÁñãÇï ]º†Ö-j׺ ’Žô75w±‘‹TA‹üˆfñÊ ÛH×Gª0©²¢6'Ž! Ï<ÿ(=¢"¬¹íü ­z èä¹*-úF¥ÅíÞ½“ÉD`` ß~û-;wføðá,X°€gŸ}–÷Þ{wÞy‡ÀÀ@êÕ«wïíÌba-eí£\8犭X‡‡`™ñÖÚ h4ù‚Fä"à›“À´R„ã\wü…ë+Ky5šRa¯‰—¸D_#ÌUyŸ"ù:'ÁR Ö„œ¸|Ê6žÉ_µ:øÝÐe°Xà’¬•Éó.**Rëføøø¨Ñ능I£ÑàììŒ$I*1ýꫯˆ‹‹£OŸ>üñÇÄÇÇ3sæL>üðC|||èØ±ã½·i”ÒÀG4š\-AÚJpA/àˆ {÷‡FÀgÏJ:è.ì•Ê,¥nØÌèξ¯QªÇ¿\x¶X©[ŠIØ[Ùg ØÛ·õNPëÆ×hYú·‚œ<ÓVªoFEE1lØ0¶nÝJ½zõèÞ½;&LÀ`0””D“&M$‰­[·Ò¿5‡ý»ï¾ÃÍÍC‡ñÐCÝA ÝT ’è„_¦2ßzy%‚€h¢­è‚CeáDâ*¦_8ËDZA˜²Jî•„#¦øVòl±Ô­hFú6f!n®bèt7v-*–±X,ìÞ½› péÒ%vîÜɤI“TÉqÓ¦Møùù1sæL, uëÖeäÈ‘¼ÿþû„„„Ü›ý¤Ï Ì»“Lœ®k×h[ ‹æw±›Ôz™I°o©ü~[éW1·6(ïÁfFW:\‰ÝÛÀÚ±ÊI&–rÉTò„½W$ ‚ˆ˜Ã{A^’œ9¯˜a„Ômø¬äÏZ c'Ýp²QP`cîŠy29ÙÊåìJ;;;SZZªöpuuE¯×óú믳wï^öìÙÃC=Dƒ ¨S§M›6ýëÂ6w #W”˜Báœb>s¸=á°H sJÏêÍKp>[lG°@»Ú`ËC?$Ðòf®ŠikynË.?"!V¤¡äw(ÆÖê×,0ÿÚØÊmŸÃ7Ò [:Û¶.¶ñËÏñ¯_&Ýøu¨PúU¯×3yòd¢¢¢èС5âÒ¥Kx{{ãëëËÂ… ‰‹‹cîܹx{{#I¤N:VÖ¡ÑFFFÏ=÷ 6tD¹;àÏ‘Îl6såÊZ´hAHH›7oV/õ÷÷ÇßߣшÑhÄÕÕ£ÑÈš5k5jp|OÜ4Ði LÖÚ+3Ÿ^½z1gÎÂÃà ÆÅÅ…—_~™%K–0zôh&OžŒV«¥_¿~”––²páBœœœHMMeüøñ„††òÍ7ß0mÚ4²³³oOmü'h+X µk×Ný[1¥+©©ÑhÔJœÊßMš4±{„ƒ¡;Àb’ak8D%B?ÁT Vó{ÅR®&“‰9sæÐ¯_?jÔ¨ÁÒ¥KéÞ½;eeeUÚrÕ¸aPÁRg0$‰ôôtš6mŠ——ï¼óƒ///rssÑétxxxàááÉd"++‹¢¢"<==Ñjµ8;;såÊüýý)—¸i ]’$Ö­[ÇáÇ)))áí·ßV;šL&&Mš„Ùl¦jÕªLž<™²²2æÍ›‡$I4hЀçž{޽{÷²iÓ&Ìf3“&MºÅ ýüyP h°ùQ¢¢í}1¢yE¬P¤© ŠTô½_«ljÅ s`ßCGlj!¦Á™*Û„-rRô¡Š×(éZì› (¦#1ÊÝExfÅè|*9ÿ VzóæðÒK7d‰AÿûÀS6[ét:üüüˆ‹‹ãÒ¥K4iÒ„Ü\빸¸0wî\5jD¯^½°X,Ô¨Qƒ'N’’ÂùóçILL¼{ýèóß„9/¬6Ó`5‹mð@ŒìðLÁa­ÅŽS-±ù#¼#ga5u+x¦dV ϳCÄ}RW8öÆÖô¥2\}ÞžX£‹Áá®D§Éï£ö¯[U/ -ÌI9x#\sò¦½7ÀŸ.]ÍÐúé':wîÌСC1bÙÙÙj‰Í¥K—òÉ'ŸPPPÀ‚ xàX´h‹…U«VNVVƒÏ?ÿœ·Þzë†7h¹ipîwØý¹m=”‰+Çì«*®‘sòšJðE© g¬@ÛN x›-Ð.å^wleY‹ø€cÇŽa6›©R¥ ›7o¦jÕª„‡‡3eÊLll, Y³fwwPÜÖ­p2ÂF˜ëWášÃØj hF›.CŸ«BÝlå/ÈÄ. kKH/šËÇé.ŠÄRô‰ê¯!¬UØ7 žUÆÐÅT5Wl¾Ò çÈ×*0t±u¬Xî(½M΃=ǬÇã§Þ†^‰†ž öC¯[·.ñññ*C/--ÅÝݽ^Éd¢¤¤FÃÛo¿MLL ï¾û.ÇŽS‹{4lØØØØ»ƒ¡§\„«lëì.q Ε`‹³HpÔ½zU.0C¶”Ì|á>?Ap¶QÀ+oI+¹ì„ñÄ€Jƒ€syÂþÈÃV^Ù­½WpÝEØu„y— ï("+ç3œß_*‚#ò·tr¾a =1N]†ù½ŠŠŠpqqÁÙÙ™F±bÅ õÚØØX6´Ö !11‘ððp\]]ÉÍÍåòå˼ùæ›FÜÝÝ©]»6ÉÉÉ“»®!E íS8@ß¾}IOOçĉjèØØX¦L™B@@?þø#nnnÄÄİtéRzè!¢££)--½=}ÊpÏC¹¶ÊNùr©««+¥¥¥*ÁT"ÞÁêsT¢Û5 z½¦OŸÎöíÛùé§Ÿ¨S§YYVi»°°Ð®ŸºðoÀU >zpÓÚ¬ŸJó³ÂÂB»"\ÙýæááA¿~ýèÑ£O?ý´ú;XsÚ]]]ÑFGGóñÇsôèQ+=7›ÙµkŸ}öiiiŽUø3t%7wܸq¼øâ‹lß¾]½´^½z<÷ÜsôíÛ///222ضmÆ ã©§žB«ÕæVTTĆ X½zµJ´ãããùøã9xð êëwÀœtÐ?ÔúOé‹þÐC±uëVÂÃù|ù2ÁÁÁlÞ¼³ÙLëÖ­Ù´i?þø£j9:x𠉉‰œ={–ÀÀ@ÚµkLjˆˆààÁƒj'­ ’$Î|ÀÙ³g­•²2¶lÙÂêÕ«ÉÏÏw,à \ Ž§õ€ÀÀ@ û÷ïçÓO?¥oß¾üöÛoÄÅÅñðÃóÃ?Á™3ghÒ¤ }úôaïÞ½?~I’ððð 44”~ø¯¾úŠ.]º ÏÍÍ¥¤¤„_ý•|]»vÎã?δiÓøôÓOÿ}PÓë“¡¤’Sl¦C`Š4a_•H¼F¡ÑþØLšbªMe•äD?sEsµ$˜`dB¾¬`ÊË­dl±”¬N09‰þ~m…¹(ùŸbN°˜ïiîÓ¦#]3Þyù ÕB:7 ébÒakD]±ÅY,$IB«ÕâããS)!Úµk:ŽÐÐPµ¥F£ÁÅÅEe¼7”³;vìà‰'žÀl63sæL&OžÌÚµkqvvæÁüwÙ·öÊiWE‰6·P66Ÿ·ˆ_~Xýwb»ÉŽ€Ò¹õ4ð0Fްþʶú]^k3Ö²™ .ì®d~&áÙÁØüÜû±UsóðòŠpo'¬¦ôb¬•ÂÀj"WÜFA€Ra8 [î{°W•ŽX¢iSƒÍ*š3±™M»€P¹é“ÀAˆJb[Z´hAß¾}ùùçŸyçwÐétj¥Â)S¦ðÉ'Ÿ ×ëy饗prrââÅ‹ìÞ½›Ž;Ò³gO´Z-o½õ;vì`äÈ‘×]öU’$òóóIIIáôéÓ4iÒ„/¿ü“ÉDÓ¦MÕ¹ü» a„^³'·­‘›€EØ*§‰Õ•ª…:l÷\TŠõ” ´HñQ{aóc‹]ý²…ç„´ëVóº¸OÀáÊŒveØÌï»Z*ÕD3_^w'lñ- î‚ÕÜï'¼¯ŸT.Ðy³ð­t€« yËz®zÓ¯,ÉÏ3 Ì›7Ÿþ™nݺѥKÂÃÃÑëõÔ¨QƒéÓ§sìØ1fÏžM`` ={öÄÝÝsçαdÉÜÝÝ™9s&?þø#¡¡¡tïÞ}‡0›Í;fõo:tˆ#FФI, ………øùùý»Y³ÚZp¢"³ SH•0tQáË LÍrgjþ„ 6ÅŸ.¶fõ‘ŸS„-ø£â¸"£uË"œ™¯RÂVle©¯„¹‹L\,[(ææ‹ÏyñÅž‡ÞÈú׳ÅiµZôz=F£‘´´´«zCïܹ“]»vñÖ[o¡Óé&!!ÐÐP ñôô¼asóõõeÀ€üü³µ°xZZ„……ñÄOpàÀÏÐ#ÿkVØ–—€sYŽhb£ô”VüÌ÷amUªŒ±Q @eþ¹D¯\þ[¬g!<¯–°þ bÍר! Øz”‹B¤’C,úÄóâæ!0ô½ØêÄ‹1+Fÿ<°/++ÖqãJ”¼â°ö0tÜW{*Ô~HNNfÓ¦MÔ­[—+V°xñbzöì XK¿*9ê;wî¤gÏž$$$P­Z5~øá5jDݺuÕ2œG¥S§N×ÕœE«ÕÒ­[7RSSUKWTT“'O&88˜wß}³ÙŒîßì_Sl^a{….¸`ï‹ÎpÑ[¼”˜Æâ†Æ—!ÒV7G|+¡K9Âs t1Qž›[ÙY³@#Ez/ Å"£u•Ç“*àóelEjtœ•yÔ‘² J£©e²Tž‹‹;t¾ ¸Z¡ô«BÓ† ¦þݶm[õ¸I“&viiF­ç®.‹››Ú­"[±¾“àótrrRmü >>žš5kÒ¦M‡ å.‚¨¨(âââÈÊÊús&«DeËË®×ëéÕ«¯½ö<ÿüólß¾³ÙL½zõ˜4iC† aÕªU 4ˆ2}út8@FF5jÔ¸iï¤øÀÞw ˜˜ÈÖ­[1 têÔé† ¸¹ŸŸÏ¡C‡0™L]Ø¥‚†¾sçNzôèAÿþýyá…HNNVqpýúõ¬]»–‚‚æÎKïÞ½™7o†?üèèhêÖ­Ëþýûñ÷÷§¤¤ä†½“ÅbÁd2©ÖNŪ0ô;vàááAƒ ¸ï¾ûHpÁ±cêä@ß IDATÇHMM%&&†.]ºü9C¯Ð>uïÞ½ìÞ½NÇ´iÓÔ4II’x÷ÝwÉÈÈ Q£FŒ1NGII “'O¦GôîÝ› ••…››£Fºš¡‡„„páÂjÕªuUPI—.]hÙ²åßµ9ÝØ¯æpVþ+ûΕ”ƒ #,,ŒÄÄD~ÿý÷¿–"… ¸„„Ú´iCRRÉÉÉjP\YYcÆŒaÏž=̘1ƒÀÀ@ÒÓÓ‘$‰^½z¡×ëoxëIÑO^µjURRR°X,üñÇÔ¯o+³LÿþýÿÙ·ü+¼Õü…õGóøúO«ô^oU_Å%ðoöLE·•æì_ñÛj®ý’^^^ôîÝ€¸¸¸kYn†­çd! ¶õÿôôt•!Ö¨QƒÔÔT•¡———c0ðððÀl6c41 ¤¤¤pìØ1L^^;vì`üøñ,]ºô†á­^¯ÇÏÏ””|}}1™L8;;«¿÷êÕKÆ¿!¸z#áϬšÛHÿ4ç®wÌJéjåUâ,Ž9ò4ô¼¼<6lØÀÂ… 9zô(kÖ¬á•W^àèÑ£2gΦM›FÇŽiРÛ·oÇh4ªuÞ3333f õë×ÇÉÉ ýO?ýÄ—_~Inn.AAA >œY³f±uëV dÇÐÿŒ k×\m&D0ãÕÌ™9•,‚X‡=¹‚™Í"˜Ž¨`"Ó6Ä1<ST–`ÞÑ çÅt#Ñ  ì=ÑÌ.¦Á¹ ï™] 2‰~Fż£Œç.hb.½˜7©àQÁŒdpº:µí¾ûàô™¡JØÏÃd2ÉìÙ³ÉÈÈ`êÔ© 2D5÷¼òÊ+\ºt‰   6l ^½z?~œû�þÆ%Räåå1kÖ,þøã&OžÌ{ï½G—.]?~ö”,š“ÀÁ$ª˜åGMäµ|KxÏTyŸé€áò¹8lù¾€œ­Ãó@˜€sŠ+¹Vߺæ\]À}ÅT_xL>Þ<–L¶ö[ŸÝÜýº–ÍI ýeF'ïC???²³³UæhÇTM&ÅÅÅj™””¦NÊìÙ³©R¥ «V­¢°°>úˆãÇsøða:uêt]óûꫯøþûïÑh4¸ºº2zôh/^ŒÉdâÕW_½þ0µ;œÜgÃ;…†^pR¬a®¤ˆù ôÒ «i^>ƾO 7¢ûO1—'akaš„-®¤)ÐZx¾âv Ä–Û®ÌÀ­$«XË#\ØâÞº_Æ{ òÌfò¸¥Â»— ÇÂþ-hná}"…ýÞkìAa2Œ—?”‹@Ÿô‚§¾îe+,…Ìëÿ =3 СC¾ÿþ{;‹jÛ¶mqss£qãÆ\¸pƒÁÀéÓ§éÙ³§ËT·n]Ö¬Y£öS×?þøã<þøãvþè£Úïb²`ëyˆÊ²ÒnQ#vww·K•¨ ÒÓÓ1Œ5ŠÙ³gS«V-µöð¿ooo–/_nwîÙgŸåÙgŸu,ÜÄÀ-àÑGeÉ’%ddd`6› à½÷ÞcüøñôîÝ›¥K—"IíÛ·Çl63lØ0}ôQ¢££qrrbèСôë×äädòóóÿ¾E²>|8Ç·;'æ;à¿©ùÖ ãT9®Xi°¢X;ÅàsƒÁ@YY™Ýo‹-¢K—.œ;wŽ¢¢"JJJ?Þª9œ:uŠo¿ýÖÑ>ÕöÐÈ ú×€6¤srr¢¤¤„äädªU«ö§÷‡„„дiS‚ƒƒ øKÀ¸nP > Ö´jÕªa0øê«¯xðÁqvvæ±ÇC§ÓÑ¡C:Äï¿ÿN›6mÐétT¯^+VpñâE\\\Ðëõ|öÙg|ýõ×ètº´æÐÀ:XÿW¬I’$qúôi¾ÿþ{~øabbb¸rå íÛ·g÷îÝÄÇÇsúôi5jÄÀ‘$‰œœrss)//çܹs\¹r…ãÇS½zõ›XXF4k+1£(f"Åìâ,ü^Y W1]®îŽ&Héj¡Š×Båéqf®.íjÁ>}Î"\«h.ØÌßbôyWWâÛ[*f'°O%Qˆ“òÍt•¼c¶ÔqìÊÚ ^TÈC×ëõ 8Ñ£GSZZÊôéÓÙ¸q#&“‰Aƒ1þ|øàŠŠŠXµjK–,áý÷ßç‹/¾ I“&T­Z•¨¨(µ)ËÌ™3¹xñ"Íš5»3ñV¬Ð§ÃÖíÌÄÿgï¼Ã£*Ú¿ÿÙ’M'HB$„Þ¥#E%""]D}”Ÿ€T…G,)*E@ª" (]šôf„ IH% ›¶É&[Þ?²çììf—¦>¯e¿×åÅzrΜ93÷Ü÷Ì]­&JÖ63Vu´}ÚV ž mK&Ñb¬fF?l3´é´]€Õ{ÜKxŸ‡@·R:Ú4æ¼úrxdš¨²Ã&Y$аè…/ÑŸVX×iB{©ͧXúZŠU%o(¯úݼÕò>///ÆÇöíÛ ¤OŸ>ìÛ·³ÙLݺuéÕ«ß~û-/½ôaaaråÀ:uêPTT„¯¯/.\ 99™ ô' tga\ŒLš0Oa:Ä;, c{!)^ï7 ¢,ƒ£\îb¿Å{=â…n ¶©l;¡‚@$îñ—ïwä””m׎ý·¨þ ¢œâÎ;Ç€¸qã±±±²Š[¯×S«V-jÖ¬ÉäÉ“©U«§OŸæÓO?E¯×³víÚ?Ü)îOZ`zÅXmmbšÕ‹}hj®…)x ô|]`RQ@gËï,¬öÂAxka8Øúg¤ ÌH)F)œÍ«­T ‰;G™mÜŒ­ïIgË{Å”ÅIÀQý˜@ÿ¾Ó³Œ•RX³öôS ­@·’Ê.áþa¿sîìz\\>ú(¾¾¾Ô©S‡k׮ѤI™Á6++‹jÕªQ\\Laa!:Žàà`?¡Zµj‘••ÅŒ3ÈÏÏ·©~õ—ÒL˜-sP]¸ž(ð¨GIþ éÂ=!X뉋õg|,íaùV ½°±­“Qä@ ß6|bjbá€rFX¹Bÿ*Â]²÷ßúZÍÒf‘p8Th@iBÿüúO´ÛˆçXx¨dã¿Õ'Äíè’FsÈ!¸¹¹áææÆ“O>)ÿ­C‡<òÈ#øúú¢P(())!??Ÿððp*T¨€R©¤ÿþäææ¢P(ÊÒ»!.ØÀ.—»Á`àÚµkÌš5‹ììlÆǰae\ØÓÓ“AƒqêÔ)ÜÜÜP(´lÙ²ìð˜QÆŒF£kL]øSPj‚­–D„RêW1fii©S¦Âý!Ù-¢A~ù傃ƒyíµ×X¸p!±±±\î.üõa'ÐM&‹/&55•ŒŒ &Ož,Gêèt:FMXX:Žwß}— .pèÐ!´Z-•+WfôèÑlÛ¶C‡QZZJŸ>}\Ý[¤™ÛpEkÙ€›Í²cœ}¬·33wî\úôé#gérÁ…?n èeqbO´p²æÍ›sðàAjÔ¨ÁÕ«W©^½:gÏž¥iÓ¦Ô¨Qƒ'NP\\Lpp0^^^hµZòòòÈÉÉ‘¤dJ …NçhþžÍ/¿ü¢E‹ˆ‹‹cåÊ•LŸ^–²ÿ~š5kÆ«¯¾Êÿû_._¾LÛ¶miÓ¦ III̘1½^ÏæÍ›Y¼x1:Ž·ß~û$ÐE±BP˧Bñ0bè–80&ʇ‚™…çýíî…2õiºÝ½’*ÅÝN­RŠÕžƒ]?$õg‘ Ž)Ķ$ªÒîØš¤¶½…qPck‹,qðþ¬ªÎë˜Jãó[´²Ô¬|éUxuôM•BT ððð °°¤¤¤{&Š)--eÊ”)r*Í¿J€›Â¸‹aŽ=x ãž,<f™Cw¬jû†XCÜn‡´'Òô:ÑÛÍ©D[)Bÿ<)K- ¶%X=Ú¹ãÊÛ,ôsØ+ôIÊ6W« «:ÿ¦°n°¦áÔëû°Ðï0¡¯’Í3ßÊÈh%Œå¦a°Û4žðáù‡8¦Û~g»víØ»w¯œtC©Trúôi7nÌĉ0`†eË–¡P(øä“OX¾|9ݺu£F4iÒ„E‹Ñ¥KüÐ!k*b “Ý/ð6„q—æT4—$b›n;Ï2_b"Ð,a¾âÚ’˜Ýh¡:V;÷¬jþ¬êu?l+\BùÔÝ ß ú'ÍíeAFˆ™x¯ ߨBhã”@«5…~èMø½½IØ$|‹RX×…‡a…·¶zjöû]]§Óáî›Õ«W'I*ÕLYb,ÉÜSµjUÒÒÒ0›Ílܸ‘ï¿ÿžöíÛ£R©ÐétøúúâããÃíÛ·ÿGÝì@ #Lº#›°ô¯³¢ŽÁØÛ¿Å~´':õ¨l&îö]Ñé‚ñtò-ŽújÆÖùNlÛSVqw[N‰,Y9Y|8f³™wß}—7b04h“'OfÏž=¤¥¥1mÚ4~þùgöïßO~~>±±±Œ3毟¥ÍŒm QgIaÄ• »Í ÆŽ‰IŒ'«íÎÃnîÄô±RI³a%¦Ät´è $Ú-K¬)i)9ÛI¼£š°¡ô6ȾXm˜îvkVm·‰´/é%Ъ£š ^Â=¹·Ê6&î™ïÂN _ºt‰¼¼<¾øâ æÍ›ÇSO=Å«¯¾ À—_~ÉË/¿ŒÁ``Æ Œ?žÆÓ³gOžyæÚµkÇõë×2d•+WfΜ92ÓýKAŠ.Åê¯`hrîõæQíàPdï«$ñIÑÉMtâU |N,¡["´­¸‹0Ú~¼…¶%g9À#õX<ÅõSliÓˎ猃»Í”ÞE®ˆqôBÈ·ðV½ö§íü¨¨€swÊJ=h4JKK1›ÍdggÛ$ ó)äääРA }ûöå™gžá¥—^bÀ€¨ÕjJKK)..Æ×××¥rwÁ¦òA«ÕDQQyyyrîà’’ ½{÷&//Z´hAãÆ "77÷M,ã‚ w݈Q–žºW¯^´iӆ͛7“ ו>}ú4ãÆ£  €I“&QTTDŸ>}ÈÌÌ”›ŒŠŠ"**JÎ*WZZêgþ4õ‚^þpÇ¢M "88˜µk×rþüy ÀöíÛ‰ŒŒ¤[·nŒ3///nÞ¼I½zõ8tè:ެ¬,BBBðòò¢S§N,Z´ˆÂÂBbbbþDî,]¤ÒÉŽN<±:òîO·îNNÿ&a‡Vd·•îÕØíDÅÓ²ØwgZ1œLÔ ˆ'g“]ŸÌ–±¨ÚÒ §ÁBaçè¨HÉnw)f™³ñÔò0þhRŸåû ›7ofõêÕ¤¤¤ðé§ŸÊŽoçÏŸÇ××—©S§²téR>ŒN§£}ûöôïߟ1cÆŸŸ/ç[ÿËÂ>\LôÆ-TÒi(Ån¼”–{35v¡=IXhGó¹Â=Ò‰£@˜ÿ[ÂÉÚG8çýóÖ„¨Ñ‘NI¢ŠR*Úâ&Ð\® f-úR«·pº--cäeGoö0ßè‰5<­XX_žv'ù!U3\°´_d¡u1¿¿¯¯/ùùÖŠHf³…BF£Ál6ÛÔ©°i×hdÅŠ´hÑ‚ÀÀÀ¿½Pæ½-VìÓ§T ¶¦éz¶ªy¥¦Eä%¥ÂüºcP½ÜÝ…u%Ö„v*YèÍ^ êဇ뱚ÄÓ¸:f´Iâ Ý!{&ÖP>/á{Mvï‘®W |…K“æËKX³÷ ùûá­ZU«ÕLœ8‘sçÎѬY34h@BBþþþ0}út®]»Æ´iÓð÷÷'**Š+W®IïÞ½Ñh4 >œ3gΠV«iÖ¬ÙŸ,Ðí«¦‰©Rí+çˆÌÕÃúSc§¢”^¬ˆ¦w ŠÛðwŽ0)ÅNÔÛâ·¨!ê(XŒ¿ÙvOÁÍ›7iÛ¶-‰‰‰6Y ===),,$??777‡M³ÙÌŠ+ÐjµŒ3æ¯vyƒ²0J~&VXÓbµ­«í6¨FAèJ¾â0xcõMÊæóˆ@‹RŒvðþGZ«°Zø¥«ÍÛ«]Z,S%lŠ+a­æWd¹GMY f{îƒmܸ—ð÷Lãw[à¿°Mßía¡çTá{~zCàÃ#ÐíÂÖ|||lª§Ù×£·&i¨Zµª‹.ÁÍÍ6mÚÈÿ¯6rÕµZÑh”ÕLjµÚ¥2ý—!L-5 ³l¤Ð³ÙL~~¾=ÜÇLJ‚‚2Î|çÎ*V¬Èš5k;v,­Zµbâĉ\¿~]Nìñ»5¬f³lsÒh4( ôz½ì…/U táß%P]iÝï<õÔSL:•£GÒ°aCÔj5ÇgáÂ…Œ5Š1cÆ R©2djµšeË–ñí·ß–ÙÕjüýý™={6=zôàwÞaܸqT®\ù¡ú'ñVµZ-‡ÓIZ777Wºôo¾ù†C‡¡×ë™5k–\{Àh42aÂJJJ¨Zµ*cÇŽåìÙ³|ôÑGxyy±nÝ:Ìf3o½õ:Ž *0räHÔ«V­bãÆtëÖñãdzaÃ6oÞLƒ xôÑGyüñÇ]ñ/‚»|Màe²ª…š7oÎ’%KHMMå‰'žàĉ˜L&yäV®\ÉŽ;Ø»w/Ó¦MC©T²gÏòóóIKKÃßßÿë[jj*&LàÖ­[lÛ¶ •JE=èÔ©žžž¼õÖ[6ù]øÀÎ)Î××—®]»’@—.]ðóócÙ²e@Y†­¦M›¢R©¨]»Ì ¼C‡äææJ‡ððð`Û¶mìÞ½FóÐ&“‰yóæ±mÛ6Þxã ú÷ïÏœ9sˆ'""‚=zÈUº\øw ôœœöîÝËÂ… 9wî_|ñS¦”Uxúé§Ÿ cìØ±Lœ8‘+W®Ðºuk/^,ß# þþýûS¯^=‚ƒƒQ¿üòËDGGsòäIùDÖ¸qcbbb~_]^Ñþ-Ú€E•»h‡S²â@E¤·Ûš+U“¨.’y®]_$ŒQè‡FP J}=wEÕ¥˜íÍQZYQÍ$jé¤p"/lUõa’yò«…ûõÂ;E[ÈÌÄñS&> Ñ Nq …‚ÀÀ@âããÑjµtéÒ…ÐÐPÌf3nnnh4.]º„ÉdÂÓÓ“¾}ûĘ1cˆ‰‰¡J•*œö ,ŒÕ«W3|¸UìççG÷îÝ©Q£ÆÃ ó¬´4¸ÝÁªÆ®ŠÕŽ-¦~•Ô–y½¢ýï*ð±@g êÊ3–¿i€Nœ& }Ò ×£º¸`ùí%ô/ÐBw Aµ(}§’2Uj}¡m©¯Õ)«l…E…)*k+ŒÉ~á;…ï-ÆC%|ãó–ßñÀ¡j»ñ~XGr;§¸Ÿþ™óçÏ3lØ0ÆǺuëd/õéÓ§Ó³gOŠ‹‹ùôÓOy÷Ýw™:u*3gÎdÇŽlß¾Ç{Œ™3g2mÚ4Ôj5nn—L©T2nÜ8ú—/µmÛö÷¥“iÔOà9Ò˜VÀ®•ƒ5DVÌJé+ÐH¨zöÆjn½ÅXÕâéÂøgcUC?*ÜŸdù›ÍS‚U/þk¸±RxÖ —…{¥Œ…(« †…ïë€/Š>SjGôšh1ŒºÔNNy m< Rôp© ì_€‚‚ÜÝÝqww§nݺ,^¼X¾7!!AÖlFFFróæM4hP®Í6mÚpùòe¾ùæú÷ï_¾[5B£Ñpøða¶oßÎÿû߇·#9Ê·.ÚÕÅߎjM‹BÕh·+WÚš8ØEN„¤è '†)ôÙéÖÛNx: KSØm`T¿ö³“1³oOáàýŽ3TÂFàa4z2ÅíÝ»—¯¾úŠ´´4fÏžÍ矔ÕÿŒŒdâĉ|ùå—=z”gŸ}–K—.ñÚk¯ÙØÛÿ h4žþyÒÒÒX¼x13gδ±9=Ð&&W ÑIÍ 0À@á·8¿ ÛM mßÁj¯žõ©”çÜ«ã˜YâF» §¿ÀP%a´°á^d·n–vÐV%¬%Xý…õ*ì,ý}5Dos¥°V½°ú$ ?a|T sù5púôiºvíJõêÕ‰ŽŽ&!!A>˜$&&Ò¶m[t:›7oæÆE—.]X¿~=ÞÞÞäääðå—_¢V«™0aÂC u{tìØ‘ÔÔTvîÜÉ¡C‡äÚ×¾[ÀZâÔÛ¯th¤ÐŽ_¹ üOciËÇ=›± ISµæ m» ›U0¿^¼ۧò6auJá°Û8ˆ1éFT?áp ŒCšƒµ,–ÜÄ6Õ¸_d·099>„HTÁÝPö/”…K™4 mR{yyÉ…­ìÿ&n ÀÅ‹Y½zuyÞ A4h€Éd¢ÿþèõzÙyäàÁƒÜ¼y“ªU«Ò¼ys— åo„ØØXÉÎξ«1^[[ZV>Õd2a4Ñh4sûömùÞììlÙ 8,,ŒÄÄDbccÑéttéÒ…~øáOý&www™ óòò8yò¤,Г““Ùºu+†öíÛÿõcá]‘——ÇáÇ1 ¤¦¦:×¶›a«åô™'l@%¿±¥ýéÙl6£×ëea-1×ÂÂB*V¬È”)SXºt)àé§ŸþC¾«uëÖ²š´W¯^6ýÇÄÇLJèèèß§u᎓'O’––F||<:urz_eE™âDòÈ D¥RqäÈöïßO=8~ü8!!!tîܙɓ'S§Nbccyþùç)**âúõëäæærãÆ ÂÃÃ9yò$¡¡¡|ÿý÷ÔªU õ78wî \¾|™œœŒF#ׯ_§zõê6jÌN:•¯\XyÚòê`±l¦x¾Ÿ“éêó¥Šl¦ûhOlCå@…¢°kÛÙ 'jû³äiª´Ûe›ïÒ?³ÝX™ï¡í¸‡†¡Q£F4jÔˆäädŽ?îô“ê( — |Væ§T*1äääØx­ûûûsùr™,33“   V¬X»»;Ë–-ãÚµk <˜¨¨¨?dá”””pôèQÒÓÓ9|ø0mÛ¶åèÑ£øûû³oß>>üðCùÞððpzõêå ‘[VZ‘N¯Útë.] ÿQÙºÅJ|¢G:iˆQ ŽÔïâ;K…ûÝ-'w;ÕºÙÖ»“‹# ýórðœ¨òVc[©O'Üc®‹™%m“H“bˆ“»@‹9vê~ûµâà„^¡BbbbäSµ3¸) —å;-ß[¯^=.\¸@“&Mˆ§fÍšdggS©R%*UªDrr2øøøP«V-RRRÈÏÏçâÅ‹DGGÓ¤IvìØÙlÆd2ý./÷øøxâââP©T4oÞœ¤¤$ÜÜܸpá‚,Ü%<ùä“6‰EÊN½ZД_ãz½õÄjtp’Ù'WñæQí€o92í‰Ú@³Ý)Uá`ÝqœTáD³©p Aï—Ì£ lM¬îX“Þ(˜Äb\"w³ÓT(í´“â˜ÙWît/¯ý”|!Ž;vw‚0ØjÜÝÝùàƒضm>ú(ݺuãĉ( ÂÃÙ8q"ÇŽcêÔ©T®\™´´4NŸ>M»ví8tè$??Ÿ;wÒ²eK:w¨¨ˆ°°0ÂÂÂÈÏϧJ•*üú믄‡‡3`À€{{bnXÓÆ”ýÎÂ6]©„ª–AS¯bÇT4&ÒY¬ŸDŒflò…ÁötÀ˜°{·ôÎ ÂgÌTdàwä’ÖK°ËH÷TÁZ-H iõv°øÄ¶õÂ÷‹‹K\D>Wù€›#G*w!]¥Rñè£òñÇ“™™IÏž=9xð &“‰–-[²bÅ V­ZÅ¡C‡˜1cÝ»wçúõë9r??¿‡S;ëšÉ„V«eذaèõz4 žžžhµZ¦OŸ~•±ÎG” Ø5`‹ :”T×-¿¿®‹ÂXÔÀž³\WZè\Z?Z~l®Ä¿ IDAT׺[~ÔïÂÓÓ¢>Ô…¹“‚jRCˆEmý‰Ý:°W/¶¬e)©$\¶Ð”7eéC%3€dæMƤ‚Ð?ÊÂï ÌV™mY;aýe:؈æã„ö$y剭/gC7SÎ)®[·nLž<™^½zñüóeü9sæðþûï3qâD^ýuÜÜܘ1c†¡C‡òì³ÏÁܹsñóó£nݺ<óÌ34nÜXÎ2÷0(((@EEEsõêU6lH»víîÝÀŽ÷aï<«°CàQů‘øˆN0³$ ¦˜Ú¿ðø‹´)#Kuw‰À¤0Ì` ¾Ù@˜ßL¡¿b¬¼ÊÁ†NLߊ5'B%.£±–³jêv±ê¥ä?p kÕÖBÿüùPOè×1‹ÚÝ$ŒoŽÀ³[ ãð pàåîééI³fÍd ¢¸Ñ«\¹2-Z´ R¥2g›*UªÐ³gOòóó©]»6îîîtëÖððpT* …u½zõ¨W¯žÍ{ÿ¨• C8 :…BÁ`Àd2¡P(¨W¯ž*&©%dff²dÉš6mJnn®Í}¿ôîÝÛæZ÷îÝ]söo†@OOO§¤¤„púôi†ÊÌ™38qâíÚµ“Kׯ_ŸŸþ™¾}ûGbb¢\rõù矗 ¹]®Ù{äÈêÔ©ÃË/¿Œ››G%))‰Ò±cGÞzë-’’’ˆŽŽv« ÿ¾gÏbbbèÑ£çÎ#))‰ˆˆ2O¿mÛ¶ñÕW_‘ŸŸÏÔ©SyüñÇIMMeÖ¬Yœ8q‚~ø¼¼<êÕ«ÇСC),,ääÉ“Ÿ"C.üõºðoVVIII¼ýöÛ\»veË–É}ß¾}tìØ‘¡C‡’ššJ\\[·neäȑԭ[—!C† ÕjÙ³g«V­¢¨¨ˆ7ß|óè%ØV%³OþV¯H“jM ³K“þî)¨ˆDµ³dÛUQ ª8Ó=Ø•”ýw‰j#±ß¢×¼J¸Ç,´£°¨ÈŽ í*Ñl`vж}*Yû{E/hûB ˆB#d–‚Ö\f!0™L˜L&ÔjµMÁi)ÙÔƒƒƒILL$##CÎçååõ×+?¹Ü2n(Ëef )VÖ m q-!þöÃê"ÍAV5§’²°4(S)J*R©À†t=ÇÒF[an¥ŠO±ªýбªº½±ª+Ó±-JQ‘òöQÖTµ¢ª^üFéúv`åw[¬Yã Âz½)Ð_¼Ð×pëF MRRÜC‚Í”Ñ*€ÁÒ^NN—¥¤«\¹2™™™²@7¨Õj¼¼¼0™L¤¥¥ÉvkrssÉÈÈÉHÏÿÝ\Kü­†0~%”™gLX³¯‰6l7¬jça :òæú¢È°g7Kaþ¥ëwìxôÿUºËÂ6ÒBêŸ($»xÖŒo…ÿý¥Äw†Zh:Kà­EX3æÕhñV3„Vxgea\¥È7áÞ"¡îXMÕ|:óŒi‚< ­£ÑhP*•T©R…ôôtM§dB”œ‘³²² ’ýšJKK)))ÁÃôZí$Ð ¢R;}صk&“‰Î;³aÃ>ýôS®^½Ê»ï¾‹N§cúôéüòË/T¨PjÕª¹Õ…?7–OãºwïÎŒ3¸~ý:>>>T¨PiÓ¦ñÎ;ïп9¢k×®R«V->þøc’’’xõÕW©Y³&ëÖ­cþüù$$$0tèP×@»ð»¡Ñh}:%%%ôë×Ï%Ð]¸7^|ñERRRpss#$$„¼¼²m²§§'3fÌ ==_|QNó:cÆ 9æ•”Ãîááá|øá‡hµZBCCÑh4Œ1µZMïÞ½iÑ¢ …‚Ðвãì¤I“¸uë>>>¡P(˜={¶¬ªP¡‚kP]øS R©ø¿ÿû?RRRðòò¢råÊT©R¼½½™;w.YYYT®\6l(šÂÂÂP*•ôë×víÚ¡T* ýºXAMT͈ªaIý'f—RcUãåcº%–ð“T:bX›”JPãÊgf«¦ÅÊC…Âu­ÊÉþ91– Ûcƒƒ6DsCº ÆÍ g|¯ÉÊM?I/ªmÕ¾W…Õ†äþÇžZ­¶9iûùùÉ¿}||l*AY„¿dÙI(S5š)SQ÷°\S`UcG`U—Ÿhª+Ö´¨…ñN·Ð¯H#•±• aUá‹>&±š2a­¤†@7YÀ)ËoV»i5þÇaUɤLµªú ea9Z J´%мV[y,VUé—”…ðAY˜™¤²÷èl´åw*Öt´Fl«ÒI$,\/²Ü÷ÖÕ °‰é–„7 ÛÓÅ“S¤E]/Á××÷¯‘ˆH‹U®æ·"ÖÔmš)Ìc%Ấ2.øo:V³^-á’¯’ÁާI<>"î.bµÉ‹¥EÚñ¸`Í*k_ûö‡‡LèòJëËXÍ™XM†žÂ<ê…ç …ëbÑI»{Ų”Øf°ÌNï¢w·NVAX+XU×"ï*²;%Kóà€ÎÄŒ˜âZqÇšî¶@³ö9ÏLv’L)|;-ú ï©$ðlaK=ÅŠ•¹Â÷ŠÅšÎ‡8Ë‚«Õê?ò÷èYYYåí£f Õnг$º…—³OAX:éQUè­N˜4£}ƒÂòNûr¬¥³ng†,K ¶Cõ»}bÁ>Ÿ¯ÜÅ2™~XÚ²Œ™%$.Ë &'=¶6)7ëÈ2C ½@—6J›·—ý0pà¿N ;¤Õê–±ÏÀò#†ÃÜ}èMP¡©Àx~Æõœ0·±æVYh.«íZLÉ™„møb+ g™!P‰mø–ªV$ôÕϺŠï”Å`ûÄ } ·0$3VÛ·¸Ú-)c³J P+¼§ÖøÚXm«7±†Õ‚,“e]ý&ôéŒ@ŸRÿ* ãPEù`2ƒ·X,]j[/¿dík÷'ÿUÝl6“m›ÏÝMØû^ç5{(dC ÆŽ'f;èQ”…bh!§üÜ@%fL.6›ZAÐ5µnŒZÈ-†J°Ú´E¾xÛò£ÒAê"d•B`Ö´Æùmëõz*d—BEOP¶µã¡’/hžºcÝü ßE—ˆP¬ùF. ãZbèî k f3x»Ùƒ´áؼ .Z6 Ã'þeú«Ü=úP/:j|¸^Ç6ýû½ó!íìÛ×+–ÍÀÿòûÜ¿K«Ù¥pE÷?¦¹‡|.à ¥ùÎ;ùÜC.È”ø-ÏE—Ž`08yòäÃÍÇCæ¾9WÅAwÅ8›ú´£}¸çN•U×{Pšà—‡XË)9p3ëïGG.º .¸à‚ .ü 0ßgõŒK—.ñÝwßQRR"Ç™ÉÉVu‡#¨ÊR‰ú+(oï½tXÌÆ^ت+ïãYù"ÌN¶5 »çìï‘Þgo“²×b©ô'öM*Ïgï‰içå®5ƒ¿3ºÂI_ÍB_ï5•*Ad$%%%têÔ©\ùÆæÌ™C^^ž-­$ž±ÎE¡ºÐ@©JLàíƒÕDT"Ì™¸ã/ÁÆ|¢ü+aµK`µQÛ›´Ë<ªЈè7!öÕTÖO–ˆ&áävòБEµ¯-1M€XPìŸ^ ]ṡ?¥Bۢ纷µ=}©­ €Ü?G†FÁÍ ¥RÉèÑ£ÿÑ´zøðaŽ?ŽN§³ S"+´â1à¸â¢hK,´£æY#Ðļ±šCr ¯|” C°Š°zÆë„÷Ù’nA Tpw£ŠôÕâC¤5€¿d«–¾«X •:ʇ\=TPƒÂQ¸X)V³¶ï6ª@g_q]¹ mÛ­K‹=ÊTîžb8žVÛºh*ª•«RPPÀ AƒÊ…ñþ%º .¸à‚ .¸ð×…jÚ´iÓîçF½^ÏæÍ›Ù»w/UªT‘‹rÜ yyyr5£„„êׯ×ëIII¬Y³†ØØXyäÌf3GŽaÓ¦MF"""P(ž9s†µk×¢Ó鈊Šâ—_~aÉ’%rDû¥¥¥lݺ•~ø””jÕª…^¯gÆ ÍÆ¹páäåå1þ|Ž?Îo¿ýF£F>—ŸŸÏòåË9|ø0%%%DDDpóæMV®\ÉÍ›7©Y³&juyE£ÑÈöíÛÙ¾}; Ô­[—ƒ²nÝ:Ž?Ž———Mîê+ôz=›6mz`ZøöÛoÙºu+ÇŽ#$$D®EìF£‘-[¶ðí·ßM… ¸}û6«V­â×_¥fÍš¸»»;¥Õ5kÖPTTDTT.\iU¯×;¤U€¸¸8Ö¯_ω' ÁÏÏ3gΰaÃòó󉊊r¸>´Z-ëׯgÿþý”––ÁªU«Øµk'Nœ ZµjN³¢íÝ»—ï¾ûޏ¸8"##Q*•lÚ´‰}ûöätŒX»v-ÇŽ£bÅŠ(•JæÍ›ÇÏ?ÿÌ¥K—Ê•ý·"66–uëÖ‘••EÍš5Q*ïÏš‘‘Á¬Y³8uêiiiÔ­[×)o¸|ù2kÖ¬áÖ­[Ô¯_“ÉÄ?üÀŽ;ðððpÊ; Xµj?ýô7F¡PðÉ'ŸpäÈNŸ>M³fÍò«ÂÂB6mÚÄîÝ»ÑjµDFF’——ÇÚµk9yò$5kÖtZšö§Ÿ~bË–-ÄÇÇS½zunݺÅgŸ}Ɖ'ÈÉÉ¡víÚŸKOOgåÊ•=zFCHH—.]⫯¾"33“èèh‡ã«×ëùöÛoÙµkéééDGG³e˶nÝʉ'¶uXü‹â¾mè[¶l!33“§žzŠwÞyƒáþJyét:1bÏ>û¬Ã‰·éRI½zõصk×®]ã›o¾¡OŸ>¬[·Žëׯ;}ÖÝÝ   N:%3”ÀÀ@FŒAÛ¶m>c6›©R¥ ƒ âòåËìÚµ‹uëÖQZZJÇŽyçwœï†T*zõêEƒ xï½÷¸}û6Z­–#FгgO§Ï©Õjüq ÀÒ¥KIOOgòäÉtïÞÌÌL¾ûî;§Ï6hЀ_|‘ŒŒ ¾ûî;Μ9Ã#<ˆ#\µ–-ؼy3YYY<ùä“L™2å¾iÊJÂ>õÔSŒ1¢\V1G "55U.òÁдiSøüóÏ>§ÑhÊÑjPP#FŒ M›6NŸ3›Í<ñÄ<öØc¼õÖ[¤¥¥ñÅ_лwovîÜɯ¿þêð¹’’6lÈÀùꫯHHHàÇä…^àå—_¦J•*NßÅ /¼€Z­fÕªUìØ±ƒääd{ì1Þÿ}JJJ>çççdzÏ>KÏž=7n¹¹¹Ü¼y“#F8¬ðoDNNóæÍã™gžáÔ©S9räžÍËËcĈ<ñÄ÷ܨT*¢££Ù¿¿| 9xð ½zõbáÂ…ddd8}¶zõêœ9s†ââb 'Nœ`Ĉ :FãtÃÅóÏ?Ïž={8}ú4 , 44” ðÁÜ•—÷ïß___.\Hrr2jµš#FÐ¥K§ÏyzzÃsÏ=Çÿû_rssùøãyúé§9uê?ÿü³S¹Ó¢E † ÂÉ“'9zô(‡¢G¼òÊ+›š÷-ÐÏž=Ëã?N­Zµ ”+ÁÜóJ%:Ž?þ˜M›6Ý“¹V­ZUÎM+í^[µjEµjÕhÕª±±±NŸmذ¡Póôôäüùó̘1ƒÓ§O;e¬íÚµ“óŽ+•J~ýõWºuëF“&MÈÍÍuÚçfÍšQ£F üüüP*•¸¹¹qûöm>úè#¾ÿþ{œY3<==Ñh4ìß¿ŸÀÀ@¹¬c½zõxì±Ç¸pá‚ÃgU*UªTáäɓܼy“ºuëâïïÏ®]»˜>}ú]7;ÿ&H´Z»vmî›V*V¬Èúõë™={6©©©÷d;v$88XÞ¼æååѬY3}ôQ1™;74jÔÈ)­ž9sÆé;ëׯO­Zµ¨X±"*•ŠëׯS»vmjÔ¨A÷îÝåJaö¦yóæ£R©ä’K–,aîܹdgg;}gxx8gÏžåòåËÔ¯_Ÿ'N#÷¿°°ÐéfçöíÛìÝ»W>Å2{ölÖ¯_ËÚׯ_§FDEEÑ£G§óçì` Õsß½{·SZ“P«V-­È±cÇxê©§ˆŒŒ¤Zµj$%%9|ÎÇLJ.]ºàãS–ÃX¡PàîîÎܹsYºt©Ó ]… hÕª!!!¨T*ŒF#)))´mÛ–V­Z‘ššŠÑè8L§mÛ¶T­ZÔj5îîî$$$0sæL:ä”vüüü(..fß¾}Ô®]›ôôt‚ƒƒ‰ŽŽ¦GNº››9r„¼¼<ªU«F`` _ý5³fͲ)múWÆ}Ç¡FYUîææFiéýÅʲråJ&OžL«V­hРÁ}w°¤¤DÞj4šû~/”UTêÔ©¹¹¹Œ?žæÍ›;-ç¹sçNrrrèÒ¥ ?üðƒ¬IP*•w](’ÚkæÌ™„……±xñbŒF#ãǧM›6DEE9|ÎÛÛ›ˆˆ:Dvv¶üjµú®›µZMXX•*U"11‘!C†e%ö¦NʺuëþõLR¤Õ{§=&NœˆR©äرc,[¶L®Îu?0 (•J J¥³Ù|ßB«[·ntîÜ™ÜÜ\ÆGóæÍñòòrxï;wxûí·™:u*6ëÃs•°`Áš5kFdd$3gÎD¥RqàÀ–/_îT%~ "11ÑfMJŒÚˆˆˆàäÉ“óÅ_ȼà×_uj–ú·À`0È´êîîŽ^¯¿ïg###YµjF£‘‘#GÒ¹sçR ëõzÙ$ô ëÄÝÝeË–¡R©˜?>àÉ'ŸtzÿêÕ«©T©Mš4aõêÕòQ(˜L&§&ØË—/óí·ß2kÖ,üýýiÚ´):ŽñãÇÓ²eK›RÎöB=""‚ýû÷SPPpßëC£ÑPµjU<<<¸uë&L@©TËܹs™?þ?ç„I||<………¤¦¦ö@ÌU:Ü‹Á™L&ôz=&“‰’’¢££‰‹‹£¨¨ˆË—/ßÕƒÐh4RZZŠÁ` ´´T&µZíô½f³™;w²{÷n¦L™‚F£!<<œ+W® Õjå‰v„¤¤$FÅ{ï½GXX&“I®~·o-))ÁÛÛ›6mÚ€Ùl&''‡‚‚âãã©Q£†C[˜ÉdÂ`0аaCºtéÂÅ‹1›Í¨T*4Í]ë¿ ­žžnSœã^0›Í²¶å^'i.%ºóööÆd2‘••Err²|ŠvF«%%%D«P–,ç­·ÞbĈÔ®]›êÕ«“˜˜HQQçÏŸwºY6Ìž=•JeST©T¢V«ïú­EEEÔ«W.]ºpíÚ5êÔ©Ã… ÈËË£¸¸Øé&¹¸¸˜:wîLaa!EEE( ™ÜÏøþÓNjj*………œ9sæ68ƒµZZ­¾«í\¤½^/ÓkÆ 9{ö,:®\íxû5!='ñfiÓz·y4™L¬ZµŠk×®1nÜ8<==ñööæÖ­[dffâááá´ã•+Wx÷ÝwùàƒäúßÝH}r¶I©T©íÛ·G©TâççGJJ ………œ;wî®ëC¡PдiSZ´hABB‚ /ø»ðÖûör—l=:ŽîÝ»óøãß× $‡ƒÁ@Íš56lØ]Kj^»vE‹G‡;v,_~ù%III„‡‡óúë¯;µíß¿Ÿ¯¿þš;wîЫW/|}}9uêz½ž˜˜‡¶—‚‚†JXXÞÞÞ<öØcÔ©S‡  ×ëéׯŸS›æôéÓ‰'<<œÐÐPÚ´iÃÆ1™L²­ÛÑB“ÆÄl6ƈ#8zô(;wîÄÓÓ“±cÇ:Üi°`Á 1Œ=š~ø„„ŠŠŠxå•WHûñOEvv6óçÏG§ÓÉöæûÅÇÌ;w0¼öÚk6•á“O>áèÑ£ðÆo°víZ”J%ÿùÏœ>¿oß>Ö¯_V«¥W¯^x{{súôiôz=O?ý4;wvøÜ—_~É®]»ˆŽŽÆËË‹·ß~›5kÖpéÒ%*UªÄ„ n"âââ;v,Íš5`È!lÚ´‰‚‚²˜œ7ß|Ó©ý£>"77£ÑȰaèR¥ }ôz½þ®¼`çÎ=z£ÑHëÖ­iРË—/ʪž½þúë÷%ˆþ騰açΣB… Œ;Ö©fÆÇgÛ¶m”––Ò¢E úõëwW;ú™3gX±b7oÞäÉ'Ÿä•W^‘Ã;7nÌ AƒÎGaa!ï½÷—.]¢FŒ?žÏ>û •J…ŸŸcÇŽÅã|¹¼””^{í5jÕª…F£¡oß¾x{{³lÙ2ŒF#¯¼ò õêÕsØ×Q£FQ\\LPPuëÖ%$$„}ûöa0èСO?ý´Ã¾þüóÏìØ±“ÉDíÚµ:t(ß}÷ÇÇÇLJI“&9ìkFFK–,A¯×£Ñhxýõ×eGºÒÒRÞxã ªW¯þÏè.¸à‚ .¸àÂ_®Lq.¸à‚ .¸àè.¸à‚ .¸à‚K »à‚ .¸à‚ .î‚ .¸à‚ .¸º .¸à‚ .¸º .¸à‚ .¸àè.¸à‚ .¸à‚K »à‚ .¸à‚ .î‚ .¸à‚ ÿt¾hÑ"vîÜInn.o¾ù¦ÃdöEEElÚ´‰ °qãFòòòœ¾àÀÌ;—ââbFEFFñññœ={V¾gýúõr>àýû÷³`Á‚ßýa&“‰Å‹sóæMùÚ… X¶l™\„àêÕ«=zTþûµk×øâ‹/X±b·nÝàСC\¼xѦí;wÊínÙ²…'N8íÇÚµkåR°÷BBB£Gyg IDAT.w}ÕªUlÚ´éBf³Y®;üw‡Ñhäõ×_'??¿ÜßJJJرc ,`ýúõܾ}Ûi;ñññŒ?€^xÜÜ\’““9|ø°Lk?þø£œû?66–)S¦ünúÝ»w/Ÿ~ú)kÖ¬!99™³gÏ–›—ÏîÝ»m óäååñÙgŸqåʇßóá‡ÞW.u³ÙL¿~ý(**²¹~õêUÆŒó?›Ë“'Oþ!|á߀ .°`ÁâããùþûïΫ£$¡&“IþOü»Ùlvø7G4$^Ÿ‘®;kËY_î'™éæÍ›)...'[þ•Ýh4’‘‘AFFùùùèõzüüü äàÁƒåyøðáÄÇÇÓ¬Y3t:IIIF²³³Ñjµ¤¤¤P\\ ”%Ë—*ÞL˜0Š+òÓO?±cÇnݺ%爿yó&ÙÙÙ´lÙ’b6›ÉÊÊ"??Ÿ””9ç4”•©LII!//¬¬,‡DuèÐ!/^Ì¢E‹äkÇgêÔ©r½ñØØXvïÞ À×_ͨQ£ˆˆˆÀÏÏ^xƒb2™˜>}ºLT:Žwß}???ÒÓÓùä“O˜2eŠÃ>äçç³}ûv}ôQ ¬˜BFFiii6•´Z­\ A f³™ÌÌL222((((ÇP¥{²³³IIIA§Óe9÷¥ŠMf³™ŒŒ yeff’šš*ÿ½¨¨ˆÜÜ\233IOO— tïÞ+Vü튽H´¢Õjå¢5<ò›7o.7ncÇŽå矦Y³fFnܸ ·8¦¥¥¥äææðþûïãííÍ™3gظq#ÉÉÉäää°råJ.^¼ÈíÛ·©Y³&¯½öPVLE¢W© (+\’šš*¿=Óš3gß|ó 7ÆËˋ˗/ãîîÎ{ï½'o²u:³fÍÂÍÍM›6ñÞ{œ À¶mÛ˜3gN¹úè&“‰•+WÒ­[7¹€PNNŽ\ÀBÜ´Kk,''GîŸH«â÷ˆÆïÎ;˜Íf m6ý999”””`6›e~!mº 999åøH«V­8pàwîÜqIì» ''‡wÞy‡FQ¹re~üñG®^½Zî¾W^y…={ö”»Þ·o_žxâ úöíKLL ‰‰‰Ìš5‹–-[2hÐ  $óÕfÍš•+½Û Aòóóùå—_ˆŠŠbàÀ 4ˆÑ£G“——Ç{ï½G›6mä¶âããË­ãI“&Ñ«W/úöíËСCå~8Ê+Ðétrá™+Ôf³™•+W²k×.ªV­Ê¯¿þJtt4=ök×®µ)¾`6›ùí·ßxõÕWiÙ²%íÛ· 55•Ò°aCY`Ì›7O~N¯×3yòd¦OŸÎÁƒ¹}û6%%%4iÒ„ÔÔT>ýôSZ´hŸŸçÏŸgüøñ 0€ `0HNNfÆ ñæ›oâííB¡àêÕ«lÙ²???›>~õÕWÌž=›?þ˜œœ*UªÀ€X»v­MÁŽ;wî°dÉ–.]J:uð÷÷gÞ¼y¬[·Ž÷ߟ7nÉÖ­[éÔ©þþþ,[¶ŒgŸ}–sçÎqîÜ9›Zÿüò ¡¡¡x{{c0˜3g—.]ÂÍÍJ•*1kÖ,®\¹ÂäÉ“‰ŒŒ” ¤µØ¸q#Õ«WçòåË <¸ÜämÙ²…ï¾ûŽŠ+’——Ǽyóøì³Ï¨U«$--¡C‡²cÇ–.]ÊÙ³gñòòÂÍÍ?ü={ö°téRêׯÏ7èÝ»7ƒ&""‚¼¼}šùóçÓ¾}{âââX¹r%­[·¦qãÆ¬]»–Ï>ûŒ!C†È“’’X¸p!üç?ÿA©TâëëËîÝ»9uê”\oÊJGvìØ‘-ZÈÅ:ôz=ÞÞÞÄÆÆÒ¼ysN:EPP‘‘‘ôéÓ‡ 60zôhöìÙã°hJAAqqqL:€½{÷²xñbBBBÈÊÊâ³Ï>ÃÓÓ“Ñ£G£V«Ñh4ò&óâÅ‹¼ýöÛ2­:*ŽÏûï¿OPPÙÙÙ¼öÚk( –/_Ί+0 8+V˜˜È’%K $33“?üP®׬Y3rssñõõeöìÙ¸¹¹ñÈ#pèÐ!zõêå’ÜNN´K–,áêÕ«ìØ±ƒ¦M›Ã7ß|#Ï÷½ P(øàƒhÕªS¦LaÓ¦ML˜0€—^z‰×_ýúÔ¸qcÖ­['—£–0bÄ^~ùe‡ÏÌ™3¥RÉÖ­[Q(|÷ÝwŒ=š-[¶°yófJJJ¸ví …‚±cÇÚðþÜÜ\yÓ7eÊêÕ«'óæ¾}û¢P(سg?ýôîîî :T^?ÿˆznn.ß~û-Ÿþ9óæÍ³aàQQQÄÅÅÙ< R©˜4i ,à¹çžcâĉòM¥RñöÛoóÅ_ R©“×h4<ûì³<óÌ3LŸ>¾}ûR£F fϞ͠AƒÊ½käÈ‘|þùç„……˾}û¨Zµ*‹-bÒ¤IMÉÉɤ¦¦Ò¾}{Z¶lɾ}ûä¿Õ¨QƒÖ­[³aÛ]­Z­¶©6U³fM233xꩧضmf³™Õ«W3tèPŠ‹‹Ù¾};Ï<ó ýúõsX‡üÊ•+DDD P(HKKãÀ,Y²„åË—sãÆ .\¸À_|Á+¯¼ÂüùóéÛ·¯\JsÞ¼y,_¾œ¹sçʬ¼¼<âââ¸zõ*¥¥¥Ìœ9“×_×^{ððp¾ÿþ{zõêÅÎ;1 lÙ²…gžy†[·n±sçNÞxã þóŸÿPPPÀ™3g€²R£sæÌaÆŒìÝ»£Ñˆ‡‡îîîò÷ÿðÑGѳgOFŽÉÓO?ÍêÕ«1™LøûûSTTd£v—ètÅŠôíÛ—1cÆ””$ŸÆÇÇâÅ‹©^½:?üðƒSîÒ¥ Ÿ|ò 111´hÑ‚·ß~›áÇÛT¼*--eذa,X°€FqîÜ9Ž;À²e˘2eJ9fðÖ[o±gÏ ÀÈ‘#åú3Ï<æM›0›Í¬]»–ÁƒË‚µS§Nœ:uŠ3gÎLppp¹vóòò())‘7³gÏfæÌ™,Z´ˆÖ­[óõ×_sôèQ¼¼¼X²d |ð¬[²d Çgþüù<÷Üsr©âøøxâââ(((`îܹ<þøãŒ9’gŸ}–Õ«WÓ¢E nܸAff&±±±ÀgŸ}FŸ>}9r$]ºtaÅŠ@Y½íÿþ÷¿|þùç²FKZ“—.]rIngÌ\©¤gÏžDEE1zôh|}}iÒ¤ Çç~kp™ÍfnܸÁùóçË•«þî»ï7nãÆãǼ¯ö®\¹Â„ 7nŸ|ò‰¬Éܸq#ãÆcæÌ™6kS¯×³gφ &×M‰‰!!!œœ.]ºÄñãÇyñÅñôôdõêÕåxÿµkר´iÞÞÞ >œ¯¾úŠäädÎ;ÇÚµk6lÝ»w—Miÿ˜ºT“900…B! (+zïH`ÆÄÄЭ[7´Z-‹/fæÌ™Œ;–àà`üüüP*•T«VŒŒ §EèïÞÞÞT®\€Š+ʵثW¯ŽR©ÄßߟÀÀÀrÏíØ±ƒââb–/_N~~>_}õ½{÷–w Ã† cذaÄÄÄàááAii©¬YN2¨T*z÷îͨQ£hݺ5*•ŠúõësêÔ)nܸÁ÷ß^¯gß¾}dffÚ0ÑÒÒR¹Tl~~>¾¾¾ríèjÕªqûömnݺ%y5ä1—æDbd7oÞ”‰ôå—_&--M¶Ï›L&BCC©]»6ÅÅÅܸqƒ-[¶°~ýz’““ÉÊÊbÛ¶m( ñ÷÷'''‡êÕ«£P(ðññ±©Ë­R©lÌuHL(>>“ÉDãÆ1›Í²°³7tìØ‘Ö­[£ÕjÙ¸q#S¦LaõêÕxyy@tt4)))T£Úri‰†óòòˆŒŒD¡P€¿¿¹ç4hÀêÕ«ÑjµìÝ»—1cÆðã?Ò­[7Ö­[Ç•+W¸xñ"‹/–Ÿñòò¢qãÆL™2…)S¦pàÀrí ›òª™™™ò %::š£GâããCdd¤¼Æ$šNII¡V­ZòFP­VËþ4¥¥¥ <˜7nàããÃ70™L4mÚ…BÁc=Æ®]»¸~ý:={öÄd2qëÖ-Ž;Æ… 0Ô¯_€*Uªàåå…R©”×&€››Û¿Zz? ÄÓÓS>˜yxxPRRBii)Æ¡irÉ’%óÞ{ïe¥}:DAA]»vµY3/¾ø"€Í©øn¨V­o¼ñ*• 777y³ÛµkWú÷ïZ­¶)k41 6%N¥ç$YCÍš5éܹ3ëׯwúîŠ+Ò£GÔj5ÕªU#''‡ýû÷“À´iÓ8uêÅÅÅKªþ-º¾¾¾œ;wŽèèh~úé'Yí|ëÖ-¢¢¢ÊíàΟ?Odd$ÞÞÞ„……ɻ愄ââ∌ŒäôéÓtëÖ¬¬,‡L.77—ÂÂB<==Q©TäææÚ¨©‚5jĪU«èÛ·/—.]’m† ùþûï:t(ÁÁÁDFF2þ|._¾,ßS¥Jž{î9>ÿüsbbb å‘GaéÒ¥Œ5 ƒÁÀÂ… éÕ«žžžT¯^àà`&MšÄðáÃe›{¿~ýäz¾W¯^e÷îݼð ò{"##eí@PPyyy$$$àïïÏùóçyã7hÙ²%;wî$,,L®÷ëááAPP§N"**ŠƒòÜsÏѰaC6lh£Îzúé§©S§ÅÅŨÕj<<<èÞ½;Ó¦M#<<œÊ•+£T* å…^ $$„‚‚*T¨@bb¢Cµ©Á` °°Ðáf鯊:P³fMúôéƒÑhD¯×£R©(,,D©T–3Éüúë¯T­ZUàÇ—7^‡¢Q£Fìß¿Ÿ—^zÉáûÜÝÝ)(( °°FƒJ¥B«ÕÊ6ß{©!×®]KNN¿ýö©©©åjÕªxzz&oHBBB¨W¯o¼ñÏ=÷\9&=xð` -Z´p(Ðýüüäñqww§Q£FìÞ½›:°gÏÚµkGTT³fÍâÅ_$99Y^c-Z´`ç΄„„°wï^ ¾¾¾6€íÛ·§råÊ 4£Ñ(Óe¿~ý1bÞÞÞ¼ñƸ»»Ó¬Y3ÚµkG×®]1 F_q¾¤ ­xbtáÞ(--E©TÊ {´oßžvíÚÉ8…BÁðáÃiÙ²%}ôË–-cܸqTªT‰jÕª=ð†6""¢œ* Àa[Ò¦tïÞ½òÚ;þ<~~~òÆRjK©TÞÕ±SúñÞŠ+Ò¯_?þïÿþ…BÉdr¸ÑùÛ t/¯ÿÇÞy‡GUm}ø–I $B F:ˆ€"¶«ô`QDÄ|*¹ ( ˆX(Н /(WäŠp©J‘) Bhé éÉdÊ÷Çœ3gÍ0¨`@ÐYÏÃÃÉ™SöÙû·×Ú{Õ@&L˜À¬Y³ ¡S§N®ÃƹãŽ;Κ\ßÿ=D§Ó /¼€Ýn'66–¯¿þšŒŒ n¿ýv:tèÀ–-[¨W¯z½žFa2™èÞ½;Ë–-ã¹çžs©)ÇŒC÷îÝiÞ¼9õêÕC§Ó¹v*#SUH{öìáé§Ÿ¦~ýúDGG»õĉ\}õÕÜwß}®óEEEìܹ“ÈÈH× ðàÁ|÷ÝwDGG£Óéxùå—y÷Ýw]ݵkW|ðA—Šö`Ú´iôêÕ‹’’*++9r¤ d±±±|þùçØl6רmÛ¶|ôÑGTTTIRRS§NÅjµòôÓOÓ¤IFÅäÉ“3f ñññ®ÐÌ™3™6maaa4oÞÜå éí·ßæ­·Þ¢¼¼“ÉÄ3Ïù$ƒЧOvìØA·nÝÜv¥?þø#?ÿü³K4yòdt:¡¡¡lݺ•ùóçÓ®];ºwïNFFqqq.m‰Á`p-zŸ|òI&NœHbb"³fÍâšk®á¶Ûnsíš6mêÂpTTááá´lÙ’ðÄOЬY3"##ÏZX8p€7ß|N‡ÑhdÆŒ®kî¿ÿ~žzê)7¿Š¸¸8‚ƒƒiÔ¨‘k÷sÖî?$$„¦M›’ššJ›6mxå•Wxå•WX²d Í›7çÎ;ïD¯×sË-·¸0yË-· ×ëyì±Ç˜}ú0`Àâââˆ'66Ö¥ œ8q"o¾ù&Ë–-Ãh4òÐCѸqc—ÖH§Ó‡Ùl`çÎLŸ>Ý'¥ÏƒöïßO‡¼.ÜUA'MDrõðÓ˜˜ÈC=„N§sEu¨xëÛ·/³fÍrí²å†œ~#ï½÷z½žÀÀ@îºë®ßló„ 3f Ç' €Í›73uêÔ¼wÝuO<ñ3fÌ 00ªª*’’’þ2ã­sœÃ¸R^^ÎèÑ£™={öïR¯œ>}šçž{ŽùóçpÑlµZÙ±c¡¡¡lÞ¼™Ý»wóÎ;6½üòËÜxãnŽW—;ÍŸ?Ÿððpî¾ûî+Üv»Q£F1qâÄßíÜwÝu×]’½mÛ¶슴øðýÚÒ/­_¿ž-[¶””tÙÎO:xð |ð³fÍòIé_!‹Å¡C‡hÕª•k5tèPÚ·oïv]JJ QQQgmöïßOƒ  uýCII‰›§yxx8mÛ¶eûöínÑíÛ·'55•:PQQÁ®]»\»h???®¹æ²²²0›Í.S”7R7­V+M›6u™^ÓÓÓ #""‚’’²²²hÖ¬ÉÉÉ4oÞœÂÂB, õë×g×®].“OZZõêÕ#$$„ââb<ˆÕj¥Q£F.Û_Z WWWSXXèձƱtéR†zNõNMÍfcÑ¢E¤¥¥Q§N† BíÚµ/Û.++£ººÚ«ôr¥ÜÜ\®xU”Ãá 33“˜˜˜ß}Ïk¯½Æøñã/zÛ¾úê+’““ å¾ûî;¯6ÖÄ¢¸  À«fàr%Õq*$$Ä'µ'UWWóÑG1bĈ+fœ}t‘º|ä#ùÈG>ºrÈkê×üü|RSS½:¨øÈG—Û.äðáÜ"##/HX^ª¶fee±aÃxÅOž²²2¶oßÎÂ… ÉÈÈ`Μ9.¾råJêÔ©sA}š““CNNŽË±èrÆÜéÓ§)..vyÝ_Îm=~ü8‹å¼BϾüòË¿„@W“9©X}ûí·]ßµzõj6lÈèÞ½û%-[¶¸R ŸUTT°{÷nºtérÉÚºiÓ&:wî|Þ~=%%%¤¤¤Ð±cÇóº/##Ãå÷{IMÆ£ò ËB ggg»<ÄÄÄ••åúûäɓ俿RYYyVšÓߢÇ_ƒ´Ùl„……ѨQ£ó¾÷Bßy¡÷UVV}A‹‹ÝÖäädŽ=J~~þ_Ʊ¨ººÚÖU¯^=·Ìv%%%X­VŽ?Î 7Üp^ß|úôiBBB.)v.ô¾ ¯ˆ¶úûûSUUåâ'ç¢ââb6nÜèʇðWÁª^¯wa5;;Ûí÷cÇŽ‘™™‰N§ûÍþ©©ñPy»šìê|ÒgΜ¹¤Ø9qâ-[¶t…0þ^***¢ªªê¼ßi6›©®®våù5Ú¶m™™™œ:uÊk(çŸ*У¢¢\Œ1++Ë-SP=°ÛítèÐá¼_t¡9ÁÃÃÃ/8 ®Aƒ“jaƒøâj@ÍIP·.†ÿ«m=s ”d9å€j¨³Ct4èõ—¤~ï}mÚ´¡M›6œ8q•DåJ'“É„ÝnÇf³‘““ã–•°AƒÜxã„Õ€€€ ŽœøCãXm“ǵ“a«j¾?3Dkïøufì€G´?í ^uÎ ¨‚â¸$ßò»ærhh¨+‹ãoå¸R±ê=Ô«W/233Ï[˜ÿ‘ñˆŽŽ¾ PI£Ñè 9+< Uå.þ‡êH/“‹FÆ‚_Àïkkn.¨ôh^&ˆÕ—cÈˀثλß/Dcò»‹SuîÜÀ•Òù²è·Ür &L ´´”’’W¢•.„Aþ‘ûÔ„üÎQ#aÞòÑ¥ÄêáÇ}XõÑ¥èªPÿ½ e|ä£?“üüü.x§á#]J2›Í>¬úèÒ ô+†ŠŠ`Ê‹ÚߪÍÑŽfÇÙ¾E³í”™Ê±ÍFóí§pÜ™×›bœvÆfWÃC£œçòò`ÚËÎãý»@M„'mò4õû?“À¨\¤¼ÇTˆ¶«¶÷V­aøÃ>$þhÑǼÛyÜÍü“SEYXèT5¢`æ”rœ'°uê|0Æy\­à`hÔVÔ„kçÃÉý`wh¿Dàœ @5nX ÙÎòÇjBÃ,e¾¨óI½þŸ!¢¶o,ÿê”u ¾œ¥ñ9YÖAå§) *pýÑTî4ÿ¤Us`÷WÎsª¶¼õõp›br8–ŸÍuߪvÜ,ž×Œðõ­µ•¶äļQå@çîpÇ>~ÅPY¼=[û;F`+š}¼\\_»Ã† ÌWÁÞU#s7ýCègÎÀå=ŠöÌåhv£wßug¢F…!z¹¯âe/Ð>Ì’%K0›Í 6ì,‡±5kÖ°eË&NœèJ7™““C÷îÝ/( ç/Kß_/qwÔôÚÛü8¶t@®r|Fà67–)X¬Ds–ëÿ¨&Ðw.‡]ߺ np. ÊüP|س¶*N’á‚q9ï¶pxüiŸ@ÿ;P~|¥àÌ$°ª|³mscV„º§@ßò¥ó7›²p¨(Ózæ ø—òžHe¡ë¹Yª«tG%lü¾‰"ÀÓ€9â>u¡ìpüíºÞ‡\ýÙívÞxã ú÷ïOBB~ø¡Ûïüç?ÿq%ÆXµj%%%<ôÐC|öÙgäææú:ÑG—Œ***xýõ×IJJâ?ÿùÛoGeüøñ<ÿüó:t€Gy„‰'2mÚ4 9à`Þ¼yL:Õס>ò týuÈf³‘››KË–-éÞ½;¿üò‹Ûï³gÏfäÈ‘®ò¤Û¶mã¶Ûns•ÉÌÊÊòu¢.­^½š€€&L˜ÀâÅ‹ÝâØ§M›ÆÈ‘#¹÷Þ{yÿý÷±Ûídff2ažyæWdÃÁƒÙµkyyy¾õÑEW¦Êý–.°k;àpªbT:g«.UBqªÉÁ]uØw›ª?£o[ ñŠ>Éßj%ÑC@²x¶V‡f±M唣¼W‹¶ª‘F—Y$Ïk¯MÂdªÂbC:u\y§=+6­]»???ŒF#ååå©1¤>f1¼¤Ô-Ï·i6ê`r|§< xV`R kµ‰™Z üìå=“Ú@˜2>ulÐVyÆn©NQ憚Z²PK6”¢…Çu×*×!æÒe@kÖ|Orò4jÔ;ïÈ¸á†æê«¯æÐ¡C®Ò¡ùùùÄÅÅQYYIii)ååå$$$ð /PXXÈ+¯¼BDD ,àá‡fÑ¢E?¼v¨ï4ë9 AlûTsá @]Ó·ÁiRTñª1ìV)ߪœÓ-„yÿRží€—”ó»qªÏÁiϸ RÞañh¯AÁóóâ}§•ãøË§[+**xë­—€Š 7RfüÊè6X­î‚!”ÏE:cݯÝç›U‰îw<[çå=çjÛeZݯ 8 IDATÍÐd˜Å¸§Jøa-ääÜGݺu©S§©©©¤§§Ó²eKòóÆÕZµja2™Xºt)ìÝ»—Ž;²~ýz¢¢¢ÈÏÏÿ[Ç;ÇÝ®áÈñ+˜px0Eǯ`Å^í6mù[øú=ÏöÄóeˆ×;$¡Ù öìÆwÄh4bµ:û»ººÚ­”³º µÛíèt:ôz=o½õ‹/fÅŠ˜ÍfÂÃÃIOO'33“¬¬¬+6&ù‚ȪðVÛ¯`çBëʸ0d¥Fº[™saÑáqì­-rÞ\†X­¬¬$¦Þ z>úTV&ùº.Ù-†"ƒôz=½zõbìØ±TUU1{ölvïÞÝnw¥ÿ-//'22’Î;ãp8®¿þzW]úãÇSTTDqqñßK ûè"nD¾*Þ›6mâÿû~~~Œ7Žà`§·¸¸˜—_~™ÂÂB^{í5"""øî»ïزe ‡ƒСCRSSùôÓOÑét<úè£W¨@—a4rW"Wi6±êSÕ?ah*ú¶h!B»€“ªnD¹ß€æµY©¨šTõz>H¨œÑÊq¸X9~«¨«}úðꫯ¢×ëÙ¹s'íÚµcüøñ 4“ÉÄ‚ °Ûí¬^½š“'O’‘‘Á³Ï>Khh(6›S§NÑ®]»?=7÷%§¥/ýq×~– ,Þ[-ø¦:Õ¯ü.L9o+ç¢ÑLzq­E`N/°§ëpš¥8W=ê‹DûTÞzøX¡ðÖëúBíØËƒ·*ü ¸¸˜O>ù„)S¦°yóf>ùäFíd Œ5ŠiÓ¦a±8AÞ¡CºvíJVV3gΤU«VÌ™3‡'žx‚ââbæÎ{… t«’Œ³ ðÂÜth±€Z”êf!Œ÷Ç<žg€®ÂÆ®´™.Á£·Âi—h&îݯN‚NNÃ{aÑcÎãÿuyták`³Ù8sæ 5¢N:ÌŸ?_Sïäææ²hÑ"JKKiÚ´)K—.%%%… &À‹/¾ˆ¿¿ÿß[ãQíEˆ›„j0 -WÁj[[uë„ =&ža¸UCØÎˆm]f­Wôráâ=j;Ž£…ª¥ Æ!„þÊ ÎyÝöòèÕî}ÿþýóá‡òÆoЫW/FŽ Àüùóyä‘G°Z­|ñÅ<ûì³<öØc̘1ƒÜÜ\ªªªHOOç7ÞàùçŸçµ×^ãÈ‘#çUXe©÷Ø ŠþçUÌ•ÌÝ*6=u•i)°L`®Ç¢W%b[WðÖ(ë2 vž‚ÑJ [ë %%%®j\QQQ´mÛö,ïfýuéêÆx „(U ÑÑÑìÚµ‹ôôtÚ·oÏéÓ§q8STT„¿¿?~~~X,ºvíÊúõëÉÌ̤¸¸ø¼K3ž?w8صk—ËI¯[·nç]ÛÙGW.Ùl°[1QTT¨ÿW¸4BÁÁÁ”––ºáE§Óa2™p8²xñb¦L™Âž={°ÙlØl6¬V+{÷îÅn·»ìj‚rssÙ½ÛvРAƒ *â£+—Ú7wòÖBE ŽÝn'55• 6pã7rôèQ¨]»6ÙÙÙ”——“››K:u8pà3fÌ`Ò¤Iøûûc0hܸ1[¶l¡¸¸˜víÚ-Ð9Â'Ÿ|°aÃþA¾u#¼ð¸ó¸ Mí…¦ȸqãø÷¿ÿÑhdôèÑg tNGaa!‡">>þÒ¯¬R÷i¢ÚC Ñl:•B`úy¨à‚9‚ÓÞ§2×0Æ"´xÅJ~=4È3œÈ&„•`Ðêq—Å€ Íö¤‚ZeÊ*+O‚IñÎËÍù“¶=¸ÙЋ-âñÇçĉ¬ZµŠ!C†¸´9'N$009sæ‘‘Ann.=ö‹…åË—Ó¯_¿‹Z±O]ávèгÙ|éû+ý¤§9Ç»J0½!€m‚aù‰q·y`Í ~× ¼z,"r!&q)•$ŽU<ª6N“—Ŭ*ük LX<•pT™§! Tõ:h¨Ìg?¥OzõêŤI“øñÇiÛ¶-F£‘#F0wî\žzê)ÆŽ‹Á``ذa´jÕŠ>ø€êêjªªª¸çž{0™LŒ;–ÔÔTŠŠŠ˜>}z .@tdggsäÈ‘ .•ú‡¨´Ž+cf]òº*›~¨Ø‘53BÄ&ê NKuqiTžëðÂÿìh~Qh©íhš•Ê{ìb¡bÑ®´Ç_´YCFÁ×sÒ5^ZøçòVѯ¿üò ÇŽ£ªªŠЯ_?§)(àÀ.¥ÚµksóÍ7³nÝ:WYs£ÑÈ믿NEE¡¡¡œ9sælÞ¤IfΜIyy9cÆŒá‹/¾pÙ‘Ö¯_OFFõë×w…,ùèÊ äädŽ=J~~>!!!¿½C·j»à}ûö1yòdòòòxî¹ç\=$$„öíÛsôèQ‚ƒƒ1™L\ýõäååñÕW_Q]]}ѺÁ``Ò¤Iðî»ïR^^Îw:WÞ'Nœ`Ù²eøùùqà 7üú7ûè²¢ââb6n܈ÕjåôéÓ¿~±‡S\HH7ÝtGŽ¡G„……¹9h×®ƒ«®º N‡ÑhäÔ©SÄÄÄHEE×^{-Üu×]DFFÖØwuéÒ…–-[’““ÃÈ‘#ÝRÓ®\¹’àà`š5kæ«Èv…ѶmÛÈÌÌ$%%…=züîÍRAAkÖ¬aîܹìÚµ‹÷ßßAÁgŸ}æŠX¸p!=ô;vdøðáÜqÇØívH‹-¨[·îÙ=$$„þþþTUU¹z=\Y—.^M¬å.Zõ¬ô8'=&Õ]¾ê×r8(vèU^v&/j&½ØÅÅÉÍãÝ"ÔL…b‡nÿËÕ¥Iœ7{i S›6mhÓ¦ 'NœpùHx£”#°ì{HNƒþ;tP”——»]ŸŸŸÏ¦M›¨ªªr9Ì©ñêýúõ»¨6t½^ï +ºõÖ[Ù¾}»ë· ˜˜xññiÿT\˜…FÇ$4DRv¤¶I†cV ,Wy0õõ¸Lì–ìb$»?XìÐÄË Úä'ÞY$懟h£šÐÉâå¢ÐÐPúôqêoªæ¿S ÿøãìÝ»—áÇóÿ÷|þùç.ÍÍË/¿Lbb"•••Ì™3‡)S¦`µZ™7oûöí£²²»ÝÎM7ÝD­ZµxöÙgIHH¨1¡^»vmj×®MãÆ]ïÒë@éÙ³çYEjœdÑ*«Ø¡Ë)¨Œ§Qð%©•”E?£ ¡ñ,š!»²Pš)茘f1‡BÐLv´âEkfÑ®°ÍË÷”Švå*BRM§¨Ò!o ͆ôõ—°WIO7}4jü§€Îjµ’žžÎí·ßNAAãÆãÑGœêö¸¸8ª«« Åb±P¿~}vïÞÍÑ£G‰ŽŽþkf‰{c³è 8Q÷Œk2úAúg” Lˆë+ŒHu:ha;v4Õ¹Mm%ðz@`ø¸xöÕâyÙ¢ªú³Í´ä‡fs—)4Kp÷ùP=íUõ§¡Æßã<¾æFôÄ%ܦ»ÿyë­·’””Dbb"÷ßï¬r÷Ö[o1yòdž{î9žxâ L&¯¾ú*ñññ >œÜÜ\ÊÊÊøà¢££¯\¬þø)ì\®ð«#ZÆÁte\u¸›L²/’Û=•Ÿz¦ Vñ\Œfæi¢ñ2qšoÚ)ÿËêm&1?Н.¸ô<7Y´©1Z†Eéò¶x¶j7¯#ž}ê=Эr_þ! oµÛí|ñÅX,V¯^M›6m\öø²²2>L||<ùùùøùùñÝwß±sçNüüüX¶lÇ'//«ÕÊO?ýDýúõ/~ä0|ý•ÿh;Ç.ò\Í‚Q†VXxê êÄ{ü¼<[†Pø£9UTˆó~¸‡b¨Tˆæ€&Έ‚Ù pSÂŃ/éùK6)°l#$ƒþ·k»tuEémÇ=oÞ<š7oNãÆÉÈÈÀb±ŸŸÕjuSyþehËRgu3s¸çl÷<–ø³xÁN•À­Œ¼Smè2ö· ÷¸vÕŸ*°]¢¼Ç3$©Œ³?óÃS¶‹o¨BsrR§±˜pXáeþú_ÂÌjÒqUùžÌÌL, C† áçŸfذaL›6Í9l[¶Ð­[7;wî¤E‹lß¾£Ñˆ^¯çðáÃ\sÍ5\sÍ5´lÙ³ÙLXXØ•ÕãÉðóWÚf¥¾ÀV¹ïÍùL t½ØüÈ0ÇrÜóý—©÷¦(87ÍÅ}Þr¯ŸX,B g«%hk}Ü”Õűê[­¾ÆÑîÜP¬´?ðþŸ¶CÏËËãÀ¼û1Úsþ»Ùù?8zýüü\yÛOž<éºöÔ©S.^Cff&ÑÑÑìÙ³‡C‡‘’’‚ÅbÁjµâççG½zõÈÉɹŒŠ³œ+\Ë[qݯ<ã÷Ö¶‰ˆÝË5¿V¿Üñç¿ãýrõ+“ÖØ½\[ÙÙg?ïbÔ÷âwÏ=÷pï½÷RUUÅ[o½årŠkذ!3gÎä¶ÛncôèÑ$%%qÿý÷óꫯR^^ŽÉdråÈþK‘·¨¹·Ÿ·F4Õµw³‘ÃËõz/;~+î¡mÞ¢!TOvYi»Ã‹jÕsŽé=´TÞ4eêÿj›Ê+!Ï Vƒ‚! fC8£ìôga \I[¢¢¢ÈÍÍuez³ÙlF±ÛíTUUa±Xx饗8q≉‰ìÚµ‹ýû÷óÔSOñÎ;ï`2™èر㕋U»ŸóÆwª=æ¿çÝ“oÏñžj/XQC!õZ+£—y€Ç}^®ñijÎãRèÅõÒ|‹˜‡%9`³º»^á‘5>mêCï6£hÌf3ÕÕÕØívrssÝÂ####ÉÍÍuíä[·nÍ„ øðÃ1™L´hÑ???ôz=6›ÂÂB§ûe:Ÿ«jÕ*ª€³lg.f‡#Ò{0,õ¸—XÕ u¥'øu ¶ˆö… uf…Çï*À¼Å{FyaœgÄ5’ù÷¾Íû¢Ä 5í\ã‘úÕn·³nÝ:ÆOzz:6là‰'žp©7?ûì3êիǤI“Ðëõ$$$ðÏþ“I“&qÕUWý5mè‡v¢•±*GKç‹3tÌSØÅ S%p’¯Ëøp„š³ ­Ú_µ‡ÚQ>OÅ´4¯r=•&k¥â~õ=_µ#¯@ó! êÏlñj¸øg_·_jØW¿=éuxø™š]{Úa¯²Û©Tú2**Šœg–ÅÓ§O»Ù¿M&‹…ÒÒRW8¦ŸŸo¼ñ?üðß|ó ]ºt¡]»v´hÑ‚.]ºpøðá+[ çàT{ƒÓŸBõ©¨ƒf–á´*üp/qªã.p«úmd¡©Ñã¿l¦æj´Ð²z8ÃÒ<éŒÀs œi»v£ùÈ ƒ0åú*œ¾JêüPíéµÅ<<ŠV¾µ½è‡¶ÐdÉaeGÅÂ'k|(ôvÐ[ÿƒÓË=&&† °oß>î¿ÿ~¾þúkâãã¹õÖ[3f &“‰S§NÑ¢E 233iÒ¤ ‡âž{î!,,ŒnݺñÎ;ï““C¿~ý|*wýúÝf³qòäIn¸áúöíë–¼%::šN:Q¯^=ŒF#:‹Å¼yó1b„¯/}tQɨ‡ãÿ‚êí·ßΪU«xã7&44”_|‘êêjî½÷^¦NʬY³¸õÖ[©®®æÍ7ßä½÷ÞcÙ²etïÞk¯½–ªª*f͚ŦM›èÖ­›¯£}T³¼UYäFFE^^]»v¥cÇŽ´oßžØØXÂÃÃyì±ÇHIIá±Ç#,,Œœœ¶nÝêZ Øl6®»î:  ¡cÇŽ>î#wJË‚•»áçÃRµéܪ©Õ<éÍ7ߤK—.ÄÅÅñÙgŸqË-·„ÍfÃn·û:ÕGÔò©Š6!""NÇÆ‰'((ˆQ£Fa4IHH`ÿþý¤¦¦Ò´iS9räkÖ¬¡°°† ºêS¯[·ŽÚµk»jPûÈG5-ЭV+³gϦaÆlݺ•Í›7Ó¨Q#"""ÈËËcîܹ\{íµ¼ýöÛKïÞ½‰eþüùØl6>ûì3š7oN×®]öøKúAÇŽÁÂÎc™¢oËvwqU½b*YdBªÀ¥}GÚQ¤:]Ú U•¢Q<[çÑéê¹€s<[Ú‚‚±¨çÍâ™*³Ñ£yƒfJm•)CõßnçUšú¢³äTÂÕpï¢ÆápsSí[ôz=!!!äæærìØ1š6mŠÅbÁáp`4™1c¡¡¡ :ÔÙMv;«W¯&''‡ôôt† BBB•9?{r”4ƒÑ÷mÜezÔH1Ž2m«š5+ÍÓÖ€fR‰PÆW»í]†âHÛ{˜x,ì¢âÅO¼'U|O1ZZØñ âY%Žíâš@ùfG rˆ6éÄ3Œh^vÿæ)uïX­„-^¼Ü¿ûî;®½öZæÌ™ÃСCúè#6lØ@Ë–-)//géÒ¥L™2…äää+£nEêX½Tãª×wúšy¯Ít“¡àAŽÊx©öîlÁsBIÅ“E`X]ûä ì\‡Ó,Ufæ1ânׯô‚mÐLK…Ê<Óãžù0À 7¢©Ùƒq/˜¤^[‚3›ÚVádtÅ0Ï™S–¡kŸ‹"ÐsssÉÏÏgðàÁ\ýõÌœ9“.]º°zõjzöìIß¾}9pàû÷ï§[·n4iÒ„¹sç’˜˜ˆŸŸ:Ž}ûö¡×ë騱ã%èðòËÚàÕLO ô"ÁHTFV.@%ó©Û½]yì⦛ðîˆ$™Q€`2lGæÒö–ö2Øã™v/`•±öv!äý¼´µwg&õük¯8ÿïݷƺ0;´f FŽÉðáÃ1›Í¼ùæ›|÷ÝwØl6âââX¸p!-Z´ 55•qãÆñÈ#““Ã?þHzzú•+Ìûw¹Ovp·ãV&©­¬)¸×¶fU0†ˆE]„XV‰±‹“ªãð²4‰ßR=‘:ÜËT† \ •–U¡‚Äbô š3žLS«ú’XÄyƒèÉk`ççq¯a5#Ð9[ 9r„n¸Áµ#?rä×\ss(JJ¨]»6AAATUU¹Ò»¾þúëú(œ:uŠeË–1hÐ žzê)ÊÊÊ8~üx5-33“‡~˜ûî»’’K–,aܸq¼ð TTTøÆïoD&$&8ÿ…*fƒë¯¿žU«V‘ššÊálj‹‹cíÚµØl6®¾újÖ¬YÃúõë‰E¯×³{÷nÊÊÊÈÏÏÇßߟN:±aÃÒÒÒØ¸qãïÎív;o¿ý6ýû÷gÕ*gV²'NðÌ3ÏðÔSO¹œ›|ô7"«;o­]»6íÚµã…^`Μ9 >œ÷ߟŸ~ú‰›o¾™Ý»w3aª««iÞ¼9‡ƒo¾ù† Óé°ÙlLŸ>©S§2gÎîºë.Œwß}7uëÖeïÞ½|ñÅtéÒ…Ûn»#FУG?¾J}ÿ ¨ª„#éî6™eHF_ÉkTuH¸P«”¡Å zË$çC+íâê³Å5Z'»Ô©6ÜíöÞâv¥Ô"Þ#SÐÚE; Åó¼ÅžŸ+Ä΄»Š^mKÒ š ½†(%–ýÉYÐ_aLv»“ÉDdd$ùùùgíx¶mÛFyy9W]uŸ|ò ={öD§ÓDYYYµ-**Š7ÞxÕ;¾°°o¿ý–yóæ±hÑ"–/_îª>tÁtxÚà<ÎÉÔÂåxxÆåªöuõ| šï¤P)Z…ºR–²¬ƒfW<#Þ—#Ƥ×ë>|89mˆ .äÎ;ï¤U«V<ôÐCn‹ã SQXà³Îã½{4þ†³j8ÃÉÔÔ«~b|«,êѪšÓ¶lé2¯|N–8õçÕ9QŠ––5\Ì…# ¤OHšJ¾Zûáî+"M\ªQ‘hkZµ8‰™VVmk1Õöˆc5S§Üý´ó\ËÎ5'Ð=B‚õz=aaaœ>}«ÕJHHÆ Ã`0 ×ë1™L?~œøøxŒF#ååå”––²téRöïßÏ#ªy*..fãÆX­VNŸ>}^}åÊ•ÜrË-ÜsÏ= >œììlWèÙ‡~Èüùó)))áå—_¦GÌš5 NÇܹsÙ¹s'±±±üôÓO êÔ©ScߤÚì­VçIJÙlnõÐW®\Ipp0Íš5£eË–>\A´mÛ6233III¡Gç¾ÐÃ˽´´³ÙŒÙl¦yóæ¼÷Þ{®K9âr(nܸ1Çgûöí˜Ífrss9uêS¦L¡ªªŠ   6lÈÉ“'1‘Í™3gÈÏϧK—.,_¾«ÕŠN§s+KÙ£GÚ·oïÁ+Ú´iC›6m8qâ[¶lùmÐ -CUUÁÁÁ”••a±X¸öÚkq8Øl6þñðå—_2nÜ8p8TUUÍàÁƒk´L¤šä¦¬¬Œ“'OGnn.©©©,_¾œ^½z¹®mРËyÏGW…††Ò§Ó³øèÑ£çÞðØaƒâ‰]¦©9}ú47Þx#€‹É©½ªªŠ€€—Æ©ªª ???rssÙ±cýúõ£´´”eË–1räHÞyç?ôäççc4)--¥eË–¬Y³†V­ZQ§N·ÍRÏž=ÏÒ~ùèÊ µBÚæÍ›õºÝ™n‚]™N/wƒÁ€MÉY\VVFPP›vG5Wª¿Ñ¿n¿ývî¿ÿ~7s¦êjüå—_HIIÁd2±eËzõê…Õjeݺu¼øâ‹®zf,,þBQiª8³PFõc‰PßÉxZ£‡zEU©áh² ¶ZMJÆaJQš-²P¬îÕPpÆ%ªç¢Ä3*D›üÄqˆ8Vm4ùxÏ/³ V õO€¦êyÑW•âŠonë|OP6º毿ptzØyl6›7ofñâÅdgg3yòdúöíëºüÕW_e̘1´hÑ‚àà`þõ¯ѺukrssiÑ¢&“©Æ&NEE_~ù% ,_¾œ±cÇòüóϳråJºuëæŠáE‹g?-Ú$p­Î•Z€ªÈ[;Ö¾áû¬Û¹«¯¾š«¯þƒNV«VPDÆs˱–u< ¨¨>f!н%hñ|6ØñÄ–ŸÀ„Þ ãÖ‰¹eĹ9»X‘İÑËÜ“‹¤=SÆðJŒÛ¼àݳЌŠÕ²(/Ѩ®·åÂÕØ@-½Ö\€Ûn»·ß~«ÕJ^^111,\¸x€=z°`Ál6mÛ¶E§Ó1dÈzöì‰Ýn'''‡{ï½—^½zqúôirrrhÕªÕ·¯wïÞôîÝÛíÜ!5/¢¤ ³ÏæwÞd÷";rãdñ‚éŸ!y¸wû9Æšs´KšGLâw¹g¬öÒnÕùØ“'›¼ÈÏo4zá­Ò±O:«çív8“­ý®¶¯¼ðªÝ7Kf³™‰'²páBZ¶lIïÞ½Ù¶m:ŽúõëóÄO°téRžy梢¢èÕ«AAA¬^½š)S¦Äã?΢E‹ eàÀ¾Ô¯>r§«C!1ºÖÑv5F£‹ÅBvv6QQQ¿zýúõéÚµ+Íš5#66Ö-Y‚|T£¤V¸åS›4iBpp0/½ôýúõÃh4Ò¼ysôz= `éÒ¥¬X±‚;ÃÙlfòäÉ,_¾œÒÒRøöÛoùÏþCPPÐ_³¸þ²*XUGv»E‹a±XX½z5)))tîÜ™† RZZʇ~H`` ü1eeeèt:X½z5?þø#‡ƒéÓ§SYY‰ÝnçÌ™31±Œg8–çêÉ!ÔˆžÞï6qÞáe‡Ž—•#¸‡ÎxÛ­{¦„5üʳõm=—vÀ(Ô˜/*wož÷àîlö²C²ŠÕªL ZÉÙÞôÕ¢/+ÿà¸y) pûí·óì³ÏRTTÄðáÃY±b6›Þ½{óÁ°}ûvÞ{ï=üqzôèÁ“O>ÉéÓ§©¨¨pe;ºìÉî/²¯Ï yÄʨ«LeªÐ¼Œ‹…꡺”©ZCÄ®W½Þ³¼eµg«Õû¼HŒ·L\"Þ-³F¢EL„‰wçˆg‰¹âå=þ^0¬ßbçí¢­2Té„xv»?8nNq6l ""‚åË—óÄOлwo®¿Þi»xíµ×˜1cåååÌ›7W_}•W^y…Å‹síµ×Ò¤IöïßOrr2S§NeÒ¤I>|øòsR“fÄ/Z™>Û(ðW%°rŽu ˜Õ^x¹N\cõàs/Oµ ¥g*c©(íöü4X›•öä{àOMS[!Ú,~Wù}žÐšE¾#®©‡æÝ-æ›ÍïdÜoÍËËãàÁƒ¼ûî»:³P™Õje÷îÝ|õÕWäåå‘””Ä=÷Üãº|̘1;vŒ˜˜üýý]þ|ÿý÷®|Å>òQMSµ–)Â@MýªVΊ÷ü[^«RZZf³™Aƒ1wî\ÒÒÒ|!º>ªj½#!GY¨›Ífª««]þ‘‘Ún,22’ÜÜ\×N¾uëÖÌ™3‡øøxÖ®]KUU}ûöuiŸ"""|¹Ü}t6T‘"8]ê\«Lï|2¿UWWóî»ïrûí·»…bøÈG5I&$*<ð¨ÂÉÚ¶mËÖ­[iÞ¼9©©©4iÒ„£GÒ¸qcbbb8pà€k§£âYÍÀUYYINNuëÖ¥N:nLÕG>ú£¤³Þ zE#P§NbbbX°`¿üò C‡å믿¦iÓ¦Üzë­Œ;“ÉÄ©S§hÑ¢ï¾û.ÕÕÕ¬X±‚ââbBCCY´hlÚ´‰=z\".íÖÒ¦¬ªWü…:CÚ-ÏåÍnE [“6B™ò/J\k*Uí"=4CÑTç%âw©†-÷ØÁ¢¨slBudmõ¬çiC—•ªTõ“ô5*ÿRÜmfÒöªÚ÷Õþ9~ úõp ÷?|^CeµBE%T)ߨ¦ ¬¨¨àôéÓ®¢ç¾ßÊŒ3ˆ‰‰qÛÉ_1d}.Æ$@—ŠþVíÎÒs6Mý^€¦&”™Kvš ©úK.TÛb…À­w¾7SP¡˜Rc¼G¹¾Ø/ÎËJi™·ª­´MÍ€æQ/ÍL•âR «ª?3щΈëß|ÂÁ/f¯¼€mºû÷÷èу5kÖЯ_?ž~Ú™¾sÉ’%üßÿýÏ=÷<ò~~~®„2o½õ , sçÎÔ«WN:1oÞUûW†±F¡¥­@ËæVæ;á™&[Í”yLðÓvâ>5D¬¶À@Žx©Ç¼ À=%°ôÛ¨-|V*õŽ¢Ùôüðд°J«r=8Uöêùú‚o–á4?¨}¥ÇAJ¤ \©¿çoƒïÞÚ⨞Uؼø'5Š… Ò­[7:vìHdd$¡¡¡„‡‡3jÔ(V®\Éc=FXX999ìÙ³‡ÀÀ@ºuë†Éd¢U«V¬X±‚6mÚpÇw\"~®.?Áe ¥Á‹ÐÕ{y¦g¨„,Û(C{¤­Üâ¥M2…«ê1kÇ»=[:®éc*€ øo÷zÀz/‹ù·\”qwLò¤ò2øIÉE~]·óª(#´ò‡l? t‰‰‰Œ9’òòrž{î9–.]ŠÍfcàÀL›6M›6QRRÂøñãÙ¼y3_~ù%}ûöeΜ9<òÈ#nɉ.{’öt™Á›Ó¦z^ý'™X°`^%bìŒbL+Å@u‚+c_-0Y)°*ÚgØv&Y{X›ÊôõJ›T†V-m¦ÅÏ2m±Ÿø^½Ç‚SÎϰµ@/ ZúƤ&+ÎP¨ÉñèÇŽ£¬¬ŒñãÇóõ×_3hÐ ’’’øöÛoéÛ·/v»5kÖO\\]»veÈ!tïÞC‡ѯ_?j׮͗_~Iuuõå‡ÑeQW-„h™àmf16þb ^äÂÕà±0S…o¹œYÎÁ‹¤?“ ¡T…e]ŽjÁ[‚_ZÏñ½jí祓N™rcà±°Pï³xÌ=µÔpOY»]}gUd+¼µñ}¶±Ýjµ2{ölZµjÅÖ­[‰uå<ÈËËcîܹ 4ˆ·ß~›éÓ§“——‡ÃáÀb±ðÁ0}út6lØ@HHYYY,^¼Ø¶æ#òâ—œœLbb"]ºtáÀôïߟ;3¼¼<öîÝ˼yó°ÙlØívéÕ«‰‰‰üôÓOTVVúúÔGoñ¥.^þý÷ß“˜˜Hÿþý©U«GŽq]¾fÍFŽÉСCÙ½{7•••<øàƒn‰c®ºê*xàzöì‰ÃáðUðóQÍjª…@ÏÍÍ%??ŸÁƒóä“O²xñb×¥«W¯¦gÏžôéÓÇ}Ñ¢E ºvíÊUW]…ÝnÇjµ²iÓ&FŽÉã?Îwß}wwèºsì8eXŽ ¿ª+,o»{¹ôPWQ2´Ìs‡eñ²¢tˆ•«íï·ŠºÝË}Ò;^†ÇÉÊkžIrÔ0 ¹Q-ñ¢®´ýŠfCçeuiôèαӿÐ §¸ÔÔT¦M›F~~>Ï<ó Æ sjp÷ì¡K—.tèÐÞ½{³}ûv6lˆŸŸåååÄÄÄ\µÐ¥¦Ç úÕïÕÌŠ=vèjá– /X0á ‡QŸa8þÕ¹Ü]TyÙÑ‚{•B—1W=îuóÃ(Ú&UõRk¥îÄ‚ÑÌ`²¨Œª-2xì–ôçÀ¾Œt ;H?ùv˜µÊNÊ¢|gii©K#ä™Éáp ×ë1›Í8ª««½FaØív/^LBB‚›£ÒeC•ʘXqO>d»Q™Ù-Oà¶ÚË.Úsþë<4¥zÜCŒåî?@¨«C¼¨±Т"L^æ’4azò6“‡VÔîÁC-³2i°˜‡•â¼ §´{hœ²ZHZàNåøg´R–R_.ë)1ŽÕ‚qÖÌü€¡+Óm^…¦–—µMZ ÙúƒÅóTSU8Z5®öh~(ÇÅüHV&1'dŒ±¬n(SrF¡Ur‹Â"w›ëùlÐP ÀѦ¼3::ÚUÐåĉnagf³™ÊÊJJJJ0^…¹Ãá૯¾âÀ<ÿüó5Z‹ Æè0ZŠÔ8Ïp±àSCض£ùU Á‡»™Sª·UÞ,…§~XÍæÝ Í·¢žk1oŒœbŒ{Úo•ŸåŠÅG”xÏi#à:ɬ”¶ lÙÄ\±)¢TÓà ÑÖ0ÜÓUþ^-Ú)xï:1ÇÎ3=A{H …Be¡ˆÅb¡ººšôôt·R½qqqûöÎ;<ªbýãŸ-é½Zª•") J/×Qô'Š¢/H@ŠXQ. *‚Šô¦ A@z¯ÒÒûöß»gwv³AˆåŠœïóðäpöœ™93ïÌ;óÖÔTÀìnÙ¾}{ }úô¡W¯^ÄÇÇS]]§§'¥¥¥TVV*[¹Ë°‡§ ‚Œàka*• www***HOO§^½zÖg###9rä&“‰¤¤$bbbضmO?ý4íÛ·gìØ±dffÚÅÓ–!ã‚ ¸Ó²ùúÙÂ@zõêÅÔ©S9qâ‘‘‘xxx0fÌfΜÉðáÙ0a‚uatqqáÛo¿å»ï¾ÃÏÏ///|||HHHàñÇçã?fĈhÖ5·1DîAAA´mÛ–„„òóó™4i .¤uëÖ<ôÐCŒ=šI“&a0hÖ¬kÖ¬áâÅ‹”••ѱcG|||:t( èõzž~úiÔ‹/fíÚµ<öØc¼öÚk¬Y³†•+WC—.]ì2XÉøçÃOõ•¦°1ôaÆñÒK/a4IHH`õêÕèõzþõ¯±~ýzFŒ··7Ç'**ŠY³fYÃfþ‘‘â222;v,%%%¬^½•JÅ AƒhÓ¦ $$$Ü"~ŒâBBBèß¿?ÇgðàÁøøø0cÆ \]]éܹ3W®\A¥RYã%tìØ‘ÔÔT5jD»vípuuå»ï¾ãûï¿ÇÅÅ:5Ëh42kÖ,¶lÙÂèÑ£8p sæÌáĉ„‡‡[mRdܾ ]©TâççGVVz½Þº†ªT*kÈí´´4bccQ«Õ„……±`Á¼½½yï½÷P*•ìܹ“ÂÂBüüü¨W¯ê#FЬY3>lž:÷ß?$22²îw (ýum¢½”˜øÂä¤ =öÖê’R4Ž“”;'iQ‹¨CÌŠç¢ü¢R(ÏXË÷ˆºHQÌ/Yû:ÓÕÔ¦ÏqÁyb1Ù‡¨‡Ý=$q–Ûï :Áâ´¼¼???ª««©¬¬dèСæîÔjÑjµQYY‰^¯§U«V,^¼˜aÆѲeK<==ÿ°ùÅ·ß~Ë /¼`Uxyyñâ‹/Twf.Ò¢(2=Š…>ñw 9i BÒu!6Q¼˜ÍL‰ÍG²P³»‰ã§Úä‚Í ©[´Å&Âó®ØtÓbØ€Ë3•ØtŸb˜¡þl"uÑÛ›N_¤ýdažê…ö‡"OiŽ— ô¬¥ödFu`èGŽaÇŽ<÷ÜsL˜0Õ«W[c!¼óÎ;ÜsÏ=hµZæÌ™CBB Lœ8‘ï¿ÿž]»vѵ® IDATkWf̘Á›o¾‰Z­®sP$¥RÉøñã©W¯žÕR^£Ñлwoî»ï>;I×Í޽e¶Ôï9M ´¥èÂC í ˳±BÙÒzU…-‚› ›zH…M„Ÿ%З¸Î6Ö¦ó–wEµL561»ö[T«º`óø(°”¡r˜{RvÍPàaažNÚ-Fì”úÌ›Š­H¨ó<¶ˆwâz ­ëU8w©®#C/,,äçŸæ‹/¾àäÉ“|úé§Lž<0ÅÅÆÆ2fÌ&L˜ÀÅ‹éܹ3+V¬`Ò¤I¨T*«:ó¹çž£eË–„……Õ¹ÇÅÅQXXÈgŸ}F`` £GF©TÖm‘t–BTád2ŠzK“Â*º‹‰ [½[ŒTŽD0L^"zi€}¹¾®Ù‘Ykœ0WÇgNˆ[ò=ö vã q3¡vÂÜÕ Ýà0™ÁÞNÁ™«Ð -°3$Ôëõ¬]»–/¿ü’ÌÌLæÏŸoœuêÔ)¼¼¼xë­·øôÓOÙ»w/}úôaÅŠtìØ‘òòò?uÃëââB×®]Ùºu+GŽáƒ>°æ¾¾iZu–qJáÀÐ¥MS “>3ÖB·bhK1&ºÈà”†Àß^¥q/C…²¥EÏ›QR56£O‘n«°¥è]F]…2ü„ù!¦–à%”-æ ísu²iqè1ßaóSW†î8n˜sR?ú裴hÑ‚¸¸8._¾Lóææš¿þú+S§N¥¢¢‚mÛ¶‘ššŠŸŸ­[·Æd2±fÍ\]]Ñjµlذ???FŒñ‡Ñk»víHLL´º*IÆ¥7 …†^%Ђ6?tìmBL£—˜©¶W ýZ}Lq®6«:¡7a3(]·<'®KZ‡1tëA'ÔS.0ô'üà ³Í‡´ÉHuÂKÜ…¾j†ÍÞ û´ÜRßú sP+\ÿ“ ƒýÚZ^^Ž››nnn4kÖŒ XMJJ¢iÓ¦4jÔˆ´´4ZµjU£Èûî»Ë—/³f͆Z“¡·oßžöíÛ£×ëyâ‰'9r¤Uì´{÷n®^½JTT”ñÙ3gHNN¦  ŸZŸKÕÂn#œÖB7‹èP§ÓáááAdd$999Ögóòòˆˆˆ@¡PаaC’““ILL$==^½zñÃ?ü©ßäîîΫ¯¾jeîû÷ïgà@³Zzz:7nÄÕÕ•xàºß,ãï…ÒÒRöîÝ‹^¯·¸Õv8ßh‘¸•ZI­Vk•Ô8qJ'étSQQa5ŒsqqA«ÕRRR‚ÉdbÔ¨Q,\¸={öððÃÿ!ßÕ­[7ºuë†V«eðàÁv ýÇÄÛÛ›¸¸¸¿_2×ÅáÇÉÎÎæâÅ‹téÒ¥ÖçNVA€NhÌVî*• ƒÁL¸vQ5ŨœŽ¿Y÷u …UZzîÜ9–-[†:??Ÿ«W¯’——GVV¹¹¹xzz’˜˜H`` È©K—.Üyç»d£9¬£B´nv–³öFv:7ëÊRG÷—:ÕõWÂôûÛݺukZ·nMzz:¬õ¹pÌA¡J¢‘CÑ%ȑ芋‹ñ÷÷gîܹxzz²téR.]ºDJJŠ5ÉÀï…äBWRRÂ¥K—hÚ´)çÏŸ'00={ö`}6::šþýû;éK}MɈÁP·¾ÿ=4t#§RÓ Ô¡¸Éònô4\Ûs¦ßh—¢ŽsOxÏ××—Ç3GáJNN®]Bô·I’-ï7nܘ+W®Ð©S'._¾LãÆ1 ¨T*¼½½)))¡¬¬ WWWbbbÈÈÈÀh4rõêU¢££iÑ¢þþþÖ$•••u¦×ììl²²²P«ÕäååqõêUüýý9zô¨õô%¡W¯^Õ\[MF'c`º¹5Cád}TÖ²^Þ(~㞉ëçjÿ£ÖggîÃ&‡ïý­6(j‘š:£çZÊèØ±£U:t=Ü©4Ók‘E²ŒZ­fÏž=ìÚµ‹>}úpàÀ"""èÚµ+&L I“&œ9s†øøxªªªHLL¤¸¸˜¤¤$4hÀ¡C‡gÓ¦M4mÚuRREEEDGGsþüyÂÃÃÙ½{7þþþÌž=µú7 á×|ŸŒ1__pÓHm! jA4'Šºߊþ‡FADdDGÒ :ˆ>¥ò\jÙÒKâolú¤AÔ-‰`Ĩ]&¡Þ AaÓçgm ³ˆšÜ±émDq¸ØOZ죃‰*Ñ}J:l6´Ü/Âfà"ˆuõu8õÁßÞ–¾T«ÕÜu×]|þùçdffòðÃsøðaŒF#wÝuK–,aëÖ­lß¾©S§òÈ#Í‘#Gpwwÿ}vÐh4ìÝ»—.]ºpøðaâââHMMåܹsLœ8‘-Züv!«,rÇ4à'¡¯Ë…ñ’DÚ§±_Ðï¾By’˜Ð›ËW€ –³ å‰v ,4R…-ôª¨—®‡9Û$ZMÆZÒf mòÃÞÏÛzDÄ’^ô V`sJ¦;/ǦÿùäþóŸÿðÜsÏ¡V«IHHÀÓÓ“¡C‡2`ÀëzDdd$ƒ&<<œ>ø Îôú믿Z%III(•J~úé'ÂÃÃy÷Ýw»€5ã`ÇÇ65 ¢n½°.JÅ{Ù‚ø»©@«ÞÌKÔmcW愘îÔ›ÅKXÇü…ûG°Ÿä jí—Ä ¥Âš€-l« ûVNj)K ,³Ü«ÄæN–/Ì‹¼ ÄÿÁÂÚzØR¿/ð¸å^® Â÷ÇæJWÍž•wXx‰››“'OfÉ’%´lÙ’Þ½{søða”J%QQQŒ5Šõë×3nÜ8BCCÉÎÎf×®]ÄÆÆ²{÷nž~úiÊÊÊØ¾};Í›7gÈ!¨;vìhÝaHp&«—q›ÀAÏ£P(çÌ™3”––ÒµkWÂÂÂ0™L¸¹¹áîîÎñãÇ­Qâ***˜3gQQQTTTÔÍþ¢xyy1räH»{O=õ”:t ##Ã*ý="vg§9òÚj4ùöÛoÑjµìرƒÖ­[[飼¼œÏ?ÿœ¸¸8–.]Ê´iÓ(,,$;;›ˆˆsK0™êêj>LPPúU†B¿êõz¶mÛÆ¬Y³˜2e kÖ¬¡aÆ4jÔˆ“'OÒ°aC¸ÿþûÙ·o6l`È!Lž<wwwÒÒÒä>•ñçÁ!ôëÖ­[éÙ³'o¾ù&EEEv:øåË—3uêT^ýu¶mÛFAAçÎcÒ¤I<ùä“lܸ‘cÇŽÍøñãiܸ1G•ûXÆÇУæüü|.\¸@BB¯½öË–-³>ºsçN:tèÀøñãñööæÂ… ¬X±‚‘#G2yòdŽ=JII 7ndÊ”)$$$°råÊ? °Lµ ¦38ˆDL‚DJáâDÔ#&¨wÝbˆJƒƒ˜HŠgp`FÒïÆZ˜•X‡c8Y°·¶G(O´*usR¦Zx&À¡­R$·SÂ{‘‚˜Iter¦»qÁÞÂ_+ˆƒ°¼¯wòíu°È}:r§ÊøS V«yã78wî>ø Mš4!44xï½÷HII¡gÏžøùùѱcG)..¦U«V¨T*ž}öYÎ;‡J¥¢eË–C÷À&,D"¢ÈX é'Š3Åô}NÜOÀ"æ‘D:¢Þ¯{q4B’øGŒ²æLwS†s}¾“oõªZ±ØVga±…îõLû„g½1˜¦ÑY6$±ì K»+©©ëšéXëWWWî¾ûnëÿÃÃmþwAAA5bR7lØðáþ‡"ÎÒ‡¥Àn¡O¥¾R ýž+ÐÅ]ØÄ{…q¸*Ðz•0æ’³›˜.›+Ž).[8c1*›D‹bV5Q´)ê¼ïæB’Ðö¡uŒ9í,†ºÉ¡­8”í—Þà¤žÚ =ô87Ò«Й‘cÐS-'ý d,ýŸÁUèÛ 'c-Ò¨Á.\БdµjrxÞÙfU,à ûüÎÆÜ=9޳Q(OÜj©C¤QqÓ'pºÌXÜ8T80Ç|ÐÞ½; k,Îq³*ûÙ\G<†} g•0R8h7¡V c+;;¸Hv7JjOq\×Åvˆé­Å|ìchæŽcXkñÚ ´Iã°nJß&¥Ø>ª6Rû*…ÍeE-k¼«Ã<63^Øç™Ó‹ý­ú{’ŒÃ›Bx¾ Ðl´ е ¸Þæöâz/œ‹zpÆÜKɼûŒc!‚D¥ššÕجܫúóNåÒ}ì¿T:9­{ ëT…“5L´¶¯vX½…µ_R‰& ’¥¿hÕ/®å¢:Xä1Žn›²°yd‰–ÿeB;¤o¼xŠ-ôÕ6¹5zII ~~~¶UØBD:2tÁͬðsÅ>äi†Æè…-Œä5¨*•\#„Á.ˆ@ m)ºY-uŠ Ýˆsq¹«Ð.Pb?q­-&°ƒÈ³R. p}%ÿeÑOìý:Õ–:•‹µ¨OW„æi#°ƒ9‡¹U§£Ç¦3[²Âüà‰'à›oo«õ°­bap’xuñiV½„ëHÛ¼Ò¨,û(qAÍÅbcP ½±•—uÉœw‹Âd2Y]çì6`Ò˜srxQm¡D ~¢~¼ Øïdóˆ9\ª…vÊà¥e˜Ã:,Ù e kTkÛ8ó¡B>MFŸ+Ðèy¡·°T«ÊÒ?b™µY;d^ËÑ[úU÷ýZ/ªª*î»ï¾ëæíý'`Ú´iTTTØÓ*ÀÁÍ5­ØE—3¨v7ŸBüE}^ÎÕ<õ1‹:õ@Že<|°w1’vúªZ¶Ð& Í©±e¬!‡­=}Š!T«´æáöóž@عuJ®¢±jŽÂ]…ò\°éS«jáø¾Seyïš“ù!ZG‹ÖÄ ¨0™;ö‘â4NæeàæFUU•]ZÜ"¶mÛÆ‰'())±w—Kù²’m4çØG–èk9Õî"Ì{ƒ@Ï û±³ê”s!¿ü• ]5؋݅z¤15( P!’K®ôž´‰.ÁÞØ,ò«!Gáâø‹a¿ÅµÍE bÈ«†`5(ýv¤’ú¬B¸/xèÔPª‡ Q¬Â¹ç“ÔÇ*¨5?î#†6wæÃ/ú§~ 4nNaa!O>ùäe}ü_3t2dÈ!CÆßª©S§N½QqÐŽ;عs' 6ÄÓÓó†*¨¨¨`áÂ…ìß¿Ÿäädš7o^#žˆ¼¼<6lØ@bb¢u§sîÜ9Ö¬Yƒ···]¼[G\ºt‰õë×£ÑhˆŽŽæÒ¥K,]º”ƒ¢Ñh¬ÁîíD@?ÿü3[¶l¡¢¢‚  ×ëùá‡Ø¿?111µF;»xñ"ëÖ­ãÒ¥K4nܘââb¾øâ öíÛGZZwÜq‡Ó÷*++Y¾|9ûöíÃÃð°0 X¾|9ùùù4jÔÈiÚQƒÁÀÎ;Ù²e ×®]#66–C‡±zõj<ˆ§§gÍém£ÑÈöíÛÙµk×MѪtZÚ´i$""Â.v½³zvïÞÍ–-[hРÞÞÞTVV²bÅ ._¾Llll­´.ѪV«­A«Z­¶ÖÀ}šE‹qåʧ︻»óè£Ò¨Q#"##©¨¨àĉôë×x€k×®ÕºyéÒ¥ -Z´ qãÆh4T*¹¹¹,Z´ˆÃ‡S›6ÃÛÛ›ˆˆ’’’¶fÜiß¾=ýû÷çðáõ.qqqdffRUUE½zõðòòbçÎ|úé§v©Mog8p€rçwâççwS)0½½½Ù°a_}õÅÅÅ×}V­V3`Àëd¯ªª"??Ÿ|Gy„ .ÔJï÷ÝwŸ­ºººrêÔ©ëÒ*@‡hÛ¶-±±±èt:._¾L³fÍhÑ¢ýû÷¯Õ²¿^½z<ôÐC4hÐ___t:þþþ|õÕW,_¾üºin›5kF^^ÅÅÅDGG³wï^†J‡ÐëõTTTÔZ§J¥"99Ù*­Ö‚Ý»w#kûàòåË4nܘ;Aƒ±gÏž¯ªTddd°páBNœ8ñ›ýyçwÒ­[7ëÿwïÞÍÀiÙ²% 6$55Õé{~~~ 2ÄÎTJ²yófôzç.<üðÃ4lØÊÊÊHNN¦gÏžtïÞäääZçG¯^½ˆ¥aÆh4\\\¸rå ‹-âܹsµ~cPP¾¾D  ò IDAT¾$%%Ñ Arrr ¡M›6 2„ŸþÙé{®®®4nܘ«W¯¢P(Æ××—uëÖñå—_RRRòÏbè:Îzºvss£ºúÆÂñÙgŸñòË/³uëV._¾|S ¬¬¬´ŠL=<ûì3^|ñE>ýôÓßÜ€:B¤›™'îîî,Z´ˆQ£F‘””Ä/¿üò›Ò]£Ñh•<©T* …5=smHIIaùòå<ûì³Ü}÷ÝÌ;—gžy†Å‹SXXxÝï’ÖÖ²²2ëÚú[üC¯×[iµ²²’qãÆñæ›or×]w1{öìCŒŒ$##“ÉDVV–]Ðøß:Å„††Zw<7Ã%¢MNNÆd2‘’’rS:&oooˆŽŽF¯××J<`ÅŠL›6ͪ§ÏÊÊB§Ó¡ÓéjÕ¡2fÌ^{í5Z´h››AAA„„„àããsÝÉÍ“O>Ihh¨õdg4IOO'<<¼V]˜——½zõâÉ'ŸdïÞ½øùùáïïOLLÌ-³‹ü³Aff&F£‘ìì웲+ ÂÏφ RZzs¬ÞÞÞÖÜÄEEExzzþ¦ŠÉ‘Vëׯo•ØÔÆ èׯ:u"**Š´´4L&—.]"&&¦Ö:¾üòK²³³ù÷¿ÿJ¥²ÎÉFYó‚;ƒ‹‹ =zôàé§ŸæèÑ£4hЀ¤¤$ëé¼6:@›6mxþùçÉÉÉA§ÓLPPAAA”••Ýö´Nnn.ƒ .Ü”ÚÌÕÕ•ÂÃÃóàQ›4ôÒ¥KFrss¯kŸä(u % €ÈÈÈë®;ß}÷{÷îeÊ”)x{{ãââBqq1•••(•J\\\j¹Oœ8‘ &P¿~}<== $22•J…V«­µÎ&MšðÌ3Ï Õjñðð ;;“ÉDbbâu燿¿?}ûö¥Gœ8q‚ÀÀ@|}}‰½îüø;ᆭÜsss™1cz½ž‡zˆ!C†ÜP§NbéÒ¥ "##yýõ×kÕ¹€ÙXhΜ9=z”G}”ñãÇóá‡RPP@`` “&MªÕÐhÛ¶m|ùå—äååñÔSOáááÁ±cÇ(//§wïÞôïßßéi§_¿~ÄÆÆâççÇ#œ.]º P(xî¹çøúë¯Ñh4TTTðæ›oÖš»þ­·Þ¢²²’²²2FŽItt4“&M [·n 4È)¯]»– Õj¹óÎ;¹çž{X¸p!J¥’   &Ožü›zßÛ‹-â×_E­V3mÚ4|||nè½Ý»w³qãF4 ­[·fĈ×58>|ø0‹-âÒ¥K <˜—^z‰I“&¡ÓéhÚ´)/¿ü²Óñ(//gâĉ=z”-ZÀ¬Y³pssC©T2cÆ §†§ééé<þøãÜu×]¸»»óøã£V«Y°`F£‘_|±VÛ¦gžyNG½zõhÙ²%ÁÁÁìܹ“êêj:uêÄÓO?í”ævîÜÉæÍ›1 Ô¯_Ÿ1cưtéRNœ8J¥âý÷ßwÚÖ¬¬,«~_«Õ2a¾üòK )..æ7Þ Y³fÿ†.C† 2dÈøûBÞË!C† 2C—!C† 2dÈ ]† 2dÈ!3t2dÈ!C†ÌÐeÈ!C† ™¡Ë!C† 2d†.C† 2dȺ 2dÈ!Cfè2dÈ!C†ÌÐí‘››ËÛo¿íô·²²2~üñGV®\Éþýû¯üÕªUüðÔ””ðú믣Óé8sæŒ5«›”ãZÂ7ß|ÃŽ;~wTVV²nÝ:»xÄÇŽcçÎÖ)çÎ#99Ùúû¥K—X»v-[·n¥¬¬ “ÉÄ/¿üB^^žõ½^ÏÎ;­¿oÞ¼ùºÉZ/^ÌÙ³gkýÝh4òŸÿü‡çž{Ž””§Ï¼ûî»5^”””0aÂ*++ùî»ïìúðvć~X#[SUUo¿ý¶ÓØíF£‘_~ù…•+W²mÛ¶ëÆtþõ×_™9s&F£‘iÓ¦‘ššJNN§N²>³wï^kŒÿÄÄDÞyçßõ=F£‘ãdzråJ¶lÙBnn.—.]ªAK'Nœ %%…#GްuëV+mk4V¬XÁÕ«Wk”žžÎ|pÝúwïÞM|||­‰lÎ;ǬY³jÜÿꫯøé§Ÿ())aêÔ©×Mð"C†Œ?¡›L&k’ƒÁ€Éd",,ŒÔÔT’’’ìž­¨¨à…^àäÉ“¨Õj8@NN&“Éú¾^¯·.,ùùùâíímM±nÝ:Nœ8^¯G£ÑðöÛo[W<òÈ#tèÐ0g 3våI‹^¯Çh4Öš˜eóæÍŒ3†üÑzoùòå >œ .æû÷ï`É’%¼ñÆhµZΟ?oÍ}äÈ–.]j-ãêÕ«Ìš5 …BAZZ£Fª5cOii)?üð-[¶¬õ{222¸té}ôõë×· Öl[Òû:ŽÔÔT ]»veþüù7œËþŸˆŒŒ ÊËËíúÎÃÃÀÀ@¶nÝZãù3f°|ùrÔj5‰‰‰VF)Ž‘”H¥²²’ŒŒ ”J%ÿ÷ÿGDDgÏžeÕªUèt: sçε&ã¨_¿>ǯµÙÙÙ,]º”èèhºtéÂìÙ³4h]‚‹={ö0cÆ Úµkg¥òòrHÆ )((ÀÛÛÛŽNŒF#“'OfìØ±|ûí·=z”¬¬,ºvíʱcÇ;v,wß}7}úôaáÂ…,Z´ˆиqcrss©¬¬déÒ¥xzz2yòd.^¼HXX.\`ýúõ„††Z™ýèß¿?ýû÷·&=’’÷$%%ѼysŽ?N`` 111¨T*ºtéÂæÍ›yíµ×X¹r%ýúõ«‘®·¬¬Œ3gÎðúë¯0~üxJKK©®®&++‹ùóçsåÊöïßÏ´iÓxá…P*•ÌŸ?777BCCíNæ&“‰uëÖñÙgŸJQQÏ>û,½{÷fõêÕÜÿýòŠ,CÆ_qBOIIa×®]¬]»–¹sçÚetjÙ²%'Nœ°{>,,ŒGy„W_}•çž{ŽeË–YO•••|ú駬Y³†Ÿ~ú‰ôôôõ1hÐ ÆÏ‚ xñÅi֬˗/gÀ€vÏêõz&OžÌêÕ«ÉÌÌ$==/¿ü’nݺ±jÕ*žxâ §i[/]º„F£¡_¿~ ;qõC=Dyy9GŽ±Þ»|ù27¶Ë†Ô©S'N:Eƒ çèÑ£TUUñÓO?ѧO*++Ù¶mO=õwß}·S‘÷©S§ì2ùTUUñî»ï²jÕ*RRRÈÎÎfúôétêÔ‰yóæqüøqt:ëÖ­cÞ¼y,^¼ØN\¼eËBCCY³f cÆŒ±KSY¿~}o[‚7 téÒ…o¾ù†ýë_|ÿý÷€-=°£ZhܸqLŸ>áÇóÞ{ï‘›› ˜sŸ¿üòˬ[·Ž°°06mÚT£.âããéß¿?Ë–-ãÙgŸ¥C‡Ì›7Ïš­LÊe2™0`+V¬ uëÖìß¿ŸS§N‘žžÎºuë˜={vÐ …‚^xo¾ù†gžy†I“&‘––†««+C† áÛo¿Åh4²zõj dÝ<ðÀœh}'88˜zõê‘Àã?î´=:…Ba—NSJVÃÞ ¢¢ÂŽ[µje×'­VKdd¤õwqý¸iR†Œ¿œ¡‡……‘••EYY¥¥¥Vý2@ff¦ƒ³Þ.//   Ú´iC›6m¸víšõDZUUEii)ééé5DÐâ"'23“ÉDmÙ^sã6kÖ̪—»pá‚ћĈ·mÛÆý÷ßOYY;vdÇŽv“¶mÛm=ÅIé”]]]Í‚ xâ‰'èܹ3.\`îܹÄÇÇðõ×_Ó»woÊÊʈŒŒ¤´´´Æ ¹AƒdffÖú-Žß˱cÇ0™LVC;qÃÒ´iSŽ;†Ñh´žð%\»v­Öþ¾QTTD```\âW¯^ÅÛÛ›f͚ѹsg 0™L\»v+W®æ<Ó3v„Z­¶3øR(µÚ08Ž{ll,gÏžE£ÑŸŸo­ODFF†u“òðÓ——‡Éd"$$„víÚ1nÜ8ÚµkGpp°]=?þ8!!!vŒ^D@@Z­ÖnþIís–‡Z¢¿«W¯b2™8räˆ]ŸxxxàîîNJJ &“‰C‡YËÉÉ!**J&B2~'nX‡Þ A† Æ!C¬'HI׸oß>zöìYãÔùÖ[oYOßaaa̘1ƒììlêׯÏË/¿LNNÆ #** OOO<<>>,_¾œwÞy‡¸¸8úõëÇùóçñõõµ·Ö­[³páBžzê)&NœÈÀyõÕWi×®ƒ ²>`= {yyáááA«V­¸ï¾û8p QQQDFFÚÙ€˜L&~üñG6oÞlÝü~üñÇÖyù /0tèP»ñöóóÃÕÕ•;Ï>ûÌÊŒEѺ$õrss#''‡ÆÛõ›«««• R©¬úþ)S¦`4iÓ¦ =öçÎÃÏÏoooÆÏk¯½F@@aaa¸»»pàÀzôè!¯Æ2dü^˜nÉÉɦ«W¯šŽ;f8p )//ÏT^^n:t¨I£ÑÜPgΜ1½ð ¦?Z­ÖtþüySZZšé“O>1͘1ÃôwÆðáÃMiiijûöí3M™2Å$Ã:ÎôïÿÛ”˜˜xCÏ—••™l***úSÛe0L‰‰‰¦´´4Ó¾}ûL½{÷6Æ¿¬_¶oßnúàƒþÔ:ª««MÏ<óŒ)??_&D2~'Ô7ÃüÏž=ËîÝ»Q(Œ7ŽÊËË™9s¦u÷~#'¤¶mÛþé£ÑȪU«())!<<œ‘#Gþ­7Vï¼óÎ ÷a]ÍØ±cå]lÍM-¯¼ò 1117&ÖR«iß¾} ‰?ûöíãÌ™3¨ÕjæÌ™ãTÜýgᡇrj0÷G÷ý¤I“ ” Q†Œß …©6¥´ 2dÈ!ã–S£¸êêjŠŠŠäèM2þö0”””P^^.w† 2nkÔ¹3aÂBBBÐëõLŸ>ÊËËk 9*ãÖBýúõñóó»å¿Ãd2±lÙ2Ο?OII ¯½öšÕêòå˲+Ô?žžž7¬ ‘!Cfèعs';vdøðáŒ;–””š4i‘#GHLL$77—{ï½÷¦+:pà@ÞKNNÆÓÓ“ððð¿¬Îº¾—˜˜H`` ‹Ðß­­×®]ãÂ… :ô–'ÞŠŠ ~þùg>ÿüs’““ùüóÏùðÃsl|ooï:õiAAùùù4mÚôoOs¹¹¹”——׉éýÕmÍÊÊB«ÕÒ°aÃ~ç§Ÿ~bæÌ™òJ-CF]zff¦5€DýúõÉÈȨácnâFߺ¸¦œ>}??¿›Z~ou}/ €ˆˆêÕ«÷·këÅ‹F仕¡ÕjQ(¸ººmçË/™†¨Õj:tè`uO»QÆ“™™Iûöíÿö4wõêUŠŠŠêdhúW·õÊ•+h4kÎ‚Ú Eh¼sÈñ‡0t???k–¢¢";ï6mÚPUUUkëAŒVv3"¦Õ¡¡¡ Ñ€d  °ü0Yþ¸»ƒPäºmÕéÌe:B¾*%nz˜Lp“ÖÈuíŸ}¯qãÆV¦'fÿº¥‰W­Æh4b2™(..¶úéKýÒ®];:vìxÓôãææfõÿ«è<44ŒF¨®´ÝthUÊ×¢P«ÍgÜÝÝÝiD+ªÛ£CÞž Ó‚‹ë_ò5÷8ƒ§§'÷Üs&“‰“'OÊ«´ ueèÝ»wgÊ”)¨Õj222¬§uiñèÔ©S*ª‹ˆø]ú³{ï½^z/6ߤµ(‚Â-_O>ycm;ÞxÃÉΚH1IRKÁÛç/éŸ}ÏÕÕWW×Dnex{{Ó´iS–.]Jbb"´cö=ôPÊ "((è/¥ó{ï½’.B·æ¶™ù±åÇt@ ¬Ö¨L;j}/,,Œ°°0ç…ôð¸@‡fSXw¸`Ôtxiò_ò7*¹R*•xzzZÇQ† udèRŒç+W®ðþûï×ùt,CÆŸ ¥RÉ믿Α#GhÛ¶í_ß@† 2n†ШQ£±ÙeÈø;ÂÃãÖxä2dÈqÛ3ô[åå°à¿¶ÿ{[þ걉ÓO úâj ØrmĦOßý=TY ÆŠ0ë,6‚!Kð¢"›Ø~ÿ^›nS¨„ò¤:?þ\-òwË3âï"ââ`À@™oü´ ’/š¯£)GÎ@ç™ïƒY,þ«å: ùä åN”ñ—A£ÑðÅ_0}útvíÚUccúÎ;ïðþûï[]8ÿóŸÿ0}útfÍšEQQ`vy\³f óæÍ“;T†ÌÐeüs`0ÈÊÊâž{î¡W¯^?~Üî÷ ðì³ÏZ­‘ùåúöíKll,ÁÁÁdeeÉ(ã/Þ={ÈÏÏ祗^báÂ…TUÙô\ï¼ó>ú(;wfþüù˜L&Î;ÇØ±cyùå—­Ñ“““Ù¶m—/_–;TÆ-…[Sä> œ9FƒMopM:Vbó1÷<-×ÕØt‡M0ë·¥^¶6þ–wÏí…ö…¦R÷[~ÏĦÏôŦslŽ­-;0‹ØJ,ØÄóíSý½ºvøðæ´jUNZŒ±¸¸8kôz½õÙC‡¡V«‰‰‰Áh4b0ÐjµÖ¬q*• £Ñx{ϰm›`Ò(óun¡M/}ÕB?½ºaÀ›ÒN øÐrí.Ðpð©:ÿ¡„[¦sxØòûsB[:XhÐ ³z à< íѳ–ëHlâÿ(lªª¿‘ÓËüù³Ñj瘧võ&NüˆS§Nqï½÷JÓ¦M¹|ù²Uí“™™ÉwÜAUUË–-£²²’°°0¦NŠN§cêÔ©øùùñÙgŸ1lØ06lØ s2CÿÓ‘—f&)ºU˜¥$ƒP LUürW'÷•–÷uÕa¾ç*,n*‡ò¥²Ý„¶ˆå…{Îz[ñ÷êÚV-3ûï2vîN‡R©ÄÏϬ¬,RSSiÒ¤ ••æ]‘^¯'33“éÓ§súôi¶mÛFÛ¶m9|ø0ÑÑÑr{ϰêJU ô ˜¤D*ÀO e…ð›B¸/m \šªÊ Ëu„e`p UÉþÃðè]+lx+jYT?z­¨(¡iœ¹oO.úÍ神]²d …‚o¾ù†M›6áããCxx8ƒÒÒRÊÊÊ®¸G† ™¡ËøÛÂha4–ƒ¸J¥¢_¿~üßÿý†¹sç²sçN ]»våôéÓäææÒ°aCzôè^¯çÉ'ŸdçÎøøøÔ)®½ 75ôïm¾NN6ÿmÓ¦ ‡¢Y³f$&&Ò¸qc’’’hܸ1‘‘‘üúë¯TVVâïï‹‹ ÙÙÙxzz’••E\\ÁÁÁ¤¤¤XEîIIIr|2CÿSaþ9žrLNNÀ’8Ý´\7Á즄Í*^k)CtI›»[µÃÉIz&³Èà>á$v›»šÞAP” ‡7™¯ß !õÿ·}k°ô©EÚa4Ù¶m3gÎ$%%…ü‘7,‘ò´Z- ÀÝÝ)S¦pñâEÊËËiÑ¢cÆŒÁh4¢R©nïæf¡ 0»DV t$y=¸ZèH‰MämÄ&Þhµ8b¹öNÚ–ò%¸[Ê£ºzZ¤H€¯!öžÒi½›%¼A çK; ? Üü q—ÿ}ÿê„êÜ`÷ IDAT5èÒ¥ ?ýô}ûöe̘1¬]»–±cÇ2~üxžþy\\\˜;w.Z­–¯¾úŠ‚‚²²²1bþþþ„††òË/¿`2™hÓ¦Ì%dÈ ýO?EJâu!ô5*jŠE‘{C ÖrÝU`îcv%ö"ùJá+…Þ“ôâ-±¹ü Ú1H³,–¹Nzþòa˜Ñß|=z)t{æß·ZÛæÃ`0——G«V­hР«W¯¶>êêêŠV«eÕªUF¢¢¢øä“OHMMåÝwß%,,Œ1cÆXuê·%ü)ÑaãX œ±\·°0`ð…@s’š'è$”qÎr…Ío=› ‰˜¯@”‡[˜º7f›iNt6¶…ëa.He®~Ñ\fDõ7È  µÿoJJ Lœ8‘µk×2tèPÆÀwß}Gß¾}1ìØ±ƒ‘#G2~üxæÍ›ÇÑ£GÑétddd0uêTžþyöìÙCZZ 49…Œ[²•» ;\¼7ÃþC‚@Äb§P(¬×ÂÂÂxôÑG1¤¥¥¡ÕjéÔ©³fÍ"''‡+W®È*ãÏ$¡ÓÙNè;vì ÿþôéÓ‡ÀÀ@’’’¬ïܹ“#FÏ©S§¨®®æôéÓTWW[SåšL&|}}‰‹‹Ã××·½ËqKÐÓÒÒ˜3gAAA4iÒ„Áƒ;5&‘ñÏD³FÐÿ!ð±HT*AAA\¾|™ÔÔTZ¶lIQQ&“ *++ '44”ââb:tèÀÙ³g)--E£Ñü©§sƒÁÀüùó)))A¥R1räHåA¼M`4Bjªå n9©———ãímv7ñ÷÷§¸¸ØncªT*qssÃd2QZZÊçŸÎôéÓ™0aF£´Z-_~ù%z½^Îe!ãÖfè………¨ÕjF…‹‹Ë_ÏÌO†,ÙŸ*0‡Ä³¨PjÊ勿¹ ›.l:IlzËhẠf×€-ØD”I–w°ßíÛ‰ï¥vˆ–Ãzl¢øá~µC‡XÊj,ÜOê;a¹ž2 æ-7_ÿ+žö?X%±3ŠS*•¼òÊ+¼üòËøúú2þ|Ž;†Á` &&†qãÆ‘ŸŸO·nÝèØ±#¥¥¥|óÍ7 8aÆý©9ŒF#çÏŸgüøñÿo¬‘§‡¼Ló8K{‰Rl6…9¶±.èÈU ¹«˜ee^ØDë ̶Xèt•TžÃXIv>ØTD¢¸\t•¤Å*Ð'ŠºH—°ˆŠïru” ‹®¸)0Ø|˜¿¬W-û/èþë¹îvÍÿ†"d&áPN56làÖ[o¥  €ôôt†êinY£GÆh4òÕW_qòäIrrrøç?ÿ‰Ífã·ß~»ì"˰°0æÍ›‡Ãá`Ê”)öô¢‘¹ry˜s´°±,6}Vaó&Û~èPl;*QŒ7eZÕ¢Y–Ù³þô.obÂæ³R¨¡9B0äˆMhk ïÅ ÚÞ%m´õP.ÍÓÿ[—N[{®7JÆ„ƒ bêÔ©ìܹ“¸¸8Ìf3O<ñ³fÍbôèÑLš4 ­VËÍ7ßL‡˜?>v»’’nºé&t:O=õùùùdggóòË/«\BEÝeèmÚ´aÑ¢E8NFÅСC ÷¬2›6m"''‡¸¸8RRRÔÞ«CÈÌÌ$++‹’’’³Ÿdœa÷Ë/¿°téR yá…¼ =""‚ÁƒSZZÊš5k°Ûíôéã±°:}ú4?ýôV«Õ+½Ô0 ¼úê«h4¾ýö[>ûì3{ì1òòòX±bF£‘ÔÔTÕ—¸¡¼¼œ´´4ÇÙ# ºQŒâ¤Mdd$Æ c÷îÝ >œ°°0f̘᥃C‡¡ÓéèÕ«:Žàà`¯Ñg½zõp:ôéÓ‡ââb{ì1Ÿ¾ uŽ¡WWWãr¹°Ùl¸Ýn‘{¿~ýèÔ©Ó•m¡F89 ´a¯e¢Ë÷-(Á2Ê„Óppºvú¼ p׸§ó“ˆ:ÜBݲ˜¾Ò¯¬ü¯^ø.—ßÉë¡C‡tèм¼<¶oß^ësŽÀŠõy†võˆµeÝcDDååå>Ï=z”O?ý«ÕêÝø9>üðC®½öÚËÆÌÁÓ¶²²2Ìf3ååå>úÎøøx† ve$ò˜ ³J#Œ¯Ñärâi]+ýì-T 4,º–i…k‹@Ûáy›ðŒŒ”„Bõ¥{Fá·@—V¿S~˜ ñÒøI.±gbxx8C† Ê[o½ÅÓO?ÍèÑ£1 <÷Üs$%%1uêToÌ„‘#G²gÏ–,YBRR¿üò ³fÍ"::Zå*T†~ÞØ› ï¿s&£ ‡üì¹ä zŠŽº‘°ÐVž£}nÿa¾îAG„ž dTŠbÈ$ê …6,ò»Óa›´û¾û¯C?+6CæQ:ÐsB—E•ÁÁÁÞLk"¾üòK¢¢¢hÕªeeeäååñã?b2™þžp¶¼ëIÝ+3[ƒDCÛl>ug2ïX›:ÒHÏèVÖ··Ræ/Ú\Èó#T ¿aÓ+Æ>(F1ÌÛ/ÔQ*l ê t)×wXx¾H*‚ǵ Àeƒ%Òür÷•cèî3ûV$sÍ5×MDDóæÍó|ÆáômÛFCNN;w櫯¾Âétât:9~ü8;wfèС˜ÍfL&“ê¡¢NA•'©ðAÛÖzµ’DЬe±X8vì111>Ï/Y²„0qâD´Z-«V­â`âĉ¸\.òòòÔNUqyOèB0¨ï¿ÿžòôÓOSVVæãööùçŸ3uêTž|òI~øáìv;?ü0ãÆóª“2339qâIII\{íµ—ÍþC… •¡«¸üðóC×ëõÜzë­Üwß}Lœ8‘Q£F±téR–,YÂŽ;˜2e eeeL:•ììl† Æ[o½Å¸qãÈÏϧiÓ¦jŸª¸<¼Ü +·y~å’ਰ°Æ=ybcc}ºÝnÇh4ŠÓéÄjµRYYÉÓO?ͦM›¸êª«8xð ûöí#,,Œ·ß~›}ûö©­¢Îà¯!ruå¢ØÚ€¢SŽ@—Øÿ\ôá]؉ß+k¹Q¸ÅÝ(EXÅA.¼ß&ëûŰQ~õƒ'4h¹02ò·wíâë²'oÃ*ìžpY—z,øÅ¥§§sï½÷’••ÅîÝ»yðÁÈÉÉáƒ> >>žiÓ¦¡ÓéèÒ¥ 3fÌà‘G¡K—.WÞíñJ CézãU[¥{I(îŒZa–]EàHqßIã®C‰d1:xÄðs…ûr¹–Àéz#Šˆ>Xxç:¡\4Jì9ëà(êÑ~1\ ù(w¶£ÒpIeez—#ã}ý)ì^¬Ì Y%5åuø×„K: -Ü,¹‘\ìêׯOi©G‡PTTDdd¤Òm:N§‹Å‚V«Åh4ÄìÙ³ùñÇùꫯHII¡k×®ôë×üü|233INNV9… õ„þ—†»Ž5ÖàwN臃¬¬,n¼ñFFŒÁÖ­[½&$$пZ´hADD6› ‡ÃÁ{ï½Ç¸qãþ^ô¤¹ôZWhÖ}åèUc÷üä¾0`«W¯fÑ¢EØív5jÄœ9sp8 2„¹sç²`Á®¹æœN'ü1Ë—/gÍš5¤¤¤Ð£GN:ÅçŸΦM›èÑ£‡Ê%T¨ ]EÝıøõ ü~L9¡ËFqf³«ÕzF™ ЦMš7oÎ7ß|CJJ õë×÷F™S¡â²AÎ; ‘YLL F£‘… Ò³gO‚‚‚8p Z­–ÔÔT6mÚĶmÛèÖ­&“‰-[¶ðî»ïRZZJrr2&“‰«®ºŠ ­ªŒTÔ)\Y‘û‰°b…r¢‘#uþºÙ7²•lHmCQZýNAº'mÑýKSËöE/œDÁàâó.¿g­ÂÂ(l«E¤oîÛ´ÉàWN'ôC |0´ZHh7ÞxI†¨^$„C®d‘¯Óé0™LTVV’——wFlëùóçSVVÆ“O>‰V«åøñãdggS\\ÌÑ£G9r¤7×tÃÊ¥P"…|‹@Q„¹•1>"U%¾êœNÖbT@ ŠçD žD,|½dIo9'Сì•QœhÕ$Ìj™vDÏŠ ®D7MƒðN™†C¤ŸLò{dO±œ%3›%Jž%“ÛþmðÉûžë[ï‚°ˆK#µðSsmذÄÄD¦OŸÎƒ>ÈðáÃi×®¯½öo¿ý6UUU,X°€×_Ù³gÄÂ… Ù¸q#:u"//•+WòÒK/ñûï¿Ó¡C•S¨Pú8t¯, ……I+,XeÔ˜*¿Vë0X§°À¸0WQ/-ìêqá›՟ѺkaªbúTW-ï4 ‹¨¸†•m2 ¾)#°ØUï±G=ÿÞtÓ%cè¡hb†B>ôÛn»‘#GbµZyã7Xºt)‡ƒfÍš1{öl Àã?ÎSO=Åc=Æ÷ßφ hÖ¬­[·®»³ã­× SÊmÛ%+Y¬ðÌV‰DóÓ†Í.lúâȘ÷@<áXËñè¨eÝOº.Dѧ[…gª…¹b¨e6G ×”8ì6?Fï¿¡ ˜t6J(å2銈E÷_Šc! =ÀÖå°|¹çºßÀKÃÐű4WöïßO¯^½§mÛ¶:tˆŽ;zóæÍ½ÆpÕÕÕ Þ|óMöïßÏŒ3رc)))„……Ñ¥KöîÝ«2tuªÈ]…/ü˸\.~þùg&L˜ÀÈ‘#Ù¼y3·ß~;#GޤY³f,Z´ˆ§žzŠªª*´Z-›7ofëÖ­Œ3†‚‚ÊÊÊÔ>UqY`wŠ=ž_¹UÙ€:ž½Ãá@¯Wv9r¢)—H£Ñ̘1cèÖ­iii oÔCÿò*TüåúÊ•+ù׿þÅÒ¥K¨¬¬äÕW_åùçŸgË–-jýÝàòeèN§“¼¼<úöíËСCIOO÷>C=¼zK€ŸþÙ+挌Œäøñã—¬iEEELš4‰Gy„ÊÊJÜn7ëÖ­ãùçŸçÍ7ߤ¦¦F¿¿ :ÖÆó —¤ )))üüóÏäååqðàAš5kÆž={p¹\4oÞœôôtvìØAdd$ƒÃ‡{-Þm6]ºtaÛ¶m?~œm۶ѹsgµ£UÔè{ôèÓéäÈɲeˈeÀ€L˜0.]º`6›ÿÜ[>ûjjààAߨòú+»ÁÈ÷E¹ü|˜p-‹ ÏÇòWÔ¥‹Ï›üê“Ewõ„“ªE('Ê4ÄԘ᜵È=Üøê>¾×"’Ýç´B=ºõŒ~4¸úêKFGŠá‡°'þ!¿N2l“=Ì;—îÝ»{³TÉiLÅÓÒ¥@xx8=ôS§NÅápP^^ÎâÅ‹™;w.‹/fݺuÜ|óÍî%ÿÝ{¥”|ÅÊøV c&†Y5£è¤eõK@ÎotØ,ÔáÆ]uçJ×5(¢u-ž0« D’óG#áùÿ t$ÐL…ð|k<* ŠÝÿ»d÷´JþOs¦K¦X^¦[YWoCQ+šoß®—ŒB/Qô57¾©_^½zQXXÈgŸ}ƤI“ÐjµüòË/$''óì³Ï²hÑ"ôz=>ú(n·› 6PVVFll,·Þz+ÁÁÁÜyç|úé§ÜtÓM´hÑBå*êCoܸ15ò2ôÌÌL~øa7nŒÑh¤²²òÏ3ô'É7Ô‡Ù‰úgWF&.b‘Âý°(…gEù>˜ÉýЛ†Bïh°KmÒjµ„††RRRBNN‰‰‰^‘¤N§ã7ÞÀl6sï½÷Ю];222HLL¤´´ô’æ’ ¢Y³fÞøðÇ'66–† Ò³gO¾ûî»?ÏÐ7¬†Ù/(c-Û4”ÌX»p‰6¬(:ñ>À³Òõ*ÿôRaìÌ3Δ“ˆê–}È „péº)ÐV¨ã´ð¼L/ÅÂó¤wãI·êOOá(:ï_Qb¼‹óÉ-Ъ¨C½S¨[¦ùûþ ÷ }õêÕtïÞ‘#Gr÷ÝwSRRâÝTΙ3‡yóæQQQÁŒ3HIIá½÷ÞC«Õòþûï³uëV†ÊîÝ»Ï9OT¨øK2ôªª*JKK©¬¬¤¼¼œ””~üñG .—Ë'ÒW¿~ýèÔ©“Úku:t C‡äåå±}ûöÚôKŸ ðÇйsgÊÊÊ8zô(·Þz+à±·¸í¶Ûظq#³fÍ¢Y³f”––¢×ë¹ñÆ©W¯ž7Üæ¥€Ë墨¨«ÕJqq1Mš4áäÉ“äåå±aúuëæ}6>>žaÆ©_Î!C¼§êÚàtA¦¤:°Jª‚ÜÜ\úöí x²æääxºÅb!$$½^ÃáÀjµÆéÓ§Ù³gÄb±°dÉFÍ| †ŠºÅÐwìØÁ¶mÛ¨©©áÇäæ›ofñâÅ|ùå—L˜0   ‹«yÚTøv¥çúTù™~ß:·ÑýFÔs‹®`'QÄ~6á~  kZ|SVоµòþ¤_77Ùç¶Dú¿ø1ô«A¸Åïfᾘ>UÔ¿›œ,D±½(þ_5„Œh¡­]»("÷Mb øjÙÅSD€ô©ëÖ­ã³Ï>ãĉÌš5‹k¯½ðä—ž6mš%»lƒÑ Aºvízɘ9àõnРŸ|ò Ï<ó ãÇçÓO?%>>ž~ýú]\ÅGÁC·{®‹ ”±IƦŠˆù˜PVÖáÒµxIº>ŽâîŒ"®/BG·hGTíÜ&]ç²}j(ѹ\÷O­Ètq#ž m.àc¡­2Íë€ÁÒ=1}ª ¨à‰Ö橬Ejw J*b0¯ªQ²·5R¥ëŸæÀÚϤ“ŠÎ½ÿ<ˆ¹¸hl¢¤_ž"b𣪪*Ÿä*·ÛÝnG£Ñ ×ë©®®æÅ_äŽ;î 11‘Å‹SQQÁš5kØ¿?¿ýö›zˆQQwz¿~ýÎXÇŒóçkÎË…ß2&á7¾-jƒÛú3IM€ûšZêØ\~LUç·@;¬þuký`lDÎÕ&ðn×Y¾Q~OÀdvüæ[?€Ýþ§†í@ ¬8™Å0T:;N QQQŸµüáÇÉÏϧW¯^L:•Y³fѤI“KB¬aaaL™2Åç^÷îÝéÞ½ûŸ«Øj…ÿfœ¹¡ O?rðø‹»ý6—fý÷a”@0§…M_Š!œV 1³ôãˆqÝO£ØYˆ)N a:ª'PËæäÔ©Zã· ¡M6#º0¡7F‰!Æ9åû5øÚ·È†s'N@–$>o#pb[ÅE›VÍ¥ñ1JßÙ§O.\HDDG%>>žåË—sóÍ7Ó¹sg–/_ŽÝn'11½^Ϙ1cHMM¥eË–TUU1`À®ºê* ؽ{÷%£]*®T?t>hÃb¡—$=ÑjµhµZ%%%4hÐà¬å7nLÿþýéÙ³'±±±ªªâò@·.ÄrONN&<<œ{ѣG£Óé¼RƱcÇ2oÞ<>ùäF…ÍfãÔ©SLœ8‘Y³f‘Mdd$YYYlß¾èèh5j¤ö³ŠºsB¿ìÎÿ-¢FØÉëýN¸þ§TW-§Û@ÛÍyœâÅûNÔ.¿S¹x_³ =é:Ë÷ú·I'ü«¤.á=¾Ù ~_[ÿ ää,’TE§ÓѧOfΜIqq17ß|37nÄårqÝu×ñõ×_³ÿ~–-[ÆÝwßÍõ×_Ï3Ï<ƒÝnçôéÓu#¶VG±ß– Ï„ cyXê/3ŠèZ§Û„S¾è`NÉV”pªâ3bdЦátí@Ï¥xDé.|#ÂE£¸Êï­÷Âu± ² XÐñˆ×ÅP³¢JJTU‰®Ÿ5‚D¬ÅÍö'ÇÎÏnûöíh4V¯^Íĉéß¿?7JQ_{í5¦NŠÕjeþüùL›6gŸ}–•+W’ššÊUW]ÅüÁÚµkyùå—yá…8|ø0III*§Pñ7gèâÂh¨…1Ëñ¡ƒPtpv”0¯šÌ_^€µêãV;<ë&phW«°Øú»xß),"<âHû1æ@jƒ0¡Ž`aá´Ö²ñ¿!?À"îïJ÷gÇÍáû§Ó‰^¯G§Óár¹HNNÆívc±XÈÈÈ ¦¦†V­ZÂÁƒ¹å–[¨ªªòæž®³ ‰0Fòø–¡ˆ Óö¨@›K$:BIZ€Ë=è(Ô'oS±Ÿ%gš ôwT '½ÀÄW ψ9™IovI4T"|çp|XíhuW&ó€³–­„˜pIÔ·‹–èµ¹§É:î uèQDøþ™ÔN mÃXê…kùïÕB½b;ä¶ØP¢ƒYð×ûëíýE”²hS ·©ÃW¯Ȳ? E_y\ø›W$ ÆHþSƒoa·_ÐPµ †a w ­N‡Íf£°°ÈÈȳ–w¹\ÌŸ?‡ÃÁý÷ß_w¤§ŒµY Šj¤P§þµðÂÇÎO‡Þ¿&OžÌ-·Üˆ#p»Ý¼öÚk¼üòËLš4‰ñãÇc0xå•WÐjµÌ™3‡?þ˜¤¤$ÂÃÃéÝ»7ü1?üð­[·fôèÑ*—P¡2tÔf f­½¹A _l‡óöß8ˆ~èá¾M`ÒZ¿vˆ®EàÑÙ׿F&¶£RX kF ñk¿Æ¯­UÂûôúÆ%´[|w°èê׊2øæ ÏuóÌÐýýÐõz= `òäÉ”••q÷ÝwóÝwßát:2d}ô»víâ£>bܸq¤§§óñÇsï½÷òÅ_pË-·üמ¢N¹¶\bšÛ*á¾A¢“@sqxüÀörŸ¿ ¨<îÑÒXÖ èáhµ_»’ú ;Ћ•À•¹xôØEÀé^s ™Ð¹Ž&(»:Ñ(NŽÃ Ò³¸!]CµÂœpàvYî‡C›<éYƒB.Ž¡ûEŠ;yò$v»Ûn»]»vqÿý÷óÚk¯ýzŸ÷ŒŒ Ú·oOhh(mÚ´a̘1\wÝuüñǤ¦¦Azzº7C› uªÈ]Å™ÌM`èn·›ÂÂBZ·nMll,%%%ôîÝ›>}úPVVÆêÕ«™Š:Hü.›0öb9QtîO_¢$Ã}Z¥fAîr×»~.çAwJm8uêWKÙ7nLaa¡×uRöÖÆårQSSsF$C9šÜwß}GLLÌ9UL*Tü=º¨—Q˜Eµ”EñÒ†IϹðu˱ j•ßb)—“ÝÌJ…ÚrF..ø¿ER®ÃŒ¢s, °Aú åÖ ßx0ÀÆB/¼GÔ÷ŸFqÿ©/¼C\”+…ïº@œ¶CvX=?åÔ©†ÐÐP*+•°•••^·´úõë“••E»ví8pà‹/&<<¼n0t3 ‡E±¿Ø‚"jΘÐA?f&ÑÞ÷Ò½h Vºî|-]/Óæ>žo¾ù†qãÆ1mÚ4ìv»ÈS…ŠK}¹Îìù…J›ýòý÷ß3wî\Ìf3^Z¼í¶Û˜1co¿ý6×]wF£‘µkײiÓ&¾ýö[víÚÅþýû™0a ,]º”Ó§O«­¢î̉E‹±råJÌèÑ£Y½z5_~ù%qqqôéÓ‡Aƒ©½ô7B-\m€b锥×ë½)Q­V+cÆŒaùòå8Nn¾ùf¾úê+žþy*++¹ãŽ;hÔ¨ï¿ÿ>±±±Øívâââ.YÛòóóyöÙg±X,|øá‡èt:xàš7oŽÙlfòäÉ—4ŒŠ:?£¸øøx†ÎÖ­[yôÑG æ@¯×3lØ0 Ðét ìÉN“@RR $$$`2™øðÃY¿~=ÕÕÕ>)yU¨øË3ôÛo¿èèh22<É)ÊËËéÛ·/·ß~»O¦¢?…@!OÝΔæïîå&®ü7«T˜à781ä¤ÿä¯Ú¡ê dMÈÊ]Œ'¶W‡oèY²Å»™Àù.ëΩ,ü¯­Â=Q÷*‹þ 1V²]pw ÷&e eÈ!^ßt“ÉÄñãljˆˆÀh4rÍ5×о}{FÍÕW_Mxxø%#ÖÆ3wî\üq\.—ËÅäÉ“ ºxfîDq“•T c-º 6Ês¦ƒN¨ã$ð­t] Ð\=aœŽ ŒIŒš&»Š™ð§G ô|L [YUŠâZ&ÚtåKï/EI¼bÚ $K×1(YâÚ ˆèIïÕ u;ZÔã«ë)]W£ˆöE¾úú‹eè233Y±b#GŽdòäÉ,Y²Ä»©œ={6±±±8NæÍ›Ç“O>É믿Îý÷ßϺuëøí·ßèÝ»7|ðcÆŒÁ`0`0T.¡¢î0t“Éä£KŠç‡~`òäÉtêÔ‰|ðâ]74ç`躌ÛßuË`âÊ@b ið ¡*ºùˆiWeƒ¢pa!³ùÕ-·)P x1,ªX·˜±M¼o’îû3tG†.–ùŠ.?bŠUG€öéPÜ.†¿¹8#RÜÂ… Y°`¹¹¹,X°€Ù³gxCfþûßÿæÝwß%--üã¬[·Žää䀑¸þ ´Z-!!!^zÔëõ$%%1{ölòòòxóÍ7©_¿þ…Wì@±çÐ ãX%Ð] ŠŸ¹?AváÒúÈÐå4£Ñ(úy³°áÚ+1Ç` ‡0ž‡…ë¡îH¡n9Äl3a¼#Q\Ëý¾S#1טÑwî\êÕ«ÇÊ•+Ù»w/Ç'66ö’|ƒÓé$//ªª*òòòÐét=z”zõê±{÷n®¹æIÓ°aÃÔ¯ƒgÈ!deeÕúœ&I9²4ʸçääгgO²²²HHHðÙʾåz½žfÍš‘ŸŸïÝœ6iÒ„–-[OLL ‰‰‰”””¨¢¢î0ô½{÷òÇÄöíÛ‰ŒŒdíÚµ„„„0sæÌsë>›¯Oñ\ŸB VV(zØ8”¨QrKÑUŒÂ%ÞÅì¢ø[öçu£èÄAqÝ`D1;(mÒ¡ˆ(cYEŠû˜èË^uŽž ÞY"VŒF)Š.­aÚçŸ]Îî×fùù¹p¡}µ…½@ÔwCs7dIí×ëõ´iÓ†•+W’MŸ>}Ø»w/.—‹Ž;²páB~ûí7Ö¯_ÏSO=Ejj*%%%ìÛ·’’’KªC·X,|ýõ×$%%±zõj|ðA¶nÝŠÅbáž{î¡cÇŽç®d‹”=+øNºWåPè²3 ŸVàë)©hŸ±G yYç\ìhKÞg d"#ö‘è§øAg¹¾ ·t],8š,Âèy¾è"´u—ô^J$»HÑz)J&7ŠŽÜ„’1®%J*Ùx¡_ŠZµ ó`ŠÐVƒPŸ<ÇâQ]A¸9Ã(nðàÁ<óÌ3lܸ‘víÚa03f ï½÷<òãÇ÷S†‡‡sà 7ðÀ0mÚ4¢££ gìØ±¸Ýn^}õU•K¨¨; ½wïÞôîÝÛçf÷îÝÏ¿«NI³¹߀ÌSÖ{‹AO…Ø<_fH?ï ÀôÎU^f‚º÷/¶Mþß®ÃWWy>u»  ¦¶ö]ª|è~‘â4 ;vdéÒ¥X,žyæôz=.—‹ˆˆÂÂÂX°`5554iÒ„šš^zé%L&Z­ö’†} å©§žò¹7nܸ «Ä^ìéL+Š~YŒC 꿵g„M§ ß vѸð ‘jžqZY÷lÆQÌ$0F‡ÐÖ@4 ‹Ȉíí=ÄxaþÚý6šúô,Š1 ïûGÞp‡àâX´Ñrñ´~ ÝápxiÅf³ÁG}äÙ#×Ôx鲦¦Æ{/$$‹Å‚ÝnÇåra·Û½¢xÕkBE]‚ꇮÂ~éSË—/gÁ‚¼öÚk|öÙg$%%Ѿ}{222hÒ¤ o¿ý6=zô --eË–qË-·ðöÛo£ÓéT?t—6é'1ôµk×rÝu×1gβ²²¼AfæÏŸÏ›o¾É‹/¾È7ß|ÃéÓ§Ù¼y3o¿ý6#GŽdÙ²eìÙ³‡zõê1{öl¢¢¢Øµk—ÚÇ*êÎ ýO×àÀW©N&òN½%d¥¸KOÅváZ giê#ÀßUË *P8UÆå®åw 嫜Pj ª÷k·h/gÒúC7ü¼'³ÙLll¬O~è“'OF£¡yóædee‘““C¿~ýÐét„‡‡S^^þ×¢ø_P¬£[J÷Nã±4G:µËYìD×­`|ÃÃÊ0Š„ø¨s…ºmæÊiá¤ßTø{… A¯­(Þ!Âu…M93¤ªF˜_ºô,Jöáq³È¿‰ßü£4ºPT F¡MZ¡ÏÄùaú¬Xê—‹°r·ã¡U€ÓR»Oœ8Aß¾žŒÍš5#//¨¨(ïiÜl6£Õjq8äääíñßkÒ¤ ………dgg“˜˜@bb"999*—Pñ7bè5(þ²¢žLôe.0s€·×ø1Oyâ‹®=eøŠ åЯ¿ Îtg ä~fÃWÌ*ßo =oñk“IøÆ a!“ß$´U¬Ï*0ÙB;dû­Rès1nðÕ§‹®l5B[¹ú'^þýn·›Þà]eTUUùÄ&ö&_)++#""‚ˆˆÊÊ<±im6Û_Odù¶ÔŸÇ¤{yÀéú„°Aˆ^7ED/2å–d;‹H1ç[Zp³P·<7z c+‡Œ=%0×*<î2­ÊíÛ†"Þ®/mýÓ ËsF´1ømVeZû %ƒÚ÷3¹Š_¹ %Lm 0¿Í£× sY¦ÑB‰~/B33nÂST<ô/Hª‘&ËËË}l8dO›Í†F£¡Aƒ^+x«ÕŠÙl&<<œ#GŽxË7jÔHå*þF ]Åÿ+ÄÄÄø Ün:wîÌ¢E‹8vìdÇŽ¸\.ºté¢E‹Ø¸q#?þø#Ï=÷ÉÉÉÌŸ?ŸÒÒRªªªhÖ¬™Ú©*. ÂÃÃÏ0º¼á†xï½÷p¹\œùäîºë.úöíËÇŒÓé$99™øøxôz=k×®åçŸfÈ!tìØ‘E‹Ѷm[¶lÙ¬Y³ÔŽVQg êÐUœ† &иqcúôéÃðáÃiÔ¨5"""‚3fPVVÆÓO?MBB:t`ìØ±Øív¦OŸîõ V¡âJ ))‰ñãÇc±X˜;w.z½ž-Z Õjyä‘GHLL¤M›6<ôÐC¼þúë8Nî¸ãz÷îMXX¯¾ú*¼øâ‹j¶5³º¨§u×¢]ÿ¹ðx%ë'+Q"M‰"w1BšA¨¯¼–/¨-DªÁKn«E¸_…"–/Ú*ZÐÚ„÷Ù„w8„:dù™)AeŠzB9 •“À!pÝ~ý'·»_+gÿ¾Ö¢èç/‘´Ûd2ùäŒnÞ¼¹Ï‰þ–[nñy>99™äää¿&ÅË¢ÝàéºFèËqBæožëzõA#úZ}»œ†åS¬|’”%@«ï |]ýë3¢ˆÖE‹nÑ›C<¡‹×šZæ¨ÊÕÈù%Â)ÞŽ1Pá;93`‘Mh“^è³ð â| Æ×õT†¬³ ô)Ÿ Náâ\±Êß¿)õ%µ½j³«BÅeeèþ®K> ™È˜5¾ I•4§}˜QÞ9£jÜ’tþ*¡µ‹—(.÷ó¹­BÄP¨¢_|OP·ªÜR[]µ0]MF`«^’Ž‹¡_Jõ‹):ÅrÒ"Zå†}Ç«…wšQD©œÛïe7Âw>òüFŒ€ÅŸÿ­ˆ; ­&JcSŒîUßÓà87˜:¢è}éÒõïøº?ʪ!»4qx¹‚Go½YºÎhTdâV¨rBˆ¨—³üÑϼž²±°{ª ÊàLñ»X,”#Ó¹¤wžè2%­j<ÜÀãz'»žv€*-„8QDûnáƒñÍJ'‡½­{%¸Ý`,6Gezµ@O!tj¬®Ð*T\.Xäž––vQ/Js^\¡Ä¬¸àwº¹¢m=à‚¢+üÎ4‡JÄ—šV‹íð{õ•‹ÿ'²_ä;O_d¹‚‹+w¬ ²*TºT¡â/ÃÐåÈ\î"è䢞ý©w^l9‡»î´õ¥U—4–uaýc+]Ð;/’Xk.róát{~*T¨¸<8o‘{HHË–-£¢¢Â7¥á÷A˶žkýœ d»¥‡.?n‚.ºJ2Ì,l?šâk]î_NºŸ’Vñ¬íÓû–ÍvA–"Q‡­ p_EÄ1ÄÉ™.gnñ-(zZI'žíòHd½ýã®eÛ%êä]B¹@ÛD”•ÛoRUUE×®]ÿßvAAÙÙÙg¦ß´¶ñÒ$  š¡*ªõ°9E‡^‰"oèÇQ•S¶ ²Ê€MÒ½"78­/m{Ë9!Û Y:¿)ŠÈƒsóÊ0Zj£¿½‰\O¼_[…YŸ Ybû+z¶ùÍO™vK¥o,Eq‹t£¸ê‰v$âô\—[< ½¾HßõQÔ âû>Zf3ÅÅÅê*­BÅyBã–“]«P¡B… *ê,tS§Nz>ºÝnÒÓÓùõ×_‰‹‹#(èü[,–-[FFFÇŽ#11­¶vIii)›6m"77×›$!++‹õë×B½zõj-›››ËƱÛí4nܘœœV­ZEff&6›ØØØ39.;wîdóæÍX­V¢££q¹\lݺ•ŒŒ š6mZkNøœœ6lØ@NNñññTTT°råJöìÙC~~>-[¶ XÎjµ²víZöìÙƒÙlöÆ”^³f eeeÄÄÄ Ñh¶5==´´4ÊÊÊhÚ´){÷îå‡~ 33“ɤƞ–hõ×_%==ØØØó¦U€_~ù…Ÿ~ú‰ÌÌL5jtÖ|în·›Ý»w³eË¢££1›ÍÔÔÔ°nÝ:òòòhÚ´i­´.ÓªÃá8oZ•%6làÀÄÅÅa49vìëÖ­C¯××:þV«•´´4~ýõW‚ƒƒ©_¿>›6mbóæÍìÛ·&Mšœi@(!##ƒŸ~ú‰ÂÂBâããÑjµìرƒôôtbbb0™Lµ¶uݺuìß¿ŸèèhœN'+W®d÷îÝ=z”¶mÛª+° —ç­Cß°a«V­"<<œ &p¾û²²2–/_N§NhÓ¦ÍY™9@~~>ÇŽãÝwßàøñã̘1ƒØØX¦Nê“íˇbïÞ½|ûí·ìܹ“ììl:uêD\\\À2555>|˜ÄÄD>ýôS6oÞÌÊ•+IKKÃív3eÊ”Zß·ÿ~¢¢¢(--eúôéäææ²iÓ&:uêDëÖ­k-g³Ù ¥Y³fL™2…ÂÂB&Mš„ÙlfõêÕlذ!`9—Ë…Ãá mÛ¶¬ZµŠ5kÖ°fÍÜn7:uRÃTJX¿~=kÖ¬ñæO¿!ÔgŸ}Fdd$:u:+3OjÙ½{÷òõ×_{³rÍœ9“ŠŠ ~ÿýwþóŸÿÔZöàÁƒdffzi5==ÜÜܳҪLã¡¡¡ñÄOpêÔ)¦NJãÆ™9sf­ÙÁ )--¥yóæ^Z}ÿý÷iÛ¶-;v$44´ÖwZ­VZ·nÍ®]»øä“O¼irM&Ï=÷œ7y Í|tt4 4`ܸq±jÕ*:uêäÉM… ÿ†~×]wÑ¿ 'Nœ8ï—TVV²víÚó*Ó®];î¾ûnô’êÎ;éÑ£½zõ¢W¯^¤§§×Zöúë¯÷ Qª×ë9rä?üðƒ7“?Ìf3#FŒ [·n´oßž'N°yófFŒÁ°aÃ8rä.W`ë¡AƒѧOzõêEAAZ­–’’Ö®]KQQQ­í §k×®†ÅbáôéÓ 4ˆ;3M›6,§×ëéÖ­õêÕ#88“É„Ñhd÷îÝlܸ§Ó©R´@«7Üpz½þ‚hÕh4²eË~ùå—sö§Á`à¾ûîónÞjjjÈÊÊbèСÜ~ûí¤§§×º™èß¿ÿ´zèÐ!Ö¯__+­¤¦¦Ò¿RSS)**âàÁƒ$&&Ò§O† Vëf°iÓ¦ >œ””4h@yy9f³™õë׳sçγnzºuëF£F&88˜uëÖqÏ=÷0hÐ NŸ>MUUUÀrÍ›7§U«V^:×jµTVV²fÍNœ8ªíS¡âÄÐm6›Wô,¦(<4hÀ¼yó¸óÎ;ùÏþs¦‘ÒylÂÂ<ñ(CBBÎû½}úôaæÌ™ôíÛ—éÓ§cµZk}vÏž=ìØ±ƒAƒyó&Ë ¼Íf«µ\EE¯¾ú*ãÆ£E‹Ì™3‡Ûn»wÞy‡ãÇŸU!/¾ÕÕÕ^q§Éd¢¦¦¦ÖÅÎb±––Fnn.ÁÁÁŒ5ŠgŸ}–äää³JþN¨©©ñ¦m5›ÍX,–ó.ûä“Oòøãc4ùàƒ.è½V«ƒÁ€N§Ã`0àv»Ï{“Õ¯_?fΜIjj*Ó§O?«…¾ÅbaúôéŒ?žŠŠ ïü £²²ò¬ïY¾|9aaa´mÛ–—_~™1cÆ`±Xøøãk-c·ÛÙºu+ 44ÔÇ¿_¦×Úðû￳aÃ6lHTTo½õ£Fâßÿþ÷¯*T¨¸D =**Š“'Oâv»9yòä¹²ÏvâIHH >>ž&MšxóŸ/âââȲìëýIDATÍÍÅívsìØ±3Ò{ž õë×'::š«®º ›Í†ÝØa7##ƒùóç3uêTÂÃÃiذ!8l6[­:Øòòr&OžÌwÜá=qÇÅÅѬY3"##½yÁ¡uëÖ<ùä“4jÔˆòòrJJJp¹\P‡.Ÿîï»ï>ÆŽËÚµk‰ŠŠ"**ŠnݺUñw‚L«.—‹Â REÄÆÆzEîg“²Bhh(555X­VÊÊÊ0™L^IÓùÒjrr2555µÒªÅbá•W^¡k×®Üpà ÄÄÄpüøqÜn7YYY$$$œ•™ïܹ“É“'£×ë‰'22’”””³J1‚‚‚9r$>ú(7n$66–œœœNgàà=~›ê矞#GŽàp8ˆ'66–fÍš©ì*T\bœ·ÛÚwÞÉ+¯¼ÂâÅ‹IMM%""â¼Êedd°páBœN'!!!´iÓæ¬ÏÿñÇÌ;—={öðâ‹/2aÂV¯^í=5uïÞ½Ö²ëÖ­ãÃ?$//Ïk¤´sçNÊËË8p`@=aEEcÇŽ¥E‹Ì;—üãŒ1‚7ÞxNÇÈ‘#ke®/½ô{÷î%88˜ŒŒ ºwïÎ’%Kp¹\4lذV=úž={øä“OÐét´k׎›nº‰qãÆáp8xþùçk•Ìœ9›ÍFQQ'NäwÞ!;;›ââbƧR40bÄf̘Á¢E‹èÓ§ÏyÓ*À‹/¾Hee%ÅÅÅŒ?þœÏÏœ9“ï¾ûŽðÌ3Ï0räHž|òIÜn7ÿú׿j-÷ý÷ßóá‡rüøq¢££ b×®]”——3hРZ™äG}Äwß}‡Õjeß¾}<÷Üs˜Íf{ì1ìv;sæÌ XnïÞ½Lœ8‘o¼‘^xÑ£Góé§ŸRSSCII 'N¬µ­/¼ðÕÕÕ”––rï½÷’˜˜ÈóÏ?Ï_|Áõ×_OpppÀrË–-cÛ¶mØl6ºwïNnn.óæÍC«Õ¢×ëéÔ©“J¬*T\Bü ~r\Ä© ÁIEND®B`‚pymvpa-0.4.8/doc/pics/ex_smellit2.png000066400000000000000000004703371174541445200175240ustar00rootroot00000000000000‰PNG  IHDRôÅ¢‡6sRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ  f¡A; IDATxÚìy”]U™öûŒw®ª[sURIÈL’N˜2 ¢ahDÔAA´—-Í M/éoéÒÏÖ4‚.A@Ò6£C>&IB I3‘„T¥R•ÔtçéLûûãœ{S%hK·ÚŠy×ÊJÕ=ûî³ÏÞûžç}÷)äQÊå²|øá‡å׿þuyÓM7É-[¶üÁï±{÷nyùå—KÇqÞÓ÷žþy¹råJ)¥”^x¡,‹ïÚîæ›o–ÿ›â8޼ä’KäÈÈÈ»Ÿþô§rppð÷n¿råJùüóÏùìÁ”«V­ú?O&“‘^x¡L¥Rÿí>FFFäYgõ_¶ûå/)ðƒÈ£ò—%étZþèG?’_ÿú×åÍ7ß,{{{ÿà÷øÕ¯~%ÿõ_ÿõ=鍊n’<òˆìéé‘W_}õ»Ú¡¡!¹zõêÿÕ9Ü¿¿¼êª«¤eYÿí>Þ‹í«T*ò’K.‘óùŠ+ä‹/¾øžî;88(/¼ðBY(Þõú®]»äç>÷9éyÞÙWww·¼ð ßõÚÀÀ€¼üòËÿGsôç&D¹ï¾ûØ´iW\qù|žR©ÀÐÐ{÷îEUUfÍšE8fdd„l6K&“AÁÌ™3Ù³gÅb‘9sæ`»ví"ÓÓÓCgg'ãÇ@J €çyìÝ»—¡¡!¦L™Bssó˜ñH)Ù»w/###äóùÚçW_}5†aP©TxóÍ7©T*L˜0)%wÜqóçϧ½½ñãdzsçNŠÅ"'N¤½½Û¶Ù»w/áp˜þþ~¦OŸNCCìÝ»—H$ÂìÙ³Q…žž<Èøñã?~—]v†apTþ2ä+_ù &LàÜsÏe``€\.‡”’ÔÖ·ºo»»»Ñ4¾¾>èêêâ7Þ  1sæL\×eÏž=„B!:Ä´iÓH&“cîgÛ6Û·oDz,fΜI,sÝu]ÞxãZ[€¦¦&.½ôRE!N³k×.¦OŸÎ«¯¾Ê=÷ÜCWWÓ§OÇ0 öìÙƒëºÌœ9“D"A>Ÿ§¿¿×uÉçóÌž=›P(„”’ýû÷ÓßßOKK “'OFJÉÎ;Éf³µñWÇ\(èìì¬éEU~ö³Ÿñ‘|]×)‹lß¾Û¶™º»»immeÒ¤I!Èf³ìر£¦×U½-ù|ž—^z‰ÆÆFŽ9æ:„”’ŽŽŽÚ³M˜0H$ò®ßݽ{7–e½cívíÚE.—ãØc%ÖöÈÁƒéì줫«kL_£×iÆŒ477ÓÖÖÆ‹/¾Èâŋߺ£~õ«_ýê«ó§žz Û¶9óÌ3™1cFm‚þóŸ³k×.^ýuyä–/_κuë¸êª«‡Ã<ðÀ¬[·ŽÖ­[GOO‹-âÊ+¯ä™gžÁ²,V­ZÅÂ… Q…7röÙg³zõjþó?ÿ“r¹ÌwÜÁI'D"‘¨gݺu|ó›ßDQ~øa’É$þð‡¹ì²ËøøÇ?Î7ÞÈÖ­[Éår ‹ÅX½z5“'O&S,yüñÇéïïçöÛoç„NÀó<.ºè"†‡‡éééaõêÕœyæ™ìÝ»—/}éK¨ªÊ›o¾ÉqÇÇsÏ=Ç-·Ü‚çyÜsÏ=Lš4‰}ûöñ­o} ]×Ù½{7³gÏÆ4ÍÚ˜¿÷½ïqÎ9ç0~üxî½÷^zè!ÇáÀÌ;—›o¾™Ç{Œ¡¡!n»í6Î=÷\žy殾úêšxúé§ihh@Ó4¹æšk(•Jlܸ‘Ý»ws 'ðo|ƒçž{ŽC‡ñ‹_ü‚³Î:«0ìØ±ƒ»ï¾Ã0øÕ¯~Eoo/3gÎäÒK/墋.BJÉç?ÿy–,Y2Fén½õVzè!\×eÿþýÌž=›ÿøÇ pøða~üãsúé§³víZ6mÚĉ'žHOOßøÆ78ï¼ó¸êª«xþùç)•JÜvÛmœp „Ãa}ôQ>ô¡qÝu×ÑÞÞŽ”’ë®»Ã0عs'3fÌ ‘H°yófêëëß¡ÜGåÏWîºë.æÎËÉ'ŸÌŒ3hjj²,î¿ÿ~úúúøõ¯Mww7 .dÕªUµ€uÕªUìÝ»—îºë.ººº¨««ã¢‹.âÀ:tˆ;}èCôöö200À‰'žÈ 7ÜÀÎ;9pà=ôøÀÐu½6žÛn»G}”L&ã>ÊâÅ‹‰Çã|ë[ß⬳ÎâòË/§P(pðàA ௯õë×ÓÞÞNgg'¯½ö[¶laïÞ½¬^½š|ä#ìÞ½›Ï~ö³¨ªÊÆyå•WX¶l?ü0·Þz+BvíÚÅßüÍßpË-·°nÝ:Òé4wß}7Ë–-ã¾ûîcÍš5X–EOO ,¨·\.óÃþ‹/¾˜x<οüË¿°k×.Òé4…B®®.V¬XAOOÛ¶mcíÚµ|ðƒ䦛nbõêÕ(Š‚”’5kÖ0yòd¢Ñ(©TŠn¸€x€ºº:ZZZ¸òÊ+9|ø0Û¶mcóæÍ|ò“ŸcsŸ|òIž~úi~ô£ÑÑÑA±Xä;ßùgŸ}6ù|žK/½” .¸ f÷ªvöœsÎaË–-lܸ‘îînn¿ývN?ýtòù<ßÿþ÷q‡W_}•5kÖðá˜gŸ}–ï~÷»xžÇêÕ«éêê"òôÓOsæ™grÍ5×022B__¦iÒÕÕ…¢öý÷ƒüQúç?ÿyn½õV.¾øblÛæË_þ2gœq‹/æ±Çò,6nÜH&“àä“OfÅŠ¼ôÒK¬ZµŠ[n¹…ÞÞ^®¿þz®¸â TUåsŸû‹/f„ ÜsÏ=\z饵ÈùŽ;î`ÅŠ$ :Äš5køÂ¾PCç÷Üs×]w'œp¼üòËcÆ{ðàAæÌ™Ã¹çžK{{;š¦ÑÖÖÆ?üÃ?P©TصkÝÝÝxžÇúõë9óÌ3I&“µû^~ùåôõõñÃþ/~ñ‹,_¾Çq¸óÎ;9í´ÓjÑíOúS–.]Ša,[¶ŒiÓ¦ …ÆŒiÇŽLž<€Ã‡ÓÔÔÄgœÁĉk}<÷Üs„B!®½öZÖ®];f.…üâ¿à¢‹.bÊ”)ÜqÇÄãq,X@>ŸçÎ;ïä‚ .`Íš5lܸMÓjhä7夓NâË_þ2###üÝßý—^z)Ç|˜ÖÖV–/_þŽ`µT*‘ÉdH&“H)9tè‹/fùòå´¶¶òæ›o’Éd¸õÖ[±m› /¼îîn„|êSŸâ‚ .àÆo¬=Ãå—_ÎâÅ‹9öØc©¯¯çž{î!‹áy_ýêWÉçó¼òÊ+ﺞŸúÔ§8ÿüóY°`÷Þ{/·Ür …Býû÷³iÓ&N=õTâñø»~wîܹ8p€þþ~R©[·n¥½½¶¶6¾ò•¯ „àoÿöoéééáöÛogÙ²eL™2Ó4¹÷Þ{¹öÚkk¶hhhˆÓO?SO=µ:&MšT[÷ƒ(Ìθá†xüñÇùîw¿Ë7ÞH6›å’K.¡µµ•~ðƒ$‰ߨØ€a466¢ª*š¦áyž?XE¡¾¾€d2I.—C§§ÓiúûûÙ·oS¦Lá„Ns½R©Ôè´ß¤Ýnºé&ù?ÿçÿ°råJÇC!}ûÛßf×®],Y²„™3gR(ˆÅb„B!„躎ëºd2™1Ô³”’L&Ãàà ûöí#söÙgsÖYgq饗rÿý÷ó±}Œ¾¾¾± ¤(µç¿êª«X´h7ß|3—]vét!¦i"„3'­­­ïJ¥ÓiŠÅ"ûöíc``€ /¼)%¡P]×BÔæøÝÖSahš†eY|þóŸçÎ;ïäg?ûçŸ>šv$F¬Î_8CÇE£QÂá0Š¢ ëz­]õ9mÛ®¥Q èEüáp˜J¥RC!¶mÇB°`ÁþùŸÿ™§žzгÏ>»¦¤žçIa•?9æ˜cø÷ÿwÖ¯_ϧ?ýi¾öµ¯ñÖ[oqà 70kÖ,–.]ZÛ_Š¢ÔR\áp¸¦×¦iÖèñH$RÓÏúúú1é¶b±H¹\fÿþý¼ýöÛœuÖY´´´ŒÙÃUýBÔîU!«W¯¦¯¯Ï}îsÜu×]ïHS}ùË_àø---µ=ÜØØXÓ_Çqp]×uk6JA©T¶mzzzØ·o ,àØceåʕ̚5‹ï|ç;|æ3Ÿ©éËèqyž‡¢(¬Zµ ]×Y¹r%_ûÚ×(•JD"‘šþUÓBˆ1Ï>Ú~¤R)Òé4ûöíÃq>ñ‰OP(ˆÇãµ~~3UQ•êšTm}(âŒ3ÎàÑGå¾ûîãâ‹/~×ïI)¹þúëÉd2,[¶Œ®®.ŠÅ"uuu(Š‚ªªD£Q …™L†¡¡!öíÛ‡¦iœwÞyµ¾b±ßÿþ÷³NÕ9:êÐyæ™gX·n;wîäÍ7߬Ѿ•J…qãÆÑßßÿö»¤J»½þúëÜ}÷ÝchMÓ8í´ÓPU•%K–Ô"ÉÑŽñä“OfõêÕ¼ñÆÜÿýïèË–-Ì™3‡‹.ºˆ}ûöaYÑh”W^y…¡¡!2™ ãÆCÓ´ßVåœsÎá?ø¯¿þ:›6m²,N;í4\×eñâÅÌ;—ææfvîÜI$áÓŸþ4Š¢0222¦Ÿ9sæÔœÓ+¯¼Â„ ¸ä’KÄu]¦NÊüÇðòË/³víZN>ùäwŒ¥¾¾ž×^{ÞÞ^>øÁR.—™?>'t´µµ‘L&yä‘GxþùçyöÙgßõ™ž|òI6oÞ̃>H[[õõõL™2˲xá…X²dɘö¦irì±Çr÷Ýw³cÇŽw0"£eÊ”)<÷Üs¼ñÆ<ðÀ5£÷»Œþ7¾ñ ¾öµ¯ñÚk¯ÑÝÝmÛ|üã§­­ÞÞ^öîÝ˱Ç{ÔKþɃ>ÈæÍ›Ù±c»víªÕU„ÃaZ[[Ù±cǘ`þ¿’ƒòóŸÿœ—_~™7rüñÇ×®M›6¦¦&&NœÈ’%K˜4iÒ´h³gÏfõêÕlÞ¼™'Ÿ|òNç•W^áÔSOeùòåµ:”B¡ÀŽ;Èf³5{W*•عsçogµÖæ'?ù ;vìàÅ_¤¥¥…©S§’L&Y²dIíçmÛ¶1uêT.¿ürvïÞã8cú©¯¯gxx)%Û¶mcáÂ…|úÓŸfÛ¶mLš4‰C‡±aÞxâ‰Úø~SÂápÍöwÞy¤R)N>ùd,X@[[Ó§Ogß¾}lܸ‘Ç{Œ·Þzë]Ÿëþûïç7Þ`õêÕ5¦ì£ý(?ü0 cR{¿)…BqãÆáº.¯¿þzíóW_}•uëÖñë_ÿšt:ͤI“øèG?ŠmÛœrÊ)Ì›7oL Uuî—-[ƹçžË¶mÛÞ—öášC/—Ë<ûì³lÞ¼×u¹úê«innfêÔ©<öØcD"æÍ›ÇÂ… kÈmÊ”)ض‚Ù³gãyår™ ðË_þ’E‹±iÓ&.\ÈÇ>ö1<ÏÃuÝZÎmçÎlܸ‘t:ͼyóÆDsæÌ¡··—­[·²téR:::˜9s&©TŠE‹±sçNÖ®]K?_üâ7n“&MâW¿úRJ>ùÉO²nÝ:z{{Yºt)'N¤««‹R©Ä¼yóPU•\.ǬY³˜?>ªªòôÓO344Ä‚ X´hCCC¬_¿žþþ~fÍšÀc=Æk¯½ÆYgÅI'4&bŒÇã¬Y³†ÓN;žžžxâ Þzë->ó™Ï0cÆ –,YÂóÏ?Ï›o¾É¾ðfÏž]c"ªTý”)SX»v-¬QtO=õ;vì µµ•É“'³dÉ~ýë_“J¥8å”S˜3gÎ4RUú;w’ËåX¹r%±X !‡¢­­ÓO?ý{`éÒ¥lݺ•Í›7‹Å˜6m…B¹sç¢ë:Ùl–3f0eÊÇaÓ¦Müñttt0oÞ<2™ sæÌ!R,kt[>Ÿgùòåüñ<öØcLŸ>'Ÿ|’­[·ròÉ'sÆg`Û6·ß~;×\sÍû* ¿KUG^}õUÚÛÛùÒ—¾T+ Ú°aS§NeêÔ©ÌŸ?Ÿr¹Ì„ hnn¦T*ÑÔÔÄøñã±,‹p8LWWÏ>û,Ó§Oç…^ࢋ.bÁ‚5™5k'tëׯgË–-!8î¸ãÆ0MK–,á™gž¡¯¯¥K—Ö ª,ËbîܹlذM›6!„àK_ú---5Ý?~<§œr O>ù$¥R©6ªÌÒìÙ³kì݉'žÈ¢E‹èééá¹çžCJɼyó8õÔSy饗xá…(‹Ì›7¾¾>ž|òIvïÞÍ•W^9†v×4ÞÞÞZ¡ìÖ­[yæ™gdÅŠŒ?ž¹sçòÔSO188È5×\C{{;¹\ŽI“&Õ˜Ò‰'²fÍš­mYk×®­¥&OžÌôéÓyüñljF£ÌŸ?ŸùóçIV‹Öžyæ&NœÈ%—\‚®ëD£Qžxâ .»ì²šf+•JÌŸ?ŸãŽ;ާžzŠT*Å©§žÊôéÓI&“$“IÒé4Û·o窫®ª=S*•býúõôõõÕ@]užþùÚ¼þã?þ#±XŒþð‡œþùtvv¾?”ç/©$ÿ3ŸùŒÜ³gÏ_ÕÏóäW\ñ?:¶öÇ”§Ÿ~Z._¾üÏr]Ö¬Y#ï»ï¾£çÀþŠ%•JÉ /¼Pf2™¿ªçîïï—×_ýŸå‘¬R©$W¯^-Ï?ÿüßz\øO!rÅŠïùÈóŸ³ù›É—ß’ËØ·oår™iÓ¦©ýSÊ /¼À¬Y³~kÅQùÓËš5k7nsçÎ=:G…J¥Â[o½E4eÒ¤Iÿëã±,‹—_~™… þ¯Ù­£2VJ¥kÖ¬aÑ¢EGOŸüå÷rèk׮婧ž¢¹¹Ã0¸âŠ+ŽÎÜQ9*GåTéªU«Ð4½{÷òÙÏ~vL¾ú¨•£òÇ•ßëØÚÃ?Ìõ×_OCC×^{míèQU‰ÊQù‹Žj…x×ï&àÁømTUåÊ«®ú«›ÇB¡Àk¯½ÆwÞÉþýû¹í¶Ûj]JÉïŽÊQyߨŠõë׳mëÖßÙfê´iœuÖYZ‡^­05MEQ(—ËÄãq^}õUæ|  ˜7æ.„< I¡HdYÅl+P§fQ5EJ âb`aR!B89\TZä–0HŤB…*.*}¯§˜8'ŠŽƒ‡ÀAC͹’^ )@Ø€*q ¸غ†« ÏÁRtEE A ,¡#ØèX(HŠ„H$ ‡»+Ä4b …IˆaÊ ã¡à #O†.*#‡H%”ˆà¢`b1HQ ”ƒç±1Q"OŒ( l;ôÑx@ØÔû÷$4m²€ðǕ˳ÝÐ? Sæ/á¡Ç7ü^ ³gÏÞºöZÚ~G›Í¦ùWéЫÇÈTU¥µµ•ÁÁÁÚµÿûÍoñ/ÿºÚ4˜»m^ áH‘¨–'.r´ÊC4 r„(á¡àI•YC»q£àª ަ¢H¢Á’yÅA§‚‚‡†C™a·L8ãÁ±íh¸þfêÝ0)ûF‰A —qýlnE’¤F AÔ-b–DY¢d@Æý½$Füý+벿½^ï†9óü»IDD ö§dÓß“²¬¥o%Q£@gÏ“—Ù@ÝÜ LgYÌ)g(éã¶ƒÚ Ùz“·‚²&™xœ3ê` ?²0‚ GЂ$¾µHÇsEh…''\ÈÎúShUÞæœöç‡ ô(]”e²ôœ8§¼•¦ó팯9`²ö"þß”+QF,æ|è ›Þ¦H„!šˆ‘ç„~‡…»BHC"F`OC ÿ6ûbä™H7- 'Jš@Ò`¥™ýÔ6:'J:÷ØV\ã›—œK%j£Àx`R¡Ž 2”ˆð¡_ï÷mMDÞ_‹‡>°ÞÎ\Tfó9âdI'Ç)ùý9(zl±aÜtøÙ{8,#þ ;øsã¿—C¿è¢‹øÎw¾C$aÙ²ecß¹»P@S'üÇA?='â[´m ë¢Qb¥ ²›ýL–Hœ”fd¤#\¡¤Di"ç%È(þDæeŒqŠDÉPG„"QòôÑIˆ2™„Ç :C4a`‘dË5QKC8H!ž@”ÅF?òD‚^rÉ„ãØBÇE%* 8B#KyR4P ‚…Àgd$¥…Éc¦„ÎA:ÐqбÉPG“4õ4‰¨H.Z ‘{(h8xÁo‰@R"Œ‹ß>I 'p . ÑQí IDAT„J„4)ð54î3 þ3h88hƒá"ˆbRñѼp¨hYD(R&Lˆ2IwÏU©˜:1·@C)‹žó¨©è¶ƒZE´Z€~+¾!ÊPÂd@+:hxh¶‡8(´ œf!AT¤=$R€r<¨‹ûm•òÔN ”ˆ!ý¾rA`¡ß­öçŸ+Á5-pîn€äËÁXÔ`<ÕÚ(NÐö½8®À&ÿ”ê}(‘H„¥K—rà 70<<Ìõ×_?ÖºMÓ!Ý/õ gNIJø†Š A*”$fä(ÅA#A=`¬”<¦‹vQ„GY a{?OQt ²Ô‘'ŠP$ÍúAÔX„a ,Ê„°0ˆ‘ǤB‰v`rmô á‚Døº*l¡#|"áûL©ù¾ŠÑ•D]ðsõ¹QûÑ 6ì_+ØŸ‡=Áþ±<"y §ÎßI2àíp= ús,GÑ)‰05†JP •¾0-›’n"¥ÿi JÅv½BÙ £ %@¸¦¬ xž¯g%¨8&%¦l‡ +%„êá Ð!ŠDð\eŒÞR‘ô é -(‹%B S ŠŠ‹åþw¼€±sÀuUr$pÑH‘%L‰4õµµq=¨!D9!È’ Hƒ6ú±Ñ‰P ­6÷¢rĤd‡iE"Pñÿ~…‡B™:Š-e‰° ,A·ÿ Å1§ÿ'wè ,`úô鸮ûÎ sH8±6öÂ^"ìG®û@¶ª”Zâ°ÇGi¡7Ý… Q‰ái‚ð¤ÅR 3V¢NdèÑÆ3D#:61òÄȦD˜T-i£—>Jc*b„Båݨ¡zØšŠeêØBC¢ âà •|(BQDpP)A^M™môZ¤ª ñP(ÁF£yV#žÐ›"tl4\J„É’¨yb„(ã“ 1°PðL*èØ8¨TQ!„ŽMœ1òº®%Ž…Éü%¦Ø§ÿ«Ô`”" ‡ÚùìAõ^*†V¡aJ¨8è8”•qòDq1\£ä‚„E§èˆ¬í+fÕ€‚Ý’ ²JÒWxµâ¡È€N/msÁÞ°‚ôG5TÍ • kÙo·xR@_F‚ÏJ@¨é;ët€¬­ ÿª1¬öW¥Ø• o´qƒëÅ ª!µ}#¼¤^yý(BÿíùÅÏ~ö³är94MËä©sAëÕrÚxtœ4 ÷Âô:úfLâPçx¨sHÖ "¥BRÁõTþ¯ü®ªÐ¯¶×ÒJYâô0ôÒÈp ¡k8d¨Gz#Lm¬c„:6)êÑ.¦D¤øVjŒ\…\SôrWt¢^Åñ|ã«€Ôü Š#ׂE7üý»d¾¿I¤ ^Ô„¿—‰ÿ‡„¯hj+àI?ˆuó‰ ž­²»{ZÅ\óu¢mä‡Y ü5é¶+¾šþ?{»I^‰QnŒ_#GŒE›m‡ŠË vÖ€•;ixZ°Ž8¶D¼–µùËFèÀo}­RúóƒÀÜñðêH5Â)ÿéûv_õd/§QÜS‡ TÃAzÐÛ?3RBum†d;Å rZŒf†( ÒL<ÈKž*ØÏDôÀ*»h¨¸LJôRŒ8šBE5°5œÇ–:.eaRVLT\ŠD±Š¥Œ‰àæ!šjJ>ÚY ÅÏÇhØä‰¢L+‡É$!ÊAzÀÏç•¥ÿr…(EBT0°È’ D“ F°ilt *D(¢a“%‡BŒaJTTŸŸˆ“ó#a#ôBЇE“1$ £@šzŠD®X¨¸4&"‹DMX„ÊŽªRŠeÃõ–QÏß!©À1†*=ØØ2& C"CY–x:¨MÃt‚Í…Nª¿7R®Š¡«fð»r$ÏÍxð4PÔàÞÕ\x4h‚à¡>ø¼)pÜF`8E ü2pìF°ëK~Ÿj{€ŽÞ£Òuè¿Å@)Jí/ouö’úÆaFštlLX4vö@ç8¼}eÃDAÃÊk¸)p´HÑŒax6•¸JÖˆR&Dž6:#4Ö‚íá ]nÍUëŽCȰ S&AaêÝ4ž¢Ð&Õ +W"ŒS+·Õ(¥" ¿­ØaH¹„"¤¿èΑÕÀÕ£æøH{+@r¢šê©¢WF›Ê¨´‘.QbTéX‚·õ 5– Šk‘¤蓇osM‰g‹Z;½j/¥ãƒ€²ôÇú‚JÉ$C9âtÑ(ÂCÂô|=Õ‚@yC§O´û`“0EÂÑ4Ç×7툎Æ#YÚâÉ‹2i¢á ’ñS)–ÏHÔг/¯Rx±(Ï c%ô`eßæ{¶_‡Sõ†1Àz ¹-$ÛÒÐâ:–DˆŠðmuÕfU™9L9ÜÌ݆^q8t\;Lš¢E—þš¹£@ïs‡.4Iè“ȽÀq&tÂöA£„qÄd·×ðÂD‰hð­SÔ±Ë:j£‹ci”Ýš°1$”¬¡×(…Z|•R(y!OÅólS£¬™XÒ h„ñ¤@ñ :6•Á{(AÚZÈà'ÿxŸÃ·Ñ¥_0§àÕÚ»¨ÒŸ[O€§*€‡'„_T¨YŽr´U‡êáGÊŽ_´ƒ7 aì1ЦÒGM¢2*R®"oTÁ}$Ê—j@_ºAê(ÔÔî¡*àã7Š–”QÿW5É5ž£”û¡O‘{8\×JÞ‰Ó;=„«h¸¦‚íÞ†¦‰G·8µ£]¡‚E<š£QŽ$9µ_$B=iTé¿MrSX4ºÃÄJyía*ŠILæqQI)IŠ)‘"n S³É2E5‚)lZÝABù VŠ˜UÄìu|$ž ˆ8Æh°ÏÒ£öOõ$HuÿVÇüÓ‡ƒïIŽ¡ èûP{Ž®P7Ùd=1Õ?ñ¢K›&gG¨„ó¥#Îåÿ¡K¿6h@Å,Vˆ¹E\*$œªt‘®‚HI´ràlƒÚ5á ¶»­J5EQ)‘%4é`:FÖ…”¬¥Û"ZhcŽp¶@„¢–]‹¤›"$+¨C®ïÈKÁºe!^Ì3N$§ÅIŠqr”1iô†‰É<¡JÉŸ‡R0ÅQÅ´a?­Øì Q& ™#,K„,Ëw®Zàd‡ƒ¾ÎŸoMwˆÈ"q™#YÌÐ RXªî·­¦ì#u@T$JY’Àÿc?q™£ÁMûAâ°ýIU¼G‡þ—‰Ðc.JÜADœJȧ€BÀ"S:aëœg›a\01 î+ î±:¶† vw ’C3›P,pô}¡6ôp™z="%õzÊ/\“ªðè–H*#5¤ªà1EïA‘ªá†)iiü|^˜RP<—D ªgK„I¡Vzã0-”ˆ @™BM%¨¨M%B½FÏW¦ƒN&#L‘$#µ6 ²x( “ ÿrÁ9t«V˜#‡…‹ŠŠG”B-°Ðƒ£6Ú(ªÝg²Ôá ÑÈPp¾VÇ V\¯¥.Œ€°¯ `‹x©ˆ£©þYÛ#,+˜EáP£Umb£ ˜*!ŠâOT*«æ,•QÖ‰GG¡ek”£6FEA6çxõ ßx`L•QÕi±Q”XC p#Áçj ìÕ{¹â¯"ÈiVÞ;B¥ÜߣC÷˜ÅNFŒJf„ôäf*ºIÅáõ˜Ð4ùúh1Õ_ç¿nBØ\£k~ð8ªÏê)—edšFoS©Ð\!:\¦±n[30eKbåè*WðB*ºc£hEDð™6ä(çe”aÏwº¥À 3ª(³8=ØßƒyW‚ö¶8¸bðy6‚‹ ” < ¦=Ìlí FêˆZ<©âI…°UÂ*f¡rÄ)å|笴zhÓìAC2E»Û'…†ãàØ:â h!ÏwLA€dü…Úoc6UˆQÀF'^,Ð`gñ¤‚VqÐú¥ˆd|ØÙ´Ÿñ“:‰K¨ª‹I…°[¢¹A+Á‘„›ŠŒ“©s3D ELÕÆT,ßñW¥ÊþiAAwÖOmVz³3èŽ)·öü2B¼÷¢¸Ð_B¶d]iô¼Kn¢ÄJG $Q'Ù Áë‡Ü~Æ·B,ä/Fc°ùë‚ Af^‰WLJqt]€% Jåeaâ¡V‹þÚ¡1LÒG—"”pPñÛÑQm‰)-ºÿâ– &6*þ1 ¡à-v ‡(£âR Z;rV}É‹ÿ‚‚—àƒÉsˆR@"¨'M#Ô1ý"8Ç&ªæqßáVCÄ(àˆ\ ©'Mž( Á‹ªGÐübž¸›§‰!¤§"ô#9Nžebä)ã­æô þ T fL×w½Lu‹Ž« ¢¥2Šãa¨ZÅC)JLé ûÇ5Ї^­’µŽ®©†¬Ñ⢠Ò †œÀˆQh¹êäalõ|õØŽ Zõ»å¢(à``,Ì ­ ÆV5°eŽTØWsö¥Qí ¿‘[¯^÷Þ»C?šCÿoÿÂg¿rÄ)GuJ‘0Žò5Å€d'lé9ÑgùûkfH‡°Zª)¯urQ)a˜$q‘ÇT¥Ž4õ臉ÑnDÔ£,t<üZš4u„"lSÅŽ¨8BAõeŤ „"^\àDU„mûÅ–ÕÎUo…( Š2­ ¬¾ç Z´Yl]õºQÍ5K¿zZEPÁôÁꦨà >›Uý{ÔÿpëT* &ä–0(~šN±ü°ÇÓ…¿Ppß²à–Âa¬†å˜ÿ¾  ÏTü—pyŠ˜«GRkÄ@Õ]PÁ1U<᳊ºb£Gm„%‘u¢ö^‰jZA3l Õ¯uò‹âb”“×cþ}ÍŒÿGŽò{@§ ù§¤vº°ñ…rÈDAÇ)~{ DÓ¨tÉû¡7ëƒ8æ=¯O…­ Êlm‚…õ\äHÔG»àߺ!ÙSL8 ÿE Õ<Ð<à-Ü£@›$QŸ&£%È¥êñ*±ƒÄDž7RÇQ‰™˜Ò¢Å`&"”h$EiÃCx’J½ÊˆZGÿ%ƒ4£c¡N{„$ê(¥…Ã8hìaJ€l‡k•õ-  âQG†~:( ÐvŽ89âµUˆbaP$B+´XƒôF; … u5G¦Ä Í5¤‘d„·™D‘*M 1B2 Ë15OÔ.Ò­w‘¢$#T0 %pî6*.}tøGú(£“gˆæ Ÿ^¦QQqMFHâ ©AD+1Þ饢!¢Ù zÎExPiÔ YÍŠ]-ê6¶‘вÓ72Âh½"~5|•†TPb }ŒUDT¥Ý³£¾ÑÞŒ³UxGΘWé÷ì(*¿.ÈËç‚À¢uZÊjÑÞÐ{GèG­ýwDÒÈ0ôùyԆà ·“;&t¤"¬ƒÛ½{aòdèUqˆ‡‹Äõ,6b„(©*‚ß%TÜà°¦‰'áá¿‚L q‚À¼Zgb8RŽCɦDÈõ\Õõü—SUE7Ø[;ª(³Z¯aIIy¿ÄVF¥‚‚Šm]XD(¢â÷òÄ•, tÇAªÅ•GîYƒ’Ð1E,ÅD8(H?‰çH„'Ñ]glQª2¶fE7ü㲊”h¶ž‡j{G¨é 舒'¦ä1Œ 1‘÷Ïç(þ ¯\Mñí™ËÊE• ¤ü”níä CÈ#GþĨ\gP ÷ÿÙ{Ó`˲²îó·Öž÷™ï”÷Þ̼9TeM€E!¥ˆ‚(¢ïKŠákDÛtð…á¶¶A8!o j`¼a`„B†Úmh·( ˆEQ…U™E•y3ï|Î=ãž÷êkí}w($oÍȨ[÷ ÷ÜsÖ^ÏzþÏhK\2=4$Á%$=ÏÉ!ÖphÄ\aWCÏ2ÃR%BfÏýœªCXx2 tŒ‚É'&Ç£8¹ß—XuÿCËÖþ­¯RJ°"W(#–zƒ]3oØBÀÅóðé0XƒãPß^Á¬¥ÙÈ-Àä¥C&,ÒÜ¥œõ¹Ò)–"Î|+ç˜>Çéé(Ý} —ãV‡£°ËÈêsÄ2¹é„ï°©YîFźÇ¹Ñž»$Ìè Œƒ dŸ52ܺ.Ì ñIj–-(fF¿©7ñ¼v«æó´l‚kx-¸ž› #½ËÍL]Q-0ýœsG“᪙zeiXÌhËKM¬:Y³{5‰Î/s3R.± T)DIf9zŸ‘ØBÛV³żºˆªY¹9]?g³©ŒhNtàeƒÀ–5fÙ•„¤b½WÌ_yBV«%*ƨÖîVë¦É–-Ïé˜ß[uNcõ;w_п>CÿR67Å ´Ð›<‚Ö‚i<ПcËØà×à¾s¨@t,¦v›Ûœ¡Àª5ä·9MŒÏ½\¥À&EÛEW;wì†á’Ö0[äÂ& Ùbn…¸2%6 ±ôñ; ǧ¤X­üäЪÃìÜ ÂçñI\ShÛ¾Q¬$Âe.Ö™ÓbÉinŒên±kºÌ ñÂG„û1¾Þ/úN‘!Ÿ¡c×¼ªÿ{-ѰtjOnK”dØÐƒ0ËôaØ8ÛÙv¡ XdQ;©E2 ÁÁ* d ôów¨M¨¼PRŒX2Æ5š9¤«™Ðï…ߨk¦†w‰ô ‘73Ç´!KÝP¸æ}­ö¢ÛÀ6ÈiY[hÇŽ‹+„(u@cD70qA MÀ®Ìh,J­ h)ý;â9÷.¿¾ê:ôD¹8–/î1´Ö(3›bìÂ7–ˆ…@]ð,ðº¨?s >^@ÑÑoЈ„60èéŽiX¬yTÛBpx´Áݘ·±[£2 ëú̼€©èq'=˲uÈkÅ_ãº9¡ˆˆ-í™®;æ=ÇЛA‰‘«X5¹¦ê|Š–1(ô‰IpQ„„D¸¤ô3¥CÀ‚žªå†-VÍÔ't9S̫œÓ7·>£ê޾"âÅX”LèÖ'm„BÙ ôëC‚KBŽEËü®Ð@ø]ãƒ?¥ƒBÐc‚OD‚¯ë¡ˆi3§k°…@E¨BÒË&,yRìÈ8DY âNnVç€úT­0f Í™y·1£qP«êm³IØ $ktÕ‰;µØê„ ß3·йlÀƒ}³¡Ü2ÿo76^i µ°AŽæïIïþ"ýbœâ²,ãòåËŒF#.]ºÄúú:išòØcÑív¹ÿþû‘RrppÀ•+W¸÷Þ{9uêJ)®\¹Âh4â‘GÁ󼯂~2÷¶ÉéËc¢ …蕨\jdghdg,8{>uqÿ¶*vNÈ‚9-ZÌXÒ3íŠØÕ5OE;ZàLs–ò‰åâ)má<’¼4OÑ.çØ^†“ÌEˆrAãgtÓrQê×45ëmdÖQ5›ŸUÞ‘!¾U΄•¥ðŽù7äDŸ\[êò­„Uöun…8!¼¶ÔœT¸¨“9ðÐüëRòÀh«SIIgáäiªÉ`Â7÷Ÿ™C‰A¬na…UØy¡Ç"“\ïÆ¥  •Í b©Y;…]äôË NZ"ÆeMÖcd;S´™Ñaf”9Ey°ÀK¸EœHIãT Î b -ãË!rqâ3±Ã‰áÔ\_ËrI©bL˜$xv ÒðÌÂ<Θ[‰EI›–1õ ˆ´MבҟgÞ ßmÞÝšÿbYîÓé”§žzв,yøá‡ ‚€ÃÃC._¾Ì=÷ÜÃúºN¸rå Ãáoø†o CÒ4åñÇ' C|ðÁ/¿ wÅ”À2Ø’/ &Ï®h]òj‰œ)²u áåfQµÎŸmÃ7~G˜Oš‚ZÁL°ØkQŽ\8¹m‘G¬†`)ŠˆÒÎVD!óÈá˜fý.ÑŸ… j™×+zöŽv6:`µ–»XŒéšû#EëqÌ€Uök ú—cZÆÉmAH›) F©ºlíT•¡Ì\*0sîÀÀ¹™Õ룈ñXc™¨fÐÛ`²(´K†u·Ÿâ’›B>£c@vß„áxÆ.&Åc.Z”êÈ(×cBø"bæt䄳Œ\J]w¥BªòNls"u©Øê¦ ÓY˸5 §‚“ç1ÒËÆ}+˜ÝoÌÜÍŒKØÆÞ1jtþA£ ¶AÑ Ô•Žª2+K0[¥Gµ¾4Ìë‹-è|ìccuu•?üÃ?ä—ù—yßûÞÇéÓ§¹zõ*¯~õ«yÙË^ÆÏþìÏòÚ×¾–ßÿýßç·û·yüñÇùó?ÿszè!þâ/þ‚w¼ã_€;dFî©yI–i*ÄIÇÛj^$7 IDAT¬ƒ®g×Qw®“¹± ˜ÑfNH†ËˆqQs™ÓFšC±o“2© t‘ÐNk%6Ùчo R´Ã\¸2#–ºso9)EiS¸%öR©•~ƒo‘4ˆ–ç‘/+™dÅá¨ôçóøª;w‡Ü„LéÖ’Ø —9!‘ò)±ÀNN®“Ьg­ïH2[[AƒÐÚk™S8t²Ò‡¯ÿk[(E!tS*—LضV+Gù¦³÷!–º9 ™}|A¡l’ÒG© »•ê×Õ>!·ŽVóT¦ÔHñ2ÅüVRY8AB™K )`Í\°Ÿ6ÔgWŸ†¿» ‰§ßnèÇLA¾²Ðo¤m.„¥Õ·%¬‚ ä…œìvJ!|Ex~Œ²¥ ¡¤@0`ÄËLèã7¤’Ûœ&ÂçûDì°BÐba‚SdM¼é1Ö†xl°Ã’Ñ{V§Î.cSu’6c–“™«gK•wq†KÀV± ¡î,·Øg¢Ç119.¡Z°Â!c¡/ö>ǸdLèQ"YbÈCY1NGmff}·‘¬•ûxIV3ð#g[ZãÎJ’ŽJ$b‘ fhƒ‹ª6YåI£#h¥;&€B6ºùʹÆ&Ö3«{ÚàNHsQæ qÐ@öÑ¡.‚Iä¾é|ææb>jtõ‰¹½ê¾gè®ábcæ¾ÏI\¥¾ËÝþè[õvmnnò†7¼¥ûØÇØÞÞæ3Ÿù oûÛyúé§yÿûßçy<ðÀüÐýûûû|üãçÃþ0?ú£?Ê _øB~â'~‚ÉdB·Ûýª.èV^òªOþ#/;ý/ˆ1üoüI×füMmø¦wQ@©ðã w\’v-ì¢`.¶~òïȾù~òﵑýuF+˜±$‡ø2®Õ%¹Æ%>Ë–ºÉêÓC»ýÑC-6¸Ã"oñÀÕkL.øŽE‹ÝÑ‚Áb±‚ö„h`ãE9ÖGJºgb¢‹´ã“H—\X,OÆú ‰ÂÙUÊ6ùz´ˆ²ÍÏRô>V­½eà¼A…ö9s}8›<Î/<ñª ÿùƒÿ']|„{ןáŸî{‘ÂìœÏ hg :• ø¦Áǹ~ÏY(ÿOð<É‹Xg)4 2í\ù΋´™qjsDO£sÿ¸öR¦mþß½ÿŸ¾þ_ Ö'<2ù æW)2ÉÁ¹.«Þ1²¯°L…ø¹äÝŒ§m®÷ñ_žúÆ“ÿãKþwþ×Õw±b¢^¥H¿MSìm%l¬í³|gÈÃñe~ló}ü­ÿ¼X}ŠB!$þƒ1ªâÐì+9|ãÅO°÷_–±çŠÑ)ÝËòcöìUúê˜ÓÎÅ·D®Æ"ì/xzù~ð™à!þ˜ïgƒ;|—ó׬–ûØyIü?YøÛEG|ñÉ;ÇôøÏü)! þSùÜ7½†/ò˜¼°G8Žé¸‰þŒoÝ]AÿB(}µW|Ë·| /ùËIÓ”~ðƒ\¾|™Ó§Oóƒ?øƒL&>úÑòÑ~”7¼á \ºt‰7½éMò‘|„?ýÓ?导ç=ïùò ºOB©Úá„ØoQÎ%~/¢˜:¨’ÂFùÖ é¡Ì„gàÊM-Q¹ãëEo «|îèÖ6‹MhÖë}‘¨®E!,C„¨H0·z¤«³~‹-Y%Á3]¸–®UÎmž±aÑÆ%cŸµš¨Vœ4CO|b㤠[ÝCbGi ªW…ÐveJj,)«ù·SÏ‚âÚkØ2»[ÓyÓá;ÚïX)„ÐñŽ)–µ+–ž×[5Ã=«âôº@Ç(=Sw×uiü¹´AfhºÖ• Ob;ÅÉ<[6àíf…Õ(žnƒt"ݯÕ躭¨"Ý¡sÞxnÃ&M–|Õ¥7ýŸE£¬$)vcÆn7È@MN@õØâKëП/GÉ2gˆëÏ»íoþæoPJ±µµE«ÕBA«Õ"ŽcYZZ`00‰¢è9÷›Ïç_õ²ŸStl™!eÎ"h‡ºX¶…°pT†d$®Kn+fªÅñ ^Lyç6<³Ë‚dä³hwÈû.~+" x"Á9wؤ+ÆønÆÌésÀ69ÂV¤k6ÇV,Mä}ðZ)NZy6S?$ðcºK ²®Å¡7 Ã¥T’T¸8½ R ÑÉcrObG%–*Qä)H%U­ÂÈW%¥.üŽ™cwµc6K&Zu¼Q‰3Ȉ;6SÙb6l3OC_ÚE(E&Ç¡°lZ§Ž°’’r I}Í ˜ÉS:Ú„Êíb[s°Ú8fКQ JBê:ÌeÈ\†D-²©ÇdµÍ¼ï! 8¶¸­[äôV:•¦U ¼’’h°8 9>°³ºA&\zîˆ@&Ý9Õ™–-- ÊvÆtÖåŽ:ͪuÈÔi“ ›–—à,çX¢ÄöJÄBá²uyÎÄn±Ë)Ëã€Ubà¶s:î ©JºË1hUÂiEá âÒáŽÁÅwuújDhGv‚µ¶ÀŠ2WàA¹¢ Ì),8Ú]aîÄÙ+ì¶W±TAdiWЮ?£3ØÕýöÝôÏ'[›ÿh¶¬q­¤iÊ»ßýn~ìÇ~Œããcúý~½/3 X–…mÛ$IR?¶Ûíê …/÷:uÈðÄË*˜¶zÂ’Û(WQ,lT)ôæÜçÄé†éÌÎlÁγðÔ:œóôiv ù­çî+ ‰Aå‰\I•&b“h⦄D´XÐfZ¿63SPS"¬²ÄQM<ó‰é16$:Y§®õ96A(9]ÆøÄ:nÕ¸Õ Sà+›Ö*Û]RR–ÛXÓVE¾*®ù¾*¶™ùT:•çz€–Zô,J§µeF.7#ÇÁ©“˜z–¡ø È^)°²B{B“ÒQ3œ2 Nžã̹’ºx–`¥eíÖUϸ žkSœÌ¦ErÂÖ­Àq£–¦£¶8±~­ sÚ(®Nv¯ IƒPÔnüŽ¢QÔ㘯NT“<×–³Ò «ËØj@õwSÐÅç’]\àUÕÈT<·˜ÿå_þ%ïxÇ;ð}ŸÉdBY–Òï÷¹páŸüä'¸qã¯~õ«¹zõ*\¸pÑhT_Ø_í½ðÇnŸ¹—rÇÞ`AÈg¹— ‡eïÈ@º BoÁm6 ‰©ü€Ÿ> ï»/Ù"Ï=òÈí"ï)Ø{å¾·`;<Ͳ<¢Í”bí“ÄYÀ6g œvOGŠº^F*‚ ZÖY…¾„,xÁW8nµ8b™C±BK̵C#±ìKäÌÜ…ÎìÎün†*þ"cºåá–9VG!Ý’ýõýµÁz†Ø†â’ -Ê……ê(œ¨ÀK Ú—ö×ZL­6é.<é-+î½ÆÚ:Õ¾–ÃÊýc‚NÊt¹ÍÓò\Rnpž#´ÇúKÜÁ&¯é"â¶Gºä–ÍuqÛœæf²E¾í’Ï]Ž^±ÄÎú*#ÑGùÏqü Y*öݶÝMö’5ÔXÂ\í‡ì>´N"uÊ…ë¤Ìºs„·‹Sfd–ƒ;-8öÛ ÿqSçðÚ7ÏŸ#ÇÆsr¬AŽl)Zi„ŒU—¿³¿ÇÎÙg=N±&öëpÔvYµ(ÎÝsÜ’Lº| Ùå³ê^®©‹ŒE‹\à kÊÀ:&>5!È#:Ý%árû>®ÏA¼Êá?œ vΜ噗Þ['cXdá![÷ì£àSw·æÝÏѯÿÉ|ÿþßæ=ïyëëë|ÿ÷?O>ù$ÿ÷Àöö6>ø [[[<ûì³ôû}Ò4¥ÝncÛ6iš²³³Ã©S§¾ü‚ÞcLŸ]+ÅZ/¸>¾ˆU(Ú iËc8Y#½À Œ/p(u^õ téú|ú&\\‡-n@zìén|ÙlÈ{fn4†¾* lº#°Î¸YFÛ™Òí:3Ü#1‘‰ÚÒ&cÀ1ŽùÀ$Úø À21|Ú}ªÇ×Àî+ÑgD‡ Kƾ016±1«šn;ÅN3|•`‹¢6¥9d…sN±G‰dB”eŽXáטŜtó)efáå!Gx®q¯“‚µô€ÄvqŠŒ¹Ý¢/Æõ¼*Çf¥Ô¯e!B¤*ñc¶ÖÉf,-ÆÈL1œE¡Ó<ãôW‚Ž!§qh¾o5æÞ%'²Äy£˜VA ‡ <©b¹§ ùOUøÇ ö©à¹ihk¦8™ûUúñìyDšãÆüµeîŸ6æ••¥dÒ(ð•éG…ÜÍ!Öïß™¥Yæï¾zõ*o}ë[yÍk^ïýÚ¯ñ“?ù“¼þõ¯ç-oy I’ðÖ·¾•K—.Ç1o{ÛÛ(Š‚Gy„¥¥%Þýîwó|€ïþîï&‚¯ ¦{8L¬vÕ=¡ËØ!F¡b|Š:åPk—E§€UGG^ oÀêEÈÚÈ©"ÉÏ#‘..…e¡œjùéC·mÒ¥AÍrìúP^Íõ‚Ìwˆd cSQ À9n™j8;××tYJd¡–¹4"¥ã~…ÔIbª”º7ˆ“*Ño©‰¨¢U83§Å‚€¢cT¨5¤ ƒª9†±£ŸP³Ôï°‰KÊ«Ó'dQ“{µ÷†vš´”±°Gb™CVXÌC½. )ò¡}ˆ?ú£?â{¾ç{x×»ÞÅÛÞö6”RüôOÿ4išòS?õSÜ{ï½¼óï¤Õjñè£2 ø‘ùÞúÖ·’eo~󛿤8ÆXì©uâ5@Ðó†DóPë…8[ ·Nˆ!¯2y „¾g ž¸ ·× |ßœ…ÝÑ‹}¼ì•”üIפj)hÞ.Ý’rURÚÚ÷yJ›‹63öY3 }Æ”Xµ)Í*ûLis‡ÓæÂÏÏ{X“غ†oQàIŒ&Ïõ‘”œç†q—” vXŽFLÊaiGº —„A9"–¾‘eœ+o2‘Ú¾Ì&§Ç13:5ô–1­EDÔs)¥¤•/XÈ€…€„vas޼>¾ˆµ9‚Le‡[å,EcmÞƒ ³l¦í;/p‡)6b P±Àž”BÙYi»Ç Ya5£>ÅIHÅ®†ëâZ±i{'D•š(TÎÜâ$¥ÇI Ëù<« çŽAvªúAãp—4˜ÅÆ>Ë|_]DÕ¼¾’­UÅ¿x*¼ËÝïß!ÓÙæ¶‹/òØc¡Ìì8çÏŸçõ¯=Bl[_~¿ú«¿JQX–…”’K—.ñ;¿ó;”eYßçkáË’¶ÊÉ,ÛŒ”dmØädI!ˆÉqðIH…K¸9a1ìQ”¬nÁ'®ÃÚ\°À,ît _²çlr}ù}Æ\r¯‘Z.;lÔÚs‹‚O¦äFæVå£GfæsÁÞf,zŒéq›Ó ÄHÕ¤£U+v^S×Ç#(#훾<áØïâZm¡\ų‚Õ*°NMqDIÔsˆ=—Âr)ð­·» SÑÖ„¬Ž@>œSÉ®(3 i¡„ ]ò¹Ãˆ ÁŒ6¹ÀòK _à9ybᚱ㈷8CŠg ¸Úµ"`Þ:À9©å¢„&5'©O”…ËŒì%Å2¡‰ŒV#Ýc„PXv¦Ñ™"®“ãÀg—uMÜ#AP¢,AÚ·Q–:©À_LA_¸ Kót?üÃ?Ìë_ÿúBw‡_ú¥_zξpþüy~÷w·Þ„üÀü¯{ÝëêýäËÞ-´cÙ1 ÒñÇà”,ÙG¤ÅQÂÄêX¨=SÐsà¢Òfú–)Øç ·àŸ·a´LÙz¡U™ÚRO¢+½ªðª[“–¾½ÖZŽíf„i„ïÇf^¬aæ ]Ã/0&3lw‹ÂHØB†,ª†¿µ‹\Ž0’‰ÊÆ3PöŒÊÀ2=Ɔá.Xà§ …:Ñ“ë óÚ‘±¢Ž´“›aÞk9š‹g'ì\LdP’¸a¹ SJH-×I ±ë`‹¼¾ghù†«2:ñœ$ó4^Q&øy‚“¸G%E,uA^(]g¦˜]­Õ ¯Í8 ^Áè¨ÑYÏLqí>o\ÒŒ˜œšY£8æ¹’æ/ s{Ɖ‰Ì°Á4®òГÆÿ7“Óæ9ç Rß„ç`D_„XôùÛçß›[¹˜ã|îýüŸI)‘ò¹'˲°¬¯E»0m…Œ­3Ú±lâ‹u0JŠ«ÈÌh,ÅeB—npLÖõ)Î:PX°² ÿrV7Q+6å3jËbZ¸¾t‘±ï¯b{»¬£Ð°z@Ę-cwZe.äØLè™Î1 t¡:4¯¯Ž eÑ@Ò‘ÌUÑ£„í„\Ú$¶‡¤¶Å>kvŒf„aÂ0èS ‰p…ØVê ”§c`„-pDF±bn6 ê2%ÂçØêá÷ŽÎ>ñæK ­%\©ùA6av($¯E«œ’+›!K:&Újékã gƒzOÔN™†ã*C a1¡ÃœSÙ¦ô´‰Lœû±Ìœf5™x$g?W0.»äÊÖim»æ+{8"Ù&þÛs’à“âpÈ2Ûœ%"àöÎ@uÑܹ¯"ËãP¬° d¶h3=ZbÞm3^îsèhUÓ€‘QH·D ¥;§ÅXõtcй Ùaƒ ‡%†¸¤ŒE¨íXî]¯{ç‹ìÐ?ßõþÅî ÍýäËסãá`iKT1ÆI×N5Ü´°Q{ øBwgSq’â3C»ÆI[gà±Û$Wz'2(Ødm_C©(WêNqÛ ŠÔEµ%å@ƒ?®ÙôëK Äæ0£…MQwÚáÍ©}Ú+˜^{¼·Ì÷ÔÒ´êöÇœB+×9˜mvØdÍ¡di6)Y§¼ åRí§„`_®2d‰Ó"ÓZÛ¹žy[qß#µ-´ÀDB}X~¡)uº ¨u푘´ZØ–f¸—B­K!È»RD$-SØí†”ÄiÀãU¼é’)Ö¿dŠnɉN]4HiÒtçUy× ‘ó¸*)Í1ÝxÐË­pÒQ™Iô9±Ó¬Øñ¾ùÙ’y<ßåÄÌC6 }¿¡)ܽtͲuQÿ7OÝ%_ÿú<_±òkTë›LèrÓ̸+Ü"Ç#eS´™2¡KÏ“tB⢭÷‰óx§àÙmðÏ¡ÎJDTB®í˜‚…ÐëL“&†f8ê5ൖP¹FBꛃEÂdÐaF uF‚Ö)5É55>ÈJT>PØÚŠÖ)3¦ªM^Xd–Ô¶>´Ë‚¹ÔV¦Â†BHJiÓnGäËz¼0¥ƒ³”]T¨åu•Ķ oÊ f":Üd XŒJŸ´p:Kup”KJ‰Ž‹È‘ Ùg;l2v{à+ÒÀ­%bsôktI8°´ãä!+ì±ÎP,ë§ü§¸æ=ÎjIšvñÓü¥TºÌŠ6åD¬ 6ûg…\*!È•†Ò'¢Ã6g(Lè‘ ŸæÔæäæ=˜Ê63Õ&Ãæˆef´9¦O*<7£È,”#ŒjÕ©%“ÑAR²Ã:3:ŒXÒûÄ P«Ò˜{‰†I—žÓ—âî6 !ÀþBý+l÷eôäÿÊ}Å Á5÷²™_iÓzÅ –`þÔêúŽ>‰Ÿ O°Rê>¹T¨«–¶ÌMa ¬s%¶¯è·¦Ì{!R("`…#\¥Ý F è© ˆŒ\j`·gÁKÆodÄ)v™¡?üSj~1¡Ï8p—éª)~š K1v{YDê¸Ú¾qoFÈœ\Xf1–ÌZm|Ѳ"l b×§•ż0øWZ‰¶},Mçí¦¶È™ÇmœýWd8K{¨RØ)­qDî[XYI V­!…´h…š‘ß;㦩ç 2…=Cös¼YŽ{§@¤:ßYìêŽÕ²Êçz¬ï5Ø^±¢lVÅtÉÌÊŸitÆÏš.øøyz[ÏÖÜ<¦b¦O…¶¢€V‰ v¿ÃIàÊÄtÞ•IÌÊcSD+Æú.µöVÅ ¶9qûŠ9Év÷A€Zºk&迯Gɾ^¼?·C—ìºëì±Æ‚×9O†Ë.Æ®8«I¬>C–êwGN™õ;ˆó µ0É~Ë\=½/¹€JTöË5¦¢Ã¹AáÙÆcÂ2&QZjzÒ›gudqf¢ˆ‡,s1¸Á3\B˜ÃúÌäÂ4.Ò$æ95,+ñÚÏZçpdJàk Ñ„(qÝ%f.Zú@oåHRÇeeéˆÃ`™ËÜOÄ SZ+S”«Øg „ ‡ˆ)mΈe?eŸ5ŽX" âx1àNyšÐŸsÓ٢ǘmẔ(1 6#1`Ÿ5FU´§ Tj3n÷Ùg‹1}z†¬£D3î°Ég¹—™ê¢\Ýœù Å6gY°ÂQRÚäD&hJ!ØQëdר„¸åq‹(#)®R-S¡cq§n—VɱÙeV)Ìh¦ÃTɘ‚°"±…ŽŽžÐaÄ€IÑE%’ø ÍaoÃpE#•dôa“3ga•§IÐŽlj„oÚë°Ïª9DˆÚ3dâ·jÏ»¢ÿw¶Šû² úÈî³mm’XW¸mqÖÌO¶Èp¸&ïáÀZã Z%—qRìûú¢ÜAÛï]…YÔƒshºs>~ ®šWW¤ŽÓ¬ÌNº¦£Û×pj–ÚÌ×}Žì;lrÀª9á9´ÄŒÂ@ík5ÆÇ!倵šxQ9­u˜6€=¤×žpÈ ¦x^Ba6‹Öi9 "úÓ÷&Ä›6©í œö (8Kc{Š=n³ÁÀÕ(AÖ@ Ê©Íf ɇ™b©‚¹hÁJIê8øiJb;Le‡Bh@µ5K>ÃÁs¬ý’è´)8Kd ‰Û)O:éŠÈæ7 ïªÓ­VËÔüiH‹ C^«ãU´áZC~V˜n¾k?1ò”“ …*”¥š¡W@•d% §ÁŽÌªË‰Õ&'Ï#æfæoUNuÍ ¸y÷ú¢_/àŸSÐÁ¸"ê.z8heJ1m¦Ìèq?—‘æi3ÃïÆŒ¾g1…x/$»ì¡ÎÛðçàýÏÂ=[°+¹!ÀZÉé¯Mx™÷1ž-Ïq ȲäAû)npžuv5?…E=ŸÞe ]6Øal÷Hð1`‡Ú”j‹›f$Vup=Æ„,Hq™†]”€VÌ\>ä㼌xZ?Æ…Oð( Bíü´ÅŒyЦ߲Â!>÷Wœ1UvY×yåĬr@„OŸcY!"à>EŇ÷32Ûg˜t˜ÞßÑÈ:L™ÐÃ'æ®2§Å:»t™®{z­&°ëœBñ"zÆiOÛP[t˜² ¤Ã”‡ø £Îg^~Ë$žÃ+$x¬±_Y[Üd=:Ö ñZƒìÓ.Ÿý¾{Hñh3«Ég:Ǿ$Åã|„‹Ýdg/²mm±×ßÃ÷lŠ;ÆŽû$¹2Ãá~®ð™Ãˆÿûÿø^èÂÁkWyͨo1'6 „sài2öÜSðm%–Ÿ±×[å1^‚Bp–[ô3¦Ç;±üœ´¿/úðÿÕTÐ{ŒYáˆCV° ¬ÍŒ!K:ÁIðZ1iäMZ”Ê> Ǩ\lš„éüΞ…ÇoB V} n›nqÅlÂ;¦p„Š ¢„ÁbŒêÀ¶8M— Á!+8d'sC@«ÒÎJ,öY52°¬†Y*iZ—qà‘ÐaBhNìúä§Ó´ :é̉°“„RÀB†º#P9+ÙÔu5)ƒ‚%5d(–´" -µÐÌtÔS‚ãaÙ´d( Gâäúv§ÈqŠœÂ×lý[åJ¼<ÃV^–#°Ë'ÉQ dΨ¬™ß"5½ò£NL—]é¸]󳣯 82…rÁ‰¥å¤1¯™rN’ÚªD´Ô<®’Ã)NÒ«œ®Ý(’•„­Iœ«¤i‘yîJo®D¸´Qd+v»‘<ŠÂd­% ú×;ôÏû5£ÍB Ó éÔ®ýÕm•ã‘QˆÈdØ„,(Ð…9…íhûD¢P3 Ö7ao¼3¨¡ 6Ißgè-³spÇOqTư·ÄqÙ§,$mgƤì"„¢#§Óg”/!¤&²]ã" ²¯ÖhËYÝåV®ŒÛZ;@j’_dùŒé2§MLPsX¥Ã”¾1-ŽéS.èfcŽã©Ú`*Á%Wú9o²…¤$dAiƒGÜÖ3dÚDªBB IDATµ©Žº-È(àê¥{p­„ ½º1ÙäIíÚV`Qf~“Ÿ±J`L¿¶•” 5@ÉŒSÚä…ƒçÌe›ëÑ=äÊf'¸ÆB„,p Á¦Š²D~lC ™ks»8£cmÐSÃ$?Q ÐþõÙA@~=$ï•Qâwæx~®µ(Ì¡¦4R_Us§0ØV§É±Yûô›lF‹ìj®•ÊE;,üÅ e©ex•áˆábÝe‡þÕVÐ]£á¶kí·ofÉ®HX¶˜mÂ΂¼´)œÌméB^éÌ#ó}»ñGö€­-¸¼ Ï.ƒè ~ȉwr5ƒëòX…8*lj!¹Øõ‚ñH ›]CpÇ521IiægšFWI}[ad/ÖsnOðLÔŠª­3éà”1R¨“ņ¤V=£Ép˜‰¶1¤‘& Å6§VÈØRQ¶¥%É,Ëøº%…°)!”Ž44º‚"Æ. )I\Ǹ*ÚHV¬tèIå±ÞL†rór§Ah«‚WªÇ4gãÏïJ«Ûsž+]UW-öÊ6Ön<ŸËçÚc6CXü±Í7¿§9ó¯ZB× nãwØ 4Aê¼õ»¾¨¾PÜZòõâýoí\M)Pu]´™±¬†t˜Ð–‘\¹ô˜à’ò—ñdÊ~w•²eqÇ:ËÔéëЧ¾„ÖáÊ-Ø:‡JñfÀÄê1»º„XÎi÷¦ìv×Yd!*¶ÈC!ó2¤#gLT—8õ±½œ=ë#úÌè°«Nqʼö€ˆs\ÒZÕ( öaÓŽ”¹™,±lÊàŒ%1dLŸ]6Ì|[²,[ImÝ|žgIÅ׸È6g@Á†¸C‡ S:¡gäSÚ\à.)¾ë5¾ ;å¶•·É”‰yG,ÐeBŽÍ ÄZçÛ½ [KØ$5H« b Õc30pu— ÚWi·'ìOÖÙm’G.“­®Ž¼6Á-! â:·BÀ&ˆX¡JI”¥M,}&¢KauZQ4f‰¡>Ð #=ÂëHâ Í\‚¥ˆQk@䘱Ay.pCçp ¸ G†c»‡0[…¼&†˜\`q/WYc!Alæšõ”܉NC& ûs“Ö1Údæ®—üWä>£ÍŒ>1}ÆŒé׋Xÿ‚Œé¢Ç}½§i­ÌØÙ=C· «´œB{¹ßb³DÝ’z~¯ÎmÂãw _†K†å«pû­Æ¼ÕÌTE©CVä¡YôV8¬É-•¯»0.k«VÃp9C“ÒVAb9#BÓÝ«šlbQÔó©©‘S´™qLCVXs†´Å¡ œrA)$ÇbÀÐé“’‡>Áw˜Ñ®“–"ÔÏ%Q$Â%ómÜyNâÛÚ®\é{n[8yNæYJ Ñb!B‹A”“öRéàç }@ˆ mµX…TzpÇ #4ØâUVq5·ö Ì4Šv¿Ñ½Wª…ˆY™×(àU8˪ù}¡À«Ìòv÷Í!/otã^£è2díbWåPÛœÈâÚœhÑ«¤·J+ëïEïK¸¨¾P‡þõ¸µÏ ¹ëà£9Amöd“³Ìkå&&ÁKgt˜{䛜åm9£”’Ë«÷s«)KŽÓÛé=¨™k›ð·ÏÂųÄaHöÍ6‚zÖfqªÃíý $3ŸÎ`BºáRZ‚( ‰[“ý%ÊÔF­Iâ–ÏDö˜Çt˜ J$kìÕÍU¦BÅ$ÏqšB«É^ú¶¥k×È¡™ÅÇ&1&W6vY˜CN£|‚63þE½„÷Eÿ IêÑòäþ®ÉïÔÆQ¹¦ßו92Í)g6Q€ÈJ‡%wÈBµH…Ö¦kTõ¸n^áòÌÚ¬°£6i‹-fÚ¢´ðe\Ïâ;LQÀ·òìqŠ'ò‡ùødµc‘®útœ‰~ÎÚûc®3'¬6gºÆxÐ"š´8xæ4‚ã3ËÌ–Èp ™#QDœá–†ÆÇ \Õ×g1w)ÌÎõY|›~«½Ü%¥oºz¿!Ε¨B2ï·Iç6YáðòÞGɰk‰¤Ç˜Õâ,øæ³ÿ€k¥ìímrù__DÜ!õ8E;„úx_iÈý?)ΩÉ%ÚÔ7Á*Ô>1Ýî1eii‰‚ÌtQœÈ¢º œKf䎧 K\Í]%<° »wà`úÞzÍ¿Š/,R’HýTÐ’¶Aµêî×A’á1¥ƒ@ëÄS<£ÛíÜô Q'·µ˜™ ÏLÑ “ÏV}o“C ©å‰À4°’Xxf–ÞªO‹U¢[E …2þøŽ((d®G\ú¸B;ÏEv`¦%%qé“K›\è46³À£RÆÙM³ÛU  -”­ƒˆêv³k¯LWT©´æ²qºL‹öù–¬NãgU¸Aј­‹C^4:mõ¼çhÚ·ZN;o<Ön@íS_6ºú*a­i[[4ö_É‚.¿^À?· WFš¼46¦JÒ@Ö¶U(O’`“³Ä3:¼„O² Å€‘NF”CžÖXÇÒGž.(§•8ÐÙ€+·‰pµœÌxú¡M4a&I.ø$žŽ"™¤=l7„¦ôž]æÈ]&-|2y²äØD, b“’X–Ÿ)Ó™úDø5“ûˆezŒk™^õ\3ãèØ3âÀçeR<îå³,3¤SNï/QFɺOækNÏ„níN9¦§‹hßA,Œ£|i±pµÁMŽfàOé2b ­Å?-o3ñº¤+L=Ç£t6…‘ÁzZÚE¯Öó/s„ äºº5×®:Yéë×pð3ææ÷ÓÇ"º#ré’=€Y×E-KR&ôt<+9ûœÒž_ó£B`¬GKÇ®­,ÒvÙG¬áp.aÏÈ3¬tÉ&.Yj¡z‚ߨš´ÿÀË´-Ý„uܩޥŽ3ÔŽ>‘GIHº†KåÄpÈ}oow¿ûÝ$I¯ÿú¯ã8úЇxâ‰'8sæ oxÃX,¼÷½ïe±Xðš×¼†W¼âõh½ta|Ô–jHc‚†R„Ø"g;9C†M”¶u°}bbUGzsU;’|䳡™ÖCàŒ„åMøÇ;Ð^†v ]ânšBa$S ­w-¤ÅAm.Ó¼ªØÒ9Úû¸ÍŒ˜ÀÜ'¯çZdžéY"M,ªmì!s2W,° t˜x?Æg•}<+!“. 階\—_ÅX¢¨7‰j®_¹VéFÃ;’)bì´dÜqˆm,D@ a#eA!$S«cm‰CÊ´êÇ—%~šµæN€ÛI‘–Æ¥ÅD¿×ÊÓ(Qy©/™1FÓT¦*»<×ß½*ô-žc[‡³Tsí®é˜Ssˆ[2m7Xã#óû½ršÇV¶­Íq@þð ”âÍo~3«««'èc™é(M©;,h¤Xå€~qL7›"Ý‚–Xૈv6'1§n¡|›´ã£„`Å>bÏ9ÅT¶9”+¨›bÅ"Y H“€ìY—ì™gØGl½à¹ò(3AV8pí³Sœ(e¢zÈpŒŠ"žQL-D¨XœjÑwqeFK è3Â%eÀ1†8eŽ’—„%†t˜rÈŠ6™*oàŠ”±ª-m d—1ƒü˜Ð^0'¤m’µ>ÚÅucNs›Ÿs·ØÌvˆ½€{–®°8î²^ì±Á, 6ØÁ¢ Ï1gÓmÊÒâÒÒeƽ‹3-zþH_ze‹ó\'dÁ–ºÅ}êöå*m¦´™# °£‚MoËR|zþ „bÎ9÷¦éÅŒ{¹Ê-Îr†[Ú“¾Pœm3”ËDA‹ë÷'…\ô®r¯ºB*\ŽÐbΪ:Ô‘®¢äe|œ?b¯»Á3â!”l•Ïò O1§e”­rÎÙô6‘°ôÐËê€òXâù ªôW†<ÂcD¬±Ïi¶qÈ9ß!·,ŽÂe^tþ1Ž{1Wmài ¬Z7±šÒ/ÇH¡x­ýW”–à±üQv»§‘¶â볜á&fôÔ„©èÞ}ýýï]ЃozÓ›ø¹Ÿû9Š¢`gg‡|ä#¼óïä7~ã7øçþgž|òI.\¸À·û·ó ¿ð ¼øÅ/¦Óé˜fDïñ"„ ¬O¨™r ß‹ˆ¢Â)!zS]ã„a½l6ù „R¨ž¨gã:WBgnßÁ ¸¾¾¥ç˜ ƒRáªWdX”Æ:Q[¯VNK¥a±ÇøXš¼gUgï)G‚M^Ç—V§r‹‚aìc#Ã’ÏÍoÊ<›@QëV…)¶™°k´ "`LÏ8À{5É&3Úu‰Ò:ô¶ÃÜÖäŒ\èCƒ'Rá‘¡c…Tö•Âp9]/Ò³~Û"÷rd¡®qIS ¤Ž+EšØ2JU«Bm5jņ¯0UzuЪìV³ç¼ ¯ŠºÛ`¼» ‚\u¿1°ˆÌìysyÙxŽyvã5WÂêy(ÂWr†þ5ZÐ~øa<ÏãCúögÆÆÆ¯{ÝëxË[ÞÂK_úR~ï÷~7¾ñÌçs~ó7“w½ë]zY¨‚‡o>>:xe q}ŵF ÂÉoœ§6”¶À”–Å3Ý"étèlÍ‘N‰åÞb=<$[µ˜:^è?űße¶™ÿ@H,}œyÄÆo=ÎÆ7É.ÚÈnŽu*e·ñ󄮘2ìôqÊ KÄËó¨CàÏñÓ”Îጥã1¢S F` Z©†…“÷¬ß N}z³1¶—³fÑ GÜZ§çÎX[9D)Ø{´ìé.wöùÖÍ“zí|FQZ´Ó9Ýàk¡øÎÉß‘J—äï}޲U¬Pð½ßú¡úà,r·Yë ÙÌîзñUÌÙƒdRòkÇJçÈ ±¢ Éòµ“cº½3»GØ‹y…ú^‘2™tÙ½±Î™å¾ùô?qOï½/<å V Ñ1Ý`Î%û÷Û—i‹Yd3~|@§\p¿¸ÆkzKéJN'·)K?ÌyÁà)Zù‚õxSÖ®þüsÁº:da<ûmOP`±–ÐۙѦE„ke´Ê®Ý^³ò×Xßš“ ‹ÖÑ%ôàÌÑHÁï&a!rÅ#ã'qDÆZ8bÑi±hµÉm‹ KI;6Áí ß›Òs¼ &P1÷ߺÊÚñ‰ã³Ó> ­á Zh¢^¯ìDxYÆzyHß›r•Óÿ±gè®ë²¹¹Y[LÞ¸qƒ{ï½—n·Ë#<ÂSO=Åc=ÆÏüÌϰ¾¾N ‡Ãº _þ‡Ñ´ÀÞÈé=zž‰€ëØPQ`Éœ ÌŽb*ú$ª‹l” #q¦áàY˜ƒ»†ÕËFÑHÈÏÀ䔫0ðõæjº7á•iæ·+ÓÚ¢Ê$×p¶0À.ðÕl½J!ÃÕ‹šm«‘ˆ´vtÓa q=O¯tæ. ¶™Ì+B–5¥’Ø"7¹é9 ®‘í,LÖzQkd+øI”7.èúsb7£Z«&1Ž•ƒ€Ò’F¿^›Â(ýZE) TX…>”8iŽŒ*v·@D UhФ†¤+æzeïºh¾fbZÖ Ä©QF!§ÁxÏžWЋÆcˬž5`ÿÊm.á$ö4käŠé^4Øø'yëé¯Iê+aÃGnB¶;+_BAÿÿa‡Þï÷YY9y³>õ©Oñã?þã,//ãyGGGqÿý÷ð+¿ò+'ÄÿBðûŸÖ]ëæ#kl,YX¾^ïÝ1+Ýéº^B*J,zŘ™èpçÑ3ì°ÁØä\çG,#(9d•ëùyŽöO1ÿl_;PðèÃe²¼ÆŸþ×Gá¥çàòÅå¡CÏ’²+Ȇ²S’Çbî™ÿóÒûÿØ{·XM¯³Îó·ÖzÏßyŸwírÙÛ±c'!„Äi ÃL¤¹† ¢%"¸áfÔh€“¡–x’tÃ@PÇ Iw“4&±“ǧ²«j×a×Þû;¿çw­¹Xë{k—Å@œ4ŸTªªok‡÷°žõüŸÿÿ{ïƒCî(‚Ó):–œ?ù4B¶¹GÍ4°;ºæ øˆoçsË:‡ÜÉ œã"1Ê÷ñ¬¹›é|Äõ¿8 œ¼ûENÞù"žiØ7ˆ(8Ã%~!4ŸþÂÛø÷Oý”EûžµhŸ÷ú’î[QªáßFŸ —̉È9µý%ŸÎ¾“_ü”Ïu‰ÆÙEâµßó_IHYÒaȘ>sNÞs‰N5ãÈð;òŧâ¥gÎñÅ?4ñPM¸–ÑÝÿ ßûÒE–$¼ù•Ñ_I~ê?Ô Ý÷}ªÊ®¼UUáû~ûœ1­õmvt¯ûNŸûÿMB <ÏÍ–©ÝaA‚Õe±ë_ãÐ[G=¦Á"ÔÐsîd‹U—mIrf"ís+;Ñ#`k$#€³§á‹—-¶º·þÝe(™¯‡ùÖÆp‘ZÐct$9Šˆ¢ífWð¶GÃŒ1¡c|*Èõ…vµáV$éIkÛeN¸(ñ×jzÌ©Q(m\Á® EÙFŸ&nãà;æïJçx‹˜ =A`*´0”&$)±Îi‚YÛÎ?TFB72Ph"]‹£%bYµƒ¿4ˆÂUàÆAí ·RÎRnÉÍVdÆí‘¨êX7^›I¯ }qìü5Ç:ý•)L}¬ƒ?~–Ljk¥+Üå±yýJgnçvSQÛX¬ÒÞrn¥­y·6 ] ÿÓ«,áïyï¸kþìÐÿ®µ¢i<ÏCJIÓ4!n['„§Ø}ÇëœW{ÄM·9¶2§ŠR.\  ©’–ór‚«ÇÖ?kÙ)Ü=XãÛT«¸d9Ôð¼‚#È õ=>¼ú$|iühÀT'|ÄȺ“™¥ © IÌäM—l=¢‰%ø<(Ç1R4äu„Q03=Œ”,›‰²&%3ú\ᔵ ¥OÍ6’†Y:¤ÍYÈ®›a÷ZYØŠ”{ÄëÊŠKÎq‘Sæ {ò”  9Tó€zÇ#¯#J°n7\ãAÏàù%å FwÎÞ¹’úÀ£Ñª›/é´în»\G£ý’rÛˆÔÈO×tY2qÊ'¤e—k”tû ‹¬ÎAW‚®œ·¶ÖÚ©vVaW}¦ŒÄ˜2ài»è5Iu§ï.ä+r›4huàÙ{}‚•(ÙxUÞySGÖ­SQ»¬É^I½¡0’ºÄHËó*Cwš¡ü_#…¦òm,.G Ѓ‚&xKm“ªr¬©Oæ˜é©SÌÝøãú±‚ºêH+7ç^ÙòØ‹ß+Â7iƒ¨ÝÈd%5›»¹üžC]*w.W‰mãc$¸Õó÷z7¹•âÖ9¶q˜¾¬€—Ç:ûÚÊWn“‘]9ñG`öÝ÷}¥Ýû·\.¹víóùœƒƒÞúÖ·òÑ~´-Þkkkœ>}šOúÓŒÇcÞô¦7[· =fv£IÜ¢fÊI¡º®¨„‘)jb“Óà3ýÛ º[,qIQE4Ä+ªEøô\Á XlÂóWážSp]`zb©bØØ¢yÓ]Ÿ™À5Ñ Ek²ˆ` ðYÔ=Br&b„ö^?4k¬‰±µb¥OHîŒgìEêØ‘ý,qvÊ”Øé®!}Qò Ã.רðZ Wìe¨íŠfáQ6“ň¢ˆ)ƒ€¥è2bÂN³šn½¤çÏȶšÔ&›ÕÓ€¤É˜û²ÒmLì C&mB[§?CÍk¤_£×ݵ FÛf!úmnpІÚ(ÔFj‹d„ a ¡,[ jKlÞ¸xRëÓlel«EâVlžq¾Á~›À$œôjW½ÊË]%˜ÕxHšVQzS"?Å„’Ú™éWøQA.C»ã5ŠÊ÷\Ça¨0mÀJ ­áA-t,À34Dª†FIt#(|Ÿ®ŸYY‡/h”$“‘õ09FCå)Œc±¤t€rE5ÙL¼:6‹¸=ZtÅVu¢Á1f¼:Fh3Ç ½|Ù¿¬Ã?O­¤hÇýäå±Ï³"¤é—uÃá±Í@õ2†¼:û¿\wðÉ־ν®k´Öø¾‚²,Ûô5¥žçQvÇ!¥lƒ^þ{ÿ/¼ðŸùÌgØÝÝå/þâ/xÇ;ÞÁr¹ä“Ÿü$üà Ã÷¾÷½<öØcø¾Ï{ÞóžÛV.«ä°¾ Slr¤Cê¸+¥+×VNZ3}|æ»—øBïg°"é²`á2w Ÿbáõ¸ÚßåòáyôeÅÒKHî™!ÊãE¶+ø.Á£gðî«aÃPÏÀÌ={]ÔXlKÙ!éÌJ2žø ï¸I”¬E‡ Ř ¹ÌiÎú/±&Qh§@Ÿ9G²˜#¬äv|ƒXeÌ裑¬qÄÈ! 6h$cÈ„ºãq•H4ß»øÏ¬gGLÄš-8»þ§ã‹¼ÞI$ gßY´QçœÛ|†W‰® O0ÉGxª&[ïpïÖ—Ø?½Å½þWØæFÀÒ é±à-|†ç8Ï—‡¯æ(‘ ±Ÿ²qŠ+ìr­åäÌéÒgξÆ]<ÏõS;øA†Ô†µî÷ȧɉØà€ 2Á§bÊ€\%"ç’:ËóîE„šÓk—¸ÀW¸.vÝæ¬²?/²ž÷‘‡éH¼º¦~½„+‚¤N9^j‰mwÌKaÍ_<¿æ‘þ§x©{†‹{÷°0]š‘ß&bÆ2kýí•hðššP•œWÏRãqñÄÝÖjÚoX1Ú8d—=v¸æêFô2C7ÆP×u‹|c(Ëò64l…šxž‡R c UU!¥´ik½^÷½ï}·½Çk_ûZ^ûÚ×ÞZ¿ø ¿ñ¿Ád2á‰'žà‘GáÝï~7ßñßÁÿðsêÔ)~ò'’¯|å+üú¯ÿ:Aðæ7¿™ýÑý'QÐxàxàÛžû¡ú¡Ûþ¿¾¾ÎOýÔOý­Â5[´U|²J2›ÑçP­ÓeÁÜýÌ£æ@nXÉÐÉ8¸¥š±â‰¨ML».vHEB¦cë7ˆ…!+ ¹^LïÂ]F§›è3>lPÚŽúRÜž©¨ê¡ ƒÍCJmH“â‹Ú!s…Áqtæt‹¤…LiPTÒ#&åWXç¯p%!'ÙC`, ÜhäÒ"‚5>‡ÉÄ[ë=QphX®wYnvQ²¡#lNÄ)‡j—ÌY®›¦ùå¥>(ƒÞ÷˜œps¶ÅT 8¥®Rpƒm†L0`=ëܘœàðË»ÈÆœ”$aʼ顕pÁ&–(<£ÏÖþ Û†¹G5Vt†Ëvô¨hH‰[©Üªñ»Ìiö²“ðiSáJ¼ IDAT‹Á¤¦C}·¤õÝMú(<ò¿ÿû¿Ïç?ÿy²,ãøÀ7¯C×Î--rqŸ–t¦[&·q¶|¡3ë_ó¹X â3s2ÙAKž³¨wGN=Žák® ûR]I·¯¹…üÛ°áÓÓðßöГ’2ð¨„GNèL[l¶xâhÓcF­µkÇ‘ƒRR rB´4(*1 ×°µ\ì8fã:vÙvñ«T7m$¦QÔÊ jPLè­©¥d):ž›k»<å"t³t›ðÖEX¸½6F å1L—¶–I2RÔ£6–ÐSId&†"ð‰F”S[’LÄð›ÝsEþ¸ùJ|¬@ÇÜ®;_±áãcsíÕk$Ç.ØUÑ^Âãšô•©ÌªðvÉÝVZxÅíqêØæ¢<¶!QÇÞs‹ÝçYëÖWò¶èØûþ@î¾ïó«¿ú«|ðƒlôÞ÷¾—º®yÏ{ÞÃÛßþv¶··yôÑG¹ÿþû‘Ròð¼ûÝïæþûïç]ïz?ò#?òÏ>JU`8É91kõŒ5*ê)½lAhr¼Àº?TDMA +–2&Õ ©°Ê…ÝÌÔo½ejá'zKö ôRáÍjô†²6¿gæú\½Œ\?QîDic¹;sKÐ]ä=Ê4Æ×%Må¡’)L›|f¹3Ek9P“·lv®µ¡ •3&É\wW°$±ñ¤tÈ)ž_±Æ¸M›Ëˬ‹~QAM%­ºŽ(ýÀŽ'Œ,Œ}&`Ö È:4Ïù6fzb˜g}L¦0"õ­ÆdÆôÍœ\„L…M4+Žbš}³ÐT*f\màKÃÞö©Ö#tcŽ”ŽEQæH 4•ò9`ƒˆÌ%GÞÊš·)qVÖ«‰6˜J CáΊˆœ’€@—xEc6^]#"ƒ^“˜¾@œÒÎèÅjùÙ  $.s¤ÐÄ2£‘Š"‹©÷šC³o³×CwÎR‹Ö–žÍ`§fwí†SˆÄŽ´o¿«h`¡:ÎÓ¤yeú×YaÏœ9ÃïüÎïð?ñíšðK¿ôKÌf3þú¯ÿš‡zˆgŸ}–ûî»ïÿþï硇ÂÃc=ÆG>òžxâ >ò‘|óýÜs{¼æžëÔ±âŽñuÞ¼þ9üÆƓ˜ê$ ¨BİaǘJ’Þ•Pt}Ên@|2Cœ·‹k¤ ªG<üW7Tž¢“¨¥ÁøX¶6SÒ†¢ã!z© ò- sÿÿäwñÿçg¨Ã„âõ!u×£é*h@féÕè» "jÚ*è„KglQ·9É%K:¬qÄyž##æk\àN.¶ð9[컂}Ö9DѰc®š’îç|îÁ×#eÍcÖÌÉM±NNĈ gæ{t¦9ánAª—ÛœC£tŽ00ñú”‘Ä+5B6x  J„i༾¡4Ã"£èø4 ñM(ˆ¯Õ¨§ÁÜ7O é­-‰Š’¼ã³<•p]ì˜%I™!}Pš(+ñë Œ õ#â2Ç/#÷xTôš%Ñ‹ ͺ@@jPgìÐ …õŠÏ@;8Ya½pŸ+Þ+Æ|vŒ\·š‡\A#ÓÍ\q_ºßÛr{uó¬œßRWìçÀÝǤu×Üû®´ñˆËß<ä^køü>,kxvñwÿú•+W(Š‚óçÏcŒáÇüÇ988àç~îçø­ßú-f³ëëë(¥èv»Ìçs†Ãá?û‚¾Î‘sS«Iݦx%묕˜ÈETJ|¤)EÈfcYÍ+U‰tó›Ï`»acÙÝçÙFÂ(:`Ó¿IrbAZuñ:êdMV&DÍ}ýYăgH']„o0™òtÍ(:¢g¦Ô¥GÔIIÂeëk¾²?µßIÓeѶ¬™1sÑ¥Cê ¹ÇI¡o9=kµ¡1Á ˜²ëí1V9×OÆïÔ}Ÿž?#èÔ¬7[w¾„Ô‘â,ùЧ¢7œÒ¿p„‰^§&î, ;7÷©HX‘·ð{DNÒŸ3¼ë€ú”O/¼…2™R°Æ˜MöYУόMn2‡ðæ‰ >—¶y!9}1#31…\¯ñã_TÄ*õ‘뺵n2q3•Ý,Ë:!®b‚w`Ñ 6ŒƒÿKr"<,Y9¤°9AË[`„Wc–IÑgFOÌY爦Íþæ ÷Yi× LNýÝ/ñÑ~”w¼ã(¥xøá‡év»|þóŸçÏþìÏxÿûßOE(¥ØÝÝeÿ›/è1)=_R7’ЫYz±_Ѷ«”¾FÔP#™‘૆Å(¦Ti”Ðaiã;MC¿ZP>žlXŽbÖ³1R´ÈÒjÞµó†Ù(Â×5^fž¡ ³ÞÃS²[Û0  ƒä uƒ<¨Z EC<ɘÇ*¨UŽñ¥ DÁ¸Y#U ëê‚°…“¤cªWøtX´™¾ Ú]슊`Ys$‡ŽŒG×X‘“!=Mìg¤ÆcIF`Üüº ž®fì÷ U‰j¢°"(ÄÎ/j0ž¦ò¬•e¨k„´T“J[ư‰*hlWž©Ô–­u(D@*"‹˜‡ =;c¯üœN•!¤&óC‚eðíç3C-EöršDaB †#…•$6Ú±Ûºc ¬Tæ–ÖÜ™!Ó^Þ>7ʘÄ1™[ô²Y€õ4XIß‚—ÍÅC[ð 4·òÐWrÈØù¹“²5xí ›ýÅåß“þÀü@+}×»ÞÀg?ûYöööˆ¢ˆ4M1ÆeI’ü‹ Õ)Ö8$'¦Cʦ°‰kÛrŸµr‚ojš‚º&SÚªdzù’Ìè‹™ó¸ˆ1À’nk#›’{^R"ò˜#³Á4éQEŠfÍ£.}‹ö)Aæ /(¿;ûzP( CólÀÞùS,›>Þ¤âúógé¾zŒ +*å³)o¢d.zÎôzÙ"“bÝâÖdk.z4Ææ,¬qÄ’G¬ÑaÑ^¤#9Fu­¬4"gXOèUKÖ9@^7è…¢9a;à+Ù)¨àP¬qZ\áîù ÈÆpjó2Ï™»È›„¨ÉðòÝx4Âã°Y§6v-3â^$KÑ¡‡%ƒ±‹‹}ô‘‡º§FnÆÁG½5& ÙÔm\©Fy9ˬ‹É%ûl£¨‰È™0h ³68tizŽ1Rdt! ¨<Ÿ0ah7&ÍŒ;³KԡdžºI˜W Œó˜W`ŒSCÎb|aÉÎÕ%ˆlG1kOÆE+ß²æϲ½Š9wL¯P$!'â«Tø Ô=ö €ÃjYÞeKísYž¶ÇÁY_ÑZñ²G׃¡( Œ1Ìf3z½Þ7_Ði 6‚:R6 Ä%h|µDÇ %Œfb€¯+kÊOŸ9=:,‰DŽ’yØ¥$dϘˆ>yZhÛhD¥ôFÓMRÆrˆ’ ¹}ça w†Ï]½éÅphÙκð0oV6‘g_PlwðNåhOB ázŠl îœÃ»ø½œÞÖOU”Ž ¶º‰ÇŒ(ñ ¨ˆIae )l4b'®H÷¹ÏpxxÈéÓ§ùžïù~÷w—³gÏòš×¼† þÙs»©­Èè·\›€ÂÆŽŠAàd•ÒÐø% ÙÁ“5 6nÎèy)ª×¸hO›tv\âÖ ™è“tD=`ÝTU‹³ÈÍ =óZà¬Àvt6OÀ]–N‡Íy;zïu¦„aÆ–¼IDƦ¸ÙJVÌZbmŸSôXX;æ•Ï»ðaÕVÄ90¤$V¢ù,IÐ(‚²¶lë\ ÿJA ñƒ)'ÙCG!¬·ÅŒ>Gë}"r¦rÀ‘YãRzùßôaRÕx¦"ŠRb/u!Rй°‰k«ÂXã‘^íÓÜ …F{’Ãk›ô†sf.læ†Ü¦AÑaÉ€©=W• ,"tªè56»c•K“;»lk}[PQ7u€Ôú–ÉÖ*ó]yÓQB#<Ž.o0ÙÛ@ö\3QC5˜›F<¦ô0cÞI( ™0¤" õæ%…h ±ƒôç¦O."k$–ج2±F…GZwຄ}¨_ï 3¤°¡1æëb¹ýýúj™®yIÓ”?þã?æÒ¥K|üãçï|'O>ù$çÎc0ð©O}ŠÉd‹/¾ÈwÞI·Ûåá‡æ·û·yæ™gøÁüÁoAA¯ª„Æ7ÔJR¨ØÔ^€ô Ë(!RsaÉ=¹à€ *<RÒ \tiyì³åfó=1'SúT" §f±ngã"m}Ñwô¬ 9¾g× LnÙúÀ¾s$qq¡r ê…d×ÈÌÀIsÅ'¸+gRéÇ3Çà (õ‹×ZÆ®Øð)vÆ72c@è,×À²â;fI!B|jJéÓ(I`JëLGƒ1m£%RÚÀƒ˜ŒÔœ‰¬³/{!µT-S>”%Æ29&¿¦ô=X4Z¹^HclœMž+HLF§I1–.2°ÓdˆÆ &R@·IÛ ™’&69‰)2D]Úë|Ê Æ ¬Ú€ZRK”e ¬(­ílÝQ¨ÜöVNuLZ DdZ{Vñ²®Üô\qv·ñ xH_ãUFÐD­ öÁFMÓ‘èH`B;Í+׿ÙÚh4jÙÞA`ŒáW~åWè÷-t·µµÅwÜ1†_ûµ_#Š"}ôQNž<É|>çá‡þ#{»åÝ`µ#Ë€ð) MÒ ²iðuïW¨ºÁ5T Ýš:uX¶‘¥‘›]U—¥ê²tYT—ø²B% u¢‘$­dSÄŽ‰¹±Ù5à„=q޳#R•@PºqÜKû~+Î*\fåÐ(Ñ6 Öé¢WL}Ùº §Ñ·Ið”°äÖ€Êz[jû…ýî4Ý:žOÑ -÷&×x tºK:fI?™P˜¦(­Kº³Ên·±jZ+ìW+Mc€L ¼UœŽýsKP¶)qJV BjyË¡rõÝìfK»mCIDF"Rw1˜cžº}/e4AÕPy×02ȸ¦É}; u{|…3ðtƒ‘vßeAŸþ²"Ëí¡×îxyÎÑ´ À4Y <ÐŽ[Wä<ŒEU1«LßÍпµâïz¸·“R²³³Ã/ÿò/£”BÁéÓ§yÿûßߪ\.\¸ÀóÏ?ÏÙ³g¹ÿþûBð|€'Ÿ|’·¼å-ÜsÏ=ß‚‚Þ1èÄ CA©B2/Bmjf^bȼˆDfŒ‘ÒÁ 9b ‰&%qzu{±˜P9£ˆ}¶è²h#Pm°ƒÝÝO0§KE+%[’F1¢£1R·Ÿ€¿º €ó1Ž‚yJÚ‚1°½¼Ý’Põ° L—ºpy¿Ã<11C<¿&òs–tÚÍÇ*îPµªös¦2&‰*.q¦5™ÓcÊ#`‚íÈ—^=”Ü[ÌØèá<ç…-Æ2Ðôäœ1C"Qû±—ÚHº)©ˆ¹ÁŽ%|È#çƒç¹Å²Â„‚µ`Æ"²q…« ¼ÒE Îe<Ž(DÀ„!=9§Š|S0–î|9µ'9’#KRW’ÁhÁ82—ºqJ¼[Rè€yÔ¥ $Ý0CkIÚ³QµÑ‰d Õ–D MÕQ”Ê'¡@xÓm‰„yßG÷ žÔögˆIÏéÛEÏž7S;h݃&1hO¢ JP¬Kd x†Ð„’&®Kox¥©ˆ¯D¶ö·äãLñN§ÃßøÆÛ÷Rrï½÷þ‹Ò°[ ¿-ì ^{ÏTTÊG‹Â•JS Ÿ‚ˆRö,),pj•×+\.ö‚.˃õ&©Îû”y7%:•–OQ]ƒ^zVQs*†tž¾ 'ÏB”×`4B Í$Ñ’¢’©-%c†„º@J[ÀônÍHú8oz\œÝÅVï:x0eÈEî´þºC"SB kXàˆ¸&°¹ÞÚ—¡šÁ<ïqÀãjdƒM„2×enc±„À5*¬1®ˆA£˼Ã~´…VXã¡V’[§Ò›îøô fh]+­ñ3r”õ °°uDíù˜X`*A¦Br—&'݆?À£&&Gb( ÉLÜ*b²Ë5v[eQIÀ:‡VÝ#ì¨Í<À,A5lÔ­ŽØW[n®/©¤wì: (…X3pL.ܺ­82kdÄ(Ñ`ŒÂHI)çÌÙ jÓ:d–EˆßDάl‹;^©ýï[[\luE·e¤¬6ûÇ»»»ìîîÞö\†¼á oøº÷?Ë=’T¡‡)%Z)ò0B CÓxv!'¡P!EÛEŽ1bÜîV—tè²hw~+Iʪ`.é´–¨+†ã‚¦®˜,éRu|Ìš#\]“9ï÷Î&ì„–Tõe‡wœuEaîþ>çâ=0G@dJSItÚactƒØO1H&õïF+·X}ÞÕ,mFŸ¬·;ñKbG(¹•¶d¿× ±ÝÂ_–-“8÷, 4‰ëÛƹPUÂgCPI»¹™2pÚxá|޵_ZO}¹Î ZÒ4ÖyI¡Q¢aÂIƒt#‹…è´~%>¹I…•Ÿ4!˜«^«^¨ð™$=*ec]k)I£m•ñh´Gí+L#ñ*Má ÊØÃ5~€”Yt$)}1áTc=©²NÒ(MÓ-À5"·R<"h‰ 5F tòØG_4螤}J©ðUMíÙ²ÖõñFõÊ zÀ¿:Å}ýù”!9!)v]A澬IdJ.§ˆñÐ-8ÅšÇ,ê’S“9Ãä}n°Å´0+ûTãs()ý€ÅnÏÞÛ×Üâº< f$¬R¦qã™"‚|ž¸"¥•ƒ–È&=HjÊ$ ’>c3´fÍ¦ç’Æ—L° KBJá0ˆ’€ºòŒwæHlŠ9]Öå‘Ë‹°kZ¡CÇ÷™ø}”©)M€­³ÔÆŒ(ªÈÏ,wI,˜]ŒÜÔ›L¥û0¤UÂò°ÏֱܰÄ.;÷IJ}–t,qD)ð”]V£uÜŒÜèÑ&ç-³.fª0‡ y§v–Ù BçHWãµhìŒ7Øf\ެªIC‘„”w-Y:ÙpáùÔ£©}h f)í9œƒ‰\6†´ìþ•¼x•˱¤ËuvØ/·ÉtbÇuG´áWVTÊÇ£bÄLU‡…ËÉ0ªC¿•ÉúAIäø¦D¡Û é·´ çßÚ»ì[¹ƒÖŠƒÑãŠqϤLÃýfŽƒä§¹ÎR0fÄ„!]„,èòçP4lp`5…¬µ¬RŸŠ CJ|i®rÒ1O-Ô" lÊHênâm ž€];pWo¾|É}þWÂúž-&•ð´€M«iYÔÆf )4•r³Ùd!»Ü-žå,/â¹…`È”D§­O|AHFD@á´¶6ϸό®ñ"w‘³Î!™sÒªðñeÙF/XNÀTZÏüŽX“1§Gì–:‰áu|*$š!S–^‡ßóô´ÁרeÊ€®3l&TÊgŸ-|jb“ᛊr›’Xç¬×c²0v=M?_²FTÊ'6Ý4g.º”Ý)çxyC!‹8F45òÔ9ëÀ¤cð hC8¯­1P`:âeÎl3a9ô‰ÓoÒ Çæ©­°9€( 2ƒ¸ª¸~bDÏ, Ëš`Y“ïxÔR’©˜î~‰îj)lr{pÌ×Çîú×<ôo»LÒ8VwhËê ¾©½Œ¨)HeL§ÉÈE„¨Á7e ¹'¤NG-3â×PB#}¨Oúd¢ ¢ #^_’žêÛÝ`ƒµóô$b½Áüw[°™§ÐÛð•=ò,@ÏJ5è™e[{AM–wès²d.ú$^JBFè`^¬dcD' ÉeD·?¥Ö>3=`.{n–’6 ¥ ܸQ¡•h*C] ŒÁ7uKõ:5µQä“.y#=ÃRwˆçž©Yë霵๷ŽiL*ijI$j‰tžó¦Ä¤­ ¯$À÷KÛ ˜ «Gì˜Á’Ÿ³VY h0¥ãÏñ½³&˜‰f¬ÛfÌ£¶Ö×hLY—‡04®`Z?wDá ßÔ„y S‚~†H Eƒ'‘ÁÖ’Â ð‰(èÖÚ³n„ÛÜ`):L&Û­‡Æ‚n Ï7Z1e„¬ Is”oèö,ÚŠ6š»ÌcæK”†´c¦nÿØikßô+øÐ(Køl1Ò&žYÆwãšš’Þ1‰ÂÊp`%°³(;+ö©è1ÇsÉw‰f+¦¸5n˜QºíÏjä—”nˆ[ÚèDƒ§á©ËíØ7†ÖzKÜ2 ¹î=¦Ð¼¨X&=èªeÈåÓ†Á`š:bÚô1ÂΪXo=¦W&6çý—XÐu°–×êÊ­ö}Ä„€‚]ÆÎ qÕí×í4]"…!r䡜ˆ>3¢cÇo%qY!’>aË+ÀÁ›¸`í¬%+|Ƕˆ‚OÕÎ~S‡¤Ha°VI.c޼7±˜^HÁ<ì0õ¬_³T†I·GNHalw/XŠGbH +†Ã9ÑvEã Ò°CíÙê'|CiêDÚÏøÔÆc"†tÕ.‘AÄ=øsÉì9ÎÖ|t#Ѿe—" ÷kd¼²!U6ï^ 1Þ”F´'­ãÞºxåw÷¯ý•>¤Ö<ðô׬ÚA  bI%<†ûs¢YšÙ žDÓ üiMøŸ¬\pßÝÏ‚g‚k”IÀx}ÀQ0âȱnqà¯1阞±({œ×/pró·I“¾¨˜7=D£ÑZ‘DKž?yžJù4¥Â÷+d©)ç†üks¾ÿޱݹNÞDltxS)é2g­žp)CmðV÷Ð úÑa 'â«,ea rƒB„±Æ]<ÏÇ뜉%öÄIB N‹Kè@r•–h&EÛŸæ2µàkýó6òß.0Ô#>ûÔÛ`Ïçwñ”x5ãxÄHŒéˆ%ëñ!—ï߯7ŸõßÄÝQT IDAT§Å#„<}é!L`Ýòž=€ ¾ì݇ ÓåÛ¶þŠŒ˜Ó‚›r‹¿¼þ|¡x&“ˆ¯8 Û£=^=Z#'ædo-nâuj¶†û¦àó‹oã?Þ´ß÷Kè› YÓW3Ö9dÚREŠ@”¼ÄY&fÄ^q’ÿ˜þ •lEr–çmë"4‡¬sO÷ÞñÚ“‹¿1øŒ~¾®™/‡h­ƒŒ§¹OÖœå%" „Ò¼ížOPðŒ8ÇçÔ·³'Nðtp?7ÓXJ–"$¤àÀ¬36k Ô”ï»ð§œ¸ã µ”<<Rð—ÅùLñ:÷©ëlÄ7AþÜÄ ¹÷¶`ˆÝ„©jÖ² ¹Qû>siç¬Bf \»îPów²Î>Ã>ÛŒ³Å~Û¥Žµ3óßÙ‹7,‘îuNq…€‚¹K:ÊNúxQA)=ļÁü•²…û;3^>±¯Þ„ŠlHÈ×Üyƒ%Uqô×|™ÖñL_ò/,Ùé]E¢ÙKOs2¾Â®°©C‡®C÷\Q?`ƒeÒ¥q³o›Ä–9j§5BØgË1' K†%]G´^Ï%!9¡cÁWŒ¹°„Sµ°š}×xÌé±Å>‘Ë|¿!·Å3Wü 7¸ÈŒ3`JIÐn¤VWš•áÙd«’LF°ˆÀŒ.7’ujWÁJá³ô;i¨¤G¡LTU³^N˜«.e¢ð· ú(¥‰ÒšÂ÷С¤Ø* ²2Lúv––5Æ“äÛØ jm-[Âæ¸Kƒ–aLX•ÈÆ`b˜L(EPÕiXœò¡´ŒW×þaIqÿú¸µrUï`eç®f¬$(4Q^èUh¼R“Ä~Úàù%Ë»|Æá€% Tíµº¢Û•ÖEQëÊØh¶Ô>ÙtȲèPbbÃpxD©}ð`2¡TƒjŒ´2Ûº P^Í'÷xüíßEùùk˜AŸ£Î&±—2è©=E#Æ b”hÓÖ4Ò¾–ÛÖƒ¡6´þo+œõ°X¶pvÔätŽ2Òåâ,{‚²fÙ$¤¤áF¸EÚ”uÈHIXÒ•v\šOÔtYPÖE@×Ðyì];Ð0¸{J/ÑHúÞ”. r² gó%K*ã“Þè#6ð'ÉMÔ’c<ð,m1é2hد¶Xz–l¶£®ÙñŸÌdéR•µõÆh|Š0Dy53¯ÇÜôñEÕ_E¦ )r:䌂)}9LJl“—y@aÀÎÅ·¿`­ÊÜêÈ%–§äYëÝ&±cÄÈY׆¢ !eTNéÍ—T2À츾Nh)¨;†ñbƒRtÍ‚AÒ’_1߆¼Íÿ7]ÐUÝ ˜Ä}r¶7Ù”>‰HE¢b̈#֬Ą© 3Ñ.‘烵ç«ðY3Gtż…’Ãc]©u6*[Øy•жÅ>r†e¯ÞÄz8ØÀ…/:H=‘ðí'á©« Ö¡‰qè±…à×]×>6pUÀ] NÕ4=Ÿr?f6PyÖDæF±CæÇœV—­¬õ—)2ÆoVð¹bNÏ%ÑYg§Œ¸ýî%cFm¬«GÂ.1Y»(DädÄ­Ë‘¢aJÎq ÷³Š¢Ý…Ôx ˜‘š„6X8RžF8=ýÜ™s ˜âS1§×ÊS<çµRÒ5 b‘9 K;#³’¶ØÁô ”iÈLÌ„Hè5†Jd^Hm|)2Èý|ð£ŠB„UI¸´&òu ‘žÆ¯kæ^‡°[ÕþR#RKŒÁS j%ñÂÓX¢×ÔLÃÝj‰W7ˆÊ.øÚ“ÔÒcs1&<ŒT¾¤×ßX‡üCÞUÿ˹f×\GÒX[dýrŽöÃå‚ärÊDhM†üPà ԆaÖXÈ./r‡Í¬æ S†hG¬ó%`¬G\ӻ̳eÐñSND7¨nØ¢»(G¤YÀËñu…25G_ކȲš…´ÔëzQ~ÏàísÊÇ»Lþ¯ñ}fÅ7ïÞ%99O17]_°ˆº Ä„Kœ¡ë̦Vc§ËùiÉ„ÌÄ ÄÔÃQk…”†Mn©œüë.>Ù54‚Ü‹…Áhkz5Ù_çàäã õœ_>D. ½‡–ý’‰’Ü=%P%³dDÐÏI¿Ú§“¥lÄ7YÒáÂÁ „*g?Ú Obkj™S˜ñú†h+¥Lƒv4w¾z;ÅEüªæj¸ÃBv1‰@ÄÖj­¬BT\Pš‘(é1o¨þ;s¿ÇUq’‰² ú›v½ßö®‰Œ¥ó{î2§“-é|ÅUõɶµl–šJ‘×!ñ†áê‚Îó½8%Œ5³“}n°ÍäÆU ”a¬‡(Ñ‹œ˜ÚÙ¯J—4ÍPPïØÊó*têQge®Xš>õΓ¾­_6†ò[HŠû§Ö¡×Êcêõ9­dÂa …ˆ¬‹®‹”à:ÛŒYk­çt9`Ó² …õÐ- Úb©‘L8‰ŸŒùÿØ{×Û²²î÷7Ƽ¯ûªµê¶k_{wÓ½›Kƒ}ì÷àíEH8ÌAå|Ð55jˆ!M \ˆ1Â5D?)¾&’V*^- 4ÍîÞ÷ÚU»ªV­û\ó:Æù0ÆœÕý ÊVßxyé¤ÒUµwÕ^—9Çó<ÿçé³ e©†¸â· @" Éí ð5L@Ã5à‚mø{°9„ÿ;4šôëöÅokä‹ Ô<Ø…,ú†äXm_Ðí0 ñšóFÛ„¥±¢A†‡FâÊ¢†¿—4Mf±%•ÄD5Œ¾Æ179c3ŠK:ÌXÙ¬8ACÇ´Ä‚)]r<Œhn³CH·hsÌ fÑW¾Ñ•yÇ6û_£m¢UBD‰S#"7èÖk‹À&Ó«Çúa}¬êGž ýdÎa°A.}ã(~‘z†ÁëfŠD¸ÌÜ®iH Zó æÍ¢Ðx±"<ÌÉ{J@Ú JšŸJh$)brå@âÎJä!ˆ¨Dy’•dÚE¦šÂ÷X‰/×„ÓŒÕ v#Â<Å™€Û0MC@®‚fî–÷¿a|ê¿® cÐ:µä§œf™ •¢9ÎiÐŒ“¼†0Â4dçÌJ¯)H­i‹Eíº¸¤ÅÇŽ ´½ÛìâÄàߓ޸NB{s\'A6œyÃ#ôWèR’iÜDgÐòæ¸IAò@QHøüM8sýŒduÐãÀ÷I’Q–¤íj(qó‚lÐäNkÈò¸‹£ „¯IFMŠ~HÖ¹åZvžEÒ¡,ÉBTFBÕ„õâ!”ÉeÀ%’+6¸IÏ4?±E¹pÙÿÎâaƒ­â‘hc¯œx_މE'È™%}Ò½}ÓáKÝËI‰ãi¢2ÇÕ==ۼάÙfÑscr‘NkLÒôÙe‡±êSÆ>a™ŸtßÈ (§±¾@8%ÓÇ×Y6;8Q‰¼W3òÖøNñ7¡i§ ü03Ú½$òWä¥Çåž9|½rð ²—Óž­`dî±ÎúŒsë×(réþE¢™>>„TðÌ·ÝǬß屃ðÀé*‚Œ ZçÆtü#ró3÷!Bp9wN̪'m˜×™¦ALC&´ï¡R‡éÇ7È ŸD7xê¾û9\mðÜù·­°ÿÑ z ”4Ò“•Õ…fxF~ NÌVÌdZ…˜”Ô½*É‚OŒ´†¹ÕJ®hPØ0S r£›|–Q€1v É_§Ä þg“&¦9± ½$œ:ÿp¼uh'®bë…gr´}àP&õ1”Ï2ê'z@7>)>9Kšô¬–~Úíp›S¤4YâÙt7ÜèII(­ÙÌ!C¦ôêC¥­×ºÂì½÷Ù¶¶çžMw2.{•sÖ.;´±Òµ¼“d´/7ñ£‚æ´‰­qLõxft(‘u@„‹ ú‡v5°’!kŒk™\‰C3ZpÌ3Ú$2 ëO(]‡‘0¬üU´¬§’~cŠ·]2ï…”¾Ã\¶Ðž$õbg¼eš™D†LdÏtÅ]‡vcAØÍI›.Ñ Á‰ t%Ù–C©\æ®YgÉ5<™£;#B'g7ØF!p’h{Eì6È…‹v ;\=7’÷ßbBÿäþõ–sDjEs• …ÄOsÈ0œ‰…•ïT÷ó½È+2m <yèÃLPàß“²ŒÛNJžøxí„(\P*—ŨžÂ‰§œ]ºÝ1Éí&:ê< ~ýž¥Œ<Ý.44ìûä­(X ŽÃ5tW°ˆÛ„%Eé‘_kàH7È™ø=ö‹mÊ̵M²‡çD,š§ ™ \Án´Eàäd® Mš{åM4,÷;iŠÔCÜ1g]X¤ô³MÚ©±Óîä«} óE—–3&j§ÈCm20\EŠY£UÃFËYàvMü|Ù#ÕÓ¬K8Ë诬Ñ2wEé#Q  Tâ¢ÛãÙ€, p|蘿éÆäžG*Bk‡­‰ÓóÃB Ü,ÀuS–qËœÅøE†+s´’䱚ºH2Ê©ǰz‰A-]BnÌÂT(­ûƒ¤Âð©ÊØHvK%ñTˆ*$j!N$~˜ §,( ¤B-%¬ ,\ŽÔÝÉÙ»«Àÿ't¤À%§¯Ç8¢CF@Ž_k°ÁhûŒŸáö˜ÔQ†O‡° UÇv˜×Ìì*7¹ÚÇdøl±_GŽâA™ NxEN6‰ 1u“¤Ä“ËÏWHhîÀ“·`{^ì›i^[rÜ9s¸ˆ~‰Þs`Gí,ÎqHØ]ÒoŒhêKÑ"'«£ftYºÍšäÖdQ“ùVD¸Ö”fI“6¨"+_ãjJ60~ÀÜ¢•Ý¥´Ò¾ê5®àúÒ5¬ˆXã¸vkZÐÂÕÊþ^S¸«»Ç„63›gr’m<‹üQ5%.sZµ~xe=«MÈZ‰¶ß+¥S³ú«õB•_;.Ë($qBR驤Þ.! Çìܲd) ji“ù»eK¢¤q‰’fë@Q‘$¥!I6uŒ« ´ qhtôÆ–~äT¡Í®³)þM¼Ü¿UÐÿ™sKÃÚx;ÕÆ£¿ŠÅ¦YfßÞwU3]¬4Û³#ÂVʾ›ª„\z´˜£­†ý,7ˆiÐ`Ŧ0®=&èM—‹ƒ¯2ÝìS(uÿÐ4ÈÂ¥QÄLÜgDâ„$‹Èò-|¬»=f)Úè=]nÃc»ðâS°àKiaSõL°ŠZ,t}Ëe•uÁÓAy'`²rùÂýL‡¨Ø%íDdQÀ¬×!ñC |ÂÛ98°µ}€—œîïrλÎ$ìr vX-Ú @¸,dŸ¸l›°£6û\ؼj\ßÁ%¡ý¼Öi{)2TäGþÉd~l¥iš“Îpœ; ·nÁÕMã5ZIØ :tŒ.Ѩ¦@†B)´+ “ ÍpI®¬i‹0Q²ÒWv‡m4˜.¥…u\{æv/j½z…8˜ÿ‰ƒ*i™aýKë+|B6)-'¡‚ò "ð¬=né‹Ú¦šþ+í¬B’ÒdQs"Vu’TõøC›¢íc¨&¤Ì’öªXÇD„Ö%jEn›O†¯ ‚<'-}2¡&']à%‘LPB µ¶1šž ¬¡JDÒ¸eŽ[”ÈB AXdZ³ª:pZÛeª¯!)T}Ý:ÚìØÅ¿ä®ùVA¿Û¦=׈ÒïÄÏR˜$œÄéò¬ûT1H\§@ ULS|\JŒj½sjy,[ìq(· YÓÇ‘…1¢òJ£»vͽŗœ"tQÑ”<óñÃÙ‘ÍœæÚ”åZ­|p†ðôÜw öL‘ý´-ð¾iT2 ²’È=`((Sr‰ÛÊ‘~‰:2b`š_½á‚LÌ*³T澉œ¡JÌë¤; v4z*ë¨cG\ç.çä¬ ¢íRÎ<Š/ùˆÉ ;!U‰« )Ð'gÀ1݃BPh—¬¯¤qˆ(v\gUx¸n kíš#& ö¤¯…xÒNºsÓ 9¥É²HˆèÚ4¶ÛM~Ýdž+eÝñ”k^3º0§bDLK.Œ47qáŠ1ÁÉ!Eé.ŒÝ4cæ´-ƒZYf%Æ^Ñj5%Š#†vf&ûÊñÈ¡ ÅœP&´œ9žŸ’¬Z†àvÊîÇ•=0^ŒysGö ù?lïÀ_݆;pɇW1nR.ˆ{ú¶$;‘k9"*È>å-7ä47™‹6KaïÚ̉ˆëlôcÖ,°•Ð ¶(Df t&…¨ÊXï0«-1•Ü›,ØgË‚ÜemwÓ±Óñ’& âZQphùF ‘…>sÚ¬™Ð'Ãg“ýÚc1!)`‚ ªu@‹%+&ˆ©%Ò­Õ.RM½@‰mRë]oÌ0L¬ Å¡]æÂ’ñ´ÀÏr$¯Ì¹ã¯›U…š°VÎPeNâù¤ŽODÌIJø{LñHVPx …4ûòÀA;moL_dìŠ|2š*Æ/KJKD4$>M&|2×Ç#3Ó þ7.èßÚ¡Ý‚îÞVuÁ‚“µ°UF}ÁIômjR+~GX¤4­ccµn«rÉ»ÌXÙD­F¹¢•ÍkÓ™¤ Ùqw9b`-L1£Ï˜ëâsݦér:ßå‚•˜qC6É¢º!ôð»ð’ÓƒIØ4Y¬ièX³¢¾•CNôÀÝÉhôÝÞÄ›i÷Å”§$Â5ŠgT"Ÿ1וØTx…¢θ/¸Ì‚‹éšñ™ßNk¼µ„ÈY˜³LCP$¬sXç}—8$^È\¶™úCVÚG¬—ÈHÁ—M Û )Í ±Ã®ANÅ„ýöÅ3$NȨ5 \¹ÆÛãœuE#[‘E.=1áWÀ?œË!5äG¿·Ít7 ÊÒ~pQËu×8fA?ˬbD#|ã ¯obëè§cÎpe]›,™;=¾¶fì½½^J°£ ß¼%È@ãcXìgÅ KòmÁš6¯­ ®—£{@lÖ=BjÖ0ñÖ-–ì°‹@óø ² aæàµ2Š"¼{âÈ:º0~¿YÍ‹®TÕØÂ^Ö;ÝØ®•4ª²6­&̪×,pëÀ×þtLTCð'Ôa »ó^ÙƒÁjËisrxW±¶UÖv.a° 7÷ ³;¹)=@ip„-%J»ÈD!¤"Ë=ò,0þÁ³vµã’GžM3:1õ¯Œprëvg’*{„†•ñ©:ãX`HaKCñ É’kÎSéÖ%¹õÅ®‘¿–XødÌD‡48&!dA»fÈg¬ˆ¬4.¬MmVöïUæ=æç ù0!¬wT)!KѬß×Ò&L A µ¸uÚT‹+O’IWæµµ¯/2’À3²$é×^ YGB() ]Ž‘;¿iBÔ{ýʱ/—.RˆÑ(1;û•‰‰0“^SüËÂY¾5¡ßýá¶fïGãË?·ÍÏ[Ð%F*ªžu¿v@N54Staï›*sBsÚÓ¯¯åÀÉ®™¸Ò•ɥǓ\"b…CI‹ûj‹¹l“â³/¶)µä0Þàrt¯±Y-FÓ rÇ3kº1p!„¡ñ´xþ6ÒR)È|¯—Pt<8fº0Ï·¸êÃ&ˆä¥ÏèéM”ë Ö âfÎt½ƒµéÀOMz\y5Ìéì^?4ˆcv­A’7Í9–Bê„Üa“6,'Æa¦:FZç œa† ôHבÞeËÁ-…ï0ÁðU´X üuæY‡EÞ&™4(ZtA5…tñÊ´àØ1’ݲ”8í5uÈFMtE¬Û° :Lü^ÝqÄ%MÒ‡+ôžD漓·@“¨ÏMÎá›÷‘ˆ™î_÷1ä7B”çŽSs½øPô̹´ Å®Þ¡-fÆg?°2I‹é¸‰Þ ¤ tò…=MÈÔ.;8”dF!!´2;x%þëôʇ¼b£/iš;Áåx²NÛîÃØ´æ$¦ 1Ä#£É’ “û;±$1e aËß°îfk[RX·.–¡Lhµg¨¾ñQÖ#aÜàz 2…Þ7r6±¡ lnáþ›Óm¸¶7‡æ`Y ¸ê@D'G¸ ½ç"Nå4{1a°dA›\û8ÂÀy‡lpìö)qðÉì4n$ a]Ðç´Øg»^·7cï‘ÔjB¯¶\\ÒÄ¥¨]÷LÁoÖÅsJ—ZWÝ@gØ­ýŒM¼£Ù­¹Èe_S€ÀrŒG½[§-`İö®_Ðâ[ÏidftqDi¯UÍÊÞ(%sÙ"Œ2ŽÅ±Hk(=&âP®#)Émvó±U“ B“X'MZ—Ї%B*´p)„cËph´Yø¢fðgøLu—R88æðj›Û»†Ñ‚oô»Fó¼ØÝQAì-öς٠)ÎŒóÊ“4T ZÔ±«M–Ï"âú¶Iõm“_— Y‹eÚFxŠµð˜¹µUHšr Ö É- ’²EÄ8¢¤P.qÙD„b©MärË2ñ£ήÁßïÃ=[JÍ A¹é>·1™›ÏÅ–FxÊ„.éo#!+#¤W¢–æ|ÑÒ\[¥/ ÁK;'ãsßüž%$8fª¥mŠßÊë\ñ©îP”é3Ìá“_÷á 4ˆu #ÐŽyý (JÇ‚.Ó¢KR$Óq³ž¸Wáy)¢oÓôäÚhÎÇôB×¶²Œmƒ8±I{¾‘¾V͹YQJbÝ`! K%< +…ðÄÿ‚‹þŸ#ÜþGÛ¡¯Ó-ÏiÕR³ƒ¯,I«bS™ŸT0TÑvÔ±xUÄiüzZ­H_Õ´UM´®µ†­Þ¼,÷¡£a"Ì7¶P^˾‰» ×íÁ;³tp¶à±;pjÛIð[èT FŒº+X)±¦9ò$Ohc—ê““qİ֟¤õE“Ôù¼صšqn ‘ Í¼F!$¥m |ËCȈˆëÇj]Qa$*b† ‚QMŽÚèUYç!›™>³ „Ë‚æs¦ÚÇF@R‡ëT™Ö-,iX)œK‡9ZY?Ir²ÉK1 ærFè§Êu\§ ²;y%®Wïô]K¬"k+s¡†“ØÃÛLô$®6á0¸¦ó·öÁ+™C‹vÍ»ðEV7 yÃA;wÙ&;ÿLѶ7©ÖšÇœgžy†W¼âôû}þâ/þ‚Û·oã8¯zÕ«èv»\¹r…/|á <òÈ#œ9s†²,ùô§?Íññ1¯|å+ ‚à?5× ìýfâÖ¹…Ù'–7}V!tìשqôÓœV¹ÄÉ!w=\ Wn‡M,m±ÈñØá6åÊãLóošé-öèÙœ …C‡™AÝŒØm±â¢ºÂEù a˜€Ò,ÜYî \C³a!ÀŒ¯ÅWvá;Îmb OX` @º/¡Ò-ðœŒca£@ê):sðÆ9âºew»92…¾?åùk_aI“c6Ø—§¡¯}…5®ÈÍÔ^À`yÌ|•63ÖÄ1™ë#úŠýt›ùzŸbäQ†Æì‹'L£ä{Ãò<Í|µ¦:,¢&Ûì£Ö$Gzh´éŸQrï—¬™â7N9·¹×½Œv$W£ûIüÀý5ð¼”f#®ƒXhÖ8d›¥A?ð97¸Ñ—¦ió´4b¢Éå.òe–4iº1‰rÜrõÂè~?å”'‡¨±â<×jnO›9züeø*3ȹ ·Œß…øûö@v§Ôm´œÕ7x@|ŸŒ'×" d¢ð܂̹ËÝœøæ›ûÕjÅc=Fš¦¼ò•¯$MS>úÑ’$ ½^ïû¾ïCkÍc=Æññ1ßû½ßK³Ù$Žc>ñ‰O°±±Á#<ò¯ï­l¤i¯†:+'4i³›,m@‰!¹U.gÕÎ|`[ªi°Ùm™ýñ’žõC l¸É#¶ØÇµSk‹ëâÛ”ŸtÙ ˜ùf¯º¡™†}Ð{6lW{Y²JÓÂï“ âsàÁ-¸zOgæBéØ&à)ö¬™Â ¸°š´ðJCÄȵG¦}ÒPq×»´dÁª‰É­? e# [D´ð-‘.µå9x–$.¦ƒ!ÝMé1¥cÃWŒæ®ÊHn°Â–í# IDAT4Ò/;Õ¶Y KmÞŒÆED› ûÞT9Ó=&x€_1äÏšÙ4Y2`T'ßE¬lØN†°¹Ç]¦´ô¢Î…6ĺU½FUB7›Ó׺Lj£ &KÖ9¤a“éŒáÐq­p)èk¹QK4ˆi' ÚË%B+\U蔾פ?—‚µdBHZ#Fú N¾ IfNv—Î2Õ„þ>l›\–%_þò—ùÃ?üCnÞ¼ ÀoüÆo𢽈½èE„aÈh4â—~é—ØØØà-oy qó‘|„O}êSh­yç;ßù_gD_Ù‰;µÓwõ¡ì÷-¢nš¤ý7VYN ò­rlR`‹!).)> éé‰%˜‡ÉŽí$ÚÌê¼ìÐ& JÛüv™ÖHc‹KA(Ô9 §5œµ¹æ[À:ð@/Ù†¿ºS31«;FR&V”¦yºpP™‹ŒÎ…?ÌÒÊü^l2 ¤ÝÏA+ÐZÔkLÑÕfeá ôÜìÞÕJÖ££+É«_‡¤4ý%îNŠúP¢FÒTmGdfxªÆNÛhä°ó¼cì«㬨h4ašáEMŽ-b‰>6Ï[KA–xæ}5½º‘ŠXKëLÁà+ ÷%úº4gv`P‡X4êaÇ4ìˬ…zFÂ5P‰KçòåËüöoÿ6yž3øã?þczè!î¿ÿ~}ôQ>ùÉO’ç9ïyÏ{PJñÎw¾!ýèGùøÇ?þ¯ŸÐ¢Åœ¶õ&ÏPVÖÔaj5ã9‚Œmöè0«¡×ØF¦vì VŒ*=Él—Vºe SE¨3мooh…½ÍØa—…hqØYÑyá”Éþ ÷*ò«>zß1²˜`.¤ Ò[·r™…Èî—pö4|êL6 oI×MЛJç ßopY_¢±6'MCÆr‰×çÿ’çgHu@`¡åŠÔ7+;„Ί \`mŽé‚;lÚ›Ñd92ÙéÖœ¦a-#«‹ÜÐP$3ºäöî^ÒdÀ¨vyr(kIWf“ßV41 ÍœmX瀚N9`ƒG,iÕѰG ¸Ã¥%ü5Yr›SÖrÖÜüžÈkø¾ÚwŽé‘ãÈ”2òXÊ¨Ž’}6;j»ø«oï°Éó˜DHâ¼3Ö¼ žÌ¸%N c[›XƒÄò7áˆ=¶kèþ@¬[´Ã\±‡ë=Rß¿û‚þMâ\×åG~äGøÚ×¾VÿQ«ÕâÏþìÏØÜÜäÂ… üÝßý/{ÙËøîïþn>ûÙÏòùÏž¿ýÛ¿åg~æg¸pá¿ÿû¿O’$„aøŸ¿ ¶`[–uýúAËžõ½g¡ ZÎ1iŠB# …ë”äv ªí=P!}%.±h€GÍÁpêäðF¾*D Ûz›$²±4îi• ¥” ÑÔèÜÂÕÕ©™Ê…Á)¸³‹Ž#s ³gäÐQhT!a!Ñ]V^–­cŒãY~8i|Œ:$E+»liè ðKtK⯠™kÜ0*S©ŸD5È ¡4"6qÐBØÕAÚ‘¤Ê5"WŠÀbpfÍ) …yÃt(Ì{Ô(åÛxìJª+Ú ofxZZ£›Ð¬:+"d©”ö> )PßVÀ•}žh)jþ•¶ï­£KhkPÂr«”ñðNHÚ¥åeUdJ…4ÂÕª/dS™•EÃ\ªp@@.ü“©ºm”Ê“8AÐÿ‚kþ›Ü¡ollð†7¼¿ù›¿1Gˆ”ÄqÌŸüÉŸðíßþí\¼x‘~ô£¼ýíogccƒ}ìcríÚ5~í×~ç=ïyüÎïüîåË—¹qãÛÛÛ\ºt ­5O<ñóùœGyß÷‰ã˜Ï}îs ‡C|ðÁÿ },l.xFÇŒ¶•h­jø·´zÑJK½²>Ìʺ´l÷–×&$F¢æØ¼ô†•i‰çì"b„Ýãgmêyq²ã°,šä]4 ýéVƒ$B ¢’2sÁ‘¦sõ$„f·¢gö¦Ý.œ†ƒ[à¬C70oNËÞl!8ÝÜtv±CÑ(%Ve‹…lic”SG$Z¢—+Šºð.-#UXÀ+%°r-³j¨ xe­ ¤Õ· ´%šø5Y-µ¤ 3«×XÐ$ üúsl[BXgµw:Y ¹Ý·xö½uIìÏUWbŽÇ’fÝps¡ÈZÖb‘‡Vím]5s§U õªæ Ös °ÈÊ–¶‚Ý«¤¸*Õnéf„BÚ$`JÇèØCÆdpwk’¦‰àí×ÏO#É¥¼Ë¥÷×!Å%üõça¾„¯\ÿÆ?úÞ÷¾— ø½ßû=þèþ)%Íf³.öóùœ<Ï ‚!A¦é¿{AϲŒ/}éKŒÇcžÿüç³µµE’$|ö³Ÿe0péÒ%¤”ܾ}›§žzŠK—.±µµõœƒKE9Ó'Å<³MubwæK[è;Å/M1 â´&ºÇ$®¯Oè´cÒȧݘ³j7HŸ…0YØsÚ,ir±y…ïDq™û¬×Å””6sÚjÁXvYc\Ÿfº5\”ûùÍžØb¶60ĬYý<‰ã,öZhGà;9å ôMX\ŸrñU»,Ëó£6Z ÂÓ+ ߃BÓaÊ :Ä RoE#]áʜٴϻi^ÄgÍsož[ñ‹Op$†Ü<}“yÔ¥ô%¥ö¬©±1Ï*à¾ù3 W‡kìKÃ=Ù’{h_ð×°÷ÂʶÀ™iäÇÍ>8¼•Œ3š÷ì29ûn;§Fß»ÍmÖÃC®…ç¹\ 'ƹ/Ö4&)Q/åÂù¼øþÇÑnž=¡âh±A¢Cú˜SÓÛ0‘ivö÷pË’~0%iG¤Lî0j H§ÆMTFŠÎµ‰Q …°Sîò|¾ÌŒ}ŽYÑÀ½bƒüȧh Nº‰nKäTA½å”—¬çLx“±èÓÔ1SÑáü†tfÖ’áÙÒSDÙÂèÐÛŠs_ÙC‡p§y“󧯒ð䩯 ƒ’EÞÂõ î;wÇaû¤¸ÉÜœZÃñìëÿèúú:øÀRò–·¼… .e¾ïãº.Bâ8Æól¼m±Z­pÿê¯þŠ>ô¡ñƒ?øƒ,—K{ì1Ο?ϧ>õ)Þò–·ðž÷¼‡K—.ñè£ò?ð|Çw|ÇÉn÷ÂUÄ©à„álJ” µ¼…bS‚ZÚeŠx@ƒ˜u¬îpEi'òj5’‚……vó\©-øMUjàOæ¬û‡ÄýñQƒ ¹¢è{ˆ–ºåA*÷+tú†4‡Ê…è ]ôui¦ö!Ð;·ß6„SA­eÇzð4ÅußÀk¡B ‡ÅaÀ²ÛeÜZ#ÕÛáž™ÌóÇñ¡›âz9ÒUÒ°Ê3|0){t䌮˜’ã1bPïTj‘YT®rlâPÚ¢k&ëMöi‘pÌ#†d6ªÒº»äÜá\m¯» Å”9>mkÚaH,m:ÌjRßÃV­Þ犘Wñ@×½¶$¥ŠhŒhú iòî·¸–<7ÅyvŰËizŒkîD•®—ᓸ†‹0§]“zŽé³Ãm\ë€7¥Ë˜þ³blEý˜×nƒLü &tÿ×øïý.óù•ÂîùÔ©S<ðÀ<õÔS¼ô¥/åcû—/_æå/9ŸûÜç¸sç›››ÌçsÚíö¿ûp}çξøÅ/²¾¾Î;ÞñÞýîwóþ÷¿Ÿ|?ýÓ?åÕ¯~5=ôïxÇ;xÍk^Ã/üÂ/ð¡}èdÿ¯AéšåŽ´±gàU‚ŠÇbÿAËÄ&.‚^ÌÏ8Gk®ÃÂmsä (¤Ã\´™ÙT›Ëk<3ºÈÕͳõ™Òµ0{‰C&ŒEóÂ"Š>yÍig ¾êßO›…!ù¶ZPJâYµt-…:#)6R1õ¡1Üdü{9Ù MögHnŸR{„½%JH¢ss\§Àurdhî“K½œ»zãÄ7ã’Y §‡bݨf2ù¬ƒŠ ŒnÎÉnæ<1L‚·ÜmÆ¢ÇÛ30–ÚbÈx2$½ÒP±áŒD 8¯9¶™†íÚï+<È’&7ÔYvÅ)RiÜáÈ@5Éýx’ãnŸ}¶ðÈío0-zä Öƒc _2uŒž\ n7¶5úÌV%‘«&yà›¥@“sÍ0åÁÒkÔÄ]mQ•@¤Ìâ¥pÜÑruà¡Û†\W´]b7ªïýjÀ™íö(„KÙñ; ²$D¯™s^…’ý3´„…á‘Y±ˆ¤ŒˆW šrAxjÁ]éßÀ)®7€ÿç•ö¬ø_ÿG}߯ϊ­­-¦Ó)§NâÖ­[A@Y–¬¯¯“eEQpóæMN:…û?ñL§Sž~úi¾ò•¯ðÓ?ýÓ\¼x‘×¾öµìïï3™Lø¡ú!~øa~÷w÷9=Y–ìO#fÞ·a¸Õ9º„¤õ4u“3V†–Õºó Ÿ63“pÇjÙOsÓÀ<6;}ƒƒÚXƳˆ@‡Y](Ät˜qs5"PâºÃ=â¢Aº Ñ3àü’|¢¾êÆãy ¾&Q] ·lk¸*ŒRHxd Û‡«ë&OýÀ“˜}Ù:pQ£JÞ ÀÓƒ9HIÒˆEÞa‘¶Q©GÐXȌմ…l [‡l²ÏêEŒ’Ž,h…KfE‡Ô Ð%ì8·‰XÕF;mLhÍSÜCÉy®±âu“anS‹v9À°<ïá iàÛð·¶€m± Ãç›xä 9"´ùçæLÙdŸ]b"ºö½Ši«)}†{ÈèÐaFŸc\JÆô¬'|LŽ[Ñ)gäÂE ‡@ãP²Í¾õ¢µoý ÎpțܡÌ.F qÉäc\Y0r5w£a_‹¤¾¶ÆôXصP—©IìSÙ"G«9ºˆîžç~s,÷÷½ï}üõ_ÿ5W®\áç~îçøð‡?LQÄqÌÛßþvÖ××yôÑGyÓ›ÞÄÖÖ/^äGôGyï{ß‹RŠŸú©ŸBÊaû™3gxýë_RŠüãìííqåÊÞýîwóÄOðð¤iÊÃ?Ì÷ÿ÷såÊ>ó™Ïð=ßó=5ÙjêšBÞhƒçñ\KæèY…¼xÖ÷"³=×°8W¯@K©JrÇeJ§&†.iZ²§KZ†6ø¨S»3údæ\é³,‡N``·,Ùå´áúh‡ƒø”™Çá‰fÞ5P±˜jôÜ@ë­fãýŠ¿^@؃Pœj"|My8nÁR7qUNWN)‰,4¥ãÐñ§fGžR™,A5%sZ(æ³ã«sÞd0uzLãgj¬e1õ:&ûÀ®ÙŒŒmƒrÃù:yRè):2.ÕȾ†®&“>SºÌi3bÀ6{,„IŒ\ê&EèB DW#‚Òä²²ö¸3ÚfÞm£I’;,u“•×0Ïi eG7Ìš­ZÌ7O†&X)3„É$lÕ ^î°Äáu \Ž‹5Fóuˆ!XÅxýñ²gà} ÷]æ^‹ =s–ÁëχàÃ"o1µqdAz†ãhÜn†#JJíÔa1GbÔ ˜' ‚ƱînÍe¾É¥öññ1ïz×»øêW¿Ê[ßúVÞð†7ðÁ~ÇqX[[ã…/|!Ãáw¿ûÝ8ŽÃk^óZ­?þã?ÎÏþìÏ"„àmo{›ùç¾öµ¯ñ‰O|‚_ù•_áóŸÿ| ú¾Ï|>Çu]\×¥Ñh°Z­žó@n^ÎH[X÷ØxþÀò¦3âº(dÖé¬]‰–e¿  Vô[³™œzå Ç©ÂGK U›}MõûÄõ½btoØ NÛ{Q"=ÅÜm³7”$íœaÿ€e·Á4Þ@ s…ê ò22,Ë–!>蕱$Î8ÆInoÖ7Á÷L÷•Ùi½ B ô> t(P¡\zäi€*ÔRRö‚ !G¨LÊÉÚMâ¢I¼0!/Ž£ÈVsݺݓ²§¶X• ×%wô&M±°f2Š6ê}t¡»m&X§Ë‚&9>Ç ˜ÚX[ßjË+õA‰cŒ€&K³¤ae]¦Vs.kSŠ]\AôfzoÔû¸Ó1¸Ä4IdP¯\ª)ßµDJÃÊwë:±ã1ML×.PÄ""$­ÙðKšV%Ð"ůaúØ k‘>ΗÝ/ÎXå³™¾û ý›”­½ùÍoæÍo~sýõ·}Û·ý£¿þË¿üËÏùúÂ… üæoþæÈ5øG>òz½[[[õ9Ñl6Y­VŒÇcºÝ®™Bz=&“ɉdMÃÿ71…KØ\³Œ÷üYP;¶À »w®vê{æs/*‘ZÓ•KÒFŽÂ¥å,ìà×ÈÍ”.O;÷ÒêÏh3bHnó:Ì(ºÌ˜ÒµgÏ1kµ/Ä®¿M[ÏqEA"BdjdKyšf£«á–Ù)ëÈ t‚ÅÕúÿ à³üå<´C+FÉó#Vû§Dõ<йG°–°J;Ü Os¶sÛ<÷‘y¾BAz> ¦I¦ÙI*‚@döó»T2TůIu`$¨ªÀ‰rʶ7uMÆòu‰Ø‡NSD×H^ Úç ´d™·XÎ:”¸–¸X |‰l—µR‡¦&ì,‰‹é¨ÛШ@ÚKMÛ™ÓÕ 2á×öÒI |…ž8FÑPhˆµ9s³s¯dÑÕ¤=]K˜9”W]’f Gªçý|Ëç2Ž–fmIËð£´'QÇåÜGÍÍ_¸šæ*¡ðÐ’‘3À#'Ÿ…†<·;¡¸ýeÒI­ïrBÿ&ekkkk¼ÿýïÎ}àxÎ×§OŸæ·~ë·žó½W¿úÕ¼úÕ¯>éžyæÞ÷¾÷ñÖ·¾•Á`ÀÚÚwîÜa8’ç9¬V+’$áöíÛÏÝ‹÷¾¸ÁÙ—­qÀ ¶/­v¥CY¢m¬gƒ9}ŽéÚ ®AL`å]9lŽˆŒ­Òª› WnQ¸UÍö®‚Q*¿ps“×ð{J@*ÖúGuhC,"÷MYv»H+}(âá—†Å9òÌ }–»Ø6·áÚ\Û„À3^fålKÇL.¨Ü%%$·ÈF7O ™#ѱ‹Ê%ÚÕ¤ÒÀàq‘ÍB¤«˜:}Têà„9:w8ʇ$"`\®‘%+4› k}XÍ·àP¯[ÛÙÓ¤#K¢ &.8¢äØésÀ¦™Èõ&ã¤ÏÒoâÉ Ä³ìN®mxç¶ 3 {#KKë伄ˆSºua>`ƒ€”}6i³¨w“)~­w9ft¬ÕØJÊX}^ÁèÕc‚z"@Ô){ÒÕD¬˜Ð3ð æ´™Ò5u`×]r+§Ü³ºÿ´Ðþ®MÎiÁ¹û‚þ¿¡±Ì£>ʧ?ýi~ñÏó˜L&(¥Øßßg8ráÂþüÏÿÜ@‰W®ððß¼$¼ì¿aÂDÜ“BTïÌõ³V…ýÿ³U!”m#M›©ã’*¿nO¸Ùœ¬•T‰ONÈŠÄ^Ÿ§šÊut@¦Íjh,̽㈠ÌU‹Ò“”… ŠÒ†¶íŒ”)\ˆ†¥ç#Ø®ìÁÅÓ¤L%É¢ŠRI²Ä''B è´§ø*=q³¬Èq ³ÎZÐ"sü“œ‰pzeôêdØçšÕê&&zå¶{Š`{… 1Ófï^‘mHlŽÄ}yV”!…"w ŸEW|‡Ô<>é*„Cº(s…v\”kŒž´Ô¤‰µÁM™È„OŽks'$~+ÅYËP«2mV*»\Ï<¦*Bº¢ÿ:npÚ…²ë{2së‚.„²VÕª^Õ¸HY¢´ƒ™ˆÞb䢵a¶#Œ±¢æö¸hÓ¬ O¡·Ö£þæKÿKHqÿf:ôŸüÉŸd8òÁ~—¿üåüðÿ0¿þ뿎”’û±£ßïóÒ—¾”ŸÿùŸ'MSÞö¶·ý#c™‡63âšäeR»—4kwi'í•uâ0ª !¦t 0Ö…)!û1¨ŠÚ˜ÄÜtsÑÄú¶¨ÈS Vu~øA±NC®èI“Á~sqU¸ô»#â¸IrÔ@qƒËb"ÐûÑÐè ËR½ Ü ´nÓ·áe[°eSÙ*&«í|‹Ü%Y…àé×OQ‰ƒö¬<¢a\ír 6hFKcQ d«¯‘"<æsP¬yÇHW1I{¨RpÚ»UïÍ≡5J8d¥ÏÀÑdŽã”äÚÀÛµžÕBE+ÆùMgÉC»/l4m%2¾îqÍ$.pi²|Î4`ØÂªö0J„˜ˆ•mRSäŒ,§"¶ïB’RX—¹ÜJŽ*³›œ%"fÀˆˆ„B+i+­1Œ¶¹îªÖÌ»t™ó¬[þÅœÊÖVÛœCI*Ê»¤¯*Ô?q£êÿ‚Ö¯O>ù$o~ó›yÕ«^Å»Þõ.ÞøÆ7òÚ×¾–7¾ñEÁ[ßúVvvvøð‡?Ì›Þô&|ßç/xÁÿôÂY]€Š@xV‹^²¥…Ü«â.íßï@1”Œ{mD‡îC9$–¦û,pÈ:G áŠgœ]çÅ$›”R²îr‹Óõ4»-nq…äêø"Ž,ñ)ûÞcݧÌ\õÊ‘oŠÍ 8–枟€ZsLß‚3(qN§”+Ö#¸>„Ü„ï:;Ðr–ÿÅ:¬CÖqÐ-AFƒÄU”]§.æÚ¿,7<ÎK˜ê.»ñÎ Š±k‘6¦qv›§x†{¸Æyv9MLÄb‹¶Xpt¸Eº qºî0­§ü¬ë1=ßàVxŠ¿ó%^`³r|û¹¼¸ŸÃù&Ë/ö(# Ó ˆûI3à¶·Î5Α‘ UµX@y-`±Þ§Ø ã_À±ìó4÷rƒ³\á">ã|bâ›ç=0kÆÖ<'„;þÿÀC,i0§c,g=ôMãå®=IzØ$,sÃ%Ð0iöø<s›mŽX§D2¡³B˧¸áÂÂ;iœ¦1x&¼€CÉ“ÜÏçy‰"NZà*ÊÔ¥Ì]Ô5çîl¢Å?}NÀÝ#øÿlAÿä'?ù¾ù¡}è9_¿þõ¯çõ¯ý×ýMødLè!дXØ8Tð1§IÌÛµó}\fA¤Íœ#–ök‡’üF×±ªkzNÛþÞcè[¼CÉuÎÓà˜µ:HäŒ{‹C½Î¤0ñç[׸ŸâxcÖó‘›0Žé£,Wb›Û$ìŒÛìqóµíín²Á¦ôðÉ8]î∂]¹có¶—HëûÜaλ<Í}äø„$œçz&“›œá•wG:+](þ‰UýœÐ/]ºÄSO=õœï½îu¯ãu¯{Ýs¾÷«¿ú«ßøu‘à¸ÏšÌ«)1·HW¿;vrYÚì‚,5ÎBÛð9¥pXÒ`ǬÑ`Iê,|R”#¬;¥6·ÏQI(%‰¥AžÜÐ4£yé1wÛŒó>ž4¬zJDK£c>ÂÀ>^‘PavÀÂ×”K;In×Mlk›lâ›ç½2YŒ¬»Üš¤p­½l`šå”2ëÃR8ˆB›f"±¯KÌsÒérm¬)!{l‡ÉÂ\ç¹ò(táÝ´€L)À…Ai’âs”¯£<É|ÖaùL}GÀyãÙ¡ˆ$ MáxÌmôr9ñHMô- {PæªáÔ¯•–²6¯V¢É42¹U³7±ÏÍò)RXÕOi±CIYJ‰»5ö@åuBŸpt4VvÖ1 ò݆yýö8  ªëOP §NÍ|ïPû¤Kµë""Nî®új!þÉsâÉ„þ¯ýUѾÅ)CFÖÖÔ°& ÿ,hYv´¦ËÌ:‘™”aš½§ƒÂ)UíK®í¿áZçJúe˜ÙMZ,k«Ôu‰X™ýAd–ŠÀS»gÏŸ¨™0v ÖÂ#"¹âr˰ä›í%±lP:Ü"PÈFA9÷ÍE”›îÝOÝ¹Ž ]£ŸÜ7-—s_j œqab gP½¯»"Í”k4™Ž((rbièÁFJœ6H ‰ÀLÐÀ2o¢„ +}$%±hâJ‡ ­È•GàxCÄì/vðš ¾8alÎiãè’©î‘–>g½ë¬T„fÊí cÞ3¡k÷å3zL™Y‡?‰bƒCŽm²]Lƒ6ó:EÎ'cÀ…`ßjÕ+Å‚ä}|RºLYYÉœq ë$9c¼ãÙ©þˆC†µNÝ'£Í¢†ç=ÚÏ@Õï¬V2UXNelÓbqÔBIOOð¸;R\îJ2ï߉¥ó­t–\ÍÁy³+-Aö1,Æã¡š:öëbî§Žùs9×t[1:xëtSFÄôÜ ‡)]Ž2ecKê:Åÿ?{okkv–wþÖZßüíñÌÃk¸UåªÂe»Œ+¦b¤Q„Ai³ Ò/ IDATº1F( "':Ф±‘' BÓЂLPÒ86ÁÝ  x(5Ïw<óÞûìù×ê?ÖÚûV\™H6rI%Õ½uÎ=ûîoßû®÷}žßó cYŽÀ }·ú›ò¢¼ ’„„INlæœê©˜rwøÏê;ÈÏ$Ì:)Ùµ¬¼Í’J{°k-çæ1’JxÄ;cfA}ÚÆäU|¬ Ÿ8dr÷ºmî¤ßb‰I%ÓãžqOä9HߜɸmûæÄTçBƪ‹9‘–¤f\|Ö·;^õÉù1/rqiE-Z yüÌ”Áz—Ñ´ƒÈ<ø¨m𢭂p\й{Ìý­Ç¨•}›þ„Uz˜–d°¹B=á9{ ¥ohŸÎ!šsq÷*ì|ŠW/!·Kf´ÑM…¿™#G6FÃÅ3/’&cVÅ C:q}¡`ÔJ™ö:˜ # |Ú¤vî»ÁËx’) F4¹¼z{¯9‹> àÔMÃð´ýìt½ñ!®s‰¦$ Âã±Û ¼[†ˆÑðœ²QÚ=PÝŠ»gÏ’y=ÖyÀ<¹*´Ýߊˆl3";Š1‡Ê6§PB²³ ô±BŠÓj•ý{v)N#Èuå1z&ñÏ䬮³}mß¾7/úIÅ<Ü„ªåY”qGÒ;Þ@x)kxÌ6Bíé]ÙÝöœÜ`‡„Z*Ž¢ ¦QÂ\6d£P‘6Ï=8¨9^gœXëjƒ ç¹B™úŒ/49Šwð^(lZ×3è&§¼lç B2Þ¯Ž«=±Îéá*q{N8Ûkl f¬¶TÊçBpÙÖ ¯ÉQwqÒfX¯’OB‚ÖÞk¯ùZqÂ]<¢b„õúaŵݳd”<‹ujàO L!êä얎ݺmF™ÕËŒ¼.¦’Pr/A=UÁ‰õÉ'‡±,؈{ܹñ,%>çW^¤%‡Å.#ÓFG qùVNèPùþçùùÅUÐÁ,g¹æö“‚>]¾R;ðKÄ.7–êÉ…ýJ1rŸ_å8˧Li ½z9¾-–@µÌµ¶âusŒ25…´(‹‚¾@¦Lé±ÊE^dJâÞ+N„—ó´˜2¤MGò`ç£Ë0™Ëæëg¹_ ï¥Ô׸Í@WØQêR‰þJ…ybþÓ!\\‡$€(ÿ0䤱‰Šjˆ œ7°'a_SÛQžÀ¬ßâéÙýè\Yy!ÉžiÚï)ºò˜R†ÝŠÖnñ°E-$ÒÓtVNlö»ÐôFkíUp:Z¡ì%윽ŒŒ+æ:¡7[%H «ŠWsâîœÓf—Ãé»ñUv¹ÎÈo9&“¦óçXÑ^@Á6{(4'¬;Æ»mºŽØ FÑ`b­It0HZŒþ³À‹«µéXÏ‹ÛI\4ê }ºôÒáˆe#Xáñ·9~FÇÈíùÝSºËÔ¹) »Ãž·ÈåN5tâ¹ Ún1&  Ï ¥¸µ\ Eõ9nDýåüÔÏÖý߯/¼çÊ­µšî÷C÷kG3#¢V·Ál© ïxŒâ„±i1÷"®q–©°×N̈&©˜SyÖ’¹X±t8¥çP¢‹xâ…Ìžs¤¨™J›I±àiLEÊ©×fF˜=Ÿù,E–5ú†dÔè@-ѹDµ5FÀ¬H¨M…¦z1²é`‘8SQüAîÛ±ÙÚc‹ *F¢md!VOƒÞ²ûߌˆÃÓ]Žv ÖÔû>ì‚–Êî›5ôãnx›°Å;ÿ™;d.O.2.ZDƒÒz¶5˜¨ïŒwcà Ù¤F1¤ÅuÎp½Ž+ÏÜIõ¼OyV¨Ø}N@“–ÍÆ~Êèd‡ÉÕåã1³Õ&ù<±\£4åF´ÍØâ„5æÄ¼8¿öuîS÷=ÊýxÉ#ª7صûl—Ôvšu9¸q=ô=C•û¤ÙÔæÓ{0žóoã€Í¥Ž*#âd¼Å|”¢=ÌÌâsk#aâ‚:ì‰ß_.,ôK¾Œ MÛíØ*rÚ?;S—bÛP}LåÚ.ßî„è È<¸k žÚ¹ ë>Ü…\¬ìMKáFl ˆ¶ÆôåÍ}a ‘YŒŽ0ËÿWÎBª\1ÛkQeÂ3ÔUÀŒŠ™— •&4ЫڑCÿ`‘hj)‰ƒýh…#³A,3e—É´…1‚iÝÀ—¶HF"³"»b ±ºØuIŒOÅ6ûK¸‹eËWË÷;aæœÅˆÓdì&(ÁÒââ»±úK¡@öÏ·´Á 8‹â)NXu‰pÒe®×ä.m+`Åar¼åX½Ç*I›¡ÃâÚSÇ"íoaÓk0a›ý[Þc•xŸCÊ^ÿ•ߦMþ‰_òÄY@d„[c¥/ýôiW»u²ÔCT)ë\K ˆ¾Á.cšKj∹ yYû)FXàÌ)m|Jz¬º†tÀ””„5Š1=VI˜1”-'¼”LI˜œ¶©+•L£¢ž(ª~9˜¦Bž«Ñ3E¦VÏî3/b¦Gžª(Çvô.¶4é+JNÿlÞ{hÙ L)ÉžOÝÕ²ïAìDaÊy=˜žÁÒ t#+ÚŽš5œú%*yAFáN†µí§¸.ݶr#ø€Â]ÓÉs[1Im¹¿¦/í ÃÅ!êRÙ1aˆ$Ûðñ}¸w ^î!Rc÷A[ÌOì)C¤ŽÍ’Í,VkÄ©²p ¥Óeî4“/3TY`;ÄLh@ &e×ÞüÒ jƒÙWî*Á×d“fѨ eÉ´n‰i §Ù ÓãÍ•>µ°êrßùûïËb\ž0sbÏ]ß3‡«µ¢H;í°BºÚçŽ3`–Ó’Ò­PLXa°¤Ë-4í>†ÌH\ÞºGÊÄ h¬“!r8áÊ-c”ÓH,^«Ý›Ï9d‰q¿p'å,3Õ²A´Ÿ­en-Íl§ýì'ôúËÅû3E&Ü `qÊð›Â¤ÿâȰ´«Q»ƒžï!•fæÝÄ[ØÔÍ@ ûL¨i1FiQrù\ZœÒG´\n@‹1 *|2ãË’ÓªC_­0M"2Nô:2©ðç%ºȰ"Šr2“ "ßÉñ“Š2öHC{Ÿ9³T£kGœ‚é ŠãÎ9Oô£°º•@\°¡"xîï¯Á4 ŠÕò´¨Ú5þZNuRÏ,ÍË¥g_Ôz™69q *bìÏXW‡d:²¼LÜ|«5TÆs\È–EmgYD},-a‹ÌÄ *ƒ06  Ê²2¶Né“«,3Þg$ax!95ŠNÒ'-ÆÔÆC×’R€:_Àãöð“{áRLºÈ\…FÔY×ȼBzÖî&í듾^Nít±6¦œÔFoq>q®‚ L)–)}‹ÃaIL>™©˜jØgñš{þßÂG¾ú¼]|qô1Mn,´Ø¡/:ÄEêÕ‚ò#ÜéȼäêQ-w¨>…ݽªÀ*OºÑfjûÎ#i–yÆÖ·.*-=¢¥Ç´½!‘C‚Noê3gnÒ¨%$%aÆK\­6`d®bæ€6î+Òñ°cñ]gkÛ6¼b ŽàúÙ,D†ÚvÃ9з1®¦-¬U¡°\d®˜»™Ì}h†Nj*0 V ê «@ ¤ÑȨ¢šÐÔ˜ÛxÁæÜ3ÔÚe+ „PåÄþŒ*  K/FèÖ>‘ÈþU,ÅnMF(4•‹]|(ß-¡4 ôkæØô•K×ë³Â€žSWN¿°$N]~ú"þ¥ð áŠébZ`DdLI\àLä,”“%B.‡ï†Ðå,B9|J2}Îñùg›J}î‚þåúgVq3m-tªÊú±ûN­Lä~Ïw¿§Aƒª Rk1¥£FŽÑËkb5 &„U†ïÛk½ð /2.{-K*éÑ`ŒïÙhâ˜9¾,IÒ)e@ Ì\¢Úsäu'ª€‚cJ¦$¤L—üld›שÅÌHÝã7sZ÷š.Ö8á˜up'Ã.ƒ%›¼FÑ¥.Ð#$§ëF‹ÌmOTø¢ Á„UÝ#—lÑd²ä”Ûóàdékïӥ͈möÀQæ|ó\†ÔqÈä …ßέecnS†¢•)æ¨Vê? ,âð6®mÁ‡ö™¿Æ'|MÆÔhd£¤î˜g%æq¹Ì|Ö¹„GåòÔOåT«ëNÝ«¡ùLEƒp=#«=L-1Dëc²AŠ5f,ðÎæT“ÀÒê®CzÇѪ¼¸E¹mgøAA$3¶£=’{‡gQʪÁ§&åØXSkêOð¨˜qJ‡§ŽÅo±±s‡É”hNœ }4ÒíØ¥Ës_”Rûë.*<ŽØä ×™’Òᔓ¥Ý°pMÛœSºËË¢y³§cßÑ7Ö Ó"#æMîãñå`ÊR¡h»Lt;á™âQsÀ%ƒ¿â‚þåúg<® ¸I€‹Ýäj!€›¿¤àãN„s–šQB¨+„¶Ï†@ÌIÐJ.…°¥›â„ä¬qB¢çlq@Ï”Æ225a¶œô,lJ)³¥p²Åˆm.ÚY#©ŨnP©"‹MÒ`!6s{ú¬kÚùˆî|ÄY¹7­ÑJë9µò8 Ä÷JjO¢…ÀÏkÃ)FZº©úº!Ü«Y‡ÍÏ¿ÌN焘¹-Î(æIló‹ŠÑZ‹©²£6IM‘øÌË”ƒpƒN=äX¬qÜZg"›¨¨"W!…˜ +~"Íl3ådcÓú%“šl’ÿmâdÀóE¿»…nfíÎKª©‡ Uí‘©¿²D&K´–Ô#EÐÊ‘‘A™š¯Oá{4“1³Õ”SÝA(Ãf´Ïi·‹”5yÓÆT•ÏéF—ⶀݕ«„AÎÁÅmf³zÊ×Wà|~íKæ2⨹ÉF}ÀZÞcZ5¨”Bj”"·jVËJÔd*ÂÔ.5-ˆ©©œ"´!6s a³àW«H Ä¡¶¬j©5#¯e}½ÎŒ÷¸M]&, ªX²áÕ5¡ÎAÂP¶9#®ã‹ŠÓ#0%S•°R ìk%j™ñ;é>g¼Œ¼ÇjûóǨ„âTuÑB`j‰š´ža¤ 6sò£+Š àÈÜZ’YéVŸ½àW_.àŸí„¾  _Rȸ¹Îj¸¢Ÿ»uÖ O©!P$´Z9:)PíC²fÀ0hãQ9!¦t„Éš5ÿ„ó„N¸…³TZAåB‹±°\²éNö ¦t,…¡ša˜¦)µïm• ÒÆó©KE]„œé\aOŸ¡*íP¥%úl€lT´6dϤ ÜtcÈ4æcGL¿&¾ùžÜ°ïE0*¸óžgɈxœûP¦ÆKêó>µDk6-ŒÕ”ÊMÆ ×ø°E…G“1}³B‡SfAeFá\†È¯Ø8sB?]Y¤ŒÙOϰ~nQÜ…¹±¯OƒØÚþ3k×1º ÐJ ;‚Y³i›£N¥U‘·ûSôº@†š±i›}#Èë)5^PRÍÅ0²Ó V󸼴½ÚflJ3¢DÅÉJ'CõK«Œ·UÑbLá&t-Fv—n2D U¥("X!òFvÒ~~NšäÅSÖ6¬Ý`Ã;¤%"I—‰ß$Ÿú·øŸó9ñEYÐ{Á Ï'›TÂǶ0–LEBèvâks]îÚA¼(h‹SŒ„™±ãðDL©&²§ŸN5"ï†DµF™œ®´{ð©Jñ)‘ ¼ ¨Jc|0•àÓ›÷³÷À6Ñ¥«°M¡‚åi¼FZ€€ˆ0Fp¬l`HG ÒÆ“µ§È¥ 86ë„2cw˜ÎlâüFBð‚#$Õq±Æ9•BxiÆÞöŸø¥ô÷`g½.©DbÅŽàÿRAû®ãýU/°WCÌž°¶QÓlŽ˜E æªÂä Ñ­ðüÈ@ÆÙ,&{:![%UîñO>hÓà´`e÷„ÛF/òŽã7 ô2—ZcwV3IÕ÷ñÏeÔ•D†š´5FC+2 Uí‹9ݰÏQ½/-­í>ñ(OWwÛQŸœq^]!õ';l¨r 0U æ"æ¼¼Ì]<Íûão >Y!eM,2¶ÔS‘ˆ‚‰lXa¤HÙ7hÛuwä©H‰È8\ç…öEJ0–M21#æºw¡#ÄÌyAÝfãyUɦ8²Š R ¯æƒÜêºþ<;ôš/ÛÖþ«÷DK>ú샘Z  Ï Hƒšˆ:Ç£&_i"4yUãMɇ ×Ñu…‘Š:TˆTÀ®D‡>·w®’·CŠÄ-È£€< hö¦ẗKòE”¬m–z­‘QM8-)V<Œ S/¡Òö×}³ÂËÍ£Äà H~Q¸(^N Ž6שj$Ÿ“…–"w<_絓?£Ð!ϯÜjÁiÔA•çFWxòü½è@RÖV©Ž†“݈kðÈãbš‚ÝÃ'h7gT%=ô•RÜí?ËDüs?¦¯‚4ÕˆGÔ}TuEó²aeeB#-Ø^=¤ð|j­hgca›SÝ%Ùä±ÙËtIzuÂÆôjW²ñªÉö§F“û!|Ã…ê*÷™ÇÈ›1ÓIÂ#W_MÐÈ8ÇóHYÝŸqgòRÖü/ò­d"âÐÛäÙíKDbÆ…Ë×yäÅWÃȰþá#ÔõФQrÇÆUDb¸˜^ãëý?¦ð|S‡²[òqyÏDOsÏÁ³”Êà xpG÷^˜Ì‹xñÜíh-H;öüó3¬â”N<åöÆe¢¤”>ÿrå2›_‡!eî#½SžP[HcXÿXiÀZ·ÏòQ<]r.½NXŒMƒ}³M¶™`¸ð×û„>÷cFAË)“­Í8Äæ‚ ìQr¬Ö^?³Ã1u“ó.ÝŽ4"³ê÷@Ú‘Vi‡¶JÔxd^°Üs7ÍUUÈÊ ¤Fzà%%©ßFd.k[8O5Ë—‰aJâÂD4Gº‹È,YŸ1)%CÙ¢—­a*żna2Ah2Jíc úØÄ ÌŽÌ”,ɶšïÞWÁkß”ïz,‰O²]1XoQô˜¡ {À¦Æ‚j"C[I`™GÔ¹‡¯3T]¡k‰R5ΘÌÛTÓОŠë]z¨¹¦y¨¤D˜š¼é1œ50]I=ö…AHƒ§2*`bIÚR–>eîÓ’Q8' fVÝ`B4‚5qlA5&$3™Œù «s™ ñ(ÉcA9ÁÔq¼æÄ& ‰¦6Ö&ÒÀ …Q7÷N¹ó—·HÂPà¨Â¿,ã9ðŠ¥Ê}æ0Ú“Îîf“ÞF´–'·Ü©ó 7¶¯BË[»©¬ÊÝÿý˶µÏôœøú7½s á ˆ{4¢¡iïq1yžÿ: Mƒ1%+ô™?så-äí€kÍufžÅ½f"âTtxQ\d]s(6ñ°E{FÊù"wñ_ÅL¤¬™ŽÄ: 3aEôIW§(Y»}q†/J&4QTCyåahq€j8V¶PkƒˆkÊDÀ†Õ–U¿7· åÁÝÆÚj;^“ q¤1=Ç„¾ ¡'-%«-¨Ï)ÊʧzΪGKRõq1äg­•=ÛPÔAˆšêªE×Ö­€Y³Ép½ƒ{özU` øŠ j÷`ʬ…OFÅIBÞˆIƒ‰Ž1Yᩚ0Ȩð­2¶NìÈ?éµ§±YBb´³$ú”ÎìB\„Às1¸ÖïkE8ëÛ¼t§X^d°÷X[ªØ6´…Àóqä˜æ»É!Áœˆ†CÃ.š…¥øYîµÛãöúÍz¿ßg<³½½Môû}F£­V‹••Œ1\¾|€0 ÙÙÙÁÃññ1EQ°½½úkªÌÓÝÐK0Š—æTžgN"Ić $!£0¡Öe𣚆˜RúÞÒíÒrÌ„ÅAbÑ´×(”ª©|ålªöpP/V‡s¾,ì” 3ÒrN"gø²$2A] +»¹+S³ KÒØUAéF¸ÊB°(¬ËUT.~*²kƒ¥ç|j¦3KÎÂÞ)ž6D¦"T‘š[‡ˆ¶£rkäÄ ¦ #ƒkTlÝ=‘—-\‹ÃI`J w¨•Ad†yQÄ í ’xN.,êy!ôK¥²@Žíë̓ÙNBÑñiùSB¯B¸`‰FäÖ '5Õ0†2ö™%)ž_“†SÒÈ:—¤“0E“Í IDATbŒ=X8A›TC'1s"·Yä§k¢51  *3ö=)j¼¨F%„Ø©à"sB¢# 2ÖèDDZ̈’½ž’ßÅìFdxE, "7ˆSsS ýß@å^×5ÇÇÇÔuÍÎÎZkŽŽŽ(Š‚õõu’$a2™p|lQuÝn—N§CUU†!kkk_xAo1b…þ’ŸÛtÊÑÛùbÇð±³ù‡ä$îAnóß R¦”xË45_—¤FÖîÍÖšZšå‡Í35amíHÊØHEYB[‰È©¥ZZ©^J+õÊnü¥â9p68^bk‹Ècœýͧ.<ê‰g‹dîC.0î&e_Ú½ß(úÐ#ÛŠ]ž³‚õm¸¶£-«›Å¼´B“ —J„õ¤œz³rŠRin*à'b‰Ãd˜Hê@د5ÀHXÏhåE>-(ð5¬[ÔÝƒÈ êÀƒ@ƒ4„aAÖΉ“ JÖ4˜Ð NÖmRa9ý |j.C‹„ß+ñTå‚OÄÒ:²´ìˆßk¥YÄßÚëaåI D«F2¡aŠ&@ é÷Š%"v1ÑI™::!KÛIé¢x*}ûß7©…¾óL„ÔBÞ²ýó‹âìÏ*Ë’_ýÕ_å½ï}/¿ø‹¿È}÷ÝÇÛÞö6Z­?þ8?ôC?ÄÅ‹ùîïþnÞøÆ7²±±Á·û·ó‘|„w¼ã¬¬¬°±±Áþà~É—ó€‚"†²¥ðîÓˆ±aÚŒ˜©]ÃjqB#Ñ’#fB)?óÄO2"†ÚI€öyRv$¥òØ ȈX¥Çý|š.Î]c8hÞU°F†™pOù4ý CªçHQ³Z÷)Ì)q]P‚‘lÑÔc¼+[ë”Ò†Be*¢j„´ôºÑÑD¦¤ö%JiÄÌÚÌÄ>8X¡ÝQknæ»ûNù}Ö `Oœ^À ï.ÉòOþ»_ Íy×G^ÅïOþ{âtη>ôm,qKqxn/.éM¹aCñÅ{ ¢œLDK"bƒñ²i9òÖV[CZbŠïü=~‹QÞD憟ÿäÿJÞ ù®íÃíÉs¨Ò0öí„ÓÛ¬à>ûúÞ0ým^!¡L=~é±7S÷<:÷ö¸ýì³6‚¶-é‡Mb“6J؆‡¼ñãæŸ!¾Ró)}?Ÿœ¾œÕð„oðÞg3!Å9‰WäÜ@ÍtÌkø &.ÃÞâ£çÄÄÌ8ãß`¾ Œ&Z/>ÈØð€÷IæDôXåÏù¬Ñc…>)0¹Ò(ò¥÷ »á BæÌtÂÛOß„‰á+ø4_ÿ !•/èµÚ¢dõåc{½®ý·Q¹ïïïó ¿ð <ñļóïäè舷¿ýí¬¬¬ðä“OòÖ·¾•w½ë]¼ÿýïçÁäÁ䕯|%o{ÛÛè÷ûñýßÿý_xA¿Ây$gÝÈÔsÙÔ‘;}[[Ãâ!hpÆ*0ë%¯ý„5bføT–V7)ðh‹Á©êP+e±½”7L˜QRyÌãˆRøxÆò¼[fÄT¤LI \—fa65-FÌœm*$c‹ƒe?#f•&4l¯i&sª–Oæ,l*çkòi 7œbÍОñ¬¥­k@ ØPp~>qþ&ÏL=ŒL1ÏÚÝ;1pÃAea)ßK¨w<ÄùóŒÂ’ît6ж†#ßþì¡SÏìصþW3ÄÛs‹° âÚîñg’ªPIIÙ‹™ô[Hj†Z+&Eƒ¹ JÐRÒr½>ÃX41BPûb‹ÑhZÓYƒ~°º´™•N˜³8µf:âHmð·ÍhYý–"w•sVËàø׋³Œu“•¨ïмõOh Ñì±³Lx[D¸Vxl³ïr´#Ée³¶°WF. n`V(tvKŸùê/YÐ}ßç'~â'Èsk=’Ròc?öc!øÝßý]>ñ‰OpñâE|ß§ÕjñêW¿!ï|ç;yÓ›ÞÄÝwßÍ÷|Ï÷ØÕó¾´ º)øŸåOqzJ:ÉÉš>ƒ°Íõ`€¤žQEÃLié1Grбiò÷ÿ]JÛÄzyI£š%r¨‰â)/?ÿ”ÆÇ›Ñbăxúà.Öï:₹‚¬5/=ÃI§C]ù©i3õÖ;¸ýk&¼é5ÿЍÎѱdØHQº¦ÚÄzzÈw®ÿ; ÞÃ7/öæx™a1 KÛ ©EÕ’Uñ]»¿Í¾ØæcÏ¿†þ'ÿ´áïÆ¿Çï*¢6ìù[´ô˜h5'»ËÇ›Õü­wòÊæ&WŽ/ò¦_ù-†²ÍߌßÍמýkœ :5=Ѧ•iûöTÿ`ôa^­?D~WÈ·<ÿ~žÎsWçqþ¡÷/¨ðY úäk>ôj‚I1´Õ¯åO^•Zc‹rB: ؇Œ¢” ,ñÚ64e,øJï#q/ïá[¨yÏT¬‹"3g´“¢†U×¶ óç£+ì˜ë ëï{üuiv:‡ŸúÔ§øƒ?øƒ/¼ 7³BÈEÐŽPdwç7G?g¸ŽDÛ“!MF4ÜÈË£b]Ÿ°VŸ0ð:DN¸šŸRKI/j£53±#,aÊМOm£‚žX¡ž§› ˜:?¢qÅ|F¼ìúRfît'–_3¦‰F-(ͨhÔ%^2@V†ÚW4…“‹-³ H4¢QcVúqeýà;Æ" ×5 %46ᓇpiv<Ì®¤KœüÀ޾¯:Uï=v eJC}¤ˆÎL)ª“‚ß͉3f§Mü8' <‚³sŠV#›vÔ¸ˆìÖŒf«0¤rJ¼:ÁAêO©dðÌ**iøSúÍ€jè#|ŸxsdÛžYÈiØ¥ËÀ4%Ùs/DÈëk„Íípˆ-UnAŒ‹0Ëp„&cjeí0#Z´’²Î‰‹iM—‰} Ḭ́‚UûOEêÂ^Ë[!'`ê¾o‘ wÄ:]úäL)ОÇ-<£ÇªûÌÙîÿM*qã V¹×•ᱞ2×¼øDþÙ{v!8<<ä=ïy?û³?K†üôOÿ4Að#?ò#üæoþ&Óé”N§ƒ”’4M™L&t:/õ‰;B‚–’¬pšØµÈ6%méÛÐ^1V Ù"aÆ@v ïÈÑÏ ôÓvæ#`vuãX5Ÿ_àçxžÛi™+á¡×fOïâQ«9{í!ÙEKV’Õ¨G©}â`NåyÌIHÔ ÷©/¡ò}B]PH„ÅþFUŽ©s0ãˆB`jðVkò®ª4ª°^ï¬ãá7ÓÖæÖ¶Z#,“BäÕ4ԙϸ3õcäFLp!@<µÏA¹‰/-ìJ ë£Î;!þ¨bÞtš$±ÅŸ“z͵„¢6㽉…ÄÛpd›wá›s*˜æ±#äÕLÍeh‰1qš¡d.íϪ¥Ä_)ñ‡%Y²¯·m3¥J†DA‰§k«m* Y"††¢2¦K?XE IG ‚¢U“ªYæ"æ˜uBrÍ&7Ì.™ˆF/9›jL ÂF…H4•oí´SRÌ6¹°Èê¾Ye¿Þ¦Éˆ®wŠl²$® Dh«&¹ðÖmä ËÈdÄUs£B´”Ô^í°gý·0Î3ŸEå>=­x샧ã~ýYŸþ玂óçÏ£”âÒ¥K<ýôÓ¼å-oá-oy q#¥dmm^¯÷Wƒ~’.#6lüæ)·i,h3â„5loA%CÚ(*šUzÌdBO®0¦É¦È\DLbûð^ðxKal¾óW¢.ÂXhhŠ%Œÿˆ ¦2åMf$Ë‘$ÅZQ¬ŠZº)Áb\Uá-A9Wõ9Jí“!ý“MêS“IÄZM>1µ‡écE/}i1°Úb™h86/ý†´#õÛðÌ!è hxpð¼¹ÇîßžÙÀ=BÈ®6mÊÒyC•øŒNVa"ÐÆ“{ÎöÛ±ßä°mÑ´' îÐÆ'%˜™$S L **‘ÚÐ?\£žØ¦Aøšrá‡IcÊ–·ÏÔ¤dÄ¢`;¹Á^±KU{„*gGîqjºŒt _œç -3b$Z 3J|F´¨¢)&ìr¡Ë€1Íå|“CÆ4PhJ|Ö¼Žõ:ûµ±Ž„E²[“1cšËÿ{Li8–ÁœúôX[îËWxé«8º§Ëõz<Á‰\³Šó  ¬0%a_lsƒ~uö÷)§_µöA’²à]~=¡(ˆÎLI›c&]‹PþQ…~\!=ƒÞ_ }ÍWŸûcþìã_CåK¼­‚3W¨¤Çyÿ 5е‡ð !çô5k«21—ÖŸa/ÝAE¹æ“‹G£ûH3v¶ö¹£z–ká9„0”ÚÃ(ÁªîsÏÚ“l\?à(Þ¤>?õm?_Ï\;Ãÿô½¿„ØZãÌ®²óÐNÌ:+glnoø^þ5>CÓæ/ô+\ßäOÞùͶø¬š¯ï¡+Å×¶>@$r2ñ·Ä»X£ÇלùëßzıYã7ßóFþÅü#jCu»‡œh67ö¸ýkŸ†Xð°úMF$í)ÿô;ÿ1u­øèñCü³?ü)T^sé›C6-*u³yH›wÈgyEðIƲÁW=ø.zOq0Ýá‡ßÿëàÃÝçãö Ï %Ïê;yëŸýæ=JT|ã?}7*¬éû+L£&©žðÝþ¿åÞò ¦AïýºÿéÕ\»r7ýöoÁ‰ ý»§ø›9©™ðwîù¿­6ëÿ“·ÔÅ~¦zØñxÕëíäò‘>óŽÝßþéŸò;¿ó;¼õ­oEJɹsç8wîwÜq‹Øó,ËÐZÓëõX]]ý«ÅeŽ};#!fFNÄĤR&Äd˽fZ¦žá²z)Æ(¬CWTTøÂ ¤ NÖ¤cÅ-¢2¨†UNe<§ÅØÑ&DdĄ̈Ý~¶ °¾IòÒvyêVtew¼S™’Ɉ -PAÍ4lQç>2©Ò’¬Š¨f¡E)fnW6²…8¯BDCcŽKÑsØò!Ú€çŽáÑuèøö{ô¢ÈÍj.Û[ý2 3i¿flô‰¿˜ç û¾g{n„WcwEÒ¥ô@QÔ¦”v—' Bƒ9U[>²U¡K™ÔE…¤–BÎ-ßÞ­74’XÌi…Cr0(»K¡š•±¢’DÌ–×…À¤Äc"Òå ×äXîÿbr£‘ÌIð3¢– _Z4ïâç,8ò±ŽåˆÀsárØmÈOŠD»«*IÝÔ`ñu>Úíã«[Vš.TõÛÚ;Þñ>úÑ’e?ð?À›ßüf.]ºÄ‡?üaªª"IÞýîw/wîgÏžåõ¯=¿þë¿ÎÚÚ?üð—ü¸l6ô~´µäéŽÅ¯‘(4‘±1)*¤°÷z(r„1œ‹žçFwЛ9ü‡l,qÀ—¹`u±7;CÞK鬸ؼÂÞå3¶áBaÅ£S ©°ôUw¿¹ûOÀöË®ñøä~ÌP£üŠ“õ.ù<ä$^a¿µ¯Üç5ZNt#ÚdD€Ýä㼊®pmàQð(÷á»Ée…b‡}ÒxL·8åT¶©ð¸ýQZkc¦~Ês/<›0ymÂð¡”«ós´ãSvƒ=º èrŠGI$2¤ÒŒý„ãéqÉ–ºB´ÆNz†š¸ ¥°æpÀ];OÒ`—÷T߯S/ÞkŸaë¶A—)È’±lò>D—±7çe;‘òéù\ë·â¿²"qy ÕeŒ™z SRV[ÇxôóUžß¿„ˆšÌ‹–÷÷D´Í)µð˜V)£ëñ=²Báàœ£{»h$Ýp€šN¯%ÐNL—QKÉñm¦O¶À7\âQ p"ט([¾ A³˜ ½šÛ7ŸEQ³ÿÜžûØ%AüM#¼nNTdÜ¿ú(º¼ÂŠýeGîåç)±‹\‘ñxÌÛßþvžzê)~í×~oú¦oâÍo~3oxÃø½ßû=^÷º×ñÈ#påÊö÷÷yàHÓ”‡~˜Ÿû¹Ÿãàà€ïû¾ïû úB¸ýäbÄY;B˜e 7–ûiíöè]N—¢¥9‰³9Þz¥<æXåe·ÄÈæîæ±*Fá¸ð7G éœu}Bœd S?Y¶„ŽUÜF;5ûÜ•ú¦KÞZ4c–Û4±u‹ô§ôŠ2õÐRÒV§”: ?Ú k¥˜JØýte0Ê l.ŽGmd¥1§`& ³+`ÍoŽ¡·a‹úªA$Æ¢ «›Bt§F„  iñˆ#wæT©‡6 +Dª1- Ê®¼´DEš²òѹdîÅí9RÕz®ÈçJÕ¬wÅm­“¼A¡c”(Y ú¤L-FÓ]߆ƒÏEL©lÁŽÕ „EäFd„. eAâJ˜Ò¥bLkyÍ•J6˜0u;[X­Â=eæÐ—6ÓÝZáBg…»‰h8S$hÔRpç»×P.•Ð6Ö5têWk[2‹…ç-ôà/UÐ_ûÚ×òÊW¾€íím~ù—™ª²à™µµ5Ò4å;¾ã;0ư¹¹I<ôÐC\¼x‘<Ï9sæÌ_ãš ,B;Ár"ÅÊø‘ª%EêœÊ÷Fƒuˆ–ŠºPøº"a†pk¾Åênî²ìCrZbÄÄR„%AVCª‰/NȯEˆÒxB‡ÈV ¡AL4¦”cŸ:P¨Dã‡%Q4£JÁê=ôP¥a>NPe͘ó0¦*«lq‹ÄéÀ z‡“ÅK erˆ£ KºËXVu¡Ï]ÆÔð]’úZz€Ì Ú—ŒÃ5U4Ò Q™@jEƒtèb#þ%qœœ€cÜ&$e› ªL HÉ]T똫ìSaÆ2‡¼(NS#ò¥Ù7«tÍ2§Äu´ìÞ;àJy?å‘ë$\—¨¢ y¦K²àÕSŠI@ѨXßöóX ÛõuøÒ<±'&2vŠ?v§KöWS²2 v®Çxµ…™‚ïål=pýáI¯BvP!¼0!Y¯! ¾©hží·'ìÝ8†¸K^—F§O= {˜\’R¯ ت¼Äa¼Œ0­ž,iWºÔä˜1U–8b]†4È‘ŽoàI[d7âMªb·?OiѧÂtÈb%…’ØûÀjl²íÒ°ZŽÀh•Mú çGÖ‰Ï%»Íý­Sg¹)}Lö‰™2rùêU&,sHH²ìiÑGRÚ׺Këõòˆ³ÜåŽ?þÊçåo€ÏO:õÿÛŸ­¯¯ÿW¥CWºäõ/}غ”•ÜqŒ“NѱoS,Ÿ¤pLð#0UÁ­ÿy‰‰¨:ÿý‚„H ˜Å³Ü¡Ë…Öó¤ÍGø<·wO°uöÓÓUÊTññgÙ½w}á f€ŽéQ¢Øe}‘ùTù®mœd¬kv…÷oN Ýrvà9lÙ÷gåkà¤%¤nÆ ÷¥ì¬nrõò}¨AAóþ#FEƒ JY¯móÃÓÁ«®<¸rïq&qLÔžòðÏ>M‰Çö¯¬òÅØÀ<¸ŽxJpãhùSN?· ÿöÛœ¸ÆFe‡+ÿàÜø\íÝÃÍÎR^ øÈþë¡ÍrÀ¿:ñCÔʵU®Ü‚Ÿo~ê/i˜.Z+>uðk7ÙÛ>Æ'®}+zÇãœ÷ßÂ'HZ!Ÿ»÷©Òìq¢s‰ 3.ÿæC\Ý®XVÿÃ@ixí…OñdöIŠCÅäÁ³zŒlh¿}ÉZzìWþå}UlYO˜Žç à5¯ý÷ì>¸ŒGÁEó€åa\<û›B ÿï7o"WJ¢Œvø¬ÈÊ͈OÞ S–_ÝE>®é›ú¹ï² „Ð)BˆRXK{4Õ”µÿe0œ~ä =ü š¿úÀ7sty¦ðßsn ¾MÿÊRœçyœ={ö¿wþüùW|EÍfó•›>ÏãäÉ“_=z†Ï.ë‹È˘™ h‰SXHêvèå"áê";çþ}ƲÆ~°ÊÇÂÆÄôe \xg‹͈„QTGDÆÉã2‚応²ç­R+§ì©U&T]HKÕê°D¹6œo<äôh;âœbHƒ#::ßòu®–g™å&iZuÈç'2K*d£ÈF$ܼknO— v;d{UòIÓ®»–«ÂB|K ¾eÞ»Íuhy¶˜Oœ$MA"cĪfülÛ²áOBÖ¼øôʫʒ窂乚ݩû vàè“«ˆ6èË osJ’GôV”Ñàk*Ñ´àùþý£U9"–3´ðˆ•½6ÇØv>ж‘ IÙç8)!‘HØ`‡ËÜãúQíìdr‡ÚX‰[ZXkFNQ0'­²b×<%ÄNiP¥!l›c—È·ÌËt]ŠÒŒ-n;ÿëA¯ÜßÄÒ"¨ã/ñ"§QGRr‚› i8£¡iÆ¿Ë ]}ÅýëwHqyE¡DiÓÄŒ@f!@ÌsÐ[=WØuCœ'¾NòˆËˆÈ"DÏùODd„Ì„•/©ZAOZ†èBq›c‘1‚Bz”W’Ñ+ÛÌŠ˜aÒ¢WmY'Aí3×-2–c='æ)p}÷³oì¾:†¼ô1Mƒ©ZYè\©b:WÖ[YO Z`z–”'†³,Y>á"æ´ÂŒ†4ã“»|®UŸºød,;¦óóðÝëH ×5|9ÞBÎæQ éS Ó\ήs®«âQ‰ÀZtÞ5äîEû×?^6®L±> ÚØçdê&ô„;þâs"qè&õÚŸŸ­¨U;鋪!3ÆT­Æ˜%Gt\IJ*2qÈLŠ±Ù²K*"jŒ˜&ZäÚ'Ó‘IÐ… rž+ ÈÎT(ûoßŪWú@,KÚF)‡ =‰PÚN©]î$'΀‚}±/tG260SEz\2>=c`꘩iXÚ¢Þœ2nÔ˜ê ù)¾µ ûþrX³Evž~»8b…»Î2VÓ {6ÄᢠIDAT,ŸÜçÐ_#Å”w¶¸‚YÆï؉½H4lÆ=b3CšüJ7œ¶ˆƒW”ïQ„’çå-¯O 2»Æha¥…W€MJ`"ëå¾\v™8¥ÓŠ8 3I½FÏÉö8tçbãeªˆÒ,øRËⱩ1•5{”Áѹ²÷ŽË7Ílh3g¾+YZòqÏ]ƒ½ŽÎ3@FÚy©@GtïLÖ5 f`ßq-ïþ–Ïÿ¾9ÅÍ3x3—HîQ,´¾ó‹áQ¢]ñ½cë¡P(p‡ðÜ€¤X(Ô=w0ÞérJG]›»ÊÙH=ik¡I‰™RS§„]äªv{}ÏAv6‹}¾ï;ÊÍ£:= Ç«OìèÈO(€"òñý Q‡"ó)‡þw(ek„;¸JîNxî/°ExŒ%ˆ5èíC JÏBï‘Md3íHb(†Âþzì~Ýp’7g)ËÀu¢ýÜ ìûªe'xk¨„É…už J›G,­ ‹kGÍ%.YÀÜa !(çÀóÀÙª†‹lòé¬[ÂÅuœÒ)ñ‚É>/Žó&k~oLMln¬Ek!¼ça^œçIÚìùŽ=&Yd–kwTÍ›É9¿c~¯xhQ|U ú×'ô¿ùt  {àkGØœO±]W&zÅÝ»}{À«‘¡¶™P-vAC{­Ï°j¯}ßk¹ÈÜ!ËÒ£Íލë)÷ŠK ‚悈9k^ááÛ¦2—>¡L‰ý£¨N+PõÆŒ¢™0ÞkÙ¬ï-C°œDÖªaPq†yP…Êò˜lR±MöØÅ+»ç3ÍbLb§}í{P1èHÍBLªð_²1¤¾Ÿåõ[ßp‹‰ªr{ó<¤5ø#à {wŠT kã=îãYšô1R0¤N½m¹/: §-²IˆZÊá‹ö}¯NgD„8œ²îïrÓD2A.ÛüY\cTmcRà–6õã’õÊ!Tàlå:÷­<‹BsõÂý”MI¾`>«¬^CãjôTpöž« Lå$7(„ǸÓdçä1LKÁ-0#iÏ®C;”¬?¸Ë½\¢À£)Lý ûÍ n¾êœ½7"`É@ßÀó® 3ã87 I™*› ?Mž´Àt-·€÷½{ö,öê%÷•Ïãé’m³ÅVpäúC÷E%éå*æY§XjÞ%oäËtùw« ×³Ê>ëìà/"7Û¬r€Í&öñ(X¢‹¢dL)Úô¨:V¤GI‡#–èrȲۯ,—]J¡(¤=xçH€Dc4 e¸Â6 ¶†æTÊ)e§MúN«9ösI±‹z­â¹œäùd.0,Ñeે,y ²VR IÒˆZ<&>=apØfö|ËNKn²ø,ˆCƒnÙÎ Æv„ÛžÖÌ è¹úIú«ðì<ºÇl, cYî›Î¤fÎ`?o]æðÜCÝrE}\ùTYsä!Fz ÁJ‚ r„4”¥ÇìFêÊN|ÀþÑý~Æ3”ÐŒÒÝ0YØk‚á6›¶ˆj«N8KqÇF³ËÒBã?ït3|½ÛëxÄ-z̈¨0]èÿ§TÎ}ÃŽYÇHh +iÒ â¬|mÖzì&EBÈ”*‡,s—QÒ_Y(”›â¼…­ôhSÜe|ê×'ôÿÈæ?(Å/çîe7m m,´ilÚû\(C%™b¦‚²”má`U2i›¸ S ;4oÞû2[¬}æ«ë+z#˜¸ûÇ3‘H˜š ‰‰AB‘‘˜œfÜ#èdÌ’&SÔã>“ i üF ÂJIqD„”õfìÛ¢±ê È‚Ñ ÕqÍöžûÿÕJZ+G¤³€qPE”NS›ÈXx‹cµ>¦vllŸ–-þî-Æ›U;ôhÏ=9ÁÂLÉ'·šü¸KàeôÆËD£‚i^±ÁLy‰œ–¨B[阘ЧíL¡KDœÎ ™ ‡5„Ðy#ƒñ…kÉ ªÞ˜BK‚¤€†…÷E¢™‰˜ÂW¤"t\;@•(êá€öꙌ13;$„"e<¬Aˆ …rÃÞ<òzä5©Åã;Ι=¨Ì¦LE…qX#÷|ªLëÝÚÒ†¤TÕ —6õi-Œ2ÆT턈GhR޲É´B>ˆQõ “´A’Ŕۡ6Jçð6°Û[ÊÑ{Âv#Õen7>yÙžü”mHáÃ…xq‚5вc(Cca¯b;^²2‹Ý㎛t¤mô%Ïîéo9 “qƒ¤WuþÓSHT˜3×¥ =ô‰;É@´P^Î@4Ùc>-Îñ)!Kty€‹Œ©qvú"µþ„ª5 Z.ºcUÅŒ¤ÏQ½I˜¯dêÅÔF3–wŽøæ{>Nc:¦yuŠN%å¡ÂlK›C0ÍÑž‚äQ‰ö%¦*ñw3Š“>fäìœ%ÖÁQ[ˆW¾¯ÄlHˆ æÐBÒƒ×OyúÞûø¥7¿•Ù¨ÊWßEµ2&ñBþw~Ñ(‡Õ«)ø6lãþ‚ÚàÉO¿j«¼¦ÿaîá9:ñf§M8µ»M’†x—4ù4`2©ñ?ÞGºò`ã ¼æÜ‡)ɃæK¼†O@iÑØÌ0Ûê‹¶ñú¥¥ç§šÿ”%ÿ7Ÿû jjÄDUø.ÞOÌ”·ìþ.q?Á G  ŸìA~â¿û?¹žœæBýYÎr…)U^Å3T™ðý·þ5ígFö{†–@xMáÉð/a_ûßÈg‘h*LðÉ¥ätöSö¦zÁ¾™ xó±ßf¼^ãØÚK|;ÿŽ%ºüÐìw©„2áÓø?oÏèÊõϯnþ?×üY‚JÊ·¨?Å X¦Ë›ø=†ÿcú.ÂçsLO > Ôᣧþ§ÿ,¤¸¯ZAÿíßþm^xá¦Ó)o}ë[ñ}Ÿ_þå_&Ë2Þô¦7ñªW½Š}èC|ðƒÄ÷}Þþö·Óét^AŠ{y‘ŽHa6ìÄ2•'C»cÎo!\±øz@f÷ãEJá RáåÌ¥dÍbǦÆXç84qjõçE¬L†/2ÏðÈ-A†ð;ù¹ìNºð†yÀ‹…€ÇV–%ŠÐ£È}‚Ö ?Ȭ†º(ßíä<ß—íÚ‡XFU-í>/à%p[h±ºñ 쮦íî€vÍUøÌ,­£ŸrL¾+‚\qP»ƒÚ6±GØ‚ßr‡HÓí%Û–4b"Œ ”*Ƀ ~˜!CM‘ùÄÍ1¥ÌŽª6iÍ›-4ù³Ê>!ž¬016Æ´À§4Š™±Ùò¶hZÝw ô)U4©9%„OF•)S—h§ÝDqÈ’s0vM#,qJ;˜|@“Mw?t– é"cÑyÛuŽâ%FAá[bé\$ ¥:Ëéô†w R ãÊ·òÌô[àÅ!÷ZVNÂ9®Ú;Ôœí‘'ŠðÀ†» ò&_8z˜Ñ¨Ž¯gœ .ñ(Ÿ³Ê#“á•aQ Æš°W‚‚íõMž©?ÆÆl‡®ê†1 §¸N@Æ™ámÝñîîšÜ®mòbõëb›©sn\æ:#Îæ/qb´mÇ-Êñy†Wp¿üëìR h2´òYSð ùEû={-&A•‹í8W˜xOògD$œN¯Óöº¤^À±ƒ#{^n¸2…½éψWQÑåS dö$7lÛð•›éξE>vò¾ÊûW÷Ã{ã߈‚?ù“?áýï?£Ñˆïþîïæ‘Gá-oy ¿õ[¿Å{ßû^~ñ‘OúÓüîïþ.?öc?¶x–Û7ÍY¦s=·µ|¡ÐÔͱ¨-ôÀ8ùIi9M†ò2v¢‹º´ò¢ ëäÂFxΓxBâ›;²2a4Òh´ƒölìfHé`Úù¤6g´Û]ª%ryÎÜ`Þv¼6)JÏ®ŒŠŠAJÐy€7,ѹ±,Ê‘ãAzàÉ‘¤ÑÏ]¹PX¦}ìÐ2°"0¹ý3"<³± ÃmH–ž‡™ØÉ𑱬àÄ`Œ°žÑ…#Þå.ù G–+ìM%Œ¡‡PPY”0˜¦$WÃ)5Rk ©(µ$+”)¬Ìýg¾ƒÂç%l™õÈ)r†0ÅœÓbã,]fùÖÛß'[ô¥–HWu¯SPuòeM_Œ»NB¾bß4/ªó=ºt$†9IªpE5ÙŽ?!^ìí Gг<Œü® ú×Ú„^¯×yûÛߎ‚ŸþéŸæÊ•+üê¯þ*¿ó;¿ÃÇ>ö1~ï÷~oû¶oãöíÛ¼óïäïxW¯^}…G¡­éOQeý°K™13PE‰ÊJTRbn[/j9Òˆ©fïü*r™m69d‰³B×,qÈ2ƒ²eƒ“E‹>{ñS1[œŠnrivŽÌó¹iºTý /r’¶?Äø†q«Î@Ö©Tf¤2¤k:l5n³Úìr…S4£ýc„ÙÒ„õ £b]#K‚SKÂ3˜–$Žgä[>º”ȼD†éz¿bá|ÿ(cz¦‚6 Õ/@ äLã¯gÄ­’@gÔÌ„#:®æXÝ´GN»3fýìÄPñgxã‚Dlf=Äå ³7_: >´W{x²ÀhÁ¸z]ƒÎñ>Þ¨dTÖY9Ü£º>"3öŠ5D —ý{èŠ%ªjB rË~iå,ì#Cõ؈•æ> Ó§K‡®é—3&º†g ä¦G#¡¼¯^b¦‚¬ãSgIJèÒŸ¶¹’Ÿ·ü—›ÃQ‰[N’§èL2+"N_½Š( ; ¹Øx܈Ŕš7¢åi­LFS9?ƒ®! #Ž•7©ÆÔÔ˜«ÛçÐ&®¥ÔÕ ôÉçñLI¹dÏä´Ó.g&W ò”£ÙB„„Ï|Ãr@ýÄ//h<:D7”³ýjNèåW· —eÉ{Þó>üáó³?û³üÆoügÏž¥^¯#„`gg‡jµJ«ÕâÂ… |àxÅ \ùÄåhJk#æÂãÕA-fætÊj9£å l¤ ‘¤4ôO—ö ʵ|J5Mž$Ÿ„­™ šÔñÑ´Ô€Bù(]`´ÂË h¥$>*N(ˆò¨Ç#´T(QàËÜAÁU"ÚôPÖ¿Ù9‡kgV2‡k+NËÜe‰euHÖØm¬#Œ¡"§%8j-1U™$5ë]\jôØg%Þgùì>³3#;ydŠé^rªð9ùc!** ;3fŠK!Ó0ˆA×fºLíæô7­‘=P¡Ü q ±ÔgvXA65Éa…¢P˜™B $Þ±Œ 0»U#gœXy‘öì_x+¹µ§œúT—GTÄ„, ñUF)Õ)M¯O™+0Pç¨Æb?’¸÷°dÕÛ'rk¹ûÝÅþoåHN‹>¾q>ÓÔÝ~>Ç[¸úÍÑ’ÈÌXG´E˜Ù¢IlcÎ9pJ•ÀÉéŒS)¬p°P,øä´è-ôï›ü%Æ#®|ì6ãlŸr;¾ë‚ž}…Æ2ÿը΄`ww—÷¼ç=t»]šÍ&Íf“J¥Â¹sçøó?ÿsž{î9|ðA‚ àá‡æÙgŸ]tQ,ý?¿Ícü)[ß°DüÀ2ÙÖç‰.ÕrJ‡.…RHÌâÞSç÷ùú´¸ÁI49ÔËô˳¢Â ×¡81ŸS À»!;Ožø «ñ!ÿêÖt¦lšÎ/=Ïóæ…òXS»ÔÕ˜užåÏì—«lxÛ¼îìŸóoù.êáˆÊƒÓE¤òI®/Œ‹ŒóD_eA~4ùÝ Œ{Hc%šÎQÌ,ØðÚ)%ÚzÒ“Ö|Î¿á §Œä¥«ƒ»zhæj‹¯µúÖÖ?þã?λßýn.]º´8'²,Ã÷}*• ƒ}/g³q|§Q’žà›¾{•Ûl8_ˆŠ»žnݦ­è0PÙB9³§¸ÈmŽ1¡B•1…Rxª` $S Šj ](^ `â3Þ¬SO§ä{!Eê1]°Í&ìÉ(h0*šì%ë4ã>ž—1Jš¨°dß[³Á>EˆTš¶è9OsÁñÈñ™R¡Îpá>8ô-£zŽà(·ú™C¹ÕpÊ„3"4ÇÅPLÅ!YÕÆŸfœâ:Ïæ÷³×ÛdV­P §t¼#fØð‚.K¬³k¥·Ç+ЊàK‡LnuH;Œ‚v|Ä k‘„=Ú¤„´9£¤é8½r…ÛK›Lú5 |¦ª‚%½á¾,é·[ N‹ÀPcð.2¡ÊKã3ì^93˜lÕ(jÊÁヅjiþ¼š5u L` 4³.¢3bçô(«70x‡\2I®ò,à@¬³´ÞeJÌC• ™*Òzy܆~Ò¦ØUe®5œw]¹ÎÏ&6¿wHŒŽ9"|¦k…ôˆÆE(™-yÖ*JD.èÖ›$*¢NMʬí$¥5JóžH3•1Ó¨Âë¶Š(^³O©pÈ2»¬/´ÒÛslhë3½Ç#jäT˜r‹-zºÍn¹NKõØg•n¾ÄÑõ5êÇú̺UÒ+Ud¤ OMi6{˜E~`n)Kz;gP'rô¾‡Ø\åÞÉëVgžºù®€/™ ÿ*ˆóô{º°éÃ13UÌzµ;:Þó`.*»Szµ%ÛMŸi0¥a™ÃMÁdÖ KCÂôbÆy¡¤ð%£¬Ž J6·(¥â¥Ïb:#–¼Žy·8d™}VišçÅe¶ÙÄ—e¨¸W\â2ç˜&±°’‘6=öXeJÌ „$ì³ÊˆìpÆ\c(´±ï㘚ÝÃqC–„®9ÎMnslØÒáˆcú´Èñݾt˜ ”xœå*/pžÉG4,B{¦Äœà™; êŒ8ÁMv¹û ýkM¶Öív¹uëFƒÃÃC–—— Ãpq.<þøã<öØcüäOþ$O<ñýèGyÓ›Þô×Þ7‹˜Øé5ÅsÓU‹-=¤©XßI=QO§Ä2eMî³"hÈ¡3)ZçˆÕd¯ºÆÑl•ý‡V÷k¤ã4Š0SEž0è#Ÿ¾j“F>ÝËÄ£·6+øyÎ`·Í,¨STå¾Ït­Á­“—¸ux £ÑÖ˜±¨S÷‡ qÁN6õkîµ1/î{j.K ©®rva„‹)78¹0X²°z@SY8Æm"NqˆµÉ„?øÐ1m7ˆîÏO¥êejr¼ˆ ~5Oã‘S¤×)®€ùƒCòÕ5DUÓÿ¶ešÛÇhC"žàãÄ$4é㋜µÂ_~áõlO¡¼Œ0LIÓˆÑj‹ƒö =Z<Êç¨3F¢9ŋ̈ùøÈð|÷!8„£l‰¤ ˜ˆ*¾,œÒeÌ:»¬È¾ñø§91ºÎÑî2—¾ð€%+{-—–Q/ó Yæ-s i4Õå œg”;>hÁ4op°¶Œ/ Yv<®€öñ(8Þ¾Á‰Ç®2<ß`šÔÈ>! ý#ëwqP.“Ë€%ѵH‡îReÂßùS´¼ø¥ó\ü⣔ VÛ”m…–Š}•>-ÚÜÝ„þ_œåÞï÷ù«¿ú+Μ9Ãë_ÿzŒ1üÙŸýW¯^å~áðú(ïz×»øÃ?üCyä^÷º×¡”âïxùÈGø¹Ÿû¹WØT kfŸHX4lH}a×Û¦G=SÏÆø…¦ô$‰ïÑ'L¢ê(¥ÝêÓˆ‡NÙaDƒ]Öé˃Õ&—Vïå6Ç” †¦É’ÚGú%ê˜ ù‰—fDþ o%ÁH(#‰—Jʃ€™XûÑ fE…íì8ÝþAsFÍ µæk¡%GÆ,ŒG!<‡C…‹, À9Z”èevØdƒöY!p¤aKØŒYGœ]ºÎ®1¦Æ}ú9b“0Éêð%›oY‰íDT¹Í&Âe›l3eõ¾mçºôϯ¢ÿ‰€Oícþ›¦&&ÎFÒ>ƒÉ·6ÈmútY⠽ǹ}ûE3¦ˆc¸ é«#®pŸœ×ðI¶¸éì˜mñ½œµchǺº L“ƒb?Ì©3b‹[´éѢϫ£§D .ǸtÃÚ¸&~Ä€ M•邨º¡wtN³3†G@ÕKÌP¢'Š2Tôò¡JØQL©°Å-ÖÙÃ#g«s““O\a5ö/#û\Œñ-與Å*CU'ó,v]ïRhG‚ÏÛë4¸˜Z"ãxÒ@´JÕ&¦ŠçåžfÒNPª Žg.8ÇNÖ}­´šrã‘dÝp‰š²~ófÉ8Bèì^"ÖØ· Îá/%B¢iÓs…:dBŸ‚Ü¥&õiRScB‘¢‘™JX5ÄÄYòÎLjd‘r•á»0—]Ö ŠŸ}V1)!=ÑFËÿÈýk‹×h4xã߸Н5›MÞò–·¼âk<ð<ðÀßxpˆfDÎ Êà íÄD2#ðCòРŒ¦Ð>³P“)½bÊÚ"ÄgâÒ2—½°Ã]:ŒM^Öa2j°m²:8 ì{˜]I¯¿LxºBþt=+1+ö1±ìj—¡pMoE„K)ì ÒqÌ~kC¹J\™0Žk”ÒhŒŠ:Ò·vÃ]:¬³»p'›RÝʶh{=²Iö–ØzjH|rŽh“çþ"„j(‹dJ Ë®ï¶)‹3ŒúMÂNŠ/sV9°g$ÒjüµÄ(QÝ6ô—з—#Æ­&ÁÊŒLR9ÄdæLÀt),KiNÖµ¿’2¥²†§™Q¤ž}gp˜¬POL°ƒ×Ütln:Õ£Í(©[/`ÖŒ™œ³ïÓ¡X¦@Y‡ºŒ‘¡„™¡˜xèË$Pn*¦Ç+d~HZ³çô„ªµÆ …dDƒ‘nìW¬š =ÝÆÓ¤Êдš6F;7>¹ðbT öJ«fÈ øÌÚU¤†~Øb—5α{Wzùe•áÇtè¾ÖðH™G¢Z9‰YX¼ÎÝÝ$š BÎ!±¶¡© Ar ½”™Š(…DKaˤMøš£…+*A)ö%™ …Wü8G–gûì I¶°6œO ó.j>ϧöy÷kwë¶)ñ]SF)ei"_f–8&5fäYùák”,PEiwÜB@àþ=¡F*ÐS0c(„u“k¹Â\¸¢žÙ.QgŽ8£7«puŽmÀ1¹¸a÷Fé®êÛ$DVÞ^*eáb«Á¥tp½HÎЪþ˜T‡È™+È ±K)›¿/5Æø2gY ÍCmc%íu±Eq‘ÙnS3pÆPoØ\z‰½'×)'Š0N­7üCŒ¡Šñ Näœ_{žOŒ_K‘z™‡¾ÕcÌIK×L£ˆRJ¦ƒ*ÃZƒvÐc\Ö9éßà çØ7«Ô˜PcòÌ"HEà‘¸ghîjX8çÊ¡iRÏFÄfäí9gê‚Ê›Dµ)Ù$bÿ™ãhùcSY%.orâ`•kê•~5§µ~HÿVqŒþ+0ÿüXåæê dPå)j/Ð*†Ü”Çy©bWÕ× ¨=v9LŸn¡Û’¼,žÍ-nqŠëÌtÌ5q†L˜ˆ ”æ`w}]á-gTNX9j(¶¸IHÆ%îEb¨W‡¯³þ(lrõð<Ú/.HuÈñÙmš' k«;œ8wOçÜ”g(KET’\nưýÐ&K¢K©=–¯i”C®×[)±˜‘Ü?Bl¤Ý Ï^z”hsD:Ž­GT£½=f¹;dª+Èo2xdTÎO¨lõ¡$/V™öš¨Ü^>F—æ. úWŸêý]+è±â˜ ››mI‘s‚³¬ã›l¹£´d“gÚâ3cµ8 vW¡$šd„Õ ¯´D ¯,ÐZ1i´MŸ°È©ecr?À ð2Mc<£Ô((lç¼b‹*3*ŽÒ#!â&ÇSe™.3ŽXZhæëŒÙgÕµ$«ìs™{80+”(¶ü[‚D­vôø”¾Y…*kC6«·)™@ß¶)œ%¥¸‚€Êé ›¿ÈõOÞK1 ` â”ÆJKŠ+¡²1!-"²ž%ýp¿§Và_oÃñMxXÂ7µ=%pƒí_²‚z¨ ŒPeI%ìX#‡êC}Ö¶¶ID…aE¨Œp)§£ñ)8Ïe4Ñ EŸ“Üpnq¶X?Ä‹¥Pnßc“&Î8èÛà[.€å€3æÚÂê:§,aˆ xžC–I ¹Ågx‘„Â9ŽXc6GÜbka"²Á6¬.ˆru†\å,Cƒ!çy/ñà"õíW“|…)gÌ5¶Mó. ºGñ·îÐm“¢µæ£ý(/^äû¾ïûX]]e4ñÞ÷¾—õõu^ÿú×ãyÏ=÷ùÈGxâ‰'x衇(Ë’}èCܺu‹ïýÞï¥Õjý½/èÈË-Á¯ ´°3Œˆ5b¦‘‘kÿ¤] ¤¯1B,¬€çCÂæ6®©[4Z·1›$äý"JʺB‡‚"õ¢Ï/)"‰‰œ,9 ѹµ”j4!^Ÿ0z±…, úL&+Mc¦”!Û¯hÍQ]R$>ýf‹™¬`Jiýˆ)'>©ŒÉ+­L ÐÆ®µæ k!<„0xh |4ŠŸ™£›’Ô(G>¦´áNY ½!4R¤. ãíàˆ£l±d›¶jvývmŸô±i$S³îÒFê¤ô%r©°þé! ž¶rN+/¶²baÀö|Ï²ÆÆúDø’2õðÆ9B•ê±Òh¤°FT¥ç!:îó©"Ä 3A´4£î ”He…ÁS„†RKDi „è¾BŒ4:õ(#+‘öd' ¤´ÁÝž(Pq‰(­Û`–0« 3Eµ3¢âMñu‰g4Ê3 d¹TŠRvËF+dâ ¨ÌݪÆÅßzNX)§-èãñ˜|à$IÂßøF<ÏãÒ¥KüÅ_üO<ñ?ü0Æ>øÁrëÖ-¾ç{¾‡ååeÆã1ï{ßûh·Û¼á oøO/蹸ãç]aâ!w`׌€ •…sÑÜn5w±©%ŠD…H£ñÈ(ˆÉãYà ñda¡ÎL 2ŒÉ¥éå˜\á%ÆHµ˜“».8qh€}m \ñÂ*²æLdr·:/37™ïÅ"1cBu1Ý+Yâ¯LQA.ckª a¶_c·¶Ž_É‘”uß[ßPìè‰McÊsŸýñ:å5ߤÎÏxûδžu²At'Äb8À‰5xnÇþÜ÷ìß=uûóËónËþZ{ŠìT€¨…“MÈu`ëóˆBxtõu9bj"b*dŽ¥›-<ô{´9pD¶1»¬So1-iRyÙtž¸)Ýâ3lN´vMàú¦Åk‹×µ–¬£²ÁDVA²@Y†4ñÈÝŸ­°ÇGt{ø;ÍÑ¡OÓ­R,4o!ùpáx V(Ey×ý+1–ÑZ3øÌg>Ãk_ûZVWWyÛÛÞÆ[Þò>õ©O1 xê©§øùŸÿy~æg~†w¾ó¼ûÝïæãÿ8W¯^åÉ'Ÿä'~â'xÏ{Þƒâï÷„n ë³}ü¬ ?-‘©A–q„µ4ía[´·¤¢Ñ…Œº7Æ“vuRJ%m>ºD³Ï* †Ö¬ÊÝ‹f$œæF—b‰„Ž8bäÕQêÞ€ÌÔ«C»ÎñÚŒÆ‚Š˜Ð¡K»yˆ¿‘QL|‡1e×ãH¯¡sÅ$j!sC2>lâoÍ0=Å §/päµ98Z¥ZTSŽ+¤2äZx†ºq-=Ç(«‘ÖBrá/Ì“±rpˆñáf|ŒŠ™²¬9¹q•¢ðè=·JòùÔaçÔ1f«'Ó[T>—B›ïr¦rfcˆw_i5èªM&CŠg5É—Æ(¯…öÖŠ>lDÖ¬rìØmªb½µç™1%×χë EêÑ/[ ³&+½>§“m¦qÄ`©‰ç—tVŽhU»`ÃË-è rÒ›v ?ãìäj¦9Ñy‰žß¦ð<6Vn’d1£Y“ÉK Ê(`/—ôSÖ÷ºˆ/Ù{æÿcï݃%Mïú¾Ïó<ï­ï}úÜÏÜgvvfgwµ’VhuY!­ˆ‚ƒP%ãrÀÁ¢ I`'ˆH¸D٠Ĥ H\.—*9‘-$„A’ÑJZi/ÚÙÝÙ¹Ÿ{ß»ßûóäçéwVŽ*08(VWšÓçtŸ9§ûyŸßóûþ¾—•ΧŽ^¦,ñz“¢ô LÂÎõã˜T±?[#ó<¼²À<ç¡J¨­§llíX4VAw¥ÏtÒfçé$}Ï®¯È”ÉÕö@ú%§¼ nÖŽ³ÚØF¢Ù1Ç)fRãKú¶Gy”§îàûç“âWÐÓ4EJɇ?üa¾ïû¾ÃÃC>ðð÷ÿþßçøï}ï{yòÉ'yê©§xó›ßÌÏþìÏòÁ~÷¾÷½<úè£<ýôÓüæoþæ×^Ð#R–èÓbRÊH´›!i竜¢’ãÑdFJH¾“(ø&'*SEL KBQj§ r嘿,IÏLÔQ²ÄA#㥥 ‚bî¡MÛ‹I?(0BVZdéÜì4‚5ö,©Í™ÜÔ™»|m{©3cÅ…ÍH4›Ü""¶³g$«ìá“1R”,¬ý«YÓx ?ȲȞÕÍÓÓȰ„è}2÷H'œ2°&ì½ûã.ú¢d|¢KÔˆQ#IëZ‚JîõÓ¬tØ«Ôsò†Ïc¿Ž/~áUè†d~¦Mº1Ýo[ÇË޹ÎCü(ñëdŒn.±³Œv–˜[ød”׬JhÍìóŸ`@¤Yã©å_Ÿ¿ÛYù×jøK ú¦mž<¯àž±Íc»FŠG9¿}÷;·ë¤ƒˆ~¶LQª;¶vûjÆ2å÷¹Ïñ©O}Šw¿ûÝœ8q‚}èCpåÊÞô¦7qöìY~ññ/¡CÇga4’VVŒ¶;–ŽQ<¥AHVYzNhÑb‚O&²‰ÐÐ*çHY¢A*Cü²ÄHA&=›§ë,@ ©0@»œ£JVF>:´_×=%2dL»Êè–äU‡ÖfŒÀ0¦]ùÊk$)!CºÔ™WóÞ}VP”4\ZÓ€%—Жø“¬Í¼ßOcrA6‰Èj5Ò$¤HBD»´]êLPŒD[Ûùø@‘N[¶·¹má¸ûC(†že¥ßíŠtä:õ7û<»ŸÝƒ{Ö y›¤Â†#ÆM°9饢œ{ˆn G ¤†òÐc|c™Î™‰‰Ê%¦Y“i¿ƒî)t¨è›%V奰¹ô‹b<7uFe—kÞ1úz™@Ø…ÙxUèE‰¬Lgú,W©g ÔÃ'wùóK•sÛb|ó|y©ŽXöÐB²Çm©ãÄ´¸ÁQ‘¹ÂÝaä²=ÊŠqÓlQŸ-nU$ª…>¶ÁŒ[l1ÿ1á,ÿAAÇ@«ˆ ˆ¢¯~­¼ÄÇÁ÷}Š¢ Žc"÷ø(ŠH’„¢(ð<¯zÜBïýuË_©94)t Âséþ­¹Ï]H‹õ™ˆ¢Œ‘o£Ž-csF´™¸‹(#`æ7 ¸½¡ÆÔ*™Ó˜69C–Ü‘Nºè]Ÿ)-¶½ æÔ ȹbN’ç¢4$±s±$1 ŒpÑÉß }q@1ñíu- ¿±í£½2&+CÊXq] çK„*¥ÝQx.ÌÅ£ ¯yĵ° ;*”o¯í] L]fÛ]ûÿÍ +C¦4Ób@—Ò™•(ŒNµáòÄ*eNÛak©mZÇX5Ò(^bæ7˜ –H®¶Ͳò»0R …D Aìü84pЂ|B!™¥M›LM³R$ŽC¯ûV¦‹#Á"Ëóqù3Õ`ŸÕÊŽ;dz\+wK÷k¤¹ áÏ+ŸvŠªùØfÓ6 FXÔ3N[4Ô1‰Mž4¹­Q‰ÍêtŒ sU’guLãÖ¥ö/ßÿGA÷t;¶™ðâ¯úÜ$I*‡0 ‰ã˜4M‰¢!RJʲ¬»0 ɲìk/襓þÌi k3 eH—3J$]rnrÄI™lˆÇˆ¶³÷,­nÝkS4< ¡èÎÆÌ¼:Z á˜SJUÏžÀ…õr?¬·‰ÂÌÐ$ Ÿý¦íÂvX'w2§Åï¶(6}z•Ý'ç:GñœyBÇKS»l0¦Í¶Þ¤.çì˜ fºÁáÕMj« •_WèHÞ•°RÛgò\—òпíç¾ j­@ßPp¢£ }®É¤ÝÀÚÖC A–wyˆ°Ä<©ìÆwÌm~Ÿt_À}+ð™]hlÀk•íä_IJVk N–4gt_‘Ô1W AÞ_"j%cËü^^>$ Æy¨²dÃß&Æú¶×ˆi‰1;ι&cŽsCVҥɔ.CZLí¾ƒGà$lh0cËÜbW¬¡‘°R9D­±We›ÇD¬¨®™ãLM“¶ÓaDƒ™‹9kìVkl"Ó`Æ5Ž“²Æ«bKÜ]Aÿëì:%ƒeÂo™[ê;—­åÿ¡”oËîNÞRëöc‹¢2ejµZÌf3f³—/_fkk‹{ï½—üã¤iÊ“O>É;ÞñnݺŠ/¼Àææ&ý~Ÿ•••¯ÿZ.}~åeïd°¿Lž˜¾´»Sy½N@YWÔzŽ8oP~ÁO®ýc¦­:»Á 9se£vwYg5jÄNkSôjÈe^VaFÓÉsf48ÉšL9ÅRÚz˜65bNŒ¯óPãÏXUû¬Œ‡|×ô…ÁÜ6³üYwí)ÇSI-2VÌIËÈY§ØNsÍÀuÏêÍ q`ó¼UVP¦¢0ÔëSž÷ñ¡ó¦‚·‡¿I§9`â7y%_À ¸à_âû½ß±„Ùëv(cÅO'ïƒ ôÌô,Óç ü ˆË:›r‡¤Ù¤¾œÚøÕý ÿè3ºklêÜýò§ҦɄS¼HÇŠ8¤£†ˆÄ»$!„?Ðoå£ò;h–c^ÿÊO ¤%Á¾ŠÏ‘ð°÷áñÜ"‰Ï¹†Ÿ=ñ3·Bj@ÄÜù“@˜ï>ÂÖûvJäèPòÓ'ß$kІ…¶³DÉQo›oïü‘}®ÜFu~yõ]˜ž€^‰ç‚\Îñ,Š‚Œ?mc%•:èOWæW¿©4ǸDŽÇ€%ÖÙ#$åÇ—oh›/ño &(³|‡¤¸à«áì'l±aßh yžW{ÅñãÇùèG?Jš¦\¼x‘·¼å- ‡Cüq^óš×¦)Ýn—z½N¿ßçâÅ‹œøÁò±}Œw¾óU·þõ|+„âw×ÞÎÅä>ô:Lo-cn¸¼ð‚­µhƒhhL(LÊ;Žý3¶å&—8Ë. Ûl²Ë:sêœà*!—+1¥É&ÛÜS>Gè¢:íˆOrÈ2[ùÆ3l²ÍX´ IH¨1-VØg3>d£s‹e}ÈéÉ <©s‡|¹Q‹3Ûž»®¸¯~å¸ Ï=g›C~Ág,E8€ÿyý¿åW^ÿwÉãˆõgév oä)ð8Õ¼Á]Ç®X5ÌóöyŸÌßÄ#ÿ üÉ¿ä•ØÑÎ7óï(QDQÂ˲/“ÖB–¢)œ„ѱÇþÉ—™¼àóMïxž7ïǘSç ü xƆ)E æ´Š9ÚœGÆÄ'ã7±!¶‘&Áó¬›Û7ñ f¼±óïYKn#.Cø•“ïäZÿ{ ãUÞ þˆ»xŽs\¤É”×Ô¾À+VŸ´¯QfŸ÷ýZ^wðièÀwz¿Ïëù¤2eJ˜åú€ï½ðØæçó®“§Á©þ‹ìG«œÌ_à{øßÙ`›WðEZL0Bðúµ/Ø÷c¡&šÃ[ãÿª}‘ˆy”‰ApŒëÜÏ´˜òȱ?eEíûþ¼}îÿXûÀ‘âò¿`ÚÚp8äýï?‡‡‡üÂ/ü?÷s?Wí ¼úÕ¯æüùó|ààŸøoûÛiµZüÄOü?ÿó?ïû¼ç=ïùÚ úˆŽË©¶3ÌØ’¤'j²B`UŸ¶Û£a;jgèbåPÖæqBÎíLWÚÙl""ðpÅUºn+¹ç“JËíèU¢2E”‚¶3¦Mä|ÀK7; ±ºæÈmö!]†¢Máf(ZºµëU;î€Í ßo­3šu¡­A ؘ]ż×Dµ DX`š öÝ©}êb#@ÄË^­¹"=r ®n7©Jt]ÂË܉¿çž›»ÙcÃ=ï>Ä\¹­-xƒ´GÄ[öPyM¦kkL`Ã$ÄÔÐèŒiû#&I‹yV!hô&´£i’š€®a„= MÛÎ÷DIèg–„¦#êþœŸC–i1®4é™#AŽ›pÈ2uæ´e¦DW]÷œ:s§ašûó5´´Â !¥“(ên½GtœÑ`H—E›qeô±HùËñ¨aG‰U@,b}3±s‡ýÏsŠ»m,ó®w½‹w½ë]_ñý‡zè+îÿèþèWÜ_YYá}ï{ßÿï¤k%¤óº¹ÍÿLÓÉ7=‹f™@Yˆ·´Yå Œ‹Ïµk!Ãw†¡¦V‡r#«l‰ÂÉj < ©ÐJ¡÷Ãw&WŽQØÑ^.}ÊPâ•Úÿ%¹“|Vc‚ÅGPÑ—ísßWî£t²TCegMÅÜgÖoÃP ´Æ'wI––³ó½ííÏswÈA•ú%R\ᤡ ´¸-Œ’îÿ-P1Øw•çÌŒ 7&µ²\JWh•Ûk¡qV[Yn%°–ØÕkÙO(QRƾeÇ¿ä烰PøBf»xMcÛ=C™ªŠ%¾h²J^2Ç._"¿µ–!È@WrÔ…‰”AÜ~ÝÌKF?c÷¹'*ã,Kœ¶þêoÜn¨îÀTÒT#éÿ·ÇØÃÿÒÒ¿ôK¿ôßûáþ᯸ßívyÿûßÿ_{ðÁyðÁÿòdk5§š\·,ÅIõ¢¦´Ý&Ÿ’áÓF‘TÝ’1‚ç .ì‚ uŠ%sQ¯>)Y a¬_°Ä>§¨ ÒÂ#!¾±„¬1-„ó /ðœ™m›oÏrMõ&N_#fæ Ì>«U¦ÊÒ²ÊjFY*òa ‘ ›ºZƒ†t+Ä( ©D4 fêrÑ/a½† à ÌŽMi#u ìY»¯;RÜÄ=vÓ-¨Ä-ª3Ø™UÃAô§šWÖàÙmxhÖTúa† Jd¤!()=ÝW$ƒ&óîœlT'6ñ Q=±ÆYA`hz3·Yvò ìü-/=v¼u2ÐS< öXsáT؈À%µÙY]«ò{_¼§‹â¾Hâ3Hæqã v7­S'&"©üöµ#ÒÙóË– Û™9Ïð3ß°¿KÍ%þáÖG›’ý;&Å•ßÈC¿3ò¬NùÐèoqñèY<™3ýÞß½ÊPw( ”ø"Gzš¦ž£ & IDAT˜2õjöý¦g?M6 Éú!z  !(¢lYŸ…?<Åk'oò-âé0dé`Ìs;ç¸xßyVÙ'Çã~žâg™É:ZX®†ÍHÐ(—ʨÐÛ’ðh˜6ÏöNS.yˆMÃÆéÝÅÀ—z‘’È€zd…§h|>#}@Ùëí@#¥aïL—öÍ‘ŸÃ*”¯”¡Dd¨)ˆKðÆ[ÿ†œŠùÙ:¿ôÉ÷ruz’õ`‡÷÷O‘²}d…ñZOÜÓºŒ¿_p¬u•ÿîÿÅçüWñ¯³ï¡rÏThã•ÖIêfν/{†U}@Yj~â›ÞÏ Xb÷Éÿô~sz¥¿=¢vfN› ¬pÀ íó‚c)ž.x§ú ß¡~ýÃ5~ù׊x»Î}ßò%þ‹oû×Ì©såÂ&7ï^µáÆÅ­ß~‚»½§ëð?ò>>[<Ìfç?öÖBâ`³ÃóËGéäcz“1¦lz×ù…oû{D2aÜh[s)fÎï}NÍùÜéûDÆ]µ+¨¼$ ÿ}øsh%¸<¾‹ßxâÇhÝ}Èø¿Á=Ê’ÝžzËV9 P^QÒ¹0åÑÿ›‚’ÄüÕ+ðð©OòÀ«¿D‰ä©¥sÔZ ­|Æ…ú%LøØaË?·Cÿ˽}ͽcFD´èÓ«ÌAšLéÓC¹¢½ÄÀË´µ)dÏ¥eÉŠª‘;+lÌf‘¢4 Uj6²}Dý®%=…d&#Õ:&1ÞÜ7}raepsU#!""å€ÕÊîs™>#Ú•.½Ë‚8SÁò͈6ubÖÙe™C¶Ù$ÇGCK˜u®öO‘í4ÙܼÁè°Ë|ØBu3šŒØìÝ "€©Àì8]ùx÷e”™‡1=£yvÀèOVÐû <[9 5ÛÈ5jÄdŸ­9xÝÿ+/)î«®¨ûÀ¸w~sŽo€Tˆ7‚+ÊÊØ=¶ákgèm[×Oá×3zGv©G3nîG¨’n£ÏŠÚ·ö®Å*m1â®à·8bÓÒLÀYó<_*šLLËÎ%Å‹¬pÀsÜ¢d“m" ŸcaÎûxš=ÖXá€8Ø615Nr¥RH”Bò@ïqž‹ïf¦ôä!-¦Îï:$'¨|âÛŽp“6–]~“#„¤¬²O—!79âÌBV¹Y¡ fœä —ï0ñè?Ç<ô¯¹;†nxH×_¶1¼-ã\mœò¢!°£-PNæ †ý#’KòYh;Å¡ƒ°·°ŽŠ,á“rØê²ÚÛgMîqWô"ƒ¨g 8 zôYå€}VñE^m¥3ê´™0wÈ¡À°Ü™¸ˆ€ÐËP”xaJjB‘‘–3&²ÁRk„ІR+‚S‡L–kàC+H0>\kaëØ6j`ÿæuúÔ,uMÛìñFœÓðg¾Ç~m•á&f*x»,èiûc ‚Õû¬t‡d5A؈)ðî.s•c4½17äQ×û›}Á„µÖžÅ1ŒÀHcCav7èßÚ€' ®}×q6ÎÜb„)M Ð §ÔÂ9‘IЀ$†ƒƒUæ» ¶6¹Ìi26ÂmT¨i3ªöÔ6!3¹Yc˜,Q çì¿Õúyt¼1ÒÓôL]ްXÇ÷3$%;¬ó¾Ê‘è¯p®k0s÷­lɆ8XCDJ‡Cº$ÎX¦ÅÄÚÒ¢h1ad:4ºòaZ}Ƭ°³p£$~7%¨§Èna)÷ ¸­gP«º¯0>ÈVI}eÊøHô´uÝÛ·¹ “à9ù¤‡9ÍÚ„š?GMèYÏí®94CS–ЦšÚ®Zx4Âm1FR©ñ¼…s~êôà u’%¢eøxN&hãl›ŽÐ”³Ä bÍjRj(¥Í—ötåô¶ šÔ™’1¥Eê ý®³¶£ãº²XÀì%Š˜M¦ÿQõÖýFA¿3ø1õ,M8ÞD‹‰½òŒ¡UNðŒEô‰ÏX âÃ|šqÔ#ê莠úä¥$Y= Ë’ $ÜìabZ¼ž¤¨\ž! ƒ>Ú“ÜÌŽž—s=>A–ÔdBDÆãª7AÕOÅ÷“ŠBCOô+¯R(«ÐQ9sjÌÕ>(ƒ.þ²æ0ìPzŠf;¦ð%Ïq7ÓZ‹tó-5åJíˆm.TIH:þ˜•õ!ìÊÊ÷û¾Þ¬Š}ü~ÆÅ. ¼’­¥›¬´÷‰©áûëK{ìÊ5Κç‘Bóÿa®ÈãLfm^Ÿ±ZþšÆ,[è{U‘ Ÿ v­ò¤gߺCþ¥9£+—VÏxq§†L5­`Œ×s†-hÚL ’Ü{þIâ•:QwÆ•ÃSxiÁ‘µ[^ê®æIµÏ/1DR²ººËdÚ¢V›óâð I#š#"ÃHt˜ûÖ^6×'õžÊ^Ƶì$cѡˈš‰™yMÒz„¢¤Œ«d¶ vÀöýuê«SrásetŠ|7 *–N*«h% ZjJÛLè•F¢ËñsWëÕ(¹xëZ Fë"?¡%Æœh]qfZwÆrÿóãSÿš9Å„õ(žS§ææÎ3Ì©’2dÉ‘ä¤K>óÜÙDW°§·ý¸çQB j&¥ŠÒS(£á§‡2š‰t³\©Ñ¡$“%qàGSÑDJkº XÙ9¸El0Œ 1Q¥C_Œ†t™c™´S¬DfDÛê Ë6(HËJPaÎX·H‹¤Á¤’ÁÕuöO¬£§ J}{ðuCÞªW³¯< Øk¡|Ò·úr%Ð7|¸áе†ôrƒøZÛvã;@,ì÷ Ö@F‰Û³¤ýt/  á®eÌ—v)×z¨·•°ëëTU³T§€™"N[Ü Oõf³€Ù¼E,ëžgå9@!=.s†[ÙyÆ—–‡Œç] $(¸áµd3§bÐsüœopÔ‰þ" X}Ýå’´)i!f…qÑf2i“éÛµH«-÷ÉÙa®ÌnæÔ+ECHÊ€îKæé! ·>in#:Ö‡kw(©þÏ3>õk*èB²ímV‡¡€¬Bd–MŸÚ<¡™Í¾FöÁËKráó7~›Ñ©Û÷­Q"9d¥òLßc繋«œàen”GØN¶ø·aÎÑå|áÆ«IÒ:íÕ>K½n<}9×ÔW¦ÄWêdWkåZ²LkÑÑ|˃å“×ÞB-˜²¼µÇÑІ’çÍ;$n_»À—m„¯êpïÆÓÌDÃî5ël÷^˪ØçLãî?õ$ŸåÕ”H:á,‡‡œ8u#ìQ øå{ßÉR:æ±ñƒ|ë/ý ¸ïÛ¿Èù·<É!Ë,óšjÊ2}~Üü øw½oæEsœí#|ð_ý˜€Ü*8öƒÏ3ÍZôë=zâ mþ+~—u®äµÿç°Ä¯ýôßâ·þÙ9¸{ ¾ËÀ¡àÔ‘K¼ü‘ÇHˆøü[ÜâTûE^ÿŽ?%!â·nü ¿ög?û0}´IرÂ/…¦É” <Í=\Äx‚ïúþÅuŽñÜøÿâ£?%¼üžÇxàåŸsá,3K^}~2û Ò”üQÿ[xþðJä”ûhh¯ ¸÷þÇ È8¨äÄSÞn~ÇúQlÍùí7³§×øÔÇßÈìß´#ƒþ_í|Óa[l²Î?eþ1dO’Õ<ÞóóÿáŸÿ6þÅ?ÿHàÌ}™Þúf•Vã¿z‡×öòøÔ¯õh#hn"Ѥ"´a "#r‰k쑺,ÚC–Ù0;äYf)±<×te*iÅ i$‰ÃUät³1s¿FMÇäÂgi4AÅ–I^„’hhíGýpS*TÓ ¿‚b3Þ†˜±i¶ÙŒèÐ`Æiq¹rB»ÁQV8¤æ|Ìûô8ÉU+q‘™ 9ï]¤PÛ[›d+a‚·ZPN<ŠaÀlÚdåÔ.Ó´MyÔjÀõÔG¤ÕuŽ=˜ƒ~ÖC(à¤Õ—š>Vs.,ó]­fðÙÓÙ˜&¨o*Ñ5…Ù–\wÌ1ãÁD|§Fן\†Oo£ÿKWŠò „´EñLˆêj6_v™Á¤ÊP¦Q#Æ+ ¼(ç`¸Æzëǽ½ ÕX ö–KÌFú7'7¾3­´Úp‰&$e…Žp‹k§ÉŒ1트òr¾È!+\çÙc­2&j‰ ‡f™Õ•]"uf4éû¹ðkk×Ú”ÓŠG2£É»g"s³8‚ö$=,[wH·r\¤gýyöŒwNŠûFAÿj·…¾·D:%Œ®¨Jj¯D‡––{ŠHd¤" !2¤6‘v± . ~Ä1á`æ|0L—Ùlm#3HG5öÅ:úš‡I5™ É.G–„5rD®}0ž$¹¢‡’¼0I;ŒÂ1! ¬PgÎnår8¥I貦ÂÈŒ±MŽ 1±Q½NÚ9uyè¥#¢dLE­D¥§´h¡Gi/©±É…{¬¹ ¡ÀòRœ©%J”øí„$oCz(IŠˆB*—·¡!Y:î’ …M1T›M5¸² “u«¥o;@ÞæŽ¨ê÷öƺ0•MÇB* ɪÈê—4ÆÏó*PJž°ÙV=cÃv"réQŠÜ l>Æ‚<—»=Ò9°ÍhT꣜€Bx#~"Z ‡Ò’q-(ŒÇ„J”Œi‹ˆÂ¨ŠÏ%³ÒàJˆ  ^gÎ!=ÆtX½£´µÿâS¿Öpæê5¸´MæÛ.J(L óÐ’’Vh≠WŠ ÌXó‰¦6¹KäožÛ‹8÷P…!<(,Ù+%$m“ cM¾a4C1Ïs¹@*MX–ø×ÔŽF6 ô†fÕÒëLHÂ] ‚&ÿ@ ù¥›|÷ñßasiÃ`Ùºõ9ÀHÁQÿ:ª®©3C”°+ב¢´‡4ch—F.æôhvƒDÔ˜„MvNn°,­LX’áªÙ§gúÜ”[„dtÌȺ¿ ½jÃSILX¦¶½MΊKÓ7¬‡´±ªI`ž„S”F±",º ôŠ>§²kÄ^ÀL6éË¥jãYh@sÏwªñÛæ,ÒAúM3E‰’‹î`ùW![ûÆí6änx.¹«fb áÙD>ãk;^Ú×¢$%8l·˜øM¦´ÀYKWhRBZLi8Ûéu@°”qZ]B^VäãÀ²Ÿëa-¦¸?@ ª^ Nþ)1ë6&®bvùNÈ4ìηˆj ilú·, ×xD*A Ӧˀ'yÚÕ(JkT¢Cj2®¼-Ík=„Ÿ …"65„g˜…u8k÷ÁÁRšqÚ¡¾:§§ú•öÞ/ ZÒz@ÌTƒiÝ`š‘Aò\‹¼ð¹~þÛMÆI—(J¨;ÅÇâjî1ÐjŸ܇s+[üIŠ6'«”LåLº8fÃõƒSøóŒ0Š9Õ~Ž(“VfR)­hŠx¹AÈ’ƒõ^4§¬(@X|ËLðË%4ݨO{í(ˆ9ЛèL‘„×F'Ö:»U0O£œ!¤¦Ãˆy@&W7ˆÏ7à <•ÜOÆÄÔÐHQÓ ­ÔŽn‹ÀÒõº‚WjÈ`8é1ßiÐöÆLWZŽcu'׿¸lí¯MAöäi¢»—ÜŒ<­4ÞV¾4©4æƒÖR•3’ –l÷&0• £e# :ý1zI Œ…Ü%A^0:Ë= ÅÓöë¾HñrC^„YFÚV”¥Ï,°sݹLïüž öYµ‘}¬ºdëœ]6*Æk•ÔÅ ˜Ðªˆ[;là“•YJ‹1‡b…qÙ¦,<:þï~‹_¸üs¶Ï$ƒAtæ”sŸ¢ô k1Ý•CúûkèXáyA7fvÐA%&U4;#L]“ŽëÃÙÐiðý=ö’|¡ûS)5Ò+)öDSÃPmÎycmÄïþÓo‚7wKLÛÐ>Ù§L<Œ€ ‘Ñi÷ñUNºL§1´±¥B¢}‰Ò%…ö8\aÛl’kŸX׸ ¾Ì‹å)´’H£¹WÂú‰7™Y$J-Éo;àMÈ»>ó F^zø"'r¼¥P§ÔãœÔ é›ÃYã#%£›=¤ÔŒNw)’ÔØýªîÌxªÑ—QPp´ —Fð‘C²(à€{˜v’.å¢PÁåN\¹v§ëÔÍœÍöM' ¶ˆŠU%YçRILÃþnóz±B`2– )lLö(Aå¡y¨Bõã Šºâ0]ÆŠ©ŽÑÏ©ù3. “°ÅÄ´0  iõ9û¬RcFQúäʧ&bšÃŒæ0e^*¦çšÖ½.ò¡%¡0$I“lRïÎ/(»ãClþõ6CJ*Ÿí ’q.aKX¯pEIDBÍr¬¬MS7vîâ“1DI†Î!È 0 ªÔÈÔ – …”øe‰4ÚB8s_hÈ“õ€a³I,jø*g¦êä&`îÂ` ‚Ðé—3gb³¸šÕE0}‰Wý=8E£qD@²³$ æ¤rŠñÒ/iÉ)Ǧ71Û ÚXw©ºÁ’20±]è²QR æ ¦èÈ®£ž*ÐM4šr¤‰ÁdUO¡Æh‚: t 騅@tíkC, V*3zÇFpf >¾ƒ™mÀqIîG-IÆIP’ñjY?B·<êíB¦ÓÒ³›Ýv'åÆðR”ˆÂ/×Îz¤"´s­Ö ¹ñØÏרùs›$…a¨;”£%-ª4ÖpD›¼ È‹€Ø«UÄ ‰ÆÂsãcßOXà/)uf•ŽvAp\ÂJ,yi‰»¬¡(¨g×å l˜ž¾³p–Òib¿¹ßÙ>QÓ B‚g 4¾.ªD•º‚T…}¹ûW@3M˜©sšô̱î|ÛSÇÛÓ!.#rXiš/©Á”TZn-$¥ð,üš{˜´–¡s ˆPÛý¬f Ù4"oÍíÏP¢Z_…ð¬“#Φ„Ì©»ìS+MuƒšP•v-/Ö GaÙõ¾©œ@¤ÖJ¹Ä’ck` 0!¹ÇˆN%ßT¥F–m$¹öÉë ‹<4€º@Ça,r%„qîÅKàj=qn–G;°? Ø;d¤;”Bã8ÕLŒÊ5?ÂvèS›pYæ¹±èƒt;i‹‰‰Ù÷.‘!ÂÓ)A bmɈu5³¾&DæÖ¯ ‹kă6t-1–ô\’:Rä Bä´°½Å„âKj"+Px’ØÔÉóm ñCL.©Ý_Rç]`´°Ï™ ´’˜f@†Î?¥n|û—­}ÍзÌM¶(9`•sZL*ï]Ë —ôŠ>o ‰¦ËÀJ܉-"ecz@âø"Ge^/…±0nnC{q·T‚ö-ñË+óŠ 274ë1"0èºÄYm¬‹–Óy¡7ŸÐÆw'ÎC–I©‘ 1ÄÔ+ƒŠ”}VÑeÛl²"ö)ðÙ-×9œ­p¾ù #Ýe{¶I¤„Ñ5kÞ€øV&V‚xUIĤIrðDIKNðüŒ,iaYŸbRAzØDxÿlD$_hÙ ˆaÑÖèx0]R˜%0W”%Ë5$ø%¼æE‰èÚ]qX_B¼ÌÃäËðÑ]ØZ§üo…òÙ¬ÓëpTÝ`Vk‘å™ hÈªÐÆ'ìFä™ÒÙDH[Œ-9N-¡µµì]á€Óâ2>Ïrž¾¨Q3ÎðcÚ65MØÃàõâF Ï£Á”€¬ZW[lÓaÄ+Ô˜“a79Š¢à$™›Kzdî@¹(övSœã‹¡ô²Ü=Ä7dkwVÐ3ñ÷ïÛb“XDÄ[#kv¦-š ¾ ÖWÔÎ$cØvHˆØá&{¬Ñã1"“ãó ¾ÈÁòá© u#dÉ)q…ƒÚ ×gSl³³´^u›¥Íi$ÉOSlºzH,kì‹Ubj õ{“uª‡ôJ泓v‹ÔDÈ\42®p’²TÌË:Riní#Ùopéèyž©ßË¥g/ Qv,œxxœÓgžå5ÛŸãÕÿÛ Äë4ù–âÞè"¿ûh‹ ÏOÎrù™»!‘<3[æÅ­)½ðyÚÿ>E¤ðªxœòÉðìÏž>ç ” R”6§A·Ø¹q”ÆÍ˜cŸ? éM˜ÒúÖ »b+o;ÉIžCÅ®^cª› ?.¹öw6Îrbi×_ h(v¾} ?ÈyøÂ³}nà‰ù^Üdwxâ!Ã7çñ:ÿ ”3Eþ_‡_¿Î¹à"Çî¿Î”&§øÒ—¤¶ÌüñöŒòð§ý1GîÚå[ýCüö\%~…üáãßi]ì2ƒyÆ£?8j÷¹|•ñºŸÿ 9>##z{$D|fòz³e÷ÖøçŸø»Ð(y…ùµ;êг¯·ºtäÔ]ŒÀªŽVºýRQâ›) m)ZÚ«(ë\Šg#}…K39ä¡°Ð[i3ŽÝ`ÎnŽ©¼í…ŽÝnî —©Ÿ„ˆ) "'c²§U¯‚¬Ô*t®qÖä`P,ø6KuH¼Ófx|‰QÖevs‰¬ž2Ú[¨%fÆz¹ÏÁŒ%e/@§ “HòiHa<Œ–`$¦Pä&ÀÌìÑ’üxHLäXð`V$f$mHC Jåƒo¬.·º£0-g%›‚i ÊÌÇi¿¾A³Ïí]ß@ÜíC]PjR(ÊBaFi³Fž¨vnÌD •=튨Dø%efs‹Â##üzŽnIŒ˜Ê U%&ªˆ5¾ëµ|r„Ðxª¨ ƒJÇŠ/ŒG–…„aJ)$…±¡ 32'¢Fìúî°Br|bS#V¹ðŠHÝüÕ†ÆGp3æÎ½ÜÅ7dkwÜ¢ËMwÁΦ5 Br;¨%w;ÒKÖ¤íReÍ"wBJbŒ/¨‹ X²(™“o”ÎrØs”gG/Êδ„"A‘©¤Bw¦4«x^!R (C@Faó¢NQøäÓ€¢åQÌëÌæMD­$)#D×£ch%ÉË€QÒÅ’øj =ñˆË&£“KÌŸiÀ†•š©B/{lr VPum(3ðú¿S"›š952PB`ž‘ÄiӸƔc¶Ø)èʬÒ`F¬#fi“l‰d`UJ'0D^âvŘÖ"jøøqŒò0O ¯1¨@#Œa)c „~JXKn™¼ÕŒârˆ~AÀŠ%Ë)¥–Ô€©Ë´÷dNHJ©ÅÀg6ë’Nlvüì°eÑ‘H eR5f)>sÓ€‰Àô³´.¥ôX\r· ¯>™ò1Ê‘(Û}èÁТ–fb vr®u½ R0í—0Ø!“GôM;y,s&~“Õ쀺IRûá,£±›¡C‰Ð µÀÛ7U±Æhï‹Ü½ª7;µae^…§H¼À:9% ª®9d™%PÜr&#kì“Ñg™.C6ØAº†Ås,!+äÇ*MóHvæK÷¯²êï#·`?Ya¨/¡la§¹ >eàÚjÇôfÑ(±$íG¼xën¼zFýˆMHvšÈVS{Ч4dÏ6÷k[ s‰hj¢ SŠ, ˜˜™Dœ·ór¦ ‡Ñ#S”_0´Ð×í“§FäAHyÔ£¼Úƒì .™0ÿr‹á +0Ð5ˆö7—]¢¥ «k;äx<—eª›dYÈ´ß墺‡Ü÷iˆ¥V<¯ïbKÝtnl–g°DŸÈψ.Oq_và‰‚‰lq™ÓŒiÓ`ŠDóÜü¡—°©¶-çÁØ —DØì€ë«Üs½q IDATþ†tÉñÑá8׈©‘p•Î aFàB‚"šÌÃuŽ‹oÈÖþªo¥T|ìÜ·’D膄ÀÁµM aWR"æøan¯ÔZ‰š””‘âÁåÇ)jöЙ€˜ &¦ÅPX¿ˆEèÓ" !dEõYc¯B欌6`™C:Œh2«ˆe]d„Ôˆ9’ns=Üa™>M=e#Û£œúL'MôÜCì[½´Fâ rdPP!+û»¨vÁB¯ þ”†7¥0’ó<Ö“^1zã ‹rÜ‚ µÃï7…¸Zßt9ðsîæ[lSàqŒë+ä³TÕPæ£Þ·ã›œŽè³!n0§Á ûlÑ!"a•}›’é?Çô´ÐÚfúUËˆÈ +9ÅÀƒKã:ˆ;¦$[!Ù–SK0¼¥”i·Jû˜-‡®Ó&:qP~ ÁnºÂnwäÄሱ¬Ê £i¨9a$«lë%‹P.FìÆËLÒ*IË'=Ý ívԔɤJ7[À …¶bA¢°ö­¦Á–\™ÁR]¬gø"±€Æ¢F_7¬Í-5SªŒpÈXe“\ GEÁ!®”ˆmA!.Ëz› ¹J…1Š‚!5št9ìÒô÷Xf‡g$v3‚ÝÔNÁ4V'b©Œ;—ˆb »¡Œ[¾]³±TÒâ-¿î(×l’`Ø„_‰zî…üÏ¥qøÈEúÔy ï'dÊÍéYnÒç1u÷>½ø Ò|]ôÿq!м˜÷Ïí«ŸÉÃøÓ‚•‹{ˆ)ô݇»—êÏk~˜×ø÷1¢Ê!®ršÇæâ^ÉQs…S çà9ð¢?ÿs>ôà¿áàÝ?û­ÿ7m—1Žp‰*C^¹÷^Ž6ìÔå”ý¹~öðòÍé£.¾Ñ¼›Ûxˆ—º4éñüìxÎô“ökFöºüãÊsxщ¿Æ«&¼ ñAná1" j HXpºü‡ö»‘9Ö GÂÄ ¹ýùg¯ÞdÍlòü!1· ÐMðyÅîûl±ÝÑq¾ç«ÞÎ]û>ª ¹“O‘am–ŸÅƒø$¼L¼µî¶5æ9gsÌ/·®Óœ¥ø#wó¥Š+ ©ñé»¶³ŠŠ)A–àù Ž)ðòœ ²S]@`»í^Ÿ¤â‚/.ý Š! bÛÌA1LËC¯ÁxeGžÛOËŽ™Cì¾CX·®¦Û--2Sú4R£Â˜,¢ù,'­ò{,”¶~ZôR£O³D¬N¸ÈѹZÔªÜ`=]c¨k8¢àˆwÑòM Wd„rB{Ð!‰ƒœX$¹¨X Pº¢•äÀ±«Œ®ðdÿÃõâ…˜F£CÚ ð*S¼ Å)Õµ.q1éÕiÜ£îõuâ$dµ±Ní¶½É®—Ð{Œ– vŸ8@šøˆ>´n_§ì‘] È/x–ç€w§!ÏÛ¿¶ ·¯¡îÑÔ˜¾ÝÇ;iwxÄèL‹,õðê1(ÃäB )ÔJFm¹ÇöC‡HÒ·š2-ÆèÔ!Î#/¡vé÷š\ÈŽã -e»£ª14uÞ½ éç(©9étQA Mß4ˆœ1WúÇW*,;,©Vä¬RCNŠ3„L9Ïqº´h–l‰M ’ˆ'Õ&*¢§›ÔÄcâWÔ!DYxFÄ$æ:Aq¹Â¤î¿p&¾9Š ÄUKŒ•i¦ žƒç¬J [2e2 )ËħçF.v­â#Œ¶+@aW$å£[&æýµÛlÿïsM¢y?*P}֣طZÈÊ÷mÀÄ ™¢Qø¤8dHi®ý¿ûF¤¥Ý©"åƉ&˜­—´ƒ"ÅHÈÍ5#“2íÎÁÀªdóÛoUSe‚'3[”(`¥ëÅ¥MºFȃ(¡~1Â1s£™Ù÷åx2Õ˜ª`¢¢@xG®zúרÒo= ÉFYÅÅsÓùå“VMp¦Ü;3¹Q‚$÷™f!™p¯é; Hñæ+¢iñWt½¼m»ÊÌÍmœòªHm3]0ÿú³¥1¥ÿÊúT„LDˆolOqÉ\#$™q(‰¤ÈÌR”„ÑÄ¡ýeÀxÙÐä(œØRdÕ@ÝØÎ<-otU&t»¸·èç¼¼Áköõ\« —âá+@2%¤RÂ7­9HeŽ0ù³H|Rty£YÝ÷´ÜÓZaÛÙ¡wDnw·NŒOBoÚb¤khaÁV©qÉŒC*|LGY<.«õ¡$÷ìµA †ý&ÝhL^8WcrÉpÐD<≋ð5¹ð˜ê ºP˜B’V¸'OŒ´hc]!Ï’I@šz¤Ý¥4$:L'N”á6SŠÐT`rIqɃ¶;—áü:¦¶ËvEŶC!½ù®©È=ƦiGû€ÙQŒZMŠõRxbàÓ ¨O1¹$Û èN— 8$=‡MÖhU{ ÜÓiHÚ !Ðx*¡×lÒµ¨„#¦EÈpTGLÁYÈ0F°—µÑޤ—6©C¦",¥±<~å0ÉC§`l*8&Ç•©ö0FàŠt>š/J¥1Œ¸Na™ÌEü Õ)l”ŸL&<üðÃ乜:uŠ­­-ºÝ.RJî¸ã¢(b{{›óçÏsà 7Ðn·ÿ·Læ¾Nùù+ÿ™+­5\r÷TÆuöÜ6:ÖèH “š ±ˆ‰™˜ˆï~ò÷ÉQÄ〤ç#MR÷‰Ý4s¹ò‡˜˜ˆƒâ wó ô9¸»Á^g‘éM! tðÈ8ÊcÖSÂh„°Î‰‚ò’–Ucˆ9e­u•ÐÄtE U-Ô[ ÷x+sŒ–x«)FŒ+PMrL!ƈ 9¢P;g¤móqS‰ š”Øˆ'á®ÁGxû¿ý¤©Ç=úíì}°M»µËüÚû¬4ö‚ùàÆ®ãì¬-^å{~% 6Ë\0G9$®ÏéqgŠYò·«-O0²àû^ñ+ìª6ñ^…ßx×ÿA!ß÷¢_åè‹8eA¬LA¼êÑÿÊ€0Mù¶g¾“[ôCdGüÑ›¿–ìÔN>ûIž{ú#DLØ\iÓkV eÌ¡."ÕÜÓø÷y¯atS?ýø·òÞ“ß@«Ùå;–IhdljQÄTúSŒ+r“ï]y;JÔ„m¶šôJφ‹ÎgZGðIY>Õ“š4¼ªñ߈CŸ½¬ÍÒ³âm±b¶X C$&œ;yˆÑÁx ŒÆr^Ôü 7ŠÇÑSÉÏ7¢kŠ{Ž˜;O?ˆF²î®°»¸@¥9æø‹¯ $ð™ëIèâ‹Nèœ={ÖÖ…JqÛm·ñ裒¦)Qñ¬g= €'Ÿ|’ÑhÄ­·ÞŠïûŸ?¡k­yó›ßÌáÇyõ«_Í;ßùN{ì1VVVø¡ú!†Ã!o}ë[IÓ”{ï½—{ï½wþ¡ŽYІj1¦2NÈ|I¬TÖEeéŒ ÉY´'0.¨‰A¤ ›,üqnÇO5¬ÇpŒÕ'7e'.AvÊŠ´MÐß·¬Pà3ÂZBÐL¾B IÍ ­£’sûÌ&]"&L ¨—Úæ ðöõ‚1 &D´èÎ÷£) Ñ# ݨ5ÿ7IAŠOŸ…‘È㮓ã9)Ú’$ X÷ñWGhåPYèC­ÆU ¤f<©âµÇÕGæ8&%)–[ £ ŽÊY v¨0f·X¤®äRÑ ö˜è ºÄ½:­;xNÊöÕUŒ¶zô•v}NB–{L.U‘µç6A>YBzn9`ÝRÈÎùd»¾­N›†bâ0ºÔ´€<@¯(ºz™rÁ…É%“ÇjÄ«Œ/1.Œ¦ŽírB‹êì´¸:>¸°··L!$Ž““ C.l K|â¥>yêïVɃV‚~ÚD¥†‰_e’‡¤®ÇyˆªrÞg#^£æèvÚ\¼„# võ"¹vˆeˆ6’˜ˆÍR­Œ’ÉpžãàÌõÜ3…H/Ø¡EA¿ß'MSî»ï>Þüæ7ó–·¼…×¾öµ8ŽCQ ÞøÆ7ò’—¼„ßüÍßäíoûç=¨_*N‡×¾öµ¼å-oáèÑ£üÌÏü I’pï½÷òÒ—¾”‡zˆw½ë]h­ù‘ùVWWç€Ø:ærëˆé-7Øb…mV(„LçRHÌ„EÁÀÔùé½· w¥ £²[*‘ð"Ð\¸|ŒPÇôŽ6Yeƒ]2í²7Yd »’™±Ì6=Z¸"E–†0²¤:©2 fig£>®É‹ q– b­µnAt¥ö|†Kµ˜àf¹Q´Æc’ÛÐÔ÷bšÍÅ6m9¤šÆPøûº×Ë¡ªq&¥ G½Àjk›±Œøÿþ„¢àÇXg­\‡TÑ(*j•úšõ92Á•S×åN÷!xht'´õ*–Nnð,ç“´Ù³zkm(µ)—J¥Âí·ßŽRŠóçÏ#¥$Š">úÑr÷ÝwóªW½Š'NðÐC}IwÚ¿õ[¿EL&þøÿ˜Ó§Oó¦7½‰ßû½ßc4ñŽw¼ƒïÿþïçÕ¯~5¿ø‹¿øôižçˉœÜVçüñ™IÏl”ž”ì„L¸DÍ!¾œâ¦)®Nq¢ Çä8£ågh ZK2íY¶†q(”µî5i9j.ì 4×Z+‹G1Ž;·|î‘‹˜vMf9Ɇ¹W¸k2[žxnGõ^–¡bƒ—èTâ5•nŠ*ôØRÇŠB’%.ÅXAVʘNfªÐ±B'’̱~ì12Òx^‚k2²Â%)|Œ±ÖÁ.)LÙÈ%‰}&¥5X–OVxè\‘åN¡©ê¢ÐxyŽÊ5"ŒMDIèã¹ð*\í“SØÝ¯.¬­µ.En4 |s¢Žåˆ]’Ô'M}Bc§žIñ´uÝÄ”jµ@c™Æä ÔÚ6B…Æ$ ¨sº°Ö’¬pÉ´‹É%:·JÄ\•LèX²»»jíZ æ²ÀD®Œ¬àµàݰ²¯ößÏ”€žäKsôŽÝ}Æ nÌ)r\¸Ûàd)Ùß[óN+n±ëÃy(Z.ÎBÎÔ¸øË#’ÍÉÙ:ÂÜg§˜T2ºÐ$:1À;“\©0xÂŽíe%'`„ ›,Òl H•CG·IÓ•d„• gº§(2I;Ú#_m’.N)ŒƒƒÍÒKp¦W¨DcZñuÔÌÏ¥å9|üoa<„'žxÚKù—ÉË^ö2<Ïãç~îç¨T*üú¯ÿ:£Ñˆét:³/..²··÷%›ÌÿþïÿžF£ÁM7ÝÀ#<Âk^ójµAÐétèõz;v !çλvÉ„â÷&/$Ÿ(ü… ­(Á%c‘]ôiO:ÔRS#rG‘)‡z:bLÄ‘»¾žõ»VK“'Í« ¨“à±É*»´9;º‰'ÏßÊc“ÛxáMMëá ú;¯„£ Ÿ•Ý6`r©‰7šâ®%hG’t#¨h´+1[þâ„o¿åÿåwžøè€"Æb”ʹ¡ú.G¸„flëeŽ×Î#kš1¾bñã<&nÁ Pk.p+Õ>§WávæAî$Á§Ñî‘°@‡[nxœÊãS>©n#&ä^õK´ÙãÁþ³ø·ÿío „æ¿ÙañÐ&ìƳ–?Á±;ÿþ˜ˆ yùùØÞ ÐOHþGþÍöìù oÍÑ;’ÛïúQs€Bój~›S<ÎÛ6hÿö6[¬ðkû?ù/÷³xЏ_{ŠÛ_ö(¸“iÐ'hù±ÿòtYà“ïº7½âÐh³ú³ç™ô©Ë!Ïp?M‹.Ël[ļþ¦3hRƒ&ß÷Îß–Ÿy•ƒÏ¸€ ÂMj 8ÄU¾ß܇k2>ð©—ñO~?4 ómž¡ä³ÒP ¦†h!hÈ>Æ„iŒëeè\a|òr/%y8nB9Õ1oDEŽ˜J¿Ô…68nNP1\•!lC8¼1¾HÈ…cwÅž•˜Ô…Äw˧\•ÙUE’2¡ºyàbê “«&îÃ#D!´ÚÐ_‡ÉTJå¤jùz!f| ûÇ5öÀ%Ve ß e1Ë ¿e05‰WI𣠉“¡«S²J€Ðà˜'Ê(´ÄQ©U­k¡ÑC)5ÂÑVñK ×êâ…ÂU JAjFY Gåø*!/\dPà¸Ú©qÜ‚"+0;{è`‘$×™Ð%¤Ÿ}°=¸ë%öé… ûµá=ïy÷ÝwÀ<>ÿùÏçá‡æÙÏ~6ýèG¸xñ"÷ÜsÏ—d2Ï󜷾õ­¼êU¯âÃþ0KKK(¥æ±¢( \×EJIQ!PJ=Ól÷ÉðP‘O)¹½ßÉçgÏ((„Ukœá…Žr±TlÔs}«#P)µÂ-NÅÂ*¿!èŽÚ‡rëHX¾O{˜±ÅåH¥™vCŠ‘BhiùÊCA8ì-´R#ý]Ë›v’²C¶q#Ç™›ÍFòS2™ƒðfºÆä%ðl¦Pé—šî9Љ ‰ªSkŒa™mZtY0;+À‹­Ò‚åÒ+¦ó˜%),¦(36Žê2>º ¢€'­{ŽSÂÒ¬b\ƒ>CjÈ®˜¢RRê†PLU©¦I)º#Pè|ªñ[·Û@½±G(¦Gã‰d®ñá—Êœ¶™ Hkm§ª‰¥› G•‚Ov¢*„¡ Ë,•œñôÚšu¦—?ÃÐ¥Øs*ϧ."±MŸUï“Æa*Â9¸RÒªbd•D“Ä®ËX'”FLÇ :S†øûÑÉ[K?O,ÀW}ƒ}¾s-Vœ9s†(ŠX[[Ãqn¼ñÆyÌØÚÚbqq‘íímÂ0DkMµZýÜ„þò—¿œõõuyä\×妛nâ/þâ/xòÉ'yÿûßÏýØQ«Õx÷»ßÍK_úRò<Ÿn¸î¼ÃàN@ŒA” iθ€ÜŠºUŽggˆõ|ߘ}ÿól‚TïKþQ™Ø®¹î”»÷9¬Ï€—¤ÔÓøM§èТXCbë°S"9ÝòF›ù1×â•h×™µ&˜ÒÔ)š.“y6w«2šl+Œqd>×:.rÇîÊ*S•Û®2u)¦.n%Eù)5@EŒ-€V¦F2MC”S •Ι&!ÒË©;]bâû15ž;&UÅ8…a¬«ôãÙ$ V””[ŠS€SÉhÖö˜†ãí:òV«‰Ÿ>`6¤½ž/ kÃ…uPá@™Ð§ Q”Æe¨Ø“ÐV*3ˆ3‚bÕ#ö¬›T`z¥Rˆ†t7`’V˜*—É^•"s‘K9ºã2Ý«PŒ\d¥`|± Ñ,X$=pÀµ‚,Æ¡Õáö[˜ ‡4¬ ÝYט±C'YÂwcôØ!!B7$"48a…K~ân²åüíùëLèepùgçlמ>òÈ#¬¬¬°´´Dš¦üôOÿ4ÆÖ××yÃÞÀáǹÿþûyãßHQÜ|óÍ_’ ]JÉÿð3Nq]ß÷yñ‹_Ìý÷ßOQ(¥h·Û=z”¿þ뿦Óéð‚¼àÚ× ¸û&ˆc’b‡p{Š*rB5%J&„½˜J‘ ƒ”9ÊѸˆÂq\ÓݹŒpŽš›~XÑ" 4…:vÉ•²J„ÍœÖWì¢s ¨:CL½‹q aãº)A#¥p%iîcAVSv/Q©À1äÊa´Þ ™f\á(Z*F•Ú• DÔ )|IR öÒE&ã*RH·àª{„aÑ >Yäñ¸¸#u=$5‹Þ'²÷qºûÉbm‹¦êrØ¿Ìòí¹D4½Ú$YÄååcôë-Žë ¬ím#sÍñöYžqäS¤Êg ê a¨ëd¡"•![ý5ªÉ•5W©ŠèBØŒ-‹çðcxiBøìv—©ŸìaÃ8¯Gúë7çÁ1Œ[!cYáð±‹,ü» oo›É?eýq(Ù\[cäU¹1;Ã-Óuw{· IDAT'ɵC¯Õ"rcöœ]ô)×®D"Áöú…–$yˆï¦(ÏÐØœ€kX­lpü®3¨"§¿Ð Ë]dS3ÞŠ …‹k'¨‡]œDSß›PWŽº—¹£ñ úØÕmDC@ÝÏ,¢|Í´îáW§$£g(¨Œ„«xæ­Û5kKpå¶ÃGÐï7©!•‡Ù8ö EÛÅ“×wpÒ/"é—ï}ï{ùÚ¯ýZÇá©§žâïxǼh¾õÖ[ùÎïüNÞö¶·Q­V¹çž{¨ÕjŸ›ÐOŸ>ÍéÓ§9uêÏ~ö³9uê¯ýëù›¿ù¾÷{¿—“'OrüøqÇ™ïÖŸÚqÒhdl«:« "7ˆÔ ËJ[tËd-JÛ¨LÈ3hÞ —îKôq‰ÉA¹KÏÊÇ×h.¸Y)Rd:ÀçR×¥^ ˆäÄJ¸ Ë>h®ˆ)› E×vPîÔ#ê çŠe9§·ù$Œ©p”‹T³Â]ZóN¦%ì™”u*bL„EÄïøKì…‹¬x›aæ:äØdIî 0ìùm|‘ [EgÆåª³ÆIuŽDøÄ„´èrgØbÙ*:;Ëî6£ ŠÑ‚]w‘ãî9ê¢ÏãÞ- ;M*fB¨bT¨Yö¶Èš&w tAsu—~¼ÈtÙkzМ_„¿» _¹ '\6™Ïð èuÇvè+ö$¦c,;( 1× šÎÒ”4¨"”fÚeò­€è}L.˜n¹¤à‚Yˆ• ÝspWbœå)Ó­º¯`¢,Ë!)ïÖÑM¢˜i¥‚j'ä]ŸµÕ èDÑ-0F¨FFe±š8 JDc†&S ¯—7žï»w¿@B¿å–[øå_þeÛÃ{ÞjcÄÌÜnVàïa»¢é¾‚¾fùÙ¦ æpHÃé“ ks ”ÂP>5†,ÐaÝ[e°Ø _´ósÍ?ðéøv*Ïê¢LA¨'RWá ©±ÀÚsZ›UŠ´.ˆ‡ôà &y…$ è>v€iW0Ô V²à$ˆVŽé;\jœÀ‰4Ó›.®Ÿ$íYí §•RhÅúègWo`Ë]a=_Cx~ž1ä.§Ýe^í¾‹¯ØúH¸,c,„»´Ÿ³ŽCA÷.så}ÇABï+–Q§r‚žæÄS—a·~Ý£ìh2\­ñ„¹ Ä]ŸÑ™%LGpéÒ CcÜçîÓQ“C6W–š¦\8ý1¢ÍÎcKd‡ÝþA6ÏÄhÉ-éâýLœ€OÕOS“nÞE˜Rñàòë¾Ó‡VYÿ®#¨FÊKœ¿ãeÉÈc‡I% éöèV[Ä÷$\yø8Wÿì(¸°Ù:U¨† ÀCϹÌÉç?Fkö4!B^ÎýÏ€þñžç¡j9¾HXütŸ%w‡œãî{þ‰ú*ç‹LTžü¿î€F©pÒ@_`ö<Ý ¾Ô»õI÷X‹µch÷ÝÅør“qµÉŸ}ë+ ¼ÔÒ³¨Ð)Fšõ=„1LDÈ ·€©J2_èŸm°{i=ví ¯‡ÊÇÃ>ÜÒ†ÿ± ÐsðDYx k…å­?f•¿ÄÍ ³‚â!Ǿߊ@k‡d£WAŸV„‹F d‚É#M;F”…Ä:˜M Uç`B>ñÈ/{˜]…hÖÈf"0™$X’%.ø6UŽôÙ鬨‘ “6'Œ®4˜ú(C»µÍÞæ I¬(bÃîe9½þ=ùâºRêiIúóRMçik¬/õYbøê¯þê§½V¯×ùŽïøŽÏ¸º³1dYìÉ2ÌxÛ3~õl*€ð LR|‘"$û|Ïí4m6BÖ¨’^jæ”Ô¢p(2ëbèK{.gžà)>MŸ¦åE· ˆ=Õ K|tæ€4ˆšÁd„óÂÞ÷žÒoÂÄå¿¡#¡Fy9Æ—è]…h t$H'>ÒhtáO«tS.ÔH]S6=˜2™ñä *jL&¨—ñQ‚¬d¶ªÛkX(ë ß§Áîh¡4éÔ‡¨Ïµ±ö,×䲎.ö’˜ ¼&¤`¸½@1p #‘Í]-½Å•˜Zå…Cž»LU€¸¥ ŸœÀ“=L\'÷|kÀ2[ÍËï6å5Ö¤¨¤°Eœ 4Ê oŒëšyc:í*1M»j•`¦‚¼ããE¹ýù|{¿ËXÇ•Gçá¨áëò> ­ÔxLHRÊGK4Žå«ös¼ ¡pëÓu3_ NPÆÙÙÒÎóž–sÃ0ü\úç`Àü¯k¹_ÂÒœfûñr)ÒkAŸ= ]þ€“}IØ-+˜×T£f;uµ¯ŠŸÝKûFî³ š• ~bw^š[OqÇ HÌöVÅ<OKíæZiåhâú4æ û=||R:%"·Oƒ c†%¢}@5®ÎÑð LiЧ’HRéi²Ì%1> N%m’XdlïãºÏ´Éƒroï’±*6Ù`—t>rìÑ(‘ùv\?ÒVÂ269]Î#„íòøh-©è 15¶ö µËÂÚ&IP}{W7µPÜ*¯©ÜéÃöüÕ&ܶUE©ÀcÅg'äÝÓ-`–2—ö4ã²ËÀõ3šÍ=zYS—dŸö`C Wr›G¤«ùÐGé¿:e²g]‘ÖM-g rG±x`“a¿Éˆ·šà®Ìè?²„jäTnZ•>¿   º©¹&Û bJsqý =ýü—?>7¸Í&pIY˜gå™ßŲ*fÁÝ-ŸoÛÏ÷Ÿ,XZêá¬ZgÏÉ‹ >Éü¼,Ð)"»¿‹ '›g¸É=2ß{[E¸|nÙ< >Wì‰&“¹ù²·…ï% u yŒwêä™C‘{xÇ'䱇n dÅ`|ƒ’‰¨P¹©‹UÉzŒæ) #Hâ »7®0üd Ù6˜¾Àô$ùaŸÏœ¸“«j•ã/ Þˆ<Š9V½Ìj}—ŒÉѺm|àȦ ®1OÚ£=Np–C¨ƦJìG¤-ÁÃnƒ´ÀÈØëª ¢Æ;y¥Š2E4UääÃUpõ©cì<°†î(Š›ˆÀ R¿ÒpÚyŒÛÝñDÆ·5Hpóxóû¸¡ KÚ ¦†Õã›d%FàWHñè.­À±2w„V)T”Ues¡~jH›]B¦¬²Î”€^Ô†ÃöŒ™Ç•Í9U1Ï'žJXbWds`?÷N»»çËÇÔ>ªPs+ÿœàó8§ÈpqnÍqž‘Plx¤‹0cqZî×7rÿ’–¡VvÖ³Ú|ÖÁTû*r±ïóÆeU®÷%r±o$¿PF½oÏÞÜ÷53ðÇlDço2œ‰¦ (2—Ä÷çv§)!+ÀÏ„ £¹É‡Àà—£¼™|è,LË.¸A§ÜUF¥ ¬5§±úÄÙ\ç; |\‘YΫ«íaÿ”—1}¥ƒØt®E=+(fžÉ> u1˜ˆPc8×CßÁµ´6a¹§’@MIµ‡¶ÚœJIaAèMȵƒ)$Ò+pRŠi€)J}ítߪcK@-€•<±Û@ÛK zÓÅìÚ eZPx®=¤ÛqIû;܃ô²Ïž¿Dº‘{ ötAk‡ñ庭 ò¶$¿`÷è3ÍâŠK±áBMƒ=od"BCÒȵGª\DM£'ãi•±® w]DÓ tA·Ó&ÛŽìø>íb™–‰®“‹²olüªî/|V¡3YJ÷³|›e6IL®]…© \“!¥&`JR:ë¹dŒ¨–Æ<š¢T|S¡¡†4°hò—*#öXØ'•Qe„¢`TZ,«š ëé«„N}qV±ïo\òб ´‘e\Èjc ìj´-#Æ)¦äãÀ É Ì®¢ˆ¯1v ÇbILKÚ˜XXc#ájürÚPˆ2T×Ë88öy .¤\L‰ˆÉ„ÇTø~Œ¤…A9²WØ"ÀXáDFåõsÉëºßGQÐÍÇ×djGÌ'A"}$9U1¶1tU[€meìÀN¾nÐ3H­‰KûØ™{R” n‹QÑ6l–Í€W¤øeÃ5kΔ*쵓åÄGî»§ d™K—1VtÊ'a(jpÀØ3{FØIE9°4hS ÍÜW`ÐG ÂÉ0xV7þò¾¸øÅ±Ù¿²„nÆeå½["WÊ»UÔjyáž*ëåŸ}t·¬Æ»e²OËq¾Z,w÷}Ça™,J€1°+¡!49N’Õ§ìU4¦#Æ2‘#¯Bd&TÒ Ê·.K–.q…‡Mº´¨Óç*‡04æ.³Ã•ã°@‡]vXb6G¹P&dmÕÈr—£ÞEÚbª²Ê®iq%?̲³…š c‚R)$¦@²ÅZtæ ½r$x”S ã¹6õŒCÝ}&¥aÅŽ^â6õi|™p«ªt$»Â­î#ô[ VÅ1!gó“bªÞˆKéIâO×ÀõM9º/0çKiÆ÷„pVØNýÈ*´,CñdIy;l¬û#ÀQ_i˜³eqs9É1‚ä\„Y6˜u wdE£7$t$"ÔˆvHxB"Žxǧd}}ÖúË«ZŽs !$ºbµY—ä…Oþ ŸÆWn!„Á$ŽHIM1™ ¾ØaÔià­O¯Ê¥½cœ(Ü믺¿Ü¡__œÐ‚ËŸrH¦I0ÿÞf×59kúb‡F¥Ç¦{˜CKíV®F M“!1MzãTísõôQŒÑc1ñ™*¡;aª}&Ò:f¶Ù›ûs´è0¡ÂÑ¥sx•˜¼î“g$ 'šØäB•¹Õ6n'8G‚G¥ABÀ m‘o…p'ˆ'¯åþÅÜ¿$ºh9lÙ.“µWV‘Y™¬æ¿|ݹVU=-±×ÊÄí_µöÿ‡ûÞ§Ø×1¹0^ É–%}¯N53öBú²NìG DWÚ¶`*B\?e@£ÜÃY"XE©M†ÔXg¬Ô‹a)Û,Ïm8‡Ô¬ø.QÙ=Û%kÉN¾Há*:,à‘0¤N?¯ãˆU|'™ßD}åμ .wõSs©Zd6{´ËN>¡K‹iÑC£èÒbJH!™réÒÄ#c·XbIí` ɦ\ag¼BºäR‘ŸQ·Á0n‘ž ìu÷ ¸ ¬Ì¨œ¶Iƒ>‹ì”Ø•”ÅKÔrËÆYVnRaÄÙ§É¥d±7ÀÝ+`âŠm2LÄ…2þqÉ`êX'¹–BšŠ½_ÄG°¬Õ²i¹TÆÄOÛÏûµÞ÷qï·¿Óqø«Ås·ÿ¡˜ðmü! §Ô¯pª~–ÌU¨®Fn\½ïúî£Á€Ãò27p† !Ïåï­oUžÉÃ(nؼD¸•Ò¯×øÊoû0ø†—È÷óÝâwhžÉCáÒ|šYeÄáê7·ÎA ¾®ñ>ºòlngx§ÿm8¸"ã WY Ãê¿Ãã+Ö óÃîßÃÉïî*ÿY¾‰Ã\Â/÷áKìò-ü)/Ìþ10е,©Õ~÷MßF‹B¼ˆrµtÉ\ñ>ίxHðT†Üwø‹ÿð5b²È¹J›½ùïü7ú?h(ëñBƒ|ÌðOwßÉ_-¿O$H4+ÞsOÒ Ïð6Žî®£Sÿ™ÖàíüôÿÞ#wãZ u®¹ ©òfMö}Ó3Å·™×q±/8ŽË×g p3ÓH†khöy¡îß Ðž ™tH…Kª¬Ì§Q’1AÉ£œ–s=+íªÊѺÅ¥xŒ‰0s¾«šs5’!5"$Y)ú?ó]ŸÔìxÈehÇp,ˆ$+•ëf†vOžcM:´KËQæ]ƒ¢(~Ý¢.˽ýŒ¿G›¼”¦Õ%°eæ”díC}ËS×9C·ÂÀ4ˆ‹ˆN±@!%ã¢Ât‘v|ˆå5þ꺸6VžîÃ@$ÀáεáìU¨´ÓSŽ×ó² ˘û³S㚦@\â^|ÊØß/Xþk§ü]g Ç’?IŸ`és…ý\¹än€ñ ù†}0‘ý^&*ø‘iÜJJ±çC #¯EXï“öË•LªÐ×k}QZñåþy/Û3]{ÄÝ%ÒF@(p Q®ÁDDŸ:è26¼ð*)“Їï¤$ÊŠVÂÚ¤.0.ÝV®9&$sž›”¦šˆ11Qi£šà‘Ì©ªùÌ0E ÛiDÄDÅ7)ˆöÄL5±ÜA3,‹Ù°<#2.¥eÌ^ÛÓÒ/_÷Ê¿ÏX>]{vŠuAòL :ßfRÄ ®ÛpžzŒ¼*Ù$d°_Ç¿-c˜Ô¡ÍS»VóŸaÙäiîÆ§`B<ƒa{4©0fFTÆŽ³ÅLè„=R"n²Ê$ŒiÈ!ñ|Jì'¨¼DV4¢eRVS”_bj’º7à ÞDø?Î1uA¿Ú š$Ô£ñRÊ`¡j-“ã üANkwÀòKë¼íü¿FO$ ~ÏM¦ ¢ù¡ežWýNƒ¬ê³rnZ6¤ß¬Ñ.¨‰÷oájr–,ö ÚvÓ’:Öº§J’ÆëD2¥6¹à½Bo\g0lñÑK?M6 8}ëëtævgEDÂh¾Ž¸]à…gú¯²¶h…üγïEy%£vÌ`µÊ^¨_`[ÏÈŒJmŒê–Ì›üàmŸ£x¹Çót’×Îß Cü¦!>ëþ"¯ÎŸA†š¸´Z÷;Q›uBÖÍ2#S%”©ë‡'Êã©úÝH¡™;»‹¨&*b×ë0¤FÒ‹yfóÍ(¿äö¹ç˜kì ‘<½x'‘Jf-qΰU] Oƒƒ¬Í_ø>´´OìR9=d›Á€ëí]*á„“_³ñéeñÆú`¹ÿ[‘н~I¸îvec¼C@³JÚH S‰Ðí`[ÆVpG¬öØuU]C†¾{­–ûàS¨}úóºK"Òz]£²Œ .Ñ… ÒLðj%õ|Dª"“°´ˆÅ˜¥| Ï/ÙeŽCB6Ȭ± Š&=v˜cD Ÿº3쵌ø«Ü¤Â˜=:ìÑ¡I̺ŸQÁ3ç½×ðLA¦”HL‹íz—µf‰ÂÂóǹN*­ QO´ˆ™ÌDp%Õ`Äq®31»Ñmö9Ïkl³À˜˜ËáiVXcìUIDÈv­Ëy^# •¥1ãzµÍÿô¢"–cRB.z·F!Í…=¶ÃU’Ë–ñ+Εö÷À” q—AÌ—èkÊBëw'bØ6°±÷-ACÚÄY€i÷ÒõÕq¢ÀH”u+S‚|­„èÂOÀ¼µ6”óúŽÄ’Á¬ [É–AÓ4øŒ0‘¤u»Ù݇ڛö@ F;Mʱ‡\-‚(L˜ô«ˆ¶Æ«åÏè NY¾ÁÛ ø6)î~2ãÞúK¼Âr|¶X`D• –ˆI¨ÓŸAß1h1¤FFÀ?íþ§ì,°s°»`Ry¨vH â¬æìò‹4‚«â&›å2Ïr7 l³O›s¼ÎuŽ#)©1"f‚FReDFÀ. 8áÝàgð(¸!Ž‚NÆ|gÇÑP‹6gvQ¢$5!gç/s©s©4Ms@!<.rŽeÖ9u.ÅÛ+¸±°ÈXÄTòãAEOˆ6N¶.ó#?ü¿SàñØú?bmí¬Ïóë–ØÕ®q±}Š„·.ÿ‹f“LÞÄ3H4ŸZû;¼´'j5ådë‘°ÄÁ+œ²#³'mRã.¾Êm6^Xå±?ü à‡ç>Áù¹—ñÉS% £q¼O~Üêkœç4%ãýýËÌDVX¾ý:çW_$$¥»¸Eeqä\-(JæØàïò[ Þ^ç—Þÿsõ³çh]0<ô¦'(ðh6{M«³¾ÀÚ79/r;¯”·ÒfŸy±ÃœØE(ß´Æ'çM÷<;󱟪wnm,ó{ÿÏAÞñæ&§¯[#ž[,û½D¢ÐÔÎZ‚dBDžùüoŸ~Äp.{™‡NÆŽGzPíŒhvzD?:¤Da^áoþÿ6Uèº.ȲnPcƒ©„2èÒÊõ ßz›—g¦’°Xº…# ö)D»j|Ëý>å*E.iûG¦>’è1Î`AVQÈ2 DÉXÄŒ¨È„•ÜKì0ï sŹ|.Ѥ„ôhÑ£IJè´Ü«ìÓ£d‡y2¶èZo_‘çNŒFÍfºˆ/sŒ†¢$ 2°ÊRQñÇt‚=v™#1ž°¸¬ …}½š ÛÚ1óx²àÀ´¸,N‘‘ ìš9rƺÂ$‹¹)WñtI/mS© IEÀ~Ñ&™Äø¦ IbrÏC%ƒ^‡ò¢ƒC5ÖDÆslÓãØjzÝm²¦óÄp¢b7V²KKP*W +;Ù“Û—¸,0Û±r^£ç­^tùœ¨`¥ÄæÑ‹f]Ù÷ó<ˆÔZQš ˆV‰(DÇÔ2T˜â‰ rƒ0`"0Ïš=DT3g|£7â´Ák&”ƒOd” Oæo<{lí¯Â¶q­! hÚq³ûdTÒ`à*ôÄÁ¿0¤F‡=†^± -ÏbKÚtǵúþÔ®7“H®ž:C}î€+µSÌ‹=nšU†¢FËZ¿Ìiê 2¦†Õ|H ¶…f“BØ–×¾³Ú œD´Fͦ`2FTˆ:ÜŒûS IDATF$"¢(„gÍ>„5‚ºÈY{{¼Šáº8NBÄœ¿k[|jH¥3Æós"&L¨àÇÕ3=ô¾`6Âq{Ø&#`“EJaÃÖH ñ H¡¼’œŠ˜ˆØMöLØfE6QŽ-^säÞa½9»:=ÝdeÇÉ‘³¶ß=šD$ç:»ÕyÄÝ%¼“ æ€ÉJ7––8*x!2ÀýóðG%åS}vÌ…ðÙfž]*Œ]2*Qå4Wxf|{ý†qA\g/´dªº›LØ£Mät<æÙA¢ì7á³À9ÜSg‹®ëäY™àÄ!5É2ë¶Ð’m‹ÎC¯Ùä '1[‡)»bŽMà VèÛzèÂð¦&ÄŠ/d¶J©KÞˆóõ³ãÑøü€Ãñ³é»ªé‘OnûÈHKqä„¶bUƒ‰!kIŠÒ§çÙ~¦gÈ2Áw‹F{–h6íëìºAykâѧÁ˜ŠÓ .RŸ9ªUѧA‰b‡yê fým’E6©êû¦m7yÅj±Gšª7&•!‰ˆÐB²Ä#gübFôd“¡©»½LB̘MéÑ A#Äì½N¥g7Y"×5¦Žm‚/|rÐôöÉEÀPÕ8(:h-Iê­>Å0`TÆ­`YÃD¿ªìù_60§1¯K;š–ƒ¸M[¹×Â^yWˆþR>·ó+ð÷Ê/)_ó0›ÎÜ¥#Ð;\sžN—¨CþZt¨x—¶Jp0±€“Àk}S9xÞ­þ\ ‡^3³c>…@4µ5þYÐ 6í¸[|b@ØHìZ·§Q¿Fu±Ïh»B¢j˜‰dî–mü0ûæ&ôo÷Ðÿ‚S"y†»PcHÝ Œd´ØgAïÐ`ÀXÆ4%1c&TøÍÙª,rõìit)Ù>?Oÿþ&©´°ìÚÛVØs$*bgg™Þ+]žŸ»—óg_fíÉÓl¾P"çK.ÉÛ¿T!8•ÀqðÛ9E/@ùÅØ§\W )ê.Í'¯üûȨ¤ÝÝFM,ÇÖ’7 ÌXè»tèWšd"`‹J< ðoâ*'¸…Ü¿Ä3ÜM†O×M±tØ£¯”K/q%lþsz——õíüòÿÁ±Û¯püÔ•™³cƒ>É^¡DQ9ÛGõÌDñ¯žøŒì Zoߢ0>¦.XK ¨9RÚüÒ~âezE“/öá™?¸¿–#– ¢–s6¸Dm~È-' #‰ü ?{ÇËèt•gvîã‰O}/&|í¡mæç7‰H©1Ä'£ÎÀ²TÀ]?ò5–¾oý×á…÷ŸD·PïäïfJœVB{ȃ|ø×5ùkUŠ¢Bv£Æn¾ÌÞé%ÞÓDbðÈisNWÀ ¨Ü6dîCkôó&/oç•?¾6 Ýß" cÓ,2uVXãÍ<ÉÛÔ¢?þÃEøðú×nákÿì!ðaû‡é®nФÇ1n²Á"Ñ·zBÏc‰~f+$í[¤œ¹‚c¯‹Ü~ƒ«¶²ÖÕ¢‘tßâH¥£ŽôpÅ‘ïi²—®ªÓVrÖK5ª(¢œBzVeH"'Íê‹a ÈŽÌ¡§Ö¦ÓÛ¦ºíÊ‘ßìxGòuV…’’¡ë¡K4‘“rÍÈ%J”Ö0E+’IDQQøž#š‘oan% ·sTHa(šÍ¡çîø†7€QµÇ=œÏ´O®|‚H$(U¢•´óèÒ=”(ñý*²ÔG„%rkˆÑ—vs•»•6°6‡d@hàÀ*_ÍÎ{zOAC4ûk°»JYU¸·i«úº»† °%(w•åHŒÜu ÁeGYtƸÛefkÉ““z¶Š ïGèŠAç ³/1™ÁDY)ÑC…Î%é$tœ ƒP‚|ØÏç†qV¡(¾Éû·ú_ø:#åêô $v´lNïÑ4=¸5 úLˆhˆ>ȱA#©0`9§†°Å-§b±Oƒ¤ÃU†l±83~ IS±lSe¸¾boe+é~Ü`$ªtÙÂĂФ®6“"1ô©Óe‹ãòúLò0!â¯p šh¬žõt¾2 £"ÆÔÄq` *´8ÉUŒkÞ*ž)˜7;œ™4cb&ŒkÖô*¦ Rh6'È/˜–@œ‘j̺À$ÎYVª© Øpȉtpü6p'ð]Ü\€ÏÞ€Á ÐåPÎñ#z0¾TÅ<äàõyÝÞÖJ³Ì¡üïIऱ»µ›j&*ºšlA7†è­ :ð4¿o‡¤U¡+rÀL Í¥†ÛMÄq¤d£€Ý‹ËIðm–ûß4àn ÃYûJbE‚Ôš¦îSËFÄ:A9GA#ÎÂPkŒÉTHU AàÄ“<ç°|`íEÌØÏ(ãêЮîዜ¸=Ƭعí¸9&Ÿ ¡®Qõéƒ6ž5aÑ>e,ñ£‚ÐKˆƒ~h]Gy SÚãŠÒ*QŽ}FªNj* ŠûÕ™ äM&^„ð4“´Â@Öé‡ z´ØÍçÉL@ÅÛ¶š)BsÂ[cy°A!=Ñ€*ªbD#î!rƒ7,(ö}JåÓ[Ï鄯Ðêf7TfeRøäu»©/Ú ¯’“OÆ£˜^Ñb¬jtÄuÓ§ð<ˆ u¬O38@ú%ãJŒpêw;ÙêÔôˆ¹r£õÐ:KFᄸ1ÆHëx˜ÄH ÂÇj ø×X)7¥a7ž£'›¤aDíü ̨˜ì2^¯¢c‰¨ íQÏGęըçµD y×C«ò½%Kö£9 i×â‰5™ªÉM¯‡ %24_ cÉd¯BîLŠ*©1òkÈÌ––·Ñh;„ R¯÷x²„\ê˜Ýx޽lŽÓìk³Üåuƒj»À}¢Å¡f{y¤ºî©¼B³ë#ÐùØ%‡ªKþS)Ùi…®ŽTãSÖõÞ‘j½Ú˜Š@¡M!­j[*$>a¡A Râ•Æj* Ai^©‘*-J£Œ•ht2[;‡™€Œ :ì9}îz.=BRæ†{Ô«*Xs–гE—9vì[#|rê ÜNÓŽÎødøŽx²Ì:Æ3Ï"›ôh8{BŸ&”x´Ùc“%VXÃsò{¡HX)×èª-&ÄT1’U2éÓ›´ACPMÈÛ¶zĘ"P˜¶BO@ÉŒByÐrÄ4WY‹†Æø|ƒhŒ a²—oªMäcauh n!ø LÑ: ‚š/ ®Ñ+²¦1l”s ãI¤oð› hÈýÐVÖ9D :ñƒ_ÉH—µ}¾'‰¼ Á|BV„èLQ¶|ôHáû)^wŒDÄõ!†:ž.P~ñÆú·!÷7hLɼþidÆ) ßXíó¡Aô ¢g¬vAà6m}Ëß«i´F,U·ʰç5éËcb¶ér–‹ly]^þíM„6< ¾ÂÞ Ö\$¹?¢-ö¸À+ì¿¥ƒV’†êÍ|š5³BúÖˆ¦èñˆ÷§\¬ŸA`˜“;|zûûÙ)ØŽ–½ÔB´5²RP>Z•¸-‰™žyäÍì{-Òµ*¢U ÚùZŒ¬å\½å$—ü3|aým„qB·½nÝ‹”XMxGý}üäÓÿ¦æd‰4 ¾û>…0šž¼‡‹Ÿ¼³ Øé®P=µÏÃɸÿKσüàCÿ7‹çnÒ3MnÜvŒUöÆsì¦óäã'?û0blh,øåŸ¢^ èÍW¹vË2;Ì3xS«w|–°›â錟æ`~²Ku5åõï:Ë^¥MåXÂÄD Ë:Ÿúwc˜]9+¸qò Ý‹=î>x™LìýTÛŽ7>2B‡Á9ŸyýûÙ¸Ùbã@°{˃6÷™_ÿï¡Rípè~f\õ6r {œ>’¤ ¾~¦|ßUqÓõ ɶŽTä…«Ô£#›g3×ó‚rY0©”]É$ É*I5"ÇŸm¶èRólÓµ-y±çu¬Ú”*Yg -$c7§nÜsBÖY¡Â˜C.qš”ˆ&=R&®^g@ 3ÖX&"%q²”Öï|92ÚìÓ§ÉóÎ eDÛ=§¤Î 1ë¬Ì®ƒ»tH‰(®ûK3 [äEn' ›Zn¨c\ä,{ÉZYéÆXÙØZ%Ó!&W˜º„ L¾XµçøŒ½>ú‹ÑáÜÿ]X1Œ]0iÙì׿5a¯Õílwà7Öàì ÜæÖÇ §ÿ&ðoÉïÖ å®/ÚɆò. Ð}…8¥ îœ]®’^±ïGÌkD£@<Æ×ŒV˜R25!€ –¢oÍgO@ÃÎðýŒ|-´=±+«DËò‹=?Ä ݇/â…ùOèé·úýŠÃÔÞÇ.aÏüÔèÑ?|Ý% C+‡¼/[ h8͈*= ©ÙZ]µAÔÉ=Ÿ‰1P5„(Ù`‘"°²¯ CjÎWöh[‰dB†N:17Íqò­ žO¿a^U° èÀ®é†/Ù÷7:YcR¯QløÐ÷a;¶S!µ€+Ñy¼¥ÒZ±vcÛnKëT*Cª•>YÕP I!IÐóí¨^’D”ë v@ß è¥]Fº…—•Ò…ðŠBÚÖ¡$ŠAa<@¡=‚¹Œ@exD(7Ê—+k;[ࡵ¤”Šá¤Îd£†KdWš Qè™9Ž–’¡¬Y£œ!Åš7sÌ¥D´µlbÅ®œVG"#Šª²mÉî2Ŷ€Ï Á´lQÖ´Æ:xªˆ-ÁŠuù±Å2M ýŠ‚1$Ç«$ELµ£ŒÆ ­GŽÏHÔH½ˆ1/"É?4낾¬=ƒ—–žž‘¡ ßgןCQR¼ê“‹Øi,£oxo,ÿþm[£â“Ì7ؤƒÏ§¾åSsC¡‘é=U}ó޼+ÿHp”‡°:>‡zñúëûð^Oãm@Ø“I…jj„u5°³•eB!= éQ5C2auÙ+Ø1®ªa8&«rRvŠ-ðÉܘš%ÃØ}­ÂI±–ž¤Áàëtˆµ«ì•›R#Æú{nV^¢ ÈPG¸ÇÖwʤ·b8ÆmÿÔgNqSÃk+œh†}í˜ µÈž m¾(j Ae°hƒ°šËÚ({mêî\/»ó[‡&Ó”3Mc! f(,ª6Øu*°bàútV¬Æ³qÌ‹>&àPUnÚŽ)Õs`Vy/:œ€3‘˜Ä·}ý´QèH"eN9 )&¦bÝ=°²µÒ·Ä é•xscÌXB)0R@…P”å´,ýKöÐÇã1ùÈG˜››ã½ï}/ëëëüîïþ.KKK¼ç=ï! Cžxâ žzê)¾ã;¾ƒ‡~ø[•äNÖ’ø©Fˆ#ÈÜ´}‘i³„ N à"TF9K§v‘™!žKè‡u&&¦"Æn³naã}r|b&ÌÉ]Nq…=Ñ™™2M [óì2 ŽOŽF0¤æ\Û$u3¤-öÉ…õH f,(; 1WÀŽÄ4žúûþ‹ÂCT ˆ|‡L[„T@Žm/XÔJüú„(ž ê1&ö&h#g¢ZÁMi—ö9qú:=šlÏ­Ø"É­?1)m,Ü·Uàj~“;xž{l±Àm*ñˆ,y¾{7y;F+ï°j ^pa8¦Vr…SN†%`^n³Àª[rÝ+é­Í!RЂӛ7Èj§Ã«‹nq£y–ò>…ÞWpÂÐ\Ü£Q݇5¹á7)º¸Î²eëŸ<ï8OoÁÍ}x°mc‚îé–[\à§æ—0¦Ên§ oµí9¯žžá k袡Þp/0Ï6ûN·LÅ"k¾S#E _¶Å¦Üj^Æ Ø6ó´äu¼x"Çk'è¸:dÖÿ $³¿\…þúë¯ó[¿õ[T«Uî¹ç¾ÿû¿ŸÏ~ö³<ùä“<ðÀ¼ímo#I>ñ‰OÐëõx÷»ß͉'þ¦6™e)•4%2 U3¢’'VÊ™¡49`mô©2¢I˜ñLãyšx+Œœµ@B‡½;3$up¹M¤253"ÐôqS3I9#àM u¬/ñT˜&f2¯ˆH˜cwvŒé{©3 Î`÷{”xh-ܬۄš¶,–Ä‹bË'˜Ðð{x~Ð]Ø’3GÚ‹Æö²ëXæúÔm­î’ðÔÎvz=[«°Ú‚×Ö`ÃŽ'ö@8u,®¹kwÊõ×a_«´×Ð\•Vj3Ð6M×VnJ£' SZ³rƒé+Dáܯ“"=KD[-o_樨€šÁ[L­Ì­VvƒðWÜÿMß.¡§iÊË/¿ÌûÞ÷>~ìÇ~ ¥?÷s?Çýб¿¿Ï'?ùI®^½ÊÇ?þq~ôG”Çœo]Ø}llzº^&G6èÓj=vk¢â{ÕÞó&µsF eI—ÆX›Lå6­S÷µéæ¶Êxv?+JÆTñÈ.\ÀóìÓf—¹™àÔs Dm&õܧšOQA{ŽÀê.ðqP‹¹Á]Qs¨Õĵ·Öù‹!k7O FŽcvÚô.wémÏ“¤1f:Š;u)J!gŽp:”6Æ¥À ЗÀw~çwrùòe>ñ‰Oðè£ò±}Œ«W¯òÛ¿ýÛh­yøá‡ùð‡?Lžçú«¼R—lkß }÷÷ôL}'Gtv:Ÿ2Þ‡G÷tüÏé9h—¼ÍaOݸ¯ (@ *°ÁÜE™{(¥-‹3W¨ œY’†&Åétnô,¹7§:eœ{”3•9;™nܦîl¸`¢}›ˆ§r’™ó†šP¡ÂÄéÐYx¾Êh&"3õÿ˜XýrGü Ig½DÓaÏ±Û °ÖAŸ{t¨0B`\½‡'sjŒ¬`b‘Ø#{u”.¢„¼Ø?g ˜ÜzŒSÓW6)]òsD7“K{»G®I!,)®V…¼xî]…%V[½á®¯´ ¤Ñ.1wH‹öÆŽÇå@Õ "ÙUˆ†¶UÓêˆJx€ CQ3”‰‚]¸1D,”&CHƒ\Ê1‰æÆC45ªZP˜’Á i«£¿nÝ”°õ$#Ø»èÐ {®>üáÓívyôÑG©V«œ?ž<ÏùØÇ>†çy<òÈ#œ8q‚x€çž{ŽïùžïùÖËæäÈÚ!Ú"'G6ðÑ7À•=¨E~¿´fà JåÉ ÚÉ'{á’”$D„þaÄ”ºl1¦BšY)Ûc7Õ 7 Þ3MVÄ‹lrµr! ¥’&¢T ÑÖ˜¡D‡Ö6Øì L¨­¯÷Tâd‰i(Kê}Aº­…ŽËalRÉO lNðÏŒiczºC±X'8þ ýÏÅèZh3Š"^}õU~þçžw½ë]EÁý÷ßϱcÇxðÁyî¹çøò—¿Ì/üÂ/°°°@žçìïïÓív¿¹ ]ÇP.L$PÖ ˆ°‹#ãJ+GøÞæzæ6uÇxö° p{þ´ç¦ÜbÎŽ S]„±}œé‚Y$Ë 9$ (¥bÄì «•¾Pî0RU6ª5ö˜só‹’M±ˆ@Ïäa{4Ù`щ$6X¢Gƒ”yvØf°‚Æ œæz•^^°Å‚íá¸mªR´Á"Êë4é±E—=:3;Ç)„.œ{R“Û̳Ë<óìà‘óç‘hºl"Ñl°4óƒ6®sb&YÛaÌ„lŠEúEƒÀËÈñYa Ì¸1:AÚ¯@dQ†Þ í"G,%¤/W-\å9.Ä‹®‚Š þÝò×*‡Ú'@HÙ“öºÝSKþìœ=Áí iÅ6xÒîê‰ Á± ÅNˆÉAoúȳ9úsS!N”ø«ê•>ýƒqoã3(­1™¢óÊ€q£Ÿñ LtÌ»>I¶ð&žâ¡þ„D†Ü]>Ë[Ä—Ú`rI%MÉ_Èþ,ÂŒ¿ñö÷ò¡¹ÿ†¶êñ÷Ûÿ+õ GŽà'ù b3á\ýu‚í¤Àܰç¥ß©ð›o~”WŠ[ k ‹lЧÁ;ù#"&¼?ù ê»{žJ[ \ë×xäwVæ¹ÿÁ/ò&žÅsdD‚Ácµø/-©ò+ùËLÀOl|ŒQZeµ¸Æ;ßñ±ÈË“M‚ÐS?ûÕ_ÆLÛºZÀeøèÞÄ/D"¨¦|üC4’¦èñ÷ø%ÿÉ•A¸–Ú6Ÿ L_¾óßûëCî¦í\~ €û￟_ûµ_#Ïs}ôQÞ÷¾÷}]\(Ë­5RJ„!09û_ŸåÞUweòÔQ-âpvxÊl÷°Ók‡»#Ë–9ÁO½Ïýoè›{îñþÒÑøDïƒ,A'àM4e¡È…O*„†@ØyLLn|"RÌÌSl¯(°ã)v*Ü›UÖ‡&,´gpxßr¬Bœyi³Ï ¬“˜!¬ÊSa<2íË„@Ø„ja>«@5=æ”Õ~€±è²ÅsìÑ¡Gk¶c·³¼ö‚®³ìÌX7J<Ê/à&«ô„%!!7òƺ\fXÔQ~ŽÉÀäbGÁ;-@$ÉÒØ×CUªrëaÎXPø‘ÝõöÝ5­cÕe× ó8‚æ|ñÇ(|І5TAº@žÒ…*¼âXñ ÐW|[ñ`®*òzÌžŒ`Wr0êrc9EÇ‚¤_E¯û˜BCÅC$½ç1¤A(²õr;·¾Sé2¹Ù°7C)®ÖHËð›Ð§}f ;Ë2†Ã!žç1Y]]eŸíímžzê).\¸ÀÝwßÍã?λÞõ.ž~úiÞóž÷|K&tôã7X%!â«ò>²a…ñ¤q¨Y¹µ °J Î,ñ66ôƒûîÞRcÛAæxEAÇYsÖ°lÖYMÖi”û)hfCúA…DÄÄiJ*Bºz›¡‰ Ë0L¼ˆå÷! IDATšã§šû´ÆcÂý®õC#•C *.þì¸xÖp|þ‘8¦Žpúîÿ».~õÝÚ¹ —€×Zg)PN# Dp'Ï£LI­Hiã¯[ƒ9>Ÿ†2Ÿ¡AŸ€Œ»Ëg‰óyÔvq×·Wiòdðfe©2îT_%%b1ßæ¤¾B!QZö Ûs ÿ©õ3üYý;èŠ-Þü+”Ìiš§¹D5O¨' ñ^jcyfÏÍ3żR;Ã5ŽÍÜí2Îñ:UF¬dÛtÇ{‡±>Ùz+Ÿßzn .<Ïd,°måŒäÎüµÃÖÁFa•§6îe»¿À½gB~Œ>ö8‘_§#÷(¥d®?šÅ§)!óö>Äç[S‘#îå‹”(ÙäV^F`85Þ ÚIm Ú·9è+üð7almºÓ›þÃápÆ»QJqÛm·ñÑ~”ƒƒž{î9~ú§š+W®ð¥/}‰Ûo¿!­Vëor÷Ü{šph¦2e¯ëà 5ëŸßПÂn©{Ì´2ŸyŠûÙ?½§GH3¹;îMÛ†pÏ`´&œ·27´ã>ž¶D’f0D”šJlw‡q9¡Ã>¥´ðS¨R|]P•Cz´S¡Ã¾Szn 0´8@¢©3p¬ÞŒÌæ“C¬9-®Pä*¹ð¨:¾ƒ¼§F.‘ëûÕ¸m¨!Ü®´Å>Mú´è±OÛA„5†³þRBD—-"h‘0ÇŽëø×¨0" gž–07R‚°•²"5¯•Höjˆ…Ýòž¡L<„0p§AŒùŽoÇÓÎ9F{hZcÎ9qŽ w-çsÚδ¥œŽ ²Û7I{MÄJ ©‡\уÞRö¹ñtÂÁAƒ§r¹DúeßÃH‰ì”ÈN†ŒJjµ!ÚlwbLJäÌŸÞbÐh¡T‰æøç'˜L²pâ&ºTŒí¼s™x˜‘r Hßü±µÝÝ]~ó7“4M¹ï¾û¸÷Þ{ùà?ÈG>òZ­ïÿû©V«Üwß}üʯü ï|ç;YZZú–í¡dÌ92Ú¢·IÇŒ”.ñTލX£$º%ðD4NtÄ„ÎÑPδ!†ÔèSçJq ‘Á k±uéã°V>7‹–$§úºN^úÔ‹>[ªË(©à‹]HÒ< ¢Æ,Å;¬3OÇtJ”)UCPÍÐZâU LlÍ}üZNILM)zÞ’åt!1Lê** üŒ¨“0é¸Ñ.@#ð†—âw j ˜j@* FºÊ‹ã;@Â||ÀÂÒEÇ#(SüNN¡ÎòÂMäfU¸²{š¨H©EcÂ"§ÔŠvu€É!^˜ 3M?nÐYÚ!Râ…1¥#ç^2§š*’üü8§²4:Í]›7é˜}J¡Hˆ(S…I¬¦Ç|kŸx”bBð½ÙԤ̀Z02UÖX&ÏB^ˆÄ„‰¼Nºc”Äór‚~¥Æ±·1—·H·&\¼|•ìóD&Á—D ÊP96†>dA@w²‰¬Dõ„k£“ìçs$²B-R*ɹÅëh-¬5³0È@S×=N´®ø)cSA Ín:ÇKÉí a7©.Œñ­ =J%A|“•â\{åùçŸçÓŸþ4eYò³?û³ÜrË-<ðÀ<öØc<øàƒ\¸p¥¥%üq¾öµ¯ñ|€0üó…ˆ0QÝþ—üzæ™gØzæ^¾ï6{#ÎÌY¦³äÓ~ÂVlV¡î‡ÙâÕ¦«èêîߥÛ+·«õ݆aª$§4?ÝW$Ûü6±è芺B•šrÎѼ}MrÜgÆTÒ™—˜H0¶s4“›Ñ";Ñ»^‡z1dìÅŒd•‰ˆXÈviê>;A›+ò”«ÌèÓ`“EÞœ~׳&a(ñ¸Â)h±ÌúÌâT`8ÎuþòßG\4x÷d˜ž‚Ððwø cQ¥@Q5#Þl¾Ê q•!uþ»ðçB“\©±ùô1Âò;¯Ò¨° vxwùû¤"¢xüþáÏü£¿ÔšÿÏÿëÇxìµÿï8ð£ÇøÄÿòÍ‹}¥¸]c{âSæúèq-=R¥ÇGª—üpÔÌö4Žôܧzùôi%:2ö6µN-Ýc"àœ«îš–£¤ç$ã–( F â$'­+†^•v@¿3r#ÑFÚ¹JScM.3hX›Ô\xÖ7]YºÍ]+ÝHL“}ѦÀŸÍƒk$]¶8³}…ßZù –äÆŒ`7µ3´â4̘ísi“®‡_:&¼A2›²ËØq=}2¢:ƒÔ-#× Û> ã&ÇðÉè;¡J?-y9¼‰v¦ÖÙh£\¤§Z\õNÒ :vM ‰¡Äg’VÙ¾ÚEä½£¬Ÿð>DªQ‚Á #Kxã¸&‘zÍÇLY±Ê ':óáœfþÎ!k¿ïQT–À,[c°d`"á«W`F>£°†P%ÂQ~†ä¬ Ž â¸%D1/x©¼ V ÃPVˆâ„›Þ ÔJzIƒñ(f°Ýä–s/Q­ÞØ¢Ïø¶}ê†Ü›,²GǶ©D ¥J„2¶õ¤%!†\ÚV—@;XðMfe”ÝtˆÄÎ ÷Êý¤AQ8‚Õ–]sý&½¥6ýQú ›̶ÂôES1J#D" ›;Îh`ìÇÔ[ìs¤E…"”Ô}‹žÕéϰìS>=gâ²Ë"ÆTíœ5>XnÎM&D3)XÛ¤1$D M•J=e@}Öv›Nàô' H`°Ô ß­±G›ºs3›¸òÎ(˜ÄFqÍö–¥Æ¤o’1ôª$:bßkÑpEDB„@S:2 À0J«ôu ß³ìå‘_£e*ä±Ç˜xæ. KÎÍñÉÊ€ÞAö¡o4¢J-Z0 Î>-Ô)¥GZÄ$IŒÞò¬®ÀÉ:QÓq}앵O{/'µ“ŒR^̡۲÷•§ÙڀဆÓùˆfç­*FeÕŽöe%8g¾QT™¹iÊÙ¼³å ‡ùäL ¯7 ƒ¸láG)'õ{@“:ßdûÔÛ„eLË‘XB—x#÷÷´ÇaÜQ¦ãgÓÇÅ.ùK÷·<òüüt?5˜Î·«# }:ʤ<Þͬ‹ dªñS4þ_öÞ<ÈÖ³¾óû<Ï»¿gëszï¾}uu¯tµ´ û"lãm»â! S)ìLRTÅ¡œÁNa—1`Êå3ØãàTŠÇÁc\ž£ñe ÙÆHHHH @÷j»[ßÞOŸõ=ïú<ùãyÎé–ÇUæÚ 埪®ÞÎú¾ïóü¶ï" M!H*’¹ ¡5ž.pdE”gh)Z–8Neª@Zþ83 j=[lmÜ„ììÚ¥¢°¨xe¹ÎS9—Ò&!5+cö~w†äôÉg8ÝØÒßr<„EÝO/FÏZ²”3t}ŽK…²("bB,2A&è­™x¡ûÖÐHKUÑ”Ž‹‚ C P¨ÂÜ¥¥\Ø&ø Àw¨ïè|H3wש6¨ØÈ´áuÚFU®”(ÙBw=Ô;pÓªé®ìX ÎtHˆ5ÅD£R+*”o,xËýáø A…@1 NP›  —¦;À•%ûÅž›ÑW áT`È¤Š©û†e*\ç#pÅ?Ù§^óMãÏ(›-ú`=:t©ësôf&E5ù¨ë1Eé#\M[¢¬°M…$#Ä£`Ó?I²à¡&.\6Œ¿*ðÆÆ3]®Fž*(/ûˆRá´4e$‘2*)F raSprE•;xaÁž^ÀÕŠyߺ5Ôu¢cQÍxìó PÐÁ±IÇ!mûwKe8ÑhÚô0:–#]§•éÐia4Òvk™€¹«—ª&Ú1DzΈ%vP88Q7jž—Rf>N¿bЛcœÔÙ^XÅ <ðÜvÛmÿi5⣢MùôÍ*Û:÷e+ƒc¸€©§´¿{t¤ÇÀXö “ÙûNçïÓŸ{–ºÙ$Û ª%ä®sg>ÃFLßmà©å …Éú4¦…c˜v¾õg6ªR)!9Pg4Ý ¨.°¦,¦¢p §±*IˆÙgìbN íÇ5€·Evéе³nó<Ƃ՛‰Î˜¬«2nNÖeI ¹ÊYŒdŒfªv‰æ 'Èñ™qϹ"b®pbV¸UÁ¥Ñõn-Q.Þ\FrÐÂqJTîàŸLÈ7cÔÓîÑ<|×Ò=ñÒä±&úÐRÌš)ôÔE¯iƒôcõ.JÂFBÿûÖà>¹ ·¯#æ4þKÊ-9WQN|üfF>У7Np£‚@fd M´:àŒó,ѤŸÏ¡ûZ{øQÆaÚ!-êrÌRm‡ýd‘´ˆi=êrÈÐoR$!îò„†þýhkßeZîY–qß}÷1™LhµZÜsÏ=¤iÊç>÷9Ö××yéK_Š‚çž{Ž'Ÿ|’»ï¾ûx…ä7áRÍt\+‡©”€Ç©ðɈ,ås,bðŽÌZ$Š¡õIpEÉjg“n0Ï0j‘oÖÍl;È;Ú;ÕØ3ûÉ&äõ€l?¤Š\(¡òù~dƒ˜­õ5òíûíê I q¬Ö…°0ÇÇO ª®O•z¤N¹œ³Â.%¥ÕÍŸVÏ-z¸Ôc¸*`[É*…í ‰˜ÌºƒÔe-ØÄñ4—.ݤƒˆMÒ8¹ÙþAÝšÔøµÜpüÛ‹pß>P„ ö+c{=vk3}}ÍFøTŸÔ¯Ãªg<È`@  Ï.%)jŒ™W]\Y²Â%»ÉNÄÓ㪺¶úŸZ«¹®É£çÒŠ9‡¤0‰ƵÂu(=É$ôÊ:•kå#§Æ®³Èç;ÎCš2G…‘,œVÐ%.)ÑÌZµË¼]¼F­m—e[aäFˆbæµÜ¶¶…) F3…DXg7m†qqS³`<Ív¯p‚„˜æÙa‰ ÆÔØf…]–Øa™ž5ŽhvXæ ë i˜÷ê· ·Tû\Ñ'¸À)ÆÔèåó¤" r%î\Šï¦”çЧ#´H­`Ô£.œˆÕÊiº'McM´oŽá°‡ÚP‘.Øs´¤Í¹ÌAÖÞZfÎ׋b¨wàs›è-¨š=çPf¢® Ú“Tý€ô N±’të¨Òa´Õ&)k¤{5’qÝX÷"ñ✫WN²·¹Î8m°W-1î7ÈsŸýÑW³ì_\açëë¤Z‹Qø{âþa™ï¤Ûh4â·û·9}ú4H)y÷»ß‚ßýÝß塇bgg‡_ú¥_¢V«ñ®w½ëoPð4…íuéY²\Zvˆ-…ö¨´CF@®}RÑ™ôié>¾Å›G”–b‚ºë”ÆL#Õ@Qx¨ºÕ;˜ Ô˜=FÚˆÌ8ÒG2Õ™`¨ȸBzea°,‘LM¢¾ÖËáè’Lh-(qq1 É´¡+ѳϣf€!S‰NÛߥp‘‘šZô‰ItföÉ øUN]ðÔÔ›]ÎŽDáÅ9n-·¢\Â|yÖ&x­Œš;ÆÑ•Q«CÏ(´M„LB1‘b…p4B›1ž™^ËYÇ2fb3ãÂtT}pe‰§s„6œnÓI,ˆIf]ʆá;™91øNŽ£+*í µ@kZShLû¨ÌHA“ àhôv¥eéPig–läø†Ò(ü CÖ* *Œ…VäÚCii<<ìë ¡Œó¦UÓtd53 S¹C•¹¸”3ñ¢k¦v|“Â2ß² Ýu]|ðAΜ9ÃM7ÝÄç?ÿyÞóž÷°²²ÂüÈpåʤ”üÐýÜ{ï½Ü}÷ÝGïy ôçu [™å©>M[êÊnxãcº<Ö:ÇÎÁëÇÀoÓ¹e| ñ^KÄQe$&àô€P!eNk*GàhE81B#¾.³”ÈÉp( ªŒØI@€Ò’±ˆqmk°ÀŸµÔKâYK{ªüÖcŽCÚ”¸³$akab&ýªm{]!ñ-ôq@s–1Nì¦Ú7—Ki%+õLÉ*%À§˜àJ\ú´f¶s ©sÀ%{å‰Ótlç+¨ÊÁZ º^‡Ñ ‰ð²R¨O+D®Ñ®;äC×ÌË[¦mϾUÂꛂD5aWÎú¨ ãʶŒ[\7› ”{‡Wæ­¢–„ÓóðÅMÊùuðô@ÏÏvöŒ5•ò ¨UáàÓöè:dEL5ðI=—É^„h¤ ý²ÃdQn†ÒÐ!÷Còç#sݤ‚gOÞÄ|ùW×п gèyžsÿý÷s×]w±°°@–eüàþ ËËË|úÓŸææ›oæMozozÓ›xðÁyâ‰'¸ãŽ;ÌF£KÞº÷ûF­4›©T 'WxI?ÈqFÊ5&Â×ȱ¢ªI· ©\ôŒ¸SÝšMÙ±HØ–éúFÿ¢‰Îá•ñC¤"¢õûd¯iµú¬9›d"€:x²@k˜TŽPô³J9ønƉÚeVüM†A7Îé_d4’|y­†zÆáéùœ¢rá²àks·Su]”#¹ð²³ ƒ:“ýºføéÉ7ê\iŸæ7¿ˆÍæ:_¼“ ʉâ#ՠɀ…¹þÝâ»øvÿ/”#¨·z8ºâd|‰åï»)dÏ|ã·^fæÀK¸§JÄ“¯" Íg%YŽØj­±“¬P–.éå“ç›[>_~þŸá B7å×nýYjîˆ^ÔäÂÒ |r^túqâ“”’<Ó½\\Ͻ_y+Eîó_]÷ûÜ¥¥p¶;‹dÒãë×]¢öÏ»PÁÖ³ì}q • ¼S%nTòßÞð1~LþGŠÜç/Ú¯å9÷z–—v¨Þ预dôd¯|è.ªØA¼Ø`#îðåæüy´¼xå«|ù'nCêŠîdžl ¿>¤ÿ?6©ô÷½ý‡ Û"•òße¿ÃœêQkå|áìCìÖ—¨Ö\F74ÈTÀC¿õzªÂ¡;8'îJÉ;‹q*ßb,ûÜô½çŒÏÆí–O^¬0Úo“»5~ûU?Îp·Í»ôïÿãž¡ÿüÏÿ<¾ïó‰O|‚ßû½ß#Ë2Â0|A«Íó<„Ôëõ_nzûÂ9å°Z‡»NÚx|¬%>¥­íÙïSŽz÷XåØÿïpd¯:¥©Y@Üc-ý)?½w,9Rœë£5²¥qWáH¡pEÑrÒ‚úvkŒüa™³Qm’¹>#U'õBæÙgD‚«¬1Ïs‚ kl m™ŸÉ°x¦*V1\& cM\*¶X¥ÇœmU¸>-V1ŠTcjÌ1Â¥D¢aÌÎržsŒ©á“q+ß`‡å•gм5 œ˜—ñ8MœsÏ2 ÅŠÞfÍ»Šïçœä É%NÒ^ØgÑÛåb|û—WÍ\êÖ :3A:ߌ'Þ+2ò§#ôž0L†º=ûÒ(½Ý¨aËfÔs¦“™‰qesÖrÊZcAþLˆ^Õ° þ›RÊWy¨?œ‡?¾ w¯Ad„fô¾ƒ\,aC£¶\s}¤m«®áN ½µÆ€ÁÁ<•ïÀ¶`åµÏSh—Þþé(‚Hàµ&xQF¾"–^´OñéGéÿÇ>ÙåÃk[5åß´¿gè­V‹|ä#H)yÿûß?S½£r•¦)£ÑˆNÇPMÃáØP•š/ú Bkî¸6ÖŒœ«°2¿ìs¤€&lEm×w¥§éÁ(;†*mÂk,ˆC‘¸jiˆÂ¡Ã>ûÝeDGáu2wB&ÆûŸ:cbmg©J¤(A)b'Á÷Rœ,&+BtÏAw%cÝ„ginæÚì ]Go ¨iúy‹ƒtÑ(. „i—“€I#â²Û¥Û]Äi”y“$iÐæPMMàä\Ÿ_ú:&žqkk*åPžs?߀ŠA`|2Ÿ¶ÀZ'ÔçF„Ñ„81É#òQ@1 ѹdÎÁ´DŸ•»4Â!ŽS±Í>9õhH“…öpÇ9Ò)I’É~ 2A{~Ȇ¼ÊDì©6®”8~‰n›ÑÉ—"&“Ø{À‚Fö᤿IUºÔZF1³æim’ã‘\l0´Ì¯föþ¬ÑLF !ZO« _dDjl=ï;”© rxu&šZ‘Ðr‡,8]Ú^º1rë¤õY3ðÉþ…ö‘ßDÓÄ&W)âmûÖö4 £²³ F6‰Gº©ØÅ¡šIÌÖ’Y(œ²mI5ü´è“ÏÚlÓ9“²­uÓÆ7zîÓ}ºd4RâÑÔCb™Ìæ`S™ÀIñDÎP¥.Rš6”vÍÜ[Jjs^ýcçJØÅ8’þ8Òw· ~bÕÊ`N[žV´º0Þ׬F0™ƒ/m Ü¢0‹¼xÂ<ïTmpXWhòQ#ól¢ !Ÿ´²¢ÖÓí† 4q}Œë–Œ'u ü¾ï¥±±ƒß}êï×rÿ.š¡»®ËÆ†qY^^& CvvvØÜÜdmmÓ§Oóè£Ælâ¸HŽëÂÞ#ðm,T\É»ö%ðÓÑÛ¡9–ÎóÐ\NXYÜChMèçôÜ>cQ#$%!Æ£¤Æ˜! k±¶Ëïi†y“šk<|Û6m0 G›yq`Æ]€Æík=¢ e"CvCbÞ¥UÍA†ªë@e»4Ÿ#½â^—£´¤ºâ@dƒzì9LÖcÔ¾Ñ[ÈC=” —½+«Ö:ÆEB#›PéœÍ-ÎΟ'Ñ1[­ óóGEPÏ_.§;œåÄÚÌÙç€Ûk¦µþ§Wáõëf£÷lµ>,(èIh³X‚tH·#8/¨jσëå(@&ÎšŠ¤|ÆGÝ, OŽqe7©`Øk£Õ5¢Ü§²žßE-÷³gÏòáø{ÛÛÞÆÛÞö¶üíoÛOf·ôØ:®ŽalŽ˜mG£ºãîcpí¥t+V ²„B¢+ ®0ûÞ¼Y?Ó¢IfR •-&**Ç¡Ô.Uσ<=JœÐˆ@áÈ#÷Ga»ŽMYyèÄ®[q4BÕFºF—Þ ö]*_¢ Çô9 ÆÌHÐ%(%­•qär¨(SC!“N…ˆ*¨W¶©4«SU„¤ÇØ>%a™WF@žn£6{0Ïâ€(õŒ&ì“Íl­µ#Í{ªŽÅˆ)ÕVL/>1sΔ(œf‰¤¤J½™±;\û^ñí èÿÐ'Б=8»vÎs$õê`æ­Žm“–6/ÚŒ|°›v†~p 磷-päÂvœ·¾e¿7˜!'‘öI(kI;$Hr¨$¹ôèµM´÷Ê’DÄLãn&…Y ‡´­€ÀˆuöY`—%êŒÈì|ú€yÙ£Í!šl³2»ÆÔÐ`Ë]5 R8ø¶ÞUªÉ‚³­%û´էÎh[¬Rc„ÂARŒEEöŒ‡0u\JÖÙ¤ÄcŸ.¨ëiˆ#Ñ`/[$ËBnkê¿1Ñ,盜ÑOÓ¥Å:›Ìs@…ÃmÕ“4ó[Õ*›Íë¡„Ç:/ãÉÎ-xnÁËå—ðE†/r^Íçñ(Y<è#«eǰ[úpãÊ9;qÛù »qIň:ëlœCÑçµ£‡`¢Ñûpë÷s>¼÷ÓFªÌÙà®EÉ;T¬¹;œ‰¯˜¸Ñ–Alíòÿ<ù#ÈV'*ˆé²È'ô‘‘逯aiÎCí¨Ëö¥Þ|uòdY±Î³3éí³œG YR0LÆ5ª}Àq¿ÅÒ¯êY@WÂ8®Ée³™jË-s&3#6ªmbÍVòžiÁŠøX^Ú ®m`ÈŽèä1ú›w,£)µÙ§¯mî#V * šd±C^Šž0”15t Øe -ŒpJ„¤"ÃTÖ)»,ÑcŽ>†GšãÓ£…ƒbL.vX¦o·kMQ'Dû,ÒgŽ€ÌèN—MFYƒ²f{@J¬'LDhµÝ51uK-1IÂ<ûl³Â6¬ãÉ$bÚrXµ‰:ÚäÊgRD\¨®{ƒeÚñ™ÏpãGYBù zmvô£«s”¥‡kÒ´Žhhtî bE–DÐsÌFTgf˜‚c OëªÌƒî;A‡Âзô]ó¸yð›e…§)’*VÂè»'=œ,m‚\7I]ëýHBä™–iâyGàJ ÛŒÑC ¹Ålƒ c³  +5…V¶òÒ–»þ§€~M‰¿#yêugx€×0¦ÆŸª7³ÿÜ Ã§;&kÙëghû¶¹¾ünÎOv>Â`)âÉàÖÙŒ|Ei3¶PŸ|F÷òÉY¬ö¹%9O‡=㢥ûôD‹ 1óÙ!“ d]mÒ ZD:%!êÆNÊ óçX˜ô¨_Ê̘'³„k¯¿©V×4Mûÿë9RÈ MÀa‚‘©ÞNräc!mPºð¢{øÝÿú_YÎöň¯ä!cÒ”²”vÍõ_™÷ð—7ðƳ}xgða^Å_ã“s_BjEX”,^ê£Jß0ï·/Zl\™áå¯sþ‚‹?A9¾GÝφ¸ŒTšF6&NrôÄxØãÁ¿¼ýw¸õÚÕ!ÿsô+ÌÉ1 wð1 ?¶ûGÔ/'GY_»î,¼ú|‰;ñÉ8Ãs$D¼˜'i0âÌÁENmmuirx°ÿJ^uðÀ¿,>Á¹ŸÂ8C’T%¯©9µº0>Yãú?û"{ϯóâöEþ ÿ+mö¹¹<‡ïš¶ÐOìþž¥ô1Ó8ysõ§üYø}DÞ„ÿ†â ¸§y9ãPrûÁ þ|b¨«fùw'å[Ðÿ±UèNè Ê8¥6=«ö5± ¨ ¨¦0Ô¶dW£§:÷©]Ó2±Ùùñ6ÏÐ~o¼MyéS \¬p$ ë ܉¢©FõÐx÷ª‚v:À‰ŒbS Œ•GÎUÖÑHëQžSc<ó=ßf…Ä£dÁ"àbJ6¸dèÆeŽ 9`•-S1è‚%o—†clR(êzÄ‚ØçŠ>Á 2ªS§ËXÕB‘©€XŽ©3f—%òÂ'tSŒLd¿j¹æÜÕÄQ%Í OÝ1)j¨ÊA§A=§žáÊ*—q^£ÈN5žc?]¢Ÿ·qW2ÂÈ ’GçÛ bE¬ŽÉöjè‰@4îÍÅ£¡i{…à¿8!?ˆÍ¹nxY…/3²ƒÈ3Æ‹\ï8Pyº vò¸!Ø­kнØÈn–w-£{èç:ÿ¢÷^…[VáµÀ¢‚±ùA®¢¼Ø:êõu×¼v­Ä¹± x>2×ÈnLÉ·CTjÀ;ÁÍD\]{@Wß¾Eúrs,*}BHY¹„^FB‰hƒ¨)ëÕ Žqëà:%UîAeDJ% ¥¥áT#(ñÊÐM+áʉˆ»1¥ãé€R¸x"§O‹œ€ÐÉ(¤ÇHšZ. -5%ÀuKüÐ$ìMgDV3³)h³‡y&Xkm0oSLpMðÓ ‡JHD¨±FÔ´¡å)À×à€È€@£gFM•ZáˆÊ’DLÛÅN´L–û:£åõñDA+ì3‰ Š^Æíæ.i“V6P—=t‘AE¾¡÷³Ø‰¹fuhŽw±g4_ÌfžÚ¶ã)A%®‘bt5오.O"´«¡¸œr¢$Å×#„cî7ÃXœ­PÜã[°² »Ž©va\«SvØ–¦Òñ±*Côh³Î^»øwBÞé ±aœÿNäWB# …”Š‘®ÓÎqeIîúœ?GÒˆ«59F ÁW¼ÛØ(/s]v¥Q—Ç·1Ñ!Ýq™Ðõi_óRž`Lßÿz¦;¾Ì6>í3=Wö©\‡›_üõrÄ–7ÏïþJI¾òù—qßÃ?€ˆ4¯ú/þí@å¹ÔÏÌÍ-ëO±¤v(Ÿpÿ€¢ðHÆ5>ôÀ{(GÜõz:K{t8ÀsKòºOtKÊ­ëß4K~Àû4™ò±Ãwn×qæ jstæðC·þµ³ 59BU‚–aø¬W›Üû—oåO¿òÏqdÅÜ;öÐî8ý(·¬ž# +l£µà°ló³oü¢Ò|Iü3þ÷Gße\;Cü¹„õú¸ã5xÜtÓ9¢2¥Bò¯~èÿ†¶¾áð¿¼ãÂ]®sÓ¿~’øÆ¹ðxÍ›¤!†$ޱ8žÏ»¼þž?ãNñy²2äßî'ÐMhÌ÷ظþBi^râkÌ-ö©WCîzÑ# Eý‡×Œû»@qÿØZî:¶A8±Ï6µ„žâØë>Gºî5ûA§·:GB1S£ïØ}Žƒâô14ýÔÆfÃ/Òx C(<'Ue‰Ì4YÝE–™jüzF.´P("2+F’2±zî9>¹¿nø»øäV60†-¶‚ÈñIߢÒÍ›6`†¾œªeÍÑ£b„ḇD6à»””841 .%=5G!= )qS'×>u1"Ç£Â%S> 1Âr5$ãëÜ€`´6U½[1粕ÇèKU9¦bÍ¥—zˆP¡Gô@áç 3ûªÄì|é=AµìyÝì¤Q¡]T_«2sÐ… ®2׎zNµÏ/[€ÍËëfóøU8³9¤iˆÎt´A®¦¶ºp aº'Ì{‚‘ž“GÀ+@ \Tq ¸ê›[ˆyžóÈ#°³³Ãí·ßΩS§ø«¿ú+¶¶¶p]—ïùžï¡Õjqážxâ î¼óN¦4ÒïÄ›DÑdHHF,FQ'ªh0 ¡FÌÓ%•ÆÀÈx”‡¹›s$˜qT¯Öb?Y¡ô$UéA×5žÆó„b¡³K%=¾¼{'NPÒ‰÷I£€'‹SgÌ‚·K@FFH‹¾™Çë9vÄ2Kõ=¾Î­dÒ‡š˜)9&„”8„v—>¤ÍWgkÙ­ réÑMêŒ)ðx‚—0´ƒtY(žöN“ã1 nFôIË//éÐ%&ጩqÀ<¸—Š¥ú.õËLÑhæ9 %à6G#x,¿‹snî&”Žƒ0W·ä뺢O—ëy–—‹Ùu<×?C5ð«€]–ØÁ‰ˆ‰ ºa4âšô‰3vë|U¿˜«K'¨rj×E \6n¹Hà§3 æ$—˜£GS èŠE®Œ6pÓo°JYzxí’¤Ó`È)šÖ6¶âŽõGŒÛÜ£wñÜWn€&È9*¹²´AÒŽÈíj¶/ÞÌ×È©ò»8ÿ§áy—Á[#DUQ)‡ÖjŸ&C†4fÚï7qŽ6‡ôó9~eïçÁUìU \Ý_Ejͨ]g.îÑæ¥…mº´¯ÍiYó ¸n·Ë¿øE”R¼îu¯Ãq>ûÙÏΤ–¿ÿû¿­5?ü0Ýn—×½îu3ˆoi@™ ¬Ûvík…;v&>± 8Çnªkö÷iõ ¹+)Á59šÈŽ¡`Çw娬ªiŸCZZL,AUˆ]'”1g¹NãWîͲÓcÐŒðtA;‘úCÝ ò'tÊCºn{vÁÌÑ#ǧɀ=9Ís4rëØc‰ÐÎ@“R+ÖÝÍÿÜ´ÏBj$3«@cLàp†g Óº¹50 a¹ðm)q9󔸜å=æØg‘\ø¬°=s_«IŸS\ åôÙ éÈ.§¸@1šö1¢(ú èF²uŠ¢nÓ¥ÄcN÷™+4õ€Øs õJøÄ*Á—9my8[/¾(Pžs‚2ó˜ä Š“>*—TžƒnDs¦}&eD5öPÊaB½Ö"ãIɸNÕv('.eàÒR}rÇgw¼Dî†l7çŠ:A^ù$U†?0’ÌÒÐE𣡴D´ÁÞô]æg4U Ç[¬QgŒç• ¬¬ô„fDGVt¾­] VÙ¢ÀG(¸\OHJd¸^ÁXÕY“ƼD!yqù5\]ÒŒøõŒ*wØ,áëŒqY§ ]ó:¢ÎH˜ÃYΣm;ÿÄéç6æ¨<‡Ãq‡J»H¯"# ¡GôÂ6.%k\É›Ôý»û«\=8 ‰`_-àYÊ\‹þL²ZZië†ß§v]í@6¨RŸ<P‘q€3\‡–î3Wö"g¡F4õ ³S:•ÚÇL-¨ïVàˆ’vóðõ ÊÍ.ãKœj“&Û'VȬv¾²ª·V_§SuñªŠùå}p¹ô) ‡2s8hÍ“•¥4ûîˆ:1׸W|“æ,Ï<óÌL´æ§ú§ù…_ø>ùÉOò®w½k¶|æ3Ÿá‘GáÖ[oåƒü ¿ø‹¿ˆ”ò[Ür-²]Ú–y|,po7,ÛìrÛÎÈ3[åw8òR·s*û}ª8çCÇϫЧžè‘¢`^Ccf«eÃÁM+p¡Š\ûsMrá« yäãPš‡}·Ã+ hp•5«ßÞA Ùe‘Mö¦vªÖq)³Njaš³­’Τc [wl³bå`1cv,J~ÊQŸÚLj„M$<bz`çRrž›Ò°:Ã;VG~*63 IJ@—y*ÇÐé.[P]Ä„.RRàò,g¸:Xg\Ô)Æ!jà î™ Y<!”!ú ›€¾YÃóŽ9]à ‰ ê{†;î3ŒÃƒexJšƟÏÈúå^L?ö ‘¦ºžÎÙszAš«ó¼@W–Ã~s rNmàvJ”'©.¸ÆPaÎà(ªËúY;«<| ÔD¢6|Äm } KÔ@àÜ–ã¸×8C×ßÜÿWWWyë[ߊRŠO}êS â8æþûïgmmm&µü†7¼{Ç{ŒÇ{ŒW¿úÕßqÁ\sºO]Œg×~C ɤϒޣ=êã šƒ—…ñ8cļÜ}œ+ÁϋӸ\ 6f]î­,qåå'¸¬6Ø‹ìç‹dƒ˜ H‘cÈ4ÕÐc0×äÉôå”;b¨ŸlRüUˆ 6Kà:³§ ö—øÊ½œG_[,ßx×/˜¸ 1d+d"œÑ¼D†|üãçÞ{Îþ¦\êwÖF¢n}̵Ås•¡¨ãE%^PЗ6ÊŽºáTF¹qêàP’ãáXeÅ-J9$‡MŠ~€’N®QöA µ `O +A¹ã£[¶«ÛsjéU¹‰Ä9‘#|E®}r8Slt)™QÚ1ÚÈz™KËtv×è1ÇûøVZtLÍš–˜DߥBiªLÕXXžD™k÷‚Ù/‹¾¼òüœBÍ …¤_«#µ6Z•o\å:Ýpȳ€*7XŸ¦hØý¤ÄµFª1jW˜Žg$о¡/9Y5+2†¢aö-¹¹E IDATáZÃfÓ!5‚R¾Êp¤1œJ-½·°b\F¾ÚŒ/³,„K OÖg]ʘÄt9d“$ò©¤C‘zp (sÏ0ö ‹}zzÎô3…²bà4‘B1&f¨›Œ“:úd9†qˆÄt@ÕF¡,§sôi—DT }(…®rÏÃqy壤 %2huàˆÊÎÀ…m§›OJ`½‡ôÌt%±àÊòÇ•0–€ÓÅï H¬ÅéÔíhj/Xc„´ã…*·Î¬57E‹–zÍu\$$¥K‡‘6íùR˜ ¢$#œ 2$:f¢hl( JÞ'7_åãËœºg|§'NŒ”ÂSà—ènˆÓ.‰ƒ„‘6›¨ÛI)ƒ&Òø²»x •xxí Q0¦œø¨ÂA(çÔ䘤fföž,˜dBÜwHŒ+} f 3±ª ú=ÒV¬H˜×G°ÓA=½…nnàžÎ)뢦a±$®'”¾G.Ct_Br£BdŠjâ@ŽWPI×+úZ‘)êo¢Kàõöçgg½÷Þ{yì±Çxï{ߋ뺜8a¬k_ô¢ñÔSOñÊW¾’Ï~ö³³¶ÛßøÆïÌv»Ö\wyÓœh4„*EkAµÎˆ©_Ç[OÑR’Õ\Ò‘ $[•;lå·(º’¸æ1Ùm!æzq/M»+äÚ¡+zj% "mÔ8Êl[?s wåã¼Å°ÙÄx‚çÓHŸª7&Ó.7ÕyvœS\®ü2wm…^_=&”µ=îûîg [?o*Ï»ôë«<˜™æþ‘6/ìs®q“ngÀì‘B³&ã*:R\{ñ~Ä&–œªíS3õñºÇ^yÍÔg¤øÜ9uŠÀ‹™ê /ì=H®õbÆY½ƒqà¸Û¤¢f¬­î³~e•$ת$ÏU˜… ³µR<<Ï™t—,wÙYÛ&õ|áøÕ] ­@ n<~ íIT£ ÷\©©ì¦h%9[»Áƒ=…RÓÕE¦0Ž`ú™&Bž\·–áÇ ÿ`øKTåŒõÚçÎßÀu3f—ë8߯ÉwyþߟEµC&íãn ˆ)f>Á$CJ8÷è Àp~û*—¾ùˈöÇä×±òiõ¢4äA>óUì_ùhßZ~}m·ùéŸþi^ûÚ×ò¶·½ !Äb¯ØÚÚb0°¹¹ÉÎξïSõzý/  ?UVPÇœ ‰ç ¶¼ Àñ~.sç+m‡,ä­ü9J¾ÂKµÃuyÌòy§|>)_Ÿ.%‚%ºq9²jÄ-C 3äŠÆ‰4¾(0JT2ëà3L‰CŸ™Ðô†Ô’C×;dD“ílŸ„c·U¶¶Û ”zŽÃý{/òHý ê%-Î%gHƒcÚtè!0̨£8Í…6û1-‚¹|#.}VðKŽm‚ψ¯6O1u†4¹!ÎÒ* ásR<:ô™qÈ}ÕæÍÓOCUÐdÈL¨Ù6½¬p–›Üá73 ë-ÒŠGV¸ŒŠ}g•¶ß£ÊŒþf‡¬¢E„jdƇPÎpLFt¶Fæ)ZbÀLõ0F’—§GÓÐ87Æ8ÇDI•z8dKíR­DÜ}݃¼ƒïÏ3ãgih¨Æ&“:ÃÞ fn#C%ºWƒ»·©¼ªAÚÎqü ÕÌX“¤Ï°Û${Ó#¤‚Þt•°5à ¢ZH³:ÀqïU«õåÙ­½øâ‹¼ç=ïá-oy ?þã?Î÷}ß÷ñ+¿ò+äyÎt:åGôGY[[ã7~ã7øáþaVWW¹téÒ_Ë€.´áì]û¶Íñ5“òþ<àÄœe®åÞ°¸¯“­ *&¡QãÈœ ‡ÇL¨— ³õDœˆ*‚œèºÏsó¶¼)Áv¬[ž«!ÐJÕ$þ8 YMA»`°Q!Ç!L"ÏGh› ÝfUp,ZÄ„Œ©Sør¡Ì¦(¹u,xD`˜R%"\¸öœoq‡ÓTËÀíÞ£Ë1+(rÂ’w‡S i~EH°J~ìÜY­@Rg³â…üìŒ*Qià2ÌGs½÷Ûb—-FÔéÑaBÊ™žõRoqH—Lzæ]ŠÂe6²í¼þÁ*n%%»¸nL²WH§©=Æ8ÒØ‡ÈÁmÄ›.“£Â×x~ÌØ¯‘ÅIG!ÍNŸŽê磤ÉÓþCÄ“*Ù~ˆÛIˆz5ÌHbFu9ewз•U ;g` Åó8ïè‘fô¯bØnÃ)÷i†‡«6Qœ€8U0}¶ ·J:ååœl¯…AAÏ š¹­Å„Øü±€~éÒ%žx≗ùÞ÷¾÷í=ïyÏ_ÖšXºwÍî%[b­¨%: 9ùÚðjÕ)®É˜( Š ‰h2dJµGye’lgô®É0%8ËJ»: PTŽƒG¶À¼$åý2Ç x¤¶ ëXËe(»gMmA"„¶âEÒÀamƒ# ½Ðß(&¥6y$СK¾â’WìÈÏÑèL–*ÖVm.6S‰SÜ<Çó²Eç/Óî “gÌšÕbÀ±ï›+2ªÌÒZ N-AÔmk|n~S*qz*%3+o[¾O9aÅv'µc™.Œ$&’ F(\“£…íBšº°ûqŒÂ/1-嵯‰1 Æ¥”šXÚDnÄBDÌH¹@‡çZ-F“Ö:: J ¨N€+@fN”E…Æ+¼“ÒØJÂåmxqnh¸Ò:‰åÒ›+h*4c="Ê"X(ƒ‰¾šASü²úŸ$£üó?ÿR#˜3gÎð‹¿ø‹±´5êeÛ}\^Ìå¶w¸DA[¶9u–:šC±TÅK´5-øt e¼ì…>ÿÙ¼gÙcDap¦†ÌShW ´ÁÉr{±t© l4žÎÆ …—1F‹q©ß>Ÿ ͵Ø- m¶@–gåÌ{J•)AsôÔÈ­îpÀU¦Hвz·S³!Ípn>œS×fTh0bRʾZ•¸ ujLÈqpÈí‚' Ç]´!çA_+¤(C°nG„ä8$øÜ7ÙK6‘F“æ>E¡È÷}œZŽ”Ò+0xä·}蕚Í+‚Ù¦õW¯8Ä7kˆ¶±úÒ‰KœJŠ\¡ÇÓi ‰¢~¾Ç0i’Liz`"…ÙjÇôÜ,góQ¹fåý12°²­¡Ò€gRøÜ$Û˜\"ÎhÌTÚQÕºXl‚œby¢0؆èÅÅä^zþ§ÀW_‘ŠûU+-Jó&“˜wØœ%P-KûDÉ’qƆjk†q¡f¦äÂ-É rªšRaD“u®r‰Jhé¡CÓ$Õ¡šq›Ó ÖˆÀ02 9Å:iîQU3nºg¸™%yÄÞæˆ¼ã⨌™ßÀif3# ªY »3øëSVj}g“H”›“=Zá—ÓQòg}d«@¬ƒIFIÆã&¹ã‚Ú³KSƒˆá†w% z•Žílºå>w§Ü7-~dÐhqÀ#¼ßOûŒWpê ²^ 7$Ƴ–Èœ*ßã%í6à&gùƒâõ2fVT,@öÀµêv‡ ‘è– ¨JråRH¹@‹Mó±üxŠ/»äßè’¯ÛD¢Pv,yÀ:_2WHµÇQÑ…m¬ßÂY,#e_X0 ÓZm00-2agþl² /›¼¿nØ{:núÜecV˜P㘎ÒUøFàÑ-øü]x^Ó±ÇtÀHHJžížÙd-Œ$øÈFŠî{èž»ò…`Ìˇ¹ÿ9=þì½YVĵòfœWÍó1ã\ÒqV¾>ä„c.Ë z.*3±Ç‹Ñ]M–çž#çÕÒ¹GK]”á¼2w­Z]Þ’ÈÔÔ< iQ©ZJ2áràum6놥«š ÖØ@KÉÝE«'ÇaL´TFòH©0£G§$¬ù¥¢´µ ‚öÙÀ%C#IJûˆ!ÍÒ@šJ4#0Œ©“£Èq€k a•ëæU´KÆÝ…n|1=:D©#ßÀ)µã'ÔÑ Ê”}µÎ«DXs–yG`.#;uCòL"”$ŽC•c´Bû9Bå¤ãÓw(–µ&ݤ×ÂÒÅÈ^oáhkÅ:p(2È 20Dk^+ÅÕ!¹+ɇ6c7‰®I3¶7v¾çŒeb¬&»^_FÂzàžkÀ„OÝ‚ð F—ŸLKÚÑL‰ç03i×[ Aá:èì^oƒôeµÜ_y|E!ò<ˆ¹NDµ¤¼Ê²åÞçÄ}m~Ï”ûIÛVH~7G¤†je†qÅ¢UÞ¦_*ªi|R|bjL¨Ñ¡G b„2´¢ÐôhÓâ˜]Baƒ~Ó±Ô5ë>¨p”1 0Š`eJ’d±å¥«jJ‚5Q‚E%2xÝä,£¸P„¬•-ù¾$®$ÅDXÕµD’møõ=“p¤cƒ“¨Óµ\ÚѲÎtè2°»L"šŒ,ÀW$V¤žqûÜ¥sUŠPɲ Tà; «!`A ¼Ùɨ÷u¸uŸ=„×ÚÄQ:zAµëŠ#Ö8 .·«¹­¾ÆNYÄÜs…þÿ®²ÌŸ= Ïieój:,³ê1'Úìr }î–Aþôy++fa°œ¸35XðËm¹ù Î9À-¿‡s%º¢©P³Wä(¡Iª.† Ni­ ™¨*Š‚V1$“¹q˜É 3¶ Ó£CÈŒ&£ ¥†Uš2î°@Ób@LÀ.[„|Ka#&.ÝÚî²N›þ?¡F›¾U“+)k]zÔË@?+y–g¹Iq¹HsNq‡>m\R†4J¡‰‡œmº²Ê׸HE¸·8¦ÉŸ„*Snr¶|~ÀQÞe8mC ÙZ½M‘+Cšø¬ÝE¯*ŽÂ5²çªÐÐ¥+”Aï+ÔzŽ\Ï)úú†ƒjçT/HW=Ò£ &Ux§6) ²©‹#sQÐÞÜŸp4ÚÂŒÎV†H5q\³ñëeö>×2¨ØïŶF­¦_€ãY=_¸…ûOVÉïó0/(»Þ_®¯ ì–@˜Ømî‘[úÿGCô?‡Gâ{Ä©öQRäŠB:#NÄzæ¶²5/0œMnPäŠXúÈT’‡fjGPVªÉ—Œéœº©cÖ‹»\àCš$ÆrÆH­i‹c ãàÊŒÔxø&%ŠiVeE¸\£÷™&5Ò$ žÄÇ5L¯‡š&c×ÊKË„ÜxH£YÝ;Dµs“É~Õj[§å>õ%hú=¼»åÚ;ž U3 -}µ‚1‚j:Ť ]É6w0H„pMf÷Õž=GK ¸ž‡ü4e“=ÆÔ¹ÄU2éÒ ŽXI‡ôÓ6“¢NJH`Rn'§ e„ÇÓ^+eËìqNÜ`f*´MŸZ1a_žb_Y¸é¤Âo„Ó JAßpÞ¹Ž0†Ál‘3×'çÁ‡Ü¸tèY—5;Bp5çk×OFµdÌÎp›‰_cµXç.ÉB±¯Æ˜X¶íuÊýäÉC†· ®wÏ£+bÑù Ë$0ÇጼIœU -­V“Rv÷ž“ÿ¿Júµ“Ù7¬ˆýÜ»<^ªÎ²Âr"õ:×rŸW\ª|þè+{¿üùœ»ž-µåÒ¥1…W¶ÿ×!«HŒYM2©‡ÄÒ'$Æ!cìÔ!:|“€€=g“¯ÄûôE›!R fÊ)>Gt ˆ9b•CÖ¬#"* W¶ÓÜâüì&¿Ûx )Z$øtè-‚¹¥h1$&XTÌ+ ­Ä¬œó(žã~€Å¼ð:ç™R-Ûÿ’=6QhjL0À5."0 i.M&ÔScbêtD#Óå€UÇ£RŸà:)G“5òÄE‚j{ÈÁñÙÍ „^’ìÔБĸ‚ú}Ç$³ éªæT!”a|µ©BИ¢‡là# tÏísJÞa¬jt« ó&Ó&Bk:q*Ãi·ë"ÿvNz³‚¹f7|±®‘§s˜JŠDQ«ŽI¢}¸¤aÝG¾ªMö¾¸rZ Ζ.o)ð´@œ×˜±€›´ ñXÿnüUôä•€~/º#øâÛàS¼…>m>ÎßäÖì G×¶ÈlE>Æe•–ƒ»š2~c•^³Áƒ×0(ÝÕ&Ô¸Ã)Žèòõü.> ëÜ¥eLDÉ!Ûwöø–K!WÕdF!;áá †À°9; ©;x±¦P’ãJv4Â}º`ðÆ*í;cÜÏØä•A„ç²Æs›èÃrßY)ÿæ‡Ëý®(‹•²“xøXLæþÂî}æüú£ñáþ#Ä|ùhaµ#þMñ“2êQd“Ñ© êŸ8ý7¸pé\ƒÿ)ùç<ÆïÒâ˜Ò?o•ÔbAû »TŸ³ûäÐkrúáÛŒ§uÞ\ù$ßÝúwh$ßž}˜¿ŒÈ Õ(&ìåözØë÷®¯ÿYþÑ™ŸÂD‚TùZâ˜3àÖÿ ?OiÝžáßÉì{1°ûø ç?}ãÛ¹ÊE†4¸Àu4’wðËDœ»½Ãé/íŸÜ2>}ö¯A?ýK¾‡Ø}ÑÓb€[h.Dwì5yÆ^‹iXåüà:‡r•¯q>ÏòOy5Ä÷ßOÓ’8.ëOíвqâ›?üoùîáß¡ò Ãñ/0Îr“ŸäÝ8&çôÞÁ ©ýÛž°×ù¹ræ,ÿTèòÏ|—_òZùuQ.r“yemi.f8Q‘«–Åüji®>ç"gœè¸,8æ|¥Vþl)a(տܤÀ3–“íè /)¨ä3¤±›®¯Ó…\kŽƒBSeZò¾­ú*‡‹yw­dV6•ÁS,¸èöòV8¦aÆÄ8L©Zi©UeŠO‚ÀPeB•)M†Ô³É Fåì]QcÂ:w-ר0C—­Æ¹m¤ORÎÏí¸ CIÁ€VÙY–ùáÅ„ŒLƒˆ–8¦%†ÔÕ„õêm·ÎÒÉ ê3V¡ˆÔÐÚèᜉQç2D'geó© ˜ ÌTànÆ46Ž1®ÄôÊ-ðVbL*ÑE¡ÕÖ˜ª;f+Ø¥ˆ]ò±P†jg„Ö”A ±¢!Ôöz7ÀÔf&¬º›&¶t¿È 投.üÞÈ ªZØ5QÒ*MP*ÃõìúrÖ2 )¿Š€þÿôñJ@ÿ“Pqó{̺H²Ü·\æiôfe0˜²pì*„1H(雪ä4K4ño2׋(äÒô…Pä®*1-®5r‘ ¥5Jm= ¡Úân$B›—øæXgé³·øó–ö.¾bL(—ŠoéûòÜsÿnUâ\dÉxWåøÆ(qrÌò¾Wj{¨ÂªØ¹dx&³T̹ÿż£9ï|”Z ²\§Š§ÜB£R}2U*)Â®È©É ¡•R¸@h¯¤>ƒ.íËÚÈ…Œo…YøÑ[CñÇÿŸ¹¬t ”´û›À …@c?^ÍI2@ Ks-AÈNa¯¯2ùÉmi–ŽimB>A Æe—,|áÁœŒ5ô¾ëž[îÚ^ñ—­Bï–€„9H­Â‰€‡Zª´çÆòs%¹l üÖ(«ì¤ ØMNÌ9<^jÔâ,-ýíöù"@M5Ð §9EÅAëËì¦À7–ƒê™Œ¦¢KÝö t!G8ZˆFè…­©oÇT˜1+¶SËNq VËyx†WJEh1¡ŠG¶@Óæ%=í˜Y‰2ìù|Û-«tëîV”â50 I³ËÍÁmG¦‹/’E’qL]ÊÇc¥lC"šrȘ¦dÔRëDå# ðT嫧 6>"xí˜bæÐßY£8òÈcëxÔ«¯‘Ž|„W`&Šén“|ÕEú9:“¤#h+c› ƃvª§^Nßt(ŒÂmÆ{w›äŸbäP<ïPì×m«k>¾qºpmÕІãÕEáÀ-07 •U•;ë‚.àÓ{äMûz]¶ïg®³‘;:hSÌîõNMÿôê+3ô?is«™1k‾†/ÒUúëòÔ%ˆ#Ê4Ú$øø½„lËãß:ÿ=GQ‡ë×/äê8g×™úUrßáÖé ¨´ Z™rjí_ë|žßåËÎeêÂBåbÌø~ Ê0ª¶»ª""’!3Ðúlwv¹Å·Z 2x:Ãd‚Æx„V7I­þ‚P„ã£Àx’Æ©1£Óu”.pó á›]ªgf4ÎP†éÅ“ Ä GâE)Õ[1­Jć IùÈð¿b×q†9o½ïwpEJsmÂÊ#ò@Ñ]?¢1£›¯Ýz§™q3<LJ¿7Hù–ðÃH¡QÊàoæx*¥ëâÆ9‘xèüÆ-dTð‰O~EOR}cÄåõçq:˜¦ ¸˜ÐQ=\7£S?ä"/’¤!Ÿ|êo¡SIwã€Ý³[*áÒåëxí åÔâ Nœ1;ЦÏP7yòÓ¯ã9ÿ!”ŸSyx†KŠî:$¯ñqDNUL‘™F Í×Þÿi$†ávƒßäíT™Ñ刚³R1¹¿‰”šõæ]ˆ u<^•<É Ö¢êùð ßI5œòhõ÷i»‡(™qök÷puŠ©K\‘âmeœ¿üNÔà&Ÿý¥W#Ú5οê*G¡Ù;s—0H‰¸ÐºŽöìÝ«˜ûËC¹ÿå è“r¶9·­°ð©]PR N8æ¦ÜX÷Ë×Í9©ƒò¹ÚRK=ZJŠò5UN²æN¨2³7ö¼²f0M0¾„iAmãÌ4Ó5#­£ rÃ0«(“ÓÍûäJ1¤ÉÌ iëc„4„Dì³Á;H ·9Í!«œå.f ™ÕgáUžâ‘y.[ì.ÚëËîrÈ*z%DÀ*ÀŸã:kãЧM•) y™©ä8¬r€F±[¶ÖâK X±M|Óf›]ŒLE•˜€3ÜÂ!g—-öŠ °!öYå irÓœEÃ%ù"s¯1Ëm+Ü 1 Éì¸ÊÆöº)MV@kª—Æ$qÈl·F>ñ¨à†IìShÏOP±¦ÂPó&T7ÆMÖR“¾±ÀÂ×®}ž»ùwâó$‡!Õæ„Ä ¯7dW}ä«s„Å-×v \¶˜h·Š® Ä}ڂߎlR'Þ¨áµ5Ìg5|d®lÙVgørÙ êØ2Û÷0÷jÎò (î«¨Ï ]ÝgSÙU1GÕçØ«nb¶5ÆÈRq.ëÙ`Ä]~ÖüCŽvÖè?»i+ù9 vl÷ÙÎ0ǵòMü&5&\P×¹ãŸæ£â­\ä*myÌYyƒCÖì Ý&}Vh:£‹eXiâm¤¼è\¢h+T»(S‚S¥¼k1žÉH„O[Û 2/\šW ³ó¡ŠP±@HÃÝJ‡–QÔGc¸cˆîw(„‚D‘†ŠJ"©>³ö\Ä&{ø$üôäÝÜxê2ÝøÆýÇ´é³zæþ™1>ê³!N%æ>Cx_ÄÇï¼ëÙ9<'¡éر^X0Zùè×Ü÷äBGÿëód‘ IDATø·9ÍÁ³›üú¯7Ü€ö¥#’mÏIû &*kÛ‡\|ø*-Žiq̇ÄQ…ÿÉï#r*\~ðËœëÒP#Ä×èE!´É ê( jÅ„?xâë¸Þ¾Èf¸ËÙ‡¯ÙâèŒ!;#©3fËĮ޸:õ)|®r‘ó·8Ç Ö¹K1ëõ»Lß–ÕtBÕª¿ÏŒ 7wÏó+ϼy>gÚ 9ë]£ÊŒôí Æ‹©ÁˆWñ$[Ü$¼÷­ÿü*oú{+¬?¸GbÿÁM‚cV9àÔo¡ð¿Þ3r䝨 }.½)—ZOsa¹4óž·ãçv§ÎÒÞXò/ç¶ÉJ4ì|¶’,µåÅR'Ã,u7ç¢2Uۮў ¨ r%È*.¹tDJ!%±ôf Z¤ÚÅ1V³Y˜¹Úš!Ñ>‰´ ̨.Ðê͘úB¿=*oY°æxIƱע(ý\!."\È樒–f9ìKJŠW¶éݲ §™R[¼>Ç]HMºd lµî”@;ë–’³Šºš,óCZä8ӢЙÙe‹¾n“*á´Ir·ŠöÚŒ+¶É…"9 ×§¤G!:sQ±Fvr²£"õÉ3E±%Ð…Œ &4˜¦"ÉB¢A g+Åq3”V¤Æc/:Å`¶‚+dWSDzä Rc¯õ]‰Únà”sÌ®-¡)WZE¸xΒа/0«-8ð…]Ð['m³ƒríTAÔ4Bßk–ü (‹ŸxJ•ˆ 4XŒK_ž‰&*yæ'R¤Ô' ‘ªìâ•3w! ŒQHmÐ¥óY¢|2Ç]P4íÐ-dʉ‡GJDeqßL¨Y6×]ÐM ¶[0Œ²8›#Äâþ¢lëkW ËÏ\U6~%©ðÈ•D9†B(2á!…埧²Àx㈅¶fG²òwÎu¹ÙްXHDk)ÑF¢sKíšËäÎG9j¡O1?¦p”-À"оj! ÁB‚zÞ‘4 ©ì{/íÿ|2F‘¥n†YŒ ì`Gs0­Iém‘–zQþ! YyN R³=Ñå¿#]¯,ÀH´uµPNYj2í’áQ”ƒµËÌ÷òŸTø°½»ûÓÑÂø¦(…Aˆ{ϾCô¿lz…ã•aÜã¥à][š7ÍgFº?Ùü't¾¶ÏÓã+ü‹÷¿ÙÓl>v‹í×ߢ§;\’/ÐøD|¿ŽAð\ýAnÎÎ0»Sãß}ê™AšÆÛ{DýoÞþ[Á3*\âE.rsVòæÿîwè>ýÔ›ù¿>þ­ÈŽF_²€×óÞUÞpÿ㌩óÏr?Ï!š†×ççè›6ŸßyýµoCõ4/þË4×øØu•)[ìÒåˆÈ©ðè÷‚uu›Ãýuþ÷ŸxÁ密‹ßð< açØ51á{øüo/üC®>w…›ÓûQ· Ô¬ |pÊöß½ð>Eƒ1¯çs€à +¯ãS÷½™h\ã??ùm¨ç5òXóöü 0™.©pYåo⣼Þü³z…á¿l!uÁ‹ŸXá—~ð{1տߣyᘦ²n±#¶X½'ØÙËÅýe«Ð°sÎZÙ÷ÊÖ÷\5(ç„_:G¥›¥ª;*__”_ÏÇs „\¹K­üùL~ÜçÀŒ+ÐÀ8†ÂD®O"<|“`Œ&^¹e˜2ü òÉ2€‰ Ë,>¡(+ï°4D™·ÁçUy Џ›ñI¨Í&¨ (+ölÑ’Wåä¼Á˜£5M”EY‰Çe‚`õÙÕb¾nÓbÆe&9ÏXrŒÙï\oÞ%£j¬tí¼ýé—f/ªh-i1ÀAä…ä¡EfŽGèFÌ2I.5n=£Ö0¬KášÃíéÔÇ rê›Ç˜\0™4‘NA%œ.ñ¸‚4†ÕÓ»l¹;ŒU–’5gLãé¤J½6À rƲIz&DlçdQh×—±Q kšÂwÀÀ‰Hc÷ÅrlxZXm T œªCU­;ˆ7mcb îŸàüQv‹þa™¯¦é.„^ˆ2é’Æä’Òæ˜®î•÷‘\tÅ*DL©r%~žVãµR” )û* 5¬ÑA;‚é¤ÊhÚ„™àpm•÷ÁQÇî'^™: LfyàG®Ë“"£MÝæ;é6jš¡Ms³Âˆh¡9¢A"|V8F#‹:£ ¾øÙXÔ™QaM›D+E[õ¸Ëšµ/ kè$<ÂpFÑ pße÷ÖZå]ž\‡ð¯L©3`WØóµUŸÖÙÇ¡ ]=BERçèhÕIuƒö3†ªÃP5ðH˜Qá|ƪ¢¹šÚÚ˜¶™þ^ýþLÅDiA­2bMú´¹ç ™QQ3º+=Ö¨óÂþ öÚp {ùQ¹7ÖÓ¦O“![ì‰FgÈ:{DQ…«éƒàÁšnÑ£Ã&¦Ô˜rVÜdCrjP0»]=iˆ‚ߎ(ŒFÉEyI Nn”@›¶×g¥Õ#3“ƒé“v?`• c±B†cý:ˆØf‡©¬Ð9}€Bs}óÏtA¹ ‡g8Κ4õˆƒÊ*=:¬’Ýc@ÿ«&,ã,ÍÈç3ô¹È\€$+ç—s¹×N¼ËçJQ“²ÂNP˜‹Ö¼_>7f1ÿÂ)Û¯iù;*eB!AÅZj¯ꓘ*)n’“¶Í|ŒßËñ63b”<Ç”™Ò‘– >ÂN°VXã—CÆ h±ÍNi޲²¶¥–œA„«.üÐçV‹A»t؉ñ‰ñ9ÅN¹ aL}a¹:ïH4ì#0Üe â<׉9¢‹F²Êá"ÑHñJûBëä6¡N"|Ö±€$Yø2û"ἸÁ¡\åU«í§$³áFã&­f¥rfû fyu.†‰A»ï¬!»n=Á$ŠÉ ÓiŽ‘¼jÌjgŸá¤E¤+ìLN¬LñØšeL,˜ì5 ×§Žƒ8S }Ä«5â²AJÌSŠbE!.ÌTÐ?î`2‰èjŒ’v xÐXîh <',›â¾*ƒùÐ.lnYT|ñçk¤cÿ«˜‹½Š»wPÜ”ÂÄdxÖ!PÇ8"£™¨Æa‘x®màJƒ—åh7!—vÎ6o#Ï[¬VeÑF…1:%S3´+©š ®Èµ£$RhDË '²R€äuÓÖÌÌ1³"L‚A+Òc «\æ9GÁ*³¼B¦]Õ:…LD¶{Œt Žò52ã’I‡IÖ`j¦Œœ&G^—YÁ5VšÔh‰+r*rÊý\eÕb„uuTÚਵ–ƒkÛó“^]8ÄaÈØkÐ`L­˜!rpœŠŒÐ•)q§UÐ…$ú˜©`2iº1Iî³Rˆ˜B*e°as†¿¡[‚ÜóB“Ÿ™®뀚œÐá×d ¿SÉ«ájÒ‘Oâ…` 4B¤£i™£‹ )ŽÊpÛ F Ïg8^!)|¥é»mqL˜$äÂÁsÜfŠÌ «N—*[¨Ýµl™ÑJãYFC%ŽpdA(b\‘ã%éŠAÎaÑa¢ÌÜièâ “øYF.s¼V‰rò3äÃí#÷ ¦îWŽ*޲n ôúë ŠK—p±T¼,WÏéR²2’I–Ðîb µ>?^/#[ üziæ¾l¯,½?ÚJJ-¹@ƒSvæIŠ”1¸EŽ&C‘£…ZØ<áâ˜_¤Ä‹Jb.—™¢4dÉ_2³’hZé'Ì~å.^æU¸,çMóß«Èþyk\¢mv¡Æ´œ/Zé½#Y]HÈjäâµsŠO… F8%ºž’0Ô-2é.À"ä‚|à[ªJ5¦È"§láY[X‘ÚÞ†‘ÚjW%b*0Ú » =õ`¨©•²Ô¥Р1”d5ÀMH⥠û\ˆÁt…ÕÌž d=‡ÄCD‘ip¥Ý)즡ŽWØZ¸ž’Ç Ü¡Xˆ•ø,9òU`ÅÀÍ=¸¼iƒ~U õ½fɯ´Üïy£1sø)dªQ™Á(P3ŽAÄ^9~›ÛÛVíÞi¶aÿ--&²¶èRI4+/f¹JÕ™Ò\’>曀׉ÏöBœ+ úU‚ª7%lM©z¶›VeÊ^²‰),µJg é$ÓSíÛ´ûLšL^lÑÿbÐ?cAyîƒÅÄEGN#CK”†›gÎ1¬Ö ˆHâ´R¢£·“óÈVÆÝÕunš3–N—(FãÍÆ1ÔŸæ»êæ¡äi )è;+ÌdMðÿÞ×͘¼Pç ¿ñ(Âí×_Æ9óæÙïóÐÞUÀ=Ï­Óì¿z­ÓH ñN•ÁgÖ`¿ß7  ‡foȸÿû¨ùnÕ¶yvÍvÏÓsäߨ™äuöþ踆Ýâ‡GÈïõþ)oTŸ#ÊCþ ýZtfÈ×gõ 7>tÉÊ£ú ¾=Á[‰yCý ¾9û8™tˆ*+J³sô?vIñ88Zçêï>©UP LJ ´\¼ï*í¿»KK8˜­3é7a{8)üæ7n »9Æ!ïýÒ?£[í!ªÝ÷%vOõ¹\`ú` ågü—_úÛö¶½ ø¿‡éqƒÇÌ/ÿ9ƒâþœúµk×ø…_ø<Ïã;¾ã;X__çg~æg(Š‚w¾ó¼îu¯ãCú?þ8J)~ìÇ~ŒV«õÒîâ\F•ÿÜû|¤çšëÞR°LA›|v ]Ú„ÅR@—Ks›Yj×—ÁÜx «ÂÊ¿–ºò¹«Æ #È=A¤Œ‘cˆÜ·À ¿ Ý~ Ò©”joÖuJµkiPYC„Ôp¨1&w,¸cî…¾ŒàµÎNs#ˆdAS³ÂïüÎïP¯×ùÁüA>ûÙÏòÛ¿ýÛxžÇ»ßýnêõ:ï}ï{é÷û\¸pú¡zI±âörTj™<Šiy” 'tפ¼fõG7„0¥eQ¶°%NðKÈ›Mº¤ÐÔ™pœù(?‡B"ÐT ®HÉ  Æx~B–»(r¤[ •­U¼ˆØ«ž”=s¯ˆŠÈe¬1‹ÒH$WdV Ý©!/?ÄdWæ%o[cŒ@{¼plÏe„ÓÁpEc9Ò·ô[©õI£ ¾£tn…¼ÆàF™•oe†ë§(§ «û1¸NB^Õ0ÓˆC®ÁÉ Ü5Û-pÉñEÊLi¤[ šÙ0i÷¯gáe™)pZ9ŽR(Uà6"”Ÿ!sÛ{N¹9BiäÌà2¤4[ ž²®¡;C˜‚Ä ¾†@£š9Â׸EºëñÏ$„ÎŒ:cŽœ G9Yµb‡ _9²£[Õ.öÐ*³ÞŽ£O0V-ƒ sŠ™o÷‹ž-æJŒðÈ4÷È6Ö)vúˆIN‘;6ñ¿§­Â¼ŒäþϹåþ“?ù“üÈükkk¬®®òîw¿›w½ë]œ;wŽw¼ã¼ï}ïãcû?÷s?ÇG?úQ>øÁòÎw¾óä sd¹·’›sÇç³óyÙ.!àçÛ㥖§óçæ’±sÐÛÜÁ­»Øj-Íâ³ò˜5 ¶]먖W3/DKëj„?¥PŠ‘[¥âFÌTÆ)MU|f%ÂS ÉqËvºÇqßàT4Ià/›s¦ÞΕÜ3|Rê“ w«k4/ÌSææ+óváüsR"EOrº×´ƒÝœ-äç®C³äÆfßܯ·±Æ.óaF…:cªfÂHX {.EÁŒªå|Ò´úñJ¢ï¢67Hs)òÌÃô$‚Éþ ¦¯ì5™Ù3q /Á×$Of˜D‚€¼ç‘ç.¢Ð˜ÄVà•ZÄíëÕœ4÷m…k‡üôªu­JA¤-¼*â< Ë›@ Ò+hÙ$¼\hËx‹•£1¯üZÀ¸®[{„AÇ»×úËç¡'IB¯×£^¯ÿ‰þÅU;;;üÚ¯ý?ñ?AµZ¥R©ðþ÷¿Ÿ~ðƒüÖoýøÀxøá‡ñ}ŸŸýÙŸå]ïz;;;looŸì[×AŒ "]ʼn2pß-¿Ÿ‹KM>ˆºOë9ë«}¤Ñ¬…GL P=–-jL8bׂѰ`´ËúzyŸ7åÿ ¯ÛÄU›Î>9‡ù]uÈaå&Ž)È]‡YQAÉœY«Ê)vX“w¹ÐºÎðMMöû›L§5FÓEà ›6ø›YŽßIÈskôT8’ñ¨IôìêÛDãªÕ88$=Å—f2n :'ÉH§£S†›íóL£ î—5FÁÚ¥>¢bH*/òºæç1Zp«yÁV×ηŸÌÆ Šžgèr8}ø¯îo­±UÝ!/ߣ[9à¹ô 7ž»H6Ô$±EûÕ”‹×ÐÊá.È—¦¿J«ò‰‡¿™Á¥$‚ô«dëù4@$चK+/àGìa„`&BžV¯fXo#<‰­Ô$nÁMSÎ>t“ÇÄãTˆ8ãß"Yñ‡ ~oóµhSƒ‰>p™M›˜;hšð[ì°Þ=`V„Jñ±7}ëb»¾íœïÛµç9›§ ޼™ëò¹¿ÿ(³ÿ¦Bôù)£“bZ [ þµÜG£“É„n·‹çy_]@üñÇ9wîÃáGy„££#¶··©V«ÄqL¿ß§Ùlâû><ðŸüä'_r‚›×ᙜ*°üÞ|©ÅÞZÏœ(ÂõÊÿe^±O°Ô¤…SÚ"yi–¯Û³Ç?q ¾ýlyN³4«o”èù:„U+CX[M1òšÂ@-Œ#¨n¤h%p³œMzdCìøLk!nT0¨Ö9ÖÁ¨÷Â1ÕsujAVº5 ¨0eF•ú¥š•5˜¬Tx »ó²nÎpØg“6ý…XŒOB“ÍÌâ‘"ʙÓOÜfãÛÏÓ¡GDH)§¸ÃI ÉpèÓaFÈ:8äÜ䌵š1ñ´•O$cLuBÑ`ÄkÜáJæˆëŸC<ø-L“YÕeÝÙ'Þ NV˜Ê*N£@ÏÂÑDÃáÖw#%Ï=¦½:Eê玑AA”T¾¡V’µ=òÄåöîy6Oßbbj4Ýÿ»½3ê¼úÿç¹wîÜÙìïØxc)Ê’¤-ai%@üª KTBDÙ[µ*mZŠ„’ÌIU)jÉÒ* 5TQ! $CÒâZ Æ›ŒƒmÀà}ÆöÌxæÞ¹÷÷dž¼zßO~úEoÎ?h̽÷<Û9Ïóœå{S=´\> ®áp…‘r ¢'† R²P›ôv;Rº²‰MÑ‘Ò5\Ýè×dËM`ZEY4„pã•xfn\ýŒÜÿ3œNR(¤?>¼¶94âÅOºh#‚J“œm“ÚT²ôfFHðºü´‘æ°AØ$´IS‘•ÄLLU"¦É¨©aŒnQM¥¿ï&áš«Ø&N³*vi §XõaM/èWì€X†‚¡ º»œ4uænt!}l‚ ³R ×Û̘¬Oˆ¢t{©S[Hhó®›'ã÷¨!õd«]dúòH‘:é’<ø/§Æ”ü¡T„бƒ=–Îuu…p†IUŒRÏa S2R,ˆê.›—:}F“ŒqN¶¬bY1ró[0Ò×ɯ 2´hg>APv`†Úiæ-©ÄUºL~ïÂgàãE£ZŠ/@rÄÙ]4QEÁÒ¢dÒlËÄ0%.w×0Ho!¬;‰)6ò"·ÑT…†Œ\ô ‚ÓF϶•ÚCéV†¯7Dg0•°äÁãîÄ•Òi•–í¶ÎR~ºLÁ` ¡.7ã•£›ÈF·ÏÁ'y-ä§vàt…ÑRm„²ûì×rC·Ûí 6ŒåË—óÞ{ïQQQA8l•ŸŠF£¨ªŠËåJüísºBe´uó–z€ z ²¤Y›·Å-s"~ð÷Åøn0S­Ê‰è&a¿šbå• 'wéG')„-cy¼*¢T{ M¸ ðÝ8ˆ¢ÐFQìV=<ø±¢žoQÈi“Óh"Û*ê‚Jcwmþ,bA…Øm…˜;^tÅZºA8Å ~’ƒ”ZÄNä®61®Ê¶†´Tª€B0 º@9ˆèÑT»•©Ç7IQ¨aAÜ4wdYœN×T>ÉJÔ èuÓN:a ¸ÁxñãCÂàV´€@[º…IÑ„ÁÖØ›ýÁt•6ÕÇMQ@-ÅñâNV…Éà Í&\˜Ýº°i)2Q¯‘N#ÙØH¸Ûa³kR :þì0`˜AètzhéÜ"Ÿë &ˆ›[ÍÅhŸ9Ð'DLh˜w$(¶.mžtj)&†Lk|ÞÚ;2èþ,ìnˆg»  (°ö›H¦U+€—2éŽW4B6è”0°,‘øEѦ[¢ÍîC˜&7E.3ÌJqkëGÄaÃè23áF÷CXÈ¿XÚÚáÇyòÉ'™1c¿øÅ/hll|¨Ã¿Xµj•9räHt]§¾¾ž~ýú …èß¿?Ÿ~ú)«V­bùòåÌ›7÷ߟiÓ¦ñƒü€»wïò÷×¶¢`Áòš÷"ºî¹ä, â×i½×ëgÂ/"zYëM¬—^íæƒÛ%°q=bµ-þ¼½¾'q?&¼ôÀ8‹{í× åxD¯þôÆd6ïõO“”¨vÿ3.†Þ.ñÀøÄÿD­uK¯ñ4…¸‡3ÃCT­{IDAT-À”⿉c>÷î,ÖóšP°›QDÌŒc\‹ÄûÂ0­ß=<5°«ü¿$¬ÃS¯o›LqÏ”bÒS_Þ´þ"îÍ`O|€wUXxÓF³‰D$ võ^*aÏ·z~[ï[9Êf,ÐLdôÔf¶†(–éÁü&þ¼‘èùvwD"¿_>?]´ô ÌÇÌÔ©z¥[|žTõííåœ8q‚ÿüç?¬\¹’ãÇSQQÁï~÷»¯å†ÞÙÙÉOúS^xávíÚÅSO=Å[o½ÅÒ¥K)--eÊ”) <˜5kÖð«_ýŠ?üá¼ýöÛ ÓáG•QyêÃûe«·¬÷e¸Ý“±°*)¾¶ãëÙH$z t”ÄoâÿÊèÃ$ª °+ñua‹¯Ñ«{)ÁÚN %ÑDÝ´a˜ñôP]Üß¾^²-IB60ºuLEE`j"¡[$›–î¥ØöÈ—0ñ ?Š®Ýëo¬¦C²N81]ƈI÷ D²Œã3ü„;º$ÍF ›…yϬ‰!c¦iUšËˆµZr% @*²b¹óH`™Çt±¨ 1«²›]D­y° L!ˆ¢ŽÈHª -f·ÆÈ¸w)uÛ‚¸ ‚ ºjC—äHŒ‰ ³ÓåûÆS‰i¤íVms»JTQºÅLCBëÆºÙ )Q‘/ÃlEº$Ó­::¡gMDuû½x«¸GÌ'üV¶è.9>´Jð4Ú3&,¥hHL4&±ÿýOôüókyõÕÊÿö™§Ÿ.àí·_ãå—_fâĉŒ;–’’æÎˈ#¾ü†‡ÍC‡!Ë2Ó¦MàèÑ£tuu1cÆ E¡­­ÒÒR ÄØ±c¿ Ùý†¾¡/@/^dçÎlܸ‘={ö ë:óæÍûÚöçÎ;|ðÁ 6Œ1cÆ8xð  `ܸq!¸|ù2§OŸfÒ¤I|³¾¡oè жmÛÈËËcúôéüò—¿dÍš5äææ~éïÈ›6mZ7lØ0yädYF–eÌðáÑeëÔât:5jùùù‰©¨¨@UÕ¯$ØÇ4M®\¹Â¥K—ÈÊÊÂn·‡9uê¡PˆÌÌL„ܾ}›³gÏâv»q»Ý}âF©¬¬äêÕ«‰ï}Õ<êëë9sæ ­­­dee!IW®\áÊ•+dee¡( ‘H„Ó§OÓÚÚJ¿~ý’6ΑH„'NпLÓäüùó|öÙgäææ"IÁ`O>ù„p8LfffŸùUVVrîÜ9jjjÈÍÍEAee%uuu žœ:u MÓÈÈÈHJ?›››)//§³³“œœ¨¨¨¸o{Ú•••…ÍÖ÷ŒNŸÏLJ~Huu5gΜaáÂ…_ëÀ¸””}ôÑ„_Üáp0jÔ( °˜YYYŒ=¯×{Ÿ_¹r…ììlEIz»Âá0•••÷áݹs‡ŠŠ \.'éó«ë:/^äÂ… (Š‚×ëEÓ4ÊËËimm%;;!­­­”——#ËrbL–b±.\àüùóÄb1222¾ržÊЕ+WÈËËû/õbCCgΜÁår%E?~œk×®ÑÜÜLnnn‚g$!==!õõõ|ú駤¤¤|Îü°tíÚ5ªªª°Ûí¤¤¤pñâEª««º8S^^ŽßïOZLLVVo½õ555hšÆìÙ³ê;òºuëÖ}Ù—‚Á +V¬`À€lÛ¶ &àt:“*¤º®³{÷nÞyçÆŽKFF%%%8N:„ÏçÃápPRRBaa!¯¾ú*S§Ní“ Þ¼y“òòrl6ýë_™0a[¶lùJyöÜäÂá0'Nœàúõ똦Éßþö7\.{÷îeòäÉlݺ•¶¶6***ƒ 2$)ã¼wï^V¬XÁÒ¥KùðÃ)++#rôèQÆÇÚµkq:¼ÿþûø|¾{QËA†a°zõjŠŠŠðx<°ÿ~***}{üñÇY½z5>Ÿ½{÷’ŸŸßg¡¹sç›7o¦¨¨ˆp8Ljj*ëׯ§°°×_I“&qìØ1:„®ë=z” &<vóÂ%ËL˜0¬¬,¦OŸNvvöÿº›ÇÉ“'Ù½{7N§“={ö0eÊ”¤ó¸uë‡âïÿ;óæÍ£¹¹™uëÖQPPÐO'OžäÝwßE×uÊÊÊ?~|Ÿæ·½½£Gâv»ùË_þ¨Q£Ø±c~¿ŸÊÊJZ[[2d¿þõ¯)**bûöíŒ3&q¸xÒ4ªª*$Ibûöí³sçί”gï Öïÿ{Ž9œ9sX³f ªªRZZšØLW¯^Maa![·neÚ´i}Ò‹mmm¬^½šñãÇãt:ÉÍÍåùçŸ'--üãäååaš&6l ??ŸW_}•§žz Iê[Eðýë_¼ûî»äçç#I555ìÞ½I’(--åûßÿ>¯¼ò ¡PˆcÇŽ!Ë2 èóøz½^žxâ òóó™9sæCÝCõþÔ©S<þøãÌœ9“Q£FqæÌ™¤ ©¢(üæ7¿aèС‰Sx}}=óæÍcÞ¼y9r„“'O2vìXfÍšÅðáÃ9{ölŸx³xñb¦M›†¢(466ÞÇóƒ>àäÉ“Œ7.i<ÆÏ÷¾÷= ‰F£–-[Æ‚ ¨­­Åï÷'eŒ].C† !==ý¥)±´´”ùóç3wî\ü~?ÍÍÍIç1`À~ûÛß&n…=ó;sæL† FUU»víbùòå,Y²„«W¯ÒÕÕÕ'ž,]º”'Ÿ|’‚‚êêê8wî ,`Ñ¢E”••qá ™={6“'OæØ±c}⩪*?üá5j>ŸP(DUU ,`áÂ…|ôÑGIçÙCûöíã±Ç#55•p8L]]?ùÉOzñÔ©SŒ3†Y³f1bÄ***úÌ3RUU…‚öövºººxæ™g˜3gGŽáã?fòäÉÌž=›‚‚.]ºÔgž[·neøðáÔÔÔÍøùÏÎâÅ‹9wî~¿Ÿk×®%tñîÝ»“¶Ž333ùÖ·¾…Ãáxxýú0/utt$L9iiiIS~ÿuuu%Nš‡`0ˆßïO€Üx½Þ¤µ£ç˜––ö9žííí÷ñ I9ý¾÷Þ{?~œÜÜ\@b|UU% ‹ÅPU‡ÃA÷—ŽÊþ¯Íwo¾ù& ,@–e4M#‰àr¹B`·ÛéèèÀn·#Ë2n·›P(ÔçÍ|ÕªUüìg?ãüùóìÝ»—h4šàiš&ápUUBàóù’2§ ´µµ1kÖ,þøÇ?RSS“˜CÇCWWáp§Ó™âŠF£|CÉ1‡;N$IÂétöy } ‰ùMII¡³³3!S²,#„@דƒæ÷ïÿ›––FŒ¢(ȲŒªªèºžHùHMMMŠ®hkkcçÎ466b·ÛòÙ›gOßSSSéèèHФ¼¼œ©S§bš&‰Ã“Çã! ݧ‹}>_ŸûêõzÙºu+3gÎäÏþ3.\H¸«ztqï}(YºâæÍ›8FÍ–-[sØcÍÑu!D‘Œ9M&=Ô†^PP@}}=µµµ~å MKK£½½Ó4ihh ''‡ââbjkk¨««KJ;öíÛGUU+V¬ 33ó>žÙÙÙsãÆ¤ö]Á¢E‹xþùç9zô(yyyÔ×׋Åèîî&-- »ÝN  ±±1)¦ÛP(DMM o¼ñUUUìØ±ŸÏGss3º®£i999tuuFihhHŠï¾¸¸˜ÜÜ\ÆOCC)))´´´ÐÝÝÝn'==@ €®ëܸqƒ¢¢¢>ó8p #Gޤ¨¨ˆ¼¼<<ObýÞ¹s‡~ýú‘ÍÝ»wéêêÂ4ͤÄF|CMSSº®ã÷ûÿŸX*òòò¸yó&¦irçÎrrr(**¢¶¶–`0ˆUUûÌçØ±cìÚµ‹-[¶àóùˆF£D"ÚÛÛq»Ý 0€ººº¤ê§ììl–/_δiÓ¨¬¬Lðôûý ž½ub2/]ºD[[/½ôgΜ¡²²¿ßŸ߬¬¬¤ëE»ÝΠAƒ(..&//UUillLÐûõëGaaaÒõÿÀ3f #GŽ$ &t±¦iȲŒÓéDA(¢¶¶6)ú)™$LÓüÒ™u±XŒ^xMÓp8 ?k²iãÆìß¿ŸaƱaÃŽ;Fyy9Ñh”5kÖ™™III ±X §ÓÉæÍ›ûäC9þ}:Û·oO(ŽY_¬«V­B×uš››Y¿~=MMM¼ù曘¦Éüùó™8q"¯½öÕÕÕD£QÖ­[×çƒDKK «V­Âåráp8xñÅÙ´i‘HUUÙ´i7nÜàå—_Æáp0iÒ$æÌ™óÍnœª­­eË–-(ŠÂw¿û]–,Y’t ¼ôÒK>|˜¹sç²råJ6oÞL4Åét²nÝ:nÝºÅÆq:Lž<¹Ïó{ûöm¦OŸÎOù„7Þx§ÓÉ”)SøÎw¾Ãúõëq8Lœ8‘¹sç²gÏÊÊʇÔ””0hРÿoäíÿÌõ7fK‘ÈIIEND®B`‚pymvpa-0.4.8/doc/pics/ex_smellit3.png000066400000000000000000004676161174541445200175330ustar00rootroot00000000000000‰PNG  IHDRôÆ$r˜sRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ !#~N IDATxÚì¼wx]Õ•÷ÿ9åö¦Þ{±d˲ä&ŒLM`ãÁ’ÄdÈãPl xB d„7!_„“€qŒãnÀËMÝêíª—Ûë¹ç÷‡ä3(˜™öNâõ<úC÷ìsÎÚkïÕ¾kÍúõëÕÇ{L}â‰'Ô?ýéOªÇãQUUUwïÞ­þüç?WÏGgΜQ÷îÝ«^ éô³ŸýL}å•W>ÕØƒªßþö·?öúÉ“'Õ}ûöý§òwüøqõî»ïþTcÔ¯ýëù}``@½óÎ;U¿ßÿWóñÌ3Ï¨Š¢|êñwÜq‡Z__ÿY¿úê«ÿa™ ©·Ür‹êóùþêgôööª7ß|ó'ŽÛ¼y³ú«_ýêof¿ï{ßS{ì1õ?øúòË/«###ªªªê©S§ÔG}ô¼÷tww«›7o¾`,þŒÞ|óMõÉ'ŸüTc›ššÔ5kÖ|¬µµµ©[·nýO寳³SýÚ×¾¦F"‘OÛß߯~å+_QÀ´ßC¡ºzõjubbâ¯æãå—_V‡‡‡?õø|PÝ¿ÿGdý£ýè3¿{õêÕêÙ³gÏ{-‹©+W®Ôtà/Q,So¹åµ««ë¼×ï¹çµ¹¹ù¯’üÊ+¯°{÷n;wîäü#/½ôsæÌ!??€¾¾>ººº0›Í³wï^Ξ=‹ÉdbΜ9¸Ýnººº0Ìœ9ƒÁÀÀÀ‘H„ÑÑQDQ¤¼¼AP…¦¦&Ün7¹¹¹ddd …hhh@QÊÊÊ0™Lø|>‰F£’œœÌù¨§§‡ÎÎNA ¬¬Œøøxíz8¦±±ŸÏGvv6ÙÙÙÓxÈÉÉ!33¿ßOCC’$QVV†^¯§£££ÑHoo/……… ‘e™Y³f¡×ë‰ÅbÔÖÖ¢ª*‘H„O¢¶¶6FGGñx<ÚoÑh”ææf¼^/¥¥¥X­V¶oßÎàà :ŽÊÊJΞ=Krr2”——3<|ø0?ü0²,³eËW\qO=õdtt” 6pÑE±mÛ6úûû±Ûí”––rÝu×166F4Åï÷óƒüUUyíµ×p88nºé&<]]]üö·¿eÅŠœ:uŠûï¿NÇ›o¾‰^¯çꫯæ¿ø»wïÆívó›ßü†eË–ÑÝÝÍÚµkÑétlݺ•h4Ê 7Ü0-øéOÊ—¿üeøáHMM ‡±±1JJJxøá‡©««£µµ•M›6qÕUWñ›ßü†§Ÿ~Z €Þ~ûmÍ™ªªÊ}÷݇ªªlß¾][ëx€ÆÆFZ[[Ù»w/«V­šÔ;vŒ×^{ NÇ+¯¼B$!++‹o|ãÜrË-(ŠÂ¿øEn¸áÌf³füþõ_ÿ•={ö …èï裡¨ˆçŸ—ËEgg'üã¹êª«Ø¼y3­­­Ì;—¶¶6~üã³bÅ ¾þõ¯sæÌ<Ï>û,ÕÕÕìÚµ‹‹.ºˆû¼<ü~?<ò:ŽææffÍš…ÍfãÈ‘#$''“••õ¿Þ¡ÿìg?ãñÇ'==ªª*Ž=Š×ëE’$^zé%ª««¹í¶Û4˜˜H]]'Nœ 99™‚‚öíÛGcc#uuu¼ñÆ\yå•9r„o}ë[èt:vìØA__UUUüú׿fÆ Äb1ZZZX´hßûÞ÷¨©©ahhˆ 6pùå—óÜsϱoß>TTTðãÿEQÈÍÍÕøw:9r§ÓÉã?Nyy9ÅÅÅÚõM›6ñ»ßýNs¼‹/æ7¿ù ¿ÿýï‰Åb477³hÑ"¾ýíoS[[«íù+¯¼’W_}•ýèGèt:?ùÉOèèè ««KÓ‹7ÞxƒŸÿüçÄb16oÞL^^Ë–-;¯¬¸ë®»ÐëõZµråJ~ÿûß³iÓ&/¼ð‹-âÈ‘#Ô×ד˜˜HAAßüæ7µ¤CEþå_þ…h4ÊÎ;q¹\”——³bÅ †††æé§ŸæÆo¤««‹µk×"IÛ¶mÃívó…/|A“K(âW¿úUUUx½^þùŸÿUUÙ½{7ƒƒƒÜ|óÍZÀ ð“Ÿü„o¼‘ŒŒ ^|ñE¶nÝJ8¦··—ŠŠ žzê)öìÙÃÐпüå/Y±b{÷îeýúõFTUeÏž=$$$ I‰‰‰Ü{ï½øý~:¤­ÑøCöïßÏÀÀo½õW_}õ´u?{ö,/¾ø¢¶¿Z[[™3g·ß~;7Ýt‚ °víZ***4§ ðÆoP]]M `óæÍ òòË/“™™Iff&Ï?ÿ<¸\.ž~úi.¿ür|>÷Üs¡PˆÐÞÞ΂ xýõ×¹âŠ+ذa{öì!àt:©¬¬Äf³ñ /píµ×b0>“NÊÓ¼»$‘““C__ ‚@ Àï÷³`ÁæÍ›‡ÙlfñâÅ$&&òõ¯€Ë.»Œ]»va·ÛÙ»w/k×®àŠ+®àÞ{ïåÌ™3<ûì³TUUqäÈ^{í5Ìf3ªªÒÐÐ@cc#ßùÎwƒÒÚÚÊÀÀÕÕÕ\{íµš!¿ÿþûILLœ6ùóçSYYÉÃ?Ìý÷ßOYYï¿ÿ¾æúûûÉÈÈàúë¯'++ §ÓÉ¡C‡Ø¸q#‹UU©­­%ðøã£ª*—^z)CCCÜ|óÍÜxã¼ýöÛx½^/^L$á¿ø}}}¼ð ìß¿“ÉÄÈÈÈ_ö/ùKyä/^LVVGÅét²k×.Ö¯_Á` ¾¾žS§N±lÙ24‹¢È#<‚ÕjeõêÕTWWSRR‚ÍfãøO<ñIII¬[·‹ÅÂêÕ«q:¼øâ‹¬[·ŽË/¿œmÛ¶±uëVÆÇÇyýõ×Y·nf³™ÖÖV8À|Àš5k¸á†Ø¿?/¼ðÂ4þEÁétjQ«Ó餬¬Œ•+W’‘‘Ó餾¾ž7ß|Q¹õÖ[©««àºë®ã›ßü&O?ý4wÞy'’$ñÈ#0kÖ,*++ÉÈÈ`Ó¦MTUUÑØØÈöíÛ£GžWžW_}5ëÖ­ãìÙ³|ç;ßá†n ''‡ãÇk[RR’6Þív³}ûvvîÜ©eH###ÄÅÅqß}÷a³ÙX½z5ƒƒƒ»†±XŒo}ë[311Acc#¥¥¥tuuq×]wñÀ°páB<ÀÒ¥K)//×3''‡––/^ÌßÓÕÕEYY™††ŒŒŒPYYÉÂ… µÌ¬­­;ï¼€eË–±}ûvB¡µµµôööjz½~ýzzzzxàøÊW¾Â›o¾É³Ï>Kff&ªªÒÕÕÅ»ï¾ËC=„$Iœ>}šššúûûÉÌÌdåÊ•Zv¾zõj-°û0¿………üüç?gÕªU\qÅÔÔÔàr¹ÈÍÍehhˆøøx>ÿùÏ“ŸŸÛífË–-üâ¿ ++Kã¡©©‰Í›7#Ë2_þò—illàsŸû÷Þ{/uuuÔÕÕi6î§?ý)MMM¼ôÒKüÛ¿ýÅÅÅFÜn÷ÇÊö•W^áÖ[oåæ›oæðáÃ<û쳄Ãa^|ñEÖ¯_Ýng``€;v°téRÜn7ßøÆ74½]¿~=<öØcSYYIff&¯¿þ:«V­Âl6s×]w‘žžNKK ---ìØ±ƒ•+Wrûí·súôiüq-Iº÷Þ{‰Çårñ§?ý ‹ÅÂ%—\ºuëhnnæøÈš››µlÖét’ššÊ5×\CNN7näСCFî¾ûnöíÛ§í‘uëÖ![¶láË_þ2………¼ð Øl6æÏŸÏçãÅ_䦛nâ­·ÞâСCȲ¬­ÅŸÓÂ… ¹ÿþûñx<¬\¹’5kÖ°hÑ"vïÞMaa!ªªRZZzÞ{ÓÓÓ©¨¨ ¾¾³ÙÌÛo¿MUUƒµk×RZZŠ^¯çõ×_G’$âãã™7o>Ÿ_ýêW|õ«_T¦§§³bÅ ²³³ƒÁ€Ñhdxx›Íö™tPüsƒÝÓÓ3 vš1cO<ñ‡æúë¯çرc‚0 b¸ë®»(((`ùòåèt: æ8gLÍf3¡Pˆ@ €ÙlF§ÓiÃÄÄ„»µµµ±jÕ*yúé§‘e™uëÖñÝï~€ŒŒŒD,Š¢ðì³Ï¢×ëY³f ªªÒÓÓCkk+n·›G}”‚‚žxâ î¸ã¼^/&“i^¯‡Ã(ŠH’„ÝnÇï÷h²˜˜˜  ÒÖÖFww77Ýt“æŒF#‚ LƒúÏGG‡(Š„Ãa|>ÝÝÝ´µµ±téRŠŠŠ>r¯ÕjÅjµ0>>ÎØØ­­­Äb1-‹¶X,˜L&A@¯×Fñx<¢áp8$‰H$‚Çã¡··—¶¶6æÎKYYÙ´±v»}ZtýaÈéôöãÿ˜øøxyäÖ¯_O(Â`0 Ë2¢(bµZ5(ñÃ{êÃ4>>ŽÛíÖÖëK_ú¡P³ÙŒ$Iˆ¢ø±r=÷û¹àPQ¾úÕ¯òòË/³aÆiŠs®ü"˲¶‡Îíc»ÝŽ^¯×Þ§( ¢(‹Å4xîéõzìv;€Vv(Š¢)àÒ¥KY·nÛ¶mãºë®£µµU DQäo‘ÚÚÚ¦ÁÛv»_|‘ºº:nºé&¶mÛ6m¼×ëå®»îÂáppÉ%—àp84y&%%!F£‘H$¢­ÅbÑÖÎï÷‰Dèèè ­­K.¹„¼¼<{ì1²³³ùþ÷¿¯ÉÉÉÚ½¦?ýéO466òàƒ"IN§Sƒ°ï¸ã–/_ÎsÏ=ǪU«´½üaÎÙ´s{'..N+mÛó.—‹H$¢Ù¸•+WO$ÑžõilÇ9Ý´ÙlZ bbbBã¹°°E‹M³Ïçöé¹òÛøø8‡¶¶6Ün7_üâEQCÎéS8Æívk|Y,MoÆÇÇ µµ•ŒŒ ª««§Ù6³ÙŒÑhü¨³ùN=øàƒÌž=›§žzŠ5kÖàv»EQ³¥ ZY2--í#s:LJßï§­­¾ô¥/¡ª*ƒN‡ Ú¼Ïg;A@§Ó¡×ë ‡ÃÜvÛmüö·¿eÓ¦M¬X±âcËbüãÙºu+K–,aþüùx½^t:¦ÿñññx<&&&ðù|·ÜrË´ç>úè£ñÄOpçwj{LUÕóÎùú¹z@]]Ï<ó ÑhTËTUehhˆ‰‰ V®\ÉÌ™3ikkÃjµÒÝÝMGGY–ÉÈÈ »»›ááá}YNNªªòÆoÐØØÈ©S§¨¬¬ÔjóÕÕÕdggcµZ©««£ªªŠ¯}ík?~€ýû÷3111í™Û¶mc×®]Üxãtvv¢( _øÂ¸ãŽ;(--åÔ©SÌœ9“5kÖpöìYRSSE‘-[¶h<”——ÓÜÜÌÁƒÙ±c¡Pè#µÑÅ‹#Iååå,[¶Œœœüîw¿£¦¦†;vh™ÉÃ?ÌÀÀÀ´g|þóŸçù矧®®Ž×^{ EQHKK£´´”ääd–/_NII v»‡ÃA{{;©Íÿã?þ#.—‹eË–±páÂu–粄^xºº:6nÜH$Ñ"F‡ÃÁòåË™9s¦ÿÿö·¿ÕƃAþÁÉÊÊ¢¿¿€ššæÎË­·ÞJ}}=)))Äb1vîÜÉ¡C‡èèèÐjR&‡ÃÁÉ“'äšk®Áår±téR-ZDFFÙÙÙ„B!vïÞÍ{ï½GMMÍÇÖóÏœ9믾ʌ30™LÌ›7––úúú¨¨¨˜6>..Žääd6nÜHSS§Nú‹Ùæ¾}û¨¯¯çÕW_Õ ÑùHJKKyôÑGy衇hjjÒú:n¾ùfq:tvvžW&ÿ›xCC¿þõ¯©­­åúë¯×®ùý~ÚÛÛ¹úê«Y¾|9uuuFFFFhmmÅãñ ( YYYŒÑÑÑñ±ï‰‹‹#''‡—_~™¦¦&Ž;F~~>ééédee±|ùròóóIHHàäɓ̞=›5kÖhk\SS£õrœ£'NðÌ3ÏpÛm·Ñ×ׇ×ëåºë®ãŽ;î ªªŠÓ§O“““Ãm·ÝÆàà z½ž¼¼<6lØ@SSG%//¯×Ëž={4HõÏ3»òòrEEETWW“››KBBUUUüîw¿ãÌ™3lÞ¼Y³¹O=õ”†l£K/½” 6P__ÏÆ èõz.¿ürt:Ë—/göìÙÄÇÇc±Xp:´··D‡¯¾új<‹/fñâŤ¥¥iÉÍŸÓòåËÙ´i“fÎ9®k¯½UU©®®fΜ9$$$°lÙ2¶nÝÊ™3gØ´iãããyÞ¬Y³´Àöĉóµ¯}b±yyylܸ‘ãdzÿþó¢X‡ƒÚÚZúúú¸ì²Ë…BÌŸ?Ÿ¥K—’™™IZZ‰‰‰lÞ¼™#Gްÿþ­ç;vŒ×_ÄÄDÈÏÏG’$vïÞÍe—]ö±{Ñív“––†ÍfÓ|Ó¹Àíµ×^£¶¶–Í›7³|ùr.½ôR‚Á .déÒ¥dggO“÷‰'())áÖ[oÅét  …B„B¡Ôï?U ý+_ùÊcÍÍÍ477“••Å·¿ýmÁ`‹ÅBff&;vìàƒ>`æÌ™ÜxãäääÐÑÑAMM ‹-"33“={öhMN ,@Q’’’ÈÎÎ&‰DX°`Ë—/çÀœ8q‚¸¸8fÍšÅÒ¥KÙ»w/'OžD’$***8yò$ï¾û.ÃÃÃÜwß}$$$°uëV µ àäÉ“„Ãaš››9sæ ùùù,/gÏže÷îÝ´´´hHBuu5‡âĉ8ÊÊÊX°`;vì`hhˆ|ÄÄD<………$$$Oii)»w禮¶V«mWWW³ÿ~z{{¹øâ‹™1c‹…?üá¬\¹rZ¤Z^^NOO'Nœ`É’%äää0gÎ/^̱cÇxÿý÷ ‡ÃTTTPXX¨9òòrü~?]t€Öıwï^ººº())!99ŸÏǼyóE—ËÅìÙ³Y°`###;vŒ… ’““CEE‹/æäÉ“>|¿ßOEEååå:Äܹsµ±ް].===Ì;—ÚÚZöîÝK__wß}7999,X°€wÞy‡öövÖ­[Gnn.>ŸŒŒ ­·¡¤¤„7Þx¿ßÏŠ+°X,ìܹ“ÖÖVrss)((`Þ¼yìܹ“P(ÄÒ¥K©¨¨˜?ùý~ŠŠŠ8vì˜uC^êë멪ªbÉ’% H.ºè"Ž9BMM à÷û™;w.’$i5Å¢¢"<GeÑ¢E¤¦¦RQQÁøø8óæÍÃ`0h–III®¹æ***رcEEEìÚµ‹ššª««¹òÊ+5ˆôž{îù›ÈÒ‡††8}ú4Øívzè!RRRˆD"ZÏÌ®]»8zô(ñññ¬Y³†ÔÔT¼^/û÷溺¬Œòòrvî܉N§£ªªŠ9sæ Óé0̘1ƒX,†ÏçÓÖ³¾¾ž÷ß_k]¾|9ûöíãƒ> 3wî\Z[[Ù³gmmmÜÿý¤¥¥±ÿ~¬Vë´šh]]>ŸöövN:Err2ӚжoßN}}=·ß~;³fÍbÉ’%466räÈdYfîܹ,[¶Œ;wÒÑÑÁÚµkÉÏÏ'’’BVVƒE‹ñî»ïRSSƒ,ËÌ™3‡ªª*hhhàâ‹/&77—¼¼<ž{î9V¬X1ÍΉD8pà€Ö°\YY©ñsðàAÆÇÇ©¬¬$77—‘‘>¬5ò-X°½^O~~>6›MÓ·œœrrrcÑ¢Eš̘1ƒ9sæ Iï¾û.³fÍ¢  €¹sç²dÉ­L7<ø f[ÆÆÆ°Z­ÓÓ;ìÙ³g3wî\êêê´uKOOgÖ¬Yøý~²²²x÷Ýw¹æšk¸ì²Ë´úúŽ;hjj"--‚‚\.sæÌ¡¯¯]»vÑÙÙÉí·ßNaa¡Vö¹êª«>»R^ø`ä?ŸÆÇÇÕC‡ýMÎmllL]¿~ýè³µÿJÚ²e‹ºbÅ Õétþ?ÉÛƧvèo—"‘ˆºsçοٹ­]»ö?ôÙÚ%íÛ·O½öÚkÕ¦¦¦ÿQ>|ðÁý¤í“HP?î› OAÃÃÃô÷÷“››;íÓ  tþ§hÓ¦M”••1sæÌ ÂøŒ¢Ñ(---Z¦ø·ÚKpþwÒöíÛIIIaþüùÿkçðW;ô‰‰ î»ï>–,YÂÉ“'yúé§?¶s.к@Ï?ÿ¼ÖÐù¹Ï}ŽË/¿ü‚P.ÐúO$ù¯½ñ½÷ÞcÙ²e¬^½š‡zˆ––fÍšuA¢èï–6oÞLww÷_³hÑ¢Ôöÿ^hçμúê« ðä“O^pèèïšz{{Ù´iÓ'Ž[¾|9sçÎý¯uèçNkHIIѺÛkkkùÍ_Åœ¬'.æFbE#úX1¦B ‚:*% ‚JDÔ ˆÄˆ C@%‚!ô„c@Ž)D#:&;¾U„© D‘PˆbF!„0EÆ@…:DbÄTEЩd!J*z¨¨(H¨H(S¿ŒB AãQBAñ‡1™Ñî3¨!D%FDÖ¡ !#ŠL KÌGH4 ¡ C@ºþïð£Ž1D$í>PP‘à ,"1Ä)AbòsA‰"ªÆï¹çA‡Š€ ªÈJ”¨,OòN"²Eˆ©„¤ÉµRˆúÃèÍ2ªö^ …(2Ñ©­$ "¢ QDT¢HÄ&לQ&ß'T"üûg"1Möçæðƒnê½çøÓF§F zTÂèQTt±aQ?µ– ¢bRš² IDAT*Eß)A”0zíù"1‚~ã‹+ocÆŒŸJ'ö>÷i{öüå@øÿüŸ¿[‡®( ²,“˜˜ÈØØ˜öûÑ£GÙ¼gF³‚?1D¢‚¬í+‘’ªLê-Í>H(ÚÿQujÿ 1 „#ABLÚ‘Ø”>‰„ÑcVüxC"FóäU‘)½1†B„ ÿ¾Î锄‚S•˜ Níõ˜¦O7©#”LÚ™èä^õG1šEmlIUÕ(aQL”“×T$UÁ¨„@…¨(‘t“<«"‚nšîI(šnã#ŠLÔÁ® HLÞ£‚NôˆBLÓ=‰0zέ€‚ˆYÖìø9{%ôS¶öœ¬¢Èèˆ ¢  £‹Eˆ‰"Q$tD5û|Î&+ˆS¶uÒ"Ÿ³SAŒ˜(sçWïüØÓ ?Lmmmœ½÷^Ò?aÜþÿûÿëzVV––ôööríµ×jL¾í`nußš¹•Da”ZSyn¬/R$Æû ‘b îzd}„fSÂL"‚Žn2Qqc§6 h¥Žr*†x3ù2è›r®5ŒQð’N?-{zð/½Œbs+! Ô3‹Q’˜Ë Ò¤‘™˜q£*ãb©ª“¡‹aQUG) Œ ‰„0àÃŒ½žrñ*)±!Ä4‚é%d†Qzó$ËVÄ!cˆT*¢§IñÒ`›;!Äé“¡‰jæ:ïÞµ-GG3Œ% BèQ)žf\ŒC/† `bœxTü˜P)®mæ`ís¾˜Ã˜ŒŠ€/IêAŒô ˆbÁ‹‹8œäc"@:Ìâ äáÃB²2œ‘:Φr–dÑ2i b12bNŒþìaQ}ŒIô¿yšÙ+ò°áfŒDt„Ib”nrðcc˜ „H£ ~¸0ãg€4¼X1¢˜zÈÂ…ƒLºÐ¥ž2TR”!tB·h#q-°9þæ+æ¡gòe?f²ÔVò”nÎÊÅx°1B.AŒäÑA¼:A•«†#qU8ÉÀ™†˜§Ô G£6,ÁŽzÒ¤ô„ñbÅŒŸº7‡™Ÿ?JOOϧvè"ðIºÆþŽ3½^¯Ð÷çÝæõ+l”ª,™y†Q)A1'ô’…9Á^:Œ…̤‘"‘E…j &!@k¬£À@˜3Ìa1µœaÄ1Š£$2A&WïáÅÃI”\_D´2H*AŒ\üþN/(#,ë§\šÄé$0F~ ‡èbÜG=vÜSûß„Ž(c$`!€/Lø0“Â0=ä0;ÖĈ˜Dû›,Y‘Èi$2D/Y¤œÌŠ5pÀr© àÁÆ ¨D›¹ØsfFô‰4ZJ!‰|¥©ˆa24ç›Â$“ÁIŒ’Ì=äÐúF߸´NK6ª}dˆ™˜n¢F?Tq¸ˆcˆdš)% © àÂA±Ú‚^ÁÊ Ìç²¢íc—á ªÜ5$‰#øe†:„<\8è~³–y+lx°‘Ä0Ä1F"6Ü€@a¤Teˆ†JÜ‚ZÊ™GÝ”ã”Id”:f£#Œ4¥=C¤F… t2D zÂx°Âoî&E1ãÄãÇŒãÄ“Ì0ñŒB$1‚ ;=äE/ñŒ1HEÁ6üF=d“K}d2A ñŒ3D  ¢N%f|XðsäÍQ†íE *‡>™d}²ÍøoÜ«««¹ï¾ûøîw¿‹,ËÓγ]‘ò¦Ô$¯¿K4q‘r˜Ü‘^:’²1 !2T'9¡^6Äß2oŸ1¸™·áÁN2Ã|… ÔSÆ;\NW´¾ÇÉ{8ÎRbg(ˆtð¼~ *ƒ„YJ-os=nl$3ÂÅ Œž F¼Xé'"©…k”mÔSÆNñ*B¸2´‡å,?·Lžd¶X}ŸžüÉñ “Lc\íßÁëõx°Ç×F·qB®äÅ$Lõ$1Ì+òɱw“é¡B¨e—|%A dÒÇB¥†”Ð6››SÌ%†H#ÑBbl”~18&(ïl$” ãÿKXƒ+8)¢•zÊpàB±KäG;É‘9‘2—0zþm´ ùœ¦¸œw°á¡“| i£ˆVT¶r-! dÅz¹JÙ‰lˆ¡ ÂÀ{\JŠ:ÄÚþ_òAâ<ŽÛ‹°ã¦$Ò‚(Gùéø°Ê3Ôö Ëé# ™(K9¸€8\,à8ÇYÀYf`ÁG=HÄØÇr"è( Q’8ÍbHÌ¢žkÆ·ÓnÈgØ–H=e„0C$™Zæp†!Rh¤”«¢»èóxI^ ytr5Û8M%vܤ*C¤8‡±Ç¹ñb!„BÚ8.ͧCÊ#ˆ‰«ØL„Ã\D Å”ÒLNNQ‰ z)áìgÒ ø¤ƒƒÇý _ø?ü0~¿ŸÕ«WO»vKîÛŒ9è9£ƒy&Œɦ#AUÅš ߨA=¸ˆ#1²è%-6ˆ]t1,$Oy?|äÓ@Œ,z1ªAâ˜À"øa [í!Õ;DºÁL&fä*=(’D/Y£2cNºÉÆD^l‘Á.¹1èB ‹I8p‘ÄŒØñA‡‘àTð©bÆO ‰lzÈRúðŠ,ø‰CÂ:ô„ÈŽv㈺-ÊbŠ=aÒ£ÄAîzÈŒõa‚ K) áÃŒ‰Éy&1B CèÔÉQü+aúp³)H‰ œ ˆiØ/IŒ`WݤFF0Ša’å!R"„=!,øH‰ cÓy©…Q JIPˆEDÒ NL0…B(’ˆI ’ !£àe ") ›@¬‚=aˆAŠk V½ƒ¢˜VlxÑ©Q"‚Lrt˜ ÙI“§pú°LÞ‹Š?‰ŒNýI ãÇB¯ÃŽ3~D"è‰g|rà#Œ3,1©±!¬²“ ^GAF£˜"!’äÀH3~RbCHD5„&65/ >¬xUF±óÙƒÑ}‚ÍPÿ»ºÅbáé§ŸÆçóa³Ù¦*vÙ\Æ´ã4Ë¥¼ut>KæÅg3Ód*A F2ÃxÍ&úIÇ@;.BF½¶8á)¸Ý‹tú'ÿWƒ$ÜGÙôÑõàÁJ³ˆTf1œ&€ ^M©$☠'N2 —hgLˆ§‡,Ò *èh2•A‡ }B&ÖÉñt$1Ì5™ FRBBѱ¤*OS" …d†qá Q¡KȦB¢ÈØñ%ì>tIQlx˜ Ž FFH¦,ÚH~>£$R’sE–'<Ø™t¼}d’bÙ¼0Ÿ3~ô„qá €™tú ¡Ç‹•0z ŽÒb˜”©g)“‘¶.‡Ã…‰ŒâÁFP0â³S˜ +d5ŠG° UÍcÝTp€VRbÄó“+v¡ áÁÊ(‰ŒÈ ©XñR@;2Q˜pá ŽqLQ b$†D4&#ª1¢S 7‰H@bU~<Ø h —,¢ÈDÐ1A>,“2r*~£ ^Ò`œ|˜±àÃHC¤ ¢ÀD#¤áÀ…32 %Uv"Ãògvèº ýciÕªU\y啈¢ø‘#-õJ˜´¬ N)†2˜QåfˆTTLj€¤‰QºYŒ“@y¸ˆc”$’›]äjÐjc„Ñ1@*"a2CŒgœ’p.£Jö¢tư!¥KÌfŒB°˜| É“´ àÆ>‰Îé2)Å‹ªôŠ“HS=~ÌSûÖ ~Ì â‘>¬Œ‰ ¸q`­*a˜! èˆ0N<ýbIÆQ`ˆddÂèÑ&&‰4™Jè0äbVýè•0Aǰ”„‚Œ+1‚%V|X°ã&Oé&%6„¼Pψ9ž Ñ^ #Š*AÕHD”ñ`Ǭúñcb\ˆG"*Œ ñä¨Ý¸^¬“H…†€ŠWµE¡zðbcH—„OoBÑI„b˜A…äª<†0aÂF@5ˆ™ñÈVLj£‚—1)—`GŠ©(âdrÊd)#*2.O¢!*ÕELðb'Ìdé2ˆ=aFH"ˆ‘™ l„ÑáÇ‚füDÐáÃLñŒcÅË ˜Š„B=.Á‹É¿Äè8aAÏ„GTÕÄHHÐcˆF¡'&‰ŒI „ïÁFºÚOνMÒgvÀŸd3¢ÿ& 8ßžÂür7¥n¥YÌå½ ùòÜ> ¢aÎZ .íÅ „ð6zÈ&‡nZ)"žqj)GG„º! †…NòH`Œ2lt 9¤3@*ƒX“¼(èù<;‰ÑJ'˜? ËÅÚ‰'&±U¤](À †Y,%ŠLŸ! úÉ¥‹ Fd¢œ•ŠI£‰V¼DБG'*Ýäp\ž‚DyÚ‰Œ"Ã…êÄ©.Åbˆ”QÏ8ñ0qVœA¡‡qâÈÀI Cè ãÇLXÖ‘“ FÜ::!ÂÆ‰G&Š3µö2¬x)V[P€ÞÀˆDnZQdB‚‘ÙÔAG?é8ÅtSï2¤Ÿt¸ÉÀ‰‚„3*PÉ)FHÒê|‹xŸ>2±âeÀ’†[¶áÃB½ïŽ4=âT¦0ƒ³ô‰è SN-¡©Z_¹Zg$„$+Äᇙ(l¤1€/}dj=“™œŠ cÄ“‰+"i:&†ãIýŒÝø c¼ÇýÜѨç£~)“,˶ È6Î5`X‡Ž(J4àÆÁT‚§jŸa$UAbø° "àÂŽ65DÐUt¨ø˜ÝÕŒ.>‚;ÎJ¯ÅB>Àƒ.r ªFĨB©Ú< ã~FI¤1F&}(ˆXUÃBåÔBL SÌaœ’&™arèF‰H$ØÇX=Š[¶ÑN3"-¤ ƒ J)ô SP"] ÆIeUh3AÉÀ)¹OÔF\·oþ8‚¤23ÒL@o ›lJ•fRGFÙŸ²”³Â$l~ ïNFî$Ð+d2‹F Ñ0fÉOP† |ÈD!™LµÅêQ†Ä$úÈDFa1ï3H*½dbˆ…™9E½a^¬Œ≠>Ì,ˆÖ`Žùñb£UŸO#Ùô å$s)ˆu°Ô}”^s:mú|HÇ>cƒY 56H(fÄ+÷áÂARh”JO- I%t“C#Ä1UõÒ,L"4YôâÃÂ0Ɉ±ÏVñþ4û:?µ …$$‘1Bé è”qêŽ'#V¦P$µ¢†$†¬)(Hô=ÙHF+l‚—²°áe˜dt$áÂA½¨@#ñØpLÕ»ÆH WÌdŒÜSØ 049-ÎÁ‡/V"è#:’•ŒBˆ ÑA9èO!@,ø´ÀXG„ âpcGG/6ÚÕ²H7vBLf²Mj ñò8vÁÍ (ˆ “‚;™ô2K OébDŸˆ_šÌ2ý˜0ág„d\8¦ÅÀ‚_kKFˆÈ2z!Œ[¶ãl#LL’`CE`XJb€T\ÄáÂÁ ¤ªƒ´ E¤ËýBL«í' #D‘ñÊ&ˆ'MB¸±EÆ}²ÁŒ:"S‰’‚.âˆÃ@n£“€Š€3tS¨ÈÊqÈDqáÀH …zÂè&GkÀ 7¶©¬VÆ‹a’Hb?fI™l¬À:…bzE«V.ñcaŒD²•>|’™`Ðúµ&ˆŸBbø1k%'È(šmç³;ôO‚Ü}ÿÓ=×ÛƒIJædb9ú$é? µ0ÿ ¥‹ÜTrŠ‚Xï$_ŒSÌ Pl#ŸŽÉL £$±c¸¤8ziø1QxÚMNA7-Ì`˜$²è#>`!>,HDÑá˜PE‚:†Š@"£t’GP4ÒI}R&ãb<³h SÈ〼 ‘9tÑÀ¬)¸i²#u'è$ 1Ž|:É¢SB%&ZæÝL Ǩb‚8â¤IØýtVr.Aa2ê«e6ÄcÁÇ|å±D«PHTÕi›?‡ntDp’…áNôcô‹iè„(FBdटôɦ›Ô UãÇ8WI¯œÉ©Äá¢Q.¡•B†…dtD°ãfp ¶¬à.âh”KAv B˜ˆMF Œ›ãé’sñ`£€všÄR†Gñ6ÒèÇ…STâ,Ó‚?{¸œ ±%êQN“õg=’!‚Ž“Â\"HXñ¡ iuöDFÉzh’K¨a6¼ä…º‘“IF:Å<|’…qdч“$ÜØq0A)ø õÖRºÅlBHb„Šh ŒBÚ( ·Ð$ÎÀ%NƒRšèÓeÐ—É ©HDi'²#ž(" Üœ¢™(>,” £Ÿiß ŸB¡„ ¾û¼4BòÿÏÞ›ÅÈ•^wž¿ïnqcß#3rϬd’¬âVd±H•¬R•$«eY†—–»µ§îæÁó0˜—y1Ð10Æ]?ΊØ#N—}–¡¥ÖR6c| K — "ô)SÄÅPûT¹G-±@ψQ#‡‡À!D‚-RRj B7&ôLé1+:c,„"iYHòªƒœà:$3”>:a¥>q…®¦u-Px˜8DÅÍóÑ„\«M1°“¿Æ¤iâ`Ñ E›´bã`Ò'ʈ0X8´H¥OYŸçX+ á‘£JOÄgÆ¢KŒv€lô‘ŹM’–°Ñi<4º"FŸ ô‰Ò$…‹IGÈ/ÙùIìg‚EW}&Y¼ÕŸšÑ1¶õu"ôécDˆ  " XKÎÇQ&XtHü•ÁŒ‰ xSr!¥­žçûBøD´>¶6 > ½Žü0†Rî„Æ01­GΨ* “Ç&¢¢Ïˆ0=b´Ha2Á¡ã'žé¾×|ö×ý|xýÿq lÆ„‚¦v(¤NÀÀˆ³Ǧa¤éù1ºÈirè‡éÇC£©ŠP•ÙbÙä²ȺÄi!y3Md*Ø‹ sÁJfHŽ•À}µƒí¥C‚.q\ÍÀÖFÔÈQ¥€CˆÖ(± ô)>MRTÉÓ'F‹$Gq1ƒßSfž&Ž™§FŽŠY nf¨P FŽ:Ù`’>ÔéòÜê«]½Í˜}–é¤Ä"’Dèã¡qÀ"m’l³Î±^àP,‚€©Ð‚=q‡¢Œ…EœT÷¹÷7˜fH u²¸ŒD8¾Ž°™`IÙ­&Ï˺–ÁZ õ•Õ¦FŽ!¶:?'ê÷§èÅbŒ®ËÛ%âÙªcÆ"ùVm’¸˜Ôj$7X¡ŒU£Ð"E…Uò4Ib¤øDe‘؉HülÆf‚I“4®®,uúŠÃ^¡Lý]âCÂTÈãb°À¡êcLQ«GŒ s<æ9&ŠdÉÊ\Þ(²•x1!Ë‘ºJÅv©ÅÄ¥§Åèåà J á¥‡É„†È á“µî{ ù°wH¨}™+w†ö”Æ(ËÀ‹RÕó®RÎZwщ0 I ?xh5¦™$ÂIÈdªË©¢Jž‰‚ÉR´mèD•¸Ù.ªÌ<1zhxÔ¼™Ö›Ôɨ}Ô0¸Ñ,,Y"K]M&RO_YtÒ8Xr"1C8 2CNqº8Š×U„?M󨓥ƒ,¼6£à3E#8¤zÄ&F— lµcìÄC§JžÆ„ÆFâÙ'ñ ÷'ô~]½ETÓÈ¶ëøº ng»!J p·Aì+WöYì0†Y‰°0*ªHx}2óm|]HߣÎ1?:æÈ*âw :¢Åzr—~$ÂÒÃ[ÉÇdì^TãbÿåH‘Ê$Oº^bË‹²hÉF7æRdÑx¾vT¼…¡MÙ¬<%êQˆÕ˜˜&–ïЊ%Iöº¸}9‡¢c„æsÊxÄóÕ»$c]†z˜è Ï4¡ãu5VNï‘5^N¾M¢Ùôý(¦å²08$}ÔÆðÇ0uЊ-å‘v¨Pg#¼Ë@D°Ü1‰Q‡a(Lº×B.ñÁ€xl€Õuq;!âö?ÂCèÁJüÛ“t{è:ø!+±a0#´h“ˆ3b)Y"Úbi†9Åš„ô kb×2Ðm˜sŽÑ<Èt„æÂ‰øS"“>FÔ¥í¦ÈØ-a@¬Ó#£·˜¸&i½‹q˜kÖH»ò¢Ž°¤Ï‰ƒElÔÃèº ,kJtУ‡žò±û#2nÛvÐ…>õÉÄ[x-´Õ&® ˆë,Í!ê°ä–0-—Ðx„íŽ y#LoÂRc©¿‡,÷¿îÚ±WÙô&¼4}‡¦â½ð9êd9ãßáÒÒ„ïè/òn\á_Ÿÿ·Œl“‡lñGüŸä›,q@„>w8˧¼op¦wn"Nä§´„5rÜã4m’œæ.K$p0¹ÁE6Ø&A‡Ûœe.p‹ ÜbŽc-Ä6ëê—®ˆS!¾Æ«ãkŒ,‹ïW¹Çi6yìè"ÃVê +쑤­Ðïr›iš´H±Ë*M‘â<ï)-k”–Xà$´cÁ 6«b—œ_¥/¢ü9çÊô:klsK¿À=Ná`r†;T˜ã>§ð|Çë\¡¢ç)ÛstBq©õõ÷ˆ0»¬±È!—Æ7ø®ýšdp18Á£ÀDã€%žç®bÞ/ð–~™5ÕÄ„y‹Ë|Œk¬²Ë1sÁîð*ßçPé‹'¾ÅU®1ºDYŒ< |Öû*St޵9vXÅÁDÃ'I‹7x…ç¹Ë)ÿ>S¡S'Ç>Ë\â5¥è¸ (}²4h“☧ýû¬9»ÜåyòT9Å}BŒƒ½ØscAÿ :ô¯~½i_&°ݧI“]ÖØŸ,“¾ÜdíÞmÞyÿ4ç/­¨‰mžE9=ŸCîñ|°;*I؉è#jäpã$hsÄmœ[¿Íû‰Óuú®¹ IDATTÉ3EgQ'CŸ§ZxðÜ ¥„î1sa—Q$Ä–ö€]}…JnŽ5ž²NŸ6CÆØ„CCììP!12Ô9bŸò>/àbÊ6%ã:Ùä)ôܧÄ}îë[$Ò`Šùc.¤M²Åu#C‡²Œ°±ÓcöX¦­P ‡-*äÉ竨¡†ÀÅEÃbÄP­ †XTȲ²ò”crj2i’ Eš2s ˆ°À‘\£-p°¨P E’ìr“ŽÉ“£t˜ Ó&Î19F„é#Cƒ æ)Ó C5Ÿ'J‡,„Øg!øÎ}Gå„îMYnh®ä%ؼÿ5r´H1 Bˆ±" ·IЕ¨=:Šõ~Ì ÚôÔž=®þûˆ" Åc5t&±‰Ñ§JžQ@`à’ CŽ>°¿yæ ýï„ý¯»Î6ï2^Üä÷íF›$Ÿž|¹nr&¯ ®,Ý…éˆ}ë¿eáªO†ÿÝðßp-ü %ÐðøŒÿŸ¹­áÍøzÄøüûÀ©Â}öÅœàsƒ*ù ”ŸOðmÞâ2dG¶@‰&i±É«èBÂðŸïü1ïÆ_àÏÄgÀ•Ñu|Cð-ã ³Á6wþ‚7¬«T)°êïòËã?â¦}ž‘*°Ÿîƒw£gøCñy" 8ÃmZ"͗ÿÂ0†ï².¶y̦”5pÄÅæ{D+C*' Üá:$Yc›ù^…DZ L&¼T¹‰c¼‘¸*¹šþ˜ÓÜå¡8IŸ(ÉXSµëyÞ,^‘‡ùšþÓ1m]Z¤x— ¤irÙ›¦ŸâO´ŸGgJÌíó±é5’^‡Òtž¾婨 KœÏõ¿Êðó쇖ðÐYìÓ‹D8dEï‹Þ-öŒ%ÉþÄæ£Î÷¸a½H˜ó”9Í=Þâ2oñ†<ÇÞà#tˆKYšˆð‡|ž ÖyÊÕêuBK8 ‹ïj¯à+¢Ï >clÙ¤yïrG{]±J”yåKpŸSx"þãxŠØðƒ~…=î‹“¼g¥N–eöéç+|—žò{ˆ›]lÄæú1·jç¹ýN‹—HÒfŽc +dÅfŒÅ«8X,rH†:}¢ô‰²ÆN°6‹0$;l°™x„‡¦ XƒIÖÙfÎ9fÁ/c Å\o–ð¬fä‡ÉL›ºt;“#cÒ4ñÐB'U).²™(3O†IZT)£FM¡B<%<}2zƒyÊêïÕ™ oªö†,RO§GO‹*¯‰U,åRæK!F¬xû\nÜ ’s¬8%lÓÁ.ÇVOÓYtJ”ÌÖØãÌø.õPš[Úyæ(S¡@‘#ž°Éâ´„®¹$E‹ó“÷‹'ÊÛT–òl ÷Ð,W—RÖ2sœá9¤ƒèβÊ.EޏÇ)" IøÎnÓD™‹–’"¨’¥Î›5—ŽHkŒ((±Í:u‘å÷©’£MJ­7u–Ø'K§¬3Å @…ûœ"ÄXNõt±•\ÚöǤE3Àt34Xv›,á°é=&.º„…$½2ïh¦{”>IÚ¤ià£S뜧lío½ Çb\ÃeeL\"ŒH¸u¾ÇrZ ƒ çÖo3‰æ¸v=ÉË—÷ÐÃ<¤ö:Ì9q,e$BZ°(Ï\Ðÿ¦™þCÈý‡_ ”ˆÒÃ`J“46CBŒñ$ü.vcÌ™•=zºÏý›–/8,ˆC:$Ðñ”f|€Í(r°Yg[í:%É­F–“<À³]“XDÌ"ô¢‰`UÔ#†®VnI½ §­%+å%wÕgÇG¤…«&JG¹Î$¨òÏBÌqŒ‹A‰ò~‰0•¯Cˆ):=U0²¢Æ¡Xàgäkh \êdƒóG³B=q²LÙÑÖxš[¥FŽš åp1:$¨+F<Ô¡IF²„é F€}u~?à$Q½O„A°¢œ˜aF4—R¼Ã%Úá”’ŠÉè ‰`³.9„ù>W–|‘#ê"Ë|ôˆ]ÖØaˆr—1µ‹5è$¢ÁŽ2ĘIÂAÔÕØy˦v9ËŽXÃf¤ì3Šh4¥C‚ž§§^Oê®3T”;ÔLÙ#F\p⟶HÒ$‹à t}ªv¯KTý¼’–Dé(¹FÛH0UzN—ºÈ2Q‚—cm.ØßþÀ#X0 ,™–Šlb2!‹’(’ w‰ÐWÎ@É-æÐ4)›±pèéQZ欉ôˆÉßc Úƒ$acH„A ¡ )˜ÊSd=)ÆØáÄìsêŠ8MRøBã@[ M’âtÑ|O(1BŒØ3—w¥) ²Dâqz8XìˆUŽ™c‚A˜! Ò ± 3Tû¼bÚÖÁO“,ÉÀCúØšcªkÊ$'Lœ#Bý§„Õ’T((£ Inqëu&}q1Úòpi“ N[Áê1$c¶:˜ù…Ïþ®¡xurQäYhqâà ýG¾:$xL–0r‚]±É‹‚¨ O8fŽÅ'ì:«¼{Cø0!©w*xt‚IŒžZ™Hh8I‡ªäIÑBS›j$Ïc6•ÌíªŒ}–96oq(ÙfMQK¥y’ƒEZ´1¢I:¸o%ƒ;Ø7KwÇ£€ŒW'0ù·Us1”ŽY6ž+æ‘HqÕðG°%RÖŠÊ@ƧA–qbJ&ç¢3ö¥ùI’Nàí>&ÄM^¤FKÝš¤™ s&*Xàˆcæ$iw:ó¨ûYÅb`žÒ"Ø Îàæ Y"M+`‚ÏÈ»%ø2hˆM_ñ_D¨P`› :$ØaUUÃd©ã!ca ×øŠ 8¢¢ ²¢ôÉÖ J/ I²¤†¡xðÿê¸Äé  iº3E§E’IFØTÉ¡C‚cöi‘’Æ„èùQÂb°îå¹?‘<$eH&ùUÏ^€ÍcA׿øÅ/~ñÇù`Þ¿Ÿo/OI&Ÿ~•U}m™–‘b‘Lîsš#_qþ/>š~_ÓøòƒŸãÅâC²BÂSßš~Šü»ü\ÿ«„¬#-ÂÎ~šMž0Å`UvYã$“þ\äý?æ2oáKí¹«lð“u›šÈñ¦~… M>Á·‰0ä®þÅ7•~\gH„2þC.ëoÑ Þæ2«ìa)ÙÆÛâ%¶ü‡ì™Ò;øXaÖˆ(º2§©šyŠ-.r“Uº$(3Ož*&.«åÊ©y‰0Ñ`]³É‹Ó[¼Ä ,1f—5,&jñ˜ì³ÂÏó§äü:=åˆ"Ý=Z¶,ª/ùï-®™?Ås<åÊô:5-ÏŽXc—5i'Ƀ)Ùbƒmžã -RÜ—°+N±Ï«¬³Ã ¼O˜eæ™`òÞ Ìˆ. B¾Ã«\òõ¸odlØ3Çÿ]ÖØ%*<æC >«ò>/0çó îWÐt—–ø ^¥H™,5 ¦„­cS=bì±ÂUÞäeçFºd&;„8ÇmNòGœP6œEÊtHЮLØì_bccãÝû×~ï÷8ûôi Eùa??þq^yýõ+øuݼy“ÝFŒC æ9Æ`J Sj~Ž &E·L5”c“'¤ÓJyö÷’¼PÜA2–Ãb¢[\:$9Ï{”ÔšÈG(Ì‹—ÜÜ0.Jg8z¬±ƒ†ÏÍÊ™°Zÿùj7o’ Ë&™ áò€SJ{žaDˆ}eb3Tj™¨²/–‰'üÇìˆ5¢ Xä&zÄñ|¥É!¿ÊS}CÉ&eón1aEì³¬í«†Ä£OŒ)9êJ_%‚˜AÕtƒ†£I†=Nñ€ ²4£È%˜£¢6ÇèJö—¦…-Føh¿ƒ‰CŠ6Yjxh,sÀ dh§FœúÕèÄéR»ýMžH¹1µ qXaOYÄÆHÓâE–9 F, µëN*'Ný€¡^@ZÔN°ÈSc@TòhÒ%†O†&yªHïö:›±`'Väˆ s 3 BiVó6/fHš&=b\³~ŠŒhP#GJ`šàªÉu¤KùUl0¡Ï,ZgŽL+ìñ„çxsÁd`á°ÇŠ \ñ“ÌùÇ”üyvÅJu¤Ùe5pM“ZZ]¡#<ïq–žˆS%ÏOéÛá@n3ÒMé9žP%ÇXqÈ&.QúÔÉ0ÁÂbL˜;¬ÒRšØöXQŠ€2*Ê£K4–ùѮ󼋅ÅGŠZ’Ü ±ãYœ«½ Oí@{œ?õ”Áî„Û›Ó,™kƒ§ÌS&Ì€–•Jš’¤i±Ü8dµ¸Ë±öŸ9¿Ž.¦Š“Q§î§Ù?(@3zrÚaYìcë#^âm)‡¤‡ŽH¾F„ƒÝ|CÓ):«“}^°Þîi¹§žc"LæGe¢z ë©rd“ ÿ“9·‚æù ­°R‘ XeT*áû E 9ŽÕ*`„‰K†ºJ ;`II¬lµ’)½¾ô«×•6^çHOh¤h#€]•œhàáf¤~ä©0Eg›u¥H‘ÏÖ*; ‰Sôlªž¹·Y8ÁúKz ŒXä0@õ„ @IÒbN¥e\eâUûðRv*eÀ- jðêc@8p œÙD ã#0• 9FOIœÃÊÀe¬Î¹±RÅE—ˆ ÝIÑRHžDZÆJ¥#YëÎ3Ý÷/XîŸ}±B™yæ9æ4÷8åßg[¬©XT‡â1wÄ„‚À®Ì¿Éï‹_äö7W™û„ÆÏi_¡-éEjä¸ÔºE’v`x°Î9jü¿ücÖØÁfÄÛ챪|ÄsœT{‡8ÇÌá¡1G™%p1Øf]V‰Òçc\ã÷ùöXa•]^âm¾Á'f‘¿Äñ5>M%8ÃûŒ±¸ÎËÌSæc\CÇeW¬*bU˜ÇÜç4‡,§&Õº”KÍÏ´Y¤„œ45¦d§ "ú€oð)2f“ǼÉtr,ëGœÜá0Vä=í6#^ã;‹9np‘ —y‹EJ|Ÿ«4ȰÆ[<â€E³É2,P #Š}–Ñ™òÏù2šðxÂsô‰ñOèç›xÊ…=Þà*}¢´IqŽwÙf_ïïrž#Š<Ç–üùP —w9¯"§¼È-FØÔÉP%¯,qMîŠç4ßeŽ2w8KJù4‡GŒ“ríqÌkìâbðçâUpŠŸçOæm.“¥F˜qº´9ETy ˆg|œÄ`¬~¸Cÿá×Û„=“¼_c^+SsL°(±@ÃÏéÕØà «ìÑ$ÍN’]­óÈ,2~§ÅÅ‹7h!,†ªšÒïA¥t…”uð"‡ØÞˆD­ËrqŸë‘¥ÆPiųÔIÓdŽcu.%™"Õ.ÇÌ©É[¢‹3Û ÒÈP–ˆrÙÛäqàÍqà/‚¬¨Kž’7 ¢õ+‹pMiÙóƒ½p„ÌPЭ¿ë]ÆØ…@Å ¶H±/–ÙeMîfÈ’¢¥`‹©‚D—q IÄV‚Ò×<ùG„Sî×ÃP˜§lP'ìN$ó9D™yL&A!ª)º¥ö³!ÆÔÉŽ>†zðÅ m‘â>§)˜ vY¥Eš.ñ€²£Þ¿Pºî&R;î`REîóeøHŠŽ"´=d‹6Ibê¦ê#ªÊHHf¶×2™PS»¶]}GéÝÇ„h“$N—>ÆØŒ"6 3CSO»›2ó´•{’‹©ôó’ØrìÏÒ©mfÒrL2ó9RMJ[YèJ®°Š’R#Kƒ,Çj^#˜%èrŒ”ïøKB$UòÁ÷Ð$­iàQ!HP<´ ™Ø×—M¸ÔƒKã—]Õ¤ÉÂH`Þ13t˜YtÎv>¥ð%²”V* ÕŒ°ßî!ai©Ì†jH]ÿ›Ä3Ú8j¬+öt½ÅË$4©x™­ÌÌAl1ÂÌMÙa…9ž ‘½ žpfaË«ñonü"ÙKr:Ÿ‘Q—ÙW²4 K¢Üç9­F¡X£+âì°Fœ.××”ÑËE»Ê‘ç,û[:˜ °#­Ï¾ÈN²ÊeŠŠ/"ù?³æ¡KW¹¾µHOt)± Ñ),³‰Î”œäjä:¦p¸lÐL>C›œ]#gÕØÓWd¤ª|W0u—2²ñ1q°Ó#.mŽ©Ò#Êóþ=FÂ&å·I;-öÌeР%¤Ò¼_¦$dι¦ÓV.j5rA Í>Ë,P‚iQª!K®éò” Îo£qz ô‡ÊÜf¥OËHÑ%®â åj.å·h‘¢)2˜*u;PAIï#m¥g<¡'Az—l©”½>u²ì²Ê‹Ü ¼H:$ˆÓeŠÆ!‹AwÆšñµ24d°s¬°Ç€0‡,òÜ­²B‹$–6aˆM•Qµb 1f‘<¦±g+èâïAAßc•EÚ|Šo*RÓ2%Xä#~ Òÿš˜ò¦…7üpF»Cqåˆ'bžï]Ûà³?uƒ×Ä·¹ÉEº™8÷'§yÙ|3H«‘ã,wT0½Î}Nñ*É„›þ‰-樦É2{¬°O‰"OØà ïs[踔Xä>§¸ÈMª°Ë*ß壬°ËOÑð¸ÁE²ÔIÑb„­bA{|Šo #ÝÜ,>Í×0qx“«"°Ä€(§¹Ç“§¬Ó Ãs<¥GŒì¨Æ“Èv2³=Å=NsŸGlÏËì½&i>Ç r¦+õ\B±1sT8L«»Å.p‹—x‹?GF¤±9Å=e“*§÷“ÂDéÓ'Ê#¶3¹ò¼èÃïq—Ubô9`‘MžðQ¾Ë-γÃwy9ʪQ³8Œ.¦Àkeæ9Ç{\àqºÔɧËn’¦Å÷¹J“4ëlŒÙÞ3>œš€ùá„þ£\snÛ3 ›ºÈ“s–:¶’5ëì²LT9[û€­¤bÉ…ºkQ~O`ŸK(ÈvÊc6yŽ'2äCe—Ï{34Q¹«Ã•È7q æ¼ ôXŒé Øê#aQUÄÛ%˜`‘¤8¨¥hÑ £R$;|„‰i—ûFqÑ£/btý8ó¢Œ;58EZ8ˆ95pñÕ®ÞC0Å M mêÒÇDÇ}„9•‘§*‘®Ì<¶7&¯UɈºjè¥ ]˜aÐ Eè“¥ŽƒE+x_6NÏŒµP@:Œ©Ä˙ϺLf”¶Ú2²N×a§Œ"vÀ_ÉQgLˆ°Š>ÍÐ@SëŒ1RuÓ CÃÏ-Ò4a“ £ õ$=Ez›}¾.QiýÅ"‡Dé£3 I¤¶ãYL…ÁPH‹Ú]$áPš„M"ôÌ%t¦E/<£lÍ4 $þŽô9މ’ ¾„0C<_Ã)Z,r@C¤‰Ó%-šœàQWk,»˜“,õw\¶/nPÕr¬vIéM–š°M‚&<24ð”Ý ¦ü•u!÷m3Ø4NOÉ":˜¸#Z‚.>¥ÀËXfwÐö“D„ÜÏ‚$ñE²º—8P2³q$ÃäW¬3%GMI =¢9"ì ”[j ‘ MÁ¯  ÉòÌxM,1Á.6#òÔ˜¢0”?ò†ô&ŒµPðïž±¹gL×ÙþJJÚúÊÞÐ ¤²–³~°!oÆJèL‘9ÃrºHø\!@—\ðΤ5yªÄé*²`_uâ=¢ÊB"%AË’£4³!>EJlNó{¤§-Š“2ÉH›ÐÔ¡£Ç ic§‡<D¼!s~…ˆ!Ï ™–Øf»¬ HM󔥨 4œä! 4I“¤M‚N`-k3¢À1 U¤gçA˜!¶"ïž=Æ1-Bæ˜â¤Ì±^`¢Y䨧ËóʰÆQ®šm’Šåï>£ÎÅ2 ¤}°‚>  ä:0‹aÛ6ŽãÐív …BÄb±ŸLAÿyþ˜›üßä“„ò²Kµ÷ØËI9m f•̨ÉïDþ9EŽHÐæè~‰ŸøeJ,°Ì¿¼ñüî/ñ?¿ñ/X|yÊçŸþ ÿÍêïñ—Xâ€+¼ÉjoŸÿ=þ/Yf—¸ËÿÍ?Qò.Ÿ×ùqzJÀ “––ÙçcÞ5¾/®²-Öcñ™É×Xôømë¿'N—ùרê>æ¿@•KfÀ¿ã Dè³1Ùá—µÿ‡¯éŸ&Ę<âcÎwIÕ»,,•x  " S<`epÈÝèI ùôî·1ÿ[ö_ á³@‰"G¼Í%rT1'.W†oRëäyXÜbDˆWøßå£1ÏÎq›ž²ÁnswéãÿäŸaàrvr‡_õ~o¢³`—p1xÄ&!ÆüÚðå+ögyS¼L˜¯»†Ï»œWºÛ=~Úÿ:wÄJ,aÀ§ø:ÆgÉÐ`‘CÖØá|ŠÛœ%€¹I’¶Ò®GÈSÃÂá6g™¢±Å#þqí?p×>Í eó]>JEŽø,_•ÌDyÂ&¯ùßá–8ÏáQäˆJ¼Î·x›Ë,PBÃãlùw×NMÓU¾Ï‹Üâ<!®ò&.·¸À1ólñ$mªäiá4÷(ò—À¯>Ó„n~ÀçùË_þ2ׯ_çôéÓ¼öÚkœ:uŠßüÍß$‘HÍfùÕ_ýU,ëŽï\œ.ó´ƒØSeåÛ'åKÉY]9β*ˆÑ#O•ÖÉ$ÎÝïYœ<פOŒE©’GgJ•<5)fö2 IDATò8ÆTQÁG)P H¤ê 36–p*íz\P†ºÍCNà`±Î6Cõ^$é7¥Øß:&#Bj…#-®-,ß¡,晢Säˆ}:ÄU~B˜§b=8_*]q‚ÉH„Ø+ì°JŽ:ºð0qØcU5@#BA²\SÙ)}Ùô4E ǰ¨ûYº~ MøŒ„Å‹dôšðp1N#ôÝ8m#À“{g¿ÉžX!­µ˜óŽ WèŒ|IÛëèQ&˜ìš«L…ÆH·éûÑ€ø'½Ù¥ru²Ašå““ÖCî[[AäáQ÷³L„IG$±õu2di({桊lžGÃòäCŒ©’£AšE•œ–QC…øÅ |¢~_™ÐÚ~Šc­ sæqhˆ e}^æxÂÕLB~Ž1ºÊøH"³ï]†õ„Xñö‚&áOÔ˜ú+è_úÒ—(•J¬®®ò™Ï|†ååe~ã7~ƒ|>ÏÂÂ_øÂ~2}›uê䂎¨.²ìÅ©‹4®eÐ MËL1EcŒ%!ùÐ<J?8Ë·ö62ØžÎÁ·5ÊùyJÌQz÷8M/£Bžy²|lFôUP‡‡®ää”³Ï d( é¥>#hmi0=GæiÖÄ2ùPM»H÷Š(ÐR®,qJÜg‡uYPF6mZ¤1fDSO±#VU>s’{œ&kÔ9¹§öÞ6‚0Í–0vŠ­x’qÄ Jƒ)}Å~ßgEj¼õ U#cȇBŠ7fä©•9Ë2l`]ˆ冄)é ìjòõfa=â8„8² Ê 5Æiô# ƒý øL…4(¨ò![° :SJ,0Azö?æ924˜¢ãbúßcŽQ¡Àvh¶™dŸ%:Š 8&ÄEu¯ÈUÇXHmºC›¡2z(±š1ztCqjäØg) >Ê}æX*Y4¦ì©œx OiSåîí)LXUÛºHŠ`<侸¸È¥K—8sæ _ùÊWˆF£œ9s†³gÏþƒ*æ,ãe•Ý ,eȱÌ>G!9Åéb3Tmº„×CŒ•ÿÁˆèóaÆ5î¾™å³Wv蕇¸Ê8B’lÛá8žÊ˜Ý“CÅÛ6†.Stt”MªôzˆÒG÷=™)®ÎR´èªÔÄ$í  AÀÔžéÍ]a§KqÅ= +3¨´/%Y29°d©‡Që9ÿ)ú2­Ì0&Ž)STÈ›J*f2Q,m„çñ‡„¼1kÞ.=‡ë›TÈ“¤CÄ—(¦îO1|ÛÑ&N…¹À¤GgŠå;hB¦ÃMˆñ%Ýv¤ùO 1zj¿,¡zÄ);„Èú <_c¤×—ŸI˜!q¿KYÌßIˆQ@h”$¿>&…jvƒp.I“#øAîùT¡/³ z€tÕ‹(þUD\S êd˜ç˜˜Úµ¾KÈw¤,Ïß§B>ÐÜG࣫ R´”>@Íašbê;2á¹Ò.ó•*sȼS%›hóBó¢ãÓ[ˆYt¸0¹MÇH0LÙD¬¡·&<Ÿ}ÀòàßÐ7c„NÈ6œÕîµú„‡<'Æk;‰çiL,“„ÙÁ4|¬¾Cf{[ÚR>žr¹p“º¿KÁ®­·èbhiT´M(>biPf Ê ±º~þádBÒg:6‰Nl¦·I ºLäodF9o¼ÏzmŸ§Ùu’‘áÄ3Ó{hC؋بﲪ0LDù)¯4ÞÄÈŒ›X†ÃÕáÛX£1nØ`<¶IÆÛ„ "Q¦ ÆÄåLõ>㜅e8Cy·ŠÈj¤wûC<¡“Ë´†mt»ËE÷]l{D¶Ò&Ò ‡¦x¶ ”v87¾K¬Þ%í>rX¬—Á×ÉηI :$îvÑ=—ý…eòñ*Z×çUç»DôFÌ%é3è11MF–¶í@ôY0÷NY=œÂ;Òü.àÀ¾öÚk”ËeîݻǷ¿ýmlÛææÍ›¼òÊ+|ñ‹_ä·~ë·( ÿ` ú2ûd”C`‡yªT(¥.¡N§Ëfô1«ìðç±p8Ï»DC[j…5–8àÜfƒ½PŠ7®¯ñé—o«¢ï°Ì>MÒôˆcŠ)ÏùOñ„†ÀÇCSrXÇ 6ª3ˆ»¯b6Óa1b¨…9ÁC¦ÄèÒQÞë3ÕNQ5EµÊšåR´H(Gº´ÒH—X$e4Yð:!µÐšlzOûCtÝ#FS›pD‘ Å#¶£C•ôµÌ>s#„OÚlâj: ·‡n»Øúˆ†ˆÈ×S2¢)-iý6Q¿OEÏ‘¦…ŽG•<ËBæ|oM1±t"Iƒ,èÐ:ø¶F’©iÃtp0‹!EÊŒ ) ÞX®Ä_Èâ¿(©ûY¬©KR“puM䘣‚+ ™Ø&l ~•"å`_Ÿ¦p24”Ã`ŸmVÙEÇ%E[5³äÌeö—šóký2ŽnÒ!ÉIîã ‰ä¥hSUjz—º‘VNGÄé.†EŽ‚†'áwˆ‹.)¿ÍÜ3²Ü1ù¡Î2ÛS¸=ù«ýgögi·Û\¿~ëׯS*•h4¼ð üú¯ÿ:¿ýÛ¿ý“)èùk+ðÙ•¯2$Ì7ø8'ŠY¼t€I˜·x‘]>ö3‰©9¼ÍK|‰_ã"7èc—UÞp>ÂϾøŸø9¾Â€+¸òüO·ÿ)¯ôž¦3$Œ‘/T¨!§ý·¹Ì§ùE¸ÁE®ñË|dþ VÙ¥Fƒ‡jb;É6ã ó_øiš¨à¢ó6/ò>Ë©Ì} Td^Lé1{tHp“$sm^âm &Üg“!a~†?#áwøŽx?ãÓr¯úå?åsüù_¸ž¸D˜Ëì¢ÏÛ¼D*-¥>‚#‘Y¨+÷ª•`R’#çWycý*œô•kÜáç¸M^y/ßäœRÈ;)nDçŸÎý:·¸À¾¿À/Öÿ”;9)­»´uƒ)6ÆOs[,PâÏñ/P'Ë;Aå.«œYºÃÇÜâ;¬¡-zÄd¦CµéÒ$ÃKLѸxòæ(3O‚6«Ïíñ„5<4(Öo™y^_ø6!dLå¿çó„“§JŒOx޵¹^á7¸Ä!‹Üã4KP\?’šÖJF1pÞj‘â“«ßd‘*}Np—ŸÂfDN…W|c3bŽ “ëÌŽÃéÊ3ôòp.š°¨üŸª~kk‹­­-.\¸À¯ýÚ¯ññœO|â¼þúë|ó›ß¤\.ÿƒ*è3ÅKž*‹*ùp‰ºŠµ=¯KëT)ñ„ÍÀ¹¬Kœ$-† 22@ûÿØ{³˲³Þó·ötæyŠ81GäœY™Y™YeWÙeƒéâÓMûÞ6¼ðb¡~@¼ !K~0ض@W¨üÍC«¥î è¶À ¾ª\®rfUfV9Å<œy÷ÔkÍu7$×nÑ6û¡*#”qÎÎØk­ïûþÿßÉ#o4Ù¹&u=‚!ì@h&ýÆ6u‘ ¢‰Ï²%cB ã:#¥KJø4cI¸š†+´ [ª¸Ó*HÄHg²-›:‡#"hžLþòÐÁXŸ89äìø¾.«ÌYžzU½HÌnÝS±Aƒ .¢±ò–'è*ñ]¶Ì3ìˆU‡8®Î±˜cHŒ©frÄ<ûÚ"»b…cÞ8¢h›d•SIFÛ‡ŽH)ºZ’mmSØŒ¢QvYÁ4lÂb,)›Š¾6CYKRœ@è~@tì‘@h>ORkôý8m‘fH„> òÔƒ*{Ë8M…R œ‘ßäpÑIÑ¡KR}_™ D9°­ÍòÊg±¼aÆÜÒ®‘¥IœSaÑ §XS&„¸g^¤§ÅU2¸fýµYwp=ÒÔÔ3=WÀÿ#*nÍ„µ°ÜÐÿ£úÜ /¼ÀÆÆ¿û»¿Ëúú:7nÜàõ×_ç/þâ/èv»?ž }•]\àoùy\tæ8ÁCãü¬B,J\ë_jŸ Âð¹Á-XxݶޠMš¯ó1ž²ÁŸù* ±!ÿç7^£ôëÆ-Êñ€óX ¯fÌ7ù(&6%B“ñ›ò°ÍUЬ°Ë¶¿Æ‰ô2ÙZóy‡—$ˆ>x ˜ÀQbô¹ÈÞâ2´è‘à:79¦Ì÷¸4<¾ÉGAHoª‰Í·y-@Ö^ã¾)'¸ÌC.¨S¶œ·Ýä21,±à.W©ô² -îrY~/³Ç%q‡Ž;⊢`µxÈyns5h§i¸ËÏcc2!ÄŠØe˜ŠÐ%É>Ël³N’./ñ½ ßù˜yÎð›{\BÇáYdŸ\à×é’à[Üä&6.Kì³Ãoñ*BÁ‚ù->Êe’tÙ`Â.ð.×HÐã°ÿ’}mMw¹ÏŽ)cbs–Msš‡œîO›4_åÁâ‘§Î.+ä¥ñ-öâK8˜°Èy²Ï"w¹Ì&çXe› !pAÝÿ â¼Í* HÒáUuª.#ú?s†þ•¯|…V«ÅÎÎ/¿ü2ÿøÇùüç?ÏŸþéŸÒétX^^þ©j¹Kìñ€¦²'6ÉR#O¤JÂJð„StI‘¥‰É! j wBÔÊóǼí^àÞ‹«WbÔÄ8«¸]“A8F8‡,eÀ %I•‹@ËÏ2a>̱ÊLîóS”¨îƒ]V˜bžcº$IÒ¥«B‹º¤(Re‡UÖ´íÀÎyŠÇ{|L˜†ÈÓÒê°Hú kvžsÞ&°|n}_° ¤¿}¢¸ïS=$M‡}b,³GÙ? â…“v©i‘¡M[¤©‰"ºë1Ñe?"í·ñ4Y©¦”­8Gƒ&YRn—>&.ú´pɽÏÀˆrª¿ÃAjœÝ$lŒñuA’.÷„tî,pˆÍ1er~ƒ˜ð€ Rðê);'xº` Ëó]®IrdT(t„‚%öéGÇ D‰‡,bØ„‡D}FD9ÙSté’dÅÝe ¢DÅ’wžX¡!r,p@Êïò¾x!˜›Ø8è>B!\4Í#9ï ãlMcþce ¡=ê4R÷ÇQy—¤mBÇRÇ™•a¦ Ád¨‚´WÌÚkž’=è¸M*IÍà—GÅ—³+ O½ß C4 FD”ÒÓÂ3´@éÝU‰=>’Y? ”h’Q3o©š” QCE;2°…œµD&ðý{h©V/_ñù„²—Ȩƒ©öÇÌIߦ¹´°^Àî‘ĤØÐfvW9âtH)‹O”apØi(¥î¬šŸYǦX*—Ýb¨Úƒ¾ú¯‹†­L…¥èv‰ÓWX‰¸ Q‰ª¿-T›TÐ%ØHlÌ@3a•®%õö²}jc`c©ªPmAÉê1eª\cõšŸOæþÏx8Õ·¼~ý:ÇÇǼôÒK¬¯¯c_üâ9>>æ—~é—H§Ó?Uú‘âÞ€‰"‡´@öˆ£û…zsÉ-N+L¯Å„ÀR–TóÏU’ÊåfÌ‹‹OØóR<»›äêå9Ñ࢟Ĵ§8’ŒxŽ-ÖØáë„<¹æ´Èà¡eÈË|O'N•‚^Gó=úBVn¹Oƒ,:^`£Ê3PÕz“Æ’óÄEŸ \VÙÁÄ–ð(o‚¦¹œe+`"ÌÂ_ÎòHu™2´I3–Ôº¥ÑbЦuÒ #ÛòamÄ)\{?|‘cæUWÊÃEc¬…$åLÀžX\žÊ[™;Þ1’ؘ°€žëò ‘0¤(-Ð%©6Ù‚éâ ±ÄX© M¦2·\Uë<ã¤-Ëð‰ W×±i¯ðäÝ8Æ.`ivà‰”Ñ§Ï(PcŸEšdƒŠ1ÄDu¤H&+š„a¨ jÖ*›áE›dIÓæ4OÈ*…å‡Á¦w¤„wóã!TH§Ç2{¨£âg›`ƒ,{LÜìSâDιðƒÀƒYôá„0u2>CýÊY$èJ‹…>Bs|4Óe‘ä‚“i„!-Õꓬâ U Œ 3 Æ5Þ Ô½G”9ÏC,&ÌqB‘*}âð0K“fÉ"C“E˜´ÆÉvá,2V¦'ÑÔ¡iƒ§ÇÛÄfŽŽXÂ8­¨Ä'h‘§®<ùò4f¨St(PS"$ù€ÎÄ4):x¾dYÇ0&̲" Œˆ(•ª¯øø2"3A, æ9a›59+|Þ ýŸ©e+•J”J¥ø\±Xü©j³ÿ×òAX“ñ»2£Zú~tBÆ$ˆI2ÄÄ ‚ž 2J:Rq y…/ë |—Ö]‡ÄÙ;“»w¹Â›|ˆ3lQP‹ø{¼ÈKÞM^˜Üã0²ÀD“¯i_§tþ"ïžaï{¿ø{’r‡^öß‘2!S»ŠTÉÓ O‚«þmŽD™&Y9`™=¶YS)9 .q¾JªQàüÁY¶ˆù¾!>ÊUn3 F…5 *Ãy+ØlZdøÀô¬©C7–dW¬ðQ¾É"+ì*:’<±Êû5áë8,q€Ãœ{Ì`§9fŽŠjÏqÊ"9êbJ›L .Òq¦üKöMŽŒyvÄ*R”zuZñ %Qåšû5=Ïm®°æïq~¼E%R¤IŽ.s—ëÙÆä÷¹Ä=69Ï®£ÉœÊ§ž=$xÀ.ËAûüãü5GÌs‡«$ü—¸ÇXH«M¼ªZÊÞëls"J|K|„CŠj†>›©}Ø{ƒ¬Öä˜yîr™ -eQì#tŸ³<¢CŠ. Ä8åf‘2´”‰fÊ »ÊwoDªG…þo×^6az+ö¾‡.T<"ÂÆµ4ZÊe2&Œ‰Í"jÚç1§èdD„yNÐX–qÄôY]ÙáX‹ñÝ÷Öxå*„í1KìS¡„Å”‡œW°¡.aLÂïCÕ%Óƒ¼ƒ¤Ó'£·hu ˜PM¦f{–†¢+º8˜Dü!–˜éYê™ÅP‹á  M µY™ØôÝ8i¯Í‰9Å”%÷}ôEt<ú$HÒQìw™y£A‚‡Ð*Ñ递Y%*†x¾NSdˆ‰‹î!]=IÊï°èÐÒ3Á=9dˆ?¤)N±æm“=zBº ²^ Ï”Æ5¢ñ!y¿.?BƹJ `3ÈLh©"Ar"¤aÎ?áüp‹è2† ‚¢å¤èÐ"Mɯ` ùžúJ©®©îeWQí$ ~J›'̱Ⱥº†âØK ¡Œ¸^aWøŽUJ¦ì XªR7l—¤Ñe¨EIx=a°#dØ•æBTH|®:Í^eïˆåçûÅ×ù‘Æ­ýÐ Ý÷}?~Ìáá!7nÜ ‘H0Nyûí·I§Ó\¼xMÓ¨T*€Í±Ë2ÿÙøyÈ9~î蛤ÎtxÌiä8»pˆe¶ùÚw.R~Õ'NŸeöùŽx ORÐÓ"Mœ¸@…’ªüŸÒ!Å7ù('”¸Ä}8â;¼B":.W¹ÍMn°Ï"çÙäîñ/2@¦”½Àûl³Æ_ñ‹$èòÞ¡CŠ¿Ò?±y*Öˆ0â-^¡B‰0#.ñ>Âð9ažCTlŒ!1<ä<6&×¹E’.ïñ"aÆŒ Qæ˜{\’ùÞa—Ÿq¾ÉûîE¾­ƒs<ä–¸ˆAÊHû\£Oœ5žaÌßèÿŽ=!Ñ®‹`G$°¦I–ÿ¬-Ñ$Ë˼Mƒ,úYŽ™gžcÒ´¹Å54|Nñ„ žò jn”ã4yº×û²À.+Œˆ䯯ó1Ž™CÇ#&ü¿È.°Â.×¼÷ÐpYÒöù–x÷x‘±W°j“UÄ¿2ÿI|Š*ERt˜ã˜û\ ,-Ù~“»‘KTÔâ¹Á3Þ×.ñVâƒÜæ*ë<£E†oðQòª½›§Î}.*˜IL©®3ôŸ´«Óépÿþ}‰D Þyöì{{{\½z•t:뺼ûî»ø¾Ïµk×0¾Ï¯óŒu¦tØGVbUŠÔ(¤C$!³§sÔ´kU1" Ei›‹t\vY¡£²Òg³Ò•¥) ‘çë·ÏóÑ¥2#"ÊR%ð‡,È¡mÑi l¦j”×!…ƒNY;¦%2Ô´œšŒ‚ÊÌW#: ™£¥"}6YcL„ž:pÌ¢>-b[rd7$t(gÕrVk‘òºªcàSÓŠtER ëd¥=Ť£º|³8á(F¡0-‘&¤OM§$ô>]#‰# º"ÉX“xçŒháy:®§ÓÓd´²IKdñÑÐ\Ÿ¦že $ zžcBžíK[ªæøÄ´¶fÒY5:Ì-{“=ahD1…çË‚«j‘\›T 1ÈÑ`äGH«®`Ou#<bÕ"M”jT˜ ˜ý³ßÙ@v BA×bÆÚÏÒ$âËN±¾J€#€¡e(¤¶(*A°Ô s„ti{Å/Ïà9ºJì=ï ÝüÑ®?tCw]—¯ýëüõ_ÿ5_øÂ¸|ù2_üâÙØØàÑ£G¼öÚk¼öÚk|ö³Ÿå“Ÿü$ŸûÜçøÃ?üCR©9šX"ı˜£J‘«¼Ì­§˜äh²Î3:Z’!QÂÊol¨äïY;6¤MHhRÃhõ¦gzâŸ/ÖÙrÏðè» ß8Eؘ¨Ü[iIÑ Úã@ÑXR– Ù šsî¨Â ÎÒˤºQ''$E¬K2 Àåhó TÖ¶«ëTÈà+ ÉeÚ¤9ËIzAÄhW6p‚@€Y›n6g6TòÑ,ß\û>ˆ§ëáãkêÖ‰ZPBJ82›­ÉYµDKÖµœúžšï"„‡+ Æ„Š˜eøL… BŒeK5ÿž'8§o­ñÙ©ö,›pFÜ 1¡O C7öYdŸeòÔ‚÷7U-üˆ7 ‰}ŠÁƒã¢ÓPã›Y-„¯Ü8&Såõ¥PN +/ª,&8šN_‹)ŠôLáyÏQTUçEÃ#Nïù+të§sCüø1ßþö·ÙÜÜäOþäOØÞÞæ÷~ï÷xýõ×ùüç?Ï—¾ô%þìÏþŒƒƒLÓäÞ½{üÚ¯ýZðõ/·nRvz»uÙ,]#N"#!ë7IVú,I[˜‡v8ÅܤÂZs—È`D¾Üb`ŰÇ&ºïr.S˜6OFèS ûÆÀåLì)7Óœ¼¥ñÊõw8—xÌÀ’˜ôx𨠮÷YØ> ”ãÆu×ıu„îŸô)›G,ö±lÓµYá€Q4LXŒ‹0“…&| ÇA{$ͧ½§¬¹;äD“®• ,&Lü)¯ÃÀŒQhÔYl2Úˆ’õ[œw B÷ ¦œ=å´÷”iÔ¤Ëâ†u¢­íPŠšQ`hE°MCØ$ÆÂîXFG·vÈG[ÄGJ V´CƹípŠj$ÏòpŸb¨IÊíÖéf,Fj1&~ˆ‚S§g$بì0H†…"ôý8çÜ-Ä2G=üÓ¹J‹ŒÕ¦‘ÌжR¬ù;xšÆ'ļ!ݱü÷j¥R\´r& ÖF;¬…v(„ëè¶GO$ÀK3qCœmÂ!ítÈ›˜¶M?§­¥Ñ ‡˜3d,Â$h‚¶•¢h×hYZZM¸Â[ y>¾'ð=AfÜ&:á邃aJx Y IDATÒϹ¡[?æ Ý0 ~ý×££#9ÓLØÜÜäw~çwxôèüÇL,ãâÅ‹|ò“Ÿ¤Z­òï|‡_ø…_ó^h×'dE ‡Ó”¨Òÿ:…`s 1¥G’©ZˆCLU&­ ¥„q3vo¸9"G]‰¤bD’¥Ilª£<ÃoyŒ&„®Iq˜ eŽÈ#Ì„„R…J(¥ÀN'‰0&ªþœ¤«Ð²r¶7Û¤"ŒHÐ#G#H ³1Ñq‰2 Â,&È”oÉŒž½Mû‡9ά%+PË'szû¸D¨ÓélÎ7&LÂìaôô¬´g›¹ˆçâj’4›õÈ8B¡¢þ|,aËD)ßA²õS2”‰²í8 ØQ NN4pt==¸ê4¬©\à™%X 3&GCÙ„<’Èöø, !Î@Á3dªUX1&DT}Œ‚òÌ‚\d{L÷EŠòAád›„˜fDH›(»Œ¦lBdܤ§\!•°6 vÈÓ@ÇÃ;˜Óá~ãG_¡ÿ„¶ÜoܸÁÆÆ¿õ[¿¨ø?õ©Oñúë¯óÆoprrÂW¾ò¾üå/cY¿ú«¿úº-†Ôm‹hFG; ùDµ>]bÔ½ Q}È4n޶ÙҤ˂ê|ž¢SǵcBDÌ!!JV4ÉêMœ„FÝÏóu>ʲ»‡¡;\Ï=Bì{ü¯Õóra‡¤ÞáÜî#ÊÆ[ÙÓt–ÒlæÎPÕKè8Dý!Q#äNXîPÕŠØqƒœÝÄq"ˆ˜ƒ­é‹ yT÷zóøa%òDü•Q‰¯G~†ò6 Þ!}c<ŽÐ ¥±âSFñ±H:\_—ƒkðó“¿c/µ„Ð 'x^ÃáÜ”}™´pM8œ÷7y>«°Ö]ž†ViéBé1s¹³@Äc‰ S7„ã4i®_<¡QElß jJHÌÓ…5laÒ#!Gxv '¤ÏôÙ1—)Ì5Iûì°ÆØàu lqF®¥!›wÄu"F"Ò£dרYê‘ ‰Îˆ#¯Ì4fÊÃÂð!kŠm˜|¯ô"UQ¤D…°/ÇšûbWè”bUªÑ˜‚±âixƒ‰°p|„|ú©!E·øvº´Cijã(Žësà·l¢¸ñ†þ¯ápH4EA4e2™Ðl6%n*•¢Ýþ‡7òæý4ù†àüÒm–6ªì±¬Hõ }›5.ñ>Cbì³Ä›|ˆ <*ù·ù7¸É ¼/Yê¥4¸¨4Cz$8bžËâ©õUš¾Îæ;YþÝÞ£ êœ0ÇNUy½òëF8èÜçIzœá±Lú!K—$gÙ rÇ·8KV4±˜)6@Wék#"œe+ ªµÈpw1pxÆUÙ—Pß3Ö8dA¶¸h1ϱªZexÍ,A¬¥æßsœ0ŤOŒ-Î’¤K†&1oÀãÌiFZ8@²À%¤/\ÃcŸ%êä1•Ÿ³B‘QÎð‹I ñ¦½°´Ø¬óLŸ.©HÒ -ÒT(ÒWp†<,0lj¢CEø/){ŒÜ±vXc™=EÐK3$ʈ+ì¾Þi9¤I“)ÛböYâ2wƒðŒ.É@laÄ«ähpžMº¤xÊ;¬±ÀA@pjƤBy±Ã*¹Ï:Ï‚–Ý«ì Ç sì±Lˆ í½ãö³¬üˆgè?%W»Ý&“‘ªX,Æp8d0ëÈtúƒŽ[ï›hÑ0—×rhÉEº$i’¥N_hèl‰Ó4õ,G”åZÏP¢BèÂI]E&'¹fÜ¢B‰†ÈK¤¨&ÕÑq«Ï'>ð7ôþþa‚ÕøkòðX¥@*6¤¥eÙgðÐeºm˜4æž=ú"Î;Ö JTU‹[:*¾êU¥ì c/BÃÌpÈbЪwMVIÓV(\®HÑ  æMr’u‘‚×(CÆ„iiæCÇA*šŽÃ@eT)0¡ Ð&#Zh¸´ÈR¤ÊÈ’.5¶yÀEбjpx–Ùñ ³bLLªdJK]Y’ñnj6Ïr öX–ñØb‘^<†Ë mÖ9ÅF"Œ‹Ð4©Ë™b‘méˆLÉEê´È2QÞ´h3 Æ&g¥{@ÈÃNTí#‡,Hë›ÈÓ×âôWâ´Iá+‡S‹ M!Geñ4*E‰Ìµ lôG÷ÐjUî=ÿ²ú?¾‰½^Ïó¨Õj¤ÓiÖ××yë­·ØÞÞæ#ùÈ÷Éë=ú«g¸Ç º\â~ÐÖ”•™¬Hq–&Y ^ä=ž±Dl^àG”ù¿ø%*”˜ãoIÑfŸeåO<æ,¸É Yemh 5‡¿}ó‰IR¡Ä 䕯µ€‹Áó˜ÓÔUjÒÿqÑã6Wƒ¥S<á׃YWŽ·¹Jž:I:œeKfÎãIzDòwüÂÄp†-¶YÇS–­E¦Ì QJtikñ”0hÌyg“ªQà^’Š¢ ©PÂEcD˜e}—Ú8ÇaxaŠÔ8¤Ì«T)’¦M zÐp)P§J‘;\ lzÌÜó/RrÓ/P§DE¥iAÆð‘‚zÌÞÛN£á‘§N™#*””ùFfS‡³Å•™\aB˜ûüƒ•fÑ9ä@,Ð{ì±Ä@õJT”[A>H3XÏ›|ˆæp08Ë=e2a÷q,#.±Ï&çðT(Q &7¹k¨ÎH<Ã3W‰és&÷ª?â ý§äZYYa{{›k×®Ñn·I¥R”J%*• ¡P迲å-¼¶Š™3e@ƒ<'”°°é“À‚~)Æå`Ó~Ÿ+e¦VïÂTn‡]V©‘g@œ5:¤è'F‚°sùô>o>½È7o.|©ËcNã#XOîª-£,è÷¹(“Âô6E+Q¡­PÐ3JK¹cf30Ž‰Í q“C¶YS _0$&½Ì–I]˳ËJ`ùše°ßÕ.s]ÜÂÆ@WBÞ™"}™=º$¿þÌQ“¢€€r7Kc‚Å€(û,±È}âÄésŠ=jØaU1Ó¥yÎC°Â.>‚"5¦È WÙÌfO¡h-Ú¤(P£HUt$0¦AV‘íDà+Ÿ‰%÷=‹ø€¦\(®º—u zÖ,P4 -ñ˜’¤£â­å(SZŒÝ îzH”4mÎñP9d.ûÌqä«®, •­ãJÝSŽ(3ÁRñ²2c |1MM¥àÿW5Cøýßÿ}¾úÕ¯òèÑ#~û·›_ù•_á7~ã7p‡Ï|æ3œ:u ß÷ùÍßüMt]çúõëÁמõqSꡜ2Ï1Âõqt]ùažcþ‚KA Òçýÿ‹öØÊöt[Üá [œ•PþÖ¹­rޏÀ}Nyϸ«½@‰ŠT,¯ðÝÿ™íÿâqúç#üOúŸI[ƒo`‰)cÂähð"ï¡áq‡ËtH“t{\÷ùž.7Ð«Üæ5û ¶Ì³ÔÔ<ûgùz`©À÷!==ÉM®“£Éª¿CDŒxŠÁ:çÎ1$ÂUn³Ã*w•Ú÷EÞcžãà5Ss×™bQöŽøo“ÐzŠ8•`—U\tηè™I6ͳÅfÞ?¡)²Ä¼â¬¿E_üÃévƒ' <ã²ÌW¸Ãm®2$Œ8TÀ‡Õ¿ÁU¥DîqnºEJïÖ[¼Å«8*ïÞW â·¸NɯPEîs‘8ä:7yk¨‘ñZ¬··ÙŽ-£’"²ST¡È€¯ò¢ xƒ×˜b²Á3Îó0ódi’£þ£Ÿ¡ÿ„¶ÜïÞ½ËýÑñÝï~—?øƒ?àÓŸþ4Ÿýìgùö·¿ÍÆÆsss|úÓŸæsŸûÀ´ÛåBä°è°àq_»À"lrŽ9N(P%?i1=V4Gƒ" Yï‘ 7xÈyÊQ'OžFà`Ðq™ÐfmN(ábªM¸’¸ƒqÊá`?ÅþwéWÛ,²Ï…“-gW¹ª¸G”9a—ä¨Çunq™“•!퀙¡…­l«³`™-ÎRæˆÇœ¦è׸ƻdiR¢@–&›œ#ét¸¬ßÅ1uŠvC³Œò憮 î°_”Âã{©°ÈuäØg‘St’ô˜ç˜Êî1çwžÐÌÞÄ›,tN˜d,|CЧ٠¯pµù>2ëäÚmò£&tŒõÈ3Ú†¤ßržrh”9³÷-âÑMÇ©ë9®õîà MâB/N™«T±âS†ÄpM½èÉqŒÑ$<°yÙ 0¬ãÇ'F Ëžv§,cÌOÙŽ¬0!ŠT){G2mÑ”Û'Ü+ž'ÊHZJí 3J[‰ö.ðƒ‰æ‘~š)~Ùû?˜haöT†ù {Ä'Ä„´Û!äMˆÙC4Íe%¼Kl<ÆÕ5ÖÍg¬ÖY!Žcsltv¨G34#i’j×lýP¡æ3Ÿá3ŸùLðñ¥K—øå_þåø;_úÒ—~è×>§8fž8\4qšœÞ `2$®$ÿ¬pG»´A nqæñÐè’¤žÌ³ÉÆ þÿ„SŒ´(m2„‘¨#Ê”Öz¸Ñ Go yûµ—‰k¢BV·3fóCÎ غŸgÇX!N²¥³ÍwÍÔüV&0ƒ.ƒeHóŽþ29OOµƒÅ‚Š1ue›YK³ÇRÑ9fž-í QS¶ŒŠT4òD:Ô#ì°J‹4{sóÔE^-F!Õ2Ÿ Z×M?ËAbv8É&OÙ KRzC"_OC©Ðg•LŒ.:]‘䩨`N;¡FAU Rx'úurŒ Q£@Œ5QìDiç‘ã$9ˆù*”¸Ç%I)‹5 7UàSU /ß9îE.Ð#Á.+ÉIà³Ï’ªH¤¿õ}q‰¡B,NQ¡Äm®rÈ‚¤okÍHF†êP¤J‘\PÙÓ}N˜g›5Bʃ*ðØg‘0cº$Ek’uÎ=ï Ýøé¬È/_¾Ì—¿üåøÜ?þø•W^á•W^ù¡_o1%)ºL•ÙWkÙLñÇŠ“žÂÁ$Gƒ8JZ•¤IöH(0ŠƒŽÇ&ç(#7‡"ÆDØâ¬T¤k:%¯Â}.YÒÙ³.Òþ®ÏâÐz.­E‹t Û˜…5Œ‘dD˜ˆÂ·šL{V‚^P±/³§r·™ß.F?ÀŸ…‡˜ØŒE„¸'y †æÐ'0êÝÀ KeÑ«’¦ˆI~KL•î%Äó„Ôë¥ jøš‡a»¤ŒƒP”Í#rFܤ…çAGK’£A•" !“ï¢î˜´ÖÂÑ4L-‰¥MHŠ>ñ‘ÔÜ„ô †fc„ ZRZyE˜?Â0<¡“ò{ô…ŒSNˆBó™·+[9"††Gš6-EÆk1Ðbô:¦²ºM±šOŠ r Ð%Å˺.;M2 µ¨‚ÊD•v†`t:"šØ&§5I‰>C;ŒN‘ºBfÕGB#\CÃב؀„!\„²ë΂e¤-Î&Oƒˆ>$î÷‰<ï`üh׌Ëòs‹ë˜$yoÓ!ÅNáóTµJÆ¼Ï ´IsšGÄž¾7y•uN0¾Ï×Äë,rÈO™ú&Ýb’7y5h18¤›Éü_ÖxMÿ6NÙà{\â/ÿþ/l3úãÀ:Åâ&7T‹é ¨ ÃÀamúj¦ò>A”!‹ úÅY4Õ"?ažïð*@`k‘¡AŽWx ‹ w¹Â>K,¡I–Û\唷Ͷ¾´©†Ä8a. =µÈr[\ÅC㛪mWZ †°G»s‹ôŒ. zÜç"9œc“žJœë¨9P<]’XL¹ÁMùZEާlPôªXÚ‹)§xL‹,_ãu5vxJ5 tI*¨lY=æ4%*ÌQá1§xÆ:1¿ODH¥ûgƒ$¤!zš¶ÁS*”8fŽ8αÉCÎ!ðÙ«Ô(°ÏR¼é©¼gùðN)Rå §‰ÑçeÞ¡J‰¹«F FTEd5Q÷µNžK¼O’RJž:¥H% ê’Ý’#h%e1°Ë »áeŽ(3Åd‰•²è›:Æ6 ¦i“=RÏßr·þ•oè§yL\¥$Ù˜œá1ssÀqæ8VÙ·>Mr¨ŸRºÇD„)&ʈÓ<Ƈœ]xD–¦<(ã×l¦–¦Kž:ë<%Âo^0õ®Ð¾9&üòˆ‚¨)«P “4-ÖÅ6F2Yˆƒ€VÜßCÊ+•üÖfË#ÅŽÂ&èab³Ê]¤WÔG`(;Ýú`›¹t…#2´pÐ9`‰¤zýr‘YšA…Ð'Î@ù5³¢ÉÜ´ÂÔ°”ýK`bS ÆY¶‚‡²MšIѦD•6©€ˆäQ_!6x¤éÐG2® T)sDŽ:[œÅVÞS<¦¯rœKTcÊ¡XPc\ű—Mb¡áe â”9¤E†(CRN‡”ÖÅÕ$ ^ú?5Eç“¡ªÊùQ•J8è<ȨGéZð‚t¤C™cb ±Õ™Sœì:¤‚Ô¤‰ò1GRâ„ÏÛ>JäòSØrÿo½>òøM<+…p}V#ûŒBap½PÓµIתœ™{LÑ®r+sà/°1z ¦ Ø¯ósþ¡§%Iš]ÂÚ˜¶{Ÿ¡#¥µDbè¾GjÚ¡:At}Jõ ­å,—Íûœ3ñÊÉwYÔ¹;X¡ùÖ}ŸI(„'4tÃcޭЮöo£'\ÆVˆÈ³1ãT˜Ó¡mœ¸n¸,¹Gø=á8ôŒ±ð€ž'&†,·öÙÏw9£=Aw<´ºÇPD'Â\lIùÅÊßà¡æ£éšáq¾»‰?Ö(™uÒÑfÔ÷!¤M†á:ÂMlۤح¢G\’~—©káNMbúˆ¨1Á!„˜j„u›um„5$ÙrΌհ—œß&m¡ ^(AlÐG7÷Iû„p™Ð'cu‰t§¾«YlDw0}ÛйXî+Þ}¼±FÜ1[â5ÃM'3éb¸}-NhâRð›¡ãheªØžÉPD ér^ƒphJy|Œ{,Šún ]ȘjÝwП’¨#tÝuˆôe礮0Ç$*[H$¸ïËÙxÂí¡{’ô·hžÐñR$±, ·Æ„ ‡¨1a‹°*ö ¹R?t#L‹9½…çk„£#ô¡ÇÅîñóÙÖôÿTè+ìÐ&M‡”¤9y-ÂþCw±}“¤è²Ìžd 3¦Oœ—y‡MÎ’£œv[Jœà£a8ù!_…#¸,pÈ>K„+›“lå |„ðy}ñMºšÎö»Q²×¦,‰=æýbb@•bà!?ËVa™ã„vXe‡C¤¥!ë7I‹#"ÔÉ“¥É{<æ %j‰0¦H•:ù€Ò´Ìžâ KözÖo¢·=VÒ»êe¹šñžãôùàømzf‚§úºMøï~Cæ­’>¹h }â\P!cÂL±8Çf`a›ªƒ#¦qˆ)ö3ª*ósèºKÂï‘’ÇuļâËÓþ‹Üy¯ANkJ޶7¤¨U 1æˆLÕ阵ïÊ‹.ï›TÊÊÃG=°¹-±‡ÖÆ»L “iXzÏ ~ [HýÁl.Ù#Á*»4È‘¤ÊâeHƒl”3ïÓU‡$]åë˳IimR*"R ^,&¤é|Ÿ@'BÉ«<…ú·Íù_rmÍ&•Za¹¸BãØŸ§¥§ y†~„A>Ædjrl•k!úɺç2ˆGèk1>u-+4"IÊïªîRBf!8.}3Î8bÍOÑÈep„IWOP3óL4“ЊE¦1å^e™âK>šçã:-?ƒŽ#‘ÇF‹Ãè<ñÓ}0àИÇ1 IWÓ˜³]zzŒ‘"î÷Ù×GF´")„–7ň9„Ý1Û¡òñ:óâ˜f:MÒïâh&=! p=Éú`›iÊ *J˜Æ+6%äM8±æñ}èè ÏA‹8 õ†+1³Ù~ ,°Ä”¥á>ýXœ”Ö¡­¥HF:äýÃP„°“·ë¤Œ6=#ÁHãérÃêšItÍ!¤1¬)]+Áiã¡yDûcž¦×(ŽU§OLq-¦™Å‰ë„QœT™X&QoÈH3 ‡Û# Ý&Ùk܈Æ@D˜1Jã h`ûqg€è1azÇÃ0mÐ||×'ìŒ0„+Ó á{”ŒlË¢c%1Í ÂõÐ5ß÷ yBþ˜¸ÛWôQßð)úbô ycòƒ&ãDˆa8‚çjÔÍ}#†æxD½!}ˆ©Ûxè˜b‚ðÁvLHØt#ÏÙÕ3ÿ‰5ÃÿW°¡×)à)`þ€( ­ËHaùº$3 Øâbô‰³é™2ÔRh=Ô&âè²õQð›]–Ùe5ðXªN–së8.”!íwxpkŽ¥ÉÀ~å 3"Ê! äh ”¥âˆy>i:´ÈLsG5z$·Xªf{$ FŒ¾Lò U'(&¢æÒzÐÊ„£LÔ,\2êÃZßÁ n¨R☲ 9„"³èFG‘ܲª’xê猴(ƒP”‘‘á`+”âL¼Ø%¥_b*¾1†+¤¸±E]xÔÈeÈÀ¢ 7 'Í‚féYaª8"ä$;D¨0G˜p–êÕ#ÊL…D0vaköµ3´äLcÑ$CMQã4<¦š¥lHÅÀ“ë¡Ñ©K{ÂM²”9dL„ˆ J!yÍUQxþ ýŸz¢þ­Bÿá·%áÑŠ¥ð…Ïcqš¨?äXÌ˹©ç“÷[ì„VÐBÛ¬P¡HÇLR¤Ê€(G”úQ,1%Â0è¯õ‰3F¢…Oó/ÛæMÞˆ~ˆˆ?¢ ªtž&d@Èi—;ñ ÿÛ£ëä/k¤D›%$–yÞaÅß%ª x3þ*I¿GBt‚Ô¿8}n›WÈ…›27Bø¾ƒ+tV‘›Ü@6¼ëL¡{.ÛÚ!gJˆ1^D°Å™ zÕÄæTî)o¦_¡ne™ú!„/c“3~‹}. ÉÒ IgˆEÁ«qÞܤ®å‰Šh–Š(’õ›Ä´m=ÅžµÈ^&êiy)v´UJZER5Eˆžž ­§xYEÃã~’¨°g.á õô6Ö"¹xQ a3ò£ø†ÄÀ¶È EéFÏy„˜rzž‡ý*7E!Èø<áTè°¢D)‹åcÚzš¯¾s…¥—ÂŒ©ø%ÅC¢´ý4óÞ ‡ú‚RÇîcºGú<=’´Eš—ýw8e…(Lóoc‰)»¬(ôŸC†÷xAŽ<´hs_\¤K’Yàˆéœ<´ÈpD™˜j? _ÐIlÆØS‹©añ®v-X$–ØW?¾ˆ“4IN»T­"}b,pHÇÌÓ#Ái“ Ç6k˜Øx ª²Ã*]¾‹¯ûì§Ø‹Qæ)˜Ø\uï²¥Ÿf¨„9óÞ -Æm®>Q#AMÎRy|4.ð€cÊ)+ÎUn›¬‹Î »|ž²Á˜°²öšäØc™5¶)»Gie†ºL:Úf “<4Ž™£F‘8=º$ù?Äf®²ÃKr$á7‰;µù{T(Q¤Ê %‰3°È5Þ%Æ€Vi’a‘Ã@€×@b=WE÷ù[îÿ6Cÿ]C"hZ(8Èv…<,Ë4<Ÿ‘V‹¼¤iÕÈ«€# @ ¹‰; ˆ"3ɦv–Ñ=KPœb("$èÔJ€a8B~Ùf õI IDATr˜¢}§Ž5MACúDä…œ­¸BS‘%á ?ÜÀe,ÂAÂ`KddÞ„ãÐ3d”²‹.󿵄T‰U­|9¢ ‰Ó§£%Ñ4©²……-äúvÄ<}UTÌFf>]E <ÔȆšJ€ç6ÆŒÓQ!&bL´PÓjë²£7ЉÐ1å¬_×\b ÈÑ4JKŽÓ„)‹MϨµ_ŠÑÆ„¤pÖY1}Ê s ˆÒ%ÜÉÓ=âL1‰2”‡n#¡bq£*%SZÞDAÀTA¯l¡ÓÓôH(èV„ˆáFô@…ncâh2§£bd#b@¥l º¤ˆˆ¡LoÔ3´bi¦è88º„gµÈ0ÒÃ$•ލI ÿ;d¬Ï\ÑŸ¼zבŽY¥3ðâ´ é†T‹V(¡E–¦T¨‹²Šõói)!Cˆ)ë<ã€%´¢K]AWuUM; ªhcžR@Çéc1•™Çhä©q–ÇÍ-ÐñÓ<~3Jü•óJ-Ù–ÕŸHâhzÐ2Ÿ¢¦åñ¤¢I–gÿ7{ïlÙyžé=ÿŠ;ç}öÉùt@4r"Ši*kFÖŒJ3*SV•%Ï•xkëB7ºT•k„ò”U’UÅ›œ)—5I$ ¡Fçî“ó9;ç´öZËÿ¿)›£(B¦MBìpöÙkýëûÞ÷yÄ2&IRõ)Lòªƒ¢G†*=ÂL(*ž'4NDAI$¸¡'ÂGvC£´¨ %jø,Ñ%¡)]qšA*}ˆ¥\ÎiÜŽÎ gõe·;®<¾ºÌ±GU‰$¤«× Oˆ)E[“£k!|FèôµCEbsÔ7qCK¥Kž2;,¢kßU»†èèÚ-ªdJFÈ÷²G(0¶3’çl§¥ØÓ!eyÛcNN? ›¾°Ÿ öX D?èñ·ÕûÛT_ÏyÕ›­e›¥@™Ù!†!™FMS§JžŒLqd*ÆmðÉQ Æô?I¹ü¯>aLU íUŸá$Cl¢¢Ã₉^‡(:#$ùÏU²  —2ù@‹;æs7I(ðŒÔG®AJ9¿ÛÄ)’ÇE—@OH£Ú¼EX@ñCÁÔ£1>#×ÄŽ"&JÐ’¼9v‰7‰±d t› ’tô( Z D%Uœ&M?IW—ŒóñᣧôÂqšôü1¯EÃH`*t° ¾©)Þ¸2®¹ºèÄh1Í%ò„蓦Jƒ¤BcËUgگѱ /Ô")=D`œ›á0øBôÉS’¡àÑ.U#M–*‚Ñðè«ZŒ‹!!%æ²£L‰|@Ú”¿¯¦tU0TÚã‘Bx7ˆ~±s<í4‘¤Ž© žÕÔ™æˆ8-ZÄþ‰rœÅk¦%ú;‚M‘Zy¦h0íSÖ²8X¤©Ñ$Ð*¿—î9ž‰{ê@åÿ ã·ò]û8>œ§º” œwï1É1u-IWD˜à”¨˜Í¦Ÿd©¿Ëç.I¿Î!ÓÄTêØGã.ÈT©¿M– Ýp„m–ÈQ%E]¦5É“¦®$õš°È6óì¡K‘‚Ü¿ y=;¹Oz~ÄÃ÷¾Ã"»$h²Ëa·‹ëʤ{•4gX§@Q32¤y;¶0Ë!zÜWˆÐ%ëWp0)‘ç„É€z7ë8eRÔ•Éh¤š ò@5Í…èŠUÖIQW›|ŸINH{ÄQÔ'j®ÒaNsDŽ2-•–«'L0Ç)jX 8f*pÝkxø¦ ¢.&²Î’!AƒEvTXÓBà“¦Æûô•o=A“ 5<¤<âJ¹ÿ]?~2rÿ¾¯Šr\7‰?6® ±I˜&#¹ÖRáÍ8ÍÀý0É : %1¼³à¡Q%C »,ÊÄå.q‹Õ¹"SÉ*7oLª‡C Pìàûí*d×Ä8‹:œŒ0¤[Á“ð±¼¥«Óâˆ8r´£±SSà”&U/CƯ¥£d%²º¦OŒ¶"êåPÇ ‚¨Óêú¦GÂoRpJÌ{{¤©b(78È&h1ÃQPí+éKO²^ÀË2)jòfçu™ôOHÒ$E]ݘ¦9dJU3T˜ 4o¤Wb ¥ÌFÖ[ÛêF,×mòÏS&‡ƒDÏŽ«ÁšÒ¡Z8TÈa`MáÇ7ÚñDÄÅ(•mb$i°Ä6zd©0Í‘ÄEkH!Â|!>)êLsH‡ŽšɶA[­‘?²¡Ñü{\3þß~B/øE²^‡8m²T‰ûå—5Ô¥|²»¬ÝÆ1tå’EÅ蚊Š6!Q§n¼Q"Ùo0É ø>SýO'Ÿ1£èBjŸÃH~°|˜'Ø Yœ‹PCçô}X{ÜaFPb‚• õ¶ªâBŸ2ye¨³Ô{fpÄ´dmÇÅ`‡†ØØ 0ª¬“\¡Œ†ÆªíS ˜Ê)_%óTö¸ˆúšî3LPÆS¢–:ˆÖ?RÄý Å}ãßàöíÛüÎïüßüæ7¹víÑh”_ÿõ_ÿxnèËb“v†/ó«ø>-¾Éý÷¹z† ¿DXô±Ä?³~)`–ÿ‚ÿ—|[|JÉì[|š×8dš¿6~–Iε7¸ÈmÞäZÄXf“KÜâßò/ÉPÁÂáY®ò:/’ …MŸ%vðt„ì:®‹5²Tø©¹wøKñiþõÕ_áñçNø¬÷uÝàu^b€ÍYð´ÿ.ÿIüW ±˜ä„Oóßæ¥@2ó„ÿ>ÅWy޵`ûûŸR™5Öy‡g¨“bž=–Ù"êÉÀÎs´‘c¼<%2n}\ݤ­GùsñKêç*3Û¬JNu<ÉEq¿®óFf‰yÎq±Ä34HP ˆƒÁ:kªS¾N‡oó –’¾\á§ÑEe5{ÿ›Á—øJèŸó5ó³LsÈš»IIÏñ:/â¢S Èîð.O1ÂÀCãE^ç[|*ø<½€Q¢Ïc|@‡(·¸$+sô¨Š Î?¡K„G¸ËÙÎClsZ8Í6KA‡t™-ÉZ&ÇM.óWÙ`•ÿMü F¬±ÎS¼Ë=Î3À&F‹h³Ëðä¹;˜,³Í¾ÂÉVÈ2Ë}B¼Á'è"O‰)ŽÙc>NåÔXñ‡Z[ó¾û—ív›/}éKT«U@‚šþèþˆ7Þxƒ/ùË|ñ‹_ü±¹™[þ Ò~ OHK×&+ -Z'Ño¡Å=ºJÌ4Ǿd•ûGØ8ÄEèc¨h“cQR‚&êiw!F®‰ïjtŒ(qÚ|Y{5„Ü3 ˜5uˆêÆrÙ¿ÉãÃȘ5¬Ñ,ÚZ Ýó¨jiÃdÑÝ¡£EYí°:ÚdÃZ¦¯‡hc„Á2[ì1OjÔÀ35‘ÆbHÖ«â«­mö“s,;;8ºŽ¡ÔaÆž\Ç2ªü¨Ì´vÄ@³ Ñ'æ·YtvÑL¢˜| Nd(Ú78ë>dߘ Ö2‹ì0Àf‡E†˜LqL…Lppëa™-ZÄÕÚ`Ä,e6YQ`e2TåêÅ—6ͱ¶6J‡ew‹²ž£MŒ3¾| *‹,SœóÛøBÂÑtF«?M–ŸPÖÌ8r×ÿþÿy¹\æ+_ùJð÷ðÀŸþéŸòWõW|õ«_ýxnèÛb ÁT°»ðÐØÍ2Àb]¬jÊñFì˜)ö…¢Œ_r¬e¦+ÃW^Ž Y¢BŠN*ä¸ÎT\FÞ$:X8œø“¸BîL%¬`†[\"¢œÚ%òÌÍÖ90:Üüv–•—–%¡ˆdˆšEz„¬BÖžÒªÊIQgƒ5™&G•EšÈ—Áˆc¦êê=ùî2Ï@·ƒ1â8øQd‚ú -I-#J‘Cl:@‹>pÀ,6šæ M/A7&›cí¸OïªÍ¢…ƒƒÉËÁLRЦŸy þ)=VÜbI^Û-¥C• ·¹D]OÓ!¢5y'”´Ãà¦há¥LTaV&9¥À r÷š÷Kè¸ùÓ”E– Ü `$CLFê¥ÃS…»ÜÐÎqýõ ~þ¥CÅW–U‘¦òcûh”È1Í‘úµÛX¤é èE“œ +»QΫ`1`][UÀ“f*Ñ0ãJ?êÓˆ,’4H«Ý­<ÐôÕÞOã” E1ë3B'Vk£Y>NBš~ÆÀœ”_§+"TUMm‘”ÉQTØÕ,¼]tá⩺EÎ+3­±Á #ߤ)l±ÌŠ¿IƯrW{Dõè]2T‰¨¼‚Í€9öqÔÓÆøÉØU{Ð8-ÊGß!J‹8+la⻾˜/u„BȺ,æØ§âgƒ ›Œ=Édò,TÈI[’×åT+ÐU‡š8-ÒÔÈQf’f9¤Nš"úØ*á‡p4‹‘Z©Ì³õBJŸ;}äu÷FÎrX‡ër³ÃP~{óî»ïR¯×1M“V«Åññ1×®]ã÷~ï÷xÿý÷yã7xê©§~lnèßI=Ï#ñ}z1›#1M‰<}Cî$£~‡ÙÌw¬óDÌ.M!Ñ¢Ïó§é“þ)»Ú|@Cì¡M3&É‚²Ìq€î»<g±ð)ñ:÷£g9|C0̘<äŒt%¬9SyÚZ˜®¥oÈt|“Wî²{Šõeþ‡§¨‹$»æ<ûÌqlIvƒüœÈ„zUKã«@铉÷ø–ñ":.sÆj8)ÍU0ò.u]ŸºDpƒۈ¦Xv·8ÕóôD˜µGqÑØ2š$:9ƒ‹ ö±(ˆS,†<ùf‰¤º¤©a3äiê$)“ç³Ö×éiaºDIªà‡<ŠÀ§B–yöØgŽaDÀ›$p:Oø×‰è=N¢yÞ2žcÊ:ÆfÀ¦X¡EŒ1i|w¿m-“¦Æ6‹Xú¼.%/xXI•l¡d°2ÑqiIÎ÷Ùcž]}qJäIj ªd0Ĉ#{šI"¢«Òò²bpÌ}ÂÌI¼¸­NÓyJ¤*íh”Žˆ².V «UpgÅ~’29îkgé¨~„!1ìxl|qZd¨ðAìqr~™w„ÏËuéý}®Û¸u ¾*NÆk¯½†¦i¸®K£Ñàää„?üßÿýßçµ×^ãêÕ«_mí²óÏtßãAl•º‘d—µƒÕIQ£A’Ïô_÷}òZ‰?ÿ„Ÿáo°p— ¼Åó\ä6¿Òø3–Ó[˜!&qãGLSFŽDžãª|sqØb…Ÿóþš¬_áŽqk<«Ì@.s“éÑ1oOKn·ßçeÿ\œ¸ÍMcÿãõgù­ÿ}¼ÃÓ\åy^äuVØ F‡¯ñ9æÙã EVØdŸ9r”øgü{ê¤$;Ý7ùÅÚ ‹áÙïð¹M– -bTÉ’mÔeú<ÏU"tbs‹‹d¨ò(R%ÃM.3ÂäùKL²F…,KlsÌÓ∮ÆŸâ[ô ñ6Ïò´û.?'þšu}÷yœûœãîScä1~Õý}=Ä5ñ,r¤Ú-¦’2<39:¥hæy•Ïô¼4x=,º;,ª€›løÞåã–ý-nŠË”Èó ÞTµ‹#f8Ç}Øå˜)Jäéå<÷‚ðPÎ+óOÝ¿àU맨¡H›U2üòèÏðtAS‹s'i)ôíË|ƒ\aÊ?ægºÿ'·¢x ÎòϳÄv ’½›8OŒ6¹Å,œ2Ág‡ß¤Ð-òô³\å9:Dùy¾JÔïðšø)N˜ä÷‰ÓR{Ä`‡þ}NÛ3òÀ–‚Ï¥R)fffxõÕW9::âÎ;8ŽC:&ŸÏs÷îÝ«'ô52"FÝM1Ò Â¢$Ô;~½éM·™ó¨‹;,²É «þ%‘S»U8PÖÄ2Yâ´éùa,_†Ý¢~‡ùÊ"k¸BcI)t—Ù’±‡mŠOe©’Åó%w¼KDÑÜ.ÿcú⎿ÀÿúÖOóÜó;Ôü4–r…T~Dúz¾ ÅDƒ2YbN‡sÆý@êR÷SŒ„l¡ÌvŽ8çßç;©húIz„ð„<ÜǼ6ýa˜²)o裈/ÀzP™“êgyÃj"FKnò]—°Öcb(Žö­Y ^‘ˆÞ%"úÏg[,1Ç>ž/Õ§kúCŽ˜FÚ ¥ìWÖz á 8ö¦œq60Œa§'W&â=ÂæØ˜¢«äS ?É2›ÌºGLéÇlh+„üYêîR´slËLøEÅ43ʉ©ŸbÊ=¡hLઠ_Î/SYEšl+–…¡Âv0RÓϦª¨Msˆ¡Òð +ü¯íq<Ks°Å”_#,úÒß1’ÆÆ¼^B÷]*"GQHéOʯSö˜~ý°?à%ïu,wȦ?zŠíû\3–¦ä߇Ý—ÿ,—Ë‘ÉdøÖ·¾Åþþ>>ÄóóD Úz’ëÜWøßůÑ#Ì¥ÌMž8»ÍÿríH?#ý¹Ÿó¿Æ}qŽ& fÙç·ø€ÇØSˆ‹Üâçø7ü÷ÄÕ7½>ÿsö¿ÃC¨zD‰H~±Ž+Ùì¶ÅÓì1<Ùš8¤h°|ªqôªzš¿¿ŒÍs”¹ÆFLFJ<æ½Ou˜âmëN™`ŽÞ1žâž¤Mœ ä }5\ôàiÿß›ÿŒU2’ëžL°Ã" ’¼cÚ8X|’ïp_;ÇFx•IæÙ#K…CføÌpÀ»¼Ïcl Yµ›áˆwxNÉQæ¸Í,¿ü ?- stiê ¶õ¥ ÿ™Ákµ<3Âߘ?ÎHíä[ŠoòyŠÜçØ‰-J }žà:8‹Å€$MÂí†.Ñ %W œò5û3Xö€;ê%ðùK~KÈ*P†*¬µ¼%î~ô'ô¿ç'jmmµµ5z½ñxœ—_~Ó4ù“?ù,Ëâ·~ë·~¬nè15 3 ‡*b´ÙbMí'ã£ClՂбrJm“ 4ŽDãfŠÜpÈ R¢&Õb€Õuð=ALëÐ I˜žÚÓ†0\ ©8Ί §H)LÓH` ‡Ç“¼¾üß¹³ÆìieÓñ°€&\úß#$êÙá ý¢&<õ{´hcX¾#Wj"Î6‹Äi“¦FÂk`h.ØjUéÉ*ëXfòݪš¦ªwUú„˜áUo“<%4×'å4p ƒä ¦Ç®5OÒk’Ó˼")·Î=ü·OJ«Ó#Â4G3Åüè€ÕãD+u‰zmªfšÕö6ƒˆAœ6%êvévùÒÅWÈf@Þ+S¢Y.QÑÁ÷«¥RÙ:øEÎ/ã Uo¡¹,ø{$¼&%rÁƒÁœØ§Dž=¥Ñ^`—iU©bŸôߣ(d.¨G˜IN‚ÀœÀ'N›°èÑ5dpú,Є«n#θi1j"ÍB¦‘àØœ$G‰ø¨Ã©™'¦Ú>2sѹi )|ÔâØß,£nè—.]âÒ¥KÔj5fffxñÅév»üñÿ1¡Pˆ/|á Ï }ˆM™[,Ó#Ì*Ì I2 Ñ ` ›,S H‹1Ñæ„IÊäˆÓd‘9z`‘]Æ,¹g’( >¶ÏËlÒ'Ì ‡|È£ œ 3¥˜Ü–¡ƒ kl¢ÏK”ɳÀ.k…u^u>Å7Ó<ûü6¶6à”%r 1ù_c“:D9`–ËÜÄ`Ä‹¤¨s…4I(Ñ‹£zÖ}˜ ‚960…³Möy³ÊCÜEÓ]â¢EYõGu…†-2!ƒ>"ILtˆvûì[¦r‰[œPàžÿiQ ê*÷8x€3TÙf‘"&9&M5D”ɱÏ.Ÿãk$hÊ‘vÐ…¯‘Âmâ>%?Ë]!IƒŽ 'ÊmýÏð6QºÊý0Ë”LC$qÑÙe,e"ôØcže$¨“dC[!#jÄ--Ž2)‹,[þ Ox×¹Ïy:F”+Ú‡„¼>j—qѨ|OU,cW©‰$C,JFŽ ƒ{ØÞ¾°ØeéÑ Y­JÕJ!\?øœN)Æ “ØÚ€®æ˜I¾\5Ö&â8Âbà‡ØÔVØcž°&§3u-ÅYó]"¼ÍÓLPb“|aze묪é^•Œ Áºa£Kƒ)tÜ Õbâ¡Ë.ó¤ƒ$äõ©h²r˜@ÿzaŒ°‡¥ Y¯R&KƒijtÌ[ ˆ6®â¥ý:;¡t\î1Ï/üžÐÿ®”{:æ7~ã7øüç?Ïç?ÿù·¶¶Á* ¹È-N™ÄfÖ °ÚWÙ ´„ð6}…C²Á J6’¤‰p|N) ©à2’èå#Tß\ P.p9¥€‹Ft<¢Ô©!Çu6²TU dÇùÙC:ƒ7Þ™"õì³ô ‹9S IDAT©F5ЯŽÅ,Rro3Ï.:5æ¹Èm<4ÖYc‹åàÔ¢Ï!Óô|¹3JÒÀf `/òÏì¢Sd‚ûâŽJpމVŸ UI(Ò ÞKq01…¡\ã Rd©rQܦFŠ&‰ M+k.,†¬±¡Nó8ÇEn«ò͈9öiP³°É =Bl²èO‡Xœ0)¹î”)+ZŒNp8ˆÑf’•¼©Š À äM(ªÀFc”p×q(fdë¸éa3„(4•"µÄ—Žƒ¬]3DIËS×åŽ5³,èoÆ9º9ļœSõÍ6T%uÜU¯Š 5Ò”U&gœÛh *2œj|I²¤@Z’¢IW¨§ï¸Ä*u‰‡Ì½ìfÐٶ飙RQŒ ºë ‹†æà 0¢Y!y Ž&Ÿ«¿÷ÐÑ%B‰iQ ¤}ÂÒ¹ ™ ûrÊöh‹0}lÁ›hx<ä ò(çݼÜ||²„‘]¿xƒuÎÈ/Q~Š×)NP'ÍKÞ·I{5Þ7çM^`‚ó삹ÑwŒó”˜`–.ù·8yºÎ~Þÿ*gVòðc¼õæ2?ûÂu.q‹<%ÞåIæÙ Â`ûÌ1Á)Ï®Ñ4dßqèÛ|¦ñ†ábE‡¼.^ä)Þå”ÇLö˜±˜c$MºDxƒO¦ÊÓ¼ì›L^ö¾Ð<6Y¥Oˆ§x—#¦XìíÐJEÉŠ /{ߤ«…Øe‘ £»\ôîðÐ\eS¬P#Å“¼ ]ë¤øåþŸS³’| =FËO”¨†2LqÌùþví9ÞOrÉ¿Ååá-¢V‡šu˜KÜÂV[»fyŒ87ºÏ{Æ“™àîÎà&qÎs—IN½dÇòo²%–¹ÇyRngýkä 93’5€à3Ão’¥JYËrÍx‡)ŽY`—MVXðvùéîânø<{ú,×x–U6ÈQ–èè+lÒs#$uIÒ{¬sƒL§Nn¢Ä-.“¦Æ ¼IÚ«ñ†ö \^àM œ²Á*}ÿ#ŽÏ~BŠûŒÜÛJÂ3 FÈã{œ¾ºLr¢.ä"h-Dé`]Y #t9d&€Pµˆ3áòˆ[´íàRM]iˆØ“ÍÙZá`¾Ãu9ñ'iê¯Ü#ÌêJ™íÝ,÷o„X¹"õ¼:•¡K‚&ƒ`ʦx œÊ‚›-»ÐyJŒõ.L: ¾ÔºÆà›q¥ÿ»\õµ“Y–Â÷±ÅC8 tøžFR4)‰™aEk‡ˆÖ%êvj ­äÆ„¤ßÀF@uAÚ¯¡{’1ax.šðð4)Àë&G—!\O§­ÅÈQüô®0ÐÔ"b\¿“à¡$súMÒ¢FŸ=Â*wd1 ƒ©HB Œ%AA9u0”adA‡˜’Lɇ§ñ„W*šRd©(w “!©AƒfÑÓe ×‚„¢ëu §Ež/P0×H“¤ñ=¹P[ûQg¹'hrhMÓ²âl±Ì2[8¡H!ð{Ûôy#ô¼‚Șà”uÖþ¸`_ŸåÍô³l³Ä•î-"t¹ÏùàMóÄ \¾EJ4ø–öI­)“꛿Eœ"ÔûJUzÄ4Çb*¨Ve©pS\æŒégüÞººÈþss¬°IRí¸ÓÈo®yö(2Áã>BòÆ…Æ{©ÇñÐRÚužPçcÒÔhÇ"”ÉI±‰®è¸ ±9f’iVؤEœ·´çU€,K‚fÐÍž·ŽÈ‹"ƒQˆKhêTÿÐX£IœC¦© 7 2Tp1x5$h>sbŸVH~m†X‡¦¨)åjS$x×~‚ S jssì+/ù*§F]˜guVs\š*{,°ÇMLqŒ/×y‚MVäÉZOñm^ä>çISåQïa“MnYé ª:tÃbȉ6ɱçÙa‘.,õ06¸Eœ.§á:ºO ·¹@J“"“!¬R'%o*¢÷±Üò’¯"4¢LPT²¦ŒB˰[5,Ÿˆ\5r>e’IŽé&Œ½ÈvÈÇ1Sä)O{aµê;d†$ –M“¤ªPÚœå>UÒTÉR ……F—Eõ9HMJ"Ï>³\âCt<’ `k}>ø`†KI$tWÅÆ‚ qUuœû¨ÃCã!k<í¿Ë‹±È Ø )2!«™Â¦¯IF}C­õºDˆÑæ˜)%e2ÈRe‚"%r¬±A• wÅyöX 'JøvYÄÑÍ`’±ÚæXL1À¦lÈõÄ>óªEŸ@g$¯ÛBVòXì3Ï„. ‹'É7¹Œ¡Kê zD8`VŠPhÒ&N›÷µsl±La\ttMv¹åÿ¦DI¬‰4÷8¯”Ï"€ÆÈÞk<#ñÀt¨ _}Ekd„4áÕa1$®8ª ±¸ÇùÀ¹Ï<bÕ ž«©‰a›5Òj¥lÒV9‰q‹b¨Œšµ –ùFîÿè7tI‚[`Ÿy…cÝáâà×l92­’áïóu>ˆC.«ÐÙ¸Ëü$ïQ'Éu§I’+[8åCÅfÀã\g=6XEgHXô)pÊ!30‡‹ÎY¨“«ëo²‚Å<%Eü™Sžì=Ùåmž¡I‚U683ó«ÿSÞºš üL–¥ýÞàl"tˆp‰[ Ôè9EÙ¿Áb´‰Ðå÷y•ÏÐ$βȦï`‡=æq°˜å€INHÐÄWIÎ5â`ñ7üL€ÌR¥F‹º‘tZ u‹Cc†=áŽ×sŽi&(2A‰µ?–¼×y‚:)VÙ`™­ÀqJûœ%LŸÏñuö˜ç˜)l,±ƒŽÇ×ø# ™6¥Ì “Üç"<Ï[ÜãM’ä(³È.¬r žÎWØ J—{œ§B–HSçç•|Ab)«"¡;l°ÊóDép™›$‡´c¦¸Âœ2É Uë ™¹¨“R{÷>ÓÃ#¶X ˆ]³P#Í5š¿Ä- Ž¡ÊVaºÅ„Ÿc >¢>õ?S[ûÉÈý¿üÊR!¦.ä#uî!¤ÐÙQ•"yEB|ï bªª£…¡xÝ&#†ØÄhKä*]¢tÈPÁC>Ašîˆ(m5¾’¦Î©B [­ZA2ØKql†øŽ ¦·YÔwøA˜ÒEGÌùRhrc@ìQ]†ï¥Kˆ(Q:€ Aƒ 5*d1p™â„¼S¦@‘{ÖyƉ+VÇŒwDÈ•½oM÷iòГ§ÇÉz—yö‰Ó$N›9’_'·NO—µ¶]Ê~žØ¨CÈè-f9P‡û“àç,(râ ‡ê&™#E¨×A×dUwŠc2Ã:1½‰«étED - Äøº8^K °˜æˆ¡oÓa,UŸk¡¿)ŽÒŸ‹®Ì‘2/1žÚµˆ1fÚû@Þ+ÓÕÂê°%µÚžªô-ãI£|Oäµ;J‡Yö‰ ;ø¦À#…©–¤pU 8M ª²,Y+#²*¼û­­ýHÝÐSÔ1Õ7y„®ÜUx0éÓÑ@Ú!Ùà-:jï£MÓàTœ   \l[^¨-†LqÌ%f¼#Ö´u…ù“]ï¡Â5š IÐ J—¤ß #ä©kˆ…PÀÄñÞ#¤hFY* U:O‰ÅÉSZ£(ÕwŠOç ›¾ì˜zrZ%è/Fý.†pÉQVxÖ¾¤Dý{ÆnCtá2Írøt™@RŸÆ;gMí¢ Àêøì'Oè?ð+Jƒ!&-ªý"”n7B¨Óg·‚°©«4ÀR$b+&{28X÷+TªžÒGêr× ‰î¡áÓRÂCf(ªj¸ÝÇö”D>H·5½‡ö4“â„]ö˜SU\Ô÷ð™¹îxsÜ»9`ér„ÖÃï™Þõ©¡IŠ›eYl+Ú]”ùÀ!qjL3š”˜P0ùç×qIÒdˆMŠ#Lª‹/ÈÒ#»Ê.çáê’åQ‰Q bdh‰8 죥XôÆHÓv \aÒ',?‡šäÑgÜ–> aÅÊh×&Ê+¥Žºsì£ãfO’&b6`øzDNÿ¸2–S…ècàS7ù´-ù$C¤ÀçD+8ny/QUøVƒ„ú~“Y›>¦ZÇØ4-9QðÕ×@þú&>šz=b0K™45t\Ì û÷|ý—À2? 7ô Y–œc^ô¿Cß²9`†uk•¸h¡ã¢Ï}ÿ¿<øsú!©Éü:/ó×8˶YäçøoðÜàmîÙgQ:i.q‹.6Ya¨™<ÎûTÈÒ#Ì ®ðIÞ GY†PÈ0É) Ñ”õÿˆ#1­Æ{.Ÿà@ÓyŸs<Å»ô±©“æ>gy·xbö}޵óÞãÌ>9""äÓÁ}MRÝ^½…a y Îaû~®ýñ£;b‘»â>Éët/ú!gxap\¨Ì‹¼®v`-îsNJ8¤IRUÝ’<ÃÛhxÁˆm™-†˜LôŠ4FÔáeÿ¸Bç&—yÒ¹Î<{|h^æø<ÃÛ4ÔóL›¿äÿ‚»âøñqú';ôÐkl ›cŸ=æIRç˜iª~šÑPWãt›~÷Øe:)âŠmž@¶,u •¡ÉâÂ˱½ÅßÑ©˜:" øœå&ë¬Ò3ÂôÝ0 £©p ]ªd°é«OR]®,L2«öñºD8³pÂqî~˜ãì£uú"$©ˆ^S7JÙ³OÊé¨Òa% ’µ6Y‹2©ù)ÚÄñ„à€YjdHÒ O8àÄWÕ?KÐà„É@1ûWØd•9öqÑÙd9ø}ŽoÞ÷9G‰¼’Ô¤8UÍ‚aN˜T;kù¹ôÕ!kœð4‡œ¡E‚ UÕ$r9`Ž6Y*ô3Ã÷9Gƒ$¬¥Cœ7¸Âƒi ÕnðÕCV›7x”*º„IQ爙àÉ;¤E}BÔIÓW&ÅS¯ÀH31cH[ÆäÊcÄ:g˜—ÅŠ‚òHnl5 ‘DÏ»ÈÌU¶2Æ3M›¨²a T!À)™îýGá†>ĤbÄp})IQ§¤çYg(’æ“›öEŠt”¢Á>s„èsÄ azì3GÞ,±Á*—º÷lk›3¡Ë3}ˆÅm.2Í"Œ0Øf OŽÛÅ€b´8dVõ–åZ‘8 Rx`†g]¸JÞÒf—††Í&ËDéJg3a0‹¬ vˆ2-ލ%E]uÞ5¥!¬Sd"HŸŽ/Öûêƒnà „ÏβŒZ7Èà)vÌZ$‚ÝÚ:kJ–Ó&I“ªH³n­¹ ‡MV&wO¿Í˸B§AÁ6KÓN°Ímb0KƒqÚAËS{Ó]lñ“”û?ÖKb–],¥¶ÒTï‰-¸yÑ·`ªpX0 uQ [ı”¹k|Sª’ ¬`CUÃr‡DQ:´Hô´=°}††©.ë>uÕÌébäË`˜çiDõv B§¯ÇUªÂBbç=›ù§¤ÆX.=5%œæ(HÕ÷ Ñ%˜Gض”7ÕI«‰£EØðZtÌ(9¥ŽÓ þýö$³&r%1 ËËl)D›¥ /wäq¢¢M’* ÊÀ þ\qZOa<át0Yd‡.a–Ä6'L"+Áƒ45"tÈSVO×Z°ßHÇÎ @V[ Zc\™$É©ƒA†*# 5g ©ŸS žÀ}`AÛ¥¥jÊÒ¨X§M<ØŸûˆ FR‡Ã:1Úhø(Ò AŸ0yJ$hÑ$ÎEÂÊiÓG¨{¥¤c²ÊöGîÿ_xBOТ&æx(֘⇴W£¦¥HТF’:;b‘*t\–Øæ—ûÑYà¡qW{„-–¹ ¥Âm.µ5®ó$1Ú˜8AͪF yöøÕå1`‰mê¤Ùb‰0}VYç¸ÊsDé0A‘‡ëâÉÀˆô‰É|Mÿ$ÛoY4Ÿ¿ÄËâUX\O¢.Ÿéð@?Œi¦9b‹eŠL ãr;辫N¤ZÄIÐ K 6± t¥Ã7ù´ºÁw™g]d×±¥'˜á¶ážyžQVÙ 'B|Àãì2Ï*›d¨±É }Bêã+ h&¢ä)24¥ªK”;â9Ê|Îÿ=ˆªºgâp \C,¦8–:XÇ‰Ó à Š »š¢B–.ÙQÖºÅ`Ÿ¡Æž˜(tóƒ=¶ôe°àDLÒ IKÕÛN˜¤I‚&y’wéáñ´ºÈ9Çîqލ—§;uºÉm£¤XU2ìê l±Ì;$h±ÉJ àHÒÕBÂRÿ;&:üdäþ±¿Bôé¨ÚaQQÇãraùŠøÕä˜I5’ÈuœâQŒŸ {„p°HÐÄTï«ô’{4Tè3.Út «:“‹ƒ…†ÏÇ4I»5îè_HÏAHôéŠm-¦æ&QÚd2¾AŠm,g+l“¼ÿv˜'ž9&îµiéñà:=À¢­°§CÍ¢¬å‚ƒ¿twË1sTkÑ1Hð“|PYRÞñ¬Àþ許sj¤9aŠŽÚ”˜à™` >ÄÆS_ß‘º&Œ§U×Ó𔿢øÐ]tªd¨“"B¹àëÞAаÆ×MVÈ®=‚éà`0å2ÔÛÆ­ƒñ ÕGã€9,†3‰CŸPP;»ÅeUKlÓ AGá´„T8îÆŠd¯GœRP쀤’¾Hk_™œ 7†i‘ J†àúÝ!BB5*äJ±…ýQïÀ&?úµµ#¦è1\4{„i²í\&§dö­`¯[#|UIKi4å«>f’ú0I“Y*¸è4Hq‹KjÏ*‡OlVÙP¨R©ÌËSRºBÓQ&¼™rY¹…÷‚ÑÜ›Œ¨ªM“ œRϧ¸)Ö¸ùí(ÉO=¥ªs1f8d™-v™g=â4Ù`U‘žªêVªö‚Tì¬ †´èC]"1m v‚ÓÑ"އ†À§MLÞøEŒAϦÏ”:ILFGzü¡3ð]tÒÔX`—]¤w4†6d’•ìÔIqS\0’93d"8©Cô˜æX¹Ö%~WÃ#¢Þ‹ñMÇe›%,$[»IB}˜ÃÑkˆÉfh9èvî3§\çà«Ýù VñÑ‚ «ö’eòxh’ŒåHßúãCãˆiµcß`Ô×å»÷êÊëäù¿Ø{óK³³Ìów¾åîûûž{äZ[–Ë{1©j0Û `Ü’‘‡2¶…,ˆä²d$d°ÿ`Ʀ1tãÆP´ÁÙàªrÙ.—«*kÉ¥rÏȈŒõƽq÷ý~Ë™?ιŸ«hãÔ´[óI©JEeFÞøîýÎ9ïû>Ïï)³Í4·94Â(ÿ÷k¹ÿk…þ/Õ6'Ðl€²¿ŽO]¡>£NŠÐ›ïH©ª,Õ†é%zº%ÝÑ<Õ€µ¹Ë]bÁ&¦²”©G'bQ3”~C=Gj“­;£¼ïQ4hG;iTB™©ˆv„ÔÜ|ÒbF¶¹ñbŠÃd;\Q«òU–» ŠÐq½IÍT¨”'«ùψÎuý;u¢ú€ãÒ#J“4¶¾/]bºï¦´J¾f˼ì]âDéÓ!0ëU¸’êvøŠí ï‹¥Ùæ] GÒµcxoàKŒZè*Ù.O”>=ÍâÙÏFöÄÝ⯻¬¿2Ð<Wû4D(úUCâÔ½³µëÀÒ;ÕÝ©mÂxmôZ”r?L›xPˆòÏC èeŸBpˆè¦I _k†´4j¶r¯*÷ÿ-÷'Ÿ|’_|×uùéŸþiNŸ>ͧ?ýiö÷÷9~ü8ï{ßûØÛÛãSŸú?û³?Ë}÷Ý÷†–{˜¹ÍÃÞKx†Å5ã(ct8 btùÐ’IÞÙÿnØâã~v˜æ«Œi@,÷ó Çý«x†=î ,²P˜<,Žr] ˜:Üæ+òš:m Ÿ"JÜÆº:AÉ&®°‚Ð öôÃa–MNqIƒ”e–Mµ¡øÐ69JŒIÌcKÜý¦ÅìÛJœä2YjDè“"Ì#î $Ý6ƒˆz0fØÆÂcƒ9u¢¦Ù!E#ÈF¶p™eSå“¡G”eVuíŸÅÅb‰5•ßßÇ·™d¨æ]×Èr̿΢XgSÌÒ#Ü@àóÃ3Þ%Ư‰ûT¦¯/HSgž ÒN“º­NÇä5¦Ý]Êö®–a.rWWL*gþ>.•5„¬±Ä<›Ê³JCßÓ-Æ)±Í e X8<À«ì2Å.S$iq‚×ÑPMdg0ÎÈ ê0'T®r’Qzä©Pd’Ey—#ÞMv¬ m̱ÌR4ISÇ4< ”´ÏÁ@²ä¯‘í5hÄÓt´E*C4@„´€§ŒÒÝîy†þ}X¡—Ëe>ó™Ïàº.Ùl–øÃ\½z•?û³?öm>ô¡133ßüÉŸpíÚ5&''ùЇ>„m[Þ› Í·¤ž%³OŸ";bJ Je“©Ö.‡’·‰ÐÓïëcÞ>n‰ˆßg?2¾¤dŽ#¥R(OÊ=¶Åm’ÌÉMB iKK ¹CÞ5øóæu+KΩ!mÁ<›,ß¡2ž%K éÔEš}1¦„™~•£Þ ÊÞhCJ0¤ž…«ÊìcË!–á⛂Eoƒ´_'é·Ê µ ªÉ åh”×bÇž¢e$Éûb²KIŒÓ3#Hß@JŒû"ÌØ?Ç–ûüÀðØc±¿¿ÏoüÆoðþ÷¿ß÷ù­ßú-~ý×·½ímüÑý?ó3?Ãøø8O<ñŸùÌg°,+8YK!¦À†öRô¬#‹@ÒZá=#J›„>‘úäÙg‡=ch(e«×5µU£Œ}b “¢6ªäµµÊÁ±Ë$6Cö5íHˆýw"APÂËZ©æ]»LbÈeb¢Ç]ôýä&úTëç=¦ôé‹.&%&(™< W(1N–Z€¬“¡å%jÑ4;:LÍkF¼ò>ög‚aø”)¤©fÑiƒ=1Î@Ïa)AC¤‚ÎB•·9„X8l3þ¡„@m¤©Ó÷#ZÀâu‹(]V9ÀŽ˜Æ2Ýà4¬,,{ô caQ#£ú¢I›ûÚS«rÄ÷©kB×Ò%Fƒ4Ç¹Š…Üã ö‚ø[Õºƒ5–Xw%jƒ¶šùëù{[ĉ˜]] Ú$‚xØ8m6¢sTÉSל2Z"ɲ½ÜŸ»Ì­%ƃD¨¶7Ýã†n|¶µW&“á£{(nµ IDATý(Ñh”'žx‚ .ðÙÏ~–O~ò“ܹs‡Ï}îsüÂ/üÏ=÷ŸùÌgøä'?ÉË/¿Ì#<ò†1]“†™B éŠX Hïë’ ¡ÜSYc‰»ÌsÈ0±l—1Ê4E’º‘ÁÄ%*Ô<ÓfÐ-*‰q¦ÙÁJ©\•9þÚþ ¢Ì4;,[«$i²Î"ûÑxå•W8zô(7nÜàÔ©SD£QfffØÝÝåêÕ«<ñÄ!¨×븮lèË»ßdËz ’ø ò—wòu"ô¸Âq ÝúZ‘Wù’ñ^ú„ñ°øqžäÏø_ÐË{ø{V9È_ñ“l2Ç7/rrár0;:ÁeÆ)ñ$?Îj‘>Ä-¾Æ»´ˆÅäWèaŸwX¦JŽ%Öx€W(1ÎyÎr›ƒü_bžM>Çÿ†…ÃAVùaÿïøªñ(U²·y÷þÎü·ì2Åó<>{Žçãüß/ý‡nòž#BŸ¿?JJ(áÅQ®³É,MÒ„ðÿ•‚¿‰ÇV8ÏC8ØÌ°MŒ79B†÷_£mÇù+ñ“t5ò·9σDé‘ 5ø7Õ§¹lŸà¹ÐÛi‘à]|›â0·8ˆä­û,O<ñù—I¿¯BÃáÛ¶ ‡Ã B¡B„øöJÕ«ôðÃUÒÂd"Càå4ô|ÂÀÇQzp„pìr© ” 3P€‰pŸ$Íkhë©Ù¼2ò ¦uúƒ¥?À6)$KË0° ÄèÑjÇ1öµ°ËÆn MÐfLì³æ&)•°¶ÔeËê±ÿ’‹qV¡sÚ£­lv –IÐfR±;.ÑL(}F47å UºÍ!¡Zg“mV›JL¶x@GØè~šú5+¢œB7ŽÞS¡&#…¢M5bëÔ:W'pU1õd,¤ý®&ž¾¯ <ä¶Û¸Z'Ñ£®õIZ:ÊWk"šq ˆV öxÕäï±Bÿ>µ­µZ-~ó7“÷¿ÿý,,,àyRJ\×Å4M¢Ñ(ƒÒe Âá7ßDÊ[„ºiK`&c:ÇJ1¢²‡Ó³9]%Ï>E¦ÈPgŠ]=7v‚9oŽ*IZ*½@Y%”鉪‹²¿e¢õ áqÄcâább{YYÃv =éëÎGÅ5ÖYÆ@£1”¡sÂZí,9Á| ¶˜eÌ(ó?}†ókGøÊk§xç}7ˆÓe%&)1%w¹ÆQB ƒu.M“²Y`ÆØf@Hñã©îœ8*´fôÜ3Íy*Á×2ÔÉQÅÄ%N7¥ù„ü!qÑÁ Ê3R×÷µ)+O‰`Š"v 5£BÔè‚[G—šoT»×ÉÒHÔ,5j¨QÆ8{Ú¿¯´CB* Os'|5r̳AL¿æ‘1„¬ëJí¯Äw#‹\TïJ—ÑÔ|¡ qÕR&B_§¯µÓÇÔL‹ï £ÆÕëg›$7IÖkLŽ  8¢Ye¬v—Ëõñ~3ôgŸ}–?þã?æ·û· œ={–?øƒ?àØ±c¬®®òó?ÿó<úè£üùŸÿ9³³³,--½ivæÄÊ¢¤Ä{ÄiÓ÷b*EŒ6m-Â8Áël2G–œáBÀ)ù³¨r¤ÖÇÕÕìÈV4Ã6g9À'¦Ûº”—e†ÂÖ |ƒ6Њ¥ùa¹Í8% ”éå07x„>XP¼Fä¨b¹ öxûÜ€ºmsù…<+oi0Ç&= ˜e;Ø sT‰É.]'®A)M2Ôôï•x.M’²IÜœ6/Ò ̬ïçU:ÄUR˜¥ΰÈ]ŠL°Ã4y*œåEJLÐÕHÌÖñôü½IŠCÜâ·(2‰é{LÕKtó1 ¦º]¢t‰bãpÀ¿CØPÐ[‡À(e¾R´«Ôµ.–þy·@dzµà-kÊ—Ã{ÚF³Ï"ëHÏ6šB©]æ@ùn”Ãašm¦ÙaŠ]ò²‚éI*V޶ö€Ž¬5I?!I›iv8Êu"3Æ8{¤hÒ"IŒ.ïæY-ÛS ]ËÜÁš÷°æó<`µÑ®šïºB—߇3ôN§Ã¯üʯðŽw¼ƒ•• à “Éð /pëÖ-Nœ8ÁéÓ§ùÝßý]nܸÁÓO?Í/ÿò/¿yC?s˜L²Ôa%}¢8ØêÈ& ¬¸«-†-"š…PÐÜî"“ÀmtÀ%… ]YŽQ6R ¤Á!s4* á`¶<Œ)WÇmúÚ%˜B ªFŇÐQ»B¿[j-š2Ié¢c ýÒÙ%s³ÌÖ+6“È`c±µTà«JR‡>…EK(Wú(ðh@‰¢~£:BÖÔp©³¿Ó4¨'+kD™"“Z¢«,¢Sì¶Ó‚ܧ'bÁÅ@bá?¯¯…¨£j?JŒl` —<• øië€&õçºúg‘Úrf¶`¬Ú&Ä€6ñ ]?I1(nfØá6‡‚˜m W“â, áj ùfÇFz#‹´òõ÷ˆÑ æÝ ]Ü™Ú)`㟅¬Pš¨‘ûÂÔö·96ð1Øc2´YëRK™…8ç›÷æC—ö?½fÈ{ÜпcúD¯×ãÔ©SüÍßü çÎãØ±cüÜÏýO=õ¿ú«¿J¡PàøÉd’ÝÝ]~í×~ Ãøö·z^4J»,R32Œ£ø¿u²¼Î Ò4Xæ!†œç¡à¦ú|“·±Ã4=Cn/&¹Æ1­’TŒçU>ªÄGö§%±FŸ(4h#8 l1Ã%NQ¦@ž ú™ä2'™ H˜5²|M¼‹º¶_ìˆi^äa:$Hè¹î-Ó"Éq®pròÙe¸ðâ8Ór›Y¶ø\çˆ @ ñ.‹“4cI=ïU¹á”gŸ‚j#2Îmû·ÌCÚX2`@˜U³êŽçNaQeÿùϳ³³ÃÇ>ö1VWWÉf³¼ÿýï'ò±}Œ§Ÿ~š|à8pàMߣ@Yë”zºEW#BÃ$mât±pÈQÓBOå¢ëŠl´HÔé+\ ”Ë!íbQÒâ._¥ñÅéy }"øûI·¨ \LòTXw 1䈼ÉózÊ2¤À>+\%M#pP4I!1Øfš%’n[Sk¼cî"µÉžzå$¶2ÛØ"Ó®ÓÔÀ–¦f'¤t7),A•=‚sùÚSž£J‚6iêÁf­Pºmʲ@‰5?‹Ù—ôü(ޝTå> ‘¡*ò[F­“=…Û¥¢³0TÈk›š²Ð6H³Í }W©ÞÛ2-ÂRÆ(ý¾Štu°Yb96Éky,‘áß·ˆÑc †„‚Î[ ª$⇹‰KB‡£L°§S­€·ˆ0`%ÖX ªï,5}Oö™a;°Cæ¨1ö"{Òb»d©±&–i“ BŸ¤li«\©½ô® rà#ôYâKþÚ=ã¢=óÿ{Íøÿ]¡?þøã<þøãoúÚC=ÄC=ôí¿hYüÔOýÔwü¦gýó\åqþŽf‰;óo0¿½ÍÚôÖÐ#n°8¼ËßEªíŸ<É—ÃÓ"I‚?Íâ9ÞÁWøAL\Þ]þòUV9ÀEYgf¸Ã¹Ðc䨥Ç[yžW¹?P'ÿO<œÞ”¿U%‚Ýï¾Êuq”‹æi„øÑáßb9_Œÿ'äë¬tnðÍÄ#™dBîñc­¿å©Ô£AäỽgyÁ|˜×¸eÎŽ¿Î–Ìòû/ÿ;îp—Ãî-Έ×xÉ:‹…Ëë®kß§LŽ©9ÌM¤cP³UèÌýk—è¤c<™/MRà6‡¸É3L³C\t8ÐY%áwx>óºDyœs”(p™€à4—è ‚Is“ãò »Lñ¬x·Ê*rëüØðK=I(£Z¡»L‘– ÞWùOümî1¾j<ÊeNõ®à†L®šÇø¬pIYäUq}"Déñ0/ò$?Ž@2Ïf0ç^gI«Ù/Ó&É.SØ ™fGyÉ9xôÏT/R SHìsƒ#Áâßòe hfƒ9Þé>ÇMëçxœ(=fØæ|u–ð1˜‘ÛÚ]å…ƒ•Ú}¼Æ–©0F‡8ïàÁ¢t‡%¹Àq,\ÆØgÉ_»§‡É‚aèûÏ—V(øèG?úß|}”Ù<ºŽ9‘#G¾ã÷èA üUò´HbHIÉÐÅ#»j’6ë,’¥F‰qÕBfH¤¸ÎQB è`“yÒ4‚èÒF:EÅÈÑ lºÊ––¦1•fלd‡i,ÝúW¨uCéOÊ¢@‚vPÝõuÄp™1ÐyÝCBZPªÒÉŠæd`kaz¦…!}^|m‰Ù#;DÌ>h;éÈm3Ã66e l1C‘)íùŽ£K…}M£ó0ÕxQGlŽ’*aWw€Ðº—³w)¹n_K3{&LVWÙ£d¯.QJw2b¶+¯y,øÿuƤ,Ã!öÉëê¾Áq®P`?°³…tc„~=î_Á6“‰ËBH„ðüëë¸XLÉ]•X'B ˆpP®¥ÇA÷6ûöXÅGkæHcãb‘ C“9¿ªó/z,±N‡ý›¤ þQ< Y²Ô—äš^gTæýkl0O4 ™¢H‹dââ¯S!Çv@‚l4¿¬j7“IK&IµÖ̳Þyš†R×O±K™2[Ì‘Ö1µê3 Haí5êÈxÐÑù®7t˵Å=µÜÿâ/þ‚K—.ññœo|ã|ùË_&‘Hð‘|ä{³¡ßÊ,±i-ë0ø·ìˆ¬‚ƒDéqW,àÙ&˜a[ûÅBÈábñ2²ÎbpBÛËsC NSk,A\ÅéØGhÄhЦŠ!d‰—t‚NœEÖ&Ák‰SŤJbŒ+Ñc¤µýÊÃäŽXf6ºM‹d ì(< ZØãÑ{L(+Iz1ZžÜÃ$Ï«/O‘?{T«Äy,d6I¶ÔkÅì•W¢žø*ûŒÑ"I93†Œª€h0#.2A‹$™^‹J$G/ T¥k,±Ã4} c¸Å!Ò4‚׈ Ò¥ºf”]k‚‰è>žPiRUr”DW §ÀTÀUV0¢¾~Øâ8ØÜÊÊa@•<5r\0ÎÐ$EŒŽ&.-q‡%*Ú#®ð¾µ :qƒ924Zµë°b34GMceÐQÕT¦ :Äx5rš]&Xƒ.pš+œ @Yý¹ð5…Ú%Î3$iã`ÑÑ•GŽ*A‘I]f‚ÊgsÃ8ÌÁ{¬Ð]óŸ~¤ävôZ­Æ—¾ô%êõ:RJ>ñ‰Oð‡ø‡|ë[ßâóŸÿ<¿ôK¿ô}³¡ÿ»ÖYhW ù?ü:}7Œ±)YãÄÝÙZ“‰Kd»5ˆIÚF’PmHÆkî·xOáiºFŒ=kœ¾«¡±H›d½C)<†!%ÑfŸf2EVT9|~ yÔ Ë7;$-¢ ‰‰6 §ËLy“³áW0=†•f,\ÂÚäŠ5„å³0¹É­Ÿ£MÓËD(F'¨‡ÒÌù[Äš}Lá’CöüIL鲟ËsßîE.Nb$c¡éFÑ€÷Ì>ÍF?ƒûU‡_xàÿÄ÷Lî D£]ú^„éý"“õ"'R×@BÏŽ7ÛìY`Jºá8Q³G¼ßÆêyl¤ç±.†ç±R½Ébl ³ãñzÂUL|lÓ¥hM0»¹Å±ubþ»íà™&ͱ®m°-¬59nß`¼]",†<¹H7aúÊ!×!TuH?ø%¼–p  ãÚG­Ûd™¦"Ó®³š=ÀTk—V,A߉’m×&Ì—wËÔ˜OoaÙm?A¢ß!ÖëÑ‹…‰VŒOTˆÄúT¼<…a™v$AÃJà Ý2­h’‰~‘={Ç´YÞ]Å5-™ ži lÉÐ !=ƒ1$Ñmîƒ!aZf‚˜ì lh{ ^_ô\J] ›àØ6õP†äP¥ßuEŒj(‡#-Ì¡OÌé0œ´˜Ú-³ßOßcËÝÄ5ïzCßÙÙá™gžAJ‰”’OúÓ|îsŸãܹs|ñ‹_üÞlè—S÷¶y‹÷"ö,ž0¹a!N'hÁ܇y—ü:¦ð¸ÍAΉǙ`i¶Yå /q–Óò"ÿ{ïÿâ[±· ç!lž öã%â¼õIZ´4>q“o“Ï‘’-nhi±È¸ž‘®¸W¹bç–8H„>‹¬câQ.qšÓ\`‹9np„¢5É8%V¸JΫòœù6MGëã`ñ’ñ"¼ƒoP#Ã${ÔÉ𓽿¦[ˆòwæ£üçßÊ#ßE%¬y*öüû📦ÁÛù&iì0ÅeN7º&õosà⫘xl2G,ÓìR£OÔ˜'Ÿ.óç^õy¶Ùcº"Pb¼ã\ä4æÇÜÿBÉ(°n,ðŒõ(»_aON’-Þ뉦‘â¼ù “r·¿ÉËá(‹»L1NI“®Ò¼J Îò›Ìq…MW0Äæ‡HÑd‰u*äp±)3λy6˜qyÒä^ÆJ@ôÍÔ[‰‹6×9ÊÃÞKdŒ*5‘ãuN(¦µ¶Üó ºÏrךgM,ñ ¾‰”UŠ+Ž|^V¨ˆ<79Ì»¯ñ˜ó^Š=Hl Ô›fG#Uäæ4;*jU¹§ ]µ÷ÿÛGj8€VSÑˤ¯dÏãSŸúùÈGøøÇ?N£Ñ “ÍfYYYá©§žBJù&÷È¿äëÉä0‘ìiWŽª®2‹LbØ>ǧ¯r;r€ñˆz–÷ä8G&n¥Î$»Üâ0¶âº‡Mš$™g“j~DI¬"’PDäÿ—‡þšóÉû¹ÂqL<JžçGèã=ÍgØ)L(ƒÎv¸É²áo>‡esŒä15_½Å!?nñ_Íb,[Ñ!AáÀKïbÑ™ŽsM¥J2N™Úx1.éáþ¥ $#;üw~‘•«š-¡2Åoqrþ2 3¥à f@ %Æ&¯‘£B•üáóÙÏ~–J¥B6›%“ÉpæÌþôOÿô{³¡›¸ÍI¶Šb’3\`…+¬±¬‘{aæØâº8JŒ.T›µBŽ.s¬³È2wØ\Œž¢Nšs ä5Î €£\§@™W¹_C R4x]œ$#ê £«•ŠÊrÅ:Î:‹,qGÓæÔÃ>NŸ< ^Ðvª×8Æ Ž0mî0Ëk,1Å.&>K¬ë‡#Ž¥-1º¼¹¡‘+ô™}þá['ˆ>’ãñ-R4q£6]bl2×̰„Mô‰£‡¤ÏV´0$M‚6UrTÈqTÜ"d; û®FW3 @9°Ü•( t›ú6‡ñ08Éëô‰ðUëÝÚâårTÜÀ˜ E[+ãØ8œæû¢À†=Ã4;˜x\ç(–ó¥ipƒ#ÜârœæWY îÝ"ëì“ç2'èå>^ÃÅâG¹Æ 1:ÂçǸÅ!¦ØáÔà2]3Æd¨È¦9ÃëB ÝV­“f‰uZ"ÁEû$»Lë¬ê~0sw°RmËQfÙ¢bä¸9Ê&sL±ê6™¥FFE92Xö&Åæ½‰â4Ìè_µ–ÏÚmÕ¼÷ô†þüóÏS­V¹qãÅb‘õõu\× \Ó4ù~ºŽstGL…‹4!F_DJ’K-ÒÔ¢!Ò˜ø´u.C—ˆC\!¯ÛÕu¦ÙQÖ5Ñ'Ì€”†5M:{”­[b££º‰£ IŽiêó%a™U²φ˜× n(]rT™%¬;GÊ­òÄ=Ý™QVÍ4RÏÀU7KbsjLU±Ãa®¼œcéÁ~ vÏû|ßd`*•¼@2ÁžV`+Kæ]‚5(¡m˜>†Ð)Ÿ²ÓEè3A‘5–iŠTê6R‰«Ô¶f jûÝm IDATÅ,B°²ÚŽÚq’fK³ÓÚ~ij·NK[\]@2N‰M;;¯ƒ©º˜ú¿J‰>Ð\|ìcqY3F‡4M¢tA«ûÕû× G,Ï©qëV uRßKhü@qM0£¦”g+àÝÇè5» ÀvLS|p1ðƒÍ|¤ò»G²”« šÿøª6|6Ö¼7mèÿ÷ïû\¹r…­­-vvvp5’tÛ¶¿7ºÔqu{b‚mf˜f›4uv˜¬”Xg1P¥&Ø¢F–uéÇÄ¥O˜m1Ã.S•«¸Xl3ø#ám$N›*Iík´ÉSÕs¦XìQ’ãD™>aŠšhfü«,“¦É»ì1¡|©8¬pUÜ&h“`œ4HábëôIEäƒtµð˜AÙ=Dç9‡Éw,1+¶hÛ16˜£Ämâä©0ÇuÒxXDõ\OU ‰7àTÓì1AÅÏsZ^¤hLrM#&º f!¢AºYœYªÜö7ºô¹Mˆ»LÑ%FŽ C¢Žke"PÊ/p—&)FZÏÕ&¹Á<sl2ÎrtHnŸ5íÓŸd—*y®²‚pXÜ ØêÌ“§B’6û¨ "F‡˜è²'&4vÕ Ä&§¹HŸ% €ЬE¦4RÖÕsÇ R‡³Xž§€¦Ä8óÜeלb•ì1N5b‰jTT›"“² ü{Åiïí?¾RcpZÃo¿¨*îååe{ì1ºÝ.®ë ……B\¼x‘矞ӧOßTçèщ§s°Ë‚ ÕÇÀXm7)6™ã07ñuXHŒê²ˆ6&a[`—©à3jàcø’m¦·Ë]cKY«L\ä´Î;7KgÑœ !ZJG!ð$w‰³ƒM‚6›Ìbkõõ¨#Ù!¦…asDƒì‰xpˆ¿eÄC¦§šÔ\“‹¯N2y¿Ä¥&”ŒqŠ:ÝÔ•êè°:Z¿F´:Õ±SY§¸Š}Ì@½Òt÷(]2ÔgO‹ë¢¤uqº„ék!ã»,¢ÌÇGŠû:­5TÉ’× G{íM<½‡´Ë NDæG¹Âì0Í€0cTðôç/ªéoûŒQ'M˜!–X dpŸbtIÑ 4?ßý†n}Ç5#;©~I ëçÕ×VVVð$èÐ"Iœ.úTÉ1ŒÚA´¨Ð*L•†Ó €#°Ê(p´ñšø„(t©k媥Ռ)úÚÿ¨2wÚƒé3à ÚAþ±‡I“rúÔÂÄ'N#6,±F•[Ì’£Ê»&ÏsÃeõ|ŒNãÛ :ö°Èã`ëà5ïïÅ—]Ó`–!5UIN6n×Oâ‚9±A—ø|¬'õC·©’£¨-c‡¸E…==Kv S‹ÔÔ"Õ"I_'¬ $—8¥+ÙpP™¢- ì³À[Ì0Ô!†øJº{‘£F]d(2< ºÕ¥¬% Ê3l$q„²ÔLR$¬s%‚2…ÀZ%O˜9júß3Tn4Yâ¨HKËvˆÓÖ chau†„îÈ&9 ŒÉ<Zè¡vÙÆòÿeCÿN×ÌÌ 333 LÓdee…ßùßá _øããã¼÷½ïý¾ªÐ×Y$©ík#qW“”Bœ2 .3+Aµ˜CtˆÑÔ>óI]ƒ…aÖ(鱩×uœPÙé¾M_ëS’Ms&ø¬˜Qååe]u8K—M‘¢A†šHë÷ÛÖÉe¡Ãìc"4ì¨EJ‰éÈÑ1lݲU«&u™¡fd©*,%67ÄFÙ½4À8§èOReªFžžoñ0¡B‰ø¦G›ÓèùvFhm;(Bö#CM“Ýr8„´lLçC¨rƒy=îêæÑøqhØTtøQO{ð„©’'F©a;£CZ•,›Ì3Å.¶ŽqMé¶9Á:;Rîƒ ’ÞTˆ—r ´HÒ!®C]"ŒQa …Ì£BLÜ)PÆÃ¤B“EÖÞ„¤.Q ­» £¿×!N“ ÚôˆR!§-ŽÝëmânƒ0¦ÙaO¯Sß}`ü“kÆGèKKK,--ÑjµÈårò4O;»Œ‰}„í˜êŽ>P+êeHCCU÷i·ÊQ!ì 1mEÖÉS fÉ&/*¤Eƒ u|‹jt® °.µ˜8¶GÒk3gm2ÐN1¢¨¶üˆ¸&1=:©ìGžé}rTh'ƒÔ‡¦)M¿ŒÒÓ Í@É=jS+^F= Löõ&æiK˜!ÍxèëÕ¨Ö™šà§ºMÝaPôI©)k3ln 6IÆØÇÆÁG§Jž}Ýj—:›<¥³ã:ä¨Ò#¢¶âMÅHBîG‘ÏKÜ!J?¨¨¥ÇætÞF„~ð9 1ÄÃÔΧLŽ*Qz”h}£û;Aá«ó^.GçqÜ‹k-™Lò£?ú£Aað‹¿ø‹ß[ÛÚ7Ïq¨íphpÙ5)…¯’i× ;CÀÂÁM~˜#Û«I—L®Î²\'kVU¢iÞâg¥ÃÛ¤sMÌ‹’ü©*ÙPGØ8nˆX¿K:R'ä9x†R†.šë˜¸,˜¸®ÍB{“l¥Æbj+7äþîEºvÛrHyMj–:ùg» â¡®eÓò’´D‚D¨…%¥­7ˆ#Mˆ:=ǵ°„Ç¡Á*FÇ£e$pDˆ©ÞÑò€T®Å}É‹ÄDv,Æ{ò)vZ ®>™å]ïý »C"Ú$ÒrV¾‚” B =˜ÞmQNHƈOÅÌãûi¿©HG­:í«IäŒ@„%®eÒ5cL7‹Ûg:¹ƒëZÄ;]|Ëä!ëUFˆˆìs²r^ä ÷G.ÒF‰Ö{¼]I‰ücåU‹g.ç}÷=E‡‚8s:Ù0I‹ æq±46UYóÔf½«µIù§Sìâ -–ÛwYÏ-’mb¢KCç˜WÈ“¥¦qÐ*Œ1çn6A2A1¨¥©kÖ›êxdˆ¨lgOWÆsliðŽz_÷)EøÌ[A—4O…Ëœ º.#_{Ž*³r‡;bIY{)ÁÓ@ éCà“Öõû(²wdQSð£l¶î±B÷ô‘à¿“ ý{³¡o$g)%&¸[€¸``‡Yȯ³!çó+¬…)È2œÂ&–åàc°Êu+,¸:H!YfÛ˜æ‘èyžN<Š/T{u2Td&ºÍ Œ‰2ÉÓ\åzl0OÕ̱d¯‘ÏVØSÄEaAZÔi‘TT3'G•›–;1`#ó²BS¤‚Sëx¨ÄMã0ØjÖ=/7Ùc‚Wãgä°dBî^Ð ‘Z¦ ç,}æNl‘îò©ëïeámJ\±úDdŸ¤hR%OÈr¶ð2!»ÇšµˆkZx†AÅÌáÈ-‘`yvƒL¼Æµ±ÃÜâ0CBH‰¨â*wDòQ©Â h1+–õvìB¨VÜÜ` »ër79˪y€‹ò$}a*ZÄð$aÙ§.0&gè…é’¢©íx L–ê@špè •z7$Äé±?'S¿WQÜwo[û×ëÛ׿¯þGRÐëGéf¢ …EÄÒ¶ã4DŠùµî˼J¤7 i&)GƘ—›DZ¢ý>L”¶'ì1<‰rÉ ›<"_ ïƆô œEºß$[¯s:u‰ñx‰ü Ê½»ìç²Ôì ··É†j´¦£t¼y¯ÊPØ´e‚HwȘ]æøàíXŒä°ÍÃáó ­!ˆ/ <Ëd`†è¹Q’~›Æ3Õ"û±UΚ/c¶5d Â8~ˆ‰j™T¯ÉôÒ6 -ºà,ØD‡ev¾šbê¡®a2Û%löÕ¸@J–;˜¾GH:`HvÄ49ªXÒeÞß jôHµZ˜C ±*q:D…±Éäp™È.r`‘òV•G¢ßÂûrŒ,u"Mί*²“Ô„C ›¾aÚÝQ] ØK2#·ñ0éŠpÂ}D¿Ë0fç5bC¥#˜t÷hD“˜Â'áv8lÞ$&{_Ò2’úûW›´«Ü.²G[$HÉ&¡¡C&ÔPd?+Œ/ r²Ê@„™’»„!VÏ'ëáÙøñ„äø ‹gšD¢=¤c–uR¡³r‹þÿÃÞ{ÄJ–Ýgž¿s]Üð>žw™/½)Ã*V±HB-CÊš†ÚŒ04K´ÕF A‚ Œi´›Ô˜Y4D Ó=šnÎP )’U,“Yéíó&Ì oo\7‹sî­â´H1 ²G*€ÜTÕ‹Ê朿ù¾ßç¥hYÆZZN%„ͧ2 *ìq$V”(oˆ=uÈϤÜ)C?üëT¹ÿè®áË…žc"Ã#ý2ARc™cÆA†º¶È)KœQ!#F<Ö.⣫qP‡S%r’Lö:S‘  3Ì…¥`¡JÍñÙgM‰¥äqíZ[T)Ò¥¡IaU$Èó5% Ç"©MkÐæÔY”ìdä¸í 2£w…lMŽZLæôɳ.’)ÆÌTâS(#>ât°>yÖ9À• S,7ÍÃo…4>S£$º,Š:a'b C÷9¯ïàwÌë8JÄ0RVÑ»äõ>sÏæÔ\Š1‰]!=éSõ3Y1â„e ôX Á,GÚZŒ6-Ú]ËMºôúï‰ ¡“Ô¦ÌM3öq †d91–™‘`™SÒŒâÔ€1ä,&U ª¢…c&⟇-¦´¨1!E•-*8Ø´¨P¡M_Ï“Ô&d…ÉC®0Ubœ©n“T6 ±£Æ•enY²Š«0–«{¤¥±)1‰-&}òxÂÀ²Ê¯Ñd"dàCBȽüºvÀ!«hzc•Xú1íÐ?y|÷chdq’&ÔûÆ:›áS&£ ü]ÁœÏ¿Åôt¾”Í3¦¤ÈÓ§¨ËuI˜†·y“N˜a³Å.wÄMž±MU´($zLHQ1[³ŠÍŒUqH—ް˜Z)jV3¶Óµ4«Ú‘¤Ò™AœŠ76Ó1¨ê³ü=3Sÿ¤CN*áÇb…'\Œ‰¤Ã«É0BSÝ~AQœþïЇöãør&‘Õãë4”ÅÒ$¼#RFjÅ(sCfJiØ#Ϫ Qé«7":äésÌ mÊuèv••«OŽ"=XgW!@k4çxˆ‡®5 ¤UªX¤Xw±X NŸ<d¬ß;¸˜œQ¥C‰$3š’ƈ,eÅOŽüÞXæXÁûðÑã\ðÈ{Y¢M:9b¥Òez~™o¾}žÁÒŒ)‹ŽêðL,Û¡(zœQ‘Ù»d(Ñæ˜eù\AŽåé &]Š4©QæŒxÆ6;œÃÀg•CùÅWYå«ÊªÑWYå" ™'$ukDš[¼ÊnR¥E¾RÑÚqÆy7ÞÝM(ÐW8ÊUF¤YãHæ$«`†,CƤ9e9Ž5¬Ñ¢Á‚òíZ¬p¢Ôõ«œQ¡ªµXÇl²‹Î ËœQÅÄåŒ ÏØæ„Ågîq¨^{ÉG',Ó'Ï”O e@†Å*GX̹ÇuŽX%CY½?=%¦Ë1ÀU¨1•˜õb*wWæå}Ï?Ÿ<¾ÇkçièSȺò}ð+f~ÏHpêäãľ1i5v¤ø59䥰­”ÆóØ]¶¾:8¥àÊ! ˆdS¸¡Ç‘!J¸6ó$8$Ý)¹ñ˜‰+}ÍQjßKŽgƒ¤L1TIq)ÆqähhÀ"§H‚¤ç<ÂÃMÆJžc€ƒM.C?ËfåŒÂZÀ£ 8®MÑëÅdC“9.fœ°˜fÌM2 a.ÐC/ˆÔÔB‰¼Ê±€Nǧ©)ŸY‘ÙRC€j\";\†&žJ†¯«¤x¶5«lˆo=å‡êõ©Ø¡T OZéæXt)0 åë¤ã“Q¯u‰7¸Ã6Ï0pÉ1Pbè@1íû*Míãú‡JlÌ3Q?I²4p1É2¤D[&…sŒÐ'¯¬{ògd†dC,Äù!eÚÕHxñó½ØÈÝü¾çÅ‹®ð~<:“˜½;%©Är¿}åÁ›”Dœî#Ré{´Ua0!…Ð /õ¥„Ê1WÙ¸)å3—6G1z“ñD >\ ¥·˜Ç<àèðÕEùø$˜Å!IX wj©8½é£CbÎ\Á,æ1e.RêÏHH¡;%a9ædÐè¾ç0|=ƒ/ôxw£M ´…ê)üø¹¥è*ë˜$ô9¹ù€‚ÙcLšPKÑ JE2qñј*\¡¯¬xB„xºŒP¬è†Ñ÷óxºô¬Bˆ£rФ8i¦FDRÑ^¥E]H:@å{,QªÅ]ެ/3ìX (€.Å8,&ÅÛwúG;+éG–B ^ï.EúäèPfD–Pդѡ!Q®Òó yt™pF9&ÊÙó«G;B_ÙQdðƒ‹¥„A/6ÿÅê'#÷ïýx¿ô2é¬F>èã£óؾ€‡!s¬E+ç³ÃfÞtë±CeA—…{_H+¬ï+,Ðä5Ô0TH‹ÍŒ'Új+g|¨ßT0’kÒ¥È[ #žêÛ±;ډϰ¹d=å®}†¨ÅΊ:‹*™-à±iªï›ŽQÀRÁìó€ËÌH²Ä) NYbLš©‘äP[á)ch‰Tp'ÉZc0B>¹Ï#™¿°ÍêK‘oYž§AM XåˆUuÉ9üG;G‹$ ªÜ¦*(Ì„„RͱÔÙi3 Ï›9‰ø5hQº-j±ã¤IÛ¼¢BN¤m®K‘}6dçKZuõ°Á>¤µ»¹-òô9`ƒcÅt—EäNì‰~Œ¼N2å!WÑ”9R ËéK¤—Yôã8í\r "ѤÇû¼FŠ KœÆIzRØ×•$QýeƤðDG†ÒL9£ÆôU s4a¾Ç5B¡ñ˜³ºþ¨;týK_úÒ—~”_ÌGqo±A¾ X ¡ªS_y{=ÖPg‘%N©ÑbŽÀŠtЩ+k&=ЬYGÜÍ^#… ´?AÚL< L<,E#*Óa‘Se;¤˜Ò¥ Þ@_YœÆ ÑQc<=è È¡!Ñ´E:4U×má2&CG¥è¡+e䈬R¯KÌ!ë,s‚¡" g"Ég‡ïð(u‘®ežbjoß¿HiÅeOlrÊ2gF•'ú„±q’ÁÂUÓƒ9 ³&©ò˜‚ÑÃÓ8ž0Ï€«Ü§F €5òô‘¡É"-ªœcG%Óm‚Mn‰WAH¸Ç9mWUì ,ÐPQ¬ivÙ’YÁ¸è±BŽçØ¥Ož‹ÌÕ^\NJ4Y`™æ˜*Z2ÍE¤ý€xª!^§ACxÜÒ^a›çJµÞã —h£Fªª g›gäTsŸ<]ŠèsÊ)¦ŒilöÙdF’7x‡ëÜeL†yõ~ Ê´iSQüoÙ‘ÉpÒ4yi|™sçÎý@Ÿý¯¾ýX{s¬Òáÿá?õ·ÏóÙ7â“üc[·n¡]{ˆ“ÈqÁyÎ\X¸š…zh" ˈ…°E˜†-oGKУÈuγÕành2 “\ðw(;Zf•‚ßg&l ¢O‚«ócrzŸB0`Y?å¹qž…°Ï…ÑsæzBŽd{'„ p¬(O¼K™.„‚í˜cmK¸l»;ÃUÑ"%¦ˆ„±«Kœ’WþŒì³6?¦iÔÈ1ˆÁFB£—ÇOHxs”ˆm¸I¦˜¸Rœ§éä½>ù´C#¨pëùyÎ-6)­Ž!ýÝ63–¨+ðNVù¾'Ê.ËÇÔç>[ì©<ó®:‡SLiS‰ùðÑ®8J"”ûT ö‘e‰S„²Ìö)ÄB6Ùݢ[ÙŽ•(ÒSMON]j Ã"qŸ,Ö… ])²ÊQL¯ëPäŒ*iµæŒRÖäý0V§è¬Ž~ט#ï„ x¦V%vœð%±ÉÉoEMéDL²>¢”=ÊŽ+§Aý½>Ÿ·ß`qqñýÜïïïÓHü Kö÷93­w®ñæ›oþÿסH“l†ûl{;4-iß8Ç.A¨ñLlc†.7G÷˜¤“ÜÓ®±ÇY5.qeiÍ?âÒô FF^ØTü¦„åϱ¸ÂÃXúŒó\ïc….šÆUô¨OX[ÔD‹9¶Â=ªÁ;ú f,3fCUÝ¥ÐYæ4áÉÌà>3”h3$C€Î»q4«C‚¬3æÜü#+­]káËâ4†˜ ´Œ J¥ýe{©L¨}Ž;ïVX~½Ë‚hpIÄ¡ ’!‰É1Ël²G‰ëú1m·BÚ²°¨ÕéPâ‚÷Œ„p8ÔVé‹<ΰ™Åãq‡[î-½Â@Ë"B°Æ>‹™SFd¹ê=$Э„íÏY˜·h$› È«5Ä®R »¸˜ä‘»J‡÷¹wâ›ì1"ÍO†OX ÁHdxÈe†äXæDyûû8aB~&„†NÀØLQPYÄY$ =P4>F d³°í<ç(±‚/$Xä÷âЗ­Á€óLH²@CÆ+ºç¦;\Î=¢Mù£]fà i!yúxTiò˜Ë˜áà‡¹òxñÇÔM‘žZÛ4´Ùu ¡èc#M%\Ãb—­ØƒœaÄë\Ôž"ÐRÏsš] ¡¾#Nh!Œ0^wEÔ8WL‚&>sarh®R¦O&B†sH}>ö/{˜4Y`Qí¹sªøÇÝcž#k…œ.£”mf³guE†&UNÍ%ÒŒ)¬ù,z}¾WB{-Ø”i£pÊi&ŒI³Í3Ψ°¨å2BÄAF‘ÏÜP£ó¨ Øb‡EòôéR¤Fƒ%N’ÁƉGæ%:´”';ÒÄ[Èž…ƒ®¦{Ž"õ53ÏE- IDAT¨É"Š63®q$Ô'jéTiªü‡>ÂË4E™Zÿ5`gD–>9fØ\à#Òxä¥]›™æacàѤFBQÝ"ÌLLt(±ÎBfWñA/êÎu‚89.O$³\c3}á¹§Fîüˆzô)®+Š| ^Ƶ,iË`,}!÷#9ÑçVö&.G¬°Åò;œcBŠëÜc__£ŸÉq›—YÔ ¼Í„hT8#Å„{\W±{r sWÜÀ-ªl²ËL<2j ¹{_嘱Hs¬¯°Ã9®q%N¹Å«ŠuÆ5îsëhêõÍ3nó R´¨r…ì³Á»¼N™67¹ƒFÀ­ÄËÔ  ¬ò-ñ.9†2ˆÆ’„§b‰glK&ó‚%æ|ó-ҟγ!öхϼÞipë21È1¸’¹ƒÅ=í3’¬rȾ±®ð°e©#x ä((Dá7ÍÏ(èKŠuqÈÉÅ`D–#Ö-oÎ’¢¹ Èɬtñ$Vkj¯ÜP¹Æ^œe|Ê2uH„ÒjãP„¦–b©;1*²I-Î*ŽöÞW_Òð$Š7Í$>¤à¤ÆuEΓ•o´gìRŒ³ЏXT8SNJmRü7"Í5ó1¨ ‹¤‚IKªNYb¦")e'¨Ç0O‰•^¼CÿDåþÃ<îsEånQa¨:¯çȱxÞrÈ#2œQáXŤJw%ŽPž(ĪÄwãÉTtÙÔYÄs®'`3£­VgÅZTð1Ðý®^ˆ»m‡OU¼jŽV8§K‘3*˜xì³N‡2¨K,DcJ*¤f³ÏKö)!‚6eLuá B‰2ÕWXÖNØeKN)/@g_là†F5<##,XÖñܾ­±þÖ KÌe¾·¿HJŸªQp'>ûJtâ‹üŒJŒ`=f…ŒÑ ¨Œ§,ã†&—Å#Fd(ÐS¢×#Ò,Ð$͈ê¼Çkñš @ÃfÊkŠÚg’! K‘]À"ã³­@OM2*êLZfKŧÎHR ÇX¤yÆ$ ®Îç9}rèÂÁ`u•À¸Æ.f\ÈEZ,—9s@(-ŸÅ Ä„ª[cRž£a¢ȬÊoÄH[Gé š*çïÐï{fü“¸Ð+´¹>ëS¶ÉFd’ûØ¡ƒ£'d&ph±6<Æ6f”Ì.gf™`Ÿ‰–¢I‹ó§lö°K vƒ*g, cK£@’Eê±ÕLÇçâì)¶?c9}Ê!k,rʧÜ(š=<ÏàÈX‘âˆÐg+Øc[«;7ý=Jz‡.E,æ\ã>E:äÔ!³Â1i&¬(öú*GTÝ3RÚ„² ‹Íæ¾i`e\&‰KœJ+ž5¸yþú<`®[tæe¦©$7Ã;tJœYŽßÓ)¾¦q•TÂ6ûÚ:Û&ÚäÍ>¾£é #²JA¹€Î‰Êth)×M‚9)m‚¿eP’ÌÞŸ’xÙ¢lté’¶¦©Ý±d?”iÇÉoQp‰­V’ÑŠÑG§IM6HBŠär X¤ÎH^ú”¦G…³˜Œ'ð…Xqo3cU¹G$g ;ÝX#à¨b#ºØ#±ª£ffEº¬p„G‚9=¤ÛÁf¦âN8eIé˜dלeg°GE½®tò bžD„kR£ˆ„ E.©HGÑázâ×wEºÊJí¾à….;óŸöÈ=Ë%ï”KãçT Éð%*a›Yrá€F¸Àkãð‹SwØá‹\÷ÈÓçÛ<ä2ëþ!Ÿë}›Z¡Î|lS£É{<ær ù…[*0Àã˜U¶õgTƒ3JaKÈ h)¬Ë/u0¤D‡:‹ÂㆸÄ jÜå&Ÿ ÿ/6Øã/Qg‘mž±È)I¦<â2ÛsŒD†—½Û õ4²ÔY¤èö¨$Ï(Ñæš÷ˆÐ‚[¼„%\®Ìae¦ôɳ@“ŽÉ…#6ü}z g\óà£1 3äÅ€ )±šã%n³Å.»l‘dF+ŒDy.yú¬ÇÜpg¢ÌHËʼnGGOIN¬eöY§D›S6Ù“éZaŸOÏßç}ãŽYŒ™ÍyÕIX¸X¡ƒåzÜ´ïÐ¥Àúè˜Lk ‹"ˆu¹Á=²ÁH©åßk‰SŽYá ˜¿ðÈý°Ì÷XVbÅr–!m%jÕñ  +#½)ûlâc£Ï!k¤˜¨P9%ÚJÜ•aJ2}ëøjþ'uÅ]f$TÜo–!.Ǭгò„ëäÄ vÑDxÙI ýêC‘Užk?žüD˜‰øâp•³ÇÂÁ -Æ"£r­˜‘ô&¤´ šáÓ'GŽȧ¯MyEi2¿¢,’М˜E¾p~Êóªì½Fÿ¬OJLbL«ÄÄJÒÝ\M¸šÔ¨³È8LSF¤cÀ ;V´ÏB›œª†M=\DbTìXýÜ,m•K<õÉ+£›´Õ¥˜Æö]G©÷;JÀ¶Ì -E{ Ñ8d-fÐ{˜ŒÈ²®°Ï§,2&SÝ¢©mäSTN$9Æi°Oé,œx“§Ç)K1{~Ÿ j4©ß% žj+ìµ hÑâ)„Ä€Ïã)b€¦xõ/¦»ùÇ:ô}üX.ô Cng^âÿÎü43l>ÍwdÀ‚®(p4ð¿-ý5rªpžçüñÅ¿Î>ï%_åÑÅ‹<á?ÏW˜aóU~Zý?F”iówü¤Š×”†ÿÅüŸÀ Ñ 8ÏsƤyh]â/á[ºP<åÛ|¨½Ä”$7¸Ë&{ü¯ÆÿÈ”Kœp1|·Ä[”9c…#ÞçSd"¸Êv8Çë"ËœpQ{˜4ÿîêÿ }´$™ò5þE•˜Àa¸œæ¹8ÏAr“Ѐ%šT¹Å+̰ùÜÚ·xÈ ÿó·þ- oêø¡ÆMq—–å˜ÇÖ¸‘¾Ãh˜ã…Ï2 Ë{Ü.Þäâë<ç<«H2Ü߉Ÿd†M…3,ðç¹_SEÌŸߢ)ò”m\®ònFæË¿~‡wy‡å+¸,sªâS¯Õ†h–<Äî‰ëìæ¶$œGòŸùYŽf‘g@‡gŠŒd‰9¦EªºÍÑGS)wC²,q¬ÆyÁQΤÀIÁb‰N¬ UØC‹š1¤C‘.%•]ì°¨2Ðd§,#TeúÑ’bBWeAËšwp!2Ç"ÉTZ†frZPg‰IB4žp‰”6Qü޾ä¤z˜^Ñ(Óàú?ÄÈý“úóè‘ÇRT·& B] <àC Oå+f©³À8*Z·£isLÆ*&ÔfÊ“&UtY¥LÓóèXEEtéR$@ZÆDJ^†‡JMŸPLSacá0'A‹ .2ž7Re⇺B UŒgdËí¨Ï{$â ÐèQàÔZ$©MbFĵf’$ESxt(ál÷û„‹´Ã2ý OÑè°xq†{°ó÷6kŸ³h°@‘.]ŠTiž~)‚KÆú$¹O7™‘ ¡qÊÜŒ$= ´¨ «8a7¬ã`¢©ä;ù:É÷ÌÄ!¡Dl2¥,ÒéœQ¡I%Nâ&¬C‰6YÅH3QqÑRÇpÊR|É'9 ’êæ3Çä”e.ð4%p”CN$dê]F­q\4eQ“š¤,',±Dv\Ðé©Qxˆ¡ôTQ"å„»á9Š¢«Ö2g¾H‡Ì 6ú?rfü¹·©(ë—¯€(‚mIm6Rq†o”¤tĪòfâhº1pf†ÍLKÆ”³$S:)PŽãü< téQ`DFQ”4 ‘‰DO]Š ÈIa™Bš±ŠÍT| K¶b™è‹wÌJüsQ´_”.¥hvl­Š"¥0_°mÆŒ¬”Ê%–‚¶4ã¸CcJ’#}…±L¸’%i¸}ÀâOÙtD™9 .'ž2ómæ¦ ʢݘ )H¨Ãe¤š2] å,zBÆ ö(°É^< ›caã0 ‹¦ðº}åH+ˆC’‰[Ui«Nc@.¦_E¤.ÚêjSAÄcÕPE"Ÿ8$8d–Q%š:\ì˜ò‘æ"¤\·$H3aŽÅˆtŒ ^á˜cV˜¤S8XqôjB¥FÉÏW•EJ”è0$‡¦‚ ¢î C‰ñ1¤ð‹¨ÜµOFî?ÔToD‘Ú‹Ç¢Wƒq˜¦æ4Õ¥ê³Á>:IfqÔñ"$§jV8ŽUÜyúLH³Ê±<øæX‚<=E ëà£É¿‡ÓÅ =Š¢‹«4òH‡²³"T´ ¦:2Œ¨Ñ")¦ê\ñŸ5šq7M”Ö8Œ÷ûξ\3,RˆŸo‡sjÊà+¦Oš1‹Ôea*1V»w/>ÓòôI2c†M’)Y†ŠÄ&‹çx]€vì>’¯}*ŽŒª<‡ gè‘b¢ìc!]Š”i«õY_¨p…¢5GÔ”m°‡…KAYÕrôÙ`ŸÙ˜úYæŒ'\"ÉT£ä}ÊsJ8­ã³@MÒŒÉÓWÄ»œ²ÿvÙb'\`*’˜j×.ÿA|¼èÈýŸ¼Ê½Kþ;þ¸jšbCl²ÜçCr|6ø&š&G+·x…-vI1fŸMžp‘×ù/ó!I&¸ƒcV¹ÂÃø>a™—¹­:Ç4¸Ì›¼ „±Æ ˬ³O’ 4¸@ŸENXfyÌ}®É%*¼Ê¸˜8X<æ"[ìb3SÞ¢ÊÑ•ò. ò¾HƤywI‡cžˆ‹ì±É&»`H–Öq|›™n³Ís…24ø—TŠÐ æ$„ƒÇ´¯Ð^*sdUxô­ o¾õŒ‚èSvÛàS³L…67¸«&I\ .ò4Þk=æ2EdźÂ1ÊlpÀ2' Ér‡›èx\ç.++«KOó‘|ù=}#æ&o±«ÌUY£ÂeÚéòŒm©ó¾Í3¶Ùe‹CV¹ÈS…ú1I¦È3ˆ§/Ç,³Ä)oò6)Æœ²Lš1Ÿæ;xè<æ2k‘À¡Á wÛá'*÷ú±Æ!y¥0–*f7žòBlwÆ2ÇThSg1î¾ešÙPílÅÇ&8>.kХĀœBEKHI.è«>Wê&¢Â:¾,‚ µŠQyñú®L[]×…±@Ÿ c:”âÎ2Ã8&6J8Mì|DÆ¡+¤pJ9>†dɈ±Š?•éh rªÀY AE| L…:•ãZ •Š„YÑ.9»`j‚“w`üé¡Ê®%¢G£Ê OB¸eÞ¸ü£f'¯vÒ–²j UØÓˆ4&.cRqL©¯ 2šzßµŠH¢áÇŽ—$3ÖUAíµ%ª·_ÔÑè>§¾Ã2ªÔ¥F3V°GÌ’¹ÏE¶F_1á¢Éèˆ,EºèŠWR£“H'¤âøÃ0øÌg>C&“aww—ðÚk¯±°°@†¼ýöÛÌf3Þzë-‰Ô}I5Ɖ`÷‘ù€õý9!Å»ÚëÊRæxÈU„ën±Ë!k Ès—ëlkÿ;9<æR\5æéó˜Kq¶î§ìp.el±Ë€<9†œ°#ûαÃ)K±8äÏH0ã/KÔÙd\%Á Ÿ žp)ëKú&¹B‰k0%É-^Áž„ë0æ”%Õ=o±‹®~¿ÈÛŠôÙg—×™Q Ç{¼&U›e—ÌÅ)¾S£ðÆ&öÌ媸‡ë›<7ÎÇ_ÂÇ\–DŠd)?i…)IL\*´yŸWe×Cš—¸Í@ËÆËr·ð:ï²Ï:lpÀz ¥ØSt·…¯Ôí6 ÌØÙá‚'hS8É,R Z’2›¼4ï²iíQò;T'mr¹!&e¿Ã§êw8É,ð<¿É$L²29ÆÉIÿq…3j49ó+¼æ½O×(âé:kþºð˜Š$ž0baÖ5ŠÊ@(rû,l—Ÿ‘Àaƒ}< p• öÙšíƒâ&¥ßûOã¼í­p—JxÆuÿÇú ïkŸ"@£L‡±ºh%ÚÔãO1q9·ðœ[îþÝ»?ýrŽKÖòôãÑw¤rj„>Và«$Óo*clWbDê€ë`àÆÐÛ¼BŸ<6Ëœ¨‘¼œžD*«<ˆ/ô hæ¯Æv¹”ÒB8X³OÌ8ló”,#zHVƞƎ–%Nd¬´Jo|Â¥X$ˆK V ÇC®Ä;iƒ-ÅSœÏÙÆÂ¡@Ÿ#Vð1H3f¤Ö¢>)e±Œ:t š“xA MäÄøA.飣#>üðCR©o¾ù&ŽãðÞ{ïo¾ù&¹\îžöz=lÛ¦Ûíò;¿ó;òû¿ÿû˜¦É—¾ô%ƒ_þò—ùêW¿ÊÎÎú§J~TIŒ•ÒY#`_eGñ¦¹ÄH»åˆÙV^>Y³Âa¸¦ºú´² Ìa" ü-åAõ•gxOuó‡Ê÷ñz£uLR‘Y`—-ZTã*9P6(å­É¸Ê K«p€„ @ˆFéšbÇO”ÚAF¨é*gYkÜçªÊZvÐC?Þ¡ïpŽÖ˜cÆ•¹,®Ê@ tÑñ¹RÝg¶QãÖÛK RYªó3†Z6GÌ”F *T¢Qÿ Ë|À«Ê.ÒÁfÆ@…ÉŒI£ ¹§“žÙ*OÙæ5lÕùD¾Ò <âŠdk+Õ¾ôqÛ³";†$•¨QS ÖSõžËBoʘ ;lqÄ*E5æi}LNh"`[—+‰‚ßC8!DαêŸPö»8A‚¼rEDŽ!= ªZ›´:³ÞÝðÉ…CæšI~Ú}Á]îÿ¿ßCÿÿ|Ç<Ïò,nܸÁ7Füõ_ÿ5ÓéÛ¶ÿY\è¶móùÏž££#2™ ®ëòôéS~ë·~‹z½ÎýѱµµÅåË—ùÙŸýY:_ûÚ×øå_þåø9YÃÄæØœ3034ÂEôDÀëœú,ô”óôS:Ê5ܦÌ)‹x¤™0yž'¶0LŸNXd®%8ÒV8£Œ…KhºHèËfƒž1ïꛜ¬VÙO¬Qg‰šÙ¥ž¯Ñ"7U2ÑR,êu"Ç {Ú†æÒ@‚R \ÚTâð©CÖèRÂÃà1É¥G4©â*¶ú(Ì0IŽX%-&]fDþwŒŠ] aH][bŸuºXVá.²xè4•íËfF‹ª,.5›—v9‹xïw±^—ö±(0i‚ŒîQˆ’¤6( ŒÙå]Šéª Y.¾}t%F]&«œ=r*ër¤t/‘þ G!^iÌÔå›R¨×4czèRä˜Jt”Gî©C= q!"Uô‚S–ðÑ”f(£~¯"ݸX’ÿÇ\GV»IŽ”å123”m¯ .ùH/å`1öÓdõ! æ4H©Å ÉB ÀÙc“ºjBp•»ñ}ÏŒˆN›7oR¯×ét:4›MÞxãø¢ÿÛ¿ýÛï}¡|øá‡|ýë_§\.3  T*Åt:e<“J¥BÁwuè­ÿ€Åâ=._šò¯ÖGÞ2KÓ?~/ÔéŠhºOÞbF¶ÆdšâÓâzà3Ìe9 J¬8'”'mN3‹hÃÿ¢5'« 1táƒÞöùBá«hó¹n1Hf©ŠÁD§c–cSñ:äzC^Ê< k éiÄ|[#“1sRh=Q Ñ=Ÿ@×ð×ÔùíkèÏ̓mcËqñ O3­[TºghfÈ,´˜%l‚éÉ„VP¥[.„'˜Ï &aŠüÃ1ÿêå¿ÁÔ<ò½>žnp°¶J¦?áî  ŸÒY×°x5yŒDš‘‘á§¼¯‘3zi—½Ÿás7îsqå9~hÐ׳ÜvËa–²™¤R8%Cøxމ/4F"Í–»ã%è¥rTÛTFmv/¯£y!µ£"€éÈÆØœcõe Œ—0ð3:{H(`&ðMƒ”+wˆg™ ·Èó9éÞ„Ü`ˆoh$¼)ÆÔL2 3ø9Á²[ÇÑtS|_£4ì1ɦðæ:Vßå\bí…笜ÖI¸ƒÙ®”±'3RÚ„±žf>°Hh3G-FéƒL–¾‘ç_:ÿ‰´7!ÐEÑ¥:è0)f†™“d»óœÌ|L#_£—ΑðæXsÓvi¦*h³€¬óà¡Ëþ©`ð¸ ?÷¢*÷ÿúË98rú¾ìH¯Í ñ?¿}û6_ÿú×)•J„aH†üùŸÿ9?ñ?ñÏjäM¾ò•¯Ðï÷ ‚˲Ð4 ˲ð<^¯G6+E“™L†f³ùÝ…Î_ýŸÌòyŠy— ox䬉pFÕlqY{ÄåÁVÃJ“>w²W™c±Å.׸Ê}®;©›56ÆGLg)F5›¢Óç’ÿ„=kG$ÐÜ€šÙ¤:ìRjvÙ¨ì#D@Ñï±ôô mñ!‰•5­ÝãV FÈì…5ÿˆÇ\ââø9‡ö2¶=åµÞmúVŽ›Ö=f )6 B¹°0Ö5R‰o±ËÒ¨Á(#Ó/ð”²×¡ª7Éhc6fô­Íw8a™U yŠt©Ñä;*|¥¦‚|¡¬c#å`¨p¯LåäÁæ<ÏÙAÝUL>6 É(Ä*ÇñêW¢¥Û±P»¨ÆöÑenâ²Â ›ºÔBer{hø$™1Ušþ»ÏèŸN°ïyð ÿý 4Æ?xfôv{4î¶ „7Y‹ÿù»ï¾ËÛo¿Íææ&aâº.ò'Â/þâ/’J¥¾÷…þ3?ó3|ö³Ÿå×~í×ø¥_ú%vww Ãf³I¥Ra}}ýý}ŠÅ"©T ]ÿh4°ôkY^H°^¿ËÌõ(.v&Rìë+ÒZ¥—YvO1w]zÅÓT’»™«¬yGx¡IÇ”Uøtš wÚgºÀ~.¸»qËá#N´eYÅ®»,¸-ÓÂf|¨½ÄíwÉcšåÇú2udЦÂöä9š0ÚL“žM1‡.íÅãmªPtv²›ØÌX˜¶0B{âpT©1p󘺋¯IÏ©ÁåÚæºÅ~b =ðyåÔ£—Èӫ晥M„ŒìsÍbl¤È”GÜZ¾Ar>£ºtF&&CöK+¤µx_í23 MY"“4éZ9r^H×ȳ0*ÚüQö_óÖö>¾¦ÓÕ ÜìÝÃXð9(­Ò×r”ü.¦˜s¦—)ÓÆ l¦‡NÞâ¬Rd¯ºÎw¾Šž÷yš>ŸÐ ­b‰…v‹|nÀ~mÌŽVburLÏ*t¦ì¤7É„c.¶ŸÓÌVð,]¢3Ë2Ü$DãÂésÁœqÞæNæ „Ðt«èx  ìtIZå2£ˆ£™X¸LH¡>fèÓKäqR¦‚Û4ÈOÌ·LÒí!á^Hó\…v¢ÄÓÄ6Y†ÌB›Mz>÷+WhPãêì1Ó„Åa™jóŒÆJ…FªŠ+L6œC’³ûÙ5rá€=Ö(.õH&ϳ}ë+¨fáTîÿõW*µRäüм µ¾'_øÂxë­·øßø ¦Ó)ögF¡PàW~åWþÙ‰Újµ¿þë¿Î_þå_òèÑ#¦Ó)óùœN§C.—c{{›¿ù›¿`gg‡ëׯ×ÏÿÔx5›ôúvŠyh‘Ôe,ï”$xÒ³ëc5.ŽM3’ÔõEZF™”=%¡,f³dm.W8ûlP6ÚŒµ4ÕYmâ )–ÂZÎÇÔ\¡ƒ5›£6;j³H]‚£4OÓɉ„! »F  æÂÄCc¦”OZí&*s;­z*7=Úýÿ_öÞ,ƶì.óü­=œyâĉy¸ó”y3ïÍOØi—‘«š46T÷C º[ˆÆ‚7„Ÿx1RKHÍCw«…P=€‹¢«ÛˆÐvI“™ÎtæÍ¼7ï<Å<gž§=ôÃZg¥ FøZP)·”²Eœ{âì½þÃ÷ý>g"‚Ô’´: Í &ŽöÔO1žÔì,­ Kß»Ð@­1bjbÀ6+d@ $štn±#2<¼ž u9@H…LOíl&޲DU†û€0õ^N»ÿAíDú0QšO W›æ2 ›™ã!A&JÀ6-(¦ƒéˆÙÄ!MS»m‚Œ8Vè]•ÄS8q9%¨“!C ñ=#ì2)O2çcÊRиnC§"A龑¸ìKÜRA,2T[®l-Ft°h’%C‡ƒÍúÕ1,&‰' gùÁ¶µØjŽØjß~÷ïá _àÅ_ä7~ã7Füöoÿ6§Nâ _øÂß/Šû£?ú#Þ{ï=†Ã!Ÿþô§ùÜç>ÇW¾ò~í×~b±È‰'øå_þe~ë·~‹@ À—¾ô%lÛþ>HĽð%n¬^"Ȉ§¹AnRãë AÆt‰±ûüÙéE—83³È¯[¯ð˜ØLx™7¹¾Àõ“t‰ññð›4Dš?¿€‰Ë3¼ÏŠ¿ÍØ?/↎}-ûEÂêC’¦A]Ù îqŽw#W±p¸È-º¡(ÝP\¦”ñˆ þ:ñIÆˆÓæï»üIø tˆ³Ùçãþ·yÃ~O‡8ŸåÜá<ÿ!rYU}û„_Ÿÿ×ôˆ§Ã›ü§äË4ü4'Å#>á}›^8Â;<Ç^`I À›\á1¯Ë=žÅ´\f‡e¬‰Ã7g?¥Sƒât¸x– y^мÍsçÞ%è…ùßnü,©+!.r›©ÓÔÉÐ'Â,%¬=nr‰0CžãƘ¯-ÿ#$uïbø&õÕ»¡yÞ2žçOæþ Ÿ_àyœ]£—Ð"ź·ƒÅG~†!ž±Þ'A›¿Ÿæ¹Ï`Ìgø&ð4¾ª€ÏpwŠWØe A’!1àÏŸg@ˆóÜeÞ>à06Ç}ÿ +b›Ÿü'î盾‘z•mV0qù4Iƒ48E 2á7ÙÉ/SÏeØ ¹Á:Bøx†Áâð€-V)Sà 4Ïyîr=õ©8˜<Ë{t‰s-x…HPúg(sg„G¤i’7ŸìæôÿàÈ=¢þ÷k_ûׯ_g0ð™Ï|†×^{?øƒ?àÕW_å«_ý*¿ò+¿B*•úq˜ñ»¿û»8ŽÃp8ä7ó7Éårüú¯ÿ:¾ïóå/™¥¥%ffføò—¿L à—~é—¾ïglÇ[9‘6ްØ7tPMdHÅÛÔE’N´Æ.‹0O–šÎþÞ dˆX}‚‘ ‘À>VH²ÿ‡96¤Æd’³±Û=~µ,—nî}¶âK| .qÁz@'ÕÉ‹ Ò ì†œ]£i$)–{ø¦ kÊ`¬“xì³@Œ.‡ÌI+˜íQ#§?„¬÷8#»M³ÎØpÀœÊq0Ô†<À†µŽç}˜#qLž0Csˆ«VRDZQ(Ò¢FVÚÀ\„/¨Üð™<µŠ-&*<«¹r'n`âÒQ"0iî3e ï³ ñ©.&UE¶“6Ù ö•Om£]b4ÔsIn©ãß÷Œžþ{§6E¹F°5ºuÊI÷‘a-rÂÐÁÀã€9•—‘ÄQ9 %f1qÐ$»)z×Ç F–}­ÁèÅG£C(;,+Á O=#ÊQÃSNŠ!úê9/‰t•}ÂÝúŸÓë÷~ï÷xøð!Ýn—Ïþó|ýë_çÏþìÏè÷ûìîîò«¿ú«?ø@ÿâ¿È¿øÅïûÚïüÎïü=ûïÿþïÿàœ¢„Á¨Š¯Cœ€=VU§Ü£4Dš)|%f™ãPG%N«®®JJ;`žg|¥8}Ó…¯F?Uåkî©qXíS\%¸;­Cõg’Œð=–h‘dž,)Ò$MŠ& Æ>u•ø`ÄH0‘‚6™ÿ] BNP æ9ÐB—:µ Ò1i³3Šœ5ÒW±®Ó×uŸ3¬Ûì²ÊÁ®)Qî’&Z°ÕH8Åâl°0©_ã]´…”‰Œ‘ÉKÓL_Až j :žcfäÿo·ØËZœÓUÈÌéû_%KÒh²Ç]âx-z3q‰!±©%ŠZ°a@,›¬jì4ZujÚgA½Æ4—(Z¯ˆ'L¶XÅÁÒ#± jdiÑÅR“”Ô(bÓ[u&5öjvFAFTÉ‘§J’6s°É:´H²ÁIÚÄè*• ¨È±+–¾gØõéÜX«ÛÏÿüÏÿNüóŸÿü¿HËY±Xä«_ýê÷}mvv–Ï~ö³ß÷µ¯|å+ïϘŠLçG‡ B²{û]Bò¹F“ g@Ôê“¥FŒ®Ì ô«ÄdÝ:þÄ jg˜u1=€5&-xŽEÍÎp&Äìy¿‚/¯?c⓱Ò“=MJTJuœžk‘õê´E\&´Œí`L®à\Ï’^ö€?FOÇw¦iñê:É/O…ˆß'/Ž@ÊmÑp”£ªm°#‚dý:®0‰ÒeDÚÉ}tP{ä¥ZZ>³Ôö4¯…a.ÅE‡–“ |Ógù’‹%¤pLZ_ ÄoB&“ùØ8Ú»>TÊñ‰:(#ô(*„AKÉSñ§ÍWyõã´µðX†œŒõa?%ÁÉ÷˜Š Ž™T¡:ñi¶º:NmzÒ:6f‚¥¡=¦N¢C5F)ió˜"‡XÌh˜ÌÔâ&áä÷Eéê®ÿ€¢*»±«P¿ÓiÃÔøéCÿÞëñÿÎ×¾ô¥/ýÓûÐctˆQÒÀýA*äé)õá!E<ëlP#K¬±Æ&y*ò¦Ï2»Á=š‚T< .pW=„™g–#" ”;N”¾ö"K2“„Äô‰°Â¶&$u˜çt”à@Y禑|÷8§iF_¦Îs›¾RNg¨s’‡´IÒ@Æ$®°EˆQ$_¹o‡q±H)ÈŠ…CX¥¿M«߯&+lk(Í´è©“!Û­ÑH¥¨ÎÌPö"|÷Ý%Î_­óŒØâ† ±Î<û¬±‰«<¤ ÙãÙgžcf8ã?d–’¶·Y8Üἆ_8X ˆ¨]ÝâDéé×3 q‘˜È¡ú{ßâ" ì“¡A¨®Ê-ÒJm/ð¹ÀmÝÑôaU1ø ïÓ"©“Ö‚Œ(rDDýý´eD+g4­n•-­N%€öÓʇ¼Ùç9ÄÇà1'Õþð]u³ÎkqË÷îõž,cÿßã~d:ÿAšÿ)‚¨EdNý«DE—Vh‘ˆÀ6K¤B öXd‡GÌ1!Âôé`c<9¦5‹8¦­’¾ê l™O~,RˆU¨ˆ<÷8ËŽ±L!Wâ=óY™¢íQÍdðAÙ9³rÒcÍcÙòÀºÏ1:2$¹–§Eéc )–›LŽ(Bä nr‘9ÊHŠY'JŸl¨k¼ËUà9P®‹ ÷:ŠÄc‹U² ã:VIpûÞc#ð=B9[“kdu@͛Ī ¾mqïý0ágl‰Uenã)±™ÍDç{ÄèÐ$­"Pe€Ì› u=-1ð©“%À˜Ltúã&ë…˜=dÏŸ%)Z¤”ϽJž)IôàC[$˜ÔȲËq:Ê¡"£p¤À0ÉÐ'ªïYK"’4`ë+Ì@®_¨±Á ½Np°Èª˜f)ž‹iAàÈ ’2šä©dÄ!óŒ±I!?w.ÚÄÙxBú?Îòc–AÁ¦I6O¢tÆP‡â¼dˆ‡©­RSØ‹¡|߆ðt´ì6넨`yiñÉSÁÂÑÕ[•CÅD–»‘: ZÔÈ£‹ÈhFO /†©“&®„ OU¾õï!OE”=âÃ ÙÆÑiCBà( >¤ÇMüˆœÈ½ŽŒDMÐR`‡-‘Àô]\!U¤}Âä¨è±UŸVÈáÔä ;MnqD×JðøÍ0¹WLNŠG2Ç1´ˆÒ'¤ R$UZQ‘#Ó /"¤idHq…‚åH[Dê 4MÀšÞŽÚZŠ`U¤„ô”Ç[à«›¥¦IzS<í”"5¥Æ…F#LÓ[ª;M\eš(H…´æ˜¸Qd†2)šÚb6Mªj’¢"òy;yÎp¬ov)®‘Q¾q5¾k’"NG3ÆOè)ýáÀ2è?èºì^ÇñÓGe¼XÆ„Œß`FT8¤ÈéæBs}^‡”!?Ó†’!E“§ýì‰æ½C™ým4e1éEÙ5–¤Û°$v‰û²:ÑLc¬_çDw›Q"ÈŒ(“kW±3#Úv\?7æ9 BŸY£LTt‰¸} ~™ŽˆsZ<$ Ô^Ö·èŠ(m!#˜=}¢ä©°0<à(*mX§y@Œ.-,³K¾WÁ¶Æ cA=jÏS!JUo‹±ÔØ×Å·˜ãæi!yÐäy¾‹‡Á»<Ë{\ö®Ó ­8å]^à-ª*ääˆ"çÛ\å1¿Ë€5~zÅ}“xGu¾9§Æ¿ü!‡þwýó¤hò3ï“VÉ]aÀÏtÿ_æ8Ô{·çœkÌRâ=že“5Îq—sÜe‹Yåù‚ç½w4U(BŸç× Ƭ°Í8Í!s\å3£.‹ìóÒƒwùÔñßhh‹Ãnë EÐròÑ&Á昳Rä¿-~ƒÌYÁ|û¼ë_áwùYþX¥3{¤ið1^ÇÅâ>gˆ»=ž]g®Qfv\f@˜÷y––ùÌ䝸”ó=¢L°Yf›y‹eò“¡Á§ý¿TÉL9B ¹È-i)TUògù)šŠé,s¤Oñ@¯BÖÙà,÷¸ÍšÈÀ‹—úosu|WxƒÇœäPùÜ?Æ·Y÷7(P¢L56ÈQå6éc…mþµÿŸ5¥îãÎßð±òëŠ$eÑ'Ì)1$ȼÌ-.ò*ßä%Þä‘ú=ç¸Ë«|“C"Êó:-žÄ¶6Q¡¿ï¿®¿G%?IÑq”'3t8/€ë›rºã'[„ïcL$ýzjZcCA¼F^ˆ‘ÂyŒý Žk3òBÒ+îO°Ý žg2ôˆ¤ü&a†$ýxæX2¬º‹9‘…CÔïQ÷3D¼>‘ñ€ÙÑ19Q¡ì MÆôœþÄ 43ðÂL|ϳT¶€Ô¿}yàçý sž ©yåÜõcXLˆ÷ú´üŽoéi–DË:ÄE›˜×%£Ôྡྷ·… #ÀXœ‚ª$i¡Ç*›<Ë{$i1CE*Ï›œX­Ð|³§ía†¶MIjaúê@Ó4 ‚þ‡ˆ× c•=_ã4xžïrŠÌRR„99êOÒd™µÚê“¢Á"»¬°ÍûDé’TÙ ê̳Ošy*S÷³„UêÝ€0qÚdUtë´HÐÇP¯ËChB_XEî¦iP Ä<䨪HÚYê,²Ç:ä‘Vå%vIÓd‘}’4±qHÑÒqIísÈQ•?Ó?ä¤xDúIT´ú@ÿÇ{fü“tèæ;,S%χl²†–n“]±6ÄÕN¨E’wígÙeI¦Üâ¢M´IP/f4@fºc©yºÄØa1øštˆ’Z4?|`>E,Ǩ“á¾ušˆb©O°9b–ûS3C(®0YŒíòÓš€÷¾õ4¬Ñ'JŒž¦àµIÊ*XÀ¾˜§B^ÕÞŠ<Ï%ë–Ötˆ‘¥Æ.KÔƒvX¡A›ÒrŽ^`™÷x“=šJìá!p6G©Õ”¥µübž¹lƒÌ“ǯ…Xýä:Aµ[®‘Õ…†L¤²¸i^$jv9kÜç¡u’mVtq´c/iö{‹$;¬HR ¯ ¦pU\ T?æ7ýKt½§Í UXÅ€0QvAN ‡âj7ÆQJÓV¸?Cɘ倢Bð©“å6iYR$DzÆÝ–)Ð"É@„è¨$ä 5¤ó˜”(Pf–5ÊÌaÀ6«<à´û9¦@ˆà³Å !µ²¹ÎÜvè…³ühW3œ$hÙÔc<ò4‘9÷ ‘¦fdÙ«Ì9&/GÖ4¯Û¡m&äèS°¬ m‘ d ÙK4IK…²%Ógäèd¢ÔÍ }Â<6Ö¹b½OÓNò˜uN'78Œ•*ÝÆUºƒR`Ø0ôô‚1†Øf[¡…˜#E“&)öY E‹¡±•\âPÌÑ'‚mKAZ„>M‘¢Êâ ª"«#Y§Ù5‘ÁöÚ†$?VÔsu:Éœ†ž€O2J$ï2="ê¾—¢· # ÉJ\ÊÆ,ÞèsîÉ‹Ÿf3tU¾ü´ ¨5§' µ;~ð‰¨dºãŸ Ñ‚*ƒ¡M’)Õ:ê½ êN»­ÄròÌRRä;WO8ûBN&»Ä˜AÉïñôk(ûEnëýûEâtÕjWªô«JWôPœÒ:§.1"ôd‘=ý5ÙpFt‘¡Ç> ZI?Pžú]1â€yvž°Gv¨pçŸ÷@¤À±âÇtÀBMdcS!Ocæ8TÙ´-¶XeMm™öŒ.‹ì)ч¯öêÍ÷0ÈSQ£QŸV˜ç€Eöi‘¤Nš’”ÉP×¹CäM5Ã1q¤èfENñPq‡}*"OL¥ÿHDé |ÊÄUÖqŠ—¹®¥AFœå-Eik)Ä©Z4‹õÉQÓ#ã #2Ôñì‡æ8Éc}H8X(Ë ‘þ7iÒ°ÒDè3Ç!w9Ç*[¼”}Ÿ{—V¸ÿFœäË ØbŒ¥„r-qL’&4Hcz.9jÚÂb3a“5f7¿ • DÞì`"ÇN²Ò<)Q5³Zt7ÝaOC¤*ÖP£HùÁ?Ë=p› #N]¤µŸô€yöY JN‘±Fœá¾´ÈQågõþšÄT%O; Ä€5Ú1!©ØØ-’âœäû,¨c@Åvöµøó@ÿ(œå_2G ÅÒhÏí3^• ³ChK< IDAT…<Åñ)¿Nd8„0 TªŸC‘#Âʾ¶îlÂÐ`?Vdu´CÞ®R5² DÃϬŒw Fj¥ScÎ=df¯ÆéücÆùѧ88‚€G¬âHVº!Îv0†œ™< év˜ âû‚‰PÐ¥šÊ­ꆤ@™Bï+))ˆ þ¦ïòÀ8Å0kÃ-š"ÍYîéÕb•œ¼¯üG°@œUòL°)3ƒGƒ Êž£ÜÒ48b–ÇœT´m’Œ Ð"I‡ ìËü‚|•q–¿~gŽÕ«¢¢O¶Âœøì³@Ÿ(9ª8в`Ì}ÎP÷Ó ó(!ªŒÕÉP¦€‰C[¬é½$-U°DˆÓ¥O˜9)PÖB×.1JôóG’ârôˆ¡O‚w8¥øöÓ(Ó–´Þi¢˜S]HYÖ„IÒâˆ"û,¨ÈX)¾ 3PIm.‡•ä.À]ÎSš‚qæ8ÔÖ¹a•Øød+µ.œeôÏ{ WɲL‹³Ü£D:Y"Ì [*ãºÄ,g¸§•çp‰3< @™còUr,³C™C‚RdŽC…Xó€Sœä1y*Üâw9–Ø!I‹yö)3ËH %–ÙÑJüë\æ9ÞaHˆ#м/ž¡@IïåwY"E“ÊtHP%‡‡àYÞWÕø<;,ó*ß$EƒV8`žŽ&PŠñ®ŽÞ#1Ã1óì3VÓˆéh¬EŠM!yô‹ìb*[ÅÔ÷9"ˆ0¡”!#jœåaó^ÄfÂÇy“ÙuÞ8q™ï¾»ÌÅ«UáÈ]üД®¿½ûsñð ¹CJ¢CÔ³¤ßÂrAâvKÝž¬Ž8FVHv}¶M|ÐÇ#+€gNäÍ:>‚€1²{é0& —°%…šÁáaB™M’„’§‚oÆaaùä‡5F¡#3@Þ¯H‹›·1½[6ð´†Çµ-ÕQJ}LPŒT|iž¾!>îjˆÌg—¯/?®±e¬ÒU Qz´H2K‰1=f(dDƒ.Yíúé3Ç†Šø+E¼ȵÔ^¼!q¥ó‚î$Bå&,=UÅ'¯ïgù;»Ó$EQ­'XÌ"ª:[\Òárß“Ÿn*ÍM_ÖR4H)®|VÝŸÒ7.ƒr\ÌïùY.®2ÁRÑÜ€#ßk §l~jÔU ÷&k ¡;`H˜qR4Ô”ÂÒ>ù!!úDT.zOkƒR4ñUÊÛt™¥¦Âƒz cžå&j<ñ>þqÅå¨Qã4ÿ…ÏÐ#ÊEn§ÍΫ½ëlð|^¥øtxžw¸Ãyš$éá$¨“áoøG9ß¼Oj±ÁëL°Y`Ÿ5¾Å'ɨp–5Þçˆ2KIÅõ…ÙeI¾y~€gÅ{ì±È[¼Hˆ!Ïò¸ÍM.QQ§<æM^"FU¶x–÷x‹«lãy‹[\ä ^ÁÅTa 6oò²Þ§†ð¯Ð#Âyîðœÿ.Æjd%¿œuBª30fŸÓx¼ì¿‰' ¾Ëó§ÃkÔÉ2›¨°èì2"ÈŸ>‹É)òˆz­Q˜íb¹^»všÂ3‚Ÿ0ß^v®ê$§KÜÄ5¤ð¥Lm–é*ý.K\7žbLU¶¨Ðe‹Uå)or‘ÛÜåœ;…x‘·yWˆ¨Ï%nòˆ“Üä—¸IœŽV¥dÌ_ñ“ì²Ä:¼zjôRá$ò5ƉÑãû:8Á!sjRÖæˆ"û‘‚Æ\Ò@”‘:d^‹~ ×7é írÛ¬èóQnò”ŠPõe¿"¶5í¬¦”çSQ˜ä·Çh’â ÷õïY]©Sß4xïÆþS3 „rEXaG¾× YÃÅT‰c=Å{®Ÿ23„RQ‘ÉÓÂë1'5Žu%ªJH7RÝ|‹„„‰)í˜}¤irD‘0Ž˜ã@-Á¤¸-ü}é#5 3бËuÒ8˜T˜Ñ.§iNFT=[KT°wŸYpš:ü[jªS¢¸iH͘€~ÖÚL(+æü&OFxtÿRÜßîÑÿYô»œ#BN)ž¥ç»Ì¬Îìn+;Ù‡ú÷@í§wYäÈŸ£%R! U²´#I¶Y¡CB½HK\H[•d†pGâBÉÑ$Í:*G;ƒ‰GÉ+#ÒFƒ4uJyŸË:Q¬O”G¤••Ê×ħ2½n’Rû»Œ£J?ey1ðxÌ m‡¨û*b† ±ÎZt‹ #„Õ>HF«“g›UFy 61$¢§Ä|y*S Ä,çxÀÐ S‰ä´òÜÅ$Cƒ±JN‹Ñ%6?ÀñRÜx=Jäãϰ,vIÑäPe‡?æ—ù€2ä%F‡qîsFOîp)¾ë—¤?òʯ&NGíèW©‘£¦¬>RUÆCpÌŒ›{Ju^¤M‚y‰Ò£¡"m7¢kš&5µ%N-?»Š0%ZÅèV7`‹$u‘áÀ›C¦ýY¶£€ivX’ Tlb3¡Ä¬´§Òö“T±!†4HaÀ&ëYàÒG#÷ÿ*׋dsο‹>efõ³Cà3!|U$gh°Í*MRZñœ¢I”¾´Ê ýxŠ›¼Ãs)ú„üüM°Úò³K<Ȉ”hÐ'BÌíR9Ý „U^wŒ®søô„û×È*r™\#ÅTðÊôï¤% ÓP!5ŠÒcD[ÈÁ®­¸ôòߎæ­Ï¨nZBil5ÁÛ£LACÉÔ.CxzW¥§‹GíÓcä9¦G„-µVú ¬…hnØ~½È™WêL [¢e.ø@ƒg¦‡Y•§xHB©äåÁâR#£]2®J•´™hŽÅt÷/•ùaR;QäHMЊÿ*9R4TV8C£YÛĉ0` Ö –rjAðKØJ$7elL½þršØÇWªø€ âšú×ÕzcÊ­HPïß§NžYztŸ°CÿavèÿÌz‹$9ú¬²¥÷់ÜÂÄá§èç,÷2âžbŒ­,iU„ðUlf™usÀQB¦,ªTÊ)ÙmLw%MÀ1)ýÉì'Q" hÑß7ýÞÁT’Û1±w‰á!ôïi¨ûpÊ4i'A[‘âæµÅ¯JŽ JŸÒB;GåµÇÆÃ$ÀXÿ<ùL— ´I­Û KLém|ÒÉko¿PBß) wýýÏi[û'yúÌp̬òOcúvYâ7éªÝK•`nt„oÁl¨ÄD‘e÷¿Ì˜)š¬ŠMú„Æà"·ð„ ®îÑe¶9¢HЦäÅ“P"ä!†µÈMRÒÅ£bG§¯øo"„Ëm.bàÉ¢É÷x$NòÏâbð*ßäÛ|œ0|/ð6÷9Ã;€ŒиW‹})S EƒæØg[Á¼¦8lK­ËÒŠÇ#Ä€ c µfi«µAL)ß™ã4èÓϽ){úz§,ü©=ÍÁ¢È‘&_ÓWŸ©`øI»í¿yþcÙ¡O-Óy+“úvH³ØÇÁ$¡¼ÒKþ.ß/±Ã’&„Mw½c„>Jl³B‚–ŠÖé%­p³”â4Ž¡~Æ›¬_c[¬èýN”³IÌ ÿ,ú{¼#®R'à [äü MR*˜`À%ïe£ ;æY÷˜¼UÑ‚e¶©’WÝÃ÷ɉYä6³^‰„Û!¦¬y-’ÄéPdŸ˜×cbÈ!>n°†X¦«×ëlp+ô 3ò52´I’ Í:ÜáœR›wõ{²Ç’T3æüì6×ý§Ù½æóÒÓ–'»¦OŒ!R«øÄ 5Vý->à"§Žoù8ÂÒ£²Þc6Í5¥ì’¥J˜>ú,³Ã¾¿À¡(’ÀPC­žæÈÞ1{,* ›OÑ;Â÷e¥|‹‹ÔȲÀ>kl*Öþ&95”Ýc‘0Uéw©(enÈ2?r•'Wm!†$hSäPßÇ2Q.¡W‘³jÒ1=×dq!ûlÑú¤;ôúNÓRp› Û¬PŽ(3ƒ§Bš$ 2V–¬<×ÄöYÀàK”÷yFw\̱›^â=ž¡BŽŽJï™µŽ¨0ÄB1yÉãø6}á.çð‹6YÓ{—ûœá˜Í hä˜s—Gœ”¾V£ÃRlŸØa™mV°˜UØà[\ä:Ïà!(QÀð}"¢UÍoó"k¢ÊÂÜ?R¹ÿ(×SÞŒÈ1ïhrXÖ¯±Ç"[þ*‹ƒ=‚ HÒ¢JŽk<ËyîÒ"IÖ¯QðË”D Þ]ü¡Éq,Ë’³‡i{Œ}AšókX¾CÂít ¦FdØá¬Ÿ®Q*î°™#ÚíQèõ‰Óá4dÈŠbe²KÓJ2 „i¸,úŒ² £ò :"ŽÍDAq Z§3ç2×+qºsêµûVØfq¸ÏÄ Lé¨u_—(ÇXó·ØòaÑØ“b<¢X¸d)á(+×Hù¦¥5ØÓ¨Õ#æ”xÐ$•N%A› c´•H7J@¡n'ôISgÏ_âĉ2Íý¯…Y»Ò#(ÆìªÕ6+zŸ¤© _§ÏM9òyŽ•À%•‡å!sÌR"‰‰‡C’–‚Ô„h`–2iêÌsÈ-.âb°¨ènÓ©@‚6ËìR ÌÎb@ŒžÒÈ‘úÜç4¶(Jm–‹)©€j`â’¡ÎM.©pº‚Ë65cú;$t¦C„¹'<€%fü±>л~Œ‹î-~Îÿc-.)Q$"ø¾¾h?Æ/Œ¾F%˜e[¬rƒ§ù¯`Ì.K”)ð ÷5>5z·Â϶¤¢ð*×xÄIrŠ.s>B 9`žçÿ{2~-±Ê+¤i°æm‘5òTiˆeµC¿Ìu*äuZØøSÆyÀiîs–çù®Ä z]þÚø ìc©Cò1'ÈQåS| ‡¡/S}þ‡Á"„Ç[¡¸.žæs|ƒ2ö™çž–İÃ|ò€sÜÓÊü·x‘u.p‹>Qnˆ§iâ§ÅŸ`)ü3`Ç€ÁÉþCláP+¦ùIÿ¯(‹êdyÑy‹¤hñó%åݬ³ÂŽ: qºü/ƒÿz.Íÿmýß|ý"à³äïôG, ñâøm–;{¼‘•ÅY„?ÅŸ¦Ï#NDò2~kâ =/ú„MæG*÷õºgžÅ Šp9f†a6Í5Ž(ÒIr‘:9AÁ(+ÝÉ)•Éà ƒŠÈË(TÛų Ä$¤Š€€ÚãGÔa­TŸzܧaS%ÅÂè¡î§ Ù¬Í3QÅÔ âš0¥_º ˆ¡®D}¥‡Q¢ù#ŒÜÌUîŸ>~…¤A؉÷0+>Wš7égC»cÚ31ÚFœŒÛ$ä ‰0âB÷^&¦ÉEï6žKÖ¨Ÿt9ºK²Ôc1»O/bÅÚ&ìÉwk4qÞËp°úñ@ ˘fÀ3îuâN—â^…j:M#`Í…ø ÇQ°@À±àïñ=6I–Ù!5h3 ËPƒ”×âßÖþ#ƒxkâщ… ô'x– bˆŒ„Û#†¡ ‰VÛpø‰Ð[\2î`…&´Âq<ÇÄn8”÷f¹bß l hÄfÍ#Ò6í¸¼Eæ%zá0fÀe`„¸àß&ì h›q\, *«Ç»ôºúKÖmF†EzÔ"6êó±øëøžå¸`úœ÷ïa Ñ…‚(Sp«üOÖr\ŒóÁÛYžzî ·Ep¶OS$¹z|n*Âl»Â‚uÄddQNä©E¤Ru¥¿ËåÞ-̰ƒž°înr±qv,ÆÄ²p…‰…KÂk4†Ì˜Þob°† ­þØÀv2½&"÷AFÄF}D Vâ{œv2¶-.øw™ç°Òµ¢`ú$Fƈ¨ÙãªM+‰]ßÂò"NŸåë‡dN´˜¤ïÓ EŒ–zû½O>à„±D&¬‰ËZp›\·F3š$[jr:óˆVwøÙ'¹„~ýÑ®q’xx¾#,½¯– €.Ý€<(B ´ÎET³™(e´œøjzDQÛÄ|Åö®‘!ÌáB–º†£TÌsä‘7+ìÙ ½’ÌJ0< <¥†–¯[îde&ƒš,<ǶÆZí-+M©’F˜›!a"ô\%J!q·‹ïÓ´¤pv †öÒ#ÇÜúä*FXLÈQÓ£xAЦòÆQ§Ã{ÔÈj€Ëèâ!0”Ó¦¯¯™¹8;VŽÊ›cN¿¼ÍR Ì2;:¢tê GÙÈf8VyêR‡ EžªÖÒ„ék†@”.DéIõ? zê51K‰]Aíò§ö¼i®ú4ZK =žÏQU–f›¢ ’”QY<ØbŒ¯P¼§xÈ1y]ŒM‹»ø‘\ÒÁb¢Å’±â<ÑçþŽOý18Ðß,<ÇùŒŒ¹ 3 3S'•’éd"äÓ Æi)Ží›bhZŠ*‚ŒhIqb’¥Æ#Nraí>¤Z9 IDATÏÓ%Æ13„Ís‰Cê"CÔì1 Œ•¼IU¹§Ì& æ>ƒ•·­ó´H00¬Ç7Ùgžq‚bÌzhCs{ëd¤",ÅQz˜–ƒ›—ñ›Áà˜€Ê8Â_!7i‹8VÚ!ë×i’dC¬ë<ø 9"2ÛçãÑ×y?ö4†ðú#Æ~€Gœd)¾Ã.KŒq)u“’D;‡¶HP0K´Ibá0^ÝdìE<ž¤N†”h`‘PŸmc…(}šÁ$# •ÅÏ 9:Ýè˜N&iò<|žË?æ’‹ ;ÆŽ•¨Z ’!šVR² ©–µ|‡J(O9R À˜„ßáŽ8G2ßR¶‘j„i{`,³ÎÀ“U‰„ ̱„ÂCŽEž#ŒÚ…·­ó|ÂbøŽoshuJÒ‘?ËZ`›°è3ã³ç-Ð7å¾.Òä©21-ž~î&·ˆù=Ä3¡cÆ–MÐñmûc2‘ÏÓ D°l—šÈ0Ÿ: DkÑaHlìurÃFîÿ5® þm:ÌtÆÄÌ}#̬_BŸIæú‡„é‘w+˜ šàæcö!ih ·MØ2†I{MƾaxtDœ€?&#êä=9­‹+îBƯ³Üßà  Œô!Ým2Jñ0ˆ«Ñ´í;ä‚ÇÄE›3<ÀõMÂÞ€¿BÌèöL„Í‘˜ÅÄåÿgïMc-½Ê{Ïßz‡=Ï{Ÿy¬:§æ*»\®rÛ$˜ 7ƒr/-„:¹­DùtBÒR€ŒŠ Ê" J‰‚rCú¦¡Ó9  &x.\U.»æªsêÌãžçéúÃZï2è" Ò ÝŽï‘J ÛçÔ>çìw=ëyžÿÿÿóä)1 ̈_$ãÖgO}Í&aúÜcLîf›»ÄÝÉhCå7˜ä¨H šÑd“iºD¨#…‚]¢Ô”Ÿ;CUGl'¾wZWYø52Š„æk;`ž)RPˆ—0ûŒ²Ë8Y**FzÉ}…{)Q 7š`d¸Ê7_™¡úhV£ªÓÊÓÔ‚KK‘*äx’çhÖHÖÀæ'C¦tˆ“¡¦?ON’Ê®&iÑRþ}Õe1 ¤¦ Ú¬2¯ÝB€ÜIËÊlöŒ_c BßBŒthçÇU®€`›Ieknh[^Š- ^#ùìp‰ß§Àí=r7~8§`YJäaáZ&pŒšH3J‘†H1’ýGå$"Çàãl2Í4ûǹɴb÷Ö5’Óÿ–[þcl0­P¤2îtÍœeÙo‹> 3 N‡Ž£Œ²¯wA’Ù]Óêï&uÞ÷®SEßÁÁ¦$òaWŒi‹×£Hˆ’R¥âšá0D_H†qQŒÐ5"*˜À¦¯üç¶bø Å…}õÆ5.µHš’]àž8@QŒ €®ˆ²iLQš"¡Ô¨y¶™¤|ãî2Î3ò{xœ7¯‘:lðõ—r›#”Í-‘ÄñmêVŠm1IWD(‚#,b¢£Ñ¸u‘R”É3j$×´¥ÀÀöZŠŠ•n‰)nHAlgH’&;b‚}1Êž1J‡¨FávDœ°è鑦T4K*\ƒ4ŽòÛbˆ-†t0-ÕÑ•Œ<¦|oX8X‘Á4"MK%ѵˆ«AÓ¿_ÛšÌøn‚‘ûòò2ù—Éç?ÿyºÝ®þ/^äßøÆ[® 'ibâ5»„…Ì:HŠ&YªÚ6dàa#I¨¢P D\´”èÊÃ0<0¤kBlc.1ÑQ¹ Ž2ѶÈôëx¾¡sÓS^‹Œ[—ÑaŒ[W"G[;´#¢‹- `ÒÝf˘DO,á0.vȉ u.Ù u—="^WwÓËÅ”Én‹ŒÓP]žÌEׂ®ˆ|Û;)x¶úêLËRaœ2T•J\NŒ‚0—=­YÉP#FGŸ.>VB¯btñÄé(u¼$ |¢t8:µ7šd÷5ƒ Ùd`+ªZ]uŠC½O¯ºYÝGÕ÷ÖU_/N‹!"Ф&ÿùûÎS&Ä€61"*ÈÀÕÔ3O›a…eí©5f˜-uf§¨kÏ|K­9\,„ñÄèê3?®`aA ˜P¸Y©½’?'ɧ]4û*7 F—°"5ÞßÈÝúžgFðqëÖ-þüÏÿœ/}éKôûo滿ð \¸pá‡×¡÷oð:?Kƒ;Œó0—Ixm.Z7ä(Åð=®‹ô ‘¤EÌïÒIÖ˜Wªñ5v˜`ŸQŠ07]òʼÁä)³À29¯Ê7̧t AŒË,hdgZå‡é«¸Ã¤©§M‰<â’EîµÈùn™Gh“à0·yxx™KöÃl3É({<æ½ÄMã˜Q9áÜÀµL®ð 1Ñe‘%¢ê¶Zi’~ƒE–¹%ŽÒ&Á›3Þeâ‘ëÌr“ì2ÎŒØàIž#êvqM“æ;tB®X§Ùc\‰^"ì2A—ãû%Þ–™¯óWB)xA_nq”s‡Ó\¡JŽ=&ÙAàs‰‡øäü ÑH‡Ätw™/óåá“|ò»Þú5#MÕÈR!Ç ÷)¼a>À›ÓâuŽy7Ù3ƸÄÃd©rҿƆ˜¡Eœ 9ºDØf’M¦°pAe>?ÏÛi‘ä —•¶bŒ%ŒùYóË\3N2Ë:w9Ä=q6ïæ‹:˜Çf¨À;9ÖÄœžâ*6CöcÖ[gau…Í#SÊæÅfÈsÆ“Üã ME‘’û7Õ(ó¶]–YÔÌæ´yû0ïû°­ÛÛÛœ?žµµ5þàþ€üãT«U>ö±166ÆSO=õ–*è‡+$©5I%, ö‰r~…|¿LÖ«0R­ÐÎË÷Ø)®R&Ǥ»‹m®SöóœjÜÄ« ’3M’ÃI¿MÛŠ¶ú$º„鑯װkc9 tZÄ.ö™«pmÑÂ5L6dz7iç°w —{ÎAŽwîP‹ÊШŸêý“ꇒ£’Ö¨”ÛdÉ\ F‡M¦9Ù¾‰_1É$kŒù{L‰M:+$ÌŽ09T_¦1È07¹ÁŠ5ϼ¿FMd˜ô·yhí­|’D²AŽ 79FœÓlÒ&ÎI®±Ì5ÒZ›“¢®])%v-“'IS¦á©Ô;—9ÖYbA«ÄGÙ'M][Þ‚"URa*YjÏŒÍÍMž|òI._¾ÌG?úQþðÿõõu>ñ‰OpúôiΟ?ÿÃ)èqÑÒ‚ >««h8y{C•©Û#A“¬¨R·ôMrT()5¸OÈ¥K’¦Žü³> Rd©bâhz›Løò5  '*$,¡O‡}úD0ðñ y¢F‡„°!}BDè‘ Í„±Ã8»Z€6úÊ¢ ”‚ºM”.Y*R˜! ¢t0•¸c@˜˜èïW Çä8ºëG)ûlcÈ%%tñ°|´/oêaeyÉSf‰E¤i÷ãRÐßE$}Ýeì2¦G^1:ê lk;IІf”§E(††EÁ+s`¶ÌK~ŒµoºÔϧˆ ¹«4ðˆÓ¢a¦”ë@Þ”'Œ¦Ù¤E‚,UF…¤ç1Œq::<&LÃÜÑÂYú„Ôï¾­wd ·EÂhê‘X?§¬‰k5ðÊ[xCïÃô1…KÊi*•¼¼}g”B5ðŒZ õÎb¨G Jú2èßçë~‚ežxâ y£¶,þñÿÏóøÓ?ýS~ý׿û»¿{ËuèWb'éˆ1fc›ôÌ0%#OذÉu‘ û4Eœr´À&Sl0£~Gë;À¦-âÄ¢]LÃe]Ì0aìÒðS£A’jhHÏŒ0š,’pÚÔý ÛbŠ#ÆmÊ‹i6R“€[ÐÇ©+_yÊoÒ1¢4ÌÛá zFˆŠ™Ç0=¦½M) 3Âô S#…‰GÅèjyŸ0·ì#L&v©“ÖžpÇ´ØÒG±‘šf B¬[Szü]%K_„¹=ºÈ^h”296ÔIJśIw§BÚì Êä8ÄEFTŠ¢EŽ qÚì1†‡Áª"S&h²ÌuÒìúãDE‡%)2B’†œz(‹—›Ôè«p˜è¡.‘{C^½2Ë#§=Òêâ ×6˜ÑX×Û¥G˜:JˆÑVÖ1£x»Aœæf…tˆ1É652ì3ªmq̰Æ,“ìhÀÒ6“R$HAŸç2LŸÊä4ñm“ibth’d[…Þ ‚`{ Õ&Aˆ>1%*,“×ÁEz¬1G„ˤï{ä.¾OÛÚÓO? @µZ寏®Ëg>ó~ù—™K—.ýð:ôM¦îñãÕ¯²”;ˆkÜ30ʾövÖHós­ bw)šy^³Nóo0Ê>{Œò"q~ªûO\‰žÂÇ`…yžä9=ZoŠgyCÙÖ~Æýº~ŒÖ1Ö˜#£v/£ìó€s• kš f8é]cÎYçZè8×9I„>Oñ ’l0ÿšO±È2ì0êY5æY@îÚ <®¦Ïðu­nøa~®ôjv†2²ÆOñ ÖTôéuq‚ã½;„ð(¯ð€xO2ðÁ éð”¥ØcœâªsY¬2Ïi®ð˜ó2kÆe#ÇËtˆÑ'Ì&Ó`EƒT$ISç§ù + Oˆ‚Wáôð*ép ›o&ÎéQúCþeà ê"¥“ûrT8Ê-.q†¼_áÇ{Ávt‚M¦¸Ë!*ÙÁÍD‚)‹:iÄ2ÌpιÈ#ƒKÜŒfŸbt8Æ &ØÑ˜É"³…dÙÏÝçÈÝý·mwkçÒUùß ÞÍ”Ëe>úÑò»¿û»|õ«_ennޱ±1<ÏÃó< ÃxËô®|áÙÍy¿J‹„´`ÈØÍð›{Ga!n¶ ‡tì(%3séûÚfŒ–§cÊxΰ%9à3GÓŠ+5w’ªÈÒÎF©Øò¢é† †K'©í›ú~„†‘¢bdñ…`ß!kU¨zYJ"+dézajB ÜZºHYX!‡‘P‘]$K"LOì1Î(ûT# KôH $“£ÍI½qújý ‰ƒ„²Ž²ÎÊìó*Y­¢–a)\â©õŸÌ&ßWXêsbM£ ÝÕKÔ³¤Æ)nrÄ/™p©ƒu®l,²Ñ'~ÖÒã뮥d©j–ú%"ôÙf’!!´tàLK5="˜¸*;ªé–’¹Èõlp±g—2˜3PkE~Ó¡MB%æI~b&óù»ÚUÍ€…£× ¨ìŒà¼¢@‘(=•’÷¦H.M]}ŽL»_•ûwêÐÝ• œ«·þ›úöö6ñÁ‡>ô!þþïÿžÓ§O“Ëåp]ß÷8=ã×Éãá†dÐɸo³#$ê.ÈömŸ5{–˜ùÙ!À‚X&K•}FˆÓ¡g…HÒ$­q€UÒÔµ¢5¥T†R*AŽo3émÓ%B“$»L0Ç:Yª„̾ʯ²mL¶ûd©ñ$ÏqãL³I’¦V4ޱGŠ)¿!½ã~ˆ1!Ùòë¶ISgˆ%Dg+9Ž+$»\ >¤2SæÍ Bu‡ø„ dÄ!÷8H‹ij´Hâ !³Ñý2¾€Ev˜$G›!‰h›P®åºL;ôˆ°Á ¶7䔂Uâ:'Xb‘E–g—$-ns„ª!é51 A#’¤g„ɸ ÆØgbb‡›Ö_ùæi~öá‹ÌùkDE—®B ¶‰1ç®S5¥À%a´È‰²ÚóËÀà@ÉR%â÷(ˆ’Î;îÖò–1ɬ±NŽªÜÝ9]\àiJ„gZBl²T5_ú0w©‹4¦å¨U‹œŒL²C‡(à³åOaÑS£u—"#¸†Á–@å tˆsˆ%>-âŒÒ!¢üÎaÿþPˆž/8ßAà26ƒø3òÿ/ÿŸ‹E>ðð|€ÅÅE®\¹Âo¼ÁË/¿ÌåË—¹ví<ðÀ[¦ Ÿî¼Ñ­¨ç㤿ȼ±Â–?ÉÑÆm&ØÇڴ̸¾ü—(0ío‘vš$­“ý]\a2Þ!ìX¬P2å³9ômú"̉Á-æËLæ·‰˜9¦½- ­ ~|™T¸NÄìQh”p“§Â„¿£»Ú¢(0åo3Ý–{ðB¸ˆP)"^Ÿ¦™Ðv6ϣ̳ÆT{‡ÉU\L ”Èûš")1ÍÝPŒ“\£I’ 9b´ÉQá ’V¸0}ÆØ#F‡}F±²Èm!/-#”¨%G‡‰‹ƒ­/© ZÊÒZS|ˆ!§¸ªôBcôˆ’¡¦üî10 P¬>ó¬Ò'L‚&!†ŸÙ`ߌñêÅ<©‡c$E“QŠL²Ã=•˜¥Æ.ã´H`3T u“8-¶™"K•q¥–FûQzô ¥ÃC¼Fy KÒ`HH£Tƒ¡ÂÖ6HÉ:D Wæû,W¯^å™gžaee…_ø…_øáôñÞ>E1Ãs™'âǽæ@sZ:ƒçL±MÁ+ñLøg´7ò?¹_äÌŸ¡«Šó#|“—yŒÿbÿg:ÄùµÊŸs€î²H˜>3l0=ÜâûgeŸ! ,ó5ëGôü®²Å¤$‰Š.cìqλÈñ/‹·áaðÓÎWxÒxžÿÛx7aúåçoòOÖáa²h.qÎ{•gU!-6;/ñ¢õ_ãL²Í1ÿ&–Èó7‘Ÿg„"SÞ6ó¬rÛ8€|ðü»xCÔhfA'Åè`ô}–ËÄèp¢~›R,Ãíÿ¤Tã¦Ùà§HÐ"k78Ò¹3°¸6z‚"#¼—Ù4§ùÞEŸ0‡¹CƯ±/FÉQfÔß§-â|!ün)ðñ{¼Çýq¿ÃRè EsDÇøC~.ùÿð,üÿû•wsâ\…Ç»¯p(r—7„,0¶pzð—CÑ1¤"õèð6¯Úçp09ÄñüóTE†$-æX%B[ÁÀ'K‹ÿËþŸøã&3•MˆøtÒ1þÉúqíï<í_Qp ‹[âG½Û¼`<ÎçìÿÌE&Øá ÿnŠc*(£ÉD{›«â8Ëþ"uR̲Áª!ŽŠ8Æ-Êä¹ÄÃt‰2É6Ól±Á4}Âò°ñïÏ‚â{ÎðûS¹ö³Ÿ¥ßïó·û·LOOók¿ök¼ç=ïakk‹¿þë¿~Ks€V$†eG0#>m;F[DpS1¯1úF”’(ŠHxQ:Ud„‚(‘·* ……c[tͦ!Wz¡È-1)SË„P&è¥C´ é3ßµÆpÂ6ÝH„†‘$ÐGi(8ŠKƨ±Ï([²¶Ò®V²òDÍ6m“ë'Q£,òÐ$‰‰’èÕ %ì%¢§I>B ±¬Âðé¨quwj‘ ëGéxqØ0U€Ð#Âl{‹V6I7ÕÄ"ù†íRW£ö QâB'äMÛ3#6(RÀó ê^†Po…H¼§ÆU6=áº8ÁÂ]?½W³äN!å7‰ 9]i{ jn–(Bôi‘`9• ä+JUNƸŠ.[L“¤É¤ŠÜ äÀš³ÇõH aûú}ÐW Ï—0œè¥Ç=Án#ðèe… B±‡ï ,Ó#å70„Kƒ4Û¾KFÈŽ»Bž´ßÀÒf6Î.ކ>‡MSÝô¿ÿ‚.ìï9–øßùïøï§¦¦ø½ßû½·Ü½Ë‘‚Ø.}Â#G‰ y*"G1SÖ¢.™&™Ðµ(]Ú¶´qåD®ÓV pK8Z[!—9 Óe.¹©ö½:~Œ^$D1$­Y »Gß{³èxÈ3«E‚¾b‡q <‰%„ðèú1•4˜ /"25Ncð©“!Mƒ-¥=…|.‰‚ÊïÑ·Ã8–¥øÝ2I÷4ûƨŽUèŒs¦ƒÌ /©ˆìmß"¡~–’´HÑTˆè]-+mbQºÄäÔTýL‚µF]YÚ‚ŸŸÍP+ÔMµêªÔµ±É'Ké5—øé Q££GþÒ±#!2ÁX:°¨XÖ„©‘Ñ£qKùºƒL‚}F‚;¥0ÔÜf¨¶:¿ËtOùû ¾ž$eÊhp°Ó×?»šråDéÒ#¬/WmEd“¤69¬·¦O›Y,z÷i[s‡Þàû+èüÇüÿ“'Npâĉï½Cÿâ¿È—¾ô%>÷¹Ïñâ‹/òùÏžP(Äûßÿ~ÆÆÆøô§?ÍÊÊ ãããüÖoý¦)¿™j4Mذ9ܿˬ±‰gÃRr‘1öèaia޶ï`„<®ÛǸnžPc’*EF¹ÅQ¦Ùä˜s“¢Pb„6ØcœZ¸O†!•£»ÃyJ$há`Ò&Á({Ê@bSðJTŒ{Æ(Y¿Ê¨·OÙÈS·Ò¸L³¥À a¶ìIÍ ÓgÝœQjù¸e¥©H^6Cö…D"žlßš‘$5RLª0ÿm&¥+ÁÀ%O…}MC„Bd©§4¬$³*Ú°È›Lkns<Õ¦,rtÒßj y™™g•Uœ ”èaSLÓ!ÆcîËäÄ(÷Œƒ¬3œà&C/Œi¸rîÒ0R”Ã9ÆÜ=It(Î=ÉëoŒpä‘3làb²nN³g¦AÖ¯QpÓ>Šƒ©îï=¤9 Vs÷iš ^â1|“J-De.r— 1C‡8kÉY¢¢«“üFü-gÛ˜ I’YÖ¤øÏcÎ[c¡³Â~l„=c”-1¥oÛ–phŒ$)ŠQv”t_Œ’w+Ìô·¨ÅÒt„Tú`…œ_aOŒ¡‡‹…Ë‹ Œìýt_à Íïµhÿ÷»ïvyï{ßËoÿöosîÜ9>üáÓëõ8{ö,ï}ï{¹{÷.ŸúÔ§ð}Ÿ_ýÕ_åøñãús×Å,1aâ[‚ºH*±M™œt£D’¬1‹¯ƒUZ$ð¾‚5I²iÊÎ-0é ™f“¶™ Aš¸Ž/mUX·#cÜFNÓæÜ-ºQ¹BrÕ^¿Bž"Ê~^Np„Å~xDÆ‹,]$¯½¯ŠŠœòX Ïg9fÃ4IP!Ç;ì ã¡Ãô¨ ÃU©š¤°ªçT³»;Äð”T-¸8LQ#«üç-Jb¥Ç(û ”2Ð<…6qm…•ñÓÒ›ÐÈZ$‰ÑÑ–´yÍ(7qRÙç’M/énòœìÎÆè3`ï5ŸÜ™0aÑ×°SU­D‚–öž ô&Iz„1/]Fz§(Q IR…½ô(ܲÀ£G”²®ÄÔõÐ…ÁßüÍßpñâEþê¯þŠ÷¼ç=ܽ{—}ìc|øÃæêÕ«œ>}Z‹âŬYaßÑ·I‡7-‘ ³µ_±J–45 Õé,ܼY–\ìIZšb“’*p}Â̱Æ@½!|£±|‡šH³Ê<ó¬â`bòÍØ%Š)B浇Ã({ôˆ°ÆkÀ!îh¶xWAeBŠWÐÄië †i¦Â›xžÉMŽp—CdTöt›E¿€é¸ŠûÝ K6Ò_?É6=² ±ššË;ŽìXzDÞ|¨ívbˆgúý×%B S çZ&ÏmŽhv³¤Œû …ŒÜ6'¨EÒ´¬˜â¯—h²Û6M—ƒ¡U¦Æj4 ‹—/ÌbœwA|e Äèb GqÝ#Øj,¥éDÂ"e8BGÑZ4IÉ(Q%A) ³l,°È«Ìñ0—™›ÔIs‰3ì0‰K‚¶Œ‘!Œ¼AÅõ.ã*óÚN IDATAvöùPU h$q‰0Ç*³Þ›L°ÂAv— t!Á.MŒ±¯ »Ç“÷·C÷ œÁ[Îâû>Ÿþô§™™™¡Ýnóå/™……~þçžßüÍßäGôGùÔ§>ÅoüÆo‰Dø£?ú#>ó™ÏèÏ—  ßD«ˆîq.Qr~ž¢ÔµQö°p©’SœìyQÖV±QöÙDò*äèF ’T"YS,Sã¢Mˆ«Ìó`÷:5+£›™N6†‹%í—”(2Š8À({T8%N›"£DèiÎù$[j\lP²óÊ÷Ü¥NA…,ClæÄ:–/co£ IX§"©BšZ9£CŠuÒr¢¨èiÅaÏQ¡G˜ ¦Ù`šIv˜aƒ"#rÍÀ¸Ž±ÞcLE¹¶p°Z9F\¥ð ±Ë8MUè!›dr”XfÃÜÖìgÖd…1._Œ2zN’ÉeA§kâ°Ç(Qz~²Êœ9WÈ©éc”5f™Pô¼ºê΃±¶ŠxtÂ`oë`êŽÛfHŒÛL(VœY-L”xW¹Â&)uÒ!ìöqM.ÖP™r tMbѼςî møng†ÿ(èÃáO~ò“¼ï}ïãCúFƒT*E$avv–½½=nݺʼn'°,‹'NpëÖ-]лk%–œ,•ìc”ó‡8Å5¦Ùä*§ÔØcHÅYmáÈPU!2“ôˆh6÷%ñ0{ŒsÔ_"F‡Wx% ̰Á;\âað!#¤¿ñ*'±…C,!…×;À }"<Ï2CœªdYf‘&IÄ[âEFèfžU^ám\â,ǸÁ4›,#§U²á6EF¸Í"ôHÒ DŸç­·+ñXŸ¯ñ£ì1Î$[,Še,[@{Œóg°•U-A‹«œ¢¡næzl3AˆB`…Ë<Ì>£ŒÚeNZW¹38Ä…Ðy \&Ùa‰åÛ‘‰{¤XeŽ:iŽr‡¯Š§é¥IŠ)±ÉJrN³Ñ׬9ŠŒp”[¬3CÍ–Ét§FÖ¨‹4Ÿ{ñäð³Ö3$)ñ°£rµOs…×»Íֵ߾Eœ3\¦ÄÏòN–XÄbÈI®s™3|ƒ§˜eG†¯5ºdLɾÍa|5Nx™·1͇¸ËžåËÖ L°:`öÕ—»S½l%'ée‹iŽq“º™æùø×9Aš:EFÙû–³Ü_}õU"‘ÇŽdÆ»Þõ.Âá0¹\ŽjµÊúú: !ØÛÛûöƒèÞ]ñ$ÑÜ.N®À<«:ª5Ä€p·Ož2s¬ò*+¦ÐI†RGêê.u!Q'£yßiêDúº¶ŒYgx¯Ãë.^ÈÀ6e×V#K“$Jz}˜qk˜Â¡mÊ•Vœ6SlÒTD®Šø@Ž ®òs÷ŸØ° !Ÿ¼"ÿå)§#í¹FÃèq€½ú±p3`Âßa‡ aé ™oíØÓÔÉQÁÄÓ89–N¡Oš6CªdeÚ# š„(aÛ@áEs¸XL±¥3²Tñ•_ÚGÐ …‹A›µq1UÓfhoûÁÙ]¶BY6_Š“,¦Æë2Œ%B— uÕ¤È4ÌÀ‚:Ξ ru8L•“Ýû(û”ÉãbQ ¬"Â,²¤.4}E¡LÆU8yô ies­’c…ôü‘Ó»ôìã© Á6“ÒkÊ®½IBáXÓ$hJK5}Ú»M"­2ö¶™ûxpÖ÷83~Iq/½ô<ÿüó¬­­qãÆ ƒ.ö–e‹ÅtÂU·Û%}SÝgö»x}‡–#G!žúE7HÒ E‹¦Úm3I™<åìófÜ¢Tȫĥ–´Ýœ‹A\Ý(+^N5sÔ¿%•,½ËÝs˜q•0äjÛK[ѵ¢Jt¨åâ(>nDÑäÍÏU»›šb­Ë·,äeÕ1„M.H¦ ÓghÛ i sÛ„1TŽ2@Ø—b—|Åc–;¤ˆJqêȬi dçŽ4A4Ï·®:`©Ö´4P^l%‘F‹¶~ Rš'ß¼IÝõ¦óC8”cç%éé5‘ÝÄ6Ò7Œ»ƒD)›!ª*ŠWªRM\í¡¨õE´J¡ó±!ÒiO5]„[ATÝõƒ‡¼ACƒ'â´¾¯YÔòu›IöÅ(¾ê.‘M“$-¥ä-“§éDéôMbƒÚ}¶©ã»ÿùwøá8ög†mÛ\ºt‰W^yEN¾:}fضM8f0ຮ^ÏéìŠ~³ßÆó¤)x(“ MFÔttFA–)êýgaàëKrБ¥hª¥›CˆIšÄ­–¶cÅiÒ¾dáî ˆ {ú}cªÉS”®iÐ3#ü’Ê÷I¨ˆã UUÐ…šæ µ;C„hRLÄM5M K‘Úp@Êm赚|?Ë×mª"«W žò¡'AýœEv0*,g^'˜$ϳ¥3Ê|6ú*n5È( ²ÒåÉÑbÄ8öcË›¢¢`)—<(î&¡q‹ÞlÍW¥¬mˆÍ[å½™êŒì닉«^»œâ¢wô]5üÖÌó)e‹ê36¸*÷‰ÐT‚Ä›ÀiäªÁTYõò @øŠ6—Ð;ýàƒŸ! ê˜§/ ]bÚ*g»˜ý‰Aåþ÷{œCãÿ{‡~òäI~åW~…N§C<gjjŠD"ÁK/½Ä… 8{ö,gΜá3Ÿù O?ý4Ï>û,ò'òæçîaÌ{¸té²Lž2¯Ç1ãmâ¤ep§Þé̲¦Ç&2žP"ô"ª„‡¼£ì‘¤A‡8Yª(1ÆGŒÛØ ÉSÖ¿Ü.Qu£_cÄ-±m¨Ï(3l*q‰Œ!`‡0=Ö•ÍÃÄe’mE?Ë:‹ÞCÃÖ#nœcRŒÝ`ü•B¦9í1FІÆN°Ãœ¿†ß2Ȧ%p OEÓœ ”8Ê-„ðxGïy°=ls Q‰aúL*a,ÖÆj{Lù;Œ&ö #íxÁk›aShÁÃ!%w}F(±Ë8aúã&cý"}3Ê”µ‰‹Ÿ{»ráûTŒ<“A2?2ú U?LóB‹ç»,°Œ«ôº1}¨M°#WjD.r=‘¡Æc:DÇÄae¦Ù çUp ieñ0Yà=ÂäÔÅ`ŽU5¾’S±•!Å#¶Õ4Fb×H›’Ñ\#C†ªÎ•r¦ó”9Â-Êô è Ç&jÔ&²$< öï§Cý–ú0 ƒ~ðƒ´Ûmnß¾M>Ÿçܹs|îsŸ#NS­Vãüùó|á _ söìÙoû…cyIAŒ0 \m ’\qŸ°¨}5ÒŽÐÃVE=ÈF„W-’Äif hY!,EÐr°q|»å‹TôÁ]îäiÄå^×2†Øþ@‡YߢXz6¦pñ]ƒˆ-]*rZ0+€}\UÊØjÏïMX‹P]oTq݇¦…ëÛxj­È'ûJ´—ô›8†E޲²§Õî·¥S‚à“@h;Îì°Í$Š˜¸:yRØL ;IÒ$«ì¤-̲Âô¨*‘YN1׃Ô5[ ™aƒ[aB Kƒ†¬G„Y6ˆNw鹸²Ïôé&cjE‘¤AŽ2s¬«€˜i¥./0B‘}-JnW±±]}m"¥˜ê;LhÕ¹‡`„"E= P§%òX4U3Òìó–)“W HMk‘zDp1õnßÄe„}òTØg„>!bJõ¦O~Æ"Fšåâ}Nà†â»Ÿ÷©¹ùŽ=ŸÏóØc1q‡¹¹9>þñó…/|ãÇóôÓOcš&ùÈGxöÙgùýßÿ}ÆÇÇõç/±ÀI¿ÅC|„ÏÓlÓŒ±§ÐsQ6™æ'ûÿB+åG¹ÈYNpE–Xfx;ïà_yÌ !|z¹Kâ —Ùa‚%©ã1^Â2 ÿ6Gxˆ×HÑàGYgF˜cì1ϪIGèrž R]Mš f8ÍkÌs•SœäšÎ$ÿãÇH*•è»ÜæqÚ¼“¯Ñ Å=bàòÿ_Áƒ‹æY–Xà1^¤BŽ2.‰‡™Lî¥Ê[Œ²Ï€_çGb3É6w# ôˆpˆ»¸XÜã uÒL°KŽ ‹Æ2+ö<µDЧù*ûŒr—EÎø¯1#6¸ÇAÖ™¡E‚“\c•yÿ¿¸Ÿ£mÄxN<É3ÙÜg¿ ÇpçÝ 8¦ÅUã³þ:'š·x1õ(÷Œƒôˆð¸xÜàæ`’ÿzáGø¹G.p‚\g¸Áq¥ hã`s™3å&ó"+à§ÍQnëCd„Çü›Ìˆ îr˜ìǘd‡ fùŸýÿJÒoQ4ò|…Ÿ`‚mæY£LžEo‰'ûÏs'zˆ›ã2gH(ô=ÐÉÇt,d0n<ï}“éö_M¾ƒ œgŠMÞÎó$iòOP!Çaîbà±Ç8¸Ïýû(èþ¿Ï‚þàƒÊN;'“É077‡‚W_}•|ä#$ Þ÷¾÷ñÌ3Ïàº.ïÿû¿ík4I’¢AÞ¯Ð1RÔµå(K 7$¯ÚeoŠªrƒ49¿Š#$)Ë÷®oÒ5bÄý.)Ñ È •±Éþ#¦§2}ÂT’iZfBÎÿ },Û!¦@'C,2Ôiûq†~ˆŽ°Ø·ÆxÊûW:"NZH-Ì£(k÷†d·çUâ ÐÅ¥­’lÈ<¦èZ1fHj:èP%ƒ«V ·§/4ÈÐsKå“K,hðý ÕE" ­ Ì’¢A›˜âFÈ(Óƒ*ü©'4jþ%[©xزÉ4kÌr€Uò¢¬»ù 5Êäuþ¸ƒ¥ÁLss5Šý1n\Ê‘{ØV¢5A‡¸Þ«ÓÈ`PÒ„A6U °#—t6_ó‚©…‡Á<+Š[1Á2IѤO„¶šÀN²­&ûŒÐ&Až2[Laªæ*€Ê š¡ &ÚSa2Ò×Òv· ´hÝ'>•á¶ ø®*wÛ¶ù‰Ÿø b±¿ø‹¿ømÿ~qq‘ÅÅÅÿæóL<öÅ/ð81Õáf©q2Ÿ™ìp9|š]Æq0™b›Û•9æYe@ˆ›âûŒ’Þ!I“×8M‰¦Ø"N›×yPe!yˆJ4I’§LKíafYWÝù&s¬£Ã 4T4ãE™'ÎrTIÐâGHª ä£Üd›)nr “¤JVzE<Š£Ä./ðuÒd¨R ŒcØTȲÎ,+Pc 4Xe“S\ÅÁä:'1•-G…m&è£`W™ë®s“C\á´»QdGL(öú´zXá'ibŽ5B xÅÄf™E†„¨“ÆTkZWPƒP¯ f¨©@9òo’W+„%>î3 BžÆq#P¼¯3‹ «lzÌ££cp-ƪJÆûþwèßãÌøï¡ ï2AŸ¤¾é¬3«r‚}\Åßg”"ôTÌ8¤g´AJ{B <ŠŒÐȧXež=ÆHÒTø rX • Cþ³€>¶Á qZdªÚ¥…Ùa‚)¶(+¾¯À§$ Z¬–¬EçÝð“2³Ë¸Ú]ì‰18€]ÿ7 ùêE x˜¤©1Úe‚]êHÐI ¢[g–yV)“ÇÃ`)}O”(b …f;LP'ͼ±A)‘Cx2#ÙÄ¥BŽ¶Âˆö• ¬KD‹ÊjG)á+1*V–+â´èIûE•,]bÓ&NDÈßÑ|™d%’ØÓaÂfœ›_3xàó”EA§T­2¯ ð@Ýã´ ÑÇÅbƒY¦ØÒÉMeòÜ3Re×1¨ø9Fž¶î#ѵ›L3ÄR;Žq—Ã)0Å65;ÄaØ Øc\)ŠåØ5@ÊYÞúì0I˜÷䨰iMsü~Gîý·ÞÈý2¶W%Oz/xŠëd°!ClzDe±7ä"Ä»o`‡åjGÐI¶TTªœx%m~‹šHKƵß`CÌ0Ä"ÒéñúŒPÄR¢Ni{‹2T1ª.&M3N˜ž q(8QŠê¤õžzˆ…ŨÓ%–h’CeÏ]d‰ü „ayl3‹E’6Ž´¼úqlHÂóQ™‹.zJ@øfÞx”®Î,Ÿa ‡:)RªlÚ 1•·£BTªÈ¨Š8Êâç¨×Øâ´¨’#¯8òC5¾–0#_G 爛% ®¡ð³=²‹U¾{˜×^râ|WXúrà#Øa‚-\,ê tb_C½6™Ö9óazú÷ÝT©~iêú‚b3TkÀ kÌcã¤ÉóÄi³È#ìKH£ì«&cK9z ”žß–°pï³j—>¼Ï0*†ßãÌøï¡ ßä(‹8ü8ÿŒð} M‹Cþ]†^ˆª™å.‡øiï+ÄD›oˆ§¸È9²TÉPg™^áQÞÎ œâ*¯rŽâHž5æx˜KøuãÊpœ:Çýyœ±p¸É1îp˜‡¸Œ' 9Òåu©ÎdŠ™`Kk’ªæÌRab«¨ECFU]Ñ”z„©ÊÈ(B—)–|­MŒCülp–:Izn„5w“‰«¢efØfE¬9Tê’›¤*S ŸäáÇø„mrÊ àbf$ÎlücŒö‹1‚‹2¾x°›I Úä Rj´/Q65ÕYÐ@"/®¦& ©\ðÀ½ e~ëÖ¥0¡ñr G‰"iWÚbe] Å y‰°Ø:Ó#LFˆSµ ?>¡/¯ÓÇG—âÉ)NÀÄ—㎠܄ˆ¡Ë Û,ö8Ï2Áf•G”É1à ™q€;âÂà“¾G¹% íSj‘$q«Íİ öGœ÷?däªìs‘c}b-nW˜|Œ³>Bí>™d•™°rd«‘ê”ô´Æ…ñN|34­kÕm|æ˜V,JÛŠ2r´Ì(EŽ]’%–ØÕd¸™é)Oð>c|,°GtÚ#` –Æ{ôÆa\\ÆØ²ÈªI[Ú¨·ÖGÜM]`Ï¿ˆËyTO{‘’š2Ðâ"÷é¥H‰:)pž >,zÌp"Ïç jj3ª9"Bc :ã®òÿ–Ø¥OP§?FBFS°eôêˆç9ÐèiϨÖ$¡cyËì å/ÈyàL*N­÷b¼ôä\F"·ª¢¤¨Ž{›ïäm˜æ9ZT%GFé¥Â˘8âšO‹oKÝDéŠeoBššÀkT¬7K…°Lñ<¯€šJ*I¯JF'<¦»bLÈPe@€°<«kä>þW¾ +×j”kŒ ¿˜W¦<4βûÔI±À>Gv‘‘Tmæ8•ÓT†‘ä,Œñi­™6…G¬¡§wëǨªP/ô_&§ÆÎ†yc¥!rNePeAðïIä8ÕcØ$u2T8%O‡ˆÎºzm=~Fz'¹Ã2ª:¯ºc,cH€Ë ô ‘ I’&Ó€AUòò²*ÒGŸöXÔló61îq›1iê:ë¾ìî“Ö8õåØg&q.q.aq†{Ó‹¬[·(pL‰"C̳Ÿu’J·6bæ‚%„(“ã–q…4ueŠ1¢œúf¨‘fŽC¦˜l³Â¿ŒÏ{첤=kÙ#n¯ü$§owà…k¬›·•niè"À“»\¢GX—Μ’çˆYåúu·…¯®ô°QÆòïyF…1Ú púJ™œ*Ï"Ÿ%J ›T-ÍQ¦B–vX&B‡*ivXÑ‘ºl²F@ð—ç÷¢ÿ—¸Ü?~}××ÙÀL´´ IDATþÃH†ˆÕ§óƒé’ô7™ÄgzRÃ"Š˜è{Pµö…Ó &†Í`b `›Z±(¹I•ŽV›~¿EÝJ’×IL[dœ*%³À eŒü”QÌG˜¾À˜è°K_/p*…½ižeðÓ5Â4Hvz`DÝSCå¾£n—‰acÈ©ÎË[‡è“˜6pd’×#L’–î\ÀDz¤ ÜàÊÛœpÈc†–¨s+¹ŒÐ%KE/v^ôvò¡1r@ü=KìÑ"ÁPQ:ädŒî9ðæ8ÐàI-™ù¡£?Ï‘ƒÕ©ài+d@&žcÝsª+äkB×’Z³Afœ_ú`Ë×+D³ñ€óšOámæuµ®È‡=ÂÔDª Ó#&“›~NÉ–»ÒÑUF}E‰ ÚjÓïô ›= h™n¬¿o/&©!Žxšú4H’ I—0QºòŒöÞ•ÿÊLqiªÌ°­G&qé-R}W—™¨“hŒy0pYbW»Ò•i¡Â"{ ùØWFµ()„hœ–m©¼*d©hB\ˆiª,³KÛˆiýØ‹|d¨¢1&.+lS%£¡#Q:¢¡5¡nö45ý3z‘†0=­Ï¥*5À€6qòœrÀ~Æ„é2Ç!ó–R?#"tåâP¸Ú€„ÉqŠÅ“': ­v˜3Ž˜DMØ'JJ¢% Vئa©rƒ=f8¥Fš<§XLH‹³s‡eú„ð™#Š”ôhÍÃÜÚLXdCŠ”h£I’}MÆRyóSá|öL‘ÝHŽã·aá™i³®‹4æ„á>$@“!ú9"-­k š$†8Ìýz7¾/èΰçÌs Éz— UN˜ÁpQŠ:¶P§ÒÝ:OÇßå˜<»,“ç˜ 5ÛÌb€>ÝxÜ‚r” Ò×õ’?ðúǯïî» åiÚsLb>ºvˆhMÙdG cÊdèXQ1‡Í0æ:3”Uƒ™ AŠaÔÏÈðS&ÇŠ¹MÛcdøÔÎB5bù¢œ™îRvf86‹$ÜGÙ§â¥q»Ç´sQ¶Y¦+æQ:4;æ2 £I‚&ßÌ>KÁ9ah*Ívdø1]G´ú‘žÎµˆ±Ë©@S&jJîZAvXV$3{LÂjíPyoBÒÆX2 4Ü #©‰jÞ}¥¡Lù0¨Iá`USX†qڌ𑦦§mê~(àg¬µð,N…(ç’U ¦j?ô’ÖªŠT±?|Œ‰Ò!AS¿_ÊOäÒ‘IÛ *]pJŽ¢tYÄuNßs˜ªN“¸&‰Ž±åà°¨Ÿ}ªÓì¦{÷C^¬1ú„¥Œ«®ñÜ] éZ€!~c$ˆ×€¬UÆwH"6Vy¤+RÁ%JGªf “Sp~ð¸Q×ñ'tÅ;^e‹*YôÂüG̱É?Éuàm®°Â66Êä8dV#ªd1ýS Tá§‹ª>ôô‹ 9.r-îsQï,ƒ X`Ÿ”œrUAm ¼Qð³8&N‹Sf¨’¥H‰0=ÆøØe‰ UÒƒ©ÃÇX¿”a à"÷tíá?‹ìj˜A–3Å5UÓœ2Ý(WišsÒ%¬ËÖ¹-ìbu2÷XÉþɈ~(ˆÍ„¶‰Ñâ6ëÌrÈyîë2˜1–Ø%D_7®rK£n0\—8MV7 pÈqZ¬sKS“&Ø)a1Á$YbG;ê{\b—X¡Í¾‘æá[1^~îXƒ ,\Ø'N“)Àà2w´£Ö;M7Hò¯é‘{• šÄhã—keŽ#Ö¹…ƒÉó4H’çS(YpBŸZ$hg-fe3Ç].²È>¸Í„7y–.aŠ”t!„ñ¸w“ó±)î{öÝXðÜ€IËP²Gƒr Ép‹#ŠÚ­~À<N(Qœ'eÔ‰¹mZFŒ7xŽ3Æ–Îj{Zò!aŽÓ9ú¶JÍoOÌj¤©EËœDftÂ?-f9d–´#Ó+sF%5LU Ì a£G•´ŽÎz—2Y*þ ;,ãGüòœs=H#œÀ6Æú~sÅ0Û ÉÔµ5µ,ÀPW°Æ¤LäTë*ª«4fO?÷òáŽ@Amñxúþ ÄôƼg$M$ ]úR!«'jºÚ8[àD›j=# K™ÒÔØgAØïIÍYïᘋó5y¾ôNš…§•?À›œa“!öYéb c d¦"HY?C= ‹1n@„šh÷ÊlgÉô¢d©•šœ&Êå(Ó!B‡(%ŠjºB“CÒRçÉ–Œóë(ßSóqoðñ¿à™ñÿ÷‚¡‹-¨=ïÄísÇ„à’çXWfznÁ Ü׹ŀa<§ú> œéï’¢&8ũ޷}¸TàwõÂ¥p®}íxW:sS²šGTÉ`Š;Ü;m+cIˆ Câ´ô ”¥B’Ñ‚[ÄIÒ K˜]–ˆÓ"K…¶è>T=Ä?cbthS$µv›Xª­'*ÐÄ(“5Mš Ñ×¥e¹èúnˆÅjþÙŒ®âb²Ê#mä¡(n¦v ÅôÒ%ÂÐ 4TSØíágLº¾!sœâ`RqrÔÌ4Y¾¹ ˆ)GY­„@çñ´g9"—?¥mÙl}#Èò¨‘£eLÑЀ®ŒêUJaŠŸ1áˆÕ¥eÇ4Ñj†S\TÁC˜ž.zñ mRÔÅ%=Uõ™Ô˜bbM”Kµæ¦éQÕôäŽq“±©6'!úS ASŒ2Šñì=ø*RòX#÷ckßÓ뫤 SLŽ˜ÅÁPÉ7ÍüôG¬Ò !Q+%Q™ò,HÐP5ªDè!„Tfœçp0(p¢«/ÇØ8C“n0"‘,¿lôUyp<¤áWúï…jÞbMŸÝóìq»Z¢Úd ‡ômO±ØfE®í IÔH38dŒ_“ìöY`@ ºÓI³Á6Ë„PØÙ±lr·Ü54èJ«K¯y”6U²’$Q4³#*dð‘a‘="tØf…0=.p_ cŽ(“ÃÏØaYî²T¸Íz„õs£E\ƒ^BîLR—Ά}¶Y!B—5ºÒжÉ~†ä…ÍîEÔf8å®S!KVFý3œ0³82¼ýÖÏ?³i(–½_Þ3@ kšú¨žMªÜó;, }n‚(Rb›Bô‰Ñæ.Šmr†-)¨ ¡JŒ6‚Dd ½].ŽIÐà]žÖ ¥t¹+î{‘ýǬOýAÇÖ>¸ô*[LðñU~”¯ó".OïQ' Äis¼ÆË¼ÏuºDx–7ä6ëÔIqô ó/sÀña“N¹ÉUNÈsž<ÁûlrFïX½˜Ê¦”®xÕ| áhs›u­SO±ø€'h#A‹unsÀopºtÓ_ä¯óß2žg„Ÿ«Ü$lu Ñç”^çGxŸ'Xc‹±ëã}óSL®Mn1Ç9ËgÈsÌs¼Aƒ÷¹@4Ï8oKiƒ:m?—½I÷ÌÿûŸâ§Ÿf…m²TxÀyn±Î)3L°yƒç¸É:.ÏÖߦÐ9ZÜ_åSÜåëÜbž]=y…ÛŒñññï¹Íº„õ¤ÆÃ5ÎÖôTc@€ó< bdù;û§¸ÇEÖØÂbÊm®ð6Ï`à0ÆæçØa™8-®pû{;¡ÿ}||Bÿ®/U¿9Ò.cCq!zDŒv`*zqO£_•,Wcž|ŠLyóqr”™¥Ä2;,°O‹="¦#²N±:ÂOŒΘ&ùA™ 1L 528` ˜˜6u#EÖ­’p[dU±ªb²K ˆçñÜ↤Guáλ‚ˆí‹Ô5ÂïŒÀ…­U{›KÇ4ðc©„m¢‡%Ò’B:D¤¯Ý£Ñ¹2³u$òšúžO;ÈwX¦IÑG>ßf÷ý U'É;£[Ï>ܽÐ%¢û<¼ /úØ"Î6+"m(C³×KïÚx¦¶Ùé‘#G28W„GœáYÍÝðdÂ#fÙgQ6zŠÊ?Á’‘ÃG#ýØ'ôêã1=9É ½ŒêOФELUÔÙ9:’ù­¡z¦‡{*áþY )CÙ1éágh9¡ÀuRR3¨XËž–¤\×èÒ¯èÞ‹!yu…‡ÒèæýÝ5Òº¨!ÀH²Î ú´>Á¦D‘1 Ðõƒ}Båëjd¤·+»ð¨Œ®‚´Ým#¦ juÒ2ŽéhÈØôéÓFÓLj·©!„¦I\Lj¤éÛ!š¾8Í`\÷—ɉ›u¢¦C:(ÍÑËü«ºRõ9Ç=)WP7r›;,ã)´‰Ñ°c²iRS‡šx¼›¹K˜š™Æ‘"¯¡ÊÍGñ‚oÑx.‰ÏœˆæÑ¡ UµI!I=”¢ìËQ•S»gB©K ±#ï×1­É©©C”}©’øEˆf A‡m…+¡C¿d]] Í=P Õß>"À›>–äÓ£¿ ÿ oÀ½½=þæoþ†H$¯üʯpóæM¾üå/“ÏçùÙŸýYüþž*ÖU¶cÑ=ÐÙpå ©u»D‡VxDŽ »,¥M‚&C$ihÓûSèY*ùᓊP¯Ë`‰=¦˜Ã}bF‹´È2sÓC¶­˜SF;§‰‚@…QP«›\%iÔéŠë~ÙØaŒU&ŠÕŽŠzYðI© ޲À>~G墇øIQ—Y ?#æ'‡ÆC’ц‰{q¹%g‘ë'eÕåÚWq­ àÇÜá2GÉP¥À IŠ—! „^~=A“]é¡î¤Ù6WµÌ¨Rã ™2ZË㈃¼FŠ<³»„i‘à¡húcüTÈrÈœ zÕDO•^YÌrH… ]™Ø*™sޱ,Ø.à3Æ,-Õ¹3šcëý±+bå½ZdWŸÄÕxBLÌy9NÕ&IÉ¡{Úy[Фk,‰«>mé70¤MLÀE#“-p¬[ Ñ—µ% S ]"º(è[“c÷ææ&Ÿÿüç)‹üâ/þ"o½õ¯¿þ:‹‹‹üÌÏüÌGsB/‹ÛxžÖ¹­ã)êbIÐ%¼'§y[ÕØÔ€ÿ]–ô¤OgªôÕEv™g_ú†óÌP&FKG>¬ux»ÍšXÁòœJ7º‚C¬J¹ˆGBJ‰Ž–‚û"Çä(ëì«ÍTë0ÙbUÖ.®Œë뤘ç€%v4eè:ð¤ñ®Ž@$‹ºËxž²F8b–=4ñË&b†Sb´iðÉ%²Ñ2'ƒ{±yí&íÉ)5%£0O?;ËyN8!¯!ªØd¢/†?Øg•G4IW]Ä7Pà™s<÷ÿ 9Ç@6m&8¯ý9Ê´‰²lîðß,}…ççorãí<-b¤©³Ê#½›õJR&ØÜŠ_fRú”%݈ w=š[®·}×Y`_ªSºÌ!J‡IÒ¦Mœ c —mV1p8Ça;ˆÐ£À gyUÉP•Žë Çâ‹x¬‘ûøŸù—eY¬¯¯óÅ/~Qœ=ⳟý,?÷s?Ç'?ùILÓü¡:¡ŤåyHúÒŠå†Ts–:õ ‰Û¸+§]WcûY>½¨(¦¹«kV½SüÈR†0ïá?umm4³Œ)Žk2Ä/½×cÝàè}þ‡ÿ®¾4˜Å)íMòaŒ{£_ÃçêEÅÓ¼U¥g¡¡j@›$Ĥ5”¸«AÛˆâêòò¤8ô9Ùû 0ÂÅ`*M“€(áù{8b~õàRÞä5Bzï‰w(qAÇÔ¼BÓtGzš¶WÈâŒc´%—p?Yà‘¿ÏóSR"eÊ ºOˆàZ€@ÆÔô¸½BNU6äß ˆ¦=Ñ/3îMÆÒ¼¦v`è¿÷žªÃ“’Y½ŸaŠEÏ kh7Ê÷Ø#6S=½A_ßSlíŸúøÐ8Þ¶m.]ºÄ«¯¾ ÀÝ»wùÜç>ÇÏÿüÏó‰O|Ã0>šºrw5]ñ‡3$©kâNƒ$׸!´IJIQ§À1 ì°BŠ:çxÀ!sL2Š`´Â6-âzÍsB‚&S¶Yá,€+ÍaJoÊPÁbÊ ÛzñöIl†2A2G–*uZÄ)Q¤H‰45|Œ8bNÿ’;ÄDÿ ©±µŒÆÊäˆËÉáTÐKÜ%F›‡œc›œ¾Å0¦ ¼(Õ}.p(¿w£ž0CŠšœ§œ’#N‹<="N“DV ]© NµËì¥Ís©z™Uåi‰"Ïò&!úÜä*]¢8c› o@Ö¬0Ëmbz$§ •ØÐÍXš«ê¤Yå‘n¸{Ä*.A12ÖH3ë±·SܰW¹ýõ$?ýâ.aºrM¨^ù>Ft(“%N›-Öø$ß M•*Y‘ Hc_0Œs~†HcÒO\ft­c’º0£žp? o„9!O•Œlzâsˆ’çTàÅ@ ¿5"=6±‘rëŒ ¿È)U†ñ1æ²{‡†‘dy¸¯Æ¹›Ü¤BÛŽÐ#BSWñâÓ6ñJ—n1¢µÓÅý#ºù›„Â}B“>ã¡E<ÚÆb´8ÇCBNŸ'ú7)ùòì³£ {Šm«Åcìú˜)ê8”ÄØ °Ä‰VƒTºŽÃ»ÄiKQKâà„–g•G²lŽèÐcŒŸ…éƒi ¿OÛˆ‹Ð~Eˆ8MRRÝz†-ñ4µ/¨/WŽÞ˜5å-FKø4 GŒ¬^]mSÌlIÊ"çø)1ÚRK­ÆÿSlš¤æHÝHÓýOª8Š@JŠ”ø Ÿb@ˆ9¸ÌÞç:!ü_&8èøA2T¹Ìâ4Ùà,Iš\>dÙÚãoíË‹ʬ°ÃóÔI1ôùynø¯Ú?ÆMß:=¬±Éžl2NÈ‹å„#æ±÷(“ã+|Š$MüŒXa›¨Ù&n6yÀ9nr•0=~Žÿ“›\å)rÌ6éæ-žaD€ø&Yª¼ÃÓº_ú§øÏüŸ¡AŠ8mÖ¹E“[¬âcÂúì €ÿùµÏPxÉæ)ã=â´¹Ç%¶Yf-þÛÎßòŽý4Ë¡ꤸÏyZ$xžoIl.N!?Ϋ¿÷{¿Ç½{÷¸~ýúË‹˜D…Ôû,â7F*Æeø‡l²BÚ¨³Í ;,Ñ"Ne´½g\¤K„c‰asBž5kSƒ‚,¦ Œ U2ÌZGœop‹uªd(p̃…U¶¬Å*ˆE(E÷]1×ÕF±b戇[ôŒ="¼|š($•¡ÔPgáCfu,µNJôf› $eR~©úTæ¹8Yá1XpĬΘ{S†˜Õ¦n¥èaN(°Ç#üØÎ„²‘%e4d9Uñ©#fYa[³9٪¡!z„¨’%(&1å+Ñ(L• ’b¨íQ!ËŒñqÀ¼ØBħó€ó\æŽæ¸{%I&¨Œ·Ê‘·Ü¶1Ñ,øqöñëi¤ÍׄñrŒqÀàk¯Åè½Æ5Lj¤p%¦š¤Á‘;‹a(é®-ò…!Yþ ÊdUSžüRm[!K‚&Ǹå¬S4KTÈrÀ¼®¨-QÔä;ÏGà¡e+n¿¡ –~Æ\å&I”djñ}ÇÖ|9ÈÆÀu›ßõKûý>/^äw~çwøíßþm?š½DAôaW3 Ã¥IG“vªz‡3¸Eœ29ݹ«Þ,õçcÛ'®52*b"zt˜óè{‰0Ææ .Z5Ž ®5LY ZJkW¼æsÿ;š}:ÒÐãÌ”“ÞίC^Fìz4EïÝgmVh‘à"÷ÔdÀR:®Ç öÉ¢¢ŒiyªdÉŽñ‰ËÐísžtÐ Þ‡© ¦«#ÞM4ƦC„˜ Ù>ìŠ5™Ò%ªÇM ’tí01ÏÔIÑ8‹¡«Ç¢corVSœ<Æ~€¡ŽdôVÄ‚BÐt!žã¿góu—ÈœçYã-\ ê¤9¢O׎bZÊÝ:î뉘›öYà˜ŽYddܦhxiöYd‹3ØLØ—Ô`šq 3Ë!÷¹¨±¯áÁ[LhÓE |¨Cì[óÉúÄ3Ni·ÛL&ºÝ.W¯^ekk‹Á`Àx<þ¡:«·Î"I›©aˆ$ÖÂϘšt„žúªêÔ¶îÈV\Õ’82üšíà¦æ„·‰‘ !“ž6¦_Mì,¦ÌsÀÈöcà¨VÄA¶¡KS°ž ’¢Xrw94æôAAÕ•Ú¸ÒËîm <ŒâkD…ºÌr¤c©A¬±A cÛGÎ*sDQrãU¹7Lc*Rd5 «›¶îgðN—Šõæµ_å†ÖÕÕ"U\“)Oó.÷9OІ6›Ès×Ç"û¤©“¥,Ð8FÉ£Í!s„¿®îsh’ÐàÏÄØ$AÚ¨S „)õ®cü<à1¡ÐEé‰òÙâÿñ ;ßô3ÿ‚Ú±%FaÕt5:0O‘#b"‹ÌqH‹8]"ª~––Óx§lÅþPýç‹æ.j˜ÂoÿopÀ-âbÀ³‰Ó=JEzÛrâÞÓÃ/^Šï?¶æWÆ·]´“É„N§Ãx<¦×ëñôÓOóÆo0 p˲>ªr–.>ýÐôze3Tu‘‰·¥©2䦧 M±8`‹!SÚDéçT>YQŠ¢ÔIrÄ,CÄ¥³×ÁÔÈ>5B éNc@Æ@>šÄ¿C?ñNñ¶<ØËä4ÍÃÌŽñ½¸#å2BzÄä}mX‹Áãø˜h7f™îDˆR´™-ë«Ú  wE¹8FZ£ò4›1>ÚFŒV0NnZ!lõÄœfê_’&>ëx ½×” ©±ŠS,†Ó;ÃTn„!)²QÝÌÞ†@í´§’¹LIr°8ä·Yf ñ;]œ£8La­9^Im±qižÃoÂé 3L [ºœC´¦qƆOèÌHŽ—,P®Û¸žT¨ÑßK3³g8U$>_Bªío§¨3Ï>÷¸¤ó²m¢$hÑ—÷És;˜SàÜG[ÛÝÝåÏÿüÏñù|üÅ_ü¿þë¿ÎÝ»wù£?ú#®]»Æùóç¨ô\&„ÈB9 W饟­ŸA†DèÒó¥Ê+g¶÷9J öQ'©ãGÞ5X#o÷¹ÏñK¿ôK<|ø?þã?æ•W^¡X,~4 ºÍ”¤˜µª¢¿ZLU'0û̳Ç ìácBI@ šä(Ë"’fž Ó#Ì8®¾Õ3lÑ%*7S³l Wá—Píkœ'N‹(ÒÔ°>ÄöHq^ _ƒ¤T Æ™¢Fv*jUgwŠy%ö1F¸âÅ1_!Ãeî²Ä˜;\¦N’%v™áDÇ'\[µHÍrD‚&% Üæ uRÄijò\Ÿ\¬ mÂËs¢Ü±ý6ålšNYç]‰Š(‰©-©§$+lkÚS‰"OðSlޤÖtà†ˆÒež­}÷ätŸç„ }©µõs‘û7Q““‹Üצ¡–E㑇OgØ£ŽÚÝ_ç écžãƒ·ò¼ò‰;\0î«^á@ˆ JšKÜe}Êäág™f8ÕÊ.žâ]glã [z×ì=sT} IDATº†8OÃRk¨jS¯qS¦" \Ñ6=zU˜>)êúD7|Ü›ó1\î«««üÁüÁwü¿_ýÕ_ý¡­…%-rû$:%©:öˆc>k¬óÇ^\+'hç"%اI‚,†hËÃÛ+F Ñg(n÷}&–ObM5R¼<úýkœ’ã4’c8 õå‰j’ ÷œyÀm.3q}!¯SAÍ2/é• RŒ±¹<ûC'Î;,0w}‚i8Ú¯åÁvâÒ¦æ‘%½T à,55n¢ÚøÒÔxÄ*QZ¤¨3 È-Ö¿£ Ö›¸xÍ tÊ@òëÐ$A†*¶ü®¾o ý»,è—/_æÿð¿ãë·~룭]â.G<ÇWy™4u^æ5Îu7Ù‹Ì3uMBFŸwÿdüY¼þó×üæ/èÓîó*Û¬p‡Kœ’'ºÝáZñ¶YežÕ±îòŸÌŸ×Å#Ÿà-¾ÂjÞïóª†I `K3Ó3îÛlgyCZ·ž½Ï§Ì×øö C”çxƒëã|Þ÷Óì°BšÿnúóEë'ÄÝáÓ|™·y†œ§È+l“¢ÎÛ>sÄmÖd‘=VÝG¼f¼¤;•Ÿå-¾Ä+d¤ôà¾É›uïßôœñ쳈Í‹"MA¬ª©šÅˆ€€²ÂºèÄ•MüPÜîGÌ’”zV/ÎZ'ÉóL°u÷øH¢m~F² êB›˜,¶qÂô± '½ÃHhžyƒwÞÌýDËœR%#Ío æåEÍ<¨WÍì UǼ_ÊfüºvµID‡bâÒZœš´Ž±¤ŠÖµÉcÝTÒª’6ø½¹Ü@Ï‹¨>õ"UVbÇ0Cïò>CeÿÚFŒºhÂ.7Ìk¢“u{™Â*òZ;ã6ël³S96 ¼ËÓìR‘S–ê(WE-1n±®±¯Ì+¤¢k02üTÉpÊ =ÂÜò_æ”,'ä)QPÑ4ŸÁ}.ÈTÄæ¾už ÎjÈÀ,%vY䄼@dš’§4ÔÎÓÈsL{\¤N’3d X#¢l±J4û,h3]ß s—K˜8,÷™š–t¦ºî!çÕn3`q6¸Á–•îulcBŠG)Q”Ú?›]îpYjdß×ñ YLËá-ëi–ý;”Ì%ŠTIg£š)} ³A…_çE I ·3Å"K…)éRá`pÈ{,àcÂUn0ÁÇCÎQ•a¾pÄøæi&/ج…±k/óˆey€duN“%Š”ÉIE¢2î(·zšn±Î,Gä}''<äerl²F’.&{,pBžMª¨J^ï¦x—§—™æ,ÒÄþýjè¿þù8nW˜Ú^Ý¥‘*à‰i*&Ç1w0•+’‹AÝI5;Ä¥"ÔdFˆŒº„È¢ºÃK•ŽL°0¤n¤ ¢:Э鄡àyLÝdÖ%BÓHèÌ»‡xöÊ=u²&FÍ&>|Ô¤¯a$z¨*TéiØL’MâÔÍ$óXȇ®®ˆUºyæµ&¢Ï6«:ãqÜÛDácHŠx‘"t5Ó‘d½-=á-b8‚BÍR•4KŒœ½ÄÄ…o3ÁÅÀǘ23ÀÒØWO›öÑIÍ8d^û„<  ~† &ÐUÉàg$›…‘DPUjf"Òh›‰Åwz ì~ÅÆyÑ"é¯ ;¾­åÓû|”毈êYî“h³âä{8o=˜`“•ª\Ïçàu¨ÍÈX{§< g‚O8ùªÅï±sèÿÚѯj·h²Â¶Æ›ýf2öXbW_dCd¨1pŒ*I™0ÏŠú'z7犮Õ'DžM6áÓ%)žæì—ÂÓ } ¨ÝÊsއTÈêŽï8-üRßç™gNQE·Æø°Å´¡4®³éÛÀå ›œ’×c§8MÆÂšw1p,“8mZ¢…éi*Tœ–ÚŒX1ÍQ6%F¡:Õ‡Ü>ÎÔdè 1ªŒñÑ#LІŒÏ ‚‘5$Æ‘Ó7¦ªŠUÍguR\0î`(8•›ö¸ÅUZĉØÏT .ß~¯¼rW6@uÒ„%ç­ô®Öð$—YŽˆštÌg9ü¦AóÙ8®áb3¡H‰c R¶âXbŠ3bî™ãˆEö(ICžÇwîV7fÈ”›±¯»³TäÔ“Õ~‡56‰Òf XQiê Oû±GîÿœÉõãúwwì"Ê@ƒ¢>ìôLsÊž³ÀÐ èí ›©XÁ, Ó儼K|ú™0EEÉZÒàçc„5vðùÆt„îù2ÒÔˆX=ÃÔùd¯C«A’}T±#}_Ld“Ü!JŠš6]ZâÿIKóÐ ÐãÙ 1YÆX84H‘qk•A .}\ùw'²Xe¨¦Ï‡:aây?¦Ø8Xßñ|}‚÷ÙcQÁ<ÆÆ?û,ˆ†¬úË=¹I-jU¦Òï®6Àª¬ÙÛ`8ÆÏHÓIòœpÊŒ®*u1ÉsЉ–°’‚çm'J ‡³O(YÃÙ¢jféH[Ô5>ÀÁÄÂá6Wøor›|Ùe‰, ô(p–#žç[l³Â}.Ð&Æ¿åo©‘a‹3!|™™2{dù_ßü4?õ N™áÓ|™—÷î‹ü¤\?·ñɃtŽC>é¾Î†q––xŸ'™gŸ(] "J›l’`‘}N™á'GÿÀ¿o~žWs/sKL±¸À=²Ty›gp0x†·ISã6ëÜá2/=îÈýãúÔïéu÷ñbŽCÝ6é2?ºSÒ­ŸÊ½FŠ:·¹‚Ëì¡Kžú²áLSÓæ-:äZĸî~Àlí˜bX•/)q•›2¥ÊàN {aWbk-ŒHÐä‰ÉŒ ?%«À2;„èKÿAY@Ó’Gá×ãú§xBï”k‘Ú‰m3º¥Ë¥Á],{J.PÖxÕAf(sÆyDÉ-à·Ô:ÀP6¡A†øE»è8f„.ËìŸ—SóœÜÇSù{rˆJÓ'Œ_»žLJ¼d’qE3ŽÐåçèI‰Œ§»Gň캼Ÿ·BVó4L9Õ·‰ ´KŽŠèâŠß%B$#WeÁϲ©6Fg.ß!zxÌÆ{³äŸêL½WOë`2Ã)#á,±C•,.†î·˜åˆ1>™ÓfÁmVtˆŸ±Žz-vJ§oêM›Ç4‰Ñažv÷0þÁ>3>’ýÓ|‰ÙvÐɘ«D83Àçaô Ö€±³ø1©6“HëÙ„Ã=VGÛ˜¦Ã¬}ÈY6Xªï:óLþ=;-^,|âè”^`ÇP4¤Ä¨eLØçXj2ûX‘)Kî.ç†[¤ºuûø‡câ6=;D¸7`¶_¢9¦a$ñ9²Í]ÖBê‰;Í>ÆÈ jbŒ î€A @ß ÂÔäBsƒ¡í§îO24ý„vF0µ8SÜf9¶‹S·™ žàš/_£ÝK2[$œ&ܰÆÿüK°Àr§8¦ÁÙÁ­@§éc²)N80æ˜1¶m–NK G6•h«ïRpËø##2'u¢fŸÕÄ6~{LjPgbÚ¬„Ԥę˜$·;$cm²±:þÐL­Îó7i[1‚ƒ1V°Åó±o‘«UÉ”ë¸óߤ ñ‚õ:ùN•f F× sÆ¿Iq|‚;°¹ºÏœ}€éºXÆTzªÃ,žj È'*dsbãáÚˆPð˜‚{ŠkäkHo°–Ùä¹±KùC|ê…¯±6x¤Fnþÿ!ò¿á`š60¦Û¾%æê%ò‡UÜE‹`xHÀ7RÍvŽK¡W&W­p”)’VLFtì0½V”J3ÍRè@hŒß³Ð9ÀíóâíÓ  ]“xºMjú à•Ç;¡\Ÿú=½”¼ À±Â%ÃÀ¡NJœ˜-Z†2byœö*iP R'­5T¯Ûº µ¿=Í’„JÅÈ2 )ݶJ†<'† (Ï™Ò÷©º—‹žÊI¬k…µQÊkhì eÞ«ÓlË÷ì [ÝëŸÚ¦Ô€ZZoVæaºf”ˆÑÑSÌ–Ä@M¦4¸Žayhå)®jxëQòœèœxKŒbj:PÓ¦4¥[p>$xZºW!ì-Â{,ÈÈ{ ‡¾N´x§zoŠX!+Ùm5©KÔÐË´{-Ž#üL±9Ö› ŸLÕ"âšj ì ’P‡BÏùß%Jß1™·é’ì¾×£ød„ž¡–ê!AênŠ$ :FŒ1~ú„ik ªK¶ê¤8qò„MU—Ú$!ÒE@Ç”§Ò ¯$ C²þEÂ"Äd#©¦¾ì ý_Â~‡+´cåXFÆÁ!F„‚ä9¡B–¶ãèb‘ŠätÊ »~Õ\V&Çóœ¤f覂Üä*O.Ýâ«æ§ˆ; 6Yf—¿§£.‡Ìq/¡Êgxd¬p.´ÁJh›c ø}Cµö©F2D"LA~nškdRUqcñ1¦8f–#¾÷¸@7‘Ž4µ ëZöÓóº¥l„Ÿî¹0>Æl¢³élSftYËO¾È?D^á [8¦ȲÉÖØÒT£µð¦Š¨¤Ç“S®þ»¾KŒñqqî‰L†‘ NS¢È y¶ «œeƒÿ<’Òڙ̈́¾âÇÎ~—wxše®îñnê:Wã7鈻{œñ±–Ùdƒ5&Øœ’'mjò ÌúJÌúÙa…6QFROCÚÄÈÏœžéÒ–.á’¯Èl¾„‹ÁgHSãjâ&÷¸ˆÃÊÌw& |ãÆUþ§gÿâF›i*dT>Üê`X#ÜK_d=}“CæUL¤:e›ñh›gCoq׺@„m;F>ËÙ]³ßây±JÄêKµ!¥²þ¾”TȆà˜<ϘžûA»Ü?¹ÿ“/¯#ÀPà ¨“Æïª\ôˆ iª:‚¤#5R÷té°drÚ3P ^ «MÇ´´F<ÄOÌép`*3Øt¤ ¦º¶“z´o1%.p&?#ŽÅwã—› uÒzS½æ†¦ŒYBœt%j6zÄhó€s$i‘Sd—¨^È"t…Ÿ GÓðrÜ>áô*BCòõ 9]À’w³)ѤGõ¬*Q$L—"ÇZ’š¥$ߥ-m“êÞ÷’!úä9‘nƒ ú™á”)ü‚Pu„â6ÇqšTÈI,WiùxÀó •®ªé‹5²Å‚q òBKÇÚz’ÂYY}ÄþN‚á ×#„Œ ZÄŒ6.ÏDGªe= \Á£†d¨²lî 0L% ÒÔpeƒ£|\*¾¬*¸kÉÏë“ï?CUH‡÷俲ºŠƒ-JÃÌqHp: n%R¨Ewš¡t¢23\äp]×^â®^Hªd🠹8wOô§S ¸0G„.¦ ]‡¤-Ë|€ÍXJYÒÌqHš:³²À>UÒÜf§ÌñeÞ6ŸÑÝÛç§Ù³Ìd‰]^™|™»öEj¤9e†³lð³l°F˜>׸!m<óª4ÁuÉRel¨¶·<Çœ–'»œã!‚´¤s{žÆ®–'N‹•Ú.µp“ÍàšÎžGèP’‡=’¯– $Fì– 0äE¾Î,0Æf ¦X1§QÞB\!Gp:à’ssþ´Ü%£HU4Ëóî*dÙ0ÎrÊ EJDiëGŽ2/¹_g×X¢)ÙØhÉŽz™ïè@ö€«lk³ãá·?ä,lRÔI»U^ž+3ã?åµo­±ð¼CÐPüú=l©MÍs">EÉŽNÈQÖüûùé+´óQ6Y£C”yº °ï,Ð6£|’oP¢È> Äi‘¦Æ»l²F†*>FŒw·ýñÈý{~©ñî@sÒ=cëPœÐLÑ.oï„ì•ö eê5 °d3–lr‚ö©“¢L–9ñYcBôèä€vŒeöYPºhÈfhû5Ul$1fC´èàM…¬t•«Îõ¾t‹»‚7)µÍÀòãcÄ.ËbÒ4¨“"B‡ŽÅfLGÆÍŽJ©ØX—IYdRºýÌ×öXœ×¶ YG’ÆŠi«DAûŠšÂˆ¨’!NKÞÓ3”ç¼ÁHžuR,³Í‹¨ü~¼ºÚ€œ¾½ßaƒ¤høI]±ìö 1 MT2ä)žR‘¿CIT“ ¸Ò}’Qjâ›_ö“ZvhX¶ßÎ~"ÁEß=5ýp£t ÝõˆoºbÞUþ§8ê-)˜Q5Õi‹±®OX_†x„”‰ÖG”¼ê}jˆà_Õ‚þ¹Ï}Ž¿ÿû¿gaaÏ|æ3<õÔSüîïþ.ŽãpöìY~ã7~ƒ{÷îñ'ò'X–Å/ÿò/óì³Ïê¯?Ç6Xd—eL–ØeazÀ±Uò‡‚{Ì;ÆÓÚl±îÜfçÿeïMc,Kï2ÏßYî¾ïqcŒÜ3++«*³ª\Æå2ÆÝ¶iÑÆC‹‘’4yÂy ¿;&B—»¢XŸçÇxØ´ÇÀ§@8…I™âäˆ7‚ªsV#X§BŽs ¢‡´ v+¤©¦GeŽÉãgÂLâ\¯ Eê<·0pùÏü;ÚĹê¾Ê¥Ù5B΀¤¨h¿Ê3Déò~çK Œ0#¤ý¯k¸|™g™aRäˆ5w›-c N1smþñŸÙf• 0“ç9 Fšk¼(îÛжÖn·ùáþaNžÀÏýÜϱ¼¼Ì¯üʯP«ÕH§ÓüüÏÿü;Òä*ä„qØcEZrP{¹N(F…¬¤én4f€B¦zÂÑ >Z$°™j1«úZŽ™ÃÏ„Äq-ºFŒ8m6ŒÓB;Âp•õ­Fš!!†b›ê¡BS:I晴PÌD$¸ …ò~Ž 6}3,øÕ°>œ½Q}Êl2rÀ«¬KFÐ-#NÈh?u€!# ¯é‹µÍ£æÕÉè,sƒvHS'I“,Ué’Ñz„Q:´‰“¥F¡N'Ê!§Í.Ëø˜’MŠ#ö8oh¦¹†ß‘læÈ>>GE§—…ééÝ]‡éI¼¬J\óÀ6JmcÉ”WöÉE]ŒñÑ"©#] \Ãnè[k[ûVèÃá÷½ï}|øÃfii‰?û³?ãòåË|âŸàgögÙÞÞæ7ó7ùÕ_ýU\×åSŸúW®\Á²,±QLu·‡^´f®&ñ4Ib˜*±%õU3£#ñ¼qQ‘I =5ì2jSÛ*é!ööïé©9»nÓpt\§Ëi3UbS½³Ô0ÆfŠß¥ª÷r=+" OJ•Þ7U%¥‡C™¼Æ=Nð0G"–h e®k€mL™J¢Ï SÜ¢ÛÖq{ÄÔ´‰ è!Àˆ1~æ(©Ý×´5™Ñð¥$©hFEDo)šzeq›R%×IQ§%žð 5BfŸš?ÍÊl줆ß?’Üd—¾Öѱ>g‚eN1¥cð3ÖéOƤ#BôɈÝÅóºÆèꀗ™À[$´0QœzÃr™š ¡¹–+Ñ4BýK=šïO4FøFÝ<Þˆ±"Ö¤ó™ÏðË¿üË\»v+W®è¯ñ/1!Ų³GȰg,QäHƒMƇ\åUR4h’ä—XdŸ5¶D¡]ç˜9–ØcŠE…ÊÌs¤À `Ì{äur¾ Q_—ÓÜå´»AÚPŸÝ°Zß¡žIé{u™]êd¸Ìšh™¥JÆ­Q4ޤ°té¹QjF\0"e4dÇ\çbûÍ„ê`Os—cqf¬²Íéáq»ÅzH­â<+Z™< ê`+•çH„±Cˆ!az:Œdˆb/œá.;¬°Ë2e z²'=‘ßÉKGËs,n"K/ú„p…péñ2FˆÒÅdÆ1 BÄôÉdAý›íxŒol¿È>EŽØd-B‚—í‹¿>„J~[a‡q"ôå í“¥ªE~Š5ààg¬;ü:iÙcºlÓ¹ùwqBß•%cÖ¸hÜ ÈU¶Ö*ÿ¦G¸ìK$Å!TbŽ»œ‘5C“.Q@ã¼xeŸ07VŒÎp—•Ù.œ¾÷álkão]ð ôK—.ñÆoððäóyúý>ï{ßû°,‹T*E£Ñ R©P(p]—F£Át:Õúÿù×)Â…»ä×£.,«´¬P@³|§Ø\ã+ìP'Å>K¼ÂUµ·¦Ä1>ÏG9Å=ãuå'^Êq›s,²G•_åöÌEf˜õÁÄ%I“-ªdÙfU¡N¨ YÝçˆ"-‚ 5Øf•]–uT_‰9þ"ðž¡ÇçÌïÕq¬6S¾Æ{èb‘}Z´™ò^^Ѐ‰W¸BŽ*mâÔIó_¬ñï#ÿAÕy ý›ÏóÝœ3nk|éË|”A¼$±MN¥#Ń —{É“$ÃuåMË%X䀓lr‹ó’7<¯}±¯ð$52<Îkô óÀ<Á_ñ¯ùîÀó¼b_e†Åù[\”ÿ¾MœgŸ²™ç–y^[#ô¸Ï:o£Ã3|•\äEÞCŸˆ‚z¸y¾lÂuªd9¢Hœ6Ëì`HÇógÁqÖ¸Í6«œã6§Sl^^â3÷?ñԳČîÛ`!'ä&mçM.Q¤D!¯[‘[©ŠåpL(/òWy…nðor‰=’´ÒæEžÂoóÍ=^ÙòêÎI~öüwFîÿØå÷ûyÿûßÏ×¾ö5>ó™Ïðã?þã$ |>…BjµÊææ&§O+îéÓ§¹ÿþ;ôͿؤÎ<Ó$uFuž¦xäˆôº¤r*Q̃zLeÀìe(„'ª@+AØ)7@s”˜£DÐQ1óÄh3G‰uh¬s`4¡o1…¹¡GŠºz€»u¥d7êL±‰ºª`4 WFÒª£ #­]‰ÑQÿÔ’ž; IDATXŸ¦©±È.†ˆ«ú$&-ânKÓÕ‚¦Ï °Ë²täouõ=¢D„î‘ -f¢[òQ¡À¿äh˜ÔÉèÜW“=<´n`ˆêXPƒ²DE{MÑ ´Äè ½ÕÇ‹ ¨Ô{’§¡ÿˆ¬ü’,a’”TÃ1Æø¦þ¶Ê²ÖégQ:Œ P%'ü>…ªm 'L~ÌÞäõ¯ ‰¿ÇÇÈòëõ‡Çè \¨kEèªó7qÄ£¬ˆZZMÅ}µ‚š °ä÷~ðJƒû}ŽomÁGR÷nܯ^½ÊÕ«Wét:üèþ(ï}ï{ét”b2™à÷û±m›étÊl6Ãï÷¿#¿9ó¡G9±:ã wéJ·¼Ï¢V‘*¿µE޲&÷xÈDê¤õM»Š´"#!þ¨ßC*Å¥C”©áPñ…&ÇäµÝÁQEVà <üâL|¤Kìb3åy@¡“4‰ÒážÔ~To”4ÁÇZ,ãcÌI6é‰ÈoHˆ9޵jwHc¦& i˜Ìи·›éÊXLE)N@ Þ„×Àq FŠ@-&ø´#FGWÛ~FÚ²æcÂ:÷ée›U™'6ëµUø„WðTÉ)›»Ç!óÂ¡Ï †Rý¶r€«E!Þ˜ÍÄ!h´±™•]¥¤…èÉCZ3”¢Y‰jÔ8«k„iâyλ·¾1érÿü*_ÿÚFòºåïˆâþ±+ ilíd2áÎ;ŒF#\×e2™àóùˆÅblmm©i·K±øÎ¬ù¹ï½Œ‹ã>¢´‰`DU$Gm3®mWM’Úÿ­@O*ÈËaðò#<Ñœšì©”Cô³H+ªHc]ÙÓï‹1¯ô8–C'ÕÝlm)¶ u{žëyóPûåGðB 2¤O˜ C™çtèS|ÔI³Ë²pçÕîù(8‡e©Aœ6}ÂøÓ!ÊKºCÂKóDx ö2ÒuË“0Z‚®á“.¾­)iÞ륫émIÙw«ôµ°¶{L{oÑ&NŒ °ŒêJ¾2Á&ŒÍH [*Juø¶qùLgYĤ…IѤDAõÀ%LŸ6qÖx øÜyéøU‡>’Î>A›†›flø5è&™Ÿ0é½ÞÅx\Cé <¢ž'Lœ>åîe¨ÕB‰}‚’Iß'¬›9 [+ûóW—È_ p=¹ø/o‡þÒK/aš&·oßfyy™~ðƒüÖoý~¿ŸZ­ÆÚÚþð‡ù½ßû=‚Á W®\Áç{K@¤"ùT-Ü$É)î1G‰V$›·/qwq­€,rH…<;¬Ð Å[¸bg$8¡G…<‚9$MƒmayyübUª˜>/”Áê3Ç> ÌqLL°¢cštÖAÑëºDYe›†(`ð׸!XÐÎr‡A=ò]`?᪘ FæÇØf•}Îs Ópp1éŽ9R4ÈSf uxöˆâç€4u¦‡h1ã÷ø2ï£L޳“ ëïRŠå¹Ç)¦ø4ò6ç8`ž9Ž¥8)rÈ<§Ø`…š$8d0}rTðS‚ 2ÇÎÒ%Êî ÔÆÅÙ£O˜MN‘§Ì2;úçÝe™*YÎp—[œÇ‘ᣗ[Ÿu˜g• ªd¹Ë‡÷©‘a›Ul¦<é¾B”KÆUCÁ_ .ç6øÒø n¿"v¥ÃEó¦$F¥õ£ËMVðË×ÍŒëlûWpäµ¾ÀMB ¸ÃYnsŽevq0¨‘%F‡4u&ØTÈIá2Õk‡êЧß~z­Vã7Þ òòË/ó ¿ð ¼öÚküå_þ%×®]ã¹çžã©§žâ÷ÿ÷yüñÇyá…øßøw| ~¡îÇ#æä&èÁfFÛŽS¢@—œ‘ƒ£Ç6+bSV$¯o‘Ð,M Ðp2Œh9 ö %½ÁEýßÕȰ˜.q˜§$B²sd©ê€¯PHSg‹U\ñ\7$rÔƒ¯ qDclfìû9¢H[ +^ÔKík$ !XÐS¿3¦í$صW›¤O„=’Ù‘¢&CÒ©hÞø¾/ÝñX’-½}°íL$èÊÏ‘¼~ÞsnžC)ȇïPôGé‰`Ìóÿ«Õ‚ ‚»õ‹n !& ^äi¦Xº)jfÄ!&ŽØý:âÔó¢ï³¤s6RìŒj±!„>CBÔÜ ¶1å ß×®i.×ß̳ryÀ [¨¼Lˆ}8É!( Ú€ +lÓ!F™œŽš1 OX4*FÕfÆ6«”Ü9.ר3–h<ìéüá,ÿä=‘Hðæ›oR,ùÁüA?ñ?ÁíÛ·ùÔ§>E$áG~äGxþùçq‡çž{îïÙOäà&ç 2¢À±ŽÔÅëV·Xc„Ÿ N²I•ŒH i““l±Æ©Èò”Ùä$C±Á©îZ±•=äK€Ëe‘ó>ïy"ÁÐ0·9ÉŒK\'Àˆ NSbŽ´TPM½ót^åÚ—ÊÝÏ„%öâ: ÈÕc{Œe›#+ #Zý’(5qž'z)LËt¬(ÛÆIÙ³;SÀÅ @™~8L7fqtÈÍÀE½ã£IŠ¤Ç©‡LZƒ:Äô<$È ;ÜöŸaÏ]f`„tåºÄ8AËŠPŒJ1ËH‚•ê~¼iF›¸«û˜èЛc ²& €Œ÷ ÉR¡G”[œWV?"¬²íLq “c£ q•]8\^Ød×HsûÕ…'³š­r™Gº ‹Ó!ì`lè¡AŠ*Y*äÝ‚•yáAh¢LAº?ßßlß úõÿ§úx î>cBßPÊP/‚o‚!AÖØÖøÃ–Ø£G˜{œÂ$G‘#-²KJþ­G¸È îqŠ-Ö8ÏM’4µ5Aq¢„ékj’W­î±Ä6«ø˜0Ï!AA§qnº‰åÌhù‘¬å=-V9`‘¡òÙctÄ6Öû¢˜XâV‡žb™]†ÙgA­ä ˜¬4i-% ú,²/zLï=õk’†L-|²w29ílà3§TÉb3%?­P³2:CºCŒ›œgž#’³&;Öª¼z!.rCXîj7x™7˜a±ÇÒõû˜à[¬aàjàÅ6k8æ·ˆÑåˆ"FÌQbŒ²U­ aúØLô!mI Dœ6—æ›l[y^yq‘ÂÓ&Oò2My¸—É¡'ûÑ!Q:¬°Ã÷®a°Å'ÝM Ó2__D{ ”ISçy –Ù•U¸_WîßÅý¯p8ÌG>ò‘ð¹ïû¾ï{Çç–——Y^^þ†_c—e²‚TJˆh_b+M\æì2Û¬1Œ²²‘EC'm åÿ©‘¡K Gw³žÅk@ˆc¦u*Y‹ÚXËXP äÊ*k&“›Ò³~F4ÄúåWú„h‘”äÆ>¦º»ÓVQÆvˆû¬¦¯×l®ŒÏvŠ 9á—[Ú¶ 9Jî}7¬ºQaÛ{æ& ê¤tª˜G™àÞÖZ8ºO ÅN)é!µõYfWû½=ûTRè½çʈ 'Ù$LŸ4 ŽÉcÉŠ­IB7œÞA¡§Ð¶Ôô³z  \=¢4IÑ#"1Ûc9¸ÁÍ Y2p 1”"|H‘’hQq‹(]\ z„‰­̬)‡_7™íðÎoÔî­¼ÜvC¯€ßb´u£çÈkãýF9"B‹îÃèÆ¿púÇäŒ0³KÉXÇÅ Àˆ>! ùC÷ S7Þ™Î0ÉP×êÎ*Y$‰µ¿h9s®ÞÁzæªBéñ”Ç,Þg‘ 9XèTE0ó:^/G]Y7º3'¨©èL$¤jSF&õFR•¿2" Iå*=¨F†™ibš*pÀ‹pT•P”j·hæ’R¥·8¹…gsq0~½—2$MCßälF½ ø\â“1¿ %ð:ø45Š”4öQYK¸âÅÊ ëb¨›pÖ#e×5q«K”CI¡Z0„=` ݓLjß|"7;¸Äð‹/V¥3•ÅÏ:"Hˆ>uÒò^ParÑ–lõØ´ËÔ´˜ x`HO|©jÄ5e\ð³a>ÉÞW]VŸ)Haè‚Ä©Lº>–Ó»8®ÉޱB…=#BÆRÝÑEꤰ™©Ð¿§© zJõa«ío&mí;×7¼–Ø%«íWo½7fôÜ(énl®*ö!KìëûÒb&ÜsC‹˜¢t(rÈ€0-&$…IÞ'Ì"ûÌyÊlpZ‡‚¨±ExÚgqzˆéSŒup3Á‡R“£„ÛfjØÚûî—m“yʺƒNÐ’)b´©XÇääþ_$ÈĨ…eÍT1Ú -ïé.G¾9fâi‘Ðð“æeŸ>"Àˆ4u‚ µÓbFLÃUÛL±°˜âH^†¤¢¿ˆž¬ªÒÏH,xÞZÓÃ`{Så¿n‹Ï}ž™ÐßfXÂůi}OŒ¶ìž}ì ¬¶ÊVlò€ÍñÂwÔ­¤ÒÙúD€Cý8&LL?§½Ü o+ïk£ÇÊ_Z¬rÛXâÕ×RØgÈP'kT)rÈPžyªø˜è(oZêM?¼†!FCVDÞô5F‡“l££˜ÿ_ÙÖÌwãæüžñó„œn|¯ñ8Ëî.Ï5¾L‚6‹³}Îs‹íþ׋ܿ3,þ—ÑŸ0ÁÇK„ðCüï,pÀw§U|L©åçY2÷8¦À “*f0È@=PÌ(œfÍØ¢>ͰëSJZ×0¨FRz:Ð %èZ KHqlæÙ­pƒ‹òŽXðÊž:«÷•EŽt”Çê…Æ¨t( Kâ)¤)¥ T}YXÔ(ÝCæÙ0N“ E]Dp'ó4{¯úH_)rß\§J–VXç>D’ÛÖ9XÐŽ¯šw„ÐÕ ¥ã`·YåØf…<¤˜çî?í@ÿ&®¿ø‹¿à _ø¹\ŽápÈ'?ùI Ãø¶=Ð#ôS|Ž#*ädœªîÛÐ`¨´ ®"+6ŒFQÔé|^—7q} e9õ"’S2åòƾ^Ì¥GV;çÞæqBu§®o6%gVH¤ªŠÒé Â@\81:’<¨òúÀ N[çh{g’ÁÙÓv˘9Ä#æIÒdqºOÀ1ÁfHˆ UaÁGå¨S¶­ ÊÈSÖ÷²ÅLO¿ï’Ö¹ûZ’ü•Q£££mÕ³s"™&²|À®h ²T‰Ð“ƒ:¸óF™=À/Ç=R§ðÍÿôOÿ”ëׯ …ˆF£üÌÏüÌ?xf¼+ú‹tˆSà˜~ÚÄØŽ.Q—ÝÖEúD(r(1u!^ç1m(Qäð1&#ð€~&Ì.Kú¡¾Ë²÷Ä…ªÆÎŠØä…'DèI*‘Ê·ÝeYšæ9¤O˜]s G¢ô”°,É=ßIél)òŠy… y"tb‡UF4CºB›ŽW‡G¨èC¥ =4æé‡C’ÑìèJ…Cí¹§Øl$OÒ0’zMqÀ‚>àfXÌ “V,NÇÓB¶]–ÈSÑâµ#æˆÊ>Ç‹!UP5”iã§Èeʾu2Ú7{Sú&lâÈ7§“¼›yƒÓ´HÐ+ÐmÎÑîô®r=ëŽ ÛpñKwH‘´(ü)*ácèm3¡éZÞs—emc™âc‡U,ÎÍípÏçîK1¬§¯2†„P6ó´²qòw¯“f‡M ä>' /:Ȉ29±Iå4L$Büáôo’·¹¹É‡>ô!yä~é—~ ×u¿­t¥BW¨Ñ¨Ûe$²ÒƒDˆÛm´‰=ÒÔ¹Î#òr*ÈÐ[Ú2ù¨Û)ÎL7ø¼ý"tŲe“ç˜9·D´×%Sl VG»L>ƆŸàpHtÚcÎW"B—Œ°LæÜ63eh3T9D©·ÓŽ ^tD@ïhã´‰Ž{ì®¶¤Fè’¥FaTÆõ¹Äè*†’rGÝ1«ƒƒ¥Å©‹`ÊÊÁó ç)‹‡¿MŒŽVî‡é‘¦!—¾îäÕ}#®I€‘¶¦e©Ò—t7upÇÉPÇÏXûäU÷¬Šb‰“=¼!î#ciêݵú¹Z¨ëýÌ€dÉ7eLß ¢tÄy2£.Ø[/ EñmZ$鑱· ‘£Ö²¬ZÛÄOµyaï{¯ŽX¿$ftµß_íîGz-¬0{4H’§B–*EŽä9¤;Aym”È/ù°óó‡Åݹs‡ïÿþï'‘Hð»¿û»ÿ|úmγƄ÷ò% lK•ãaþŽ(2ÆÏù[Lnr¿ãYÞËWÈRe““|ð]|…gø*CBt£Qnð'xÀ=¢Üå 'x@Bl³ÊGù="˜8Üg*Z$Äû\ÂfÊ]NkX“$÷u,f\å&øØb•IæE)°GÜ\`äóKd鈗xŠÇ<Âu,¦¼ÌSl³*Pµ›bó]|…™WÕ¯ëà&iêœbƒ ~^âIÎq‡óî-^6žd‹5ªdÉQ•.=ͧ9Å&.7¸È+\!)c¼©$*]â R&Ï>‹Äèp›"HI3Á殉'Å—ìgEÄá w ˆíp‹ä)ãgL‘#îršeöøþo^+>Η­'øüß]æCÏÞ"d ¨‘a3¿ŽOnê$M69ÉûùEŽ0b‹Uj¤¹ÈM2Ôø/îÇØ5–unˆ&â[³C?¾þ¶¼ç=ïáÓŸþ4±XŒG}ôÛú0Wº›#L"Ì\‹ž¡ -êv ŒFúÁëÁO<-„‡õ²Ë'–B-ÏlÕí² (WY¹œcÜž©ÇâA†ø§RV‹„¯…mÍ[¶ŽÌì!Ä€!B“!1³ƒmLY~ÉØ64´ÄÏXêž„ñ¢J ÃeŠ¿Œè#ôÈRS€3HÐj&ø.>¦¤Ü:GÎ<]+¢í5¶t¡à©Û \Â55Ÿ|‰=­X7%–5G™¬ÜxM͈€Øcž–G>ç‰`ãÁÒ»zƒ"%m]›b£CŽ*!úTÞ&˜ó4Kì±À šDéI"\’!E\cGãb=AbŠ3,–ÙÓßË{}UÞ}“ æ9ÄçN*0ËÛ©g¨ág‚É¥ ]J/»„ž´‰mM‹Óæœ{›¾Ö(hK²"VÙÒú 9yï p°2"F—ÔÃZ]§ÿo¢¸-àú;l1Ï=÷Ÿþô§ …B<ûì³ßð™ñ®è="싊ثôÚÄØfƒˆÐã&´á,w¸Ï:]¢TÈ“¡J™7P{ö…Y GÇ* ƒÅgÄæ2&E“¬K"QRÆ)>ÚÄØeE„Zy™xÇÞ#±xÇ)“×UãËÌqLcbtØg‘Q¤Yc‹ 9^ç1&Ø(ã`rŸ´HêˆÀCŠK·|‚Œ\…fà€ n8Ìå%f²ÓQ¤v¸ÉJ#í½É­äns––$̤$b¯$M:ÄØrרw¹hÝ KU°° ôˆ2G‰–‘ ÄU²z¹ È#ŠR$IK& „ágÄ/ò4‹ìQ!Ç[lpZ[…æ(é°‹c d©2"À'¸Ã†y„Üå,׸„ÅŒ'xU“ú‹Üâ¼Ç~§ÕCÀPÝ¥™ãÞÃèßp…¶ €°Çÿøÿ˜_ûµ_caaŸüÉŸ¤V«ý+×·ÓU%G—Ô¬EÛŠ4FìÉ^;`ŒhšIf˜beŒhaì2;ÄdÄ="@™~&Z´äˆèVôì+Ф™%UÜò9JŠHç_|€2¦jeez¨O8`†IËM’s+Ú&:um†"ÚUÉ ë!IŒŽ˦©«çZ@©±=”jˆ«lq‹ ÔýN[$iÐ'L—¨drÉÌê´œŽÏЈR€"G£¥+ãyWÓê¢tYfOGÒz±©Yj˜Ìè»QæÜ#fRp¯’,²Çó$h²ÊŽPé\Æ2ë¡àƒ¡‚¸ºDYqv”ÍΜH·[¥NFSü\˜RäH§n.¸DÝ.53C˜yʬζ™X>­7Pb/Ux9¤AšCæµÍoH¤èIš,O÷©ØJ†ÚŸ«G¯ù.óVqFÍ q÷kÎ?£ÕÞYuyø&‡"3Ëyç–BMªÛ;²fpIЦB–¾¬2ú„ˆPyø©Þ7¼ÖäÃ~ €?üÃ?äw~çwðûýüôOÿ4ÿøÇ‰Çãïþ®¬bS ‰Èþ±2)˜‚oxþÍ(]=úò ÿ1:Déê?D¤ÙcžC­÷hIQº„ékñ„y˜¢ŽƒE˜¶„…P6¯%BLÐ"KU'8Eéb1eû´‰“¤É ;L±E€¡¯ÞJÝt*æ4ESWzi“¨úQÁd¢t±œ™T»ÃwŒêR4dLÖe‘}ñç+P…Ñ©Ã6T¨@¼×a’TAU2¨›ˆÐÃ0\LË¡@‰U=TQ¤„ IDATØfUÁSœsVI» Ô.p@„>hœæÛÇæjÍ Ösãb²Ì. RÚÓ£-c´±xdGèˆ'7I‹9J:ÒR©ä»2.S¾d—©¢ +d™a“¤É{Œ ?EJ2cº—/Sÿb—ÜsbÃfÐë b~{– -ä³z™,¡º§¨ó€u’´ÞµìêÕ«|ö³Ÿ%ŸÏFI$ßÖz“$}¤ õÞj'"3ƒNXåƒÜC#D”X§DéÉúG±ºn˜²‘%çV° Q¥Ó’õÐ*Kî>¦åhË÷.S*®Z ö|abN–×ûw%‹Pô•86òb§s˜£¤1¡!2OPÞëSÝm³Jœ6É„iÀÖЯØì&0Q¶rÔd÷¬¬TŠV×°Sô1¯V`(ÊÞ–»Æ¶±JcÉ®PˆÓ¬‘§Â}N²Ï’†lyö,n‰‘4š4Œ¤<Ûâ2/|Œ1’b¹Ï’覺Y`ßXÄfªÁ8 3…‹¡'%#TÈräIMNð€楣¶™ãH} Œ‘Ιhqà”I¤ÙvV9gÞÖa5m’ñ³Ç¦ëpÂxÀ?Qº\÷=¢­ƒÇ´׳zþúåü.>7—¿šaþõ|>`#äÒ"¡¨¦‚[Mñ)òžY‘=ºjÒzDpdíãÅþ¾[×SO=Åoÿöo …(‹„Ãáž]©&-ñFªÑ…òë)ü¨Rë[²gqunošº"ÔÁ¬”†سաì©;³TYbOòMÆøˤ¬UMJŠ[9À˜¾d{± ­ÐŒÈXÈ«€½QpŒŽ(V}º[_f—€h_=!žÉLºƒœ>ì½d£ 5²T‰ÉˆL©s ü¢Ì\à€stˆé1Ï[W›¢ti"0cÇÆÌMK4í$!†ôˆ2&À*[kÐ#¢_ûMŒDÈ7,k ÓpèëŽÍŒ uÚÄÈQ!GUç›÷ä™]€="BÜ IS²ªcúïâ!18”XÅ„êëíªIŒÛ Ì q»M–*ÇäõUQ±Bzà%J©ˆH¥uˆ¤f„/X~Å¥s)F–ŠÀbÞ²œx‡—ª‘âÂcUÛLé'O™Ä»x âŸ`ŸñxÌÂÂÂ;H‹ßŽ—ÅLʼnZ)úÂS ^MÒØæ”:)FKö¾!áC„ìp•”70ƒØÌh)lU425 «›I¿¡ ‰–‘`dèJÏ<ò‰PÊ rjRä0£©Æ$Mú†*t=ý m4Äf6eþÇÝ–_ÖÇÕ Ó§o†[Ê'ïù™Pb޶Œ±Š„íV£_ï³Éû‚ÐQE½¢ÁyLå¬Ì,=ú®’²zfS= Dœ.¦ˆ”Ñêò±ëÇ6¦Z— E…œþ~BúÀŒÒ#l 42¶ »ò6qâáwú5Á¦CTüü ù”7`5•n*®†ž¼GÒÔh Í& ÉDs† yò„½cAÞz¢À€°’… íq„Ò«3V¯¨ã°CL¯PÊä°Þ¦ä÷ôð–ï?L_"b}úïýn\?öc?ÆÞÞ³ÙŒÅÅElÛþç9З{OÂh‘6é»^H=ÃéÑ&9§FÇŒ35ÔÍr®w‡Ðt@-žÆ°].NnÑ6ãä‡UÂFŸÔ¤ÉÓ“WhúTÂ9Rí&†7¨G2ìG8džµéž¿ÏpàRå†ép+rkârzï\„ø¤ÃÚænÄ`Ï·Hß q²yŸ¹m¦1›˜Ùãjÿëø1¾èˆYÄâ|ï§«›ÜÍŸb095ºO¸?P¢¤`ŠX¯ÃBï€Rd3æÐEYœìS33ìGYl°ÔÝç‰ÔëÔ£)fC³J"Üáƒ[_"àŒh ÞXy„SÆ}¢£.óã#×Àhºœ?ºC)U¤žO²\á™ÙKؾ)¹Í—ú\yúëSf~e°9{w»>ã‰Ç_çfôNßdi¼G`0áöÂiÇdqx€ás©[iJåÆC›¯¾YTœeY¬¬¬ðK]g¸Ë÷˜Š‘Ó»äevɸur g¹Ë´H0GIg¤hÈnÓGš‘逦­•y­XâYª B­Ø¨KRŠùy‰ô|eêÁþñXííe×í…©„]%þê›ĄRcS`žC™'N[VNjEš¢AdÒ#ì1ÏžüEéÒ!ª"NÝ& Ñ{x‘ÂEޏ0»Å¡³ÀÌo½ ÆäÓzevi§Lž"GMx›?ÝÄ嘂n˜R"n‹ÐcÑÆ$铽ÊH8ìJNìJ×½g,a3•P¥®ÏP#J—x IS€"Åå¨P¢@šº×mêdHÐb@W8ê+ì`Ià}_•šw¨?·Ë2.’4T´62ÔDôXÑhm¼µF”®nX<ÇÑ%ñÜgY[ªq’aãõ«—ä²>´Õ^¼Aˆc¡{zSÎ(]]|yÚ<‡ùÎÿ#ÏŒ·vè¶m³¶¶öˆKß…ëAp·è’(®ª$!·E€ûF‘0Ž$ˆåvò4mâÚÄ?xB¢H D:Á0¥À’wÙö¯pÓž)2T1™r7~JWÞ}ÂlfO’¦Nˆ²I„'L1õØËCžVÉò ²†ƒ)€‹×CêèÀ,5^ ^ÆfB23îÏ ¥ZkqÈåX–‰xM'ø8ʨw¶¹*¼S|úµàcžCÉŸWãCŸ¤Ýu‰RàXå•»S\ ÆØ1–±pbýš$B—–?NÄP¤¿MNŠÀa™=Í8Á¦é¤±¨±ï[äÀXÀ'^b^uvv—•È/„ÞÇ—_Ìsõiån ½ç\aG’ýRødì›uYÊË|SݬDU|ë;ôï\Oå>,ÓŽXÄ'Lßæ˳=lKui«N‘#ÒÓ:g컸RÔ»ÌË:§ìæ91Ýb<óÓ ™wŽh»1f¦M‘#zN”‰å#ì ˆWz侦ãPì–qÂ6ÛϬo’¯TY-n3 H†º**Ý.'Ü-0!A“Ä´ClÖah‰[fŽÉÈ à˜–R‰ª¼J–EwŸ…æKá}Z$Xqv˜™ ›|–;¬w·˜àc ’¥ª™ä –b²Ä.Y§FÝLqŸu êaYáy|x•ß¾£lY3¥©1‘õg÷êÍÒ[Þ¼L±sŽõ¸~…æ(q›s¥ûïÉ!­2ÌMÆ’hf3å w™`s‚XL9bžcò´ˆ“–TL•¼Y¡È¢´HŠ(­ ?ÇmÚRìd©’¦¦yÞúÌÃtßå ~y¦Ÿå®$ÕùIÂ'öÝ #V&»,ؼdgO ¹·WàÆK2OúI =Ѱ™`(á0QòÏX`Ÿ"%–Ü=–Ý]¶$¿âáôÑ·îì}7nNY¢CŒVHM ¾cZÄ1 —:*ä˜ ¹h““ÌsÄ=Nél[@ó\ç˹î³®+>¯bÜd--LS¢ ?5²œàXÍj”(Ò‘¶)QÂ'¸ÉE&Øœaƒ\Ô£¹ 5ä>ëøduÑTá u2<à63ÊòÆLÒb‘}=~àÈ(4F:ÒÑÇ„®ãBè6B”Éc3a‚_¸ëMîp– écjd¸ÃYñuYbk’ám\‰&‹“6|gÄJ’• ô"mIêe““TÉbHJØô{,13,bV›¹è÷uÊä8d“°Ù—ÈÔœ&O™™¨Þ= •·“lbŸEJ̱Í*A†¼É%˜a¨ŒyE\šèô¥#ñ§hÐ#Â6JØqUQ5²´H耋6eÁeS`Ï|‹AÐ%‚+BÄ{œb…6¬S䃖uêv–/½p’þ{#œfƒ~^áªØà&>áдZ(Õ#Âëö£âv~˜ý;ì×Ê•µ+L©a‹€5¢e&$ÅKÙº"NO…<uŠçHRbÀUÖ¥ÙãI;0!é65H(F‡>]Æ€ 1À²g$Ý&C‚ø“W¨†Ò@sààŸYà€Ž#ëVô÷ŒjDw:¦e‚³!ø\ L×}‹ÝÓM±µ½4/n˜œ¡2¢tÈsÌÂð€ÙÄ–!¾M„®†.ÅÜ.~wBBã®|ÌQ¢E‚%J©‘E¾ÂâÎsÈ °“Ñ´椦 eˆâŹ«Ò1uÔÔKHtM³íáV \¹§Â±OÒ#"\e3|»°0A“±Äe{‡±²çE èhÏ¿)ì(]ÖØ¢Aš›\÷L¹Äi¨Ó=îp†ì¶}Œ‰KÇ®š§‰¶Ûî”0=´›]gi)À×9Ëñ+cN>é×"¿‚Ä+›òóx¹ÈŠa¸ZÓðpúä_v‡>ÁÏ{,³«»å1–ØkI2y.J¤åóQd½#+1Çynr† jd˜Flá0+…³GR Ý®„ Xg“ ~­†ÌRÑHUÈé¬õ%öi“ÐÅÞ.jHcû'„4´Í*1Á#z¢˜0}N³!j~ ¸Ì›:Bñ˜9Ê„è Š2ƒc%Ù+I“6qnr—9J2* ©ì€Žä7WÈRäP¥)u›”ó9ŠÖ!§Ø`&â»"Gd¨Q—Ä5%F;1`Ž2y>À4dÆÀe6³ñÛŠ÷¾Àc|0OŒëî}ÊF^ã5OqO“ÕÆø9ËHÜcI+ÈÃÂâÓ—nC¥f…pž[Äi³Ë2C¬±¥óê»VT$&¬³IVöb{,½ÍûjrÈ<j<ÅKÿO{omW]ßý¿öpæsÏpï=çÎs曄ÌHŸßSŠˆ>m«V]u¨K…â€%®R´Ê²h—Ë§Šø£”A„›ùæÎã¹Ã™çsöÞÏßïÞʲ­…\úÔ–½V+¬äîœ}öwú|Þï×[Úð:™¡ƒfXͰ˜ÂU‹uœ¦Ó¨*ë8ýlˆm;sô+‹,©1–h"@‘~F‰æ k1Ðé`ƬÖËÞ9› E8¯Ð_ÞuJ_GYi&èÏ3¡õˆÃ€ÖãØÆ|ž tѤ-1̇¦aˆÀ%%.—E‡aeY}ÂÉ|PÀP4‰áSФc!Ò.‘«žP[8íYØÒÇ,mô¸æXhjbAn,3Juf”‚–ð°,…ºWÃgUP0©).LMu6¸M,9%ìùnÚ§LawU޲ö¦‰Hžø}7“,Ó$-cóÌÒNJâbmò›W²õEXŽÈ†ØØ[¯S'ÎYB´3+ÛaaÄ%5Á /×ZÈI]A]&(Úè_I[”épŒ::^ÊÌÓ†îH«xë_Åív*·Š ê °£ë4gôÎ páÎI,é÷¶ã¶½Ž¨¶â´»”)!ê|Ù-·ê`Îø¼ ¿ÁxŒ,)ãÅOVæ0 %ÍGMZÖp–ˬކ©+Ž"K˜~ thb™¤‰%„&‰nz'D5Zë Úó¼$‰h.0Ø?´Š;½R$d&M‘†´Ýµ3ã(ô›Y¢¿þ<ð^Æ›ÿZ:Ë+>¡[KÐ)é>\Šà“GeÆv–|Õq´X Ì)írÑ\fŒ^šXÆGI|×V·R£ƒÀde©('f×G‘VšŠ©¨T¤Õi•5B^õ3K+ň£öËÜn;ÆK™V¤­)-B·!&û²ê¥Ž&,oø¥²ZÀfÄ Õ‡‚‰bZd9˜j;hJÅÀã+“ôFœˆÓÀ"M”5Ç”"Z{¢rGÁrlfvÌl MÒó$ïøø3„eÒd?%–¥Â\Û ”(“’`;FÅd–vétÇ%š)É –ØPåH²‰ nò4 `’ ÕÛÈyÖ$JŠEšÉɶ¢Em'oÚÕ¨<äñ3O­ÌSÂG‚8*@ã•©hYhq*®n*4’’1ÎUçÔ?N¯tY‰¤º9ÚˆfÆê ¤øœXW»—¯bi«ã5Ë<öôf|;‚ xź‘ ÅiKˆ¬DÞÆd ÜË]Ðë+zBUÂYÖæÏá1*åÆè'f-±-qUú§ÛšdGù“t;©JWV~æøÝT¹’Gif‰1úpS¥³8ãÜ*xØnqÙÒÓääîTÅ`“$ha‘ dÙ là$ŒS´ÉÌäQz'@ž¤LRê-OrañuYBî°fص8$|’7»'ÿŒÄ' ù•Ù'¸ØxƱ¦u"Bgfèà[1«Ûj/0B¿ˆyý“ËNœâóìd8›9ƆÜiZ™§›I:GgÙ=ù¼ƒW\Í9.ãç(PÁ‹e*lN¾ˆg®Æ)Ö“#ÈçÈæ8¸³>ÃÍø)²Å<ÊÕæƒŒÑÇ tW¦¹$ó,¡jžvC,ÀûÙËak—eÁšê9\ÔXÍ0¯Ï?ÁÅ…geUÄK«‘àÂÒó”ðó,»Y¦‰‹øÝLc‘f¹²þ8qc zÈäbžáëiFà$ƒ¸©ÒÃ8 Ä…ÀȨrå¹§èÊO³Ã¢`9Ì6¦éàJe3Ç„}‘{+OKQ?K4&ÍNž',C"¹4¡qqzkf™€UäºæŸìÕ¹÷àL›\ÀQÖšg¥ÝDT”uò¢{ê“lX~™,w§‡þïýzíú×® ±´YšŒÓ à±Û¹Zc‰6mŽ#l%ƒˆQ°(á%C„:ÈùD>Ï)Ö“!BV ‘o rˆ+˜äHp3gXG /YÂòœVÖ1 âòT—þñw?5Ec’RD™¥ wk•MÅŒÒÏ ¤‰PÁÍ~ö -r€KIJ¥Ž¥©œaìÝÅYÃY†ØNž †2]þ)–ÂMLÓ‰›QÒLÑåôýÝTÈë޳‘Ãlã¤zœFDÿñ k){<´yfè.Mó´ç"^d“èi)ž ï ¨øIeœŠAÑ <ÂVÁÐæ}-åޱžá"4 æi¥¨8ÊLÒÅI6°D3-ŠÈÌÓÊ~öÒÇÓt2M'i-¦¾Œ»zÈ(a›5š‰i‹ ±ƒ™ Ÿ'À´§SB†¥ú¸‰Ÿãæƒô3JK$AÓ†$'dŽ6Ž*PTü´ÄsÄ”ûеë4Õä\LœR4’ E–Þ5ʺ—B|ŒÍ‹¯dA­äþr¯1¥ Í4ªI‰;˜ ‡+N¯{’iÚɨ"xÖh㸶Qœä¡¯È§—PåéµY–ÔfǦh&¼dÔ0ýú8‹’´ )u¦›[™SÚdZ›—… (·çhp”ßUÅŬÒ.ÑÓNzÖÓB‚ z¨àÆ¥ÔY¢ÙYTíœô‚ÌëŠ{œ°‹)º˜¦%ÚôºV—ý_a³«à&GHä(âDk‡6Õ$èÄnÚ‹|Ѝ« _¾Wö¼=õ*q}ž¬lµPS]²g‘‹d@”íÝNÒ(-z†Œ_U wÜ3ó´Ê š,2ÎßÉAšµ%êh2ÛÛ IDATG„-5’$BÚAÃ.£Š›V$i$Hžifiw²ÐËò3š¨4uBMBd(ã]‚´1G\[âÖ4n‰øÎ#ÈkÂC.ж6u/Æ"M,3C‡@ðJu½ Ç*$D†’„ÓèÔ¯/ã 8‚jKÒK2(JÇ`N¶C»™$BšÎ1N/%|DepM’F:™’¶B“.uжn„+ȉçèÙ”¹!4)Œ6%~·™%"’¨÷ßJWÂO;iÉà^%a¿ôu2õ×ÎïA3 DÎɾµÅ‹4£"Q¨™%Yfw1K»C3å.o / °„$h¡“긜ݤ<Š2ãô²šai›ˆ9å/eR© àPålõj“„õ›¨ÌÓÆzN;‚[(f#k¸ $CÄXtègs„d   ¢ÍÑJ ?a2x¤:ÝV›.ÑD¹ê¥ û©h¢”–½û*nÖs :'dÊê¦C™qÈT" Â DŽFR¢ëäv5Ó¸Õª#–KÌgEí‚8ÎFY^ó°šsÎNÙV»(cÑù½ÐX Ð>IÛŸ[§N¿ãob™y¥SQ¯Mv¬Å_É]J4hQžã¿‘¤SÂLÔ㲌Vrè¤i7æ)6ûRÙ —‹öNËÉ/$'êÌâ¦âð^;¡¿úW:&~«èˆØì2n<Š%D£V’³Êèb¢²rd!æ²OKÄIÌJQÒ5SÌ«­ø(bh*,;}n%Ü2iÌ´T°{Ü'¯AòŽÞÇDÁE”6sŽ€RÀ¥ˆÒüÍŽ=T ¨'ÆÔC]©Òʼ3>ˆfš܊ЂˆOÓ®ÙXhC–§Å³íB;ó!JJ–§ë^lr¦ˆŠ—²t¨NIZô s":Kˆ$ÐŒ`›k4±,õsT%ε.•øÒ(à`§m ݃OIû™Â΢`èQ&œƒ›&Õ趈ÍGIfŽ›š[´ÊŽíµ s"Z[ôü#d:a-ª¬bˆC„F;3Î\'!ðÓV… Dä3nb™(i‡ùa‡ë4µ•X¶š˜øE‰¾‹Ë¸©’sª—Štd$‰¼ì9ã·À¶f¡0E7gYK–{8 åÝŽ¼çõŽ·üBžc?—²,3Æ7rœ$Q°GDkæÇh Ç}ÔdXI9~Îå4³ˆŠI/gCª mqVŠ(gXËÍNÔâ,ía)¢\Æ“\ÀQö³—yZ‰³Àöó .&‹P¸®ç4Oq)s´‘¤‘+yŒi:y«if‰ yŽ2^Žr^ÊÌÐ…"J†ÄiežõœÂc‰/o”~,¹ùƒ\åëQ1ÙÅAªäx– ‰È ’>Æx–Ýd ÑéŸgsöE*i¯§Š‡í 1J??à¼Tèeœˆ’â¨âf3ÇP`˜5Œ!Lvó,j 7勒¨ø¤ð£œÀV*Y‚䉕–i .0O+$)Jž±xžËN)ÙCù%ßOÓÉM³BÔL‘QC”$©.Î9H&@ž+G\Y #E. äèdŠ1úP€‹x);å®F’Äåg®à‘1‘‹Îwi—ÚlZ–Ož • º«FЗžÕŒ lI"U‘€´ xÆ-„Èà¦B7“LÒE˜,}æÑrŠ0iò/j‘È $L–ÞægúH?[`ó®%ÚÔ92„tfÄJ¿vBÿOºª¸ S å¢(»ÅTÇÅ¢c0{ŠåP?9%D–22L¤U•YÂÇ0«1Å©¥ˆÊI^ÅP„赓i¼FC$×pVê3‚bœ*)²QM,ãÅ@eª¸9«¬!Æ pHÙÁ#œfSÍÓeÅpŠNÊøœJS %Gô– PG“1A—›RºˆêI ¢‘' 7:ŒÑ‡ª˜, ,¤‚¬Xfœ^'°…~Š$‰2Â*Ê2f©›IgÎIH—XÔ‚Riãuð¨^JLÓEóV+q%áTìƒÂ-Ź"X«9f芖Œ#&œ¡* ²õ—Gd+(0€ƒëŒfi“ õZXÀ/R‹i:IXqÚ”yç_þÚ8}tÉÔGÕñç‹ N‰&’œcUÜÎÁ2L(à—±hOÒÍfŽ ÐYJ²]º@œ>F‰v¥8SkeèP/ÛE¤l³è¸©0-«(/_÷_xAŸUÚÑñ8‘~ Zð¨e©ÔeDdùŠ,^·#@CîJO²ÁÙ6’¤è÷3M'5t´`ɘ(Ñü2úS“»Bчït’½Æ9Æf ’þ´–ÓÌÐÉ16£`ÑÆ0Äv,‰¾q3.yÊ]L±žSTu$2„FØÝF™“xÚQúhgŽ1úN©#@ƒ;É“û{éÝ+Ji^v|ê¤äþßó*•J<ðÀ”J%®½öZt]ç¾ûµ•7¼á ¨ªÊ¹sçøÙÏ~ÆÞ½{Y¿~ýKþ~;³¨2 M˜¸t4’DµL…<-MóDÈ0FR²‚$Fàpì¾zŒ%IôHq]A¨¯YÀ_.a6¨ÄXÀC…fhfI¼›µ:–ª¢b8­bÓ"K”­Ö<ËJ“h12ãÄ< ︆2K4c‘‚ÏnX:2ÄYpÊͺ¬5VS4éÉ—ðÙ ™4¶Ö8KÆ áu•œñU–ï|€\°„M­œ<¥‚¯¬ZˆÀUÆ}Š8j7Z(Èc‹—4QBä(ãs2.*²Ì.<êͲ/m9v>[nW0íèk‘ÉQ!6Ê"ˆssr#fâ•UJ hf ¿ŒGö~éT9‡W¶2mx˜§moÔ…KÈd½œk 4ޱÙi¿fÌ0¦ª9ŸÅDsôvÔ³>'Ht>™SQÃOQnâŠt)S¸©RïÑÉ«¦j¸.\1™è÷ÿjAÿWÁ2û÷ïç›ßü&¿ó;¿C<ç…^àë_ÿ:»wïæÖ[o%›ÍòÅ/~‘b±ˆ¢(ÜyçXÖ/oÜ^›@E0ÛEäðBFHgAæX ¿K2º™p(pnªD%]LÐ…Ô!,b­ÌÑËë8M”]L«Ïµ’LÓÉ}äh …=LHµxEJ8TÇþbgœdÿÛ”*ÑFèg”ò ÷~ùØd²fEŸºVqÊ=a2ÎN²ŽN—ôX IŽ.¦0M8 R4²Lùâ¶ C™¦16qœUœs@öî߆iø¾ZŽh9M —„jˆ>{ž ó9¢¤_¼_¬Eâ”$üb9L0+vóvŸ(GÌg 9üÑ©3Àµ1z” ] …— Zœüà G1!å$*yäwÚÉ4~ X(rP×¥PÒ,:Íi|f‘vf0Í"~ü5ñ|ì^º=ÉÚÿµß­°tV4’"L†Væ (yÙKIH# ’¶·ANÐÄ2 ‚Ëßh²ôtO%OLYx…%÷ï×ÃþwµÊG>òZ[[¹ä’KøÈG>B?'Ožäûßÿ>Ùl–›o¾™={öð¹Ï}ŽÙÙÙ_ë¡É£š&Í2âNT|ª²¼-¾c/eÉE`¢yBÅœCxl!! ®Y‚–Ð)8牢AØJS­¹qÕKø)$GO~ŠfcYœò*îr•6æK5Ýjk­'(^–ŒmÆíµ9YêÕ(ÔÆ‚¬'Ôhb™1Ž”šPu×2Ž€­I¶Cþ e¯Wž~sô3êhoj–ˆídZ.z¦–)i~™—P—ÊsKBW*xF¯• K›™à+Ž^Hü¡¬ïeÜ™ã\²”b9M&ØÕic–NYÑ´™îvìª8ʈEÊU+á’¥ì_"•! ê>Ê´2G˜, äœï£…y¹Näi¶–Ð0é`Møö™¥™EšY’ê‰M,Ój&ð×2rºÛšÀ'7z-ÌÓiMËfE Ÿ´š •|šFˆ“ ÉZ¦•yÚ˜u°Ú&ŠcÝ ‘Å-«›âcìZu–™ƒ*FM€u^YÉýßúU;ÿúøC"‘ßüæ7¹øâ‹9}ú4×^{-›6m¢££ƒ‰‰ 8À~ð Ãàío;µZ ·[œ¾ŸÝoгZìJOô€3DˆJqVŠ(]L³L#YÂÌÑŽ)®:ºäu/ÑΜ° ¸ý²0M„3¬•jN‘j”}þÊÖÍD¼ #½«‹Yès&;Î-ûê)"2©KPlᕽ}[ae+HdìÖ²@Œôþ£Ä®d™&I­ÏÒ ûÂü¬å,³´“¤‰1ziõ,PÄOœ&šãaÕ¨S$€Oö¤Ó±jH[ࢊâ5yôY/ßi£™%æiÁG‘Nf(âg’nür@†È²@\îžëlå°ð|³Š£ÖfB¦Ð9Tð0À.ªÌÒ(4g‚^fèBýGi¿b y‚LÓIë8íÄ-–ñR €F1úi$I+ó$‰J¿¦ŠŽA˜4I™»,BmBTñ0êîcYiâ,k¸€£ø(“¥“ûS(W\*3“µË¶'•¤ðÈBa™f²„i!AÎÓÀ(}”ñÉRb?%6YÇ9¬luúš6AJä?«„£ük žýÊ<ý—Åé]q•»ØøZ–Åðð0Ùl–M›6áñx~kô‘‘&&&xöÙgÑuë®»Žz½ÎE]DGG_úÒ—ˆÅb\zé¥lذË.»Œ¡¡!ÚÛÛEëë"h% ™YJª6fIÒˆN|Š8eÚVO•K¤ˆôç¤åLd€—L?%ÕãèO,9»­*QR¸­I%ÊèþY¶]!6í£@Þ Ôò4T ŒùrÚNC¬£a¡â©V©é.jŠ›u’’îu àYBødIY„‰¸N‘iÄ2R4’Ú‚ÝW”h¶–鳯˜P{ÐMƒ€QÄòXÎbŸ&̼ÕFOe’ªé¢®k”¢,{ _¾_Þ/M„ aV3L±‡™4n*ÝŸf×~â,8!)‰Õ¶ãXÝòݵ­½ Ìà§@œE*Q_~Ƥõ.OŠŒPÃEZ:RDñQäÔþE6^ptO™En3(Ð"7ne©hcž">"2€+¨¤¨×¢Ž‹‚ ú)ÐÉŒã9÷S¤Q]F{â z¯èeFi§¬ˆvA–ê(ºãغ ƒ^Æuãì°± ÄY$F’(u\bÞâˆà,7ÜÔ(y|¸Zjd,ŸÜS!´Á»Â*÷_™9,‹S§NQ©TtÖÛ߸ '“I6oÞÌÕW_ÍG?úQÚÚÚØ¶m›ø ºN½^Ç0 4MCUUjµÚKNèKÏŒÐÖ\¥o`‘ø`3EËO“•dr†œÕ@^ ÷õÖ)TÅä0[)#ì öb_ À†ÙÀI, häèbš+x‚$bA±Üt*Ó„Èâ- ÓjVé$‰%6¬ Ýœ¥®êlà$iIEÒ©ËdžuΠˆvrˆ± OszÝ9«~e”"~ÆèÃ@#ÆV~†-ÔˆY‹,+ì6âµJìW÷²@œ Ês,ÓH‚VRV”uKÃ\|PpQ%IÙEÀ*²F9+°‡u7%ÕÇzõ*³t8^X“ÆbŠéL=ÆÔ’ŠØèØJö~FdÃ2Y­ sŽÙƒ/òÿY0F:†8íøXoœbP=A‡2C‚L­2f’Œ&ð‹Âèù3´1‹*OÆ;¬C¬2G8ªm&Aœ=2-@žnj¸ØÎ3[p9?gžV¦è’jùiÈQG#¡µ°Çzš•¥K™¢×œ`^iáûùò$a ‰j¸XËɯw±@Eb,á5Ë„ Yþ·çN*˜W[P€+K?£±"Ú¼ì@(ÈÑb%˜Rºˆ˜i.P‘™žäþéÿÿ×£ìºæÕ±­íß¿Ÿ‡zˆþþ~yän¾ùæßÚ½\.“N§ù“?ùüqî½÷^\.Š¢8óE©TÂçb7ŸÏG©TzÉÏ8ð/NùU¶®í&ºV(µÁ+W\(º"ÅQ*xeŠ˜I†"Éa ã§à`9]œa­£Æ¶M©tøæ©äëŒ0 bAÝSœSV‘"B›¾ÈœÒæä‡«˜Žè4)K$‰rDÝ‚F“ :¯">Ú™£ ºŒž Í-Sù(Çóh¦]MàµJœd½P`c‘¢Q@WÜ&ŒH-’H{Œ³@^&9ñ“&Œ"µÓtJv¹ˆŽž —‘üz帩ãrÜ:â`B„.¬ç k)Ja¢meEf¾×ÑP€i:¥›Fg’©7¨ L/ð"›P`1):ÉÑ€‹šm²s;„“ÉÇ Tq3ÂEüT¥RÊOÉ!úÙ9çuªxduR¼9ÖB-wK¶SDñS”vY‘àg3=Z˜. bÉ%McJŸÄኬά“£³¬U™0ç£DfêɱiÆ_Â_®´mMˆszè!ùãQº¢SQžÇk•)• L'kè‘_pÒ«RW5<Å:¯ M1¨)Ï“©)”UÍEQ0 £ZaÌdŽ2^£Œ¿\¡äs£U-t·O¾ºEmÔ$}Ü"_20t'òeð@Ùó/( œÔ¡¤ûÐ-ƒH¡Î×r.<¡§¨øÜäÜ"ƯÕx}©ŒÞì-ÀR¦„êª3íÒQL‹ªêA¯”)ü”/ÇFr,Ž¥9øœJ¡uÓ­â2kŒÉ¼®ê¸ª5t 꺊¡h¨×ñ–+WG9À¢"üÆþZ‰¼fð‚Q¡hœAs ¦uMõ‘Sr$ë:Ï[ÂjP¨ú^Àq£Õê<¹XÂpkŸBÓ긪uêºÎl±BM÷©Wɨ ÕLz–¼nªª¾Ìý7©\ÅÏûçþgþâ/þ‚žžÞÿþ÷“J¥ˆF£¿• zKK ½½½„Ãaš››I$d³YŠÅ"“““´µµ±nÝ:žxâ êõ:'Ožäúë¯ÿå$¤ëT'²Ìx|”FsTN“dTVÚ¦0,T5AÊ“r (KL“a‹„T¾[¨„IƒT*·2/ó ë,Q”Œp:5ŠÕE&FêŒú¤zš)ÒD™O–ȇŽPÑ=NË,!{£YÆdäqQö «$¥êÛEMV÷ò2½kDêi¼ø9iÌ‘ÐHœJslT••1/.Rt—§0QFHŠÅò©ábÉJs†4ue‰"sL’áE4‚ä(2‡êÀ¬Ò,S`\Šèjò2åS<9ê–)Œnòd°€9æÈÉ ›IÙÆJ’¢*ixSÒG?¢Ô‹ƒò¹x°˜eŒs,HÏvJ2äó¢ªqjšÄ(È£QÄGiG\gŸ” N‹Ã ³ÌJìk7ª2ÄU”Æ—¥ÃÀC/%ªÈeJžû8%ò§||˜žžúûûWäùÞzë­Üpà ¬^½š÷¿ÿýüÝßýݯí¶ÿ'\+=fþ­ï·X,²k×.\.Éd’cÇŽ½êcwrr’öövÖ­[‡eY¼øâ‹är¹WmìZ–ÅéÓ§™™™!³yóæwì¶µµ±fÍš{Ö…BC‡qÙe—Q¯×9|ø0Š¢°mÛ64M[Ñqdš&CCC$“IEáòË/GQ”_»étš#GެèØ]XXàøñãÄb16mÚÄÌÌ gΜaãÆÄãq,ËâØ±cäóy¶oßþØù\ï}ï{¹é¦›ƒ|ìcã®»îúµŸ­}ò“ŸüäJÜÌ4MöíÛG­Vã±Ç#ÐÝݽâôÉ'ŸäÁdaa /¼Çœ|EQx衇¸ôÒK¹ýöÛ±,‹'žx]×AûJ¯“'O2<ô!:::øÎw¾ÃêÕ«ijj:ïçÛÚÚÊ—¾ô%öïßÏ®]»Øµk×ÿ¸ÅüôéÓüýßÿ=---ÜsÏ=\}õÕ+~\.Ç÷¿ÿ}¾óïpÕUW¡( 7ß|óKÆîÔÔwß}÷Š]˲¸ÿþû üà?  ròäI}ôQLÓä‘Gá’K.áÓŸþ4º®óè£âóùÎ{¾4M“£GðƒüŸÏÇÁƒ"NóÜsϱsçNnºé&ššš¸ÿþûimm¥µµuEžõÝwß;}ûx×»ÞÅ×¾ö5ÆÇÇgxx˜M›6ñ|€îîn¾ýío³víZ_ñ½ªÕ*·Þz+kÖ¬!ÐÕÕÅ7¾ñ ÆÆÆsÆî7ÞHgg'÷Þ{Ýééi>ûÙÏÒÛÛK¹\&ð©O}Šžžî¾ûn.¿üržzê)~ò“ŸP¯×ùÙÏ~Æ%—\r^ó”}µ´´p×]w±ÿ~^ÿú×ÿ«‡æË Ξ=Ë-·ÜÂôô4Ÿÿüç ËJ^¿û»¿‹ÏçãøñãX–Å£>ÊÛßþvÖ¬YÃ[Þò™ŸŸçæ›offf†»îº‹Ë/¿ü¼î¹e˶lÙBµZå;ßù333¸\.®»î:¼^/=ô¹\Žë¯¿ž½{÷rðàAFGGÏ{÷{ùå—“L&9sæ Õj•ðîw¿›Þò–·H$X^^æãÿ8cccÜsÏ=ìÝ»÷¼ŸñÉ“'I¥R¬_¿Ã08pàûØÇhnnæÿøyÓ›ÞÀu×]GOO?ü0[·n=¯{ªªÊââ"ÇgÕªU9r„Í›7sÍ5×099ÉÁƒyà{Ôûßÿ~’Éäy ÐL&ÃÃ?Ì5×\Ãôô4^x!‡æoþæop»Ý¼ë]ïbÇŽ466òæ7¿™@ Àc=ÆêÕ«Ïûoذ/~ñ‹†±b;øß¶ë‘GáÍo~3W\qO>ù$SSStuu­è=Âá0úЇ8wî333¸Ýn®»î:<?ü0™L†n¸={öpðàAÆÆÆÎë;V…w¼ã¤ÓiÎ;ÇñãÇyÏ{Þó’±›L&ù½ßû=.¼ðB¾úÕ¯²gÏžóú¬š¦qÅW°¼¼Ì¡C‡(—ËÎØmjjâmo{o|ãQ…믿žîîn~øa¶lÙrÞÏùàÁƒx½^:;;©×ë:tˆ;î¸˲øð‡?ÌîÝ»‰F£\{íµx½^{ì1V­Zu^ÏØ²,Ž?Ζ-[0 ƒÃ‡sûí·£ë:ïyÏ{رcMMM\{íµø|¾»÷Ýw±XŒááaöîÝË¡C‡Ø±c×\s ###>|˜ûî»Ûn»h4ÊûÞ÷>ÒéôŠ´Ó¶oßÎÆ±,ëßtŨ+5p Ã@UUE!’J¥þS&…b±H l n·›\.‡¦i¸\®UM{>¥»»ï¾›7½éM‹EÂá°ìoDI§Ód2Âá0Š¢àóù(‹ç}ÏJ¥Âý÷ßÏ‘#Ghnn¦T*á÷û_òYu]G×uü~ÿŠÜ³\.ó­o}‹?øƒ?p ö¢£ª*º®“Édœß …ÂyßwëÖ­ÜqÇìÙ³‡|à¤R)"ÁEnhh —ËQ.—ñz½¸\B¬V©œÄ¥V«qæÌ6lØ@8æóŸÿ<¦iâñxÐ4 Ó4) Îû‰DH§Ó+öîºÝn|>ߊìÞ¯_õ„B!²Ùì«~Ïl6ûïŽ]¯×»"ãàìÙ³<öØc\}õÕÎiî_»+5_Ø«ûî»S§N‡©×ëÎXÕ4l6ë¼sÁ`pEÆn6›åG?úo}ë[9DQ\.—#–N§Ó444¼d<ŸÏ¥ë:ŸúÔ§ø³?û3ž|òIzè!gì꺎aäóyg¾ŒD"d2ç¯íš%•Jqíµ×rÇw022â,ÖÁ`|>ïÌS¶­¬V[¹Heǃ×ëý7ç }%''{¡¯¯ïUœ¶Â~~~ž––jµÍÍÍÔj5ŠÅ¢óÿW¢ð•¯|]×ùÃ?üCH$X–Åèè(½½½är9ÆÇÇÙ¸q£ã8ßËçóñÎw¾“Ý»wóío›ÆÆFˆÅbÔj5âñ8år™R©ÄÜÜÜŠ”Î2™ ãããÜu×]œ:uŠo}ë[øý~R©˲hkk#•Ja333ç]n·ORáp˜îîn*• ìß¿ßD¯{ÝëˆÇãÌÏÏã÷û©×ëÎñJ/¯×Ëàà 6l ££ƒGy·ÛM6›u6„ñxÜù®ÇÆÆV¬¥ñÚ%Ät333ÎÉy%Þ£ßtÙï=v{zzÈf³Œ388xÞUûáÎ;ïäæ›o¦©©É»öü‹Å(—Ë”Ëå»öÆè=ïyÛ·o硇rÆ®ÛívÆn2™Ä0 ¦§§Wä™' fffØ·o§OŸæþûïGQ …¦iâr¹èêêr`BSSStvvžwEÏ^cvïÞÍÜÜ.—‹L&ãpZZZV|ìöõõ9­ÍÖÖVB¡€ÐwmݺÕyÇì¶½‘ûϸVLgYßûÞ÷xê©§( |æ3ŸyUzè?ü0ÿðÿ@2™ä/ÿò/Ù²e ûöíC×uÞð†7pýõ×sï½÷òôÓOS©T¸ùæ›8ï{~ðƒäꫯvv†_øÂ˜žž¦T*ñ…/||>Ï'>ñ \.}}}üÕ_ýÕy÷w?ùÉOR*•X^^æÝï~7@Àq\uÕU\{íµ|ãßààÁƒT*n¹å–óÞHY–å¨'o¸á~øÃrôèQî¹çÞúÖ·rå•Wr÷ÝwsúôijµÿøÇ_ y%׃>ÈO<áIþèþˆÛn»r¹ŒËåâöÛog||œÏ}îsx<öîÝËïÿþïŸ÷g½÷Þ{9pà•J…÷½ï}d2¾ûÝïbïxÇ;ؽ{7ûöícvvÃ0øÔ§>µ"þk,..òñ]×éïïçƒüàŠß£\.ó±}ŒGy„‹.ºˆ;3¯|å+LOOS.—¹ë®»^•±ko@ûûûyýë_O{{;wÞyç«:vK¥·ß~;•J…ÅÅE>ò‘ËåøêW¿úªŽ]Ó4Sèõ×_Ï~ô#8Àw¿û],ËâOÿôO¹øâ‹qT¯×¹í¶ÛÎkår9>ó™Ï`KKKìÛ·ãÇó½ï}Ã0xç;ßÉ®]»Ø·osss+6v‰·Þz+@€@ ÀM7ÝÄm·ÝF­VÃçóñéOš‘‘î¸ã<W\q7ÜpÃÚ˜ú¿$Íè²ÐµgIEND®B`‚pymvpa-0.4.8/doc/pics/ex_som.pdf000066400000000000000000001775571174541445200165640ustar00rootroot00000000000000%PDF-1.4 %µí®û 3 0 obj << /Length 4 0 R /Filter /FlateDecode >> stream xœ…}ËŽí:ÞÜOQ/ÐÕÖÍ–ž @€¹ 22Vòj7ÒÝòúÑw¡äUUÿ v‘Ë–)Š¢(ФþùHøï_þçÇ?þ·óãþë‘Úgoù#•Ïó¾>Ú9>Óü·”ñYëøø—ÿññ·ã?|ü3»óýQZù¼çã-ÿPjÂÿù㟎þøÇÿßþÏÿùÿòO¯ýøÇÿÝ>þõõOñ‰óãüh¥~ö\Zm\ýóºÆÈÙÍóxèüøÿf½ôÙ>þïÄþÛùÿÿ:þËý8?Ïÿ~Ìïþ»\?K ’ÿxüúøO‡¥åÏ–Ûz ÔNOèk“ ¹}¦<>úg*COÎÞ šŸWþ¸?{éý®Èåúx{®Ïk>xL(ûc²¨~øïÙN¹õ ÀòYÔÞÊŸu6âÓl¾Î.ñ ¢ãü C$ x¼ëúíúÌgñKÇ„ÚÙW“ìéŠÏ]ŸãAˆ€E¤@Òø-uÍ-®nësf‰1³ž|Do¢ë3â Ï^}÷g¹Ûlr¤Œ/̶ÀTÚle¶7ùp}žirVÀ"Zà‚«ÆkILQ“é3]™´è{çgé#(™ÒtæÍZ/p=Õ¿MVî·Žœ?û=V›,W‰ïåÙd J,*ª‡_SïÜäê¹¾g®ˆóëÉËל1k®Ìžhüc*,Äž ÚÓaa~›é¼çì\—Ò$yÜׂûç‹ ž} Áõ<ÚdÌeÄH}ŠÖüî‰IsNÖˆ‹c{AX×)¶™Ð5ùv`´ôð}ßóÇ”N''Miöó¯Oy…çÀ'ˉ8€¸®>‡ä¾­LèœS1 Ây-xŽÚ(zsŽrâÃvÎ9CNöíÅÏÖ ©s¾€¤ùì9…²“Þ6ª!u.O ø¹SéN¨Bõ‚æ–ùpÿ¤„–)2ލbfO(O Ká³B¤©ù=¯ý–ÕòI…PüÒ©,F#c0Z gJC"˜PSÄ¡–Ѓۀžë?‚ý=¡Ý¾$®‰’+¾ÌW'³j"p€ ØÌ6xתfgö“hsN£ã=?XÉú fN‹Ô‚RìÕäõ$2~X §ø~M>M ™ÑåÊY Ö1é蔦A}Êæóš_oSp@o_)ˆÇ4ê1óëìúÊF-N‘;³á¯ß”÷/>ÏEæþ|)V£ûù>Òœ¤ƒ¿Éñ7p·^-4‚@Li½Ýü ¸¾ñøßæóhùZk*à’Nc’Ýš×@° bœg/-?O/Lþ;«A­gñš–ºhôˆ…0¾©e2èÑ ÔÆòšÆ§ËípŒ+–åsÎJÌ•Xa'|kEŸÐAÕkH¯…™à7½ÌºÝÍ}5˜$’Žàà“¿¯/•—Ï€ù!Ú4˜Çœés ú^uNLÛKÒ„í.¸†ÖZføðJçW½ºáµBú»Z?ƒ&-­Añ /hLµ?OjF[¯NQ½¨aÀз1>sA$´…D°úã7ÕÕhVŒ8^ë«bTP$&¾³øm η~ÚÖh ö¨Q‹40¿Ú¤wá"4Õë´‘ñð\ÙúmøkÁ“BÎo<wL©Æ<å嚊Ð/Üm©¯|OÚÚøïLê° >1G$Ç@áw8^øÛ´Üæß£m°cÙ|Ò° ‡ÜçškÁ7pÙ@\Õv€žmGiaGä>——+ì@¦±,€°gÎȽÎ%<ìˆÜÛ\9ºí@=?ì Mv k¾*;" XÚ–¡7SlùlËàwÓ°!𠥦;û²$ØÝ+…%°õË– vaI`z®6%ÕbKÀ™–D Â’àÞaIºKXøNJK‚ãÕÃ’àøô0؃³-SðèëÇ9U9›aI"›dH€/xS– fCBof ¢/ÉŽp‹6#âk2#Lˆì„ r™dtß?Où»³Ì¥µ0#žµØŒ §r±Ó ìˆ÷iñfHÌÁœµc+’…ØŠ$P[‘,ÌoФ´i õmHàášöÒ°—òÒæzs•ïà±oX8¡®’A…M‘k?;µpR¾fÓ'gp™8Õ+ÀqPåJœ£s4ZáÃSÊÄÁ¹!Ô9XFAµ4~ôÀÃÚRMU» ÎàœîÔÎëãõ€Ç¥_çbpÌía×Àš{Õ ¢\Ôª%“þQ“;“ºõí¬4°ð#zÞ¸JU,¯´Í:gp©À7¹Ô©¦¦¾ /:I‚a¸éñز© »­}§á'P;å•dL ’5Å€$¶d9´¥Î]=÷¯™3{ŒÔ­ 4”¡gç4£±9&›•ÐØº4½œÊ6OBÕ» Øsª¶ÛŸ¿f²;SŒç¬i(ì ‹VÃ-^©ŠE/D+¤¥Ð¼µ\œÉ²©†:Ns2ÓVzŸXÆá‹ªe™ªsü±² Ýzg_±F¶e¢•ëšC @ÊdÚv„p1Óø¢LÆhuy⣲7MlQÓ†j¹ÕNü8È{‚ös¬vË='uºã«Êá”2°ˆ(_P¼¦^F£›úf0HôóŒå¬%<–n›»ý%€øÊR>m—žD³ìÙ°Nu ‹. M¼`YƒñªLÅhøCÒŸ••i‚d€.NË:Å(Ào?^ÔtG¼8‡mö–k**X¢•6WÛ+è1Ôpgüª;ªvüU3ɉÇs߬ÓZ;­ðµ¨,Ä^Tµ•…ùmQ©u.­wY‹ F'b•Ø«H­9|OðØo© ßMý¨5_’Q¥5¥ÖÉ.èM­)µ=ÁšRëE—Y¬)€åZÐ=Š×@PîkM©›Éê5T•Ö” iMÙ0Ö¾9瀴,éÕ¢xòÕ‹ ).ZFØ™óŠ5 ÔáágϵúLÁ Çó½Ö0©s#s“KкÃk ø;¸–ñ¢ðá~[ŒØPÉZQøºò¼¢ˆË Šè ‰WRHº Å¿Nž¤ìPki-(*¬'¦Vözד b9¡œâ#ZOÁ]ë ›Í^NðMø µœª»ÂêŽÍÏåêå$¨-KP`ÉÆrÂ!»š×@ -'ÇûTÀÄ« ®–.ßÊœ­ÑaWK€Xå+á©&zýÏmÏ=ib~©Áe5¨pGB`ºBb%?- T˜¶€`*`ÿÔðèœB ÍŒÖøpáž)~­öKP&ZãZ;í^ÚÁ€•Ö5µÍY68§ ”ɺ×Ƅś–>D‘ Áz<Ù·—>;y9—›‹õ®w’_òRÀ€ë„cÿ,~)äÙ}¢™SâÕÒcÄñ€ûO;"@­póTn Ó„¸4søè"-·š–Ó“25!8Sqp´è:kÓà ¬ Ø”³¤8ŽfüZ?åÏÃ" ¨Â=Á–ãµ»7rÞ7œŒ|Ì}mïëU8¡aÈ}uÃtŽ`‚¢©ÛXôÍò‘?Ë AEÇq ‚ÙUÍrˆõl¸ñ%Só^wýˆQ¹’¼>ÞfÈ»'U'‘9Q‘Áõ„±Íhù­GZNOÄÛ:58Z8;¹0'¹ÁN”g.(&º+äðEMÍ“ºë¢eGJžÆ)f˜¨þÖëÿMYº’_›$Wžl¡ÅÔ©}^ÐéøÜ„åBJ\~ÇUL£x™§¤Õ€q 0âµ4¥v5˜’vÔúŽ!&&$  2`uáð«î_J«ßþšybJÌ®7VÎþž“§IŸŽË¡õª“A¸¦˜Ì%2×80É\4p¶Þâp¥’žZtžó޽šº8£†'”àÓ|Åw'ã*˜+Š`âä¶y|Rþ:Vƒ7ýâ~ kæ¢Õ×Ç%Ÿ±>) ÞÔR ª‡^s'Õä‾göˆòíÁÐ×/S"§ðšxNŠýPÌŠçSkZÜÜ–ãÚå8›xà"Ä×BœƒæÆ&Ë•À¤PqÔ£iÈR†#3Èv]s„u b§M#(}àb‡…åæ›óe•&Ç뉠»¾Fù”9:¥ RqföÏÓMžMɳ‘à ŸRÈ}CœØ¢óè‘•^î V!XZ§Œf£ôfÚØð`˜`¡Ýpá:ñ…‘äLÕ6ŽEià«Ü2<+¥Œ8a|ø¼æÌVA°"Û†`ÄaÀ"ަxJ&ÏðëætµÝ92tLÛ ã•è<¼íôõöÅÅ|µ~qo%!XuW¢±Þ\á n 슯˜ä;$5Ô§È`‰Ä-“}§ ìt=I09ÿœ3¿-ZÓê™C{?f¨o3t=´fèã©5C±SÂê­]çô¿üð˜+*—ГswuòÄ#×N§=·4@\tçÉTý®Vá‚N?à¹æ\Z¨ƒªo`<þ7 ¢@ ø·å0€èÞ94€ÿõ¢tNÃg9…ÃÞu¤=`,@Œz-XšXo¦>¨³ÙìÉÖ-ø(ˆì—é™ÀÅÃpQk’v×ý;Ê4öËI^¦Ý6´f«? •„Yeº ›îõ{o»ÇÑúâH|Ýü:‚:só¯_3 ÅmH[ﵦ㲊iœµÖJ;€:‘JoRÐå„f,ÀÙ°Àè͘ÙýUì×{wÝ|÷…¿µˆ¨£tÝ\Ï<1rØË,/h¼|+gµ}Øcæoßôa†á‡EÇ7ÝéÃ-/¦ø»æ™i ޾sü·e;ß6QÛ’üfÉÆ#Ë’ÝÏ<v¯ùÎ\ΠJÛðׂ‡lvâPËà‘ûIAåã'/°’¤ Z.?áÕ¼œ.‘h*~-ú¾ÃÑÀßÀØ6Ö'ht@Þ÷71‰¾R¢MÍwøÀIe¥þ<Ühäaa%t!lª"÷„0¯á A8ðb&ôš»,ˆS ^¥@$çÄžqÊŒS¯1s®Âƒ;&ðÝhŠ‘âÄD™Í6.4oœbrQ`’Øzç1â¸UÇ FÞ‰¢>èÓ:DG+NdÖÏ8„#=Y"„z‘"íj †Ú¡:~H `ï¤C§ª:æ¾zB?w:² ™›[¯j^tTMø.0òBv/ªäû^YÏ… 0I®|4%«’$"›9|½ðÜ› ¶‘Õ'äô›õ˜KÛÝÖÛÓ¿vÛ—-J}šÃŒ‘0e¯ºè@¶·òø1ÿšÀöžÕN«I–öïn{ AÚDjtáx,Ú.<¦Í»Ýññüñoÿÿá»ÿéñ›ñ‹ýGŸßÎ4ØËܶ+šªŒÈ]š'b„KáejX¸Qæü Ä ï fÜ/†B,žÁÌ’i^ãäü ÇÞoøçKâÎÚà‹ˆ¯ßá3úðËÀŠÃƒÝ¼N)âóyP䂸{Ä×qÌ„ûçxý¢—-šÇ™}On¡ ŽÑ m‚7—0oøµ:gDô}½.Þëw->x&BUôâ\.)œ¡÷§!@*㋳ìxÀؽ¾ö0‡ A¦k€×}°ÂÇ‘R×ÉÈ­Ô®)©/5ôà¹_ODæQâñÀ€ñÔF_ÀÊ)QîD˜ìÅ•Œœ½ÄR;ð饤K L¦õ{b°'@‹7§ÜÚK|©}ô`¾ø<\g`»qÕÌ#GìÞ$z:SL¯Dõ‹ãBN¿N©@f0Ï·i~à$Ïú•“g‹[£÷ikhØeþ^aâüipe´Vª:Êw`&S¾ƒÍKÔ±WI8¼¨Z&ä·ÄIéý"âÒ2[§¸ĹøioÚ¯àK—BÄÛIK™«!œ=Ä0´“^‹Ç0M!܈ÙóNc‡‹<¨ítÊí5Ç{Øâž*¤*W*Öx¸‘ {i‰nsʯ_Ú¼¹ù½ ûó\¥±ª›<Ì)0Ïä|­î=~Gß»ŒÉàMo±G0󺘃µP›í^¬ÇŒ¥z!pÚ8°åÒ-ŠÚ“rꌓ ¡·Û“„æBƒÀm0AøÇ·F^-XUËBÓ–.:¤ƒxƒ¯Õ9#Žè;ÓbM’Ó0ƒsÁ /3v‚”Ö˜Îsö5h¬Ã*(8ªÍõ'‚ ”‰5ñ¡¡Ä$-ù⽟ø¹(s÷5—´$bø…ÀáneÀ.v®}üD$UJgó8*x%N5íM`F#1 enåd¥&~€XE_ ñèß\1±×ûÙ#ü@tëG•Š^]Ô óôf;Uñ游“w Q*™Ù|Kа+…X’B[¢ Ž3‹æ†ß”.>¤”8CYC\R zgÂ7`H+öPSwL‘½ µÂFÈ!\ŠŒ¡7DÂñÛœz³\tö}#¦»ø(-Æ î%ì¤A}±ƒG™ŒíJ‘L0¨yˆEŠ_Ss+*Özá4 /UÁÈì."Pµ¿@W'—'(Ql œûÆÇO6ϨôjîΡ•Z¤:Dô¢ ZÔcãþº÷ØèjÉ{ìºÒä¿(åfšÍêù„±—0µÓTêÄá †¡þˆDW3_·þj|JýÒ¯¥šBýbHÆÖ͕º±¹òþÙk(¯ò;gz™ÍV¾”ùÏ’ D—æ7 )Õ¾Õ“ üá0‘¡u«øŽa‚VF¤+vA×Põ˜`X“È÷úŽ83öFÊ °õ3ú~*L‚”WY²î)Ï]Ÿ5w¤Æ)ì‹`æ8ŒÌBowç7“ émTu2™؇¤²¿0™23y÷b½àX2ÒqïðRT«……Y­CBÀ‰åu `걈eœ}ÓE«0–_ˆà{+ wÆýزŸÏÊ´ÒPl€“‚n°ç³ÐŠ^ 4^<*Cg²‚¸¼t¬å?06âm[Ñú’þøº¤ÿâ,ߦ}‰tmý¬~ÛðYŒY–‘'»)˜j«ê}E âŸÂ>Œ°ÍFB{˜“€tŽ,ƒ0>m{tcòiœ ê”:â)Xªô߇BJ˳>š4ܲ´ &T¶å†ÝœK#aϱ€»Ÿ†‰9Ê z‡s-ªÜ:ÈÜ´ù*\u8FõóD ž\¤´ÂBKlAäÐ`:_¤ü0^•sÒÖ.š9`…žnƒâë1F‰±S_ÏG(¯•Y•˜I`ÓX•Z8ˆÙäÚ.1ó¾c‘ädè}¯¡ °kË­ßsl×xLñeó:{¡xÎNt—Ý׎ù£QÏKn‹Étj‘89¸š-° a¨'ÍMÕû0u`>T4¦àQ—}“½Òn Ÿ”½°~¯²? ݉à$NÆAvlÀtÓOSÀÂnV?EŸºu\¤Ë. ‚-QWK6%F5s{O3 ÁÙIË©¨ŒLÖ Q³æ¾xç•«´~?¹‰Á×56ƒ‘*…ªÞLÕ¸·Æ> `ÑV[šÎàé3è@™«R?k#µùŽ  '߯0޵0¸6sGË!.\àYÖp3ÉNÊ€åI*¸Y a–­¾‡ˆûzþ¯@•I{÷xÞ±Ü7™%}l‰âˆÊ€Ðáå·!>˜ÅŽòM5‡M†a¯œõÛH ÄI5 ÄÍ\ÖŧوjàlÎåÆ`DŒ‡’áóX%CÄýÌr#ÓoÊg÷ñJ‰½÷;b‘:»SªÂjÂVY¯©8½—Û z¢y‡ÌvÓ4ÎêßÏ8ÇÍՎ§pÂè}†»Ç̨'2[>C˧ÒÑ`ä `˜´ŸÜ()0žçѓʄÏÀ˜Ô €*@ìï!§c¨(ØBàpîà!YJ¾ 'î [œŒCæëUÑ«Â^ìAEL¼B:±çq§¢j ‚›}8-x²„?x nd†hb/ ^1@bètÛc†tú†â[‰èJçŠcr”>ð¶Ø ÂÄð2T9B=PKd‚9FüÚÃÀ@=Ô ¸òÈÈq] IÕf³ÇïU‘—ŽÀÀ¸‹Í+~’S˜CÌöÁzåÙ"¸£V‚ç•wäÉBÜL¨úÒ 8&@T$N½Ð^ã<ÂÀ {«„F "ör¹'cärÇ¡bÆÿå< °ó5‚ýïø¡”ü5³ ŠìåX«Xl¿™Àõû5ü<±‹ÛJé(,»Æ˜<íE9+¾ˆØ €¬"Ââ$^ÁŒòÉpÉ –ÇUQ0CÇ/Á¨¡"'„büS3§³ÍNžÕÙü õúx@>\ D¢û t=ª%úcŠ´Ê ñ œsm"xjÈùZ"+=á¨~ŸÒ.@1 ˆÊ<&Š˜AžŠ¥ÐÚ%sÂS÷è[ù^šéªâ)àj q]ýóQϓӈ¯…ÀrDU\ \СG=›¿"Du@a!­*Èznñ q<>SêÛwã‘ õb‘ú·ÙÊPÀVcŽ º3¸sè•Û÷z®è[$¨ŸY†½FSicG/TÎõTæe/ÌñMnÏ{ñµ•Âp|ñì Œ¢*æ €wâ,œ€ØÎPùÓÐĪªÒ ±DÈ Å*ªºr©µˆ8Ï ³Çà(Aô,«£œ˜ §D»n?TÇìx{åÁfr>õ˜F•éˆÀR€RI%­}e•»+®;Y ¦m…],ƒÐü€1^Öf“ Œe/\ú½18Õo€¡íËGŸ—tÑ&д¿q‚ˆ}·»J)Fë`­Íø<”-ÆÈÄ…n ê—nÞ_¯÷PõѼxw¬ï›×AÝë7ùàÆÉB=©1ŠJi~@ìTRж$¿R§ fSܵˆ`¤‹‡VAY}dé(ÒßÓ~ [PÀ“kb&Ö¤ô#ÍQ¹Á¹"€4ÀGoŒè&V¯{a‰æeœ¾âë˜ý^¤yUÚת}3âpÏ»ÊDc#­f¥5˜heñæÚ››‰{$¶âKEiß[ßF#?0NÎ68†¯õÖOçAe”TR(/¡{#½çþwm>¡‘z)·ˆ“ÅME ‚BWp9žHYÈéŒQA¡¢|ÓJ5ø"Â|Ðï]æÑÍ]:@äsÃØa¶ùÌÐa‰›<¨Ä 5?Aí6±{Ç<þÔaÆì‘ˆF~ nZ€_$‹¾ã®dp’)YÃéÀ$‹)Sw³“Ò”¦¬j\KÖPOä‡0ÂTúÖÜx¶‡öN ã(J†t‰¤1ÆüæáÁ7`Ù!Dôdå_̽~ `…+….æ7E¼Ãú92BY€8íYUá©+L`‰§¢`='ÔÒ°·:Vް~Öï×”'šà¥pe/µ¬¢Jå–ÁzÓÕ ð¾Ã<~-V#—]>®Pî”Ø4Êv‚¤»¦) Úq(ØUr dÂIe}h‘ýÄ9Óz 0p#w£[ÊÞ|t;«†–¨­Eù.XnÊ49†-¤¢UF@EBÏàõ¢Àã¢Ö½CT¢3Is¸ÈØ õ\š2»–ú.®¹¿{îyUÅaíPa3pö¢þ†÷#Dhè|󛈑š+2ÐÀñ^»FäÝò{Ôn,FT.ž/2È:Ffh?óîÐ[¬èŒ2!´ÃGg›¨Óï5+pX@ÖØpá.ðê"‚ko‘;½IC Òl!º3‡{ó«áôyó4 !|­)Òï¯|(NÏÂ:Ôýó±1™Áõ€•e.O`y‹+p•ÓáwØÐÌÍ2«Ö+UّņfÀ/bRÝOÌ.Ç}¸…Kamñ `Šn\pzÑ(øˆn¼(of5@Kû}Ð]¥\Šš\ ™]1 «#†_»«ë qâÑ„™õøŠÙ¹èv‚Ÿ]A½ Db°n>== sS%fý殤o4Òy~ E0ÆÛwe²ƒT5Ñ~€Îá8`Ïë÷#—+´Os‹Pr¢8ÈXÖÞhr î¡Áíϼ¢(ÁÆ\ÞåÅK¬­pê3i¸ÒÔ¿ËŸ¥pIÖ©P&‰Ã–õlÀŠÔ|hÜút¦á œ«˜Hîu•#É’X×£=Šp¨,í :*¾Ô\øFÔŠág𤧶&é9U("_5ä‹q®ð ©k<·s¶äÁ¾µ{!,Å®# åÞ…A ´Épž€unë8ãÁ £àw¥ƒ‰cñ ï©lÏ>ü:«£Ð£_Àì^4‘øCúØ4Â344±˜bˆ×îézÄœ¼97àÄÔ` Xi9¸’%¨Ã¼æY ÇÎÂTç»Ä´:~¢bî1ð}šê ´*Þìé01!k·«b-@…'¯,ähM͵W ˜˜î2áq×z¢R± P D±Uù?`xf?T&ª ~êTÉ”to˜Š¦æG,;è>+ÙÿD<´šùŽ"mŒ9(H…ÁH"[) VQwXÔ†Z£Ç!#„èq Sùx 0¬Dóx„Œ*í€Å£ãV½ÁCrb<†~¡Çæ&"/³ô}à•QÐíd-e súþ$WèKo˜¡g`²@hm&W{*ÀVàÉõ:­-eu fv.BÏ#‰)$RǬHI)6ßõ!¹zq·Ãl ®W¨=püÁcÛINVJNËxœþz :ÍÛ/µq« ú¯sÔÚq0~Vð2eª¬Ô—‡.ÍŽµ&Ì<žóÓ¥ ,Ž9wý@ÒuEü$â¿y¶×UiɼHJ4áyŒ¦\œx!Âka̤’³…¤9ŽÌa|$yÆ)@‡cx«¹¤kã!’ pz“Zl§=ôDÖÉ(æARÖÐÅÜqøŽuJ“‹ëüÚø[Ü2¾ ¤S¼r×LG#ŒR±'''qÇNocÔï(ÞQrŒ’µüÅAQâ0»ß•¼ÕZ[°sŽZÙOÀrYg1L? ;BORp°šÐSqQ*¬˜6<.EOJt.ú¦9y/=Vœxv«NVxTlÆl§VxVøÎª±Kä(Õ'_N¤kP@p3pñ¶-”ø¼Í%Qó¥Œ2¡t˜òÅ×®°MÉæÁ‡Â4ÁÞžt†J\NUâ• $ÞÅÃ}z@*ÁîÙÔº»â"îÝq¯ L6ýÒÙ¹-Ñ Ì-• ØYÕŸ¡Ë»öCÅù(o¯=yÏñðž—U®XŸec2ÏÍ3k(z°ôc‰ Š…;c¯*˜Øç²·%ŒµÍÀެoÌÁLªRMȶ¿Lí2JLQIðˆ~¼ö'‹¡Äë8²(u·¥ãDQ@ÍD —»zaøµû¹žM˜W¯˜›‹ŽàviÄ/)®Ú¤²*D_)V Õ¹D•ŽŠãaƒ¡/¹Ä’ ²Ò·j£ fÃ"3³ ËzÄ¢ ®“Ð)R±ÅeyĘs6ki(#ž= ̹“ Z ÊXÑb!et`=Á>Æ„®õ&º²W$wv¯YÁ ¬r‹Yš€ÝüV^E§3z±ÄÇ€`uÞˆeŠÑSÃŒÛ1G«™…ù6КžCu°ýÐ/™œÇâ&õªÎÙ‹…ÊYcüЉúPÇBa÷‹ÃòZÕ©AK vƒƒžÇ1šBÚ®Ìäw‰]à+& +`Ôz/õñÄ¥¼]°Ë`Az?·w˶ªQZwÐDEø"ÂÒi°¢/Ú½UpÍ/˜=@ñÖÂì†ìBÖCÙ×*\p{[ˆóvô'[›Ý­Âòö)¤­6 Y¬ .ˆ+Âå\SOT^IÉ9À 4Ô<±éè„»âU¨ëV“Ö´Ê >BDxÆÛ.F…=lã…Y–pKËÞ-Ea#h꺶mŒ˜ª«>ÇAW×6ŽŠ´c”o¯OÛ¸U^¸lãVeì‡mŒºåµ¼ÙÆp§Y®h£||Þ¦qóU·Ë4^ˆmãs‘¶q EbÛ¸5›!Ë6]g ÛøÌ|й¦$ŠÇضü´–Áx¡`þ°Q¬âNÛ6^pØÆÇFÙ6n,º´Lc|¢ô§Þn)¶TìŒÙ{jþÙØœim@8ؽMep†Ó> ãÖè±±Y|ˆÝäLØÅKÔlÆÛ`,ß2‹9@ò<Ú0nMc†1ªYÜãi·ºü Pr¡ò0{çݰ ã§QÜ6qSØìñ0Š›rS—QÜ’Ó~l.ÛÄîØñ4Š¿;‹ê4Ã)“t¦”/í'ÿ"C´±úpaå0–Dÿ±P ¾=È è`iCž 6c¾6&¹Äþz)?šy<ãO?æÑpÖAÕ[CúÞXÓ’o€ûûýbæžÈ4"ðy;½Ìm¶Rs4Fæ£xwÒñðÑ’Ë4gջ̔–¬južšp¾ð„±8ò}úc‘d1w¢ikÁ᪼ÀÐæBöÔ ŠëÈo‚oZ\Fà•¡$¶õˆŠvFH|CH/ÖWf%bj6Òs‰ÄúÁþ†»½Á ·Û1ëë#zºíô@¨ÆÖÅÆKH\ßiÄÐÓÕ¤ë÷ޤðå¤ nRŠl&enój¢²~Í«\µ´¼ï߃9¹w¤^MqC•jpþäÉôë»b~Ñl–Û-њí üd@Ä›.¦†¤äÃaÆÔ­í‡AöVw"va'˜»àgVþí­úñ"gðâ `å䕬[2c°0$AoéÄÏ 6{õ-LGV{\Hjièˆ_Ù¿¬³÷í¨Þ­XÅÃ[|ƒŽ:ëâjcJÀæ²ÂÃX¬Vˆ÷ À|Ï“™‚h‚QPø©ñ,Pƒ¥(So$ž–² }óeÞXÈtÉÖPó%0óLéU͵à“.VŠ_{¨'^l/lV¨9KÁ±Y¾dž¬1aØ¥”£¦€MÃï/L2T2:¾#6ÜÀwXÕ‰¿$ú$­ å&¦“éb®,ºÂ½âaº¡šÕ¡‚W‚²kœùñóPy<\¾Èy"H ¬'}XYI>®Ì´]Ü­šå^ÉQìÿ}9¨ZãaºŸ0÷ÎŽ:Ìr‘=a„Ög…©g__œu1dÎQ8DŠK¶ÕµŠó±4–¶*4äz@̬åùUüŒ4[vÇ׬ªØÂf/jìÏ;ÇiwÒ’FÏÉè3’ Û¸úúð™×``ZRá“*q½tµ]¢'ˆkàÒSaªÄ;«6¦€ØÕ¢šŽYõ·àFdÆ~gÚähe÷5«,«iÌ*\žu1l@(@¶¤UÌ¡2g‘y˜•ÑAh÷ÔJ®Âºœ>ë:0pÿ^R•å§\Š“±¬Ÿñ “X©úqR(¶k/F¶qóR‹ìÊß%H££ìN¼ü‡pa6ç8­­tW^a–­²+ÅI,—ªdŽ­k]µOñ?K»ÑgõUãÇÂMiVÕ`áÛ.x¡‚,:_‚³Ì‚® ¡9DnýA>5ªkp‚ZÓÁÙšOx¬Ù1Ta@“ã@ÅÔöì@=ÄTbv×}•Œ”¤8!1¸jáÔ"ÈŸ3Ö<=ñ<ÖìÐÑ¡'‡+\bn0¸ÅÜÀ7$ýU!º%ÇêÊ‹î]SâêyëÉÁ{%î59†ö¶šG‘ÐêÉ!ã9&‡v>19 yrAÍ…D5ÕO«Î ÄUE ²hU§©TæPX§ÁÉ‚Îè¤øYîT¼‰ta9SóŠÝ’+5ë†ä£ÜQ ˆÆ,(îQ—5zÄXÿû|,‹!ø‡Qn.¥.ÚnP*N½,ˆÂ« m@”®Ëœ, Hݪ%1—ª?Pb²Q7¥Ȕ2 ?¤ZÈ2 bPå…{âã·},ª}AמξO:…øËò|$3®²ËŽTѦ!A” C°Q­a³MpÈ”,-€¨Ki¯®§›¤³Á §àÄïbâ©MÖnÀÜ=»ƒï±b¹Á®[o±îTˆÈ[ (ÚˆCÚ×­‘ïXùLÁ‰6¾#Ø!¨Ò/•œ ‘·Jñ°šöɪuÁZRé {y0&6sßì «øº˜a¨`©AÚ€27„È*¡Á×eTñ:DÂÝÏ—ÓÜZfx'¬.^ÀhžU à}x™Ü)œ·s⢒§YY\™s#ªž8e²j òtåH€Û`ríº§œ@Ôbª³Èú¾a·úâiyBÆ~À½”ùTU¥QN+'5±ñÎyviÕm·Š:UÂR³ Q}5ßH” ìòóå &B7d‘cŹ©‚EaüheùO6ì6÷0ë° «L߯xtžMgVÕÀÌüÚ"žð†\ º6xÉÎùY¯¢hb©èG6[pa Ì}Ë)ŬºPÛöĺɆ¥BKÚå˪.>ªYK«0„GÇáß„‹Ã•\ós’óGzP“\Í48gNÔ¶úŽ‹]ª*õ ©(‡ýY«¥Ä['Y¡Yë÷¢} Î*T±$§Üeß®ŒˆÊ8«’*L`ÑèÊ–·Ž(ÀÆû¤UÉ‚ Œ’ øÐý \ºÈ?0”lîòK±¶­ªÌœµ3EÂ8F-ëõ΂«ù%±¾Ñ[âR>‹d¿D6º¿»óV¼fõòm ™Ì£â›µôU½%i¹\©öTÅ:!ôKÉ’›¶\ÓìÕ¹¨ïÊ hA<’)ÉaëºAn#hï–õvVa¯Ý8¶WR¿üx/Òñ@¨þ§×ÔÊ\“h½û2ãõñB'Ò†6-AºÀWôíXœKUðõàL4¿8§ï?8ݹî¾sþWgý™Äcwý_»êJ4 ë7cÜB%¾ˆh²'…€¼SáQ(Œ Z8Í•I€¡Ñ(Z©¢h㲟O'TÈGkÙð$¦1© ¼Û¤Ö(’nŠ®qoªŸrabÅ0Ä:«:`õÏI'HñªJﬦÏ8OŠOŸÔ¤Ç¢ÌgÕAxlüV¿öï²¥hÇo¶œqB|;éá ¦ž¬Óºx~2ùëµ>ucL‡]ÕšS%áæah´îuC7é)B F ¯²Ò®½å±éE÷½ÏÕïÇLZ&ÀI_p"+Ža4H¢àÑ=¨)ZÊãM¸‡Â·{œÙ~ÏÛçÌÏK†qòFo8çÃ9tp,°í.AeK(–ÒkÄ; Ç“§’ß!ÁããÛtx9NÆE/„ëyóÜ+˜n/€ðÒ&‘S¡$mì0\E§(¡‡,m«4ž`¾}oï7²>Z„¹y» ©Vå_“3Úݧ[¾k;qÂY9Û’üO«ž6û#ßIó×·'ís‹q‡3¥w½´¨xO\L·y6òÆbF'e_ª›é©øÃ˜‚!w™¢Ot˼*<âôÌ>/Y1?t )š‘ÆYYÛPI`Õ6.šÎLZdˆƒÔE[²7™Ù”¦”u™ssˆAùXˆĵÒ犆(r )ЖÁ*\+!®I7f.Øe…08£ˆ–ï¾x,K8ÂÈŽÀ,w@4ò‘µWâRu7°ˆd°ãàBÁ>¥ Ê‘6R)Xé‘´Î …ºêÒH‚1ò~Àñ1CÇÖ<:œ‰¨/ºTO•DU,UªÂi &—D]ˆi)–I[ìZ6¤€ÕCcÁ\b8Š"·¡€ ;˜”÷º˜%ÄñõĨÆBèüYñ,Ú$`óðÚ»¹”¼ªfÇš…7¹e]¢K(ƒ«ZüHg)òô.«!uŒC=m±aÇ ˜ ¤«ò¹åà- œâù¢s¤~ižØ¿—§¡4õ©UÕÙO>ái>< ×%eâq~È~çuÔÔX<š3$Ë!Õ\Kàh̹ñÇ8å/‡ß„žªÜ·ú,7` R?”-ø±<Ç£H=”/ +ž‡3ˆó´·ŸÑWÝ@†g´åT€GÓ‡~¿eˆÛÜBP‹\r 2Ì…Û9ºœw?Ë”W0þ5'šÇl}ü@„kmíådàŠNhvÕã|‘ôéå­ß‡ÖúÁ”2Þäb¨†fÈ…*«ÚIˆAL ±F6í ù ×°ËQøM ~³¡ëP”Jfnü¥ ¿ >}âZY!–´KióEÇ]\…Ã=-ÍΫ<ž9–}óx­ºéMݦ†‡òÀ¼žkè©|Û'ICÒõhÛ˜GK~ka~4ôx¨^ÔÇϦ…y4]Wnà~-PßRdrÕ½ïµÐ<–ÉÅÃ5c»¬É”z„eÙ•’š-Ø)ñê©J3F%-¶ Ó¤‚µÖ»ØKÀy/ <¶~éóEãxÛäÂZ¬ÜÃÇ‹(ªÒõHSäÐj¢1Ú“‘—ãhã¨èXžÝœŽ½x÷bcPïy5Q3íŒc}„|â¦b1ÒT.>¿¨JÃàaµrcøÙ*Qd˜\R±Ÿ·F¬ÖjÖ®2©º 8÷¸»fLQ±êÝB‘Ÿm}Äü}m2pTq¥M&2Úýè‰WpCAíÑ ß ù{±|‘´-4 ~ô$0ìêna±BßXÌZD,všH³ûLj¼ºOûÔÓê—à~¬<¹¹*öpð¬0çÃnd€Ï†Ç‹8ãJ²#«Å¶z ¦æ/ºXq«ôLAÐ/Å­êN(Ï ¬7-½WüÍg,'4jpª”Óz+ªÈq«§P8‡Pܪí·#9Öönn„vq_jC÷OÝtæ:s)ÇWé}-7Wµ×cu½?åË —ô`Aªã)_1ÝOžð„xÙ{!k™)EߥQoð:b `Tÿªhªh¥øeVG̦¾©xG¨¸p¼‡„^ÖÐoŽšy̶¬$Áý„Jî« ¦†(¢7zb^&ƒd©¢-ûvê ¤ ¨'½?:}û²qJ|U´”¬SaÖ²kïäOD±õöh&P ƒŒ×>¾aŠÚpˆH¦dñiJYáÖE÷*q~¡O8ÉçÙUg¬C+ ö3ˆiʌ٤nC#ÞÙ;±‘½~iÊÁr¬ÙÐíëF”w¥DÀó\ØÑõJ`6ƒ`¢{úŽÙfÙzmñ~a4`¾.Ì/åÊèbruæ7?Q¬Lµ_yÙb‚šV…]^y‰â…<†Gº·â8±’œ¹¾®nýPu]ôVqÝ€^2qþZðàÖmràæþ}#¤a¾i’‚Ìߌ"‘´˜ºÂb¨ŒLõ³ðw0ψ—z²ÔG'+x?)ïÛR• æk$nÁÙˆÁ ¿Â«7p,Ä‚ºíñ€ ê>ߨ,Âmžr˜t 8r‚µ.DñÒç»ÝÞÍ÷nâ.{ݰÀ»N+‡.LÞuÊ…Å|nݲ‰u0©¤'/ÝÔå*8Ç ðEwafޱ»£0B—¹5_š‰ZãNOÄw¥}«4=¼*IWŠžrœ¼ü%]…L¾…CgݵÊì^RAPkŸë¡ë;`YCÎQo d×Yâp=P%‰øÖEÖåQ}Gz¯AlÒ¥€°æ .^óBñ¾£ áHS }d‹kÁC}×Ȉǂ‡ÉgÂbCrô²«uÃI·”òå‹)¸™Dó¾Ç~˜ׇ%G®û.g7ät±H€–9`Ê[•²MJNù×…½Î‡×——Diº9Q..`IE=|3åõ{ãy_GÿGP/nþ<¨©<†`wN& m‹ÄSã¸;ÑET$†•:þŽ-šUáï?ÀÓÎݧ?Š+ Ìi`IAýA @óÑ,ʦ²Œ6ƒ8z½T‡»Áè`‚@îý:ðâÜyécíùqMTìä@/-–4/ÒC¸±ÖŠÅ~ YÁ'Wðâ9”Ô™Îajñã,RÄM IS,ÃAûÁ˺ãu%Þ­Ö›6€þøœ3qÁ×o|mÄíÍ_Iž{B€ž”TL‚÷,èðàÑ€î;¼¡pýãÔíÞÄïYõìâí¡…j}ñ6¾~º|Pe&Mý¹Õ·žÂ0_y½ŒÉÛ­ãú·ÑÖ×ó­…K¤´dÈ0;v¬WÕm·½Ù²¾-¶™.ñÔT[#1Ì÷2›åÙaÖç‡4-“G×m‰‰¹ÖQ8ÚõÀpZ÷+p°”Èz@q•6°Úœq3´®àæt#`ˆY¿øZó›Ñ¡û‰£\Ü¡<ÞyïÝofêIS/!L‹‡JÂÿ•‡Žµgùå‹iX®VLæK¥‡5•t€ò»çýx‚U‹+¬ÄKƒ5ToUÔgªªÔ>ªŠ%äµÙLEFCÉW·æfþ.äjèÎX޾^[Ï úÌoo½÷”°5Ö¥â²$ ³ß«Ú…ý‚ávQT¦²´`IMUýâz[”k”_F±—¬õ Ö(àDÁk´kUØaÀ/b¬¥ô€néP”ÅÆê34Ût•g­ºYT(¯*­H!½ÃÙ5¤õè«Ê¿ü‚©ºLøëÑP`vCµYÂAvwÀ`S¸˜(ÉÅþ ½1T´n–—.–Hï]*:j8iâ©ÌAa8,¹“ÀWֺͬ&Œ¶ÖýÆüš-•g ?„Ì[²é¼¦LËžàK²³Ùo=Dô[C‡ÌÉgÓ‹Û £Ãô·†õ½! {Ó½Mxj°òúBìï3põDcÉ~+^ ÔÆÈÊ~Ç`K ¸[™ñÆ^ @K™…dj»<ƒtó+`©UE©æ¦Î0ä#hfûà¹_zÃÀ[R?8ΜªZ•­W[]Äcs øºe¨ÓôÞˆäë{6fóH7-ý†Ùºo½¶ÙÙ“³FÌa½šeX…Ðæ¸.L¦:_»NO¥7ÌÐiH.dȆ UH9dtL ]z#„ |áè[l™3¼^J =ñ"J†UÀL õõÀ]s€÷S“o÷H)l–CèMÒÀœÁˆ][_^2{‡Æ¼ c.ö#*M/%ÜÉJ)ÐÆ”ë`·¨`¥þ%kU×f|“F©4he= "æÔ–E›“¾ÚÔ´ôU¬àª rxRY«%zrIL”¯Ï®Åêy…´¶Ö>ö)¶?¸T“âÍ|÷ÃÜ«®<—õˆöŒ•…Ð8cº¤æº{vD×~3ÉRÜ{*d¤iYÿ+ßV‚»¨(×O£T@`ªë³$3Ó~`ÓÎØ”ÝÐBmLc¼®0û½›Šªά>ËŽùÍÑ•‰×+(ÄÅ-R¹§Ý`]I^-˳‘Ë‘ÑñH£qÈFáX)>^?›£ã’oíÈ,Î_ /2V°pbrtÀÝéa3äUˆ&¾Ë—ñ•t:–cÑó'ø‚Nœ?Ý»'Ù÷50+l†a f¥äœ‹Ÿ)9u:ž´||mÅË6ݳ?Ì-³$¹hd[€nºÎ ©FtGúTÏè¡GpÏꉒvš“$€a¢‰1 ém«‰Î›ˆöGÔ™ûAFˆ—èÜð£À »¥Ø€"Qê&¾á1{m*Òi½W: "Þ£G ^»¯ëób5an=>"~>èŽïcÂøX‘érZ‚JLDžŠ0‰ª£†[$Ùtf6R•@ÕÈ{¹™Ó83äfÕ†ã‚'†¼±‰¬LV$)LUhŠÞˆÈsì @V$ŽH@÷9ž²@=yoY¨‘eÑx'jªN²…,(¿(%V ŠŸ°È"¶x=}`bTà¼Æf8KãAÄfþ€œö#7‰láVþ ŽV3%oJ¢lˆ]“Øõ=)ØC}Wñ–ᢋ¡Ãub7Cuéé×ó‘ËÂÀÛYæa¦½+¾Âƒ PÛ‰ Nz’ ‹1s†_âpË'Š®|#â‡#à&=3œ‚„îƒ굘]¬ó²S<•y>"a‘v§ßÜë‚«U©‰a͇Èä$å7f.ƒÈÍ^P̉Þ¡Y3ô@Íš6¡ÞFÑx¨Ø³T šÖ÷ﳄº ¥&W¶¬.`x -¢ðJ°ÓM^"ÂÖîq¯2P¨ˆÑÄ[r¿íÜU§N¼‹{<ž`¼®’qAå6t‘¼ˆ QÄÖ+µHyQHQÀ”]]±Ù³}¬‰ù ƒAâ!Îjç;F)“DÐRÜ»HG˜-mø÷U³”b u6y˜ÅMåÎŰƒsµ=†½3ÇÃŽK O (šK؆³å8<]p-½¾Å ãËø¤´]½ñrZ£­*4Òf"ÄÀÕ¶á˜3\©ù 7øu$lo®ôäéõé4¸Ê‹êð'Ò‡6”¬þ0HŸÒQðÆì×LòOÌ"yv캔Ù¹¿šý Äà’ž.GË„ŠºkíQú3ÔÁ/æhŸ¿¬†‹µfÅ4÷#øf!¢«,‰W Yyë#À´È„zB&Õ°IºÝŹ¥ÄVº4y}äŒ[6Nµ]„ž<ÐˆŽœ>ÞXŸÅ‡c¿n^­/ln fvø6˜×­©32¨6¦27ï(OÑŸj2ríŒÜ_Í:½½š›PBúÁIvF‚:ÎúIÆ3²I2«Ç¦U“}ó¸yS¡d­¨ä>Aš=WfýɃ4Ð-(®ôïx§0чM:‡’E¬ðÍâ$I¹®€*j¢pŠJY®¢’©´†5dJ%Œ'š+‘€îÎbf X’žÌ”å+‰;vÞ Žûºœ˜WLL…¹ó ]BSY~$x+©(mÊU×+(wXÉšÉìVßÊÛ’›úã‰ÌJ2Ì4Êýo¾²;a[ïN¥éz%ç„ê:® ï •VÖ(n±ZM`–²|T|óºö˜¶ÅÛ8œÅ›L+÷èÇÞFOã3"‡`ÕÞ7“¤Çb7–ý5{KˆP¿1›¾#Ž˜qT’watÊø‹‚_ø³‚Ìø³âFÀy"¶Œ€›QÁ±ÈߺsåaÜÉÞx"}æ‡pŸJÚfÀ}:¥ÚfÀ}ºD ÍÃO3`=²Öˆk83ñf±hµó³Í€[)%aÜŽ\ 3àN4ØfÀ´-Š‘¾ó¶o‚×›þ>Í€;;Ùfà73ô0n‡¸‡pâm3àÛ K³ëÈÁÁê¨t ú^µ¢oD³›GU ¼?­Í;ž+ OÞ—óAUÏðÚVÒR½u“R ðŠêù&ÝÝùèIf€•YÜœât5Â-¥qUy"ÒFõr1Åiôq¹‡l]¤Tb7r»bÝ©ä À4Ê»ô\W ÷­ 6±Ý»£†ÁÚÞ—Ut<Ñ´—8UèÃïû•F¨)Ç@vgdz ß‚;«Q‘Üùß^±ÃÞ_pº»ý] ÂÛÂÛ)oÕO[˃݇¼ÞJÚ‹Ÿ»**²FÖ¦Ë{².MEn+‰îŒ%gƒ©Ûß%Qœí±CírwÞÝ6½îâgΰ­»sS«R#†7òRê;閛ΛGô«ïͤ†ÇÉþz@Ó¾idó„Õ‰j¾1¨ùTˆ1ç†KÚ (@{‚THòˆnE¯8 {]jK…s€‘«´(¬‡§¦ðÀ0“\μîEÕÏNÝ”žzöBm«¨gËÙ²ŠzRfŽpØ…)”‚/¾”~`§m àKæZeÞ.>[eÃ(µ„É“\x>X>ݪRúÝ[‡X} £ñ€øìɺ/KE÷i¸ªØ &‰RÏpùó¢÷3·} —ž|ÿÕOMÎ+ju{Э¶¿ôÓS–+/BÄŒþCêyZŒÌÞLs²4`8ïØ;% ˜Ð HP…U'µ|fÿjxcøE ޽ ‘mDæ](E§n¬ž«(H„kQx“Ke²Ea’V¡…8]¿faàËS$ˆ]O¿a¼ÐY6‰Jd4E€æ%fÞ‘t^!CÆY—±\X 5K®}BVòƒÇ`†%ÎåºOœë XW¹Œ`¾qšÇIÎÝ®ŠT€ë¸àSªŽ…Ù½½uì/˜ÕÿI´ÒµTá;)K™ŠlŒgÿ±ÒÜ÷ê¿Ö¿Ý}-4Wöÿ¾M­ûUÖ£Kåxéä½§ÀHÉ›.Y 26Ù®,»ÿ ±:«Õª··þô³ËƒÚù‰É®ŒEbx–—TŠXâÌÈÐû¢‹Òœb âIu*.5 :Ž)r«˜ÁcŠ€«8]OHk’%É“HŸ€‰©ÊPß{ÐcI.×X¸öd§“mÈÚãË¬Šµ0X©Tû¸Ë0Çdߦ}rˆq{ÑmÙuø.±¢«mc–èK^;uæíÛr¯Îè*Áˆ—®ÕbÁÛEÖNê„o]²t']Éí¬YÞêsú–î[W_~ÍJ͸BæÖåÄ©¨4[`nö~ù Ù®‹»Qi%ñRsÝÌœõYF1ë५îÛû¢:˜ÆD$]+……(`qƒ±¥ë tI_ôíˆLz2CåPƒrÞõÈ<ºRmÃ#*s`Žœ·/e,šÊttA<ÉÞú‘êºØ‰C[“Å®o1ºd=KŶèóšeÁâ#ª'E†{>}‹NJßR/0aˆ·ó,q¨-Þñµ§BÈ8ãòquÌg!¡"*¨¢0B§ bIد˜)wV¡ˆýD×.…Mø®±s)xw™]ccš$ê²2­ª§ þÑ-÷J¹  gb;ˆÆbZi †Âø ?”\¼²•ÜÂÜ®¯…«ñ%ø–¾ŽbE†².$½-lÊ^|„Ñ€h–÷òødÉï¸<ïBÂgJËÜèž‹âS@ÀÒ*·m)Þuë2w—èv\*ÔLÖeX„±9ÐiÒÂ$ùL£ ЏnäJ±ôHƃŒñ s °{²Düˆ¾®'Ì +óŬ­îƒŸ\†øI†³&ýÇ·qQÈ›ŽýÙl‹TN£jÝ…‹›÷É5Åßž‘2Åž4é:~¤)üMUÝ(÷F¼ØW¸NÞŒ´[¸eÇ­OPº(´‹Š-‘¹{¶Ghcz{´œþI¾YjAc l"¡A>¢R(î5»éŸÍƒõ²¹´[7ýùãÉúuõk{t%çu[pØìj} X“n½³gæ÷fq:?šÕì^`e0ù[zoBò+ݼ2þfNE`VµÇ_0§j+É '”.‹WÀV bOz¨3z:4³ðô©¯ ®›ndºaî¾>Tþ,?è,ŠÏÑá}Úv©»º+…MºqrÃ#rˆj÷»âRÃÖ&0³0ðÚÄ '±ܰ÷@8ÝDÚØõ&çY=ßí³ÊUì !¾»žbÕT×32¯üè[Sºg׫©Gªæ¾79•µfF)X$Š ]RP>ÛÚ´úNðÑMI>§s Z@m|‡cç8hf"3Ïs-¾'æN"ÕÞkL\›,™lB—B‹®<ÌuöØÄþÙjÓ {(Öàh¨^sœtÀxܳ˻¬Xú=æÖÌ3&5"g­>}[@ñ|ÀòJì"³î (mí;åŽÍEG‘äÈ-Uy=Iq¹ÔåWU\0çFÌÊR§\–qYÇðÞ¦êúU¤§Âd'¯@a"Òà‰PUâ@ìuÒõ¥Á,&=ÚY|[˜µVâ²–Ò¼V6Â2 ÑÕ;03ÏÝÙcË Ó¹ ? ai¶§ÖÞœ¨ñö«3$UÁ+_$Pb‡X¨NÙB8Z++<)…°Ùú>ü‰šm­„ßta–—ÕM´!à Þ§ ‘Ý^bºéU9†½Ý)}ï©\—eX­dU?áÁÛQˆ’AÉ{¨æªO˯ÊÊQ§· á5emžn™‡×Ny{MYr¨í5ݘðšê,e4X¬'ɧf·)¿ùjB·^­*=E336CE·Á<6C,€òØ.][~SÀ©¦7v Ä_I‹öìûQÂoºáð›fùMÙDº>ÂoНp™ZN%ãm…×]àJyê!—Ãúbi¼z®éÀ'Yœ·åÈ BíÙžS1Ý~;ΞÓï"é-Ç)v‡°ÔQÒ(ÚqÊr`q@@—Ç(”; û¢j½áeÇÚ½à—k µÇ}{lª*w1»*<§d^•«Ô ™Ì/Ï)§L·›TžSwëá8e54«1’üÃJ=<`9u1`$Àé,´Ù»Gó$šu62,šSå µy·QT¥·Í&$%Œ¶0_ª&%”ªÖñµÊÂÐwl >Šî[jŒ…¬aTØEq~`ê#8hXäª1d½/㊾ (tÔ©ã[e׺d20—½Ý‘ä³!ÕO~>4–ÚÞ¯=¹ÿku¤3)U4)± ɳù¯sÈÐ=j{,-ðåýR=¤KÁ–3n³:y Q ¾åzYõ~½³0?šy<äO?b7Ì‹¾5¨ïÍðö –iA‰‹›Ác¨´±1ëy“á—µ&Vr!¨ì™„%\&ÁÉç­4/Ì’{¥“ ¿¤eú~âÐæñ~4‘YÁtE¦K~áR“y< ƒÛ˜‹h7!Ëz¤Å-±›%©lB+íÝÁ¯Gg…yp#š0¿â#›¡AF0\dþ¼¢`›Â 6”¬…Q-1¼Cïoœ)j}ÎVkû«I%WRsI7¦Ué^"D?®ß‹Üz»ã/xûIrBJqw`ª /=_ysý&zÁWV,ŒÊê}=^Rl1›ähdÅVñ«Ð(·î*7ŠÝ†÷•$–:$(]‚à?ƒàªéx éxÕ +aðÒ |È2ÏÕÂä†u=Ìë ƒX·/6ÂeV",…„ªU+å/gŽ|Vf¬äŠþ=Ôl¹îXOPRøb„XÁS}c(îU‚x^Éž Éö¥ xì€-pnÕ$U øÚr˜ÎíY¼pžÖòøFÜ'³¨(¼–}‰j3·FÝ8ñÚ]]˜Ї=m^•3nb17|vXG‰ßÃwðĈ(`ù1F[ÉzF?Q1í¨0á#¸¤f[ûçcc–RÏ.,ö æŽzÕ©ÓÐg #•×`ØËØÕ‰N¦+ÿÌö4!bð¥¹Vûã¤<<Ÿ²nçðu•u:C»Ã¢-ô! Nd`À7w'/µñ¾‚qQ…ð³×«xka ºWô}‘Y¹Å.pŒ2•rÒ¦œ‚à 8“ÞÀzkѶ,ñRÒòñ6TÍÌ[Ú8.ô`nJ sJtnªŸq–²Zï*±!!¬£”]G#“Ò? ±d­8Ðí'…¿T×:ÞZ˜…hÜp¼!tgf—-ç«n8Q×ê¤Ò\?«.GÙg\±äAÇsÉ;6eB=iݯmŒŠoÆÉ IçmŸ¨çzKKÊ©RÂY–u]ôRw÷NMøPñŠÙ<òaÀOÌâõnh³a4f›· ËÇ|¹Í§†æSQžæ²[J³VÞö¼ùa?¦¦,ó©Tëõe>•ò鉢 ϨŽÝ@fÊ÷ÃzÂE\ùa=•ì±*]¿±õ´š°Ù²>² ›M‡MŸ Ó’´:²Œ§èi<ŒÐûÇfÖþF°3¨v•ïBöÞÒÛxZOsGÍ‹'VMµòX#¤¯Úx Ï£Rx¥È6žŠË¯îß³ô­­'xÆÒ›õ„û¾ú²žÀû¦ßa=Á†gÐ'Ü2·PËzZ/Ùz*9L¡Òª5íøØ¶ÓQ¢Î]O…çK6póqþX¦ƪåmZ]y,Ó©ð†Æ‡åTÚZÏû9T6œ Ëi=²,§âãe[NüŠ4OöðkÑÞ†S©òØpBíµ´#v«¼ÙME[ŽýHV9¿0œ|ñô6œ€aIµ°›PȸJ Y%'À=™cÃi5`»i}"ì¦cQaÃÉT®•,ú±W²èéZÉ‚a8™YÃ)¸i³i1[fÓC½-»)0eê^Kì7ÌÓlBõZªHQ² ¡´©C6—¬,›”½ej Ö’Í8j±š½t ò¨¢àµàkÑ7a «,†2-ÉoƒÖªi®ÍÄlú÷]Œ)º¦lcÖRW†W٘ǒ¯mÆ­†–Tu•¬, WœôZ6†º£2Ía±Ç%m ¨&Wj²ÜTo‚—܈­×õöÈUÃF÷ÈxÌUT nŠŠnT?4˜n¢¨¢½íE÷ܽ>¾ €„b(  ?sŽ7æ¢ë÷K%‹rÿ޹õŒl8¬lˆÞØ\5ï}Q†4ž¡aÕ;!È‘JôÞy!^¬ÿê2½<þ‡LWæ [å2][s]z>Ö–n°páÐÀä8ÝÝ$J™Š_å©–jÔÝïá¯VU–½{+U•½UhÛ‰®šv²~ŠÃXº¯ÇíÓ/tºÝ«Ëb>˜Q½Sé¬M}jœª_<ƒ{©€“P™«¬h÷ BTÆQó’Žq¢²×+5¢Ö^’J¥7?ÞìZl õDÿlK»•¸—‰V‘ªYáY_=Yö0¤­3Cå»<¾Äµ‚­šéz«Î8ÈòJò«E¦6¶v€éÚÅGJŒ”û;7VX½4ÏÛ¥z‹£,PCDoüz@×/«W(«Þ•¨ì7ù—Õ—;©Þ¢L ZWU®âžhEwç¢oœ’­.]–\XZQÖyø X'¦ï1u™š&ö± TÃ)[†*¨Å>UÖPó65Œ¥æì!¾‚¦ qeK$ †ïp˜&ì+JGØíƒð˜K(®ÑdÜp©hE‘293l pö^7S yÂ{ÐðËW„@ÐÖ#ݹ.\‰îuE•ê¨{5ÝpŠãJ.@¨!ˆsµgVñy=0‰ i7q*#>Âò|Ég4¤e5š/y•MõZVGZÔo9V_ã‘àE늟3¯ÐbN>­"7Q%7D»ÛðÉeŒÇ¹^1¦uú[ºâ.Àù÷V—ª§o8y§»1'B» Œ€o÷ Ûð]¡$¯@B)±*õÝägÚiq=0 ‘6gcÌ9\- ísù ÅLFdðnÜSvÍ¥ç ¯ž,LæM» 0ãñ°K±YAÆâ§É4¿ ‰z"ŒJÿa#tôï§y¹zFí¼q}$P!L„B¿àèÛ±Q'—ÕD“ge}dó<èh>‡Z„Æd\ôC".…ÿ®'œ¿·›h,~ñYWÌ :`>¥ Þ]Y(÷6šnÄGL7‹¥AhðüÛ¨p:±èîÍ9‰|v*Ù@„Ïœvºuá:uh³'ÜÄäÈÐëçC>Úð²´'\s`{L8jñ¶'Ü‚·˜&&\4®9pqO¸¦è•5]@f½3.z²Çß+{RfTMíìÕyL8 G¯{Â]öÁÄ„[ðêÉÂÄ„‹&<áâ#{™Šàgüv7ŽÇЯ1ZóíbšøzJÑ–ÌBÃõ½ ÝÀ¶ìª \ðî™0Çãh"ÄÜ_y2Ütx®˜ÌcÍ¥5Dk¶¡nðsqÄ*øh )¸òxNiG€¬IË_J!à-lÂ[µ¸‰¥zÂùPN"#øi*Íð÷á\Cái¸Âh\ X@#H)”W¹ô†fL˜>•KEó!(ÈâW°+Ê®ØBuîSç!WD¢äkh;mÌ”¿î•~õƒ/mY_Äp+wɽš/Ýæàd+à ì·dÇ´¸¤+Èm×oӪĬ†¾£È#Þ j¢C2åÛ«.Ý]Œîf|ݶ¬#$ °æ›‡æVa¶=4Ä0îíñÈíáåÕ/·Ëö%ÉÆª i(‡›€¥Á¾ü€$ù}ø±I˜2‚M”劅ÑMD_Äè[ÝQ¹ÛSwß¡&DÖFà¼u5J:Ñî‡ Ù“’ƒ\T°a•™@1%KyÆë”„ˆ˜¼ŒŒqÛ‡*lLÕÞ!Úwg4Øã…|}Ƀ0åì²%` ”<à‹.!O½2¬ aƃ*)\U[‡ò^\˜F]¥Dž1|‘atË\º­ð°eÁ0oŒÀÖË Éè”K×…åîcÄKu/7|ÒoóÚ˜¦’êhA1ÈXLŠ>¬ŠÖ#³ EnÏ^0”h¨†¦CÉ…«nåøbï™K kßÖK?yyÔ׎ë!èKu;µ,£·Oš²d_ÌðÉß¡÷†|Ôhc4}(¬Ð^M(å­)Utsv@K“ãê[À/b¸‹\O$Ez,ö©&‰P‚ù'=ÿ@zv°4#Î4`îC“_¸èwEísÔ³ÁLªÚºbϬ-"XU·AƵŒM"ÀbE_8.-î¥Çqÿw)œó‹Üaˆõçƒ{(ƒÇû§£|ijª‘[õ) Õ(­‡£<´þµôSÕFja Ï´²Ü îDQ©[û*yyÖä…®'ѵ:ÖÎmö‹“}íìbxÖ¾ {;D ‚O½ª•Òçðpá‘hI >ysÒ»êã9t•c(!¨C‡í.ÍÕe„UN»0tb˜Qþ¢s©°0`¤•ñ6¼vÇ “ûh×­o`•W×LDSäõ"2„×Ý8ò=Ò²NõH–}MŒ¢@ëõQèv;LèæžHÜðêĸ›n Øp¬O,V-"‚™Ad0ûÛp€¹ %AøÃF´•³hÌÏ0{~ƒJº¶‚åªHZ‘H}Ûù7ÊP¥kÊw~»sIÎ!Š&RÖGÀN…Dô¢ôMærÄDO¶zÃHS}i`_ZMtϪõ‘)(×2yÔ2­D…Ÿ°Æâý€·¬¦:Á4šfÄW¿ÁÑ syb¾ Š¦Ò­ãCPÌȪ„”ª¬#õaç)4¢†íÂɾw ©Àõí-!–i‡—ªÿ†±‰ÂfŠ·cƒbáÚÁÆ[ ³ZÞýږ州²úÇÿîûäú endstream endobj 4 0 obj 25892 endobj 2 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> /a1 << /CA 0.5 /ca 0.5 >> >> /Pattern << /p5 5 0 R >> >> endobj 6 0 obj << /Type /Page /Parent 1 0 R /MediaBox [ 0 0 534.823547 368.669922 ] /Contents 3 0 R /Group << /Type /Group /S /Transparency /CS /DeviceRGB >> /Resources 2 0 R >> endobj 7 0 obj << /Length 8 0 R /Filter /FlateDecode /Type /XObject /Subtype /Image /Width 150 /Height 100 /ColorSpace /DeviceRGB /BitsPerComponent 8 >> stream xœÔ×÷[Ów÷ýël\µ­mí°¶ZëÖºGÝÖ½•½„AöÞ!aÂÞ{ï½Y"(2dÊ^ @ò=îo¶çyÞ×qû·û{<ÿƒÇñz ûÿ–ªû_+)ß~¶ÜùÙRÇç‹oÖ||­µÐª=ÿr­üÅziㆹ†/¦Ÿ9YóõXõ·#U[†+~è/ù¹·ð×®¼íÙ»_gìkNþ£!þhMÔ©'agË/Kþ*ð½‘íq'Cô …¯›ÄÕO`Å2L£iædHÅ&˜b@u”P¾4´ëÅ$x²ÉšéÆc‰Àøl¡:ŽÏ x"0W¾ÈU ºº‰„n"‘»››»»»‡‡‡§§———···¯Ø××ÏÏÏ_" ð     ‹ŒˆˆŠŠŠ‰ŽŽ‹KHHHJLLNJJIIIKMMOOËÌÈÈÊÊÌÉÉÊËÍÎÏÏ-,Ì+.Î/--,//ª¬*©~Zú¬¶üy}eCcUÓËg-¯j_¿ièèlzÛý²÷Ý«þþ¶Á¡Ž÷ï»FG»ÇÇ{''ßMO÷ÏÎ ÎÍ É¤CrÙм|pA1øa~ð£¦Å…°%u}K ï–z–º—º–:• o” ¯U ¯T /…À|0_(jųՀÿ{ÁÙÿÿŠÿK08ôÿB0ý+X÷ÿUPño‚‹ÿ{Á¶ÿSAÕ¿ viÛÿÔe+‚õjÁ àûª-C?® æª_­ {uº*ì\ià¥"¿«ù> àÝtуd¾n"× žeÃ0¢™‡“!¡äÿôÖz°Éî*((R"þ‡ ñÿTÐï¿Cþo3r²ÿ—¬[|ÚÒú"8ðIpð?> öÿ¿;>m°UµÐ Ì7óõÀüs@Q(ž®¦zû?þ­)Áºþõi€Ÿ|½æÃ+­ùEóZYÓú¹†3õ_LÕ~5ñlóè“ï†+¿,ÿ±¯d[wáöŽÜßÛ²ö´¦ïoJ:\w¼:òLEèùâ€+âk¹Þ73Üï¥ &òôâ9†±,ã(ºYÕ"”dL†’a \Lqö¦¢½èX&ÁEvcSE\¦Æså±]yW>WˆÈ BWW‘P(‰Ü4‚ á Š5‚þ †‚¡Ÿ##Õ‚11jÁøøÄ„µ`rrZJJzšF03#;;37'+?/§° ·¸(¯¤¤ ¼¬°²²¸ººôY (XQßPÕÔ¼"X¯|û²··µ¯¯mp°}x¸sd왜x75µ"8(“þ§àØâ|ÿâð½]á[þ‡ï¥†¯AÃN¯PT­¦êú+jê:A;uKퟩùÚÔ|à U¼Ô‘¿X§9¡§ë6MÔ~=öì›÷O¶ Uþ0PþSoñ/o v´çìz•¹÷eú†Ä#µ±'ª"þ, ¹P ù+×÷F¦×íT·ûI‚DZƒh–Q$Ã$œfJ± "Yl%d{1îCqö¤`$'/²³ãNÅºÑ B&É•Epš˜|.‹Ïekâðy\>÷¢««P=C7 á¿ ‚3ôóý$è¿"ü?g˜Ÿ” g ‚3LOÏÎÌÈÉÊiA~NQA®Z°¤ ¢¢èI•Z°Vó66U¿|Yóêu}{{cW—FðFp¨säýÛ±Ñî‰ñÞ©ÉÁÙÜ€\:  ,È>(Ô|ŸA¾^oi¾k…oYÍתTó5ªþƒ¯—ò¢Õ–?nÅn©ý_ Ý*ß+oÍÂKíùfmyÓZiãúÙzõ'Ÿ9ölóHõ·CUßTüø®lëÛ¢_;ò{½ûeƾ¦ÔCµ ǪcN•†/ ¼œ-¾žî}+Åý^¼ë£ž^Ë(ŒaB3¤Xú“­ýP_"̇èàErò !ÝÈ+¤\$“ÂgÓùÃäqXšØ<.‡Çåò4ŸÇçóÁ~2\¡§‡‡—§§——¯7(è+‹$’ ÿà€€UÁˆÐPµ`DDLddlttœæ®&'&¦&%‡4#55S3ܬ ðäeæ«iYI~yyaUeñÓ§¥µ5åuu MÕÍÍÏZ_×½yÓØÙù¢»»å]/ø¾ìx?¬~ 'ÆzÀ§pfºov¶ÿ¿  šoñßÒ ŸâµRÑ¢T4+*EJñ7_ /ä€,wµåö­ö´û×Rh÷ÙâëÏ>¾ú\çò)^èÈÁ®Ÿ©Û8õ<¡_=ÝüþÉ·ƒ•ß÷—ÿØ[ºµ«ð×ö¼­Y{šÓ÷7¤z¼*útqè…¼€+>7R=ï$ºÝ<Žâê‡2ƒé¦Ts2ÄdíC°õ&À¼ˆŽD„)"a„¬+  “øL Mç±\6S‡Åå°¹WóñÔŒjAÁÿBÐ[ü_‚¡AA«‚aa `ôß‚±±‰qqIññ«‚ÉÉ©)™i©jÁÌ ðæç‚‚9Å…y¥ÅùàSX¥y kž•Õ=¯hh|¢| 6üOGÞŽƒ‚½ÓSïfgú¥³ýò¹~…¬AÞÿäSô-*Þ-*zÿæS€|¯–ÿƒ¯F¥~ø*E™fwù€,e®¶üê_+-©ûl±õ³Å–Ï>¶|öáåç^¬YhÒšoÔV4èÈêÖÍ=_?S³qêÙ¦‰§_>Ùü¾ò»òúJÁúsgþö¶œ/3ö6¦xžtøIì‰òÈ3Á³%¥zßJò¸/zÅÓ gÓMifþ ?’•/ÑÆoçI°÷ 8º""Ò•„±|*G#ñ.‹Æa18l&‡Íâ°Ùœ5+äñWCõ/š•ߤžîî^ž>žA‰¯8ÀÏ/Pâì¿*>…!¡‘¡aQááÑà £¢â¢£ãcbbã’ââ“RAÁô””ÌÔÔ¬ô´œŒôܬÌüœ¬Â¼ìâ‚ÜÒ¢¼òÒ‚ªŠ¢ê'%5OËž×–×7:&!&616.9>>%!!-1)œaJJVZZv:(˜‘ŸU›]”ŸSRÒ‚ÊòÂ'UÅϪÁCZV__õ¢©º¥¥¶íU]ǛƷͽÝ-ê§°ÿÍð`ÇÈûα‘®‰ñ·ÓݳÓ=Ò™Ùlb®{AÖýAþvQÞµ(ïX”¿Y’·-É[—åÍËŠÆeÅsÐN©¶+W)ŠUŠ|•"P¤Š@Ècy ]m©á³•Áê?ûXÿùǺÏ?Ô}¾ð|ÍB­Ö|–â©¶ü©Žôɺ٪õÓ'Ë7—}5RòÍPñw}…?ôlíÊÛÖ–ý[KÆ®ú”ý5 <‰=Vqº ä\¦äJŠÏõ8÷»ÑÂûüG!lý@†‘ÕLL¶ð!A¼Öžx¨;ÖN„³â]ñ>É#b¸$,‡‚çP‰l™Å ©cÒYL‹Åd±X "{ñAÍ/š•º‹Dnn^îÞšн}$>A?ID}HC‚Ã?Í0:,<&""V“›—Î0=))#99+55;- <¤ùÙ™9YÁ\ð)¬,+|R –Ô‚‡´®²©ñÉËæš×­ÏÛÛº:^ô¼} Ò¾¶¡ö÷Ãc#c]Sog¦º¥Óoe3os] Ò®²ÎEYû¢¬mQöjIÖ²òÉ–åÏ—åO•ŠJ¥¢T¥(íTŠL@‘ (hÈCy ¯¶XûÙj5Ÿ}¬ùüã³Ï?¨[³ðtÍ|µ–≖¼R[^©3W¾n¶lýTéÆÉâMãE_½/üf°à»wy?vçníÌùåUÆÎ©{jVÇ)>QúgNà…TñÕ¯›QÂ{ႇ!\ݦ¡„fâC6÷"Yz­Üñ6n8[!æŠuàà|<‚‹Gr6Ë&ãY"‹JfÒ©L:É 3 &ˆÈ\AdÿÛy¼Õߤà¿C‘««›Pä!RRowµ —·Ÿ¿¯8PìäÎ0 4 0,0(<(8"X=Ãè°°˜ðˆØˆÈ¸È¨„¨èÄè˜¤ØØ”¸øÔ„„ôÄÄŒ¤äÌ””ì´Tðæeedgåe—ä”çUhéӪ⚧¥Ïk+뫚_<{ÕRûæu}g{S78Þ–þw¯Þ µ¾oíœì’Nuʦ;³í sí¤m‹ÒW‹ÒÖ%ió’´iYV¿,«Y–W+åeJõôò@;•"E¥¶‹a€"ûro@îÈ]W[¬þl¥OÀ>ÿVµf¡jÍ|¥–¢BKQ®-/Ó–•êÌ•¬›)^?U¸q¢`ÓXþWïó¾Èý®7ûÇ·Y?·gþÒ’¶³1iϳ¸C•ÑGK"NæŸÍô¿˜äs-ÎãV¸à~ïQ[OÂ0ò¥šx‘,<ˆw‚•g#ÄÚººÀX>ÎÅ!8x$›€a±,žI&2(dÊ Ñt:c‘ù!{U»òß‚ÿIPè!yºi=ÀCêíçýo‚ÿÿ€CB£BÃbÂÂcÃ#â"""££¢“bbSbãRããÓ3“2““³SSsÒÓò2AÁÌÂܬâüð)¬(ɯ*/|ZYTS]ò¼¦¼±®ª¹éé«—5o^Õu¾ièîxÑÛý²¿·u°¿mx°mtøÍøHûÔXÇÌD‡t²]6ýF1Ó¶0÷ú£´uQúrIúbIÚ°$­[–Ö,Ëž,ËÊ”òB¥"W¥HW)’UŠX•"P„  ð+v\@Î\m±ü³•>–}þAÓBé°ù-E±–¼H[V¨#+ЙË_7“·~2÷‹‰œMcÙ_ g~ÓŸ±¥;ýÇÎÔŸÛR~mNü½>nouÔ¡²ðc…!§²Î¥‰/%x^Ýå=â<ögê‰iFÞdS‚…;↳bm\]lùÏÅ‹…sp6ÉÂc˜& Ï J¡ƒˆôDƪ¡‘ÅúqEЕÏ n®B¡ÈSäæíæ®ôôòóòö÷ñ ð‰ýVÁ†EG‡D‡„Æ„†Å†…Ç…G$DD&FF%EŤDÇ¦ÆÆ¥ÅÇg$$f&%e''礥楧ågfædçf•ä”çU•TW>«*~þ¬¬áy勯êÖægm-µmõoÛ{Þ6÷õ´ ¼{5<ðjtèõøû×S£m3mÒÉ×ò©WŠ™–…Ù—ç^,j얤ϖ¤Õ˲ŠeYñ²<_)ÏT*RUŠx•"J¥U)…/ ðB@Á WûXðÙ§>ÿÿùBþ°ù¼5Š\-E®¶ÉërŒèF¸àN û¡?󱘮ïM1ò$šŠpBÄk%p±áclyhãÀq³±ÉÀ£:G'èd"J¡ié4ýDÖ'Dðw øËte†®Ÿfè.‚‚^  »‡¯‡ZPâíà#òõ KBüüCýÂ#ƒ"ƒ‚£ƒBb‚CcCÂâÂÂÂ##"“"£’£¢ScbÓbãÒãâ3³“rR’óÒRóÓÓ ³2г3Kò²Ë s+Kò«Ë žUÕV—6Ô”¿¨¯jmzúúeMû«ç]oê{:›úÞ6ô¾êoln™i™o‘N4Ë'_(¦fê?Î=_šíª–¤eK ,oYž¹,OU*â•j»•Â_¥ðV»S PÐ Pà;¯ö1ûó•>hZÈZ3–©¥ÈÔ’ghËÓµei:Ò4ÙÔuÓ)&’¾Kür$á«øozã¶tÆüÔ½­%ò×ú°]OCö•.Ïö=“ây!ÁíJ¤àF(÷Ž„ùHL×õ¡ê{’ŒÝ ¦B¬…« DàbÅÇØðж\4Œƒv`c™.IÇ¡éx ˆ£‘ð42‘J!k©4PðoÃÿFäq8|.וǪgèê®™¡—f†¾ž~ž^/PÐ7ÐG,ö ñ“„JÂý##ƒ¢ƒc‚BbƒCãBÃBÃÃ"’""“#£R¢bÒbbÓcã2ãã³³“’rS’óÓR 2ÒŠ²2Jr³Êó³+‹òªKóŸ•Ö>)ixVÖTWÙÒøäuó³öÖÚ®×uÝ ﺚú{š‡Þ5ô¿z1õþÅìØ Ùx£|²~~êù‡™š³ÕKs•Ks¥KÒ‚eYβ,}Yž¤”Ç*áJEj^¬š÷TÍ»ó`ž̯ءP8 ØjR?_-åó…”5`óÉkÉZŠ$-y’¶,Q[š 3—°v&~ÝT܆ñ˜/Fc¾|ýUä·=ß·‡ýÔ²íEðöÚ€]U’ýE¾Gr½O¤{ü™ º#ø+Œs3y×—öØ›¢çI2pà q¦|Œá¡­¸hÊ–‚±PL´#ƒ »8Ó°(C%`©D<•D ’I "õâÊéš'‘¡ù]Ãdªg"r¹ ¢ˆ/p¸z…^B‘ZÐÝCìá%ñôðö ôög"ö õó—DH"ý£‚bƒcƒBâ‚CãCÂCÓÂ"’Ã#S"£Ò¢¢Ó£c2bã²ââ³s“’òS’ ÒR‹2ÒŠ³3Êr³* sžç=--¨©,®¯.mª­xY_õª©úÍËg¯jß¾©{×ÙÐÿ¶q°·q¤¯a|°aj¸av´^6ö\1Q3?UýaºêãlùÒlÑÒ\Þ’4cY–²,]–G(ÁJ…X©±SÍsTó4`žÌ»ó`„³6€(ÌWûÿùJ êÖÌÇi)bµä±Ú²0i´Î\ôÚ™Èõ“‘ÆÃ¿ ÿr8ìë¾oß߸µÅ[£dû3ßÝÞû \"\K¦%Ó–…jKCuæBtfCÖN¯ŸÚ0¸é}À—Cþ_÷ú}Û%þþ•ÏÖfï_ê½vT»ï.s;çz4ƒ*‰{6†})œq5vKL¾çIxìŽ×á .Æ<´)iÁFZ²‘V,g¦3”álGGÚÓQŽT´ƒ » ÉX4ïB&àÈD<™D$“Ôˆõ§F¤jžDð÷)m‘ ÎÅâ±Ù| ¢ÇwÓÌÐÓUè-ùˆÜÅn¯Oï@/Ÿ oßoq¨_¸¯$B,‰ôóö ˆ‘ÆúÆÅ'…$‡&‡„¥„†§†E¤GDfDFgFÅdÇÆæÄÅç%$ä'%¦$¥§–f¦—çdVågWæ>+Í^QØP]Ò\SÖRWñº©ª£ùI׫§½ojú;j»kFzŸ÷?ªžy"­PŒ—.L~˜Ê_œÉZšM]šKX–F-ËB—å’e¹·Rî¦TðT ¦JAR)p*R}3Õ|àî,…  0z€âñj ’ÏWš—¬SøiÉý´dbm©X{N¬3ë»vÆgí”Ïúqï#^›†<¿ðøºÛý»vÑ-Ÿ]­üVÉÛSÌ9˜Í:–Ê8O?I½B¾*!ÞòÁßsÃ>ºè Ð<”1iÊB˜3–L„°¦# 4';Fuv  àd4‚„A’\P$,†„Ã’ð8‘@"ªÉêOHQTº:‘"² “ÉÕ 8W.OÄã»óžWoW¡ÐM,r—¸y¸{zxyú„xù„zû†{‹#|ü"}%Ѿ’±¬Ø?N/ LðJ N I M K O‹ÌŒˆÌŠŠÎ‰ŽÉÍ/HL(JI*IK)ËL«ÌÎx’—õ´(·¶4¿¾²èEuÉËš²WõåíM]-•½¯«úß<êªé©齃,Ÿ{_"-œË[˜Èü8•¶8“¸4³4¶, X–ú.ËÜ”2¾RÎVÊ)*9^¥@©NšÇÎæ?튀âîjókþN¡Iî¡&s×–ºkϹé̺­­­nvÝ4(øª¿¹‹÷ÝîÍìmõ¬í5Ìåô½…´ƒ™”cÉäÓ±¤sa„ËAøkbìm/—{BôcJ4à8±& 's†“Ý Bs²¦Ám¨p[ŠŒŒ°'!I('"Æ™ˆA±"Î…ˆÇ 0‘¤ùÔˆš›J£P蔿l5"‹ÇbóÙWWÄå¹óøž|W/ÐÇU$ºù‰<Ü<ݽ‚<¼C<¼Ã<}½|#½ÄQÞâh¿¿X_IœØ?^à˜( JòSƒBÓ‚CÓCÂ3C#²""s"£r££óbc âb JR’ÊÒS*2Óª²3ªó³kŠrëÊó›ª ›Ÿ·>/}ÓPÚÙ\ÖÓZÞßV1ÔY6Ú]:ÑW23P4÷¾@1’3?–±0‘üq*~q&ri&diÖyÎkY*Z–q”2ºRFVʱ*9R%wäv€ÜJóÞÚÆN~ß\MÁ]óïÉ9`Z2Ž–”£=ÇÑžeḛ̈×N³ÖM07Œ271¾ì§ÕKÛÜAÝòŠòcyÛsÒöjâξ<ü¡4ìñ—ÓQ˜sÁèËþ¨kÞÈÛîÎ÷øˆÇ<„ÇÉ€7bÀMhŽf4G ª£%ÅÑŠâhCv„’àv$'{¢³# Ç£x4ï‚Æc1,–€Ç«#5[)êÈT2™F^A¤2itÁa0¹D›#äpݸ|žÀ‹ïê#Š]E~Bw‘G È#ÈÍ3ÄÝ+ÌÃ;ÂÃ'ÒÃ'ÊÓ7ÚÓ7ÆKë%Žóö‹÷‘$øú'Šý“ü’%©þAiÁéA!Á¡™¡áÙa9y‘QùÑÑ bqB|irRyZJeFÚ“œŒgùYÏKrÊó_T¶<+l{^ÔÙTÜó²¸ÿUÉP{ÑhWÁDoÞL®t8K1’:?š¸0õq2lq:`iÆgiÖ}yŽ·,e(¥D¥ «”¡T2G•ÌYrs@n Èõù#@~ßѨ]äWù•ÕÔ5'W§%Ó$¥jÏQµg):Ó”µSäuãä #¤/‰_ö¾î!|ÓŽßÒŠû©ûKËŽ*ÌïEè}9¨?RÇãœOG Î"®ø9]ó„ßÁïñsõXŽú #ºƒ ÅÁŒâ`Nv°$;X‘¬‰P¢£-Ã#pÎp C;ã0(œ çâ‚Çáð8¼Ú¯Ù"‘¬¹©jDÒ*"ƒJcÑèl:ƒË`ò˜,‹-dsÜ8<.ß‹'ðỊB?W·¡{ Ð=Xä"ò sóŠpóŽt÷Žr÷Žöð‰ñð‰õðóô÷'xû%úH’|$É‿ÀTI`ºpF@pfPhvHXNhXnxD~DDAttQ\lIb|YrbEjrUfÚÓ܌ڬ†’œ¦ò¼—Õym5ù ù=/òû[ †ÞävæLôdÍôgH‡RïæG£ÆC>Nú/N{-͈–fy˳´å9¢RŠVJJ©ƒJUÉ €Ì2]@þßÕØÝødw _XM[³’\˜L“§=‹Ó™ÁêLa×Nb×¹lÆ|Ñþªýõ[Ô7mÈï_"ªsþå)â· Ä®§ýYð?’Ç8žs8àpYìpÍÃþ–ÐþÇþË^— Ó§Á ©0cÌ”3#Â,0f…‡Ùà 8G;,ÜÞáàâ wA"\PH4 ‹Ac]\°X,«–ÔÌ‘:ˆ" ìoD&…Æ¢Ò94—Îä3XB&ÛÅñ`s½8<®@Ìs•ð…Q À-ØÕ=ÔÕ=Lè!ôŒzF‰¼¢E^1"¯X7ï8wïxwŸßDOq’—8ÙÛ/ÅG’êëŸ&Èfúeg…䆄慆ˆEQQű±eñqåI •iIO3SjrÓë 2šŠ³š+²^Wgu<ÏêiÌî{™=ô:c´=m¢;eæ]’t0^15?²0æ÷qÂkqÊuiš³4C_ž%.Ϲ(眔R{¥ÔV%µTIÍT+|²€ì. »ȯò¿Ùe@vdgW“Ã׬æ¤&ûÔœ“ö,\g¾v¾nÂqýˆãÆ!‡M}_õØoî´ÿö쇰­µv¿>±û­ÌnWžíþ Û? '¢ §C ç$ÐËÞЫnÐ[|è]ô!ú˜Õ£@ HP#Ô5ÅÙšcm-°¶;+ ÌcE;Ø¡áö('GŽvF ‘Îh Fc0ÑŇU;px"èˆ'AG‰J$ÓI™Â¢PÙ—JçÓ˜®t–ˆÁö`r¼X\o6OÌæK8‚®kW̆òDa|·¾[$ß=Jà-pxÄ <â\=ã…ž B¯D‘w’›w²»OЇoª§8ÍÛ/ÃG’éëŸå- Ì Ê Î - +ŽŒ,Ž*©HŒ«N‰¯ÉHªËNnÌOm.Iy]‘Òþ,¥§.¥¯)e¨5q´-~¢+vº'zn \>8?,^uÿ0Îÿ8ÉXš¢,Mã—gP˳påœrÎZ9g¡’«¤*é#@zÝd7ÙU@vIcwý ÈβS«É¡Z'³U'µÕž³ÕžêLA×N@×C׿·Ù8h³©×úë·Ö›;¬¾mµú¡Ñjë3«í•%Ý9iÃqÓAsbÈe/ÈU¡ÕMžÕ†õCšõ#е.ÉZŸ`mˆµ6ÁÚ˜ºØ˜a æh¨%Ê‚²³FÂlö¶H˜³£ƒ3Üéä„D ÎÎ($JÃè‚Á¬"‚o#GÄiñD*D#’D2“Da“© G¥»Ò":ËÎöd°½™\1‹+añØü ¶ „ãÊq ç #¸¢(MÑ\·®[,Ï-ŽçÏwOx$ <’\=“„^)"ïTwŸ4ßtOq†·_–$ÛW’ãçŸ+ È *) + /‹Œ¬ˆ‹~’ó,5®.#¾!;ñEa«҄ö'ñݵñ} ñC/cF_GMt„Ow‡ÎõÊ|Cî #¼cŒÄ¥IìÒjiÚqyÆN9k¥œ3WΙ¨æôUsTÒ{*ém@zþ¥áÓìNzž¤'éñÕd¦Zÿ•ÔTlÖTgÚtí”éÚqÓõ£&ë‡L¾è7ù²ÇøëNãoÞ÷ÒøÇz㟫·—ï,4Þ“e| ÅøpŒÉ‰0“Ó&ç|L/y˜ý%0»Á1¿C³x@±xH²|Œ·ÔÃZ` Æhˆ ÊÊimælmް±D@!N¶ÖNvP'˜­“=ÌÉÁÞÉч#œœggg$ ΣqÄa\ð.XGÄâI8G â‰t Dd)l•G¦ (t!•áNezÒXÞt¶˜Î–08Ln0“Âä‡1ùá,A$KÅrf¹ÆhŠe ãØÂx¶0#JàŠ¹nI|÷Gª«gšÐ+]äáî“éá›åé›í%ÎõñËûH ƒŠƒƒKCCÊ#êbŸ&D>OŽjH‹nʉzUÕ^Ùý4²¯.bèEèhKÐøÿé.¿¹wÞò~‘b;ÿžúaÿq¹8_š´_š²^ž¶TΚ(g •³ºª¹ª¹;ª¹*é5•ô2 ½HA»Ó;Pí =Ìý±šLOëß“êiKõÕÍêëLë¯Ô[7¦·~DoàÞ}z_¾ÕÝÜ¡ûm›îw/t¬Óý¹JoG©Þïùz{2ô&éŽ28bpZbpÎËð’›Ñ_<ã,“ÛTÓû$³‡³GXs=Œ¹>ÊÂiaìli‚€˜:Y™Á­-m,m¬m­í Ž0;G{˜£ƒÜÑî œV‘H‹F«1X‚ D$cñ " GdàI,™M p‰T‰&$ÓÝ) O ÛÊSY;Î ¦sBèÜ0:7œÎ‹dð£èüh:?FS,CÇÄ3 L×–k"K˜Ä%sÝRxni|tG†Ð3Sä•åæíî“ãá›ë-Î÷õ+”øû”–…WE„< ­«O oÊ kÍ }SÒ]ÜW<Ôè?òÒo¼ÍgºÓs¶G${ÇU Ðç‡ñFPÇÇm—&¬—¦Ì—§M–gô•3•³”³wT³7UsWUs—Usç?ñPÛÍv‡¹CÀÜÁÕd÷´þNzL{NÓÌ}©ûk'¿áýý÷7½»ÿU×ýÍí÷¿}uoKãýŸjïo«x°£øÁï¹ö¤=<ðèpÄããAO‹uÏzè]ê_á\gÞ"Ý%ßÇ?ĘN4ÂãŒÄ"QjD†„v¡`°4 Žá‚g¹8X"GâÈîxŠ'žêM Š 4 ‘Hd!$f‰AbE‘ØÑ$vŒ¦X;ŒÌŽ'sÈœD 7‰ÊK¦ñRèüT† éšÎfpD™\QÏ-‡ïž+ôÈwó,ðð.òò.ññ)“øVúV‡Šk#ÄõÑâ¦$ßÖtŸ7y^o‹={+<ž ß×ñG›Ù“¯˜3é[¼¼£è‡/ Ú}xY1_5YÓ_¼¢j‰°6PX"lŠâ·$ðÚÒ89¬îBF_9e¨š8R‡xž~˜kwvÚÊ{ ó}æ>é/?^zyäÎòè åØUåøåÄÕäYÕÔiÕÔIÕô1Õôa`æ0³_Ó>`f¯¦=«ÉNk­$=­5wZ{ö´öÌiéÓ:“gÖŽŸY?rfÃðŸÿÜÔ{ö«®³›ÛÎ~ÛzvË‹³ßמÛZuþ—¢ ;r.þžviOü•‘ýxí˜ïõ“î7Îðocß¾H½s…x÷šËý›¨·î8êÞ‡é=„<¶1Ôµ6Ôƒé[Z˜Y˜[˜šX˜™Zš›YZXXZXB,! #b½²Hk[芣ƒ ³GØ; íAD¬#w&9!)ÝÍtư]øÎXWgœ;ï‰Ä{# bA‚"¢IÁhR(šŽ&G )Qj †«)C×” )CKt¡%aiÉXz Žž‚g¤˜iDV:‰AædQ¸Ù4^ƒ—ÇâpøEðŸv»ÿIv\k%éq­¹ãڳǵ§ë€M_7vbýû†N|ÑrSÏɯ:Om~}êÛ—§¶4žþþÙ™­n+8»#ëÜï)ç÷Ä\Ü~éÿ•£ÞWOˆ®æÞ8Ǽyrû áÎU̽Èû·œÞqx|ÏN÷µþ#+]ˆ¡ž¥‘¾…‘¹±¡¹‰‘¹‰±¹©©¹™™¹¹¹…¹Èhi±%-W¡VÖ¶Ö6v6P˜­Ôn CØÙ#a˜#ÖNpp"9"¨pgÉ‚£xNhW'Œ›“‹§Ö#p>ÐìLq&†;#¤($9IŽÕ‡$ÇkJДˆ"'¡(IhJ2šš‚¡¦¸ÐR]hi8z:ž‘A`fYÙ$v•Gã09Eln ‡[&àTº±«½Xµ¾Ìz ³)„ÖIy@êH!¼ÍÄ÷ J‡«ÇžÃ&_ØÌ´Xν6“u)ºõÞ=úØwÿãÀÝÅÁ›KC×–ß_QŽ\TŽœWŽþ©;­?¡š8¦š<¬š<L¦öS{é=švÓ»V“ÑZiîˆöìí™#:ÓGt¦Ž¬?²nôÈú÷G7 ý¢ïè¦îc_uÛÜzüÛÇ·ÔŸø¾úäÖ²SÛòÎìÈøó÷¤³»£Ïï½pÈïÒQÏ+'„æ\;˸~|ó2þö_è»7œïÝ‚?¸mÿèž­î+ýGýÇ–º†úæFfƆfÆFf&Æf¦&f¦¦f ¢†ÑÂ\3Gµ£•%Äb…XÙZYÛYÛØÛ@ml vζ0”­=ÆÎs$Ú;QtËÉuD ÑnŽOGŒ7ÜE w‘À±p\°.Ä æDˆ@¢Ä1VS‚¯Ž”€ %‚9“’Ô‘“‘ä%MIÃPÓ]hXz&ž‘M`ä˜yfUÄ`•°Øe¨3upíø¡u#‡6 Ú8ðÇ}lz{ø«öÛ[Ž|ÛtdKÝÑ龜m-9±-çäŽôS;ÏìŽ<»?øÜ!ñ…#—Ž .Ÿbÿu–~í<éÆ%Ü­¿Pw®#îÝt¼öð.ôñ}ˆÞ#KýǺæ†zf†ú¦F†¦ÆFêLLÔ†+Œfê9ª!–Ö–`Kˆ-ÄÊÎÊÚÁÊÆÑêdcëlc‡†ÚcmvŽdœsbÂ\{g=ÒÍåaò¶Gû:`$˜— —Gl˜#.Ž‚ãcà„X8!NS<œ )QS’1ALs&¥:“ÒPät4%CÉt¡faiÙZ‘^@¡Ñ%tF‡^ŧU‹(µä:Rcþe¶5 ó&Õ™ŒìÎrìˇ –ÙŒ<Œ?7›n4ži6˜{­+o8ÿöÛ{o.ö]]¸²ÙŸǧ iN„tgb’”‰"e¡ÉÙ.ä<¥€H)&QK)Ôr¹ŠCªjÝpužØ1¦9Õ†h‹rêˆw|›f÷.Ûz Èâ}¹éØ3ÃÉçúÓçZÈ^ßUtÜúÐuãC÷µ½Wû.. œ_<«:£>©>¡zT5rD5ú‡jì 0¶ßŒïÆ÷㻉]ÀÄï«Iwi­4·K{f—öô.É]k'v­ݵþý® ƒ»7öíÞÔ»çËŽ=_¿Þ»ùžoë÷oy¶ÿ‡òƒ[ ÿØ–yd{òѱÇv…žÜpê ×ŸGDçŽñΟd\ú“råþÚE—ëWœo]ƒß¹aïôÁëG÷,tšë=2Ó{lª¯gb olh`lhhlfdld¬f\u431Yq´05³45ƒ˜™Y™™[›Y@Í-íÌ-aæ +¸…µ³¥ ÅZÙ­ak{ºµÛÆ‘oA< N^P„/ÔÙêEAQ!¶¨0;t„& æs‰…¹Ä©ÃÆÃ° š5%iJ¶Ç¦¨Ã¥:àÒqép|†!Ó™…$f£‰y.¤©˜@*%‘ËiÄ*¾š‡­qÅÔ¹£|œ_H-!Žmöí1°®dëÞ Ëþ|Óá£Ñ'z“5§ëξ¸+k½­xsc¡ãÚ‡®¿>ö\Z|wa©ÿìòÀŸË§•ƒ'•CÇUÃGUï«F©F£û±}ÀØ^`l0¶ßŒÿ¾ÚÜN­•fwjÏìÔ™úMgò·µã¿­ùmýðÎ ;7öþ¾©û÷/ßìúºu÷æÆ=ß>ß³¥zï¥û·æÜ–þÇö¤#;cŽî 9±Ï2Õ{l¢¯kl gd``dfhdh¤ù@FÍM5ˆ&&æ&¦&¦–&¦S3+SsSs[3 ˜™¥½™¥£9an…¶°ÆZÚ,¡dK[Æ‚Øó¬„VŽîVpOk¸µ“Ÿ5"Àdãbƒ ƒ¢" è([tŒ-&Ö§)Þ“`‹IüT’¦d;—;—T;—4˜Kš=6Ý›áˆË„㲜ðÙH| _àB(ÂJðÄr ¾ŠŽ­æ`jø¨ç"d½—Ó ±cKýë0»ö(hW"¤7ͼ?×d¸Èp´Bw¢úÑT̓™†»ÒæÛòW7Ú®-´ÿõ¡ëòb÷Å¥ÞsËïþ\î;½ÜR9p\9xT5tD5ü‡jøðþ0²ÙŒìFö¨ݽÚÜ­•fvhOïЙڡ3±}íøöuïw¬Ú±¡ÇÆžß6uýöeÛί[~ßܰëÛšÝ[žìþ¡dïÖ¼ýÛÒmOücgô‘]!Ç÷INôÔr4‚d úúe§[×î\·»{ÓæþȪàCS½GÆzºFúz†ê4ŸQ³E#£Dc3csc cµ ‰©•‰™µ‰9ÔÄÜÎÔÂÞÔÂÑÔÒÉ ‚2³r1·&˜Û, T [–¥×æ ±wƒ8xB} p±•“¿•S"ØÚ9ÌaƒŠ²AÅØ bmÐqšâmÐ 6èÄO%AÑÉPt “j‹Iƒa2ì]2\2±Ypl6—‡Ä qE.ø¾Œ„­¤až°PÏxÈ箈zOx“¯ÃË»×!Ð7‘Öñ–=)f}ÙFC£eº•¦ž>˜©»+m¼-yc¾õÚÂë¿>´_þØyq±ûÜRÏÙåÞ3ËïN*ûN(ûªލ«†©†Ã€áýÀû}Àû½šö¬6»]{¥™íÚS¿êLþª3þëÚ±_Ö½ÿuýà¯ú~ÝØ½}Sçö/_ïøºù·Íu;¿}öû–Ê]?íÙš»o[êí ‡vFÞ|lŸäÄAÓG\5‚´‹gHWÎa¯^D]¿ ¿uÕ^#h­¼köøéã‡&º êÿ¢f‹†Æ†+ˆjGS#c3#cs# ¢±)ÄØÔÚØ jlfkl31w0±p2±D™ZbL!xS+’™5Õ̆iå˜Û ,`nö–Þ–ŽbK¸?q ¶B„Y9GX#£¬‘1ÖÈXkdœ:T¼*Á •¨)IS²5*ÅF]*•E§Û¢3ìÐ0L¦=&Ë“ wÉC¸ä#±Ehl‰ ¶Œ€©¤ Ÿ0‘Ï8ˆZS»C“7ì¥?ôU°õ›pHgœyO’i_¦áPžþHÉã‰ò‡SU÷gjîÎÕÝ–5ÝP¼¼6ßzu¡íòÇö‹‹ç—ºÎ.uŸYî9µÜ{BÙwLÙwTÕX5ð‡jð0xÛ íÓ´wµ™_´WšþE{j›Î͵c?¯ýyÝÐÏëûÞлmc×¶MíÛ¾lýåë¦_7×nÿ¶zÇ–Šß~(ܵ5{϶”ýÛãîŒücWÐÑ}~ÇÕ‚‚?±Ï¤^Á=m›ý¬_BÞ„ZtD›ö$÷¥ eë>š(y0U~ºúÎ\ÍmYý EãõùWZ.x}ñã›ó‹g—:ÿ\~{j¹û„²÷˜²÷¨êÝUßaUÿ@ÿA`쀦ýÿ4³M{¥©Ÿu&ÖߺvtëÚ‘ŸÖ þ´¾o놞­;·nzóó—/·}ÝøËæš_¿­Ú¾¥lÇù;·fíÞ–¼o{܇vÝ'>~ÐýÔaPõIsõ¢óõË·®Úݾ½{rÿ¶ÅªàãÇ uèéê¯~úÿá>Ɔ`&†¦Ff ¢‘…¡±¥¡±•¡‰¡ ÔÐÄÎÐÔÞÐnhælh†64Ú -ÈFº±Û؆ošØº›Úy™Á|Íì%ææÁŽ¡ðp §(KDŒ%"Ö§)Þ‘`HÔ”dH³D¤X"R!`ÎiVÎéÖÎÖΙ6ΙPd–-2†Ìu@åÃQEt1]ꂬ 8WQž2k8Ï]íݡ;V¯ü-Ú‚Í:"»ã ûRô‡2uGòN=˜,½7]yg®ú¶´ö¦¼îº¢ñêBó•-—>¾¾°Øvn©ýÏ¥ÎÓË]'—»+»){Žªz¨ÞÞúV:øp+Mü¬3¦á{ÿÓº¡ŸÖõÿ´¾ç§ ]?m|³uÓ«­_6ýüuݶÍÕ¿~W±}KÉŽrwnÍØ½-qߎ˜;Ãíö?²ÏçøAѩü?1Ï$_<ƒ¿|}õâúeØÍ«¶·¯Yß¹ayï–Ùý;Æï=z`øø¡î#}]]=õ§¯§¦ž£&C}#MÆšLô ÍÀ Í Œ, Œ FÖÆP}c;}c{}G}g}S”¾)Vߌ``N6° Z² ­xFÖ®F6nÆPO[;?SX€©}™C¨™c¸9<Êc5‡Ç™ÃãÍá fðD0s§$MÉšR,œR-œÒ,é`D†"Ó‘e㜠fçœCæ; ‹àÈ'T)Ú¹‹¨"ŸRjèöuÛFM³‡Õ+Ë7~f!&=‘F}ñúC)º#™&rLåߟ)¾7WvGVu[ñôæ|Íõ…º«¯|l¾´øòÂRëù¥×g—ÛÎ,·ŸRvœRvžPuWuÞÞU× väŸ&4vj¾ŸuÔ|[ׂ|?®ëýqýÛŸ6tü´ñõO›Z¶~Ùðó×µÛ6?ù廲í[Švü³skúîmñûvDØzh·äÈ>ïã…§sΣŸ;Iºxwù,ò¯ ðk—ìnþ½uÍêÎ ‹»·Lïß1zxÏðá}ƒGô?ÒÓ} jÒW;ꀎzú†šŒ4ë˜è˜ê˜é˜ëZèBô ­õ zF¶zFözÆŽzÆÎz&(=¬ž)þÿ¡¢®ãÚºþ€ÿÑä&÷F 7H ÅB’’7ÜÝÝ­hii¡BÝ×®î.[·uíº­“N;wïÖ®n@r^¥ëóüžózÿyÎ}Ý×ùÜïÍÈïÉ(È(\Y´0³xqVÉҬ҉첕9kr*ÖåVn̫ޒW½-¿vG~íËùµ»òkwç×îɯݛW»oV~Ýþ9æ,¨;TPw¸°þȬ¢ú£ÅõÇJê—6œ˜UÞpº²ñluãùšÆWëš.45¼ÑR©£öJwÍ;}ÕWT|¸°ìã±’ÏÇ‹¾XYðõúÜ6gÿ¼3ã÷½î¿;ÿ9ê¸uÂ~ûŒõîyËý æ‡o¤?ºdx|%íÉ»©Oß×L}˜2}-iúãÄ™Of>Sy?÷^Wú¾ˆ›¾Œ_ÍŠùÏ×Ñÿ¹1×nÖŸ ìïsù~¦Á?Òïh¸¯høë4Â'tâ5:é*Ãï “ò;ðUNÐYõxã ½[ÄÛ²I"\--/Ž“ ÇGõ«c»’âÛRS“jÓR* ©¥F]±IŸoIϵš2íÖL‡-Ãa÷8n—ËåvÏñ¸<îg2çdÍÉv{rܹoÎþ9òjgÌ«=”ÿÌá‚Ú#uG ëŽ=s¼¸îDIýɲúÓåõg+ÎW5¼ZÝøZ}ýÅÆºK­5WÚ«ß骺ÚWñá`ÙÇ#%Ÿ/.úriÁ7«rX—ýóÖŒßwºÿÚç¼yÀñïaÇícö»'m÷ÏXž7?ºþø¢áÉå´§o§N½«¾ª™~?eæÃ¤™½³>Vû>Ið}š>SýçóøÿÏl¸çæòa¡Ï惿§"ßÐp_ÐðŸÑшÐHï0ü.3ý_c¾Â >ã a²_ñ¶E†n”'墉hñ¢8Ù‚ø¨¾„˜Ž$ekŠªA›X£K)×kKŒº¢t}žÙ˜m5eØ,»Õã°¹—Ëéú߈îŒ9™.OÖœìÿ"zrÝž<·'ßQàÎ(re”¸2Ê\™®Ì*Wf­+«Á•ÝìÊnsåt¸rº]¹ý®¼AWþˆ+Ô]°ÄS4žQ¼"³d2³tmVÙúìŠÍÙ•ÛrªväVïÊ­ÞS½'§zoNõ¾œêýsÌš˜[s0·æP^ÍáYùµGòkÔ+¬=>«¨îDqÝÉ’ºÓeõgËëÏWÔ¿ZÕðZmÝÅúÚKM5WZªßi¯|¯»üZ_Ù'ƒ%×Gо-üv"ïÇÉì_6fü±Í}c—óæÇ¿û·9î±ß?a{xÚòèœùñã“7 O/§M½¥›~;uú]íÌUÍÌû)Þ’}&û®%Í%>óñœOÔÿÏïsífýÊÀþ<›?ûÿ¤"_RqŸSñŸÐÒˆWi¤+ ¿7™þ¯²Ïq‚Oñ¨‡C˜û„ì"Þ–ÈÐõáJyIJhñÂ8Ùüø¨ž„˜ö$es²ªN›X¥K.Õk‹ º‚ô´\³1Ë’î±YÜ6«Ûns9ìN§Ã9WÑér;]§{VÆœL§;ËõL¶ËãrçºÜy.O¾ËSàò9=%NO™3£Â™Qą̊uf68³šœYmÎìgv·3§ß™;ß™;ìÌ[äÌ_â*Xæ.\î)^•Q²&£t}fÙæ¬ò­Ù•;rªvåTíήړ]µ7»j_vÕþìªÏåTœs(·úð35GòjŽæ×˯9^Ps¢°öDQíÉâÚ3%ugKë^)«¿P^ÿZUÝÅšÚËõÕo7V½Û\ù^{ùµ®²OúJ®Ï/þj¨ðÛ%y?.Ïùemæ›<7^rÞÚéüw·óÎ>ç½Î‡Ù²<>gzòªñéú©‹úéKiÓoéfÞNõ¾“ê}W뽪õ½§ñ½¯³>HyæÃÿßO,ø¹˜ðwLøò%¹NG>¥á>¢ã? Þ¥¯ÐI~Xþg9§¸ÁÇxÔ¡ÌÝBö6ocdè©pB.Z-^'ë‹Wt$D7'ÆÕ'ÇWiÔeÚ¤B]J~š6Ç Ë4êÝ&ƒÃlrXÌv«Ån³Úf—Ýn³;lç—Ýé¶;=vg†ã™L‡+ËáÊv¸rçä9\w‘Ã]âp—9ÜvO•ÝSkÏh°g4Ù3Ûì™ö¬n{V¿={¾={Øž³È‘»Ø‘·Ì™?á*\å*Zã.^ç)Ù”Qº5£lGfù®ÌòÝ™å{2Ë÷fVìϬ80çବÊY‡²*gϪ:’Su4§êXnõñÜêyÕ'ójNåל.¨=[P{¾°îBQýëÅ Kë/—×]©¬}·ºæýšêª>i®ø¼½üË®²ozK¾*üy4ÿ·‰œ¿Vgý³!ãßÍw¶zîîðÜÙýpûÑ~çãCŽ'ÇlOOZ§ÎX¦Ï™§_1ͼ–>ózº÷¢Ñû¦ÑwÉà»lð½¥Wæ¼=ç´ÿç;üÜ7lø+òùŒ|BÇ]£ãß§ãߥÞbßd^cúgùŸâçæS÷†2w†±7GðÖ‰CWI…K¢EÑâXY·RѪŠnHŒ«IR–§$kóS“stš¬4­Û sõV“ÑjJ·šM‹Ù2»¬6‹m–ÝjsXíN«Ý5ËæðØöYÎ,»3Ûî̱;síÎ<»³Àî*´»Jì®2»«Â殲¹kmž›§Ù–ÑfËè°evÛ2ûmYómYö셶ìÅöÜ¥ö¼ Gþ*gÁjgá:WÑ&wñVOÉOé.OénOÙ^OÙ>OÙ~OÙOÙÁŒòY‡feVÌ:œYq$«âhVå±ìgNdWÌ©:•S}:§úLnÍùÜÚWóê^Ï«¿˜ßp©°þJQý;%uï•Õ~X^ûQuõguU×›*¿n­ø®£üǾ’_†Š~_’c"÷æê¬Ûk³înȺ·9óÁ¶Ì‡;2ïò<Ùë~rÀõô°sê˜cú„}ú”mæ¬Õ{Þê}Õâ»`ñ½fö½nö½aMàÍ9—æ\~á .üÜçäSò1ù…{Ÿ‰{—¿Â \fß`’.0IçX~§ÙþǸ‡yÁûC¨/ ˜ÛÂØ"x«Å¡Ë¥ÂÅ ÑPtdo¬´])oTEÕ¨c+㊓Uù) ÙšÄ m²;5Åž¦µêu&ƒÞd4˜ŒÆôÙe2¥›Íéf‹Él5Yl&‹Ýlu˜­N‹m¶£Ûjϰ92mŽ,›#ÇæÈµ9òlŽ|›£Ðæ,±:ˬΠ««Êꪵº¬îf‹§Íâé´xº-}–Œù–Œ!KæBKÖ¨5{©5g–»Ò–·Úž¿ÎQ°ÉQ¸ÕY´ÃU¼ËU¼ÛU¼×U¼ÏUrÀUrp–»ôМÞ²YG÷é¦Ü©­¹ÓÛs§wæÌìʙٛí=å=”é=šá;–á;‘á;é§<à´œ™svι> Až{Ÿ\åáÞáâ®pð—Ùø‹,Âk,«,â9é4‹|œM9Âõ?À Üür(u›±1œ=É[.“ ‡¢þ¨ÈöXI£RV¯(Kˆ.RÇæ&*3“âÉ öµU“dÒ&S5iºÔ4.-m–>MoH3Ó ézã,³!Ýb4Y&[ºÙa²<˜a±eZlÙ[ŽÅ–k±å[l…f{‰Ù^f¶—›UfG­ÉÙ`r6›œm&W§ÉÕîêKwÍOw¥»GÒ=£¦Œ1Sæ¸)k…9{Òœ½Ö’³Ñš»Õš·Ã–¿Ë–¿ÇV°×V°ß^pÐ^xÈ^xØQôÜgñ¬£®’c®’ã®ÒãîÒ®²S®ò3®ò³®Šó®ÊWœÕ¯;k.:ê.;Þv4¾ël|ßÙtÍÕô‰»é3OÓõ¬Æ¯s¿-hø¡¸þ粺_kjþlªºÑQ~«·ô΂âû#EF‹.-|þ‚G8Æ#á‘ñHûø~»Cüw„nmRׄÓWˆ˜K"9Ãþ€4´S.lV„×DG”ÅŠ ã¤9JyF¼Â©Š¶©bÒâ jeZb|jR‚&I”œ””’<+9E“¬™¥MÖ¤¦hu)Ú4MêlJƒV—žšfNM³èô¶4ƒ#ÍàÒ=zc¦>=Ûžk0LÅs©Á\n°T,µk£ÁÚ¬·µëmz[ÞÞ¯·Ï×Û‡ô޽cTï3¸Æ îFϤѳ6=cSzæVSÖNSönSö^sÎ~sÎKî!KÞ‘ç¬yG­ùs ŽÛ OØŠNÚŠOÛJÎØÊÎYË_±V¼j©|ÝRõ†¥æ’¹îйá]sã{æ¦ÌÍYš?µ¶\·¶|ikýÚÙò»ù‡¬æŸsš~Ëoú£´áFeÝÍúšÛ-Õw;+ôV<(4\ödQéÓ±’©e¥S¥Ó+Kg&KgÖ–y7”z7•z·–x·—øv”ø^.ñí*öí.{‹Á¾b°¿˜sðœ•àž;‰;;Ž;.Ä Å Å %%ì %î %½ê·]@Ù, Ø´6Á³û%ÜN)¿I.¨UË¢DÑÙ±bwœÔ'³(éʨ´øèTU¬F—œ LTÇ«Õ ‰‰ ‰I³f‹ª“RÔIšÄdmbrjRŠ.)EŸ¬1¦hÓS´fMªU“j×ê\©ižT}¦Î£3äëŒEié¥iéåi¦ê4Smš¹QgnÑYÚu–.¥Ggí×Yçë¬C:ÛBmTg_šæOs®Ô;'õ®u÷&ƒg›1ãecÆcæ¾ô¬éYMÙ‡M9Gg™ŸË=öLþ sÁIsáiKñYKÉ9sé+¦ò ¦Š×Ó«.¦W_2Ö^1Ö½clxÏØô¡±ù#c˧é-Ÿ§·~ijýÚÔö­µíGëOîÖ_3Z~Ïnù« éŸ’Æ[UõwêêîµÔ1Ù˜œž”bNÒX“µÎ”T·F—¡MËѦå¥ê‹R ¥©ÆòTcujz]jzcª©%ÕÔ®5uiÍ=Zs¿Ö2¨µ k- S­£©¶¥©¶q}¥Î1™æX—æÜ¬wmÓ»_Ö{ö<ûŒŒ™‡Ò³Ž¤gMÏ>ö?ާçž4åŸ2œ13¿’^zÁXþº±â¢¡ê’¾æ-}í;úú«úÆôM×ô-ë[>Ó·^7´}ehûÖÐþ½¹ý'kÛ/޶ß]mf´ÝÈm¹YØüoY㪆ûõu›kµ×<î©~:P55\9½°jz´jf¬jfYõÌòjïÊjïdµwmµo]µocµoSµoKµok5ØV ^š³£ìœóò £pÏãöKqû$¸½¸=á¸]aø—Ãð;ÂÛÈÛÂH›ÂÉëÃ)«E+#'"‚F#i Äôn1«U©—r+dübyhŽBè‰ ·G‹ÌёƱ.F¢‰‘&ÆÊÕ± U\”2.:N7G¯Š‹Oˆ‹WÏRª’”ªäø„”øM|BªJ¦RÓ’̉Éö¤W’Æ“’š’š—¢+Ò¤•hôåZCµÆP§14jŒ-c‡&½K“Þ£IИ5¦ay¡Æ¼XkYªµŽk­+Sm“©¶u:ûfc»Îùrškoš{¿Þ}Ðà9dÈ8jÌ<6çø3YsrNóNóÏ _1¿j(}]_~1­â’®ê-]ÍÛºº«ºú÷u×tÍëZ>Õµ^×µ}©kÿ&­ý»´ŽŒ?›:~µ¶ÿaoÿËÕþwVÛ­ÜÖÛEÍwËšîW7>¬oxÔ\ÿ¤³öioÍÔüê顚鑚™Ñš™%µÞeµÞ‰ZïŠ:ïª:ßê:ßÚ:ߺ:߆:߯:°¹l©[ëÀ¶9ÛëÀK/ìRâž{9÷r4n§÷’ ·]‚Û&Æoã7‹ ÅÄ bÒ1y•Øo\ì?&X$š/¦vKhÍF”U!eʸ92¾[j“ ÒaiŠp­B”¤ˆHˆŠTF‰c£$1QÒ¨h™"Z.‹VÈ££äÑÑòèEt윸¨eTŒ*:&!:V››§‰ÓÅÆéc•éJ•E™`W»T‰™ I9 Ʌꔵ¦"Q[“¨­OLmJLmMÔu&êºÓúÓæ'ê$êG £IÆ%IéË’Ó—§˜V¥˜W§XÖk¬[4ÖíZÛ.­}_ªc¿ÎyHç:œæ>ªw×{Nè3fÔgžÔgÒçœÑçKË%­èBZÉ뺲7uå—S+¯h«ßÑÔ^ÕÔ} i¸¦iúDÓü™¦õº¦í+MÛ7šŽï´?h;JëüÕÐù»©ó/Kç߶ΛîŽ3ÛïäµÝ+j}PÞü¨ºéq}Ó“–†§õS½uÓýu3ƒõ3ÃõÞEõÞ%õÞ¥õÞñzߊߪßêßšߺ°¾ll›Àæ°eÎÖ°­ñ?Ûո綩p[•¸­±¸-Q¸ÍrÜF9~ƒ ¿NFX+#®–WÈÈËd~£RÿiÀ 4°[Ü*¥ÖIéRf‘”•#åxd\›ŒŸ. ÑÉBSäÂDy˜J' ’E(äry¤T.–È%b¹T,—Iär‰\1K*’Ê£¥òX™"N¦PÊ*¹"A•$JVDiÑ©QÑúèXStœ5Féˆ÷Ä©²• JuI|b…*©V•\¯JnV¥´©R:Uš•¦_¥T¥%è&è'¤©õã‰†å‰ÆUIÆ5Iéë“M[RÌ/¥Xvk¬û4¶Zû¡TÇó˜ÎyBç:©sŸÔyNé2Në2ÏèrÎéò^Ñ\H-z=µä¢¶ì²¶âЦò”ê«)µï§Ô_Knø8¹é³äæëÉ­_&·}ÜþmrÇÉ?%wý¢íúM×õ‡¡ëFz×?–®[ŽÎÛžŽ»Ùí÷óÛ·>.o}RÝò¤¡iª¥qº³q¦§q¦¿qfA£w¤Á;Úè]Òè[Úè›hô­hô­jô­nkšÀº&°¾ lœ³© ln[þÇ òÜúdd}"n]n­·&·:¿*¿2†°<†8C‹&-Œ"*(}rÿ.y@³,¨V\&£HéYR†SʲJÙ)G+å%Iù*IHœ$$Z*—Äba¤8l–H.…‰#ÂÅ‘sÄ¢H‰(R)‹Ë#ÄQâèHql¤X)QEJÔbI’X’"‘ê$2£Tn–)lò(—<:3*6?*®$ZY£ª‹Q5Æ$´Ä&´Çª»cÕ½±‰±I â’‡ãRF•)K”š¥ñÚ UêJ•n2!m­Z¿AmÜšhÜ‘dÚ“dÞŸl>˜b9œb=ª±×ÚOj§´®ÓZ÷­ç¬6óœ6ûUMÞkš‚74EojJ.§”½\ñnrÕ{I5$Ö^K¬ÿ$±ñ3uóuuË—êÖ¯Õíß©;~Pwþ¤îúEÝý[r÷šî¿t=ÿè{n{þµtßqtÝót=Èê|˜ßñ¸¨ýIYÛÓêÖ©ú–é––™öæ™îfo³w°Ù;Òä[Ôì[Üì[Úìoö­h+[Àd XÓÖ¶€õs6´€³ZÁ¦V§!ÏM¦"«4Ȫ$ÜJ5n… ·<?_¦$,U–(‰ ãHƒ±äžh¿Ž(J‹Â¿VX.*Q³d4—”n‘2 ¦VÂN’pâÅÜ17*’'äGF†„G„„E„†E„"@$ ……ŠÂ³ÂEÂðax¤0\, —„…ËÂÂaáQaá1á"e¸H.R‡‹’DšˆH}„8=RbKY†T‘/‹*–GW(bëqЏV…²#JÙߥš0­‰I\“4›´,.eyœf¥R»:>u­J·Q•¶-A¿CmÜ“˜~ 1ý`’éH²ùhŠåDŠõdŠýtŠãLŠëlŠç|JÆ+)Ù¯¥ä¾‘\ðfrñåäÒ+Iåï&V¼—Xõºæšºîㄆϯ«š¿Tµ|­jûVÕþƒªã'U×/ªîßT=$öü•Üû·¦÷fjï­´ÞÛ¦ž»ÖžûÎîGÙ]Oò;Ÿw<­hŸªiŸnl›iiioõö´zZ|C-¾‘ߢß’ßÒV0Ñ V´‚U­`²¬ikÛÀº6°~Άÿ1‘ŽüÇ€Œëq-nY2ni"nL_¢Æª ‹Ô„…jâ ŠÔOnókŠ¡ÔEû—G*³äA.Y°EJÓKèZ #QÌŒ³b"Ùò¶$‚!↉¸¡á¼°Y|~XO8+”'ð¾@È„…ÂC¢Adˆ@"† ä¡‚¨PAL¨ .T/ªÂda˜Nn™Â#ì¢HO„$/RZ,–WH£ê¥QMÒè6it‡,¦GÛ/‹”+‡ñ ª%Q K£Ôãщ+b’VŦ¬‰Ó¬‹ÓnR¦n‹×íTé÷&$©GÓ%™N$›O%[Ï$ÛÏ%;Ï'»_Mθ”ýFRî›I—‹¯$–¾£.O]ùABÕ5UÍǪºOã®Ç7~ßüµ²õ[eÛ÷ÊŽŸ”?+»Söü®ìýSÕ{CÝûOrß-MßíÔ¾;†¾{¦Þû¶Þ‡ÎÞÇ=OrºŸæwO•tMWtN×vÌ4vx[Ú½mÞÞ6ßüVßP«o¤Í7ÚÆÚÀ²Ù:m`E;XÕ&ÛÁšv°vVX7gý ‹Ès mÈB 2bB† Èp²@‡ÔáRñ}ZB¯–БBlN"Õ©É•*¿R%%/Ö?3&Àh’¥É‚“¥Ô 5VLSDÒ¥Œ3<œ)c…„±¹B6WÀáÌ å²CyìY|6?„ÃåðžÃ ãòD\^$—'æò¤\žœÇâñcxü8_ÅIä‡jBBu!C¨Ð,sEYaùá‘¥"IM„´>BÖ)ïˆTôŠóÅQ $Ñ %1£ÒØ¥²¸q™r¹<~•BµZ¡^¥Þ´%&ù¥Ø”]qÚ}ÊÔƒñºÃª´c*ý‰ã)uúµùœÚúŠÚ~Aíz]í¹¨Îº”ûVBþÛ EWU¥ï«Ê?Œ¯ø(¾êeÍgqu×㾊kü&¶ù»ØÖbÚ~Šíø%¶óרî?b{þŒí½¡ìûGÕwSÝÿoRÿ”þ»ºþû†þ¦þGÖ¾Çξ§½SÙ½S=Ó%Ý3•ÝÞš.oC—·µÓ×Ùéëíð tøt€‘0ÚÆ:À²0ÑVt€U`²¬îkæ¬ÕõŸÁLä¹ùdÀ… 8~+ÒgFzL¸ît\§ßnÀ·ê :b–XžL*J$ç%øeÄSqþéÑ:E@²,P% Š•Ë#©’ªHD†ÓCÃè‹­ù"¶î«˜†ob¿‹nþ!ºõ§è¶Ÿ£;~îü=ºûÏèž1½ÇõÝTößRõßVÜM¸§x xhxlxb˜rõOeöOçöÍöΔöz+{¼µ=¾¦n_[·¯«Ë×ÛºÀPXØw±.°¬ Lt]`U˜ì«ç¬™ÕýŸÎB乎|¤#iÏFÚ267ÒâDš¸;®Î†¯±ÊM„b#1WGÌÔ’\)d‹šlPùib)êh¥Ü?J FD EA!aÁ\a0G@e…R¡4ZƧÓx —Aã0©l•Ŧ±84&—ÆäÑ!´ÙM !NgˆèŒH:CBgÈLƒÅ`Æ0XJ&KÍd'±Ø'Í5qxNnH&/4Ÿ/( « oˆÚ…‘ýBñP˜x$\²8\ºT$›ÉWF(&#¢ÖFF­ŒÞ³E»]ª|Y¦Ú£PˆJ<t,&åd¬æt\ê9¥î¥ñ5¥é ¥õM¥ã²Ò}%.óݸœ÷âò>ˆ-ü(¶ä“˜²Ïb*®GW}]óuTÝ·Q ßG5þ hþYÑú‹¼í7EÇŠÎ?Ý7=GõÝŒéÿ7¶ÿ¶rànüü{ªù÷“æ?Ô >J|b|jœ²ÍŸv͟ΘÉðö{Kû}}¾º>_c¯¯­tö‚ž^0¿ õ€…=`´Œõ€eÝ`¢¬œ³ªLö<³ú…ær书R¤±i,Dòàú¸6 ©ÎD*=¸27¾Ä‰/°r,·‘h×Í©$}2I£&'(ýâbü ŠDê/û "xála SÈ ¢…SùÁÁ0Ò õ‚%½`i/ïË{Àа²¬š3ùBU=ò\e-RQƒ”WÁeåpY)\\Œ"ùù¸œ\\V6ÞíÁÛ“• 7´bb*1>™¥"IcÉQd¡Ì/Dâlj 0Ã)4!%8Ô?($ À ôçús‚üYÁþÌ`ÕŸFó§Ñý© ÿ`–Û?ëÈ œÝ- F‰ƒ¤A²À EPptP°2(XLUS“©´4ÝBc8éÌ,»É©`ñØüvnèO0ÂŽòÖ†„O„ˆV†F¬X¹A Þ,oH^ “í W쉈Ú/Ž9,‰;&Už©ÎÈÕçI¯F¥¼¥{3Êp9Êôv”íj”ó}EÆ5EÖÇŠÜOå×åE_ÊK¿–•+«üNZýƒ´ö'iý/’Æ_%Í¿KZþ·ý%é¸!éüGÚ}SÚsKÚ÷¯¼ÿŽbànÔüûуb<Œzœ0ô$yø©fx*mxÚ80Þ&úÁò~°¢¬|¡°ùORÐç7Áyõp^-œ]gV ž2ÄUŒsâÌ9xc&>Õ‰O¶Ô&B\!JK”¨‰¢x’ †Ä““9R2#Ò&ò ó PB)þ|^…@aR˜AF0…L ¦R‚i” %I dQ8”%€ÿì@€Ð? Ü?@ä öøÈ1Ê€@U@`b`PJ`°>ˆj ¦¹‚iYTF!YNg708í,^?›?Âå„.å &xÂU¼°5ü°uüð|Ñ–ˆí!‘;BÅ»„Ò}a²ƒ"Å‘ˆèã‘1§Äʳ’øW¤ê×d‰eÚ˲´·eÆ«2Ë2ÇG2÷'²ŒÏ¤Ù×¥y_I ¿‘')ý^Rþ£¸êgqÍ/âºß"~lú3²ù¯ÈÖ‘íÿDvÜwß÷ü+é»#í¿+¸'| Xð0jèQÜÐãøá'‰#SÉ#Ó© gô#3ƯeÄkñ¹‡}Yþ¼a_ñ0(ÕC ~4 ö {è_æ‚¡A02FÁ’A06–‚eƒ`|L¼9€<—ÑgôÀž.ØÝ»[aGl«G,µˆ©g,ÃéŠp)yxu^éÄÇXñ2#A¬#„%CˆÜ8"+ŠÄ‘¨brP9 Œì/ð£„úQø?.ÅíOfdZ™L¢’iä:9€Iög‘)l2…K¦ðü(!~”Ùca~‘%’B‘P(2 EAñ¡ø+)þ ÿ$Š¿Æ?@h reÑʃé TFÕOg08£LîRo‚2É ]ˬç 7q…[¹a/ñÂwòE»C#÷ ć„ÒcᲓáŠ31ç#b/DÆ¿!N¸$N~[œzU¬_búHbûTìü\ìùBœùUdÎ7‘ùßEýYòcDÙÏ•¿FTÿQû‡¨îOQã_¢¦¿E-ÿˆÚnFtÜŠèºÑs'²ï®¸ÿždà¾tð¡lÁ#ùÐãèá'q#OU §N§,šI]4£_ä5-òZú }ž…¾ì…¾‚… x!¨5# ~´Œ€öÐ= z‡ÁÀ0X0 †‡ÁÂa°h,K挽`^ ?gZ›Fàô!Ø8`}¬ëD´mHr#’T‡SUàâJpŠ<œ4éÂ…Yð¡Ïb_öb¿”,壠jÔ‚¦QÐ> :GAÏ(è£`Á(ã`d,‹^H]?§€µã°f)œ²NY' ÁêXÕƒ(;ØDQ‡H+‘ˆ"\X..4ǵãØ&]‡ NÆ$à)±x¿hYF ‰‰D‘ $BI‰À!XdÃ@£àƒðxJ0ÞŠ÷£áÉt<‰'²ðD6žÈ%ùb( ÈÄ"qöAR"QA$ƈñ¢š@L&S D#‘d#’\Dr‰œOò+#SêýüÛ(ýþÃÁ£ÔeAôåTæj*k½‘ÎÙÂàngðv2ù»Y!ûØ‚CáQ^ØI^øY~ÄùÉk¡²‹Å[˜w„ª÷…‰×„šO…ú/„¦¯…Öo…öï…®? ²äý*(ø]Pô‡ ô/Aù AÕß‚šu· ÿ šn ZïÚï;ï »ï…õÞï>ÿ¡hÁ㈡Ǒ#O¤ Ÿ*MÅŒN+Ï$,ñ&-ñ¦,ñê–øôK|¦%>ëŸsÌ—1rÆ@Á(åc f Ôæ1Ð::Æ@×èýc`` Žc`h ¿ Üÿg·Ž[Ç®‚cWÀÑKaÅ(,†%ýHd7Þ‚ê~9Â)D˜9Í…[‘â§Å‘qÄx!—ãñ<.‚€ #àDˆãñLŽNÆQ)H ? R0B¢"D:B` &B`!ŽÀÃøxB(†ÇGàñb<^ŠÇGáð±8¼ ‡OÄá58|ŸŽÃÛqx7Ÿ…'à eR=‘ÔF"÷‘ü†Éþ‹(Kýƒ–PWÒÖÑ73¶3_¢²wÑ8{éÜ Þ&ÿ8+ä ;ôÓ2Ÿu™Ï¹ dŒƒœq?ŠÇAù8¨uã a4O€Ö Ð>º&@÷è}  ¼ x ~N¾ –oe›`ÙXº–¬‚#ÇaÑ8l·C:n3ªF¥5 Ê@ˆ_:BÒ!ÄdŸ€ÃÇápQ8œ Dâ‘p" <"Â!â$„FF‚)p€?L „IA0)&Ra"&Ða<Ƴ`<Áó|/ÀáÃp¸HN2û,.ÁÅ!85‚KFpZg@pfçDp.‡/Âá+ð„<±@ê%’ü’)Ký–SWû­Þ@ÛHßÄØÌÜGe¢±Ñ9'ÜsLÞ«Ì×YÂKìð+ìȫɜ¨¹qŸs¾ä¦|ËÓýÈ5üÌ5ýµþÊuüÎuýÁÍü‹—}ƒ—÷7¯ð&¯ø¯ì_^Åm^õ^í]^ý=~Ó}~Ë}~ûƒÎ‡!=Cû  <= ™ŠX4%–.™QŒyc–yã–yUË|IË|)ã>ݸÏ0î3MûpM€Ìå g9È_JV€ò z¨]êW‚Æ• y%h[ÚWŽU kè^z^ˆØ‹ýÏn¬èe¬h¾ ß ×ÂI8dæ-†¹#0«f´Ã´:8¨(„)Y°Ÿ !Y‚ÁÏ^m"‚‹Ç!Ñ8DŽƒ%8X„‡…˜O„9D˜A‚idx® –ˆ%aIÁX"K a t,ž‰Å³°8ŒãÁ¸'€qá0 #RQÀH Œ(a$F40¢ƒát±ÂˆF²`$FJ\%ß€Ã·á ½xâ 4B$‘ü&Èþ«ýÖûn¢m÷Þ@ÝH;H?Ä8Ì–ØŽÅ×cqX¤F²aØ Ãk€±›c•6ÁʞĄá1|†MÄÐH˜`2&ˆù@~1"R!ÂÓ B‚ácàP †E¬ƒ•c°Ñ¬ƒUc0 F‡Á1+ãÂ`²0Ø| ¶ƒ­Ä`k±pnÃÂÝ0Ò# Üb?Ž#LâˆëñÄÍòKD¿]DÊ’ÿrÀq¿À3” Wüƒ_÷§^  _ `] ä|Èÿ8(ô³ Ñ—Á’oƒ?Pã~¡&üNKú“¦ù‹–zƒnø‡nºI·Þb8þe¸o3²î0sï2 î1‹ï³Ê°*²ª±ê±³[³Ûž°;žpzžrûžr§xCSü…Ó!£Ó¡Kf„K½aã^ÑrŸx…O¾Â³Ò§\ Ô«@ò* i«q °¬öµÀµd®9@þFP¸o¥›AÙfP±TnU[@õP³ÔnýOÀk˜ÿ\Àø¿‚õ?‡õ?¥œ„ýÃä½XÒN,q–°‹[†EF°pÛ‚ÅÔ`1%XL>ãÁbì0Æct0&ƨ`L,ŒQÀ1‚ ÇA|Ä&B4ìRÐþh¿@41M ¢ 44žŽÆÑѰÑ0 ‡@X„ ‡°‘Fa¢ L,„QA˜$J… ™!ÈAÊ… "Saj L=„i†0mlÛ‡Á.À£Xxö]'aÜz·!ìÀvãI ¤£òI¢ß9åÙÿMrÀ¿ wýhPQØŸQ¸_ø ¾ } ù)0ê·À¸?ƒn%þœòOpê­`ý¿TÓmªõÍq—æ¹GϺGÏ»O/xÀ(yÈ(Ĭ|̬}¬ÂlzÂjyÊjÊêšb÷NqæOq†¦¹ §y£3ü%3!˼¡>á Ÿh¥O¼Ê'Ÿ1“ ~5HX’Öí: [Œëy°nÎÍÀ³dm9[AÞ6¿¾Šw‹%Çb »±ømXÜ,²üÙÝ`û±Øv,¦‹)Çbа˜,,Æ…ÅX°=ŒÑÂ5ŒQ˜h#A  !@"D'£©~è ÿ)Hü¿gó1ç òÐp(+„°"#†0ra”F A)”Aéd… ÊDCùh¨ •£¡Z4ÔA-Ôaº!L?„Y€Á.Æ`Ç1ð$^E6ø~ŽpG<Ž'"Ïý^#R.‘(o“®’ƒ?$Ó>öc~îÇþ’ò-%ìÿÈŸýå¿Dÿ ü;PõO`âÍ Í¿A©·ƒ w‚Íw©¶»T×=ZÆ}ZöZÞCzÑ#zécFÅFõFÝfãSfóSfÛÔlAVï{`š½`š32Ãá.ñò–yùË}¡+}a«|“>Éj _bÖå:°$mš m0l¦-Àº 8¶÷KÀ³dîÙ/ƒœ] o7Èß fí…{@Ñ Ä+Ð.CÄ71Ä70Ä×0ÄW±„SXü,n·ƒlÆÀ«0Ø¥ì Óš1P5*ÅB¹Xȃ…ìXȈ…tX( †fÇ0†¤‡B‰h. M÷CS)è ÿ¹‚AhÒÿ-È@ãfó±Ð0 óÑX†ÆD 1R4& ‰EC*4”„†´hÈ€†Ìh´Î@£sÐèB4º®D£ëÐèF4ÔŠ†:ÑP/€ !³ÂŒc°“ìz ¼‹ì„q{üa„pG8'¾‚'½N _&’ß!ú¿G ¼F¢~B¢_'3¿"ó¾óüèþ EòE~Ã?æoåÍÕ­€¤Ûš;iwƒŒwƒÌ÷‚í÷©®ûÔÌÔœ‡´‚G´âÇô²'ôª'Œš§Œ†§Œ¦§ŒÖ)fç³gš50ÍZ0ÍžaÎp–x¹Ë¼¼å>þ*Ÿ`Ò¶Ú¹HÖÅz³Äm ›@Òf Ý tÛ€~;0í–À¾ 8v×àÞ <û@æ~µdÏ:r€ÜpïAÏ!ïBÈ;rB.a‹ä<9‰c°»1ØíÌ: f9³ `  Ô€*1P!ÊÆ@.,dÆB,¤ÁBjŠƒ!9ãÑB"šGF3(hš?:8ˆ¢¡HÁ("E £ð Ž…BØ(˜‡‚Cæò‰Ð1#GC1h( ©Ñ ¥¡Ñ&4Ú†F»Ðèl4:….A¡ËQ¨jª…jF¡ÛQè.º…žF£ÑKÐÐ8š„ uf3»ïÅ"³ßâIwÁ_@q„+xâU<ù‚ÿÇ„ÀÏÔ/‰ôoˆìHüŸI‚_É¢?É’¿ýäÿøEߢÄýKQÝñO¼ ¹ »h¼hydì~œùˆš÷˜Zø„Vò„Vñ”Vý”^7Eoœ¢·L1:¦ÝÓŒþæà sh†µÈËZâe{9Ë}ÜIµ/t­/l=mâM@¶DmqÛ€j;Hz ¤ìÚ] m0ìéûé°ÖCÀv8ŽÇQà< \Çžq¿€½†þÏö=û.„}¾a_ƒ°g!Ì1³‚vBÐFZA‹!h„îÐÍt-]‚Açaд ¥c¡Ô¹1Œ‡¡($™-HBóÉ(EóGýß‚ä`‰Š"ÎdÎä `> EaÃQ˜$EA ‡‚PP ŠBPh íD¡3P¨\ª…*E¡*Q¨Zª …jE¡:P¨nª…D¡FP¨1zžD£×¡¡-æe»ÅÀ§°È9,òŒ{Á½àßÃ?Äù}‚÷ÿô5žúù#ó ‘ÿ1ì/RÄß$ÉM²ü_rôm?å]¿„{”äûþÚûiÒZ9yç<ÎB-~J-{J«œ¢ÕNѦèÍÓôöiz× £o†1†1äe.ò2—xYã>Ö {ÒÇ]ãã¯ó…nÂM | o²í ú%·$¼ Ô»AÒ^ ÙR‚´Ã@‚ôcÀt˜OóI`9 ¬§ž±þú3ô>A£?B£?DCïAлô&½ ¡OCèCz„Þ ¡×Aèq½BχкBW`ÐEt6íÄ -XtJ¡ŠÁ¡et8 â‡bú£è(j *0åÿ¼ Ed ,ŽƒBž ¢°(ŒÉQP ­B¡Qh ­G¡M(”…ò PÙ(T UŒÿ&}†ø}øƒ üGûÇüÏùrƒ ü‡q‹(¹M”ß!Eß#ÇÝ÷Kxà—ô€¢}à¯þ0Àö(Ðù8(óIPî“à‚§Á%SÔò)jõµnšÖ4Mk›¡uÎÐzgè^ú/}¡—±ØË÷1Vø˜«}¬µ>Îzwào¡ÛAرHwÅn»ÄíñúH<’O€”“@s hOƒÔ3@w¤úó@ÿ 0Ìzõ?èÏÑÿùŸˆè÷Ñè· ôëú„> ¡÷Cè— ôF½BAèá¹1l…Ð5ºtn =´‹6bÑ©0: FÇáÐ *‚„ø¡Ø(f Šˆ F£ü¨(2Eb¢lž‹BfP€‚ÃQX1 #CAQÏ­F¡SþOûõý¤E½åq¼¿çœow?9‡ÉÃÌCN’3¢("‚ ( *¢€‚¢€LW1b@Å„(^E ‚ä äœ3×U‰Ÿ~úÔöÓ̈líVío[µu«>ÿÁ«ÞçÛM²ÉnFê‰t;R?¤ˆ÷ Þø âÄшcÇ!ŽG| ñÄç_B|q*Ñ»DÓIÎL ªó¥¶PÕ–¨úOš¾Js¬×›uׇg‡Ã·Ç<à vÆ9ÓOº²N»ªýË]ð»§ðOOÑ9oÝóÞ†}M.û›_ö·ºh[ìXêRêV¾¥4Ò«,Ò§<Ú¿<:°"6¸"v"þ`">"eÄÇi㌴ É´§’i““é/$Ó§˜é¯™o™™ï˜Yï™9Ó9÷#®ö)|Æ5fríY\çK®?‡ÎåÆßpÓù|ÝwÜb!·\Ä­~àÖ‹¹Ín»ŒÛ-ãö?rûåÜÁÚO•“»eåþ âZ)WH¹DÒ·’¾’4SÒ‡’¦JzEÒó*MTéQ•†«4DMeØG“=uy£•¡C¶sÈæ.ÙÈCE~ª¤œ0eE(=J±EâL'ù²È“KîçüY\c6~ŵ¿æ:ó¸ÞwÜà{n´ˆ›,á¦K¹Ù2¾îGnþ·XÁ-Wp«•ÜêçÔZ¯ªí£Êí!ÚE)ÇíRn•r£¤Õ’–KZ(i¾¤/%}*iš¤7%½,i’JãU¥Òƒ*Ý£RzëÖk(»:¬ ©¥›šz©žŸ ƒX-‚9QÌŒaZ£éÊÀ@úsЛ‡îtÕDgmtÔE½!jMl¾VU|7Ú|·ö¼pà}€C†<0 ` ÀcOLx`2À S^C|+%ˆ"}Ž4›ä·$ u™TWJmÔ6ªÚ¯ªc›êÚ¥¹÷jÞƒšÿˆ:®GO9ÒÎ82ÿÙó‡3ÿœ«úywáwÑ%O½ËÞFÅÞ¦Å)ÄÖ%þv%Î¥ÁÊ‚ÝËB=Ë÷W„ûUD$"÷$¢CÑØCFl”{4{<›ŒOJÆŸOƧ˜i¯›iï˜iÓÌôÌô9cg|ÎY_rölÎýš«Íãüï¸ú÷\󮵄‹–qÝŸ¸Þ n°’®âF«¹ñn¼–›¬K­éznº¡r´Ÿ*wq7ÑN¢íD›‰Ö­$ZL¸€páç§K|GâkŸ—ô¤JcU‘ÊhÔW£:usPg'µvÓu^ªÀÚ!Ìbn ³â˜ž†1K0ƒÙèÏEo>zª£«Eè°lŒj3-A¶êÔè&Àž€½û 0TÀƒF)`´c…'Äx!žb’ϼh ¾ðÀ4Ä-Á9Hߥå2R&u­T7Im‹Ô·KçnÕµOõR½GµÀ -|JÕÓÿÑõ§3÷œ3ÿ¼«ÆEW­Kî¢bOýbO ±ÄÛ¢Ä׺Ôß¡4Ð¥,Ø­ªâÃV† Ò¨ƒnuP7'vô`k6 b½0ÖŒa~sÓ13Ó²0’ƒ¡<  ¯&zk£«.8€£1èÍAm²=ÈÎ@7u·ìc(`€{Ü/`¸€‡„%Ä#U>a >m >o ¾*Ķà{|– Z‚K–#¥QþBr©;IÛCú~r–®cÒ{R œVCÿÒb¿kiçôÌózÎGµ‹Î‚ËÎÅ®Ú%®º%î%žÆ¥)ÄÖe¾veþ.åþ+Ý+‚·Uû$Bw%ÂwáûŒðFd„ŒŒMFOFª£ošÑi)ÁÈÇfä332‹#s8ò5G¾åÈBŽ,áèrŽ­à´Ÿ9} g®ç¬Mœ½™s~åÜ-\m+çm缜¿“ówÙÛ]9¸. #P+5Ò /²³ =¢Õ \Á௠Þ:à®®Æàhz+ÐÚìÒºŸ7ÝjØOÀ_>hó¬â{Ìp‚à3Ö µ_²ßâ€÷mÁYs¿G\ŠøÒj¤õH¿¢Ü†r'ª{I;@úar“ž“ÒwF þKü¡ÅÎiéôÌ‹zÎ%GÞeGA±³°Ä™B,u7,u[ˆ-ʼ­Ë}Ë}×W¤{Tz%‚ý¡Fh°ºß3Â#“á1ÉÈcÉÈSÉÈsÉÈ3ò¦yÏŒL7ߘáÏÍЗfh.‡æsh‡sh‡VrxGÖrtG7sl Ç·rÚvNßÉé»8cgìåŒ}œim?g¨ÃÊÁ«ˆw^Ép-ÁJ„% ¾"ø‚à‚w%¼žz ñ)‰ã¤•!Õp û:ñVÞà…~h‚Æ(ŠCÍt(È„œlÈÈ…X>DªC¨üEà«î†àj ÎæBo#´B^/d7A=öØGÀ]UZ/à0EŒTÄhEŒQģЧˆñŠ˜¨ˆ§1IÏ)â[ð5[ð]!,ÁO¾ø`!à2À€k6¤i;Ê]– ªH;Bú1r’Þ3Òÿ›úCžÓÒ.hµ¬Kzn±žWâ¨Q’B,*uÕ/u5,s7+ó´,÷¶+÷uªðu­ðwOz&}Á;àÝFhˆzÀ=œ N†M†ŸL†ŸM†§˜á7Íð{føC3ô©ú Í6ƒ_›Áo9¸K9°œ«8°†ƒë9¸™ƒ¿rh;‡vpxGöpd/G÷sôGrôGsôHåà8^Y ñ(^q/áŽT†°a5‹¾!ø'ÁgïL•ð’„É&HxD…á v@'ôrA7/töC«4Šºi¢V†¨ž%rsEfžˆˆHM®-u…¯ð4®ë„³•ÐÛ ­“7ºYPO·‹T€ÿ P#1JTñ=®ˆ ŠxRÏ(b²-ø¢"^¶§Ú‚ñ©-øMJ®®ܸhÒ.”û,AT vœœ§ÈsFú~“Á?Ôðy5vAM»¨e\Ò²‹õܽÀB,uÔ*uÖµËÜMÊÜÍË=mʽ*|]*|Ý*ü=Û~Fp ¼×5B#’¡QÉðØdxâßß7C™¡fp–œc晦û—±oûÖ°o=û6±ïWöncß.öífß^öïgÿAöfÿöåÀ1{Ç+'°r–ã_ˆGR·Ôʶ#lFX© —"|Gð5Á—L#xM‹ž‘0N…‘: qÀ@ôqCwt ˆ¶aÑ<*¤‰:™¢f¶È«&²óE¼¦ˆÖá:"Ø@ø O3án)œm…ÞIh]…¼YÈ[õx‡À»l¾û< ˆáŠxØæ«ˆÇl¾+>eø¬"ž·§(âu[pÚA!þi .ø`%€%¸1%ˆ;wíCyåT£ã¹Î’ç7øS†ÎËÈ5vQM»¤ekÙ%z5 ±4…X»ÌY·ÌÕ¨ÌÕ´ÜݲÜÓ¶ÂÛ±Â{C…ïæ„ÿ¶„¿¯¸Ë 6‚CŒàðdpd24&š˜ MN†¦˜¡©fè3ø±üÌ |iúçšþoMßBÓ·ÄôþÄžUìYÇîìþ…]ÛØ¹“{Ù¹ŸÙy˜]GÙuœ]'ØuÒÞ)v®Ü5‚•ˆ¶à‚=;~ÁT†?[,$˜G0‡`Át;Ã)ž“0^ƒ1:<è„Á.èç†[}¢[@tˆˆ–1Ñ(]Ô͵rD~žÈ©.Ò E¬HDê‰`#áo"<Í…»µpµŽ.B»QÈ[„¼MPa}À à=V€Jê~>d8¶*À'lÁ'ÿ&ø‚"þa ¾¡ˆ·lÁéBÌb¶ó®„k‚<šÔO¡-Hþ?dð¼ _Ñ‹jü’šQ¬e–hV†y¥zõT†Ž¢2gƒ2W“rw‹rwërOû ïõÞn _Ï„ÿvÃßß 2÷aFðádð‘dpB289œ’ N5ƒ¶``¦éŸmú¿6}ß™¾E¦w©éYÁžÕìÞÀîÍìú•ÛÙ¹‹ûØq€‡Øq„ÇØyÂÞIvžbçivž©ÜUÁkì%؉°a‚‹í×к¥³¬×P¦^Ã7ì[ú´ëð†¸a€Gôö‹îAÑ9*ÚÄEÓ Ñ [Ô©&jˆj5EFm‘VWĈP¸Nx[ w;áê$7Í °§· ê'¬?¼Ûæ{@U/à_÷s|Õ }ºê„^|Å|[ï ñá_‚~Xn ®Ø°p§-¸ÿŠ È)AçYtÿF¾?(pN†.ÈÈE»¤¦]V3J¬ 5+ÃüR½¦…Xæ¨Wæ´2l–ÊÐݦÂÓÙÊ0á½%áëeXúþ{ŒÀFà!#0:˜ LNR‚ÉÀt3ð‰éÿÜôÏ1}óLïBÓ»Øôühz~f÷Zvmd×/ìÜš б‡ûY?ÈúaÖ²~œõ“¬Ÿbý´½3W' jø×›h!Â!„}»¶l&°¾g~&XJ©×ð[‚Ù3%| ám ¯ªð¬0ʸÅÝÑ7 n ‰®QÑ>M\—)刺y¢fu‘_(2ëˆôú"ÖH„›‰` ÅÛFñtP\]G7E¿EQ{)²¯Bw*8HÁ{ªX/ \ pLß6ßÄk•å%EyEQÞT”·å}E±?ûKPÀr? X'`“€­v K-ÁC@)AÐN£ã,º~Cïä?G•^’ñËjz±šU¢å”hv†za©£n™£A™³i¹«y¹«u¹»c…Çʰ{ÂÛÓðõ1|wþÁ†¨áaøGñÉÀ¤”` %˜ôjú¿0}_™¾ù¦w‘é±\nºW±{»6±Ó p;¬÷²~€õC¬aík'X;ÅÚi{gì­Üßáš#ìÇÔ!ÝNð+Áz‚ÕË)õQú=Á\+C K˜&áM^ÔàiŒu‰nq¯Wôˆ^aqcLtL-²D“\Q?_Ôª) j‹ìº"£¡ˆ7‘æJ°•âk¯x:+£»¢÷TÔ>Šì§Ð…+xŸàp®8¶Šo|•àSögŒý¦_V”WmÁwlÁ””à!æÿ‚{îxHÐQA)A¸"èù}Rà> >> >> stream q 150 0 0 100 0 0 cm /x7 Do Q endstream endobj 9 0 obj 32 endobj 1 0 obj << /Type /Pages /Kids [ 6 0 R ] /Count 1 >> endobj 10 0 obj << /Creator (cairo 1.8.6 (http://cairographics.org)) /Producer (cairo 1.8.6 (http://cairographics.org)) >> endobj 11 0 obj << /Type /Catalog /Pages 1 0 R >> endobj xref 0 12 0000000000 65535 f 0000064820 00000 n 0000026007 00000 n 0000000015 00000 n 0000025983 00000 n 0000064520 00000 n 0000026139 00000 n 0000026353 00000 n 0000064496 00000 n 0000064799 00000 n 0000064885 00000 n 0000065011 00000 n trailer << /Size 12 /Root 11 0 R /Info 10 0 R >> startxref 65064 %%EOF pymvpa-0.4.8/doc/pics/ex_som.png000066400000000000000000001533011174541445200165540ustar00rootroot00000000000000‰PNG  IHDRôYnTݺsBIT|dˆ pHYs Z Z®ÃRstEXtSoftwarewww.inkscape.org›î< IDATxœì]wœUÅõÿÎÝ¥Ã*Ò;H ŠPÁbA%¢FDM,±übšÄ[Œ£11š¨1‰1јD£±„ØKD»¢iJØ„Ý}w~¼÷î=gîœyóö-ˆ8_?+çÍs¦Ü2w¾sF@@ÀƃRª€l À»þ µþØSÿn˵Öç7s½Zø.€½tð)€—Ü¥µ®'ù†8¶Pÿ%^ðg­uLò`GÿÒZO6Ê9ÀÖîÖZ¿Þœmø*#ú¢+ðU‚Rê[Þ°€©&à}¥T·/°jð—˜à/>ð=‹ õt}ü ÀWxZ)ÕØ:Àé~L PJup€³ ÙP ø*¢ú‹®@@ÀWJ©žîðK­õƱ›¬#¿[ø:€À›t†,Øn `8€Fo3ê®êÔò¬ÕZÏ4ôûà[ZëÉ¡«IžÞnp©Öú&’þ¯¸ÀED÷{*¥új­çÒŽð,€ý\í (a†°ñp:€Õ®1h­§k­W€Rj_s< àqÿSJí"UJíàcx À,¥ÔÎ$ËŸüÀL O«›ø@Ü/ùgX à£î‹ü À÷•RTU¡ Ç“´ õ hf„= `ãa”˜m+¥Úø3òá€Âß þ¢”jaÉß®ÿ¡BÞþ^ðg¥TÉz€3µÖ´Ö˜v´ÖK§ÜïUJ=¦”:K)ÕÅRÿ×´Ö –ªOÐùµqŠ»‘Ä¡”Ú@¿BÛša@Øxè`y‰<»è àWZë5ZëZägă‘§àMì €›´Ök ³ü[‘|·#ùþ«µ~ÊU°Öú;Fžæÿ)€yJ©ÛȬ»«£þËIЧ´SJí¼#à}¥–š†0 l<ÌAޙ̅Þê´Öï’´éȯ÷¶äïà3­õ,’ö*òƒ2Íÿ_Ÿ j­ŸÔZŠüKÂNp€GýûþýȰ—p€S|nØ`z@ÀÆÃ«F*¥z9ò,ÐA)Õ—¤m‹üÚöbKþOlUp¸+b;äïmšßF“‹ÐZ¯×Zßà-ß,$O°[ÁÉÎÄxóµÖ‹,ÇŠ´ûR­õŒrêà0 l<üùOÂî.|¾PJµPJ]©”ê`òÎdßQyDÈ;•} àM‹ÍW÷^ÿvÁV„üzùBä?ó‚Rª[Á¦m`€ù…¤ßøÀï”RmI¾CœàB›íÛp €“}ëP>Âgk Zëz¥ÔÁþàC¥ÔÈSé#ÿæû&­u­RêLäÿ‰Z"O£µ^k±¹\)uòƒì±Úè`¢Öz™ß-<¦”úùYy7;˜à×…²Ö+¥p€”R¯ÊÚÀ…Zëûmÿ{u hTØ). `ãB)¥·C~Àž©µ~ÕÈÓÀȯ…¿ µ^HŽ Рµþ¤õ/äo,ä_DŽmüºüÜõj‹¼“]ä¿[Ÿ¥µžjÉ×ùïÙ‹;ÅM/|ºFól @›ß»“ã{Ú½ÔU§€€„= `3@XCØ ô€€€€€€ÍMvŠSJýãõ˜\Yñªd¶" Ít%äãéšü.cibKˆcjK%eÆšÛÒ´.1Õ¬²ÖQRf¾ŽäÉט«²êDZJt´VI=izV'µ•ËѺp[Zè#Z¯XóºP[I¿@A+ÒäýQ«ÈžŽˆõ% ùò&©>)SÙí ìZ“-0(ùõ€œ_ ”¢:RžÈøm/„Ù"Ç¢Hh—â:,M—dC‹7Å®ãS/¥L»fÝÒ6²2Ŷðs—K¨ü’¶EŽ)¤ÍT,_DÎ+µE齪  ×¾Šˆ¾RˆX_¦¶Td· Eê¥h)ãÜ}±_ô…²´Ÿ´8•7¢t00}G~aÜ€t´i»€ØÌGÇ !ŸY¶¶¤Ð’Ž€m ûåž§ŒrFX4ôÎÚ—6 ì±ÇWM}{!z ñ¡–­:wtÛð_½WX¹br¢>hk–…•S8¦¡Œ2@°~5Muˆ ¹ÝĶñBËõ ­[E™Aœëa°A˜µE(Ÿ¿\¤/*¼^r_È2R[Hí¦¿ åÓAØÍß@±«íƒ8}i(¬^³íÛµcú÷¥ÏKf&—0ðXFtë¦ØòÐK§CñÇhÝê:tèP“±,ê{–Yn½\µWz~´²×…à:‚m6(ñŽIe ¬_¿­[·býJd¥ [v™ôŠ\ûJ)QÇ­OÊ^zÄ~1óóñ=•Xº0¸;ô¥Ë— k'Û<t)ÝÌc{Ypåq½(Øqs@wÕÅÀ3ÓžÄ1|§Çž§Œræ3ôѰo/™ÁI'Ôk̈yÔÏ~|Á§@ï”~x­Wþ:·2ixf† ²1ØAøø`™Þ Ù™¬JòÛfµùcd†Ý˜vqΘmg¹æ¬zÝú+ërèÒ± -ˆ->Ã.θã8øiºYf.—Ö¥¡!•ã8Jʧ¶²í²Û™(6ðæ@ôI ˜¤Çˆ …t†Îmi2ƒÑdËò8ªÂ¼ù зOq“´âË…öÀ˜­:ò lÏŸÿ)<ä„:X›3ôâ1Ï|$èø¹sç`À€­úæàXnù>õò¸$}Ú/JìøÀÇ˰ÙRFÓòu¬±|ùrtíÚJ©Ä¶"³ušUä:¦éÕÕéýÁlEQRfÆVU•U6ûžêKýErÙúU)…¨ŠäcC=I7>šï·ÞÀˆF × ‡Î!;Ûf3iáM>3“.ä‹=õsFzqœ¢úF½Ø Ýd |ïšïº3Ьߡ¯ý¼3Þøcvë‹8Öxjòì·—«aÓGðûØÜ@¯i?Â4@,8fë›$ÌúKVý/¢ª-Û¥“qy)Cy§¿{öïŽêv6·.ÿ–«‹óƒúWÍê·`Q-Nýþ#ù:Æ¡Çþµ9Íe P]ž:MÝ”‡-2Ý<¡”b3c!—ñ÷ÕÄê5«ñß©<¼@ñ¾ãO?÷ 6É>ÚÄO]Eºëöníéá³÷Ò¨®RèXSêÁ ¡g’k=z÷.;&@BEèÔ©Ó]/æÍŸ‡3Ï=ƒ¥uë’wÈjhhÀáGOÒÏþÁY¨­«Ý¨õû²Â: ßÿý= ÄHû1cÆŒ¿üòË·€[n¹eà%—\ÒwÜ¡¿Æñ§?„·ß[R² )/}Œívÿ-zns#Fîó;L#¿‘Õu¿z7ߑߌjú‹Ðcèxû½ü¦S?ýÅóøÕm/ç Ø¼µî ‡ºp@ÊoÚò®–ÉO_‰å±4mÿs•)þQŽöJ:M_Ÿ§ÿeóÓ=OfSêU¡­Š«û%ko¤þ¿)æ•ëñ Ò›hwûv^™ÜªU+Ô-^“üþÛý÷áóÏ?÷/£9:J²ãñ Ì<ó¼®%þ¯vYô &,Z½zuÛû¼÷Þ{íg̘1ôÌ3Ïœ5cÆŒš .¸`ÂÉ'Ÿ¼ø™GÏÁ„ñÃðÃËžp²zM=&|÷¸â½°ð½à„c‡ã¨ïÞ††vúzO<öx>òãS“?ÄVÛàé)ùŒ=þvÑÓeÚ_G²¡Ê4íšôé!oËkË&÷Ð ب8ôˆoâÍ·óq„~u˯0b×áɱ;¯¿ù:€üëÌE—]ˆAÛ Ä~‡ŒÃ´Óõõõ¸]Þ÷ê’+.FÝê:pè~ØyôŽ˜7ÿc|¾îsœuþ™è¿M?ìº×(ÜtË/Ëm¢ çù(RîãÇŸ~ûí·ï×]wÝð]vÙå½nݺÕß{ï½kjjêæÍ›×êÁGÞÀòk1ãÍO°ü3ù jú‹Ð²E&ŒßQ¤ð½vƲåk1sÖ2ŒÞµ/¦½¾ëÖ7â¹ççàêK÷Á³ÏÏÁªÚuøà˱ëN¶Ð›"¶Ývž~æiÀž˜­5Þù.V¬\¯MÇööÌ|&†m; ³ßþŽ<|nºå&€ÖK–æYÚk¯ºÚwÀ<…é/¾†¾}úášëŠåŸ-Ç»3ÞÃÓÿ~ÏMy“_˜ü…´uSƒ8 _vÙeoΘ1ãk .l5iÒ¤Î<óÌéPWWתeË– j}}#Ö­kÄO/Ý®=áW¯®G·®í’ß-ZDتc¬^S¶mZ`øöÝñÌ”°`Q-?x(ÞŸ½ ÏÝwÛ#q~ëÒ¹ ¾=ñ;PJáˆCÇ /=ïeÿ_ý }{÷Å?ÿõ|øŸèÕ³7|䟲I_ˆîÀ½{÷^7bĈYßüæ7Ç·mÛöó#<òØc=ÝsÏ={íµ×^ ÷õiúúg+ ³tcí`Ø×ºâí÷–`ùòÏÑi«¶˜õár|ºd5†ê h`ïÑðÓŸÇî»ô °ÓðžøùÍ/â¨Ã¶Kl¥k*ùMé úMÛØ…¬ehs=‚å³—œÙeÎò{f3j—n¦bÈÅßqFŸäsÈÅßYYØL†È9#][le¾C‡_½’~±Sœd‹ÉäÙ?í,ÔÓÅ•‚4£¹#=Ä^Z•G6%Úõ(®â/Å„ª‹éØúªKm‘ÓÍŽTB>¡@áôÅ•ëÂ1b »\eƒá§!\‡ì·2®QÁ€´ YÁDz@èt~hkºyŒb7¦3+òÿl½öØmÿÝãðÜäç°Çn£±÷ؽqõµ?AŸ>}°ï^û$*]:wI¾woÛ®Ö¬YK=5PWW‡–-Zbݺ|tà‡ïˆ^={gê‘€~;“}¶÷‰`‹<Ðtæ›vA¶ÁÓ7Àù}ÏYg5íè£þ¿sÎ9çÑbÚ‰'ž8ïž{îyû’K.qÄ!Û`«-€)ÿýSŸçž¶+`ß=à{罃ÛùÍÒ-Ødо]{l»í0\{õøþ™ßÇÛí€÷Þ³þ7 §~÷ÿʶ׵k7ÔÖ®B·®y/ø‡ïˆêêjüßw¿×ÜUÿÒÃ9 2duëÖ­×]rÉ%oÓô§Ÿ~úßW\qE·-Þî»uß–øÁY»úôÚ¾íp@ËUxâŸÇ%:7þdL<|;Ìúp9Núöl¿mºgìn;÷Á³Ÿˆ pG¶ì„¶ö• Ød±ÏؽqÝ ×aŸ±{C)…á; Ç‹/¿ˆaÛ +ÛÖQG…¿w†ï0—_t®»ê:zÔ¡˜öÚ«Ø}×=0óý™ØiÄN8÷Ìó6@K¾\ô?ýéO}oºé¦ÑGyä‹Ýºu«7÷ëׯ~ÌpŶ~mÓº£vì ÏÞì¹[¿K§&vÑ ;È×Éÿ€ªªcwïâšö­0v·þ,ŸÖ6ZÝNS›ôwJ¹Û)sR•Œ>¥ƒ5ñ"‰LÓ‹¿}Çþ甲éè&Pî9BåýÞH·´e¶¢dÏ÷œsëWz™ýB1ú$Èà”}" “3rZèt's•ágKÓì"5.éÂ¥—)èò9s%¨Ðîqm«)­JPW¿Ê4»}é#»Ä -‘úœnçëè{f5碲æá¶µmt`BíkVKñÚå4¹Iíë¤ ÍúÂX_̶$³.A—Á”¶%»»[¡.Žûó´SÏÀþã@Ç­òßå_wõϰªvUr¼¿þ¸ó·¿O~·iÝþó1@Ë–-1é¡ÿ$Ç®¸øJœqꙘùÁLÔÔÔ [×nxý¿oàÅ—_ÄÒ¥K°×˜½±ËN»$´´¹+ÒÜÊ]™ä÷¡ÉsFºf7liI߆^;à‰úÃ?Š<òÈþC:Î4p+ÿÂüûÚð×rkeÅümrZ4hB¿ó“/ÑïÜÞ®ŸµUºZ1RÆÆduDÏrÓK¾/§©1/wÓ›=‘c.Ûè{——»d—-%d¼Üiû¹g{¢´/\§;fT-¬²]³øìv^S¤f•PeðÜöëß cáGÛ!×ÝǪ£å^K•C¢ÕeHËŒ~wõ‹£]Å#Îei)ÁÈ“Ø2Ü•µ d^†66جô|uWQGX–íÄ@Ü“cö]_J+›¬—•£ñš¦ûÐì®D¹›Ôº%]¢Ù3^î’-´Gdôy…¿’˜:uj]í!K ×ûäNëäN(Â2 |iQSÓÕÕùÀ/tŽ"óÑ­’y8S’CyJ+˜áPI©©ä°ËB¦’ú)¥°~ýz¬_Ÿq- øBÂRlptïÞ mÛ¶-ü’ßä˜ñÒÍ=Íã£Ã³ðY%³E5ðÙòa@ØäPÑ€î5yvdðZï t¶VŒVá4µ,—M“{Ø¢ÞªŅ^Pe×E¢Æµ6¨mCÇ*“|1Ñ7ûˆë“tãkƒ¤]Êhˆ,ЋšsnÚÁŽ &`¥ÖuÆ ƒöq(÷¹Ž¡nUZ¥´q”.ê(ÒÇJñ~a 2ó`N9à̘'ô¹Ï …bíÊæ+{ã×1tèP´iÓï½÷zöì‰-·Ü’Ù3õçÍ›¥úôqGƒ³õE¦îf_ëϬ“{J)xtçïúâ’?wÔ=ÿåKöddžÂ’yî/wvS*æÎ¼ä9½x\°b½Èë"ae4¦Â¥ãTظd|¬YlG+C–<Û%™è¸¼Ü©N)vM×hhÖx衸֭Uڡɵ«Ü.…<ÚÈ'égò ¼?Mþx:¼t¤?¦£á¥#þiãÏ#_q§ºâZ|Ùåxåwµ‹ž)]þ+ûòª@·©¶YºÏCÅ·<>·2Ó}Ízêÿä'WañâO·Þz Þ{ï½’:>ú&Mšd=6}ú4<ðÀ×K6`ý•*Fó0¯ÁÜÛXEUi~ø><¬c†0nÄM°kêÄÍðWl_ l:z@@ÀW¿ýímØ}÷Ý+²1wîÇxíµMÒ5£t5뀰‘QÙ€^曋6þ\ÇhžR²÷Ê×‘êØ¤òÅz©Šô‹”yþO|VÎÒíåÇžκ¿Lÿÿ<νÄ2—›dWÈ—=_:ýóÐÏÖ?Õg׈QgéVÙ(`ló™ò1ë›ï¢‹.ÄôéÓË–-õ×^ƒƒúN9å\}õOðÐC&ö–-[†“N: ûí·/®¼òr¬Y³Ë–-Ãí·ÿS¦LÆ‘Gë¯ÿ`êÔWpâ‰'àÀÀo~s+>ø@¬®[ h`ÂQpϽ÷ààCÆ…^øÇ?þ}ÇíC¾y®½ö,^²0qâÌþß줾ÏM~ßÿþÙä|Óÿäëµ(ÿŸüçy°¾¥v7ÐEÅ®o£pvß°º í¢íðù3ÚU‘-S/NÿøƒŠü™éÍ1öü‰u±ýyžãÊgèetlöЂMmÊ$‹¨/QèÞ=Õ“›]>Z^›ÇhxRᔲ6)ø’T¼g9b½ÌSë£#ä1ÏqEýÝ|úµµµ¨¯Ï;—Ýu×]hÓ¦ yä1üà?Ä#<œà€gžyW^y{l>ýt1^~ù¿èܹ3N;í Œ»xàA\xáEˆã_|~ðƒâ±Ç&!ŽcÌ;7œV¬ø Ó§Oǽ÷þ7Üp#^yåÜqÇmøë½ãü:wÂÝwÿ °Ï>ûâïÿø{R‡¿þõ^Œ·_ÉvÉ×Ûft%n¨¦ÏÃ̱rÇ–JƦء¿ú/v@h<ÿü|ë[G¢ººC‡ň#Øñ}öÙ}úôA«V­°çž{bÚ´iV;o½õzôè‰í·ßUUU˜8ñèLž ŽÂ[l¥žyæi 8ÿýïKxøá¡M›¶xòÉ'ßúÖ·0iÒ$¬_¿‹-Ä;ï¼öÿFó7>  PÙgkžw¥h9Ÿôä·9e“¦p>ù<õµd‹zs›ì§œê+‡7:¬r‘7eêýnÓ±§+Ø<Û›Ö.Ò/€¸Yóî… ³ug¾Ì5ULP`^ÇB¨È ˆk:õ§úTù¨“üæçUÅCÏt˜Üi ]u1ô-”RbWµ'ÿLªKöžNé\­8ÖX»v-ù´-R3%³‘l%ª´iÓŸ¯ûÜÚwkÖ¬ávÚ¶AU±Û·ÿþISÖ¬Yƒ–-[a}}~S–-[àä“OA¬5:uî‚‘#Gâ‰'žÀ‡}ˆñãC‹–-¡±&{ýeë‹L¿H^ê$—‚õr/Êʸ¦›ÕËÖÑÈ^<ãÚlŒ%OÆ–‘'ém“ Ô3\|6Ë:âþëTÇôL—t$YÒ7½Ü‰ì±—{S6–)EÚ¡,x<Éi²ë¤™u‘äJ_˜Ž²Èí/ÈÙ]eäüïÒ²ÜÅf'},ÊÆ o‹íîm+sûªä_)€ƒë‘".[_ä|•|KS©¾`UËŸ„ùèÐZùÖPÊל=T®-¥ÆŒƒ—^zãdžµk×bÚ«¯bÔ¨Q%u;uꄺºº¤_FމK.¹«W¯Fûöí1eÊıüÄ6l~øaLœxLZŸ|¥GO<7ÿúWX°`>þr÷½^í‘ú¢)}œÿh.«%¥;miy¹ô¨@ e¤+Kž2Ì&Ꚙv>Ûã‡m@.þNd%¤ ú¾:œ=tEtJ^ñkÃÆ2›Ž=öÛøéO¯Æ¤I“°dÉ º ªªJ?¢FÚ?ûÙu¸ðÂa§vÂĉGãôÓÏÀĉЫWo´nÝ ­ZµFUU•U‘Gá©'ŸÄᇊ}öÙµµµølùrÜôË›»îº+®¼jú÷€4k›ša@ب¸ú꟢{÷€sÏ=ݺu <þó=˜3ç#ôêÕ'N@×®]‡~c2Fƒá…5ö¶mÛbÒ¤Ç1kÖ,´h‘´>úvØáX²d êêêðê«ÓþÆoBçÎ[-Z´À]wÝ×ßx<:uÂÎ;¥‘À [·n8jÂÄ Ó!Í„ÊvŠËº±T&€î’”=V]T|JM'É™59"ë,Ú–Ç\ÿø]ÑVœêÄÆú6Ÿ‘‹#&Å1¨Ò˜ó“s¹l ó\¬Ë‘2%ÙAß‹ÁYÄ€, ééos éæJˆ-`0oì<š9}Vóäì44û˜‚­KÚë"Çç¦:¾ô§À{j!ÝÔê.î”f–.TÓ¥“±QøwذaIÚàÁCùwÞÁ;ï¼®]»á÷ø°Û®»èѳgbCi s§ÎèÜ©sb5Іš4ïþþš5X½ºÿûßpôÑG'ywØáëI>Úe#FŒàŽxX°`ž~æ)Ô®Z…o|㚘~žEû’w†=:I¿.XóùFÒÙýFòÐâ%Ù,Sºþtæ®LEzÍPuî–"]¯BÉɦ_Èô—sG6š^¼HMjÛES9&ú”&§ù¤uï³.$Os¬¡7ðØi8x¹lèÑ£;êëë1cÆt <÷Þ{ZµjÕ$[ƒÂìÙ³0wîÇ8ùäSqî¹ç5ÉγÞGmí*Ü|ó-"e°© Pî›:uêŒã?1ÿCUæ 7bDZãŽ;U\§}÷‡}÷·Ü!š• è9îK]‹?dš]¤žýžaL%@ÊáR*Çäv%ú=¦´©²R_ÅYRJ¹k–ž§Ç‹yÌøäEärñwŽèçâ9!:“òÊ=æ”;DÊ=m‹é‰O)wÑA•Ò†>h3EøÄGþl †‡®6Ì\WB0lN§Ót³|;4»%xã¼¥xP*…7]®‹8w“f–0oþTE….é¤HŠ–¦Ìð©T&aNaê«ÄŽ>ßÊó릘~¾^ ÊÞÕÉÒuÍ.iá¶|¶üï˜íÊÜéÍ÷ó0S¶莗ñ³3{]š²S\x.å³#³®& |‚¾ S¦<ö: _¿~øä“OP]ýå&¦Änqô—O¾&íZGL±ì*µe¯¢·>KoB]$Ãþ]ì·»›×}Pвƒ®ÏNqæ«è?âgÀUQ{ºô<…qíÐç´ííw}Ó±¼†ÎœtØ n¤Ûa×€Þ Èj@÷XCŸ­l2X±b%V¯^ƒ•«VáƒY³¨†Úº:Ì™;7“¿¡¡Ìš…•+WeŽÅqŒ>øëׯgéãÆÃ;ìP(oV¯^«««ÃÊ•+«W¯ÆŠ+°víZÌœ93±³nÝ:Ìš5Ë:Ëù裛+V¬ß'|ùòåhhhÀ»ï¾‹5kÖ$vfΜ™ü€ÚÚU‰^Ë–-cu °Á÷rwÅé=ã‡dêÕh³Í² }s»±ô˜7åNå˜ËÅßšœQævYkN§›Ü˜^J×+&¿©¬}Ûe¼u³ßJΗԽ ÿéž¿bÉÒ¥øtñb´nÝ9sôQ¸÷¯CuuÚ´iƒ›n¸0ç㹸ìŠ+Ыg/¬]»ݺuÃ¥_ D ¯¼ò n»ývôéÓ ,@‹-’2ÿx×]:t(>ø`üù/Aß¾}qøa‡&MúV¬XÓN; Ï=÷žyæÔÖÖ¢S§N˜3g.ºè"ÜvÛmèØ±#–,Y‚ßüæ7¨©©ÁâÅ‹qÍ5× ººŸ}öºuë†îÝ»ãüóÏÇË/¿Œ|kÖ¬Aß¾}qÒI'cíÚµ¸êª+1hÐ |öÙg:t(Î;ï|Ìžý?ÜqÇíøÝï~Ÿ?qŒÓO? ×_=¿Ž Wi’ClgÒìFß›ù]6#ñöê—J¥¬ƒ²íÒÉ&}>>2iòRË@™¬ŒìÜ9Õçô½íY¥`”Ie5M˜¤<õ3÷'o@éz¡  õ—Úe"ÎЉì ß)å®/wå ®Rümΰ%Ê^’7Ä Ýc¬¾Ê]Êg2äO’"2µ[ššwÊMѱèk£.~ƒ ¡¶cN¹—œ…Óä~úf Íd‰rGiYxXšÞ«P[W‡?Ü~”R8ù´3ðïIÿÁ·ÿpüI'cÁÂ…èÝ«núå¯pôĉ8ä ƒ ¡ðãË/Ç;gaÆá†oÄ\€Q#GbÉÒ¥8æ˜cšôTš3gî¿ÿ~´lÙ×]w~ö³ëñ÷¿ÿUUU¸êª+ñúë¯cìØ±xê©§°Ã;à”SNAkœvÚièÞ½{bgÖ¬YxðÁQS³à;ßù6Î>ûŒ3€ÂgœŽùóçcÇwÄš5k0{öl <¯¼ò :w·ˆåËgðΫ„BÞDÑœ”}Shòæ„TfSêÒ$[ÞÏ]bËã…&cW:æ%“%¹Ì€.Ñì™ èb@W •rt×t}Et])傳|Ù°Çn»&³ÉAbÈàÔ~ÐÀ˜=ûèÙ£f¾ÿ>:wî„wÞy°|ùr¼øÒKèÖ­Ö¬Yƒ [xvíÒ[o½u“ê2jÔ(´lÙ2_ö A¨®n‘ì6hÐ Ìš5 cÇŽÅÔ©Sqê©§¢(Â.»ŒBmmmbçë_ÿ:jjj«V­ÂüùóñüóSðâ‹/Pøüóµxá…pì±ÇâÐCÇã±ÇÁyçý<ò0=ôÐ&Õ= ેÊgè>_Òhö=‹Ïtδ%Ì~3Ùôµ‘MÐg49)‡yskÈ3qÒ?å®cƒZí:,]§Çâ8=–ŸíÛëâôLׂ YÇ*'ÿC&^²-ò¡yÛ´i“üŒ¢mÚ´N¦kQT•„Á¬ªªÂÁTˆ‘7ܾ];@)är9är‰ó[}}=--ù·E‹¨¯¯ORW­Z•´_ë|]ŠHêRÈEâXCk`Ë-·Dmm1|§ÆªU« q§‘/Î8«ªªPUU…Ã?íÛ·O/ÎÞ<ð wÜwpä‘Gá­·ÞÆå—_™œ‡b=%ïàŒg¹°ÜÁói’ί >[N3q¯þÔn³Äy÷ÐϬØ:Æ1'–®o9—˜ú¶ee¤K›"I1̵ªÌË] Þ÷ù|¥Ù8–`ÜßÂ%"Òìf:£Ìi¡>³mßý×%™ÎěⷉPî•9Å qýå÷2Lþ}гGTWW£cÇŽèÚµ+¦Ly€Æ¬Y³0þ|«í¶Ûo¾ù&€¼ÜäÉ“KnÁî»ïŽ'žx«W¯Æüùó1uêT1oûöí1xð`¼öÚ ôîÝ}ûöE÷î=’—ššŒ5?þñ¥7nZ·n±!=l}PÑw¥ÌØ¥Ÿµ¥È_Sô×} ò¼øØµïH—L‰÷–Q_Ÿ¶p»šgJDmä#÷­dØÑ±^÷=ý‹]Çù3t,Úçù[| ªøWÜU­ð§È14~qÊø+K?Pî›3Î=÷\ÿó0aâ10 ?–.YгÏ> #GŽÄe?¾·ßqîàTWW³è^;í´}ôQüñ¨ªªJ¼ßËÅ>ûì‹U«jqƧc«­¶Â®»îê *ré¥?Æu×]‹‡úúôé¥K—â²Ë.Ç6Ûl?þ0œqÆé¸âŠ+šTŸ€€€¯&”´É@)tïÞýñߟ·ä€ýGº]<˜S›3_yNqYG4»ƒwòB"ÇZA‚‚;œ‘0¥qIWˆ :9"çÔˆŽNuês-¹!—¾?5ÆrÛùý׫¬ùê‰~cšžËU1ý$|j.µ›?Fd~5GÊÈïåed­ùŒJê#­y?²ïЩwµe‹Ö~£ßÖƒÓôÌNq[¿«²víZ¬^³;uBELwÕªUØb‹-‰ f0‘jkk“5ns);fÙ(œ}öÙØo¿ýpè¡ãc\§®®ëׯC§Nóu/Ø2e2î¿ÿ~Üzëo’¼Ó¦Ï@}}ƒÅ–¼Å)ßÖ”’q©ßóÜ×m‡k‹U{ùîíqK×…É'“v1Ù°EÚ9êYÊ4·”­bú‘UŸm#kØØ6´é½ZM"»)¥’ë#RQ"S».ýˆôQDlѶäå4_ˆ¾±w¾B”ʤ#ò:ÒÛÖLן«ô™ókW _æ42ˆ*á%@јâtv è’7;Õ§v‹K¦-c@§õ×%täà=Pî¢OŸ>8ãŒ3°hÑ"Œ3Ûl³M“w£¡Ü©]·>o#mWR—æ Ü%}&sN/uæV"eo•v™ì°•÷€NeJ/K¬u~·²ìL<ŸîS:ÛæéÉn_†y~]3Wm£üT¦h#_j—x=«ô:–š˜…²¥ ƒ‚e§Ëy“»Áô3Ñ…e83‹Wùœš·ó³Ëï ã[•xêÙM(w¥Á¨i¦SÉNo€7åÎörÏYÒMrivº¬P´m“mˆ=ò`clýš9ûÒ'¾úBºÇƒÐ\C÷²›¶T"Óµfq=žmýÊ×’Øgoôoq œê§öbbË?Ð ˜œ,_m¡ð¸}t Z#=}DnÒ8Á¾1 ûª{¤—Q1¯òEíÊš%«4¡ZÌ–Ñ/®ñÑj‹èk£.¢ŽPÑgÀÔ/ý.–í0A_•I^X;4S¶ÏïÍÔùyâ¼Ñ>¯¢ÖÂ!_"ZéÆ7âV™VFúÔ«ø»Çàn] „ïÅUS>[“¾=§ß·“¶dÖÓ+Ð=vŠ ”{@@@@@Àf€ >CwQp»çÔ×Á­oÎÊ™¾4ã¤é1Ïc›•ggèD–‚³P}B™îA¹SšÜŒ­î»¬ÀfåÎÐ¥s× „Ó€v}^ çŽ©œNÓ-ûÒdLe)ðԥ͵ÇÔNÎoÌD-é»&—^¼vŒúr¯i{ÃÌ€.–Ò,¶ì\ÁaÊ…;8‹4¯´ëóµdW´êU_¹lß”hšø¬a2/3õrO¿HÉ7K[u¸Ìkàº÷¬u¡5ÑBo˜éÂ3ŒQét&«Áf²Î¸åE˜”{ñ·9.Uœ…~‚Dw—“lmIdš^´m“m0uT6 ›tD¹`š‹«+ÐÉBº]§˜®²O½b~—NâZ3¡¶µb¶ø §É™-‰&>ó0)sm¡ì/Ò€ [ß–¨³Ù½ó¸àc·IШ„ån͇ «Òœ-¡¶ÜKå-q4eYC¤ìû°ìâ €ôÂh9f³Ð%Ù„‹_{Œæyïú^g³ÔÑeL³íZéóWq ÍÎdòlö¥Ü]ƒ»´†îûBPîNqRltã¼f¡Ü=ô@¹l¨˜r/¹-Aæ¥O¢«\Ó1mÏâãåNi!–nê³6·+Rî’-OÊ],“ʆ‡hOÝ´ÕÊÝÚ.ÞË̇ÐÖôL!4Œp­4¦tyܰ"*š¤ÑiäÅé÷´xB›’t©ì¬Hv»×´»äxæfumùšD™{RÛÍ q^é•GºvéæP4tߤ†70&¿#:ƒR :¢¶ y ˜ûÚBôrWÉf0ZiÄ»ø¤M‘u;~ÒûK¥k:©6νåÎèwmÜ‘tÓa_uæåNg²®ä.Y˜¡³ihùÒ ß¬‹0“––ÌMr¼(÷R³o“Ú°‘(÷"Eãi×ã¡ÔìºqiÓL0ªÏtgƒ0§Òù *Pó’,¼hƒÖ©h@‡Ò •5Äç­h[#}à8ôýÐZ§µ4Ïå*åWL¢“›D-“Ò™ìiKÊç­ïSÈ=ä{]m(dê_*Ÿƒ×–®}@gü&€ü @äᙞ]÷N)÷ⱜbõ^^#¿Ù¸ÔNÃ.»Þ¤g;¸ˆa:^Ðʸ"œù¬[»(wF u1?[“vŠ“a©].Ê]ZаÁs@”{@@@@@Àf€0 l¨Œr_`­;‹“%fh[[zÆ–@c‘¼4:Ýõ ‹GÎw}KÓsF ôâš[ŽÈÅ߉ ²VI¾œœEÖ§yÒ¯)èNs1IÏ´%¶§g?[+¬×9|b¥O_2Ÿ1GX¢ úBy–›~ƒFÓ#óÊhNøøûøP»êèëP&÷ëVÙ´e:;“%ú]Ûó˜&=¶áÏèÓøÞt‰DIu$†#º¶Mך‰¾‚â¶èulÙ¡»¦Á]Œû€œ×*"³ØêDG«ô³3¥`xÖ—k;é#°þ²?Ùù&Ï &~@ŠÐÔlÙ‘W¡Ÿ­¹(wM7m¡APÌ]ÛŠešËÐuóõDG Î#ÝÇAßgÊ/Â\C·ÉÅߤ|'€¼¡”Ò_ÛRaT7îi˜±áU øÎ2éö‚¤³²Ó®‘Ç6«Îΰ=mѺHú.šœì¹Î_µ _Ú×…s¨²—;×Oe“ƒ¥u)mËB'7'Hlö|³Ê+‡±¾çp Rj{#QãM™Kƒd+ãå^ÌO&å&ãÎ6m!¨°U4Ù¿,·((NæžyÏ#ÝTJ)®ü(£ Ø~Äf#“st"ç7–Q$Ñ7îb*§±Ùuê=on?ã¶™Èæ^îlÿv‰2§žÛ„íUæ&*>”9Õ1½Ü…¥þÙ¹3ti3˜Ì—4gèÃÛî”È«¶j–:E-€5È;É¥•ðЇNQÍNô}Ÿ§î5pûÚ­H“ÃÔOóp[>ô»|ž½ÚæÈãz¹)•‡×ERù”­¸>˧Í|6Ã~× }@k³óT*(¡LÎÎò2)ËNã´WB“Cë4‡ÜEcDÇw`fT„sw.ÑïMy¨Ú®ÞKÌÓ%é˜txñy­Jìú¤ëìæ‚~Dò Kt|0ëA/M.CvïÒÙЋÙzºI¹—KsÊ\çŒRŠAnæ©„&—q—-Ÿ‡¨$»ô+@¤”ê­”  €­•RÕRÕ ”ú¶Rª§Rj(€›¬ðfóÐ\ˆLð+Ÿ8ª ׎ð,€Gtp€Ö•l%°!P­µþ%€_Új­r)ëõ€.€Èwù² ”ææé47øîn©·¨ù©ùü„~Öb¤óâ 2LŽ–Ò]úÚª“#é9hòŇNt¨œµe—] ÿüÅNêiÂGk­Œ¼T‡3½TD‡r¥ŠÅkæÛzR‘qu :†> 8ÁÌr}¨†î.gƾfõOK´Zâô¿f}$ÙUÆx|]T ét­Ö®4ûØ^ž¹D ÒÙ’¾Ã–dW*?]Òd¶œ-´‹/UkC_ºŽ€ˆA¡ëùÛ]Ž<_hlu\%Í)è+¤eäuHùÂZ[•‘*±Áý¼ŒÑÌ:õ'ÐHÊ1Øît1ÝÅìô¦Ö“RèçiJöR§;Å9‚«ÐÝÝÄÏÖ *³OÕˆo€Hÿ ~™urÊÝg§8Oø°—{@@@@@Àf€0 l¨(8 °ÞßE7C± ªrÜíò%oòL rCG²Ë³ô;`Ú•äò23uI>9)PÝ…)uX.åžgˆì\'ûÔŒÑÌÜ–-ýŠ }ó;›¢(¤SNL)þŽj °‘±åçÐ= ù@ótJ¨J49ï#¡Ãmš•H—ŒW÷„’U¦ýa§“MÏxJً붺[òˆÔº½ZYÓ¤a>4»Ã<-OÖç]!è+ð€,Dæ;ÊúÅç”{œE%Ô0M/ "×O+œÞíf\{Š˜ÐÉ‘ñÙV±þñr×1X@—¨ž\“„~§ñÌ9å™ro$m4²0[ä*ÑäâNstÉ Fz›ô½°^f§8ò%€8hIw´Qa†° è›*£Ü+Œ‡Ná¢ø>Æ©,雞å©79Ý]ì‡eNmI”yN ò3û("Kù¥ÆdâÍCq[,ŸÝVΠi+D¨| F³3f•x¯C ^êà±›)UÈø1•å.-é²Ç;¯³äå.Ë&7m7-ë¤_M:Ùƒò—Hzeœ ÞÅöJ²d]'~ àÅs:ܰ­Ænȧ’˜èdR&÷Lçr,õ+[{Qî´í‘A¿«¤.t×9Nù3Ê] Ï9)M¼ç /y Vx¡§Üs9rMÇ V Ù ¹iÜqMé÷u¤ñŒr×ånä+‚z¹K^Œ]똗»ƒrO(mM–<uÑ.ÊØ?’v ³@›ƒ„€0CØ ô€€€€€€Í•Qî†Oe „¯×1QöòrŽeª”i‹Ë¢o²{˜“ê˜Ñ7l%å+j!rþ7¡¼^ê¼-Ô ÖîAí¬oÑÃ3‡Z’ h‘ÞAL(LÒ:«äŽûm×g1ÔìéÙà,Î*:mñ>d_Tªl™iåVÇeוÎí¤‹pìÜAöþg«@*ý¹ jÞV¥Ó¥|p—|z¤`^ÑV™-B±s¤“| Šé°er}R9Bº$©H9JN×”f7èä"=œß˽ð¬ˆ4ýZ%§¬úšÚ]y{–Ó¥Å25Xcè†7šÄdE(wtF Ââñ9 Îb+ËËÝ3Oez“‚³Px,˜IÐ.%ûÚ¹f¤…|™b,2–ùÁU(G éh†½¨¯¹ #Ÿœè4ö27æUG¢¢q¨…Ç2-R ümÂxÓÅyþI’«;gúB‘ê4¸Š£)Ìí r¾ÌvI7F2²3Ö8… ïWÒvuSõ7òW´‡Ó‚™Nî)ŸËÐðIéO¢Ö -[æ8o9GÊ8áÒ¹§r¬Óòcš¥©#ßÐ IDATA[cà5×zé`—Èš –âú²Ç€®]»³ùg‘N×wÀÖv•Ð)eË”aä³É6xÞKrØ °Q)wפÚõ¢,½ì”û²ÄŽiýT&qÇgÏŒffØ:c7ÿ›êÈrJ³+åNd©^¤n±Y¾Ô®2åLŠI—a^ÅCÊÜK=}e3“˜Ï“Š3s:+W*¹çOa6eJ)M¥IlÎtr VˆíÑ0^½“nd‡ÕLºqâ‹¢~¦ž¶$ïl¾±`–4†Rææùb{ÜSšœ¦š.[JIå”Òœ¾gžñFý ˆ3ehú#S†Y>ûÒ‡Íö5¡àÓ}ÙͧPL6s‰ cÉ5NFÈSMõYTF)Ÿª]ƒ­Ù2eH6³R[šñbšK«bomi³ÍW{×}e·ÌóKåû¤ƒœWs‰CüìŒ>ÔiIßeK艎2¯=i@^h>³§ýtò[ókšÚ£Ÿ­Q™|4º¦ÁM¶#›¼†®ÓµvÏY»TºSœ¶ëHkàŒæ7áJg5Ò€#_3 Pî›*§Ü}fèe¾êË/8Ê*Ûtlú¥òYe£îìÅ­’º"o·Æ¼–çÓ¢l§Ü¹G¯Ÿl!Íz¹Mj¯·«t™¯¤NyQ©üršôª,éTjËÅÉm0ªËZ“ _š?\õÒ$ÉÒì™ñIœ~W$½xí+(¶¤Å7%JíFšïåN)wöäâ.ó è&1€ØB DÈ:â%ú ="3t…”~§2`ÎÐI{åžÞ“*§5¯<½ÜÍ]Ü£>ëcJWxÍеåX YÑÍh ÊúT¹n[i†^ÎãÌdT6 ›'A¤'}ÒäYýòleûÏN!gŠ—òHÇÊ¥Ì]ùú©.¡Ü¡!Ñž¾¬P*“B`¼PÐtz7…øeªñ¸V$ÝË…Û$d)!íU2Ó´²÷‹o‰¾™*ÕQ¶aãþ”îõf¢-…XažùJ^H¨—¼Ócž€y³;*às¯ÇH7Ž£ Óc>ó|°È±Nm1/wmœzaÖŒrO}Q✆’¼Ü*Ћ”·6(s6@ 3 E\ÆNq’-sàMòID‡¾—\êX3 P°`ƒ¶æbdöSá>LˆDõi²–•ÁòYeƒ5dK>„ú¢ùx@*k&KÁYµM^¹Ì8ç,:‘Å€.T&Á ¶Š-E1°e-¢/2«&×(l©¡ —¹ÞÒ5JJí’taÒÔáAHh¦´.‘é‚,踂zŠñº˜}%,_°†L»R}–.­ xæsÄ`)Û–lÀ{>ßO½bËеnÁ®2m‰²¶§É2µeÚ5wl´Öä£÷ª‚å- Gn¯Èàß‹kÂùõݢ̟¨9òÙÛ®¡Ç©>bÅ¿ ú äl ybkÝ\O§ 3ãž[dæ¥nRöžô?{ðÑ¢`‹}¦Wîæ3¥Ž5a†° ²z@@@@@ÀWª#ÐòÂÁ¦QÔX»?¶î½õלëÊWÙ€Þ`½v_VÁé-x†³¸åLõùWv/wN™»PÉoJ³k£L_¹H[çé{BwQ™| Âés»¾i‹ÓìiËbMÛE³€v( hõ¶ª-ZÕ´j` W¾@¹l`Üðäuø÷Û”Ì÷³'~ŠÇßýwÉ|³gÏn»xñâ–4- èÃzn‡^[ö.™oÎÒ°tõÒ’ùN8á„®½öÚíiÚ>Õ×ÐÆ±™^ê®*ÚÀŤï•[Îè8äD_qïf–y£Y«Ô³Ýw§8ZM'å³% cw6¹¿e­4qÃ5Æ ¤3×]úÃåÓÛŒpF@ð)_è%)¶;uaö-OêG™É>ĸ/¼œÜ7Py&|z’îüÅirºtäØ)N(ÏœѸãÌËÝ£ÃèRÛN é†]dˆíà¦I Mtˆ÷;Àw‡3wŠ‹ ötLž;®xè‚7¸ŠuzKÄ*9ÆvmƒÑHà*JCÞQNº=5)“<Y:²Ëô_¸oÚ=8pØÁزmG@íçµxøÍqÜ.'¢Cë´iÙ6É;ó“wñø{“Юe;1|:·ïÂëV°;gùGø÷ŒÇУk-‡ŒX]SSÓ8eÊ”­-ZÔéÕW_Ugu–7nÜ‚Ã;ìÓÊfèqsþ)òç›GÒQ%ÿ´SǯÎÚã/91®?ß|ìO'ÁtLd­Y>-ýqSB:›¯[N}üñ Ó_ŽvùÔ‹Ú&åeþè옣Îäþ¤ûRÃ.á/ö±ã<ºÎ¿ï¹¬D¿ð™hñåÛÞeüUR^ë\â/&ç8ÞöK–/<[¤tß¿ØñçgC烲ä£2Ïçz~–’}ŸìVoÂóT—™žù+àÙ÷ŸÆ}¯Þ“¤ß?ã><õÞ€û¦Ý‹—?|0yÖ³øÆ-ûbͺ5˜>wv¹~×~ ¯ÎŠƒoÝ«×Öaþ§óZ8ðô3fÔd2¼ÜšÇŽ:?þ×E8}ìÙ€¿L½—xy&ß O^‡óöý!ÎÝ燀£î<¿{ñ6\vÐU,ß•ýçíûCôÞýz÷[’Û²qñí·ß¾íwÞ9µgÏžËGŽ9ïæ›ožQÌ¿qör÷4%¥k*¸U6iòrõ%[ àQhº]'&Ö2ÁU(eNóQ™ÚeyŒØìIF—-BƒQÃNÊÝÞ.ÖGÌ ^á¤Ü®‘Rö”CvÚ*.ú^[¹˜mGÚŒUYÉ9bì»âý'y¼½S/`Ê *~Ž]Îä¶Ö+],'·è¹ìnH˜ULºÅQáC€ ®,—žRür—û;¡ì©-£LÊ]Ú‹<ÒF>ªOƒ«PjZ“%­¸L¯cåž\ãqª¯bŽÜsv™ÑÿÄË=ŠÓzæ)ó4_DÉdãs…bkã:ö‘éoòÌÜÐÃc‡ì¥«—`æ'ªóWÌÃ>C÷ËèÌZü®:äšä÷˜A{bÚǯfò½ÿéLüþ¥ßaÝËŸC) \ݸºsŸ>}–HuÙdtÆ-@Ö­³ù Ç\ y‚¾ë… ‘uzL’m:ÖtÐë‡TñÒ7Ÿ¢I»ÈOhCE—HwÛÒé‚!•]:æ•þHÖ5u€0¾ö i…ÔYkµ²=\ú‰‘ï Mälº7¤Ê”êE³_ØkÜ”¶d.)Ëe캤ÍÁµ¸žIuhºY&ûôÖ¸é=©I18 ©Œ9 '^´N?_Õ<èL,铱N^,óQØËg“©­(NïW4Æ Îâ38Óà,Z{êCNOn)-¿°ÚÒ•ŠpÌÈãpÏ«A¤"3ê8TEU™â¶j× .ývî7 ðá²±U»N™|ÛwÁ%߸ իпW¿w>~ÄÅcQé8ŽÙռܚ ßÞåxümÚ=¸oÚ_pÜ.'Xó1âHÜùâíøhÙ‡x~öd<òæC8|ø·2ù¾³Ëñ¸á©ŸaÖüYÐZã¹çžëtß}÷õ€áÇ/˜6mZßW_}u‹åË—·šÃËÝc†îËxHéŒ ÞŽ]3l›¾6u$ý åNdKùßö£‰‡n‹mS;ðMfØ Û´­Ó²ùóȱ k÷œÆ3׊-Rj¸ëŒÛæh­1¤ÛÐäø®CЭ¦´ÎÛ÷¬­ÿGÝy8Ú´hƒ«½{ÞÀn_C·šîÐÎÜë\´¨j‰Û»¿¹ÿæÁ:uh{î¹ç¾çŸþ»_|q»N8áÐ &¼þ“Ÿüä¥Ë|°ѽ{÷Çok·ü€q5î›;ß·ÊÚp‘f¦Ô¡ÏdÂ}åÈ­•cútw7•ÐZ9(äˆ~#Ño$éëUúÎCuU„ÆÂÎaùôT¿žÈë£j’žR/L_qý’¯>¢:©œS qA'Vis*JÒ‹¿™<1rÄn¬TÒ—ÔVqX-‚ö·&vY:`p’t¹DÍÇ­ÏŽpâ1·Ewz½@Nç;ÅI¶"«ÌwËØNs‰-¥ }JÏ™ÑvT'"å¨L™v»t‹¶…ëó>–ÚeìƒæÜÞΖîx~xØrÆ&®å‘'È~]P9úK‘s¬HÑtˆÈ9¢¶ªãô¹¡´BTÐt”èD$ªtzŽ[ýqÉ¡J}"W‘HP­‰~Žèç"TÇ8Õ©ŠªâˆåKÚBåÆÔVžþW‰­(.Ò÷à;Å‘7 ¨Ñž®bòÛÐýŸSÖt¶»œ6eÅò™úQg õbËw¦Z&­~ý{õ{‡Rî6/÷€€€€€€&B4¾)ä2ñ¿"ZT½|çãG¼âÊô€€€€€€&B¯ê_¤ \V¶ôŒwo.~kZ¬ÿäˆ[yÜ•¯¢]Ç€® º7&EYéw »ŽKË·­›Ë4âz6 JA—ſĮ=ýlë³Xã´^™æt ½Ø/éÚ:Ìz Ÿ­e—Ÿå.õ‘è'`ÒçTɵbiK7ùixÁøÔ.Mæ~Ãöà,Ú Ü­¦Œ±AÈFÄY{”>U3|UD6Zò˜ÏŠN¬°™ç ‰ãÄøž%¡^åkóÕ)¿p@A>¯¬¹Žxè‘¥ÿòéö:²µyá2 7+õx7óÑÏÖh€§d·šDLejÆCXp–4K~—Â1´ûT-GäHølúc±ì¥ÆS[F:ûöVzpѾ0òh[~þ¬TÒ@Ó”y}ûd^° ²5ô€”»/¸Ç;÷š¶mâ¦Ì¹­"ÙiÒäæFC‰Lc ôy¢¯4‹AN=æsôÓŒª´f–o©æ¸DºƒrGdPë±nçZU$œ ƒŸäí¢¶ u8:Í¢ãK¹‹„d32•Þð¡ÜÅéO_úÝL‰L)wöóx·{`g6–Ñi:=9r#42j;Í“û ý©L©å*ÜÈ:ÖÉÃ#¿1L‘~‡(yˆúŸÅi'Ëè8]d»ÙÁ±S“® nPöR@ós8æÙNy=w„<sV(ŸL–²\3ô€€€€€€Ía@Ø °QvŠ£06KÉô7c˜”é]MdÉy‘è8c;ìÚê¢Í|¢¸Q/ê”Ét}Æ?§ÔY¾/‘…vIuÌ´EÙum¡Èì3Oê,*%yŒ$É åo‚¤Ò‚˜]’î©î«â¾ªm²WMæmwn§P¼–tÈ1ó2hÊŒˆ>2#é^5îûäY¡Óû>Ö\‰ÙvzS:;ž÷’/Pæ:ÝõÍÔwŠÓ*‘£XeöiOô™]Þö´]ä7Ú%=3;È‘U(-=) ÊœÝêÌ–]}cÃg¨­ü;ô ÜXɼ8Äk‘Žêdô…2+lŸëb /rºÊ-WЦ4½âËAˆ~¡µæŸZy׆tŒJO>ÛâTzªkrnXµ´q^+èp_U³cU‰tÛ1Ÿ|®QMÈâÕ^ ‰Í Ÿ‹Ñ·¿H–2UJÚ³Êâ€NŽél¾DÖŠul·¥µ JЧATbœ…¦Ûê_n» èÈBzÌP…ÂÌc\ç{S|©”{@@@@@Àf€Ê6–ñ¤#´ñ/Õwå·é‹´”ƒ27–êâ´UB6ë錄 Ûö|rSY,_ª‹‘ÎÛRä›”£þšÈ\‡Óì’7µñÞkq[ÏÓ`B_(á„5'åž9@áÕûÆoʾôòr§›å·[*ÚÔBù*Ófš_x/Elžâ‘+ð©HO¥±£R™Ú2gÅô¥ÞØ|yŽÊÄ›m§”}þù­ˆl/_œU“c,è 8ÍN=ÖcçÅ’ÞëÙ뵘Ã~Ýš1çù&Í«7Â=áX¶£ÃR%ûîgSy<ô7sö°°¨ë­oO÷yŒzÂTöп`îEª{ÅvM¾©Ìº4±Tk¡M¨ ×2(wjMºÝÍB]ŸÇYóXjÓdx)®~gÉ> Ìf9>'ÌÙ®f¼±¤å9×Í[!·îóìó™Ê¦Ü}dÉn)}›ìhW¹ÏfLG:uôV‡1Gh |.=Ÿ{B’›Ÿq&Pî›6ø ßÐ$ÊYÒoηÀ朡»ôYFÒ¥AELÏê¤¼Ž¶¦sÙ¤~t6ÙQ€í oóš±¥2û#3}Z:ûÔ6î½äa…ÌØk¹þÌ–'™IñÌ3†¥DºËYJ°Ô%9h-Ôa«t¶/3¬©åßÇäZ7<éLš|í¡û=kì¶òúiþ”~W.sb‹´„yò íÍzmçæ)wZz5A|Ø4#<Êð¤Ü76ª—»3«ë åãóP²LšOzŽyÔ+³´ëq-m¨óúE?[¿èò›ŠÌçÑaŽÁ)ã¯ÓÝ eï5ÙcD’„= Ç×^Ã[³ß_f\zR¾¦éÅZëCŽIçž”g.é”é‰â/÷¦ è-´ëܹsu‹†Të2&ùtt."—ƒ^Sׄj”‹GAMÇŽx”':ç_.RYzxja@ΞbŸAÁsà°ÜØO?ý V®\é§°£)ú@Ï?ÿü~ƒ>[€VÕeÌÐÁß| ^ºëî½³ ÕhNÌüà èß­Zµ*K¯®®K—.ÃÖ[o½jàƒf ÜËÊΰ>—CµVбrRËEö‡RÞ1 š²l£Ù3ñÐúݤõÓxèHâ–gèr—¼[ù¤<Ćs)ÂԱ؀Ûîü~xî÷Ñ»w/Ñ#Øvª?üð#üû?ÿÁ%_lÏè5ùöt1em)Ò†æ¾ê>;ÏW>É,Ÿ<-¹*S®Ô¬‹gNùI’nêÊ]ѭÄØêGöäí.nægT™ó]=± œçG¹PÂ/1~»Ù.*%g˜y’^ÜN¢˜RñYPÊ֖ܵOˆŒúæˆN•œ%&ÔxæÁ‘æË VTœRèÚùà±·‹Ö™~jRîôyÌöˆ'¶ÒEÃB¿2Ù¾Th_Läú&¤ëÅEDZm¹–KÜ7ùeQwà vŠÛã¿ÅûË>û"«à@©èfqìÿ§4L;åGU ¨ü;ô€/%>š;ÿ烘óñ<ì4|8Û{ù”^€R  À·; }ûöü袋°Ï^{ãñ'ŸÄ 1fôèDoýúõ¸õÖ[1t›mpðAaáÂ…¸ÿ0kÖ, 2 8øàƒ±í¶ÛâŽ;î@×®]1uêT444ছn»ヒ?þñ¨¯¯Ç Aƒ0~üxôï?wÞù; :cÆì X¾|9®½öüüç7lÜN Ø„QÑ€>õaòÊ•X½~=žœ9·u(zmQƒ_M~ /~ø1Föí…Fí„Þ·¬­oÀ¦NÔÙaâŽ_Pð´ŒýibF3K¬”ÁÒÆD–"‘²§Þž&Í®‰ì¨¿U¦;.[ˆÌ™Pfñèúúz\}ý 8ùøïà¢óÏãÿy?ýt’kìžcpä‡^zùe<øð¿pîÙgPXµªïð®¹új´mÛo¾õÚÚUøù 7bôèÑ8à€ Üýç?cäÈ‘8çœs0mÚ4üâ¿Àþûï­5k×⥗^Â.¸]»tÁÊ•+qã7âÒK/Å Aƒðæ›oâ®»îÂUW]…]wÝûÛß’ýÙgŸÁöÛoªªªÂU޵ Úvæzj÷€öë{3—Ïlž•¦K”=¥J#®k¯3 Ôb–Æë¬HùÜK_Xc‘\˜Áýb½¿ÐO|árqY’öèé{¤§{¼Ý'ìRK71YU‰K*²_:/õ¤ÈÆCŒ”Ï({AßÁúˆ\SÄ.ù4”ýR(ÓGÂr‰ùŒD§Gìä ïï*ék /ÊÝõp)ãÒ5NˆŠ(÷ùË?ÃE?Ž5õ ¸~üèÔ®-ÎüÇÃx÷“Ÿæý1¤kì÷›? ÇÐZcÜ­wbβÏpù7öÅã3?Àœ@·!˜;o`]w…R ûï»/ª«Ów»¶mÛâ婯ຯ½ñ^ã F‹ï¿ß8´k×.YWüì³øÉÕ?ÅøC¿‰8@~¶>{ölŒ;J)Œ5 :ubõØm÷ÝѵkW(¥ðöÛo£¦¦ ,ÀäÉ“±bÅ ,\¸«V­ÂvÛm‡ºº:ÌŸ?qãÙgŸÅ¸qûmèn øR¡bʽ_§-qÑ~cµëÖáo3ÞÂs眊­[a—þ}°M÷®xáùèܾ-f/]†ÉßÿZVUáúCÄß_{«â”õëë±EMM2 ·lÙmÛ´IŽßzÛmèÓ«7vÝeÚ´mƒç_x hÙ*ï†Ò³GfOk††FÛ×××#Š"ö¢Ðºuk¦Gí¬[·-[¶DCCC’6qâDy‡¤ýöÛO?Ÿ™wéÒ½{÷®´6+T}ç>½*á“U«QE¸yòKIž­Z¢nýzh­1¤k´¨ª‚Щ};tïÐ>aj(+bÒߔՉ CÄòQuÍÓ‹¿32m‹§\.Í]îÆ0îòMr5¥ì‹´gf)‚Å^ÎëÙ£,Z„•«Va‹šÌ7µuu4êëðö;ïâß?UÕ-ðêôéOrZ3N[m…SN=×^{-êë0zôhtèÐ=zôÀìÙ³1dÈ|úé§X¸paª«¹8`ÀÖX¼x1F“øµÆŽÝ ?úÑ1þ<ì;n?¢îòrWéog Þ—+³Ó©ü˜§­LÝmW‚ëêáu±é¸ô˜*ü(÷&ÐçžÍõV¢Ébu*^ö¢âŸ?p}ÊA¸é–e˜2e'Àðð0ö[´ÿöïÿiÓ§áÞ{WV«l¯òaì²óÎxß{ß‹}øÃÁ±Ç‹SN9gŸ}6¦OŸŽÇ{ óæÍCQ„»‡=÷ÜÇw<ÞúÖÄG,AQ¸þúëðÑþ+`òäÉ8à€Å¸úê«ðÎwý³q‡¡;v`ß0Æçè|"õZbj‘4ФÞ$§³ÂéY™ÞêL„{h)Ôr Ó¥jÁåžšîŠl¡XýùÊXÿy,ÞØÄ×ï{e3¹(°u‚ôÀª#· žâÅ’³%Ù2FNÙrºuU¶îfn\«ö²öЭ‰ÈJ Üæ€Jµ·y‘D½z™n™]b»áa¼é˜gà5ßø^äÓ°ûô©¸ôŽåxîþ‹°ÿ¬8záxÍ׿‹S;_¹ôJLÞ¶7#oN IDAT&ã‡S^ôB<ëØcpó²[ñ’¾«x»ì¼ àoÿ'ܸô&lÁi§î‹Ûï¸'N¼õ-oÁäÉ“«|öÚsOœzê©€©S§âï?î^±Þ{xàøøÇ?Ž{î¹Ó§OÇ™gž‰iÓ¦µË?åì¸ãŽ¢N§Ÿ~:Ž?þxÜyg»¼“O>Y\Ÿ>}Ž>æ o¶vÉÈÈÈøsÅ@úþsgcñTÙ)ðäð´Ýçá×ËnÃåwÝfÏÄüim-÷ïýÍ_á'7Ü„‹nýþñøgâÆ•û`çí·kRÎLC–+lCFÍÜB+aí¿7f ß±vJ¸‘—§‹®ð™®»êá$Í®¦uœÇÔ)S°äðÃàá0yÇzvÎá€ý÷«ò[´hQ'3ì½p/‘Ï“&a‡Iµì¤I“°hß}W]}5}äl³í¶8çœs°×Â…˜5{6<€¹sçPê:Î;·±?¾fÍÜpà ¸øâ‹Û+vZò°Oç±Ú Y1Õ³kke•°ŒVªo<Ù.ˆò¶ O_ø0ç·¯_ÊÝ*¿;ú¢ #ϼ:è§Ž©›1Té)w¯.ÔöÓë­£Â7WßUz#Ì+t~sô"–eZêZ˜ßHZH›õõôJ3}®‘RY1§Pî]òîš&²ZOM§cq èûΙšnž»ÿ"Þ v+ºV›ý47ËXá”<´mU£‡=Á6Ÿ—¯¯¶¿õv¸„Ô´üv]0\¢Þ¡ñº©RÉÔÉ\ãwGœË/¬Ký~u^CjXEŸ[ƒp+¯ëÂ(Ô"Žý–[tº0‰p¼¨ƒŠ7'*Ýt=ã0ÐÏ€~€ï}ÿûß?aöc÷ì5gb\eB 6ôbc³µ ëû¨BÆŸfÍš…¿øÅç3þ|œvÚéãP£ŒŒŒŒ­ý èkÜpå•W>þhk5F»x[ë: gl1ܺt)¶Ó J/pµ‡5çĶŒ™¾0„ãTS)¼zŒ$‹¤lǯ_Ÿ'„À€”{‰îƒ2kO6¨i¶ DJ5è×Pz׈€õûœW r¾ ;¹7¤ºqùnËGu_1ç0V8ät¦‘ÎaÀvÎ"ÒÕ?î¾ãö*<ÊþÐQÊ¥SþÐõ`Ý ‹|£+‰ð„ ™:e×*%Þ†¤:»ŸrrãU­J Z³wÇ¢ªÄéyÊ› ªíªk¹‹¼aA® §‡: &?wœ¼&í0±#Bˆ-º?׿«.ßiì]à˜<°úáõظ©¥|e‡óò¨‹Su–MIåy®Þ_¿Ní¡[' 8º@Ý卑ɢï-úŸûª܇I*žóý)w-¾~ú0ÊNXxÀûñ$£5ñ¹½9_¦ÜMí}—ñIu£ÌCyõ_­¡îé²-÷ŒŒŒÍŽ»MÅž»ï¸ÒOgïýZéìd±+öµK¯XûX+<#c‹ã õ¶–‘‘‘±9°ú¡UX~×­Ákk×®Á­·d+•[’Vèιí¼÷ÍJï]E[hî¡×0éhƒZŽÒÔJ¦ »0-Ôs=ÃÚ¢–Õºf],mS;Ú Ža•‚ö•0;w‘Û”Ž©qfƒ¹ W“Î¥¯å,’ cù~#ªœ t´o¬„ ®9a1×8s‘@…y“`ÔÏÔ7âÇ)o·¹ª‹ €‰&×γ+•b¹Àï‹ ìiêoäEé“EáR,ªóÚ«~›oº÷ƳȲï¾ëOøŸ¯|þØ×#¾Ém t€¨ïÈëݹä(¦ßu¾¼ºj8TárIVÔKÑô¡R ¢Ö9ìÐ6ÖÁØÓÛnµ¼µÊ÷"ÞbµÕæ(}AñBÞÈŒã ÚŠÐÔ¶ð§nl­ ÊÝË{N¡Öc”»¹QØÃQ:$–)œsç8çnrÎ=âœÛAèÜι[Üíœû£snaz2222ú; ì lY<‘egd¤b€_øwW¡9™ø&€/ø¿>à+žŒŒŒŒ>ñЃ÷ã{çžk¯þ=fÍÞ ;ï2û/~*Ž:öùøÞ¹ŸÇ† ëqËM×`å½Ëñ™/ü÷­\޳?óA<üð˜¿ûÞxÞ OÇþ‹Ã÷¿ý8/~Ùk›6mÄ?½ñ%øðÇά]ûÎzßkqÏŠ;pèaGã%/{¦MŸ!êrç·àœ¯|ïýàÙ€Ç×<Šw¿ãUøÏýpÓWá ÿy6¬_‹½ö^Œ¾ä5Øs¯ý·\cedô€ Þû¯é•98ç°Àg¼÷£Î¹Ïx—sn7ïýr ©Ý‚ Ü!éMIg[ñäP…òb*^Ëíu„©mMsÛa'½çeß·‹%ÛVèPFíò=…Ã4{©µÔi´_âšF³xRMÿ×pІŒ—艦é¥Â×¥:ÜbÜ»G€Aé{z{„5˜ðsq¥zJ¤v-|WÏÕ±Ol©ÚV[ê~ð/bòŽSðéÏÿwÜ~3ÞóöWa¯…X¿n~û›á½<»Íß›6mÄ¿žõ8팷ሧŸ€»—߆}øøôç†%G>xÏø‹—¾EQà÷¿;³ç.À¤§Â¸üÒ_ãù*öÞç |ã>‰Ï|òÝxßY_õÁš5TMX–%}d5¼Ö<ºýÐßã]ïýí{n¼þr|á?ÏÂGþí\xïV›¨¿#I€ó¶Fø[Õ¹°1˜N¹mí÷ðVCSá‚Úvï°È“N¦©·Søö¤Ñ–p##7ÞÖr÷Ü!áx¾/݉ûaùü$åÎßoeÒkxûZß_»“',Ä’Ìp‡÷~xïï°ÀüNÝÖyÇÊöߦÌHedd$àÊË‹N|)†††°×°pŸƒÄõCžzv›ßÞÝ»ãö›°nÝãØ°~-.ºð<üéÖPn[v=fÍž9s÷ÀÕW^ øåù߯ 'žRå³`Ï}±ïþ‡bhÂ<çäWà†ë.G«¥ ™Ú¸áú˱ýö“±ò޻𛠀U«îÁªûWà¡ï‡VÈȈãñÑG±fô¬}£~S’LL)n"ÚFdD*ß–…s•òDV—ÏÈÈ膲,±iãl³ívUÜöÛK‚pöœùUxýºµØf›m±iSÝ¡ü‚Ӱ䶉Nz.üÅw±ë®s°ú¡U8ø©õŽà”)Ó«ðŽ;Mƒ÷£#²ctEO{õ#t}ÃúNÙ«¸—½ò p†ÇÀŒŒñÄ›P1¡Î¥½s±ý‹œsCÞû–sn2€yVŽ]÷Ã`Cq¡¹/ke’_qÍtNÓ¹æéš¦©5ÍÎñ!j¼…Ms™V¸)ïx]/–ÚèœÆU×Òó¢òKΗ¶2<*C%09"IÙÓç•:¦¥¥Îœš¢¾‚e:ؤ¢–‰iÒk™&& ú©þÀˆn¹Aâ+2ºòcílÚ¸³3à\§r$®¹ê÷xæÑ'cýúÇqã WâÐÃU[smì¶`o<öèÃ8ðà§cÆÌ¹:Kvøqøê>Šs¿þ‹áPTÂ7ÝxZ££š€ëÿx9¦ï<·Ù®ÚJò˜=wÜÿ ŒŒŽ`xÂ0®ºâ·ÕÝ/Øk¬ºžqÔÉØ~‡ÉU¼àýІËQ§ÂõkíHëÜ š]Ë€~U!WË·ó­ÃÒe*kZ3½ ¡åîêSJ¤aÖrgíw_¸ªZî…|öÂÆ¼±k&µÜëíLE!»'(û$Ê]e&N%P^ ëZŒJïWË}bQOt 7Á´Iψ èרà©.C[î7wxaB4„æz ~¬ÙÚ7ZWSa¶Wí;S¸ó;$ïUQ—@XËÄê˜d)Î ûúžGâ€îÂñ{ ¿i){t ÃÑÉLflî›7& •‰}X)÷bÏMìªèž­—øD (Þ3Ú¶}­ƒçýÅiøÂž…‹óc<ôàýØc}1T ©™;£©SvÁ©§¿ï}Ç«pøÇcÒ¤pýu—áŸÞõILº Š¡!sü‹ðƒïœ3Î|·xvÙuÞõÖW`Ÿ}ÆÕW^ŒWÿÍ;©Fíád›‰ÛbñGà¬÷¼»Î˜‹Ç[]Õw÷‹pÒóNÅ[Þð,9ò9˜0<Œk®¼ŸøôQûïÂ^ ¶¼¿,a¹ŸÎCLv¾ž°ñvN”ŽÃÌ"Ðæ«§ Aéë£j¥wbO™ý™ò}•®Ú ¢ç¤u †Ä€nLTH tõ$ ôjÛGà}ç8ô°cª<ààCÂ>ûŒ¡¡ ¸óö›ñªÓÿ±¢ùwÛm!^óú÷TißúÎOâæ›®ÆèÈöYt0n¿}iuíU¯þ'û¬ãöÛ–bxâ68ùù§m–6ÉÈLp€I>1WñÞŸíœû=€œå½¦—¼Zå† Vè^®RµÌSVŦ¼ Sîqš<4»ë=/M`vXµAËWk¶;™—l’1 ÖH¥LXÏm¾_*7²¬…‘&–Ž“¨6AƬ¹u[ƒî$4âx‡.TÂøƒm/»ùZÜqû͘:ug|ÿÛ_ÀÐÐìàÓàì:F«ëZì2cv™1GÔrã†õ¸áºÿÅyßý"ÞþîÏ¡)SvÆ”)mS³3fÌ«êÛn? »ï±¯ Mí{HõkŸE‹ô³çì‰Ùsö¤›ûfT%Å[èxeê*ê‚WØß¡ps½8&Ïô»s€Œ ò…}®c]~a„éCØÞä먭çÀ2‚°»}õB„m_Ì^Qt¾–0Ú2…ï ã¹}ÐÈËñý䎧ÙT“VMé°R‡ö4I…ß|Ó5¸iéÕX°ç~8ãÌ÷`ÂÐp¼À@Û­]»×ýññš×¿óæïÝ¥)Ã/¶\)”ÄÛCQ”r÷¼W^§“T¼ìÍ]ï"ú]”!åK#^×¥à0É´ ú¼U:¸ÎÏk¯(_çêï¹.rßž»–ѹ¥èõq4ÏëÉU]†9Ít@Oˆ¯ªáF¹wO’‘‘‘1~˜:mW¼àEg œÏ´é3ðׯýçq¨QFÆÖݧv;Õé]=Cjh¹SØTŠ£™—\¡;±úey‘—“JqœW¯”»eL&¾gÊ›(óX:A“sš0åÍ‹ã}Oíâëb,¿,Eöæ21¼ .Â;éz^[™9úšé`kÿÍG¹[[š“±X,_~b+ÖfVºú–ÌŸî|˜¼“…WoM8#YÊ:Ü|A;”°B¸E}è‘ cß\÷Uµ$—å Ý\á«øšr/j:Ýɼ 㾤Á—ZùÍ5ÂéBᦖ{ÏÌZa¼zšíÔ‡µµïIÆ`EejÞIJå^(yvq+âùw„²·`¿‰Ýã;HÙÞÐÜk VÄ×´–îzä€î‚ñMšòr,c˳E5¦ÉM¿çÎó Þ+e®Z¾—Þ'¬åîë{ôèªÎRéØÁÁÅòGnBãÀ™F«¾îݨJÃÁ‡A 7dS*™4R[ø‘G7à‘G7ŒýâGóˆáÜœ9ð«ÁÚø»O­p\Ê«ÑÝ‹pX³]îU›º¢Ì+ vïHަ數6Òr÷tìÍ»Ššw^9gIÐr/H³½¡ånÍøÅIÖlg{5‰ œX^ú—ð¸]†ŒYXLzÂÆeK è)”{¶‘‘‘‘‘± è[¢Ü[Îa´ˆ“ÂRœ‡¢ kÙ–oi¶kúžÇ y¢Öý®(wÞ:h)ùP^-W×9fu.f0‡å-€ñB-Õ^¡=x½‡Þ²(w¶_›pŠÇ_âá{êdayM§òqÛP Ë[|W*çÜ-ßÌ©7>»oÊžaÑÿžÛ›¢Õ-ÖmæÔ£ôA™ 㸖¤ÿ`>IpŠú7Ò…Ë“ïE¸xo¼{öÑ«8µ®0É8‡ÎÚ©]FØ€ o?8©ƒ]ýn;4 Sîœ×âgùÔóŠN^¤YÞ×2…A™—®¦Ö _[š+K§ WQ_Eñe-ËwU<—ÎZöœ¯ÖR7å Ã2…¢Üe‹×ÿZÔzŒrï•ZïöÙ”0š)÷ŒŒŒŒŒŒ'ò€ž‘‘‘‘‘±` Ê}Ô#]¸¦ÆÛaI§×a+¾–‰Qîæ±5ÔNØLƒšô;ÓÜ®ëÙ"™&Ím„½Œï”Ó Ü™f·êâÃ4{“þ/)\ÏßZß¶5–Æ7éÙ ‚Wbªy“Ÿu†¼¦FëßÞ¤ß;è’ecu WR¡{ºA•Ä£ò ÕlRë½ÉhÛ[õw(¿$Aá ú>Lå5¯ÈJpºò¢øÞès΢օ6y¸he4&‘rZêä¡›è÷öÖ·‹a¿]¿ÓB³=L¹³Œ§pÉT¾A³s|£|>MDÔzá†Æ¨ý!çµManAÿKûëBK]œ`ªÁýä¨/=-ÊWËL”»® ݲÈW¦ÓiÚyÁ„õ¶XiBðûCÏÈÈÈÈÈÈø3AÐ322222¶ fX&Aó®¡åNÔDÌŠZ%Oט²O¦Ü'‡*.¨ñÞ–±µÉ9Ü©K ®’áxÔ8Å;NSSðM-÷°¼ÔX÷U=ÛÛ u¼Ø¾`mW¢©™†ó®¦¶Y‹µMõ±%&†èé5´Ük j©åŽ 4êòÎ9E¡2e_RXä.0 K]Õ¡ašª‡r6+e?žHÝ¥ÂÅ8ì„|ûy^)y¹HñL“kr´Ó×ôA¹³Œ Ù‹$Ã2Mkv®Š÷p;YX¾áÀ…¬ÃÉ’©ßà¾Qìu! Ƴ45}Rumʽ·"å®ey«3¼£„‚Æ)+_À¦Ü-ŸH)t{·kÒ³tOb£åRtW…¹q…W1´Õ¶Ð¾yl@O²ýÒÊ2Cñ-ÇÇÖêµ/÷Úë°½_É{%ÃyÒx¯ £)w».)µŸAº7„IA¯«cU?Vå„}ëØ4Eˆ'Ô%š—£XË"›E*:[”#dŒ^ä-‡Û"\¯²L—4 3ýîä=šô¿±Ÿ/ÛÈ™2Þ¨£¿kùòØš·(wÈÉEÕ®^Sëá¡^[fèâyãuìÙÒ¹ Ëp^>Ïù‰úzû á2ôÂê>Õ ôØi!Sî[WŠë2k³+gÏä ]ÓÁÍYœWéb+\±’5Vè¬ÉÙ²Ü\]N µ6{LË]h¼ ú=fËÝ÷(·"L-w60ÁT>i†{¸Šv.!Ý>Jž›gÝe(šr4½ipFÆK-÷Àj !`¸)oÌ_…Ñu¿žê"¨ùþWùÿ_Óç)ü €z&=Ëo8§¶kìw¯¯l±[+q{…^T¿5R#´ÙM?ëšîÎèœ8÷‡ÖÉOŸwêF•Pû£Ï‹ór2»ç«û1î癩µªÞÁ‹m4v 7ꜘ®“`³Sîe¢s–ê¡+þÁ¢£™Š'Eʾ)wOaóØ×Ë Sº–£0ì½n{ f-wok¹ š]Ö…÷Í} ª^f{£öÍ.)wo\ °f»|àRËÁx)/a ÜrŸ>¶‡Îéd™aô³}Ð=¦tLÉ7ÜÁ7eSëÊ»÷«)NåÍ+MyyÀ¤¶£u÷Yj¶+wWdÔ=ò$ÓKmv©¥ni¹K ru¸l èŽÒP:¦Ü©wL­“f:¼ƒ;dIÓr¯³rªÎFPÀÑÅÆ[dm×(ù”7WȘ[G‰ò i:ÈZîO"ä=#####c+À@”ûHlЧiPî†æ­¤€¥¼E¹3¢”{€fZŠ#ºiTí§whöQ£Ê’2¡¼Fˆ¡4£®vÒ‚ÔLeër´ÿÀõ*A¾ˆQÓmíø:/±WÎzÄß´5­kz±i1« ëðŠþßË ¥ák¼oîºÈtâU>UDaRî1Ç#¬`Ù)1ùà†Ñ”î2–¦os“2Ô.NÒ‹ŠÎÜþàvú..˜^Ê8qQ«#„3ˆµ‘ F›é9?¡Yn¿¯Ò¹‹6“@¹ m0¦Ô…©xY—è¶ÓìâÙ§øSçxWÕÙ9I¹³>€pÔâe{UÖÝ|®ôÒºØFãwÒ´­³9Jß©‹z'>H¼«à/5þétÐÐ’W¿Cyi™b+ã^é÷J‡ìœ%#####ãÉ‚< gdddddlÌzlêŰŒ¦Ü­b„åÎÿ·Œ H*ßÍN~¿ak¹3ý>¢â%åÞ9¶ælÊj6Bó§QulëÏ2£Â‡¹º¯Ý…š:,ᄆ*SŠBsUІˆPî ¢á"DRœŽ‹µhGX4½¦ÜÃ/žE¹KOa#n¸h86vá ¡âjkï[Ù*RÏä 5Û-_ùìÍ] UOIuñúùï_¾GΨ‹~לU놣\%¿ãÆ;éù=Ðé ‡èwI¹Kú›©uMÙšíf¼¤Ü¥oôðËÇ–+õs`ç.&å^ˆ‡TÇûÚIRákbŸ›´e8Lò|‚‰ûv ;ö»ÊJ¡ Þ˜”»‘—îBtºÎË¢Ù-Ã2:Ükš²?ôŒŒŒŒŒŒ'ò€ž‘‘‘‘‘±`³»O…'JOSî¬mhúzŠHÕr×ÚóÂR\§îJFRîõaéÍÕ>Ðåî$>*¬±Îy±?tiÝ­%hvÒrgúìFZzÚ¦¼-aPî@M_é­ ›>·Ò ˜ÐT:§Ò”s˜rÙð®ËPåÑ“%±–Ê-„Ø¢ÐoÖØoW¿}N×Ñ ÜUÍÍ./…E"Dœ™—µÅaGpV–U-!®Ò°a?ðžd¹ÃÑ‹iïUø’M–¦Ùrg¿å1ÊÝÊ· t,Ãñ±òu¸™—¦Éío’(o']¦š†eŒšˆßÌs«t¦ Åä[–â,#*úóè'/D¨üT *ߺqòcÌR\´z8¶ÖÐ è¦1}••¨ d:ŽYTk è5Âí=tWÅ Ó¯bB e‚a¯,ÍyK&œ¯ÜCgKoR·€«ðàÞž4mŽ]¥KÐÛ åé9¬uÑð–æêA¸Þ÷.Å%ï‡ë½¾æíÛY÷lé“tP8!¯˜C’zO›d|¤.Ö3öË{-’Wd¶ó å¡óÒƒpxß<ÅÒ›p´yT­¿ckÝ-ʼnúS^ÚzŠsé„E¶Q©ÒÕ¥«w'ø¼´Çy‘¸ØkæwÄS©2Å#õ’ùZkKÑ} èá÷m\ô.v¶—‘‘‘‘‘ñ$Âà+ôA(wNfi¿;© ɲ–f¼´_îz^¡ÛÎQjʪDó4»\yw(÷²Q>Ñ즖{}/m-w¢Ü)ûú3õ-ï«p½1áÔŠ·×:ñh€ÒL'æÕg]3^AcNë•6kU:ç¤aË!‹¶–qi‹j³rzåÞ-} Þ×?X³ÆwÕrçèÕò HÍW­âCÌCc…ÞýÆ,c2é”»ÅDXˆžï9F¹‡Á›MºV–Ö¶vEZÖŸ¤Ü•¸åg]ß»ÙBôCÔE-‘­¬5NDWØ b‹Rî‰Ð9KwUúرµFºN2Üû€.Ãe Üò±Ý ûÚ¡ŠÊצÆ9ìE<{néX·Àðg^z5 òÒÚÈÓÀéÅ *é{ë÷ê¡:’Ÿp¢®—Žà2½ ¿$<éiPÂKòÎ÷1 ó`ém‹jVï£;G5úB IDAT/KÈÚ76Ó;]èaî=™žÀ…ß=ØXò2l¶m¤aú?6ˆF¶"d¼«ÓÍ490eRt¶îËu¿/˹ÎËö¡Îßp}Q„¡({Ö×ý™~¦®ú§ÞÏ·½šÅd9 »`º”Ýô삵m\ÓwÍ;€”ÉA¦Ü322222ž$r÷mâPhPîÆÌ)²Bç4>t1,3nyÒ w5å D”â˜2‡Ôr·ü™ÛZî\^½Ú/álV€m¹«™vÈåiéåLY*°¼½Ê²•┦1u4äÅê×2,£}x•d–ΪMÑûªìÞWè,Cá-Oa1EVuvu@ÔÞâéc‹UÎËP"4¥m¦T*©ke’a;<€“÷’BßǶÄö¼Ò=ìø·« ò6îö‰þÌ{Õr×+ü´ûRlA(¬dL-wÔ†§ô]1,Êœai©²­¢Þƒñ%újò–ö½§|R:¾óŠ3Ñ“ºòî‡~­ðûͰckƒj¹‹Áƈ7höä¨õ–¯5Ã[^îçð`Õr“ºògn èzÐNÛƒ—åW÷= …½<'O°¼žX¹F¸Ï½{^r@×½}xgO#ö€œ2ˆë]jɇ«liá6ºj—ÔŒUÑ€lùǎѱb@ô¢©¥oz£Ñ¿Ã_z8¡-’f:uÝD -sv´bÉǴܓԦ–»Ö’·Ÿ}ÌRœñî¤j¹'$,-÷²ñÆ&rwNV…ivÎKsé.Á{½ŸÏuQU;z·…({C^¦é->Šn£¸J›)÷ŒŒŒŒŒŒ' ò€ž‘‘‘‘‘±`0Ê}é’CSË9d¦®HFð¯Â*_IŸ„édI¹KúéìQ#¼IQæ-JSQæNÒä#$/œ³ÐM²t6£Ó1}ÏGÍJºOI¹7HgúÅT<§©¯iÊ]ÒçœqŒ–ïNJš\Ï+C´­r¨’½Nù ‘êeí¡;¯ØM¦é)Þô9#ïEÒïœ,L¡6¨p¦Ù VìnZž‹á¼BñÏÛªŠ¨‹Ú#t–¼|wêSgŠ&çý1¾npÈ6&Ã0Bw§»16,“ê=É0MŒþ· Θ”¿¦Ü è"ž³Ôï[k—N}?Svîâêþ…ãÇ .“^„Bõ;ÕשÔ[R´ÄÅVŸ Zì´õ­Y=–†uœ¯TBVÖ¾y7Ê^©Ÿ™È+ôŒŒŒŒŒŒ­y@ÏÈÈÈÈÈØ 0å>2lê–Sî|¾ šˆÄYÇ´ÜÙ¯uÐòµaI¹K òâRåÎÇÖˆf%÷v¾u¥7Ñ5¬ÈØÐr÷”¨C§{@Ø)/IU›5$™/}퟼,°>Jer¸ÅaÔÎ]Z^úFïÕk W×RÓœµï5Í^Ë×2Ú@ƒÐÓ6,„œ"4â½M7Yò€&Ùù¹XZê–|¬LKË]æ[¹luN¼#ä]Øæ–ñÞ×þÔ}å[Ý)W°ìÛå¥GGu©Ä¤!¥FlŒ‡ _Íœ™2,S};JËÝr—k)œÃS¤-]á”í•Î j]ÑܱÓ¬Œ¼úsΖ‰9g‰œW(^"íKã4òm³œ Ç)®Þ¸Ò]»i€%R‡Ðj™§1âõï@·KZ;uOϽž‹¤ë)ùlQç,ƒèâ›Ú+6>k^ì»'ùC÷µLËißèrß¾*ŸëÈ x±‡.-ÝYòò¾Bí¢O ¨ö &Ií ÌkzǨN¾gÄ*M/Ÿ³*–÷¾¬;?¶{ØŽWžÛ̆õ2èBaµ¿kî¾¥ |ö`aœ¢|Ucl |Á2#u±&bB1í’✅Tc=:ÇŽ­õ6 […ÔçméµøF;voã˜oôеf<išaêÃP÷oÚÛš¯ w~KŸïqD~‡`É[½^r8NÝd¦Ü322222¶lv[îð´hQ+ta³Ýà{¼¯iS¦ÙÛaZÕF´Á;t|{…ÞYa%%¡âÙ Ûe/¶ß®)wËýê¨Q¯RÕ_¸L5üÛv”©ÄÊ,ÌçúF<¯Ly…0’(÷˜Pï”{J\ÃÅ*Sà\ݣР—d]_Q‡ÆT¨ z©]!ï7äÝA/„](hÚrg­e½â2µ–Õ*Í´ÏïAa?•Z1ÝU÷Ò¾¯psX»æ¬Ê,\Í®«wúWÐ5›yðÞZ­Sù¤Ù_­w_U§ÊÇž—ý…ÄêÒÌË;ñ˜”¹µ“Û2ºó†›k,0K:dÄ[«åX]8ž{ ÝÚ‚¦W¤[(EŸ+ñÔüÐG{pÎÒÿ€Na4ÀM¹·J¹‡^QîNî[{è£ÊR\MÙ·óî„î¤LV·X9gñjÞ‡ÃÖ–ƒ‡¯©/Õ.I|“¯‰!Í›Jd ·_¾úŠKJeCï•W²âJÔÇwäºG´g’¯Ÿ²Þw¥ |8¬‰C× ·;U£óÕƒ§¡ý]k@æ°/¥<[ã³&a¿Ùò]w<Øùz°–õBc?xLÿës:>Lm‹0É{ïrŽ¢e§ÌcÇÖš÷,-ÈA¤±ê"ÓÙñ¼cÛw¤Ý„'œ—¦ÖÅ„L”Âi ·³í:Ø41ž&ªåÎÔ:qËÚzµo.öå^¯Ð,'ν,ë½g±Ÿ^-âoFIf”¸qÞCgúž}£—¥Ôr¡i˜ÜO§zAú3/µOt• Ù‰úò5-Öõ–éêÕY˃åU^’*Õ~¨¹@Þ™cX;X6ì“PÖÁIvÕûÛüòÙ¾Õå^µÕ´ö¥u8 —´ãç´u¹ª*Ç%†AgKKq–µ°†¥9„* Û…‡B¯B¶CÐ:œÖ3hÐôÍx8‡ÊBZ©8FgÑKª©qj±§Ç49É{E¹hë¸Æ¼E٧ʇ)oÍ·†Ùû溽SžKij¿óWĵWu$qv*%ÞÊ‹û³Šþ¦OzTÄ»P‘o»Lª‹“é:`ç0fÊcŽ–qµÜWÿ¼þ¼öÕÀmw\ïüà3xç?~?² ù¿¯ÃÇ>x^ß½FÖrÏÈÈÈÈÈØLxôÑq÷½·&Mš‚ö{`ddn¹õêq-+Sî[Ã&bÇÉÓ‚×®¹îb\¿ô˜´ÃwÔK1e§«k­V ç_pÞN_úŸ3kÖ¬5o{ÛÛnœ;wn#ôõÛÆÓ4(w¾–àœ¥ÔZî0´ÍNÔQYSðL¿·JIÍ3ÍÎZî|œ­×Xy@e)®TeŽÇ3JÜÓ=ìEƒM!hö0•Î4{Ã` sD¬"ÚP×$šÝ²ªÕ éCñвTa¯Þ„½¤Mg–Í(IM[û=’ÖçÖ‡¢“©Á×´­+8_©=ò§ÞöA¦=aÑï‚×”¹ÑF ÊÞpEÁ4;i¦—DG¥¤òk홯ܖ;dq^Ö±’/ìíP{Clkå^8¢ÐÍÍÔºSîLÓGš™šøTÇ2º.”o‘$Qî².VX§7·?ŒpÃLud²îÃ4Mnƒáí'Ü”gG+â^(/þºÕ›Ó(Ó’m\9EÅ›Zîªßm Õ¯C§Û-°båŸðµoÿžùŒV¾óï//:ûîóT¬yüa¼îÍÏÄ{ßþe°ßŒŽŽàcŸx&NÜfÚsN:þšûï¿Ò%—\2ý¯x4ò =#####ã ÆÛÞôYÀÞƒÂøõo¿‡ö[‚_]t.Ö¬y ç|õçw<çyG9ú< gddddd<ÁøÌÙïÀu7ü“'MÁÈÈ&¬ßð8`ùÝ˰ß~OIÊc }ÓD`ýv] Ê]òB›Ý¢ÜKÔ–â´Æ;[Q#>›©ôV«¦Ã9¯v|]Ž ÆYc낚>aëpH‹pì[Ó”®–×ÊÿLÍK–›¶(ôE¯#BaE]…<½427T<èÀ©Ki&4i,ß0Ë [Dذ`PÞ :ç+XöåÎ×êƒÚï²Z mÿp]ä¶„  y_!ú^ÒÉÓÔB{ÞÒl—ó‚æõol%xM¹…ÃL¹3ÍÎZòNÝ—Aß{} óÁ:è–1lÜûê·Œ‡ˆ—ò¾áü:òŽV¡ZFÿQ/R Í.6±œúA”»å7Ýý€ø µÜÇÂÎúºÕ™K(/½¹&jé¶<¥a«q–¹>_¡³- êï]½“Éô;Sîwܵÿ{Åùøï/\ çÎûñá§?ÿ*Jì¸Ót¬¼oE³s k¹gddddd<ÁX¿~-~dnûÓñãŸ}¹Š?樗`ÅŠ;ð㟜;õᇾꪫv¼îºë&‡òÈzFFFFFÆfÂÔ©3°ûüE€¶ß{/<0qx°ßÀîó÷à Ÿÿ:¼õÏŧ>÷VœúòªÒíºË\¼ùMÀÅ¿»`§½÷Þûõ/ùË_²råÊ :ºóuÚ3gÎ<ߣ9qÖqÿ©‚fWtn:å^§—”;¥cÊòj‘fzY¢²iÝ ÜÉbA‹Â##Lå×e¶Zu™%œiæ®Wé]U~ã^¸]ˆ§—šíNµkÝ.&µ.´Ü5åîša%ØÔ襼RèE“È’vÆí¼ÂòšÂEÐèŠÎk(vCpß*Ì醩*µ¥%ç¶¡ðÀ ¥ª¨^ç&À¹á  ÓÁÎÕ»cŽîË¡¨ïÑŠejœï±@MGsXk@×2E1!ÒrwNÓ÷DÙ…)s7Ä÷H2…“Ž×'<Ëp|QT6ã½sµýxE“cˆ¶¸^/dˆr÷‘¼„½zJçe)ï ùF^uØy±ØÉ ¹-‚@¢÷`HåÕÑLoQ®ª"»,•_TÏ{¼Î×”½Ðr‡üºYf˜ó2´Ôµ<×e˜d8_¡åîe¯“B¹ë•ñ´iÀþÖy„À W¸ñæbÞ¼ù7œtòÁߥèOxœÓý9 ×ùZ–zDXí[Ta•®Ut—Tç–kï“èøN9]ÃÞWû»18! :æWH„±Ÿ’.q~{™S²°äÓ§§ÖDCMN‡]3^Ã8×v\ÈJV¸Q-–G ãØ}ñïXeø=²&y<9by:B•Ö¾hBá ˜ÎY¬‰%9tÞÒ”n€<¶fLXµLõ­Å&©ávÑÖÓž‘|^™NrùñzÅÒ ‡,J#éô*º‡¡âa C4Gå¹Öƒ˜?©zÃT›ZÀ#6[ÛB·4+W>ˆ‰§®pE·tº¬åž‘‘‘‘‘1ŽX³¸îñéâ;øñ.ÁÎÓWÝñê3Žþj,Ý€¶Ü=6 wYñJ:¶B7ì„xk…Na@j¦óŒ²l麯Š>Ìé¯ÊGy…îë^«¨ivÖ^¤ašØj5<Úgp(lB·q²ÆûØ:¿t$ädB!c©‹J{%Íizßö±5æ H#»œs¢)´»Æ`n¯Üµ† Ë´ËápXã]›ž·mÁu1+éêûrrÅjjS+ ¶64"5ÞS¨§nRhìs=ËpcÃ4¥C‡ñŸºú@ M~‘¦ ™6ŸÜN¯ë[á›Ì±*6ìå×åêê«4LA«eþ:Ùºs®‘..œ«ú§®j¢ª‰ yíÍ!åKLª‘/hUÝp!M0MX©º[+t!¹ºÿØj¿[;x§^ƒ èCÀÈpö&Ê÷f«”¤%)E%‘¼oß(ß’Wá ö´Æo@ÏZî[ò€ž‘‘‘‘‘± J¹;çÎSQÿ潿¤ócÓD`CÎY4M›rl­A¹—žÂDñV™j+[D¹·ê¼ÚûéD“3}Ï”û¤¯;´ïÁ3(Íx‹£ûÔTŠ¥-*ÖVF#] ,Ž+мœù¼d¾ÖÞº¤þe.j¦ K4õ‚ô]zM„Õä›Üß ‹ˆH,Ä‚*–[”Îl´Ú ”[Õá Ì£Kú^\èËG¢„OkåG8j‘éjùˆs–¢¦ÜEðG5 ¥8AA‹FVë›Ð¼ƒÊË8¾é 9è ¡ õ±[ô»„Ü_?¯²ñW‰Ôs©É[?§ZµïÂ]ÇË„Y>f)ÎÜCWåóӲޭIg4ÆÓˆr/–ßÝöÐÿÀ±ôû–îYfddddddlitUŠóÞ_´ê‘‘‘‘‘‘‘1ºèιe6ø1€³¼÷:×6l ¬Ý¡KÄe4¬˜¥PîD“[ô;”›ˆnbFn´Î[Pîà‰š·(÷ÕKS)d íýÆ©/Áà†ÝE9Áóøê¦ä¼A‡›”;ßX”r·ö¢BU(vT­ÊÙÇ©Ç.Òꈑâ¤ZŠ<•îŒúƨuáÄ…‚E_H¯/eŸæxCrö¬M®ªp¸ Ç·µÑ;/9É;•EØRœ«Ë)”a–êÈ‚–sõ;jÒߊrÎ`@òÜ^*/g¼Gš¶ä­£jZ›·< v[Ltꊦ½ø¥­Ëq á}ìRX»¢š.­SKÖ’QæFuMæˆä¥m@…ìHêÇeõ¦Æ½¬fß”{éä¸f¡Û€~<€k àc&xxï݆•o×¾•mvvÞ±×Î7######Cc劫P¶FÖ­N’‰èÞû_éœ; mÛ±oçœßv–ä=²¢|FFFFFÆxbÖÜC«ð¶ÛOK’éŰÌ,qÄè„¶¦{ ©†e´f{& 0ýÞ'ÊšµÌ À™n+ ¢ßeUMÎFfJE™W”»¯éì¶e"«|¦ÑÂiÚD–’^•5`ŒˆÐfO‰'z2UcÞ,°–F“O®ï{'¯š”»EÊÅè÷Ëíþ!!ì 0O^7“ÛŽ?¢¹Ku‹½¦Ñ”³tÐ æß”{€²w¢SÀÞh#¦é½lcgi£ úº¨òöšr·lɳö<§)èÝqDA3•®ë¢µÜ-Ê=ú¾ŽÅj*t‹–y6óä‰ü)é÷:lÙ)oîd¸*OûtN˜âçÇ¢)ri¬©–ât˜ÔãŽÔ?„˜–»°©„pXw{¡'œÚƒëW ¨åîœ;À‘–¢M¹¿Àû»g™‘‘‘‘‘‘±¥óoG{À>€íü¥÷þs[¤V=Á\¡{ïïB—y«†WÂÁÖrW¶Íëx%Nl0(,(sÃìsYžm®wê¢("i=nË4)&_H [j{Zô9ÕßAd`³Ö½ÓÙ)Ú¢éFWXH<Èñ«L_òáòãn&SéûaÖ;yæœj2J-£=½_Òy¯"M/ž6¢-¬x8Š“1íùŽmtk&|rCú\—{U:çìÒ©½ˆê™ Uig:g1ÃÂ0 $µoq°’'V8•‘ðˆ£œq(ßÔ¼H^WÅʪ¡pO?h'À_Ó;–»AÙ‹º; Qêœ$OñÕ—î"÷É+µwéV—<¾RÈ9K9´ºåÐϱµÔ¿1Þë¦2{ݰ:#,ÍEôªüBåkL(¬§&¶„½.i¬Q_å ãæàþ[ã¦R?еȀlúÄNÐ-oeì½QÿˆÞ PUÈ!KÄ9Kì~+^[Ó3Ú5ÅCY©ê’"ßЬ.òøgÂû1ùt†£ó2öÓÅ%/öݹhóý®ë{÷¤s™U°)œ,¹Ž”¯1ièÝåõ ÏGŠ­ým}TMÄ»NÝå—ny®‹MÆ}@×ín «¨gdddddlh…ÞjkºÇ×r7èh^¹;Ôší®¾Æñ€2æY¡szV(6éû¶¼«;-”%éz°Ž®Põ4¶JsºÐZ¸GJ¯ÁœXIÒ~÷ô;2¥LºI½4èC¦WÊÜôi(ß×\?ŒŽ¿/¤ ï|eÈ9O×¼¹ø“Fmj-{ÃÉU©0(b…AþÐå^À6NÎ ŽN(ÊÝ¢Í4ålóˆ-w«Žpо'[îBÆ¢òµ4¤¼’Ø(ÔåÑó²ž1T³r<JPJF„xD’š¶õ®î‡Txà³Ðñœ$…ro¬–:o³F™ÇeäkTE„SWñ!¤®ÐŸàfw<5‹ èbpVýcÊ€nÑïÍâ9_ãôKòXu-ЄYo°-°éN±çŒø×|(]y5fP‰òžz?–·,ŒQ¸IÓ†Ú5uF±Dßk*ßÚ÷–4m}Í;`½“Q1¸«ãauyE%ï½<ÂæùØY)eBñp䜥,¤7aQÛX¦©êÝ7޽‰x*S;û¶>ꘗ%~tíÓ»z.xà ÃÁªÀzöš‡å×8Ä3CVNÆN§FáB]»äv¥÷wÐ]0ÞÐnª!o è ù@™6ån½ü³‡ž& 6‚Ã@zÆÿŸ8hÿÅ8á˜ãÛ?,oNi§Ñá0´Ò™ÆáÓŸý"6nÜÔKµ322ÆÞ—([%†& wO\Éx”£#Ùˆ ÃÛŒW36SŠ+|¢–{gÅY„ÃQmGk¢Kv¯õ »šÙ°"›VŠ3'ÍNÆÓÔËÖ¹aÚ4œo[†¦º +ۤůŠ¡ Øf›¶_ÛrÌJNQÝ{²,1T !i@åüÐPãZ»Œ” #}U߳ƘõÀBé¬pà!;W÷°¥åÞDû%©YY³{¯4Ë ÊÝ\±"]ª–{iÄÃÕÚìΙԺOÒr'Êž)s ‹ÃšìŽÔ¹­Ù®'¼¡­'ïzÄêT‚§°^ÉÀ­×\„ Ïýþöc¿ä%o³siõýwá3o~Þwîmü€·?g*>vþØ0q±zµàU³vºþt¥¸p^)+tý¸“VèÖ [ǧt!ê§ ' 06<ìW˜10å>^Zß×€ÎZî–?u¦É#Zî>Ìô‰>=Æà¦h¹[cE#â#øÍ//ÄÐÐŽyÖqk×ÿñXvÓMxé+þ²÷Œ¬X±çÿôGxíëÿ¡ŽìyÐ !ð øX#%4r¿”{Hf@mpý Ŷ9ç…íkè ve|îË–×E÷°9ih¹¥¥å^ºšÕ”y’–;ý.GòÞq–þwX~ËÕxáß}³÷Øÿþ·G£Ei`M- IDAT36/¢ÜG†×MO‚zi^EPîD5ò~Y ï[žÂRÞ¶ÔFTQ`”ªÅÕl…Ø xϘׂ8 o/7xRƒ8Mpºë»p4tÈ —ýáR<ë9ÏÆ>ûïŸÿèǸçž{pÔ1’‚oµZØc¯…xÆÑÇàûÀw¾õuœùwoÄ“&µóo}Ç=ëD,Ügî½gE£¼_ýòç¸oå½xÙËÿª*ì`WšêgQ•š;ëH‡äu^CF˜Ó ѵBîñ¸˜|ögfÑìVI0zÑĦæ¯6šBúÂ9‹È,Õ9 µ‹áÛËCÁøöÙ§1™¢ÚìÎxÆN;jéhɤà ÷ㇸ-,ç,ò6öQ®âËPmÌò· ÚFt5å¿nÍ#Ø´a6¬[ƒ]æì)»Ì­ÒlÚ€ÿ>ë•Øqú,œþ/ç¹C>öå¸üÿƒã^þO¸ê‚¯cÑáÏÆö;íŒ ÇèÈF<ÿo?Š©3æcÎ^áúeܹôr,XüôvPwAÞ¡ÌÆõkñ¿?ù Þüùßa›I;aþOÃÜ}ÆMW]ˆÖÌ1ZÈûåÓ¾<4¨ÇeŸRÍ]¼eØOl³r¶NÊ‹#ãû*ìÇ%ªkõÔ½Pîe!ýYÈZîOÌš=‡?} àg{ ~õó_4ôI“&aïE‹°òž{°æ±G±ó.»â–›—â§Ž+.»>å`<õð#;í4¥úšF[£øÞw¿‰ CðÊWý5 —ðÖedd Œý?kV߇ï|êo±qý÷²·ãˆ“Î<´ò¬Z± oøÄoĤgÉó^‡¯¾ÿû²·â?>/ú‡OV×¶Ýa'L1àŠ³öXŒÇy°k=:6[}ÜÐ.:÷?ªk&n‹ë—ûÍèŽ< ? 0sö¬:ÞüÀÖ¬y _üÏÏaï}aúô]044„XU]Ûwÿ‚y?öè£xô‘‡ñê3^?¦I¿yî!##C¢š€§Ÿ|&ž~ò™¸ùMøä›ŸŽ§õÀŒùûâY¯x'¾ðîç㌳~€Ù{,ÌZ°?&OÝ~ó_1:² {=åè*¿ kŪå7c×Ý¡5:‚ˮƔ]æ4Ê6s>Zy'fïµk}«–ߘºë<À §½óT¥w.¾3w [[Ô–{;Lô¢Å9”*3ÂL“S=g:Zî¬qOñlÖUÈg6„º'ý`Ê^ð2¯å†–|š3×àoV,_.Â;î´S£È«¯¸>å`‰€w¸å曪kS§NÃ]wÜŽÅÜ›6m:N<éùøÆ×¾‚—ÿåé˜3g^ R›½ÕLO ÜMš=¾÷Qè œ u_êáÙNd`Äëv!XÇBõVQÐ~»“F_uu=Õ¥¦©•‘Ëþ¸æ3YKžeް Ã2žÐ%–¯ù\¢Émh7ä5lí‘˜ç« _Ñ1\uá×Pú»ÌÙËo¹Ógí‰ÛíTÝßĎïøo|ù}/Âéï;óö>ðÀ’矉o|äÕxþ™­»fLÜv|ÿSoÁ‘/x=®þõ·0gáÁ˜»Ï¡ »`û~~rö{pøI§áÊ ¾‰ÛîÐ6À2q"žõWïÀ×Îúk}Êßc—¹{áöëÿ€ý—œ„rø ”N9Á¢f‰QæÖ«7iîÒHgí°è2ùD±E³[ñ‘*ËGo¥  tiþÐ3?ú$ÀëÆ?ý®»æZüæWbÉ3Žl¤ÙuÆL,»åfÜzË͸àç?Ńc«sxÆQÇbé7àWü wÝy.ýýï0::Z]ßmþ¼ü•§ãÜoýîºëŽ-rOOvÌÜ}1VÝ} .;ÿ‹Æk>ðC8ç0}æö¬¶.Ë‚ŽÄ«ß÷mÜ~ýï*·½9C†q؉§Uym7i Nþ›᤿~?n½æ78è˜—à Ÿúuuý„Óßb¨½j:ùµgá £_ŒÛ¯»Ï~õ»ñ¼×“§Í<÷µÀÉg~÷Üz®øÅ7°íö“1}ö‚-Õ$OzdÊ}+Ç‚½öÀ‚½öÄ«Váž»ïÆ+O? »ìº+à3gb„ö+°Ï¾û¢,KÜ|ÓR̘9§¼âTŒŒ´-½í:c^sæßáê+¯ÀÕW^޳f¡( ì´ãúÔ§æÌ™‡Sÿê ܶìÌ»Ûv¿OÌÙã ÌÙ³¦¶;KÆi3ˆAtîÞ‡`îÞ‡h+»ð›Ã’ç¿;ì´s•f»ISpÔKߘ¿ß¥Þ³OwÞf;þÜÓw:àæ-:T¬0÷?òyX|äódµÈ”û–À@ºweÑåA5(w‹\s…¾¬JÊ]j÷šö!ýv›æl÷§ šœ¹˜p^2lXa.GÉs²”Ï@—`™{î9öïÌfÌœ‰3g¾mInÿÅ‹±ÿ‹ƒÏhúôq‰Ï…ì¸ÓN8䩇×ù͘…»Îi"•6âÐзYÊÔˆQÓF^ƒÊw%Ìt1*/Kûe­L|ÅRÞ—¶•N˜vÁØ"Y2œù@|£b1ëjo¥+0[tÓÙ§ELÇÙlÑMûœH‘gnÔaçÕI†¤v‘Ϙ­ÆY[,Ú0MŸ~óј>k^ò¦Ï@ÃÚ­±Òé÷3ö¾v4ä55Ý𭃸¥7+ÌòÊgM’<Û¨çkšr· )jú>Ö½ô ÞmKqÚÚZ8Ô€Þ{!Ks «s Û¨Â+Z?§ ¸L–Õ¥×±"*£Þ¦Ð[çî½ï>üöÒßÕdLGï*0 eõ–å®ö?££™XÒA¢×At<dãØÛR—„/X÷¤&êDm‡.n,LÇÖ<ì^ŠåU•sèco\¦k¤×ñâï¦orq„¬|QßK=ö‘—××edD80{Q¯pš x!1Þøéßw="¥«b% â!ÇsAkgôê‘a>óØYÌœ5/ò†¹ïÔÝœP¨û2/ 0 §XŠË”ûVˆ•÷߇•÷ß×þa â-ãkà/«1 s86 ó`•‘‘1ž¸înƒõ³L+¨†3æ¨âkòjÒUÂNp…¸V¯GÆÀ€”{‚æ^¡Ãx¹žRòÆ Ý¢ÉSWè&ÍÞX¡û¦|Cã=aæPOÕÕ40EiºaÚ¼Gl¾-c Þˆ­«×m¹³fz/yÕ«OS>å5ºl. òdcÏ.æ=-ÖR7=dÄ–9ô¼­É(‹¤xÛˆ5»E™›K)•YŠÖ¥Ó4t‚uú…”ÑØ£‰ èy®Ëz?¶ÖåžBßkîÊ|ƒTñÖosòÕÅDÊãß±AÔÜ׈Qæ½[“eZô{¨þ°:ÖséI_²æÈÈÇÜÏ3âp÷û²hî¨÷£$¯r°¼-÷ðzr’Wßû ¯Ú«ˆÝ DØq]ÆF8ï¡hzK^Ö¥ú©åÍn¿ Õ–‰Wƒ’vÁøÆ#Å#íqñ€ÎÈÃ>Ö×€bTýõ|»WÊÝÐUp =;gÉÈÈÈÈÈx’`@è€KÒr§©—¥maåÓ0ø;$íw&ëi2­‘…‘tªW)yñ’É…‚}-ÒR0®Tº4ÃØ*Áº ÃÊ/q%ÛóÃɇâëÐM§=T³ÔsáÜ’i³³Æ{Ï/Ú+¹p™Ö½ë°µBWéLmt# k£kÍtcõÖ¨W Î®T÷käë€ µ>Zîì]¼¡4|É‹t ?µK°Š×;$¡ºSuI$Tìº%£Vû¡Õ÷ +ôF5ú\¡—n h¹Ãa³k¹›º>bí‡;„™Ö-¥åÓxïu@o¡;!+_“ÿéçf„ûÊ+å!m.-w¾ÖG^‚¾Á’G%ÏïUÞ•H6µÔÅoiõÎÒf7)g–g«oy¯äkmtWk£—Îôg¥ÏZî¾Q*^ä… 6{TË]?#FH˽ñ}ƾɒåµݧ•µñˆcóå΀U¸4yK˽ñyX”û8èÖäBmʽ[Ó§ŒµÈ”{FFFFFÆV< gdddddll}à‡»$â£^‘}1§­ö3ì¤×¬é(…Y>U³Þ²þ4ª6+;òž2Ó¬);gªå}ØKÕ25ö)íðÌ1«–{„4­¥®åS÷8û"⸂–Iðgî•?ó$ùú%ó¢üTÊ>Fß[{?–¼B{ŸçJ÷žÂ΢ÙÍ Ãžî«Jç áèEøV·î×±‘›b¬Í›éœæJY¾òöA¬“ô½ÌËØ (öâéqIû;òÔ?ÔNcdùf¿ana8uQlZÛrßÜÚ>i”¼QëZîšæ.(L]X’?sÕV2ª.˜ }ÞN×¥ÇnS„ÕÒØ¤Ù­ÇÚånÀhÂhWè[ò€ž‘‘‘‘‘±`pÓ¯)tÓÔ†–»žÃI(ÄbMK*SÓýü»e„u ÊÝà=cué@µƒ`õñ›@Xhùk {ó G[ê–,¡Ü mè6?Éò)4{˜æŽKèn ÈèÝö§®ïËÚVÐmj×H'jï{joIS°a4…B$oj©Ç¶ µgGï´ÈË´õ½\eãØµQÞÖ…üTbßDUyõî ­S/Z¦•z_ázŠ£j)Ncøg´#t©0^¦Ù™þÖ¶–˜~75ãéS×GØ ’·(÷–Q¦ÿ;¿{ ofʽ,dÝ-äzFFFFFÆV€< gdddddlذL϶}±‹žÂá²Mÿš5eÃ0S*´ÉUš|Á]9íjÈ ÷ʺ"!MÊóˆ!Ù‰Hï7fÓ¶íšØHQç( 4wò>*Ÿ‚ÞR’À´üåT|J:Ÿ8„ý±« 'P»ŽjÊ=UÞ²ÈÖ£¥9Q²4çŠDjÛ‘ å園7-Õ©ºŒk‰x-i¯P^¡2C⎽ZÄAñ©…ü¤*^Q䜗uÇ {*“ÃU=CaÎKW}(÷-ã>5u@ɧ„úääSP!KoÝä9<ˆ¥8î|Ø©ºnk±ÅaKÞz›(B›YJñ$f=0í#)/½W0 '½<}ì¡'¿|½ÖE_ƒŸ’>CÆ´4×÷‹Ø£<×E«T±ÌØ`õ4¹hXdK×ǶØzå\¥”wÔÆ)[ãëÔ«TMŸ0Qi[§£>߸ßê÷õêñuéÇ2³8ªf|ª1ÿT)Ÿz_{èFúÎ-¯íÜm®U7,dÊ=#####c+À€þеE”Þଣž]Ѭ۴ ?®+tʘésöÍY¡{K^Ý£3ä“µÆ ¿/·á,ä¸.ã±*îCÞ‡äÕKr`_ËøTú¾ÑÈ¡†ígµmÅë¼ÂÔª’7g÷&M±2 Sæ©H¼÷$mj’±ŒKé0Ó䚯.¸$y]Üæ Ü9¾!o„k£'RîÑ0¯Êèwë¥pö% /ÀôyY+leǨBÃH!ÏÚìVØR^ä ™Ž¯…Â{«þIY•w[¡»-䜥ë?uîU>–—>*f è)>е?ôÎïõG×/åžr/âÍäÏ…'ö› w¾,¾¸b´|ç­o˜óëm–/X¿{$!ù^(÷ÍAÿóµ~òêv-#é§=½.žîÅéÄq8óL’N‡p:#Þ³ï`9”±öÍEOõ¤>¤I¹;!ÃùVƒ•ÊËÒMˆÓÿô}Z”{Ä:œ ó·Nñ=ŽÎb‹D½:É;uôê‰=p5ØV0â-«sÚF";á„=ôÎ慠ü¼zЃ×BñÝôBm7È”{FFFFFÆV€Á ˤÀZXj•‘Y\ʦAÑ8 w.&/ø¼ˆw%MÝxÁ£Þª°¼_/¦)òá0OºQ zžÇ3 …,Å&‹ÚNÝKGè>Yž`¶c¯+j{fß(Ò¢DY^§Q«Ñn2!ßÞŒÄ%§FùF^œk¯t²ÝK)Wb‡&¦ÈÆyu~ôA¹³6»ÈËAÙ±hvUG¦Ü-¿çIþÐù·#ÕXïcànév¡OÝ\ýê¾Ò˜+t'¬Ð•3è óÒèi…Žæ'«å®ó²ÂVŸÚ+kÊ´ÒÁàê0ï[4{´]\ÞäˆẨck‘/#Æ)õ¥Ïaž…(~ø¡¼ôK‘OœDîеԼt>.&–WL>å#N¹¯~ÚE½‡c¿Ût²¾Ö ‡ãã2ÝåMæ Ê]¦«îDÐÿ4@é¼ k~IûÞz{ *]7è|] œ±;§‘Ðmˆß‘W2E]&6 ¢å>è€Þ¸ftí]t‡¤=Sî[ò€ž‘‘‘‘‘±`Ëh¹‡Â€yd$J?th,Û‰Šµ_è¹mP_ºÌÇk“[¬LùØý êF˜Ò4܃wÀÚó€¹W-Ï|TÿS|•â¾,ÕSo9WÑ/9NIñaÞs:zàž~,¯ö5é´EåÕph‹¨ö~l+ 7yá*%Åþ`¤58™— n«¸H™)[$‘û¢37ì(¦QóÐNB£þF¼urÃ!ÂWÚôwÕæ^³Ù‡ QÞzÜ7ifµonrµV£¹;hô ag4¹èøó¶» 8£ @aSîâ¨ÚP8>Ù°Œ•Fƒæç£é#hÀhÖrÏÈÈÈÈÈxr è[£Ü5sBÌ`%khxFbÄüއè*¯2"þÃb`õª#„¿i¢Æç%êQ[dC\/³<‡ •¯ Þ,©ú_“rg;,<íÜ™%£Ó QØ¢Ü{;–`ûF’èdA³Û4¹¯FlÆkèújõ½„›(®Ò’W|¢0,ÃT~‚Ú´¦øå% Ãø°Œ¶eîùX)×— ³›ܬ¾9ö“·Á´0õ5eîÙü×Kmωò –Ý[÷¨ì…ާEúió)rWyÜòËcÀ•±¬‚äu^±®‚ÂŽ>Oñ\)ðÍ®vׂtºÊ+…Нî!®çÏ~ ¥ËþÐ322222ž4ÈzFFFFFÆV€Áœ³)¬š¤¹’Ç,Yô…EkYK¾$!¦»†¿š9H‹rl jÔ ¿5'({¦Ù ûEÆô;Ë(š¾ƒB5DEU*ÊÝ⻜a ÙiÕUKžUW•ºªÉkʽ{ئÙ5ånPù «uåžj¤&EË‹QÓN:<2ó’\©§çí,-÷¨!¾±WASËK…ꈚU)eë[¡­iôÅâ¬-8Hc.¾y#¡%¡ÉÍxëÕ³ݰf{©ªâƒÁ8¬Ý‹>w¨²ƒ¤ß-j=¶ëFZòüŽ”––|?”»ñ©Ç(wóuK¡âÇÐ*Ô¼BÏÈÈÈÈÈØ ôŒŒŒŒŒŒ­–ñi”“EW‰¼šÉ«ø;¡Ï½r‚" óò©JÓd Þø† ku:™¦“®´ïŤ®Ø Ë  ®™P $Ò¹ ÉGo8$_ Ò‘øÞ©iXÅj ýÐç½^±a:Z‰ QÐ’IÍWhÌIÔç)~ÖuŠã‘†–;oÑÆ FSœ.ߨ¿)OnRÙŸ9Çw~Wâšf§° ´‹®£®¿Y_6rK ÷Sœ>¯v›û }£þTEa-ïŸ:Û'ŠÉÇòe¤¦ÓØrþÐ{éuúpÜ'ÇN!u®ñËÛ§IБ4 GÂIòÖ›I¿ƒ{ÂÛ¬Ã!G/º‘SÞfË[Z0] /ñÀ¸‘8°¸ŽOyyz\ô"ÀïTùl/×¶Ô}…ò¥3êèé=Žë´œ«pv±¾&Á’¢Wƒ-΋å­pj^–s–h­úêx^l'6Óçí6Rä#ÝFpœ»Cit|¨n½„HÐ3åž‘‘‘‘‘±`p-÷HŠÎ´Pa#i× Ù;(Pk°‹U-gNÊ®ðƒ®Ð…“ü©«p -¼ö‡n6q,³Xº>+Ö|lµ?ŽKoòÌV]z‘MG_JS~@úÝ*4ê+›W-±Ó&¡¼Äбg¿ß]®uKcù çju®…•÷ 49ºq@}Á ßc÷eÒ÷œ.Æôr£qM|^áQÈ'v;©î B”»ÎËrËÚ× ÝJ€‡í „1åžP‘qÉ?ô tZ'ù2˜rç¼Æ“r/#錨Ù.®Fá Íy›-úÜ)yëÌJt$¡.ц$¯ñ–Gàw?(&¡÷‰~œã5!‰µQåyÔïU?Ûs@œŽÅǾŠ£v=ÊGiò„°1òæ¿9höçÛ±¹{_ê2 ]¶:gQî¢ LéÛU9æ„ÀJ@ö‡ž‘‘‘‘‘ñ$BÐ322222¶l-w{+-ᘂ¡Åêõ‘¹˜¥8AŸeZt•ò‡.Ž¡1ÍmYfbù–*¯ÊÊI.†­ËÎY|ÉŒ•/$OÃj’ÚR\Õ°l©Ms_†¥¸†£Ú‹0ý¦Gw®9Ê«áÃ<Åj?˜ZÞGý™÷£%£ü{Í‹AÏ[¥‰ý ¡áÅÕá4®“Å#å1UlÔË%ÔPûÃìOóRï±øôË*ÚtÂb:gašÛÉOBìAÇÚ¢sIÓä¡4:œ`¬‘W;¥ŸtÈ¢û «œhßJÉhrñF?õºPvVåµÕ¸Ž|äóöCápã@M§nÒï¹P¸×4c(ùŒ ¯Ð322222¶ä=#####c+ÀàZî½@Ñ æ }!A2™édL¹_c“Áå¼cԙȋ.pk'úC‡E1å®ý¡[ÆhL#5®æÉ—Š»JRñÔêÿ†|Ôºu” •&çpû·ôÍžJ¹s~½ÓäéèŸ>ÈEš´BøïµÊ±w?EÜâ¼5ïƒA¹#§Î¦Yt¾·Ž­15]×õé(‘×–?:? „µÔq<·Ä¢þÐéÔŽ°4gÐìMKqµú~å´&rœ® ³ç§6víøènª–{”Ê7>ïdù”O=%C¿ò±.‡Wè[ò€ž‘‘‘‘‘±`óS¯yº(D´îÑ>l*C3½lÔEÐáVõeÃoi¹ñZËë849),´ä5åÎÜ•¥ÙÎ|צ©IE´“®Ðª•.cïD“ûÆÃèæ½ån9F&èâÁh5Ö^5ÓùZŒ‡ƒãô,Äò­å%ýÞ+ž*i#>m4·ú†ôíÎ8 媾㺱ïDRéD™ó–ûw€§Ó-Bãžin]޵À›$üyòV¢ÜE]:éÔ½;’—Ûs2#iЬç$[Läì|]ík¢*v|§Û‚ðg.(sKc]‡-Ê>AžeR·vM túwÊ'Õ©†ûò =#####c+@Ð322222¶ H¹§½Q9Í\ôÀÕD{± ª0ƒ«2¤Úe·(¢Ôº8 WZ¸®wíK!3X#ù9FM÷“W›™ëãôj‡²ëY{ãPËV”©¦®äù;°¨uƒ~—ârO˜œQnNë2øäIKã^ÔEiÜ4ÈcÎYÄU¶ïU3=ÒvA/…œP ‡ oü²Œ ‰ôÆûéõ§n–‘·®õ!ÓkùOdWa èsì<âˆ#&/Ÿº\î›èñ©æ7l¸­ÎæP£ïÙô5>¤œbâ;: SÆ…ÏÇâ'²\8ÌûL%]k´KJ˜~Çü¡#1ßàž*ì™JÃÏz›Y‰Ñ¢™˜´Ã6c¿­ÍqSêÂH°:×è½RêÕ~ø×]÷6mò‘òíY6SÏ”˜ï~ûc»íÚi]Am!¾ ÖßPûî¤{ã,§Öpÿ+îmlÆÛØ„$Oýƒ÷êîäÎYRäS0ΓIÔ9öxÎÝïC]æÓ 4ó¶ÊLDk÷Ý0}ÏݧxJàòÝìÞk1€§Å xÁ ^°ëÝóî¶K©Nÿú-oAKìÎÈèÏ8rÌ™3eìWÊ ªÑëJ>ÖcŒ¡1 [á¦A„Ûn{›6X•ý³Ç3Ÿ± fÌh?×Ï$µÓ~N= %sÙÕ-¬¸7÷1ƒãÀaàaô>pwI_>õÌž?.€¿\þ)ÆôèúÈÈÈе×^;ïÚk¯wî¹çνçž{¶Yºté¤åË—o k^‹õ¯ÇÆÇ7â®?ÜUIXÿÈz¬¸bF7v ™ûêoíƒk±âÊ(GkÕËr´Äê;V×÷Ýp6<¶!¥ êÙÓñWÐ_ìZŸWiup ánòc|&6†§¿ñiØAä5B×›éî^~#6mZç|šX·îQ¬¼wYðÚŠK±qÃÚ üªûoÇš5FÊMòè‰×Å{ú‹\cÜ~ûo1Ú ÞËŠ»¯À† *ÊZm‹± ^ý±×—Yéu~ÍMO•&Uƺ/y/Ô(,#þK*FµqýËj{ïTñAê»ïÕ§¬óiš7Hn·¹¯°¼ø£ºl܈{®½ w]ölZ¿£›6á¡;þ$Òo\û8Yq7<€Öè(î½öjÜ{íÕ|WÜvë6eYº_üâ»,]ºtR³¥"üâÚµk'~ñ‹_|Õ²eË&ï{ß›ÙEÂ!yÞïüî槪OTõšWÔš“鬸t£‡pˆrwêë°äuƒ;º1aV‹ÓÅ øxYè᩼¢Jú… ¿@?þÉà”—¾»ìºἃ{ï]†Ëþ÷{8õUm\;ÿçŸÆIÏ}æÌYÔÈë8 ö8øœHîVÙÖ$ÆšÔè¼béÆãWÆw¾u:Þðæ«°ýöÓ×~ñ³wá„çœ…Ýæ/IËŒ¿U—¯eSoËÂzdè1ìÓêܸ…DZO2nÐݵ¾ä ãf)Žâî½ö*|ó•/Æä™³±óÂ}ÐÁ‹Ïþ*¾tâQø›_]‚©óÛ}ͯ?ü/˜¸Ã$÷žàÛ¯þK Ã{‡þt+žû¯ÿŽùO&àƒ¯zÅÂó?uø‹Ö¬Y³ý}÷Ý7ý¸ãŽûãw¾ó‹ø>Ìý¢‹.:È9篸âŠ{_ûÚ×Þ2}úôÃæÍ›wý©§žz<§[}Çjüýå¡á!¬[½?yóOpæÅgbÚÓ0ºqŸ=ü³8ì5‡áÑâ×ú5Þ|ý[°ÝÔí°nõ:|ùÄ/á W´·_õ8Ž~û1˜wø<ÜsÕ=øÙÛÚÐ32ž(x¯&!êrYš×6zM222žHüðÎÄûFùo­#pð©¯ÆU_ýžõ/Âè† øã·¾†×_|àåç|»Ú^ºõ—çãªÿþR5 ÀñÇë‡?üáë—.]:éˆ#Žx}Y–¿-H¿ÄЗ/_¾×Î;ï¼üúë¯?ìÛßþöO.½ôÒ]W­ZµÇ>ûìs'§[xÂB ·÷÷î¿ñ~Àüâêzk¤…;w'Ö­^‡á†ñ‹>¿º¶öÁµ¸ï†û°Ý”í°ýôí1÷°¹€ÙÏÆÊkW†+Æ3¡ÔYå 3/k…ÞÏjŸg”-÷žmž°–zLËÝ\¼7Ú¸NçÓ*Öåz‘4/‰ûVþ ]tî»ÿv,\ø´±Á¹öâß~ ¼îWpp˜5k!žùÌWb×íÙôçÿëL|ðI¸üŠbÎì}°øÀgUyŽŒlľÿì¶Ûb±ä¥€Ûn½ ç×^½/9âe8ä“ë:µí|³f-ÄâÅÏ\vÙw02²ÏxÆið¾Äo~ó\{íϰýö;aÑ¢cp䑯ÂððöÁûà•j†-2-HYñÆÄÕ ôê+þ×\s&Nœ„£Žy;öÝïu¶céÎýú+±äÈÀn»/é~Õ×é…6¼¥Mnå¥8âžóêRç°ŒÌ h²GEyã—×z•m²–»µZÔ'\¯îˆ¥]ëÄnØ€û®¿§~ë¼Fš§žñZ|ñ„gâ¸w¿7ž÷]Ì9ô0ì4o7ÀòK/Áµß8÷^ûÿÚ;÷訪{~3““0’y’ò4| h/] _\½·¥(¨T—zU´ë.–®[mK»tq/>Ú®úk}ÖG©¸¬hÑŠABP‰…‚BB2ìûÇ9™9çdÎd„$p¾kÍšýøýöù}öÙ¿}öÞ¿ßþ —ÛÍ‘ï¾5ñÞvÛm_”””s»Ý¡O?ýÔ7ujd»›­BoiiI=zôv¯×Û\]]’™™y ¶¶¶°±±1rL¼^øè.·‹¤´$¦Ý5-\仦‘–“Æ®¿í"-+Í’w!¾\͇šIHILÄ%¨6¥5V›‡Þ¥þ½«úá„v¹Kt»és1Ä­ªÄÚÙx\D< tyÊÝ7N¹+‰³,—9¬ì*Ùfú½Ã”yw(ôH8ðüïãÒKsíu?gãÆ7Øüé_Ât&ÌbúŒùì(ÿ;ýãO\}õR@hj>BuM97.zŒääT*¿Ù ÍMGøÓ‹÷1~ÜLʦ\– jÏç,¼áQüV¯¾—ä”TJŠ/ˆÖÖcþpÜïoÇ7o~êêmÜzë $$$³fÍoرc'^nsÏÄ‘n¥9-êý¤QWWÎâ[>æð‘jV=9‹ò2t’‰æøñÄ‚­áxkk#@3ï¿ûwÜ[N[[ˆW_ËÐa¥ Îï8ùaζæEC,åhÃY½ÛÅÅo£Ðmùíp*§Üc½’±x¢ñw×wÀÉòŸHY€x܈Öãòä=n_½³†Í+Ÿà‚;ï -âõŸ.dުșø{lú„§¯šƒ:tZ›ÎÌÌ w.—«-˜J·Ý'"mÁ`ÐSVVöõC=4¹©©)±²²2¡ººzˆN¢HDÛå>H†œ 9„ü!ê+ëÉ•Aƨ ¼ƒ½¸Ýá5õÖÆÖp^ò€dRâ²{sàà”¡®n7(ÅØ±!"”–ÎÁ펌m“’½TìXÏÚµ³k×F*wm2M¯O.½œä”´ð ähc=Ï>w\pI™Œ7“”~ýñù²3f»¿ÙÜ%Ywî\OzúP¾üòC¶o¯w ïŸÄÝ÷]L*ý ‰‰ý<¸˜Âá3ø¦²kõ°sÇ[ô÷ £|ÛkTlŸo(å¯w“´Îf¸(œ~1Ÿ­zжfAl 4Ë-f݃÷Ó°·ŠQ—Ì ¹þ þ¦cdŸˆˆ°õ­×A” ‰q]×ö =%%¥ñàÁƒƒW¬XñÑ’%K.X¸páÌœœIIIerrr0O¢7‘yÏÌã­ÛßbÝëÂkå ×.¤N®zò*^üÑ‹x3½x’<ø›üÜòñ­ñ×’§þ@ ^BNð$’”ä ç¿ùÆÃddæQR<¤¤~|±}Á Ÿ„DÍFsРaæ•"ôwp,àM§zÓ9zô`Êà<Œ˜¢ùýÍx<‰õ¯ÎrÈÎ}wÝ÷‘šš §et´JÐ\ÈDžC0±˜immÄíI § Í€ô<š:ãÀÁIcîãOðò‚ÿàK X8‚þÃr¹æ©Õ͚͚»oãœù q¹µ%ëÔ¬l~pÅ5<^6q¹uÉlCiñÍ¢Ù*ô¢¢¢Š-[¶L÷ù|Ÿ<ùä“ÿ|þùçGMš4郹sçÎ7nÜ?B¡3ï˜ f¾‚iÜñùQË3g cæŒ1¤hBú†ù¸«üníÿ4ü<®pà «È”K}} MÇð¦¦SWWEsó‚A?»woáškîÃíIà«/7tºù­ÿL.»ünž_ý3‚A?ãÆEöVíþŒÑ£Ï`wÕrsÇvàÏÊI]]e8¾k×FŽÔvl2†@ •É“¯2pô)òSªoþÎàÁÅáðŒ.í@“3ŽÚýÛ>òbÚÚ‚Tîz‘0dè9¸Ý‰”{S˜^DØø™ úIn8i~} äpóûŸD}ôþ¦c„ü~J¯¿Ñ”>gùc¦ø¥¿^ÿaãgå'ܨ:ôˆµ\[…>cÆŒŠêêêÂ%K–ܾuëV÷À-[¶lVqqqÕ‚ jV®\Ù…»sà ÷ ­ÿ f\ôcV®ZBQѪ«ËIÕ¿¤=žDò ÆóòËàó æ`}5nOçËB>ß`,XÎêÕ?#heÒ9Úèú»}_ñÚ«¿àxK#~ e“;ú…9r*~ø,¡Púú½xûÑt¾¢ÕXßÈc¸/åê€,Ì;…ÏС>Úwºküžšš ò Æs¸¡–ÌÁ$$¤ ”bïžm‚­äç§v%¹ycqñmM9CF…×Üo¤ñh=ƒ³†‡ãT‘—;–ÚºÝ L¾ý_ãvyÈËŸ Ëõõ5¤¤¤áõ¦B ÐBeåF²²Fâv' T Õª§-ÈÞ½Û8zô>_6¹¹p»yä‘/8|8€í¹“ÖÝ$ÉîFÂ<öºt_ÅëØäãÙ˜î"úq·YÄæ¸\SºG„Å7§‘­{Š«©ÙDVöXöîù˜´þ9dçŒ×É„ýû¶1pÐp’’Ó¡¹ù{öT­'7ïtF õgi±ÊªàløF»Ñè{EæB[é8ï2-¯A©-â¡‹÷MއÎî~ã4”µÔ½2 (Œá"'.Å;€‰çúV™£…Íñ ¡í›¨ì¼÷uHÓ_|<ÑE”y&(?Hb”j‘hÁªb1 TâKF++¿q,yž™cm#‹jiBR¼1ÃØûå°ÐÙð«X¯Q'¼Ö¼˜ÝS<è ÏÎíȈQ’°Bohh¸SJå)[ŸmN×MÙÆrª`§Üc)q;žXéÑ”»•Ç8›gô(2ômÒñ~Ú_(;y]ýúmØ÷FÅ)––·oôhüÖ·D,ÿñÄ£¬cÑXeLŠ‘ ±¾r»ú¦vµ—‰EOYÖžÔ»¯}#¿Ñe!@šÍ5»ê¾Ðšg'W4™:»Ž19Æ`ÈV Û±XÛkôbmL{løííQÆ<±Æ«8M2Ú„°k:.«,úx^o»f( i‰‘$Û.ÌæÞ t'4^õÅ“~" ½+_ MG·vFf·)Î8pЇpæ.À9pàÀgNxʽ3ˆÈP`<°M)µ¯»®s¦ADFFA(¥Vô8}"’‡­mMD)hF†›•RQ½ž­‘"`2emg"²˜È‚:ÀJ©m§S¾Þ ÉJ½J©/£äç%À¥TÝé–¯7CD\À9@:ð‘RªÅ— 5û•R§YÄ>‰nùB‘yÀ.à RD®ìŽëœ¡˜Ü 0üØ@DnK,yiÀ‡Àog€wELÙg5ôúù+ðïÀÿ‰tXþ%0„H;têN‡ˆ\lE{WW‰H¹®àÛó¯v¢õ»Eä’¨½¨–7»DÄèü'À_€úïÓ/^ßÄ)_C°X¤”zGD.GëP •R§Òà󌄈\ \©”º®§eé ÐGóÀƒ€[)µÄw'p9š£$7°ø½Rꙵ×BD£yãq)C‡ "b¥T} ×K¡×Ùa¥”_ÿØ©”ú¥ˆ¤ß—)¥6ˆÈ÷+¥ŠcyVAD†)¥¾ÕÓÐ̤ó”R­"²ÈQJÝÓ£BöAtÇúx47]èñuhÓ'ãl9X1QDž‘_ŠH^çäg/”RÓu\ ¬WJtš±,g8èËEäw"rEç¤g”RÚ•¹Ž=@žŠæ¦ï=þ7`Œˆ ?mör´+s{L̆Î#Dä¹ðôJÖ·Ñ = ¨TJµ(¥š*´©;£ xxȾ‘ž©Ïb0Pnˆ—c^›s+€7Ñ9?&"÷÷°<½úZùÍh3‘ µ»ŠöÙ¥ÔAà NÛ³Ão€ÕJ©=~8\¼""o‹ˆÕàÍAtǦ¸ ×Ú’1{Hw`¥Ô&`“}ID>æ£M);肘=Q'cöúï ”R¿Òƒ‘/Ç_ô H½"’¬þ[)õ¹žlmw õ‰NÛ³@D–¢Íêþk{šRêit—e"ÒmùâJ šstÇz-¯o¸ADÒÑF¦5Ýp­³ûéØ98ˆµ€ñ¼Ò±À·6´bc?Φ8ôýïëJ¨µÀh}?ú²Yœ¶g‚ˆÜ \ \ª”jŒF£Ïðn†NÙú*ºC¡—£yr¿A/¶+¥vvõÎ8ˆÈl%"Ù"²˜‹¶ÙA×ñ 0[¯Ë<`&ðRËÔ« "ÅD=Ed´ž>\DþED‰Èt`°¦§äìm‘AhÊ|¥Rêw–ìhJ}¾n9p°Á²n|VCDîB›yœ¥”:lÉË3„KŸž^ û&ºÅSœˆ”o M=¹SJm9å:¡ïÌ^€fŸ¹xT)õçªC·¢XMd£X¬”zIÿBzm§»G§û/Õ¾BD^À¼¿å¥Ô"ƒ6Å>ÍŠà=àA¥Ô‘³×AWHË£†äõJ©¹zþ…ÀkÀq4З9¶ÔˆHípjãÆÂéJ©/Dd-šý~È~¥”ZÖbö9ü?>¼³ÌÒ;é„IEND®B`‚pymvpa-0.4.8/doc/pics/ex_svdclf.pdf000066400000000000000000000472351174541445200172340ustar00rootroot00000000000000%PDF-1.4 %¬Ü «º 1 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 2 0 obj << /CreationDate (D:20081113012450-04'00') /Producer (matplotlib pdf backend) /Creator (matplotlib 0.98.1, http://matplotlib.sf.net) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Type /Page /Resources 10 0 R /Parent 3 0 R /MediaBox [ 0 0 576 432 ] >> endobj 10 0 obj << /Pattern 8 0 R /XObject 9 0 R /Font 6 0 R /ExtGState 7 0 R /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] >> endobj 5 0 obj << /Filter /FlateDecode /Length 11 0 R >> stream xœ­WQoÛ6~ׯàc Ì,ïŽ<’m·(–EŒí%/†ã.ìx•²öïïHY–D9²;¬@j‰÷ñîûÈ»#…ê³õ$Ÿ*£ŒÚ+çY~wù×Ê“9ýÊxõ^pŸ*2¨1á!hÛ¾ìŽ/‚ò& Ác ‘ùßNoÖr‚[§YÕõ—zVFŸ*0¬‰‚ep\ ¬X=G$#ÿw1‹Qð¬uÿ*±}íjb?Ñü¢®!QÃq®åŽ(¢Ähù AG´ûš=ëj¢èƒ6ÇØ&tD PS·tÝ•£„aL´ð5¶«‰ý爓Å& Ñ4¶ÂÁÒ­6c¢…¯±]Mì?GÔÚ¨}±É{eƒÕ†;NÑb¨ØúÂר®&ö«‰ªÏ iwÜ ï8§]D£óÖ¦¢*ìÑkë-°7S» MÔäº ¤£ äù˜³½°Ç¨ÁÀà]ë!:!ˆ²[£IÞ@š˜‡É©?ÏD¹ÅSmºDGYQÏ2ÝšÈ!eCa—W2Äǘ=Xfº &%\´³N"¥m*ì)3DG°Ö{›=\^Zɧ~Tß*È­&K9^êõ^½½5ê×à œ½Šh& ÖBtx-8í½aïc4ñ ç²Ê‘ÙØˆ^Rê"½T–'ÑÈ&öð/ÿÇÂŒs,;‡©“u™»¨#!á"|ÞK¯¢(ôýe<ír BÝ ài]®žW-ÏÂvÖ«ÈöäÌPj¡&ŸÓ?ª÷Kõöc«壜” ¥n¼³!Ï2:í×ò¡ºy·Û©C½}ÒoÔò«úm9ž'%LÑv©ªÑHÛog>nV/ÿÔ›FÝß82÷o:¥¶¢ð{m¶ÔV ÚÜœ65³lþqÖXÛ‡Ãþïæ¬6ˆV#1»ÀmÊ»¿f4åžÔKቔ¶iõ üŒ”ì"©ØÜÖÍ‹rg¹£œúÒë䌛”;±Nbõkœ‹vØ“%ù9PgTPª)ÒVàT ™³RˆQ³É{Ðvé«ݹ¦TT@Šf$Y›Ø¤ši§)"òg¨g99Æå€ÒÓ©!oàø¨ˆý:”‚üpW`Rúƒ;t‹˜«x—œ“È”{W·š²#3¡Á˜Ó¢LJ³=„Ì•¤ÏA£ôýQ|˜‹ïRˆÖù¤žŽñ¹‚’øÑäòH[1b€3 Pâ¶Î'%ÑÆïs…àÒ—F®f„t* ÃÓ\xOúè'|$0€Ì%®PHy*'´¸a|;ŸNÇÎ+É7„\ȾÔÌäSfœn.|_”øJþ !òÏrn§r£g Ÿ-Ùb‘bÉ%-œ\^™mN¡å¾º¹Ý¬žÕz·jšíãv½zÙžÕ¦®µœ}ȼu}hšÅ÷Õnû¿ˆÛÅãa÷П (—ìÿþ9|Wå[ƒ|Ot´EW>Ĉ4$Ær7Ñl»æôûöy³ªÕ‡ÅÝŸ·%ñûyhÔ÷F«f½mšCÝô4«8GR( endstream endobj 11 0 obj 1117 endobj 42 0 obj << /Filter /FlateDecode /Length 149 >> stream xœ5K! C÷9…/0R~„pª®¦÷ß6aZ Û/Áƒ‘ŒKL`ì˜cá%TO­>$#ºI9©P7OhL 3lÒ%ðÊtß2ž[¼œVê‚NHäé¬6¢Œf^ÃÑSÎ ›þËÜ$jeF™2ëT·²²`æµ<÷3î¨\脇ʰèN1¢ÜfF~ÿÛôþ{20c endstream endobj 43 0 obj << /Filter /FlateDecode /Length 52 >> stream xœ363T0P0±T026Q064b…C. ˆ•Ë˳@ªr¸ Ês`ªr¸Òé À endstream endobj 44 0 obj << /Filter /FlateDecode /Length 49 >> stream xœ36´P0P040’F†@–‘‰BŠ!HÄÌå‚ æ€Y@¢8®&‡+ Æè & endstream endobj 45 0 obj << /Filter /FlateDecode /Length 80 >> stream xœEŒ» À0D{¦`~&fŸ(•³ JÜpOº{¸:2SÞa†‡ž ,†Sñ™£`5¸FR죰n_uæzS«õ÷*Ovvq=ÍËô endstream endobj 46 0 obj << /Filter /FlateDecode /Length 90 >> stream xœMAÀ ï¼"OPDÐÿtzÒÿ_«Ô½ÀN‰E‚ô5jK0î¸2kP)˜”—ÀU0\ Úî¢Êþ2IL†Ó{·ƒ²ñqƒÒIûöqz«ýzÝÒ"X endstream endobj 47 0 obj << /Filter /FlateDecode /Length 210 >> stream xœ5PË C1»g ¨džV½uÿkmÐ;aÿBXÈ”y©ÉÎ)éK>:L¶.¿±" ­u%ìÊš ž+ï¡™²±ÑØâ`p&^€7`èi5tႦ.•BÅ%ð™|u{è¾OxjrvCÉ` jºMX´<ŸNâÿ~Ãî-ä¡’óÊžùœíð;³ná'jv"Ñr2Ô³4ÇE> stream xœ36´P0P07WÐ544U022P042QH1ä2443s¹`‚9`–‰a$Ár¸`ZsÀ: ²P­9\iM8õ endstream endobj 49 0 obj << /Filter /FlateDecode /Length 147 >> stream xœ=O¹ 1 ë=8Àz,[ó\ê²ÊFR"@ñ‘eGÇ \b“Ž9/i?øiX5Gô„ŠaXàn’ƒ,JWž-^ ‘ÚB]HøÖÞ­Ld¢<¯;p'£>TYz@;DY®IÃXÕV]j°²ÎÂu=̪åÑ'k)PTB½tÿŸ{Úû o/ë endstream endobj 50 0 obj << /Filter /FlateDecode /Length 17 >> stream xœ36´P0€ÃC.”ì endstream endobj 51 0 obj << /Filter /FlateDecode /Length 317 >> stream xœ5RKrC1Û¿SpΘ¿}žt²jî¿­„'+°-@B./YÒK~Ô%Û¥ÃäW÷%±B>íšÌRÅ÷³Ï-¯GÏ·- Q=ø2'"ÔÏÔè:xa—>¯N)x“¯á_x”NƒÀ;2Þ“‘$ÁšK‹MH”=Iü+åõ¤•4t~&+sù{r©j£É X¹Ø¤+)$=‰H²r½7VˆÞW’Çg%&Ý&±M´ÀãÜ•´„™˜BæX€Õt³ºúLXã°„ñ*aÕƒMž5©„f´ŽcdÃx÷ÂL‰…†ÃP›}• ª—ÓÜ #¦GMví²[6ï!D£ù3,”ÁÇ($‡Nc$ Ò°€9½°Š½æ 9Àˆeš, mh%»zŽ…ÀМ³¥aÆ×ž×óþE[{£ endstream endobj 52 0 obj << /Filter /FlateDecode /Length 248 >> stream xœ-Q9’AËçzBsÓï±Ë‘÷ÿé ʃ†C :-qPÆO–+ÞòÈU´áï™ÁwÁ¡ßÊu9HÒTM¨]¼½vfó¤5,ƒë?c 7zqxLÆÙíu5{×kOfP2+qÉÄSuØÈ™ÃO¦Œ í\Ï È¹Öe¤›•ÆŒ„#M!RH¡ê&©3A£«Q£Å~éË#aU#j û\KÛ×sÎ4;«<9¥GWœËÉÅ +ý¼ÍÀET«<p¿ÛCýœìä7ÞÒ¹³Åôø^s²¼0XñæµMµø7/âø=ãëùü¨¥[ endstream endobj 53 0 obj << /Filter /FlateDecode /Length 163 >> stream xœM;Ã0 CwŸ‚ êãÏyRtjï¿Vr ƒÁÊ(usfà !¼ÞÀ‹-eÇ· ¬Oãø'庉}€ù‹º ’*†³©Æ€F ;tõ’³™{MÃXp¤¤ï¶@'<,›ÙVµQ•°{ì“î"I­Ú£Ó Œg í° °»›O㵦¦_š)雨3˜·ðH›BdˆZÊ÷qêg{ÿ?ë83 endstream endobj 54 0 obj << /Filter /FlateDecode /Length 131 >> stream xœEË ! CïTáò>©‡ÕžØþ¯ë0šABøA";ñ0¬óò6ÐÅðÑ¢Ã7þ6Õ«c•,ºzRV釼òPi0QÄ…YLCaΘÊÈ–2·á¶Mƒ¬l•T­ƒv<¶§e«~©maê,ñ ÂU^¸Ç ?K­w½U¾BS0— endstream endobj 55 0 obj << /Filter /FlateDecode /Length 88 >> stream xœ5Œ» À0D{¦¸ø8€÷‰R‘ýÛ[.¸{Òç9ÀÈ>GèÄ-dCá¦xI9¡>Q4Zo:¶Hs¿¼d3ý3Ü}…íæ€d4Iä!ÑåråY)z>—Ú~ endstream endobj 56 0 obj << /Filter /FlateDecode /Length 232 >> stream xœ5Q;r1ë} ] 3æoŸg3¯JîßF°“fa ç=؈ėÒåŠoYf~'‹¼øY)œ¼QTEX!íàYÎj†Ás#Sàr&>ËÌ'ÓbǪ‰8ÎŽœf01ëh9fš=!×#nì4ËU i½[ª×÷ZþSEùȺ›åÖ)›Z©[ôŒ=‰ËÎë©-í £Žâ¦ Òác‡÷ _ÄœÅE'ÒÍ~3å°’4§ð#1”êÙá5ÂÄÏŒOÙÓé}”†×>hº¾w/èÈÍ„LåÊHÅ“•Ƙ1T¿Í$õý?г>š0TG endstream endobj 57 0 obj << /Filter /FlateDecode /Length 74 >> stream xœ357U0P°´¦†æ æF– )†\@>ˆ•Ë˳ÌLÌ€,CKd–‰±!eba†Ä26±€Ê"X@lMÌô®4q“ endstream endobj 58 0 obj << /Filter /FlateDecode /Length 87 >> stream xœ=Ž»À0C{¦`ó †}r©œýÛ€?iÐC:N¸ 6 ÏÑíÂÎ7AîE/°.o€ !‹$ùöÎÅ¢V™Å¯¦Eê„4Iœ7QèN‹Jçãôx>ºuz endstream endobj 59 0 obj << /Filter /FlateDecode /Length 59 >> stream xœ355W0P°´¦¦F æF– )†\@>ˆ•Ëehifå€YÆ@Hœa¤Ášs`zr¸Ò©áZ endstream endobj 60 0 obj << /Filter /FlateDecode /Length 75 >> stream xœ5±À0{¦`ËöÉ¥Âû· øh¤ÈäæÁž²t°Mçôç¤MóBQª0Ðtf}qhäV^hJ¯ŠèÏAï™êš endstream endobj 61 0 obj << /Filter /FlateDecode /Length 338 >> stream xœ5RK’[AÛ¿Sè®jþÍyœšÕäþÛ쬠8ÈÄK QrÅy‚ñ:¿ëåiü>Þ…Ô‚§"ýÀµiïÇš5Q°4b)Ì>öý(!ÇSãßè¹Hfd2r ˆûµ>Ö›L9ü¤isú(Iz-ØÝv|YAÒ“–ìä‡u-°ºM˜k"9µ25ÏÇžá2ž#AÕ, IŸ¸OŒH3;g-yáxª/~½×2©—U2¶ æ`;™ §("¿ $¹‰»hê(ŽfÆšÛ…†’"÷Ý=œœôº¿œD^ á,ÖŽzÊ2'; J jå˜a½ö…qš6J¸SÓí]±¯ßg&aÜæ°³R2 Îqp/›Ì${Ý1a‡˜÷îŒÄ¼ù]l\¹Ì¹&Óý(ÚH×ç\M™­(áªä‰×øÿüÞÏÏ?7}± endstream endobj 62 0 obj << /Filter /FlateDecode /Length 247 >> stream xœMQ»mD1 ëß\àëkyž R]öoCÉ ¡/)§%öÆK á[¾ä‘UC?1ì3,=ÉäÔ?æ¹ÉT¾ª›˜Pbáýh¼t/"+Êße sÎ÷ࣗ`&4`¬oI&Õ¼3d‰¡ŽÃA›TwM,®Í3ÈíV7²:³ lx%âÆDÙÍ`£Œ±•År¨ ’Z`×éQ‹‚+”Ö t¢ÖĺÌà«çöv7C/ò਺x} ëK°Âè¥{,|®BÌôL;wI#½ð¦fR™‘•:=b}·@ÿŸe+øûÉÏóý (\* endstream endobj 63 0 obj << /Filter /FlateDecode /Length 70 >> stream xœ3³0Q0P°b3s3s#K…C.# 3 @.—X ‡ËÐÐÊ261R044²LÍ¡b0@YKA9Pý9\iOT/ endstream endobj 64 0 obj << /Filter /FlateDecode /Length 304 >> stream xœ=’;’Ã0 C{‚ÈŒø“äód'•÷þí>2ÉV€I‰(/u™²¦< i& ÿÑááb;åwØžÍÌÀµD/Ë)Ï¡+ÄÜEù²™º²:ŪÃ0[ô¨œ‹†M“šç*K· žÃµ‰ç–}Ä74¨uK ÝÕhY Ípuÿ;½GÙw5<›TêÔQæù!O¢‡éJâ|<(!\{0FäSÑ@޳\­ò^Bö·²ÂAjIç³'<ØuzO.nÍd¹TøNQìíÐ3¾ìJ =¶áXî};š±é›8ì~ïFÖÊŒ®h!~ÈW'ë%`ÜS&EdN¶Xn‹Õžî¡(¦s†s êÙŠ†RæbW« ;o,/Ù,È”Ì 2F§Mž8xÈ~šôy•çxýlós; endstream endobj 65 0 obj << /Filter /FlateDecode /Length 230 >> stream xœ5QInÃ0 ¼ëóâ.¿ÇAOíÿ¯Ò ``hKœÍx‰ÁÏAäÆ[ÖŒšø›É]ñ»< ·‚'Q^†{Ù .o—ý8Ì|ð^Z9“O2 ÙôðDÈ`—@èÀìÔa›i'ú†„ÏŽH5YN_KÐK«(OÙ~§ J´­êÏí³.´íkO8Ùí©'•O ž[²—WLcôDå.ÅôAª³…ž„ò¢|²ù¨!]¢œ'£@;°ç¶Ÿ‰W… uuŸ¶¡)Oÿ645I"ä%œÙÒ¸[øþž{ýü¦TSŸ endstream endobj 66 0 obj << /Filter /FlateDecode /Length 245 >> stream xœEP»C1 ë=`ý,{žwH•Û¿=JFp…!Z?’Z˜ˆÀK ±”oâGFA= ¿…â3ÄÏ…A΄¤@œõ™x†ÚFnèvpμÃ3Œ9ÅZp¦Ó™ö\Øäœ'Îm”ñŒBºITqTŸqLñª²Ï×¥µl³Ó‘ì!„KI%&—~S*ÿ´)[*èÚE°Hä“M4á,?C’bÌ ”Q÷0µŽôq²‘GuÐÉÙœ9-™Ùî§íL|X&™Qå)ç2>'©ó\N}î³Ñ䢥UûœýÞ‘–ò"µÛ¡ÕéW%Q™Õ§¸<ÿŒŸñþŽ Y> endstream endobj 67 0 obj << /Filter /FlateDecode /Length 227 >> stream xœ5O;²! ë9….Œm`ϳ™T/÷oŸd² þHòôDG&^æÈ¬Ùñ¶ˆøSñ¯=íÄê=¸‡åâB˜a$œ5븛§ãÅ¿]å3ÖÁ» ¾b–¶0“õ•Å™ËvÁX'qN²c×Dlc]ëéÖL(!í0%È)}²£Œ9:Nä‰çbªÅ.¿ïa}Á¦1¢ÂWOÐdP–=ï& ôßÕßI4‹^2‘`a$æÎYNøÕkGÇQ‹"1'¤ä2Òœ®b ¡ Å:; *—êsÊÝ>ÿh][M endstream endobj 68 0 obj << /Filter /FlateDecode /Length 338 >> stream xœERKrÅ0Ûç\ 3ægãó¼NWéý·•p:Ý<ô  2=eH¦Ü6–d„äò¥WdˆÕŸFŽDÄß)¡À®ò¹¼–Ä\Èn‰Jñ¡?—¥72ͮЪ·G§6‹F5+#ç C„zVèÌîQÛdÃëv!é:S‡p,ÿC²”uÊ)”mAߨ#èo<ܳær³¹Lnõ¿î[ ž×:[±m@ –sÞ`Äà ÚÄÜÚÞ)(UºŠI­ò\';P¶Ðªt¼7€9`Ã’­×hoÃ>ô¢FÅö ¨, þÎÙfÁÞ1ÉH°'æN=q:Å‘pI8Æ@Š­âºñØâ/®ˆšð u:eM¼ÂžÚâÇB“ïRqð"n]EµlOç ´?*’3b¤ÄÑ ‘ԒΗõÐû¸‰¯Äæž¾Ý?Â9Ÿëû¸ƒà endstream endobj 69 0 obj << /Filter /FlateDecode /Length 133 >> stream xœMAÃ0ï~…ž€±óžtzJþ-6î팀‘†03× endstream endobj 70 0 obj << /Filter /FlateDecode /Length 68 >> stream xœ32·P0P°4†& æf )†\@¾©‰¹B.H Äʳ €´%œ‚ˆ[B4A”‚X¥f&fI8"—É´å endstream endobj 71 0 obj << /Filter /FlateDecode /Length 255 >> stream xœE‘K’ D÷ž‚#€üä<™šUrÿí4˜L6v—¨ý„J#¦,çy0ýÈòÍd¶éµ«Š"Ìä*ôXÕ)â̵Dµõ±2rÜéƒâ 箜T²¸QÆ:ª:8¦çÊúªîü¸,ʾ#‡2lÖ96på¶aŒ£ÍVw‡ûD§“©£âvløƒ“ƾÊÕ¸N6ûê%‚~¡ LòM u†@ãæ)zr öñq»ó@°·¼ ¤läÈŒA»N®qëüÞÿ:ÃçÚ WŽwñ;Lk»ã/1ÉŠ¹€EîÔó=­ë ïÉ™crÓ}Cç\°ËÝA¦Ïüë÷PŠfˆ endstream endobj 72 0 obj << /Filter /FlateDecode /Length 45 >> stream xœ32·P0P°4†& æf )†\–V.L,ÌÑ–p "žŸ} µ endstream endobj 73 0 obj << /Filter /FlateDecode /Length 214 >> stream xœ=P»C1ë= äÎ|í7ÏË¥Ëþm$œ¤B6B”šLÉ”‡:Ê’¬)O>Kb‡¼‡ånd6%*E/“°%÷Ð ñ}‰æ÷ÝÕ–³C4—h9~ 3*ªÓK6šp*º ÜÃ3ú mtV‡±[ Ф`×¶ rÇ Á™‹" JMÿ­r÷RÜï=o¢ˆ”tð®ùåôËÏ-¼N=ŽDº½ùŠkq¦: DpFjòŠtaŲÈC¤Õ5=kµ®Þzù7hGt€ì‰ã4¥CÿÖ¸Ç뇊Rô endstream endobj 74 0 obj << /Filter /FlateDecode /Length 161 >> stream xœEKà C÷œBGðG|žtºJï¿­!M³€§±@w'©µÑ/mKº >[ ÎÆxè6n5äu€V¤ãh”R}¹Åi•tñh6s+ ­fz”£ :Þí¢är¦îÎùGpõ_õG±îœÍÄÀdå„fõ)î|›Q]ÝdÒcnÖköª°´¬¥å„ÛÎ]3 î©íý©s:„ endstream endobj 75 0 obj << /Filter /FlateDecode /Length 236 >> stream xœMPKnD! ÛsŠ\àI$!ÎCÕUçþÛ±ÃTí*†Hé²UëSbu‰ìò¥M—Ê2y¨åOÛÿQ nÿÐÈA´·ŒbæÖÅÂ$<å4#'×,;Of…ÆÄã.`Ÿ5[•Í9m:7@º·ª³ÞdP "êBÍ“.œ§Ñ—ˆ9ž¨`Jw&µ\>Õ¡qZ½ ¹c‹“oÄY¡ÀaÐLqÖ_֨ɲYÈ I†!Î}£{” ¨Êy+“¡õ†Õ •¹…¢©å’üÚ0¶Œué JªÁß*§}¿$]S endstream endobj 76 0 obj << /Filter /FlateDecode /Length 332 >> stream xœ-R9Ž$1 Ëý ~`ëòñžLÔûÿtIUªlË<ärÃD%~,ÛQkâ×Ff Âð¯«Ì…ïHÛÈ:ˆkÈE\É–ÂgD,ä1Ä<Ä‚ïÛøù¬ÌɳÆ/Ù÷Vì© ËBÆ‹3´Ã*ŽÃ*ȱ`ë"ª{xS¤Ã©$Øã‹ÿ>Ås‚¾#hÀ/ùç«#x¾¤EÚ=fÛ´[–iG•–ƒíiÎËäKë,WÇãù ÙÞ;BjW€¢0wÆy.Ž2meDkagƒ¤ÆÅöæØ¥]èÆe¤8ù™*ÂJšÌl¢ þÈé!§2¦®éJ'·QwêÉ\³¹¼I2[÷EŠÍÎë™õw˜2«Í;y–¥NEø{¶ ãêÙk™…F·9Á+%|6vzrò½šYÉ©HHÓº N£ÈKØ–øšŠšÒÔËðß—÷ÿ3â| endstream endobj 77 0 obj << /Filter /FlateDecode /Length 157 >> stream xœE¹C1DsUA °ê±ÇÑwÿ©ùJ´o-‡¯%Sª'"¦Ü×hô0yŸM%V,Ø&¶“rAJ1˜xN1«£·¡™‡Ô븨ª¸uf•ÓiËÊÅóhW3“=Â5ê'ðMèøŸ<´©è[ ¯ ”}@µ8IP1}¯b£œv"œà>G™)#qbn ì÷f¾W¸ÆãÝ7y endstream endobj 78 0 obj << /Filter /FlateDecode /Length 320 >> stream xœ5Q»qÅ0 ë5ðø•4s¯ÊÛ¿ @;a@ª¼dJ¹\ê’U²ÂäG‡êMù>`¦üõãèÙ!ºSÖ–{ËÄ<¥ŽXM–{¸/ M‰¹…ó÷è+£0ºÅß?@³$0ipðSk­Zb‰<,X³+Ì­)TÈU|;6¹rq³Ð§š·Ü‚ðeˆdGj±¯Ëe)ò»õ „æˆO‰…çf"ñ'b{öÙbWW/ªÖI‡RÒln04E²êƒØWÇ5?OGÙÁÉA¿ŠÁø68™/Iy_¡þÏÙȱ’C$ò}µÀˆ#l€¡Oí#e 4E÷î™R>&UŠïF!}ªW2¼‘Ùj†Íÿ]Ù* UYŸFp&ƒI8ód£ ÓRµÓ¿ûÜãóccz€ endstream endobj 79 0 obj << /Filter /FlateDecode /Length 338 >> stream xœ5R9®Ý@ ë} ] €vÍœç©~î߆”_ C´VŠšŽ•iùe!U-“.¿íIm‰ò÷É ‰’W%Ú¥ ‘Pù<…T¿g˼¾Öœ K• ““’Ç% þ —Þ.çck?#w=z`UŒ„Ë£kY:»Ãšü<¦?âr®X·cH ºqÚïCóyÈ f˜–Š ]V‰~Añ G­}÷XTX ÑíIpŒP‘€vÚH 9³»¨/úY”˜ tí‹"î¢ÀIÌœb]:ú>t,¨¿6ã˯ŽJúH+kLÚw£IiÌ"“®—Eo7o}=¸@ó.Ê^Í ASÖ(i|Ъc(še…wš 4LJÌ<‡3”ô}(~_K&º(‘? ¡_£ŒœosÑŸ¶ŠñÙa¯`…ÒÅšä}@*z`úÿ×øyþü¶€T endstream endobj 80 0 obj << /Filter /FlateDecode /Length 72 >> stream xœ5Œ±À0{¦Ð6X`ï“KEöoC|N/—¢ÁZ º‚#pu©üÑ#]¹)E—c΂áqª_H1F=¨#ãÞÇO¹_p} endstream endobj 81 0 obj << /Filter /FlateDecode /Length 392 >> stream xœ=RKn1ÛÏ)¸@¥ðMrž©ÞîÝ[›ÌTª /¶1”— ©%?ê’ˆ3L~õr]âQò½ljgæ!î.6¦øXr_º†ØrÑšb±OÉ/È´TX¡VÝ£Cñ…(-àá¾ÿñ¨Á×°…rÃ{d`JÔn@ÆCÑHYAaû‘è¤P¯láï( WÔ¬…¡tbˆ –)¾« ‰˜¨Ù ‡„•’ªÒñŒ¤ð[Á]‰aP[[ÛxfÐÙÞ‘3íÑqYk?=é£Q2µQMg|ñÝ2RóÑè¤ÒÈÝÊCgÏB'`$æI˜çp#ážÛA 1ôq¯–Ol÷˜)V‘ð;ʽýÞ’Ï{à,Œ\ÛìL'ðÑi§­¾býƒ?lK›\Ç+‡E¨¼(~×Aq|XÅ÷d£Dw´Ö#Õh% ÂÎí0òxÆyÙÞ´æôDh£DÔŽ=(²Å地§ü¬Í±ž&{o´”Į̀„Ôvz¨¶ÏcÔwžûúü.¡ endstream endobj 40 0 obj << /FontMatrix [ 0.001 0 0 0.001 0 0 ] /Name /BitstreamVeraSans-Roman /FontBBox [ -184 -236 1288 929 ] /Encoding << /Differences [ 32 /space 40 /parenleft /parenright 44 /comma /hyphen /period 48 /zero /one /two /three /four /five /six 56 /eight /nine 65 /A 67 /C 70 /F 76 /L /M /N 83 /S 86 /V 97 /a 99 /c /d /e /f /g 105 /i 108 /l /m /n /o /p 114 /r /s /t /u /v ] /Type /Encoding >> /BaseFont /BitstreamVeraSans-Roman /Type /Font /CharProcs 41 0 R /Subtype /Type3 /FontDescriptor 39 0 R /Widths 38 0 R /LastChar 255 /FirstChar 0 >> endobj 39 0 obj << /FontName /BitstreamVeraSans-Roman /Descent -236 /FontBBox [ -184 -236 1288 929 ] /CapHeight 730 /Ascent 929 /MaxWidth 1342 /StemV 0 /Flags 32 /XHeight 547 /ItalicAngle 0 /Type /FontDescriptor >> endobj 38 0 obj [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 318 401 460 838 636 950 780 275 390 390 500 838 318 361 318 337 636 636 636 636 636 636 636 636 636 636 337 337 838 838 838 531 1000 684 686 698 770 632 575 775 752 295 295 656 557 863 748 787 603 787 695 635 611 732 684 989 685 611 685 390 337 390 838 500 500 613 635 550 635 615 352 635 634 278 278 579 278 974 634 612 635 635 411 521 392 634 592 818 592 592 525 636 337 636 838 600 636 600 318 636 518 1000 500 500 500 1342 635 400 1070 600 685 600 600 318 318 518 518 590 500 1000 500 1000 521 400 1023 600 525 611 636 401 636 636 636 636 337 500 500 1000 471 612 838 361 1000 500 500 838 401 401 500 636 636 318 500 401 471 612 969 969 969 531 684 684 684 684 684 684 974 698 632 632 632 632 295 295 295 295 775 748 787 787 787 787 787 838 787 732 732 732 732 611 605 630 613 613 613 613 613 613 982 550 615 615 615 615 278 278 278 278 612 634 612 612 612 612 612 838 612 634 634 634 634 592 635 592 ] endobj 41 0 obj << /parenright 42 0 R /hyphen 43 0 R /period 44 0 R /one 45 0 R /four 46 0 R /zero 47 0 R /comma 48 0 R /parenleft 49 0 R /space 50 0 R /six 51 0 R /two 52 0 R /nine 78 0 R /three 79 0 R /A 55 0 R /C 56 0 R /F 57 0 R /M 58 0 R /L 59 0 R /N 60 0 R /S 61 0 R /five 62 0 R /V 63 0 R /a 64 0 R /c 65 0 R /e 66 0 R /d 67 0 R /g 68 0 R /f 69 0 R /i 70 0 R /m 71 0 R /l 72 0 R /o 73 0 R /n 74 0 R /p 75 0 R /s 76 0 R /r 77 0 R /u 53 0 R /t 54 0 R /v 80 0 R /eight 81 0 R >> endobj 6 0 obj << /F1 40 0 R >> endobj 7 0 obj << >> endobj 8 0 obj << >> endobj 9 0 obj << /M21 33 0 R /M22 34 0 R /M17 29 0 R /M9 21 0 R /M4 16 0 R /M14 26 0 R /M5 17 0 R /M3 15 0 R /M19 31 0 R /M11 23 0 R /M8 20 0 R /M7 19 0 R /M6 18 0 R /M2 14 0 R /M18 30 0 R /M16 28 0 R /M24 36 0 R /M1 13 0 R /M13 25 0 R /M10 22 0 R /M25 37 0 R /M0 12 0 R /M12 24 0 R /M20 32 0 R /M15 27 0 R /M23 35 0 R >> endobj 23 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 36 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 33 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 18 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 13 0 obj << /Filter /FlateDecode /Subtype /Form /Length 24 /Type /XObject /BBox [ -3.25 -0.25 3.25 0.25 ] >> stream xœ3VÐ5PÈUÐ5V0PÈá æÀ endstream endobj 19 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 14 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 17 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 32 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 16 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 15 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 26 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 22 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 24 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 12 0 obj << /Filter /FlateDecode /Subtype /Form /Length 24 /Type /XObject /BBox [ -3.25 -0.25 3.25 0.25 ] >> stream xœ3VÐ5PÈUÐ5V0PÈá æÀ endstream endobj 20 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 0.25 4.25 ] >> stream xœ3P0PÈb…®`.¥ endstream endobj 30 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 21 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -0.25 -4.25 0.25 0.25 ] >> stream xœ3P0PÈb]…®`.¿Ò endstream endobj 35 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 25 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 29 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 34 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 31 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 37 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj 28 0 obj << /Filter /FlateDecode /Subtype /Form /Length 20 /Type /XObject /BBox [ -0.25 -0.25 4.25 0.25 ] >> stream xœ3P0PÈU0’9\Á\¥ endstream endobj 27 0 obj << /Filter /FlateDecode /Subtype /Form /Length 21 /Type /XObject /BBox [ -4.25 -0.25 0.25 0.25 ] >> stream xœ3P0PÈUÐ5R9\Á\ÑÒ endstream endobj xref 0 82 0000000000 65535 n 0000000016 00000 n 0000000065 00000 n 0000000216 00000 n 0000000275 00000 n 0000000511 00000 n 0000013985 00000 n 0000014017 00000 n 0000014038 00000 n 0000014059 00000 n 0000000382 00000 n 0000001703 00000 n 0000016547 00000 n 0000015000 00000 n 0000015313 00000 n 0000015930 00000 n 0000015776 00000 n 0000015467 00000 n 0000014846 00000 n 0000015158 00000 n 0000016705 00000 n 0000017013 00000 n 0000016239 00000 n 0000014382 00000 n 0000016393 00000 n 0000017323 00000 n 0000016085 00000 n 0000018251 00000 n 0000018097 00000 n 0000017478 00000 n 0000016859 00000 n 0000017787 00000 n 0000015622 00000 n 0000014691 00000 n 0000017633 00000 n 0000017168 00000 n 0000014537 00000 n 0000017942 00000 n 0000012449 00000 n 0000012234 00000 n 0000011685 00000 n 0000013502 00000 n 0000001724 00000 n 0000001946 00000 n 0000002070 00000 n 0000002191 00000 n 0000002343 00000 n 0000002505 00000 n 0000002788 00000 n 0000002926 00000 n 0000003146 00000 n 0000003235 00000 n 0000003625 00000 n 0000003946 00000 n 0000004182 00000 n 0000004386 00000 n 0000004546 00000 n 0000004851 00000 n 0000004997 00000 n 0000005156 00000 n 0000005287 00000 n 0000005434 00000 n 0000005845 00000 n 0000006165 00000 n 0000006307 00000 n 0000006684 00000 n 0000006987 00000 n 0000007305 00000 n 0000007605 00000 n 0000008016 00000 n 0000008222 00000 n 0000008362 00000 n 0000008690 00000 n 0000008807 00000 n 0000009094 00000 n 0000009328 00000 n 0000009637 00000 n 0000010042 00000 n 0000010272 00000 n 0000010665 00000 n 0000011076 00000 n 0000011220 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 82 >> startxref 18406 %%EOF pymvpa-0.4.8/doc/pics/ex_svdclf.png000066400000000000000000001012331174541445200172340ustar00rootroot00000000000000‰PNG  IHDRô“Þ'àhsRGB®ÎébKGDÿÿÿ ½§“ pHYsaa¨?§itIMEØ 59¤É3 IDATxÚìÝyXTeÿ?ð÷ÌÀ û¾ ˆÊŽ""¸+ä–¦ej*áR®iešiîei–[¹/©¹dÙbOh™ &(® ¨ *n È"û:l3÷ï~œGÔëùÎäûu]^—3çÌaæsÎÌûÜ÷¹Ï92!„éœÔÔTܾ}Ï<ó d2Y½éû÷ïÇ;#ƒÂÃÃC/>Syy9nß¾¢¢"ÔÔÔÀØØpqq¡¡áC_{ÿþ}ܽ{eeeÉd055…ÜÜÜ››‹ëׯ£U«V°¶¶®÷Ú¢¢"\¾|ÞÞÞ077ÇÕ«WQRR///¸¸¸Ô™7++ W¯^…±±1‚ƒƒù¾sàÀL:€——×ß^Ûªª*̘1X³f ¬¬¬PUU…Õ«Wã‹/¾@ee%Œnݺa„ ¸|ù2þ²¿ŸsssxzzÖyÞÃÃS§NÅ”)Sþ'Û˜Z­Fxx8zôè)S¦@.—ÿ%ËÍÎÎÆ­[·Ð®]»ÿz›Ð'çÎðaÃðý÷ß#$$D§ßëk¯½KKK,Z´FFFOun0:uÓ×_¹s確º …¢Þô-Z`̘1°´´ÔùÏ"„À7ðÅ_ ** *• *• ÕÕÕ066Æ Aƒ0iÒ¤F_ñâE,[¶ III°´´„\.GYY±{÷n\½zãÆÃôéÓñúë¯7®ï¼ó¾úê+¸ººbÊ”)ˆÇÔ©S±dÉ’:?úkÖ¬Á’%Kàåå…'NÀÞÞ^/¶…BîÝ»£¼¼*• pýúulÙ²£GF§NàììŒêêj¼öÚk011ùKÿþ;#àà`,_¾¼ÎócÆŒAPPÐÿ¬Dvv6 ô—…9;v sæÌÁ¹sçôf›xNNN;v,uþ½Ž;S¦LÁ¥K—СC:馆Zæµ¼½½1yòd˜™™´Z-ª««ahhF­V 044¬÷æÕjQSS­V ™Lƒ:; Biºr¹u–£ÑhPSSCCCi^CCÃw>îÝ»‡Ù³g#11+V¬€”J%ÊËËqñâEœû IIIX·nš4i(,,Äõë×ahhˆàà``ïÞ½xå•W`jjZç³~ûí· ‚ÊÊÊþþþ8uêîܹ#õpàðáÃðõõ…F£y¬•ë¤P( P( ’ššh4! “É P(``P÷+X[×Úyjk/“É „€F£ip …}ûö…V«…‘‘jjjpûömÈd2ôéÓ~~~P*•Ðh4˜>}z5ôÞÜ&jÿfíöòÇ÷T]]-mSÒv§P(0eÊi£¡ÏøÇm«¶¦ —Ë¥ùj?çþ%%%øê«¯ЦM›>t›ÿãgxp=6ôù«««!„@ee%*** —Ë¡T*ùÚ?n/ÕÕÕÉdõZùµËW*•n+ …⡟ÿ¶-=ê{Þ¤IL:Uú}ihy¾§Ç©ÃÃÖ{m \ïµÛ‘L&«·ì¿;>>>prrBTT‚‚‚¤>•é¤O>ùDÈårQSSÓàô}ûö OOOqóæM!„?ýô“ðòòk×®/¿ü²­Zµü±(//—^wÿþ}ñ¯ýKtíÚUøûû‹   ñöÛo‹¬¬,iž˜˜1pà@Ѷm[áëë+BBBÄâÅ‹EQQ‘4ÏîÝ»…§§§øôÓOųÏ>+üüüÄ×_ÝègqrrGŽipzcŸQ!’’’D‡ÄÛo¿ýÐzíÝ»W4mÚTDFFÖyþÆÂÒÒR¬_¿^hµZ‘œœ,:wî,fΜ)Ú¶m+¶mÛ&4BˆmÛ¶‰   1{öláãã#îß¿ßèß+++‘‘‘¢GÂßß_´lÙRôíÛWúŒ?ÿü³ðôôÉÉÉB!222ÄäÉ“EÇŽ…¿¿¿ãÆ—.]’þ~NNŽ˜>}ºhݺµðññ­[·C‡×®]FÄÇÇ‹ˆˆáçç'|}}EPPx÷ÝwEii©¨¬¬o½õ–9r¤¸ÿ¾Xµj•pqq*•J4kÖLx{{‹cÇŽ‰}ûö ‘-}–¸¸81vìX(üüüDûöíÅÇ,„¢ªªJ,^¼X„††ŠV­Z 1`ÀqðàAQUU%rssÅĉ…‰‰‰°¶¶ÞÞÞ"((HìÝ»W!D‹-ĪU«„BhµZqãÆ 1mÚ4ѲeKáçç'Ú¶m+¶lÙ" …Bäå剈ˆ1räH±`ÁÑ¥Káåå%  Î;'Õª!ÑÑÑÂÃÃCœ;w®ÎóyyyâóÏ?:t~~~¢U«VbøðáâòåËB«ÕгgÏŠ—^zI ???$>øà‘››+„âСCÂÙÙY áíí-F%Š‹‹ETT”xá…„ŸŸŸðóóÁÁÁbñâÅ ¾¿œœ.†*´Z­ô|II‰9r¤xî¹ç„V«7oÞ£G-[¶¾¾¾¢M›6âÍ7ßéééýû‘šš*¦L™"-£uëÖbìØ±Òï…Z­¿üò‹èß¿¿ð÷÷þþþ¢gÏžâÇBqöìYáîî.âââ„BܺuKLžþøc(•J¨T*<ÿüóhÖ¬ pãÆ ¬^½ööö˜0aBãŠQQQ˜4illlмyóßç¾}û ÿF»‹cccGGGDGG#22pss«÷š^½zÁÈÈÑÑÑèÝ»7Œ_}õÜÜÜеk×:õ211AŸ>}ð믿bРAÉd8zô(ÂÂÂ`kkûкkµZùîîîðõõElllù3220mÚ4˜™™aΜ9pvvFnn.ªªª¤ÏêììŒiÓ¦ÁÆÆ•••ˆŒŒÄ‡~///¸¹¹áí·ßF\\|||ðÖ[oA¡PÔÙjÿ^AA>ùä\¸pï½÷€÷ßðꫯJ¯‰…»»;,XµZ+V`íÚµX½zuƒ‡™„¸yó&Ôjuãøؾ};V¯^iÓ¦! BdddH-9¥R‰gŸ}-Z´€R©Ä;w°zõjXXX`êÔ© Áë¯¿Ž 6Hã,--Q\\ŒeË–ÁÖÖŸ}öŒ‘ŸŸ/µ4ÿÈÖÖ]ºtÁêÕ«qïÞ=¸ººJ‡F.^¼ˆéÓ§C«ÕbݺuHJJÂG};;;£´´ô±[žZ­;wîÄÑ£Gñá‡ÂÁÁååå(((€J¥‚111˜:u*úôéƒÉ“'ÃÄÄiii ŽA©ªªÂ®]»#½§²²2ÀÐÐjµZz~Ù²e077G^^žT!–-[†¨¨(¼ùæ›ðõõÅ… °nÝ:(•JÌœ9Sú[§OŸF“&M°`Á(•J899aúôé077ÇÒ¥Kaaaüü|¨Õê:¿Í›7Gff&îß¿ÿÈï/»ÜI/(•J :LJB¡€‡‡Nœ8ØØXtëÖ éé騻w/Þxã Œ5 BÀÈÈsçÎÅ+¯¼‚Ö­[#$$¨®®†F£A«V­˜˜ˆ_~ù#FŒŽ¿VUUaÖ¬YÒÎBcnݺ…–-[6vv¹=ØÕ­T*aoowß}3gÎÄ´iÓ`nn;;;ôìÙáááhÑ¢d2,,,0hÐ DEE!%%~~~ÈÈÈÀ¡C‡Ð©S'øùùÕù[†††èÚµ+¦OŸŽŒŒ áÊ•+ظq#bccú>óóó±gÏ`îܹR·¤1uqqÁÈ‘#QUU%u_WUUaþüù(**‚……ÒÒÒ`aaçž{uºe³²² ???„……Õ;¼ñ`ˆÈd2¸¹¹Á××ÆÆÆÒᆆ|ÿý÷ÈÉÉÁÊ•+"…oízP*•Òû®í.µ°°@\\.^¼ˆ-ZÀ××hÒ¤ :uêÔhÝRRRðÓO?aùòå6ld2ºvíŠsçÎáßÿþ7ž{î9iP“³³3æÌ™SSShµZäååaéÒ¥(..n0Ы««‘––{{û:uKOOÇîÝ»7ß|Sꦭ]W2™ ðññ‘º¹póæM;v £F‚¼¼¼ R©"C¿sç233ѯ_?tíÚJ¥ÒᮆvÀ{õê…M›6aÿþýxýõסÑhpþüy¨Õj<óÌ3¨©©Aff&\\\лwoi™†F£Avv6¬­­Ñ·o_Ö©Iii)¾ù渻»cîܹprr’jÒÐ{¯®®Æýû÷aooßà{*))AZZž}öY„††ÂÈÈ …Bú.¤¤¤àÀ3f ÆCCCtîÜøî»ï0|øpiçÆÝÝ“'OFË–-¥²»wïbøðáÒŽóƒË~pÇßÌÌ 7oÞ¬÷]g “^222BÛ¶m¥úÚ–Dnn.àòåËÈËËCdd$N:%½N­V£°°iiihݺ5°nÝ:\¼xQj©åççÃÏÏÅÅÅR »¸¸<Ö{…B!ÿjLUU¶oߎ_ýUzîý÷߇¿¿?ºvíŠèèhœ?—.]B||<¾üòK|ñÅøá‡Ç®]» DEEáæÍ›øì³ÏüQ „··7¾úê+ÁÃà ôÂÂB$%%aÒ¤IuŽEËd²FqæççcóæÍøñÇQ^^!ÊËË‘™™‰üü|¸¹¹aРA8~ü8žþy´k×:uBÛ¶máéé ;;; 8Ÿ~ú)†Šàà`¡cÇŽÒòãܹsptt¬æöšTTTàÇĆ PPP ÕÈÌÌDzzúŸú[7nÜ€……üýý¥¿ehhˆ^½zaùòå(,,”>KPPT[¹\{{{TVVJÇVê)))……EÏQPP€[·náÙgŸ­³ Ô®+!±nÝ:ÄÇÇKc áááââbØÙÙ5ø7íííŽ 6 &&FÚîÔ©Sƒ-]ðóóC‡ðÓO?!<< …{÷îEÿþýáàà•J…!C†`ñâÅÒvбcGÃÍÍí±Ž¡¢ÿþˆGß¾}Ѿ}{´k×íÚµC³fͤ±+ƒ®Óš­=6ýG¦¦¦xî¹çpîÜ9ôïßíÚµCpp0:tèwwwaôèÑØ¹s'Nž<‰N:!00íÛ·‡®]»hß¾½´c¡R©Šýû÷ãÎ;R ûøøÀÙÙ¹Îg;v,vìØ³gÏ¢K—. D»víꜥadd•J…¼¼¼§:èÿ0~!k¿üµ{Ý*• õ‚xàÀð÷÷‡V«Å‚ “É0þ|4iÒ …;vì@RRR=x¥RùX?0ÞÞÞ¸wï annÞà|8üüü‡+W®à»ï¾C×®]ñþûïÿ×§ iµZÈåòF?Ë™3g°`ÁŒ7!!!033CVV-ZÔh¸þÙš5ô\cƒÊS;H­²²²Á×4öùª««ñ¯ý ¹¹¹˜5k\]]ahhˆï¿ÿ'Ožl´µ fffxóÍ7Ѿ}{$$$ !!Û·oÇÀ1þüF·õððpLš4 —.]‚­­-®]»†×^{M:L4pà@4iÒ ¸zõ*.\ˆæÍ›céÒ¥} dïÞ½áè舳gÏâÚµkX±bìììðÉ'ŸÀÙÙùOm¿Ð·o_¸¸¸àÌ™3HJJ²eËàææ†… ¢uëÖ˜>»víÂ3Ï<ƒ•+W6ºù`€?¸î Þxã ã·ß~C||ñãÇK£¸û᪪ªÂåË—áçç‡W^yEªsRRJJJê´2€ŠŠ üöÛo˜0a>Œ¨T*téÒ:uBii)¢££1iÒ$¼ð èӧϵnpùòe\¿~ÞÞÞuvår9’’’P]])S¦H?–'OžDQQQƒ½0Ó¼ysàîÝ»hÛ¶-d2´Z-Î;77·Fðq7999áþýûuÛXZZÂÅÅçÎChhh½©©©A||<&OžŒ!C†@.—£ºº›6mzdø!`ff†^½z¡{÷î(..ÆöíÛ±iÓ& :´Ñó·CBB`nnŽØØX”——£Y³f ’z  S§NèСÔj5Μ9ƒˆˆ$$$Hã4M££Þk—ѦMB­V#99Ï=÷N:…ˆˆøøøàüùóÒwïa;]µÏ=¸¼;wî K—.8uêZ·n “:uغu+6mÚ„äädxxx@«ÕâÊ•+ ƒB¡€F£Á… `bb77·Gö<öìÙSZöŽ;°jÕ*\»vM:%²¸¸%%%Žãa Óÿ9!Μ9S/d\ö(^^^èß¿?6oÞ …BV­ZIÝ’xá…`aa¦M›"&&þþþP*•8zô(ê]„åq <ñññ˜3g !..IIIضm[ƒ¯MOO—¶µhÑ&&&())Add$ÒÓÓ1þü:?ºÝ»wGóæÍ¥cÛ={ö|dÈìÙ³GXó8×Y²³³Cxx8fÏžuëÖ¡K—.P*•ÈÌÌ„›››Ôcð`«ÃÍÍ ÇÇ‘#Gààà€Û·ocóæÍuÂ'22 …BºÐÎÕ«WQQQ'''àÈ‘#°¶¶†££#4 ®\¹ ØØØü×ÛØðáñwï^¼÷Þ{˜0aìííQTTµZ¾}ûÂÕÕßÿ=Z¶l‰ÂÂBlÚ´ ÙÙÙu–ãêêŠëׯ#..fffpvv†••UyZ´hÞ½{céÒ¥033ƒ ±ÿ~Ì›7NNNuvpþŒÚžššdddH=-nnnˆˆˆÀ† àêê*%¸ÿ>|}}áììŒæÍ›#&&F ¦“'O"66¶NW{íg9yò$¼¼¼`ffcccì߿͛7‡­­-***póæMXYYÕûìÜ!2d~øáäææb̘1R•••á矆™™œœœ —Ë‘˜˜###X[[C&“áêÕ«8zô(† Ö`ÏLEE> !ÜÜÜ —ËñÛo¿ÁÀÀ¶¶¶°°°Àˆ#0uêT¬Zµ }ûö…J¥’”ýqG¤¬¬ QQQR=e2’’’`bb[[[¨ÕjlÞ¼­Zµ’NÞ¾}¦¦¦°²²BÓ¦MñÌ3Ï`ÇŽptt„§§'~ûí7|ýõ×hWWWcíÚµhݺ5lllPUU…[·nÁØØXÚîµZ-îÞ½ ###4kÖŒNºk̘1õö˜wîÜÙh‹óQfÏžM›6aË–-(//‡\.‡‘‘BCCñâ‹/B&“á½÷ÞòeËðÆoÀÆÆþþþèÙ³§t,ìϲ··Ç‚ вeK|ùå—P«ÕÒ¹¸...ˆˆˆhôµ&&&B`óæÍÒ±çÚØÙ³g× lwww„……aåÊ•˜0aÜÝÝùþ0ö8ÝÈ … @uu56oÞŒ]»vÁÐÐvvv˜2eJ½@—Ëå>|8nÞ¼‰©S§ÂÚÚÎÎÎxæ™g™™)Í—““ƒÝ»w£¢¢Bi´zÿþý!„À… pòäIi\ƒJ¥Âœ9s¤VÊ×ÿãto»»»céÒ¥X¿~=fΜ ¡wïÞèÛ·/BCC1~üx,^¼æææ°µµEÛ¶m¥ÁZ¯¾ú*æÍ›‡‰'ÂÂÂ3fÌÀóÏ?_oGhöìÙX½z5Þ}÷]©U?}út„‡‡?ô l³m·jÕ Íš5ÃÑ£Gáëë+m?µ±j/z£T*ѼysÌš5 îîî˜>}:–,Y‚É“'ÃÆÆžžžèß¿?Ξ=+-;00/¾ø">üðC"$$ï¾û.Ž?Ž­[·J‡ŠÌÍÍ1wî܇†”¡¡!ºté‚Í›7C­V£ÿþÒç“ÉdHNNÆÁƒQUU% Z6mš´ X°`:wîÜ` Ëd2¤¤¤àû￯³-½ñÆèÞ½; zôè?þ›6mBdd$ aee…×^{­^ Ëd2ܺu ?þø£4º\.—ãwÞA÷îÝ¡Õj‹¯¿þZúþXZZböìÙRë{îܹX¾|9–-[&‡Þ¿Lž<ù‘šÓ§OãÛo¿•j\»ìÚk ¨ÕjÄÅÅ¡[·nõ®¯ð´‘ñÒ¯º©°°ùùù N«=–——'''¢¼¼ùùùptt”~µZ-rrr¤=ó÷à ¥@J¥–––011‘.⟟òòr( XZZB«ÕB­VÃÁÁ …¥¥¥(,,„³³ócuS×îm ¢¢†††055•®þÖØZ­V£´´TzB¡€‰‰ ,-- ¢¢"äççÃÊʪÞà¤êêjäääÀÄĤÁV”ÅÅÅ(..®wxàjjj——'ýÈÃÊÊ *• åååuÖOíû*,,„¦¦¦011A~~¾4J­V£¨¨•••ÐjµP©T°²²‚‰‰ ´Z-JKKQZZŠÊÊJÈd2ÁÎÎN:[!??Z­¶¶¶Ëå nåååÈÉÉ«««ôÙ´Z­ÔeYSS¥R © \­V#77Wƒaii‰¢¢"iÔvçääHÛ”­­-ÌÍÍ‘––KKK©Å,„¶F¥R [[[é°…V«Enn. Em¶¶žÎÎÎŽúÖjµX¾|9¢¢¢ðÃ?Ô¹(Jee%òòòPUU%]:ØÊÊ Ðh4(((@ii) …4°®´´T5_û¾  Ñh`dd{{{””” ¼¼UUUËå066†Ý#¯RWYY‰œœh4¸¸¸Ô}_VV†ââbiÇ­¶u^[£ÒÒRiÛúãE{üÎ×ùŽÛØØÔ¹4jMM ¤e###XYYÁÈÈ•••ÈÎΆ£££t¨’’’:Ë«]oBÖ©ƒ‰‰ lll¤m¬ösI‡Ðj·íZ¹¹¹BHÛoíëþ¸ìÚÖymÍîܹƒ!C†`Á‚xá…þÔØ:‘ŽÊÉÉÁàÁƒ1yòdéÔ8úgûä“O””„Ï>ûì©>NDÿ8'Ož„™™Z·nÍ@ ÄÄÄÀÎÎN:wþ„âââ°fͤ¥¥ÁÅÅ&L@—.]ì+,,Ä矎ãÇ£¤¤þþþ˜2eŠtÌ‹ˆˆˆþ=77C† A=0xð`>|?ýôÖ¬YSo©¬¬ ,@ff&&Nœ(fÒ¢E é¦DDDôç=ñ(÷èèhTVVâ­·Þ‚µµ5ìì샳gÏÖ¹"ÄÇÇã—_~Á¤ÑÇÞÞÞ\ DDDÿ×~éÒ%4oÞ\Mleeooo\ºt Z­¶Î(á .@&“áóÏ?ÇéÓ§!„À€ôæ¾ÞDDDÿØ@/--­szHí)Eyyyõ.ÒQ\\Œ;wî@«ÕbÍš5ÈÈÈÀüùóaiiYïÊeIII8xð ×Ñÿ"Ð¥›¿Ÿ ZYY)Óü ÚËwN›6 öööðòòBXXâãã1tèÐ:;ñññHKK{䕾ôÍ®]»0jÔ(ny“S§NÁÉÉ -Z´`1þUUUøñÇ1lØ0ãoòÎ~¡t IDATã?¢W¯^u~鯓––†Û·o#,,ìõ¹æÍ›÷äÞªU+?~\j©ãÖ­[èÙ³g½‹+xxxÀÊÊJj‰×Þݧ±qyõ®6¥ïΜ9óûLº¤²²-Z´®žF­òòr\»vÛðßèúõëèÓ§O£wl£'“””KKËÜ6üé§ŸBþ¤ éÞ½;är9¶nÝŠ›7obß¾}ÈÉÉA§NPXXˆ/¾øW¯^tîÜ~~~X·n’““qêÔ)œ8qíÛ·êï’CDDô$ž¸…îììŒyóæaÍš5øæ›o`mm-Wž––†uëÖÁØØ~~~pqqÁâÅ‹±páBüòË/P©TxñÅñâ‹/>öåC‰ˆˆ¨¾¿ìJqBé6{;×jµõž«@½iµvîÜ ­V‹Ñ£Gÿ£ ~áÂ…FïÏMO.55fffOý% ÿ.555HJJBëÖ­YŒ¿Ibb"<==¼N;=¹ÚûdüÓÆÙôìÙó¯»ÛZcÁÜÐM ›÷iÀ0ÿ{=ÎÝÕè¿g``À0ÿ›ñ¦¯GÝÞVŸÉ¹z‰ˆˆèDDD¤êt¹«Õjdff¢ªª ööö°±±áÝŠˆˆˆô!Ы««qëÖ-|÷Ýw8räJKK¥›Ý{zzbذaèÝ»7T*ȈHWýƒ>@||<¼¼¼0eÊ4mÚJ¥YYY¸té¶lÙ‚ï¾û3fÌà`"""] t'''¬^½õî_Þ·o_àèÑ£¨©©aµˆˆˆt5Ð_ýõzAþ kkk <˜•"""Òå@?~üx£ÇÆ…P*•èÚµ++EDD¤Ë¾hÑ")¼322 —Ëakk‹‚‚TVVÂßߟNDD¤ëþå—_bbb°oß>Ìš5 ööö(,,Ć àááÁ*é8¹‹‹ \\\ðÓO?aÊ”) ‚««+Zµj…‰'âØ±c¬‘®zíÊËË‘••Ugbnn.Š‹‹Y%"""' o6l/^Œ«W¯ÂßßwîÜÁ?ü€~ýú±JDDDúè/¿ü2***pøðaÄÄÄÀÂÂÆ Ø1cX%"""} t¹\ŽÑ£GcðàÁ())‰‰ ¬­­¼ý)éX GEE=t¥R‰ÐÐPVŠˆˆH—}Ù²eÁÊÊŠNDD¤ë¾eË–‡ÎÀ.w"""=t777éANNîÞ½‹üü|XZZÂÍÍ ŽŽŽ¬‘®zí²²²ðÎ;ïàúõë055…Z­FÓ¦MñÁ €•"""ÒaRúÎ;¡Ñh°iÓ&lß¾Ÿþ9œ±iÓ&V‰ˆˆH_ZèÑÑÑøàƒ"Mœ4iÞxã V‰ˆˆH_Zè¸sçN‰™™™022b•ˆˆˆô¥…þÒK/aÑ¢EHKKC«V­pûömìÞ½ `•ˆˆˆt=ÐËËËallŒ—^z jµ{öìÁÞ½{annŽˆˆ^ú•è)'„Î~B ¤¤Ëåpww‡••‹D¤ ¾bÅ ¼õÖ[ˆÅ‹/¾ˆ—^z EEE077‡¹¹9+DD¸ÿ>îÞ½‹òòr¬]»3g΄B¡€HW}ÿþý9r$6lØOOOxzzÂÁÁPSSóûL¬ÑSJ&“¡]»vh׮Ћ‹ñÃ?ॗ^baˆt-Э­­1oÞ<\¹rŸ~ú)lllêÌ`ff†yóæ±RDDD:L>wî\4mÚZ­ååå(--­ó¯¬¬ŒU"""Òõzhh(:tèŒ1NNNÐjµÉdÒ?"""ÒñºL&ƒ‘‘Þÿ}xxxÀÄÄG…V«…©©)LLLX%"""]ô?>!„ÀgŸ}†ÜÜ\V‡ˆˆH_ˆˆˆþ^{ŠŠ±±1«CDD¤'  ô9sæÀÒÒ’Õ!""Ò—zuu5ÒÓÓ‘€ôôtTVVÂÆÆ …åå刎Žf•ˆˆˆt=Ð9‚—_~ãÇÇàÁƒ±~ýzøýrsçÎe•ˆˆˆtœÁ¶mÛЯ_?ôï߉‰‰Ø²e rss±hÑ"V‡ˆˆH_Zè÷îÝCxx8ñòË/cÕªUHHHÀüùóQXX!«DDD¤ë-ôÚcå —Ë€•+Wâí·ßFJJ JKKY%"""]o¡;88àòåËužôññÁÂ… ‘••…¼¼|øá¾}ûv\¼xãLJ——Wƒ§·…††b÷îÝ8wîqçÎ$%%aÈ!ÐjµÈË˃™™Œ¡V«QSS¥R ­V‹7n 77...\CD³ììlh4š'ZFII Ôj5222þ’% ®¢¿ÈC]¡P ++ óæÍÃôéÓZožàà`¼øâ‹øè£Ð²eK\¿~Ï<ó Úµk‡””DDD`ÆŒÇO?ý„ÇÃÑÑHHH@DDºuëÆ5Aô7ëÖ­lllžh·nÝÂàÁƒŸh9¥¥¥8p >úè#®¢ÿE 5 áááHMM}èHôiÓ¦áôéÓÈÎÎF÷îÝÑ®];XYYA.—ã½÷ÞC«V­:u‚±±1òóó¡P(ðüóÏ£C‡066æš ú›YXX`ìØ±O´ŒŠŠ |ñÅO¼œÛ·os…ý®V«Q^^­V+='—ËáååõÐ…˜™™¡wïÞ þ€ 0@zìêê WWWVˆˆèï ô´´4¬^½×®]“†Â !`ee…={ö°RDDDúè7nDrr2FŒi†Æ®óNDDD:è—.]¼yóбcÇz—k%"""Ý&(Þ¡Cܹs‡÷?'""Ò纣£#Ö¯_k×®ÁÍÍMº(Œ‘‘Qƒ÷J'""" ô . ªª ‡†\.—ºÝ­¬¬èDDDúè7nd5ˆˆˆô=Р¸¸±±±HIIA“&Mеk×ï‚FDDD:è©©©>|8***`ii‰ÒÒRÈår¬\¹;wf¥ˆˆˆt˜4Ê}ãÆ ¿ÿýoDEEaÿþýèÓ§»â‰ˆˆô)Ð/]º„W^yM›6…\.‡££#† †ÔÔTV‰ˆˆH_ÝÉÉ çÏŸ‡Z­TUU!11‘·7$""ÒÒ1ô#F`ÆŒHNNFÓ¦M‘'N`ܸq¬‘¾´ÐðhÑ"áàÁƒHOOÇÔ©S1lØ0V‰ˆˆH_Zèxþùçñüóϳ*DDDúèßÿ=ž{î9>|ÙÙÙu& !`llŒÑ£G³RDDDºè'OžD=púôi\½zµÞ ––– t"""]ôO?ý0oÞ<˜™™A¡PHµZ-Š‹‹Y%"""' Š[±bE½.÷üü|,]º”U"""Òõ@×jµÐh48qâŠŠŠ Ñh¤ùùùˆ‰‰a•ˆˆˆtœÁÑ£GqõêUÜ»w»w£#€ß»ÛaooÏ*éz '''#66EEE¸páÌÌÌ~oºËå°µµÅ;ï¼Ã*éz 3#GŽÄwß}‡^½zÁÚÚú? `bbÂ*éz ×öøñãQ^^Žôôt”——× õV­Z±RDDDºèµÿ),,ÄÌ™3ñÛo¿I7hkkk;vŒ•"""Ò‡@_»v-Œáç燶mÛÂÛÛ[¶lÁÀY%"""'‡~æÌŒ1¶¶¶°²²Â³Ï>‹·Þz ?ÿü3«DDD¤/-t™L•JSSSdeeøý²¯wïÞe•ˆžbB\¾|™™™¨®®Fvv6<…B€€899±HDºèíÚµCJJ :vìˆO>ù8sæ Z´hÁ*=Åd2üýýáëë èÕ«äòß;÷ Y "] ôW_}jµÍ›7GFF¢££áì쌉'²JDO97‘º»»»ôä˜1c0dÈ(•J±JDDDºè›7o~è ÆÆÆ5j+EDD¤Ë~âÄ @ee%¢££áããäääàêÕ« c éz ¯^½ðõ×_£yóæ˜8q",--QZZŠ={öÔ¹jé&¹µµ5¬­­qðàA„‡‡£E‹°µµ…»»; €ØØXV‰ˆˆH×½ö?–––8vì˜tÙתª*œ9s …‚U"""ÒqÒ(÷‰'bܸq8qâš5k†ŒŒ \¹rsæÌa•ˆˆˆô¥…ÞµkWDFF¢]»v(//‡ŸŸvíÚ…ádzJDDDúÒB___Ì›7U!""Ò·@߸q#FŒ={ö --­Þ ¦¦¦˜5k+EDD¤ËžŸŸFƒ‚‚dgg×›ÁÜÜœU"""Òõ@Ÿ;w.`æÌ™¬‘¾znnîCgËå°±±a¥ˆˆˆt9Ðû÷ïÿÐlllðË/¿°RDDDºèK—.}è ¼m"‘zXX˜ô@FFÃÊéS ×þG£ÑàÈ‘#¸|ù2ŠŠŠ „ðûik<7ˆˆHOýèÑ£X±bòóóáêê ¥R‰¸¸8 <˜U"""Ò—@ßµk&NœˆØØX´mÛƒ ÂîÝ»‘ššúÈ…TWWãþýûP«Õ022‚½½=T*ÕC_SVV†ììl˜™™ÁÁÁk‚ˆˆè H×rÏÉɯ¯/LLLPQQsss„……!..î‘ Ù³g&NœˆY³fáõ×_ÇÎ;zõªª*ìØ±ݺuÃâÅ‹¹ˆˆˆþª@wrrBnn.\\\pòäI#!!UUU]@JJ Ö¯_ððp¬]»ãÆÃŽ;˜˜Øèk®_¿Ž'N iÓ¦\DDDe :ÅÅÅ8p ÊËËÑ¥K,Y²ãÇè:¼üòËpvvFXXZ´h˜˜hµÚzó«Õj¬]»={ö„ŸŸ×Ñ_@:†þàf>ÿüs\ºt öööðöö~èîܹWWWé|u¸¸¸àöíÛÒHùZBDFFB­VcРA8wî×Ñ_èkÖ¬AHHBBB`ee…ÏO˜ÊÊÊ:àär9”J%***êúÕ«W±uëV¬X±¶¶¶\öþýû‘žž.=îÙ³':uêĵFDDO­ÒÒRDFFâÎ;Òs)))ÿ ôââbLž<æææèß¿?úõë‡&MšÀÊÊ 2™¬ÑÛØØÔ¹íjuu5ŠŠŠ`ggWçujµ[·n…ƒƒrrrð믿"##*• hÙ²%”Jee÷íÛ£FúÏÞ‡×$=ÕLMM1tèÐ:‡µ=úŸ@Ÿ;w.ÂÃÃãÇ#22žžžèÕ«FŽÙè‚Û¶m‹Ÿ~ú YYYprrBaa!’““1bÄÈåÒ!z!àåå…û÷ïcûöíB 99 …@óæÍ뺡¡!ŒŒŒ¸öˆˆˆþ?™LV//årù]&“ÁÓÓžžžnß¾C‡áÀP(1bÄC`nnŽíÛ·cõêÕX¸p!üüü°nÝ:xyyáÞ½{¨ªª‚F£L&ƒ©©ià€J¥‚¹¹9×Ñ_è{öìÁ?ü€ììløùùaæÌ™èܹ3œ¹&Mš`É’%õžwqqÁæÍ›}ÝŒ3¸ˆˆˆþÊ@?þ<ž}öYtêÔ nnn°´´duˆˆˆô-З/_à÷®÷o¿ý}ûöe¨é ùŸB`Æ ÈËËcuˆˆˆô5ЉˆˆèèÁÁÁ066fuˆˆˆô5Ðår9.\SSS”••±BDDDúèûöíÃálj‰‰èÝ»7ú÷ïS§N±JDDDúè»w¡!4 V¬XÐÐPtëÖ «V­b•ˆˆˆô%Ð `ooììlܽ{o¿ý6FŒ¬¬,V‰ˆˆHÇIç¡;88 ..*• VVVhÒ¤ ®\¹Â;œéS ¿ú꫘;w.d2&Mš™L†äädøøø°JDDDúè=zôÀºuëPSSƒÀÀ@@ëÖ­áëëË*éK ÁÛÛVVV(**®]» T*Ñ»woV‰ˆˆH_}Ñ¢EÆÈ‘#±qãFìÙ³*• ·o߯œ9sX)"""&rONNFË–-Q^^Ž#GŽ`ñâÅøðÃÃ*éK ]&“¡¬¬ ‰‰‰¨¨¨@ïÞ½‘’’«ÅéS wêÔ Ë—/‡J¥BëÖ­ahhˆ{÷îÁÖÖ–U"""Ò—@;v,JKKQQQqãÆJJJзo_V‰ˆˆH_ÝÙÙ ,@~~>ª««‘ž={B©T²JDDDúè555ؾ};>ŒœœX[[£{÷î3f ¬¬¬X)"""}ô`óæÍ5jüüüššŠÝ»wC.—cêÔ©¬‘>ú®]»ðÁà…^€L&ƒ~~~X´hˆˆHÇIç¡«ÕjØÚÚB&“øý46KKKTWW³JDDDúèmÛ¶ÅÆ‘žž­V‹¼¼<|ùå—hÖ¬«DDD¤ã¤.÷3f`ìØ±èÕ«T**++áåå…O?ý”U"""Ò‡@×h4øõ×_±hÑ"dffJ£ÜÛ´i{{{V‰ˆˆH].—c×®]øðÃÑ£GV…ˆˆHÏÈßÀ…††âرc())aUˆˆˆô±…eeeضmâããáää¹ü÷ñr¦¦¦˜?>+EDD¤^SSƒ: ¦¦÷îÝ“N_³°°`•ˆˆˆô%Ðßÿ}VƒˆˆHOI硟>}±±±u&^¼xGe•ˆˆˆô%зnÝŠÒÒÒ:Õj56oÞÌ*éK §¥¥ÁÙÙ¹ÎD[[[ddd°JDDDúèMš4Á¹sçêLLJJâ 8"""= Š=z4¦NŠ{÷î¡M›6¸qãöîÝ‹×_U"""Ò—@ïÖ­æÎ‹ÿû߈…µµ5^{í5 :”U"""Ò—@—Ëå:t(úô郢¢"˜™™ÁÊÊJºÀ éA ÿ¹º¥¥%+CDD¤GØü&""b ˆˆˆþþ@¿ÿ>¾üòKV‰ˆˆHŸ=##«V­b•ˆˆˆtœÁ‚ ¤[¥þQVVŠŠŠX%"""]ô5kÖ cÇŽpqq©71//†U"""Òõ@÷õõÅË/¿ŒAƒÕ›xùòeL™2…U"""Òõ@ïÞ½;är9ÌÍÍëMtrrB‡X%"""]ôéÓ§C¡P48ÑÃÃëׯg•ˆˆˆt=Ðmllê=YYY ¥RÙè`¹?JMMÅš5k””oooLœ8¾¾¾õ^ŸžžŽmÛ¶!..UUUhÖ¬&Mš„6mÚ<öß"""¢ú궦ÕjѧOܹsç±P\\ŒqãÆA«ÕâÃ?„……¦NŠ7nÔ›W£ÑÀ×× ,À¿þõ/xxx`ܸq8þ<×Ñ“´ÐŸtÑÑÑ())Á¬Y³àèèÄÇÇãìÙ³ðòòªÓòvww‡»»»ôØÓÓ_}õRSSµADDôWº‘‘Ñcw_¼xîîîpttXYYÁÇÇ—/_†V«mðø|QQJKKqèÐ!ØÚÚÂÏÏk‚ˆˆè¯ t¹\ŽO>ùÎÎ倂‚XYYI aaa´´4!êͯÑh0{öl\»v ùùù˜0a\]]\öÍ›7qêÔ©:-ü†Î—'""zZTUUáæÍ›(,,¬ÓP6(//¯7³´Z-j§™˜˜4º`•J…¼¼<é±V«EUUU£­|…B?þHJJÂ{ï½WWW 8°Þ¼åååuÞ°““×$=Õ„(--­“ÕÕÕ0 mô°²²ÂÉ“']°§§'Ξ=‹ªª*(•J”••!==AAAvÛ[[[lllФI$''C£ÑÔëžoݺ5úõëǵGDDô@Cº}ûöuž[±b æÌ™SoæÒÒRDEEá×_•Ž7æÙgŸÅ¶mÛðõ×_£W¯^8sæ RRR0uêT”••áäÉ“ðó󃻻;RSSQXX!œœŒÔÔTDDD4z.<=šÁK/½$=¨©©A||<¶nÝŠ7n`„ xpzCš6mŠ·Þz »wïÆÞ½{!„À˜1càï ÌŸ?ï¾û.ÜÝÝqíÚ5ìܹeeeR/ÀÈ‘#Ñ£G® ""¢' tà÷ ɤ¥¥aåÊ•8sæ ºvíŠÝ»wÃÕÕ*•ê‘ :t(zô芊 ¨T*ØØØ@©TÂÝÝûö탥¥% ,, ¨¬¬”º jç%""¢'ô‹/"22@PPÖ¯_<þ)ê vÍ¢I“&Òc###l#""ú;}̘1(((@Ÿ>}гgOàÈ‘#Ò J¥={öd¥ˆˆˆt9ÐËÊÊ`llŒ¸¸8ÄÇÇ×›ÁÆÆ†NDD¤ë~úôé‡Î —ËY%"""]t[[[VˆˆHÏɧOŸŽ3gÎ ''FšP{%š[·naݺuˆŽŽfµˆˆˆtµ…îîK—B©T"00vvv000@aa!nݺ…ÔÔTøøø OŸ>¬‘®úo¼~ýú!..‡BTTª««agg‡víÚ!""mÚ´©©)«EDD¤«n``OOOxxx`èСÐjµ™L…BÁAqDDDúèµÿ‘Édêb2DDD¤;Øü&""ú'µÐ‰ôUyy9ÒÓÓQYY µZ …B¥R SSS¸ººò^DôôºV«ELL Zµj{{{V…ôŠZ­ÆÍ›7QRR‚}ûöÁÝÝppp€££#ˆžž@—Édذa>øàúß@«ÕJçø ! “É€ƒÿ"¶¶¶èׯ %%mÚ´ái–Dôôz›6mpúôixxx<Ö-Séñ:u GìØ±¯¾ú* gÏžèÚµ+ DDDM €±±1V­Z…ÄÄD4iÒDj9ãõ×_g¥ž@×®]¥à>~ü8,XÀ¢Ñßèiii°³³ÃÅ‹‘˜˜(u [YY1Љˆˆô%ÐW®\Éjé{ ×¶Ò£¢¢™™ {{{„……ÁÓÓ“·ˆˆˆô%ÐSSS1|øphµZ888 ??[·nÅÊ•+ѹsgVŠˆˆH‡IMïÏ>û ]»vÅ¡C‡‰Ã‡cèСXµj«DDD¤/~ýúu 2~ÝÞ·o_dee±JDDDúèŽŽŽˆGYY4 Ôj5¥€'"""Ý%C;v,¦NŠË—/ÃÛÛiii8uêÞzë-V‰ˆˆH_Zè;vÄG}SSSœ={555˜5k Ä*éC ]£Ñ`øðá˜;w.>úè#TWWÃÀÀ*•Ч¬éK + X[[#//FFF022beˆˆˆô-Рÿþؼy34 <<< P(r¹îî>ú÷ßóçÏãÊ•+00øÏälllÍJéz kµZ„‡‡c̘1033«3ƒ¡¡!«DDD¤¤šèÒ IDAT/-ôÈÈH̘1>>>¬ ÑÿPrr2"##QQQÛ·oÃÍÍ †††ð÷÷Ç‹/¾X§×”è¡.—ËallŒ›7oÂÛÛ[ºu*ýý<==1eÊ!0fÌŒ;NNNP( súó-ô6mÚ`õêÕÈÉɳ³³tºšR©DXX+EDôÿØ»ïð¨êtãß)ɤOz/$!”¡×ËEš QÀEl ,* zEQ@вˆ ê‚……E”² ¡,Ih&’ÞHBBêd23÷oήˆîfðý<Ïcf¿À;gÎûë¿ßˆZ­F§Ó߯:Òét²ÚHüò„þÅ_ðÍ7ßðÏþ'''¥•îááABB‚DJ!„°†„þ·¿ý ‹Å"B!¬9¡«Õjª««¹xñ"%%%ÄÆÆRWW‡F£ÁÙÙùw¨mÛ¶qùòå;.'==¥K—ÞQ¶¶¶,Z´è®ŠïåË—Ù¶mÛ—Ç… ˆ‹‹»ã²æÍ›'‡ !¬/¡WVVòøãO}}=àüù󤧧3gΜß} >úè#"""îxŸÙl¦¦¦æŽÊؾ}û]—Я\¹Â7ß|C÷îÝ靖ºº: ÃÇxß¾}Ìœ9SºÂúúÊ•+±±±á«¯¾âÀd2À¦M›$¡ÿ¿ððplmmï¨ {{{Z¶lyGeÜ­“e¼¼¼î86iiiøûûßq9Ò+%„°6ÊÉ+ñññÌœ9“€€eBœ‹‹ ååå%!„ÂZº££#ׯ_W&ÆY, Ðëõ%!„¢™SºÜ'MšÄÊ•+©ªª¢¼¼œcÇŽqèÐ!†*QB!¬%¡6ŒË—/³qãFJKKÙºu+ýúõcâĉ%!„ÂZºN§cîܹL™2…ššt:žžž888H”„BkIè I=00P¢"„BXµ„@!„„.„BIèB!„ø5(cè‹…äädÎ;Guuµ²ÝÞÞž)S¦H¤„BkHè_|ñ .ÄËË {{{T*‹WWWIèB!„µ$ô-[¶ðôÓO3mÚ´Û>€¤¢¢‚cÇŽQPP€··7½zõÂÃãÉu¥¥¥\¸pÌÌLêëëñ÷÷§oß¾899É'!„Bü ]«ÕÒ¹sç_tšØo¼A||<;wfÏž=?~œ àææÖ躯¿þšm۶ѲeKlmmÙ±c'Nœ`Á‚’Ô…Bˆ_#¡=š÷ßWW×F›É¨Õj|}}oYÀéÓ§Ù»w/7n$**ŠË—/óØcѯ_?† ÒèÚ?üáôïßGGGT*Œ=šþýû3`Àù4„VëÚµkÜq9eee$''S\\|Gåh4"##åƒL&ÅÅÅÔÖÖR__ÉdB§Ó¡Õjñðð¸kN°Tú·ß~Ë'Ÿ|ÂðññQN\suuå³Ï>»eÇŽÃÇLJ®]»¢R©&22’S§NqÏ=÷ Vÿk"½««k£?«×ëQ©TÔÕÕÉ'„°j›7ofÇŽMz&oWRRK—.½ã£šÓÒÒÈÈÈ0 ÄÇÇ“››Kjj*IIIŒ9bcc²Ñj• }òäÉMZÔÀ¿½©òóóUìììðòò"77³ÙÜ(¡ÿÅbaË–-øùùѾ}{¹ã„V/66–¶mÛÞQï½÷#G޼ã“.ß~ûmù@þŸƒƒÆ S¡:Ž™3gÞuÿN%¡÷íÛ—úúzJKK©©©ÁÎÎ77·›Ð-‹’Ì4Ì¿•êêjÞ{ï=>ÿüs6lØ€¿¿ÿM¯Ûµk©©©Êσ&&&FîN!„¿[ìܹ³Q~LOOÿWB¯¯¯góæÍ8p€k×®áææFÿþý™1cF“®òòõõ%%%EI샒’üüünÚ:7›ÍlÞ¼™Ï>ûŒ%K–йsç[–=f̦M›&ŸžBñÿœ›äÆ'Nük§¸½{÷²iÓ&bbbX´hÇg÷îݼÿþû?Yp=ÈËË#-- ø~iZRR’2¦þcü1~ø!O=õÿó?ÿ#ŸŒBñ+PZèýë_yñÅ1b„ÒeÞ¶m[–/_Μ9snY@LL ýúõcÞ¼yÄÆÆròäIÚ·oOtt4ééé<ðÀ<óÌ3Œ?ž;w²`Áî¹ç زe Z­–èèhZ·n}×ùòåË$''ߟh×0É022’ˆˆ¹ …Büz ½¦¦¥U­R©ÐëõÆŸ,@¥R±téRöîÝKff&#FŒ`РAxzz¢V«™6mš2IÄßߟÇ{Œúúzòóó°±±¡¦¦æ®r«V­hÕª•Üm¿‘ÊÊJ®^½Jmm-ÙÙÙTWWS]]³³3¡¡¡èt: ’â÷“лtéÂÆ Æßߟëׯóá‡úo ¹Õö°îîîÌš5Kù¹wïÞôîÝ[¢.~U¶¶¶øøøP__··7jµFƒ­­-Z­V$„ø}%ôùóçóðÃ3hÐ t:ƒˆˆV¯^-QÍ>¡{{{K „’Ð\\\Ø´igÏžåÚµk¸ººÒ©S'¼¼¼$JB!DsOèƒ[[[êêê°··oÒ%n0îšmñ„Bˆ»6¡Ï™3‡W^y…_|‘ï¾û®É†0nnnìÚµK"%„B4ç„>~üx3f ±±±Mº´Î…B+H辟©Þ³gÏF'­ .^¼(QB!š9e§¸yóæ‘ÝèÍÂÂBžzê)‰’BÑÜ[èUUU ŒF#ååå”––ߺ’œœ|ËÓÒ„BÑŒú믿Ξ={HMMeúôéʘ¹Åb¡®®Ž{ï½W¢$„B4÷„>vìXzöìÉæÍ›5jžžž¨Õj<<<ˆŠŠ’( !„Í=¡GEEE«V­ ’}¯…BkLè ÿʹs爋‹£¤¤³Ù €££#úÓŸ$RB!„5$ôo¾ù†Å‹SVV†ÎÎΜ;wŽ˜˜‰’Ba- ýÃ?dÖ¬Y$&&Ò½{w ć~ˆÉd’( !Äo¨¨¨ˆ‹/*GK=z;;;|||èСƒ¬6·—Ðssséܹ3ÉÉÉTUUáååÅàÁƒyúé§Y°`DJ!~#Ê9}úôA­V£R©Ðh4’ÌÅí'tJJJ "..ŽþýûsúôiŒF£DI!~C{{{ „øuúˆ#¨¬¬dÈ!ìÙ³‡x€ŠŠ žxâ ‰’Bˆÿº“'OòÚk¯ÝQ%%%qáÂ…;þûÌŸ?Ÿèèèæ—Ðï»ï>, †O?ý”+W®àææF`` ÜEB!þëòòòÐjµôíÛ÷—‘žžNJJ ýû÷¿£¿K\\¹¹¹Í³…~õêUŒF#mÛ¶ÅÙÙ™.]ºpõêU._¾L»víäNBñ_gccsGÃ:­V{ÇC666Í.6Êl‹wß}—”””Fofee±aùƒ„BˆfNIègÏž%,,¬Ñ›þþþr|ªBaM ÝÍÍ+W®4z3;;[9¬E!„Í—2†>|øpV­Z…££#;wæòåˬZµŠ>}úH”„BkIè“'O&33“E‹QQQ££#÷ÜssçΕ( !„Ö’Ð5 .dòäÉáîîN‹-°µµ•( !„Í=¡ lmm©««Ãl6ãç營Ÿ&“‰ššÙÁH!„hî }òäɼóÎ;Ì™3‡ÄÄD,K£ <<<ˆ‹‹“H !„Í9¡?ñĸ¸¸(cç?ÖÏ !„âG ýwÞ¡}ûöìÝ»—‡z___‰ŠBam =##ƒ””>ÿüsúôéÓäüsF#I^!„hî =""‚ùóç“––ÆâÅ‹qttlt^¯ç£>’H !„Í9¡¯\¹’óçϳxñbFݤ5.;Å !„VР¾¾ž˜˜\]]%*B!„µ%ôóçÏÓ¦MZ´hARRR“ lllèÞ½»DJ!„hÎ }åÊ•¬ZµŠÕ«Wsîܹ&¸»»sðàA‰”BÑœúúõëqvvfõêÕÆ&¨Õj‰’BÑܺ^¯¾ŸÍÞÀl6sîÜ9´Z-mÚ´‘( !„ÍœÒü^±býë_øøã™8q"“&M’%kB!„5%ô“'OA]]ýë_yî¹çX´h;vì( !„Ö’ÐNUËÎΦ´´”1cÆÐ½{wÊÊÊ$JB!D3§œ‡Þ¶m[>üðChÑ¢z½ž””œ%JB!„µ$ô™3g²hÑ"ŒF#O?ý4yyyôîÝ[¢$„ÂjF²²²¨¨¨ ??ŸÂÂBΞ=‹­­-ÁÁÁ899Ý] =22’7b2™ðññ ::ZºB«¦V«qrrB«ÕâââBxx8:­V‹V«½ûZèçÎÃÆÆ†víÚ‘žžÎ²e˰··gîܹJ‚B!¬F£ù]ä1eRÜÚµkIMM`Íš5”——SVVƆ änB!¬¥…ž››KXXׯ_'11‘õë×c6›™7ožDI!„°–º³³3)))|óÍ7hµZ:v숽½=f³Y¢$„BXK }Ĉ¼úê«ØØØ0lØ0®\¹Òä|t!„B4ã„>nÜ8ÜÝÝ©««#&&yä‘[ˆÅb¡¾¾³ÙŒZ­F«Õ¢R©nz­ÉdÂd2a±XÐh4wÕ C!„â¿EérwttäÞ{ïeèÐ¡ØØØPZZJË–-éҥ˿-dß¾}Œ=šAƒ1jÔ(þö·¿a0š\W\\ÌÂ… ‰ÅÏÏ×_]>!„â×l¡F¶lÙ™3g¨¬¬Äb±ßŸÂ¶qãÆ[——Ç«¯¾Êĉ>|8GeýúõDDDЩS§F×ÚØØÐ­[7ºvíÊûï¿/ÑB!~íúŽ;ؽ{7©©©899áççGRR!!!?YÀ?þñT*3fÌ ,,Œ{ï½âââšL¨ÓëõLš4‰aÆÉÚv!„â·h¡ïܹ“yóæñÕW_ѹsg&OžÌ®]»8räÈOœœLhh(ŽŽŽ¸¸¸Æwß}§´ò…BñJèÕÕÕøøø`kk«œ°Ö¶m[Ö­[÷“ÔÔÔ`gg÷¯&¿ZN§£¨¨èŽú×_Ýh,¾W¯^tìØQ>5!„¿[ÕÕÕ9r„œœåµÜÜÜ%ô°°0rssiÕª»wïfàÀìÛ·N÷“;;;SPP ü\__OUU...·œéþsEEE1tèPågWWWù$…Bü®ét:ºwïN‡”×>øàƒ%ô©S§R[[ËÈ‘#9{ö,S¦LÁÅÅ…… þdÁ:uâàÁƒ”––âîîNyy9W®\aÔ¨Q¨Õê;úK»»»,ŸžBñÿ4 ÞÞÞ^³³³ûWBïÕ«—òÆË/¿ÌÕ«Wqqq! à' Žeýúõ¬]»–1cưÿ~*++éÙ³'×®]ãÝwßåž{î¡{÷¤PPP@ii)yyyÄÇÇÔä/'„BˆŸO››› Ðd¼»¡{»¨¨??¿[àááÁªU«X»v-sçÎ%88˜e˖Ѻukrrr8yò$QQQÊõ«V­âìÙ³TTT‘‘Á™3gxæ™g˜0a‚|B!Ä/MèãÆûÉ ÜÝÝÙ»wïO^Ó©S'þò—¿4y=$$„={ö4zíÏþ³D]!„øµú›o¾ù“ØØØH”„BˆæžÐûôé@ee%f³åͪª*êëë%JB!D3§LCß¼y3hôæÉ“'Y³fDI!„°–„~äÈ‚‚‚½éëë˱cÇ$JB!„µ$t€ÚÚÚFo ŒF£DI!„hæ”uèÑÑѼûî»xyyDaa!|ðíÛ·—( !„֒ЧNÊŒ3xàððð ¼¼'''þÝ,x!„B4£„îççÇ'Ÿ|Bbb"iiiÑ­[7Ù?]!„°¦„ß}Kll¬DF!„°"j B! ]!„’Ð…Bñkh4†^__ÅbitòšJ¥’ýÜ…BkIè—.]bþüù¤§§+‰ÀÓÓ“'NH¤„BkHèkÖ¬! €§žz GGGåi !„V”ÐsrrXºt)Ý»w—¨!„VF™7|øpΜ9CUU•DE!„°Özyy9[·nåôéÓxzz¢R©prrâ…^H !„ÖÐëëëéÑ£&“‰¢¢"傚š‰’Ba- }ñâÅ !„ÂÚ:|zFFåååʲ5­VK·nÝ$RB!„5$ôüü|{ì1’““Q«Õ¨Õjªªª áèÑ£)!„Âúš5kˆŒŒÄËË‹nݺѡC¶lÙBïÞ½%JB!D3§,[»xñ"cÆŒÁÍÍ úôéÃôéÓÙ¿¿DI!„°–„®Óépss#--ÚÚZ, yyy%!„¢™SºÜ£££ÉÎΦoß¾,Z´ƒÁÀÙ³géÔ©“DI!„°–„>eÊŒF#>>><÷Üs>|˜2nÜ8‰’Ba- Ý××—ºº:JJJhÛ¶-ýúõÃb±Èá,B!„5%ôššÖ­[Ç×_Mqq1;wî$==¢¢"Æ/‘B!š1eRÜÎ;9xð >ø õõõFT*»ví’( !„Ö’Ðÿö·¿ñüóÏ3~üx\\\ð÷÷'77W¢$„BXKBÐh4Ê)kðý lööö%!„ÂZztt4›7o¦°°€ªª*>ÿüs:vì(QB!¬%¡?ù䓨Õjî¹çRRR˜2e —.]bΜ9%!„¢™Sf¹ÛÛÛ³nÝ:Μ9C^^žžžtíÚOOO‰’BÑܺÉdR~ppp _¿~.0™Lh4‰”BÑœz·nÝÐéthµÚ›^àææÆž={$RB!DsN踸¸KŸ>}š$v™å.„BXABÿüóÏùꫯøöÛo©­­e̘1 4½^ËV»B!šYB‰‰!&&†êêjvíÚÅîݻٸq#111Ìœ9“àà`‰’BÑÌ)ËÖ?~<>ú(ÎÎÎlß¾´´4‰Ba -tƒÁÀ78vìÛ¶m£¨¨ˆ=zð /Ю];‰Ba ýÙgŸåøñã8991~üx „‡‡ƒ£Ñˆ^¯—H !„Í9¡¯]»:tèÀáÇ9|øp£ ôz=›7o–H !„Í9¡¯Y³æ'/ekB!„$ôÙ³gK„B+§–!„’Ð…B! ]!„¿†_eo×¢¢"¶nÝÊ¥K—hÙ²%S¦L!$$ä¦×VTTðöÛo“’’B@@Àïn7º¼¼<üýýåÎû”••akk‹ƒƒƒã7`6›)**Â××W‚ñ),,ÄÓÓSN¹üÔÖÖR]]»»»´Ðoœ'žx‚””FM~~>óæÍ#33³Éµ•••Ìž=›¤¤$F…ÑhäÑGý]íH— ߨßPFF¥¥¥ˆßH}}=çÏŸ—@ü†¾ûî; ƒâ7¬ô§§§K ýfŽ=JFF»ví"((ˆÎ;3}útNž¼½½)))!66–™3gRXXÈý÷ßÏüùó™8q"f³™mÛ¶±mÛ6üýý)..&::šÇggçfœÔÔTvïÞMtt4½{÷nôÞúõë1bÁÁÁœ|˜òòr"##8p Õ?Kàû!ݳgÏ’@YYÎÎÎDEEѳgÏ[ÞÒB¿M3fÌàÕW_eúôé,_¾œGygggظq# øþ—©ÕLš4‰•+W2cÆ ^|ñEž|òÉf™Ì>þøc–-[ÆÖ­[©¬¬lôÞš5k”IÇŽcÏž=¿ÚÚQ;;;\\\š YX£mÛ¶±lÙ2>øàªªª%è5kÖ••…ÅbáÛo¿eïÞ½ÔÕÕÝ´œ#GŽððÃóüNG]]Û·oçõ×_—Lý3:uŠ¿ÿýï8::âåå…——z½N‡^¯ÿEËF/\¸Àòå˹~ýú-¯IJJâÝwßÅÅÅEù½Íõ;;îY''§Fñ´³³ûÅñ>žºº:Þ|óM>øà«·Ñhdݺu<óÌ3¤¦¦âääĵk×xíµ×سg|Áù•vг³³£C‡M^···§k×®^³±±¹éµÍMFF_}õ ,`Ïž=$%%Ñ£G_TÖ7HII¡²²ggg"""Ðëõ˜L&eS“ÉDAAááḸ¸`±X” …\¹r…ŠŠ e‡.³ÙLÛ¶m›u ÓÓÓÙ¿? .dÏž=¤¤¤ü¢y)))Ì™3‡'žx‚Gy¤ÑDË‹/6j¹dggS__¿¿?¡¡¡ØØØPUUÅwß}Gpp0YYYÔÔÔ@HHäççãââBDDŽŽŽTWW“””„ŸŸTTTàííMDD666˜L&rrrÈÎÎÆh4booO«V­¬bç©°°0¦OŸÞ¨W£¸¸´Z-µµµ$%%áããCaa!eeetéÒ£ÑHzz:UUUèt:‚ƒƒñööV†Ø¾þúk|}}‰ŒŒÄÛÛ»ÉïurrbÆŒwE"ÿ¡ˆˆf̘^¯W^+,,Ä××FCMM ß}÷þþþäççS^^N÷îÝ©©©!==êêjt:-Z´ÀÝÝøøxRRR8rännntèСÑ*"€2pà@åç{|É“'Ó®];vìØ½½=+V¬ÀÍÍN:±xñbî»ï>eɰ5úüóÏyï½÷Ø´i111Êë555äçç+ÏíììlÌf3~~~„……¡Õj©ªª")) rrr0 ÄÕ«WÉÏÏÇÕÕ•V­Zaoo¯\Hnn.•••x{{Óºuëf½ƒŸÑ„ÅbáôéÓTWW3vìX8qâݺu»íZwee%¯½ögÏž%00ÂÂBÚ·oÏSO=…““ï¼ó‰‰‰´mÛ•JŸqã¸|ù2ÇgíÚµhµZ6nÜÈÁƒiÙ²%jµš+W®Ì»ï¾Û¬cxêÔ) ãÆãôéÓœ8q‚Î;ßvÏ×_~‰ ÷ß“/Sûöí•Äþ / Óéprr"//‡~˜#F™™Éc=F—.]prr"''‡ÊÊJ&MšÄ… ¨¨¨ %%…Gy„ &——Çܹs ÃÙÙ™šš²³³yòÉ'1bééé<ÿüóØØØàêêŠÁ``Ê”)üá°Š{û‡›ï¨T*NŸ>͆ Ø´if³™ àéé©$æÀÀ@V­ZEAA¾¾¾˜ÍfzôèÁ¨Q£8sæ ׯ_çË/¿ÄÃý^Ó„~ãÆ V¬X½½=‘‘‘Œ1Q¯p IDAT⎗€6×x=z”?þ˜wÞy‡ÊÊJž~úiBBB”JT`` +W®¤¤¤oooL&}ûöeðàÁ$&&RZZÊ_|^¯ÇËË«IBÿa/WUUñññøùùáåå…ÉdâôéÓôë×O©dôêÕ µZMbb"C† ±Ú8oß¾¾}ûÒ«W¯& ǰ°0âããyùå—qppÀÎÎŽ‚‚fÍšÅðáÃÉÎÎfÖ¬YtèÐwww²²²¨®®fêÔ©œ9sF©ÄÏž=›1cÆ••Å“O>Idd$ŽŽŽTVV’››ËÓO?ÍСC›mï©$ô[$᯿þšÞ½{Ó¢E ¢££Ù½{7>úèmÓìß¿Ÿ/¿ü’-[¶Bjj*³gϦcÇŽ :ø~röìÙ`ggÇ•+WµNwìØÁÒ¥KéÛ·/¹¹¹Ì˜1£Ùǰ¢¢‚#GŽÐ·o_BBBèÓ§;wîdÖ¬Yhµ·wÛ¥§§ãããÓhƒª««cÍš5¸»»³|ùrìììøøãY¿~=;vTz@|||xúé§©««c„ ìØ±ƒ+VàïïÏ»ï¾Ë§Ÿ~ª|& ç%K–`kk˶mÛØ¸q#:u"11‘ŠŠ V®\Ipp0555V³wü·ß~Ë}÷ݧ$ÓeË–Ýô:•JÅ¢E‹°··§ººšo¾ù†7Þxƒ>}ú(;ʹ¹1qâDÒÓÓY´h7ý~øúú2iÒ$Z´hA^^+W®äÒ¥K<ûì³V¿;ä¡C‡9r¤rO¯\¹R‰ßú¶¶¶,^¼;;;®]»ÆéÓ§yã7èÞ½;F£µZ««+cÇŽ%''‡¥K—âááqËq FEmm-ƒ·Þz êêê(--ÅÕÕU‰­»»;666VY›†Ju¯^½nZ¬¨¨`ݺu°dÉllløè£X¿~½R鯬¬$<<œ'žx‚ªª*&L˜À§Ÿ~ÊÊ•+ñôôdýúõìÚµ«QÅÜÆÆ†%K– ÕjÙºu+ï¼ó;v$  YÆIN[»‰ììlŽ=ÊСC±±±¡OŸ>äççÛeÅÅÅEÇŽquu%22’^½zqúôie¼866–ððpe<ó‡.\¸€ŸŸ]»vE¯×IŸ>}š} 3228~ü8Æ C«ÕÒ·o_rrrHLL¼í²T*ÕOn“““ÃÅ‹yàðóóÃÍÍPYY©l £Ñh1bøùùA‹-hß¾=îîî´iÓ†’’’Fó ÆŽ‹¯¯/îîî 2„ââbrrrhݺ5µµµ¬^½š;w’™™i5itéÒ…µkײyóf6oÞ|Ë!ûî»___ôz=„‡‡³yófÞ{ï=.^¼ˆÙlF­Vcgg‡Z­ÆÁÁGGÇ›VÖúôéòe˘1c‹/fõêÕlÛ¶sçÎYý³¢W¯^¬[·N‰g»vínzÝèÑ£ñññQz0Ù´i[·n%)) ‹Å‚Z­F§Ó¡V«qttÄÑÑñ–÷•££#›6mbíÚµ 4ˆ—^z‰ììlåûòãÖí¯0÷ù¿ª¡‚t«Gvv6IIIL:ÜÝÝuuu9r­VÛd‚²µµÐg̘Á©S§Ø¿?555ÊýTPP@ii)AAAûì3öíÛGPPƒóçÏ3f̘»ö;‘••ÅóÏ?Oxx8:Žóçσ»»;AAAxzz²fÍBCC6l­[·Vþlmm-[·nU†ŽJJJˆçñÇ¿e÷ôÝîòåË,_¾œððp´Z-çÎcÀ€8;;+1W®\IPP#GŽlô¼1 ¼ÿþûœ????ª««‰gÊ”)DGG£V«=z4 ,^¼˜={¶ÕŸÿ=pà@fϞ͚5køòË/ñ÷÷çÆ\¹r…‡~˜Ù³góòË/SXXˆ££#'Nœàü#¿øpñâE–.]ŠÅbáØ±c<öØc„……QTTÄØ±c™2e ³fÍj6½¦š_|ñEIãÿRYYI‡èׯ_£®r‚ƒƒ %00OOOºv튳³3ŽŽŽDDDÚdÌËÎÎŽÞ½{£×ë±±±¡gÏžL:T*•2.þãfhÙ²%ááá899ѱcGeLtt4W®\¡uëÖÄÄÄ R©ðöö¦GwÔýµcELLL£½!†aaaàååÕ(†­Zµ¢E‹77 $&&4 ^^^ 0€1cÆ Óé ¤cÇŽØØØàììÌ„ 2d:­V‹¿¿?;vT6ßpqq¡C‡ Óé ¥]»vTTT°{÷nžxâ ‚ƒƒÑétŒ;–aÆakk‹^¯WZCŒ9’!C†4ûYÛ Ëë"""uÛÚÚB›6m°³³ÃÇLJ¨¨(¥[ÞÞÞ½^­­-öööÄÄÄ0qâDÜÝÝ•y! C-[¶lÔ¯V«qvvV>‡   ÆÏÈ‘#­~Bœ££#­[·&<<¼Ñ=Ûp/µjÕ ;;;üüüˆŠŠRΪpppPâéèèHÿþý?~|Û“Q›]w²ZMÇŽéÖ­öööØØØĘ1cˆŽŽ&<<œ¨¨(e‚á„ >^9-99™¬¬,ªªªˆ¥E‹ʵõõõ¤¤¤páÂL&mÛ¶¥}ûöÊ’@“Éĉ'ÈÈÈÀl6N§NpttÄ`0G›6m¬zîÏñÉ'Ÿ`ooϬY³­‰vttTö·~ë­·øî»ï°±±Á`0ðè£rï½÷b±X3f -[¶D¯×“žžŽ 3gÎ䨱cddd““ÃÌ™3™2e <òÈ#èõzìíí),,¤¢¢‚Ù³g3jÔ¨»2áddd°ÿ~V¯^Ýh1;;;<<<0™LlÛ¶;v V«•ïÞüùóñööfÓ¦MìØ±ƒÁƒ“––F^^#GŽÄÉɉS§NqõêUذaz½ž¿ÿýï,[¶ŒqãÆ‘‘‘Áµk×èܹ3úÓŸðòò’Ìö;eõƒ: {%:tˆ¼¼Ë±cÇ”÷ãããyçwšl°ðŸb±Xøúë¯ùøã©««#99™åË—óÎ;ï°hÑ¢&;Í>}š pìØ1NŸ>ͳÏ>Ë”õ»ÿûßyî¹çHHH 99Y‰GÃúÑo¿ý–÷Þ{ï®þ’×ÕÕ‘––FË–-oºEmÃÞ ñññ¬X±‚·ß~›|—_~™ääd¥bi4yôÑGY»v-666,[¶Œ!C†°fÍzè!>øàrss•r333™5k6l`„ ¼ùæ›Íz—­;qíÚ5€[®­ÏËËcõêÕ :”·ß~›E‹‘Àßþö7åšÒÒRúôéêU«xøá‡Y¹r%×®]céÒ¥¬X±‚äädŽ?®\_UUE‹-xã7X²d ÍêÙ%¤…~ÛÉüøñãdggóè£*Û«Ö××síÚ5nܸZ­ÆÓÓSYJc4)((PÎfvqqÁÓÓ­VKqq1ß}÷jµš¤¤$ñõõ¥  OOOeÉSyy9eee„„„`±XHMMÅÍÍÊÊJå¤/FCAA555ØÚÚâãã£üùššŠŠŠ¨©©A­Vãââ‚ÏM[.}ôaaaNVspp`áÂ…ÿª•ýÿd­VËСC¹çž{”÷Ÿÿüg6oÞÌÔ©SÑh4¬_¿žÀÀ@–/_ŽN§cýúõ¼þúëÊ2½Gy„#F0bĺwïþÿL«ªªØ¾};cÆŒÁÝÝggg¶nÝÊõë×yðÁ›Äè7Þ k×®<ûì³¼óÎ;¼üòË 4­VËæÍ›:t(O?ý4*•ŠíÛ·³}ûvî½÷^üýý™8q"?ü0÷ß¿²óÖݦá‘[-«+//çĉŒ3†: R©˜8q"«V­"!!6mÚ`kkË€hß¾½Ò+T]]MÿþýQ©T 4ˆµk×R\\¬ô >œŽ;¢Õj™>}:6l !!ÐÐл.Æ&“ FsËÞ‡¸¸8ôz=ãÆÃÛÛú÷ïÏþýûyüñÇï÷[2djµšÞ½{ãî…ˆŸŸÉÉÉ 6 ø~)gý¾¾¾ôêÕ‹ƒòÐCý®’صk×øàƒøú믩¨¨ M›6<óÌ378¼wï^Þ{ï=JKKQ©TtéÒ…Gy„V­Z¡R©¨ªªâý÷ßg÷îݘÍfzöìɼyó¬f ¿U'ôÔÔT¶nÝJqq1ùË_ˆŠŠbÙ²eìÛ·?þ•J…Á`ÀÓÓ“—^z‰€€rrrxõÕW©ªªÂh4¢Õj™:u*T¶b,(( ++‹öíÛ3iÒ$üq-Z¤,aúì³Ïغu+‡¦¾¾žèèh†Š­­-...̘1ƒ#GŽpðàAìì쨭­¥k×®<þøã899±eËöîÝ‹ƒƒ†ððp–,YÒä £ÑÈxî¹ç½×°Y|¿“\tt´26Ùp]ÃIL%%%Êšw“ÉÄÉ“'yúé§•´W¯^üå/¡¢¢WWWÜÜÜ ãØ±ctéÒå?>æyõêUrrr”SÙlmm•.Ë›ÍNMMe„ Je©M›6dgg“••Exx8!!!+›ñàçç§ì™ßªU+ùì³Ïxæ™gîÊž­­-ÁÁÁœ>}ƒÁÐ伓ÉDmmm££M5 :NéÉÐjµØÙÙ) K«Õâää¤ülccƒÙlnÔCöÃñ\[[[´Zm³ÛYë×âíí­ìy«Šª­­­òýT©T888(Cg õ†{\¥Raoo¯ 5¬}n8§á3hX Ñh°³³k´ùïÁ`àÕW_¥°° àëëKaaá-·âõööfΜ9øûûSUUÅ믿Ί+Xµjz½ž>úˆ>úˆ—_~{{{^{í5Þ|óMå$GIè¿¡víÚ1{öl.\¸ÀÒ¥Ki×®ééé¬[·ŽiÓ¦1dÈ*++Y²d ›6m⥗^ÂÓÓSÙM¬¾¾žÝ»w³}ûvzõêÅÀéܹ3]»vå©§žB«ÕRZZª´rnåÆèõzæÌ™ƒ»»;‡fÛ¶m¬^½š°°0233yþùçiÓ¦ ±±±üýïgüøñŒ5ŠúúzªªªnÚzÊÌ̤ªªªÑNQŒ1‚²²2e¯ô©S§2sæL%ù&$$°fÍ Q©T¼òÊ+¨ÕjnܸAMMM£­ÝÝݱµµ¥  WWW¥õ•œœLUUÕ/žðK:u ‚‚‚~ÖõNNNö¿~ý:ÕÕÕäääÁÂ… ™;w.“&MB«Õ¢Õjyî¹ç”•JEûöí9{ö,F£ñ®8ÒóÇT*÷Þ{/»wïfß¾}ƱÍf3¹¹¹„„„púôixà4 ………”””ø‹ïÙ³g©««ÃÞޞ˗/c4•|î6tîÜ™-[¶«lâb±XÈÉÉ!$$„ÂÂB®^½JÇŽ©®®&%%…–-[þâßYZZÊ•+WèÖ­åå夥¥ñ»Jèñññ9r„mÛ¶)òüÔ’Þ÷:Ž;–·ß~›ÊÊJL&dìØ±ÄÆÆ0{ölž{î9zè!«X*lÕ ½aW0Fƒ‹‹ ...$$$`4ñöö&++ øþÌì#GŽ(3Lß~ûmΟ?Omm-ÔÔÔPSS£$7åßЊ»»;ÿó?ÿCxx8&“‰cÇŽˆF£!33£ÑH@@§N"66–ÐÐPöíÛ‡F£¡S§N„„„Ü´õ™]£·úõë§´ÈÍf3‡fñâÅôêÕ‹N:ÎܹsÉÊÊbË–-lݺ•:(•’v 6l[ûÃ1s???NŸ>MMMÍ<¡geeáä䤴¸ÿ‡zˆíÛ·ãææ†ýë_•V ÑhdûöíÔ××óøããààÀæÍ›ùôÓOiÛ¶­R‹÷óóãäÉ“TUUÝòˆVk×§O.\ÈÊ•+9zô(QQQTVVGÏž=™4i‹-â…^ 00}ûö1xð`ú÷ïߨëþv¶¯½öÞÞÞ|öÙg 4H™è8uêTyñÅ­¢åóïxzz²xñb^xáî¿ÿ~bccqppàÂ… ”––²xñbºwï΋/¾È=÷ÜCJJ —.]bÆ ¿8¾%%%üùÏ&!!óçÏ“‘‘Á‚ صkÿû¿ÿˬ~ËןÒ0Aø“O>Qæ >œ3fÜò»\YYÉ¥K—(--åý÷ßgĈx{{sõêU233™;w®rmÃÐRnn®$ôÿ†ššrrrزeK£nêþýû£V«yûí·ÉÎÎæÕW_U×+¯¼rË/ÓÍÆÄ~ØíÕÐØ0ÙÈd2a0HNNfݺuÊiß¾=z½ž¥K—ràÀùä“OðóócݺuM’gàw³ýp Çž={R]]ݨ«O¯×Ó¥Kºt邟Ÿ³fÍ"--MÙŠ²a‚@YYuuufõ7œfôߨC§Óa2™”“¢þ)S¦`ggDZcǰ³³#&&†ôôtÂÂÂÈÎÎfçά]»–˜˜¥E?{ölrss•„n0šÄõn£V«™:u*;v䨱c¤¦¦âààÀøñãª,½R©TôèÑwwwJJJ¨­­eøðáL™2EéÑ8räÿüç?Y°`A“Uâ—Ñét 4ˆÖ­[KBÿ´lÙ’áÇßÕÃD?‡§§' ¸¸˜€€ÎŸ?ÏöíÛ¹ï¾ûˆÅ××\\\”³***0 ääü_;w‹j!pü_,v7q4¸‹kÐr’Éä 4؃èÌî@¬º‘+˜N0D8·7úxï‚¿% ÃÀ|0/º®CkM†X–…RоïB ”¢®k„Að±~~¹ÿs˲eQ}­Ýé8’$Á÷}¤”RŒµÖÌóLÛ¶TUõqrq—mÛHÓÏóR>Éöx|¡iš(Ë’u]1Mó:Šû¹†<Ï“¢(Ç‘}ß1 Û¶‰ã×u¯f©i†a@kã8äyþ«uèNo-JZ雉.-IEND®B`‚pymvpa-0.4.8/doc/pics/ex_topo_plot.pdf000066400000000000000000000700441174541445200177640ustar00rootroot00000000000000%PDF-1.4 %¬Ü «º 1 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 2 0 obj << /CreationDate (D:20081113011300-04'00') /Producer (matplotlib pdf backend) /Creator (matplotlib 0.98.1, http://matplotlib.sf.net) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Type /Page /Resources 10 0 R /Parent 3 0 R /MediaBox [ 0 0 576 319.5 ] >> endobj 10 0 obj << /Pattern 8 0 R /XObject 9 0 R /Font 6 0 R /ExtGState 7 0 R /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] >> endobj 5 0 obj << /Filter /FlateDecode /Length 11 0 R >> stream xœ­™Ë®f7…ç~Š=„Á1¾UÙžF‘ZDb1àbÒ ‚I^Ÿoù?AgÛ»9¡“ô%Þ¶ËU«V­ª.×W¾þÎ_BºÒõÓeÝùõëúµæß§¿c-|þyÕ­çV†~¾ZoêœÕòUXœ£§\øyûÓ¿þvýåú™c~à¿/Tj[Çê×Z¯Ö®¿þtýáùúþ×áÇë7_õ;ûýõ˕—PJ‹µŽ”g³Ô®ÜRÓZkµNãí¥ Öëð”‡ç+×{N£÷byðîRsìVkj)·ÉúŒ#·V,Õ2ñOˆi´Þ¸žåfXêe¤TzYÛ±nz¯#Wž™mÆê|ìæÅ×öË,Éj¯}\ÙG Cr/íýv>ž©˜ »rÏÜŽ+’Nc{!FØ:[MÖY/±ÎR1Å[×þíu¬ÉøQúÚï±æZúì-c~O±¥2SÜu?ëÙ½;ëÜï3NÇ3µ§—ùÅØPy,æëüûhfÝòûýwïwÌm3×ôºßt›

    Z,UŽto˵%ÇÊOzž÷¾©i—jEë´ŽZªÉöYyJ6ÞûòMîËöá^{ yöèNðlËk½El˜mdP•ð­ãª9m®·å'~˜Î[ FqâÆ„UyQÒˆzÖÖŠöϨǘ¢·ÌcCÏÎÞTF%WB™Pû:>)ü!¬íÙãL¼åÚpËYêØ‘<ï¤Ýj÷œ”y–Ö݇ÕëH¹Áa  ¦ Lî;ìT±«MqížðjoŒQ¡“/:ï³c T¸³M7òrÅ#e†ƒ¬€{ ÀMép':X·Ãq";IRÇìœLŸœ»8ß ìE_|Þ§'bÑá`xÒŒßq—‚³×‡Ë’à Š)[y ,7|@°B{qºÜê pñQÚ›S³\úÂü^uuí|Ëq>κº=k+Ë»»ïU}[çòÇXr·G² ¨ïHànroHRœ¾ãˆTîr˜ä“„Ô8(nöNzË¥7“Ç„‡»`¹>ç‘ð0"Iž3{rN0Ã褺gž( ¡ ^ÉsKÛ 0ÑÏ0*àžóìN±’¸œÖÖî;er‹ò0wÎEmò$öÊïtx§+ìÌò%™?jØÙîâ•€}B¬£ûI–£ã`~ƒ—Q\_ÃkåAÒEÆÇIÕäíl|nE…áNô ÏH¡Ð׳Á%ÌÚ©ò¸˜Unˆ¹±x´ÁëD€«Éø@ÉÎÔ¼\ê8ŠÐÅ2—¸aûXËV±iC‰H·ÝòŠ‘nÉàÎÒP¶ÇÝ·¹¶úº={+Ï»ÓÂVÝ7—oâ`XØ´Å-܇4ÙÁ6es í¦‹ †MW8¿Ë²#MÂ&ëŽ$»ËÂ#E7Uy$ø]•nü°ößDíF.wI|íÔvI½3Û†?ÿ?š¯ÕçE ¿¼º½W¯'‰;ÎC'$ F}L«õ«üS¢üÏço"ý$/QyLŠé×öðùëëL¤ÜåËÐ,€м}ûtxåÛ'ǃèÁCÉ0ÄnŠeäÑá­gSðò Þ’úNWôáäçw®ÏÅŽ`¾_oJSy*öôýëó '0¹þ 7ÎH±"ŒbG¦¢+퇷§Ó „t¥s.^ù_O'"¼o‡î€JZVê×&Ïï\bŠÄ˜¸ë?¿­¯QÊŠ aÉbL²Q‰§=mXß7Ò§ªê}Æ7¸ŠÌô—¸ÄH'ƒfýT*\¤>$ΟþúœìçÓ l–ª…p>”Ù}ãpÞ9EzOŸÇÓÂNù ^]¬mdîí †o–¡Õ†b´Zìýµ¾“öƒ'“ê=L¥°ôgØ~8±ûú#ž}ööÒ¨¸¼¨¹¨XÃV(³üd±ÖQt ˆ˜›?ž"/hPzлM‘7u£äo_„ñx8i¯9’å[ =ž-ÃÑ€‡AÞ¨!Tª>Ðñ·Ãß'mYµÜüúùdûpLõxÔ¯c½òa¬÷/[s½ ²b«)ít¾H:›VÖ¸Bbj¦ K¢wÄK¨é¥ã$:•\ªЉtT£yµ>W%¤D®R=Uæ‘#4;=U£©}ét¹RCmÕñ`jÉ•x N“/º" Š<³¾ö«´Bá¹¼:/©ŽNu¯ÉšÑ²;ªv"›$CH§ÇPdÆêeÒ2˜æÖ%É´N®TµÃ×þûûX'Þôy„}ÝÀ¨"´G^ãu÷¥%{ÙÏ:í-Óh”µÎ ‡¿T³Ihð=Í*ây >údG+w¾îe®ñE[½!] s{Ø\Ó*Ä¿©²¤e~æy8¼/YG¤ó<¤ÐXÝ!%9JðÙ’´K´ÑˆãNOËzDXói$eÑ–ÒQù]ªÒÄéžW»B½Î¢Íƒ—¥±L§ñEFã" ‰F¿æe<õÆo€²DÓ\‚ Q'•Õ4Ybcw±5„Å­ÈÈSΣXDšÔ¼úŽ5ãENMðuS—¬okøÔˆçK2²µÞ%I[€˜‡&‰;Þð%Q›¦ àgš½Ñ… “úÝ%îq¬°9¥35Þ»Õ O/x‡ÀZ±/iö&ê¨êvWÃEN è9 MÏƒÑ œŸpæ@9j?Ià:r£H2˜š”9VcÃc"Éš*hÊ»MÍÕ8È—ýÔô‰€0U3"ë±ÀTðj_£Q­XTÃ=ÜÃmëij>–ûåo%3òGÄÜ¥y›`LíÕvHƸ ,‡ýRðI#½=\Ÿ4ô¦Bʽ‡ù*^4äN¯çë+XW¿¢ÿçíôVD ¼ÔÚŽÃûH•mSKKªÑ«¢ >†=Öäw>õ[#7Ê&&—=U£•®aÕ¬žè¤X%îÔ‚è6È<›ZZÙ±¡þ£™teë\Ù±e,".i›Ïì«RMËõ41v$oÅ$Ƙ„g™OS¦æQêŽ6hç –aEÊ,ÿPrÂA;t‘KËÒÐᎃ¶®ª9j Û©Ûá ½*gª3Ä<Ÿm²NÑu ²ÉÂκZ®“Þ8k2v6ëUÃ%µ‹¥rýNúUsdj B¡k`· Ö“¦–ÀÜ5ÛkNE)Ðtãq–šÅú2iË3€GÍÓ~PÒ4ýªGÉdsÉí¢¶l„£äÞ_w”ìÃù÷’¿¯ï’`nPsÜD¼ÑNpp?Ü—j³ØZs'î™JËwì}D¦¦VECùÊíÀuÐÐëU„(¡/ÜßòBƒI l™¯¼¾åUP/@RºæÂe™wÏK5i’Œ>5è<òZ¼DŽÑù=ío´@ £v¢=lÍ%vVïHsê Õ' ñwˆû+¥ï”6ôwžšÒy2âHô«I“²þD¨}DM?P(\·èú‡N% 5,>ÉœW@$YŸº*Å­ÐȪ±â‘¨²U(zì"–¬ºÆøÍø0£»ÖÅEÌH€ù‘]sú©<‚ÌY¦X¦+ÚG»+á@ûý¥S>wCÛ ü¨(+çÝ÷zX~¯ÀÛ«ïåûðØ­ú‡ÃÝwñ°kÓ·P-ߤË”Mù|DÙ©›vˆn²kø®ÚŽüØTßž_»j<òs{~ïšõà‡MòîôrHæžvɽÑÛ'Óšý…©ÎÛ endstream endobj 11 0 obj 3090 endobj 6 0 obj << >> endobj 7 0 obj << >> endobj 8 0 obj << >> endobj 9 0 obj << /I1 12 0 R /I2 14 0 R /M0 13 0 R >> endobj 15 0 obj << /Width 234 /ColorSpace /DeviceGray /Height 234 /Filter /FlateDecode /Subtype /Image /Length 16 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÝyLYÀqÂQ@QèÔÕèY)°®ñ,—² ‹\â&MV%@)ø·Ñ%Á3Ê!W[ {Ä5f ŠPÚ⑨›è‰‚µÜl¹Ah ìè€a·«í¼y³òûü?oæ‡:SïYXðy²¶s¢ËÎ÷Åš%¬ldŠž1y8î‹ý$–Ó¤´KËÃgÂ}ñÁšïI9Y;F³T¯øqú˜âÿsÛnL«¤(ZŒ4K'^ÖO“±Éwmñ¿(ÆIš¡SS“Æéc®ìsÂ@ƒ áuêí@SÎD“cø lqÇ|Ó±T*­PjÍ(Õª*É1$ÛàŽù E®’Æéþtþãø›!®ZŒ;æ=ì~ÁÁÁ1ç™Ñ8Ûã ±äxþËy¸ÃL8‹²ŠŠŠÊUm •¶«+ÈñŽ.ÂfÂ=±j```ðµ¡RÃëAr¼ÛÉ|ÜaÿÄ#|ãòž2Ô8[cÁ^_—n`‘¤\݉ ´«¡";ÈwÞ,‚ä*ݰA©a¸÷ö‘/qçÍàñ½ãòdRš ã}Ü‘o- Ì”©»•v7Ȳ‚–âŽ|kå‘êîA·.E?Ø]“ºs£#ß+ ¶° Y&åÅ¥xò<ëùŽØJÝB²rssKU݈K{ÔRò<Ù¡ØJ׊ë4M{ÿ8âR};yEæ:<™ŽîëJ_!nœ­µìûu8n`̲†^KûîJ%; ¥ž™uÚ>t¹¦ô}­ŠìõJ…9-,fR4¹P ¥ærXº*¶„©—núÚ¥ñ«—²û ̸’€d:eD9wþA)†ÊH(…R(…RŽ€RsXºù†ŸTàýúÈ”±>'"‚áǤyÂdY]Ëî´™|©(—3~ m®‰Q.§Ãß¼ÿl='ÖèP;°…@Xjãè%eñ=SåÑÎN6K-æÌZ:PÊ:6J}Å7žtàýBIßù´*Ëy)±ý‡‹JÌkÓ©óï@¿¸¢ÝB·)Þõuò8·…öÈKI>7;Ù_þ”¢ïj¬’°²†$‰¿=1O‰m]PU~’ˆ`©ÔÞESŠm­WYœ€…¥2ßñJ¿ÙÔÅþ <ÞÝTéÍ^&ÉcGr^=†5™U)"v÷Kâ¹®Œ.ne½´½4våÖ7Kš#k§CégYê)®ÑèXÝ·B§©•xa(uJ/VëX,ím(ÉÁ±QƒÛš¸b ‹¥ÚÒ„µn˜6HZ“^ÓÜܬíEý1ÞÛJž§VŒiÏ ’[°8''§X‰n 3Jª„ËõòàÌÆ ‚¤=H6ÔõT§ ß΀>—RU‚ÒNµ,SÄ¥­™íùÞ1Ÿ (ý3/ևϙ[—â~øºN§ëcl¿WýH9^U"Çö)&9oÈê™z=oSÊÈñ$"îí=mOøŠD¢¨³*}|~9ž`å{ÝO°hÿÕ¡¡¡a³öÚ6Œ “cü~KD¦œ6§—””Èæì¡©UÊÉ12¶ÎÇóA6|ahhèîÜ»f”Þ?ý9†@¹Sâ~£èéOh³Æç[—žZíשrJm3ݟ؉–ºécÒ¾axj=BVÂpÊñ;tgUêëNLãÇG³sZ»J‡&è•}‹ûbÍâ}Xö=åIp_¬Y–mˆˆ¢g·ï¸/Ö,–ó¬èš‡dª.0îo4Ïå endstream endobj 16 0 obj 1862 endobj 12 0 obj << /SMask 15 0 R /Width 234 /ColorSpace /DeviceRGB /Height 234 /Filter /FlateDecode /Subtype /Image /Length 17 0 R /Type /XObject /BitsPerComponent 8 >> stream xœí]XT×ÖÝÓªˆ"öÑh4ÆÄMÑ“çÂÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ`x¨T*™LÑÜ,7é_§ïÁЧ¡SâäÉ K—z™šn0Åb{{¯ððs†> 5´ªÞ%K ©ÞE‹¶‡‡Ÿÿ£·gèÓÆ``ÐëraaQrrFhèÙßsýú½Ó§»Qý]Šu@nB:ŠDŽÓ¦mþæ›C¡¡:ð|hè9úÞ’’Ò Š˜¯xœ!—ËÒ6o²³Ûö{N›æ6hÐ&ào‹·:é:88óù.n™:ÕÏÎî Ý;»}vv{íìvÚÙùÚÙm÷ð¼t)U&“ú2 ­­­‡G¾ýö¡pãï)8ðx§[ؤÓ-€ €€ç-ì ý…ƒBá~¡>÷ =„B‡¹s·üòË©ææfCŸB†¿ …‚^m©O †VÇè5kv?ÿ¼Ëß(ÑßûG½bÝ6lðØ °   DÁä%°JKeð^ ¼T #ó Û50‹£ƒÀséÝÛaÒ$Wê…Ú?¯““tt<½âz(þc—øú›9Ó£K—:ZX8sŃªW']ê¶ìÀÔ,  à"@À €b€à«¡§žÖÂKXG`+ÍZpׂ‹Vªa†úÉ¡ë-09|wú¹è§£Ÿ±ýó¾ü²»·wHaa‘¡‡‚áÏ‚^( ŠRS¯ž^½ÚoäH'ƒú„ß7ŒºÛÑ-P—õ«[€[À+£Z0kƒnž"œtí|M¥«…£ZAˆR|¬Í,´ÙØK*úZÎ[ †—J`¬ë`¶ øÞ˜Ò/Ȧ#W­ò ˆ¤gƒš(f!~TWWÇÄ$Мúz%íÙÓ€>¡£tÛ ƒ®¶°¥„ÒHȸP ü°h…ÞJÎëN'ð5rhà’ÚXÒÚ5£¦×µânq•¦¡ü]2Þµ°,^¾ OÇCïHA+B=‰“Ãĉ. nsvö?sæRee•¡‡áÿ 2ôrI C·nff"ÑC¢Þv¯«3 ûõQW'Ý+wÊš@ †xR “¼Kàsn4«†»Jó’º^µ…äÙ}ëò,K*„w[xQRÞV)¬’«eðä50>>dÍ ©— gÀÊŠ³Û·çåÝ3ôà0ükÐËbaaqFÆ5j>üÐ^4 ­ØŽÜ„óîXóÃØH½îq€3—.sÒå•°ŒeÐ…À/xƒæhì%ÂH…ør«YE}߆üQ²ËS´ç'(ãG·¦ kȘ}§ODaŸ Ë¯ŠŒçßáO¸Câ¡{ˆè·c·.¶iåJßÇ#ÓÓ¯R[ÕÚÚjèáb¸•4¿vs;¼x±5 ô¢ihÅþF½ºÀë…Š:p+c±˜¦Ýæ¢.¿L©×UAÏxÀbßð&JLZ­rªz7<Ý–1C=ŸÌW¼£|»-èµò“Sn\›6$8«»ç]á…ð<}̨9 àO3Ä=8 AÏŒ‹Kµåå†.†û““G/ޝ¾êޣͻ7ŠDWlG:b²¶ëcûÑî†cqL PÐȆ®诅Q˜©½×îœ'Y }Ê žT]}Q³@ëÿñüJëô­vãšï?W¸/–îy£)tBn€ø£#Íð½ fJÁª à4 ¿Ô>YX8Ð3óÒKn[·¹};ÇÐÃõX£¥¥¥°°èòå줤tƒ‚¢èÅqذ‡Ê0lÔ738u¼4Ã"C<ÚÝ\àW‚@ b= <‰³ÿ@ÏðZ8©á¥«»åV ©»5^›ø ]I|~"<Èç~dÅAòžyß•|ù­öçå »gåž•šÕ? °Ûúã×¥‚qeü¡)<ë£`¾ ÄÛ€ïq¥ûŽ ãõ¢ùwyã2¡ÿY°: ¢-ÖÖŽ“&¹-YâÕ~Þœý##c‹ŠŠ =¤²³o¹»~ñE·6騻÷&KËFF—ë參«ñ¶^]²–€j÷€WFÍ`ªàª»Ã L!0—Àj?ÓÀKx'Õ¼t9¿TÚ».\›ä5rbñû‘|¿“,'³%dì=Ò³PÛ£@csOÓ+M5&LñºOÛª/=fUê_”c~¾Jì\ËÿGŒÎ…¾Ñ`ì'9ZZ:ÒsÕ~Þ¦Ms£Éµk7 =¤>许¸„žjÿlû÷7Hoؤ^G ¼ž¯.ð¦r—KÖšÀ¤ ºª 1^Á¹‰/Ññ$ü³Jáu©¸®a`ËíqsIð'd‹ Yû ±=§žv]ñD]›isƒQK…¨µ@XRÐãrѨ˜’;«ß_Óì:Gyü¹ü¤'ŽßìñC…ù¢{â—’ø#ŽA¯ýÐe7ˆ|±áNß^ß¾K—z:tŠžU™…øë@O/5 4VÐN“h+«‡ª°ð{ê eº|m'ÀA¬Ä¶;Þ<€ÈÀ\Éx˜@`¥Öã¤pVxIfœÛdÑZ5Lž5M³€ü²–¸l%%ÿˆ—?ŸÓ8°¥J,»-' äü†SæÅQ½oÆ K›Xø®gÛg_Ôx¼}õèøˆ”A;®u_Ÿiô^*LM€'ÎE˜]TÀ]»:¼ð‚‹®Á2"âbA›Vþ«põêu*]júõÛDOûCVXø—êÕ5@za×®Î6œÅRÃulfÀ¹ K ôÕr“ÂÓ¼ùÚüï¸Vœ"µ(®í®.¥IU±˜ìýŽüD“µSdfZë3E}¹BÍ%žæ0OãÂS: Û<Ä-ÛÌ*Žõ¸sepZóè`Å?~lúáíÊàñW„Þ0q-‡÷+arX_Ãb½l‰虤˜ZêigèA~d‘’ryݺ½ƒ=䆡£zuSÃÞ8C¡kÜí` „Z°"0€Àhl$›Oà#œ¡ØEx'´Æé­–eÕ6¤ð’ò _FvþH6ì!K¢ÈK—›F•÷T] Û|ʕк ê>„jae iEªefî¨Àòù?6ý¸¸ôÀŒÔsÃŽß±ö,1_Q$œzgƒÍy0 ð·Ï™z`šÄ%%¥zYtNõz¢z÷áÔð € ÔÛ B©w šÞ— , ð MöДMkœAÕ[Õ“ÜK’_'ÇiÊö3ùv±&Ó¯6Ž,+詾" ¡@\,‡æyP4®M‡sù…Õ:šì“zþÙ“wçøÞ[ýÕ ÷yé!ÏGÅÞ•m¶¡•Âä[Ð7 Ä1 þV¦Þ¿V½>¨^]Êvñ×ZY»z»D`,¦lïa¯#7;Ì‹Ðg¶t-¯ìEòŸ%IºJ¯ùæYx–L»VÿTyž:M@üd>TMƒË£àTo¸8€w{4¿iŠ@ºÜ¸Î«kù¥^wÆÚþ\õâCÏg&t.ß6XÖ O׃yˆÏ‚`'Sï_„ÖÖÖòòŠ;wrƒ‚¢–/÷6h{ùÿ{©sHÁ&Þ€fjÀJûkì}éw±7c¯öÞ8mòœ_Õ»þŸê͵Q§ H @Þ†ò 2‚ Ò®uº ˜ ª/@ÕIÝSsÆ5¾ëвÁ¶"htî5ë ÕæîM¢ùrÞØzš =B{õ]²bÏáÀèÛ·séÙf½ ……EÑÑñÛ¶¯\é;y²+Í2 -Ë?¯^ÝòŸíXìÕuæÄàê‰l€B®] K5—µÀ¬m üD`G{ÖVc­.£I™­ ¿Ï94Œ,Ëï©J ?y*_€Œ&†(dC‘ÔéP;@Ëaó{‰ӊLJ4Ìs¨ùÞ®âðÄ› C#o[z×ò×6òæçó^Ȱ5éõ#|txëÖ°3gYñáA&Âîî‡_yÅ}èPGkk‡‡lJâß«·cÅìP‡ŠÙUníÔr3 %·†b(οE` ØœsTk”ÔfVPg¥(¥JŸ©9©ËÚvë²¶†§KïõTe H0Ÿ,€ê‰puœC4$¸!‚¢¾P?”K@å(l 5«½ÙízõS¡ sZ¾YZ¿wʽ‹½®#šù.õ<»ÑÄ|ëññCÆ¿ôÒ—ôtV|øŸ •J++«rsóO/]êÕ³gg±»ítèБ®›&Ö·–e`Co%ð[ÀTÝÔ\kÙ8³ØãJ OZQ¬Ì$‡«÷>)¿ú’*Êžìý–ü¬«˜¥7=S\Ü›«9„q² ê_…»OC¢5$v…ÌnpÓ Ÿ„º—@¹´<õ1¾ò†°¬¦W\Ë”½ª¥_«Þ…m¾nšSgt´•ÿ­ Þ’Âø\èu©Gï`û%þ1ôÌÓóÏVdüw ¯˜˜x/¯£«Vq†¡Kƒ«ñ¿SïïçÚtÝe¸~WâVœ° ¿–|ßù§õD)EYR㺆!-7§(.Ì'kp¶"„¼•Üú\AU?e¾\² ÈWк*fAÎ8Ž…¡l:Ô¾­Ÿ‚Ú T¿¤ñÆ E9-ƒÎÊfìV/ûF³iž2hŒ,Õ¦´Øâ\È[Ÿ(àõ*xòŽEß„‰ÓCW®ؾýØ™3ñ÷îZiiWÜÜ8Ã0|¸£ÍÃ?7ñ/Õ«Û'ÇË{õë)ÎüÓ<ðª@ØF ®KG7Ýö:å¾#àE­¯šŸ¦–µõ«Ï{®-ñMò1ÙêBÖùqòIy••BmpæÁTk m4Í…¦w¡e)H?ùO òm((Dõw,Jz\UŽˆPÏÜ¡}ÿ[íF;ÍÁIꋃënõÈ,3•‚›–Éàù&Q¿ÂCc‡üåå—½œƒRS¯Z ôRU]]MïáÑ‹{uïÞYr´©^]—Žûýí‘XõÕÕÍJ€Wǹ_±zxײÙbs¯ nA/GÙ³¢xtKÆ+$rÙõùa7YzFùòué“ÍfòÛ"Õ9æh·R‡Ú¯A³§vã«üŠ ‘,F,Í0©ÍíZPÝ7K>ü"™HÞÙL>]C\hý'k.>ÑtÃæF©It+͹býëZ¹{ŒÃ¬¬¼.ÜEÇ‚Ž³ôRE ƒOȇúMšäbnnpþïêuî¿­é1ú}ò€‡îW¤ávª…ñú𻞀/×ß ™êîù•Ã꯿ ½ô ü‚¸{’ÏŽ¨ç%(ž/hë[]fÕœm¢Œå«#A šP ZO‰/˜U§X•f÷Ì¿7 »rDbó„Óª—ýÉ|*ÝoȦ%Ú=¯¨"GÉ3zUX^®1:)ƒíØÛ6ƒÀ )ô¸&gÌÌöNœè»jÕnoïèèøüüCK£ %岫kÀ«¯ºáH3µ‡cYåÿ¨^Wýž9»pã‘Ë‚n¢ûmŠkxè£åÔ§¢ûýÃo€bµ]nÔõ«Ê©ÍœIN½OvüH¾ß¥]vJ33S5*·¥_eU×¶"”·@•Ò›¢º<ó²ëܪþ×êF$7n›¬œ»K³Ì…¬YKœ—’ݯkž•'õmÉ5/­1–´Ž*ÁÀJTïPØä‚iœPdc³kĈÍÔ¼99ù''gZôkNÓ´‡¾ì?R¯®Wg›>wÓ¹ßýjbl6ãËÀT Ý4ÐçÝ^%°À7|„Ó”fëÂòŠ»Õqïh?'®dÍAbw†LOU¹­XÙfYÛj^Ûb^×l^.íž§è—­&!ccÈ‹¡äýdÑòÉäûOÈæ…Ú³5áñCšnt­ªÞm埗óª¹æŠe^¤ê•ƒM·×—`Øjié°b…OTTœ¡¥Ñ ð©wãýæas‡U™Á§pÞMW|(âܯQ ˜)¹‰ã'0}›MàlSßCŒNË,®5t¯©Ù|åeyÔ"í~j\©€÷‘EÇ4oF«¦')žM‘å(¯x!F5ý„v6µ¸Ô!SÝn$ßÒ×Ó M•ÿ’2jœ,yHà ›’bÓÛ üd9ÿ˜Šç¥áöê±Åšó@X—€Éeü~Ñ/šSïŸÇ#§ÞöuwýÂ̽˜¾…â’É8¬ýâ>$‚:ÉÀ„@/\àö<6L~BÀ™Ô¢8¹q¾´å½g[$³µ'ìÉ>j€7‘o¶h?Ù©Yæ¯Y ~7@=ß_½`ŸÚÞWóÁò©#Y÷-ÙH5Õí|ð91I}ñ©¶Ë}ó,Ë+Mo6 “e¼SjÞ lÒrFå-\ÎÜOÝ*Àø®Ö§&LJ©÷ÿ…\.ojjªªª>³x1ý¾\xVÿپìw#á«  àáx§ñð lV#I¬rk†Vßž H˜©ŽX ñ_¥õ¦^O6þL¾ÝHÖÓǟȆïÈÏk‰Ë'dË âG}ÂÛÚ#³4§¦¨/ŒU¥<Ñvݦ¾È¤¼žWÆKVB„Îñ~… ð_!ÜŠæžJ°¬£»x] ïЯK‡… ·EÑÑilld\ÿE.$ïÙþé§;§Lq3Ôzþ2õ:þ.};¨ß J·U/îIB#0¯LZ¡«‚+ Ö·îÐ˺/SÄ,©ÙæVÙÊ;c2&Kcg©NýCstÖ1ÙCs±%dÏb²×Ž|‡¾IŽÍÔœš¦:;A?¦5mxcöÀÚœž¥%]rk²Zy‰Juá¶`my%®§›„¡tU‚i5s°“óÀNn-çÇïܽ;ìüù$6ñ{H$™îîAsæl}æ×>} ºÓã_$àöÚ¯n¯éÝú]øÂ1ÇãVf·WÂKÁ\ËepOc ›vQ˜Â4¡Õòv½MI逺œáòk£UiÏi¦óSÉ9Júd"‰OÇÔê+Cd7ú¶äÚÔu+­è’_oz½Å(EÆ?¯„0  ÒÕrëî?Âÿ ö¹Ñ¯Œ‰Œj@‡»Rs¾K(têÝÛiÌ××^ÛâꘔĊ¿EDDìò徿æN¦:]Kßä¦û7Kß©ïœ Óï •þkõÀS‚… z«a¸^ÑÂr­nÅ„H Â,¹IA“E}u÷æÒÞÒ{äwÉoRpì¯Èé­¸×CQÜUZnÖP#®jJù·¼L \"Iàݸâž~#>ÆâÆl´ÙO`«¼@ üàéÔkš\pÆÐÙÄÄyÉŸ“'/Z,P½>ææ:é>)ÛïÙÑoÑo&Ùq×ô É8‹‘ËílfR ] w+<#‡Y*X‚ <Ô¦ ‚ã*£óm&iMæWëºÞ¨¶¾SnSf[fWÖ=¯¢knµEn­Ùíqv³ð²”Ÿ,ç]PA¤B¸ÿË5°9ãlÈG(Ý× LFÇÛO à˹ùkÞ]t§0ÇtÓ ˜Z¦Þ ½zôyºÁ•ö©·ý&AºÚvý¾|ºíÓÃ1Ç¡r²8ó).³è×£å\7—mn Åþ´/Ÿã??F³± ·G{uû n95çD®µØ‚€‘„­À¯Å&n`±7;âöã»âÔ+8ôëçøÜs®sçnóðJJÊxÌoövnÑ"±øÑ.5ü{þæ¯î¨äÍ(f/œ›Û‰[ßœA#Jíhw7S Øh`°Fb[ÚTÔäëèÞÅ}!l1ÆÎÇÎÅ]zfbäDœP‰íĽ±È`J¸m%@É­³ãfLîbí.³È`¬Šxá[rÖ¿[G¡ÐÙÎÎ;4ô,Sïc¯Þûn®ví ã-xáÞ£_’| +E ®„.u`Ó ýÚ`ˆFh¹©ñ8ã0'éfè9LÄŸŽÁC ·©'J×LbÚ¸=„¡œ«uÐl‘ûšÄàRüîlÑemL½¿So‡oÒ˸]ÉíbÖ5HìÁƃ®"!¸â|0«€. `ÕÆ• z¡&iDF¸Ê£0{Ÿ<…‡ O ñÖš@WæL´ R •ëâ¢n.vNEÇ«Ûël?Î ºãÛpdêý ˜zÿÛël>u·0ÎÄPYÁuG€Zn k3–ºc"ÖKOT,´]Ð'àkG ƒ C)þªl¬r\Âl1‹xºÀëŒÝ©÷7@õz¡záIŠÿíîBç"‚06êÖ&ß¹¹îVY¢&·€©Ìe`©ä6VÕÑRÅMÛ™)¹Y`ê„rà·†Ü&nU>·/JGéFcÙ9¯æk§¸w":ÚÙy1õêջ鑞¤x êÕ ØC¿¯TûìýÜ\!ðKAX ¢Z0jãV0nãnBd,ç(–Qˆ¤\MŒßÄõñªÐ-bfVéžÀ_~KÛÐñv ,Ü; 7ÙÙmgêEõn‹™nÿ$]ô›RîÁzZ(^åu YX‘ÈÇXZ…~ ™Û¦¤8Ñ‚ÿ¤©µ¸Õ¨Û,/\ÇÒnJ‡¨«“î®ûK ÷Q(Ühg·íñT/ýÈ%%¥©©WÂÃϯ_¿oÚ4·Î¼xío¦“þÎò~ú{ëºÜ/â2ÏtŒÃ7Ñ ¢ŒË°’PŽOJñH!*ü.u¯`ÈMDƒÁü(ÚÝ=á;–î£@à0uªÛºu{ÃÂÎÓøóXMºi4š””ËÞÞ!‹û¼ø¢Ç AŽ|¾ÁUÑYؾLc›¾AÂ%w ÂPŠ©N³QŸ·0 ßÁÇÛ(ìë¥uºMºî9 à'ð÷øãïôÓß ½Ôpy¼:N›æ¾h‘·½½L¦0´¦þ>¨ÕjzÑY¸ÐÛÄÄY$¢Òe¥†?Ïö⃮OX×è~»ÔBPQ¨ÆX”q2Z‚´LÅ#ɸ #7rBålj Œç;Ú'×:”~K>ߎM·)››£ÕT½GF/XàÅç;³BÙÈöâC{‡·¾OØ-ëqTãitç1Çb€Õ1œÃŸžÆ²0”} ®Ý‹ÒõÒßeþßw«¶œ™zÿ´z;vø¸wèðÙƒÙÖaŒ¢Ç0ÿ:‰…µHªŽ‘¨Ø“øÓPÔí”ýlòÃ_¥ë(sÖK—©÷>0õ>¶wG´wøè‚ð^”â/(ã#¨ä³Ž!x$ƒmêö >äz£×Ýüoì.S/aê}0ü—-jÞ?wé[Ô¢øUÚÎCx|?š=øb_}ÈõÔ/£púƒÒ~ `¾×àbètìh!Ú¬kéñFAîÀP¼ ¹…ºwãñøÔíV}ÈuÕgjfÞóŸíL½Œÿ-Û-„®3Í£ƒŒ·ëé…’öÑËu;þTl=ðétû_Î×?–êÝÎç;ý›š ãŸãï,;6 ·s ÆØ­ød3þÔ½}¹%þßÿ~=ìc©ÞmXéeí ÿ»zÛ,ïÃîèÑÿR·ÿ}—Ôã§Þ3¨^ƒý£D‡ûͰ.ÿ;úÛÿ5€0õ2>8vôĹoS/ãƒãokü˜acêeü èðÇ|ˆ©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±ó’©—±óòñS/ÛC²³ó1ß}Z·/»=q'åã»óÿñãçìí}ÌÍÅb'¡íÞù(l¢cgjêLùX©W£Ñ¤¦^ñõ ]¶ÌwÆ Áƒ~;y¼ƒ9NŸî±d‰ÏÒ¥¾Õ½2µZmYYyFƵˆˆØ ¼ø"»Oq'#6Ó¦¹}ûíþS§.R>V÷)îvøÎÈÇùñÁÔÛÉÔ«Sog$S¯L½‘L½:0õv6r“Bá&;»íL½L½Ü$…PèhgçÅÔËÔÛÙÈÝKK(t¶³ófêMI¹¼uë‘ùó·¾ð‚Ë€ôKmðÑaüC ýû;>ÿ¼ë¼yÛ6o>’œœù˜«·¨¨8!!-0ðôÚµ»§Ms366ü1þŒ6N™âºf͞ÇOÓQ+,,6´| µZ­P(¤R)½ -^ìeffø1bü#š˜8,\¸=$$šŽ—\.§cghù<,ˆˆ¸¸|¹·¹¹áÇù—ß¡¯3’ªwɯ“'/Z,&õ¶ßç·¬“#SïáaR¯NºÎ¨°ÁߘÉÔûGHI¹ìéøÖ[›ÇsîÛ÷ï,>´ßÚQ_u*WW7=és<èÔ!·ß¨úÑ7t,úôq;ÖyÎOw÷ÃÉɆËCšÀÆÆJöï?ñù绦Nu55ýÛFg“^±.zÑzxlØŒO<î æGßTÐ;y²ëgŸíÜ·/üâÅä‚‚"C‹å¡ƒB¡hii©­­¥)-½Êj€J|A@À-”q*þ†ŒÞÁø–vãÛÐEàÎ:³la±qòd×?ôóñ ‰‰‰gsÿ襪ººšÚ­#GÎ/[v¬gÏsèH/êýçIŒ{:ÿù ^¾uå,oŒÌ¿)ÃêêcžhŽâ¥?-•b@=@€ @ žøJ(¹Gút”ã šQÌå“©†¯ 8fø(Úà]h!<ð/^Šÿ{ôظx1gè™§ç_*•Z—/ßôô<3kÖéaO^°é›`d™ ¦i`’ &ñ` âs :ÂHàŸÞq ƒ™ÛÅì…!×3¬cç8Ë¿ÂU¸Œå`ª3-˜° Ð…€%+]ñ9=B›0%`¢ã60jQ5J€—‡¡; Dfþøw·ëÃo§ñFFœn‡ s|õUw7·Ã× =슊JÏžMõöŽYýiäÔÙº¿}  OôΞw Û-èrL³Àè*ð/ë}i<¦Wgô!ú¸¾Ï%e¼0*ÓZ°l†îmÐS} 0ˆÀPONàI|†GãOékzi ‡¬d`ÞâzàW£åÈÁDO‚ß‹püîìÂøïÒ‰ °¥%gV­òõò:“@m›¡‡ý½xUVVåäÜ >–ðþš‹}§ÝƒQ­0²žjaÍ0  z5U#˜6€° í+õ…ú‹{ JK‚Aòç`y­`ÒV 襂j®…§ Œ%0À$“ L%0 §àz|á^ó¤†h Ÿ¬U`¦½Õp1þ­Tðq´ÞúYŒÎa€{÷Þ´l™wPPTNN^EE%3 )é××¹^4·^$0ÀKøHÕõ1*i„ì­åb©¬[ { t+†®y`™ ]r Kt©„.RÎô&0„À(ãQ¢/xÀ›æx—À| ðñ<ò&þôeÔóü[4&÷Aka¦“V.‹JApxèÌÃÑŠïÀ ‰Û”A*: à¸vítCò# N½›/ Z\‰j!åV"?ÀçvÞ&ðºfj`† ¦Êab ÑÂX¢[¼-ƒ7d0K/ËàU%ÌÒÀ ª‹¬@q~…ÿë'Ž\ ¸á¯õÄ'.œl$ðõ¾$ð~Sl1 Óà?Q c4ð„ ú(À² „­h$r21‡é¼íþvƒ+ö>éÒKÀÎk×îeêýëp5ûŽûÁ¸—¾¿2`Ci7·zÑ.%iyá~´Z£4Š‹CÛŒÛÄûeF~2ÑV¹ÐU!بäoPñ¿Ró>ÓÀj-|¤åäúŠÿ{T»»¶ka—†·WÃ;¨æ¨ù‡Õü@5ÿˆšwXÍó§¹ÁN-÷ÙŒbþ¿£1õ3ѽÐx>@7¦r0®Ñ=Ð,2x'0Û‡Em¦3/á mêÖ“îôéž®®—/gzY—”‰Íðü%î}ŸÄI;²»©çGk„‰rñ•Vóì†nW«ze”ôI)ê™Pj}±Âêlu—Óuf'µˆ¥‚rÞn%o—šÓáNû"¨…cÞIïŒRpN.Œ•%H9&J’¤¢ø6aœLpAÎQò"ÕpB G øØKÀ Ãò?ÀPü:¦{4³¬„^-еL Áè:ð%X>‰ó,ôáŽ^ÂÑ@梮••ãĉnË—ûzx>ǶhøëÐÚÚZRZ~ýVN`tÒûGD– ÒTâ;­æåuÝkKÔæŒ¨¹6ª:sxeÖàò[ýJs{u+(·È«1¹Ù ºÚÂK“ñ’•¯8 ’´¢åeªxY þÍ6áÝq~“iQý¯,®7.h4Êoæ´ nÊø×”¡…d-Ĉ&Nà0=è[0’¯B Ï¢^BO)¡ º6)uÂ÷°Y"'YÂpneßýiñ¿†~ýœ—-óñ÷ÈξURRÚÒÒbèA~ôqýnŽgTÜKWžH¸7âÊíÑw³Æ•¦O¨Oœ"??œD.>GâÇ’äQÚŒaškƒT·úJsm ­ªËº–UYÕYä7ZÜk´(l2/j´(­³¨¬éRSiÕPfÝ\ÜSZÐÎ-EÝšJ»6”w©®6/§’n6Ék5¾%5¾Öf”*Å)„g”ücjÞ Š© Y‹ÉÝÛ˜Ó"Ð_ ÖR¬ã•ÿðÒb"qVî`‡ie·¿«µÒÁÈÈÁÊÊ¡oßMƒ;ì4x0gÜ݃®]»aè!}ŒPRV%Iw?÷Mdì·1¾»pöó„Hû¬ãóªCÞ"!sIð<Hùmð›Úc³Õá¯("§Ic&6ÇNhHx¶6å™êÌ15—Ÿ®¹2ªöê¨úËO7f<Ý’6Fš:V&yV‘ÔαrÉè¶ÔQÒŒ§š¯o¸>´öö ªœþeù}‹ mòˬnW™gÕKZD1r^¨öØ‚©ß§Xý Ax‚†+ —ºÔƒIòôAø,–Ô‚ÐHìÀ‰9Ï¿>¡ã‚­µµãäɮ˗û¬[·wݺ}”nnÔ0—zH#P Q\ZvõÖ”¬ë)ÙÙ”aÉ±Ž ‡WìYBvH¼¾ n_ǯ‰ÓWZ§5Z×OÕ›W©¼–+wØ+öÙÊüß‘™+ yS:G6G~ü EèÊÐ7TÇÞT‡¼¥9ÚÎ7Ô¡¯«Â^SxE9C=U~á…¶Kã¥ÉcZÒ‡7ehÈéQWlY\m|£…Ÿ¢†¹âÝX©øëoia²žTA/9X¶€Q6HÜÁÙ@]¹¿5Âõ/ëŽøÕ' ê¼r¥_PPTJÊe¯^½^TTÌ ƒa‘_xïð¥ãßgú~YµyCãÏ®Š5ÛÉjo²Ò¬ð#ï{‘U[´»k¿p$ë~ ߯'_§/‰Û§ÄSÇOÈæßó#²~VŸed—=Ù÷9ô6 šCŽ¿B"'‘ Ï”'HVß¶¼nÕ•¦ù-F×äÂx%?RÍ Ðð¶i¹‚Æ*,Oº>°PH ‚Jàåâ `Ö„uhÐEàïD¢M––޽z9¿úêæmÛŽÞ¹“kèáb¸•ÕUq‰‡âB6'úyfýäS½ú y/Ì %sN’Y'µ³NjfP¿¢yë°öÝdá²D§j*ò­ä£-äãÍäJOò)ò3ò™ùÒ™¬¥‚ÿ™|·ü´Ž8~NV9é¬êÅÓê—Oh^;¢}û€v¡/YáN¾ø‘lXC\> ¾ ˆÿkäÄ$íÅ‘ê̾Ê\«ºr³» ¢d9ÿ„†·GËÍn|ŽyÜ+Ø4»#„*ÔsË7¸õGºÞž0p»…pþß-5 ææ4Ss¢†ÁË+$?¿ÀЃÃðÿ ¦¦Z’{"n×±Äu1WÞÎ.YÛlÑTm"-ÊsùÒÛ¢ælãú+f5×,+²º—\·)¾Ù«ðNŸ{9ýòóúåßëŸWØ?·h@nÉÀœÒAwÊß®z³rXv툫M£2¤cåÏǨ^ ×¾@ÞÝI–Qƒñ#ùžÚ jŒçjÌМ«’ m¹Þ»¼°ËÝZqªT¡àï×pó_âÄôLl(J ‡,ZÁ¨,ÛÜÞ]©KâþÓ¦ˆÞ´]Çž='Mr[¼ØÇÍ-0&&¡ªªÚЃÃðÿ ­­­¸¤(ûæåؤИ _f_/«4Rä U×øê$žò_qR(?*j ·†·œ4m>mÚtÖ¬é¢yc¼yc’EcªECºECf—†+]ê³,ë®[ÖÝêZ“oU]Ö½²Îº ¥ïMùÐtíÓÉDê7“wv÷]ÈšÒüÎVûËLÍÉç•—†·fõl(²(¬3NoœVÁA,D¬!`O`66 ÓB/%˜Êïp6§í¹Œÿt"£}ãV'ŸzÊeõjÎ0¤§_-,d†¡3¡¬¬8þ‚_FììúëÝê%Ýêcº5ëÚzÐLé-"®@Ül²ˆÝ@  ä8p §€œä<8 é@n)úE¨m´(–÷¸¥”¦}A;9L;›æ€[ÉÇ?‘ ŸO{²fsÈ¥¡äziq—ÂZ£LÿŒ†wHËuþ|…Íls¼€=ðݨ…P¿Ao!$¸d©½3í?3ÀÔ'˜š:víêÔ­›³Ž3gnöõ e“¿uuµ™éçâι'D¯J8µ*!tURÀâ,Ÿ©åN}É7@¾òO|ŽOÖYä @œ¸ñ²ˆ½@‚€D‰Eš°å†ImEie܆þÙ²aIÊñ‘êW´óiNç@¾ù’¸-!{æã/¸ò«ýjò¬îU™d¶‘ñQs}kßà|Ü›XINÀFÃõs¢%â’½£8›¼ìü' CŸ>ŽS¦¸SŸ°jÕ]]9ÃPSScè¡`øA-DIqÁìÔŒ´˜ŒÔ˜ IŒä|È¥ŸßþnY ÄÈ< ¯y ÈL ¯àó¹@±²È2 ¢¶×Ùd} >ÆWÄÛ$FÍ7LëŠ-*­rdÒ”c¢µ/!s©‹p"_¯%.KÉî7Hèdõ…Qm™ýó¬J*Í.7 c”€}ßagæ?°«çI-ôV‚YZˆB\(z ×x`OÚV ¿Ê0<óŒË§Ÿî:z4š*VÇ””ËEl†Gµ55 !ûÓ¾{«e‘yË[æ-3Ì[Æ›µ=m¬xB¨êÊ! Š1 Ê  œª ž š·A³´ŸùÍÆ~ a ½êë ª€úF³ü¶>™ê‘çµSB´oí"Ë\ÈÚ¯ˆ3ÍãÞ"!SÈù§Èå¾mùVÅUâ«RÞ9 /P Û°x%ÎeLÆL-„€ZˆZ\晉5´P ¿>ØŠö/D+n‹¹ínÌÍÌÍÍÍÞxcëž=á,5{TÑÜÜ|%)6î€g¢ãòÄ—'®_žøùâÔ¹Ó²Æö/ì96p£\YƒàúP¸5 òGBé3Pó4½ò¹ ]äKŒÃ¾  Í9P_Ö šžÍ ï¢ØÀ mhÏ€2EÐzÛ¸¡Â¢¸©w–lDœfby}±÷ Ÿ¯'+‰Ï<4C}fl[ÊàÆÛ=ÊÊ,²D±r8FÀ—l|„«<¦êf“`ÞŠ«Jïb‰þÁçþÚõ &¸}ùåîcÇb"#cuÔù¹\nèÓÌð7¡µµõ\` ÿ»ï‹÷‰Å[Åb±ØY,ö‹½Äâ‘èŒ@c5½@= È$ oY)u‡°4‘$Z«MJZzf©†_"χ“ÙûÉ"OòÙ·zO'Ñ£IÚùÝîå•âmO ”Àòël2µq¥§PT`7Z,ŸL$Ú);!7á»Û¤ûç¼yÛüý#éÕÄЧÁ` ‘*31ñÄÖ­ööûííwÐ+±½½½½Ÿ½ý.{ûÓ§<8^(¼i •=@=Èx ³,Á’…+—Ç‘“@’䀴¸¬Éæ†jh"ŠÌþžü¸šlŸO^&§Ç‘äÁŠ[Ö•åÆw¤ !p›Û±£r>.ÀA ;žxÔ?Üàóã ~ñÅ=øŽ¼ñ­éHŸûlÞ|$>>U&“ú2 jµº¤¨èjJJ\xøÅðð ááçÂÃÏãÊ£6™1ã¬X|Íʬ@ÕÈh¬NØa-ÂÈN ¡@âÜi©qyƒõmå òÌiòòaò®ùð'²á²ÅŽœEN>GžPܰ©)5Éo… § ÀE kp}ô˸ªÈF—¾Uï–H”ðâ‹!ß~ŒïHÇsíÏ%’ÌÂÂb•JeèSÈð"áÔ©#Ë–E˜›§ó‹,ùŠž|ÍH¾f:_³€¯ù˜¯ù‰¯ñák‚ùšó|M¿µÐ¤¼ÖúŽ|`ªfÌÍŒ#šw|58hÖ¡ñ°×웣9>I;B~µOM¡yA3ÿІ­áûkøžþ: ©†?[çá÷Ñð”|a_pÛÄ$qñâð' }:%²32NûùY¼øÄBÛs‹m“–ÙJ>²•¬µ•ü`+q¶•lµ•ì´•²•„ØJ"mÎ.¼»ôLÒ'$KÖ’lØ%qÜ&ñt•øü,Ù»^ð…äØê¤ˆ÷cÏ.:o{Jb,±= ±õ•ØzHl7Jl¿‘Ø~*±}_bk—dûÞEÛ÷¢- óñ‰NKc‹|þT”•e¥¥] »t,$!4$94D"9"‰‘D…H¢C$gC$B$±!’øä„c‰I¡ñÉÇ/IÂc%'/H"ÎJNGKÎDIb"%çNI.œÄ†%_:ž”p,!)ä’$$Vr^# 9# ‰”„œ’„„KBŽKBB’CBCBâOMÍ*--7ôi`è”ÐjµFm8пN߃¡OÃߊÿj®èP endstream endobj 17 0 obj 15453 endobj 18 0 obj << /Width 234 /ColorSpace /DeviceGray /Height 234 /Filter /FlateDecode /Subtype /Image /Length 19 0 R /Type /XObject /BitsPerComponent 8 >> stream xœíÛQŠÃ0DÁÀÞÿÌ»dûc¢Øš¥Þ ºЇ$I’$I’$]ÜÏDÕ›çú¨zó\¤¤Í¤3¼žhÒ¤×ÓÁ¤¤ý¤w óÀ¤¤M¥‹˜ZÒ½¤k••ZRÒ~Òá¿HIIÙ#RRRÒœH÷R‘’’f+G¤¤¤áÌ))iµã%iU¤¤¤¤9Ý+MÁÞ®$]Þi­x)‘”´½t½¶JIJÚ[º[¬|FºŸôè ˆ#RÒ¾ÒÑG¤¤}¥/mÎ{‰t?©$I’$I’$IÒiÞƒdµ endstream endobj 19 0 obj 362 endobj 14 0 obj << /SMask 18 0 R /Width 234 /ColorSpace /DeviceRGB /Height 234 /Filter /FlateDecode /Subtype /Image /Length 20 0 R /Type /XObject /BitsPerComponent 8 >> stream xœí}¨œÅÆ_iþ(¡Š‹P*T("¶Ò@$” ¢¨ø€‚¢)¢býÀ(" 4Ò@DDT"*ZñbÀ€ÁL1%%¨Øñƒ ¤(’ÜÓ÷²;ÏüÆ;«h’Ý;7ÏÃóײw÷½ïû›eΙ3g",˲,˲,˲,˲,˲,˲,˲,˲,˲,˲,˲,˲,˲,˲,˲Ž9<ªyzZ>‡fû`áéŸáòÓò듾7Ö\Ww1|Mòºì…¾’¯Ç¾3þ*_OËgÆÛ³}v¼%Wßp}<*/‰×åIßk®ËôZíÊôZíÊôZsVݸ“ÿ—ý§ÈÞ<ô ß~._›åÇâÚŸŽKåGâfù¾¸]Ö‹|óÛq¦üiœ4p|Ùeï®ù]øØš×2½V»2½Vê6%ú]ö9‘Ý=œ¼?ûîOŠ|k¬•·Ærywœ6ðÇqŠü~œ!Î=qêÀñY—ýwxjèï¾ÎÖWô~5–üd¬9Xž Ž›ºl«A™^ÓÛ®L¯émW¦×ôÎ}÷ÅY¼õVV¶[٠к{‡^Ù;²WÅCïŒÓåß'Oïë.€å’§àÙúØ©8O~ VËŠÇ;r÷Ñtö1ð–¸B&ÉJ“~hÖP¦×ô¶+ÓkzÛ•é5½ÍIÊ¢ƒ{å_ï“»m1ôu0AÕjÞpZì–߉ÅǶ.›+Ô¼~~!™ôþ'[d}Ü(/Wå{nŒìkàˆæòŠnÔL4§+çÚ‡5v™^ÓÛ®L¯émL÷w²fƒ§Æ¹ÛûMös14ŸïYðùÉ›³Y‘øVœ=0g§{Ûjf ÷•šñiš9÷Ö×Ý÷ɛݚIéîVXox/›µ—«ãŠU2Ȥð¼–é5½íÊôšÞvezMïÜ×éüh\/ßwÊWÄ–ùt zŸ‰¡µ±|W/¾œÍm;*ßýÁXüËë“×Â(ïdrXùpfð×FæLž#«ÅJÓkzM¯é5½ã—é5½ Ó»¾VëQlöaêRÏ—7Ÿqc EC¼·ÌL*Jâî›"îKeºßMPw$u¤÷¢d€ÝñüGt‘ä­Øº^‹ÔÁ)¬#ó$Gÿ2c+ ž¯mO6wèóuÁª?é}agh.FšvÇß³¤A½Óù±ˆÚxÀŠ ¸Ù­ºþrq<+ó^éEÞ‚*sA¤jÖó³‚B'oò׆צöPEgZn£Óv¿'àC¦×ôšÞ#)ÓkzÛ¥WOO‡]q4Ñâ­ã-Õì‹oà"»fb3“±í142ÌLêQr·K1)Õôu)|9¬i-›íð–©d–O^¾9hÖ|²z³ZçÉêDýGŒ ØKG/oþ><öKç\—¯kBΙ3 !Dlqò8hD£j4æd¾×ôš^ÓkzMïøezMo»ôj½ž)J–1è ¼ŸL6VÊá½å'+ñËì(¡‚;_Š:‡“Y˽íiÛb?¾6¿cSyA2‹¾ýY¬’fVç²AQˈV5îcP¦ßRÊO`.Z?;ü9âOAîTÀ“Ç ¥ÑÍsnæ{M¯é5½¦×ôŽ_¦×ô¶Ko·>ù:ø8u‚âZ9w¥U3ð¬ ö ë¶ðYÏnÔ9cÒ«šÆVUë |d´šºa Iæ×ͯ5!úX.ñdqÅ6y¯4ryW¹Qýá¡ÞÜï–÷Ñ£·U±¡„‹5þéì'ozM¯é=²2½¦·azïH¾^¯J½ÜÜ]’së²äý0÷@©ûú¨ÀA­ìù2'ó½¦×ôš^ÓkzÇ/ÓkzÛ¥W¹Äâ°„ñ¨ÀYfõæTÚŸcóPš4ª™^ÓkzM¯é¿L¯ém˜^=ô¿ÀkàtëX¡¦3}4áß1ÂS°ú$ d`é¬Öî¹K®ˆwž‰¡¯I²Â7ljÕEmĉE<äH´ðE^OõØ÷êiDš£ }GíkS Ê#8Ùk‹%(zF¬7f1°–œøÆ€˜¬7>8=iRk2½¦×ôš^Ó;~åƒ{p©¼KÊa2ûW쯋üa‘ûMÅ¥y~²æo,B(Î+Tv”õ„›á´§I'z÷æ´V3UnÕ5)Íéedh‰–0æd˜Ðj ’±j×,f‰«=$G 7&««ýµTÍÒ[cV±’^=zÎÃM¯é5½GV¦×ôš^Ókz'(þ/œä+%XT{2[«tîËF!C ÒI#ùdzM¯é5½¦wü2½¦·]z¹wŒ+à¢tzQv>‡½÷=É# ¸#^÷»ÎYAQÝðÎEpòE‚ª®w°5“Ì70‚cК‰ÅážlÓ¤ëábo¦þ5îaç&AmßcK6x2V Ì@ŒOªrãå_nvÃaŠ‹’é5½¦×ôšÞñ‹Ó$NºDï›]vœ ß–Œy¯:Š÷æC©vžá×é)'&?õ"'~œ$ëññ?â¼N£†0¦Uó¼wŒª Íuù_0¿ªh‚¿ Œdy¾yv[øï]<3É:–ˆü×n¼(›Ý ºSbà†dzM¯é5½¦wü2½¦·]z)æ~s_ öâ^ §B,]`T¢ £wµo«'°¤W‘‰å§é™²~•­Ñ8ÏÜ›E $²”WÑÑb÷õœúfȶsíˆ"Æ¿üïx §Ì ‘»„rÒþ–lþLš¾Ã•é5½íÊôšÞvezMoÃZ×e¯Hæ Ûn§Δ8ÃÞR­Â³G(+¸]æb„nr5EÏŽè [XV¡çÈ(‰oµ’"ó ¹æ™'K¾2â(vùéš«mH׿;LÙ!–CO£‰«l¥ñlkÀÊIÃwØ2½¦·]™^Ó;?¤C™·ÀHí*‘ȉË 8{’Ûv´]/r\Ýu^-i ½ÅB¿Z÷°ùO~Ay§žuÑŸœ{”>å}ì[®ȲR6xç¬AåÝN³åQô2÷«ßÞvv3иcÊ}Ò5™^ÓÛ®L¯émW¦×ô¶«´>êÐíagtÆd,³£ŠÎ˜>åsÖþ(½Œûø¤t ̈2Sš÷ò3b"{Œ˜ÄÛðzXp.‡—ÁúX†rä_ ç÷Œp ™FfäÈ-EÕßÖWO„œ4dGM¦×ô¶+ÓkzÛ•é5½ó@Xçݽ¼‡Ü•F+jãb÷³«w»?±wº¶~óc«+ U¸%> stream xœ}P¹ 1 ë5…¡Ço›UܤÉþmNMÎpi Ðâ’‘ ?Èe¬Öy™C)­Ía«‹V$-}ÚbáQ'jS¶jÝO7‚IÁåò½# ·¿¿ŸS Aؘˆ‡E̲‹âéQ™:¥À¸EœÉâ†ÞÎÖ@æ¡ç]ÝçäfŸ”J^ö /øŒî[ endstream endobj xref 0 21 0000000000 65535 n 0000000016 00000 n 0000000065 00000 n 0000000216 00000 n 0000000275 00000 n 0000000513 00000 n 0000003699 00000 n 0000003720 00000 n 0000003741 00000 n 0000003762 00000 n 0000000384 00000 n 0000003678 00000 n 0000005873 00000 n 0000027935 00000 n 0000022091 00000 n 0000003816 00000 n 0000005852 00000 n 0000021513 00000 n 0000021535 00000 n 0000022071 00000 n 0000027914 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 21 >> startxref 28209 %%EOF pymvpa-0.4.8/doc/pics/ex_topo_plot.png000066400000000000000000001563341174541445200200060ustar00rootroot00000000000000‰PNG  IHDRÂè|Xä¡sRGB®ÎébKGDùC» pHYsaa¨?§itIMEØ 7#€,í IDATxÚìw|eþÇß3³}³©$$!¡—PÍQT¤¨–Ó»9ÏSAÎrÍ^Q ž¨Ç– ?ÐâRÕSº€€" žlòûc“ìÌîäN©óy½æ•<;³³³ÏÎ|?Ï· š¦i˜0a„‰¸Ð4ÒÒRæÌ™CçÎ6l6›Íœ˜3s L˜0a¢yðÔSO1{öl™2e ×^{-.—Ëœœ3‚©š0aÂD|ìÙ³‡ûî»O?ý”`0@VV÷Þ{/cÇŽ%99Ùœ$“M˜0aâÌĦM›x衇X¶lŠ¢D„¦ ššÊm·ÝÆ=÷ÜCZZš9Y&š0aÂÄ™ƒ@ À’%Kxä‘Gزe ͉HI’9r$S¦L¡mÛ¶æÄ™Dh„ §?B¡o¿ý6O>ù$?è=W\qO>ù$=zô@EsM"4a„‰Óõõõ¼õÖ[<þøã:tè¿Ïb±0dÈÆÏÀ±XÌD“M˜0aâ4CUU/½ôÓ§O§¬¬,î1­[·¦ªªŠššš¸dسgO&OžÌ%—\‚$I椞F0õx&LœÕ(,,äÁdÊ”)qIÐn·óë_ÿš… 2kÖ,Ú´iƒ †cdYfÓ¦MÜpà ̙3¿ßoNìiéñÇÜœ&LœØ¾};÷ß?³gÏ& Åìw:ÜtÓM<ýôÓ´oßž.]ºÐ«W/¶lÙ¡C‡bi¼^/K—.%99™:˜¹†&š0aÂÄ© MÓX³f ãÇgÁ‚qINNæÖ[oeâĉddd4½ÞºukzöìÉþýû)..6¤VƒAÖ­[G0$//ÄÄDsÂM"4a„‰SŠ¢ðùçŸ3nÜ8¾úê+TU9&##ƒ{ï½—»îº+&OPEZµjEŸ>}Ø¿?»wïŽ9‡Ïçã»ï¾£´´”óÎ;„„sâOa˜Á2&L˜8køðÃ7nûöí‹K‚íÛ·ç±ÇãÚk¯ÅápU«¬ªªj2­ú|¾˜c¬V+dæÌ™äææšé¦Fh„ '555¼ýöÛÜy甕•Åø÷A k׮̘1ƒ«¯¾ú˜i‚ àt:¹è¢‹P…;wR__o8FUUöíÛÇ×_M^^™™™fD©I„&L˜0qâQVVÆ?ÿùOž|òIªªªb¡$1xð`ž~úi†z\ç¶ÙlôîÝ›ÄÄD¶mÛ7½¢¤¤„Í›7“••E»víÌ\C“M˜0aâÄ¡¤¤„§žzŠ3fPYY³ßjµ2|øp&OžÌyç÷_™/Ý»w§M›6¬]»6† 5MãàÁƒ¬_¿žÔÔTòóóÍæ‚é#4aÂÄ MÓ(..æ®»îâÓO?%Äc·Û5jO>ù$ÙÙÙÿ³O–eÖ¬YØ1c(((ˆëƒllå4fÌœN§ùC™¡ &Lüøe™Í›7sË-·°dÉ’˜€ÔÔTn¾ùf^|ñERSSc’äÿˆ¢Hnn.dÏž=””” ˲á˜@ ÀòåË©««£{÷î$$$ü(ŸmÂ$B&L˜@Ó4Ž9‚ ?~<_ýuÜî999Üyç<ðÀ¸ÝîõA 33“üü|ÊËËÙ½{w ƒA¾ûî;öîÝK«V­HOO7ý†'¦iÔ„ §5jjjؾ};ß~û-7nd÷îÝ|ÿý÷8p îñ­[·f„ \sÍ5$%%ý¤×¶wï^ž{î9¦OŸÞì1½zõ¢sçÎtíÚ•^½zѳgO:vìhF—šDh„ ±e™P(DEE«W¯fÞ¼y¬[·Žšš|>^¯7n©´FM-''‡ýë_ <»Ý~B®¹²²’§Ÿ~š_|1n®aãµÙív\.N§“V­ZqÉ%—p饗ңG\.V«ÕÌC4‰Ð„ g#¼^/¥¥¥”””°|ùr>ûì³&òû¡°Z­ôéÓ‡éÓ§Ó»wï“òÞxã ž~úiŠ‹‹9±›““ÃE]Ä%—\B×®]ÉÊÊ"##ÃÔM"4aÂÄ™ MÓ(--eݺu¬[·ŽU«VñÍ7ßÄÍ<DQdРA<ûì³ôéÓç¤iU^¯—9sæðÈ#4Ûêéh$‰ÜÜ\Î=÷\ÈùçŸO^^ǼaL"4aÂÄ™‚@ À·ß~ËâÅ‹Y³f ß}÷ˆõùƒœ н{w¦L™ÂðáÃOz@J}}=S§Nå©§žúŸZ59NòòòèÑ£ƒfذa´nÝÚ¼L"4aÂÄéUUñù|,^¼˜W^y…­[·R^^ŽÏç;¢‚‚„'1‘üüŸÑ¯ßyœß]ºç‘•…­Á'(XõçÔ° r´>j¼¾8m[µÿ¡•kMm-{öðÝ·ß²ní×|½ök¶mùMU6-úŽª%&&&’––Æå—_ÎM7ÝD÷îݱZ­fJ†I„§4MCUUDQ4o^g jjjسgË–-cæÌ™ìر#nzs°Ûí$&§sØßºAÊyvdtÉ>È œ£xv ÷˜#"Aáj÷‡†ófsÐ0ÞF‘çRÆÂ~rNPÉUáèšh·#_Q±¾ÃëŠ8´¦Š‚j‚‡kPªëÑä® ;N† ˜1c8ÿüóÉÌÌÄf³™7›I„§þjxûöílذ /¼œœsRLœÑ8rä6l`éÒ¥|ôÑGìÞ½ûk~N§“:ЩS'ºuëFFÛþÜùno°g‚ €è{áž&DØ›o /TEå»­Vª¾ÞEýÆ=øvãØqˆ²ý%?xž, C‡eĈ 4ˆ=zœ°(ÙÓfçIÖ7oÞÌ£>Êš5k6lÓ¦M345aâLßïgéÒ¥Ì;—+V4Û)fµÞö0dÈ.¾øb:uêDûöíIOOgg‰óϬy%wÏv8zvDõ ì?½»’)Ü´•/¾ø‚5kÖP[[{ÔsȲ̒%KX±b]»v墋.âæ›o¦K—.æhá©…­[·2f̾ÿþ{dYfîܹøý~ž{î9ÚµkgN‰3›7ofÊ”)|õÕW>|8¦ÒJs8hÐ FÅ€hÕªiiig•û@tØpvÌfXÇÁ$ Î 7ÜÀÞ½{ù裘3gN³EáõzÙ°aßÿ= .ä·¿ý-£G&33Ó¼)õ÷ši=ñðz½,^¼˜;3ââ☇¿oß¾<õÔS 8дï›8mQ]]ÍÆyùå—Y°`AL¯¾8â,)àh)# ý· w…oõǨ€.ÚÒ-B]óÜàjÝ*‰Wj[ 1Ôþy„hPÌ—†«HƘ¢QJ–Á4ª"R[wÕ ÔÎÙ’RÃþ¶ì3œ3‹øõá#zQ\ÉÑf¼àõÂòM0{¬ÚûKÁ8öï’››Ë-·ÜÂu×]GëÖ­MƒYkô¤‡Y³f1aÂŠŠŠâÓØ»¬E‹tíÚÕ¬&aâ´B(bóæÍ<ÿüó<þøã¬]»¶Ùj/‹¿ììlúÊõOû¤]Öt†”; ôþ7›¹:Ö ÈÓÛªaÏ‹°„J;Ë^Iµ‰")Æ´†:ŸŠ¢°wï^Æχ~H0k³p¹\$''säÈ‘¸û¸õÖ[¹÷Þ{ÉÊÊ2s Mœ2ìÚµ‹çŸž·Þz EQš%@ÑbEMÎ…ž—ÁEÆ’Ûéçºcë!pc”壮¶ÏÖ½Ðø•n(­ í(E&åîHúƒSðq…¸ il%ÄÏu>AÎì4 FG[5ÉaØ4¹N•*#cU¥C™Îâ£ÛŒs"D© ò9úýBOªya?9(Dj‹"Ã’Q‹%*É¿5 øB|ÿå>~¡¢/PéoÞõ(Š"999Ü}÷ÝŒ5Š–-[ž5nS#ü‰Ipýúõ<ñÄ,^¼8îª,%%…1cÆpå•W2sæLfÏžQWWWÇßÿþw***xôÑGiß¾½9¹&N:Ž9¼yóx饗زeK³©¢(Ò®];Î4Œ²GCÛÞ ZE5Ý3WBk€>¡2Íû'6§Ä5á’ ø´ÞÞ «Ë@³øðûý¼ÿþûìØ±ƒÛo¿Q£FÑ¢E “M4McñâÅ<øàƒ|ûí·Í ˆI“&1zôè¦ÙYYYLœ8‘-Z0}úô_¢ªªÌ›7êêj&MšÄ¹çžkšIMœPƒAæÏŸÏßþö7Ö¯_Ô|Àüü|xà.¼ðB222ØgúO*r`L¸0 ffý‘Îü?ª««ã¿eË&L˜Àš5kxðÁéÞ½û+oLጺº:þïÿþÉ“'Çí;&I;wæ‰'žh6J«¾¾ž7Þxƒgžy&nŠ…(Šäåå5UÔ7ó€LœˆÅ]AAÏ?ÿ<³fÍj>Æb…–™£®ÇþÇ?ÙNCÃ&;E8R)ó¥ùD¼¤FÞëÓà¡(›vÔY„“4²À~kdkàõˆpN´WsCßW›ÆN|\Ë»‘ç…‚ˆÜ^#™ ~ã÷Òˆ'üu¯© TèÞ£jˆ•Qsã0½½Œ‹‚ ÎÞÓç:¡ŸÁÔ¹<ƒ_rêR8öìïF dü±Èx /÷» «‰A¸ü‘/Ø^XÇ3›4>;•øÖiI’hÕª“&Mâšk®Áår™¡‰æQ^^Î?ÿùO^|ñŸæ"Q0`>ú(C‡mÖív»ùÃþ@FFãÇgçÎ1šáÖ­[¹ýöÛyê©§9r¤Qjâ'ƒ¢(¬Y³†ÇœÏ>û¬Ù`[r2Á‹.E¸ùv„üÞ(v¨«htˆi‚`ìüÒ )È€}nÍøWˆ"!!JŠY4¬DüŽVB†?KTÐhžóõŽ¡+D»15b}€Q\ªEõÔUÉ@„2dÝ b3ŒØ Äè×Ô(¶•rXAŒ|›æ§oºÆë?‡öÂÔ ßoñ£*±¿QQ·Ýv{÷îeôèÑ´nÝúŒÒM"üIpòäÉGM6l“&M¢OŸ>Ǽ‰DQdäÈ‘Øívžxâ Ö¯_#€<ȃ>Hee%7ÝtÉÉÉæaâG·pÌŸ?Ÿ©S§²iÓ¦fëСÃ︋^xd´l¡æžH°ÂAº6‹wfUóÕ¼jj*c;¿ßϳÏ>ËöíÛ¹çž{èÝ»7’$s`íìß¿ŸqãÆ1cÆŒ¸$(Š"×\s S§N¥o߾ǵ’1bS§NeÈ!q5ÈÒÒRž|òIþö·¿Q^^nþ&~ÔÅÝßþö7zè!6oÞ÷«ÕÊ•W^É+¯¼Â·Ü¢#A§òz;ùãSYüñé,r;Û‰'¦êëëùàƒøÃþÀ'Ÿ|rÆ|wÓGø_B–e|>Û¶mcÒ¤IͦGx<FÍ<@«V­þ+s‚ªªìÙ³‡‡zˆ?þ8n®¡Ãáàºë®ãᇦU«VØíö3fµfâÄBÓ4 ¹çž{X¸p!@lKAÈl“°?gpÑíHNK¤HÈáQùžÈ}« ý?– ìHŠœÄÚ»ºÅ]x7Ji*u~ÆGÜÖì -§DJ¤e‡yÁrGdP¦Ïú-º ÉiÔv‰°9³ñÑŒ–ˆÞè¢Ê‘M¼èJ‘†ÇQO[Z_X. 6˜F?å2ƒésMÉ‚jÄ¿ª¬²ƒ?"K”õšW8êug¿²ÁùrÏïÁ¥Eúù¾ÕØä Ь±¯XeÂË Þ8©‚ ÀäÉ“3fLSÀßé Ó4z(--¥¸øGŽ”³«W¯âƒ>h6êJèÕëWôí{=6Ô±aÃŽÿéó¯¼ò~¾ù¦’• RÃh¶˜9s&óæÍcìØßÓ½{w’“37àÁbq™é$77‘ÔÔ„³"7ÈÄ·ÀÛ¼y3wÝu+V¬hV ìÓ§<=mp¸RˆBZ‚Î%¨ iºü;M@“E#yDû…xÎ4·Ñ†¥o«gÉ!6 ».!ÞŠŒ%¤Iéx«*qˆP>Ê1ñÖºQÆE¢xÔb  6TAEç·€O÷Aõq;ŠÀêIÞH°ú&JŠ‚U–±]ráÍ)ðÜ›ðê\(:hx+š¦Q[[˸qã(**âÎ;ï$;;û´õšÒð(¤·sçN4MÃçó±sçNÖ®]˦MßQX¸¯·–£;Ñ=¨êV®ÌaåÊ…?â•õm Áqî|¨¬¬dêÔgž<7´ÄáÈdÀ€Î\zi'úõËãœsz‘’’bþÐ&"Â7äóÏ?ç¯ý+_ýuÜc¹êª«¸ï¾ûhÕËÊ—gZ3@+“î¾ :·…çf†ïAŽZÔÖÖòòË/SQQÁ¸qãNÛb&6¬nÿ6æIíÝ»—nݺQTTÄ‚ X»vm³š_,RÁ@÷Ÿ`Š]À€’[º*÷±ËÖÚ†­H$ôãñt¡´´”•+W0hÐ ú÷ïÇ„*4-ÌÍ<ų¡Pˆ>úˆ‰'²mÛ6%6X¢E‹ÜqÇÜ|óÍdggSÁvsâÎp¸œpõÅÐ>ž˜Ù›yŸ|sLMM ³gÏæàÁƒ¼üòËäää˜Dx:’`0¤²²ŠmÛ¶óÞ{séÚ5Ñ£G“ššJ(bàÀüéObÕªUÇ8›d퀟ÊGçú‰À»Hó°Ù¬\{íUŒ?žœœA ¤¤„3f°hÑ®¼ò*RSÓ°Zmˆ¢„ÃaÅãqc·Û°XL?ãÙ  ¾õÖ[<üðÔ——ÇD' ‚@ëÖ­ùûƒ×qQÕ 8ç¾€?+]£†4wXHÇ)E*"Éš…êzÕ! @…îÄ~0”õT€ŽQ'5¬ýôkÌþ:–"[×Û/• ‚zÛ§ M©ÄY;ëö‘iq$§%\Ʊ抾„øŒ–Óèµ A-b •?µC½îCjcІ›˜\E¢ŠÁÔîja¸Îtÿ#)bÝØ­7v-òƒ$ 5ˆBÇteÈäLù˜ƒ¯,D©3V¾òù|,^¼˜ë®»Ž¿ÿýïôèÑã´ŠQ8«‰°¶¶–Ý»w³|ùrÞÿV¯^E¿~ý¸í¶[›:8Ûl6òóó¹þúëùúë¯RIÃBØ yaœ§ù§úéº>àˆ¿ñÃÕ³²²9r$:ujz­}ûö <˜?ÿùÏL›6^½úÑ»÷´jÕ‘.]:pÎ9íÈÎNC’œ¦Vx£¦¦†7ß|“x nË›ÍFß¾}yñÅé“Z o?Ecšž–¨üX2„(wÞGˆ%¼UŒÞ…xcÁHdãX°UKT‰ª ŠÑg÷rübWËÇGŸC8ƘØ$}UÇR!Íj˜[|èƒaä¨ëã\WT U– ß½–Dƒ°Êšdð¯ Q5T•‰´ýë 8:dQüÌ\E‡ ŽCEQX¹r%cÇŽå™gžaРA§Mû¸³’«««Y½z5K–,aÙ²elß¾P(„Åb!//¬¬Øžh ÀétR[[«»ó’€ä†-È:œàosNƒ†x„p([%áew= 65=íÖ­[Ì;»uëFvv6EEE¬]ûÖ­[Arr.çœs.¿ü宸b(­[g›Ñ§g(ªªª˜9s&O=õT\t:\zé¥<úè£äççþÿ˜“v–Cr;È} –$O¼Ï¡í1¶o¾ù†Gy„É“'7›öeáI‚ªª”—W°hÑB>þø6lXÏÞ½{ ŰEa×®]”••‘žžnxÿÚµkñùd  CØšÜ`“p7,SO´æ$4,ûz6,„hê M+¤´ô;vìˆqdïØ±ƒÒÒÒ&S˜ªÊTTì嫯ŠÙ³g+V,â׿þC‡^ÔTÆÍb‘°Z-MQ§¦¶xzÂëõòÆoðì³ÏrèС¸šàµ×^˸qãèØ±ãYÓŽÇÄ C—Œ‘ƒ¹;óž¹í>öìÙC†k×®åÞ{ïåÕW_¥OŸ>&ž è÷ûY¸p!Ó¦McË–-ÔÔÔ¢ª±fDMÓøöÛoY²d 999x<Eeß¾}¼óÎdy aã¿­aêN& Q[c\y aG@£­D¡¤¤Œùó¿¢W¯|Z¶ |YYóçϧ¤¤$æÌŠ"STT@IIË–-¡gÏŸqíµ7ѱc22RhÕ*äd™‚qšB–e^{í5üñ¸`Vnw…ø½s=k:ÍdmÃb'”¢ú/·7W'%°¼¦±'ɺ»vÊÈÔ=`ÄvTÒ›=Õ†Û×ÀÈ€~Mšl5—•»O•ñƒvîîiHw)Lhg[$c^´ï£dÔêÈdìMµqèÚ–ðî=P¸}m6MÓØ´i·Ür ¯½öùùù§ôbꌕdªªRZZÊêÕ«yå•Wøì³ÏâFÂE£ºÚÇc½ÀÇo`Ô¨+(((aþü5ìÞÓðž*Г ¤Û,„¥ÿ:Úñæ›{Y¿~*#GöæÎ]Æ÷[W G˜|ùåg¬Zµ‚¶mó>üJ®¾úbÎ=·§I„§!êêêxã7¸ï¾ûâ÷ÇáŽdx0Uã\C©™´Ú¨Ô¥ÜøpÐ1YkLï¿ØÕæQHCˆC:R””²D#ým*¢@DAEqD°¦hÆ÷k?ðQ;ÞGóßûX§ { #s)¸¢ê²:1Žqˆ0^®£îƒƒA»!¿1 †Z¤¢¦k‹W9¡2ò†b+Ц?üî5˜÷0l] r0† ÇŽË´iÓNéÞ†g”$Ó4 MÓ¨¯¯gáÂ…üûßÿæ³Ï>£ªªê¼Û ä­¨«kÃ_$°fÍ2dÙF(Ô‰Ïó)A€bÃf"A›ns.üþVlب²e[HÊÃàÚ žå\u߀Üü<…BvíZËþýÛØµk=·ß>–!C*Ñ‹¢€(Š‚`šLOAx½^Þyçžx≸$˜&ÁŸ’à/Éà4>?ÙÝáÊ¿†Å͆OÂÕ€t2yóæÍ<öØcL:•Þ½{Ÿ’šáE„Š¢ðÍ7™9óu,XÀ~À»<@§†-»a–>ß©”p.D–ÀM[£hÕm6"¡uö"LÁ’‹€ÔnpÙ!¹=$ý컡j-”|‡–@¨yBôùjX¼ø#vïÞÊe—]Æ/~ñk²³s$ÇIb¢‡Ã,ïvª! ±xñbžy晸>A·ÛÍŸûŸÃŸ V‘fþt&޹ùpëÓðØôeŒ‚²råJ&L˜À«¯¾J«V­L"ü©4Áªª*^ýu^{í5 âÖã4’JÐÈ#lò<Á.Ç =Zt›MG‚äçh°Ÿ¸¾« ,pZ!ÑIB8Ï(U‚]@mÞaP¹¶¼û>¹Æ°º‹Ì·ÊîÝ;yå•">þx!ƒ_E~þ :wnI×®­ÈÊjaá)† 60nÜ8vïÞÛ#S€»ïø#wåçá¿¡)€>€ Y‹ˆ Uˆ¬æÕ85ûõé"Z$ @PŨÛYˆ³Öã¯E߆t áã“ô˜kÍÏSãØ8wÆÔA0Î¥&³¦& G7;7wMú÷D§³4ö€ŒÜ±>^ýïÙ¦+Üñ"Lû |·ÜZ!Ë2K—.åþûïçµ×^;åzžöE·kkkùæ›o¸ûî»Ù¸qã1޶i@W é§K?!ŽhÓiv :i4‡‚j"¹ Á©¤ &„_3€–€¨!¨¨Tª°}/Ú¦—¡t!øö€vô…EJJ.¿ü7üîwÓ¯_RR`ÓÆv²‰;wîdĈìÝ»7f¢î:ÿŠ_èHü IDATþ~dgàQݱž*ò:GºPؒƃ0—ôygHTê"[ü²“µ.Й€÷­FÁú]œ¥º>÷Ê·Áòû h)¨F¼ÍfcìØ±Lš4‰´´4S#ü_¡ª*Ìž=›—_~9nô£qé™tº5áé  …f4A«ŽíDL¡z-Ð ‚¬N°ØÀf$)q—FXÌ24h©!YU$AFHÓP]¹È-'¡\ƒVð”,ohJÜ¥eeå.ü'¢XŠÅr?ûYWœN6›ÕÔO"víÚÅ=÷Ü—=6}ü¹ØÌŸÈÄ…´®pÞ£ UCÑjƒU) òÎ;ï••Å_þò—S¦‡êiI„ªª²dÉ^zé%¾úê+êêêŽrtá<»nªÏi¤êƒbô$¨ˆÑ #B‚¸@t‚Õ. ¸…°8µÓ¤k’=„ÍÀn @@#˜bCȲl—yãѶŸÀþ…ªŒK†ååûyï½™lå÷¿ÿ#C†œOzz N§ÝÌC; (++ãùçŸçóÏ?Ùg³Ù¸¢w*wŸ[JºÛœ+?22σß<oŒ†²}†]•••¼üòË´oßžk¯½ö”¨>sÚa(búôéL:•ƒâcm &ÌâÔ‰ú<^Äó êý¦Ð(“(n`•À-A¢!Á [ºÖ°©Hî6»§Í‹ ©YNÔz ¡Ö¶/!u8ZFØ~9l› uñÍÐ^o+W~ÁþýEŒs cÇÞˆÃÑ '~¿Ÿwß}—wÞy'nÕ˜~ýúñÄ}Ãi³ñQs²Lüëxz†ßO…çÇ‚×Ø°üÀLœ8‘üü|ºwïná…,ËìØ±ƒI“&ñá‡%ÆÚ åN8ôtöQÅ‹m$ÀFMÐa$@Á¢ DØìaM0±AÔ¡®!¤)Hi Rj—»½½‹(ã9ð|B+ŠÍ†âLAI¹„PvoäïÞB=8üE1þCMS),ÜÅ”)±oß.î½÷n:uêˆ$IfjÅ ²˜,X°€‰'Ƥ ‚@Ïž=y÷ÝwùrW+:|3>²³cé @×ÓVÉ’¨íìÑÙZªÉ%⟳ —ý†ÏStδ€ÅNN›Èñ~ÅÁ'£¯ˆà­¨ Ù5À·ºqcXãwMð"AAÑÙyUDcÏ=ìƒ!#ÖŸ—Ǩo}4D÷2Žò;f×—ÆmÝ…a ÃܹðÆ9ì7_Þ2Íà3ØÑª‹a|dc.šª{ö 1æ~Ilq=~ePËŽÒ/Ú` »È¡ãU`ó ÷C…1Zy×®]Œ3†>ú¨©¶³I„ÇÐ-ZÄsÏ=ÇŠ+šIŒKüî„a’Ï‘¦’ÑkƒzBl$ÃPr€Õvú8 gƒ$5LMRd<VO›;€Ýé%ÑVC²¥’$± ‡àG–$«…f%âÀ/»ð;œø’-xSêÓn Pp.Ú®w lqÜD¿ßÇ›o¾Nqñ>î½÷~.¸à|\.§é3ü‰±mÛ6}ôQ**bK¦äåå1mÚ4²³³a—9W&~j†±Âϯ†Òb˜5jrbãÆ<ñÄLœ8ñ¤ÏœòDØØyýùçŸg×®]GÑÄÛ¢iý€öÄö]9]IPO„zi<ÿ`ƒV(ØÃ1N)l!õèȰ‘AHT±&„p¸}¸u$Y«H‘*IÊIê$ AÐÐDúT7µöDêR¨I÷ ¦y¦%̸-¥ lîû¦ƒûû(ŠÂÒ¥K8|øwÜq×\ók<žS@üD(++ãñÇgÇŽ1û²²²¸ë®»èß¿¿©•›8qp'ÂU7CÑNX<äÁÒ÷î»ïÒ¥K~ÿûßãtžœHþS’3:jkk™6mÓ§O›±QänV›Äé shåSAþcÌuß~»‰‰#ðqã76{Ûú³œÌ˜1ƒ… Æìs:Œ5Šk¯½‡ÃaN–‰‹YpËZîÞ@ÙŽï »ÊËË™>}:={ödÈ!'Eœ²D¸gϦL™Âœ9sâ:ûÄ—F¸|šv¦ɉN™ˆ&ÀFMÐшV$°Š·aF2ôhM›˜ cuqØ|¸D/n¡µ$RK •¸©Ã-ÔãÀO@°S'&àÕÜT¸R)MÎæ ±¤S#$RëðP›Öƒ`ɳ({»¢•¼c:‹ª†‹—ß{ï½ìÞ½‡1c~Ç“„$‰¸Ý\.'V«Y»ô¿…¢(ÌŸ?Ÿ×_úúØFÍm/½”Wïú 3ª+ˆÓ ºQ?Æœ9 ’M ’ÉÁ¦q&e deÓ8:~F$ˆJE0ôÔóá$“ˆoÌ'9©ÏŽø÷dÅÊŠa—/ü0F›C^¡Õ-“cø%=ÔÒ†H”¢]ÙyºTvë… ±E·£¢hýÉÆõµ*ˆÔ:=G“`†|Êp D£; J0:ýØ ‰ÿNü`*¡‡ZÃñ9Q¾Y€tÆ[ò»ÞSÜ UÕ]WkÁ¸†­ÄØ»QÁ˜whÒ;20ø -m½Ý Ô&N3¯§ú×Ïà?Xe÷;wîdÊ”)´k׎6mÚ˜Dðý÷ßóØcóÑGóãúAÄfë‚,÷GQr8½bâi€ú” 騡hI —iäÇ¨ÒÆ3B‚ *‚[nJ™p >\x¶z k‡ÉTá¡6\ÈX³ÔlTK)´t¦…p„2[&eŽL¦ej“…ZìAhó{äÍíѶ½¾mDwAõz½<ÿüߨ³çC†\MË–™tì˜Aûö™$'{Lÿá‰]»v1cÆ ŠŠŠböåååñÄ3Ïp}rrTaã¬Uý4Cõ“˜j((º±ÔÐ~Öp¼`ÇtŽY}ÆxM±ƚÛ Xûeô§ GñzùjÇ)³â}¯£blÑsAÐbç6Ú¸¦F9Ê\«qœ†Äɽ[Ó}ÂUlyô}Gê d¸téÒ¦®('ZœrD¸qãFyä-ZDü¢76 0MK懕?] ñh©:¡h ¡E0º£‰Ð­[Ep+.‹=ØD„NÂd覵¤RA:‡I¥ISÐ4M¨iá:Lªã©‰Gp´ð"·¨¬O$T ÉhêHd.쟵ÿ-£.Xð›6Ó¥Ëp.»¬II.ÝME»Müpþõ¯±|ùò˜}Lœ81Ü‹²®Úœ,'¢ÕBÎ5}©Þ²Ÿ½ÿú Å2áŒ3¸øâ‹2dÈÙI„š¦±qãF~øa>ûì³fHÐ ôGÓz¸Ï£4Âx õV, ‰F"ŒëBÔ*’CÆâaµ†°IAl±ãÇѰ95nÕ‹G©Ç£Öc †BHáD° v)ˆdUÜ*$@¹œF]m"u¾DêCç ´¼‹ÐJéBPýQ¦¼……k©¬ô’í¡sç$&ºúJM©&ŽåË—óÚk¯Å¤Y,nºé&†N9M&NØÓø «V­j&I>•°?°;gnÅx&Ñx¦Q= Ú@²€EŠŸž uÊ£`Ó°Ø$»ŒÍ “ ÄN isàÇ¡°ƒØ‚26¿‚¥FE¨ÔjÀ ’"Õ"YÀiàJò“’ZEfr)e‰™”¶Î¢LÊ¢,9oIKê[ß…oCêŽ7!Tõ}CÔÔlbÉ…ôt'~ˆ2ÈÌL!9ÙsJTœ8ÕQ\\Ì}÷Ý“/(ŠÝ/M§å-;ù8ñ*Iâ¢Ä†ctmͦëÏ‹¼°pýÉFDE³{¨¥/‘:­û¹ºtQäî­i±b0Þh¹‘¡ì¶ Žˆø½¸ØMÇÈÝ`±RÖטOæ :Øß+r‹5DJj¤²Q¢PÍ0–®q‹#Ö½ BÊ Ý"L!\CSèÛ,Û8¬q%L¡2Ju ‡5|Qu‹•(»¢/ª`©7Êy$j²«H6˜OCX ãh³gÕ1Í~õ¾Òð¸Ð`«ÜÕf»ÁwYÔ¦ Š—3‘uãº*ª¢³§úì ÏKtAŠ\W^ú÷$Û÷åcÂD’¨†î_<\Ï÷‹)5¶mZ¾|9/¼ð=ön÷‰){tJ0ʺuë¸ÿþXµje3G´."\)æL×¢ÉP¤y?aÃ&6šE…XlÚ4D›†hS±ÚBجA¬b«ÞìèQ `†°yelõ Ò!á P B „d­Åe ìª%%»Š,ëAr“ö±ß“CAnì)~”,ª"7J‹–øSï{&l}|EQ–•63kÖ?)(ø-\ÐÁƒ;àpرX,¦Vxx½^^z饸©ém< ýcZt²‡Œ ‹`ìÔ*Iª‘,ýFBô©„­„‚U•$•¬.è‚/Äó~ýXED”ŒÂ\´¨`× ×(Ø~E‹.¢Ç‚lKšŠák«Ä&ÐC j"Ô ,ÑãÆïr4bŒÞ¬®Ç–ZŒŸÐՙ׊l8§U” >\Q4zMEÐt×iÑŒ÷„¤…+ÈD~ Ãý# j¸v±^lXl#À¥WZørUÿ7õ°¡ÉÏçãý÷ßgÈ!Œ1â„”g<éD¸eË–M°9Ì.Ú¡âLÆb©Âbñ &¢ªéÄÏ!ŒÎ%Ô™K!(£·žZâlV Ñ¢"Z$‹ŒU +CáM a•e,É«b©Öàp„zDÑ@t×c Õâ+HµÆí©G´h¨ir‚‡˜h±£Úøåß![“·¼ˆV·+Ƭ]Rò-‹ ¨ê(:ujA»v-M¦;V­ZÅüùóc¢ª%IbÔ˜«é~‘ל$§,D~yGß,÷±uµ±^ôÞ½{yûí·éÛ·/-[þô²à¤&Ý0~üxV¬Xq¼ˆpíž3P÷äænáæ›3xöÙŸó«_I$&nÂX÷HÄM*è–ëB㉌¼)Dýmø_ûš…7¡!Ê/üWiˆúS5AÕ”†½ðu W‚·L£¢H¥|—Bý÷!´~ÜkëIßTAë½Åt-ßI¯Ð·tsl£s‹]´k³—Ì®µ$ ‚­ÿýÐ6Îl(Ô×ÇîÝ˨ªª Ù²&8tèsæÌ¡  Öûׯ_?þðÇÛ±ØÍBç&Nm¤eYõ@+RZZ£,EŸ|ò Ë–-;!×qR4BMÓ(..f„ |úé§qR$„¼”pÁìã1© 긦Iœº ö*¹¹ßóá‡%/¯ V«…Ñ£ɇ.â®»æSQñ³8¤'Ä·Y‡+…xªéŒ.áMDEj Dýÿ‚ª‚¢…óŠ‚ dX®¤V^%u"AE#¥D%µH!iw€´œJ¬mURÛV“‘u„"ËaÒRËIJ©¤8¡¥-2¶F0«%Ú‡‚Úâ¨û"ÄÖ­ÿaá èFZZ’))â-…eË–1wî\dÙhþ’<ì}âOÜ“æãVÃ/:®fžáØm-»á¿0’øUó³dŠÏïÐ4v&Ö“Ñ>’Ÿ–'nãB¾h'×À“‘óÕWÁ¦¥‘±+~6H'lRÚôˆÆðIz´ùNo¡cÃVÙj¡6=Ñ`ZkMļžD5¿`~ÄÜW/Óf®øFtí×\Æuf—#>ûEhe0sFûøBº„: ꨂ¥u«+Õà1<×^\3f0ªi€ù˜¦Ð,]Î'@w}áX #» ŸQB¶Á„»ÏÚÚZ–ÑY7.×Ò ã`EÕ¯½°‡Ô¨$Íìõ$#÷eÆžzTCMO…@H÷ÛÔÕÕ1aÂ.¿üòŸ¼]ÓI!ÂÇóÔSOñïÿ›P(ÔŒ&xaßà¦W$ÉKJJ ݺّ$ï¿P^ž€¢¸9Õ|‹’t˜_þò\z÷Î<ÄV+_°r7¬ÝghlOAAS§Ne„ Øl?]¡N„²,óâ‹/òæ›oÆ%A»=—`pšv|vaQô“Ÿ_ÍØ±ý¹ð $‰ÿüg5o¼±Šµk…2cék'÷Ð~,N)UÆž@LRÉHw²Xd§  ²Ý†U•©Ø›zߣ>­rGÌ=2mÚódeeqÝu×át:‘$3¿°³fÍâ›o¾‰yÝÚ£3Îß\à1 š8½Ð³Œê[K¡&já2gÎFŒÁ€Î"œ;w.ÿøÇ?ðzcùnw.×Å”—g£gŠ`BB £Fõâæ›‹Ý.ºÝ¦Mk‚Á;v|My¹ë”Ò 7+WnbäÈ+Œ&’šZ6m* —¿2°™žÕ¢6ME ko²þÛ¨Í)úÿTE@UETUBET¡±Þ‡Ðd ÕPM£S¯ÂwŽÖô¹þôÿùEˆ¢Hnn.]ºucÊ®ì™û:jÀ~„ý`q+$*u(–CØÝATÉ ]*®õ”uJçˆÔÅv'¡OŸ€jcI¶êêjž}öY’ùÅ/.ÃåršD2sæÌXÅ&1ÇÈ˰ôÊ3Fò™0qÀ"Âõ}áѯ6Uôýû÷3{ölÎ9ç~š‚ý'ŒEaÅŠLž<™ÊÊØçK*Nç…ƒmÑ´ã”h×.Èå—m"Awá¾ä’AÌž½žÕ«ÕŸá©EIçÿæÆ75ù Ë–­`ùòbTõœæU»è×Ô0É!7Ô ”ã‘ h h D(kŠ*6a”§°ASDG†‡Bè<ˆN=Î1„3»\.†ÿîV~ð.™µõp,°9d-58\~RS*Ý¢EÁâ b·ûì2ô6Ô·½ Å^‡úî“à‹ø4M£ `/½ôYY-8°ÿYßå^Q^y劋¾UApwíG}ß;ðîÊ ÍU‡­CÐ`&KÀhJmÃ>ú²>rþ‰PçHuš±’®lmgÕ•q~Á¦ˆf§ºúÉ>¿¡}!)!8w¯~•ºö…H6…Üvû æ=T>žˆŠUW3:ÎasD ®–iµ Üø¯ë­ °w§î|thgø€ØX¼¨5ºP” P2øød,좓Áý=j1Ö&­ŠjWNªa\G‚á3•(QÝ’2ƒÙ1™Ø6hÖ(Ógû ª€‡Zƒ©³[ Ÿ¹6n!m ¾ÊBÚâ×åGÒÖO™ÆÒ¢|„jY'Þ%W$Å&¸'ßÉê«ê é.= ²téR®¾új.¾øâŸdA|Bˆ°¦¦†åË—óá‡Ò²eKÊËË9|øp“£_åA9Ò‘cì›A($P_ï‹yÝçóÑlß“ ‘ââî\}õD†ϧW¯|ùåf–,)¤¦¦gÓ#Ÿ eãÖH„¡†-ˆq nzQCJÈÞ¤†¬+Ñ‚ŒD¨! KÁ‚*I¨ºJ5’CCS|È¡ØÉ¬¯­ÅnWÑ YÂ6~!¨a±)!\š—¡œkõv^§ƒJgGÒR±·HB¹ùB•U¨Ÿ¾Ðäd²Ûí´nÝ·ÛÁ;ïÌAUe ¸«Õ†(žÍ}ׯ_ÏG}D ˆ²†$ðû;îæùÔ\eŸj“bjSJQÏV´ÏOlbPG:µ$)‚àÑê°ë¦†"ÍšŒAô†4Œ'²q,HF¿•‚×GèÐ9ùœøpë“UEªWõ 5ÆÏ éÄ‚$¯1ŽÈ‰)ÁkžŠößé C‹*6žªc£ƒcŽF„Ñ>Çxy‡±>BÅðš £Ï/ÚŸçÄgø}ø>C‚_iÜZ²ÑI›£›ÑP×o€…_ß`çïñ]»vñÞ{ïѧORSSOO"œ;w.@€Ûn»ŒŒ –/_Μ9sXºt)²¬b±ô'êù?™.‹Šì|òÉçtïÞ—ËÕD‚K–,g÷n M;õ´ M³S\܃™3c± z4A£?Pïl”& RH …}„²–,"Q›æÐ"rÀ‚´²Ú 6‚š€N©b#(Z‘% Õ.¢5´sÊHW7­bÛæ ´ÌÌj*Š[UUÅçïÿ×µöáj¶t2@Ë3%B)BN ¿ÝFH²  "V1„Sòá¶yÑ,ˆWýY)ÚºY8¬"¿ûÝï9r$]ºt¡  €õë7P^^Áˆ#p:X,gWq:æÏŸÏž={böõïߟK† ãù}¦‰ÍÄé É#o²ñåâ÷W( ,`Ô¨Q\xá…?úBø''Âââb y衇šÊåää䜜ÌÖ­[9|8YîCl©óãƒ×›ÄìÙÛ §qõÕ—`±X˜7o ï¿¿‹ššœºi$d¹aåXÐ`ôO#l C¥5íèDPZ@#´l„DA‹ &Á6B‚ ÙjAµ‹àÍ ŽT8¿e óß{–â¢Bú_8œƒÅE¬^<ŸüòÏhפd°´©hY gHøS¬ø]6ü6;!QB…&"t~\v/r‚-;Ðew"W «û÷ß?;w›ðÚ´¡W¯^Lš4™NºÒµkdz.xfÛ¶m|üñÇ1Éóv»;î¸Ãà0aâ´…y=, »ÊÊ[ÿ´ÇƒòÆo0xð`,–—º~r"œ7o—]v™¡fœ$IôîÝ› .Î{ï) !ÿTÕÆîÝ™L›vwßý¢¨QR’€ßßU=jV 6üU%-ἿFâk$C_ÃÖ¨úDT¿)`#(ÚZô•F ÙbE±K¨ªˆ– @’FûÖ2£­«Ùºþ;–}1ƒj¿Nèz®êRMnn®aVRRRèÝûg|ñÅW´m›‹ÍùMÏtBôz½,X°€­[·Æì …®à8¥ðXäu¿è0ÔñQqE9¿|8 }ììÂu F9ùD|‚Ž`0\a(b¿ƒs#Ã4ܬ X•ì@{Ýñ é‚ Ìœ­£êc:ñ“«Ë´T+´ø® I%èÓ#>ØT¨“ `ðžY5èReŽÛ‹ÊJ±Gå_h`¸îVl:{«ŠÈAPCàé†s”Gå¦L›5%éhº:ž‚ÇoXË'¥Tc“"fä¶X3d’©2˜BÛVDÔÇc” †Ëv‰Ñ$ϰån‚ºú¿ßÑ“z]ÍÔtŽàÕ庩‹I+)JÈ6¤»´óÄŠ˜_C¢G²…¡WÁ—Kd w)1ÖÅ{üüüÓ‡:ÄüùóéÖ­[Ì>YVSQ”ÀqGˆ6oj´âó¥QPvˆ?=Ê ³N $Ô U¬á}ª5ÜuTQÃþ@_ƒÏIØoÒÐ÷µ"š]Dlø­êqSGBÓV+x¨–êpi^löÎD?ÖŒVQ&)Yå‚65 ðÖ )Š]DuYñ%ˆ( ²Ç‚ì±H´SçrQgwQ+º8,dp˜tŽÐ‚J-…j5‰Z̓7䯲#‡,hªR»â·îFUµ¨ßV£´ô _~¹–üü¾äåµ%9ÙÍf?ãµÃ’’Þ~ûí8…'Z¢ª7S\œSwBC`ƒ„ã—R±è¸•`Œ?N/´lš“l® ‘4H¶$¼E> ¦ hh`+c¯I ’¢"ÕªFÒÒ—æ_ÈøÅ$i©Ç75ÍpÙ±}c{ê ~aÔX3úC!šq爲bóyƒ?¤6iôuÛÙH„ Dh“C†¹pSUw9ñ|„N|Q¹ŽZŒ%.$Z ~G-ª>ic^ß6†Œ°s`Ÿ×8ã÷ûyá…xõÕWT­ð'sœù|>^ýuÖ­[Ç¢¥ IDAT¬Y³¨©©Ñ‘ Ìºu›X»¶Eq˜æ€c’aTpLÃw¯Ö j*¨ZC¼^éÖ7a-P'@mxÓê%d¿•€ìÀ«¹ dX+$P#z¨¶x¨²%Rëqáoa#ÔJDm jGP»€’r' ÞöjsÝTe&RžšB™§¥Î Z39(dSJ&‡È œ4*i BÙC]È?è$´¢‚ÎN,X½ŸÂ}ûcUï¼3‡•+ÿìY°fÍN¬ˆ 9ñÉ'ŸPXXçÑôáÌ/DoâlƒÃ)pÅod¶Šu™ýç?ÿ‰k9å4BMÓX½z5o½õ555,Z´ˆÇœ_üâ´jÕŠ… —1wî&LäÌm©ôcj„"ÆœˆF2´ÐªÉáã ‚ø…°Ù¨ Ú 7êõP' ¹Ed‡ÈN½æ¢6¡Sða.ÔmI ÊáŠ3‚®$![$6+>›ŸäÂ+:©ÝÔJjÄDªE5B"¤RE U$S¡¥R­&Q#'RJ r ­¨AÄ$v)2aêûüfDùù=غu+óæÍcëÖ­>úèßÔÕ¥âpØHHpâpØÏØÎö^¯7nÞ dÃþš0qæ¡g+½~žDñÞŠ˜Eñ|@=~´”ªŸ„…ÊÊÊxýõ×Ù¹sgÓxƌ̛7§ûöC]]ª© “ãùC fÒ ‘Áˆ†¨ aa@ 'MÕ7¡­á¯HÕ."Û­\¼7uš‡ZÑ‹KôQ%x± A$!¬eÊ6 AÉJÀnåÿÙ{óh»ª:ß÷³ºÝï}ÎÉ99ÉIß' „&€   * ZU*W-ë–×[¾ûª,Gyë{ßs\G•UWê^ˆÍ¸Z– Š" Ò †Ð&!}Cú¾;99ÝîW3ß»›s®}Ò@IØ¿1VNæ^{¯~ÍßïûýE·2ÿ@E+BÁŠ‘·ãä* I†È0Dºú7ÀhgP´3(ÚôÚ*e(”rQ¼l‘³ o@ʱ<¾¥›—_†nû íÝÅÑ£½õ³}}»X¶ìI>ò‘K)•ÜÓæZ?í™gžaëÖ­¡Ï-k ¾? jñ³| ¶6Ô˜ q6͸@òRª·£KFò+¦fûëívoöBc½é‚B‹—Im˜'µ#(1BÿbÙMfV56.Å Òþ"C.m«³~£X*}! BÒ~8íNVù´…êþCT=&¨Û”-‘-©å…Lƒd2§\G9fèc)T¡ÄÒŽ•ÕðÍp_;Bªõ$<ã¸uÇ]Å["¢K¸š>iÞPwX֮ŠTþ˰ê&wC"-Q<¦o¦kôá1ŠJŒÐÅ •›"£|gzr?ø Wé ÙN±æOÀÕÿ±§~ò²òŽ ^xáþìÏþ¬žPwÖa<ñÄüêW¿ªÇ4„ vî<,¤Rù²åÎ9þLД@Р'ti”cª9ØF[ðjE«Uëê×l -ϱ1" Œ¸ÁpÂ%)áD\lË­ök6e#Ê‘!eåH9Q}hEE‰¦dF)šQŠFŒ¼'O‚< †I“%I–4ä Úô3 û²¥4ÙlŠb.?A³& à.™xÁDeÿ„CÇBöŸAÈohÀ¡C/²cÇ&®»î‚óöIæG?ú…‚ÊM&“ÜtÓ§yì±¶FÏØJ"Jàš Ù¹ÖA«/¿§Õô”ƒ‹%•1*Ê8U/C㶨ë#@‡ÚÒ÷…¡“Nžp|++ÔÎYªªžiîY,ýÿ¢Éë†v’™Z¼º¦Ë+·ëÔAIO¨]¯ïY¨E„Íë†k6\ ¤R0§a¿ºÞÉ{ bÄ‚¢r1cÑmƒ@)üÛì¦z?|,%ž:íÊ..¸¡›8¢xW­ZÅsÏ=Ç´iÓNK¬ð´áÁƒ¹çž{šèˆÚÀû¨ÔlàÈ hHogM-[všªÕ ö–í Ê) ìÊf,T ŒV\¥Â1ðâAÂÄO›D(£„c•qª@ècQ&BÒH'OÜ*b‹šÐnËF„ ,«¦WÄ%Wk’<ɺ+tØMS(&(çb¸ƒQ‚A§ ‚ ²F%®Y¬¾¤A œ‚õ xÏ*o¥ÿþïsÇ×3~üùé\¶l6l@hSÞ &ðÑÞÎcµjUµìü·kÿ|[—Å-5ž÷¡¡!žþy>ö±1~üø³ ƒ àûßÿ>›7on²¶˜šôPËš¡<4•ÁPB‹F­¥b£-Lð­ ¥B˜`™!?ÃhÌ£ lƒ nU–”M2Y£„e¹˜f€gX”Œ(#NœQ³H”RuaÔµI]"Uþa”"1J"J8y‘  *3Ä‚H0\N“-§È–’”r1İM0h#ú-0*j Y@X¦"'&‚õðW‚8¢\©M›ÖòÔSO0cÆL³R¥â|É-•JüñäÀ¡uŸüä';v,p õº´ì¼·éWv2ù’¶½Ò§|þâ‹/²cÇÆ÷¶ßûÓ „¯¿þ:=ôPèsËŠ‰Ì§PhUknRª€'ƒa™páAŸ Às hW÷–Ù¨`o‚ˆTܦAÌÄõ"ä½$F |“’¥`'¶ÒÄŒ VʲT€PÔ°R×¾D”²ˆP ¢”‚(E?ÞøëÇ(ã q¼b” ç ú-D¿YÁÁªË+W‚†ÆÀ5×á¿ùÍo¸ôÒËX¸ðR©8¶í`šç>îÙ³‡•+WÖ㢒c”Ÿÿü&~8Lj|VÈUª»F‹y-?¢¤qµ;âb˜Ò6 u›ºÂú¦9’Š+\ÄQÝÀz•£vm\î¨×Á4T—p¥ìR£]"¢ìlB eìl›®lcu‘¢WºŸñÆYx¯ÿ¤B«Zoo/K—.åÊ+¯ÄqÞWü´áàà ÷Ýw»w‡už¢Ñ)D"—Q(´*fŸúÌ0\¦Ð…€R/ÏäUh^ ŠñŠi`TK6U{ £ÑS”Ë(§p}‡¢—`8ž!ˈZ¥ú¼Ï4‚úþL<ì:ºCÙPö"”Ý®Á+W7ÁËÛx‘5 VAp ÚÁÕf…¹*–ª@èG€¯/€”LQ‰¬ä{ßû7¾üå$_ÛdÍ `gP£e-;+Íêȸò"†žx `X™„=üðÃï> !X¿~=¿ÿýï›ÌS4”/Z@øöÀ°™TÂ&®Q…„_‚ e§âß2lˆØ•¿µÔûª2Ò¤DÂ$ˆZøv€çø–P¢VÔ7°|“À3®‰([.cɬûóÐå¤`VÂlm6(*3YQÕÖÏ©XlB„¬\ù,ƒƒ_¥’•|nÛòåËÙ¶m[“5 €ñ­×¡eï=3 RX€ÓÓ©!ÀóÏ?ÏáÇ3æ­ç ¼m ÌçóÜwß}>|X;n¸!º[ xZl$à³Õ`tA)E!bàG¡/n DJäí ® ý Ú+@(Ò&ARàEfD`DD…‘\K\5@£NžQ!û¢\©(ª*päi$Âäi¸As æ…„U0¬ŸTÛË•ç*›íç—¿ü)W]u1Bˆs:{ô¡‡ *3=pûG`^•±žd:Eß»w/6lxçÐ÷}|ðA<rxÞDz{Çàûç†G4:̘1ÃÄb>ûö¥(2ÁÙXý»™‹Ô L²—zXV™öö£Œgp°“¾c3)ç¦U²J £‚t§¢!™0*c@Ìhˆw×[Û•ž´*W*kK KÒL°LÕ%ZAùKe EuV89P&„`Ë–Í<òÈb:;»éîn;§€°¿¿Ÿ_|‘ Pß›öövnûóKX;v}ý³üPŠƒ;§4¾Ô‡šL;„¢?P˜då”k”ítlaÔäþz»DŒIìUÜVÛ¥PŽ$;¥d¤"1öHŒúQv3Yqɱ1—)RáÝEæ ©P SáBV.Šr‹)ä`£ô8ªô>GFí­°@)‰k„÷zEýQ‰äÑ@)`\&¢´õ¡ ¬05Š6Ʊ“E £!¹‹æ1%a„²²2Ñg¯U¼`?ãÕz„Ñ’²¶YÃÒz}{½æhEt“®ê.¦(1ÁíL'[¿[?¸nªzŽ“1€ê•8p`3‡Ï¹òLo¼ñ}}}¡Ïo¹åŒ–P}ËZV±ä(˜v9¬Q“4×­[ÇÁƒß9 äµ×^ãØ±c¡u‰ÄX„ØAø\x¡É'?YqÇüæ7ËØ¸1N©ÔÃÙX}¢½½O}êKuˆD®¾z!_¼‚gŸ-g+Ë.R£éPÊqú¹ùæ ™3g¦òËÎÎNþôO¯å7ÖS*9Ð Šà&ÁOVòÓMQÑ×2E£Š…œ=*Ï åYa ÙõPŸŠB„‚êLPèÃRÅ!—\ÊÂ…Eî¼ó2vî<Äᅵ;’ÄãC¸n¥Ò!e Ï÷³eË:|ÿösæÝÎçó¼ùæ›ärjî¾mÛÜxãìnu-kYÅ☱(„;vìàÀ,X°à”äÞîØ±C‰e†Agg'×]w=ŸýìÝ>ÜËÆùë¿þ*ãÆà3Ÿù0ßúÖüüç”Jgݵµ,Ÿt:ú<[ƹâfkîJ1 Ÿd2Šm‡gµ™LÓ¦©¢TàUªž ZE7Ó®Ì õÅÔR±1*@'g’ú¢êÕU *îPš¹C+©¤™Ì þþï§òÅ/ÞA{{ß÷ùâoá¿þ×ÿ—ÿüŸÿ’}ûöñðÃñÊ+/“Ífë‹_|ŽRéoΙw{ÿþýìÚµ+Triú\‹ÁqŸÅd4_¤Q„ôhº‹ÕsÔÛýÙNÞè¸ÉO ’؆“)1ú}jÑÛ6£W‰á¥“åR¥][Ñ}"Ãfæ4Ún†µó,˜¸o&ÕÞE SE#EÌ ç—$§ÕC ÂñºpH0”ÕP¨‰*8ç Öv —Ö~0V+viûÔá(jaÞ¸Ïè|cæ^6"ŒŽ÷*×M80IéJÞú>2^µàcõÚ´emÑ”™Uâ{)²Êµ‹“WÚƒp+ê x˜´âÆmcPië®ò~ÚWç>&*1ÂíLWb„[†g1äe”}–^kS\¡â¡^‹Oj×åÕ‘Ø=o‘tbG'ÇžÏô7ºÅb‘µk+qÂhôÔò:NY«ÉóÏf³üìgOQ(tJnÉË}U{°Âh²àçÀ+@¹¥”](yPò«Kõÿe\<ü2¥Ê"jÌz™DX±„aeþü€[o½ŠÑ£;q‡X,ÆÜ¹p×]·“LFùó?ÿ<øàÏùð‡?¬Œ·nÝÄ–-ož3÷gß¾}Mëç^Åp*×?^¯öX f‰Ø¥úb;n% D^´Ì_ÓöÕÅ ´!T£šÈHK¹*¿^[jÕFJA”’Å+;êâI‹ïÔãFz<)<ˆ“LÊÊqÕÕM³LCZj¹cÇ[޳ÿÚbŠ@]8þbÔYu¢y ÑJˆß0„ºpê‹þ‰‡­\§÷­‰ç¯}ª‹+¼ÀV–À5e£¾„®m¬ |µ% ´53îcÅ|œÉ]ØSÂ*K+W¾¢ó Ìçó<ùä“õoÃ0˜2e úЇH§ÓAÀ¡C‡˜2eJè·\0“ž£š uv™çµñØc»øÞ÷þ5kÖ±{÷zè7üèGÏsøp‚3PÃø¶[¶8ü¯ÿõÏ>û<{÷î套^å;ßù¯¿îSIu% ’Áphd ôŠà–¡TB ˸¾„nÃ* òM@°XdËbÖ¬cÇŽÍüùóë1êÑ£Gó©O}ŠD¢1Bðøã¿;7æðB°oß¾¦µ/¼4†åв–µLöà=y\èóÕ«×P.Ÿ:žrïÞ××Ç’%K”Ï:;;ëU‚MÓdìØ±ìÚµ‹iÓ¦)ßÛ´i+Šº$×ÙÕYlÛ6†o}k5¿þõ2‹µk =šÄóÒçÅÃS*å—¿ìç•W~Å´iq*³}{@6;‰FF‹<:¯÷dù¶(§²µôÑ_T¦l@¸†0ÔÇõµ¬ÐF‚ŒïÖ-ƒ:t„Ñ£U0\»v-³gÏ®·gÏžM,Sbl/¼ðÇŽ££cÔY]£°P(°mÛ6òù¼òy2m2y–ƒeµeZÖ2e×Ý5y|eŠ/e‡ïÙ³—ÒÕ5úÌáÒ¥KPF³Û·ogùòåLš4 Ó4™;w.O>ù$3f̨VÒ†ñÛß.áàÁ8œ¥pA£¿ ¯½æa‚ Èp~)ý›”ËlÝê±}{€I„¨e¹ÈŠ4²(Ð@±Lƒ”/¡ƒÌW ë¯)ÁÂ&@(b…ˆ°vmž§žZÆØ±cë1ÂÝ»w³víZþäOþßx≧R `‡æ©§sà 7ÒÕÕF4zvº·‡‡‡Y¿~}èóYS.‹â‚ƒÙìæ ÖÔ×ív&’N6$æ%Æ’ŸÕˆ–ùXä‚åÇ1\F+ªœ•8“+q0² 1Êvq”⮃´±Æà¶<#X&iIöò$< ,”Úíà]$K°™D$NGxŠ^jÅUuÔ~ã«us£ 1+t× ¤´é€=CóÉmƒ°Žy§ÖÖ8F¢ËŲÆM> \·q<«&ÓÙ®l27OÍGp͈ª-jÏYƒ ™!#,†b„–ˆÔµG},ÅM¡¬´uêƒ#ÜËD…¹µ8“\Ð8¯ìÆQxÚ;7ÉP2ÌÇݰÛn À/06“ʬMrö5JR{w¥†e–Îz“G3¹@òìy¼þúëÌŸ?ÿÌaÅÝôxèó£G‡xôÑç=º‡¹sçÐÞÞŽ6Ÿÿü׸ñƃßüæ%)kôl6!œs.õþTaŠ]43Ô«\Ô€*¢ Tö^C1Âvd>…þWfÝ{ Mæü<ýôjî¼ójvíÚÏ믿ÄW¿úr¹¹\ž•+×ò«_½„ç©A6;Ì/~ñA0Ž›ožOOÏÙ„žçÑ××G©T"ràÀ¦@xÁ,ÓîãµN¿É ¯t1£HÄit6¶4÷q±µŽÑ$8%Þ Þö»RY¤>µE• Ñmò¶©ÿ?Ö¨j°Fšotþ•™ú6Jõ 6+P{ÜŽP-ÖkjAc"Ôë×ÞŽ¸ê \Û©j&j1àZÜQÞljø‹ú><ìãnCBG{>4©ppE£¸¢d†Gºvʫķ뀞WŠ5gTžó¶j¬`ÚéιõZ.[¶ŒO~ò“ \×¥½½¶¶¶Ó„}}}¬X±¢É‹ÝÆ¿ÿ»Ïoü+øÀtžzê©“–}KuØä¦öðFG…‡Õ‘búáÆ¹%’y¦¥w4Úä™!Å¡\%&d×pŽæ®ó±ÈIÂŽ%¢ôÓàüú†ò ^X³U9¬ZíäúI pöÌ´ )C’<IØÓÆ—'ôµǘØhvàRqÇ„qR¸Ít 9Mëá.R·‡´= Ð$9Uéºf½¤A…QTë€ å† ª‡ÍŒÈ6鲘ÓvbhÞ—!Ô©¿‡­8:£Zü.…Ê+ŒSPÚê{[±²vbzÌPw­º8Šë¼N…wZi7.Ž ˆIþï¶…{0µç}ª³Kò+_`oTâÄWðI© äÅÛ6’*4žû€‡QlôGÏRb£Y§:Þ@t``€Õ«W³aÃf̘Á׿þu…nuÒ@844ÄêÕ«›Œd#U lÙù5+¤ øøÚbk@hp|רh†zÌÐ×@ЗÀðDÕç¦KQº%<ï0AðîÔ+—Ë<øàƒ§‚™.‡Ì¸8E³öeÃQ&éf(EnkÌ>¹S“×›MâN:P­Ò–VUC¸Ṵ́~ƒ°³U@Ñã\z»éí•K– imUBs˜Qí Q #¨9MÆö:ðÑd\׸0ØÂÓzŲ„QM@3¦µK”š×g¬’¯•~íN&F¨oß?ddŒ ¥­Äˆµç£Æy¬ßî¸zæä”xiŠaåZeR€°£<@ª$ ಠ…¹¨ ¬¡î®Ë?üÃ?pË-·ð¾÷½Oy,NÊvìØÁÑ£G›¬ƒ"Þ²sç•ãwº.èÉ,:WP®5X[Ü& x2 X›‚ŒnF½x^ö]¹¢ëÖ­ã8eðt‡E{w+´Ð²–ϦwW€ðTlxx˜oûÛŠ®ïIobÛ¶m#áÄÖÝxO¢žäÒŒò0’h¶v%íû%ñ@ÙêkÇr"s€î&@xßç0ŸÏóío»I©2°, Ë²Ž „£í֣ز–ÇftWjœŠAÀâÅ‹yôÑGëÂ0'õ¦ !Z@øžÄšH/8Xs•ÊÚTrµ ýÿ#ÖgŸúg' ‚‡TÅC¡a…ÂBˆw´Zý/ùKž{î¹Ðç]]]üÝßýúЇxàøþ÷¿¯hŒZ–…9f2WÔ¯â¨d?ýS1‚WâwEbt"é_Qã7¨®ÔÊQÝ¥–GªÉpÕÛ†…eI´€„‰Tž°2®‘ÂNF"Àº²áÖŠÙ9&±Gš¿gIK| ?œXÞ²D¦S‚ ²Ê»M É’š6H­•G±»Écƒv²ùM^ ‰&bØß'•³<¦OÙ.]W“a­.ŸN§èÕ<CdBnj¹mã)®P‡²V4‰*GTÕ•iMEbÊ/ÍUZ$F íÓÅ©n£’OÐA¿²ý‰ìUž§NúB.á©ìT¾3‡ÍŠkô²á5$‚†ï3¾µ¤ÄcC3ÂËÀŽ Ðt&MšÄûoÿE‹ñw÷w<ù¤*Ð}ìØ1~úÓŸrÅW0þü“¶nÝÒp‹F“”ËcÎsÎÝ{åÞÀÔ@J/ŒÖãèäú‘@ðxŸÊÃeQaCÇ‘ Bx¬[·†}èæSã};¶dÉ’Éß4Mî¼óNþËù/8ŽÃw¿û]–.]ʆ €‹1iÚ,òF£Çš%rÑy½¤bJçêc…¸lzL0WMžCù¿2Ž0 ÇßdPJ€‘–âX¦¯èQcH–„#K݇a€“ÐÖ'5 Lh@ע¶½ Nu½)1¡@€©pá…+•"ÅòµŽPVÚzâJ³x¯Ñ”„Ùì^Õã Ç„eó4ðÕoi`§ <ƒi†C@¨ $É)ÏD"(ðׯ(j ç¨]M¢ ¦M€•QÞŸ¿ø‹¿àK_úßûÞ÷¸îºëعs§2¹Û¸q#Û¶móù<;wîäÍ7ß$›Í200ÀòåËCß5jGFpÝ …ï @ h^ø×$œiÊ €°à5[NÕRÕÞXíhž~úi&MªTSïèè`Μ9L™2Ç9sq¸h4š:ŽSÁJÇnðWõW|å+_©Ï c±S¦LnÒ·¬e-ÓmöTGÅg?ûÙz{ìØ±|á _à¿ÿ÷ÿ®Žl»^ÍÞɳyóf¶mÛF6›Å4M†‡‡CÐÑ1žþ~×mM ß[€(×=4•Qb!¬2£!ð½U¤:=È Ôî^~ùe6mÚD¹\¦££ƒ3fpÑEqÇwpà 7œ‘+‰DB@hF]v°fW^y%===uÑíX,ÆäÉ“9ÄŽÖcײ–§¨íK/½´>è­yaÆŒ ‡LlÛ®Çé \»v-_ûÚ×8|øp=ˆx†sš¬o2—·YRÙ)û ê1ÁS–‰h@g„tbuÓ?Ó íêàNÈqCÇ,[†!ÛTîgƒÊz¨Ä •aS8˜fY»–B5Ø*z1‹iï³±¬¾ÝÝÝÜrË-'|ç ¦¨¡ P*•øÙÏ~ÆòåËO R©4‰D‹?ز‘b{:íâtÄÿNÖRœ¬¼Ÿçyüþ÷¿gñâÅxÞéÐ,Z–Åܹs™1£2œ={ö;šÝÚ²–Ë–é0é쮀þo¾‘L&}B/Œ>#4V¯^̓>ØDGtdëèE2™jÝ…Ž|'ZÎ$¦ ûØF¶ýû÷óƒü€C‡Þ¹i$ÒÔ5ÚÌM3{ölæÎ[ÿËZÖ²“}Ï`âT Ûo¼ŽX<~Rïœââ‘GaݺuMwòùÏžŸüä'¡Ï»ººI§Û8.É£eï!0<›¬ ÕŸVuÃ$“Ü|óÍüö·¿ ­{ñÅùíoËW¿úÕ3>#löRvvvr饗òôÓO3{öl²»ÛØñÚ+œ5¤må!8ÔY#&°Æ4\NfwÀŽÛ¿EòÌ»QÙg‚¼Â=lÆ5%ÅLÅÝZù$©…G›Ô8¸ŒgãzPRêòEƒ2íƒRª¼×ä9Šã”ªôG]/l(Ž—dà “£é.u›šŽAJ¨b £lµm¸Ú#®×°Pål-õ S0f”ÚOfTNvž„´”x­¯¬Ï’R\ŸYR o*õ#eÓõNõ¡î:oc@quŽc¿¢{!IHrh=Þ!¢¢ñl'†]lQà ¸’×1Òï«%­£FÚr¨n芫;fi3L¦N :fpáEc°›UŒ„õd™R©ÄÁƒq]7Ôi|ÿûßç£ý('NäþᔚÎÎѤә¶ì,´6t²˜išÜÿýÜyçÜsÏ=üÓ?ý…B£.—ËìÚµë´ÅH@(ïW>¾n¸ÿøÇ\tÑE¬,Úä¦ä^ vJ?v+¨¦Ö¬)ÚÕV‹¬’\Sé¯ýwL×'•Û•:{ž‚ŽRóЫ’¬Û’Eµ£”HHi„2Ž+õrÍ<Ó:WѦ’,a»º>úß0(DF探:2F›€±ŒµÚÕò8°¬sAmG=WÛd9tÝePrð´¶«ŸÎ ÕkIVÓµO•›(£HL:±´® *ú‰RLW`•µÁM5`Hº‚öhE‘1ÕŒiÄc0c–A,f2yj8Vz<×hÆdš¦I$v#Í;—… ’Éd¸é¦›˜0a‚òÒvtt'Z}nËÎB‹U‘¡ñ’O›6[o½•T*Å5×\£<Ïõ_ÅbgGrÓÌ›7K.¹„‰[jM-kÙÉZĹó .½Â cMð„3‘€P~§NÊ‚ êÅC‰$ÝݵŒÑ–µìl³ZmFæê-·ÜB*•jú|Ÿ) l#„ælµýýë_?íÇѲ–ÏfZpùÕ&…<#&™0FhšfSu ×uëŠù===\rÉ%<ýôÓ”J%Òé4ÝÝcðZ¬‰–µÖAMñÆ0ÞÿþëêãºnSžìé–_;•aÍ.¹ä’ê—@ ÏU\£r»ÕU:˜'µµ<6â‰yØŠ»ÍÆS¸†1Š ÏÏB•H«P6†•v§t6.=’°ƒË4)FhùìSRu{V~¤È¶ùŽÉ`wÃÅëýÑ¥ÝëtÖÛ¦¢Éj HKîZB.ã £ð;Ç÷«´”.ÓG[¨”Ž&}³îÚ4 Bñ:¹] ®¸>Ò¥¸>к¿G4QÕ^F«Û,Æ•v{t@-£„_u}Õ7j@quO8@ÆkÜÿèÆfV*«Õ èzÕÕYâø)Ô˜n …ýžtžA¦ê2·Ü ”0~RÉ2¦i6íÊårC™Û¶¹êª«˜4i[·n%“ÉÐÓ3޽{[ÝmËÎV몿À±ØFšXŸ¹®Û”*ÇÏ8 !šÆC ÆÊZ»Rx¦ÒAÈ€Õl“fu¶ÜAWHøe¥-Çøl\(m<Úµd½-sM!t%¼0ë%ªa1(wØ ˜g%ò°à 0’ÐÕ@(ü8"žmÕCÄU,3tà 8þyÍ|â¸mÝôÚ%¢ –ˆ†€°¤;+"Ûƒ)Q„Py„zCSÊîvp•PÒ-’r¥?†š2r„6y‰GŠE»^)íYÔßX®YÙ,h¢—;BŒPáŽäÕGÍsæÌaâĉ8ŽC&“ ÉD~ó±¬a熑?;ìÓ¬gî:Í.É‘Ü4'£ÚÔ²–µì4¢É Þ¹]£år™ ê%˜–-[Æu×]Çœ9sسg/ì'"gä  £È˜1û¸òʉL™Òë¯îbÍš^ … ͇ºç¬¹Œ½‹+®˜ÀŒ=¼ñÆ^V¬8B>?é<;OQ£vrùåã˜3gk×îgùò O>Cçéã}ﻌ+¯¼”Çáµ×žçâ‹{èèèÀó¼w‡††By à N·z¦–µì2Ã0”ü€ú ¹X¬»LmÃ0Ž;#ìïïçw¿ûW^y%·Þz+¶m³uëVž{î8@(˜0a;÷Üó9.¿|mmiöí;ÈÏ~ö÷ß¿‘|~òysƒ:;7s⦅aÑ¢Kiooãðá£üâOòï¬ —›~Þœg:½‰ï|ç.®»îJFj§··Çûßüæ d³³Nûþ‰½üÕ_]Äç>÷u&L˜ÀÐÐ06làÇ?þ1_ûÚ×Þ±áÀÀ@h?†aÐÙÙyÂßf¦÷sÁüˆ|9ÁÑᆨ¦?àP|Sz¹Sf6öM–è™ÐàðÅÌã8 ì#E–Ñ4´CcCô9=ÞÁU$ÓtרƒG—´='ðéÉ5ør†/ˆ÷•åW]‰ Ó o¼Úa¹F„Þhƒèš‡¤Ø—‡­ÄÂ|,úè”va(5Mú%¾E%Fx@žª7Q¼u¦ÈŒo\Cbc4×›–#•«*\CZ0TçôõÑ©¸²{­¸F3F‘Ü;À¸ÐqïR3£óÛAq…ª9<¥Œa5nÂ67e”’"±fô ;ëÖ ê²nEÕd­<4ªë³M w¢*`ÇQµ1QC ÔAŒýÅ4MF §“æóyòù|cF8RŒ0Ö­[GOOW_}u=Æ2jÔ(†††yóÍ?âû§·Š¶aôqûísøÄ'n«§¶¶··s÷ÝK—îâµ×òqîÓ6 ã·Ü2…O}êcÊyþ‡ÿðq–,Ù‹/f"uœç7Ü0ž?ýÓ×g\ííí|îsiž}v-Ï=7ŒéÓ¸¿<óç'¹ûîÛ™;wN}ãÇcÓ¦lÞ¼ù‹;v¬é~F}ÂßFÒeÚÓÄ3ðp3j‡ _¶(0Z*îuI%K †â”:y1ŠŠf„²Ó«á| uÞ #|2nVv `È\GCí´„¥vµ3/¥_ –‰p”.å¶žSÇÆ.EHß4‡ Rz;k¥4MV?¤±j…ªù¢€qAë›%.)ñ;¢ ‰)çQ ¦l#O"´Íœ«ž‡;ë´Êë}ÔãV±]åW•c ƒà0¤R5 44 L¢ÆW]mPájß/jÛó›Ï»ººBŸçr¹:ž0F¸~ýz.»ì2% Ü0 .¼ð2ƒ pOóhþûØRU‹ŠM˜ÐÃÕWOÇq œðñ_:Ïîî.®¿~.‘ÈùŹýökBÏX{{7ß| ÑèðiÝŸã¸úêéL˜Ð£|nYW\qkÖ¬yÇb„ÇŽk:#löR¶¬e-;3fšfS/LGŸ3f ûöí ­ïíí¥XÆéñ¸n‚M›¶…>β{w¾ïœ7Çuclܸ½Ét½Àއñ¼óã<=/ƦM»´l®R©Ì–-ûñ¼ÓëŽô}‡Ý»ûΆÖíÝ»—žžžc„ï„k´"FÑÑêZÖ²wGrÖ2¸Í Bòjµ´a,X°€W_}µ^Ë­¶×^{bÑÁ²No‡].wó«_=ÇîŽ `ùò5¼ôÒn|ÿü¨xáº]<òÈÙ·o¿òùªUëX²d ¾Ÿ9OÎs=örH¾lãÆÍ<ûì:<¯í4a’—^ÚÅòå«•D•ƒòÆop饗bšfS¢ûñø}§þ—%ˤÓéÓ¸-kYËF6Ã0š¡<#´=Ïcpp0ô¥t:M$aòäÉ,\¸{«®ºŠd2É’%K0Í“'ÏÄ0Nwí+VtóéO»îº‘¹sgòÄKøÝï6pèÐTΟlÊ›7Oá®»þ†;>‹/¾?üáe~x9L?ÎÓaÇŽüÉŸ|ƒO~ò:.¿|>K—.ç׿~…½{§ T¼m³8thó7?aéÒ|ä#׳yó66o^ÇúOA2™$•J5££Gž¶£ÈårM¹K'˜Å›ü÷ÕÛ3No¤ñÛBWœÞ¶FÕmϰ¶1劶œÈâÒ‰z~q0¯è#”µäOãªû°=ŸQ}R悆,` ðïË orJúºÍ*¨×‘Û˜Yo‰²Gª¼ëa‡’cô‚Å2÷Í$P„ YM}@Od =T§QáC(IEÍ,¯‘öû5ì#t+1¹ƒô(1ÁŒÓ’eÆ*<ƒC=”}5üཀྵålä¸1Âl{;D_(bÙxj‡²À ,CÝF€¢Z¿OÝGr2z2ŒÜŽjíjÜïáÂ2ò«<¾9¦R)b±˜òN–Ëe²Ù,A`—Ëee¶W³¶¶6¢Ñ(¶msË-·p饗òúë¯ÓÛÛËg?{7Ù¬Ïc­?#]g¹<ŠeËR¼þúËD" —ë@ˆ Ï»‘ŠçexõÕ+W®$]J>ßFÌ;ïÎ3R¬\9‡5kÖ‹½L¡Á÷çÒ”i|Lˆ8»vÍåÞ{ðþÏ÷I§;ùÅ/þ/.¼pf}×,1æÈ‘#§í†‡‡›çOC‰'¸”F1\ŠÑÆ9¸8JQUOI„±ñš=—C¢ÙrÛÁUÚ¾’hbã©mTÔbêÓsÂl•ôKðmSúº©dxV:ß(E©§+U¥Ÿe ”ÛC!’MŠ ËI%z»v-õ¶š,„¶9N²L³mê‚ØzQ\]õG'Ô‡Ú…¨ƒgáj^²„Z-íÀ7À7”k)SH€á¯¯ N4]#œ<#·E“cùžFikkS€PÁÀÀ®ëžxFX³®®.n½õÖʨ¬Xbóæ=g|ÆT.O¤\>ß'î6®;×=ßÏÓÂóƑ;s{b4Ùìh’É$¦Ùx–k£Ã39#Ìf³Mg„­D™–µì]ð¿E"¤Ói>¬|>88ˆçy˜®ëŽ„­XFËÎGK&“M°¯¯¯„-kÙyhÑh”L&œw188X™Ž„™L¦)­¢e-;×-N7ÂÞÞÞ3„'ëõ°>Û˜âQnî_*ÍvMÅ–&Ø6zR½`*î8“@Ô†J 0©Õ”c]¶ð”úrf ˆ¥z…>8’Ȳá U\Ÿ¡ÛP–t ]Óf3”s^‡&ÍZæ×Û… ΖRC„!ð,rýj®ì"6LA¬MÙ6Ƨ jÍx„yTž²ÎKÔc‚רšhek„6Ws…µ˜á1F—P?DFq…æH*îÕr!†çiýµñÚƒêVÌ¢º/´‘«46†iÒ½È(…˜ý !Å(1ºx„Æ#4b¨®Ï.Ôtˆ­@åz¨ÜE5¦(Fž6ºkÔuÝãÆ[Ö²óÏö¡ÀP+CŸ6IéqìI1%ÀTbgÍâXÊJÑÁU”C¬zõ*Hdt,Wë¤tý+ †õc4TÕ»©P´œüR N>hUXÜ‘6 3€ qN¦„bˆá¸¤Ú. ÅM¸[ï} ½S,šëc)÷?À…®CR# †#Ôsã"Ú3âhm›0¡>Ѐï$d‹k1‘€°åmÙ{ÎÞ©a3:FË5Ú²–½óF›jüÖ\£fË5Ú²÷š%“ɦƒ¼w"Fx2:£-kYËN¯Õ’eFÂc„©Tª„-;¯_ Ó4ÂûÐÐårù´<÷o7Yf“øŸ®·'F÷rhlƒ7˜aH)rk‚nT×®¬ i{mÇTW­ O¯?'ù˜r­7 yª–d€*€ìP)\û¹mÒo¸oKDØËÄzÛÅa ªû ×ÆÚl#F Ûä_kl8,ùçL”¢Ä²(Mm¸Ä K°{FD¹n~·ê¯Ó õަ7DÁ5Y Žäv6´k_½”Z[ucæI† ñNQÑý ª[6Àò!0¥#tqª[ÑÑ,âí :‰HóãÎå¶ô$ÚEãÚNºôñ¼ä™@XtÛÕöGu}ê"ÜwªÛ rÑ£ÞähŠvcP;6'5Â;Üd™ÁÁAÊG!“ÉdF¬§Ö²–ëÖÙÙ‰eY AÀÑ£G7nÜÛÚ¶ïûuPÕg¢ÍÊÁ4³2%I#efé7ÛÔ)I±¬ oPïœ%Ž ˆ{0ÕŽi$Ó×û¨ÊÿžÖÖÕaŽ˜gZJç.Çã\œæ1B¿Lµ-µc•Çñ&!Ò¸(X0 Êž „ú>›µu Ô ØêE-¼Szftža€˰ õ¯¡}®‹'ÙÚ„9z>Êý1¥Ü*³´~]ÌEéþ CÝgºÉ1èé£Ú3'œ,#¡è!Ýžr̦dE”ëÖÌFŠö÷÷W\£Íâ"±XŒd2Ùê-[vÞZGGGHð\qZÜ£¥R‰lÂd{{{½"vËZÖ²wÎ,Ë"•J…tµk¥˜ša<oaËÎk ”N7)¶ªÓ·¬eï¼Aд$š‚cÇŽa7{ñ[3–µf„ooôÙ,ÎØÛÛËòåË™9sæ ·q¬w4+ß¼ªÞÞÔ‘å™—ÔÛis˜)ö®Æà•=RÙ$yf±¥Þn3‡ø@j©²3¶Ìœ„SÓeÜöPc€*W-@åx%A*%ˆï˜¥A)åDtqèE¡f ¼7¥¾¨Ï€—¥/”]R; Ñe“–{# îP“(úâjBSž¸¦¦RQšÅH®9šë4©ÓlÍg"ªW(ó Û;ûñ„:°ëŸØ£¡¡º%QÛí(nɳ]qñîe¢¢±º•YJ}Ê`ŒER4x©]Ý}D}5s:’÷0„r1L§ð¥÷²×êRܱ{œ ͆«|‹1“a©0çÝLdn—òÑ£GYµjU %`gß IDATkem]r*þÔÓ]›­e-;›,•J…*P!N —0“Épíµ×òè£rðàAeFøÀð©O}ê„.R¯ìíõàÈ7ƒR4BI4Ž7%²Jœ*A^éÓÒ +É3¦ IQb„uýã£ß= =íû¶ Br§æâ„b„!MÎÀQb|äQtÊÀ€<ŠE7@?&xÒ}7DH£Sçøé1C=&h BÕÞGŠU5CËËÀ Å!•Á¾„z2Žm7‰Iê‰ÑI ø<Â"ܦz„vdmÙqµ‰©1EÇÄ*( =.©?÷iK‰#çˆ+ÏH?ŠàÁº‘ôѦ³¾M›6ñÌ3Ï „ºók¯½–Ù³gWèÍF®»wï•iYËÎ7Ɇ šfuº§IôõŠ+®`Μ9¡„³•+W²nݺムç1°}<~üãPȶnZËZ&ƒ[ 8°a€í¬¥Ø{ü÷Ãu]/^ä:ŽÃÍ7ßÌèÑ£1-Zrõõõ±lÙ²¦Š3u¤Î娹s5®[æLUhYËÞš«Óƒpê"ìß¿Ÿ¥K—†€Ð²,-ZtZŽ`âĉ\sÍ5!¾b¹\æÁ Låwïþûïç_ÿë—áß„ÝëAˆÖ-mYËdüé/³ô»›ùÃ_<Ê«_ùëþñ²;ûAø]Éf³üú׿}>uêT-ZD,þâŠ+¸ð •Qª‚矞ݻw‡À¾ïóúë¯ñOÿô?yùåW)•îÆJ~‡–µìÝ´mÀóT|<zªÿo€ák¯½Æ¦M›B`tñÅsñÅŸ–£0M“üãüð‡?T7^xáöìÙÃäɺzÅb‘Å‹sß}÷±|ùr$ßÀ›!{qã],Øí %ñ63°vvÃÝ61±›¹S74Þ[LKu×–Kå †b„Ê—É”S L@Ò ’Ù1Rº=Q¤ a‰¨ÂKsq”dâŠ^Bu}fµcˆ‚Tž°"Ù%wY ¯ HI2q† Wg)-^çk'-0”ó¨}¦^&Oi;ZÌ/ƒ*£  ×2 )îшö{/TvKwé:ãUwiatB9Îr.‚\—®PÝÒ€ h<3GÌnE’o'SÍÕ2ŽÂ¯ÜgN$"Tp:™UÎËÆSÚ}Æ(åzïa’"¸‚… ÒÆÑW^gõÿ¥4Pb÷#«Øÿôv<´œ â‚¿ÿÿH$îÓeË–±mÛ¶Ð;º`ÁæÍ«”íñãÇóñœ7*m;vì`ñâÅÌ›7ÇqÈårlß¾{ï½—‡zˆR©TíHvb=umYËÞ=+[Z\î‡@;¥Ò5”Ë*Ú‚Ï=÷œ»«Í¿üå/‡Ò«ßŽ]|ñżÿýïç‘GQ¡zÛ6~ðƒp÷ÝwÓÞÞÎúõë¹çž{xá…¤÷J²}>"0ñ;¥útŽC9)Åñ (‚Çi†ÕZr†0š›þÙ‰^aã8Àh¡hMŠx‘Æ1{˜JgíU+ŽÔð…Ž;j5 þ{¤ ~2ÚÚ1ÚÒIÛôB #›ïMê ªm« xʦÿ>À é™êm”Ó,)ÛŒR Å c1U@ÁiÇl ú%µ- µ]&¢Sž„ÒÎ’RÎËDà*€–©œ‹ƒ{Üm ‘Q€°NŽ•SÜ’'¬‘ˆãåÊ ¬?À}ï!ê|éK_"‘HpèÐ!þå_þ%æëêêâCúP}¢g'“I®¹æ&L˜ÀîÝ»•YáC=ÄܹsikkcñâÅüô§?eÏž=Ê‹îfìØ›ÈåÊ ¹”Ë­¸bËÞ-Vi½fñôÓ3H¥îbÍš5,Y²$6Ó§OçÚk¯=­Gcš&ŸÿüçyôÑG•qppoûÛüüç?碋.béÒ¥ärÇ©p^Ú¦MsZÖ²÷®wâð7]ßùÎwøÝï~ǘ1cX³f CCCMÝ¢7Üpƒ4øæÍ›Ç%—\¹µk×òå/™t:ÍŽ;BJŽs˜[omg×.—U«ú9r¤D+ǦeïŽmg$©”û￟çž{Žýû÷7×þÈG>rÒ•!NÅ-ZÄœ9sظq£:C‚½{÷²wïÞo$û,pEëö¶¬e€wl˜âö#®‚€-[¶°eË–¦ë-Ëâ†n`âĉ*Ž3†k®¹†?üá!ôÜ¿ÿqÊuótv‘ÉL`÷î½½eZ±Â–½ó¯Ž<©*•X³fMÓucÆŒáºë®;iù³S±t:Í]wÝÅ7¿ùÍ·¾‘Ò³0ëÿ뤲L©2‰Éw5í 3+Óxñ'Z»ykëí„[ vX¡ETªþÚš€N‡LçûHÒ“x¶EŸDâ+aHŠ­•‰P’Ü^.v˜>aÙáŸÌ4Pi0UjÛsFÃ…f˜=c¤z„ ÿÕmÔã–ÝOI¶Md‡SÊuñ]µH^2¥Îøí˜§]V5vÖA¿ÒNk1íØ`Š\(–©G¯»Xˆªz¦nÄQõMm½†bL¡'`œ3ô°”2^]UÚ•+a(‹‰ìS8“•Øgã9ß/ûûÃÁ Q¹qo1gYŸùÌg”Œn»æÂ¹í¶Ûø·û7Ö®]{Jõ};ÖpãóikÛeUbAàÀ ¸4-kÙ[7ÓôÂ@ˆ*Ž*m´Ø“LÜÈ2Ú<$uB½´I×"&JXzU(—pÍ:4±NЖ_q%yFXj½Á2ÑP­±g) P‰S)á´ IU\Ú¥Ž®¤}é~ÄcyéTíÊO4Ò5z;&ž |ÜRD¹N¿Sõi¶BÜA8ñ”ØZD‹­yØ! ÔzœÑ¶<-ç¸Âß.áõòýË“PŽ¡H,-ã`I¿±ª‘áÆ ¤ºÖÊ«@”ìW½%4 ƒx<ÎM7ÝÄE]¤]ߪ͚5‹›nº‰-[¶4åW8Mõ<Ö­[üy׋íãúë\W°~ý1úúbõÎÅóM†—-kÙÉZÇɦéÒÝí²`Ašþ~—M›Š D ‚þSÞjWW7Þx#ãÇ?cG>wî\î½÷^žzê)Ö®]ËÖ­[9|ø°¢rá8Ó¦M#•J±jÕ*5¸ï ÃÑ¥ UjoYËÞ‹&¸O?^‘é„ 3ˆÚ‰Ûß«„øâñ8Ó¦Mcúôé\vÙe|⟠zm-¿ò•¯ÐÓÓÊ+X±b»wïV^ÖT*E±X Éԙ䄱 † ã \°Á_ðå‚Á`,‚M  `PÎyµy'u¨ïžÙíê‰$`%ö¹CCúæ³u*hŽúü¯ÿpq•ʇÜ7öH.œ:Œá…Ci<†5kÖPUUE=<嘙èæêºNMM 555Œ9’éÓ§“H$Ðu’’Ö®]Ë}÷Ý×FŸ !8üðÙ0a¦i¶ÉWõë×±cǶÀI'U°}û-z; ;äªPÓl¦²²‘HÄfÇŽbR©ÒŒ¿ó дEEuTV&hj Q__†mÇ:è*=Åá‡\tÑisÌQ!(--¥¦¦+«W¯fÙ²eqÄD"fÌ8Ÿÿý߇¨««kûtEE%—\r eeeœ{î¹hšF4%ç¨)}þ¡OŸ>ôéÓ)e‡Ãa&OžÌ< ¼¿iÃ.ÂËÿÉqcËš§Ùé~ˆÑÊa´§?…,›Â¾Ã!×}j¢æà Ô’“'Mõ¡&H›j}Áßm %¸ÂÂÌÉTR-Ç'¤é.ĤŸ P=,:ˆ2Û7Ùpˆ–¶*ƒµßWªáRŒZ¤€¸ÒúÚòùý‰æÒÕiÕG¨ÄÛpR¡ý~‡@æä ú¯…­a˜d¦0oö§ÌeCÌœ$|µŸ€T071tºrÜÁš‰2síç •côŽ;¥W¡'â÷Ÿ6‚ÿ°JœÆ¶àštÒEΚ .………\pêN­È$ÆöëGß¾}?Öw¿0™­áTUUEyy9º®ÓµkWN:é$u¶“H´•q]—õë×sÄG((¬icÆCŸ>Þ ²#Rp55Û¹üò>úMž{în¸¡/ÇïD×[ 4ŒzNúhúôéÓ¦ßÖÜÜÌŸþô'›8ûì³0 ƒÙ³_cèС{ÜxSS/¼0‡-[B’†+-­eúôKÛŽ¼ ŠqãFqÔQ‹xõÕ4®=ho$ÓlfÒ¤¡ 2Py½²²’ .˜Ä’%o“Jõì`@aÑ¢ÍÌû.}úÖVão÷îÝ<ûìs\yåÌžý³fÍâÿø‡iÙ«W†~PþVååå|å+_áwÞQ^ß±Ñâ•w«h9”.f#|*:‘º Ú)?±]"ÿOáÉåÁ/B͹+GI=°uD¹ÊÔ šŒvA3j¿Á·ÕGhaÐäs:%Õœ@€n:TW·§…)1ÝvjM.f³¯ïPéóé8Ôàó•âRÃÎÀ L—P'½Qª•´ Ç£lÛîSÔ:.¹þ؈:æϳˆf„F,£^¡«¨U¨ÑJö¨ÒtNúEn9)uì ¦74S¨ø(Q¨Ñ0)eŸI"Êö( …ö, ®h‘z·Xò}—‹R‘êm”2[‡§7`—èl«…í¯ÅIÆÝ<:çœs>ýBè“|(ëÿ[·n]&gÐeÕªUÜsÏÝÌŸ¿èaÇŽf–.ý\p>úwÞz+E"ѽC>†áPVV’óz4!3âà^ áRRË[¯¢¢M³;àQkÔÖÖðóŸ?Ç[o-bÆŒ¯²nÝfþò—WX° Í[oý7ñøZöî]¢”OB0eÊ**ÊÊß*‰0fÌzöì©(Ï8¶dÞ3»©¹p<Ñ2›"Ÿ¯+œ°ˆlòù€6ƒô§G ç”P¥ŒøŠP °"šS0Hø|€†übc(~KC©gc(y…ù|„A½L¡I¢ÑVÈüIÜ:Žr‚>AG †Ñp•íù,ŒØ¢c£¡ ùÝ;B   ·“[OÐ$­ø#íÐ( ¥ ž‰Ïñ¯ýé@úZ0O07øESê,¶ËÉMTƒgT?¦™ ‡ N”¢Æ ©úS·¡ˆ¬—íhD&àÝ÷àƒäˆ8Œ?ž>}ú|1@XYYɸqãxöÙgÛTò¥”$“Iêëwrî¹óúëÛyå•ͼðÂ_¼‹žèB{•ŠŽg{÷VðÄÏ3xðà6ÿŒã8Ì›·˜… ÷â8Õ71š.â…sþù8òÈ¡í7wk+ÿû¿ÿ ‘¨ìÇ-e˜­[çá‡ëyê©ßaYR©n@„––zàM9­¨¨`êÔ)ÆÊßJÁСC9æ˜cr$Ø6ÏÙÄžå»9ü„Nº¬Ó¾Ö’€ÙKaóžÀÝàœéÓ‰F?=S§}ÒuôèÑ~øá9ÛÞ)¦Ù@·n…˜f‰D?‰~¨:IÏl»„çž[σ>Æòå+زe O>ù ?üOvîŒ~Ò9CGZg°j•ν÷>Î?ÿù&Û¶mcþü…ü÷ÿ‘ Ò(qòÒÊhiH*Õ+³¼Ø ìÈyçøñã°Y½ÚAÊpF§ó`ŒàË›ËÚ°aÃ?~|^_èÁf#FŒ`̘1¬^½Z©¯M0ÿÏ›po9µ ìÝÀ£lKØãcŒ ]Ô›õüX~N ÖŸ+4Ò¾<ÀÅÌe´óø ý}]ñ:è9 8R ^É„þBºùúA  ŠQÇ€Ì+Œ’P@ÅÀ¦@´¿Ç&Sý1":v÷ûE´ä$Èû¯”¥_è¹Í9@´àµNÎËAW€0AT Ž) ®]’(ºo»‰¥“žÉ áU‡Ãê0e¥©­]III={F)-50̓aÀæ==„Z` ¶NûllcÞÕ`uu¦NýêAM‰í˜cŽáØcÍy½~m›^]‡kwÿì´CÓšlxòÑ89ŽÅúõï0eÊd4-Ä–- êꬄbÍO…JÚ}‚2ðšÌ³=øÞNût¶Ø@>Zôšk®iKº?”l̘1}ôÑ,\¸°ýE [æl¤è­—˜Ø«œJ§ ¿„f¡£|ñZèØña™–µ ûúÀ6b7Õ¾)HTé[˜Ôú ï:è4øŠØæ –©õõ]4âJ±XI8 £á*IÙ.¾$½ ÏOǡ܈bà()nŽÈ¶?¸&ûžàøà÷¥¥ )ÓZ[7õiwI)h®)TF—.Åj¤ÒѼ§ôG°XIˆ?‚+þµžµ{ÐÝö¾±ÇA8>mÒ´ îþǘˆPý¯ÅQK™Ÿ—×´€/À1R”ÂÖT-Y¿v¬©ôsêba~Ï›&$ÓmFXRõV1¨MÀ“Àî< Âï_{6—|«;8¬GBMÓ;v,Ó¦MãñÇWÔ=¶lÙÄ’%¯qÔQç0wî:¢ŒW~ÿŸ–Å>À.ºûG·?•µËªGkšÆ•W^ÉàÁƒ)Z4kUUU|ûÛßfùòåJ9)+nñâý›9iÄH+s ˆù8B¨•ܳ¯ùç aõ=ÒÔrD²ýý|Õ#ö×wЕ¾D(Áù ÓzÁ2®èÜýdè8J0F°¯>ï]u´*ÔGHæD®ú‹ùÚ jUÎ+6”s( D*å ÈñŸgq5¡ÞI¢;¾8 Š Nê£ -Á78 ê1ë0)´@0Œ«ÕuòL‚Óõ;…ô½–o(5À1àåðÚŽ\l¯®®æºk¯ ¦æÀ>ç¤[uu5gžy&]»æ&Ì?÷Üߨ½{SL¥Èúý‚ô¦™iÙ‘#äká<Í¿ÝôíÃ@¥K;}‡ŸÎdf%¸&gKŸ>}8ÿüó1 ãBÓ49ñÄ9þøãs¶½ÿn‚½ÐÜy{tÚ!c»ã0k=ì ®›4Áå—_Nuõ79 @¨i'žx"cÆŒÉInlnnæÿxÛNu0Ôò€ŸCx‰ÛùZ4Ó"ûD?ú¶?¹%ñ"EÕûÈ0 Î9眼⇒õéÓ‡¯~õ«””¨2€RÂ_¨£©Îî¼E:í˜î¾³ foÉÝV4¨;§žýÕϤzÌ‹`©ªªbƌ̙3‡={T-œuëþMQQ/``ºäù‚c ÔÀ•" þd•mÙ¾æ{MОô]çwR¤ß–@@,àðÃqÆS(,,<¤Ï> qæ™gò—¿ü…ùóç+Û¶¼Ÿä­Ûw2ÊŸeGU4Œ@Nîqo _{7QboIûND){|>À8ì¢=R/Mˆ:Úõ\?JB}#*©Ñ méѧz` «R¡*uê(bÕù¶©Ð.®Z)§DS}ˆÅ4)Ô¨…Iv)ç0ˆ”Ï8Ê1KªÙ­Þ·¬RúÃê× ù¯#«ª°ÖUÝâV`Ñ?Âܺ)ЬMD %²üˆ:ÜpûNwkÕ$}Å|‹hV´D›(V¨ïVrëÎîÐj”ºˆ½GlÃô•OK…__Aß ®“8åë}†|&Ï×B!gžy&³gÏæþûïW¯wªØǀ=pÝJvïNÓÜüEÌ`ý ¤0ýÿûÛ¾¢>³@èø@Ðöýïoö>>ß ˆͶór®Uaa!\p£GHR¢AëÛ·/—]v+V¬PJN¥,øŸ—-ƆcÊÛP*×ÿ ì0Kndô°FZ7}@§ú½Ð‡Òúƒ¢Úþ¾‹–SA}:eŽJ°Økö}Áwìk»ÈéËœ~[ðFÛYã"šs€Ð¯€ã¢åˆQ'X-¾œ:¥_j7!ü $M¨¢IMÀþ2e>JQŸdàŠú ¿£éZ¸Rðû[ƒÅ‚ƒ¿U°/@Z˜J%Y(™ór]xøixcižc?rö¤óp#ŸÍ„W;;BpÝu×Ñ«W¯œméô6*+×rì±Etïù‚V€ÙU^È72D‚L‹ái¢âioþ/òmùZ¯iÓùýˆ©ÍZ€…äÊ¢ÀÈ‘G·ù¿,vÎ9ç0dHî¬x] <²:ËvÚAj«×Âï~ŸgC4ãOƒC>³ïÖô;ì0fΜ‰iª3$ËJ³~ý|Z[Q\üEDfƒcü>À°¸‚@˜ ý øa`ôš¨~ÃNÜ¿I4mÑèbt=7]Â0 ®»î:;ì°/ÕU)--åšk®Éy¾R.<· þUû¡QôÖiÎZãðð#°~cžý‡)€a~fßÀ§Òº®sÖYgñòË/3{öì¶A«ÿþœ}öÙ v$Ï<ó&k×Ö‘HŽmëXÖGyrå'4n± IDATÜ–oEhú€*‚êv1}€¥¡Ò™n†Gp|­Ìÿ¶ð¬}€^viÐ,*+—1eÊ0N8á.ÈóÏ?϶mÛÚÞ1uêTN;íT CÿÒ]SO=•É“'óì³Ï*¯oŽÃÃ[àØPU Œñm œ«tWøvê²Þ,eƒÏ‘ØL1;|ɇ ¢ŠÐÂT|„¹y„ºâ3”hJ=Cï°R¾©ªT|†Ù}S.üý -éæÙ´°/=BHI¬VuÓÈú@a^}»BùIMЫd—2ÇN†Õ¡TwÕGÝlP¿#²YMÑ«¥:|€JÝm5Ñ»> ¡* ýp`ŸâÞR5=f']íÙfŠrêZÊk{ ªÐ¥Íâ¹u<ýÒ&’ÉÜ\ó{®ù7¶?Á°Ï(Mø3á”úöíËÌ™3Y³f ›6mâä“OæÁ¤G!˜:u =öþórš›çý÷‰|9xÁÿùíÁäu„fü²-¸rËþõ¯Ú2Á2"G(³ÇôZ>0Lãy£³ª²f¦¯âþ@šN0‡®]ßçÿþïzN:iš&¸øâ øîw¿ËgœÁ¶mÛ4h7ß|sŽ´ß—ÅÊÊʸîºëXºt)7¶O¡¥„Yà”ðÑ ºŪÀ˜X.°ŠÛGÏ`áÝ%a:E8ÇG¸?Ÿ`>óû=àʸ+óŒ¾ e2 ÛûÁ}h øåËsó¿&èéÀs×"ìC ªD‡X4¡†I G$ÁêýÝÇ¿6„"ϰ¡íg;y€18Úç‘ðü8¡È$”ûÃLÓL‘*°ôõ[[yê¡f6¯ËÁI“&1ó›ß@×µÏô™úLö.„`âĉ|ýë_§¤¤„óÎ;Ã; ]×Ñ4X,Æ 'ÏÈ‘ôî%ítÉ<©•@9Pši%>Š2õh²ïÔ¢¼éÀ,ÕY’ù޲Àß Ø{ŸÈP "ÓÚ(Ñ¢Ì{Š}û)ñ}ÖO«ú}‡aß ÔÌŒ_nÓõFN9eÇs†áÝ/º®3tèP¦L™B—.]¸æšk8pà—ö !1b3fÌÈ)JêJ¸c¬®ï¼—:í ˜öÚ’yÛÅ{/Ôæ¬Šk øá ?øLÒ%>—!xÒkßþö·™;w.ÇsLÎöÊÊ zô(Á²¢D"U™éí[Y9y¨Ç|íÀŠ*N8¼¤RUÐÊúÃ> , €TvUhäªA(ü37ÿ Ôö­þ,¼­ìô<Ü„ŸfÍŠPˆ&"‘Fl;„e•Ž»7Í$ÇE4ªTišÆñÇO:fêÔ©_ÚÕ`ÖŠŠŠ8÷Üs™={6 ,P õni†;æÃÝà,Ö9ØvZǵMË[xîžÍ¤â*­›#g dàÑ}?—ãøLÃíz÷îÍ¥—^ÊÛo¿ÍðáÕmÛ¶mcåÊ¥ z&„X»Þ¥¶Îd÷^hn)}©ÒiƒëdþwÚ_kÎáð:† ÙÅôé'`šO>ù&Ë–“Lö÷­ÞнUž(Ȭò¢ …A„A„@èÙÑ^¥‚R£Š<©ƒÔ¼¿®‘éÞÿm4«?oQñ` H W3fL9gŸ} k×nåÙgç³~}O§ä¬G°,\8xü,ì\×eíÚµœ{î¹yŒ¾Œ6dÈf̘ÁÊ•+innVV…ϬÒ)ÚÓŸ±SGh4pBZ`Òa)þ² ÙAM[¿•[}ŽÅ4¡œ¼@-¿œz„Ò`oªÒ÷ûJ„)Š2¢}¼À¹|>”Ž3°?TÆÍ¿]# u ^¶ŽßvI U®N€Q”ï^V8AÕ6ú+ßÑè†êó« ô»å™çŠé¡F+TrªÕŒaûÄÞã(Ôgœå÷¯§LÉÝJ÷œô‰jv·ù…íxšoÝÈî¹÷À€#Ü;ݦ´È9øàüóÏçÿý¿ÿÇ»ï¾ËÀ …BìÞ½›Y³fñä“OpÖY’sι‚MÛ`éJ‡yK¬ÞÅq%H×kŽ Žãýµ]/á$û7†¡ÐFf̈ò‹_ÜA×®žsdÆŒÉÜ~ûùãm’É*ÍZzŒ0!Ð 0tÐ5OtÖŸkO€mõ»$ÛšGGϤj`ë`™ Ã^#I{@Nœv?$äú@;bðŒ¤´t·Ür*_ü5b±ŽãpÙe›¸ôÒŸñ¯’ë”øø+MÇYÌ«¯nã…Nä´ÓN#‹‘H$X´h¶m3iÒ¤/EÎàGzx ƒoûÛ¼ñÆüíoS¶54;<ýT-ÎøAôWš† à#$)ñeYÇ)P*ƺ4!ÅgÌ ÌÑ"•&i'¤¡iXàNû:-Oqß>F™ Áq¹.ð8ŠÀ­.òøƒB°XJ°hHCà;ì<#µ9?| ü°@“¨:?·5[èÊÄÇlÁ~šâ#n¦('¿2 ¤NÚaÁ}ï²ì•Ý9‡QZ©sÖåeŒ™ãŽ;Ž+VF¹ë®»>ÁÁdÑh”Ûn»%K–°~ýz?Z°ýß{™ûÀ ª”RTÓÉ‘vZ™R»’Íolâß/%Ý3Ðà¤iÅœza)Úç¨Oý¹d"8+¯¼’믿ž|PUз,î½÷nŠŠËèV3š’ª¢´È[Ue#4ýî·4–õu™YºTw‹3xp.Ÿ<`@oºõ˜ËÚ-ÅHYz+ÁˆðZF U*4›A±? ´|̬% - ­A*s|ÂÍP¥Ù¦™–¢ªêßw\1ýûW±hÑVÞ}wñøa4Έ_ @êºÅá‡WSUU‘³íøãG‰¼FKË'ŸãÃRàÝ6Џ¾¾žgžy†_|‘I“&qË-·‹uæù¬ÿþ|ÿê™Üpýµ4V+žßHÍ‘LüÉÈÎ ÕiÂ76ðÞý ©_W—³­Ç€0ý¨’‚ÂÏ7€ðsÂl”Ûµ×^ËÕW_ÍÖ­* ¿uëî½÷¿8ûë?B+¥nÒðáãŸt†iLË m*Ùåöbùʵôïß_Ù÷«6°µ±YQ"Â]oÏ¢ð§FÈU]Ë„ný@R£W¢@RóVŠŽôVNfõhëT”ÎâÞ{Ç3zôJK‹Ùµ«–Ç‘ÿú¯ÓÚÚ?À¿f¿ü‹ ª±m“•+w±k×**T0|ûí…$ŸÆGø>ð/”¿q]—Aƒqýõ×Ó£GÎd?¬ËY_›Î¼yïðè_þª”B³â6oÞ½”‰Ñ$-מ®>—€_€R"úÔFÏ‘Dó—rЕðø4!…ZRb¥‰ÿ)_ý:á)MøŽGRp¦ihJºƒ—¡¦?¨”¯®¤€è84Qìû¼Ú¸¤s»œ’–[QSܵ©ƒÏµê]Øàœ-ý!ôk°VdOÔ`òãTj³yP×l_15GŠp4•-±4õÚ›R¥¥#$¹9Mwj´Y+T¨Ï$a…·0±1•ßß¿}÷–îÄ[UI4Ù-É’°áÕõHGÇ"!¸é†;˜Ø”Ýíuè!x¥d¦NÊÖ­[ùñ¬¬ ]×åý•ËùóÃwQ>º ÊjÔâþÂïNl2€cymWËQ<ùÒÓ <€^=º!„`Ûö<ýÂ"¶Ê±PS š "°r+*ùPß5êOôÇë$} Äs&2Ç™22$M;8õÔ"Î=wJÝWZZÊÅOåõ×7ðÖ[i¤,@Õ0õû?g:CFY¼xÏ?ÿ:唕•’N[¬^½–ÇŸƒã|’ê.°x\E`èÕ«?øÁ;vl'%ú!Ö¥¦W]s=¬ÛÈÂ… •(ÒÖ½Iî}p3_™XOÕUm>Ö` ƒdÿþ7oÀPkûù÷á¢åèxº®¦|ãè>Lõ1j¸y´F÷¯J@ŸTü–AÚ7XëhJ_.nЗ\Œ´€Ð¥–¯¾|Œ^Ðçt}PT?cµ „V¥¦?µÉ™´¤NÂp@e[â(×Ò”©L2œŒ„yûï­+÷GÐg˜l‰oòE¹ËßxŸ…¿y;¥~—¡Ãe§ÂÙ§N¢„¡Ÿÿdòóž¹^uÕU¬X±‚Gy„d2©€áºU‹Ø“ºclwŒ®C°cv†Ì®ØB!=)Ùˆ2v¢7³vgÅÏŸæÌчaê:³ÞXÏûM£Hõ8 4Ã# µŒ0è¶ó¡.÷ „mÁ1>t|˜éDãš×â:´š $ÑÐV¦M;.g€¯®®ä䓇0þ&R©òÌŽ³,r ^&hnîÅ­·¾ÍK/-eêÔãY·n/¾¸˜M›zòñs!]`0'0ªxV\\Ì÷¾÷=¦OŸÞ ‚‘u5jW]u?üáÙµK­¨°mu#oÝ<‡SîžDIïÒÎ ÖiŸóLÚ…ÅoòÆM¯ç€ ®Áø¡pùiPZøÅäTîjź®ó³ŸýŒ¦¦&ž~úi,K]®7m|“âè9¬ïÏi®Âöh +*Q‰ˆ¸hÂE·ô´ƒ°$2-)›ÈÞGñAs_ÖmY‹LK’}ǃV°²3ÝŒJŒN{Š_` K0$B—`€02`#!m­ÀËîHKde| ˜Ì¡ [VáÑ¥-`µvcåªÜ"³ñx‚õë±íj¼tìNm¤KåçŒ:­­˜3§™yóæbÛ&¶=€O–G¸ ø'°=/{pÉ%—pÅW|©µNŸ>U«Vqûí·«ÓÇeã«ëYü‡EÿÃ1DJ#¬Ó>?[·þçìº\¥‡Ãªáši0¸×wx_È(Ó­[7n¼ñFêëëyõÕWŸ@ËêWizUP}áO¨ëz NŽ^h£ØºEȱÙi ÇÆµ5l[DZu\[ñMû¤¥aXNÚBZÂÕ®–áZ„¯òRüBLa¸C¢é@ô‰ÔH¤H'“.ak` ¤¥ymÊ·2ôa«¯5g€°éHþúÂ3|ë›Û”H×ÅKVòúu8ÎIÐkãWQöýoîç† eÉdѧØÃ.àå X)Mcúôé\wÝõt Ó¢Ñ(W_}5ï½÷/¿ü²²-Ý’fésbr3F„jl"ÃÚY™ÆP›Š»ùè¶B¶ù’ꂺž)Â9y‡Û}Î.)N2ä[hmr\Ý¥9R¬Ð”å…õaвªTåDŽ°Ñ§ªá²Û§—*pÙQóR{¨{9”ÜZ€A ù!ÔhpÞ\”w |îH•ÝЧ¶OWw•Ñ_ù-öR ºÍ[F½r½º²Sñ·F>ÃVb9©)ê)%§Ô ìoO÷½ˆj gÛNRÏþ gù-=†xþ¿tÍ„M@aŒê¿ËôKïækgŒà¨#ûñÚk‹ùËS[Ù¾ók^`Ì~ äÃDæ ñ;'¡£ w{n)‰”Û—ò®u]gêÔ©üìg?W&öñ¬ººšÛn»]»v±téRåÙŠï‰ó»ß®gÂ^˜p è¾Â¼E‘FS OÈïwJU‚cr®¥Àµ}ƒ³+ ÕÞ—ºF:R€0è·t}/ 0 h° ÐÌ®’©áÒª&\Á9^E lBêC€0Èîçx•Ï|„Å…Xzûyí F9¯½”çø ÈMT÷]Í9GþíiB9>cõ”eR&¥€c¨0‰QŸÀzø^œçž‚t*‡½è¢¯sÙ•?"ùbŠ/ŒwÒ4‘#Gòë_ÿšo}ë[,[¶,@åØì™ûaiÓóÚÓud Ò RH3 áVd(-4 , lL,i¶£•6±,Û2pm¯I[WCú}º‹ÐÐ4ÝEÓtÝE3Õ²] 7Û×2pd¥-i/pG¦2-‘i­™Ö¬y¸Vèá›ëü½ÿÁ{/"ßH¼å8ÜÔ7ÁLƒLd’ñ p³NÌxæéHúV†‚vGeö©t;Üà\T$€M´¶¾ŠãlË ‚§v·Þz+ƒN§}:;ꨣ¸é¦›¸îºëذaƒ²­! ßyþØÆŸà*tZ§pæ(ž ù›ÇIÞ÷?9+AMƒ GÃ-7ýð Á/³6jÔ(îºë.~ðƒ°tiniâÔ;³qÒí5qÌpšu‹z‚­E­Ô•%qu·m&ãVë8BÇ–abc`iŽaâ8&®càÊŒB}&Ï[ºM"4¡¹h™¾:ÁÕp5ëêH]ÃÑ ÇÀ5uÃ:®£áX:Ž¥c¥ ì”Ûjà´ê81ÓTíðP+:«~,8ÐlC‹ Ùž¨/Cu]ìï0[êÉò¢è +ÄödaáZšš^Ï ‚ãÇŸÈ­·þC‡íA€éºÎ¤I“¸âŠ+Ú˜¿mj€ŸÍ‚»†Ã±GyS§uÚ27e‘úó,’wÿ>Žì?½ºT˜âx;D$ÂI'Äm·ÝÆOúS–,Y’³}óâ÷xå®ÿbÐ÷¯gô¸ãYŸNC2ë4ƒžÎƒI{Bx¦Ð°tK˜Xºí†°3«EGê™Ð_ÌjŠ ÙÖ„(æø4¤ÔÚ€Ôv \×À‘¶«{”¬k`»ž´TÒ “¶BØ­ah áÆt¤¿~oV)‹qÍËqÂKóHé Mp" Ì xŠ4Xéž_Ó¨R ,£¶véôÞ¼ï7nwÜqG5¼s9€‹Å¸ôÒKÙ±c÷Üsz/KX¸n½ î™ {@¤ªÔ%UΡ߂y„þ2>AíQ¹ )ïW}Š®Z©äFרzhÝÝðÑˤAT(ƒ'ÃF€>õ[p¼¯ <%ƒÕGx}eO\ßìd…6X9¯EŒTt?÷P•Cöc]à,eL‹’P®mšÒwÐ:4H}—ЀãûÎ,ÆÆÀµ%ï=³™æ_¾‰lÎUÙèÕ«?üÉ•{j_´Pu'¶ý@¦ÉW¾òLÓäûßÿ>Ë—/W}†®ËŠ¥K¹ã¦›øñOn`ظ£ÙcKšV4·…¨ˆ-™Þ2)´¶Õ Êlý4£-çÅ h¶= "D<Cf´í -›–YH“t¢hN©¸Äm81Ó[Æ@Æ„çpÏæK†ñ$Þ¤‘‘–Ë„´Ú°²2mAý7}KßÈ/ =Ÿ`)ßæ’N7ç¼GÓ4ÆÏwÞÉÈ‘#;5D?«¨¨à¦›nbÍš5¼ð j²½ ¯¾צàáë¡,âP(Û®0)´ýh=šXÄ|"šq Ôà Wƒßàé ŠOëà¶øÂpr|„zN¡°võ³Ÿñ¿?èT’þ‘Jñ`€¦B5¦{÷Àc”ÍöŸ—˜ûÅ?d¤-ô«T ¬•(:Ÿ{¨Rt7q0]Wä êH?·Ç®^LýÖÜ@‚"ýè‡\vÙenÒÛá’´FÍý÷ßÏ 7ÜÀ[o½…m«!À­­­üæ¿ͶíÛ9ëëgÑ·_7œ$‰X3Ü”‰\JyT©tѤD“®ç3ª”l32«ÂìÊ0ÛÕë3 šQSÈVß¶3:iB$3½“™¸ÖVbÄE+q#F"œ U‹‘0 H…ä ¤calÃÀ5 „¡!³rrY\3ý•0  ¥–ÂlÓPKK‹ÀÔÕöñ7ŸºËšC"±./ø†ÁyçÇOúÓ/uÝÏÓzöìÉÍ7ßLKK o¿ý6Ž£®ôf/‚~+ùqOÉÀA¢ ;ícƒà²—vðøuKò‚`4¦1åÒr¾{Õ%’ùéÙÊÙšÿøÿàïÿ;é´*ÔgÛ6Ïþu[7mæâË/ ï¨btË&L1âÐJ ꤅éÚ8BÇÒ¼¨RKX„Hg1 nÙ&ÛÂo„OvJd¼*f5E˜Q’DHfVƒ­Ð*bÄõBZÃqÂf‚–p­v81ÜH]‚)p Ý+%} ;#CyJé­¥é¬2¸NnL¶?—ð‹ Gm<ÝÐyØöö¼ïˆD"\|ñÅÜxãôìÙ³sùœ,«÷ûóŸÿœ™3g²råJe{Ú†gK;Ü|³ o?Ð¥KØñM â 6ûî¶Â¡AíϦ&]Òí4£Ól¿¢_D(¤ÞÂ2$Hºj¡), aû,;Ò¡)”¡‹P|gH(}©H¬‰6ý^ŠO¡ZcªïLs*Öúú’²jŸD  z]žGÃ?Eí£ö7öôâ2¶F Pò×0@9Ï]t!åë{9€êd· 5'³f…ï ‘òê1ú(e?Íœ ª0b-ÄÚÙ£Âu\ÇeÍß×ðÊO—³ws<dBÇŸÓ•É×F´ÈìÏG‡BMÓ>|8wÝu………<ù䓊@:fÁ¼lܰé_ŸÌ©ß:ŒPZ6wQŽSj$d§1 Ó¶p¥' lK[xàeá¢#t$:ŽÐBˇȡ JáÕus…îù…% R"LBDHˆ( ‘ÂBZ‰Ñ¢µÕŠË$!#…*BwmôCÒ. Màê:RjH] uá$„’"SóÍ‹ÄrÉ”£ ®ó <À©ú}B´¢iópœ%ä_k§è®¼òJ®¾újª««;Ñés6]×?~<<ðçž{.»w«µà øÇs’tBòëû [˜–oåØb‹)Oa ò¢HIÂn÷[¹I]Mu@q[…~*0ZR(ttŸŸRôH=_½ªwšÊ)ÄJ?H ßåK¸( 5*Ÿ3±ˆDÚïq]º”D@ŒÂU¿' ô½7\ª€Ð*Ÿ_ÐGبõWH‹D”Gõ*¤Ú¢¶ÒÖnLVŽ)N„ÍcÙ‚u/®åŸ¼ËÞs†Ý=¥Šé7 °gAÞxŒN ü0ìÝ»7øÃèׯ<ð@Ž~¢ã8ìØ¾“ûî|ˆE FqñwOfð2̲4E1RFÊAO¹È´D·$¦íฎ—b¡¥=Ÿæ«iHM 5@™\C‘I³HÍ‹F•š÷^×ÐqL ÛÐI!z„¸æa+1Z(lkÍ´R âDI ""ID&i)("N!"äb™!ÍÄ éÈî¹³«Ãlæ„.¼„TÈ+÷äjÙ 8#HÅ>@ðÓ€¡On‡4°)_ÂqvïóÙ*]tQ‡r’ÙÌ0 N<ñDžzê)¾óËY½z•ÝžJÃßÿ»÷Àÿ GöïÌ3ì´}ð?I›¥,çÍß ^›»ÔMÁè¯uå²û‡RXfvì碣_ìp8Ì 7Ü@¯^½¸÷Þ{Y¶lYŽà_sÞeÛæíœóµ‘L›bÒs€…·Ñâ.Z\"ã ÇdÒŵ¤¦áê©iHC u¦hguÌŠnkPÔ} © dDà†nH#冈›aâ¡q< Œej|GIÉxM‘Æ”iòÑ-´¨'éæD50=QqK^b—íxåwj´¥c+?¿ôš_°;Ûÿ4 ˜×:<îk¡·\ØÇÀ{üñÇsÓM71qâÄÎÈÐb£GæW¿ºŠoüË—ç¦z½û.̼nþ!Œ áPç5ë4{PŸbÉ£«øçOæä×Ðã¦VñÍ»wx<(€¼ˆÒ /¼¾}ûrçwòê«¯æø ¥”lX¿?ü®ž¥ï–2óâ"Æ)DO ˆƒÖ’ÄhŠc6'0ÒÛ«D¡Ñ– ýµ³Z¤mÁ*B Ð4ðr£ £‚Tؤ &A˜¸¡@KIoõ—ÁH{‰ÂÓÁÑuÇÙÀ–:B—¤loµ‰È„…»¥½ÐR° Hš™âÄ2³èó׉ʂŸíûßáÓÔ4 …4¢Q°¬$‹r3¹ÅÖ<‹ÅbœsÎ9‘\…IDAT\{íµ >¼;Ø3uÊ)“‘2Åüï¿ÿA J¼ß¿YpÉ»2jjWD•5²}Pk—°šmýÝVWRÛÚSä6áéªûçhŽÂÝyšš>S)Û¸BSòé<É´ˆBúÓ#$šÒ5¯Ð£‹j´% ©¦ç”#2r¨ÑVŸØ¨ŽCs´DÙgE×zåÄKìFeŸ[ÃjÂõôUhÈõôU¨Ñ­ôT|›^lCûûKhÌÑþìÉf¥ßuÊyW¸£FJêr =”k·nX„Hîl`Õo^géïæA-lÐåìã¸îßfTW5aÒ¤c×>h¤ýC¡ãÆ£OŸ>Üyçüæ7¿Éû¾¦¦8³_O°jU„Ó'ôâë_;‘š²´äVÂÎZŠ[WkÞ…p\/«XúÁ.Ó̰­jE (Y 0Ѝ‹v0LÓ´ˆ˜)ÂZšPü„‹Þ–¸ád¨Wo¥f†lâ….štIãzJ~R¡#5Ñž6í1îRƒ´ VÄÃ#×|n ü$l~…˜F\w©ÔHÙºO@---åºë®ã²Ë.£K—. Ø-éÇi§]M,6’ /¼0ë–¯ÜúÃΓÝ9þë}ˆµû[(d'í‚Õuv%V½/Øe°2pùYñBÔµnF˜Ûÿ’æEkûwá÷9è¤}; ÏHI_¾l*× Î%¨ £Î†Èµ¡pÐCíà©á¢‡, 5v¯®&î¡*à#Täë(Ïc0ȧUÀ¢ »”ó&°)Š0ü×vÌTÒ¸+Éû¿x›Í-ÄnN掆NÕÇ0àÖ Øg2½ÅÁ pPÕ¸Ñ4ž={rï½÷ròÉ'sÛm·±råÊœ@)%›·%øýÿ½Ç‹oìä²o}ƒ“FKU´œÕHAýDÂñØjªî;Ó‚º³ÒŸEŠB‰s Ùh…3æ.°((L’ж1’Dô$!=Õ¦‚Ê$_hÈL&¢CØHcÄ4ÃF 9¤0ha,#“cò_(óWM€“¡Ks¢G³Ý®oµøqÌÁ“YN]ÝBö PPPÀ‘GÉ<Àˆ#:Ñæ XN˜0—^z‰Ë.ÿK–,ƶ|ê·'øã·±iy+'|o%]£­sbóe2Çr¨_¾‘yßý3õ Öç} ÓãÒ‰ ¼ýBŒÂ(pðÜ#e±7MÓ˜6m à·¿ý-ýë_Ù³gOÞ÷nÞ²›nù%'Œ>–ÉÇ à$-J4QˆÙbyãyB"Ò."e#,!]/S!¤¡Ði“BÙ"¾Å ½™­Väb–HŒ·Xx%¡4eè™ ÛÓ/²-QCdªkg5tÃAF…§µI®w¥Ž£¦hŸ Ö OHœ¤™YøÙ^k£G³%œ5º¿ë º.Ðu‰ëîŲÖ"åR`ç>W€š¦Ñ«W/Î;ï<®¼òJzõêÕ9zDvä‘Grßï~ÄOn¾„wf'H%ÔßÙN»Ì¾o5»ÖÇ™xýPz]qŽöq-Õ˜bÍ k™wë|êßß•HªËèùÍ“pÓtô‚ƒ/î ½•5Mãˆ#ŽàÖ[oe̘1üò—¿dùòåyßëº.sþ5ÅK–òr÷bNëSÍéC§ÔˆB†½uèÛw`nÛ†ÖÚŒkx gnF¸Eh™âö!ÐC`„@€Þzh… ŠA$$$%Z ¤í`J0¤†õdpA˜  ‰®yE†³TІח†È0Ÿ=«$#¶0=‰Ô½|#%8ÔÛ·W¾0vÔ㵜¬S&í£G³}?’ªha¡NYYœx|MM+Íä$B~‹SN9…+®¸‚ &P\\Ü9z„ÏÓÈÇsç÷ñë;_å/ÏÊñÃ[ ‡%³6S·©•s¾ßƒ£¿Ö‹Í¢}Âc‡C”önvCM'”ç môø3DHRb¨´dL¨ìƒ§èR¨Q¿Ô˜‹F«OÿTêX¶:ìµ<C½s¾3HúS4tå;4Ü™·`…ªæ€_²‘…ÝN7…­mè‚å¶÷KKëÐ4×GƒÖQL“²ÏÞlTúÝw¨š©z°lM!¶¯ÔS#%Ôîtøà·ï°ü¡÷hÞÖœ÷ÞéÙ³']{G_2™PA;ÍÜÝ÷;tágl\pÁ :”‡zˆG}4Gi?kM­ ^_“`Ѷ&žÚdsî§3aÜ(¢õuX‹ßEÔÆÑj›IkÖ!mx12šæý 1 ¬C$ ‘V·@¨D¥v®°@: Ù’P¡MAA!3….t‰f¸^á_ÚõµLŽ”†‹®9!jÕ„KJ„±D£ëª¨Œ•hèA2æÑ¤ÒÍ𿎯%i˜ δ"å¿Ù»w%©T-–•d5UUUÌœ9“o|ãôèÑ]?X-,z1jÈ·øåN¦(VÁ<;©´%Ôòèu 4ìHRrù‘oI­vi2‹MC}@h¢]~™OaBLW/˜ Ù¶3b~Ðòûµd Á í¨Á3Ž­Þ³»BjaP¬ÚÀVìƒÂà:E>QU¤H¨  è Á ú±öẨ¸ ¡µû!‹h¦uÜ낺z«¬kTÅÃsÛ‚.q¥æážmi^ûÞ‹ìœý>VS2ï=Ó­[7n¿ýv¦M›FaaáA{ï䆮ëŒ1‚{3fpÇw0gΜ¼€(%4´&XøÁ:­ù-ÝjžáŒ“Ndle9Å¡Œ8$4 h6tL)).!…Š4(Pd‚[è­ÍB¼ì„‡1" 2塞–„Sºíß`ÈÆÔ, ÍBn¶’b[‚«¡Ù˜aÛˈ‹Š!LpMÇÔU¦?}P×¼¢¾Ž –™Á°¬ÔZMóŠùºn]<…à½Àr`ÍÍñý‚Ÿ‚.]º0yòd¾ÿýï3pàÀN<„¬¦¦†_ýêWôíÛ—»ï¾›;w*bÝ»¶ÚüïÖÐçõ¿rÜÇÑå¨èL=èMJhitø×‹qþ~ã}ÔnlÍÎ d2ôðA<ò§?qÔQG¡äu¼)–?›³öøãóÐCñÄO°téRš›ó/éÇaËÖ­üîÑÇx²¨ˆc£QúÉ¡P»K Ž<«®kõjz‡ÃTK‰ÓÚŠliAkMJK")ôÚâO2+3mþECs0 " …$®¦áá•-ñÉ»Y˜žÔ‘ð/e†H‡3š¦ÒDde²1/í5z-ÀÒ ¡AÜÌ86Ó@Ãh¢ºz-ǧ"Ųeõ46:Äãu8Î*¤\GŽüE+//çØcå;ßù§vZ‡(ªÙiÞ ¸êª«èÝ»7wÝu .ÌÑýµ“kžù€½ï×2òªQt½ðD¯š{§”æ8ðÁ²³þ§‘—o¦©>t¹(-Á›¦¹hšTóý)ÙH×ìëÙ¢èZÇ¿œË/ÂØ±#˜?úӣ̙ó¶øÐk‹Å8á„8묳8ýôÓ;uB¿‰D˜6m½zõâ®»îâ©§žÊYÔ­ªeÎ ¯Ñkyœôe ÒYé÷ ³T^z¢™ÇþЊwSJä°‚]«‰\õMÂß8—²žEÔ¡úÃêºÎ AƒèÓ§S¦LáùçŸç`íÚµûý\E—.LŸ1ƒI“&¡iݺu£o¿~¬ß´‰xÏžT“¬«ÃÚ¶ÅBÛ¿ ¡“ç4×Íaì|`¨ûÂEh®·È3÷†Á¢.””¼Ïyçõàüó§bšžß¡gÏÔÖîfá‘Jí>úh®¹æN8áºuëÖ¶N;ôM×uFÅwÞI÷îÝùÝï~G<ž+§eµ¦Yÿð\ ÞÛÁ°ï eÌ=‰—UóØUµ¯8’µï¶'’‹°KäèöC³éÉ–ÀeSàóÚŠÍ$Ô;®NmK¥ëƒ´åçleNд”ê µéJõÜ"¦ò]84„K•côËØTøÔÅ5\jØ¡N2ìKqÅGhg´ÛŽq…ÉöẤª‘‘jë÷bsNÞ`·µªò·xVª™S•Þdy]Ü7žx¯žÝ;÷½XèÞ£¿úͯéyò ˆ¢Bú‰Cg8ä Ãá0ýû÷gæÌ™œwÞyÌš5‹Gy„5kÖÐØØ¨Ìp Ã`ܸq9œw$áÌiÓ˜væ™ô©ªb˜ms„ë2PèH¡cè:1CCÓ}Ñœ~‰Ï J ËÄ5¢`Fv]˜è˜è„С¢H,Ò8Ø®ƒtlh6¦n«‰ýa'”ÂÑ8´â:[ÀùÈ—0@pê©*fš&§v=öóçÏÏüÊËË6lßüæ7™:u*ÅÅŽ Ó>¹õêÕ‹[n¹…‘#Gò«_ýŠ•+W*u ¤eѺh5oÎ\ËöÇʘxûxBGžŽ‹z‘Ï %~ý̟˜n $…· Od,[¦Ö„¡ic¶|Á0R`¥Ô[3öŸG ¦i © ÷šp•„z[‰5°•¤þ`iöµàyúrr 7 /x!{é\¯~N –'¡>T}ÙFºv¶ÀS+à7ïÀưÝ<×ED¬€ð„ãùËíw3zð°CrøÒd†A·nݸꪫ¸è¢‹xþùçyúé§Y²d [·nŲ,¤”466æñîÚµ‹½uulݶ·¼ûƒ…… Ž•2¤¼˜~U%Tv)¢¤"FqEŒ¢Ê±²ZL´—·ÀiÒ±âé&ƒ´nbˆ1B˜„)$DѶâ¾^Ã)é’vX–CÚŠc¥‰t ñd-ñ&ZZhi¨¥i÷:¶¯¤aÇ ­»É¼ÄãGä jhhPÎ5Ó»woFÍyçǸqãêH°N;°‹Å˜1cÇçî»ïfÖ¬Y¹÷•;åòÁœ½¬ò*—–RpþdBG ÌÌÜ:í‹¶½I˜·î ³×ï',Nƒû»äbŸEuå 4ÍÉð—2%¶¸¸˜3f0yòdæÍ›Ç›o¾É[o½Å»ï¾Ë‚ ˜?>={öÄ0¼ËS__Ïc=F"‘ðÑ)°¥¹…-Í-¼² B¦Iei Uå¥T”—PY^BuU9å•e—S\RDIY1%e¥Db¡z(DÈ 5CÍÀr$IË!mÙ¤-—´íÐØ\GCc3M-´6¶ÐPßÄÞÚ½4ì©¥qo- {öP¿w- ض•÷|7nÜÈ‹/¾È!CˆÅ¼Ùmkk+/¾ø"7n¤¸¸˜ãŽ;ޱcÇ2~üxFÝÓiû´aÆq÷Ýw3|HOúí-,ßQö ˜]ßBó}ÿGò|íTÂÓ¦¡Ö]ê´ÏÓRÌÛO®‡g6ÀŽø¾AÐ0æ”Sˆ}ï„ÇŒD„íIŒRÊ/û ÒÚÚÊ–-[X¶l/¿ü2[·neܸqœ}öÙlÚ´‰§Ÿ~šgŸ}–ÚÚÚµ_]׉F#„Ãa"á0‘H„H$‚2Ñ4 ]×ÑtMÓЄ†+]œÿßÞ¹Æ6užqüçãû%‰Cb; „$Ž›&mÇE@mGK.ckÖuˆ­½6©HÕ¦}èªmÕ¦jߺ±UU5­«ºv- "º ÚRhU-–BGH ’ø’'±ÛçØgœú„èxÒÑ9¯d[çòüßç}ŸçyI‰Édê8‹ÆˆÅbÄ¢Q¢ãÛ…‚.Ú±“$jjjhnn¦¥¥€Í›7søðaYµj‡ŠŠ !€‚ÉÖHÖÞå™g_eûoœWê0ÇÐX1ÌnÀ¼r5öû–¢›R„$%(- ä )~[{0ÏÁÌ]_0Љ.Ü™ÿ 9¡d‚6’q-çNdÕ·Ô€j’²-s^]"/õGÎ3”òJjPSÓé÷\azU&öÀ@œ6g}?ÉböæœÃž·hn'žœ!ß7Y™3G¸ÏÛD<™¹M®÷0k3ó°å¼<ÂdVEî8 Ïüv…S!ˆO0:l./¢nýR~³öw”Vg®í\LX®SPaÉd’h4J0dÛ¶mìÚµ‹®®.z{{9¯ÒÆ5s“5ŒF#EEETUUQ__ÏòåËÓU`L&“(Š-¸,TU% ±}ûvžxò Îôž!K\ìAD20ͨƱa5Å+ç3µ$†F—2®ZÜÂ'¹^%:BYJÆ0sœúŒ0ª&ŽÇ3ídLËèQG¶ŠAaŽŠ5oä$¯Ò ѼwA¹D‡W¯0mF®þ„s„ðŽœe8À™—ì~–Ê!|‡e9Bø6wåtîäÝœ9Á•üç¼báu;NÐÕÿx ^ÝÞAP&è?ë‹Ì¸n¯§áW÷P|k1>€3¯ÎõЍ˜ç9Y,, 6l`ýúõøýþôðikk+^¯—@ @0üB^ÙW~cu:ìv;N§“êêjæÌ™Ã’%KX°`EEEâf ®Z'«  €5kÖиp&lZωí팜 ’Ì·ºªJr,F¤µžuO3´x<´û<–'Z“ƺòŽ Œœ>!óÊ‹ðò»p&0ñw¬hlÃÏ[˜ºf’A—î3Ü(!¼ÄKîr¹hnn¦¹¹™þþ~ÚÛÛéì줫«‹ŽŽ:;;9uêÁ`¯Ó¹–$‰’’Ün7uuu¸ÝnÜn7µµµ466b·ÛÅ |©8jœ,~êªïöÐöòQÚ·C_|etïQŽ~ÜAÑm5”Ü>“²e$æ'ÐêE•¢ËaȯÐúþöŒqp÷§Ú/e3Àã†ûWÃVßçÎaDwcJ‚½LdYÆï÷x½^Nž<™Éîîn|>ß—"Ž:޲²2Ün7ÇCuu5.— §Ó‰ËåÂn·‹|?ÁWJ”(]ôö…9²óžöy:4a1 ɨÇVëdö" Ëï·qËB#F³Ä…´r[ús#òMévL1qÒßñˆd ÊÙ¬¼A p&ò{¸¹íXž'š4žßVIÕþüt:S]¦FªIв±üOé¶–køWÎ)œŸåÎçä?P9EʈR'µ9)5t§S8‚…®íÇØùïQºÚd¼ ÉK¬´f6Á?~Ÿ=¸ŠoÍÔc³Â}#rVnàL*0Þ ¾’«D"‘@–eâñxz?::Š×ëÅçóáóùèïï§¿¿ŸP(D,#266F4E–e f³9\3Xc·Û)++ÃårQVVFEEN§‹Å‚Á`@¯×§÷"ÏOðMBQü~?;vì`Ó¦M´··çD^_¸“ÖB Ï =wÝgá¶ïWòñ”;Ñ›th´ÎQÌÛܕѰ¸‰®3 Y/"ÈÎ~Ê¿àœ`ˆ‰ÛÉáêP{+Xí)÷'«’F«¢›–µúŒªAgÍÇ©ÀPž?p.ï7‡óÚ*.Ôb0ĸÿ‡ÿL·õªÌßú6æ|ÆøT^NÆwíx¡ŽxUžÂºŽ+øNËøz”øäMµsšžukç;wÌaf½DéòcŒßCTûB(¾F‰Á`¶¶6^zé%¶lÝÊàp”LÖ,Ì`¶µ*`V4-„ª:0™Ñµ«FÓ«a¨ª†Ø°-WÔ|yb0p!Tó„0+X†$UßZo’¹û±m™¿¨Êlm_“ùº ‰‡ ¡‚¢B0.‚;á@'ôà\\C$¬¢(“4䌦ÕXùÓbšî-`EåaÌf³˜B(®:ΜfÎ ›wï#Ù}šd¿âò嬰n𳿢ŸWƒfÚ4(*kqÕ˜Ì)7éËB’²‚ ñ×Ê@(çàøÓp4­!hƒøeXaÌZJ+ôÔ6¸gyËlXl)ÑŸËQñP !×Ã$q+}$‡‚$Fþà#”ý­(G: 8xe'7Ð8œPQêªW”8  Å`-Ëø³ÖZ]*Œ5¤OKºqwN†ˆI%u¬(0…Ø(ÄFÑ&ƒÌlÚƒ2E†‘½C4ÛEŸzý0„+©Å!IPVc¤~®•†y6f70c¶cî¢B… ‚k8*ÛÔ¬ô Y!q²‡Èÿ:h;ð!ÿÝ·ƒ¢Lv¼pRi“ L0YS{u\ø´©}rüXŸÄK&@VRû¤ ¢q#ƒFGD$Žª$®Ž¡Öh(--eþüù45-föÜ*ª-Øz4šÏ—qÊ¥„Uâ¡B(®’É$‘H„`0HOO»wïfçÎ9r„±h4•¬™1¤A£Õ`)11}áT6ÞûKš4Q\\ŒÝnÇh4ŠC¡@ ¸Ñéïïç•7ßâñ×߃žv„Ñ „‡A¾¶ älzLEFLv#6§™i *ð,«bêÜ2 6y[NõpB@ Ú"0ãRâw¶zŽBàœéo/|0è‡pèã5JZ Å-öR-%åz\Ót(õ8J(­/¦¸ªp<ã=ƒB!„@pA‚ lÍŽ£Ñ&F‚àï‡?êÐa¿Þ³gééé¡»»›¾¾>'\CñŠO’°Ùl8jjj˜>}:•••TL-§´ÌHQ‰Ž).¥å:ÎY¦æ,Ô:δ¹½ÈùB(—‹¢(D£Q"‘áp˜h4J<gxx˜¾¾>|>_º.ðàà`ºpö‹Å$)]8{³X,8\.ååå”——ãp8°Z­F, f³‹Å"Öÿüò¨|゘¡ IEND®B`‚pymvpa-0.4.8/doc/pics/extravaganza-dc09.jpg000066400000000000000000000775511174541445200205220ustar00rootroot00000000000000ÿØÿàJFIFHHÿÛC  #!!!$'$ & ! ÿÛC  ÿÀ*ô"ÿÄ ÿÄH!1AQa"2q‘¡±#BRÁÑ3bráð$C‚²ñSc’“Â4Ts¢ÒÿÄÿÄ5 !1A"Qa2#BRq‘¡±ÁðÑá3b$ÃñÿÚ ?ÉÖ+¨L2¬!ßòþu'gÄW–2•ž3ëÒ®“ØÙÝf…Y€Àn„}Fõ ¬ÿ‡k5† ~peëï1ß}ñÓ·Ö¼Œ5q’©žžZVęн¢Ý[2þÜàzÖ™£{@Ó®ñø”Uvêé±5ç­CAüçìDæ"¼EPŠŒdô?,úPµÝ"æH.àxd‰Œ’~Íðqtàœä»WOK‡*µÇöþ`¬™!Ãäõå–©mt­.’Oòç¥¡Ô •5ä#î­]GŒÊGbpkLÐý§’«Ó Wɪ†MHsCõqäâF÷ ú·S½?Šï=?­fÚoéZ‚ãÁsû¬r*ÃäCŸÄ§"‘¹1ºb祌¹‰qK zš\L§½U¡ÔAÆNiüwjÃfûÕèkŸ’†M+‰7â +j=n1ñ6>´ºÌ§¦OÈUµ©S+fà³y€ù aõ˜äØ@=¬ñ|?¶O&Ù‡È÷úýé[~E Ì¥ToÊã’¹ü¬M-ÕÂDŠ2ZGÀëXæ«ý¡}’Ùë3iRj“ÜxÙ¹··-eì­œ“Ø1ëU^–q—´²³nTÍ}õ{Hc "‘ØÝ\Π/õYææÚÇ‘r[ò¬z/í5ìÞIBÊš´Q1>ü–èܣוÉúcækIáî)á^1Ó£¿áÝb Èäòg–EÁÁÊ0ûPê'¨qK"¥ü`Ž»«Ý­ôŠU®]TöŒüÆÿAO`9¹yØ~ón~毳XŸ*žÄݪJTkFQ—Ek\v¨Ë«æB’ÆOb*ñq§c8Z‰žÈŒíOŒþ”J4–w6™ðóÏ_ÑÍåÞ¹§JdÃ-ƒ+Ä݈÷@>U\ÑuI¢¸:F¦ù¸A˜¥Æëæ=|Ço•'.:åÇ“Ã,¼Ìz±?3B(‚Œ V¢ÅŠ)Þ•V¤£ƒ@ÐIŽ•©dZf­J«P4b×mË7ËñÛ?ù£=~Ƥᘃ¸5’.pÃ(À«0zÒvSþÄ´‘Æa8÷SÐÒåA)S,±MëO¢›¦õL¸â;D‘žFý›rI' ¾{R#´’üJ£`7¾À:®ñ±ÊFøïNN§om‹<é ²íšÅµjÐB¢$<ǘ†(î>uOŸÚ ÞÆ×r\Oç9H?i OsŒ àüÀó¨ZiËÀo,cÛ=Sk«ÀØÃIÀæR¹?Z”°ÕÄÆUpÆÜ»ƒßù×m8¥™cv½f1È®÷7<ÊgÜ'á_A¿çZ§{NÒžâ[tÆñœïƒœŸ=ýwò^]$¢¬(æ‹=øåðŸÞýÓIé’vD9þËöb+ jš&^;yíSÝÁ0_™=þY©]ŠEÞ³[܈³r{g5Yá’]åÁ®®£ž‡?*+jz¶>g™I¯¿y ùši6¼Ø>ý£&êþ £Šî?ƼCqœóÜ0ëW[Q·Ó½—èº|z¦—;´AÞÚk Z"wÿŽý{Y­Ôž6§¨Êw/>3['xX𦧱֠-‘|)~°PF6ýíëØè.*×Çßü{Vï!KÑKN Ôunnáñ (Ä[¾G/¿!süG`*7€J¯›ÖPËiÏž9Gêj[PI,øÍ;…72ss=ôL¤dŸð#QÊvµ@pœ†»ºèe|§þõWê ˇÈíãr6—âXŸt}MugQlüUÕƒú9³ëßL¿Á¯¡Þ›=¥Ì;˜Ék½>I§ -PÜÑx…´Òm#O¸˜LÖê$Û$mÍè|êÊÑ[ÍñÆ óèi 4Õ ˜%Áì¥29)Úà†“ì¤Üpª¹”s¯†ä¸äŒeH” Ç| ço#PgHÔm­Œ±G2!&¹Lõß±lïÄ mÂ|[q÷˜-nÜòþ'ÉIè_ퟟ]òKd|Œa¼ŽÆ¾oè¶—P\r 1`àã$/µ{SØW´{Ž6Ònø]$êúZ«$Ì}ëˆÁù†Àžù®kS¢Žûqd’ŽâùqeŒœmQ76JA÷jç5›¦JáÇ“uûÔlÐ#’¸*ßÂÛÉž9ct˘µ7ÙD¹±#8O½D\ZOô«õÍ ÜPwvxÎLd\âJÑI¸µFEDObñknP;ÆÃÝ?Ò®6ØÎÕžñWðß Èö÷w&âñFM¼™—ýG¢ü‰Ï¥]źN¢¬¯“jVÅùà ŠOà=þ^t„‘zVM«ûd»»v‡OÒ-íÓ³Ü1r=vÆÞ¢“ÚO++¶¡·+ļ­ùgó­¦ÉVSõ¢Ý+ÇH²UFö’nfHu+x²ß½!Þ¯\Ayl—Ò "qÂ…ÅdžßBh…})Ó/¦i2äGÏj$Àh¾ÓíõW r§(êpÈ|ÁªÝ­î‘v†B ÷e '¡þùØéW¿/½#4M C2,‘¸Ã)ЩA1¬wq•ˆ²ÚV—4J“x‹ãä:Ó=7RÕ8wPþä¸Öå‡I•±+Àßksj2Hy™šýw;Óˆõþ “E×Úl몢`Í-à*çý$QSIÒãÁ]:ß#»'1ûœÓ¤Ž8†"Š8ÿЀ~”>·Â'Òûº¼Ú ëKk¥Ûê1IÕe²3€?úMAqiW“»ÜÛIaqsÄ!ˆ)‰½r¡ê*GŠø‚M>ÁZÌEÌŠI ֳyæyd~i’Kæ»ÔuÏAÇo‚çcí&Ýl£K›žp0̤?SRÖÐ4{£ËpÔžì9‡ÜV`-q/‚„¶:æ~˜ýsA-½ŽP}e¥õ¥êsÚ\Ç2ÿ‘³N>uçøŸPÒo#¾°¸xÝwÛqòÅk¼-Äi¯é¡¤;¸Æ$AúJ-í:h²ƒëG Hæ„ :Å̘\íöªþ·ª%¡Ô¢›™#nFø8ýjZgÄîó{§Ý󬛌µÔ’ìØFUÖg#f;õ•1†çH-Ô­‘ޱsq4Çñ ÈÌ2s»`ääö8ûTײ³û’J‚6ÅÜxŽB§+“îäùbšKK6å‘f;V„1¤SÉ‘µÀé/ç†6ˆIØŒž¢‰ y£s€ÅR{|©³#@fy31ßqMÚ¼ ÜüŠÈòDÁT°9Ü{ĉle1…Î F,NI§2ÊZV8åØ/zFø 3®I»+¨¡…ƒHæ)±Î‰Ón™üëZá.#[M¶€C.îW$õÆÇþyÖr0ÇÉ jÉcy¢³žb¼W§0nL]ÆÜÜü˜÷†üØ8ùàâ´®-ºKî,ŽÚ=B;Ùe‘cäüT’¶ä `ÇÎ~C•­¦ã¿#+?þB»Ç1¶¦éöOBë9ç³ð²‚OWèw5\ÓOáôè×q‘Ì~µ/íø”Ù~mÚ4E1ªÊ¸ÈÏIIa×½D(åEQÐ U]Rýf×à³§âò93œõüÅu1’`‚qÞº«í¼»+U^‹áâ»”Šó|âêþF•Y4`ÕÔpùeó¢½½´¹%cÝv4Ü=(¢™Ö$úsâ7£mMÞ9¢øÐùT€ŠPKçF¤üAÍmmtœ·¬ƒÔTtú0ñ#–Æd…£1+)±ÁõÈ9ɼ£t |Å5{9~ÍÃ#µ6k§@I_e æÂkU»–ëMs#‚b–ѹU[˜”Æ9qÌ09qž»b›Yë·6² ‚èÈXà!\|ÁÛìM_›6‘HùÓ ½'L¾<×±—þ,`ýêü5Rª—%Ià‹æ<4?h×¶n¥eÁÁ²î)¾“Y×õɘ®îCޤgaú¥^ÿ¹…¥¤°Úºør0g ªIÔ‚~ØúÕwŒtX-tq¨ÂгDp¬€Wɾù®iž7=ÑTÄÏ Þ6ÛèËn´7ŽR#œ¯1 óúV•ìÿ‡K—•f$Ãå=±T‹4{¹–XK´ÜÀ"÷o§üëZ§ ÙëVs(¿µ(‡ry·­<ÒÛ )i1©NÚ,\ aw,s¢,L7!Fõ©ð³[óAÅ)''n`{Ô4ù¢ÅâŒF:ãj&¥ ¹¹ÃŸ>îwÚ©ú“JÓ6} rtÑç &m îGrÅ9·=ûgþzÕ£€xæÇƒx¶Ï\†fic!.# ¼±1!—ô#Èâ´;ý"ÂñygŒ08ýï:Ï®=›.³Çv–zc¤L—r“ð aÓÌž•Q«'\š)C˜>>qǨ[ÝÙÅu f):“¶AÒá¡‘pà×z¤fÖ 8-æ8T öjm7„ÙHÀìk&iåí"‡L³Ý3Æ „«ü,wúëQ\E'ºU‘ÎG+ŒòóúU~^)cŸ{*Œ»×c¸B&!”o“Û×Ò–±È¹¢»3mþЮ8rÞ=Dºðu+…ç–Tø¢ŒôÈ÷êÏ5æüEä¦Ydi]ŽX“’jc‹5Çâ^5Ôu#3I“ “ȯ zà·ÔyšuRÈCa‡Q^§8éñ+ìÇ“–£-#6‹M¹“–ÌpN mŸ‘¥ Ò//,GßÂÈW«4ŽÒQ5”`œNÅú-£™âÓ Yøùk¥©ã„[Ž7Ëèúwˆ ËrÝG1éR<=Zëèðœ”t#ò­ÇNá}A‡–ÖÙ ŽÃ,~µŒë ö¦°[áâ–PÅÅO§¥TŒ÷ͤ36Or.á½*aŽ´–ã¨ÇÌŠîtÇÆƒÿ5?z2v²¿ÄzÄðedÞg–cƒÈ£®6Æ}k½¼šîùîÌ$’œ–ÈÆ=+Lã‰ÚÝ¢[wQ$ŠëÌA*T°cÓ¸8ûšÊݤI~ u¾U£§I«ELí§@óaä÷ÏO:HÜ’åÛÝýÜGóH±ªRyˆë•6Ÿö’äg$ù`•\¢­ü F#2Ùbwå2Æ¡UÂ÷¶ôœ!ÖLAÇž)ÌüÙÆ»TQ×ÀQ ž~U#·tJùæf ®(d’4R99ËXÓÒ›ÊÆBŽUc4T Ñ#5Ê¢`}Ü|9¥`»’’BX„œ}GÇû<Ù󥕲9ÑOºs“Ú—(®†Æo³\àÍnk‹e³œ ŒHéëùÕ¶i¤18DRØØsµd<)}4z¼1ÛÈü’äH ºo¸>µ¨,0÷¤ºaç?@+2Ù*4qûÕ¡Ïj\?¯ÚëZ$òÚ¿ˆ‰!nR݉å ìpv=©þ£ÅKªêë©ÝÞfU“Ä È äƒœB½¢‹Æ?ꙇó¤¿|P#|Ï7ë]Lá±|-!éQI"Šc“ #}é´BÝ)ô®æ¢³zÑ®±ÔRÇB’ÛµEqLZn§ÁÒ\+¬jèÓ‰dK…ÈûcÒ‰ÅE‹§Hp$—ÝLþµžð6­uªèºéÿ¦\¤ sgcæäÌki#-®o¢ºÏ7…wCOg6’jò)”÷F~U“k¼?Äv¶ö³¼–Ä’é%¸vÏl7•Xt>ŽÈ@ñò/íB€ v®–ÕCñ¹¹[EÂÉÈ% ƒ¡ÏZG‡tëùe¾Ô¬ùf!üPÞþ wŽžU–ñ©«3Gl“]äæÚÕÑ<┼Ñ?eÆ7#Æ£V·Ws€ cz±Ç¨[]BÏÔR¢ìJ° |ë¹³â=FT¶»ÑôîU x£läî}NõaµZn‰«[ÃM$Kîòóàn)Œb»/ã”äê‹5þ³¢ðÛU¶1À_f°Ÿh‰q"Ý£iSØùTýÝœVÎŒÚ*߃ŸU¦|ó¿Ú«|Q¡\ CHµš¶†i˜.6ÊáÙ=rÌ; ª!Ž0ɺÅj2Êxš£BáI%“…lži‰M¹úž•0ñ+ïŸxt#¨¦ÒÝ%¤qÚØ•*ä°ûÒ¡µg?áŸ9IþBª<¼ÙO`áV^nVBGñŠæLur5k}E‡¿unŸùK:DÙÜäsjäþâúŠWîw§ö·(êÉÿÕH³Æ?î(úMÞÁý¥íÃ|Ž?Jjúm·>CÈÿë‘åšïU|“é¿ãÏõr~˜þtÖê;kÍ.üƒ”XŠÈI4 al§&%?J´ñiÚ‚r 4[¨^£ëSÛ¡øaSV3àØ­´ýÁd‘by1-±$ïZu”Ѳ$‹"º¹È¬ÊòÙ¿ºÃ,'ÆW>˜Ø¬‰Žo‹ ;‘ŒçlÓ=?[Öa¾1éöò[+,‚DsöÈúæ¬B\–œÖ:M¿6QH9Ú‘¸“–6lãj¨iYø­*y.1-¯*ʃ‘‘ÓÏ"£¯xÿM‘üãIÐrÂp~´ÆŸG,°ì—Ô/ÄHrrk ‰e¿ã{ýA²<bV##?ó5¡]q5¥Åȳ[–WçoÝòÍWmX-Ä$r¤ò½ÑR;¶@?`*½l·\ƒžK$jø±Jq™ÏÐ ?€;Ï)ûÒžÛÚ´ÑÎã¤1ø‡líÌó¦òŸ 2:Ò[e%”^=G¦'¸ÎÜÛ31<¾µ—Hfñ V!Xo×JصÛy/­^<†?ÂÛæ³½6æÞàÕå$€ÜZº«n×ÙKW‰Ú’èŠÚG¼ýœ,A\¶w æsFx廆;zv«ç pòêK¹Ã"4.±Îvß½/ªðÅÖšˆ·×ñ dSr¶Ûw\×ëW=ut tRpÞŠÙx‹æË¹÷WÌRÐiÿŒ2ÄQƒEÔ¨ØoŒš›}>;¤…-T¬à¬\°ÁLššÕxKOÓµ}y„SÉâ4iƒËóÇ^´^ £ÑGšÊ k†"USËîœçÔbè•ÑHw­ézF…-¿à¬aD>&‘sÌ~µQâŽ}&oÆiÀÉgñ:3ì§Ëå] ɽ¬ŒšV£¾<”å<»vñŠ!,É̦ŸÛiwú£“i ÏÊ7¢ø?*‘Ö4WÑô‹t\Ý#GÝ ³÷ÏÖ›¹'Ee 4åà™öujf×I#ÜŠ2Äžçëó­{ÃÀØòù«p^—®›ä(QfO1;±ûtÞ­Ù®?*ÁÔO~FÑ­‚;`ƒß?öÚž!‡9ˆ* øzÑŒ`ôaý -~²lX¹ýŠÍÍÐmß·åI];ûDYLtòþ´B<ÁüévuüÏûRDåùP#±ÿŸí]G*}?ë]\qVžÊé†-(—È/)ûÔiµÔ­XÈýèÏô«‹BAøh¥–)öŸa§(ôV­x‹V³|‹‚Hþ!‚>£z³Ø{IÔ`À¹ x|ýð:BKXe’4õ Ó ô[Œü¦ 7%[aHž› ¼ªq^çüÍNö‰§Ý²Å,^ùì‡ýõ©ø8“D¸F·ad?ºÊvùžŸb¶k³•‹rN9ØnE>[‰mææQͪ«Ñ+tÙ››êërXâ«äÙ®®­-Ô\Ë:•sÍœŠ¯ËÆZj¾þ-¿LÖ-Ì’B#UájOr2sG 'ï2–o«É¿Õ*Eå¸ÚÓÆÀ²”Ç瑟µ%qƶ¥1mi!o7Çò5LZ)L1#½9i S—ÔóõØ³ËÆSÄVê‡ÌïI¿j òˆÔ‘œ…Þ«¼£íëBd" ï¶Æ˜°AtŠò×ç—rþë¯uã±wKyf?¼¨JþxûTw iGLµ–@A >y‡Ê¥xr)ä×m-Ù¹æA .w*þéÎ7ÜVµÑ¦Ÿ-Œ‰‰#$äAÞ¯«ôTWVj}-©Jr}‡°u™‘ÁíüêÑa« €Ò ¬öÚY´û¾PyӨϕZÖv¼S F¶æÔº§fÜrW´úí¼­%Ä6òÞ@6/:‘†G’òÚY1lFíÐýj§w©µ¬mov¾ ó9^daóÌ …^(›Noú˜/¹ýÕµ2d錑ö¦¸_6YŽJ^ä+«Adº…éð”8r#Ï}¾õ41ÁqŽ™ëJÉp×wóË;Æ×!¿j±·2ÆÝ×é°Ï¥/0?*ÈÍ/ÖRð*rSVµÔ5aª(XQ‹(|sdõÉ“òÍ8Iur$>¤ÿJN÷@:r¢—,³j¬JÅîŽÿ«oŠãêú“FŽ9b•e72±R01·Ò…NM-Ûz^é ÛÄ5{íêæØÉ&¦î< T’Tn}îƒsVmìÕ¯B<ª•sO)!Ê ò1©©ýínB·IÝ‘jÑÁ“ÔVü)4ì¶ÎÖ‚'ðíƒ7)$·AP6—úlV—¿¹<‘à„ç•)®¾§ij'³·[ˆ ÝDœ¤zôªÕγ¶æ94’e墻gçðãóÅYئ¹,BSî(µéñXËiÇ„„°ÉfNµ^â+[MNtžâ5xíAŽ$bA;y£ïO­®nAYæF€:æ5n¿Z¯¯4Ó“ÍÌXç'½QÎÔ#Çd<—j‰¸ãxUcpTòƒ÷þt°#ÌÊ“XLD®Ç­ ÏŸÜU=¥;˜ÿ›õ¤›üÅ—>_|P•;|_­JGXƒú~FÜóö§/ž>¢«Ú‡húi+%ÀšQÿnÌ~½…20ru.SQW'Dæ;}ñU~,âî‹ahü·“H¥›#Ï|ÿ>«zŸßÜŽÆ1kÏÄß~ÕM½¹žæs,Ò4’žf9$ö­m6ŽJ[¦fçÖª¬}üž•Ðӡ·¸$rŒm¿OåRÚ†Ÿ¿?Š¥›ï.I5DáKõ¹Óâš@b˜ IêŒ6`~G5b¹¸7ÖæB,ªÙ,$ÊimS£ÐÆq’B—ö0/ ]ÂöˆâUæ%pvï‘ßjƒ½àù/´´Fž<1ï·¦¤õ+½n-.-5„^oñ¾&ǨÖœO¬Çi¤*Å/2Ƽ¹>•1ß$dX§Íû !t«)–YQ;;̘“äïŒR\Ú^ß4¶r£B,j§<ª1TŽ-×®5h$™ˆ_“› ¸ÿ*µmªÜZÜC•'8ÏJ7¦”ù¾LF¶0~œWá§a-µp9­ð3Ÿþ"y|ª6å†O—­TtÎ0¹L…’Eå`ǽXmõË+ÈùKxNˆì~µO$%M‹4$û"î—9¨Ë*ÚæQ+ÇûE9·Ú¦î—'Ò›„Áéù¦¦âíSTÊâEyÃ’ßi+ã-Á><2.ÝóÚ¬ Ä–ÜB‘Xê:SÇq¿*É‚¬qØŽ´¯*¬±HÃ*­ƒò;T¥¥¶¹§Íj Í֦ؔ»árìˆcqü—ÁU¹ÑµÞIF™§.—cä8ç|tÆwÍDXÙ¼MÀ<ó¸ËM-ÀÈ>£·]M¢‡P˜•=Óò¦ŦÌüâÕñ¹­,Íp´»ÙOÒ´9#°R© ËžUó4ß[Ž¤éÈ@'ήײÇonV Æ1YÇ\È–/È}æÎ.7)‡8Ç64àY4k æâúX`ð]™8-¶ÇÔzU ‰µ¯ïí~{Ä[/ìáCÙGõëDšv·ÒîT1W¹u^_ò“ú­C¯ÃŸ#Zxñ¤ÜÏ?›3pX—F—ÂÜftÍ* >êÜÍy ÈÄ0Î1Þ´›;Ë]BÕ.-eçFêr=Õçû+–³–9ÕU¤SÌ(#êZÑ´^+´ÔeUÔYl¯À9Iòßù6Õ©Óóº(µ§Ì«l™dcî(÷*|otáàl?ˆúÕKPâOCš1tc¾¶{’®Q‰AêúT…·é:ŒVñ1{yUyH—¤äˆ½ê‡§$›.9+¦Iô?$Éÿ¥8ý›®T©¡¦ˆc=‡ÛÿzHcnAéùWRÅ$ÏCù×WYÄ£i°Ì9¢uqæ¤aya¬M4ò,h;±Åg¶÷W°L9¥‘1ÿq‡/Û:†±w}Ê’M#ª v-ú×GU*lV³(ûy„úÉñ‚¼«²3š¼Ô®%Uæ>é=À d_Ýæò’•ó =~8‘å²jrM»}LŽe;Ó¸/„ŠM˜~u¹ï°§ÕH#loG±äÉÕ`.hüþö¢£¼ØoÛjwÜËçQ²„6Çe6:P–çMÃç9£«}*(‹ÈäÁw¦ŽÜ„®ÞöãÔ÷¥óîíE‘9ãïŸ1\-“\1ŸÚº;!yøS·ÐÖÉÅVH— |£1].säÀn>¿Ö¼õ§ÝK¥ëv—êkyVM»Œî>£5餂ÛZáIíæ‘„óÇ)8åÛ çË|VÖ,úwv=£Óš—ƒÕb”Heµ²©`|ªKGâ»yŒ)8XfOÙºŠç½8Ô &u‘Hœc“U{» zò;lAžCÊ‚Gs‘ÐíÔÖzǽí®OG<›ôË®©MjÍo{êù¬Ï]žöÚê+[)Ð]Èp1¼+¿¼|•3ÖtÿÃê¯g£kú··7›ÅJãâa¶Ã9åžôÖÁ¢€<6m%üò6d¸o{2ÇËÈTäÂñªl©¨ú¥âq‚åýÉ‹(×Oc…ŽFå‰Ý™©Û˜îC£¨Y“óÚ¡r ä÷é\²˜H§qŠÊž5.|˜ú}dñJï%¢ÈVÛ·ó¥y>t6„Kl$s(ýi¶³©ÚèšDÚÙýœCeY»ó¬úmí]ž½N;wø"oKxy[WžõN/×µ[§•ïæ‚6>ì0¹UQØm׿j%¯ïH{©Xy3“ZÑú\Ú÷JŒé}B7ÄOA‹‹C¨-ºÞBÓ3# dnv£^ Ý"ìjp'20Ä‹Ø?d~ÎÄâø$lŸ þþïÿ•z@Z Ne ¤yTÇÁ' ²Ô3<Ø÷Õ pþ½a«Øä!eÏ)Bh·:%ˆžk†Xz„ p=)œ¼msrnln¥Ó\õ1þGjg7jK7…sÄ×W6ÿ½Ä#-ólšk‚K†:åêZ€¿»0ZdYÛŸ 7ñÔ 89åôô©FÏIÒ8Zâ{û”Ó­b\G À(q°PAÉôÁÍd|1í1mõmuç2Z3 éb Ê;s*ùútõ¬Çƒ.våÄBËšiIó#_‘Šø©ïE}h-ï,õ¿esÄIY#9— <—èj³áÓr„¹<ÏÜT.¿Ä~ƒµÉ3Œ¤Hw>¾‚§Ý–(ÙÜòªŒ’NÀWž¸Z“YÖî/#6#R~\Ò`õ¥ÏH©ªÏèÇŽÙ%­ñ~©«–‹Æü=¹ÿ· êz𮓰& ß4^eÏJôPÅ*Š0'’Sw&tŒyIÍ Ž‹:«;}i ØR: Ç l0ÁvÛý©É FÅe¨þ ŠßÞÛR+$n:s?QùеêL×ì.VÛÅd!6ly©ˆèüEow¦®«7„ÉþÀ8åîþF´+Œø‡GµFºÓ_S·øVê× Ì˜ìk?.)Z=—V¢¹%fµ¼IÔÞÛDæi3·•Fq´-Ð[Ûƒ4År¨Oæ})kÞ8¿Ö‘¡Ó´™â${Ó]/‡~¤ŸåYÞ¿¬ÚÙG-•É»»”æ{Ÿâ>CÒ¦å'ÈZb|¦FGs%ƧqâËâI.C7¯lzt¤ËžipF)ž’§w;•<Æ“Í4ŸçéWZ§Gž“mÛC#*ƒÌsó§ðÞËêæ¡–LmÚ–ñ ‹4‚}œ¥E²Ãˆ%VXç÷’¬Ö×]†wëŠÌRà«¡ÇZ›Ó5o{ G;@ÏÄ3¸¬½F‘5qìÑÓêåMð_ü ÊAèvëQV’Úqu¦™(^­¾Á¿‡>¿jšMWHBCݨÇùª#ˆbá½^Óß ¨÷É]Ç‘ßqYºi¸J¤¸fääÒ¸ö\¸—ˆô[Yæ™yä˜Ä‡$Ÿä* ÿèXÄd½?\®ç}ñY´W6ÚKgy#G9øG6Ï;‘VMË@¸äal·a:ó±­§¥lZsü-’Ì5 K»i¥†ùgT°lã:¢q±øˆ1>¯72ï‘ô§Zí–ŽÏ-²˜Rmš5;)Û úV¨Ç0£¤0Ô6òÀɦaě܊:¬òŠÚû#d‘¥™˜±}ö'¿­)À9ëNa‡N$+_õð[­Ä‘B­êÜ;r„`@óßjÑ£±RÛgfœ$l åùéAc—üÆ–‚ûÝÌi2c¢—’ý£kzV©$:v¹bdWe䓜όoÆ~tωtßîM@ gæ¶›&0ÃuÇU?—Þ©’\À+>§zЯ&ï%ÄŒx£ñû˳:£,N2OÃ.Ã.è¸ù#ô>+ŸOArK~ë×åZ5­ÅµýªÜÚÎ’FÝò6ôÜVÐÀ `æ¤l5k½>Søk©"ŽM›â‘›K|dž<þ²r5ÿü×U­]B³Å¬»#Œ‚¿¥uPôþåâ:â´) /r[íÿ½B´˜$õî*w‰ð'3tœÕm‹£`ûåWñ{—&·ÿ3YÇ0Ë{§ò¡O…á'!†TÓV`¸ ½ˆì|¨þ'F\Ô_OéV6Ñžù9“*zæ1s–8¤&™_>´)ã¬/r`o§6655Am”úC…•‹{µ#ÎÞ¢t§Àe;œìõ/Ħ†\pÄÉWŒmÅ( êôÑ"™{œR¦Sý£½%ƒ¹:HvE(º3L–òÛ?â ç¥,“£óçŽÕÃx2.âÁš>o!Zÿ =Íÿ XÝE#\‚Ñö”ìqÜòã~ݺœãì;¶Õ©{/»1éZŒºbpÍu<Àî?úkKé²K6×Ó@ÂÓ¢[V…¤1þ.ÝЧ½ˆÐ#}€¾rHoYý÷5³\Ûhð,wL|5Ü|C©Á=6ùüU#ÆüT÷ò3O~[eø‚ƒèç隢Ƌ{Û’zôÝ^¢Èý.þFÏQ=¾š|–q¹à™RÂËú梅Q‚v•È¥S ³Í à>FÜ£ó¬Y;ìBm‡qÐ ¼ªwDá{ÍrÝnmÚ7_<ïQÿ„üB~6S¶h㪊Ðxs…t½JHµ.â9ŒÈ¸å·˜ QÖ–þÆßÒ´‹4žLŸ…rß iW6B ±»ÂO¡ï^zöÙö›©Yh³ÄË7>,„ì1êú«Ñúv­øR1äª6 ½vYQIRE7''m“|=ÄÚ¯ Þ‹‹ ÈBi n’|Çóë[Fƒí+@ÕâDº•të³€cŸe'Ѻ}ñ^|®ôO>n_䳇S<\.Qèn:×aµáY¢¶–6–èˆG+gîÇìúÖ,G®i¼7³ò¤¿4j}Üö¥T•:m7¡±Z¬þ´÷ ’Bš(øh\á­ÙjÑPrÄù š¸á뛋h¥·¸n@ܱH .ÙTL0™UŽp¾u#m¦Bœ9·‘wY ò}¨sŠtÇC¤®Š´‘¼r4r)‡Æ•†úúØb ¹båb*fâÅ_I+ò;8ëýjf=Mü ´Ñ/?B 9 –¢+ÁjYKÉP›RÔ'@“ÞM"ŽÅ‰¦£,ØsçVé´ý$`1þ–9¨¹ô«hÜImsÌ;« ~t0ÔÂ\ttô™"¯°-žm„Pžião*;>|%eHÈïJÈ)¾l ïÈœ£–SŽûŠäú}üéI”xhÞ˜¦ãàÀ©ð@³>?Â)D–ÝdóFÛSy3•6Þ@{еÀI—5,õ;ï<5æmœûí>6­Ëαì07?Ö¬ٮLJ5ïh“ðÇØ~2 Ûg{qâ2òÊž÷No°¯UñO³Ofœ3Ázμxb&þï³–äžS’¨Hr¬éh2JocUþý\ZÈíJKŸ÷î|õÖõ;{~#•-â(ñш;ŸÔT·XJ––ê·ßd*©Ý¢Ë#3 ’ÙÍ61F­†**/ÁWך“’òI_ê÷Ú´’ÊîÜ‹‚r~ÕœsnjAÊÿt¨ Îúã$~´ÌuÍ9%À—''l2Gò½w+.̤Q\1Í¿jæ@·9~… HqI)ËçÊ€MX(2sµhÜsÖsa(#Á>}U³þõßn•kà‰¹u©¡ÎÒDvó ÷ªù“q†U$V¯ 6·“BÛ`×Rž·tƒY_É~â;¸o."’”-ê• 6=õc¼Ó!k9Ybåp¹Ux,€à®q¶qTð­±Ûbµøå)¼‘\1†lå{õ§ú^ŒÚ…ÁžEQÌyäýö¤ã†ægÄQs`~uUÔŸ%Ä¥Ú!G‰“Î@^žéÎi)¡òé€Ç~Pw4Ѧdv^@NqÌFùÐxÌHÃ.ôÍ;Bw¦©¢RÚÀFÇ;eM':4nÈÃqHÛÝ7Ų²žaRW,·Þ*üJqE J2§ÐŒø£(nhmí‰éŠo ·0ûYFQÅ7…¹Njâ2ƒÊF  B D˜¢œä’s@òÍM_½‹j²éÛxNê*ͨEnÇü² ¿'5í¯í¨>ŸýŸø£b¯8† &™ü³^öp-}¤påÉ8jVîOÊE5îÏí5 Kýžµ×QŸ Kg?/ó§cì˜v|é—ùÒ »R²:O÷³B5¨ˆ“‡ôeD‘%x¤’Ndå ûBqÖ¢­¢ñ®á„íÎá~椵nB¶!F?éPœyÓm'Á]jÙ§‘c_˜³†7¨9–+»w½Ðc—7vS óÀþU[¿Qôñª… ØvªËeãIªÎ¥KI"ˆ”ž§$/òªÞ¦Ì5)üDUpØpc|}jNèoÃ4rs\0P…sÒ‡îIÊOLT÷ 9ÿÄö¡N>/ý& I$` žá8Éâ87Áål}.imv2 îT+Æq:ñjsç¶?•W• ]÷«gó&«o;aúVT íµ]E š¹0{t"º–ñØŠê‹gR6c0 ¨9ªYˆ[ÞOo"gÃl:Øý«AzUW‰lÌö÷ʾ쿳|yކ²1¾M†FÅ; Jã#çÖž˜…ÔJ­ÔošF09yÛaŽâ”Óœ-؉ŽÎ0)™W·‚cÝí¸~ÞX¹äÙíQÚæoaà$Qª—$œy ¼ZEÿN»US‹™Rú'cÉúŸö¥A»E]g¤Tn¥HU¼Lò°ÆÝê»–”òåLôÏSæjWZ¸F‹°Ê~dö¨ˆîm–eñUš$ýÕls·rkKx³/Oí‡>GIdÈ€ÌGÄ; t±™§@— Pw§Ö¶×–“r@#HÀ*¹Ï3yzŸéH {·¿Anżû ùSZ-ÅóD”ºl‘[”â°7jiiexnÄv¶­ã7ºw&µNàÓzö÷š°Fžlg ퟨÛó­;…øNÌ]PÂ9¦`éÊ1Ê»íé°FY+…É­—/ƒ,Ð}ßÉbº†¯(µ×˜Ä —9ì|ª‰´ 9ù´Ý&ÕÜÚ‚f” î:(¯Hq%½Ñ°ŽÒÑ„&y.~èäüûRPh66ž¤'±ó'½!ä•Ùu`ƒ$yÛMÒ4äài®å·Ë©1¬ƒ•Ôî7¥U ”YÝåd\l~«OÕ=Ÿê2q5Ý®Ÿrë§ÝÌeš._v=Á%qæ21UÎ?áUÑ!Ò¤Frbñ þµ*qÝWÙKYŠ^ƒ•U/æ7€‡S'ñmô¡šDŽ6vØDµb-" ×—Îæâ3v"nF‰wpç©ò½JVÏûÓä…—|œ)ÇÞ´½>K[ks3JªÀe˜÷5œÚ(¹¿Š8‹¢6ÅyëÖ¬×6ÐC~*11 ³JóÇZ• Ò¶zo¥ÉÃ«Ë ¨_êš÷ ñ]͕͌¤Ú3ÊãoB0©Ÿ.õç&fwgvæf9&·ÍEïßû0êÒéÍ®ƒ¨Žæ¸ïÊÃÿ™¬µ0Â)Z¨Ë)KkéCACV ÀЊ/z0®87jîõø×u¯LPØRHq!¡®8Z‡µé\zW|4­»{„zÒ&”· +gÏ­p2èx?Ã4I²QT £&ñÑân®­­Ëa¤(úœPK¢!ø‘uÐ}˜j¶ü7¼’Kï"¬yÀõ9§ðû4Ôôë–K©î†ÜñÚ»«}@­5 ½X4mR© Ä!Ê0ò>FµY.ìVåXÁ¨yYWeÃVc„ÎywéKÜJž%œì˜C.zòœ`ý¦óMãLóc—ËcË&¤áC€2hêÙÀ¤ 2hèÇ3@ÐI‹sdìµ;Â`ž&µÉ ñc?é5¿ï œáUç×â”|0©sŸ–?.qn.†FI4Ù-Çpxw–s<ƒ!‡ýêš×<»"Õ«®V[»X{¢ûŸöª–÷¨Œj+pY$œ›ˆOÎø®¥qŽõÔV…š2kºŠõ‘#ùÒz–±=æšð̙ޟ8#éIi;b“’ÚB¤0zÖjÊí#Mê3W/ú![ƪÇc×Ê‚yMµôs©%ÊœùÿJ&Ÿø<ž*ø€à®psý)úéò‹3)…å}ð:šé5Ó,$ß(Ÿ³âý8À’GúúUoˆo¡Ôµ‘,<  ñŠ‹n¥g6Ñf 䑾Ek÷R¤F8×—™Í+¤¶¶ÊZ̲’P’Jþ,Ž¿Ï#$r$^™ØýªÇ.T?0ÏQÞ$¡À üèþ޹¾x­T¶ª)öHé7ÿ„–1³*îAßz·é“ íB…B©`ýjˆ¶òG ý›Ô‘Wg@]q5´R‡lvÎÔ3ü#ðó4Ehšté`¨«ÿQ$XÉýÎlgì+EÒÑ „/ÂP›TU”Q¤#^‹©Y. .Wâ|Öeòz$©—³ÚŠdTOj#KjWiWCN¾YõÊÓ(6y—?j¥ßpõÌwˆ_W–í Ëò;PK}±ÐÈ£Ò5GŠîütßl7ʨ¾Ó¬,®4 $vUxH¥Ž:¶jsK³Ô#´`²´ËËxò{K@»Õ5;§‚ÒÙej›4Ð=‡¥)a÷pÉÔeŒ°µ%ÃEFk„†Ðʧ ü#Ìž”Ö%†YKJÞñå“ÜúQcšÒû‡$¿U&8dŽ4aœ+nN~˜Zë’ÞÅ ‚yÎI?b­G¦K RKä°èvê’›—Œ¦zdäÔoj.aŠ\<½ênöE·´!FÀl*“tåå-•ùÓaÔF+8ø.<)6‘²­RÖhYµ&™ðY)‹“-·Läõ¬ îOε“y GriínîÍr…ŸþÞó ÉOJµ§†×&PÔMJ’ña… ïA\½jÙTÓ4Ź©8m«‹ÞŠ:oÚ”‚ n®b· Ë+„EX“€+Ž\ð„‰ò¥[û$Ô'öbxËñed1øé&Å3“žãùš¿Iýôÿî›D‡\ºmQâ7º†5ù.ÇQ¹­s‡ì¬­ýœ[ðõÐŽâ8m ë*ÚrŒ`\V^}]¥é3{Kôæ¤ÖuãŽO8Oì3‹ÀÁÜi×¥#Žb¬Þƒ*z÷¬Âx&´¸’Þâ7ŠhØ££Œ#¨5ëä³¼´¸/¦_¼vϲG"e^›ÿ]þuç?iòXÉÇ3þ–GªÜ2ï™Gß—–™¦Í’r©õ 1݈¤ž”¬? |é'—$ãéKA´c˜îN}*ù„ÇQŒG€6«V‰¦Újñèí§Î‹u Ôj‘O1d“Ï3æµTV+±ûÖ‡ìŠ->.$Ô%»’ÐPã#Ûÿ*Fy8Á´YÑAdÏ?%†Å/´QŸp·zƒO:Ç& Ä݈ÏP0züûUãˆum:Xd²ŽÎâKˆ#u–"¼§Áƒú€FýjoDÑm%½MX+¼PeâW‘˜vÎäù‘õ£jÚtw’ÛG,ÓIW!XOÈu+ÕO¾Ïgú;‚öôÊW êúë;A&›8&7I$<¬|‚·_=ªïc=Â'í'ÃŒ‡ÎÃýª¶xJ ìå‚…yP…SníqD·öC§[[“ÅÖ¡­¹÷Œ2LÑÀ¢)þJ785É]Ã.7IYÜGÅ<8±Ée¡õÓØ´wó œ}kÔ­nÜòÉ‘3’Bsê­êkm+KÓ®—coi1É a3êqÖ¡ìx*ËU¾†{¹ŠÆÇ•ËÝÁ'»S1Í.й±K%nfÌŘ4!eìzTw(ÔÚBܪĒ3×Ò´jw ðôöö–NßÞ2{Å ›îÞD±èk<¶’PT“œí¾Ý+C®6bêq¬rÛcÛ£âEÝÎÍó¦þëgÒ )>¢›È3Èæœfö3”qžÇʸ7(É4¤ë”WÛj@.XyúÑ¢ç=?•k>Äxƒ‰­ø_DÖ®´ÔÕÜG!…ØtÌUNøüë$=zfµïìãl³û{áþn± åûA'óÅ ¢¤¶²w8û‘˜k¶RiœA©i³i-nd‰ÉV íô¨Èpe\³¿Ê´m#OöÛÅЀú„“€?ù‡Äÿò¬ú§ähåÃ/œ¶hs\½BMA h˺ ù×7Z4#™±Ž›çʸáe‹˜{çÊ•ÈQ…® |ÐýØ_À æ®ü h$ŠòR7,«Ÿ¿õª`§-iœh`Ð\ŒåÎFþ_Ê«æÉ¶%Œ÷L¥q>_‰.—;&}¨o ÍIj÷ q¬ÞL!¥b>YÚ¢¤“Ê6Ð3I6›åµu"7Ôt*ÍSœ‹µ9š$±ák*&œ†v>½tðÁ‘”°o•[-ãG¶^f'm±TØ®¶±7GOÔéVûSˆ$ÁÜ.GËþ ËÜ_Ò{±òEëƒðö™V`&l{â³ÝzåA ©.Ë¹ÎØÞ´%–9VÕAÃdòçlŠÎuøeYðAtëLÀ½ÊÌmsÿäÓø+ñÀP~<õô¯H{8á¾¼á*æçJ†íWÄ3ž`NA¯>$ÂQȧŸ™ùV«ì“Š–ÏSn¼uU¹>%¹fÀ.F ýGéWó&áh³ôçWdüš'èÚ6‹ ·•ŠEž8U˜¹»×ª™Â:BiãË%«Û&-üeär™øˆë¾>u¼þÞV¶¸ ,³d# ËŒ<ÍRµ> õÉÈ÷6±ÿz£½»Fœð¨MI£@Ó¤ m`¿?kQ4g|Û8ÍV´«•x4`BãcW+)#ePÇ4Š-Ú’*z®›¨Bìïž,ò9×òªÞ— ë×G¡¨jos '™Q¡X×?éÆk]œDaæ,¤vX¼Ô‚Ü›k42:nåwÐzÐÉˤ? ùl}²9¨U#ŠÆ}©pD §êzÅ…²x¯‰ž\± ïùV™7iö0‰5 o#æ8ÚÙÜžÕ¯ñ_–F»3žXЮ 7eïŸJ„²'¹–§ÿáŒp¦•à{=HµÙ‘ðÃlü#ôªš{-CÆ\¤Èç”ykYÑZZÚÙB1(•W8‡„£Ôäk»]‘ï+||ü­VÅ©QË-ý3Ìj´RÉŠ.ÄBóPîž/¬­ØÎ -ÌŒ²7ñ?tþGæ*°Ö³³¼×Ë%’ãÄšTå8ò@~&òë½ <Æ’J¦…©1bPK $¡ßøÇ»ùÔ•¿]Á~#Öå&â?Ž>n¶3Ó=zmóí±,°ŠÜù²® fÈý$ºóðVµ›‹‹½SÖäÁ…‚YÛ&~<"‘õªøkZöš-ì¸[NÓàQ™ù•’©Ïþ¡Y6=Ú·‚Ümùž*ؼ7Ý4ö£SÄê(ØÅ9î+‰#s½qÁHÃoÐÕ‹­ÌÜ¢ÇÈX~) ÀÎ9ÏÓ­Wyò0w© Y¸Ðu«]VÜs5»†+üC¸ûPÍ7Ìm)¦þOoä¼…¥rüÑÈÿ½3…’Þêæ>N’{ÿ:¢hþØ83U†ÜI~mæA†YЯ.}z~tîóÚ‡ ÇtV³xYp¢Þ6ç°Øu¬Í­pÑè–E.Sê\Y•¨ÝX>+ÐXI²·™ÏM«Ê×)×õG­s#gsœ±={ÖÙ­j:§j^8°}>ÝÀRe|I"5Πåöy¤j6Ïøbö· ¶TåIóÁþX¡Å¢‘o}sÓ4•´Æ{$æ>ü^áùŸ—éJ¯_žÕò&¾üm˜Ú›rìwÇÖ—Vå9¤äœòÑ$2:`üëuþÌ¿ŠöÑÈ\;ä>¹þºÃ6ï^­þ̼?w£èÚ—I£›•¿Smk)œG„F&Ø$‚Ü£8ýÃSä‰+Tf¿ÚoLþïöá}tPµ‚ä}Ã?œf±Dœü«Ñ_Ú™n/8AÖåÓMšÉk%¯øÞ&J?7ðŒ‰^uÎæ*[MÚMpÅ—që\zW/À(àTyÓ›vO>dÓqðâ†×xõ?­CVrN”RýIÀò®Ž.QÌFõÄí@è.E¡®gŽw`£æMjW² †ß€ ‡•ÕŒΪ|¦™¯›Q•gBg»cùÖ–ãS>š?i'ò¯åUä·M%ÑkÛ'ÙGw$“Í ÄšT•4NQÔÕŽŠ¯¤ãÒºÈç5Ôih‡‹´þ‹Ÿ›D“Šläÿ›ý«; OSF |êšÓÅz‰²Ûq¨Áq8‘_—´]-’îÊÕâ`^æ™ÎÀýëæ>u~àýd¶žÚ|’„žñ cú~´pÚ²æQRq~K«^h‚E¼µcÌ™ß#b*¯^Ø0HÞ¬ÒêbGmV݇8¹‹{dUjê~k÷¸¶ˆÇ‡à=ŸÊ«Æ- ú’ƒqÈŸ?ï%â–ÙÛs¶|©Pω0“’P~ pG­Xnô¦¼!àe]ðCmЇÔt¹,*ßÃZ0›’å¡+äôñ'O¡[~3SŠçœlòÅÌÀvÜšºÕ¦’úX®JøÊw `Z£{6¿G±ŠÔKºŒÈÚ¬|X¯iso¨Æ¾é÷$Ž{Õ~&GêJPR“²å¡ß¾îž§=*Ûmy"Ƥd±zÖ[¢ê±‰{o¿ûÕÎÛTGE1à–ÆyM&QcÔÒåî¾Út!(È3×eëó¦:f§eÉ};nÙnb}vïEkxï5¸Þ\ŽHö!±‚r?CR…»´Å¶º…‚ƒ$JN9yq· ©‹ãî: RçÁW×µY¢-ü…AÇ0€ý+:"Ê~&Óg; g勯SÌB)rã;£×zеYðÎ[Ô†> BŠÃ|ÐVÅ÷š½Þ©Ïs¼V¨ WIÆXíÓÒ¥'‘í­o uù;6[»ûKWüEåÂC –cU©=£ðé»1sÊ6ñ XSòß5޵ÌÒÊÉ3£,\“úÒr_+ÉÊŒN:3÷úRcôø»ÜìÏzÆ¿ ëö«Ã6ü?ifàL3·…I$õÖª¦åï¯noä¾4Œø=²v“pœ÷š¤“JAŽ1…å'r|ëMâ ¤Ðøjâðû4Øç°¦Ç RPðƒŒâ ò¥M™o´Í^;ífÚÆ#Íø4ncÛ™±·Ø £ Öºy乞K‰˜´’1vo2Nô ¸ÅlEmTbN[¤äÎïGÆEõ£ Æ(8dѱ帢î>UÁ±\qܣʇ{Ðõ®ÍqÀÚ¸³¼Šå‡%HÈaÜVÁ¦ÜÚËkݲ¬!€ÉŒÇõ¬mŽ«Ä b¥á>8Wòô4œÜ­pdÚé› W nä9óÏZ{ky.ÎÄ ÕF@˜„ø‘™ßÚêãPDwˆ…P2K6¨Oþ© FÎP§YÍ­¹¸ÓíÌߌÍpSªFJ®}w#§©è g`zäzÖ§ÁÚÆ‹gis.±wqø» 1B$¹aÊAa¶7ï×Ò©²ðå›MÑçûà/Dž§·J³…úoÒ~ íJy\¼‘vp¼ò,Q.dsÊ*÷ “Û[C yT‰r ó« û9³ÑâŽãUý½Û ð©è?Þ­Ç Çwkˆa 'T|çoZ´¹*%]•~·K‘*¤¢)àlûÿ™ûV§ga?áwº¸Üç¥a—vWVz“I òÙÜ¡äf‰†Hë‚ ÿ:a¨ñMÜëe6¼ÝÆÌrGn¸ôóª9tò·$ø7ô¿PÆ ±ÉrhÚÍõ•»¥»PŠ}íþ/J¨ÜÉq©ÎÆÑZ(ï¸ßè)7Gc¨´w× ò©Èyì<÷«¤v°y½jžÕï$²;"tÝ$XØ•Á.þó1êjíO†ß†ÞíÀâ¨OROôÍk\ªS=+ ãkÿñ…¾ƒ§¾l­d(]OÆÿ¼ß 6_:fÊY©œqâiƒÂÐIgÃëu1g–í¿f¤þèé¯ëR÷Ú Ž³´‰Ì–ÎIqÌH9ô'žÎ (ò(Dá‰@ÆIíV}+CUEQïªõvéžøóùÖ”Ó|£¸f)­ðeÆ‚¯}j^m>VuÞ#Øå¹ßj®†ú׫%‚)l[OµŠ9" ¬†Q̤ž ŽþµŒño³mZÒú{Ý&®-›Þ0Á•d=ð§¶{h#>j@äÅ~虳 ~t„ÀH#Ëô§3#Ç;$ŠQÔà« i´¹ñI°ý)È®iÜ#ìc\Öôâ½fx´Ž‚º{‚Áæ™9 ?Ø÷¹GÏ¥z³Ù„šÿhÓðüè–zl7fFWÎŒ;`ì2NzŸaú/‘ýšÛ@ž?å"d23üQ¼íŒ<>€Ö‘ìVúÂeÖñ¤ÐxËq)u{¤˜çb°Nتï,­¢ÜqB£'Ùý¦4ËK¿epßÉgúUp±9ÍD1¸®CÉ’2¥¬§µzœÐ—ÇZ!qÚ™LGw'Öº‹ŸZê0£ -u¨ 0©­ K(gw½pƒç_‹éQ¤ÓëkvwNUælì<Íãº.7AâžÉ©U–;KÄœÈ$ÌvþU"°ó®Ur1÷¦Z~Œ£\àœóò²ŸŸzÀ‰2÷#aU=$åÇDOot†W’¼ 4vv8*˜ÉÍ!uÁú¬Ê“NŒÇ?გsúT嬭oqÑ`”naóò­:Ú+}OMŽú9dŽê{ŠíDç-½ô8ñM½Ý¢ÂZ#hº åŒr:õ#§¦jñ¬ZÅ}§I `ÊvòÚ’{s d/Jx¤Ë ïß}ê´[|³VI%µT:…ÆvÖ—AŒ Þ뎠zÕçFÕí^.e™NÙÀjO^ÒRá|e›÷‰EU%Ð cÆŽGŠMÈd8§º‘I9@Ö­/í¹ƒû탟åV¸BTÈcµyºçVÖ4¦§3.û÷ÿzµö©uo%ͼ‡a‡ô4/’Æ=k ØuM:د‰+nÝk*™"¥ôIÊBÉ’G™©{HÕõI6M‘ïtæ==(úE½äVÏq~å®ndçq×ð¸»l f²9c¶(sq¤[]—6±ÈÁ$ïúUWTàfF2iržEÜÆûœyßä~õ ºûÙÆâ¹—¨óäÜz2Û²+€¬â´Óy€9',YpIùSOjú›.i§®ßˆ”»öQÓîGÚ¬¶¶ÿ†¸b»FÀ±ùÖyí<´—š\ês Ây|³ÿQS‰\ËùZýâg}½(êpÃ~´v *{VŽ*Evq×j llßCFË|ëŽ 5Ø¢’TnBÐsŒàe«ŽÖ€¸f‹‡n§ʃ•WÔ×q9¢·aC²îNôPyŽ{Tœm¼ìæMSƒ­u”âH-žà; fFfL9Qé¸úÔ7ðßÙÞ¶›op—¶ìŒ' ¸nõPÒ5[É&²ÓãŽ%Y!Vå$Œ3±ÞµÕ¬}¥\ðíê°M?’IeÁŒœàÊ~¿@jƒË=Õ³ó³J:xz{ý_Ê¿îÿ1—û0–øÅ}©ê,-vFP¶<‰ßOë[†‡a¤"Ǧڬ®ÝsNµ‘#…²œ»?÷§ñ?‰—czVùìªÝ.:Ï/+tÀM!m(,r7¸O¦Tç§Ê¸1¾1„lg'8õ¦ÒF »Vov9Ny7cNB™¬h–Úƒ9l$ŒI¨í¿å÷ªmÖ}¤ÍÌÑ—\äH›‚FÿCÿ:V‘rᜲƒä;ÓVWdx¥€H£vCåæ•7´+¦fú‡é8²×m®-nSx®`^duóë|ÆôHý¦pýš`\Ouè‘ÿX«pnŸÄ¶Ê“?áîÁ&)—§oˆ~½ÿJÁ5=*çHÔæ°ºP$‰±‘Ð1Užž\Ž«"EÓ‰½©j:¬e¤@l }šRÙ‘‡¦>¦~tfœ/u{xúµÄOš©Dñõ æGÚìç€câ9UÕ[—M¶|†ÆvëËžËçßõ­À­¥¥ºDï ¥¬ "`îåè(£ÁTENrÈîLcc¦BmÛš1ª‘NK‘Ýz’Œ5ÑEnƒâùQÑÑRéÉä`uùÿJu!åÂ*€ ôÇJ—À)XT…by•IØã IÑ\ó0ÀiÆC)Sœ ÉÍ7?´ O`sU¥~Yj2ãáßpNŸ¯¹€‹mD.Ò´žAÇŸ_ž¬¢ÓA6ÚÌ–úÄ-²æØ¶zÈ>cï^ˆºHÖä~sçPz¶•§º>«¨Ø­Ç ªŽ¹ÇR=>}2j=Û\Hq‹’•f­Ä <Ú–— ¤Æé "ÅÌaÙr{ç¾jÅÂÜOm¥i/ew¥þ3”ód(W? j•¬Ãce«6­ä3ÍpÅÅ´9+ ú±ê}:RqñUÚ“ö‘Æø.Í9í½*QN;b:çsD‡´n-‹\‚×M³°’Î$&YOâsž‹û£ßÏ­gñE$¹¤Ÿ:žÖ½þ¡ÃáFŠ€1J†l“°$ã­Ié<)©ß‹ya·)dí¼¤€1ñÞ¬bK4ŠÙo$ÛD®‰{s"¤(Ò1ìŠMMÜpv³§Z-ÛØóÆX£+ó¯Ú×ÛèVö6Ö‰ãòíÙQGŸÎªÚ—j OðjÃÞ`y›>›mFœ™1’¨Í(#oÓj°éœ-©^ªÍw›hNàï‘òíõ¦ºF­oiªþ.þØ];¹øÿìjÁ«q¥µ´\š`ñåažfUþ¿*/5@$š»'!·Òô19`AñÈçÞcüÏ¥g|A¯OªÜòÆY-û©çêj:ëR¼Ô%2]Ü4¯ŸÞ;íM_¯•NÄžäsÈÚÚ$ì2h†CÐR„!ê>Ô##⢱t Æ‹œ ž´2É~êûÍåDžµÇjê ×T)ÉGX÷¥BÒª€¥YÁím^y–(×,jå§ØCcÊ—õ8ëý7Ò¬–ÎÜ;®fq“ééRjIo{|Ò%-Ïì:)GøŠ,¬ŠÈRÁð:åŸjD!#mÅ(«ƒœc=¨¢-Š×ánž†­!®&©;§Å­Ñç÷±ªÂÚŠã*@øÆÿ1F⧬èMã’’6«ë"•Ýþb£­p.ç?Aðßø¶q隉" E1ýáü-ëRWø‹ Â6Aêk=ãptÍÈeŽE¹³YA%±îäoœ®ÜiQÉ®»¸5)è’—Î7ÅWõ;‡ þ ‚2:·6Þ•(épCë]Œ-¼q+\Ϲve^ç劭ˆ,®I…´N¿ –@r;~X¥x‹Q6Ö"ÒÞY%¿¾`†V;…ïAAkÇp®ê£5f¾LíD’[PáaŽÀŠ5@{(À¥Ô{ª½Nh€À¨ño" bè¦û’yÎW¥*rfÓ¯¥5w íçNrQö q HpÞüL •ÈÆGQëTh©\?¦AÌ®ñ¿*žàrœÿ*¾¡\Œ¼ë=ö•e3‹Kø¹šLl£ 8È?‘ûTA{Ðõ’±Ê/Éœš6{R#ƒ]Ìýÿ*ºUFzŠàÁÄ1åš #²ççGíž•ÇοåAœ§í]ü"»oáüëŽ;œ“çC‚{ÐGEÇÖ¸–=ÅqÀr¦…wÆÂDŽyW$ùN#L°tƒ„m—- ʆѥŒg™Hln7¯Lê–ññd·*‘‰nÙe‘•Bç€?¯Ö¼ó§ÃÉkloʸ­ë^ºkZMÁ8Fˆ#È®7¬yçœu˜±§í’—uUþMHb‹Ód›\¦¿¨â;»C)HŸ”ßË‘¥þæ' ãzùÓIŸÃ•‹åâr¿|ÇùW[HÑ»XÝfÆboÌl8ùFj•:d©,'Ï$7–5–Ü)ÈÆAë]%ˆæ8ï½vHg<ªùÚ¥;!¡Ë2s™ºÍÿ!,rBÛ©%7Œç¨þùéN%@³S³ ýGûÎõ~9Õ,µ[‹d³„Å”^pK`g œ÷ÇØŠ4Àh¼µ¬N¡Ç+{ËËÚªzç³[N'¼—Pžò;Y"·}œòøŽGºsûçïÞ¥¸_V—SÒE˪nÇ™¢žøòëœTΣÜCrM€Boö&‡’x#m4Ëm FKWŽ8bP¤àóèNÛäŸÊ’‚Þ&¹[«éV(ÞIØ/1ì7è=)¿”—‡.”¿"C a±÷›÷GÔíõ¬¦ÒF»[xäÕYÂ/9æŒï× Éü‚8=aщ º°;Ú“rDLÀc;zf‹Ç Án¹0Á‘î€0>˜[†å‰I# ã½(oØ78²lr7ڛƌªdß#Ò“»`Y#,¸;Aÿ=hòMËlI?ó4)qa7ÈÎT2Íâñɹßr|©5S=Ä‚@LH…˜u'­*È,22¤Ù…¼*§ ËŽ¹4ìûžg×l_LâÍ<ƒˆ$*¹ëËÔ¶*&8¥šà²¹«Ï´;xeã9¤‰Ô©Eñ9N}á¶>xÅVUBŒ(Àò©H‰?Bòà#Uc¹ã=RãJ[e· à˺Jö_•WÚ‘r¦R}ŠÜ×B·3Îóx³HÒ±ø™ŽIúÓ~lLÑùòœ‡·OéMË`œôÇz:°ìÅzýè…Šyã븤™°*NûÍÚ’yKµ(Ö’|gÈ×1'sŠÏ@Mƒæ >uÄT–êiN”Rp(3“é\pmÍué]QdŽÂõ?ÖÉ{tÒ¾9céž…ª¢ªÜØ@[>B´]*Õm4ø¡;62ÇüÝéSI*&?$Œ¬„·Å,=i4p¬ÈÁè|©ÁÆØ¥¨’ÙÈëµ-Žø¤ˆõ£¡çˆyŠ:Å6åÏCI²’9ÁÇ.õÄår½¶ gÈQ"ø€”<’ ñRÖÚÒÜ"ÛÞ¿…rª#V#·ùÔJ€»¢‚TY o#ЊéEK°±å–7h²Á©]Á!š9¨bÛc5_»Ö/ç½nTÄAŽ3îàyÿµ6ø[~!€òeÏçJÇoâ8<¦OS°¥¬)e«”¸HB;xæº[¦ÊŽU-çßÖ¥Ð(a¾qåçE„AÛÐ`•˜Ž›QWÁYÉÉÛ69òHPFpêzœÐss"¿\Ô*êJáqƒÖ¡Ä̹“—°õ§QÊn:w¦LØs°¥¢m–åIëD×ß#Äl°êCtÅFq-¼—Z4±D@’ñ ßéÞ­R]þ*~e^_3ž§¹ûæœFî¨KĤc­§#|‘EhÚ6å‘YO“ R°ÙÝ\m¼’ÿ¡I«KyÛü2¤oçN”ÜäŽB@À$c¶ô>[Êxѯ1™y!ôvßì3­4œÈªòb~jÊæá›EzäÆ)Fyb°ÈØŸASéÑÈÃ[C4Ê D±Ðg' c¯®j”$ïáä b>UFïóò§š&…ýãs™‘âµýØü_óÖ¯ÖzU½—3Õ/*ƽZÊÕë#Šá‹ñckC –d²eü??ôfŸþ‹hR骞-ÂÜ?ýæ|·Û§åYoû2׸UšçÃ7–VxÇAþaÚ½j±~Ñ[Ÿ>Ô[»x'ŒE2‰ö5™‡[–ÜìÕÏôü9#ìTx5óœ©5»{Tö]­¼ÜAÃñÑ}ù­”lvQúŠÁðpkÐá˱ÝËê4óÁ-³8·­FÈÈïI4™4 Þè$àU’¨bǶh¬Ä 'w¤žtÏÅö® W›"¹Û Scp½¢´¯&È1]G <¡6''ÈQUËnvòE@7+“G$WnôaŠOc]ƒÚ¸álú×R8>fº âáf¶2Çm÷6¯œUí&T–I < ½M¡nlƒœvªéPÜ’±àm°NiżÀŸ _ü§ùSsžƒ4<Ìæ¥J±ëéE·tó¤c¸ÇÊû:ì}h¿ýY_:“‡jpŒ3I*pNM“†GÊ‘Š·QçPŽc†otGV(>C°¦ñ¿7SÓó£#®p(ˆû® Ï"¸çÂMaJ‡œmPÙÔ,Iä$ã4ž;÷£È„Õ؎”Ñ…Á;ç¥|„¹y¨Ë€WŠoäŸxãÖ•æPp­AÁ%cÏŠ4 +‚NØM0 œïJY\{Ò ïåMð’v2?{a֜Ü|]OZŽŒã9ó& HQ“òªòCâÈ­N{«#s&XI`qÜ~B³»„HRC´[(' '¦+bV” ñT^$áéã’}FÅKÂÀ³§tîHô§iò(½²$oÜŠè¶!rœ»:”±f6Žž@?mªÖçš.GPݶ©M%ð“*É‚BkFÊ´;Q :`ôëN’8ÌAí½&¯!^b¡½ô¨“”‚ÑdîzTÙ$a0²n<öïL.Xb¤l3žôîêV(ØŒ‚06¨ç á3?0©²æ@‹#mË¿_,b¡">ðùÔ­ú;XH°Ÿt>=HÞ¢<f³õÚEý? ³BеùtN9¤ <.<7LÁùúâµk+¸æö{¦Îk`·sE„S‘ï1Áµ`\1g5÷éö®XL¡¤LìPnsôé 2×ð¼5%»)aé|1f\ü±X:ë ï¬‹úÚÿ&¾‘©z«ÿGþ±ÚK=¸“iÇù㣠vh˜$2`ü)[ ÿ¥ŽãëGK˜¢S LòŒ2¨SËóï@n­&pÑÝò«tnlþM‘ùÖõ¿&E/F£vÊDÀ4RÂyÚ68 wÁﱬ’~'Ö¯KKlÅØò5Áö­/‹$»µá½Rk¯ÃÌ‚& ¬¤ŒŸ:ó«ÈL†¥Ô’!7ò8ƒŠs/Þfæ¸ñ“ÅjÇ9ÉœU:ÖÖ{Ù„6г±ò {}¤½„¥¸…¤ýèÕ·;É;ßÁw¸â;Ëëm­%Â9ƒJ¤d½EôŸD“Û•n®¬6úsU,âŠqAèÿìÃõ¯¸¢òNV%n`8èyÇõ§vúµ¤Ë=­äqJ½dú÷ô¬æŠzÔ<7ûL•™/ÙF¶œc|™Æ©Ïú(‹îÞ#jq”=½ÚÉjOû©ÓCmBRC«þ_:Tñ¨ÕÉóÁkÉŸw§ö¦ßðF‚ÜQ;MôG>¢œ/]Gª_[áÂíY-vv£ôï2·®¿u§µMfÆ.KmBÕ}LhOÞŽ}¯q—ÄmJØœçxÖ°ªê®ôŸ,¶¾¥š)$ÍÊl|Rñ8‹WµŽOÝe‰3ùÔû^öœ!· t>ÿÍe4Rhã¢Ä¼/¨ç—í}ϵ^9ºˆÅ>½nèAxî_ݬïTX…§Çâƒï…=sÜ dMh\¢ó‚ ŒŽ¢Ÿ `ýœ²ê'—ñ»xœó×‘Æ $Rþù~t`¼£b¬F¡Ÿ„Ñ„Mßjs:ê›8@Cæi@  8\ì~T¨¶œŒˆ›íQg ðh0Ôr ä‚:ƒA\p\yC]]\p/Öº…S˜g8®¨³‹€†;i[9ËÒ§nm¶úÔ‰¾šÇüçô62Ñäô¥¾ÎbÛ9?®ô –UǼHò4Ú'‘wø‡Ÿ•(푸?1\@»ÊACJ§Íâ¾v"’ŠBã—!¾tטÅz@sµdËõÚ¹­"²ŒÎiw<ëÍŽ¢—Ó ÀŒrÊ3µ<™2¡”ÔT„«dRvòxÖ g,=j_¹àV NRO7¨ ñ °'§zg“™ÎÙßzp6Çmª(–) ¾sLœ…rïIFÁ_”ÏÖ”''o®hz$Udys¿z) ï°¤Ý×nQéHóm¶ÕÈà—§)½L Õ"‚ÿðÆ0Ò0 ¹líJÈO1ßýê¹v#}lé úãsNBü—ø.ÚA¼@}iØŸ¹G©ª‰Ô#CHÑtݳ­MEŒrÀæ42Š 2QÜH¾äêXõ°?Þør醼pÞ˜ ö¦ko 0 ª~)a ¦y‹lì).—C=”m{Km'TY£\[ϸå觸þcçA¥á¼vë·«ÕÕ¥µý¡µ–4‘ã9ØúÒª‡I¸Òîä^VhX‚²uϧέbË~ר©Â¹@Å¿º6ô¥—œ)ø²Q\€F3ÓwÀ÷—#¶õfÅPÞ噣$³T$®yyKl}ÓRó0 ÜÛ*Šš_'õ¢DÆÁò­Ð·Â]ö¥5G$ó«wZéÓñ•Ÿ÷ª)µCŸ{áæýÜÖ.«2rmx6´˜J?$—³n×nõVÔ`°h¡)È&™yTäƒ{ôí^‹‹I´XL:“!/º¤¯N˜Ç}è«}k"+lJX{±ÇÔÿµ9‡K{ȪÜr¯Q  zšÈÊžg?£Òiá <\{²“7…6¡=¬Op°¹Þ0¤¤Óà!¹-ÔslpçÓoçOxƒ‰,ôÆš6'­×ßX!¯•UãÔWPQ|3û@sË¿ˆþ_^•¥¥Ï<ÆJ¨Ç×é1áJQwo¢›í+ÅÓ¸kðÑÊM½ÄÁyªãÞÛÓjÅHËgÖ©íRõÚ+ )™•É8ò¶7ßÈVWZqû˜“ûqk°Ø%œNÀ9ÿ†˜³³’Îʼnîi<×D°I =h¹ &¤€Ô\ ìÑà†K›•‚1–c• i+aBœ”b­±ÞŸmŽ÷;[C»ŸâòQó§±]Éiªsí”WU)è)ýÄaÊØþ­ümݨÚ;fîX¿ø°º~UO"r‹Èÿ/áÙè´¹#‹<4xßÔŸËi¯ä®—ÞØÂ»4\Ðf®žpï]š.h T¨„Ð4× Ψ£,Ä<Í\8žÄzVœUDöÖÁ”`Ÿ çzŠá+Çñ-¸` pfgÏ@ûâ–Õ.Ž£­ÜÝs¼Äƒä£§ò¡çÀjŸdCYH§¡ûRb&Y:ó/p*LËrŒCxr€¼ÙSÚ‘’î)W‘ãä=ɨ÷®:¢údk®þÌòçlÒ‘ÏlÖÈß:”Qc"€´øÜ«Tz‹É>›ð7ŽúÜðÊ%¥Ò•1kdÎ1ƒI›SØÔÒ`ÛD´°ÚÜbFElìNwùíM_GYµ¼‡aœ51ðæAî“CJ%ÕÜ'ÝfÖºŸ†u«å“N»þß0ó]鸂f81?*’MReÇ:†Å(šŒ8*cåu×%àš‹é†·´@ªÿSƒ]Füm¹Ü>+¨)“ÀöÊ# ©Û¶wÚ¤-\Tõ¤ òôô®BQÁæ ω1YƒG)d8=ÇcKC;ºdÀ*¦"â‰_’%òƒz}«ÄT“PÑɶôêÚr² —§È¤øÎ(ö7¼ŽF<ë®×Üæâ ƒR½È‡Ã, ¼¼ë¸4ŒR~-é­øÙHÞ™¥]|7GÎ…qà î?fWQï{ËÞŒ&^]ŽOsH$©ÊÒo:>v* "Ï#‡J sÕŽôÕæüCä(ÜþîGSÜÑP Ìù}†j¸ÏÏ©]?P_ʦ%›ªÏsP¶^wþ)š€dî¬$r:ñ¹qþ“³#VXÜŸ„+<¹‰n"å;Çʤxnþê–ÓïxØœãFkœ]pi—´9ø¥ÛÊœ ˆN^|vì*2&'z}bÁ[°ªÓq±DŠ` ëå°¢Ë ÍFÙNÄTæÁ\a¨Æ²ZðƤñ¶áŒ ¡‡ÌàUŽ/e¼x±<5pOp]?­V¿üy1[ËiìîJ±&>¨|é²Î_1À=«f¾à+¶ˆµï Þ²÷å¶i%ª¼4.¡M*îÒåFÜö’DÏ™@«Õ¤½èKÓ¹?g%É9>^t„¹0–8Å]í=ŸñEôoŸá·ñÊáGÏÏò¨}„õžÔ£µÕ!%¬‘œ£ã¨méëUŠOld›é3Åo”_À…Xò“ò©®WmI Uc΄ŽQчCQ×—PØÛ e$geQÔš{ÜIk¦j«suìJ’JúÖ6ÉÍ9$lãÉdŠ“£rá×þïX>y¦`YÏËùUÞ]?RÔ,Ïã®Í¹1DhÞ…º§Þ²Ýˆí—Yµ½¶c$H€ç³gËò« â;{PþíÒÔ§7ø³Ä+ý|…QiÝË¢­«Ûèº.´-tÀÌò È¡‹`wbOü5 ¼Öâl×ĵøð€~%òúU§Št;Hî ³Ó!ˆ#žy³ï0é¹õ?¥S!¸}8\é×ø9`Ǻç|ü‰CéVtyÉVSú”°&—L˽ êiÄAanhaUû|êšMHk7 s¬\Ë<2ä&?„l?!QŒkyN]HÎqÞ¥ÏNko¤-Ýc˜~uœêOM†é¡škyÄ@û‡#9­+3¨Úuþþf‡Óâ§—Óx÷ÚüÕy\¯êÂx:yÜ]MÿÚÿzãoaÿògÿìÿ½<†ÎöÙZ8®ãEfÈû)N]S˜z™,[àîË®;Ug—ž%þÿ#jâ·á§öWÿ؈ßõÌÛò¿ÞŽf†ÚÚHíݯ÷ì4Ž*ãÆ_)r¯âò|}¿ä‚ÃÝ>])ÍŒÍk}ÌŒUNø©ôp_Â9RéT.G/ï}ºúPÜ B S9¾V¯\ûS%™KÛÇ?Çþ x¾<-f÷'zŽxdb±v,³O‚vÄ_ïDhìT Í>ý?f?­=ŽèaTŽì P^N…»t¦ò[Ïs4‰%Ç:Û€ òÏ•BŸ?‹÷ìM+QMb÷?·/öþÏÀ€K`«,ìOaþ´»ÙØÅ4ׯ{!QÌ~™ÛëN? "ÞE„ÊYó·Þ äÚVÜÛüè¢ÞGÄ…j1ÇIêbM¿åýíÿOÌ4…c¿óûU…´¼†çùU“‰9tý+KÐâ#Ä$“ØÿÃ÷¨[r«pAÿ¶¡>½OçúQâÇêMDé=°±#sîN«t|3o4|½J®Æù<ß*keW7ð&yØ‘ÓðUžÞÆ4µ³4O(Á`Ù­OÉUØ•'%eFn#¼oÈ´‹ƒùS)t-Bƒ@²IËñ о0½[Há‚éžbã¯Þ3BòxZ•Fêë¶i~šgnhÊ$K¸›öÑ}AA6>%"µ³e§™‘ù¹ú$ƒ Ôdü+kpäx0¹„yH xW€½O“8#taFØúÕºÿ‚á”C4ŠÌ3†Lõ¨Ix_RB‰±ü ¿Úâ’ M2,¢žª)3 g¶)Y­oí›@ë5Å f#fB() ­0†šºã'ž>•Õ΢Èçöó4R}Þ´nïó4Oâ¤C¤Lÿ[°–.\œŠ.eÊß:JËãj4„‰Î6©]‘àïÚÏá€>b˜jÇ/r ;•HÆÍÎ=ã÷¨Ý\“,9õ£]‚)û€õ¥’^VSXþ8êh™ì2,ðòЏ„Ç!8Úœiäó ÏZs¨¾ÝéIÔ¨6­Y ÏÊsºü©ÌWDàÈõ¦óåIÄ“qMí %–ô¨ÀRÃÖŠò»œ³ÿ(¦LHÀjQ Ú†‚tf”{€u&‘ýúè·Üîs\pIØ…æ5 ~Ë>dŸÎ¥n¿Ãj„‡üùS"—£s:²È‡3Ì4…8=>¿Ê› ]ìs"Ù 6jõw±+>^ƒQ°K{M¶¹™°ÒDÙø|×ùõ¯hd›irzHqéS<'©j:w´ëc§ßÜZ&Us¬œÃmŽâ³óâsTQwM$§Mv})‚NuxŒFõ¢;¾;³ƒ$œÔت¸m+,å:fÉ$Ô}ýµ¥Ô%nmã™|A§mÒ xŽY"Ò.^9FH*pFÔÌ’ãqÇ•FoÅ6¶–¬i`ѤŒ xdçcò¨‹„†ö êÕB÷,¡Ðý b¼©j:‡´mrkûû‹©99敜à’z Ÿ½n~î’9vÊžŸ*ÃÏ…G#HõzY9bŽçgš=­ð¥¢_ÿ{ÙÄdÒÉÇ*| ùúzü…e"wî™ãŽã‡Ñ.eV¶Ã+Ž`vïšñV©i«Þ¢Fª«3€ `Ìk[CÉzrð`}KKmd’o…xÒ;©ÇÿN‡ 2õ@|ëhиÎËFIͼi$Sî„ÝŽ{ÿZó•´Q³·4jvî*ÍÃ’Ê ¸ˆJâ5>ê†8!GŸ[´NU=»_&ï§ñ%½Â]ÞÞKÉ,¤0æ= ÏëYÏëÖ²^_ÜÚ*…+×byqö¬÷_¼»Vä[©B7Upi+x£þâgð×›7¤ãÑF3Ylµ©ú“pôvÒ·4†’4wê~t“t­¤y—ØÕ–ÄÇm¢™Ê#ä“‚züV O.2qIÍ‹ÔJ7FÓõß¡d–M»›M"Ô%Áã+1À÷ºƒ·~¦ŽVLç Cõ=q‚:ÕO™€Àc,Ó˜I6— I$‚{oU¥¥®S=®¬l±ó_? ¿‚ÃÈý=ìn¹ß¡ß=i9XónÆýAØuïUŽwþ6û×+1#,Nþu+Hÿx[úü õÿ¢ÈóÃÊÅ,…\°`=ã’F<é®§Ï!ŠÒÜo‹Æùš…›üfùÒy9ëG 55+*ê>²òBx\)7áó^|¿œ±Þ-²Ê.%-Žw°˽:´ šÈù%‰‘‰ïåÞ¢ÊîÅloïŒSRNô^›š«óð":Øéò,Š-Ü|ËúõüÉë™ÌÒIÌäyž½ê¼XÐ7Z-3=ˆ§®Ö½\“ªKïïýœÔÿØ þ#€?øp~Õ¶Ûj¯÷«íe­8Ù„ãf¦³=ê—¿×./ü0ÄþQÐ~•0à±rîsçJð'ùýBÀå;S1Çu°¤Ë7 [8Š{–9ÉäSŸ½[3É 7Çëò¨>÷t~]²OO™©k¯vueØ“Ô})Éð)Žl„r#†Ãàõ'4ý4@v&ùÿ:snÄÜH 8p>”IqbØå ‰ˆb¸#½&–« »ÂpϹ>tµp¢!¡/ñf°Ñã¦(Ë,&F2@#â]©^ÔWÊŠÁ¢&Ò;+ÉdeWP§²î›Þh=Ì­A—©pEH6*ª£7þ(sÌreÆsC*QÜŠ·@ËÁ6fBVYybº§.æ•nX,Œ5Ôå§MX£?ÿÙpymvpa-0.4.8/doc/pics/favicon.png000066400000000000000000000012261174541445200167050ustar00rootroot00000000000000‰PNG  IHDRóÿasRGB®ÎébKGDÿÿÿ ½§“ pHYs  d_‘tIMEØ %3°ÏÈIDAT8Ë¥“KH”a†Ÿ3rfi¥PHŽ"nuÀ©E·E»2%¤¢ha­¦‚¨EZ «EÑefp‚"A £Â„Z¡ÙvÚI`›f•Óxùßý¿üJ‹8—ï}9çûÞÏ$ñ?ò'…BL&ÃÈpå?“S'0o‚xk†X"Ò.1Tßgf–Îçæ§×" xà†Ñ°DÊÿ2c—³’¦êÚ"OëцÕH^°ìh°ÉM+Àœ|®ØgÆà#ÍÄ‘+±D4\F`fÔµEj€NCRw][d‹™ÝÚ¶áÛóæê/Á–êÏ—öÔ¾›|Ñ×ßä3I=ûx£#Í5>ŽÙ@Àv;ކ7ŽëlªÝÞO°3Û×>°Ö–4±Dd¯Ä8–Ìl¿¤S@0öðà‰›áà˜Û÷,ðž#Ÿ+¾1〠Í.à@Ïè`3pÕž²3[©vÙŒû@ZânÙ@ÿé—©WÀ[`,O¦'B]½îŽ4W±.ÔSZXpxíã8¯pÕ,¸-+žL-„̸芧 TZú‘Ÿ(öÆÑ÷’æèŸµlêÓxÁ‰ßsü“™$W…ÑI×€zƒa̲’†€õî¾[¿N×R>7?bF“IJf|ÚŸÜî^\M‰+x–¨G€ú"˜ k  !2³H4ÖIŒª€Ùˆê‡@LD‰€Zp€äÀ D( ::.þ3€áñ×qé=‰Db#C¸€Y†1 /€!Si`²b TÆ %2 ©ŠÍ Vx_È#P Þ¨©DRˆ5”¦„ZÀð…Ö lqø”, ¬Såúž ñNrH$6&!?ñoþíPé­%O ¢bÉ0`Ø"D0CD%jŒ€:9Å“  ¡U"Uq¢Å‚Dý}èÇ &0 *AÔ¡¼ª@õq € ‘Ä R"%(AIAŠáþðž‰D"±Qº ìu¯{½qT%çfër΀‚R•Àˆ`Ù¢BÖhŒUð ¥ QEŒ³ %Ò¨-3 ïxç;”ljé¢P]çGÂ<]Œ‹Û•÷L$‰ .ÐJ™e©c¢AvìÚõã?þã?ûs?wË¡[-("Þ°}ç/ô¾÷}ß÷[¿ó1ˆ‚uÓ [?øo?ô‘_þè­¯»“ FÓüÊïüúëï}ýG~ñçn¿óÖ€XûíûðO}øýßÿý+“sËßýíß,¬U#}•«m£°!^Œ{ ¯©ÚŽB ‰D"±‘ZTÁâP Ñ>ð?û³?ÿØÇ>ö?}à¼hšü}ßÿ¾‡¾ðàçüÂÍûö¢•ÍlÝò£ÿë¿üä§ÿâ7û7øù)£¯üž½{vîÚõ+¿ö+üà•Tïû¾öéÏ|úÈ‘'1>xeýà¿ú±2„¡¾]·­—ã¡_^g›“ƒN$×ΆB,ŒuYˆá¾ûî»çž{Ô‡F³1¨ªJ«ûî»ï§~ê§‚UGƒjáÅ3n¿õCwßÙ b€FëÿûƒÿXT²grÖ+¼ùðë>ü¿ÿk±Î֠Ξ:u¹2Ó:y¦QôŒ 0F+…ëó:$½o‰DâzhïªÚÎ[Áûï×bùÎw¼C%`¤™ÖÚ‚A¢ÀeœeÙ{Þq?V.JeU–ƒ~°€aVE£éˆ¨ô1ø¸¼¼\+l0 9¡ÅŸ×d׌ÂÄPP©=¤#c”·‘H$® XâöX§ŠÕ¤-NÏúÓ?ùÄ»ÞñÎGž|l°²rþüy>÷ô]ßúç\ ªÐ‡þò»o?üìO3s}  xf(Ò“GŸºïÞ{+¢f{ ¦&'/,^€ D0 *Úí_ 6×¹ÑQ!ÚTh4v¸¬HTë’€4‰u"‘ØÈ°%{êÔ©ÿëg~æ?ú‹ùèGü¿ñ‡þ??üáüâ/Á0¬ùøÇçþùû÷ìݳÒí"@+ùèG>òÖ·¼õ'òÿð‹?ÏÄŽ?N }ê)zeõÛ¿ý±üп˜Ÿ$`CD¢¤ˆD u™ dYƒDVU¨ÔQè䜉Äõ Ð $µ:L€ ë@ Q8¹÷ýßóGòŸ2¶nÑÏ<Ù¤¦ªÛ@ðV%§Âó@ë5½-,ÍFÅŒ® ™zõO¬C¨…ƒ€r¨ÆPt¡hïúïûµ±&/óP©@8€ŒÀ«„VŽå"àŒõ$Ï´fšÍ:ÿœ;‘Hl@PE “iµa­†h@ÑW°(gî¯þãïC}{èõ¯{öÉçâJ3næàmÝÏí…°÷½ïBð!úã<§—cÃlþ§o›;ztßä §Îœí.ß~ÓÕª?÷Ø£hš›^wïÙÓó;wîzþ‹–‹ó§³` òÓÙ¦[n™leO?ø%>µHh×¦í³³³¦õðç>'^®³>(E5‰ÄuD–ªlA ˆ€ (²hpË»ï¿ã»¾y||ß_švüÛnÇÎfE6€µ)È656¿óM1ÓmÿÝ»ðÆÛt²sÛ{ßݱ_§Zw¾ç~d„&üï¿{¶ëÖ©ƒo»™C®s- V1ã˜íèTkç·›— ÎÝúoØSRX. À\RžŠV‰Ä†h|#`(꾡²CÃöîKsËÏŸ@¿zò³Ÿ¿Plºñ} Íù?PÊ¡gY_ÙzËØ¿jái‹/ðȳǞø›ÎíûåñSg?ùÜvÆ ¤•¡Õ¿~üéßÿ³±{¡­ˆv‚ xÆ7¾ûmƒ{:“»o¹Ìe˜˜˜ú›??L©Ã0uc}þFèD"±aZé³ÔÍš# @7aü…~îsA™{ÕKž'n=¼tô8–=Øvó»Þµ*±ô;»0-ž=©8â¹y]Ž'1@“ÁTB³“Ý|!„MŒåÈ›¬5MDrÓã‹?rúo>ò‡U~ú“Ÿšë®îÿÖ7Â^Ò{# t"‘¸.ÚÀ2,Ä ‚A4€ËçÈÎué& 0=g§o½yóÓÿá7n¾ýv´Û t§go\ýò“½³/Œuç11ßï¯.‚*t{¶WE-º)<Я«ƒ°£ƒÛƾú"Ž/¡ì¯,.DõÈLÿñçOœ?ýıs?‚–ÇOÍ}õÉ×ÞózäÍ+µù’Þ‰D"±á°hØ:¿Ž$ÔŽT"h h™·þ‹lä¼?µp~ñ¡ÏÿUÿÄóÏkïð{ÿñÃû„VÙsŸ}à®÷ÿó§^xñ…£Oþ7ïÿÿô«¿Ê¤ðͱ†uj²ÜAøP°Ùÿ†Ãw>ü©?úàÀ|¥¡„±ÇþàÞÿöî}kî²ÿü¯^|ÿ½?ú£+½þõ×Q!t±íh"‘H\´ Zîˣxå €³üæÛò±}ùØ E§ÓîLØÌ‚ƸVkx„™·i5›4Ùlu¦—më€ †Ýæ)šØ 7¹Í1lm÷ïüR6¹µ1¶™l Ô€mg›vÀ´`ÛèŒÛ±ñ¼Ó*¶L ,+6µ²Íj84œ…1`X†öˆ&p’ìD"±±4.FqGÁQ Kðy»|é$Wã"°ê‰A D@ÔAÀÊŠgF¿PÀW<,`_^F°|·‡,C‰€ª» _ 8„AunybýA°Ý@«jp¾ÂXc•O=E6‰ÄƆrÕ==,E£— â{;ãÓr5TÕyî",çx@…1G–t) CcnzÕ¯FÓrEáWO®sèPÀš¬Š2 B¶Óìpˆ+U׃±¤ª] Ÿ“q&JÀ¨¯¿ò¨é°:ÅF`­ i*õN$ÚA_æJ ¦ºç\%àùÁKØMŠtT Ã( À)Ç(Ð'ƒ· ¶m4}¯X9Uí1PÅjøÀË@Wz]H|ƒ]kÍ„ápg  ¿nvl²Í‰Dâzèºlºª›~ (‚2ÐYÕð0@(߃‰ÝU÷I¨R|M#ŸìæÀòyðŸ+Q%÷º¼àühð«¨Æ‘åDÛ(Ÿ Öíž=8Ê€ @È ®4ÂÃ,à ÃfÑAU´~n!½W‰DâzhÈFÝÿuë8Ô¹Ä!Ö³bE‚UÐT›/UŒl²iñ ™–t1xœq–“”êëq݈uzC"£ýtI|"ÖûËZŸ:©»õóe?5‰Äu!Ðqm‘ÐÀ"µµ6¢¨xVOJ=¬´úÙ’,˜2Óçâ<|ÖhÍôK%QpC`b9¶Œ!Á4 AF 8€Ò¬ 3‚ÁUu×àŠ¨FèD"q…8H•atíU€ „€žÁŽº7‡×UhhO¼‡Z/pY¶¥8„ˆƒ! C‡nÖËëú6tõÑõ2¾Ê~"‘H\OÍ‚„Z˜í:†‚*{ ¬ D@hXÔ.`[•] P0¬i 9º«€µ® iù! k}0(qu¿LëþÆôÎ$‰$Э+ž®Ö4R‰Aãq€´t 6XT¤‚à1gsVâ( .ÇSP®Ê9ˆgX¨U< ò àU1š«—²^¶/_O#ÍŽM$×&€.‰; ãÆ="ПQNçB@ôA-6ÆÀù€ó ׄGдÎ}VaŒBQ¡Ê ¹(«ëçV1†àëŒ/óÕ=x"‘Hl(f8@e}›×jûåÕý?ò¶~¯7y3-ÌÏß¹²ï?ÿÖ#2H‘0(°Š"x™–SQñŒ,4”P DI´àQ7Ï»To×{m]wÍúèH²Ñ‰Dbcc†ÀZG}ë^ h Ú—Å•ÎμgæÅO=ûÐÙ>õ´NPFXa&•"j 7÷ýÀ»}å0{Ùh]ƒÂ4Ì¡atÅA (Õ‰wtQ éRñåuíùׇER»ÑD"±Q©Ç¹Ú¢#lzO,"b²tåñAy|бXiSØü¾½Ó3ÓÏ}ü¡ò ¤ÔÉ};ß<ÕiwøðWïß{^»pàÀíGôQ3ƒx{gç=‡›™?øùßGWÑzõ¡€@€€‹½ôêEŸÎ;¯j¸uûi91‘Hl`Ùa`ÃÖ0¬Ahoüå×b/ÚµŽÏâMß¾ƒèÍüöy& |÷O|ßA¼13mþßwÐëÀnýÙBw²Ùj03: ]zhÏ ˜AÑ7êyƒ£-²5“ ¯Y¿o¯(TO$‰ 報ΟÖ!‰HÃ=Wõ@hŒ1œE,í?x§Ëó,ß´<þ"z8úÙG·îœüÔ2õ26¶]] âØçþäÐÛ<ùñ#¨ä°½<7ùj óõ0Õ%1  R^3ö1Öîþ⭇ƦfI‰DâºèË—Ú"@ð}u€5Ð(0púàa å׿€€—‡ü‘‡ŽR†ï˜zéWÏ{«¾ôÃU”û'–Ÿ|í;îxè“`0œ¦µ—€Áè% ëvënuèzÀ¾ØU‡‘k¤5ÂD"±á5*ëc  4à úíªÀý΀e<ó×_*nÉ:Sí©ö8h ½y¬¨š“7Þs±uCQ‡‡;“c­ªmǧëVÈ‘Ã8˜ý&º€ªºšñ¢!Ö‘ºËZÊǺ„ºþbèD"±a©ƒºD4l¾L¸$a‚1uÓÔ¹ÇNf+0!Ãâ¹ù­{fw¸áàÖŸyâÃö¶ûg[ó£ù(NgÊóï¾ñì_Ÿ‡âŽo¿{rjò‹Ÿxp€Fha1 ¼ah4V™¡&@1LÐV…sˆ2L”¶¬Ì±dCZL$9+6@°ˆhVÐ´àˆ¦Àq0 V`…”5V–WA0…Q"&, `ÑP„oƒÆDè34 á ‚²>1D@Ál$Ô½O ªC÷í KéÁÄÖH•Z&‰í ÙÃu7# :ÖAÃòÂBö5ó1“ã“ͱSƒžB÷,„cUbQù¨,±†h,ÚÅ*êø9eQRÕ)ÅÍ›§.¬ö3ÅnÁöÌr«åÕ¶N»êWQ!‚¦ S0©f„\†"¯+rUU㫪*Rt"‘Ø 0 4Öú$EÀ `S–ïÅv5M›6wP ¼}|ë®dN˜f„4( Ä4=ÀfÀh Ç‚IÁ6rûÇÇ)M³¶:»0ŠB1´AE”0¦˜e Wg߉Q†ýû%h”˜—H$ ½r¥m؃ˆÆ¡75'O,-Tâ_*» £*˜BtÀô šÞr¨7¢ª¾Ñ`=4Ý UurÅà ²ŒK³ÇO?? ŒuK;¦fw¹öãñó‹ Œ³[¦IØíŸŠ+ݪì&w<Ú›œœxfî¬nhŽ«5¯ž' ¤®'O …‰Dbƒ:hÅÅí¢­UuÀlÞ9%~ X",A¼ìµc6è»PµCuÓÔxÌîžØÔ,ƒzÉÜÝÜ:­•ëõ:@ ØS´ 0¨Üóe  Ý<3]7ðØ7µ©Ë"–;Æ&0ìoÏìjµí`0ì›™™‰(|eVÑZ¸Úù%‘H$6ˆƒ®%î’Òj8Gea7#l« xDUBÙà>à’ÊÜÍ¢8À•žæòüæPÎ 8^3ãôâò\È€f»X8‡sÝ¥r²3Ì0•^pÀ6›õ&'#ñü˜[?K@ þäêʪ¯”10¡Ý0g., ì0+ÐQ¨‡t%‰ÄFsУ„뮪;‚!9àz±Ýnк瑅éP_ƒ˜š™ê ºÏ¯œŸq®,ÇÎöú˜¨€çBwnµ?³}T¾ Æ”@$¶@2ˆÁùÐÀTÑ|jiþØ…¹£'NÀ"±ë«T‚ K+åêΩÉè(UM‹„‰Dbà ´b896€Â¨àÚ¸§€/5º··Æon«ðšˆÉ€¬«Ëœõ€0£™ÞU¥Åù&0ŒÞ¼u| X   »0\ŒÔ¾µxx+¶Šóe¾?( Ðw¶êÍGmôãV4ê§¾ ØsʈN$5ÄQs™ U9Ê å³^Úi³mã“[&œŠ¼øÒ|[P'ç9`aîܽ3ûÎÍŸ;}jñæ­xø4ÞpûmfñégOöhîÙ»?øðìñç €k}Ô˜ÈëXs ”ÀÓ'NÞ¶yÇM­æ3-:rä¨ÄÆ×vž±ß®Ù3~~ñÈÇ­.¢¤ðF"‘ظÚ\©Úä 7˜Š–€ h3Àd-éZ0uÏOžZÀ,²M°—2 Zœ÷”"ÂX³µä=Žx ƒ‰AJäH$’ ÈG½•i­Çš¯Îñ>ù¯^wßA×ÞÿÐëñ_>ÿŒq&[(.‡uÈ\í‘ÑòÖÈà"‡+ fÀ€s³|ë­7é‹Ïü»Ÿþ|€z}Ygì#‰'0,ƒ !€é´J""cL–eY–cêÐJ"‘H\kX†‚ FagF@’@…Lñâ3Ø4V¼áMÛ7ÍÏ?Ç€|äüÛŒ ÞŒmß2iUÏÇR…™™Y¸ïñ dÓ3Û O0ªM;&“«“¶õÀgVJ[p¼ññ¯|N"ÁüÞwݵãBwëŸÎú ‚Ñaký—Ÿ:vòi”%$‚-l£Óˆˆ^qäé¸:xöøgßõãOü^È2!Š ”‘bT“®õt•«Ç8^^s‰hM¬Ó‡ ‘H\³}q„ÃP°BdUUUa:0>ÿðù¾>ñ¥‡–ˆ‘eÓ@ÂC_|îþû÷>ÿäüÓ¾ðþ÷½í×ó/B¬Þø&:°ÿðçþâ)g\@äÜ~Ëèž[ïúã?y"RŒŠÿÿ¿÷Í›ñ¦Îeýé/@!œ‘CŒPà?ðmƒÁÊsÏS T°ŽB¨§ŠÔz:ÔÞ:{ã•¡E$„Pï¤A"‘¸Fz4|5ˆðP Ð?û3¨Š…óøÔ'S‚³üÓ?ùg`Ëô{çoÚMgæÊ'žøêÔØ ˆÎ>ú˜¾øü™gž97- l}ê1í½pöáG—UÅ–«ç{SSgT-@*úSÿæO+–ñȃ/öƒgž=e*(³ˆøJ T/Ëú2úü2!U !Ôû)¾‘H$®aèâB‚%XƒÂ ¶(š0 ÈA–ˆeÖe¦mဆ…%8¢øã?ýÁÎ$\=E -Fó÷ÿø‡M4ê 1ÌŽ†e˜aðÛ V? BfÀ@ÓÂ9g­½øñØ™S§o¹åÐé3ÂÌÌ6Y§=Ñʦ*PyƦÙém[n8{záé§Ž}ñË_"°U(Ãæš7´ÚEgݨq_þ¤ à«ô{‚!bA j9Õ´$‰W™@” ƒ¹x@Úî`U…k:v8SS¸†Q“‘=?w~Ûö, Ân玙Åó§Íà;ey>úîùŹf3#dÁ쮙ǎ>rÓÞ-«Õé"o&‚—“Ù<»õÔ…G%Ÿ;׃ª!ðwÞòúûî¹óðöÙ-íVÞò†oÝ:½ùÍßòÚ™öX,‡i޽õõozë›ÞrÖ†@oó·Ý¸u×[ßôî¿÷mÆ(5Çî{ã}¯½ó~eYÓ‰D"ñMh½Ø²ŸÖE E²A9X\\ܽû¦€¸mÛ¶¥¥%BUVýªaiiëô–Õ¶M[OŸ9}¡¿èEbfœeã2{âĉÕ–‰Ùù……óË Ý••ñÖô ìÕ‡ ÏóN§sî¹…•ó€ôc/ ø<öØ£O?ýÔôÔTmv™ët:G޹å–[úRYëöîÝóøãO<üå/ošž!.Ëøì_Ö€}U»o¼ñ™gŽ}é+_öâyT†“H$¯ši]™7ò•¨G5>1>?¿055e­Û4;»°8ÖRCœ<;·ý†sЦMQŠPŽmjÝrë¾[íŸ?úÂMmšš;w¢ÝÈ^|éù›öÞ`Ù)b„T®–NÍx{Ü’µ0o¿÷- ,—=7ï¸åöÓ[¦È:¦ÙÈÏv¡»\Í ƒŸžœºq×®»ï¼³( Ø6EÕïŸ<}ÂÁXðøØmךžœš;{Ö€P¤ŒD"ñªa˜#q©l)Ö®Š1¨ÊÂÂüÞ½7Ÿ››•‚ tW»Y–µÇ³"þô  °²Ò}ø«W@Ë43d’i§Ó)š…BEsllüôÌé³sg¨B›Íf¯ß×eé! XQ}ä+XëVCߨ¨fȱª¼‰1zpïk IDATÄ#GŽTJ«qP§|8ë|ðUå™MåËCžå•¯X‘âЉDâÕ%З¡KA¸,+€æçç·mÛvvþÜ@}»Ó©oêWƒ3sg÷ܼï…_*l}$Q¡ÄN©Š%»wí=uæô©Ó§‰%ÞtãMEž;c} QèÉ“§6ÏnŽ1’(3+( ::fìÌ™¥òU…h³Ýfb"7¿¸0=3Ó­ú •þòª×ªhµ˜L½’ª²'%€sóó[·oë­ö^š;õri‰D"qa°®A­åCCeeYvîÜ9Y]]-˪ͼ1wnŽ@ ”ƒ²Ñhœ9sf+3q§Ý9·°5F(ƒ&&'çæÎ©ªoÈ ÊA«ÙZZZÒað›å@¢4›Íññ‰…ó Ý¥eY]YÙµsW³Õ;{n.BÇZã/;Å`kíÒÒrËsóóSÓS““f{ii)ŠäY~æÜ™±Æ¶;¹¹3‚ãívk~~^’:'‰Wui]á €!CÄDð1Шƒ˜Hª8`ë†pŠ*z…æ6+CÀÕöœÉ[úBëŒkCV4®ÏGÎlE­W-‰‰H)"28 (3Y?–”să¢ ˆ Ç -ŒG PxgÙ¢®Ô¬ÍxI$‰kþÚ¨ÄßyçãcãL\‹!YsÛkn“î¸û.TÑWÁûjÍ­b¨ÿ¹EDQ‘ZL`…Phxtò¡ 1ˆ*,‘à8¬ï¦2úúD"P/!@ @ZE¢U¨@볎@h%>ªL/Sz˜H$× @ëÛZ}!ß}xÏî=uD"wÙ7ì¾ûðadŒ`Œé)±1¶$ R[סdSmÌ£Êè"ÖvjU**@%!@"4 Š£¦Õµ ¨‚êû¡uñËðA €ÊèÿDˆF¤ÖH‰DâUƒýÚ7)gœˆ´Ú­Ìeƒjçù¦ÙÍeUk½“ÓÓTerzz×®:ö_}îs1†‰©©ýûö7›Í¿üô§G™m„Kâ¿té]<ä¥;WÉÔ;z…å¿âëƒjJ}N$¯VMWlµÕuì‘“'Oî¹i€™™™“§Nkhµ[[·n ï¸óŽó‹çŸ}æÕHÆ8p°òáØ±gF£/.?ÒÕ·~ûÛø:¥6)r"‘Ø}5ycCFDBŒ!Ĺ³s»wïÎL¾oÿþùùyU ¾f6Ö¼¸xaçÎ'Ož½ñÆÝO>þø‰—^J·‰Dâè¯ƒŽˆ˜Ùûj¥ÛýÖo}³ÄØ_]-ŠƒÁ ÆE9räÉçŸ~ß.˲,sΕe]õñ_fK$‰ÄË9h {Ûçlü±cÇ:ãc?òÕØï÷A¤Ñ|i2 ßë?wÇÝwù²_ zK+Ë»öì™Ôú"‘H$¾A¾ÂÈÒhÐï÷º0¿ðgþçóós¨‡•¨h6šÑ{ÿã}à=ï~×g?û™úAxà×¾öžÿùG~Ø9W—t_K["‘H\‡bÏ—ûñ4¯$‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰ë"ZkLxeÏÂD"ñ÷Dú²%þÎb}ÙN"‘H$®SúÈA'+H$׺R'‰¿¯oYz _'Î9kíš:§G"‘:ñ͇ˆ²,kµZDÄÌÎ9Õ4à1‘H¸ºÝnOMMu:cŒµvÍJ'‰¿?Ò×,ñ·#"ív{bb‚ˆŒ1uÖ]rЉÄß»7J/Aâë¡ÑhdYæ½÷Þ×׬í$®Åo°^ýg²¤W, tbS'o¨jrÐ×Äw÷k}ƒåâW tzç’@'‰€æË tYwuL¯Ø†x{‰Ä«Êh%¯•t"‘¸Ö-–^¾O_ãÆÄµI/A"±A,VRß GJ³K$6 I “ƒN$‰Ä?ü¤D"‘¸šLÕé•"’Ò+ÿ!I!ŽÄ?Ô‰^_ñÝÿnRrÝ*_ñÚÖ/Ä7XœR—ÖMD1ƤÑI B õ}H½Š]‰àú °¾ åk•¥¼â3cŒ1juN>: tâUˆÒ×!ÐúŠÄ‚¾ÖµªEIôú-cÖu¯ý-'¹W"ÐkÝeëýTGš:±!ú¿^è⪗ ÄD‰‚èzW+ »¿ñ—£öË"Ó_½ŸÔ9 tâU(Ít…L¯;¬ûVÓ% B뮿ò«Ïën¥Ëºî«G U( Ò«ªÌõ Í_ë·Æ7â£U5Æ`-ÄQ_L$N¼Jàaa¤®4ºr@«÷%^¡ÚÄÌ*ªPÐ%:ÎÌ*ëD™×í+.; ¨(@×s20}býÊXï Óçý›uêM$^:[f’5­!€ÀæKÒ³êï¶x‰ŠB"C—™\Pe²ÌLr1p¡Cч(TªT›h&Å %}™/wÁéSštâzUZ—>APuî¡Z;™x(ݤù/ÃrŽˆÅ{¨‚4 rÔÿš˜Hˆj푉 DTkó(Ä1§ë^‡’'N$.Sˆ2ˆ•¨XbcL†™µôƒ: f°`2GÌD¤Ùä¡:@1°:[¬F †Q¨RˆªJD 2`U!"‰B°Å­#R‹úD q$®£ü²!&"V&b€kcEef2LD^B @®Q4š RV%l˜AA$O cDbŒÑPî¬eg‰8H‰‘C`@G9uœDEU×–)¥ö•úê1—_ëuN‰×'©Gâhb"1³ac3ÆXã,˜"TTÀ©q°*³0¹"ow:E£EDU  hôœÙ¢Y4[­"/ …Íl^´òF¡Öz—£öÏuJ.qoVÖ‹?÷õUçA®çr›DèÄmAaĄ̃‹­5ÖZ—Yç”Éû P¶V…˜Ù٬ȅ*““7ÝtÓŽÛ™¹,KcŒBcdL£Ñh6™±!FRdlÆl¢D‚ª:—Yc˜™A ⺞‚ ×±h†°µš$ó™x•’bЉoÈë1“1Fl†Ø×hçà«~¨ lòªLLOnÛºµ\í?þn4Š¢(¬µ£¶Âu,[/K®ûx8“YcɲˆöÖnm·Û!„jµb°Äê‡D—Æe.6J²œHظðÅ®Zë§ØÚÌeÙö]7ì;tHHûýÞé3'5 ûÊYãäT C¦p¹ã¾'Ož »Ý.ˆâÅ ÃæR®§x¶Èóœ­õUUùAˆ¡>v·Ûc$1&J´ÖcÈB9‹(U%°bÔK/Ét" tbãÅ7h]S$bª“ì²,ck5Jwuue¥4t»ÝrPæYýîªJk—ƒÞ³Ï<ã}Õëõ‹‹‹‹Kʲ$¾Ø¤t-sî¬:66朓z2žúƒŠ*ëÂÂ3‡A‰Ñмºaq«ÝŽ1ôËRU« 1Õ+§ô%I Æ;ƒ†«kÄuë#&RfR,/wÍÖb÷Â~°ß_Y\¼ 2ÁXå¨[Ò¸¼¼b>ðjDdeyLήûø‰Ö5%Æ0q](ÈÜnµU¥Š‘ˆ¬19H¬ª*JtÖ"Uk.Ë’ÙØZaˆ#Bİ—“¾LÐæï@RøDèÄ7MŒGÓçÖ)˜©8+”‰1¶®APUã¬h\^^β̇¾h¬Ý°!µÎ¢N¨¨£µ9QaÃõš`Œ†! &D@HëwÃÕÁ`%ú}U‰ºæµ#eÍ > ªAˆˆªª*ËòÂ⢵6ˆˆÑ Ø•Ô Uv­ñ|èĵüã5½‰—hCDàØÃõ“HPˆ™Xk#¼ªB³¯¢ˆz Ëú¶ÎkÖºËÝó¹£€ˆ fc­avÆcr.ê¡V": E´žëAD…±QeÚ¼01Ë#"U¥¾ª#Ì(´N·6Š(xe“›R¥K"9èĵ€®ûË£4;½xëúƒª"0J2 È%é%6ª*Q_&§¢6ÈÃfâ½÷^B}Þ ¢à˜˜ˆÉ9Wß9s™**¿ª¢.˘Y(8—™Ì0*‰Y¢\Læ#i´^" tâÕKí”AuÜ9™a¶]À6ȬZC¥f&"#V)¨¯PÀ‚…¢()Q¼Ú`W"0Õõã"QT¤nã1˜Ø+l,96l™™Ù³gOoyåØÓÇZÍ–ª®®® cm–EP }k Ø€H8†ÒH½DèÄ«Þ5[WÔS^¡Ì¤2$†Ùh`°À:Í2—¹Œ˜‰ÔÓã®–"£‚c`™RχKŽs1¶2Œ«ˆ*D‡±U@ Ã,<­ _ʘžš¾íÖÛNáèÑ£Î0õ}k­µ³!¢¥ª| Ñ:GD*2ÌÝ…„qeuL ø%’@'®Y¨.±&Z†¹oÖˆ¬ÎuŽ{DDà2rY–3‘j4Ö^X9/ˆlYíÆØÕ^5ì¢Ï€`8„°¾ª^*©w=ÝÐÔIx,àa6+1xùÂò±§Ž-_XTÕÕ^WUG™vB ¾cô!ÀA$Š){ÜIãDèĵ¬Å—ygR"‚ˆ€•ÃZĈ,Cž“³0¶áœª: ª*103²Ö5rg­©35غÊW¾ Ö’°B‘娼y–Å®¬tMFãí6‘]î.‡2C hteUŠŒ:„2ÕÓf™ë.Ï5ªa šHáÜÜüòÒ2HˆÉkŒQ²<·Ö c0x˜Èb21z©Ë[˜™­*D¢ŠŒæÛâ GŸ5I מ@ƒV‚ª¬"cÇ.Íæä¤mµ¬s¦¬ú½ž =" U0ÌLê,;0ET1ÄmÓ… aè() p–wlß’»Ö‰“'ΜYŠ^ȉq쬭ª*–£hæ‚XIT_k´2h¤ª¤Š1H%r Á—¡ßë³Ó©©©Í›¦WW{e·gŒñBÌìœcHUURU!fXέóï0,2Ä0 2Ræ$Љ$Љk &€Ë8:D­ È´•Ù‰F{zÆ#ç{¾ç‚·lä˜äŒr^BU«J½½~¥¾j8rlE=uyùBÑUP†åÕUØa# Å`µʨaX•M£'£J"¢ DUÌðŒ±Ö8¦ljrÓÎ];çææN¿ô‚¨p¬ÈŒQç\U ÊàÉÀccFDÎduÊ  ‘˜DT×g¦#[d:‘:ñͳÏW1Ñ6ÈœÕf¬ª–È‚ÜD8AlIY<Lˆ r 6È=T”¼r%ÝAß—UÞ`Ë”!D={ö4Û¢ßïÙ‚‚QõQñ(TQ*‘aN1˜QW¬D!U…vÒЕÙk˜bðìŠbwµ?(}é}Æš¼ BF)€Q À°eæÈbÌpö7A½ÄG'N\3¤~Ðש@Y×™I ƒ"7®!–Ur.rcŠ"·Ä ruEºË¾ì;ß¹DA9H«ÇTF "ú¡W‰©0 ¯^KR“A+ T…«[á `À1,…Q€ ŽA€*ê"De0Œ©W1­%"ã½wYd.,÷Í;ã Ê.H¡>„ R ¢„UX¬±ÆšŒ™cô"qxŠÒzÉs}η&N$ø¦±Ö–è²æœuE41¬¡<Ëm³‘çù2Q¨Ê~w…˜¼÷~ËrÙæPO&Máéb±ØkK.YXû¾V"$3AVÀ§o?ýßýÚ¯;~ü[+ˆvvvwöæ»;»‹E»¶¶¶±±R75‘-‹ù|?•¼º²¶²2›MgÓéì Yƒì>ÌtÿŸü“ßúü㟿ùÄ6nŽ zÄwîëN9h0wÎ1¨¨J匙V½Õµ;±®DH›æ<¦ñp*¹ÍQDæÁˆhÑ mÛýLz•RŠëáØ54ɹ˜¨c¿fÂŽO”nR7G|ØâœR¿MÓ4ÖRJ›]7ŸÏ÷J[¤…¼Cê1 ÓüãýÙÙ×/Ö+W®\¼øÆ«ç^3U ÁT÷ëkk‡66š¦!Pß÷]ß‹ˆD¥ä\J9qôè­ïºíøñ#fªj¦O>ùÔoýÖ?»zõÚÛHy¬G|?þåŽøþ>|£_‚‰ˆf ä4˜ï3Ã{ç£ù:¬¯U¾iXÕέ(Q1ŸŠÌ%õ¹d§¥H—‡6855—ሃù"E¡lÃæW–ÄT Ð{Rpqã8qÞgPJ¹Í 5=‡ª 1¸f2ùŸÿÇðG}{qþÜ«Ï<ýÌsgÏnmnŠݰõØÖTUŠ˜Z]7³ÉÔûXŠt]ß÷igkûüùóo^¼Èέ¯¯ßè®Ãm·Ýöáø™§ŸÞÙÙ«æ#AønS3}ÝÇ䉙ț1Œ@¤|Œ:‘0›¬žUk«Ÿ%Wm‘e¢eÊs+I$›Š˜pÅä½:V®3{sNØ ‹pŽ<ØåžQ¬ôL½sh&Ï>ˆ‹©”®ˆ¨Zp8Øœ4r˜L&wÝu÷ÿúþ·£ÇŽ8øòåË_üÓ?yñÅ—‹%½íe©•ÁUÉLM†/¸¦nŽ9väð1bߥvÙ•,ƒ›]»lßxãs¯¾º¾±6›N‡'Š1þôÏüÔÕ+—ÏŸ??.˜#Aø^‘5Ù0ŸÂÌjxbpMôUE5OVV_kVV¥PRÍ­[v}Ÿ))¤jÖ™ª™S"fª¹"b°SäÁ‚p.LÉÄ=aÑ÷BŽ|èË®k³:ï›Ù %)EØóm·üŸ~ã™N&4ôݾúÕ/ÿéŸüéb±Èšì@-655£ƒù@G`G.¸8™L9º¶ºVD—‹Å²]H)Cy=xÚu]ûÊ˯ìïí8qÂÝ[yôÑGÏ;wéÒ¥qŒ zÄw]Ýàƒ~¸Áß™à‰ ÀÞ{šV>FjÜdeåðñUß4óý´,’¼LYŃœ9QSCô3Uxe°ª9v0ê¡ä½“L< 41©ç^Õà´LÚ§"äbUǪ’¢E³ªMV&¿þßÿƱ£Ç±ak{ûó?öÚë¯9òó`œçƒË)©æ•Éìøß8uÇ)qÌ›[›¿ÿo>»¿¿ïœcçšI£EŠï¼Ba,ëªADLÞ{çœgÏÌìîî.‹Åþ¾c–RŠ!Bˆ‘ˆJ)fèºþµ n}×m“¦cü±û±'žxb±XŒ‹gÄHÐ#¾³`æ4ƒ8¦Á½“ÔÌ.¸:DbŽudæÃǦ”6n?ëªMó½ý²/]×kïÀLìC ® ļ’R¶S#•étR–IU¹>¸Tоª‚¨ÔjÑyƒ1¹l¶lS3[m&Ó¬"Ë""ÎsßõÐüwþ«¿ûÞ‡¦ƒ1nû7Ÿûýe» cõ)U1.K!¢"ÅÄÈ@ Ç,f¼U]O'Ó¦n˜hoo¯ï–}× iß¹$Sõ1Ìf³bÛv0„P™Ñ›—.Ý}×]ƒÖcxcíHU5¢sÑ|C%3«B¼õ]·-—‹PG®<çCÞ;3šøèB4¢ªjB3e‹ÁˆrˆrâúÊjêóþØÿç?ÿsÎ9&&¦'þÝ×7¯¢LŒ1ºphýP·h™Ù±¯«ºdq䈙ÀÌγó.4U½¾²²¾¾æ]»È}ŸS×÷])YQBpU 1ÛÙÙLñˆRzýµ×OÝyÚ{`ccc:>ýôÓßp-2àÛ¹šaæÑùcÄHÐ#€âóÊLÞU!ÖUU9V…yçØ;ˆ>Öõê‘õƒ PR*¹¬×ë¢ÊÉ›™cv<ç)ó¤ªëºÙX[½ãŽSÛ[›>„bª*`"¢È®©ë••ºª\Œ!x|Àà)šBߥÉtzÛ­·9zäïþò'¼!z"~üñÇÚvÙuÞ1DÇ~}c}±?¯›ZDƒuU³ãªªÌ,„àœ7³º®›ªZ]Y5“¾ï½çÅbQ$‹…z犔”z³ƒÒ¾ï½÷*²·¿ÿÖ[oÝ{ß½Ãa»÷Þ{Ï;÷æ Ão‡—ߎ‘GüU1zqüM>µ8UR«A|ôìÁ½eRa3¶b戈­°¯Ê·&.—-g³¶`Jí²ë[fçNŸ¾óòåË»{Ëélvüèʤ®Uºíííå²=rüè-'O®ol[‘²»³½µ½@ëë³™w|ùêÕëׯ¯®m4M¦ÉÉŠ”nÑ:ϱŠûç?ÖL&¦Ê çžîõ×.¼ë¶w /1ú"yꛕ•k>zöõ¬>„XQasózq6›õ}_o–Ûv?¥Vµè‡™²¨t}jšfum¥©ëvÛ¤Í IDATÙ:â¢bÔÞ¼øæŸ}éÏÞÿ÷GïŸøÄSO=5ëˆïõEðˆ¿¹ô&è_7˜•”RßkQè`G7 ³Ô÷©ïsNƒ ;™NóD”s^¶í|>O©˜a1_\¹zm{{{¹\ÎfSUëRzý7¶¶¶šºÙÝÛUÕ[n¹u:^»~uÑ.ï¸ãŽ;OŸö!ÔMãœ3;^[[›L'Áû÷ýÐÃï¾÷ÝL`wgçK_ü"1ð<ÀKn—KÍ¥Lš ;Wr)¥xï›z"*Ì `±Xìíî]»vuk{swwgÙµDðÎÝT(ªªªëÚÌöçsçܑÇþ5˜©=õÔ—.]<¨š?þñ|\E#F‚ñ—Ñë_rséí†)+(É¡%]BZ“ì =iAR.Å4K‘ÝÝÝn¾@. “ÉJSOk7q®æé¡Õj}Z¯Vqš&„@fÆÌ ´}—r·»·}íÊ[¦™ “ºÙÝÞ,©sÎ9çs×÷]7«ªÛO/mëTgµÛX©«ˆIÃù©™©zçþäóìAÑûº ‡lll¬®¯¯=rèÈ¡à]ô¾´}Î9õ}J©äHÊ-$9*%/»nÙîõýb¾˜ïÍ÷E‹‘‘÷+:ônG"n—-Ô̬n-"¹¨(`döÄž¸y >úÑΦS~[¼Á*­cĈQâx§Ã™Ì@ïÀ¤b4¤’¢ ¢®r9ça¯äãLEûÔ•,¥”!;ø­íMU™Í¦++³k×—[Û[¶ºº*RrNf¶2[‰•;~üÄ|oŸ½§’OÞ~;¼÷d¶½½]Jñ!Üÿ}9e3óޭ̦þÈo:týúuf¾tñâÅ‹oÄ…,u½ÁËEî¤HYqM Á;1ĺª©†‘sž—R’Rj»0 ¾¡¦ïS)©ˆô} 5DŠó1„0[[i»6õ©mÛœsJIDDÅ W¯^}òÉ'}ôQ³Ùì#þÈïýÞïkiÄHÐ#¾‰^¿Å.ýÇY\ ž“gìÉM÷}/DBd0Utûz¤fI½gºý–[–»»%g3ìí.ÌXÕŽ=²¿ÿ¦÷^µ3$QO½£º HÉIU“æëW.çœýÀ#{»{ç΋1¾ï¡‡sÎJ˜Ï÷v/ît]×÷=ˆv¶¯ÿè´”l¦FüäŸþIN;ÞܼÞK[Š˜@TC ®o»¾†LÚ¶],“¦>uêöCGÖ7¯^ͪ¹”¢¨@¼X.‹hÛ¶}ê“ %Sh‘ܧ^‹mnn–R†hU-’ÍÔ üùŸÿùÃ?\×5ûØÇ>û™Ïèã=²Œ‹sÄHÐïhqßd3øvRþ´}] MŽ9T¡©k"SUÉ= É~‰ f¦:ŸÏ¯¾uY‹ìn/cSÊLœRöÞQŸRUÅùóù¾÷B8qâDJÝîÎ.Ue¢¾O”vÙzçX.Þ»#‡ƒ°µ½½²º:_ì_¿~Ý;X ±ž4k'NÜbfÄ|õÊ•sçÎUÁP…5µRL ªâ$笪ªÚ÷}UÅ"ÙÌî?sæä©Sßxý™?û³]ï}×¶›››m×´l»\Jê»#³UMÉÌ"—à=‰êr¹SÕ‚¶¶m_yå•3gÎpôø±;N:ÿÚ…qŸpÄ÷c›Ý÷#1sÄ»väÀÃàòp#"æ¡Nå›zèðMDßhÂf*µ1;òÎyƒ¯« Œ\Ф¢jسcÕ¦ªT³–ÜÄ0ßÛ[ö©¤’z‘¢)Û|¹\,ZÀbUåœT¤CÒ«™‰5M³uíº™uËÅl:-93ór9÷Þ›a±XîììTu]DœãiU{vDœߣœ:}ŠˆTõ‰/|áúõë>8vì{çP²æ¢RH•”ä"j&v\r)=ôÞÉd²ººvÿgb_»pa±hÍÐç¢fì)RIjZŠˆÞ(… Þ;vÎ{¿¿¿«v-nv`Û¿³»ûðÃÎ9=óÌ37Ïðõšô¨M+è¿áj†CËÂÁçf °sºQ»™™1½½ŽÆ;Èôm VpLäˆ`FE„‘»ÞÈ´OƒA(Èqh<;8ö–û‹¾Íàœ‹(›ÙÖæ6dÌÌo½ùfÓ41Äv¹\îoçœ=¹‚áÚ•«»»{u]KÎ/¿øÒööfŒ!F¿µµÝ÷y¹\Öuµ?Ÿçœ˜Ý5Eß÷}Nλý?_JQ‘\Ê‹/¼ÀŽU-§ (,[)*¥”Ò¡´Ë…˜SU·X0ñ0°¾ì:U2dï{àÌ©»îþ·üÇ_}æË¥ˆšRÏfšRöΊˆªB €3ÏŽEU5UƒÙÁ£põÊ•ÝÝÝõµ5<óàÐî¢c=b$èw ˜9°êaçØsNCø´fÆ ˆ0“a˜ã˜Ì°1@žá˜TMUÄJ2%bË…ÌyrÁ‘xçMmÞµI²!À9Q 0³'RO®ò™JN¦â˜´HR¶äÔº¿·—svŽKA×w§*ÌND˜y¹\–¶WU#LãìŽÓ§â»tñâ²mcUå¾WÕ\a ¬f('¡ŠK.`R‘¼\8ïA0CÉYÍÈ ƒUuý“?õÓýÀü‹OýÎÖæfÏÉ̤•œUÅT)«(ÔTU‰`uôð^~饼ÿDt×]w­¯®-—Ërð.xà==®Û#A¿S:VÑû`"DD QÇÌìÜ@ *2h f昇‹ìanx`Šƒ6EÔ´0³#ÇLE3ÄC !„5°Á4VÞ<%‡¨ªÒ—âàE•Ä1 ±¯1ÆÚG.IH0LêªZ.úÅbѶíD–\å‹¥A•s~:™t]®ëÆ fÔ÷=@ŽAD)—S§NyïÍLÍ®\¹2ô";ªIÉ08ï=’Õ×èRòµ3RÑ5HMõ@y7€Ž?ñßü½ÿö™?úsô‡}Û11‚ó›šÁ,ç€0îA:íÁ3»ôúEzäÑáŠåž{îyá¹ç‰ª¥’‡1®Û#A¿cNƒ÷+³YÂr¹4C]×U‰8—\ò`ÃFC Á@̓䡪7™ZM;2xUU‘ƒªšc2²ª®Wf3ö.—²×-EµÔ„¨bU«AUËΞÐ9L¡b¬¤>86b°'ï£kžÀÎy)$¢RJÊÙÔ’ä *ìb˜L&ÇŸxå•s%ç”JÓLr.§NzõÅçCAýý<( ¯]¸ÀDž¯ˆ™]IFæ@Uƒ#Š!ôÌÍ%é` *¥˜¨aH<ˆo2çC?tßý÷ÿñ¿ýã?{ê©*V¹d3°ƒ”ƒÆ ª)ƒU•™ÉHo$}¿qñ &@>øà+/½|`Û”Ó¸\GŒýÂÐAཿõÖw]½z¥äÂÎÝ}÷]¯¾zÎ9¶XQJ‰ø ܉n4jCoØ13‰|$ÄŽF vÁÌ”´ò4[[].ÛN’Áhµ®ë¾ªbAêSoZÚVLM¤¸è]Ü…a‘|›õÙÚþr¾µ½µ~èØá#Dzl§B¢ó"I#ˆ {2Í{û;Žmc}à|¨-¬­¯;~tss½m—U]¯­¯:ö”’K a}mµÛÙfÇÑØTY)… ‘88ª£ï 1ƬƒøC 2"&³Ô”Ù™ê KDMSÿÌOÿô÷ßÿùÇ?éÍK0Ó‚àCAf¦œsðဉ¨©©©*€¾ïÕ”@ͤyè}?°³·{þü…sç^õ#A¿ãz1ŸÍf{{{§OŸ>{ö¹Ó§O—\æó9;¾åĉµµõÛo¿½mç/œßÞÞ&¢‡zè¹çŸ?}òŽ•••?üÃ?<|øðÉ“':tåÊ• . ÈÚêÚdRO¦“ÙċʳÏ=«RN<ùñâl61Ã-wŸ:røH»RˆN¯\½Òúúõ×^SG©êêÚùmfîæKç¦'o»}±\înïF¯^»¶qèÐm·Ÿ¼xñ“ÆXíín 'Ó8íÚ=U!ÓB]Õ“Édo?XauSWu$ÆáÃ÷ŸyÏÊÊJÎÙT¯^¹êˆL5w9ç™p¤.Á;W…Ú¶U¡«ª®C¬À$"’uPä™wNUEDÕN>ý_ÿò}ø¹Ï=ñ…/0s]×ËÅœ™êzÒ4s°íÝÍíM)€ªR:þüwÞ Ð‰'BŒÄTDFvñ]Õ?ÇCð½Åàø#ªË¶½ðÚÂí·ß¾¶¶úÆÅ‹f¶±±1™L¶w6_~åÅýý½ûï»ÿÖ[o]YY9yÛíï¾ëî+o]~ó‹'Ž¿ÿÞûª/¾þÆt²rï=÷¯¯­Ç*ÞsòÔÖ¥Ëo¼ôÚæÅ뇛õzMúRºì š®]»võ™¯<½9¿W\昕£ïZEì ÷+‡ê·UM¥ÒdEɽðÒËm%ï}sáµ7¿íÑ¿õ“Ùᕵc“ɪÂåœsu]ÍV&«+«u¬f“•&6Á¹Ò§E?W'óÜjÀt²bŠœúœzf"i¶Ò#'N½O)ªzMè—®_¸nÛEl—X¶ºX8§`ru=;1SbòØÑàÇ/ªì\#ߨ]ýà?ø÷þþß¿ó®»677»>µm?›­0ñõÍë¥Èt614H.¢šs.MJ){{{çÎf[Æ;b¬ ßYMDMU·m{hmýܹs?þÁ¾ð C>Hßõ;;»Î¡ïû¶í 68Ðïíï¿ñúëZä‹ól6{þùçsJäÂý÷ßÿÆùs“É$Ƹ¶¶6ßÝÉ}šÎ¦óùb¹Xö]OMÜÝÙ]®(_Û¼ ²ÍåÕɤi¦«õ¤öI×Öך¦ÞÝÝeË®=4[¯ªêèñc‡ÞÞÙ“"!6jÖ÷=»U„˜MQJÙÝÝNœŠ¡išãǯ¯¯ßšALK¿ À9êS¿³½Óõ„õœ³WQÕAš`")EYÍÄÔL‘û¾ä´ìz3[©g9WU•s ç¼slaV¢"U¬bŒr“O͈ymmí?þ‹·Ÿ¼ý³Ÿþ 3O&Í믽¾l—©KwÞuç•Ë—‡Žl3 *ˆ”’www_yå•®ë†=€±ˆ1ô;HßH)Z[ïú¾ëºÅ|!¢/^J)M&“"¥Oýý÷Ý÷»ïÞÛÛ3µëZÑT“’µïÓle­[¶kkWU³œÏ›X…Ùlžó³¯¿vÇ=÷Ó´½µõê˯°c'Ítl1ƻ_¦·ÇúÕW®èêêæÌÝ}×=çϾvë­·/®v)—ˆª©'.T]*bt}{·ªB–CNÛ/½øÌþb»”¼Ì;®¶vWÔ²šKÞÚÍ—.ï¾zñ5÷Ö¥vÙ9ï÷Êüð ¼ÀÂŽwC# ‘8Òd*²©‹:µj°Ú£uÖj6sŽ«grŽœ+¥ø¡gYÅTƒ"òÞ眉I“>ôÞ÷~îßüA×uuU§œ¦ÓiJi¶2“]tÑC3 "ËåòÚµk7·gGŒ ú…R 9ǹd"Z,!„RJÓ4xäo¼ñÆã=ØOüćØßÛïû^DªºòÎïç½®m«ªÚÝݽõ–[wv¶«ºZ.–[ÛÛW®\Íêûî½Ç{«ÊÔTm:›¬®®^½z5—¼7Ù­c=©'%ËÙgŸûÀ>pìèñÂ…·.ˆhß÷¹”½½½ÕÕÕsç_½óôé®O››[EmccýÍ·ÞÚÞÞêÓ¢Q±º®’ïE »ÈŪÉY‰].…ïº>›ìï/R*UU¯¬¬ˆjÛµDT…Juˆ<1\±sô½V5›©Šh)!Ff6¨H)°®ëº¾ëûÞTر¥¬f·”úbs=*¢f¥H.YU÷öö~ç·»ë:)EM½s{{{³Ù¬äÂàÁãk´} ¸Ñ63–Ï#F‚~g¡ª*å’Û-—KUÍ%3óÎîÎþþ~N™ˆÖ×7vvvÌ«šjѵM¬–eêxþµ×Vf³â÷÷÷»”¶÷vŽœ8ásž­Lw»Î|X¦lÞ»ªÚÛ_ÌVÖÚEWUñDs,¶þ0yýõ××üÚ¥/=tÏÃ/¼ð|·è\¶BŽL•<.¾yñ½ï}ïöö®±ÜÊÊÊë_›/öÍÊl¶’{gf>nHßwycTZéÊ4Yh{!ÒÎRg©%­ôâ—¨0³HTs)ATUX3³ Œ„h#vESiªÚ±[¶ í—…ýréRîÕD•D93%9DŠŠVU4€зýÿóGôÕ¯|emmµ©›åbqéÒ¥Õµµºi¦“é›o¾Y¤ MˆU5”Ó7'¹Gv1ô;±|&ƒŠ[ÎùÒ¥Kƒ%ÐàÕyáü…ÙlväÈa½~ýúÆ¡k×®]~ë-çÜþ|?ÄØµíæÖÖÑÃG>œRzõÜùå~Jùر£Þ¹¾m/½ñfê³÷n>_¤\Dm{ww²:kšfÑî.v·êiäJ“í^ß½¾výÚåëÝB½÷¹”餉®ÚÛÛ­cõòK/Ý~ò$3º.¿ñÆëbj* Š1–”—íÒ¬ª› ̉š¨-»Þ ‹å2DÏÄf¼··X,zçò~Зþâ¥{ﻀH¹õ¶[/Ÿ;ŸR/ªZRóN‡é›.¥Ï™E XÌ{)¥x,sÕÂLìXUEM´"3f+¥À@ÀógÏþï¿õϺ®+óù¼®+¹víÚñã'f³YJéÊå+Ëv94H›AT ¸åÖ[F>{ö¬snô±1ô;•£s³ ZJ¾xñbιHI)™éµk×Ο?_UU¾i&[[[Þû/}éÏ[´K´måÃæõë—/¿5›Îöö÷œsê¨ïûçž=ËÌš˜¸¼òê…ÅrYMª®¨íK)"H¥”±Ï]«¢_¹þe€ØœôIEööRåc×uÐòf»¿»{-çÌ®êºÎÈ‰ŠŠö}—T5VW±Úï:õ!dfEÂå+»DM×¥ÝÝe¤”Ôl¿î»¥i *LH€(–ƒ¥‘²L4ƒ¨ïÔ;-ªZ¨¨ä”zä € fVò둚öÚommýËñ;ñ‹)§£YÎ[ò䜳Þ.^|ƒˆRŸŠ”R 3£+jVÕõÍjy7ÆU:b$èw(BQ•ëׯåœÍ¬ïº>QLÙ97_ÌcÛÛ;0Y)eÒLT•SØþþ>1Ô‹ †étª¢©O’µªª«œ³”¢j‹e[E5oDèsÉ9Ï÷U¬›%;â¶íÅ *iуÑBf³Ùr¹/"ì¥Hi—‰=‹(Ô@>Ä–,©ªeãÐáC‡Öçóy_:¹ïz"v>®¬MierýÚµe·óüsÏþgû§ ª*'n9ñêW¿œJÞP%vjB TP´ .F 6¨ô}„B… 0U1(eØf¢™.í¿ûÂ>û{Ÿ13©ëºB‘t]7tÑ ü+LÜrË-7ÏγÏ>;Š#F‚~§²³êMÃJ5ÛÙß ìé#V±ï{ÀR)ô›ÁrNŽ}ÎÙy×¶­Äا¾nê>õÌÜv—"Þ¹¾ïͼ)¹àcÉ¢jÅÐÏFV×UßkÎêÈ5±Ì̃èÜæ¶ïŒº }ÉäÀ¬¦©”¤j©,Cp!0e5$Æb”É|Vên¹ãØÅ‹i§íuR…êðÆ¡;Oß±·µ)Òv»;ç.¼¢* °£»ï{÷“ý‰@ fªæ#‹*AÕ³Áu4ìÁ ¾‘¹håŽ~öåg¾ü¯þåïîííªšÁTàí¾¬v#ìëÏ…éà9u÷Ýwß¼óêÕ«ã*1ô;7û„0øO@ËàÞÃ…™¸ïû eP¬" )evºZ¯Ìçóàýb¹ ªµ}7›Ns²fç¼óÎ ¬ˆ6“ÍÐÔ·}R”r)¦V&AŠZÉf– @PÌÀ!+´Ï¥·P!õ*ï=Èlh”0CtÞys­RH¶·Ì[ûiKUb=®T'o?r×Ýïzþ+×&SÖÞµÝüÚõkÇ'¦{Þ}oŒ¾d¸’H•Ø Ã;–˜&(€sŒä€›¨ªp0üB­ÍÍþü_ñâ‹Dä+E@¦¢ýz‚Æ7ÙhÃ5S€3gÎ w^¹re$è#A€˜ˆš€œ³cG€ ‘"ûˆ´Ë¶”B )âØõ©WÕ>õRD`f& ¨df¯mÛ9ç˜l BIBDßlOÐÉ"F †)J_0x')J(*Yœ”’T4ÆÈ`ƒ©šjQi¯ˬôâ+_½víÚþr§ªê:LŠv}¿wõê]¿«Ú²Gå«ç^¹õÖ[‡WúÀƒ>ÿìWC r8ˆ¨b0˜L!P‰Í9$)hùä¸2GŒ=âëK»lñ Ìò­ o¸õÛ7H'ÃÞcŸ’JÊÃx´©Šû£N‚ a[|ãÇtˆÎ2À ( ¶xGð(¢$x{mªI:rÆ•«ë Þ«™IéÛn>ŸïrιY3›L§WÞºÔwÝ$xQ¹÷÷¬­¯as (©™‚T4›ªj†š™¤XŸQ ‹åB¿ûÙuÏéw¿~þâ3_þs×9"‚’¨²¬Tn¼½Ù¿§^þ–û~Cª7€ù|þÔSOKrÄ÷ c&á÷)ìÆí[Ýÿ ·oõ4ìXÍ‚£"™ Î1Aû¾Ø DÆLЍ±ÝŒ­%½ñÔƒ2ðuBQ}²Ï¿ Ñsˆ#6…5±>©¤Ê‡àÙ5ul*L&“S·ÝÓ 6­ês_ýª‰öfÅ´g'@œ6õtWf.„¶””JRƒš i¶kW7_xáù·^ÓÄ´¨ n¡6ôa‹¨Ø_>úèüÈ ‡ï‰'ž zÄ÷£·ÀßüZœ 8ˆtBΩˆ i‡€øàB ι| _ Þ39`ÛqC€x` X`@&À|}£Â×"9¥¾ï¤dQ0ªê:„äŒúÅ'º¶~ÈCïdº²ZrN)µ}×÷©Oi¹lcˆG;|øHUU)i¿T)šSIIJÊšU~;К¿TUõ³?û³7à§>õ©q+èß±JœŒ 9vž9zï™ÕU ΗœKÊ:l£5»¡i ÚÊMyåf¡^50Ü é#2|ãƒf‚‰7'PRê]U8ÄÔ‘ªKNºý¦×õÛÝÖTèÔÝ÷3×mþ'²oÒKÞ“”4‹óq2©¦«¥èμ›Ï—ZÔ™' –@™-&Å`:l¥þõðs?÷s>øàð¢{ì±Ç|\B#F‚ñ»F" a¨Ž] ¡ŠÑÌ›äzç t Dú6R¦· ÍÐÁ5ÇÉŠ2 ÞÁW¨cŒ1TU½™ù`1Fa5³Ìl¦U"T ç\W³šJ.)¥ë¯žÿÑûHã#˜7ÚßßùÜ+bÚßèEéû´³·¿½½½;4®0̬èAþ‰© Ú·‹{î¹ç—~é—n¹O~ò“‹Åb\A#F‚ñ‘8ˆDÈ@ &!ˆˆ±) æ \””<Á‘ñ eDoÐ4½M1 €ƒ_÷ÇŽ[9²HýÎL`N\ô± “ªîR_5u¬©=‡*×B‘™÷ޝ†˜f¡v^*gÎú¾ksÿÀ{*P1=~úŽÿ÷ì—¯íí,a…-™µ¹ß/æËE?ÌIª‰èÐ÷LjPƒìŽ~;ì|øðá_ýÕ_1Þ7FõyÄHÐ#¾ã} RÜ0”pÞ©ª@™‰¢sÁe1ìõÉ vÆ×³³<ÜÄϦ³P5RÊòÚþðcàCí+ç|d Tň‰¯'MX‰UU±*¿J!VUšEï:"3¤òâ«/Üê¾ÃGMÍùxÏ>ñ…'–}ƒÄn{†¾ŽaëïF¿ÊAJ÷ÍQl{ÛÇÿñ˜L&¿ò+¿rôèÑáÓsçÎýæoþfÎy\?#F‚ñ]âèƒÝ96‘ÒS2†5&ÑÕLJÎF7¶ßNÐC] €ÁŠIÚ/»´Ó¡ CÄ2´pk)Rœ“¬øfmV­ÕqRk™Ôœª-H*}N’r—R—òÓO}ñƒ?ñÓ.DªÉôÞ3þ»/~±íÓÜ­0€Ôç¦Ìv¢«Ç_S}nšæ×~í×î¸ãŽá(ÍçóO~ò“ãôàˆ‘ G|Wiú€ IMÍœyç|ã§³Y3©Í¬ïó×ç”ßÖÄG<èÖ+’K/ý¢Egl®FEMEK1Õž²Òp3™„I$æÉ¾´}’.÷9ï¤>uiÙåÜ•ÜI–ùÅ—_üÁ÷=â}4ÃêÚú‡~âÃ_ùòW¶¶vT¬•ƒià ¾Ù¶aj7âPþÊ}òäÉO~ò“7kgÿøÿãgžyf\0#F‚ñ=€™`ÎØ9ŠÜ4®Hé–ýÁ  Ù°WÈFvÙ ¤°d€Àh«H@D#g,)vh IDATDd0ë¹(¬Tä‚/¬}În7ï·mߦ6—.kI–“iÆÐ†Q —¯\ÝÙÚ~ÿÞbˆ>úÃ/½ôòµ«WvÕLM‡úÆÞà·Ñ²a'Ožüõ_ÿõétzóà<öØc¿ýÛ¿=.’#AøîSóÁN3ó0‰âÉìô%-3ƒD`0ËA@*2¸¹–•Î Θ1´W ®™©3Í)¥eÒ½~Ñu¥×^-‹’™‹*xíÕóW¯\yà31Ä£üƒ?NfgŸ{fúµ°À¡¼Ç·cú3?ó3¿üË¿üvvþô§?ý›¿ù›ã:1ôˆï™Ð€‰ˆŒTM‹æ>ç.KGΓÂPÊg28âhD06@†RZᙜ9˜9™ªˆ1&ˆ‡)`ªRJÊ’²u–DL€DAÙ”LMƒm¿WzíÂ…³O?óÃëoU! àþ÷óÙÏ~öÚµ«íÚùèÑ£úЇ~á~áíwÎçóôþÑØT7b$èßËÂß{:ìªétâ¢#¢œD¤hŸK/ ÐÀ+t‰”aðÌgº³$ (œƒyÈ`  ÊljÀ5˜Á)«ŠjqÞ)WÔ A i¦¿ô‰O|è#Á×[ë?þøãO=õÔ—¾ô¥¿Òxàyä‘~ô£ßpÿ¹sçÆž#Aø~$èƒ/ˆÈÇ8N]ôÌœr)¥”>•"µs…Máë‘ ¬Cã4R ˜õ˜ ΃™A …8Šx!UIZBðêMMUôk£10|äÃþ/ÿÎ'f³Ù7üÚW®\9{öìÙ³gÏŸ?þüùï«>}úôéÓ§Ïœ9sæÌ™ãÇóþé?ý§?þø8.8b$èß§ÄÍÌxÁO𯅠Ë)åTú V2³PÀ*縈$$á`ÞP[63+€p v0EñA3ˆ!Sò>øÐH03/(%/Sïƒ/^UE‹Áø€ ˜L¦¿ø‹ÿØÇ>öŸð…?ù䓟úÔ§¾³1ôˆï=vvÌ0»ƒygjÅ$¥4LF#S bV¸ >8Ï,ºVU0hØõ2Ã19 ÓHÎyrž˜<{3e†w®F4S$Í9/RËŽ…TEb©èkæ¥]؆cÇŽ}øÃùèG?úÍÕô<çOúÓ#5 zÄ÷¯Ü1ükfDD7dï ààS×ûŠä†ƒªÖÊ TJ™*@ÂP´¬‡Ð;¢YáitÞyöÁ±#&©kEÕÈ)Û;k*PS¾1*C³›f ®¸þð‡yäÑ|p:ÞlˆÀÌ6Íô›”œgŸ}ö±Ç{ê©§Aƒþ2í#F‚ñÝ-“ßNÍÞ{f6³¶mgÍħªÎqÛvª9„°lót3ŠBß÷fðÁ\UUm»¬ªŠˆÍ¬ï;€ÌÔ{Ÿs®ëzo¾\]ííÍWV§C‚bÓ4}ß3³ªšd3+¥8çäœc¬SJÌ®iêÝÝ=fR³IS9¢Å¢+@ôÄÎ }ÌNU†Òþλî:óÀƒ'ï¸ãøñã˜T €ˆ0ŸÏ_=wþùçÎ~õ«ÏÚ·X÷#M zÄ÷– ékMBÞ;ç‰)·}ˆqg:v]˜sѺ®¨jŒ±ëC}‘ªétBÄ9çœKÎi°Ê¯ªªíZS›L&]ßWuµ\v++Ó¾O)¥ÃGum§¢Þ{"5U•RBˆÁ»¶M9'"Ž1ô}ŸŠFOî#‘wì|Œˆvwç“IcQ‰ÖõB0vúè[—/ÌÌþ?öÞ4ÈÒë,|Þ÷œo¹[.•U•YUªURI–eYÆBò‚l@&€F£Ñít¼s‡žhµ0e¹²²BÌR–Ö¹4Iœ÷̤XQ–e¥1o¹ÿþùùù$ÑÎù¢(†5¦?èïØ19ô!`Å€~ç;ßùÅÇ/P¤iš&ÆX£X¥YjÏó<ø²RÖZï=̬”b¢f³Ùïõ‚qÇyO€õ¶ª`M‘ #n*ˆ+¤É³Ï> 'õzí‘GÞqüø±¼–µZ­4QÝn—ùœÙ·o_š$³s³'O¾b­QJ9çjµÚñcLjhbbâ®»î:þ¼µvP¦,kõz¿×Û³gÏ‹/¾¸¸°Ðét¬sy–Õò|zÇŽ4I–——-Ddrj²ÕjE)<ÏÔjµ$I‰Ðï÷ççÏk­ßô¦7ÍÏÏÏÌ̼úê«LÔl5÷Oï_\X\ZZRZ×ò|fçŒ//.–ÆkïÝl4¦§§;ÝîÎ;Ûí¶µÆ9o­%R˜ÈIdæˆHÐ7›I‹Uõ6ƃÂ[«˜———”R‡ÁOLNöz=cí[ßúÖ§Ÿ~Zk¦‰÷.ìò…=Æ¢(–——ðÞ+¥ˆ¨Ûí6›MVêÕW_Ý¿1,//×k5­õ¾}ûêõ:3OMM}ÿû/8xðVÊ‹LLLZë”â¹¹=">Ërç\¯Ûóâï¿ÿþ§žú^³Ù‰“¦§¦'Z;gv~ëÛßJ˜çöÌ¥i–gµ©©©ï¿ôÝsÏ=ÇŽSZ/..:t¨V«9sæàßé%±¶p·xVì¬!"tÄÍ"œˆ˜œuZi&>zô(‰ ƒ'N¤i:³sg1x±Y–“ˆo4êNûìÙsZ«,Íœ÷i’$Ir÷Ýw[kOŸ>}âÄ c-yïé+­_{õÕV³¹wïÞþ`P…Rêà¡CeY–eyøÈ‘Óg^/‹b×Î/¼ø"HÓ”™æææ¼wÆ˜à†‘e¹ˆt:íóçç“4µÎ ŠbpîÜÃ?øƒßþÎwjµúÁƒWVÚõZ#ËóãÇŽˆ•j·Û‹‹‹ÌíÙóÌÓOwºÝ$IŒ1ÖZç½u`ò IbŸˆˆqs°sõ"$½WZYgóZÞë÷Äú^¯Ûn·³,K´>·²ÒëuDÄ;_%3Ÿ?¿ â‰41yãœs,,.–eÙívççç˲4ÖfišgYY–‰Ö¼ôÒK;wî¼û®»žyæɲ앓'÷í•ïœó.Ë2笵V' 3;gÆK/½T ýA_i%"J©Á`Ðëõ'''s¸HVœ&‰ˆ4›ÍùùóýÞ ?h]¯Õz½^Y–Iš2óâÒ3'IT¿RJ)£X{c%nFD‚ޏ@´†©sišö{ý¢(Nœ8¡‰Ë²ÔZ;ç—––VVVVÚKJé^¿ç¼k·ÛÁé8lëEÁ¬û½Þ‰'¬1ƒÁ@)6sõZM)Õë÷›Jyï»ÝîÜÜ1[k»Ýn¯×k·ÛÎ9À§i:(Zk€œµƒÁ KÓ……óËËËgÏžÍóL¼€=33±³¶Ûí2³ÖZk½²²R–¥rnyy¥Óé,.,ÇAï½s·T×@14êu¥uˆÄafö^1…¿"úAGD‚ޏÕ´—²,ÅËéÓ§‹Aa)¤ä§$¡Ó§OÏÍÍ #n›à …z#/‹²^¯ÏÎÍΟ›o/¯LMMZëɲ¤Ùl.¯,MMNž›?—¦©ÖÉÊÊŠR ì°)NæææNŸ>­µîv»iš–Æ' §´&"ç\«Õ‚ˆµV¥Ô ß¯Õëz€Rjaa>MÓ5¿ÓíÔòZ»ÓɳŒ™Y±x©7í•çÝ®]»—KSj¥›­æÊòJ–g"Ònw굚N’<˺Ý~½ÑXY^öÞïÞ½ûÔë¯;k“$Ùµk—Ò:KÓ33ßøÆ7DÄY[‘2Æ…‚0±3DD‚ޏ¹çé`PÖjYÛèvú“­FY Ÿh €•òÎñ`0öÙDDi­˜™Ù:ç Öï½±¨Õ¦4Y–æyn¬õÎõúÅÔd«( /¢˜kµšˆe?MRëœVj¥ÝÉó”Y9g‰ˆY)fë,³²Ö„ÚâE'É`0ÐJeYÖë÷ò, ÊñDŠˆúý~Q»wïÖZ¿þúëSÓÓ?üÞ÷&iº¼´tò•WNœ8á¬uÞ›Ò±³ÞÅ~ :â&3¼¯ ÓUâf&I’Ô˜Ò‡wåµZ¿×+-ë ðŠÁÌÎù`Ë%"ODÎI­–fÒº²›9ç’$1Ö&Jë4)‹+R¬ƒ¾ó^J+kò,!fïsÒ¸,­ê xïkµÚ ß€‰A(èzñpÞk¥œó 0‘N’4IB²‘n¯W¯ÕVVÚÎ{ïœ ®u‚hàˆ¸UmзÚ¹ÉÒ<äz»$Ú Ö×U¿wÀ•&¼éÖKazáÆU¿™Ã‡ÁïÁ£ëöP ÖÃZï\¨è†Ü c¼sž 0¾,-)¯E‰ˆòÎ)ÅxÇÞ9XK€„œ£Ä³±^ Z‘³ä={ï¡È9ÇÌÞy!kAy/á}ë¹(½1àµ]”Þ{xçbwDTÐÛühü ²† åÆÙUimOÙ,Ÿgx‡­/"Jiç¬÷`1[ëÃwU•ËtÍw7¾ µs–f«ñLªá…ˆ„ÂØÝ""AG\7lÌuõ†¶¯ºMV">znDÜ#<âo°}¼ÑE"mJб¯DD±íO€Æÿ/¼JÓd#QåÖq› nÞ’ ÿŠ3mDD$èˆíåÚK•Ð!ó<ËøqVÅ#]Ñ‘oƒ¶Œò9"tÄõ_˜ CÞLY}Ç’±Ï ®÷#""AG\ èrß'„ Là1¯fÙ𥡓Yl㈈HÐ×eÏ&$DP©%°±…"""AGÜ(0X)—xÒZ”‚Ò ©ùj}Žˆˆ±’ø2?O -¨“Ê”ËD¬Ã( Ø*Ü{h¾öѼ :âz†N57t³ÑDCEQ®tŒP€‹ :""tÄÕ3í(¤âr˜ ÅœåÙÔÔZz0,Æ+ø‘rºxáæÑ73#""Aߤ¬´/mõ¾‡xçÅyò"^Ä ü&D,7«’fæ*׳È(¥Qä興M×Ì7€CNŸ $ñÙ4éÉ$I“Ù$Õ>'ÊSÑ X Ü@îîf¼ýqÄlsQAßxÙ8" ÀJ›¦õ¹(ĉ+âK[Â!'§ÌM¬™×Ý‚€4Mëõz¨‡2 ";GDD‚¾‘¬¤” ºØ9wå‚ѳøàòL•^ö!ñþ-³7HDõz}nnn×®]ι“'O†ÚZ1ÕQDD$èFÐÞ{fRú*: €!hç[!ã±RJk=55µwïÞ½{÷ƒååå………˜¯9""ô”—“$ɲÌ{_–eY–—KÓUõKà±¢%r ì&Ë»ÖZ)åœëõzËËËÖZÑZ[ƒ #"6šØׇ›’$ ú±ÙlîØ±£Õj1³µÖ9·ÕW.¬ÇW…óÈ[OnöF-"ÖÚ~¿ßn·—––ÚívQq“0""*è†ÉÉÉN§CD333išæynŒ¹="éµôw³»<‡„µ6ê¶Ö¶Ûíð:²sDD$èÉMyž÷û}ç\š¦wÞyg£Ñ8vìØ©S§°ÅæØV6Ù ¬icÈ ßÜÈ!7Y;8ç‚”vÎ…»wmБ oØê¾Óé”eÉÌÆ˜N§c­ív»Á{Yâ±"µ››ˆ/åF/®Øã0"âö§ŽØ×£‰(MÓ©©©`€ØÁ`ÅcDDD$èÏÑY–Üì/{ï·Ú'Œˆˆˆq=P„ýÕÛ^/ý±Å­·ˆˆ[Ñ}´3Æl¯£<Ñu!"""*è›QG‡w¢:""b+Ä@•€Q¦ÍØÛˆ˜d'""â6ßÒŒ2ŧ úF_+³Öz' :""âöÆ­IÈÌJ)¥ aÓÛ*Î úâ]%ê Ø¦€i­uŒÆŽˆˆˆ}Iì¼i®ÎmUë1QDDÄÅ­‘n4404Ck­ ƒíKu˘FDDD}"ZkÝl6§§§§§§µÖÛJБ#""n8n/QJeYV«Õ²,w爎QAßèkUJkMDƒÁ ßïE«ùEDDÜÆ¸•J^9çFf kmd爈ˆÛ·’q€ˆÆKFÅ}¼ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆkŒ˜ )âút³èÇqÃÁ± "". ‚ggT7™~aÞ¿x­”ŠtDÄÍïý¯ÿú¯˜žžvÎE :"âcÄÂÌ\c #f ¸¾ˆié#".DÓKKK¯¿þº1†"=GDqƒ¹ÃÖÚPÊ„[+ò6â6ÀM—‹ãÒG€lø–ÐæˆÚ'âÂýM6¼K¨ª©ÕëõÀÔLä7µol~ˆˆˆÛ“ +ŠöQç'Ðhø 3*ž@ Øø´#.Ì®ÃÞ˜v,Yç)ïDcT¼¥,ˆˆ¸] z¤¡i AM›)èU0xŒÂÃË`hßn‚Þt?î)Ýzl €Àv{ú DÃÇHYOмµpˆˆ¸ÍZxÍp‘áÿªR„ÓÒ´…½cëqw‰<»®ìa(¸uÑ…$ ¦Ñ exñ)ÅâÅÉ…¢ˆˆY¼wCPD9ñZ)ë\¸&¾ðq"®!c¯vȈ74A‘x­ Ä'BY“ \`nïGïoãŒÿ†Œy) —™C.S­µs.|@kmŒÁrXªßBBÌU6ÔѤ.Y+ W˜0”RZi眷&P‚Vº´–AŠÙ:G€"&"uù5’Ë´ÑX±éæÕI—®h∸å ZÄ"ðމ)$FÄ Æ”#òeÄ¥ø`µ¦Õ1%I³ŠÈÆ^?\™8ˆVçÃ…1[çHXQWšñ¯ø¡nO•ö"L bˆgЬÐZL À›¦).dà g&ˆ@(V‰Ò…5™Nœu™R‰ˆx!`æ@m)WOÖ2öH< €.^"6|ÄÅÄA4üᡨ¬^hbañc&‘"Þ5Ö8 is^ ‚âD'Ú;ã ^OÍ26D#SøêXçE$Õšˆò,ï['~ü+2¼R¬’D‘1Ö8Ë 4ICíDYYV¬ˆwµ$5Æ0³xñð0ª¤<Ö;ç]˜4)0Q’$-&ÆšL×*Û “ôØŠmW®.h“Mÿ¶Ö(6}ÄÌÄ!PBŠ9Xr5U/ˆˆˆ¥’5 &ï=ˆX±”Ö0q½Ù(¼33+"RZ¹`QŠÄ7óL¼ç*˲r®Ú;ô1H‘â,àœñÖ$ÐÌ k'VDˆˆìP´²•4å”@ªu†Ü{/εҴ´&' oŒi4½~Ï;o­G̉N¥g€D²$!"0—¦dq5­sÍg¾ˆëŽ›m•FDd­+ËÒ3(wܱïÎ;:°ÿ޽{ævïNÓ$OS‚tÚí¯í‰ï=ùä»ßñ®½³s¯ž<ùÊÉ“Gܹ£5Ñ^\lÕë/<ÿü?ÿ÷ÿöÔ·¿ýÀ›ß¼ov·+‹Z–N·Z/<ûÜüé3w9’'‰3vïì,ä}³VSÄyš&Šàm./-<õÝï<ûôÓ÷=Z˲Tk[–š¨ÕhܱïS–_ùïÿí¥_8tð`žgÌ”$ÉD«E@«ÕÚ·oßë§NAdçŽÖ˜ï¿øâýûµR333z ­fkzzzÇÔ¤)ŠÃ‡¸cÿäÄÄŽ©©{ï>züØóo{ðÁöÊò‹Ç޽xüø‘C‡á…cÇœ±á eQüóWþY)õ?þùŸ‹þ Ñh,.,LNNš²Œ]y›Hü¢¬LÑ#âöVЫkHf&Å!(Cq1¤i2ÝjäYxçÝÂüDY”,;uòD{yEi=‘×—ÎÎϯ,(¥ò£÷×Yµá»‹ ;''ëšï˜Ú¹³ÙHám¿“ß{å嚢²(gZyî½Ô’dÐõæT£ÁÎ'Š÷îšé.íªçiY”Göï2ËŒ1“õ:9Wv»SÍ&‹¿ëÐ!V|÷G¾òO_n÷:J©z­Þît "ÎkVýAÙï¶5¡×íÙÒ¦š5Έïu;Y­zmeiÁåÔä${šÛ5Û]éôÛÝûî9º8®×îL7›{wí®%IYZ)Í ?رcÇ|»=èõµRZ©N¿Ÿê$ORnMtºÝØ›¯¸ï…ßjƒ‚ö€£Q˘ZÖ+fz‰¸ÍMÀ´b³ñöÕ×Oð—© IDAT_ýÚ·¾Þj¶Ê²pÎAÄXëÅw{ý¢,§uçe¥ÝQ:I’¤Ùjg§¦¦Ž9’çY§ÝièÌ{1ÆLOMi¥VÚmoCX‡Ä:[Baœ+Îkù Xçt’ó®Ù]/¼ôB·×UZyxI²dç®]Ëí•z³±¼¼üÂK/-·;J)ëíN'Ͳ3gÏ¥Yî½8/Íf „~YŒë÷zÆI–×ç—¬'(Ý^Z9ö G=þÜñ}<ÿìóœ$Ý~¿Ö¨ àH^~ídéla]krb¢Õêt:S““eQ$IR–å ?€H¯Û‰Öç«ì{kŒri–‘ØÜo‚^]NŠ8qV8aEL¬Ù‰3âzeß|~éAY¨D;ï c¼ 4f`\’fSSSË++õtbß¾}Ï>ýôéÓ§÷LÍÜ{Ï=Š9Ѻ(Ë4ËÎ/ŸkÔë€×Z•Æ–EÁÌräÎ;Y«v§Í¬^üþK§_?ýÚë§²<÷Þwz4M¼xïmYÇ_<þÚk§N¾úšsîɧŸé33;Ûí6XíÚ5Ûív?~ÿ[øÞSOe©N³ü®{îzêé§óƒÒ/dœ?{~¡Ó+ú…9}öÜá;ïÚ½g®ÝmŸ>{¶4å3Ï?ûÊÉWÎ/œ¯Õj¥5ç——jõ†J’4M»Ý. œµÖZïEkÍÄÎØÒ”ÑÇîjzÝk¿égâüñF&è'"Î&¬¡ï,¥Ù;ßóÞ²,§&Z¦4¥)Ÿx≾uRˆG1 $µBÝ^O)Ýs¾kŒiwO9[›˜¼w׬ívÏ,-:|ä{O}ZÏ/-9æ¶)Wƒž1íAÝ÷Ö·2óÂâ‚1Ìi¢Ÿ{é¥Ý»vÿÀ#$IÒé´¿úÕ'(˼V]cVú½gŽ?`ÿ·ìœÐë¾üåê}+~©ÓÑZ—âO9»sv÷=o~ËäD³ÓíôåÓÏ>7(MZk$YíüÂr–×­©…v‡“¬gì׿ûäýèc_þò——ú]ñòÄ·¿ó¦{ß´çà¡z½ÞtÏ|ùŸÉ÷ž{æþîüñÇ“¢þä“ß}øßþÕ'žc͉VvŸÇ²‘ŒrJDM}‰m·`í³ÀÙz•9Kˆ°: ÒˆÇå"´qµ&¸›â"`°f&¢\%FÃÅýo¹_A¬µy–ˆ÷ÖºW_}en×îsóóA3Þs×=Çï»"ÏóCsû^xáxRK[i-ÓZ+ëDD2}úõ×ï:xøØñãLÄÌsûöž~ýõ^¿?999==ã¬[X8¿ÿ¯¾B½³<«×ëZ'Æ”¯½vJ%zÿ'^~Ù“¤I³Ñ¬ÕjZkçpìØóÖCkͬsJ©Zž×óÚÄÄDž§ƒÁ ßïöú=ZëC‡Ž<÷ìsI’¹óÈñãÇ! R¼onïüùùÁ`À̦4{öîiä5bvÖ¼vêUï]½^ŸžÙqâä d"²ïÐÁ—¾ÿR»?8|øð‹/½l+½”e)ñçeõ€Å>úè£_ùÊW˜Y˜ÄyTYkwØýšïÆf¸­ :Uº^«—eQo4X|¨g¡—Ʀ ‘Ó¬ AÄ‘“ñÞW~QJ˜¬ÕiR£“ëýúX^aªhif"žˆ‰àœ÷âG:ÔZ“$)³rÖk½÷!8°è""R”R#ÏY­‡S™ˆÔƼâCˆ¶(°RÊzï½Qˆ\c!"o bRJÁ9)a­Ê²ôÄÆ€™Ué}aJõÛµÆzkU :â65qxº½EY²xˆ„0À•…«’isai4#ô )y!gE„,‘ÙÑцÇäa¦Q>‹Qx‚ˆˆw#‚&Vý¢ð^r¢çe)ÁóX\å2$bç !‰%“Þ$ái˜QD´Ò°ÖBˆ£ ¨yœ$‰VÞÁ9Xc¼5Þ{Ö‰÷cli9""ôv`l÷\ â9³ ›8­Wßã©;=y¤7×8bWÕŒU,ÜjAáÇâ>võR+ÖfÖùjzð©é”èճІÄÓajÀÖ‡û‘5{È;ks©ø$QLd½·âB(a͉PHs±]ë»Î–\>,À6Y£Î#®Š ·Éx:MSk­1&¶vÄÍKÐëTj`Ú¨<·à¨m¢ÔͪÕ]=íÉ…ÏE@(=*ÈŒ°{X×&I”)k(ODäŒ ^Õã5v#®˜F×¼–+}ºŽh:Ö–Œ¸Ù z‰C6£ãËW?®Ô”qU“ÔÆÒJÞ(€ ¥•+WŬ ç¼óÌ„à|ïM¿¤Kë—ʰšƒ;¦ÖZDŒ11(?âV2qȆŽý š¯ )Óš³­Z× ¾"‡Ñ¹dy±ùäüü<3ǭˆ[FA.•/¼‘x-Ôº\—{ ŽrkÊ)Ix>SÀŠ€»<À4VS§Ê’§Á\®Çz‡úeCJ0íÇà‹v›ô¦Và +¦k>°6fvÙÙ.1„„n糋ôø}PX ðØvo‚V£rk²™e Q«_‡[«¼Môõ•Pÿ3{n³í7¼é_D°!ß…åseŒ +žfóÒO5ú=RЗêP­tĦ4„=yƒ¡ëyc5©¶l²Ç°íÍ*H˜ „!ª2ñÎ.‚ò¤žyl¨=Ò1JæãBÕ­=ºÈZM]0|# 5t²ÙDA‡QT¶þüÊJ`R )R)àÆå¹š­V0Ȫ´T×uSæÌŠØÙ d¡w8µÚ!C‚EK ÏsiW½l».e¸6ÝÖù€Æ<½'Vë1ßxŒˆ`èqx‘f'èàí{Qá;jîpܤ†‡º´GľbQÎöÜãp·Ë2©åh§=ˆAžh0€å6µ›‚$ÔÌÔá`@Àô µ ÝŽrr½²€0_«/ìLðfîßoH[;_é]IÕqFkñ~ÍBAFÝ+ Ýofª8LÊ!‘Ê]›ááf½uСô8 E ¥@LØîtv-#M_#BغÏ_ÊpØ>VdƒÄ@i¨‘¿OØ×œ I””³ NMö«>¬ébh÷îÝëRº\.A¯{±Þ#a2h“ȆܬQ …:òÃ{ª‹°ÕºŒ«ÍœàÜÌÁ@FN xèàáA’ô‚§60,*îAÂ^”ó+@·™¿%mÎÚÀ§ZUc'ø¤ŒŒ(ˆ&é+àå‡&I(ØûªUC­H Àz¿‰¢X7Ä´ÖûäøÎЈèGÕ-F9a’$ÿ.3ó;g0)¬‚×ÁAA)—ô(7©6HÄ ƒ%qtÉè²”ÿj˜6¼ß¸‰~íÔWûB€ ´»1åÂò2ŒBö[ZÀ¯Y²ÿKIA•¯Zr/r°-Úyc&?,¦U9‹øŠKY»Æc{f—ºÚIH'¤ÌñÞÝ\½þ"“â@µLœa‡1Ü€â4“•ݤJß÷€ƒÀ ÔêuÀƒ¼ïÁШ‰ˆÒ´{÷„HQ™¨×%êE+ ŠÂ@ZšÀÎa¯à×|@YÌ%º:¤óä*eB,°^õÈÀ­}Ôîp),ûYàÞ©=ÈÒèÅq•òy¤jsιðbd^6åWŽàœk4ácAGc 3L"J©‘mDk¦éh¿GœÞßÔâ½ç¡ÃNåhÀBVÚB¥ ‰´Îðа/kLV?—m†¿Ü=3š&f…-6 /?¹­.@Àh©Zèc¨Óƒî 4½6‘Í6Ø /Æ4 :›¬ñ›Ï°17Tç áº©ð²î,›´MgõÈ:iÔ¬ªTÞ%]nóŒ|¢a¼KÓd¹™K¹×pí¬¬r­:ÌðE‚õ·¶6Ó¨âúê´%eìN9© FŒpÛ^ˆ1˜®å¥„1™¬OÌL630¸Q‡â,×"nqᬵ"p²%Aóªyn’°«Q£ê¯ëÛ<üOZdrP=¯±GæÅ—ðB\z7¦T¶¯1#–¤‰tGÞ€÷Ñî|MLïÿû?ûÙÏ~êSŸzøá‡Ó4õÞ¿ÿýïÿ¾ðgög>øàx ß4Mgff>ó™ÏüéŸþéììl î/}éK?þøßÿýßþóŸÏó<¼™e€Ÿø‰Ÿøìg?ûéOúÑGõÞ[kgff>ùÉO~êSŸÚ·o_š¦Î¹ýû÷âŸø‹¿ø‹Qõ²w¿ûÝŸûÜç>÷¹Ï½ûÝï®tŸQ¸8X DðÔß 9€<µ¾&8¤&ƒ!€ü&’f ½:a_QmXê±R-ë’ˆ ¯öÓPHoÍï—’\i-Á ™Çyx€ò}yc7¨©÷mPÍ ŽôÐ:ÈØ–ÒM´™éZ†ñÄ!P½ž¯e1ñD~8¨yC%å¬@vݹM…­Ñpé)Hƒv¨¬9¼‘þ¤^i æQz\h@¯±]WÖì*ˆÙI ÁôƒG€Ä¿¸ÇËwŸi–&‹°Ó«á‡I:h´1{¡|Öc­¡E´ˆI1¨r”a%!YF5­®jYVÖë] tRH*e ÔPjeÏŽ^ è7`'3Ðþ¹¹]Sèkò£ ¤ï ‡Ò—v 5T– Íö£¬u¤ÁÕj A’10¸‡j÷f“\âa_YÞeµ S 3ŠhÌ•44†öоé|ËxKùòÞ¬Ž– g^u¾uÂ(ÑC*~ ¦©G’½û†R*MÓ÷¾÷½ÿøÇÿöoÿöw÷wƒõù=ïyÏýÑ}á _øð‡?Hsbb€1æWõWŸzê©cÇŽýÂ/üBðúxç;ßù¿ñ¿õ[¿õÛ¿ýÛEQ„ÏeýÐC}ä#ùüç?ÿ{¿÷{Á<òË¿üËO>ùä·¾õ­_ù•_1Æø¥_ú¥gžyæøñã¿ök¿æ½gæ?þã?þØÇ>ö±}ìÿøƒM\)á‚‹AÜ(+ãIªˆÑD­!á~ 1+öÎŒZuô ^<ƒ¬w`f3›ì¼amš‡CT<¦Ie“[(´1•Û¥³$ ã}‡¦{šh4»ó c0¤$7º<ï¡Ù[×åÆyŒqX„o^Ћ^ƒ,$¤βŒÇ¼|Dcõ W /£}3Ù°·&\T¥þ¯Ö™Òá–@i]Œ*âS2ô ÏžÂ2š_޾å¾SÿødQ»Ž>yòä«ó§¦î˜[†MPS'дFÕccÖæÊY¥’U `e(•i7,GKVð¶zpÕ#qÛfsTõ‡C³{—uIL˜ž›õˆ$…Þ3;Ûlw [ÂZ¡žûv·ü—¿:öÐÛÁJ9mÆ6ƒÉóIDATA <Uv‚I]ßÙœàó§H‘Ø¡ÓæØ½zÃûÕÝß‘G³†*QB ô{6¿ö @§Š¥=êNJ´”åæÔkg†Þ¡÷¯FA—eù‡ø‡ív»V«}üãF†~ô£½^ozzúOþäO¬µ­V«Ýn‡ÏÿôOÿôüÈt»Ý¯}íkðÐï÷•RÏ>ûlèºY–c‚DD~ÿ÷¿,Ë3gÎüùŸÿ¹1†ˆ~ê§~ꡇ"¢o~ó›ùÈGDäøÀûÞ÷>çÜ¿üË¿|ô£%¢4M_~ùå Øƒ-{˜†0ÀÿöæGîº רR8ý¤ÏíœÊ$ò5,EÆ{Þ˜% ¤) úŸè‡w¿|÷;ßzâ‚L6›Aºr5qmRàju½Ì"¦AnäM\éˆ+Cb‚¢ÀãëtÝÆ œñ’Š«Ô€JA¸i±3¯×€3@‘˜. Àð¡{îûÑ=÷Îû|¾ßäu$éf©:/ÍŸw½ „ÒC+¬¦p€§„,A ààpøßüæ‰ÚÛV…°—={v »˜Kƒ)FaÜm{2Eò®ƒØ i‰‡vC[˜Þcñv‹næ» ¿ïî#½íÝ%Њz¦}_á¡÷>8tY#‚zäÑà:ª¾26-c=¢ß+úÀ ?ðÌwïùzíÈóÙág€D z4„ZM<]=–GßñCë6fÇ‹{%@ ¨W4`$I†tÔz“‚–E ¤Àÿ üYC“¿ÅÜ·gßùݳPŽXÇÎÌŸ-Ë.šç,8JÙÖæú˜+ÂÏ#i‡ ÖøÞúŸûES°ª"ÁáÁÐ`¬…EìuØ7Àçûß¶”ÜüÇ·=b`@¾F^ÿø?w~7ü»€sÀ™š>_o/+æé_8øÀÆ¿`Z›ûTùwþ,¶~ðDëhZ¦„ô5üûïºÿ ЄÜÓ·'#Õ^± ÀÂÂB–e?÷s?÷ÉO~2¼SEš¦úЇ>ñ‰Oh·ÛAÿ2ówÞyêÔ©^¯wèС‘ïõzý×½gÏž¢(Å‹v»Ý.Šâg~ægþê¯þ*˜˜:ÔëõºÝî‘#G¹Ž=º´´Ôëõ>¾øáøþáþò/ÿòÇüljHkÍJ©ro†ˆÔ[M¨ Þ2RǪ½²Òš““oó#hÔêƒÎŠ7"P)rÀJ¯Óédy¦”N)³À;ßõ®©F=lh¥ˆ €|lã/½ô‚ÒÁ¹ ŸØ»oŸ‚r⸲‘Ây¿>ÈõÂE³Öh8H׃o ¡@­É‰Ùc÷¼¥95Ùz@[«•nZeH̲ì 6<ÌÔ|áóna¥µVKXˆhpC§ ˜€T'ŠYi6LRªß8çuR¹›xåÕW ‘ò¨öUUÆd´EøÀ[îaU¹”ݰAWíT(VŽÎÞQÙM2mÕI2ÙÔ0Æ..-³B­Q#@1 ,§g¦]HàíšYP˜£‰$M¡ôQ®ßé§I­•´$ħ( TåÞÇPIp!"×¶Ñ*A3@à÷<úpü‡ÿãg‘Bå„M†<"¹€‡'RëlN©F’7P¬I—®\Î9èÅ•6³†Eð†0ð}Sdy– ãVµìµ×^År™A½>ùÿþ×ÇQ:jz¥Ò½÷‰¦ÙȲ¬©Q¥3ý²p”2ZUyCµ\ïÜÿ`䵇~çJÎiTnù ˜ÕxÓ½o>{欱^Tr¾½dY…–N2 ”R…[¢Aú ²Ì­V‹ˆÞÿþ÷?ú裿ó;¿3ò¸xì±ÇÞþö·‡w&''GþËeY™Üï÷ƒ|N’djjê¹çžûìg?;«|9{ì±w¼ã¿ù›¿9Ú* D¯µ‘$I´ÖƘ¢(§gYö¡}è'ò'?ýéOÿüÏÿ|ÐãÜ<Ò*÷èÔÍäK€žºãÿð›|7pd±¾ç…ûžÌQïíŸ~¥ætú=æ`&µì…AèC‹'àT ƒÓïyôG,$ÉR4³¥^RžKkÿËþÕ3ôœ+‡Þ°¥÷yšŒ†P­VOóŒµÐïõˆÈC˜™‰ƒ}§¾c Nxýzy†ÜèwáÀl $ XôWî=ü-ý‡öwj°  MÌüûÇŽ=räkoã¯L–O;7ûÐ{~ôþS˜4§ã©¤ÔÖõÎõÐ`´~ìÔ÷ÏÞEh š·€ÿ¿½o’ª:÷üí½Ï«]ÕÕ4Ý 4v7€ ¼U@ðQ£+frǸ0Ž+“Kîr²ÌºgœÄÉCÉÌʺ׌³Ç…—WïLŒ7æ&ê%ŠDÔ ¯¦ÐôûQÕõ<çìÇü±«‹¦»º%7^9¿? z×Ù»êì:ç·¿ó}¿ïÛ6a0|)¤ä¾_ ±XƒÄN½ytZ&¬üÓu¡+1sÞŠUæÁG¿¥ H$b–E*±AMQXQXQnÚÕ–QI\`ˆFØH¥3¨¸gÁ ŧ‚T²æËƒ(ÀmXÕŒBfp`0Lý,°éª¹ž<„GrËo[ŽÜé4\åöýt騒åYž2LOÔWÖ(烘 Ê t\þÕ¸ŸpĦIKEûs1 7Aà€qE’2£@d¹æÆÀÀ¡Ù¬c^Ô@7ÇɾªôPMA*å \Ô‚RLƒŒLÌoŸ»Ü;¸C–“­tP!ªÐ½C'ûiÿ¥·.EԥΪ‘$pxÎe»â³€|K„ @, „J*r(@›7fÝP› cïüø‘³ZäMaDϲfÑ]“>ô6 vTὕng£B5Â,á‘\D{Ï]ä ‡Ì-|êo÷y·Ñ˜œ Ê©¬`ái¦Œè'^2SJ~ heÛ•W^yë­·ÞÿýRJ}5®ZµjãÆßúÖ·4i¦R©’¹ÝÙÙ …êëë;;;K{ß÷øÃ.\¸°¤ÊÐX·nÝ–-[î»ï¾RîX{{{4­ªªúàƒ4‰ÿñŒÅbÓ¦MkkkàyÞ¦M›8ðì³Ï>øàƒÚœ§7ù ØPÀŠ‹¡2ä˜yåY!n¹m3@ÐÜtåu×ÇÈ0wØÏ»6ÕÜ«¨"0(%b‰Ê!$n^~™ËµXó‹]±* ”1OŒV•z=`” –]Y×Ñà 'ZðB Ì÷!òpšOØs/½X“¥ ‡êš›´Ís ÇZ¸ô"_(P„€|ÎÅu7n¥Z¹ (| ׆¯ƒª¦5gѥƴX(a†‰ 5DD(()$$WPþ¨ŠHA)%Eq]—NñCyB!’@È´¡ oÓÚ ¥ Í̲uh¡KªæukòªÀ q‡špFc´OÉ÷-DëkÞÞµÌñà "Aýœóëc3Q‘pCe<¬Óß\´pn6; ÂAèù¯Á‚Dt´…*íãöá]ºf©¯0läxCA͹l. P’ À4Ç„c†+hÓâ`¨ª«N&S0!OÀˆ„D1YEï¤cÄ¢•¶6™ ˜–m1ÃLÒ\ˆ†††‚_]r³~臑‘‘G}ôÕW_?þ’%K´IûÐCíܹ³¡¡añâÅZr·dÉͰ۶mûÊW¾rÿý÷?÷ÜsŒ1!ÄÒ¥KW­ZµeË–]»vé1—-[¦±üñŸÿüç‹-Z½zµ^ž}öÙ­[·~õ«_ýÅ/~¡/þ—_~yëÖ­[·n}á…´‘ÞÚÚú…/|áŽ;îØ·oŸ^0è±Pheèn4‡VÍ<ÇPÔ9* pò¤y7ÝÞZû™»ö? 5(̯=YŤ­`Qr\IjY¤eÀ ,†m0ÁÇR„ÛÜܼjÕ•ápØ0Œ+W¯ÆÇÞ„­(ô’𔇬dGØ)òö ¶F, ›V.ˆùUù£ÃšÅp´Î¦õuiJ'r­!aHŒÕœaH Q&åEÂN§}‡ ‚PíC¦£ÉŸ0A‰’Ü¥`° t§ÝÖ>5ªÑ"¦UUÁGÁ¥’ô£2/¥KkØñ¨—ÏëI¾ú¦UòBñ¸•q<´¾{ydø/–á°`®Yö?ßxEo² @pÊK!¬\¿¶ ƒuœèƒ.)%%‡Á‚2áÜxI¦0áÇj¥xtÙâ‚'S™Ž|Ü£¾´*v»µÝÕË1}AïFÊ ¯È †Ãâ°¼ßu¼ƒ*€ ØŠF )Rˆ œôÕ¨ÇÉÕ²írµªMGëã ®EA ꚪÓqcö­3ON°0äxɾØÈxptÜ΃D`Ù 9D$ª Q©¼O«h¤F0Ö5Ð_ḛ́}7GÀ l ÊG£òŸ’äªaBƒƒƒ÷Þ{ïÃ?ü½ï}OÁ9Ù¸qã~ðƒGyDû”{ì1͹O?ýôÒ¥KgÍšõÄOhü»ßýî7¾ñÆÆÆ¯ýëšÄ{ì1–’N§ï¿ÿþïÿû?ü°þÄ'Ÿ|ráÂ…óæÍûñ¬ùÉO~R__?kÖ¬'Ÿ|RóÍo~sÆ ›6mzà´InôìéFŠ!\U}ìH+82ïïo¥¤ó·m& ~wG×? ÎYY×õS™ P€/ªgLw]דĕ>÷Õôxl(Ÿ7¢Ñ¡þþcZ4 Ie÷pÏûGCÕ•ÈÁveog;<Å|¢‘J·{ö¹ð|Œß2¤Çáqmt÷t»¾ ™¶mÛq×u> ZÌÚ8K›yÜ„0ƒóP3Ù„;w_rÉ%þp@׎ᾞ.Y êgG áC)£è$™°™sYñ\ÙOíq¤å‹¼Ód\HæHÉ %Š*"”¡ýÝŒ‚‰‘ô¡Ýokg 7)¡jÿþ÷ˆA/j %´T„EÊäzÞ9¤އFPÉW—J£"%?üÃ!â+t:„L–‚I&;·!屡Ö#mð€'ÔP"¿kûN¤‘ËA¹z×k­†iÙßèÛsòè+ï®zf¸œp ·ûõ)à ¦P`àŒP¥¤t£¢¯¯¯ìvk¤äDRdd8Šö½G˜ ˲SyN!(˜–"fCNÇ©“B‚šºgûN­9õaûÈÉae(CrøTÁ$pûس¹$xŽ„(Rï·¤Ýt'Z÷v@¢õíÊ!ýï·À7)QêøŽ# Så* Æ !ó†BFõ¿Û›Í Ñƒ¾î!£ooGÕ´šÌ@ŠÄã8<œ DhþÌŽcýÄ#=ºZ÷¶À-²kk:ÕO”¢R*%eÁ95øÞˆlá‰ÊÄpwW[G*6F nwÏ1ƒpp•"ŸŽÂ‹ÿ"ÙYôwÞ©‰5 i¡ÛwÜ¡ßÕJ8ÆØúõë5A÷ôôÜ}÷Ý¥Dm)å¦M›tBJ)<¸~ýzÇq|ß¿å–[´œCÇ•Rýýý[¶l›ŸÒÙÙùµ¯}­TŽC)µcÇŽÝ»w»®‹ÑR û€IaI¸ YS‚Z™°ò&—¾ »Ä$ÊÓ²"b›1Î9g\ _—n)ZŽÕ6|Ž,ç ²˜#`SêI­[³ áB²èM—RrýŠY¦\šŠùLf %•R†Á¤” PžœbccŒ[NŒùwL ~(&a¨¬âýð‹82•U\A!TE}Wò< ˆš‡(V²Ï£*cK8£h&9C˜a”>WAãQJeÄ"©¤€‹Ñò˜QX2gPŸ0p]ÃU”É  6•yI -þЮpI!1cà²HÞ”åÒÒ6„Ë #ŒHž@FMx>“L,陂ðŸ„XPJZ–äÒ˜Á‹á-P¬0›‚¹F;l %4\!9‡ÈQJåê¬~Zøkp,³à¹cí´ç¢8cŠƒ1A¸à –×%€‚mBHpAl„]€@(˜0Òqßæ$ɘJ P !œ%’œRde LÓòÓ Ë*NÅé†0¹%„TªPÊH€ûQôsð TrÊ!95…ä>ÌÓ[³Q eR0 NáùEµ ! „)I^x Œê+MI8ÐÞlÛ” yŽˆI¡H–G 4p}×—~%½ÀvKéYFÜã9À%0UÑ-ò=×P¡”Ò4MíƒÖq9Ó4=Ï3 ƒsnY–çy%J-±­î[ÊÂBè# Ã(Uó[¾c\½”²õ‘¥ÔDBˆö€†aPI¡÷"võƒ¹NÞ® —±(DV‹w‰¢ŠJB¸tAA”,nZÜíÈø§ ¹PZÜÌCJ™”ŠR@ EQÜ–žãtʘò8%¥B)}c ŠÁ‹‰˜¾€A‹Zâ³¶i;—BA¦²”Q¸’™R ¤p&]½Q|€‚«1ãŠbý±xªµÇÚÝ>%”(p.%tt÷€C) '¥þ‘:gO(JгVüíÉØDJŠ] JA%„.¾E%•TRW¤„B„))(|ZÚ|…R­W'÷‰ÉxÌÖ-êt”Q58cyè*T@9¥ž$R(Ÿ è¯MÔ¸ØÇ}BÉ™³8f™SR)Pª@(„Йî Ì”"D_° „xTÄ×¥ ÑBŽ…e 2PV€È1F•’žÒ×,=m^x€ !9¡T#)P¥t†!(çñ):K¥z“ét._ 8:@€ó†\. Ž\ 'kÛÎØ­ÿ>3p}žõü¼Ï§ÎÜ caËŒØæx‚žÌÅá ™g•’ó8DÆfA9@€ó€¾¾¾þ¡!Ó² ®{!œo8bŒU„œêêêÏØ©¥}±vŲ…s›«X´«ohxÇ;û;{ûƦ\.„àþx‚.ëâ„ Ã:‡5P(×ÍSÈ0ødæd6›v½šÙ†i^P'>ÔÛÍ{º£±ÏÒIqÓY¾pþØ–šªÄ캚q]“Îd—.œÿïþÍ]õÈcgÓKŸûY¦e8¶}ݺ5k._ÙÖqbl—}o¾‘è?ŠÇ_zé¥ÆÆÆd2•J¥âñøK/-]ºti*•:›îzØûæ+Ö]_ž ÏñÚ˜xúe\3œI%7­[³vå²×vî~mçî‰4m9¡±£±ÙÕ•ÁíxÁà¼ÇuÝçþî½EМ9M·ÝºáÚE³w<LN™‡ßøôܩ։íBLúÌÑyѼ›~ýŒ!ÅÂÞÚ¾áÍÅeŸ¹ï‘‰¤<‘LQ @4}ú±¸c΢ë^{n ÕÎûáOŸáB¼úû·ü·÷h‚.‹§¤d?õ‹(&F«áÔÈÙω|2QY"OT Ç™uµŸ»öêã!|~F—sbgÛ¶mkllüÕ?þºµµ @EEÅ—þõ]Û¶m»ýöÛÏ~ä@ÿZ¸Oìâ˜à8žZï…6ßtýMëV¿ôÚë¯íÚ=®ãØÑ*#Np^ XÙ4+vü0 G"a¹\n8™\Ü0= è²ð×vl·póËO½RUuDÊÄðéøUUe\{5†“‰øTOÂãÚRÎäò=ù¿Ï~N|. ~ù8ÖºUWÜrãV*€çû™OúÚ¼ys__.—«««-.Q'6oÞ|®ãLñ^çݹ³ëOû©<ï`KÛÙc|<)O8úÒ¿ÚpÓºÕ>ú?Îð¯mF( è ÛÀ9¯«­-51Mý8_öÖ YÆùý MÖ;tpñÚß_ÿ… /?`ÏU—íÝÞ|äÝc V¼½vãÍ¿zZ›Ï mÏˇÞû×ß¶-óskWùóû_OŸe/)Ea’ …ïsY®ÈpscÃ'#æó¹±­m[c)¾ÃþCG÷:ú±Ç1Ê]:|Ò½ˆÎ´Æ_Û¹{\Ç3,ÿ\!¸/ìk;5’w››çtuu—.ôÊÊÊ·Z[ƒÉ9_gRÙheEz8­ŒdG¦hœÇÍ/Ý÷»ç¶ü'ýgMýç~ý “ââÃûö­º¹h<6-ºú·?¶×P2U¨ì®NTž“³€ëù¿Ù±kÓמ—s?z¼õW¯nׯW_¾bZUâ¼ »cÇŽ«®ºªÄþ”Ò™3gîØ±ãÓó£—!âT29í£ãe£…©ääÐ œpp_]Hæò¼øÛÿþš›çèuÚ¶íÎÁtàߘÔpK'ϵKýÉ£/[³òíW>¼lͬ“G§h,ãQ1­ƒ‹×V —ÏŠ‘¡–yËæÝ|þòŠÔ€áD¢tÚPÏØ^ï>ºþê5Ï¿üÊú«×¼ølÍÀ/n¼ùåíop!>·vÕ‰®žóEÐGû_½¶}õÊ·­¿q"M–ͽs0¨xà;v47ÏÑEŸ-ËJ¥R<ðÀ¹q¨eÿé®rñåkÇ5͘Uß4wî¸ÆÿðÕ{478|¼í©^,«·kkié>Õyú©Ä‰Ž\t)•.\6»ö—ÿþËU!¯ÿñÄ‹{ŽsR-{wßWÞL YƲÕkËÛ¤–óÆwõÖ5Ôöt\³ýyÛs'k$Ô2;&xMï‰U;Kè«©ß½nsª²:žXóû_Lï?u`ùu‚+Þù§3lvÇù˻ﺸ©áX[Çÿçù|á ™]É›3ƒ„kW.ûüú"áбöÏüü—ýCÓõï Ø½ëœt™š¦ÿã÷?=E¹LOë1/^i-ä¸öÚkµA½yóæ³”phX¡HÝœ‹íp´ì»k®9·ˆ·ÞØñÑ͘±dåJ½Ik uÏ—.šY÷Ô /nm/ï=)ÞÛ»wŠt€>Ú#X¾úªþ4—îܺvÇ‹Õ]®—B¼»ûMO|¦²‘?9A—qqÁÛ[Z\z騯¿y湩‡noi Ø9@€O×uÓÉáÄôšæÏ-%§ü¹0’L\Fp œa.O›uÑÄÖ|>g;N$=ËQúzzN<Ìf€Ÿ”Cý}PJ)é„.ˆNjh°§ódûñÐÏZ‚ûŒúzJ϶Šç|"‹Nº^µ9œÍd&:£'bœë9@€Ÿèa¤½½{ž_È_çk:!fÌø „èîìœ^W7Î]<…™;±±Œz,¦×Ö5Í;™ê®P(œloïïí nª8ï(ïâ(!—Íôtu)) ð¬Óîl&ÓÛÕÕrøp&=Lb€ü)ðt€øs!Ø%@€>¥øÿ+Må®WºIEND®B`‚pymvpa-0.4.8/doc/pics/logo.bmp000066400000000000000000000420761174541445200162220ustar00rootroot00000000000000BM>DF8–:øC..øàt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[´cV|v|–„V|õkt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[v|y¥œÎ~ïßÿÿÿÿÿÿÿÿÿßÿ~ï¾V|t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[v|úµ~ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ[Æ´ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[´c8ßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ=ßÕkt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[´c™¥žïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼Î”[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[”cY¥žïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾÷úµv„6tÚµÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿø”t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[׌=çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœÎõkt[t[t[t[=çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼Ît[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[õk{ÆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚ­”[t[t[t[t[t[ÜÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾÷Õkt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[•žïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿy¥t[t[t[t[t[t[”[žïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷Œt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[Õc[Æÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹­t[t[t[t[t[t[t[V|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúµt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[V|]çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ;¾t[t[t[t[t[t[t[t[y¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÞt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[s[M”M”.Œ²kt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[ø”¾÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß´ct[t[t[t[t[t[t[t[›Îÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾÷´ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[s[¢íàýàýÁõMŒt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[y¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾÷6tt[t[t[t[t[t[t[t[”[žïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ6tt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[s[ƒåÁõàýàýÁõ±kt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[·Œ¼Î¼ÖÜÖÜÖÜÖÜÖüÖüÖüÞýÞýÞßß•t[t[t[t[t[t[t[t[t[6tÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷Œt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[s[s[ɬàýàýÉ´t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[”clt[t[Õkß]ç]ç~ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÖ¶úµÚµÕkt[t[lœdÝdÝ‹¤t[t[t[t[t[t[t[t[s[“c“c“cs[t[t[t[t[t[t[t[t[t[t[t[t[ÑsàýàýÂí“[t[t[t[”c´c´c”ct[t[t[t[t[t[t[t[”c´c´c”[t[t[t[t[t[t[”[´c´c´c”ct[t[t[t[t[t[”[´c´c´ct[t[t[t[t[t[t[´c´c´c”[t[t[t[t[t[t[t[´c´c´ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[¶ß”ct[t[•ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾t[t[ï{àýàýàýàýÅ“ct[t[t[t[t[t[ð{àýàýàýMŒt[t[t[t[t[t[t[t[t[t[t[t[‹œàýàýàý-Œt[t[t[[ÆÿÿÿÿœÎt[t[t[t[t[t[t[t[üÖÿÿÿÿúµt[t[t[t[t[t[¼Öÿÿÿÿÿÿ=çt[t[t[t[t[t[™­ÿÿÿÿß÷Õkt[t[t[t[t[t[=çÿÿÿÿ{Ît[t[t[t[t[t[y¥ÿÿÿÿß÷õkt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[÷Œÿÿÿÿ¶t[t[t[[Æÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß”ct[²k¢íàýàýàýàýàýdÝÑst[t[t[t[t[ð{àýàýàýMŒt[t[t[t[t[t[t[t[t[t[t[s[dÝàýàýàý&Åt[t[t[[ÆÿÿÿÿœÎt[t[t[t[t[t[t[t[üÖÿÿÿÿúµt[t[t[t[t[õkß÷ÿÿÿÿÿÿÿÿV|t[t[t[t[t[™­ÿÿÿÿß÷Õkt[t[t[t[t[t[¹­ÿÿÿÿß÷´ct[t[t[t[t[üÖÿÿÿÿÜÖt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[lžïÿÿÿÿÿÿ÷Œt[t[Õc^çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžïtt[s[&Íàýàýàýàýàýàýàý¢í„t[t[t[t[ð{àýàýàýMŒt[t[t[t[t[t[t[t[t[t[t[„àýàýàýàýÁõ’ct[t[[ÆÿÿÿÿœÎt[t[´c—„—„”ct[t[üÖÿÿÿÿúµt[t[t[t[t[Yÿÿÿÿÿÿÿÿÿÿúµt[t[t[t[t[™­ÿÿÿÿß÷Õkt[t[t[t[t[t[6tÿÿÿÿÿÿúµXXXXy¥ß÷ÿÿÿÿ8t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[”[ÜÖÿÿÿÿÿÿÿÿžïlt[t[—„ßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷Œt[t[ª¬àýàýàýàýàýàýàýàýàýàõ‹¤s[t[t[ð{àýàýàýMŒt[t[t[t[t[t[t[t[t[t[t[½àýàý¢íàýàýlœt[t[[ÆÿÿÿÿœÎt[t[y¥ÿÿÿÿ8t[t[üÖÿÿÿÿúµt[t[t[t[t[üÖÿÿÿÿßÿÿÿÿÿ~ç”[t[t[t[t[™­ÿÿÿÿß÷Õkt[t[t[t[t[t[t[ßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿÷Õkt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[º­ÿÿÿÿÿÿÿÿÿÿÿÿÜÖ”[t[t[Úµÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúµt[t[„àýàýàýàýàýàýàýàýàýàýàýàýÅ“ct[ð{àýàýàýM”’c’c“ct[t[t[t[t[t[t[²kÁõàýÁõMŒàýàýEÕt[t[[ÆÿÿÿÿœÎt[”[=çÿÿÿÿüÞt[t[üÖÿÿÿÿúµt[t[t[t[tßÿÿÿÿÿº­ÿÿÿÿÿÿ–„t[t[t[t[™­ÿÿÿÿß÷t´c´c”[t[t[t[t[y¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœÎt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[·„ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹­t[t[”cßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜÖ”ct[²k¢íàýàýàýàýàýàýàýàýàýàýàýàýàýdÝÑsð{àýàýàýÁõÁõÁõ¢ídÝŠ¤“ct[t[t[t[‹¤àýàý&Ås[¢íàýàý±kt[[ÆÿÿÿÿœÎt[—„ÿÿÿÿÿÿÿÿV|t[üÖÿÿÿÿúµt[t[t[t[™¥ÿÿÿÿžï´c=çÿÿÿÿ¾t[t[t[t[™­ÿÿÿÿÿÿ¾÷¾÷¾÷~ï¼Î÷”t[t[lÿÿÿÿÿÿúµ×Œ×Œ8ÿÿÿÿÿÿ•t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[Õk~ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßÿ—„t[t[6t¿÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžïõkt[s[EÕàýàýàýàýàýàýàýàýàýàýàýàýàýàýàý¢íФàýàýàýàýàýàýàýàýàýdÝ’ct[t[s[dÝàýàý.Œt[è¼àýàýª¤t[[ÆÿÿÿÿœÎt[{Æÿÿßÿÿÿÿÿ¾t[üÖÿÿÿÿúµt[t[t[t[ßÿÿÿÿ[Æt[º­ÿÿÿÿžï”[t[t[t[™­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾t[t[üÖÿÿÿÿ[Æt[t[8ÿÿÿÿ¾÷´ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[œÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ~çÕkt[t[Yÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßÿ·Œt[t[ɬàýàýàýàýàýàýàýàýàýàýàýàýàýàýàýàýàýdÝàýàýàýdÝEÍEÕÁõàýàýàýÉ´t[t[„àýàý¢í“ct[.Œàýàýƒåt[[ÆÿÿÿÿœÎõk¿÷ÿÿ[ƼÖÿÿ¾÷´cüÖÿÿÿÿúµt[t[t[6tÿÿÿÿÿÿ׌t[V|ÿÿÿÿÿÿ·Œt[t[t[™­ÿÿÿÿÿÿÜÖ¼Îßßÿÿÿÿÿÿÿ·Œt[Xÿÿÿÿžï”ct[¼Îÿÿÿÿ[Æt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[y¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ{Ît[t[t[¼Îÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹­t[t[.ŒàýàýàýàýàýàýàýàýàýàýàýàýàýàýàýàýÁõ‹¤ð{àýàýàýMŒt[t[±k¢íàýàý¢ís[t[ÅàýàýÉ´t[t[“cÁõàýàýð{[ÆÿÿÿÿœÎy¥ÿÿÿÿ–„÷Œÿÿÿÿ8üÖÿÿÿÿúµt[t[t[º­ÿÿÿÿžï´ct[t[=çÿÿÿÿ[Æt[t[t[™­ÿÿÿÿß÷Õkt[t[׌ÿÿÿÿÿÿ;¾t[Õkßÿÿÿÿÿ·ŒÕkß÷ÿÿÿÿ׌t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[v|ß÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿXt[t[õkžïÿÿÿÿÿÿÿÿÿÿ¼Î”[t[±k¢íàýàýàýàýàýàýàýàýàýàýàýàýàýàýàýƒåð{t[ð{àýàýàýMŒt[t[t[ÅàýàýÁõ’c²kÁõàýàýð{t[t[t[ÅàýàýÉ´[Æÿÿÿÿ¼Î=çÿÿ=ß”[”c~ïÿÿýÞüÞÿÿÿÿúµt[t[”[=çÿÿÿÿ[Æt[t[t[¹­ÿÿÿÿ¾÷”ct[t[™­ÿÿÿÿß÷Õkt[t[t[~ïÿÿÿÿÜÖt[t[¼Îÿÿÿÿ;¾•ÿÿÿÿžï´ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[´c]çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß÷V|t[t[׌ÿÿÿÿÿÿÿÿ~ïÕkt[s[EÕàýàýàýàýàýàýàýàýàýàýàýàýàýàýàý輓ct[t[ð{àýàýàýMŒt[t[t[EÕàýàýÁõ“cM”£å£åEÍs[t[t[t[-Œ£å£åDÕ[Æÿÿÿÿ¾÷ÿÿÿÿy¥t[t[Ú­ÿÿÿÿ¾÷ÿÿÿÿúµt[t[V|ÿÿÿÿÿÿ׌t[t[t[6tÿÿÿÿÿÿ÷Œt[t[™­ÿÿÿÿß÷Õkt[t[µc¾÷ÿÿÿÿœÎt[t[8•ÿÿÿÿžï¼Îÿÿÿÿ;¾t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[[Æÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ=ç´ct[t[;¾ÿÿÿÿßÿ–„t[t[©¬àýàýàýàýàýàýàýàýàýàýàýàýàýàýÁíM”t[t[t[t[ð{àýàýàýФð{„É´àýàýàýEÕt[t[t[t[t[t[t[t[t[t[t[t[t[[Æÿÿÿÿÿÿÿÿ¾÷Õkt[t[tßÿÿÿÿÿÿÿÿÿúµt[t[úµÿÿÿÿžï´ct[t[t[t[=ßÿÿÿÿ{Æt[t[™­ÿÿÿÿß÷·„v|׌¼Îÿÿÿÿÿÿ™­t[t[´cß÷ÿÿÿÿÿÿÿÿÿÿ—„t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[8ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ;¾t[t[´c]çÿÿy¥t[t[.ŒàýàýàýàýàýàýàýàýàýàýàýàýàýàýEÕ±kt[t[t[t[t[ð{àýàýàýàýàýàýàýàýàýàý.Œt[t[t[t[t[t[t[t[t[t[t[t[t[[Æÿÿÿÿÿÿÿÿ[Æt[t[t[t[¼Îÿÿÿÿÿÿÿÿúµt[”[~çÿÿÿÿ;¾t[t[t[t[t[¹­ÿÿÿÿß÷´ct[™­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžïÕkt[t[t[›Îÿÿÿÿÿÿÿÿ~ï”[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[6t¾÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ•t[t[v|{Æt[t[²k¢íàýàýàýàýàýàýàýàýàýàýàýàýàýª¬s[t[t[t[t[t[t[ð{àýàýàýàýàýàýàýàý¢íM”t[t[t[t[t[t[t[t[t[t[t[t[t[t[[Æÿÿÿÿÿÿÿÿ–„t[t[t[t[÷Œÿÿÿÿÿÿÿÿúµt[–„ÿÿÿÿÿÿ·Œt[t[t[t[t[6tÿÿÿÿÿÿ•t[™­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßV|t[t[t[t[÷”ÿÿÿÿÿÿÿÿúµt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[v|•••]çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžï•••·Œt[t[t[t[t[”[XÎ6÷6÷5÷5÷4÷4÷ÿ÷÷÷÷÷RÞ|t[t[t[t[t[t[t[t[²kª¬ª¬ª¬ª¬ª¬ª¬‹¤.Œ“ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[÷Œ¹­¹­¹­y¥”[t[t[t[t[”[™­¹­¹­¹­·Œt[—„¹­¹­™­”ct[t[t[t[t[t[y¥¹­¹­×Œt[–„¹­¹­¹­¹­¹­¹­Xv|t[t[t[t[t[t[”c¹­¹­¹­¹­6tt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[[Æÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼Ît[t[t[t[t[t[t[t[t[™¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßÿúµ´ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[y¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ™­t[t[t[t[t[t[t[t[v|ß÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ]ç—„t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[—„ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ—„t[t[t[t[t[t[t[µc]çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßÿ¾´ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[´cß÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿÷µct[t[t[t[t[t[”c¼Öÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßv„t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[üÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÞt[t[t[t[t[t[”[{Æÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾÷y¥”[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[º­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúµt[t[t[t[t[”[;¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ{Æõkt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[V|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹­t[t[t[t[ÕkÜÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿüÖ–„t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[^çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÞ”ct[”[•~ïÿÿÿÿÿÿÿÿÿÿÿÿ=ç׌t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[8ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ~ç¼Öžïÿÿÿÿÿÿÿÿÿÿÿÿ~ç8”[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[¼Îÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß•”[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[´c¼Îÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾÷;¾v„t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[”[•=çÿÿÿÿÿÿÿÿÿÿÿÿßÿ^ç[¾×Œ´ct[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[6t•Y¥™¥8·Œõkt[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[t[pymvpa-0.4.8/doc/pics/pymvpa_on_phone.jpg000066400000000000000000001321111174541445200204530ustar00rootroot00000000000000ÿØÿàJFIFHHÿþCreated with GIMPÿÛC  !"$"$ÿÛCÿÀ´O"ÿÄ ÿÄ[!1A"Qaq‘2¡±Ñ#BRrÁ$3b‚’Òá%Sƒ“¢Âð 4CTcs²&DEt„ñ56FdVWe•³ÃâÿÄÿÄ6!1AQ"2a‘q¡±ðBRÑ#á3bñSÁÿÚ ?ö]Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@…))IRˆrMhyÓµ\³–ß6AÇq,@öK4÷‹sÐs;‘A(BSvŠ»7ÚCÏ4Ê ÝqHä¨ÅpÌS´.Ñ1Û„·‚`ÖxM¡'ÇxJÜ#¡²H÷š¨¸É˜þ:­y—6b—©Zt­–ÜîšPò)NƳOJN.^zÊÑ^§QÌ]®ä Exý³Ž%eµ6ÁïT•A ’+BÌ}¹c‚œ¶ÈyRîýS º¹Im¿x‘ò©g™s i>Í…[…uZ“©Gç[]¶Å»zm)÷D±­ùW¹²3 <›~ÆîhísÃ-Q£Â.B¥å ê@:Ò§Ü,¹ùÛÜÈíÓ¤|ÄÖü-§d•9ol’@ ©×­.¶4¨a)­)£šß#µÏdCvÙ±!iT— ²eCˈ¬Ûv·ÚXºÍ™Wò• ;ÝaÓ!>©=~"º°µ@ !Ü!—“»iéVF­hõ¹DÿGQZP·À£ËÝ·ä T¥·±Oɯ”©»Ä´úIØŸq®†âx~$°¼b嵤)*ma@ƒÁÚ¹¦fìóƤÞa¶îí΀ÌW?ºìÛË Är^5w„]³zõ4¿B“µ_RÚjÆipÊuèÏäÏKQ\s²þÖ.^¿FXÏŒ# ÆAÒÓü3s¼ $þ·§ËÈv0Aƒ Ö”ÓÕš”§JYf¬ÂŠ(¦VQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQXZÒ„­A)“@ªœË˜ðŒ½d«¬Rñ¦Ò’¯ÌLÉ;p+žgNÖÎïeÌŸdq§© ùƒP²žL¹½ÄŒæ»·1[ó¸.}Tz%<…FSŒ<ÆÚX)Ê9ç¢-ÛízÝÀÒ‘•ñ­.î‚[Hþ4«^Øðd≳Åp¬O m{ ‡ÚÜù yÚ¬o,›.¨†Òày  ÆðÆnSkm*I… ®]N!5-#¡Ô¥Ãpõ®Ó:~ŠáØÅ’/0ËÆ.í×õ\iaI?S+Ì)FaȘŠñL¦ü[;ˬ9_Í<:‘û*Ž£ÈLÞ{=ÎXVrÁ…þ¥¥h:iÄé[K)#Òzm[pø¨WZnsq¼>®^-Wse¢Š+I€(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+Lí´l%¶Ów«râúâE½« Ôã„zt÷šÖ;Yí]x&.ÖWÊöˆÄñ—Ò{Âà´¸ûºúV“•òª›¹sÆ.ÄqKƒ©Û‡·2zÐz ÍˆÄÆŠõ:˜,OŠZDvçÏÙÑj8éÁpå’Skha™ÛRùŸtUîXÊxfÐÖ¨Aê®I÷žµkhÂ@÷U­›e{t®[«R»ñ=E’–9i+Ú¶Cd€ò©Í´ @*J‘ Ž“RP 8A#=Jêe!B<4ëh ƒ½8Ô‰†’¤êËXÈçqÖÛA¤¶"–ÒÁ€jZYB“=jèFæYTqÜÅ»sÔö­S¨¨mø¬Zu*jZi¥ÔÃZRè6mÄì÷Õ&1`'HŠØT´‚%Q?m@¼RL€¢¬"Õ‡†«8Êèä¹÷)XcVE‹„–ÝAÕkp–ÓƒêOa] â—øæJÍzSŒX‰eÀ˜² ~ôóï·âŒ6ãK \CµëÌ:âß3`«S¦àq.#—ê“æ#jËJ³£,¯fvëPXÊ-þäzŽŠ¦ÉÓ9‹*aØË3¦é„9‘"`úÕÍtÏ2Õ´ (¢Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@U^gÇð̹„¿‰â·M°Ã)ÔJŽçЧҤ۲&bWÖ˜m“·—϶à $©n-P$šáç9⽡â²Ã¶¸L\ß ©ÿè£É>½}ÜÔbxÆdíZõH½iX~\Cº™¶ø>øãß×Hʸ ¶f‹{vÚ BxªªTË¢Üîá8|iG›_~‹ûÈ™CÀì’ų IÄ¢7'ß[Ʀ­,HIu[QíÒ–PA¬Û¤Ü\•G…«¹12âk¤^…•iYêÁ7N¥i¤A®nwF¢œOMÉŽ&‹§>§¢°»Û|GbúÕĺÃè BÒd( Š“\³èѯÈ# ¸ZÕq…<«RT”Ó$‡Æºz˜MN*K©óÊÔÝ*Ž QE"°¢Š(¢Š(¢Š(¢ŠbþîÞÆÍÛ»§RÓ-$©kQ€ë@’$˜“\wµ^Ó±&q¦²¶GfÚþý`û]”KvƒúQÊŽûL@ÇûK¿Îλƒd¦ÞbÆTÕÎ"ê dq gÏSrfN°Àì;‹VB–½Üq[­ÅI=Mf­]GÃξ ‡æµJÚG·sNÉ9aœ1×uJ¸½¹Yvæá{©Õ“$“[êPh±*dÚÝ)$AI3ð§Ý}(úß}peQÊMËsÖ:i$¡±6Ñ$€$’&¬­ " Þ«íրΡÁ¤wäª$Õñj&IÁÍ´Z4àRÉ;ÔÖU¿J nä!{š¼Ãž:¦›LɈ¤à®O‘ʲ„… ù¬œE8”ùU¹NkmBaS >QÓjD(€…÷)­;KrB_I‘Ökò˜RDG*‡9"œuÔ¥Å50ä«’=¥KW4—]¸&«ÃÐN˜Þ™yõÞ‡7bØáõÐríR˜U¢g¶«5¤ªP­ºkl}èLLíZŽo¸Oä÷ußøÖD¼'gI¦7ôIºÅ `÷N¶«+ å7j™ñ¤ŸMöø×s®ôWq/¯4<›gR x€$dŸx®å]ª-ºi³ÉcUä–× (¢¬3Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@V·žó~•pgo®WÞºCL6AqÅžãBWNNÈ^x͸VS½¿x†™Nëq]‘ÔÿÏÀE¶`Ï™‹ò¾dqi·×6ÖG»e=6ê¯3ü6«ì7Äó6*¬Ó™Ð“t´éa<,£®üÖóáM²™Ð©©S\±= O mMeö fÊÙ J@Ut\m”tô¤<´´˜O@+–n¾èuÐc¢kIµá†äªO™ã›Ð‘l¹XB|ëa±¶K Ò0ë`Ê&¥L&š»‡QñKs‰‰Ägyc±V”F™­nüÌÕæ%pƒ +Š×qÄ5N!¬ÆÜ …5ã “Zžfjm–’Ÿ=ëhº~“Z¾b¹G³¬+zãâš=v I2«è݈³cÚ†9ƒ).w·–¨}}PH?¯HW™{ «¶¥ºŸÉî&Gï&½5]Î,Øxž?ŽC&6aEVã’QEQEQ\ÿ´NÒí2Þ$Î adö)ŠÜ¡E 0D4GÃú ùúMØ”!)Ë,UÙ´fÜÉ„e|!ìO¼nÝ–’Oˆî£äR|…pÇ1<ÛÚ›ësiÜ#-‡ ˜¶I)zá~’:Ùûê^•qLÅŠ7Œç[Óˆ\%Zš·ˆaö OSêd×IÃðöÛBÚ4¥<+LNo =Îå 0Ë=]eÛ±S—pK<:Ý»{[t!´ ³ÚZ„¢OÖëHi…DTû^60FàúÕt¡mljÄJzš®eÃT›Žñ %J!Cú^cî? Ôq²Z·ï¢bº¥õ².Ú Õ ò5«c¸¹iKJ!dâ4ì¯ZNJ½e£Ã¸„U£Qš^²e•¸Ðõ«d^%ÂÚ:V…šr®+n⟰ÖH2:ÕfUÌ·I{ÙnJ‚ÐaZŒMs¡VIå‘è sY Î¨§;ħ‘RðûÅAQµ‹ÊåU‡Ÿ 75W:wz‹sv®LUrª‘®8w&;urTdÌW/íSy«ØÚo.ekQ÷ÖÑâíÛ!zÖ&µžÉòâ»Aí#òÅón+Xqp~e;õ’=GCTS‹¯UD׉šÁaÝG¿C¼öM–ÆVȘn¦ÛMÂZ ¸(áNÔ~dÖ×@ŠôIYXùü›“» (¢˜‚Š( Š( Š+ ZP’¥¨$¤Ðh$kRÍyï ÁOpÈ]ýÙØ2Ljƒëåñ­Ìs9cw…ë‹ÏÉöÊ"ݼ5s>èª*b!Os~‡WÄkeÝcÇðŒ1W—­ Á! Ê•ÀäÖ´ÿi8x¹î­°Ûë†âC©@HûH5«áØ#mK…:Ö£©KY’Ië5oof„ - VgŠœ¼ªÇN&…?û%wèYÐ[*ðae=f'ï¦.{O²¶p°lD7;¬%$¶š ·P|3q‡¶à §bzŠ9õWbÏøüÒÍ|Í·.fÌOùºýµ¹ZW…cÞ“½^×ÅrÛ}÷´Z-V×)’‡YQJ“ñ7+gü[ijWéìÖ­ ßÄ™Ø/¤züúšº–*2v–ŒÇ‹á§ô^eõ;†]mæ’ãJ B„‚ .µP¢Š(¢Š(¢Š(¢Š(¢¹¦!Û‡gì\\ZÙb‹Ä®ÃhÊœJÏ’V“sí{2bm†ò¾X[iÙëó§IýÑÏÌTe8Çvi¥ƒ¯WËvÇ\m¤¸´¡#’LW;Í}°e\évn¹Šß ÁfÑ:ô™ÏÜL×:¼²Î™¥Ò¬ÉŽºÝºù´´–Ûˆ‚R‘5e„å\+ g»µ´BRçßXêãá #©×ÃpFÝë?’+±lùÚ`YE³Œ`L)` 6žñÈŽ ;}Ÿã?&ä–}¯òž"ó؆#2·®+Q÷Oð©ÊÂÒvBž UÆo|ˆJÒ8˜Þ²ÒÆV“ÔëÔÀáéCüVL»q†-šB J@qJe×ð0˜´iØqZƒ©N+ÍUqeo¸Ò*ô¥/C™R¤ ·¸Î`ÂÖJÖy&®ímÇ06¥±n„™#z•²G­¨¨£_æÀl)›—@AœïÒO _¹ï*“²Ð¢œ3HªÄ¢­êŽü(¨Õ½Û“"«.);W.¤C…ðØ£»Lˆ­_46j¥yVÝrˆZFz¾nÞÅÝdIÞ¹‰+ž‡ RÅѽÇî{j½ZYe›¬ IP€O¬•z¢¼õô=ÖèÌyAa»›„°Üˆ@’Gžêû+еéð0ÉB(ñ§síA"D‰ò«t6qÖ¸^ôŠÊjpëáïq\'镞lÙ]•üT~5U:Š×ìÅZYËOºþΦòŒÇXnë@DùW(_mÙ}Ã#¼ õÖšŽçl:Ì£ »õÖšƒ¯g¥ý‹!…rVuýiÛí $ ¶Ž~¦/¾¹ã‚y®6®Ö°Âu ’?}4Ú»]ÃÁ„X\B±Qx‰®Œ¿ôQ±Öq4[(ªBN½Ç¡®Ú~ ¬3V)fˆmFV Sø—l–l´£ù.ñãäÚ’H­[íMœnÑL~Ju‰ªáÔ¤OÂk5HN¶ª%ôj¬+ó°ÜÏj»pÚÜÒb Š˜Îh·iÎíÇRSÓzàهĺR¬¬]q'qݹ¨²µûœs3–ûÁ…ÜéÕ¦wæ&>Tã…¬úãÄh%vÏVáù•´Cº“èklÂsNÄ:÷׉°ü휬ÜÈ.@PkhÁ»VÅ­Ö Î|Ú‡%&¥,5xj‘5ÂVÒOÝ?èö•–2•$àŠ1ÉÔ¥ëË?m ³ÑmxØþ“ ­Ã í—y¤÷¯”ýt(\ʱÞ/؃Ãaæï /sº\\AJÁTw\IL\‹ü¯eÈL^§}¸;R]ís):o y‹®ûŽ1êuÖ‘¨…l&k^ÆñvíšWŒ|ë™c]±áL´¾æéD”t$’fµ<6Œù/ 8î—lÐnÞbo†Q¦@!ˆÔ­æ6ã‘DiÔªíË]z8x朑·¡üOìµÃ°[{t¶ÖþêµjÍ(; Ϻ«ìsvVtã1aN€\¤}æ®ì/lïF«[»gÇRÛ©WÜj0Œ̶­j‹t ÛøDŸp©ŒÚ•$xf¤°ÄøŒGœŠ°a„…i3—Wb©6ºº$zÒ]HSp¤•vã))ˆøÔ †ÂIéMÆÅp¯™šõã"f&+ZÌ8r/-ÖÛ­…¡C˜â·{–I• «»·JDÒ®b³Ô…ÎÆfi]›æüS+f+l¯‰ê ¸V‹GÖiG„“åå]è×θb\µ76„¢á’i}R¡¸®§Ù–<¬Å”,ïÝÙý:ÓNÇá"µá*¹,¯trxÎ0’­MY?¹³QE¬á…Q@Q@Q@[ ʘu‹iM¶Ã`Õ@W,ahLÚDzVÀÓ}QKS'ŠâònîÏ[,kبjѸˆ“K^¨|*ɶ¨mµI 7©ª)¢™bšz2F¡Vvvà’*J›#j•jÐb¯§M"ŠØ—(ê)›u) ÔÛf{µ ¢¤[„„§Þ|«TaÔãÔ¬äìzaÇR­ˆ4<³*ªQ9 ;­Ä¡>•[x¢ `ÖT⌂v¨wO„k%Yécu6c+nwQ¨w…)I¥9x7U9Š"Ý…¸µ@ó\¬MUuèQ›‘_˜±f¬[Q*cÍyõþÐ-\½o EûVæáä¶·—¨¡”“j V7:A;l Ú˜íëµpËÎaXS¡w$BÔ ÷uçµ?s{r]uJqLj“¹¨`ð3®ÕJž_¹£…ºpó}b«éUrZµËY *bØÒlI`\]­m>”ÈïÁHR”V|P¤ øŒÁÚ¹–lú]v¿‹ 'F —›KÊZWifqHÞ²ñZLmºR“#ËjâÌØ¸²?G À¨˜’Ú´Ov.y•èÔÞÈóS¡M,ÒdüåÚzÍî¸s>jÅñD*áW!‹‹•)–œTÉm¹ÐßÖ €0 mZÒ®Qñ<â·ÔM6¢I$õ¬UÆ)n-kRÔ£*2i4Q@“çB”¥R‰÷šÅghçzÅ(¢€ [NºÑ–œZšTE"³áõ h–Þ)‰·üÞ#xÝyCøÔ–³&ahËxæ$ŸuÊÿ®Ou-s=)Ô ]ŠÃÑÖ" Ô{Eˤ¾¤ôæœÊ?øö$}÷*?y§†pÌÑ Æ.”<”©¨hcRR¡í$@ŠSláeCQºƒý­¨uо.·JŸROçf2¸ï<õOãJNhºål¡_×4ϲaZ€&è×M8›,+Çí‘ÇËþ/ض3Ä-ª/rZ3c‘§î]gó¥ˆZžH÷ŸÆ˜M–S:± @J“ l)>Í–¸.ßyh Á~×ì\ªWÿì¹1½šÕ&ñiŸx© ]جx±(==ú´‘;¸v?:¡¼´¸·âî@ÿÄ«…àwn’íÙÕ&£¶ú¸ïIëá«bš1Vñô(ý¢àmß»ý³G´ÜÿÞþÙ«…åˤ‚t;zi•`w"K¢jÍ{¹r+ÅåØ3íOÏþa¬ûmæÿʞߟ©kÁ®Ò'»T{©•a—iå³ò¤G#ö»Ÿôî|ë>Ûuþ™U“cr–•êIµ|OèÕ·¥1Y‹8…á‰wèˆ]ƒ=âgÕ´ŸáM›gÿÑ«åI,º Ô>˜øÄ¯GG¹ð§QŒâˆú·Ž £h¨Jmc”šÆ…~ɨ¸§¹%9ÇfZ7™1ÖÈ(ÄßzÕ–}Ívk grG€kY ŽDV*£N[ÅÇ^Y¿s®åŸ¤'h8*’ˆ­äð•>\W[ÉÿLKæ†ñü,¾Xˆ?¼EVð´ÿnŸÏ×UzNÒø¯Æ}ÉßI®Ï1õ%§ñ`òøCÆSó;×OÃñì#µá—ö×M¨H-,*¾KUÆ_͇/ܦãÆol\IZxòâ¡*–Wøÿèœ14¯â¾ÓþÏ©wn„ðxó¨ŽÉDÆ¡^-È¿Jã…© æ›6qÛ4@S­Ão]Ccî5èŽÎ{jÈ9Ô"ÞÃnÎùcþ§zCNÏŸ ¿ªMfžxy•ŽÅ ´¦¼ÔÙ3 âtÇvˆ*ßư5¨Ê…ÃI÷쯸Tœq!Dí26ªÉcü²<”Ÿþ²~ OãQÃ;VÐÝÄbª`úòŠ(®¹â‚Š( Š( Š(  |· šis4ò‰™&˜R’¥yÖvcs%F6¥7©F€€®)Ö“¦š‹i!m ¨S™kB}|ª3[*iõ8`OßWEXËQ· àq í"—ÞÌ*•AqA*Õ4%äùüéæ±Jä·^Aò‘ç½B}ÁmXzâAL¦=AqFNñUNeôh÷ûñÖª¯Þ ÍH¸Y "ªqaDŽ+ yåW;j*ä{«€Ò šóçÒG´¿ÈxqÃ,œúà„ÏÕOíè}©ç[<³€\Þ\º™ª@>5á|ÑŽ_fl~ç¾Z”ãËð‚~¢zéX°¸oÕUÍ/*ü±£‰ý%<±ó2"MÅýÒÝujuÇ*RŒ•[•­ƒæùÀ€7 <š­KÖøe¸T¾FÃÊ«ˆÄq‹˜m·®;% &+Ш¹m±æeW'«,q|Ä·‚˜±l2Ϻš RŠ”T¢I<“[}g¸Ó .íLÚ$¤µ+ݯlr&^¶±FæåC”·Z¢¢fœ¥'vsfû´­Aä¨ÂH~ÔmöÓuÚ,ð¬—j”„`m¾FáO(¨üj}¦#—­F–rþˆVÄ09øÔ´#c„€OÓ‰·}E,¸u˜D$^ï:î©Ìv «ÁƒañÉ›d~/óªÝ¥2S†aИ)SM#Áê<·£@Ðóæ…ïàVÜíÅe É!GD ÜëÐéÍ îF‡B· Û¢~êq9®Ý V‡¸+ mÀ¥ øNà.•évs5–¦ð\?tÿÝ=|©ÆóE¸Î† 3 µA÷ôëKÂf(IrR…zÅ<Ø ¥Û/aÕMzYÆÝ”€Œ ÀhŸºžVqa`¥x^A ™´AãáG„zp¶w ‡JˆÚS ÔûKì •(»hòд’Óß]ý¬ïh.P?$`¨ ÞUfÐ=b²öw¶Q > R‰T¦Í¸å·ô o“³?g¶íwx­ƒ±£cÝžçŠUÞ7Ù˜»RÚ³yÁ§`Ado]¼ód ¶Æ ƒ¨jãØÛlT„gE)æ ”ˆÿ©6w£7¨‘ϘÇû1uðåÑy¤àŽàª`}QÇΘ»ÌªýÇ «…N„¡ˆ?ŸJê'80„ŸýÀÈQñMƒeGã†3»)úÙkIÜ‚pöÏð§uÝŽÇ2³Ä»,RBœ¹}IÖT”¼•%dvQì6û*}¾;Ù2T Д6êžå²¤Ææ`‰é&k£õlâÁV[Ë©öÚ3ðŠyòÄ­S,•@Ã[ÒHv¦¤—Võ*plwèÙj¯jx¾¤$$w%¥(ÄNÆ9˜­ÏÍE[k{~ñz)J”‡¤“Ô/*¡N}²mHÿØÌ²HÞ?'¶ ùÓŠÏö’“2¢‰Ü©[b}ÛSæ>ïóæ5nçF°íè»Þ-,Ý`­‚“*rÝÀü ;Uµ—h_FĒݾ/—ÒbTÃ~%5É›ÏX9i)9,˜Ü(áÈ$ý”â3Öã$åd¥gÄEƒÅßwùóž§f·ÎÿG’¢¦±¬¤’L™;üELg;v â{ÄcYL€tê!ÄWüõÀB\ȹb`Aöl({8à¯íy7-”ˆ:f,ïù?ϘïS¼³š{ xŒo&7ÝæGßO9ˆö&ó^c¼=Nì×ùVÍÞäÍöÿ®3ýêq»~ÄÔ¢Qq“‰O$]³ýêóòqü¤ÜÙî]2ž–ôÒ³JXRgùs:{³·ÛO™/äÿ>bn§¢œµìaM·òvƒÄݲ?⨋Â; }òyO]7íøë‚»™²¨ ³ì q¾¤°vøMEü¯ÙÃÊ)Ofø$ŽHB’ÛG2_Éþ|Âðõ;ËùS°G›RVæSÓÁŒI±ÿV½Ùß`Bû@ãÁеýêâ—X‡gK{4ÁàÀ³Ç^j+«ìÉBÉ݃f†µÜO±ÎÏ­L#°}jA´¬nzAü+_o²fä',¸’S/œ5yS²ÕAVr˜àŒAmßẩŒö[”´•±Š0$Ö‘vqinéC¬­"wqÖ·•äþÌtŒ;*˜öåGº¢¹ò ÉYeÌa…Ênæ>b¢ÝÁ#ŒbØ ¶‹†Î©ú¢yªw™u•iq'Ý]ªã³,ºâUì˜ýúÂTì+MQ⽕bãR°ìfÎõ)%ßßP°¶ŠØñŒ›™°Ô©WX;Ú¿xÐÖ#áZòÒ¤(¥I)#DCMËN­£);H%'êª<ÇZË®•¼]JÑ&@D€§•% R•¤Â’dZM :¯g]ºçLªÓx}åÚñ¬); {¥’¶Çôwã"½yôT¼°Î¸µæ|³¾·HE ¶üž.[íkY•:„¨©½Ú!:€Ô$ ŸÕe–qÜc,ãÖ˜îˆÜaØšõ±rÂô­>ðA ƒ±‚$U MO:VfÏ××å:NWLû EygèÓôª°ÍNÛe^Ñܴ±®ì%ŒX©-ZÞ)#päÀiÃ#À£ i:R}MW˜ÂŠ( Š( Š(  YNj$VYî*8XÕ°§ƒ° ×>:êÎû‹JÈ”J§X˜JX‰òàuex:<ê›nîã6æ-íÞQ°·Y ìµUZf ‡Þß>°¶SÎùÇ…#Ìš¹ËYIË.qMM4wK|)_…nÍ-›f½›HeBGJôpð£MB'ŒÄb§^«©-ßЦÁòM‹\ãw^Òèß¹A„yäÖÑjõ¥“ÞÂݦ4&?Æ«Ó+ZŠ•&Ÿ@Þ*äfÜ’·–µ)J2:ÒÒñÓ1 wêŸ!Ä3mfÓjÖ(ƒÏ•&çigR žj^á>±JJõ¤îÞ-[#t—P0Sj±jÙÝhPш­YÜ%’ ®í!`×Ω³Š^om(Qý)‚GÝO ¬BºÌØE¢Ë}ùZ‡:S5„gL» Ôê?¨kJ±Á/1÷ím[J\hAVßXO¼WJGÑë9-:“y„˜N¢;åHÙõ§É«Šë¹Z¼ïƒ+Nî:÷f”s¾´„-J ¡² Rñ¾Ãs^h.Ÿ¹Ã–Ù^Ѻ¥õðíT¿äà ­fæÈ‚¥êW¸i“ð©*S{!9EnË_Ï<'À§½?G5”ç,ÈuO*|“Tøg÷w··Vë»¶R­’C­…­µ¡FB~³pF®G”©ÓÙn9/°³þ¹ܡҚè—rqÍYx™N°=Q4÷ç†^ÓOoû)…V’¬ÂR¥&ï !1?§W_êÒeØùâë >çÕýÚ\¹öuܼo:e¤  Gí"MHg>åäý ¹Zßù,ÌgT?†øD«ôçmãöhOfôŸÃý"ãÿù£—>ÃRO©²œù—Êä¸÷?³I^xË‹Q:ÜH=’*ŠË²\ÏypX¶sqpJ@¸‡¼Rì—86êÛ6Öê(0J_Ió¥Ë—`λ—Ã9eµ « &}Ô±œ2ÉQ>ÐêAå"cŠÖÿÉFrÚ,™3ÇéÓøÖe9ÎcØÿnÆžIv ˹·';e=¥{qKç-%#MÒmZù&ÎÐäÔ|žAþ5"Ó±Ìïr‚¤X6#™yøÒÉ!æ]͘g\¸IÕz¿$Nô£›òÒ·A;•FçáZê»Ï€m‡4yÿ·Gã@ìS=‘¾Øÿ\ÆŒ² ú›çŽ]$¨âR7Í-¬ã—%7r£ÖÕ«ÿ‘\÷¤ŸÉÈŸ.õ?±\þxÃøº(´€Û0:¯ÀôŽ)ïÏ|bõ)#m…iÊìO??“Y>çÂ’®Å{@þjAŽaÑJÌ Àç< ÇewÈ;r9¥ ß—€ð^ ª"IãÒ´•v5ÚT~D'×¼H_c½¡&'YŸ'SøÑ¨XÞNkÀˆƒ~Ù”•P¼×–ÂMÓk:u½h'²>ЂJ¿7^÷wˆüi?ä›´Oÿ†. Z?5ý9¯m$7pÔqÊÂ3†¾«‹x‰P1\ûü”ö‰2¥ùÈ'ñ¦_ìÇ´D¹”ñ0=ŸºšM‰ètÔf¬-@“{n'¤Šq9PîØWƹ3ýŸgvS¹_@;ÿ0j2²nm@Ô¬¹Šÿʯð§’}„šz#² {ßMë`Ÿ%ŠmÌk )7Ì‘û¸ÑÊùœs—ñiòöG? OæÖdÿ˜qXH“ü‘;ÊV’%©Ø•Šádønå5ƒ‰áéþnåµuú¸ºð|m´…/ Ä €MºÀû©HÁ±ÅýL+TÚÝg•b; ±% 7 ž¤ê¥b6À›”@¡\˜eœÒ8,¦æOòg#ãµWÝÙbVÎ)76—l)'pãjIOÎ@íÍ=ß M¹#ÐóJö‹†÷Iã‰'zã™{¿ÃoPRòÖÑ#[j$‚=<«¯°âµmôn$I¥p$µ]·±QŽ´Î$Þ "1L1‡ÑzBU>r)¥È‡P€=zѰæ-Ù­‹ä¯ÄJ$Ïvöð#€Esì_İ—{»ûG3¨l}ƺøSîvéÅH[ì]Ûkæ¸i\¥i½(øÂh®…˜ò+.%wXœ ,(ýÆ´+«wí_S -§`¥B¥`¯N}þ“÷¹!«l¥Ÿž»ÄrÓiCWHH[ØrA€ë8Љ*JRA&¼ÇE}’°»µ¿±·¾±¹fêÒ夼Ãì¸Û¨P”­*)$AiêùÙôNúCÝöexÞVÍ.?y“n%$·0Çd¸Øä´I•¶:’´øµ%Ï¡¶v·ö6÷Ö7,ÝZ\´—˜}—Ûu •¥Ce$‚#b =EPEP‚!{t8¥Ww‚B†Ãî©–ËFÄ×.2LõÓ§e{¨*¤¶½)•q¨â¸P¡Ç¥Qbv3J9´ãËJä¥%éLªCZ€ƒ¨TWï`i“‹#C6Å‹×ZRN¡·­Sßâ[ÀPš‹ut  ªkx®&ÓED¸c«ZÇO €MÝ–÷xŠ’‚¢¡±­c0fVíZR”° UZžmάØÛ¹7 ÍyÇ´¾Ó¯qG]±Ã†É…:“Ï ¬Ð…LD²À߈©CO™Sÿdí—µ'žqÌ/ ¸Öê¼*ZLèÿÑrÎ܈b ïoãJW¾_SQ2¾ [#¿O+vЮG©õ­¨¬÷ó]ì68xÙn÷g‡âB¦2¦ihº.ÂÖâÊàÔÒY2¨W=7¦Tîä$Ó­Áçî­ ’ ž”²¢wü©Gˆ¥¤ÀÜoAи#`<éĺ&EFQ}õ†Ô#I’9Äþô`‘æi½ZRB6>tÊ$íæ&²§N‚6¦!(RŠÂ7ò“ÖŸÍ“‚²4„”’8šƒ¬S©A)žOJŸžóBu‡Q¦&†ô¥å[§Å=­/÷bÔ.ZD„éZ£è?Œu¯Hc}ÕµûΪÂé庄)›†Ð° l“öW›òçt1LfYK«jÔ„ÆÅå07ÿ˜®³‚çœçwdÊXq”6Ó)ÔâÛJNÛnx&¶a䲨ÏVæØæ¬Ã“î°w5X*îå½*qµ•!!J0w‰J«MÁû.wÛ½·Ç†ÖT]º‚I ð} $çlÙ~êíûµ:ã©HM¿‰07;tƒÏ­Bo:cm¦q´ÎÀõÜž}k}mZ)¨J×2Ô¢¦ï$n™‹.Yà·wX«—±¡/ ì‰Ln<÷;õª>ðÉÞ”U+ùÃ}!/†]HTÌÓC2ÝrlìÿØÿgNîí“³ÚÆÓjãfÚä8V<);{ê!pìx5H35ÐB€´³…l¡ÝsöМÇt£ÿT³ùlþ4ÓO±°°²X¹2wH$Ïô…a‡T‚˜ø¦EP#3\¥*þGh†ÿ£WùÔ…ãw¶ ØS ƒ´©¥´Ï_J@“7¤IÆe ñ)—:A¤f%_¡aV}òR§]-¶ÂÔú¢<‰ëZEžl»²{¿¶³´mpDè?.js9çÔ²Úñ³ ÈÜûýG5½Å«èmï P1lQjžñm…ÆxÅÝp6”[•y÷š.Ç•ö7‹#v-R.Rª Q1Äÿ°d¸›GUl•wºLóÉ« õŠ‚AjØ‘¶Èãí§ÙϘ’?Iì¬((é ÆÝþ´·s¢Y9p-[©ZŠJ´kH T Þ=j+OcJu,¥MÀB“F9æ´Öû@ÄV°gn£;«ñ§[Ï×ÛYÛÁõWO+\’v7%Ücܸ›6Ô²‘Á÷êà qç[Y} ,.#LG…;|É­öïþéoÎþ%T†óëð5Y³ëãUEÅkÐÙp»¼UXšÙ¹m+oqõtè±ãV÷Ž¾Í¢Üe¢ó€xQZ´oÏÇÇþäÉóñþÊZ3óÿ­bשÖwû)8‘Œ\{›±kÖÖÒb‚¥¨Â4DI—Ú*á—ã ©Ö‚D©=G¥i)ÏŠÔ ±AÿX XÏDƒþoIÚ?…+2Vô"gœÇˆa˜êí˜yHoBT  VÃ…ßâáרÚ%×´ò²v=*…üãfêµ»ƒ°êˆúÊX3óâsËHHJpà‘ ͇ÙRzÅ+ Bøb—e#Mª”µ ¶DO§ÖùT‹,D¾§C¶ËgB jýj×zh‰.Oèü<éÜ?97}zÕ«6+8HD¸ØM,{ 1²6åÂJÂJt×3c.ìYÚ,2ËvæáÝ'JÝN¨Ð8ëVž×v+h’?aÌI-÷ö‹C­OvãN€¤Ï#ÔzT*BR‘¯Zªf–ß lq6mœW²8ýà ³]ÂZqeKeH<ÏZÑŽiƳwrïfåo€ÃaJ -(Ðz×BÂí·Nëï\<ëÎ…-ÁäO—¥T«cßäwfÔ¹Þ›^ù=ÙXàùǤÕ1§5UþgUc0Ùžý5¶¬ŸsŽ\©ÝÓ)=õº!Z‰ñ ó©y{ºzáM(Â[RÀmÅ Äû¾U—Ëêü (Ààp65›d3m«¸ÂÑZaE$|ëE¼6hâNIÍÊ;w1âJ¸þWpûmFÅ{É1ÖiŽÖËÿ›¶K³Z‚®J-À*ØñÇOº‡0æ.Í¥è/)%fftñU]«ÞÜ·‡áLÚ57>Ú‚ÓjL¡ÃÇ==j¸AžÌ¤å©æ¼äÒ?=¯ÁLà’OôGÛ]#m,à–©OFÅhyñÇWÚ0nBíŠJДÀI˜Ú·ß«…°€>CÖF–†œƒüiBd‡•$,cÒ›Z„ýûTD-Jèf¨$1ÖšQ<‰·4’I'rZwÔÜ)²4À>uðüe¢.€ôB]Ó$PµÈÞº“¨L¡PhÔk™0g°|Al(-l“ú'JcPüj®ºëéfîØÛß!.!\&+AÌYrçqn²;ÖwW‡õEPW©¾…¾þjßZöwœïÐÖ[z[®TÚ›Öâ–R※Z–¯‰Òtð™)òÍ€û1EyŸèEÛoç¦\5b}îgÃüÇQ ½³J@¹ñºÂ¤S¥^"PôÅQEhX…‚YQuŸjÜÒª½£»V…î:UÞrL9 óªñ«J.[ ¿d×­â³@ö8yø¹u=Ì{V”l°M`_JwVÕCp·™B¼$¥<Ž¢©®ñÜ”+R}ðEQú«8`Tö6×ïÒ¨USÞâ‰D¨ªµ ìÉÝ‚CœÖ•˜ó²JåÈç­S:훩`T ûÌ­¶Ñý$D×"Ͻ ³bËŠ7 6ßšÑ3—h—·nJŒ»Zä8¶'w‰Ü©û·T²NÂv£ ƒwyhŒ[íUøž6åí²íÒÒZmÀÖ¤¤ø| ‰€:ìO]¹©º„T ÏòÖNØ‚Oª ZqŒƒŠ n|*Ûì®olùiÍA´.AL-3Ôzù¸ÂñäYâwW®Y‡EÃ]Ùh*Ÿ­¶óñ$Ы\3rÎb1&v÷þ³‹àS¾"Ç9ó­IxþâÔµàŒ$% KIB%z‚¢7#º’Œcu‡™»Ã_!m) 8…¤–]RÁˆÜ ’$q±éOšG–nÁÊvâDëcFzþi×ï¬VÚJ™ä8IY½VÞQç\ÂßÁÓ„±dæ[ñ-eCĨ «Ž“ǃQqLS ¸ÃÕmi†&ЗCšõH)ß}1yÐæ¬ ¬évYŸ ¶i¤ FÉÀ—áÔ­Ô¥‰ô"6ò“çR‘›0¾ál¦îÁ)qµ4­ Ó!D–㎵˰\c ¶aÄâµ:¤" | Œò)õb9x[wÂÔã‰@B_Žºú³æÎ})çBÉêufs~m®âÁÎí¢*ZN¥QCQIäŸâ²Æk»–YuÜ-æÚ%BTBH;Nñ?ãX…í•åëëK&ÞÝEN6Ûm§Â²ýÙ*™âØs ²Î%cíHeehÒ#pbvçyøt¨©Ç±,u:ðÌØ"îmZðç»”$)*y#Zô§TGBAÛúGŠfË™a¶ý‹ÉB–F·DxŠãú±î5ÌEöWÔæóÝ┤¡2‚ßÕõŽŠÒc~jíÖëö}Í™e–”Cá(‚âuÖ;Áˆôó¥Óê,¯¹Ù-Ø6õµÃw{ki Òê$…6'ÔWõ«7¶r×t.-î´„¼˜@L”ŸSé\©w¹eoG°Üw)-&¤ŽõJe^Ÿ(õ¦°ÕeÐõÒ¯-nKeɶ "wÙ`™=>ïZ3¥Ð2¾çWmì<¯mÚÆŸJ¬´Ïµ±éúT×/CÙ]J-&Éö™RUªT¤iñ}æ¡Û*ÎÛeäõ¼ÊÒ¦Á?W~HÏ^Hë.Ã?S®ZÌ –úÔþ4â{‰‚ó^íb¹X»Â¯1&—un›kT[¬­ ˆ*T(¥>»À“½<Ò²êÞ|%«´´…Žì¢“¹1·ˆ§aåëKš»TŸs©2í?×ùT‹52ÅËNÓ¡µ…hR„䘢ðSlµaÝòR‘ݶf4Së2jUÙÊÉaÅÛ]b¹§ôm¨Á&c˜àn}x¨óVÖ+×îuƒoÝ­Õ%BÖT¤3¬0„µpJA(#PJˆž ‰®5›Ýï0»÷gPF— ƒŸT¯(ª—Ú®;?¾ióc؃¤ûž„g¸Š®µmÖŒËP·§*NnÍËJ!*qd'a¶•ó’o.ö‹—ÇúÃø×vú=-NeÆß}aj£Þ7LÂE¸Ú|·š|ÈôDVuNáR<>ú˜'‘½OO$¤¶¡ýë:VF”Lu¤êhŠ+‹m½$²¯#VêÑ¥2)눙Üü)*ƒÊŠç­Þ)¥h3¹Ž•—íÝ!)mj¬U€Lì“Äø¸¥i ¤'·PE‹hþôÖ•Û3ϲÆÛl­È}NÊG‰$Dë½t¤¥0"¹Go7KgËöíâÔ¢¢4ÊÑä}?æ)Fwv,ŒlpÜâú®3þ.ò”ewë_½[ÛÛY´#„öW7Ç^Î×îU«w¯ôÍt âBP‘' ùV~¥ìd+ šA>7<Ò@:ŽóˆV鎛 B™VäϾ°5­Í)IQ‰0k ;ò'­7­)‚ |iµNÄuëH+è®<ë%RLAŽ´ÊŽ¨“Á¦K›$§ãÍ/Z^AmrúT:zÓ+êzSkTpw£æ,-xuÑ€KJàúùUUuí½³ [Ž´ÒÑ%¸QÉ„óÇ^=kãbÃv݇›Ið8“熬˜±|¥š0ìˀݮÓÃß0âIŽR¨å*¥IáI$}\ì·;`ý¢d\77`jX´½A%§6[.$”­µ4¨äD±ò6½9ôí1k?\dä¿(¢Šç&ÙíÎÆ¬;ÆÁðŸ#·Ô Ç¡Z8¶‰IÜyâBY^Vzßûc™n1‹Ø!ÉRN•zW<Ìxlê ¡d@RvŸZê7JJ›žµC‹Z7p’•¦}k."—Tt°8‰EYœËxªÜZ­n\|¹­vï b÷$ûIrNðv¯GX`L­M¥rcz‘‹5omjHkBR6éUS¥«³e~#?,Oö§…')·V¢ã†)#aëZQApƒ¦`zšë?IüXÞç&¬R!»vÊ€õQÿ çx¿xËjÝ ñC×¥wp+ü)÷#Zµ°Gç#=óŠl=âJAßB oç°žœÖÛŒáîbÝ–dä6´µ¡ûôêXØx›üjnJ4›o±Ei(«ÉØÑ°æ,—xrà,š XXL ŸßÒ›Äí­Ù×Ü8•éQL…‚âP}@¯m²µúÛmÜY¸Påµ*bvâcÝɨÎåKľ´‹»e~·ˆjë5Ž8ª.WS1þ»å~`…ax+Ï´Ûº[ @Õ¬$! Q$‘¨û§ÒR¼&ÁÜaûo˶a”²EÂQQÛŸ?*ÙØì—u„:1L-)Z5ø”¸uÓâG›2>3—n ]CiqkbJ@QPÁŸ ¶ÛκÒö6ÆIꘛ¬³jÅ’V?iß­•¼ ¤íÆçc¨ñü1i—™u´)ü^ÊÝ`¨:…,€Rb‹xùÕgäÌH¶µ›7å …€“¨™Žx#~’<éVö×á…!8[Žê?\°­Ièb=ãçM5Øvd˼Ù¬9Û¶ñ6 i %¥F¥+R’B`ð õ©X^[nöÝ.ŒV͓܇KkWˆ¦ oÓMT[ÚÝÛ>ËËÃÔøYmI$S7A)›Ç’åÚ-“l5¨èIQ „Ÿ!·¯Z.» &^¯/0Û¬¥ÌfÑeä¯@hj)Dø˜õšªJ,ÿ'w…÷=·¾ÓÜèð÷qΩæj ?ýë)ò˜e&×a¤;#HŽ|« ‘Ö2 ¸ëKVê:A é5™&`Ïœeeµ¥cJ”ž5&G˲šÀ¥#qÍaû‡Ü¸x¼éJ–¡¼ $€mIJÔ8Ú°óéåIø4î;[uECbIØ^”èpŸuE·qm8Ú´¬}SÌS­¨Ž¤ÒcD¤,Ìý´ó/÷`è ?®:ˆëQÚÔ¢¨žZZO‹ŠdGR G=)o¥Æ”´é+HPÌŽ‡šhìzÒTG˜ lCê&Lž:ÔU;mOÆÒÁN–]ZûÍ:»Ç ¶ME8Êtû/a—pÓªm+B ¤ÖŸ^œÔü9ßl±fè°¶K© йԙè}jWv#mGR**Û¡žxªÜ_¶Ä/{KŒÜ‹M­ w>ýêÈ qITâMUâxÍ®xã6·=Óm¥j} ”Sßµ.º £e·›qÐ)XRáÁ*‰ÛÜI$Õ”•DI#Ѝ³Ç,î.;g¹mEÎí'I ™Žœ\éÒFÒ|éH‡›Û¥q¾ÞHÏYY•””•ÕÀv4GUWí©ë_òŸ"í+-5l\–£^©QIßÔ…(nËÃÚ_{˜Ô¸¼»ZÅfº.$¿À®qó¶%;)Ù=k}ÅWz@ ©nLiN¨HŸJZW<’ lMF¤$ÌÈé48ép‚gh€qӤߚŒµ'iž”ìqµ0‹Î€ ÐÓ#y¤Óä(B’fD{Í Co:wøŒoåLÜ,©RNçš}D”í¸ûª+ÄD>\ëй¦æ9øÕfh²MÝ©¸Bu;ƒ<ù§øÕ‚†ûÒ´©³Îéû »« ë{ë—­níKÌ>Ë…4´™JÒ¡ºT¸"¦fiyÞ& oJ„ 3ºçÌUe >µö7œÏÝ–åÜÜ•2]Äl»ËjCh¸L¡ô$*N”º•¤I22y­¶¼gÿFþw}næÎî–ó!¡‹XøAC@)->’¢dI[%)6pÈ'fP¡z•(£»JÚ:§o:Ø ƒš®Äm»Â`Ç¥q*Ǫ=F¦WfV÷¥BfG˜ÜRISrG5”³Ý»¥$N”û‰Áõª¯š: ¤ÕˆŽ÷zá š«ÌwGÙ±"ýÎéE\NÕ®æ‹æÓfêÖ­´~1Y§7•¢÷ÞcÄݸ^¾Òq#;6¤¶>üjXgMšžRBTâ¾ÁÅVç‹Ãœq[ g]Òôû÷VÁ†¶³e¾¡;ûëÑa£’ŒW¢˜ó ”w:3Gô`ùÒµ"£Y¸Un“;NÉ ØÐ1RŸãNH€Ö˜&E-); BÁÞO”…€]%2‘?e(…iQŸJKh!Pf"€ò–§Ò&@ÔÆ§òEÈ2<M@¸)BÓ¢A;RíÔU‡Ü ßAÚŸAŠVb¶C{•’“[¡VŽÇ0'ý­‹c¾ +Hñ-Ÿ“ç¶À˜£”‡1Û$­ÍOi*‰‰Ú·»%½sØõ‚•…¹ˆºÞ7p”´”Én“«öL|g˜©Æ*Pi”Ô‚š´–…%íôëE¦.Ñy®õiB‚_Œ%D’ “öV÷KzÝëœzÅ·\‚ûe=ÑÕ¤¦f6ý•õÖ-®-ûܟܱ³imÉ qÙÜ9ØÄzsÍHSŽ=ˆ0†rÌ!%«T¤+Iö‰!sĈL„*¦¡{äE£¡ü²6“š1›kv¬Ãƒ]4mô¶À€L’}g¹I™±ìlj)›±ŽØÜ=¡ Û´”@Ò\<ù~ uŠ MÅ›¨qcqàÂÚ¼ $)!{¨ˆÜ‚’|Êi79e½èÃît¥’…[¨l\ß•LÈð‰÷šÓÚŪœc²$cCÂÐíêq†.S©V«îÀI*P#‰”‚O¨¨6™··„·zt•”èH '™Û­@ÆÝÃÕt‘†…†HYŸ™ûÀøUvõÏ¡,©›& Œcw8ƒVL^¥µÜ8”©e BŠ1Îäü 8œ¸õýÛëN'‡8êJVæ•%@¯m£ÓÝTx?³œNØ]¥Å°\Ä ¥'ÈFóWŒ ç\,ØÝÛ¶Žèw‹RŒaA@ã`v¡;î+[a¦òÍÂÖê[¿²sº /JÉ@;m¿#‰ôàÓVX×6]ú¸.­(iÀD¥-ë*ãŽ>ud›| Þ°ÃXUùuIHrw B¡Cq¶áQ×oZe)Á[i ¿g/eC€£¹;ýƒ‰¢Èz‘Àn_ÄWjÂÒ”¡ïxÿ0P•Dùø©Ël¹‰=ríºH-#Z–·!«¶®$jI>úqïÝ.\Þ‹ ܦÜ(…ÂA3ÇíH¨8±bÞñVøuÛ[iA*Ô@*ØŸ‘|&“In4Ø›‹ ‹lA6/ %òQá'`?ÚvŒ›(éKVê:T­ž 0Oñ÷V¾‡ÍÅê»yÅ•8’ë„ø¢@'ß±+óeZÎ#Š)ŸSŒn£é&|>ý^›‰& ´7e–/KKUųIqÆÒÞO…Sãpükk¼$¶¦Ãa²â”¥iH*|·AŸ-ªOq—šC‹â¯Z hP ¤,‡‡ž› Œû¨B°´Ý klÂúlI—R¥TR4ñ°$K­<¨3W‚Ý3‰±‡Ü:Òy°¹0™ÁÈü©Õ`8Š.˜¶BPóÏ6§¡RHç€v˜æ“о¼<0pÜbåöÞG{:ÈS`Ç’Dõ>uœ_HREõÌè‚éâ‘WÌùÔZH’l“so{…Ý >…[ºéåVVX2«Ä6‹R…j))N­·?~â©o/.nÊ\¹yN©¶‚O@8oÛ[[ ±.?pÖj¸·KcR^¥D%1·'~ƒ¤r6ŠI’»EsxòÒáWt‚ÒV\ X”%$Ì~ðú†Œ+~ÕMZ:ã+$%i LýÇäjÚážô^1â»6Ù*K…`÷Ž ¤< ø0*uÅÚPÝâÛÌ *îÞC,’ ·ßa¸*ñG¸£*‘£:ADÈùÔUVÔî]AÃ˧¶ö¦ÙqçYÔ%CeJc×TŠÕt¯Ôq"„¬E깊ô¯Ñì(dܤ+¿VÿùŠóJÖgQ“^›ú?ù•‚;{ÅüîþÈIF]Úð4•Çê|©B:PIò¤™ IQPÒIi.…8‚…¡¥$ò•n 8AÍ$ÀÚ¥p±€WêíÆæ„‚H¥n¥‰Ú>4&kϸ:§;Y¶@2¦l&‚¯¾½ɯ5öÔî¾Õñ"ÂÜ;Ÿü~4C«'sšåIV+j“035¼b*W´¶’9æ´ÜžÜbvëÙ^•µÞºTú€ØÌûª¥¹`ÂÕ *;ô¬$øe'¯4§7yäV5ißzb$•B¼öëIÔ ôÎý"’õH:и'ny¤•ANÔâÌ$A‘åM6¢yzÖ\'LM 0`ž7÷ÓkŽ Iô¬ë°£ÏXÀidŸZÊR½ô«LÄÅ%à ڒH‚v™"1ûf_±t¨»Þ¡:Ú L‚G ï¶ßuj¼Ü©µH* ßßçöV‰2ݽó̲¥­´ª¥§I#¤Šß~y½· ¯>ómY‹Ákx·]-¶†¥­gÉz÷ÚP+ê|g¯®]”c7y²ü«ß¼Û×¸Ž iur¶À S«e*\°ñ·N(ŠT|ë)XZH<Ó;±o}0ÍÈפª¸“’Lôê›q ¶•ê€dÒAÅ*åZ“ªv^nÕ~ê¦RIš ›E>= 6¨€G–ÕÉûSÄÞ²Ëw÷ IWvÊ„ïÁ®ŸÝ¥r„™æ¸_nw­§(b€¨x˜P‰êk2W’798Òlò­¨ïñõ’u¹'×zÝ­Ì(8§`i Ä›‘1½n6Ló¯SÐðÉßR—1ª\)ž+]tBÍ^ck%õ7ªG€gz%±+Å:VRÞRALÄÿ©¶Ê¼iGNE;=âà*ªT7?ÃÝLCa=êü €6»]޳´vS‚#Í"ÍcÀ¬üÅWg7ò6uÅp±²m®Üm?»&>ȨfñXÑʵ(Ï»6,!z¬“ç/Y÷ªÜ_ÉÔâwÞ¦TôcR}Ý)iæ Uò¤Z-¤Ý4§“,…b&S;×Q—dK0p‡›!mòUIFè‹•Žj•BOº@¬‡!Q×ß]Âr>%’ñLW-2óOaú£+ÈØ…O"kšHˆÛÐÅEèì(É1/¥“Áéë5$|Oê• ª­·ó©K$8žšLPK¡­Ùº‹|Ó†¸¶›wùBR:ul‰ ™òÈ­ÃxžÆ®Ü8Ьœk%/J•ja$úÄV“¥ Çðô¸ámí°¥¤IHÔ$ÖÛ€]ZÚöO®âÉ7¬ÛãÌåÓ©§'ïô5e7dÊäT,4Óöì ÓiqÝËÈ+·Ô„­K’IúÚ‰3>êq¤©wN2sSi¦Ôþ¤ÂŒ‚ r‘&'b&«ǰuw)F_m¤µ¸Ò ¢UGôFÜnO;Ôv±\%7oÞ« —^B“ÝŽíµ™=dít«.FÅÒÅå‹@áøör­a]ËiJ ŠÔa*‚6ñýÃ"›ÁžM½Æ&«ëgÕ vá úÉS„=?[ì>•ÊØ'v¤~EIÔ²½Õ¹ñ¨¥3ÐB Ç¡ŒKV›[¬9Å(é%M˜)TT ;í}"•¯ lPîzïÍ?¾UÞã…õáo!…) !± OƒIÏ2&|äô‚ÓeÃróîYÜÊHnر‘¾¹ž'Ý¿1܇€wÿ–ì…°l¾nï'N©>•¸)¬}vÌÜ—ðµ––4º§§” T¤BSðôÛO¼8{xºMš]šæ­†¨>§TU¹»ÊŠVÎ$¤! £¼ÚJ¤vl”Y‹LM¬u×%pÆxû ¡Hî‰Õã0P"Nâ#n£­<ʱw^möUf»Õ$[ÛIQV…!Jßr?[€'ã4v·˜²”ÕÀt8ÚÜQ•@©>dsP=iÌ%ì‹u\¹qp›¤2†Ð¢“¬¦AôÜϸzÔ¯ÛÿÁX¯Æ±G1 Ôºë 6¤ !ILn IQÚ7$š„•4¯¬ :O"­ÃyuËçžq÷š´  áV‘;‘ÎÕ·²·¾ X\—ÛIÖGS¹ ­¦M3i>ÔÁh%Å¥3É‘µn×nf4»wð|5²è†ô©_¦H@íº†æ6ëÒ´RÙ}¢µ”'P•@ãÖ¶¦†·•«Äe-¬)D•©ÅÊv#`Rñ÷T£°˜a÷x³®;si‡6³h°½aÉ÷ÊxÏ?¬6ª-¶+m†©ÛŒ‹ßÊBÕ©[j)Ÿª|]<©Ë7­J°ô5Š»if&á+t6­kú¨àøÜI$Òׇ`7¯%hÇÔ»§Ì’¦àk*VçìûiëÐzéô¿vûÉh4—]R ½Â–Ö£ÓsW68ú”Òñ¶ã–ØÓâ D ÕåÏÙëUš‡–”¸•%* $yÕnè’ÜïqN¤}#Îá;a3V«&? ò‘Æôp9H§2cNÂ’°@Ø}”ľLj Üj2Ô:¨Rß ò¨ä+¨54&*ATI3^¤ì9/õÃÞWö®Oá^YÈ1^«ì9!7XJIøÜ8…2ÇFp+ “XI'jÁÛ©¨ˆÜšLÒ‰óŠÁ>Tî+ Þ8æ”nM p<Åe)\htÇW–{dx«µ Ê ¢’Ý’’ê;´¦>Úõ0;æ+É«¼Ú&sp‰†ÔþÑ¡ü JÃ!õF¹“Ìâh b~U°_(‡A#~+_ÉÀþR@IÞ¯.*PÔFÿ:­_„DÇ]…!DªY3×Ê$é1@ê$ &iOܲÂH¡ÇœShú±÷Ö¡‰¸ýî&¦B‰ZR:Spfñ— PQJ§ÊåCPé°µ;,:âÎ啇“¨Ÿ@â¶uêIƒÈ¢à(êˆ"›_MÍ)J$ó3M¸|?… 0²c𠹕(ˆXYOÒ•ã=kxùR¯RÊŽ€Ï°û"¯ÜXüj“1iï›Ò 3ö ª¯¤@Ün×ú:a–,!ô»ƒ^ÝXÜK.›€QÊt>¼ Ú Ÿ›õï¯ú8.Wcxí¨Wé[Ì.8¡ä•[°þ…Ppº¶I@¤¿·SK+l|+bwmù¨°R|=+Zš’=6«‹5û‡ž,êDÁÕé½I$$DÀP‘V÷Êî*Pð,ï·ÛÉCíê@‘Óþy¬9sX¼º¤h™–öá›u”²ñTlkÉݳg;ŒRõü)SieÒ—¤òGO{wÁؼ´%o¼IRUóšòGÒƒ"Yà×cØU¯rÓ«ÑsGp¯[„„c]9ü¾&n%VrÃISùü?—’}½+#m'zÚìcÅéZ®ÿ]IÔ>©[fr q$“^„òIhkØÜwë žjžå0”ýµwŒ¤ûB¹:¨½ØQI°ëN/YJZR$‘°ÿÞ›l”’@ÇQR4¥L¨‚TñXÎÝLûâ˜ÑÒ¾Ž×ùQ·d¬í©m¤i?ÀÔ/¤M˜²í£oIHuM:6ç[H$üɨýˆß‹.Ö2ÛÏ.vä0£×Ç)éû¶¦ ³íŽFÝþnäû‚“ÿ S$ÔÓïsvdðÉvf“—×úž*Ò©2úå$zU¶¡Áš¸É-ÇN% €¥Þ‡e™¨'P6 ÿêHûÅh!DqÒºƒö‰Ø7weˆ^5n´‚Úž½Ñ«Ü<ªI&Š¤ÚØ¶F_¼Ê½šæâï[¥ÛĶ–Ї5AzÎޕˤÎþêÙó¶,ZmyË—í¡›Žõ°zqÁøV¦y©=*-ÝŽ+K‰2Ii§,Œ8¯Pj:Ƀ·­9`¢0v#åEÆkÏ8µ¢¦"áNß­<ÖÛƒ-öqœ-—/fµ*7‚êÁ3Zn.Cwq²V¼MtL˜•µeíìšI}«Ëe!«ÂUí °˜Ï&¥SD$rô²Ç~Þ…‚‚Hâ>ýª^#g`Ûm*Ù𥒵CP½$”üÀùŠØžEÏxìdö]Wxàq߬²dz'ËÆ éQmÐÒõ‹œ°µµÝƶĩ*îÓ´ìCæ5yš‹¦ôÔƒ‹m;‘îðœíö‹¥–TÂ\wÚÓ¥Mõw ¦s©>{CÃ0‹{·nÛV#nßp˜lÀý!'Ôùmp=jÓ-Þ»oecnpom(èQ :ŠO"“õ>ñ^UÎjætZ³N…߉äí¾Ü™1¶ß3VYl``àÜ gq[3¨CK™nBI'Ý|Ͼ‹<¶íËkX¿ÃQ¥IHJžÒTHÎ=ôõ£VN„¥ü¿|òû´ ¤BJÉ㙳óCmÛ¦ÍW¶Ø%Ál¶[ Rd£Vä“…qæzT¬ˆ]ˆ^[T¸„Þ0Ïy­JW†S£aÖ||GJIË/~™)¼¶0¨V¥@‚a&|É €|‡.á›°ú-°{ÅÝ¥p'JgH ’cÎAª×­Sl§wAÄ)A ,)¤¨×c¤GZZ 6ËK|£zëêd<Ò m¼U¸I Z`FêÝ#>±Qðܽsx\oWvëoH(%>¾!ósòš–½¥çÂQÞ8ò•D“÷Í:‹ÛЄ ¼ãˆDâÊ'Š4¥‹w¸Aq–’G|Z@Q *"<@GˆP m¾ß œÝÝö”>Ún !m©P NÀI1á:uW5™ }ô…çjãɶÏKئÆ–õ¥Gq¨°û‚—“¤§cç[MØ:$¤?:Ô±–ݵºMʼ&6+%E–W:tefX©f\nÄq\§é~WÈØ¢[@ZÐÖ¤Îð¤î#å]RÍAä%ÔiJu~¶çãT¹çEÞ tÊÐC(+VÀ )O¯؜âšqî|ôÁü7Ít’R~U·ØÞp+XÄ­ÿ&æ+«R’=žéHq°Q~±Y+K©3^†2¹ã'­Ä ¥Ó ÞzÕÚJ™Õé?mm9’¢HÖ¿pØ(Ztð<êHÎU²@Q“:ÿ"Ÿ!´)+HÔ#t«ÌyTP<@:’²R¯tù¯O?:`I±º~ÖòÖòÝZµq/ ˜ u}àW]ú\^1‹æ\¯[Gsˆ`¸‚<‹‹T|5×%´a¥)IKí‚[ܵ(ƒ•[fœÁùc&å|9ò}£EÅ®æIiKK“ý¥§Ü‘Qjöô4FiBQ#åÓâ‰ämWDÊ@ª¾½.ƒWeRg‰ÞÊÝ…| WgÄq¬B×>ål*ÚåÆl]¶d­¦àH#t â¡Dû mø–m¶ºÌ¸,Ý£ÉNË-º“¬ îDzU°–Ÿ2™ÆæðqKìa¬ù‚b›‹{FÜrßPݽ*$·:ˆ®@\0 ]C4gÜ´¬g/X­»ìU$\:¦ts±RŒF'ŠåZæ:T%¸SV⌙yRìúh_:eõ”ÃÖ³b¥{G¼íH™Ažÿ–õÐrq¶SYù·œp°mXye²uß ’" øŽßmhñ÷m*…ˆøù×BÈh,b™½‹gSŠÀÚy™AV¦&=Nþ[Ô¡Ô„´5kµaåj4]¡ ¸Ì)E´é¤ÌnHÓð“YÃ7Èö|Ï¥ò€”—©¤yûÆæçµN¾o7O§ó¹Xpë¹PI+A€®‰¨·‡}ª š/ =–˜u°°’’¡ÏÀØŒó+úþ{§²@rÎÏV(KaÅ$)ÐCk ‘ 3>¤UÛNÝ) ŒêÒRXRN°B‚D ò>ݧ’+0÷n×…µb0±pÞ·– ˜ 3>EIˆÜüªn ¦®í–Ëy`¦ñÄwiTÑ€Ï)Þàu&Ÿ@d<*ùë›u´î0¦ÒÉm¶ ºBt A“ÔLp'šu7Ù^ûŽ­V®²¥©Nǯ†8à.´wn-XgÀõ&Ù´·Þƒ:BTBŒIP=z{Érá‹$,¨e·”Ë¥ d¶µ–ŠLjßëûSÌú¿©Kâ­Ù-V¸“HCˆrVSÞJ€¶™ÛÔë »ÅmKŽ9ˆZjgWtÐ2°¤ DŽÃ¿;¼V¥ pwØèl¨%$à¿ÁGÒg¤TE7n}G ¹i*D4ˆ'BÆ’©ëG3Í Ói‰á¬©äÜZ\îeJ[Ž8‡ u0yói ã¸Ýµ£Ú¡,0¥E“+LŸ~¡óõ¥!XÏ”Œ>ø?ߨ¨¤]DáØÇÊ™K˜bBZö7Ô•8Þ²¤’R·$ ù#@Ú7R¸ÈéÇoRÞ–»´ˆÑ ;Ìéûk8–8þ R›«v4! JP„” D@VÜ‘·¦ÑK¹¶ÂݵdÙ³xÜ÷ï»âJN‰€êA÷ª×Úe ¥MÜ%ÅÊF€‚9HW_RG–f4‘›—™wù›T³ã'e)[ nzùÓE( …¤¨“·• ¥z”€¤ÁÚk¥@æ)0žb•;Š4§öÒO¾”„Ìî#¦â‹€¶•ââ§³ FÛT4¾`üÔ†u§Ã&EEÖB@")30:šI©¢DùyTF8&DùRTGRhÔLÇ’™â‹‚#\¨žj)5"äŽ*15$& äLW²»/„`©0c ±O~€ã^3ó÷º½¥Ùóa¼(ú¶Ö‰ù[7øÑ"ÐÙŠÉ&6¡ RU©&À4•,$l)‰ëµ@OMزR<…$¬t¤GZ5zSmì,FÓN£ÔïQõŸ*R <ЂèšÒ’“=Ex‡0>µþXp®1y>±Þ?Þ¯k„4¥¨ÀJ ‰÷øWˆ±.óò 0Cø“ÊD’ïU‰xI+“rª@eõò8©n+ÆA‘ÔoQ²ÈH³xƒÖ–I‘'ßPC #nf³¼ΚùQÖfhw¢Ùj™„ïUÙRÎÞâÆáÇ­Ò³Þ@Z“ xx§=v©wë)ÃÜ#'Šk&2§,-Û­Ç’T´@äî'áÅ€g/îùÀ )QåÍY¼HYÜyíUy|©Ë‡ÜVÓ&§¬ó¿=h ùâ‘3ÇßD<éþ´ RŒJmjß}½Õ’³§~|©§á òºƒ8ChH0²¢¦4A$Îõ]©$¥'ëFÔW^úÿ£‚Ý„ö7ŽÝ¥´‡ÜÌ.6µõRSnÁHø«ækÀµôkè ‚' ú;Ù_¥Ò³Œâ7WªOì¬[ÇÉ€~4ÑœRGZŽãÉk.©P1P”³¨…|ë-]Nšd ´­%'ž‘PoìÒûkJ’xßzR]RWÏSáE@«žžu[´–¥™\ѪظpëŲò¡²|$‰«LA->Ò:‚†Ä‰çŠo²KÈR€“ÍA°¼=׳¾xŸªxš£¦VjÒk2Üñ¿Ò‡-=þRe­ _¤“ÿ˜ÌEjkÆYr@$ ôwÒ§./ÊÞ°…)Û5÷âÈ ü ? óö¦ÊŽé2¥u03RÊ÷GšâT²Vmu6käw¶ht <­~é!B'­l¸iZ©³¹]~Ô(ƒó5¾Ç*[šEÊ4>´ÄA©ˆJT€¦R B”R²cQ÷yÖqfW!NH9¦me-ë"æ|BzDÐDu¶ݧZT5"H€A˜?yøR1$!*l¦ ”5)@í;mðßàE= m Þ…%ðw![GHŠvæ°Øð¿ÕéþºŽå–Gx'áy25CƒìèéWR7¡lNB‚«ªáMdì§”ð¼GÈßâ-—SaÅi1° ð€ó5Éço^•Ó±Üû6d<»ˆ`È/Y0mÞa+]ÓÖR>¬ZFéÍìO~Ë$ç|"ýx0ÜVÕ’òR–ÂÀ¸¤ƒÄÆÜ×$Ö²”‘>%WQì§-cX&'{‹cVk±µfÍÐCÄ,˜'`L3\®AßÒ£+_@a-JGžô»¾ü±’i—bLšÍ±‡g~”‰\«ÌJ›§·Ì™<ÖñÙsk¹ÇñÛD!ǽ§,©!I*Qî›:DuØÖŸ˜®(U¶´÷(p¸R’“ɉñ5¹vDÃnæ—˨$«/-M(,…%iBw}*pÜŒ¶ ^e⥭Ïbͬ•þŽÜY» §J§ëÎÃoÚ>[ŲÂ_júÝi¶X#Bœ¶ru(Á”Çìúr}*ñxÎ0†J‘ŒbHðÌ‹·<§Î´¤ç¬âŸÿRâ±×ùJ¿“VëùîE]–x-»Vì¸Å똛*«ZâQ¤iVÃ’ç¥DzäÜã7…çofC$‚‰HÒ8Ž©Hù @í:ÿRâ'Þìýôó=¡fÿÌ7F)’Jºtøü(¾»þ{§Ûó؉û*ͽ³›ueÔøGëju%GÒjFë¨KaóL¡°ƒÝ<©JŒ©’HJA“Ó­z}}™à'œ'>ëWÿì¦ÑÙ–—CˆÂ°„©(Bÿn–a¹Xó"BŠw‘±¬n#¥ziîË0¥¯ ÂÔµR»ÇÄ“ýjaÎÉòÿLÃátøþ4f+#Î,è×.(ï6Û¯ÙOÛ“Îñ^…‘` ßòM·Âùáü+#²L$Æßõq?»JR°)+\à!D/})N⻣ݘå¶nZ¶]¡Cë¥YQÀÿ³ÚOS†û7ÊN´Ë¨T¢ã_p¤âÂÐ \J:AŸ(¥­¯a)&pùò¬J0ߊí÷}—e‹t´»Žý”º56£Š" Ž ýjB{¤([âˆ#pEóF>i¨¦ßO°ó£Ï—ÜÔ”½>ÀÚGóØD+Ú¹<Ú\&~ªÚGɆ…r3Øvvïq±´rÁþ5Øòû/0Ëåö”Ê|­(Q„éJDÆßªjM‘¾m‹Xˆ¬)` AYàó RL|A¯!búS‚`„¢Ë«W¬º ?ôÕŸ°œ}K< Q†-]J©A^ìccMá'N8‰¤¡É?}DøY '¬õ¥'ë Ž•ƒ;O¾¤7:BŒP´áî˜éÖ£å[¦…»¶Ï©í&JBx­È敹$u&)y[º¼Âo1 nì¦Ü¢¥€A÷ÏÂÀN_Ûêp*ZÔ¨¸>¤Z¸…óN©q¸ùÒEG~•½dsr6úN­ú=èÅÐÍ0ò‡”µmL8­ÆûЛ;ñUx«„Ü”x@V!{T· Öú׿hºúÇØ6Œ ±\™…Œ8áÎ5‚ZªâÙMÔ‡ÖÒVî¤ÂËŠYTï$Í|Âì¯*\gžÑ° ¥nÿ9ß6Ë«e!Ki™—\ìt6¯ê××*ço… úTK’4zÔ·\lªr UÍqä{J~¤7^­‡"Úí)D)\q½D¸VÐ6*ˆó©@1Ö³·c[Šš±ispÚßš§º·×;z1Q•y¤è$š–ÃÅàÓ¤ð Gq“G["ÿzÒé°´­®""¼YžòÕÎLÎ.Ú8’-R”ÂúÇÀí^츴–ޤoÒ¸ÏÒ$/0åg^bØû}”¼ÁH`~?|U¸z¼ª—è÷0q*­Mµº<ÿ„Ü®û+š²Äíu IH);Ö§…ܨ·¥fhAçjÝpwÑ{l¸Ô‘»«SÉÍ~?b¥¶¨\Ö¶ØpF²¾í‰ÞætÌcÔ DqZ5‡¹háu3ÝÌ‘JåBíÒ”»$…& t¤ìHò"›Æ¦íÖ-û©QÀ>‡â)ü–îo¸:[BÖ ƒÐ978Ûwv{¥4V—•¸B½fv/˜ÆŠÜ/gSWsµQáÇô‚­ÁЉ=‡6çV¹1ãX Öp»å°•ýtlR¯x;|j¢vÞ€GŸÆ¤›ŽÄmseÆóÆfÅígyˆÿ'_×Cm¥Ç‘ŽG¥kZ¾~T*"gÖ›'~8¤ÝÁ+!/&AÜò(a^1Å̘˜ôša·¡È“± DlÃ&íSû==Õºö.á9æÍ÷¸;íÿº¿Â´Ìtü.$nkiìL‘Ú#g-_GØíJžäe°äþŒ$€|1½AsÃõohÉþ­Mt¨ƒ°ŠmQ½_£±ZzÕ…áÇÿskåXVâ ´“ú¥*ÛãçRÚ+hPÁ¶A86möé ?$`˜iX#ܳV>êM5öÝïr½ã‰B[PÔ@úæ¦`¸-…¶5dúà[7M¨xú…Š|“©;ǾŸ°WòÆÿŒƒþð§’6½ƒ7C»X‚1GNñá÷Õù„„Š×í ìÿç;÷»*˜÷VIhN+S W‹c¤˜4Æ­éĪ è4µ"c÷ëð×/=Ú‘!Ò@ ¨žõ×k¿¿ö Û6¶­¼êœ ’”4áBŠ€à5ªÑiiÀPò¤s¥I àj£9¡´dÌuHBA^þ¢•~ŒóS§fì-Ùv’Ô6ÇíÇõ?ᥣ´š£ÿæ+1ïÔ?…y€(Ç'qÖ€UÔ×~"Œµmý zœg¼ ¯«˜ðïö‘ü)æ³–UY”æ4Ïþ0¯*jõ©¶Š0} ý¿áVPàTêÊÙ™˜‰$zfþû¾ºfö×íԀӥÒÒ•ê  ’“¸…É5]ie—m˜·Ky’Ç[M©'Ó¤jeÆÔR'b¢´¨Ï:k”[+ $’¤@@!`¸ÖµxAWÛÅylDÕ,DèùÐë`°«…ç^ÎûXô5Ëxv%klÅæaà Y;j=žè ´¶ÉÜx7A­¢ÛÃÃIV'‡ëJV‹„ÌtÅy,“qX*÷|©s£µ¾¿è¾<;O7Óýž¹V+‡Æ#gþÝ-öDíyl}Ï'ñ¯¨¦ ŸT§b=õ„¨ÎÛT•Xvüö$¸[“ó}?ÙìQym§k–úÁøÐmd¥¡]`(ñÙqA2Fý oÝ)kí$­J ²}DIßêãFx¶CÃ9fÛÓýžˆÔ¤‰àq4Ó÷3qoná^·õwd ”ÊA$O¸•q~ßœwó›BZBl¤Á‰•¯ð­ó³û öFËŽºóéSº’¸¨(|ö1MÔWÊ·(žTèF³~chN'jåêìÐé/$¨¤€JcP©„ûéé“UìØ0Õò®Ò§K‹* )[*5<Α>î•0*H©$c•Û°Ûø…¥»Êiç †»Óá1§PNÆ ™ G;Š“gtÕË)zÝZÐNÇI™¬ƒ·¥W_a­^Ü÷Î\<ƒÝ„¦!0´¬(mÈRAøW,íúæç ³À­,/.Y•Ü8µ!Ò’²JI&#ª‰øÕøj/YR‹µÅ&¡›'h[˜?g9J»uÀ»u(* T5/tÏTxŽÛDŸ:óv:•-œ!¤é%8x$¾î8­ý`ÍJÅ1|Më7{½q·) }E*ô š…­mÞÙè0¤XÛÁ÷´“ükN;ðrPr¿QÒžurÂÈ÷xJwäÉ4Ê—¤ï#jX:pæÒ7‘Q×ã$NÑ5„´u·±úœ‡HÜ{ª­½ˆ€i]éJäºÐqó6©ÕÍIË8^*ý£ŽÚ4éo¬ 2ÊÛ|èt3½tl›°¬v×Ù”ñW£VÄh6ì»lá䔮¦»ÉãŽjÇ2bþ[Èm %JÙ)Ú*¡[ ™?}6µñ\¦d ©L(ÈÜ|©Ä«Á°¤–GSQÖ¡;RÖ©™Ê£\PòÊ*‚gaúÕJ£QÒI´ó/sÄþú‡@ÿ£¯*'ícÍ7ÈuŒ)eÂáJš¹¸%! øi7Ì#¬ïºâ_BœŽŒ›ØNtê#Ìçk•jJ¼$w)I=ÐB´’aK^ûÀí´È.1…W?Š&NäÔÛºRü Ié4¦l.JÁ_NEps¶}4`µc½û®¨…Áâ›x8 t ñ½KC/£ZSæ¤5n`H=I¨ØÒ)PÒÌ+»3÷TÌ>ReÏzU¢-&5A"…ÛtÆÄo)4Ðù±zIï MG¿³C¬)0"+ ¶ éÐJDñåRr¥DLmj·ªÔ®qìyG·®ÍNxöiÀØ"ÝGUó#ÿ\˾ö[¤¬ØŽkÛXÝ­½ã+aô‚…‰Øó^Bík)þhæU"Ý+uÑ*·Qáõ‘üEt08¦Ÿ._/èó\W ù±_a·m«ëY ‘µUbØ _A¹IÛŠªÊáµu,¼­)¦ºFÝ\øŠ’¤Ÿ3ç]k\áØç¬d‹›!iÜ9 ÏvúI®Õ£æ›Ë»ìX»v†Ò¤$6”6˜J@W¤®ì›83©xÙZ½+Ï9¶Û»ÄÝ”ÀÕÒ«z; Øy—zMZÎÜ}µW†§Ä|êÀ“Ô‘&ÇÛaYÏzh*²UL€£1éXR„ÒIÛšCŽ@Ú ´—W()1¾ôÃgÇ2$C®ø€Úcx¤[)& ëé@…ãj:‘ÎjÚ;*g=åwÊ¡+yÆ„¾-ö«VÆ7îº?Ưû,p7šrÓ¥diÅBcß§ìßïó©ÓÒB–Å–,Tq €£ÃªOBˆŠ§^/`•)µ¾’`&®s·âè.œïšçX‡ý~ãÿ1_}MË*H®*æÖ1[ Úå#Jü¥b¯ýé¯iuI:€#¦òisY,†ì›û(ÿ­3ý¡J–‡hhÿ\V–Ú™qdîˆç&š©s•ö.ç@bòÐ8•-öÈ`,oO¢îÝËöÖÛ‰Z C™\å “rx"ÇSxƒ@¤‡RwóMUéa´òØõ•ª‡·4&Lçþ“W%r+_´WùÁ¾?ŸXÿtÕÂ×Vyn$ÿpôÀ¥!BÔÆ Sî¡*„óQÓaõº*š©Î‹ÿؼpý=ÿÿƪ²™*7ܲîPÇ›iÔ­H°}* 36©Ö¥Mx’v<Â8扤ƒî£­{=,f°°jm©”‘ý÷Tš—f|QçµkÂJÕ ª¯ »àÊá¡`ŸÌÿÞ"µ›¡²?tUöZ?ÈÉæ~i1TWcNO>ÓøWÏx¬rq*«Ôôœ_%Ù‘äùÒIŠÈ‚ š¢Ö:QØadÍd© ¬t¦N›³NÛõ®ôyîWû8{Ÿk×6Q‘î®—ôvLæ|M³aïu5(-LÜAÿ…–ý´~—6´$ múò¥þ5¹åk\A6ëZ”Ê,­ÈÒæBµ¤§‚TTžxJÓûQHw5Ü. ·i;~ìÿÞp G»c Ã;¤iK 6TU ° ~ÏßTR©›4º ˆÊ?ñ´"·&ávøƒ8½Ûϼ¥[)!%[©ZÉ$€HHãaÅ[…oÈôª\8“· ,wij N©Ô PŸ’gúÕfÖº:Øóqvd•*5Äþ’N+‚´wÓnê¹óX»&¯w—5Ã>Î%YªÁ²çÔ±ãÊV£] ¦2#­ä9n Gr¢™‚v¥f©F>âcvÛeû­  F&PR” ˜ LùÆõœÑ¶e¿O! @ß 1ü+WžlOÈXuá'¬blpb¢¨I$«¥HZ´²€w!"*2–Iƒ>µÅ.°¤‚$Sdîy4â¦wOJoL«‰ qzu4µ­IdóÞÉNÆ !K•FÛzÐÉñM­ÏZjdzÒŠ÷zУsÌS„"™A ¥,‰вšh¬!jè&…1¸¨—ŽÉîÁØs@ -Ek*<“[Ç`ýŸÝv›ÚŽ•KÉ´yÞû} AbÕº½A* Q• :Ö€y­¾}{.{)d'ó¾0ÃIÄó+m®Ð‚¶lG‰Ĥ¸N² ¥-='nË6ì7onÒe¤„6Ú”$°t¥ÑEq“  çšœ‡LyWÛPÞÔÚHÓ¼íX(“ÅpR±ôY$õ$„¶ÏÕê)EHRFD•^·õ; È'ÈÓÌ©s©Fè+‰ÅîLh:¥ 'Lq=)öÊ[Ö“jðÛW>½iÒâàßn)§¡L¤ÛµˆËHI;éM<€P8‰RžHï’i‹„ÂÀÔ$‹#-ŠKöJ’N¹æ¹Om9yîZ¹¶J_@ÖÂÏê¬nÞ>5×ï>¾àDíZ¾f³ 86#Ê©•ãâDkAT‹‹êxŠÝå¥Å²âKo6­+IèFÕ¹å Ϋe¡›•ÊFÁF©{SÁÝÁ3ËkOvÝ‹Öît3õ’~3î‘Tl¼ºVã¨5èèÔÏ5Ôðõ©òê8>‡{F(‹‹Cݨ*G ×,ω7kp&$ÍWaXõ퉄8T“КÇ|~(©É_TTQ0Ñl™æŸû)²­K“Å^¦1dÖ €šARcΛr9MHC…Ñ é²àX0;íM%RO)õ¦œ:ð’ éAÕ’‘Í)%¢”éBáD¬êHÚ óÔÓ :dÄ?Ze _y*Û­LÅaL³¤вÈΡ¬S{AIkhÈêe?ªœAZ˜l“ÔÕ†WuÏem QÒÞ%néxÝBvß§ÝRŽäY·fÆ–¼ÓŠ¡´Ì]¹ö¨×7ÅRSˆÜÏxk£çGÜg6⺮5}Çø×;ÆÔUŠÜ(õTý•)-œm¦ä*(¬ˆ‘;Ьd›2ÅΤ•'@$GëÆ›*¶'ù§GúÁøVmÏè®G›cÿZi‘Í#•6_aÈbÍ u(W| •+r™è6©·Hnñä©à®ñ*éþ5æÈq:uD’LÔ†Ðèrt«c¸îjõ¢±W[žƒ±$_6zÚƒW)\“¸uPØ.`Ìˉßý]\ôª%«,Ž›k?Vv¥(ȦgƒYÕ Þ ÇÒ¨­fÌ<[àŠõ.€ß m´iLé'R·Ý]'jØuy ©ÎJœÿ`ÿþƒR‡šâécÌ=(ŠÅd õ©õ3™NñµL¶B‚Á‚:Tv¬m;u59¤›äÔ×KG;ÏÛó±EY[C`ËŠW±<àõ752êÒH„­caÓQ©9h—€ØI¢b§ô™ ã^ ŽÆÜJvëcÑñÙÿ†¬_rT´jó°­·•¬V:¾V6÷;|©ž¼šuF<¦‡ƒ=ËEµ8\ƒÞ$7ÛIöæ˜Þº¡øy®¥ôuç|a~VÍ'æ²…r¯«ó]oèð”…ãnj$éa$G¸jQÑ™qÒ½]ç6ûÜ{pƒáJGÉ´Öd[·¶ÔÊ®n€¤Çˆ”þ üGj™ŽþëZ¦5ª Ç øVÅo`–®ÅÊ]QܯB’ )JVAõJ=7ørxtÔñUšèÎf"³•8G±>ÕÛ'Vï²J‚ÀwB@ ‘;ìYøÓáG“ÍE²e,!ßœ[®)Ç $’zû„=:Lñ÷×n2±‰ÅKR.8«³h=N÷ÉTé@þsc &vÇ•qÞ.g°“2‹Rw÷?Æ»±QžHø×Ÿ;ew¼í ù2% ²w€W_ƒ+â.º"ªÚÌÒô¥Ë»f×% u û¤M1Œ,;Ž^87 ¹Y¹Ë6žÕ˜-HmaK3$Y܆õ¯Î»Â¢fVOÛK‹Jø–[GÊZ>¯‚D lûÐê‰Q3I‘1Ö¹¥¦dG‚`V3Ö°³¼’(GÏŠÀP™ó¬(|ÅÛŠÂ’A+ Ýb°­¸ØPÞ *ƒ@Fô…’Aóô¤—ó¤©a *&}}Ú#õ•ÄÔ#¹šqå…A’Tyòê¶È™_ι» ÊØüG{ºe*0”ìJ”£Ñ)HR‰è gCú*öF÷k¢!‹Äi˘V‹œYÉPïO…„”îáLˆJVAúr”€àV¡Øæ@Â;4ìÿʘCmáw—oI»¹)Ç” &TFÀ“ HØ Ü(¢Š(Ž>”Á*zT5¡JQðˆ™©—K—  ªTR²¥ªHçÖ¸Œ÷Ô›hmÖÓï)§Òä )ûk¥ÅÐüë#jƒF…¶¢PùRˆJ€ýèMÁ ð¨ó¾ôÚЄOwâá#§4â|EB`ý A­KE³‰€±àïÅ)Å—B€Ò#©òª´…•L‡_:XuzŠTt‘ÐÔnÊz¼Ý• 0`íZÞ.à<Ìš¿næTP±]&µüËh²ã$ƒÉ*©½.TüÖgí{)5™ðw’Ú›¶ ]»ŸÒŽ¡ãå^n!Û{§,¯Ò¦.š%½Kóª¿O#ÓÔqëŨ¼·›P… ˆ5ÆûoÉŠZ9dÉ. i¸ Y#õ¾umÀâ2\ÓOAD}SÐSÉ'NüÓ$<ýô›Í¬ÓTSØ*ÒÝ¥Âõ­.´£h¹ÿŸáQn ömöÞ§e¤¶ênmœ'ôš4¤$U&7ò’?äS‹ÔLܳќÏxµ :ô®#ú´ hF$ï¬}¶ìÑ‹7u‰›¤Z]‚¦Ñ¬) ð D k·âÎéðò…ÀR€-ÀSz¡%bšŠ±¶&açÄ~Ó|Ò=–ÐÄ\¸'Í£P°î5c7 1»P?´šC„¢A©¨³³;*ûHmC¶VÇŒE¯ŠMX&‡0ÜY 4–n›RÒ‘ Ryʬb¶mƒÜ°µ:¡L$U1°j`_ÛüI <"ö×⸫¤ºj'¤°ÕêçÍm‘þήõ·JÔ0¬_ ,ÚF#i¨‰ò`Ö¯Æ'b¥@¾¶>ç“øÕs„¯k 4‘b“ÔÈT˜5 7L©pʧˆq'øÓ­º…ª’O¡š†W}‡²$êÓ´ûª¯8Y?æ}éÛú¦ë1•kYÌEx.<—Ðç³ûÔØ ODi=e$Ï‘§ ¦G¡çÔ‚>F–â’à+Ò¡ ñ¦Ç£²O•z˜ÈÌÇ *„ó[.Y³jÿ0aÖ7(ïyä¡`Û­kv]æÆ<ëmÈßþoÂ|B} }ƺøi[ RI³5_:GLµÉ¹zËÄÚ]kR¹/˜ŸZ‰å\¨…'ÚºC®*Žü¢@G”VÅ‹—vÛ) um¨'P  zW7J¬_¿Ä×{l—%M(,äL ðRŒ+K=[·ñ7F´è_•,·ßOèÚ‡fùuA0íðÔ$~”qòõªW²ÎFB”‡1kÆÔ“ʺ36ÛM¥$·¤26 øWÅšÆn‹++*Iî•ÌAoJ«•Nï6Ÿ6hXšÉ+I›r®(…¹c‹^º”ANße öw€«‰ßÁè÷ùÔÎÉ™»´Âoý­§QP)*AN­”O>ñJºXR>¼mÆÅ …6úû°ý]u´ˆã²ìL†/v¦u¢ZäK<#+*í›LE×ý­HÔ§[%:€ˆýãS/[}ü˜k=÷v•ië±Ü|«Ifîõ眰fÝå¸vI)2¯ãVC$›·©Ÿ¬ÒŒ™Ñï,ú® ®{õ-DiâzTÝw >ë˽:V PSû0?£¿¾i‹Ym‹vÜ:”†ÀQó T”©û ã]ûhd~•ņ°òia3NšÕï®ä%7Ý+›.v¥X…¤Ýé$w’G¼˜øTÏjY?U'ÖjŸ mËl;»[¯HðéN™Û“O<§5³Ý’•¿HÒxøÅjƒÍÈ”ã~¥ºWì§Î¹ækìñÌ{1Ýâ¿•’Ç~ C}É:a s;ñ[ch½(·mo!µ†d{ý}Õ*Í/6€ÊÜ’¤ÉŸ‡Â¯£Zt%š“³$Õô’8¾%ƒ\å,ÝajÕÕ»êqÜSP”‚¥s¿>½s«q/ z×Sía7gt)*Hîðõ.yÒ…¨˜ÿž•Ë-¿ŸG¾j’©,ÓweI+"c„ÉÜsY™â"I;ïJ߯Q!S‰¬·Õ4Jxb°IÜM óëÅ ˜ˆÚ±1¼mXRäm@0w˜¤ÂÉŽ($! ¨û¨I%)• ©«‚HŽçõ|½M:êƒ@)•»7ýï3éóò£ Ãîñ;®êÝj;­j;Ri6’»%Êo,UØÕ…¥Õýõ½³×Ww.¥–e²·ZŒ% HÝJ$€Ü“_K>‹]ˆá“eDÝ^°ÍÆnÄ”¯$+ºI2-Ú= j®¡$Â>‡Ù—³¼ŽýóÙƒMž(–ClbˆÃœsRA:Ïy­kJ׬ )BÐ2T¢+Øùo1`¹ŽÈ^`¸½ë<4¹Òb`އq±Þ£‘žÌ²­ ”¦¬ZÑE2¢Š(Šºÿx ž&74ÊÁH”'¯‹Ö–R”¢Dú™Qpw€!jtžÛç\[ô=ô#ØYT©IH“éåNÈRÏHÒ8¦ÛmJN§€ .µ‚dÆÂ¢Ë£-lJ '¤+ Bu{”+ ÙIñt’“¡À®AéPh¶úXX˜FñçÖ›u%iÔ‘*:ÊHN㈬8à‰FÄ â²ýôÒ®Òê48H=i÷ T½ ÈWÈÔ+Æ@%z¼qP”m© %Ô¤Ç0З=¥êDñõÅR¾Å¶%l¦‘0B’G>žê¹¼¼u Pì¨ ¤ò*m÷¯÷­*à(mµT’¶†j´\–§í³E[­×ìRKdêˆúµË•o}…>¶Ö ÁSkN¤/ÊG_á^Å]ƒ5¥ÔÛ>B ióëLM…®Í¡¬‚{²"¡éZðøÉÓÒZ£…_w±æö’Ë‚-]î^ënê¶?º¾>=æ°¹mÕ2ûjaÔ줭0Em›$^Z8âPÒÒ´Ïi…|<ëTUÅå¨öK¶CÍ'†ÞNéýÓÊ~»«Bªº9U¨N“Õ5¥.x’ ˆž°`ÒJ”˜šJM³ƒù-Ê™Wú+ƒ·ÁccñßX{¾`§ÚR¾ª†éW¸Â®(8žk$íµ2lÄ4 }AøÐ!e@ŠH_H{é*‚Õ†”R±©Àý_ã@ZÚ›·Í²vR·Lõ­Ó%eûœ2íÛè^²Â•% R›&7`¤üGº´F^u‡’ëj!I2=+yÃ3ájÕ6Ø…¢T¨$xT FÄÓµÁnâ— 'S®8T¢ãÎØ2¢è‘±LBx£“ÍWªÓQ*U¶¤ž°”OÍ$VSžpÎUnø÷yÛ?Y«éµ,žˆ›•Ä6ÅâÁWûÖ¹ÊËv£V§p‰!hŸ“†*[yßLkzEHFxË*”©ç“åú:2¿Ë äkjI+ËøT(lQuv’>sKoÁÖÒƒØ#=æÚ{¼MÀ óõš1Ò¬šÎYd¦ âöóE<ÞlËRoS¿šhÈÇr¡ì/x…«Ò :qdö±M·€a*ÿá‰2®˜›$éø´7«ôæL²¥»f Á§ÿ.åwy¼µþ}(Ëéõas^üØÁ–á?“î´µZ«øŠuŒ™ƒ<«[Æ Hl­G ¥z1´µ 7–¿Ú¥‡òêÜnl¾ccçï¡)~\.»Lä| ƒÝ±ˆ·Öa¶ôz²œ‡f4”µˆž°-Áûž«bœ™Kö‡xÙ`MŒ$ƒ¡Û}ú@ŠiÍ×b¿ó J”&Á‚m;Uf–Œ„Û¨SnbXªZRN­Vwšwä@Ö§%‹=P‡’?uþ~Úy6í«r®8/S¸x{'³)m­Ïly¤Ì$9gx ßÿ*²×eøZÔ¶Õ‹4…&wSw(Ý-UøeÀe×Iž¹?("ïu'½ï*ühÍ>ì-Å-¿dÖW+ N?‡·¤Fï-1 ‹|úÕ¥‡cå+jâß7aM:…íá%˜ýdˆ©¨sDhű>W üibóLéÆñ)<þQöÕ±¯V*ÊR·Çýp¦ú#³ |§Rsí‰Ò‘‹³É>´”öqœ[yINr°t°8Ŷû~õ`_ãóÞk'ϼÿ ¯ñÕ V/zcDû*¼þ¯ÝA–ˆoå ÒËèdç;ITjt(ôuŸÌîÐØ]¶>‡åZ`\ÚŸwëÓ«½ÆH3‰>­õxÚB·ù}”ƒwŠýohäÌ›VϸýZå}ÿ=‡Ë¦#óG´´‰ÉTÛª~K¢ã(v’Ä]¶‚’Hd‰= *”¬GîïˆÛä+.â8²•⸷ÜFöMoöSM÷üö§LŠ2ÿi¦å²"C ‘¶ÜÏP}‹´Vßu [¶°ÙΉ25yùU˜Ä1`‚»0“Ïò&àõòóÞšUÍðZÔQ‡’³©SbÞæ"xæ6¥š}Ñ Beùü\­ ²¤ÁQîͦ²xÜr~œ öûjJ°†ÜF™)6Šù|éå½x:lR½Î¤Ú$J‚AñÚ”ÿòâäú¯aréôPí)µæiØŸa_ÈR[´/s J%@x¬œêbvé½JnÿhC~È“h‚ã­aÜOXÓªÒuI! “þõ¥Ý{ —%Íî~³¼vÖã `–ÖQ©,,¥[ă֘FeÎ RÇäÖI “©‡úT§± mÑÞ–\[®cÖ÷TBíú>²Á$̇OOEPå/Ä œAš°ü}ÇnsV+‡»l¬kWt¤´ k@Nãë±´×3µþxWdÇìo±ÜVÜ,¡ ïH/-egËÄNÕÌ1L!Xc§Z÷;ÎÿM·¨ÚKbd‘YܘéÍ ˜'Ò°T4sRA2:RJ4Ñ^úE8NüZÉ>´<ì+ q´ ˆZ¼¨T îÓ·óh>#ï<Žþ” JYC)Ô $™Ø9ò¤÷ýÑQl…8¡Â8ýß/>êS^ÓxE¥«GI2@çÞzük¢äÌ®ñ –¾mJ%BOñÿ¦­hÒW‘£†©^VŠ4ܱ–oq—‚ô©»`|K#î®ï{3CŒ7ß2«{.Hánûü…t|ÙÝŽÃJ¸e RG…¸ð§ñ5¾¦É†XЄ @qÌ«Vužº#Ö`pTðËEywþŒ§‡ÚÛ%¶BDDÔ|2ëɸ‚ñ¼ÿp⣽h‰C ?"Mn7Mþ±ÛÖª16B‘ç#z„^Wá:0Ñ«M\î]•çü7;àýë'¸¿buj£âm_㝾@Ý+Æùsw%ç›,y¢±n¥†¯Iúí¦:Ç? ö›è¹µjῪâB‡ÆºÔ*ó#sÅqÂÕʶ{ÑEq€áiK·> ׺&–Ó)lim’$ž¢”óÛƒ¥¥5jè VÚÈ2<¾5Ų¹ï”ÛBÊÂRP²|Å7Þ#}GJzÇ5›—F²°B‰<ôÒ Ü,ÎûÿZ‰(+îHqÀIÜ$N}‚¢[ ly¨!ÅÈäq½-)JÔÒèZô0c^Àoîi·Á[‡IéYy:ˆ•<üé :Q0R84¬ C.JP7=O!ÅêBÊ·QØúRn'TñIÖ’[(O>µBMÝX q•¬ #šÖÕÞZ\i2Që[í÷@©Q¨qäPâŒ4êÊDAÞj©BÏB¬÷Б„^2â ´¨‰Ò¦8ÛKPPkTÒYY(Qô©Lß>Ø)*$Næi[¹EJ}‹,w±ÄlÊemQê<«†güˆZÜ ‡ÚŸ¬6Rk¶þPSˆˆÅW^X.ù²’G‹¤T“qwކgN-ZJç”ñ,°°²m¯ôjð«üjÄ_áêSJK­õG…^ñÁø×¡s~H¸ qÛv&‘×Ò¹<ŒFÉõ2ëeHOê:Cí®†&òÈçâx]),ÔÝH¾ÓŸÏ["i³ Ÿ¼}”gÐ o:•Ï O„xßì«'ò‹56O*e\| ýôçä[“ªÛm&'Cé(?>>ÚßÍ]NCÁTýº”Ýã{9>³Í(¼é3"G•Z+,â¥:íÛnå´ÊÂÇÙPŸÂq& ;dú}è5%R©L¨TŽñc yÎBdi^ÒIÝñ¤*Ýô˜S.êšABÇ(PøT®ŠÜZè-Ní ”šÀu@ÒS¯¨P±ÂÕ·­1XÊÖT|©$Ï4°ó¿é}æh/,ó¤ûÐ? n³'Μö…Äiký’ Ö¿Ù'ð õ*"Md­GiO·vPg¸·Wï6+ ¹J‰&ÖÞIÆ€Ô¡úÇçJ:8Y¥÷íÜØù¯ûÕû½“¨`#Ú®~u‘spÏ,|idzR’¡ÉKǘ5žó 6—S×ùJ¹EÀB/nÓõnÖ4âq+ä™.j…9†•‚›[´§¨7)'ÿE^OŽÞðG’᧨ ü¯‰þX琉өÇq1ÅÛ»LÓcò1QŸo ¾¡4œ .ß×ôH?ñR¼Ó˜±i‘vôùë4ûYÚ/ŸÓYªÕ' Ô­7·ÚgÃ6ÉŸé(›õoo=“'ûôf`\7™q¿–ÜúB¹§Ó™ñÑpþ‘ª›3~ø‘¿òa·ûÔ/ÙdiÄ>ûxþ4ó>àl?ï>Þ÷¬šX͘òAýÚ×wi 0K$Ϥ ZRÄÿø³8–œþí}ÀØ×›ñ¹Ajé䀑ªW2¨ÜúO•dç<ŸkQþ¯@ZhSØ’£Çvð?ú+¦õùs;s¡ï—ótü@lž˜èØÜŸ•(g\pÌÜm³ZÑ ‰ü«c>Z]þåd¦@#±3Òzix€ÙFwÆÁ½IŽ%"”sÞ0“ƈ٭d² tŒKˆ™ W÷i*mÀ¶*Ô:,íïÚ‹¾Àlç=bçõš3ýÇçÎ+Ô3·ôkZCGµØl'wÀ¸¬)—çg¬ºå+°¹²«<âdÿ6×Á4ïˆi©ŽcŠÖ½šæélvÿ÷mïþõ'Ù®È'¼²þi¿ïS» ›#Ùß-©-¢gÄõ­^]?tâ}ej=i³nø@*~ÔoI#äiÏfd÷¸½¨Ÿ¬”!Å(»çJ÷1ÕÍÊéçF€4½yr® ¶–‡ÀʾáI7Œ Ÿf±a@S’â¾ßÙ@ e§Ÿ$ÛÛ©`r°6óÀ¥:”·üýÊT¨úŒ_5qòšÁrÿRY ~â…´É ÷°«Ü'%âW*I»‹d«„ýeŸ€ããUΤ`¯&[J…JÎÐW5òúèíÙ êáÝjøþ+cË'Å–…ºÚ™dž£s]S!vZV¤¸›M=KÏn~§Î»¦RÉ8v¥6wö”>êÁWÞ”ÑסÂrëUüŽeÙ¿dÍ0–ÝS:¥)>%WmÀ²Ý¦lnÈDºŸ\°Û퀔¼‡•\•‘ÃX²¶ï'vvhÒ²´UÂR€!*Ôž TwT@![Ç«‹ÐHJ`}õ ۦ̠õÞjLéB[*iÍ”­úíÅSb-¨Áx«´é+‘$ESbN…(’fx§ÐwÔÕsM²\·s© Åz?èýŽ+ìà }× Þe‡ T™AÓ'ÔÄ×›óá ­2 &ºïÐÝ/ Š-Ĩ6¬Ie²f n>5³õhàñè'II÷;Q]ÊžyK„'JŒ§Èß×Μ.ÆŸsQšÔTJ„Hòßü)ôƒ¡HïÛãç\Sßg@ûútTF秸S)" péôêi.édµ~Ò¿çjd…¹0=äïMÝ"*[IJ *yÊ£¥Í ‘2UÔóXh¨îUTá} o­0\¨qL<ùˆ'ΛºPJ|3¿ÛPVàO?*W¡Ç”·ÇSB @ëu5ÇÔágOñM\; ì&£rψb7k ÷cn“éT·,*$Ây5.ñjR#‚*¢ùÝ f6>µ ’VKAÀò Џµ2ë¡25 7Êiª@RG&ʤõ,ÐèÙSÍKbáAIñïÒ¨YyJ<ì:Ô¯lK[˜>¢„RÒlØš{PRU 7éZÖpʸN)láq„÷‘²ÀÜu8šR §žDÄ1e©'@Rä@sNñ¶¤&ö8Žiɯa×J øÐ:Åkwö Iâ½)„eW1VMÕð! >‘ºª«1öjÅÁ&ų¬˜ÒDïVF¼ãð oIoîV•JTAµ>‹üQ bHAÕGÊk¢cÙ°$ªÙa#õ€ÚµüöIåZa‹Œ´eráÉ«Á•èÇq”}µjýô%_x¥ ÅŒ»¶êýëVÏü5`á1 ü¨^âGÔ?*»™LÌðU—S?œXžòßryÕfÞÿ )x’\Âð·'ÎÞ>â)µY¯öM Ú‘ÊMIJŸb™a+w·?_/áGÜ—ܪAÅpåÒeë/ê8â!ËRzS µÛж2Ц¼ô¿¢Oå_[/û·k³íY}_üé?»{ø¦«Wn v¦Ú=EMåïõ2¥S5¤—²'­Ì¾®0üA¿uÒOÞšB†_<7Š'úíŸà)€Éýš ¹ò¨Þ=þ¥Ü‰¿Ú½‡J0ÃøŠO«H?ñ Oq‚ž/ïG¾Õ?ߦ¹òû)=‡ÿj•×r·JKx/¯öIXBŽØ»©ýëOÁF±ìqc(¼ÂÇÝ4ÊXTVKô¥›ÔkÙ÷þÅœ>Ïõq‹O‹nøi&Âߦ/b~ÿr«sÚ˜W¯Ê¤¥êW:-~ϸê¬[lJÉ^â±÷¦’lOêÝZ+ýh}5ܪŽå^f¥R·Oÿ¨³dïEÛŸsèüi*´y<–¹äãIîÈ=iÖÑC•‚4T¬ÿ>C~Ì÷’?¶ŸÆ²-^<%?Û?ÝÐÒK#ÈÔy… ùø†M³ãþÌŸvõg¸ÿ@çöM:Xô¤÷'Ê¥œƒ û?Ïg¸ÿ@ïö ÏqþßìWtªÇt¯:yˆrŸa=Ãÿè\þÉ£¸{ý ŸÙ4¾é~¿:Èig©ùÒÌ>Kì7Ü?þ…ÏìšÏ³¿þÏìšx2çí+çJKôRÿµK:&°²}¹{ýŸÙ4w/¢_öMOC/ðpXÓÈfäpë¿‹¬‘t8tåܨ-¸9B¾U”²êÌ%¥«Ü’jùתá×ÏõÍ8,o—±[çÞ³Px˜—Ç„Te±½1ïÿ†iæð«Å}d´Øþ›©ð™­ŽÓ.ßÜ(²âä´šÚp~Îq+’ íÊAÞHŠªXĶ4Sà©¿¿>§=c T;v“èÒ Û±à™U‡ÝHnÅû•7uP>Cñ®³€vooj»¢Uæ6®‘‚`øm“m¡›v°!;Š¢UêÏm…>…¥´s?S™å^Î1šHE£1%  &ºvZȘvÒVXKŽOÖPšÚ,ÔÒ~¯ ÛÊ‹ËòÀ)$=jœ‹y;šc·–*ËÐu‹dÛ64¤2Úà& ­}Üd-RÄH&v¡³L0í-M•wþ(“ *“5«œ@$ƒ'ž¦8ªÚ‡º‹–òì‹ß%DÈ?‡qr„¤ñÕeÝêô!>BjªâõZw_¸MA²Ô\ûj•°>ú©Än´¸  V9ˆ)$QUž(”-nFÒhDe%qŒÛˆ†ì]*X˜Ú½eôxÀîðÊ0‹Käh¸qõ¦ §Y*ƒê&+Í„äw{JÎÂúí* u.‡•M‚¿`ü«Á}PkÓëìR¡(Ò)‹ÎÇ-Ò‚PìuOõ;º8CÌ.Y‘ú´–í¨ ¯@^ö@ø$¶´«úµ=–<‡x OÖ*[X®X<5î™ÅE‹‡õM<Þòâk¹ÙöjÊŠK‹<ïÒ¶ŽYß¿cai’„þ‘Ùž ºÍ[ ŸC~!FŠñH昦`i¤À^¥‚FäŸ*èý•vš3³íby¡·°\ ¨ÍºÁMÓàqá?Q'}Îûq¸5è>ÎûÈÙ3»¸´ÂÑwˆ$ ¼ºý#’'pNÉäýP&º2RH‚¶RÂÆ:³ÏâøÄê,´ôEnXÀp¼·‚ÛaEª-­-›m æzŸSÍYÑEk8­ßVQE<¦› y‰!·ûØ &GP6†“*QÓˆ§8Òµúu®=Ïk•Ê ñ“ë°¤•$'uyµDy.6¥ÇXê+û€xSüê7D’d—?D°J¤ùt¤»qƒ×QÃJ6¥€ ŸA²ØÇ¸òÞ)“öyTu:Uãˆô¤(…$êàóHÕHµ!Ô•(íð=)«„¤øf?R]JRR¦V§"ïr1 '‘±¦Ü•pO¥:êTA˜ ï4¤¦L< Bjä;°Hæ¡” @ëSœ¦ç¥B}² ïEФí¡X뇽PÔ OÖW@ªÇÒ5ÌoÖjVèàQŽáÐØ,£½v5{l‰(@Ø(ü«^²ZJAæ¯ð÷ö)•È#zå‘EýÁÒ’½MÆÇΗn­J "#¥Ea%~’ÈÛsRJ$$ÆÜR'bŰŽvšu L„L¥B¡²¥))ÛuxеA'b<©‘±pÚÊ‘á€â–¥;li¶†Dlw$ÓÎ(Îé“D‚)\u·Á´y‘O‚dªÆžuI'aÐÔŽù¥^‡ÈФìNTÑ)Õ>´ïL¡ØQHùÅ4µÛcII÷;ûèNÌ‹¦¬J.¢&cšŽè O|i2Ù[“¸ŠB–D*)·qF•¿«¾Aij)“ÔmVO$¦g¥@}kP$"«Ÿ¡u8j]òUî¤ìjá·@Mjv·)¸e'IÜúÕŽˆw +YšŒ*=™9ÐOTlД~A¤%M”Ãnë@V°iÞø%³vfgÈ.RÒ4¨ÓJm*Q:€÷u¦KºÔI¨÷a+0v¥˜’¥®‚îwâ‘QÜ}µ«Hnµv¤˜1çQÝu(#~*IØ—-u1z¤”˜bµûå'ì«%¬¨ÁÓ«"F’¡Ö©Óp¶Pƒæ)ÖÝ(ññäÅqï©î.¥9å=DýôËÊZU„u>t†.´i#aÓñ¦nNéÜyô˜-ì>\@HxãÌÓ+¨øyTpàG %^´´-?YF¡bÕ î¢7^Àp 2û „Pê‚ ƒ'Ê£>zÌR$™j ØÏ­a.fO¾…¦­!~íÏSA7+è>µ‰Ñ:“Ò˜YØÉÜt¦’¥ ñçM¸ùշƆˆ1kðïçöT[µèa¾üS‹y ïÍC¹pÑb‰jA¸‚¨ßÒ¢Ú«KÁ2@©wAÞ¡ ïdìBÚ„v6,=cTsÅlØq žóÎùVŸ†9¸ßÝ[^êCP±©¤V4Gcd`‚€­àñR¼" ó±5—@‚Ÿaz¤¤ÉV‹ Ħ‡é ‚Ät§ÉRÖNÀ¦¢Ixâ–:A|èC±ojç„S<Šx9á ¨ªÛ'F€H2 T¤«bFâ›'–ÃWN°£:…>‡QTˆÜT[Ä4I„ä)®ÐI>••ìY{ij+ Dê$yÔnüP:Ó.=Ütó¦³È;mj$´-BûÍ€ùS$øÀ×΢°éÒ|üéIXQ"IWOZvÑë3¿ßM¼è ãšH*S%Dÿ@¹p!$t´œK›%8ظ·(Pé3åZÿxæx¹BIÚ®ð÷¤l`¶¢ã¶è¹eIÚz³UNŸTJ3Ë+2e¥á så5-d €EhÖ8‹–÷Éq:“²IäŠØ˜»“"*p–d)Ç)jíÁhiª†ëd‘Ôñ4‚uAªn®;•}iOÝR{ /±)OisAEaw) ñ¨Iâªî®ƒ¨%^/CÒ«^¿j1ºÐR-ž¼H !Q|ëRÍ7ÉïPµ*:M=wˆ¥-ÁVÝkE͸‹·e» 9]ÃËi)Ü•­Œš±’µEvY9Œ¥µýp1s˜ÚÒJ=k¢å/£eÄÛiü˘´h¨)M[$©JIäIˆ?];ú3öw`Ò‘|Ýî&¢© }ò }˜­ÐÂ>§§¥µ<°ömB¥-%n¬~À$ý•; ³Î¸ò™.XÄŸKæçrB½Ga^ÞËÝŸdÌ¥XV^ÃíÜîûIJ5ùÉ­‘›vHCL¡´ŽR^°±[˜jqi?*š)‘ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€ (¢€<]¡¯¬A÷ÓÈhlxƒ¥Cl¯mDGŸ9ªèÈOôEqp›&¡µ¢U)1ÔÓw.¹ cÈTdÝ)$É߉"”—J†û¦‘%Üò‚ 'í§ á Hï¦ÔêcJ8êi—J 4™j³%‡Áþuõ­`ô‰HØE6µ¨«Ä6¤ ×¹„,£be4¥ÜjA@¦T©6‘'zI­Ç5))™ôŠa×4… 書¸ õ¨N¼¥ÌÅ$AÉ’;ÕF#ךŽë…J™ˆ4ÐqKŸ¾‚AéMøŠS„™ò¦Y*&)j!3;Žû€ÌèÜWÔ°Ã]pzñ[>øör˜’…ïå÷ÖˆÝÆ•¶œ"ãRO+l¨ÔR.‰µÚ\¢@'n•id½.DD «SiÓ;}SÅ[Ù]•6 Œ’`šMZèØC¡J3:må€QFiÆŠ¥îy÷Ô[›„¶²[t¤Ó#yX»¶y J“¹ƒçO5t¤( ÀMkí^ip‘ÁèM:íØ 6÷Ћd¬^]>4<óPÛ¹ 'ÅUVõáÓõ€Hý±ò «þÂû²+‰Æ±§‘ŠãÊ@ý!OèíüÂëÓW—”™í@ q]*4=Yæq¼BU¼1ØEVƒ˜QEQEQEQEQEQEQEQEQEQEQEQEQEQEQExŠÔë+qB‰ ØÆôQ\ާ·D…[’Ú¢¨(¦vš(¨ËrÈ ’™;Ò’`p(¢¢5¹”A'y¡Ð(¢’ÜLˆé:£¥0ñ (¢2ÂA$žj*‰ï¯4QQ}‚•'Lõ¢ŠhRx3Ö >¢QÍTˆ"3j%q5²å×T”• ÛåE–戗IZ’«'V‘<‰¢ŠOsDv,BÔdyS *wŠ(¨„w0—¡*ëJ®T'hš( “#¼êÂdŠã«$Fh¢›GеoM)jçΊ) Œ­Ålj:ßp(ÁâŠ(‰$2§Ü$I¨·n¬“¿êÑEH]JöXzAÞ¥=rï‡ÅE%±\÷":û¤™UT⎭L-*2"Š*/au(°«·’ ¶I4œBáÐI ¢Šœ ng³¤§íg*Y^!/[½‹0—P”©:ÆÄA¯¦m6†Ð”!!"Š+§CÊyN,ïXUQWœ°¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ÿÙpymvpa-0.4.8/doc/publications.rst000066400000000000000000000056771174541445200170600ustar00rootroot00000000000000.. -*- mode: rst -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: Below is a list of all publications about PyMVPA that have been published so far (in chronological order). If you use PyMVPA in your research please cite the one that matches best. In addition there is also a list of studies done by other groups employing PyMVPA somewhere in the analysis. Peer-reviewed publications -------------------------- Hanke, M., Halchenko, Y. O., Haxby, J. V., and Pollmann, S. (accepted) *Statistical learning analysis in neuroscience: aiming for transparency*. Frontiers in Neuroscience. Focused review article emphasizing the role of transparency to facilitate adoption and evaluation of statistical learning techniques in neuroimaging research. Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W., Herrmann, C. S., Haxby, J. V., Hanson, S. J. and Pollmann, S. (2009) `PyMVPA\: a unifying approach to the analysis of neuroscientific data`_. Frontiers in Neuroinformatics, 3:3. Demonstration of PyMVPA capabilities concerning multi-modal or modality-agnostic data analysis. .. _PyMVPA\: a unifying approach to the analysis of neuroscientific data: http://dx.doi.org/10.3389/neuro.11.003.2009 Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V. & Pollmann, S. (2009). `PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data`_. Neuroinformatics, 7, 37-53. First paper introducing fMRI data analysis with PyMVPA. .. _PyMVPA\: A Python toolbox for multivariate pattern analysis of fMRI data: http://dx.doi.org/10.1007/s12021-008-9041-y Posters ------- Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V. & Pollmann, S. (2008). `PyMVPA: A Python toolbox for machine-learning based data analysis.`_ Poster emphasizing PyMVPA's capabilities concerning multi-modal data analysis at the annual meeting of the Society for Neuroscience, Washington, 2008. Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V. & Pollmann, S. (2008). `PyMVPA: A Python toolbox for classifier-based data analysis.`_ First presentation of PyMVPA at the conference *Psychologie und Gehirn* [Psychology and Brain], Magdeburg_, 2008. This poster received the poster prize of the *German Society for Psychophysiology and its Application*. .. _PyMVPA\: A Python toolbox for classifier-based data analysis.: http://www.pymvpa.org/files/PyMVPA_PuG2008.pdf .. _PyMVPA\: A Python toolbox for machine-learning based data analysis.: http://www.pymvpa.org/files/PyMVPA_SfN2008.pdf .. _Magdeburg: http://www.magdeburg.de/ Studies employing PyMVPA ------------------------ * :ref:`Sun et al. (2009) `: *Elucidating an MRI-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning Algorithms.* * :ref:`Manelis et al. (2010) `: *Implicit memory for object locations depends on reactivation of encoding-related brain regions* pymvpa-0.4.8/doc/references.rst000066400000000000000000000271761174541445200165030ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- # # THIS IS A GENERATED FILE -- DO NOT EDIT! # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. index:: references .. _chap_references: ********** References ********** This list aims to be a collection of literature, that is of particular interest in the context of multivariate pattern analysis. It includes all references cited throughout this manual, but also a number of additional manuscripts containing descriptions of interesting analysis methods or fruitful experiments. .. _CPL+06: **Chen, X., Pereira, F., Lee, W., Strother, S. & Mitchell, T.** (2006). Exploring predictive and reproducible modeling with the single-subject FIAC dataset. *Human Brain Mapping*, *27*, 452–461. *This paper illustrates the necessity to consider the stability or reproducibility of a classifier's feature selection as at least equally important to it's generalization performance.* Keywords: :keyword:`feature selection stability` DOI: http://dx.doi.org/10.1002/hbm.20243 .. _Dem06: **DemÅ¡ar, J.** (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. *Journal of Machine Learning Research*, *7*, 1–30. *This is a review of several classifier benchmark procedures.* URL: http://portal.acm.org/citation.cfm?id=1248548 .. _EHJ+04: **Efron, B., Trevor, H., Johnstone, I. & Tibshirani, R.** (2004). Least Angle Regression. *Annals of Statistics*, *32*, 407–499. Keywords: :keyword:`least angle regression`, :keyword:`LARS` DOI: http://dx.doi.org/10.1214/009053604000000067 .. _GE03: **Guyon, I. & Elisseeff, A.** (2003). An Introduction to Variable and Feature Selection. *Journal of Machine Learning*, *3*, 1157–1182. URL: http://www.jmlr.org/papers/v3/guyon03a.html .. _HHH+10: **Hanke, M., Halchenko, Y. O., Haxby, J. V. & Pollmann, S.** (accepted). Statistical learning analysis in neuroscience: aiming for transparency. *Frontiers in Neuroscience*. *Focused review article emphasizing the role of transparency to facilitate adoption and evaluation of statistical learning techniques in neuroimaging research.* .. _HHS+latest: **Hanke, M., Halchenko, Y. O., Sederberg, P. B. & Hughes, J. M.** The PyMVPA Manual. Available online at http://www.pymvpa.org/PyMVPA-Manual.pdf. .. _HHS+09a: **Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V. & Pollmann, S.** (2009). PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. *Neuroinformatics*, *7*, 37–53. *Introduction into the analysis of fMRI data using PyMVPA.* Keywords: :keyword:`PyMVPA`, :keyword:`fMRI` DOI: http://dx.doi.org/10.1007/s12021-008-9041-y .. _HHS+09b: **Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W., Herrmann, C. S., Haxby, J. V., Hanson, S. J. & Pollmann, S.** (2009). PyMVPA: A Unifying Approach to the Analysis of Neuroscientific Data. *Frontiers in Neuroinformatics*, *3*, 3. *Demonstration of PyMVPA capabilities concerning multi-modal or modality-agnostic data analysis.* Keywords: :keyword:`PyMVPA`, :keyword:`fMRI`, :keyword:`EEG`, :keyword:`MEG`, :keyword:`extracellular recordings` DOI: http://dx.doi.org/10.3389/neuro.11.003.2009 .. _HH08: **Hanson, S. J. & Halchenko, Y. O.** (2008). Brain reading using full brain support vector machines for object recognition: there is no "face" identification area. *Neural Computation*, *20*, 486–503. Keywords: :keyword:`support vector machine`, :keyword:`SVM`, :keyword:`recursive feature elimination`, :keyword:`RFE` DOI: http://dx.doi.org/10.1162/neco.2007.09-06-340 .. _HMH04: **Hanson, S. J., Matsuka, T. & Haxby, J. V.** (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area?. *Neuroimage*, *23*, 156–166. DOI: http://dx.doi.org/10.1016/j.neuroimage.2004.05.020 .. _HGF+01: **Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L. & Pietrini, P.** (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. *Science*, *293*, 2425–2430. Keywords: :keyword:`split-correlation classifier` DOI: http://dx.doi.org/10.1126/science.1063736 .. _HR06: **Haynes, J. & Rees, G.** (2006). Decoding mental states from brain activity in humans. *Nature Reviews Neuroscience*, *7*, 523–534. *Review of decoding studies, emphasizing the importance of ethical issues concerning the privacy of personal thought.* DOI: http://dx.doi.org/10.1038/nrn1931 .. _JL09: **Jurica, P. & van Leeuwen, C.** (2009). OMPC: an open-source MATLAB-to-Python compiler. *Frontiers in Neuroinformatics*, *3*, 5. DOI: http://dx.doi.org/10.3389/neuro.11.005.2009 .. _JSW09: **Jäkel, F., Schölkopf, B. & Wichmann, F. A.** (2009). Does Cognitive Science Need Kernels?. *Trends in Cognitive Sciences*, *13*, 381–388. *A summary of the relationship of machine learning and cognitive science. Moreover it also points out the role of kernel-based methods in this context.* Keywords: :keyword:`kernel`, :keyword:`similarity` DOI: http://dx.doi.org/10.1016/j.tics.2009.06.002 .. _KT05: **Kamitani, Y. & Tong, F.** (2005). Decoding the visual and subjective contents of the human brain. *Nature Neuroscience*, *8*, 679–685. *One of the two studies showing the possibility to read out orientation information from visual cortex.* DOI: http://dx.doi.org/10.1038/nn1444 .. _KFS+09: **Kienzle, W., Franz, M. O., Schölkopf, B. & Wichmann, F. A.** (in press). Center-surround patterns emerge as optimal predictors for human saccade targets. *Journal of Vision*. *This paper offers an approach to make sense out of feature sensitivities of non-linear classifiers.* .. _KGB06: **Kriegeskorte, N., Goebel, R. & Bandettini, P. A.** (2006). Information-based functional brain mapping. *Proceedings of the National Academy of Sciences of the USA*, *103*, 3863–3868. *Paper introducing the searchlight algorithm.* Keywords: :keyword:`searchlight` DOI: http://dx.doi.org/10.1073/pnas.0600244103 .. _KMB08: **Kriegeskorte, N., Mur, M. & Bandettini, P. A.** (2008). Representational similarity analysis - connecting the branches of systems neuroscience. *Frontiers in Systems Neuroscience*, *2*, 4. DOI: http://dx.doi.org/10.3389/neuro.06.004.2008 .. _KCF+05: **Krishnapuram, B., Carin, L., Figueiredo, M. A. & Hartemink, A. J.** (2005). Sparse multinomial logistic regression: fast algorithms and generalization bounds. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, *27*, 957–968. Keywords: :keyword:`sparse multinomial logistic regression`, :keyword:`SMLR` DOI: http://dx.doi.org/10.1109/TPAMI.2005.127 .. _LSC+05: **LaConte, S., Strother, S., Cherkassky, V., Anderson, J. & Hu, X.** (2005). Support vector machines for temporal classification of block design fMRI data. *Neuroimage*, *26*, 317–329. *Comprehensive evaluation of preprocessing options with respect to SVM-classifier (and others) performance on block-design fMRI data.* Keywords: :keyword:`SVM` DOI: http://dx.doi.org/10.1016/j.neuroimage.2005.01.048 .. _MHH10: **Manelis, A., Hanson, C. & Hanson, S. J.** (2010). Implicit memory for object locations depends on reactivation of encoding-related brain regions. *Human Brain Mapping*. Keywords: :keyword:`PyMVPA`, :keyword:`implicit memory`, :keyword:`MRI` .. _MHN+04: **Mitchell, T., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M. & Newman, S.** (2004). Learning to Decode Cognitive States from Brain Images. *Machine Learning*, *57*, 145–175. DOI: http://dx.doi.org/10.1023/B:MACH.0000035475.85309.1b .. _MBK09: **Mur, M., Bandettini, P. A. & Kriegeskorte, N.** (2009). Revealing representational content with pattern-information fMRI–an introductory guide. *Social Cognitive and Affective Neuroscience*. DOI: http://dx.doi.org/10.1093/scan/nsn044 .. _NH02: **Nichols, T. E. & Holmes, A. P.** (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. *Human Brain Mapping*, *15*, 1–25. *Overview of standard nonparametric randomization and permutation testing applied to neuroimaging data (e.g. fMRI)* DOI: http://dx.doi.org/10.1002/hbm.1058 .. _NPD+06: **Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V.** (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. *Trends in Cognitive Science*, *10*, 424–430. DOI: http://dx.doi.org/10.1016/j.tics.2006.07.005 .. _OJA+05: **O'Toole, A. J., Jiang, F., Abdi, H. & Haxby, J. V.** (2005). Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex . *Journal of Cognitive Neuroscience*, *17*, 580–590. DOI: http://dx.doi.org/10.1162/0898929053467550 .. _OJA+07: **O'Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P. & Parent, M. A.** (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. *Journal of Cognitive Neuroscience*, *19*, 1735–1752. DOI: http://dx.doi.org/10.1162/jocn.2007.19.11.1735 .. _PMB+IP: **Pereira, F., Mitchell, T. & Botvinick, M.** (in press). Machine learning classifiers and fMRI: A tutorial overview. *Neuroimage*. DOI: http://dx.doi.org/10.1016/j.neuroimage.2008.11.007 .. _PP07: **Pessoa, L. & Padmala, S.** (2007). Decoding near-threshold perception of fear from distributed single-trial brain activation. *Cerebral Cortex*, *17*, 691–701. *Analysis of slow event-related fMRI data using patter classification techniques.* DOI: http://dx.doi.org/10.1093/cercor/bhk020 .. _SMM+08: **Sato, J. R., Mourão-Miranda, J., Martin, M. d. G. M., Amaro, E., Morettin, P. A. & Brammer, M. J.** (2008). The impact of functional connectivity changes on support vector machines mapping of fMRI data. *Journal of Neuroscience Methods*, *172*, 94–104. *Discussion of possible scenarios where univariate and multivariate (SVM) sensitivity maps derived from the same dataset could differ. Including the case were univariate methods would assign a substantially larger score to some features.* Keywords: :keyword:`support vector machine`, :keyword:`SVM`, :keyword:`sensitivity` DOI: http://dx.doi.org/10.1016/j.jneumeth.2008.04.008 .. _SET+09: **Sun, D., van Erp, T. G., Thompson, P. M., Bearden, C. E., Daley, M., Kushan, L., Hardt, M. E., Nuechterlein, K. H., Toga, A. W. & Cannon, T. D.** (2009). Elucidating an MRI-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning Algorithms. *Biological Psychiatry*. *First published study employing PyMVPA for MRI-based analysis of Psychosis.* Keywords: :keyword:`PyMVPA`, :keyword:`psychosis`, :keyword:`MRI` DOI: http://dx.doi.org/10.1016/j.biopsych.2009.07.019 .. _Vap95: **Vapnik, V.** (1995). The Nature of Statistical Learning Theory. Springer: New York. Keywords: :keyword:`support vector machine`, :keyword:`SVM` .. _WCW+07: **Wang, Z., Childress, A. R., Wang, J. & Detre, J. A.** (2007). Support vector machine learning-based fMRI data group analysis. *Neuroimage*, *36*, 1139–51. Keywords: :keyword:`support vector machine`, :keyword:`SVM`, :keyword:`group analysis` DOI: http://dx.doi.org/10.1016/j.neuroimage.2007.03.072 .. _ZH05: **Zou, H. & Hastie, T.** (2005). Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society Series B*, *67*, 301–320. URL: http://www-stat.stanford.edu/%7Ehastie/Papers/B67.2%20(2005)%20301-320%20Zou%20%26%20Hastie.pdf pymvpa-0.4.8/doc/sphinxext/000077500000000000000000000000001174541445200156455ustar00rootroot00000000000000pymvpa-0.4.8/doc/sphinxext/inheritance_diagram.py000066400000000000000000000324771174541445200222110ustar00rootroot00000000000000""" Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. """ import inspect import os import re import subprocess try: from hashlib import md5 except ImportError: from md5 import md5 from docutils.nodes import Body, Element from docutils.parsers.rst import directives from sphinx.roles import xfileref_role def my_import(name): """Module importer - taken from the python documentation. This function allows importing names with dots in them.""" mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod class DotException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, show_builtins=False): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names self.classes = self._import_classes(class_names) self.all_classes = self._all_classes(self.classes) if len(self.all_classes) == 0: raise ValueError("No classes found for inheritance diagram") self.show_builtins = show_builtins py_sig_re = re.compile(r'''^([\w.]*\.)? # class names (\w+) \s* $ # optionally arguments ''', re.VERBOSE) def _import_class_or_module(self, name): """ Import a class using its fully-qualified *name*. """ try: path, base = self.py_sig_re.match(name).groups() except: raise ValueError( "Invalid class or module '%s' specified for inheritance diagram" % name) fullname = (path or '') + base path = (path and path.rstrip('.')) if not path: path = base try: module = __import__(path, None, None, []) # We must do an import of the fully qualified name. Otherwise if a # subpackage 'a.b' is requested where 'import a' does NOT provide # 'a.b' automatically, then 'a.b' will not be found below. This # second call will force the equivalent of 'import a.b' to happen # after the top-level import above. my_import(fullname) except ImportError: raise ValueError( "Could not import class or module '%s' specified for inheritance diagram" % name) try: todoc = module for comp in fullname.split('.')[1:]: todoc = getattr(todoc, comp) except AttributeError: raise ValueError( "Could not find class or module '%s' specified for inheritance diagram" % name) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise ValueError( "'%s' does not resolve to a class or module" % name) def _import_classes(self, class_names): """ Import a list of classes. """ classes = [] for name in class_names: classes.extend(self._import_class_or_module(name)) return classes def _all_classes(self, classes): """ Return a list of all classes that are ancestors of *classes*. """ all_classes = {} def recurse(cls): all_classes[cls] = None for c in cls.__bases__: if c not in all_classes: recurse(c) for cls in classes: recurse(cls) return all_classes.keys() def class_name(self, cls, parts=0): """ Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = "%s.%s" % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [self.class_name(x) for x in self.all_classes] # These are the default options for graphviz default_graph_options = { "rankdir": "UD", "size": '"8.0, 8.0"' } default_node_options = { "shape": "box", "fontsize": 10, "height": 0.25, "fontname": "Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans", "style": '"setlinewidth(0.5)"' } default_edge_options = { "arrowsize": 0.5, "style": '"setlinewidth(0.5)"' } def _format_node_options(self, options): return ','.join(["%s=%s" % x for x in options.items()]) def _format_graph_options(self, options): return ''.join(["%s=%s;\n" % x for x in options.items()]) def generate_dot(self, fd, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *fd* is a Python file-like object to write to. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls *graph_options*, *node_options*, *edge_options* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_options = self.default_graph_options.copy() g_options.update(graph_options) n_options = self.default_node_options.copy() n_options.update(node_options) e_options = self.default_edge_options.copy() e_options.update(edge_options) fd.write('digraph %s {\n' % name) fd.write(self._format_graph_options(g_options)) for cls in self.all_classes: if not self.show_builtins and cls in __builtins__.values(): continue name = self.class_name(cls, parts) # Write the node this_node_options = n_options.copy() url = urls.get(self.class_name(cls)) if url is not None: this_node_options['URL'] = '"%s"' % url fd.write(' "%s" [%s];\n' % (name, self._format_node_options(this_node_options))) # Write the edges for base in cls.__bases__: if not self.show_builtins and base in __builtins__.values(): continue base_name = self.class_name(base, parts) fd.write(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_options(e_options))) fd.write('}\n') def run_dot(self, args, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Run graphviz 'dot' over this graph, returning whatever 'dot' writes to stdout. *args* will be passed along as commandline arguments. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls Raises DotException for any of the many os and installation-related errors that may occur. """ try: dot = subprocess.Popen(['dot'] + list(args), stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True) except OSError: raise DotException("Could not execute 'dot'. Are you sure you have 'graphviz' installed?") except ValueError: raise DotException("'dot' called with invalid arguments") except: raise DotException("Unexpected error calling 'dot'") self.generate_dot(dot.stdin, name, parts, urls, graph_options, node_options, edge_options) dot.stdin.close() result = dot.stdout.read() returncode = dot.wait() if returncode != 0: raise DotException("'dot' returned the errorcode %d" % returncode) return result class inheritance_diagram(Body, Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass def inheritance_diagram_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """ Run when the inheritance_diagram directive is first encountered. """ node = inheritance_diagram() class_names = arguments # Create a graph starting with the list of classes graph = InheritanceGraph(class_names) # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = xfileref_role( 'class', ':class:`%s`' % name, name, 0, state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph # Store the original content for use as a hash node['parts'] = options.get('parts', 0) node['content'] = " ".join(class_names) return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_output_graph(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash path = '_images' dest_path = os.path.join(setup.app.builder.outdir, path) if not os.path.exists(dest_path): os.makedirs(dest_path) png_path = os.path.join(dest_path, name + ".png") path = setup.app.builder.imgpath # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') # These arguments to dot will save a PNG file to disk and write # an HTML image map to stdout. image_map = graph.run_dot(['-Tpng', '-o%s' % png_path, '-Tcmapx'], name, parts, urls) return ('%s' % (path, name, name, image_map)) def latex_output_graph(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash dest_path = os.path.abspath(os.path.join(setup.app.builder.outdir, '_images')) if not os.path.exists(dest_path): os.makedirs(dest_path) pdf_path = os.path.abspath(os.path.join(dest_path, name + ".pdf")) graph.run_dot(['-Tpdf', '-o%s' % pdf_path], name, parts, graph_options={'size': '"6.0,6.0"'}) return '\n\\includegraphics{%s}\n\n' % pdf_path def visit_inheritance_diagram(inner_func): """ This is just a wrapper around html/latex_output_graph to make it easier to handle errors and insert warnings. """ def visitor(self, node): try: content = inner_func(self, node) except DotException, e: # Insert the exception as a warning in the document warning = self.document.reporter.warning(str(e), line=node.line) warning.parent = node node.children = [warning] else: source = self.document.attributes['source'] self.body.append(content) node.children = [] return visitor def do_nothing(self, node): pass def setup(app): setup.app = app setup.confdir = app.confdir app.add_node( inheritance_diagram, latex=(visit_inheritance_diagram(latex_output_graph), do_nothing), html=(visit_inheritance_diagram(html_output_graph), do_nothing)) app.add_directive( 'inheritance-diagram', inheritance_diagram_directive, False, (1, 100, 0), parts = directives.nonnegative_int) pymvpa-0.4.8/doc/todo.rst000077700000000000000000000000001174541445200162102../TODOustar00rootroot00000000000000pymvpa-0.4.8/doc/workshops/000077500000000000000000000000001174541445200156525ustar00rootroot00000000000000pymvpa-0.4.8/doc/workshops/2009-fall.rst000066400000000000000000000325211174541445200177150ustar00rootroot00000000000000.. -*- mode: rst; fill-column: 78 -*- .. ex: set sts=4 ts=4 sw=4 et tw=79: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### .. _chap_workshop_2009fall: ******************************** PyMVPA Extravaganza -- Fall 2009 ******************************** This development workshop took take place at Dartmouth College, Nov 30 -- Dec 4, 2009. Goals ===== The primary purpose of this first PyMVPA workshop was to gather all people involved in (or related to) the development of PyMVPA. Participants introduced their projects and discussed their integration into, or interoperation with the PyMVPA main line. In addition, we discussed changes scheduled for the upcoming 0.5 release of PyMVPA that are supposed to improve shortcomings of the original design, or missing features that have been identified over the past two years. These include: * More flexible data storage: A new dataset implementation. * Better integration of PyMVPA and MDP_. * Establishing an optimization framework within PyMVPA. * Various performance improvements, e.g. kernel-caching, parallelization, potential of CUDA. .. _MDP: http://mdp-toolkit.sourceforge.net/ Participants ============ * Satrajit Ghosh, MIT, USA (for the kick-off talks) * Scott Gorlin, MIT, USA * Valentin Haenel, BCCN, Germany * Yaroslav O. Halchenko, Dartmouth College, USA * Michael Hanke, Dartmouth College, USA * Emanuele Olivetti, Fondazione Bruno Kessler, Italy * Per B. Sederberg, Princeton University, USA (virtual) * Tiziano Zito, BCCN, Germany Kick-off Talks ============== The workshop started on *Monday Nov 30th at 9:30am* with a series of talks covering the various aspects of the workshop (abstracts below). PyMVPA: Where we are now, and where we are going ------------------------------------------------ Yaroslav O. Halchenko, Michael Hanke This talk will give a brief summary of our original concept of PyMVPA that we had in mind when designing it two years ago, and how the project evolved since then. We will touch upon several issues we had to face concerning development, quality assurance, and deployment. While the latest PyMVPA release offers a wide array of tools and algorithms, we also identified a number of problems that limit further integration of novel techniques into the framework. The talk will conclude with an outline how we believe these issues can be resolved and introduces a number of improvements that will become available with the next milestone release: PyMVPA **0.5**. MDP inside out -------------- Tiziano Zito MDP is a Python collection of machine learning algorithms and a framework for implementing new algorithms and combining them into data processing workflows. MDP has been designed around two main ideas: expose a simple API, to allow scientific users to use it as a standalone library, and organize the internal structure of the objects to encourage developers to extend it and embed it in other libraries such as PyMVPA. In my talk, I will use MDP as a starting point to hash over some basic principles of scientific software design. I will discuss the criteria that inform the design of MDP and their specific implementation, and examine their advantages, limitations and possible alternatives. I will conclude with a summary of the current status and future plans for MDP development. Nipype - A Python framework for neuroimaging -------------------------------------------- Satrajit Ghosh Nipype is a project under the umbrella of Nipy, an effort to develop open-source, community-developed neuroimaging tools in Python. The goals of Nipype are two-fold: 1) to provide a uniform interface to existing neuroimaging software packages; and 2) to provide a pipelined environment for efficient batch-processing that can tie together different neuroimaging data analysis algorithms. By exposing a consistent interface to the external packages, researchers are able to explore a wide range of imaging algorithms and configure their own analysis pipeline which best fits their data and research objectives, and perform their analysis in a highly structured environment. The nipype framework is accessible to the wide range of programming expertise often found in neuroimaging, allowing for both easy-to-use high-level scripting and low-level algorithm development for unlimited customization. Profiling PyMVPA ---------------- Valentin Haenel In this talk I will present the work we did to compare the PyMVPA and Matlab implementations of the searchlight algorithm. This will include a description of how we iteratively discovered various bottlenecks and the steps taken to eliminate these. In particular, I will first present modifications of the source code and then show the resulting change in profiler output. I may conclude with some ideas for future work and some additional remarks about optimization in general. Supervised Tract Segmentation ----------------------------- Emanuele Olivetti Automatic segmentation of tractography data into pathways/tracts is a problem traditionally addressed by means of unsupervised techniques, i.e., clustering streamlines. The core of this work is to adopt instead a supervised approach, learning from the segmentation made by an expert neuroanatomist in order to predict tracts in new brains. In this talk a novel set of supervised approaches to the tract segmentation problem will be illustrated. The proposed solutions are based on machine learning topics like "supervised clustering", "learning with similarity functions" and "transduction". These solutions allow to exploit both diffusion and functional MRI data, to avoid co-registration between different subjects and to predict tracts in hemispheres different from the training example. Preliminary results support these claims. An intended goal of this talk is to open a discussion on how to map the building blocks of the proposed methods into the PyMVPA framework in order to support tractography data analysis natively and, more in general, to provide novel machine learning approaches to the users. Caching kernels --------------- Scott Gorlin A major bottleneck in a standard classification analysis relies on calculating the dot product between vectors in high-dimensional space. This is especially time consuming when there are few samples but the number of dimensions is high, such as the case of fMRI data. In fact, many common analysis techniques such as cross validation, bootstrapping, and model selection require that the kernel be recalculated for each permutation, even if that exact calculation has been done before. This presentation analyzes the problem inherent in a high-level library such as PyMVPA and illustrates one example of how to cache and reuse kernels, greatly simplifying the underlying computations and accelerating many analytical technique implementations by several orders of magnitude. Workshop Results ================ The workshop has been a huge success. We worked on further integrating PyMVPA with other Python-based software packages, both to make use of them inside PyMVPA, but also to better expose PyMVPA's functionality to other packages. The kick-off talks were followed by four days of intensive coding. During these days we were able to integrate virtually all outstanding patches that have been offered over the last year, but could not be merged yet due to required changes in the codebase. Below is a list of projects that we have been working on during the workshop. Moreover, we were able to continue the transition towards the new dataset implementation that had been started prior to the workshop. A significant number of additional unittest has been ported to the new code -- as usual identifying and fixing a number of bugs. .. figure:: ../pics/extravaganza-dc09.jpg Workshop participants (from left to right and top to bottom): Emanuele Olivetti, Scott Gorlin, Michael Hanke, Tiziano Zito, Yaroslav O. Halchenko, Valentin Haenel Grand Kernel Unification ------------------------ Scott Gorlin, Yaroslav O. Halchenko, and Emanuele Olivetti Many core MVPA algorithms rely on expensive kernel computations. However, most of these algorithms have their own naming standards and backend implementations which are not interchangeable, meaning that new advances in kernel logic or software implementations are not generally beneficial to PyMVPA as a whole. To solve this, we have implemented a new class hierarchy which not only specifies a standard kernel interface, but also allows the automatic translation of kernels from one software backend to another. Specifically, it is now possible to specify new kernel classes in pure Python (or any method which can expose a Numpy array, such as PyCUDA or custom C) and automatically convert these back and forth to Shogun kernels. This has the immediate advantage of allowing custom kernels for any Shogun-based classifier (e.g. SVM), using Shogun kernels for fast computation in any other solver (e.g., GPR), or the automatic exchange of kernels for any implementation in the future. Cached Kernel Optimization -------------------------- Scott Gorlin, Yaroslav O. Halchenko The main benefit of the kernel unification work is that new kernel classes can be specified in pure Python. A new optimized kernel class we have implemented is a CachedKernel which can automatically cache and reuse kernel matrices from any other NumpyKernel (or any kernel which is convertible to Numpy, such as a Shogun kernel). This class will prove extremely useful for techniques such as cross-validation, bootstrapping, etc, where the kernel product is normally recalculated every time it is computed - e.g., every time SVM.train(...) is called. Caching the kernel will avoid these expensive computations and greatly speed up this type of analysis by several orders of magnitude. Flexible, straightforward adaptor for arbitrary MDP nodes and flows ------------------------------------------------------------------- Michael Hanke, Tiziano Zito Although previously PyMVPA used MDP to provide a subset of its functionality through Mappers, this was limited to single nodes (e.g. PCA, ICA) and was not meant to be extended by users (except for subclassing and writing a new node wrapper by hand). Now, PyMVPA included flexible adaptors for arbitrary MDP nodes, or whole MDP flows. Besides incremental training, these adaptors offer access to the full functionality of the underlying node or flow. Straightforward (single-line of code) wrapping allows to seamlessly blend MDP into PyMVPA. The benefits are two-fold: PyMVPA users have now access to the full functionality of MDP without having to develop custom mappers. This includes algorithms, such as PCA, ICA, factor analysis, discriminant analysis, slow feature analysis, or restricted Boltzmann machines, and many more. MDP users can now use PyMVPA to perform convenient cross-validation of classification procedures with arbitrary mixes of PyMVPA classifiers and measure and MDP nodes, and flows. Non-matrix Dataset and prototype mapper for tractography data (and more!) ------------------------------------------------------------------------- Emanuele Olivetti, Michael Hanke The vast majority of algorithms available (and desirable) in PyMVPA requires data in a 2D matrix format. For this reason, until now, PyMVPA accepted only 2D matrices as samples in a Dataset. However, sometimes this causes problems, for example, with tractography data. That consists of a set of streamlines, a streamline being a polyline made of a non-constant number of points. In PyMVPA terms it means that the number of features in the corresponding dataset of streamlines would be different across instances. The purpose of a set of patches made during the workshop is twofold: first to allow PyMVPA to accept also row-wise iterable collections as a Dataset independently of the content of each row and second to provide a mapper to transform these every kind of Dataset into 2D matrix Dataset. The mapper is prototype-based which means that each instance within the Dataset (e.g., each streamline) is mapped into a fixed size M-dimensional vector. The M values are computed by specifying a similarity (or kernel, or distance) function which evaluates the distance of that instance against a given set of other M instances (e.g., other M streamlines) called *prototypes*. An example application is supervised tract segmentation from tractography data which now can be mapped into a standard binary classification problem over the usual 2D matrix class-labeled dataset. This approach to adress varying features-space sizes is flexible, and not limited to the tractography domain. Optimization and Generalization of Searchlight-analyses ------------------------------------------------------- Valentin Haenel, Michael Hanke The searchlight analysis code has been ported to the new dataset/mapper framework, taking into account the result of a profiling analysis done by Valentin Haenel during the last year. The new code avoids significant look-up penalties of the previous implementation. Moreover, it has been generalized to support arbitrary look-up algorithms (e.g. kd-tree_) and is no longer limited to sphere-based spatial searchlights. .. _kd-tree: http://en.wikipedia.org/wiki/Kd-tree Acknowledgements ================ We are grateful to Prof. James Haxby for sponsoring this workshop and hosting it in his lab. pymvpa-0.4.8/mvpa/000077500000000000000000000000001174541445200140115ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/__init__.py000066400000000000000000000075731174541445200161360ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """MultiVariate Pattern Analysis Package Organization ==================== The mvpa package contains the following subpackages and modules: .. packagetree:: :style: UML :group Algorithms: algorithms :group Anatomical Atlases: atlases :group Basic Data Structures: datasets :group Classifiers (supervised learners): clfs :group Feature Selections: featsel :group Mappers (usually unsupervised learners): mappers :group Measures: measures :group Miscellaneous: base misc support :group Unittests: tests :author: `Michael Hanke `__, `Yaroslav Halchenko `__, `Per B. Sederberg `__ :requires: Python 2.4+ :version: 0.4.8 :see: `The PyMVPA webpage `__ :see: `GIT Repository Browser `__ :license: The MIT License :copyright: |copy| 2006-2010 Michael Hanke :copyright: |copy| 2007-2010 Yaroslav O. Halchenko :newfield contributor: Contributor, Contributors (Alphabetical Order) :contributor: `Emanuele Olivetti `__ :contributor: `Per B. Sederberg `__ .. |copy| unicode:: 0xA9 .. copyright sign """ __docformat__ = 'restructuredtext' # canonical PyMVPA version string __version__ = '0.4.8' import os import random import numpy as N from mvpa.base import cfg from mvpa.base import externals from mvpa.base.info import wtf # locate data root -- data might not be installed, but if it is, it should be at # this location pymvpa_dataroot = os.path.join(os.path.dirname(__file__), 'data') if not __debug__: try: import psyco psyco.profile() except ImportError: from mvpa.base import verbose verbose(2, "Psyco online compilation is not enabled") else: # Controllable seeding of random number generator from mvpa.base import debug debug('INIT', 'mvpa') if cfg.has_option('general', 'seed'): _random_seed = cfg.getint('general', 'seed') else: _random_seed = int(N.random.uniform()*(2**31-1)) def seed(random_seed): """Uniform and combined seeding of all relevant random number generators. """ N.random.seed(random_seed) random.seed(random_seed) seed(_random_seed) # import the main unittest interface from mvpa.tests import run as test # PyMVPA is useless without numpy # Also, this check enforcing population of externals.versions # for possible later version checks, hence don't remove externals.exists('numpy', force=True, raiseException=True) # We might need to suppress the warnings so enforcing check here, # it is ok if it would fail externals.exists('scipy', force=True, raiseException=False) if __debug__: debug('RANDOM', 'Seeding RNG with %d' % _random_seed) debug('INIT', 'mvpa end') # Attach custom top-level exception handler if cfg.getboolean('debug', 'wtf', default=False): import sys _sys_excepthook = sys.excepthook def _pymvpa_excepthook(*args): """Custom exception handler to report also pymvpa's wtf Calls original handler, and then collects WTF and spits it out """ ret = _sys_excepthook(*args) sys.stdout.write("PyMVPA's WTF: collecting information... hold on...") sys.stdout.flush() wtfs = wtf() sys.stdout.write("\rPyMVPA's WTF: \n") sys.stdout.write(str(wtfs)) return ret sys.excepthook = _pymvpa_excepthook pymvpa-0.4.8/mvpa/algorithms/000077500000000000000000000000001174541445200161625ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/algorithms/__init__.py000066400000000000000000000010631174541445200202730ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for PyMVPA algorithms.""" if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.algorithms') if __debug__: debug('INIT', 'mvpa.algorithms end') pymvpa-0.4.8/mvpa/algorithms/cvtranserror.py000066400000000000000000000234111174541445200212670ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Cross-validate a classifier on a dataset""" __docformat__ = 'restructuredtext' from mvpa.support.copy import deepcopy from mvpa.measures.base import DatasetMeasure from mvpa.datasets.splitters import NoneSplitter from mvpa.base import warning from mvpa.misc.state import StateVariable, Harvestable from mvpa.misc.transformers import GrandMean if __debug__: from mvpa.base import debug class CrossValidatedTransferError(DatasetMeasure, Harvestable): """Classifier cross-validation. This class provides a simple interface to cross-validate a classifier on datasets generated by a splitter from a single source dataset. Arbitrary performance/error values can be computed by specifying an error function (used to compute an error value for each cross-validation fold) and a combiner function that aggregates all computed error values across cross-validation folds. """ results = StateVariable(enabled=False, doc= """Store individual results in the state""") splits = StateVariable(enabled=False, doc= """Store the actual splits of the data. Can be memory expensive""") transerrors = StateVariable(enabled=False, doc= """Store copies of transerrors at each step. If enabled - operates on clones of transerror, but for the last split original transerror is used""") confusion = StateVariable(enabled=False, doc= """Store total confusion matrix (if available)""") training_confusion = StateVariable(enabled=False, doc= """Store total training confusion matrix (if available)""") samples_error = StateVariable(enabled=False, doc="Per sample errors.") def __init__(self, transerror, splitter=None, combiner='mean', expose_testdataset=False, harvest_attribs=None, copy_attribs='copy', **kwargs): """ :Parameters: transerror: TransferError instance Provides the classifier used for cross-validation. splitter: Splitter | None Used to split the dataset for cross-validation folds. By convention the first dataset in the tuple returned by the splitter is used to train the provided classifier. If the first element is 'None' no training is performed. The second dataset is used to generate predictions with the (trained) classifier. If `None` (default) an instance of :class:`~mvpa.datasets.splitters.NoneSplitter` is used. combiner: Functor | 'mean' Used to aggregate the error values of all cross-validation folds. If 'mean' (default) the grand mean of the transfer errors is computed. expose_testdataset: bool In the proper pipeline, classifier must not know anything about testing data, but in some cases it might lead only to marginal harm, thus migth wanted to be enabled (provide testdataset for RFE to determine stopping point). harvest_attribs: list of basestr What attributes of call to store and return within harvested state variable copy_attribs: None | basestr Force copying values of attributes on harvesting **kwargs: All additional arguments are passed to the :class:`~mvpa.measures.base.DatasetMeasure` base class. """ DatasetMeasure.__init__(self, **kwargs) Harvestable.__init__(self, harvest_attribs, copy_attribs) if splitter is None: self.__splitter = NoneSplitter() else: self.__splitter = splitter if combiner == 'mean': self.__combiner = GrandMean else: self.__combiner = combiner self.__transerror = transerror self.__expose_testdataset = expose_testdataset # TODO: put back in ASAP # def __repr__(self): # """String summary over the object # """ # return """CrossValidatedTransferError / # splitter: %s # classifier: %s # errorfx: %s # combiner: %s""" % (indentDoc(self.__splitter), indentDoc(self.__clf), # indentDoc(self.__errorfx), indentDoc(self.__combiner)) def _call(self, dataset): """Perform cross-validation on a dataset. 'dataset' is passed to the splitter instance and serves as the source dataset to generate split for the single cross-validation folds. """ # store the results of the splitprocessor results = [] self.states.splits = [] # local bindings states = self.states clf = self.__transerror.clf expose_testdataset = self.__expose_testdataset # what states to enable in terr terr_enable = [] for state_var in ['confusion', 'training_confusion', 'samples_error']: if states.isEnabled(state_var): terr_enable += [state_var] # charge states with initial values summaryClass = clf._summaryClass clf_hastestdataset = hasattr(clf, 'testdataset') self.states.confusion = summaryClass() self.states.training_confusion = summaryClass() self.states.transerrors = [] self.states.samples_error = dict([(id, []) for id in dataset.origids]) # enable requested states in child TransferError instance (restored # again below) if len(terr_enable): self.__transerror.states._changeTemporarily( enable_states=terr_enable) # We better ensure that underlying classifier is not trained if we # are going to deepcopy transerror if states.isEnabled("transerrors"): self.__transerror.untrain() # splitter for split in self.__splitter(dataset): # only train classifier if splitter provides something in first # element of tuple -- the is the behavior of TransferError if states.isEnabled("splits"): self.states.splits.append(split) if states.isEnabled("transerrors"): # copy first and then train, as some classifiers cannot be copied # when already trained, e.g. SWIG'ed stuff lastsplit = None for ds in split: if ds is not None: lastsplit = ds._dsattr['lastsplit'] break if lastsplit: # only if we could deduce that it was last split # use the 'mother' transerror transerror = self.__transerror else: # otherwise -- deep copy transerror = deepcopy(self.__transerror) else: transerror = self.__transerror # assign testing dataset if given classifier can digest it if clf_hastestdataset and expose_testdataset: transerror.clf.testdataset = split[1] # run the beast result = transerror(split[1], split[0]) # unbind the testdataset from the classifier if clf_hastestdataset and expose_testdataset: transerror.clf.testdataset = None # next line is important for 'self._harvest' call self._harvest(locals()) # XXX Look below -- may be we should have not auto added .? # then transerrors also could be deprecated if states.isEnabled("transerrors"): self.states.transerrors.append(transerror) # XXX: could be merged with next for loop using a utility class # that can add dict elements into a list if states.isEnabled("samples_error"): for k, v in \ transerror.states.samples_error.iteritems(): self.states.samples_error[k].append(v) # pull in child states for state_var in ['confusion', 'training_confusion']: if states.isEnabled(state_var): states[state_var].value.__iadd__( transerror.states[state_var].value) if __debug__: debug("CROSSC", "Split #%d: result %s" \ % (len(results), `result`)) results.append(result) # Since we could have operated with a copy -- bind the last used one back self.__transerror = transerror # put states of child TransferError back into original config if len(terr_enable): self.__transerror.states._resetEnabledTemporarily() self.states.results = results """Store state variable if it is enabled""" # Provide those labels_map if appropriate try: if states.isEnabled("confusion"): states.confusion.labels_map = dataset.labels_map if states.isEnabled("training_confusion"): states.training_confusion.labels_map = dataset.labels_map except: pass return self.__combiner(results) splitter = property(fget=lambda self:self.__splitter, doc="Access to the Splitter instance.") transerror = property(fget=lambda self:self.__transerror, doc="Access to the TransferError instance.") combiner = property(fget=lambda self:self.__combiner, doc="Access to the configured combiner.") pymvpa-0.4.8/mvpa/algorithms/hyperalignment.py000066400000000000000000000057211174541445200215670ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Hyperalignment of functional data to the common space References: TODO... see SMLR code for example on how to embed the reference so in future it gets properly referenced... """ __docformat__ = 'restructuredtext' from mvpa.support.copy import deepcopy from mvpa.base import warning from mvpa.misc.state import StateVariable, ClassWithCollections from mvpa.misc.param import Parameter from mvpa.misc.transformers import GrandMean if __debug__: from mvpa.base import debug class Hyperalignment(ClassWithCollections): """ ... Given a set of datasets (may be just data) provide mapping of features into a common space """ # May be something we might store optionally upon user request who_knows_maybe_something_to_store_optionally = \ StateVariable(enabled=False, doc= """....""") # Lets use built-in facilities to specify parameters which # constructor should accept alignment = Parameter(None, # might provide allowedtype later on doc="""... XXX If `None` (default) an instance of :class:`~mvpa.mappers.procrustean.ProcrusteanMapper` is used.""") levels = Parameter(3, allowedtype='int', min=1, doc="Number of levels ....XXX ") combiner1 = Parameter('mean', # doc="XXX ") combiner2 = Parameter('mean', # doc="XXX ") def __init__(self, alignment=None, levels=3, combiner1='mean', combiner2='mean', **kwargs): ClassWithCollections.__init__(self, **kwargs) if self.params.alignment == None: self.params.alignment = ProcrusteanMapper() raise NotImlementedError, "WiP! Use development branch of version >= 0.5.0" def __call__(self, data): """Estimate mappers for each data(set) Parameters ---------- data : list or tuple of dataset of data XXX Returns ------- A list of trained Mappers ... of length equal to len(data) """ params = self.params # for quicker access ;) nelements = len(data) # might prefer some other way to initialize... later result = [deepcopy(params.alignment) for i in xrange(nelements)] # Level 1 commonspace = data[0] for m, d in zip(mappers[1:], data[1:]): # XXX For now lets just call this way: m.train(d, commonspace) commonspace = mean(m.forward(d), commonspace)# here yarik stopped ;) # Level 2 to params.levels return result pymvpa-0.4.8/mvpa/atlases/000077500000000000000000000000001174541445200154455ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/atlases/__init__.py000066400000000000000000000020261174541445200175560ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for PyMVPA anatomical atlases Module Organization =================== mvpa.atlases module contains support for various atlases .. packagetree:: :style: UML :group Base Implementations: base :group Atlases from FSL: fsl :group Helpers: warehouse transformation """ __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.atlases') from mvpa.atlases.base import LabelsAtlas, ReferencesAtlas, XMLAtlasException from mvpa.atlases.fsl import FSLProbabilisticAtlas from mvpa.atlases.warehouse import Atlas, KNOWN_ATLASES, KNOWN_ATLAS_FAMILIES if __debug__: debug('INIT', 'mvpa.atlases end') pymvpa-0.4.8/mvpa/atlases/base.py000066400000000000000000000650601174541445200167400ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Base classes for Anatomy atlases support TODOs: ====== * major optimization. Now code is sloppy and slow -- plenty of checks etc Module Organization =================== mvpa.atlases.base module contains support for various atlases .. packagetree:: :style: UML :group Base: BaseAtlas XMLBasedAtlas Label Level LabelsLevel :group Talairach: PyMVPAAtlas LabelsAtlas ReferencesAtlas :group Exceptions: XMLAtlasException """ from mvpa.base import externals if externals.exists('lxml', raiseException=True): from lxml import etree, objectify from mvpa.base.dochelpers import enhancedDocString import os, re import numpy as N from numpy.linalg import norm from mvpa.atlases.transformation import SpaceTransformation, Linear from mvpa.misc.support import reuseAbsolutePath if externals.exists('nifti', raiseException=True): from nifti import NiftiImage from mvpa.base import warning if __debug__: from mvpa.base import debug def checkRange(coord, range): """ Check if coordinates are within range (0,0,0) - (range) Return True on success """ # TODO: optimize if len(coord) != len(range): raise ValueError("Provided coordinate %s and given range %s" % \ (`coord`, `range`) + \ " have different dimensionality" ) for c,r in zip(coord, range): if c<0 or c>=r: return False return True class BaseAtlas(object): """Base class for the atlases. """ def __init__ (self): """ Create an atlas object based on the... XXX """ self.__name = "blank" # XXX use or remove class XMLAtlasException(Exception): """ Exception to be thrown if smth goes wrong dealing with XML based atlas """ def __init__(self, msg=""): self.__msg = msg def __repr__(self): return self.__msg class XMLBasedAtlas(BaseAtlas): def __init__(self, filename=None, resolution=None, image_file=None, query_voxel=False, coordT=None, levels=None): """ :Parameters: filename : string Filename for the xml definition of the atlas resolution : None or float Some atlases link to multiple images at different resolutions. if None -- best resolution is selected using 0th dimension resolution image_file : None or str If None, overrides filename for the used imagefile, so it could load a custom (re-registered) atlas maps query_voxel : bool By default [x,y,z] assumes coordinates in space, but if query_voxel is True, they are assumed to be voxel coordinates coordT Optional transformation to apply first levels : None or slice or list of int What levels by default to operate on """ BaseAtlas.__init__(self) self.__version = None self.__type = None # XXX use or remove self._image_file = None self.__atlas = None self._filename = filename self._resolution = resolution self._force_image_file = image_file self.query_voxel = query_voxel self.levels = levels if filename: self.loadAtlas(filename) # common sanity checks if not self._checkVersion(self.version): raise IOError("Version %s is not recognized to be native to class %s" % \ (self.version, self.__name__)) if not set(['header', 'data']) == set([i.tag for i in self.getchildren()]): raise IOError("No header or data were defined in %s" % filename) header = self.header headerChildrenTags = XMLBasedAtlas._children_tags(header) if not ('images' in headerChildrenTags) or \ not ('imagefile' in XMLBasedAtlas._children_tags(header.images)): raise XMLAtlasException("Atlas requires image/imagefile header fields") # Load and post-process images self._image = None self._loadImages() if self._image is not None: self._extent = N.abs(N.asanyarray(self._image.extent[0:3])) self._voxdim = N.asanyarray(self._image.voxdim) self.relativeToOrigin = True # Assign transformation to get into voxel coordinates, # spaceT will be set accordingly self.setCoordT(coordT) self._loadData() def _checkRange(self, c): """ check and adjust the voxel coordinates""" # check range # list(c) for consistent appearance... some times c might be ndarray if __debug__: debug('ATL__', "Querying for voxel %s" % `list(c)`) if not checkRange(c, self.extent): msg = "Coordinates %s are not within the extent %s." \ "Reset to (0,0,0)" % ( `c`, `self.extent` ) if __debug__: debug('ATL_', msg) # assume that voxel [0,0,0] is blank c = [0]*3; return c @staticmethod def _checkVersion(version): """To be overriden in the derived classes. By default anything is good""" return True def _loadImages(self): """To be overriden in the derived classes. By default does nothing""" pass def _loadData(self): """To be overriden in the derived classes. By default does nothing""" pass def loadAtlas(self, filename): if __debug__: debug('ATL_', "Loading atlas definition xml file " + filename) # Create objectify parser first parser = etree.XMLParser(remove_blank_text=True) lookup = objectify.ObjectifyElementClassLookup() parser.setElementClassLookup(lookup) try: self.__atlas = etree.parse(filename, parser).getroot() except IOError: raise XMLAtlasException("Failed to load XML file %s" % filename) @property def version(self): if not self.__atlas is None \ and ("version" in self.__atlas.attrib.keys()): return self.__atlas.get("version") else: return None @staticmethod def _compare_lists(checkitems, neededitems): raise RuntimeError, "DEPRECATED _compare_lists" checkitems.sort() neededitems.sort() return (checkitems == neededitems) @staticmethod def _children_tags(root): return [i.tag for i in root.getchildren()] def __getattr__(self, attr): """ Lazy way to provide access to the definitions in the atlas """ if not self.__atlas is None: return getattr(self.__atlas, attr) else: raise XMLAtlasException("Atlas in " + self.__name__ + " was not read yet") def setCoordT(self, coordT): """Set coordT transformation. spaceT needs to be adjusted since we glob those two transformations together """ self._coordT = coordT # lets store for debugging etc if self._image is not None: # Combine with the image's qform coordT = Linear(N.linalg.inv(self._image.qform), previous=coordT) self._spaceT = SpaceTransformation( previous=coordT, toRealSpace=False ) def labelPoint(self, coord, levels=None): """Return labels for the given spatial point at specified levels Function takes care about first transforming the point into the voxel space :Parameters: coord : tuple Coordinates of the point (xyz) levels : None or list of int At what levels to return the results """ coord_ = N.asarray(coord) # or we would alter what should be constant #if not isinstance(coord, N.numpy): #c = self.getVolumeCoordinate(coord) #c = self.spaceT.toVoxelSpace(coord_) #if self.coordT: # coord_t = self.coordT[coord_] #else: # coord_t = coord_ c = self.spaceT(coord_) result = self.labelVoxel(c, levels) result['coord_queried'] = coord #result['coord_trans'] = coord_t result['voxel_atlas'] = c return result def levelsListing(self): lkeys = range(self.Nlevels) return '\n'.join(['%d: ' % k + str(self._levels_dict[k]) for k in lkeys]) def _getLevels(self, levels=None): """Helper to provide list of levels to operate on Depends on given `levels` as well as self.levels """ if levels is None: levels = [ i for i in xrange(self.Nlevels) ] elif (isinstance(levels, slice)): # levels are given as a range if levels.step: step = levels.step else: step = 1 if levels.start: start = levels.start else: start = 0 if levels.stop: stop = levels.stop else: stop = self.Nlevels levels = [ i for i in xrange(start, stop, step) ] elif isinstance(levels, list) or isinstance(levels, tuple): # levels given as list levels = list(levels) elif isinstance(levels, int): levels = [ levels ] else: raise TypeError('Given levels "%s" are of unsupported type' % `levels`) # test given values levels_dict = self.levels_dict for level in levels: if not level in levels_dict: raise ValueError, \ "Levels %s is not known (out of range?). Known levels are:\n%s" \ % (level, self.levelsListing()) return levels def __getitem__(self, index): """ Accessing the elements via simple indexing. Examples: print atlas[ 0, -7, 20, [1,2,3] ] print atlas[ (0, -7, 20), 1:2 ] print atlas[ (0, -7, 20) ] print atlas[ (0, -7, 20), : ] """ if len(index) in [2, 4]: levels_slice = index[-1] else: if self.levels is None: levels_slice = slice(None,None,None) else: levels_slice = self.levels levels = self._getLevels(levels=levels_slice) if len(index) in [3, 4]: # we got coordinates 1 by 1 + may be a level coord = index[0:3] elif len(index) in [1, 2]: coord = index[0] if isinstance(coord, list) or isinstance(coord, tuple): if len(coord) != 3: raise TypeError("Given coordinates must be in 3D") else: raise TypeError("Given coordinates must be a list or a tuple") else: raise TypeError("Unknown shape of parameters `%s`" % `index`) if self.query_voxel: return self.labelVoxel(coord, levels) else: return self.labelPoint(coord, levels) # REDO in some sane fashion so referenceatlas returns levels for the base def _getLevelsDict(self): return self._getLevelsDict_virtual() def _getLevelsDict_virtual(self): return self._levels_dict levels_dict = property(fget=_getLevelsDict) origin = property(fget=lambda self:self._origin) extent = property(fget=lambda self:self._extent) voxdim = property(fget=lambda self:self._voxdim) spaceT = property(fget=lambda self:self._spaceT) coordT = property(fget=lambda self:self._spaceT, fset=setCoordT) class Label(object): """Represents a label. Just to bring all relevant information together """ def __init__ (self, text, abbr=None, coord=(None, None,None), count=0, index=0): """ :Parameters: text : basestring fullname of the label abbr : basestring abbreviated name (optional) coord : tuple of float coordinates (optional) count : int count of those labels in the atlas (optional) """ self.__text = text.strip() if abbr is not None: abbr = abbr.strip() self.__abbr = abbr self.__coord = coord self.__count = count self.__index = int(index) @property def index(self): return self.__index def __repr__(self): return "Label(%s%s, coord=(%s, %s, %s), count=%s, index=%s)" % \ ((self.__text, (', abbr=%s' % repr(self.__abbr), '')[int(self.__abbr is None)]) + tuple(self.__coord) + (self.__count, self.__index)) def __str__(self): return self.__text @staticmethod def generateFromXML(Elabel): kwargs = {} if Elabel.attrib.has_key('x'): kwargs['coord'] = ( Elabel.attrib.get('x'), Elabel.attrib.get('y'), Elabel.attrib.get('z') ) for l in ('count', 'abbr', 'index'): if Elabel.attrib.has_key(l): kwargs[l] = Elabel.attrib.get(l) return Label(Elabel.text.strip(), **kwargs) @property def count(self): return self.__count @property def coord(self): return self.__coord @property def text(self): return self.__text @property def abbr(self): """Returns abbreviated version if such is available """ if self.__abbr in [None, ""]: return self.__text else: return self.__abbr class Level(object): """Represents a level. Just to bring all relevant information together """ def __init__ (self, description): self.description = description self._type = "Base" def __repr__(self): return "%s Level: %s" % \ (self.levelType, self.description) def __str__(self): return self.description @staticmethod def generateFromXML(Elevel, levelType=None): """ Simple factory of levels """ if levelType is None: if not Elevel.attrib.has_key("type"): raise XMLAtlasException("Level must have type specified. Level: " + `Elevel`) levelType = Elevel.get("type") levelTypes = { 'label': LabelsLevel, 'reference': ReferencesLevel } if levelTypes.has_key(levelType): return levelTypes[levelType].generateFromXML(Elevel) else: raise XMLAtlasException("Unknown level type " + levelType) levelType = property(lambda self: self._type) class LabelsLevel(Level): """Level of labels. XXX extend """ def __init__ (self, description, index=None, labels=[]): Level.__init__(self, description) self.__index = index self.__labels = labels self._type = "Labels" def __repr__(self): return Level.__repr__(self) + " [%d] " % \ (self.__index) @staticmethod def generateFromXML(Elevel, levelIndex=[0]): # XXX this is just for label type of level. For distance we need to ... # we need to assure the right indexing index = 0 if Elevel.attrib.has_key("index"): index = int(Elevel.get("index")) maxindex = max([int(i.get('index')) \ for i in Elevel.label[:]]) labels = [ None for i in xrange(maxindex+1) ] for label in Elevel.label[:]: labels[ int(label.get('index')) ] = Label.generateFromXML(label) levelIndex[0] = max(levelIndex[0], index) + 1 # assign next one return LabelsLevel(Elevel.get('description'), index, labels) @property def index(self): return self.__index @property def labels(self): return self.__labels def __getitem__(self, index): return self.__labels[index] def find(self, target, unique=True): """Return labels descr of which matches the string :Parameters: target : str or re._pattern_type Substring in abbreviation to be searched for, or compiled regular expression to be searched or matched if anchored. unique : bool If True, raise exception if none or more than 1 was found. Return just a single item if found (not list). """ if isinstance(target, re._pattern_type): res = [l for l in self.__labels if target.search(l.abbr)] else: res = [l for l in self.__labels if target in l.abbr] if unique: if len(res) != 1: raise ValueError, "Got %d matches whenever just 1 was " \ "looked for (target was %s)." % (len(res), target) return res[0] else: return res class ReferencesLevel(Level): """Level which carries reference points """ def __init__ (self, description, indexes=[]): Level.__init__(self, description) self.__indexes = indexes self._type = "References" @staticmethod def generateFromXML(Elevel): # XXX should probably do the same for the others? requiredAttrs = ['x', 'y', 'z', 'type', 'description'] if not set(requiredAttrs) == set(Elevel.attrib.keys()): raise XMLAtlasException("ReferencesLevel has to have " + "following attributes defined " + `requiredAttrs`) indexes = ( int(Elevel.get("x")), int(Elevel.get("y")), int(Elevel.get("z")) ) return ReferencesLevel(Elevel.get('description'), indexes) @property def indexes(self): return self.__indexes class PyMVPAAtlas(XMLBasedAtlas): """Base class for PyMVPA atlases, such as LabelsAtlas and ReferenceAtlas """ source = 'PyMVPA' def __init__(self, *args, **kwargs): XMLBasedAtlas.__init__(self, *args, **kwargs) # sanity checks header = self.header headerChildrenTags = XMLBasedAtlas._children_tags(header) if not ('space' in headerChildrenTags) or \ not ('space-flavor' in headerChildrenTags): raise XMLAtlasException("PyMVPA Atlas requires specification of" + " the space in which atlas resides") self.__space = header.space.text self.__spaceFlavor = header['space-flavor'].text __doc__ = enhancedDocString('PyMVPAAtlas', locals(), XMLBasedAtlas) def _loadImages(self): # shortcut imagefile = self.header.images.imagefile #self.Nlevels = len(self._levels_by_id) # Set offset if defined in XML file # XXX: should just take one from the qoffset... now that one is # defined... this origin might be misleading actually self._origin = N.array( (0, 0, 0) ) if imagefile.attrib.has_key('offset'): self._origin = N.array( [int(x) for x in imagefile.get('offset').split(',')] ) # Load the image file which has labels if self._force_image_file is not None: imagefilename = self._force_image_file else: imagefilename = imagefile.text imagefilename = reuseAbsolutePath(self._filename, imagefilename) try: self._image = NiftiImage(imagefilename) except RuntimeError, e: raise RuntimeError, " Cannot open file %s due to %s" % (imagefilename, e) self._data = self._image.data # remove bogus dimensions on top of 4th if len(self._data.shape[0:-4]) > 0: bogus_dims = self._data.shape[0:-4] if max(bogus_dims)>1: raise RuntimeError, "Atlas %s has more than 4 of non-singular" \ "dimensions" % imagefilename new_shape = self._data.shape[-4:] self._data.reshape(new_shape) #if self._image.extent[3] != self.Nlevels: # raise XMLAtlasException("Atlas %s has %d levels defined whenever %s has %d volumes" % \ # ( filename, self.Nlevels, imagefilename, self._image.extent[3] )) def _loadData(self): # Load levels self._levels_dict = {} # preprocess labels for different levels self._Nlevels = 0 index_incr = 0 for index, child in enumerate(self.data.getchildren()): if child.tag == 'level': level = Level.generateFromXML(child) self._levels_dict[level.description] = level if hasattr(level, 'index'): index = level.index else: # to avoid collision if some levels do # have indexes while index_incr in self._levels_dict: index_incr += 1 index, index_incr = index_incr, index_incr+1 self._levels_dict[index] = level else: raise XMLAtlasException( "Unknown child '%s' within data" % child.tag) self._Nlevels += 1 def _getNLevelsVirtual(self): return self._Nlevels def _getNLevels(self): return self._getNLevelsVirtual() @staticmethod def _checkVersion(version): # For compatibility lets support "RUMBA" atlases return version.startswith("pymvpa-") or version.startswith("rumba-") space = property(fget=lambda self:self.__space) spaceFlavor = property(fget=lambda self:self.__spaceFlavor) Nlevels = property(fget=_getNLevels) class LabelsAtlas(PyMVPAAtlas): """ Atlas which provides labels for the given coordinate """ def labelVoxel(self, c, levels=None): """ Return labels for the given voxel at specified levels specified by index """ levels = self._getLevels(levels=levels) result = {'voxel_queried' : c} # check range c = self._checkRange(c) resultLevels = [] for level in levels: if self._levels_dict.has_key(level): level_ = self._levels_dict[ level ] else: raise IndexError( "Unknown index or description for level %d" % level) resultIndex = int(self._data[ level_.index, \ c[2], c[1], c[0] ]) resultLevels += [ {'index': level_.index, 'id': level_.description, 'label' : level_[ resultIndex ]} ] result['labels'] = resultLevels return result __doc__ = enhancedDocString('LabelsAtlas', locals(), PyMVPAAtlas) class ReferencesAtlas(PyMVPAAtlas): """ Atlas which provides references to the other atlases. Example: the atlas which has references to the closest points (closest Gray, etc) in another atlas. """ def __init__(self, distance=0, *args, **kwargs): """Initialize `ReferencesAtlas` """ PyMVPAAtlas.__init__(self, *args, **kwargs) # sanity checks if not ('reference-atlas' in XMLBasedAtlas._children_tags(self.header)): raise XMLAtlasException( "ReferencesAtlas must refer to a some other atlas") referenceAtlasName = self.header["reference-atlas"].text # uff -- another evil import but we better use the factory method from mvpa.atlases.warehouse import Atlas self.__referenceAtlas = Atlas(filename=reuseAbsolutePath( self._filename, referenceAtlasName)) if self.__referenceAtlas.space != self.space or \ self.__referenceAtlas.spaceFlavor != self.spaceFlavor: raise XMLAtlasException( "Reference and original atlases should be in the same space") self.__referenceLevel = None self.setDistance(distance) __doc__ = enhancedDocString('ReferencesAtlas', locals(), PyMVPAAtlas) # number of levels must be of the referenced atlas due to # handling of that in __getitem__ #Nlevels = property(fget=lambda self:self.__referenceAtlas.Nlevels) def _getNLevelsVirtual(self): return self.__referenceAtlas.Nlevels def setReferenceLevel(self, level): """ Set the level which will be queried """ if self._levels_dict.has_key(level): self.__referenceLevel = self._levels_dict[level] else: raise IndexError("Unknown reference level " + `level` + ". Known are " + `self._levels_dict.keys()`) def labelVoxel(self, c, levels = None): if self.__referenceLevel is None: warning("You did not provide what level to use " "for reference. Assigning 0th level -- '%s'" % (self._levels_dict[0],)) self.setReferenceLevel(0) # return self.__referenceAtlas.labelVoxel(c, levels) c = self._checkRange(c) # obtain coordinates of the closest voxel cref = self._data[ self.__referenceLevel.indexes, c[2], c[1], c[0] ] dist = norm( (cref - c) * self.voxdim ) if __debug__: debug('ATL__', "Closest referenced point for %s is " "%s at distance %3.2f" % (`c`, `cref`, dist)) if (self.distance - dist) >= 1e-3: # neglect everything smaller result = self.__referenceAtlas.labelVoxel(cref, levels) result['voxel_referenced'] = c result['distance'] = dist else: result = self.__referenceAtlas.labelVoxel(c, levels) if __debug__: debug('ATL__', "Closest referenced point is " "further than desired distance %.2f" % self.distance) result['voxel_referenced'] = None result['distance'] = 0 return result def levelsListing(self): return self.__referenceAtlas.levelsListing() def _getLevelsDict_virtual(self): return self.__referenceAtlas.levels_dict def setDistance(self, distance): """ Set desired maximal distance for the reference """ if distance < 0: raise ValueError("Distance should not be negative. " " Thus '%f' is not a legal value" % distance) if __debug__: debug('ATL__', "Setting maximal distance for queries to be %d" % distance) self.__distance = distance distance = property(fget=lambda self:self.__distance, fset=setDistance) pymvpa-0.4.8/mvpa/atlases/fsl.py000066400000000000000000000200101174541445200165740ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """FSL atlases interfaces """ from mvpa.base import warning, externals if externals.exists('nifti', raiseException=True): from nifti import NiftiImage import os, re import numpy as N from mvpa.misc.support import reuseAbsolutePath from mvpa.base.dochelpers import enhancedDocString from mvpa.atlases.base import XMLBasedAtlas, LabelsLevel if __debug__: from mvpa.base import debug # # Atlases from FSL # class FSLAtlas(XMLBasedAtlas): """Base class for FSL atlases """ source = 'FSL' def __init__(self, *args, **kwargs): """ """ XMLBasedAtlas.__init__(self, *args, **kwargs) self.space = 'MNI' __doc__ = enhancedDocString('FSLAtlas', locals(), XMLBasedAtlas) def _loadImages(self): resolution = self._resolution header = self.header images = header.images # Load present images # XXX might be refactored to avoid duplication of # effort with PyMVPAAtlas ni_image = None resolutions = [] if self._force_image_file is None: imagefile_candidates = [ reuseAbsolutePath(self._filename, i.imagefile.text, force=True) for i in images] else: imagefile_candidates = [self._force_image_file] for imagefilename in imagefile_candidates: try: ni_image_ = NiftiImage(imagefilename, load=False) except RuntimeError, e: raise RuntimeError, " Cannot open file " + imagefilename resolution_ = ni_image_.pixdim[0] if resolution is None: # select this one if the best if ni_image is None or \ resolution_ < ni_image.pixdim[0]: ni_image = ni_image_ self._image_file = imagefilename else: if resolution_ == resolution: ni_image = ni_image_ self._image_file = imagefilename break else: resolutions += [resolution_] # TODO: also make use of summaryimagefile may be? if ni_image is None: msg = "Could not find an appropriate atlas among %d atlases." if resolution is not None: msg += " Atlases had resolutions %s" % \ (resolutions,) raise RuntimeError, msg if __debug__: debug('ATL__', "Loading atlas data from %s" % self._image_file) self._image = ni_image self._resolution = ni_image.pixdim[0] self._origin = N.abs(ni_image.header['qoffset']) * 1.0 # XXX self._data = self._image.data def _loadData(self): """ """ # Load levels self._levels_dict = {} # preprocess labels for different levels self.Nlevels = 1 #level = Level.generateFromXML(self.data, levelType='label') level = LabelsLevel.generateFromXML(self.data)#, levelType='label') level.description = self.header.name.text self._levels_dict = {0: level} #for index, child in enumerate(self.data.getchildren()): # if child.tag == 'level': # level = Level.generateFromXML(child) # self._levels_dict[level.description] = level # try: # self._levels_dict[level.index] = level # except: # pass # else: # raise XMLAtlasException("Unknown child '%s' within data" % child.tag) # self.Nlevels += 1 #pass @staticmethod def _checkVersion(version): return re.search('^[0-9]+\.[0-9]', version) is not None class FSLProbabilisticAtlas(FSLAtlas): """Probabilistic FSL atlases """ def __init__(self, thr=0.0, strategy='all', sort=True, *args, **kwargs): """ :Parameters: thr : float Value to threshold at strategy : basestring Possible values all - all entries above thr max - entry with maximal value sort : bool Either to sort entries for 'all' strategy according to probability """ FSLAtlas.__init__(self, *args, **kwargs) self.thr = thr self.strategy = strategy self.sort = sort __doc__ = enhancedDocString('FSLProbabilisticAtlas', locals(), FSLAtlas) def labelVoxel(self, c, levels=None): """Return labels for the voxel :Parameters: - c : tuple of coordinates (xyz) - levels : just for API consistency (heh heh). Must be 0 for FSL atlases """ if levels is not None and not (levels in [0, [0], (0,)]): raise ValueError, \ "I guess we don't support levels other than 0 in FSL atlas" # check range c = self._checkRange(c) # XXX think -- may be we should better assign each map to a # different level level = 0 resultLabels = [] for index, area in enumerate(self._levels_dict[level]): prob = int(self._data[index, c[2], c[1], c[0]]) if prob > self.thr: resultLabels += [dict(index=index, #id= label=area.text, prob=prob)] if self.sort or self.strategy == 'max': resultLabels.sort(cmp=lambda x,y: cmp(x['prob'], y['prob']), reverse=True) if self.strategy == 'max': resultLabels = resultLabels[:1] elif self.strategy == 'all': pass else: raise ValueError, 'Unknown strategy %s' % self.strategy result = {'voxel_queried' : c, # in the list since we have only single level but # with multiple entries 'labels': [resultLabels]} return result def find(self, *args, **kwargs): """Just a shortcut to the only level. See :class:`~mvpa.atlases.base.Level.find` for more info """ return self.levels_dict[0].find(*args, **kwargs) def getMap(self, target, strategy='unique'): """Return a probability map :Parameters: target : int or str or re._pattern_type If int, map for given index is returned. Otherwise, .find is called with unique=True to find matching area strategy : str in ('unique', 'max') If 'unique', then if multiple areas match, exception would be raised. In case of 'max', each voxel would get maximal value of probabilities from all matching areas """ if isinstance(target, int): return self._data[target] else: lev = self.levels_dict[0] # we have just 1 here if strategy == 'unique': return self.getMap(lev.find(target, unique=True).index) else: maps = N.array(self.getMaps(target)) return N.max(maps, axis=0) def getMaps(self, target): """Return a list of probability maps for the target :Parameters: target : str or re._pattern_type .find is called with a target and unique=False to find all matches """ lev = self.levels_dict[0] # we have just 1 here return [self.getMap(l.index) for l in lev.find(target, unique=False)] class FSLLabelsAtlas(XMLBasedAtlas): """Not sure what this one was for""" def __init__(self, *args, **kwargs): """not implemented""" FSLAtlas.__init__(self, *args, **kwargs) raise NotImplementedError pymvpa-0.4.8/mvpa/atlases/transformation.py000066400000000000000000000221501174541445200210650ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Coordinate transformations""" import numpy as N if __debug__: from mvpa.base import debug class TypeProxy: """ Simple class to convert from and then back to original type working with list, tuple, ndarray and having XXX Obsolete functionality ?? """ def __init__(self, value, toType=N.array): if isinstance(value, list): self.__type = list elif isinstance(value, tuple): self.__type = tuple elif isinstance(value, N.ndarray): self.__type = N.array else: raise IndexError("Not understood format of coordinates '%s' for the transformation" % `coord`) def __call__(self, value): return self.__type(value) # def __getitem__(self, value): return self.__type(value) class TransformationBase: """ Basic class to describe a transformation. Pretty much an interface """ def __init__(self, previous=None): self.previous = previous def __getitem__(self, icoord): """ Obtain coordinates, apply the transformation and spit out in the same format (list, tuple, numpy.array) """ # remember original type #speed origType = TypeProxy(coord) # just in case it is not an ndarray, and to provide a copy to manipulate with coord = N.array(icoord) # apply previous transformation if such defined if self.previous: # if __debug__: debug('ATL__', "Applying previous transformation on `%s`" % `coord`) coord = self.previous[coord] #speed if __debug__: debug('ATL__', "Applying main transformation on `%s`" % `coord`) # apply transformation coord_out = self.apply(coord) #speed if __debug__: debug('ATL__', "Applied and got `%s`" % `coord_out`) #speed return origType(coord_out) return coord_out def __call__(self, coord): return self[coord] def apply(self, coord): return coord class SpaceTransformation(TransformationBase): """ To perform transformation from Voxel into Real Space. Simple one -- would subtract the origin and multiply by voxelSize. if toRealSpace is True then on call/getitem converts to RealSpace """ def __init__(self, voxelSize=None, origin=None, toRealSpace=True, *args, **kwargs): TransformationBase.__init__(self, *args, **kwargs) if not voxelSize is None: self.voxelSize = N.asarray(voxelSize) else: self.voxelSize = 1 if not origin is None: self.origin = N.asarray(origin) else: self.origin = 0 if toRealSpace: self.apply = self.toRealSpace else: self.apply = self.toVoxelSpace def toRealSpace(self, coord): #speed if not self.origin is None: coord -= self.origin #speed if not self.voxelSize is None: coord *= self.voxelSize return coord def toVoxelSpace(self, coord): #speed if not self.voxelSize is None: coord /= self.voxelSize #speed if not self.origin is None: coord += self.origin return map(lambda x:int(round(x)), coord) class Linear(TransformationBase): """ Simple linear transformation defined by a matrix """ def __init__(self, transf=N.eye(4), **kwargs): transf = N.asarray(transf) # assure that we have arrays not matrices prev = kwargs.get('previous', None) if prev is not None and isinstance(prev, Linear): if prev.N == transf.shape[0] -1: if __debug__: debug('ATL__', "Colliding 2 linear transformations into 1") transf = N.dot(transf, prev.M) # reassign previous transformation to the current one kwargs['previous'] = prev.previous TransformationBase.__init__(self, **kwargs) self.M = transf self.N = self.M.shape[0] - 1 def apply(self, coord): #speed if len(coord) != self.__N: #speed raise ValueError("Transformation operates on %dD coordinates" \ #speed % self.__N ) #speed if __debug__: debug('ATL__', "Applying linear coord transformation + %s" % self.__M) # Might better come up with a linear transformation coord_ = N.r_[coord, [1.0]] result = N.dot(self.M, coord_) return result[0:-1] class MNI2Tal_MatthewBrett(TransformationBase): """ Transformation to bring MNI coordinates into MNI space Apparently it is due to Matthew Brett http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach """ def __init__(self, *args, **kwargs): TransformationBase.__init__(self, *args, **kwargs) self.__upper = Linear( N.array([ [0.9900, 0, 0, 0 ], [0, 0.9688, 0.0460, 0 ], [0,-0.0485, 0.9189, 0 ], [0, 0, 0, 1.0000] ] ) ) self.__lower = Linear(N.array( [ [0.9900, 0, 0, 0 ], [0, 0.9688, 0.0420, 0 ], [0,-0.0485, 0.8390, 0 ], [0, 0, 0, 1.0000] ] ) ) def apply(self, coord): return {True: self.__upper, False: self.__lower}[coord[2]>=0][coord] def MNI2Tal_MeyerLindenberg98 (*args, **kwargs): """ Due to Andreas Meyer-Lindenberg Taken from http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach """ return Linear( N.array([ [ 0.88, 0, 0, -0.8], [ 0, 0.97, 0, -3.32], [ 0, 0.05, 0.88, -0.44], [ 0.00000, 0.00000, 0.00000, 1.00000] ]), *args, **kwargs ) def MNI2Tal_YOHflirt (*args, **kwargs): """Transformations obtained using flirt from Talairach to Standard Transformations were obtained by registration of grey/white matter image from talairach atlas to FSL's standard volume. Following sequence of commands was used: fslroi /usr/share/rumba/atlases/data/talairach_atlas.nii.gz talairach_graywhite.nii.gz 3 1 flirt -in talairach_graywhite.nii.gz \ -ref /usr/apps/fsl.4.1/data/standard/MNI152_T1_1mm_brain.nii.gz \ -out talairach2mni.nii.gz -omat talairach2mni.mat \ -searchrx -20 20 -searchry -20 20 -searchrz -20 20 -coarsesearch 10 -finesearch 6 -v flirt -datatype float -in talairach_graywhite.nii.gz -init talairach2mni.mat \ -ref /usr/apps/fsl.4.1/data/standard/MNI152_T1_1mm_brain.nii.gz \ -out talairach2mni_fine1.nii.gz -omat talairach2mni_fine1.mat \ -searchrx -10 10 -searchry -10 10 -searchrz -10 10 -coarsesearch 5 -finesearch 1 -v convert_xfm -inverse -omat mni2talairach.mat talairach2mni_fine1.mat """ return Linear( t=N.array([ [ 1.00448, -0.00629625, 0.00741359, 0.70565, ], [ 0.0130797, 0.978238, 0.0731315, -3.8354, ], [ 0.000248407, -0.0374777, 0.838311, 18.6202, ], [ 0, 0, 0, 1, ], ]) , *args, **kwargs ) def Tal2MNI_YOHflirt (*args, **kwargs): """See MNI2Tal_YOHflirt doc """ return Linear( N.array([ [ 1.00452, 0.00441281, -0.011011, -0.943886], [ -0.0141149, 1.00867, -0.169177, 14.7016], [ 0.00250222, 0.0920984, 1.18656, -33.922], [ 0.00000, 0.00000, 0.00000, 1.00000] ]), *args, **kwargs ) def MNI2Tal_Lancaster07FSL (*args, **kwargs): return Linear( N.array([ [ 0.9464, 0.0034, -0.0026, -1.0680], [ -0.0083, 0.9479, -0.0580, -1.0239], [ 0.0053, 0.0617, 0.9010, 3.1883], [ 0.0000, 0.0000, 0.0000, 1.0000] ]), *args, **kwargs ) def Tal2MNI_Lancaster07FSL (*args, **kwargs): return Linear( N.array([ [ 1.056585, -0.003972, 0.002793, 1.115461], [ 0.008834, 1.050528, 0.067651, 0.869379], [-0.00682 , -0.071916, 1.105229, -3.60472 ], [ 0. , 0. , 0. , 1. ]]), *args, **kwargs ) def MNI2Tal_Lancaster07pooled (*args, **kwargs): return Linear( N.array([ [ 0.93570, 0.00290, -0.00720, -1.04230], [ -0.00650, 0.93960, -0.07260, -1.39400], [ 0.01030, 0.07520, 0.89670, 3.64750], [ 0.00000, 0.00000, 0.00000, 1.00000] ]), *args, **kwargs ) def Tal2MNI_Lancaster07pooled (*args, **kwargs): return Linear( N.array([ [ 1.06860, -0.00396, 0.00826, 1.07816], [ 0.00640, 1.05741, 0.08566, 1.16824], [ -0.01281, -0.08863, 1.10792, -4.17805], [ 0.00000, 0.00000, 0.00000, 1.00000] ]), *args, **kwargs ) if __name__ == '__main__': #t = Tal2Mni tl = Tal2MNI_Lancaster07FSL() tli = MNI2Tal_Lancaster07FSL() tml = MNI2Tal_MeyerLindenberg98() #print t[1,3,2] print tl[(1,3,2)] print tli[[1,3,2]] print tml[[1,3,2]] # print t[(1,3,2,2)] pymvpa-0.4.8/mvpa/atlases/warehouse.py000066400000000000000000000072241174541445200200260ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Collection of the known atlases""" import os from mvpa.atlases.base import * from mvpa.atlases.fsl import * KNOWN_ATLAS_FAMILIES = { 'pymvpa': (["talairach", "talairach-dist"], r"/usr/share/rumba/atlases/data/%(name)s_atlas.xml"), 'fsl': (["HarvardOxford-Cortical", "HarvardOxford-Subcortical", "JHU-tracts", "Juelich", "MNI", "Thalamus"], r"/usr/share/fsl/data/atlases/%(name)s.xml") # XXX make use of FSLDIR } # map to go from the name to the path KNOWN_ATLASES = dict(reduce(lambda x,y:x+[(yy,y[1]) for yy in y[0]], KNOWN_ATLAS_FAMILIES.values(), [])) def Atlas(filename=None, name=None, *args, **kwargs): """A convinience factory for the atlases """ if filename is None: if name is None: raise ValueError, \ "Please provide either path or name of the atlas to be used" atlaspath = KNOWN_ATLASES[name] filename = atlaspath % ( {'name': name} ) if not os.path.exists(filename): raise IOError, \ "File %s for atlas %s was not found" % (filename, name) else: if name is not None: raise ValueError, "Provide only filename or name" try: tempAtlas = XMLBasedAtlas(filename=filename, *args, **kwargs) version = tempAtlas.version atlas_source = None for cls in [PyMVPAAtlas, FSLAtlas]: if cls._checkVersion(version): atlas_source = cls.source break if atlas_source is None: if __debug__: debug('ATL_', "Unknown atlas " + filename) return tempAtlas atlasTypes = { 'PyMVPA': {"Label" : LabelsAtlas, "Reference": ReferencesAtlas}, 'FSL': {"Label" : FSLLabelsAtlas, "Probabalistic": FSLProbabilisticAtlas} }[atlas_source] atlasType = tempAtlas.header.type.text if atlasTypes.has_key(atlasType): if __debug__: debug('ATL_', "Creating %s Atlas" % atlasType) return atlasTypes[atlasType](filename=filename, *args, **kwargs) #return ReferencesAtlas(filename) else: printdebug("Unknown %s type '%s' of atlas in %s." " Known are %s" % (atlas_source, atlasType, filename, atlasTypes.keys()), 2) return tempAtlas except XMLAtlasException, e: print "File %s is not a valid XML based atlas due to %s" \ % (filename, `e`) raise e if __name__ == '__main__': from mvpa.base import verbose verbose.level = 10 for name in [ #'data/talairach_atlas.xml', '/usr/share/fsl/data/atlases/HarvardOxford-Cortical.xml', '/usr/share/fsl/data/atlases/HarvardOxford-Subcortical.xml' ]: atlas = Atlas(name) #print isinstance(atlas.atlas, objectify.ObjectifiedElement) #print atlas.header.images.imagefile.get('offset') #print atlas.labelVoxel( (0, -7, 20) ) #print atlas[ 0, 0, 0 ] print atlas[ -63, -12, 22 ] #print atlas[ 0, -7, 20, [1,2,3] ] #print atlas[ (0, -7, 20), 1:2 ] #print atlas[ (0, -7, 20) ] #print atlas[ (0, -7, 20), : ] # print atlas.getLabels(0) pymvpa-0.4.8/mvpa/base/000077500000000000000000000000001174541445200147235ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/base/__init__.py000066400000000000000000000271071174541445200170430ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Base functionality of PyMVPA Module Organization =================== mvpa.base module contains various modules which are used through out PyMVPA code, and are generic building blocks .. packagetree:: :style: UML :group Basic: externals, config, verbosity, dochelpers """ __docformat__ = 'restructuredtext' import sys from mvpa.base.config import ConfigManager from mvpa.base.verbosity import LevelLogger, OnceLogger # # Setup verbose and debug outputs # class _SingletonType(type): """Simple singleton implementation adjusted from http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/412551 """ def __init__(mcs, *args): type.__init__(mcs, *args) mcs._instances = {} def __call__(mcs, sid, instance, *args): if not sid in mcs._instances: mcs._instances[sid] = instance return mcs._instances[sid] class __Singleton: """To ensure single instance of a class instantiation (object) """ __metaclass__ = _SingletonType def __init__(self, *args): pass # Provided __call__ just to make silly pylint happy def __call__(self): raise NotImplementedError # # As the very first step: Setup configuration registry instance and # read all configuration settings from files and env variables # cfg = __Singleton('cfg', ConfigManager()) verbose = __Singleton("verbose", LevelLogger( handlers = cfg.get('verbose', 'output', default='stdout').split(','))) # Not supported/explained/used by now since verbose(0, is to print errors #error = __Singleton("error", LevelLogger( # handlers=environ.get('MVPA_ERROR_OUTPUT', 'stderr').split(','))) # Levels for verbose # 0 -- nothing besides errors # 1 -- high level stuff -- top level operation or file operations # 2 -- cmdline handling # 3 -- # 4 -- computation/algorithm relevant thingies # Helper for errors printing def error(msg, critical=True): """Helper function to output errors in a consistent way. :Parameters: msg : string Actual error message (will be prefixed with ERROR:) critical : bool If critical error -- exit with """ verbose(0, "ERROR: " + msg) if critical: raise sys.exit(1) # Lets check if environment can tell us smth if cfg.has_option('general', 'verbose'): verbose.level = cfg.getint('general', 'verbose') class WarningLog(OnceLogger): """Logging class of messsages to be printed just once per each message """ def __init__(self, btlevels=10, btdefault=False, maxcount=1, *args, **kwargs): """Define Warning logger. It is defined by btlevels : int how many levels of backtrack to print to give a hint on WTF btdefault : bool if to print backtrace for all warnings at all maxcount : int how many times to print each warning """ OnceLogger.__init__(self, *args, **kwargs) self.__btlevels = btlevels self.__btdefault = btdefault self.__maxcount = maxcount self.__explanation_seen = False def __call__(self, msg, bt=None): import traceback if bt is None: bt = self.__btdefault tb = traceback.extract_stack(limit=2) msgid = repr(tb[-2]) # take parent as the source of ID fullmsg = "WARNING: %s" % msg if not self.__explanation_seen: self.__explanation_seen = True fullmsg += "\n * Please note: warnings are " + \ "printed only once, but underlying problem might " + \ "occur many times *" if bt and self.__btlevels > 0: fullmsg += "Top-most backtrace:\n" fullmsg += reduce(lambda x, y: x + "\t%s:%d in %s where '%s'\n" % \ y, traceback.extract_stack(limit=self.__btlevels), "") OnceLogger.__call__(self, msgid, fullmsg, self.__maxcount) def _setMaxCount(self, value): """Set maxcount for the warning""" self.__maxcount = value maxcount = property(fget=lambda x:x.__maxcount, fset=_setMaxCount) # XXX what is 'bt'? Maybe more verbose name? if cfg.has_option('warnings', 'bt'): warnings_btlevels = cfg.getint('warnings', 'bt') warnings_bt = True else: warnings_btlevels = 10 warnings_bt = False if cfg.has_option('warnings', 'count'): warnings_maxcount = cfg.getint('warnings', 'count') else: warnings_maxcount = 1 warning = WarningLog( handlers={ False: cfg.get('warnings', 'output', default='stdout').split(','), True: []}[cfg.getboolean('warnings', 'suppress', default=False)], btlevels=warnings_btlevels, btdefault=warnings_bt, maxcount=warnings_maxcount ) if __debug__: from mvpa.base.verbosity import DebugLogger # NOTE: all calls to debug must be preconditioned with # if __debug__: debug = __Singleton("debug", DebugLogger( handlers=cfg.get('debug', 'output', default='stdout').split(','))) # set some debugging matricses to report # debug.registerMetric('vmem') # List agreed sets for debug debug.register('PY', "No suppression of various warnings (numpy, scipy) etc.") debug.register('DBG', "Debug output itself") debug.register('DOCH', "Doc helpers") debug.register('INIT', "Just sequence of inits") debug.register('RANDOM', "Random number generation") debug.register('EXT', "External dependencies") debug.register('EXT_', "External dependencies (verbose)") debug.register('TEST', "Debug unittests") debug.register('MODULE_IN_REPR', "Include module path in __repr__") debug.register('ID_IN_REPR', "Include id in __repr__") debug.register('CMDLINE', "Handling of command line parameters") debug.register('DG', "Data generators") debug.register('LAZY', "Miscelaneous 'lazy' evaluations") debug.register('LOOP', "Support's loop construct") debug.register('PLR', "PLR call") debug.register('SLC', "Searchlight call") debug.register('SA', "Sensitivity analyzers") debug.register('SOM', "Self-organizing-maps (SOM)") debug.register('IRELIEF', "Various I-RELIEFs") debug.register('SA_', "Sensitivity analyzers (verbose)") debug.register('PSA', "Perturbation analyzer call") debug.register('RFEC', "Recursive Feature Elimination call") debug.register('RFEC_', "Recursive Feature Elimination call (verbose)") debug.register('IFSC', "Incremental Feature Search call") debug.register('DS', "*Dataset") debug.register('DS_NIFTI', "NiftiDataset(s)") debug.register('DS_', "*Dataset (verbose)") debug.register('DS_ID', "ID Datasets") debug.register('DS_STATS',"Datasets statistics") debug.register('SPL', "*Splitter") debug.register('TRAN', "Transformers") debug.register('TRAN_', "Transformers (verbose)") # CHECKs debug.register('CHECK_DS_SELECT', "Check in dataset.select() for sorted and unique indexes") debug.register('CHECK_DS_SORTED', "Check in datasets for sorted") debug.register('CHECK_IDS_SORTED', "Check for ids being sorted in mappers") debug.register('CHECK_TRAINED', "Checking in checking if clf was trained on given dataset") debug.register('CHECK_RETRAIN', "Checking in retraining/retesting") debug.register('CHECK_STABILITY', "Checking for numerical stability") debug.register('ENFORCE_STATES_ENABLED', "Forcing all states to be enabled") debug.register('MAP', "*Mapper") debug.register('MAP_', "*Mapper (verbose)") debug.register('COL', "Generic Collectable") debug.register('UATTR', "Attributes with unique") debug.register('ST', "State") debug.register('STV', "State Variable") debug.register('COLR', "Collector for states and classifier parameters") debug.register('ES', "Element selectors") debug.register('CLF', "Base Classifiers") debug.register('CLF_', "Base Classifiers (verbose)") #debug.register('CLF_TB', # "Report traceback in train/predict. Helps to resolve WTF calls it") debug.register('CLFBST', "BoostClassifier") #debug.register('CLFBST_TB', "BoostClassifier traceback") debug.register('CLFBIN', "BinaryClassifier") debug.register('CLFTREE', "TreeClassifier") debug.register('CLFMC', "MulticlassClassifier") debug.register('CLFSPL', "SplitClassifier") debug.register('CLFSPL_',"SplitClassifier (verbose)") debug.register('CLFFS', "FeatureSelectionClassifier") debug.register('CLFFS_', "FeatureSelectionClassifier (verbose)") debug.register('STAT', "Statistics estimates") debug.register('STAT_', "Statistics estimates (verbose)") debug.register('STAT__', "Statistics estimates (very verbose)") debug.register('STATMC', "Progress in Monte-Carlo estimation") debug.register('FS', "FeatureSelections") debug.register('FS_', "FeatureSelections (verbose)") debug.register('FSPL', "FeatureSelectionPipeline") debug.register('SVM', "SVM") debug.register('SVM_', "SVM (verbose)") debug.register('LIBSVM', "Internal libsvm output") debug.register('SMLR', "SMLR") debug.register('SMLR_', "SMLR verbose") debug.register('LARS', "LARS") debug.register('LARS_', "LARS (verbose)") debug.register('ENET', "ENET") debug.register('ENET_', "ENET (verbose)") debug.register('GLMNET', "GLMNET") debug.register('GLMNET_', "GLMNET (verbose)") debug.register('GNB', "GNB - Gaussian Naive Bayes") debug.register('GPR', "GPR") debug.register('GPR_WEIGHTS', "Track progress of GPRWeights computation") debug.register('KERNEL', "Kernels module") debug.register('MOD_SEL', "Model Selector (also makes openopt's iprint=0)") debug.register('OPENOPT', "OpenOpt toolbox verbose (iprint=1)") debug.register('SG', "PyMVPA SG wrapping") debug.register('SG_', "PyMVPA SG wrapping verbose") debug.register('SG__', "PyMVPA SG wrapping debug") debug.register('SG_SVM', "Internal shogun debug output for SVM itself") debug.register('SG_FEATURES', "Internal shogun debug output for features") debug.register('SG_LABELS', "Internal shogun debug output for labels") debug.register('SG_KERNELS', "Internal shogun debug output for kernels") debug.register('SG_PROGRESS', "Internal shogun progress bar during computation") debug.register('IOH', "IO Helpers") debug.register('IO_HAM', "Hamster") debug.register('CM', "Confusion matrix computation") debug.register('ROC', "ROC analysis") debug.register('CROSSC', "Cross-validation call") debug.register('CERR', "Various ClassifierErrors") debug.register('ATL', "Atlases") debug.register('ATL_', "Atlases (verbose)") debug.register('ATL__', "Atlases (very verbose)") debug.register('REP', "Reports") debug.register('REP_', "Reports (verbose)") # Lets check if environment can tell us smth if cfg.has_option('general', 'debug'): debug.setActiveFromString(cfg.get('general', 'debug')) # Lets check if environment can tell us smth if cfg.has_option('debug', 'metrics'): debug.registerMetric(cfg.get('debug', 'metrics').split(",")) if __debug__: debug('INIT', 'mvpa.base end') pymvpa-0.4.8/mvpa/base/config.py000066400000000000000000000153241174541445200165470ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Registry-like monster""" __docformat__ = 'restructuredtext' from ConfigParser import SafeConfigParser import os.path class ConfigManager(SafeConfigParser): """Central configuration registry for PyMVPA. The purpose of this class is to collect all configurable settings used by various parts of PyMVPA. It is fairly simple and does only little more than the standard Python ConfigParser. Like ConfigParser it is blind to the data that it stores, i.e. not type checking is performed. Configuration files (INI syntax) in multiple location are passed when the class is instanciated or whenever `Config.reload()` is called later on. By default it looks for a config file named `pymvpa.cfg` in the current directory and `.pymvpa.cfg` in the user's home directory. Morever, the constructor takes an optional argument with a list of additional file names to parse. In addition to configuration files, this class also looks for special environment variables to read settings from. Names of such variables have to start with `MVPA_` following by the an optional section name and the variable name itself ('_' as delimiter). If no section name is provided, the variables will be associated with section `general`. Some examples:: MVPA_VERBOSE=1 will become:: [general] verbose = 1 However, `MVPA_VERBOSE_OUTPUT=stdout` becomes:: [verbose] output = stdout Any lenght of variable name as allowed, e.g. MVPA_SEC1_LONG_VARIABLE_NAME=1 becomes:: [sec1] long variable name = 1 Settings from custom configuration files (specified by the constructor argument) have the highest priority and override settings found in the current directory. They in turn override user-specific settings and finally the content of any `MVPA_*` environment variables overrides all settings read from any file. """ # things we want to count on to be available _DEFAULTS = {'general': { 'verbose': '1', } } def __init__(self, filenames=None): """Initialization reads settings from config files and env. variables. :Parameters: filenames: list of filenames """ SafeConfigParser.__init__(self) # store additional config file names if not filenames is None: self.__cfg_filenames = filenames else: self.__cfg_filenames = [] # set critical defaults for sec, vars in ConfigManager._DEFAULTS.iteritems(): self.add_section(sec) for key, value in vars.iteritems(): self.set(sec, key, value) # now get the setting self.reload() def reload(self): """Re-read settings from all configured locations. """ # listof filenames to parse (custom plus some standard ones) filenames = self.__cfg_filenames \ + ['pymvpa.cfg', os.path.join(os.path.expanduser('~'), '.pymvpa.cfg')] # read local and user-specific config files = self.read(filenames) # no look for variables in the environment for var in [v for v in os.environ.keys() if v.startswith('MVPA_')]: # strip leading 'MVPA_' and lower case entries svar = var[5:].lower() # section is next element in name (or 'general' if simple name) if not svar.count('_'): sec = 'general' else: cut = svar.find('_') sec = svar[:cut] svar = svar[cut + 1:].replace('_', ' ') # check if section is already known and add it if not if not self.has_section(sec): self.add_section(sec) # set value self.set(sec, svar, os.environ[var]) def __repr__(self): """Generate INI file content with current configuration. """ # make adaptor to use str as file-like (needed for ConfigParser.write() class file2str(object): def __init__(self): self.__s = '' def write(self, val): self.__s += val def str(self): return self.__s r = file2str() self.write(r) return r.str() def save(self, filename): """Write current configuration to a file. """ f = open(filename, 'w') self.write(f) f.close() def get(self, section, option, default=None, **kwargs): """Wrapper around SafeConfigParser.get() with a custom default value. This method simply wraps the base class method, but adds a `default` keyword argument. The value of `default` is returned whenever the config parser does not have the requested option and/or section. """ if not self.has_option(section, option): return default return SafeConfigParser.get(self, section, option, **kwargs) def getboolean(self, section, option, default=None): """Wrapper around SafeConfigParser.getboolean() with a custom default. This method simply wraps the base class method, but adds a `default` keyword argument. The value of `default` is returned whenever the config parser does not have the requested option and/or section. """ if not self.has_option(section, option): if isinstance(default, bool): return default else: if default.lower() not in self._boolean_states: raise ValueError, 'Not a boolean: %s' % default return self._boolean_states[default.lower()] return SafeConfigParser.getboolean(self, section, option) def getAsDType(self, section, option, dtype, default=None): """Convenience method to query options with a custom default and type This method simply wraps the base class method, but adds a `default` keyword argument. The value of `default` is returned whenever the config parser does not have the requested option and/or section. In addition, the returned value is converted into the specified `dtype`. """ if not self.has_option(section, option): return default return SafeConfigParser._get(self, section, dtype, option) pymvpa-0.4.8/mvpa/base/dochelpers.py000066400000000000000000000314311174541445200174270ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Various helpers to improve docstrings and textual output""" __docformat__ = 'restructuredtext' import re, textwrap # for table2string import numpy as N from math import ceil from StringIO import StringIO from mvpa import cfg from mvpa.base import externals if __debug__: from mvpa.base import debug __add_init2doc = False __in_ipython = externals.exists('running ipython env') # if ran within IPython -- might need to add doc to init if __in_ipython: __rst_mode = 0 # either to do ReST links at all _rst_sep = "" _rst_sep2 = "" from IPython import Release # XXX figure out exact version when init doc started to be added to class # description if Release.version <= '0.8.1': __add_init2doc = True else: __rst_mode = 1 _rst_sep = "`" _rst_sep2 = ":" def _rst(s, snotrst=''): """Produce s only in __rst mode""" if __rst_mode: return s else: return snotrst def rstUnderline(text, markup): """Add and underline RsT string matching the length of the given string. """ return text + '\n' + markup * len(text) def singleOrPlural(single, plural, n): """Little helper to spit out single or plural version of a word. """ ni = int(n) if ni > 1 or ni == 0: # 1 forest, 2 forests, 0 forests return plural else: return single def handleDocString(text, polite=True): """Take care of empty and non existing doc strings.""" if text == None or not len(text): if polite: return 'No documentation found. Sorry!' else: return '' else: # Problem is that first line might often have no offset, so might # need to be ignored from dedent call if not text.startswith(' '): lines = text.split('\n') text2 = '\n'.join(lines[1:]) return lines[0] + "\n" + textwrap.dedent(text2) else: return textwrap.dedent(text) def _indent(text, istr=' '): """Simple indenter """ return '\n'.join(istr + s for s in text.split('\n')) __parameters_str_re = re.compile("[\n^]\s*:?Parameters?:?\s*\n") """regexp to match :Parameter: and :Parameters: stand alone in a line""" def _splitOutParametersStr(initdoc): """Split documentation into (header, parameters, suffix) :Parameters: initdoc : string The documentation string """ # TODO: bind it to the only word in the line p_res = __parameters_str_re.search(initdoc) if p_res is None: result = initdoc, "", "" else: # Could have been accomplished also via re.match # where new line is after :Parameters: # parameters header index ph_i = p_res.start() # parameters body index pb_i = p_res.end() # end of parameters try: pe_i = initdoc.index('\n\n', pb_i) except ValueError: pe_i = len(initdoc) result = initdoc[:ph_i].rstrip('\n '), \ initdoc[pb_i:pe_i], initdoc[pe_i:] # XXX a bit of duplication of effort since handleDocString might # do splitting internally return [handleDocString(x, polite=False).strip('\n') for x in result] __re_params = re.compile('(?:\n\S.*?)+$') __re_spliter1 = re.compile('(?:\n|\A)(?=\S)') __re_spliter2 = re.compile('[\n:]') def _parseParameters(paramdoc): """Parse parameters and return list of (name, full_doc_string) It is needed to remove multiple entries for the same parameter like it could be with adding parameters from the parent class It assumes that previousely parameters were unwrapped, so their documentation starts at the begining of the string, like what should it be after _splitOutParametersStr """ entries = __re_spliter1.split(paramdoc) result = [(__re_spliter2.split(e)[0].strip(), e) for e in entries if e != ''] if __debug__: debug('DOCH', 'parseParameters: Given "%s", we split into %s' % (paramdoc, result)) return result def enhancedDocString(item, *args, **kwargs): """Generate enhanced doc strings for various items. :Parameters: item : basestring or class What object requires enhancing of documentation *args : list Includes base classes to look for parameters, as well, first item must be a dictionary of locals if item is given by a string force_extend : bool Either to force looking for the documentation in the parents. By default force_extend = False, and lookup happens only if kwargs is one of the arguments to the respective function (e.g. item.__init__) skip_params : list of basestring List of parameters (in addition to [kwargs]) which should not be added to the documentation of the class. It is to be used from a collector, ie whenever class is already created """ # Handling of arguments if len(kwargs): if set(kwargs.keys()).issubset(set(['force_extend'])): raise ValueError, "Got unknown keyword arguments (smth among %s)" \ " in enhancedDocString." % kwargs force_extend = kwargs.get('force_extend', False) skip_params = kwargs.get('skip_params', []) # XXX make it work also not only with classes but with methods as well if isinstance(item, basestring): if len(args)<1 or not isinstance(args[0], dict): raise ValueError, \ "Please provide locals for enhancedDocString of %s" % item name = item lcl = args[0] args = args[1:] elif hasattr(item, "im_class"): # bound method raise NotImplementedError, \ "enhancedDocString is not yet implemented for methods" elif hasattr(item, "__name__"): name = item.__name__ lcl = item.__dict__ else: raise ValueError, "Don't know how to extend docstring for %s" % item # check whether docstring magic is requested or not if not cfg.getboolean('doc', 'pimp docstrings', True): return lcl['__doc__'] #return lcl['__doc__'] rst_lvlmarkup = ["=", "-", "_"] # would then be called for any child... ok - ad hoc for SVM??? if hasattr(item, '_customizeDoc') and name=='SVM': item._customizeDoc() initdoc = "" if lcl.has_key('__init__'): func = lcl['__init__'] initdoc = func.__doc__ # either to extend arguments # do only if kwargs is one of the arguments # in python 2.5 args are no longer in co_names but in varnames extend_args = force_extend or \ 'kwargs' in (func.func_code.co_names + func.func_code.co_varnames) if __debug__ and not extend_args: debug('DOCH', 'Not extending parameters for %s' % name) if initdoc is None: initdoc = "Initialize instance of %s" % name initdoc, params, suffix = _splitOutParametersStr(initdoc) if lcl.has_key('_paramsdoc'): params += '\n' + handleDocString(lcl['_paramsdoc']) params_list = _parseParameters(params) known_params = set([i[0] for i in params_list]) # no need for placeholders skip_params = set(skip_params + ['kwargs', '**kwargs']) # XXX we do evil check here, refactor code to separate # regressions out of the classifiers, and making # retrainable flag not available for those classes which # can't actually do retraining. Although it is not # actually that obvious for Meta Classifiers if hasattr(item, '_clf_internals'): clf_internals = item._clf_internals skip_params.update([i for i in ('regression', 'retrainable') if not (i in clf_internals)]) known_params.update(skip_params) if extend_args: # go through all the parents and obtain their init parameters parent_params_list = [] for i in args: if hasattr(i, '__init__'): # XXX just assign within a class to don't redo without need initdoc_ = i.__init__.__doc__ if initdoc_ is None: continue splits_ = _splitOutParametersStr(initdoc_) params_ = splits_[1] parent_params_list += _parseParameters(params_.lstrip()) # extend with ones which are not known to current init for i, v in parent_params_list: if not (i in known_params): params_list += [(i, v)] known_params.update([i]) # if there are parameters -- populate the list if len(params_list): params_ = '\n'.join([i[1].rstrip() for i in params_list if not i[0] in skip_params]) initdoc += "\n\n%sParameters%s\n" % ( (_rst_sep2,)*2 ) \ + _indent(params_) if suffix != "": initdoc += "\n\n" + suffix initdoc = handleDocString(initdoc) # Finally assign generated doc to the constructor lcl['__init__'].__doc__ = initdoc docs = [ handleDocString(lcl['__doc__']) ] # Optionally populate the class documentation with it if __add_init2doc and initdoc != "": docs += [ rstUnderline('Constructor information for `%s` class' % name, rst_lvlmarkup[2]), initdoc ] # Add information about the states if available if lcl.has_key('_statesdoc'): # no indent is necessary since states list must be already indented docs += [_rst('.. note::\n ') + 'Available state variables:', handleDocString(item._statesdoc)] if len(args): bc_intro = _rst(' ') + 'Please refer to the documentation of the ' \ 'base %s for more information:' \ % (singleOrPlural('class', 'classes', len(args))) docs += [_rst('\n.. seealso::'), bc_intro, ' ' + ',\n '.join(['%s%s.%s%s' % (_rst(':class:`~'), i.__module__, i.__name__, _rst_sep) for i in args]) ] itemdoc = '\n\n'.join(docs) # remove some bogus new lines -- never 3 empty lines in doc are useful result = re.sub("\s*\n\s*\n\s*\n", "\n\n", itemdoc) return result def table2string(table, out=None): """Given list of lists figure out their common widths and print to out :Parameters: table : list of lists of strings What is aimed to be printed out : None or stream Where to print. If None -- will print and return string :Returns: string if out was None """ print2string = out is None if print2string: out = StringIO() # equalize number of elements in each row Nelements_max = max(len(x) for x in table) for i, table_ in enumerate(table): table[i] += [''] * (Nelements_max - len(table_)) # figure out lengths within each column atable = N.asarray(table) markup_strip = re.compile('^@[lrc]') col_width = [ max( [len(markup_strip.sub('', x)) for x in column] ) for column in atable.T ] string = "" for i, table_ in enumerate(table): string_ = "" for j, item in enumerate(table_): item = str(item) if item.startswith('@'): align = item[1] item = item[2:] if not align in ['l', 'r', 'c']: raise ValueError, 'Unknown alignment %s. Known are l,r,c' else: align = 'c' NspacesL = ceil((col_width[j] - len(item))/2.0) NspacesR = col_width[j] - NspacesL - len(item) if align == 'c': pass elif align == 'l': NspacesL, NspacesR = 0, NspacesL + NspacesR elif align == 'r': NspacesL, NspacesR = NspacesL + NspacesR, 0 else: raise RuntimeError, 'Should not get here with align=%s' % align string_ += "%%%ds%%s%%%ds " \ % (NspacesL, NspacesR) % ('', item, '') string += string_.rstrip() + '\n' out.write(string) if print2string: value = out.getvalue() out.close() return value pymvpa-0.4.8/mvpa/base/externals.py000066400000000000000000000446661174541445200173220ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Helper to verify presence of external libraries and modules """ __docformat__ = 'restructuredtext' import os from mvpa.base import warning from mvpa import cfg from mvpa.misc.support import SmartVersion if __debug__: from mvpa.base import debug class _VersionsChecker(dict): """Helper class to check the versions of the available externals """ def __getitem__(self, key): if not self.has_key(key): exists(key, force=True, raiseException=True) return super(_VersionsChecker, self).__getitem__(key) versions = _VersionsChecker() """Versions of available externals, as tuples """ def __check_scipy(): """Check if scipy is present an if it is -- store its version """ import warnings exists('numpy', raiseException='always') # To don't allow any crappy warning to sneak in warnings.simplefilter('ignore', DeprecationWarning) try: import scipy as sp except: warnings.simplefilter('default', DeprecationWarning) raise warnings.simplefilter('default', DeprecationWarning) # Infiltrate warnings if necessary numpy_ver = versions['numpy'] scipy_ver = versions['scipy'] = SmartVersion(sp.__version__) # There is way too much deprecation warnings spit out onto the # user. Lets assume that they should be fixed by scipy 0.7.0 time if scipy_ver >= "0.6.0" and scipy_ver < "0.7.0" \ and numpy_ver > "1.1.0": import warnings if not __debug__ or (__debug__ and not 'PY' in debug.active): if __debug__: debug('EXT', "Setting up filters for numpy DeprecationWarnings") filter_lines = [ ('NumpyTest will be removed in the next release.*', DeprecationWarning), ('PyArray_FromDims: use PyArray_SimpleNew.', DeprecationWarning), ('PyArray_FromDimsAndDataAndDescr: use PyArray_NewFromDescr.', DeprecationWarning), # Trick re.match, since in warnings absent re.DOTALL in re.compile ('[\na-z \t0-9]*The original semantics of histogram is scheduled to be.*' '[\na-z \t0-9]*', Warning) ] for f, w in filter_lines: warnings.filterwarnings('ignore', f, w) def __check_numpy(): """Check if numpy is present (it must be) an if it is -- store its version """ import numpy as N versions['numpy'] = SmartVersion(N.__version__) def __check_pywt(features=None): """Check for available functionality within pywt :Parameters: features : list of basestring List of known features to check such as 'wp reconstruct', 'wp reconstruct fixed' """ import pywt import numpy as N data = N.array([ 0.57316901, 0.65292526, 0.75266733, 0.67020084, 0.46505364, 0.76478331, 0.33034164, 0.49165547, 0.32979941, 0.09696717, 0.72552711, 0.4138999 , 0.54460628, 0.786351 , 0.50096306, 0.72436454, 0.2193098 , -0.0135051 , 0.34283984, 0.65596245, 0.49598417, 0.39935064, 0.26370727, 0.05572373, 0.40194438, 0.47004551, 0.60327258, 0.25628266, 0.32964893, 0.24009889,]) mode = 'per' wp = pywt.WaveletPacket(data, 'sym2', mode) wp2 = pywt.WaveletPacket(data=None, wavelet='sym2', mode=mode) try: for node in wp.get_level(2): wp2[node.path] = node.data except: raise ImportError, \ "Failed to reconstruct WP by specifying data in the layer" if 'wp reconstruct fixed' in features: rec = wp2.reconstruct() if N.linalg.norm(rec[:len(data)] - data) > 1e-3: raise ImportError, \ "Failed to reconstruct WP correctly" return True def __check_libsvm_verbosity_control(): """Check for available verbose control functionality """ import mvpa.clfs.libsvmc._svmc as _svmc try: _svmc.svm_set_verbosity(0) except: raise ImportError, "Provided version of libsvm has no way to control " \ "its level of verbosity" def __check_shogun(bottom_version, custom_versions=[]): """Check if version of shogun is high enough (or custom known) to be enabled in the testsuite :Parameters: bottom_version : int Bottom version which must be satisfied custom_versions : list of int Arbitrary list of versions which could got patched for a specific issue """ import shogun.Classifier as __sc ver = __sc.Version_get_version_revision() if (ver in custom_versions) or (ver >= bottom_version): return True else: raise ImportError, 'Version %s is smaller than needed %s' % \ (ver, bottom_version) def __check_weave(): """Apparently presence of scipy is not sufficient since some versions experience problems. E.g. in Sep,Oct 2008 lenny's weave failed to work. May be some other converter could work (? See http://lists.debian.org/debian-devel/2008/08/msg00730.html for a similar report. Following simple snippet checks compilation of the basic code using weave """ from scipy import weave from scipy.weave import converters, build_tools import numpy as N # to shut weave up import sys # we can't rely on weave at all at the restoring argv. On etch box # restore_sys_argv() is apparently is insufficient oargv = sys.argv[:] ostdout = sys.stdout if not( __debug__ and 'EXT_' in debug.active): from StringIO import StringIO sys.stdout = StringIO() # *nix specific solution to shut weave up. # Some users must complain and someone # needs to fix this to become more generic. cargs = [">/dev/null", "2>&1"] else: cargs = [] fmsg = None try: data = N.array([1,2,3]) counter = weave.inline("data[0]=fabs(-1);", ['data'], type_converters=converters.blitz, verbose=0, extra_compile_args=cargs, compiler = 'gcc') except Exception, e: fmsg = "Failed to build simple weave sample." \ " Exception was %s" % str(e) sys.stdout = ostdout # needed to fix sweave which might "forget" to restore sysv # build_tools.restore_sys_argv() sys.argv = oargv if fmsg is not None: raise ImportError, fmsg else: return "Everything is cool" def __check_atlas_family(family): # XXX I guess pylint will dislike it a lot from mvpa.atlases.warehouse import KNOWN_ATLAS_FAMILIES names, pathpattern = KNOWN_ATLAS_FAMILIES[family] filename = pathpattern % {'name':names[0]} if not os.path.exists(filename): raise ImportError, "Cannot find file %s for atlas family %s" \ % (filename, family) pass def __check_stablerdist(): import scipy.stats import numpy as N ## Unfortunately 0.7.0 hasn't fixed the issue so no chance but to do ## a proper numerical test here try: scipy.stats.rdist(1.32, 0, 1).cdf(-1.0 + N.finfo(float).eps) # Actually previous test is insufficient for 0.6, so enabling # elderly test on top # ATM all known implementations which implement custom cdf for # rdist are misbehaving, so there should be no _cdf if '_cdf' in scipy.stats.distributions.rdist_gen.__dict__.keys(): raise ImportError, \ "scipy.stats carries misbehaving rdist distribution" except ZeroDivisionError: raise RuntimeError, "RDist in scipy is still unstable on the boundaries" def __check_rv_discrete_ppf(): """Unfortunately 0.6.0-12 of scipy pukes on simple ppf """ import scipy.stats try: bdist = scipy.stats.binom(100, 0.5) bdist.ppf(0.9) except TypeError: raise RuntimeError, "pmf is broken in discrete dists of scipy.stats" def __check_in_ipython(): # figure out if ran within IPython if '__IPYTHON__' in globals()['__builtins__']: return raise RuntimeError, "Not running in IPython session" def __check_openopt(): try: import openopt as _ return except ImportError: pass import scikits.openopt as _ return def __check_matplotlib(): """Check for presence of matplotlib and set backend if requested.""" import matplotlib backend = cfg.get('matplotlib', 'backend') if backend: matplotlib.use(backend) def __check_pylab(): """Check if matplotlib is there and then pylab""" exists('matplotlib', raiseException='always') import pylab as P def __check_pylab_plottable(): """Simple check either we can plot anything using pylab. Primary use in unittests """ try: exists('pylab', raiseException='always') import pylab as P fig = P.figure() P.plot([1,2], [1,2]) P.close(fig) except: raise RuntimeError, "Cannot plot in pylab" return True def __check_griddata(): """griddata might be independent module or part of mlab """ try: from griddata import griddata as __ return True except ImportError: if __debug__: debug('EXT_', 'No python-griddata available') from matplotlib.mlab import griddata as __ return True def __check_reportlab(): import reportlab as rl versions['reportlab'] = SmartVersion(rl.Version) def __check_rpy(): """Check either rpy is available and also set it for the sane execution """ #import rpy_options #rpy_options.set_options(VERBOSE=False, SETUP_READ_CONSOLE=False) # SETUP_WRITE_CONSOLE=False) #rpy_options.set_options(VERBOSE=False, SETUP_WRITE_CONSOLE=False) # SETUP_WRITE_CONSOLE=False) # if not cfg.get('rpy', 'read_console', default=False): # print "no read" # rpy_options.set_options(SETUP_READ_CONSOLE=False) # if not cfg.get('rpy', 'write_console', default=False): # print "no write" # rpy_options.set_options(SETUP_WRITE_CONSOLE=False) import rpy if not cfg.getboolean('rpy', 'interactive', default=True) \ and (rpy.get_rpy_input() is rpy.rpy_io.rpy_input): if __debug__: debug('EXT_', "RPy: providing dummy callback for input to return '1'") def input1(*args): return "1" # which is "1: abort (with core dump, if enabled)" rpy.set_rpy_input(input1) # contains list of available (optional) external classifier extensions _KNOWN = {'libsvm':'import mvpa.clfs.libsvmc._svm as __; x=__.convert2SVMNode', 'libsvm verbosity control':'__check_libsvm_verbosity_control();', 'nifti':'from nifti import NiftiImage as __', 'nifti ge 0.20090205.1': 'from nifti.clib import detachDataFromImage as __', 'ctypes':'import ctypes as __', 'shogun':'import shogun as __', 'shogun.krr': 'import shogun.Regression as __; x=__.KRR', 'shogun.mpd': 'import shogun.Classifier as __; x=__.MPDSVM', 'shogun.lightsvm': 'import shogun.Classifier as __; x=__.SVMLight', 'shogun.svrlight': 'from shogun.Regression import SVRLight as __', 'numpy': "__check_numpy()", 'scipy': "__check_scipy()", 'good scipy.stats.rdist': "__check_stablerdist()", 'good scipy.stats.rv_discrete.ppf': "__check_rv_discrete_ppf()", 'weave': "__check_weave()", 'pywt': "import pywt as __", 'pywt wp reconstruct': "__check_pywt(['wp reconstruct'])", 'pywt wp reconstruct fixed': "__check_pywt(['wp reconstruct fixed'])", 'rpy': "__check_rpy()", 'lars': "exists('rpy', raiseException='always'); import rpy; rpy.r.library('lars')", 'elasticnet': "exists('rpy', raiseException='always'); import rpy; rpy.r.library('elasticnet')", 'glmnet': "exists('rpy', raiseException='always'); import rpy; rpy.r.library('glmnet')", 'matplotlib': "__check_matplotlib()", 'pylab': "__check_pylab()", 'pylab plottable': "__check_pylab_plottable()", 'openopt': "__check_openopt()", 'mdp': "import mdp as __", 'mdp ge 2.4': "from mdp.nodes import LLENode as __", 'sg_fixedcachesize': "__check_shogun(3043, [2456])", # 3318 corresponds to release 0.6.4 'sg ge 0.6.4': "__check_shogun(3318)", 'hcluster': "import hcluster as __", 'griddata': "__check_griddata()", 'cPickle': "import cPickle as __", 'gzip': "import gzip as __", 'lxml': "from lxml import objectify as __", 'atlas_pymvpa': "__check_atlas_family('pymvpa')", 'atlas_fsl': "__check_atlas_family('fsl')", 'running ipython env': "__check_in_ipython()", 'reportlab': "__check_reportlab()", 'nose': "import nose as __", } def exists(dep, force=False, raiseException=False, issueWarning=None): """ Test whether a known dependency is installed on the system. This method allows us to test for individual dependencies without testing all known dependencies. It also ensures that we only test for a dependency once. :Parameters: dep : string or list of string The dependency key(s) to test. force : boolean Whether to force the test even if it has already been performed. raiseException : boolean or 'always' Whether to raise RuntimeError if dependency is missing. If True, it is still conditioned on the global setting MVPA_EXTERNALS_RAISE_EXCEPTION, while would raise exception if missing despite the configuration if 'always'. issueWarning : string or None or True If string, warning with given message would be thrown. If True, standard message would be used for the warning text. """ # if we are provided with a list of deps - go through all of them if isinstance(dep, list) or isinstance(dep, tuple): results = [ exists(dep_, force, raiseException) for dep_ in dep ] return bool(reduce(lambda x,y: x and y, results, True)) # where to look in cfg cfgid = 'have ' + dep # pre-handle raiseException according to the global settings and local argument if isinstance(raiseException, str): if raiseException.lower() == 'always': raiseException = True else: raise ValueError("Unknown value of raiseException=%s. " "Must be bool or 'always'" % raiseException) else: # must be bool conditioned on the global settings raiseException = raiseException \ and cfg.getboolean('externals', 'raise exception', True) # prevent unnecessarry testing if cfg.has_option('externals', cfgid) \ and not cfg.getboolean('externals', 'retest', default='no') \ and not force: if __debug__: debug('EXT', "Skip retesting for '%s'." % dep) # check whether an exception should be raised, even though the external # was already tested previously if not cfg.getboolean('externals', cfgid) and raiseException: raise RuntimeError, "Required external '%s' was not found" % dep return cfg.getboolean('externals', cfgid) # determine availability of external (non-cached) # default to 'not found' result = False if not _KNOWN.has_key(dep): raise ValueError, "%s is not a known dependency key." % (dep) else: # try and load the specific dependency if __debug__: debug('EXT', "Checking for the presence of %s" % dep) # Exceptions which are silently caught while running tests for externals _caught_exceptions = [ImportError, AttributeError, RuntimeError] # check whether RPy is involved and catch its excpetions as well. # however, try to determine whether this is really necessary, as # importing RPy also involved starting a full-blown R session, which can # take seconds and therefore is quite nasty... if dep.count('rpy') or _KNOWN[dep].count('rpy'): try: if dep == 'rpy': __check_rpy() # needed to be run to adjust options first else: if exists('rpy'): # otherwise no need to add anything -- test # would fail since rpy isn't available from rpy import RException _caught_exceptions += [RException] except: pass estr = '' try: exec _KNOWN[dep] result = True except tuple(_caught_exceptions), e: estr = ". Caught exception was: " + str(e) if __debug__: debug('EXT', "Presence of %s is%s verified%s" % (dep, {True:'', False:' NOT'}[result], estr)) if not result: if raiseException: raise RuntimeError, "Required external '%s' was not found" % dep if issueWarning is not None \ and cfg.getboolean('externals', 'issue warning', True): if issueWarning is True: warning("Required external '%s' was not found" % dep) else: warning(issueWarning) # store result in config manager if not cfg.has_section('externals'): cfg.add_section('externals') if result: cfg.set('externals', 'have ' + dep, 'yes') else: cfg.set('externals', 'have ' + dep, 'no') return result def testAllDependencies(force=False): """ Test for all known dependencies. :Parameters: force : boolean Whether to force the test even if it has already been performed. """ # loop over all known dependencies for dep in _KNOWN: if not exists(dep, force): warning("%s is not available." % dep) if __debug__: debug('EXT', 'The following optional externals are present: %s' \ % [ k[5:] for k in cfg.options('externals') if k.startswith('have') \ and cfg.getboolean('externals', k) == True ]) pymvpa-0.4.8/mvpa/base/info.py000066400000000000000000000144441174541445200162370ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Provide system and PyMVPA information useful while reporting bugs """ __docformat__ = 'restructuredtext' import time, sys, os, subprocess import platform as pl from tempfile import mkstemp from StringIO import StringIO import mvpa from mvpa.base import externals, cfg def _t2s(t): res = [] for e in t: if isinstance(e, tuple): es = _t2s(e) if es != '': res += ['(%s)' % es] elif e != '': res += [e] return '/'.join(res) __all__ = ['wtf'] class WTF(object): """Convenience class to contain information about PyMVPA and OS TODO: refactor to actually not contain just string representation but rather a dictionary (of dictionaries) """ def __init__(self): self._info = '' self._acquire() def _acquire(self): """ TODO: refactor and redo ;) """ out = StringIO() out.write("Current date: %s\n" % time.strftime("%Y-%m-%d %H:%M")) out.write("PyMVPA:\n") out.write(" Version: %s\n" % mvpa.__version__) out.write(" Path: %s\n" % mvpa.__file__) # Try to obtain git information if available out.write(" Version control (GIT):\n") try: gitpath = os.path.join(os.path.dirname(mvpa.__file__), os.path.pardir) gitpathgit = os.path.join(gitpath, '.git') if os.path.exists(gitpathgit): for scmd, cmd in [ ('Status', ['status']), ('Reference', 'show-ref -h HEAD'.split(' ')), ('Difference from last release %s' % mvpa.__version__, ['diff', '--shortstat', 'upstream/%s...' % mvpa.__version__])]: try: (tmpd, tmpn) = mkstemp('mvpa', 'git') retcode = subprocess.call(['git', '--git-dir=%s' % gitpathgit, '--work-tree=%s' % gitpath] + cmd, stdout=tmpd, stderr=subprocess.STDOUT) finally: outlines = open(tmpn, 'r').readlines() if len(outlines): out.write(' %s:\n %s' % (scmd, ' '.join(outlines))) os.remove(tmpn) #except Exception, e: # pass else: raise RuntimeError, "%s is not under GIT" % gitpath except Exception, e: out.write(' GIT information could not be obtained due "%s"\n' % e) out.write('SYSTEM:\n') out.write(' OS: %s\n' % ' '.join([os.name, pl.system(), pl.release(), pl.version()]).rstrip()) out.write(' Distribution: %s\n' % ' '.join([_t2s(pl.dist()), _t2s(pl.mac_ver()), _t2s(pl.win32_ver())]).rstrip()) # Test and list all dependencies: sdeps = {True: [], False: []} for dep in sorted(externals._KNOWN): sdeps[externals.exists(dep, force=False)] += [dep] out.write('EXTERNALS:\n') out.write(' Present: %s\n' % ', '.join(sdeps[True])) out.write(' Absent: %s\n' % ', '.join(sdeps[False])) SV = ('.__version__', ) # standard versioning out.write(' Versions of critical externals:\n') for e, mname, fs in ( ('ctypes', None, SV), ('matplotlib', None, SV), ('lxml', None, ('.etree.__version__',)), ('nifti', None, SV), ('numpy', None, SV), ('openopt', 'openopt', SV), ('openopt', 'scikits.openopt', ('.openopt.__version__',)), ('pywt', None, SV), ('rpy', None, ('.rpy_version',)), ('scipy', None, SV), ('shogun', None, ('.Classifier.Version_get_version_release()',)), ): try: if not externals.exists(e): continue #sver = 'not present' else: if mname is None: mname = e m = __import__(mname) svers = [eval('m%s' % (f,)) for f in fs] sver = ' '.join(svers) except Exception, exc: sver = 'failed to query due to "%s"' % str(exc) out.write(' %-12s: %s\n' % (e, sver)) if externals.exists('matplotlib'): import matplotlib out.write(' Matplotlib backend: %s\n' % matplotlib.get_backend()) out.write("RUNTIME:\n") out.write(" PyMVPA Environment Variables:\n") out.write(' '.join([' %-20s: "%s"\n' % (str(k), str(v)) for k, v in os.environ.iteritems() if (k.startswith('MVPA') or k.startswith('PYTHON'))])) out.write(" PyMVPA Runtime Configuration:\n") out.write(' ' + str(cfg).replace('\n', '\n ').rstrip() + '\n') try: procstat = open('/proc/%d/status' % os.getpid()).readlines() out.write(' Process Information:\n') out.write(' ' + ' '.join(procstat)) except: pass self._info = out.getvalue() def __repr__(self): if self._info is None: self._acquire() return self._info __str__ = __repr__ def wtf(filename=None): """Report summary about PyMVPA and the system :Keywords: filename : None or string If provided, information will be stored in a file, not printed to the screen """ info = WTF() if filename is not None: out = file(filename, 'w').write(str(info)) else: return info if __name__ == '__main__': print wtf() pymvpa-0.4.8/mvpa/base/report.py000066400000000000000000000245361174541445200166220ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Creating simple PDF reports using reportlab """ __docformat__ = 'restructuredtext' import os from datetime import datetime import mvpa from mvpa.base import externals, verbose if __debug__: from mvpa.base import debug if externals.exists('reportlab', raiseException=True): import reportlab as rl from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.units import inch # Actually current reportlab's Image can't deal directly with .pdf images # Lets use png for now if externals.versions['reportlab'] >= '1112.2': _fig_ext_default = 'pdf' else: _fig_ext_default = 'png' __all__ = [ 'rl', 'Report', 'escapeXML' ] def escapeXML(s): s = s.replace('&', '&') s = s.replace('<', '<') s = s.replace('>', '>') return s class Report(object): """Simple PDF reports using reportlab Named report 'report' generates 'report.pdf' and directory 'report/' with images which were requested to be included in the report You can attach report to the existing 'verbose' with report = Report() verbose.handlers += [report] and then all verbose messages present on the screen will also be recorded in the report. Use report.text("string") to add arbitrary text report.xml("

    skajdsf

    ") to add XML snippet or report.figure() to add the current figure to the report. report.figures() to add existing figures to the report, but they might not be properly interleaved with verbose messages if there were any between the creations of the figures. Inspired by Andy Connolly """ def __init__(self, name='report', title=None, path=None, author=None, style="Normal", fig_ext=None, font='Helvetica', pagesize=None): """Initialize report :Parameters: name : string Name of the report title : string or None Title to start the report, if None, name will be used path : string Top directory where named report will be stored. Has to be set now to have correct path for storing image renderings. Default: current directory author : string or None Optional author identity to be printed style : string Default Paragraph to be used. Must be the one of the known to reportlab styles, e.g. Normal fig_ext : string What extension to use for figures by default. If None, a default will be used. Since versions prior 2.2 of reportlab might do not support pdf, 'png' is default for those, 'pdf' otherwise font : string Name of the font to use pagesize : tuple of floats Optional page size if not to be default """ if pagesize is None: pagesize = rl.rl_config.defaultPageSize self.pagesize = pagesize self.name = name self.author = author self.font = font self.title = title if fig_ext is None: self.fig_ext = _fig_ext_default else: self.fig_ext = fig_ext if path is None: self._filename = name else: self._filename = os.path.join(path, name) self.__nfigures = 0 try: styles = getSampleStyleSheet() self.style = styles.byName[style] except KeyError: raise ValueError, \ "Style %s is not know to reportlab. Known are %s" \ % (styles.keys()) self._story = [] @property def __preamble(self): """Compose the beginning of the report """ date = datetime.today().isoformat(' ') owner = 'PyMVPA v. %s' % mvpa.__version__ if self.author is not None: owner += ' Author: %s' % self.author return [ Spacer(1, 0.8*inch), Paragraph("Generated on " + date, self.style), Paragraph(owner, self.style)] + self.__flowbreak def clear(self): """Clear the report """ self._story = [] def xml(self, line, style=None): """Adding XML string to the report """ if __debug__ and not self in debug.handlers: debug("REP", "Adding xml '%s'" % line.strip()) if style is None: style = self.style self._story.append(Paragraph(line, style=style)) def text(self, line, **kwargs): """Add a text string to the report """ if __debug__ and not self in debug.handlers: debug("REP_", "Adding text '%s'" % line.strip()) # we need to convert some of the characters to make it # legal XML line = escapeXML(line) self.xml(line, **kwargs) write = text """Just an alias for .text, so we could simply provide report as a handler for verbose """ def figure(self, fig=None, name=None, savefig_kwargs={}, **kwargs): """Add a figure to the report :Parameters: fig : None or string or `figure.Figure` Figure to place into report string : treat as a filename Figure : stores it into a file under directory and embedds into the report None : takes the current figure savefig_kwargs : dict Additional keyword arguments to provide savefig with (e.g. dpi) **kwargs Passed to :class:`reportlab.platypus.Image` constructor """ if externals.exists('pylab', raiseException=True): import pylab as P figure = P.matplotlib.figure if fig is None: fig = P.gcf() if isinstance(fig, figure.Figure): # Create directory if needed if not (os.path.exists(self._filename) and os.path.isdir(self._filename)): os.makedirs(self._filename) # Figure out the name for image self.__nfigures += 1 if name is None: name = 'Figure#' name = name.replace('#', str(self.__nfigures)) # Save image fig_filename = os.path.join(self._filename, '%s.%s' % (name, self.fig_ext)) if __debug__ and not self in debug.handlers: debug("REP_", "Saving figure '%s' into %s" % (fig, fig_filename)) fig.savefig(fig_filename, **savefig_kwargs) # adjust fig to the one to be included fig = fig_filename if __debug__ and not self in debug.handlers: debug("REP", "Adding figure '%s'" % fig) im = Image(fig, **kwargs) # If the inherent or provided width/height are too large -- shrink down imsize = (im.drawWidth, im.drawHeight) # Reduce the size if necessary so reportlab does not puke later on r = [float(d)/m for d,m in zip(imsize, self.pagesize)] maxr = max(r) if maxr > 1.0: if __debug__ and not self in debug.handlers: debug("REP_", "Shrinking figure by %.3g" % maxr) im.drawWidth /= maxr im.drawHeight /= maxr self._story.append(im) def figures(self, *args, **kwargs): """Adds all present figures at once If called twice, it might add the same figure multiple times, so make sure to close all previous figures if you use figures() multiple times """ if externals.exists('pylab', raiseException=True): import pylab as P figs = P.matplotlib._pylab_helpers.Gcf.figs if __debug__ and not self in debug.handlers: debug('REP', "Saving all %d present figures" % len(figs)) for fid, f in figs.iteritems(): self.figure(f.canvas.figure, *args, **kwargs) @property def __flowbreak(self): return [Spacer(1, 0.2*inch), Paragraph("-" * 150, self.style), Spacer(1, 0.2*inch)] def flowbreak(self): """Just a marker for the break of the flow """ if __debug__ and not self in debug.handlers: debug("REP", "Adding flowbreak") self._story.append(self.__flowbreak) ## def __del__(self): ## """Store report upon deletion ## """ ## if __debug__ and not self in debug.handlers: ## debug("REP", "Report is being deleted. Storing") ## self.save() def save(self, add_preamble=True): """Saves PDF :Parameters: add_preamble : bool Either to add preamble containing title/date/author information """ if self.title is None: title = self.name + " report" else: title = self.title pageinfo = self.name + " data" def myFirstPage(canvas, doc): canvas.saveState() canvas.setFont(self.font, 16) canvas.drawCentredString(self.pagesize[0]/2.0, self.pagesize[1]-108, title) canvas.setFont(self.font, 9) canvas.drawString(inch, 0.75 * inch, "First Page / %s" % pageinfo) canvas.restoreState() def myLaterPages(canvas, doc): canvas.saveState() canvas.setFont(self.font, 9) canvas.drawString(inch, 0.75 * inch, "Page %d %s" % (doc.page, pageinfo)) canvas.restoreState() filename = self._filename + ".pdf" doc = SimpleDocTemplate(filename) story = self._story if add_preamble: story = self.__preamble + story if __debug__ and not self in debug.handlers: debug("REP", "Saving the report into %s" % filename) doc.build(story, onFirstPage=myFirstPage, onLaterPages=myLaterPages) pymvpa-0.4.8/mvpa/base/report_dummy.py000066400000000000000000000021211174541445200200170ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Dummy report class, to just be there in case if reportlab is not available. """ __docformat__ = 'restructuredtext' from mvpa.base import warning if __debug__: from mvpa.base import debug def _dummy(*args, **kwargs): pass class Report(object): """Dummy report class which does nothing but complains if used """ def __init__(self, *args, **kwargs): """Initialize dummy report """ warning("You are using DummyReport - no action will be taken. " "Please install reportlab to enjoy reporting facility " "within PyMVPA") def __getattribute__(self, index): """ """ # returns a dummy function return _dummy pymvpa-0.4.8/mvpa/base/verbosity.py000066400000000000000000000435561174541445200173400ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Verbose output and debugging facility Examples: from verbosity import verbose, debug; debug.active = [1,2,3]; debug(1, "blah") """ __docformat__ = 'restructuredtext' from sys import stdout, stderr # GOALS # any logger should be able # to log into a file or stdout/stderr # provide ability to log with/without a new line at the end # # debug logger should be able # to log sets of debug statements # add/remove debug setid items # give verbose description about registered debugset items class Logger(object): """ Base class to provide logging """ def __init__(self, handlers=None): """Initialize the logger with a set of handlers to use for output Each hanlder must have write() method implemented """ if handlers == None: handlers = [stdout] self.__close_handlers = [] self.__handlers = [] # pylint friendliness self._setHandlers(handlers) self.__lfprev = True self.__crprev = 0 # number of symbols in previous cr-ed def __del__(self): self._closeOpenedHandlers() def _setHandlers(self, handlers): """Set list of handlers for the log. A handler can be opened files, stdout, stderr, or a string, which will be considered a filename to be opened for writing """ handlers_ = [] self._closeOpenedHandlers() for handler in handlers: if isinstance(handler, basestring): try: handler = {'stdout' : stdout, 'stderr' : stderr}[handler.lower()] except: try: handler = open(handler, 'w') self.__close_handlers.append(handler) except: raise RuntimeError, \ "Cannot open file %s for writing by the logger" \ % handler handlers_.append(handler) self.__handlers = handlers_ def _closeOpenedHandlers(self): """Close opened handlers (such as opened logfiles """ for handler in self.__close_handlers: handler.close() def _getHandlers(self): """Return active handlers """ return self.__handlers def __call__(self, msg, lf=True, cr=False, *args, **kwargs): """ Write msg to each of the handlers. It can append a newline (lf = Line Feed) or return to the beginning before output and to take care about cleaning previous message if present it appends a newline (lf = Line Feed) since most commonly each call is a separate message """ if kwargs.has_key('msgargs'): msg = msg % kwargs['msgargs'] if cr: msg_ = "" if self.__crprev > 0: # wipe out older line to make sure to see no ghosts msg_ = "\r%s" % (" "*self.__crprev) msg_ += "\r" + msg self.__crprev = len(msg) msg = msg_ # since it makes no sense this days for cr and lf, # override lf lf = False else: self.__crprev += len(msg) if lf: msg = msg + "\n" self.__crprev = 0 # nothing to clear for handler in self.__handlers: try: handler.write(msg) except: print "Failed writing on handler %s" % handler raise try: handler.flush() except: # it might be not implemented.. pass self.__lfprev = lf handlers = property(fget=_getHandlers, fset=_setHandlers) lfprev = property(fget=lambda self:self.__lfprev) class LevelLogger(Logger): """ Logger which prints based on level -- ie everything which is smaller than specified level """ def __init__(self, level=0, indent=" ", *args, **kwargs): """Define level logger. It is defined by `level`, int: to which messages are reported `indent`, string: symbol used to indent """ Logger.__init__(self, *args, **kwargs) self.__level = level # damn pylint ;-) self.__indent = indent self._setLevel(level) self._setIndent(indent) def _setLevel(self, level): """Set logging level """ ilevel = int(level) if ilevel < 0: raise ValueError, \ "Negative verbosity levels (got %d) are not supported" \ % ilevel self.__level = ilevel def _setIndent(self, indent): """Either to indent the lines based on message log level""" self.__indent = "%s" % indent def __call__(self, level, msg, *args, **kwargs): """ Write msg and indent using self.indent it if it was requested it appends a newline since most commonly each call is a separate message """ if level <= self.level: if self.lfprev and self.indent: # indent if previous line ended with newline msg = self.indent*level + msg Logger.__call__(self, msg, *args, **kwargs) level = property(fget=lambda self: self.__level, fset=_setLevel) indent = property(fget=lambda self: self.__indent, fset=_setIndent) class OnceLogger(Logger): """ Logger which prints a message for a given ID just once. It could be used for one-time warning to don't overfill the output with useless repeatative messages """ def __init__(self, *args, **kwargs): """Define once logger. """ Logger.__init__(self, *args, **kwargs) self._known = {} def __call__(self, ident, msg, count=1, *args, **kwargs): """ Write `msg` if `ident` occured less than `count` times by now. """ if not self._known.has_key(ident): self._known[ident] = 0 if count < 0 or self._known[ident] < count: self._known[ident] += 1 Logger.__call__(self, msg, *args, **kwargs) class SetLogger(Logger): """ Logger which prints based on defined sets identified by Id. """ def __init__(self, register=None, active=None, printsetid=True, *args, **kwargs): if register == None: register = {} if active == None: active = [] Logger.__init__(self, *args, **kwargs) self.__printsetid = printsetid self.__registered = register # all "registered" sets descriptions # which to output... pointless since __registered self._setActive(active) self._setPrintsetid(printsetid) def _setActive(self, active): """Set active logging set """ # just unique entries... we could have simply stored Set I guess, # but then smth like debug.active += ["BLAH"] would not work from mvpa.base import verbose self.__active = [] registered_keys = self.__registered.keys() for item in list(set(active)): if item == '': continue if isinstance(item, basestring): if item in ['?', 'list', 'help']: self.print_registered(detailed=(item != '?')) raise SystemExit(0) if item.upper() == "ALL": verbose(2, "Enabling all registered debug handlers") self.__active = registered_keys break # try to match item as it is regexp regexp_str = "^%s$" % item try: regexp = re.compile(regexp_str) except: raise ValueError, \ "Unable to create regular expression out of %s" % item matching_keys = filter(regexp.match, registered_keys) toactivate = matching_keys if len(toactivate) == 0: ids = self.registered.keys() ids.sort() raise ValueError, \ "Unknown debug ID '%s' was asked to become active," \ " or regular expression '%s' did not get any match" \ " among known ids: %s" \ % (item, regexp_str, ids) else: toactivate = [item] # Lets check if asked items are known for item_ in toactivate: if not (item_ in registered_keys): raise ValueError, \ "Unknown debug ID %s was asked to become active" \ % item_ self.__active += toactivate self.__active = list(set(self.__active)) # select just unique ones self.__maxstrlength = max([len(str(x)) for x in self.__active] + [0]) if len(self.__active): verbose(2, "Enabling debug handlers: %s" % `self.__active`) def _setPrintsetid(self, printsetid): """Either to print set Id at each line""" self.__printsetid = printsetid def __call__(self, setid, msg, *args, **kwargs): """ Write msg It appends a newline since most commonly each call is a separate message """ if setid in self.__active: if len(msg)>0 and self.__printsetid: msg = "[%%-%ds] " % self.__maxstrlength % (setid) + msg Logger.__call__(self, msg, *args, **kwargs) def register(self, setid, description): """ "Register" a new setid with a given description for easy finding """ if self.__registered.has_key(setid): raise ValueError, \ "Setid %s is already known with description '%s'" % \ ( `setid`, self.__registered[setid] ) self.__registered[setid] = description def setActiveFromString(self, value): """Given a string listing registered(?) setids, make then active """ # somewhat evil but works since verbose must be initiated # by now self.active = value.split(",") def print_registered(self, detailed=True): print "Registered debug entries: ", kd = self.registered rks = sorted(kd.keys()) maxl = max([len(k) for k in rks]) if not detailed: # short list print ', '.join(rks) else: print for k in rks: print '%%%ds %%s' % maxl % (k, kd[k]) printsetid = property(fget=lambda self: self.__printsetid, \ fset=_setPrintsetid) active = property(fget=lambda self: self.__active, fset=_setActive) registered = property(fget=lambda self: self.__registered) if __debug__: import os, re import traceback import time from os import getpid from os.path import basename, dirname def parseStatus(field='VmSize'): """Return stat information on current process. Usually it is needed to know where the memory is gone, that is why VmSize is the default for the field to spit out TODO: Spit out multiple fields. Use some better way than parsing proc """ fd = open('/proc/%d/status' % getpid()) lines = fd.readlines() fd.close() match = filter(lambda x:re.match('^%s:'%field, x), lines)[0].strip() match = re.sub('[ \t]+', ' ', match) return match def mbasename(s): """Custom function to include directory name if filename is too common Also strip .py at the end """ base = basename(s).rstrip('py').rstrip('.') if base in ['base', '__init__']: base = basename(dirname(s)) + '.' + base return base class TraceBack(object): def __init__(self, collide=False): """Initialize TrackBack metric :Parameters: collide : bool if True then prefix common with previous invocation gets replaced with ... """ self.__prev = "" self.__collide = collide def __call__(self): ftb = traceback.extract_stack(limit=100)[:-2] entries = [[mbasename(x[0]), str(x[1])] for x in ftb] entries = filter(lambda x:x[0] != 'unittest', entries) # lets make it more consize entries_out = [entries[0]] for entry in entries[1:]: if entry[0] == entries_out[-1][0]: entries_out[-1][1] += ',%s' % entry[1] else: entries_out.append(entry) sftb = '>'.join(['%s:%s' % (mbasename(x[0]), x[1]) for x in entries_out]) if self.__collide: # lets remove part which is common with previous invocation prev_next = sftb common_prefix = os.path.commonprefix((self.__prev, sftb)) common_prefix2 = re.sub('>[^>]*$', '', common_prefix) if common_prefix2 != "": sftb = '...' + sftb[len(common_prefix2):] self.__prev = prev_next return sftb class RelativeTime(object): """Simple helper class to provide relative time it took from previous invocation""" def __init__(self, format="%3.3f sec"): self.__prev = None self.__format = format def __call__(self): dt = 0.0 ct = time.time() if not self.__prev is None: dt = ct - self.__prev self.__prev = ct return self.__format % dt class DebugLogger(SetLogger): """ Logger for debugging purposes. Expands SetLogger with ability to print some interesting information (named Metric... XXX) about current process at each debug printout """ _known_metrics = { 'vmem' : lambda : parseStatus(field='VmSize'), 'pid' : lambda : parseStatus(field='Pid'), 'asctime' : time.asctime, 'tb' : TraceBack(), 'tbc' : TraceBack(collide=True), } def __init__(self, metrics=None, offsetbydepth=True, *args, **kwargs): if metrics == None: metrics = [] SetLogger.__init__(self, *args, **kwargs) self.__metrics = [] self._offsetbydepth = offsetbydepth self._reltimer = RelativeTime() self._known_metrics = DebugLogger._known_metrics self._known_metrics['reltime'] = self._reltimer for metric in metrics: self._registerMetric(metric) def registerMetric(self, func): """Register some metric to report func can be either a function call or a string which should correspond to known metrics """ if isinstance(func, basestring): if func in ['all', 'ALL']: func = self._known_metrics.keys() if isinstance(func, basestring): if DebugLogger._known_metrics.has_key(func): func = DebugLogger._known_metrics[func] else: if func in ['?', 'list', 'help']: print 'Known debug metrics: ', \ ', '.join(DebugLogger._known_metrics.keys()) raise SystemExit(0) else: raise ValueError, \ "Unknown name %s for metric in DebugLogger" % \ func + " Known metrics are " + \ `DebugLogger._known_metrics.keys()` elif isinstance(func, list): self.__metrics = [] # reset for item in func: self.registerMetric(item) return if not func in self.__metrics: try: from mvpa.base import debug debug("DBG", "Registering metric %s" % func) self.__metrics.append(func) except: pass def __call__(self, setid, msg, *args, **kwargs): if not self.registered.has_key(setid): raise ValueError, "Not registered debug ID %s" % setid if not setid in self.active: # don't even compute the metrics, since they might # be statefull as RelativeTime return if len(msg) > 0: msg_ = ' / '.join([str(x()) for x in self.__metrics]) if len(msg_)>0: msg_ = "{%s}" % msg_ # determine blank offset using backstacktrace if self._offsetbydepth: level = len(traceback.extract_stack())-2 else: level = 1 if len(msg)>250 and 'DBG' in self.active and not setid.endswith('_TB'): tb = traceback.extract_stack(limit=2) msg += " !!!2LONG!!!. From %s" % str(tb[0]) msg = "DBG%s:%s%s" % (msg_, " "*level, msg) SetLogger.__call__(self, setid, msg, *args, **kwargs) def _setOffsetByDepth(self, b): self._offsetbydepth = b offsetbydepth = property(fget=lambda x:x._offsetbydepth, fset=_setOffsetByDepth) metrics = property(fget=lambda x:x.__metrics, fset=registerMetric) pymvpa-0.4.8/mvpa/clfs/000077500000000000000000000000001174541445200147405ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/clfs/__init__.py000066400000000000000000000017411174541445200170540ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for PyMVPA classifiers Module Organization =================== mvpa.clfs module contains various classifiers .. packagetree:: :style: UML :group Base: base :group Meta Classifiers: meta :group Specific Implementations: knn svm _svmbase plr ridge smlr libsmlrc gpr blr :group External Interfaces: lars libsvmc sg :group Utilities: transerror model_selector stats kernel distance :group Warehouse of Classifiers: warehouse """ __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.clfs') if __debug__: debug('INIT', 'mvpa.clfs end') pymvpa-0.4.8/mvpa/clfs/_svmbase.py000066400000000000000000000340701174541445200171150ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Common to all SVM implementations functionality. For internal use only""" __docformat__ = 'restructuredtext' import numpy as N import textwrap from mvpa.support.copy import deepcopy from mvpa.base import warning from mvpa.base.dochelpers import handleDocString, _rst, _rst_sep2 from mvpa.clfs.base import Classifier from mvpa.misc.param import Parameter from mvpa.misc.transformers import SecondAxisSumOfAbs if __debug__: from mvpa.base import debug class _SVM(Classifier): """Support Vector Machine Classifier. Base class for all external SVM implementations. """ """ Derived classes should define: * _KERNELS: map(dict) should define assignment to a tuple containing implementation kernel type, list of parameters adherent to the kernel, and sensitivity analyzer e.g.:: _KERNELS = { 'linear': (shogun.Kernel.LinearKernel, (), LinearSVMWeights), 'rbf' : (shogun.Kernel.GaussianKernel, ('gamma',), None), ... } * _KNOWN_IMPLEMENTATIONS: map(dict) should define assignment to a tuple containing implementation of the SVM, list of parameters adherent to the implementation, additional internals, and description e.g.:: _KNOWN_IMPLEMENTATIONS = { 'C_SVC' : (svm.svmc.C_SVC, ('C',), ('binary', 'multiclass'), 'C-SVM classification'), ... } """ _ATTRIBUTE_COLLECTIONS = ['params', 'kernel_params'] # enforce presence of params collections _SVM_PARAMS = { 'C' : Parameter(-1.0, doc='Trade-off parameter between width of the ' 'margin and number of support vectors. Higher C -- ' 'more rigid margin SVM. In linear kernel, negative ' 'values provide automatic scaling of their value ' 'according to the norm of the data'), 'nu' : Parameter(0.5, min=0.0, max=1.0, doc='Fraction of datapoints within the margin'), 'cache_size': Parameter(100, doc='Size of the kernel cache, specified in megabytes'), 'coef0': Parameter(0.5, doc='Offset coefficient in polynomial and sigmoid kernels'), 'degree': Parameter(3, doc='Degree of polynomial kernel'), # init the parameter interface 'tube_epsilon': Parameter(0.01, doc='Epsilon in epsilon-insensitive loss function of ' 'epsilon-SVM regression (SVR)'), 'gamma': Parameter(0, doc='Scaling (width in RBF) within non-linear kernels'), 'tau': Parameter(1e-6, doc='TAU parameter of KRR regression in shogun'), 'max_shift': Parameter(10, min=0.0, doc='Maximal shift for SGs GaussianShiftKernel'), 'shift_step': Parameter(1, min=0.0, doc='Shift step for SGs GaussianShiftKernel'), 'probability': Parameter(0, doc='Flag to signal either probability estimate is obtained ' 'within LIBSVM'), 'scale': Parameter(1.0, doc='Scale factor for linear kernel. ' '(0 triggers automagic rescaling by SG'), 'shrinking': Parameter(1, doc='Either shrinking is to be conducted'), 'weight_label': Parameter([], allowedtype='[int]', doc='To be used in conjunction with weight for custom ' 'per-label weight'), # TODO : merge them into a single dictionary 'weight': Parameter([], allowedtype='[double]', doc='Custom weights per label'), # For some reason setting up epsilon to 1e-5 slowed things down a bit # in comparison to how it was before (in yoh/master) by up to 20%... not clear why # may be related to 1e-3 default within _svm.py? 'epsilon': Parameter(5e-5, min=1e-10, doc='Tolerance of termination criteria. (For nu-SVM default is 0.001)') } _clf_internals = [ 'svm', 'kernel-based' ] def __init__(self, kernel_type='linear', **kwargs): """Init base class of SVMs. *Not to be publicly used* :Parameters: kernel_type : basestr String must be a valid key for cls._KERNELS TODO: handling of parameters might migrate to be generic for all classifiers. SVMs are chosen to be testbase for that functionality to see how well it would fit. """ # Check if requested implementation is known svm_impl = kwargs.get('svm_impl', None) if not svm_impl in self._KNOWN_IMPLEMENTATIONS: raise ValueError, \ "Unknown SVM implementation '%s' is requested for %s." \ "Known are: %s" % (svm_impl, self.__class__, self._KNOWN_IMPLEMENTATIONS.keys()) self._svm_impl = svm_impl # Check the kernel kernel_type = kernel_type.lower() if not kernel_type in self._KERNELS: raise ValueError, "Unknown kernel " + kernel_type self._kernel_type_literal = kernel_type impl, add_params, add_internals, descr = \ self._KNOWN_IMPLEMENTATIONS[svm_impl] # Add corresponding parameters to 'known' depending on the # implementation chosen if add_params is not None: self._KNOWN_PARAMS = \ self._KNOWN_PARAMS[:] + list(add_params) # Add corresponding kernel parameters to 'known' depending on what # kernel chosen if self._KERNELS[kernel_type][1] is not None: self._KNOWN_KERNEL_PARAMS = \ self._KNOWN_KERNEL_PARAMS[:] + list(self._KERNELS[kernel_type][1]) # Assign per-instance _clf_internals self._clf_internals = self._clf_internals[:] # Add corresponding internals if add_internals is not None: self._clf_internals += list(add_internals) self._clf_internals.append(svm_impl) if kernel_type == 'linear': self._clf_internals += [ 'linear', 'has_sensitivity' ] else: self._clf_internals += [ 'non-linear' ] # pop out all args from **kwargs which are known to be SVM parameters _args = {} for param in self._KNOWN_KERNEL_PARAMS + self._KNOWN_PARAMS + ['svm_impl']: if param in kwargs: _args[param] = kwargs.pop(param) try: Classifier.__init__(self, **kwargs) except TypeError, e: if "__init__() got an unexpected keyword argument " in e.args[0]: # TODO: make it even more specific -- if that argument is listed # within _SVM_PARAMS e.args = tuple( [e.args[0] + "\n Given SVM instance of class %s knows following parameters: %s" % (self.__class__, self._KNOWN_PARAMS) + ", and kernel parameters: %s" % self._KNOWN_KERNEL_PARAMS] + list(e.args)[1:]) raise e # populate collections and add values from arguments for paramfamily, paramset in ( (self._KNOWN_PARAMS, self.params), (self._KNOWN_KERNEL_PARAMS, self.kernel_params)): for paramname in paramfamily: if not (paramname in self._SVM_PARAMS): raise ValueError, "Unknown parameter %s" % paramname + \ ". Known SVM params are: %s" % self._SVM_PARAMS.keys() param = deepcopy(self._SVM_PARAMS[paramname]) param._setName(paramname) if paramname in _args: param.value = _args[paramname] # XXX might want to set default to it -- not just value paramset.add(param) # tune up C if it has one and non-linear classifier is used if self.params.isKnown('C') and kernel_type != "linear" \ and self.params['C'].isDefault: if __debug__: debug("SVM_", "Assigning default C value to be 1.0 for SVM " "%s with non-linear kernel" % self) self.params['C'].default = 1.0 # Some postchecks if self.params.isKnown('weight') and self.params.isKnown('weight_label'): if not len(self.weight_label) == len(self.weight): raise ValueError, "Lenghts of 'weight' and 'weight_label' lists " \ "must be equal." self._kernel_type = self._KERNELS[kernel_type][0] if __debug__: debug("SVM", "Initialized %s with kernel %s:%s" % (self, kernel_type, self._kernel_type)) def __repr__(self): """Definition of the object summary over the object """ res = "%s(kernel_type='%s', svm_impl='%s'" % \ (self.__class__.__name__, self._kernel_type_literal, self._svm_impl) sep = ", " for col in [self.params, self.kernel_params]: for k in col.names: # list only params with not default values if col[k].isDefault: continue res += "%s%s=%s" % (sep, k, col[k].value) #sep = ', ' for name, invert in ( ('enable', False), ('disable', True) ): states = self.states._getEnabled(nondefault=False, invert=invert) if len(states): res += sep + "%s_states=%s" % (name, str(states)) res += ")" return res def _getDefaultC(self, data): """Compute default C TODO: for non-linear SVMs """ if self._kernel_type_literal == 'linear': datasetnorm = N.mean(N.sqrt(N.sum(data*data, axis=1))) if datasetnorm == 0: warning("Obtained degenerate data with zero norm for training " "of %s. Scaling of C cannot be done." % self) return 1.0 value = 1.0/(datasetnorm**2) if __debug__: debug("SVM", "Default C computed to be %f" % value) else: warning("TODO: Computation of default C is not yet implemented" + " for non-linear SVMs. Assigning 1.0") value = 1.0 return value def _getDefaultGamma(self, dataset): """Compute default Gamma TODO: unify bloody libsvm interface so it makes use of this function. Now it is computed within SVMModel.__init__ """ if self.kernel_params.isKnown('gamma'): value = 1.0 / len(dataset.uniquelabels) if __debug__: debug("SVM", "Default Gamma is computed to be %f" % value) else: raise RuntimeError, "Shouldn't ask for default Gamma here" return value def getSensitivityAnalyzer(self, **kwargs): """Returns an appropriate SensitivityAnalyzer.""" sana = self._KERNELS[self._kernel_type_literal][2] if sana is not None: kwargs.setdefault('combiner', SecondAxisSumOfAbs) return sana(self, **kwargs) else: raise NotImplementedError, \ "Sensitivity analyzers for kernel %s is TODO" % \ self._kernel_type_literal @classmethod def _customizeDoc(cls): #cdoc_old = cls.__doc__ # Need to append documentation to __init__ method idoc_old = cls.__init__.__doc__ idoc = """ SVM/SVR definition is dependent on specifying kernel, implementation type, and parameters for each of them which vary depending on the choices made. Desired implementation is specified in `svm_impl` argument. Here is the list if implementations known to this class, along with specific to them parameters (described below among the rest of parameters), and what tasks it is capable to deal with (e.g. regression, binary and/or multiclass classification). %sImplementations%s""" % (_rst_sep2, _rst_sep2) class NOSClass(object): """Helper -- NothingOrSomething ;) If list is not empty -- return its entries within string s """ def __init__(self): self.seen = [] def __call__(self, l, s, empty=''): if l is None or not len(l): return empty else: lsorted = list(l) lsorted.sort() self.seen += lsorted return s % (', '.join(lsorted)) NOS = NOSClass() # Describe implementations idoc += ''.join( ['\n %s : %s' % (k, v[3]) + NOS(v[1], "\n Parameters: %s") + NOS(v[2], "\n%s Capabilities: %%s" % _rst(('','\n')[int(len(v[1])>0)], '')) for k,v in cls._KNOWN_IMPLEMENTATIONS.iteritems()]) # Describe kernels idoc += """ Kernel choice is specified as a string argument `kernel_type` and it can be specialized with additional arguments to this constructor function. Some kernels might allow computation of per feature sensitivity. %sKernels%s""" % (_rst_sep2, _rst_sep2) idoc += ''.join( ['\n %s' % k + ('', ' : provides sensitivity')[int(v[2] is not None)] + '\n ' + NOS(v[1], '%s', 'No parameters') for k,v in cls._KERNELS.iteritems()]) # Finally parameters NOS.seen += cls._KNOWN_PARAMS + cls._KNOWN_KERNEL_PARAMS idoc += '\n:Parameters:\n' + '\n'.join( [v.doc(indent=' ') for k,v in cls._SVM_PARAMS.iteritems() if k in NOS.seen]) cls.__dict__['__init__'].__doc__ = handleDocString(idoc_old) + idoc # populate names in parameters for k,v in _SVM._SVM_PARAMS.iteritems(): v._setName(k) pymvpa-0.4.8/mvpa/clfs/base.py000066400000000000000000001016411174541445200162270ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Base class for all classifiers. At the moment, regressions are treated just as a special case of classifier (or vise verse), so the same base class `Classifier` is utilized for both kinds. """ __docformat__ = 'restructuredtext' import numpy as N from mvpa.support.copy import deepcopy import time from mvpa.misc.support import idhash from mvpa.misc.state import StateVariable, ClassWithCollections from mvpa.misc.param import Parameter from mvpa.clfs.transerror import ConfusionMatrix, RegressionStatistics from mvpa.base import warning if __debug__: from mvpa.base import debug class LearnerError(Exception): """Base class for exceptions thrown by the learners (classifiers, regressions)""" pass class DegenerateInputError(LearnerError): """Exception to be thrown by learners if input data is bogus, i.e. no features or samples""" pass class FailedToTrainError(LearnerError): """Exception to be thrown whenever classifier fails to learn for some reason""" pass class FailedToPredictError(LearnerError): """Exception to be thrown whenever classifier fails to provide predictions. Usually happens if it was trained on degenerate data but without any complaints. """ pass class Classifier(ClassWithCollections): """Abstract classifier class to be inherited by all classifiers """ # Kept separate from doc to don't pollute help(clf), especially if # we including help for the parent class _DEV__doc__ = """ Required behavior: For every classifier is has to be possible to be instantiated without having to specify the training pattern. Repeated calls to the train() method with different training data have to result in a valid classifier, trained for the particular dataset. It must be possible to specify all classifier parameters as keyword arguments to the constructor. Recommended behavior: Derived classifiers should provide access to *values* -- i.e. that information that is finally used to determine the predicted class label. Michael: Maybe it works well if each classifier provides a 'values' state member. This variable is a list as long as and in same order as Dataset.uniquelabels (training data). Each item in the list corresponds to the likelyhood of a sample to belong to the respective class. However the semantics might differ between classifiers, e.g. kNN would probably store distances to class- neighbors, where PLR would store the raw function value of the logistic function. So in the case of kNN low is predictive and for PLR high is predictive. Don't know if there is the need to unify that. As the storage and/or computation of this information might be demanding its collection should be switchable and off be default. Nomenclature * predictions : corresponds to the quantized labels if classifier spits out labels by .predict() * values : might be different from predictions if a classifier's predict() makes a decision based on some internal value such as probability or a distance. """ # Dict that contains the parameters of a classifier. # This shall provide an interface to plug generic parameter optimizer # on all classifiers (e.g. grid- or line-search optimizer) # A dictionary is used because Michael thinks that access by name is nicer. # Additionally Michael thinks ATM that additional information might be # necessary in some situations (e.g. reasonably predefined parameter range, # minimal iteration stepsize, ...), therefore the value to each key should # also be a dict or we should use mvpa.misc.param.Parameter'... trained_labels = StateVariable(enabled=True, doc="Set of unique labels it has been trained on") trained_nsamples = StateVariable(enabled=True, doc="Number of samples it has been trained on") trained_dataset = StateVariable(enabled=False, doc="The dataset it has been trained on") training_confusion = StateVariable(enabled=False, doc="Confusion matrix of learning performance") predictions = StateVariable(enabled=True, doc="Most recent set of predictions") values = StateVariable(enabled=True, doc="Internal classifier values the most recent " + "predictions are based on") training_time = StateVariable(enabled=True, doc="Time (in seconds) which took classifier to train") predicting_time = StateVariable(enabled=True, doc="Time (in seconds) which took classifier to predict") feature_ids = StateVariable(enabled=False, doc="Feature IDS which were used for the actual training.") _clf_internals = [] """Describes some specifics about the classifier -- is that it is doing regression for instance....""" regression = Parameter(False, allowedtype='bool', doc="""Either to use 'regression' as regression. By default any Classifier-derived class serves as a classifier, so regression does binary classification.""", index=1001) # TODO: make it available only for actually retrainable classifiers retrainable = Parameter(False, allowedtype='bool', doc="""Either to enable retraining for 'retrainable' classifier.""", index=1002) def __init__(self, **kwargs): """Cheap initialization. """ ClassWithCollections.__init__(self, **kwargs) self.__trainednfeatures = None """Stores number of features for which classifier was trained. If None -- it wasn't trained at all""" self._setRetrainable(self.params.retrainable, force=True) if self.params.regression: for statevar in [ "trained_labels"]: #, "training_confusion" ]: if self.states.isEnabled(statevar): if __debug__: debug("CLF", "Disabling state %s since doing regression, " % statevar + "not classification") self.states.disable(statevar) self._summaryClass = RegressionStatistics else: self._summaryClass = ConfusionMatrix clf_internals = self._clf_internals if 'regression' in clf_internals and not ('binary' in clf_internals): # regressions are used as binary classifiers if not # asked to perform regression explicitly # We need a copy of the list, so we don't override class-wide self._clf_internals = clf_internals + ['binary'] # deprecate #self.__trainedidhash = None #"""Stores id of the dataset on which it was trained to signal #in trained() if it was trained already on the same dataset""" def __str__(self): if __debug__ and 'CLF_' in debug.active: return "%s / %s" % (repr(self), super(Classifier, self).__str__()) else: return repr(self) def __repr__(self, prefixes=[]): return super(Classifier, self).__repr__(prefixes=prefixes) def _pretrain(self, dataset): """Functionality prior to training """ # So we reset all state variables and may be free up some memory # explicitly params = self.params if not params.retrainable: self.untrain() else: # just reset the states, do not untrain self.states.reset() if not self.__changedData_isset: self.__resetChangedData() _changedData = self._changedData __idhashes = self.__idhashes __invalidatedChangedData = self.__invalidatedChangedData # if we don't know what was changed we need to figure # them out if __debug__: debug('CLF_', "IDHashes are %s" % (__idhashes)) # Look at the data if any was changed for key, data_ in (('traindata', dataset.samples), ('labels', dataset.labels)): _changedData[key] = self.__wasDataChanged(key, data_) # if those idhashes were invalidated by retraining # we need to adjust _changedData accordingly if __invalidatedChangedData.get(key, False): if __debug__ and not _changedData[key]: debug('CLF_', 'Found that idhash for %s was ' 'invalidated by retraining' % key) _changedData[key] = True # Look at the parameters for col in self._paramscols: changedParams = self._collections[col].whichSet() if len(changedParams): _changedData[col] = changedParams self.__invalidatedChangedData = {} # reset it on training if __debug__: debug('CLF_', "Obtained _changedData is %s" % (self._changedData)) if not params.regression and 'regression' in self._clf_internals \ and not self.states.isEnabled('trained_labels'): # if classifier internally does regression we need to have # labels it was trained on if __debug__: debug("CLF", "Enabling trained_labels state since it is needed") self.states.enable('trained_labels') def _posttrain(self, dataset): """Functionality post training For instance -- computing confusion matrix :Parameters: dataset : Dataset Data which was used for training """ if self.states.isEnabled('trained_labels'): self.trained_labels = dataset.uniquelabels self.trained_dataset = dataset self.trained_nsamples = dataset.nsamples # needs to be assigned first since below we use predict self.__trainednfeatures = dataset.nfeatures if __debug__ and 'CHECK_TRAINED' in debug.active: self.__trainedidhash = dataset.idhash if self.states.isEnabled('training_confusion') and \ not self.states.isSet('training_confusion'): # we should not store predictions for training data, # it is confusing imho (yoh) self.states._changeTemporarily( disable_states=["predictions"]) if self.params.retrainable: # we would need to recheck if data is the same, # XXX think if there is a way to make this all # efficient. For now, probably, retrainable # classifiers have no chance but not to use # training_confusion... sad self.__changedData_isset = False predictions = self.predict(dataset.samples) self.states._resetEnabledTemporarily() self.training_confusion = self._summaryClass( targets=dataset.labels, predictions=predictions) try: self.training_confusion.labels_map = dataset.labels_map except: pass if self.states.isEnabled('feature_ids'): self.feature_ids = self._getFeatureIds() def _getFeatureIds(self): """Virtual method to return feature_ids used while training Is not intended to be called anywhere but from _posttrain, thus classifier is assumed to be trained at this point """ # By default all features are used return range(self.__trainednfeatures) def summary(self): """Providing summary over the classifier""" s = "Classifier %s" % self states = self.states states_enabled = states.enabled if self.trained: s += "\n trained" if states.isSet('training_time'): s += ' in %.3g sec' % states.training_time s += ' on data with' if states.isSet('trained_labels'): s += ' labels:%s' % list(states.trained_labels) nsamples, nchunks = None, None if states.isSet('trained_nsamples'): nsamples = states.trained_nsamples if states.isSet('trained_dataset'): td = states.trained_dataset nsamples, nchunks = td.nsamples, len(td.uniquechunks) if nsamples is not None: s += ' #samples:%d' % nsamples if nchunks is not None: s += ' #chunks:%d' % nchunks s += " #features:%d" % self.__trainednfeatures if states.isSet('feature_ids'): s += ", used #features:%d" % len(states.feature_ids) if states.isSet('training_confusion'): s += ", training error:%.3g" % states.training_confusion.error else: s += "\n not yet trained" if len(states_enabled): s += "\n enabled states:%s" % ', '.join([str(states[x]) for x in states_enabled]) return s def clone(self): """Create full copy of the classifier. It might require classifier to be untrained first due to present SWIG bindings. TODO: think about proper re-implementation, without enrollment of deepcopy """ if __debug__: debug("CLF", "Cloning %s#%s" % (self, id(self))) try: return deepcopy(self) except: self.untrain() return deepcopy(self) def _train(self, dataset): """Function to be actually overridden in derived classes """ raise NotImplementedError def train(self, dataset): """Train classifier on a dataset Shouldn't be overridden in subclasses unless explicitly needed to do so """ if dataset.nfeatures == 0 or dataset.nsamples == 0: raise DegenerateInputError( "Cannot train classifier %s on degenerate data %s" % (self, dataset)) if __debug__: debug("CLF", "Training classifier %(clf)s on dataset %(dataset)s", msgargs={'clf':self, 'dataset':dataset}) self._pretrain(dataset) # remember the time when started training t0 = time.time() if dataset.nfeatures > 0: result = self._train(dataset) else: warning("Trying to train on dataset with no features present") if __debug__: debug("CLF", "No features present for training, no actual training " \ "is called") result = None self.training_time = time.time() - t0 self._posttrain(dataset) return result def _prepredict(self, data): """Functionality prior prediction """ if not ('notrain2predict' in self._clf_internals): # check if classifier was trained if that is needed if not self.trained: raise ValueError, \ "Classifier %s wasn't yet trained, therefore can't " \ "predict" % self nfeatures = data.shape[1] # check if number of features is the same as in the data # it was trained on if nfeatures != self.__trainednfeatures: raise ValueError, \ "Classifier %s was trained on data with %d features, " % \ (self, self.__trainednfeatures) + \ "thus can't predict for %d features" % nfeatures if self.params.retrainable: if not self.__changedData_isset: self.__resetChangedData() _changedData = self._changedData _changedData['testdata'] = \ self.__wasDataChanged('testdata', data) if __debug__: debug('CLF_', "prepredict: Obtained _changedData is %s" % (_changedData)) def _postpredict(self, data, result): """Functionality after prediction is computed """ self.predictions = result if self.params.retrainable: self.__changedData_isset = False def _predict(self, data): """Actual prediction """ raise NotImplementedError def predict(self, data): """Predict classifier on data Shouldn't be overridden in subclasses unless explicitly needed to do so. Also subclasses trying to call super class's predict should call _predict if within _predict instead of predict() since otherwise it would loop """ data = N.asarray(data) if __debug__: debug("CLF", "Predicting classifier %(clf)s on data %(data)s", msgargs={'clf':self, 'data':data.shape}) # remember the time when started computing predictions t0 = time.time() states = self.states # to assure that those are reset (could be set due to testing # post-training) states.reset(['values', 'predictions']) self._prepredict(data) if self.__trainednfeatures > 0 \ or 'notrain2predict' in self._clf_internals: result = self._predict(data) else: warning("Trying to predict using classifier trained on no features") if __debug__: debug("CLF", "No features were present for training, prediction is " \ "bogus") result = [None]*data.shape[0] states.predicting_time = time.time() - t0 if 'regression' in self._clf_internals and not self.params.regression: # We need to convert regression values into labels # XXX unify may be labels -> internal_labels conversion. #if len(self.trained_labels) != 2: # raise RuntimeError, "Ask developer to implement for " \ # "multiclass mapping from regression into classification" # must be N.array so we copy it to assign labels directly # into labels, or should we just recreate "result"??? result_ = N.array(result) if states.isEnabled('values'): # values could be set by now so assigning 'result' would # be misleading if not states.isSet('values'): states.values = result_.copy() else: # it might be the values are pointing to result at # the moment, so lets assure this silly way that # they do not overlap states.values = N.array(states.values, copy=True) trained_labels = self.trained_labels for i, value in enumerate(result): dists = N.abs(value - trained_labels) result[i] = trained_labels[N.argmin(dists)] if __debug__: debug("CLF_", "Converted regression result %(result_)s " "into labels %(result)s for %(self_)s", msgargs={'result_':result_, 'result':result, 'self_': self}) self._postpredict(data, result) return result # deprecate ??? def isTrained(self, dataset=None): """Either classifier was already trained. MUST BE USED WITH CARE IF EVER""" if dataset is None: # simply return if it was trained on anything return not self.__trainednfeatures is None else: res = (self.__trainednfeatures == dataset.nfeatures) if __debug__ and 'CHECK_TRAINED' in debug.active: res2 = (self.__trainedidhash == dataset.idhash) if res2 != res: raise RuntimeError, \ "isTrained is weak and shouldn't be relied upon. " \ "Got result %b although comparing of idhash says %b" \ % (res, res2) return res def _regressionIsBogus(self): """Some classifiers like BinaryClassifier can't be used for regression""" if self.params.regression: raise ValueError, "Regression mode is meaningless for %s" % \ self.__class__.__name__ + " thus don't enable it" @property def trained(self): """Either classifier was already trained""" return self.isTrained() def untrain(self): """Reset trained state""" self.__trainednfeatures = None # probably not needed... retrainable shouldn't be fully untrained # or should be??? #if self.params.retrainable: # # ??? don't duplicate the code ;-) # self.__idhashes = {'traindata': None, 'labels': None, # 'testdata': None, 'testtraindata': None} super(Classifier, self).reset() def getSensitivityAnalyzer(self, **kwargs): """Factory method to return an appropriate sensitivity analyzer for the respective classifier.""" raise NotImplementedError # # Methods which are needed for retrainable classifiers # def _setRetrainable(self, value, force=False): """Assign value of retrainable parameter If retrainable flag is to be changed, classifier has to be untrained. Also internal attributes such as _changedData, __changedData_isset, and __idhashes should be initialized if it becomes retrainable """ pretrainable = self.params['retrainable'] if (force or value != pretrainable.value) \ and 'retrainable' in self._clf_internals: if __debug__: debug("CLF_", "Setting retrainable to %s" % value) if 'meta' in self._clf_internals: warning("Retrainability is not yet crafted/tested for " "meta classifiers. Unpredictable behavior might occur") # assure that we don't drag anything behind if self.trained: self.untrain() states = self.states if not value and states.isKnown('retrained'): states.remove('retrained') states.remove('repredicted') if value: if not 'retrainable' in self._clf_internals: warning("Setting of flag retrainable for %s has no effect" " since classifier has no such capability. It would" " just lead to resources consumption and slowdown" % self) states.add(StateVariable(enabled=True, name='retrained', doc="Either retrainable classifier was retrained")) states.add(StateVariable(enabled=True, name='repredicted', doc="Either retrainable classifier was repredicted")) pretrainable.value = value # if retrainable we need to keep track of things if value: self.__idhashes = {'traindata': None, 'labels': None, 'testdata': None} #, 'testtraindata': None} if __debug__ and 'CHECK_RETRAIN' in debug.active: # ??? it is not clear though if idhash is faster than # simple comparison of (dataset != __traineddataset).any(), # but if we like to get rid of __traineddataset then we # should use idhash anyways self.__trained = self.__idhashes.copy() # just same Nones self.__resetChangedData() self.__invalidatedChangedData = {} elif 'retrainable' in self._clf_internals: #self.__resetChangedData() self.__changedData_isset = False self._changedData = None self.__idhashes = None if __debug__ and 'CHECK_RETRAIN' in debug.active: self.__trained = None def __resetChangedData(self): """For retrainable classifier we keep track of what was changed This function resets that dictionary """ if __debug__: debug('CLF_', 'Retrainable: resetting flags on either data was changed') keys = self.__idhashes.keys() + self._paramscols # we might like to just reinit values to False??? #_changedData = self._changedData #if isinstance(_changedData, dict): # for key in _changedData.keys(): # _changedData[key] = False self._changedData = dict(zip(keys, [False]*len(keys))) self.__changedData_isset = False def __wasDataChanged(self, key, entry, update=True): """Check if given entry was changed from what known prior. If so -- store only the ones needed for retrainable beastie """ idhash_ = idhash(entry) __idhashes = self.__idhashes changed = __idhashes[key] != idhash_ if __debug__ and 'CHECK_RETRAIN' in debug.active: __trained = self.__trained changed2 = entry != __trained[key] if isinstance(changed2, N.ndarray): changed2 = changed2.any() if changed != changed2 and not changed: raise RuntimeError, \ 'idhash found to be weak for %s. Though hashid %s!=%s %s, '\ 'values %s!=%s %s' % \ (key, idhash_, __idhashes[key], changed, entry, __trained[key], changed2) if update: __trained[key] = entry if __debug__ and changed: debug('CLF_', "Changed %s from %s to %s.%s" % (key, __idhashes[key], idhash_, ('','updated')[int(update)])) if update: __idhashes[key] = idhash_ return changed # def __updateHashIds(self, key, data): # """Is twofold operation: updates hashid if was said that it changed. # # or if it wasn't said that data changed, but CHECK_RETRAIN and it found # to be changed -- raise Exception # """ # # check_retrain = __debug__ and 'CHECK_RETRAIN' in debug.active # chd = self._changedData # # # we need to updated idhashes # if chd[key] or check_retrain: # keychanged = self.__wasDataChanged(key, data) # if check_retrain and keychanged and not chd[key]: # raise RuntimeError, \ # "Data %s found changed although wasn't " \ # "labeled as such" % key # # Additional API which is specific only for retrainable classifiers. # For now it would just puke if asked from not retrainable one. # # Might come useful and efficient for statistics testing, so if just # labels of dataset changed, then # self.retrain(dataset, labels=True) # would cause efficient retraining (no kernels recomputed etc) # and subsequent self.repredict(data) should be also quite fase ;-) def retrain(self, dataset, **kwargs): """Helper to avoid check if data was changed actually changed Useful if just some aspects of classifier were changed since its previous training. For instance if dataset wasn't changed but only classifier parameters, then kernel matrix does not have to be computed. Words of caution: classifier must be previously trained, results always should first be compared to the results on not 'retrainable' classifier (without calling retrain). Some additional checks are enabled if debug id 'CHECK_RETRAIN' is enabled, to guard against obvious mistakes. :Parameters: kwargs that is what _changedData gets updated with. So, smth like ``(params=['C'], labels=True)`` if parameter C and labels got changed """ # Note that it also demolishes anything for repredicting, # which should be ok in most of the cases if __debug__: if not self.params.retrainable: raise RuntimeError, \ "Do not use re(train,predict) on non-retrainable %s" % \ self if kwargs.has_key('params') or kwargs.has_key('kernel_params'): raise ValueError, \ "Retraining for changed params not working yet" self.__resetChangedData() # local bindings chd = self._changedData ichd = self.__invalidatedChangedData chd.update(kwargs) # mark for future 'train()' items which are explicitely # mentioned as changed for key, value in kwargs.iteritems(): if value: ichd[key] = True self.__changedData_isset = True # To check if we are not fooled if __debug__ and 'CHECK_RETRAIN' in debug.active: for key, data_ in (('traindata', dataset.samples), ('labels', dataset.labels)): # so it wasn't told to be invalid if not chd[key] and not ichd.get(key, False): if self.__wasDataChanged(key, data_, update=False): raise RuntimeError, \ "Data %s found changed although wasn't " \ "labeled as such" % key # TODO: parameters of classifiers... for now there is explicit # 'forbidance' above # Below check should be superseeded by check above, thus never occur. # remove later on ??? if __debug__ and 'CHECK_RETRAIN' in debug.active and self.trained \ and not self._changedData['traindata'] \ and self.__trained['traindata'].shape != dataset.samples.shape: raise ValueError, "In retrain got dataset with %s size, " \ "whenever previousely was trained on %s size" \ % (dataset.samples.shape, self.__trained['traindata'].shape) self.train(dataset) def repredict(self, data, **kwargs): """Helper to avoid check if data was changed actually changed Useful if classifier was (re)trained but with the same data (so just parameters were changed), so that it could be repredicted easily (on the same data as before) without recomputing for instance train/test kernel matrix. Should be used with caution and always compared to the results on not 'retrainable' classifier. Some additional checks are enabled if debug id 'CHECK_RETRAIN' is enabled, to guard against obvious mistakes. :Parameters: data data which is conventionally given to predict kwargs that is what _changedData gets updated with. So, smth like ``(params=['C'], labels=True)`` if parameter C and labels got changed """ if len(kwargs)>0: raise RuntimeError, \ "repredict for now should be used without params since " \ "it makes little sense to repredict if anything got changed" if __debug__ and not self.params.retrainable: raise RuntimeError, \ "Do not use retrain/repredict on non-retrainable classifiers" self.__resetChangedData() chd = self._changedData chd.update(**kwargs) self.__changedData_isset = True # check if we are attempted to perform on the same data if __debug__ and 'CHECK_RETRAIN' in debug.active: for key, data_ in (('testdata', data),): # so it wasn't told to be invalid #if not chd[key]:# and not ichd.get(key, False): if self.__wasDataChanged(key, data_, update=False): raise RuntimeError, \ "Data %s found changed although wasn't " \ "labeled as such" % key # Should be superseded by above # remove in future??? if __debug__ and 'CHECK_RETRAIN' in debug.active \ and not self._changedData['testdata'] \ and self.__trained['testdata'].shape != data.shape: raise ValueError, "In repredict got dataset with %s size, " \ "whenever previously was trained on %s size" \ % (data.shape, self.__trained['testdata'].shape) return self.predict(data) # TODO: callback into retrainable parameter #retrainable = property(fget=_getRetrainable, fset=_setRetrainable, # doc="Specifies either classifier should be retrainable") pymvpa-0.4.8/mvpa/clfs/blr.py000066400000000000000000000137421174541445200161000ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Copyright (c) 2008 Emanuele Olivetti # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Bayesian Linear Regression (BLR).""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.misc.state import StateVariable from mvpa.clfs.base import Classifier if __debug__: from mvpa.misc import debug class BLR(Classifier): """Bayesian Linear Regression (BLR). """ predicted_variances = StateVariable(enabled=False, doc="Variance per each predicted value") log_marginal_likelihood = StateVariable(enabled=False, doc="Log Marginal Likelihood") _clf_internals = [ 'blr', 'regression', 'linear' ] def __init__(self, sigma_p = None, sigma_noise=1.0, **kwargs): """Initialize a BLR regression analysis. :Parameters: sigma_noise : float the standard deviation of the gaussian noise. (Defaults to 0.1) """ # init base class first Classifier.__init__(self, **kwargs) # pylint happiness self.w = None # It does not make sense to calculate a confusion matrix for a # BLR: self.states.enable('training_confusion', False) # set the prior on w: N(0,sigma_p) , specifying the covariance # sigma_p on w: self.sigma_p = sigma_p # set noise level: self.sigma_noise = sigma_noise self.predicted_variances = None self.log_marginal_likelihood = None self.labels = None pass def __repr__(self): """String summary of the object """ return """BLR(w=%s, sigma_p=%s, sigma_noise=%f, enable_states=%s)""" % \ (self.w, self.sigma_p, self.sigma_noise, str(self.states.enabled)) def compute_log_marginal_likelihood(self): """ Compute log marginal likelihood using self.train_fv and self.labels. """ # log_marginal_likelihood = None # return log_marginal_likelihood raise NotImplementedError def _train(self, data): """Train regression using `data` (`Dataset`). """ # provide a basic (i.e. identity matrix) and correct prior # sigma_p, if not provided before or not compliant to 'data': if self.sigma_p == None: # case: not provided self.sigma_p = N.eye(data.samples.shape[1]+1) elif self.sigma_p.shape[1] != (data.samples.shape[1]+1): # case: wrong dimensions self.sigma_p = N.eye(data.samples.shape[1]+1) else: # ...then everything is OK :) pass # add one fake column of '1.0' to model the intercept: self.samples_train = N.hstack([data.samples,N.ones((data.samples.shape[0],1))]) if type(self.sigma_p)!=type(self.samples_train): # if sigma_p is a number... self.sigma_p = N.eye(self.samples_train.shape[1])*self.sigma_p # convert in matrix pass self.A_inv = N.linalg.inv(1.0/(self.sigma_noise**2) * N.dot(self.samples_train.T, self.samples_train) + N.linalg.inv(self.sigma_p)) self.w = 1.0/(self.sigma_noise**2) * N.dot(self.A_inv, N.dot(self.samples_train.T, data.labels)) pass def _predict(self, data): """ Predict the output for the provided data. """ data = N.hstack([data,N.ones((data.shape[0],1),dtype=data.dtype)]) predictions = N.dot(data,self.w) if self.states.isEnabled('predicted_variances'): # do computation only if state variable was enabled self.predicted_variances = N.dot(data, N.dot(self.A_inv, data.T)).diagonal()[:,N.newaxis] return predictions def set_hyperparameters(self,*args): """ Set hyperparameters' values. Note that this is a list so the order of the values is important. """ args=args[0] self.sigma_noise = args[0] if len(args)>1: self.sigma_p = N.array(args[1:]) # XXX check if this is ok pass return pass if __name__ == "__main__": import pylab pylab.close("all") pylab.ion() from mvpa.misc.data_generators import linear_awgn train_size = 10 test_size = 100 F = 1 # dimensions of the dataset # N.random.seed(1) slope = N.random.rand(F) intercept = N.random.rand(1) print "True slope:",slope print "True intercept:",intercept dataset_train = linear_awgn(train_size, intercept=intercept, slope=slope) # print dataset.labels dataset_test = linear_awgn(test_size, intercept=intercept, slope=slope, flat=True) regression = True logml = False b = BLR(sigma_p=N.eye(F+1), sigma_noise=0.1, regression=True) b.states.enable("predicted_variances") b.train(dataset_train) predictions = b.predict(dataset_test.samples) print "Predicted slope and intercept:",b.w if F==1: pylab.plot(dataset_train.samples,dataset_train.labels,"ro",label="train") pylab.plot(dataset_test.samples,predictions,"b-",label="prediction") pylab.plot(dataset_test.samples,predictions+N.sqrt(b.predicted_variances),"b--",label="pred(+/-)std") pylab.plot(dataset_test.samples,predictions-N.sqrt(b.predicted_variances),"b--",label=None) # pylab.plot(dataset_test.samples,dataset_test.labels,"go") pylab.legend() pylab.xlabel("samples") pylab.ylabel("labels") pylab.title("Bayesian Linear Regression on dataset 'linear_AWGN'") pass pymvpa-0.4.8/mvpa/clfs/distance.py000066400000000000000000000346071174541445200171160ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Distance functions to be used in kernels and elsewhere """ __docformat__ = 'restructuredtext' # TODO: Make all distance functions accept 2D matrices samples x features # and compute the distance matrix between all samples. They would # need to be capable of dealing with unequal number of rows! # If we would have that, we could make use of them in kNN. import numpy as N from mvpa.base import externals if __debug__: from mvpa.base import debug, warning def cartesianDistance(a, b): """Return Cartesian distance between a and b """ return N.linalg.norm(a-b) def absminDistance(a, b): """Returns dinstance max(\|a-b\|) XXX There must be better name! XXX Actually, why is it absmin not absmax? Useful to select a whole cube of a given "radius" """ return max(abs(a-b)) def manhattenDistance(a, b): """Return Manhatten distance between a and b """ return sum(abs(a-b)) def mahalanobisDistance(x, y=None, w=None): """Calculate Mahalanobis distance of the pairs of points. :Parameters: `x` first list of points. Rows are samples, columns are features. `y` second list of points (optional) `w` : N.ndarray optional inverse covariance matrix between the points. It is computed if not given Inverse covariance matrix can be calculated with the following w = N.linalg.solve(N.cov(x.T), N.identity(x.shape[1])) or w = N.linalg.inv(N.cov(x.T)) """ # see if pairwise between two matrices or just within a single matrix if y is None: # pairwise distances of single matrix # calculate the inverse correlation matrix if necessary if w is None: w = N.linalg.inv(N.cov(x.T)) # get some shapes of the data mx, nx = x.shape #mw, nw = w.shape # allocate for the matrix to fill d = N.zeros((mx, mx), dtype=N.float32) for i in range(mx-1): # get the current row to compare xi = x[i, :] # replicate the row xi = xi[N.newaxis, :].repeat(mx-i-1, axis=0) # take the distance between all the matrices dc = x[i+1:mx, :] - xi # scale the distance by the correlation d[i+1:mx, i] = N.real(N.sum((N.inner(dc, w) * N.conj(dc)), 1)) # fill the other direction of the matrix d[i, i+1:mx] = d[i+1:mx, i].T else: # is between two matrixes # calculate the inverse correlation matrix if necessary if w is None: # calculate over all points w = N.linalg.inv(N.cov(N.concatenate((x, y)).T)) # get some shapes of the data mx, nx = x.shape my, ny = y.shape # allocate for the matrix to fill d = N.zeros((mx, my), dtype=N.float32) # loop over shorter of two dimensions if mx <= my: # loop over the x patterns for i in range(mx): # get the current row to compare xi = x[i, :] # replicate the row xi = xi[N.newaxis, :].repeat(my, axis=0) # take the distance between all the matrices dc = xi - y # scale the distance by the correlation d[i, :] = N.real(N.sum((N.inner(dc, w) * N.conj(dc)), 1)) else: # loop over the y patterns for j in range(my): # get the current row to compare yj = y[j, :] # replicate the row yj = yj[N.newaxis, :].repeat(mx, axis=0) # take the distance between all the matrices dc = x - yj # scale the distance by the correlation d[:, j] = N.real(N.sum((N.inner(dc, w) * N.conj(dc)), 1)) # return the dist return N.sqrt(d) def squared_euclidean_distance(data1, data2=None, weight=None): """Compute weighted euclidean distance matrix between two datasets. :Parameters: data1 : N.ndarray first dataset data2 : N.ndarray second dataset. If None, compute the euclidean distance between the first dataset versus itself. (Defaults to None) weight : N.ndarray vector of weights, each one associated to each dimension of the dataset (Defaults to None) """ if __debug__: # check if both datasets are floating point if not N.issubdtype(data1.dtype, 'f') \ or (data2 is not None and not N.issubdtype(data2.dtype, 'f')): warning('Computing euclidean distance on integer data ' \ 'is not supported.') # removed for efficiency (see below) #if weight is None: # weight = N.ones(data1.shape[1], 'd') # unitary weight # In the following you can find faster implementations of this # basic code: # # squared_euclidean_distance_matrix = \ # N.zeros((data1.shape[0], data2.shape[0]), 'd') # for i in range(size1): # for j in range(size2): # squared_euclidean_distance_matrix[i, j] = \ # ((data1[i, :]-data2[j, :])**2*weight).sum() # pass # pass # Fast computation of distance matrix in Python+NumPy, # adapted from Bill Baxter's post on [numpy-discussion]. # Basically: (x-y)**2*w = x*w*x - 2*x*w*y + y*y*w # based on value of weight and data2 we might save on computation # and resources if weight is None: data1w = data1 if data2 is None: data2, data2w = data1, data1w else: data2w = data2 else: data1w = data1 * weight if data2 is None: data2, data2w = data1, data1w else: data2w = data2 * weight squared_euclidean_distance_matrix = \ (data1w * data1).sum(1)[:, None] \ -2 * N.dot(data1w, data2.T) \ + (data2 * data2w).sum(1) # correction to some possible numerical instabilities: less0 = squared_euclidean_distance_matrix < 0 if __debug__ and 'CHECK_STABILITY' in debug.active: less0num = N.sum(less0) if less0num > 0: norm0 = N.linalg.norm(squared_euclidean_distance_matrix[less0]) totalnorm = N.linalg.norm(squared_euclidean_distance_matrix) if totalnorm != 0 and norm0 / totalnorm > 1e-8: warning("Found %d elements out of %d unstable (<0) in " \ "computation of squared_euclidean_distance_matrix. " \ "Their norm is %s when total norm is %s" % \ (less0num, N.sum(less0.shape), norm0, totalnorm)) squared_euclidean_distance_matrix[less0] = 0 return squared_euclidean_distance_matrix def oneMinusCorrelation(X, Y): """Return one minus the correlation matrix between the rows of two matrices. This functions computes a matrix of correlations between all pairs of rows of two matrices. Unlike NumPy's corrcoef() this function will only considers pairs across matrices and not within, e.g. both elements of a pair never have the same source matrix as origin. Both arrays need to have the same number of columns. :Parameters: X: 2D-array Y: 2D-array Example: >>> X = N.random.rand(20,80) >>> Y = N.random.rand(5,80) >>> C = oneMinusCorrelation(X, Y) >>> print C.shape (20, 5) """ # check if matrices have same number of columns if __debug__: if not X.shape[1] == Y.shape[1]: raise ValueError, 'correlation() requires to matrices with the ' \ 'same #columns (Got: %s and %s)' \ % (X.shape, Y.shape) # zscore each sample/row Zx = X - N.c_[X.mean(axis=1)] Zx /= N.c_[X.std(axis=1)] Zy = Y - N.c_[Y.mean(axis=1)] Zy /= N.c_[Y.std(axis=1)] C = ((N.matrix(Zx) * N.matrix(Zy).T) / Zx.shape[1]).A # let it behave like a distance, i.e. smaller is closer C -= 1.0 return N.abs(C) def pnorm_w_python(data1, data2=None, weight=None, p=2, heuristic='auto', use_sq_euclidean=True): """Weighted p-norm between two datasets (pure Python implementation) ||x - x'||_w = (\sum_{i=1...N} (w_i*|x_i - x'_i|)**p)**(1/p) :Parameters: data1 : N.ndarray First dataset data2 : N.ndarray or None Optional second dataset weight : N.ndarray or None Optional weights per 2nd dimension (features) p Power heuristic : basestring Which heuristic to use: * 'samples' -- python sweep over 0th dim * 'features' -- python sweep over 1st dim * 'auto' decides automatically. If # of features (shape[1]) is much larger than # of samples (shape[0]) -- use 'samples', and use 'features' otherwise use_sq_euclidean : bool Either to use squared_euclidean_distance_matrix for computation if p==2 """ if weight == None: weight = N.ones(data1.shape[1], 'd') pass if p == 2 and use_sq_euclidean: return N.sqrt(squared_euclidean_distance(data1=data1, data2=data2, weight=weight**2)) if data2 == None: data2 = data1 pass S1,F1 = data1.shape[:2] S2,F2 = data2.shape[:2] # sanity check if not (F1==F2==weight.size): raise ValueError, \ "Datasets should have same #columns == #weights. Got " \ "%d %d %d" % (F1, F2, weight.size) d = N.zeros((S1, S2), 'd') # Adjust local functions for specific p values # pf - power function # af - after function if p == 1: pf = lambda x:x af = lambda x:x else: pf = lambda x:x ** p af = lambda x:x ** (1.0/p) # heuristic 'auto' might need to be adjusted if heuristic == 'auto': heuristic = {False: 'samples', True: 'features'}[(F1/S1) < 500] if heuristic == 'features': # Efficient implementation if the feature size is little. for NF in range(F1): d += pf(N.abs(N.subtract.outer(data1[:,NF], data2[:,NF]))*weight[NF]) pass elif heuristic == 'samples': # Efficient implementation if the feature size is much larger # than number of samples for NS in xrange(S1): dfw = pf(N.abs(data1[NS] - data2) * weight) d[NS] = N.sum(dfw, axis=1) pass else: raise ValueError, "Unknown heuristic '%s'. Need one of " \ "'auto', 'samples', 'features'" % heuristic return af(d) if externals.exists('weave'): from scipy import weave from scipy.weave import converters def pnorm_w(data1, data2=None, weight=None, p=2): """Weighted p-norm between two datasets (scipy.weave implementation) ||x - x'||_w = (\sum_{i=1...N} (w_i*|x_i - x'_i|)**p)**(1/p) :Parameters: data1 : N.ndarray First dataset data2 : N.ndarray or None Optional second dataset weight : N.ndarray or None Optional weights per 2nd dimension (features) p Power """ if weight == None: weight = N.ones(data1.shape[1], 'd') pass S1, F1 = data1.shape[:2] code = "" if data2 == None or id(data1)==id(data2): if not (F1==weight.size): raise ValueError, \ "Dataset should have same #columns == #weights. Got " \ "%d %d" % (F1, weight.size) F = F1 d = N.zeros((S1, S1), 'd') try: code_peritem = \ {1.0 : "tmp = tmp+weight(t)*fabs(data1(i,t)-data1(j,t))", 2.0 : "tmp2 = weight(t)*(data1(i,t)-data1(j,t));" \ " tmp = tmp + tmp2*tmp2"}[p] except KeyError: code_peritem = "tmp = tmp+pow(weight(t)*fabs(data1(i,t)-data1(j,t)),p)" code = """ int i,j,t; double tmp, tmp2; for (i=0; i` 'Regularization and Variable Selection via the Elastic Net' Journal of the Royal Statistical Society, Series B, 67, 301-320. Similar to SMLR, it performs a feature selection while performing classification, but instead of starting with all features, it starts with none and adds them in, which is similar to boosting. Unlike LARS it has both L1 and L2 regularization (instead of just L1). This means that while it tries to sparsify the features it also tries to keep redundant features, which may be very very good for fMRI classification. In the true nature of the PyMVPA framework, this algorithm was actually implemented in R by Zou and Hastie and wrapped via RPy. To make use of ENET, you must have R and RPy installed as well as both the lars and elasticnet contributed package. You can install the R and RPy with the following command on Debian-based machines: sudo aptitude install python-rpy python-rpy-doc r-base-dev You can then install the lars and elasticnet package by running R as root and calling: install.packages() """ _clf_internals = [ 'enet', 'regression', 'linear', 'has_sensitivity', 'does_feature_selection' ] def __init__(self, lm=1.0, trace=False, normalize=True, intercept=True, max_steps=None, **kwargs): """ Initialize ENET. See the help in R for further details on the following parameters: :Parameters: lm : float Penalty parameter. 0 will perform LARS with no ridge regression. Default is 1.0. trace : boolean Whether to print progress in R as it works. normalize : boolean Whether to normalize the L2 Norm. intercept : boolean Whether to add a non-penalized intercept to the model. max_steps : None or int If not None, specify the total number of iterations to run. Each iteration adds a feature, but leaving it none will add until convergence. """ # init base class first Classifier.__init__(self, **kwargs) # set up the params self.__lm = lm self.__normalize = normalize self.__intercept = intercept self.__trace = trace self.__max_steps = max_steps # pylint friendly initializations self.__weights = None """The beta weights for each feature.""" self.__trained_model = None """The model object after training that will be used for predictions.""" # It does not make sense to calculate a confusion matrix for a # regression self.states.enable('training_confusion', False) def __repr__(self): """String summary of the object """ return """ENET(lm=%s, normalize=%s, intercept=%s, trace=%s, max_steps=%s, enable_states=%s)""" % \ (self.__lm, self.__normalize, self.__intercept, self.__trace, self.__max_steps, str(self.states.enabled)) def _train(self, data): """Train the classifier using `data` (`Dataset`). """ if self.__max_steps is None: # train without specifying max_steps self.__trained_model = rpy.r.enet(data.samples, data.labels[:,N.newaxis], self.__lm, normalize=self.__normalize, intercept=self.__intercept, trace=self.__trace) else: # train with specifying max_steps self.__trained_model = rpy.r.enet(data.samples, data.labels[:,N.newaxis], self.__lm, normalize=self.__normalize, intercept=self.__intercept, trace=self.__trace, max_steps=self.__max_steps) # find the step with the lowest Cp (risk) # it is often the last step if you set a max_steps # must first convert dictionary to array # Cp_vals = N.asarray([self.__trained_model['Cp'][str(x)] # for x in range(len(self.__trained_model['Cp']))]) # self.__lowest_Cp_step = Cp_vals.argmin() # set the weights to the last step self.__weights = N.zeros(data.nfeatures,dtype=self.__trained_model['beta.pure'].dtype) ind = N.asarray(self.__trained_model['allset'])-1 self.__weights[ind] = self.__trained_model['beta.pure'][-1,:] # # set the weights to the final state # self.__weights = self.__trained_model['beta'][-1,:] def _predict(self, data): """Predict the output for the provided data. """ # predict with the final state (i.e., the last step) res = rpy.r.predict_enet(self.__trained_model, data, mode='step', type='fit', s=self.__trained_model['beta.pure'].shape[0]) #s=self.__lowest_Cp_step) fit = N.asarray(res['fit']) if len(fit.shape) == 0: # if we just got 1 sample with a scalar fit = fit.reshape( (1,) ) return fit def _getFeatureIds(self): """Return ids of the used features """ return N.where(N.abs(self.__weights)>0)[0] def getSensitivityAnalyzer(self, **kwargs): """Returns a sensitivity analyzer for ENET.""" return ENETWeights(self, **kwargs) weights = property(lambda self: self.__weights) class ENETWeights(Sensitivity): """`SensitivityAnalyzer` that reports the weights ENET trained on a given `Dataset`. """ _LEGAL_CLFS = [ ENET ] def _call(self, dataset=None): """Extract weights from ENET classifier. ENET always has weights available, so nothing has to be computed here. """ clf = self.clf weights = clf.weights if __debug__: debug('ENET', "Extracting weights for ENET - "+ "Result: min=%f max=%f" %\ (N.min(weights), N.max(weights))) return weights pymvpa-0.4.8/mvpa/clfs/glmnet.py000066400000000000000000000311421174541445200166010ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """GLM-Net (GLMNET) regression classifier.""" __docformat__ = 'restructuredtext' # system imports import numpy as N import mvpa.base.externals as externals # do conditional to be able to build module reference if externals.exists('rpy', raiseException=True) and \ externals.exists('glmnet', raiseException=True): import rpy rpy.r.library('glmnet') # local imports from mvpa.clfs.base import Classifier from mvpa.measures.base import Sensitivity from mvpa.misc.param import Parameter if __debug__: from mvpa.base import debug def _label2indlist(labels, ulabels): """Convert labels to list of unique label indicies starting at 1. """ # allocate for the new one-of-M labels new_labels = N.zeros(len(labels), dtype=N.int) # loop and convert to one-of-M for i, c in enumerate(ulabels): new_labels[labels == c] = i+1 return [str(l) for l in new_labels.tolist()] class _GLMNET(Classifier): """GLM-Net regression (GLMNET) `Classifier`. GLM-Net is the model selection algorithm from: Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent. http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf To make use of GLMNET, you must have R and RPy installed as well as both the glmnet contributed package. You can install the R and RPy with the following command on Debian-based machines: sudo aptitude install python-rpy python-rpy-doc r-base-dev You can then install the glmnet package by running R as root and calling: install.packages() """ _clf_internals = [ 'glmnet', 'linear', 'has_sensitivity', 'does_feature_selection' ] family = Parameter('gaussian', allowedtype='basestring', choices=["gaussian", "multinomial"], doc="""Response type of your labels (either 'gaussian' for regression or 'multinomial' for classification).""") alpha = Parameter(1.0, min=0.01, max=1.0, allowedtype='float', doc="""The elastic net mixing parameter. Larger values will give rise to less L2 regularization, with alpha=1.0 as a true LASSO penalty.""") nlambda = Parameter(100, allowedtype='int', min=1, doc="""Maximum number of lambdas to calculate before stopping if not converged.""") standardize = Parameter(True, allowedtype='bool', doc="""Whether to standardize the variables prior to fitting.""") thresh = Parameter(1e-4, min=1e-10, max=1.0, allowedtype='float', doc="""Convergence threshold for coordinate descent.""") pmax = Parameter(None, min=1, allowedtype='None or int', doc="""Limit the maximum number of variables ever to be nonzero.""") maxit = Parameter(100, min=10, allowedtype='int', doc="""Maximum number of outer-loop iterations for 'multinomial' families.""") model_type = Parameter('covariance', allowedtype='basestring', choices=["covariance", "naive"], doc="""'covariance' saves all inner-products ever computed and can be much faster than 'naive'. The latter can be more efficient for nfeatures>>nsamples situations.""") def __init__(self, **kwargs): """ Initialize GLM-Net. See the help in R for further details on the parameters """ # init base class first Classifier.__init__(self, **kwargs) # pylint friendly initializations self.__weights = None """The beta weights for each feature.""" self.__trained_model = None """The model object after training that will be used for predictions.""" self.__trained_model_dict = None """The model object in dict form after training that will be used for predictions.""" # It does not make sense to calculate a confusion matrix for a # regression # YOH: sorry for not clear semantics... pyvmpa is evolving, # regressions will store RegressionStatistics within the # confusion, so it is ok to have training_confusion # enabled, but .regression parameter needs to be set to true, # therefor above conditioning and tuneup of kwargs in _R #if self.params.family == 'gaussian': # self.states.enable('training_confusion', False) # def __repr__(self): # """String summary of the object # """ # return """ENET(lm=%s, normalize=%s, intercept=%s, trace=%s, max_steps=%s, enable_states=%s)""" % \ # (self.__lm, # self.__normalize, # self.__intercept, # self.__trace, # self.__max_steps, # str(self.states.enabled)) def _train(self, dataset): """Train the classifier using `data` (`Dataset`). """ # process the labels based on the model family if self.params.family == 'gaussian': # do nothing, just save the labels as a list labels = dataset.labels.tolist() pass elif self.params.family == 'multinomial': # turn lables into list of range values starting at 1 labels = _label2indlist(dataset.labels, dataset.uniquelabels) self.__ulabels = dataset.uniquelabels.copy() # process the pmax if self.params.pmax is None: # set it to the num features pmax = dataset.nfeatures else: # use the value pmax = self.params.pmax # train with specifying max_steps # must not convert trained model to dict or we'll get segfault rpy.set_default_mode(rpy.NO_CONVERSION) self.__trained_model = rpy.r.glmnet(dataset.samples, labels, family=self.params.family, alpha=self.params.alpha, nlambda=self.params.nlambda, standardize=self.params.standardize, thresh=self.params.thresh, pmax=pmax, maxit=self.params.maxit, type=self.params.model_type) rpy.set_default_mode(rpy.NO_DEFAULT) # get a dict version of the model self.__trained_model_dict = rpy.r.as_list(self.__trained_model) # save the lambda of last step self.__last_lambda = self.__trained_model_dict['lambda'][-1] # set the weights to the last step weights = rpy.r.coef(self.__trained_model, s=self.__last_lambda) if self.params.family == 'multinomial': self.__weights = N.hstack([rpy.r.as_matrix(weights[str(i)])[1:] for i in range(1,len(self.__ulabels)+1)]) elif self.params.family == 'gaussian': self.__weights = rpy.r.as_matrix(weights)[1:] def _predict(self, data): """ Predict the output for the provided data. """ # predict with standard method values = rpy.r.predict(self.__trained_model, newx=data, type='link', s=self.__last_lambda) # predict with the final state (i.e., the last step) classes = None if self.params.family == 'multinomial': # remove last dimension of values values = values[:,:,0] # get the classes too (they are 1-indexed) rpy.set_default_mode(rpy.NO_CONVERSION) class_ind = rpy.r.predict(self.__trained_model, newx=data, type='class', s=self.__last_lambda) rpy.set_default_mode(rpy.NO_DEFAULT) class_ind = rpy.r.as_vector(class_ind) # convert the strings to ints and subtract 1 class_ind = N.array([int(float(c))-1 for c in class_ind]) # convert to actual labels classes = self.__ulabels[class_ind] else: # is gaussian, so just remove last dim of values values = values[:,0] # values need to be set anyways if values state is enabled self.values = values if classes is not None: # set the values and return none return classes else: # return the values as predictions return values def _getFeatureIds(self): """Return ids of the used features """ return N.where(N.abs(self.__weights)>0)[0] def getSensitivityAnalyzer(self, **kwargs): """Returns a sensitivity analyzer for GLMNET.""" return GLMNETWeights(self, **kwargs) weights = property(lambda self: self.__weights) class GLMNETWeights(Sensitivity): """`SensitivityAnalyzer` that reports the weights GLMNET trained on a given `Dataset`. """ _LEGAL_CLFS = [ _GLMNET ] def _call(self, dataset=None): """Extract weights from GLMNET classifier. GLMNET always has weights available, so nothing has to be computed here. """ clf = self.clf weights = clf.weights if __debug__: debug('GLMNET', "Extracting weights for GLMNET - "+ "Result: min=%f max=%f" %\ (N.min(weights), N.max(weights))) return weights class GLMNET_R(_GLMNET): """ GLM-NET Gaussian Regression Classifier. This is the GLM-NET algorithm from Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent. http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf parameterized to be a regression. See GLMNET_C for the multinomial classifier version. """ _clf_internals = _GLMNET._clf_internals + ['regression'] def __init__(self, **kwargs): """ Initialize GLM-Net. See the help in R for further details on the parameters """ # make sure they didn't specify incompatible model regr_family = 'gaussian' family = kwargs.pop('family', regr_family).lower() if family != regr_family: warning('You specified the parameter family=%s, but we ' 'force this to be "%s" for regression.' % (family, regr_family)) family = regr_family regression = kwargs.pop('regression', None) if regression is None: # enforce regression by default, but regression might be used as # a binary classifier as well, so leave it as is if it was # explicitly specified regression = True # init base class first, forcing regression _GLMNET.__init__(self, family=family, regression=regression, **kwargs) class GLMNET_C(_GLMNET): """ GLM-NET Multinomial Classifier. This is the GLM-NET algorithm from Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent. http://www-stat.stanford.edu/~hastie/Papers/glmnet.pdf parameterized to be a multinomial classifier. See GLMNET_Class for the gaussian regression version. """ _clf_internals = _GLMNET._clf_internals + ['multiclass', 'binary'] def __init__(self, **kwargs): """ Initialize GLM-Net multinomial classifier. See the help in R for further details on the parameters """ # make sure they didn't specify regression if not kwargs.pop('family', None) is None: warning('You specified the "family" parameter, but we ' 'force this to be "multinomial".') # init base class first, forcing regression _GLMNET.__init__(self, family='multinomial', **kwargs) pymvpa-0.4.8/mvpa/clfs/gnb.py000066400000000000000000000264651174541445200160750ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Gaussian Naive Bayes Classifier EXPERIMENTAL ;) Basic implementation of Gaussian Naive Bayes classifier. """ __docformat__ = 'restructuredtext' import numpy as N from numpy import ones, zeros, sum, abs, isfinite, dot from mvpa.base import warning, externals from mvpa.clfs.base import Classifier from mvpa.misc.param import Parameter from mvpa.misc.state import StateVariable #from mvpa.measures.base import Sensitivity #from mvpa.misc.transformers import SecondAxisMaxOfAbs # XXX ? if __debug__: from mvpa.base import debug class GNB(Classifier): """Gaussian Naive Bayes `Classifier`. GNB is a probabilistic classifier relying on Bayes rule to estimate posterior probabilities of labels given the data. Naive assumption in it is an independence of the features, which allows to combine per-feature likelihoods by a simple product across likelihoods of"independent" features. See http://en.wikipedia.org/wiki/Naive_bayes for more information. Provided here implementation is "naive" on its own -- various aspects could be improved, but has its own advantages: - implementation is simple and straightforward - no data copying while considering samples of specific class - provides alternative ways to assess prior distribution of the classes in the case of unbalanced sets of samples (see parameter `prior`) - makes use of NumPy broadcasting mechanism, so should be relatively efficient - should work for any dimensionality of samples GNB is listed both as linear and non-linear classifier, since specifics of separating boundary depends on the data and/or parameters: linear separation is achieved whenever samples are balanced (or prior='uniform') and features have the same variance across different classes (i.e. if common_variance=True to enforce this). Whenever decisions are made based on log-probabilities (parameter logprob=True, which is the default), then state variable `values` if enabled would also contain log-probabilities. Also mention that normalization by the evidence (P(data)) is disabled by default since it has no impact per se on classification decision. You might like set parameter normalize to True if you want to access properly scaled probabilities in `values` state variable. """ # XXX decide when should we set corresponding internal, # since it depends actually on the data -- no clear way, # so set both linear and non-linear _clf_internals = [ 'gnb', 'linear', 'non-linear', 'binary', 'multiclass' ] common_variance = Parameter(False, allowedtype='bool', doc="""Use the same variance across all classes.""") prior = Parameter('laplacian_smoothing', allowedtype='basestring', choices=["laplacian_smoothing", "uniform", "ratio"], doc="""How to compute prior distribution.""") logprob = Parameter(True, allowedtype='bool', doc="""Operate on log probabilities. Preferable to avoid unneeded exponentiation and loose precision. If set, logprobs are stored in `values`""") normalize = Parameter(False, allowedtype='bool', doc="""Normalize (log)prob by P(data). Requires probabilities thus for `logprob` case would require exponentiation of 'logprob's, thus disabled by default since does not impact classification output. """) def __init__(self, **kwargs): """Initialize an GNB classifier. """ # init base class first Classifier.__init__(self, **kwargs) # pylint friendly initializations self.means = None """Means of features per class""" self.variances = None """Variances per class, but "vars" is taken ;)""" self.ulabels = None """Labels classifier was trained on""" self.priors = None """Class probabilities""" # Define internal state of classifier self._norm_weight = None def _train(self, dataset): """Train the classifier using `dataset` (`Dataset`). """ params = self.params # get the dataset information into easy vars X = dataset.samples labels = dataset.labels self.ulabels = ulabels = dataset.uniquelabels nlabels = len(ulabels) #params = self.params # for quicker access label2index = dict((l, il) for il, l in enumerate(ulabels)) # set the feature dimensions nsamples = len(X) s_shape = X.shape[1:] # shape of a single sample self.means = means = \ N.zeros((nlabels, ) + s_shape) self.variances = variances = \ N.zeros((nlabels, ) + s_shape) # degenerate dimension are added for easy broadcasting later on nsamples_per_class = N.zeros((nlabels,) + (1,)*len(s_shape)) # Estimate means and number of samples per each label for s, l in zip(X, labels): il = label2index[l] # index of the label nsamples_per_class[il] += 1 means[il] += s # helped function - squash all dimensions but 1 squash = lambda x: N.atleast_1d(x.squeeze()) ## Actually compute the means non0labels = (squash(nsamples_per_class) != 0) means[non0labels] /= nsamples_per_class[non0labels] # Estimate variances # better loop than repmat! ;) for s, l in zip(X, labels): il = label2index[l] # index of the label variances[il] += (s - means[il])**2 ## Actually compute the variances if params.common_variance: # we need to get global std cvar = N.sum(variances, axis=0)/nsamples # sum across labels # broadcast the same variance across labels variances[:] = cvar else: variances[non0labels] /= nsamples_per_class[non0labels] # Store prior probabilities prior = params.prior if prior == 'uniform': self.priors = N.ones((nlabels,))/nlabels elif prior == 'laplacian_smoothing': self.priors = (1+squash(nsamples_per_class)) \ / (float(nsamples) + nlabels) elif prior == 'ratio': self.priors = squash(nsamples_per_class) / float(nsamples) else: raise ValueError( "No idea on how to handle '%s' way to compute priors" % params.prior) # Precompute and store weighting coefficient for Gaussian if params.logprob: # it would be added to exponent self._norm_weight = -0.5 * N.log(2*N.pi*variances) else: self._norm_weight = 1.0/N.sqrt(2*N.pi*variances) if __debug__ and 'GNB' in debug.active: debug('GNB', "training finished on data.shape=%s " % (X.shape, ) + "min:max(data)=%f:%f" % (N.min(X), N.max(X))) def untrain(self): """Untrain classifier and reset all learnt params """ self.means = None self.variances = None self.ulabels = None self.priors = None super(GNB, self).untrain() def _predict(self, data): """Predict the output for the provided data. """ params = self.params # argument of exponentiation scaled_distances = \ -0.5 * (((data - self.means[:, N.newaxis, ...])**2) \ / self.variances[:, N.newaxis, ...]) if params.logprob: # if self.params.common_variance: # XXX YOH: # For decision there is no need to actually compute # properly scaled p, ie 1/sqrt(2pi * sigma_i) could be # simply discarded since it is common across features AND # classes # For completeness -- computing everything now even in logprob lprob_csfs = self._norm_weight[:, N.newaxis, ...] + scaled_distances # XXX for now just cut/paste with different operators, but # could just bind them and reuse in the same equations # Naive part -- just a product of probabilities across features ## First we need to reshape to get class x samples x features lprob_csf = lprob_csfs.reshape( lprob_csfs.shape[:2] + (-1,)) ## Now -- sum across features lprob_cs = lprob_csf.sum(axis=2) # Incorporate class probabilities: prob_cs_cp = lprob_cs + N.log(self.priors[:, N.newaxis]) else: # Just a regular Normal distribution with per # feature/class mean and variances prob_csfs = \ self._norm_weight[:, N.newaxis, ...] * N.exp(scaled_distances) # Naive part -- just a product of probabilities across features ## First we need to reshape to get class x samples x features prob_csf = prob_csfs.reshape( prob_csfs.shape[:2] + (-1,)) ## Now -- product across features prob_cs = prob_csf.prod(axis=2) # Incorporate class probabilities: prob_cs_cp = prob_cs * self.priors[:, N.newaxis] # Normalize by evidence P(data) if params.normalize: if params.logprob: prob_cs_cp_real = N.exp(prob_cs_cp) else: prob_cs_cp_real = prob_cs_cp prob_s_cp_marginals = N.sum(prob_cs_cp_real, axis=0) if params.logprob: prob_cs_cp -= N.log(prob_s_cp_marginals) else: prob_cs_cp /= prob_s_cp_marginals # Take the class with maximal (log)probability winners = prob_cs_cp.argmax(axis=0) predictions = [self.ulabels[c] for c in winners] self.values = prob_cs_cp.T # set to the probabilities per class if __debug__ and 'GNB' in debug.active: debug('GNB', "predict on data.shape=%s min:max(data)=%f:%f " % (data.shape, N.min(data), N.max(data))) return predictions # XXX Later come up with some # could be a simple t-test maps using distributions # per each class #def getSensitivityAnalyzer(self, **kwargs): # """Returns a sensitivity analyzer for GNB.""" # return GNBWeights(self, **kwargs) # XXX Is there any reason to use properties? #means = property(lambda self: self.__biases) #variances = property(lambda self: self.__weights) ## class GNBWeights(Sensitivity): ## """`SensitivityAnalyzer` that reports the weights GNB trained ## on a given `Dataset`. ## """ ## _LEGAL_CLFS = [ GNB ] ## def _call(self, dataset=None): ## """Extract weights from GNB classifier. ## GNB always has weights available, so nothing has to be computed here. ## """ ## clf = self.clf ## means = clf.means ## XXX we can do something better ;) ## return means pymvpa-0.4.8/mvpa/clfs/gpr.py000066400000000000000000000517141174541445200161120ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Copyright (c) 2008 Emanuele Olivetti # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Gaussian Process Regression (GPR).""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import externals from mvpa.misc.state import StateVariable from mvpa.clfs.base import Classifier from mvpa.misc.param import Parameter from mvpa.clfs.kernel import KernelSquaredExponential, KernelLinear from mvpa.measures.base import Sensitivity from mvpa.misc.exceptions import InvalidHyperparameterError from mvpa.datasets import Dataset if externals.exists("scipy", raiseException=True): from scipy.linalg import cho_solve as SLcho_solve from scipy.linalg import cholesky as SLcholesky import scipy.linalg as SL # Some local binding for bits of speed up SLAError = SL.basic.LinAlgError if __debug__: from mvpa.base import debug # Some local bindings for bits of speed up Nlog = N.log Ndot = N.dot Ndiag = N.diag NLAcholesky = N.linalg.cholesky NLAsolve = N.linalg.solve NLAError = N.linalg.linalg.LinAlgError eps64 = N.finfo(N.float64).eps # Some precomputed items. log is relatively expensive _halflog2pi = 0.5 * Nlog(2 * N.pi) class GPR(Classifier): """Gaussian Process Regression (GPR). """ predicted_variances = StateVariable(enabled=False, doc="Variance per each predicted value") log_marginal_likelihood = StateVariable(enabled=False, doc="Log Marginal Likelihood") log_marginal_likelihood_gradient = StateVariable(enabled=False, doc="Log Marginal Likelihood Gradient") _clf_internals = [ 'gpr', 'regression', 'retrainable' ] # NOTE XXX Parameters of the classifier. Values available as # clf.parameter or clf.params.parameter, or as # clf.params['parameter'] (as the full Parameter object) # # __doc__ and __repr__ for class is conviniently adjusted to # reflect values of those params # Kernel machines/classifiers should be refactored also to behave # the same and define kernel parameter appropriately... TODO, but SVMs # already kinda do it nicely ;-) sigma_noise = Parameter(0.001, allowedtype='float', min=1e-10, doc="the standard deviation of the gaussian noise.") # XXX For now I don't introduce kernel parameter since yet to unify # kernel machines #kernel = Parameter(None, allowedtype='Kernel', # doc="Kernel object defining the covariance between instances. " # "(Defaults to KernelSquaredExponential if None in arguments)") lm = Parameter(0.0, min=0.0, allowedtype='float', doc="""The regularization term lambda. Increase this when the kernel matrix is not positive, definite.""") def __init__(self, kernel=None, **kwargs): """Initialize a GPR regression analysis. :Parameters: kernel : Kernel a kernel object defining the covariance between instances. (Defaults to KernelSquaredExponential if None in arguments) """ # init base class first Classifier.__init__(self, **kwargs) # It does not make sense to calculate a confusion matrix for a GPR # XXX it does ;) it will be a RegressionStatistics actually ;-) # So if someone desires -- let him have it # self.states.enable('training_confusion', False) # set kernel: if kernel is None: kernel = KernelSquaredExponential() self.__kernel = kernel # append proper clf_internal depending on the kernel # TODO: unify finally all kernel-based machines. # make SMLR to use kernels if isinstance(kernel, KernelLinear): self._clf_internals += ['linear'] else: self._clf_internals += ['non-linear'] if externals.exists('openopt') \ and not 'has_sensitivity' in self._clf_internals: self._clf_internals += ['has_sensitivity'] # No need to initialize state variables. Unless they got set # they would raise an exception self.predicted_variances = # None self.log_marginal_likelihood = None self._init_internals() pass def _init_internals(self): """Reset some internal variables to None. To be used in constructor and untrain() """ self._train_fv = None self._labels = None self._km_train_train = None self._train_labels = None self._alpha = None self._L = None self._LL = None self.__kernel.reset() pass def __repr__(self): """String summary of the object """ return super(GPR, self).__repr__( prefixes=['kernel=%s' % self.__kernel]) def compute_log_marginal_likelihood(self): """ Compute log marginal likelihood using self.train_fv and self.labels. """ if __debug__: debug("GPR", "Computing log_marginal_likelihood") self.log_marginal_likelihood = \ -0.5*Ndot(self._train_labels, self._alpha) - \ Nlog(self._L.diagonal()).sum() - \ self._km_train_train.shape[0] * _halflog2pi return self.log_marginal_likelihood def compute_gradient_log_marginal_likelihood(self): """Compute gradient of the log marginal likelihood. This version use a more compact formula provided by Williams and Rasmussen book. """ # XXX EO: check whether the precomputed self.alpha self.Kinv # are actually the ones corresponding to the hyperparameters # used to compute this gradient! # YYY EO: currently this is verified outside gpr.py but it is # not an efficient solution. # XXX EO: Do some memoizing since it could happen that some # hyperparameters are kept constant by user request, so we # don't need (somtimes) to recompute the corresponding # gradient again. # self.Kinv = N.linalg.inv(self._C) # Faster: Kinv = SLcho_solve(self._LL, N.eye(self._L.shape[0])) alphalphaT = N.dot(self._alpha[:,None], self._alpha[None,:]) tmp = alphalphaT - Kinv # Pass tmp to __kernel and let it compute its gradient terms. # This scales up to huge number of hyperparameters: grad_LML_hypers = self.__kernel.compute_lml_gradient( tmp, self._train_fv) grad_K_sigma_n = 2.0*self.sigma_noise*N.eye(tmp.shape[0]) # Add the term related to sigma_noise: # grad_LML_sigma_n = 0.5 * N.trace(N.dot(tmp,grad_K_sigma_n)) # Faster formula: tr(AB) = (A*B.T).sum() grad_LML_sigma_n = 0.5 * (tmp * (grad_K_sigma_n).T).sum() lml_gradient = N.hstack([grad_LML_sigma_n, grad_LML_hypers]) self.log_marginal_likelihood_gradient = lml_gradient return lml_gradient def compute_gradient_log_marginal_likelihood_logscale(self): """Compute gradient of the log marginal likelihood when hyperparameters are in logscale. This version use a more compact formula provided by Williams and Rasmussen book. """ # Kinv = N.linalg.inv(self._C) # Faster: Kinv = SLcho_solve(self._LL, N.eye(self._L.shape[0])) alphalphaT = N.dot(self._alpha[:,None], self._alpha[None,:]) tmp = alphalphaT - Kinv grad_LML_log_hypers = \ self.__kernel.compute_lml_gradient_logscale(tmp, self._train_fv) grad_K_log_sigma_n = 2.0 * self.sigma_noise ** 2 * N.eye(Kinv.shape[0]) # Add the term related to sigma_noise: # grad_LML_log_sigma_n = 0.5 * N.trace(N.dot(tmp, grad_K_log_sigma_n)) # Faster formula: tr(AB) = (A * B.T).sum() grad_LML_log_sigma_n = 0.5 * (tmp * (grad_K_log_sigma_n).T).sum() lml_gradient = N.hstack([grad_LML_log_sigma_n, grad_LML_log_hypers]) self.log_marginal_likelihood_gradient = lml_gradient return lml_gradient def getSensitivityAnalyzer(self, flavor='auto', **kwargs): """Returns a sensitivity analyzer for GPR. :Parameters: flavor : basestring What sensitivity to provide. Valid values are 'linear', 'model_select', 'auto'. In case of 'auto' selects 'linear' for linear kernel and 'model_select' for the rest. 'linear' corresponds to GPRLinearWeights and 'model_select' to GRPWeights """ # XXX The following two lines does not work since # self.__kernel is instance of kernel.KernelLinear and not # just KernelLinear. How to fix? # YYY yoh is not sure what is the problem... KernelLinear is actually # kernel.KernelLinear so everything shoudl be ok if flavor == 'auto': flavor = ('model_select', 'linear')\ [int(isinstance(self.__kernel, KernelLinear))] if __debug__: debug("GPR", "Returning '%s' sensitivity analyzer" % flavor) # Return proper sensitivity if flavor == 'linear': return GPRLinearWeights(self, **kwargs) elif flavor == 'model_select': # sanity check if not ('has_sensitivity' in self._clf_internals): raise ValueError, \ "model_select flavor is not available probably " \ "due to not available 'openopt' module" return GPRWeights(self, **kwargs) else: raise ValueError, "Flavor %s is not recognized" % flavor def _train(self, data): """Train the classifier using `data` (`Dataset`). """ # local bindings for faster lookup retrainable = self.params.retrainable if retrainable: newkernel = False newL = False _changedData = self._changedData self._train_fv = train_fv = data.samples self._train_labels = train_labels = data.labels if not retrainable or _changedData['traindata'] \ or _changedData.get('kernel_params', False): if __debug__: debug("GPR", "Computing train train kernel matrix") self._km_train_train = km_train_train = self.__kernel.compute(train_fv) newkernel = True if retrainable: self._km_train_test = None # reset to facilitate recomputation else: if __debug__: debug("GPR", "Not recomputing kernel since retrainable and " "nothing has changed") km_train_train = self._km_train_train # reuse if not retrainable or newkernel or _changedData['params']: if __debug__: debug("GPR", "Computing L. sigma_noise=%g" % self.sigma_noise) # XXX it seems that we do not need binding to object, but may be # commented out code would return? self._C = km_train_train + \ self.sigma_noise**2 * N.identity(km_train_train.shape[0], 'd') # The following decomposition could raise # N.linalg.linalg.LinAlgError because of numerical # reasons, due to the too rapid decay of 'self._C' # eigenvalues. In that case we try adding a small constant # to self._C, e.g. epsilon=1.0e-20. It should be a form of # Tikhonov regularization. This is equivalent to adding # little white gaussian noise to data. # # XXX EO: how to choose epsilon? # # Cholesky decomposition is provided by three different # NumPy/SciPy routines (fastest first): # 1) self._LL = scipy.linalg.cho_factor(self._C, lower=True) # self._L = L = N.tril(self._LL[0]) # 2) self._L = scipy.linalg.cholesky(self._C, lower=True) # 3) self._L = numpy.linalg.cholesky(self._C) # Even though 1 is the fastest we choose 2 since 1 does # not return a clean lower-triangular matrix (see docstring). # PBS: I just made it so the KernelMatrix is regularized # all the time. I figured that if ever you were going to # use regularization, you would want to set it yourself # and use the same value for all folds of your data. try: # apply regularization epsilon = self.params.lm * N.eye(self._C.shape[0]) self._L = SLcholesky(self._C + epsilon, lower=True) self._LL = (self._L, True) except SLAError: raise SLAError("Kernel matrix is not positive, definite. " + \ "Try increasing the lm parameter.") pass newL = True else: if __debug__: debug("GPR", "Not computing L since kernel, data and params " "stayed the same") L = self._L # reuse # XXX we leave _alpha being recomputed, although we could check # if newL or _changedData['labels'] # if __debug__: debug("GPR", "Computing alpha") # self._alpha = NLAsolve(L.transpose(), # NLAsolve(L, train_labels)) # Faster: self._alpha = SLcho_solve(self._LL, train_labels) # compute only if the state is enabled if self.states.isEnabled('log_marginal_likelihood'): self.compute_log_marginal_likelihood() pass if retrainable: # we must assign it only if it is retrainable self.states.retrained = not newkernel or not newL if __debug__: debug("GPR", "Done training") pass def _predict(self, data): """ Predict the output for the provided data. """ retrainable = self.params.retrainable if not retrainable or self._changedData['testdata'] \ or self._km_train_test is None: if __debug__: debug('GPR', "Computing train test kernel matrix") km_train_test = self.__kernel.compute(self._train_fv, data) if retrainable: self._km_train_test = km_train_test self.states.repredicted = False else: if __debug__: debug('GPR', "Not recomputing train test kernel matrix") km_train_test = self._km_train_test self.states.repredicted = True predictions = Ndot(km_train_test.transpose(), self._alpha) if self.states.isEnabled('predicted_variances'): # do computation only if state variable was enabled if not retrainable or self._km_test_test is None \ or self._changedData['testdata']: if __debug__: debug('GPR', "Computing test test kernel matrix") km_test_test = self.__kernel.compute(data) if retrainable: self._km_test_test = km_test_test else: if __debug__: debug('GPR', "Not recomputing test test kernel matrix") km_test_test = self._km_test_test if __debug__: debug("GPR", "Computing predicted variances") L = self._L # v = NLAsolve(L, km_train_test) # Faster: piv = N.arange(L.shape[0]) v = SL.lu_solve((L.T, piv), km_train_test, trans=1) # self.predicted_variances = \ # Ndiag(km_test_test - Ndot(v.T, v)) \ # + self.sigma_noise**2 # Faster formula: N.diag(Ndot(v.T, v)) = (v**2).sum(0): self.predicted_variances = Ndiag(km_test_test) - (v ** 2).sum(0) \ + self.sigma_noise ** 2 pass if __debug__: debug("GPR", "Done predicting") return predictions def _setRetrainable(self, value, force=False): """Internal function : need to set _km_test_test """ super(GPR, self)._setRetrainable(value, force) if force or (value and value != self.params.retrainable): self._km_test_test = None def untrain(self): super(GPR, self).untrain() # XXX might need to take special care for retrainable. later self._init_internals() pass def set_hyperparameters(self, hyperparameter): """ Set hyperparameters' values. Note that 'hyperparameter' is a sequence so the order of its values is important. First value must be sigma_noise, then other kernel's hyperparameters values follow in the exact order the kernel expect them to be. """ if hyperparameter[0] < self.params['sigma_noise'].min: raise InvalidHyperparameterError() self.sigma_noise = hyperparameter[0] if hyperparameter.size > 1: self.__kernel.set_hyperparameters(hyperparameter[1:]) pass return kernel = property(fget=lambda self:self.__kernel) pass class GPRLinearWeights(Sensitivity): """`SensitivityAnalyzer` that reports the weights GPR trained on a given `Dataset`. In case of KernelLinear compute explicitly the coefficients of the linear regression, together with their variances (if requested). Note that the intercept is not computed. """ variances = StateVariable(enabled=False, doc="Variances of the weights (for KernelLinear)") _LEGAL_CLFS = [ GPR ] def _call(self, dataset): """Extract weights from GPR """ clf = self.clf kernel = clf.kernel train_fv = clf._train_fv weights = Ndot(kernel.Sigma_p, Ndot(train_fv.T, clf._alpha)) if self.states.isEnabled('variances'): # super ugly formulas that can be quite surely improved: tmp = N.linalg.inv(clf._L) Kyinv = Ndot(tmp.T, tmp) # XXX in such lengthy matrix manipulations you might better off # using N.matrix where * is a matrix product self.states.variances = Ndiag( kernel.Sigma_p - Ndot(kernel.Sigma_p, Ndot(train_fv.T, Ndot(Kyinv, Ndot(train_fv, kernel.Sigma_p))))) return weights if externals.exists('openopt'): from mvpa.clfs.model_selector import ModelSelector class GPRWeights(Sensitivity): """`SensitivityAnalyzer` that reports the weights GPR trained on a given `Dataset`. """ _LEGAL_CLFS = [ GPR ] def _call(self, dataset): """Extract weights from GPR """ clf = self.clf # normalize data: clf._train_labels = (clf._train_labels - clf._train_labels.mean()) \ / clf._train_labels.std() # clf._train_fv = (clf._train_fv-clf._train_fv.mean(0)) \ # /clf._train_fv.std(0) dataset = Dataset(samples=clf._train_fv, labels=clf._train_labels) clf.states.enable("log_marginal_likelihood") ms = ModelSelector(clf, dataset) # Note that some kernels does not have gradient yet! # XXX Make it initialize to clf's current hyperparameter values # or may be add ability to specify starting points in the constructor sigma_noise_initial = 1.0e-5 sigma_f_initial = 1.0 length_scale_initial = N.ones(dataset.nfeatures)*1.0e4 # length_scale_initial = N.random.rand(dataset.nfeatures)*1.0e4 hyp_initial_guess = N.hstack([sigma_noise_initial, sigma_f_initial, length_scale_initial]) fixedHypers = N.array([0]*hyp_initial_guess.size, dtype=bool) fixedHypers = None problem = ms.max_log_marginal_likelihood( hyp_initial_guess=hyp_initial_guess, optimization_algorithm="scipy_lbfgsb", ftol=1.0e-3, fixedHypers=fixedHypers, use_gradient=True, logscale=True) if __debug__ and 'GPR_WEIGHTS' in debug.active: problem.iprint = 1 lml = ms.solve() weights = 1.0/ms.hyperparameters_best[2:] # weight = 1/length_scale if __debug__: debug("GPR", "%s, train: shape %s, labels %s, min:max %g:%g, " "sigma_noise %g, sigma_f %g" % (clf, clf._train_fv.shape, N.unique(clf._train_labels), clf._train_fv.min(), clf._train_fv.max(), ms.hyperparameters_best[0], ms.hyperparameters_best[1])) return weights pymvpa-0.4.8/mvpa/clfs/kernel.py000066400000000000000000000614511174541445200166010ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Copyright (c) 2008 Emanuele Olivetti # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Kernels for Gaussian Process Regression and Classification.""" _DEV__DOC__ = """ Make use of Parameter Collections to keep parameters of the kernels. Then we would get a uniform .reset() functionality. Now reset is provided just for parts which are failing in the unittests, but there is many more places where they are not reset properly if classifier gets trained on some new data of different dimensionality """ __docformat__ = 'restructuredtext' import numpy as N from mvpa.misc.exceptions import InvalidHyperparameterError from mvpa.clfs.distance import squared_euclidean_distance if __debug__: from mvpa.base import debug, warning class Kernel(object): """Kernel function base class. """ def __init__(self): pass def __repr__(self): return "Kernel()" def compute(self, data1, data2=None): raise NotImplementedError def reset(self): """Resets the kernel dropping internal variables to the original values""" pass def compute_gradient(self,alphaalphaTK): raise NotImplementedError def compute_lml_gradient(self,alphaalphaT_Kinv,data): raise NotImplementedError def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data): raise NotImplementedError pass class KernelConstant(Kernel): """The constant kernel class. """ def __init__(self, sigma_0=1.0, **kwargs): """Initialize the constant kernel instance. :Parameters: sigma_0 : float standard deviation of the Gaussian prior probability N(0,sigma_0**2) of the intercept of the constant regression. (Defaults to 1.0) """ # init base class first Kernel.__init__(self, **kwargs) self.sigma_0 = sigma_0 self.kernel_matrix = None def __repr__(self): return "%s(sigma_0=%s)" % (self.__class__.__name__, str(self.sigma_0)) def compute(self, data1, data2=None): """Compute kernel matrix. :Parameters: data1 : numpy.ndarray data data2 : numpy.ndarray data (Defaults to None) """ if data2 is None: data2 = data1 pass self.kernel_matrix = \ (self.sigma_0 ** 2) * N.ones((data1.shape[0], data2.shape[0])) return self.kernel_matrix def set_hyperparameters(self, hyperparameter): if hyperparameter < 0: raise InvalidHyperparameterError() self.sigma_0 = hyperparameter return def compute_lml_gradient(self,alphaalphaT_Kinv,data): K_grad_sigma_0 = 2*self.sigma_0 # self.lml_gradient = 0.5*(N.trace(N.dot(alphaalphaT_Kinv,K_grad_sigma_0*N.ones(alphaalphaT_Kinv.shape))) # Faster formula: N.trace(N.dot(A,B)) = (A*(B.T)).sum() # Fastest when B is a constant: B*A.sum() self.lml_gradient = 0.5*N.array(K_grad_sigma_0*alphaalphaT_Kinv.sum()) return self.lml_gradient def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data): K_grad_sigma_0 = 2*self.sigma_0**2 self.lml_gradient = 0.5*N.array(K_grad_sigma_0*alphaalphaT_Kinv.sum()) return self.lml_gradient pass class KernelLinear(Kernel): """The linear kernel class. """ def __init__(self, Sigma_p=None, sigma_0=1.0, **kwargs): """Initialize the linear kernel instance. :Parameters: Sigma_p : numpy.ndarray Covariance matrix of the Gaussian prior probability N(0,Sigma_p) on the weights of the linear regression. (Defaults to None) sigma_0 : float the standard deviation of the Gaussian prior N(0,sigma_0**2) of the intercept of the linear regression. (Deafults to 1.0) """ # init base class first Kernel.__init__(self, **kwargs) # TODO: figure out cleaner way... probably by using KernelParameters ;-) self.Sigma_p = Sigma_p self.sigma_0 = sigma_0 self.kernel_matrix = None def __repr__(self): return "%s(Sigma_p=%s, sigma_0=%s)" \ % (self.__class__.__name__, str(self.Sigma_p), str(self.sigma_0)) def reset(self): super(KernelLinear, self).reset() self._Sigma_p = self._Sigma_p_orig def compute(self, data1, data2=None): """Compute kernel matrix. Set Sigma_p to correct dimensions and default value if necessary. :Parameters: data1 : numpy.ndarray data data2 : numpy.ndarray data (Defaults to None) """ if data2 is None: data2 = data1 pass # it is better to use separate lines of computation, to don't # incure computation cost without need (otherwise # N.dot(self.Sigma_p, data2.T) can take forever for relatively # large number of features) Sigma_p = self.Sigma_p # local binding #if scalar - scale second term appropriately if N.isscalar(Sigma_p): if Sigma_p == 1.0: data2_sc = data2.T else: data2_sc = Sigma_p * data2.T # if vector use it as diagonal matrix -- ie scale each row by # the given value elif len(Sigma_p.shape) == 1 and \ Sigma_p.shape[0] == data1.shape[1]: # which due to numpy broadcasting is the same as product # with scalar above data2_sc = (Sigma_p * data1).T # if it is a full matrix -- full-featured and lengthy # matrix product else: data2_sc = N.dot(Sigma_p, data2.T) pass # XXX if Sigma_p is changed a warning should be issued! # XXX other cases of incorrect Sigma_p could be catched self.kernel_matrix = N.dot(data1, data2_sc) + self.sigma_0 ** 2 return self.kernel_matrix def set_hyperparameters(self, hyperparameter): # XXX in the next line we assume that the values we want to # assign to Sigma_p are a constant or a vector (the diagonal # of Sigma_p actually). This is a limitation since these # values could be in general an hermitian matrix (i.e., a # covariance matrix)... but how to tell ModelSelector/OpenOpt # to proved just "hermitian" set of values? So for now we skip # the general case, which seems not to useful indeed. if N.any(hyperparameter < 0): raise InvalidHyperparameterError() self.sigma_0 = N.array(hyperparameter[0]) self._Sigma_p = N.diagflat(hyperparameter[1:]) return def compute_lml_gradient(self,alphaalphaT_Kinv,data): def lml_grad(K_grad_i): # return N.trace(N.dot(alphaalphaT_Kinv,K_grad_i)) # Faster formula: N.trace(N.dot(A,B)) = (A*(B.T)).sum() return (alphaalphaT_Kinv*(K_grad_i.T)).sum() lml_gradient = [] lml_gradient.append(2*self.sigma_0*alphaalphaT_Kinv.sum()) for i in range(self.Sigma_p.shape[0]): # Note that Sigma_p is not squared in compute() so it # disappears in the partial derivative: K_grad_i = N.multiply.outer(data[:,i],data[:,i]) lml_gradient.append(lml_grad(K_grad_i)) pass self.lml_gradient = lml_gradient = 0.5*N.array(lml_gradient) return lml_gradient def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data): def lml_grad(K_grad_i): # return N.trace(N.dot(alphaalphaT_Kinv,K_grad_i)) # Faster formula: N.trace(N.dot(A,B)) = (A*(B.T)).sum() return (alphaalphaT_Kinv*(K_grad_i.T)).sum() lml_gradient = [] lml_gradient.append(2*self.sigma_0**2*alphaalphaT_Kinv.sum()) Sigma_p = self.Sigma_p # local binding for i in range(Sigma_p.shape[0]): # Note that Sigma_p is not squared in compute() so it # disappears in the partial derivative: K_grad_log_i = Sigma_p[i,i]*N.multiply.outer(data[:,i],data[:,i]) lml_gradient.append(lml_grad(K_grad_log_i)) pass self.lml_gradient = lml_gradient = 0.5*N.array(lml_gradient) return lml_gradient def _setSigma_p(self, v): """Set Sigma_p value and store _orig for reset """ if (v is None): # if Sigma_p is not set use a scalar 1.0 v = 1.0 self._Sigma_p_orig = self._Sigma_p = v Sigma_p = property(fget=lambda x:x._Sigma_p, fset=_setSigma_p) pass class KernelExponential(Kernel): """The Exponential kernel class. Note that it can handle a length scale for each dimension for Automtic Relevance Determination. """ def __init__(self, length_scale=1.0, sigma_f = 1.0, **kwargs): """Initialize an Exponential kernel instance. :Parameters: length_scale : float OR numpy.ndarray the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0) sigma_f : float Signal standard deviation. (Defaults to 1.0) """ # init base class first Kernel.__init__(self, **kwargs) self.length_scale = length_scale self.sigma_f = sigma_f self.kernel_matrix = None def __repr__(self): return "%s(length_scale=%s, sigma_f=%s)" \ % (self.__class__.__name__, str(self.length_scale), str(self.sigma_f)) def compute(self, data1, data2=None): """Compute kernel matrix. :Parameters: data1 : numpy.ndarray data data2 : numpy.ndarray data (Defaults to None) """ # XXX the following computation can be (maybe) made more # efficient since length_scale is squared and then # square-rooted uselessly. # Weighted euclidean distance matrix: self.wdm = N.sqrt(squared_euclidean_distance( data1, data2, weight=(self.length_scale**-2))) self.kernel_matrix = \ self.sigma_f**2 * N.exp(-self.wdm) return self.kernel_matrix def gradient(self, data1, data2): """Compute gradient of the kernel matrix. A must for fast model selection with high-dimensional data. """ raise NotImplementedError def set_hyperparameters(self, hyperparameter): """Set hyperaparmeters from a vector. Used by model selection. """ if N.any(hyperparameter < 0): raise InvalidHyperparameterError() self.sigma_f = hyperparameter[0] self.length_scale = hyperparameter[1:] return def compute_lml_gradient(self,alphaalphaT_Kinv,data): """Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. Shorter formula. Allows vector of lengthscales (ARD) BUT THIS LAST OPTION SEEMS NOT TO WORK FOR (CURRENTLY) UNKNOWN REASONS. """ self.lml_gradient = [] def lml_grad(K_grad_i): # return N.trace(N.dot(alphaalphaT_Kinv,K_grad_i)) # Faster formula: N.trace(N.dot(A,B)) = (A*(B.T)).sum() return (alphaalphaT_Kinv*(K_grad_i.T)).sum() grad_sigma_f = 2.0/self.sigma_f*self.kernel_matrix self.lml_gradient.append(lml_grad(grad_sigma_f)) if N.isscalar(self.length_scale) or self.length_scale.size==1: # use the same length_scale for all dimensions: K_grad_l = self.wdm*self.kernel_matrix*(self.length_scale**-1) self.lml_gradient.append(lml_grad(K_grad_l)) else: # use one length_scale for each dimension: for i in range(self.length_scale.size): K_grad_i = (self.length_scale[i]**-3)*(self.wdm**-1)*self.kernel_matrix*N.subtract.outer(data[:,i],data[:,i])**2 self.lml_gradient.append(lml_grad(K_grad_i)) pass pass self.lml_gradient = 0.5*N.array(self.lml_gradient) return self.lml_gradient def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data): """Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. Shorter formula. Allows vector of lengthscales (ARD). BUT THIS LAST OPTION SEEMS NOT TO WORK FOR (CURRENTLY) UNKNOWN REASONS. """ self.lml_gradient = [] def lml_grad(K_grad_i): # return N.trace(N.dot(alphaalphaT_Kinv,K_grad_i)) # Faster formula: N.trace(N.dot(A,B)) = (A*(B.T)).sum() return (alphaalphaT_Kinv*(K_grad_i.T)).sum() grad_log_sigma_f = 2.0*self.kernel_matrix self.lml_gradient.append(lml_grad(grad_log_sigma_f)) if N.isscalar(self.length_scale) or self.length_scale.size==1: # use the same length_scale for all dimensions: K_grad_l = self.wdm*self.kernel_matrix self.lml_gradient.append(lml_grad(K_grad_l)) else: # use one length_scale for each dimension: for i in range(self.length_scale.size): K_grad_i = (self.length_scale[i]**-2)*(self.wdm**-1)*self.kernel_matrix*N.subtract.outer(data[:,i],data[:,i])**2 self.lml_gradient.append(lml_grad(K_grad_i)) pass pass self.lml_gradient = 0.5*N.array(self.lml_gradient) return self.lml_gradient pass class KernelSquaredExponential(Kernel): """The Squared Exponential kernel class. Note that it can handle a length scale for each dimension for Automtic Relevance Determination. """ def __init__(self, length_scale=1.0, sigma_f=1.0, **kwargs): """Initialize a Squared Exponential kernel instance. :Parameters: length_scale : float OR numpy.ndarray the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0) sigma_f : float Signal standard deviation. (Defaults to 1.0) """ # init base class first Kernel.__init__(self, **kwargs) self.length_scale = length_scale self.sigma_f = sigma_f self.kernel_matrix = None def reset(self): super(KernelSquaredExponential, self).reset() self._length_scale = self._length_scale_orig def __repr__(self): return "%s(length_scale=%s, sigma_f=%s)" \ % (self.__class__.__name__, str(self.length_scale), str(self.sigma_f)) def compute(self, data1, data2=None): """Compute kernel matrix. :Parameters: data1 : numpy.ndarray data data2 : numpy.ndarray data (Defaults to None) """ # weighted squared euclidean distance matrix: self.wdm2 = squared_euclidean_distance(data1, data2, weight=(self.length_scale**-2)) self.kernel_matrix = self.sigma_f**2 * N.exp(-0.5*self.wdm2) # XXX EO: old implementation: # self.kernel_matrix = \ # self.sigma_f * N.exp(-squared_euclidean_distance( # data1, data2, weight=0.5 / (self.length_scale ** 2))) return self.kernel_matrix def set_hyperparameters(self, hyperparameter): """Set hyperaparmeters from a vector. Used by model selection. """ if N.any(hyperparameter < 0): raise InvalidHyperparameterError() self.sigma_f = hyperparameter[0] self._length_scale = hyperparameter[1:] return def compute_lml_gradient(self,alphaalphaT_Kinv,data): """Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. Shorter formula. Allows vector of lengthscales (ARD). """ self.lml_gradient = [] def lml_grad(K_grad_i): # return N.trace(N.dot(alphaalphaT_Kinv,K_grad_i)) # Faster formula: N.trace(N.dot(A,B)) = (A*(B.T)).sum() return (alphaalphaT_Kinv*(K_grad_i.T)).sum() grad_sigma_f = 2.0/self.sigma_f*self.kernel_matrix self.lml_gradient.append(lml_grad(grad_sigma_f)) if N.isscalar(self.length_scale) or self.length_scale.size==1: # use the same length_scale for all dimensions: K_grad_l = self.wdm2*self.kernel_matrix*(1.0/self.length_scale) self.lml_gradient.append(lml_grad(K_grad_l)) else: # use one length_scale for each dimension: for i in range(self.length_scale.size): K_grad_i = 1.0/(self.length_scale[i]**3)*self.kernel_matrix*N.subtract.outer(data[:,i],data[:,i])**2 self.lml_gradient.append(lml_grad(K_grad_i)) pass pass self.lml_gradient = 0.5*N.array(self.lml_gradient) return self.lml_gradient def compute_lml_gradient_logscale(self,alphaalphaT_Kinv,data): """Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. Hyperparameters are in log scale which is sometimes more stable. Shorter formula. Allows vector of lengthscales (ARD). """ self.lml_gradient = [] def lml_grad(K_grad_i): # return N.trace(N.dot(alphaalphaT_Kinv,K_grad_i)) # Faster formula: N.trace(N.dot(A,B)) = (A*(B.T)).sum() return (alphaalphaT_Kinv*(K_grad_i.T)).sum() K_grad_log_sigma_f = 2.0*self.kernel_matrix self.lml_gradient.append(lml_grad(K_grad_log_sigma_f)) if N.isscalar(self.length_scale) or self.length_scale.size==1: # use the same length_scale for all dimensions: K_grad_log_l = self.wdm2*self.kernel_matrix self.lml_gradient.append(lml_grad(K_grad_log_l)) else: # use one length_scale for each dimension: for i in range(self.length_scale.size): K_grad_log_l_i = 1.0/(self.length_scale[i]**2)*self.kernel_matrix*N.subtract.outer(data[:,i],data[:,i])**2 self.lml_gradient.append(lml_grad(K_grad_log_l_i)) pass pass self.lml_gradient = 0.5*N.array(self.lml_gradient) return self.lml_gradient def _setlength_scale(self, v): """Set value of length_scale and its _orig """ self._length_scale = self._length_scale_orig = v length_scale = property(fget=lambda x:x._length_scale, fset=_setlength_scale) pass class KernelMatern_3_2(Kernel): """The Matern kernel class for the case ni=3/2 or ni=5/2. Note that it can handle a length scale for each dimension for Automtic Relevance Determination. """ def __init__(self, length_scale=1.0, sigma_f=1.0, numerator=3.0, **kwargs): """Initialize a Squared Exponential kernel instance. :Parameters: length_scale : float OR numpy.ndarray the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0) sigma_f : float Signal standard deviation. (Defaults to 1.0) numerator: float the numerator of parameter ni of Matern covariance functions. Currently only numerator=3.0 and numerator=5.0 are implemented. (Defaults to 3.0) """ # init base class first Kernel.__init__(self, **kwargs) self.length_scale = length_scale self.sigma_f = sigma_f self.kernel_matrix = None if numerator == 3.0 or numerator == 5.0: self.numerator = numerator else: raise NotImplementedError def __repr__(self): return "%s(length_scale=%s, ni=%d/2)" \ % (self.__class__.__name__, str(self.length_scale), self.numerator) def compute(self, data1, data2=None): """Compute kernel matrix. :Parameters: data1 : numpy.ndarray data data2 : numpy.ndarray data (Defaults to None) """ tmp = squared_euclidean_distance( data1, data2, weight=0.5 / (self.length_scale ** 2)) if self.numerator == 3.0: tmp = N.sqrt(tmp) self.kernel_matrix = \ self.sigma_f**2 * (1.0 + N.sqrt(3.0) * tmp) \ * N.exp(-N.sqrt(3.0) * tmp) elif self.numerator == 5.0: tmp2 = N.sqrt(tmp) self.kernel_matrix = \ self.sigma_f**2 * (1.0 + N.sqrt(5.0) * tmp2 + 5.0 / 3.0 * tmp) \ * N.exp(-N.sqrt(5.0) * tmp2) return self.kernel_matrix def gradient(self, data1, data2): """Compute gradient of the kernel matrix. A must for fast model selection with high-dimensional data. """ # TODO SOON # grad = ... # return grad raise NotImplementedError def set_hyperparameters(self, hyperparameter): """Set hyperaparmeters from a vector. Used by model selection. Note: 'numerator' is not considered as an hyperparameter. """ if N.any(hyperparameter < 0): raise InvalidHyperparameterError() self.sigma_f = hyperparameter[0] self.length_scale = hyperparameter[1:] return pass class KernelMatern_5_2(KernelMatern_3_2): """The Matern kernel class for the case ni=5/2. This kernel is just KernelMatern_3_2(numerator=5.0). """ def __init__(self, **kwargs): """Initialize a Squared Exponential kernel instance. :Parameters: length_scale : float OR numpy.ndarray the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0) """ KernelMatern_3_2.__init__(self, numerator=5.0, **kwargs) pass class KernelRationalQuadratic(Kernel): """The Rational Quadratic (RQ) kernel class. Note that it can handle a length scale for each dimension for Automtic Relevance Determination. """ def __init__(self, length_scale=1.0, sigma_f=1.0, alpha=0.5, **kwargs): """Initialize a Squared Exponential kernel instance. :Parameters: length_scale : float OR numpy.ndarray the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0) sigma_f : float Signal standard deviation. (Defaults to 1.0) alpha: float The parameter of the RQ functions family. (Defaults to 2.0) """ # init base class first Kernel.__init__(self, **kwargs) self.length_scale = length_scale self.sigma_f = sigma_f self.kernel_matrix = None self.alpha = alpha def __repr__(self): return "%s(length_scale=%s, alpha=%f)" \ % (self.__class__.__name__, str(self.length_scale), self.alpha) def compute(self, data1, data2=None): """Compute kernel matrix. :Parameters: data1 : numpy.ndarray data data2 : numpy.ndarray data (Defaults to None) """ tmp = squared_euclidean_distance( data1, data2, weight=1.0 / (self.length_scale ** 2)) self.kernel_matrix = \ self.sigma_f**2 * (1.0 + tmp / (2.0 * self.alpha)) ** -self.alpha return self.kernel_matrix def gradient(self, data1, data2): """Compute gradient of the kernel matrix. A must for fast model selection with high-dimensional data. """ # TODO SOON # grad = ... # return grad raise NotImplementedError def set_hyperparameters(self, hyperparameter): """Set hyperaparmeters from a vector. Used by model selection. Note: 'alpha' is not considered as an hyperparameter. """ if N.any(hyperparameter < 0): raise InvalidHyperparameterError() self.sigma_f = hyperparameter[0] self.length_scale = hyperparameter[1:] return pass # dictionary of avalable kernels with names as keys: kernel_dictionary = {'constant': KernelConstant, 'linear': KernelLinear, 'exponential': KernelExponential, 'squared exponential': KernelSquaredExponential, 'Matern ni=3/2': KernelMatern_3_2, 'Matern ni=5/2': KernelMatern_5_2, 'rational quadratic': KernelRationalQuadratic} pymvpa-0.4.8/mvpa/clfs/knn.py000066400000000000000000000202611174541445200161010ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """k-Nearest-Neighbour classifier.""" __docformat__ = 'restructuredtext' import sys # not worthy of externals checking _dict_has_key = sys.version_info >= (2, 5) import numpy as N from mvpa.base import warning from mvpa.misc.support import indentDoc from mvpa.clfs.base import Classifier from mvpa.base.dochelpers import enhancedDocString from mvpa.clfs.distance import squared_euclidean_distance if __debug__: from mvpa.base import debug class kNN(Classifier): """ k-Nearest-Neighbour classifier. This is a simple classifier that bases its decision on the distances between the training dataset samples and the test sample(s). Distances are computed using a customizable distance function. A certain number (`k`)of nearest neighbors is selected based on the smallest distances and the labels of this neighboring samples are fed into a voting function to determine the labels of the test sample. Training a kNN classifier is extremely quick, as no actuall training is performed as the training dataset is simply stored in the classifier. All computations are done during classifier prediction. .. note:: If enabled, kNN stores the votes per class in the 'values' state after calling predict(). """ _clf_internals = ['knn', 'non-linear', 'binary', 'multiclass', 'notrain2predict' ] def __init__(self, k=2, dfx=squared_euclidean_distance, voting='weighted', **kwargs): """ :Parameters: k: unsigned integer Number of nearest neighbours to be used for voting. dfx: functor Function to compute the distances between training and test samples. Default: squared euclidean distance voting: str Voting method used to derive predictions from the nearest neighbors. Possible values are 'majority' (simple majority of classes determines vote) and 'weighted' (votes are weighted according to the relative frequencies of each class in the training data). **kwargs: Additonal arguments are passed to the base class. """ # init base class first Classifier.__init__(self, **kwargs) self.__k = k self.__dfx = dfx self.__voting = voting self.__data = None def __repr__(self, prefixes=[]): """Representation of the object """ return super(kNN, self).__repr__( ["k=%d" % self.__k, "dfx=%s" % self.__dfx, "voting=%s" % repr(self.__voting)] + prefixes) def __str__(self): return "%s\n data: %s" % \ (Classifier.__str__(self), indentDoc(self.__data)) def _train(self, data): """Train the classifier. For kNN it is degenerate -- just stores the data. """ self.__data = data if __debug__: if str(data.samples.dtype).startswith('uint') \ or str(data.samples.dtype).startswith('int'): warning("kNN: input data is in integers. " + \ "Overflow on arithmetic operations might result in"+\ " errors. Please convert dataset's samples into" +\ " floating datatype if any error is reported.") self.__weights = None # create dictionary with an item for each condition uniquelabels = data.uniquelabels self.__votes_init = dict(zip(uniquelabels, [0] * len(uniquelabels))) def _predict(self, data): """Predict the class labels for the provided data. Returns a list of class labels (one for each data sample). """ # make sure we're talking about arrays data = N.asarray(data) # checks only in debug mode if __debug__: if not data.ndim == 2: raise ValueError, "Data array must be two-dimensional." if not data.shape[1] == self.__data.nfeatures: raise ValueError, "Length of data samples (features) does " \ "not match the classifier." # compute the distance matrix between training and test data with # distances stored row-wise, ie. distances between test sample [0] # and all training samples will end up in row 0 dists = self.__dfx(self.__data.samples, data).T # determine the k nearest neighbors per test sample knns = dists.argsort(axis=1)[:, :self.__k] # predicted class labels will go here predicted = [] if self.__voting == 'majority': vfx = self.getMajorityVote elif self.__voting == 'weighted': vfx = self.getWeightedVote else: raise ValueError, "kNN told to perform unknown voting '%s'." \ % self.__voting # perform voting results = [vfx(knn) for knn in knns] # extract predictions predicted = [r[0] for r in results] # store the predictions in the state. Relies on State._setitem to do # nothing if the relevant state member is not enabled self.predictions = predicted self.values = [r[1] for r in results] return predicted def getMajorityVote(self, knn_ids): """Simple voting by choosing the majority of class neighbors. """ # local bindings _data = self.__data labels = _data.labels # number of occerences for each unique class in kNNs votes = self.__votes_init.copy() for nn in knn_ids: votes[labels[nn]] += 1 # find the class with most votes # return votes as well to store them in the state if _dict_has_key: # approx 5% faster implementation than below maxvotes = max(votes.iteritems(), key=lambda x:x[1])[0] else: # no key keyword for max in elderly versions maxvotes = max([(v, k) for k, v in votes.iteritems()])[1] return maxvotes, \ [votes[ul] for ul in _data.uniquelabels] # transform into lists def getWeightedVote(self, knn_ids): """Vote with classes weighted by the number of samples per class. """ # local bindings _data = self.__data uniquelabels = _data.uniquelabels # Lazy evaluation if self.__weights is None: # # It seemed to Yarik that this has to be evaluated just once per # training dataset. # self.__labels = labels = self.__data.labels Nlabels = len(labels) Nuniquelabels = len(uniquelabels) # TODO: To get proper speed up for the next line only, # histogram should be computed # via sorting + counting "same" elements while reducing. # Guaranteed complexity is NlogN whenever now it is N^2 # compute the relative proportion of samples belonging to each # class (do it in one loop to improve speed and reduce readability self.__weights = \ [ 1.0 - ((labels == label).sum() / Nlabels) \ for label in uniquelabels ] self.__weights = dict(zip(uniquelabels, self.__weights)) labels = self.__labels # number of occerences for each unique class in kNNs votes = self.__votes_init.copy() for nn in knn_ids: votes[labels[nn]] += 1 # weight votes votes = [ self.__weights[ul] * votes[ul] for ul in uniquelabels] # find the class with most votes # return votes as well to store them in the state return uniquelabels[N.asarray(votes).argmax()], \ votes def untrain(self): """Reset trained state""" self.__data = None super(kNN, self).untrain() pymvpa-0.4.8/mvpa/clfs/lars.py000066400000000000000000000220671174541445200162620ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Least angle regression (LARS) classifier.""" __docformat__ = 'restructuredtext' # system imports import numpy as N import mvpa.base.externals as externals # do conditional to be able to build module reference if externals.exists('rpy', raiseException=True) and \ externals.exists('lars', raiseException=True): import rpy rpy.r.library('lars') # local imports from mvpa.clfs.base import Classifier, FailedToTrainError from mvpa.measures.base import Sensitivity from mvpa.base import warning if __debug__: from mvpa.base import debug known_models = ('lasso', 'stepwise', 'lar', 'forward.stagewise') class LARS(Classifier): """Least angle regression (LARS) `Classifier`. LARS is the model selection algorithm from: Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani, Least Angle Regression Annals of Statistics (with discussion) (2004) 32(2), 407-499. A new method for variable subset selection, with the lasso and 'epsilon' forward stagewise methods as special cases. Similar to SMLR, it performs a feature selection while performing classification, but instead of starting with all features, it starts with none and adds them in, which is similar to boosting. This classifier behaves more like a ridge regression in that it returns prediction values and it treats the training labels as continuous. In the true nature of the PyMVPA framework, this algorithm is actually implemented in R by Trevor Hastie and wrapped via RPy. To make use of LARS, you must have R and RPy installed as well as the LARS contributed package. You can install the R and RPy with the following command on Debian-based machines: sudo aptitude install python-rpy python-rpy-doc r-base-dev You can then install the LARS package by running R as root and calling: install.packages() """ # XXX from yoh: it is linear, isn't it? _clf_internals = [ 'lars', 'regression', 'linear', 'has_sensitivity', 'does_feature_selection', ] def __init__(self, model_type="lasso", trace=False, normalize=True, intercept=True, max_steps=None, use_Gram=False, **kwargs): """ Initialize LARS. See the help in R for further details on the following parameters: :Parameters: model_type : string Type of LARS to run. Can be one of ('lasso', 'lar', 'forward.stagewise', 'stepwise'). trace : boolean Whether to print progress in R as it works. normalize : boolean Whether to normalize the L2 Norm. intercept : boolean Whether to add a non-penalized intercept to the model. max_steps : None or int If not None, specify the total number of iterations to run. Each iteration adds a feature, but leaving it none will add until convergence. use_Gram : boolean Whether to compute the Gram matrix (this should be false if you have more features than samples.) """ # init base class first Classifier.__init__(self, **kwargs) if not model_type in known_models: raise ValueError('Unknown model %s for LARS is specified. Known' % model_type + 'are %s' % `known_models`) # set up the params self.__type = model_type self.__normalize = normalize self.__intercept = intercept self.__trace = trace self.__max_steps = max_steps self.__use_Gram = use_Gram # pylint friendly initializations self.__lowest_Cp_step = None self.__weights = None """The beta weights for each feature.""" self.__trained_model = None """The model object after training that will be used for predictions.""" # It does not make sense to calculate a confusion matrix for a # regression # YOH: we do have summary statistics for regressions #self.states.enable('training_confusion', False) def __repr__(self): """String summary of the object """ return "LARS(type='%s', normalize=%s, intercept=%s, trace=%s, " \ "max_steps=%s, use_Gram=%s, regression=%s, " \ "enable_states=%s)" % \ (self.__type, self.__normalize, self.__intercept, self.__trace, self.__max_steps, self.__use_Gram, self.regression, str(self.states.enabled)) def _train(self, data): """Train the classifier using `data` (`Dataset`). """ if self.__max_steps is None: # train without specifying max_steps trained_model = rpy.r.lars(data.samples, data.labels[:,N.newaxis], type=self.__type, normalize=self.__normalize, intercept=self.__intercept, trace=self.__trace, use_Gram=self.__use_Gram) else: # train with specifying max_steps trained_model = rpy.r.lars(data.samples, data.labels[:,N.newaxis], type=self.__type, normalize=self.__normalize, intercept=self.__intercept, trace=self.__trace, use_Gram=self.__use_Gram, max_steps=self.__max_steps) # find the step with the lowest Cp (risk) # it is often the last step if you set a max_steps # must first convert dictionary to array try: Cp = trained_model['Cp'] if '0' in Cp: # If there was any Cp_vals = N.asarray([Cp[str(x)] for x in range(len(Cp))]) else: Cp_vals = None except TypeError, e: raise FailedToTrainError, \ "Failed to train %s on %s. Got '%s' while trying to access " \ "trained model %s" % (self, data, e, trained_model) if Cp_vals is None: # if there were no any -- just choose 0th lowest_Cp_step = 0 elif N.isnan(Cp_vals[0]): # sometimes may come back nan, so just pick the last one lowest_Cp_step = len(Cp_vals)-1 else: # determine the lowest lowest_Cp_step = Cp_vals.argmin() self.__lowest_Cp_step = lowest_Cp_step # set the weights to the lowest Cp step self.__weights = trained_model['beta'][lowest_Cp_step, :] self.__trained_model = trained_model # bind to an instance # # set the weights to the final state # self.__weights = self.__trained_model['beta'][-1,:] def _predict(self, data): """ Predict the output for the provided data. """ # predict with the final state (i.e., the last step) # predict with the lowest Cp step try: res = rpy.r.predict_lars(self.__trained_model, data, mode='step', s=self.__lowest_Cp_step) #s=self.__trained_model['beta'].shape[0]) fit = N.atleast_1d(res['fit']) except rpy.RPyRException, e: warning("Failed to obtain predictions using %s on %s." "Re-raising exception." % (self, data)) raise self.values = fit return fit def _getFeatureIds(self): """Return ids of the used features """ return N.where(N.abs(self.__weights)>0)[0] def getSensitivityAnalyzer(self, **kwargs): """Returns a sensitivity analyzer for LARS.""" return LARSWeights(self, **kwargs) weights = property(lambda self: self.__weights) class LARSWeights(Sensitivity): """`SensitivityAnalyzer` that reports the weights LARS trained on a given `Dataset`. """ _LEGAL_CLFS = [ LARS ] def _call(self, dataset=None): """Extract weights from LARS classifier. LARS always has weights available, so nothing has to be computed here. """ clf = self.clf weights = clf.weights if __debug__: debug('LARS', "Extracting weights for LARS - "+ "Result: min=%f max=%f" %\ (N.min(weights), N.max(weights))) return weights pymvpa-0.4.8/mvpa/clfs/libsmlrc/000077500000000000000000000000001174541445200165475ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/clfs/libsmlrc/__init__.py000066400000000000000000000037231174541445200206650ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Wraper for the stepwise_regression function for SMLR.""" if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.clfs.libsmlrc') import numpy as N import ctypes as C import os import sys from mvpa.clfs.libsmlrc.ctypes_helper import extend_args, c_darray # connect to library that's in this directory if sys.platform == 'win32': # on windows things get tricky as we compile this lib as an extension # so it get a .pyd name suffix instead of .dll smlrlib = C.cdll[os.path.join(os.path.dirname(__file__), 'smlrc.pyd')] elif sys.platform == 'darwin': # look for .so extension on Mac (not .dylib this time) smlrlib = C.cdll[os.path.join(os.path.dirname(__file__), 'smlrc.so')] else: smlrlib = N.ctypeslib.load_library('smlrc', os.path.dirname(__file__)) # wrap the stepwise function def stepwise_regression(*args): func = smlrlib.stepwise_regression func.argtypes = [C.c_int, C.c_int, c_darray, C.c_int, C.c_int, c_darray, C.c_int, C.c_int, c_darray, C.c_int, C.c_int, c_darray, C.c_int, C.c_int, c_darray, C.c_int, c_darray, C.c_int, c_darray, C.c_int, c_darray, C.c_int, C.c_int, C.c_double, C.c_float, C.c_float, C.c_int64] func.restype = C.c_long # get the new arglist arglist = extend_args(*args) return func(*arglist) if __debug__: debug('INIT', 'mvpa.clfs.libsmlrc end') pymvpa-0.4.8/mvpa/clfs/libsmlrc/ctypes_helper.py000066400000000000000000000045421174541445200217740ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Helpers for wrapping C libraries with ctypes.""" import numpy as N import ctypes as C # define an array type to help with wrapping c_darray = N.ctypeslib.ndpointer(dtype=N.float64, flags='aligned,contiguous') c_larray = N.ctypeslib.ndpointer(dtype=N.int64, flags='aligned,contiguous') c_farray = N.ctypeslib.ndpointer(dtype=N.float32, flags='aligned,contiguous') c_iarray = N.ctypeslib.ndpointer(dtype=N.int32, flags='aligned,contiguous') def extend_args(*args): """Turn ndarray arguments into dims and arrays.""" arglist = [] for arg in args: if isinstance(arg, N.ndarray): # add the dimensions arglist.extend(arg.shape) # just append the arg arglist.append(arg) return arglist ############################################################# # I'm not sure the rest is helpful, but I'll keep it for now. ############################################################# # incomplete type conversion typemap = { N.float64: C.c_double, N.float32: C.c_float, N.int64: C.c_int64, N.int32: C.c_int32} def process_args(*args): """Turn ndarray arguments into dims and array pointers for calling a ctypes-wrapped function.""" arglist = [] for arg in args: if isinstance(arg, N.ndarray): # add the dimensions arglist.extend(arg.shape) # add the pointer to the ndarray arglist.append(arg.ctypes.data_as( C.POINTER(typemap[arg.dtype.type]))) else: # just append the arg arglist.append(arg) return arglist def get_argtypes(*args): argtypes = [] for arg in args: if isinstance(arg, N.ndarray): # add the dimensions argtypes.extend([C.c_int]*len(arg.shape)) # add the pointer to the ndarray argtypes.append(N.ctypeslib.ndpointer(dtype=arg.dtype)) else: # try and figure out the type argtypes.append(arg) return argtypes pymvpa-0.4.8/mvpa/clfs/libsmlrc/smlr.c000066400000000000000000000121041174541445200176660ustar00rootroot00000000000000/*emacs: -*- mode: c-mode; tab-width: 8; c-basic-offset: 2; indent-tabs-mode: t -*- ex: set sts=4 ts=8 sw=4 noet: */ #include #include #include #include #include #include DL_EXPORT(int) stepwise_regression(int w_rows, int w_cols, double w[w_rows][w_cols], int X_rows, int X_cols, double X[X_rows][X_cols], int XY_rows, int XY_cols, double XY[XY_rows][XY_cols], int Xw_rows, int Xw_cols, double Xw[Xw_rows][Xw_cols], int E_rows, int E_cols, double E[E_rows][E_cols], int ac_rows, double ac[ac_rows], int lm_2_ac_rows, double lm_2_ac[lm_2_ac_rows], int S_rows, double S[S_rows], int M, int maxiter, double convergence_tol, float resamp_decay, float min_resamp, int verbose, long long int seed) { // initialize the iterative optimization double incr = DBL_MAX; long non_zero = 0; long wasted_basis = 0; long needed_basis = 0; int changed = 0; // for calculating stepwise changes double w_old; double w_new; double w_diff; double grad; double XdotP; double E_new_m; double sum2_w_diff; double sum2_w_old; // get the num features and num classes int nd = w_rows; int ns = E_rows; // loop indexes int i = 0; // prob of resample each weight // allocate everything in heap -- not on stack float** p_resamp = (float **)calloc(w_rows, sizeof(float*)); for (i=0; i lm_2_ac[basis]) { // more towards bounds, but keep it w_new -= lm_2_ac[basis]; changed = 1; // umark from being zero if necessary if (w_old == 0.0) { non_zero += 1; // reset the p_resample p_resamp[basis][m] = 1.0; // we needed the basis needed_basis += 1; } } else if (w_new < -lm_2_ac[basis]) { // more towards bounds, but keep it w_new += lm_2_ac[basis]; changed = 1; // umark from being zero if necessary if (w_old == 0.0) { non_zero += 1; // reset the p_resample p_resamp[basis][m] = 1.0; // we needed the basis needed_basis += 1; } } else { // gonna zero it out w_new = 0.0; // decrease the p_resamp p_resamp[basis][m] -= (p_resamp[basis][m] - min_resamp) * resamp_decay; // set the number of non-zero if (w_old == 0.0) { // we didn't change changed = 0; // and wasted a basis wasted_basis += 1; } else { // we changed changed = 1; // must update num non_zero non_zero -= 1; } } // process changes if necessary if (changed == 1) { // update the expected values w_diff = w_new - w_old; for (i=0; i 0): self.maxlen = max(self.maxlen, max(x[i].keys())) else: self.maxlen = max(self.maxlen, len(x[i])) svmc.svm_problem_l_set(prob, size) svmc.svm_problem_y_set(prob, y_array) svmc.svm_problem_x_set(prob, x_matrix) def __repr__(self): return "" % (self.size) def __del__(self): if __debug__: debug('CLF_', 'Destroying libsvm.SVMProblem %s' % `self`) svmc.delete_svm_problem(self.prob) svmc.delete_double(self.y_array) for i in range(self.size): svmc.svm_node_array_destroy(self.data[i]) svmc.svm_node_matrix_destroy(self.x_matrix) class SVMModel: def __init__(self, arg1, arg2=None): if arg2 == None: # create model from file filename = arg1 self.model = svmc.svm_load_model(filename) else: # create model from problem and parameter prob, param = arg1, arg2 self.prob = prob if param.gamma == 0: param.gamma = 1.0/prob.maxlen msg = svmc.svm_check_parameter(prob.prob, param.param) if msg: raise ValueError, msg self.model = svmc.svm_train(prob.prob, param.param) #setup some classwide variables self.nr_class = svmc.svm_get_nr_class(self.model) self.svm_type = svmc.svm_get_svm_type(self.model) #create labels(classes) intarr = svmc.new_int(self.nr_class) svmc.svm_get_labels(self.model, intarr) self.labels = intArray2List(intarr, self.nr_class) svmc.delete_int(intarr) #check if valid probability model self.probability = svmc.svm_check_probability_model(self.model) def __repr__(self): """ Print string representation of the model or easier comprehension and some statistics """ ret = '' def predict(self, x): data = convert2SVMNode(x) ret = svmc.svm_predict(self.model, data) svmc.svm_node_array_destroy(data) return ret def getNRClass(self): return self.nr_class def getLabels(self): if self.svm_type == NU_SVR \ or self.svm_type == EPSILON_SVR \ or self.svm_type == ONE_CLASS: raise TypeError, "Unable to get label from a SVR/ONE_CLASS model" return self.labels #def getParam(self): # return SVMParameter( # svmc_parameter=svmc.svm_model_param_get(self.model)) def predictValuesRaw(self, x): #convert x into SVMNode, allocate a double array for return n = self.nr_class*(self.nr_class-1)//2 data = convert2SVMNode(x) dblarr = svmc.new_double(n) svmc.svm_predict_values(self.model, data, dblarr) ret = doubleArray2List(dblarr, n) svmc.delete_double(dblarr) svmc.svm_node_array_destroy(data) return ret def predictValues(self, x): v = self.predictValuesRaw(x) if self.svm_type == NU_SVR \ or self.svm_type == EPSILON_SVR \ or self.svm_type == ONE_CLASS: return v[0] else: #self.svm_type == C_SVC or self.svm_type == NU_SVC count = 0 d = {} for i in range(len(self.labels)): for j in range(i+1, len(self.labels)): d[self.labels[i], self.labels[j]] = v[count] d[self.labels[j], self.labels[i]] = -v[count] count += 1 return d def predictProbability(self, x): #c code will do nothing on wrong type, so we have to check ourself if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR: raise TypeError, "call get_svr_probability or get_svr_pdf " \ "for probability output of regression" elif self.svm_type == ONE_CLASS: raise TypeError, "probability not supported yet for one-class " \ "problem" #only C_SVC, NU_SVC goes in if not self.probability: raise TypeError, "model does not support probabiliy estimates" #convert x into SVMNode, alloc a double array to receive probabilities data = convert2SVMNode(x) dblarr = svmc.new_double(self.nr_class) pred = svmc.svm_predict_probability(self.model, data, dblarr) pv = doubleArray2List(dblarr, self.nr_class) svmc.delete_double(dblarr) svmc.svm_node_array_destroy(data) p = {} for i in range(len(self.labels)): p[self.labels[i]] = pv[i] return pred, p def getSVRProbability(self): #leave the Error checking to svm.cpp code ret = svmc.svm_get_svr_probability(self.model) if ret == 0: raise TypeError, "not a regression model or probability " \ "information not available" return ret def getSVRPdf(self): #get_svr_probability will handle error checking sigma = self.getSVRProbability() return lambda z: exp(-fabs(z)/sigma)/(2*sigma) def save(self, filename): svmc.svm_save_model(filename, self.model) def __del__(self): if __debug__: debug('CLF_', 'Destroying libsvm.SVMModel %s' % (`self`)) try: if svmc.__version__ < 300: svmc.svm_destroy_model(self.model) else: svmc.svm_destroy_model_helper(self.model) except: # blind way to overcome problem of already deleted model and # "SVMModel instance has no attribute 'model'" in ignored pass def getTotalNSV(self): return svmc.svm_model_l_get(self.model) def getNSV(self): """Returns a list with the number of support vectors per class. """ return [ svmc.int_getitem(svmc.svm_model_nSV_get( self.model ), i) for i in range( self.nr_class ) ] def getSV(self): """Returns an array with the all support vectors. array( nSV x ) """ return svmc.svm_node_matrix2numpy_array( svmc.svm_model_SV_get(self.model), self.getTotalNSV(), self.prob.maxlen) def getSVCoef(self): """Return coefficients for SVs... Needs to be used directly with caution! Summary on what is happening in libsvm internals with sv_coef svm_model's sv_coef (especially) are "cleverly" packed into a matrix nr_class - 1 x #SVs_total which stores coefficients for nr_class x (nr_class-1) / 2 binary classifiers' SV coefficients. For classifier i-vs-j General packing rule can be described as: i-th row contains sv_coefficients for SVs of class i it took in all i-vs-j or j-vs-i classifiers. Another useful excerpt from svm.cpp is // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] It can also be described as j-th column lists coefficients for SV # j which belongs to some class C, which it took (if it was an SV, ie != 0) in classifiers i vs C (iff iC) This way no byte of storage is wasted but imho such setup is quite convolved """ return svmc.doubleppcarray2numpy_array( svmc.svm_model_sv_coef_get(self.model), self.nr_class - 1, self.getTotalNSV()) def getRho(self): """Return constant(s) in decision function(s) (if multi-class)""" return doubleArray2List(svmc.svm_model_rho_get(self.model), self.nr_class * (self.nr_class-1)/2) pymvpa-0.4.8/mvpa/clfs/libsvmc/sens.py000066400000000000000000000105251174541445200177240ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Provide sensitivity measures for libsvm's SVM.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import warning from mvpa.misc.state import StateVariable from mvpa.misc.param import Parameter from mvpa.measures.base import Sensitivity if __debug__: from mvpa.base import debug class LinearSVMWeights(Sensitivity): """`SensitivityAnalyzer` for the LIBSVM implementation of a linear SVM. """ _ATTRIBUTE_COLLECTIONS = ['params'] biases = StateVariable(enabled=True, doc="Offsets of separating hyperplanes") split_weights = Parameter(False, allowedtype='bool', doc="If binary classification either to sum SVs per each " "class separately") def __init__(self, clf, **kwargs): """Initialize the analyzer with the classifier it shall use. :Parameters: clf: LinearSVM classifier to use. Only classifiers sub-classed from `LinearSVM` may be used. """ # init base classes first Sensitivity.__init__(self, clf, **kwargs) def _call(self, dataset, callables=[]): # local bindings clf = self.clf model = clf.model if clf.params.regression: nr_class = None else: nr_class = model.nr_class if not nr_class in [None, 2]: warning("You are estimating sensitivity for SVM %s trained on %d" % (str(self.clf), self.clf.model.nr_class) + " classes. Make sure that it is what you intended to do" ) svcoef = N.matrix(model.getSVCoef()) svs = N.matrix(model.getSV()) rhos = N.asarray(model.getRho()) self.biases = rhos if self.split_weights: if nr_class != 2: raise NotImplementedError, \ "Cannot compute per-class weights for" \ " non-binary classification task" # libsvm might have different idea on the ordering # of labels, so we would need to map them back explicitely svm_labels = model.getLabels() # labels as assigned by libsvm ds_labels = list(dataset.uniquelabels) # labels in the dataset senses = [None for i in ds_labels] # first label is given positive value for i, (c, l) in enumerate( [(svcoef > 0, lambda x: x), (svcoef < 0, lambda x: x*-1)] ): # convert to array, and just take the meaningful dimension c_ = c.A[0] senses[ds_labels.index(svm_labels[i])] = \ (l(svcoef[:, c_] * svs[c_, :])).A[0] weights = N.array(senses) else: # XXX yoh: .mean() is effectively # averages across "sensitivities" of all paired classifiers (I # think). See more info on this topic in svm.py on how sv_coefs # are stored # # First multiply SV coefficients with the actual SVs to get # weighted impact of SVs on decision, then for each feature # take mean across SVs to get a single weight value # per feature weights = svcoef * svs if __debug__ and 'SVM' in debug.active: if clf.params.regression: nsvs = model.getTotalNSV() else: nsvs = model.getNSV() if clf.regression: svm_type = clf._svm_impl # type of regression else: svm_type = '%d-class SVM(%s)' % (nr_class, clf._svm_impl) debug('SVM', "Extracting weights for %s: #SVs=%s, " % \ (svm_type, nsvs) + \ " SVcoefshape=%s SVs.shape=%s Rhos=%s." % \ (svcoef.shape, svs.shape, rhos) + \ " Result: min=%f max=%f" % (N.min(weights), N.max(weights))) return N.asarray(weights.T) _customizeDocInherit = True pymvpa-0.4.8/mvpa/clfs/libsvmc/svm.py000066400000000000000000000315251174541445200175640ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Wrap the libsvm package into a very simple class interface.""" __docformat__ = 'restructuredtext' import numpy as N import operator from mvpa.base import warning from mvpa.misc.state import StateVariable from mvpa.clfs._svmbase import _SVM from mvpa.clfs.libsvmc import _svm as svm from sens import LinearSVMWeights if __debug__: from mvpa.base import debug # we better expose those since they are mentioned in docstrings # although pylint would not be happy from mvpa.clfs.libsvmc._svmc import \ C_SVC, NU_SVC, EPSILON_SVR, \ NU_SVR, LINEAR, POLY, RBF, SIGMOID, \ PRECOMPUTED, ONE_CLASS class SVM(_SVM): """Support Vector Machine Classifier. This is a simple interface to the libSVM package. """ # Since this is internal feature of LibSVM, this state variable is present # here probabilities = StateVariable(enabled=False, doc="Estimates of samples probabilities as provided by LibSVM") _KERNELS = { "linear": (svm.svmc.LINEAR, None, LinearSVMWeights), "rbf" : (svm.svmc.RBF, ('gamma',), None), "poly": (svm.svmc.POLY, ('gamma', 'degree', 'coef0'), None), "sigmoid": (svm.svmc.SIGMOID, ('gamma', 'coef0'), None), } # TODO: Complete the list ;-) # TODO p is specific for SVR _KNOWN_PARAMS = [ 'epsilon', 'probability', 'shrinking', 'weight_label', 'weight'] _KNOWN_KERNEL_PARAMS = [ 'cache_size' ] _KNOWN_IMPLEMENTATIONS = { 'C_SVC' : (svm.svmc.C_SVC, ('C',), ('binary', 'multiclass'), 'C-SVM classification'), 'NU_SVC' : (svm.svmc.NU_SVC, ('nu',), ('binary', 'multiclass'), 'nu-SVM classification'), 'ONE_CLASS' : (svm.svmc.ONE_CLASS, (), ('oneclass',), 'one-class-SVM'), 'EPSILON_SVR' : (svm.svmc.EPSILON_SVR, ('C', 'tube_epsilon'), ('regression',), 'epsilon-SVM regression'), 'NU_SVR' : (svm.svmc.NU_SVR, ('nu', 'tube_epsilon'), ('regression',), 'nu-SVM regression') } _clf_internals = _SVM._clf_internals + [ 'libsvm' ] def __init__(self, kernel_type='linear', **kwargs): # XXX Determine which parameters depend on each other and implement # safety/simplifying logic around them # already done for: nr_weight # thought: weight and weight_label should be a dict """Interface class to LIBSVM classifiers and regressions. Default implementation (C/nu/epsilon SVM) is chosen depending on the given parameters (C/nu/tube_epsilon). """ svm_impl = kwargs.get('svm_impl', None) # Depending on given arguments, figure out desired SVM # implementation if svm_impl is None: for arg, impl in [ ('tube_epsilon', 'EPSILON_SVR'), ('C', 'C_SVC'), ('nu', 'NU_SVC') ]: if kwargs.has_key(arg): svm_impl = impl if __debug__: debug('SVM', 'No implementation was specified. Since ' '%s is given among arguments, assume %s' % (arg, impl)) break if svm_impl is None: svm_impl = 'C_SVC' if __debug__: debug('SVM', 'Assign C_SVC "by default"') kwargs['svm_impl'] = svm_impl # init base class _SVM.__init__(self, kernel_type, **kwargs) self._svm_type = self._KNOWN_IMPLEMENTATIONS[svm_impl][0] if 'nu' in self._KNOWN_PARAMS and 'epsilon' in self._KNOWN_PARAMS: # overwrite eps param with new default value (information # taken from libSVM docs self.params['epsilon'].setDefault(0.001) self.__model = None """Holds the trained SVM.""" def _train(self, dataset): """Train SVM """ # libsvm needs doubles if dataset.samples.dtype == 'float64': src = dataset.samples else: src = dataset.samples.astype('double') svmprob = svm.SVMProblem( dataset.labels.tolist(), src ) # Translate few params TRANSLATEDICT = {'epsilon': 'eps', 'tube_epsilon': 'p'} args = [] for paramname, param in self.params.items.items() \ + self.kernel_params.items.items(): if paramname in TRANSLATEDICT: argname = TRANSLATEDICT[paramname] elif paramname in svm.SVMParameter.default_parameters: argname = paramname else: if __debug__: debug("SVM_", "Skipping parameter %s since it is not known" "to libsvm" % paramname) continue args.append( (argname, param.value) ) # ??? All those parameters should be fetched if present from # **kwargs and create appropriate parameters within .params or # .kernel_params libsvm_param = svm.SVMParameter( kernel_type=self._kernel_type, svm_type=self._svm_type, **dict(args)) """Store SVM parameters in libSVM compatible format.""" if self.params.isKnown('C'):#svm_type in [svm.svmc.C_SVC]: C = self.params.C if not operator.isSequenceType(C): # we were not given a tuple for balancing between classes C = [C] Cs = list(C[:]) # copy for i in xrange(len(Cs)): if Cs[i] < 0: Cs[i] = self._getDefaultC(dataset.samples)*abs(Cs[i]) if __debug__: debug("SVM", "Default C for %s was computed to be %s" % (C[i], Cs[i])) libsvm_param._setParameter('C', Cs[0]) if len(Cs)>1: C0 = abs(C[0]) scale = 1.0/(C0)#*N.sqrt(C0)) # so we got 1 C per label if len(Cs) != len(dataset.uniquelabels): raise ValueError, "SVM was parametrized with %d Cs but " \ "there are %d labels in the dataset" % \ (len(Cs), len(dataset.uniquelabels)) weight = [ c*scale for c in Cs ] libsvm_param._setParameter('weight', weight) self.__model = svm.SVMModel(svmprob, libsvm_param) def _predict(self, data): """Predict values for the data """ # libsvm needs doubles if data.dtype == 'float64': src = data else: src = data.astype('double') states = self.states predictions = [ self.model.predict(p) for p in src ] if states.isEnabled("values"): if self.regression: values = [ self.model.predictValuesRaw(p)[0] for p in src ] else: trained_labels = self.trained_labels nlabels = len(trained_labels) # XXX We do duplicate work. model.predict calls # predictValuesRaw internally and then does voting or # thresholding. So if speed becomes a factor we might # want to move out logic from libsvm over here to base # predictions on obtined values, or adjust libsvm to # spit out values from predict() as well if nlabels == 2: # Apperently libsvm reorders labels so we need to # track (1,0) values instead of (0,1) thus just # lets take negative reverse values = [ self.model.predictValues(p)[(trained_labels[1], trained_labels[0])] for p in src ] if len(values) > 0: if __debug__: debug("SVM", "Forcing values to be ndarray and reshaping" " them into 1D vector") values = N.asarray(values).reshape(len(values)) else: # In multiclass we return dictionary for all pairs # of labels, since libsvm does 1-vs-1 pairs values = [ self.model.predictValues(p) for p in src ] states.values = values if states.isEnabled("probabilities"): # XXX Is this really necesssary? yoh don't think so since # assignment to states is doing the same #self.probabilities = [ self.model.predictProbability(p) # for p in src ] try: states.probabilities = [ self.model.predictProbability(p) for p in src ] except TypeError: warning("Current SVM %s doesn't support probability " % self + " estimation.") return predictions def summary(self): """Provide quick summary over the SVM classifier""" s = super(SVM, self).summary() if self.trained: s += '\n # of SVs: %d' % self.__model.getTotalNSV() try: prm = svm.svmc.svm_model_param_get(self.__model.model) C = svm.svmc.svm_parameter_C_get(prm) # extract information of how many SVs sit inside the margin, # i.e. so called 'bounded SVs' inside_margin = N.sum( # take 0.99 to avoid rounding issues N.abs(self.__model.getSVCoef()) >= 0.99*svm.svmc.svm_parameter_C_get(prm)) s += ' #bounded SVs:%d' % inside_margin s += ' used C:%5g' % C except: pass return s def untrain(self): """Untrain libsvm's SVM: forget the model """ if __debug__: debug("SVM", "Untraining %s and destroying libsvm model" % self) super(SVM, self).untrain() del self.__model self.__model = None model = property(fget=lambda self: self.__model) """Access to the SVM model.""" #class LinearSVM(SVM): # """Base class of all linear SVM classifiers that make use of the libSVM # package. Still not meant to be used directly. # """ # # def __init__(self, svm_impl, **kwargs): # """The constructor arguments are virtually identical to the ones of # the SVM class, except that 'kernel_type' is set to LINEAR. # """ # # init base class # SVM.__init__(self, kernel_type='linear', # svm_impl=svm_impl, **kwargs) # # # def getSensitivityAnalyzer(self, **kwargs): # """Returns an appropriate SensitivityAnalyzer.""" # return LibSVMLinearSVMWeights(self, **kwargs) # # #class LinearNuSVMC(LinearSVM): # """Classifier for linear Nu-SVM classification. # """ # # def __init__(self, **kwargs): # """ # """ # # init base class # LinearSVM.__init__(self, svm_impl='NU_SVC', **kwargs) # # #class LinearCSVMC(LinearSVM): # """Classifier for linear C-SVM classification. # """ # # def __init__(self, **kwargs): # """ # """ # # init base class # LinearSVM.__init__(self, svm_impl='C_SVC', **kwargs) # # # #class RbfNuSVMC(SVM): # """Nu-SVM classifier using a radial basis function kernel. # """ # # def __init__(self, **kwargs): # """ # """ # # init base class # SVM.__init__(self, kernel_type='rbf', # svm_impl='NU_SVC', **kwargs) # # #class RbfCSVMC(SVM): # """C-SVM classifier using a radial basis function kernel. # """ # # def __init__(self, **kwargs): # """ # """ # # init base class # SVM.__init__(self, kernel_type='rbf', # svm_impl='C_SVC', **kwargs) # # try to configure libsvm 'noise reduction'. Due to circular imports, # we can't check externals here since it would not work. try: # if externals.exists('libsvm verbosity control'): if __debug__ and "LIBSVM" in debug.active: debug("LIBSVM", "Setting verbosity for libsvm to 255") svm.svmc.svm_set_verbosity(255) else: svm.svmc.svm_set_verbosity(0) except AttributeError: warning("Available LIBSVM has no way to control verbosity of the output") # Assign SVM class to limited set of LinearSVMWeights LinearSVMWeights._LEGAL_CLFS = [SVM] pymvpa-0.4.8/mvpa/clfs/libsvmc/svmc.i000066400000000000000000000167671174541445200175420ustar00rootroot00000000000000//-*-c++-*- /*emacs: -*- mode: c++; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: t -*- ex: set sts=4 ts=4 sw=4 noet: */ %module svmc %{ #include "svm.h" #include #include // Just to assure its availability even on older versions of libsvm // where no such preprocessor variable was available (when was it? ;)) #ifndef LIBSVM_VERSION # define LIBSVM_VERSION 0 #endif enum { __version__ = LIBSVM_VERSION }; #if LIBSVM_VERSION < 300 struct svm_model { svm_parameter param;// parameter int nr_class; // number of classes, = 2 in regression/one class svm int l; // total #SV svm_node **SV; // SVs (SV[l]) double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) double *rho; // constants in decision functions (rho[k*(k-1)/2]) double *probA; // pariwise probability information double *probB; // for classification only int *label; // label of each class (label[k]) int *nSV; // number of SVs for each class (nSV[k]) // nSV[0] + nSV[1] + ... + nSV[k-1] = l // XXX int free_sv; // 1 if svm_model is created by svm_load_model // 0 if svm_model is created by svm_train }; #endif /* convert node matrix into a numpy array */ static PyObject* svm_node_matrix2numpy_array(struct svm_node** matrix, int rows, int cols) { npy_intp dims[2] = {rows,cols}; PyObject* array = 0; array = PyArray_SimpleNew ( 2, dims, NPY_DOUBLE ); /* array subscription is [row][column] */ PyArrayObject* a = (PyArrayObject*) array; double* data = (double *)a->data; int i,j; for (i = 0; idata; int i,j; for (i = 0; i= 2.89 */ #if LIBSVM_VERSION >= 289 /* borrowed from original libsvm code */ static void print_null(const char *s) {} static void print_string_stdout(const char *s) { fputs(s,stdout); fflush(stdout); } /* provide convenience wrapper */ void svm_set_verbosity(int verbosity_flag){ if (verbosity_flag) # if LIBSVM_VERSION < 291 svm_print_string = &print_string_stdout; else svm_print_string = &print_null; # else svm_set_print_string_function(&print_string_stdout); else svm_set_print_string_function(&print_null); # endif } #endif %} %init %{ import_array(); %} enum { __version__ = LIBSVM_VERSION }; enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */ enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */ struct svm_parameter { int svm_type; int kernel_type; int degree; // for poly double gamma; // for poly/rbf/sigmoid double coef0; // for poly/sigmoid // these are for training only double cache_size; // in MB double eps; // stopping criteria double C; // for C_SVC, EPSILON_SVR and NU_SVR int nr_weight; // for C_SVC int *weight_label; // for C_SVC double* weight; // for C_SVC double nu; // for NU_SVC, ONE_CLASS, and NU_SVR double p; // for EPSILON_SVR int shrinking; // use the shrinking heuristics int probability; }; struct svm_problem { int l; double *y; struct svm_node **x; }; // // svm_model // struct svm_model { svm_parameter param; // parameter int nr_class; // number of classes, = 2 in regression/one class svm int l; // total #SV svm_node **SV; // SVs (SV[l]) double **sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l]) double *rho; // constants in decision functions (rho[k*(k-1)/2]) double *probA; // pariwise probability information double *probB; // for classification only int *label; // label of each class (label[k]) int *nSV; // number of SVs for each class (nSV[k]) // nSV[0] + nSV[1] + ... + nSV[k-1] = l // XXX int free_sv; // 1 if svm_model is created by svm_load_model // 0 if svm_model is created by svm_train }; /* one really wants to configure verbosity within python! */ void svm_set_verbosity(int verbosity_flag); struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target); int svm_save_model(const char *model_file_name, const struct svm_model *model); struct svm_model *svm_load_model(const char *model_file_name); int svm_get_svm_type(const struct svm_model *model); int svm_get_nr_class(const struct svm_model *model); void svm_get_labels(const struct svm_model *model, int *label); double svm_get_svr_probability(const struct svm_model *model); void svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* decvalue); double svm_predict(const struct svm_model *model, const struct svm_node *x); double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates); %inline %{ /* Just for bloody compatibility with deprecated method, which would not be used any ways, but declaring it for newer versions should allow to build across different versions without patching */ #if LIBSVM_VERSION >= 310 void svm_destroy_model(struct svm_model *model); #endif %} /* Not necessary: the weight vector is (de)allocated at python-part void svm_destroy_param(struct svm_parameter *param); */ const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param); int svm_check_probability_model(const struct svm_model *model); static PyObject* svm_node_matrix2numpy_array(struct svm_node** matrix, int rows, int cols); static PyObject* doubleppcarray2numpy_array(double** data, int rows, int cols); %include carrays.i %array_functions(int,int) %array_functions(double,double) %inline %{ struct svm_node *svm_node_array(int size) { return (struct svm_node *)malloc(sizeof(struct svm_node)*size); } void svm_node_array_set(struct svm_node *array, int i, int index, double value) { array[i].index = index; array[i].value = value; } void svm_node_array_set(struct svm_node *array, PyObject *indices, PyObject *values) { int length = PyList_Size(indices); int i; for (i = 0; i< length; i++){ array[i].index = (int)PyInt_AS_LONG(PyList_GetItem(indices, i)); PyObject* obj = PyArray_GETITEM(values, PyArray_GETPTR1(values, i)); array[i].value = (double)PyFloat_AS_DOUBLE(obj); Py_DECREF(obj); } } void svm_node_array_destroy(struct svm_node *array) { free(array); } struct svm_node **svm_node_matrix(int size) { return (struct svm_node **)malloc(sizeof(struct svm_node *)*size); } void svm_node_matrix_set(struct svm_node **matrix, int i, struct svm_node* array) { matrix[i] = array; } void svm_node_matrix_destroy(struct svm_node **matrix) { free(matrix); } #if LIBSVM_VERSION >= 300 void svm_destroy_model_helper(svm_model* model_ptr) { // yoh: Silence the blurber // fprintf(stderr,"warning: svm_destroy_model is deprecated and should not be used. Please use svm_free_and_destroy_model(svm_model **model_ptr_ptr)\n"); svm_free_and_destroy_model(&model_ptr); } #endif %} pymvpa-0.4.8/mvpa/clfs/meta.py000066400000000000000000001421001174541445200162360ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Classes for meta classifiers -- classifiers which use other classifiers Meta Classifiers can be grouped according to their function as :group BoostedClassifiers: CombinedClassifier MulticlassClassifier SplitClassifier :group ProxyClassifiers: ProxyClassifier BinaryClassifier MappedClassifier FeatureSelectionClassifier :group PredictionsCombiners for CombinedClassifier: PredictionsCombiner MaximalVote MeanPrediction """ __docformat__ = 'restructuredtext' import operator import numpy as N from mvpa.misc.args import group_kwargs from mvpa.mappers.mask import MaskMapper from mvpa.datasets.splitters import NFoldSplitter from mvpa.misc.state import StateVariable, ClassWithCollections, Harvestable from mvpa.clfs.base import Classifier from mvpa.misc.transformers import FirstAxisMean from mvpa.measures.base import \ BoostedClassifierSensitivityAnalyzer, ProxyClassifierSensitivityAnalyzer, \ MappedClassifierSensitivityAnalyzer, \ FeatureSelectionClassifierSensitivityAnalyzer from mvpa.base import warning if __debug__: from mvpa.base import debug class BoostedClassifier(Classifier, Harvestable): """Classifier containing the farm of other classifiers. Should rarely be used directly. Use one of its childs instead """ # should not be needed if we have prediction_values upstairs # raw_predictions should be handled as Harvestable??? raw_predictions = StateVariable(enabled=False, doc="Predictions obtained from each classifier") raw_values = StateVariable(enabled=False, doc="Values obtained from each classifier") def __init__(self, clfs=None, propagate_states=True, harvest_attribs=None, copy_attribs='copy', **kwargs): """Initialize the instance. :Parameters: clfs : list list of classifier instances to use (slave classifiers) propagate_states : bool either to propagate enabled states into slave classifiers. It is in effect only when slaves get assigned - so if state is enabled not during construction, it would not necessarily propagate into slaves kwargs : dict dict of keyworded arguments which might get used by State or Classifier """ if clfs == None: clfs = [] Classifier.__init__(self, **kwargs) Harvestable.__init__(self, harvest_attribs, copy_attribs) self.__clfs = None """Pylint friendly definition of __clfs""" self.__propagate_states = propagate_states """Enable current enabled states in slave classifiers""" self._setClassifiers(clfs) """Store the list of classifiers""" def __repr__(self, prefixes=[]): if self.__clfs is None or len(self.__clfs)==0: #prefix_ = "clfs=%s" % repr(self.__clfs) prefix_ = [] else: prefix_ = ["clfs=[%s,...]" % repr(self.__clfs[0])] return super(BoostedClassifier, self).__repr__(prefix_ + prefixes) def _train(self, dataset): """Train `BoostedClassifier` """ for clf in self.__clfs: clf.train(dataset) def _posttrain(self, dataset): """Custom posttrain of `BoostedClassifier` Harvest over the trained classifiers if it was asked to so """ Classifier._posttrain(self, dataset) if self.states.isEnabled('harvested'): for clf in self.__clfs: self._harvest(locals()) if self.params.retrainable: self.__changedData_isset = False def _getFeatureIds(self): """Custom _getFeatureIds for `BoostedClassifier` """ # return union of all used features by slave classifiers feature_ids = set([]) for clf in self.__clfs: feature_ids = feature_ids.union(set(clf.feature_ids)) return list(feature_ids) def _predict(self, data): """Predict using `BoostedClassifier` """ raw_predictions = [ clf.predict(data) for clf in self.__clfs ] self.raw_predictions = raw_predictions assert(len(self.__clfs)>0) if self.states.isEnabled("values"): if N.array([x.states.isEnabled("values") for x in self.__clfs]).all(): values = [ clf.values for clf in self.__clfs ] self.raw_values = values else: warning("One or more classifiers in %s has no 'values' state" % self + "enabled, thus BoostedClassifier can't have" + " 'raw_values' state variable defined") return raw_predictions def _setClassifiers(self, clfs): """Set the classifiers used by the boosted classifier We have to allow to set list of classifiers after the object was actually created. It will be used by MulticlassClassifier """ self.__clfs = clfs """Classifiers to use""" if len(clfs): for flag in ['regression']: values = N.array([clf.params[flag].value for clf in clfs]) value = values.any() if __debug__: debug("CLFBST", "Setting %(flag)s=%(value)s for classifiers " "%(clfs)s with %(values)s", msgargs={'flag' : flag, 'value' : value, 'clfs' : clfs, 'values' : values}) # set flag if it needs to be trained before predicting self.params[flag].value = value # enable corresponding states in the slave-classifiers if self.__propagate_states: for clf in self.__clfs: clf.states.enable(self.states.enabled, missingok=True) # adhere to their capabilities + 'multiclass' # XXX do intersection across all classifiers! # TODO: this seems to be wrong since it can be regression etc self._clf_internals = [ 'binary', 'multiclass', 'meta' ] if len(clfs)>0: self._clf_internals += self.__clfs[0]._clf_internals def untrain(self): """Untrain `BoostedClassifier` Has to untrain any known classifier """ if not self.trained: return for clf in self.clfs: clf.untrain() super(BoostedClassifier, self).untrain() def getSensitivityAnalyzer(self, **kwargs): """Return an appropriate SensitivityAnalyzer""" return BoostedClassifierSensitivityAnalyzer( self, **kwargs) clfs = property(fget=lambda x:x.__clfs, fset=_setClassifiers, doc="Used classifiers") class ProxyClassifier(Classifier): """Classifier which decorates another classifier Possible uses: - modify data somehow prior training/testing: * normalization * feature selection * modification - optimized classifier? """ def __init__(self, clf, **kwargs): """Initialize the instance :Parameters: clf : Classifier classifier based on which mask classifiers is created """ Classifier.__init__(self, regression=clf.regression, **kwargs) self.__clf = clf """Store the classifier to use.""" # adhere to slave classifier capabilities # TODO: unittest self._clf_internals = self._clf_internals[:] + ['meta'] if clf is not None: self._clf_internals += clf._clf_internals def __repr__(self, prefixes=[]): return super(ProxyClassifier, self).__repr__( ["clf=%s" % repr(self.__clf)] + prefixes) def summary(self): s = super(ProxyClassifier, self).summary() if self.trained: s += "\n Slave classifier summary:" + \ '\n + %s' % \ (self.__clf.summary().replace('\n', '\n |')) return s def _train(self, dataset): """Train `ProxyClassifier` """ # base class does nothing much -- just proxies requests to underlying # classifier self.__clf.train(dataset) # for the ease of access # TODO: if to copy we should exclude some states which are defined in # base Classifier (such as training_time, predicting_time) # YOH: for now _copy_states_ would copy only set states variables. If # anything needs to be overriden in the parent's class, it is # welcome to do so #self.states._copy_states_(self.__clf, deep=False) def _predict(self, data): """Predict using `ProxyClassifier` """ clf = self.__clf if self.states.isEnabled('values'): clf.states.enable(['values']) result = clf.predict(data) # for the ease of access self.states._copy_states_(self.__clf, ['values'], deep=False) return result def untrain(self): """Untrain ProxyClassifier """ if not self.__clf is None: self.__clf.untrain() super(ProxyClassifier, self).untrain() @group_kwargs(prefixes=['slave_'], passthrough=True) def getSensitivityAnalyzer(self, slave_kwargs, **kwargs): """Return an appropriate SensitivityAnalyzer""" return ProxyClassifierSensitivityAnalyzer( self, analyzer=self.__clf.getSensitivityAnalyzer(**slave_kwargs), **kwargs) clf = property(lambda x:x.__clf, doc="Used `Classifier`") # # Various combiners for CombinedClassifier # class PredictionsCombiner(ClassWithCollections): """Base class for combining decisions of multiple classifiers""" def train(self, clfs, dataset): """PredictionsCombiner might need to be trained :Parameters: clfs : list of Classifier List of classifiers to combine. Has to be classifiers (not pure predictions), since combiner might use some other state variables (value's) instead of pure prediction's dataset : Dataset training data in this case """ pass def __call__(self, clfs, dataset): """Call function :Parameters: clfs : list of Classifier List of classifiers to combine. Has to be classifiers (not pure predictions), since combiner might use some other state variables (value's) instead of pure prediction's """ raise NotImplementedError class MaximalVote(PredictionsCombiner): """Provides a decision using maximal vote rule""" predictions = StateVariable(enabled=True, doc="Voted predictions") all_label_counts = StateVariable(enabled=False, doc="Counts across classifiers for each label/sample") def __init__(self): """XXX Might get a parameter to use raw decision values if voting is not unambigous (ie two classes have equal number of votes """ PredictionsCombiner.__init__(self) def __call__(self, clfs, dataset): """Actuall callable - perform voting Extended functionality which might not be needed actually: Since `BinaryClassifier` might return a list of possible predictions (not just a single one), we should consider all of those MaximalVote doesn't care about dataset itself """ if len(clfs)==0: return [] # to don't even bother all_label_counts = None for clf in clfs: # Lets check first if necessary state variable is enabled if not clf.states.isEnabled("predictions"): raise ValueError, "MaximalVote needs classifiers (such as " + \ "%s) with state 'predictions' enabled" % clf predictions = clf.predictions if all_label_counts is None: all_label_counts = [ {} for i in xrange(len(predictions)) ] # for every sample for i in xrange(len(predictions)): prediction = predictions[i] if not operator.isSequenceType(prediction): prediction = (prediction,) for label in prediction: # for every label # XXX we might have multiple labels assigned # but might not -- don't remember now if not all_label_counts[i].has_key(label): all_label_counts[i][label] = 0 all_label_counts[i][label] += 1 predictions = [] # select maximal vote now for each sample for i in xrange(len(all_label_counts)): label_counts = all_label_counts[i] # lets do explicit search for max so we know # if it is unique maxk = [] # labels of elements with max vote maxv = -1 for k, v in label_counts.iteritems(): if v > maxv: maxk = [k] maxv = v elif v == maxv: maxk.append(k) assert len(maxk) >= 1, \ "We should have obtained at least a single key of max label" if len(maxk) > 1: warning("We got multiple labels %s which have the " % maxk + "same maximal vote %d. XXX disambiguate" % maxv) predictions.append(maxk[0]) self.all_label_counts = all_label_counts self.predictions = predictions return predictions class MeanPrediction(PredictionsCombiner): """Provides a decision by taking mean of the results """ predictions = StateVariable(enabled=True, doc="Mean predictions") def __call__(self, clfs, dataset): """Actuall callable - perform meaning """ if len(clfs)==0: return [] # to don't even bother all_predictions = [] for clf in clfs: # Lets check first if necessary state variable is enabled if not clf.states.isEnabled("predictions"): raise ValueError, "MeanPrediction needs classifiers (such " \ " as %s) with state 'predictions' enabled" % clf all_predictions.append(clf.predictions) # compute mean predictions = N.mean(N.asarray(all_predictions), axis=0) self.predictions = predictions return predictions class ClassifierCombiner(PredictionsCombiner): """Provides a decision using training a classifier on predictions/values TODO: implement """ predictions = StateVariable(enabled=True, doc="Trained predictions") def __init__(self, clf, variables=None): """Initialize `ClassifierCombiner` :Parameters: clf : Classifier Classifier to train on the predictions variables : list of basestring List of state variables stored in 'combined' classifiers, which to use as features for training this classifier """ PredictionsCombiner.__init__(self) self.__clf = clf """Classifier to train on `variables` states of provided classifiers""" if variables == None: variables = ['predictions'] self.__variables = variables """What state variables of the classifiers to use""" def untrain(self): """It might be needed to untrain used classifier""" if self.__clf: self.__clf.untrain() def __call__(self, clfs, dataset): """ """ if len(clfs)==0: return [] # to don't even bother raise NotImplementedError class CombinedClassifier(BoostedClassifier): """`BoostedClassifier` which combines predictions using some `PredictionsCombiner` functor. """ def __init__(self, clfs=None, combiner=None, **kwargs): """Initialize the instance. :Parameters: clfs : list of Classifier list of classifier instances to use combiner : PredictionsCombiner callable which takes care about combining multiple results into a single one (e.g. maximal vote for classification, MeanPrediction for regression)) kwargs : dict dict of keyworded arguments which might get used by State or Classifier NB: `combiner` might need to operate not on 'predictions' descrete labels but rather on raw 'class' values classifiers estimate (which is pretty much what is stored under `values` """ if clfs == None: clfs = [] BoostedClassifier.__init__(self, clfs, **kwargs) # assign default combiner if combiner is None: combiner = (MaximalVote, MeanPrediction)[int(self.regression)]() self.__combiner = combiner """Functor destined to combine results of multiple classifiers""" def __repr__(self, prefixes=[]): """Literal representation of `CombinedClassifier`. """ return super(CombinedClassifier, self).__repr__( ["combiner=%s" % repr(self.__combiner)] + prefixes) def summary(self): """Provide summary for the `CombinedClassifier`. """ s = super(CombinedClassifier, self).summary() if self.trained: s += "\n Slave classifiers summaries:" for i, clf in enumerate(self.clfs): s += '\n + %d clf: %s' % \ (i, clf.summary().replace('\n', '\n |')) return s def untrain(self): """Untrain `CombinedClassifier` """ try: self.__combiner.untrain() except: pass super(CombinedClassifier, self).untrain() def _train(self, dataset): """Train `CombinedClassifier` """ BoostedClassifier._train(self, dataset) # combiner might need to train as well self.__combiner.train(self.clfs, dataset) def _predict(self, data): """Predict using `CombinedClassifier` """ BoostedClassifier._predict(self, data) # combiner will make use of state variables instead of only predictions # returned from _predict predictions = self.__combiner(self.clfs, data) self.predictions = predictions if self.states.isEnabled("values"): if self.__combiner.states.isActive("values"): # XXX or may be we could leave simply up to accessing .combiner? self.values = self.__combiner.values else: if __debug__: warning("Boosted classifier %s has 'values' state enabled," " but combiner doesn't have 'values' active, thus " " .values cannot be provided directly, access .clfs" % self) return predictions combiner = property(fget=lambda x:x.__combiner, doc="Used combiner to derive a single result") class TreeClassifier(ProxyClassifier): """`TreeClassifier` which allows to create hierarchy of classifiers Functions by grouping some labels into a single "meta-label" and training classifier first to separate between meta-labels. Then each group further proceeds with classification within each group. Possible scenarios:: TreeClassifier(SVM(), {'animate': ((1,2,3,4), TreeClassifier(SVM(), {'human': (('male', 'female'), SVM()), 'animals': (('monkey', 'dog'), SMLR())})), 'inanimate': ((5,6,7,8), SMLR())}) would create classifier which would first do binary classification to separate animate from inanimate, then for animate result it would separate to classify human vs animal and so on:: SVM / \ animate inanimate / \ SVM SMLR / \ / | \ \ human animal 5 6 7 8 | | SVM SVM / \ / \ male female monkey dog 1 2 3 4 If it is desired to have a trailing node with a single label and thus without any classification, such as in SVM / \ g1 g2 / \ 1 SVM / \ 2 3 then just specify None as the classifier to use:: TreeClassifier(SVM(), {'g1': ((1,), None), 'g2': ((1,2,3,4), SVM())}) """ _DEV__doc = """ Questions: * how to collect confusion matrices at a particular layer if such classifier is given to SplitClassifier or CVTE * What additional states to add, something like clf_labels -- store remapped labels for the dataset clf_values ... * What do we store into values ? just values from the clfs[] for corresponding samples, or top level clf values as well? * what should be SensitivityAnalyzer? by default it would just use top slave classifier (i.e. animate/inanimate) Problems? * .clf is not actually "proxied" per se, so not sure what things should be taken care of yet... TODO: * Allow a group to be just a single category, so no further classifier is needed, it just should stay separate from the other groups Possible TODO: * Add ability to provide results of clf.values as features into input of clfs[]. This way we could provide additional 'similarity' information to the "other" branch """ def __init__(self, clf, groups, **kwargs): """Initialize TreeClassifier :Parameters: clf : Classifier Classifier to separate between the groups groups : dict of meta-label: tuple of (tuple of labels, classifier) Defines the groups of labels and their classifiers. See :class:`~mvpa.clfs.meta.TreeClassifier` for example """ # Basic initialization ProxyClassifier.__init__(self, clf, **kwargs) self._regressionIsBogus() # XXX RF: probably create internal structure with dictionary, # not just a tuple, and store all information in there # accordingly self._groups = groups self._index2group = groups.keys() # All processing of groups needs to be handled within _train # since labels_map is not available here and definition # is allowed to carry both symbolic and numeric values for # labels # We can only assign respective classifiers self.clfs = dict([(gk, c) for gk, (ls, c) in groups.iteritems()]) """Dictionary of classifiers used by the groups""" def __repr__(self, prefixes=[]): """String representation of TreeClassifier """ prefix = "groups=%s" % repr(self._groups) return super(TreeClassifier, self).__repr__([prefix] + prefixes) def summary(self): """Provide summary for the `TreeClassifier`. """ s = super(TreeClassifier, self).summary() if self.trained: s += "\n Node classifiers summaries:" for i, (clfname, clf) in enumerate(self.clfs.iteritems()): s += '\n + %d %s clf: %s' % \ (i, clfname, clf.summary().replace('\n', '\n |')) return s def _train(self, dataset): """Train TreeClassifier First train .clf on groupped samples, then train each of .clfs on a corresponding subset of samples. """ # Local bindings clf, clfs, index2group = self.clf, self.clfs, self._index2group # Handle groups of labels groups = self._groups labels_map = dataset.labels_map # just for convenience if labels_map is None: labels_map = {} groups_labels = {} # just groups with numeric indexes label2index = {} # how to map old labels to new known = set() for gi, gk in enumerate(index2group): ls = groups[gk][0] # if mapping exists -- map ls_ = [labels_map.get(l, l) for l in ls] known_already = known.intersection(ls_) if len(known_already): raise ValueError, "Grouping of labels is not appropriate. " \ "Got labels %s already among known in %s. " \ "Used labelsmap %s" % (known_already, known, labels_map) groups_labels[gk] = ls_ # needed? XXX for l in ls_: label2index[l] = gi known = known.union(ls_) # TODO: check if different literal labels weren't mapped into # same numerical but here asked to belong to different groups # yoh: actually above should catch it # Check if none of the labels is missing from known groups dsul = set(dataset.uniquelabels) if known.intersection(dsul) != dsul: raise ValueError, \ "Dataset %s had some labels not defined in groups: %s. " \ "Known are %s" % \ (dataset, dsul.difference(known), known) # We can operate on the same dataset here # Nope: doesn't work nicely with the classifier like kNN # which links to the dataset used in the training, # so whenever if we simply restore labels back, we # would get kNN confused in _predict() # Therefore we need to create a shallow copy of # dataset and provide it with new labels ds_group = dataset.copy(deep=False) # assign new labels group samples into groups of labels ds_group.labels = [label2index[l] for l in dataset.labels] # train primary classifier if __debug__: debug('CLFTREE', "Training primary %(clf)s on %(ds)s", msgargs=dict(clf=clf, ds=ds_group)) clf.train(ds_group) # ??? should we obtain values for anything? # may be we could training values of .clfs to be added # as features to the next level -- i.e. .clfs # Proceed with next 'layer' and train all .clfs on corresponding # selection of samples # ??? should we may be allow additional 'the other' category, to # signal contain all the other categories data? probably not # since then it would lead to undetermined prediction (which # might be not a bad thing altogether...) for gk in groups.iterkeys(): clf = clfs[gk] group_labels = groups_labels[gk] if clf is None: # Trailing node if len(group_labels) != 1: raise ValueError( "Trailing nodes with no classifier assigned must have " "only a single label associated. Got %s defined in " "group %r of %s" % (group_labels, gk, self)) else: # select samples per each group ids = dataset.idsbylabels(group_labels) ds_group = dataset.selectSamples(ids) if __debug__: debug('CLFTREE', "Training %(clf)s for group %(gk)s on %(ds)s", msgargs=dict(clf=clfs[gk], gk=gk, ds=ds_group)) # and train corresponding slave clf clf.train(ds_group) def untrain(self): """Untrain TreeClassifier """ super(TreeClassifier, self).untrain() for clf in self.clfs.values(): if clf is not None: clf.untrain() def _predict(self, data): """ """ # Local bindings clfs, index2group, groups = self.clfs, self._index2group, self._groups clf_predictions = N.asanyarray(ProxyClassifier._predict(self, data)) # assure that predictions are indexes, ie int clf_predictions = clf_predictions.astype(int) # now for predictions pointing to specific groups go into # corresponding one predictions = N.array([N.nan]*len(data)) for pred_group in set(clf_predictions): gk = index2group[pred_group] clf_ = clfs[gk] group_indexes = (clf_predictions == pred_group) if __debug__: debug('CLFTREE', 'Predicting for group %s using %s on %d samples' % (gk, clf_, N.sum(group_indexes))) if clf_ is None: predictions[group_indexes] = groups[gk][0] # our only label else: predictions[group_indexes] = clf_.predict(data[group_indexes]) return predictions class BinaryClassifier(ProxyClassifier): """`ProxyClassifier` which maps set of two labels into +1 and -1 """ def __init__(self, clf, poslabels, neglabels, **kwargs): """ :Parameters: clf : Classifier classifier to use poslabels : list list of labels which are treated as +1 category neglabels : list list of labels which are treated as -1 category """ ProxyClassifier.__init__(self, clf, **kwargs) self._regressionIsBogus() # Handle labels sposlabels = set(poslabels) # so to remove duplicates sneglabels = set(neglabels) # so to remove duplicates # check if there is no overlap overlap = sposlabels.intersection(sneglabels) if len(overlap)>0: raise ValueError("Sets of positive and negative labels for " + "BinaryClassifier must not overlap. Got overlap " % overlap) self.__poslabels = list(sposlabels) self.__neglabels = list(sneglabels) # define what values will be returned by predict: if there is # a single label - return just it alone, otherwise - whole # list # Such approach might come useful if we use some classifiers # over different subsets of data with some voting later on # (1-vs-therest?) if len(self.__poslabels) > 1: self.__predictpos = self.__poslabels else: self.__predictpos = self.__poslabels[0] if len(self.__neglabels) > 1: self.__predictneg = self.__neglabels else: self.__predictneg = self.__neglabels[0] def __repr__(self, prefixes=[]): prefix = "poslabels=%s, neglabels=%s" % ( repr(self.__poslabels), repr(self.__neglabels)) return super(BinaryClassifier, self).__repr__([prefix] + prefixes) def _train(self, dataset): """Train `BinaryClassifier` """ idlabels = [(x, +1) for x in dataset.idsbylabels(self.__poslabels)] + \ [(x, -1) for x in dataset.idsbylabels(self.__neglabels)] # XXX we have to sort ids since at the moment Dataset.selectSamples # doesn't take care about order idlabels.sort() # select the samples orig_labels = None # If we need all samples, why simply not perform on original # data, an just store/restore labels. But it really should be done # within Dataset.selectSamples if len(idlabels) == dataset.nsamples \ and [x[0] for x in idlabels] == range(dataset.nsamples): # the last condition is not even necessary... just overly # cautious datasetselected = dataset # no selection is needed orig_labels = dataset.labels # but we would need to restore labels if __debug__: debug('CLFBIN', "Assigned all %d samples for binary " % (dataset.nsamples) + " classification among labels %s/+1 and %s/-1" % (self.__poslabels, self.__neglabels)) else: datasetselected = dataset.selectSamples([ x[0] for x in idlabels ]) if __debug__: debug('CLFBIN', "Selected %d samples out of %d samples for binary " % (len(idlabels), dataset.nsamples) + " classification among labels %s/+1 and %s/-1" % (self.__poslabels, self.__neglabels) + ". Selected %s" % datasetselected) # adjust the labels datasetselected.labels = [ x[1] for x in idlabels ] # now we got a dataset with only 2 labels if __debug__: assert((datasetselected.uniquelabels == [-1, 1]).all()) self.clf.train(datasetselected) if not orig_labels is None: dataset.labels = orig_labels def _predict(self, data): """Predict the labels for a given `data` Predicts using binary classifier and spits out list (for each sample) where with either poslabels or neglabels as the "label" for the sample. If there was just a single label within pos or neg labels then it would return not a list but just that single label. """ binary_predictions = ProxyClassifier._predict(self, data) self.values = binary_predictions predictions = [ {-1: self.__predictneg, +1: self.__predictpos}[x] for x in binary_predictions] self.predictions = predictions return predictions class MulticlassClassifier(CombinedClassifier): """`CombinedClassifier` to perform multiclass using a list of `BinaryClassifier`. such as 1-vs-1 (ie in pairs like libsvm doesn) or 1-vs-all (which is yet to think about) """ def __init__(self, clf, bclf_type="1-vs-1", **kwargs): """Initialize the instance :Parameters: clf : Classifier classifier based on which multiple classifiers are created for multiclass bclf_type "1-vs-1" or "1-vs-all", determines the way to generate binary classifiers """ CombinedClassifier.__init__(self, **kwargs) self._regressionIsBogus() if not clf is None: clf._regressionIsBogus() self.__clf = clf """Store sample instance of basic classifier""" # Some checks on known ways to do multiclass if bclf_type == "1-vs-1": pass elif bclf_type == "1-vs-all": # TODO raise NotImplementedError else: raise ValueError, \ "Unknown type of classifier %s for " % bclf_type + \ "BoostedMulticlassClassifier" self.__bclf_type = bclf_type # XXX fix it up a bit... it seems that MulticlassClassifier should # be actually ProxyClassifier and use BoostedClassifier internally def __repr__(self, prefixes=[]): prefix = "bclf_type=%s, clf=%s" % (repr(self.__bclf_type), repr(self.__clf)) return super(MulticlassClassifier, self).__repr__([prefix] + prefixes) def _train(self, dataset): """Train classifier """ # construct binary classifiers ulabels = dataset.uniquelabels if self.__bclf_type == "1-vs-1": # generate pairs and corresponding classifiers biclfs = [] for i in xrange(len(ulabels)): for j in xrange(i+1, len(ulabels)): clf = self.__clf.clone() biclfs.append( BinaryClassifier( clf, poslabels=[ulabels[i]], neglabels=[ulabels[j]])) if __debug__: debug("CLFMC", "Created %d binary classifiers for %d labels" % (len(biclfs), len(ulabels))) self.clfs = biclfs elif self.__bclf_type == "1-vs-all": raise NotImplementedError # perform actual training CombinedClassifier._train(self, dataset) class SplitClassifier(CombinedClassifier): """`BoostedClassifier` to work on splits of the data """ """ TODO: SplitClassifier and MulticlassClassifier have too much in common -- need to refactor: just need a splitter which would split dataset in pairs of class labels. MulticlassClassifier does just a tiny bit more which might be not necessary at all: map sets of labels into 2 categories... """ # TODO: unify with CrossValidatedTransferError which now uses # harvest_attribs to expose gathered attributes confusion = StateVariable(enabled=False, doc="Resultant confusion whenever classifier trained " + "on 1 part and tested on 2nd part of each split") splits = StateVariable(enabled=False, doc= """Store the actual splits of the data. Can be memory expensive""") # ??? couldn't be training_confusion since it has other meaning # here, BUT it is named so within CrossValidatedTransferError # -- unify # decided to go with overriding semantics tiny bit. For split # classifier training_confusion would correspond to summary # over training errors across all splits. Later on if need comes # we might want to implement global_training_confusion which would # correspond to overall confusion on full training dataset as it is # done in base Classifier #global_training_confusion = StateVariable(enabled=False, # doc="Summary over training confusions acquired at each split") def __init__(self, clf, splitter=NFoldSplitter(cvtype=1), **kwargs): """Initialize the instance :Parameters: clf : Classifier classifier based on which multiple classifiers are created for multiclass splitter : Splitter `Splitter` to use to split the dataset prior training """ CombinedClassifier.__init__(self, regression=clf.regression, **kwargs) self.__clf = clf """Store sample instance of basic classifier""" if isinstance(splitter, type): raise ValueError, \ "Please provide an instance of a splitter, not a type." \ " Got %s" % splitter self.__splitter = splitter def _train(self, dataset): """Train `SplitClassifier` """ # generate pairs and corresponding classifiers bclfs = [] # local binding states = self.states clf_template = self.__clf if states.isEnabled('confusion'): states.confusion = clf_template._summaryClass() if states.isEnabled('training_confusion'): clf_template.states.enable(['training_confusion']) states.training_confusion = clf_template._summaryClass() clf_hastestdataset = hasattr(clf_template, 'testdataset') # for proper and easier debugging - first define classifiers and then # train them for split in self.__splitter.splitcfg(dataset): if __debug__: debug("CLFSPL_", "Deepcopying %(clf)s for %(sclf)s", msgargs={'clf':clf_template, 'sclf':self}) clf = clf_template.clone() bclfs.append(clf) self.clfs = bclfs self.splits = [] for i, split in enumerate(self.__splitter(dataset)): if __debug__: debug("CLFSPL", "Training classifier for split %d" % (i)) if states.isEnabled("splits"): self.splits.append(split) clf = self.clfs[i] # assign testing dataset if given classifier can digest it if clf_hastestdataset: clf.testdataset = split[1] clf.train(split[0]) # unbind the testdataset from the classifier if clf_hastestdataset: clf.testdataset = None if states.isEnabled("confusion"): predictions = clf.predict(split[1].samples) self.confusion.add(split[1].labels, predictions, clf.states.get('values', None)) if __debug__: dact = debug.active if 'CLFSPL_' in dact: debug('CLFSPL_', 'Split %d:\n%s' % (i, self.confusion)) elif 'CLFSPL' in dact: debug('CLFSPL', 'Split %d error %.2f%%' % (i, self.confusion.summaries[-1].error)) if states.isEnabled("training_confusion"): states.training_confusion += \ clf.states.training_confusion # hackish way -- so it should work only for ConfusionMatrix??? try: if states.isEnabled("confusion"): states.confusion.labels_map = dataset.labels_map if states.isEnabled("training_confusion"): states.training_confusion.labels_map = dataset.labels_map except: pass @group_kwargs(prefixes=['slave_'], passthrough=True) def getSensitivityAnalyzer(self, slave_kwargs, **kwargs): """Return an appropriate SensitivityAnalyzer for `SplitClassifier` :Parameters: combiner If not provided, FirstAxisMean is assumed """ kwargs.setdefault('combiner', FirstAxisMean) return BoostedClassifierSensitivityAnalyzer( self, analyzer=self.__clf.getSensitivityAnalyzer(**slave_kwargs), **kwargs) splitter = property(fget=lambda x:x.__splitter, doc="Splitter user by SplitClassifier") class MappedClassifier(ProxyClassifier): """`ProxyClassifier` which uses some mapper prior training/testing. `MaskMapper` can be used just a subset of features to train/classify. Having such classifier we can easily create a set of classifiers for BoostedClassifier, where each classifier operates on some set of features, e.g. set of best spheres from SearchLight, set of ROIs selected elsewhere. It would be different from simply applying whole mask over the dataset, since here initial decision is made by each classifier and then later on they vote for the final decision across the set of classifiers. """ def __init__(self, clf, mapper, **kwargs): """Initialize the instance :Parameters: clf : Classifier classifier based on which mask classifiers is created mapper whatever `Mapper` comes handy """ ProxyClassifier.__init__(self, clf, **kwargs) self.__mapper = mapper """mapper to help us our with prepping data to training/classification""" def _train(self, dataset): """Train `MappedClassifier` """ # first train the mapper # XXX: should training be done using whole dataset or just samples # YYY: in some cases labels might be needed, thus better full dataset self.__mapper.train(dataset) # for train() we have to provide dataset -- not just samples to train! wdataset = dataset.applyMapper(featuresmapper = self.__mapper) ProxyClassifier._train(self, wdataset) def _predict(self, data): """Predict using `MappedClassifier` """ return ProxyClassifier._predict(self, self.__mapper.forward(data)) @group_kwargs(prefixes=['slave_'], passthrough=True) def getSensitivityAnalyzer(self, slave_kwargs, **kwargs): """Return an appropriate SensitivityAnalyzer""" return MappedClassifierSensitivityAnalyzer( self, analyzer=self.clf.getSensitivityAnalyzer(**slave_kwargs), **kwargs) mapper = property(lambda x:x.__mapper, doc="Used mapper") class FeatureSelectionClassifier(ProxyClassifier): """`ProxyClassifier` which uses some `FeatureSelection` prior training. `FeatureSelection` is used first to select features for the classifier to use for prediction. Internally it would rely on MappedClassifier which would use created MaskMapper. TODO: think about removing overhead of retraining the same classifier if feature selection was carried out with the same classifier already. It has been addressed by adding .trained property to classifier, but now we should expclitely use isTrained here if we want... need to think more """ _clf_internals = [ 'does_feature_selection', 'meta' ] def __init__(self, clf, feature_selection, testdataset=None, **kwargs): """Initialize the instance :Parameters: clf : Classifier classifier based on which mask classifiers is created feature_selection : FeatureSelection whatever `FeatureSelection` comes handy testdataset : Dataset optional dataset which would be given on call to feature_selection """ ProxyClassifier.__init__(self, clf, **kwargs) self.__maskclf = None """Should become `MappedClassifier`(mapper=`MaskMapper`) later on.""" self.__feature_selection = feature_selection """`FeatureSelection` to select the features prior training""" self.__testdataset = testdataset """`FeatureSelection` might like to use testdataset""" def untrain(self): """Untrain `FeatureSelectionClassifier` Has to untrain any known classifier """ if self.__feature_selection is not None: self.__feature_selection.untrain() if not self.trained: return if not self.__maskclf is None: self.__maskclf.untrain() super(FeatureSelectionClassifier, self).untrain() def _train(self, dataset): """Train `FeatureSelectionClassifier` """ # temporarily enable selected_ids self.__feature_selection.states._changeTemporarily( enable_states=["selected_ids"]) if __debug__: debug("CLFFS", "Performing feature selection using %s" % self.__feature_selection + " on %s" % dataset) (wdataset, tdataset) = self.__feature_selection(dataset, self.__testdataset) if __debug__: add_ = "" if "CLFFS_" in debug.active: add_ = " Selected features: %s" % \ self.__feature_selection.selected_ids debug("CLFFS", "%(fs)s selected %(nfeat)d out of " + "%(dsnfeat)d features.%(app)s", msgargs={'fs':self.__feature_selection, 'nfeat':wdataset.nfeatures, 'dsnfeat':dataset.nfeatures, 'app':add_}) # create a mask to devise a mapper # TODO -- think about making selected_ids a MaskMapper mappermask = N.zeros(dataset.nfeatures) mappermask[self.__feature_selection.selected_ids] = 1 mapper = MaskMapper(mappermask) self.__feature_selection.states._resetEnabledTemporarily() # create and assign `MappedClassifier` self.__maskclf = MappedClassifier(self.clf, mapper) # we could have called self.__clf.train(dataset), but it would # cause unnecessary masking self.__maskclf.clf.train(wdataset) # for the ease of access # TODO see for ProxyClassifier #self.states._copy_states_(self.__maskclf, deep=False) def _getFeatureIds(self): """Return used feature ids for `FeatureSelectionClassifier` """ return self.__feature_selection.selected_ids def _predict(self, data): """Predict using `FeatureSelectionClassifier` """ clf = self.__maskclf if self.states.isEnabled('values'): clf.states.enable(['values']) result = clf._predict(data) # for the ease of access self.states._copy_states_(clf, ['values'], deep=False) return result def setTestDataset(self, testdataset): """Set testing dataset to be used for feature selection """ self.__testdataset = testdataset maskclf = property(lambda x:x.__maskclf, doc="Used `MappedClassifier`") feature_selection = property(lambda x:x.__feature_selection, doc="Used `FeatureSelection`") @group_kwargs(prefixes=['slave_'], passthrough=True) def getSensitivityAnalyzer(self, slave_kwargs, **kwargs): """Return an appropriate SensitivityAnalyzer had to clone from mapped classifier??? """ return FeatureSelectionClassifierSensitivityAnalyzer( self, analyzer=self.clf.getSensitivityAnalyzer(**slave_kwargs), **kwargs) testdataset = property(fget=lambda x:x.__testdataset, fset=setTestDataset) pymvpa-0.4.8/mvpa/clfs/model_selector.py000066400000000000000000000273341174541445200203230ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Copyright (c) 2008 Emanuele Olivetti # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Model selction.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import externals from mvpa.misc.exceptions import InvalidHyperparameterError if externals.exists("scipy", raiseException=True): import scipy.linalg as SL # no sense to import this module if openopt is not available if externals.exists("openopt", raiseException=True): try: from openopt import NLP except ImportError: from scikits.openopt import NLP if __debug__: from mvpa.base import debug def _openopt_debug(): # shut up or make verbose OpenOpt # (-1 = no logs, 0 = small log, 1 = verbose) if __debug__: da = debug.active if 'OPENOPT' in da: return 1 elif 'MOD_SEL' in da: return 0 return -1 class ModelSelector(object): """Model selection facility. Select a model among multiple models (i.e., a parametric model, parametrized by a set of hyperparamenters). """ def __init__(self, parametric_model, dataset): self.parametric_model = parametric_model self.dataset = dataset self.hyperparameters_best = None self.log_marginal_likelihood_best = None self.problem = None pass def max_log_marginal_likelihood(self, hyp_initial_guess, maxiter=1, optimization_algorithm="scipy_cg", ftol=1.0e-3, fixedHypers=None, use_gradient=False, logscale=False): """ Set up the optimization problem in order to maximize the log_marginal_likelihood. :Parameters: parametric_model : Classifier the actual parameteric model to be optimized. hyp_initial_guess : numpy.ndarray set of hyperparameters' initial values where to start optimization. optimization_algorithm : string actual name of the optimization algorithm. See http://scipy.org/scipy/scikits/wiki/NLP for a comprehensive/updated list of available NLP solvers. (Defaults to 'ralg') ftol : float threshold for the stopping criterion of the solver, which is mapped in OpenOpt NLP.ftol (Defaults to 1.0e-3) fixedHypers : numpy.ndarray (boolean array) boolean vector of the same size of hyp_initial_guess; 'False' means that the corresponding hyperparameter must be kept fixed (so not optimized). (Defaults to None, which during means all True) NOTE: the maximization of log_marginal_likelihood is a non-linear optimization problem (NLP). This fact is confirmed by Dmitrey, author of OpenOpt. """ self.problem = None self.use_gradient = use_gradient self.logscale = logscale # use log-scale on hyperparameters to enhance numerical stability self.optimization_algorithm = optimization_algorithm self.hyp_initial_guess = N.array(hyp_initial_guess) self.hyp_initial_guess_log = N.log(self.hyp_initial_guess) if fixedHypers is None: fixedHypers = N.zeros(self.hyp_initial_guess.shape[0],dtype=bool) pass self.freeHypers = -fixedHypers if self.logscale: self.hyp_running_guess = self.hyp_initial_guess_log.copy() else: self.hyp_running_guess = self.hyp_initial_guess.copy() pass self.f_last_x = None def f(x): """ Wrapper to the log_marginal_likelihood to be maximized. """ # XXX EO: since some OpenOpt NLP solvers does not # implement lower bounds the hyperparameters bounds are # implemented inside PyMVPA: (see dmitrey's post on # [SciPy-user] 20080628). # # XXX EO: OpenOpt does not implement optimization of a # subset of the hyperparameters so it is implemented here. # # XXX EO: OpenOpt does not implement logrithmic scale of # the hyperparameters (to enhance numerical stability), so # it is implemented here. self.f_last_x = x.copy() self.hyp_running_guess[self.freeHypers] = x # REMOVE print "guess:",self.hyp_running_guess,x try: if self.logscale: self.parametric_model.set_hyperparameters(N.exp(self.hyp_running_guess)) else: self.parametric_model.set_hyperparameters(self.hyp_running_guess) pass except InvalidHyperparameterError: if __debug__: debug("MOD_SEL","WARNING: invalid hyperparameters!") return -N.inf try: self.parametric_model.train(self.dataset) except (N.linalg.linalg.LinAlgError, SL.basic.LinAlgError, ValueError): # Note that ValueError could be raised when Cholesky gets Inf or Nan. if __debug__: debug("MOD_SEL", "WARNING: Cholesky failed! Invalid hyperparameters!") return -N.inf log_marginal_likelihood = self.parametric_model.compute_log_marginal_likelihood() # REMOVE print log_marginal_likelihood return log_marginal_likelihood def df(x): """ Proxy to the log_marginal_likelihood first derivative. Necessary for OpenOpt when using derivatives. """ self.hyp_running_guess[self.freeHypers] = x # REMOVE print "df guess:",self.hyp_running_guess,x # XXX EO: Most of the following lines can be skipped if # df() is computed just after f() with the same # hyperparameters. The partial results obtained during f() # are what is needed for df(). For now, in order to avoid # bugs difficult to trace, we keep this redunundancy. A # deep check with how OpenOpt works or using memoization # should solve this issue. try: if self.logscale: self.parametric_model.set_hyperparameters(N.exp(self.hyp_running_guess)) else: self.parametric_model.set_hyperparameters(self.hyp_running_guess) pass except InvalidHyperparameterError: if __debug__: debug("MOD_SEL", "WARNING: invalid hyperparameters!") return -N.inf # Check if it is possible to avoid useless computations # already done in f(). According to tests and information # collected from OpenOpt people, it is sufficiently # unexpected that the following test succeed: if N.any(x!=self.f_last_x): if __debug__: debug("MOD_SEL","UNEXPECTED: recomputing train+log_marginal_likelihood.") try: self.parametric_model.train(self.dataset) except (N.linalg.linalg.LinAlgError, SL.basic.LinAlgError, ValueError): if __debug__: debug("MOD_SEL", "WARNING: Cholesky failed! Invalid hyperparameters!") # XXX EO: which value for the gradient to return to # OpenOpt when hyperparameters are wrong? return N.zeros(x.size) log_marginal_likelihood = self.parametric_model.compute_log_marginal_likelihood() # recompute what's needed (to be safe) REMOVE IN FUTURE! pass if self.logscale: gradient_log_marginal_likelihood = self.parametric_model.compute_gradient_log_marginal_likelihood_logscale() else: gradient_log_marginal_likelihood = self.parametric_model.compute_gradient_log_marginal_likelihood() pass # REMOVE print "grad:",gradient_log_marginal_likelihood return gradient_log_marginal_likelihood[self.freeHypers] if self.logscale: # vector of hyperparameters' values where to start the search x0 = self.hyp_initial_guess_log[self.freeHypers] else: x0 = self.hyp_initial_guess[self.freeHypers] pass self.contol = 1.0e-20 # Constraint tolerance level # XXX EO: is it necessary to use contol when self.logscale is # True and there is no lb? Ask dmitrey. if self.use_gradient: # actual instance of the OpenOpt non-linear problem self.problem = NLP(f, x0, df=df, contol=self.contol, goal='maximum') else: self.problem = NLP(f, x0, contol=self.contol, goal='maximum') pass self.problem.name = "Max LogMargLikelihood" if not self.logscale: # set lower bound for hyperparameters: avoid negative # hyperparameters. Note: problem.n is the size of # hyperparameters' vector self.problem.lb = N.zeros(self.problem.n)+self.contol pass # max number of iterations for the optimizer. self.problem.maxiter = maxiter # check whether the derivative of log_marginal_likelihood converged to # zero before ending optimization self.problem.checkdf = True # set increment of log_marginal_likelihood under which the optimizer stops self.problem.ftol = ftol self.problem.iprint = _openopt_debug() return self.problem def solve(self, problem=None): """Solve the maximization problem, check outcome and collect results. """ # XXX: this method can be made more abstract in future in the # sense that it could work not only for # log_marginal_likelihood but other measures as well # (e.g. cross-valideted error). if N.all(self.freeHypers==False): # no optimization needed self.hyperparameters_best = self.hyp_initial_guess.copy() try: self.parametric_model.set_hyperparameters(self.hyperparameters_best) except InvalidHyperparameterError: if __debug__: debug("MOD_SEL", "WARNING: invalid hyperparameters!") self.log_marginal_likelihood_best = -N.inf return self.log_marginal_likelihood_best self.parametric_model.train(self.dataset) self.log_marginal_likelihood_best = self.parametric_model.compute_log_marginal_likelihood() return self.log_marginal_likelihood_best result = self.problem.solve(self.optimization_algorithm) # perform optimization! if result.stopcase == -1: # XXX: should we use debug() for the following messages? # If so, how can we track the missing convergence to a # solution? print "Unable to find a maximum to log_marginal_likelihood" elif result.stopcase == 0: print "Limits exceeded" elif result.stopcase == 1: self.hyperparameters_best = self.hyp_initial_guess.copy() if self.logscale: self.hyperparameters_best[self.freeHypers] = N.exp(result.xf) # best hyperparameters found # NOTE is it better to return a copy? else: self.hyperparameters_best[self.freeHypers] = result.xf pass self.log_marginal_likelihood_best = result.ff # actual best vuale of log_marginal_likelihood pass self.stopcase = result.stopcase return self.log_marginal_likelihood_best pass pymvpa-0.4.8/mvpa/clfs/plr.py000066400000000000000000000126361174541445200161170ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Penalized logistic regression classifier.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.misc.exceptions import ConvergenceError from mvpa.clfs.base import Classifier, FailedToTrainError if __debug__: from mvpa.base import debug class PLR(Classifier): """Penalized logistic regression `Classifier`. """ _clf_internals = [ 'plr', 'binary', 'linear' ] def __init__(self, lm=1, criterion=1, reduced=0.0, maxiter=20, **kwargs): """ Initialize a penalized logistic regression analysis :Parameters: lm : int the penalty term lambda. criterion : int the criterion applied to judge convergence. reduced : float if not 0, the rank of the data is reduced before performing the calculations. In that case, reduce is taken as the fraction of the first singular value, at which a dimension is not considered significant anymore. A reasonable criterion is reduced=0.01 maxiter : int maximum number of iterations. If no convergence occurs after this number of iterations, an exception is raised. """ # init base class first Classifier.__init__(self, **kwargs) self.__lm = lm self.__criterion = criterion self.__reduced = reduced self.__maxiter = maxiter def __repr__(self): """String summary over the object """ return """PLR(lm=%f, criterion=%d, reduced=%s, maxiter=%d, enable_states=%s)""" % \ (self.__lm, self.__criterion, self.__reduced, self.__maxiter, str(self.states.enabled)) def _train(self, data): """Train the classifier using `data` (`Dataset`). """ # Set up the environment for fitting the data X = data.samples.T d = data.labels if set(d) != set([0, 1]): raise ValueError, \ "Regressors for logistic regression should be [0,1]. Got %s" \ %(set(d),) if self.__reduced != 0 : # Data have reduced rank from scipy.linalg import svd # Compensate for reduced rank: # Select only the n largest eigenvectors U, S, V = svd(X.T) if S[0] == 0: raise FailedToTrainError( "Data provided to PLR seems to be degenerate -- " "0-th singular value is 0") S /= S[0] V = N.matrix(V[:, :N.max(N.where(S > self.__reduced)) + 1]) # Map Data to the subspace spanned by the eigenvectors X = (X.T * V).T nfeatures, npatterns = X.shape # Weighting vector w = N.matrix(N.zeros( (nfeatures + 1, 1), 'd')) # Error for convergence criterion dw = N.matrix(N.ones( (nfeatures + 1, 1), 'd')) # Patterns of interest in the columns X = N.matrix( \ N.concatenate((X, N.ones((1, npatterns), 'd')), 0) \ ) p = N.matrix(N.zeros((1, npatterns), 'd')) # Matrix implementation of penalty term Lambda = self.__lm * N.identity(nfeatures + 1, 'd') Lambda[nfeatures, nfeatures] = 0 # Gradient g = N.matrix(N.zeros((nfeatures + 1, 1), 'd')) # Fisher information matrix H = N.matrix(N.identity(nfeatures + 1, 'd')) # Optimize k = 0 while N.sum(N.ravel(dw.A ** 2)) > self.__criterion: p[:, :] = self.__f(w.T * X) g[:, :] = X * (d - p).T - Lambda * w H[:, :] = X * N.diag(p.A1 * (1 - p.A1)) * X.T + Lambda dw[:, :] = H.I * g w += dw k += 1 if k > self.__maxiter: raise ConvergenceError, \ "More than %d Iterations without convergence" % \ (self.__maxiter) if __debug__: debug("PLR", \ "PLR converged after %d steps. Error: %g" % \ (k, N.sum(N.ravel(dw.A ** 2)))) if self.__reduced: # We have computed in rank reduced space -> # Project to original space self.w = V * w[:-1] self.offset = w[-1] else: self.w = w[:-1] self.offset = w[-1] def __f(self, y): """This is the logistic function f, that is used for determination of the vector w""" return 1. / (1 + N.exp(-y)) def _predict(self, data): """ Predict the class labels for the provided data Returns a list of class labels """ # make sure the data are in matrix form data = N.matrix(N.asarray(data)) # get the values and then predictions values = N.ravel(self.__f(self.offset + data * self.w)) predictions = values > 0.5 # save the state if desired, relying on State._setitem_ to # decide if we will actually save the values self.predictions = predictions self.values = values return predictions pymvpa-0.4.8/mvpa/clfs/ridge.py000066400000000000000000000062011174541445200164030ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Ridge regression classifier.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import externals if externals.exists("scipy", raiseException=True): from scipy.linalg import lstsq from mvpa.clfs.base import Classifier class RidgeReg(Classifier): """Ridge regression `Classifier`. This ridge regression adds an intercept term so your labels do not have to be zero-centered. """ _clf_internals = ['ridge', 'regression', 'linear'] def __init__(self, lm=None, **kwargs): """ Initialize a ridge regression analysis. :Parameters: lm : float the penalty term lambda. (Defaults to .05*nFeatures) """ # init base class first Classifier.__init__(self, **kwargs) # pylint happiness self.w = None # It does not make sense to calculate a confusion matrix for a # ridge regression self.states.enable('training_confusion', False) # verify that they specified lambda self.__lm = lm # store train method config self.__implementation = 'direct' def __repr__(self): """String summary of the object """ if self.__lm is None: return """Ridge(lm=.05*nfeatures, enable_states=%s)""" % \ (str(self.states.enabled)) else: return """Ridge(lm=%f, enable_states=%s)""" % \ (self.__lm, str(self.states.enabled)) def _train(self, data): """Train the classifier using `data` (`Dataset`). """ if self.__implementation == "direct": # create matrices to solve with additional penalty term # determine the lambda matrix if self.__lm is None: # Not specified, so calculate based on .05*nfeatures Lambda = .05*data.nfeatures*N.eye(data.nfeatures) else: # use the provided penalty Lambda = self.__lm*N.eye(data.nfeatures) # add the penalty term a = N.concatenate( \ (N.concatenate((data.samples, N.ones((data.nsamples, 1))), 1), N.concatenate((Lambda, N.zeros((data.nfeatures, 1))), 1))) b = N.concatenate((data.labels, N.zeros(data.nfeatures))) # perform the least sq regression and save the weights self.w = lstsq(a, b)[0] else: raise ValueError, "Unknown implementation '%s'" \ % self.__implementation def _predict(self, data): """ Predict the output for the provided data. """ # predict using the trained weights return N.dot(N.concatenate((data, N.ones((len(data), 1))), 1), self.w) pymvpa-0.4.8/mvpa/clfs/sg/000077500000000000000000000000001174541445200153515ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/clfs/sg/__init__.py000066400000000000000000000011711174541445200174620ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Classifiers provied by shogun (sg) library""" __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.clfs.sg') from mvpa.clfs.sg.svm import SVM if __debug__: debug('INIT', 'mvpa.clfs.sg end') pymvpa-0.4.8/mvpa/clfs/sg/sens.py000066400000000000000000000042131174541445200166730ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Provide sensitivity measures for sg's SVM.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import externals if externals.exists('shogun', raiseException=True): import shogun.Classifier from mvpa.misc.state import StateVariable from mvpa.measures.base import Sensitivity if __debug__: from mvpa.base import debug class LinearSVMWeights(Sensitivity): """`Sensitivity` that reports the weights of a linear SVM trained on a given `Dataset`. """ biases = StateVariable(enabled=True, doc="Offsets of separating hyperplanes") def __init__(self, clf, **kwargs): """Initialize the analyzer with the classifier it shall use. :Parameters: clf: LinearSVM classifier to use. Only classifiers sub-classed from `LinearSVM` may be used. """ # init base classes first Sensitivity.__init__(self, clf, **kwargs) def __sg_helper(self, svm): """Helper function to compute sensitivity for a single given SVM""" self.offsets = svm.get_bias() svcoef = N.matrix(svm.get_alphas()) svnums = svm.get_support_vectors() svs = self.clf.traindataset.samples[svnums,:] res = (svcoef * svs).mean(axis=0).A1 return res def _call(self, dataset): # XXX Hm... it might make sense to unify access functions # naming across our swig libsvm wrapper and sg access # functions for svm svm = self.clf.svm if isinstance(svm, shogun.Classifier.MultiClassSVM): sens = [] for i in xrange(svm.get_num_svms()): sens.append(self.__sg_helper(svm.get_svm(i))) else: sens = self.__sg_helper(svm) return N.asarray(sens) pymvpa-0.4.8/mvpa/clfs/sg/svm.py000066400000000000000000000656441174541445200165470ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Wrap the libsvm package into a very simple class interface.""" __docformat__ = 'restructuredtext' _DEV__doc__ = """ TODOs: * dual-license under GPL for use of SG? * for recent versions add ability to specify/parametrize normalization scheme for the kernel, and reuse 'scale' now for the normalizer * Add support for simplified linear classifiers (which do not require storing all training SVs/samples to make classification in predict()) """ import numpy as N from mvpa import _random_seed # Rely on SG from mvpa.base import externals, warning if externals.exists('shogun', raiseException=True): import shogun.Features import shogun.Classifier import shogun.Regression import shogun.Kernel import shogun.Library # Figure out debug IDs once and for all if hasattr(shogun.Kernel, 'M_DEBUG'): _M_DEBUG = shogun.Kernel.M_DEBUG _M_ERROR = shogun.Kernel.M_ERROR elif hasattr(shogun.Kernel, 'MSG_DEBUG'): _M_DEBUG = shogun.Kernel.MSG_DEBUG _M_ERROR = shogun.Kernel.MSG_ERROR else: _M_DEBUG, _M_ERROR = None, None warning("Could not figure out debug IDs within shogun. " "No control over shogun verbosity would be provided") try: # reuse the same seed for shogun shogun.Library.Math_init_random(_random_seed) # and do it twice to stick ;) for some reason is necessary # atm shogun.Library.Math_init_random(_random_seed) except Exception, e: warning('Shogun cannot be seeded due to %s' % (e,)) import operator from mvpa.misc.param import Parameter from mvpa.base import warning from mvpa.clfs.base import FailedToTrainError from mvpa.clfs.meta import MulticlassClassifier from mvpa.clfs._svmbase import _SVM from mvpa.misc.state import StateVariable from mvpa.measures.base import Sensitivity from sens import * if __debug__: from mvpa.base import debug def _setdebug(obj, partname): """Helper to set level of debugging output for SG :Parameters: obj In SG debug output seems to be set per every object partname : basestring For what kind of object we are talking about... could be automated later on (TODO) """ if _M_DEBUG is None: return debugname = "SG_%s" % partname.upper() switch = {True: (_M_DEBUG, 'M_DEBUG', "enable"), False: (_M_ERROR, 'M_ERROR', "disable")} key = __debug__ and debugname in debug.active sglevel, slevel, progressfunc = switch[key] if __debug__: debug("SG_", "Setting verbosity for shogun.%s instance: %s to %s" % (partname, `obj`, slevel)) obj.io.set_loglevel(sglevel) try: exec "obj.io.%s_progress()" % progressfunc except: warning("Shogun version installed has no way to enable progress" + " reports") def _tosg(data): """Draft helper function to convert data we have into SG suitable format TODO: Support different datatypes """ if __debug__: debug("SG_", "Converting data for shogun into RealFeatures") features = shogun.Features.RealFeatures(data.astype('double').T) if __debug__: debug("SG__", "Done converting data for shogun into RealFeatures") _setdebug(features, 'Features') return features class SVM(_SVM): """Support Vector Machine Classifier(s) based on Shogun This is a simple base interface """ num_threads = Parameter(1, min=1, doc='Number of threads to utilize') # NOTE: gamma is width in SG notation for RBF(Gaussian) _KERNELS = {} if externals.exists('shogun', raiseException=True): _KERNELS = { "linear": (shogun.Kernel.LinearKernel, ('scale',), LinearSVMWeights), "rbf" : (shogun.Kernel.GaussianKernel, ('gamma',), None), "rbfshift": (shogun.Kernel.GaussianShiftKernel, ('gamma', 'max_shift', 'shift_step'), None), "sigmoid": (shogun.Kernel.SigmoidKernel, ('cache_size', 'gamma', 'coef0'), None), } _KNOWN_PARAMS = [ 'epsilon' ] _KNOWN_KERNEL_PARAMS = [ ] _clf_internals = _SVM._clf_internals + [ 'sg', 'retrainable' ] if externals.exists('sg ge 0.6.4'): _KERNELS['linear'] = (shogun.Kernel.LinearKernel, (), LinearSVMWeights) # Some words of wisdom from shogun author: # XXX remove after proper comments added to implementations """ If you'd like to train linear SVMs use SGD or OCAS. These are (I am serious) the fastest linear SVM-solvers to date. (OCAS cannot do SVMs with standard additive bias, but will L2 reqularize it - though it should not matter much in practice (although it will give slightly different solutions)). Note that SGD has no stopping criterion (you simply have to specify the number of iterations) and that OCAS has a different stopping condition than svmlight for example which may be more tight and more loose depending on the problem - I sugeest 1e-2 or 1e-3 for epsilon. If you would like to train kernel SVMs use libsvm/gpdt/svmlight - depending on the problem one is faster than the other (hard to say when, I *think* when your dataset is very unbalanced chunking methods like svmlight/gpdt are better), for smaller problems definitely libsvm. If you use string kernels then gpdt/svmlight have a special 'linadd' speedup for this (requires sg 0.6.2 - there was some inefficiency in the code for python-modular before that). This is effective for big datasets and (I trained on 10 million strings based on this). And yes currently we only implemented parallel training for svmlight, however all SVMs can be evaluated in parallel. """ _KNOWN_IMPLEMENTATIONS = {} if externals.exists('shogun', raiseException=True): _KNOWN_IMPLEMENTATIONS = { "libsvm" : (shogun.Classifier.LibSVM, ('C',), ('multiclass', 'binary'), "LIBSVM's C-SVM (L2 soft-margin SVM)"), "gmnp" : (shogun.Classifier.GMNPSVM, ('C',), ('multiclass', 'binary'), "Generalized Nearest Point Problem SVM"), # XXX should have been GPDT, shogun has it fixed since some version "gpbt" : (shogun.Classifier.GPBTSVM, ('C',), ('binary',), "Gradient Projection Decomposition Technique for " \ "large-scale SVM problems"), "gnpp" : (shogun.Classifier.GNPPSVM, ('C',), ('binary',), "Generalized Nearest Point Problem SVM"), ## TODO: Needs sparse features... # "svmlin" : (shogun.Classifier.SVMLin, ''), # "liblinear" : (shogun.Classifier.LibLinear, ''), # "subgradient" : (shogun.Classifier.SubGradientSVM, ''), ## good 2-class linear SVMs # "ocas" : (shogun.Classifier.SVMOcas, ''), # "sgd" : ( shogun.Classifier.SVMSGD, ''), # regressions "libsvr": (shogun.Regression.LibSVR, ('C', 'tube_epsilon',), ('regression',), "LIBSVM's epsilon-SVR"), } def __init__(self, kernel_type='linear', **kwargs): """Interface class to Shogun's classifiers and regressions. Default implementation is 'libsvm'. """ svm_impl = kwargs.get('svm_impl', 'libsvm').lower() kwargs['svm_impl'] = svm_impl # init base class _SVM.__init__(self, kernel_type=kernel_type, **kwargs) self.__svm = None """Holds the trained svm.""" self.__svm_apply = None """Compatibility convenience to bind to the classify/apply method of __svm""" # Need to store original data... # TODO: keep 1 of them -- just __traindata or __traindataset # For now it is needed for computing sensitivities self.__traindataset = None # internal SG swig proxies self.__traindata = None self.__kernel = None self.__kernel_test = None self.__testdata = None def __condition_kernel(self, kernel): # XXX I thought that it is needed only for retrainable classifier, # but then krr gets confused, and svrlight needs it to provide # meaningful results even without 'retraining' if self._svm_impl in ['svrlight', 'lightsvm']: try: kernel.set_precompute_matrix(True, True) except Exception, e: # N/A in shogun 0.9.1... TODO: RF if __debug__: debug('SG_', "Failed call to set_precompute_matrix for %s: %s" % (self, e)) def _train(self, dataset): """Train SVM """ # XXX watchout # self.untrain() newkernel, newsvm = False, False # local bindings for faster lookup retrainable = self.params.retrainable if retrainable: _changedData = self._changedData # LABELS ul = None self.__traindataset = dataset # OK -- we have to map labels since # binary ones expect -1/+1 # Multiclass expect labels starting with 0, otherwise they puke # when ran from ipython... yikes if __debug__: debug("SG_", "Creating labels instance") if 'regression' in self._clf_internals: labels_ = N.asarray(dataset.labels, dtype='double') else: ul = dataset.uniquelabels ul.sort() if len(ul) == 2: # assure that we have -1/+1 _labels_dict = {ul[0]:-1.0, ul[1]:+1.0} elif len(ul) < 2: raise FailedToTrainError, \ "We do not have 1-class SVM brought into SG yet" else: # can't use plain enumerate since we need them swapped _labels_dict = dict([ (ul[i], i) for i in range(len(ul))]) # reverse labels dict for back mapping in _predict _labels_dict_rev = dict([(x[1], x[0]) for x in _labels_dict.items()]) # bind to instance as well self._labels_dict = _labels_dict self._labels_dict_rev = _labels_dict_rev # Map labels # # TODO: top level classifier should take care about labels # mapping if that is needed if __debug__: debug("SG__", "Mapping labels using dict %s" % _labels_dict) labels_ = N.asarray([ _labels_dict[x] for x in dataset.labels ], dtype='double') labels = shogun.Features.Labels(labels_) _setdebug(labels, 'Labels') # KERNEL if not retrainable or _changedData['traindata'] or _changedData['kernel_params']: # If needed compute or just collect arguments for SVM and for # the kernel kargs = [] for arg in self._KERNELS[self._kernel_type_literal][1]: value = self.kernel_params[arg].value # XXX Unify damn automagic gamma value if arg == 'gamma' and value == 0.0: value = self._getDefaultGamma(dataset) kargs += [value] if retrainable and __debug__: if _changedData['traindata']: debug("SG", "Re-Creating kernel since training data has changed") if _changedData['kernel_params']: debug("SG", "Re-Creating kernel since params %s has changed" % _changedData['kernel_params']) # create training data if __debug__: debug("SG_", "Converting input data for shogun") self.__traindata = _tosg(dataset.samples) if __debug__: debug("SG", "Creating kernel instance of %s giving arguments %s" % (`self._kernel_type`, kargs)) self.__kernel = kernel = \ self._kernel_type(self.__traindata, self.__traindata, *kargs) if externals.exists('sg ge 0.6.4'): kernel.set_normalizer(shogun.Kernel.IdentityKernelNormalizer()) newkernel = True self.kernel_params.reset() # mark them as not-changed _setdebug(kernel, 'Kernels') self.__condition_kernel(kernel) if retrainable: if __debug__: debug("SG_", "Resetting test kernel for retrainable SVM") self.__kernel_test = None self.__kernel_args = kargs # TODO -- handle _changedData['params'] correctly, ie without recreating # whole SVM Cs = None if not retrainable or self.__svm is None or _changedData['params']: # SVM if self.params.isKnown('C'): C = self.params.C if not operator.isSequenceType(C): # we were not given a tuple for balancing between classes C = [C] Cs = list(C[:]) # copy for i in xrange(len(Cs)): if Cs[i]<0: Cs[i] = self._getDefaultC(dataset.samples)*abs(Cs[i]) if __debug__: debug("SG_", "Default C for %s was computed to be %s" % (C[i], Cs[i])) # XXX do not jump over the head and leave it up to the user # ie do not rescale automagically by the number of samples #if len(Cs) == 2 and not ('regression' in self._clf_internals) and len(ul) == 2: # # we were given two Cs # if N.max(C) < 0 and N.min(C) < 0: # # and both are requested to be 'scaled' TODO : # # provide proper 'features' to the parameters, # # so we could specify explicitely if to scale # # them by the number of samples here # nl = [N.sum(labels_ == _labels_dict[l]) for l in ul] # ratio = N.sqrt(float(nl[1]) / nl[0]) # #ratio = (float(nl[1]) / nl[0]) # Cs[0] *= ratio # Cs[1] /= ratio # if __debug__: # debug("SG_", "Rescaled Cs to %s to accomodate the " # "difference in number of training samples" % # Cs) # Choose appropriate implementation svm_impl_class = self.__get_implementation(ul) if __debug__: debug("SG", "Creating SVM instance of %s" % `svm_impl_class`) if self._svm_impl in ['libsvr', 'svrlight']: # for regressions constructor a bit different self.__svm = svm_impl_class(Cs[0], self.params.epsilon, self.__kernel, labels) elif self._svm_impl in ['krr']: self.__svm = svm_impl_class(self.params.tau, self.__kernel, labels) else: self.__svm = svm_impl_class(Cs[0], self.__kernel, labels) self.__svm.set_epsilon(self.params.epsilon) # To stay compatible with versions across API changes in sg 1.0.0 self.__svm_apply = hasattr(self.__svm, 'apply') \ and self.__svm.apply \ or self.__svm.classify # the last one for old API # Set shrinking if self.params.isKnown('shrinking'): shrinking = self.params.shrinking if __debug__: debug("SG_", "Setting shrinking to %s" % shrinking) self.__svm.set_shrinking_enabled(shrinking) if Cs is not None and len(Cs) == 2: if __debug__: debug("SG_", "Since multiple Cs are provided: %s, assign them" % Cs) self.__svm.set_C(Cs[0], Cs[1]) self.params.reset() # mark them as not-changed newsvm = True _setdebug(self.__svm, 'SVM') # Set optimization parameters if self.params.isKnown('tube_epsilon') and \ hasattr(self.__svm, 'set_tube_epsilon'): self.__svm.set_tube_epsilon(self.params.tube_epsilon) self.__svm.parallel.set_num_threads(self.params.num_threads) else: if __debug__: debug("SG_", "SVM instance is not re-created") if _changedData['labels']: # labels were changed if __debug__: debug("SG__", "Assigning new labels") self.__svm.set_labels(labels) if newkernel: # kernel was replaced if __debug__: debug("SG__", "Assigning new kernel") self.__svm.set_kernel(self.__kernel) assert(_changedData['params'] is False) # we should never get here if retrainable: # we must assign it only if it is retrainable self.states.retrained = not newsvm or not newkernel # Train if __debug__ and 'SG' in debug.active: if not self.regression: lstr = " with labels %s" % dataset.uniquelabels else: lstr = "" debug("SG", "%sTraining %s on data%s" % (("","Re-")[retrainable and self.states.retrained], self, lstr)) self.__svm.train() if __debug__: debug("SG_", "Done training SG_SVM %s" % self._kernel_type) # Report on training if (__debug__ and 'SG__' in debug.active) or \ self.states.isEnabled('training_confusion'): trained_labels = self.__svm_apply().get_labels() else: trained_labels = None if __debug__ and "SG__" in debug.active: debug("SG__", "Original labels: %s, Trained labels: %s" % (dataset.labels, trained_labels)) # Assign training confusion right away here since we are ready # to do so. # XXX TODO use some other state variable like 'trained_labels' and # use it within base Classifier._posttrain to assign predictions # instead of duplicating code here # XXX For now it can be done only for regressions since labels need to # be remapped and that becomes even worse if we use regression # as a classifier so mapping happens upstairs if self.regression and self.states.isEnabled('training_confusion'): self.states.training_confusion = self._summaryClass( targets=dataset.labels, predictions=trained_labels) def _predict(self, data): """Predict values for the data """ retrainable = self.params.retrainable if retrainable: changed_testdata = self._changedData['testdata'] or \ self.__kernel_test is None if not retrainable or changed_testdata: testdata = _tosg(data) if not retrainable: if __debug__: debug("SG__", "Initializing SVMs kernel of %s with training/testing samples" % self) # We can just reuse kernel used for training self.__kernel.init(self.__traindata, testdata) self.__condition_kernel(self.__kernel) else: if changed_testdata: if __debug__: debug("SG__", "Re-creating testing kernel of %s giving " "arguments %s" % (`self._kernel_type`, self.__kernel_args)) kernel_test = self._kernel_type(self.__traindata, testdata, *self.__kernel_args) _setdebug(kernel_test, 'Kernels') custk_args = ([self.__traindata, testdata], [])[ int(externals.exists('sg ge 0.6.4'))] if __debug__: debug("SG__", "Re-creating custom testing kernel giving " "arguments %s" % (str(custk_args))) kernel_test_custom = shogun.Kernel.CustomKernel(*custk_args) _setdebug(kernel_test_custom, 'Kernels') self.__kernel_test = kernel_test_custom self.__kernel_test.set_full_kernel_matrix_from_full( kernel_test.get_kernel_matrix()) elif __debug__: debug("SG__", "Re-using testing kernel") assert(self.__kernel_test is not None) self.__svm.set_kernel(self.__kernel_test) if __debug__: debug("SG_", "Classifying testing data") # doesn't do any good imho although on unittests helps tiny bit... hm #self.__svm.init_kernel_optimization() values_ = self.__svm_apply() if values_ is None: raise RuntimeError, "We got empty list of values from %s" % self values = values_.get_labels() if retrainable: # we must assign it only if it is retrainable self.states.repredicted = repredicted = not changed_testdata if __debug__: debug("SG__", "Re-assigning learing kernel. Repredicted is %s" % repredicted) # return back original kernel self.__svm.set_kernel(self.__kernel) if __debug__: debug("SG__", "Got values %s" % values) if ('regression' in self._clf_internals): predictions = values else: # local bindings _labels_dict = self._labels_dict _labels_dict_rev = self._labels_dict_rev if len(_labels_dict) == 2: predictions = 1.0 - 2*N.signbit(values) else: predictions = values # assure that we have the same type label_type = type(_labels_dict.values()[0]) # remap labels back adjusting their type predictions = [_labels_dict_rev[label_type(x)] for x in predictions] if __debug__: debug("SG__", "Tuned predictions %s" % predictions) # store state variable # TODO: extract values properly for multiclass SVMs -- # ie 1 value per label or pairs for all 1-vs-1 classifications self.values = values ## to avoid leaks with not yet properly fixed shogun if not retrainable: try: testdata.free_features() except: pass return predictions def untrain(self): super(SVM, self).untrain() if not self.params.retrainable: if __debug__: debug("SG__", "Untraining %(clf)s and destroying sg's SVM", msgargs={'clf':self}) # to avoid leaks with not yet properly fixed shogun # XXX make it nice... now it is just stable ;-) if True: # not self.__traindata is None: if True: # try: if self.__kernel is not None: del self.__kernel self.__kernel = None if self.__kernel_test is not None: del self.__kernel_test self.__kernel_test = None if self.__svm is not None: del self.__svm self.__svm = None self.__svm_apply = None if self.__traindata is not None: # Let in for easy demonstration of the memory leak in shogun #for i in xrange(10): # debug("SG__", "cachesize pre free features %s" % # (self.__svm.get_kernel().get_cache_size())) self.__traindata.free_features() del self.__traindata self.__traindata = None self.__traindataset = None #except: # pass if __debug__: debug("SG__", "Done untraining %(self)s and destroying sg's SVM", msgargs=locals()) elif __debug__: debug("SG__", "Not untraining %(self)s since it is retrainable", msgargs=locals()) def __get_implementation(self, ul): if 'regression' in self._clf_internals or len(ul) == 2: svm_impl_class = SVM._KNOWN_IMPLEMENTATIONS[self._svm_impl][0] else: if self._svm_impl == 'libsvm': svm_impl_class = shogun.Classifier.LibSVMMultiClass elif self._svm_impl == 'gmnp': svm_impl_class = shogun.Classifier.GMNPSVM else: raise RuntimeError, \ "Shogun: Implementation %s doesn't handle multiclass " \ "data. Got labels %s. Use some other classifier" % \ (self._svm_impl, self.__traindataset.uniquelabels) if __debug__: debug("SG_", "Using %s for multiclass data of %s" % (svm_impl_class, self._svm_impl)) return svm_impl_class svm = property(fget=lambda self: self.__svm) """Access to the SVM model.""" traindataset = property(fget=lambda self: self.__traindataset) """Dataset which was used for training TODO -- might better become state variable I guess""" # Conditionally make some of the implementations available if they are # present in the present shogun for name, item, params, descr in \ [('mpd', "shogun.Classifier.MPDSVM", "('C',), ('binary',)", "MPD classifier from shogun"), ('lightsvm', "shogun.Classifier.SVMLight", "('C',), ('binary',)", "SVMLight classification http://svmlight.joachims.org/"), ('svrlight', "shogun.Regression.SVRLight", "('C','tube_epsilon',), ('regression',)", "SVMLight regression http://svmlight.joachims.org/"), ('krr', "shogun.Regression.KRR", "('tau',), ('regression',)", "Kernel Ridge Regression"), ]: if externals.exists('shogun.%s' % name): exec "SVM._KNOWN_IMPLEMENTATIONS[\"%s\"] = (%s, %s, \"%s\")" % (name, item, params, descr) # Assign SVM class to limited set of LinearSVMWeights LinearSVMWeights._LEGAL_CLFS = [SVM] pymvpa-0.4.8/mvpa/clfs/smlr.py000066400000000000000000000511371174541445200162760ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Sparse Multinomial Logistic Regression classifier.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import warning, externals from mvpa.clfs.base import Classifier from mvpa.measures.base import Sensitivity from mvpa.misc.exceptions import ConvergenceError from mvpa.misc.param import Parameter from mvpa.misc.state import StateVariable from mvpa.misc.transformers import SecondAxisMaxOfAbs _DEFAULT_IMPLEMENTATION = "Python" if externals.exists('ctypes'): # Uber-fast C-version of the stepwise regression from mvpa.clfs.libsmlrc import stepwise_regression as _cStepwiseRegression _DEFAULT_IMPLEMENTATION = "C" else: _cStepwiseRegression = None warning("SMLR implementation without ctypes is overwhelmingly slow." " You are strongly advised to install python-ctypes") if __debug__: from mvpa.base import debug def _label2oneofm(labels, ulabels): """Convert labels to one-of-M form. TODO: Might be useful elsewhere so could migrate into misc/ """ # allocate for the new one-of-M labels new_labels = N.zeros((len(labels), len(ulabels))) # loop and convert to one-of-M for i, c in enumerate(ulabels): new_labels[labels == c, i] = 1 return new_labels class SMLR(Classifier): """Sparse Multinomial Logistic Regression `Classifier`. This is an implementation of the SMLR algorithm published in :ref:`Krishnapuram et al., 2005 ` (2005, IEEE Transactions on Pattern Analysis and Machine Intelligence). Be sure to cite that article if you use this classifier for your work. """ _clf_internals = [ 'smlr', 'linear', 'has_sensitivity', 'binary', 'multiclass', 'does_feature_selection' ] # XXX: later 'kernel-based'? lm = Parameter(.1, min=1e-10, allowedtype='float', doc="""The penalty term lambda. Larger values will give rise to more sparsification.""") convergence_tol = Parameter(1e-3, min=1e-10, max=1.0, allowedtype='float', doc="""When the weight change for each cycle drops below this value the regression is considered converged. Smaller values lead to tighter convergence.""") resamp_decay = Parameter(0.5, allowedtype='float', min=0.0, max=1.0, doc="""Decay rate in the probability of resampling a zero weight. 1.0 will immediately decrease to the min_resamp from 1.0, 0.0 will never decrease from 1.0.""") min_resamp = Parameter(0.001, allowedtype='float', min=1e-10, max=1.0, doc="Minimum resampling probability for zeroed weights") maxiter = Parameter(10000, allowedtype='int', min=1, doc="""Maximum number of iterations before stopping if not converged.""") has_bias = Parameter(True, allowedtype='bool', doc="""Whether to add a bias term to allow fits to data not through zero""") fit_all_weights = Parameter(True, allowedtype='bool', doc="""Whether to fit weights for all classes or to the number of classes minus one. Both should give nearly identical results, but if you set fit_all_weights to True it will take a little longer and yield weights that are fully analyzable for each class. Also, note that the convergence rate may be different, but convergence point is the same.""") implementation = Parameter(_DEFAULT_IMPLEMENTATION, allowedtype='basestring', choices=["C", "Python"], doc="""Use C or Python as the implementation of stepwise_regression. C version brings significant speedup thus is the default one.""") seed = Parameter(None, allowedtype='None or int', doc="""Seed to be used to initialize random generator, might be used to replicate the run""") unsparsify = Parameter(False, allowedtype='bool', doc="""***EXPERIMENTAL*** Whether to unsparsify the weights via regression. Note that it likely leads to worse classifier performance, but more interpretable weights.""") std_to_keep = Parameter(2.0, allowedtype='float', doc="""Standard deviation threshold of weights to keep when unsparsifying.""") def __init__(self, **kwargs): """Initialize an SMLR classifier. """ """ TODO: # Add in likelihood calculation # Add kernels, not just direct methods. """ # init base class first Classifier.__init__(self, **kwargs) if _cStepwiseRegression is None and self.implementation == 'C': warning('SMLR: C implementation is not available.' ' Using pure Python one') self.implementation = 'Python' # pylint friendly initializations self.__ulabels = None """Unigue labels from the training set.""" self.__weights_all = None """Contains all weights including bias values""" self.__weights = None """Just the weights, without the biases""" self.__biases = None """The biases, will remain none if has_bias is False""" def _pythonStepwiseRegression(self, w, X, XY, Xw, E, auto_corr, lambda_over_2_auto_corr, S, M, maxiter, convergence_tol, resamp_decay, min_resamp, verbose, seed = None): """The (much slower) python version of the stepwise regression. I'm keeping this around for now so that we can compare results.""" # get the data information into easy vars ns, nd = X.shape # initialize the iterative optimization converged = False incr = N.finfo(N.float).max non_zero, basis, m, wasted_basis, cycles = 0, 0, 0, 0, 0 sum2_w_diff, sum2_w_old, w_diff = 0.0, 0.0, 0.0 p_resamp = N.ones(w.shape, dtype=N.float) if seed is not None: # set the random seed N.random.seed(seed) if __debug__: debug("SMLR_", "random seed=%s" % seed) # perform the optimization while not converged and cycles < maxiter: # get the starting weight w_old = w[basis, m] # see if we're gonna update if (w_old != 0) or N.random.rand() < p_resamp[basis, m]: # let's do it # get the probability P = E[:, m]/S # set the gradient grad = XY[basis, m] - N.dot(X[:, basis], P) # calculate the new weight with the Laplacian prior w_new = w_old + grad/auto_corr[basis] # keep weights within bounds if w_new > lambda_over_2_auto_corr[basis]: w_new -= lambda_over_2_auto_corr[basis] changed = True # unmark from being zero if necessary if w_old == 0: non_zero += 1 # reset the prob of resampling p_resamp[basis, m] = 1.0 elif w_new < -lambda_over_2_auto_corr[basis]: w_new += lambda_over_2_auto_corr[basis] changed = True # unmark from being zero if necessary if w_old == 0: non_zero += 1 # reset the prob of resampling p_resamp[basis, m] = 1.0 else: # gonna zero it out w_new = 0.0 # decrease the p_resamp p_resamp[basis, m] -= (p_resamp[basis, m] - \ min_resamp) * resamp_decay # set number of non-zero if w_old == 0: changed = False wasted_basis += 1 else: changed = True non_zero -= 1 # process any changes if changed: #print "w[%d, %d] = %g" % (basis, m, w_new) # update the expected values w_diff = w_new - w_old Xw[:, m] = Xw[:, m] + X[:, basis]*w_diff E_new_m = N.exp(Xw[:, m]) S += E_new_m - E[:, m] E[:, m] = E_new_m # update the weight w[basis, m] = w_new # keep track of the sqrt sum squared diffs sum2_w_diff += w_diff*w_diff # add to the old no matter what sum2_w_old += w_old*w_old # update the class and basis m = N.mod(m+1, w.shape[1]) if m == 0: # we completed a cycle of labels basis = N.mod(basis+1, nd) if basis == 0: # we completed a cycle of features cycles += 1 # assess convergence incr = N.sqrt(sum2_w_diff) / \ (N.sqrt(sum2_w_old)+N.finfo(N.float).eps) # save the new weights converged = incr < convergence_tol if __debug__: debug("SMLR_", \ "cycle=%d ; incr=%g ; non_zero=%d ; " % (cycles, incr, non_zero) + "wasted_basis=%d ; " % (wasted_basis) + "sum2_w_old=%g ; sum2_w_diff=%g" % (sum2_w_old, sum2_w_diff)) # reset the sum diffs and wasted_basis sum2_w_diff = 0.0 sum2_w_old = 0.0 wasted_basis = 0 if not converged: raise ConvergenceError, \ "More than %d Iterations without convergence" % \ (maxiter) # calcualte the log likelihoods and posteriors for the training data #log_likelihood = x return cycles def _train(self, dataset): """Train the classifier using `dataset` (`Dataset`). """ # Process the labels to turn into 1 of N encoding labels = _label2oneofm(dataset.labels, dataset.uniquelabels) self.__ulabels = dataset.uniquelabels.copy() Y = labels M = len(self.__ulabels) # get the dataset information into easy vars X = dataset.samples # see if we are adding a bias term if self.params.has_bias: if __debug__: debug("SMLR_", "hstacking 1s for bias") # append the bias term to the features X = N.hstack((X, N.ones((X.shape[0], 1), dtype=X.dtype))) if self.params.implementation.upper() == 'C': _stepwise_regression = _cStepwiseRegression # # TODO: avoid copying to non-contig arrays, use strides in ctypes? if not (X.flags['C_CONTIGUOUS'] and X.flags['ALIGNED']): if __debug__: debug("SMLR_", "Copying data to get it C_CONTIGUOUS/ALIGNED") X = N.array(X, copy=True, dtype=N.double, order='C') # currently must be double for the C code if X.dtype != N.double: if __debug__: debug("SMLR_", "Converting data to double") # must cast to double X = X.astype(N.double) # set the feature dimensions elif self.params.implementation.upper() == 'PYTHON': _stepwise_regression = self._pythonStepwiseRegression else: raise ValueError, \ "Unknown implementation %s of stepwise_regression" % \ self.params.implementation # set the feature dimensions ns, nd = X.shape # decide the size of weights based on num classes estimated if self.params.fit_all_weights: c_to_fit = M else: c_to_fit = M-1 # Precompute what we can auto_corr = ((M-1.)/(2.*M))*(N.sum(X*X, 0)) XY = N.dot(X.T, Y[:, :c_to_fit]) lambda_over_2_auto_corr = (self.params.lm/2.)/auto_corr # set starting values w = N.zeros((nd, c_to_fit), dtype=N.double) Xw = N.zeros((ns, c_to_fit), dtype=N.double) E = N.ones((ns, c_to_fit), dtype=N.double) S = M*N.ones(ns, dtype=N.double) # set verbosity if __debug__: verbosity = int( "SMLR_" in debug.active ) debug('SMLR_', 'Calling stepwise_regression. Seed %s' % self.params.seed) else: verbosity = 0 # call the chosen version of stepwise_regression cycles = _stepwise_regression(w, X, XY, Xw, E, auto_corr, lambda_over_2_auto_corr, S, M, self.params.maxiter, self.params.convergence_tol, self.params.resamp_decay, self.params.min_resamp, verbosity, self.params.seed) if cycles >= self.params.maxiter: # did not converge raise ConvergenceError, \ "More than %d Iterations without convergence" % \ (self.params.maxiter) # see if unsparsify the weights if self.params.unsparsify: # unsparsify w = self._unsparsify_weights(X, w) # save the weights self.__weights_all = w self.__weights = w[:dataset.nfeatures, :] if self.states.isEnabled('feature_ids'): self.feature_ids = N.where(N.max(N.abs(w[:dataset.nfeatures, :]), axis=1)>0)[0] # and a bias if self.params.has_bias: self.__biases = w[-1, :] if __debug__: debug('SMLR', "train finished in %d cycles on data.shape=%s " % (cycles, X.shape) + "min:max(data)=%f:%f, got min:max(w)=%f:%f" % (N.min(X), N.max(X), N.min(w), N.max(w))) def _unsparsify_weights(self, samples, weights): """Unsparsify weights via least squares regression.""" # allocate for the new weights new_weights = N.zeros(weights.shape, dtype=N.double) # get the sample data we're predicting and the sum squared # total variance b = samples sst = N.power(b - b.mean(0),2).sum(0) # loop over each column for i in range(weights.shape[1]): w = weights[:,i] # get the nonzero ind ind = w!=0 # get the features with non-zero weights a = b[:,ind] # predict all the data with the non-zero features betas = N.linalg.lstsq(a,b)[0] # determine the R^2 for each feature based on the sum # squared prediction error f = N.dot(a,betas) sse = N.power((b-f),2).sum(0) rsquare = N.zeros(sse.shape,dtype=sse.dtype) gind = sst>0 rsquare[gind] = 1-(sse[gind]/sst[gind]) # derrive new weights by combining the betas and weights # scaled by the rsquare new_weights[:,i] = N.dot(w[ind],betas)*rsquare # take the tails tozero = N.abs(new_weights) < self.params.std_to_keep*N.std(new_weights) orig_zero = weights==0.0 if orig_zero.sum() < tozero.sum(): # should not end up with fewer than start tozero = orig_zero new_weights[tozero] = 0.0 debug('SMLR_', "Start nonzero: %d; Finish nonzero: %d" % \ ((weights!=0).sum(), (new_weights!=0).sum())) return new_weights def _getFeatureIds(self): """Return ids of the used features """ return N.where(N.max(N.abs(self.__weights), axis=1)>0)[0] def _predict(self, data): """Predict the output for the provided data. """ # see if we are adding a bias term if self.params.has_bias: # append the bias term to the features data = N.hstack((data, N.ones((data.shape[0], 1), dtype=data.dtype))) # append the zeros column to the weights if necessary if self.params.fit_all_weights: w = self.__weights_all else: w = N.hstack((self.__weights_all, N.zeros((self.__weights_all.shape[0], 1)))) # determine the probability values for making the prediction dot_prod = N.dot(data, w) E = N.exp(dot_prod) S = N.sum(E, 1) if __debug__: debug('SMLR', "predict on data.shape=%s min:max(data)=%f:%f " % (`data.shape`, N.min(data), N.max(data)) + "min:max(w)=%f:%f min:max(dot_prod)=%f:%f min:max(E)=%f:%f" % (N.min(w), N.max(w), N.min(dot_prod), N.max(dot_prod), N.min(E), N.max(E))) values = E / S[:, N.newaxis].repeat(E.shape[1], axis=1) self.values = values # generate predictions predictions = N.asarray([self.__ulabels[N.argmax(vals)] for vals in values]) # no need to assign state variable here -- would be done # in Classifier._postpredict anyway #self.predictions = predictions return predictions def getSensitivityAnalyzer(self, **kwargs): """Returns a sensitivity analyzer for SMLR.""" kwargs.setdefault('combiner', SecondAxisMaxOfAbs) return SMLRWeights(self, **kwargs) biases = property(lambda self: self.__biases) weights = property(lambda self: self.__weights) class SMLRWeights(Sensitivity): """`SensitivityAnalyzer` that reports the weights SMLR trained on a given `Dataset`. By default SMLR provides multiple weights per feature (one per label in training dataset). By default, all weights are combined into a single sensitivity value. Please, see the `FeaturewiseDatasetMeasure` constructor arguments how to custmize this behavior. """ biases = StateVariable(enabled=True, doc="A 1-d ndarray of biases") _LEGAL_CLFS = [ SMLR ] def _call(self, dataset=None): """Extract weights from SMLR classifier. SMLR always has weights available, so nothing has to be computed here. """ clf = self.clf weights = clf.weights # XXX: MH: The following warning is inappropriate. In almost all cases # SMLR will return more than one weight per feature. Even in the case of # binary problem it will fit both weights by default. So unless you # specify fit_all_weights=False manually this warning is always there. # To much annoyance IMHO. I moved this information into the docstring, # as there is no technical problem here, as FeaturewiseDatasetMeasure # by default applies a combiner -- just that people should know... # PLEASE ACKNOWLEDGE AND REMOVE #if weights.shape[1] != 1: # warning("You are estimating sensitivity for SMLR %s with multiple" # " sensitivities available %s. Make sure that it is what you" # " intended to do" % (self, weights.shape) ) if clf.has_bias: self.biases = clf.biases if __debug__: debug('SMLR', "Extracting weights for %d-class SMLR" % (weights.shape[1]+1) + "Result: min=%f max=%f" %\ (N.min(weights), N.max(weights))) return weights pymvpa-0.4.8/mvpa/clfs/stats.py000066400000000000000000001130201174541445200164450ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Estimator for classifier error distributions.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import externals, warning from mvpa.misc.state import ClassWithCollections, StateVariable if __debug__: from mvpa.base import debug class Nonparametric(object): """Non-parametric 1d distribution -- derives cdf based on stored values. Introduced to complement parametric distributions present in scipy.stats. """ def __init__(self, dist_samples, correction='clip'): """ :Parameters: dist_samples : ndarray Samples to be used to assess the distribution. correction : {'clip'} or None, optional Determines the behavior when .cdf is queried. If None -- no correction is made. If 'clip' -- values are clipped to lie in the range [1/(N+2), (N+1)/(N+2)] (simply because non-parametric assessment lacks the power to resolve with higher precision in the tails, so 'imagery' samples are placed in each of the two tails). """ self._dist_samples = N.ravel(dist_samples) self._correction = correction def __repr__(self): return '%s(%r%s)' % ( self.__class__.__name__, self._dist_samples, ('', ', correction=%r' % self._correction) [int(self._correction != 'clip')]) @staticmethod def fit(dist_samples): return [dist_samples] def cdf(self, x): """Returns the cdf value at `x`. """ dist_samples = self._dist_samples res = N.vectorize(lambda v:(dist_samples <= v).mean())(x) if self._correction == 'clip': nsamples = len(dist_samples) N.clip(res, 1.0/(nsamples+2), (nsamples+1.0)/(nsamples+2), res) elif self._correction is None: pass else: raise ValueError, \ '%r is incorrect value for correction parameter of %s' \ % (self._correction, self.__class__.__name__) return res def _pvalue(x, cdf_func, tail, return_tails=False, name=None): """Helper function to return p-value(x) given cdf and tail :Parameters: cdf_func : callable Function to be used to derive cdf values for x tail : str ('left', 'right', 'any', 'both') Which tail of the distribution to report. For 'any' and 'both' it chooses the tail it belongs to based on the comparison to p=0.5. In the case of 'any' significance is taken like in a one-tailed test. return_tails : bool If True, a tuple return (pvalues, tails), where tails contain 1s if value was from the right tail, and 0 if the value was from the left tail. """ is_scalar = N.isscalar(x) if is_scalar: x = [x] cdf = cdf_func(x) if __debug__ and 'CHECK_STABILITY' in debug.active: cdf_min, cdf_max = N.min(cdf), N.max(cdf) if cdf_min < 0 or cdf_max > 1.0: s = ('', ' for %s' % name)[int(name is not None)] warning('Stability check of cdf %s failed%s. Min=%s, max=%s' % \ (cdf_func, s, cdf_min, cdf_max)) # no escape but to assure that CDF is in the right range. Some # distributions from scipy tend to jump away from [0,1] cdf = N.clip(cdf, 0, 1.0) if tail == 'left': if return_tails: right_tail = N.zeros(cdf.shape, dtype=bool) elif tail == 'right': cdf = 1 - cdf if return_tails: right_tail = N.ones(cdf.shape, dtype=bool) elif tail in ('any', 'both'): right_tail = (cdf >= 0.5) cdf[right_tail] = 1.0 - cdf[right_tail] if tail == 'both': # we need to half the signficance cdf *= 2 # Assure that NaNs didn't get significant value cdf[N.isnan(x)] = 1.0 if is_scalar: res = cdf[0] else: res = cdf if return_tails: return (res, right_tail) else: return res class NullDist(ClassWithCollections): """Base class for null-hypothesis testing. """ # Although base class is not benefiting from states, derived # classes do (MCNullDist). For the sake of avoiding multiple # inheritance and associated headache -- let them all be ClassWithCollections, # performance hit should be negligible in most of the scenarios _ATTRIBUTE_COLLECTIONS = ['states'] def __init__(self, tail='both', **kwargs): """Cheap initialization. :Parameter: tail: str ('left', 'right', 'any', 'both') Which tail of the distribution to report. For 'any' and 'both' it chooses the tail it belongs to based on the comparison to p=0.5. In the case of 'any' significance is taken like in a one-tailed test. """ ClassWithCollections.__init__(self, **kwargs) self._setTail(tail) def __repr__(self, prefixes=[]): return super(NullDist, self).__repr__( prefixes=["tail=%s" % `self.__tail`] + prefixes) def _setTail(self, tail): # sanity check if tail not in ('left', 'right', 'any', 'both'): raise ValueError, 'Unknown value "%s" to `tail` argument.' \ % tail self.__tail = tail def fit(self, measure, wdata, vdata=None): """Implement to fit the distribution to the data.""" raise NotImplementedError def cdf(self, x): """Implementations return the value of the cumulative distribution function (left or right tail dpending on the setting). """ raise NotImplementedError def p(self, x, **kwargs): """Returns the p-value for values of `x`. Returned values are determined left, right, or from any tail depending on the constructor setting. In case a `FeaturewiseDatasetMeasure` was used to estimate the distribution the method returns an array. In that case `x` can be a scalar value or an array of a matching shape. """ return _pvalue(x, self.cdf, self.__tail, **kwargs) tail = property(fget=lambda x:x.__tail, fset=_setTail) class MCNullDist(NullDist): """Null-hypothesis distribution is estimated from randomly permuted data labels. The distribution is estimated by calling fit() with an appropriate `DatasetMeasure` or `TransferError` instance and a training and a validation dataset (in case of a `TransferError`). For a customizable amount of cycles the training data labels are permuted and the corresponding measure computed. In case of a `TransferError` this is the error when predicting the *correct* labels of the validation dataset. The distribution can be queried using the `cdf()` method, which can be configured to report probabilities/frequencies from `left` or `right` tail, i.e. fraction of the distribution that is lower or larger than some critical value. This class also supports `FeaturewiseDatasetMeasure`. In that case `cdf()` returns an array of featurewise probabilities/frequencies. """ _DEV_DOC = """ TODO automagically decide on the number of samples/permutations needed Caution should be paid though since resultant distributions might be quite far from some conventional ones (e.g. Normal) -- it is expected to them to be bimodal (or actually multimodal) in many scenarios. """ dist_samples = StateVariable(enabled=False, doc='Samples obtained for each permutation') def __init__(self, dist_class=Nonparametric, permutations=100, **kwargs): """Initialize Monte-Carlo Permutation Null-hypothesis testing :Parameters: dist_class: class This can be any class which provides parameters estimate using `fit()` method to initialize the instance, and provides `cdf(x)` method for estimating value of x in CDF. All distributions from SciPy's 'stats' module can be used. permutations: int This many permutations of label will be performed to determine the distribution under the null hypothesis. """ NullDist.__init__(self, **kwargs) self._dist_class = dist_class self._dist = [] # actual distributions self.__permutations = permutations """Number of permutations to compute the estimate the null distribution.""" def __repr__(self, prefixes=[]): prefixes_ = ["permutations=%s" % self.__permutations] if self._dist_class != Nonparametric: prefixes_.insert(0, 'dist_class=%s' % `self._dist_class`) return super(MCNullDist, self).__repr__( prefixes=prefixes_ + prefixes) def fit(self, measure, wdata, vdata=None): """Fit the distribution by performing multiple cycles which repeatedly permuted labels in the training dataset. :Parameters: measure: (`Featurewise`)`DatasetMeasure` | `TransferError` TransferError instance used to compute all errors. wdata: `Dataset` which gets permuted and used to compute the measure/transfer error multiple times. vdata: `Dataset` used for validation. If provided measure is assumed to be a `TransferError` and working and validation dataset are passed onto it. """ dist_samples = [] """Holds the values for randomized labels.""" # Needs to be imported here upon demand due to circular imports # TODO: place MC into a separate module from mvpa.clfs.base import DegenerateInputError, FailedToTrainError # decide on the arguments to measure if not vdata is None: measure_args = [vdata, wdata] else: measure_args = [wdata] # estimate null-distribution skipped = 0 # # of skipped permutations for p in xrange(self.__permutations): # new permutation all the time # but only permute the training data and keep the testdata constant # if __debug__: debug('STATMC', "Doing %i permutations: %i" \ % (self.__permutations, p+1), cr=True) # TODO this really needs to be more clever! If data samples are # shuffled within a class it really makes no difference for the # classifier, hence the number of permutations to estimate the # null-distribution of transfer errors can be reduced dramatically # when the *right* permutations (the ones that matter) are done. wdata.permuteLabels(True, perchunk=False) # compute and store the measure of this permutation # assume it has `TransferError` interface try: dist_samples.append(measure(*measure_args)) except (DegenerateInputError, FailedToTrainError), e: if __debug__: debug('STATMC', " skipped", cr=True) warning("Failed to estimate %s on %s, due to %s. " "Permutation %d skipped." % (measure, measure_args, e, p)) skipped += 1 continue if __debug__: debug('STATMC', ' Skipped: %d permutations' % skipped) # restore original labels wdata.permuteLabels(False, perchunk=False) # store samples self.dist_samples = dist_samples = N.asarray(dist_samples) # fit distribution per each element # to decide either it was done on scalars or vectors shape = dist_samples.shape nshape = len(shape) # if just 1 dim, original data was scalar, just create an # artif dimension for it if nshape == 1: dist_samples = dist_samples[:, N.newaxis] # fit per each element. # XXX could be more elegant? may be use N.vectorize? dist_samples_rs = dist_samples.reshape((shape[0], -1)) dist = [] for samples in dist_samples_rs.T: params = self._dist_class.fit(samples) if __debug__ and 'STAT' in debug.active: debug('STAT', 'Estimated parameters for the %s are %s' % (self._dist_class, str(params))) dist.append(self._dist_class(*params)) self._dist = dist def cdf(self, x): """Return value of the cumulative distribution function at `x`. """ if self._dist is None: # XXX We might not want to descriminate that way since # usually generators also have .cdf where they rely on the # default parameters. But then what about Nonparametric raise RuntimeError, "Distribution has to be fit first" is_scalar = N.isscalar(x) if is_scalar: x = [x] x = N.asanyarray(x) xshape = x.shape # assure x is a 1D array now x = x.reshape((-1,)) if len(self._dist) != len(x): raise ValueError, 'Distribution was fit for structure with %d' \ ' elements, whenever now queried with %d elements' \ % (len(self._dist), len(x)) # extract cdf values per each element cdfs = [ dist.cdf(v) for v, dist in zip(x, self._dist) ] return N.array(cdfs).reshape(xshape) def clean(self): """Clean stored distributions Storing all of the distributions might be too expensive (e.g. in case of Nonparametric), and the scope of the object might be too broad to wait for it to be destroyed. Clean would bind dist_samples to empty list to let gc revoke the memory. """ self._dist = [] class FixedNullDist(NullDist): """Proxy/Adaptor class for SciPy distributions. All distributions from SciPy's 'stats' module can be used with this class. >>> import numpy as N >>> from scipy import stats >>> from mvpa.clfs.stats import FixedNullDist >>> >>> dist = FixedNullDist(stats.norm(loc=2, scale=4)) >>> dist.p(2) 0.5 >>> >>> dist.cdf(N.arange(5)) array([ 0.30853754, 0.40129367, 0.5 , 0.59870633, 0.69146246]) >>> >>> dist = FixedNullDist(stats.norm(loc=2, scale=4), tail='right') >>> dist.p(N.arange(5)) array([ 0.69146246, 0.59870633, 0.5 , 0.40129367, 0.30853754]) """ def __init__(self, dist, **kwargs): """ :Parameter: dist: distribution object This can be any object the has a `cdf()` method to report the cumulative distribition function values. """ NullDist.__init__(self, **kwargs) self._dist = dist def fit(self, measure, wdata, vdata=None): """Does nothing since the distribution is already fixed.""" pass def cdf(self, x): """Return value of the cumulative distribution function at `x`. """ return self._dist.cdf(x) def __repr__(self, prefixes=[]): prefixes_ = ["dist=%s" % `self._dist`] return super(FixedNullDist, self).__repr__( prefixes=prefixes_ + prefixes) class AdaptiveNullDist(FixedNullDist): """Adaptive distribution which adjusts parameters according to the data WiP: internal implementation might change """ def fit(self, measure, wdata, vdata=None): """Cares about dimensionality of the feature space in measure """ try: nfeatures = len(measure.feature_ids) except ValueError: # XXX nfeatures = N.prod(wdata.shape[1:]) dist_gen = self._dist if not hasattr(dist_gen, 'fit'): # frozen already dist_gen = dist_gen.dist # rv_frozen at least has it ;) args, kwargs = self._adapt(nfeatures, measure, wdata, vdata) if __debug__: debug('STAT', 'Adapted parameters for %s to be %s, %s' % (dist_gen, args, kwargs)) self._dist = dist_gen(*args, **kwargs) def _adapt(self, nfeatures, measure, wdata, vdata=None): raise NotImplementedError class AdaptiveRDist(AdaptiveNullDist): """Adaptive rdist: params are (nfeatures-1, 0, 1) """ def _adapt(self, nfeatures, measure, wdata, vdata=None): return (nfeatures-1, 0, 1), {} # XXX: RDist has stability issue, just run # python -c "import scipy.stats; print scipy.stats.rdist(541,0,1).cdf(0.72)" # to get some improbable value, so we need to take care about that manually # here def cdf(self, x): cdf_ = self._dist.cdf(x) bad_values = N.where(N.abs(cdf_)>1) # XXX there might be better implementation (faster/elegant) using N.clip, # the only problem is that instability results might flip the sign # arbitrarily if len(bad_values[0]): # in this distribution we have mean at 0, so we can take that easily # into account cdf_bad = cdf_[bad_values] x_bad = x[bad_values] cdf_bad[x_bad<0] = 0.0 cdf_bad[x_bad>=0] = 1.0 cdf_[bad_values] = cdf_bad return cdf_ class AdaptiveNormal(AdaptiveNullDist): """Adaptive Normal Distribution: params are (0, sqrt(1/nfeatures)) """ def _adapt(self, nfeatures, measure, wdata, vdata=None): return (0, 1.0/N.sqrt(nfeatures)), {} if externals.exists('scipy'): from mvpa.support.stats import scipy from scipy.stats import kstest """ Thoughts: So we can use `scipy.stats.kstest` (Kolmogorov-Smirnov test) to check/reject H0 that samples come from a given distribution. But since it is based on a full range of data, we might better of with some ad-hoc checking by the detection power of the values in the tail of a tentative distribution. """ # We need a way to fixate estimation of some parameters # (e.g. mean) so lets create a simple proxy, or may be class # generator later on, which would take care about punishing change # from the 'right' arguments import scipy class rv_semifrozen(object): """Helper proxy-class to fit distribution when some parameters are known It is an ugly hack with snippets of code taken from scipy, which is Copyright (c) 2001, 2002 Enthought, Inc. and is distributed under BSD license http://www.scipy.org/License_Compatibility """ def __init__(self, dist, loc=None, scale=None, args=None): self._dist = dist # loc and scale theta = (loc, scale) # args Narg_ = dist.numargs if args is not None: Narg = len(args) if Narg > Narg_: raise ValueError, \ 'Distribution %s has only %d arguments. Got %d' \ % (dist, Narg_, Narg) args += (None,) * (Narg_ - Narg) else: args = (None,) * Narg_ args_i = [i for i,v in enumerate(args) if v is None] self._fargs = (list(args+theta), args_i) """Arguments which should get some fixed value""" def __call__(self, *args, **kwargs): """Upon call mimic call to get actual rv_frozen distribution """ return self._dist(*args, **kwargs) def nnlf(self, theta, x): # - sum (log pdf(x, theta),axis=0) # where theta are the parameters (including loc and scale) # fargs, fargs_i = self._fargs try: i=-1 if fargs[-1] is not None: scale = fargs[-1] else: scale = theta[i] i -= 1 if fargs[-2] is not None: loc = fargs[-2] else: loc = theta[i] i -= 1 args = theta[:i+1] # adjust args if there were fixed for i,a in zip(fargs_i, args): fargs[i] = a args = fargs[:-2] except IndexError: raise ValueError, "Not enough input arguments." if not self._argcheck(*args) or scale <= 0: return N.inf x = N.asarray((x-loc) / scale) cond0 = (x <= self.a) | (x >= self.b) if (N.any(cond0)): return N.inf else: return self._nnlf(x, *args) + len(x)*N.log(scale) def fit(self, data, *args, **kwds): loc0, scale0 = map(kwds.get, ['loc', 'scale'], [0.0, 1.0]) fargs, fargs_i = self._fargs Narg = len(args) Narg_ = self.numargs if Narg != Narg_: if Narg > Narg_: raise ValueError, "Too many input arguments." else: args += (1.0,)*(self.numargs-Narg) # Provide only those args which are not fixed, and # append location and scale (if not fixed) at the end if len(fargs_i) != Narg_: x0 = tuple([args[i] for i in fargs_i]) else: x0 = args if fargs[-2] is None: x0 = x0 + (loc0,) if fargs[-1] is None: x0 = x0 + (scale0,) opt_x = scipy.optimize.fmin(self.nnlf, x0, args=(N.ravel(data),), disp=0) # reconstruct back i = 0 loc, scale = fargs[-2:] if fargs[-1] is None: i -= 1 scale = opt_x[i] if fargs[-2] is None: i -= 1 loc = opt_x[i] # assign those which weren't fixed for i in fargs_i: fargs[i] = opt_x[i] #raise ValueError opt_x = N.hstack((fargs[:-2], (loc, scale))) return opt_x def __setattr__(self, a, v): if not a in ['_dist', '_fargs', 'fit', 'nnlf']: self._dist.__setattr__(a, v) else: object.__setattr__(self, a, v) def __getattribute__(self, a): """We need to redirect all queries correspondingly """ if not a in ['_dist', '_fargs', 'fit', 'nnlf']: return getattr(self._dist, a) else: return object.__getattribute__(self, a) def matchDistribution(data, nsamples=None, loc=None, scale=None, args=None, test='kstest', distributions=None, **kwargs): """Determine best matching distribution. Can be used for 'smelling' the data, as well to choose a parametric distribution for data obtained from non-parametric testing (e.g. `MCNullDist`). WiP: use with caution, API might change :Parameters: data : N.ndarray Array of the data for which to deduce the distribution. It has to be sufficiently large to make a reliable conclusion nsamples : int or None If None -- use all samples in data to estimate parametric distribution. Otherwise use only specified number randomly selected from data. loc : float or None Loc for the distribution (if known) scale : float or None Scale for the distribution (if known) test : basestring What kind of testing to do. Choices: 'p-roc' : detection power for a given ROC. Needs two parameters: `p=0.05` and `tail='both'` 'kstest' : 'full-body' distribution comparison. The best choice is made by minimal reported distance after estimating parameters of the distribution. Parameter `p=0.05` sets threshold to reject null-hypothesis that distribution is the same. WARNING: older versions (e.g. 0.5.2 in etch) of scipy have incorrect kstest implementation and do not function properly distributions : None or list of basestring or tuple(basestring, dict) Distributions to check. If None, all known in scipy.stats are tested. If distribution is specified as a tuple, then it must contain name and additional parameters (name, loc, scale, args) in the dictionary. Entry 'scipy' adds all known in scipy.stats. **kwargs Additional arguments which are needed for each particular test (see above) :Example: data = N.random.normal(size=(1000,1)); matches = matchDistribution( data, distributions=['rdist', ('rdist', {'name':'rdist_fixed', 'loc': 0.0, 'args': (10,)})], nsamples=30, test='p-roc', p=0.05) """ # Handle parameters _KNOWN_TESTS = ['p-roc', 'kstest'] if not test in _KNOWN_TESTS: raise ValueError, 'Unknown kind of test %s. Known are %s' \ % (test, _KNOWN_TESTS) data = N.ravel(data) # data sampled if nsamples is not None: if __debug__: debug('STAT', 'Sampling %d samples from data for the ' \ 'estimation of the distributions parameters' % nsamples) indexes_selected = (N.random.sample(nsamples)*len(data)).astype(int) data_selected = data[indexes_selected] else: indexes_selected = N.arange(len(data)) data_selected = data p_thr = kwargs.get('p', 0.05) if test == 'p-roc': tail = kwargs.get('tail', 'both') data_p = _pvalue(data, Nonparametric(data).cdf, tail) data_p_thr = N.abs(data_p) <= p_thr true_positives = N.sum(data_p_thr) if true_positives == 0: raise ValueError, "Provided data has no elements in non-" \ "parametric distribution under p<=%.3f. Please " \ "increase the size of data or value of p" % p if __debug__: debug('STAT_', 'Number of positives in non-parametric ' 'distribution is %d' % true_positives) if distributions is None: distributions = ['scipy'] # lets see if 'scipy' entry was in there try: scipy_ind = distributions.index('scipy') distributions.pop(scipy_ind) sp_dists = scipy.stats.distributions.__all__ sp_version = externals.versions['scipy'] if sp_version >= '0.9.0': for d_ in ['ncf']: if d_ in sp_dists: warning("Not considering %s distribution because of " "known issues in scipy %s" % (d_, sp_version)) _ = sp_dists.pop(sp_dists.index(d_)) distributions += sp_dists except ValueError: pass results = [] for d in distributions: dist_gen, loc_, scale_, args_ = None, loc, scale, args if isinstance(d, basestring): dist_gen = d dist_name = d elif isinstance(d, tuple): if not (len(d)==2 and isinstance(d[1], dict)): raise ValueError,\ "Tuple specification of distribution must be " \ "(d, {params}). Got %s" % (d,) dist_gen = d[0] loc_ = d[1].get('loc', loc) scale_ = d[1].get('scale', scale) args_ = d[1].get('args', args) dist_name = d[1].get('name', str(dist_gen)) else: dist_gen = d dist_name = str(d) # perform actions which might puke for some distributions try: dist_gen_ = getattr(scipy.stats, dist_gen) # specify distribution 'optimizer'. If loc or scale was provided, # use home-brewed rv_semifrozen if args_ is not None or loc_ is not None or scale_ is not None: dist_opt = rv_semifrozen(dist_gen_, loc=loc_, scale=scale_, args=args_) else: dist_opt = dist_gen_ dist_params = dist_opt.fit(data_selected) if __debug__: debug('STAT__', 'Got distribution parameters %s for %s' % (dist_params, dist_name)) if test == 'p-roc': cdf_func = lambda x: dist_gen_.cdf(x, *dist_params) # We need to compare detection under given p cdf_p = N.abs(_pvalue(data, cdf_func, tail, name=dist_gen)) cdf_p_thr = cdf_p <= p_thr D, p = N.sum(N.abs(data_p_thr - cdf_p_thr))*1.0/true_positives, 1 if __debug__: res_sum = 'D=%.2f' % D elif test == 'kstest': D, p = kstest(data, d, args=dist_params) if __debug__: res_sum = 'D=%.3f p=%.3f' % (D, p) except (TypeError, ValueError, AttributeError, NotImplementedError), e:#Exception, e: if __debug__: debug('STAT__', 'Testing for %s distribution failed due to %s' % (d, str(e))) continue if p > p_thr and not N.isnan(D): results += [ (D, dist_gen, dist_name, dist_params) ] if __debug__: debug('STAT_', 'Testing for %s dist.: %s' % (dist_name, res_sum)) else: if __debug__: debug('STAT__', 'Cannot consider %s dist. with %s' % (d, res_sum)) continue # sort in ascending order, so smaller is better results.sort() if __debug__ and 'STAT' in debug.active: # find the best and report it nresults = len(results) sresult = lambda r:'%s(%s)=%.2f' % (r[1], ', '.join(map(str, r[3])), r[0]) if nresults>0: nnextbest = min(2, nresults-1) snextbest = ', '.join(map(sresult, results[1:1+nnextbest])) debug('STAT', 'Best distribution %s. Next best: %s' % (sresult(results[0]), snextbest)) else: debug('STAT', 'Could not find suitable distribution') # return all the results return results if externals.exists('pylab'): import pylab as P def plotDistributionMatches(data, matches, nbins=31, nbest=5, expand_tails=8, legend=2, plot_cdf=True, p=None, tail='both'): """Plot best matching distributions :Parameters: data : N.ndarray Data which was used to obtain the matches matches : list of tuples Sorted matches as provided by matchDistribution nbins : int Number of bins in the histogram nbest : int Number of top matches to plot expand_tails : int How many bins away to add to parametrized distributions plots legend : int Either to provide legend and statistics in the legend. 1 -- just lists distributions. 2 -- adds distance measure 3 -- tp/fp/fn in the case if p is provided plot_cdf : bool Either to plot cdf for data using non-parametric distribution p : float or None If not None, visualize null-hypothesis testing (given p). Bars in the histogram which fall under given p are colored in red. False positives and false negatives are marked as triangle up and down symbols correspondingly tail : ('left', 'right', 'any', 'both') If p is not None, the choise of tail for null-hypothesis testing :Returns: tuple(histogram, list of lines) """ hist = P.hist(data, nbins, normed=1, align='center') data_range = [N.min(data), N.max(data)] # x's x = hist[1] dx = x[expand_tails] - x[0] # how much to expand tails by x = N.hstack((x[:expand_tails] - dx, x, x[-expand_tails:] + dx)) nonparam = Nonparametric(data) # plot cdf if plot_cdf: P.plot(x, nonparam.cdf(x), 'k--', linewidth=1) p_thr = p data_p = _pvalue(data, nonparam.cdf, tail) data_p_thr = (data_p <= p_thr).ravel() x_p = _pvalue(x, Nonparametric(data).cdf, tail) x_p_thr = N.abs(x_p) <= p_thr # color bars which pass thresholding in red for thr, bar in zip(x_p_thr[expand_tails:], hist[2]): bar.set_facecolor(('w','r')[int(thr)]) if not len(matches): # no matches were provided warning("No matching distributions were provided -- nothing to plot") return (hist, ) lines = [] labels = [] for i in xrange(min(nbest, len(matches))): D, dist_gen, dist_name, params = matches[i] dist = getattr(scipy.stats, dist_gen)(*params) label = '%s' % (dist_name) if legend > 1: label += '(D=%.2f)' % (D) xcdf_p = N.abs(_pvalue(x, dist.cdf, tail)) xcdf_p_thr = (xcdf_p <= p_thr).ravel() if p is not None and legend > 2: # We need to compare detection under given p data_cdf_p = N.abs(_pvalue(data, dist.cdf, tail)) data_cdf_p_thr = (data_cdf_p <= p_thr).ravel() # true positives tp = N.logical_and(data_cdf_p_thr, data_p_thr) # false positives fp = N.logical_and(data_cdf_p_thr, ~data_p_thr) # false negatives fn = N.logical_and(~data_cdf_p_thr, data_p_thr) label += ' tp/fp/fn=%d/%d/%d)' % \ tuple(map(N.sum, [tp,fp,fn])) pdf = dist.pdf(x) line = P.plot(x, pdf, '-', linewidth=2, label=label) color = line[0].get_color() if plot_cdf: cdf = dist.cdf(x) P.plot(x, cdf, ':', linewidth=1, color=color, label=label) # TODO: decide on tp/fp/fn by not centers of the bins but # by the values in data in the ranges covered by # those bins. Then it would correspond to the values # mentioned in the legend if p is not None: # true positives xtp = N.logical_and(xcdf_p_thr, x_p_thr) # false positives xfp = N.logical_and(xcdf_p_thr, ~x_p_thr) # false negatives xfn = N.logical_and(~xcdf_p_thr, x_p_thr) # no need to plot tp explicitely -- marked by color of the bar # P.plot(x[xtp], pdf[xtp], 'o', color=color) P.plot(x[xfp], pdf[xfp], '^', color=color) P.plot(x[xfn], pdf[xfn], 'v', color=color) lines.append(line) labels.append(label) if legend: P.legend(lines, labels) return (hist, lines) #if True: # data = N.random.normal(size=(1000,1)); # matches = matchDistribution( # data, # distributions=['scipy', # ('norm', {'name':'norm_known', # 'scale': 1.0, # 'loc': 0.0})], # nsamples=30, test='p-roc', p=0.05) # P.figure(); plotDistributionMatches(data, matches, nbins=101, # p=0.05, legend=4, nbest=5) def autoNullDist(dist): """Cheater for human beings -- wraps `dist` if needed with some NullDist tail and other arguments are assumed to be default as in NullDist/MCNullDist """ if dist is None or isinstance(dist, NullDist): return dist elif hasattr(dist, 'fit'): if __debug__: debug('STAT', 'Wrapping %s into MCNullDist' % dist) return MCNullDist(dist) else: if __debug__: debug('STAT', 'Wrapping %s into FixedNullDist' % dist) return FixedNullDist(dist) # if no scipy, we need nanmean def _chk_asarray(a, axis): if axis is None: a = N.ravel(a) outaxis = 0 else: a = N.asarray(a) outaxis = axis return a, outaxis def nanmean(x, axis=0): """Compute the mean over the given axis ignoring nans. :Parameters: x : ndarray input array axis : int axis along which the mean is computed. :Results: m : float the mean.""" x, axis = _chk_asarray(x,axis) x = x.copy() Norig = x.shape[axis] factor = 1.0-N.sum(N.isnan(x),axis)*1.0/Norig x[N.isnan(x)] = 0 return N.mean(x,axis)/factor pymvpa-0.4.8/mvpa/clfs/svm.py000066400000000000000000000100171174541445200161160ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Importer for the available SVM and SVR machines. Multiple external libraries implementing Support Vector Machines (Classification) and Regressions are available: LIBSVM, and shogun. This module is just a helper to provide default implementation for SVM depending on the availability of external libraries. By default LIBSVM implementation is choosen by default, but in any case both libraries are available through importing from this module: > from mvpa.clfs.svm import sg, libsvm > help(sg.SVM) > help(libsvm.SVM) Please refer to particular interface for more documentation about parametrization and available kernels and implementations. """ __docformat__ = 'restructuredtext' # take care of conditional import of external classifiers from mvpa.base import warning, cfg, externals from _svmbase import _SVM if __debug__: from mvpa.base import debug # default SVM implementation SVM = None _NuSVM = None # TODO: handle choices within cfg _VALID_BACKENDS = ('libsvm', 'shogun', 'sg') default_backend = cfg.get('svm', 'backend', default='libsvm').lower() if default_backend == 'shogun': default_backend = 'sg' if not default_backend in _VALID_BACKENDS: raise ValueError, 'Configuration option svm.backend got invalid value %s.' \ ' Valid choices are %s' % (default_backend, _VALID_BACKENDS) if __debug__: debug('SVM', 'Default SVM backend is %s' % default_backend) if externals.exists('shogun'): from mvpa.clfs import sg SVM = sg.SVM #if not 'LinearCSVMC' in locals(): # from mvpa.clfs.sg.svm import * if externals.exists('libsvm'): # By default for now we want simply to import all SVMs from libsvm from mvpa.clfs import libsvmc as libsvm _NuSVM = libsvm.SVM if default_backend == 'libsvm' or SVM is None: if __debug__ and default_backend != 'libsvm' and SVM is None: debug('SVM', 'Default SVM backend %s was not found, so using libsvm' % default_backend) SVM = libsvm.SVM #from mvpa.clfs.libsvm.svm import * if SVM is None: warning("None of SVM implementions libraries was found") else: _defaultC = _SVM._SVM_PARAMS['C'].default _defaultNu = _SVM._SVM_PARAMS['nu'].default # Define some convinience classes class LinearCSVMC(SVM): """C-SVM classifier using linear kernel. See help for %s for more details """ % SVM.__class__.__name__ def __init__(self, C=_defaultC, **kwargs): """ """ # init base class SVM.__init__(self, C=C, kernel_type='linear', **kwargs) class RbfCSVMC(SVM): """C-SVM classifier using a radial basis function kernel. See help for %s for more details """ % SVM.__class__.__name__ def __init__(self, C=_defaultC, **kwargs): """ """ # init base class SVM.__init__(self, C=C, kernel_type='RBF', **kwargs) if _NuSVM is not None: class LinearNuSVMC(_NuSVM): """Nu-SVM classifier using linear kernel. See help for %s for more details """ % _NuSVM.__class__.__name__ def __init__(self, nu=_defaultNu, **kwargs): """ """ # init base class _NuSVM.__init__(self, nu=nu, kernel_type='linear', **kwargs) class RbfNuSVMC(SVM): """Nu-SVM classifier using a radial basis function kernel. See help for %s for more details """ % SVM.__class__.__name__ def __init__(self, nu=_defaultNu, **kwargs): # init base class SVM.__init__(self, nu=nu, kernel_type='RBF', **kwargs) pymvpa-0.4.8/mvpa/clfs/transerror.py000066400000000000000000001532741174541445200175270ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Utility class to compute the transfer error of classifiers.""" __docformat__ = 'restructuredtext' import mvpa.support.copy as copy import numpy as N from StringIO import StringIO from math import log10, ceil from mvpa.base import externals from mvpa.misc.errorfx import meanPowerFx, rootMeanPowerFx, RMSErrorFx, \ CorrErrorFx, CorrErrorPFx, RelativeRMSErrorFx, MeanMismatchErrorFx, \ AUCErrorFx from mvpa.base import warning from mvpa.misc.state import StateVariable, ClassWithCollections from mvpa.base.dochelpers import enhancedDocString, table2string from mvpa.clfs.stats import autoNullDist if __debug__: from mvpa.base import debug if externals.exists('scipy'): from scipy.stats.stats import nanmean else: from mvpa.clfs.stats import nanmean def _p2(x, prec=2): """Helper to print depending on the type nicely. For some reason %.2g for 100 prints exponential form which is ugly """ if isinstance(x, int): return "%d" % x elif isinstance(x, float): s = ("%%.%df" % prec % x).rstrip('0').rstrip('.').lstrip() if s == '': s = '0' return s else: return "%s" % x class SummaryStatistics(object): """Basic class to collect targets/predictions and report summary statistics It takes care about collecting the sets, which are just tuples (targets, predictions, values). While 'computing' the matrix, all sets are considered together. Children of the class are responsible for computation and display. """ _STATS_DESCRIPTION = ( ('# of sets', 'number of target/prediction sets which were provided', None), ) def __init__(self, targets=None, predictions=None, values=None, sets=None): """Initialize SummaryStatistics targets or predictions cannot be provided alone (ie targets without predictions) :Parameters: targets Optional set of targets predictions Optional set of predictions values Optional set of values (which served for prediction) sets Optional list of sets """ self._computed = False """Flag either it was computed for a given set of data""" self.__sets = (sets, [])[int(sets is None)] """Datasets (target, prediction) to compute confusion matrix on""" self._stats = {} """Dictionary to keep statistics. Initialized here to please pylint""" if not targets is None or not predictions is None: if not targets is None and not predictions is None: self.add(targets=targets, predictions=predictions, values=values) else: raise ValueError, \ "Please provide none or both targets and predictions" def add(self, targets, predictions, values=None): """Add new results to the set of known results""" if len(targets) != len(predictions): raise ValueError, \ "Targets[%d] and predictions[%d]" % (len(targets), len(predictions)) + \ " have different number of samples" if values is not None and len(targets) != len(values): raise ValueError, \ "Targets[%d] and values[%d]" % (len(targets), len(values)) + \ " have different number of samples" # enforce labels in predictions to be of the same datatype as in # targets, since otherwise we are getting doubles for unknown at a # given moment labels nonetype = type(None) for i in xrange(len(targets)): t1, t2 = type(targets[i]), type(predictions[i]) # if there were no prediction made - leave None, otherwise # convert to appropriate type if t1 != t2 and t2 != nonetype: #warning("Obtained target %s and prediction %s are of " % # (t1, t2) + "different datatypes.") if isinstance(predictions, tuple): predictions = list(predictions) predictions[i] = t1(predictions[i]) if values is not None: # assure that we have a copy, or otherwise further in-place # modifications might screw things up (some classifiers share # values and spit out results) values = copy.deepcopy(values) self.__sets.append( (targets, predictions, values) ) self._computed = False def asstring(self, short=False, header=True, summary=True, description=False): """'Pretty print' the matrix :Parameters: short : bool if True, ignores the rest of the parameters and provides consise 1 line summary header : bool print header of the table summary : bool print summary (accuracy) description : bool print verbose description of presented statistics """ raise NotImplementedError def __str__(self): """String summary over the `SummaryStatistics` It would print description of the summary statistics if 'CM' debug target is active """ if __debug__: description = ('CM' in debug.active) else: description = False return self.asstring(short=False, header=True, summary=True, description=description) def __iadd__(self, other): """Add the sets from `other` s `SummaryStatistics` to current one """ #print "adding ", other, " to ", self # need to do shallow copy, or otherwise smth like "cm += cm" # would loop forever and exhaust memory eventually othersets = copy.copy(other.__sets) for set in othersets: self.add(*set)#[0], set[1]) return self def __add__(self, other): """Add two `SummaryStatistics`s """ result = copy.copy(self) result += other return result def compute(self): """Actually compute the confusion matrix based on all the sets""" if self._computed: return self._compute() self._computed = True def _compute(self): """Compute basic statistics """ self._stats = {'# of sets' : len(self.sets)} @property def summaries(self): """Return a list of separate summaries per each stored set""" return [ self.__class__(sets=[x]) for x in self.sets ] @property def error(self): raise NotImplementedError @property def stats(self): self.compute() return self._stats def reset(self): """Cleans summary -- all data/sets are wiped out """ self.__sets = [] self._computed = False sets = property(lambda self:self.__sets) class ROCCurve(object): """Generic class for ROC curve computation and plotting """ def __init__(self, labels, sets=None): """ :Parameters: labels : list labels which were used (in order of values if multiclass, or 1 per class for binary problems (e.g. in SMLR)) sets : list of tuples list of sets for the analysis """ self._labels = labels self._sets = sets self.__computed = False def _compute(self): """Lazy computation if needed """ if self.__computed: return # local bindings labels = self._labels Nlabels = len(labels) sets = self._sets # Handle degenerate cases politely if Nlabels < 2: warning("ROC was asked to be evaluated on data with %i" " labels which is a degenerate case.") self._ROCs = [] self._aucs = [] return # take sets which have values in the shape we can handle def _checkValues(set_): """Check if values are 'acceptable'""" if len(set_)<3: return False x = set_[2] # TODO: OPT: need optimization if (x is None) or len(x) == 0: return False # undefined for v in x: try: if Nlabels <= 2 and N.isscalar(v): continue if (isinstance(v, dict) or # not dict for pairs ((Nlabels>=2) and len(v)!=Nlabels) # 1 per each label for multiclass ): return False except Exception, e: # Something else which is not supported, like # in shogun interface we don't yet extract values per each label or # in pairs in the case of built-in multiclass if __debug__: debug('ROC', "Exception %s while checking " "either %s are valid labels" % (str(e), x)) return False return True sets_wv = filter(_checkValues, sets) # check if all had values, if not -- complain Nsets_wv = len(sets_wv) if Nsets_wv > 0 and len(sets) != Nsets_wv: warning("Only %d sets have values assigned from %d sets. " "ROC estimates might be incorrect." % (Nsets_wv, len(sets))) # bring all values to the same 'shape': # 1 value per each label. In binary classifier, if only a single # value is provided, add '0' for 0th label 'value'... it should # work taking drunk Yarik logic ;-) # yoh: apparently it caused problems whenever we had just a single # unique label in the sets. Introduced handling for # NLabels == 1 for iset,s in enumerate(sets_wv): # we will do inplace modification, thus go by index values = s[2] # we would need it to be a list to reassign element with a list if isinstance(values, N.ndarray) and len(values.shape)==1: # XXX ??? so we are going away from inplace modifications? values = list(values) rangev = None for i in xrange(len(values)): v = values[i] if N.isscalar(v): if Nlabels == 1: # ensure the right dimensionality values[i] = N.array(v, ndmin=2) elif Nlabels == 2: def last_el(x): """Helper function. Returns x if x is scalar, and last element if x is not (ie list/tuple)""" if N.isscalar(x): return x else: return x[-1] if rangev is None: # we need to figure out min/max values # to invert for the 0th label values_ = [last_el(x) for x in values] rangev = N.min(values_) + N.max(values_) values[i] = [rangev - v, v] else: raise ValueError, \ "Cannot have a single 'value' for multiclass" \ " classification. Got %s" % (v) elif len(v) != Nlabels: raise ValueError, \ "Got %d values whenever there is %d labels" % \ (len(v), Nlabels) # reassign possibly adjusted values sets_wv[iset] = (s[0], s[1], N.asarray(values)) # we need to estimate ROC per each label # XXX order of labels might not correspond to the one among 'values' # which were used to make a decision... check ROCs, aucs = [], [] # 1 per label for i,label in enumerate(labels): aucs_pl = [] ROCs_pl = [] for s in sets_wv: targets_pl = (N.asanyarray(s[0]) == label).astype(int) # XXX we might unify naming between AUC/ROC ROC = AUCErrorFx() aucs_pl += [ROC([N.asanyarray(x)[i] for x in s[2]], targets_pl)] ROCs_pl.append(ROC) if len(aucs_pl)>0: ROCs += [ROCs_pl] aucs += [nanmean(aucs_pl)] #aucs += [N.mean(aucs_pl)] # store results within the object self._ROCs = ROCs self._aucs = aucs self.__computed = True @property def aucs(self): """Compute and return set of AUC values 1 per label """ self._compute() return self._aucs @property def ROCs(self): self._compute() return self._ROCs def plot(self, label_index=0): """ TODO: make it friendly to labels given by values? should we also treat labels_map? """ externals.exists("pylab", raiseException=True) import pylab as P self._compute() labels = self._labels # select only ROCs for the given label ROCs = self.ROCs[label_index] fig = P.gcf() ax = P.gca() P.plot([0, 1], [0, 1], 'k:') for ROC in ROCs: P.plot(ROC.fp, ROC.tp, linewidth=1) P.axis((0.0, 1.0, 0.0, 1.0)) P.axis('scaled') P.title('Label %s. Mean AUC=%.2f' % (label_index, self.aucs[label_index])) P.xlabel('False positive rate') P.ylabel('True positive rate') class ConfusionMatrix(SummaryStatistics): """Class to contain information and display confusion matrix. Implementation of the `SummaryStatistics` in the case of classification problem. Actual computation of confusion matrix is delayed until all data is acquired (to figure out complete set of labels). If testing data doesn't have a complete set of labels, but you like to include all labels, provide them as a parameter to the constructor. Confusion matrix provides a set of performance statistics (use asstring(description=True) for the description of abbreviations), as well ROC curve (http://en.wikipedia.org/wiki/ROC_curve) plotting and analysis (AUC) in the limited set of problems: binary, multiclass 1-vs-all. """ _STATS_DESCRIPTION = ( ('TP', 'true positive (AKA hit)', None), ('TN', 'true negative (AKA correct rejection)', None), ('FP', 'false positive (AKA false alarm, Type I error)', None), ('FN', 'false negative (AKA miss, Type II error)', None), ('TPR', 'true positive rate (AKA hit rate, recall, sensitivity)', 'TPR = TP / P = TP / (TP + FN)'), ('FPR', 'false positive rate (AKA false alarm rate, fall-out)', 'FPR = FP / N = FP / (FP + TN)'), ('ACC', 'accuracy', 'ACC = (TP + TN) / (P + N)'), ('SPC', 'specificity', 'SPC = TN / (FP + TN) = 1 - FPR'), ('PPV', 'positive predictive value (AKA precision)', 'PPV = TP / (TP + FP)'), ('NPV', 'negative predictive value', 'NPV = TN / (TN + FN)'), ('FDR', 'false discovery rate', 'FDR = FP / (FP + TP)'), ('MCC', "Matthews Correlation Coefficient", "MCC = (TP*TN - FP*FN)/sqrt(P N P' N')"), ('AUC', "Area under (AUC) curve", None), ) + SummaryStatistics._STATS_DESCRIPTION def __init__(self, labels=None, labels_map=None, **kwargs): """Initialize ConfusionMatrix with optional list of `labels` :Parameters: labels : list Optional set of labels to include in the matrix labels_map : None or dict Dictionary from original dataset to show mapping into numerical labels targets Optional set of targets predictions Optional set of predictions """ SummaryStatistics.__init__(self, **kwargs) if labels == None: labels = [] self.__labels = labels """List of known labels""" self.__labels_map = labels_map """Mapping from original into given labels""" self.__matrix = None """Resultant confusion matrix""" # XXX might want to remove since summaries does the same, just without # supplying labels @property def matrices(self): """Return a list of separate confusion matrix per each stored set""" return [ self.__class__(labels=self.labels, labels_map=self.labels_map, sets=[x]) for x in self.sets] def _compute(self): """Actually compute the confusion matrix based on all the sets""" super(ConfusionMatrix, self)._compute() if __debug__: if not self.__matrix is None: debug("LAZY", "Have to recompute %s#%s" \ % (self.__class__.__name__, id(self))) # TODO: BinaryClassifier might spit out a list of predictions for each # value need to handle it... for now just keep original labels try: # figure out what labels we have labels = \ list(reduce(lambda x, y: x.union(set(y[0]).union(set(y[1]))), self.sets, set(self.__labels))) except: labels = self.__labels # Check labels_map if it was provided if it covers all the labels labels_map = self.__labels_map if labels_map is not None: labels_set = set(labels) map_labels_set = set(labels_map.values()) if not map_labels_set.issuperset(labels_set): warning("Provided labels_map %s is not coherent with labels " "provided to ConfusionMatrix. No reverse mapping " "will be provided" % labels_map) labels_map = None # Create reverse map labels_map_rev = None if labels_map is not None: labels_map_rev = {} for k,v in labels_map.iteritems(): v_mapping = labels_map_rev.get(v, []) v_mapping.append(k) labels_map_rev[v] = v_mapping self.__labels_map_rev = labels_map_rev labels.sort() self.__labels = labels # store the recomputed labels Nlabels, Nsets = len(labels), len(self.sets) if __debug__: debug("CM", "Got labels %s" % labels) # Create a matrix for all votes mat_all = N.zeros( (Nsets, Nlabels, Nlabels), dtype=int ) # create total number of samples of each label counts # just for convinience I guess since it can always be # computed from mat_all counts_all = N.zeros( (Nsets, Nlabels) ) # reverse mapping from label into index in the list of labels rev_map = dict([ (x[1], x[0]) for x in enumerate(labels)]) for iset, set_ in enumerate(self.sets): for t,p in zip(*set_[:2]): mat_all[iset, rev_map[p], rev_map[t]] += 1 # for now simply compute a sum of votes across different sets # we might do something more sophisticated later on, and this setup # should easily allow it self.__matrix = N.sum(mat_all, axis=0) self.__Nsamples = N.sum(self.__matrix, axis=0) self.__Ncorrect = sum(N.diag(self.__matrix)) TP = N.diag(self.__matrix) offdiag = self.__matrix - N.diag(TP) stats = { '# of labels' : Nlabels, 'TP' : TP, 'FP' : N.sum(offdiag, axis=1), 'FN' : N.sum(offdiag, axis=0)} stats['CORR'] = N.sum(TP) stats['TN'] = stats['CORR'] - stats['TP'] stats['P'] = stats['TP'] + stats['FN'] stats['N'] = N.sum(stats['P']) - stats['P'] stats["P'"] = stats['TP'] + stats['FP'] stats["N'"] = stats['TN'] + stats['FN'] stats['TPR'] = stats['TP'] / (1.0*stats['P']) # reset nans in TPRs to 0s whenever there is no entries # for those labels among the targets stats['TPR'][stats['P'] == 0] = 0 stats['PPV'] = stats['TP'] / (1.0*stats["P'"]) stats['NPV'] = stats['TN'] / (1.0*stats["N'"]) stats['FDR'] = stats['FP'] / (1.0*stats["P'"]) stats['SPC'] = (stats['TN']) / (1.0*stats['FP'] + stats['TN']) MCC_denom = N.sqrt(1.0*stats['P']*stats['N']*stats["P'"]*stats["N'"]) nz = MCC_denom!=0.0 stats['MCC'] = N.zeros(stats['TP'].shape) stats['MCC'][nz] = \ (stats['TP'] * stats['TN'] - stats['FP'] * stats['FN'])[nz] \ / MCC_denom[nz] stats['ACC'] = N.sum(TP)/(1.0*N.sum(stats['P'])) stats['ACC%'] = stats['ACC'] * 100.0 # # ROC computation if available ROC = ROCCurve(labels=labels, sets=self.sets) aucs = ROC.aucs if len(aucs)>0: stats['AUC'] = aucs if len(aucs) != Nlabels: raise RuntimeError, \ "We must got a AUC per label. Got %d instead of %d" % \ (len(aucs), Nlabels) self.ROC = ROC else: # we don't want to provide ROC if it is bogus stats['AUC'] = [N.nan] * Nlabels self.ROC = None # compute mean stats for k,v in stats.items(): stats['mean(%s)' % k] = N.mean(v) self._stats.update(stats) def asstring(self, short=False, header=True, summary=True, description=False): """'Pretty print' the matrix :Parameters: short : bool if True, ignores the rest of the parameters and provides consise 1 line summary header : bool print header of the table summary : bool print summary (accuracy) description : bool print verbose description of presented statistics """ if len(self.sets) == 0: return "Empty" self.compute() # some shortcuts labels = self.__labels labels_map_rev = self.__labels_map_rev matrix = self.__matrix labels_rev = [] if labels_map_rev is not None: labels_rev = [','.join([str(x) for x in labels_map_rev[l]]) for l in labels] out = StringIO() # numbers of different entries Nlabels = len(labels) Nsamples = self.__Nsamples.astype(int) stats = self._stats if short: return "%(# of sets)d sets %(# of labels)d labels " \ " ACC:%(ACC).2f" \ % stats Ndigitsmax = int(ceil(log10(max(Nsamples)))) Nlabelsmax = max( [len(str(x)) for x in labels] ) # length of a single label/value L = max(Ndigitsmax+2, Nlabelsmax) #, len("100.00%")) res = "" stats_perpredict = ["P'", "N'", 'FP', 'FN', 'PPV', 'NPV', 'TPR', 'SPC', 'FDR', 'MCC'] # print AUC only if ROC was computed if self.ROC is not None: stats_perpredict += [ 'AUC' ] stats_pertarget = ['P', 'N', 'TP', 'TN'] stats_summary = ['ACC', 'ACC%', '# of sets'] #prefixlen = Nlabelsmax + 2 + Ndigitsmax + 1 prefixlen = Nlabelsmax + 1 pref = ' '*(prefixlen) # empty prefix if matrix.shape != (Nlabels, Nlabels): raise ValueError, \ "Number of labels %d doesn't correspond the size" + \ " of a confusion matrix %s" % (Nlabels, matrix.shape) # list of lists of what is printed printed = [] underscores = [" %s" % ("-" * L)] * Nlabels if header: # labels printed.append(['@l----------. '] + labels_rev) printed.append(['@lpredictions\\targets'] + labels) # underscores printed.append(['@l `------'] \ + underscores + stats_perpredict) # matrix itself for i, line in enumerate(matrix): l = labels[i] if labels_rev != []: l = '@r%10s / %s' % (labels_rev[i], l) printed.append( [l] + [ str(x) for x in line ] + [ _p2(stats[x][i]) for x in stats_perpredict]) if summary: ## Various alternative schemes ;-) # printed.append([''] + underscores) # printed.append(['@lPer target \ Means:'] + underscores + \ # [_p2(x) for x in mean_stats]) # printed.append(['Means:'] + [''] * len(labels) # + [_p2(x) for x in mean_stats]) printed.append(['@lPer target:'] + underscores) for stat in stats_pertarget: printed.append([stat] + [ _p2(stats[stat][i]) for i in xrange(Nlabels)]) # compute mean stats # XXX refactor to expose them in stats as well, as # mean(FCC) mean_stats = N.mean(N.array([stats[k] for k in stats_perpredict]), axis=1) printed.append(['@lSummary \ Means:'] + underscores + [_p2(stats['mean(%s)' % x]) for x in stats_perpredict]) for stat in stats_summary: printed.append([stat] + [_p2(stats[stat])]) table2string(printed, out) if description: out.write("\nStatistics computed in 1-vs-rest fashion per each " \ "target.\n") out.write("Abbreviations (for details see " \ "http://en.wikipedia.org/wiki/ROC_curve):\n") for d, val, eq in self._STATS_DESCRIPTION: out.write(" %-3s: %s\n" % (d, val)) if eq is not None: out.write(" " + eq + "\n") #out.write("%s" % printed) result = out.getvalue() out.close() return result def plot(self, labels=None, numbers=False, origin='upper', numbers_alpha=None, xlabels_vertical=True, numbers_kwargs={}, **kwargs): """Provide presentation of confusion matrix in image :Parameters: labels : list of int or basestring Optionally provided labels guarantee the order of presentation. Also value of None places empty column/row, thus provides visual groupping of labels (Thanks Ingo) numbers : bool Place values inside of confusion matrix elements numbers_alpha : None or float Controls textual output of numbers. If None -- all numbers are plotted in the same intensity. If some float -- it controls alpha level -- higher value would give higher contrast. (good value is 2) origin : basestring Which left corner diagonal should start xlabels_vertical : bool Either to plot xlabels vertical (benefitial if number of labels is large) numbers_kwargs : dict Additional keyword parameters to be added to numbers (if numbers is True) **kwargs Additional arguments given to imshow (\eg me cmap) :Returns: (fig, im, cb) -- figure, imshow, colorbar """ externals.exists("pylab", raiseException=True) import pylab as P self.compute() labels_order = labels # some shortcuts labels = self.__labels labels_map = self.__labels_map labels_map_rev = self.__labels_map_rev matrix = self.__matrix # craft original mapping from a label into index in the matrix labels_indexes = dict([(x,i) for i,x in enumerate(labels)]) labels_rev = [] if labels_map_rev is not None: labels_rev = [','.join([str(x) for x in labels_map_rev[l]]) for l in labels] labels_map_full = dict(zip(labels_rev, labels)) if labels_order is not None: labels_order_filtered = filter(lambda x:x is not None, labels_order) labels_order_filtered_set = set(labels_order_filtered) # Verify if all labels provided in labels if set(labels) == labels_order_filtered_set: # We were provided numerical (most probably) set labels_plot = labels_order elif len(labels_rev) \ and set(labels_rev) == labels_order_filtered_set: # not clear if right whenever there were multiple labels # mapped into the same labels_plot = [] for l in labels_order: v = None if l is not None: v = labels_map_full[l] labels_plot += [v] else: raise ValueError, \ "Provided labels %s do not match set of known " \ "original labels (%s) or mapped labels (%s)" % \ (labels_order, labels, labels_rev) else: labels_plot = labels # where we have Nones? isempty = N.array([l is None for l in labels_plot]) non_empty = N.where(N.logical_not(isempty))[0] # numbers of different entries NlabelsNN = len(non_empty) Nlabels = len(labels_plot) if matrix.shape != (NlabelsNN, NlabelsNN): raise ValueError, \ "Number of labels %d doesn't correspond the size" + \ " of a confusion matrix %s" % (NlabelsNN, matrix.shape) confusionmatrix = N.zeros((Nlabels, Nlabels)) mask = confusionmatrix.copy() ticks = [] tick_labels = [] # populate in a silly way reordered_indexes = [labels_indexes[i] for i in labels_plot if i is not None] for i, l in enumerate(labels_plot): if l is not None: j = labels_indexes[l] confusionmatrix[i, non_empty] = matrix[j, reordered_indexes] confusionmatrix[non_empty, i] = matrix[reordered_indexes, j] ticks += [i + 0.5] if labels_map_rev is not None: tick_labels += ['/'.join(labels_map_rev[l])] else: tick_labels += [str(l)] else: mask[i, :] = mask[:, i] = 1 confusionmatrix = N.ma.MaskedArray(confusionmatrix, mask=mask) # turn off automatic update if interactive if P.matplotlib.get_backend() == 'TkAgg': P.ioff() fig = P.gcf() ax = P.gca() ax.axis('off') # some customization depending on the origin xticks_position, yticks, ybottom = { 'upper': ('top', [Nlabels-x for x in ticks], 0.1), 'lower': ('bottom', ticks, 0.2) }[origin] # Plot axi = fig.add_axes([0.15, ybottom, 0.7, 0.7]) im = axi.imshow(confusionmatrix, interpolation="nearest", origin=origin, aspect='equal', extent=(0, Nlabels, 0, Nlabels), **kwargs) # plot numbers if numbers: numbers_kwargs_ = {'fontsize': 10, 'horizontalalignment': 'center', 'verticalalignment': 'center'} maxv = float(N.max(confusionmatrix)) colors = [im.to_rgba(0), im.to_rgba(maxv)] for i,j in zip(*N.logical_not(mask).nonzero()): v = confusionmatrix[j, i] # scale alpha non-linearly if numbers_alpha is None: alpha = 1.0 else: # scale according to value alpha = 1 - N.array(1 - v / maxv) ** numbers_alpha y = {'lower':j, 'upper':Nlabels-j-1}[origin] numbers_kwargs_['color'] = colors[int(v1: P.legend(lines[:2], ('Target', 'Prediction')) if plot_stats: P.title(self.asstring(short='very')) if splot: nplot += 1 sps.append(P.subplot(nplots, 1, nplot)) for s in self.sets: P.plot(s[0], s[1], 'o', markeredgewidth=0.2, markersize=2) P.gca().set_aspect('equal') if P.matplotlib.get_backend() == 'TkAgg': P.ion() P.draw() return fig, sps def asstring(self, short=False, header=True, summary=True, description=False): """'Pretty print' the statistics""" if len(self.sets) == 0: return "Empty" self.compute() stats = self.stats if short: if short == 'very': # " RMSE/RMP_t:%(RMSE/RMP_t).2f" \ return "%(# of sets)d sets CCe=%(CCe).2f p=%(CCp).2g" \ " RMSE:%(RMSE).2f" \ " Summary (stacked data): " \ "CCe=%(Summary CCe).2f p=%(Summary CCp).2g" \ % stats else: return "%(# of sets)d sets CCe=%(CCe).2f+-%(CCe_std).3f" \ " RMSE=%(RMSE).2f+-%(RMSE_std).3f" \ " RMSE/RMP_t=%(RMSE/RMP_t).2f+-%(RMSE/RMP_t_std).3f" \ % stats stats_data = ['RMP_t', 'STD_t', 'RMP_p', 'STD_p'] # CCp needs tune up of format so excluded stats_ = ['CCe', 'RMSE', 'RMSE/RMP_t'] stats_summary = ['# of sets'] out = StringIO() printed = [] if header: # labels printed.append(['Statistics', 'Mean', 'Std', 'Min', 'Max']) # underscores printed.append(['----------', '-----', '-----', '-----', '-----']) def print_stats(printed, stats_): # Statistics itself for stat in stats_: s = [stat] for suffix in ['', '_std', '_min', '_max']: s += [ _p2(stats[stat+suffix], 3) ] printed.append(s) printed.append(["Data: "]) print_stats(printed, stats_data) printed.append(["Results: "]) print_stats(printed, stats_) printed.append(["Summary: "]) printed.append(["CCe", _p2(stats['Summary CCe']), "", "p=", '%g' % stats['Summary CCp']]) printed.append(["RMSE", _p2(stats['Summary RMSE'])]) printed.append(["RMSE/RMP_t", _p2(stats['Summary RMSE/RMP_t'])]) if summary: for stat in stats_summary: printed.append([stat] + [_p2(stats[stat])]) table2string(printed, out) if description: out.write("\nDescription of printed statistics.\n" " Suffixes: _t - targets, _p - predictions\n") for d, val, eq in self._STATS_DESCRIPTION: out.write(" %-3s: %s\n" % (d, val)) if eq is not None: out.write(" " + eq + "\n") result = out.getvalue() out.close() return result @property def error(self): self.compute() return self.stats['RMSE'] class ClassifierError(ClassWithCollections): """Compute (or return) some error of a (trained) classifier on a dataset. """ confusion = StateVariable(enabled=False) """TODO Think that labels might be also symbolic thus can't directly be indicies of the array """ training_confusion = StateVariable(enabled=False, doc="Proxy training_confusion from underlying classifier.") def __init__(self, clf, labels=None, train=True, **kwargs): """Initialization. :Parameters: clf : Classifier Either trained or untrained classifier labels : list if provided, should be a set of labels to add on top of the ones present in testdata train : bool unless train=False, classifier gets trained if trainingdata provided to __call__ """ ClassWithCollections.__init__(self, **kwargs) self.__clf = clf self._labels = labels """Labels to add on top to existing in testing data""" self.__train = train """Either to train classifier if trainingdata is provided""" __doc__ = enhancedDocString('ClassifierError', locals(), ClassWithCollections) def __copy__(self): """TODO: think... may be we need to copy self.clf""" out = ClassifierError.__new__(TransferError) ClassifierError.__init__(out, self.clf) return out def _precall(self, testdataset, trainingdataset=None): """Generic part which trains the classifier if necessary """ if not trainingdataset is None: if self.__train: # XXX can be pretty annoying if triggered inside an algorithm # where it cannot be switched of, but retraining might be # intended or at least not avoidable. # Additonally isTrained docs say: # MUST BE USED WITH CARE IF EVER # # switching it off for now #if self.__clf.isTrained(trainingdataset): # warning('It seems that classifier %s was already trained' % # self.__clf + ' on dataset %s. Please inspect' \ # % trainingdataset) if self.states.isEnabled('training_confusion'): self.__clf.states._changeTemporarily( enable_states=['training_confusion']) self.__clf.train(trainingdataset) if self.states.isEnabled('training_confusion'): self.training_confusion = self.__clf.training_confusion self.__clf.states._resetEnabledTemporarily() if self.__clf.states.isEnabled('trained_labels') and \ not testdataset is None: newlabels = set(testdataset.uniquelabels) \ - set(self.__clf.trained_labels) if len(newlabels)>0: warning("Classifier %s wasn't trained to classify labels %s" % (`self.__clf`, `newlabels`) + " present in testing dataset. Make sure that you have" + " not mixed order/names of the arguments anywhere") ### Here checking for if it was trained... might be a cause of trouble # XXX disabled since it is unreliable.. just rely on explicit # self.__train # if not self.__clf.isTrained(trainingdataset): # self.__clf.train(trainingdataset) # elif __debug__: # debug('CERR', # 'Not training classifier %s since it was ' % `self.__clf` # + ' already trained on dataset %s' % `trainingdataset`) def _call(self, testdataset, trainingdataset=None): raise NotImplementedError def _postcall(self, testdataset, trainingdataset=None, error=None): pass def __call__(self, testdataset, trainingdataset=None): """Compute the transfer error for a certain test dataset. If `trainingdataset` is not `None` the classifier is trained using the provided dataset before computing the transfer error. Otherwise the classifier is used in it's current state to make the predictions on the test dataset. Returns a scalar value of the transfer error. """ self._precall(testdataset, trainingdataset) error = self._call(testdataset, trainingdataset) self._postcall(testdataset, trainingdataset, error) if __debug__: debug('CERR', 'Classifier error on %s: %.2f' % (testdataset, error)) return error def untrain(self): """Untrain the *Error which relies on the classifier """ self.clf.untrain() @property def clf(self): return self.__clf @property def labels(self): return self._labels class TransferError(ClassifierError): """Compute the transfer error of a (trained) classifier on a dataset. The actual error value is computed using a customizable error function. Optionally the classifier can be trained by passing an additional training dataset to the __call__() method. """ null_prob = StateVariable(enabled=True, doc="Stores the probability of an error result under " "the NULL hypothesis") samples_error = StateVariable(enabled=False, doc="Per sample errors computed by invoking the " "error function for each sample individually. " "Errors are available in a dictionary with each " "samples origid as key.") def __init__(self, clf, errorfx=MeanMismatchErrorFx(), labels=None, null_dist=None, **kwargs): """Initialization. :Parameters: clf : Classifier Either trained or untrained classifier errorfx Functor that computes a scalar error value from the vectors of desired and predicted values (e.g. subclass of `ErrorFunction`) labels : list if provided, should be a set of labels to add on top of the ones present in testdata null_dist : instance of distribution estimator """ ClassifierError.__init__(self, clf, labels, **kwargs) self.__errorfx = errorfx self.__null_dist = autoNullDist(null_dist) __doc__ = enhancedDocString('TransferError', locals(), ClassifierError) def __copy__(self): """Performs deepcopying of the classifier.""" # TODO -- use ClassifierError.__copy__ out = TransferError.__new__(TransferError) TransferError.__init__(out, self.clf.clone(), self.errorfx, self._labels) return out # XXX: TODO: unify naming? test/train or with ing both def _call(self, testdataset, trainingdataset=None): """Compute the transfer error for a certain test dataset. If `trainingdataset` is not `None` the classifier is trained using the provided dataset before computing the transfer error. Otherwise the classifier is used in it's current state to make the predictions on the test dataset. Returns a scalar value of the transfer error. """ # OPT: local binding clf = self.clf if testdataset is None: # We cannot do anythin, but we can try to figure out WTF and # warn the user accordingly in some usecases import traceback as tb filenames = [x[0] for x in tb.extract_stack(limit=100)] rfe_matches = [f for f in filenames if f.endswith('/rfe.py')] cv_matches = [f for f in filenames if f.endswith('cvtranserror.py')] msg = "" if len(rfe_matches) > 0 and len(cv_matches): msg = " It is possible that you used RFE with stopping " \ "criterion based on the TransferError and directly" \ " from CrossValidatedTransferError, such approach" \ " would require exposing testing dataset " \ " to the classifier which might heavily bias " \ " generalization performance estimate. If you are " \ " sure to use it that way, create CVTE with " \ " parameter expose_testdataset=True" raise ValueError, "Transfer error call obtained None " \ "as a dataset for testing.%s" % msg predictions = clf.predict(testdataset.samples) # compute confusion matrix # Should it migrate into ClassifierError.__postcall? # -> Probably not because other childs could estimate it # not from test/train datasets explicitely, see # `ConfusionBasedError`, where confusion is simply # bound to classifiers confusion matrix states = self.states if states.isEnabled('confusion'): confusion = clf._summaryClass( #labels=self.labels, targets=testdataset.labels, predictions=predictions, values=clf.states.get('values', None)) try: confusion.labels_map = testdataset.labels_map except: pass states.confusion = confusion if states.isEnabled('samples_error'): samples_error = [] for i, p in enumerate(predictions): samples_error.append(self.__errorfx([p], testdataset.labels[i:i+1])) states.samples_error = dict(zip(testdataset.origids, samples_error)) # compute error from desired and predicted values error = self.__errorfx(predictions, testdataset.labels) return error def _postcall(self, vdata, wdata=None, error=None): """ """ # estimate the NULL distribution when functor and training data is # given if not self.__null_dist is None and not wdata is None: # we need a matching transfer error instances (e.g. same error # function), but we have to disable the estimation of the null # distribution in that child to prevent infinite looping. null_terr = copy.copy(self) null_terr.__null_dist = None self.__null_dist.fit(null_terr, wdata, vdata) # get probability of error under NULL hypothesis if available if not error is None and not self.__null_dist is None: self.null_prob = self.__null_dist.p(error) @property def errorfx(self): return self.__errorfx @property def null_dist(self): return self.__null_dist class ConfusionBasedError(ClassifierError): """For a given classifier report an error based on internally computed error measure (given by some `ConfusionMatrix` stored in some state variable of `Classifier`). This way we can perform feature selection taking as the error criterion either learning error, or transfer to splits error in the case of SplitClassifier """ def __init__(self, clf, labels=None, confusion_state="training_confusion", **kwargs): """Initialization. :Parameters: clf : Classifier Either trained or untrained classifier confusion_state Id of the state variable which stores `ConfusionMatrix` labels : list if provided, should be a set of labels to add on top of the ones present in testdata """ ClassifierError.__init__(self, clf, labels, **kwargs) self.__confusion_state = confusion_state """What state to extract from""" if not clf.states.isKnown(confusion_state): raise ValueError, \ "State variable %s is not defined for classifier %s" % \ (confusion_state, `clf`) if not clf.states.isEnabled(confusion_state): if __debug__: debug('CERR', "Forcing state %s to be enabled for %s" % (confusion_state, `clf`)) clf.states.enable(confusion_state) __doc__ = enhancedDocString('ConfusionBasedError', locals(), ClassifierError) def _call(self, testdata, trainingdata=None): """Extract transfer error. Nor testdata, neither trainingdata is used """ confusion = self.clf.states[self.__confusion_state].value self.confusion = confusion return confusion.error pymvpa-0.4.8/mvpa/clfs/warehouse.py000066400000000000000000000463761174541445200173340ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Collection of classifiers to ease the exploration. """ __docformat__ = 'restructuredtext' import operator # Define sets of classifiers from mvpa.clfs.meta import FeatureSelectionClassifier, SplitClassifier, \ MulticlassClassifier from mvpa.clfs.smlr import SMLR from mvpa.clfs.knn import kNN from mvpa.clfs.gnb import GNB from mvpa.clfs.kernel import KernelLinear, KernelSquaredExponential # Helpers from mvpa.base import externals, cfg from mvpa.measures.anova import OneWayAnova from mvpa.misc.transformers import Absolute from mvpa.clfs.smlr import SMLRWeights from mvpa.featsel.helpers import FractionTailSelector, \ FixedNElementTailSelector, RangeElementSelector from mvpa.featsel.base import SensitivityBasedFeatureSelection _KNOWN_INTERNALS = [ 'knn', 'binary', 'svm', 'linear', 'smlr', 'does_feature_selection', 'has_sensitivity', 'multiclass', 'non-linear', 'kernel-based', 'lars', 'regression', 'libsvm', 'sg', 'meta', 'retrainable', 'gpr', 'notrain2predict', 'ridge', 'blr', 'gnpp', 'enet', 'glmnet', 'gnb', 'plr'] class Warehouse(object): """Class to keep known instantiated classifiers Should provide easy ways to select classifiers of needed kind: clfswh['linear', 'svm'] should return all linear SVMs clfswh['linear', 'multiclass'] should return all linear classifiers capable of doing multiclass classification """ def __init__(self, known_tags=None, matches=None): """Initialize warehouse :Parameters: known_tags : list of basestring List of known tags matches : dict Optional dictionary of additional matches. E.g. since any regression can be used as a binary classifier, matches={'binary':['regression']}, would allow to provide regressions also if 'binary' was requested """ self._known_tags = set(known_tags) self.__items = [] self.__keys = set() if matches is None: matches = {} self.__matches = matches def __getitem__(self, *args): if isinstance(args[0], tuple): args = args[0] # so we explicitely handle [:] if args == (slice(None),): args = [] # lets remove optional modifier '!' dargs = set([str(x).lstrip('!') for x in args]).difference( self._known_tags) if len(dargs)>0: raise ValueError, "Unknown internals %s requested. Known are %s" % \ (list(dargs), list(self._known_tags)) # dummy implementation for now result = [] # check every known item for item in self.__items: good = True # by default each one counts for arg in args: # check for rejection first if arg.startswith('!'): if (arg[1:] in item._clf_internals): good = False break else: continue # check for inclusion found = False for arg in [arg] + self.__matches.get(arg, []): if (arg in item._clf_internals): found = True break good = found if not good: break if good: result.append(item) return result def __iadd__(self, item): if operator.isSequenceType(item): for item_ in item: self.__iadd__(item_) else: if not hasattr(item, '_clf_internals'): raise ValueError, "Cannot register %s " % item + \ "which has no _clf_internals defined" if len(item._clf_internals) == 0: raise ValueError, "Cannot register %s " % item + \ "which has empty _clf_internals" clf_internals = set(item._clf_internals) if clf_internals.issubset(self._known_tags): self.__items.append(item) self.__keys |= clf_internals else: raise ValueError, 'Unknown clf internal(s) %s' % \ clf_internals.difference(self._known_tags) return self @property def internals(self): """Known internal tags of the classifiers """ return self.__keys def listing(self): """Listing (description + internals) of registered items """ return [(x.descr, x._clf_internals) for x in self.__items] @property def items(self): """Registered items """ return self.__items clfswh = Warehouse(known_tags=_KNOWN_INTERNALS) # classifiers regrswh = Warehouse(known_tags=_KNOWN_INTERNALS) # regressions # NB: # - Nu-classifiers are turned off since for haxby DS default nu # is an 'infisible' one # - Python's SMLR is turned off for the duration of development # since it is slow and results should be the same as of C version # clfswh += [ SMLR(lm=0.1, implementation="C", descr="SMLR(lm=0.1)"), SMLR(lm=1.0, implementation="C", descr="SMLR(lm=1.0)"), #SMLR(lm=10.0, implementation="C", descr="SMLR(lm=10.0)"), #SMLR(lm=100.0, implementation="C", descr="SMLR(lm=100.0)"), #SMLR(implementation="Python", descr="SMLR(Python)") ] clfswh += \ [ MulticlassClassifier(clfswh['smlr'][0], descr='Pairs+maxvote multiclass on ' + \ clfswh['smlr'][0].descr) ] if externals.exists('libsvm'): from mvpa.clfs import libsvmc as libsvm clfswh._known_tags.update(libsvm.SVM._KNOWN_IMPLEMENTATIONS.keys()) clfswh += [libsvm.SVM(descr="libsvm.LinSVM(C=def)", probability=1), libsvm.SVM( C=-10.0, descr="libsvm.LinSVM(C=10*def)", probability=1), libsvm.SVM( C=1.0, descr="libsvm.LinSVM(C=1)", probability=1), libsvm.SVM(svm_impl='NU_SVC', descr="libsvm.LinNuSVM(nu=def)", probability=1) ] clfswh += [libsvm.SVM(kernel_type='RBF', descr="libsvm.RbfSVM()"), libsvm.SVM(kernel_type='RBF', svm_impl='NU_SVC', descr="libsvm.RbfNuSVM(nu=def)"), libsvm.SVM(kernel_type='poly', descr='libsvm.PolySVM()', probability=1), #libsvm.svm.SVM(kernel_type='sigmoid', # svm_impl='C_SVC', # descr='libsvm.SigmoidSVM()'), ] # regressions regrswh._known_tags.update(['EPSILON_SVR', 'NU_SVR']) regrswh += [libsvm.SVM(svm_impl='EPSILON_SVR', descr='libsvm epsilon-SVR', regression=True), libsvm.SVM(svm_impl='NU_SVR', descr='libsvm nu-SVR', regression=True)] if externals.exists('shogun'): from mvpa.clfs import sg clfswh._known_tags.update(sg.SVM._KNOWN_IMPLEMENTATIONS) # some classifiers are not yet ready to be used out-of-the-box in # PyMVPA, thus we don't populate warehouse with their instances bad_classifiers = [ 'mpd', # was segfault, now non-training on testcases, and XOR. # and was described as "for educational purposes", thus # shouldn't be used for real data ;-) # Should be a drop-in replacement for lightsvm 'gpbt', # fails to train for testAnalyzerWithSplitClassifier # also 'retraining' doesn't work -- fails to generalize 'gmnp', # would fail with 'assertion Cache_Size > 2' # if shogun < 0.6.3, also refuses to train 'svrlight', # fails to 'generalize' as a binary classifier # after 'binning' 'krr', # fails to generalize ] if not externals.exists('sg_fixedcachesize'): # would fail with 'assertion Cache_Size > 2' if shogun < 0.6.3 bad_classifiers.append('gnpp') for impl in sg.SVM._KNOWN_IMPLEMENTATIONS: # Uncomment the ones to disable if impl in bad_classifiers: continue clfswh += [ sg.SVM( descr="sg.LinSVM(C=def)/%s" % impl, svm_impl=impl), sg.SVM( C=-10.0, descr="sg.LinSVM(C=10*def)/%s" % impl, svm_impl=impl), sg.SVM( C=1.0, descr="sg.LinSVM(C=1)/%s" % impl, svm_impl=impl), ] clfswh += [ sg.SVM(kernel_type='RBF', descr="sg.RbfSVM()/%s" % impl, svm_impl=impl), # sg.SVM(kernel_type='RBF', # descr="sg.RbfSVM(gamma=0.1)/%s" # % impl, svm_impl=impl, gamma=0.1), # sg.SVM(descr="sg.SigmoidSVM()/%s" # % impl, svm_impl=impl, kernel_type="sigmoid"), ] _optional_regressions = [] if externals.exists('shogun.krr'): _optional_regressions += ['krr'] for impl in ['libsvr'] + _optional_regressions:# \ # XXX svrlight sucks in SG -- dont' have time to figure it out #+ ([], ['svrlight'])['svrlight' in sg.SVM._KNOWN_IMPLEMENTATIONS]: regrswh._known_tags.update([impl]) regrswh += [ sg.SVM(svm_impl=impl, descr='sg.LinSVMR()/%s' % impl, regression=True), #sg.SVM(svm_impl=impl, kernel_type='RBF', # descr='sg.RBFSVMR()/%s' % impl, # regression=True), ] if len(clfswh['svm', 'linear']) > 0: # if any SVM implementation is known, import default ones from mvpa.clfs.svm import * # lars from R via RPy if externals.exists('lars'): import mvpa.clfs.lars as lars from mvpa.clfs.lars import LARS for model in lars.known_models: # XXX create proper repository of classifiers! lars_clf = LARS(descr="LARS(%s)" % model, model_type=model) clfswh += lars_clf # is a regression, too lars_regr = LARS(descr="_LARS(%s, regression=True)" % model, regression=True, model_type=model) regrswh += lars_regr # clfswh += MulticlassClassifier(lars, # descr='Multiclass %s' % lars.descr) ## PBS: enet has some weird issue that causes it to fail. GLMNET is ## better anyway, so just use that instead ## # enet from R via RPy ## if externals.exists('elasticnet'): ## from mvpa.clfs.enet import ENET ## clfswh += ENET(descr="ENET()") ## regrswh += ENET(descr="ENET(regression=True)", regression=True) # glmnet from R via RPy if externals.exists('glmnet'): from mvpa.clfs.glmnet import GLMNET_C, GLMNET_R clfswh += GLMNET_C(descr="GLMNET_C()") regrswh += GLMNET_R(descr="GLMNET_R()") # kNN clfswh += kNN(k=5, descr="kNN(k=5)") clfswh += kNN(k=5, voting='majority', descr="kNN(k=5, voting='majority')") clfswh += \ FeatureSelectionClassifier( kNN(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=1.0, implementation="C")), RangeElementSelector(mode='select')), descr="kNN on SMLR(lm=1) non-0") clfswh += \ FeatureSelectionClassifier( kNN(), SensitivityBasedFeatureSelection( OneWayAnova(), FractionTailSelector(0.05, mode='select', tail='upper')), descr="kNN on 5%(ANOVA)") clfswh += \ FeatureSelectionClassifier( kNN(), SensitivityBasedFeatureSelection( OneWayAnova(), FixedNElementTailSelector(50, mode='select', tail='upper')), descr="kNN on 50(ANOVA)") # GNB clfswh += GNB(descr="GNB()") clfswh += GNB(common_variance=True, descr="GNB(common_variance=True)") clfswh += GNB(prior='uniform', descr="GNB(prior='uniform')") clfswh += \ FeatureSelectionClassifier( GNB(), SensitivityBasedFeatureSelection( OneWayAnova(), FractionTailSelector(0.05, mode='select', tail='upper')), descr="GNB on 5%(ANOVA)") # GPR if externals.exists('scipy'): from mvpa.clfs.gpr import GPR clfswh += GPR(kernel=KernelLinear(), descr="GPR(kernel='linear')") clfswh += GPR(kernel=KernelSquaredExponential(), descr="GPR(kernel='sqexp')") # BLR from mvpa.clfs.blr import BLR clfswh += BLR(descr="BLR()") #PLR from mvpa.clfs.plr import PLR clfswh += PLR(descr="PLR()") if externals.exists('scipy'): clfswh += PLR(reduced=0.05, descr="PLR(reduced=0.01)") # SVM stuff if len(clfswh['linear', 'svm']) > 0: linearSVMC = clfswh['linear', 'svm', cfg.get('svm', 'backend', default='libsvm').lower() ][0] # "Interesting" classifiers clfswh += \ FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=0.1, implementation="C")), RangeElementSelector(mode='select')), descr="LinSVM on SMLR(lm=0.1) non-0") clfswh += \ FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=1.0, implementation="C")), RangeElementSelector(mode='select')), descr="LinSVM on SMLR(lm=1) non-0") # "Interesting" classifiers clfswh += \ FeatureSelectionClassifier( RbfCSVMC(), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=1.0, implementation="C")), RangeElementSelector(mode='select')), descr="RbfSVM on SMLR(lm=1) non-0") clfswh += \ FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( OneWayAnova(), FractionTailSelector(0.05, mode='select', tail='upper')), descr="LinSVM on 5%(ANOVA)") clfswh += \ FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( OneWayAnova(), FixedNElementTailSelector(50, mode='select', tail='upper')), descr="LinSVM on 50(ANOVA)") clfswh += \ FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( linearSVMC.getSensitivityAnalyzer(transformer=Absolute), FractionTailSelector(0.05, mode='select', tail='upper')), descr="LinSVM on 5%(SVM)") clfswh += \ FeatureSelectionClassifier( linearSVMC.clone(), SensitivityBasedFeatureSelection( linearSVMC.getSensitivityAnalyzer(transformer=Absolute), FixedNElementTailSelector(50, mode='select', tail='upper')), descr="LinSVM on 50(SVM)") ### Imports which are specific to RFEs # from mvpa.datasets.splitters import OddEvenSplitter # from mvpa.clfs.transerror import TransferError # from mvpa.featsel.rfe import RFE # from mvpa.featsel.helpers import FixedErrorThresholdStopCrit # from mvpa.clfs.transerror import ConfusionBasedError # SVM with unbiased RFE -- transfer-error to another splits, or in # other terms leave-1-out error on the same dataset # Has to be bound outside of the RFE definition since both analyzer and # error should use the same instance. rfesvm_split = SplitClassifier(linearSVMC)#clfswh['LinearSVMC'][0]) # "Almost" classical RFE. If this works it would differ only that # our transfer_error is based on internal splitting and classifier used # within RFE is a split classifier and its sensitivities per split will get # averaged # #clfswh += \ # FeatureSelectionClassifier( # clf = LinearCSVMC(), #clfswh['LinearSVMC'][0], # we train LinearSVM # feature_selection = RFE( # on features selected via RFE # # based on sensitivity of a clf which does splitting internally # sensitivity_analyzer=rfesvm_split.getSensitivityAnalyzer(), # transfer_error=ConfusionBasedError( # rfesvm_split, # confusion_state="confusion"), # # and whose internal error we use # feature_selector=FractionTailSelector( # 0.2, mode='discard', tail='lower'), # # remove 20% of features at each step # update_sensitivity=True), # # update sensitivity at each step # descr='LinSVM+RFE(splits_avg)' ) # #clfswh += \ # FeatureSelectionClassifier( # clf = LinearCSVMC(), # we train LinearSVM # feature_selection = RFE( # on features selected via RFE # # based on sensitivity of a clf which does splitting internally # sensitivity_analyzer=rfesvm_split.getSensitivityAnalyzer(), # transfer_error=ConfusionBasedError( # rfesvm_split, # confusion_state="confusion"), # # and whose internal error we use # feature_selector=FractionTailSelector( # 0.2, mode='discard', tail='lower'), # # remove 20% of features at each step # update_sensitivity=False), # # update sensitivity at each step # descr='LinSVM+RFE(splits_avg,static)' ) rfesvm = LinearCSVMC() # This classifier will do RFE while taking transfer error to testing # set of that split. Resultant classifier is voted classifier on top # of all splits, let see what that would do ;-) #clfswh += \ # SplitClassifier( # which does splitting internally # FeatureSelectionClassifier( # clf = LinearCSVMC(), # feature_selection = RFE( # on features selected via RFE # sensitivity_analyzer=\ # rfesvm.getSensitivityAnalyzer(transformer=Absolute), # transfer_error=TransferError(rfesvm), # stopping_criterion=FixedErrorThresholdStopCrit(0.05), # feature_selector=FractionTailSelector( # 0.2, mode='discard', tail='lower'), # # remove 20% of features at each step # update_sensitivity=True)), # # update sensitivity at each step # descr='LinSVM+RFE(N-Fold)') # # #clfswh += \ # SplitClassifier( # which does splitting internally # FeatureSelectionClassifier( # clf = LinearCSVMC(), # feature_selection = RFE( # on features selected via RFE # sensitivity_analyzer=\ # rfesvm.getSensitivityAnalyzer(transformer=Absolute), # transfer_error=TransferError(rfesvm), # stopping_criterion=FixedErrorThresholdStopCrit(0.05), # feature_selector=FractionTailSelector( # 0.2, mode='discard', tail='lower'), # # remove 20% of features at each step # update_sensitivity=True)), # # update sensitivity at each step # splitter = OddEvenSplitter(), # descr='LinSVM+RFE(OddEven)') pymvpa-0.4.8/mvpa/data/000077500000000000000000000000001174541445200147225ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/data/README000066400000000000000000000004371174541445200156060ustar00rootroot00000000000000PyMVPA Example Dataset ---------------------- Posterior half of a single axial slice. Numerical sample labels: * 0 - rest * 1 - face * 2 - house * 3 - shoe * 4 - cat * 5 - scissors * 6 - scrambledpix * 7 - bottle * 8 - chair 12 independent chunks of data samples. pymvpa-0.4.8/mvpa/data/attributes.txt000066400000000000000000000136421174541445200176570ustar00rootroot000000000000000 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 0 1 0 1 0 1 0 1 0 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 0 1 0 1 0 1 0 1 0 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 0 1 0 1 0 1 0 1 0 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 0 1 0 1 0 1 0 1 0 1 0 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 0 1 0 1 0 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 0 1 0 1 0 1 0 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 0 2 0 2 0 2 0 2 0 2 0 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 0 2 0 2 0 2 0 2 0 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 0 2 0 2 0 2 0 2 0 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 0 2 0 2 0 2 0 2 0 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 0 2 0 2 0 2 0 2 0 2 0 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 0 2 0 2 0 2 0 2 0 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 2 0 2 0 2 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 3 0 3 0 3 0 3 0 3 0 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 0 3 0 3 0 3 0 3 0 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 0 3 0 3 0 3 0 3 0 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 0 3 0 3 0 3 0 3 0 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 0 3 0 3 0 3 0 3 0 3 0 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 0 3 0 3 0 3 0 3 0 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 0 3 0 3 0 3 0 3 0 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 0 3 0 3 0 3 0 3 0 3 0 3 0 4 0 4 0 4 0 4 0 4 0 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 0 4 0 4 0 4 0 4 0 4 0 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 0 4 0 4 0 4 0 4 0 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 0 4 0 4 0 4 0 4 0 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 0 4 0 4 0 4 0 4 0 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 0 4 0 4 0 4 0 4 0 4 0 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 0 4 0 4 0 4 0 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 0 4 0 4 0 4 0 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 0 4 0 4 0 4 0 4 0 4 0 4 0 5 0 5 0 5 0 5 0 5 0 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 0 5 0 5 0 5 0 5 0 5 0 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 0 5 0 5 0 5 0 5 0 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 0 5 0 5 0 5 0 5 0 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 0 5 0 5 0 5 0 5 0 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 0 5 0 5 0 5 0 5 0 5 0 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 0 5 0 5 0 5 0 5 0 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 0 5 0 5 0 5 0 5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 5 0 5 0 5 0 5 0 5 0 5 0 6 0 6 0 6 0 6 0 6 0 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 0 6 0 6 0 6 0 6 0 6 0 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 0 6 0 6 0 6 0 6 0 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 0 6 0 6 0 6 0 6 0 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 0 6 0 6 0 6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 6 0 6 0 6 0 6 0 6 0 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 0 6 0 6 0 6 0 6 0 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 0 6 0 6 0 6 0 6 0 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 0 6 0 6 0 6 0 6 0 6 0 6 0 7 0 7 0 7 0 7 0 7 0 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 0 7 0 7 0 7 0 7 0 7 0 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 0 7 0 7 0 7 0 7 0 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 0 7 0 7 0 7 0 7 0 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 0 7 0 7 0 7 0 7 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 7 0 7 0 7 0 7 0 7 0 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 0 7 0 7 0 7 0 7 0 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 0 7 0 7 0 7 0 7 0 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 0 7 0 7 0 7 0 7 0 7 0 7 0 8 0 8 0 8 0 8 0 8 0 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 0 8 0 8 0 8 0 8 0 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 8 0 8 0 8 0 8 0 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 0 8 0 8 0 8 0 8 0 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 0 8 0 8 0 8 0 8 0 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 0 8 0 8 0 8 0 8 0 8 0 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 0 8 0 8 0 8 0 8 0 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 0 8 0 8 0 8 0 8 0 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 0 8 0 8 0 8 0 8 0 8 0 8 0 9 0 9 0 9 0 9 0 9 0 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 0 9 0 9 0 9 0 9 0 9 0 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 0 9 0 9 0 9 0 9 0 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 0 9 0 9 0 9 0 9 0 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 0 9 0 9 0 9 0 9 0 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 0 9 0 9 0 9 0 9 0 9 0 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 0 9 0 9 0 9 0 9 0 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 0 9 0 9 0 9 0 9 0 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 0 9 0 9 0 9 0 9 0 9 0 9 0 10 0 10 0 10 0 10 0 10 0 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10 0 10 0 10 0 10 0 10 0 10 0 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10 0 10 0 10 0 10 0 10 0 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 0 10 0 10 0 10 0 10 0 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10 0 10 0 10 0 10 0 10 0 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 0 10 0 10 0 10 0 10 0 10 0 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 0 10 0 10 0 10 0 10 0 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 0 10 0 10 0 10 0 10 0 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 0 10 0 10 0 10 0 10 0 10 0 10 0 11 0 11 0 11 0 11 0 11 0 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11 0 11 0 11 0 11 0 11 0 11 0 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2 11 0 11 0 11 0 11 0 11 0 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 8 11 0 11 0 11 0 11 0 11 0 11 6 11 6 11 6 11 6 11 6 11 6 11 6 11 6 11 6 11 0 11 0 11 0 11 0 11 0 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 0 11 0 11 0 11 0 11 0 11 0 11 3 11 3 11 3 11 3 11 3 11 3 11 3 11 3 11 3 11 0 11 0 11 0 11 0 11 0 11 4 11 4 11 4 11 4 11 4 11 4 11 4 11 4 11 4 11 0 11 0 11 0 11 0 11 0 11 5 11 5 11 5 11 5 11 5 11 5 11 5 11 5 11 5 11 0 11 0 11 0 11 0 11 0 11 0 11 pymvpa-0.4.8/mvpa/data/attributes_literal.txt000066400000000000000000000273721174541445200214000ustar00rootroot00000000000000rest 0 rest 0 rest 0 rest 0 rest 0 rest 0 scissors 0 scissors 0 scissors 0 scissors 0 scissors 0 scissors 0 scissors 0 scissors 0 scissors 0 rest 0 rest 0 rest 0 rest 0 rest 0 rest 0 face 0 face 0 face 0 face 0 face 0 face 0 face 0 face 0 face 0 rest 0 rest 0 rest 0 rest 0 rest 0 cat 0 cat 0 cat 0 cat 0 cat 0 cat 0 cat 0 cat 0 cat 0 rest 0 rest 0 rest 0 rest 0 rest 0 shoe 0 shoe 0 shoe 0 shoe 0 shoe 0 shoe 0 shoe 0 shoe 0 shoe 0 rest 0 rest 0 rest 0 rest 0 rest 0 house 0 house 0 house 0 house 0 house 0 house 0 house 0 house 0 house 0 rest 0 rest 0 rest 0 rest 0 rest 0 rest 0 scrambledpix 0 scrambledpix 0 scrambledpix 0 scrambledpix 0 scrambledpix 0 scrambledpix 0 scrambledpix 0 scrambledpix 0 scrambledpix 0 rest 0 rest 0 rest 0 rest 0 rest 0 bottle 0 bottle 0 bottle 0 bottle 0 bottle 0 bottle 0 bottle 0 bottle 0 bottle 0 rest 0 rest 0 rest 0 rest 0 rest 0 chair 0 chair 0 chair 0 chair 0 chair 0 chair 0 chair 0 chair 0 chair 0 rest 0 rest 0 rest 0 rest 0 rest 0 rest 0 rest 1 rest 1 rest 1 rest 1 rest 1 rest 1 face 1 face 1 face 1 face 1 face 1 face 1 face 1 face 1 face 1 rest 1 rest 1 rest 1 rest 1 rest 1 rest 1 cat 1 cat 1 cat 1 cat 1 cat 1 cat 1 cat 1 cat 1 cat 1 rest 1 rest 1 rest 1 rest 1 rest 1 shoe 1 shoe 1 shoe 1 shoe 1 shoe 1 shoe 1 shoe 1 shoe 1 shoe 1 rest 1 rest 1 rest 1 rest 1 rest 1 chair 1 chair 1 chair 1 chair 1 chair 1 chair 1 chair 1 chair 1 chair 1 rest 1 rest 1 rest 1 rest 1 rest 1 scissors 1 scissors 1 scissors 1 scissors 1 scissors 1 scissors 1 scissors 1 scissors 1 scissors 1 rest 1 rest 1 rest 1 rest 1 rest 1 rest 1 bottle 1 bottle 1 bottle 1 bottle 1 bottle 1 bottle 1 bottle 1 bottle 1 bottle 1 rest 1 rest 1 rest 1 rest 1 rest 1 house 1 house 1 house 1 house 1 house 1 house 1 house 1 house 1 house 1 rest 1 rest 1 rest 1 rest 1 rest 1 scrambledpix 1 scrambledpix 1 scrambledpix 1 scrambledpix 1 scrambledpix 1 scrambledpix 1 scrambledpix 1 scrambledpix 1 scrambledpix 1 rest 1 rest 1 rest 1 rest 1 rest 1 rest 1 rest 2 rest 2 rest 2 rest 2 rest 2 rest 2 cat 2 cat 2 cat 2 cat 2 cat 2 cat 2 cat 2 cat 2 cat 2 rest 2 rest 2 rest 2 rest 2 rest 2 rest 2 scrambledpix 2 scrambledpix 2 scrambledpix 2 scrambledpix 2 scrambledpix 2 scrambledpix 2 scrambledpix 2 scrambledpix 2 scrambledpix 2 rest 2 rest 2 rest 2 rest 2 rest 2 scissors 2 scissors 2 scissors 2 scissors 2 scissors 2 scissors 2 scissors 2 scissors 2 scissors 2 rest 2 rest 2 rest 2 rest 2 rest 2 chair 2 chair 2 chair 2 chair 2 chair 2 chair 2 chair 2 chair 2 chair 2 rest 2 rest 2 rest 2 rest 2 rest 2 bottle 2 bottle 2 bottle 2 bottle 2 bottle 2 bottle 2 bottle 2 bottle 2 bottle 2 rest 2 rest 2 rest 2 rest 2 rest 2 rest 2 shoe 2 shoe 2 shoe 2 shoe 2 shoe 2 shoe 2 shoe 2 shoe 2 shoe 2 rest 2 rest 2 rest 2 rest 2 rest 2 face 2 face 2 face 2 face 2 face 2 face 2 face 2 face 2 face 2 rest 2 rest 2 rest 2 rest 2 rest 2 house 2 house 2 house 2 house 2 house 2 house 2 house 2 house 2 house 2 rest 2 rest 2 rest 2 rest 2 rest 2 rest 2 rest 3 rest 3 rest 3 rest 3 rest 3 rest 3 shoe 3 shoe 3 shoe 3 shoe 3 shoe 3 shoe 3 shoe 3 shoe 3 shoe 3 rest 3 rest 3 rest 3 rest 3 rest 3 rest 3 house 3 house 3 house 3 house 3 house 3 house 3 house 3 house 3 house 3 rest 3 rest 3 rest 3 rest 3 rest 3 chair 3 chair 3 chair 3 chair 3 chair 3 chair 3 chair 3 chair 3 chair 3 rest 3 rest 3 rest 3 rest 3 rest 3 cat 3 cat 3 cat 3 cat 3 cat 3 cat 3 cat 3 cat 3 cat 3 rest 3 rest 3 rest 3 rest 3 rest 3 face 3 face 3 face 3 face 3 face 3 face 3 face 3 face 3 face 3 rest 3 rest 3 rest 3 rest 3 rest 3 rest 3 scrambledpix 3 scrambledpix 3 scrambledpix 3 scrambledpix 3 scrambledpix 3 scrambledpix 3 scrambledpix 3 scrambledpix 3 scrambledpix 3 rest 3 rest 3 rest 3 rest 3 rest 3 bottle 3 bottle 3 bottle 3 bottle 3 bottle 3 bottle 3 bottle 3 bottle 3 bottle 3 rest 3 rest 3 rest 3 rest 3 rest 3 scissors 3 scissors 3 scissors 3 scissors 3 scissors 3 scissors 3 scissors 3 scissors 3 scissors 3 rest 3 rest 3 rest 3 rest 3 rest 3 rest 3 rest 4 rest 4 rest 4 rest 4 rest 4 rest 4 house 4 house 4 house 4 house 4 house 4 house 4 house 4 house 4 house 4 rest 4 rest 4 rest 4 rest 4 rest 4 rest 4 scissors 4 scissors 4 scissors 4 scissors 4 scissors 4 scissors 4 scissors 4 scissors 4 scissors 4 rest 4 rest 4 rest 4 rest 4 rest 4 bottle 4 bottle 4 bottle 4 bottle 4 bottle 4 bottle 4 bottle 4 bottle 4 bottle 4 rest 4 rest 4 rest 4 rest 4 rest 4 face 4 face 4 face 4 face 4 face 4 face 4 face 4 face 4 face 4 rest 4 rest 4 rest 4 rest 4 rest 4 chair 4 chair 4 chair 4 chair 4 chair 4 chair 4 chair 4 chair 4 chair 4 rest 4 rest 4 rest 4 rest 4 rest 4 rest 4 shoe 4 shoe 4 shoe 4 shoe 4 shoe 4 shoe 4 shoe 4 shoe 4 shoe 4 rest 4 rest 4 rest 4 rest 4 rest 4 cat 4 cat 4 cat 4 cat 4 cat 4 cat 4 cat 4 cat 4 cat 4 rest 4 rest 4 rest 4 rest 4 rest 4 scrambledpix 4 scrambledpix 4 scrambledpix 4 scrambledpix 4 scrambledpix 4 scrambledpix 4 scrambledpix 4 scrambledpix 4 scrambledpix 4 rest 4 rest 4 rest 4 rest 4 rest 4 rest 4 rest 5 rest 5 rest 5 rest 5 rest 5 rest 5 house 5 house 5 house 5 house 5 house 5 house 5 house 5 house 5 house 5 rest 5 rest 5 rest 5 rest 5 rest 5 rest 5 scrambledpix 5 scrambledpix 5 scrambledpix 5 scrambledpix 5 scrambledpix 5 scrambledpix 5 scrambledpix 5 scrambledpix 5 scrambledpix 5 rest 5 rest 5 rest 5 rest 5 rest 5 face 5 face 5 face 5 face 5 face 5 face 5 face 5 face 5 face 5 rest 5 rest 5 rest 5 rest 5 rest 5 shoe 5 shoe 5 shoe 5 shoe 5 shoe 5 shoe 5 shoe 5 shoe 5 shoe 5 rest 5 rest 5 rest 5 rest 5 rest 5 chair 5 chair 5 chair 5 chair 5 chair 5 chair 5 chair 5 chair 5 chair 5 rest 5 rest 5 rest 5 rest 5 rest 5 rest 5 cat 5 cat 5 cat 5 cat 5 cat 5 cat 5 cat 5 cat 5 cat 5 rest 5 rest 5 rest 5 rest 5 rest 5 bottle 5 bottle 5 bottle 5 bottle 5 bottle 5 bottle 5 bottle 5 bottle 5 bottle 5 rest 5 rest 5 rest 5 rest 5 rest 5 scissors 5 scissors 5 scissors 5 scissors 5 scissors 5 scissors 5 scissors 5 scissors 5 scissors 5 rest 5 rest 5 rest 5 rest 5 rest 5 rest 5 rest 6 rest 6 rest 6 rest 6 rest 6 rest 6 face 6 face 6 face 6 face 6 face 6 face 6 face 6 face 6 face 6 rest 6 rest 6 rest 6 rest 6 rest 6 rest 6 chair 6 chair 6 chair 6 chair 6 chair 6 chair 6 chair 6 chair 6 chair 6 rest 6 rest 6 rest 6 rest 6 rest 6 scissors 6 scissors 6 scissors 6 scissors 6 scissors 6 scissors 6 scissors 6 scissors 6 scissors 6 rest 6 rest 6 rest 6 rest 6 rest 6 shoe 6 shoe 6 shoe 6 shoe 6 shoe 6 shoe 6 shoe 6 shoe 6 shoe 6 rest 6 rest 6 rest 6 rest 6 rest 6 scrambledpix 6 scrambledpix 6 scrambledpix 6 scrambledpix 6 scrambledpix 6 scrambledpix 6 scrambledpix 6 scrambledpix 6 scrambledpix 6 rest 6 rest 6 rest 6 rest 6 rest 6 rest 6 house 6 house 6 house 6 house 6 house 6 house 6 house 6 house 6 house 6 rest 6 rest 6 rest 6 rest 6 rest 6 cat 6 cat 6 cat 6 cat 6 cat 6 cat 6 cat 6 cat 6 cat 6 rest 6 rest 6 rest 6 rest 6 rest 6 bottle 6 bottle 6 bottle 6 bottle 6 bottle 6 bottle 6 bottle 6 bottle 6 bottle 6 rest 6 rest 6 rest 6 rest 6 rest 6 rest 6 rest 7 rest 7 rest 7 rest 7 rest 7 rest 7 face 7 face 7 face 7 face 7 face 7 face 7 face 7 face 7 face 7 rest 7 rest 7 rest 7 rest 7 rest 7 rest 7 scrambledpix 7 scrambledpix 7 scrambledpix 7 scrambledpix 7 scrambledpix 7 scrambledpix 7 scrambledpix 7 scrambledpix 7 scrambledpix 7 rest 7 rest 7 rest 7 rest 7 rest 7 scissors 7 scissors 7 scissors 7 scissors 7 scissors 7 scissors 7 scissors 7 scissors 7 scissors 7 rest 7 rest 7 rest 7 rest 7 rest 7 shoe 7 shoe 7 shoe 7 shoe 7 shoe 7 shoe 7 shoe 7 shoe 7 shoe 7 rest 7 rest 7 rest 7 rest 7 rest 7 bottle 7 bottle 7 bottle 7 bottle 7 bottle 7 bottle 7 bottle 7 bottle 7 bottle 7 rest 7 rest 7 rest 7 rest 7 rest 7 rest 7 cat 7 cat 7 cat 7 cat 7 cat 7 cat 7 cat 7 cat 7 cat 7 rest 7 rest 7 rest 7 rest 7 rest 7 chair 7 chair 7 chair 7 chair 7 chair 7 chair 7 chair 7 chair 7 chair 7 rest 7 rest 7 rest 7 rest 7 rest 7 house 7 house 7 house 7 house 7 house 7 house 7 house 7 house 7 house 7 rest 7 rest 7 rest 7 rest 7 rest 7 rest 7 rest 8 rest 8 rest 8 rest 8 rest 8 rest 8 face 8 face 8 face 8 face 8 face 8 face 8 face 8 face 8 face 8 rest 8 rest 8 rest 8 rest 8 rest 8 rest 8 chair 8 chair 8 chair 8 chair 8 chair 8 chair 8 chair 8 chair 8 chair 8 rest 8 rest 8 rest 8 rest 8 rest 8 cat 8 cat 8 cat 8 cat 8 cat 8 cat 8 cat 8 cat 8 cat 8 rest 8 rest 8 rest 8 rest 8 rest 8 house 8 house 8 house 8 house 8 house 8 house 8 house 8 house 8 house 8 rest 8 rest 8 rest 8 rest 8 rest 8 scrambledpix 8 scrambledpix 8 scrambledpix 8 scrambledpix 8 scrambledpix 8 scrambledpix 8 scrambledpix 8 scrambledpix 8 scrambledpix 8 rest 8 rest 8 rest 8 rest 8 rest 8 rest 8 shoe 8 shoe 8 shoe 8 shoe 8 shoe 8 shoe 8 shoe 8 shoe 8 shoe 8 rest 8 rest 8 rest 8 rest 8 rest 8 bottle 8 bottle 8 bottle 8 bottle 8 bottle 8 bottle 8 bottle 8 bottle 8 bottle 8 rest 8 rest 8 rest 8 rest 8 rest 8 scissors 8 scissors 8 scissors 8 scissors 8 scissors 8 scissors 8 scissors 8 scissors 8 scissors 8 rest 8 rest 8 rest 8 rest 8 rest 8 rest 8 rest 9 rest 9 rest 9 rest 9 rest 9 rest 9 face 9 face 9 face 9 face 9 face 9 face 9 face 9 face 9 face 9 rest 9 rest 9 rest 9 rest 9 rest 9 rest 9 cat 9 cat 9 cat 9 cat 9 cat 9 cat 9 cat 9 cat 9 cat 9 rest 9 rest 9 rest 9 rest 9 rest 9 scrambledpix 9 scrambledpix 9 scrambledpix 9 scrambledpix 9 scrambledpix 9 scrambledpix 9 scrambledpix 9 scrambledpix 9 scrambledpix 9 rest 9 rest 9 rest 9 rest 9 rest 9 house 9 house 9 house 9 house 9 house 9 house 9 house 9 house 9 house 9 rest 9 rest 9 rest 9 rest 9 rest 9 scissors 9 scissors 9 scissors 9 scissors 9 scissors 9 scissors 9 scissors 9 scissors 9 scissors 9 rest 9 rest 9 rest 9 rest 9 rest 9 rest 9 chair 9 chair 9 chair 9 chair 9 chair 9 chair 9 chair 9 chair 9 chair 9 rest 9 rest 9 rest 9 rest 9 rest 9 shoe 9 shoe 9 shoe 9 shoe 9 shoe 9 shoe 9 shoe 9 shoe 9 shoe 9 rest 9 rest 9 rest 9 rest 9 rest 9 bottle 9 bottle 9 bottle 9 bottle 9 bottle 9 bottle 9 bottle 9 bottle 9 bottle 9 rest 9 rest 9 rest 9 rest 9 rest 9 rest 9 rest 10 rest 10 rest 10 rest 10 rest 10 rest 10 cat 10 cat 10 cat 10 cat 10 cat 10 cat 10 cat 10 cat 10 cat 10 rest 10 rest 10 rest 10 rest 10 rest 10 rest 10 scrambledpix 10 scrambledpix 10 scrambledpix 10 scrambledpix 10 scrambledpix 10 scrambledpix 10 scrambledpix 10 scrambledpix 10 scrambledpix 10 rest 10 rest 10 rest 10 rest 10 rest 10 chair 10 chair 10 chair 10 chair 10 chair 10 chair 10 chair 10 chair 10 chair 10 rest 10 rest 10 rest 10 rest 10 rest 10 bottle 10 bottle 10 bottle 10 bottle 10 bottle 10 bottle 10 bottle 10 bottle 10 bottle 10 rest 10 rest 10 rest 10 rest 10 rest 10 shoe 10 shoe 10 shoe 10 shoe 10 shoe 10 shoe 10 shoe 10 shoe 10 shoe 10 rest 10 rest 10 rest 10 rest 10 rest 10 rest 10 house 10 house 10 house 10 house 10 house 10 house 10 house 10 house 10 house 10 rest 10 rest 10 rest 10 rest 10 rest 10 face 10 face 10 face 10 face 10 face 10 face 10 face 10 face 10 face 10 rest 10 rest 10 rest 10 rest 10 rest 10 scissors 10 scissors 10 scissors 10 scissors 10 scissors 10 scissors 10 scissors 10 scissors 10 scissors 10 rest 10 rest 10 rest 10 rest 10 rest 10 rest 10 rest 11 rest 11 rest 11 rest 11 rest 11 rest 11 bottle 11 bottle 11 bottle 11 bottle 11 bottle 11 bottle 11 bottle 11 bottle 11 bottle 11 rest 11 rest 11 rest 11 rest 11 rest 11 rest 11 house 11 house 11 house 11 house 11 house 11 house 11 house 11 house 11 house 11 rest 11 rest 11 rest 11 rest 11 rest 11 chair 11 chair 11 chair 11 chair 11 chair 11 chair 11 chair 11 chair 11 chair 11 rest 11 rest 11 rest 11 rest 11 rest 11 scrambledpix 11 scrambledpix 11 scrambledpix 11 scrambledpix 11 scrambledpix 11 scrambledpix 11 scrambledpix 11 scrambledpix 11 scrambledpix 11 rest 11 rest 11 rest 11 rest 11 rest 11 face 11 face 11 face 11 face 11 face 11 face 11 face 11 face 11 face 11 rest 11 rest 11 rest 11 rest 11 rest 11 rest 11 shoe 11 shoe 11 shoe 11 shoe 11 shoe 11 shoe 11 shoe 11 shoe 11 shoe 11 rest 11 rest 11 rest 11 rest 11 rest 11 cat 11 cat 11 cat 11 cat 11 cat 11 cat 11 cat 11 cat 11 cat 11 rest 11 rest 11 rest 11 rest 11 rest 11 scissors 11 scissors 11 scissors 11 scissors 11 scissors 11 scissors 11 scissors 11 scissors 11 scissors 11 rest 11 rest 11 rest 11 rest 11 rest 11 rest 11 pymvpa-0.4.8/mvpa/data/bold.nii.gz000066400000000000000000050011411174541445200167640ustar00rootroot00000000000000‹ æ!Mÿbold_fixed.niiĽ|ÙÖ½ÝUu¬ÁÝÝ î. îîîî6Øà >8 0¸»»»»»»»|Oç¾ÓL¸ ÷û¿÷ ¿:¡súTÕ©½öZkïS5,W¾Ú¹„+¹+²Ër-’ÿüKÂÞ”Þ[5òËçrµùŸÿâówï¼ÿ-+ø¯×þoåz–È×ÿU ÿù•/‘É'] þ/|pž9º\‡µ-àêv/{sÛøÛÿËÿçþ¯<ÇÅ׿Þãÿò_Çêêý?ßxÿj•*½÷õóÅrWk…÷Ã[å¬j/–÷_ÿý k©Õ×~br–ÙM¬°ŒÃjdGµ3ñßh˶Nýû_ô¯¬©Î_¢¡,&óÈjâ«=Ð>h·‹pÂÏ)êÌgTÖO|õÓeME•Ëe\yR´§¬NdYTvÙE'ÑD4·‡h¼7ÖI«©­È鲚<(ˤªˆÌ%§‰-|÷\Ö‘íd YDTnq##¦wú;3ÄFyEΖãå!ù–'Ȉ*–ÊÃg¤U7emùZ4—cå3±0Øc¾kå—Å.QJFR…TYXf‘Id/ùH&RÙÔægóÿîrŠüKF’%,ÁŒXÏ™/Éê¼û¸'“ÊY²¼)¨j†êªŠ¨ýòºÜ)¯ÉWò®<*÷ËÔb²åóƒ1¯ºšÚU9¾12•,"ÿ”Ff£änJ]R±ä9\UU¿¨}2œ²Ôr9„kµ@î•WE çuçñŒ5ßI*7JKu“­8®û²ž¬,‡s|Ÿ7ª˜'«}ª¥j¤ÎÉ}r«!‹ËX\ï‚r®óÏá2Xœ•b°”üF{å£b¨² sl¬f«.j¨J® òê¾z­6ªê*³z&ÏÈKòœÌ¡„Jå|¶¾²•=]t•]e1uTR59®eò™lª i_ÝDßÑYMS_S½t½ƒOÂgœU UbW¹Dà#Îbß•eKYEmRn½J]~j‡*¯ók£?éÖ¦©ù`.š½*‚n®Óè‘*¯*ÏY=¦Rꪜ,!³YÓ¾»*³m‡ã[#C«̰´J¡Âéúz½. Fê}f‰ã¾h"»³êϪ.ª÷3Z\µW%Õ¶Þ«®È2”óà»ñ&ˆx*¡zÂuø••á«©úO=[·QO´p¯2M!“ƽJ+}Bg4ÏÕz5Uý©¶«s*”NÎñÄѼãų Ù}X¯¹TU…õÿLŽU¿ë‹úWÞ$ÓÑÍ SÐä7ÌSÂÖ¹MvSÅ\W#ÕõBÅÖcUI•IEÛ¼W¤°5ѹ,“«7¬‹ª„l­nªFz¼yf*› :…Ygvš#æÉèŽcÞëHî>¦‚Îi^JGUVëTl5[&ËÅ ïü–[ÏT¬µ6ܳ%U|›söÚŒ1óLwó†qã~cú˜=æ±N`|LW3QÝ3ãt#)­†Ì,Sr/^ó®Â¯Öe"î“Iò³ð)Êðê¸òÜcTY'¦…RëÀ¼ar™•UíR)@«ûUi9ï¿o¨H â©ç\ÝîàlV>{žž¢Çëzê¦çÞhÒ˜DÕßµ?´qéõj¹š©6€Æ¶Žª×¨8"…w¼ˆV {œLŠKUüx"ç¨ßô1ÝÅD3iur³Ê”6åÌo&´»–9¦‹™œ¦†ÙÃu™ ž©ðzwÎ{AxÒú}å³F;7¤z'•Z£21Ãj˜bni+tZsÈ\2û9Ú¼î¤æƒþgÕáÌY©U5µ’Lb¹L%úˆcÞù­µn8Id!ÙP^–aÔs‘QMÑ/Loó—idnéIf€¹nžš¶f¹Æ89A·ñj™¦‡É°*¦ª,Ó‚Ž:å]…/­ÉÎ|‘IöàúÆ•vèâîÑf•> ~d7íÜëM9ð〩éîÄüî›·z“ޝ#˜ª¹°¯ÔdžuÕÍÿüØê²­íŸh°¤”\Dñ¾9Ð e­²úØÚÉç¶[Yñ9Û±¬D¶Û6vx»Ÿe¬£Þÿï¿­c5sƈƲªL-}Å.»£ý»=žˆÿÆ)î$sÆØñìgÿ~€@ÿÚ]Ì"ÚG—퉛¿È©¢¶ˆa¯wn‹¼²†È"ŠF¢™}7ÐïýíQë™UIÜ+åîËmd¶dJð)båYį²£ÖJ¼zˆï~Åç,K¸''¥÷ɰ˜…Ò¨8* Q"–:Côþ…yO•_Å^ïþnˆo¾¹c%æ}»D ²úLj0Ñ22 öɧò+q¾ 1|º %ý¿`FlåL”§áã¹W:ËŒœ½þDc_ò²iªJ§ÖÈ×p„Ͱkr8Y̶"ý`Ì®v¶/q÷Wf”\+,(2B!ç_§¢1þ bw õ™Ûj±^ͯN‰ÒÎçoŽðï——à™8ûwe[òü7ò%ãV¥=&J$¯ßÅ"w ²ÑÃÁrÎ_I>±|l·÷Îý{,—+¯Õ þ1A~&“«C4M2ö–ód%âÒïª·Š©Ó¨ñê–úLt¬A.~ä:ÌYMMŒKâ¼²> åÿª·=F´„‰Sˆ‘•Q¿ƒeU"øGO}S'2±L&}\ý¡ÓꌘŒÙ¥æª(::& Ïýóí—Ÿ}M”c¼lD´Wꤺ.sqtùu&­«ŸéhÞ›óf½réÆ:‘ž÷,ï9îµ$bæ’~Ö¢ïFgßa,"6÷â}¥UõEÕÖ‹t<ÕOï!B'rŸ'¿~”×Åõ1FK¥Naô²šÒvÞ~7Þl‘’|ç=ùS5@eWwÕ½LÏÑÍÔ#ýÙ,5ɉ„–{<ØvD§2_ÔÎã5Ÿ³ãèðz¶Š%2yÇ‹o¶Ç³Æ2À? «³ä&T}Z·5n“B'4kMS˜XýŒÈL¬5ùÈÒO’Ï åú„Ò“¹z‰T8oR[£œ#Äì·¬íª¢lÏy¨GšàÇ>Μ2WÍ ó~Ã<×wMÓ–ó^Fæº-QIÕt²ÁßÅqïüvX—øä(-È}B©2³š¬¿‚£MsOO7³þÑÝ,7/ˆò…L}ÓOí6toð# ü#©LÃÞå]…àGóD îˆ>ò“h%ê*îvfž^«3˜ ¦„{ºÉê®æ>g*¸û™§úd¡ÎÌ =ø‘’ý\ìÕK'$jÇ·kêÿÅë]®/®mÞ>¹ Z¼çÉûã½øäZcu°ßØ‹àElF1Vhû³õÚ|ƺ¢Qþ~Sa+¿3\Ô–ueYL<¶»Ø}íùÖ2犓ÃIèüjǵÅOͳ0¹ecòÞNršŒ-wˆV"‡=Î9/ÒËž"·(+*‹zöÇ¿?üßþ½Ýze§ÉÝ&Õ7ó'k2‹\†Bv,xYDÙJ”?²‡`ŽÚ™ã,ãàÂ+ˆq;áØûˆíë6™:âÉ͉aY«Ñ{¾;Þ-+4ëóúÕGbÍØmvXׯDéD*§Úͧ<"òµf´2ž¬êÔfÄ2Δêž—=ù…òîÂÜD±éª±ù¨|ÏØ°âø)ô«b·ác «§œ‚~•L‹HnÐWþ8YísYÔ¹ƒ>0–çU+{€è.ûÁ΋·âˆFÀ0«©ººnFžÚ¤3EôiÕ]gÕ÷Qs€ZkÁªºˆÚ#>;±WÈÞ# Àk}QŸs\dFµ5,Šþ¨bš¡¦y~\PŸTki%[nð芊£›«Ô¬øŽÖìïFdouÈ$sÛ~ù(£+ém:‡ª¤ç›-hW7Í“ü¨ óé˰¸Ô(ga@«õ¨ªÓ¤ ÍîÛ#ž+’³>Â?š©^¼z¬6êÍèWýÕ)ýÅì=Šá^îqĘ¢FqÄ{”ÖBÏTR4òŽÇ*`÷“…á€.U\Ý`ýÍW½õ9ÝÕÄ6qµå2©L-óÀT7§uzF.i.‚EQÃ>ƒÁ¾¬ôØ" ¿ô±Æ:ák¬?¯jÊRðÈnº—¹k|ÁsÜ5{M8w wvóR_@oj®£šH*4×dÈ:_V?nyçw̺â¤@­K‘Z%F1èç¯_ 3ÕÌý›™o™k°˜晎lŠÃ ©u¦¯þ v›@5$£ ¥.Ê%ÞUxŚ挹Éé:rOôktQbš^‡¶–ÐÜ3‹¹eÜkMJwøÍ”ÏCpŨ&¯ê~ä‡Çï—y྽ ÿ¥×»\o\[½Ÿåà”ñž'ïCôB[‡­Av '³ÏþÕŠÌ(¶¥ma‡µ»«å¶Ž„h”¿ßTܪíŒ d3r^_qÑîc°çX‡œ«N!d¬íc¿üû­!ú»‚˜Fv™H:–»iîDbûsCä'ÒçÀ ©%ªÙB4Ònë‘UX\%r%/?I ~ÀÿXHž{™(;H6• @¤H"MÎå/Î*gªËïΆì${>ÃýŠ•–]“1¹[ëJ‹•5½éI°ã]¶â÷‰<ÒM ÁêJÉñÙ¨”j#±ÿÊ[[Fû 5§ªS2˜Ë:ý@…`â!\“D`\?"u~bÉUnœ5ÝcÜ3œübŽçc~p ¶Ë£qõᚦdœÐ2øqc±2œ¹ ª":Ηìl5ŸØ}þŠ\ ~xVSà¯Ör§Øõ?¥>èuT,å¯_9*Šõ2qZ-Cc+¬®Á˜¶,¹8₨+¼wnÀ˜)¬JÎR4ÎØ0–dïIÔzøÇBYB çû^dúyÕXu‡ø4JÕ…ÞAeÜ‚$àewn’ŒåyÕÖîŽÿÑýë8øQ…È5\+©Òsç7ÐOtxøG1}‹¸è£Ïªr*¢ª>ö—Ц³©Í¸}W”'K€ÔføOjuA•$žU @næªÉœê:¡^Æ™,¬¶¨Ã*5ú•*m9kÙw3ìgååRb_\’Ê ¢ÁçXªÁïØnv˜îë0šú™Ê¥ ëxq©àQ¿èPz9ùÍjðãÅwã-?ò€ÁI°•j £MÓÕíàd2éÍ3Ýe·Ni^â}ŒGošB~ïâV¨T"€ g°ÊÛÃàj ‰øyÕeyKNU­ôAÝÙD2ñP„¦?¢²/xYÂÕyMV¾»ÏHƒ`3ù;sM$®z/H^ô¡ÓäÀ²vZÃí°ŽsÒîkEemEµ_Z¡ð*~µ´u槆+Äý+üXW~¼çä¦ôø¥ñ>ª_ȘùëW'á&-unb¼/Ž÷nð.«î©J‘ñ–·¾÷ΆØD59öÖ³ä ~„ÓåðÏÉVz£Ùeâ»oáÈg…ÔÀ£ße®#è#ä7kdçËw3\.0Ф®  ™E&”¤õødÒê6î&œáš¾ÄÇÈÿ1ž0•cÙŽ2NÏU™E>ïxQ¬Úö²8î¨bêgz<ø±O÷sCqcÌ? ˜ÄÿjæˆÎeâã‡ì‡Oæxµ^ŽeS)D€ßš }èüã9Õ~üóâ0·NºŠUq³IG2‡ÍV°H¸ÓºÓÛÜ6•L\–ðê³lÇ, Roâ+Ɖ3Þùm³â”ç¾<‡K“˜¯±¶ÝCM_SÕìÑÓðSNr¬ÍбÃêÁ”F«ÍfŒîË;ã©æ¬úäI[½«ð)ø1Ž«ûÙT,î²ø¿›-z#ì%2¨±Ö”r—ÆÝ*ÆO¯è½&…Y£‹¡ZP­¸·Kɨ0Û2êñÿ ~ìpE²ö{—~(«È쟇¶X­íNçŒý‡¿ÿñÞöÙNh¶¤õsÕ­rÎ0ô«ædÐEÅ-» d’uÑyíTqÊ:CÁÀŠ÷ ‚|‘GŒÄ™ŠŒ4‹k4Åê­5Ãy+ŠÉ®àG3ÑTt´ßù›xÈzjÕa ó‰X{ˆ«ÑUÖÄ ±˜,ü¬¤-ñ¬%ŸKxP4¸¯ÐÎDg²ÇoΗSP–%Üvø“{úc{ÜkA¶¾TÆ‘ï‚ï’•樋²â§†Â‹Ò²¾~㌇ž|œÙ>$kî„Wq”Þ>Xü¨èü*Ôu²¾}àH¹kòqß/!+¯¨Ö&'@¼·Ô–Ü û¬#–øçAõmTüdáÁñü¨Ñdzðc³t©m*¸6å(&‘9 (² ~4ô|EýUÙ ùÇZk…SÖñ (ÙŽ÷Ý%Z7‚‹|&&V”éÄqí¨*EUЮÖxüóä(‹íä>ï0ËdVITÄ™œï‘üNnôí`æbÍp²­Ê/øúžú(Ç]P}áó΃YiAéŠÎk+ðÚ©k½ÉVJªËÄû¶ä²2Gâ´®©«ê£:>±°Œ~§Æ‘õŸ‡{¤Q]` [ñ×›«"æ?2ÜöIQ–»¡ŠOXô¤G²õW%u$ýZE7MOøÇ>ó †ÐCgÐóTYU†*£¯*Ÿ¥ò’CT´Æ}·v&Ú7EMؤV}x_òü„º©>«}U}z¤nÛm¹[êк¯.¯¯0»ìÔ_¥Æë¾Ÿ[/c;ßûñDV¢öWÿH6–OnuJ¯Ò¿ª³:¦{7.rþ]:ø‘Ë}†œawƒ3›FoQE¿Á„V»£,„gFå­NÊ¥Ô_=„1Ä4it(³¼(mâ·C/*jÊâU_Çñà{|}5®¸J.ê=ÓS[·…G©ò0Õh•pgúëÍÆqw,sÌlâÜÝÃÿÈmb˜×xIsQÅ’«×²/פ\¸°#vxÏß*뺼¿6Ù^F꯾È9Úr3“Á´«º¡™d†›·0Â9Fš”xû ÍuÎ0LÆÀÛoêÔ|ï*|¿?Zda…váÞm'·êÒî)æºÞ¡m“Ȥp/3ÜÜM,÷`é|먮¥?ê ª/Nbt‰S(£ëËù¿öj%,!©¿¸òX™¼çéç&ñÕµÊjo±“8×ì þÆ—îáØqì¡èY×~j¸ÎH;¹TNúã(&_ð[¨èZ$:‹Pöç5šÀ8QI´Ç?oe®y z´½ÖUô«Wè-Ëa‡ˆ!ññÄòƒCóñ>¡™wáO7QEDICp.c:“È|ÿ$oA/Ùt™>I\J«NËx’]p>†ñIåÇ`Ç» ~„'g¯Mfœ_ý% «ã =J}a"ü3¢µ§~w+È—Qþê4 fÄÊÎd­!3ºÃ(iÁ¸ŽÔp%ŠÍD/(¡6ãlƒ…¹Ñœî§«ˆ ?ħ®FvaøÕPÜ¢BòwøG 0i=µ{UZðc ™~Æüwdã¹ÔiQÜ ŠÑ¬°þrÒrÆ“«aÜso`VMÁ‰\¥êË bƒ¸ŒÚ=Œ;V?ªã‘|òÞ¹W8ª•›ú«y2 ¼ª3±2GÖ…ü<¨áá…uYôõ·Ô>m¤R*>ùÿpõµÌ é„—8›©h©¨„Öþ,’šâ”F¿ª®+ë]TýÄ6•õ5šJÌ+èì‰`=G@„"º«º.ˆô®Kv{¯(ÂŒ©ÓÔøž'¶eæ¬Å+ÿ¨”éÿø`ΙøÇ½t*½˜ž‡()urûª\¿ÖÖÚïFb•`Œžªék¨|åT2Ý^ï×U½7 !üÃv×Òa©çʢϪ†°#Tsi°ëç3¬ó½–:LÄ?³v[qžŠÃƒ®éCz1HvL§tŸÀE. CÚþìÕILTFYJÄ?†Þ–‡€-*§ðõÎ/¢•ÞîIF‹³–“lj™E+}C£þª Žf6šÚDêrøß]¨p*ÉwUÍ*«‚õªÙÒ©âž÷ⱆ9{¨”ûÌÚØ†Öì£nSÏ5Ó„w×@¿ŠF=ð1T¢Ðî øa©íÿøÅÄæ*÷ç˜Ëª£²¢@½ÿßî¶Ž8>0Ù¦¬ý Jü¡Ñõ7KÀŒ3:<¤,æWxÒ'xfiXÒƒ`æ¸Rº­{*ȶI-·› øµÜGLj÷Xë[”À½º6ó®¥Fà$–¥~w7ëâ‹sóï þÿ^íºï:ìýh}qÜ¢–“ ý*ÉO⇯˜$1§³ösÉuä·¬þŽC÷8QšZÛ†¢C+ºN[ç¬"â=x ³»JtÍ¡ËJ²˜KŒ}Ã*èkÓ ‡%Î?ªh‚:‘᜙Î,~÷ câ†gO#«N§zF&TÏa9’¹ïCÅvì Føög·¬¸èWgDu*· ªÑpŒ,ø!áIð@¯‘›¿£^ª?÷ä6™Y6qªsµë8Â<:ƒaGiÁÌÉèÑÙ` ˆŠåÕNîž#èCaˆ*'ˆeÄb+ ’ÿÛ™¹\–ÕŒúÝWèR ÉÁÆûWñÁà ‡‚’ãŸI¤ŽN¼hwG¸RÓ[© ¢ˆã1ËÅÖêwÝàÇ#®DK®ÇÆž—ëÄu¼‚¶hCWA¼½ KQ>µ1ÂWï0¿XV.gƒ˜—5R ?’¨½ä3ˆøp˜;©‚èJ3‰ÎoQ]j€.ÏA«Ä|*¹êGý• 4ÃFöHÑ™óV•N—n‹¿1ŸkàGl]îýºÉbÊ3ÚdèÜœÏkF4]‰¿ÞLÝ‚Ä 4^Iô¦"0èzèaùpÜoÉ4ĶÌ:‰v¨ßíBîkèØxOýVsøÇ=/±Ù¢vjªªÎНj­ûnÄáö²³ÅølC˜a=»¸ºS9ñß·³RQ¿ûÙTÑnÝÿã:~|6Ü…Ìøß§Õ]t·ó½–:FÄc ¸ÚÄÍ„ç³7~žþMÝÓ1ÜÛqò2ÞW85*Ô6øëxj\ºÎÃ|³ŠÞùE³²ØMá E¨VªÈz8(GQgpÅ)¹É«c§k™:üwÕ´4w©Q*`Z™+p·9 al´¶Ú8}™¾á9¬ÎÎj™]½$9¥Šs¿žPa3’˜¿‡z®[8è—©Èèö1ŸõF‡ª‘ZÀî°¤¼0Ñ|¢ƒ8èßY뜓FzÔÄ«²° ‹v:Zÿâþ ½j¶¹ÌÑ­‚Á(÷(XÍW¨ çµÜ Ñ+a·IT{Xw"vµw¾·þôׯ†“od c^§K¹'€lÇtלÆÏànà~dЏ»£¯}4‰ñÏóé(¦„GJ éfu7P÷œÆ°®ÿ·_]t%°z?DZ¬œÞóäýqˆ^D²¶Z³í¯vç=ÐòdÞ6uxÑí0v»¥Þº¢Qþ~SZ«¯3¦Zvê¯ÖÛ[ì™V‘IÔGÁj§µ#ÿÔ<[‰idݹ‰Igˆ";Ä ±ÆZ€ ÖLÎíD[QC !~ܵöZÔæªýÜ}m‰LÏeNU–ØÔI"·~…Â3 ³žè(|Dà¬ôï£ûöo_§ÊÉ "àF²ñ“dÀÏQ‹4ym9\Ò4¬´:8³À½<òt°Ç|Ú*N àqÑDÆæ÷±ÊóÂoçáR¤ã^<z¸ÔJVþ"$©ìè” fÄÜy—9ÎI Äd™Nð56ùÑÞ§ûçö‹ÁÏéW/9Žò£Ç1ëÆ|ÿ( N ¹JÏ£s=ÆÀ]‘Óío®j©48äâÿ{¸RÁc©žŠJAÖïnµ:Ù9ßqÕòò›Ìª&F3OÿGl1G¼£Îµ:O†6 ÿ#Œ±²<ë½s®Cl«¨³SÌïýæ¤Å»ÝAô_*‹p”-`$ tZÜí¨è÷«Q›2Q zæù|É¡²‚[¤kÙÃЯ†Ê*êü£-ãÍá<–CŸª…v}ŒÊþŒ&;ZТýyŽ;‰êÈYØ‹[]CíñþÑÿ‘Ù¾‡ÞÔŽÄã*/¾û}"×fꯒèÇê«h£»Ü07T$=ÿ|=Žxõµ­°Çê,& Yú½ç¨'Ø/Deð1 õïѯ2yzb;;‰YY݇¨-D¿_S]̨áQ?Uô§CøÐäûìwWyªH ~ò Ý~ •CÐÄ‹À]A}@~g˜³C¬ÂUØ€|€Œû!³tèÖÈN—q8C]ùVü…ž"DõW>ðË¢)ªZ>5v›ƒ< œÁ¶°—ûûŽC”ïŬãîNé`Îb7g‘¹ØqÅ)!s€jSwMl^Âñ#¦œ"BfÛ~˜|v5°ËÀ)zÀ¤ò¡ÕÅâˆ&àL|–›U*îí5p…°ê+ßDo›AÍ~¢ôáë¼ âÄm³V:Y-¬ óxζÀÑC÷áGzª"Ñ1üþÑ”hr —äŸWÄ?[+.ïQ¬òÎF±Õo(¼%©g=Ošƒ>5g»'Ñ5ñÉÑ/©hL-ë[¸Ö晼¼¬óØ ìw7²Ç‰æàGmÐ#œÀq-Ī ~”£ë ®²]íi™äIâw|âø "tNOm‚öãóÚo¨·m+«ã§”Òoð?|©&.¤SƒAŸt74Ž{ô;ŸÀn¯ã á”¡†ì©ú¨ÊèÁt'—õ­Kß]éÑöcQ‘UàÆ…°ttÃÄàÇn]ÿã4õW>hN¶»þJüóì / %cße}ž¥ÿüûñæ‰8DíWD²Îj}w·Ôô«uz„z«3Ã?|ÁˈËx šžÉ0» ø59#{ð?âzçÑò±‡òPA[X½ ³˜DWã Ý7¡¡®C¯_<…|æu×u%Üô^f>ëq(NN&}‘U”P˽kÆ\ô,šëVî1•‘úÝwjªnÂk“ºJmØE“É΄Ã©iZëæܬÐɨ7Ë)º‰}Þù†d"›kÇ‘KÍOe, íkŒã‹Îú·o~$ãFÄë®JåÀ@uÈü¥Ç˨\ç&¨¨Õ¨¿ºå]…¯ÀÑ"%Üy£6Ãÿxâž§Ê¢).Ù úsº›º£ƒƒ¨ßêŽK×}Ip*ƒê„_Rýj©¿~õsÖ{zþ½xìJû²תòûç¶uК‡^Ø9ž’³ýÙUÌNe§¡ƒ°³î—%$ÎF=ÌVxy¢ýPô«ýödvA‰&ÒˆÁN5gƒÛŽá½ž!¯¼hÇn#™Aø³dkÄ qÿ<1g5Ü´'üãwûIHr²NXõÀÅtPtb´g°ÑÊ\ÅÎbé'2õ¡ðj¢¦ˆ(¾†`Ä Îg/‘ë*œ`ñù ‘ð/2•Dä_ç©Ø¸ˆfnì-¨G·ƒ=æýVÖÔMŽ66èP޵481›L9+Jî%âñK"vwf?¨ŸÜn5œ¹DʦðŸ³ÄzÜŠAÄAÏÞ‹Ñyª©U Ýä1nò)ú'3Š­VÚÌòŽ«¹]œ™ŒäHJ‘1©ü ŒMœÏH4^Ju™mõDêÏûVùOˆ|AÖ_-§+¬,®QL5™z…·0¬^èü#‰ˆaЯBS1ó•­ ªÝqŽz?Ø\ÆU—j„Þ;7àò„³2:ËÅRøÇ(¢Fré]Œ·@;Zã‚!̧rÖP9T™lý ×ë<þ¾ú†/õWëwëÒ?Ø ¦Uuè%^mäÈ=ýçEt)}R—E™H>‚þ:dð?ö‘“ç×EÕ\êww7‡/Tƒ5 ŠgÒ—¸’9xw!í©°}G/\tñ•ðˆº˜²Šá‚ôF@¿š 2pä­cß]•‘ösðh1rû¡T _mÒ~ª§Þ€™zÑ+ð‡ÔUaÿ’(÷{Pßá\Üa-|°Ÿ~7Þï"˜û”µ[›:-?øÇVÜ”zŒzCÿù:4œÌÔŸÓŸ¨ÇÊiÂSs¶‚êÝM ruö/Y¦ò‰ Þñ"Yiì!0¿bt¥Ä½z,çP§öU¦~·¼á }m“›Š©nìòQ‡WCÌÿêçûÔÉÝÃ}1ªˆ˜ï½¸å­_cÔ ~%GÙ¯òpÍÎQ·Ð‚þÈšæûŸ|¤‚÷Ñ>§; ýƒÚÝÊüª#š»ÜƒÁà2jUéݾÙ;h¯uËÉL7@GŽ6ú@-Mý…n<(þ^×4.÷}sGê<ÕSo?®Y¬ÖÒ>—H—úÝ´²gó€w¾¢þj2“ýÉXr±–·êœTZíýL2TµÓ¦¼»±;Œ;—{¸¹¡c»5µY‰©ÀÈFÿ`|šð¨-”%®yø¿÷â”+…°oG4ô«üÞëøs³øÅZo-µã8õœ+ô{$`”'.?úÏ#Ø7­ÖG×ÙŸ.³ÕÖé)àˆ¤–é îÇX{¬[¤œì°•ø'ý²¸™5È?¡ÓË]Tçì·&8ÑÈ!Á=zÃAz„?®€“ Ä[âß2ØË8¬5~r¸ØN>ò‚ŸN†éÔEÊñ|ìµ îr…ªÈ™hXѰ ”&‡Ü'žíåHÜ‚Íxk—ƒ½6Û­<ò£¸,º ƒùªá¬òÂtýMåÒ¥ö¡÷<ã3º’ëÌ…™4s3bkg=zP]°ëDàtþúÕ}Tý}¸£TTžO8ûàaô¸!=úU±ŒyßÕÛ®IJÕHNø@¼ýDaƒr“XBäŽNdvSºŠ+5\z*Ï‚Aõñï°Ö:©ùÄhðî°Ÿ·dç-ÈÞr ]Lysk0é"˜y§2øQžU”~e[©á3dJº<Ú Oyjßþàwb¨qª)?KCd]†ÿñ’޲f\™|â3ð£¨J¥r9—­À½C•í\ƒ~²šüfüxÎ]žŒ|»ÊDa´˜ÔúþyR}U5‚ŸôWW‰nùt µ@¼w.º[ŠÛoɦºÏ£_]£¢ þGU_»pYÓý¬Ü 颋­[ áì„/äÃ?|ÖXð£¬ÄªývÈI¶Eγ¶; ü(ÃQ$Åé8ÿøUŸ„Äu? Nûpí¨óÔ_ùPs—Q§ç \æºhçû\f´ÈL¬÷èWMP6s«'ôîF¿§èwF¿Êg’¸àÇŸ¡ã;#n€§,Q¯aHùÙ¥ ¨‘HÀþWcP ¨/2“:I†2Z Ñ÷õPê™ÚéNô¹ô„T5¿¸P[ߔ«^…S1•ª¯œzW‡ÚE1Ç{¸uÉ4®Â$Ÿ „íQ¹&ûÕn=™qjšuºÚ•ÛýɇøªãºÛãUD5—87ÝáQ¾jŽÌ&z‰Þó·ßºãxxB r–Bê³£:À ZÓïAO¢NC¿ùÎ]_xH*üî.pˆyô ÐXMÉ©ß̓Žùmýî«;àåà^è‰[ÙJnÒ…Üóð8öÓ©ßÚ¤s4UÝÍÝ1ÜéÝÓè=7î¨xë¹™a2Õì( ?®ùØ ¨£õúÿú‹»®tßTF9èW9¼çéç>< þùL;¾S×¹N½UFyæ*AõnT[Ù-ç'ëw“XÎþõWéesñˆê«‘ö\Ë%2ŠN~g/û—üÈ¥ zÖ>8Õѯ~#ã#W‰EÔïNp’Ñs6WÔýðÐÇÙA©$ÿ킵Ï*-î“¿dmEIDMGmÙ_¬$¿±ÕHXhkÙO>†Ð!8—Éœ±Î:±Œ·~!qð8sü@xzõ@F"{®ÇN#ƒÀ¥8òS°ã²RS­uý*<šÄÍ?*ªÎŒ‡ÄHõ‰l“@ƒîNû`F¬ãüÿhÈç_Ã|˜ãÆ(EíÌD"^µ”¿Vr†,q?÷SnüsŸŒùÌÕÆÎAÞ>F”µ7þÇ~+<}ÈÁ§%dø1QŸ~¡k ¹û0j®ÉÃ"“ó⟗ÁµËZâøâ„U€yg;d<ꗆƅ܆tÂM}jžgæ5É*ñçº7ó 6¼•þÁ àGoÕÌ7È8 üH®ªš8½IЯ–©ÈDÏY ANfy ­æ1™drU/ùSÀPþ¯ÊÛ¿Ñÿ1ˆ}%®²'Sœà…àGyô¥|øçGuy*EÓRÔ‡Hp„ŠÎLOÁ(éòj°øúÄÌd_ÕqôËÅsáA¼%óÝÿK÷ö;=Ñü޳‚êÖ躞È^4¶R8/ïá3ÃPü Èö¸“ßNq8û—T§Š[¡ú|†«¥s±ÕU}Å$ºû)Ìp”²ºº4Km0aì&lé,9SJçÞwã ©XoïÈ#*ûógj…Þ@ÿùEzàÞ‚~•¾ðN?Q—ر*Ⱦ3¹ÿ£ˆŽEýUI‘Ê;^R+§=ä(BÅmfµ–;bˆj¡¯ëA&4Ž~Ô¦Öøuðãg™­øõéõ>F>3 ÄÌ«/€œqUéoð£„ÕÛ9/ÓsÎBÁ› ɺüÝì社ڤ+➟‚/Ü‚”ÅÿP A7Ì8T‘÷ý‹¨IdEÅRïüö°ÿUêf[°úr©8ÜõÍé±oÿèAÿ E¥òcjáF1jR?нKêŠBb–6D#nµ.ZÉÅ¢ý\âÖ&|íèª!Ží(8Ä%bD8NKÙƒ£‰ä!11û_­³ˆ½ Яv‘‡_&r½„ø©«äÒ‡ÁЈD¢%œ‰ˆÁÖïî¶ÞCÌ­Ì>‰©‰¬~ðÛÌh¯ŒCŽy™qcÉZ£hMó¨yNï`fèçü†Ù˜ÁÿÈ‚£Ü Õ·9æ$T…ªj=µ»q)îë=þMN±Ù P²¿¿>G\-ì<àä Æ)¦%àïßù½pŒV–¿„Šà_P(²—„– Á¹Ydpd³\BUqÎw,_/0î$Ì¿¿ñ?e0ücš¸EõLbó 4³ÓpºR8>Møä úϵ•ÌYŠÇ§ŸÎS¿›PíGA›‰k4”~Âê(æ¹É˜ŸÂ&€HÉA«K\ùKäŸe>¼äÀ ©¼ÝCô`Ï.êwñ6¢«ùpÀú8%ÈϰëFB“„ÊÝfDûãd÷QqUöâ)…×ÕqÍ ¼»t^úÏÃÉÊQePÝ?†§¦b5ú•¦³® £WØ?ãþL[´ñõä™Á—Óø-¿ª\T+tT¿»„úݲÔp[äØw©0ËÊÕÖ;u5ˆý÷˜°Äü»¸Õ|¦nw#ðc nwt˜ÃMp'5ß^Ý‘"5µE/¸u©0¨€¶¶œÝ—kö*¤ãí(øQÉ„r?Ô¿Ðÿ×|fo• ìŸ8•}N2ÃÂVЯÐ^ÄÊa¦> (>FvuˆaþÇ-ÝüHîìðtU<'^¦±G ]q*Ñ>)Ú]Ü« ßìŸØÞèÜ’EÔkà>U†}rS]< Ç£6ܹÍYó’ýÛŸ °ÿz::WS%üŒu؉}¦3ª©ÔVv ¼Ç»Ý:ê$ ©‹nT@E ¶Q£<‚ºâ¶æŽ.…«?• ¶ÑtaÆ¢Ÿ$ ìhƒÚd:èQ0íDªš@U0. þê™õû—¤æ^èÁ=ÙLÆ4c@£iœ©‚ n÷sßÝÒþ1D*ìö5£ééü¢#1VÔø¨ÔÞTTáÄÃo/ÈéµÅnÛyw4«ÞÝÏà&t×uþáç”vÞÙÓü»H>¸²Øùѯ"Ùm,õ“û—d¶;½D4ë²)õWÛà»­NZÑ‹þó•va;±÷z73Ï¿‡­Ð/Òàx/ÑÌ‹E|{™“„5gtõÄd;\ˆF\LŸ}(±†X¹„ú«-äÏ)T[²€üì d4Q£9+®‚¢ý¯B³ÉZ1… y5YþfâþE¢õ/ppzÏØôë46ŽÅ4xEè`ñc§õX„“·9sѾF£÷—$§™ˆ7‘š~«`Ós¼ðN¨oÓ‰ß]‚Å"ާG²1ZÎ"~XK70(/Ùã,ð£²:ÈçD¿Ïÿ=ûw%«ˆï]eìÄ(䣨˜¾êPòòú9ð6•¦µ<=–ºK-×K<šn œ§ž`¦ÈéD âÊ,°9é8žÐj6øñ–ãê ~LqCÃëKŠ½â“ºW(¡no[Á{ÿQ’ì/àÉ +Çm%¥ŠzèêéÌEÕÍ~t¶¥²8G9Ž›žº¨é¸½OØw¼YäðêŠúê|ιojÿ5f}»7þ¹Ç>LoÆqMƒ£Õ'â×B':N}¨¡5œî¤S꣨M¡‰ø‹Q. ~*dŸàX¼7…ÜÅxÂÈsvÎm«ÃšÐ¸/-PÙí„n¢¶bš÷xOX‡8]2‚Tž_•Ítðc†©k^Q1Š'ŠÜbתãx\/©3ìß>À ÕQ-SU@£JC~°‹ç=úSzˆü¬âþT˜·”u~0l þQ¢"½ÙÙã õW;í=Ö['©(ïds†Ùyí öôþñGÑœü4dêûJº“cÛÓElž"ÊÐ=XF´ ¡~µ'2‰ð¨[ù“DµÆ[é%<ÚÓ=Ö@Ùü¨.’‹uB|;O·3ž_‡’!Ï{vÃqo7õ»Õ¸Qlq ŠzöO”ÁâÇ*듈~”GÇI FkÙà[ÃИ’pW_"Þ~%ÿoNtž®´ V¿Êìt'Jzðc/,&-G;ˆH‹üq†ê ~쎃¢ÇˆE‹xW.1ÃúQeÜ5We;±|upiA£¸\?ùÍHèÑáQƒ–3bbz&¿€ ›àvÁÓr©¨àÅ çóÔ|òб+¿q›µÒ—ã3u3ÝÙ1u¯¸Ôõ鈼,(+I¾v&ÿòb8‹Å(Îw'\ÜDË£`ÛdâWo~Ò‡¦*ß?Q»Ÿ13¢²á³7°+ÌsYÐ9aìöú¯k[ËîŠÿÑ—â Q­)üb2ç­8äÿ¸MÖЧ½gÿÄú,ÉÓ)·æ=L`¶8ïî'IÃ~#•9ÎR ÷¢ïs™™NÂÂ:R.üä‰Tûl7ç=µ^øç³©Þõ!#?~tQ~ÜCã]•^ö)Ñé¶lÎT  9ûríÕ‰ñä7Qô =g˜á U‡ÏsT’á0„ƒ+Ä%?,ó8ßw8Žé`<ïad Ñ53‚I«Ñ¯¦éVj•ÿþ%yÙ×í>NÅÀ 2þð à4ØæŸÌ0Ü.UCT,g·rÛcaZ™é*Šš{[NdW¯-T}ÿžÀ?мh ýðÂ=ýç¾0ÅTÃùÀ_îák%qWroÇ jžèW¸ò©ZKfR)ž3‡ãâz´WÓœCø_ü[Ã7"zÏLTøGHb^P|AgÄR;¡SÛ¹I¥­Ç {ì*mça§ÜvöO¼Ô/ýðgÙ¬ªô#CMÅó£®ðôÁIöT+5M¶Î»Î;ëòÍ?d‰G±PÈÇQߺL,÷xþ`j›¦±{bO¬Q!Ô¯ŽáŸ—‡p?&ã íåLªj‘ÛöÀÿð(%È#j°«oö¿ œE~3!ïË ìµKŒCÃÜŠ¶æyžÞNpD³Òò“Û~"¯¯/¿Ëzž×ñ}Îçâ››­”Tk=µÉËө߉—™ðMÆ¡T„…Õ†é†SKq8þÑ<˜³ØÖÈÌ:ðîpj¤'Ôð_bñ8DäÔ÷ÖÄ_˜Aƒê-NÿãYEì/ÄûðUxÔEfv“NOÔX…A1é®P+ÍFz9š¢_ ¢ª¸¿z¬*Êsž{ÓõÍ2a'äÇ¢*nµ< ˜ÊNLš§ŸË*z!þÇ}ž†´…ÝnCë:ü  eèö’çv\GeMåìçá5D<£¨“-é ,À1Ô³ô\Uí@±ßAõnâêhÜš5DÅhacèΛˆkš=ÿRi¾ñ ÓàŸÏk}ÈŸr«Õd3UjžÛQ}™j³mäùmѬž‚Gáiá·QÍFQ›Þ— Ô7äø¦~·¢5Ź gþBÅq•N¶‚N ›ä±} ýëžjÛë&Š»;9ý’Nò4Œz‰ciG¶P\M”™ÄZ1Ò{þÖ°btá:¬Ól* Ü·»vÛ°gân½_M¯K³Œýw#ð¬Ä>tŠ¿1¿ižIß`eúRá8m÷â‡b'¥‰"wir žÿQƒJÝ•ìr“Ä ïžó¨Æ.XØ•÷õ»‰ù”Ú×hÕîÑ ë« ¢‰ÿ ü¸åŠøÿ!­ÊÿñþWaèËžeÇewܽvÿœwèW_aŸõ‹k÷·Ë7Ø×©àt£`ì8£IÑ–æØx*nd*S*áÐ/³‹ØûÛ;oð}¨‘ŠMÅmùR´³Åiú—%ãàIOý©¶m`ø@ÿnÄ[ÖlöO¼IäJ„;Â=˜\å ’h¨8K,»Î*øÒϨôÍ3~V¨¿êʳ?ª²ÃsöñüììCå=ôÿõ/\ñ­¯î³ë?Ç×®-Öd; ϯÝI¥”§‡ì®‹]rm‹=Üë±Ö‰Ÿ:–ØV5gøQ…XPœ·wÛ=ì"Vt4¡þÏ?/ü“ýéÅ =ºÍjÎùôœEK$].ZŠ¢ú•ñ®7ÕËøçÍÄEÜóŒv†èš\µ$§˜,Πp{ú?ÆÂ@šðLßõfâùµÉ|ï0³éàÇbüŸ2!úµ;ij °™¸üËI¢À‹`g8ËJ ÚÜ%6D掟»ÍÇþW£È¿Ó¡_]&ξ'Þw`îˈ¦½œ6ÁŒ˜Å«j~œÝR¢QýN]ˆÊËÙDÖš¸Âq€öÁkîÀ$®Èüb¢ïhPgp•«Ÿ–x?Õ63nI"®ÂoÇe·$ÿX¡šSïÙ¿ý ç¡?²ŸŸn`ÿÄÀO‡õŒ~„ç×c>.õ˜W·x¾~èìŸøÈ™NÿàrÜÒüËyrØ…8I餫-:·fÛ*â¬Ó@¯VT\•Ãß<ŠÿE~9P àH#èx8è0˜§É3¼òv–¬6†Šâl±×N¶ˆnÌ+'¹îYð'©ZI<ªŽ>_t)“j¤á:šNWêÚáŸoUqð?ÚˆçÿàéíðÖð=äØgáp?ö ­ß²{[4’óô\UŠ.rð*Ã.ü~?ÝNyž?Ø*~Läùµ•XqÏd?Ð;ŠS"ÝÅÝàŸìC¿Æ3g/à|Eé)C*ã¯_ÅÄ??Êgo‘ÅíŸ8NT¤Í¥àŸÓI$÷<¿bªß6Ë}ˆnû8Ô9=aÿ—“ÔïÞ%ÚÏcã¥p©ì¶JUÿ¦þ*•UÚžBI~åF‡;ËYžH‡Å"~ö|É:T“žîtàG;vùð< ¤9õVñ Žâè•K#½·.;Ý]… †E_Û¥ÊËahŠ[ñ)>ÀÚ¶³“åMêN¢Ùsç2õc\‘A<·ü,wÊ”®º(ɨ÷ë½S–Xœdììл*-þG ºxò¹ËRwµý+>h¾Žj®É\¨àQ¤«:gFè6(ÊÉTbE)ÔÊ€ý¯>£_?áàų ^·3;¢Û˜\‰ÙôvvKwf<–:´;:¬+7|Ô|£IT 'z)+©7ÿX3Þð¿øâž+‘uÖ;~D«ÒÝOï›~ðâ©k»õ§Õ)å\f¿OýîsW;&;¸¿³ðüó€.Å ðÝÓXmœ9¢ŽheÙB±OÛíNôæ}ØÿjþùÏõÔq÷% ë]ƒ‹þ§8C?P7' nÕ&ž-6”j©!Ü¿ý‘µÆj/^P‰´=ú‘35yeÙ¥k'1å%Õ±s¨“©OÅx©ìbôÝ!þÏ7Eœ~ìŸ8•¸ºõ~ üã™o("JE´œh°‘6(nÓÉv©Võ®á FòülU·äõ»‘É*§áä§{ݳ{o|rÒ Ä‹ÏDì¦d㫈⽜ºÁŒX ü¸ŽïyvÚ0–äú¯©¥_ÌÝ:‚œyUŽÇá™ÿ)8J1Ë*øƒ1ÏÓÿQˆ÷w&ާæ7 Üh,‡ÀmGX~„Còì廋ØÛ$ýHÿ¹_û—ìçùQ5A˜Ô_õ¡[òï¯Åq}侯OýÕLá&m ‹ó¨vžžþ* pEòÆãAðPì×¹(¨¾j ûÈ ³êÿÉšüÆ‘ÆÔÉùû j«¿?òwÏÊÉMéýßôPýëÊÔ·ûŠ. Z¢óuÕãO~£~DYúÏ=»ŽG0Éàƒ‰öç9îðàÇi¼xºê'Þ8³­DöC:”[ÓÁ~,;NœÎÍY+†úuŽï–ì xšçÞ§ · =â³AM_ðåϯ­¥|‰1¬ï×ÎöÓ*J‡ó¯ß­DÌM­[¡¸Gfÿ’óDú(î½ R9}KÕ‡xöÓòìÿ¥tD½üØ!SÚ¿ÄÃ?|¨ßõì5%ë†ÚÉîí“uWu_'sïáùçIÙ¯p+3ßGÇ#Üî?ùäÉÌ0 ûu-fÿÄ€ê•ìŸ8—ëQõЍä%“éj|®û3(Ís›ÁÊÑOÒšzÙ²xó=ÍÔ¿Ù°…ˆìO–‚«—Y ñÞ"ͬ^ÎkðVà§\Q9©Ê¥F±‹ÊÎÚ˜ÆÎÝ Üîìò,n˯  u£Þ.ºm:ž&ÓÉ»ª×°xv*;p'äU)Èñ:éî tŸ¯?òáW\“Ãh¨â¢Ï=­ñU7©§j 7Ž~ed.¿Ù7‚ÝßÙÊ󣆒±$C¶éZî9æW£9}—é`oÜíè?ïBUïÎæ;˜‰›óFõæ^/Et€{+GÄqï¡ÿ¯¿xèÊöͳ ¢Yµ~ØýÜTŒµßZMÿGqçÄÿø×]Áð8è Ù¿äçv‡LÈþ%¨J(dkøÇq»-®ü}'Ž~¬µýlÏ!ÿJÞ†ˆ9ì;±ƒ:~†§|-åv1i~„Œœ±VYEQ[Ös÷u!+ß +­F†× q…85ON…‡v¦¦+ã7{úüx¦ÙÀ…àÇ+ÔôY°‚(Yãé҈½ó–w€yGÛî'ûì1ϵ¢s= ¶&y$«Ë×g ¸”’¬l3þù´œÞ¨o3™óh§]0#–rÆÙ»—Ï£y¥3ûÁGÒ“=ŽGÏ)¥–À;ƒçÁŽs SY±ƒ=œƒ>Úk®ßì”Ì œ¨3Hƒ—ý8òœÊ«Hý jmÃàZzö/ÙÁF{'·ˆüNà§kxÆ?dMu|q‡´š…_ä"ªyöÍÿ ÿèµ1éÅ(q•X_—<üGpžë^ÿ¦Ž×å ðã“+þùX¼÷¾8æ9án{¹ŸWÈÒàI}*²Bé¤ðê9Ì«>ÿþ¼|"ä¦s#»sÚºèKÐ?Ø“ó\˜ £ª œhѦjM1ü„ý:±%9½xé¾¾¢SŸÕ-gnFc5„úÝÀ;§%²=5mp^×ñÙ³êýçÙ8JÆ;Ýÿü1ÝtϘaGüóyÄ{?|ô“tT~àtOëÈwW¥ý@T„½}‘½ÐÃ*’‡¢þj±ÿ8„óÚ}þ…Ò<§£%ZûaøGzê—#ÂGÂçvÉ,Î÷k±›Èÿ¸ÁY)O_‡ç)‰K¨^¡›« øç ©¾ÊnÒ»73ÒFÅ8t@Σ2z9Øš \ÎþWûÒÚÑ› ↥U+sªœgÿĈ¦¶æ±ŠÿÑØŠÈ“ú€PÛqåƒê ðÈ?^”¿’•&‘¿‘A[ìȸUµš;‰Pf¶ˆîìæ^QtáóÏo³OKñýê/xÂIbgJrŠœøç‰R—ÑeæÁD+²#Jdñ‰ü㥡ì¼4,ßóDuf‡¶=M5÷Ï\ðmp¤ˆðT¯_í²Š°¦àŸ‡a¿ÄÉ8§Ù¨ûíM–“ñÂCú§ú«ÚÚ2|b'ì|ßkAŽ•¬`&¨N9Pž+äWˆ­¯’£þ|ªâÁ¹jë¦Vâ§ûI•ù.L¶>ô‹‰½ò½8»Ý4è2¾ó%ê¬10‰›ø×'襆³âYe±V†¬"˜õs^gA¦qú6ìDiýÙkú£æX«"ó±v%”hõA±Ž;ß\× ªŠïð°³n0 Þİþ¼Í+±ÿ#ÈaºÓã#1“2‚ÁÃ7À¯çGu—<ñ ù@Jÿ;ðQû“ÛÀÊУùÇ®³(Q}ú—Ü1ê2Å:³ñèÞêÕ/Ô-Òa°©²•¸©…µÙèÕ‚8 >Ìt\êùèYA²jÓý|ÁdŒáTÃ-§þ<„úóÆŸpþ¥¨<ù:Ô–Þ0õaJèz¿)ød¥ÜË#ì}^…¹®ˆÕ/OÎåÇüÚ(ØgkWY-t/„墶ÑBõZ³Ã0÷›Cäõ˜#“:ŒH¾q>Ä‹ü#€ÕFƒXÝ ãŸÏ\Mî6ÐÍð'gI!‹ŠEΛÛP¯½#ÿâlÄtD«u¼à «º~Ì©tvwóøPÓïò€H¤?øU-¢0úU rîoúÝüË)£½ çrý•ÃZu²»Ë¿´ê?ú¡à]žuËi²×øØÑøƒçx¡Sø¢Ê|^5¸Ÿðú'†ØÊsféq@©Z’³dæ¬&à-ó`_ËÞØý$ v–Zö$HSªä`+ïéűI´‹Êþ0;,¯Žãéý(ú š­àrKÉ”¬þ»5PľG}™Šéâ·a§Ó“´ÁR¶Àާ UAÙK<ü!ÿH ^ŸÜ©:ŠÒøÆ ”©ÁˆÊŠqWƤÂl<ùÇ*úï*¬îN<_ë»—Íè bãÿÁŒ’ïþB?ߪ ¥Ÿõ!`r­¸";úÝ͆Aÿ«›ÄÏÌš¥®® £(ýw+ãV3]Ïh._¡ß]ZW%ê1ª3öÕ̤t,±ò… lîøÀ­tß°;×ˬ¤T—èEÈò¢²Ò ž˜œÓU&>…ÀîÔ‚¯èŒb·6øÕX”¬ ckÌ­pG³Èà’Ñq+&§™Rüî¼ÚfÊ(ÍêTfõ»¼&Ëâá®Ó]å*öKSXšë|‚Å?>6ú¦ÂöÖf3Xù‹d=ˆ|`®òŠñbŒs»á? 8ꯀ"¾&–Üd¤K[ sr ïXí×?Á¸™måks’Q¥zVÙ L wç²ÓÄPçPVœXjN3ý áÏ¤ÚÆ^´™áÎ;›}ìuíeí©¸Þ+|R2X•LF&S§–Dpoí¼è¿V³ç<€ÿàA¶äŠëíŒÓmUnü“ÿ4æò-PKh•µWê\Ç ˆÛ¶rj5=ùGcú'Þÿ¥E=”²è¯ =ÊÏLÔ3êEµ®:FQE1Tk®SË©¹iŸµÉeÚÀ\ ÓN­_#•éZ†åÔ–N„?ŸɌ戲^© îc[¶ë'sG“W þÜŸ'ý l2¶¯=ó?²GŠ?ÏCýÇ)aõ!<‚Mß ú€µ"V_ìhØßÚd‹±Íyô Ÿ^óZ%#úÝ@QK˜_ކ/.AÖ0+Ÿ›rÌå 'Ð c9ìÃhmðOVl£-Ä_ÔåÙ~@âAÖÕá IOT¢ÒÍ\ó^4 w°Ðû±ú©Ñ9F”Á¾´ÕQ ²Z7r¢‚d@ñ ãȈa“‘#ÌG§“ÈÚš3zÄÁf,wò9µOá<;•Z!N_ƒ×ïâu›{Ùžk3±bµuCŒ/ˆè[ƒíŸÅ\!ƒ+º\–è/üúóüô/™ë4 ã žsžf#HõDØï© 7©¸â`~­fżä8dd/uílÚñïf ük«5ÔD,}Àǯñ3QlÇzÕE\’ùµ° ÌìÆ+xá\Ʋ¤ÄàW±©ºQDvçµëa®Ø ¾¢>g_ ¯aå–?(K¢¿z,MúÏF:Š.ªÑ
    ¯½7€—õ€á­ ÷SÓÃY¯Ï™ ~u‡û˜n£“Ro~˜95‡@‹‚áSêà3+Êt M‚n)9™=zjíL¨õ7Îì.HaW#ot‡ðF‹~Ì?7È? ÁRØíà}Òêõkà+–ágÒÀÉo¿réa )iÕåððÅA3 É#¼S“éŸhͯfY¥SàWÕa@Þ£Ÿ²øêTÞoWœÁYg&³ÉCµf51Þy‚-©¸¦ûÊO¼Íò&ók‡¡†I&€›e›ÓäñE'øíÌ ¯§EÄ{l!ÂNyûÎ3/1pŠ–6u·hA¯½VÔ˜¼ŽøÇ¿û›ð罄]ÎîŽÕ;mYfìÒPqÛøZÂ3ùƒÑй:S~·@˜/Ë1püÇ18ãeäï°Ä£AJÓc§®“¤F>:YÓy¢ç»Îg8Ì"Îow(•Ñï>€?^·+Oy ðÑ)°ü©Áí÷£Š&wφñÐÿT¿ÛM[Š•¬ ëqü* ×<Œ»hÕ«k]¤2e3ÖûŸqƒúó V=µõ¿ â=)@¾6•w¥Lϧ³ò8©/&O ©“ÐäŸävCðHwÉ? „«¿:¦ü©•‚ϱÉáxŽO–åÂ^ÿ•~MÖõIë)¢¡ê†}‘ϼÅßxÕçŽ_s¾¹Îc³ÅV*SŹþcŒlJæ– {ÿ;š_oò‘¦ü/£‘Ÿù–Xý°l„U{ ïs”“(K”œD;ùCw…6ê*Vûóóù©v¨±—ãP‡Xž áÖ¬fZ2ßÉ9G…ÿÇ&22ËžâÞú«üêGQ6° Ÿÿ…¨ø2ñô¦¥‡ Ž zÕ›ücŠy/Ðÿ±ÿQœNï÷ø¼Þ2 ʆJègg”úF”Àïë°emêí“à?âàÑ®Qa‘þüžYÝx ~UЬ¡×¹ýURã,øê^=™êYÜ$<ÈÙ¾¶"«(§²‡ÕÖ­˜n_”Ÿ^iàÏŸÑ?±®ùeÃBôWÓáî³Ùð„‹ÏÌ¢$RsržDùÀ\õßÉŠ.Ò¹ý 5òué Ò’ŠóFôÓKPØ,C­#þW·`„ü©‰MÿݱΛÛùQ·á삈Ê’Uçä6€+]¿ºj´¤Žð„Lo{ô»™ìµÌz°êVßøöœ`¹ýn1Ãy½—”›ZaÞø®ìÌS ž‚Á诚Ñ1qˆyeD&€ãžœ§Gæ+ú«d0»ËGàWA£³3ëº>ˆót¡¨¯”±Úï°Q#±é¸WþFcû|*wQ›’“Þ\ÍZöŠö$ö|d%÷Tô/ †ÿp§~°5XJe¦ºm׉Pþ'üÇU[ÒïfÄVª8*7œGÿ _<·¦þ#;ý¯î«‹5d`cô¾RÔçJC%ú ù¿_:óFˆF •õÎâµz^­.wÌ Úk¥´ªÇ/ÎLKþÑ‹Õ ˜NŸ%DTµ–˸¥TQIÌR¿þý–þÿo*'•"â ¶e+ÙÌp|àD5õqä±T ùÓ®Žþ‰¹DD•ØßPím ÈÉC<ÑFÖ|K¬ü;¶ÆêŸû„Øü{L⨓(¦§þiÿ’íJ ¢ú«œ\Z"§¹XÒbprÖôôD²!±œÕAq+ùÑðœbúDm¼ó­ø~O®¯«kãñmÁ»N`ë3ð¿éd"9A® ¾¬—òll èÕ%‡')+E¨à{ek©f'SLN™ü*#ò4bÙ8x£ôøO?ª5Ê·p_ønçx{´GTÐ’„³ËÌ?/ÀYŗ˸ž/œ_W~-Å“¼FÝ•Tò*Qn/TÌñçõõÄ}ÅaHêéAáø¯6wúËäpy«ûaxykþàXüEêÒªP­ð_àG¶ýÕr¹[TñÅ—¥´?ÔŸ×R;£¿ê>+@¾—=ÑW­ÁãTíol´0î‚Ú'…?/GÞT¡÷Ä¿ÔÆ‹nE[å+Gµ§®[àø*·@NÙ=×Y™Ø¸/­~ä‡eaã–:„ʺÑð¿«MiDƒÅHêð›%AΞ˼F_™È£¿:_è§•@`ƒt&b'sÓù£©±ÛHK¿’“Xèöìk7vX…XЋ»uJÞá4“‚Ù}¿Å"×7ü}Î/Ÿ!:Šÿ˜N¿v«–$/–0†ý3|ÊV2aÆËL§ÿ•ÝÈCNâþ*¯s½âJu†Þ ëæÈ?>ékÐ<1æÃ'Ô€™xDÿ’rfUr¤ièwËà›¦˜‡ð Ñ ä4.à9+Ê6b•s{UÐâ\'“¼G4v^6лÓœçÌâÚk›‹˜ñwÃÑ÷¡™Ñ^{Ý^ Ý@R3wÖš?XHÑKLrî À“WŒLá ï~T|ðBú_µ ÿñ`ú·g‚ÿ0ígÌßáå3ƒ_µ¢j~´\mÎ5 ‰qcfG9°¹hr£ó)|C'ÐqàW±v1èXwÎèdoÉ•í¡ ðt3µ„Á¯â€L¿JhOL’ž.”i¨6Ø…ÅÔ†«¹pÀð‹×¶XßõžNª´vt>ü'b `þy¦;ÝW'9jÈîÚ²0çé«ò^iÁ|¶ ¿´hj¥ýk’#–Ô;‰sê3uºº¹_LrѪh³Ô‚¿8°Œ@?Þ£ÁØ÷ôÔú•ùZjîØn¦G õÄØHêww£S.#ÁV#%wL&kp×»ˆ­Ø“×DéS±gÈj<¿›éñÅ»kóéŸ8?t‚y–ðÈÉG=vë)¶â? ¬¶?¨úSÿÁô òÙ›‚©–hfÆâ}½©z™²”Ž|æ"öö-» þàâ ÚHç[þksàª]#qÇ÷ŒÄŸX½hçï5—ëñ&þüéyv}ÿWXü¡d‹`Í@úïæãóg‘Tft0è–~7&jœ˜0üVý`<0tè9EoÎÒòùµ(ᬸ[Ù¬ù𹚜Ç]üÊ»Üßÿà+›¬¯g¤¦‡ܬXÿñün5Z‰ŒøùáâWŸÐïîãá^zâ1*’ýíç>Î!¾‡ÒŸ¹N¥±v¯±Ö«É’ò…\dMk¾pR™‹þWÂ_Ku¨„?ó¦Öù üF\òWD¾¹QÉ֋ɶ³ÕÜ©ž» GëÆYÀ¢*ä9}Ä-læê®ÞÍíÂ~¶`s°…EÈVJÒäü3…øy¹ùœŸïÏüÁx„\DÙ'¥‡15š‡Þ] Ýo¤/ó?šrç> ?âó Á<×1I%kÑ?ñõÓÇðµÈ¢»Hì‘•þ‰š ÿq^*Iüj½HI¢'¬ºŠÂ¬¹ŸøÙÏN½yRjI SÉùƒAüyYªÈ9ò¥dR9é!¼K–Ù÷ØSI¢ÎÓ+ä…»›/›3sk<ü¹7'RW…΂wèyˆù¹ò«h%fr"ñEEÀãú~ç?š)]´;D‰6Êꨮ0•}1¯ê£ßjHíGt{çW•þ‰É$š‚’å2£ã Û‘=6B#’ýÕDçþ6Ñ73^ '±“MF‡Ÿg¸£ÚG*3èìøLì7ó 5“ߌþä£äQs•1˜H)9Cijy¥œîôßPòLDG5›^$ y×.™Ì~ˆî÷ P |1—˜>öÚÔ¦‡G:Cþ/WØÈoƖè…®A|ø‘†h»Â<ƒÿoc+yÈ þú¤4JS¾ÿë»_ûýžíŽ2K-†þ*D]äè¢õýnAú·«è¯„òkêä$Jm”ðámÏ®7eþÇ3êW(Ï´,èw›PÿQMÍüKûLÄ9cUˆ¤G°âh±S<¤+N<ž?²!¢¾XIF~·r@ñ§±‚á?¶€Ú$"'õbâÇf2ˆ`<ÔoüùªÚs‹ä‘Øcvm õç³±Gû°—±‡'±ªÁäaüWEq<ø9µnû©ÿؤÄ@­õZÔÅN»Ã ÔCé”|f/þ¨˜¼D|h¢j€/µô³£´Y?Ùakm,qs‡ƒÇYÉuß×Ó£e^®&Pß ‚µ k*Vº7Ò»” |ý%ùÇ>øõ¤Ü™k\÷!ð®ÔBÜø¡»tkú'ö"ƒÉ‡»KÅa|¹u^%øˆÒF5ú—d153 È•U-~ÏžD|6õ•}ĩ˕©¬Ã“Uí(ŒUƒsJz¨À‹FÃ(ºU EפQßž’úËún¡¢$‘Ñþ#“>B¹ê ­þWQkD‘]°áuÁU¢ƒ_m0âÊrÆ6†Oôp:fö§6¾<û=‹œ‘œó ]Þ­úÁàWB­·Eä$ÿx‚[ \³$¸Ïc•±öe±ùNô¶™¨)9…þj5QuRc;ÿjÿ;…ÿHÞæ- ;×ó`~í6üP P½LäÌAèwÛ0M©3‘|Yº}†[hƒþž±;è„_Ȥ.ï6›Ì¦yqáÂË›)ݵ›ð)ßx«f€_u';z„fí4³öÁŸ Rã+þ#³Ý“ù)ì­Ì‚ÜŸ$ò‘Þ t°²\©W@aãšt°E9¢•@qÙ‘ç”j%|úÃŽëVÿ’½t¼ÊÇùÝË:C×–wàmEÁ¯¶‘ âNïàÏãóœ»ü‡Jÿ«Y"/ïxgVóÕMéÁµï›–Ÿ½Zçk/aiÏN”'†§=9ªÄ†§™€þí™Ó¾°ÓØ"Àõ8ÿ׾Э¢·È_—ZéðùU¹¥¬Tój5™ÿ±PñaÍ@[QÕWͪ&RÂÑßúëC"õ{Z¥¸6ÿáI¶P]ìQŸ¨=õƒD_ô»gÕª‡sבY0kÕÙiIT›Lï#v£ßýC‹OÙ Ò1‚üc½êò£·¢úÝÌb1½xô¢îØÒ²ÒÄ:¢û«Ø°àðí‰Xr‰8‘Øcnm†vDL‡ߊÊj31ÒAìŽ^”=qp=T±¤1#Ñ¿}’òEĦ#guX„Ìÿ¨ÀÎR‘9ì£wBqy•ý}ÅGõ Ÿ°æOÔ&ÿd‡µ´A¨æÛÀsß$ÏD~4ˆ÷Ùwu"ȹÕ÷1ÄNò°=xÁz2ê?*D°æð«ôøºÚòöÍÀÅçœÔzÊ"@_";ó^ÝÂ_Ýæ :¡´@ž4ýUxüùR¢¶b ¿É(»ó&_µ²>VÕÑõ¤þ|ˆ¸N•Jmê/cçOâYj¢$ðâ3·8#?×}þlsÓÖŠ9Ä㽉݋cÅ7 z^E¦5ž]µƒ×6èuFz7±xfG†´¿_>ÖÓhû˜®Y]í)Ús½°×È_bËäqeá¾ËƒX]3ÒQišêŠVFfX*µÝ&¼r Lzk±_{áښ㫼ôi?õäšî±æ+ºñw¥AÿŽÁD¿c©ë~+›Q?8Û[¥ñIø¦Òû6>Lÿ’±ø¦œÞôW׈<è_ ÅÔ'½¾±Þ\O5öL¦Ø6 š¯ÇÛGÍJ^ö²ÆVæG…®ÿX&<ùï‰O“—æÇ'­1Ö¡¿ªN÷¨öexÌðÓþtØÃXA7ßÑ  Ñ_Åc^»pÍcȉÿX#\I~!kÞCl0ÿqI³uÝè Òœž%5ðG}ˆê½èGÛÇ<€ÿøn¹É¨L,_I¸úíµQÚk¯Èg^Â-ã4ƒì§.|•‚{A_à)¯À€ä·ç¡ê[#+)ŒªK•o`Ž;,CÁ3Rôp>Õ~ÊqÍâ?šòœêÒF ±Š©!éÛ»ˆü%!ÙÐEö8ýsNð+Xôörþ£+ÿ2¡lƒ0-™ÕJçSø‘ùìãE.Þ±NÔ4Ðÿ4z؇™ ®¸*±if柛ðCñÅà?¶_eøæúaME³üGÆÿIýy"Å[Iæ<™äø:?ê…íºrZ-GvðÿQœ5¯ØZ¨eÕbL©Iý‡+ój„ûmbæ×޾D¨nzUôWŸÔ¡¨‚S¢¿úyáïÔ^j)ç®Ã] Ìfâm®‡/j‹åŒ¥O§Å&ú'ºayÖƒ^CƒµM©/)»”ªâ(6y-ý–VÙ'”Å@‰Æ`o•NÙïG5z‘G„‡»„Ù˜­®6I;Œÿ¸‚žëÞÌ7p‰”Rc§Ãl¿ŠŠGÚWš »’õý % =9_‹VT†e–#PÞzÓßÀòñ±×ù”[ä­ÈHÐé 5—*1¼Õl¶¦Ú®©"ÞR“àÏÂ"½¡êa QúXâ<‹óÙσ̇[ÏHÿ݈òë¶^jQV³êØKó3ÅÀƃTÙ°ÉD ¾‡88>ùÇk2Cø¢ªøâÅútæ„íŽníu²@kÈOůõÁ^ÂZÿ†/1Á‚úëR,A`Mˆ…-lí¾¹êÈb`fáÍ2•Ìðç+ð×}ùU’þWËYu“^†ïº‘/ù‡`»ýছ^æJ.éd°[Û¡ì s|Ý©ìK®ë _qS6… ^Ì=­ŒÚ(/öø"5Ø·" Cí˜u¥ÎYþI­â5,KGqL;f½rê;îépò ¨ˆ÷ÉûzøöÊè¡îÉ÷ô’mI÷’Eæu*>úâ—¦â7‹¡¿ú“x¼ŽôBãÙ]Ùêé^Ÿgë³>[_ÿ‘…Y…[ ú«æN8†¾tãÈ:ÖˆŠy<\F,~úuòOAÍ/Ôz›D^ªöÞÔÇd皯ÐecºÑBž„Q w,µãÏÌ?Àê¶á?bã?fâg‚¹‘C­‘‰D"çz™ÐýïÓ[R•"¸ŠÃÜáyt¥¿iô£çduNnv¿*•u7ÈA¶¥˜ÛÜ\Ÿ2Úüôøºt°9•ÅZç 6a~m¼Ê+²£2¥Þ‚O=@5É=ú/úÓI_¥7á;2®löl̺_ŽÆêâÙ‚ü£ºœ¡—&›íäÜßåÈi~ìÉ9,÷7‡ü#%µŒ[é€ü”îÛÉŸÒå=û}¶˜Á!×™.<]ŠlHŸž v¾Ó$R'10ñSCy7o鿟úvxÝëôE)kof¿o6°W¥ò¼´=;»¼-ó0¡¤+øU-žê÷ðo4çÿ÷¾ˆ«äwÌ*ÿ×'&UÚEˆ^ÿlOߨ<£ÑÚj_Ô#JiNûŽÍKõ†éŽCÿö¨¿Ø?1†RP$ŠÂxfÖë‹—ê æŸÏe~TA1E¢Ý£›b!çýüÙά¿©•Áw¤"眇YNý ¢ÖTÔ›É>&ÂVlŠ$£²NYÉ5fè˰që±tiÉ?*ëKÄŸDÎwô‰¼åÝPcµÅ¿ã#ÞcvæGý)ðæm‡ÛßE|DF‘¶â ò(Ñ¿Aä¹VìŸâW(Á"1Ït=žì\<ùuÐ_¥Ã®ŸÃÕÆêœæsvçX5Û©õÚ´Ÿœb%m"ö¼ yÂE Íág'a«}P´ZÝ‹šƒ.XÑý,Êy‡ÿÈ€_ÎÁš·m­Ô,ä1 É,|ð³xg°®J¥‚‘ëj"}E>U~HÖ•|q ¾n¦ðÑÒ„³âJTýuÈbÊ™ä)›Ý“ûá‡ÿHÃ{• Äá&v¶]`nqÕñöePn—$÷Ùä|s]wåƒ-õƒÓøé¡(xkKïç„vé¹Î>ü’F,<æm2\uFùî`^9¥üª{h»~èîVUíþjŒîV X²ŠeD¿µ@‰ŠŘLZd£$ì4JQÔ¸uàSëÃ/Àä— Ä^-låiô¶‰Krá5>cŸŒc*I|4ÀAÌ(êŒzt±ù€ü +=WcïËã=nPÝÝJ¦%›£l u†™GÕ•Óz‰ÿØO™þ¼ ŒEú¸/ ÿx 6´¶A£ÿn¬~Y¢‘ÔßÇ26ÅîÓ3…áÏWˆ<àWωNºEUÆwí ›k´“Ë ýUn¬ü9zr˜tå(‚òl+hØ𺓠zÁ¬\â;­IÅW]¨7äÎ%‚ÿ¸N¾»œ*”ëÆot—òdîÞN²Q ÜÀFŸá$‹Ó÷ÜÇ\²™8ÆeôWUd±ÃysÛ)=µÓ(>“Õÿ.Ëë£AõvëPIùR?X’>Z×àTSß]“y³Ѳ•cK ÇÕûÝ‘¸©¤è-\Jw&œú’)Ü].ÒËèÕF›³Ðß4–’ÍLÃê7Gÿü™Ùôè4ßBn4g‘Ä£¢¥o“„çå| U”<ÓEJpÝ~z¢I¢¬¦þc³N˜Ä’ÞîËBwª ¿Â&Au–ÕÈ ~Õ“ïÍNÒ ³ÿOê5øWç€Dtªú§ù‡d®Ò!5—Öë¾ÏÑå±­š‡JØj;%Ê/Îÿˆ¢Ô„?·ê*ŠémDtí…:H¨DÇ&/ÓºiÔújÁPïƒóa‰à …ì¿!õƒý±Lùõíâˆx®LÐÒâOö¡ÍG¯õÅjÔH­xýn!qœu¡`™ÓÐÓ¿–>^Á6¿Ç?YõÐ}舒MD4IéûMziýÁ¯,ÿ±q˜8ÿö8a}bÛ”°•­é`5ü*M$æ×NT‚K½Í`õÁ^༩󘺓è>÷û%UcCØå"þ|Ž6î'×\F[ ßÑÿñJŸNʾ²/ã×2¤õÄt»9 ‹KÞ 2VBlð zmk«fOóáóó‘ Lpx€CÒƒõ÷P™—H>Å?}ÅBi\ îä'Êj®ØÔur‹P­”Áw%—“9ñ`2«ÆøœE؈ ’^íôøŒM±Pt »M.Q‘X¤*ÿïB\«EQRi Ål~z *°<ÒKžÀg¯ÒóÐu·+yAJ#%=ëŸâ –á“2ƒm<㚑ĵ}ŠkÚݿ֬Lý`wžƒBØû‹¬ÓÃ4"Ê/n5Nƒ‡ ‹}B¶ÃxÇžö k¿ N®#Nj·][s|•þÚú•ƒüç1k^¿Ú Wáf|–¯X®C¨XƒáÏCÑ´’Œ§Þóú«á2ïÐ$% Ôî¡ÂlÇ6„Ÿ©ƒ¿LHÿ’mFFÖ\k.#ßO>Ó~¾¸ÖužÅ’øÏ`¦uœ”wÈ5%šï·8EdåÔ$yYìx.üÂ6ªI¶õ™žl!5võ.݆π8YS WÁŒáJ²Ò#~©´}ç?2€_ÍÓ«€B©ø¤ýhGÈ>ÆG‹(&óz©ënM¬Ú`N­ÍcðµÉCîI!׋ö,+™‹—ðwn¯¡Ò\³*=ód­æI+Å¿Ê4ÃDhnwƒ/¡äúB6R„úó #æbó£îqoòF¨PjR_<Ôy½Ë¨\ÍË_‹gNy}å¨ìÁCÃòÌOÿ„‹Vè?Ñ¥>ùÇ&úGlÓ‘»xKwõß rôßÍÒ˜—œÛè`_ ~ƈ ÿž^&•ì-ìA¦§½¨gl{9®º0מé<ѾÔÐf–qį)”œÇóo}ñЖIqa­šRûçBÙ¬¬Shµµ êTGýÇ]›7ú«8êªÚïªL"³áhНÖU´ÁøÒ‹0Šfj«Ô9J,ìü4ôW;ÉkÂÓtF¼rÑŽû“˹‰h,@¼g韘™\áÞc&üùUs>!¯c³]¤ÿU Œ­\ˆ}8ˆ=®Œ¦¢5‰»°¡_°9¿ë#õfÔ±#±bð¸}b)±ÌV|Äq4†/à¶cã¶&¶u—xªâ­_… ŠöÓücžR¼âþ£¸5q¶ªñx9* î¡Dúr4²‚Zˆ©?Õï–Ò¬e ïzÃ2ó³³`櫃b,¥‡Ik¹ g/;¿†=½ÉËQWQrþ#?uãPïú€Õe@4ƒ+Žƒ%ôÄn‚gvc_‰Ïö»OfíÇèãJiá!‹Ëà¯|xƒʹp2:~§>oæt¾J"»ƒyÎ߈¿»bùÞÃ\¿ÇóÕÂcUµ¾îŒü\÷ù‹-ók×ènøxtà&#`·2À´ 3Èh¢sbtã8{W¢u*™±kÏQõ¤–Ú)å¶k)ÇWuÕ‘b0>°!úÝÇü„øÕG¾Ë@ÿ’jôâÈ÷\NƋܧâ.gyui£.±óÅzq¥^ܪo)ƒ—‰kÜà”òc«ÐGïzcéd~›Ž}Ÿˆ¿Ç íÜÌjű¦èð>F¦ƒó¦ÿÕpúiµ‚·ŠBD~¦!;ÈOK8êR̯]C&#Ðïú›}Œç(g+²Ã^\ó ª(Óœ\À¤ÑB×#N¥Pø¾! l,‹ŸÝˆšk§1LÞe6ßaæŸg'zÆO¤öÞêF\ž¡gäPÁð%„«8;ý¯üèèKyž°ûzOúøÇ”ÌŒOeÞ§"¢ÖKr¤“ôªa¶£òþ~ëWq‚Ÿ),›ŠuÎ;Ò€7ý&J¸`ÞÕù;ô§Ëp_365Èj±âcú—@¹+éÓ<)#þ#÷í<¸âªš†Ð—ç¯ý”½š‘YCÞÙL®‰K®Õ-ð2sÆ}:^¤j6ʪ™4 ´ë$ýÌÅÆÔ0I˜-К§&®ôs>…AôWY)òpw;#6Õ#˜?¸)Q© ùBØœþ% ì•샨ÿˆO—®ÃÄ L¦øh¾mÂÒ˜âê_ü/þþÉVBq±“qÐïFÔ=õg›2™µþ‰íµ`”R'ÿØÖAõbz&?ÅþA!ÿ÷ëEQªi½à†¼A`–‰Z"¦R­T2ˆßÄ6æ>ƒ—/㼟¿Ò¿þ65Ñ[üÇl\%ý´xNhŒ–4&¤|j© j‚H­PA¼äÝ[©Å~ó4t!B¯‚ÿ¸†õÚ„õŸèè¿[໚¨ˆ÷X›üã”ØK¸·<& Œ½ºü†ÿ¸ î_u‹šíÏ?Ýáb¥<üÎg®ÖýüN¯*xëÞÁÌÌ׆üdÅVÚE®©) Ê~¦ ¨ÍX,}>0ŠYTJÔ"ÿxAŽp‚+ÿFÄŒááËë¶>jYlîBb‚ÒøOÖ›Iµ¤‰ýpÇWìä}NŽô’=ž€eŸêPW¢~0<iƒ2Y+Äõ$G3 ;ø‚7¯Ë7=®ì¦W+˜?xýnuiõ©º†Þº!þª)ósç›ëº+¦’H;!üàkG’ ”79Ãço#¿Ä“˜Üš¾ZÁ’nD±” ÏNgGî}ð¦:pÉa»K×P»ˆád»ÌïSêG—¬d+ ˆò½ÁƒÎÃÚÆ¦þü½C$iù—X²¹¥YEò–Äeí®kkޝ|°÷ °/2ä âõ€ÊçÃô/Im¼¦ÿÕ4ìé54X!ø§NFZzx4$z@ýG.c¼ôæè®Üu§gÒÿª!\<²HÕðÅö§#ÿ8lT”¨xéäôﱜú`Ùw– Êÿþ%ò.x ›¶;ôz"?üÇ3PÈ&ðEè$²›iT+ŒÌ?WÁ¯|ÑÛ¾džÒ*÷<Ì/ä<»Xo9gS‚gtÿ®WuZ%§º‰ŽNU@œ²ÜGÚÜjú+wúK="Îï ‚̤ñN²"ÈuÎn.%s¢΀r±·Xà<ÁætJ Ö‹Á<Ó—Èlzm2³ÆF,s3ô»íQK=Ëzj·×q2í=˜UžÓL‹Vj(~°¹\ÿ.¦;¯w—rV+bÝ‚7)ª¼(2Q+ß^×ÜK®µô nÄÎrzïÁìB`mÒ›‹d³Ç£ÔŒ%;ѹ£\å| ?+#èÕ”ƒØ¶ XsýŒñJ«utlÉ@m}%û.³ƒ½•=‘Ý‹ù7ò°4—˜öÅB/òU^N®«:ó£ÂrfÎø~aR1èR ŧÒϪÿ'ÿ½£~p¿ê~CÛè¨"¹mk¨VÄÄÂ|³…}Ãþþ3¤R•þ%ˆK3­#ª–BÛ¤ž¦ÿnG°áAÚkµö/ú(D[è_2vº<˜U ØGÖ˜†Lá#Þc ÝrFRuIñ£~ð9Q÷ âú ØüÔ6¢ó¬Õ)J•›±‰ô®ì´H¤æ×V¥ÿîY±•èô:lð.,á#rƒWàO¥ˆ˜RSCØŽŽ$3ˆu¼õ ?Í?6+iÑp zÍ9Mb_UAæ²³ô 0 oaâ»ÂÝ,† Ø¡ÍþÉÝî­m„ÿhN.ðSn,êhbÌÂX™ ØMäIÖ;êÈž;üGn±+BýÕMð« \Ç"˜l_|e^؈ix$MQ<çZr…”ݯx+âÙçâQo3Ÿ¥\¸þc]2³·4roÞW¬s/îî\ªGR€ {3#ì*\s¬Ð|ï>¯xY <ˆ"~|öT%†¶WÌ!Bœ€ÕðÁ+sùzô @æ‘—úA $g1kæÇ~ÃÞî’åå‘-É?®…Y²©ÚQ !Ó*‡¢ê >(=z./àF½GEjŠQËÃx+;“A±bj¸Ÿ ä6’ `œ8®…­e­¢^­¹Â"d9ñbV çYj5Ò~ÝFÙÚµèúÚ&¥ÿnfc=>¯,ÒUj G¡îðÔÇ(×CÝéê="×ídz3Ñä¶ V5ºÑ“þ‰U¨´Xí{B¬mÌÁO)oœÁæ%bx…;¢zJ§ µÞ|‘Üè)Q@òR«ÊqLÇ*£¶õ5•`)£> D«”ùçïÁ¯&ÁÈ¿¥"&.6¿Èç\/›’U]@¾P k›KžæÙí‰Îù ý¯RÁÈä‚[˜DaC8šñDéÍ’ðÕϸ×3Ñ¥¹³V^0À.ßuƒjËlÉDA<«kdi½<÷d5}|cÛ{Âè[ýwŸSËþÄ,Èü¨WÆ{|ñHòäÝÉ`ëÈ­øïûïn£rÕzvkƒÝÆëÄGý4ý}ñCËAàµðF·Éhø¹æD¹Çm¬ä_'’±÷nhÁ8ýÇKØÕ"#ÑÏb¿Æú cøÕ>8oîiYú'N°÷²§¶gųÝ3 ‚²Ý!nˆk¦C¿« gåÍk$¿ýOæ~¢»pÞ¹øJçÙÏ0/ÈßFa=HÿÝÚZ:SÉÀšOmåÕœ¨¯>)Õé_rû‡Ÿø»?ˆ­´ÔfˆšD‹¥õIâ¼j×f«Ì¶ OÕb­•vE- fsîúïÖùëïòˆ>Ø@OlÂXàYä˔ߵl`Ü7aÏÁŸ/‹dÿ’[ô¿j"¾}ìå§Oc‘KÈZp³ÝÄN¼ µ²øx“Ö¢°ùëãÿæ÷êÚdí2ÈÉ ¼‹øi«³ÒBÖILþþÿqª1;œÁ)NâÛO¯y·R´ë›h‚ÿi!á+Ë3ßr>1é)0&º½ñý>«ˆ>Msuõ ‹Ý´=Xä\S WœB_‚Ç}Žíš0A6–»@˜Žs¦œÄiü_ ᧸”ü¡×ül믖秭N"eð`9øýw~* nJ²˜²ùÇ5þÅ7¼Éxî×N²2æ×†7ÿcý/½ÉUbËéd•/ØG{,K±ˆn²‡ž©.!ĸ­ñšW`×oà“ÝUã<\ë\ûûjËà¨ÂIz5‚š‘ X Š)?8•¼ ó°kae3Éô/ «½o§öÖü¨*تoô?1¥w–YäDó>ô€*Cþá†Gÿ«›|B4ÐÅóè˜?“7´´°ÕRµé¿Ûþ£6Òƒëø³Ô¦åë{TÖ "ÿ˜e¾!Oê@o=XŸ 4ñ5cdb,];åQ¨gg óÔ[òT˜è°?òd¸á:ÁWx’FÙú[Hÿ«[(Ä*¢0îL7‘¹ÒfÄ€Ÿ¾ÉÏEÑV†Zo)ú«ìÄ;·éí4‘Ó;N‡ÂƒÆD£ù‡`«;ãiìoéþ¾Ø>¶ñ î|.ÿ{Á ÷ÆFé!â:×Ë®¤V·bkqÊ^r ÏVøó cšƒvô«zZ×Ì*•ÙÛø¾,󣮀.ÎbÞ¤;øU~öÚPÌtÞÜæJ í ™ÛGüÇrø*œ43š¨lH¾P¿L¾õþÃÇT±ý¿Ñ¿$¹ùljûk Wá?Ú|7?*@9JþQ–¸î*Oßi!äŸF"{Q*f–°ÃTÌ!|…Fl¨X~¾¯HÕ<š æŸïÖ3ò|ÿFnž‡YßùQ̯M­‡‘OO=ÇycS’¿•$.Èhßcö²7·g´G¥Æý¤QÞÔ<Å9&7cò^~%ù™›TËØþ'õçŸm…•ÏΓNǤkòì?ù/ŠrVñW31ÿãzØ¡¿zÿ‘NÍ¡~Q,üêÆ/-ëÿó†ÄªÅ{U×fªS˜[Ÿ[,ÐêjçÔ’ªç/í3&üùPNz6)'5ͨÿðÑ$¶ù&‘ê4ј#f¤V<¨ìV¼ÅMìßÞçSD¶îhº«2%q vê ˜ùb>¥ƒhIý [$V,¦ÍÒüÉ]îa‡×b‰m 3‰ÉSaIž/Ü¡ö#HúN"ýOó•Jj®ò•¨Î ¾0ñ:‰ñsõìXÅó#N¼ƒ6¡Ÿ×´øƒóÍu­öÑf×üÄDˆã¨K(ž³‹çeJåa K©Ù+N\­ÂxÿI–”W¾Å{\æš‹rŸ|éß~ǵ”ã+_µ‡èÍ9—¿zƒ†':ù‡Â^â1ÿ£²qÖ¨o&4³±ZWÔX‰îMâÜ,~l£±óÞú—äTO€7u£q·LEÇÅÇ|ò1Y®ã5µp#‰ÇO™³M•~¼™Ñ±•;cuŽE…Hoé†Åê¦ÿÕXõ¦¨ÇÂTÅûähIÉ­¬þíôþ06¡DUìËaj“/´„ñ?A±üèí^“ßü‰þÊþãF¨»1ÆŸëF™:‰à‰™v^*³1ßÜ@¦ÿn?G=âNo^ÁýNl&§2òÓQeÈÕ}8ô­fEY”ÜËvìßR*Qn¡ÚEÿ+O"{âæýh’³®ÝZæ’!Õ¦þcÌ$\Uh锌êJê?*Sÿ‘Ü¢ëÖF *$̯õqÔv72›0d*×*ÌéMçÈð.è¿ íCRêÏw:Ÿ™Ì2} CÄS0C&C•;SÎÄïØìý™'^®û)x¥½þÃÄ46Gð·ñX¥Þß[®Óó‘Ìp^ïøüÄ@mxRƒÐâ$•KèºX–®Åà; R;ø\dzÔàai‰F;ô» xº b›Âdµ¯ômNÿñ&v‹HF”×ídøó©øŒSd©c©›q·Ÿ'ÿèOõyôÅçŒ~ö¼TÄb]ÉZ/EUªC/òdÅ¿Æ8çßúBRã1?*óœ~má÷¶³Êaµ¤Ö”ê¾ùJ^V¹hk¤ÖSSÑ¿¤.3rM]…{>Žˆ«2•Ôs…Ô¢jk©?O¹IëC‡­Ò¿Èd°šô‰X&/ò ú4µÐ b# ¦Ó7²õƒ•mJ]øMüê æô Œ»; AqÿaYç‰ø^¢/þÃå™#>ËJÚHí:¾ç>hÿ*üÑ7b¸ÉXÁ¬à$Oôt ÍMô¸ ñ׉x´Ÿæ3•¢x›W(×’ËJr6–ßÖǪNL Jr Äþ%ùÂ(2†Å 9ó5WW†ðwØPÛÝkÈŽa³cíg+XÍûÚNZ=hwãõnñë(ö>•Xë¨ oµ[¶®j9ð³9|r¼Q^¼îl~ú«~ÿ o‘‰8opAäaÝðí;ñKD‰pç¬Qfky@â lšHþñ v¹'x˜Ý_d*Ø;ìR[ð«;d]·9Û&Tµäyºå|s]»ÔKúÝÁø¼TÉçç£z°6Ön¤Â|Ĭ†WÊ,?s?Îs§ c+Ói§•C®¥_ùÀô%b©ˆ%ý"–˜(öÙC<øó Ô2ø˜ŠYuSð«kd8ñÈ.ábèŸxN{f½¢Øûæp7äfzÜÕ,€ÿÈ ×q[> ~°êØõ°±¾ôOÜ*›SCw›ÌÂÍ,sÀ6õQž„z¯¡çjÀ“ ÁçÀWd@¹Õ—Ž}EÈ7ü-å)j®mÌáû&›°ã‹œ€7ñý<Èž¢ÓºÐæ„ZožHCÍå}òï¦x†ü ’ëcôo_żÁwXSoº˜_ƒ¸Cþ‘–Î-ÁàM«ÉA^ÈôOÜ.Ó}W?è¡DU—èíapL|Òqbˆ> hoÑf:³'wŸ¾W=Ñì>ÀGddºÕ»x¹a&ò|t’ï$v;O° ùÇAòµwdº@ó*‚Ž£n0½Vº£{{4û³°½0ùÇô¶ÝA¡ÞìuàËÔ¶ú9¯÷€²_+L.[¤5«< ‚ô9ÔHæAñ|Ån:æ@Þ@ 7Éþ¾…á?æÐÿjšñ‡•ç»ù‡''5Ïù+©tGßÓ‹wÕÿÑŸÎþ¨:ÒeÓ¤û}'ûHæ¶³wa¿õ¨ÿ¸MO<Ü@°ê ¨"ãµµ_³°Îãù·¾ødËKmÆ_Kèd ¹œßýõ§‘û]§þã€ê£ÕÓ©k•b¬rþ£ ê®ÆT«P?vBÛ߯‹ùD ì_%&û½‡ÿX¨ŽT¢bç×ܦªý×úty€_ ÃLÁ ¢¦à™ØÀTä„(‘^Š%bº®ª ý»½íWÖ*¾â%(ÐzâËýX‘’²=s#aÕÒEãi›Š2ý®w¤ú—TÒj7Äj¢¬‹ØÔcx çäQ`T«'gmf– )Æ.ÑOýÇ"¥ùÇG´ý™yÿ–г£Ï×4²—ÄØÁ+øKÝÕ ¾î§õÿÉÝn©m`?‰ëŸèVýàZ|Ѫ"¬üc¸ùò‰ð–…>ƒ/H%ÖGȼBW6·¤LJ~|ÛD|N¨B.¼ÏFâôDD‰Ÿð{ð£À´nëûE1M g— •yZq¼Z9ìÿ²+ËXtIÀ…ÝÅ qGtø{\ó5vÞÜñvÖÓß:ß\×}~oK£„?OD¾ÑåšqïLÊBpù_ôå¶v5¸|&ü‡5ðùI*™ýUXídUøÁ…! ±“Dv°‘ßÀFjêè¿ëGÿö=F¦ÄØáÒ½éßnc‚TM&–D%@ý` êÏ»QYìKtyJù'Úçÿ÷¾H@þ‘ÚyçÒS©ñOù`Û-å‚Zžüã›zÐ1ÿüº­* ïHòŸ‚¼ƒã°8¸M!<ç2ÙÍ‹Å~| Œw^£²^xj2œÇ“xò¹ É?†’³²ËÁø¸¸pÑíôÌÌ_¹ŸÐšªÉGœí=>µ ú±:d´ááWïlš¶»Uò<¸OiujÙê7 ¿Ûäª< ÑT~¯ÄdóßÁ'Ý×s`ù 0?*,Þ˜üêÿ(…%ý†H‚²úa$´:§—¬ªñBöFuëŽFœ{’èøyC±ñ‡úA_úï¶ÁÅo{Øœ#>ðwÌ?ƒþª'ñøAªþÒ¡ª5þc ¨]aþ–”;Oü0åZ¨3œ Þ #ß‹ï ÎÕ ÅRLýT&бµt"I õ4ÔN‚y‰ùsøÐ\ø7äa¬ÊSÿ‰©ß¿%„óîGs:,B¿»ƒ*ûÕFOòØø_òsà.ñèéž™þ‰WñË8ËhtjÚS Kqó¯ÿ’)Qà?ê“ÅD%¼‰§î#›Ñ[¥¿Ã,Í܋ӿ@ºÛ¥Ê¢ –ÔÿáÃD‘Í0WÇÉÍα&ß|7 £ú«#܉@ž’E2£¾”ŠNi.$²/åÀ¯’3Ùï ä9˜õ͸³âeÄ`º_Rž…@üÇ ½€(ÿ]ÿÄ«t~ÎEìSŸÌèª~V´—[Œ²öÞLAìIÿ¬1=°nf¯—Šy7üÑ89Ïe,"²‰)ûP“•‚7q²Ó¼QhÃE}qZˆ(¦W2gÛ;˜ãQ3x˜oŒ*Tž¦ÿUúâÌÃÍj/ÿ“>[‰å”2@îѵò‘vâ¯ü/þž†iÕ.»™Eiûõ» >«¥é%铟§á"ý¯¼Ô"tà­„ÆëÜ/]U¥±6P”çÉgJž¸¢FךRžB4p¾T˜´ùÅúóì—¨;;¦Ã7MgÄaægçÅFœ¿S+ÐWQóR?nú$ýwKkŒÀÊ÷ BÝ_[d¤­8L4ü‘Œ¦Ø}7*Vs‹È0*õµUÚ1“7oYÁnð @l»‰]bê%ËÐ#ò=ŸXã©óûq_ÿú“åŠÕêO©Ü—X¢IäEåˆiF³fj¬Ä%"•'p`náÆj®¨*ü{jsù‰:x†;TPÁWŒç*˃…ÏEn!OƒfmÇΟCùdG1K©Á._á?Š»ÎÀ§Õá_"÷žÅŠô‘ñ±I›á`™òk;k5GQµ­\†põWs”ÕZ9®Ë” ÉûCðCíІ­àº“È–zr*¾ža¡ZS `1ÝԱú$†ó)¨Ÿp¾¹®kþjKIçêý;‘-XS¡pæËá/&`ݧa—‘s½—OàÒ½Á¯y˜Œé4^ú+µ{~P‡XúÝø³Š è÷¸“º\Ëu¶†ûÎOÅù¦ ½¤NœÌ%æl”å¨ìX†•íЖôWÍTl0±óq”¶GÉ$³âoJƒƒß–/™…Ô‘¨w0ú«(äÖüÁª\Ã.bòd¹ŠŽÊ³Pwe z®–x|°RldMò£˜ÌÜb¼Ð‹»Ð=EÍ5ŒúxLKôªË5¦ï¹0–(Ñ¿¨ B­wP¤„ &·¦5f”‡©~¨+ˆU}p¬>øŠx&oøåÜ©}ð?kÑJ§fð|çÍm¤tÕnp'?’9ƒþñôúËYÔÌH Ô$`6“aO¥E5úW½£»–/–û#‘I-îIM9KÏMUW¥Ô6e7þ×((¨,P¼Õ·25½1øa/P§zdnŠ=³Ù¸êÏ0]ÍÔ7†ÀjšVoh´÷è}ýן+£™uT»ÑŒ^ì¾ú!c0ÞhUBqÉ?J¢ßÍmojWìE˜Dø‚þW™¹êèFóïG°ð&«>£7¿ú5„ç¯Oÿ÷~©x(iw.ÒFIåüî×V~o D¿ë¡UÔÞªýwOÚÊde†T%EÿEüJQòá?*pÖ™ôÚb¿¢6£ÿÕ ­¨˜£uDáUWýµ:Çšùf*tRÃñ"x$qGé§%ÀÚïè€U›úÈt±ÙÖ++”(b%±åD2šXýdèw«éÃÄ64Rïõ©d¡ý˜fÛRäü.'ø,³ ¿:"F!l!wù×$X«×^LØ…çt<8ÀžÁ´¬d6€ñSüj¤büՈáÝÐ_5ijåÄæ!æi&ï`½Ÿð)]Øý8Nv²6å'wÛK ³ÑžâZn²  ØÁ<ôNœDÙTÛÁ:„¥Ÿ7Ž/¶)•"Xó•­¦š?1K^ž,­ d2\tpÿÔd_[AŽbo½eÍuÄb5‰·×éÈ?\«ë')3µ’øK1ýçþÈ:uö`Rµ ÓEGÌ+¬[ÚM®à"¹]m®¸0ùìQç›ëZí­MÕ6ˆYzT|Xk"Ø‚r'~vîE Ú üJ7¢“—¼ r#«Ã†¿à~m'[”òƒžþé†÷·zôTämnçÜ_€rþ¼1Ðk²Ý—"*\Ob2†ÅèÂÖ2Ÿdžé#ýw¯šyèWÕ€N“ä$|ñ8þut«šßÏéCOá=e¨6T¤ä­ì¬ÇÀÉ4–r~IÑ=§&“)ÏüZ›==QiíùPt #Žù‰¸éð¢ßD qJ –ƒsÀð‹¬°.&Áþ»u¿ûÙ&‚mÁèw+2]6ÚŒœöEêŬúsSõfþù¯UGÆS*h£ñž ù¾b§šH+®ŽSQSñ‡6†¾‡™Ù~®=§Ä¢ÖÃ7Ä–&ÒG‚_í£~ 1Ý*ú·O¿Ú¯†§u­ð×WÛ”uÔÁïÆò­#FöH%«cûˆCØÀs ûˆ\»P©¹þ»¾Ì:ò~†Øm ëYýwgÀÄÁ¼Ö¿ÀXWa*@wlY<ý±óþk7aï§$£éØöWP¦yDø©/K^Kz«÷ËÝ ÄgqËäŸö¿j¤ýNæÑ˜¬Œ›LæHÖ °÷ôõøÝÐz>ç8¾ã:ç0• <9º¶ìò¹­–š‘ëœD<\š|¥øÕ òÜçûC¤W>$»ƒmn„½Â¯ƒÿøö2ù~>þËìÏFd?”«ºuHUKt0‚Îzë§àb à¬êóÓä•èäbéfv:ß\ײó?Ö‹MœRüG ô<)‹ô¢²Qh'üÇ}¤|ˆ½›„-M –ˆ×<…þ?ª4Ðï†ýÖ@m%º«xÃwßdÅxr9Ö«|DQÛ ×OÁ î‚Ë$2Žð *qîŸØ¿KdO>bw8øU ùÂN~z©CXÕTÄøç0¼v´%9C?ó);lAmòR®»$Ñøqð¦62YüÄ0úݾê#Ñ…ûfÃ7Þ#[Éÿ¬Êĉûz~ì^N#`€’'´Àã$çÊŠ˚Ż‚˜á´ž LýÇNቇùˆÿh@þá&6‡nZS ¹ÎÐìk蟘˜>éÛ©DÜH]7TR‹ašúsç“¢¿Ú*ݾ«?/ ÄP·¢¹*Šÿ((roÇàgP |Fm ¦§£YÅÙeòÍTbfå÷#dÃ#ðÕ‰Œ=d…dw±ÆysÛ(µèw-ó„̫׃z…æù$žgõ‚ìCµ?FédÍ?×ìÔ:â•2[8(žºw.;læoΧúóÏ ‘É6¤“/D¹Ü(joKŸÜf裊0ÛÊbÒ'Óy=7“µ™8Uv1'Ñ´¨<›Eõ|(‰8ŸÂð#D ²‰nX;oý6ùGws>ó£Ò¡[û„6¢½KbókŒù§áA•ãW<úmÃ&›è7D𔓨ËNi:¯ø¿÷EzêÏK:OÆMéæ˜øO>ÿ#ýÛϨ•˜Îñ^ÝAÅ ÍvÏVOm­VSª^ŠúC…îO>ƒù}é¿[‚˜·ºx~ÕH¢|ÐÊ€_Ð>п½–s×?YÉñ×5OÔ+‰¤gÁ7ÍwÄ5Ts)‰YýaÏ1Cê–š1R+ú+{Ðo†‰ßM¼»_Ö í,6€“Ü%>ï‹=ŠýJ&2EbÅbÚB횘Ǜw±+³n@‚—4”¯ôhr/êËxª•t1‰þÓüc„$¢Š¶ÒíØ¹ÉÄHµàχ)§¾‚õ¾OÆTK;?_£…F!~П«§ˆÅ[Úì ýÛ»Ðéjl”Ú߃äí=쉙!5ÿ‘Øž•UcïÏð¯„øÂ]½‚¼ …aÂê¥í2ùGY­*Öý°ƒÿ¸Lÿö tà åù¶äZÿá ³ðHýFÆ1Z И¯~÷¡ÚYõ õüþlÇ×µŠpÜéñkA0üÄ[¡«Í´hܱ×tjý]4gÕð¦Üý¸îFôWñÀ¯¦ÑÃv8Ü„Øøéø” X•¹XÑ1LCo ² —gþq¿þᶉáDðGˆÉwm] *DQmåKêÙ®±vB¬)½üô?õã•÷tBø(j2¥—+ñ™Å@ý'bgÝ 1úÝ›ø¼UÄâÛ8©zñ§R>‚;ó=w2r«»5­³Á\~š D0zkþ¹Ugwƒ·á%^e8ñØüÈ*ú—„§Œ›¢ ×Ê’õD¥~p§È5õ‡§ÑÑïŽÑË0ñç4ñhâú@8šëhq›‚ãx“ù„ÇŸ±}V·Š©ºF¾Ñû—”ÆêµY NGâä(FR2WäkAí²á5.€Û]†o—ð燨ÿ¨¨6]ñðaWe,áZ8ùœÁ,?)“îÊP»ÑþãÙ\,ü‡¾á¾©5²®šÞÝ‹<êeQ¯Ÿ‹õ˜ÊÁW0ûûYËDûÀhK4> Ö;ÿÑF~;©HÓuêM:ÉèFæR庫6Û8øóvdyÖ¼¬ó(+<àvñ~Ó³ÓAbNÓÏ5+ï¨Ï¨@–S6{$þã+œJ÷*“¶!ÔzKðyÉ—_â#G“û‘›ñ’SaïçoÐså@ÅJ_-ð°UÔvg‡Á±æuLph_ác‹ —ê"¥’\_A†ÀzåÓ¢4»˓ެÆL×Í0í°ýç¹ê«ðç1À²¬^ýS@ôB8Á|Ô³L® ÀÐïÅó¡¿:"óÜbW³Á¯z˜‡QZÅ´¿ úü¶™Ž'ÆKTµðÜÙNxçVr½íš áÿÿïõç ¯õˆË»â‚îoij`úÇv3Ð(Á¾&S{Ù†$žL¤Ýœ.{ÀŸÏæmŽ"ÇÝF‡CêíŠbÔVZw‘ç·Ï´±¦c½±Éhc¾ÆŸ­¡³cø™2öFLþȾvÜH®awÞ‰²à Ïx²îj¿Æ0ÿu5ÿÞïi”²ßU & ÿpÅ¿¶r°í)ýÛ+Ð?ñ«ºËQp–~«Í¨ÔH¢–§Fñ×𫯶Šð¸K¨ü ÆÐÚ«ƒ•Øèw3¯OÑú¨E¹áï:ˆN;r™A<9™‰úŒ>“´xĬ/èµ\4Ç#ÉlP)¹ÅAðô¥¬v‘$¬Æ4Hì‡#°É Dcôþð·¹DX+ÞÞÊ0?ê:ȉ&±šìò¹$RiD”™\^'ªN‚%:…Î"Äù ‡·’õg£•ÄàsÁ&ò¢"š‹¥öÅ_ŽÁ'%§î-'í#YP¨yàWó~Ú?±¦6ËÜdíYQ~ò­Qä‰EÇã?|ä!¬ÿNâØ  o»8‘èw½"Øås[]5'–|oPm|C)b­qÄðñé°Å+ðG±¸æ vëÀÜúâiÎ2_Áó‡nPÖ•þ¡ ÑŠñ©q@é†`›/ãûã•lèfºêé¨ÿx=iNlýÖç;¯/m@žÿxfSèº {0Ô»Ö ¼î*°òþ í±® a>žÁÌmJ%ƒÑ¼Ü%£(Чq×ý ¿ò&ÿèÇ}ô"[xŒ.9VHŃd¨ÓË‚¥ÉBöеÔe¼œ€º~7„ܧóoZ—øÝåÁ›:rÔÅ3)ðYZì~0°'ÔŸw4«aíûS?ø½mrc«•Âs½&ÿ‰þÊG „®Þ„;÷ lè1üKþemc»‘Me²ÒXó0¶us”lLµ-GþÑEÁ*²hdWÀi_‡Ñ_myðÛ!T@Õ'ÈIíÉ ªÙ×â?¶ß蟼[A›ÞɵXìd(Ïaïç¢W®d¼F;e~70©’Bݤ7#s4¹{þDCñ³ÑïšìH£»cu0¢ºhd›aI½`1ZPù²>þ”LkìGK-×Í£¥ÒT;Ç3ûo¹Y&á͸''³èyåßí[„jWØóØk ]GÝÕÝÈfFù?âÎ,‹m}ûï̬Y3¯ºíØvw'&vw'¶bwww÷V,¶ÝØØÝX؉Šúý†ý÷Dó¿Î9{_{ ‹53kž¸ïûy€¾<½Fd¢MEÏýÛ/(—QÞ”$ªzÀé»&Þꛌ´ô¦:Â~|ŒV(&Ò?±'ü¹Ë•–,iŠ‹à‡Á¯Îk§Bœ—ÿÖ‡‰ÉœÊ¹¸J«»{t&dÞVsÓê½ê\pÕfe¹V7¿ ›áÿþ ££ÙJ†]‹³?G©š6’úóX¢¾Ø¤ dBU;µä/¬Tøë&­°öh¹ˆòÝô5ôo?‚jΪÿx!–ˆ5t;ôQí‘Zñ$ýwˈûX¸µdœ—ycŠÉJØ¥îⱸ"W…Ï¢~pp$ëkÁçœ;‰ò}±q×x£Ïí 0$æ{GÖpÝXl°£[èpƒ"ÜáT%Ó -þ#/Qô b¤â°³X3 1éeüȬF7|Áb”Y›"įškk@¼Ú’udíqÜC‰Þ6üÌH¹Ñœc,ânáæ!w<"ÿxFÿ’";ÑAGôW•ô†;ŒÑê/0õ$ÝòÐÿêˆYÓÞ/ú]fܧ4ÿ@§jèl ¾ åõÿ‰~71“žœGL¥ õ η**©(<ŽS?ØR³YÆe[^ætäVÿPk+6åZT³)Š+üGcâçbúhñY•Z3ÕK¹­Uký˜Û:ŠõçqD5ØŠÌØ+KÏ4‡þ»/:Í ºR>¶â¤êô£¿Ûê^å2õLj⽨W;…ÿÈ"kç{ˆµðŠ’8s:¿e)]ˆšÚ_¯è¢-`rê\læ9°µ°O°u_ø³.QfbÔC]À¯&aŸóE¢É4%,ÏG¢’Tðåsé7[…«ž€•N Jq““ö–ŃÈ~XÎ2mYO›îŽxŽ&x;`C…°òVý`YbÌé UÈ?Øó>P¼‡dvÌ[gÉhÿZ»Ò^¥{!þµÏu9œv7>wƒÌÀÕï"Ò+é<æ¾áû¶{zQ®‡³âle!˜äKPº­Äm ?×CƪŸˆòºê.t¤¹ŠÒU–‘ñn@ºš¢Æ¨OþáŽÿˆ¾G,ÅË΃…pC?Í5oÔ]°ý]ɵ>á1æ`?ï`›c)ƒðrД¡¯~u+Ì%7SÝÉ?æó^P;2™ìeþ¦2ø|&£œñ€øö>“Óÿ*,z"æVTîDUJzïŸ:¶”WÏ‘€÷¡¸¥.Œ?ËňçpÁ©„Xã} ½U;øó-hkcQýñ5ceV"ˆIa𫶪¿èƒ÷‘Ú¼d¦t_7š2±<ó›K°}›PYµáUÐ_=$ +œ-Ä#ÿ¸ÄYü®†®Ü"Òcµßñ64‚‡paͽôßXŽÿØoèöÍhlsÃwŸ§Zr5þ#¾ñ ?¼¼î3ýÛýù3ŽÈãxÆÙáÏçá?òÒíÃ…øE½]ïañß‘o}6Σè†*ö J§ èc+ñ¯œl"w$þ#'j€â˜ã‰´¢þãú«KØï29ãv‹dµàOJ˜±íYíßA›rÛëןנWUÓ…Z¿¾dœ=AÛŠzÂÓ±¿+ʱ`üʃÓùB¿'>ëcÔô¦ÚaåT†þ…~7>hÏĄ̀T¦4'É…Ôs¬¿J@þQÖd©ÞÒq +½µN"QÞ ]ÃÞ}6&ÐÃq /ѨoŒÏü¨,öÚv?3+¯×F?TÆO|ø–œø—¢ïû#z`øj'Wüßû ì¹U«ñÏ?‰©ÿpêèþõÕÈýh{¦œ`þ¹‡=Š¥®½k+§ÖGÁ›D­£ÄŠâüÚ¯¶œð¥±4®ôß55U« ÎÄÔ%··ð«np*‘Û×?ßH¬ÚšL¯V® üÇþã»Bè-VR­qC Ûméw/ÑGeþc9~bv5lÁšÝÄ|ÖþÆWÇ€¼L-DÆHéwsœ‹y“O_¾߉֨„°æ&$îDþ1æ!G$êÏg)oE*& wƸÉÉø’ÜÁ±ØÏL0––þ)žÃòSñ,kèh~¾£%µyüL+¾û!þ2b"ö=/ù\âÇêò0Ÿífo×É뎓¡d{‰_½²ÕU³ãæ“}4f¥²Db–gðéÈbÁđϸAÜ×Þ¼M³æ|æ$çYÏ`ªuAîSyˆU~°¿^ XsøJ êró‹Žâê[”Xè¯Òb?Ûâ7Û³„©";‰UÚçÖ‚?rSO“ÄŸÂk<“/É?ÎR{÷¯ó[Ø–šç¾è¯T£5éëÈäʱÞsò®Ò•Èc™r<Ô=ìÏ<ÃVœW¯ð‚ß_ý•;õ牘Ð> †‹ ùó¨öþLåEM<Ü üÇjÖ‹fì’gÈ?tm}¨õ&‰x@žnOüGUXˆCôct€ïPè [­Ó¦W| ¯{N33W“ÁÎÁ»ÁY.Ó…ðY”XêlïiyÞùxB»È— ß5©•Mþñî‰ËÉ?üÔ¬‘ZÑ›ü#µØ‹Õ\KÆyË™A6ÅôSÐ¥Hù7¸Ç}×R‰¼‘X15þð(þã-X˜—~|é¾Ä"Ö”±gÖü¨4DÖÇ8'Å"äÏÿRD!="ñÛrì²V?–wñ'í5È›µ S‰þ7k;"Øa}mV²±Ñ+²£Rdóð@ExW'Á4aŬ½‹¼æ :¬ùàFûÙ?1†â®–Â-Ô«£…Z ShÕŸï¿Z.Ëâ)–ëwðH﹯£È×é.EµDáìrœ²€˜àì“Õ)W—L‰ÀËZh‚ ÍÅaüGgâp+ÿ°Ôc–×U×;Ç›ë<9Ñ•ê.ôW ±~Vÿ«üdVÓ¸Ú¬°¼ýÉ´ü‰FÿBuŸX¹ÞE“O¹—@ErÉöÚå´s©àªõD”üdLc{Ú@¬J ‘£UÿQ„Êäâ ÿàC.ãÆå^^!·øGÒUÌÕ>…Y¯þ£×™œ?“q/›†J>è.ÌrGl~7¬hl¦f3öà‰+°ž?ór§ Xͯ¯ 3¿v$ó¨zðÌTXñW\½PZm3ÜàT–AŸÁ N7{况êG‚΄)‰gæN¢þ#´þj%üG.øçz9€»wŽšˆ«Æ\c€\f|a­RLéxFÜìOå^v¦>As5ƒ‰¸²$Þi¡Œ&,‹ñÏ?yÐ_ÍÒ-åœ~?ÝnßÏI'ôÌ×8Èlñ†Ì@¿ƒnù•4åL7:·ìy<‚>ú,ìUnæÞû×r¶6ÌÂÞE%Î+Nò.éF'ê› |é[Ҽɕþ‰±¨®xaæb†‡sQÙlk$6ÓãóG³¿N¼ÑM…›èçØß]e­–ÆÓµLryW¼Ôg±Yk |Èä2:3Æ„O¿€fùLW2sš\†ÿØÆwÇ•c9÷v|RmÇ)üÿáIþ1Œø'QâYz$Ž5Wð4¾Ñ8½Ü Ø+Ù›ùÉJn“4@…åfü>LÿŠ,E†–L^Ð:®ø¿÷A\¥zˆŒ#¡Ò2„+Š» þü€ZRk£Äce¸Û~ð.jV5ý¯bü¤PùýêA¶"̯-EÌX-ìcôWµ™Š{M«$Öhƒ©Pl«Vr<Ï߯ôÏß~Ðjƒ<¦£âf+vx¹¸"^*u´8دOTŸ¯&[8ª¦ŠÔŠ»•óJvqlc=6n?ñ3“™8MÅrâÜVœŠÿIF“%'øë=ѦS?¸š¨ÛÊ?¶Óܺ¿ÑM˜»@°˜3`öqÀ¯.PK™8Bÿ±P‰Á L•ŸIŠ?z XŸI v)d5y‘wÑäìzâ–GoÐVDpÍ5µñØOV¿Ê #0 ÿQTg˜x-¬¬Å|l˹€ïó¦ÉŽàÞËá]¯Têª9øÎeø´šhc󰫃Ø'*?ò‚Í N!Oá©^€“õ#kZËÚÞøg‡çºã”ÕZ^ö– Ë<¼/€œ«7k[ó£º_u—P°6|Î{~›×üª.Hcxóc)Ñ´CbQ°ÿ‹íÍ+C®€ÿ°øóÙD¬)È?>ã?ó¹U)w \ÞF”ŸU–×öüÔÿª™ÚAôæ^•'WŒáà[¹ÎêôỎn÷ŽFw©oÔŸ'5î ´³ƒ.^ÿ}GѧXòSÿöúô[wçŽä#G±f~¼áƒ«ˆF.âÇü¨ö°ÊCAq¾ËàW{è<^õîSòñ2#ÏmŠr2Ô“îª>9qïõä•°ý)Œ–àWùAÇ&‘yÜCå´ù™QU üj§ÇO}¬5ÿ#¾¶%ÔzÁää®ÜÓ»[ä?ßNÅß £:¬¦7þ£ÝiMaTBð«•ÜɰC5Œ7èr‡˜_KE³:]¯¦¦“ƒ\ãɶ’mñ¹cQ¦ŦîGwåçqÅÀ5ôM•À²ð«ôI÷““k+üG¥RWÛN„þ–'pBæàž`žHGºäÖ3×µÍ &‰|¢š½xÖgãZ„‰àWÉÑtå:ZȽT´¡ße‚µ–O/MVv}GÜÓgÃR4¢ê²3]« ãwðaÀ­úÁ ¼es¦\kŽ4¬nÇqéÕíªç“ópø?êãGˆÌè¯,n¤,üÇûts*‹˜ô.ÆôøÒÔŸ«ö¢Ô´_1rÁÒ\Åd¦Ããýº-T$5¥ÏÿD¿›M©Â¤Q:…èfâx‘úà‹í-ú«&ZO-!ü‡¥Á9…ÿ¨BÅdØú¶°q~¿¨¢&ÿ¨@¤êFµ_ MkEÿÝZ5f#LÑ^©]¢ÈĵÀ ‚‰ì! Y üá?ºh&œús±Vúï& õFüjk©ÿH ÿá=äßê¤ÝŒ<©…ðâ}|EÌ<2Qt¹DÚH¬X@[CýÇÎöi|Û.ò3ØMA¶]ÿ†ººã9|5‡;Bÿ±XÑ©²×ÀêR»-!æ®ÍUãOK$~žâ5QµU÷hYñ%Ú¼vXK›Å·ò•WüWÄ| *–âp•s‰÷jH«ÆiîÂV>JN‘“¹ÀE~±æ;[5ß·ŸÖœ¯ä$ü° n®__LÔWú“‰'âé‡ð=gõÅ¢ öG8+Žej´¥æJ ³0Œ¼ï)ØäH®ë-š˜þäÄ´¦-ñ¢~|×|[sž|S½ŽàxsÏø僺þ#þb"H~NüØx2µ|0 ÍÁ¯ÞR=°ë~Ô¥)Ѻ *v´¦Ý2ܰ¥aO·§Úþc"øÕy0Ÿ~ðë¸S 雉z¼ëôfDÍÚ™‰°·¸îxä7á_‚ø7B¿ûÀ¹µà:RÿÑÿáBœÅ8!ïÂg’è/òL¾3<˜™·–úA >݃úó­x¤2ø£§Äãd6ô SÂÌœ£~íˆ*¾éã©9¬Êo S¾ÜÈ…ÿ˜‹Ø×\`Î6‡eeúïúƒä”' {³G^÷’Ĉ!·¸F$ÃÞ~ÄŸw#/Ís¿Î8m,4£”µúïCÁKUº«%XÔøø¥ÕÜç¿PD—ƒ; ³ g<˜BI¥þ"5§üÎý÷'Ïë.›ÔŸÿa¦cŽ”N ~åÄm’Ó¿$rU?oï›írZm µÒbkÛ‚ñ+_ôþ•T7&6Qèîþóüæ+&õçãE5¢Å ðçWÐ_UU'+?´fÌFX iÚ84Á¿ùñŸþ*—h¾á‚¥ÙB?Ÿù§•±ZÞp›¾[ìC„o$çGíT+Ä9üÄ*¼‘øUNÙ?ç'r+»Ô{´>‰þ}…"¥ß­¨MÒîŠØ½³XöƒD„w@x‚¨khÃû¨JK-—láyÓÛ¯yŠ’ƒn‹A¢)•meåbp¢jøyØöDVDŠ·»C¶Ð4g'ÕK[ÁŠá?ùLw²úæîÄâ ö‰.i,Ò1Þ¡“|õ2¿a«æ Y?¨*­ÕÜì`,vS¼/}¬‰ñ÷á-¬©>ô5X½?å 2°‡0*}P£xcù½D1ÍÎ.çQ^„½Å•ÞøÃèòÙ?<Žî€RÅe|jYÿaaè[Ð_¹à±jëwo®ó˜hŠAýùîÚxФØ m\ï¬Îð˜ÑØØïú*¢å§øM«7ú'öøˆ§•NPÀ°§»‰Úþcº^ Îä+þ'º\Î}kŽþª¸Õ¢æ§Ôi<¡º; ÿ·ú·7!º÷†ÿ(! ¿rZ¿öؼÉêU‘|& Uá~<ƒó`K*¶ý½Ñ Dço¬é|U7üÇ!îd1¾ó|ò`™—~”ò0Ô=NÿöF<·/ú|0šfdT‰Œ&tÌH!‹K©}»J7Ʊf+бÔ©ÜÅ’ÀÀßì–—xÚª¶2Ôz‹,xÕWÜéñœ²0%»ãôOl)wÑíÛ˜^[”ºˆ›äZV‡TìÚ‹œfßW_²HÆÑ¿$•bW9# ˆñaƒž‘áv‡'ºeŒ†ŽÜ¿¤š+wð¡þð%ÈlJšÏðãÉiÒGØizÙN8;"wa„LÕ;¬ý%Òdx·Á̯}MÞ²˜þ½º=ófï€ÕozaG¿›ÓŒG,ÓÄÒ]®Ñ‹37¢­ãzo*¾Z%"³ö`ÌiäqÆ"'ý¯¼©‹_ÆtŹ¦Õ ~8þ#™ù<Ø¿M—kÌÁ†…­F'¶)ƒ~÷²ÞÙq _SÉ3_w èUM8þÌÃ(³RÏyµÔ&ØÿýTçä`þàqÇÃmL/Ö³z~v¤ŸDM“{8ÍÚzʯ4ÊšÑé¼û™…a¾_Õ`î{&ô»ñ@oƒVnÔ+ƒFvÜ?«~°((T[ò™ôò)ú«9FR{øóæjæ‘,Á|C çOÿÄ@ÖÏhŽÁL6æ’ikrÈWbPé&ŽSøTM­[&¢Ÿ~TzºéŒÖö‘àWGàÏ“¡^CfT×`f´ÏÁe±We aøó·ä+þäùЧ—–ëþ'øUôºNÝQ<¥)ó7>J|µ}A¿[ü#¾v"X¿{Åæk‘ƒþW•”϶°oÄï·Ó?qŒ(Cþ‘™Z¼ËªÐŸ_¢þ|™6Šþ‰¨)ùý ¡ÿV‡gêÿÑt‰· ýÕGô»6,ÎMº_- ¿ÍùHú­ÊAúïƒ XŒ…ÛÒ’HVÅ*yŠUà÷õñD÷ƒôq ¦©"¥¿Ê£-Ô‹Ù !çè,rëéKm¸¥¼jHUÙXhOøóXÆäzÌñ«Ê‘Bÿ ò˜xyÖ>3ȼUEçK,ûY/Í,Œ°³Ú«]Ä îZX ›Ñ“=í$ìMïܼF ã2QêS£™‡Õ÷AÈ¢iFtëç!fü4°šz‹zö‘XÁÝð)'ä}ÎÇ!´¶AXê'ðç-èžÑÉ ‚Ÿ¯‡‡ZÏÙ)†"é8|Kð«lúØIçÕÚ˜Dÿ†|æ žuœN}°N›Qy³‰aÜg{œ$Šov†›(Þø Jaž¸/,û6žÐiôW«B­·Säã;^“E¶§ã¤+¼ÁJc—1Âh‹¿`š«+\À^4g÷韘ž.ˆVÍhâûû(¦nqgc‹bŽõ²2pµÞ/ð ¬é<Ï®?™ÖFú·2¢ K'Û“þ»Ç©sã¬<üªHÚ”õ¨??Jæöþa7þ#+:­ñpF/Ø•xS3b?Àø¡ûSð¡Æôm1Ð_Åå<Þ‚Y£×§þ£«c¾ä…@ÁRòüÅ5}=†{QßÒ*ìæ3žý¸ŠÃÔ¼¨d3næt¹ÜìcÌ!KN€fª&¬Éi½¡ã>Âõˆ:=À¯é~F{Gs3ýÃRsm ÐïVcöàøý%dpñ™ÿq“šN+ÿèO÷ 7üѲÑ-ZÔ*ìBž†ÿãÔJ`¬éŸ’+]þíúÁø«j3ºã*`£V €¯­:©Šjbµ ý¯Di“Š’ú¼íY`¦ªñµÊôO DÓ»{+µ‰jCÇóŒÌÂÏ´Ì`9)è›1…‰ âŠÒ üj´~YÌs`[/GRµZÙ¦DÃÒŒê ´UO ëƒ0w…?¿€õ‡‡j+RŠðtCaw›þã¢XÄϤ›ïßx ½àW±mÈ? ‹½#ÿ€õŽ®ŒðšûÑÿêêÏÝA¶SË9àDAæ`ß³^Hé[VoÈz#ñË a÷fCÅ0Ä©5ÙÖMì©•)Ïä­)>Ÿª¯öXQzB`åwƒæM†¡¶1¿öWÈb€­¶ Œo>'¾w®ò¬°î ßkáWÉ‚ñŠç¼mÙ{°®qÔÄçºÇ3¿¶–ì3žµO0ê×›7pú€„’>ƒ ’7À¯ºÃÀÞåÞÞâ9¹ƒ¸’}Þs¼¹Îëýfû¡zñb€ô·¦z0½ÜC´žZ宲q¨j¨DËoÉ@ÀäIJ]a§É?ë9µ JØÚߺj;ìý|¬Ö~¦?=×q6jRå¿q|ä¶‘•ʹ¦TÔÝ!þ×è°†þ<}S1õ§ùƒîô«êK¶ìÂ]÷ÇÓÜ'Ë:ÖôŸöš}UˆÉ;šº¡‘¤46ã\‰ð÷JÍh!³7- ã?FÀŸ{à³U)_Y›žaA(¡6ŠÌiLÅ.ïbn/æ(½—ÍЊރMÉŠ=ž³Û·OùÜ(RÚ‘«6ÿºÀ½ìÀL3jÊ9Æks1L@êëîÂÖ, 0‰±“œc¾úÎÊ?‡Ð*fWâ¨ëY§lÕ}ßòÕQsõ¢:#ñÐ8‚÷hç± ë$=¢rÒ¿Ý¢iôv‰M7Êìx²Q!ô»žÔåÌ~æ¬î‘%±µ‡å@£9ùAs.ž\£û+üG6{MæG½…o‚º)±LwðÊÁþ£«è8ƒG©Ì£W&¾y “ *[«ûpð«DøÝ8ø%øàb¨ìÜ`~&Ë¿à?¡ßµø†àW~!ò'0±ýD.?O˜N7аÑTn§Ò2wí‡9Õ¬OýÇg&”,F¹›šªùËàWqÌØ™g¢oÓEÓó?É?r0qÐÒJýóO:¥ï¿ÍØüG-­&ó£ö× û2ïº'èªnQž_«(EñÉn(<3ë-é•H«¯ÎVTt¶;´™x¨jÇ®ÿµûßý鯹Ÿ¦Ä&åÿ³Ä{qþ#'Vô(ý¯VÃv_P°¿[i›²NI.¶Ç¬&Ùf_zÛö{°Îï°¢žä%“èȘQD‹Ä‹j³µ§b512Øøwœ†u 0bÉ>‘ñn£b!6¹ÓNz㼉p½áŠÁw›zÞ ýnb­‡ºFù¬u öR'¹}ýó]×µôļixv“é5 üê¶ÒKK‰Åñ£ÉZÐò‡‘ì¿»AÙ¯$ÆÞO$ÿÄ›tެØ[×V¬Å:鳩 ÁÌ]‘"DO†_ï5¯6_»'VÀƲïÄ^…±¾vGÕ™üª/Yí"üØ‘è_2AùÈIŒ Ç÷y×\½Çp~Úêçû«÷ŽßâNÞ5 ÿ±TÛÁ]¬«õãhMvqÿQ€Ès êZ:þÇ’Ö•g±ÍG°ò{‰ü—âµ¢‹-Á½—ûÞ{ÌJŠÍ]DÖŒkt#™…çù¡/•q±Æû±()å=<ÌCîë@¼L²¹~"¿=œ].Væhn¬fÊ¿õ¡ÔÜäý›Ž6à˜ôD½®˜.RÏmÕ<Âg>Ä37`ÿeàpv9Þ\ç.EÑö“Aêx‹Öèw3ÈÜ#/ð§dÀ…âë¯ׯB}â÷Yµ£©±¹´ÅÊvçRÁÕT;‹ìÞ tUöýÚÈ“µæŸç¦žû]—Â+ Ç4®À# VÝN}üª±˜þÓü¨šä ½@ Q#òïMâíÔDCÑôËZœÁƒü#½Tc#ùGØøø&TÌ¥¡þÃ'Ô=œ€?jÍ=·D^æ»óð5á»ÈüLÆ‹ÿ˜Œ:¶Ú¨Ì%<ÏîòqNð»7ÊýDM‰´¡ÖÛ,Šâù4öÕþ¼.ùÇ*ê§§îôß½ÌdÇÜ “™ ÿ‘g¶À)Ú¢wÜ.­(äX/“RZÝW”›†•YÑâä+Ós²;j&üã4½¹:ÁŸïB/{’Jšð wáãGÉ<§<»JÌw*z*í´cT‚¾¤_À^™_ÏgU2³ñøÒrø‰ï0 6»ú«„(q«Ó¥1µ¬Vÿö:d³Íñû;…þ*/ˆCo²ÞZr®ðÑ@½jq}ýá?ò££þÆŠ£ÀÇJ1Õ4ëšÃäîå ¼õ "Á.ìã£^×q oƒ_õÑÁ-ú€ ´Ðwì#¨$9ÿ¡˜ÉíËͲööGfò¨ªÐ%¾ ß äÜ?eAƒO“nÖœWæ0þ?Í‚¥Ïï¸3©•®ÿvÿö7¶ûÊ%üG[¦sœ ®??f+ªÖPó÷¿ŠEþü­Í_Q ßšGwgþ` ­ƒºQ¹ÿaõ¿zÁüÁÈô¶uÞ¸óZE½ v¸!+!œì ú·»k’hà9ÝKþ‚í¾iþc?üÇz¢èy<ñ-à.¹ekTNíÅ,žã#¢ðÁرÑtìLb&§s'a?ÊÍüÚËb!vý6x?ÖÙÒv½ÒãÉzàÉBžÀÚ'á¬nBWñü¨aJ4ÝÒÕ¾#-qxî`ìØÖ«ŒFé¸Ö¢ÿž`ZÙôyš—ãÙ‡Ý×?ŸWÔÆc};sUþü—“Ìh<1f1êɦaY¢C¼ÎžÿÆÅsÖ“2W¾ü/Ö|H>•Ù<˜ì ¬T† d6è×WÝ ÿFÆ• d&€œf;t';ñF½=ÜúÁ•Êd­÷ì VÞªqôC§6ËfîQWƒ'z >µ^ó=q¢eí݉F,o^ÿ«×6C[/þâ~·‡ï( {p?çM\ׯŒ"ŽO‚Å Dc»D£,úÝû<««Ø=-(àÉ0·¯ªÚKŒÁÞÁ†_f$r;wÞýn>z8]%²|DŸõGðɰ©žôìªNf1un~YU øIK“ùQ½yfY¸¦@p©Çz p'7<Ð3:ö€MžBÁïò;>ÒP QŸ+X#Ê$F™šlžr"ÔS­^;‡Oë‡J«±†^ÆËˆŽbk&ÊÝ= &ÌÆ+æQ•7îó¤]¹—W¨oÜ&ñÄÿ £ß]&¬ùQßðý Aز‘Ó, [a”%ÿxJE]Q¢ðeøSø•lf&ò1ä)CåI™–ŠÄ92‡°ÿÿü“J)¥ÎÓ‹ÃØÇä¸MtÝ–ý,O|3¶ñüª=ÖÝÍÝØëãdrIàÏ/ãWËd\êÏc‘{ ÎiJm”&ÚA=÷ì•~ÿQ’{xž¹ƒWÐﮂï~ÞöÕ)é°ÌO©–¯ªßÌ@þÑ‹~5Ýa,ÊŠnÂݱ¿ÊE- '¸QK3ø˜²/U­è_2=×K*Ú_Ñe¡écf¥KEzG®‘Ãé©å¥'å,öÆyQoàðw˜¤=PÄóxðF´ÖéGooIe£5?ÊOëkv¶·aúG^û0:_e¢þã%§(õƒãõ§øF †IåaÍÙ±å_wò?ÿgŠPúÝèws;îSÔ~{ í¶r‹þ»Ý5“zÜš¬²ysÕ<̯­EÿĨé¯ÞÛÊá?šƒV%ÿø¬Æ‚?ª¼Ó:Òwâ»GQ¿ûQ«Š}IÆáà-ŠëJ-™‚ÔWŠ °­GÔ4‘ºòmÊF¥œØ‡­_r€3Y@¶Â.yŠƒD÷o‰Ôgð7cE_QN$ÄŠ¥Ðï^K±ÊDZq{ˆQ.ƒ›Ød¢ŸwXýÓœÓ8ÎîfFÈŸUâã=¾Ó+ %?þ£syȹ.¯6¦’î<(üv¼ÊL¼A øÐ]Œ~~âŵé Cm±\Š\ÊJ›ùÈêݬ`ÑýЦxQ_lÑVÍ$¼•_Mf±òDàUsÈ;*ã!*`Ëç’u}×È Øÿ- GÉå+<ÕK²’ÁäPXuùGxü‡ªÇª°Ìä)Æ“Do#x*Ñá]çêyá?žÃ 7Á–øá“ŸÁeÔãÉ7ÇÓŸr¼¹Îë Ĭ% ŒK4Pºa Ïót×ñlr•ðqˆpÀe¬ ˆíß‘•]bÏE°2™ésйTðGjOÑ“û^+ï’üê5÷-ŽQÚ(I-u1:{3>È®°w±Qú)bû‡²š¬-&ÿK–¥_•'qIal_œü[¬àY‹ê‘ò+±t}¬swêÏc}ðOV߯rd_2¥ÑKfÄïÿ¦â`õ›è€ ÔQÓR­l>ÓŽUY©)YÅZgà,†Qþ†NMÁÙÚpO†â¹bÐÛ÷"g1u˜ùƒ“ä`WôJ™ÊEε߸@ò®Ò›ú] 9n¬ù OtžkOê¶ ´n<{)V_!c gß½ôJu«^•» öê0÷¹'øÕc"õÜïËäÍ`@N“!ùÀÔ¿ºÏ}™BFö'*=÷°«p²É-é¿{’'ù‰“»‡lÌ^ìÕì1à¼õ¨8$yÆ|ñú(ÄY{3ùaNrÿÁhØ<åtæ¶Žwù rJË ^7ÃEú‹óúD£™Ý1z’Gðü÷À¯&±bUüQk:­£ÿîXc6H…"ÛéuÈZ_èí§0€ùCDJôƒ-‰p*êæT“l‡%Ë ³óž§õƒßÌìöÕ(¯RÁï ³u+±äý1ýÛ]9YåþŸÎL˜#ùù4þé|H x*Ù÷)j¿ð­í¬rþ£³W»Ì©øÚÜÔæÔ&¢ÿU´Ÿ:Ìý~u[­›pãUÑ—ˆ”Zv*>V)~øKè]ÕA`b¿_!ôßÞÕÊ`²‚ÝÆ‚l?Ä+üGJl}rÝGìWñUër½ŠõÙf: ¥û±¤ËyŸOÁ凫CƒD_AXç©ü»ˆü#‹ˆŒ/.ÈüÁ[bQøm¢øS`´WYûÈzsNÛŸ¼­žz*V<’Ù¡ÿ˜¤ŠºB“…(z–¿~bdléc«Â±7ÙÓlÞ€ya¢ÈŸ¯¶6äª9þ[²ŒbøˆÉäXV-ÙL”®MÉh^ÁUìeï¾ps©?ßýKþü)ñDйExZ¬V ²˜Ÿû¦o’Ùð+»‰Ó3È»Øúwd)cÀ£öâGF×pñ«ÙLm«D¦’dh:HB÷i1O¹ ýôXôW;±{%xW?bíwðv&V«®þê»í™º^ldµ è@]@ðOs¥«ÑzÁºOÁ§Ãº ¬õBéÁ•òvíZžx²XΑ0·®”ÚLŒâ~¸á>â“’ÊÍÜÁfÄÇ9Ðï^†¾Äˆàj¿Çä]‰ñîÉm> Ãª'ÆþÔ·.ùÂPÌ0ì)© sUk4ÀþÌÿhAÍF{3+v!;Å®é­7Joô“™@lg†©?Ÿ€~×êþ©’IÞ“Áв°X-é_²€Î»ÑïÎ5‡’ßL0ºâE c=AýÇvPÌäaú—¬%ðϸ#͸ƒ¹ÑUÝFiëmÌ%y³\‘.#o¸æOò8ñy:ãj„IÔøÃá\Ád1ÿ#=ùÇrê?\9ÿ¥ÐïZ3Õ[ÑÉÃÛLeâsÁÃf“wÅî¢Tq®½ùN|&O(j®,`Ný…³š®)õ'@"ƒ8%e4u>r(Õˆ±È¶0?ý|w»n/N}Elt¼Ý˜J˜×Ì…fn÷fŒœÏ¢ž!ê?Ná?Jd´äì’oÅaøôðç»Ø×>êúãƒ4P§ÏäH6ö–Á<$÷/I,mry†Åž•á?†Pž„è§Zܺú £)ÙË1ºd†{w¡sb#ü‡´ç£Ýßp±wá>¶·ºÀ<§ÆºïK6¹ï¢¿Ê¯´PJ8,qr¥™’ÉñY˜W"‚O5ůjkžZ,í*ëØl§meÕŽj üG;%º5ýîS›‹ÖüªVn5Fm?/Чò|A|mŒÚ2Jû<©¹b5‹ƒŠ\†ë>%Åú—D'SH¯ûÐï>Š$ÿ±K9Àü¨Ø¿5XB«‚7¯œ€]j%fcE…<…­LÏ®Ž"‘ˆ —T\ó&ÿXÍ¸Š½<Žý»KÜû¾Âƒø+|…ÏKµ÷%ŠÌ¡ÿ§<‰ÈWÚ㔆ùk‰.Š÷ñƒ³k)?ã?l(ºù,‡Ø&ŠüùçÒFaÏ»Ãm|'‚/K>L©èÕ,óuˆ}Žáïn°óCxƒ4èÜ~ñdÞÙ:©1a",ýUKðª*¨x'½( õ•±›Á âIkzT™ÇÔWëÈȆÓ?1U8+Îd~}Žl€ !líVYµ¾ð€#+ æˆNÀz_жJú]壖! ó?JbMÛ¢¶½JdÿÞÙ—ÙT~ÄÎ-á?^;·üQÕ—~#‹ˆ×RCr‚SQ+ØÕÞÊsĸõÀœ:â? º°§êÈÓ?ÎnSý©ÿH¦oRN…º‡ÃÐsyrÏ£¡zµú_QsgŒ§b¼ÌÀœØéàW ™b1Âø(‡ÍÈ“zàÆá¢ñ»ïâ?h¡çQM¹A­>Â6Áãª/1!o¿±½Õ=üGC"é3èo?ȳ(f³¢[ {>-@qP¼92‰¨æØ_z¥: å.ÝŠÙ×YÎCú¼ t)Í¼Æ ã0 õH¸óÔXœ¿hHÈ[˜”Y ©©UÉC_~â£ãv¢ÿÕ^üÇ¢²¿df"«£tyé‡}ïB•w9" ëü‚N!mè*ó ÝÙ6Ô±%ñC£ÈàÈåú`f\;ûµQNk©8½­9}L:·õ©¨¢:¢ßE÷l|'£¹‹"x¾iM2üˆo/€ÿèbö3NqZìØŠ–` WôŠŽSøXñ Ö-oee:”6Ò}¶L:·ú·ç'³ŠK-¡»ÝÓdDÓuƒù É]‹¢óJ!™ª@þQ„È$õƒ÷Wüßû Óª‰˜îœFµ]Håþ£žÖ›üãf°O:D½X[ô»q©Ôß(-÷ÒVN©:Uè–›FKc¾F±‰âµ¶ýnï(Ö¼kíþ2t¤…~A˜úeø$X¼|¶[ôCã•Òq‚·ÕSÊ1ú_"÷"î¥åLoÎD'±ŽµuéCl?þÜ^DfÅŠÚbí<‘¯e6aMÀzxá•’•ª¨&ïû¹ÄíYõ¸úIŠ ÿ¡‘k¥!~óBoæŽ×ƒH/݉™/pÖ¶©/k*¯{Ó¹éw×j³UÐà{,¶ä=ÖÜ•NÅÓ1™ŠÀªžÁnâßëèÐNâeò”ûÅšþ¶jZV[‰Ú ÿ¯2¿óCgnÞs'XA|öx“÷|\Æ`<Ö>}ºh®ÅgÅy̪Î÷ÆF¥<ÿßçùÁ«ÛÁò—ÀF Ï`£[aG_à‘²V3Þ4+Ÿ}íxs×dû€þÊ-ÝP¬}A¼În}üGj¼I/´ÂHBò‰šï…ðëŰ”øÝϱEieMÍû§Ó]Wm/³/zæ£yíB^µf¿%8XQþ=ƒéüù;ØŠ”DÌÐuzs+—È—êŠyÚ]çÖ‚?ª¬>ƒ8oyÀä*±?!ó9ÿÈ‚…¿Á,V«»5¿V=èð{!ØÞä7ËBDµs• ¡îáæQ ‚Çø¨Å¿µ¶2.c"CfŠLÃRŸ àT&”<¿jÚ4R'缃Ý£½_ÿCÛj½u¢ wå3LS+òÈÅx£\蓺y'7Š‚®?Å‚ZU*ùÐKÝ«yH>L6%ÿ[^Oí$†_U•úÀu¥”{ÙYsþ%9˜å] fÔ(܃zç°IqÙé Ö¾î)jŸÃ<–Úêyð¦9 ø«È.Á4äD[Ÿî‹ EõÍ ;ݰ¢ŠÑ…ði4cõ°’çÁºFÉ¢œñ#aôW#ÔW¢§M# xÆ÷–†i‚â§ö|ýw}a?æÓ¿ÄfôGÁû†ï*É×àWŽpå™_Zù½V”¿úHæXŸ¬"3œÊm# Õø f‰”@eûÀ|E}üV,j6æŠ,'O™*¿Èz\ÿ<柗uœÄ4J%u®^™»§wŠ³Û„9’ý$2+²êu2£éXù³(Œé$H'ÞâæWrþxøô&.@ä4U†)RŨ,‰rÀGn‡?÷¦ÒXÈ¡Ø üÃé?üP‚ΙáÛz·Ô·ÀŒ…ÿðeÖûG£Œý„YÂÞÌ~Š) ä4ü¦®føUæGbúHe²ê;  ~ê™æ¸ÿÁŠ£ØuÖ{%‚ÿøwñ+Sy£ŸH¼%ù‡?yÓŽ`ïqLCþ±Œöçu¬¯¼³uW]ð±ÖTÝ–ì¢.oËýïÔŸç°t\Ä{ñÁ»­þW‡É?ú‚±í¤WYÙpû'ÎT¦hUX-1ÞÂêéèOü6 Ïýf`)ÝÈV‹§ä–~7€ç€ÿ¨„nÁ¿áõ/ùÿ±A,#éO¾‘‡zˆcxÊ­àÊ`¿§Â{g'òNްÔ.™ám2Âp_Idm¦p…Õ¾T`~Ô î{9P¤7¬„õ‚ôäðgа¾DïD\þØž«Ö~9ë»Ñ»iÊO½¸+Ó?±q€ ú§4Øð0+¾² ýß ßíH5öTô»oá·û‘“ì÷)M­õ}ºZ %·KªïS…z*ÓÕð秸[ÀhPђՠøQ•šö‘XêýÔ2Œ7›Ñ_k°Ñ„i~m<þø+ç$ÒV‡Zo•°ô»Oð©ÍÉ*¬©ï÷á?¼è<<ÇxÏ$ŒšT¨œ½×©Š£–žf*¬Òpðºâ¨ƒ'Sÿá좔VqSwëÕñˆï/szÊ.àBK™ç—“¨üùÇ(¼å~gwéÕ„*íÏp]Óð­¹ÈͲ ‘´WjÓ¿$Ÿ|‡Z`‹ÌÏ?ÆüÁù̯­_á B”Ùž¤ ¬µ¿ên õçÉØß8¹µzÞfgý¹rEsA+Õš4±ü&Þ2?JÚû3±]Gjáy¯û¼fýx«šå6jiÖ D—ƒ°?Ð}Trä÷OmùG/¬Â¼;Œê(uÑ%-¥w!û2³”½‰}—YÅ>‘~‘1ñLxu3)üÇ áFTü µÚ™ÿ ÿ‘á¬äN¡´ÑM1|+ð«¯*J€òR­É4ÖÚ³à5ÛJªèÀ›LmCý¹³ŸÙ¯VùõGð}ÉÍÊ%oñµ´ÚXø§Ú(ñP[«ýÉ4['òç~õñU-mQb†Û<ù="HœQÊjÑ@”‹ ¾xÉücýK²‹Í`É Žç&'­CýÇüy<æ´Ã_T$ÿèŽj¹0™—UoÖ äá&(Ê6¼ËBlnY}¯ÿùî•¿z„%_Æuî@/µŽk¶¦^ ¥ûö\˜€kØæ“ø½cì}ö;‹8õKþãƒm šŠï÷&ÿ¨« ±˜Ÿý*]’Uöá?rüø ;y›ú‚×x¡µ.¥% e«þÙåe((Â%=¡ÜJFó?Þ trO õÅLq—¼][ž±Þ#þ¦5µ-©Y ϼĬËáz`Í aƒ|`±vs׆`ýGP·‘ õBÞ‚iÌßdž8KÎTËßHûë§úó²ÔŸÅ”ÆÊ?'ÿˆÏzO ¶‘ ~û VëƒQѰº­ÿ‰Åë?Rë¼ Ü§ý'ja…üG²ÆÂØÈdðã°'eUz]=–w¨Œp‡íH˜FøÝtl¬¢sU2•V¦!Ý&ÿè¯Þí¸¾ú(0¤êÔê%2†“ÔÀ %®÷!Æ‹ÿøÃhÿx*“ô¡ÚÏêr…Ø)®v8Ô3™ž•Z˜Ûø…àG—à?^K r øÕf:MUa¦úæn$âOMúRÎÐ@ò­b¨Fâ?\ë¿ZLýGQP½òkö£Oñ c¼i7K2Ñõ"º«!ìñ9Èeìhc¸yile½Íôo§¿$ÊßýÛ‡)µè¿›OÂÕm‘ùá¤ö’Ì k{üG9Ø/0èñìeá?LЬ.ÌÞˆKþßñ¯¹˜ÞvîÂ9oè(󳡓òàù•/ÅF½õ¹g½Ñ`oKá?f≠PORœk_+7ÐÙdØ´]Ž$zTÑôÿÿóRé® \¤«v š½!3£Á2í$/]¯²ØÛÙ÷›®öÉLðMeoOÔMrŠþü£ouN¹C‹š…ý×oÿ¿ý™þ%%O. Þ$£ã³¨­üÕvI¹~·/üÇ…àœæú«6ðç1Éâ*W£´Ü3ê?zÐÛ¾ ˜ÃRñQµøMÊtÒ7´eZmxù­&Qt<üqìV?úïž¿J@ü›E?$vŠþ⹚.RW~LY«äV·ÙMúH¬Þ9Ë2£$ªƒ¸†õòÂÂÎ×ç‰f"w¤üGymú«¥°Èþà5ÑšÞ&V$ǵð«4ø®xŽax–Lz¼ýÇ`EP}þ[“ç0›†è¶å'Ázù÷ñöwÂÇM%úÿ[ÛÁ5WÑfÿyâgß’Â÷X™HÞøe  Q‡ùá9v±þ°­ä»8Qá?ê¶¾j.îØlPÉføÈ*ì`º2|(#;ÛC>¼î:În² O¼ÜV¸ËZœpVœGÿ’R|oz®’>¤D¾}xÂ›É ²ËÚz#1Q<"ÿè†{Êsñç÷5/«Å“ ?k{Áü¨éðç°•y‰¥¦l€eI>â.“yAH^òïNtl¤-xŸwõ,ì¸õ{Ã\rIµI0ÿaõË}ÌŠñäJî[sì{Q#ñJ‘ü3ÿ<6Œo[üfm¢âØÝlôoŸªù…Y/·z {? +¸ŸpŒ3Õ|åéžDÿ«^Ìœ€E ¿q§¢d;Ϻ"ßùŒß×Q¦Âx‡áÏ»3Oݪ)"vFUU“®)iì2*€ÍÂþ­Ç Žc~­nôÄV½!ÿȇ½EýÇj2‚}zÂ0ùÇ2QÜð~º9VÜ<ê¼ñŠ~Œ#äjô»£¿ªiøƒžî™ÌÌT´OÄ«Žâûò;É?↘?˜üc:™[~ù•*tËôç  .>¶™ýÕa"üq0èGà?.1¼ k tÅ“è_œÌ¸!€òuwГùV$ðo¹ýn:»¬&ËJDÍß:žÄsêý {"{!ôWÖ»9êî‚TŸôB[ÐSÇ }gð¤ržh´2þãlÛsáþ*-Uá>æ`ò:T¥x›1ÉGîÀ×<¤SM9s³ÜK/üU  o‰±ºÓ%ç‚^Åá?ü¨ì)¢aMi×VÁŸCüóOýú+ï‚ùóÜĨۉ»—‘@•œø6…¾þc¸§†§òùyÅKÊv¥0šï5pÃaŽo€=6"Kj fbE5é 24ý»±"±ÇÚÚíœX Šs ôêѸñô´âmå=<ÇyK os…ú%BÿÑ_Ñ©û.Ú‘’ ˆ¹+ƒÚâ§c%üÉC^bcÛãáæ‚ .ÖöE°C‹?¿NÅÓTüÚôù¹ÇÔŽEí2”*5rç“üÍ),þ~ôFYÄ1NÔÏwÍúÊ7[5'˜ÏR6­ þ!»<ƒ7´æG“-d_iÉA®îcïÖ mÊ‚²ôOÞ»œHVÒÖ*{œKT üj(Þ±UþDîVýà{ð+ô*7<ƒ…_U1>Ñ¿=qŸßH×+ìø*tKn²Ñ ³^9õ6Ït0ž{\ÌQyG/‹¯)Ü÷•1€Jì•æ$ó ñr{&ŒlÃ6—éò#oê!sÁÊnU΄z*CÔן/ÈüÈ?23?ªŸ±ÏpÁLµx`lá`³ ýP:â?^‚äÙ»m+ÈÝa= š[\-¬üÃF´S ë\œ¬ë’qŸúAzâÒwKpýÇØê¸T&ÿÐŒyð)cðHù³œ¦Ü!jmS+ÉÔ-zžÁþ¿•BGtjAÆ"Ô°ÙoÆ92„î(xOà5/SÿQƒê{9×,|[zøýä`wã…Óšö!ÿ8KœñåàZîFê*'óÌ öâæØü YÒžÌîJÿÝøL¥êLßÈf:Ø—<»Î¼E͉/ý.ÎÑǵg¸-'à«þZøé½©ZoÜ?ñ xZ_:(&¥âY&ëªTNÖ7ÿ–ÞôßCLx‡¬º5JõòŽSøšþW£ELÞ2«SjMêÏ+¢´ZŒ..óoÓZ¹à?vã?zÓµ¹(Û}z’2mrÚŸÒ°[ÏÀYÿ7ýwS-:+)â3?*2šÓ'ç_³=Q.’ôF¿{-¿ò¿êÈüsU-«|µEMðÒVL°8±sfºªµ¡ê\ú·Ïf~í<øóÖLÜ(üóÄr ZÝžÄÊ ±îš~I)­™ØúTú^ú·@¹Ìk›²E))˜«Šué…=¾Ç;Ýš¸¶­Xý £2´iŒ|N‘5{´æÞû `­]dGAœÊ%XA•·úñð12ÚXxªœ­ˆëÏû)ßDlfštÒÿ ÷ßÌ™¬j33ç©CÌ|nUŸ†-*¤¯ÐÎE°ÃÂÚ$loWüÍØäÂäóaÌ­ùçˆÌ‚…_ÁÖ¯ÒâYþâÊÄü¨_yö·¶.jòŒàWîðD•ÐOÁ|֗Ȭ¬²‰È>¾¼I¼yoÒß7ˆïí~^þ1Ké¯UÀ·%ÆXù‡Õ¿}8*+… cõòÔÞké„]~Aþñ”ì©9} ,¶ñ¦ãÍu @Ûcu@Z®Ìš^Lîå9®‡e˜ ß1ˆêì¼(NŸÂqoÄŸ¤Â\¿ºÄ÷Çaþàzes©à*Ñw2~­š gø¤$r'w¾9õmE`ÐÏ‚áá?¾`ÿd&_]®»ùÇbØö4²Š¥…­¶-EÿÝŽDÖò„ðç7É|¢•ŠK…Æ=òFDä#Ì—tAlBMá˜úÊàW¾äMÍdJòîõT-…ÜâHõ¹À½ÿNo©û°ÔiaÞ[›Œ0󙥾,f°Y…~·-è‹ußá‚9EåZžù^=k˜þ%^ð¹äwò¼úÔYã;·ƒ8Í7z×nÃ)C½øð¶ñLtMa¼ÆÚaŇÌÿ¸@æà"²8ö—C) þ…¯­ˆ?* þVŸ…~÷uñññoäCÉNÂT\`µrLWmÃýMõ<=ëñ_“CÌÿè‹Òò$žè=ØðYLñ»ò¢~°,uQz$µÿiOc¯ 3ýݸ ^Êïô`MVÿ«°i-ÄpÑα¿#Ê9-V¤v;³|-îèC¸öæ\ß@ð°ÎdF;Ì$ö¡Ì') Ÿ’/7R®0‡ õò3QQS‡×ôjŽSø†N®ÝE N{"œªú£ =Û÷QÍ•wtû<&×6µ¯ ÿî|ò‘¼d!ÏVTñ?Å#ÿ(ÀÙO'ha5!Ÿ÷êãö°ÁΦù”>JaÇ}ŠÚïÔ”OŠFõÇf­£–XíÎ*{lCÔ“êZµµÚþ#섶߯~ÛVJk‰OND×@_‘^Ë©µWW(/µù"¶ø¤ ÕΨ¡ß‡ß¯f³õÕ^2M$3jàip^â’"«UAØ5ýˆ8.¼DeÍ©ÐûÝjS˜õLë…ÍÚŠû‹ŒA—–J¬®˜H^ÿ¶¢%vì°è!žk‘Ñ_•Ô|´Wb=Vú6x8ÌA,õP£úDã±åAâ•„¬Iß[1>U¹ˆ691XŽ <ÁêÔÞÖg“„U´ôùŸðî¬6®¬´[<íÚPxâ>XÒ‡X›fp“Ð,Ä.ãͪE,úîc#é20¶búíA>-ô}¼oóPcâ?âÕ:³b}žÄx<3Sd ò/,sByõà?Fñ¬ªZYókÃëCÙŠç—‹½Å“»È:,ÆÝª÷ÞFZ½¡>Ô´‹÷ƒá¿Íï©‹ÿ¨ÊzØñæ:÷÷ѶUµúïÆó~ž ¯4=ååón\ë:VY‚59It]Ž]ªärçȼ¾â÷‚åø8— þ¨¾ZGŒäžd% ¸§5ä>0É:X®„tÜÝB¥³ä!OQPÅ"›¨Æ“.Çn'“ݤ•­Ä4íG˜õÚ£·B•ÕÛ;r€»(+öÁuG¿ÚMÿÄlDø¥ÍG茫IŒµ¬æŠ5Ý vÖÄ?³~\ ­—Z©Þã¸Ó:¾ñ"9O:©’(°²£kd6ÅÕ§»`>Ö¯oT3ŹáCöÉø¸³œÏ˜Ú”P'gºÈ ê÷»Ñšæ;—Ð?q‘QY01›Ä•.ó̆4ÆP X4û:%T4c)1~‘ݱ^6¥„ºA¯É5˜x‚{d £ñ”©ôKlþŒT»´¦»Ê¼Ò^##U!E™¾ž'5…µ¾ØCÄ3Ç€>ö¢žõˆÂóËò·þ»õ™Šèb.ÿº‡˪@Ïk¯3}-[#㇑…wÏïw‡ÿšàÔ_ÝV®k“Ú›(¯:óÏ÷ë}ð:uðºCÌF'” ÓÌ„Xý§fjg}Ø:IuޱŒÓ¥0Û¬3.ÑÓ9Ná[æN:þãïàÎÚöô¿zKÎåoT±GÕ¯”´O£âº®øàëã›dÈïEÞ£µÄOs´¨1ŽÛóú œÒ*ļ¸dŠG5oÔ~oûª\`~Ô`­Qm%NÃnú­vVKÑ¿¤:ókùddÖ}~w½%3ƒÆŒ`þ`2­­ºT ÂO_ÖfÁ°ŒV»8Î[dÖ»¢åÄïÿ‰Å¥g$Wð£I+--÷mº·¯¤~ð‡š'R+.§ûb!ÑéìÕ*p› ðÕ±s^X0 O}´>Åx\™Ž(¨g9Oþaͨ8¶d͑ڈõ‰þĹ8@Fû'ØÌ<!~5Vù$rS^Ÿüƒ™èÂb5çb),„ä9–ô.œukr±ä%뵃\s#m0–'WuìÈÊ?Và1²ðî/}h'oà1Ï‘Kìæ ÁÓ}§wͯôW6¥¥š›»Œ=uåJ«±Þ,¼’56ÌnxêTØéÛàW»ùµQL£“qq-a8»ìÉü¨jx#Sn7³Á’æizƒgå—ÝÀѺ’lÃBU3xÄîwóì­^×ùÂå?L屺‰ü#9ÙGoleaêé\W1|Gþû„žz1ÓÎÿ7@õO¼ž $.=‹_m sëSÞS‹Òy?þc YÊ6že ºÜ¢æï0õƒ̰þ.[ –ºÃoˆa=-î©/ÙS%êÖë«É?&c7aÃwã½Rðÿ¼èk_ËF3ºƒ ÕùÿщŠÄݰ>…ñ{ÐK1ÓÜqr$Ô=œAÿÄ^d»ŸônXÜjx­7ô˜šfÄ Cš@íà>0Ozþ½ÂÃD!Õ¯Ü^–a7¬~Ëvmn¨õŽâ?²ŸÐ—œ< (k3Ö“ÚÔ<¦ÂÕLÁ|¥7Vg¦Z¸ÀRLâ õFs–ÿ9F&κ‚̤æ›|Æêør‘·Â¤î¨ÑŠn¶ñÐaE6ÕÕôN>ô»ÍÄN}¸{ãѯý`)¨öŸÂ´©^‰ÞÀêB@¯/Уmò }©öRçM&(íÉQï>¢¾¢©ùÚ¸ WSjÅÔ¬Ó2™ÍÐY´t\orDËÄIêÌh$Þˆ–Faz¿†×¿òµØ¼‰ÿØŒž·г"Ôpl’óÍîÆô»A¼w a±ŽéUþã–Ò[k-’¢’ï†B¾®îm¥fðH_\Ö{I>“Ç^ÏnÚó0ý4•ŠEèŠRž í÷Á?ü˜qQ†ä‡??æ þ7>­¤4R;îLV¥ÿ¿­¿ ´}cþymˆ– ü ÆÃ¶ÃV—9O%á?\•÷¶‹Qºœ@[:ú—¸`aÒêݘ?˜ÄjøÕPq†y1´~ª³fd¾ÀoVUþ×tÉDßNËL4ˆ÷XD‚@Õ™AÿnÅYÊfê×`QW㋼ˆ•“€C¶1™=yÒv$vc µDJ¿›=ÙU~ö!±ôßxŽo°(^0}±8½ßÑì#&±[{ãI_8žÔ¯vØNy)Rë GZÏuXtK5;ÿñ„¼&ûÝŠŽÕXaÿôØ`Džä,ñ—®DäV­w´—3™VÑVžÇ3Ä‹îånÌG¬‰½!ôà¡wùÝÖPM·™rÕ˜k­†þj>¸œ¯ψ:bÕ"æ]ªÅ•Ï¥’<…&ùîÊ2­¾Æâ?&€ã?Á‹Ì"'4‰¥×â͇ ¢ÛÎÔ6<á»üˆÝ«À •'Gòq¼¹ÎýÚn¨Û‰ âÃúã? É\ÑôN½±›#ÐM%@±ü€ž!ÞøôDÚðxWÈêÞ襴…?áWµÉ?Æp¥Ö¼À¯Äøñy/é¿+©îËF/òL`ØÕ`šƒèœ…G2¨X<ò³ßTC þi–uKõ¸è‹Ú£0ßÒå‡ÿ؇vÉ4Ó¿ÄšÞý®D[ËF¬³m £'ˆzýP˜þ‰“è§ÕíÂW}UÕÁ|ÞRù±ÀHƒ0 _´ ,¦™Ùžü£Œÿ#ÅŒx9_²”µp^>ÔŸ/õL–‹|Ç pB¼evìîLð—èwg£·]JD~ªÐ/Ðm¸µyññ##ñ3á?R‡ðωE)Çzy”$ôO¬D§AÎ|æm8SHQÿ…Ú}µ)Óè^Òþ£§¹~: ÈurŠñt¸Œo쇑J.ç gG¥2ú«’Dc&w®:˜ÓQyÂhO=J~s©5©ÖžÉn·?ÆJ3“Ðø–­šËÌ(3Át]ÃsÎç4 NTö¹rV+MvÜ™¸ÄEf &Æü¨ö\_gð°<øÉ”ö¯ô/¾ ®@ `&s\ÂLÃ%<³¯äÞƒÈ߯ê%§ð.–¨¯HÌ[Ö‹ÇC_MÎ1†Îôç©ÿˆEn´ˆùnLØÍŒª÷„QÖÿ ]ÔÒš÷À9n‰¬p‰Þ°;Ëÿ'ú]ü‡3^L£ VÒ;ž£óíŠÌGŸm¯à?ª‚`ÅÖŽ× ¯£þ¼ óÏS÷oÿñÊVPs9éKï(üÔŸÓ ;~/áÆÏ/`§)a„à T“W°ÌW8¿‡‰ï';ÅÛCÄ#¡¯õ©­¹š›5ÏQÕJ&Í᪃ô¥2ÙÍnüQ’ÿGÜY€Wmoÿ$ÙÙÉÁÝ]Š)ÅÝÝapw(î.ÅÝÝuðâîîîZЇï—3wÎiK™¶÷{îf -ewg'YïZﻄˆæ9?qÜn9¢”ñôò 5þèÇüá2`®Šg?FùkÝo¼¥³ð9ú›°ýåázn³¢Õ?1ú‡§~Üùæºö§)ÕCbÿ¶=×–‹ü«Ëìs9‘Ö j)FcU%xyøc8ìŽ-ºÄÝ>C¶×G=ù»[\K9>ª®ÖC?ŸFþÐNr¶z½lwK‘•ƒ¹Q§èÏwÉ(I^S=ŒÛø¸vk'œÎ¸±"¢Ó/½(ªÂ7õg½Üd½='ÿÔªç9$³`ßoÉ{ôȨ ~t0£Ò¿¤4ü••‰P¥æ$ö¾>¹m É¿:ì} ~t„{ýIocdV¸Q…^”zèd0MD‰ßböƒÇér^[õŒ3È%»‚…Ÿ¨î8ÄýN£áEùo‰HKýàW¢Ñ&àB&úžOÇâÏ3ÚÈɆLQ1¦¸nÄ¿Ääñdf|ø«(M¹’èÆj9@fEœëåUÒ¨3Ñ+²3å± y <ìâu:¿_7vàçÄ·ß…²°~SIñðˆµfÓÓSû9ÁØÔŸ»*ø(ÕÈ¿ÊïÿH¿! ÂÍ£ŸV𣙺¹˜ÿ{ü°âìµÞ}¼„f pw9B¯J~K?¿ËüÁŒx7^Ële¯b÷¥É\À¤öšdua‡DÜ—Dižé=ø13ÿ•úóüt,qÕ¤R¼7ç} òx„ãÃ7¶WÊCêÏ{RÿqQ±ºÙì·5T{ª¥ýu%bÝéŸÚ 2°of,ˆó?Ѝ3•ïàô1m‘›þW®zžplÎvDË‹Ož‰»>‡ˆfg”FZRP@¥¾}?ÖæK8ñc‹²^IW5•{¶ø¨žD¶Â£n,fêÛ°b3@ÉT½õiD‚pœe%®Ç_L!â8…/¾¶÷(Úü[´¾ædE‘Gaq’à™Ô£êÂ\¯‰¶+^LRøèÕè&UÉ`›ÊÚ&øq“XAÈ¥Øå©DIùô%Úž0VÌ§Íæýµúïúâ]YÂ[˜¿~V±8øqlZƒGjeAyéIé¿Ûâ7k>·µP’0‹=5#Ë;êÏOÁ=í$þX~ÞÎù+^ã$Z}ô#ƒ·§È£¡¬¸ü(ũĒ«øñ˜«ÄÚ.fž^™þ•—àÄëÂÜ[´¯±ÇÚd¢•‡w¸â|s]OÎÛôóùœNâ¾¼xÐçAì%z\X–6p-¯å;TÜûàÇjÙÛ¬Ëëä†ÝÔãÀÑçÆ™¿[Gm%¼9‘BXùG¬›¼¼wz]ìy# žy˜ˆLÆsØ¡øÆ~F\ÇüÚUääæ–ÅÅ0í©kkŽ*8ðcVp 1ÐAéÏSwœ^‡ßØÓc£6jÞn üR3‰ùHpH;¤u¥;,ðtΠKŽPß!þèE¬P–Z¹Ÿ¬¶Øˆ~Œ…Á_é°ÐmˆnZÑøÂæ b¸ÿ¶™øãˆž.DçæéÂêŸhõ%¯E6UQ®cÙ\óà¯&©G,Eµh¾Ä%iÉ¿z OiöÒqä üUö üU¥°:LbDy¹P·îáIÕ7îÓeØdòíCc×Ú´ÜʯÓDr™ÈsòG=šH b‡kKgeÞ ×¼Ó¾xŠôÔò3 âž´”àG]ê>žÑ÷}&Ý¿Psþ’¼«,öVØë·ô,ô&?.%¾Ì ÎÚKNï.¬Ž~ý÷LñÅšTAíþD”d'r®c|…¡Û`NwL}Cý Šjñˆ¼âÏôçòCšÇ,ù™pÊþ Dw=ŸôÕK;ŸÂÏÌ ÕL™Ê<÷«ŒâÔŸ¢Ê4óÏ·Á‡5·W´?ƒ›ÂWÓØ ‘…åúᚨL"kºèšE?/b¸"³TÊà Õ ŸWøþ|õ’ùµC´¼h¨e9íCÌ+G¬ìäï„o™ÿ|×#[V­¯(JÅš'½¤>«˜ÿ±L Ô&Š'Úº)ŽT{:ïgx>MÆvO¸ï6XœRÌ çÀwò<˜@xB d´}ø2Ï6Á$Ç?þÄŽ@çõ‡“ö“®(¦bI¿óõ±TK,=Eb‘,{ÌC?úÛb–ë^üvÖ;~<Ä[mŠJ›OÓ D ²¤Ôc†©t§þ\‡ïêEFŸUÿÑD/•^FŒ /ó:Ê‚ÄÞvƒÃšŒ%ݦþQXK„ÑÔµ*¸K‚£ˆ7R Í Äk´¦Ãùs¢ˆ™Žƒ¥}õ„bÇoãWðW‰ØÉ*"ª6`m%îÄdôŸÔ@gŧ]N´‚ë½Íj‰ò;ÂHÍà^ÔÌPÎqÒQË.FAÿ˜ÌU]ç_Œ!nQYËl†Fâ*Þ­U~ƒ}±öy–êâ­Ýt¾¹®'ç­íº…» ­¶×C䌶buZƒ'íaw~è+Ñ®Á±·'³í'¹WGX7%ÊEqô½®¥UV›/,‚o:€†=üØ‹gP>ÉÝšˆ ½MÿÄ7øÁ ‰ añªËóè×Á®êbÈ/ñG=ò¥¼ÙQzìd<ã0×”Û[õý†¼fÔC X£ó~¬¾£þ£x´‹làTFW™ Åχ®;A·8Eý)ºÁëê#ÐãË}•åŒUFnº£Œ€1Y‹‚ÞÎþ³üü¸ˆ¯P”(ì>ùÇ{ðw陵¥ÁÖ›+ÒÛoy¾Z¢Ÿç’åTžU°g³è7²u¿õ÷èÖ5? ™Ó`­ÆS»˜“ú~Ôºº?”T’« ñìÝÉ_/Íóð M¾ÕØýÁ„Ì׸D•ádð^ç®R?˜ÆéØaÕÄc¯‰ˆ¦ÆÉ¿Ë›~%ê W{”\û”D’Cè{uÛªº¤ÿ‰? ˆ´?7³Ú»Óÿê¨2V+™pÃå=®|4øá-\^ömåøÑ†¼úïè3ñõ½zm¢„ô½C‡¯WLc‰ln_jÞGçNݤæJú—ô7Vùx!«‡EfÙ™¨³˜†`õ>œ‚=[BÄ›BDÇ«ÂÇù‹ÕxáXq•ǰ÷7Q6›JEF—'àEâÉžÓcëaóWƒèC`ñ3“y´æ©6ì÷ì±ÄJ\ÃÞúcíÛcÙf³ç°ëÏ‹k‹°’ÍÁgıÂVÇÜÔàÇP~•‘gð-D°TÎEt\O+|~$C7X† oÍ.ª€Gç€g‹½Õ7:{¼ÄÕŸ5‚îkèdUP¡œãDe¸V3¦ÜÅù“ûЇSÚŠš—|†º¢†8E¬P[vÑ\·¦+”‚» ~|`~íf±Õ©7ŒE>|i:ÇsÅéÑŸ;Ãþ‚ýX„¥=Ýk ³ò…¨ì ÖÒÊß­ ­û…¿ª ¶GX ®ý#úIL¹f­<óUÓwl!ëô>u„o‰RÀy‘Õ€ÞZËP7<èŸ8á—ùµ%èŸØ{‘ÔHbr ?%ÝÉÞ½KüÑy4Ö7ùE%=6¾+5Û±÷‘^0ôÙôm!ôó¡¬× œŽEð’+ÊÏ„ÞêÆj²Ž23gc&}Ðã›Ð[å2ºnaá­™“ÀºÂc1Sh ƒÝ“YðW™°ŽþØz²qÉZžfì`~m¹˜ùµK©Ä.€^q€ksŸÊPŒùŽ ð§Ô@n_=D^çz¹”ÄäïÖ'â°G¸³5á¯îQ—¢›†NÞî"˜«îLvmËŠ9‰Ú˜/‰É&rÅVÿݨœáTqÖiºz+U©ÿ((ŸÕï²Ð g­Qƒþ†-©ÊÈNô‘ü¸OÿÄút%»„–Ô™þ%y޼A`fÒ[›.lÎý]¦ÿnvë.T{¹ÉÛØ‚Äžô/ù“É!·†fjûGX¬ûÜ‘×Ä9)Ír³Ù×°²û^ÂnO†{|¢çw>…þôç5Ë‘·b1úùX˜¹ ì±#Pf˜™ãa JB{ø«‚ Ü78„‹¢>â=\þ¯Äe•öŠKIˆO4>+ê¼9Îl/à›k}èUuÓÁ_ùô¡ÿ®›ZN¿txpþÃP?¸gËÎLà¼D žÌÒø¡f£bp)ý'ˆ@ôó´ÚDµ»ó~†º@ˆ/Zú`I›aç*0“è¥8LýGd,T~ý¤¸&&‹HZ¾p­ø§²VI)vÀml‚܈†–˜þW•ô¢Â +mMɘˆmÞŒâY¤ÇŠ¥éŸøT,yžcK·—°š±ªÕñy“cýú0°;–?¾þ:Ìõ¼éŸhïÛæ¥¼ÜÆŸÍÐä¦ð„EÁÚßfmø£|Ô|¸¼ÍaÖ”Ö&ùþ÷Dž æ0¸ ¸0Ãã±³•PTîðõhþGÁ…NàÇž zZð›@ýy"¬î𨖾zÊ Îì>Z¦ãÃ_Å•'ÁŽ[dõåš'ós;Â_Ååº'Óõ¡×«œm¾Ç9 Ç;PðõÛêD=q;Q›XÁªzñ™[ÍÖà×ç›ëÚß'›õçKaZä?Nr—Sÿ߃¨¨.ʹŠu÷Ã..ÃÒç‡ ¹Æ>o£Ä“õ´é¿ÔÖQk‹>`mAìÚOxšÄ¨4=®>ËlTú€ÈÃz!kÑÁê&l“-é5ýgàÆо¿ðW ˜ÿÑo'ªxã<ˆ‘M ú> þ°2nGÂ}“šQƒÀ˜•á'?Boé‡ÅLJÿ«àúÇdðc(÷ì§#þ¨ ×ÿ…IµKŒ,ät ¦¼zJ³µñü¨n<U‹âß‚;ŠŸsHO‚¿Z&²‚ª¯QïêÂL•&–š~Œ4úS©w’|®ªt'¿x¸PaÚÃ_5#þ(jŸDþîq"µèDY#ÌööªtèŠEýàò¯ÜÌóÄÙÍX²~ƒü«F¼}Iå-bJ®gÿÿç£bJÏ |CJ¥>+úëÏühóWî“¿;ýãéæÖPû«eÔ8ÄŸm.>ò×ûëWîÚrj­ÉDÍ{¿RÄÐr2ÿ|%ý¯†‹—š–þj”óyûõ_ÿú•ÃZj|qtC üLñEÜ'+#Œ‡»~NƒßŒ«y†kÅ•ÌÿH)v·X½h÷£¤—C¸ï5Ä@,©¥ Õ—ê{™G„§–¿4ùW÷Å s?žÄp´·°Ò~¼Ù ˜R›ß þÊÒ?’èÑÃä¯Ú*"xÓ_–üݶÖœXB²l¬ÉqÖüÚæ ³)¨ÿ¸Æ5ç?赋xa;ýÏ7jz°âMÔô}hgù›åœpZqú·ó_ÒÿÊš?¸'¾&ˆVü˜BF×}2ø±Y_†×œfæqÜQð£þû\ô\Zh}ð'*ôòxÐä,ýSð£/|â"²3SfMˆ?¶È–°v¾Ä3~hŒ­@Ò*üòu¾¹®çäùWëÅBT¢~øÅEáN.âí¯¡.kúG}ò„bâݾ¦Vb5L ;Îó+ w¨>\NHþªø1˜}•â_|eE«ÿ®ý ÂÍÝØúù?ßÓ¿Ýš ØÎ¥ ±Ízò^sQ?Øïü(Nþ®•Eí~ä€ã rÁ_æ´ÄRM¢.@1bP•˜œ¤>ðvÛÀ¨Fo™ål—²/Øí¨<£3}¿2ý¯"QÓ¼ŒúŒÆHæ ÍFÿh63ޡДCí÷C øˆžs)>5“®Ó³Ùf¼þç j ¬s ”û…TÙÏ2Ó?ñ6ù»¥Íü䳞…y›cqCðX8ÙÑh/é¶bñW®·/“’BO¬æ‰ÊT‚üÃäò6 ~p •ŠÆwðWÖü¨ÞXúÔ[$7ÓGø¹ ãüâÅá GŠGÎíWjgxK_ðŽùHOtÅMò=uâÐ'öYÐ*bÛ ò¯Ü©|bœâ«c‰r<ÑQúƒoVýy/º´w^ïUåšfM¶ë„ÇW@ 𨷑Å^õc&ù¶ßé Ós} }µ*Ò©ª=Q¶IoôóÙ¼“X‡Aøp;õ,Χð;LìTá”C ³&“÷p~yà¾ì¨í­A¸„䇭0Û‘{Qô.ÖË».~§D¬Ã‡óxþ¿>¨@ÅG%çɤ¥~ð¿ÕÏ_ÚÞ)Oà¯ÆjñÐ?¬5·‘¿;T­©¦aVù›+ž φØJRSã Û‹ùQ¦æ©õU;ú—ÜÒ6i)´qê@ç®Ã³Þ -œNvîÑ>üîUT&îV<µXC7ýŠ8#F‰hZîp­¸‹þ‰YÄ&8›MüëÝØÏlÒªò΋½°¸˜EXÛñhòmEòpáG9ôóÛ0'ÖL²}Øv?ìólòX~0-â;|üe|õDØÆÝd¢É0ñ£—¢è1õ°?©©@ÞBþU PÓ›è%à*r1;ü(Ìü¨+a\sim ;ê…Žýˆë-À¯±¼5nø¢“Á?°%ÖÔÄu`ËAðÃKO.(®JÝàwæ#ýwSƒdVþpC¾»†£²q‘…ê±ÔIäuV|Èj^dH?PÁ´h¡ìrý‹Ã_Å%3v!1Œ/ÊŒ7ûüˆæ:™ø£¡8‚­íŒõÃÒß"Þé³T•¬¯Ðù«‡ên1•Sê ›”ü8…w°Åâ&ÑˇÃ\E9¬ù‹ð–­YDVÞÙ5âÃxô/YöKý‡5p0;*% ×(¶ÜNŒTK¾sÊDþU~jòÒ¿¤&ÙRüVyªÖ‚ ¹eôs×ô¼¿Î°ñ‚•—‘“ø'!ÿ%pó¶÷;î ùWµÑ+ªš|V}#%ñGo,ïzÔ…¸ŽüÝLú‰ù»ÞêWGþÕ}1QUx;sjY‰¦Ó}=ÜÐ8ûÛ(Eø}5åÃè˜ò…ŸJ§}ø«àõëDê%‚ÔEåæ»¦Ó%rœ1Eާ¢Ââ¯R1UéjÍt2” ?ø®ñh §è!ü'9Ò™…k QZ%ºe!7¿j} œXuªÙárȬý~Œ%7¬“‡ã»Ñ«­yÔšHGO½%5¤›¸î|ø‘eeI~åI[N¥‘;?y¾ýE:/.'“AP[aÚ_ 4f•/šC”‡ìhB@/iõOìdþùIú—äÄŠôÄ[LOÿÝãèçžý|Y ÑÛ;z—l#þ¨OÆr|º®Ìpä_-dz¦œqN’µ÷÷¥Úý<.Ïg <ªîú £ˆ}“rmÉÍôôÂêfïi÷ J¥›¹”ÚôÁ^ÅVg•?°onè»èšáG%ˆ?Ó/¢âÝ·ê‚M[ÈïÊ* Ó¿Ä•}ú×ÂõÈ¿j‡¿RkJlœ”OXù,õç_±pg601“Ìêt²ÁŒ'Bÿ{¹ý#–Ál\žûUÊ™`ÏÎU%»íªÛxú«TG»ø†Æ0•úŒÌš‚ì…¢Ò½¢8ÁWˆŠbåO0ËdÜÅS;DýÇ‘—sªv¤Î²qÅ\ðc2ñÇæND(I÷m˜·ðWYÁ¹yr «>¡û&<‘d"…snJBu#ü•;(¿‹'UÓxJ—ú`Ydóе3lõ#˜ÍT#ÆBñ~@ä6‘:ÔdœÍg°b‚pM„쥔ÕNaé?àe,–(é›Pe<é*_ÊœŽ|6mäï>3S2Y<€îZÍ"F\úïº÷ÙÛ\ºqöUœû;Ãü(«g[¢Þ|ò–8Aý‡Ýž”,³ÁôãŠv˜öcÄÒ^ KŸjŽœd76±¯àÇ0¢ÖÝz'~|#w2‰zñÞôùF]ò¯WŒ(f3®}£9Ê>ÊînÏAOÆùô/)DíPêîßoŸ¤ÇSÞ¾är¿¢ŸWV&+'“W骸ú„x%ÂøÔ®¨êwµ)Ó,²h÷=¼w£ŸS›«IÕêÊ÷ÖÞ³Õ'ÿª06®°¾Ú>­’ê­¼§?j{µRäïŽsî:Œ9þú¬–ŽûíÆ¯ƒèçÑNðT%?<è!s}ÌM _ýùFeµ’{?ë2™7ð:ùõ©Më ~ì‚«]Œµ­¯éâ‰ôáØc]æa=‹ø—Wx¶b“N`£ŸcçkÖšòÞz"Þõ}Äaן÷&þÐPJ:%är¢áFämM@ãŽFüq«ÿ€j§>_çšv5ŒVÔÆáSö?¬©VÁLolDrFbõ,FÌŸý®á—Õk¨žH%¢ ýŽ|·uG?¿Ì 5°Ä³AŠ—ú*™ôù;[^áNÃfyqÝ£ù¹Sè_~x£”áô£Ëu ¡¿Cÿðæû­y£õ”¢"ø±‘è£þ²•µÌ*DÎ@ñPçG=¶=¢~pQ_7,Fr¸vrj;‰?¼©÷˜…åLB–ñKb„­|ž¬Ý[\ókÐKcþù"eUˆK. ~ôg…ÂxدШcÊ5|w3¬tVø¥=F64ÐDt¡­cÄÄcî¾Ô‚¿Z‹LEýàÄ_ð£ý¯zÁ_Ò§QÅÒÀø—2"÷äêÏKR‘]þÊŽÚ­g`ÄŠ’õ”ø£‹LDÆzÈùµãÔWìïx9U§0úŒfÔÅÞ§'þ˜ˆ]^Bm·=7îâùCcéNü1kùˆ~™ç4±67Ø]+2£¡øaë“U ¥d†±Ý˜HýàãñG.ft\ÚúHo#™ŸÌ³™(ÓƒÀ™2Ä=d¢ ýó(¦: Å“ø» ÏÃ#½uú@ÉŸôⲡS¢s{{µÁá£ÓÇTo+>±—àîM.5` RR;Œþñwl™~žÔ‰l€·:FÖóZt„—Ì{úÆtöT°F/ÙmA³¦ñÞÈUý¼‘œ¡w‚éç§µÜx¡‰“Êgâª^ÏxC„µ>í,SOŽ‚H{É6‹noI>pBfJÍ—í™_{€è6Œ K5ìáÄCm£€uîÃ{Q€§t°‘•ž‰ÇŒ[Ä.)‰?˜+boËŒ’xÄ;`Ê*£)tèzÅn£Ÿ×Ï¿éc´“!žÁÿ‹O )#We~Feø(Ê'ú_ýÁü7Íß¡Ÿ¯·5W‡«ÍTwú—hÔÏïÚªiãÈi+†f»D¼VKôUÞ‘¿û†~QÙ#ÜÓÜ9íôdÇ­fÍi"²¾CñТu'Ó‹Cb43ª²{#~wú‡É¤÷‡°|Ö,¥Ýغ”²½dÛ‹aD~¼ãCøµCt£I’p¬XE[þ1ßè.žü.G?9üþž7è'ŠÛeâÚ˜09> HØøÑGùIþn4b–XàÇŸàG*hF³³HX”ÓÄKo‰œ:pÝCP3iwÃØaIÍÛÛŸ8àºENo<ï3[ÈÙo‡Nz‚]å«V÷ù( qÅÉ ù|ÁÏð­§švn5ÕçMÙIENmœŸ?^aV+žÃ2Gãž ‘lÅOkˆn¿„ùçåBí5þªç@ndwoøÈ›ÜÈxùYåêËŠcXû&T½Ü‚iºƵ&£*òÐùæºö`{ªîKô$(C`N²peãѸòó™ø±Uv9Vñù»ñLr¢—ø™nLÌÍü¨õ®¥•P›‰ÑXŠºò 6w½\×Á¬ÕG ÉD²ÏÈlú39Êë‡ßéÿŸeí}h÷ÅÄhíÖ/ëݧßáxôóåTœÓƒ5…ÐQ¯ÉÃF+Ô…éÔ‹¿cý’à“±BØ»3ô ö¢bZê?Ž»ÓSÔO¢3O¯Jßò ’“ù[‹~#)éŸ8 ÿ~5 Q]³*™Wøús,¼'ÌÞiâ§-òzWâñ‡Õ¿=³|…oÑëœÚ”©àÇc¸œo\5ãé§Á^Ÿdg½Q¼s~¨ì£aÄ® Ÿ[¼¥»HéÜ_v%’Ê´zž×ïÔ»œáîu‘•ËàGô(äq„¹jŒî‹=M3VÛe,úG7,T9”ÁF6ûJ*Ù÷e£ê|·9žø£=LF’œÚž–,yg~øk§D ¸Md.Ö^†xfþ/>-« ¢ýŽl¬üÎÏþþjøþüa P"kÍ©fHªQ¬nëm èXZM¥–†¿ŠXwÈ»¶zäïæ¢·d:zImWSj%Ô.Êcm´8¥mÓ2ôÐ>ÏrÇÛ≷ÁWÍ ×Àœî¤Z4˜&¡ûæŸÇÒ\xþéŠ+‰?þ?Öï³»©‘ÓQ–*Go>~Ë;Þ ¿s1ýK‰ðäB—ÑæÌÀ>ß=vã¥îeíòmë“q™'­-ŒTS,©ÎÌÝÚ™õwm•Ž,‘¹ÎdèóÑÖªQo?‘èÅŽE9[ä‡òÐô致]»ÆŠ…4+s¸ ±Å-¼Õ¼D SˆܱxÃÈTª"OÀ~oA¿IÌ`Íte:ßmýÛau×¥×…ó* ’Ï'çàµ>I¦DWY„¯Œ³t…í`\]ðc:üUÞPû·¢kiM7ºÜö¼‡ëÁUÍ$¾J)‹ê1ñÇY^ÈêÈx—0ë¥HèýÛßÐ?ѪÂé«RÛq„SÛŒ¶ÕTk~DÃrûÃ1­!¢ÉHfÃ]0é&*vté µ6ø¥Ú*S?8œ³ÊË¿|@¬U.&¶i‚ŽâFÆî²÷_Ò‰÷ ñGJã<öS'æ9ŠM=DÖO~Ñ?ü¸Kü1Öj6œÔa01#XS”y°¾ò$ÌNÔ /úï¾ÀÆnð#?ûµêÏÛÉÈäãm"ë#èǨ_DoÔ°¨hÄïáºR£lg‚ÔO=õSÌØäöf šÊÔÉ߇‹±æ~¾w•ÜÇ“Ÿˆœ³ ë-9À_| ¨=(mr™±–õº#w© .`¦&'x3¹ÃPò±ëY2£põ½(ªÄW×ëõ¸‚WœßnÞ…ä_í!ÊŠl–2LìþDª?Z¡Ñ´¢ž.‘MSó˜0‹½%æ4£s†Ó‚äïN†©¾ ãmz¥ÏG?oB]Ð4Îì,Uˆ[á—"ÛcبIn¯GVÃ)2ÅòÒõМ†Þð–ä,½žh%þp^ïKú—ä OÊÒω?y^;6ªÂ'’µvƨm^6š¯À¶×T6¾D§HbŽ•ùÍnÆ>Ðæ6nUy:ñã«ÒB›þÑÿ«ø1ü«L&¹Bíú3£¾ý ÙÑÞ †­Š½ëå°AU¹&Ó›?Yé¦(ŽÕÉyZÈÖ ÷çõqYe=Ûÿ^=\–+î﯆ïÏO¶OÊW•IðZnÍבùý¼—Z‰þWU•·¶ˆEW·l韘ÆÝî—7©?/NÅy˜rR[@„3NuÍs ÏþŽi)±)°}±"óÄWæ¦Ñbbq>ˆÕbƒ#¢káë_²L–|Øû…xa£°§[õx²&YÀñW@aàÇ8òw›‹ØAzŠþ~•Ðsè•ô†§`+QÆ,ª•-kÇö}× ÞŸ–L„j…½ý)>9ïÔïÖkeê‘ñðcã‡[ý«ŒÅÖ©Ä#gaqÞèÓPÜ:òìe?·±bm<Ñ›+½‰ÂQ|›yà“ÃêÕG%¸ v,æ–ƒµõb‹#ö mm}ÕØàÇ:öT¬-O5Æ퉾Žé™úbl]\üÍp\›x+*ëOD«Ê¦% e—£•~Z-¢€r+vúç6»¹w9Š}Ô—©Àn" ÈßÄr¬f=bžÒ°v¿îî퉺¯@'gs™kiåâ™ÕðEãàê¦D¡ámx, “Üä;Ö<„·$ÉGÿÝñGµ¾èÃÕY]r/‚ñÑ?^êUЪ;â´0å…ÀÔž'¢ù¡—$w%ñM™Oôù¥~°(󣺲^bt GsÓÊ;“yÀŠGôrê@~S/þDŸ(EÛíä§Jî u+ebìµÊ¹`g8 ý|øñü]?zoÅcgÅŒé† v y±«QZ˜åÉçªåǽÎ:u†y³å&°85/AOq½(ÆÎŸƒ5Qø‹­¤ÊX£õç~T#–?–‘“j3Ó{¸QÂ"ŸaØgЮù»®ìwôuÄjÖ”®¼ä_Ý%þ¨GÍ~sâÄô¤ÝJßö¾TL®ÂþfÒSJ”ŸÓœËPô(èÑaãf‰ÏÎíÍVjkGÈV¨Õgo*üÕLpû!ˆèMäöÎ|°ž ü~Mg§Fp3×Qºï³~y"žÔÒq¾¹®{ñÖöSÝ%æõYÓ>²‚ÇÁÌ?ñZÇ¢%L•¾`ùzø«}X :dänmãgêØÌøÚ|eŽk)ÇGµÕ®b¨>F/„ q å Š\ ²ýí÷ Ö¼Ò“ÔŸ?…×OÄ4ÔçûÆX ä_õû%³ù¶9ç ‚/»¸ ³úsOôϹ±R­©¢#—žX‹ABd8m!÷«!úGvôóàóÏ'«Ä3Ç9ûA(ðP ¾ÊüàÇw=9uÞÝÉß­o6¡­•\¥.ÞG;yh1QìZý+Ù,A/y·(ÌAÕ¦tX)BµŒIçSŒ¦r¸q~ZyP‚g2Ïš§žÑÌAÎÀ<žŸ!àq2Ю»"¶s½ž21¼A=ê+qfý¨ú«FŸ/jû ÷ä¤I:v:üÝ®ÆL²->µô%ªº¤—s>…¯˜O2[$æùíÁ;ÑRŸHŽÕtâ«°h7饸ެFÿöktqïDÕi:ôó«ôHþ1ý¼$ËÞîéÿŠþQý£óÎ¥ ÷2|^xÐgç¯Ø•ØLœLtpY±²vÛšRÿQKM®ÖF?¿ðë?ù‡¯Ü¶U¦ÿU^<§$ðW¾jVú'ZóŠËäïÐæF?Öi‰AöÄäàÌ"i¶ø!žÀŠFÆ2¾$ú؃þ‘R+î<‡ؘmŸ²›€^å`8öëV¾OúŒOÃÆßÃWïŠý_/Ú‹TAbò߯XV›¡ÝãðêÏÃÆlÂÛº„?} V¬®üD5È>‹‹"‡w3SÍ¿…¹ÃÞÊa‡ïj£G†±ž ~Ô¤ëW<ƘhÉ7©L$Ó ë<üئ~žSþ†uXœRI"¤)0Eée Øf/vhu·;ÀW·ƒ.ÃÁªâXy–Á¯úú¹^Ìã.4"^©~Xgö†úóL0Y«-['ïÁœº)4AåïJü%”ëE×ëF`×Îl™0Wø±3=õ…ÉßÝ…­-+Ê'Xµ+úzbžLܧ,úiç›ëÚŸ/ñÇZ1 Üî›|¤ãüìDZ°s£É’‰â{ }:k¦‘o‰ÊþM,‚ù»›]K9>*ÁüóäWäD ¸‰EúàëׯËOFÿ’íØ§+äï>#¯(6¯:œ}~ÔšùXÀøè“4×ôÕ¿.¦^}¹ 9ài¾yœ…Ï?.³“¿{ø£Ó5š/|…_*NL²œ=P“÷ƒÍe<ˆʦ`ghéç=ðTlh3çÈÔËÈwæ0¼ŒztÇ4Ã9Øæ:fziçnpйð¶,“{9—!êÏÿDÿÈÀózÅg!çwˆ<ÝeÄ•ä ã:õy©ò›DMÃ>aææšgÂvãJÒÒ-¸ ñ‡‹¿ÊÁüÁ…Äe9•Bò™níAÅmtiyO¶ÚmâŽXçÄuÈrÆÌ§æ²«û’Kö…x/:ÑÔDášàØS)Ïü(78¯úRð£(g8 žé ñÁDô”èç¯ÈæJŽ2ˆZSÒ´ªƒ]8ã&r¬Þ…þª.þêù»¹ÈÅèJÌ›Šêšcz+ºf•¤â¼•¹’ì€QÔKFB«¸³ßVÚ\ {Óÿj™_>…—íKü¶ õçà[¯®úG}²‘ǾÄ\ƒâ“¼Èc_mæ³W#þÈkož¤¦Òä:¨›ÀzRd#Š_ÍÛ>YÛâü¿ø´ ŒU#ç“•úóð©È¿îMU计µ þ°æ–gÍ ä_ÕU««&úG@çúÚþ@S*‚·˜” äݪ§VH¢Ä ‡©—( `ÿ’ÛZ6¬f,–9¬8ŽiÃ;æJ ø‹¥â¤˜ iácî|”íJ!± ŽjëOüÚ ÒšÒ>Lù´;zÅL*Lú2ÿ<<ù»uÈ¿ äßZó£ÁíÜÇ^Oc~î¼ë=`€AT³C+^:ïÔ¯çÿ×WÚ(±éÿ> ñÇ|,uIÔÓñ<ã*¬þQ,Þ ””®¬ge£¢ÓÌïVúëë lR#*ù³·"ìb‘RV<³¡¼YUب·^k%'Ò™úŽ{êªJ/ôsέ1ÚÆVÔ"œÔ òû¢ñâ]-Äfç9‰Õ¼Mµá°–2¿6ƒö=”å¦+“´V`×'a¾½?¼¡Uÿñ tk­g%Å}l]KNñ1qáþÚº;?3U“¿.÷Å@ýàL]!úèFþ© õ@všühJf¨/<Õ4X™Ý¨ uàGüXs?Ö2!1bmµ²&Ä’ Ô†b8>FløYò«"Ë™øuÈ¿J‡}ïñ.uèÏ™_Ÿì¦F¨ó•ÉìšG-y¾æÊ>ýká²êUø°!ðœâ”R…š—:Šò:YQ?z“Åz“.VÖŒYËÞOÇŠ°ûO¢(úyðJŸ êkщ+øLÿÄ“ä~%’oa¾¼z\cªéo_æ¥ ±L‡þQ›ŽÄu‰¥üˆ¿vãïÆÔ¼ƒ=9'Diü•Wx-ˆP*qNsÐ?†Åà¯nÓOËý|Þù[ÙnÈ“˜k ÊK;¾/…±–óI)ìÎõ<”¨ê~½ÏGü~ÔA3ªŽ5NH~Óv¸µnôP\KŒ´‘“4¬>é\ó0ÎÏN6W ¼ÒT±ÏyGú0ÿã zÑgââ…ÂÖd-ÃË<¦-4rÓñê ZÅg3½>ýF®Íd#×…¼È¿ª*—êÕéfPݹ¿kÊQ- y¡ÕÉ$ñ½Å}ñG1sû:H-çp:ñö®è Ä3Vw€‰rõƒsô$òOU?²2¶ë…œOá;ú—ô©ñùº#WEÿØa_…Vt…Q/¶tb̃v~’þŽ­yjÊØ‹òS²QéÕ‹:åÌ<×ÈŽé®…œ¡ì<€ÿáeȾêä<™Lh!™ŸEìÇ2´HN÷voðã€R˜U–ØZ«MAxäïÚ\ñdxÖõµµÔ&‰bà‡;Õ;ÕLZ|ôs8ᎶS˧yGP?®å… I‰%œNÓ!ôýx%VÏ™—bø1K$gÿ«µÔ–¡^|&H4 æÿ$üU!|eo¼×+øÒƒÐÁ–ê‹èxà)b„ã,«‚‡Oˆ]>ÃìåÍ´a“§Âƒ)¼ùD!»y®âÃ¥œFÕxæz]”ôdk™ì!',Â*öUü S•ô¼Ðy¨îDNÌBÕÏ…9°¾¶ ¡1ÑÁ+P¢,ù#AºbDõƒ©f(ZñLYN¼°‰¿›¨§¡‰å;„ö_,¥«š 3ôèÄjØÁþÝ}%ø1~¨#Y²÷ÙëeÖê̽G´@Ò¾„²\_e¢VÄ 5‹÷ç>Ñü8ö© …GË-nâgVÃ._ãd¯5"ò¬Š‡wÂù準ý@ü±¯à§Þ»Vë{Öa¦ã:; Ì>À{]D-ǼúØR›ô‡¹|ŠUJ)#Ã_mr-åø¨ý­ª}ügz"v§®~3÷²:úD ÞýóX½›ðX·è•-Ù—Z¬nÕŸ'”¹ÄtíNˆõʨ·DÖK‹ý”8à Y{`œ¾ƒW‰?ŠÀ_µ4o[µØØ}xÎù°ãèj5HŠŒèG‚Ý•ñàGwž…·Ìö»†þ—L­ªÌ›ý†~>Û¼’š¼êøáúGeú¬X=%»ÀjÆ ¹‚»“Xl½­"ñÇ[µ‘EnbšÝT¹L6ŠÓ¯ý>ñG6²¤-˜Ìt‡¿zBýéÙ E%‡±”O.¢:×˯üTÖacs£XäçJßrOwP,¾3?ÄR¸G}4¦^ïóþ¾'¶;Ób 2¼>ó¬Ž.5`„Rý#©´:í’É‰Ø n75ò¡”?RÙ_£d´·C¡¿ÅIÖAã ¦vàlÉézCòw›;÷÷œùQnp¡ía®2˨fmŒgìb©CÏû‹^UcÌ›àÓ30 ˆ9þ»½Œéd+X]¢{R£¿S¯é| ß2ÿ£»ˆG׎¨¦²>•ùçóØÙ r•OÙ™dØÄÞ€,ÞöFàG:ðcŸ‘† ð÷¼Ã'D~0gñÇ8m[ˆgæÿâÓ"LŒråïºÑÍÝÃyNûùªòRùLýÇú—ø*åXeùWÝÔªÔŸ×!þˆXwÈë¶Z/j+s’=4…þW´ŒªóG‹ÛÚZêgE¿:¢•&‹Èšµ²”5×1?Ê_ɬÅÄB%À‰4W·ºre¥â.öcé×:4sD£µ°…ýÅDx?}8Öy<&Dö 1ùïW,Gýà32G yüÀ^Oç±Ë¶ÔD“'x®¢³¦Õ¿$V˜õçÝ”H°Wqˆ0<ðAwÁ•„±'Ý÷; `ß­±Dcx.„‰E´ØÞxâoÁ‰pvV¯œd¥xó«^úPo¿[Ø4ü«óí+´ëýfªfæê–ÁsYý¯ª’u0¸à¹¾BÁòóV“§t kTÈ›6…Øb¤¨jÿ«äïÖ€AHB4»ÿ _`w÷6}žü8µoƒÍ¾ Çvè©.úT•ç›ëÚåkú—lk@£áü_Ýöww;|Q_‘µXNåøh°–Í]þdÅËü¬t°%è2þ¨¡6Cx¯‹ ™¼B‘O –…“yB‡Øt6Êb¾‚¿ò?’°Î1Aº[¨Ô”Ëjb°æªžþk%ÔSäÛN$ÿjf/ÉÛüä}hÏÑGò¶Ð¯·™©¢WÔ„sÚAeEq¼ìÌS"ðmTv{¯«oà×,ý¼7øV½'*yºSŒ¤Ìãð‚ÇŸNoOú_é G%ã3˜à º_"~Ú.·p§323Ëuz6Ûrákeq°U`û²Ó¬£Ê~‚ÑVŽ¡b36´ ýÖ¯PíÒƒÙ'žÔ­,„mêOþ®Çø+W¯ŸÜÊwe>'W>Ì¥àøÑ›ºóÞD©`uö[UÈÀÚC úY,}Np@R3 lMns2îÉáê×:V)MýGNêBîóŒåÓ3¡º´@›~B¤±“ú3©ý%ùW©°Ï6ð£5\“»éŽÕ¸³xÙQ4uœ×{AÙ©eÂ/ë‡ïTFÚxF{/àÂfÒ÷6¼ÒT¢“â…?o¥˜?8×oì ×ã¾X7PÇGÏã| •Vصx¼ãy>ëê}ˆ1f£ùÂ}ùÒ‹w¹YƒùôW鞤°7E;+ÉüÄÏø¯EUv²Žª§ÿÊü¨çœ'“Jé¢dq~ôùûc©|V¾¨ ´qZm¿£~p;óÏ[‘•˜þWŸl›ÿqÉÖ€ž”eÈGȤÔZVu˜’ýüý¯Šjc#Ø¿ý…VüHûè~ ñõeJ6¼ˆôúØÃüóQÔŸ»2Ðÿéj)ë”Êâ OÍR '°v™äXĦbLÎlØP¼êe¢¥H#BãíC®Ýýü³X ^\Ç‹_sÛjÍ*h‰?¸=ˆ0œµÍp̨xP§žö'›,'­J‹Šä LEˆïr’héO+²&À¹ÔN…q·ÿÐcÍ{`É?€¹ˆfcï3añ¼Ñ•kÑ<åk[`svp²Sà6é‡üZlÕJØòùðRõ@ˆ‚ Ørëºð3“9uˆÆ‘°A×8‰ÎàæÎw2ýK”Pv9RªU'vIˆ=›§ö^y9q_À¦zIø«gð-íˆ?n°âSr£k¡T"þ­û'Ûu“XO>•Å«„û; ¶ nr ZOgbƒ(ðE·ñ—Ùл_Á‰}ÔóâuÖv(³ƒ_ª­šÚZŒEÿ¨I´ðf%¶\Ïꡟ»ƒÖÔ¼'ød[ª5¬ên…³¼Ž^󀪇Æbá/üUqõ|Ø\æQYŠÁ yÁáEç“SltÅRM¦‡â=ì{=*Jö°ëb\½Õ¿d„LO¸:„~>^<§{yê&Áq•ßL£1ó:Ò’Ó5ÿ~#šw/澦GJatþQD³}@Q…Øf?˜ï®Ï_Y$òr*ŸÀÔú0lùøÎ5DYc j/a„¦Ð$§¹Û¦VþýÈ|%}œˆƒÇÔ‘l¡²úr£Š} õ/Y뫑ľÔlc/bWìyì Éj¯Å®¢tPûõ}èçµÑÅ$õçÿFÿ’üJ úGzº¹‡¯ ûïkwýùþW?è¿;Ÿúó'JYN{ýK¼a°’Ò¿$¢ùW—lžZ‘5µÜR+®•¢â°áåñëž±êqSßi¨L%_µ¾j!ñÇ'®V³7 ÿn:¢£¥ô¿`,‡eeÞ<ÏuX¹‚ΧÐÊ¿$ÒbŸ¼ðéèéc\C??Ê•ªäo•¦þ£“½ˆ” L:iä¶ä÷"d±}Ç«¼#2QÏÁ×…xfþ/>-Lÿ]²æ¢ÿ•+;b?_R5ªk­´š];¦â´·PoÜ™þ»ñ©?k;¡åN£ CÿÈIÎþqŠþ%™@Œ¸ôY?‹½ÍÉ4ôÎûž…é8Ðþjv./ñ¨©OVêkTkÄ`‚í)ð#Žæz‚ÿiÅcLâ)'.áů„!ß {“\–Á¯­$ð ±g㹫KñÚ“¿ûõŸúÏßµ£û˜“Ÿ¼Í>xòVŸÛ9¬£Swˆxo=ÏÖ!t‹a^ó %78c'ÎÊÈ¿”g¼1ñÇtŒL Yþ*§x‡'\µÂêÐõô«’6F÷|á|s]ûÓ”ê ±<Èi(è©?ÄÝÝH¦òXâ/ ô-ò9ù8+d,ÔÐã:w©8ç¤;¤þÑVí(áGT”wðÙÛa —á!Ô¦#¼Ûéê}…>Š/dSÔŠ'XæŸhëWA„;(/…Äx-d·êºêG1ŠóðÄNºa#¯Â“à—^Ë;ÔŸEó®Oýy –6.1B74½ðM‰Ð?âÂ`N ŒS%Öê$¹ É +…íÿ.+3ŒèÔÇ"Sj5j|;âGTîÕ?&Ïôf6c+ñÞ.ý{ýq¿ÈÉ7‰Éº™›xm)üÕ0£5yXwÌqĹˆžÂÕõ†¿Ê .­$úèEDWý¼­Œ#7#üÕ!|ô¢<ÿ¥xÞ‘ׄ¾»ƒ‰Ù¢3ŸéñGòÖ£Ó¬¦~Г8ä:5£á¯Ò{Eå^Mœëõ¢SêPã ¹#Û¨ÿÈK ×üðqW•À‘dö@ºs¥·W¢â+t¤â¨Ó±á¯:Rÿá%ã –Gü×ß”}°áUñEˆo‹ ôoÿAÃ"zʯ2©¿,n õÜ,‡~ž…ým‘ÍîÆ<¬üX.z!0É¥Ÿ?W:$Ä«ÌZLŸg³Ï¤SâY*eìt•ßhcþ`\{ûD2زéø£å5oñýWѶjÂ/ÄÞZHõïýþ/ÿ,¡ôä¡þü¿Õ?¾ÚÞ+jcôótÿÑ?Ö“¿ÛYmBÿÄzôo(EÇ]rÓ²e:W< ÿ*3øñ”<…;ôû(  ‹ þqœú/b°ÿ¥Ð* ý’RT‹ã‘\ßIþ®·ˆÎü«½t2Í$V#ÅßÝ‹­‹DüQœs¿¿‡ÕÉG~JæU{uLò%£u‰î‡Ž^ ýÜ&O€v¼ñ½¨a÷ߨ˜äùÚÑÒÀü¯&r¨¬§‡÷°*K‚§ˆo–ƒèÿ(L&Ò­0vXN[èÈlš‚}&æ߆€s™ñÌFb›+ÈÓüí1üôÍ ËR0)ýküfÍhJ35'´Œ˜¨>ˆTü˜ÊŠú82&ë›ðõy‡¬Ò3¬Ø‰]zqƒDn-n(+SÆhµÈ¾JÍ ÍI¸Æ¿õΜ™ï"/ñÇ©ž¼ƒþ„Ÿú±l9f¿Pðã­í¾zþ*¹Vãæûð56‘õÙühãaU©¼C‘Þ@RVùût{”†Êí2ä_qƒ[¨MÑ?&a¯a™Ç oÙòq.#£±™üžFR‡~î†OÞ =¾33¶ãáç—EÄ0ínˆõê©É—šˆçº åÑQjyü°úïî¥2Û_¼<ó?¦uX9H­©žØŒ÷œØ,££ñý©÷ÆÓ¿¤#<ÔOfk<"ö‰‡Ò^‡ø#ÑÍ(ìý¼ð6ؼçàGqã1¶9øq‚(eȺYO¨ vOVˆÌÔŸû‘åQ—ȃk™o¥{]ú`]ÀÞçGØw‹yè éßþ‘'—ùÊÜÆz2ER Wå\ðW ±òEä3®÷(Q^Kðãµ#þHi|0ö€oMA·ÍôPôÁƦ‡i;Íã.%">2ål†‹Í¢”ÒŽIÚØß2˜ÒB<;Éß}L†ÙH£(ÈË~Ý<Íü¨&àÇY2—[#`¸Y¶æl:Êyô–h#\]fÑ?±(c{žŒò½ðÕûäFÿ˜J?à«Ts¦µ?âš_£¯øÁ^Ŧû0Ö\‹ßõ„÷§'QË õ”.Ú(‘„ç½ïd=â²ôßÝÏüø|ÔàøÃ&Ž¢þ#¦]³·¥{R{2–³2a÷ ßYÉÖÃ.,ÿWú'S†©ô ÷¿Õ?>Rþü˜ª%Ç*YšÊ[[êÏ›ªIÔjðW‹?nØšPë‘—ìSq–ùQ1ÔNðW£Åsm‹ÆTUul°ç7Äëö˧÷௼ÈXm­/¦'JY?Bý‡Õ™öØ-v0×0c¸ûïú(yÅVÖÙ†¬EÒ•ô–ðWû±¦Cù9£éùØK¤ÑñǖÚbí…˜‚/ãGô¿Eø4Vð#v°9£‘ä)0@…:KþÕÏ0×k¢Ä N=6:¥¬-7Âù×#†›oeo'ÖÌÕÇØä¦ØíñœÃÉ0õóJÚb|ÊvX®gD@%xRÇq$Å¢ZuuµPTƒlkñî­é§§f.pÛßì2ÀÖQ͆ÍZÂi5!ªó¶ŒcÕwú(Þêñp ­±³áﱞ¥ “æ®ÜNפôתàÓ'“ÛÀëàGWðc×YPÖ¡þ<7ù»»8K?¿Å›¾̲z]—ÑŸ†‚¯™¾C¬Õ£ÃªLĦnœèaX4š,¡æx¬‘`Øðþ-ý<üÚßù’ <G?É_U¦ÿÕ®®QÅ{ð#®ÜäÐϱÏnÔ2¸aY¬þ‰Õaôïsš*ÑáeGǪ,Ì\¤…ÌV,£^¦S¹†é¬<ÏýÝ&=Ñ:nËËàG*"J€pQ¬¸–ø£ ñÇ-ôjOˆ¸w+—ƒÝ•ê[ò¹6qn£Ð÷«ÀŸðWt£%ºí[ŽMd¶ B¥\‰z|vðã”cþàAü¤\!ò¯Æ’• ®é<õƒKÉÕÚOýù1ꃇàÃòáŸûRͰ>+ƒ™üØH;ˆz’štÔê*³é••Jä¥è¥äKðãïT+Ù˜þ‰ÝQ£K1_ã$¹Ua×N¡ðχÊÒÝ&[`¿âû¹StoœÊ¥¸v>ì)Õ=é 3mµQ‚úÁ Tyç¦[®f‡þ‘Ëüžh©‰Y |Ï+SÁÞ¢¶s*¾aoÑÙy~÷”]ZYØßVÔ#f”~DCÒ¿}'v×ødø0sö29ËŸÐWnD7·Êé Õ:žM«þ¼ þ×½„ó) PþЦ`‘¼¨P+Fl>×hÉÌÚL|ÏB£Ú·šÞÌLËü¨†ì·:ý¯ÞSCÅôÇc:ЬÌ{’X.úWæGU¤IkçÉxÀfes~æ¼áú@Q¾Ñ¿¤“6FK¥íUJ°ÊZæÍõP+¨Éø±#\«üýM¾¶šÚ4QÆÉ ý|·ZVK¢vTbŠ‘â"ó–ÜÐ?"6¿6PËÁýI‹]]G5nS‘X_AþnV,ŽÊ|ª½ÔÄÕÂÓ­Êf;¦ø(Ä ”“í`Å,rêϱˆbøñ ¯µ'¶p¦h&’‰Éÿ¾®_ÿì¢mÐÞ‹?ñ ý°Äsð¨¯ã‹§.®©|?} k/ÉÍØÇïaE 6['%‰Ô‰¸ÖÔ(ÇùFÖ”Þ³0aµ±ö‡a‹&ÀM ò*Gÿ’;aÜífÚf|÷vìë×ê s1‹÷9öi(¾}5´Ô0Q³Ð?Öë³Ùe\±þ·ùWÑÈß-’-‡šòÝÖlû¹pvúdŸ3Û~Hyõã õm‰:ñç0æ†Æ_ QæjµÙ[ ø«Á`Ðuâ¾IDßôÜÔs&åôŸbñ›  [hOù9µÉެ¿š~®;_à.ÄwxÅùa°Žaý÷Â"*ê Ïbƒ! ÀƯ$þÈÏv œ Ä“L/33 cqˆÛ€üÝqœry©@1ÕÀ€K ‡;úy:SÄ3ÞÉN¨égˆqTî–/þóY|w+þ8b½ºÔŸ÷åyË‹ÝMfÜ$æJKŽSNã 1Á *ëJÑ}©Y¬6ê5¢aC;c}}Ømrc 0˜óBÌÿ¯ZýÛò´MàçVß,å}¦ a< ðj¼ÞqfªÛ+µÑë‡ÉÒäì!¾ÙFD°^¦ç‹<ä¬ùÃuö¥ ²${›J½¯Ù[Vâ;æ9c/õƒÙ¨¯xC¯k¡?ý·'›Hüp^qårVoLµ&]ç{1ÕäY¾Ì½ÐéøÄèÁz}©ÏBÿ’ÔŸoÅ£™'“GȾú¦OëÍTrk/ð>ò ¯@ÿHÇ=Ùk”dzÏB–l.2wM¦GÝ#j¨NgÛÓÄrùÉ|ŠÉ3Ð|k(gë5EÏ õ•³Z¼þ o.¹Bøè3˜ötÔ3Ž¢ItòvcÚ×PÇ^›~𠘵Hn2ûó‰?>𯺂Škõ¢Nü°©™•ßv&ÜH>}‘шþí>Lìµf+Fµï¡ÿnk»'³ß¢öÔd‰e5 R>þ‰…@é Ó0Í•1à¼ôÿùe”QJw§ q'7§ó³ˆýð綘ê;Õ‹üÝTÚY¥ «l¶y©ã¨ÿˆ‰þñ!‚õ÷lÕÁäÂà±'d×ÔìZ úïZùW÷ÑÏ‹xGhŸ¯4wìKjlû<‡n ý¥,æjÒORÿ±D¤'~ìBÿÈ$Na©6‹î£ZÁM6$K¶½XÆÇ¯Xq0²üH®ü«ŽÔ³<Årýàßž†qÎïó±‡:Þϸ±£XÒèü$&•èaæï¶WÒ‚‘¸Î”Žê¾†dð+ÎèÑøü$vþ žx Ø£œì!:íÿó]n¦-Áú6D¹}LžU ˜‹IDH1ñ˜½±£äþÖ‡øã J•Ó•JúmýyôÄˉ<¬žÓe@¹ìè›>D¦ã|ðó#aÏñÿâ+ž§N“þ%®^F®ÝŽUfjå8-w|9«îÏ—l”‘œœ&sR?˜…ê«N¢#vï"q/6¯.'Q“kxîzsË©Ês2d—¢ŸæÊJ€ ‡Áå°ÃÈ*nAÍžÄr¿€3ZÄg™`³îü ¿7£lˆþ±Ú¹Ò_4V» WxëåÈPµýé»ï®Ž~žüØ~!ô»°ÖÔJáóZó£6Á‰yëÈÊÈGü_ßEýÇò¯\þiµ“ä_—aV6›ìàI!q[Š©àGïø`ìè<–lA8Ý߯ØA[¥=ÇrÙäÞçE ÈIVý‚lCþWþn<ž­zŠpðWÝ•tä_Eçûsbþ䯂þ1üˆÌ[z  ‡5¬–7qt ý@˜øÑýã!qÀX<ø­Ø!pçW[üò¶Ä{ùì8¬ÛV^¾ëAý¹+#øUGW«õÀ… G¢™ŠðI³QO¾è#è1ýܪÿ¸"ã.urðWô¡ô/ù|!ÇgS”YZk°' ;–¬«§¼McX;*Ö«™^ ýüö¸9>ÿcÐÃB¿ÜùÊÜ©Î7×µ¬Jì|\Ì×ãÀ‚Ì­©“¸bO8–ŽxÞw¨ÄÙ@uÞM¼ë?¨ÿä:ã½ç&3·œ6C ]·$w+TvÔð {k'gÍ?OcäD?ÏH£ Æ{ò€â^T'–¥÷ÆZø’L²¬ðþ%þ¨L½†7ˆ–Ÿœ€xtÿ¸sr„øC7®Ë[Fº/ gŠÒKX¨*†06`ë­~Œ—øÞAÄnúœùW“ÁA`¾‚×îO¬’€ÊíúÆ4ôôŽùk©ÿ ƒ»áOÿöò(üSÐÏ»c£MÖ>¬¯Ñ#kÁû—îYÉÚõ'·¢3X“m­qšùƒ#™#u]  Ûnª-®Ð+™Ò°sÁ™þd´åÃâ7– ƒàGv奲 ½» þS!ü‰zsò ^CénX~è8¶¹úù>~ß ˜ã2¼âxò¯,n/÷d±pu”ñVrhW©‡zE„¿™J£rœó~¢™ëhú‹Ð¡¿š ™>xÅ1ÿ#€IæÍ‰?â˜ññ!z€©ÿ¨Nÿ’"N¼|«×êÍvcg™á¯üÑ?â‚=s髲Íx„þ‘Ñ~‹|êÜ‘â:Ëñæ`ð#:ú¹•¥›Œ˜&¿ó)ü¬t#þH‹ØÎñfl$þ˜@ÿ«S mT”~ðWuìÉ™_Û“©R왈Ãâ1Ûö OüqQš·yvb”æºb×sý¿þ¨ù»®úóÔŸgpžSÄ~ö[[4Õм´I¨Û·”¬²Þ6„ùµuÐÏÿP^ÚBNˆþçÕoÛZÑ¿¤xœô°Z”þ%óè;5SœÇ_/«MPGhŸ_´BT1$&¯u+F ðÃ[i¥A©@ g‰?ÜÙµO9¤ä‡ÉÚ Ï´Æ×·1î lüC|àøÃÛÈßÍ-~þóE:þ¶9ñÔ{±%ÓŸ,[+þ8 6ÝÓM¼Òº±§MÀƒaD:tj óš[‚„)\g<òWÖóg-øº9àG,âK?L´Û”ø£±òš0çvÖs…­¹R?¬†ÕÿjLQ,°h8‘}9l‰Õ“q¼9g(Š é¿ëêôüò#)ÔÂh+`ΚTA–– µÈV>ˆ¶ÉB$+ÿŠûÄλŠìZhç8€þ%Å9o;zîBP÷ñÊ "¡h°K=ôj¢ x¯Þmø:ÿ¶±6Ù%Ñüo®kµ¯çÅBôón°*P5ö€h+aFL?Þé[°vGè_RìÞï05Vì•9ñGÈùQ½É¿ÏY"ã78’ôá:+aÜŒt(±nä55¢£ÓMNó'JÉi°k+õçMˆ?nº¶æø¨…ˆ~>¼ZÇ\^#¾<Êüïd_2›•Éß­MþÕwê)¢ãÛw·³Ú;4:×=Q9ìÙ™®Z=qö‚¿Þè3Ñ?>£QO2"Ã_Í —ëO¸¡6f;²»*ÕÐXz€Ê}ГÞË…d¬Ó¿…¨¿:.2ðý¹›VýyQ¢®eÆIc€Cÿ¸–—^PûàìÊöxè™]ÃÀÛÄcËX9¾0ûËFþÕ>NΓˆ!|¦¯Þ‘sºE_àðþÏÉ߃MíGw+ßIÒ?±y Mc{“¨ñ:59s…ëŽ $Sÿxûšl½}2¿Îô&yŽ,eI%÷<êŸ/|$:Jg/õ,.~¤;k„¿Ð/¬5Ó¬Šè¿þ{«ÔªCæÈ)ßæ ì5ÈØíNÔ 9½Bö‡¨éšývìÉ•¯• Íq†ÏæGÞ»¶4Þ,0àÕŠôo_¨¤kÄCí –M[¨öŽÐ>Ÿké¹;Éá0VR+>^à}5æó?¡žŸ«Èß Oµ†Í¶\Ù¡¤ÛÁ‰m؇­øÏédìR51+ý;Ø lY‰âVP„æ7‡<†ºÚVíµ˜/óŒØJ¦éQþýþlO$¿µõƒ°Ð‘tß0¯¹®’´‰æè0ÿ‹ñuƒ3á¾áwáüˆÁhõ£7ÌfíL+¶ÑÀþ4€]ºã”uûÌDlÔ|«Žöðž=¯"þXˆ½­¬G+•j¿YS*MÔ°sSAŠØ bxs±Âoõ¥2%Hq…ÆN¶íiþ_ ò•ámš¨¦IhúÇpe,Ây®Ó‡7ù=ûëÉæÇ%’Ôí‘õ…¹,Ä%ðãH_þ%y¹†Î7×u/"+Ÿˆ?–¥õA*3Aâ0ÑÌø©þ ÚD”}¼_=“]fA‹=‹­< ÀÐ3Ó?q¹k)ÇGÐ?¬›9°âþœ–&¢ŸW–‘ÈÚÍ@ŽNj˜Žtx÷5©?CÜõeüùfîxUâݪ뫾b((žŽ?¤¹¢§‚KËDdpø£ö¹#¾ê[x¶<ÔHl‘M@Ñ-( ¯Ù}2Ô¹!êÏ;©D?ž†zV¨ie ”O7~èîÆrwg‘![ßìˆ/FüqGÖá[âß¿?w’ÝVëì.ï™@˜—ØúVxUˆ£‡á¯¼˜´q™Î´eá¯6S-~údf&ãyÒãá¯Ð¿d Ù|Y‚Ô–S^+»É|ÎÁzåÀ‡zYƒlÖîÔä3uçCa®ÚQãØ“þUqÌd0m¹×Ã8îî'OÔâ ó?£„ {ƒ’²•lfwNú¶ÑǼAMü ¢!_&úÑm=9õQû«š@xôÒé,™ð%é5¨là¼ÞWÔ¸ó^uÆãKŤª“úºÖ%·3õƒ‘AµTtË]Mý`]fG¹“»¼ühcXù»ÏлRGê£Wt>…~JK­ úGW< r°sŒëèç›ð2ÒãÄ$kw–½>чJUáY#½='úyôÏT$œ€÷ªkSÖ\ˆâaü~Z–‰µ®H4+jHøXœ_·ô–\ T{Sÿ‘üÝ’œöJ[3u¼ZEuS‹¿2£äÿ÷àU$Û×÷é®êê>Èà ¸»»wׂÜÝÝÝ]‚kpw Üww×÷×™Ë „0 ó}ÿ{™g& “Tª«»÷Ú{­-?¯ðýßÜpxÐÿ*+¹CnôB;Jü_KÿæRе"…˜§OsÝÏïîWŸ_æŽ×ǃ¯ÈY6º1ík;SÒÀãHzånÔ?ÂÆÜù¡Ä‘óa^ÂO¬ÆŠÀXƒ åT°ÄîÉß ¹^Ö•éeHy§ÁwXN¬Wá&״Ѱ;0Ú–ëÜH ¬J\µ ,ø*Û`ËÂ/B½æFš“:‘/’šC*È|ɨJבAðN¨UØ…µþ@þ“7–­9ÇÛCÿQTôÆÊØýÞ/cñK°?{þ`¬Òüò²°<ö¾©È7›ï&ü’¿RZ =H6ªz`ü‘fm-oáT¥8ÍíD41à+Îláí¬O ÌßÂu÷ÒÆ‰Š0]_9™‘Æ>ë¦Ï‡ÉJ;T¦–ð-öOr.oµÀRœFHúùKÇ=@Î%jë‚ï^ Ý5Ü…UxŠ]±ÅÝé.xÛ˜Iü±‡ƒ x¦¯ˆ·¡ [x”˜¥´(Øm­¨—ðN Ã"]§>Páµë ú'ø«”X†èàGbòšÊPñwû­Áþl†[@VHvþ)—¦´~Uv$rLBwô‹ ÌŸD>§Uò£NãK{’{Õýã-K2¢«Ì§v¨; P_°úÑámw‹?ºë/eož´ÇèÝGÈõM²_É\f¾0’ Ÿ¥ƒlC¼úº¨ÑÑϲJNÎa >ƒ/õç?êÁBê:'R“KË®¦˜ëé‡ÒžÙ×ÑfÒ1³âìËÕ?-1—=¿¶»:DÅø2îRÎïú·Ñ^i»è•›ØŽZ?<žÖd•Ý1éOºs›ü¦Žô/ñfBlòYí¯ÞÖ â!ä6D!¿ø+Ͼ¯<æº#cµ"âQÇK|¨]*7Oï.õ'}Ö÷Â|­¥›c$,ógë8õç¥èŸx³¬ÂªEÈGn‡>ãVý#ˆå©ÙÀäÎ<¹)•Å{ÑÛŒE,3ýüýàW1MäœÝuxµ‹Ì Ô©ÿXbõ7çÂ2]!FïɽÛj$wáÇ+ú_õ•Éa¶ZÂ×—2VÒÿj";;Fd¢ŸÊBê›;Ý©@^&pædâ{f:?Çz‡£ab!úÇd±ÞuÅÿ½O*ƒAžD,êÿmþî3GDý©ÞV Ù˜*Q›7ÞÏQFï¡aþG1âÿuQÇé5 üÈNÍÆ8yA/%’ëýµÌ??+üD1–n&¿³`€ÈÈÝqÇrN?jÐwYá±`ìßËUÌÿ˜(ÿ¹Ã´âò¯ÊYd«®‡Uš KÙ~C}9oø¶º=þþNÙ –< +–¤þãŠouüYÁwbUÑv ÞKí ¸·5T¾ u=oú·G¤ÓI=”Ѽ¼éž(ÕiðâàýfT°G/ŒÙœÂžÖœÆq3” ƒì`Ìö*ôƒÝàïž;ÿÊ ‹qË|{²ƒÓ˜M\“Pnú%¥k^zxv2 ¢6–¾ þí9¤±Xw lÓ0i WPü ×#ù»F»ìBýGQ¢€ðj9»{úvÇ^O É®ºÓG¾°Ž`­×Àz RMØ×Yu.óg° ó°öÉ@ëìü ÷é (&j+‚=Œžô¿šŒ‘ë@ äÊ­ÀsŒOfR&eÇ»¯Bÿ»ÿ­Ýy3þóZêIòÊ.?åï–ÔOɾœØŠmVÁ…øƒï`€Žše¨înÄD¥gháùù»ùØ{Xþóà^}žþW»˜zöý‡¢Çw§_ƒ¨íˆA¤RÇœm†£bdLþ"ºx4³j‘y•— 爠rbåwßÀŠõ)DïÖÛCþnõˆ§¡.Œ_2ª^&˜{ÍÁ¨÷=Í“h¥¬¸Øëµ&©ˆpCµ™DÛö-Ñ’J+ºÖK§}Ñ–S«_‹_¤¼cÔƒ[»jv²–ý®¹Ž|."š Èjò±¢£S@ÿh…‚.P“È!cþÇ9×åŽÑJ <×°œ'U5¢0¾‰¨\E~ÔdÆ>ã«Dä_}$Z*I¬Ã*‹&Ô“³i¨–­Á þí7µ‹¢êa;ÞöŒ*1OÖHºŒ%§ÂÐ *Inƒ5‹™¸¥Éç-J}Êfú—ô6ã<â팰ÕÈä—šú¹;ßE°´1Ç,ÀüÝÄoEÈýÝÃJåœÑà‡¯•JwêÎüó«Fã˜,I”¾EeÊÿ¤þ£š6Z RÒÍ›Áu]7 LŸ¼wÄ?ZÐÿ*­¸X“¸ÂшùQžzVæþnýàeG1ŽÜ´tô¿ê/¢Ÿg1>£‰\eþyV1Sö[û¼ÇàƒŽè‰ÝÏkT—äœÿıõǨÿˆ-lÍ&ô?~¼‰tØÆŸ]Ìý[‰µ‹­Z‚IUÁƒÄ ÓyæS“؃ø#$¿9øo¨ ¾“ð ï`[ýà_Nca¿ÀÈ4£KÆ'x™–ôï 6E2n‡ºÃzZ<¹˜D î¼ËÑÏ`5í´ïxƒŽáj)·Œ8© á'…²by1–+l"¾ÅšÚø1’)žÙ0üôä_]“fƒ!K±*- §ÜöËúAK«®Gcµ™°ˆõy늀`ÓAËÆ…Ó<ˆ¥Ö`fl¾i(\œiºÑWOƒ_w×úþh1Ëø®g \w2°¦€¸IÔPx´üòö®{¼Àޝq§jÍÚù|!ÍÚsÝ_.2œÔj´À©üñVÐ/¤v©ZÃqc¾º eϯMË>ïrÝ7@i©Á_Í ¶ÃFÌÿèÃYe£‡ú5üì·ÄY:Zþ'4ï¸ôOLdm%±§=%ûog_‘:ÈÑ?ñWMôkÄ Ñó—À!g7)a± ‘Çt_º4JpmâûàG ôXär(%§ÕWrc£ÓÃaæÿÞ¢–x^5öv†¸(†ÒQÞ $¦Oá`§ð8Ø[ðã&V´ lÎaºy-W{ñã¯v’¿›RÝä¤ë“¿–½­07›Ã௺ÓQj5îôË݈ú>Å;¥iÏÿè Óu†y%öüó2¨Gí#ü•Ïï ò•¯°¦QÐc&>éLvºanDOéZ.‡ZÂI:˜X¾’Êœþè=ñaÆfÕÈïâ®Z q¥â9ÑÖ•ƒ§wZ„ý=É™­g~Hdj»ßÀ_}EEz Úe7ã[‰¨´ñ£…šˆ¿9D–qß-æG•$/¥^KN¥Ãb675gjæ+n?"ƒká˜G5‘úó¼ý#Ó¿d¥5М Ûõë`ç¶ì¿=2©?/c±Þø‘І/3?ºieÇHgé~¿Úòv¶"B*EþÕ3©ÓîÝœ‹{~‰wx—,ŽO4“¼þÿýÜõc°ëdÒi#þuÿ’;Ž·Ú ½‡†u¿ȯ¦þ|Š^]OAþ®Ð~o~ÔEG6¸*»7qnc‘|­W%à¯>ˆ)ÒÁ¬ôßíäÚõ·ûðO/à1´C‹oIŽSø«†¯VP$À²æaÈe¹ú°e¬ÖiÉåzlËzðcµ ITlS9Ùv;8=`“lIÿĸaØciâw(·°F;ùç5«¬„…ù~Øpû)‰†Z±&ÏjþnKí#f`ÿD7²jÖ€#À¹pBáí g,ó;ôë–Xüð¦‡Å•PvHwy8¹® î#tr;ÿjž~\<DZhªUÕ!,ó~V<Œ´ˆïKÇüó_ÕŸ[š§ž´+Á›pruð¶Æ‚HOAt•XaØ]›L4þkÄ:{X«¾ÚZzíAÚjÐ=nLÿÄì%‘ÚL|õÏ·3ïóìÉÛa’%À3ؼ2ê>lç_Õæ^×A¾¸ÞÜ ÕÞÂ_m“¾p#è=˜™,Ú]Ħ~¨‰µ|°Ä/ŒEøèWèQUþê¿ù"w;ö¾²ðÕV-øYc½†ÌÕyà‰¿†Ñ‰JüŒç¯ÌìÈŠgžœþ%©‰¼@‘K ±=ò8qƒ?ÚJY9P¼ ¶^%ý6zÅ,Ï2mÏÁ¥AÓÏAþîm¸üòø÷m­jÖSâ†T”lÄ6çe¢Ò P¡«rÂÛî V>ùçݱ|áP £ß'$ÿª3ªtfwì½/Þpbì­–Y×|EA>h,×F|†…†»øÑ[&íž/—y†+ãYäi×0åd¸9–úÁ‡àQ)¦€/¥â>Ւއ%Í7°kýȸK×”Õ(J©¾‹?Òkµ†'™×_PŒÎáWu§Næ#ŠwD«,ý7¡Mw§wû®y-ñCzb¥` ´™ì8¼úlL–\'8@+,¶“yà@Ù£²Ðo(€®ÀY©ø¨iÙHÅ™{o×4²"=x+$²ÜÁÃnì¯,p ÔÌz®7厶Mƒ íVXÝ•›Œzæ[+>ˆ±üHãt옊>_…IO‰­ÔÖ&µÍêjn…©¸Í3݇¬ð%T`~ÛàÃÀü«ÌdSõ•rÄC?÷‡©+ÇSrþª ùWo­ZÎñT¥'"þ¸dæ§nþÓy™¹4L¬û¶àñcUm(5ƒß~atº™üÛúÁWޝàGò¯²‘Õc£õrGÅ@üÈBý ö›øqÇáE¬Q€l„ÆryU/!Jéãµ—b¶¼-Έ bñoæïÞ°Hö=B™c"nc¼VI¤ÂsÍdÜ¡ÿÕ,éÆúóíèÙäf0bÖj6ÄÖ?ÊYäx’»ØE›EÙEG”Lßi‚ßNøç5ÅR¡Ãª½å=9Œßý k7+ø•LÈWXýk°8Q°eÇÈË}äºS?¯ó÷ß´ÒÒнD+³ÂŠlÇWâ §Sëulz…ýn cÏ;ĹPV¬'|É4j—ó®(ûëƒ-N‚ERP‹q†`ÿµ³Æú9äš_ÖhZ3½(Vw>O|SΩ*; ¿AÿH„}?µÆ…¿Ú÷ß$^gt¥þ#\»ìGýy]N+1ŠÉ(|û[¼ÏƒÁ0< !Dƒ•ä+¬qKòXOò;oƒ|uÑνÐpžºÞÜ S|Ëü¨-Òry.´Ûè+áŸ:¡^T9>PŸòŽlªØ5»þã<¶òQ^|UQÌø©þÜ[¯#G¡æcÿÈúíMO D~5ɇJk&¡I <Ë‚æk¬} j":¹¥WÆ:0!¿ª…~\-ô Œ?¦©*w#ÿêÌÚ)j3¤yM1+2㮪÷;ú6`þàF”†1{ŽÕ?Ì9wF5¹âÕªL©Têõ3v¢ùœfµØT—\#þ·‹ø#2åV×ÍíDÿöNÎfˆwÃ7E'šœõ¤8€FÁ™‘îèwè^› ÷CT·•ì~}¨l¡¦ï?ê»þ»Ï´SÄUxÅ•§…ùù&«­SdÕŦq-ÿ޲4rz¢Ï_5çªáÌZr=Ásò1"à$z õîôOdNïo¿”Á̼f·šä={8«P#_ùµ~Ìÿ(…Ê’Ò,kb—¤=»nQwG¼›ëþ?)® ¤fðÛ/ˆ–„Í ÿöAß:¾Ù‰i¬ù`Õíü«ŽÚú½°žQ÷ÒLí÷ú_s”C™_›–c+ýÛ+Šrók—Ê׆lòoâÇ%Q˜|ÅôØâõØ­62ª1MË,ó&x€—å)ŒóÏ·¡D”ËXg6xoL4ðÃŽ?úaiŸØy;;™”˜RFulÐ9ÿÌ›ŽÅ/ädâ‚[`’ÏäQðã#_{ãGÙóµ;Q fí$a˜_ë£%Emÿ*›ÑÙ­ =¼y3‚ggykl&gÈ4Ÿ<p!å©<Ê Š…Ä]±ó/É+ˆ• FÆÁ.‡Ãª ËsŽÈc5ëî…ßêad“»©Ÿ¿wtÒ ·ËPƽȴ-~LcÅ—ÆHåÆ5ûðGgv¿Üý¼mA­•ô*+ ôvÙ‹þ»^0ÚùàãfpN×Áؾà‡":èf”‘žòJ­ñ­ÿâ݉êòûªÒõ÷fЛëºwõr9âüâüÔ úƒé«±ÒÝ@µêø1— ¿sðG°,uœ¾$PuÄXm•k¥¿?)GýÇ`îZYþ¿ñcÌdò_Ó›IÍ-äï^cŽÔ ²YÓ˜§Á¨¯d]…9rU•~ê¿[T¿C|;¯ÀîQ~V'5ZL¸ªS̯­RÛ›&/ÈïªKmÀVl}”Š+Ä*tƒÄóX©mùá Çê:ÞëQ¼‰è)…ÁØf[s¥™†ú>è éIècUŸ›u¨Ÿ¦Jq.gá¯Öƒðó 7Ñý‡õæ ¸ã]#·hù³wÕv,þXs"ó¡Æ{À -&;I3ûãù§%kÙžÿÑ õƃn]5Tj˵^Lú—,@?Ϧìü&î]SÕÜüÄ”,w«8q—Òkر‰=¤ž0™gaÿ†q%?>£ÏMþn~í”ΓF®À;6C¥GCÚ­öR¥ñì¦ è©œnίÔY¤t6 3öÌØpªÚs‚BC¸ßÝx¾š’UÓµ¿«šíz“IeïÏÀ×éGþUrž÷od`U ÖPæä¶'žP{¿B-²:˜ÓyºNóŽ 'jÝDÛ·Gæ¾ÖE ’‰‰>ÚÐ)¹Š@Çx˜µt­¦áÜay:›pÙÀ¦ ÷Š™úÁKX†²*ïñ ¼Ã~ÿ“ùƒ ´ñüóíJRhþuþ•C‹®Õ‡` ËŠ5‰«žº/õç…õÚZ¸ßÄcŽ ä_Ã[,`¬“ô2›øãØ$#3A*¿ØF5á·]‡åã)‘ ¡–s7Ü{KÏX¬•Éñ™K¯Á2ƒ(¦·it–;°{Ûa¿–áÛº«VXé"r™®Œ¥X½ôè‡þñGVl(6 ŸÅ|?ÑÑW¬ÝBÐãžÜ°é!ûNŠ%:ûæ•¿ê­%¤b”¸ X«]Ä!ÍAÈ©Xd'Y©‰pzA ìòhxÓm¡òWžb1Y5A ¨3ÅÙßD®15–~"^sUÞ‡+üý2v·/¨§‘þªÚ/®ÚIÿÄbàÇz|°Ú GI¸^ªÎ‰ ¦ªt|Ü…?Ïú ÉØ(â™Fgð#¤úóZoø«'è;ð ¾b m{=‹ëË‚þQCV”ÍÑ2®³»ûø‘•ûTÒxåzsƒžœO޳úV¹5e6 Vi4”Ã`æB#m Ê[L½‡û؆7z¯¾*1Ç[Ö¼²&FioÂüÁàù»Þº‡GX‹kןGTkÙY~°$ùQ‹éáq½Ái¶'Ûö4Š} b€{(§ÈIh(»ŠëA[ ü¬Ž~_ö…;ÌFJBòiOS7yXe7ßãÁàK—¥ê¹žõ™þ"Á?,Ÿ7øq“¯û“¿›ÅØ©ý˜©=KœÚ9Îm (SŽßï0ÛPžMÅAÿE.Q"/3]k€Q ñFz‘#{‹šÌC< Äèîò™½à˜ÚˆóË‚Ý=i¾b~ÔXâûä%U$Wv±µõ“;Žm|Óâ” t<ìϵ^ô?N®ùWÕUžª}¯z‚¹¨ÿX‹~Þ‹üÝõä œAÏ Üâj{;ƦQc' dPãqúGîÙcc•J›v›]$FðÄŸwZ1œéðîoaŸ1ðçØ„¨$-UˆmøN/µý|„ôvíïµvVÔ RÌ;ê¡ËÆŸXõ䯃Y*zL#§«'ýQ*£ÍÄC_¤|É…žfÄ#Jî n'àÍLäz ?“5šü«–¼­v·ºæQf~¬#S Œß=Ð7•³®ó¸U„JôÓfg5|ÚhëXë ,E¦‰MßÿIýyyº—tsL<ð#ë«`p(_¾uXús},²ÓU©«,gŠÎDò¯2êÕ5C ‘ÿórùÑ:ì(‘î±ä_Uu?ôs?ùþ*—ðýMýüÈ‹5ÊBníF2ï|dcªVE$ÄÚç5nË?û_eÓ•o„IÎ c-7À·/ÇÚÇQ>Øâ|Ò®ñ{ "M7æ¢t’dü0¬X‡ú'Òž`q¸‘ÎW‡`—>ól¶„e'Їó#à‡!þh£¹ãm<‰™È\ÝÀǺ°N³ˆ?t<Èã0ÞJ­ Ÿj~P~c¨õç ÄJltG®é81Èh¾N€ÇÜMµP Z±¯ÿ×¾ ‹ä!Wþ’¿Š¨µÑ‹ƒ·sð˜¼99[ÛšŠÿ’̦x ÅR¸‚˜XÆóœé6~gcx©%ô>-âüÚÚQ •(‘ÚO¤`©³är"úûJNL'âüò>i²@£ÜãkDüY üxízsƒžÁއôß]jD„½DæfVÀ•.7²àÉ·Pôù„þqÜk›…¯€I`òâ¨Fbº¶ h©ÀÏ,F¤rOEEÿHÈ;´CóûáYì ;x£سÝk¢÷„7[À«¥å':¢Wس¼[YeX¿Y þjûkF.Ù;r—öá!E –µ@&Ájß‘j¢Œåw£tO½š­ÉpBù¬]Xk üÈnãlý|èêAN/õ'Òݵ¿ÔðWëÁ¼ä&xÀ>^¢ÿ•lN/ª)ÒRU·|ë~¬ãN¢ƒ Îû6¸:”‹ËÂȨhß÷ßDüqˆ§âV`þnfNî2Ya­—°j+Í0BéÉ}le$þÇ.ÛXň‘2Oõ[P¹Ó€jà úWZ€(DÖS+<©LLÞlt„£«kÕŒ«,õˆÝÐ>ºÓß· |XxÐÍW­c~íZâ¢'øXv·Ã%T }{d®h™Ua÷ÆhK€õƒIé_r€I‹¯èar,ÿbvîAéÍüÁhÎbT”'¯ë1í5reñ£ü/êÏkÃ_u–L¢õþ×üÕ;G\ýýw‡0]öV ~¾ÌQMKÿ’¼z5Mý&~\#·;úya¬Ü:ùBÏ%òé³µ‡ô4¹-N‰Ìbîoæï>ù¸ßIÉZ=w[ED_NDâMHi\‘gä<ú·Û=WBÿ³ & “ÜOÌè‡}8@]DrÕ–§©|ÅAðc¹Ñ ÙFÇçøR†aÅjb6ób]Îm$Z?ón¤üod,tSôóæü¦èFhÙ¶G/-’¡ˆ?šá—ÓëÞ‹èq “Ã~lzv4ÁïΓºžJϾbºãÿu3¦À®­d¥|v ×›w¿o÷)b.¬ö>¢±ÙœpV¹ç—ù»_èg“ cwÂõägJN…ï““‚3Û‚N‹O°[»O¼]u²î Oˆõç͉?¼É6 ŽÜxBv%ËÙ~΄¬ KÉ3d5„9"ý»æ~Tƒ»çzsƒ®ý㑾üˆ{?ŸI¬¶ò¬¬¥_HoÖh õÙØDæÓµÖÎÖÏϰêEâdÄóÂÒðW½AÇ Â;˜I.ÜKÔ¨ÉÌÌDMQ”Š6D#‡Ac'hßvÕ’½ªÿ(«Ÿ•AތĉÐ?ÎsÝ»Uø¥‹êý¯jÐC°±õ‘(¢"½‘6²ãš¨ñ'Ð+€îDÛ{¸ÓCè‡b÷O”D ׉Lã*ýcø‘þj(ÝÿêÂã4¤—o3V¼M´YŽxÓÎß]N„8›ê…‘?¬·L&DzęԆÙL…Näo^ažH_úíÞg®µ³`›bÃie²òS59¤‚}.Dþnm•ä;ý#)üÕ6¦z¨Çœÿž¿&ª³ù]?žåÎG?úù¶ß–3CêýÛS³W;§y<Ø þÊT_© âËÇÐiûwê=ìò••{|TÍ4ûaç+¹Yq™Íô4I~˜Öiú_u%ÿª‘e20+òa‚¢êGô¿*…ÚOªˆÒxVûп½:úÇ2:´$³ÀÿEgþy‘Ç"™ù0òZ Ãeؘ4 ÜÛ̉td~íN-(Òÿq½ˆZ݃«\ILÔ$*ÍÙO?Þ“¿—øã0~º‰uº&mâNÕ"¢Xht—¹DPngЊíéŸX”78 ü•]5x”܈AìAÇ C»œ|È„px¡»Ôú=ádíùÕ`DCêßþÎqŸþ» Œøp*#@Ú\ ÒpN*6Ä®‰d ˜ÿ;Ä QTRª×¬iOUO©â©êÌÿ˜´±ÀÏêê­åPîóÈ©í µ _¿:zvóý°ä7©ëÖ°ÙI̳(IvÿÄ3äïî#þ(/‰€ŸÖ»½˜¿Åýª‘‚• À€]W7ÍÊxàm¨¦ûL½`4‘µì¹™ÆÇU³¥Šr¶V[óó3Tÿ*;À9¾¦7È2-Æ“Ì Ä]ðï—ÑŸ°søèQÙ¼J¶D1âÄO‹ÔA¼…ø¢Ýë-”qA;Ü݆TAæ!þØKþÕT³7Ê÷=êI Z áaö¶»Ê’w<¿/ñ\v§Î*ûw¾Vú—,‚Êw› Ÿç%5òÄ@Ô&µÒÓ_j Ùa}™Ò±ˆÿ^&“Íì®süÖÑðW¦¹\…¸j‚Üï:Á¾tÚ>ŽRu—gx™ÊEÎíbòw{RßW“y°轞†þ‰·È¿jGeÅ~jùë£O•DÙj ¦×P£é­ÝIÚŒÊß®k×D<‘x>ÉÕ'ù§QÉLͬA_P÷‘åøºήdt5$ã8‰•ÖÚ¢Æ[ýÀˆàGÞ&{ÊfPþî[­=Z¯ÓÔÞrÆA3·s¦eŸ_ðñ ZTvgUçm«¸³(ÓÅý5}ˆcYa&öÉ|°ÊËÑ?þ7øQü‡úóZw-›ëœ¾WØ>Þs¼Ö®ë}ĺãÞ ÔÏç:ªë£ÉßÍ¥kçö̾ë #©èIm~~¥­èÅé_2šøcók÷ˆ¤bÚoÎÿ°H)ñ¤/‚-©±;AWN3n`ÿÝiô¿*¦+ŸI&}2¹Kµ”û}h!¶j„-,Ëû½ [;”'d¡±üȦúÁrb³x.gq\Û¶ðñøó+mÇNåÏzñ4¶ÀK…ŽM4Azlx«Ø¼˰ÓõëO”e­#0ckðÿm”+dlB¹æ’b"ÜOc2ÍîãÛä ‡`ßSÃô²–P{øê(QÂ.,þ,t&yä—ú¹IÿÝ¤Ä ¾xnuX©2ÜáÈÀøcŒÊ’øa¡LöxÆb3ï†L±Ýÿ*·Â.[¡:–§ê2‰ÚÉ*OQ#ú¢@ÎÏ“©Ödm• ~0?¼˜ºIÌó [éXžÝxâòü‚É{ŽËú9¼¶UÝÊäþl?6¢µöÆïf."ø1þê ù³ÞØø·XÊ‹ H*ÿbÕOýwKêµÑ»Gùa‡³FLå²Už'0Ñ¿±2ˆ?^ª¦ÄÇÙåòN«é ^rå){üTñRF?-ín`ÈzÏuÃrù“ ¬Ñå<ý¯Š´&ÿJ¢ªÄGQðošß$Ìz*&ç¼SÛñÃŽÐ_ÉÄ‚ª‰“äѹÕ1}Éßhv€¿šMnl=²e#Á´{¢·ôÃûhMõËlïnžÓ¬ÁæŸ/‘I©º¼BlêCd®zy˜ú^jŒy…‰®E¨P™EM\B³oS›oÁ¡!¬º[e6Á2fúî]I¨=ÐFsiÀÜð’OÉD¬m^2Ûп$:Q=7ª Úù&rŒ÷’›9À¶Aô‰D†°ƒúÉò/×ÍL¥×2î€KQÚRö?bÙgi¸SÛýŽ(-úÇWs+LTcú#ç¶•-2µªÁôËë%k¹Îï!ñG.ì|---™^såæWby`ø¦$^I¤³ø”‡ù³ÑXoV`ýà|pã1Qrkbǜ෠^£ßæÐ¶äÿ•#_rœ¹‡ü]?˜:âÆr®c‡uû¬¼Îaär%t–ƒ¿Êõžçþ4üU&žúHª÷ÿDÿð ûª£ëdâQþoñCcjñsꇿ{5?¢Ÿ¡b½,ó£ü¿W˜>u?ìì«ÔÆlù”þ%éØþü¸*ŽŠtàG׮òàQð£&ñGgì•'5Í&³`+ˆ80EnF€<@}P,Q(L+.Óök)`:ð6ƒq:hÄPíá kÉÑèßoù»XÛ-²õçAšà¯÷X^,oùÙ·DûñÍß`éì)z_¨?ÿ‚.vë< ªãU¨;¬«E¦£pLx«ø¼+ˆ¹j’µ<[gãÇðã%v¾6×=j«¸ÊŠùÄ ð¬%ªù;¬iNìúH¬{2eÏ?o‰ook »A„müß hŠ™¨¬ú‹5#iõõ?ð]ƒ Íøîâx“ù¹—ÆP•&k;\ËðWGˆ?VqÅÍaÆÐ;;gˆõçÝ©?/2Ä?f]]¥.k÷ä#èÖƒ®'9äMôè&`ÁM[ü¾†à_%âÙƒ®77è®\w<Ð÷ˉÜËɸʰ…Xÿ%ð'#ØU[8£Æ|,ü9â/þ¯¦.€„áÕ2¹\LÓ‚¦¥þ½fUÝüN}ÀI4çðW»¸5à²b›ÑÌÝX­óÄ:úGlú—´£Ò§4u†“±WéTEú—Y¿¿×«©ß’Ý9çlÌÍÐȯºHäs€Úpþq…ʺrô‚ò±€åm}žk(‚š²¬i¥¢ãO¬£k[ÐÕ:£¨ÿè Xøþgø^7*Gj›sÌÈt ì̤‘àQê#2½Ö›ß1nv=¥ ñ¡ø«Õ2šÑ¼‰ºÄ9ñÛ7Ò±jœÙJ 1ß 'Æ–ÎÄ;ʧ³ ˜ȿꬺ°e7gs.Id"×þŠhϨ?ÏE%Ì#ºVÂ'k~~ˆþýüñѰc.Œzý¥òX‚œAÔŸGbÂax"é2È_®¢IFõ$Ú¡2‚¼[ÕPðã-ÊûF"Á8Î|t0¹mer6?¡z¦+¯QLT•¶dƒ{Á_Upíï½vPTàíiÊS•^…ƒƒ`†#ÿj{ZO/™µ GF´Š«è+èRÌZ¥æ[ãL[]»OÔ®z-Ü·ûCoBþ•;ïl[V­h,2‹9—¬ù£ ¥3üdâZÎ…÷TàªË‚wñåÀÑTà©Ä{¿-ø_üXŠŠó N ø*‹ëœ~oŸo¨ÿhÌü¨Ìô¿²ë?8êè õzz½ ñGðŽpÿ¼úMGi4¥ô G,c| çaþù0í:šú)±A¤ ~sþÇN‘ˆû˵®©%ú‡?øÁ\¼õýÌš ㊠õŸö¶†ú¾i.oQOX˜XêàGEÙOü6£Ï^Ù@¦ýNüõŠÕ¨?Äzoðf÷Ó<ÄzÚõƒŸÆàGDõ'ëEÂgY/šµw8j¥=ÁÖ¶$ƒÚÊõÖÆ?™ŠMŽ ÛtóV±2v{ö{}¨ñG~1’«:Ñm”îÄ.ÃØ_8œ!0ÃÕ@¤¬9\™É‰TcþàŽÀÞ5!]ï;ò¹Ý°ºÔ†á»­ Ì­ ç÷Ô­âØ9¼«áÀË¿8Ç Ü­òä3eVd¹ñ£)UW…Àxس1œÞ©@er>y©è_R…þígÈjDóÐó4»¯E$V’gà¸ëÍ Úå Çmôóàõ@±úÇ^ÒÿrñG;ê6î ÈJ=Žk÷oÿÀŠX7*u…åè_?*éeåN9'YRðñ•Z…²_,qÇÞD}Ú³v¹JÀ ¢…h¨Å°k‰?ª¿?ÊQÿÑDKLTñ”(å8üÕ.ê-:(þiÖ&S´6ÕÓïñû30ÿ|5‘\>â€ÃàG  ålm°ùç}É¿êÁSñÚèH–V ~ëUÝœkÆ:€E3èQèmµ3¢Oƒ¿jG®DªãÒãö¾S¢`úù&™š¾1v§˜r°Hyéѵ˜þã“Í&Ô žAÏ‹­^Iu÷=<ÿdtoºÉ)÷E÷9H½ûî{.™Ôew’hïµmFVyŠ~t‚'¯>ýÛ¯Ñqýøs$P?ïI´µ~èö9²O¹×ÙÛæ´¤¬j¡¼ëº¹Ã¨ÿØG$óšwk•ªÌ=Ù­FÙÓ¨`ªVÒGêø«çT£'uVE¯Ø V U$ýKZs]aC»ÈÞ2(;ó úyV"èvì,–ú*¯2Ð +j)9p~Øõ–ÙÈ9ÈzDÖÀSV*„~ÞÝj üèçñš§?ªë)|§5d.w"îGžùrÆb3½sÌÚirÃö¡—/$óª¤]†©è›éô[Ü  }.ë>ñö^zt”å­ü`t;]Wüßû¤kƒâ7­ù¿Ö?¾:îhÑÏû¢N< ÔÏ7:jT£ImâßëuŠüÝ–2 ¶/6ó?ë©ÀÚmxÂ?Å ‘@LÔ‡¸ž·°œÖaÏN† ™Š ÜN:è’WDäž}¢ÿ®Ÿ~„¿ZÆü§ zÌÄ–Î'þøCyÃ_5•}ˆnqO©¬/ÿɰǢàáM9 mo'¾øòœü‰?^â¶ÂJEÁB7<ùMÂ0?ª®vKF œnaå–Â^Õå G¢©D ÿÊŽ?î“ÝUϾ yY«Cí•JУﶻî.%_ÊžybóW­É¿j Oqœ•Â×ùak‡óìÇ‘þ÷>¤{òÑᥛì`18ãÃõT@˜ ò<#þÈÊ×k±z±Q†OóýØ_)pk(ñG>=„sì ~äi¢¨íDGŸ@’nÌág|ÂþFyØÃ½X§úؽ+¨ºÇÉ®B[Ibžú—¼wœ×—ɱĽñc‹“aµ›+‹­‰Ý€?ý•æUj³Q1Ã_]ã>ýi˜ê™QA,ù ?ÊëÕd{,EòJï±f ´¨WhÂoÀLæ.Tßýf¦a”¤ÉIî´±Üv°ipKPT=ý÷If¥bb´D`ÌM4ô ÉzŸ;À “fU,¨=ƒð: Yæ.eÏù@šMê3'ÿ㨶î‡3ì­?àyÝÉÓÖ¬ ÉÏ™Ì>ÄŒAÓˆZ’)VO4ùª GAæGWM9ÇFìî5ªÊ>ž ŒbÂëM•éȺºÁÝ­Fì“…zž¹ÁcÖ$sj/õˆ%è8ƒœÔSàIJòwOƒ½ÁÕ*üU}U@¦w­—R‹¤£Ž±Þg#ÚËÝ«©ªaM«Ã}T¨?Iý¹,QyºÔ& þÈHæÀøÔiÊ þHL6ÙpyÝõŽÖÊÃ_åV÷ˆd–©¼ ï*Õž™§éê8$dÅB?¿l% _Õ󵘕ÉêÊdzèÃÙ´@?o?¤Ÿh'E><³®¼ î* Ï#f,–ókŠ}Ž<§ï$VLÏüdônYˆ~ÞÛÜ„~~ŸŸMŒ¼Áˆå·ZÑKF!ÞîŽihŒ7Ó:'Óßæ/j]îs­’N/:¬$…›k†w–¤÷fæ¼ ÄD,»a»ÇŠ­®+þï}Rƪ¿ëÎ¥F?[¨Ÿwø•úÁ—̯DÿÝ'6d½£®>To¤§ÓëhŸ§þ‘ø›ÓŽœðW9Œø°6Ãä]=›H¯¢ng <ß“üÝûþÃRÿkñG |OOcVpˆt2K£´ˆÏúE®“[¨/Fý|•¶[‹$G`³æ?ÎÄ‚%PÕÈGm.ûb oð tâßÕÄÑed×ÉþzÅÉ¿º&‡ìçç—âÇ\ج—èïȶݭµ¨YÙ@^ÕËP׫«Ý—ý¼¡á$þ_‡—ä…×=_Ù‚!ÙÏ*¯@§ê?ùW›á¯Ž¡§§`~Ô¾«/O‘?=„ýØmr™Äµ^2-¢¾Æ¨ÄÓe{*gˆG[ÓçÞÖ?€;X¯üU+ê²›3Ã…:•õ•ü«.œen¦—p8ð#(ÿªó?£§|äÞ¨ò±ævP­‘uäÙ}lÅv~¢¢;ýÛŸ˜gÉ ÎcF%7¸¾«žˆ¿9@ÚÑÿ9©ñFzò®f?öÕÉ(K×ÈZNåá@*£:gÀÕ$71x4C °š™ã 7u ½ŒÅf#œë)|§õÀ/N{Õ¾¾±1Žjˆ5•ì£ù”^гé\RÛùÄ*ä\…ÞÉY„,¬Z°€7ð®ÊT¼Ík‰„»ü”³÷m¿ÿ—ËÁXeR¤&þø·üÕsÇCí+}FÆSÿñZóä´·;šê=õ†ä_5ÒÞ9~¿:ä((šÉ4Xü¸Lëx '¤ÿîpí²è,/à¯`~TP×®°œÏ\ð£9y(Eð’sÑÑ÷®|¦åDÿèN®ëðc¸L* ¸žZq½¶JSxªSðÂPl"°"ZôÙŸ'鶬1JîVúï:eÚ0¬XB,·äòv ±Ç{@¥GXÕªê=ÖðQmâ¦EÌÿ½ÿU9íš| ;Wµ6>ožóØÿ}tBÉ%Ý ¿cçÏÚ]@skB­ÿ'ºr…¶|ƒ½åÁ‹†?˜_tüUUÔîkø_óø3‰rªQÑÏküâª/`Uo˃œ[°c1±z0güÕ*•EÆñG{Þ¬w«"W= \Î.b„°boTÇìÍÀÒÏ€8Kö×NIÀ_M72Ë‚ÒîÉZGU þ8Àéî%ÎOJÎY~ã’ëÍ ºÏO×õÕr:¼a;𢹨Û@ÅäÖµÁ÷ž Ü!þ¸~øÂÖ'Bÿ¸Â[{üøbsµ i©¯Y’þ»ÝˆQ³À«œÄÏjw´•näÄn¤ËÞ2¯n£9Ä1m•? ìâ:b›¥äv‘­Ä³ ­~桟@¯ [T¸Cüq ß®Š˜Pd¶Á¹§%þ¨bYÄ#eÍ(æzp3•òþ` ÓvyrNh8ÃNÌSïÊÔˆ#ûDƒ¿ÊʼŽOFTìt;2PÛQ“8Ä|¥\"BÈÀ¿kÉc^+º„îS~XoˆL n?E¡n€Š“…a†éG®.SCðè§cC…\CÝNÆTn®yË(È*ÏÉÂ:†gД½Àâ4_ «l7jƒ–cð÷ Æ§Bw¸FÕûh²Œ#€Fh8^¾r`G­¢ ß-»»n¬DÿH‰ªÑÚ¬C}_~kúÇ&uܱޢZÔ$^xÆ^‹Òe+ 9µP{Ú£Ô'¦¾k§µ"5ÞHg¼þLÊâùï~”$Ÿ¸øq•8é©“ ª[dÝãjÓÑÝq’ÕÓô ÌÆï@fHdåk¤t=…÷µÖôŠÊߟ©•1ØLGöï®Ø¢ãðSªI:;}œ¨oìEÿÝðÎZ¨4À©'¼‹èQ^ßè–1N\p]ñï“Òt¼jà:™LpY)\_ýÞ.>:žjtOð#9ª¬]í¿ÕÑLï€~žþJׂêAòî1GÑžü«ø°þ]ä1=ƒˆÍüókÄ$ç™_›[L!+,ë|ûž™"6ÖÍøp0,Æ(|ôûô/‰Œet+,“#eb‘+L+®¢+¾œGü±šûç‡?SU@™í$áS_Ã'°ë¦íü]·0éçùÅ4qW·›=ß=~i/kßçÍöT¯ŒH¼?õˆÁêa¹ÃáB­?¯¯=Ô? ­»uo]Ì/ªùW÷é⑵b/hË”=¥&‰RMí ŽîœÙ38=ò•ˆDŽ2ÿc)ú_™’™”‘þ‰óÉ8§x5öwÿö}*™9 üH&Sºö—A ¯eòGAõ9Ľ«Àœ”óàÚzß:mµ Þ»ýÛc¡¬t°îRרþÏŽCÔÕú'æFÿÈ®^s϶¨,|6A4«Ðq·ª5Ìôàãë&}“:+YwÍsDÝÉ|Ê Õœø£• 7ÝRÚ)þþsý<+Oo3¼Åüê¼c4G?/ˆnÎÜ-x¶– Çج¨RWíjk«šlõ0—ð6?u:â•ìþ.ÿêºVC '£§#^_^Þfeçzz…5ãpmqœÓ­~ÎJÎ?è²ÒÈZJþUmV­À•'¼ÃÀʨ)áÕpñç· þ?¢ú<Y3ÑËýßöOüฬ½¦OUoæŸÌá܈¿éCýGB½&óÏýÖU]tT­ÈiKJïжr£î&Rë½è[ÖAî¾0d}~3þ8,2Á®Ää¬Ç3…°µü,ÿDÿЉÞÃ_í ¿"™b`ÿi«;™ÿ‘Kîá]^ËOûòjÄÄ)Xs¦±•^Óxæ¾²/Ð!ñöÁ×®-¦£Ÿ/B¸ÄZkð$6b5ïñlÖ†y CãòÑ UÀÍ¡âGu-†ñ\FÀ—‰ #B¼üäÔ!ç#–ö$YÂÓÑ F’«T’L¤×[|_ALÆF·ÃÎß#òƒƒYïu$ÞYVV¼5ÌÛ‚·=˜ùQ¿Œ?8¼õdLR]rV£o6råTr›-BOqªðÉŸßÕ å¦#LÉXæ:CØå`­¾(Îo7`†¦ƒA÷ˆþGÃ8½€ßîi<éå±À\)/"‡³DO«ÁàÔàGãdøñšü«ðW6~4#RK£¶ ùÂ_uSuQ„רO Ü}üå5ä_e&Gô*wæ±gTÅ4³ŸæTa~mîc¾ÿ6úI\vùüxߟœÉ@ñ©/ÎØ=\Nk û|Û¼K^PÎAÙC߇âúyðc4h¹¥bž@*°&ùWê8¡²R­áa=¡^°5ãX±0¬Ûê!Ú¨Èx7‹‚ñWÐ?ºü_¶Ô`%ëë½*E½FJån¦ßáBÖó¡ÇE:Ì—„#ëF\ÔŠH*‚¹ýc‹C´øáž,ˆPn’R.QÑHú·1[ª¾äKMB HI¾ísñGb+ ‘×Dì}w©"õíT ”£Eûª­ƒ¿*Bü‘èò4oBó ¼Úk3ùÅ< nØÓIÖƒq3`³Ó«œs_ôóøÔÆDPïŒñ2hðP朄ù³5«-djd`‡“©‚?bçÜb‡Zú‡?óKR•ã~^ÕŒk%àÎv ‚«¬æ3ÿ¼þwýw¯k;DrI¼X¯ ºODÝÈ|Î|Å9Ô£f>¢=¹ö,Ùaw¹#gÑÏXÛ˜ÕÊœ~~–ª ¹Ä+ŒÌ®§ð³Öœü]'¼EE"üªäïV€©ÚGþsZÈY„cœœÙ˜@X}%‹37õƒ9àÝžâ/‘©ádÇðv÷C~…ÿOÿv#‰4¹åª£Ô¿îåN]DI}§EŸ5[‹žåH¦»éÙÀÛZ|í÷ôŽ~b–ÌŽ"› »™J|ÔËè×µ%ä)äÅ|ý9‰¿s0“ÄF8ÿ+² G{*Ú#%µŽúÙØHΜòòr©¼¨=Áÿ´òRô{â¯Ýw*ÿ­CýG# ìÇLìX/ž¬ºÆ¢2\öEL«dž{:ù~x§Wø­QÕy#¡NoxU‡úÁ2ì:‡11TüxåHÀ3x 65>žç¢lºñÖ€‰9ÆSû”8$9QI%ÐÏ^l¶ðe‡çõ(&}àéaã³N¬bf,Ý`2S2¨Y\ÿY¢šwÄ5kù¾Ü²©võÇçÔt¦N8ñ_ÓÑ“ižðòYí¦1H-á û‚J&Ù¸a´öáû/BŠ©¶1Y8¤úÁ¾äÏ¥'²HD–@u®î*;kξ%sm:Õ8ù•ø£)QÜ-tn?Ð-8œ*ߦòç ~t˜ô;̃ñŠªÜÕ”N_¬t_Ö¨[÷œûüg(¼Š·|l› Ö½6šˆ½Úú`KîÖÊÑ0ftꆩŒG¼»[ü¨Í»ïb‹r›øÃNÇ _·ß7fÅG’ODì`÷%õâU@Àؾ™äìÁ—]¡2ÑGj#óÏë’;‘ùLÐù‹Rc±ß=3qÅôóæÊ ¢Yçßo±—~zöSd¯UÊ÷Å6{c±Š©¤ÌšNÿ¿)LÑ+ Õþ‰÷àSÀÂÝfÿóÈ#.6ÿcµ,Š¡áã7â´$]´öÓq¶9LMG[^ge¡3úkW¼êðT8än/B*@ŽðaULtíσþW=a™*ÙãQzŽÉíF>âôo¯^¬%>j 7äÏǵhIˆ½2Ùtý‹e>«?Âë±9e™_{Ì(F^ï%£±éÆÿ{aD¤ÿÕKr›ïÙ_ gd§åLêÌe=£’<¼ýÌ|d!ázÇ©åtí,;¸ö÷\;#òóŽ—&þÔÌKtÉ(ÅTYø« œ'U„Í©EoŒ¢•x¡,zz:s6µ;xšŸ‚UŒ^Šj[~,b’M:‚÷Áž 24ã¼9ÖyZýA¬uƒ~íȼêK¼ÌÕtó=¼ÝWNöŒù„'ð ¬æDž÷Nê°ø½ ß? ÿþó]ŽXZPæõsGå=ÿ<ŽvN+®Ð‰Ô"¼^‚Óžï0ôˆLÿhªßÔÿ&~ÜtøˆÅÒ9;ýd³‰³tÑò£ãQØ /Ø«W0b¿sÕ“Ä&îÍCYÍæ$°î†ÑSkÏL·êô]O&kâGœ0­8ŽNt§Ä:üÜÓð+ó`µ[«Î`Fy8(›‡–´3¦‚e¾Ëiÿõ^?ês…¯,ooçïîÃþEWSø÷.jÛdؘ?@§ø-ÀÒ™¡âÇGLðã¼ÌŒ¯ãRØ=n+awaïòƒLðÎײÒlb†ÎÌ´ó¬ÿéÏE½Ø0 öç Qr\žÕÒ\er{’ךßì)²“ì±ÓXú·úe§šðš¡_:ªL ö55;Ò¿·ˆÏR7ðÃÃèDÖù÷[‚ßô•xù»ˆ$cÀ#õ§.¥kŽÃâ™Îep:5Pø½èÀ{OÕãL¦pýÑÌM0ª÷ê¿;K–&æqt$¿à«ÁÜK–Ù`s¤êašÎµäïF£¯Ç$*ÛP;i!  Ú~#ˆ\ü8BÏ–Š®ýåÒžhÝñ F}xþ’kŒüæqæ¸Y¥ÑÑgÐ}·%¹±ø¸Æ¼N¿ù:V4þœt8½Ìê‘qè;ü¨FýÇVr§#ñŒ60KR³ ûg.[£2<Ã"'qFpF¡‹b~K³,çkfkL5kÀRŽ…Õ›I¬Ÿø#(Kõ9ÇDq’ø£*yRžÖKzT}©¶\4$›³žè¨_ÔýÖz;Åi,ûKYî6½±‘W”ý…l¤ºHôºX-wé´âtí0yÄþdê\Åæ­†ÕÃxÀi­ã«¥ä¥Ö£ëFBYO¾ËŠTìO£ŠÔ/pÐ8N¼‘“Œ4dŠãÿ ÏÞB­ˆÌš­Yur¨øñØ‘ÌÝ'ã`iš©y`I)¼Ïšhg âú#Ä7«à¡fÀ¾´66‹ ª¨·úXï…§;š«zÌϘ`GU⌜غ%xâňî Œì úx«1’ΔÞÚ¯*EÃÃKDä:W‘Ÿ)1žA[òÆr >jTmªvÃ#ó¹íމ~øÌ‘­èÒM¨B? ê‰m ò Nµ‹¼%bº¬éß ÇÑ/âM5Æ+_"m$þ(óä ™ëèßÞšúîUhÀ'ˆ8Oþp•éÐI43–Ù^ýwÓŸ¨ùû-¶'þ¨‹ÿŸ¾º«ÉQ‹Ißö‘ôO̤r›cY+¾s»åt6Gÿ¨~<ãÝP^ªÈæJþ¼‘V úa½)2 (daí[¯_ f° 53?*–s7ÙWo˜hÏÿèof³Â‡ $žÙ‡}®ÞV=¤íqþýÇ]»¯õÅÖ¢jfèXž?Θƒ˜¡ž“~„ãÈ«LÆònf4¡K¼8f4Ùk‰¨ÉŒÅStP>ü¶œ£ ó£ÕÙÕMð#/ù2—ìhF×ÈPÞaêäÚ¦pÆdag1ðã 1‰~¾]ÐF«ø «¤²‹¬ëÚßUíœÈÊ{PŸåõƒ… EǪôS9‚½aÞb?G©E?g`$“ÍÝ\dE4çù7ñ)ÐÉѯ¹ðcÜZ c Ác™Ì;öѬé<ÆÎº›ÕPŒ6sÉ­‰HŠ;[¢Ïï¦z2yÇLúÆ›µ€‰ö£êçÿ$ÿj«#=ÜÒ·£¾çÈø¯çŸ{h'´²úJ=¾ˆ-^jv4:Ë_¤gÖ½õ«ZRm×·_¦§ÝÄDfªä¤kù28oéN½­6Z‘éE51AJGß0-ôŸo2Òx&KðG¦;î=9C«CűH¡¨œ ýõ²Dþµ#Úcذ'puQ^uU-˜üºr ~ÀüÛ<#sYµ@˜êcˆIb‰´-à)ü‰,R<ðCWÑ7ÄUMŒÏ² k–1†Šøø||nÔ#Ž©…Ç]k)+ ôEɳ՛…¡öŒ<¢÷íNä׈X’Â_Cc(…< «8;|ˆïˆL”›øøƒ"r¸vïçC ü›7dxßÁœàÇ<ð#q è3Å¢+¹ùéz„®…Gİ+¹Z&QB¸×Ë4O4­;ø©s¨·u– ls*A> Ðç–/ÄCâŽxÎd>@Ä•aµ0¬gøqÍ s §mw¿r§ã r+æƒýðл€!`áߣLF©(‚ÿ¸ vm,¿_WCÅ-xïÓaúÙœ˜1 ¶~L“¨ï(Ýöž“”Ç\ü‡Õ ]¡ ø±¤‹µZKvôò–R|Üè¿[%3üÕb°{ÌÚ<´ƒ/D;QlËÚÝÑ­WpVyÌÄæÔø4̹K?Z;·¨Ñ›¬ÁïoKý°¬730þ¨†oÃìʾ2QÞÕš@oóMôpªO„T‘ ôGtc´‘õ ݱ¶¡ýÞ0ò㯺Êä¥éê:½FÊ©ÇÆ3µý|:¿}°—Þ^t&ÜÌL¤7è!i,•b0XKÈ'ÈC¯ýª bRc§¶7’Q?øÙCÞÂ=é Sù*?®U„9 ¾è¥PäÏÐce+ýL £ƒÇ@‘ï̉$àc b‹ ò9jÉÄAžþˆj/™¶íñ®žUíúh<Ûøùì(Ó ¯¨òÎn½e¾øŸÔæM6 ‚_#‰¸¦âÛc¾uC×ùÝ&ÿ*-ZTužº7*~Iú_%%wó¢âÁô³“}p…ÉVÇÀ€ tí‹6µ’Ó~Î31Ž|2jž\ø±Tk,ÚÊ;²OïDbüSf&ªáàSR1ŽÏ;Wu &±“y‚zô÷ü¿Kæâã“x`Sx3˨Kâú÷7ø¿ôù&G*-H彃þÒ»–Íd¥CBUý„nÛw‰ƒÇ{Jü XóYð1#°—è(þEe•Åá¯@ÀE¨.B5ǵMÁ™­úÙôŽÞl`ŸÉ8JNÑ3𣜽úG9*?™5ÐÏâÝ{À#õRÇÀžò¡þ,FÒoÊRì(Ƚš>*PÈæ¢$2PÞ‹P+ñýÉ{*Él:¢Š¤ÄoèGÛUE„¯ìŒ¿êO={bÒˆXÉük¡Å70כɨ_Ÿ‡^‘Ñéo‘‰d¾„¿ªŽoO-ì½ÉïÛ€~uý¼ç÷dú‡'½ìŸ½É~~cæsýÛ‡Óÿ*‚sÝ¿0}õˆméMø‰ÊøÞXçu r6ò/«2k½ršÔ‡ D•F5šçú˜x!y–î-s¿cÃ[u£sn-ë :ÿ4êÑ{“qkÙÛE(!Nzõ‚˜%¨þ£™VT\6j «Ÿ7<ÍÂÆYyÇ(K7”m¨F³ÌÔŸwFtšÎN7ëJÆ}æÏ0 ä“õFFYGÚ ÿ¹X^Œ¨þºqWhy1ø)OP·9zy ¦ }KÂa%#Ë.%yÕ‘¨™×Ìý° Ï`<)jÚã·õü´V¢+¹¦}ñXï䳡óªµN“‰­ãfç0«¼³JRÑMgÒú@òfÒ‡ø"\ÊeÙš7eYo§þ'ñÇvGÔïôó‹Ž š»ëœ¾]_Ø>FC(¦Ÿ×‹â…fG£ÓñôxLòÔïh‘µßË.;áh'ÖÈ|Ĉ¹ˆþWô·ZmE ÕüøÂDܰíëïïÚ-öçÝÞT 4!7±ÑM› _ÇÏœò"r­<§‹0­¸B;£½[ãÖ|KüQ{XVÚÙ·7áel­bݯZɰÄH‰È¿Z!Ëã7°·]øÞa4“éf&~pªkðL&–¨/¶qV¨øñÉ‘kqý<úö"ží<ütY¸¥}èO°õzA)ò¨6àño^¡\ó{} Oý@®Ìž “kÇy`»&©ž°<ËÙí=<ñðXŽÃØÛv²­¼vúÛ}Š¢=×ùR³É‰È‡§•ºè–¼1·aè(>ÆTlJuôÐÔvrØl4N¢6Éú!ö/é¢5©8ïð\eã/"?»*±Ù\áù ¥%x¹ÝÑ?.ÙmÃWË ™Õ§cøqÙaÑ[Í—|Ü¡ªõ‰¸²ö° éð“ÛÀ‚mSæTãý‰› ü¸÷½ž3<Çk‰}ÚîoùŸ[ëëCN&£´1Êòb¾—>Sô#Ìcb2Ð;úÚú«fäÛãºS¡±@ÿ8ê‘×D‚`÷%úGiv”‘…¨ì{¹++©½‹C×…@þjvë(9Y6t dOG®Ø]ø—Æ* Oçmõ+ÖÑÿÂg9ÅÝ(†ŽR þ,…ÙÆ))õ¾¨¿:Y?gy˜«:àÇ+â[y¹O©M`ç1¦Wü˜¿;\¦åÜ$üUVÓÉÓÚ@ü1Âìä cŸ.¹¬9æv*/Rí·›XsÈz¼ú@æY™Ïµ¿¬ÚYšY2¾^#á¯ÈFFúïv´™Ùñ»·€ʼnÎÃdÍAÿh†­ÎDŒ4œ{“ˆ˜.!ñÇzyÃuGjj‰Ä~ª©ñ¤u2«0[áá öªË}Ä ¯©ÌSÎÌüSüx†:]¼ÞÚDpc¸âÁd1&’Õ¾Ûßeí´È…GWŸì¾rçmЉÅ'¢ÉmôŽQôŸÜЦ½æ ½fZ)éÊè4gqÚ¯ÉÚªa4áþé¾trk&c‚}‰ÇMC·:‘™Ü–Þ^wèÇ5’̰öÎVQgspí:•“ϩͼk^…ùõ—aVåÔ ñ{J®ãùÿôÉ>« ü«×ïß[8™v’þx—¨/#žjv-ÞGJ=©ž[o®ŸÑRjÁ;úüóêû}Äfâo,Í;Qü¥ŸÓÆj«EcY– ÷Iè*a±ÍA¿c#ŠÅ4ã#9‹›9ïµt+k¥-§kl¤–%em¹MžÑÃ’-Eç9í¸ö@\À²_G·„¿[CÕ%¯§y|Û`áW¢7´&Ð]¶–aQT"‹žä_5ÀßÚŒ—¼uo‰‘˜¬ÓÔd7i|lŽî[“l񻮿Pñã­£ ŒßQ”£œp7À2ÃÁïA9/G^Ê Ø¡õ¬6Dh, uæâ}}(1Ð ðã? ‹Y”™ðôÆêç«À»ûÔ­ðc7¸WEöÒ.KtþögÑ´/Ú+NÍ¥£c¢wòº“köȘC¦€§1½RQ­ñNh3Q¾/ ¡»Ú*½~êæa¯ÖIóéˆ?ØS™8àÙWÞøï9³‘dÌ\ŸèiÑËwža X‚ß—™ßØ-üxíx§Ï@?¨°5ÑŠÝYµ!¬_A¼ÚªèçK‰‹<• ÿÆ*4*cCýa·5:”úÇ{KßýñÓ˱XŠLüä1ÕË:k]ý ®™ŒþW5,'ÞýU×,Ç[ðK;LV×A¼™ò¤ˆì cS¯Q´MKȬïA2,ÖÐ;Ê :ÏdðâÔxo?.¢Ï'áï ÐCä0UóÊìDÿ’ªÆdmÛ+ÖÕ{Ÿ@-*CmpÛÝìÅ\«T¬98øqŸùo¨ü.Iž˜Vy$ñ×C¢ŸøÝED·Ö%ó¢ä˜ø’p'ð㣵ýÀa[L®Y3¯Ü™þd¶-¢·Kjjʪ¶2¨n9~W¼€Dm£@Þ—ò¼‘‰ø£»õnî’¹ Z“šƒTz¯àïÛ‚‰ÍëàÑ<•„ü«Ä°»dßQJË„÷XH}ÀçóD?ßK<ê©6 §ÜcÈòdÓÓYŠŽ!ô„Ï…®KFÃ@¦"^OK7Ôª®ëÝEü‘’'Ø›ì‰ËJÂ=Ä`*`kuŒ§ÁòeT°ßf¢×nr$ŽÑ‰q$ùfkÈ¿ZEtëϳÚЮNÃ]ñÇ|­uÑndGtA>ËÛf]²6£ŸÇa¾b¥¸öŠîð×é s×|DL» æÅ›R^íÁ5¸ïÇÿ³O8²jI\'sÃáñ¯ñÃ?ÈÔeÒSmáÈ_­p$¥÷UQôóèAñdX.ÆßÑH¬“%±5é ˜Ghtú룭§ë‰vLÿˆ¢+׮òÞ*ˆ–Ãë´Änv¡;U~£»6ŸÎƾ³²·É+zŽþÓŠ¾<ÝoxÂ·Æ òLª†ø¶-åJ¬ô'Ö÷$Go*Ó£ªÊ°ì1–Ø(–“ö‚·Ùžœô ‹< ?ø)¶kìÌcð#!D/|“¡âG-!Û)«4¼Ï›È(ÏÿWžÊ”Ëp¤/A½°”ò U?ª÷ÂBà»_À]Ùù» P¼Ó“Õ8 PR­=Î5½ÆÿßgLÀ﬽øÅñ…ÓÂé„dðWyð fqU:ٴݰ«#ácÚý°Ý_Yç5¾µÝ=}&:mBõ—L-B:ÇZKQ€Ó¯–¢C]b}XÍÎßÕÕ$ú?·°R@ƒk¬¹ ®)3ù^ÅÀá!àš˜+§áõŽWÞôI öàN7’cå¼ad«3tæ°ÌÃxÿe¨í¾Ê®7¯}àtzŠK?Í?Ÿ®’ƒ¹cÀ„=èQÕ °.;ùªíÌæ:®Ç³ªS]ÑØÌ &5bŠHqìýlõ›5FÞ©‚=Ýñõ§Ä ˆ‡fwœCÑ1PRRƒxŒúóÚä7'Ïç.ÿ§õ%;aÃ’Ð¥ü#zý   ?ÚèñYþäzk°NNò¦£2p±Yž<¬±dEuÒíÐò!ò¨Lœô uÝ_‚GÐ~ÙDËv8WVçœ>‚,u‰?Þ:ч/VnùW’j¸,0X›±öé’À2Íõ<=P†n£×Kþ¶²ÌàZÏM»¥5Fk.¬>Qó¶9Ícà‡ÓŠNÿ’•Ôé5±µoüümè"]˜@˜Þj5„‰Ñ?R)jp¿‹?¼´ b9ƒ_‰+˜äìÁ_% š¹‚~²Ã¼i^&ÿJ‡Êã,Jó˜Äý£<’ªü Ô8e!—²™k×µ?EÞ¬h‚§ÕÞµHfL¦r,£jæþ[ËqôŒ?:aûÅg]gþùnpº¾h ~|Ò‚{hÿ¼üRqüx)Ûà}W'‚-dÔ`÷Sð£îX1<‹&¤=Ƨþ|Üö{ø›§ÿ€=ØHÊ»“GǧCõç>x&͵¡âÇ{Gj£ oHz¨ƒZÂéቬCÔu‚}:ñ 5‡'Ö¯™±NTån_BÉÔT_žÔ§œ\|¢*ÌST¬âDø‚âj׿?ühºþª¾ªu>ýñzÉ죊á±LI2¥¦ÍDæÚFb&ñŽ6úÄ|Éíg¦{zæÃ]_‹»wX܃Cpww‡àÁÝÝÝ×àN‚KpÞrIa ûÞÝ»ûÛ%@2_OOOªS§ª`±z)gŽàðc 9Á5ìñê<úÝÐ"š!z[XvÊþê,Z|® ‡¥Æ™ éS` –jˆrè ÷¾ >,ûèNÍîàPðã¶ ü˜B>`&?‘îd{>¿v±6ùsìŸn­ÂÿÎFä<øqá-øÕCìú®þc9ñG*R²£ : ÓA-Ás¢/mNýÇ^º‡Ç±+€­éâ~”KÄg\â{Ÿ€Ëãä=äÓýg£b)2<9Ðí§~?¶h9\S\òGðÀ‹ ™Ú…{]•"¾ÙN»¶ÙBoÛ]% þ"ÿÑía;ö:*Ȱ“ïN@æ »µÅʧòR1_wUu½ñæsYÕ­{DP yâ½×.òI'©žþV5Kæ£Dëæè#SǸÀš¢«/ý¿¥g’Òº7-Wtn²-§'ØXâ¨ÇT-F¥vƒ)“'1;qjoÔëîÄ#yzåe³œõœ<Ç+«å‡–©³IJãÁ›Ô…T²ã#yQ•”ÒzAóû<ððåbþùnô»Ÿ9iµ-üÇ ó“ŠFªÖTqú[þvDâzùé°u›Î–¥àÅ*ÂSN¡Že2>ÒïTˆé¯îë‡ð\jqÚ.š7Ô :¦'žœº”3¬ð :ã¶×>‚Îö³éSÙ È)éÖMUÂþ $‡4'?fq’›¢ßÁéíH¯¢7Ôœfec­ê`Ù ºégwõ£>¥’« ìtÚºÖá‘uŸ@wÀa¼ÍÔ5q;ðŽÿ½/öq|r¾ðW)÷k«ú½ŸñÙøSt\eŒÇp7*]Œzýת[ökåÄÔRyN™ÌvôôMj,нÉŒ£Å#¡‘é—ÖÙC,€-ü(ñÎw§j3¯¹„øã6”T4£¯AxþîÎ{éWõëb!ÊÑ{øÎ£á¯ê¨a`F镾t4û›+ȸËÉz×cO¦Q 4‹?Yáy£&ýTâ‡ŸÊ ŽÔãwÑa¯¼ñÉ aeê 'Nr&º6ëIo=H9ùí>¾Ò¾è·¥‰2֩뙂=M6b4–œV3s0:§ˆêŸô‹? V÷ þÿ.æ×&e•Íé_’‰ïÍÌ]¶ä³ïóöÕć» ¸ÈŒ(ω}0û]•‡zÀ½ï`O‹óy¥‰ã&†‚~Ú]"†qf8ðc–+6QM[s&ñOcxwåɪkÁßì?r€/wÐ.íAüa¼¶Ò…r×··ªM à¯:›äoÀ…fx+±Ö¹¹BâƒÌÒ o×´^Ã_"§Òü(ϵ ~h„ÚLíJÈ““Ù¸ÀYíÏõfƒ —à?,ô´Ùè~rH­ÇÞåBÓ:ËVdä«[éÁ”’¨—î’Ž ~ä„s\"ÿуëµ%¡¡M>Ë„YëNü‘—úAº8a[ס&Á•òá÷e³€\OˆÀöÏ]7Kˆþß</™þSؘsžïô&?žÞVM±ÈKQÛ†Gïô”ìI=òçΔŽìó~¥Y‰?ŽªÞÁúKýFþ¼U€þê5Aa}ÌDèb{ØŸÐܰ&PA×Úî=0C °×¥™E…ü2MÈ£§ÄJŸ“ñ××]w+ˆæÃsþsZe©ÿ2Uw+ý©:POág½´ÝèòÁŽI}^4ªÑ?“Øj5Ag7 ýÁ\âå ²†¬x½—ðW°Kxcר(œd7+ƒ+;û¿‚+©Àµ]pk}чeG l;¹jVÂ[ûͤ( ÁWã4ñW³©ÿÀ×ÄíÁùL`–¶G¸¼Q&÷$zN½Ç;µ«-—žZ=¬®ŽLì]DŸ”çxX·ñˆ½ðàšªßÍ q$ÿ+¿=©eÒ³îÌS­é?®?·È 4`z9Ñ‚^ëNÖ¹Zl£ ÿ66Î0Uýת[ViÅzYˆ½*ýc‹‹X"²±QŸ@MC:¤,5bAªã°lÌl±×ÄÒç-\%ÝÍAúzÈ5#ï]^V•{¥¿Ôçï®8R?¡ßCOþ‹Õ ¦É† §”\‹e~Œî¯5šªÄ&aê‡~«äŸxݧ9Í8d¹GÀK_7óªy¨±ñ)ѱŒ¹îªŸâ‡¦Ç¥ºû*õƒ ›·¸¨2?]‰Ìü-<0*†ðø>Ø‹…ìÅZÑ(ðÙ‡~ÏŒvØ÷>pV×à¼ÒaÕ«ƒ‰yWù ùòçÑr=á]:DtÒHŽÐƒ”“ß^ÓÀ.|ï°»…a°Æ¡¶Ù©1äôÇÃît?’ÿ¸J¤ó™ïñÂûwfËŸ’î¡âG{½6ñÇ üÔ-`Ú%ó2 X°û#ø1ßL†é Š&ø«‹Ä [XuV¸åR ÌðPðã¥öјBÆBrgƒ`¾`5œ©‹‰‰²jðï,XÿЍoϹEởk®%?òŠ'´Tœÿ®~p hÔÄÿ{\4”Ó9õ¥¨_ç›êîk诊Á5£b¼ññøãCÔRù@„<‹ÐKUà9d¦Ç¬/«8ÆÍ!w‡x`ŸUŸ~3É*ß!ÿ^œœÈAÐ(-ü•S¯1@åÁ£X‚¿êv¤§í ̹qdBô»¬5V62Óá¯\Ä÷™¾Ÿþ%%á„<ÑVÍ€]S Ê9"äbÈ7'Ç‹ü¹ÖÑ—úÁ–Ĺ/è_2 ýîøª÷ö;-5 ÷Ñï.†±KlÓEþj&LÜðIRÓ_¼ÞoÌêF$Xœë9ñGRö:qF2%˜7»€Ù$È€<¢fru饩T¬1 û‹u öÑTGdPÊÖzf±Ý,¤Þ±î|ûþÿýÝWA~÷K­¾RùÖÏû¢×{1É~t™é¸«icµ4°W¥~ÆQjÜÏ…õBß·R«!VËêp,5ÈWdbÔ})ñG Ùšøf½Åøµ>cð@fSIÒÅN+&2ùN÷‚MidV§ÏH=¹Aúa‹¼&Ãξ;¹Î žÜDüÏRª=žy3ét|hnådu2ÈÌdUÒ¾?¾ù¨b%L]UtCÎt§c ÇMl{,ÞXú/ÄÈmÌXüžü·ù§øüÈmÞ”é°kñÌk¿6Y¤íøÊyQ7ub† øLk±·Û„ÇOVøÌh&ö R~Dü–u@3<ùD°,=ToGûÉ»xfP'^ÚJDSXzé?ªš¤cUk&ïcq4+SèËe`£G²g#`wZ›C°)±ÀM_>ñù5äUâªðWÑCYe ½U\÷ÌøäÚkÜa‡3HPrŽ©‘ƒ¾Cíž'•wÍàçt¬èü†Žhã¾´kÆ(ø«ðpM`.âô1Çò ¢+jAcøñšúðùTjäÂÿ?‰§°–»×Õ$±ÿ;ýîL£Žì=HIN÷øÁôBbªÂXô²ÌÝD-CLô»·È.äƒmªJ~$?‘Ê8ò白z^„<Ý©Œk²(1hÖÇô(ðˤ—J&º¿ïW'Л– ;áHò—Ð_¥''R†éaWÞnsòçôÌá\ø›ÅÉ<—÷L ç©B\Gÿ’·vW<×Sê» Óá÷ 5nÄ…‰ÊÆVëéfP-XÿD?ú'¦Ä/óÀ‡<¥|ea3™•ÀU”t.1ÝÏ’û蕆y„EAÎpT‘¿‡“eº#Z‹¦W ~,¢þ£¶Œ³Ú•êÖæ]«5‘Ænð#)•>ôŠ,èj~$tµ·GY×YuîÛßzOñ–¬mÀ©¯®‹»wüï}qU+0kö?ŸøŒùuÿ´þ<õƒ}IC•#Dv£=§a¶–™î»%Žù_»»mije<ç*ÄÙE\&Ñ'Ñ“·£è#VÙŒ ®+aÙ-zLa±LlûNüù­ÔëMD¿ë+;RT”úóÍòy#šè^pïò®ôÄC}cVP=°‡5å"lĸœ?ñ1–Ë„²¡ÌøNüxQé'¼¤tæžï‚]“pë#á)Àv¬®€FIA–xþKе¨ì×;ôW U;,«^R$¬êfì] õ~Ì *ù„ZŒuÛ-Zÿd…ŒÚÜÓ(¢…ÜYRþ+ƒŸ›üÇ@,]>µ›wè/âç È^p¦¦¯Sçê?Ï´pt|•A½2‚8) 6z&–¢rúµOÄ׈? ë‰Kfïdn†,*~tF•lS ,{Cò¶·ð ‚‰Ök.üÕ á‹•jJ~ø*ع;pGœÜ7ü8GÿDo9™hr"ø‘|);>BòÕÀâ fQ<ÿ‹t½MG†öbÀ5w‚úoÌÉèwCÖN0ÚÈat¸Hޜ抱ä]ÔþàGnú„Ô@¿[_¹ø±‹):V÷4ñÇS²ÞrïwýKâÓù¾6øœ›{••Ó1¶7 |ÒVذÒänØÁ·²–Þ}r4Ð_V•‚¾‘[¿ËçìŸÁ¢E›\‚¹ÁѬVX|'þ˜D,óÙÞ‰þ´‘Li«6¹.õ$sˆ?>’uÙ‹§ÓZôúæä ?*q—·¨†*O¶GC{µˆøc1ýJ^£NA½Ëº­ÏQ é\øæª qÞ&õ ¥ï+v‚,x½ º¿Þ“ûsê8†¨Kœßã诮ñ¾ÃÌ­»ô™ bÔ!ÿ=‰<ÅUºDUÂÃ"ͦŠå*Xì¢jèiàlBÿ«ƒ¼M~(ýJZn诘è¦íýDmÓ™Ñôµ™Ë¥¹ÒÑ?QG•uÚÂVyvpõ‹È¦å”=ƒ­ï!üUFìR-öï¬z.ó˜¿Qÿ‘›jø®è­ÞÑ¿ý:V;ð)‘}ŒÏqc®ð2û…ZÂ[ý _®7žÈesB ~ÌÓ›Š6Rq2=9Á‰ÀÚL9žÇãÎq¥Êè¯â‘ãok¥›qc²"]àÝ®¡p?';aÏö™E”+˜b ðÖÿë_øjƒÕŸ¿&þ[¨ïC÷!ÿ_4ED\Ùö8‡y¥%éàÞÉØ®ÇÒ¯~ÿ#ó'g´b·,¥+—šTDåCÞª³¡Š“ôô Ëlñ 8À ò"× ZëžÉ¬¬o6âa¿ŠÈ’œ?Bórƒ®ðõ«Uú ú·û`Uï`±æ`?Ê©–02Uåq¬Ôssg úÝìÌ,{øõ‡þæ×RôO<€–2" ÉQ℘œ­a°2÷©÷sº£ÜÁúG†¡FÖ{ðOñã¥Ö€)‹—ÀŒpÖÎŒ¿rtí¨‹§y œû@|ó…8¬ñÄR¬ÛfQ?ð­ }‰~Ær8òþÄo8­©ñtªÁ}¥€ÕU‚¼ÅK"¤uüÿQÔõuñƒkúi‘ Â*v« û”ÄÔ±ˆóÉ÷LSÙ³µ0:ÖÞ—O\Jl7œUÛÔ U¿;L¯+ `²ÀVÕ&¸͛Ù–Oƒ…Ÿl¾ÇElk=,ßPy;O?½…~çím ~ÜÔ‹r9qßt~"ý ׳ïÓ¹Ó~ÜeI¬Ý`žó[|õuXú¬à‡£àÝI¾$õƒ‹ô!¶ÏË"‡òÔ Á\ÅèþÎÉËGF¢ú«5à‡Ú©kª–•…œ| â®’`Ó8<ü>Ì>ºý]ýyf*/+qZSÂÒœáßMàärÛ±—'©F,@λ­}’’ê\'‘a:bøûÞ*ñæèýÛûï`>vÅ4áûJR¥JÞƒ¾*QÁ¤9àǼç㶇u=pu¸¡¦¨bg’Õx~î%/ÕEtúæ)Ï”åùÌd*Z‡è|ò òçS¬Áô+±èžî„=ÚÏä¿?l_b£ü»‚ûMµCÕ—AêÇÔú}ø‘&·?ÑNJ|ƒ‚V8º%úro>ÖvòÓµø÷<ŒÑ8ú@Õ'ûó ä­OÌž>»]%·>‘VzátÊýÌ)u·bÒÑû9;ª1õ£:Nâ¡ØMÈt¦Çv—;ñCD×_øýs¬2|þ õ ük¦b>PP–øˆî#²ñöTc]7Õ%Y†êÆ,®´èw;¢º=ˆjʇúÖ¬O‡ÜÝUuÑŽnM `êàNd- ñc½ÞKtdfOoðÃÓŒf>±†óØKôö}úÒ©¾†«3V¹†ÐQ?Sv5ÖýÔºŒW¸W¶Ä‹=f'ÿñk ¥Àíùú⺖7Xþ\Ó[þcý®¿v[hÄÕD{‘Œ‰ƒNýGF£¨QÑèjì +ÿkø±@«Žªµ(_ ÿÞ(÷ôÅú4á![ßœ2R‡‘múº9 Èx¯Æ/ogX—ꢜf[}ïP+ì~e*Å÷ÊwFXØ&ª"ÁÉ—Ây‡NÑ‘q6hEÕ F¦ª\-|SR÷|†LKV>ù7ïØ×µ|ûkb±ˆüGeüû¿ðë¶Â‡\†‹G݇;ü•­ns¦°æn°û?×_}ÔÒám^”aî«¿”aeñáœà©— ÜüDäQ2€»ojî]~²ÂÇFO"¢aXä{ cj~¶6ÑQB²^ÄÌ<á|`šž³ö=Øü†r¢þåÛ ü`®õø«•¬© ÜPZôPmˆ üÌQʦrú+fè±Ø6>qWŒ«VÊœ¡ÖŸ·×›‰ì kx0ÇŸjpŸŸžkÆbNå}òçô?¶‘½ž†N?J‚v¡ê¯®joŒYr!Vy&QPNò»xºóÐ߃š¨NDZ5È?²€ ÈÍl$^ôåyy‰¥ßÅKnÒÉçgÄF^B ÷Žï ̦ŒgÃÏwâ²Öy¢…üÄ•A,&}ÃMÑJÍ’GEHï(‰ñš3ÒåôtªíŽ«Cä?V*7ø«Ýj•ÕýîL¬ê'ú_U%?¿N5(óœüù•¥Âöùó6Æ}2¯NbE¾/C«#õÙÉƒÌÆ¯Nüq†™Ý·á›*S^ŸˆÌ ¤q´¶'xÖÕCÔŸ“©‰džƒâŽÚù“©è…²ÝšfMQ­TÐŶÀ霠W{]&6=&þèþb.9þD Ónú—ea“ëoõq [.Îë@ØÜ¸D—¿Yw¬LcŠÀTŒÍ(•£B:Í:á‡W³“Àùp&½é×r..¼úKÕ›µÒ³ˆ³°·þØû Vó•|lF²JÂå#ÿa+ddþùGþON…|ÃYz®O·ŠR“Ӽߨè·#»ã¯Þ“ÿÌ#Ðo¿:+Ë›±­ßÁž¨Š·OinGv]€ÅºLþc§•›N+Ôaj^5ÆSÞæºd»ÿ2½ñc¡ÞY‰Qï:3 "”c~í«/kK@&j¡ÝÑÕÂ%]©˜EÝʳ§`‹Ÿõ€s} F¾/'±ºº-n¾iÿÞ×´ôÁòNý`ð‹« ë5ÒøêÁ6BäÏ'kÙ際٨nlÖûEüX£y’¨Êgâ­oD§õeàGoYL4ó馶háë=‚¿šg>•5ñ¼éÁ+ ›e௢áõf ûU%¹ýnر¹úmÝ”‡yS6qŽ…½wWµàc*ÈCænP`5<“§9”þ‰íÃTžT¬'þ¨ƒ¿µ+¿“÷æ/VšŽw± 6ÌMš¡ ªÄ5+„¡ûg-¶ù”LNS‡JÚ`…m>ÄY+Ä5¯bwVÊÃù·‘9_88ÿ·ÿˆNdxºg9V9 w×O>Zœ~xÊ¥•3ê<;ñ˜3¼›üC1ú·ÿˆ¿Ê£G5 ®¶þW9Loþ“ˆa kZHþ¼žé~D#;ë–kLÔ,®^”)Dh•Vú|QŒÝJÖ$:zÄûÜ”wЛ8ÕŒ"wŠ/øÊ­AÑs ý>¯$J‚¬¼¡¡õßõÕ¾Ûä *¼&¥„;YN&bè »Ô¶n • Ÿ±Ü‹aíòä?Vâ¿¿ízŠ…ú¼›8Ûè û“—IŽJ ž)Só‰ÐðóÑå´–1ýî-\þºƒä ÿQžüyº ŽÁ öP}Á³²1o67Q&ÖwˆJ‘­ä¶Ñ+W·ŽSÞJ¸Ñdî“) µõn!®uU™Ä©9“ô½ß<éàQ98Gµ? Ú|!ÃPŸüG2pd!L̦k Û’ùóª¨x«ÏŒƒaÓèu $,+‚úÑ:·¾Jæå{œ ½®œŠ·¦´–ÍŒ=+Oþ|*$&¾£)šO={|û39œnàÇtú¹$·^€ó½eÒÀõ%¥ëtVV€| à°¦wQÈ>¥Ïî-Káßo¡W}S˜LÚ˜Õ€iè‘Ñ«£³Á¯ó2HïéIþã µ7‘‰LªZé™BÉ[Íì'LeßL6æ&µƒo©BÿƒúŠk–Ëõ„?[b9]&À¯ÍWËÍDø‚…×çKýyqÞ¡ÚÜí_ê"º¸àG æYu°W[¯© Œàò¡>e§ý;(PÚÎûÄï௜¬feNzCu>Xþ|‰Þø#9¾O7þ.’iÙõ\;Q†5gŠnbºŒ²=]MˆRºZÛݬÇ\9ª=’Ïy€¯zJö&nÙ{MqÿßžÑ2ëEwæ¥Öì÷¿²èKÛ;_Z4©éuèôßMo”BÁ[™Î¹1ô ¿t;Û´lb¢Ì•ž¬7 Œgú,êlêÉ¢­ØÀ\‘°E _?´ƒèOþã,Ž÷\šê¾dæR}<ó? ­ø]æ–“ä+#¨‚éëO…öëý‘~E,ÅZç}ÝúCµÁf×’ àqn A*ˆ<þ‰Õ‚q¦¡]é?æôo_É»|Spžå=Ѩ¼=ê`¹?aùê£`ÌÉÿ †AõR{,³?O©žy%¬èü쮞N]çž’(Ic2'ySâûU6ªâcOƒ·z„œxË‹_t´jƒ‡¸™èã"Ù”shyæóY™eŸòW/µt{.ä¥Þr ¢€ÀÓ±C±®MÍ^øéŽ^à=QÜZÞ¥žäHÎ’­È!BCö¶è¯ò]PJÕƒ®cïÛÁ ½åßifLô»Wˆ<‰®ƒN={f”©xúíBá¯Ni¯éß>üï¥Z¡àI~ô 7“€»,N}„§šÁ~Þ…ZNt’L:I|4æù„Ù[ìün~Ôt£·ž&Ç'>û£‡àÚîq¤"þ(O§‹"XçªLß~Ä Þo!˜|ˆ=è/Ï|ħþ£ &2™§U|×9î{ ÕÑ©5ßJýGfxŽþ¶Ÿ:ÂDõ4ØøDPÛaÄ4«³ÊÁÔ×¾åÎSnE?ßFppï8e[`èt2ãõ¨øKH‡’Ô’|À:Ÿ±ûÀ_$ÿáLh‰}~H¶b§ò(ù)ß\o¶,¬jâá?'ÿQ õŸK}ŠÕžzÆçè‘Ú‘Ñ;í±V0ñ$9Z¤5xýÀ÷ðf†u˜˜«Xàõ’ë/õxNnàÑhxÜôx ‰È“7@•Ô:¾ ‡œzÄ)ô£½O¾¡µߺÒÏ!š¹AÞ"²º#ƒ¼˜z.ê?œé÷Ì¢VV3!^Io«J« à¤×a2¬ó}X¬ZöcªoÐk…å¢Ao¶œX¯$ýwƒô»ïõ‹èwâ‡^"þˆÅ‰J`%Dû;‹LÅ&ë1ÓXÝÃZ€qÐïV·s‚—+èù5‡\]f=Ô¦½~ãEz7ê?bpv=À8æmæG­&óÞÙŠùP÷µ«1ÿ<.ö ë Ì]|{°õÆzLT}þª9ï6µ]ò×2Ìß¿ëÿäO.hÙô¬Oî³ÖYø»_»Þ í$5tQATÑôW´ ¨¯2Æ4r,¿Æ_íÔrÓÊ\EJrDþ†!|õéúHQ™ø£7ø‘<ŒÕâ_ïaˆƒGëÌP…76Š>H]ôUhPšSi–‘êÒòª‘,Lw>A kr.–øµÎ4ðܪ6þt%¹«ç‡uæG •qdï0青ЭtúrôW{9N”£\÷7N{&"’wX¨vøýE8[EÌÉ?Í|Ö$›ÝØtT=ˉ…Ê¢è¨Oìpõùu¬ÞK"°XæñDà{DןÜóe£.+j…%½DLŽ»«Ç×ñÐÎôBçŸ?ø*vqþq,t ³¸l©úºé!~}EÿÄ‹ò9øU“Øc<±€ÍÙŸ~,V#‰†Ã½c…æÁõ`Õ|*úÝÐxÀ¨V à Ç%SQ4¿ÆOta¥þܹ·yWì—ÑÚ6Ã÷w&$î0§ÒÊ?<ÍÆ¡àÇií%ùóád‡ÆÐ*u([A0oø+§Ÿ{UrI£ð^`ŸÀÓT×È~,d7|Èñ7{ô9!îuýÛûsâb0/}ècª|g&òÏ•¬?ˆ?*a À_•&#¼S5„?ÊÚu„שOÿÄGßõoOÁÎÕ"ºŠCä7WÝ"øhΣÚZ'w°•jö"X™.ð$‡T>ò*'Xc*Ôg±-Tzvûàwñ‡ú+§¨,˜XKýeí*+£ŠAÞt4¨k‰?zÃŽ§þü•r'2ìL>>"H.ÀÝŽ½¿99Sè_Òˆ»¼†¢µ(Ý ?¨é ‘Ó¿½&o“™Ï®Ù'±Ê“ˆGܘS2—gÝ{Ÿ©¹_Ð_Í V?˜ŽùQCà_³p†3¤âÝHJÿööe¸¹}Öú'FuÖDx­ ÌÛx·6žŒÐïÄqá¯ÎÈÛOÄÁ¿`o%±L^Ëæm*¦úu_IdàÄ —íð¨¯^ØI\yí+ô'ôÁn/'þÈбe‰ZJÿ’ñ²JàýÞ¦þ+9g¸~Î1µQ–0‡Yn®DA-`èn¡¸:V6b"nRæ“B;pCm¤þÉ?^sâ«›}ø5¨~p®Þ‘¾L ÑQ5FѼdí¥~p!óXâQu¹…I‹e]]I˜q՘ɺ»ÁøñÁr&¶”]8õè ýù»™Çð_ü⬖JO¸3ï´~¿X×´4“ººžÐùÄŸâîð"ÓµF9£¸ÑÐNÿÝ‹A߆¯®iÄZYåaª.…ŸÎä pº ý¢ö9ÐjÊ~|á#ðW]@ëÚØ‘læ$™ÂL«3L³5½5óÉ:r‘fÖ“6k% ã,Dƒ‰°çmɨ<‡ÉïO̶Xuç½:Ëp´À}°û_ÌE²-#?TŸ#*òÙ1ðìÝÄ;w*ÿM2Ú ÌËâ°ˆ‡g_Û|\>ÊþQS ¶zšMBÁ×ZjqT.Ä¿Ÿ_• î{-gc9{6˜úž–غñÌòƒ©_€®36ô4»•O½‰º|½>7Äö-4ÆÈ‘Äc¿ÇU åèwÏ¡’ô¿JCf ®}É*mQ¹G·ª ä?,SûaÉœ\I[yEØ!Îbv#ϲ ùó èv÷¹Èåg±,²'Û­ÆÄƒíÞäÏþ%Éù³‚pl'±÷Òj •ÏôÖ÷}sÅž†À؆Rˆ( Š¥8èE—[‘¨)™ ~<Ç›ÞÇüZæ!ZMÈÑG;u˜a­S·ñ㫈 zçÖWÉðVOØçn0b6¼ÏZÐh¦Õ ýî;ì|4[1oc”5Hu£»Ô3>³È<‹JúœhÈ6«®2¨ûCTâ¥fVvå¥ÙO= >OlêÏ;Ù>ÔŸß¶–¢(NìàCÆa<ýÜ«`a/ùé Óº F¡*|Oàiäê¨GMJI+ù”xª,ÓnPÈ›~#`ë>Áb%£þü±ÙuLYf忼ÐLWsÍ8ô§ø3pÿ0´(ñ²3¿ö¸º%K™E¨ÿÈÅ®5a…÷é¬u( ¾›¨k=O:øq˜k6Ѭ/g³½¯¿.p¡>”þ%qˆšs:ýÛ«1qk¥5 üHBÖ¨š]ØÕ†ø#ó?ZÁUf£V\û>žØi9?ë U›¾ÿþ꜖;~<×Zê±÷éëý…íW]ëpã‹Q„ù€ çt ÑÒŒdÐW ¿:¶ËüßïÚ¦5¦þ£,LKjT:á©Lhìc~mkYøc?ñGÈ ãß_~¶˜ƒEòãŠãàļ©ÿ¨ª/¥‡Coæ>åƒÝœæúEú=Ý–›ðÝ®'ŒÃr•R•À¤ÊÄkÈÐ-?zÁ_åfzh¼KÈu&³Äb´5þ ÒNb§{:Vñ¾™Sí…¿ºŠeÁÉê‡ÇóóþWµd¼oäðAŠŠhbØ@v>³zÁû-àaËbû–’W9¢ EȵiÚ£=ì“ x‡õ?Õ˜\HZ<ÇÉXûRdœœüþö*§¹1j¶Ñ?ì¬ïÒc¡B}ÁåAF±Î8`úTvpïVKºZÀÎ^Ç:IµÌ ¿û†Jš’¡êwGÐÿªO!ÚÄ›| |ìěً…ˆÄMú‹[ê œ|e´RÉtÏ`'"ó´3[…‚L#KäX”Ƀ‰YòÃþ¬'"šMƳ‹j@ü0 Tw‡¿ÙK%f,©³0këÀ¾{øâõÅ&}kˆ­›Ö“ýHŽ†Ç‰/>«\3sA©À_Õ¢Ò  ñG#²![àØœùPµÑJ  þ#d2‰ñD6$"JIŽdQÆQ”Ëè_’Ürú_5²s€ÍáÙ’Q‰GÔP”.+‡ÉØVk•¶p·¾ó›÷º óDÚ¡ûb–'o_”ü¾ ~,³Ò£‡êN&å9Öð–Ý$ªÎ]UµÈŸOÞÒS짨­èüÍõ–ÈZ0}/ɬ×P#?V˜îeR èØ4ÃŽ‹éúÝ©¬/#³06Ã6 ‹¡¸}L4\º^ÏM· oNk ®×•LAz<ŒBä?zP QÞ:ÎäÀdÏ«è¯æÀãd¦¢î2wÑ•§þ*2üãñ`ó?z饄ú«çø@9¬¤ìFnÕ‰ósT‘ldžú=;–ë6s£"PC~jø«µV^:OVo8éKðŠÆKÀõÝÔo 7°¼&¾Ã:õFÖ¥+Jô»“Ð)Ûðt;Èì{Óãñ<Ófò,¯Q!,§ÉBÞê{ü”§Y›;›ˆ«¨?ï"cò–µoNnž·Zº–Ù‡Ð?EYæ‡2»žk„ëWWEtWûáîâÙu¬$¶/þË)9?ë¼Ù@ùÿOê/R?T7÷^«N¤âUão¥¾A@ÿ’j0Xy O®2GKNö£LV‘?ÿµúóeZ1æ1E©“ªá2è¯Ü³úQGvÅQúÂõË Ë›ˆ™d>>„÷߀}íN·Ç÷ä¾Úcé«H/©‰  ¦¿»â<ý¦I®Æ~'&Â#”£þÜüǼû;æzXœ®æX²*•ÂÔ¿$˜!6ÊêÄ1gÁmD/`obr PedÁcµ#ƒQÑŒ=[ÿÓøãŽÄ}!SáùvÊÂRÅÆWÚÀÊ*`%öÓ{d5:‰Ïèb^ Ñïûû>hôÁû›ÊÞ}ÀšÇ"jèºå€…Ÿƒý§ÚÅß®cG7›C@ã)úÇï/ð'oµ(°øá`†*ã;óÈ“òÎÌbeóÑdõ6§ÂˆGA/pÔÜ¿>÷€Ï!BãTûêåDv¸³j;t‹¨e÷ÙÃÔ`êwš)å'áƒMéˆ6ö,ìÕIV] ÏÓ™-Ü=üð¿ræGIlÆ`rʼnѾu"âŠC?Ç2¶#¬N5òq²YQv^åùoäY;k/Ö~W?8Øè%ÀU$%«ñ«p‘Oqú_ùÓÿ)ÊÖºTW Þœúóãd\¢©Läý¨¡Fÿê¾ñŸÍLdÜ‘ÕÀÔ$ð†>DÇAº¥LUÊLïy°ay°XýÑ5ÝÁßÿTagè¯,«¿Jµ7Dýù8ãžlOîæº¤Óà‡ óy;&κ“AèC¼ðœzÄ=v]k++ldùAe`_|ñï×{ùN5”üGeNî ,Y7ªYü課ښmã~o17 wÐmÄÄLbk ÞH*]–Ñd¶„µ’üyPÇ–ßõ÷úhúï ?RíÃÛð#©QNÏâ³ÄÝÉŸç¡Jo uâç™0^ž;Îg‰£ª£2èöÕó‹Sf.ΖŸéf%礥§f?+=»Ø‹‰kӭ峄+½KøúÝ…V!ve õˆKðOJË6ÁôW§ô"=ïPCÎÜ.õE.cU/êÏ—‚hQ™ v‚î»s™rŸ¯·P›“ ]ÜIôW«àZ f•–ƒ3nD'a¹³Ò%äâsÏÞhýI§¥‰D W¨Âîoe€«Ä*¯¡nŠjÍPtT¢ÛÛþožtã“l ò¿§&~y,‰ª+=×ÑAj} ? ‘Ý`×&sÞ†úóªñÌTÔ¬:É"©b!”ßÍeyT~ÜcâæCµ ü˜hÍS½À9àGDìý4â‘îV&æÞàô ‚‰{O~å‘WÓ`ýÛS2'¦™§‚ðaÕbFG7ŽìBDfþ>¥ÿ®7=m+“ßïŠÎöz ÑïÞ–2_å<{}Ÿ 8'ŸÈÝM8Ó ?éf'þ¨KYœ9åO¹Ê&ú¡œE»û’jxpP™üîOÏõä?ÊrÆÃQA¿šh¶• Š·N¢¿JÊIªƒجžÊÒf5+«+}Fnƒp/©o|DnÅ“yÂIà¯òÀ7½VW˜_; [Ž\i sìèª`øÑSô‘±Èn5ƒÝŠaî§þã€}Šþ/­íp¶r­²{¹zº’Ѹ}#£2~AoÞHöÞKX´àH%õá2ÿ|'ùó &H×ë)nü/}•þ»^ô¿*+Jˆx†Ó-ýK’Åè€u˜®Z—éjÛ´ÖÔ”‡Ù®JÍ—»ÈÌ5wêûÐI÷@ßµƒþ»!;\ÿýåбj% ›`KºÒ©˜Y\¯NMVk³7½ÑêË%ò‰ñ{˜î|-Ó™È[Dê7ð·ãÏWA!^þ‰“ðšßcM=ÑéO©Ñ_…ìBÚ3Ñw ÚgþÒ!lpxu&ÈéÁPLm'[ñ…ìp¸ïáX¾ ?ÅSw§æã1ùhX¥]œÇL¤é‹‡r™7;ˆ޳Ûë¼k´å§ù“¸-®ÂÙ~6,&µ.èæÆ»:þ¡)<üSt+Á€Ûô’²ÿ'ÓzR# ñÁ"ÞàÂ\) øÑ\tfžîæîˆGÄ2Þ&¦Û¾lÀN%§’8£ óÉwÿtÖÛÀ_=3ó`™;£Jö㮪‚ Nÿ«ôo*–¹>ÜÓ-Þó[Ä¥áËŠ0¡õO¼§}2É‘ð93@‹"*%+jÇ‘€(«:ñC_®Ò›l´Ó“±0žñ+îö(çÇóZÈüÁY!Ö7ùQãÐ…¥¤~À©éˆ¬æ“1ÉFþ 1ÃxSº]Ñz€©¹1ñI!X)§CH{ú—ÜûN¿ßx&+Ï8zàOê V56È”ôÙB¥^Kòç“íùös2æè‰u”3™‰h᪪Ñ**”yú±oö° ½ß<Ùeïçÿ¹T|«33Ÿ<ˆFÙCÁ™ÔG´/«S§r›³”+ ~0µ%g‰ºJ‡˜ÿá%ó€ÔÎcåAþú‘Z~L¢6²¯å‹²5 ÌÎV8ý9ÔDËúnZh… -*;ÐV¦ \_j&$t— ‘Éè[–‹è¶ uí±î¨ï> ¶u ÷}”u.±Þâá7AáäËéY¤b[—‰?›geP5Ý4ðã8Øý¶ÑÍò•YÀLä^G¬WÖ;“+œK0ÿ£(Qá[º4F¥~0'§`ñ›7‘c.:µ \ß]ê?rŒԶ«]2Y•Œ®HDYÁ°ÙöF8§ ÔøÙ1À¡bp‹Ÿ•ùó­øNqðË Q[Ïìè¯Gf¾ÞW´“‚w¬+gø7ó˜ÕŵÈe*½Xt’YkwsM`F{W]ôW¾ å k ¥ìgd#ßÈ>¼ÝËÑï>ûŸÔž×Êé™wæ ý£þîëý…íWE‡„ÅÄÄéº\eµVì¨e”7èáQ¿»^k&æÊм1•àÊ«ˆôÂ6öÒwf”F}â}ø«¼¿´Îb5ö(–f3ñë>Y„þíEÑÔ·3{ÒgÄS.§þ12ŒÔzÖT€d$Vï ~<¥ÿî1d4vÖTÌ”†§^ S6 üˆ¬Ë ßMSrNd{½š(Äœ‚¸­tÝa¦¸ÓwüÌd3wÄ{2Ò QOÝdgOGŽoçô¿êJüñýîÈXµd8üè.ÆTͱ®uáO›mQÃÒ-„Ìtug;ÿ½3ã«è¯Ö‡xIf ¿Ê^%aŸnƒ>±ñb¯™ùé UÓJBÿÝatê+†~·>Œþa⸰%G°€×A¯)òæwüUbòeÉ$&GtÆé„uÙïô‚ß§ßN|>‹;Øå*h\7¡¨*H.ý +ö"þ§¹v9ø»Ã_ypÞÞ˜U©O©ˆ_ÃjÉÌŽÂÄ!ãˆe„k<ü}]&V§gá3<7*!|Ñ_m&÷rɬ?ÉœìÔSžB Ôj6ëXL6eñF+êW3é/:ÙEäãë núÀžŒ™ƒ…éµòüÈÇÖ;-­2Íð¢Yˆ7­yŽvtGoF¬½äg<™Õ´þÊ៲R¥ý túi¥$† Ê·ŽÑsâ=ãOßP‡h`ùÓ8uÉOÜ#ž†éµo¨?/i¿áww­X0m%È‚õ%âœG_œ ãû÷L¿)þ€iZ. ~,-3Þc£R>bD"{¾…ê™NtòL|SØþh…·ØÂỨ䢖ªwµ*Xü±FïD_ñxd8[ñž‡7oZµ\K˜ì¾ˆI[:H¾ÂnéêëJírg>Ioú_£J¥%º?bêÛT©öÅó¬¬>Š ŠÉàOú¿ûõ­°T¹óY«ðCõÌÏÖŽùçSÉ4…èµ^•Ýž¦å;ʵ±üÑôë?»À7¿^k VÈJ°%EðzÝE|ñX_«Ï%'ÒZô‡¿˜ÿ˜(æc žííÂÚÐÓÕl¡{RƒÛ–ޱ•dS¹XJ”Áûf)!~³Z?«'”L#Vï‡/îËÉlŒn!'S™÷|ªgŽ0'“Ui-Óž¹ ö[71åOÎÖ~lðúĘïqÚ,Íɰ/ÑôUç”4 Cýy=/~ý|¢Äðö›òçïQ~âŒUR7xóßbï+ƒ{K±F‡E³Ÿ¬ð¨1’• ½îrgIðtš`‰ÓÀ¢LU]QÚÆÖŸ`Õï@mÄc5äŒz ¦ÅÐÀu<Óœœ}g²U/öê†9‘¸èOð£%–ç&Wô‹æ±·±Û™?ÕN÷¹¹ŸÔä7;)9NöÃéõœXd )äñ^¤1¶•>÷<»¡È¦µ6LJ‚—µ÷èwg@ž[¹Þdòçƒðå ?:‹eüs´$?΀»¸ã×ÄŸsÅñïê?†=e_â˜|ÿ1®(P†A¼O=Eb m&^nE|åÚô¿Ú cæB‹pTv:¥O¦‰ ñ\R0°>žIr¢¾ûtÿ8`&ÄÛNG­àjµŽü¹;=Í—£ó¹#–ÐZ#•“xæ)üÕ(•ä\">œÙM‰IM>÷(~@t*ïš`ñ©a²ëT[º¦’ÎÃüÁô/¹Ä ÝðÆï;º*ø«f9áTxýÓQæ&ÿá~Ô‡­³©iß ³¦ƒ&3ú«]dï£çJ~ìæj=Õ p&³e³eŸýU/ί;Õv­y ›gÉ\d毯U}Óv»'«*b§»RŸwýne:]ÃÚ/OÓyøüÕöÀÅ ÕS‰£ðWwð¡Â[ 8s1Èê ¡cIiø¥3ôwLïúo•Ô•™øã%‘R˜¶ŠD\£ÀßIø6e‹`ýåŸÂ£ç$¦+‡ è~L?J»jêշÒK'J†­Ô7î'{±ƒ$àëŽÛq­•t³ §šr{ðñWSõvð*ÑÌXŽ?àX3‚3‰¬¼ÀÌÛV>réy\=\÷ìò0W›˜¯[Ê>n îzHLíÃ)sê?ê¨;âVàÿ{_œ¥~0ˆeñ×jéæ7ç"ì+Qú_äÏ¿EI! §hºVm4X3áÈ®†ýR|ç6­•Ø„W^ˬ˜Gl×gP·×AÖ à¯DÙ¦¯ºE@¯_v†¿ªcî?Š£6N‚¿ÚDæ"YLý‡¦;ßÈüóèò:ù„#àÇ"ÎD%U“Џ&òzˆx¥ŽN¿7üUùùëÇÿͯŠ¡àG=¬ôVüA‡¿ò£B/1§½ÌL,õ€|¼AÆ`:ÌшŸÆ†Þ ¿þ¢ÌCæ¶©ZÈîgj¯öõ,¼Óã7þ5òçKà¯Ö‹ U{èKt‰E0N=±¾÷`çâòk;þË5‡h¡œš Šž@¿û [¿{[DÒåû˜@gd@_¶F;/M*»‚dñâ6à{yã‘FÁÚK¸»Å¼M ‰–â«2›m¢H?¦î”å N¬fbWU'þh_M 6ýÅ~‘ˆÌ´ƒXù>28Ù‰?s³þÐú'>Ó\b©ôâù#›‘ulg¿ç°‹ýñCa÷ÀÌ0<Ⱦ\ä“·Õ ˜©†Ä Clßj£ovX˜¥dñ©w(õŽÁ2XðW`v<ñSËS×ÐÊ‹OÞ”úÁBxг°ÐÉ%Ÿ!c¸TôÚ© 3šÜ>‹ÅßÀÎlgÖSbÓt,…Æi¶}üð„¿:†ísãûî€x½Ôo`þ@}ë7O¥£³¿—S×€nŒ¥Ñ§¢û&++3EœL|$×Jâ…òÔ—4±ªPSц=é +¥ÁHAë–S4ýæzód~pÖ—¿iÂŽkàÌ^ë<]_ò'q°€Iè»ÝžëdR¬ìuŽƒÙÓÙä{Rá/Wµe„Àëå#Ã8‰ø9+×ëŽn!7¨T“9}Éý¶v}nÿä߃¬s ú©NäÏm8¶îè¯2ÿðgeP5öX=1ùóœ\í©™ÓzI?3,/4EÐY½±Þ0ùã-3¤’¸rR¥âr…£kÈV+;8œøc"üUTzi;)þóÏkú'ƪŒ÷²E­‡{.o%rå!ËSϾM\3|»@o­µL/ßl¥cµ§•î2¬¹œ–—œªÂæ<»MüÕN½3sU£ãõ8ú]‹úÁñ®ÅhÕF‘ãxF?®Þôoëú‹ÿWæOý©v9É>i®3¯ã á×&êîÿD¿»‹ùA•ܯÑ_…ìœðu×~öë;mƒ>ÈPTTnF9v{"úÝtF8¬­zâ_ÌŸïÕª’Ï,ˆG鎢­‚H"îèôèÜj1pýÛm~ÔDòç“ñË[pÛ0¼„ÙS¯…Ö¬MÿĪÔ¾cÿ’ùúy=–<~¥zp6žwi|Šè¸VÁº|Ä–¶€%›)³Ê2Aà™ûñî¥óÑ_ÕGdz‹+îÀ7z~¤A‡T‰S¦÷7ªczaÖý?Þi¥ÁŒ;2'ùGO¼œ2dÓ#ƒhNoÆ?Á¢“|Ž£[ ÕÔ<*žñïþyn ƒÀ_í¢á\|¤Õtu¢c–ÉþÊ+´ü¸‚•Ô!úË\0–žÂˆÊm0 R‡1q”ÅÎdªñøÓ5‰Bzc¯±Bg^Ä:—Ð⮕„Ê_µ ÿ•;y j?Qÿu|Ëú¼}]@€øŠ9´rx#Ôý•3?êø[‚|KEâÐû'bºjZðòά¤Ä~ÉC9ª£ª5QÈ):>Gû´‰X$×<ÀUOb©Áâ¾,Ä=ÏDÍÕ[‘Žè –ò|Ý1uOTú«¯&ÿüÇC²éÈò7%çŸm°ÓÿÊ -ë…P⻲Ø—Žæ"¸pûºŒÙ)¨<Ê>÷€ùQNÇ’†àÓar¿¹ÉÇßD?Ô[E…1ÙÄÔšàKìÊìæf슆Õ?‹d¢»êÉħÂ0@}íqTDÌ¢Þ¯ŒõK[ þª3šØ±Ä3¶5Wv2Vbè7×›!‹€’O¯*q¯Á'o²vÂà$_þ†y"©éW¿¶é*ø–’l÷uç>á­îCIth]dÐûœ—NHñœ µõE©”ß§œåË]>r´ÖZòuùo;÷2‡ÏÓ®a'™Æ²7©ø„ØäMËC·ÛUO/öþ#ŸÁŠ„‘µY7TW5á©lx:gzÔï®ô®rðOï@©Dö*+ Odˆ oMÃßÊ*»ËA÷kœÙˆ>*pæg«G²°™ßJBÿ«%°j·™ŽÕ†øåˆ¾‰Hæ0Õöµ©n|ÄÌ“‘œæª:ÚÃD³Kñc5úÝúô¿r&T7ÃGó±ò¸¶ÙÛá¯¢ÃØ]C7ÛÕɵюâLW÷ TŠÞBÙö›í(oâåzª‡â@àÿ{_ÑëwÆW«úçhä?Æ‚uEm‘Ò¨É5ÇjÑ F!4X«¨*¹ôK7µB«"‚ì På`~mbðc)ýÛ›Ó?±•XlÄ6‚ô~a¹ðT±þê=ïÌa”°{d)³Ÿ^5i Øð²²<õA°ñW“9ÝQå6¼æK¨Z§ðkQð#?UÍ É|$‚hEþ£¦Ì¸³?^c|±˜IYœìLJßËîa[ãpÚó«-XR§¯ÓoÄaã©nØöSüˆ §!V¹-ݰ4 •3£'òO®|…u>Âæ9ý§*àÛ/¡VâÔOóJ8´£(»K|Ã\ƒ^df¥~pRüðÅ·_~\åס(Gê¡e»ûg6"^¯ÿàžBö#z[‡œÕÞ޵ˆªÎÃvdýÁ¸‹°4Û©?©fu®Ö•n6ù@¯Ìس¦æ9p¼ÞF;8î¨j¢™I^þ0BmÙ…«¬ü ÙwòH•ùœ¡ðWwµ·ôOœÂîxŒnÄ0›øÎYæïª8Ü„*Ž{¼£þØ»UàGnX¶ë<é“°q±ÕbbãmÎ’‚ý³Øh){³ž”p4×A$L;Býà U„šåôØ‹`×"»Ð‘.îGT4CE©S_Êõû¨‰äÏCzñ˜Xë’æðºªu¨–Ò?19ÜÒyذ¼ôò˜Eþã¼ê€¾kj® à‚nŰګøXà5úžoÎbf7·à¼JÔGQNÅeRkKk›Uþª?\˜ËåMý` ëi@ÿD?î %ùó—äÿ×{9eVQÿAÿuè5–¾Œ˜†Ê›»oõR¬èÄ)¹ßEô/ñƒ¿JF-ÝiÐc8•1U1fân£~0h Qý‰>œÈ/üU',mVðª<󣺠[M£³2`zm3{yšMô¿ò€ËŠ~xq&ã0¿6½úB¥Wм¡®ä?ö}¿ä]Jo™øW)èÃÒÚ~OÞd9uxϨÿxFw©Ìä>ÒmÅŸ˜a••K€Ë´­Ej/ªtOY=pÿîë—DV8Á²œÏ•ô¿ªDuJrj×ç¢>G6f y•gT¨làj©NINÿÝSLn_H¬ü¯$3Ôöë5%ÈŸðWð€jÂÖ_°<]K™tîeÌ|ÿß5еÛvsµU|A¦ÓôV4í¼w>¨ Zã¶WOþ'õ'´ zöÀy¥µøÇó?tø«ÉF\ª›Ñ×ÉŒÔ{¢‡ûzºÂŸ övýüËeZ ±Þ¾O)™™\$ÃÇÛ¯/dú3.§bXjó‚>g·XŠ?ûÍâN|Ô%p­A»Gì~cæGÕ‘óäµ0^q²~KÿMžÁßÝe…e* ~”'¾à%>«3lŠL%{…I•ýÕYüpælƒ½¿G¤”þª2‘ó |&O ùV梟âG8½5—W‰ÑsâÕnÄ×)LýyÞë T-½=ß%U¼a{΋öÏ>h¯‚N0§\yÁþ8,â)·#þH‰§<†~EÑr=Á¯Þ‰5uªÊF˜ž²»þ!ø‚}\d$Cg; ´-H|‘ëuäw÷àƒçóî,ÀVëêñˆ¡ÖÛÍÄNESËea¡‡²ÊVxmÉ`&å]lŠß3[‚ܽx ±Õ‘ä1¡Y[á¢*«[¬ì2¶² ¹ÉäJš…Š_ŒùrVy,ŒUfê?vñš©À´FÜëtE×à<{!¬Û<ÿœ€/(æR?¸*Ø}:_ΦÿîP®T¸³‘gyÀ€ J+^“I§Îü(ª©ñ¯ ‘S^âõWSåÅï*^¢¿*Å}2íü¸ »ŸRIÉSǬ:TÐ9SË“[¯ieäÏŠ2¯ãñ‚Fð;ØÂýÛ›S;Û˜'÷’ª ýxúщ?ºÒq$Š­î0ùoÐsA¿û¼«ŽÕïÄÌ“ÿèwOª¿x.Cä?æÈœ·—ă•ɼ¸À…Utcœ@÷ߺ–r­a†NNù V¾¼•–l÷=Ðc¹”G*·õžlHG™*ð¦CÏ5«z‹§~‚:Ó÷fië%šç§VZfǯ%îh µ×nï"ÒÌþƒþ‰þÄÃó¨Fôç ÅU¯äÍÀ'Òžúó`7“¨ÌÔðW)‰* 2Íð!øqÂrÑ«¥,Ým#¸òÑ1• _ðí·¡¿ÊÏsÿÀ5'šidó`ý¹œüG.xáZx>‹¨4©`f±Êº à-¨=ÌÀ¼ò³(xÁ&b̽àG3{¯ºIÍË,Þ¤œÒŠ(YÐæë½õVøÅ™ðk»mQÌÇÖŸ®á(“1+ëÓ»2Ÿ¤|bTWOxµDMÇè•ÃvçdküÀ &Äî¯ü½¤¥ Ö¿ýø¤æýµeÜfþà#ÑA{á2œncC´,F>#QÖXJUÉí_ºÜ<ú'ÎáiÿÁ|g$ƒcž ÕQ6¦þ|qMØÔR_?t²˜×ôY¶„Ç(Iu_³øñIv0ËËr²üÕ%#Nà þúS¡ý:é6Qåì‡3 × Ö†N 05å2¬ëx¡z°úÞôO!âN)f3é½2–èÖÝ™Çt TJŒö½ žÏ²ËM©,O®¥¾9ã§øKOE—ª³2 y™†p0E±ÕáÀà=ø^eà‹±Vk!øÑÌÜþÓþ‰Œø¨}‰?`Só³ˆãÜðõ† *Ší~B&y»q€< tò?ÂzD#lØvÞ½ìdäÓákuÉž›ƒÔtd,»ò+¾—·iŸö %B^7”'Óþ*¸‘ K_Ÿ]º‰Ö…Õ½†Ýžã°A|†;ª Çv;ïLß-nšœ¦f·PðãµfïÎÄRMAÜÑ€®i¦SiÖBÕC–ƒÅÌ%—1‡lsFE…1Ò!ž®&ˆ£ú†Geùó.`mf|ìûìTT5›h%|1f–¯Csú »|‹nXnÖ>”¯‘ÑKÝ +ÔSâ/y_D qÇ)ÑÛVF9˜‘ɲìçàB–ÀÖĵ¶«#VgºAM ~í 9”šðcûÈhdkûH?óQ*5ø±:Dÿ«öÆk´‡‡ðOÊïդæ.ùEV"<îv?jßvt¦N£œU†­+Y鉨‹cÓæ±(*–oV8Rf§šô ÷Xx-2<ÜJªIúYÀ "Tt’ÝIM5³Þ±°ÏÀáA0ƒ+ø´Ö[Ps¼ bAÒé¾úPâçì°~íA«2Ä£éà­Ú¡Œ’dѧ°UÛàìœþUUˆ¾âÀ±MäÉ%³^ñéqÕuy?ð‰L#þØ~¼ÅÞÇ·>Ê(^vÁ†½²Ë‚?TlعPï¾·Ó2ð)ݺü¬ð ^Äð~ùµì²c°þWϨLCÖº9Q÷dôͶÖPWôW½™•Î^Èü¨' ÜÐhݾŠÛçÔ5Û´¦Â*¼Æç¬z(XÿÄ9xBíåïä?ZRk/ÌÖÔ{T¤‚q*9ŸûôsfÇqõf}¹\mè÷uÉY>ÌjIjŸÁ#>);ñž\$ê{ù?©ÿ¸ªýL¿ûDódÒlàÆÿÒ/µ+ú$#Ýëˆ$õc´¬D…ÀI¨ºBËþø¶h Ä"Yû÷\æ#Š8 Ï¤{CYD4gþyú_ÄE©?$ëðÿL(pŠ˜uõq†?–\f“…äzleð~¼.M›ÄüZMîÆßÞˆ}o“üpú_­ÇÂÞÂN95ýdf΄d!B»nbæ.&Óó‘j‚\Á¥|ðöÂ5•Çfé¨?œœš;ŸUÙœ÷Süø %#³÷ˆü‡EšƒÏ]šYÈÈÁ¹»ðcÍ9|ÇHl#U„!Xìï×÷Öè‚×Ö‹ïw*(~ƒõêc.À ˆ·7D•C;ûot=QØvþ®²YþW?â¯"R?øYúóó9ȉÎå9$?–`ûÇ¡¸õ ÿÑåÎ0C‡ŸiŽ767¾¿Ìÿ]7Agƒ˜šPƒ¸Ç ­1ñÅCP›ê¬ÖE¼”VîO±ú5á†|P,ïâ®K‰åäí -þxªE?†³kCɹgVIá¯/ñ¦ÊÝâ9}•š«z0{Àåq<——2.*­r¡Ä7´˜b‚€…é…ýËJVcx4œ;¥ƒ,1SÇQO=„ëYÀߺ©“xÚóØÃKæy³®X£/ ñ€gÃðs+óf/ÇÕE_µÄÉ=ªHܵÔL¿#óqZ•±ò“í.G^5YO4U=¨…8"BÖðÛôŠ.ÂÙÂwÍ$b8D~y-š[Çw? “É5} TLÙ ¦ ;}þÊC%?è¿ÙCOãš¿³ÄjÅÐùºcñ]Ìù˜i¥p"Dï‰>ŽÐ-ãW”<ÍŸT¾uG½ì"ÞوðúæzÝè_RºÀ.UÀî?V3¨iU§~ä ø‘Œxk1ÓÆG‘ÿÈH-ÝBö´zåkLHt¦: ö®äÔ_èý¹¿ÂÄ3=Ô*²u¾Ì£:Íœ¨ûÖKµþíÍè~U˜ú Ž¢ .Ðý®þÌþ"ñÇoêœ ªW¦g§©3uæÄ%^ tâ‡è¯“ÿ8AÞ}jÇ3ºr0¡Êr]åšk­´D™ÝàÙf¨Ìì¬¿Ê ò‰y‡<ˆÃf©Ç²¶YÜÊ÷åMTäÄ 9©<ŽJj«}Wi°}«:k+k˜/ ŽÙ ý^Pÿöyº§èNýy7žoU´2ÈŸÏå' åÊ®5´[¸š¹¢“Ÿ)ÎÜóÄ3±ÈL}²î Á?$[ð¦Ü†[ý$n†8ƒÿÆo}µ,zPåç[­Ã?®ÿø¢íÕÇá˜ÿQFhF}N×X­!ó£ R>•þ%¿Öw¿ÖQ, þÈO–õ°¼lXbÞWßN¡ úÝãÌÌñÍùýÙ^-aÔŸ’ŽŠs"¨ó?RcMâÈ?d¹Lú„q"Õ\ô»¶Ü‚%^çÒ[—M5 JêKL²Ýô)¯ÕY¦—3eä0¬±"ùíÔ¡¼Æ o%glÃøŽÇn½‚;wº­ŸÁŽIþ£ üËèŸÆ4wòs>2;ù”Šj<|6ÓÆ?_Ã;_’ìÝ_xœøS漕‰?ºýd…‡Œ±¼%N'ógæ|:YŽÃV{Ãêô¢Öh¬Š3Ðé»rk:ŒË'{ÿ°É{ú¼•a—òMÊF”1lÐÁœ÷o#½rþ„Ïô„q±u(øqG '¦ÊiØûQ ÎdƒmÓñ‚{r—]àd–›¹±þ‡à˜rasþ»k‰®²;Å*}Zˆ8ÄèKþ¼‘Ú8µü0±BûÉáúã§¥3mû¼• }q#g:ü•ENe=»z„ÿÐÿ*¤Šþ7|²œ¶Tà×"MèæÃâæê;©ÌÎ@Ö¶¯}üùijÒ3€ûQó¾ ·E÷:ýÐ7Oz|õ¨ðoˆrÁíD'ÚdÅ€€KÉ/´!ž©Ð?±({2’øCqíCä“ê‹6ß\o°Ì¥JÀîï¤KXmî†iät/™OüÑ”Š¼©ôO´¹Þlú'v¶òSÿ±ÛÜƉn#äDv©>2vàõÒÓ¿½ïA|‰N¨-Ü9c9±é=ÑÃ~@¼üÈHÎ|·íEó§Ìrì Ctƒ'çôË=§>¡a<¬þcùKxS~àPJ+ç !ýÛë01ª*ý³R¡ ûV>DåoÑušùV,¢ÌÉÔ{ŽWtÍ—ÃdPw<ú'¦Æ«+ŒOµšþ‰žfE+-ú«mô•ß@n«:+ÛLŒt»ÞÈç”°7ªƒôOœ &¾"ûÑ”=ºiN Ì,Õ{ŠþR'þpþ5Í#Ve×&2ø^àG {z®š.WD¬:v_º­T‡ ì@œã_qL:^Ž3uå­êØâ0þ{Y+L¿kémþ1~¼×é›°óu©?·âÉZmº·7&ÿ1¬ü¯Õ¬dþàß"XæË2²H#žêcõó¢Ÿl*<Åð#ˆ/ ËöL“°™×e#ö<ƒ¹š8$¯>ßp&»£þ£.õçwÃØ¿}?úÝÒ™¡ó|É8|š2ª#±tªœïÁIÖÀ_ SÊ‘2´¾ã!W[Žþ‰›d]<ßýüü~½ Š$ÁÖWVÿQc5!Ï\‚Õ×4Çÿ?ÞjåÙ±;LÞŠŒWë î”0]xJû¸jaØ×}0üÈÐŒ<Ì!¦È…\›¦Ý2zòƒ`’ÞaÍ“‚Žmùµ(žã8ü½*ê ~tzÀµ6ó3ÿ#´j?çÊ~Zj#"ŠÑUQÑdæ×Ɔ[µHÄ®Oçš1a›Þ€q[Ya"š'¨¥Š…Ê_yÑ?±8O!øá~Ü?šJrÑ«P\‘ñžÛ€—Àå}`Avó-ñG³^(øqK‹-fÉA°ˆ=A7lÇB®çmþ~4ÄÖ Tkxëßc–bms¨+ Û:žµ3­=¿ØðÝüsoc¨Œw’ˆë}è·˜v‚}“LÓHkm…‹yNïªCªñÇ:>1"Ò&,ôسVòÖô?Ï$!½*‘áIÉ®o" ³™Hdµw‰È(,³Z¡ñéÏôm"„ZVbk55Ž…àÂná×S‰Èž-Ð~sÅ1ðWõ9ÁÁ4f†°¾4Vú—䢧ï@lÖؘô/9O„T’ÿW"CÒüð£ÆâleWÑç›ë ‘y‰Û|‰Ç¯Å'ãM•ä«§ê‚ât2™€·ÌÙXdy©vV‘ü Î… È›(i_¡õ6ÿ<…þYAŒPo¢›Z ãóß*—kÄB'­ ä©«2㙆þp<Øêc(׺ƒGУEe7}dšu"üÕj–>ÃŒ&¶þ’Õ@áVD Lj ¦Ò«ä$lÝ æ$uýN„£¹|©Í[i%%þ‡Ç@¥÷ø`ý¯S‡–”ŒgmÓdå…‰ÊX9˜>‡ºGèŒÐÇdYîƒpv«˜ÿ‘]Ã+òçŽ~÷ ï^M³+ù³5ø±X¯Iü¯³Ý6òš'¬&®}ô¿ǤÆÂdÍÛÛí]ý]1]É×LµvÙà¯ÕžÍ}ÞÄs²oçU³>ñǵï_ßÿúŸ\ÐJ«ü¨5ÒÃ}s.¾€OÚ}úÝú¢’ˆùëÏ+2°¨‘×XÄüÁ{a¿ß¹UFÿöŠÄ®y©_ˆ~D£ ü~ú—´FuÎHñ‹üÕD±ÖMýG38mwsWN£77l¼úò2'ÐWÈGFØ:·@gæFÎì$¤¼Îí€úó²fS¹;å‹U©ÉŸ þ|¬ K-My1Zl•¥øÉpL3±žÇ±Ö‰©‚*¨ '}ŒÅûw¨/¸4é§øá¯•‚ºGú(0ÛËÈ• ^ÛuEÖk0J©-øÅ^|R+s¯ªŠ ýñ\6FÁÉû Z$Ô]à±òãé9Õµù„§da÷°N=ÝX3¯ì©‡¬þzåOÚoTQ¿ƒrÍ„½rê'ã=­ÆÛ÷D5€ú\Þr"¹á æ¼ì5Ô>ùz‰`¿N`þ`X³„j>±ÊuòMɦô†“N¢V2?ꪈd-Å×U׉MN³ê|øviQå?®kÑ᯼¹×)dL²â½oâj«±ÿ½¨g­êc5›ãÍŸÄsvA.ð”v°«·À:w±KŸleΗ3௺óÄbãÝïCC-Å;¨Jþ¼*šÛ­V/4üEà‚ÊÁ6íàïÃQË¿_×]RyW¸B¼…n†õãngÂ[&HÀ¯tƒf’YN‰–µŸ},¨EÝ~Ö˜—(å Þn*&ŠîL ¾ÄáÆÙ”3ñ¯bxÝ®§µÆJGf 7Xô†Šl&ÚT!Ï_‘lÀPÐã#ÝãOÀ*¶}¿¹Þ0Y–óöŽø»^…/5# IWâûTB$¦3È ²¿ÃQ,ç%°‘ìÇPüûKÔò5ýƒÍ:H© cŒ™D GÞå >=‚˜ÞŠî„…©÷Ø¢µ‚]”¾ý™ßáK—¨&öM>q׋dùüâμŠléÚ§»wïîƒ;ƒ»Ã 0 î.Á ¸»îî®Aƒ»‚»‚»»ÿoŸûq¢Ü$ó?÷Þ™g†L&Ùg÷îîZU«VUÑ _R¾×y¹£•RÚm°[ÊŸäá?9ð£¸q ZhÜ0‘I¿C7Æ$ö, Üf€¤éÒ¡ÒÅùâO‡–2¨Òö ñGzîm'¼¦UÄ¥Ð聆§q3ïéýåøºëGG…ë~œ–§ÉŸS‡È[]N¾ÌÂV'~ø’É%àuÖƒΦ¯5JRíqÄXÌŒöŒ`ÛRs ½¯=½4ý{ç¹ö@0=ù¿í¸èƒ]c†ý¯¢V!á<žÿ¯/NÛŠSì~°uÀÒÿ³ã0¡f–£þ¼G­Æ*Óé_’‘üy9u9õAù¬È¬¿Þ6›ùçµÀãd=“iéµ$T!®%Ϋ­µÐ–«I"™íþõYëµ½X·ðD¾`Ò QGϯTPŠÄ5P`YùóÐïì¯ß ùçz嬒VÜÂ'²ôWcy+ËzXéÖb3<Î+rmyÏ WæF&þÈOÿÝ]pÑv¹›×c1°©Yè%TN.c½{¿ßcm‚¶ n"ž<ÇÞ6óç}réðÃK˵¼9O‰ró¬zsË#Äï¶ìô¿º&J£ôlDì_ äѰ¬Wð5Ëóôúc‘w‘Á›mì _ˆ0ÿqAíÉ•ÄÇy >¤'GÓŒs?&’­SôÐÁ_=Å:nã§ÚŠJhíЯk7•|xÑÑåL2çn`dÇüs‹£"†h¨¯Ä#UÈV¼ûÞBÌ3†]rµ¨¦Írøµ–ÍÖ‡¬csÐ( ¸Û˜7ùçÞ”³zEæg¬î"ÞRÿ±žüy}¸‚Kìqç] ÃÁ†QeG‡‘ðBû,q'bÕDhoaß}‰bš=Àë/Ìl‹Ä§¹fŠä,ðcGÐÆ_S½Åø´ä·ßS|u­ TV?©´([˜‰ÍöÆ#ú0¹cí;cñŠ£ó]ÀÏN“S©?OêéΌ޶Ö_ØÜ› È!lÑJ™Y{ÁÎ̘˜J½Ú+*CZ’Ÿ?BCWÖû‚þj´L_¸7Tþ£?ùàŸÂ=Ü^~¡³`?tÅåోÿãoÖf‡ÍŒæpBˆ¹f0=ñ ÞâäþÚÄ;œ)ÊÈ¿åW¢q«ûýŽ<ŒŠi¬1_¶3ÞaHk º(.e·½ WúÑ~‘û€€Ñ韜Ê,¤Ç/¡ê"·b°jÞÄyx šP/7ß¾ýw¢sêHÝA®y7sA: HŠ 6‚ÌPã¾LCüx.XÿDå/í"oÓžá|†Îiä—y™r¢Û«¡—zAGÂöïfr» ý©Ê3Sáõß þ£Où3˜Ú¹º;ZÊ üx¤Ü×RQà×´G~C‹ÓÌÈm¯D™vÌIƒz­$XéAN%¾y؈Mfê„üdÆ\bÿgø8z Ô•Aø±W¦u©xvÑv I<µ­Á*j^Éì“Í¢èwñï¾\ï[~L°úƒÿ‡Do¬ÍOXC¬ãp¨‡ñ?øŸ‡mnôVÿõmÔm8ÿë×w#÷§dBÍú·[üU6Õšö¸–þ%¥É€T§ÿUÊ(ÖŸ¯·µ ŸY ”ONÕW%¦âfW÷)>ZgætÑN©¹Õ ®Á‘ÙŸ·¶þx± ¦}¾vÊ|°XútZ_.Þª™"uåS•›Š!6À\œ„aYÆXJ6ç¾×£`Ùßc©Úòýyä?šE ?2iÌ&AÃñkô€ßŽ‹§»;v•áqÐD“]y¦Ó´ŒÄü¨W¶$ð4WÉŸgÅÜÂùUë‘8‰§ù«ƒï6é|°—µÞ\óQµ;o¥ßýNt•ƒÞ‰ía]sàëME™TÛ}Oü×},õô»S~Á~µ¥Uß ›\ ¦å&°òݸ+P^ù`g€H±ð‚É«‰e9¾Z%ª„[>‚©r•ÁRrœÚyðÑš~Þô‰N„S^<ÓÞè€õ·òRçaÍ*ƒ eÀ¿ðòçw©?Ÿ-ð†¯Äf•`ÚÞ2=«‰?F`Û‘k¸£S£ì"O\T^ƒ ä3ãQk0—úóÐõƒÕb0'œÄùF cuô:ÇxÂÄóhtŸè„gYÕÄÚ¦Z£;ú+fŠPÛþžS,ü´ÐSÒÀ7Õå´þ$G"øq­L>øñüè…šu*§›d(Úì£ãйÍHŽÿœJ›Ã¡úï$ÿÑ™§BÀÎÝåz¢ã¹÷&¯_E¦¤¢Õ¿}6°ÊÝÔ<ÙsœťV|ڡ˺—6)Ä“ÓU'Ò³¦× æ³£ ÞK7ö§ ú«Ý( öGeÛÝ1ÿÃfLåJöÈØTQZÙôQ¢¸s½ ŠT;ƒePRõ)«rOK£Wí ;”ŽùçéOد~;yþÃôßme73¡Ìš þæ2^¢K ÷ÃäÏOêyˆf¾܆»v¡óKOSA3µúkL¯}Fwðã»qüHO¥|F¢²1ò3k.BU8UTwîï*õƒyé‹Ñ„7c©´´÷µÌÔŸ/`W·èîÕŒüþcþ½ý Ûãe¾a~­¥¿ú…AP¢Þágü±—ùQCD p 9>P݇ùƒGèT²„kûƒÒŽúøÖöåÌ'Èw¯mùs²ñLKWøühÃ{RWÆQ«ÐŽŒÕŒøg.ØŠ›_ûÓÖüÏÿøaÛ­,Pc“Ý®¡åS­îjÓljÐAq#U‰÷#ÞL°ŸXckŒªµüUnò¥µ h‚O);µŽøã®š\-弟Á~í·_.Òvàq¿ñðéa25F¿ûq„h(ZŠÅÌŒœ~wüU|q»yþj ùв²-ÑS,Ö·âýa}oÂnhþ"³b~m™ž¦0 'a÷àñZ}™“…ÔÄ'à‰ß\Þ…)‚ÆOmùÉŸ¿À'Jƒòfï^yåÍÁ›p¤Ö¬ÙĵðÆ× ;¥ ŽàÏ©^°¼ãA†wè¯â…nÅŸEÑþ ¹Åbì cp•Èã9çpC§·g~Ôïú_éÌ? »4›œ–+üUVx¹¬xWÇ:ôå(r¬þí÷ˆ*öpë°F)QòçSmÝæ¾Ì¯­ {X¨èudó¤¦þ6q–ž Ó[ð£-Öÿ,þò!"®2Žø£“Þ9œøãý kê/ˆQ ËeU÷Ìà>ô"ƒ2+ò^o~šª½BØf:ôœÕ“ÉDr¾¶#ÌüÚ…äÏGúYÉH¼£®E—kÀ×bØj7+¿m´ÄR•cºFsêçNÈp.5°÷K˜;KÎ×ÃàG|Š\_zô¤:ý r2+Ñ_ÅÇ£·º1–5}Q9]!6ñ$¾ÙIüQMÞ'_C¯_™¨kÓÝ‚¿}˜_ëÉ©ý€o: v ,¯GªR!è Ű/AOT–x£ÿGDP.x÷ïÈ/œ€{9ËÌ÷ñGáFÏ-ƒXÏDú¢Ÿ•¾T¹L6&Ò?Ѱ¥þ<1zVã|V>úÑ>ÄÚá 4®? æaÁz5dR>¡ßM(ÝѰw¢~°vº!È’ß/O›Ì~t*ì*Dåú†ZšŠfNê>&qv¨IF÷²ëÁòçc7â7ØÛÇÔüÁÛð—ŒCÌö„LÂ#™8Žø#‡½õƒ/37Iøü x >(Š‹^¢¹óü•ÓÚŸp“­Ð^Ζ¯Ey¢£´ô^\@ÿ«‹tg)Jæè…µ6üÕ)ú·g ¯¥¿™Ò˜ƒ.ì3Ö¡ LèI}‹?Ö0ÿc$ŠÐþx@øT>Fº•ì6&ÐÛQ%êhl–¢â&ªTºòݓԻÜ&jýƒù˱dôýA;ÒGFç‚ßàÿÒ×W™•Íy2ßÿ?ê?¢‘WÞªF׺Ñ?1±Z5§Úª}Ô$þXMÿÄGQº¢ÅÌ\…WÞ@/K÷ŽÔàÇ+å<¸?ƒþ%ݵ3j*µ¬sבYx¶ö™h€%ñDU_/« Rcâ±¢O•Õ¿ý[$ù«Ý̯Í(Î`-O‹†oTDZqgw±ΚÆ×VšøKxË þ~´ÙÚ^Q&䈴ßû>¼I¸¦jx÷Ñäkì¢5pYâˆç¾±åC%u‹úÁŒØu E)º>Yù[0 yó 2’õXÍÊ„û‡b±Ãî2@µôWÝøÙG(â‚:ñäóÂÂOÃÎ6Åî¿Bu;nu)´¸¡IÊ›°Ë8¾“BÉ©¦ä„6‘?ÏKü‘f­/ÑÌ}âx KÁ“ú󯬶“^ŒóØsByHTS a-7†úsN??±J0ç1çÔ³ØÂEz*ñBK¯ÞB¶ÄíÁ÷_Œb&ŸÜï7ýwj³Å,ðc9¶²>¬…K9EoÔµ#±LßQí¿¤Òm;JÛ"°Yç¸êKD™ä8j[ƒº…ÿëâ§P?èn!Yñ‡ð_±åξ |ˆ1Á~²ªªYŠê¼¿2ä?ïT"w¾{….ZÜÔBg!Ó©oáí[,AñzIÓS“‰ÉN.þ¢9¹+þ¸Jþ«õÆ»;]"[Ñ?1%šÛ“Ô6 ÞŠF|T‚ïÞOÍÄÄ™y¾­Ùi-yÞw8ñ×úóA")ê«ö RB=·Ù’ž»+™?¨³BV{[³.ñÇ!¶L•ºÃzG9¨ Á(?D¥Ñß©…ü©M<ùµÓÿüŸwɤwžÌ[ð#è¿¢öéïm‡”ÅjR¬{e-½Z“5'ÚÊ«%‰?ª©{”¤QÄÝÄkDmð¸^cæG½¥>ñ€6ýU/í&øQƹëÈìs“¶{ô‘n•›`ÿ×Á%„¿ú&FÒé°•èŠ~÷“ôÿ»×Ñÿ*•؃W~ˆ˜`>H1Ùˆ]6ëx2ŸãëöÀ«ž*òD¦¢½¨¶„ÊçÊàÆ°gù‰Ë¬š§ªÜ~ªKìVîƒ÷hC„ñ‡¦”%KqOäÅóõËà¯ÊÓ¥°6þ,J›Ä!_ÈŸ×ÓgÁ`µÕÏD¨ß½¡ã {Y|åiƒ¶ê­Î@saZJƒE/ÐJmÄÒÛ Ó[ˆÉÊïtÉ•äªæáçÅ6g¦.r<8ñXŸ†w^ Ö07Çù¼OìqÊ¢1á)‚½•îZ5<Ó¬r;ž`ïøÑð'»Ì"ü™_{¯–´æú)º¡Ds…G†|¶©Ü…iØÓµðòÙ`¥¬>f³Ñ_M‚ ‹eŸ`—Žá…— ³z™OôãTc¢Ôª ,R{‹ÁœsA¼ûû°0ÑÈÇ_&o{{œšîäÏ«ÍÐïž_¢—ù”¯œêr7‰B=ÝñT¢#W;GªXak޽ÌWuNúS WŸìùó¹ú&`ʘÅàÑsø¡ 2 Qèe}ˆ;À_5ãT>êùBð†É™?¸‚üG*c*¼°¯ÃÞ×$Ò)ÍÌç0‹©Èx½%Û)/ÁÝöÕ?q²¨R[½šó%àª0M}¤1€|‡j† Ä'¨ö;‡þÌê_r‡{=ÀŠêèŸÌØHÍ}PýG.&|Î"Òʃ¸3w·=Ï^Eêå: ®Eofl'£ÐÒªÊ3‡’eþz–1“wˆWoÝ’©áiïˆ Ž–Ë•¼ÚCtÊÏx;cÑÿª'þO~ºDþ$jÛBôøø†]µçµ§?ÞÑ©ë,YJTÚ‰f (ˆ/ØÚy~—”ËZ:¢YT“äixÅ–F»+Yž~(£r™ž¦Í~´Ûfà$uÕÍ]ÒfOjŒ"¯gÂFÔÛŠ»œø±^ñ¦¯_tøÒ.p[iô#Fwû>ú_ͤ6>®ÙÈ>Úll¯k¿Îæq¢¹úLMEàkØ„kb¼ìɧÿÙúý¿àGZçÉ(Šç?î_òݶ“úÁ˜Då˜^Œ5ÚÊѧª 1ÈVðãq”®ÀÇVO[**ä¥knB-•öž¹M»ÑI7 þü¸šF­èÜud^‰~w‰þŸëoõ îy)¥9Ä–°UE]úï~Ždÿ«EÊU%½8ϳ³ŸœÄ",XY ÛÔY¬Änâ×wEù9QäƒDöHì1üÕjQnö$þàê#žeH×TKî„íy‹ML2—u÷Eˆ¦R„,E ¨¤'•ÍäòúEàÿªpÕ—àÃñÀàÕÆn¯Çêî°þü²:æªùW c¬~WЭ0ù¬j5Þî·ØÑ5 È-þœŠÎTÌß\u\ÅUF¦d68 fÅž3©/nøQ…w±=Ø—x›oȵ göÃß%ÿa„³âXã 00.xöM`“Ãǵ?s’ô¨+µ¯Ì ¬KݪÕ8Žž+'ú«ìl¸ø_[&ú€â“d¸šŒÔ­yrÒbç*Q™6¬üÍ ðÃ_ükú%iÔ:OÐÃÄ3èŸØ ã"w ¢íI~a 8ëNÞØ~+ü•f5Ž£ßÍ‹µoB¾Þœ™Oü1”üùÛ0ùóTä?ÊcISsîϨ?ß®Ç"{ð§‘ýîz‘W¡{ø2ø«G¬Epeâ[Ä É@¤ç)8ªI[Ç<ª‹àGSp« ‹ ôt]e‚¿c/ìg¨_hÄꙉîq ¹‰Œž0Ÿi;öô¥Þ]ó qO¦w®â)1Y ê6yüe\å4£|•J7Ùè’®a­}ÁÏæOb²‰è–’*Aþc¿¤þÁ¹^Qú'΀ŸËMµ]k˜L«Oa-ê?¬þ»‰ŒcäÏÇc+Se1þ)&¼V5º£_ Rg!(xŒ^?xÎ;ÍÂdâ4VMÃx(`‰¨²kUEXÖÉoÿÁÿeÏNýù 2Sïà¬ù¹ÞôçšË[”‰ùQíœû»’ÓQxG,á‹ö5 ƒ«‰ ÎÀ³µ…ÛOüqk>A0˜¦$üµ¬ïVÕ€U¨E:¢_ã·% Î=±BMð#&püô¿É@D¦û'›zÇ»ä?2R± ¾¦"ñ[=lû5X_+»ÿŒòÀs™‹­Ý¡þ*üx3;–i=üÏ,¸¢åhó­îÛ}È$3€<…/vÈêR8ToÃüAõ7wæ›-S>óû…É#³•lœ æNCeSVGŒø›«Á€I¬h£{-~8+¦þ¼:oN>u iO„֌ݾçüR‹ÙÚsºx°Ç3\ýYêMr¡ß.Âi¶?Ù¾©óÅÐuv¨(ý¯Và ΢ s<àø+?,í=²çëÉŽd¿º'S“Dziç”=¡nðu¸ðâIË,7`ÓûãßO#ÿQ¯ËawÀ¾[ù ²2ùóí²¹#þ¸NoÆçXÕAÔ†Ö¦$_QYïMv:ÜÐUéOd¶¶&¾qO¿3ŠŸÕXÓh€ ßœdÅœÄèG»PZý÷)¾!ΰ‹z_ʶ¯ŠªŠà—d²Õ#‡ƒèkû™éâGÍʬîBÍÞîŒ Ñ©£`¶jg;iãB¬çMþ£:ú6Omغr©£þ£+õ‚ŸQ^Ååï²Õ3‰²ç¿Ç‰ŽE•ðy#OÉ9 Ö¿¤þxê[ Ê7z,m4*ehž±QÄߟ>…Îx9¶þo&Œ'$FGü‘ŠGÃJ_~Î;ÒGI®íæ-ý@d‹‚ ÍLTfžè¯*è%¡SKûÔ¼Ùí¨pÉ?WŒ ä?þâ¾}E'²˜ùƒDgçõ8ê=°ÛwÈÜ¡Ž¿+ó£\©ùèGUŠ ë©y“®#[Ì·ÆiÔfñè_r˜i6ìèWp'u@L“pâÇ&¡µ ‰.`ïÒп½«}H1“î»qÌ|ö1f { ð# ™õ¨ÙJš¨‚é|7òªÄsz™Þlºø_Ô\° 6ã×QfþyP4ò뻑ûÓªÿX¤&¢º¯ µî¬9ÅVŸ>U¥Õ¢ê.%Nç×n²õg*F<å2XÏøZJzœ.VjýEú'VSDqþùim ˜Ûh­™àëD5½ªÒü¨¶¢$ú+ñ\ýßòúw)Š‹°êñö¢k]€ß]JÖ?¼„úPÊ;:ýÕ8ÞÜŠ«ÙlUè¿»½­àMñã‰ø‚¥žBüaƒƒXƒÇr »˜€Xa"(àaüñÊæNÆèú²äèñWÁµ–¤j£¨yŽ·æ ™Mî?æ£nAÿ]Kçðïþ PGl^ú(8¥•ôq\ÌS¾ˆø jΞ|ÂvÞI4moù÷ b†ä?~—?—J^5qÌLª‹²Jvr…ýˆFnè‹xG«ë£‰?„<Ï <‰ûÀ†ÍMÑ¿$Õé)I^ª7Sfó€’]éמˆxè;ó›‚¿oР¥!:Z$˜É(¿ó[õA¼7—ø1þíÝE2²ŒÝ‰@’êgÆv/*͇?©@o`Ÿ@üÑß®Ûÿ€¹ZE7ã T?òôwxKN‰±¨#Ÿ¢3Hð?‰?NÛ )éœ'óÓÖõë¯~ÚÎ++ÉŸ{j…µØŽþíóÈŸQë«¥T_ú_õ3sÞØó…m(z˜jØÌœ¨‰žª©éµüè§±v›¾Zœ»þ7Ë8ÿ×>m%žî4'3È£nåô|Êp5>}22-Ä*ñ*’ók·0]3¥ØK¶øw|6–¹€¬‚Eì~XÕÃy/ûƒ&.hþ"S?X’ùç{ÀKs´Oþ;>õ\òç߈²À˜žÅ3—<­½yò"î_rÛÖÆÂÔôœ˜z¸ÃÚ4"“pI/ uÛìƒ]ÄÎ=õÕÎ<©NÀFà§ŸÀ4Åf]á°rÁ´Ì‚Ó¨ëÀ=\÷u¬£/· õç§ò‹Øè¯øµKžåAZ25ý@¥'úTbw} •{ lÓ¢™ Dó@-»ÜFýyx•ÅàGY¸µL lK²÷÷¸—-‰.^ƒ½õOÚ|òç›ñÛJ«Vc3øñú‰ìD]^áàÇ;[m1úÝèðCQn&cÕæx)àD9ÆëG©ôYI áÛ[½ö·¡·{ŠÇP[;fþÇ2u´hC4” +ÿ}®Uÿqnç5ŒUzò žô’ÍIþ¼²áf\äãŠ'Î9/»É^ÔŸGõt§ÁÞWûÒ±“;V„}] ÷“„U;™hM/ZN^ÚþŒ>Ôn'…C:D?á21õçBÍ?oOíl vô’,ÛQ°Ë€ÑñD– ýî8ðÃÊY¥‰?ó9,þÊL˜~ c-ªŽSzŸPý¯¼Dqü§`j9®&ÜÙFúO6Úпä;ÌZ"¼ð›t£](0¡ï*]í;Ê®D4ß`Øã5“ñœWœ[ù¬,y‹±^;4„ñ(ªRgÞf)½©ŽàÛ—…Å9B¥ÅjC¡Ò¢*ñÇ5¬ý4ú;ž ãÉSb³óáóV*Qý•_~ä^%3ž“q®@”6œk,ÁüÁ¤Ì™Õí·AËlvúï>c~ÔUð#†ÌH^ÊfŒáÙÌ":‰–ÎýÝVÞj ÖåÉA~®­ÞÓȶŠÈãxÖœjöë°V;èµ×ø‹©R+ä¶ñ<Í?©È*£wã 8ñãˆ2N.á/µæÍLAþ£ž} •õãÙ[j³˜}ºÙÂÞËÍžÜÞ„ý~9Oí@–+¼•gÅ4<­'ô¹'n8¯ø¿÷Å]æŸMüH¨týÇñ‡Dá±QOv»°¦8Ø¥Y¶Öj µ9µKéªu/JuÌ6N[DÄ^ kxAP5m²D9Bý`~ê?Ω™ÔüÎû™…×kK°|7EY÷lúr‘‡úÁYjRjÑó‹üT.bþGx,Iص×*×”¬àÇ~l\'°ÿÖ´ ˜Ô[l‡Ñx ÏT»1H¤¢æHFb5蟸‹|Ìs,©ŒúlñH=©¤gŒÖx¡²ú+ø¶ŽàÈðã@[ìä9~^#»=«\„®‘­ô“Ø ªàÿ¯æÙoG“*ºäU…½Rë;GÔ¡ÄžàÍ=tW‰àªzÂÙ•ÄÆNF5T„{Ìš«ÁÍ] B/½¤èD¯åð×úaË õ 1Lr2 ôX×ÿ g¸Š3›'—q'Vc¡âƒq?x–ó™ÍY‘ ¡Ìá¬8†®×ʼnÜã‚’ ˆa^£µâ†%˜¬Ô6k1á2<ðŠ¯‚lY± ù¯¤°‹•ÃÁWÌÿ˜(Æ€\ýù¢àÇFTÖüéDYó±M~z3GþÇ괔¬yD€?€}sÕ†™_룎¸&û,ô.ì"Ê'øÿÌÔé5B‹êrÔ£Úo?[4²òñÈ-Äë$>‡ÉŸ§@/UY=™Öm€ÙÜ« °?ÀÝÈ)O£ÇÒ1ð#%ø‘—þíÇ@†odsR/ t"žiJ4úZoijÀù$¢Oâb#9Ëh,ÞGºfl7~ôˆ¯An¡(ýw»‚\ÑÐ#äi¢‹Pˆ{2T… û†ª 6ù¢X’Y&ð/SŒ†Ô£¼G–¯Þï|²ìcd¤þ|>:ÁàÇE”´ÉSy‰¸Îõ\éŸ8‡úúXÛÖ¨³ñ„T¤n°=¡ª®ÔŸ—'ã³Øê‹£> ·9™áÔK^ s˜üÊ&/Tjh·8ûW0›1Ä E¨[lJ–ñõ*òýÉ ŒÇÒn$'éÇ®ïáX“³Ü™þ»ùQ_¨¼ Þbu+r^ŸJ™5p(³X§¾ TXæ/`ÜzÞ¥¼÷ÉU 3MÉ:;JEͺ®´ünwNé!ÿnD¢â}N†¿Ú©}&/Û öé÷êqgyê qwZ„ƒßÑ_M#ùì‰èˆò ÊÝŒw0‹+~L%Ö:¦W§»ëi¸–’䮂HK@ÓÇ|nMfc® uƒç©]Ęûtè/£"þÆ»~VwƒË* nl7j %ú‹ºîºFc ž{"?ü}جæâqÅ€ ýkñ§‚7ÜÓueónªà’»äf*èR€c©Â> >¥‘ÜØã!ò$126þ²‡Á·8@ÕˆfŽ T@å‡V+>Nª“?O‹â·?k}C}ºÃ ÃV€ ¿Ûä’ÓsÇ_’Ÿ^£tBb"}^>åV&î• Írcú]Oò1ªR¢jÚ‹õ[ ž¸RO·MÚb¹‡ÔÐkà]ðúbŠ¢ŽÕ³ (ø„škïè:Ü>7êÀÛÀI¢ßí ‡SUðXž¯FYä>Ÿè •̸B-ÿä?‚ú—ÌQ<´³t’¡*^OlÄÆÏ¯º!øQ>(}GbØO2 $‰=#õ–ä0,Y®¸+|ãLÌU´Ö?ñ©rWˆgÛ ŸÅ[¾½ô6ê_ô»m˜gx–»q›\O3òçI˜OåA5á.ð#»AWÞçêp· ñFv:ñc£2üyB|ŸÎôoO¬ótØç›ãÁß„fvjg™uÈŸ7¢ßÝIÿ’<;ãù¥Lí ŽÝ%ëCDM¡üiøç_ß¶6ñ<šÒN‰œößÙ¶Ñ?1©Ö[+ŠþÊBëE¶²jÔ»Õ™?=ŠýwwÚÚ3ÿ£6§³ª%dþùe)üUIæ^“¢V?8Z›³ô†|Ç2ò«E½½2UÍŠ—[^uÄ,ø«È]ùzú—Ä„«ÚUŒÊ4ý•9ëÞb3\Ö#ò¾µñ©ý þø3Ä;ö̬ï”$ÿ±SÆfú‰m$WhMjJˆ·Tƒ§ìv¿®þNTÅﯨ/~ü ã÷PüóU‚ø£ ^Õ”oüS,ÅW>á qD=ÐÃz/7‡ê¢v‡§Õ<ÙÑc,~|°§ VÓ íåTGýÇNö½+þ{ºš7Êýîç°Ë8¾£*.Lœ¿MœU€¸h6sJ{Ï?Éuxë±Ò_økNµ`;â°GúFúïù¦AK{Ñ?±.>½¥´­ï~ŸSï r«07Ëõ?ÄðcÙšðÞ;ˆŽ–ðÆfÊ[õpç<±ÙàKÇ‘o™D^Çšµü˜¡'Ƨ­ÃÌXx ø«/àÇbð£þãuNЇ~Ñi~J[ò¯.U{‚á¿–aÅ»pò«ñÚéHþüU-¦Üe&þ¨NEÃaj :nm«xЧZh-yõ:Ÿ.äã—׉û’’u.i$%ÆÚGü‘™šˆ1àÇ-æfDëFN|/Õ„ñŒ2>Ä®Pø1íaîÙ7,Ïa2Õ&º«zôOt!Ý“¾„?ÉÇûšÉvä5jRRž˜¢;ÕÑŒmð¬GtÏPÊ‹A¢48kÍЬNÿLšN5âp£3.7Átä¾™hh,#þÈi~"2!ûѹñ¥ü þjú« .nŠM퉾¬zÁXïÖì2¿ˆ]¾c|bZÖZú¤W§‚pqÍúWU £ü†H¦/¹«ld“Xñ8ë|T¦(¥µ}œ},´ŒÉ ;ÌhE²=­Ì— Ðb8¢­L{g>ÀR—Bû–Êœgô^)Jæ‘x 3A°ŒÌüÛù.? î‚j¶5h9Q>&ßÞp¥~p:ø±ƒ~ŒèÄÌ+¨x÷ѵå0ó£‚ïÌ Æ¢Ñ<ÕEÀ_ÝωK”®Ú‘ÆñÄWàXet‚¿Z‰zÍnfcêùjê?ZÁ_%bþà #.QÈg£3±Éü«ã|ú@¼'ê?¢–!pÏÿ×çm¹CàÇ?¯?W˜9—ø£-@R«M8íyè¯rƒeè¿ûÝv=JûÜh+§Íá©S~‡ùƒIµ¼‹µ¢5ó ªÉÔÒÎû™…çhsð¡ß ìUQú_U×›*Þª ~Ôùð.‰7jèš­ð×ËüÁb-^÷r£Ðý¤BÃŒù ôBÖL—†°=SDb1\ä‰ÄóhKèYª…øâ‰²GC~à™8Ÿr…'Õ⾇ElŠ?^ÛR¡nz)\QêãÉ/ ²EÃf®Û*ÊwøáÏøºø1’'Ù?Bü8©¶ÆGm­à÷ç‚D3ð’6’ö¦ÖoãÖþ˜¾…ëÞ® ÔKˆ…Šþ›«N¤¤UoŠW xâÊqhx“3¬À‹óÁJTÒW‘ÿˆ%Ï‘©GD3û½F¿©nZx“…{(µF°Hé°g௮Ãð5#®ú ,¤~p»ö Úîè”~|YÈ}·Ã™Õ¡S@Ø;ûÄfÒ/gZYd *A>`ÛLêˇËV`åyÕÌ7²ákñ‹ S9Ã9îD…õC¯¥ Ã_MS»‰þÄTÉ·?‘>qz~0’@Œ °#ÍÐæäA'UÓ(n Gc²æ~t”Å…0ˆ™D}OÒ†¬¹Õ?ñõWW˜Ú‰ãèw{3ÛøÃF¾¢ ø±™]Yé!r‘hb¸¤"ùÛBÜ•®Ô#öà”éK|T‹Ÿ†9ƒ–þ*™þtôÁ®ƒ¿ªËœÝ»`¨uÏïÂ6íàžŸ'þª‡°Ns±(';ƒxjË8ú·ï† ›iôDõ.,z³]¨[òßEÌ/ðtcñîg¹1Áï`Zw7å™2‘üN)ùPo%ÏÕ¾Ö c/[`7££¿ÚMö¼ ÜÓ^pn²ñØh@ÿ«ûD caŲøô$DAjÖJaí :‹ø&Ô^ŠnzoTÉÍ×dvÒÍÑÏþÑH2jïƒvo™Uåg¸ÂN¦Öf¾MNÑC´wžßå––¯®+¾ÝY^tÔ¯•Ðn-Auœ«G÷Éìñ¬ÝðÃ…ù7ÌÜÆ|=>:éæ¼ŸMä¾`ñÇ¥›Ö^¤ÄCôäM¢Ÿ7D´Ùh &У¤*ÜÚ³ƒ½¦=®=­Ý›õ¾Ò»>ÀèDý¹ÅÞ¼)wÐv|Ö¢Ö¡6ì;ðO¾sßVZÉè<™øJsEqþWÔÖûd; •H먹kvÕê3ÏæIõG#z˜,S¾ÙnGi¹Ý¶^ô/i‚¥ËOŽ(¶–C{ >]£OeOâÇjž(êwh‹ñŸˆ–øåÈŸ—Ð]”ãj!,NO¢^Ì ˆdGßäÏ]Å)Þ¡ÃÌ`Ýꯞ¨Ë±ÈˆÝÞq~Éxbâɇ¿Šé!w’Ý o÷è nuz‰V"ü«U”TªÄÞ.mK±RÖóâºÞêËØi}ê‡ÀÃ_$–±”%A˜Í`×.Q#ÜúÁAÔŸ×âôs‘ èÇ)ÝÀÛoÁ;hƒÆéiÄa-5ÖÏÏÙٚ阋þ™‰{†ƒo韸 à;eWê±³€}¹Òd°ôM@qòúÝd¬ùyàýÈŸ…H!«Á­. uÉ‹¨ÿËó‘†ú›TÔ}vü´þv##ú«Êô3w?î0BMà<ø¹)ÄÝå$qF ÁÙÉwW'÷_”lÅc*E¬ÊÒ½ôBÉDîyÑ×Ìo.¤¿` ÚÞÆä碥Í+/È×2¶1L&!âž§ì qW© ‰Öv=ÕGUIÚ¨eoLņ5%“Ñ7} «¼Úl :µ1š€Jݨ鞚5:z/«Ïg}­KˆõæÔ÷ñÈ’?—TžìC;ߘ ½™µÑÌB/ó=LSÚ,[€ÙŠ¡Øûw²5,ûe+”ã*MÿÝ ðWLÛ"¾¿ !WiçïáæöR?؆ruVdÎD—Õ­Ó2ö½ÀöôÄc©È߈UÎ;2ýÕc:|ÁwŠgŠá¨ºr‘¥ˆk¯G—Âàd4êý®0?*?wå•icŠÇc”hyÂ¥1–X! õçAñÇmæŸÀßù›g„\¥bn¿‘ÔøQjØý‰?v1ÿc;l]as³ŒiOo,$W§É:¼Ÿ`Gƒê7Q>˜ÌÜÞðj¨í­í™¬;Ÿø£sg™ÝìmÐ_Ŷ·6 †®G|4˜}ò¾]ÂK)ÏûÒ^F q9/ý?þÅQ[©`óØÚSóFíÃc’?߬¦§;n-™C¿;ÙV“Þíõ¨Ù†Oµé&»l¨nÀ=ª‚j&–Z‹Iûmó£:iw£Ì_]×¶ëÓÉôã¯Iþ£ŽžCY¯¦åŽbzT{ô»÷ÔÐ5¿á_ÿaÔéÕ…5÷Ú䟂åú‹úÁª°êk°wñJ=±¶CD61LÄ ñŽ…¿^em†¶.!66á >üwPÄêûú¾i7^æ ¬ði!Xñüs©4$né¯òÃGO} ëfçû¬€ÕÛ‹‡½æjŸÑ‰gxX;ü®ÎcA›ï ¯ýµÒ§ê…à¯fƒ!UåJ<Ø]Ø¡Wðx‡8áNÂû·8S(YÔ”ü¼•ƒX%z`«ã]ø«-\å¶fÚ<Ñ·½.]GÒk™µê9òçÅ ôWwÕtQÌŸïҬꌨöáýî5ôÚÊ2UÇÞ¬mèî?S¼V“8Ÿ_»ïÏ=tçq<;¹ãËa›\éß^šÎ³3ôýd§w³çô/IŪ9#±b6m²¶Düͳµ…½mÁ?¿‡íLB®»¸ß{‡•ßÉi\ƒA‚™‚Í“ y~ ”lœø~ª0*Ƶ¼GÖüÁÉÄl³‰c*éSàob`íßò ä–¦`÷©ZÂpv9ü¨‹ÿì ~XÄ/œSGlþ{ô»ÓõjâŠv“.É \ÛJqŽÅÁÒáàÇ æ×Nãà›æâÇZ «D5³Á«ûøüçärâßï€rCãs¾ÑÊõÇ–+Ñï†ÎŒR;ˆ!<»E`úßJ/tÉ‹áÐJñu æ;í?T3?uõR(N;bó<À¦¹ÄÝäbñ Lÿ«$0íÀBðk`Á.á“ïÆÖÿ ûµ‘‚éÖ7 »|Ö߬ ¢p¡Vþ5üÕl™‘'â ²)ĶkÃŽ"•@þ‰FÞ£õ-dZø«9ô¦=Œ~·lPU£Y•!䤭i|ÖLG¸»v¡˜Ï>ªûøŸX‹ Ntö±Í¸ÄÂ}̱}EfÙ•\rÕØé¿û'ùgØåѰX_ÈDÄïFËäVž(£Q>—æÙo [Ö¯¬0¾øó×{ ýîD¸¬ªôW™anF‡Ô‰øã‘›…GYè•…ìÕ«`j¤žÔŸ?ään³ŽÝø.Fó&¸íèÚÞ‰ø##õÉìL Lg/wõ•^+}3ÿ !âœ?šMtç@ü‘+ÒŽìÛ¹W4×Û1¿6Ù˜!dhöÓëÕ—dBi[‘øIùÀLa,†¿ÒÈ•æÂ3œ®/sæ?ÖQ?è%’ÿ舲%±¾Ïè@÷ʵdbƒŒÑ@rOôWš=½¹ˆþŽU˜ÿÑ–úóW0׉~ÊÃ-×?¢æ¡‡|7ÿé]¢~ÐÕy2™ÿzò@dW~f»¤l'þ諵¦×zÖ\n+Bÿ«rÔ®g¦iÔ²;Ûm•Àš¼Õ©zvqÌÿ¸®ì ÏñXÂÌÿ(ãÜudvxþj>õçõ°ïõôÃô¬ ÌTá±NÍ©?ŸFIÊH­8Où¢ü)®c;NÀpL?òË&¼¡åļæ§`H'ž„™ä?Zˆ\‘X±€¶U;J<ô}Îq²–b×âá­¾ZþxïðX’³çÁìõ`„øñ‡RÛü„ëKH5Þ|r1åQM5ÆÆŸgŸOùìùŒaäù;ê§CU‡=ÉØZ/¼¿¡°?œ_°£qH¬ê ªZ‡?õ¬.&DZ¨ó˜µP b"B®Ÿþ%©°î«ˆÒ‹a›sÑ—¾#výµ>žvÔç’¯´ø«àÇ2.Ó¹Wukþ`PmYЊí˜ÚVþ¨ <²^„‹îæà¯ÞÃ(-bŽîí>Ц®Da§`ƒ¿Õ¨Ír;;…ƒBùª®¹²ØÉ°5V§ÈYä«s•£©"§÷„m¹D–¢µ±½‡¸âod$–k7ÂÔŸOWÛˆÁzS=Yˆ×ToÖdz‡’Ä•àœÖå°Q%a‡R?èÇJ޵ €%»Ex¢¸ª…~s«Ç™IÜMO GóŒ}#2Û ×”ýÕ&úï‡=E9€ŠÄ<ØøÚàG ?—ИçÀ-ÊöÏ¢Õ·5Ïêgô¶§‰VL,e_ì}cò “‰?4û.tIÉ<ÚD!ƒ°ÉÓ¸üÇA®½6&Äz“D6øÒkœISÃDÔ²,$=àÓ¸oÎÅOBýÇ%ð¤OT’L%¦™f"'¾›úÁ )D…è_2½”gÞEîñê¥é5»Y€Šî5(ªÓs÷0ó£VÓc°5õò¡-Hj\“éè€uOÜv>*ÞJmwâ!L¬þj4Õv‹Q hv8&f ú’c¸i>$þpg~”°gBÅ{ÅÈ*Λxk þI8Š ùƒÏè¿›ÆÁÊë’ tzFq{vÓ–þTèMË~š]í3“±¾;9ðKòš™Ù°¦Ëôê΄W±Z_àÄ­(Ñ;‹|<™]ð÷ªé§Ót[ÂéE'÷ž×>×ì •Ðn§“ûlêSªSË? Ü{K~0€§ÌêãØ[Jñ¿È\·e Ö¿D'þˆ‹ã¼9Î/¾ÚN(ãÔLèwë?¯ÃÓµ”ü¹ÙóRL~Š*µÌVŸþW•° UõŸ"±–[SU²”ÚhÑWë d.Uñϯs¿ùb“¶JŸ ÖŽ©:9YØKe¶úñÇ,ÑH4cþÇ5<+v¹UÊ{æGÝÆÚß%Ãꃭ+"Û`¥ÿËÈޡߢþc9‘ÆH~·wÂÛ„þ*¾ý 1Í,òe`ĺ í½«(¬¹Ö¯é3©ŠÐªóþƒ_ܵåW‚X–o¶.ÁªA¢ö±ªrùQ™QGÕÑb¨V·ã¶2L¯-ªSçÑ¿$jüÕfø«xåp·OÄ#5;kTŽÒ?±‰ÖO;¤&Vƒ¢¦Èìó’¶‹õ ý•yã%¢‰žGÙßAï#šˆ.b¸¨ÊoØïVÝ®|T2‹ `þ%|ññ HNrbõ b3vô vÊëˆÓë÷+‹¯/f­5¼‹ãñ€˰@È.¼a×§àÄj‰é¿U`ÄQ²«‰ñ—±§¢ì ¹B/Pâ¾¾œLMC} ägNõ kîA!¶ŒÒII” SmÝ›ŽJO­ lØŸðqõA'øo-À£ÏüÎ8ý/qP³×áð`kÀ¸ÌvıÁáÍÿxŽþjïhðCãPèZõíÙ[r8µÆp-‡a?ºP}}Šê½Btö»A¾ÞêØ¦«;ø±%Ôã2Sí.úÿÈH½ÈgîD,9ƒÜ@r!5É'¬#žþê ÙŠŠÆYv¶æ†£I?9Žþ%±C=9ÙÕ{¢28žšLŒ…×u{Êod7öÒ¿¤39Õ ô÷xÆMÉì"‡]Û|‡úéô/q×W0µ&øÛ©Egⲯè¥Îp½©¨œll1êÐÙcñÇwðè ÙÌpåazs"+@«Þý>ÏiëP™³U"/¼Õ[ι$&æ³÷ÿXkl’ƒ™(¾–ùѨÐ;løÊnTd¿%/=ž|Åzê»KS/¿VŽA~k.:”ÎAWW˜h´'w·ÏlEòäÓÌ×°}OŒðVe©Ý8Žâi)º,O: ãþÌbø«K0mÉäÓ`ýwG)µëxy6øµä†ÂsÜNZ]ªbÚ{˜cáǚ̯½NýGa*+lv ·x‹üyQü™àïú'¶¦¿º­øi®ÜÛeÂ^wµ(¾]Qîxxý¯>Ø>«±±Á‘ò/â-DmK@á Xw˳=Mü‹¿¦ÉMZýR¬>‚*³Šfk•½¡ŽnõcQâ¹Â|}”MåGîìizM™ðWy¨Œ¨L/Ùüp-® @;âjD äC¬à\ñZ bsþµpõµ°,V6*^:E-óTDYŒ£òµ 5É.5ŸòYÝÈ1ï#þ(€Jëvzžt?ö*'Bœa_ÕÒ’ìç|•!þÐÉPíæèß>Å|D>e¯Ùþª›ñ7ýKzÓÍc ÙŠ8¬}<î® ±Þ\‘¤~ÁÜ–LN<ø©MTá­##4‹— †hƒ±ž~îe˜_û@/"¨(¦¢ñSƒ‚ÍÊŽ'º&±Š´8ó\õ=‡ñ™¾ò68¿@ê?†š•¨ÿ`~íú··EyöŒÈpø‘†\MR*7>Ë&?Îóô?á¹Jap·-¨NéBÿ’Fæt#>½ª2Ó¿$€.Š•Px=c§‰?JÁM†¿Z‚¹‰Áú'>ÂÃÒ×ãÝJ|ì¥÷7Ê‚;ÁÝ—ði]˜è‡*ì0ñÇNîtaóž¼c–0&ë È3µÄ¿+$è‡øá«ôÐzˆì¨þ;ñîÆÖmísè 9ÆÈd@5y ƒìÖŒ«NðWÑ"ħ³L2ó ÞÜcîb?žyôqÿüxh+£”s> º2à·ìC¨$Ì~²€9´füí¢6bÍy¶Šê(µ1ø±˜ø#jóýmxåµxòÝá¯ÒknÚ7ÅO¹ÀL~ÚxíSEê9wf+á|ã€6ëöS´ç-n«oUõRÊ#55÷l˜ðÄ|bœ H8 8¿5è:•8„^õ>Ãòµî²*Y7â#X_Ø”þü©úóâÚí0j,Ô!2(†¼BV>O»JI;~okì^5~̉?’+U±ÍOE1Þ¿öäl«àí$'q+] Ê ¸€í Ý<ìs{êÏCZçE:¿ˆ£ÆïA´`å$Òaí[èëñª§aSGSÛ}œ+¾LÜõ_ìYv±^ ¯ÚÏZ0ú«„àãjò1øüœä?²ò+}¾œ’¬…ÑPÀË'd‘ü9Ù© Ój=ÝÃxãÖj-”ÞZ!˲_Ô'ºzˆÖ™õ>RY·V¯'~j±É/t¡6︾…Õr‘ÿ¨ŒMïõ‚þ%ëÅ,â‰Yp5±€ûøÉ©¨F‘C™€¯Ž :Öz3Ñ]ðÁÏrާÁ”ržv:Lü1E$F=g ð>±×ÑÝDƒ ÊJ^|i7¸––FAÃko÷&œŽ5Åb!ýwCóWÕWpœVþc9š¥»x1Ñ_åwh€÷€µÍe¨’,ýUKâ ø…À£gØûù27^ÄzÅ?ÄûÒŽù]ÁÕçè¥Î“mÿHeöHêRÚaôÅã}Lüq˜ùµGe£šžhÎfÃæ$B-vßk¬±Þ QUñŸš ¸ŽõTQL1¶:â_rÒÙÌ«T×m#^’ùÈ~x¡‹þ,‹vPeP°wÅ…ü\² OC/înrv™S>ÎüJÍ~€£~°)Èaðcú«žàÉ{X¸ÄoY¨uL„V쾸b=$Ž¿F()´SL }…Z žqEôF¿»˜™)±ì­˜² ÊþɲéjãÄT\#îÂþŽ5WPÛG4t^ï-ðçcy™2'õã wzgmF÷|šgv3/u]D•ÏÜÁüólèw“Á϶ ohn¼“ øc=õçVüá…?Úê‚@c‰}JÝÉF6¢¤ë cS{Oæ“ü¤_ä<ú3¿Ñôb 0~,•ÆbãÔâØ¯ þ/þyƒø£¨ód~ÚÚþcþê£í8ó?2Ðݰ%Z)æ¨ÛæÛr;º'ºS?-Šýw}mùµ¹¢8–¦].RkRSrT™BŸÊvL¨:+”ÏŠÌqmÑ&b‘¾ˆfؤÔTÕ;+{UX Ê‹ZbøËví%L·I&NÀúßùWàÓ¸£§CîãŒV=uÓEB¢š “ »Î¯ï$wðW͈A¯Áï噼†Ý²¦ —~xýïðƒcƒIC©’‹x~TJ%ˆûPÂ?mC¸ –•¥ÞÉ›må#­·ƒ*“@Ón̯á¼÷¿öòÏÏê@²~½ÉF<ƒ·ÊJìÑ^)u,ÖÎ+{΋‹:ˆÚ¼E¿`*¹ÕxØ÷M \A8¾ \×`ðã^ÜTâ‚­X”Xr/‘Òðn:§°t^)†éfní± ùóÊüÿ¤ì¡øñ„Î*­Xå˜;û¤Ý£ƒÇ@NÁªz9Æç”E‰Qœý ?îƒ+ÑB ®j8žgJTÝAÙ´’ÄþòªÞ$8ƶ¶þç¹$UàúwjW”#!Í6Gm+óf»Âñ[Þ{ "¬ Üõ‚)èŸX‚ø£$ú«  È~Ùüp‡GšMüÑE.7´ì¡îKBõ¶°ø«øÄoȲ_ã®ìÀwÏNŒµÆäorÔƒ¨Ë»MD“…¬ucPî *¨XðW¹ˆwâ}ßbOâ™ ô;ªŒ‘ùþªGgþÝ•èP2 ~è>ý/˜]‰ z?¿›ŸáøáÇ“¹ýÕðëEQqÝäYhÈŸ±Á‡­øð«-æ Fh9J¤˜ä?s©')‰Zê89.ÎFwFk~”w°X½ >»?W„kEtÙ„wÂ8£ºUwró±£µÈàï'ÒÉìi~G½6ŒZñ\ôqg:”|¬›ùL%³vÅ +7fÄÀN{Ê®ô¹E§C?úS]&þœÝeµW¡Ãïsvúúìh¸9æGÔ ‰ž¢óz)—௪⥓Q@õ2rÚ Ò?q•#¨ø¸OO­Öðé觘mà ð#½1›Ì\4êÿà™]¤OôÔzÒ¡ èQç–QüXh `ÒV=TÀ-˜_ÛˆèÃfïmÎ7îšE`ÄÚ1gýñÇKª!sǯ&›¸üNÿg¿¾lË,þønë÷ûï>±]Qƨy4æ;¥ü¿ø£€ê©Ö¡ƒûJ|Ò¨ÕŸo±å ž«ž¥ U_1µlÚ&¨m'ÎkŽþêñGUçýŒÌ ­ÓÚ[}-ê°ïsY¹‹ ÆÄÞ4Õ‰@¦ˆÇjÌH­¸Žús)¶béÏbgÁ¶ä!&Í‹òh>|Ëe,m#ž„é"¥è/ DbÅÜôO\ž=€ÛCõ¡M^&Ó «WƒˆD—·x$~s7Ö8K‰G]÷Sú—ذî+¨,Bý‡'»½©gå òÃâúðÝ!Øï:ÔÀN`‡?Õž Û@ø®‡Ô6f€…i†¤A=3QöÃoö?ê«à-6sõuõJbêoãtôßý*îƒCˆá§°ZBlþ,ìêLÙ,žŸïÌàAX†žÜ±ûúêÃË#yѵ´ø<…௬ùç軚þÀ©¬;Ç÷§ÿniúa½ zë¶çFqœ…XéœpînñÇ^ÞÒû<±Á•ÄH+‰ZŽó› á›^š±íoA“¤v7êÿ^ì2ƒMäüˆ=Áb˜óz+{5¼‘Žø,­¤¯ U›þ»“Éy¼aNÉ0:‡­†¿:vÄ(mf5OSžÂLt\i~ªx|ôµNüXMÿöV ïÈÛšPiôD¿ëcxtßEÅÕÆ¬hïìÀt8o榗q}²HwàWoMåGå_“þí—œWüßûâ©-u°øã5ø¤ƒˆÚ.>Ú.*ÕbZs­ž&Õfœö[ið£ 9)Ô$?ŒÒr[m­ÈÔä.åD5õEͪÅW¡›ë§‹¶K­­F¦·TÐGúÂà _û^K_„½n¦œ?ºbi\Eê/ª¡{fývð¯VÑ]!©ØFäá…‹Z^6„Wï(öa ƒ…ã.ˆI"2ˆTýÕZòù·Xo5­)-ýnVùeå¼ÌÃø$1a¡ºau‡DÈ_EWŠR?øœþÂßP¹ÏÂZV ûIG<Æ«0ÀŸø“nSxá½ÀbúŒP]ð‚_翾þêÀÎxï×±À‰Ù_Þ¿X±éè”É[¿&g7ŒT#T#•×a—q|Çdþ¹}-…?ËÁŠ™ÉÇ+¯ëôLׇ“éåñ‡ÏzÆéÅÞOæL¼3pS?õ¤€CëŽÜq ¬ˆ›’øã¡v[û‚ýlí¾ÈÞüøœ<Ôf%$öj~<·%жAþнeGìOLìVc}Ù•¡¬ÑK·ËøƒZ»Ùd?\±EÇðþ–€"wõôOÜêšÇ«C…•±JDÖùÑÀ+°&»Ïh@}¸¯Ñļ ~œuTƒlÁò겕yÐ7ýá¯B«è3Яªúœ,Ø´còˆ÷"Õ\ùå¦ÓþY[¨Ú@£ÝàG-z6–äz`Ù˜C8%êGªIΘuäûë—ˆ)1­ öÙf±ÞVQƒ¸,7 !hM'?‰~»mÑïNÆ’~0àôGñßåЉí¬S½ãßðaæ‰é\/% ñnô¶¨¶k/w¢’)Ów¹ÊF ¢š¥`e%&ª[ë&QôÜ~Œ‚Ëj\¥§‹¼%‚ cWÍŠýñŽÙ ÉÛI^sZSá¿®1 äõƒ_Í<(„?ÐéqYú˜D\`ìFÉ•zf1.ÄüûZÞÊf¬4Dî>ÔŸ³‚õ›ÄïïùÓ»¸5óã“ÿ°&¿¯¯Èð÷óUúï–£þ㒾ʼnGோ?xZòÿâè_¨‹ÒjÚß"ÌRlV¶¶K{:{/"—àGF³ókOñ&?ºâCõ–Iþ'üU ­ªĵÆTzQéêUˆäjx8K¨l©×4Gý ­%ÙZô/™­$ˆ"~ܵµÔV‰ <ù.°M襫›•ïZ/ª‘½˜^EÍ¥}î×Öàá~5toX˜•üÇUµ(±ˆ‹pg:åxq4’ú«ÃôQùCìEst+ì…ç›AÖ…3j%ŽSƒà‡“ï¾¥øýÕ÷Hœ][mýKº“—ØF>vøqüÈŒ"ŸÉ ð#à“®¡öGÖ=BüJ3Nì¼(¯SŸ7O¤¦m'~( s½®t±÷Tlc-}c¨*â°Û P—¡Ñi@4po< Ýn0Ve±btâÆ6Q“ f®"º¹. ¤Rw,Zí°ëXßùjË¢š\ó§ð™æòO*lÃt¸¯r('é‹…RÈ—>À&/?,þèýÛëj?ÂYpŽ2H«Ç]H‡/×.1Ÿo WþíÁ=üÈ@®·=ìÓYâºÍD]y7]Ḫ†ƒ7m©´ÝbìÚT~'Ùb_¼€™XQ²ÌH>¥ÓŽÎÀ‘¸/¨8ñå^óyÅ´}aúï?F¥#ó~ïðhsmÒgúѦ ²¸–y .æ ݳëüQìødø±²½x£…ÖfDo[‡ç-+v7•ÕV˜¶ÍÔöņOòÊX¶Ô¼MÌÑÔÈÆŠ®dù÷bÅŸƒ~1Ðï®Sއ¸+ÝÕhœÄžŠêüT-X¸Xä9|Œïz>c,ñÇKþñ5+‘™èBÿ]«»ÕÉå%õ«ÉÊí"ÿÑ'Äz‹„hUUÖÆ 0g“èæ;ÅèÎü×(oÓÒ»*Àiô–Ƚî9ªüûÓ æ"¨~ Iî+¾9ïqú—Òs¢*~O6þoÓk=7ókÂù•¦?áú¤W¥cË%ø¢áÔ£}1jåÁ䮢ÁµÅ#ÿqSÌq®7BI¯=âä4âoÍx$è]©Š/M=J;úšè€ß’ÛR¶øñ‰ÊœƒÆm#::®¾p…L¨e~Ô4aU´ýë/?æ×ZõƒÀ£nr¶`;òÚÉïÇ…÷ 7Ó‘' _aÅ+äC3¹ÑÍ5Sˆ1<ÐÈìsâÇA&1{‹èŽø¹ïúc4šÝ…D©­©gLB/ÅÚè¯L{y{s:Z¾C×Ì.ÝâÝ9'†âU|ÒK»XÿkƒÿÅ?ïÚÜ•,Γ‰¡ ùÇõçŸlW•¥jAê?ªÑk¤ k®²5PÛSAXL®Ø£¨ßÝmk£-ä)‰7W(ZA-…ºVyªõmµÁÌÿ¨ÅùQûµô:ü€þj)öØÊÌçSΑ?ïª7 ûÑG,7#Ù?q·rZI!Îb?ü±yã°«Ùà4+Ry} ËúÛ_ŠOÁüÁ±âK$îd{m˜vœ¼¾ÅÃìãÍŒŽ¿€Ï£Y»Ní3†)õ3ŒU²}ðüÄüf,”àéÆb”‡<æ[´›‰ÜW/ê­TÆgž¥±"Žãüb3¿dªbª¶Ž|zø˙Á kædG”‰ðVÙu=þª>:Æ•`ý|1Ýìçð’eE•éÈ£¤ÒÎÂ>€mLŠÿj½^WX9â{¦ÆÂ+Ý~‹ýƒ ™Áþ6¸ÿÜ–,sà‡±r9R17”ÿjóKŠQC7â©IýчýQNö’8àæãߊÉîó³` Ý*è[qJ40wÊS¦ÿ•5¸"ñÁYžÒW:ðc…2Zë/bòfuæLÍþ¨ò(F ŒeFa|kª}#óKÆÚ“ÛËPŒ0Ùõ’ˆnÄbè[؈7‰ïúD©…rœEüþý7~÷\üÐ茚 éçs‰B·BMªµa~bœ`ÿî:[EµLSôT¿é¿:jëÎT«O¹¨~EhZfðãû;‰¶ÌO¼ÄüÄ"Žçíçsùùwj3ÉcÞ‰ÆDÀ²ú ö`—S«jjsØ«fÌß ˆ"å«\U¢ òª×¾D¸›z!<Ý¥™<»Œ¨÷^¦Á4¦úQaÄŠi3`Þ»Àëœã}¶öŸ?Ò'“CßÅ×µ™Š÷4ÏT½+¿~öG %qùúN*ÜQÞ–"AÔìJ]s•ó|ë"yz‚rËÐU6…c±¾o·ÕItI %Óyò&¥jèÍUf%SEµP‘ ç3u˜/øñ~wsÞ/|ßmyaÝßpœrÔR«`å¡WrÝSå4*‡è:xù”·qg‚vO©?êhO~>1Û$¥+úÇ>ð—ï "Æt¥þ°ºåH&Ì CÄ0NÊnÄæ‹œßîiq=žáîô8þ|¸û¶ÚA1™LnnÛ\øw×àæšk>Ú£+]dgáº?‘W/!³¯@þx€úÃÿ’.›3ÿê`¸CVR´×ÓÑ/~Z¶Ó–“q” ?°8úÇðã1õÇEð£3;ãX*Býá > ýÙ?/ÜÓJ}!puù; Ãiòƒôj$Aÿ8 ~¥^fZÈÒ=ú¨,Åü]?yÿiOF3¼ÿª'»›[“U\¦Âº.+á ŠEl^lä€OêCÿàkôó°ì{éla<¦B±ô§T`»á¯¶é=Ã9÷f‹2(ö÷¸Æ¦DݘàÂT¦_4¦p…Ï™¿ëÄü«@ª…ñÔ3Q+¼xzºâ-bâº@eª0ŽòUñÄsU”ÞÙVÔ}¨?£“×a³S+:ÃwR7ÔÙ¹JwÄHð¤0 óîr_zs’ƒÉqx.7‡R“§(iµýèç·xúÿ’ïÄnâ·'sÛOâ‘:d|džÖCbý=T||*/@º—Æ%#%ÇLU3™·ÈšegeÄÿsJñÕR‘1V#»i$OòÞ÷1*²;d2¬¯ÆWã´yÏm[êš”8ÎÚRì•ÇÍ,Ʋ“W8ZÊ“ó°«ÚÖüÄB·Þ¼YÙtͬÁΨ5Æ\¶Œee7É&öG fþnVæ=öb›JX²BLÁâMº" nÔ~ÿ'úÇIæ_etÜ™·ø¯¢Ö…ýã^†üúÖvþ*¡V›ý_k~»·­Pðü’ÂÁþ+6,üÆ?§m}˜ŸX»]†ýjú×+ûð)´ÅµM>·ã¬£rØ{lC_v4†*úôege‹›ÈØôh-VˆÃjøw6âãú²?*µ°ºåNñdÏ ú’5á‰*‹Á.§…Äù±úö Rÿ`ÍSÛ(\q‚!K^K}pU%%\@eiù{ØO„­ ±¬†>>ÒúCQª‚e·EfêõĬj°6’H¸—\‰íÛÄ[kl'޶‚ìØGÉ]|®z¡û‚7OøŽŒDýžh I˜44ý£8o÷mîÃFðã®ÎÙº›˜É¬šˆÿèçsZ¦“d∙©gñ©Ü`r{ÞX ÞY˜ýq.˜µ—Úg³h¢Ù"8ËIèçõˆIÉì;‚3ÈÎ[0£BNÖ¿ko´hD?ËMzŽ«Þ®§ÿ<÷¢IøñÉ–YÛ!&€3ˆkùÙÆ±·Ù‹¨3–΃xwXoFô?JQ…?¿¶­¤ÞüF½èªWv†»äqêHáÎôÏôÔW‚åÅ`Xyô†Fvô–(­µ™ÕÔFfUR ܯ¹«o`gŠ?mÌŠ¡>u@Ȥ0?7á‘._WÈìè¤_ðüÝݺÎÌ«è+èèÈ –¼Fï…~žO_£\s[«:w‡»VÚª liB£/»™ÒÒA±€<ÚFÏÆ³ýãÝáµRÅdA­ÐÑë‚ð¾úØpÊÙRQĪɛRAi\ó®rÝw=Ù?8–HúÑ8ö1Ô#¥Ñöã¶í ÷”XñÀe"dkLJ´šT~)ä{úy]€ ÀôÁ|â#Ñ?≡¢—ãþÕ:¢.Ïüt¹N Ö1?1.S¾|ÐNþb>×j6œ_ªˆÜÌ¿Ú*ïšI r:ººxúËðùÝ …ƒƒç'öç©„ÿê†Ñ ý| ýƒáýÞði´·{0½¤„½…Ù7BüÅÅÀç¼Åç¸æã‘%%ás˜päå?oá¿ ñ ~´õÿÇø[9 •Rk¢•ÔþP]¸Û«l5P?œ©?¼˜‰të·ÎßÏÖE[ ËTü°æï¦Ö¾)sèû ú£\Qó©Q™ ò#okë‰Tïð¼ï$.lEôÖðWÙ¨ýç„·8Åúãûk ‹ËðýG`ïe~¢“^_ì ž¼@^ߘ¬z¬ÈÄ3—ØñÌ…œIø¯jk©?Úâü9C~dí% œ˜ùWÖtôïäýMélÉŸ´Ö§EЦbõæ¢ïd—mÁ‹mýFÑ^â|Qjš=Ô;ˆ²+9×®úÁHý»ÔYÄðáðLoÁx¸¥‘wgƒi^HYN‹D“hÞOˆKè­˜¢¿¸jM)¥&'WÀ_•ÒR©Ç¿ç¢xÉѰ)³¨^p_Ÿ¢ê®§^OÍÄTIêˆt¤™°ÆÐJ q•8‹ûè]øW'zÍÓ?jµ¯¨Éˆþ×élô óóòÁŠÕŽ?®Ø1ï`9 Ãt xx¬ýƒ^zfÀ¨H†£ë×Ç›DÿE-*Û ×q®86³2úP„°%¾ýÑ?&Iäož?ªœÏuVÀ¯ÚŒú`=»¼?²‘`'øµê*ùøWðj¦¸öÓü«ìðWua*¬.ŒT 'ÐÉV *§Â¼Ÿ·ï ú/ O§¦Ÿ» t/$6&ʤ(r[èéýäõQ¿ñÌ ³¯Éß+‹×( ówWâ:JcŒE?ÍÔp?³)Ψvè@ÀŒtç)Ì:<&Oñ çß]&ªsW,.³×Žy1 e´1SŽÃ¿» µ;}ŒyàI æt]ឌaîÕ{ø±4†7üUHh2&-Ó3¡3½d~¢5ôƒ^†ù»}Lìľ(³œç8˜þÁOF=|O7aÖf€Õ%wlÿ()÷‹CŽËCýqš§ÿ9TÃÆ³ß¯@¾æZúÚo£œ?2?šIè?a—™¿ŸŠk÷z˜\ªá]®æ¸G”{ZrÞòšT½³ä>´ËQFN{,æÉ%ác8ë¶5ÿ%™‚Xÿ®óKâÃ_e'O¨ì¿zJÿØM'¬«HF½ÝTJ§ßA?ŸÈ¬{¶§à'NenÖ²÷°ß5 Я2ˆýº©ðî•Æ%|ýü²EÖ”ž,)¥8æ¸âï‹'¶ÊJH$þbëúKõ3²szo;¬¬TSh®ÌoϨvän¯³Õ¢û¼ ÞÕŠ¦„ôóDv$ëÏ·±ÐKT?,G[1ÍIˤNV®ÂNÐ&²?ªúoîÜ­-%öÙp8œç-Ü'œõL N@1Ÿm±R¼ˆbÿ‡ÙQ>ô‹D±Ô_`%\È)š}N&›È¤­®ö"Â]¤uK¡M b°º4žÏÓÀ¸ºÒ£’–eï«3> ûD¡ýÄÆ'è ¸›Þ¿œ¥)¥ÕlDüÜ-gŽ”¥fHöäðàœ6¥ì5 ~¸2…#*àGÍç_y0õº&Žþâr¸qK¿£€ésåø±¤'ûkƒ´wDØÎÄÇËç?Ço‹µõ'¢ýç×ÀT )P:Ã^ý‰wÁê?ÏËÒ ò¤âè@¶ìGR*Øu™úó(õQ<9Sóÿi~I_µüUM\D>dÆnè:^Ü©2ÔÙÙ±”Šá/£–q^Ö3rÁ²µ / <îX/ôŠar‰x¡å ÷tÇ¢°6ÜaAðànÙA…º’ú#LÐ:èÊš ñŒ>†ÛªMM²Œ+Kë!?o¬L«g ð|˜#ödþn[ô¯°¤·pW%¤¶hƒþ‘•-}aL¾âFýˆ~~3¬fœ’-ezr†Ï8SÏmÖGjÃÃo†¨lMLá“«Oͧ€š‹Ø&2ܘž½‡×)Œ2pOê~ø°Lœç!žŸaÌvy†ƒ*Ç;”V˜Jy¥XNgÔ‚ö\igêÑ”Ì-qeŸ_E¦ún¥þh‰â³ï|ø¬RlÉ8‡  ?L\Fôx®ˆuއy øqÇš×x OP³êo>eÆáfê™sLâ `ÿyF{!ã:Ôiôó¤ô‡œÄ[˜ .:ÄirœþóÔdiÕxêFÉk(-’vg£ý°’ñ Le'Uê­l\¬Lï$;SLg£ourrÍz¸†kü؇’×Y|¼éÅÐ?..ö¹LVÏ÷þeäµï0ËØgØmöúÌ[™Ê|•ðWɨ›îÝ“ɱÓSeç—Wüï}ágû#ôû®¸üãþ ‡‡§šŠî'í±b¹ÝÖÚœÕ,jFü» Áß›_rÖ6–¬¼ØZþê!sáŸ*c•-ZkáÄ|ø ìUh'įï[L"þ*º5ÝyçГVù»>hˆ.º ýç ÄV±[}÷ëoõ'»•ýJ.aÍï¾H.¾ý#/ž¼LDNâè5¸”¦ü¯?þŸ1¡vª…:@¸/kPOy‹Ž ÅA¢üvø—§dÑéÉ–ŠñîÄ h­[{v§‚‘ûw)Í@Œc" Jk¹€\§8®å–pOAD/2Ç„r :óR&‘Tf†´U'þ§ÞÂ_™Ò ÷ð+°2!Ocîc¸p˜ 2Do*šÝpaoᚬùWƒDvÝG|ĸJA5-W4ä(D%“e ºÄu}‘ˆ»l&½×–ÿžH»“Ÿ8 Ö-¥Ü*Ü"Ü?詌Õ\ÁëBð ®àLÌT#ž—àŒ‡¶U“Æ6:/ZÀ5[=ù™1¹®zçê@[&\Ô“a÷æ¡åƒCßÒÌ…=9Æ ®÷–îBÿàið%£ÌÎ1¯ƒI§ÁªØ²µ¨wÉ#Õ¾b xæÄ ùT‚ŠƳQŒ.‹Zôg, û@!—ö‘­¨?¬nñ˜Äðç0:o@åI⫾ +¶úY´ "r¢>ú Êås܃þñ3ºJÅP‹ÿªyý½©¡À9Ñá:Ñ!3ÂÚy£Ú…>Å.êkŽ· ×C]t—:ò£þ-fƒ‹îéÔ1`P>šémt1*WeMfJyÓ¯þê:è0md˜ãyŠL€¼É[Q̶ã%[x¦ÑGŽ2RÐMÚá3eý©?òÁ6m%6÷‹eN£(ØñÒqz Øÿ±•*27•Nw¹V'6ªþeðã.ýöOèl@ÿ`ú»‡2?ñ¾Þ®æ%®uÚP6ãî¹êòˆðto.þ«<'–çúü»žµ©1}Û‰ïO†Z¡ÙÏ›&ý¥˜?¢°‰vj‹µGf4ŸÇ4êÛŒôŸ‡¼)ç•›Zb”жèç½Ø?ØJïÏþÚèOpˆµ¢,ÁìļL;SiÇ-Ö—ý Žz"²² yIÎå²?¶á¿ê"’ÀåvF»L­oƒ¿hNæîI”üŒöYÌwh÷2sÚ»À·}áÊ/‘77ŸÁÄ%çIO=ÓSf¥ø8.ý¿þÅ9[îÐï»Ò‘HÿÏ~hlºÍì¯íάÃoŠÕ¾¾"³š†X¿ W×Ýß:ì^Û(ºêóÔ¯‰?µXڼŻµÆ¢2/_5šå·Î󒶃hðVôç­¯¢¥þXLµôw¨•¨Ný1W †DéˆÇ˜îféçA‹^dgq#'Ðä×’ã[þ«ðWCé?wQñ"TÔ†ÓéR‡~ñdò;Éh_ëÒQ»‘>ü×=¸«¢žîA¼ŸiýM©@ÿÇ]ê4°3,®üh~\…}ÿÀ9E ¨Mý1™Zy³Ö9’kR‡›'P§]ÃwŸïk‡]/ÎPò½ºè·¹£ÛÑ?ÎãHš¡·s”·¿ø¤íJ5'/#'÷)9ñ¼#L•Õs1•÷q Gü ?Ôßð»ÓAÌÝÄçƒøwEg¹H鯹‘æ£K²;÷ýªNSÐí>ÌNO=HÛ¤½D'èOMs‡Ja7çVý£(H\=ü8þ±LŒ¥zY@\Ë‹vjmD\Œí@ù¥ù~œ½ÄÉ\ðG'¹;ѧ„ì©ÝRüÃ]óXÕCLBaÍINì¦ÉYT¬•á§jÒñáÍT=ÃlAvߌ‰äQù¢X\»Þrg=àÞÒ‡»bù»¥ÈKœøóÏò<@¹üˆm\‘§ŒqàÇlúýÁ”F,cAðŒà#°/錑2 Qir"Ì»©oÉp·êã)+–œ˜fÌ/™C$LHd¶6^0¥>ûÏ[QÌEM±vÍZÞ³išw˜ã-UQÞ“MÔ-£á%[Â<ø‘Fc9ÞˆÉ6½DÌ®:D7Ýc9‚zá2ýücˆy›ä+˜©„Æn¹G„Ä?˜p=|, êö“§`ßêYŒxòw/‹A'&˜ìbîÕà—°6%Öü«õ ß ôÔòª˜ëøD&2¿Ä'Ø¿{ ýã¡`‚¬Oo…ÆÌC/öø3ïÓ³‘ÔžŽ{Æ35®Û—wÖR3¼¨? S u\¯Õÿ‘„|ÇüèÂüvvWEéYÀÎó Fj³ ¿>Æ%5Ýô7|q+w7ƒ)ÁøCêñÖ†¿òwàÇ*é®ðWVý\tÙgÔ æp§{ÿÝììuͬö®¸°3¿d1þ° x¿Ì÷Téþb"¼DB2¯ìÿþêúyˆ__SÚýcý<.yùjÕԺѫ‘(xÔJ[)tîrÁø‘ð7çïeílQ“{S’nꚉÿj¢² ÿnGÍM;¢¦V 8>Oǃò¾Ø­-‡Í~C&¾Ó>QC_¦Ì`†\{t‹òL÷Ÿ…7v”ŽxT¹~XZ7,0œÎê&Lz[¾Xø˜h'›Ì¯k"ŸJ^Îå¡HÆÝ[.£Æ®‚êÓ,˜aÊN.À—úcÑÏ þjT$×|QíGý1-ûµGrx¬.<µ9‰§ÓÈ÷È-(@Ë¿{•š¢úÇÓ_}J 5 ~ßYè¹%@ó4œY?Ðä>›£p…ã¥+qì.ýûüî"þqj‰]ôŸ‡Ä–C¥þè«– ëGoÅÜ­n`í:Ò'럴ýÚS8ñV² |æ{õ‡j¬3LcÈQ~|uÑ¿¸'ŸÂ"ó‚tn'w™~>…è?–Øù]oŒ÷:|T9¢óðò Ž3;±r v]¹òã@ÿÿë@Õ]L Ö)ÞÜ%²Åä³xÜÿQÆÊ›\Zân:†©úù@T®2ømPŸ —ã©?Âë•°¹‰‚+àT˜ÿ>°í úù1Ãhº™|ü.¾ÙVx²ÖÂýä®ÀFM”ñ˜áp<ÕŒúþô+±ì8WßUS:Ò‚^lÒKa_MD{ã9º*2µ¾õÇBþ,&hgm‡\«- óäôdežÙs¸ÎÂB•ëØ4ÇpcþIlb_2ÓŽ*°Ëx/Ýñï‚•cèYE%•ÿÕy"ÔüöŒÔ¼åxö;ÁNv‡Ó-i¼e¯ß+£ÊÄ6ÜWy™e¾ÕdRs±ZÑGþn<œX68Á¿û?–8>‘ÁýçQÿüua<~0‘Y™¿û­)Kˆ÷¾(éf*{0 È¸Š¿)ü8ΆóW[õ¼¢_¨ù%û•ýZRÞ²Ô3ýÐ?ZêõQ,Š‚àM©b€gž Rq¦¶Ü4öç[šWå æ'Žf&]"Ùˆç°:NµüðQZÁË[^ön0»‰t?ª™íLjËÌȘl%iÁü«é8²œìCÁˇp_˜ºYÿÕ|êÉpü©Ù¹âü?Ù¦ÿãµmÈ?Æhôe¯g~û­ûÏÛðt-´US›òo]u93õ^8>Ϩ|±ßÖ ü¨ŒWº0UCJ-󝯱ÿ£¿èªbm3µj˜ç7²c?f2?±5jmgÝ[”ÑÇÑÿñ—p£R¨'Ú‹…QÞ?¸“én™ÅaÞ?*ÎäßÅñTÒ»ŠådöO@”ÆD² ø¯Š Q8ÇZÚLœ?m­HI”ßB{_EÅþ”7q7Ëòàhsõ²w¤ø‘LÉIýáDæ\[.ây¬ÂÔáŽÁ\}yÔ{AÔp!:o£zڣ͊ä ß«ÈɇÂLÝ!j$àêÚ•;à !êU—ˉÌ{9úsþü,oÀáÊöS‰«TS³Pl  (@<ÏDgü@îà]ø«YÔDkPÞp€ ›À—iÜÏWú>ñˆ1w¥‹æFdÉɤ‘Î Îþ¿ò‚˜>BÿªÐ¡Ÿ·â.\£úØjGG*ML?.³ÿc–˜~ÌåÊŠ[¹ïTJD¹ŽT1“`:õN¥©?nò¹ïãß˜à‡»ð~Œfÿù$>µ,xŒ“F“ ¹S•©`¬å«á\3?ñ(jzI2úFäºÖþÁ)Ä«a8B â‰üûÆ„¿*O&î¦oä9˜½-L¥MNoß c0‘p!|‰õQgbü4šÚïªÆY;}u2ô§Ñ îÖ꼃pž~‰øpSmè8ÈÏч“׿aài¦¥?“ÁÃ(@Y@·¯à›/.ð¥úmZ˜ãÕฬù uÁ_;3Vf£ÆO2zÁétÀe2cãIÚj|C˜Üt ÌZIý±ÿn"Îw…<Ê•›ù»ëuk âsœR»xòßêûp~¸Þ#ôŸ·Fñ¨ƒÞ3 “N/z]&Ÿ†eÜ€úM‰¹Ø³Úq¹ ”èEyú/éŸåqÏEQæï>g²ú#1>÷ÌPLŒ·Œ×ô³o +19³6ëО þª.øüœË~ìUk£E¼$mÑç’ë gûR”òyÆkÜ¿¥ìUÌbÌoßjæ`_Éf*<ÔaEèzùFœ¸/FðqPØ*‰ð;~œïóWk~bHÇ ]éôõï¶mtT¤ÖºjeÐÏ›s·—°ÿ¼2LSu)®® ¿um®ìl~T„½ùSK¨Åb еÿ¼…Ö^;£–QÃWøÿùðÛµ 0êïE\N5ôõÂY£lc&Dk}˜¨ÁþÚy"0Šó0 ;›Ø zl矉 R@¶""ŽkÈă¨IšÃ¤ Éİ(áGm “¾jñŽl o%ú=¦"–| .!v¿1Š2v?òþ»R„9å÷DVø«zdæ¥ù7:¼ÎFòåâÔG‰¸Û™Ü³€øíFldú¹¿Únʃá”2×kÑ?FQû‘õlæ:ÀQŸƒ§§qiõKÕñ¦…ýL¾ÛʪIõhrh[€xnñWùõþÝEðSѾp¬WÄfoþOÔÿ¬ûˆú?m·ŽëÉÖ¶öh%Åpë¶%6Rõ€áy §ÔS×…v;?ºïö€DÓ¹)ù)"콪‘ý£&úG!z¥[Ãþï—MÑjK3 jùø4¹œÙá{_”W¢ÏU.ª€¯°>»ù|×àV#Ìþªz÷vú?NÁˆ%"ãßÐ*ŽÙDÔ§~Ò?$™À)îu¼RìÕ•ñîœW:6ÀΆyù]1«£W´aþî!âS:4 $ü¼}ò x¼@›æSöe©?Þ¡ËÂÆŸZD—ý,œg®†7QêýÔ÷q,fžàqpz÷ò㱌e°”Ñdzs®S¨z‹ò´¢ÂG˜ßU07 ûk“ççƒ%ÚI·óKjòõ]j²)ðaéŒ{`a:ùTx9¾ñÊÚžÙ›dOqŒÂÚ±[üöòè©™uøÓÓÛ˜Ÿxƒþ¼bì)‰cZ>ðQ0€£©€2ˆù"dRõöH$ÁÞ„çsHÕ^ïÊüÝô4aCbR³=ŠÇgêe¨ñûÑW†›Sås3§Ñ ü°Ã_åÔKÓ¼ràÇüW=Á‘äÕÁúFê¸4¸´œv7³°}´}-üUúå_Ð{Õ`*þ«õtzA!NIŽS\„7à¿øÅyð#¤KÁNÿyTLC)®¦¦ÎÚNV›£XóóëmðÓ+œ.ÙÂ)ý© ^ ×Œæ çó³wˆfîÿè‰k¥ØVBîîNyȲæ—ÔLáe+WQª3úù>«£\q)œhYqO´‰€¿ ´Åb·ÌdT…©tŒÁ•»Ü^HÏåŽÐ gÔmrͧ¸6×2COÀ5nÃí`JOí£r.ä–5Bí*,?M˜œO0‰‰9§ã8ê^1s$1‘¡6S–êâkjµŽãô€ M/ÁªÕÂöÓäæø¥ªéC¨¶J'&~\£¾\'KãÃ!ýÌÊÄüÃæ8«’ÄãE8˜v†&˜¾œÜéƒÊ©0Ÿt'¸Û– ÚM+–Ñ+’DªFkÛÌ1™E_…Í>ƒ)Õ©?J‚G@¸ t§|aŠ.¾õúúpõÇEÞ¦°#×ÁT¦ T”uÃñZþ«>ðWî¼[¥é©­kV´76;Áÿ)pií•Ì\öQ Jêì')~^š)øWȽ®ˆ)tŦ¢Â­ Âï÷HþWþóª-S(¿þ›«Î>¢SQ”cèé´AZEí»Ò…§u!óKJòoYöG¿Ùÿqýc±¨Dì,~|RcñŽŽQ6kíE!öR‹©ÙüQèßóÕ<àk‘ç/Á ¿JÓ'2må Y‘^”sÐÏC&€†þÎð_V.Á_m'‡1™DÉ$kS à3ÎÂÖ–äÉê*â°0~α˜6žNûºäÍ[9æ tôëhi‰PEä^´ëë<©/Á»& )SS#ù'¶’wS qÒF ™VæAep3NQ5ß眉zàq»¬>9œ‹æçƒû«ˆá£ð™5LX¥®DõzAîëÝñ_…ÏŽ&ªcÉ ]¨?Ö£k´’_9Ö>bØkð#)™yó ȱj¤,V=ôóœ0c½9ãÎèÑBM3ÿû5õ+øÑ…gm<~®ÓÄ´Äó´†þSìò®Ìð]æmЪ>½Ûð_YïGà›†É4tÚ7ÿÊý£Èÿü8HäÿBÿG=&¾F“±ÙÓäa&bjßevæÝ• ÉuÏPsÅ ŠºÊl%–êË´ a>åÉøw«‚jþè)í¹{¾rêÇT£6zL4û"ðãÎØÆGéÁä¦3paS©Sæ 'IüÆÛ™òöeÂ!¿œþóR¸ÂêS Õ“GJ#Sá7PäŃuýc?3Î ‘‘ÆýÜÙ2™Œ[ aaéªþ˜§¤ÖÐïR%'5î‰óú0\pîtùÕ¢~IÉ}ÓíÑ?Ò¢ø³m·9øHâJÅ9RR¹‹Á¢§ãz(—´Œä@–þ1·C3½6úG5Ü` ÑO²€ggñ?ƒ¿ºËFG0Äœ.OƒíùÌËLí)ÅósÑQ¦“ÉM¤æiï‹$‡>i(ëÍ®Tovúöó°ËÖÙ> N~ì1òÙÓÑ¥RŒŸsÏáš]bØÎ²¨Øò8ÿk_]°•f¶á]é¥üÞ\ßi³ÅD??­&ÑúÑ«ñM±ø+o[+59ÕG üWßl÷Cþj¾ò³DϬEΘžÅ7Õ÷ê+e‚r]«+²Ò¡x_—³ã¬£p8Ûm1‘ï¾]oî÷vQBŸ¯¬Rcñ†'qá¯Æ‰ õW¾¡°Ç?ÁÓ]HX1vÀ…L Ф‘%ɧ=ÅIôï{h¹%¨C{±ÿ¼k¨™>aú¿ê¡,Çž¡O„gŠ&/ÝÓ ”Ç¥ùŸhYŒJ<[Y¢Ðÿa*UÉ6ï‰((¥å Î¥ ®€g»@¶bà‡/õÇ*˜<^ø¹´‘ÜE?u ñx"}7ˆû1©·º¡–W†Ë˜NЄ „É[ºài¢·cÿyÈ$ÕÐ×i³YõG\ôyœSn®1%ºNgr¨ }¹\ CçEä¶æ_½ã=ŸÏÛÔ’ÿ?§Ÿ"ôïŽTáßÝ÷ëoõüpáv¥Š.‡êG´íÚ{ܬn²øáÓ´„{ñ‰º¬Šž;ü8cKʾ²‰\ë`é~¤?:àË OWfd4\|#Ø¥£pì%À›ÜÏmóøQZ ú©ÿcû?ÆQ E§ßp'GŒ%g‚aMÑBjÑß·Àp¡S¹:•Gá£d÷‰Ñ»wRÑkºŠ?eöà\gõÌd* ƒd)¨?ÊEÇ™åN´òd߬ßß”ýµ›øì“áÅ:ÌÄ‘‘ìr-„ÿêf˜OÚ]ýNýqž§¡8“§S£¸={ŒKüWçÍú¨óÍèS¹@LŽN¼ÿÄ<fqé„築úä+/È"Z’|ÒÉåð÷3Œ²üÕ&Ü»/éÓ›i܃Q”¯QiM§>ø‰Šgû:ž;–¤œ«7¾ˆò`vCéËÓ÷…þó³ÁõGrã8ó«™¹Èò×Óÿ7ƒù¹%Ló!lÝ0êŠXÆyîu>y[,ro©’ü(/|EWð_Y›=‹¡ŸÂ1Í7’À_˜çˆøíi¨Þ˜¥ØJõÝxɓՑŠs4^·\¢¯ðtÜ¿uJ€–L®ƒ¢ÊÿD½Ÿ‘ï¯Å"0¥)uÈ]¦¬{Ñ'~ØÈl®0çÒžÁh…šWZû?€´øq%o¬ˆO/sMº?âá¿jj§ÇÞ˜@oJJ³8]•íSì»QAܸÞ$öüæ}>ã²f9Ø)~zKð£›,ô?™_rÞVˆÝ?nµTÚþcý\Uö*ÑÏûÂ_ES[rÌu¶ÆôÖ¡ÙÇþóë?~H”~=~ÎLO²ÒRD˜š`ÿÇ`%HëÀ6ìæìÊ÷›þ«]Ú|bàmx¢d¿»ÈçÇ(L,áøeD66 /×£8¿}¯rŽýµ—`D,ÿ®¬ê’LÜ= £ñ˜˜W ¤7þÝ®QÚÿÑ€ýQKEwtCd¨;¨šï‘+§ ÷ª!·®Õkä%ôrúˆHëCqgn‹ì0+•‰¬ùƒ]G¨’,¦â.qôuDpÀÊø×GŠg©?îâ'…Sv•²7¬Îz®xyy_"ë2peÕÂk*EäØåà¯Þÿâþf˯ªðKKAÄÜTZô¢ƒ¶sÐË·ƒC èBw“îQÓlägºògúF6¾Dä¬î®4Öjð³é£ãÍ;ÃQò=í`üÊiúsí&ûÏ­É…Mpt¦úZÌ{+õT8Ò"òï´ÅD? zOÄoU5èˆb㨠†‘-Ñ›ýÁüô\ã³Þ~Üãz*j/~š_2‚ù‰y’¡wŸ§‚ùBOÏaâ†UXóÛëÓ)P•ùíµJd÷-à¯ÒR¸³ËÉù‰Ñš|“T}BêJý±ˆN9?êDèçyÁƒò \~sйùŠ| cñ> ÕÇ ¯·LÀ¿N(ôÇ2 í¯¹¾Žçµ ^Û2°pq Wº²³ÿ|*s?€G—˜ßþš ©št-4ɨ7š±Džå®ÏÒæ…9ÞüW%À‹Dü°gØ»‰ØSºß`ˆþ4¿1Wp‡qIvE•§ãJØAÔ—àé~ôé8^ÎuŸk6ù ¥Âg/¦Ìîщš-'úù&ø« xv·áŒ]HŒ-Íì%OòGù@¼×G0¿dSwk G¿3–ÑI臒ü¸EÿG9s4¨ô˜g¡33FÉÕz2êýc/}ÌòVÖæ9­À¤”#úp£ŒÓbzÎá¹mmöG‘·æ¹ß7ÎUÙµU¾7S©•Ã_e… ½©vàÇq¥9ºnžßÎT©™_âj?ldËØ9'P£úÇy\¼=¸ƒ:ý)O˜ àb>¥ÿãn䆸üÛ£ø:®øßûâ ýç!zç[7%*ž¡ˆÎOeÿÇ&ö×öÐ22?±2OÃ|[[µø‘—ù%_m}Ó/ï¶m*ýµa$œÁØÏj íu’òI"œ©?®¨¹Õ‚Žçí— õgµ¥0ê·Ñ;|‰^[D½­²VMDŒ(ŠÓ¶þ««jT¦­Û˜ÒrþêïåûY§ZZ–Aÿè#¬yHÉÁKÇZ‹$àGHMêTÂ}Ù„Šmƒ¨G^LLÚJÜ¿EU“ ½6ŸÜ‡¿ò:ó[‘ô+¦÷Ž?b+é??—¨0ˆ˜™ÖÉ•ìÜš´êÏ9ßçœë—P¯ÕÜ"¹‹þêHÎl0gtŸº!&µK3òî¢TLƃi^JÝ¢<"—] &5#~¹AFSŠÂÂ<œPtçátÇwÌ#†­”lN×'¢§h°¯Á¸5ÄÛÆ é}°¾y„ýã•)Z'¸ñXp_-@ñ;T!¹®Ïä½Ð?|µïô^´• å ôÞuðuå¨?ÒðsDP\²e¡ \ÆÑó.¡‡Àõb&÷l Qd.Ü{p)ï‰É eâÓE"åF®ÜšÛR^{ ì÷©NQGо¼Ù9á¯N‚³ßñ€}gS6c;ÝOð5±¹Ö(ÛÔ‚œ¹4»=ˆ§®²üUxÇY"· Vzø³#ò™E2ܘ_r€þÁ>x†¦âg=~TFÿX‰£ªÕ×Yê…)2W¾OSèSìÆ'Ñžz÷9ç´™Êá/]§3e•›ŽÃIæDbé ¦È:dy6Ì^‚K2¸ oðsíÄ»¼C_¢ s¼uÔÎà‡?oC?°æ óK<F}ðÂn߉~þgJ¼+ÚÁ¢Ô)sø{ßPÐÈË"ÈqzÈÐ6ã|«,߃¾|®1@Ý»èçA̦¿nl1[€%éjoþñž~Änæ+Hõæ~ÜßÓˇb¸ãx^Jbíœë#ÞÆ5q üèÀ–“Wtíï Þï6ûMÔôtì0¿É¶«º¦§ñÅx5TêÙ„ýƒ!~³£Ê-+Õ{%ø«æl«¥aâzMô޶dßñ· w&3ŸÇCô¼ü×j¹ÑLkôÐàë«FÓŽçGs<…Ǩ¤‡‰Œ¼eƒaëè‡Ø&r f]ŒªÕûa–´O²oàÿ;1Õ$º=*ÿCYÉüjÕîbˆ££T å8s\úý‹Ë¶¢¡ôη6%¢]¡Q9 …Ηù%ݵ*x¥¬úc ýARêIôó;Q9ˆã ¢«®1ùdzd¢Sd¤‹ý”Ö„izíµcj¥ßÜ?xLÛÁüR´#‚6!§uÖG¡| ôf¢„pK„ŸQ—šã„_œ¢ÐYœåMñÁç3 Ϊ<óKòà¸ZÊר)›ÂS÷b~‰»™ ãøöŸ¾h¢MÑÖÐágƒ“8OLÒaJ&éiåüRûø¯«Ô§V¯—µ?Ê=Rüøl+Gl¾c‘[Ö…¿*Oe¤ÇÃå$…ßÙª·=–rž›´¾a¢ÀO'g»©öÁã4€3 "Ç…ckOÄÏA®7‰÷µ Î-ôYøîì îÂ|åËχ þ8Š“j þù–£Ô‹7E Yý³è?o¬{À|£RxÆ]ôeF‚Ç1ä9:~ôÎr*ó;‚ÙèéIuu… ­!òçÎý­¶C{‚šÐL²°óŸKzð¯0XÑþ¨;¶ôôa:1ZL0µ…h=QOŠÞàF¿M¾Ñ»Ñ¹wЍŸ~»ó|þ›¸rçm;í¡r>Ü5W‡ˆa0äéØÒq•#X3UöÀ}gžTþ`ÿÕKðÚ¶^é ÛTžªb&úúxÉ,¤Ÿü»:ûÊËsFP÷½ƒU9M,²üW)è!¹fŒ¦£n.zÅòþŽô„l±Ò€ŸäÆdiÕekfèS즾­¹+¯è…ÞM§w ´”îðWiùu2p(®šÝÁîüþ5059Ñ>®aô³ð”®ÑV„9Þ\ô¦ÁN…FðfñùÙÇðï.F?ïCÿÇvð½3üÌ‹†fxP{=ÇÙ0˜·YZóKàéº&B>ãÜL˜³&ɚ˃dcª,CÿGwfN¦5®°ßÏ ÿUfLcÿ“ÕîÊDF ?–à-¸÷Xý|Šãrgƒ7õJ ÑM]5¢ó™ºË­LiùJgÆb* ?ª­3ôŸç¦ð>Óæk£‚Ä05îI?2†Ér­^@ŒS×{œ>‚äViHqÛ`NW;ó *·'ÛDÎÐ):ÇÜÂþó\† •qBÙXQ‘úã¹£þØ¥t /!9hàJ¾—K¯b¶±÷¤šaÜÂü'SÛèÜi¦d~âæ'£ÊÉDzװWÀÞxÞœÊÂÏqÅÿÞçmÅBémnJÇ}ú½³ˆ­lUf1¿dýƒ1‚ý»+èÿȨVsªkù›üÕE[m®è ~TCµˆ®ÅÕ2°÷:ýƒÕد~€cþžÿê±vˆøIt!âTÕ 7ô?5hKæ—´b~ÉqõM”.øÙQ]ñš¸¹ öe…~•§¡9ÎÖ¡â(ñßÚÒׄdþÝQâ¯\´iTZ. Å^¢üvòçÇä½qpúåéôѵ! FSPÕô‘‘âGL¥<¿¥Ÿg„ùŸCÍâÄÖ÷NDŠ»àÜS~Âwbs[ÐËóœn ÷Ï7à‰: Fm8ÕÏ5âe\°©A*‘•OÁçZ[.'ïß ³¯kóôIÂK qb†=ž¦TVó¡Ë̃½JE}‘ŠÊ¨Š|¾VÎç —ÁâZîT «y›¦PÅ‘Çpl‡ÏÆ­ãĿۓ»“þª+îçP¤oà[~›Â´ ÚW˜#äWžOªøWÄŠˆ¿º`û“|e5׺ÈV–úcü¶µ…{´ìµ<ïûäG´- ¾ X;ÄâW‡k¯r§QGˆIÜa6¡ÁZó¯&½€@ð n€‹fÃ<Øõ¸øQCÞG+IÄĨE"–Èî-Tƒgí¸Rù­ c%÷À®¬#sO†rÅÈüÄMì³ð§°½»6*ÿq~rf™XS[–)ß±úG>·@朣¡P·7¶EÁÙ01)ìÛÈ¡ëÒ/Þ‚»·9Ür6êBFضkÔ+µ)aŽ7Q4•åä%ëí‚ñû¬_’ÛaÃæSýô2¤}—™žÞ¿Ë¨Ýwå£ùˆNO˜¡C ¡3úùZéjWg* ÀÇ’¨Ì-ð_YüU5*‚>ìÀ­DýqŒùWeÍœðW“Ím(Ý®àIN©T‰yø i©„üÅ8ÇÃ7K‰~&fûé_å[ñ@oÍüÄ!f\òùMFt|kŠý>lVAæï¾bÛUKX-›ùŠÏv4õÖ8<"©©?†9®×W9®eg&Lmý¸ÞLžxáÜÔ.Ë©‡>-é?>3¼ôÇìn®•¦=ŸÑ“'3)þÝäè‡ÇBñWG˜¿Û[Ä…õ® ‘W¿jLµŸ4û£]Æ–Ø^ϬnÁïäµd~I"{júJJ°ÄÚò|I,æ}OE–T%ÔÄ/Ç¥ÿ׿8OýânygkjáïýpU9¤¬cþî0-§ö)xþÕzæïæÇi[Z=†Fÿ{óO0ÿj¥pEù-‡œJËBOâtå©Ö6£‡vVÍ †ï°úÏgë¯í%bÚQ¡àƒ=‡2ßüˆ>¹ gôâ†úý?âÿÿôýN"þâ øácUœ™þȼ·ò;¨HZɬþóá¡8Ý_ºûxw‚ßx›O£MÞÏIäH6ø§DRkÿ‡¤Ž˜BÅùþÁ¸Jcø«³øŒR£Äþ½éφ/ð4Ñ«ʼ/êôn*šI¨õôÕZÇ[ñ>UGƒ8=ˆ¤Oø¾$ [?} ÿ9DÔ©ð+ðÚî•>‘㟠FˆÅ¿ÔÏßÛò©©Ñy˜ÍÍ[²ýÀ[JE²¤k«¯†mzÁqÞRC¬ãOæqd!wƒmTŸ¨ôÓ,ݼ Ü§ö„úƒYfÜû¯úŸ²ó¯Ni®Å…»pcnG½)Á&F'þNDóÛOÚ²âßM¤ò¡ È Ï`ñW3ô$ÔY®øw—ȯzw¦^F».Š—õ4ˆt V0³^]µç?ùwÝÕƒ³)ÜÃç†ú<‰'¦1zDÚ¿Ûü¨Êü’V°F‡Á—²:ø±™~ñ Ò E.S¸Ïåz]«pï+#ÿ¤ð,JúX,T/WÐÏ«š[À‹ fSã4îêàÇy‡}#ëe|²ˆyôt‡þ„]Ô÷dg'¹ÓáøkRe0:Ë²á –¾$Àlƒ_ª-}é·ášÒ³mV2?äqx+þ«…aŽ7FTâgžã®4±”ñQöŸO1ÈF¼§iéÿ¸Ì^Ø{r ½/þxȼa 7ãö*e66ÈÃâƒãô2°!a*xY\®u‰ÞS©E*3'q 5Lú•@åÞ‡ÿj)3¢ÚÓOønm `Iã)ŸH2ø+Çñ)ßÕ›z9HÎgþâüU!\f‰ìµ˜tõ ^íZÏwüM…ÀÇ ‘7[Õ_ë‰9â žòcz~1MŒq\ï)öØ¥‡¥nHîØF¶d&Ò@\QÙø\Ø_û–϶Ó| 1¬Ãm¶ÆÜ&Ø Òÿ‘š;S[OKÿûC=¾ƒ¿º ¸jÓD r³D»ÔºÑžÏì‡þqtËloe–?vÀ_ ä|¥½þÝŠìO|FL ©„âòæTùŸô·9‡ÒÏ_ØZ…šÆëø¢ô…©ìFÿˆ£M¦þ°«¸Û‹ÙUõÜYÝËŒÆQ:Ê¿tý|;úyª…§"ý9ÔìmqmÀ5ûoîz í†ŸWÉwÏ€òÇDC}ˆâ¥>MÁÚLG[+n«!l~œED¿^„§« ^¢ÕG‹¤O£*ÍP±“ßyGì·LÊS°#œÿÊMÛçµn-þ^ ôóLÆ@ôY'<»;ð ,c~» ÿW>Ú,¯ñwC:yKŒt|¸0OÚ î½ÅÞÆ5Þ‹ƒú@™‹[iìMè4OKßå=v€D³§¡†°ö¶aŠU¶ûÙá¿‘)íÆãßMLw\ïÅGûÂÖ”ã¹ð“Üé?ÏHWø"P<ˆ‰#-ب{‡ŽûñôËŸa7äPó°üff6\ÁTrOcy^·;žÂóJ­©ÈÀ[Öžw7¾‹ùWGÍÁøw_³M=»½­™›ýÛè?d.7ž±ÿã)3É›BŽCÑ]À÷Ä‘duqÔqÅÿÞÇmyCùw?Ûj(á3Ÿ¨žKLöGù¨9Qƒ‹iR­ÄÝÞŒþ‘_m„þqœtAQ=Pðß;n§ÍõaJ2 0‹–XK¢ÎanrW¢‰›vü(ïø<£rà'š Â_¢9H;òó:ø¯ö¨oÐC:Ò=è"6ŠËª-JG¼¥gÙ”)éiÍËän=¨ÇS‰f Ã\ä¸'ñï¦ ž_r†£^ñÐxšãß]‰æñwYsX^<9nœ¤ÚrG?ÿÓ^ ÿU*æ_Õ¡k¶OyÇS¸ÉbbÝ]U‘:®*µXDýƒWñïz‹~ü¼ÅðB¥™'¸¼ŽÎò_-¦ÞÒápÄ] G&â·ÅÕœãÓÈéÚgår¸Û·þj¸]ŒŽ ÅNÌÄwT#¢×&æïdæŸÝ,iœÄTŸì»-wµ™½»• ‡cå ‘Vä ÷,Æd^niª«ÊÄÜLðW>zNœÄy™=x ÿÕP³9,É%3­¾#=é«à~òPÏKñbýI±C¹æˆ#Ð?ZÀ˜~…!º‡[Kaïàê…ì(îžè YÙZô†ÐûËYs‰|‹drC¢ÙXJ˵¹aŽ7[Áãûˆ·Á·A<<Á;Ù?8Ó(Á¸ìgFb<­ ö‘0÷Š<~t¥¢ù„2žÚ˜O•²ß¡4LÆJ=9ŠÐsÜÅë`„SÒ5ó•Šá=XãOýÑãUafî 6RýþÑü¸*œfÎ{n€ôL¹ãøDæ+q´W<'Ðð>3ÙÄÊÃ_ű7 ÿ#%Ê‘Ý~ÈŒeÏoÏ‚+î3Ǜǎ’;8ZFPLE?/Í,‰íŽëµôóÔ¸¯šóT•g¾çy½·QÍ^7Q£!XJ`ôbzþp\ÙfØgpöŸ/¥þ˜ÈõÚì:?%=ºü rÊ—b:ïRjêæÿÿîY[•PÛ?Úºücüˆ«œ?’QTÑTµwÛÛÖÚ£;¤ö ©þõÜ6CóeªG÷õ]‘ŒùWÑÔñÊ+ø«ªZoí&øQÔñy:”ÿðE|q”»ýÏâ9ü°‡Ey½'n±D0ÕDIÑAìw£¸ÿãê^Eñ†gç$Š×,2zö ôÛaÄßëCy ú¢¤g¯aTÉU›À¦¬¶ÄUðÇÚu ^,%u‡‘11¿ÖA÷o€‰xiý‘@iI/üUžFœ‚°KV¤¶º$¯¢”Æ¿{&ky¬nªfú¼Hç_½P§S ‡¿º ŸôFX[ØWÁ„yã•ìÆOØoäK^wý6h:F,üeÿG<¥0õ‡!gPä?’p墜O:ø+*ÔmT"EñïS˜Ùg±0‡Á‚®ô—¬ƒ‘r‚»¿G<.cÃp¬Ç_uR­©Ì–ÿª5Uuð-ÑŠ!35Ív"_6»/QµÌUg£åCZƒš’Ùð»_­oц†yÿFŠjÔ»×¹'Uaã¾égå6TžÑFwø´TöcföG}‡}yþÑ=` j·zÅ_œanôv¨éãe”Ê6𱞷rLfLYÿn'ôtÆn𣕙—Ô*OúÿºÁYûkGâX.€~n±D×DoÇ'²NI®½æx7xJLæï~ÕÇËRÌœŒk/R¤¦nÁÓ¥ Ú3¡x¤+q<ÛÅx¦›r~äôó¡b«ãzãe†.üïs½:›¯–émrö|ÌO¬ÄþÛ?™‚µƒù»ù˜h¹þ2¨Ió¤n¯jÔFÕL-]pÃÕƒIéb=  ÐFˆ‚¼á#èÖŠ®a~âVzཙْìŠ3¸û?Öé®\¯iOŒþQ„ È`T‹%Tói¹ç-ÄfÇÿ{_³åa¶ÈŸ÷ÁÖéóW±à¯¶©v­æ ~Xû?¶Øš¨Eé©Mÿ`ÊßöïîÖP4D9~!„ýµã”[ðWMÑ?®pÔßãÙžh0/byx#æ_á»R¨1‰¬ „•]¬Ô_õ½ý¸;ÿúŒM èa½k3Xßó^A–¢Ë¢¿XK¾ˆ'¢¹îñ§˜¥ýQ­QŒ–ƒßaX¶ñfjä&½y"¥çãÊzG´7¨l‡s'EŠŸmè«8 2‘ët”óPN³Á:u¦Z²Ø“³úaêíDZOj…šúÌHûŸ©SyK:R‚•ß»w¨‘²¯§ÿËòïp烞‹õ¹ðÄao˜ã¿07ŒÐB2°\D…?˜¬2$cÛ9 YU}&‘ÚÒáïPCX“À¦rä/LuÑ4Çê8˜mo]#þ®3 G/P1|mÆ}’pù=tUœf”5÷¯¾ô1­(Tæ JDó¯ÞÚ ²/yx0– %ö¦ë d!Òu=ÑÿÐŒiMÖüÝÜÄ'«§ý’\·þ«‹!'üÕFu5ÕLr‹sT½ùǃb5¨/:áÙLÙ_äõ§ÐÏëã¶u!/­‚º²˜~iè%DêpW›~Š< ñ‡ Tíýzf¬$úÇay‰ú£2 Ì\HgÑ«“›a¤r¢køËTÄæ„ÜÛ5Ê“0G¡~A]ÜÉÓИ©$å9¿†;ºLj˜¢eèÒé`{Îþ[ìSoA×x[ꕨ3ɨE®€î‡´qaŽ7M´ãïXþŒðH’û´ü˜gt£ßܪ?’Ð?ø…n‹;è!uÁ¹àG:é?QMå€o 5½É …q'΃æàG=X]wr¡ºøt»sŒ¬L$ÜA½ŸïWñaM£ß»+}„¹Vkcn›h|&§…«ãÙª¤Ñ8IkÆg\ã-ïîDPk;NšÃ_= ñ½$oð7å`2È7Ø0o¶£%“£6FÈzZ1_ÈQi¹A(~Mé\@ÿy2æï®B?7áØºÓyŽþqÌ9¼ddU&Ê8ðW.à` fug‡ }¤§qd1×”áÚT‘ ­·#ù^V}‹Q‹nAXÎ+ðhÖÔÝföžöøwû ×ýÞi$¢ÿ|-û?ši´·J޲ÃVŽ>ñ¢hèûà¯ëp~¶ÍðÑPzKR5Ä×RjÎLñ½¨u§ÿ¼ƒ¶WWæß:Ï÷ÚQõ¯b o}[âkU=g›”hhÕMà¯Ô¨9Äüaª œ!—ïçt};>÷.bïã3"³+õGü»Dˆ³í×ß^›®-ˆ¿+9Ú…ÛDë´D҂İDðXõà]jSÝ6ˆBÿù[[<€~¸9’ÁÝx©óéïðïú›ÅPæ·àŽÝÍÎÔ×Íã´¦‘ÜÅ3Ô±å`ø+k§¬ä»zÛKã]AÎSQ²Aä<œÓ3îÈZ}¬˜* {Õq”Òj.*ªÙ¸sãßMJÿÇ0ªš'8¯£tÍ†Ñø.¿ vƒV¸Ãoù¬Úifg9U¢ Û À4uGüyÿj&ìû0=¶¸§ýA|îÄ¿Wȳ7ñ{E9ÿ2¨±½onÈùز‘¯Xx½µ£ ï¹/÷güÔbØŽ9ÄØ¿ðÚ|@_8̤‘¬°lÖ¼áƒz\ÔZí¥ò äPÁ_M£ÿc šŽ3Žßg(ïÑè¼cgJH& VÅU—ì¾ õÇb²dÔ7ˆÐ™é¥Û# þÔ9ôV±S77‡+]€Fòþ¬@p´ÌŽŸö»Xk’óJû;ÐÊ~î} fIôçT e*®üh8ÿÕPÕvQÔÁ§UÞ0)øAæË>§ÍdÒéíkp´6§O­9s­=*Ùa×’±¯êúù¶¯Îó™ÌÎ(.·¹+E¤»|¯–+è&kLä|RÙ/M¿±ý‘¥ÊŸÚ \öçùþ’‰Ø8ìZÀ†Å¡3o%šÖ1=q¿5qĞݼÂ~ 's"õÇ5žT÷àÏnýçÞ¡üWG•@-/µek”»ÌòžØ£»Nø¯¼™TòÆ8NãURSÉŒ£²âÜ$¬SÞç,¨ç è–®$—¹·sÄ7Ô!'Ð󆋉ôúD|ÿ’)eÔÌ0Dk©>J‚i¨Õ{‚·õÝœ)u øñî޵œºd,?ñ‰¾üˆ‡g¡Ÿ·‡•s†áèÇÙ]ÃýX{eí«Çï4“ܼ+Êâ^Ô”õTwåéwÏɽ­çxsCÎó´-,¢'>äeàGŽUDk/2»‘¨¨£aÖ¿éméÜ»@ÔÎÇ´Zk{ñ1ÐØÚèàÁ¼ÐðüÕhµ_0~äé )¶ ‡XˆÞœÙE+è1{Måq›îˆ¦Dû&ø½j[=ÛðWcåð#|uýUyFŽÁ„$î{bã=‘é­31rqÖüݦL|F»réј åf6áy:þæHö¥ê¾°®!Wk³uƒ¿jCVñúù5Ô’8`Ã@¶åUEžGäKcßcþaï`¼ÂlÍ nHÍåÉüv OôîæÙpõG‘ÖÏò÷å¡°ƒ3Ùrâ7ØHŠw(3ïГ߱¤‚¹i.Üâ*yßp>c·|-®9N/…rPñ„ë©Å;`q°sè­Ê,¦T1ôÂ×yÍ?Ø8 G×°W™p{‘nñíøªÎ‚ýåÑã{9ŽgñWÑP­žQ'—/E\¦UÐc† ¼3€Çévq²g¦sðµÜ0¦Þ±x[8Å. X6á%Ö;îßqå¡V0X??«·”AÄ7£›=+g³–9_ßðLÂK]‹ù\qà¶¥žY"ãÚóuùÌr‚Yù¿èéOáV*é "=lÔPòªÌz€Q ¦j´1., ,âh³®ÝËþÞ¬gÊüÄWfîe£‘ù’gú†XJý‘•'¨ÑÿÄ¿{Ê–R‰é¸3é?Ïêø/Ç¥/4tåEìÿ¨¯åÑî(å8Ê:üþñÕ$Ì:<ªˆßœ¿{’ù‰>¢ \S ²éGjl-SPü4g‘D«¬y©)Ô8¿užß58üg(*KÉA}DI½3jMbX̬"ž(Ëóq0ŠúùüWy„?Qó$1}¡â²qŒØBž{•ŸÒ~¨ Ì"*çX_›«M?‚Ì…?^Ãuü)¿“­"¿}H{'ÊÀ};éí"å¯â(‰“W™Óaƒ½õ¤VÎËþÚî ÛcêKDÒ·úq¢ì0jßÒú(­U$wñ‘:ü„Òs•ký.fqÍ+ˆª+ˆcCPè½É`­ýƒ¯‰Ek8f/áª5ìƒÿU ΋©„`Ç,ºù^ãŸFÌÞ$p×&bËCü ›<ÊÛ4< Ð÷ŠN?m㳎;A¥uçî§âšÃzùƒ’%¨ÑlhÑô£ôeá@\äiÎýˆT¿W.²Æ¾Ž77äüNÙòi[…µÿ|,ªi9™™¨ÑÎ+qŽŽ>¹üh@49‹æ[Šx{œŸ¸›c¾á;Ú2¯'¼º7M#¬L‰˜€¾a£ÿc;Ÿ@\¦ÜÒ1~¨fCbq\X[e/ú?ŠÂÞ€o%—ˆ¼?9/^*ŸD ®ÐÒó‘ï‡ÓÙÆwgĽu!xþîe\D_`„ÜŒpVåðKÝMTcþÝ|úåA˜Oz ýìm¨?ÞñôàŠTf{uÇq› NlŒ}&»û];R½  /ÄŒ>,^"#ý&¼C—Ãít Ð+.ƒªU©+b…“aé¼ 9oë<§Ÿ™crŠÎƹF|ÆK¨€€ïéx©&Š@LJ‘‡þiTÞåxö[’ Œ#_)Ä$®`n-£=½ :ŠÅü]˜b¦¨§Gc0õG"挱K䘙=XÿhÀÜÈdDçØ°Ÿ|6»õŽû·_¹¯åäjŒß¾û‡ècŒ’x§àÔMøÄx×ööÏÌìÙ3ƒ‡bÅÝ%¸»» 8w)Npw× Á%$<(ÁÝ‹ë÷›ôß“ú<_ïísË¡}föìYò¾ïZ‹¼r;“·Î¡ÅZ F¹ši‹%Í52šUÊp ‰6š ;ÌFþšÈy oÒ¿}þÃw«]€QŸŠËùÆDz/æa®Uo2™øÂVk³'úâhf|3+U&±È¼ˆet!ÍCô‘Cìtîà÷!ØQ\Ië܇Òç_óo6ÿ‘FkÿñZiÅš­TWæ×VS7ŸÿÔM]¥þ|+,EurïËBA¿k¨3ynCEym0üÈXèUGaå§š'õ9Ebºý=Ü”÷j 2…äíÄú·Owúíò§À¯ÒˆS`êûC¢ç`2öú 2­Ñaø€f…aˆÍ*<Âôdøv°¿k£Í×6ó.?Á ïñOHn;›ý•,÷0¿»AŽô¾¼FûHýG,¥ñÍqê%oÑ$²tíŽíºÿq‹ìëuslóL¬í­{$»ø@]€¦ÕîSÌOÄÄwØós€´Ì#ÿp…e¾Ë>졺ýÖtœÞ\ôQ¾„½½0Ÿß:rc¦4¼b1îå/þ£7¶è¶¾]''Z‡E1åir {þùH|ÖRbüÍ(î"Ê ç+ݵ&x­Ø¨Ìà!ÎòöµÁ Åý^Jÿ’gš ?ÝE6çý÷ç¾gp’ z˜tÖë8ßÜЋ»íÈ m£àL“³ØÕ.ÎÆ¬ÎR®jz¢Tƽë9ˆ}Ê#í^ËkxZ·¹Öºœ÷€Ð¥B>-Ulj‘ ŽI°è{°¬¯ùþËÔí;Œ¶ä «àŸÁƒ`Bwà飡VÝMåv0¨àR‘þ›cªÑ`S:Rÿ1‰¬âþ5 þ£(¹Ì!y†j’ò ø[Í'Ôu×A¿;{ŸäìUu¿Ë”`"{ÃõOì­ÆDenëÍ«RGR•}NÿDêsÂÆk?€Š¨¹QWô»Çei)P|D#æÃ‰\¯Ó–sr¦Šèw¯’—¥.(lÄFªIf3ä$*¦·-¨àEÓP†-¤rú ^pÖyz6Éü/yW„ÖˆæPî*[ˆ šÈ{(]—r®Ò“Ùó£^2£ý&ü~bðè‹G¥ä‚vy´¹\q;|-)Øì“ó‰x+±´{¨ìßpF4ã™x«/—+èyÞ“ ‹Mh¯|°ø à?Îqµ®Ì=‰FýGê†È´D7‡•߬ØFUQŸŸ}¬ÍߪľÇ4ÜÁ¯Ò³æjs¾‰ç©??óàŠŸ+ŽOC÷Ýgä_ç¹ï mÓ7ëMÕá\np…É¢b¡ýÚMþ1Ûè ~•ÂZLþzDc•ô"÷Úˆ `<~z5¨Ó8ïí2X„ÎwÈM‡‡…Üi3Þ„ ¤aJOð’O„¬º Ü)õݧAŒÆa­+Ð!$ˆLaÚ´«ô˜ªx¨ó@/Q¢£¿ªÄjgõ”ðçÏõUr"]¾6%Ý×ÂíFýœ‰ÊnTb%`¦R…ôßugð(é«—k¾éuFKÏïÊÝÖcrÉ:}²‘ǪM¿öö(k/‚Œ«KýG,ú«Ä«ô“¿Z•ŒúœÌ ²–ž\/§:£˜Ó( û1ÿ£7oCQÞŠôo_†¶”úÁbtÑobÖ±úY_Ñ‹Í4»Ù¬˜dIyø–÷DY`ïS¢Mn'›þOð«#ŽBÔ†ÿ½Õo”ŸÓÅþý“‡®ø);ÕDZ/-+xp3Ö\ãhHŸÜªð'ñQ7Cÿj>rLnD,_ü­ú…9¸ó•gô¿Ê¢ÕÕÎÃËÛYÔÿ÷Hó%„ædOÞüª·rE‡ÕÊ/rˆ̧¼§>ŠÒrGBêÏOÇìÀÂL'ç(ŒþÊTd¸ð5½?¼B?½'3䆉ˆì^ø/iÿ±šLë 6þ(ˆ,ðåÑàVOP‰o$z‹ÿ°û<d'úEšèJuüÇy‘|£¼E›¯èŽ‘'”ÆÆÞíÃsÌàìUÕGjý"ÙÅ@uyNöE¬Æ[0™VXõbDÓÁ ÚÊõè²ö`ßÀ?ìdÕQÔYÝ‹ÿ÷û·è)¢sgãásâ#ã ¿ê›BE WZƒ*è\ïÀ=ÇO aןcþù/\å4øónð9ÉÐnµÆÏ܇ÿhëß0Y¿¯]Ô¾Rך7ëÏê4ßW”ùÅyyKË9ßÜÐ tdÔ–‹axW{®‘«ÌŒÝêŽÿ(ˆëÂŒh‡UðO½Üÿ‘ ]nüÇ]jE¶g¨³HK|—S+Ñ7µ£ú…®\¬éËÕÁ÷…ÿèæ¼Ýè¯î}¿&;Šfl’œ°Ž±„ŠÁFæt#=“·4ÔfŸÑœ%‚á _1)´¯y÷úSñÓH"˜,æ:ïwø;ò)¡êÈwŽÎJ>ç>ýÜU(ôo_«Æ#;(Ný¹mÝW8ЧªÈf¬ßþ©åî8æà?˜ì…e>.™_;[¹®ueÐïP×^ì§®ó±F—~ì_;xäÒôÏÆüÚ£hPªëíDуþ‰—ÔÇQºÂ ÊY¥€¸Cîº`ùAi4yôqbô8jÃJ`XcDzv†NVùþÒuµX®ÚØ¡µDòvÿ«ü|l²mª"¢‘éÖ†÷¯…Òµ¦î©ÿP•z CWDV&ET–#`”sÁŸwÄv]#¢»Ä‰ÿ‚Ž´¾ЕúÁΑìâu¹&’ ð3yH3ò¤Rt%]N¶JŽáIxƒ"ûx /0¼ x¦ò‘¨÷úó‰ZsìUTÎàA΃HWäêžù Ñoi[´wXÓβ þã2yÊò·Xä í"äÏ/8~ Á¯>ëÃð9¹À@Öá)Ga]—ÀϦVï½Þ’þ‰g`@ŠP›çÏ÷Ù]©»“M5S ÎN§~p O,#˜Ê)r I–t‘¸3ºQ•úÁå¼ý¯2væÿð“퉙K=-¡Šz„\$*ˆBážËgå5¹s=9ùLQñžæžþ%{Ðï†Ø„ õ*>Ã}=ʸ,TD<—&ê®DDI^áø®ÌnnÉ<$JY+Ë¡N.‚þÊ×HGÿö5àWQ «èØ`x‘³`¡q¨¤‹c¨øôrú9-tž’ý|=DmjÞ9%döê<ýwW+ŒöðÉÁÂ’bûãZÇŒkèz7ÏÂTÌ‘½Qù“1äSy!Îý}L™Qâ,$wÁÕ“>œ‘ØL±JF÷G|£?øUÔWåà{Fà?Š£6f^ “ ¶˜ü*-Õ;¾¢‡s½•ŠÔ¡3³û#ã³PñÓùèRÏjE=^^Øž ªg^’ÄF1••ìò±LüyoÌ b¼Øë|"›•Sš]SSì¡>çéMŒŒÌô$ÿÐà?\ч œZÌ4©Cx"süGm£5Þ§]VšÐ¿$¤­9mofúú–§.ÑâMº€÷ÊHÄTMÖwüß}ØíH£„öíЕ¾aЬŸ» “ºˆeàWµµ<šC-Án¯rÔP Ò¿=zNõ纳œuÌ éJ[ ›ðD$Ô,zÂG7×itm´Cj柜_kÁXL"ï@ÿÝ ú@%þ¼9ªJÐÝf“8¬†fÐ?ºó³(Yʈ[ØMÛÏã×òô/ÉOÿ’ܧd$-‰˜†Š˜ÌÿPgîû+ÖÑ&‚_5‡Eöâ}ÞŒÅĆ]ÚýÛ½‰þ’`3°}#õšRÛ|\d ç¯EWÂJÔ'"2?‡’©–¼K$Kžäœ®!Ó©£ÏÒEr…ÕqDô]À’®ã?ìþ%íøÉªDåËAâ[ã?ž‚‰Ò?’לÄJÿNýÇ÷î:®’MMM¶1úÁ ä**ÿŒÆ¼Ñ·Á7Ó}ˆ÷¢Ý>§Îk#ö~;œ}díçGMTFj-ˆ(Ó€O·'*8Oe|sЩ/ìY/ýqOK…]j…5ó{óáêóáIsá5û9ßÜЧ²ß‘ó6_9ž'9@`|¹¢åpPvÛT˜„à-jÙ£0%á?N’m$°I';’\]*äÓTu°XÀ^¥ ‚ƒù^x“ü#&üyQ"K7ú_ÄstBÝ´ƒŒ.ËbçPa1\®åExuúgÅÁóê@VéINñˆ«‹ow÷b­]ÌòJ̼Û|E] QRÃRWÀRy’mZ8ýn3𰜶`NE|Á[½õjGšp*;ð¹ÑL=2[b ªÚñ¨‹¨f7ᧃy:‹Âõß,ªMœ ‚*ÿñB”OA_<á;Æ)é…’.à…¹OäEåÛvqyÞZ2©¼tÛ*o‹Ð þâÊ&e.ç·J’ê(F ¿jK‡'S²ªR¯áâ*þc?þc&LÅ(üÇ¨ÍÆ“'4ÐM8'õçœOd‡’P»Î“¼ÁózSÿZ_ƒß^ƒœ ¢ÞûO¼¯Bÿö´t¬zI>rou¶¢#ŒÏ"šÜô²Ûì|SN)~Z:Þ«NÄM@ÊêÃŒ|VÖð6SÐA«/LȺ¬/cšÈ²­øõDV9£/ª˜ô²#QlC¹%LýÇaú_õéñ‰¢’„Ô^ÆSlE»•%õÓÕêo]Äßµ£_ä;3†i°îx¸ñ0º é¯m ¯.ò?©¼ì¨¦â<¶â®üÜ\qçCrùìľÀZæ‡Û>ot…CÞ f›JþFVÓgŸ,åŠÛí29QíFåô7+ö`ö«¾Ž§æJNeÏJ‹ÞçÑ þ|™¹ÕütüG'üÇe8 dä`±¨ÿ8‚ c ý—}³^‘GÖö|² 䦾ð°ñ˜zü{4kÖ4üÇCã6sÑÛÑ¿ý"ñGg* _÷æïŠwÎ, lQ&°s5íØ‰w`•|ÍÀ™–°JsêÐ×QQšŒëˆ9†yJÉCænlEk7•Ékœ{L) ýwçzè¿{lþ¸}úÉt^’c6¤ÿU&k<õ#ŸŒmøŽS!õƒE±øª5=© 8ë>¬?g3"ü÷{JñÕR’Ôä Ðýž÷¾7ù‡=ïãèÕKcˆÕ ®p×9ðµéðRñ¬¦F"›l²=Yp5y†™¸_à^ð«~Tüöç—C™xŒi†¾ææåŒf¹…ôO¼ Ò”ù5­’`ÕP`Ä‘(3¡—IJ[û‚_€?EY>9Ú()œûô÷ýEíWÉ ÝLÿ’.ZúÙþc³£ó£ RAx\ùà?açÇ«žAµ]´ÂØÕY´Ôôoƒî¡7Ó„Zh˜+Rá§®Ó‡èÃ&ˆe>€«ûІð‡áÏ»P ÒT´ëÄÝ(Îÿðg~Tq“ٟ罌£l@\ÛWxå¾ÂtÇ6£~°—­ìÿþÝVÔÆý_ÿv쯈Ȕ|±8•ÈÝcrŠ›÷7"¯…þ‰ ”*ØæKðI±œË°—öÔÖÞÄ™§à‚ÏÂø}ÂêõÀ6¯#:ž§u‹dß«`ö‡’]ÅWjXÔæDŸù±t»‰ÌÉðöÜÅOxΛào£Ävå{¥¸aüÇ)£8Öb—\ä /™Añ@ާ¯Éî=9?‘|ègg6þ›õ–ˆB`(çñãåÀûb€K]G1µØXÇõ$µ67Iò£ÇôÏZMþq ß¶ ÿáK=eôÌëäCqÈyy¹• wÀ mÕí2v.+]¸Ò¡gÊf6c^àIp¢ÂfVT² Íõô¯j‡þj+ªæ±(òÒ!¥$þ#X4u®·R‰¡½æ-=Ï&¦uüGE33|ôF枢Ò>€Š¿tðP-?‚:ù¬è¯!½åΡ¿E\ô÷‚¨#p¡cjC"¦f²;9y7#§•~+¼þ+æ#Úë1EåOê?êS?ø˜ü£¢Ñ†h03o³«¶+Lþ±&o”ÈFÜ9€'‹~ýîYz¨l›#KE¿[Êêe]A¿Û >>®åBR]×WìÄgð«T ÀÕda±÷ï ü}BÿöDÎyIÿ«dÎßýÜeÄÇ®îUói´ ôs¨Ë*Û˜X ÿq’ùçá+¬~¼zc›fwYo†Õ|Oýyz¢ŒU>j]Egm”öXÍ‚ýx°šQœQà@óœ¸)UžØ úv[Ä©Äa>ôóEå ýKžc=ñnAY ýnQ»Û°)÷ñR‰u»1ÿ|œˆÊDÜnÚ ô»íˆ|·ã–É¿„ÿÈ"ž”"1Èt#v &R? ó?R+íÁÒnŠ‚üd{0÷ þïɲ®bßóðíÀ?À­a7jëãµ.‘6k}ˆéÒȦœûöœŸôÎSx@™¥ÅxÑ•¢»ûêÏýÌ…Ô_–1cÂêw6‹XC­[f4^sñÆÑèÀ«ƒ’ÅEõþ'Þ+ž® ó'8ïø¿ûpÉQÛþ÷÷}q´þ×õƒùÇ>5þ#§¦©µYs;õåÕZ!ýÛc*¡ý™ÿþ¶ýzűAÛU­Å?¯Dj-93Ef+4wªÉ:jÏñK¥Wý£uþþ³ìâÖàõj/yî'D)½¾rI-¢<ìc€Ø%‚ÕSÿåþzO¹¥Ôªü;êÎh÷o§ ·º<Â.ÖÆþ÷ÄDñò‡+ýõ‡ÝÈ?VÀË¼Ä ¯‡‰V‰ïfÓ øïm ÜŸàÀ¿€5,'·|~”¢tDsuA¤„ì€f4/ÞÄAöp¿YnáþÉÇ¶ÕØm*9´‘ìâgu6µ­Þ »¾’“ï‰ËVÓ“þWÀ¯¦‡íb^Á`_ãF0§-´Ÿó··W©¨¦ÇÍDŸ›{LL$æ—ï“#í«OùÈ÷<À£ØÝ.§ñïÄ(iZFXÿ1C£õá¾’‘µ"¹Î³lˆ2ù#¤+ú«ÝZ°WÖ<‚7:NmJI¾‘ºQ½½óÍ ½¾@G!mCL¬äp|B ¹4Dål#uÕà@VË×úPØï› =¹ÈOγâI¾3ZÞ.ôo÷]*äÓ\ê?ÆÀÝå‚)›ñÓóáhêÒϵö}+3+Þ¡Üõçw5±Î=P7Õk_†iýÛˈPNò¯…“ªÑA¡jÁšÓ ظMËMþQîy«¼B/ŽVTÀ  Þ/ö¸& ¬§Xét`Y™ÉB×+7¿yÒƒT“ª™D?vÿÝ’dWµè÷ºÏ(/ ƒÍ ê`ú¦Úd2ËŒáx‘TTÀÚÛþˆy‘ Ÿ£¾Yo:úÝÊTÅù‚ÍŒÁƒ?’§™}±ŽÊòTSïÇfrk OÄ ¶&Ÿµ ÔnøPZ íL)^æÜÁJÊeš+›•©%׳äEKMWà/Æ&îcÞGaôMðs¿3¡¯ ¦ì*Íi`…¥AÈ HT ¢¥s=oð«/àW·È”uã‹ø@¤²ƒ¾êÉé_²˜þ'‡Ì¦]ƒžðš.]}ÍYFYÓ—Hg0Ïk4w•ý®Ÿó~ñEx®¬×›ù˜“õF+5¨}Ã`à/ ¹Ý‡êv=–½é­ïʼ¬´VM£XkjY ®YvhÿÄ êϧˆ„ÄR#ÈÌ]to£µþc õ穹ªéÔŒµ®RŸÒÐÊüóTpóÞæSÐäÝàWE^žw{áå¼ãÿîÃð«PÆCUÚ‡aC~î*ºö¨yè¿[^{§”g·w;ÚªM™ÕHÝŒÆ+´?ATÖ½äXJ?ÔfÄÜÅ@âhYXs¼òA›Ãü¨ÑÚ¦R…W¨üxÕ¬!ùÇÑ›w¾¾¾¡"õƒyybÓE'á.ŠÀ(öß½‚Ÿl*ÞcãöÃ*o ¶u‘5è_ÒL쇟{~Õ ¼h(þÉafª}ÿêúicAê:a¥7á‘6€ˆÜDÃU& 6™s ”âØD<éd2±vßÄ­GB|þ< ‘÷ ½ø•…õ?€ÏÞ~à$Ôv0ˆ&ôOì|+"ZÍáе=äð@Áð®Þ¢(*Îm°¾5å2›DÖB^Åwz1ÿcÄüG]ÕÖŠ,'bÊŸœÞ‰ûzªûÉaøb»ŽN¡3ÇþËap­%x&Sž¥þãk·R¯õ%ÞÍ$ÁB¯Úœ•&<]ŽÆ\Ð~ƒ?ï"ëÉcø¤-D±Åàí‹UDÔ¿ä,ý½Ä¼÷dP‹lèdVÀLõOf0‘»U`AbÁŸûÉ h›‚È|®óÿ´`%=µ»ÿÈ? ÁÞÓ]ΣjºÑàWµè}èʼ½yô€úÌôò%Õ׋xR±©–û†ÚžåCÿÄð“Ç4üG52¬jdB ŒD©ñµÀ~¶PÿÑÑlD7Áuæ3x‡)Ôú ¨ÊKöñþcüG1ýè@ØM¦FÃÛú¡Wn„Ÿ©fš¶Û×pežì~üGbz^D¿ëÇz½Éqš¢YÞŠú8Àž$¶7s6…úóºòg¡û œï2“À—­lFÑ´‹— K8¶—ÑÃô'SX!ûƒ× #šªÕÒ_lv^^aê?|ˆ©íyTô·%ÂÈ*9<‡4™† OíFöQŒh$ö4=º,æ€À¨ŒËÎõ¥¢ÿåÑ̹Þåj€9^¹}Mÿ’¤<ϵÆLê‡06Ù‚ÎÝúS3™†&¦5ÙœLÕÆeÎ^ÀaäÆùıֹ•³Zq2ÝÎÄ%•¸r?½)õƒ¹à?FÑ›ê>Œù#:™TäªSQS†Þ2{eËݨÂYµùèdU—ô¢Î(æ:ó?¦¢ßíˉ+Èûz6~+þc,Lnª>*™µ¬vÔ>¦/ã2£®¥j•³üˆVç%üy2ò³:ôOü_øŽôaWŸÀ¯ÂT£;Ÿ@T>|t\d"lÔQE´ÇJqv{¿£8}ró’a&Dx…ã×<îHý`‰2zphÉ´<ðç§À¯ÂÐP‹ªéÏóÇ+ýõ§É±îS±ma1›é›È?ܨLÉ3›(ª‹Vbú«¨ MǺ+T¯À¾â‰–Uæ¢&(õçÛ8Oo±eͰ¶ƒ…"ŠÐÎ0߿ƺè¯V¡¥üH´í ƒþ ±íP"•÷ð{©CBœ£ÂúNF›10RÿC逵¸€ÿH([¢Ï°ç)+Üõe®¬4–ô(]µö©¯'n€þªO$»øFÏOö£݆ˆË»Ü ¬øÕ:ðœRÄÁöLªSàGTjèkÉ?(ñ¾³fBú_¥ã­œ†b= Ú¯¼ICx,ºƒÌÅÏ ÿ‚Ïp »ÙE¦3O§™¶‰P¿»P™®õ3K…ÿhƒúê Ù]4öüáLW¸ =§¾ »ì$Á¶ÃÜ$òˇwxþ`.òÝáøAÙ—·ÜƯš’#e ÿ¨fôU\72‰[(‡J‘\зruçùûd7òKáð8u™˜€÷N‡M{ Òÿ…Håpïhô»*m í;ìæ9Ùc/øU§[p/q©ß,²ý£~ð©òI”àË¡[zrIϧ_{î+¯½¨¡ @¿«‚Þô¢7ëQ2à |ï=ê!vÈ|d^'ÂÍÿhGþÑ^è ðaY•Fc*½mÒÁq3õé­ XÁväFè_r,4üy<|Ó¾{¥~=¾DTņ] ¦*NŸà^N7ЙùÉEFº£gC™”Ìډǜ‡·ÛO äü‡/ö9 >p(eh—]¹¨øq~K€ƒU•É?Jq§ñ©«°g¦\GÖ‘zöJÔ»üþ”…jô¬x KFè*?ÇäÎ0õ”xÚ}áËœPþí*/—èQ߉zîÂtûR,Oó$˜]F&\å`JìL#ŸéC$2Ÿ>_]šþx¾ÎS}X¹¬àYÔÇå’ ÄüG)«>£U’žF%z1nÀk¬`F˜?¿«en‘éÑ_Õáog‘]8ûȬ2:ýÇyêÏGŠÌØ¢.x,úyÃ…ŠýñT_¾¢Àq´õ­6Ö[æ]õ@Y¬R?˜Élbx˜iykž‚_½¹ˆ5› Ÿpgð¿øíEG®0ﻪ´V~Î.‡^c,¦¾ìPÓ3Í»¨vC)Ãnow” aÏ+«Þh„Î\sxÒ?±o`=P$×Òi˜u ýnmm æ¯VQ 8Ÿgè5|ÿS üÇhº÷#jt×7ˆÂzw¦Z&Æj u˜è-vG±ÿÕuæœÔ÷9‹Û‰@æç‘•Á-;‰=Ø“WØC7ìOô»C„…ktÓ†SébW0,ÿÙƒ}½Îq°¡%äj¼É]t$d$¿vÔÄT\±“'Qs$B¿; >.V³7™öm°;ø'ƒ¬ÆV¦®æßc"­?¦Î€‘îÏ}‹ŒÁùnA–‘e6Ú¦†r*º]_V—ò;á­/³¿;0±RVMÍÍ& Hÿb  ›@¾vþc<׸¬É$ÿø„9Äý.Ä'h2Æ+"MÇdú_õ¤!okÍÕÝÀÞWà‰¼%ƒ¡ÂO‹†mmŽ:‹÷ܦXUO@ ß!Bÿq™ücXÀ}>u¥P«îàoÒÿ…zïöhxÐGN¢û[<ëÃü“_ÓlõF¸£7W*ì‰-YÁÚï‚Ô¼‡¿¤ÿ®å¾=â8yNc3qu)0ž.ä;ÕÁ|æb½'É#¢‘ÿ~TwçN>³ˆ5^É=œ:_Y‰ÞƒAðçí©v>³ -î@Þû^öì H òLàW•gߜŎª†ÖÀ—§ÑÝWeü[c.}ÁëQ ¾åi ëýàËà¿'È Ò-ÄGH~¼Hÿ mûf½q¢)«üÁŽT†×ˆÇuÜ¢vn%÷6ýî^¼‡ÿÃB>ÒË b³æAìs£ 9ÔÇ0ÓW3Ò?q-™]ùX·ýÇ:|e=*!<©ç. £°;šó 2’9Xú¾fcsµ³éçë‚Ö8ØÝFÑÂùDN1ОÔq“XçzŒØøhè¯r¡lÚ.6„Γ;¨?ÿÍŠo^54XõÔ}p¦;íÀJge¾ÃçýîÆååÙÖ#nÊCýÇÝÖ¤~¨õ±ùŸèß^<ë½q¤2>óNY 7|ba銞>‹üª—wú3Ê m´HO…W;êj31ÿ<|Ìüy0½ÂR’Õ´†¡ÈÊjõ¥Þñ3S© º¡ 5MÉ´9±=W2ö¾Êÿ¤ÿnõç¡üù[Ç ݿݤ®î˜Z€ùƒùµkJev{ƒ£ŠZ¤©°º…÷ŸÓ_¿òMɱ+¢&2¨iÏ©Ž¢ÿUkò^šŸÚDÍï|žÎƒòƒiÅNžÏkø[d D5½]qL|þá&šs>6F±þüOx„ÍÜB\¾‘¬¡$ùGYü=½üÞ£)ÿ½‹ˆ/¦‰?¸¢¿ÿh$ú]oaOBÚ þå úò%_2N{é ?HþñU´!6)£7ˆÔÄWcïÑ_U”³‰<‹£ÑèÒrƒ³~Ÿg׺“Í&ÿ˜¡Œdª,é0Ø |*0W~ÍR?¾PñpÉÄöñwþ Êߤ/&ÿøÞ]ÿª4R]È(¸èSõ¤¬7oôP?SÓAßBô‘}}Â?±QSÙÏÏÔê4Õ"ê,3Ö±?÷•ü£vð&ïs]¸­gpƒõ¯ÚKÍF›Ú`›O’uã~«Áÿ7Är¾¹?‡ã”# ý:gÁÎL±r¡Ãî&2•ù!|ƒ}býå'°îûTtû„d 9‚WÚ‹ú+‘ļ‚ðµC“á?Fã×\àˆs¯¹› à~¨n¤16Àò³'Á¯ª“»á?ê`g’ ¡¢‹Ï!}UbqÆF¹.@Eü )9yCr˜ò“ÁƒêšçàÏ;Ó¿d-Üs lU+h›’ð“û•ûß<é.êrÞC°b®Ü›ÝO# ݪv•ìŸ@é”%–U…Õ¿óoW™ž˜!–Œä)Ásmâ7ëÍõøÆcx¤üäñà7NP1>ƒJøáFZ¢û¤`Oq¬ãø£ ÷ÉæËVÜÁSæä0¦ÈWaªªÂØøUMyš[ÅS(OUËúÛÙc%ãÈ`6‡ñžfN2,p¢¦Üù-ØŠ#tƒ@.]nw¹bi*ª‡ëœ‚ò+øÕ1tZÓáÏ«šKÑo-4cÃмã÷I©üxÆï»ÝÌý(Nú’Áy€Ñæ‹Ä çýz+W4»/P=NiiðÕUú,~ys%^\©†î‘Y€üã²ñÎ(J67OºXÍŒ¢d³1ek*×[ÊWzeç)<®üNþ‘‘wÌ ïQHßn¸QqÙÚðt1XôoïoÍ`~íPê?b‚_Q ;@}o¹FçÔÖ“nbóŽÿ»ÁŽjô¦r~ŸÒå_÷oF\¾WMÿ( = é‚âíè‰úªèké¿{Úù%QùpαL›,à=~£ù=Õ®ÿ˜¢hôD/Nýù}µyÈ„ª¨¬ô×߉Å>×#ÿ茫«¯)ô.J-ö¦œ¨!jŠåàW£´ÜKeRS\…IØ@¼0“§—åÉ?à¡v’E4!OhMýyBt]QãÏçh¾ä/ôÄïAD®›GË”iúÊ;^‹)cvz›HýGJ¥' ò3"ÑSvæ€WåÊTìÎ9ø‹,ò Órœ¦ä“ÀÃzE:ÿ<š¶ó;+œâ=~.¼ð[ð˜žpÊ]ÁÍ×°Þ~,{6Ïü^1ó»ý5¥¨Z‚ëš§_ü*'σ9œ¼ ­é¢ØÅÍ5lÚ}ÞÌ¡0ÞðN{Ä@-üt ûA-W&híñŠ6ÿÑ«À7Tg•?±éThðþ`xM°jödÇYhwz‚êt3úçƒv¸P¾ýžŠý+r²š'94f-èÒfbýköÔp}/ÐõŒrQ±Ïþ ÙNínÉ©ê$Øx¬óu|Xîð$ùÇkê? ÀS—1¯`û½©‹+ ~å ÿQ¦}(Üx¹.ý•Tc…è¯JÜÁ3øb‹6ËâÔ’œ&ÿð0«P»æož„¨¦5 F<+Z^o´ZóeNüþpóÏû¨ñðºû9¯m±º•å=6<ÇB##x±9ÈLk££GN92†™ÿa*þ5އ@•L믥јÁnïw´W³©Å¨ÙEMò÷ºZD|¯wëÀ¯a‹³ëkÄVú_Ùó-á*4­>õçIr~mb¢„¦ìv[P‘ÔT÷¥ÒÛ¢ OŠMIÓ]‡øÂGZ‡ÇóÔÖ7@D<É^&cÓ¡pɨO[Á„®€ T$W¨‰ÿf&NÄwiÿ×áÚx”?ö¤%xyTC\iKN„›ë¬cý*Â37EœI¯©ÿH¦ &¾9ÿˆÁ?Y/L§Û/¬î‡¥M)—sÕv»FDã3©‡è¡5p¾_¡­¿zLŸáþDÏãaRf•¯ÁcŽ"NoCötc[ñOô»Ü½Ú¦¾ßUÚ ¥šDj>prlsìe˜]A²ŠŠ¿røWÞ«@ð«ÇXg°¨éìÅÑN‹È³T–jíñâÉÀÐÚâuØÊ\b„×äM±oG´¤ðçYÓË퉚«ýÏÒp¢B‘ƒÐ{¾â¨«!ÿx‡ÿèð‹\‡§\ÈnaX§„üú˜¸z •èYAÙÁöÌ×?ð¼ Ó?1<ÿ±H]‡7jÄsÜÁÏ6&¯²'¨T£þ¼1õ[éŸ(Ì4Øùút”Ý ÒøŒ+{úA6’“ñ2ÜsIªÚØ[W:ÏÆGÜßK(vŽYãÁÈׂç¬i«A…±CJ<×)¸ö¹2ª³ùtm ½[‡c üGîA!Ê_CÅö&óÕ€A†²Õ“üÃÐ]35JàÊdL»ÁóL®.6½Qð¤t= ×ùf—hîÉž\†< lÄN²ÑF]éÿq„éçñ¬ (æ¢mÚƒÆmì´=ÿÃÑ›(ú(çåe#ÿ¸þZ,dWÖ¯Ð_Öx@–õÀˆE>Hÿ«X!øÕ¦¼šfvêÑ×à¥{£rp_KŠÿðùë ¢ÿŸøÌ2nŠÜto«@Ï—øôKœ /?O¹ µ@ZË4O@ÇÐd1Ú¿føq"'S_²¬záAþáN§È·T€E¿ÛÐj ‡”…þ%“ðÆG»d•ƒMUö§7ùzTŒ§¦´˜ã¼ãÿîÃSG9%´;¢ RÂW.EõZ>ߪyaƒ³i7•šœÖMŽijEµõ;”?'¢ºPÈß»éX­Í-@së+ÅæâæP=”ßèTUýîWTÁµ¾y"[<…X‡•y%ºͤ¥ÿn4½¬Z Ï…Ek±Z\T£’-8g”óðØú­D»“à, Ñ¿$¹>Kl'j¾Ì« –ßSd#¢Ô¿¤+ók}@˜ÞP5²G·Ñ¢‹ØºhDKÕÉ?âcÕe‚o#¾©@øó$ÊXNàIøøX¹9üL1T#Ñ_Ý!V:‰…±+gr3µ±‘ìbLm%?áŠï¸K´‹ÚëQŒ{ èpY¹‚ÌÖï¾ÃîodMw±…^ýßy̯ÍúúÝd[±É@Æðë3ÝSu;ˆÊç yÌŸdK;ø“.¬‡ÊIôÑ"š 9U™­uå¾bâÃ\¹º?`fÚÃÔHÐôW—µxÆ!,Ày„ml|I2±¼°>ÉonèuÞqdÖà?4ôWƒÑ.%’;±þÓx¶Ëñ@›mî<þ%vq?–(?þã÷{¼‹Î#Ô„?Ý+Cê?ƒ7m¤Äö‹ñ²˜ÇQþ‰G’ô’M†É –/øUø¾Ûa¸É©äÃá5ÉÔ8øû®x/lî*-ÒÒǽ€‘‚zë?Œ¹°É;¨ Ü…Çh„¢i5¬OFjô.‡-À´üGÿĪʺ•¬´:~¦8ûß §‡ñYÏ`lÁIi-#"ÝþíLjÞÁX˜Æg|éEžÙamÈ7Où€¨fv©‚B‘{™^;¦þ£9Ö]‰Hmko„®äWˬàÝËGô“õÆÀÈß ñ¥©BoŒµ1•?XÓî¿»¿pŒþ‰yöÊ$­>Y‘])Þ•,(€]o…w{BVy þ|/9Òlí®yö÷yYC½¸óÍ }äI`n„ô/ñ¢zÍaœÅÄ&:­ÎÓ¿ÆUëÆ2™€d‹âøæìŒÀõã]Õ«àßà^°¬]eFJ™~z,\òNe7v°+õ‡`„ ¸}CãVy™¼ë¤6ô›“ \øÎ3ÄO%ðØ á7V€¿Œ5*ÈžFbk%ù‡fƴγÒî} Ú¨%VÄiàm‹åŸb–óaVÖ+·©ù¨CÆPM+…½?ct ;Uò¢BôP¼ó=ɈcvF+ë…`ûvc\’FW‘ÒÎõV+OÔdÜÁSøiÜåJ÷¡è̼¨:(­Ò‘Ä »?ýL’Á~'‚e(ÁÔÙM`“­É?ZâÁ3ß:Tÿ|MñÆ”i8F°VÔgQ^Ìô% |Ã<‘Ît.¾c–…ËBÿ’Y²ŒÕÅȃÖ#=ZfxZoä<…”É̯-êЛ8TÓo,oø?|fQ³ºÕÎ%½é°R½ñ:¥<‡ *h´Æ ÿ˜DöŠ}j'9ïø¿ûðœü#4㈧ T²~s.¢~%’¹|>j²ƒÚy%/«0%³–¾°ê~u.êKñ7)+á3Û‚9$ׇˆ=ª¦eSÏ+/µrÂEëIýyùŸì¿[t©;üyM˜œú,Z)eµô0‹ED^òi|GÔ*äO(ï”J"ïa+t¦bïRÊôä4½ÅZâ²Ó`=õ©pï!²Ó…âuî¹…æ©íƒ‰d׃-¤Šb??/À’³à?bñk!æ¶×žƎ‚ÿ¨~×®ÿȉçÉ-†­ŽMæµ d:ÜÍ5+rvm ùL.Ý=Òþ‰´¹Øææ0AXÀ¸ðç]xŸ33éh±}üÇ{|’/9Ãqìé"½ ýw#b»íøMiªæ&Û°õ»yøwôWýAìè3d¬ÿ^V|õ²6ñw|ËEz —×"êŒlÆOÜ&žnÎÿßñ65Ñq þÃFĪ`vÀ²LÆÇ¿§Ê·¢žÉùæ†>ž;Ž‚ÚA1ûðÀšçå=ßÊ®ÍEÃ0nr&¶ý­Þÿq”|¢¶È®yYG6÷ Ï™S‹þÚÓÅäcAGÓëžÀ~Û¾ £õ Ī€qÂ(D-v ¸è¦x‘õ0Évÿ’3pÊñ¡óáχ{ ¨1ñíôßø;GàaŽƒ_ùÉÜh­ÎÊWDæåé&èoÞá»1ÿ|~: Þ"º_$“sçKÂÕW“ãuwóT[‚y•¯KÆdöµF øŽýæb3§åO]vcԺ͆Äô%Aî—5½C`w"ÝùÜ!ʲŠCTÇŽ[ì—'lÊ$£3xU k.ùGtTNËPƒ­1šcíÝñÀ¯‚ÈÈ’£9ó Óï05ýw/TG{XEî{-(‹Ò‹¶ö8¬¼ÝêãPÿqÞÅü¨¬Øë²æD|åP ¶°ø ±ù«©kŸ†µ÷¢ÚÏaÅ3÷ÀO÷5³¡oXƳmVº5‘Dz=t>‘ e·VˆÈ¶QN\ôWÁúD柗‚j`“[3¿P‹^‰ìè ¿«C'¬5ò=œ|9=ÜL)úN·ÇÓÖvžÂÃ!øUZ,GìHzýºÑ‹Œ­Õ—oè’hZuÍV{ëYRM:’%µR3¯ã?O<³y+_S‡R^LuÞñ÷á•£^ÅUrð«[ÿ†î¢šC¤Ô.*6º´×1mXh§ÿÁ0þøÿ¤þ|hÍ;“OßLýG,-ž:™þ%M¨¢9´š?Ù¿$ØÈóù$:‘±—Ó׉¢»’Ksá Œ§ÿî@â‹óQä?.ÐI¨„8ʛⅵZ@T™UºðÔÝÅìv¯&±nêÏëˆW?¾É?¡í€? _±’8~úÚ³Ä!ð#ÅÀP2ÁlV¿j‚ßË­ý&†ŒhñJG2àû¿K=—£4þ£;ø]=5VïxÏN쬧mëõq‘òçqµ(bÝÁ¯žpw À×ÜÈrâ=F`gk Rú€òEu|[?Oï.VUFü¿èðçYx+gÀžçâ £ÀÍ}½¡x*6ßDã ¹Ç+½‡ñ/Ãù¦ÛúiQJ‹È jkÈw&ŶÀûž&3rÁúL%ÍÝ!.Òÿj?þ£÷û¬iªáXìF=½‚óÍ ½Î·ô¿:IþñVïMl\Žcþcžž—<«1ÿ_-kƒõ‚ÎCâdz¢‹9GZY‡úð½ ¼ÔAÂÞ«$(U`-ïëc¹ÂzDðÍé¸]Í}¸ oê?js•vÅD9"è9èJ[ÉY¢ì?:ÿ—VS’9MO[M_«ðçAkÊ£åº$ƒAÜ]Í=Ä¿ÏCô»©Œ%xÍÌ`/É&üd*|æJº&„Þ­Ýÿ …]¾ÿ8Šïr nNý`"ó5TZÄ£ƒø ³õ$s6ä85a|ð1éðy'ÈD}ÂåûEAêÏplýntv꘱Eð¹nùuÔñÍèÖ9:1z£ßõ#óX.z'ùÖohªFÑ?q¢óòR+”‹øÇâ2åÕN"µª¨L¼…‚~÷õ½à©+2v&ý<²ÀöÓ;$l0ÌP1ô©¥*ˆúÎõ¶á?>ê¹äUžX°¼"bR÷Þž™ñ)¬Ôæ7W3c| Õû©¬¬æã6v¿.óYüx#»†äއé¿;K\rîße—V’=mIþ‘‚J:ë1µ° ^·9yÖvcþè(U[é¦xœ9O5ÍC² Õʨˆ¦ÌEÖ¡{{bšPÿhO²EÈgº‚¯&ÕoÕèÖÞ†é¿*OŸë©n @Oý>-m©Æ¤FŸÛÅ|‹¿y'f¢¯ü¢ÜXLwÞñ÷á!ýwCµ‚¿(ƒ•¢Î}ú¹«0”;ÊYµ´6•þ‰o»»ÈÇ0Õþ»%Õ3h:Ã3Œ?^ýüù:ÔRÈ@.‹_ÀÄò¨ ”hÔTt£Cc ­êOöß-(vÂ<°HméUTo dÒìCÐ_¹ƒ_]Qoÿø’þïO¯)ÁJcq›x{+xÉZx…ü²8vÉMøbS®S6ÅŒ¿f&ç÷—î©yQyЃ¼`'oßlâé+à@шX‹c¥ì>ŠUˆ›m[VUï©ÿH«tâ ‰Üz:Þù‰Xêr¨d{“ÓÜ&–>D¼®ao›;ÆbÏÒ†Gò´kK¸²¶àL×É|ˆ8[~46ãá™ €E='ª;N¾„5õÒG“8¾³f4¥ŒšOÿŠçÊ †¸˜ºY ff*+làJ›ÀŸw“‰éàëv['ÓyÄôÉšÚû¶o$õƒí¸ª øÝ>0îA¼My?ñO7=®Ø§¥AëN•/ÞÓ.¾×_ ßÑü¨ŽØÚ^1?8‘¾,%@`¶ã‹¦`¯§Ë`F;‰jG£_½‚ÍBoÛ h‚ ¦¥þÃþ»¡ÝÿþºÔmêp1ŽL4èÐ;®â6§I’àIUÑ-6jå'&whoÇ‹¸Ã®T†ž'5ɹ¢¾ˆns«±¸~w˜O²€÷øí|dÅá˜ÁD/¤–Ô¬5ÿÄ‚º±ÀpZPã˸ ÀL>°–MLç »‰¿«ñÙ%N…º¯bdW)èsµÓ(DÞj˜à”V õy É?M@ìúA_´Rièv‹³x5\ç´5ôo¯$xbd[ð£{r+øËbгF*k¹™œ©G_©Î;Bå^ó8•«¨íô½ÊK>6QÆÖ{9/ï7e›rŽL«‘¼N½ä.»süG ü‡YºiÐ11×e”SƒèoÛ›ê{*ØÉ?ÎsC7/š¦þ<ííAÏ™'“\‘”~¶KCújŤC×üIrs3SÚ‡˜ù‰û}8{=Ñ÷–KuìÃkçþ+~Z.ìR3NUª=wÒ7¾•¼ª#ާ¨ÌxH5bsêA ó0OúÏè¦ÙÑhÈYÍ&›à!Ês&CU'é¿»ŒúØ“ôd~FaëœÙoþŒY)ñ¨¬bu³‚MÃjO½}|ë,{qIvdB{{æŸOCcw÷BäÜÁÿîÃmGí0wùǿůPX)~jqØà‚Ú=%»½ÍÑ‚úó2Ô^d¦éÉŸº©êý°ªvG±sâ%üGju†ò?]‡þ»OàTJ:ŸgT.!’u9mé_’W¯…*Ãƪ/ìG7ò€(âW×Ñ™Uwˆ|÷¢€ôoIENš þc‘Ò ÞʦX²âWÑ]D¤; µ}µåÚÑ Üe7Öyì’U[y¥ÿ,ùÇ#ᆥ-§»Eê?~SÚ2ó÷Üe>§¸ Ÿæ‹Ê)-þc?Þà0>`Y@y} Ö!’]Œ¯Ùš¤þ`嶪8±æ Jvþ1IöçYJ¼o×Ý«ð4ˆKû %´÷·÷*©,ª<–0/ö< |üD2¸`}‹‰í_cúR¿À߸‡z ÞÖQ]‹(£™„j¾»ŸB®'ÿøÞ½­†àg£Ë6º)ök‰°ÌÍXÓ—ë;ÏU—‚oqáßM"È?Ð!rÞ¦á§a‡r¡“YÍÛ<Ÿüo::¡Åøx‹‰ÿØKÆ‘¿‹½åÌSù6e±DaºßDõÍóAã<}ÛãÂ'sE]z#¸ô5|ã0¸©bàWñ™Þâ¦ÿ®ò þ#ÞmŸ~]~Yä P57P&WêÏ Å¨¨›PsŸ‚ %_¨G¬FËã näŽåZ=•˜'^:ï÷üy}P†zœ+KÇõÚôO,@`W¢‚ýtyKoùÊÔ~BCU›J“2–ÕØ(ÆYeŠLÈü¨]a¢˜'Jú'fam~•†þ%¥­tÞa¼&WKau4Ý­ÖkðµÎäºD.–”þíRN`6’'ü沫rÿ#ÿQ5 b[Â\„=iQý¬pBªÕñùè¿[‘ÝÞèèK÷«j(xO¡>Õ…BþÞSæ×Úõƒîøy?ñD2ðÖ‚nz]´hZqµšóyFeáÌb> njK…Ú¡¡’Œ(Âþ»ÕPuy_]ÊBŽÛÊUÅMa-÷ãÿWáGRËÂ`FmÄbêkü·F|Koô»½£ÄtÖVPÞŒeVs5Öó"‘ÈWÔžYà+ì9¶ éU «[E©ÿH žÍRvìK:–eÿÞP¸ÿ‘ÏáÅ8‚Fl%ßQ”úÁÈúïÚJð ðç—a4,GG~¶06v,hSQ¹¬c+ ˆ&í½eÔvoú®þ*ŽRN͈¿™ƒÚÙ®ŒÅ?}tjÑÀ¯fÚ <óŸà‚7ùçñú(öóÝ\µˆ2šÑLîLüœLz“ù?àgš²ó­@ âðŽ>ÒÖjÑÁnš ûóžïÂS•¡³,t¨ò>ô_q¤G¿;•¼oÚ€|ä;ˆ3fp§ËXaU öN!c؃µÍ…?ÕžãÈ%›SºTȧj1ÏŸU–ωaßáÿQÇà€ÎHýG~ú_%„9o2…°ÙMò€…2 ùÇ"QO„ï‚O•¬æ†XÅÙ—ò8¸Ýiº=%@OD-YW,Ö ó%Ú¬žÌD_%Ëàå^‚_ýJÄÏžÿñmýùp5)÷çî5„g¯(ßèÉèÌµÄø•Œe=Фðµo°a~²º¬ƒä²)a~âÀÖ€T.Öµžß¼;DIò…Ä)Õ9ôkt˜ò¢ÿnOææ´Öã?‘\„Šm¶»_yâ—7ß§ÃŽ’Âô)¥LUžày+ÈkzmÎÕ.²ÀpÉ=èn˜…Ž WA¬Á/Ò§«‡‘ÕS5•äħe!|r*ùI¿&º:ŸÈa圚€ËžTó€J÷DìóTì¯ Ÿ0Í(Bý¡A½…·ù+ý¯¶1,æ¨t4÷ñ&Ö_ëÄùJ&† &xýßÿ®+۵œµàqån 7Çd%k«‡»~Û: 2›úóÔÇW67Ë05¹ÈV²¢T©÷[èÐý÷z'”®ÚpQœŒ{oF ý=T¶“ûí ÿC×Ä>æ@æ›ïñOn eññÈ9ï@ÞK™!õf­®Xò÷‚ÿá¯W˜ø‘ʹ31¨LíüÝÏ]ÆWÇ}å:õçséu_±»nv €ç.Š9¬|úIýî-òÂŽ(Kê§„Bÿödê$å©Ö4¼¦ ÆªòS×ù›XATÿ,=—u/‘H®dвëCÁ¯*3)pý£Vÿ¤ÜVê »{…=ÿ| ׯ² œ¼Ýw8Ê8¿Š+:Šˆâæð»:œùµÛ„­ Zƒ¾p%ð°%•Ø+?Qf¼uP„êx½Å{1R) Ö„ü£ –~¬Øü " s¼Pž+ÅbÚmĽkø5­,n9Qlÿcp%Fw‡ÿh'nE¼Ä7ÿu,üÇ^1;¼šó½=Ó9|…C¾"öÝ©'‘¯9©_D]М¼º{¤þ£’Ò»(òáÕêÈq(oò‚Ú fÍ6O¦ð [êF¦³˜Ìd¸6Àù쿹(çoÒi¹wr›\†ïhËÏ!Ö›&nÏÿ°ã𨪮Ào‹ΠÛÏÀ¹Žý!“âª`5{bAìyjÖNöbb™&)x‚5}eõgpJv¾0|Sß+šGˆ_ÍRViÝù›iá`Ú“]]À34ÁÓ½â»ë÷´@í ]‰r`¹w³Z "¿òìffç›zy´chY>ꈟ mïßžÊnÄ­c¥øLIµ3&àׯÀ~샧Ic#ÚGå|èR!Ÿ–¢ßÈ YAúc½ð‹Sð6õáÇ«Ro½üQHí_gºñÚUŽùG 8Y2£7ˆz•èw³«qÙ¡þ(‘´¿Á€aùg9ˆôëšÛÀ '¡ËÍdl$wŒª¶¥s=ªà?ŠÊ{¼—åKawv¡gX,«9úAæRñâKAý‡fM4‹€nFâØšóZ”yœoJ°rP+Ïij?øÀ^1~±ÒÒ§¤.ªˆãTã<§7pæ¼…*nF3OÈXþ†œôŒ²XE#yD¯ã<…·•áÚLò‰Ø[Yr‘ƒÛÐïn4^Ðe>©5ŒúÁÁøèVcs4žê:~å½´õ»]õ»à***Ž<²žXï¼ãÿîC€£ŽÚ%öƒ£í¿öéà?.¨.tsJ£+6;q”þíeÕºÔŸ¯D¿[æ¾ÑÈùŠæTy$[x£ÆÔn“Õ¾gþG­vŒº’rÎçæ§¾û±0ú«1º=‰/UåV]Ÿ¬$×cqŠê¢3õç;¢Xÿq ýU#ñK¼®c ëe‘Q‰M$ÃY¢_å 4Æ’õIEû(åØ1?1gÍ"¢ç‹ø¸XœìD÷ åc½øU 2¥dzýHýG ¥½ Oͤ‚Ïœ„N¶0üy,ÅK=#ü‡7™Â>²’µ|W½w8âŸÛGÛNÆÐí®­^‰ÁõµÂ÷dÅ{Ì!2+#—…ï%ÿxOÜ™,¥·˜¦ÄúΓєújvPåedHyñ_ÉðlýBË3¥ùÇÙ˜»þËìÄÞNÐíùÜ{˜?øùŸæXIÿľì~J¹Ÿv?Þ{íÎ[O§CýùÇ/X?7<Èn2£cèŸj?åJé|sC— ¢âA2†è°çƒQþ$“ È´¼°Ò^¬±[ý Ôá*Ÿ“°ëyñgñXvª¸àWŽÄÓÔ!b÷” Œÿ×ð›{Fo†.‹†i+Ï@#ºØºLOÚ„û…UïQ?Óè†~·¸_ƒ™LÍSë°Œ¬â%ñkjøÔCœ•÷Ðï¶A1z;u›úŠäô,) sÿ+µ„1‰(Óµ-ônŽßÁ¯Ú±ÜÔ;à·j¡{Ë`¸£Í¾Íœ…ÿ8ËüÁâø¶¶øùàWÙÈ8“Sÿ½¦k¸þ4s¶þ£ù‡/UK3a ž ¿ZÈäñô+IcyÒ½òÈÚJ¶4‹úíduû@†v€°ÅÇL‘¯ÃäÙ¨ÿ¸€§,KìTR®A©PÖèœö-´ZGŒãxŒxL4<ƒiº‘ ßYŽ M°Gô&C³màAæˆFÎÛÝ®«–ÛŸHç‚|/²‚6B¥YµÍUøŸîØû…L)b% É'ôN¹Œîæ}â˜Îä8›YQh>qî_ ýK ’Ó5#Ëü?ôahòÀwT‚ñ ÿË5Ô\5˜?ø6$ J¬iò¾9Ö(Ú™@Ö«¨ÇNUužÂ e¢6^$åëŸe ÿn5kþc7½†›R?•ùç}˜Ãr5»ÐÛý ^LN'Ý P¡¤d:K]±ÀyÇÿ݇‡ÔÚ½ÖÿúŸ ÿQÌù»¿ÿkÔ~†Âo¶‘üÃîîøk=¿>Š¡£«è­…N8 ݽ©Ê(­{•AzaWßc{ÂÛŠ¬ÏøËgÚô»Çdwbû pÁÃú\Þøh|KÍ0“{BW pä¡^u^pµ-É*¼ðJK°ÿ+QGy‚ÔÍxJrƃÚoVÜÃKxåAZŒàW#ÔY¢'-èÐM®â3˜æ>bóç²$1ôj£ý¯ÒÁõÖÏZÍ5&ÆaU-£»\ÉLî¹ÄSMâw½(8jVgÀíÖQ-—nâ<¶N²Ä¼7à{ìÆäá{ïQ¾D¦Ex ÕGèÝ:ýÔdmþ …u¨SïJÞÏèh,£þ⢵ë‰Ê+‡ðÉì~ð›ñn˜Û"1Etþf½™¢\ Ï­ØT.´ëñFÓNôsŒK/FZƒ0SäOd ÚSìèLôlKø{‰Ð_õÁÇ q^^AÅ ÿQäñ9^dû6P–3î¡kú€Þìý{POâÊýÁħþ¼®iÏõOý`E°»ÄÔŸŸUœëíW.«±ÉŸ‚ÑK½ ÿUqTjåŒy(›ê3e< SDÞS#~—þ\¿˜gé_2Ÿúò—zGjh˜ÒÖ´W\wÞïQå°–†ì½)QY2YIøêï¨:,@ýyUTñÈgîÓ›« ì~0]»R›‹Ì©2Ž5þœNGhKèÍÑs× ã?Ü™ž†¬¸n*ÝǸŸßßs‘î\Õ¬±øŽ<ÌkïÏü(É”ÄİA‰±žˆ­dñ¿P“40ŒÚyëÿß?Üý¦ÿ®Céö¯óäD8WÔìÚL-3õƒ¶ xŸ£ÜyJ5»ê‰M‰¨Å÷oïOÇm«hJÌ•M_,Ω‰Bê?Þi®"·ÖŒþ»õ~²ÿUnò¼¡L{ˆ¬«¯ɘè™PKFþщü£½'<Õ¨)Ä‘¸‹{Ø+t{ä »É?ŠÒ¥kœX¬oÁžÕ$.é¡we~m(õOKÿ+”ÊvWSo¬é ²ìÉœËØûð·ˆb üÇ(NVÓHó ÊêCøâtÉÎþ}úÄtÇÒ…wfzºgÍÌÌÌ 33£Ì °-33³3;f–™YÆÈÌÌÌÌLÿ7z/+°)9çÏSN¬õôÔ­º·@ ÇÒ'žÙÉŽ·ë?Üaö‡ a÷ sþyTcGÔÛlÏÿÄÿÞ¨®yáFI/t‚5¬¼Kú9‚]é/Fü27­ÖE/€¾ý;ÌU®€%œïfs¾lK>ý&Xö·àòS¬Ú.~2Èô%þØ"ê¡õN[ª-3:ÀšÅ’Ó¹³×yåElŠzòŠ{ðÂ8k¤ÂÖ5åù?Á=÷ƒ}+Æ$ï.Tþ —þ%£á¼§P±^ ¶/g= ›¬Ó J"‰ Øo7|q®Â)¼…8°íÁókçëÃÄ$ô±ÂØ´ûä%¿&šº‚¶ì û* y!|Ó|h½õ˜ÿ±‘wpR¡wËûVpósêÿóŒD×c’ïÓåi%ùWŸ‰L³¢îdGÿ ›¢š†~îO?f/D kö?ýw_ÀÍ—ñ8kí¸ËþÙ+¶s‡}fvÄFÖ¡b"­ê©F«Ø0^ðÆc;çÂâ§?¼TµšìâTä_ES?PXnpŸÏ‡È¿š+ÊïÚW$/¸†ãX¯Ö´“cTÔà$ÄP§/£\»“¿;“øµñÇ{ôú쪯¼„¿*¢mCÿHâý ]xOEúUÝF1~O®–=ÿËü«r(ƒÑ¿£“}՞ɋg¹?§é«{ôøb. Rÿ±B»¥k°Ž—Ù©O@*»'rnæÆt–´æÿ; k¿ŠìµXèÇÔ5æpEÁ:ï`u"7­: LA10Hþî)æ‚grgW¥—„¿9WiÎÌ`P=p2ÈÖ—lêÔ°kWñRÏ,’7àK­:e5ž;ObâÀ.žg´.ÆD•'¼ «U*ù™¾Ê*Iÿ’‰Ìÿ¸§Þà#t·>cîˆd¡HÔ®rbà¯ÍéÿÛONQèëÄcþ`ò`û,üo üاç0ú1ëépÀüAò¯ÊQžW÷ÓÞ;.‡)~ó•c:œ`9üç˜àÇA=ºaê]µoF]‘ÏhAþn}½Ùß:θÄy^d"uƒ“(J¯ªØæø€þ»ÌŒ ~°®˜,.ê!{p‡~À×éå.^ðì­gÅEü[D¥ ¦£_œÆÒ—æûmDLôðô/éÀóý±«sÌpDödu*½á­ò`%"²ë‹”Ú& Gÿݬè)¨?¯L&‘øáÆŽtbwl­7ÜC¬ðÅ¡±ÄD´ä^F÷0®¢eÌ >è7{–¿ÑøÜm –g@@ÿ’uXÅ£øuv×ÇØÈ–bk=-øL©5Ô3¢ÌD?OO®VtâîðX¯È¿êI¦U]à‡?ï÷ã\@4?†Xg?üUhýÒÿªçüè “t†xÁF8*¹DÌÇÆÃÀ7÷A½Ø­†[ËCü™Œæ„.Ï/ðøN1ÿ|§J¬5^Þ ´ØÀûsGÝž@Åò{s$¬Ì1ð$-OëQÐc=ˆ‰\Qã•v>p©€Wõ~¨ñ>Ø?;þèL\5®¨ñGx«Ådý\dþÇN&& «:úCy¸’9àG3¸—‚"$Qw²³º‘;Lx*·ÀOnÆöš0LO`[¼¨…8Ë\Øë²›RjñGjÔäÛÔ€,%þp3Ó;è!vÐSp•ör¾M°‘žÄGJùP‡}W2 þ*ý¯úä_UFÓ˜G­ø8¶‡ìÓ³F«`ëÍU±÷öL5¢^Ð÷€œM÷+°=&¯ssùÓÙv¹ú"G‘Ñ ‹Eíykþ'–Xõ@•¬ÿÈ -жrK“U†û°ÂlHœvþÊ®¹<¡Ž2g#.]·uýFý`uº×_GgL–C!îyBpgŸ¨î:Ý­Ú1ý¾ÿ|“7ôo/ ¦wB3Šì¬Š=þ¬|ÁŽ-T#¦r êÏ•s™e+P·ZÈ[²ñr61\.ßí¨¶“ÌÿÂÄö]8)þ I§YÏ…™êòœÞ½=Y;¸±‹Ê ôßÝ$_3S$Z]&rËs‡w™WúçžÑz½ñhGðW Íõª”ó =€ýÔU†,±ªÔŽF*î¤Î%?^sûZOà¹/ˆ9X5“n5-Åâ?ü?ßuäÒ¯Èî•/ؾÿ¡DÓ.i»Á.äJùÔîeÍAÿ’ìú.í­ãJø—â7o;æ¿ë‰Sf±Jÿ¢ÇÓÛk‘‰ì âÛz5½Æß:ÎäÄ>ô±­NŒV‘ þJ32cëcмä»Lû~â B?à÷Ú5ÍKÜÁ"m€-™Êîf^&ø1BØýGÎâCÔ„Yî)’‰vâYèKûî`c—ºÀÛ¯§Jz&Qó5bƒàGA|¯HXªÒäãÖg¯d2Ûºöp°%‚|‘\ Çžn:±`ñ€=y²á¡§GIÞŽâìç´{Z üèÆUŒõ~höy H4Ÿz=H4;Ö/w)±Ânüº· Þ^â¦Nbü/ówjz<|_8Þ´àndÁ`îSð£91ÞÕw ÁK,ín¼±^p>Oé¿[9Ôü«™Út£XIÎÓnbËë ­a ¢Í<0îQᇼe=TÝüÞ®£Î}*jfv=¹î–£Œq üødö¤~¡Ôë‰eFÀ¢¬ÆúO…+ŠÈ÷¿À’,àYM,¯ñ~{X—º ³Š‘JÙ?qŒ>†¨¯>úú&ºjøð[C¸R ©È¨‚¾½ü¸‰ß½“j¿"( uQ|k‘é;–ºíjôße—‡¸/ ©ÿ°{ø»Éi°R·ˆŽìyN%à1ü™>Kº€øã9ÀÈÍY ~ØýÛ/áßO•¸ßkQ'ÏÖÖ?’¯¶ ¬®È4 wðã ½W¨däCm²Æƒc°ª¹Õu:§÷¡ oQðcÖ>×ôؾ#Dÿ’­Â¬‚‹0™UéìÏõ¡ÿî:ð£ùÄ œk­¤p.ŸèG«ã‘—B§MMKtˆ§däTýä{ÑÛuxµ¥Ú>ÎÏÖÏ«þëÍÖ²2ºt/P#ø±³MAýÇz²Î|U%òc0áoúÇ*âŠíD„Q[¸Ö[™£»@¬{Ÿ«Q‚Z‘ßÔzú—ô„ÿzG'Å»pMwQª3ZçÔ}ú~ùÉÖÖz<ºÆàquɱˆ"­ëÙ»¬m4J±›ª³^*yFÜ5‘q[üH…£ƒêÆ^ÄZ¹‰â3‘+'}ºæË—Ì,†Å’MÐϽ©Š¬êÚ…´FW‘ÒŽ5³é¯|¨ÿpçL%×-UƒE©?ßÈü¨èýɜ諘Ž*šìû»hv±Q(‹ËRbžëŒÿ½ç˜_Ø+Zi]µÁöYøä›ã޶CÏnx¦±A³ÕíÓo=-Ü“ÐùPÓn‡)~ÓäšÎŰ™ßèÙ>E¨Gg~í#ƒˆH}ûU=·nO8 ÿG1eBƒ¯š€?L<£´LFFìI|‰~CÅ<ý\¸–»~T'A¥dZ †uŠ.ó²&\`Êaì`I¤«ˆ*ʆ«‰7Ï;D?¼¬9FávÓ”ÏÐn·£vïF§xOþUÔßf®=ü«C-«µ¤¾õœ(‹NYd?¦²˜HûŸû±¢W9ÊjdO 3¡“áÆUŒe,¥~°ر ZrŒv-{6ú·÷Ŭ —À»íeõ³ Þj޾ŽXöËùƒ™È¿JÇS9—ø£0ñOLîíh색Ɵ¼ ;jw¾¶ ƬXþ%÷¡œîm±ÁÌ"´9ªÂ.•r³ˆ†ÖcO)Ÿ§›Ù䣈‡Þ3?j8Ó¨NPî^ž²z«ÚdS¦îðË-ä YäG‰?ú‹ôìÝVØ£¤æiò¯XÕ>ꄃäÈ H ðnñÇIê?¨ö´žAÞc`•á}]güï½xêp 2ÿ<ŽÖþÏÿˆ‰.p„üÝÞäïÔìèà£=ÕƒÙôÄÌÔµSë¤^èçUˆ¼#àË/ÐuC×iÏ,•QݸBÿöRÁöoX‹§“±.D%l\bXzü«œFz8L ¬$†‰ú¥° øùeð£6úù|ü¢úÔ(Ø3: “Ž«øÎQ|½¢Ø³îLq—þÑ×X…þÑ…=à‹žÉ}>?’¼‡~¾œµ/Cv®-õÚ®=ü«C-¢µƒ£¹ÂyF'ãd$z\>®`_Öiö"öQB6ôá£Ä~Dsoy·²ÆWm·}HA>ë6ŸÙ6@åÞ?ôü:EÞ"ß*5•a¹¬=tn¿HwªÑù¹…µÜ†å} Ôþ*dÆ@ôîFðtyˆ6À¢ùcY7ÊÔždRlw8÷q00wˆ8šßÌÀwHD†ÓjO&IIÊbª^ƒžcŒ‡£óõ±(ߟL>%Ë”¢Õ4Ö²³X/YùÕcìS*ä3 JO$šùžá8¶ÁÖó¥AÉÓp˜EA¬àì2ê˜}Kþofª+R2‹ï2ú‡FOÞ àGðÃä,˜”Cµ’·Eg×áåÔæ¡Ä§/o­gÏ6Aÿð? ú_d¾nt†”Ö~â)*6Ý=­í àXr­R«’„øc‡ðv­·U»£¿¢“™]GzL/7ÎØ[¡ë•ýÐ5kúù¢ŽDô 9’±ÃrÒ×Ö?Z‚Ô割ˆþB¸ž½WÚJ£$¼p5öüGr9/›~t=)M Ó•'šÕ›ÏÏÉGŒyˆùê«­r¯ÕEuáî%`§Çã|Vš…]»ð ýK:‚ñ‰/R~Z  b¦™OU²ÖPÍÙ™¶ÔT¢/¢þüqÉcð#’ì@ÿD;«Å!³H·ÿ‘~ž3HÿÝXàGú`ûÂuÂ~¡}&·œÑ€ùÛæGít Cÿ¨Dÿ’õÚgGÈ «¿^ð‰cS]ÝyÚS›CÅÝ2b‘Y”©zä_ÕÑí ¯ðä É"²ëƒÿS„e¤b¬}Q†þ%“…ÿO>dè«_Ñ3Оպy.6$©ÌEÝè,ò0V`eÛaë›SGçÆž{úÁ¾ÛËK§È¶Ø¡Ù`ÑtvíaüÌØò¾ïF2Æ™`¾"žˆ®vÿ«ÜZw~ÿ)ý½b’3ìÉ—ßd;Çz˜wxŽTï>ØÙÇKEŠ~|ƒéOÔ1þg1QÜN»‰ H[üÖàÞ®=uw¹9Ëô™¿›–þ%ù±ï¾ànNVŒ õå8n˜ ¤•‹áþÄ]Oy.ÿà|û‚õwéE_Û¸ìŠýç‹ñÚx£ UdH)¼&¾jƒ…õ†mc&’yÙ¸lDÀ¿ïÌó¿ mW· HšÝfô\Onà²èß¾GŒ£þc ü½7ÖÜ—ý2ß,Ë™6'þ8J…Ý *òŽ•ü8ÏõüÜ|O_Ȉ¢ï \*àÕtÝ“h¦¹GñÅ;¢O†á«…—ßýc¹*G§‹üêÖµÕuÀÍŠØÜ‰xãÕäð#$ ü¨.ÚY´¯¥P7°E~èñ¨ÿ¸Ü„jƒ¨Èû‰b«¹T°¤'N¹É|ñ±ÄUé¿û6ØóÒ@ŒW`wEkæ G3H£ÜÑe¬¹.,ªs"ùMuÔ=»IjðcêÌclô]vÁ£I°õˆº î®J]&ç±n(ô΢~0»s<Ìgu=ùÕŽ5­¯d¸-´•øÀïÔbŒ•w‚àG|m¾v„ó+ÆU) ú_¥j£;Zr/|ûlÄ ËÈVÎÀŠ+éˆ5[M ›·•5̳á f2u‚è‡nlAðc£v\È•³û—ØñÇkjã—rv‘œÍɪý¨ÎYo˜žò€úФ0l“¬1V9Ðúƒ{ë…‚T‡X/1¹”q\øq›þí…ð<ðO2‹î²\hs&$km?r7ÚZ,7kó®N1OꦒʞŒÛµ=šlI‡¤†Æµ Ù;Y¤E=ì…Ú7É\m-qV¶:ª…üU æêÖ…ÃKÊ|Nok³ÚB×®i(*Òúýy ~Hž© äïÎ ±ÿ/_8Jj \;!ýÛÿiýyTüò=z!£9úù!Íf—¶9¢~ÔÔóè 5óoößUÚoÆZQÎ! µÜWôØF<½»vý¼ õ@¯¡Wpux®SV1“ûýL4ã©ÏgΆ9\ËMýGM³9ý[‰y̼ž…§a’›ˆãXË-h‹±!Ieq8£!b¯iOSê7Ó†ü«ÌÚ}Ž§Ð¿dŸè o?‡˜`\æE,§$/—â€m.‰nÓœø#®Y͵‡µpZ­ ç÷üp‚áÿ à‡Ý „‰t¼‡¢æ¯,85{ÚÍhÆULjÌ#¶°ç…ÇšÿÓðò  LÂÊzÀóøš·°Í€1ˆC¦˜­Äê þHð£L­•Ó3ðþ»áà ƒ:ÉÙùý‰Z^˜›¥ß[.›9ƒµàñ4i®s.ÕCÕÏÇj Á“dªù‚Ù:¬J3¼VðYQe_ó›qžþWgQÏk£5Ÿíçp¾?Ð…*†¼vä1Ž£Þ7G`'ë£ìÃ+ƒF£Î>1»Ã.ÝÆÚæ?žr—à¿k2¦,`DÿIÿ˜¨wSQP˜//5^n£çß â™Új¬$“ƒ¢1T4ض[äÎm1܃íœs¢JÓA"w*øK’s¶íxšêEþnzº¦·Þª;Ö-õµ¦:ÍbâºnpN‰wJsŒ_EO×fICýÇkª]+áKTÇÙ[7™†ë jPÒ™ê:¾õ$±à¯:Z‹ÕdØ¢nÔŸ_€Q=NõÊ.™’—7DU×zKµkú#ø°}ìЙ2'“Nî0“}2ùVÑÏ_©côËÝ„J‘ÈÅò£ú¯¾ÕS¦ÿ•ÁŠ×Ém>c¦“D ÿ÷Œþ%¹¦á›+P/>] t&¤«È$k]êoªÙVsrŸ+£ØJE<«:“ÂZ‘Ë;˜šÞ”²~SùGúÁÚâ DÛu`žŸš_,=B!k2U¦ÌüE¥©cåtöw ?×pðr+ýL¼¨SÉBÿöztæžGwÕX°´õ‚d°¹NýÿýÅRÇ´ê??˜Ø¡%¶/þüIØŸi_´&úm*5R µH¬²Ê‘A¯§;õfú]ðcSØKù÷Ž=Æaôfde2ëiŒŠú4-¢˜"²MŒ9ätÙïþñö)ö/QñiìkSêÏ3¡YÕ¦ÛP[ñP¬Õ7„k¹?x¥x Çr Û¼v§øQ?»zü ¹Nàî‡ÁŠ þáX±"ýE)"á©àÇfâöç`E,Tb9ý0’¬IÞqIrºb™ñÂÄïŽAä6Í:|o)9ÌÉCœ¦ð wñ¥áÙ§’W°ŒGÉ«jÒÁ>Œ«øEŸŠMm*žç¬‘£\Œ˜+?Oê ¼j7i«‡ùYB©q]×pÞšÅ÷çEH©EÓcßíJÈääðh¨žèäD0² wz':@yžèï±úW°¤qÙ»­ð³/|Ñ¢û™}ÀùÍ´½ÿFÈn´öŠËµFStûrq Ý·.ØP|úLü–_Ü2aýºÀʯ5çó>eé•%´ùƒç5qbqÌX0'.zö¢®áô_Z%{£™å;-±þôuÂÒçÃ+¶§fmàøtÙЈû~ìÔg‹ÎDÏù¨‰Þ†%¼Û½¿ÈFèKÉ¿ú¬Š“{Û€©ã›Ð=2ƒJûÀ×DËɼ™EŸ|©üÄ39±â9Š™ÙªßA‘ˆä³6·N€÷È0n®ì¹†ÅeZÞù´¼KìlÃOñGvÁf®[Erm‹ ¤Tm©8HFO”%TR't^$Ÿµ.ó:Ú)º¢T$£`9üÝ}Ðë*{q›1)ØÎ™*<ø[쫚D‘·Íwr#úùÕ¥:5Ó¼óYéXo7á8ú—œ•gâ-¬]éhHåÆ ±ìÏmœ±åÚ.3QÄ2ÖŽñ&'*z¯&2¶8±Ûð‚«G?ÆaÖLõ<ªkíGq&1àî2Ȳ}üÝéÚý•9Üô$\ÿ ¨„næ$êžžâ£OE/ŸÃ“àAþ®<ÎužÛwð€Ë‰sVûìž¡æ_ÍÕåyÇ$à‡7¿w‚è¿WÿÉ ³„¸j$ ~°úÇiâ£p.•ˆ?ò†<‚¿šË³øÅœ€âžžç|5ßX¬Îbðc v3:ù=¨µÛŽEqãJî#{i9ØM63RþÔ{s´>Q !âIÊï_„yÍý;On+Ì?ö}%]ûî¨põMùw ïVì¶>²j#ç§ q_豉>šÁâÏ„£º 'Ÿ-¦JCEÞ”ºÑÞc*Ý9:ÂçW~ VÔ›({e"ÍÃÚ¡`+¶×£c­6Á©U‚‘+)ošñU“Ü(Õˆ?’ÒÁÏ"þ8D¼ÐR%¦H ’ÆP¯Q,.áI¼0F[o*õçEØY»°øƒ¨•yFþÕRæö‘cኂ‰è ’øcøq³˜R®Çâ”)A™›b”kfжhvœb쨪ò§›¬ ¾ƒÊÊ Æ­°jc§óã㵦«|ÕÌZC”7–è0™šF~CdÙM´u­·K{®;ˆ#PÕÍØ*žÆ jø¢L×µVq'V$“ɺŠ~\V¯Ð?ãÓŽ‚ô{…?„˜Åžn× ÍÄŠMã]‘|¬ê‘®‚þçÌ ¢µë&ÿÎü({ÛmÐ-®Jˆïä'Mæ÷EA¥ÞJÿÄqd Ì š=õ§Õâ‡vô-ÜOoÚä¸U—k˜µ*HýànæG'KÅ ¸±”([9ÇBÔ£Ô'Ãø »·È]kFwà¸Ô“4tåp6QMxª£ËÖÄÀ}¸†¥\»pÖÝè‡þÑ UÆy9w­ªôŸ|¨z z0ÿcˆó‰UÊ9”©¶ïèbÿú"V,꜋¾øaÇéâ“2Ètúÿû‹5Ž˜Z`Ýõ ‡G@çÜò¶¨?ΜòbÆWú•ØU$kå¨ÿˆI­ÆMi¯þü‰c“±þŠ nàG&ÖÑGj±„‡ˆm”0üô”z`×ùðm"†ÁXÒÁðDm™_›Î¬§%0r’ƒR‘úÁJb–X®ïÏB޳àd~ñ /f+-Â.W BÈÄ~X‹½»cvÃCoKT#a±/†cÅêàÇ$lÍ#rYw£ój<˰JŸàÎg¡b<Ço~- `‹‡#þH­ …³:"²ÁT ò.Düö•¬Ë Røé½°C籌«yw³¸Q&˜øùpãÓ±È%aÔ®Á }‹@ô%fy¸“)Tûåâ_€I±óoˆ–Ѳ½úCÿH®¥×3sf³`Øìü«8hãýM»>q 1aY<ÿ.t#:Îo¥ì„çýe¦ ù»`îráÝï…»Ø Â=‡y®ÍlÌÞÑêÏãˆÒ B\áî£ií3K`Ïq¬¢®ø=³,üèß^‚Š<[÷ÉMü1› #íå$ú±…DÌz¸\òÖ°hÛYe;ãˆÌ¤ê–ü F¢¨ÞEï~Beab’­ØûxèçÇá†fÊøÜéEÚå`wº¥®}úñL5¸4èç¾*-¤¶ ü¦r>?ÚÄuïv`Ic£iÌ?_"¯²S÷…ˆ?v¡Ÿ7%O±^3ø£r­š©z¨àH²Qs¢ĦóÆ>9ÍÎ%~Ëï-»žÒ1¥‡Ü!¦ºnF^ú—\áLK‘ÓçÁ•ÊPJ¼¹ÌÓȨnQ?X…ɰ¹­'t®ê ÿT¹›¨³HnA2ò•Ã{M¥\ë-×Þé‘@ý—x™”Ýoä9ÙKÐcJÓ_ÝþT‰ÉÙÝl%§‡înTþQV0i™uÙçù$™îb“øèº~µ}D¾nøž‡@‚rb¶y®¸Õᯪ’%ðŒi^èvèA~X ô”–Ä!·¥rÖP>ì•Ô²þÝ4žÄ@üðgs+ð£;Zr·© ¨å•`êîSs_ÂÙÃêAýù}êû[m•p>33©ªÌ¯íFÿ’èˆ=ÀÅL×ÿ{/V8"j÷\o÷ÍÑCËàºN®o‡ëE|í6@Od”2"óPh¾£ˆ^D£—˜u6\«üùK_èµ@4ƾç7×Ó?1’‘[Aý ·HnÔ76é±õ<ë8íŒ)®t¸‘Ææ*‘ÐôÔJ’Åí…n‘kž˜NþêuöÅÅCž”-ð «±Åá¯èI lEõ{ ÊZ_ñÔh.þÊ›þ» E'ìóDléâ£påI±‚%°|I©\nï–u-Y8Ìø#¡6xÈg\E%¯¸QCCé>¶p/>pT¼³N¼Ï"Ø•ºFÕ0®b,cÈÓ†(á2üì 1£Ùc·‡,›úðWL?“þ¨×‚xéúG+úê…Vígß׌äïf ºè‹’“Ž 0ƒx°ˆùÉÜ+›Âl$Ó)‘ÇGŽñWc.+5ŠªFHël¯f×t³bȉpR÷8wp®7‘üW"«,âˆë×”ÛŠJ±û]&/=~cÖPð㘣4ýÛG4=ecØXp‡­P¤Êaçš’k*•&½±Æ/P3Š¢%Ÿ!ÖÚ¿&Ð*™õ[ö!ùX¡½¨ð·k ŽèÓÃ8Ö*ôi«*3§)5¶°,¹BíT9ªóà±ç#Ïw6õ!åæ)‡Ì¿’ºÎÙ5Ƨ˜Gìw ™\ÊI?ë2ýÖ}èFû¼ØkÌ÷Ë "åAO¹†úñšãMEÇ·ÉÚ…`wºŽþCTc¿!«bLÑw39<ÕVE&:i-²â2¯È?N²^+x¶T¬]s ÖØŽ…èܼUTà,ߢ„Õ¤þò½©ÁÞ¯T3TW9S%'þHg%@¥¾Äz‹±‰‡Èßóƒ¿Ú?B‹Dÿöþ®«—B[«Ý!¯.ùWMÉé _š•ü«iÔVä¤~p!õߨ«x34I9AæÐrsˆA„ZÓfÊ1¢™k½qÚý‹™ ÜÛÍYFÂÚÎ#[¹+üUQô÷ÌÄ Nçlð#:9¸ûÕ{ôï¡Êƒî †vÌÝ"Ö="‰ëÙ{Lü‘ 4¯@LÞHê\Å*¿³"ëÔ²îƒoݬ/tà­GM¢Úpw¾ÈøNoUüH!½‰?|¸ó?üµ!dÐäÂëìJõ`tSXnÎ]Ö@fOcÊÕºiu¤û ޝŸUCE?ÎpS[x4t§z˜õçE} [C¸«KpXŸÄ¬Î:Vº÷Ð/wöú´‡(xìvçù±bö«®_i´‚z-Ða*úG1ÎVcç·%ÎxIåÇ`¸ße0G°ŒXí2Ú‚­0|b–{ƒPçG-Ðf¥x÷DC ~ïw£ • ñº’U÷Šü+»~°¶\ºø‚WUÈ¿*ÃSÚüÁwŽòôßÅ;O@ÅNûsÔ…åš~Œ…¹‰J¡«wXíBèÍç‰;/Ã_Ämÿ ý#d†ñt} A¬“ ù}üœÏ!lur²™JR§WÜzEß§+t[oˆZÑ^¼:8ã‹–Ü_Þg—§ ±»“éq9K÷üxu>nžÇ‹N¡žHA¡Ö5ë(}ÿ¾Óÿ*>xyìý[”I¼Ãö(BÔŸ·Ðc²÷÷—ž Lub¶dªù»ÐÏ—[ó¬ŒÎ«ÄݨPéM^ï9Ð-5ÖYѯñ8ßœø£o°#œ) ÉràÇ ³6¸ yñÃÔd9‰þ%¬BäÛ&¿ºO<Ò€þ»«ôUò6]*UO΂ùÉ¿ZGF_v¬¬;h5ë˜Y1 »Y kùV‘°Õ†³ õ~1Èzr·fL#‚˨¦‚Ŷuì‡2W{©¿„½½ÅN ¢±«ÖÂsµ„eªjmDÿð¥?ˆ/UèñÁ*þèÙýß(Ø̬€– ÿ2°âUíˆQ…ÝV“,fô¿Zkz1c±üU T­7ÔzÜÍ«Á‹Å@ïD·yËæ·T öjb"íø¦7>\i~ Ö­›HO”ß/«y’Š™?¬Öj/ú¹7],[Óý‡óQ‰‰)\ÉÝ«e9e':«NdÈuÐ6ûÿ¤þ|Ùršk'¼t´øÇýK¢1ÿc}FÊìÖr±ævGúŒ¤Ö«èµˆÚñ F3Ì׺¶Âø]”&b¯DÓÏ$zí¥á)òà¯/g®aÈ'쯗¬~ Äw†mïHwçØ¦·×HÅ×-PÏ«‹­b‚þÇ_/ñߟ¾¤ÿn)ñ{¼µv¼S~™ü¨€'à‹ÞϤ#Õ¥*høò¯ú3D ,àLÐc)þù3¬ufù†dYë_ñø¶c(=S‡‰…µñìÀ­"'uMñôsƒ&‘°ù'ðò݈?À›ïÃ2žÃ#/åãº÷¡Ÿ|^âD“°–#±ûÓÉÚÚŒW½ƒ^C­áì盟ñ«O£¶Ä$÷Ù¶#ñB_+¾VH/ËõŸ„Z”×´ó߉žœµ…ç8tš—kÊhغ´;VmÒ‹¥‰š"?ý¼:È,ƒj`ÎAެ$‘Õ72•[™éÅCê7’[š.b/Ъ–ÁYðá}‚tÎ<ÎSÔŸD݉/× L`Æ)VrŒÓt±`@T¬¼þþm!X6fÙÄ]nrù'þj*üÕ0önN˜¾‡²7^ÀìV¨ 1ÃÔOƒî §á¯ÜQÀ»Òm¤"ñÂlðc³+j‰ô!®aTð£2ÿåA¿~ƒfp_öø‘üxKþU²¯nÐéýÓSÑ^{ÿdøAüSÆd=5gë ²7 Wâ(ØÝŠÜ€ºÄ)í>‰*ŸÌK©UôÊx`}·|Ôæ=5%Žkƒ&´‡øãŠ…­Ÿí 1¹r‘È.ë°¿Ãøym½¥ûê?:Щ0›s+ø‘üØCü1•þ»~hÿËdGþœMUKîÃ]‡—I[¦ÙóÝs1T Ð?ªJ;wùW9˜¨±m!ZÃÎzüUeúÞÚZfk–JMáþÄ^¢k½ô/ùl–‰6š‘•w»Zƃúß4‹þê˜vâ~$rc*äs«»Õ‚]Ἠ*)JJy±CDt={È¿*ú¶ãŽ6aòîr³ø‘–©[‰?N«Þ܉S`ÉTš=T­t²ÞÀ_•WuÀäïÆA1½oæ ‚#é¿›Ö¢þ^Fó©*ìÜgÕS[èYoÏ•lg•c~íaôý‘VMõ–.Äèú_ýcÌöX¦ýèÄíÅï®3þ÷^u¤ÒkŸž;Zýãþ»vÿöñz£Œü(Ên]ëpgvmz`ùi†víoÔ]Ç.¬j}vj>s³ˆ‰&_oÎüsw‘Ò¨e¬ 7g°ç!¬Å=ÀèÞøÏvþU{s»ˆKý` #)»ÀKõÄjzl…§ZÃáøª½Ð¼Å]*ŸwÁ®íGRÉhÖõÀæS¸÷J¬:\DfªzxVlL&S žàlæ2,ØMð#k6¬sž¡Zì’šð/t“tíá_oQðà ~. ñG9{™öË“çú Üùa4ßÄø®>Ä!«°§ a\Å\Æ¢êÁktL“¬¨ZÄÿŰø}ÉÚ)ξÃrŸç¨#À¡ÛøñÛ/õxZ½ŠT³;Š/¦þÓ¦‚kaý¼aŽì>PPHLb°•Øüwø€WE #0Ã#ð¼ç´%³*3Lm¬ùq¸©ªdh<›MM)ޱÔ<[ÿ¸ÆuÊDá7ºÑ±?p•?_¤»¿˜ rM¦SZø«mð{3±†‹±" Ñ’`å_cãÿÀ/Î/{šJù£èSä#~óÏ…þûy´>R ‡!/Àï¿"®z‰¦ušÕ„j¦Ò’ÙZ¢”b¾õv…I\²åž¡¸©éòºyÆ q_,ø¦RœWi,Z\T‡x‡ñ¶ÓüG±íN·ÃÖ0cßÛ kpŒOA;–…Ãl…`+VÓâ“øQmÙšªÀ&D éT/òÂò£Ÿûcùr:ug$g3òm;©Ö \S®ˆ?Ýw-â‡àê£g°õ¦Š†ì·›øåÐ6>š&ÖÏW QÃÐËsR?˜ÞÊEN× ôä¤áLá,á¯Ã°EU>ò´íº‚Ñ´uÚ~Ô‡¢¼Si¢EfIô'ý c[YÈÃÚFݹ¤ëÕk¢5V¥³ŠYe-ªAþã(B¾2=µSÍD×z¾ÌÿxI†Ò%ŽÎR‘ÁàÅT¡4XK课‘̰Õt‰KÕõª’vªµum«#h]Q.$Gs·0]ÏÞ!í¼‘™«ç~ÔEÿHÂ4õ*Î<àGkº—lGñ؉6SãK6Vcr.ÈwVåAíU Yº8g˜¿{Dëct xÆ:àûå0›rõ“¿»üŽ.Ó̪áìí<Õý£¤ó š˜ªIS¶¢ÉH3&^«”Yÿ'ýw78Òéßþ þ*dæ ë6„ñÂÔîiƒõ4°K ¨ÌËîZ㨠v$dV¹?1Nx¸œÀ·øè˜]D.M>¡ÞM{lÔ9™ÿ±‡¾(!3äÿ6´WÞâùq‘Øùoù<_D4}¨?Ï 3\þª¾X'fÿÔƒ"´uŽ[ÔIÖ bç±B;ðãüUa3ó(Wšó±…‰l»Ð¡Ñ žžõmá¯æŠNxÚs᯳kckbÈÇØ&_lþxý×d2ã=ò»öpèÇæp”Ñ&²·¡Æ¥ÀKƒ®ŸÕ»3LíC³(+7 j¼±øk±§-ÂìUˆøÃ’Õ‰®)GG­«Á_–Ä«µû·–výäa°ô;;øróÕµ%¶Všø#*zdž¡Ù0½?È>œcçKW¹žèç½É¼ºÁךüFâs Þ'QßøÊéNgþGe®~R9 ûø>©6èÐ2?Z1qô½¡¨Ãî@þîÎ}#Ø^ܪBìZýàG~ºÈ GϘEÄQ´ðEÿÅõ_@œ5›"*öî³|‰â›ƒŸûùôUüƒÜ¦œXçèØú  Dwó¶Ñ/Øz¿£ŸW†Ó=jVGÅJÍ{ÏQÕ85NNVœ+¨Oees>f“9D ñGc0ä61]RE`ÑÝuxvü±|,ŠåÅže¶“álÒÿª:s@Ö1/ʲŠP£7• 5HRÑÚL%ûL5ñG &ØúÉß]£ÝÕ¿}?A? ‰gæeô”žäï6¡_I\k-¯6Y»á³2Ò¡ë ó:¢¬ÃRxQ¡’‡üðÒb‹ˆîzökW ê½`…ð$´«Q¼,á¸40nwâ ¹¼ÓÉ9; '/.…³úG:®L=¢à†øù]^Ì1&1·ç‰ý …¶ 9×Õ ç9«"ïò×yÈ-nèJEarç$|ŽèÎê"9|u­x]ïÉòûŽmÓ¥S,r]ÁïÅ)×À|KƒùQÿ4ÿ*šöJÇü†ôY¯ågwmtT¤b &Ø׬¿©¼r,eþ`-ž˜BT|ÑcééõƨÕŒü]OÝfÈÂÿQM2ûc¯&cq˜3EJðÃÍH‰¥÷%`°VŠ¥áœÿáÐoj•Åg¸ãíÔìÆ*ä–éЃˉ5 Àmb»Oêït…ï&“s6ÐiÌM°€sð¸Ǿ^'þHLÜ‘F.!Ëæ¿BõíKÝj1×þÕ™çÒFbýÙ`nf‚yÙ_uðÏãËG¯‰³ß„HaÊîèV®«ÝIøõ̇C]W0£¶U»Äî/€Už¨a˜Tššê4¬rÌtÝLß’ïDpï¬ÑVzDUDk8Àq€[Œþ‘–¨UúóÍÚYý5H~*‚Š‚·¾Šx¦9eÈßÍJ½‡?Ðó+úÇmê5¼Ñ0ý¶`Õ ø'µÄ¡ ù»§è_RO¥™Í™Â_-6{ÂÑ ÿnEjÃíü«íL4¬a„£<§~£Jå–Lêl©‘»žNv&ׯÎ%ÌßÝ@ýÇ@2,{`;2•ŸR%¨¸l…þqíü•;ýKöƒQ“¬Ztú½ÇŒª‚Ì ‹!;‚SPuuòÍkб®+øï½ØëÈ®}t½ÝS‡§–4ؾpý(ÌI´Sš¯žØè`¤üoü±ÓQA/~”ÐÓëh˜+ý…çÔ,‡µi ËrD$5bÐc¨³öÔh*J‚ûéêû÷ø« â4\‰Ý¿ä1Í*‘ÝôÐRñ±ôÍè _[,‹ôðX{‡ã‡v^k î (lGÿØËz¥Èß-jÖKÌIؾAØúŽÔAf^^ zJ¿x=Õa,ÍáÕLÆŸþS”Z~à&ŸÁåTůJ.PV³h˜ø‘A³­Öa‘ ϸ"Ê@z0½'º9 u£sÑa"›}àÇ6s'V×ÃhÆÝÎ~®Ðü;$Z:nƒ£XÉ\¢^X)_t›cðC(¦øãÛP–“kúGâz°acÀL eD2‹ûPÍn€F£°ë‰bÂW|A#¹®,ÁºÝ5/‹žÆ§Pœ©M1ZqVÙ¸Jù½« [m,ÛŽw°IG#y§}`å7€.[°•M©{/‹×øä.{€úÁ=b<½_;;DZ¼™ŠêêKÜá‹å´¤'ÂgTë<Äûð=o¨IEät#±2çl´ÞV ϲbåŸW9À´ƒ¨)Ññæ³ãçW`F:l{kºKíâ(#€ÈIÈOÿýb¤ˆâ¾|×’øO1ôx./ÃÇlFÿˆG×S¦uw£Ÿì[úïÞ—ííþŒhÙy©> ×u@æ êÚ¢I[]çüvbKs„îÄŽéÁ‰-ùW[È¿ÊHþU*ø+;·*Hkêã·À—™|ç žØµùWS„w€½_­B.Þ éG–À¢©áTí&Zˆgepî`ÚîúïF=‡³äÿ³(%hBô;ìèº ´éè™°Ü7ÈæÚÊSá.+“g5ÕŠLýà~òÚXQXñõãÐEª£€0aæñ X4ŽJϲèãZov^ÿò¾Â#ù.?‰ÈD5Uò‰ËRžÏšAýùë$šOJú—¢“qeÕÁÚËÙ´./Ç‘¿»Qöž;Co¥ÄuˆæÝäKqü(µý#.U†ÑÙñSIæ€rU[ø0«ï¥*ùѤQ,‘’./fùWÃè1n5õƒOT9çm«.ý'Ï ãg¤ËcUçç6«üU%Vz©¾ÕÑz‡õz&¦’Åø‚¨»°˜ì:ãïÅG´ üÕ G{-mˆÞc‰5EOeÔ¿òÓ2±Ê2ôóâzF=«¾›™tá³Î¾Û5ðcŽðÀBç?,#®‘Ko©9…‡ÈFÿ?8±OØŸúç&àG'ìU?Ø‘ÞæJêϽ™ÿ!ð"ÜÑ?ÊŸ. '~|!·¡x ~Ì£zd'øA?Vøüjb6ñ!êJ žó¡Ä#…èì»=®Æ*,¼ /”/\od²;©^bÇOÀþÏô¼±Af ô”ØÎàÇjÐh×¶¼™Å 6;Ø øâ²£‚q”jÆÏ*~iòdÖâŸ/Bÿ^Hô°–¸!®lBñŠª¼|XÊýx7¸ª™Èö™o¤ÑCöl™¦O½¸ö…ð°?½‚Ø~Hôój6OZEðî;(O¬sâ*¬>™<£Qò;'äSø@³»èVg¯$—øñY^´ç¼èç·ÈßFÖ5*•÷Ë{rJŽþ‘xá),‘`õlüÝQÍ/Ø®¥ <?Ú‡8¥.ñG^ò¯ö¨<2‹:CÆiQ,X§‡:C<ÓþÊ“ȘðW{Èèèh¾2Z[oº¨ærE 9 ñ©MÙM5É@5üÉí\@ÿÄ(Lñ^5C5·örU— 'mCÿ¸Íäõ6òµhïº)µiðWvdw™Hww.˜Ä ðç³2Si;ݾ ôóçVúï¦BÅÈÎä÷ƒä_¥Ïâ8Ô«„°JÍ]ëMÖnë÷é$šÚùüØC=ûêKÁ_ŦN# ’Íe¢ßÈmòo ¡zï…™mË–#ÿÊ ûÈõìmж…Ø yšJʧX–i*³$=|+XÏT ¦²ŸEjL›Åz©ˆo¶È¸ÄEÁ¤pÁiQÅ^š]»ð ñÇ‘†ç«#Ïkó¡jç<Îüóchñ9¹jÍé_òYùéƒï¥Ê2ÿcúG_+6]î‰ixÅ_Ìx²²˜á:ãïÅNG¼ ùú/^ÿ¸I.*\WëñŒºÆSòw³±»Ž:I‹"ʈìÄû¨+Élÿ†uÅ‹“°0v¶›ÕixCži5ø«:LìÎ"‰…br8çŸ;ô;Zcôìk/þ}ÇdgMt ñ˜o²«J‚#™žCë°øy?ú_­Ýñ¹§Ã²,‚ß9VÄ7RãÓň?Ц|ï•P®=ü«…½´±àÇ6‘æ¾4™#Ùàÿ¾Ý\ÀR$•vÏ?'øaëé ˆêmøŠeŒØð¶ælðHbëIXàuf <¸ßȳɎ~KzÍŒ„‡}•çi ˜K®DèG‡þ̵9ÏßÈ€Ïoý|(Çñùí¹–³¨@ûL4ó æà\Þrò-O0‹·–ñ!”×4†AJA•dsb–íDU𢑹ÖÈL b‹ˆj/+¶CK¹Ï1/ÃþÆd7Õ6®'7pÙ‡ŽÊÔŸOâêÇ/Nå n‡›ôEE݃=´û—|‚º_œ—(i;ÇvŽnÉñeÃÔŸ.ðj²>\ú ø4÷Dgý`OjSÿQ…‰Q;éïúžª§éæQ‹Ü]¦âHð^ÑU/i’}²»["ø¦ª0&Åáù#ƒDZA»ÈJʦ^Á_õƒ¿ºu ~l£Ú/žýU*E˜ Ì.ØB?o~4„‰üHþî}Y üJ¦¼éxXŽþ%Ç`bÒ‚E‰à|T}åºOÏa™P=#Oö-OÒµùW£EqöÛyp¿*W0¸°œøc–êNþnç*+ zç6¢— dýRnM‰ ‚®‰‰?öñžó0«ý(~FEy4:†Õ÷”•ெX_ÐŽ£ŸW£’°1ýZº0Ïõ%³TªS]ã±Ñšt2¿v!Š$]î£>‘‘Øoˉóz“ŸLuæΧÛðVë8úGDëšúLÑ‚þ‰›y²;Ò¹¦J@ÿ’Aú_]×nµ`•›Q–aÕ1³—’Ô®D‰1é¬Ò,zBoßytúÏ6׺*sËå…ÈGü‘•ú;AòwÏ 2YÄc‡´ç¹È •Çy™ùÛ‰?ŠÒµ¤³UÍ9þªœs¼ÕþŽOÕ%jOáßdK,Ã|ðã=6(“èbþ_^wÔŸNSkúñ#-ùW³ôŒÌ¯ý@¾U:lÈqú'æƒi*ªïdÆáß‹?bj»éŸX.‰¹üpeõ©Z*QQ&÷:ëÚNø?ð `H>‹AöS ~|cæÔ§R9=úù±DÛD@: ¹‹GhÆó°0ëáëSÉ|°D=ÄZ|æ[¨’ñ¥{Štõ ~ô2º3.hð:6g#å,u¶Lx÷Iå3ò¹¾‰Ö•½’àÇì¾ Æö$Þ¨C ätæBÿp€GWYõ뎅·›üËø#ºÖ\/ÉÓ;ÔL ÞŽ%P0!ó8s_”ÀžæÉרáÿÈ»ÍåýF£2Ý¡æ_­ÕF É*NLÜV‡ó:jÔã™þÖÎŒ ~(ªÚÓlBÙhÎcü&Já‘h¡àÇ G1Ãv."¼\°"&ת ÇfOì [·«Ùƒ\ÓXí,2%öûZñNü¾/ôo÷5ýÞ^ì9Góìñ=ØÖèTS俪 Sž‹ÚŒF̯ÝB%!NºN­{´áý“þ‘@˳Юt†üÓµ‹±/:³zDÿ«öTСêà䃽k_ô8MÜjøÏÒæ~fj½»Ýôh Ñn|ìFôw¬…âœýc‘ªAýù˜—\tôHJÏñKô/ñR—9ºT(÷ÑÉ_öã\úš·ŒþÁÖûMÔ ÞïQj ðCðÞÛ™†;Vu‘³˜ ¾ÄJKïª8N?súùb…µÒî+v..·êJÍK/×áÓöh‡‰–K ©U þ˜kÖ£ÏË{ÝUxmÞø»ùÛZX{rpò+VS‡°õóþ²Œ<ÈO7`…ŠpüYù÷³áº\®¯EpÉQä`¸š,x°óñf™…AÊŽXÄàGðã(Êo.~~šL„ݼç#زºFªŸb×ÔöÑ œ&Óè9×f'½njB>*#Ê¢Ô&CMnDº?(— žä4PSõÉEê+ …ØÝÉu'Ì¡ø±ýã˜Íò¯V’Û$Q•_2õ}œJN%a+k+úÇŽ0.õ31ˆƒºÉßݨÝÐc°ž+ Ìß„ž²ËÒà¯æ«ˆàÇ7"®‡ÄGQè_ò˜¹¸¨ øõ¦7q¶›œFÆÅ*QÈõìÝÕüЍi^x7…¨œßaŽP7­ò¬Sý#êþJ²¹JQ—x”$ @v“(>ª2÷,ìGv³ù»]øqýc Šloüº°[[U²uûس¶<œ­:ôOÜi•u"+ë“cìÙ• ÉßmFfæìÂužõ"ÿþ꘣pü«·Ž†ZÆ`ûÂuSÃ|[ó×fèQ˜†ý£«lttfÎSr°Ž“¿2Cå¯|ê˜o,ÅënÀ¿B¼Ôß¡Â{Â_ù ô4n±n±¿uœÉÅ:t [GغHÄ4{iÉ8p9DjQS,‡ôc}Hÿýéi:aWçAŽhh+àÀsÈRøùÅòwb3Já ¦þ¼ŠmnwÈ7éiô¥ók{üy¨¼‹ðzna©“Á[eEÿN‹[‘.iÕñ5â›n®=r•?¿Îªµ'Ï÷$õƒ‘xæÇ€kÌ[ÏÎc—KK»_ž€ö‚}YÁq¶S?hL">ð!¶>¿–”ø¨V§Óf`i‹ÊͦÉz7àqžs%ÖÂ_ÍÖBS»íãK¨•ÐÝðx§s„i@$'ñÇ8ìªæÙìÁŽ y#¼nLâg3±üD=#$;d¯6Ra´#ú‹'g‚g±\õð ;ñÔÛsuâ¢?%êm´c“5hSEˆx2á‹çv=¹ö:ÿù8ëÈɼ™©ðWe?lo$°Û «„ëNLâO†‹O#äEI-÷Â]À~|çýÝ,?ÕÌ'w{!#õêWA ²\›;›c×Ó?ñ:y¶þèµèVÕ˜Šwf4ùRm¥ŸXðSÿÝDº†_âiº‘÷z‹¿‹¨w?V0 ýD®Ó‹¼ší3x’r¨=Ÿ ŒË'ï¶E?èÍf®Ôö{^:éQˆ?ìß5‰+ÊÄaZùAUD– ?v¢•E9º3+ýZ&Ó¿d=ü•­×GSo¸7¹W׌¦ÁÖ["JcïmE¨gc\ 6Muc~mfç.¬ªi}¶©/r™§'¸¢¿ËšÄv›‰ºÒRex)ˆ½/ª-ÕN³û+à;†Íõ%Fò†³éo%´ÜÔêÏëÍdÅËï‰þžj^ÄÈßÝ ?8 ü¸‹þ¨,#W‚÷ÍÍflõC$æw‹ ½EGYN½ø"ë&¶ÿ¢•Þ»âp^·òëlc'U?òK˜^òû‹¸ž½KÚ*Wëâ¯ì%{í¥˜m6Wö”òùè1=¯‘¹ûÆ*IÞÕ) ¹X;efg•ŸX9ºô!z²Ã»váYm¨1HdÅkìÍgÒ]Óy ÿ8=¿²[™^VKçHçn+¯³­Õ[Uw¾'2IO›ï±øý|?»!ûÿdþÇ>GÖ ó?Z£œ¿kÑ×|‚Ù(b¤¢ÿUv×nô"D •ô#Ì:÷磮ϯÉßKÞiy²<Šãô…÷Лj‘„'óÏ=Œ{LÅ-lÿ†µh Á½ÆW£¯°9HH³ƒ–ËpÂäF‰©÷](6ëáéVåp\×vR~›´‹5¯2­t3Ëп};öæ6£6¶“ˆ‡ÖF¬•1ý¼¶ùy9ÏÊ lý`ôóËØž™tq¸Ý¸"ªÀúÄ Gý`J­9uˆŒü¥Ý¿ÄŽŒ¾‰Ž<׬ƒ'~‹·Ïs'‘D)³Z˜ý¯œÆï`NEsQÈòŸñ·ÛàÞ·cg[a¥VwþXù8<뛈):‹%ôýnDÒ2è™È…€ò‘ =ÇÉzøfïˆ?-ÅB+ìÅ}®ÅAìý8ž¨{œ{óPû—Ìà©kÆ]HÄYºƒ#;@Åj\ùÈ(ÝÌŠïŒøÍ èìüZPË›ü±(”å\Onàqžp” `#¡êv€IÍ™µ"F«F¾ÓXz ßÂ*u¢Vá"/#±ÈIxÇøœö2 ÿT>_,†s<9ˆ\n mØYË'°GÑ©÷ȳS‚ø#7™W-Éä÷ãçqè!r¤úÎ58/~YB\C¡§ “YkòE}\•û°¯»añ³À½ J¹®åGÑ!¬qK-=raÃOrÄkP纛ë´3ÁVl­GFÕZ¿ã‰¢S/%j÷:•—œàÕd$å?2o˜WÒœ«ÈúIC}…¿»ÇN¸BÿX/Qÿq…st'/ÏÁ{/cRÇPÕ½#žs-óÊ?94< vžbïØÓŠW/Ý'c¸»¼&¹nFm’vö¶xTO}2q@5åG—aeU¤'íx¸+óÏOÁ_-ÀÆ'ñç\G‚À1É_K%?`3ZºÖ¨ÝÓ?š•9îíÄ\ð“Õ ºÖ£ÿÕ øºOÔh\!?Ö‰Åc³RУ˞íR¤ÉeÇzèçÙ]øqS;ÕÝW…̱u曩äSÉ ‹f9ù\˜h&—µ 4:¯ZЧñŠLäl§*ÀFÂ}wÁKòpíÂÚ ú'æ!ë²£Yœ§b“ª„þÑ”x¬2‘%Ќ̰ ΕtÁjG¼tÆa%á£Ê.ÔeþÇ1³¤Ì#æ»Îøß{ñùWo]o÷€þ‰!;'¸~Æ úïF6JQšmÝ:êP^L¯£¯%þ¸ÆßÿqT¦[ÏÅán¾ˆQb“þ‰.ð=´·FU¡^ÆN=›îìyþ×?•W¬¤ûÃ'Ñ’ ½,æqO ÑŠÏEYó®áÅÅ4ú'†O¡¹Kü‘N\ VØaV|‰2“WGlÄÞ]¥Îg×UÄk;ùóüôÆÆ\ø«!0ù¿FóˆCÎ…š †=>p|©òà^Yôˆf×þi™ÿ~£ Ö€(a‹È‡ÎŒeÍDág⸵Xâ,r#¬½" i R-$²s3Šâb‚W9Ï© e?ØÖ¹0´‹a–’m_ƒlö°E;Ñæ¿œ«xš‹~ÿGÜY€WqmoÿÌÌž=sðàÁÝ5@àVîP‚‚»{¡w÷`A‚»Bp)îÜÝåûMîå$9„K¸ßóïmŸ– ;{fö,yßw­…V"êÝeVr«ñ7#©ÖÏ…Uˆ…gÌj¯õMðçµôÉX”Ïx‚'d<»øýQø£ ú_µŒR5Ò„ëQ¤?™åQÞåì³/ˆŒ øU qQ³ƒýûbÕVqG—se¨?Ï@?µ¨øóÓð`±¨Åð‚=HÁªÉêR«Ü†Œ$,¥!qÿ{úá‰Áñæ¡—xª—Òj¨Î=‡×©½ÅüGð¯ p°¸ší°­_`‚³¢Ì¬Àü¨‚Æ ô»E¨˜n]šêQh¦jÊb’pwº‡àM¸ÂÒÔ3žóÙ „Z+!í ÏMQÆ·f‡¿3m{6rüÑQ™œœk’r$ÒŠ~ª-,“|KþqÜÇ&S…ñç1©€_‚ÿÈk_D}Dbð¦: nû¨EMÅOV¨/Ù Æ8DßèÔùæ¨(Gršø¤49_<ù‚:ÁLñE!üÊüIeÞ ã³œÎä§œžåÜéYìî\¿J¯LT΢)‹ÅÿttÞ üj',ÏCüåej²+Ðÿª(­ð¦™þ|7½¯&ÀN)Æ$žÎgøÇðùË•诘¯BÔ”Âø"é‹ÉŠÿç‚?O†ç=~u$ý/S‰^ˆ®î»‰ j²Ã¼()ÜéOÞ;èܬ¥‰®E&^H>KõŽðÍé\UvAüG ¬~2²¸TúUdŸwd|x#"ÍD²gПTÇá?.)ƒ4_‘/߇w2‰~èc¿m6E¿ö·‘ZÄŽTsŽ·O'ÿèÎõÞ£g×#tqM̼ð|*¹àq†h"kBÔïßÿÅïž´åT«{ßÚšü×ø•¡ìV¨ók£¥Ö(žœÖÕ¶ÒTŸç‡9Îüóà_Ú¾Fw£Y¢ O)Z¦[ê5óúÊQ-¿(Åüópò"½?[<QBx„¦X¤ÜT÷Ý3”Ú[ò‘¢0mÈO÷×/ê5/(!Š›8= ý Í Âœ•É­ĸ'`ÕJq Wª£ÂíWm­ ¥~°…þ‹¾Äý öú_ýwcËÅd¼OÀð‹ß°ÍI¢_%SjoÖœ¿"(eóqµÏðšðç9à?öU¿¶æw{R?…pÞ›ÍvNŒEo„]>HÞð›X—«,@ä8«— íì,÷Ô2Ïy;ׂÛò¬¿_ÇúJ~5-ˆÉ8êørèô*¤~°ùÇc=¼¸Þ G%ïú‚uo4‘õ.ÑÎOûłӘÚÖŽ]Åå*+±ƒƒ XÉþ>â}ZÑ¿ä´ö€ˆ¹)ÈK0¾y+¬K!ôw™ñ"Eonø²ÛmÐû†{‡.9+ªªÕ°>SàŸsÃAF4ð–Wè›¶á]ŠÊ­ìlYÝu¼|´÷× û4SíJnåÅÙ8 ƒîEMÏà0µÎ[z]PßÖ?±$ú0£Ö¹7z¯âäø—þr‹˜%¬þ?ÿ1Ô·pÿÞì'€ÏdÇT1bÓ¿ä)–µ¾yÿq\§‹‘ýU1²¤[üëbÉ äŒ[Ð4E\¯©úB´û7~µ ûBσN÷‘™ùçËè+•;Uk#ã ý«:“ãTESµ†î*9Ý9ô'´Á‘Öóñ|WÉ?<Á5?è—䉰úóæø"t'ô@;u‡œË÷S—j©\G<æaôWIŽDñ“ÛË¥¬Vv†é¯îã¶pR<á‰>2?Êþ%G©#¬…N6?*Ù?Ì¥pÌÕP/ï$÷GmNj#gGolñ‡c½ÊQõ%êòÜ0üꕾ–|fú«Äó¡ð)™!uŠþ%i°øWè2üʚܖkF·Lþ±E”vÄn¨ÿ(NN^‡Œ»ºü f¡¿2íué·»˜ •¯ÌÙËü¨bæ Ô»×è“{ÛÌdd£~Uò¤²üGsø³ÆŽS¸›I̽Á¯äeXEþqfµõyéeÒþ| úݬô‹œ>ì13Û«óÌí¨N^‰‘DØô²€Xá¸âîÃA[yå¡ãǽ ¢³òÜñ‡?ù ȧã?ZhÙ´MŠ×Ùš1?ÊM-¢žPâ+—~òý‘ÿø•m!ªÖNøø|úqùeÔæŠ Ö¯ ÖA»€7ù5ÿQI\Ʋ¿Æ^]ÂŽ.zK%¥¦€q7d~T[ vF³ÿîuæŸ×w±˱ ±®dqp¢†b ¶ðQ]còá"«F‡?ïÌü•ð2ŠœIÌŸp‘ø.,Hv~'#‰š3gɇL'—îæ8ÑïVøW¥•6ð$Vþ‘ƒÎÓ³°Ê™8_¾Ø®«`)áTyÿtû\Mo¡ÕŒdÂ×ùöÉ®-ä=jˆï8¯O@ɵ†'²Óº µ¤7–t&þã(ùGlùb'}[&ÿ°ÿn,¥¸šþú’tàq_„èi J ù‡·>®BȳxW¿‚û»¯÷7Cø ý¶/›mýKêàbÊ¿x7‰|›ñký÷Žnøâ£fÒ7¶—lHÖuþ|ÙI¼GyÝÃñ憯vÈæþj\LgìZ~ì9Ú®º,ØU;¢å3<‡~økÄßPª^ÂãzcŸÖ‚ÿpîî¶Rí"¦ã×rñ÷@k¾œ Kf4@wµô:½ÈOѤ©±úÂôxº›pJ¹Œ?$j¼ïæŸ'P?‰:äó$r\ìª"òÝ¢Î4GØÁð 6`h~¸§Øæ½2üÇ2§þ»íU üê(Oן[]>Ós#‰í=e^c¡2Ø·£ju§Þ|}ORû’‰+OmhÔ¬\C5·Î‰?ß!*ñ3Ï£Á+ÏýKÁ5ï§~š„ð'EÐre cPì;ñˬÙâä¯ëd °°—Ô8æ4ºÊÝø"Êl%õHINA%±ܷ&Æuc ØPøŠ…0 á§ïšýˆÅ%ª§6æZîódýwÏ—`’ªaõƒÉÔ[´——»õ”bÈæx÷ž*«µ à yÊÈ[ õ WæG-IK‡ÿËl«PøôEæiv]”»ù”úó¦Fm®)üyv½ÜáU:j=a,‡b;ròöž6jÛ_³‡zÕ»1¥·#ž|,`5ûpô»’)À×À@›±ekÞ¡áÔ€£N)y„ þðsýýé´­´âê°!Šâ£üÚ\ðý©ô…òg~T;-§¶5¬ÿî›/Ú«2ôpßôËõêÌ¢2ïp6ý¸x/_™ùƒµšÔŸÖžR—Xűëð=üøS%Ð¥–ÄŸ}õø‘ðã•Rš3÷E'ÕJÌa~môôW¡ÊøëXµà;ÀmâÉ‚(\ˆÙØ›³ÄÍÁŸúŠ˜¢ºˆNÍK7mÈIð¥ÔW›Ùßm¸DÍå|ê@^rª¾O²ÛŒÑ˜?XViA\ÿ‘ŒüÃê Uˆ*‹¨ý,G1$à¼ÂøOÝGëø“»˜X[Šþë{ øQX½B¬®À‹Áê[£r]Á[vm–55ñ,Io±â‡ø• õçåA«Æë ñ Ó¨Ôð´þøÜѲ?–¬UEò‚å¨>‡éóÑ!ë9ÀTà~§‚{¯Ê¯e×äJïs…ÃáÈïh*ú¦ÎXµø¾m¬õwÆ}}’(üÇe[bú_ #÷Ï›+[ÄUÏ¥ÓÄlç"&Ž+`a7Aë—Ûç„C>J¬}½f”ݨtVJŒVÛˆĨePIÝÙQä0ò´ÚÌMõ wê^êŠ?‚_í%[p‡ÿh ÚÔ>|ÚÜr¥h":=—,ª‰ïkO=›þ%·¥5qî\…Åñ<¦Ú­Ì}s?ÌHKüÇlor¥»è‘vÉœ\‰?QOÄ·ÃWuõÛËþ;£ß­MÆ ž|šQ€šÄÕæ$&b¬‡O)C¿]oô»[Øa2¬³«!ƒ<é©ú§ùµk„õâU›…ñeLé×^_”Š¿Ï ÷q‰ôß ‚=[€uÞ.ŸpʼnPi…ˆiŽíå£ûAÝš¨õ¹Ÿx¥J F?8ø’ÌÞ[„â*Õ˜]éø|¦,éwo+ÁV‚Ý$nàXo>ý5ºòžG3çj|ïô¿du:\}fFRó0žcüy|üÇY¦gí¢¢Ÿ¹…L¶6ºíbr%úÝE"¾Ãþ€X¡·aêTòߘkU”þYëé­’ëš{Lžý¯<ôLì­-'Ð,-¯ã^Rº0/В޼­qõF]ûuúï®G½•OÔ4q¸},š†L&ym^ +Ëdú;RÑ;”ÿ΀ffúŸÌ¯=nËa~í'økòìóOzòj|º>S—…åÛjÓ½ÝþüÇxT«þúm¬!²/ET¼Žë=Àß7eifc:k/æ1¿¶;>±"^á Ø+b‚³z-øl/0ü8dÕÌ ÎÔÒ(Çÿ'¡XªO¶°Œ·ÝäV:§9÷ßM­&'÷"Š^ ‹mé¯òb1sÐÿê²´ÓÇ£7øÕkú‚œÂÞǤʻ¢,M•ˆ²]f"V^¡lŽôTÚ©ñÈÃ× fèç^GÆ!ói ®–’ÈühNûaºšç¥ºd0Ò5Y æwÕݱŒ£<énÌ?Ÿi½)èw‹È}œ­šhs]á‹6ÓÍwža¦Qˆü#9þ#ùG PýêÌ?_…­oE Èe»tF+¬ðHÇÃp¿Ú…"• øé£:=s@êî£ñ¹ÅèI;—޶ >#”üc¹‘€®S5éoͯÝ% £ˆæÄ'ÂüÙðç6rå‡Ä@od ðÍ5ä<}èW\ÖœÊü¨Í(w_¥°Ç2ï2¿vªYë¼’J¢z0HEasÃH…óçá?¬ŽEí±e`þ·é>Æsf£˜„ø”~Àó˜Eu‰ühÝ|oñ¤mfB¦Št7ªÁ¥`–N|vHü*ýîêÏrâßýÁM¼Q{3*Û’T„ÿi<3·’ƒ½’5Íxt{)ÆÃo#fÊü?ñûmù"Ô~°µT~­¯­ã¡ÛìtHX¦º’ÄÑV‡åAäeÕßùï ýK~M%˜ÿ1 T§ úø×ÌÁm¢ÄfR`mêÏßÓ×·l¤ó¾¨?U!œz;–æ6vdšx‹Î4£fõóÅEƒíßih¢^éüG1qÄÝbT6ƒJäùÀó»‹@lá9°¡úð=DB²š¨ún8¯Ú Åó*Ñ»7V·:ø*xŽ)pÀÉIWej².•çM°ÞIõì?õ•Žè¯v &OŠÎt8xªçˤ%”eö66¹sNþ|<³Öô'w1ùÇßDZ=ñÓÀÿ¦c¥·aUÇc%š¡éô'bß>ô”ë$û*–þ°b\Å]ÍÇß[” =!§¿ßóT_"²îììë'GÙϽÛ¯_¡{Tþcj=,¸)ûÁ|Ü!º÷ÆÓ¶Àû¼æ×wÚ)í+̃Õ—5ˆ<­¾`1¸æò ÎÏÀf»Dÿöõb4« #ÖÎÏ9Ÿ¼o2WjÍÉ޽K,}ˆ•¯à“rP]q–'}œÔÑïüÎü©rÒŠaåÏÐ)ð ÙÛI¬aúïVÙ.MŸ¤Üô©ò¥’8„õSâ;Oá«\vpɃ…‹ÓsQÔ$ÔBYõ$ôÂÀªï×óÀÄxk0¥ËÚŽþMÏÌëd­ñ)x¸"pØOQå”y8§ œøó¶ä3õ‰*>ÃM?ç¾Çà'÷&c(MÿݽDÒ9°`É©y ¿êNžTšûcD÷‰øü„Szßi~í QŒ®.×9W…8±àñ·£˜fô“ èß~ýUBršøóÌD:ƒ x3çg'=ºÒÒÏ¥ƒ|A/•ƒþ%‡¨€ª"C‰T—ו^Ô  ê£2³/–ƒ ÙñO°ÐðçM¨C߇Ÿ‰ë7ö—ëÜOtq<ä ÊÕg¼ :üIJâ½xËñài%à2ÀŸ[3o‚g¥%C åëš [‹±Ð”#FÊ'ü#ð‡˜mW‚ÜÒ[ßNþñœÈ´ ¬¶'ªƒì+>»ñ1òy«#ÏÙ`&‚ÿ@·­gÆ 7"†é ‡äç8…AÊmÈÅiïŽWJ£ïdâÖyú—ì c>¦FÕ6³¢þ£°½úÝ·¨4ê(}̯dÛO9³÷ÄâŠ2b‚ãŠÿ¹'l®ôúol”_ë ¾ÓLÌŸ£æ€ÿˆ¥ÍVJpþÙêÂS ¹¿Š¡„†ÿÕh|J ƸÔ¦жÉ"ýnµ#þã7áÆüƒø_Óïz‰ýDá_A /€ˆ›"ýU "Õòøf(&—~g¢ÞæE*±:ŠçX¤aqüßä ù‰ž‡Š5X¼ë¨vêòž÷¸õ‘~·%úÝ5ä—àæ£èyJ 7ŠèëZ˜ÿÈ©AXç˜ÑÀ¯j)=ñ!àWI±r#É>ÜÑ÷õmy¢”˱xOøIV>2¬µ‰VÏÉNEÚ_dÖÖãš‘[ïǃ%Á³Yª“j £áòâáyˆøþ‘ìVõ+˜dT¼Õ’Ô1§ÿ•¥vŸÒÍÀ}ùG#}6T—ÖŸ`›§ò³fÀ×ÜùAÿö©(,ªò÷âȉøgØó*à4íØÏsò%ýwc`™»“¬#ç:ÈÓúúÜ ÏqonøÕÞÅì“ñ£@2Ãñtg‘³²ÆF,NüÈ3ø`CAæ¯áWbSÊêÌÆt®nš«vCxrÔµ]aOð_ÇQp¹R/èiYÓ°7dWº˜ì#KJ†ö8Yl£¬<(Zg9š€H  ÌÓ0°[(rƒ_02Pþ–j·Ú 9O±¢¯Qt%Ãq'z¸NàB-anPÌ=ÊÞHOº½ ï¶L¿–r™ìÂEf4z0?ªùÇ"èôËøl–7¾Òa¾>XM²Ù}ð1©9 N{Ñ©òtþ£¤ü›³[Š«ù¨ß’{áÏÿ4Ãd§yF´·¦ý"xÛj¸…“T¬ƒZû ãÒüÊËñ0òÒ÷Èm!2ŠòO¡ *°tyE·âËøèd‹’qõ6—yÐ4åÊ·‚4n§Ã£?;=¨·ýë­P.©:ùÇ3ÎðGÅàYÎê†~µÉÈŒrÍèþùQ<ò‡ãæ³ ámnEm€÷w—›ôÒàÛžŽØí‚¨•Š´äm*$oˆ“zwX‰ä-¥È²Šà=^˜7Ìòð稹ˆ–ÁÄ¢þ£$g5­l =F§ï÷· gþà ‘•Ú¥h7ÓêGaŒ‚¨?bÖIN3·Ýÿщ”ùè_2Ɉo‡ñ'+`¢Ü ~p$ó-ö’Ùä‹€~[ùÿþ×£6xµIÿöÿ–?·cWשY‰¦skË ]:`ëûQ®býw£S ~½wmó©é¯ƒ%NеU_©vµ‘òY+‡ÿèŽþªžZ4ÒûþQ*‰uꈕ+§qõ)ä1¨(*JˆªøÍßͰŽz¥Û(Yª‰›è¸üÙÝ|¢ïDDxùˆ'–cñn®X»%bD§æ¾ƒöWÿñ &y¨ÿsìL7NÚÎÄ ˜«ÿÕK𫮜­üŽ3õÞl¶rJk¸é`¢™DDÆÃñkùñMA*,4“]¿ƒ­ð‚Iœ‚륵ûÉ]LªÍwi zv ¨‘S}I5µdKx€¥d뉬m ûØ71û‡õç1”¼jQ|Ãhê?r‚ÖÅOb÷ZGÑUe]кâ>U^‚e™Ïoë'E™(õ»c¨ÿhÁÓL!'cé¯&5ãi6À—}!_J*h’ʼ*²ïÿ5}(zi:À'ÂKíxsÃïâ[ ê?†ò“‡Èn T¬JG®8;LÙG þ¼1z&”OÄ·îÄ;Ùé.¼a&üG¶ï´{ Õ¿ˆUZÀÎÀ7£¿º‹&âÖP£_I6c+ê¡/Øþm̬»à »P–Õ§“Ÿ4•3ɇ“9=—ŒêQû’þã-V÷8ÌÌð«TdO‰–»a±n˜§øY ŒxpÈ%ÁíoÃbÇKŠ[k~µ6›z®zè‡ê^T©×ŸÉm´¡þÃIèÜ”Û~ Ö¶<žªº,«‹yNNÉàC–â»Fƒ_-Ž´ÞÑþ$Y`M9Lï ý×P>@Ž6JÚ·Á¸Ðþ®¡£êmg^ãô¬AÛ°–œ&ŸYW^Œ=g'ÿ8Œ~×/ýJ³%øÝ2ø!ä…Œ«ÔkÔåSatMCð±±×-ðûATOpG–‚=^?në¸ÜqÊeUâ?“ëÚ7â3ùnú'~¶æb¡7 ¼š g‘”úó3tÿZº©+ý¯>èM‰¬þÎEÑg†çþ'”¥Zm¢•vœyˆü£5UáE©,OT›êýÛ¨€^7NÒ ~ õç±ìõŒ:œ•´²+Ü_C8ÃÊŽS¸Ci¯u¿êÇ{ŸVð þã˜YÃ8hœ0Šá5Úš%¨??CO²¨²Û¯1×6·Qœúæ0£ÖüSäÁÙÄÇÿsBm%"ô»3”NŠóäšèî%ý¯V¨¹éæ” ÿae1lmÔ¼ª'½÷)¶_œ%é_2CT¡3-ÊØ³ê#õ£RG‰IOÂâtHyƒÿ¨éüþl—ÙÅ|ž·'´þjš¸$–“$ W¨#rˆ–àWÑ­ÿxLÿöº(æ6Ñ6æD†)åÃN«É?.Q[“É:‹¸Ìqž*Õ.‡à?¶!ÜÃwÌ'+xJ$=;v‘7h-öâ)¨þkQû#£1?ªœRŠËãÂËU€:º<`ß*û À®f•VýÇ'|HKüÇLîƒßOóÔÚlâìfúD¼Úpê?¦b›—Áj.@¿Û$gëmƒå~»4ÏKl`ÖKT×i³ÅVjÀjá܈t3µ42ÊÃv·%þÿLe\r¹Šù)œîar51ˆI+b€udA·©¹É6_ÀHb\§þc(•Ï×`€×Ò+¾“?þÃ<ìùÎ*™™Ha—²>ÒŠUW¼›5#ÉŸS—«Kÿ±ÔÈ$=©?ǬÙ+̇ÍC÷ÞŽTqXùGF‰C±Îù‰Ég™%ÍOÔUÜ3{™s W,õטּ p;hØ!´@“Ãñ«•ÊôWYÁ¯à{äW?“žùQ±íõ©ˆ/î$ì“©v‹+LÏjHF·”˜ˆÞxÎiðçSEGìvUÙDþQ Û±ÍÒס»j¨ö’Ô 6…—±¦ £gI êÏR^ÿÔi„Qœˆ0•lJþ1@£×üvúN)=à?Òß·ç|¦Õàq¯ƒ_í6žthòª}™Þ>ØìdPÀ{<ã&æòî¯bšþÿW–S¿-øþJÄ*'ÁPüçÊ¥ènƪ\¥ÐúÀ¬›_{ÓÖ‰Úêjquõç¿6Ðòˆßà¢éÅ'õ™Wm¯H*ýÒ?ñZëùóÒb)ü¹Fwšüc¾8€ÿ(§}"«ƒ÷éŸèÌF}å¡Ê;ò«Þy xÉjlHZêÏÓÁx¬!Ó¾Šíòâ¿a"½¨-ÿÑþ|‘ïC¢Ý¥ÄZÏÉa˜ NÔŸt(©¼Nýþ%p' 8ÎpÔ{³Ùš+–—¼ ÊSné˃]¤àªO`ß³“ÏlßÙFd½_•Oo¥µp<û¨W̬mâ [“wœe&~¤È]59ž õkñtVo”ìÿ0þ£XV;êµâ(ÍÔâ\ßLüGaV”Øó)ðt&*ëªÏ‚yxÁÏy…Šö ¾c Þô¤~J Ñ¢ÒAÏ'ë¯WKM¦Ðvçþ£6wþ9;¢‹¢¦‰Ï`â]蟸Än÷¶,ý+€Åw¼¹áû|aË~5›Ñ®p[ðh³ðVþ1¯!ˆ—ßb¹·q_ a¡ö„>"ûIFýGêïú—ŒW‡ˆþXè X ‡ bOÑ \‚?ͼóRaüù #ù‡õÕz"öøxãG`0iÉ?V¡çpî"䦨˺aO×ÀbßážçUó0²Ã…i%È}Næm1s 0öaâî.²¸ôxã4FZøóòæ6Ž´ÞQ{o©kàmmð0KŒyÆL£œÿØNþþcÞn)Œ@Z)üôVy“;RÈhLÿÇö àëN«×q*~µ‡5kS‹=Ô|Wr™ùQžx’ÊôOô3çñùS•}œÈ3`aKy"{õvºÑnR®ªqdnyž3rBÆ×ërçú‘ÍÐ_˜ú‘tÔý¹Ø'€†Å±Ç5O…ÕÖàg-Só&ÇË+©?3#ô¿º¡¬Õ^¢ M=É1r"ð«SF3Ð@›¡Ù»¢¿J ÏÕŠÓ?˜\¨ãžc~íp‘\DH,ô¦è^ȤÚÃäõøÜÇlÂüó}Ì·a†©M.æbÔ7?rú´òÆ—åÅ|Çüç>·‰Ðÿ*=þã׿ú…ï4…rNÙ¢ºhí5©­ Ó_Û:S{nyíÊgÛåð¿Ove9õƒåyç“èóÄò,j_ð«RôOôÕÓ¿ÄšpýrrŸ;p§Û¢Ä©¬ÿ%þ›”ÒZZ<@~òäK£Y~™ü£’¸Ž}[‡…±PŒèwA/ñPãÈ?ÚâŸjêDQVD‡óéŒÿX/zÁ2L%ÒZŽ%¼·¬Ò$“\7 ö &¨7ÖöçóϽoòc¢(•pyå8ì´5³û|F/!«ûŸ›ë‹àX2è•XÐïï§›¶‚÷¨)9ÃQ¾CúÊ‘Rè/ûÊÖè”V`ý/¼Ã:žÂïõóéµüý:Öï$¤{,Ö ž©¹Zl¬?¹âwè¯úàÓæÈ&òþÃÒïž öɾ÷éWE3íU .PÆk­ñm‰åtÞä YÍàà;²Ú'݇®˜ï4Å‚£©ˆÿ`.;ùL1úäÄŽ77|Ùô¿: æp×FÐs1# ¢íø¢9Üÿeò_ý¯˜jCq*ì¬D¸sÕǰlñ±ü­èŸèœLTûS6ÅÊ'ÿð†QC^ÙYI%éA¾Þ`ú*±üêâ*ƒ6yaó*cŸ'€_Õ€ÿðÎ>8=õU‰OËRÍî ªt[tLº±È@[Z£B=d~f‡u©I_„–¶(±ý5ú™Oeþyaú·/ôTºã,ì)£PòlÊÇmT‡ÿXEDž‘ ¶'L»;%ÛâW‚ð Éá¤ñ…ë?†¯¿ªµŠ´ÞdøŠò*êê0±æc{ƒ_eašw31|ü)ªåÇñßáJ-ýÕz,þcöè#‹–އáÉ^OÔ—·È·.°Ë诮ҥå)s÷v©übä¢~¼·9…kú_¥fÖ>1wÓâм"ÔlRžƒ_eÃìÕïˬìð¼ô3¦‘odƒ?OÇôßOÔj¬$çŠIþ¡3‹ð³ìjN!Ž©ËÝö..6 GìvWÙ£UD3Þ‚H*•TÉ€g€OÕÀUâ©êT£¼ª?¹‹ê¸=x˜AW­F Þèèws‘óÝ'ÒúvÁ'Ñ_)xÚ‘›äÔš•a;¬úÁÇFYº–ô5›Ù;ÛÏ’¿õD¿û…®(Ö”²¦BÓSñ'èöߨ Rÿ“þW¨?ï¿›ÿaM.ÿoþIB…Ò8ôW–:jrjënqèKàè£Ã„ÿÜÌŠ¿6A”c‘Üé õŠjS(´t"…VS %§©üKûÌCžçEüéMHj¸îÝäÞZp'U¤¦ÿUúïF¡¹‚~×C\…ØŒŸ˜ŽõŽ?#góÕvÞÊâ ðý©ÿÈ&œYÕðë ÿä ¾ää vy+ÜÃ. aÍœ¶õø‘}èý KíqSü\¿ÛüêÙU,CV¬r1î`ìÎZ˜ýÔàW[Q/nÄή!–ýHeE…ŸÜÅÄèw`™û‘±ôÇ3MáóTI3xûk Ï'S:ðËáϾ 8Á2¡ÒPMÏu £Z¦8¾6ù`O¼°ÎÄq?ÞÅ0*o°õ_¹ú£¨ º€³ÍEååü Ð°âña{|âQØßQ¾a*ÐH^'ÿø?Û+´–;ºô­Ù~6=%ØKøÝÿöé.óÏŠ© QÖÄB7¼Âb"&ÁIø‚Ö­'ÿèCµÛßhmÝÐò^$æÛÁÞà—+F_Í„?Æ9(L¥~0Ø”5ÿã,ÕpŸ°ï5éŸèIlšÈXƒ~·˜1ý“ Ú¿Ÿs8y üGZ§çRP…WlOæˆÅÝAv䆵ÌM=øEy—Y-@¯6šÐâ–1À™çAýºô¥œ5Ãø0]w¾]«õëÕ…'¹‹{ß?T—xØŽNwŽQˆþ'é›Þ~Ž€^ÆU”OuŒ² ÿJ¼Û;4b‡Ñ>Ó:EZo¢(¥½Ê)«KdýÕ,cóÏ­ü#+Õnt¦MƒÿØ…þª¼y Ÿ¼‘º®á\XÏúKú¤Q¶*(-=SNð¾ÜµûTRä6û5zÂG鵕úóϲ±ù<ó5Yî±–(ÊCÌ‹ø€ÿ¡Ï7"éw“)¾ÿuýGbð«Õjš°ùQÓÃøó›¶¾j6«SüùÛ¯áWnÊ îiEt±/Ü·zQ•j'øT"™VW»¦ûÅùçùÅ\r™g¢$±S¼ÅQp–æš;ü€MXª`?1ó»â¨ÁüdSs³‰Å%ïë.LÞ¹@ì#^ÝÍ3µTcu¨ÿ(-üj¸6䤑ô\VœDþqÛW~E¡¹µ¹<Átׯ‰¢Ž3õÞl¶v䂉Q™dAÕäÆi•|ï:Š ¨>C°ôÛ±kØÓ˜z}'âûU“k|OS|Ç)Ë«‰ñ|ÞUœ ÏÜ+µŽ·l-ã)ùÓn®¿¡ØúÃþ‰©•zj.êPºcÃݰÍv˜™A°)õÙ(Iºá?ÚÀã†}¼»Ýx£VÁþ{i¾ß˜m»²Y«‹gˆ-'’YžáS EàóUY~÷õçûe Xݵd';@—Ë’?åF_ÿ6 ÿñ˜þ‰!b&Õìƒðň·á‹&1ø“à BÛÃz:§_·/,Cݰ ÚvúIÏAý¹sïæêp1„<3ÿI¼˜*­ÚR/ ýnp¢ôƒJŠ­«JýÇfê÷ìx­ÓøwüìÅ¢£pVѯhÂÕåߣ*Ý ?°…*8;õƒQ¶v âÝ‚ÿ¸FýGc« _8 ß2BfÇ_;ϯí¥*œ‚ÍD+õX­–üÌdŒ†ø/zCæû-`öÇvâÝBÆFÙ™Š•\s.Ô¶®ÆW¼Ó ™/µZ‘üÇlQÅðqž[ap© (‡GSÈg|èŸhåIá?ªÙɸÖåÌP¸Š²!XܼaNð«3¢‰ã§Æìb’`·å8a›õ®²˜;ð«zø‘ÙðÞ7èZò…úaFưZ c èÙz§?ëM¤~ð1ë=æ-8#€ãÞEVŒ©8þÇ…lk?37šú«+Lò_ÑÔœOlЂš—T’*\üGuÇ»wZY£ÕâÝo˹/&ωKúÃ`~ílv’”žíGèx5Dqœy| ÙÞLc|2} wÞÀ„²Ìû$ù"BýÇQŬ>1ZЂ úz£0h•/ýßQsµêØÛ_¡0®Èd«ûæn#1;¬eªÒšh4tb3þ#»ã¸âîÃq[A%Žã$¤Rú)©_ýÚ.R‚ëRsÑ]$­¶T)Ë*Çl=é]R‘ ÂÕpô¿†_ÅG#7 þ¼ Ó,ÚˆCª@cß@‰‡MÎEÿÝ j#õg‘säÝ—]ª·®®ûŽÉüÁÌØfW,}E&†ªÑËÎ)7”Zâ$¼ï~ž÷BìH|™ÕÄHÁôolDt>^D Eùhõ/¨ÍF¿;ï\&¶öÃâÏ¿À{`%RÊS܃»(¨zèñô2Ž3ù꿪®,"KØ/JÀs” ò ¶Ô΋¼#”Š3r…‡Äêu@á;½~:?*øÕ±0ÿ±{‹ü¨-ß_¦w´´&^/ÅÚï`í7øã0MÅjŹvúÛî²€_y”Œ¢§JVøFghÖ}}ü=bñHvý\}06ª-9Éaæ×6Òl$Cí"‘”¯!˜ßAòªd,†üd!ÓÚíúžž`C»ÈR¶¢ +æ?²ë1ÈÁ·Ùl÷me´ÓxG‰j°ê;ã=Ák:Èô¥‡)å G [Yy*ðÛÉ•âË’Z‘ïÎÎu4ÈB3ìýQ0šª ù¹ueBÔ»ÅÑ9ÕÂä€?¯"³4¬a}˜•)x(ú(ŠÞ"›Ó[XPM îÚ œ±ÁÔ9N‚«Òå¿î_’\g‹š ÿ!µEŠÅN\ÿ(N¥FQu5Š'é¢R*óÐ_ÕÃ`™kTSóP1ÿ#H¥ùhÕšjEÇ®£³pNÔ”•™ETíHL}¸.(õ´„ à ˜ÿQCô ¿Ã°£^÷ŒrF©,£-]‰¯˜‹ýÓé0” Äj5ÙÃI|J°¦. bUÄͨ—ˆô»­É?¶°»«0ËáãC‰ôûƒÃßÅöl×¼H>s$¯3™Xø ›HKDøÂKiBÄ~H”&Ï&Ço§ãëöäWˆ~1ßG5Rö|,8ž÷Oõ»éµ¿ð5ˆÞy‹Éæ`¡·³³YXæjØÑÅðÛÙñ[¼Þr®¿!¼R‚<™¤Ššÿõ'w+kØÏWxgæç-”>¬ëÏŠŠ¼D†tŸÈn$Jè®`m—PLD…ÎVækmñYñäP¾7˜ïh…EìG‡ ÿx® ñA. Ö³/¿^JP 㮿ˆ"ÿxaËÿ1•»Ö›ü£€Õ-Ÿ?Šøw–Ê¿Sð]a¸ƒ`A2rg-¾e/™—$rÏMÿçÓ½\í%Æ‚8cðÏéŸx$ ¿ª€ÿXhdÂR¹ °‹¹¨öó¤:±ÌHù¨ÛþùþÜMµƒÎùQ 1^ã¬Ü ›žÒ8ÿÑί«ÐŒ‚kiLN²–̰0ùÂIêAfÝT…ÿˆ\>þ£9wå•^«[‰{ܲ•AõíçÅÁü·õñ•»J0ók¬T ±æQòò0ÝêÒ_Î?Le¶6[TÂ$cÒÊ!õ©ê¢¶¡ÿUQN뤽V[©å»þ¶ûÿô«‡˜CK³>`¬8NBS-+oVM‘z­žbƒj?›íŒrþ‰–"t-oôzÎÕÿ*5UŽAäÇAgê7wý¨'®ÿ§-ýûϺi´u`åXQlé *Ž`UuÞR‹ÿpC¬G‡›æ0_EYÇþÑ¿+ÝPIÕ‰Hr’yç'¶á{6b•SÊMìú¾Ä¯—€"uÖºÿä.æÐÉŒ¼A¼·c5 òæDÞåá?þDÝèŽBì¶û«>æí\£×ÁJò¬™„ü£ ùÇòw”\ïE ò0 ÅôOlÅÿ›Ã\bÅ;dS‰ÆV’ã½bþ`TøÕbe,ú«#Ü¡©aüù žo]žïWr!K¿ýÕ~²òò8k†ÀWÕ$rp'÷²9"¿ð»xýÕJüÇ}(ZfP‹u¬À•.À£Œ€íýˆûŠ]\ŠmÎ-¯à=‚øÏ•ø†êÜél¢ÚM !/ŠÚ‚»×"ú)pÓ/˜;»Œh©‘„Þ_¾ædP¸¿Ðå&e¯iäú°õq<ÜUäïÁ¯®…^•)õ„øÕ*Æ1|d[øóÛè¹^ç_4íö„0,gÉ2ÝÁ¯žÐËk96ýzÄ QÎñîÝQ¶i¥±]xß=¤‰f¼ÂƒÏFqe'ÿè®vŽf(ÛßLMƾe•u4×ïð«Ij?1ˆü£ (Ò 2š¯ä2—àc¿ÈútP\KUr(ó£®ÉžøÜI8ìëXòä`9ÛD]‘ÎéR9ÊÞ»‘uÐEå‚<„-:N¯ÃÔXøWÔ2´¥Kß ó! ã^Ô%²Gú•ÃBÄ€±.ÆwžvêŸ8@M_´“ÚÍF0ØžäI©\hÔ£þc–/. Ò—f%CAC5œíw¬ù.ü‡Æ=µzч:!Ÿ‹Ê­0üª,YÔ[ýš<~5ÁX žÙ¾ýî'jìÖÒ¿d=9®ã•÷¡­^‡“ zÿáí8,yå4w¾w9/üß.½5ýwïS%éFg‘/aý¯’À*Ÿ4½é_òžI®Ìuàz3ñò©ñIäê?ÂëϨÿÐñ¯ñËTðŠ»aŽÒ¿Ä—=ûD®púó8øËð 5ÐÏ™m «’[úëeÅ2QËñî½QökAÚ/åGuJk|ÄÌcâG2tf+™Kbå6sÍ[tÊí¿’ÿ2Ú(M–ž¹U©—}L¦þí‚O)ƒµ1øþäÛ¨|ŸÜý§ýw«kÁ½ð7Á®2±¿6¨Ë küK6@#º¿´lÁo³ª¼û‰ã?D@Óâ?ªÕÍS+ïJÖö|”5?ª/ü€?þCÊ¿ñW/ñò³È@¶ãMï‹&šswtë¹Ïá¤ÏoŽ¥ {Ý7³'Tbé«i„Bl>þüùLèZQð7Or‚Ž77üüܳeÒ‚xÂO÷DkÿщŒÐƒLkhýpPk°£­x"ò$8ãEr©|¨¤;j1£È?Z“S¶¹HNЊú?PHx¢`ªƒ‚7Ш‰Ò3+}Ñ[¬–ý‰ÿ{  D‹Ô€X¼²HítºKªqˆVºP½Œ™´gà?²â™rÑÇûýK:ÁߥŸm+êJ¬ú2¬w{ºÅQný”²-ÒŠÝÕXxÝ}¨ÕÚâkÂ;¥ Np¡QS–¦~pVk]¡<éÓ7¿²…+ÈJ&•œþ#‡ðCÀ¯šGZ/@äë겓Š!ÔŸ?“[éTòÙÏt£üy êÏïƒçH8–ZTkøÃþ·ƒyy†ÿ(n4’WEÇÃH¦,Q® T®Aþ‘\bÞVç.?]ÍóÉ;bÐÑ7f`3ùGüÈfrÍAddyáú3Èsz‡õƒKéß®]Òê—`ƒLüV>ºùƵûÐ?ñ1ýZâ?nòµª¸Kô®*ÀŸîã · N*MüQPLŒ ¿zrš³Ö’·?—|'BôNè«*™³È;t2q¦ØoæBð¶³t‹\I½½Íþ'úÝôÔt‚ÏìÊ•UwœÂ³àW­E!Þoؼä…¨6oh7’Ó÷>>ªÝtöä…í-Ñ ¸ÚÏÁ倿ùʉø(Æ“¡K'F;îà?÷á‘­d½þg›·’#Ò¹ˆþN>ÚN’”bºS^-$¬þcókÀ WP7+qç ÿ?¯üÖÖþ¼&¶87Õ~gTCsW}”ZYÔœ­´›teŒ¬ÿøÏ«Ùl¥EþÝ$²?Œ&„>™þ퉱<¾è»šˆ bO4û'žP‚”6â&}vø8¼Brú—e[ Þq‹Ø¬ÿý +_O„+£¼?/m vJôÁ/ÂbZ|ÂU´žqˆP*`ÃÒ5Õã”ø§—×k;b ­WM¦ÇÖwŠìt»ªÂÉÏG¿cúžQµq–«=mI¦°’ ÚQNS¾_5³¶ÆzðŠ§°èqðq¿ã%r`éfÉ–x¨ÅØú]x§çØíËxÏq"DIÿƒ_ɧzre#ðà9Á¯Ì×Xó?:S¹± ÿ¡€]?:‰ížNŒÿîp~Úëï7f¦ ÔjòçYåXžèžFS2¿¶xóxr0ù}ú—lÃxÉm<•}ä ¨íõä«àxs×=dsÑÈ? •Áðç)±[a·èaŒ=@-w|,íð«XRwy/,7 ÕÓp—'Qÿq.|©°OÝÕ6øZøŸsÔȵ@4ˆ{ߘúoêÏW2¿ÖÀJ”ÝŒZøÎݾi ÿ’›DgáœÃéj rñzä;ËP,Ý!+Í‹'+j¤» FÒËÜü_Õþ|¬OvyŸL%…q–þWõíÊHO¥µúY4â®PÇêSG¾Ô]¨‹/Ӱܶ³zº¦ðýQMÕ%' fRybêÏŸà ¯k~‘Ö[~·2 õaNí_<+rYVc8óH*Ø—aí㘠í·È_æ2­ä XXº„õÜχ¨êÊ¢«ãfVQÿQÿqyœL¹=­‡àB¹¨ª{døÃ—›tÔºH‡©Íôj„?Y‚NayE^òÂäA“#Lاìƒÿ((-åHlã¾ÐPºÕ çdL*»çR×~¥À4¼©íÙéß~˜þWYÈuÖðf7&ç*þÂS, ïuÒðçÈâ©%“]±àxôbœ•˜¼r,þã^m•~×±ó{ÌTmŒ0Êâ ]e7lECy"ÂüZKÕÅäÄD{ûŒføútiOkfg6‰ÝÚ÷SÙ½ØgT]ùÍÂF'3Yûg"Ï× ç©eáÿIýùßè¯Âó¡x+¿6—ÉñÐmzXÿvWê3j;ÃòÕôo/¨–Rsªû%zÕÝßÖ{eCýG¸„ìúLq[§UR½”3ZQø–Ú-üǯñç•D ñ© †u6x´H §ÿUò–¢¼ðˆ½ßÅßöù××\gSò#DÇ͈Åÿ‰v§F£ØLŒk¡<~x)?á"‹‘¿5ʯZkcµ…¢'*Ö%ظ…Dã/aÉ;znjØò¶z¡›õõ)¤‡k£\Šß¬¨4ñÛÉ4³ÌdÖü7ôÉ;^‚‡`‘Ÿó_WÞ¤X£?åÏsjDïÍ`»ÏÀŽ¿ù¼‘wq5ŒrG0¥ìû vè5ë¾â§Œ;ØÁ9±RAmÂ>¦S›‡ŸŸ’ì{^é¹¾[#Ú_óð•·ÖZéJ´yÜáhÏ|µ÷Q\nò¶äF9ñ’õð#[9+uð!ïá£zê.âžm+ÊO¹O?­ïЧá;ìøšzÉ(üÇi[.²ÀxïedyPë¬#ÓZ §k²ƒ½?hÐt§©ð —‰NeÅZÓÜTç'=ÿÑ “–,á!–’¾Zܧôo¯‡ÿ˜N iÇö÷¦ïZ~BLô»çQ85F2K©ËwúÝ„êWØÀÖè‘f£É}%·‚O&ŠNI.rÕèIÿ«ýf2ûìvGj wá݈í-mì1Y‚|x7êȈ7±•jýìÇï¶‚Á®?›në[|²¼±žþW®öUD½M™?ø—ÑÑ8Œ ¬s*t?!h†à?zDZo 󣚙!oözW¤|oòQ†'¾('óϙώ¶x‡QÛ¼‡ZjÏf3¬Åk2žJò¾èîØ^Ae”r›ó[Ðÿ±ŠxÝ üª3ýÁWÌŸŽ…/¹†×\Šþª*W? 5ÁD0±Œ(Ž‹c爿ëÍRBÔ·œÙ»¬ôZ&"Vù#W°w&ÿxNoõXþ½ø¨BÃú_õ0÷poÚóÜ Ëcz9±YÔpøS诊òÆ·™q“ŽýIªP7²Š©ì_˜GUEW-Ø;0àÝɓҀŠýitÆRä†é³æÒ9Ná¥¥Ö üj–ƒu}¯QœZF0O|ºtõ7 0ðo³3rÇÁŸŸ3âÐQ«¥™šþíïÅXþ ÔéŸö?éß~þ#¼_Ql¥åÝÿÊ\g—šìÀ®í Ó_gþ §ZŽWÓ?ñ´ãyF烋2G[~U… yâúÝ<êHåVžþí]´Ûð*¿V?ØH,ÁØÃ4'ÕéˆrQLRªj©a–}È?æ®~CF½Ï«èÌšŠø¡Ø¢M õ©e?8G‹°|ùôV诊‹è bµÅÚa1½íjâÝÅDûáÏ“- Sù_Å|ÅŒ†-Ÿ¡õÞl¶ÞJª‰’ ¼å<òb°]Ƀ_m ÏkÅÞgSå­u‰d¾_5—¶ Û\žÂêŸ(±éÞØÁb¼ÿs°öt§w;νPå2”µô= Ž Çˆ¼^攃í˜Ë3ÍÿˆAþ1mC ÜŒm-(û'p²'T%ìåš?¾Nÿ’ªÚÈ …}5A™ªùàk¬NU PìźVåy ¬Wݺؒø#\õ!˜›*ì¿$ŠŒ<Ž77|Ù›¶ìÚqð+ƒúÀ¨,Sqe¾xó‚èy;`ý©j@?©ÛôŸÊæ?ΰ·Køøl²§–æ»ÞsÔ΢;y^5¾ã5è‰ÿ¸ˆzJ3ªPw¾Ú(IŸ¤Âä}aC6ÊføÍÆøutñ‘GD7á¬AÈ£ÚèBÒž(kÁÀnƒÅ”ýÉ~uV^4|‰Qwc³à3Úã?Öƒ°•¥ý ÜôiêKŸEzÒ½T++¡úÓZ¿ºð/)°öÓ’ä‹À¯2Sóg§¢B÷Ä–ðຶȔÔ<î‘7‰“/jÞ‘Öóe°÷V²rèœãñ“7¢êmÌ¿*nŸÿˆ˰žüe ¡nÈ©äQÈåNSQYÎçt„z¿‚Ê|å§¿Yž;–Ö_oBår‚ŒfG¸ãø…8fˆ ¼5{ˆù—ã?ZÉ `n¯ñ‡°ã׈ǗƒÛƒUF½»¸JYµLût2¤Ìd3 ¹®ža×j9ŸÚdÃ:}âß`üÊl0¶ë̯m©E5‘ª' Y/tÃÙä"é+ø·:aö?¡¹þF Õ>>´åß­(1­Þ–åðXUù‘(üÇ[ô»Ps§²%øÕâ%X±y°ßͰﱴ_À¢Ž¢D²òã\ñ9ô •ädíûþ»“T?N\3”gÁ¥:â‡sMÁ¯jP?¸ªQ]qTúÑ¿d—lÈüòØûõô¶#wQ?èÜ"¾ª³ó6¬·Q¢æ!ÒÏ ^:L¿{,£ j¤Oæ 2ŽÎpê˰½…XÏ„g½ K’q;ן·Rq®6‘[6 «R6‘ÑŠÜ ±t¿ `"ßVô>­Œ'x¸öØäꨚ‚™w˜’z÷Ä7wNÎzñžú >²"üyp©t¿jLÏ/f?ÛýÅp!ÿˆ÷S×¼LUÍRîŠ5?*µQÆh)ßF໓)½•½œÖªìª,|Ø"¬tE&1¡Ç-ñðç½AÿòŸw57E@Š|Í2â™pèyŒ­èÀ€Y tÂeÊqüG%0º…ºi¨°V'e%có±:¿\0‚A›Ö%ä°§A1u¯º›<'Ò©JÎõùk%ú—¸;Þ½#è¯J‘ÍZýÃêÐqšNG{uxò%°ï¹î`‰…øê=Ý]™Ó¾FÚí[ÊDš™P›»Q³yÜüÛ·(é¿ëŽåhͪéõ FSæ×V2v¢²p¥ª± lTüyqúïN0Ùh³“˼óõG"”l­òÿ¤þã’-·’Äñ¾ÇRZüP}ùíjôëÛUe±ZNóÓÒ1ÿÜòÁ¶jSª?ʨ+”7¶è©c¿­þÑö‡æ/JLXj©j\-Ú]y«ýÿÑQ»¬6ùEþ¼ŠX@^ð–8>ÿ—xGþá­åÙo#ÊÁT  Ô訥l¶‹è¯êŠGXd«ÿ•Õ=üG½‡ØK”•H½«þA¥|Iá\ðíê"þÚýî!1Ó|ìÕt¬ßaª-b{¹ÉMz:~mÎüA«UÒhäuáÏSéÁ¢±UâàDåaß;°Û×hEŽ‚4i¬ï¢³’<ºãOõ»´õpí±{ØUvá…'ÉCåðô—yðOñ¡'á±ïòïZ}„Ø®Äsœ§ˆ×i³¹*µÕzz\²"+ÿ˜O£q-ÑZ’ÛG_£ú™>"G:C&¶]ßÖ¯‹ºQÎ?Ÿ­,Ñš‘©äÅÔF eUsz’3¼„ý] )Bb™» -ÚŒ•ÜÈ­Mf-öŸËñæ†ïï¼­4*¸Å<Ë% Unİ›¹KK@á''w!3x£w£Fâö;~Œ;øõk!YJ"ÿpÎ4窃ÉfZè¿“U¼ÀÓ~$/=ƒî UÞ9ŒV÷X£,¶¸=ÿ_‹ÿ0á~à•Ó¾òøU§{˜KÍÆÞ›ÒIp-à(érbÏÝà³ïÊ×ä]Í`P˜Oä~ðç+±½Å©E´áKBdEÎÀ!åX¤»ª ±[Éý¼Ñ´$ÿH ~µÒÈNÿüGZøZÅÞȸB¬½aMØ-VÝíJ½âgüØ-Í+ÒzkDòSœ’RÜ¿äüìƒôÿëeL—“ ;ëaYMú·Ç¥+o+øä]øÊø&ƒ£@«Jý`xÿÄ<Ì?ÖK²ÞsþÂS ›3so„™Þ¬m¼6¦Óä%sþ›=ÂúXùǪlfRqŸ‰ü(ùG·ùÇ:嚪²ÚY4W¥wë(ßøææ|ã ÛßbëOƒå0OÐ-Fi-Ï·û,KüQ]Ì ¿Iÿ«D‰u9÷ävDþaпd“>…é¯Z ¿*OÝàmøóvf õˆ/ÌvFSð«Dh¦Jë@¥K9Nᥠýws ®ëƒÆ#©¾ÅÁyøóý̶ÊKþÑÁÌŽþj ýzÐ/ø%>.ž™¦§}+fƒÊ‡b+R‹áÇùûDÝ­^«“ùΣ£»•WXÖíjiú·ç×Ö…ñç;l-Õ°ÕÕôøJCóãµÙ†jóA|›“ííïÐQ½ñ^¢–ÖF»¤úªõ"߯ô¯?)CvЙü£#qª/õ±õ̯MÉéCþQYÌÕ§?[$ìÏOÓ'²–x›²‹•V`˜ùIœßrñp7ДîÔ/%¥ ìe4Vì‰þj¥èEÌí²³ÛIoêÒNc»6][ý5ÞõÑpÎ 1Ю¡tÇ:Ù@ÀJÃTçGéôA€ƒ ¹IY~d¸JÖÙS£uþÉ], ~õ?9”we2J?ÉZÖG¯¥Z«3&k@@¶rL¢ÒsXéñbs>-ò.3п½9üýT”W¹ñ1ðÁ±îè;éÔõ»nM¹ûŠšë÷`7ÙÇîîmj';iáJá+vU&k-Á¨3ˉœ’Çx5¿°üã?a°žP\ÑbR Ðnx Œå?r-Ô!üÍ _í˜-•¶]Lå:F?gÇ¡‚›Ë3˜ »s­»±ð=ÀZ^‚}ä@suÞë*g)*é1Z*Õ9»ž¥Sðž0ïèÜûšØò±ùG”Dy©³¨Œÿ(ˆ-Dô½~ä£^Û¿ü¥ D è¬ßM­ ®Î Ë?Œ…±*ÆŽÒ?1-/¡¿ò¢ûn"û#¶Þø” ¨ S­ò{zÅjC=ˆ® áWk³ Tv·¿ß€ ©ùO*¦u¬0ŠÈlÔ.´fÍ‚a7^?xã‡+£8nÍ;üˆåžÿ±I”BIp ïï ÚŸ¹5×@òáXÃ5ffòýwããɽ˜¿ ÿÑ'¬{"îCeyOtvl/üùÎX#yL¦ßŠ.Àç˜øäÆdŽ}TþÕ£~0;߇›ÔÒµ¢Cº?ë-À£–E•tïÏýK6+kÕ¯àW7ˆI#.¹r0ʵùðEÍiä3Aô;œOÇõ¤öÄt9JíFa£µÀYh?SŒ“PU,Œ ¿ºIoŒ\¼YõA H…z¦®t=©ÿ˜B—–DÔ䀛)dþEÍäeV*ÀüÁ=æ Û¸+˜S)ð¸Cä4ß.x«ÒDk/r¢WoϪiõÃdlOàÏCP:'¢Š³ýûÚW’´g¿ÏÑ XüGw3]tpÙâ§!±˜òmÁð×{¶Tú—H¥ƒ’5Ò9‹þVb(”jQÍ[KÁl™\¬‚ÿðdþ`1ÕŸþ»¿ÆÄB½HÔâmw‡ » ~•Pí¯ÄeÖS~­«v…þ%Å~iŸU±îíè¿Ñ ´º>[„Š¡J -Cyº—x‰éÑÖïžUã?Ž£\Uß‚¥s‘…a„»‰MX©›Äú ‰\ûSÕ^WÜ‹Æíë†_ ƒ÷]AN`áA×Éd]ä Þ 5üÊ9}'ZÀ`'×Ã{€þhážJ_²„äÙˆÇrVé×%܃gsõØ„u¶¼M¬—MoñSýn9žø¿ð"ýP#öÜÇ[½R+øóÍìw=±ø;b ³Ø£¾bÝû·§SÚQÿñÏU½ÒÉú’Á}$óh' "µóî?#§ Ög¢žá6üùó(.w¼²X£ÿ(oÎlögõ/iMDØ™ˆÚ$Æ‹!¾0pÌt-¹ž{=<}9b»ßÀî\onø²Wmy´`òÄ\— ÝŒðç~( ÊiønààŸéô¡ï„ ÈÂS ¶r#ôÕäPrcçüc¦:]ޝ^„æ!yÕ[4‡tú\_å¢ÿUIfy—»èCÿ«˜çèÄÞ€êäA‹tü*Sþ×ÓªÈÆ[¡÷Ù@áî’;øUNæG]“Ïa:3¿û“ùÿÔŒh%Ú‰"ä36æƒì•‰!(û#½/T »]ÍýkN5]òôàWKÈj0Ÿ)‹µ䤜qNçͨp¬‹Ï<Äî=u|¨µ´ÞRQ½Ô>+»§þ<6žv‹±ØšhH¬ÂöõX~•z’@fžP‘}œLk'zÛm(Ä’RGÙX~އ‘O™¢ìCý?©‚³ž&‹ÊŽØí®²A+Ê[ÙƯ¤ŒÇ5÷ÇG60ÿ$J†âv7½åŸR>€nЧ±óÛéVe·7JmXú]½-¾¬ŠãþMÿÝž¼±C¹¯ÅÈNöÒ >ˆú“ô†Ì`¾£KdFûPüyF{ s^ø¦¡˜y¹ïy_ ”ÿªAË";®øŸûjˡ߄€ÿp‹t.¢¿U E¿›‹î"YðVÿ’L9ó¦ïº§º^±+ήÿóÊqè°Txa‹‚_RcÑã´’N!#?áªÚüñ«b!öà“h‰…®ƒJèµø“úÁl 39EòIb±zè?oéßzþ£œ¸Î»Äî–ž1© œ¨§Xç çFµïïÔć•ÿÑY›DåZ¢ðÄ»V?©ûD"Vß’BrïItW/ñ¤]‰ÚÞ¿¤…Ò‹êŠ“ØšÏ ãð%èÞÛ¦ô ̦ե֚ÂVLi ¯îOëËjK,ƒµ_†•˜wÙ‡OùA¯G ŸÉçÿ¸zÿ?ͧwó"èÁ#ßÐäJµ~r6ÏÔ¯âàÏñÕ}…ì‚w¤£…CuHleq¼›Ç¨ ûœJÿö&x¯Dr ß{ïhžÁvÔ„-^i ˆ›;³æqµ ´Ñ•áÏ‹£(ˆjþà-[nê?†¡èÃlŠ({èªE†ðü*%õéçˆN’Éŧ3{g-½z$ò¥ÚÕþb諵~@Þ…áWñ@ ™a±Î¨Š6§"ܶÕMqìB<¢÷{DÐÙ±à[©?wÖ@§Rc´àÎoÀúÝ?Ë ž”|ê’|cü‰ÿð§Ÿà)*»’“XóÏs¡üº ã( r_5GÜb75&§w/wÆ<¦ 9El¬ý#+x!Lp,ûRð«|ôKìIýùZüGF®<&úÛ}xÒúe'ÿ±^ã ^ñª‚kÆfAé†Mõ4ÊØÂvß4™‹È?VríÈñ¸+Û©­Œod6¼ñíÛË£ WBQ&ÔÀÊçüÏç™T§’»]¯J‚ýÿÁ4s]ëŒdLñ¡ò~ž,FÏLÞb°c½ÌÿxÃJw¹Þ·2Hñ XýàUnèw“<±;†>6ú݇ô1‰iÌ3¹7ÀöJËåĘÓE6‡ÿ¸Íü¨ê  =ˆÄ*˧b õƒ`)†Pó‘ d‰™ÂòAä·àÀýè {C~¦I>=‘G'"âVàeþ#DiÈüêøNø²àWÅì×É´±77Vòåiô¡@{?øó[ bs}L;µˆO@â=¥”)"(–—þþá6ŠÏðXÇdþ`žHç,úxm»®Lfþ`-ý¯,þc›­2³ ÐÃd1õçW£¿ó‘­;üyyÛOb”8¢&Ñ ¨¾Ê}­”Ȥµ&ÿ¨¦þöKûL.æÞBÑ5›:BÄÒÇ*•Ñ_ÕÑÓaéKŠ1b­´‰©¼Êy%«ØF.¼ û°kšCVÆJ·Ç¬Õh¯Ð’ó+E[ñ,×ÜL›¯-ǯÝ#â^ ¿p T½/*¢»¨=×W„°Ç¢0ÿwÕÃ5„?Z¸¤Ònz/jŽ˜Ôá.Ưå¤ûIo"éóø£C¼Aïø)u°Œ±áíTü߯G› .ÕF·¦¯§’d×¶´u(wg"ļ–jó6ü|þ£ƒðÿ!ÿ‘Z©¨ÃâOeWnì 5ë Ý~VÿQ/Ò’ú«x¾Ïx¤¿ø©ÃÈNö‰æQêwÛâ?âu¥œD–zÿåìÿˆ#»Ó¿äøÕ~j7ª£B¸ Ò°„?dz) §p¼¹á×b‹…~w6˜Åp¼…1ìFÐèQ N3¸Î¡ØêStH5à&¦Û¦ƒ?·¦eùãëÒI-÷wý¯Ôöb­<øÕ],ê[bË#`; êÌ|ÚA÷¢³tn?.Û ÂÚ ÿ‘öùZ¯x«E¢pîbšPuoìmiè¨b|LfJGôW‰ò…шˆÅtº¸·ò3¬´y©4¸Š²*ÜE2ÎiˆÓüÚ^ðM¹Ë¡è¾vc©ßè©®èwcÓÍpú«dh¦âÚ=Ð+à÷7rGrʹ2–aðÙ¯ÎkÃ#½;E9˜¦÷dÕÑ©Åa{P™Í4ºÈîXíôá¸ò²”Úø%FüGü`°8¦·K7£¶¼Ao[Rª\Àü?âμŠkkÃgÏìÙ3wmà.A‹www‚;Å¥¸kÑàîî!Å÷ànÅõ'÷r"„›pŸçïmŸ6A²Ïž™=K¾ï[k•‚?/¤ö˱dE»QLi(aÿ¢¾¢è_6ï6ä‰`Z0QÄ¿Ïl/ó¾ÿ1FG¸î:qJ{Šâ.LiFç xÌ”ÞÙÖklü4R‡™÷´ü* óš7É“¢â]6p¦ëãáŠ(_üGHþüX — mr›þ|‘1þ£üyóX  ˜€žŠj«x=»¯ûSuÎjoÖÀ$ þ# ÷è€QÌu ˆô/) JІ7#5õYœ­t¦¹QZüG:'t΢ äø‹ôèr³’˜M¬(Êîß>” çˆc2üOð«3Žl!øóØ¢ÇÕû®ÇñƒoÞ;žŠ%š§ÞVÏ¥Ï êß¾ÁÑÚÁ ØúeÂøIÿñÚ1…®´•á<SÓ¼NK çÔZ1ÿÃKFÿ8 /_"ÔùýÁ¦\¿]\®Ä¾<‘Éòe £ ùGJÖOK¥Ÿ—\Fÿ«Èõß½$î‹Bò4Þcº–±|M¡2à?¼áÏç‘”‡kƒÂ+>þ#¼¸Ùµ¥ÓC_¨¯–MÉ–}ø—i”ĵí¸hHÒcÃ’c·j/d9¢“dFyW v•o¿Î$ºPÁzœëÓxãû`§Ó¡þí gqÆu?ï÷ 0·FØúy¼÷/‰¦OeGu°ó»É?~¨>(?øÕ`P{{Bâìâ2Peànr!½Î¾í&ôׄ"– ´j" ;lJbƒøÜGÆaPáŠÆI±wèšÞáQŽr/[ð‰—Œó²¶þ)ôBA¿ÆüÁAø¶8àWU@’ƒ&VÄbǧ†½ñA?¯'jK–´¯¾¯U ¦Ñÿ‘Óõæ/{üjŒ…À†—KȽ÷f§yñÍ@dü:¦ÛDëž0 WðÇ›ˆ!t´FÕô ßõo_£u„?¯‰<@ŒÝ\='û=†š×Aýyz@‡-@íF "ê|BTx?>9¦Ù’þW]ä¯aîaLͯ߼ýOêï¨MômÙCC28øAó?–ѳʮÆF´euNå«è…ת„p½ÛÂðç½5{*ÌrÝZðŰüQé,¿ÝLD¿4çê?b8ËQ?ØïV®97Š»ää[°Ã]‹aømÔÖQgðã9ð¿ f.•‚3ÍÁð1Å蟘‘ZìGÖ.zÖO5X§Ð^]X‚_~GW”ÂôO îW•+tåU3îZa0±™Æ@U…I°­é¢U†~‡³ÑÇÞ¡6b7øÕrbñ ÌC¿ÊzcñÉÍ9øþ»Æ,ÙÍõpw‹ÓÚò¢7œÐW*:ð úÁ¤þ£ùÇKó Üù|ø£XθÖó.~E™“­y„ÈØînk„Ò p)¶†xä±pq<ÕPùUï)þÜ[_rÒ ÿ±™œ`<+œ„ƒO ãšýUZb)w©ÌéÊdDÜ?1³èÉßóƒ‹Áo÷O,ÈUwÃÖ‚åŸ5Nñû°´{°¨åžaT˜ß߀OÚ4lLgöÀ®t²†æì3?oê0TIùÕ:<Ça<Þ}ü‡]³ÑIΉðdb‹ÔZ:x˜E0/øühøáðOŒ#DR¨lózÜàûôÁgÍÄ?üýƽð5@ £ÁÇ7åêNqç+²G ¢4Óð d°–nä+Éï—“wÖ Mvðåß\onð²é¿»Wú°»AüL&âÄÃø±XØÃ^pàè¯^a»¡.ÊJ–d«yÖá Ó¨ô/ ›]ïÖÈ™d ©U Ò¶5¯W@;AóÏç3ã<ß]£I ¬s¼¶tQ[å#[Ȱ,dj-Ï«51Àbô¶wÕ˜—#h¥ÒÁ¿DãÓˆ*ç(N»Ý›¾Z+¸ê,ôÓº„Vkúÿzv2øjŽQZð«Md»5Áæš mMNµø33Œ‹¨ 3@à£:ÛÃL×ÚB-ѯ D ƒzû~D…ò, s¶Q–æ*Ï`KËS¿Ïö17ÁÈ÷WC˜æ½Ûò`–R2çüÑ*,ß1r”¹ ‹;¹ŸÐÒ6SCðç©Å`q¥*8Tu‘“0{NBÐÿêš9¿AA4N#¬ùftæ×¶´&¢ç„N…¿, ®£ìäºÜCÌ2A×®EÝVi8©ÊlH]xb4SKÍÏàW_è}øú¦œÖaú'ž±¼ÌiÖ5NvKîM1üGyXæpÅnç™ÿQšššÆè2²Â,6&T%kr%Qaµ$›© ˜œYƒ©ÿ3©?fà­Î z¡õoÀ)¯í:…§D[úïfå„t&Íhøšä-é…«|E}KRçhçüÇ,~÷ÿWjP«XR5%6œŒu8Ç[ãÒ÷ù‡æ:YRtþa÷"×ãøÁ71¨p]¯¥a:Gj}{þj3ýheéÀë‡WºñƒŸ ÿ·ß;æêãe4‹9ÉEýáÏkh}Ľ¢ÌŠÂë,~©´k×á¯úwóË Ø—/èwO ’Qê"‹žˆ3PŠùµ åxrœ°6 ô ß~u]ì%á?öã-J=ï€sõ„—­,—a¥nSä¥^¢‹´Ð_E&ÿè®@)ÐË0Áñ×cMoÉô"º¼‰½ßB\ñŒ=>Ç“þí‹Øx jGÐï&WÎ¥|ÀkŠuÀ_\'2<Ç®?b÷b96°Iø·xÞqð'ãÁ›ÆÁáne¥ªñcQ5‹·ìk¿…98O<6N®ù¡þJ%µ¼`Sc¸’¬ðñˆžb£;U ò«S`b:vû>à oåXºTJoýÁ·›âë01L·uÉÉÕtî÷y÷†XXoÖwWsñnø½Ø©JÊ/ãG[þ?'Þ8‰ëÍ ^nŸ#µ¾KޱwG^•Ž|`'ëѹýî(*ÓžP™2€þ%7ñYÈ?.ò‰§ùô¯dŸÝ˜¼TÐwS˜?8Ž55x×A0©ÄìÇÁ¯$Ó³2Ùµ°u‘xßWÕ£}÷2ŠÛCÔ–$Wñ‘­¿Ó_ÅÒb’4Þ®âïÝÙô€?ÏL®qŠþ% ‰~·Pï÷Y=eÞFNòjª }Iî©÷(åRs] 3°žf«ùrÚêby²¿äæïð™°Ô P#Ť_x,gó¥ZŽ w-Ö7+W’Ô4Ìíê J K†®¿š#‹£×°«j½`Æ,³;ô/¡ƒ»š`z9wX9Av¾X‹éµ•ŽPçÔ4ÑuYq?þ##õÏCÔºÑü8|EUòˆhqçU æGM€[è€*xˆ=.‚_¢—G}ºOG7ž,19›¨æÖ9¸Êq\{‡Þà61ß[•Äó˜ª BeÐd¾yüê5šÝ+ùÇ)ó¼|s¼åGÔá‡Ë f¥åN™Íå?ˆ=z1PŒ&¼û^Êx¨‡iQ‹8ÿ“9‹w¨¿je~íg”ÕèsC½¶ú›¹y«ÝUk"º¼Ü© ®Sx„þ%eÞðh< {ÌâÎ÷túºz•†¸`:ÙàLê?j/•7³:ï£%ÈÈüDz6ÃŒ‚È3 ÕyåÂ0gðŸøå9G‘Äe‰ß9ºü×ø•~b6üy;=ƒ¾QTcÍ诪¦þüÓOÎÿxNÿ’?¤KVc•|¨E§GD ¨—–%Ñ_ÑÚi…]»ŽÌ}J%W5½Áœ% Êß©TØ”êô/©ˆ¾b—v#2 9î0g± ¼€½ÚJ5Ú&ÞÁ„* vºœ\N¼| ÛïE:VÚ½ó{a?¤‡>ŒJûô]EL>~ €ŸBâÊ«$FEc4HTY׻ʷ_g]™µW2ww~&Zâ°'ðsw©”8ƒÿø‚—ª‹ÅžºÔIïÁ]´ôùdF-¹wø µm-¸÷œäõ#á?™ïÉ~}¹§ïPÒžÅ'M¿úQþMxj™A¦‚°¥âz¢Rý4œk~Žÿhƒå߈ÿ0`»/¡ß=GÔ9Ž÷ó2ZäúáÖ Cõß¹Ž,x‹^dm¾`‘•ñµŸè_ÒßÈ ßŸï¿ª@¬~”q6O+ Ï©¡‘Ýõæ~»kT…:Òêûäb<×D¬yúìå›Â›î£úðïqõÄè:Ää&•žüäJ;üG\˜.zìïzÿOÒÆË)Xü‚d w©±xGtéÿøL%\:æüÙýÌó`‹›™¥`º¢;+‰ošMF35ÿ‘>ÌsI¢%æÜ6ÕYÿŸ˜ÝTÖ8©®bKÚ0uâ(Îcô²¿/”åG¥ÿ±ÅQòßP+öDÕš»òüÊvü½‘¶{…YDy™«ˆÆc:׃_U4ÿVcÍîÜÇêðñ{诙»É :wÃ̯#ËrÎßæ§ 4*{¼Mÿñ‰æ0úïsCMÝuæ]-cZû%ªü·áU7Óì9C1õ „^ÊCôÛ8ýÅÕ ð:»+PÕîHXó"LuNoô÷ €Û@ŒæðûMìé½Xú©ttÉLî•E=¥«‡ëá®»5YÉ0Øg*6HGy £Ñ(¤ÈKÓÆ|Žuü/#³™ö¡Ä*Çrи€ßòÃ/äÝÞ$ºÞ½³â ú« <ÝàkñˆM†Ó·]‹+’}üBýy)•\Ö ø¨Íü-?ïc£~01Üœ'§ê<=Q¾mðŒh£–ɈòšâésÔ 2ÿ£:³ /™ÉÈŠ&2ù·¿sßõ±™Oé¼ù Æ+¹jA?ž(ìÏ1Ïÿ¤~ð®£|ÄÊÍÿëúÁ_èëqPK§÷Òãƒ_ýÆi pô…§¨L²œ)?Wÿ‘ùµKPUœ*?i=6P˜Xúºú ý¹VS«ê}øö,~ô5þ£;«9V?›1Cž¦~0—žÚEVezíD¹!’þãsNªË‡ Ù[ˆVbMð©éØnÏï8ƒÛ¬{úÝÊòƶâ÷½õ‘ 'ÃÉ?–‘}ÌÅžF¿«-yÀƆy­Ä iH4þK$øó¦¢sÅ/É¢üta"ó¼œVëïC›è ·°•=ç“J]ô~ÜE¥“ó£IŠw˜DÆ0.ÄO´ÿÑ‚ çOò]üXX @2²aòà'ÈÄd~T.üÇ "°4Æ#xØ bü—Æ\*¡êK°õöäÚ—ükw­˜Š?:fÿ¯3ÀTÍñŠIÕ$üÇ)žF%öf׾Ɠ¼ÕŸá?þ‹‚WÀ#mDÝV–;SD4¼ùµ™ÿqX.%6í§z`+øÞöì¡0‘²·ê‹y Èž»\0ñãM®÷<Ù‡»ê¡»i§BìkúÝ&øÚ¨díþ»ÑtÍá~ìå^œ“ýõ§á<Þ¨`~˪–³?»ò¹±=þC—½ÐôXXæ–Äõû±;ÉìJ1ùŒ8®77xÙ뎊ävÿ]{^TzâÄÕ¬‡ÿ%Þo†µN¸5Ц X/0;Ü•ë°>)Qd‚?¿¼TÐw µqr«$¶ê žö‹ÏÉ|dbmZôW%è'˜[\ß,K·ª*ðªõð K¨ÂèGÿv¦Ç„¹‡±´„d’m²øØôOQ]±SC1ú Þ_‹B´ë ÓT›«*ÇÕ%3'‘Ãø£@Íâ¼C½xk>©ýÛ7píÉ?’_…™ë`| S>RâN_"ö±+.uTUÛéT2Àç4³ƒÛg¢wÕ'ô¬ÔŸ7Bµ•Ýw¿º ¢Û¬¢.ÊV®;è)æà?2_=D3¸“·ªU-ˆ¸5¢ò£æ&ðª÷f~ïÁÌãK}öB¿kW$í§£Ëjj¼:²—k½¥â±¾C6³ß¸‰-9™Û8òDÎÒðɘ|þ ÓNö’s¥UÜâ ,Ï: ÷V ´°‚ndÄ>¤råÑ?±2ˆ@)Þª‚**±ÉÔ¸TgÊG}"º9ÞÅ7¶&Ðe帙¿rVÝfRnuP…0}™ñ!ô»WDf"BìN¼—ßX…ÿ¸n5‚ò#Îø›j’ÊÎiÎ]L‘šÌT© Ôl4ÓÓÛ$¦j`<“cÁüygÒÈ®+þç¾¹ê(2ã€?ÿoûïšâ¹ØÁüÁð«‚øŽhws`ë—Q?™YÁ×m‰Éú|iÏOB/f-ž.´Qâ.þ#'ŸpUkö“õ%ä’/Ò®~Ë‚þꋜ)ÊèîFgt%eu9SÎÔ.üøî}¾jI»ÛzìÖB0ŒØ*'±»Ü›þ,´5^o(ø{›HÍÿ±„éøÐ"°»ØÌÁè:’»ïÅ8 âòVÖA?”8øUu1 ÿ€ÿHAv0H?›a‚½ûbëÒbIíŽy¾Øê5dúÐ0v*ì…§Ð÷¯ð4c¹Îô‘ŸEŒ¿ ±¶²9õ²î"µ¯üˆ//×ÿ°ƒA QNËMv0 CN°¡˜ø£A`ÒoŒéô/ih,çy Ëü pš\lœ…¿qAvÖáìr&SšámSq•U±Íûñ³ÍyÆ_A›á?Nè_°O­Àfüðêö´òräOå‰ð’‡ã?Î8òè[åB¼«œI!ºµ¯µ›„}~w:+ÝAuŸ~ÇÀù3Û È 2±ôj¹qØJÑYÚï\[mò—kAú«Ç<Ý#üê*lf2™Ä=[kZ>dLÒg£ì¼Ý¿¤7µÕe¦0WWK„çëH °‘DÍÜËÓ<sà†zë>ók»Ð ê.}›žRÑþ V;Ùç;6øÕi3]—àO7’µÖ¡J¥¨ê`T”ÓdF—ÿÀTç ×#ÖÉ¢šÈ½Æó³Ô'â×q¥ÍÈo åC.r€Lf2¸â3«¯YÏå„ÿ(ŽyœæÛ»@ýù0Y”q§óWøó?™åv+€Y)I--/çNzÊô§ÿðf\Ò5­5ó;Á}Œå-ºBìVP.ù¶à?øõŠ#gˆúÁ¯ŽN?D"ÚT qW¬¿ê¨ÇÔ—ˆ,œÿsަL?Ϭ×v’ã„Íðÿóz‡?Amjrô‘W5CÿDmÊ}½‚ÌÂë¼JØAÿy=/yxKbŽÀÞN“'Ð yé‰`$«Ò'·õƒ>ÚÑÿ¼Ä¿ÿô¦x%ÚÉÛ¼{‹À©Ö÷š¼¡qP®nÇÜCuZ»1JÆcþà‰H¬8Pï®o‘½±«ãXq*þã0ÖÚ©î’»¯"ÿ8Cûœ;1ô>Xò£…kˆî`i×d"ãôðžœó¯°+Û`JSåïñ!õÈ?&é´Ò…±Sa×M§o=hA.p¯æÀ¢6±Ë‹–s$1if5[¿ +ÿ’Là ¾`„ÜBÏzµ¸¢¥V‚+DŽî"fòŠ«w`1MÑZÀ×àSìùƒ™À†^S?¸‡è&³qMlu{hŠ(gÞ¿ þ£ Yn&s8CU&»ú£ Šâ¼K}]º/ö3Û²^3rM*ï͸ø¼çxéX²E¨õºË|tú¸J”Q˜û—<ÈKßÇœFýy.ð«äTz8R-¿Þ¬mÄïÅ//#Ÿ‹‚¿+£N‡¨tËÅ:¸f/|G6"õ©èwR'8ÜzNÍÌs&õÌŠLí*”†êÁRÖyÖÿð$WŠ:TKw=»ÿ•"š²‚'U:â“gx™Ôh ª?\Žç˜ËÔ$άðGð%¿Qã~uUm²½bª#ý¯þ”n.ÿ±]Ó ‚B5C-G9A"úÒ_·<óÏË“!Lµ:ˆÿ¨L^ôŽ$-ÁÝÜQÝŽ1 RåOUƒÇª Ü¿äŒèÅüÁLh;ß7Ö˜Iœ7¬VTº§ÏF׫¢ô/9Jýyoú]àäXVvêÚc(o:ãõ•?õ(ð?™_è(B/c1Ð#Ô¹p=„¿dÈ´àW1èŸXŒUŽ9êj5ð%´Uô¿ŠŒ- þÏŽÅú\ôW5É?FÉGš®?mÄ=½’ÌÅ'Øó£~®~03ÙAOøß¾äùÐ_Ý’sà?a +Ò¥1õƒ[¿ÓÐï&äwwE h"a‘×ñÓ«9e‰Tìt¹Àä3¢ûîÌÜ5Qa†JC®óí{o;©Ðx@´½ «nãWCèáôÐÈŒÊ&L[mxÿ:ìÞ=ùG9Ñ™\è<ÙpjÞgrìü¨Vû#Üá¬ÃÛ½cß ð‹ù³Áúèžvl}K+xóäFA[šç¥ a"Üt– ÿá‡-Xþ›Äøs¥oˆz¢o×ø¯¯_µD¼³ÈRÁ‚Ä'…eÿ`̃©iFþQ–ú ;|ÏSò1ÆÏ¿ª§¿ ½PЯ¦‹~z â®_Õh¢»ÿU9ž‡ØõçBžÓcÙ7IÞ+å‹?*ÆÄªRø„®È/xÙ“ÌÜ&熚€]KK½˜xcúŸ讦bÙ_=@enâ2‘we‡våË/tä®gÒÂvX™¢õ#ðhQI]ûÊ™8I5â{*r™k±~郵t¨hS tË5Á›VªfgµŸ“VòYÄ&–jnáÎ'D÷ËfVÎŽq¦¡1ø9ú™Ç¡^| 6~.Ͼ^æ õ$»é¿ëeÄÖ‡zÒ=˜Õ„Hà£Ñ4§ùGv¦î5[Qÿ±K˜ÐùÿÑv~¼Y pe²®CàeQá”^pÆSÉÐýçúÈŒtl´Upù©À4ÉÓR?=6b˜é椟/½GR:_¡;`6ÅÚo$ÿhйÆÉb–WÒèâzõçÛ‚ð«+\¥üÂúêL‡Õ­p›P´Þ¼A…Å4ê»À[ßb½AxÔߨùI‚un¢q/}ùâ‚_½€<¯Üx·Þ’çu¿*O=wZ²Í9œ.#Q)¬môOÜEíÅï–/qLmXšìjŒQ}ðì?±Q/GNÞœ3à‰:á˜1Šúºp(d tWï ŸrNf lÈ1ú_=ÃC.`§5À⩆0p-8MÍ\§ð¸h¤”…á?ºó¤rËÍ´àWÝéŸx õ–¢ê£2õ—­œÎFèw2E^Òrú«ÞøÙø“¼UEäR×üç¾9ç(ƒmÿöyoÑ_…U~|û³ˆ¾~uø‹5Zv½¿îÿ°§ËÚõe´Œtà]'>ü¤þê”cš„šøÆ:ù@‹~UŸúò2#Ïп$¿k×íÌþs7¹ßñ†:ï'ÄóÈ„F‘XOŠå©"3ÃW—K#‰_݇DCù`ÖhqylUÕvK9ob÷^¯ÎûÕKjtÁ»‰­ Õ‡ë+e+Þ䙸¤ÉœÚ@c$yG ùÂ*°˜³ä3¯ð¤uÀF#]Œ ôa™–ìÅSÍÀW– ÿè‚ÿ8C,w¬ö9SMð«ÄAƒô1ÜŨú"öÐîè Þ1ÿ5ÃäA)4‰8“<¯± mï¬þ-lþ®ÿ€_)ú·—Æ#ÎBe⎧t Ò_Í%cX­cû×bíßqõP¯†ÿx@/–Žzx‰>b¬Þ…?ÏF¦P ôløN VùdÄ%#I*ê‰ÀZºÂ€ØSp·ƒ‚T cJþnA×›üxöÁŸûÊÅüôpú%zÐj>Wú'ªÏÅüz8Ë[T@OˆèO¨IJw¹Ú øM'Z­™zÂï´¶~ׯúç65ÇÁõˆ»Ñõ$]»Êé?EýGý­£ê²µÂ¬H¤OÙUs‘¿W!Ýt“Éxóƒìî0s:YÍñ¨ ½FÞUß9ÁyŸžú}¬Ææ;X¤CœVTjIîÈq¨PŽ€{d“3]wðŸû抣`ˆþ‰ïEŽPç"ò;‰&6ˆ-ôY¬'B¿[œUV;Z2§£ =LöˆGŽ›‘_Š¿y˱€ú»Fd‰Íò©æÔ3jí…SÖ”é™?øXk©Õø©}•ÇÈ ^Á\'.S10¥nëwѺ êZ‹~÷L¤v .Šjò.ÏlLÇ"äd*3QC#üÇrl„7þ©ýíúóÈä#ȧVÉ6(†q¾Wsb'b“·§†ÃMNH-NH9Ð÷HÌô>0æÇá?’`Ùfás €ÚÔÇÆrj×}c¨‰ï›ƒÿø#ÂùQQôµxoЗKÆ(¹&°–­¿Z F§—€ÿ°ç\$kú/$çÿ°âGq­×9›ì#xR|Ô#C±wŒ?Õ@lílýk0†ø¤k|ÊîǸœVz°Â#øý!úêa Ò²»ÉÍ’`2o°é ú Ý ×ÛlÆ[¿Ü® Ý÷.j8þc‹#“¾^.${ù“Êú|舑ÌÅJÏ%ÿXC½d ò­û(x7R_zÔî8ùGvÕþ#¬ºp¬66žè‡þ‰·ØÅc0¶=ÄúïAòsSP…85%þ£øÕò“}ž‡ö0‡Ð·ówõƒŸDR®¯ž{=€ß‘I¦Âîç§ãu“ÎP͉yïZÙa?æ×.µOnvWÅ'ƒÈljZhýîPÍdGþøZ(_ërßÓ™£Íåto,Î<ðµVzê?¢:›°uÃøò72ñÉILžÁo¸ß1Âø¾ô/)Ê™ÝGÆÕŸþW×蟸ÏüÜ@ÿÞèέàWQ™gxÑäAtà}8?›°äNò%êbŒ¡®G›SüIþ‘‹;rtÒŸ µ)yš­¿rRÙ·žúÆ:doÕÑIõ¦*/1z§ªÖižÑîˆ'Úåøì£•âZï8ýKâàQÜWŸå/Ü™Ìæêeª‘o(tR¯¬iÖI¦lÄ ~ð/<±;êÞÄ$MÀ-©Â¬”™]þc·8„ÿ¨ W±/7].0zšO¬¼ðE¬¯Ô†Oeg—­jöW8Œšìûƒºc-0½xfqAj rϯÕ\§ðŠè×[œc$^)…1Ñ,~ÕÞ‹~t))éiÕv§ÿUNçT«'ó¯¡%(nv¡þ¼=ÜùdØÑ#œú\rµëŠÿ¹on8Ê…ìwGÿöÿ–?O ~µ†>ëÐ_m êuØÑI+G“ÜÚ&jN•H,ÕgÈÒÄò©¨¥¸¡}ÒâhS„!óÈ¢L¨zŒ~·îOùÔÚók;‰æE¿ë+'мzBìMmYT6bþÇÚHκ">ˆ2¼}hå\¡hʃXº?þÃKÕ;U Î&¾,/ââá=×.è¯6ÈþXÍ…¬¶;|‚FW×P¦îŇܯ‡¾— 0-#¸†)¼•ìßk+Úß\”ùÈ?rÃ,§çߨð®ûQ¦'ž;€…ü‹Èi7ùS!øžÜÅ àWoðgCðÓ±¿ÓˆàWònÏT£yÿ³ceß§\!k²»æÚó£vü°þ#™h¥•245ü*;èTR®k« úKMæI,á7Àî£l:¾5 /w.ˆÿxÎån`þ`=våJ×™û¾ X…’¥mu#P¿ ¾“È¿Z¥c [ÃñÁ&ï|´Cß/wþü¨\¶1QõŸŠ«–ƒ'ÌÅ>,CùU–¹Ì#:‡ìãªSòtîàé¯bâ¨þôoÛ{Óüª3Xó+à5:õÄãØó«£aÝdæÁ¤2ýÐyÁ.”Å;5Ä+¬D/ÕZ­§þ#U˜ç’{_Ž«+FåÍG2šœ ?¦µ¦01¿Ö›ü’uÛzMeH}Óa.&ÚΆö!øÕUoýAl µâp-&{±A3˜çzì/1üÇT³.•;¨„KIÇYÇ|ц|Ææ?6â`îQWu‚Cêj½^27c?oE^xì(ÔËøÒÿª»9üÃ^Œi¨ø3GÌÏjØÝE¥•<™mT:ÉÇ*©«!æ”ÃÄ₆êºÒqfWጻÁ'”[Oœÿά~Õþ"Ó?ªX·yB€æ1sã纅èuHœÐ’ÜăŸ&KÿHfBùwàã/Ñ»ê*õ ­kæ)kzÛøûh vÂvÍ VcŠüÍå?.ˆ½¨@[°Öìô¿:m´õjD I~øk VÝé-_ð ]WÊp7¨tZ©k$ ·£=㣨‚·Ëœè[Œ|»+«'Ó¨’À>µÀ\%Έ~·2üùN«8LÈ|óØÝrúPz1ÿ£ðŸÄ‡¼Cåœïõÿûï\sd_\ŸMxÿ×þ#ŠØ#†Ðç°"ý¯Vua¼‰ÿÈLÿ«zÚñÜqÃõ)‘ù&…Ø©Ócä¾&Ó¼÷jï´ôÚT‘Lv)ôúb-švBÂ^µ®¼Ç|88:Ø‘òš¬ˆ~77èN ™^ö—/å¡ï44á¯è/bicdeóÕñF§Œ*ª<Ú¨iò¶ð,¶¬1ù}+™"2õƒMõ±œžÆÄÜ@°VÀÂWÇâv'ÿð7) î6ÛˆDÿ«®bvfƒt‡(«þ€9M ~5…]^¤kÛCâô¤ÄÂýð!+è¢^QbÅÉôÙøÇž¨¥NañŸÊDÁ+˜ ¾´  ˜ýbüÑ&ì}VjÆîñ¦Æ/ÿˆérYµ&äðSñiɨq¹$ßÊnxÍ÷ÆAPî&Æx"Îwd“Í#?š뢫”F=i([õ¯]ëõ.ðqT?ð™Uàs¥é®›Ý¾ÇnOÖOéôz{*ƒ'°gÕ/æz?ÈÄÁOƒ¯÷–£«¾[Îá¾O¥$-W3““7ç`²"orƒøª‘ÿyüz;e÷Œ<ÎÓþÄnëê%¿›=¶O«#G§gC‰t†=|Â6lĶJlj*‹£ßu#óèÁ$ÒàW&¨“|¶‡ÙQ½&š±û†üçoñ+gµ6üǬøGµ…Þ>ª S“Ã0óÂ/¬¤ì]|†7ùǬ¥'øÕ~½X)î¶8jÅeZ|òð}(ZƒúTG÷–”laÞ«þãµÎ—©G,kZ¨¯šò°£vÿÄcðAÔ±sõ–¡Ö%ß“yœ!’(Âûb\RÃÉZ‘MÕeîàXªê^›¯˜ž§›>TŒïåJ·“u­Å?€ÅiBÏÈF®ËM!*‰µð(-x’™Ø3Ps=…WЙ?¸úóa C%á{¼©ŒMÒÑjÂ}^H–˜Ä,)1È9ݵÞú·''&x̾¤òâƒÔ]æ&ëh@ýàm´Vþ`LgÑ,'µnPÿÑ5pmú'ºÑOg%oÑEßådu—ÿX"Vëž(C»’y»©üß›ÞÂåÈa~§ÎÅŸÜe>5ˆéé£øÚ¼Þ \ñcPþáÆ9(JÔ4AÑk×å?ÎQë¶[÷ñ—Ñí2¶ËV/:Õgçg}¸¾>ÎýÎV%g'ôÆð\ä^Q˜ÂXXµ5ëKyUÎp]ñ?÷ÍkGËwcˆ>!ªÑnRlsÀ¯šêôµ¢!§k·cš6\ë­µÐv‹¨âöO-wØÑ—™Žñ‰T£‹e=.ó?š‹x Muô zJ½7ݰ~fÁÃú0ÔRv÷bÐ Ìüþ<Lr5é î#/kZ¤V<,ŽˆhrñûòŒqDöÑ•¸eY9fáXOFìÆºú–ŠTÿÝQú8æÄ.!Þ]K7«XΘêÖÆî‹ö7‘ÎKYn-“QÃu†tíyDªäe°DæUɆ¢¡mÚH„žŸt¿²ÿ¶›ÓšÛ讎àšßk @®cIoc!+h ÿQþ£úÝØæ·DaG°£þ0 MŒ¼rÙ|9´xä)ëÈàópç’¢Z›fÌ'ޤ&’ã,fÅWèÏ‚ZÝá^ $Â[Ŭnÿ’¦¢„^{•T-¡~ðÈ\ÐH{mÐXè§ccŸ»á“6sµ~ì¾>‘Z>¸—ðætèú 2H¼jú*‹{×јMþ1“ìa¾ò¾Ñ‹| •Žìäùܮ仢aÈ­§œÀ3KKÕÄE<Ï®&€^SŸTmâm{þG8ÖetE^ô¿ªƒw*J4ÞÝRU5S—yÃ<—<š;þ¬3ñîR¼ÂI8Ôd6%ÌßÌ'ê”Ù–H|‘µœ9wŸÀ‹ÒÀ!çÇŠúSñŽ¿Ÿ›u[, µâ<í¬Â]{NEûîÑc#™ÙÉœmv¥³Ç˜7hxOX]É7†£¢ú ǃZˆ·ì>\N'ãD˜þW­¤'jŠ øÔœ wɗ޹ÓÍõj&Ñt 3:’ߟ2 1UªzÖÞèˆ>à•ìž#µÔ#ÙÓu“Sÿ±ŽlÙî:ù+Ïr­Ñ U˜v´$úÕæ,ê=Ž‚[½¤ÏÔ øóþÌ‘ ÒÔ‡lÁ ß™›îSCÔ“O4w2²Ë¼³dco ð°¹ä]¨?ŒN¿‘: C+™_ëa5_Ã]äcÛÄ{X›<ª,g¼óÏ£ºÞ=?qB¯Ä™kŠçhL ßBc¨y¼Êk_ަ½õ¾?|M2Ëlq‰¬¡†™ÍHGäQ(§ jðàþ%©„] ÿ1‰ç[ýî03£3ž³±y–þí¬NÎâÖ:ç ô ™£¬ t{Fÿ«üô¬yN!‰‡ rúxê÷ÿ‰~÷†Ã+D¿mAç÷PçÌõP#üæ¥ã¤Eÿ«z6æz±ÊGê4²ƒaÍ_²þãókÿ”õˆŸ“ã?îjÉõ¦ÚJ‘Ì>£ÞF¿AOÆÊ?µÏ4ðçuϲ9jS[]Ýh$ÊëY°x¿Élt0Y,·G²â~æ×f’ö$¦µ¬dóÇé@˜³£ØHþq/U2Œþ}­"•Ô×gàä†[˜Êzç|0(Ìâ¹ãF r†Úø"Ô¦&4ª¸ÎðG6a×Ìœ“ñj¿Â $¢‰Âžv£Ÿ*M$åN¶˸oUÚháüÚXú|²‹6ðú»à#brZ›“‚ÿ‚]-¬ªTlýÇ}|Ôtª1W„¬' µÍ˜"»–›¿ïÃ;’|* xÒx‰OÆ5 4e(Iðî§Ød»—ïh|ÌfêÏë…ËtãõÊ(hãÀá{ãuü°¯Õ°Ø1É1 2št#²ï¥°ø·­0K¥9K áͺèÈF 8»? œÊ“~êóÀ;'â)—‘}Œ#æç ¿ DÅšeôU¼¦=ïëŸß„Ù4a3Í5Zo9–"¨b,êpöZü£YP ]9¨yÀ‚j‚Èl§þ# ê¥e|ÂmjùËößÍÿPšÌMwb€­ØÜGê(Ì‹/lño(šŽÁ¥6¤~áŠõ…|£³D,Ú†3ð¯©i/@Ä´W¬ õ¾ôÕ^Ê&`¯ŸñisUiüv,ôW{à?Jšëè¿ù˜HíÍÇXÚöø£Â¶"üã^Î$=¯‡ÖïΖéÈ ®ƒz‘MEc‡³Q§£›™ŠþW)Éb8éü§&_A)±ÿ–á Ÿ0q¤’ºB¿›‡.|ÈcÊ£ßÍËÛ0’ÎùvÎö;½maô©#ìMgÛ"àOãÀsb’…Ô±–‘)üÉÞ”é£Ü©4ߢždý¯tÍo¹Þ·TS7lüj’Ý™þãz³¿QrµÒ9áÕ£„N"¸›ÌÚî0ŸŒ¶„¢ÿÕa±]ÿ7«þƒ9]d ƒð¬UtŽFû *@¶Óqxžå°.˜-èLöUYÎè¯â€Sö%vjH¾]Ë•õA²"ïV;ÞÖœÆ>jÿ¶šR)yÇ,Æ4ÄiV)çxžGfçkJ¯[\sYæ×º£3| ‡Q]|˜¨©lÄ.Ôk÷ÿú‹“Ž„ô¦úöχ·;yàÛŸEô5¸-Æ‘äÒ•>$¨þ|££4è•BµIˆŸä?¢‚nÏ ê®€Í*7Ò¿½„¶Vî!h®Ý-~ó(W=Z8»\Lý (Ò+r˜¦Ü÷=äÙ‰à¢à?:¢±ŠEþ±œ.ÁUÔö¶…gS”|'5mxó£:ÊÁPaJ·QbR5mÞ\£:üGGj]Þ«ää2÷`–Á$'ÃËm#7ªó£Âòç¾Z´a¡¶âqê³·Ã'Ö¡njVaýîÐý¸~!¢ûVä;EPõƒ (©æÐ¹ ¬ ò‹x¾æðñ«á=.À4$F­šüê¼ú —Úÿ×ù?iÀL¬– |ëùÂ2•ŠÌ5@l u›kKíæ¹Õ„Ë®C~×ÏħŒø[õÕZO“JÔ#v2;â‡í‰ðcÉ?>À¿Ð—Ö¸¤7 µÞ$ÝâèûNÀ5ÀÃÓÊëË©*ùõ§öYJî'|-‹Õæ&:nô tÿñ\W2 úÝYZäúÇÜ ÏW yÖXDl\;¼ aŸw•{°É'Á‹2ðIåC½¤úï¶Cq0þã öh9ˆ rÕ€ìáÀ‡(óEOP‡×"^Ø$ Q•ÉyKrÁü¥"â~*[b­ýYk'Vï#ÿ5Ç‹þIez™0Sä¾Dº> ÏÖîÈÎZËQØùd\vUD-bÜqøŽƒ H—Èö÷Q 8‘ºþ(?x2DÍ€Û˜f$B <Âø##WPU°q£P€¾´çŸïÄ—Ö#Ÿ9`Ü“ÍõðV,&é5¸ÿ/y몀 Ce”äð ¥cPýù;49-ÁØþ‚_ÜÍÝ­N¾“Ëõæ_ï=G}ì~5ݨõ|kÈMg%Á¯ºÒíï& 6þëì»p›íbÍ»D~Õ™Ms3x© ï6iƒäüGbüÏ6ЯT‡&Z•°Ñ…™ìà ÏÚuS!Ø“äq°¾@o²ß dÙa«co‰(¨ÅËÔ*PÎÁAdÁ;¤@O{J9­Nè¯6Ðe/Mc3&ùG^,þFÔMÀã’¢¼8'V‡z*õ5 –Èž/_\ª2úáÄð³Í·Fys l²pî#_è ßÝÖ¬ÿ‘=×0:j‚³ØÊ¿¦7µÞi÷[»È³,ÍÝJ˜3¨fïm¶V-Í|ÌLp‰©Oé˜^ĺǾŒO]Š k›ÍF¨“!ô¶ÙE{ôW îèÚ}ήä/©¸Žm5¡wG?柟ϲ1¢¦†¥®k Áã s(ÇɃºžÈ @þA=%yèß`ÍðÀ«Í8ô_ô²fãÀ„Ìez¹r¦`Âî1ò7ªówW'rH£&2ë©ÌãòGÄa½(T#NiUŽª×=­ÖäE1Q`]›ߤ&~<3ß³ë–VtÓå”JM‡jLEB=µ’¾ßß6x\tÕK*Èxû+á?JÁ<íÇßìGgU†NŒÓÀ°vÒQ±)õƒ]a‘î˜&þ£ú«.èwQÖË“ì5—ôù¶à?øõ˜#&½ ¿}àGO‘Íõ«o¿¹¯º8(ú’”¦âRaW÷mtdÓRÐz²¸¶‹™B?׿äžcšèR0u ñr³ö–5¢Ñ79£ü¨Õ×7 ¿ú¹þW1äbÓ·tDY‰¥úÿ±YH=jœ´TŠbÆá-rî”8%<å9¬ð“ÙĽ‰UJ&ÛM’«‰òíY}¿aùzÈ7zgù!·®‰>šÓSƒ\x:ÿ†=‰åJN´ô¯þí7ˆtÞÉ,Ôg6Z»Îð±¦q}R•"ÿˆÏÕž©X€ÿ( &¶ŽÌæ9Ò*v_Ú¨ˆàiïÐf“÷'ØÊÿƒ³§þ/撚”PKñS~DOÙ÷m8† rÁû_™"³–˜ÕF£Ä6†¢†{(;ÀÊß2ö¢d¯cL¿²Ôyì¿I6žœg;¬ÿ]9LOÎ.gŠ.zg0³Thëã»Nò4ò¢){B†Õ×X£oÓã™óÁHjªXù øû"ÔäaÎçzsƒïb€£4*´ôX¡þø”°DMÙiqì[K|Ê"ôF`-wð ¹³W©þ8„Ïr’ƒuÖ jï‚— ún‘6LŽð€ï¾D#˜iå‹7zMÅG6üGa˜ÚêTC”¤:ÏÏŒMÅßY27³‹Eþ‘1ÌŸ1‰[ëÀ'/Ão<%~M >åA” ê¶Ù™N‚ÛÑ£Æ4/bï“Ó÷«2([U|±è_èæ.ݱCnq€…|ly[eT´¶¶U‚S-2ÝPÀ®Ã‚*:h¼¡[ú=5Òl‰†«äOüi,GmÔÝB­7LÄ^ÇSWÕW:„ cµ1æ0ÕŠiÞ[‰È?˜Ñ@îoƒk•gßò¨ŽØüCìñ+˜aϯM!J IK|r‘úýk ·uñŠ1èg+¼N  :Û$hd»À;éäÞÓÚD3Ÿ¨&9Ú³dê¦1DŽu]îrúïJ|þ+ÞÙ* çô •3à=ª1éŠ+Ë9Ì.ºÓ=¿ÚmépêgˆLj!åB¿[™úó\®wÏþ#øUbˆâè¹| /3~»³É?2Òéëx¯  DÍäк¦äaú+öLÐøß”/šàoÜ%°Ò UËHNgfc–¶£ ½§ԢëU3ç*2’¤Î^ôoÿjmf.zAj~¢©ÌŽGW?»Âÿ¦û)GìúÝŽQÿõüóhôO %Ò+èžúLáÉé:ê¨E÷«$Z1ú—¼¦CöÏüóÞ1ÿaw+ò0&3ÿ<¶~MäôÒMo~UVËêüF´v%ê?¼A [óÖ¡~0™1DdÒÓIå•9¨*ñ‘s´=-ôçgèß^W*Þà• k ° ”ÈH_òDÏ ùÝ~0nõƒáõ û!ô¾úÙ <N{&ñìð_Ô#ÒÅFB,iyõ°Þ1š®3v•o¿Î.þÄÂï!ÿˆ*sû*gÜ¿ZA†\f'ëÂÞ®Çv§ÿnïîâgm½ñ6Š+Á>úrÇuùôT•Èí_WŸ5ÒØ÷!pç!â‘o»ú××ô"§rE½¸;LÄ´‡wñGÓg W`“–b14”©/ðçA-fð¾_Çw¶Õ„³ËbüÇKt:“ˆóíùµ‚ØA¬ßÃx¢Ûõç3Àâ+^g\ÇÎc“¡”wþàGaº Z¢úùºz7G)P×ïq›È±)ÿ¿ ûtè&÷ãÿýŠí«gþ¿Z£ý!ÛáÉs’¯<'ƒyDþáGlþ}Tøó²D‘…̓¨m«“3 ³¯M_’u*Ÿ9Hdþ`Øüãú«ÂœàüÄØoé xˆ§ ²Q~„úAo,×¶ ¹y·¨(IN¾Ðœlàݶ¢=eàz¦{wí-gn=j† l­ÔøAäžÔŸ/…‹O…~÷ 5›™_Þ[KXéͰÑø¼œñ¯að«ð¿qWΠnꕼ«f ß…çh¦ þÜZì"Î-ô/™GMõm®b{\Å5hfb³ˆº.›¹˯ä³ð”ÍÈ2ƒÔ¢bSxò~ôÐúƒùçݘïçg¢IOk þ#;ŒõNüü,2®´æB˜šã¨éçºÖÛ".Ð7;×xظ£ró¦½Ãow¦2¯6ùËs£uŸ\a1þ#.xÓ~ä0ùañÛS'\m ¹QSô»ÉÑKUÁ·ÇCŸ5Ü, ¢Ì)ŸQUÁ'}Ûà9ú'.“AFz“Cg1všåçóø•7žük sú«/¬T˜N(¾fR+§ÙÑJ‚~÷¾ ¼“÷ uˆ+þ¶òÿÿ׎_Bô+úêè/R„ó®Ff ÿÑÿQYO§Ï6»½ÃQˆêÛl¯~’?ãøT§2o`:zò݃?¿#jˆkzq™X¯¥¯Ó*ý$ÿQF^&ÿø(mͳüd"êÏsé9ˆ1«ÈLè]&ËEÚÁÈ\¦ã"óËÉgœ`Jë`PSÓ¤5ZÈÍĸì8 ¶°‹üÈLÊë‘X±¹> ¦§ñû<¼ÇÜ“0sÔ;"°ð¯û8S6vÑŸL"âùµ9DwìÌ1ô»©À—c©‹’uÙõƒy#ÏÀ FÃ4#Y ÔTÁÓVúôµ}É‹nØ|w5Þ—ìD> õEø„ìâY‘(vû0þcybø—‚ùQ5ñ_ã@ÕâÓã+6¼N”ÁŸåj(±Uä oÈ$ž‚A]‡{˜2v‰þ‰­tΊã˜Þü>£Z‚;O¥HQðÄZp”šêjÜÐïé±éÅZ+5— g w¶6:ÖÒ<}O×›¼Ï@G^}žCíú®+W³UçÃ7ŒC=5¨[aÏîÒ/öi^˜¤ð4¸Ë%ÔæG= ^*è;_mª„¯ú¬âõ+JôSÄúÑ™&ž j6êÏ%ó¨IÿÝM(^c1¼‚ÏiN¦ÿnÝïæG½n콩QJÄiæرkTÁ¥1ïª÷`$AðÏR§vþ¢ULSJŒ‚ôoТã(Ę‹ðvÏÌ„èobÕ›q¥w¨õzÈ x¬¼YAëb‘Uì`~m/®­¿ù ùG*þMç\Oµü8zÙÓ:Ö‚P×Ù#3ááÏû»î`üÇbPá äàô#Ç諸šQévÍjKOÁô¿:…¶õ W=–y„¥`vÑLfµ4ä[ÉàÜ{È?]ëà?’¡@~Ä)y¦ŠëÜG¹VÖ£©µžúA?z¤„­ˆîLf퀩ð± `·ÿBØ´†š…­-Ó»b·ƒø¢ø–ÄŽEàÏ·u˜z[ Ô†FÁ„êÊרä ÙàT²Ða”Y­ ¤æÏ%ý98ùo<+†èSÀZº .À)Þ`~bo-é&óɬƒ—¬`uqNr¾±Þ¢¨E§øµä%·T?+¶j²=†8ì0ùGz¹àÛ‚ÿà×óŽô"žë$|uté\¿úÉmˆKb¤_¯„þjsÐüómŽ2è¤RR¾@4rÝ ¿}æMÇP}ùG#PúÔŸÇ×?‹â¸^C¦ÑëêG¨)±–Èÿ“EîÅ¿¿¢úâÊÁ’i_â³æŽ5¬" ã?|äíl¤–;ÿ(*ÿÆÁn æN¤<™rÕ@ÎÂâ…+(€-%_ëÝepeÍ—nCÇIÙäd-Vn>ýE®¡[M»“zñ¸ðèÕQèUÄÞ–2úºÎðÖK.†r÷Ë8°ú5°¬îdÏɺ6ƒLÛ]c`¿²¿ã|Rc¨>!‚»ø@›‹5ïIDvæ•ìÉOm2r£–ëZ÷’Z’= bèÅI>y×ùsM¤Ò<É-¦ pNÎjÑaö{â'>“LbŸ3±¡QÈbⱎ¡—âóÿÑEO8Ö±)^7 ~î{YU9žçW>a¨á‡ô÷ÄþÐÝl±Ø@¬]¿å… ®ázsƒïâG²À™°C‹Q`e¦d,Ê4˜žQè¯&c—_cMža»÷á]ò“'‚h×T»õXڥू¾[¨yÃÆG©vMÐ0ånÜ¥üÊ4[0÷cÝ·/ Á<ÚTk?ïTÿ±»6NùÊÎ2Q˜çr‰ü£ WW6>!û1±½tqò0ÔfLt§›¹îLÂ4^ÌÙIÅIQ´X_©0<­2s"ŸrjCn±±ö Ìt ÷¾yJ ì™Óì·P…9 ›­pç—©÷koÂÍì¡" X“»™Êôç97§ÿnóPëu™@õnò*s5_ÑÉ®gþêxÙüGc¦Ë)­Ð_ÒMe!Ó{8»1Ñ6–s(óO2³$‚{[ñUKÞíi Êç9‹Õþ'ü¹?ýwƒÑ(L®ÿ9^ÚõQÄ#1_ËI7ÀÂ̯µû'®r4£bNô»û¨?»ðm½;ð eUž’§±Mêô„Eoù;z ù+ý>î2¿¶b¨óûíç~ôµœÜ…uÿ([36aÊjƒN_z*lDYüjþãÆ~8ÔÏp#y•b‘;·d×¶Õáü7}%Œ…7Õ gÀ“œ lUÈ\Š‚ê ¿Ê¥¦ó6n#Kø€ÿ{—ZÁüày–¡nœ#ºÈ¥ÕG0 T¢Êdì¬+~䑱Q]š‹­ÿŒ]~Âjd9s¨­ê6ÃÂËhà?:ð©t8ÄÃÚýDj’Qµ…ùÈn£ÈÛzLp—ø$»ƒð2ÅÊTyVâDåw½¹Áû;çÈŠz2~p1žÑ=ýNÎÆ$îÙ4ØØÎ¸`a÷ÕC¬¶'šÎËä;WðKi¹kô_µsÁK}·^ë'{ñi9`°?“ܯóÛ‰5ÎHe]:ºåÂÔ5kÂLÇ®T&»YA‡Û–j—l.3‡9ÝÑ´$d3ÍXa;ûGP¾ôì&‹éiÞWoéåÔ©Ýè»q“Nƒ©@ª ¿z3Ü<«~#{*N‡Zq„&ÉÇÖs§káኒo¥5šSÌ^*/vzùÇ%øó¾øžf0°ªxÍmìΉ¿¢±aȡ֣®þã.~A8'‰ŸÝÆüŠáüä3‘s3wzìó óZGýÇiÔ»‘Óìä~Æ ³õW \w0>U«PTW¹ÞýDU5íªzæhD§«ùzs9qøUX”Ë D“©iM]È žËhò·ld¼ÑTjYŒAh°>£xZN1ŸRÒMÔlW¿¼9Ä{ØÕøaoZèÑÃYqýwmoGMµºCX ­:o’ï.àÏ÷è”Çíg÷+±—IÁKÑiîÛÝ þzýîRÉ„E4A}Tj®fW=z‹ùxÊ¥X¦hª)ê({ò‘Ü ¹Ê3K /0†þ»—ƒ— úÎOë&Ûc Šbo¨ܢÊ!¢Õ@ú'Rqn¦²îÑÿj?ýKÊbcû¡÷*-"ÕA­¦ž5¬Š>† ÿXƒg¸¿ðŽHÚ*Âtfú_=¿êk{“ºégª9É*ªÞ²Á§|€O>¯òÑ< 3ÿ¼?ùGý {ßܪ~;†Ù¼¨3?±šH:½ó:ÖJd/­áÕw©vÜ“ÍtWùŒâö9JS]Ú ™à¦É´ø˜ýX²ìT³èäKèßÞÏÜÆäÀdp)™­ÄàC+La®DSt­í üò"îÇ+²¨²àW\‹åƒÅQNòˆ´¨=}TxŠ©Ìc*eΣþ¼êƒÔx÷´&?5´ŠX‡x.3ÈͲš¨{ò§º;XͺEœÔ’’+ß"æ»ÞôÖØFkëÌC/ÛÄä ñéù¥œ_èLèËÕ'7‡à?Õè¿[Ž#MÑ÷·p½{¶ÿ¨AöÑ–h,ùÇZ#úªFÌ‹*ŸŒOövýT9úÆ·Ž€“´’R•h÷ßÏ)jDÜT®‘ëî§~pÙà@0Î’dÈó©F¼Î앿ȵºØú«ÑνÌOlµ6Ÿ[/àE˜í­t`aoäTò¹D2iä4×üç¾9Äü¨·®¢CPå†ë7~â›8â¸ðÑRSÝ—„úA[¿¾áßósPî‘ëNøí¥ØEÿöä ö´ÙÚ{ºhM¯uOøórúYüGØ Ýo?þ×’ò<ÏûœæY4:ó¤a´¿è)y#›É´²6LvG²þ#P<Mä}Þ”…X¤Å -&ŒÔ0+±Q×ðH%áJ‡Èذ aQñðöÖ\ïMýGo¬æP"ü­œî‹D"ɈæSheÀÚ—¿ªÇéʉþ»ùÄ`þþð97ß9øœ4`¤Þø‹g`çÈC$ú™ÆØ²Üt¡¬À÷û‹¡ÛýEúâ½NÀŸ¿&Ú©‰—(óiו‚%8ÁZþð¯ù„ ÆZ¹4Ä<ËÐë%Eµ }ãè©â‰Tÿ1ßøblP+Éšæ`¡¸ÑK|Üel÷T²{¨KZé"œ]Î`ÂX8άj49Ñ#|DC®¨øUÕ„þLwukjª*{¯Ý?n†¤‘Àõæï¾÷P‡?ŸHN“\mæžOÀŠm€? RŸ ç9ÂE”M¹Aðq·À·2ª‘Ô†ŽþÒ†J[P\þ={°û— 0¦×l;ú_­‡ýý²ëÜ‚05 õ±÷›àÏ{©5Dß÷ßý*Kp…©ö‹‚¾ ³¼ ®Û“|à ¶°+Gs¾£3Ö rŽƒøÍàR×Èwv)»:é±XêÕ^˜¬4ðöa¾¿Àô ·m3UÑÜNíyì•pv7é°R×Îg«Å†íÿLT'd­Pë Ù‰&Nsv ªÎôO|GýùN”[‹àcÜ~0É)è ÿ¼G?ø2Ö}°¦]ÜÏmø×teÌ^ßõ0’ˆ^b.Ì_kTn¹ñIô'dª»°úRCR Œm³5îã3Ïb¡§™ŸÁÚPѾFîˆÝ} ߺKç—è_’ÿñ…·€žÅDô!ëN>Tnâ u%çÈNÒÏÝ Vêó£ â?ü8ÏÕ©()«Fõä0YÊå?ŽÀ”åÙz“ó¦£;¾¯ÑÔ¼Hþ±>ÀèK3€Z³püsyÆGè“Òi§Qе;Vh¦Jƒ„úRCðí‚Ä0}¦Ì‹÷褤±€Ž/ržŸnÃlľT~ô#‡KÉ®‘ìï¨ù‘¶7ýÛÛ‚_Ùýwí>ÕYåšo þƒ_%CÔ Ç ÿUØÉË‘ÝL\üÇn-¥ÞAÏBÿÄ¢œ®ƒŽòÌéȦÕÖv€‰Fv¡ ¿§ÄJêϽ°V)õò-sEÒh³éß^_æÕ½™?èý“óÏSËSÔÆÇŽŒƒh Ré©yjÓçp ó÷G2ÿ¸"î‹Æò˜Í.v·è;‰òi!×ð’)xÁ—Ñe·Hé¯úèCÈ´:‚D¯/±«±¥'ÛΪVƒ_Ý$b¶°ãðÍ\gøG73§ø?sVzðþ•UvGnòÛNä4—Ð]am[¿[Ÿ»°«Ò1BþÜ©¯‡Ñ§=ŒöhlùjSVÃ9ìÄôXGöp¬æ-–÷Hùí‡hJÑT+@Ä6…ü# õ;ë"fó ñ“ˆ`ÈÌ߬fWÃŒÆ\æZ:êÁNðuû0uÇ›÷&/ú»8ýUx¢¯¬×Üø¢k2*ÕÏ-±»@švoUAÁVïÌ\¯àðbþÇTÔ3‰‹ÓÁW¬ Ê?Ò’t¾¯grÜ P™[`ìYÐò\ã~ÜánzàM|èß~/x© ïv1p –ÂSQߊö üj3~÷+H~zs1ÓóNS;¾M52ëà Ç_U æÎFˆº3°¶ôeŽ(ZR2ÉðµK™þQíæ r;“ùP]ÄÊt¥ÿnêÞЯ0%u“¨RyŽ•t§Æ¤÷Ej¡ë?Fh_eQ0½gF3Ö)Áþã *È ¼ ²S…ÕÙÖÚB‡ÃE(±æÅq¦Å6ûñ+/üÇ%ä®d5¥Ô$øóÕ²šëÝóWôêD*m9Wî*;š”zæQziÍ¥>>åÛÂËœcO£©?¿NÑÊ ¾5×lB¤ýUI£‚:¿º*zbëŠó&ŒÁ+y>øGôOTT” å&íÊÞÒ¿ÿô&uöíäìñ<Ñ"¢ï_Ux†êr-˜ý~¯̆i”({Z¥_;_Dþaw[WX¢aX݈ñ«Lb¬­¿Œ†WË©F’+ç0.ËžÔI\†‹<‹j/ùÇ*¼Uy£W„ókãë«`fºã?n‚ξý¹¾MF6ôWãA°Ša»÷ÁלbÕ˜Ô8œ3Vʵ!ðÐÐW@TÔÊÀLESçF}ÇGº´¥zg¬#(aÌ#ÄýQÉe­Ì¸~ÕF¯Žf]:ñÞd#˪Í=»~• Lú%¹Pãþ·þ=g;¼Ánö~,¬,Œ}þVøú«ú.9š,p*(RÞó•<Å)Xü¹°ËCéØš½Ð}õ7ÑzI˜¥; ýÜSwØ™z¢ïbMÚ9ü*Õ¯¨B{ §å‡õÿÈ$‹ìæ|æ’^3+bÛkÑÿê0úÞô|Š=¿ÖÿqL6ùŽÿH Å¦2  |ÀJjÔ…¹dç,,p>ê?Þ‹ÿNÿTÎW`eá?6¨øögð±Ér’í9éaòiŒÒ üÑF|u}zâ±Õ/ñŠ\íñÿw`YlÝÛffÏžyLìVìîîÂînTT°°»»»»[Q±EÅÀFÅîîîþ~Ãû÷!Ä<×õ÷œëa3±÷Šû¾×Zh#†ÙÇÚÌ"ö®Ôßëöóp6¹PÄ¢–ý»ì›8Â/⎭üÿÿc€-Gˆ~ÛßmBtSü»ßþÃvKYÃü¨®øUAõkmåÕÚjµ˜ºþ%W?xÓ¶’®æ QËÄÅ&ª%´ê$øóÆèw[hûÔ:9?*§ðC÷;½œS=ù|.Š©9ÑueD ôWÞ‘ö”šâ Hšå?˜4Î -Iô:ŸˆÄƒÐþ.ºè)ÿÑE›ŠR¹1™Ë "­ÉDÏϹ҄Ä^ÉäJb¥+`ú6˜Ø¬ñü¨xÊîïœHêD'>lN*ðZc?oaË.óQ€»c9fð}µI¡¬Àïoü‡:Ÿl 3ÞËŸèè%»µ ß²%àÏËá‚`!êvçÍü¨•äÏ“(Ôêä)óñ9ð”ñ@ÖúÂú¼arTînhÓ7²ºç *¨¥šÆßÑ'_ w~ÔDæGµàygæ|»óñ¹GN¼ƒŠ-ìMýùCÍ4–€ãôÅ’¬#+‰P9Dçºàûõ·U¿êA­Ër2ÜÔ0û›R#CþaÍ??D…_ ð«7x’bpª7ÈèîñL,]Ïrú·ß^*è³ÔŸÅë[ý…1uÚ¾›þôLÓH ÿQƒúòÄò5`C¬)»‰à~žÃÜÇ3zÊÕàWa»ó¼UÒ¢„hE9üC°EÖ´½´è¡îãÃhö7|­—aÍ¥*ÊU>m“Æ)"ä¬úgº~†¼Ä‘ð5ØÁÖüÁ“²²|«'‚?_ldÃoC}šÍ~Ê|[{ç‰?*†ÿX‡úX°ãnº³hj½Þ¢œ,!±¿’‘WÄàIÍ s¿jaa–H ú_e²Ÿ2ž“ÏT¿šÅjõ@‡îÉØÌÀ*Oþ\?}þ£ {¿LÁz½+]YlTwS2žºÁ»Fnøž®ôƒº‹«¹¹ œq.ŒP>j'3s7BLS:¯‚?ÏωòAy•X'~Œé2\›þ‹7 ˜µt¯JLÿ’c QÛÌOr\~·¹Yeök±Erä'”KZM"Ûnd[‰àÏ÷êmaÝsòúS?ø‘ç7”ŽðñÉÐÚ–!‡Èh¼ä7í²üG*y/†¨b=¦´Òæ‰úD+ý‰qŠê«ŒøäÐ_½E¿{ƒ:ÄföeÌ?OŽþª*Üú)º”å'€Ky'¦S•u‚¸5óÿ¤âú·ëw5:ïÿÓú¯¶3诊iu´ÌÚrŪî[Cÿ’Êj2µó£b)7ÿü ùÇÑ«’úÁàbyÔèæ*‰$‘¢ê©þ]|q±“¨þ‘¨Àn¬L­ß{QJɬÅ#ÿ¨J÷«ø…¿q !Ï[ðçו»J qϱkµŒø;š3xæ,ëâóü×ýUŸHõOì~5W´!~^æ?ýÿòØ ì)åv¬Ä%ê9Þ‹’DÿñôªŽ=|=¡?K¯Xþë„HH>“Gý˨ß½ÁÅ.P§r ¬ö9ˆ'Oaž¥ž6%”½–õ§ïêl4:]ˆž±»ï¶Öç¾KÂ¥N Ê?’{ìà ;žò‡øIÄ¢ø­rÑð•(hg^ó=—Á·zÁíÀöÖÂcä‚»q‚ 9 <î(–«“@šêë´£Ú;ð &DÃûÉRÖð¦šQGSþ#±#ò ¾¾K¶bÌœ€×‚Ž'3ýp­.Å‹Qþ¬“­±vëaöݱðÁ¯ÒÂ-\ÅjìâÚ%Œh_-åo±ÇRuO½ïoÝFš¢hí…vºÖ²µQÿQ‹)¥á.jPKu!»)Ev³@šF9]Ta§ð­¨‰y W£'I j#ÒÒ­j•‘KV¢Ÿàz¡øSoàjì…O©‡?JÍ]Oûri#îÍAÿ¸à§g³õVUåaö>Ð8‹ÿXL§ö¡xpOê÷˜Ѳ°ï=Y€rê:±Çj*sæañïPE_]J½ƒc¹$Jgú·»¼ 6ÛOÞÖ—ª”w0Æ1™¿·™ÍÁ™Š¢ºme4^EÐïŽä=ÍDƒU–Œ'“üL7¡ŽõÎ*gÔ”ä”ÏY鲬¡»S¿¯sêîÅð'{˜d8þÜÉÛ< ¿0—ùƒ}L«vµùGEü‡‹X¢¢¿r\«*àəȂÿ(.ûPc_TtÊq`¢V³Z{:W9QŸXì.›á‡R¬ц”=ˆ*\@ê8vá+¥ µGVý ¥Øk¤W!ó»`v†?º².-½ÛÚ×SQhg~mKã5]Ä ˜:õƒ èóv]ÌÖ£‚B^ÑKˆÍŽ;þ÷>9OþÛ±¢(þqÿ]}¡–¨ÉPGѳU©Àš[™?Ø ÿQ”þWš™Zºàû~Nýà$Ñ€3“µÔ55šV\©¨¢±AøU#5´~0ø'Ãÿ,žXÏÿ šƒÑ—ƒ‘¥×R*jÖ4º&"‹(+&‹]‘ì¿{V9§”—±H;É?fÛ&†“KFÿÄõ`BGÁÊrÎLjt%yþÅ„újGú_-#Cx@´;‹ô>ˆ?w‘ÎrŸ–œ¡*ù‡ 9€³¬ µDˆ?$S:‚ÑÜCõœØm.uEaßcó¯Q5~èþ–¶96|$±ø m¢ã݇X$ħÕ%Ä6íñ {Øß6<œ+OК¢º^ µG9•§è¾{ ?2I"–(a±û_Ë}·•Q™yNWÄÔ(¡q?o°±ÖÄ÷írÕ ó@ˆ¾à‚"!›oŸ¸-r7ÍÎU.5nÇ;ˆ‡ö· 'ùÿ¯ÅSŠF¦0Râõçûñmá*oƒ«,æ]G R~EwœÜ_WfcºrIúïŽâé¡Þ#L#Wáoð ­Œ É"bru¯àÂÏ‹ÇX@¶’-Æ—C´¤jØÝ½\+ö¤Gù{J6'ÿè¿©AýGðšô¼ŽåOt^ÜØc‡<æ9ÍhBþQK¤sÇ1ÔøìÛ\Ï&¼â PÍlø¥²T¦]‘¯‰E»R³vÜåõy±ÚEà»oà?lÆ™þ#®º9ÔŠÝà?š£zƒOÛF&ðBשlÜi´†9‚Å~Tþ|ùÇjò™Ôdb±Á¯Îã?:П2´ÿh.Š‘œà½•á™Ç$Â_Lýù~ûôW[ÌÜflâû\íZz^’ýy¦ ÈbÏèå2êÈTz;Ç˰3EbþÑýnAyÏßÿñƒº V`«1lèüÇ]”±+Œ¸°çÍÌ•ÜÅD¬}f—´ UCEð<ÃíÊ ÕÔñ%>ÿÙ˜÷èaµªG~‡|ãÄ– ˆmú¡”:n>”#ÍcÄ&npò5á?ê‹ý!ú'®¢_yØT7"¦Äø ú ž™ >¨=¾â4õñÔ$6€ÿÐÑ—!+I "µÐÈ£©Ð»¸4¨è&´ÿºá¥#{¯S{b ÊúxæŸ&Ó:a|"—ñ¿d_dΔ]w³»ñæ,©é„~÷.¨‡†Åx¯SƒðkÁñc -e½¥PèêjŸEþR3?jý¯€_yÍ?÷±5‡§È©R©}UND~)¾óm³FF„ŸX/îP^’.(:•I47í.õƒ§¿r›P5½¥°ûEa·ã륨?/…ÆÆì£œ˜ÿ¹+7¨ÿ¨(®€6­g-€‰NJMk.ÖYI~ìÕ) Ã2PØéb¶+Rx ãçak.Q­¶‰¬æÈzW쎊 ØGr«ø]”M¡wˆ0ÿH©´ï àþLßq ùé6(£5Ÿ#žÿ‰-m¯/ÅäÓ{jÓ"xÛŠ¶‚l 3Š2ü‡ä§šb5ËÃ+NÀ¸`eWïÃ\ÁvÌÒGŠÅįt¥žêB~eu ˈ‰r;’:ÆhD÷ãÉ­>–væÏE*ÞÛá÷¶Ò ²3œ«œ jÜL9ï<‰=·zÚu$ÿˆ¦‹wZJÚQÔ–»¾Ï:Ëð/*ÓA33ý÷÷pÌ–KÛ*¦s¯ã¨kËNþ±3A/€«Z³£|¥+ùwžXökwÐÛŠ&ÛhéÔ°Ó57’ôg/0sŒ¿üÚ±ºã(Q ÓY0³éòà?*6m&ÒN H­â{lùDQó7þ\ÇÔC3Z(¨æî1LCb÷FN¶Ïè¿Û›Ö´‘xŸo%›É p‰%>äκ©.õ ÇÑ¿¤QÅ;ì½Ù 44l÷2¼W ›Ï~¼ÿ8${à?Va“x1è׸›ü® èæ¡Öë‚ÿpo:F³ñ\Bÿ«þøÎ†Ý¾žIßáA¶שÿ( Òžœ®!¾ù9]6£–ü,º8^J^e¬²ÿØíH&öÃ!ú—41>[Ÿ¨ÿ8Ì|’ªÔU”¤ëHs.µØ™µ]Á,0¬BÆ|˜òÇz/1Õ±ÞqædDMr—óå/+Ó ^ç§zP?ÒÐô§áô¶Ýþ¯É!êóv‘ §É[Ý•Œ¦ùmS±Awœ=_øóŠÄ`-ÙUNÖÙ—£\öàk­Íx67ª7ÀñÃßùâç<áÏwÒɤ{•nÿdƒåáÏ‚õ»ì乨º^쑜d')`bÌ:¨¯¾¡8nÖ â?^q•UèŠuŸúâfV²°×ìЗb"4kwüï}B߆ýŠìJŸ?F]“P“¤D•I[4ÿ×þWõ˜@X8(ÿˆœuþõ[žÚ¼µ¢2\*ÔRèë›A]§Ø¨ÔHÂüó‹jSÕÊp"ÿORA—eò’à6EQ ÅÑË(EPáyI¥uÄx±ò·á¯N7æ×^€=ßJ¬°ëi'ÿ`ºXÌþ¼E¥¶ ~¥¿ˆ ~™úÎÌ\"z¦/äÚfF_Ÿ•d ô»©á«Ð7¤8•q#á?’¢ß­¤ßiX'ìDNv«‰¿8~U„ä†p?™÷2l½ ók#¯ިKñ8°æ~x0âŽ.û9Ö·ùÇòö¯¥ÞµòUäÏ£(…Ôt䓈‡3ÁnØÉŒ¦ +Ó¨Ï[ ¾Dã~ô•¿§øzo4K›ô£ðçQÃy׃•±ZO|V üG=ìÖ9b·FÜ™F0‚‰q¯5ÃØBŽTGzãÛ6á§š’é§#ŠÏŽÿ8kËFýàpÞßp¹ÜÔ,'¶˜GÅÆòx¸Ø3‹ŸöÖfçùûøp÷N²ùǃ0›e:BôOËI¶pMö†×ÎsªŒö¶3˜ÓV£0œràúµðr}a r£F~ÒúÊ"{˜;jv[®Çêõ«Z _V˜Ú»‹àW]°¾ôì³É?R€ˆåACvƒëýJæT3dWC÷oŸ®øÓÍÿ—”sf2É£% ¾½Û3 ¿ 0«Á΢/¯7ë¥ÂÚGC?å:ÕZφÿè/J“ñXúŒ¼øÙ¯úk¹ù£a³QM½ÿ!Ð;Í5ÞÊup?Ä^¼í°I&õ*nLíéx‚I¨´úbv ŸÉ%·§u¡ªÅ µU4:r­…Ÿ®†ÝoDŤ]AœÌJfvs6yÞtôÚ9©}I!o£ß ö;• j<êî÷ , øZÖaþ­´7UÊ /ÿN(+Ìh̯}À|¿ Ôkt4÷°£›á}+¡Ïè!V‹|ÿ±Q¹¥•æÝvãTý$Û÷Ó‡¡¯*üÁ¦TÈo WÉ94ÀåQa¥¢¾¤+¬r’iFX͘L*(*z Üã× ŸWºSÿQ„óÕ ¾²–¾‚Ž÷o¨<Μ¨Ãd5ãÍÑÔ¾2ƒÛÕ7ž‚±Å&ƒëaf–-ˆˆçñß}øó’bͯÿÅ'lð޽ª¡¼NíøÓß]FLüÇRì|Mú·oª"9Àü¨êô/ÉÉäó/ñ+ÁLÇá¢6/ýwª‰µJ(H4*s³0¡ê4ý-…päÿÉÇäÿèFÄZýÕgQYÉ­åákD^ô’£Å:õL¤–»ª–g|õ˜›#œ«ôRFhÃñ 9¸†Öh-ýÀ k°_~ÀiNÐÓK¿{,ÅUžâʬޖ蟧Þü¨ëÔn“øéY¨­ÒÒƒo æ8ì×\âî£DÉÙÑ÷<ƒ£ð•.`!–þêy2™RŽÕ2ý6ûx¹:JŒÃCgÇ®½‰ù„7<¢m©ÙØE ˆ þ£õDð²†üŽMtdMÿ’š"c˜;ŽªÆÄóµ Ê?žã?NÒÍl?ÕYøæ0~X­ø·9Ôì‘ÕÁØ.Ëo2^êîS†á?&ª_À¯vâ©ëP‰Q Ûškïe´•%Ýà÷NöÇÄ»-ahÆàñ6ã;sÒ7=z®S|oS=c˜þ%­E”JgÙ %åPš‡rµxÃÑ&£ïîlhFìóð°ítôxD­Ÿ/Ü”Ï3:Ï¡šÔôàù1• Ê&|­Øm"|È6æ×v%O˜I {STÁ^à8Œzhd›Ã™îiæ1â}gÉãøÙ䟯uý¯v)ÕthÃ’Éœ”ôhd„]Ñ<ëöú诊S{ù’f÷ü‚’j'ý¯š'Á&’mV“ƒÈVˆ\޳·Ÿü£Ï !ë¥ܯ4òً××á.[¹²S¼‘ùÌÿ8OÑš®#WÍéF#ü‡)Û³+ZQœ\‰Ý~Õ‰=R´z¥Ç~¦ç,½'˜k¸žáöÙö»Ô§ô¥ûgTÐ1¨e:ÃÅ¿uUˆ¹^ÒcþQÿqÈ–$„~÷ó£þ)~¥1WióëhñµmJaöÿ[eú—¤Pó«^ðç÷þdòÂýú]Û"PV¼¥Lô§Âš«ç”ôDÏDþqþ¼P˜î2Ž/gÁ`ÞˆA`á`TRëÙðYˆè&ˆJ¢"üØÚßl€ã‡C}rÿÑQHì܆ Üä9Ùh.ô»UÅ øÈ·p•ÉlG‹¤`bBýdøè«õE¿Û›Ý:›¹ÿñ;‘ü*—\ƒý‰"kÁ;´Äz‰DÿÝÌJò+«þ#-8ý"КÂDÝ-°þWA]o€óä•gðǸúrðõ¿2´50Ô]ñŠ»A“ÞˆÑÄú«àH·ÈÉØÓr3ˆÏ¬†«ò–<ä ý¯Âönúuß©”2jMüÇlª- ¨Da½~Øõúb9™,k Ø*å·á+æp2ï2‹wš¬ðøµ–Í6G页áw&råîŽrò\¸º×ºNþQG<Öûˆa]åAΗù‡™~q²”ðæ×>³U§Šs ײ;”ŒÆ›§6 üd%~r•siåTº'>Å—T„)¾Š7¸ n‹§¼KKû›~×['ºsE9™ÁñÁÂ¥àrE5ÜÀ­VÑÃã!ÈÕNÙŠùçðřȓ,¾¿8öoýÓ„ÙÝ/'´5©g? *Ó¸E|pF¦€C¹'¯Ã(LyÆœ»'ð1É?êããžÁbg2îËœ¡/ÊŠP+ŽUþñ±AcøópË Œ)àjýñ¾ðçqí¨×pG[Ü‚Ž+ÞAµ>k¨7IJÄŸD]QD³Pë5é°´gˆÈ‹3Å$*ºª5Ô/ôÀ{õ6’Û‘dcÍ}ÆSp­ô/Ù„®Àƒ ê-÷Ψ ¿„Ð_YõƒóˆÊ<‰"Ò©{éeê?¼°Çn<»õàN?À¯.0óo±‘î'y-ð8Ö+jÌ"Sü wS[ÅW9¯:ñ<@o/É’DPL!Äç:ÙK˧çÙÙì3ÑïFµg¤^ã yW\üÇEbzÞH5˜«Šbzÿá£økùQW4eh2#{°ñÑ,BƲè̾ÛQ\¢Æq¡™>¥™È7yþ£ï,!þ£ùûqúUýºÀ›J°ÓZèS†€ë–ÓïQÉ6Z—˜`[Ÿ*Ç-æ4ûd­‚öEfO#Šýºñ„9*ãÌTÔ’¼cQ=$–Éü?áÏOÚ‡˜_ûÎæùõW6& Ì Ïa#-7õçVü´ÈVB­¨&e‚írœ¿Ó_±MÓfˆú¼£,L³ø¨ºh•AÁ^iÍE!~C€Úü/ûï‡õ¡dzÝyÛ©ÎÈ­g þ# ‘ëbQAÔ%¾ðV#W!ÿ@%ñ«¹ ³RTZúÝàWÞÄÎ-‰{’ábe¤æ¶Õúi …vØÒÿ®#FyB%j|¢¥\rÑõ,«‰í[ˆ_òtÄ@¿ö^ØQK5zˆü#œçüGEP¢Þ°É.±ã¿ãCÚq6Ö=M…© »Bè?kÚ r‹æ¬pŸ¬è51uP€ L¡X(ûà?–¡¶z£Ä#æü‚…|,N…Ðc„^+©’]mÆšÄbOÁ+ÞÆb[õ>¬S/R“ü~#±”§³§#¼­bp¸ýwGÒ¿¤#*"ø£ºdWG°ÖåØ/_X¯/j”Gš«o÷pïyöÚ5Ar±ðüGõƒËxƒ?èm1•ÌÏäÙ¹ àN­YÝoÐdu€¡¸‡µµ&}_à >åÜ–…_9Aÿ«°úÝ­ÔŽÃW§~𠕇*>ø8úÈ|ñ¼AøÕsÃíT'ô»Þ lqdK°«u²üo€è,’†y/•Œ<¡ÆDå¾ >¦áÇ9W‘Õ¸+a‘{ÕÞÅŒ22ëÉäJb›_¼”U©r"† ù6:¨Näc›x«MÉ\Ñ_Qóâä!ÓÐÁã 1®Â[ ±ôÊX#{Ϭ”I讦-ù]“Pë5¿¢ž5^~ª]¢âeâ?Æ¡«oÄC œÒL€½>ËÕŒ3ê˜çy’GÉiÖâ‘ákZÉxzKÇ奥Sêrx”œ„ÜdZ³õ¡LÁB‡ÃhÔúK¹ÛGd1g©z™ /Òßô5Ú,rrÔd¦“?À¼ƒû'ú*ÕDdG8­—d=::²¨T‰;ÙkÍQŸGd? Ä)±= |Å]ó°ù]®2ýõÔVn&“›L4²LTpœ=e‡V‡wц}å,ýÄV½3£ÊÂyT¦Ijêý.£í*B>6½0WûM^3×Ì/£³}GòþìÜUK‡ÿ8«¸b*‚pN$‡N~•¶¼ þcS¢²Ð›«ókך.à€mŒGÌ´SQ2ÑÌË{x$,þü"û¿ŠØéx‚ÿÞ'¶Ô!úM¼±õ ªÜø'¿ßÎüÁéj­‰K[¬Xøíf[c´W ùo…¢ÿ%~õÐ6þ¼1¨F|}…x­:kiÔMÊ ­¢(J‡xøóâ¡öoDW\Uܵy‹ÿx…Õ)4½ ó?âÀp¶#ûh,fˆm‘ì¿{VyGÿ+kj«7¾â d™\¤¡ð"{¸MQþ»»HNσ°S±Ã»ÊæàW+Áq^sN–a›cÉ›ðÕ)à= r§†¨KáNnÃÜKÇo%ëk9”®XÑ›‚·²ŒœKöQŠ»n ö~ õÏl˜ÊÞí î㟪͌à)Jm)V²ÚãøÏš°¹+¶ZÎÀ¦T“k8eV•_4:pDx§Ä¾ý B_eA¥˜Ú”ß?ü*3±}L|ƒ5¿ö#Ê«!D×óÀããÞsήƒz/á*?Q 98\üjª2Kë–]”®Þñ ÈT%lþ Þˆ'õѺ0 ‹‘¯%·rÞúZðêx|Oy=¼ùµmåµ½è¯b)“ólÄߌƒe˜OõøTpú4ÄàPÎúPýñŸúŸ\_úVí£þê?ú‘ À¼‡AùL¦{š ІþªýK ›Ï²p ®FmXšÁp µáF|a4FÉó¨DÂjØT5ù§Õ?q¹fX}¦ÎÒ]7©ñPþ Ûxª±˜7Á:ƒ_­Å—½2À†.ƒ®fGåêMTU"è½T¹’ÑÔÆ$2FÔ–EŒý`aIP~ ÛÔ=òúøµf¬·¥Tã$¾® Ñ®G¨õº‹œDø‡ÉDsÃE¡þc³÷Ò —‘Ѿ×ÌAíÆ7¢ý/r!ÊÙû W{ðËþòs“¥å+Ñ˱Y(m•ùì|WÎ@>éO¦<œü#¾9Þÿ1Ý\fÞÆøFT'>¤÷ÕBËYaìs°{Ú…à?Ž(×Ô8œKEqL–à¢çÖzDVF ´.…}ÙLtú'^7vÑ»ÊêttÒdµÚަb(ê8{”ËZ9vZ« ¸)3g¶ýw]á)Êà?“y£ +À¼’ŸÆª%l÷òNXŠ8ðç•8?L á?º»XÜݽ çu•5?ê(Zw²Ê¡fMûhûb³’}#ªÞ»p?ñ¨Ph"ÿxC”â„ÿ8ÍüÁÿEÿö3¶ !øÎ×¶žD¯÷Ÿ|´ù+“˜SÞRK§mš_ëc+ ÿùµÀ¯nüáçÂÿòUÛm >¹6èý2ñ]p^uŽòL«,2‚_íU;þeÿÝbâQýwt²ØâAÂIo¢8k)ð%í@›ëŠ©è¯Âj0ÿ²å‡ÒP<½XGö² kþÜI¯F²‚=7ÿÑGAÿÄâUøK„újK­‡æ-:€ÚÌ'Y¤Ç$Nò°¢K¦µÔŸ}%÷ˆI´3“½Õͱ‡C-âù”¾ CWDbã2r>Ç…:ïþ OôJàÉéþsÿq®¦†>—I_!~8œOª‹¹²^xÄ4R—»,I¬7 \§´\NÞ´›gú‚§ðüê°8¬døÃš”|jeNïÔ»iYMc2Ib®Çú ¹lf¬!ÏòDßr[xGðÇø,í{8W6‚ü£ž¡øUKÎÏI|C-ôó}iú_=Ö¢Ð_ªñãqVÙÊý‚UÔs9Nnð²—©ÿX*ÆãÝÖ’qdÁzc!&_Î%ÃhuJй…^è(ê+kRÒ!"‘ëüöÒøLê½à¥‚>ó?ïÍ›+#oã3FÊ×ä¤>èþ£Í\œ>õc¨±êÂVL/kE¨-Ô¿õÙaûïþT ëkÃzëÁ¸~ÊCä©û@§¢À(¼¦Za ì‡iÿ@~4ÔˆG ^šÜð jã¸ÌX/ f £ß€ÿhŽWý®¸‚wx§§ ÿÕ2”´Åè_r€þW‰Ï›P>ÐhÃzPclGÛkc½ÄЉ…[¨·Ü…úó‚àW'ɯנU{"Ó?±¿1 åTvû*³8õç¨Î{ƒ~·4~n7÷ÑÍíG*&ÆÒÐk:ž`ÅÿQTí‘úâ“L1üÉÜXtVßHÿDwz¢7±ó +º‰ÿ(GÚ­÷}ÛŠ§¿Oÿ’YŽõö)‡Õ´øìÏ@Y\¯ çÒͰ×aÞ‡?óN^ÁU\4Ó1ÿã 쯙u U¬;8õ8ô8Z+ê:ÎÞå´V”L·EÿȆ5ÑÈcwÅ¿•±²ºÉ4ƒQÉžõ͸RÙ>þ$~Ýô¸`k=‰`J 4¨âØ…Š»¶MÔ!3@tV]OŒg{Rw}Ò /ÙÉ[#í;é¢8›©¶÷È?>Ñ~þÃM·*¨>ˆ@ðÛ!;Ç­ÿÿäó£‚Õ-ßÉ?Â*?"{ ?mÊ|xîúZBôWÖ*Vÿ’zj\ð«ýŠ¡œŒìBAß÷È6üª¾:ƒîCýGøóEÊsn‡x(?µ¦Ú(ÔþhñÊâV.;œzúˆøäy´ Øœº¢°(O¯‘¿ÍpÍ+ð-Äk,ðÖÁn[Õ©.zGÇÿÚlLsé ~uFä£F£‚ôý+® "›½Ä(yÑ¥XÕŽ¬oõóh ŠP¿ûM]¥G¡æ©Õá»ûq%¾Ä¾Ë‚ôWåà½ßðç£èPtT“~úᣤýÛI¦UÀ”L/ Ö‹Ìh4™Í«ÜÝBlÞWò¤pñ7±÷S`NŸê˜ÿ!ÂYqŒ2E«ÏÙÍÈskJöæ‡Æš¼òåY/ý«¦«öÁüÃâÏ÷³´ ï)eqŽ“ü­ùƒþb*jª°¹¨ßιˆw0=ÑXìrFÙ†û1õƒ¹ð ׸ç`—ù`üµÌ¿i¿W©Ä¬A6~B3†ÂôÀÚ”¢ÿU}4·[Aïo ©†h NZü5àh«rÃå)ÑZ„U§ëjžPklŸ*¨Oò4WºŸ~TƒòQjºyÄe~íc9ÌHo¬”M±æoÑÅ#_¨Š¢âº~p¼úA4Á«¾ÅFÇË~×cÃ,ø PÓËId÷¥¤¾ñN¦û2r…œxÒ„p+ûÑ·ÑÉIÔõNðG®ì¥²D$i'7xÙ‹¶üÚ1vhÈ\Nxέ\Ûrê‹ç‚ÓuC3ÿñüƒ~Rôò8Nnt‘‹–¬#7~¼TÐgkÔ®bŒ“YáÏû£¿ê‰‡+ G^ üj"¬êG2‹²!ý¯ðqÁïÑ¡°0þãd8ù‡¡&ÂxÀaQa<’ÇÀ'á’ °}I/½þp±íÑ`·=陸ŠÕ  ûŠB~r‚ˆ;-üùîPoz¸úUÔ%ÜÉ3Ұヂð+ê±­Yê‡áš’oxп}ž=•')é_rëì¦Òê…Z¯§ÈÂn°X¨ìðÞñ`^¶Ò 9häFU„Üá#dzSSXñfîÕ {ÿŒ-‹QüÊÝñcÀ,eÿº³_sp§[õÙtQùIÝ`Zô« O­Í§Ìõ;I½ÞjüG-ò,ýXî$ŒKJ2á¡b¼c½@e§«{ËNõ–™õT<—âè—{#s%=Bvqe˘¹˜ÂΚ¨¶Â¦Œ6Ïc“›rÏ%ä´R£B̯=£¬ÖªrZqÚãÊïâ˜>mUò‰ÔIÞ6,ä3>m4üÇIjŇš©ðJ>†+ßmCÍUlKˆ.ž÷É?fŠ úpêÊr2Öѱø&wzƒÞ^x¯½™¾ˆzœ:ö~æxã-¿!ºšyd“ üê›°ú—d›wüï}rý•æØ Ñ”þÿ¸»I_ÚÅjF¦“§Óæy!› ³kMê?Ö)?m×?ñ ý¯V‰œùdú<±‰¹"IÔQÊ­¨È®µÒ©­ÕbŽ«ŽÌÓj~Õ;ܼ¡¹ÞSHüGz-!ÎQ‚ú9bµ9„íøU]ñ“²ˆ–ú4œ¹™…ä.6Å0WŒ ä\Äí#¥¿jEÿ«Å¢HôR¬e E°ïÉa£­ùQé@J[pÝnÄÂyõ.úÒÊøkÔXí "îÒ° ÝÁ˜nbë¬úó/ØZw”›[ÉLzG¨¿rÒæâqz€_mçÙ]Ȇ¼°»èfQ&y1Íiþý¤K⻣úIæG…]ñëýÄUjªeȦ£6HÍi‰…?ï™y>žÌ`ˆÛG~ÏSüÇ ÔWs¹Æ{ÖôöpóÙèwGñ¸WØìóx†âxô»\K]ϵ¨ÆRøÞ0¬´óžœ§á®~÷ú« b÷ºþ7+p.Ï|ßšó>S„•í~õþ< þå¾ã¼O>²¼•ZÜßú—xáW̪B%õ˜ŠÄ—øË d3ßA¬2Rç[Ú ¾£®QÄ¥èX,évò~ôOl,Âv牢&ÆKv‡¯ßÿa3.cY¯ÒÏI„ò!].Ñ1<³=¾q•^)±¡•x7 Ó:4òGzõh¨óÒWýLþá÷äÿQ—çÇb+Œ*²<ýýðGèwØOå~µU6óÙ̼ªŸd=ÑeM|pãPë e`ØÏÂBåÆ[&—ZG¦ÑOÖÞûè.¨Òo䓃ßRƒüc ÿv ¹;”Ö(*Ÿ„¨ŒŠþj÷çNF›ï¿FAFÁ´ ¨’RKÑÖ|xdg}Mjc¯ñÓ¨¨,D̤ª™XýkÛÙ¶0¿ÖÕõ+ü¥/lPr˜¡¢L`‰bïļÁWèmŸÂXl£ÿ}vø³TbJ£·y—gÓ •brøÕ*QÝqö”@­.5U]ˆ—¤Ì€%hcœ¯šsž•+ÛL§àç`Xóé_âM·¯rt;œk1ˆHó ,\-4ÓÌ.uD1'©ÿX$ª€¯÷ÀÕgþùw*R<ñ”ïèÍòˆ:Ħðç÷̪öž°êïÉârp…}ð®ðç#A'N³·JŠõŽ;þ÷>±êσѶîD"º¦ô¿úžJ[ªTdw-°T+¨ÑÁ¯|à?þ¿zi›Ì3­-Œ¯/[Ê ¥RG(g5‘JkÍüÚ&jÙPû7¢«+F8ýU;ìL=j5Ré•”BZlJï þc&üÇ­ˆ úûóÊ5¥ l¼/˜ˆÕ å<\w>TeÄ|ò[ØæºØÿ™ÔŒááöaIGê§â)opNÆê³±~׉|S AÌÄÎMILW…J‰Vp#ÙõNŽ=v•_Ž£t#‚¹ ¿“ÅÉLüZvº™tÔWb‰ó 9Þ ‡w˸‡Øº¼>VÁS|¤za'»= Sø€½¯§ïUÛÀiíNi%–~;yü ÓÛ/|ÿ¸ƒÒ(UT”@rhŸ3½êuúz ãÊÞÜ[Ý!§ƒ5}Â;=ÇŠßÕgé3Ém^éOÅ-Ìêa|ÃkWEÀð‹˜oA®ÈÚðé–ò4Œ·Š«´Ñ_î‚9 ë?^+qÐ_5Åm# ˆƒþ*l~~joɧT<¥›àWªÓ·0 ]«P/÷ ¼-#ùI10àäÌp ¾[›Íâ?ʱžêÈZâߢ¢¿Za”§"~ùGRô»¦Ý“jQt˜_-/L¶üéê&T‘aøw‘xÅòâ%Q›%"¯X³0\{¢éõTh$7‹Ò9ö‰œj46¿²¶Ëîh¦Þ¢FÎeä“Qõàþ혢½OÙýUN¹•“6SºÃ[ùG7ª²GR­qÂÏ ú—ø£Z沱ż¥Jøä<à´½Å*Çíî¤b|ø{ì‚mÀ~3ÉmD×g©S²fU÷‹ŠxþG~¥)=èÿˆî…/)F|ÒKqU/‚/Ú€Å=ÂÞ?Âï*¥ÓfGð¶mšVwV8…UVô¡Üó*øo¬„',ítR¾D/u«r|™¾þ#lïØ_Ï1Òþ< ^1 :÷QTóYxâ üÓZ²úÒúHP—/ m÷ñ¡—ð#ñ ·Ñ_ w~íeæë’–»´¦‚å¹ÃÏJúÃvÐí⡦7·<ų¼õÍ<Çød ÂÕï³Ðvˆ© kËÑä [Ç\¢€ÉØš)`ÿãÈ!œÀ¯îœ„I¶2¹@ÞÔ 9j¬ðÑ+Éò•Ýã{wÉ àW±ÃøžêKÑŠ7ùŒæ0(ßSÝ4V‚_yʪ0Èûèõz|§Ö¸¿áN1T¦‡n¾bRž,LþÑVX¦ÎÁ0XyšzçÆpºÓr¬Q˜ZöÂÔþ þã°œbT@»<¯3¹ÔC*j².ò½hñk›Ø¥µ²J¯‰y¢§—»‰(Æ£{gô‚OÆx"uØw`ÞÑ·d(øS{üÈu]“ɤ²¢_Ë ;ÔN,s¬wHÙ‡~·8ÙŒ¿î'Ë 5·º »QYÓ܉þê¬ùÚ\DuI<{rØ‹ðäb“É3°M[ÑmOÑ+Ó_µš#v;¥Ö*ƒ 4gØeJ}¿ÞÃ8Oo‘Áf}*á xævú£ÌAo¼Ng•ÌøtÛZjT%¦K G“'[\~=‡ÿ¸HÿÝåØºø«û ¦ÝÞ#Ó82%W;³Ý Eoz³¦èwïÑÿª0ò©d+Ý)œÊ¼Çüÿ“úóëÌÿžW-è|™2ÌÎu¼†>¹o»®LUóÑÿª(ªžJ¬²–ùµ5ÔøøMÌ «püïËݳõ¥~°6L´3µÜó¨KÌ WnjM…M«„~·ŸZ⯮³¬XÀi~ΊóÀëQÑD)¨¥¦–0üyi1Sldþq”9½EÄ5ðô#섉ÄÏN2'–ÉU,ÆÞÀ}XóϧÑ©O¤æöÕ¦39µ=ZÐ9° Ó@¤ïãÕ2â?²ÉU:úrìâ7‘‡5FbþGr¥#üyýÛÀwÌ)*LçÖø¹³ø£‹XQ]úƒËÏâZóè"ì_òSˆgè¨cå:fð½Á(öÂXýKfáŽqÒ^][6“ÅÔ?N K¬¡þ<xSø¢a°?±œ`›ìMæ>›(÷5yØ5|@ >Õ× ,ôyÑGÓÃy×}”ÉZw¾Û qC2žSyÞˆFŒ7 ÿqBûÆéoná…ïÜÇ»“ñзÛ÷ûÞ;d«€Ša ×2…þ±Îœóí|ÿ*]æ[–éµÞkgqiÀÙn‚œûšÞþ<ìì˜Õj´5QÚœÀŽ÷ ÿð ƒ+FÕ„Ù?þ˜ÚƒLû«BµFG²›Rd*ã°Ðmè_â&‚{šþçZ¿(ÑÀ¯éèõòœ«ðÁsÝ#Èñú1ä 7M ]a$ƒïÎKÊu*ПáóÝ|¢;]È»î¤>µôpOµ¹£zäÑaÆ\£ÚN0w'ðöxö(w{ÀÓÌ…MIÃJïáÿ}Ð8TÑã…™?8DX §ë<•<ä ©ø½ýPÚö1¦£7Ë—’ÊŒÂüŠÓxŸ…Ìë`Ê.Þ¨5J·‹`N rRÕ[9./®R‹ü#?ª°øãä»C`nr—1ЯnÃ4¦®¢õÍaFLØjôo÷ÁÓo¿ZÊo?§w“ëù(»Õhêî±s/Hø/ð«>t8î5ƒº’M MSéZÏž²Ÿ?ß•ýÍKä—-Q+d—Ã韸1„ÿØCþQˆ3Ô’=÷åþY}õõà)Úõ¾Š/_ë1þÇ>+¾Fl¸›† È™J¤Tý®ÿqNñÔ¦‰  “žÄ~õõMFû%jÖOátMœd±/¶KûwtgÍéÏåed2/ËN¦^(á6_ˆƒXÂb‰ãŽÿ½O|mÎ!ú'Jøó°ÊÁÈ^ËOÛ)eú«ÊZXY ]ÚnëÈüóÔL@ßDýÇñÈ.ô}×mõñDH5èÝ1HøÒ7…Ú_Q˜õd)„¯¨Ô2¡ÎCD‹§Û9Í/DIêB¨3¢éMÁ¯JE”1È?¦Q?9†ÿ uöùÄYìÞVÞõ<0äÔÄ4ñõVb#ñÜ9,XvV)Þhý"Õ·‘Ö[[‹ÿ¸¢3“«{Cìí‚ólä(~d9Ø[Q½…rÄ@º_'¥/ùñ!?‘umRbò×DùKá? Ë7x·ø8W¼ÞB,i×ñ«›êJ|CCrCDÐ*þ²§°4êËÙrÈrîø"ø• Tc pŠØõGÿýU‹dE‰¹ÛÔEŽ$ÿ`";Š©Fú.¬ŠÂÉzC4u“ïj?… }µð*ÚÇ(£´Ø)G¢‚8ÌSkÊÉlÈ“‹Ž"ëŠvIKcøa£:Ê# Ëx7•xyð1 Âñ¾¶âô@F¾3–XÛšÿ±”Lrˈƒ§¢ÚUñ—°‹·°ÍÅ©¡9†VΓMÖ²«a»ƒ.RG º/‚Cn¥N£›ü†& Çèb¸à?rÒ¯ ZØ:¨°N“ËE%—»(Gà_<è¿Ûé·þ%w•ÔÄM`æñ}Ÿà_¢ã™\ŒLh¸¾­AÞ}™”Œ§ñµí°¾9©È¾€‚÷˜ÌR¥ªÛB—6ðç•@`ó.·‚½Ò©( ^-3“1Ñ}<µý²ù e7ùBwpµªð?Ó¤4>`Q­þ% Âøf"zøÔœr<ÙÔMêÌw“é_ÒÛHÀüÚÌäì¾x»…\íE^ «¹ºƒäed4½¡cKÇV*+ñ®\UVyˆ wlŒþª µ-™J5ÅîâúÛ(“fÀ«7‚»žŸ2–;Îj,æÎOÑ¿}žc½ÃJ€jõ§¼Æ>Ý/K£A`Ò «]Äoa®ÈZó;þc1>3ùÇ]s7uü³Í£ õxÚÔC‚_­mgo%ú«| ›-ˆ~Â- 8ž‡ÔôC –Ê|Ãd§§ô`lDýGLôa®dKYáG刵ì²;1L%ùL÷tìÂËJ'æ–ãŒuc¨¨7bÛO£ß=‡N·&ý›šýÐ_)öüŽêÆ;0¶Œ¦3YWJéÔ?ñ§8E.ÜPx;îøßûäýƒc(ød¡öYä¯$*¼Àb5!ÝÕÓÁ”f[ÕUͪVQw)Ñ”[‘_ÊúNªÃfŠLÄ\ Á2ÁäTÇ*1E3‘‚ UW©+ ­Œhñ¨kcIË`I\ô%Bè•òø¦Ä Ð_õ!ÿ¸Ñ"A@ÿÝâàW»ˆh±š?Lu1ýFb =7NcÁŠ£_˜uõ.+vÓ&S?8ÿ±[:Ÿy‰jïØD¬yÉ=R’‹WAe‘ ¶Îˆ„ÿÈÿaéwÓRGR˜ü#=Þä‡è„¥xEô{”çWnÍÝ]Âß ÒæEð¶_ª[á#ÜÈ~öü£ˆ£7¡CÝ….i*¸Ç:VÜCþ¡‚Ðø‘MÌ›BÄ#¡o_‡ÿHOÄ6‹ß:üG'|¦8t$¹†ëiò çöñÔb,nO°1?ô»áõ/™ÏÔ„:XñäÜe}>îå\–ÂË~ÃÌГ¢_Hw<ìh3ùÇ^øžÚäÅÈÇÂógmé™w9þc&¼®3 °w:“ÎÅXw/Ð;ºÔWxƒ°ëÉŽa–à¥ãËñÄ6×Cߪm±:T #bI.ïÇŠ–¦ø4¸·B\>c]ûü¨?HuD)º˜ô%ß©‰ŸéÞäIEs+¶:6©›ˆ·!ÊM0òOÉùÒQ£Wt[>!ïa®"ÿHh¼/J†µ4,ÀT´ï±«%Ñ $ {CÈK¦>5u/vE^2ºDqŒyÆc2Ñf)¥&ÿø†ZöŽœÀ\ä™á…âÀܯCU‡ÌŽ¡Ök#ròTN““— ÿHŽŸÝBÿñyÆ ò¡ÄöuTø%bª…|ü*zrÜáY.‘n¼w_ê!¥äsÑÝqyßmC™^€lô wy/>Œ)ˆ_ð‰Ì¨ºÆë_6JQÿÑÊEÚ^ôò#÷Ãïl,$ÿ¸¨»…@s¶+—Õx²,'êŒ~Jæãd\…j2äJ¾ÿñî‹ù[‰˜Ku™Lîìb^ ·­Á.Ï/‡’+ìõþc§rD«À™p#vÊ&³ê øä€èÓrÀJÿ]?r£1ôo¿ÿáffàÚW]ÐΫÔdá=Ñ?ñ¢Òf~v{'¼G!}úÝæ žß=c#qAwú·O±5uÇ¿]s».]áÏ[cÆÀJ^ †+B1àx”ÿß?¹is Ñï.†2XÉj_Dþ åókµžôoŸMjñ=Ô6tooDý‡ý/õ»lsµ9¢*3ºS‰œd]uóÏkŸ·Ð¾ª-Õ†uIÄzâ…¢ZPô;HD¿ÊªeÄ6çÎAú«ã‘ìŸxÿQTXõk°s±Ÿ‰etNUPïLfGµ&êô¤ç|,º½ÄãkIÿ«u Ôj.ñûDüÈm,gl²íXrüÇsô_ñ{ô8zÇþÓÂ972ê ø×äಠ“íL­ã=©<Ïÿ5²šVøªù<ÙNZÿžâ'u6µ&Ö}ˆÕÿ¥ö¿º”ñà×µa™U,þUìТñàÎKþÌ )ÕX÷¥Ô#Ä#óø,^ˆ vOôåX|w}ƒlEmÚ~Ÿ5e$W݉üîšðÔ¢„s• éúP)¹œLÞ± {^™kk[“XÔ“ã¿£‘tUä^2.ò:Ô¢¦£ ¾Ýù?Åð«É‚ ½`%É0$9ŒwZ¨»;¶î$j­þíωú­IßdF~¨ž‘t¡~ðvðRAŸÍV'‰Þ쮄pøûxNŸ¸Ÿã¼‘G²‘Q€ü#LfºƒÔÏò“íd2Øçx»ODå …§{ ¿)‰Éœš€–͇Ó}Ì3Ï€–8 Z® AóÏ›™ëÁñ5úƒt¡?ãB¬^.ª±O¢£µG–~7týÇ8õ.øÕ:ž}9¹b+Nm߯ß'Ðï¦püé×W#÷ñ‡m/ýu­™[[¯XÙÁQòrj<È å; —¿ùç»m:ýKa’¡°½¦*Z.º ˜hmsà?4­žjy¨Èÿ“N¯|…fqoh‚ø$Z*ɵ¬_V¤îb Ø§FNa|F¹©T§9{ÖDªåXº4äÄ1˜ƒ»[xƒ]U浨X[E°§Ö‹Êgw¼ÆxâÝõ GÉ54,Nn"ç8øòì’ê¨3¢ë #ô‰• `¨'DJ²jË ¼!oiµ»¥×‚õ=HÄ|¤u7¿©€^CëÁS¼¢NĦ6##ÚEý‡Î‰Z« ¢3vg.Êd ?ñ üÍú':ÿaÍ˜Š‹†z!Ý V²Sý„RMÿ@åÇ ±¸I$õŒü#«1”õv¡PlnÿöYJK­!~r—2\ƒ?ø”Õ!JóÐßi·ðûÀЛÊ-œ®ÕàuÈes¥DÇÚ\ð⓹1ص‚ô/YÀ›œ ?‹5,t] ?¤ßÆ œDÅûáTvâétæ¤øÍ¬TVÆÊo¢b£o³WX›špÏ ü*·`¤5ÈæT¡oßJ@ÆpLÐftbþ`ËßêÏ(v¼QW²/ð&iìÅožA­•=Ô#­Íèf~þü,ö>™áÏj¹ˆ²€ôûÂÎeÄî_2ýns²²;äD«du0)g”µ{ŒŠ(Š÷›Ëͬ (Ï™’ —¢3ÞÍIŽ'ÕÁ¯öQkØ þ£f¨·Ü]”¿:ŸR„:ý”ø.oª‡ÃŒ6¢Û—a]R“¸Ø¸+½¨} Àc®#ÿØJ¯ËxAæ)…àÏS2Ån8˜'^-5\Æ2ú·{s÷BÃÕ‚®Z±£çð¯°ÑÃd°ÍÀ¯vÀȧñ\´sGñÁÓ0Î+ÇÔÌœ†'xð}2&9ýt 5¹¿6æÄy<¹~p†ý3š± ð" ¨1ÙÉ®®Bn–MN#W%‚±ãÍŠüGu¢•cì¾TÜ¢¾¼"|yê$}PSÂTezæ[Á~Sí·×œiÔ$²IDϪBô…¨wuì‡J?jŠqê=Ùñô5Æû[³ýKÞ¡¿ÚJþ2ýî-ò¥ÊÌÏ„‘D¦õ÷©ØçŸ‰Z°å÷zÁÿIÿÝ3¶¢Ôfüú'ºÒéÏÑã¯oúÃÇxŠŸâ¥:iÀ¯¶*–~d3ó«ªyÔ‚ên|ÔßùK¶Mø؃’úB…žZU¨ÿPD7QLk§ÝR[¨•Cíß?\”ãˉÄu"øO¢3 ):8‰Äz %øUj K3oz…ðSï:¾û¿}r‰þ‰Á¯Ðª/Б ¤Öê0ÔR,b§?Ôǰ³,UWrÑ=RóÏGjCØ=]‰ãg‘-ß¹MämùÌr#õkš¬ nTl+e$øó|ÊüÂEøó àÀSÈ> Sgá‰>üøÕUò£dDtÙqñ3}#¬|¡nÀâ·§þü6Œ÷²åfô/)ƒMœAœ^A.ƒ8ˆ†}}=]‡þ*¼lÁz¢ŠRB-L¼¾€;ÉVÙN^5»þ^ß,wâ?Öȶò §ö)å:þy^î1êcOM ç]ORFkÀÛír&LÉU:¬Ñ4Ñ£èæK(ØQOÙ4ü–r)ï=.ž¦6³+~¿Gà?VˆQø®1 ^±Aˆ7ÆÂÏÂê/¢Éêƒúê\M~þþ:Þ €§™øt.õwÂ,9SÆj¥øûäý°ÃÑ”¢r­º«µF>¢È$0ŒZx‘AÔ4"«Xþ2šþíÍ~›ÿSÍ@md ¬êxóÒ—è"^#¨A<§=ÃQ7M¯_z[¬…Ï q—z“c2+õþ÷•U¡žáLUc½3°a ñUä=¾1lhŠâ]诒2ð-5oäx£YH-t¬ËÀ¯bt…'nŠ&:…Z¯«¨GrSQGE3°Æ4Æ¢ÿ]šœ®‚É©÷öçÚÕÌ`Ÿëশããîcó©<Áókã+“”ÝÜé yMÏ*O’çwƘh¤’›í°ð«Ìºæ3âú³0 3ῚÐï®ÅûúP=?üã,øqpÿ’@%P #ô^¦f?_ ¯K®§ZØüta|÷½Ž|+#õç‡y’•PDz÷š°b.òÛŽb¨éˆÝ¶*µb0³ìì2;¹­;ói³Á¡td~íF4S<Á>è€SRõÑIR™ƒT*ÖæìŇó. 7 ËÎ?.¢ßÝnÍ»)B•×tôG±»¡T¾A-âúFްÆ£d·w¿ûÌ5Æ0sÐs lÇ š ªrŠÓYR,³ÿ?ÞǘŽEéóõW1•£Ê"xŠNôß]­`Íõ¶ºj+ú·—WÀ±D®»í¯{¾~5M´!R.IMÁO5«V/¤ÓçÁªîjèøç×Ïýécq‰øþ«è†¥i"–D/Âü¨\TûMÕÑ»l!ÿˆ\‡àGÊ5¥„¸M²&Ô­Å‚¥"ÿÈDÿ/} ñœÕ¿„j ꟻˆðê¦Ã^agm,“²Ü‰¹‡‡¬„‰¾ÿˆ%‘»¯A3u‹÷F´ÿȉùQ”îøŒÓø ¾ËÀÿr£tIJ[ÕV}°…_ÕÃr0 Oï!S[®ÿÀ’ZÕÓc©?Ÿ ·3;ˆŽfºQúQrš[\oLð°›B䳡ï5’Q-@¼>…«rfµÔäU]x+?uØx"oæ¼êè>òï]¼ÌlNæ[´}Ã_;JªÕâ;ãÊEüìu2kög-V‹NÞUŽùÁ1A†º’5ì€yØ€ÿmXë/Žÿ¸m+§ùâßÃôŸŠOîçε¥£w{ |Ht#+^à È]"Òì¼£sì$ºŒA¿›é·ùQkÑïv¶|ЍW0(ïA·“ÍØàÏ‹¤‚¡ øU£2lE/žž èØR™ÿqþ<‡ãLþç¾U¾‰âxÈB|Ïmâç}ä·á?²QqþÎ`ŽÕtLa<ÙIÕwEüÇ-®Õš·ËÜTý•âjÅ)èw=ÈÊžÀå^†ÿÐa+nGMÉ6gûSúU5Eìa´3|ˆRÃvÛáWö£¦oL˜þ»î"?>f>2þƒ r1–~•(ð[™ëšÞŒi?ÿ1þWgÉ,ýÕ|àsº°–·Côo¡ Rö ?oâ63úÝ)àW•¨3I'ÂÆj3ºÑý¾üÇps5ÚmPÈnįÎ#×ËnÌâÝ=Ò{ˆÞŽÍwN9§¦…zÈN=*ós¬>'µ¨¯æD^ó‘\a×—‡Ù°·è¿Íèg>e/4´Ôkr éòó£¶‚_1ÅÿqŒ÷›‰Ø¤ºq‚*ñð2þc%•)çÀÖ¦R︵Y úÁï¥SW{jvÉntCÎOLSß± ï0p™h¨OÁ*A„³žþí÷Ì^ v÷é²òŒ¼f¶}ý zê°êßàTn’cf3“чìšÙ÷9½Ôÿ$ÿ¸dË¢â[%M¨}æx ~òÙöF¥æª?÷Rò²Š¯­üy6ô»;”w¶‹®ò¾ÛRSSŸœ.3‰~ªÙ‰ñ¶(_5wQNódþ`CÕªPŒü?ùÅ.Ö2ññG‰战z+¥ŠfÍê-\Á›§Šõjä®ð¨òBÉ+Îo‚AÛ̉qâ„:Ó¿d xÇ5rû:ä%ýDlê?Âvµïz[¡ßÝ&Úâ?ÆpR¬hü WiGQ™¤'£|Ž]Ô±{ƒõØzsG ÞJÖת)`z ú+œ~–º,{¬Z±èyÏsµ–"x ÑúÛÀü¨!øµlÒŸ» ÷Óä´.ú×VôÎØj䦹 ùG]£YRo~_E¼“ùÇHy˜“3Ì{‰«JÞdø˜Ý\…fœ†‹=G?Ãt¬ñ ,ѸUÿq‹zTÆB¼Z^Ы—Aú«‚èwï+»B­8\ý&ºÿÛ-v”N±èVµõWiæW¤—Ç7ÖëʼÙ)F úP–å>—2«C×¼Æ/~ÐBŸ¿®">ª´³dE°ûÉáí×Rÿ6 5Tê7P]—Šy§ðvk©¿!GÃuw&9Cv–ÞÈ)ï‰ÎŽ'(”öÊF²ú–ü¦“Žõ|õ®T–ë5fþÇYc ë]檆€Ùy‘çT…ÿ8lΆÿˆŽÎÎ ô¶{²šcžW–£˜~_X|G þãO°b ®z.±N×Hô/Y¬¿á¤ôà'‡Pï7EÜ2¬âJÐk&Ý|‡«EA¿F´†þ% BYªàG[Iª¦ÆÓ̇ÏÍ»ÍÊ-ðHVýàB4¦KA@¾ò~€_=ÄKMƒ9Í é¦½^ÄñÙ@¥¿V‘ø9¾\BŒq…Ÿ«§mOt©Ë.z,q]ûúÐlÆß¹ý®'õ£¥`Ø+8N®c1Ûe柯Óáz¦cÍ“¬ãûgà?¦p§³QQÅ‚‹ŒÿØIe^aü“¹óxXê ší·úómj70ÉâdþØðîpÎCøî’ðá·}¨ž¾ÿq»X–¦%˜‹+‘ø4ø_«ÿn Q8Ì3TÕ¨ø¿Fä£+˜‡û’29C.øóóò>•#Q£~4cßd[ÉúÁ¬ÄÛŸøÎŸØÔRؤ÷L ¾[›­ª ìFµÑˆ Œš`;Ñè–kõo/ŽæçS'ž3ÿ£•Šƒ˜k»œ,?s3N€¬6g>pèþ¥D\¢‰@ÞW%ü/34éß~F~)•ñì~ô¿ÊFOø§ôcô‚¹ðã¯âݬÆ>Àg–’?D½àË£ûzžœ+1‰3Je½;ü¹N.ÍÒtyœïq ýÕu:NÍe†å?Vá{ÇÃdà7&”—Ñ‘t¬·^Ù¯F#š²fÖ{cï³òLâ`ïÁ',aý|”W#á|¢ÙóÓ¯j|zôR~Ä5­`øËÉ™ðcBàW«•½Z=b–fœ‰çT1¥!&x†6O“VÙ\Cu;½ØúŒT£[Õ.êûiÆ#ÿ(Ê3º rìÂsðçóDivóÊ8±— ÄÏ5õú8ž¦Ž}°½3õœÉí£˜ÿÍ~Ÿ‹offŸœ’÷âW£ÿIÿöG¶ÜJðtÐo(çþéüZ ¯<‘úsw-õƒUØ­ÛlU©?ÏŒ~w·òÙvÞñ>#óÉWÛ¤ úó–0 ›ÅUæR%P§(·µò"+ ¯ª‡êê¥?Vë õçѱlVý`^¼U»v <ì¼dïz`9&ÀãyhS#xŠv̨͋Ñó!2 o=“4â{'PQq]ìU,ëæGÕ`þà:"Lä^Óã©Å¼B‡¢‰Žõü”#jLüÀ%²ï™Wÿ¬ß°ÞUç ¨íKÆœÀx¢µøËÔ¬G m¢H nÚ¬{¼øD1ÇÙ;¤œ¿ªÂŽ= zš…,Ä“ªõ ä ¨¢O¬¾›ìÀªZØ ¿ wžµÏÜMÁS”ÚFî¯-¾ãÐwу'¶;¸œ˜¼)Ve%ìȲçœÊ›0ë³ÅŽ?æñ•¼jNb°ù09ÿé_buvô"¿Y'ÒT×ýœ|æ9¾ô1õCø»ýú«àŸÁ÷=UéªÕçi%–³¸Ÿ»X.«û®Þè '1š¸­½Ç/¹¡}Ú‹ÿØVç˜Þü¨«ôß]'æá}FÊ(¬¬9ˆ-¸k¦¡G]Þì«îbö5jùÁ·žð<¬i­Ñ¬ºìpæx©ÃÅî)èЮâ&9åx#'ºäòæƒÎi¦þ£¶q „,¨kTÀ%7º€_5ÿ?«ÆgߺOø`qé¢Â}ûËÌø¢{äÑ]£Rù 9Ì0ú'N#C*B¶tVã ,ÁÓN@Óàgg³ SW,ß ½1 {î.±1nÁa'µØìª~™êÄnøµ¬–þ<†ñ‘ˆü9–3j˜ü£ þƒY½0¹`sœð™ÞÄÏÉðéísé •–~…'ñG‹Q>Â'¯Ásí„ùÂ3)$EÇå%RzÑ¿$Wu4ìqDw*%?â7bÒIj–1Æü*àkT½L%h ϰš7´˜g]ȘzŸ^EÌw¬·_9Cýyq¢§ú%b½OxÁD3Ë×R¿>•ÊËYtPLÿ€úl…ƒ¬á6qL 8•Rd ÕÑ×Tqœ½ƒÔTeÏ5åùå9ˆÍªÒŸ½>>¼” ðPô\×ÍÚô3‘ð+Y¨Nù"÷š› j¡É;£ª¨L|D'ÿûç*HìRÑŒ¸'ìGqÝ›lŽjœ“0['ñ’½ìñ)ìÓÍŽFBªø·wv4­9,ŸÁ¯>‰]ìþ|!*^~­üÿÿãm[Þü‡ ÿUXåyd¯ÁP.(SÀ™šk àÏK²[ýl­è“[T-Fÿö/ óÏÛB¢òÚàK‰ô1âŽúEµ©Ëéß^T¤ÓÚj—èõwú«râ§ï-þ×8®¸ F( 5;ñhQ’N¹³ÄžHöß=®|Vª‹“ì/,̬çOªFã2±f±4wðyõAÈÒRUr'·ÜT›¡í"/ºƒÿXH­Ôbn´ºTi%ÅÒ&äc]"Œì.M¯èØÃZ¸üGVý`âvn*9KaöWìç-;g¸û¯ø¸ú\ýj¾¯62”Uù}Õ„ÚZì{O~ûþÿSL„u_¶žh¯9=!¼`¸ýð'ã.Odš8Vùû:ÖW¢+…ÔüàW#°gÎä?|Jkî™É'r9ÛbÄ<Á\ã=°ÀT”œâ Ó‚‚Á+&ÿ¨ÄŒæ‰_¶¢{Þfw¨§(íœèõÿñÿˆ{ ð(²í{»«êÔ©jÜÝÝÝÝÝ‚Ü5¸îî®!d ¸÷à'¸C ¸|oåÿ£“Éî÷ܹÃ3¤Ò§KNmYkí½Û±æìư¨rð_EA˜S8žÜÕîã?¶‰éœMp•ÌÔ°¯'\B½ÞbêÑ=åAT«Ý±È×é•‘üä^þ*Þ-u…Ëèíù d©àWÔ䔕ðÖ»à)ú âÚ× îíDÿömhX/Ã}$ÿp¥F»«.ÿ6ZˆÎpÉ-~Ñï¦P“ ÔÓÜÆï½$HJÞ†Þƒ_áÏ;Q¿pŒ äÿ2‚üc¡¬„¶!½ñ7xJÔÝ+hXBâdÕ†ØÆ½íÈ$@WüGTcõ~õ鵃 ºløèvwã¶ì ÿaõo/A¶ÜÄÿÜQO j9­ç.2‘—ãîU@›+ðcëQ÷A¿;ÜÈe÷Á{äd’÷ã5üGuó>y#Ñ‚Ü-4ÅåmÑÎqxÑ• ÊL==œ}ùÇSöî`ª¿Ñä#³ã—K¨¼Nÿ]jôV)©ªKež¿šL—€$ðç)àЪ…Bs(×Ô¨°V7ñø‡eA"˜3LÞjOþQ~;%ýA^ãCÖÐO+wåÕé_r,¡#w¿½uš¡¿jãxövÑ¿¤ Q;9y,™˜è¤‹ñŸ6†LC¢¹O/äÇF˜¸XÀlmÊãxªfp1å@eWòŽ]xEŽþª1¹øHb„ T“Øí—©ý?OâFWàÉÔXþ#“}õ/Y˜¾œ¾5¥Í)µxÏÔ/j uƒ¢Ñ¿¤°6D» ÿay¨Èÿ—ëÞ ¾¶;O}!V¼ &(.Z2žÈú¢<ýꦋm‘ì_?¬çÀ>7aaVq ™'´¹X‰½¹ˆ6¶ ?ŸAUb™Ž(]Ñ_­ìKq´ŠÈûV0*¹ôÆJXó£>Š2ÄÔ1õ2Ž=Ñ™×VzÀ.œiˆß2ƒ_áh‚ðN¾¬Ÿ-—µãÁÃÄ>×]µq¿¹Šñ´u`:íÀrŽè£È?Fá{æ¢*^.GbõJʵDì¾ø¦(ø¹ãø‚âx„ó£)Õlø«~0ç›~½à9¾è3är¼äbpÚá rˆ³ø"+ÿ8CÿÄ^Ú×pNw¨q!¼ZÞ[ÿ±‹'¯ ^è5¾·#õçÉ„fìƒY(…’*$l%Ÿ…讵!¿.÷ÕVV['f‘EM€ïÈΰ–è`!Jk~í0Î×v ŽûÌBZ”WÀëΡÿ!€­Þ³äu˜hC„š›öPZd{±7êÉ/trÊhl0rREœÆ8CþQ–߯ !:­¹è{áÚE‰_øtjl¼Q{Põx±‡ä)ð yðE_è¿Û %Ò~üÇ[êKFÀ©O…‹( ÷ÁlB˜›*d®1ÕÕNwzŽjrtð—Ñ_µ}LˆÿXˆÿ(i¬€ANƒ«ÙëÁw÷¡ñF…oœÂÐñ1¤;ø`§õº‹ôäþì„rä ð K9˰”öÔæ2Úoá?6Àýœ þ| >d'¾5¯TX^ ¥ß¦L†ÿ(M~@Ìs/çÎà+¼´Ž²v¡1¿qž™'÷Àí–÷1“™w¨%™ –Á˜Su“n!ùÇF劚€§á ˆã™‡5ïÁÙäüj›>FRsõç‹èšø9xz‡L^Jó1þ£%÷=¯Œ_…äþ{•ÃZK¼GOî QP,éi×{‡1O†–a¹`I¼A ZàU¾Éöæc{5¹|EŽ`ÒÏ-ã§L`©+;ÝÈY®Øå`¥òaPºä1샘á˜Ý>ÏìOýàyúb=“Í̼’iÐøœ¯â&8náÿIÿ«~0„ïŒEþ‘Þi_ü<ÇßÕ¨?ŸAÿ«Öô7Ü\ÿ±ËÖXm©æ¦‡ûNåƒíúï—õÏl³µ9Ââ¨RéÅ«àùQ£™Þ’úó6ÚYtÁÖ¿½¨ØIÔôÌ÷.ìßh]wSŠk‰ÈBKвxøÈé¯n)ç”òâ‘–qï6ödRbšlà`[Aj¯ñTV)™‹þªe¤æGuÔi;@˜>!ϵùH4ßüê%üÇJ¼À#—@QEïFXH S¨Kåô2“2q}rrbЙt É j×q üê&ˆ­ •L¼Þ\2‰Ö¿­?ÿ¦zòŒ´äYÙÿøŠ¦¨>–8'¶dV±(,Á°±«hžc§êKÄœ´J57|ż`ÿ16â>óBú3.’^¨æÈªÄýÖL#Áßëx2–ó\œƒÃ_;ÔØ…³ÊÄzuðnW9²ò\«OøÞ1tÅüÿñ7œEC¹›\Ánª&'¥ñ1éOnÈ¥»lË„f¹äd¼EzÌ.%š†þg zÔµX¦èôǰºÅnÁåæl“û¬à>Å–›µ´j`ÈRÁ¯¶ª£©¬ÇÑ]ÇFºÉÜS_²™L<Ïm¬'z¼ ŽåG_òeg8ß ÔuLÀB‘GÑ_…íª©Éˆså=A¯lÆâóã27õƒOäK:‚t¥kS û+8óÁÔX,Aaœ>Å#>)­úó¯Šsÿ«áêkQLïÚØ](¡¸æÆX¸iw4];˜…‘„þ%¦½|Eoô»^äYˆð¿rþûåwÐT-Lÿ’Þ"+HÏeöY.ØžŒ`qÞTŠ÷1P!™Ãî…ÿHkêv?ã;~¥ÓfP¯Ñ÷ÿòhFAªÂ»8®à{[Ge }¹ê£÷H~µAŸ([hYífM4]«‰èïpÎ~ð áÏÝaç_€«MàLÒÓa¤>P2o²KÍ=}À=Û!3‚ ¿¥Çõ*MþñÃXIçÄeLGLJýÇ ¦Ÿœ¢>¾½y‹}éN–TLN¤þ|¾(íˆÝv)Ç´ªX‘öø·<oô©ÆðªUTš'&§éö_4a7©védõ‹¤Ò} ˆ‚&­Š„Ø’@Ž]xC™IíQ}"*ìHn}«üª=ý¯ŽóîGh#êØÇÛç2p9žþ‰ÇèË{[º›™¨ËRÉã?ŠÇÄœ%B)Ηò¿þâüGHþEéaõðï%жþ<…VO+@ý¹µÿרZªMÕBä >àWç~·€Ó¿¿µM£~°˜ƒ®¯ þ<Áxøóš"•Ö]»­öýÃü#±Ø€Þä ú«-<…Þ[)£QÑ­g&R-FÿÝ-ê#§#ˆè›Ó̯͂šk \B52_bÐôèQkˆ…àNG±«2…ùLIh‘P?o¯-×¶ˆ¶ä«°¥ Ø‘ç±×’Ø+þ#ÏOyPΊéÇP3B-àô²â†Ç½%RPgaõß-NÄý”:š ì°<¬u|çûÔ®%¿ÞXö›hAÕÑwÁ{DG‡3¬DždÕ’ÍÁNá“#œÄÇ\ßo‡ªdj„ý¯Ò*%ÔœÙjÞm(–¬neçQµ¾‘Mä^ø°*–¸j ´ÇA‡¼Yã5>1•<*óÓ«ýþà ÿ±ž.€ôUDï~ëyÉ â;ÞÂ3Ä&} :+älm¶Éê7öÜf°¾dÍ8»d3tßCüœÃ¾½m1ú_µ§ãü"ît&liPðzß8—¨¢“ÓzD2½ËÄ%Ùñ¿©ð·ëP÷5Æs†™ì ÍܦKíÃü¨åFó$¹ë$²žøÖÇôßm,ˆ¾ŽÃ‹FšH]mê?Òí,¥ÿUsã(Ý£±yxŒ°(þ`FËвV¡ëT ÷z,ëå¥÷pžV¡øósÊ-UÂßÜçè¶ÈLä”>Ž¢õç6¬}TûJó2ó?RÓUæ2?ÌcÄèU@ŽÔ+1˧¤ÃìQö€œ6ÁÞ&}-Ø¿ðç½Ð—cbTZ²£}x£¬t—¿†¹,½Ü?Hos†QMÙötyX,ßPþãøÕ&ÑH·:öä$úÛÿq’N‘çPðÖ[ëhÖµµ/7ëÙWÓïëþã‘ÿigóhè Ag9®à¿÷âõ!Ýé¾ÛúF8=îwÇô–þ»È?ÒÿjU°ÿXokÎTˆYå¨Qü³þíïlô†Ù°ÅßÅdúï~WS¨½˜?XM$Òºj¯¨?ÿ3þ<ÕhsDbÚ¬úpñB´Sêh1Ø DT&H­á3žüîƒÿý”r^É v`E—±fÁDÇÙઉeØäKD¹iø¤É̯m/žGbÅnðÛEKò¢‰Ø¸å¨Y/ù& ZJ"W£Ø¸AÄüTçH•HðçYwü‚UþŽ÷ƒ4a5_“,F™,ÌÂ{|`š7R¿—[ï¤ q²¿n :kÞâ‹bÊÎÿ X« JÓ<ÿUä:ü”/YÍ3öðj0¶nb®’,‚5ã“dá÷g 1I… Vpf´Œ½ï*܊ʽØíëðç@‡fr†À(mÂ_;JéGýÇ Îg9çs¯[ ¿Ø–wÇ–ÃôïÚüÇ~”M¥9ß³d3«`>$5‹eÂõ÷lYµb,ÞmˆÐ#°ü.L`}o¾aŠ¢ËŒ-=þÅžx½¬N›ïʧ»ÒO¥ã-ì]0µMäGt4:ƒ8eÛLý Ý¾{Zìf¨Ñ‹úÌtXY¥ÿ ~¦ÂÛÚD{§õ†Š<ä»o`„²pýÒÂÉ/išlô¡Ëmß‚BÊ„_ØeØð*ÍÍÃ\Ñ5(«×ñ{×er£ó?\C6ŸÒYñ¦ú©1ùGnyœ=0„~#Q)1ÿv ™C}ª÷ûOúšTf~Ô|GoæmécÎ4б3­ü£ {ö€^ÅÅXþc1Z¡~hoÒÁ 6¦ØŸšŒÃÆöÉGp°òäžfEøs:ýúñÃíÍ(ôO +ÈAžs•³güï½xfKªßD<¥÷Üÿê‡í*ó£Òi5ñÞŠÅ®²5eþyVþ÷¡&ùÏð«·Ì?Ÿ#ê’ëÅ'¦=ªªZqu´M4Éá?.©½T«CJäÿˆÿh¥?ÇË/âþ è;h)@›ò2ÿ¼¼X&¼~Á°Ã_ý¤rùQ‡ˆÝ6aafÙÆ“™éÊ×…—Õ «±usz;µòa­Jx+¶¿Ú,Üá=–ã?æÂ'\d¥@-’Eî¡WÞè5ýÛ]`¯‹9b ðV²~VFiOtÿ‘þ|üyi².w¢i´@ÇñvBEú ¬,þcèo®âwuüGKž•ƒT0ZùBp»ÂX‘éèóKc»òç&qxùØ æf-SâG°fBôW%ÐæŽ%ÆJŒ†½nÔ<Õwq¤ÝôU¬ø–ëú˜O<‚—êâk›~TtÕ>†sºS”vZ ~/>ùG2ƒXëú D?àb†ÂŸÇ1¨¬pEß ¿“õÊqü99ë(Ž'7dÙ ð+àÏ¿t¡?Ilé ½”Œaµì‚åCÐ Vø.V>?ç}Ÿtž«]¾ÓûkÕ°êÔ åˆâaÓáÅÞbŽÁŸ1¶ 1t¬@)øzä{dK>¯2‘øú»7’ô ÿ¿J¯jLjÃ=\BÌþD&¸ “–æ3µÔá,>¢¿zJþ‘þ¼$wÿ¿áOÖ—ˆée˜úÁÑôooÉñ?Ô+âë`×RÃVøµá?¼èÓ¾Ñ Díô‚õ:Ñ!¸˜Ýbf¤¿¿ûL¾§‹–Nwy’¨~u›[”«¥r.Û°~Ci²/þc JÖØØë³†axÃÖœƒcZ×Ú‚‡¿Œþª.üy{ÇÍP•EÊ.”ÓÁn³‘lÔ;aïŸÑw×fcÕ¿ÐÝ>DuØŽôðçßÍTJBg•›N¾ÌÜö!öÍf ûs¸qŽÞõq˜HåjÆD è-ns¹ÅRÇÿ{/nÙ²…B¬¢+)iœöEä$!s1æ3§£±– ý••l±µ²æ”ã?ö+š9váçç=¶ÍÒfˆÌDªÑõÕâ&¸XEu¨ò]k(ÒÒ¯ö²:X-öGÇ?Ý-h âÚ*úxê³*¥µ ˜)E\Q€þþë~éÁýóXœ¿^Q®*„vn¶y†¾Q‚xºŽØ ¦åOœžxx¤0EãHõ¿ê¬-Ñöƒ0= æ?f¡>òÃrÒÁ”hüë=üÇCøó>Ô •sìaçc ù.½Ò›¼â øUB¢À¥äåÉàzƒ_èÈëOÂ?X3®<9ò¢zmüo®âwu¹„½è^3˜:𫏱–n¬í©·¦Ïž`Õ×XÓíø¿!bq(<4丬W?lÔ¼ÞCÃÔp%?Ä1€èò½¾SŽÇŸì€ÐäNê¶¾“L˜ŒŸ;~7Èy¡àïÆ3µ­6õo™älî¨U Þ{Ý]·ÃQ®a>w4‘˜¸¹3œü¥p…бe€EÈŽÿð³¥ßóx²¶AàWÙ±÷;Aãè¥ÀéFaE®ÓöÆú?ÆFÓ¸Ä9û/|ãî·×2¨·Ãájµ·ú# z­ë }·À-a¹‚P\ÅÇ–Ö„ÿp§,ŸWõé$ߨ!g2M s˜ûbŸG˜—˜ý*8ÚzlÑyj5²Sññ ‹ÕˆþÂþdk 1úð¦¬émjסî(£?QüœVì¯ìýù\¿F0u±­ñ±ö»øôÚäsÌÔösàaÑëΥ㠬3üÇ ê£°ê}˜ÁÕËi½‰¢*€ÄÙñ Qɺ–£?õ€‰éŒÿØ+ðûÀh„ë›7ÐJm5ó¢åCzV5†ÿpu\Á7¶¿O½>ûëÏÀyâªÑ\µOÆæT¢+ÊBò7Ôm¤_álæÒÕÜô"‹#ßXFæõ•8&¤‰—òII¶ˆÏ¿$cè‰P5×£/Õ+:S­"ÿX‡'šædÚS1evú«êèw-UH3:tå£-Žþª’ãÙÛ¯ÜÓª“´ç™ˆGåã!Ý V¢=kL6㘷¨]/CþÑüÃOãŽ+&œÒH£hB28‹\h .ênŽ]xLzº¨ÉSß““JŸ~u‡IQÇè œ—n*®fUû$ûY³‘}ó?Ñ»%;“^št~Æ2L¢¾ë2qÏÿ¦ÉmüG¨xQ¡„­\rÜÖß¼øa» ,ÀÎ7ÖÒÒ?Ѳî»l­ÕÞTÔ ÿʱ߼ßùŸßÛVióEyôú è%õJM«URÇ*Èp1øG¬ûgý¯JÁn7/©GÍTMX^UoNý¹Õÿª°HCýÇ\òÈ!lW•kJ=q+º—¸wèf1Vz¯^‡èqqzy|Á;,÷|ÀgìéßÔ½xG8A懭´Z’ÕæpWóâ?¾‰Oâ/üD ¾[F{rå§Á1>€ºeY ®ç.&¬u·þ|†2Z«E˜P.!¼…un†Ëö<=O|FúW&BåN_ôýûÖjþ–•ü0<ÿñÐVüj wa2¼n>ò•¬µe1¼ì ògzp;¨] áÃkî'ë±TÖ½é¿ÖxϪ›|Œ9€máÛ=8Š&X®úxŒ¥Fó8sl/ß74Ž‘áÄA1åÇœÃ/x¯Íb¨%Uãâ]áÏgò{oøü´XËâF^:î>1Zƒµos2·ô—ʊ߬FEÉ5жϠ\¥ñœºzËéN[úÝ&ÄÏ/ô6ô2«!_éÀ©veeec)õvû~TIÍY}…ÑŽÁuÉ?,üê9ÃsvƒM4wZo†¨ƒs‰+’î“þýî&cLÌ #ý¯ŠÂ,¿4_Ÿ¤/oPU³‹¾‰YXoQà?EÈüó Ûxe5v­¸æÅå }:û­ 1÷H´±õÉ_¦€Ý0Ò£˜êLý`º_µ öý¹"ÀëJɇ0œsnaÛå•jrEž ß“vvˆ¿tÃëhönèkï2»ã9Ü÷rúï&‚[¸IÇÂDÆPs7Yu²šÒr­^D¬EÏÞaÅO«HT×’ÏwDïM}>t\³`=>â+æá?ÊÒå+3´ºÁ‡d1Îà?ê ÄE•…ÜêÒÏ<¯Œ„{+£`”"ú;eØP/ô¡Ó°oô”ºö†ô/¹i6¶51éœÎŒç•þ»A°®_„Å– 5±÷çÊÿý¯ôm…W«ÊÄÕ3¿;–@Ûð«DZ ­ ¶=xþÇ[#ÕƒúÁæôoʉß-àôï¯mµå¢¬^ìv»ø¬æ£cûú_uE¨|¥¶RõƒNoç›ÂbñÂsÑëD§%‘T/ ž޶‹ÈÞ¼˜#‘ë|E¹¨äB1·;jñçþX’pE©ÍóèA„Ûþ#¾è"ÂZ•pÌÖF›ò§;ö}=ùË"ø+ØÒlò,ƒ5ÅS•nØÐÒðÌY"1ÿ<2Û¼“8;>•óÀkª1Á¯?¾Éšr [ŸˆnÖv YÈXm°“øõøbi«ñDîúØÄiôYA¬¿ Vø$•Uƒd¸…OxÐGÔ|ëÒš:Ul‰0ÿˆ¦¤T«“̃ÅN‡¯Tˆž:“w¼Óÿ–£øz€ˆS’éX³{ñ\®ÈEŽ~ ¦„s”½À«à¯Óàe]@¢A‡`˜kãÇbÍÔ¿J2ÔÜâG¸_Pš\6+¹a!Ç“r¾¾ô¿Z+fã½gbÁÓjY½ðáCú“k}'3òÀúßÃÚfæøÂžâÿhx“©Ì6 «¿Z­vÃø¬XTŽÜż…Ë9ƒÝhad„ÿ(EdZǸ@ÿ’& C£È™ªÀ],d"mWyVŒ%œq,5w²1ÑýdüÑ ¬jZ²‹rFyãó£Ú›=éóýДÆcùWðL[«}z©hÆI™fè2YsÈÙÚlUôu+»¢yOsùMO_q¾¢”±F9Žý8V•°r#yÉFéB¾‹î*6®éž¤/š«Óz£¨ÿ($²7²p>èoäTB3ŒôoOl?†š5õÓg ÕØA¶t¯¼üê h` U]åÑ+äð”ÆÊn0Ò†äË%$Ó™ˆ×ëÓ³ü/39ó“NÑ¿Ýò%Á™ê$ß@ÿÄÕÜ©Ãèr·Ó=þ½>*š³MÙLý`M4 ‡õ×R#C½E—Éô+q£ºaîÉZNÿ+Õ—ºö YUùŒ pzíðpô·GãïªÿÕ.ú—4"iÆSTŽÎÁõ1F {Yò˜Aä •8žæ6îÈRz~meá³ ¬÷"£šÈÔ²ˆ@5yMï䨅‡•þtP­ÁÞuJ<æ×¾‡é‰ÿf¦x 1]ì‹™h›Ú>œŽÈÑì(r˜Õ„Œz1ù‡¨píÿ îgKŠ?Âü°™sÈmýçWïl—•áj­º–þÜÚÿÇÑ_õ¥bõ þ#rÝA~~†‰¦m5ÙBc¬á)“žð UOæGµ¥âPí¼Ú]-è´¾/¢¯•Ä92ƒ@˜ä{`øK…]¯©´ÑÊsϺзü¹g$ëÏÓÿªŒ°´ÿÇPüìÀe!HµHQÕâ‚E,ÑND¦æ¾‹¶Zóä¸4ò/V°&×v"RyCìë «b½_‹ZXpzÎ;b ˆÎ³¼2Ûìƒò lôL¸ü"ðkÁ–¾ÂÞÞÁÇ…ûmËWO”Y´¿¹ŠRÛŽéW¼ š¤aQ«óΚ<©«Ñ`ÖÂvÁxŸà™ŒBÃ~zí¯Œ°Il%ƒZ‹: o›‰ëôN<‚ÿ@HW¢¡°+ྣãRÀî`‰¼@¯ÁŸwWeÕ6Áë&ƒ¯†e8È‘Õ]ûŠ/›Œ.Hgì’ñ¢›Ñö St±¯ÊŸbŽ'7ä*^fþà61 „aú¡ÌTÀ-#¾œIü;Jöyˆ~·+ÙÁçàþ‰9ññ§áž/é©QÊziéÕ—!K¿Z¡öýÈOs2½E»KwQožÔ”ºÁ5FÆàþ»géVÕŠŠ±d4•X}¶t²¼%ºÿâ?2ªI9rrÈÝDìXêÄäB¹XËÊ?jSû|Š|A7‚äøMØû‚xGRòï•éœö2ÌüóIêÑ«rüê,JÙïz!Ð+_c4õƒÞØÒ(ôoÿbö2î2/p6¹ ˜Þ)Ô±&ÙR 0˜ ­µÓÎùKF}}‚g¢´EQñ7cþÇ>ëýÛ§‘Ó5+(£é*¢ÎT´¾¢=üy€ÚAmëô<„¼3üWe©ØècÛ+7†ü#†Þžþ‰É±‡KèßÞVl·‰!Ã_é°r ÿñôâ vØB¨œ"²- –³š5ÅÃ+¶Œ©êýDxu aWu׿€~våKA¯Ÿ?Âr½‡É Kšd¼¸Qøß¢z³ß湕Ahp~ ±HžpuÕˆO†ë>DSÅXù0{÷ûô O¥+ýw—ÄÕ6’Ç7×§°GgP+µŒw-€Åµº õÂb¬¿ÚñÛAhlDjKŪPýœÏÕP’«áïç` ³bã ´ÖüúZ¹Ÿë-›‚Ú%§xOŒè Âu‰¯7D-<°âJþñ…ìzøa?ΨøU}üðGÖÌ,‚4;XK?ŽqüÌ^ø–zL‰¬Å¹„L^9¾ý¶Th(GÇ¥Ž9+<çV½ ï)D>Ò™*?ð¹ATÿ=Ç¢äºFä~‘ÿtŒüã~ÈRÁ¯&ªnb,hDüÇW4`Ø{ð»Ÿa<²€Š£Š¸€qŠn&ÍÈ’FÓ—!Ç™GGÄ)ò’/¬ù¡ÿ3Ôøœ¥ ùèFf¨ÆE”þèw-üê±´}’ÃÓ¾”ËÀ¯ŽÈÖãü],8–JÇåӊè?oIþñUoo±DìùŒ•Æeºä0vÏÿx…=íc\¤ßÈ,2¤vØß­ðç_Á~tÙFÿ¦9÷êCýG}i¡º¹¸N±ÁÎN¨õxIÿ’èws¢ÀJcj¼‘[°¨—PÛzñ©{Ñ+¿¥gn-ùPttœn*ÅMÙ¦ç7|‡7zÊNq•I&”–©|À×Z ¿*fÞÙ™`D‡_¨ÈDÃùÄ3'é>ϼw´ï“Cõ/Ù lT“s}ï’/Ü’Qàšß’§,§ŸJwôº9˜?(èÐåì?.ëÉ䪡ɲ:º¹qß«£Ï¨K|2¿v…²‹ü£ Ö!žÑó ã»QL•£b7”W'Pv=K¬HßìïKŸÓDéꇿéƒEË&·S¡òó„/(´Ù¢V kïBþñ½Ô&òc›lo][ŸCdRí·þ£±2‘+vXßÈŠ*¶8þã ìü"”r`ÉÖ¼¾£Äˆï«éZÿß\ÅÜš7}œý0:– Ìv¢½…<ß%@Èlò‘xl"öØþiÌŒ(ÿHFþQ™ãšÊuËõaVû®ƒ= ®G‘csÞ¦GÖC®Æ"ž÷×ø˜ÖZXvÁº3Êt­ñsø”âx·íäù@þÞñÜDÍMHpW4b;a×7á™+Ÿ—"'ÈíxrCîð-[jðÒIdG È? S±ž|u ã“ÀÀ¦ 2MÈß~z7L²Õ‰ò(ñém¼a¹žú°n¥ê"ºa·Ëb¿’Á<"/=ЦHcÞGE8€ÜD¦™É ºá?NÁ$!¢7-ÑHy]ôþ%ÿˆÃ¼ŽzdՉܿ‚ùl·;ì§Bp(Àò‡¢FzaF5žÊqàAkðÄÕYï zà#²,Ø{º›†œ­Í6ÿÑž¨"HÃß–ˆ=HÓVªßË[áÏ“ØÐÏ£9ùÇbúšlÄæBk›ŸÔãlcÁÍ\3ž8·QÌò¡B<#=Qnr?lÍ=ªè­ù;Áì~гªŒô5ÿCRÿ±ÿÑT~cϱó=ð ˆï ªêNbŸkÁ§âÏÍ\l¤`v` ó}Áfƒ‡• V> ÿ±ÈqºÛ•m*=²Ám¯êw¤A<”ª›ãfZ0§}FZsÈÕBð«ö”TlX}(k}©?þj w{øÕ(QËñìV6ã?êa›üÉò»ˆýz4*Ø;£Zk‹‡»M®@ºé—EwõFi„9Ž©è4ßT:œw¼âõPQÌye¶FTõKŒC÷5¦Ûïâ)ýð ³ag¦™ýí3á£2Øûã?>¡bKm6@œËð þü»8æ›A,sœñ¿÷âœ-A(ÿdkÿóçuýèŸXY+«yóžÌrS3Âu_ùãúó{ðç‹E^žöhD vð«<ê_ô/iFÿÝáÚ^Ö ¡ýó5«~ÕE…%}„åš!4½RKûJß©ŽTVé¿™jq›Í_ù¦Ô÷AX¬ŠçMh…2Ë 2µ„7qï{¼T 2ÙØ¯žâî?Tð¿vÕ–b¹ºâ‡é«Áˆ¢‚ut¢*-€(eöë-vþ«¨¬Ãü¾bq¥Öt7ýãcÝ=‰u*êQ±;GxjÊÊ{ø<Ët"æ_κ=ËŸÇÖvb‘[ã;N[Ó–+‘”€KýØÐ øš£ä Q°üOáÏ׊ÕæÑ•¢àW?ôyxÛ œm\¸ñA¬vŸúÁ d‡;@Ä£ÁŸ¿¡ê%þmû3ý:ýKÞ‡s»€£¨ã ž‹?²òÁV0:=9ZREÄÑÀqúÃÑìá^­ߪÿ(æ‚„,ëoËK ðTüÇr«Îk ¹ïx®ÿª2–'ÇÄÊßƒËØJ]?µ~Ô¢]×O“ýä¾Ô„íеA*F pªDÆ[¢÷WX‡K舾Zõttö(~UvºžQ,i0s!êaI’Q ¡ÛC”v²ö6[2øòD¼ùÉQTXŽ“D-W‰¢ÓÂPܧ—w/ìÌSº0ï)5MuYo÷þ|¿¬A¬ü&Œ~wõçñŸ°‘Gð²¯õT2ºÉbôß·|‚þíÍéî;þü0Z¨"ü^ãú§Äo5çüœ(…ÿðçŽåålcƒ_]Aq;ƒsëg䤖=üG ûuã!}yÝÉ?¶b™{ð÷e~3Š‘ùQ!õçBi©áLë ¸- Ò3Kï꟞èQ`ôÃm·ÃÎ×CãÔ‰©L‰QÍV òe?=µ|Ñl@i|“þ!Ó”v+>ª4÷ü•ŒÏL†8‡~»è—˜ÜœKd?Ö;¶=9ªjkWm¬þ,EcÔÏåtžíµ"¤÷Ü^e;øUmþìEgÿLìÖWÃj7Å´¥ûÈ|ݺŽ#ÿ0¨òéHfRÅxΤöæ<ÕÑå Ø¿’`¸!ó£Ž2p:ÑÁ$vo~]Kˆ§;ž©ýh¯‚_µ7ûR'ðÌü?ãa0­½-x ú]«¿*^ós˜ü££ª‚Dn#ëmŒêµìN¦êúdæú+œÄ¾6[A]áA²¸ü`–±˜ÿt’Y!nÔ`¶s:Â"- €›ì³" q Ÿ»ƒé݃aÛ»Qÿ±»š€þW—ŒÒowôjùÅ~<ò ™À`¶l¨úÁïL‘ð"ón„†$šÑðuá’×Ò϶øÕJ*"®0ÿé§ÕÌŸAá7±¡ddyŒåÜ=?§ù盕­*{yÜm™ƒ{vG®d²x&{uæP]f݇Øþ“èÃ2à—3}Ö…ÇŸŒ½W»{³úþ–Žüc…²A«I&ÛŒ|;™´ãgºÐ£Þ2•è3|ËžŠÞŽÙÐ4بéDmb^ÃÏœct"§²ædçù9¢·qìÂã(A¦â?†ñ'X/ è^ÙÉØKÿ’‚Ä=Í\Ôî2+P?ØÃxv—„­¿‡úó—bêþ'Ä[¥ÿ'øÕe[%ºc'|&ÿaÓ­§4òÿŦâT5üGbmeðüÚM¶ºÌÊ£Öeö€øCþ#ª²MB9Øó´Ø¤GjR­„Ú_y¡Õ…ðwÔöªå¡"ÿ_eüGs,V7"ÚVLY ƒ˜_›KÚL”¢_öJ±RLµ†Ívÿ‘[ÜAµŽ'Ú –D£JžÏ`‘7°`ÅÉl‡Ñ¥b¤ô»ÍáÏ7À#¿A¯:›5Mò~à"OÉv7¡B¹…uü„'õ )ïØÃy%¥3Z0_øó$X¶Yø’hüá7î'Ýækyšüã0ñ}>æ×ŽüÍUL ­ESÖ,ÇWŽþŠXŒ¼«8Oþ|ôHÉpèÞÀÚQy2îpô#˜•,‚5Ó)•ÕÂàss°ãÙÉhbÀÌ !¯úFW¢qD_^T¿'®JN÷OºOuI¿-ú…›Œ¥ÿU%ý|Ñ,ŽÉBÞã+Ý8’„r=ÀŸ¯”ðÛ¸WÛ9¶Šº O,¯§v<¹!Wñž-]ôÇâ¹f3­<6k,ÂúÏÒ‹¡—íNæqqþ.]A²_å‰=ƒÏŠN·ðùZ5l…ãzê{Iäz‹ÿ°0µãh“¾ÉFø%T€"ÿ@U”m"k›bíPaÑýU;¶;OlUrü]Às6‚KYõç©é1•ÿqGâ?†›‡Ñ#ÙŒïr¸ØZ<;Ê%Ž÷ ùByž¡¯aæk†Zê ÜÂÙ‚.ô…ðjÛŒ6t ٣ͭ°wÂSÍƯڑì¿zËßo¹2R8ë¯F‹<|âupѪðç:ùÚ)ã!øÕI9ÉÈk?Lþ‘‚úó[ø6oêŸÑ½ÄKvA¿ëOÖÛ¨ÿÑÚq3~ØFQ?X„*K{–ç¢1W-.õyy@Ô.`Û›˜O™ » æcú«Fèyp_Æq—ò¡¿J‰§h#¦;ÖÛ‚þJpÏ’/œ‘ମSÏÞ¬£3UtºÕßFÛå ¿ŸlhµßeŒé̺ˆßZÍûf mš,:ž½#ÌÿhÂ5¨ÉzYåWqBÁTÙ:ÔL žxîŽõŒmŒùª'Õ ¥Ût>tÐéYUÆz~°?ð¦2 P'šš‰ùô°úç„ÔÍì ·le_ÂüÚÊö±æ#)ú«Tf=æ$‡?ÿ &ƒn_ :Ì(6ü\ð_üzÞV*^ýÍÖû?î¿ûþ%#èsØHË©m ž_»ÜæJÿÝÒôÀ:Ãüó?ëŸøÎ¶Ÿ\D"Ñô5®–Wí§¼×ª‹ èw¯Ó“1l„öÏ­´ð%†þ!ÚðÄx€ÒÇÕ›*ùµ¤(æj‘}4„?÷‰¤ÿ¸¬ÜUJ‰»Äãû‰wwaï’Ód¥FÕLÈŸÕkà•f‰Ø¢u¤æ´a~Ô Ñ ‹9þÃ$ó1ùGR¸ÃLr±žA~&OV±=‰L ;öpDg[J±êQßbƒGœ ò]Z·ÁË༠—ÀÞžbŸž*¯wý­þ*ùÇk¬rlÍ8Öżëo¬êYúø Æ] pŒ! –ÿ™Å"±5Â8Q•Ìj6~“®èàWsÈf> 0¿ú69Ьp/vV€R?†‚/ˆRØô²¯ö*œÓ¤ Ð\øÝ àÓÕˆõã8ðg,ýÛcá?ÖâãjÈüë&´m•Q|åJft<¹!Ëž´@ï·ücö/;øÕ"Ö[ˆýš ž5ƒ>M1ÁÂ`¤}ÀG²ñüŸçŠœàl²È%Z¶_jO«ÝÄx†¢XùSð \ïc Y&3• SÁ¯n @sÄ{q%ãÊú(ƒ§b¡‡£eí&ÂNQÐÕ¸(~\áÏ×³Û ?2ÓÓøê07è(Õ Ö7†=¦ñENa&Èκ$þã;|e¢Z…¬³µÙFá?ÚrÍžëua!šÀ4„•Yox¬¿JŒ½Jcï`¼–󬹄 ?±ùñȶٸèªhã´Þp‘†ÝpŽ(#×/yÐvøó9Ýh£õçùðø•[õé–»„ÈÞ ßv ïšÍ(!_‡Ò_)ÊHeþÃOU˜5'Ñ ,}®¡‡õ «™Jÿݧèy¯Ðõk~ÅÕlenE×0•ÕÒs5‹Ékú@1Áqº”-ªF5‰?|÷]*M>éx˪\¯öøä_Q x1O*¾yÐð§ÿUxë˰f ñÖ¥ä zt/MÏÞ!e‡–]¼¥¿ÊE·Ë ú>ºª—b…EØûGtÐêHnTob3=Q›%[¸Ò«¬ž†+Ó‚WYñp!*Ž;Jgê?j’5wÁÞ%Ö÷¼5Éý Ó,mž€GéHý‡¿ÙÒÞ%pû[# þ£›]vƒÛœ>sDA±ÉqÆÿÞ‹ ̯ éX¢)}ÿãùçR9«Œ¤þÃMË­íTZ°»öà?ÜÔ¼øEùÃùç/èß>^¤âzÆÖ÷Š“jzôW}È?ªŠ$ZüGGÕRGþ¿”bÈËáÞví ý§3hq±…E¦ŠlÛÕÇ‘ZîúÝò"€ˆv=¶h>˜ Ü#w½"™ä,lD#x øfô»-#ÅtÓfRù<™ŽÎ^YÑÓz“I.åI_‚Îl0|o>…ÔYìw8Ó|âQ¢‡ ð³9ZŠ_fÍd~Ô2Ý\\©Ä÷Ï`݃>=Çcd5S~üê2s½K Žíˆ~¶:¹Íò“ö(z:‰Nëu…Aõ.‘/f‚ű㻦W©ÙA?«—oqfw¼G›” ål=æ3Í`‹]¸J.•Ü(OýyÿaWSÿ‘å%×ÿ2LY/¦þ¾6ãƒÚ€_M ߸kd¢N¼1ýw¥éÿ±1¸ÿÕAò5ôG ÿÜ ÇžñUª ¹kwȯɴx…¯ÔÌt'_kc®Gãt‚Ê™…Äù‰ì à+öƒÞ™ÆHú_ÝÖ[1·²œJÿÝÂÝñìYýÛ‹òTÖíÉ'¿‰œôjÉao€x*õçÆ³:hX5꟣´ëLH.zÂŒ2*­J´k9+rQÇ.¼ L¡ÿUi¢¼.Ä{YõÊT¦œÆSF[Vœ¾SÌ&èwO™eìMLwô?€³IÎ=×X류MþqŒ<<÷ÿ„ÿ¸ÿòtF¥ba§}Ḡ¿}-¸ÿUú—$×&÷/Ùok¯VÅ4 þã½-rÝm~Le úÝrÄ\½l–«ÉAÊ­¼x«ÖÖŽÒ7,ÃøóáÍ',üâ(‹ö(ÑÉ-ð«ìøú#-¶(+<#Ýÿê¢â¯”÷ˆ—‰Ñça‘3‚_u»°…kùY,Õp‘„®ŒáŒÓO[kÃP ô™F¤5øq0þß1Ÿµ}AÉž³»ºÀ“ý¿ªì?vÀ|;™rQ€ ~}ñu§ˆX/‘;â;Ü8Òé0K­4g+àt`Áߨµu k½Aï·“Y}á©Ï¥‰§ *A.qÿñ4çÖh2ý¯–GØ¿=ŠÒX-/3“n“г p¹~\¿×º7àZêÓa`cQYqŸc¿ŠÿhEÇ­MTÿô 7ÿXÌS×…ìOÊIÄùûñŒu`ÛrÅ>ãï^iqDllIoYKzD¬A›P •„*š„Ž'7ä|oÙj»a¼Þ£;ê+î© ùGú4õ’Pš*ð½V÷+/²ÌDÅWÉ@¬þWú ò!K¿òT§‚_µ ;Ú ªÒ¿8ÛZî» ýK–ã?®£ÃÚÇ\=w5rœøÚè¯zŠ’ažÂ¯Ê‘Ÿ¨¼ÓQXgk~íú—d&ÂΔÓæø¾»›‘žó®ˆÊø&(Ò=ø›Êp²5¼¡q¤úJ4Õ7rß\È(à 2£•FQY•úŠ ðçû‰ÇÛ’oL¢B~«%¤f<ž¥†ÕvÓÓˆêNëý%ò¢+xˆß¯â÷M?Gݹ̉§ìn¤·ï¡ÿÕóàÎã±ÐÔ¢?zú°4d-_üGJ£¶üjþù[?ð«Œø—7° ç©üì ËÓ³¼§Vy'jåúDùÌ£àX³áEªãOær3Ø•¹ùTïÜZá8Ý=ÊyU%šz†Ç÷—%Ø!×ð²©Ì«k.ÁìGo»ˆšI»=žékìbz:¬þaò醨)òÒºý)Z;üÇ>åœVŽgÜü*ƒÌÂÞg¼¦RÜ&&xOãINЋwUŽó¹77è8Pþ¼ ¡]¶ÅBÔÄ3º8vá ¥  g_b„Jú.æ^ãLwAF5˜øÌ\b§£¯½Ê0ƒ)*‰PJt7cKAsAåÏ¿•[güクbK¢Ž•þW…ßýÙQDGá1*˜ÿˆ«MTê³ÊIúï–TÓßïUžýáüZ¡,Õ)ó—Pï-VÑ—1®Ú“ü£ µ„.Úê³ýÑq‡±÷è’üö½“x"š*…µx`IEbQW¾¿ÌpÿüÈ?‹+p±Xó±šøUFÝ]xïƒqÈ Ó2FèTµ‡Uu†·bsm*ü¹ ŠYØL A¹ ªO>!Ûõ$ºÝËŽz#êbKmzeÇo%ëgÅ•~Tì_ixJòË%`Yù©ÒëEõÈQüÉ)ê»cïÝù+Y@£ßê¯Þ«žøw½+±V¢1è½õBXŠćX3üÒIð!ô6öt¨Ø!ƒ–Li¢¦!·X€OÃ}°Ã§ ¥zÞÿ±þüìÊ¢úKxçþDž¾‡Ž5&6ã‘â ±T‰ÁšR©ªZüÇxо¤øÚÏôOìÆq¼€?s±&G¹ÌŠïñ¦á±ö=Ñ] ™r„+•1Z{WªƒÅpvo2"ì#àSϸ;É?‚dO#?š¤XF[yŠÊÓ°êBþ£2×>¸¡?ˆØTÇef#Çcê?šcMMû'2“žàc‹°÷¹ñv÷ÐAm—EÁ¯¾‡é_Ò•þíM9¢—zº¦Ôc·%`ÚÓ &É–7à Kû^ìk3ã8ö¾±…;‘ß3àç½ÑÙ5×㈶Nwyœ(ãò dõ/IJî3¤i0•#}Œdô‚O c¡ÙOWèëÞ?×f¡=ÙÜÎ:!üù³PøÕXØmxŽú0-ÙáÃæÑù¸ýÛû2Ƀ+½¨û¸`ģƻ¹9,§Ó³v ž$ÑÑe2ІÛt'\ìØ*»É?¢rt×ybσÄ% Hÿ“ä1^†Zgõo·ú'&Á/¿ÒÑBaç ʦ—³DnGìv„þ핉lk€H¦’±ÙýKèXU ÿ1þ<&s· †k`.áxwpoºÒ`9™Ž…_}#«.¤—EÿPÕá?ü•Ìê.ÉΪeõðçg™?xtº Ï6Ýì ì·Ñ‹õ€™ùs–ÒÌ@±(ô‘y,F¡¿ºNÞWä2ð #²;v‚†çùÎq"õâ=•³ÔÔZ[êÏ}‚û'zÛ\ÔžTú5RÁÑ?ˆÔ*?é…múݺ؃ÄÔrßP¥VTí¨ÜÔjëÕñjCÇQÿ|Ï?}5ð®ØúX’B¨£t}”’ þ¼lj6øó•â’j‹ÔŠVÿ’ â$þãÇL,r,ê?òëw—å·3jFÁdtE‰‰{0ÿ|4±ª.—³æT°›äY¨8K‰ KÅ3ÔܨèQJ}ˆcGt®)WT?ÏaŽâðü-½*Ê»{b=o`io‚cEEÏÚ k;Þoˆ6å7GøH]‹MíA.àDZEáYnFŽT \xþ£ ÿG8Ÿ )Éä)>e&ü¹Ášv¥Š›ÏoÌŸ’+8 ~=T})+þ ûzI`éHþ? —ã¡…dÈ!ç=Žùç=±â9ÀЪp/N7 }ÁçN€?ŒÿØCŒÛ$ÊüjÙ¢ Ý— BVùùj3ó£öbñïê³È8ZƒÖ¬ÃkÎÓ«±ôä\Ï€8x06Ô(?¶Ùš.äǽ‚‡™¶#l§šyêHøóªìèw‡Â¾Ï`oÔ Æ¯RSQ Xý•‹Ñ–¿£üN¦ól*¦1Pî„ÎüM‰Ïl»°…ºݸ ¾sŒ\¡>è*5z¢ zl¦7üåø•hi«àeî’û\“¹ðœaëÏGª6,™5y¸V|(±Raíw9ðÓù/©ýú«Žè§¦áçæÐ[·±¸$تTŸ©kíîò8aM¹ÁýjB†”ŽºmO¦‰L6–Ê®Fr»7Õƒ†YÀ¾Í¸'¯MLÍè¯äAÎp„,)‹áŽ™ÿa*îÊ:v~ð°Rø‚íºªdÉðÄt< ^ÃÜ‚²õ>üùPê8:Sw±”pµiÈxÒ=“~ÞZú‚ïT3‘S>‡ï¾Æ'­£§ÊdP¦@Þï ¿þcüGøóCL7œkv`þ ŠŸlÛÕŠ§¨–ø;Ôü(êÏË‚|7ÀüãIŸ-û’dFoåÊœ^Nð^ð)mèÆ›Ä\¿ßÕh {óÔXBíÕ7ÔÈå8·Nú«ÎôÏ v=š:RŸ@¿«ÙLvßH˜ªfûæŸ/²âxûu´—bVØ'×L…~÷›˜>­s劥Ž3þ÷^ܵ• Õñê-ž?“Ó¾ˆü‘D¡CÂêÏ]™_»9Øxë¯Q?x@yk;ù¥øÍ÷¶9ÚzŠ•Ãj.oTS«ÿqZ«-²kÚ{4ÁÎùóï!¶ñ¼<uˆ¹j€.z;%£¦²Ê‹ì¢Ø.üéAþšg”GÔb?<ÒBþN šw&ÉEì`~ìã ô?­#Õ¿d¶êSW0›­X¹|=Ö* ¶>­\ òŽŒæ¥('’Woð[ÿE™B´ù@$×P6þ¼ Ù‹HËm,ÝulX\¹KëMÞä®wÓFüænßS‚Mugº¢ôM,Çv̧²ñV¶HŽ7Z[«“`|ô»÷É &Š…ôª ÿÊ™JN5?yÑ.ì|¸éïâ›°<ð{}‰ôâg‹8b“U~ A{ K?åæê?Zk!rÈÊ@Ûâg2ƒ/tÎjaaÁžG%oË)nkñŒCdMåvÎ}kÕ§µ ¹WåpüÇ>[.í\ä;}&ŒGSPï½ÜÉ (ÍVÈîxËÓ佈æ?ƒÄ>>G/p´ò\Ð2-ó/ó—¨sA K‚Â<‡5 >da›ÍÐÓ¶†³˜o&ÿ(gЙ—zÍ0+)àwo’[Ä2úƒ_µý…?WÕ”äWÝñ–+é_ÍøD-Áy´Rùò!y­àÏŸ›iÐ×.m·*ù Â,<Û%+‘i>Tœùóê'ÑŒ#úW¼Ìñ¥ÁòŽ7öPÿQ¬e Ú«£D¾=aW¦íÁêà3WË8ð!»ñ¤mõça:ÿ÷…@3¯r?Zƒ˜e–ïånêç¾Ì/LGÿ’ôLi_gÊhw±'«NŸ¯wäG¯È[À£˜ ”‰ðq9QKÝ1ð$Ù©ÌMd¸#Ô.¼„’p(J|Ö EÉý‘©D™Î‘¤þcµù/7ÖîmbÕt¯j/oúÃ$d~Tk4ý“y*ï5ýoò¿m¹Bñ?l”2<ýŽÛÁ‹$Ê1ežúC­KÿÝÍJ:VÙÞJ-N““ÊÛ¥Þþ¿Û¶à“­Š©üT Öh}Ñïc…‹ÖýU]µÞgMñüþ½¹Æ©6ó£²iÕõ)úJáB¦°NV#×!ø#ý¯ªŠoX6zűƒ>‚øvá8ë‹yø$¦%Ÿ4žùÛåEx}7žo+møUwP›üY‰Eú“^R~%Ý ™PÖc‚`3~–N/àØÃaWùù}R¥ˆìV‘š<£ºœ‡ú¹$ñA°ÛoaJoagíò,þí‘g ½ÇoõWÔIؘÖXŒ}°{ÅDâ÷UT!ÜÆ®vUy¶>â?.ó;ñðx¾è–=ÑÚý<ç¯I•¼jN³ÐÔ%À?<EŒÏ}¯ï"‡è¤o¥ŽÎ&O³âðÜõàdkÈM®ˆáί]jܬ#=øUKr Ó uÙ,oÉ'ô¢G» É²:ä;wñ›ë8kB«½ËúÎÏV—.d}¸ Cñ9ðAVýù(òÀ jÉ `Ï®WÂNæ‘×ðIGQµ½"zX@þV²] ÖW•™ vè=×ð¼ÑYr†¤Ô”¡ÿU1ðµúdÞp4Éd"è‘ôçmÌüQ9Ì5üªèÄÕÑs­@ÈÎHK~‘ƒzŠ£òóËÒ]Ъÿ¸EEbÇ;“c>Föá-ÓƒbžP;­8þÜ|7@¯V ö*!¬þ£Œþ ÐIÏ‘ØöZÔÿõ¦Ï¼/¬~)˜øàMžÒŸ+³Tëà´Þê?а³nâáFË úL-3ŽS9rþä3¹QAj!¬ùµ·å|:7½ƒOZ)°â>ð½èÔî7EEßH¦Õ”x§WÚ‹ú&Dð¨aJÿ’ð¯é@yŒh½<:Pk1ß;¬.Š1þü5›ëmTvƒ_åf÷ŸÑÏËBT_|“#xÿSð+5c“I¦àEâ3@å óý|˜#ïn* q Ф”™M½P p<{ÐöÔ$²mÀý·K æi|ƒùXˆR·(ú«¬°Ž–Ð ­kL_ý‰x’FìkI‘‰®š®Ÿè¯ Fû—ƒè 9÷8¿¾ž»ÇÍÌzc´¡–}®9ľÌþÙ,̼’–¨¸²Éé[Ÿ‘þí6T‘ÄyXÍLÿþÛþWŸ~žˆíƒ­KpçÇþàENå}ÊlZ5-žöwpãkëIý`µ:Ú¶ÈYçŸ ŽÊ[ÔÀúÕ5 Óê¨ÝáW^·ñ5öïÏ÷Eôµƒ¸ žý´0ÈÄkQVo dÕjƒMç)6P~<¢7;ýü }†[‹—XâD³‡©‡+/[²›ZOvú”®®ÔŒQD}™ÐOx–èŒ=_Š÷øÜéÜ@:"•|Dåy`âïšÁ¿¦ÑÓ:ö°Ó!…ú¦€Òë¼þ#. ιìÆLd/ˆ–£‰ßÁÂÇ—¾x;+"¯¦×ÓœUü¡ú¿—RÛD@+Îj?Èc1LÆŒûv¬1¶y|Í.ô¤°wÀ—§0?êë¯Ëÿ$RNMƒ_›ŠW‹‹ÿx'‚`f¦â/×ãé<ôÅ0òŸQÝò”ÝàZNàŸ ¿jnýàb¥·æÂgÇûj…ÿØ…7ÏM®&¹~íô$ôÓƒýGK¹5½ÑË5†±Ïƒÿ¯þÜÏVA[ˆþê¹>ž#8ÚBÖ"ƒçíHgŒcÔ„tºG[[zš|ì0ÄS2D­ô/ýK6©ý…èkZÞsHº€wuB!V ޼.c ѳ=4vó]yð«ò+ÜÈQ˜\U_1ì—ùQ¦š¬µ™ßF4¦ õ¥Ú:&þ#ESSªàa÷nÉ–ül#{§Öþ ~Þ Ä?©~EÙáô¼LRM®Çf°ÒpYõ¨oL`Œ1…À¯6Pqžüª! ã.04¾äc‰ÅMã:¸ÓUÀš3~ÕCdÆ«ZS}ËpŸôÔŸïC¿Ëôxº‘/×ј¯q˜úõ¥(Ÿ~ 8[ª`µ''è±RN®»æmùGVTÏWˆÍPªô€?2†QÝÝ‹+á? ¿:3½Ðˆ {îbd½±a £‡Ìæ;L,q¬·V9«Æ#&x…Ç¿ ©=¢®²þã •‡Ûèr»Ó¼Eªõä#ýPïרdžQ®Ï¹$”×ôr<{˜ÿQŠÝÖ‘§5µü.ëë`ݳ¢º‹N иŠr÷4ǸK×`&nj*<½Œd4ïa9róL •œSÆc €^u¢TÐ'_x¯ÅŸ¥KäG:ðvÆÐ/¸]±‚Ј)ôk©`&‘ô‘Sôûâ ÏL†PŒãÔÿë/vÚ’+!Ó¥ßÛ+öYä òæ”×Ð’jK‚óöáp)ÕÂàWmaŽÿ¼rLzÌlåÀÊ’4Ó2jUUwüG/QKk¡¡ª=¤jåŸWúÿê.^`׃Ä8ö¥§~S$ÓÝÀ¯SÕD±ŽÞ72 Áòøã?Ù‹[©Í;Ï.+¦¢$üùߨ¨·p`-ñTè¿ÔPDffV+m0H]vÀZ}<¼D|ùÿ‘½hIbࢠãÕQîÖGWOäØÃjne”“ùQù°èՈ̳Ó~ý@ë?£f?‡®)ž<„½=£^\¯­µøÍÝŽ¡-ÆF6à:U{.&ÿì㾈]íÆ3É(iu Â<¦Êbý¯"¯R+%Ôœøµ1°iÑ T7pÔßõí0“ð"íÀ‡­ž»_´üjyÓ-2ÎçáœîZæº{®¹ ;'à²+ÀBQÍ}ôhLKDô럽ܕ}d=®D"%ù씎È/dÙ‡¶ÆÚ°d|Ã%ÑîncôIeaû+ûb‘;S]q t&7hÎm>ù*ç«`_úS›t-d©àW{Ð_u1Ë:ôHºƒùôåÕÐ%U1ra§K¢@-[ÑÎ(‚ù‹Š÷êä&s±MäAöcÑ0÷%u@kŽgGñIÇ“\aZRR:^… ® ç­ÚxSgzbùÀLUÄ×]£~p…ÌŒÅ:£ìvZq ú«&äËwõžtóh.?èqŒ™ NUɈVƒéöÝô¿ªi¼ RoJždÍ£Úˆÿx͵¸À;·j]œÖ["’—ùqMºÂb%³[iì'ÿ𥟣;”nñˆò}èpôEÌÏÔˆlãSwƒ ž³+-WŠ!Ž+¨(£)è¿;˨!«óaªuj6RÐÿê M[b-ð›`^®â?·’l “Ì)8ƒ#deµñ†v<×2æç¦Ö:Žoa®’‰%ÜÞø/#3ýKþ?âÞ>k¬[ß~’ìì$¸ûPܽ¸»‡âîî.ƒ»»3XñâE EŠ»‡âR¤èw¥çðT(Óò~ÿ3ïÌo¦…¶»;ÉÎZë¾ï%K¸6þØÎo7Tr©èí|ßé­¼ Ì?E¾†Éì+›P‹=/4æ¿'úÇs*ø}̦æãõµà¯vS‘tÊüŽä\ÓûŠÅÎõ<à¯^ëå#ôó#² 9]™Œ9Ì`2Ð?¶w©ø°¬éô߆ÿð3. „$0š˜WPÒã“ÅÕD'ç»wVY¥UCÿè~‹EåÊ ,~L«\³á?2Áp0OãO:ʘ¨ðM%ùÔŸ7#:‘èágSSòcƒÞt’ž­ëOˆ›žIßnHk=•’™íž‰*û9æTêXy­ä+PO’œ »UñÑ{Ra{™LÌþ±à¿øq7üU,çÉúèh¢¤sþé÷¶‘×®‹PÏSòÿa÷ð>çh¥ÖÁÒ—VÏ)þŽÈÄâÁ¿1©²Z,bs7Sèǘ S‹­þ¥d§SUS­¾vž©TykŸùñѽ¨7è„NÃWÍQÊh¶*Ý›:ñöÔ—.QÏÿúøÌG¹¤èâoÊôÚK0Ü…¤“WRŒAÜ'ä Of ó‹âÀ?¬óãK ´.Ô´á'·ð¦ì%FùÿõË”^î¥ãETY¼kú Åy†ütØ”’º©û ,z2”åòhå ¸êøM"R®>ø£ûÞH%]n-tXØÕŽ—êj,e}¼â%´¢Äø¸:xÉ:ä¥,À®f–Ëy'ìþèQƒ,ÿDºŠNS^ÿ¼LÐß$P’’5ú‘52‚æ±ÏðrãðÀcåú—,@y0äE|[4é_¶Nj ZN‰pë?VÓ7=÷+®Å5î%K§®x£]å"=È)¢›·’¥äJ¢³uø« ¸âÜ‘(Î77x£yx KÈ~Mvî7üÈ&rÃ6).­Ñ'z’áÚˆü«Wĸ ñ›ç¸£¾°b—¹þEèçasΦª#x¦­ô|Ø´«ðSþø3ØÖçèÓ ±^U`Ús¢V¸ùÈŽíÉS.NÆúÚrÌgñ0§»¬šoÔO/À„ÿ8‡}½ÂäŒïx“k¨)ùÑÖ›±Ð§;!šÒ\÷¼Þ#ì=YÄú5ei¨û¨_D%îô'rT}ÙŸBæWwêâ»ÈÚôOþÕYºB DŸN^ï~Ô™ìA–>€õ^ð֜ՅZ¯‰p弞&ªr ZÍA÷¿sÔ ú0ÝÅÚbV@»ˆo½7èIFåø%PÞRÙ,å˖بæêê|Q•™Ê"GurGJ£ZÐëÊè‹Èâ‹WŒÞáÏ*Ѭætã¥Q‚ÞSÓðE“Ð?21«,oP+1ʹÞBåŒúйì¯9Sg¥+oîPÚð]‹áÅ®Qy¾Ö*ƒ•–ê+è*á?NÑÕ"šÈ('0£t¾Î«xkí©È›‘K&†c]mÜ£Þü/ê³R#¿Ñ¼B”žèéÉèïû7jRG¬~£0½,9˜ˆ.³ô Q?x/¤}ؽrékÉß=gŽâ>ÅË5°™Ç­Q¾™é­Þà¯DÖ#òzãÙƒæŸÃõÛÂâk&V:¯øßûăú篻çh¬ü^]…óGéß>Pý¨æÑžÑi$*§k¿£%³Ï³QƒîKû…àoÄgIàg‰LD\9á_ºÑS«•: ü1ZÔ!÷$u%.¡ÎoDKvO‰{?‰©èç+t/2j)îZylÄ_ðWýà¯VªÁŠÛ?­vŽ9'i`ÃΗ¢þÀ$2+Ï. ‹MØ›·TÚ•åýšIÿöâÐ?-ô¿_+¯õÐÆ‹öøeèqžàƒïø 4Èìr‰^ÌOw˜ž CW#ôÅÑ?bÒ¿==~(;QNF86xãüX¬Ø3,Ðeø««°ùt7-¢l‰øÚz~¦CPô< þg6z/6â y­mPL—â9NcuS <„ë.fÓ«?üŠ(YÔlà…éØ³Ôøoⓨ‡ª¢Q‹<„ë[ÿE\#—ëüàjv}·Ã] oðe¢–M:*¨28p'aftþØô’š§·EEB¢ßÞ ¤Mø·]ä†G* žMŽÿxë(§“ð£À,qA}Ûx Ì좛ì ê_ ‰ ÂÜ#nÎÓæòñ¬*ãÉÑèaû'îR;‰®Ü+W8ùKäWÙ5ü7¨;þ?T…9%`Jjbí[’…u¿™-i/l{L,øqø«°Ó™SªÕ$õ9+ˆíoÈös„‡ÉËï˜_Û—ˆ÷þã+x!«±üQ“gtŠïñyQçv)^¡Þ—j<îÕ^r¥kÓ ³§-œÎ$£?ýåדé‡~¯ؽxÆHðÇnbÂxŽ( ¦%èÊuôUa"Åè¥äuÎUut¢/ú rd½Éèº,§1?j+ EnúÚždo3¸ö+äÅ-!º÷æßó2™‘O.½œ‡&Š2F9­Àip5,æä6 ~p6ÕCÑŽg¢H!÷.}wWשÐëh.—Mà¾$Fÿ {˜>Ûë-V.«Qˆ nq>È"hü'é§EF1|Ðx1/3*þc/ýw]èë{Œº—UTçmY·â4ÄB?¯Œÿèí|÷Ž)µN¼ã}¸9e*ê_п½Xp•·5AÝÈlý\P«1Žî¾-@5½Œ&ØžÔdåä§æêmœ§ð(úÇáÆzÈ–³ë7Qãïp¥öœ¨2T“,1[~ÖW³¶5ßœa<1_3– †--y‘vGºûâ*À¦¤Xí¼âï“yŽŽàîtO­•œ¡ÎYäw’N Pj¨ÇÈ´½Šÿ°kÈv:ÊÑ=QªeÉ¿zó›ý“+艟Š7& ôòk™ÈßõQb‚ìskå´¨*¿§ ÆG·¦Ô(= öf¾ð%•rZ.âꮢ‚hþ˜¬®‹ÔÅžQü”ä_Ùù¬Åx_^ƒd#5³˜¬ÏÑ_£TÁV ßµ¨‘Â%´A ­†T2¯„¯ñ"~„¿OG¼›XÒi~¤yc°¯ÏEçþÕV +m8›Drj•*È9ðj…©š¬‹u}-¤!ºÈ%b§KØÆÜzy­aO[hK¸¦Fìè$ÿ½sQwž¦¦®uØËñ·‚ð‡ º×=-D<z—…•|ø!Ç’G›tò(ú1ŠãdOjµ§¡UHðG WþK[¿&jjÁ ]ðŠK•¹Z búØðW5ÐmÏãRóJ,z?¦ºä èãa×n§ñüUYü_~þŸÄùæ¯öÌQ\Û"V!³û¯mûùܳ‰ÄÓ£`¡r «Ÿ"#v–4ªîž½ñ{B9%œü+µ#ÌBkSèabãq\Éœªoµ]Ô‡7A#%év8›×Ï4û×Vž-š•JýDÎ`sö³^ê4ø# ~äã«¿¢¢ÛéJ;Ì„äï¶&7Njؽ*yZ×ÑkjÊJØÄà˜zô‹Œgô0þ2j ŸÏ‡qÑÈ¿:B¶ìôw㩊Eã˜áxoOål”H‡‚sÛ\Mö¿}—¨ì ó5‡úAoô™ŒôC¹6ÕÈcÞáZ×ó´í\€ÇTµg’ÛBÔ~w,Ur_‹£6—â·MF‡¨IÌ=šÞ ½Ñ»™n¾¦‚æYË èp›—\Ù ðWÉhNi ßÕ{Šy·;ƒþ»ñÌx6ï!ÿofS­Öè °ó©Ùáú)¦A±8nè„ÞíùïFžX<Ðl-1YÔu¾{~ÊY”·®Xû3<8è~ËÈ1+Ï4…ß΄›·Ö =$u*`$ª6>’9VCO„7Ä;™Žö`þꀲ€þ‰Ea†‘Ò/£yS)yÊ¸ŽŸÒZn޳Nã? 2¯½²ñŸÄ,y¼fÙ^—œë'âQlj9ûå¼-ÿO>YàøêÆÞÀ1B³Èÿ’\ŠE·D…IOß@ vþ®‡£Úy**{"¿ßùÙáINtf"çÌL©K­¥Ôrª ”ûÌLµJÍ®Fù­}vA±èƒ‚0¶d(UÒQõÆJ.-þ£$ø£ƒØ'æªG#µÃ;èEÄ}âãÄö'±ÄÉÈé(¬§ãÉÙ¹Ž, s>F|ÐJˆÈ¬X~Â#DIÌíúlfLØÛþD*Oùo&Zßw8Q v ¬_ÄúG&¥=øx™ˆOW9•º””(Õ±Ö·`€oâGâ÷¥7ÃZô‚›<%ã5«½Ô7€Æ6ònˆŠZx]ó`«`ÅÓÉq £h£¥ˆ5ê`ÑôÊ/>j‰ø‚’àÍ;¨ÿs`®4ò 2©>ô¾ì?ù;Ü´­Dtç’]aГÈD˜+°Ód%Ù ‘NŒ^TKï&¯¡wò"¸ì X)‰œªeþ©þ|®ÚœìÚÜ©³ØñNøÖÁì°ø¥½‘Žü«òôO,Êü"ä_m'oÙÄúús’ã?îÏ sºã¨ÑÀOT+a¥ŽÀ_]ÀŽ=‡åèÊüÕKftã¾lh¤ _n=4ݰç‹/õÀ×”ƒ¡Vì¯Ú3e¶“ÝßÛþê“Çéè@8?øÙ>{Q®«’Ç6ÿ±vÍüãO~È¡0™{cD*² ìúÁÒ\m€nÐ'ñ0ZÇVêÏs¢¥#3)}Pÿ’éDþwððjøâ£x¯SºBÔÄS&(6sX”Z ‚ü¶Ù(wfñ¥2Ðÿ½ýKîQAóýc4õ®äónE‹·³äã‰jÀ8­r>ä¹Ê%U€•_c<”™à›ÎpUÐó; ¼£ãnÐÖ6ôž”t%;AÝxw4–Sú½1<[:¢°zb†¨áô·•ÇZ}ØÄnœºTÒ;ú'µõùð#AHI˜?5,Bo`Ó2·¢ŸcZàg*7JS;‹ÌÝÜè` ¨;û±Á3ÊbåŠða#xÆÙõ» ™‹`¿äï6åIümN³ŽX_¨ŸÃd«ÇæEzÎç!¥!"V`^ˆsX5:ÄþXð_ü¸Kì?î€?~5½!¢M%P*-Ôj|-®¶D±ñ÷lGaµŒ—¬³Ô˜œhP_Mÿv»¦ßîòD¤ÐÒ0c¡‰â§µ®Z{m­ZTMê}õÃáü¡Œ¸­OÀþÙõÉ©Mª×SâiYˆ"ªÀtÔ'ÅF52j·ÃqÿQR܃ý¶;¾nâ”.tt*’ÜDüÕ »Ü…üóWZíHõOlÂ<÷?E}pÌR,æTìŸëéã‘Yz ¿~G½þD&sGüBp S8—ôWQÀô":~¢¦\†–ž Õ»6ºü-ªÞà ’ÉÃd"]àoêèõÃTý¼ê[u;kÏw‰x냭^¥…kñÄN”ÁC©p)6~Në¼Uß)¨hÿÅ“I¤$TSƒ×á?¦á?Š&Dù×ÈÜí5X¶¤ûQÞ…$X x‹ìú.ýwÃËèšÇÔ„jX„ òoîÝ¿¤ÙÊ-‰¨59Œ®Ê©´µŠ&ðWª<€’Ò„)õ•yïƒ#¿àë=ê(Å †Áøžip+édZTÓVxʤäD¹ËÑÔ)ÄÃÜ$Ú?ú¨J:WéÍ÷—’ZŸôó…jwљߕˆ{J]ñ bóËè®ÆTüÇmê?n¢ »›ø.Xü7`º,ÆðG?Q)Ì=|¯$ÃóÕÃmÆŠkÆ®Ûý#õçy¬Ý±Q¬Ìt„ïLMá>ÐGM¾ï2f71ÿ£ ýÛCç_uWþvY͸ªÖì/¡Ñm"ŠÌ*fnÇaþ iõ$ƒm}Ïð¬‹Q'üp®«3ó»…ÚáxQ ï†(£ hKåš—£tOàçy`ðsã?\­ †Ÿ\Oýù5®Âž¶üB¦£ÿ•â|]0vë©ÁÑÿ®`!›Qÿ!ȱM ´üQÛÜ€~.˜_>–'3Ó{·“<‹§”טˆþõAïBMž©œPqVðÆ>’ñÀà@YÕàÓúQ‘`\gZïLº˜$²rÁg]ÇM3F |Ô;“\üQŸþFÁóÏ÷)—´bd¿7ƒË(߈Ãú#UáÓa“SçâCÿ’Yìv‘‡þWéŠÕ‚þ&ýÐÏm\;‘÷˜.¬ùã‚O(µ±ÔJ÷æ¾f…Éxhd´^€´v¡ŸW¥êc–¹üÃrµúÉõ‰1©íƒÿè†mœË[ù«V^,ÿ±à¿øqC#7êÇ?ÿøtÊe€úZͨ½PÇõð^訠W¿(îðWŽë?~I¤>~qla*x¢Ò<úYüGn­«:—þ‰uEf&T- &ñ÷ôóöÜã1d»õÄ>÷£¢ÝÒóU‚HªLGS±G¬R#‡¨s)*^c‰·²»½X»,2»Ì!<ˆò+Œ÷´Z"25“-µ®ÚP,¼Ê9]OìÝ ìñ•³¹ þJ•Uñ{•±?ñõà<¿º‰Q•>ÔÐíä]ɦà—ôplÏ„;ÖøuSO±²éå>ê”.¡(WÒ+hUñ¿VÿÖ¿àeá#úe ÖA—(M<¾Qö‚Ÿ¦‡º ‹Öâ(ÌÙTåë/6—O)¨æ@ÿ>XK'rjÆýzIýy;2o碨XXæwhâ×°mv6Âc0JßpñÇze¾V~+;ú¦~æ(Ï ,œ~4r™úÑÍ!‰HGôÜÔ°OÃõÏ&zÁÝp ·~ð(ù»ûÉ€x§{ÂÕ¸p5[y›™ÿË4ôVøwØÏæ0Gã¨,-º2zÆÝŒ‡ZëCoè°ÆëÕéä–ýÀ!E1ÂÄ ¥æ¦Lýé˜8“éGO:téa”‚mš âaÚ1y~£§¼þ«ŸUr€vÛ`½ˆ×ßË“(No©ü*ïÊ'Xä>Ìÿxb¦ç+Ý©6ðÂ4Á†¿bß^ÔeÒ¿*«CÙû>ªäŽÛõ5-P°›b×rc…F5rY?‚fVg㱜itbŸ]ñž[˜ôô µý3æ{­A¨õ 0‚ôÕOòo¥/úùø¯9ô/9þ(hæ¶c)6Ñk¿TÖ§‹Á}®&Q]ž10ž2VYM QÿQL3ÿш™ËÐàÇïQ¾íº¿FØÿöèþä"Œ1/P'9DVØ…Žÿþí³œ§p-ø#õ0W8#dü¼Z'òÕzÂ¥‡¤´v’mßÊÿ¸ 8ŠU/ÀÁ½ì'"'“µI4wâoå”V›,ËNÄ7É¥ÊÿçQ­òä/L¥Îþ<µæÇ`Ã’/|Óe¾²áo.48ÔÇŽ%G7'WÖÌé?Î)CÑ?2Ãôâk…õÇ ¶[`¿]pv5ÍÛ¨;»¬Vr+;ó®ê©'¹bÐ3ŒùµMÈ̤‚W<ÁjTù¯ÌÜæ°Íy^S?˜Åù'çˆÔ'±È¿ê¥ÆÖ\5E[”¿kã:jBjýN ©^ŠÔ*?¾éƒc>9ѕȠςšC+®µQ·Ñÿê/òw«kÓÁ5™kŸÄ5ò~>‹AD“ô¥ÔgçÀ$ã­î€Î]CxÓã7rþã&ó£*ŠïØÓÃ(šÇˆ@]ež{|1¾ü^ª Öv²øý¸œøØþj¹:É š‡I†bØ úl¼Ìàà”ðx#ˆÚ#î¿›L™‰>wÿ‘ 2{™—,§&ö›ƒÿ¸ß“„(±¶Ì›ø³M„ókck«ˆèËÁóâþ=umÐË¢Í.Æ6ÓÝCÿ/s"%èæ,™Ñ‹CÄ#¡/ÛÿQ†h;LÄÛ’ºú Â7(#ø Éß `µ·¬vnÈïð ïWG‹γ^‚ÿ¨ƒï)?Ux ÿa{nõ} þ[Š80C­±û»Yq¾ 1º}bøàÉÓÁû»NÿÄýbwǃœ›|(è‡@‘`‰àÕ¦Ò·*7þòµ`rªÊ«°èö¬ÄäðNw´ jp îÿ¬é¡Ž#ÙOi¼B2£7÷f8;,~iŽ~î‰/t¶©êô|xFôüð ÿF_fatÿi~íðGYžX%xšÄF ãÑYÔöDpKßé_2…nw˜ ñf&=ŠJ-ò4ºU}A©c¨¬ u뢧ÔåT¼×ûÁ†µâ”Å­2úÈbô£õ`ß-rxûÕý|;©Zw2ã ƒ­$~ 3ÿ|š(„¼Æ)©%ûPÍòUeRàbÖL£€u†J‚ô¿Úmhô4©nÞí’Ée{À51È =œÃTPÿ‘…;ûžû÷ˆ·¢!÷)}q3›c¨ŠX„îñ†ÎPŸè|5͈B×Þø3Ôjø¢‹ƒ©úÀ„Ÿ¥Îõ);Õ7TâÜ\–‚Óðÿ1Õ¼]qÓš×ÍÌt«÷"ç¬8úÇYª7 Pƒƒˆ«h47ø¶§X'‚{RviÁä툒ÊÞâŠ~ÜP­ø·žLHÎÐ.˜ÿd²ZEÅDøò[èeQÖf‰çZ¶+kx»ëCþÕш:‚Í(ò+a‹n¢µÆ‘þzZô42º,§ ÖÀ¨ì<Ãá­dÿ]e49ª;Àɉ*—as Á7ä½¶ù«çð8‰Qjsò=X³¾Ö=‚» zÀ‘7çlŸ|ç´–†ck ¾ N£(¹lùÊYì®Àïí ZcÒ/û—¤¥ÿnø¥Éà©$¬Î==Èjx ¯ÓÀ™£±ß±²ïàò^ð[6½‹b#ÚjñÂÙå*e*Y”õÂ’zF<ÄnLA|·?ß—ŽÛ·4e¡Vj=ßuuɧäÆ;ÚÊùæßÅ£ŽÚ:ƒ…^0@fá®ïÀg.G?Ÿ÷?‡<¦äx·pFGÉ‹.Dþîi2ùrÝM¥?õça;<ÎQ‡ˆÜ«ì0}ÑŒAØÜÁ°E¥Ñ,Æs»Ø(MC ã,h¤$Ù¶#éRÓˆ˜}™Ìg,'Ä Ÿô»J"ždC=7“WLC5ŽƒeŽ0¿6öü!Šò`bÞ§f*JúR?h_w1Ö{D¾ð ²Ë‹ê”…¡îa+õ-þã(§¢P͹ïÉ©ö; ú) þ˜c&$Ö0æŒ3êÁ_µkz’£€×zŽåtˆ–¡Ök'ìŠwæ–b÷ïË}è¿KØÉ #—µƒúAWz2ú/©+¬l&‹Ëƒ;· bROYA¾ƒ‚õçë‰ÑëïÁ'­´ò™™H²}¿ •ˆ•ÑÏÿdø”ä>Ì??µn ÙÕQd—øc¥r“úsúMò¶Þ”.¨÷ä ìzúÌ#x HkÕéÀ¾XìÔjô6OÓ ˸´œ‹ÿ˜bþÇrå†æÆ™³û'&Ï\Ñ—-¬࣮f6¶öøßõ`‘Ù¨!›˜ÕÉtcþùP£l§{[Ä~Š!Ná9e„6‡ŒÉ¿°¥ùê^#¿õþj=3³£¤ô7—Zë- ÿÑ™ùïë2=}31E+)õƒOà¯üE ÎWíÿJýÇG\åóɽq´R~Ï.;ÔáB]Ä õj÷¿Z4w+õçá¯*«§ÑT#“‹¼Ú5ÇaX ¼í•‰@]ÑÏ«3?Ê_kå¦m¤*ñ÷ü\ ñÆ=©@|È>‘Uϧ¤ÐÒc›‰<¢¾Ø@ýà‰à_ÿŸ½R¼•š Æ‹Øú œ ëde…;É/æé±ýv›¶úò:‰Ëÿ°Î/ Dÿ˜¾x zYf<èÕN g3ûYä+lb\lã 4ƒtúÊ<,ñ>Nc"éךî;&þü•Qóþþ4ˆæîɺUµ¾¡¬À=üªndGí°ò×9ßïÅXs:ª/–ý±£“ñ{×ñ߉­À WÅð|hð:ög©™_[†+›EþUB²2“‘Ö^ç£î!G±›5ر/äľ#ñ6¾hÙAš¼%Z…‹?V*c´~ Ÿ‚à wvp_Y|ïoüôp½¬x¢%2¶AÖÆ/ßÒ÷ ÷¸“ÁV Þ¡D8þÃî¿»‘wQLÆD¥ áÄ"ªíM­ËüGgþSfÞ Åþ w3vú°] [¡²ŒþWƒQô  D‡¿²g²¥7ÔWÙÊ(FþU ¢ÈŒØþÆF%c'þ#¹Qè•؆Ð^äó\ž*‰ÉÍiƒž²•þíoå ø?ú—Dƒ{4ð4ýÌs°×é©(±ûš†7+¾øì̯]jÅFðWÕØÑCló´û×àh ñ+±¥ßñFº5Þx"G]Ñ|†pžt‰IEàc˜›èbt¨õºã?Ê‚ÇN’[Ñ“§øL†¥_hÂ_¦d~m!,k.˜ßQ…úÓ`…–`†Ü‘d†øc¬ó°$aŠÝ&ý¾~û†÷¬ùWñ±Ç.f7z¬Ì¡ñ2=[î˜Ã±Ê7È^.Æüsèç'™õýõ™°¢ÿî!Å[MËìÏÛz^&+Ÿ Kä00VÖÉK¶Tê½×ß” mÁ×O9ªà?Fq­;ÉùOÏÕìÃcçžMg-Çf§Ä=BͰû—ØYA¾h]GásÉíZ*5xôÿ¬¹6”ÇÜ¡'“ÍèôC%*þÞ¾f59§ÄÝw¨k(‰ÿ°û§»£,‚¿(/Š.¢hØÓ­Æ'6­D<±Å9J‹ôTËåF ¹Fþ®»Ù‚Ž{ψJß1o#­±ÿQìq¼ä-ËݼQv…Z±™6Ìî¾Ó½qqLðÇB£>üÕ,jëüÎ ôÞF]æÈw‡Ó[Ε<Áæ?C?ÓÂÌÿ)J¯Üâ9ä•}‰ÿßÈ5ôßk,—ýŒ¬ÌªDfk2ë±qÉ5Ì3ä¯#mÁ|£f¼˜<-†;ÆwÇe¼,g¿–v•ÿ• †)1üÍT´‰òà7êã'š‹Œç(ô2O ªÉ ÿ—‘ ”6!¦/Qî¨ `$ÏCí‘q¹sçeTx“y°§™?5 OÉ|'ø«ÜtE>‰ÿp£WãIåöTäPÄ4ª]¢¸óÝ;MýG"•¶¼û°N.ôhÉLþîR꣚GÑÞïÍP‹*~s/jÏ<3*õç]†øhô¬JÏ©ØÉL‘|ü1SdDÿèC¤˜UkdÀã¶1Ö—`ÙìÞ*s­íô¿ªi­‚ÕŠþxÉŒÉîôoÀ9ÿ–ê±bÿýÜÓa†èõÂQSù=]úÇ=pÀƒ=Tú«qé´þYÄ‚í¥þ#…]-ÅüsCÙü­‘øìc3ù»nXÍâúñ޹†¹É¿:§ÕïÕjÚßä_%õ>D´d=qè†è‡Å¯¬/IôJJ\-%ÌŒ‹È&ŠP?8UÝÑ"A_OÿÄz" Ì>¢ähÝy‰ð ˆ¥DÌv­DQx†¡â¥V#RúÇ`­7Yîàù( cPìNÁv]˜—„ îŠÔØ}H¢éégøW[M©Œ" ß#€ Ó+!%–ú‰¨Iµ‡\Š/ªG,;öáÏ“±¶™µ¶ÜŸÚNÞ£.øñýØÓ—èµÈ2n Ë…ð:.¼[ŸXù::¬? ÄdtŸþôÿŸô·) Úòˆ›‹>–}ù /Q™1[ËøŒt_§ä_ÓOŠZp†GðÊ>Êtm¿7™\ ²¸ÉwÚUŨ·mN!«"] }Yi¶—j~õ*üÕïõ/yëXEþU5]^zIQ?©1ÕÉÊQ­³óh3ÕÔj°êï<(ÿðIMžr[z¹¶#d§º/¹^KI¨Eç \ѤpkÅ ÿ]Âã^Úõ¸GuoÑF ¯£Öe™6ïýVŸ’º CWf EþÑJ*Îh1Ч[€xá9LaY|ÎýZÊUŽ2†‚‡r0ÿ<µØ–ußxA]H1s>Ú´¹r˜ß\YÞcœwÐP&*{ј+Ãê—ä´ÎÒÛ¢wß0¦šQÌBô›ÀüÁ{TМCÿ˜NŽ«+µíÞ\í$ü|"£3•¬Ÿé.ø-"õ«œªŽà…ÛL–n&ÓÌB?ßÇüŽët,œÊ,ŒZ|\†:3Š;σ§ÿŽšÜɹÞå*ø£ ÞhþD&BÏóG'™M޲;õƒé©ÏP­ü?üÕNô<Ì"Ìm²Qk=aub›Zb·ÐþãrU+A4Ò‚_P^gô¡è5É¿ªd~5v ¬\gþGu²ÃLø+7´ô(ÆE&—%Œƒ~žTûR/ç<…Wé:•ŒÉÖDiE‰o¶Ð÷$Hc³­þ4¿PUò·µ˜Œ¬<Ö¼Êy"ôf^NÐ3,Ú±}ó oL!¹ø×y[þŸ|²ˆþ‰o+Ý@ÿ(ê\8¿á'©•#èççÕZ"¦jÛüíFø+¡Æ¢ÿîr„D¸BÈo¸åبÍ…°š™¨¦¾$«…²W+*©E´Mô¿ú=ýãvl©Ûd²Î¦k¶ˆ¯wQî« a>®kŸµbèç'ÔÈTû1YW¹«d{ÑŠ™£¤ÏÄŠ¤”™¨ó®€’µ;VNOÊo$´ ",«ò |Þ\ë¯uc_·ÙÙRþûŒ½îËô’8| /’3ô]äƒo}+ò9ÏðŸûñº£ HÇ…Æ:•årNc6PW1±Þ&ž—p õÕ°PôºZDSä÷ªÃðhmˆ|·qºýÄ~v9þãlFO– ðd—Ð?^q‚íóÅ,ånØMýïŸc¢|/ȤIï«© (ûÃàžþFpÓ§ÈnðLjûâ`5–Çf¢2¼€¿ kNVzh}`¸bã{ìžò×ñ›%‰©£ÃŌןj»4{þy'ðÇnT’UA׫Òw«³mÞ /õçkÀ/õñ²º±åf®t>wºlÂke J³=ö"ø£ õ)>Dø¿%k©Õça–œ§ŽÀ׿!ØÇ_›= æÄô3ÊRQˆJµ2è •™.~ˆÎÑøQZɦr£'2…y /)öüóúøé°÷×ñ²°‘ðWÑÈ­ ÀÚU§ãÒ=ê?îёѕ¬ÙB`(T*›Ë¾TWß‘µliO±çF'Ow¥Q¶™Ši‹úóxÖ$üÇ,£ybY𩣩Py†Å¿«÷Ö?h¡õó)¢ (æO¡,öu“?´Ð‹~’šü+Wzyd´ŽÀ¯­1š¹Ç3ˆƒìöÊœF3ùAôsÞÁdôOÜÄh†ÿ¨þ˜H¾R*ã±1’ YuY²{è¿{Ÿ¼«¡ô©ˆò0_4;¨À_¹Ê¯ôÑí\oý¯Â_}‡mþ^(…ï:3t”:’uÌŸZ Úše«óVÖa-6«À_a—Áf£ûx€΄Ð?ö+´ðWÉáEÀÔV¿¶pžB¯ þ*6¬k¢½Lº›‹;VŸ.igŒGt±¬c®²<­ïøó6ìì-5*y͘d 0í#AÍ2Ù<Ñd%±ÁyÅÿÞ'Ë)•`þê­£}PæÔòûÁëô§bôáJ1Îÿ6G ¼GVf€ÜTtåôo-à8«--”E™^ÿðWÓ2ÿü®VR¨ÌÿX«j¿é?2ŠsÄ“·EÔ_W}Ž £”rJMx©i¢¤˜"öªg"µÃ'ôO¬$žqwa‹æã1ÒIWjºˆMÄ«A48éßî."S‘ØžúÁ ¢Ê»}5ŸS{›(:ÄŸ‹œC‡·ÄÕWñ¤uÀi"ô1•1¨2^".ÙA°îI¨µøû5 í°$\Øqø«ä mÃW•$ÿ*¢ùQ—Õ%¬Ô ßqþê>²*¶¸‘í&ªJ‘KõI·U‰ºª™)(WquüG|ø¥(ñѦUø«†p@äï.,ÂèØ‹g0Ô'ñ“ð-—áÌê„;?j ó;À÷²BMî»/Ñy.bêXÔâÖÏh7µ”†7Ö¸®ÜÂÙÁõºs'Rò=9œonðF/2pS¯õÑXû¬±Önúù6Ø¥¹ÄÔv>´=¿Õ—çRÿ¶ì³ßG~õƒaýÇAu†ÈŽbÐ'p/úÂsNß1âÙxd9e3Öaó.ÙÉ‹u7jS­Ñ§]èy$ºs5zÑŽyÂø ¬\’59,ÿi”“T—žÃd7ÎÉ«0îM°YGèõ˜Ž()A4™Á†>ÄöþXÀŒÄ4W”K¡VªøZ{þ`~®°$•zñŒAÆd£8Jµ–ÏÆ i¬6x§éìð V4öùÝâ—€?è_~ê_Òÿq‹r|Ÿ¿îKŸÄ•pM³d7ßydH øûTÆo¢wäEr|׃z–ÁÆíC³hAßÊù0¾;<”zZxÃÇdgŸ‡ÆåJéë˜ýx;ñ})êºs˜ß°¬ƒ˜ÿTÀœoþÉ]ž ’²'«§&æê¢â!"Eòp_A}S æ!L.J½LðA,Tø»¬`ã õšÎ#S©.ñQWæ‰ä”ct7±M4t¾{»•óZ%BGÖËK壗>‚úÀ|àùfR&[=£ûÕ`ЇÝàÿ¦NãwÛè©Õ™XǒÈaúsÒÓy /)ƒµé"ç­5ÜEjðGëNþˆЉj¾×ºÀü0aå褵ÍÈF¾@m3ìŠv> ýã9enb…óþ{Ÿ¬uä ÁW`~TXäÙ½¤ŒQ¯á?âhË7Në.ú—$§oõƒ¢*¿WÿñÎñ˜y %‰œ²““E{NÇÄùÊ[ú—¸jÍéð›Xý½þW.â9öï¾hA¬ÜXß"DeÅOÍÓTBT¡ßéN8²È¨Çå óÏoÏo'—g==6rÉòXÄ*b=ÜØC0e&lE/›ùQ‘Á\=Éß)ÚÁ¤/ žk;Ñ÷5˜¢ôà4džgñC·Î_z%²9Ïð¯žJreøÊW$'"©)ë.Ôz_&Ò\sU«wö.^ó0Úo ½¬V%”UùyÕ‡êZô‰îØòíÜ?»ÿnm|\#lÝ.¢æJr-ñ÷^;{ñhÊè~'Ã5üG…pý‡']šâ¹RP{Ø€ï;‡ÿ( “U’žùƒ c š0QWˆý—Á×éABpçÓàž$ÿêo1 ½b,vë¼ÅT¨-xÛy¨žDË™e/²wý°Qñ v¾°=ä ß1MË¢†í0?…þíÙMêÚnã}ñ—gôJ(}È¿Ú þ¸OTúº¸jÆ r2ò´ncSSíÐFÝïÍþ,ªúš·¡-Vu9¹×QÅróÿJhôh'—“yGTã3x!7¸¦ *Í7t;V“;sG9jÅîLòj€´{t\ÇZtþ8ÄÄÙ±LÚØÇÄ£xÖþ`Üë˜b~OÖÆŽn¦R#œà@â£wZPëõ%áÌΠŸW#ãù‰þ‘®\ïQ€_á?’å_¥Ge8ƒÿñÂÛ€ã²ûßìâ~êèöîôüêè¼à„ÌÚݬg•ìŒ˜Ç ¥,‹lf¤ÂCºfLƒ­»ËÜãÌ­]h¸àíš ©eŸÄÞòpéP§z‹IÎõ6+×To°÷©îÎót§³TlkùÊxD½F4þÃüÙ…¼®Øtn¹i43ófÛý‹r6Ë2ÿ£óÝ;¦xjÕ@ºÍx¢¹åU²ŸÖñ©=ÜÂ伬¸O²Öl ?vÿ1oÒŸ‚†ø#•ì£LÏcøŠ¼N%ìüGoþ-_pÍ(CöôŸè1¨tIDþÕ|k§%­ºVWüG*ë‹‘Ó¬/–„ú·bþãªS!áùcÁñãêï;ßuGóÿ¸~0 óχ¨×ÉŽúRHÈéÚíH¢*j"êß0ÄÛù["õ‰²>šMàÄ7"™&©< œÔÑÍ»†¶N Pâ‡:¿­ÙF|B·}!ºJ{Ðÿ*ŠžJY«JðG)áB½Ö.±KÝÑ"A_£<¡þã#¸cÈrlg)r:\Èß]Sû´Ö¶§øªû#±bm­;õ•àÃâ{òQ£[ÞÁ&À7%…ñ{Õ°ŸE çþÕÂ.ÊHâì=\_:bÐahÔÉ9_ʼn4/c½^bg]å9ðÇðGq=ŸV*‚»øD]"ê…õ»²ú(¦Ã3-Àì'®À;9åkGƒ]~ÅŸõ«L»ìÔ¦°Ù=zÑ_ðW¢9uÙ_õYr¾Øž¼üñ¯éËZT³ã[ü˜þ¶»”}õk•ñZKpó›À.ÇÉ|«Î¯Éø?—U¼aÅšäÚ¿Ào.§~â9w¢¬ÞÈùæßÅä_y‰ xƒYXûìã$øc'Û 9ì“Eàìoa‘½àr*ƒp‘Œ‡Ô*&b~Ôjp Õÿ¬¹BÕË·´ÐrwÉîÕþ%Áw©C?‹7ibØÿbá_à£NþÐ ñóü(CB\Rr,šøSr° ¦¹‚a|௚ÑQpõ QèŸØžúÁ£Øû<ÔuØ]¡ðWcÄDR݉q¾‹+F^îXec³aÀŠ• þ£?ý™…é×5mý3×Þ”,„ä_} ÑÐÁöeû¯à9ލJp•ô}G å÷téà70³rM­ÞUs1ÿc}þ±Ú‘_u t×Pï(ŽÃÁ߉Ï^8¼éGT†7Ðî>›€ž¾±ÔñÊ­¬HE…ÉFõµ’(ÔùhIwƒ¾}wÄŸ0¾©R0u7¦µ'¡²¡ ø£¡¸,ö«^-ôõ×ÊQø+(~iÜvü‡¥ç³Ào9nØŠ1âúydrκk}ÑÏ`)çÃÑ{rj¿‹§$Æ2æ–_°ßD)P“®§tžá_mUS†cï:+4¤¿s|2°n£Ÿ¯'2lç8ŠÅ;‚åðFyΣÒGpýÕM쨌Ú!,ý 1ÿ±P¯‹ãElŸ¦è>é Q¿†wÚCÝý”ç)ô.3Ó¿$1m(ˆ(¥>Íè¾hWz†~îv˜S]ž îûŽž±Ÿw-葨­ÙÓÈÂþ³•¬Çî\Gb9~ÆžÃbç>–Çë~ãþ™ÔoÆ¥n¡Vh+¾Þ›»ëÆdæ"µea×r8|´í¢?xb>?“ˆ}‚¥ñ€›\‚†2Ö΂Éøóï6êË?ÞÖ÷óôøýs´ä?å_-ôF#>Es§¶œ¼›cðéÏe2v×¢±¾1ÊQû×݃õ“‚.ƒC¢À¿œ“~š?øQù†Vä®$g¡ ýËÓ‡Õ[Þ¤ISì_+šñ ýܤj£&xá †v§ôl0•7”ã¡îa%2ê°ÿìévRÚ}K°í­d]c!ú¹NG(ËdDEé ÆiMF×z1T•3DuŸÃàqÂŒá›`²Zà4?ìô3ã ³O’¿›Õ:Eµà‹n1Ûj þã«,à®ìǼ¦çzQf.öp>”hÊhe5 n]b¨* ñA¨ ˜ó´‹úŠîTµO£Ëí}*øÓoj9ó£èeΧ¯ÊXüBfc&}öQ¿;Û¹Þ<êÏŸ“I÷‚óùJ~OÐÛjSÐwºÂ6У0&ýwóçôL¥¿Kÿ’Wô—9DfH[Ø¿"`½êä÷Ws¾{'/-ïAebœ2ò(ºçT#µëûQâóÓ¿}#¸h'ù»©Ô8Š·ÛLí¹a50àÃð.%!ùXˆþ%^Êp*ÀâWõ›¤Ðßnh̓æ×f6³YãÌ¡ÖVXµÒV &ëZÖ[ðGôÿŒdŽØŒò#qjý4!&ž8/ýÿü“mW%˜»}Ž~þ{uyÁüƒç/òwKhñ©ÿ°ç­wTS]©Ô¨­^£ŸûÓàoÄgO¨ÿÈÅûž„îO.Úõ»ÒP¹Eý`2­ú¹® õ>D´¤ ˆáO2Y»Â‰tÑûñ´*(kTf¦¬È"‹à³-ôõ§ðtaT‡±Àíe°Ò•ÅRÄC´Å*`…%â*Y]‘Á=ÑÏg¡ÀâÀÿ¬ èJ¯ þ)–1)˰ïX³XzFçþÕV¿;ìG„ V¿Ö=#çÜfºYÜ@Þ‡uÉwßû¼‹]I«Á]¼©z²³¦ …Ó°kßÅpbÙÅzuÞüM²/–t xéRÃÑÅ"2èˆ.ñRŸM*þè„î° «±LaÏðy *…ë?F+mµº|=1Yõñ޾èËeÀ“Ÿ‰/—éß´hÂ…¼ÓÊhÃÑFN€ +‘Ÿß ÿ±Í‘‚úóá`¡1ø‹4è0ž¬µü7 Ó€ùI±À!°ñÛé¨×T^æ7ÞÁÇ]†QZ@ýyØú1j+ч瘥è)*ùWGõXËŽàKT½¦ä6ֵޱÍ7«#Â…? þÂ<Uµ`»Óµd!½€ˆ°3áÃ+Á@ÿ¨Œ2p€üÝ8Ôçõcýëx£*ô.¹IuÞY„Hù ÕY!Ëpú—ÔƒÞÂÜÆ’ê…©×Øgt¡ßîzËÚG ú|Ãýc¸q—ÜØô°>IŒ0—§àY^†ÑÏljj( 'Pªpµ¯ô{Òþj õ#ãèF~ü…œà”æ'òz›¡Ó'«üÕ}iiŒ<`®aÎíeP¦*ÛÁϵñöLªÉzJTøLä1å6ÛÑ{vºù=ú™<`^Ó ê ûaû·s÷&‚ó‹yÇ’ó¿Ø¹ÞFe—… o"¾÷ðWúJxÃÖÔ{Œ%ø |]-k3V>'5€—@ªÇÓÃÙvåé+´[CÌÿx¥,ÕrƒÞp> ÉMb7Šwô•Ô°çã:ׂ>Ø3­è|ˆÊT©¸Zá¯âÀ_ çýœ%7…¨¼L'žátŒKÝWÞõ·FK+€þ%[¨üîVwó-þ#¾åN%H]£Uü÷©ÉÉj:äPÞÈÁøàä|b‰óŠÿ½O¼‰BÌ‹{ã¨õËî©í)ŽòN飪ZzU­VJpZ×9*©Õ jõù»‘Ñ‚Ç{Ç"mÙR%aéï‰äZ4Mªƒ•§ZSÑ€ùëXõ÷ø«fÂîŒû(ÈB Ò—“ŸÔVÉ¢%„ù() ‰®èçË"Yÿq…þ»…ñ~ļU‰‘ýõlèç1õŠb 1î#"uwðÇú‡—'ƒ/è—ŸuÑkËD”ÖÕx£ Xb»ÓT2"ÌŒr6oÎc˜ÖhXÆú`œ„ú\Jó½dsÄÆ‚Lã”àŒµ"Ò¼÷a÷ÊMÈ[^ë¼:¦"Z‹PVåçMþ¡m@™i÷·Ïø†§~¤µKà ŠÈìû ‘µ sü5þêþÏËýMêóá?‚ŠÒò¶Äá]¡Ó$˜m&oBg}:qÿ{Þ³Ç †øè§ú Q%\þj¡2Ok r:q¾Ý!±WÛ˜Šêwh+îèO)ŒMزJr˜Ç,Q‹ŠÅœ0\áõß½èÈB¿g»ÞfÞÁÎVÝG”ý7öÁ¶s#ጢÈDêïÐ?ÊÀå\½@QÈX§Åø©ûLµø£ùCûÁñý@Sõ@MÁ«©¡»d4t1*£P †×¨Áï˜ÂD¨òó£Âúõ¨j|˜·zà¡|ßîyjx±ìäZg~mm*±wб궃ÉÉÚͳ/…¯:'?cSkãó£)„|,ÕÕÜ«}\Q…lÿ°õ2¡²GéËò§#cUã úÅŸdݶ’YQ,ânì2ñQ ºsó\QUÖçäú€M[ÊwºE _c™q‰zó\Öê3ãæ’o¼Ò¨GýàyÚØüÛTÄd7ÊKo1Ò¹½ÔÌÜO\Û§·äTfŠTúŒì¢Ÿmlç|æ×>@AòÅ̆!ê {çËŠÉ7Ëd C±x;4ß¹Þ ÅG}Ë“°û_E3Å6ýSÙÐõª,õ¹¨ÜÏNýÇF›ÿ31ÿ#€®UÍMo☡<‘Šèç…—žpJY¥ .sÏTbòîrÝ‹õ®`ŽÊt©w¡–E bCsXÄïv.ÊÅÊIþn â„ÖœAºÚÐoäÇ·*=éË”ƒù^|-±®™év5A®Áº¯&£Ó"º= _qÄ´-Èë]´ð:¢ì ÿUcpE î’݉hÜUv®Ìž…Ðl!Ñ=£•¬Åþnë»Ñ?J¢¸0ó]Ïå|s[s\pTEos6Z6šÇ'Ë þ<5×iרý;ÀÝÆ7¤SÇyüé}{ÿ¤OÓbýÔ aýKqMèÓq¤³Ë£º;ÚwSò¯6‚®¥É‹­ËüA_2ÙÒ½_ë˜FyÿQ4ÌsQT¶¥1Ïp™|„9Nv…=-)ÚöbéAäþ(–¿¼¾©DE»;ë ~œ#w¬<'蓺^¼¾ª‚¯Vc#›ó=Õá¯RƒÖ­a€¶A$5¾Õ >lSý¸ÉAœ 赓gÓ„þW]Bíp õçvVÁC°iNÂ;yK?›ìâvô†Úgf®+3EÐSþÆwÚÓcæó´w’õŒ™½…ä¾õçß•‹øÚdL¹ã©'ÂÚ•6>ûÍ„dµzÑ×€wª‡ëc®6îaë»™·ñíC¹Óã¨u< ã4Ãùp—Qÿñ’Hàï×k©Y×À_y05ªÝF¢W¤²öã}ãÑ¿ý.™R–u‰ùç[ˆ ûóô‹#â.öŠ¢Îwo£âåÆÓ8NNÊqDŸFÈâxÝêf 2ͺ¡ƒì!×x>™»Wè-ËjdT¶*5`¢‘˘–8âUˆùƒ;ÑχÁ¨Åv䛿­œ6ÝÝÆ3zM «‡ÙÀZC±ÒÖT³5µéñ]à,“Ê‘Dtë`ž_.±ÓyÅÿÞ'‹1”kÎ_w‘ùç¿—×äüQGôó®ê95ùW“;}‡#úUI 6P_‘#™\ÖàÕ>:|è'aw"t![ÊO=£ªj7xÇrBh˜?¨©ŽPç7ø'Ãÿ¬…Ðyr—‰óâ“fð´*)¾ä´ÐwJKLÿݳâ¨êþ†ý[¦ñÖŸˆe¶‹{’ÁY@¦‚c++ã|y+ ë]A¼ŠÈ%†ýÙpþÜ•þ%ýÉÏ}E$>›5£‘'Ò+[Ö6ÿ~PÄÌœW?ñ2Âk¶”qØÉ ":G=9õ<^³$JðjÝLsŒÛîµ™Ø:«žR³qâ?ýóTõ ÆnGÆÍ&pÃy1‚˜z>up7PÚÀ Ì/ùÂm%äß"Sf:þãW•>¿› ‹;’»•‚ ýúÇ8ôŽ1òo<ä0Ø&]^sÄÁ{®ÂO-àiy‹æZ@8[<«ÌÖFs¿>€Ö*¡ÁxÃG— 2RE¥`þÇ|ì^#¹«¶ŸýWEwIËŽÿØçhDýùH|Ï@üC2®füÄJï©ø x¤Ò ¶þ4ü•+ úe®ùwâ)¾i„–T »Ãejwñx!'z‰/{ø &Eá§~»%ý PqÛ¨Nvl ªÐò;Ò Ÿï'«U…¿ºU8Ìsy¢˜AÞ15õç/øw7;³õ@”„@æV`zªÃRéRú’ÍhEðy§Xs þ#¿þT =ÿ£.úy ÐîC½ YMÈžËB¼»Áh€e]Áì£`†øìU;ãØ‚gÍDª[䈇ÓÂàQ¢OïœõÚàûòºq í}9i¨%ÉŒe}jú ×¬0ÊQ¾ý£ ýF<ñ…‰ÜrUý# ½æ÷q¢òá©¡Àö»Á3­”2öÒÛ0;+ÕbÊ_ú'ÞäêGà?ž`ë/¡Å!ûúÝhƒ§¯Pv«\ëuΔb|…;8B¶ÙS£þ|Ÿ¡29þ Øæ,õñé§ø”¾Z‡ézèŽíÁ.Ë#•Þ!ø«MÌÊzw#©!‰=ÔŸ'µ*á5ÊP!ÿi^eÌÛøIè(‡ñíc@ Â*d4†“ÓeK"º ¤îÎSxX­ 1±ý‚ô‡Ô\dRÔV&8Öµ6{X¬ëæk4L˜?š?ÝðÉZNN%Õ]1›ìþçà bq8oÉÿõ_mv$ Ñ¿ý™£vÐäÀÿä·&¥B©ŸzSÍ¡%Ó¼•’œOGIºVeW©wÂKEfõ§Ž“ð åÀˆÅ±Z¯U?0Lqe­V.«õçiÔðzZüzåê(ÞÑëÀü—ч‰¨zsºªÅÀæ$&Ó³±x@ýùñ_ÿxˆ¯æ5™?Éá}%¹~qÈA)ÊÜìô±xƪü¼f¥+VtÙ ‰¼×à?ÒÓµ¥0kïÀØýKâÉ0é;@:¹õdZÙV|§NEOèã}ÜpKLA?˜Œ*|’8¸ oøj˜«`ŠØDì°§cDåW“&“+9Õ4Ø÷QtòJVIþhL^€­g.&R˜FÄ‹xó˜Â›w}=ÞÙ›^^͵o?_¨cœ2Në©{麳óîŽZV•|\ÑŽiñuDþ5å ï2—ŒýO"Ù•on𲘵M ÓpIMa©ãÉuxñuÄsðãaµ^)Í~ ¯üxø«ä;Ü/öÄíÐ5J­Ö€L²=èçîÔçäÄä•6¨¼NiºÕ5‘-UÚ`Æ¿±"ha†´ŒÎT¤ ùÉ\Ç&O<†¥Ú‡gº «“>ÉŸþíÍèâ”ÆJ†ÿN”íØòDö×ÈÀZ"mÌõRÙêIצþ¼ §÷ Ìq<£ #iyÅÕ©´ØD¥E4"àÔôßu³Œ¦à¶`MºKÝÇ“F‹ Ô†‡Zo#õuÀ·‰-Æ3õ ÿñÐO'Ç–Fak+ÝÛMª¼ŸÐÿ}¹M^°€“9ŸÛ©)ñ§g}y¹Rüå|q”Êe®´ëu’vµ{Y’ùƒ^¦›ÙÄð¦{%ªgJcñ˜« *ò~¦ùWÀÔE ôûÓq=¸šnrA}v þJ~t/ôøqøÇ6æò¯6Ò¹xüŸ‹•‘é³tÂZ#x¸©ì%yÌö¹"*:ñ‡r\ËÌ™«„?|á­‡å¬üè ™Ð¾‡ùõ©H,Ï®¾Àï§¡‡d5£×”@v%ËÃî©SÏy }©?$’Iµ$ZΠ :•ÜÅçlc¶bUðG;ø¬U–ŸYÄšBý ³AŒ[p ‘5‹¶Š¼þg¼U)Å"çü÷>YÏT†`K|ýü÷êò‚w*•ÛJMõžêªeÓVMÁõ¤{^ò¦¨/ÁÁUîÁ?óëÏ3p;Y«õ`c¢èßñKIÔ<ÊfjäÔÆà?2ÿfýyCgðG]b†ÆúúCÕS¶ª¶~]¤dþ ŸØ¦ÞûõvB|å8«"gìY~5ÈbºD$Xý£ºØOasCYð!íéß—_l ñs¿ú´±6ÿQ+½šÌ¦¿‰ÏýaòݰP.äçŲ™RPjV¼Âñ1Ô;ÞŠßð“[¨LBÎÌ"²²ÒåÖ]ß®ïÕóž¥Òè8ßáC<žUOaÿ’7êrÎf ®ì ™ROÄ2¢®©()‰;Á±Oçøðµ8d_]æ;Fˆ2¿d*+.jô’‘xŽØdeF£¶£1Þ䩾޹‡>‡Hßäz¿â9oûÛä³¾š‡[>W™ˆÿ8^[€oµó¯ê²·:ìçOZ×µìd6 ‡ušF8‹^ %( ß^þ®§£!ýwínô“dOÞò”ä7$S 6½5Hkˆ¤ zô”ŸÔ²8HîêéT¼þ'}¢öý§ž-óÔ¿ˆ é| ;ôüÝ(D/û¨føÂüä4U'Ьc\¥Z/;háOjVŠ€mþ„é+ï‹þT'…~ºO”¤øûúœµ5XÜWÒ „znåÅcò,G rX“[±§ÔŸ§3ÊòD÷Ÿ±õ7ð•8§¯”S¡VlBýGu" Gtd¼>z­§ƒ¿ò‚¿*Ä̉QäÚî6sX}ñŒžÆM¼Q*2¹ÞÁßm% i£hÃB­·ˆü«ÚøýøµNðXÏåG㙿'PxòYÿqg^E–uí[U§NÕÅݵqî.ÁànM°ÆÝÝÝw  à ÁÝÝ=‚;ÿ[™áFH&a¾çïaž.œœª:µe­µ÷öCÕšþã$ýægпÄê츀¯·r³7ä \{¨þ»olã”ÜùZôA©F&Ú]Ï…Rà£AE<¸Í.cÜ5æetNkˆð;Ó}d\üy.Â`jîÁÃÍuÜÀyðç_¨Ý|A¾eŸ¿W64|˜‘ÕÐôG!å…çXmžiH /ÿƨŒ«¡ÿ.†>³–ÃlfþyIÎZ-lIuiõdXj”±7E}UÂÌk¦â÷„øº"xá/dGý¨sofÔ¢þ£!Ï,=±X8¢‹¡üÇ ¥;ð2’}4%Ú3õ@ÃÅ~Ÿüc-ŒTTð{ìWaÒ»ÀŠÜb |³U4YáÔ¾ˆet§¸ XÌt\ñ?÷a£í«-DuÕVÿ¿î¿›D R\Ôä1µ9Áýw·Ø²Ò¿=¹Ú—þ»1¿ßº¨ïÌÿ8+Ð ôæ¾K¨öV¶á?bjµyj"5¤kWtn'˜  ŸÛÀSZ,ž‰ft5°aé½´¢ñ…O4ó§ÊKú—<#6ÝH¼» Kné¤kÔ!Ážœ ¾Í@†ÓCèè‚—Dckµ™ÿ1„é)ú° ð)Öì½v Lw`8Ĺña0²ÐCÕ]< óÎF´x<ð«šúF¡ð–Ô‘«ð™ˆò]‰”â?á?,…SUpŸe [šV%Š¿«Óá6š“{xâË_ˆX1wV~š1Hæ•ãNÂØ˜ø¦µÄ¥}¨œŽÌçP ª¥@å†ë±õ8 u&}…Ûð§7è¯ÆðT–cëSÊ£ä1ðqnúÞ¨ÉäjõsSVk]ñƒQ=V:ŠUŽgü‰;ØT+îhvc–»‚ô$‹ñãz«“Ç¥wHãˆüBîàE[m¯‡÷în-7Örmöz~à ”(¬û õn{©õKE nÍ×ÀOÝ£7×ì¿Ì¯Ý¢ö‹Èóò€ÔÜ"·¯;Ž6é¥ìIƱõé*¯ÉFbú—tEÝTLúòûk°¤@êYÃ?—×JLìNGò¡mðx†Éðf)Ðê^”°2yÍŽ 0&þ£°üþô©zc&5œÁ¯Jâ5Ù Þ±;ú(f¿2‡ùç8MÝÀ è¥gC¿[¦çYV9Ø,mßfßJl J`8štÇêk&ç­ J9 ~•\ÆówðŸû°Ïö‡òÁñãmmÿëú„Ê¥¹zþ#™¶V±Ôµ^¶òªýn-õ2ýK~ÿˆÃŒaOQx2¹¾CÜU7¨_”.Ê]­H_°KM jaίã"ù¬µ¼@9ظ<ôO¼Nÿ4¥œîÿÑPø ?52Ü>ì’Ï©ÿ¨#Na V`‹f‚eÇ(z/A(O=v£“x§¥Ñ©™ìÜÿÊþ|Ör=öøü{zÞÅúHl÷Øó;"/èiñ9ÊkN ô&cÛ!’‘¹Ô@ÿ›šûw›êÄÅäV‡£dåg‚ýkáÏ£RA?V7ð¾YøÕQÞãWœÖê(™`O½©³+·``Ÿ/·¿ÃGÍ庛+‘MíýC)¡f"»žµXdÞÁ^|ÖwÉ­üídòTÄ›{È)Îà—Ç/º‘=5×"âºÖ(óµøð0Ó.p§ñoeÁ°â uj¯?Óîi)}ì±1žàlü¼ýP‚RzÆüÇe[úÌ´² Y|* WögÅT¤5Êžµ þ¥±Øç¨'oŒÙ‡ÿØÚ¸‹Yü*|4³„þ%sÙWA¾~?‘ôk®ÓÛú†~‚yá?òšé3rÿQË8DÅ¥VÝŽÎë >ô¶è,\Â=é×J&Îjk-(h¯b R7^˜ú¼KòÕˆ9AÙU{\#@EÓ»ö¼$~æ0_;GÖÆç¿×·ª‘_mÕïS ê RôUÏIŸDw#‰,KŸÛip~ؽ¾FlzŒ¡Î±š´ÍdGðIç9ß_µ!av¸Šùƒµåeð«:dQßá?öâ­™w’ŒNYÍxæçàž_ëô¦\÷"¼åN²£3ÔüU’î¡ú—|·mU••«Õ`Í>z%º«<`.S.³½'{æì ÿì=˜ê-p̘» îcw0–Ñ vê!ìtH?ø5Ê3õžüoç)àÇŽÐñp–¹3üûS˜ô 2?üGFêÀÅ60ÃÜ.¬1ÃRrýKN„Ê?¼ñåÐü5 ÏEåÊ)}ƒQÌ^‡9Ýã¯ÕGs•v?þÜš³^ÊÈn¯dæ­Ž+Ûݺpº8Ná9*a'‰¤D_ Á.ÒëP0ÿ¢Ê4•.±©’h_€G)f„ª÷45ò¹¨ì‚~w0±á|ús|«È­h5¬-û¿ÿiýw9–ybë d s.ÿå‡<ÊMêÏ/«.ZjôWXe‡­"]só¨=è_òù7çŸÙüñUak3ÓÍé‡zEͬ¶¤oòP‘–xÝ‹lä÷ôW™ÄkÔÕ¾ b»Q2­v½¶rþ£¢~[{O§õâT4û—¼fÎbMñ€³è¸;WXæ&jh!ü±ÿOÈ=òÙ _µü":©ÚiS˜_ÛˆS½{éŽzõ6õ½™9íqå8ØŠK°,/E%²å+"(Êg“T™Úí~•œ¨r >"¨SSvy Ôé ˜†íi£ïÀò–Ò“hµ£Xñ‘º“ïè³sk(V£¥7ÇXDdK7 ö{_š€ÎëgÈ&‰‘âWƒý‡]N ÿHÚkƒÙoƒŽ÷>Gzq•KÉâá?^²š5Ï|#ÿ»ªûˆZÂr ×* ´A ˆ?¸ëMð`tü†›iÀnã¢k´3¿+ÕkÃ@Ù׳çˉ¾2?ªF„üÇ~ú_y‘H˜Ž¡x±xjÔ¦ÔÀjgÙŒ²¸¼µ…ßdF‹tÛ{&èèÛP-Ö/jŽ%ôoiù*"ìãìAð,ƒÆ˜Äó…@¶ë˜û©Õ©Rék:Ó¿d—ÙÆ>þ¯ôÔ³™HŽÄ¬a¢äMtúŸÌ¯]Çü—Ž;ýÄÖD)æ\8þ)Ê9™‹áªîTP?8G)À*ÛmÔ8tÀê¢~ÂDSÝôïŸc(ÇÁ£‰”sé[Äsú2¦P¢¿j,’ƒ_P¿£ŽrK¡¾ x 3qKº Û5X|¥ÃÐA51˜¸öNsÄÙhæçÐï–ˆ=g5q”õƒ¯ÕDô}°òþàD×Å4lØtâ2æ8‡Ç†eÖˆïñÓ^ñvöE·\7Òþ»É” ðñå2ä¬hЗ¥1üÇw} z¢\úp¸îD¼Y4»ÃÓ­á_FÁ Ÿ¡þ¡›È£çw¼¹!Ïä´Íýî ¸üÉDãY˜cµ Ög!ök3:åå0½‰ðWÀocQrƒ_{ñ³§áCNèí连á_¦v}±Û9ñ7ÞXÊÏàt‡Éf¾Ë6àWnj̦7Ûï3­£²±ÅkVê·Â´‚_=DpWüXù ÂÑ=ñfÖ»¦B„Aÿ’\†Ÿ¼B-D¦lÛìŒ7tvJnìc+ n¶3[æ#¢¸ÏÛrµ6Û@øóæÜ•' ø[ˆ±?éÉŒš :%ÑñÎ1û⋎ÓÇcñ…X8–êäÓðH§XÓ‹óýPëf½Y¢Wy‹HÂ…˜ý©~Q.C÷;ÆèG¥žŠís¢ëøª+ÒáSò˜[ùšåxÍ•¬¶‘¬¦ú«îŽíÅUV)±µrך⓺qf‹Sõ‡.EOß®ftS™ÍóðçóAˆJ™®Ô‘÷ÿkE%’?ypˆÿp¿J@ÿ€(¸»¯Qj¤AÿzŸ#¾F&s1Lˆõƒ~uÁ¸Fߪ©ðçn0’õX35|]%æ;¸8ø=ÌÌûïB^ë,§£›g¼€ÓŸEõÇ7øü>L¯½–w$×ìoiÏn$²;eðƒ±eª†r‡;Ná)eš6ÅK0ΜüëU£<ùGkð«ãäZåì­ÌñöÝÖDtû³Ó¿ç'ÿJÉ›t],ã¿Ä=ñÅjÇüç>xÙR+w?.ÀÖ(xr¹ã/~ãCjåýÛo’Xõ–þê ­:ÛÒÔ>…£÷ýµl¶o¶Sè)]ÀóÑmDh›ÕKÊHæäé´nÚ¦âþ^Ÿ•Tâ­…@S ±û¾Pœ‡ÿ¸Bþ‘_¿©}×ú¡ß}Mýîeå©RZ\Ǹƒ'lÁÈ&óÒªüÇìX#jºëwã‰èøÌ–Úxº7wæMI²…xÖ꿃hþ¬C,ò¼ðyà¼Ï‰¯aÞÙˆnhle ‘¼?ú] ‚±ì-=ÙKa–ƒ¨ O³ÛØü,ê\lxb­p+^Q€é ¢·´?»z%æ‚¢Œ¿ò!rlHÔ¼†=ŽíN~uˆ ¥¹èiÿĤJÕäë©'†'œ .÷œQ#ñ@SåažŠ+z y>ÄÇñëáHV£ùª …ï.e]ùne®6hÀÄK¶E:M<]Lá-ùL#ì›»õOWbëU°>Ì£*†Ú1-þ£”ãÍ ¹ƒ7é_²U ÇwäºrP?¸Üsy¦|ÂÂ4g½Ex°'XÈÒø2ÁókŸRÑê[3øUGò²|Õr•2Ê­{ʦ0+vPuÈ­°nÕÈ{jÉ'ºåç¹Ð_mF‡ø•9Ëx%g ¿º P€;ñÌl©\Çw>Ôz†Yo¶¨Œ7=…g,ô§ôÙ]¯påzSPÝ]ÁŒÏ<ÃGÆS9—Úo¼š:o0§#R7òÊí¢§ãÆP&)§¨ù¨ Õ=Å$ì®3:©~¬Q =Øx8ê½tȽŒŸ›A-S³¿¹‚Lk6x˜nt'Æ÷§ÿnHýà:åøU9y[÷&ÿxºœ<¯ù‡ ó? Ó¿ý+èßá E%.èĹ˜ƒþê#ö<ŸžU©©^¿M/ÙªôÍœ¢g(‹Ò£èªŠÿøÁŠÉˆÁ.)aVì¡ÆõÛ2­ vò­œØûõðåaF‚š7%ýw_ɱ†+yRê æ2]÷!Ñð«—šk˜õ¦‹:p$—‰ð«ã¿ëŸ¥q|f5þGÚR™Œ(ÿúâ©ìö"J©µÔ”ìA p\¦4ªÊ}bã‚c1«ý‘S5ù‚˜çvµ¨¬GÆt¦‹×`CàŽâ?n2©c!ZÖ0é'ñí3©gWá?,$ux¨nËÀ¯¬hê1ß{iC›rNªXåÔh¦ÂæwC­<Î;–=!Sé:ùZìQ×ñîùá?òÀT4â‰Rµûài ´—¢þ£*óéçx5pes|ÿòœÌ®MØ®.©l Þ’3ÙÙá?öÓÉm4Œå@òºÄV%Íôîhu¿§7ðmjC'Û—Ú¿À„¸‚jÝ£wd~Ô½ÝM+“‚ÿ¸ÎâÈL¡<¦ãVþÿpÖ–%Tý¹ª´ VNý7?6 v†«ºV›þ‰žÁüÇ9[k¦GµTûPÿaD•Fü³R+7µc þÍÀ7Ñ3ñºzE™®\ÒJ‹RÚížšDÍæüF¼JÈß!dzÐÂnØ:'øË¢·òVÍ~•Zdcè¿{U½òåÿáÓmå“Òÿˆ<¡6î6§ÂÒn ñ'ñ)UÑÉŒ ˜þ‰®ÚXm ùÇ#¢ÁM XO‰æGc埡°Y€¹D¤€îÔõ˜Íq†#Û`Ee\Ì!NcÐñä@mªI{Ñ]åýNÉÙmEÝÄ2¸õŒQίÕ47˜™þ igy¿ŠAx³ÉèRvò¶º¢RÚZtž¬+>öy¼R{1*Rþ#½RAMI„?™Ÿœ/dÒ¿¤ ¾)HŸKÄX-9J† Âã‹|ÀÃvé—xf•#œ?¸N™¡µänYÓ>,þüѾ¥÷þFþÑ‘øøž¦¢þ±Pùõø¾µä2áorâ;+:ÞÜ»xÅVþcÙÌT¬}ìù6žî|ðíedT€©_G¿{X<ùÑ><–W‡þ‰É~é¿»Tí#ú°›œdVÿöWħ‰É/ŒrÁùÇQò„‡²1øÕnØ€Dø¹|r\£¯üA·ðúáNwR56‘TGbw0š@¹ûz^æºA¥Es³.U ÷ÍÌÆKÖOclÆZÖ‚W8ŽNn-ú«Zúk0¡«µÙz’ 6ƒ Ò[à«ãýÓ’-ŒÇ{U6ÖÓ0=ýKÞ›cŒ×r¤ÑÞ8g¯†—¶ÅRôdþGØö%ù™ˆª*’E½Ó¯HbïQxðiô6ß+>ÅòóО 3šŠ?Þ†fù6ïµèÒ¿Ý®lP6ÀÕ#ÿ¨ ~;“³\‰^´nàW-áøÀö`þùcx%ðßP>yƒ¬ÀIc§r/ªCº™¯Pî¨ßáSž’3>”‰`Ì–ãÅzÑ¿¤•™ÌQTÚaRS"{2ª:íTz[ý-·  iŽÿ(CþQVlíïžüG6¬H ÞÔ:¨­/ê Œ¤öÜdÌÄô>YÃìøuàWƒéqæcÔ«g¤£½ Ï,¡lK¦ý;œì8…é5S¤'¿ïCŒG?E7”=L:wG3pÄÜ Ÿ²Ö¾Ñþ|²9º+›ýš‘À,C“Nö¦¢iºšû  Ù„{èü}Þe˪~ð¶­™’9Ì9‹þ62‚_ U/©õ´lšŸR™UöÚꪉÕâj/õÙoë¯>Únj{à?þB{øÎü,þ£3AšÑ¿¤›vžŠöb¿µÏ†B‘“¨¶iϪI•´ª·U6«ÉA…Þ3ÿ¼?ñÅ5z ±[ô¿*/Ty“h¦&¨ÈnÝÒï¾ué$Ðx¸ Ê>W},ýK’FËü‰ÿ˜)Z_­o·&PÝeÄ ñáÇâÊû`úE)Öü ÿ‘UN†°O$¢WÂ_XÖLXÍ Qµ7èEÈà}ÀÍ£•Ý«»a2iy¢¸‹±´%àKý°~W©€»+¦sdžQ‹µüj Ë|òÓDÿ±©Ú»€vý”‘šœèwë‚MMC¡–>⓸):u1‡Sú²ÏἯ™ä <À"»íìÕRû2ÿCD°ËÊl­?ì}r9—Ìã(»¨I†Q|ì=–ßW[‰ÿpÃÇ5äý÷ÇÍ$î{- bK[;ÞÜn·•Õv‰þ¬6\¥xÒ&ÎÞ`|î|Ðxìç7²‡0è>T”B³|48ÿ°ú7®¤ÿnøùƒÀ¯&ƒódFõ$_‘CØCeì[Gòm–UaÎìQªëÊû謕YØæôo ƒ…Õ4ô¯OÊw²ñÖðç+Yï3V51ÈOvÃn¡þ£ üÂ^t§‰ÉªàS¶ÊŠü¯Â'm‘VWûŠw˜{¨ ùÇ.bƒjp$uñù`+fR“¸žN)@PL{¼Ó`xšýØú*܉ÁþÛ³ø"ÿ1AT$ÿ°:ù×EðEÜ/ÖÛB¿á„DÓÕ¨Ïb?A?“±Öì®b.Y'Ö ª-ÿ1Øq¹A¶!Ê6êBËPuYOÞ7È ÿÇœÌtؾôX™Àü(/,üüÇh8f<Ëfº­ÂW'3ÆW²ÕÍ܇ús MÝ#TxÏäs¢õ3tulGdÿ'ùG"xîö)diì@Œ¾ ^KuÉ1Ì#îÍ"‹PQÝAlæù3»Ü•üù“V0Zý¯Ú1?jŠpEu´’xw)øýY0Tò-½KþBõ” ì%ù=9„éˆÂî)äO‰Ñ_UDõU¤”ݨœKOòYTÀ{ø»^'jN‚ÿ¨Iä<T%QJ©åð73ÉÈ1ÔŸ¯U=Gþq‰êˆòT©ŒÆº•ãߦ¢?(?‹¿Ñï¾U¾‰bT»æf?ß茸-èY’~„Gå=Ø”êtó¸e¦1>ÈöF*úÖ[ó£Þƒœ}ÄÏ—€E|n~T{æ6äߣ&å ¹O ž—j¿åFv´ 6 lñí“àS¦Í©1qE î~õ›¿Œö#=¶C_òDQ/tŠçP ¬ëµ~Gn‚ñžÇîF›ïEq›ú¼søŸ‘p xÕùÄG8G¨ù«,7‡ê_’T™¯ì‡¬! Ô¸ÀÛs\ôMIa•÷ã?ŠÑaÄ™þW3˜'uŠúA?s;ÝÃV‘Íd0Àx#Bôrlo7õƒqð§_ˆõb#ÎRîj¾Dǵ5ñ òÉôÌM~µ‡ù~nèw+›Éý[p*á? ÏPú+oj Ê“/[õ5É?Üà?²Ú3ƒ€u`þàvc&ÝK¦â?æÑ©Ê'íO/öôøf¨bâSžœ«ZA…ØÏ nW¦S?øÙekÔ›1õ‡x£çfSê¿§P÷7=ìîø×f=ªBΘj‰æè¯’È ð+`õÎã¥Ë~.øþ~’úó§ŽŸ÷œùQ¿ÇK;¾Õ–†¹à]ÔSª³–VóT,ýú![=øJj?²…7¶èUWü\ïþ×^o}\|Q/ªJOt×.¢ ÖR»«¾ùÍ>+•Evï2úÝ5Ø™Ùâ½h§œPãaCiª-.‰Ëjd}ÿ~îé_¿Ó‰H-ÿ8C¬U ã£ç•`£›‹µàNgÁ¨KSObþGšhñíáÏ¡¿zzå†õ4¨;Ö!€31”¸â!èõúnÔ&{zæ »¯ý)—2‘‡ø!RÕþM?„Üd uñL±=·É™’ã?êyºƒleТRÛ=TݱøˆÅ/pÿ`v±Ñý°ª~Df­Ñ -ÀÚ_'öOFf~Nc¨è¬\hcü]&æTÃân€ÏI½RɌړռb~í~²ƒ dLñäQ<@*XÓ nÞdç™ö#‚ס¿êo®q•ÕØÁ©Zü§ÉçÜ¿Uš·fîp@tY‚¥8g.I–˜‡è¡ãÍ Yö­2üÇl°/«WI.bX/®Úê¼e÷2¿_#9…~7/|¾m3{ÿ@ÿ«Øjø Çyø‰d‚™ÉÔà´ñiCØc-øˆÞäë`¼ÏNä­©"ܘ é¶Þ4†ÀŸ/Â=é/Š$»ªK Ïðžô_`hôO4éžõ’YBe±R×ÌÆì"òrø„0í·à?ŠsWî†ã?þRUVÛÆi«åeV¡žÞ˜_Ñþd³ÀSÙïÒqÑZåç]¶ù ‡q¦žØI?†ÿ¸GÆÑD9DÿöÂàW×T©fý­}ÀšŽç{aQÇŠÌÌÿد&Àâ¼ÔÞÐ=ù‚ø ¾þùÃÿãïW¨sÉ-Þç\ Î?öÃñ‡¨MþÑ  Ú¢‘ú4‘JŠVGÌ?µ™Úbta/ðËÑ_™äٮĭÁ®º®?âœ~wiÍŽ3Ù?Û†ãiÖˆ/"žì"çá+s‚ÿÕÆZW 1'ÂBWÇ2{’ÙÕ DqÕùÄä]°È'±ôÅ,¾\þ|©ì.‹Ó·*±ëu"«ØDŸé_Ò.Rÿ‘^š@åÆð–Äf5;u‘Qs½×7ÈͰ6ƒ@¼3a™ð–Ýd«¹¬Ýk!'4äºg+c´®Ä’èJ¹çǸ¾xˆüd€ùñ»Ç´EÔ® «Mv€Èsÿú0Ø/‰Àl¿òÂâ› ÞÃQÓ&ˆGƒîl•=å8Ù|®|ôm0ö?`@¬IßgÉ®ê1åL-‹Rƒû¯zà?†ƒõ¥‚/yI^§ïÉÎ4øó²Æ2†SðÜþè¯ZÛP³f¢Ì=ÔHïA‚ÄÚ_ø›àWùàÖ ð5é¬{ëvYfb-ò$XNcÐ÷ÇøÔë%7Þ"Ka6:6º yËMª^CîÍæ¢r*ö W.‚ßjˆ¿NgLg:**òÅäø‘ìp¼Ñ¥5ë­…ÝJ²žŒÀ&Âê¯ÆŠRÔY]Á*€K=ÓßR¾—úÁmèwÓÐݶý¯\ìûÁæQq-×jžWpeJ£’<+Z9¶G7å ‘S9Î~Ö²º‰¤N|¦™Î€OšZÀå;»?BZŸ¯#ךÌzª1ÿáÃüµŽõ¼•mêwbž{œ~»‡œk«p—©[[˜îFþ±š\&«]Òå݇§P¾Žw° Õ6%¥Ÿ^ù½ïž¿²U+È[ÞŠœ¼*“wwê¨øË OáBýùWÓ( X{Xü{°òä&Ñű½÷¶ñÊýÙßQO= •Sy#j«ÌàWVG|ðuÌ'Øè©F ½ÖW›ëÉì¦ã«“ã8‰ÞÌ?áÏ—);˜U@¾ä(Fjt//¸ª^tMìL…_´R ìÓ™öüê¹ñƒ.ˆ³áh¶é4ÄÏ•!­"V†âÏ÷ÁŸ—­MtSL^ûõéø‡"ÌûèEþh ¥úc³IFÐw“ÑŠì¨9üyu£J›²#ùÇ`<\È)<¬ צSÙÚ™¸±ºå.5ZÐÇ}#H~FòLöÉø£žFg¬~²MRÏ: Wƒì™"lýùQ¬ðO¡$8ß,ôfã(¹ÂNúµ$±{ÁŸ§!Ÿ¹h¼‡¹®Jµ¸7ëtÂ_Z9…QVž}gÅPþT<É9:Èûx·‡œ½Œäi‰a¸sÂÏC[üª‚ùŒú9Ì©j_³dm:ªÀ¬F78êúÒPØñ*…mø»<³Ø†Ãx•À(ú©´¿²æ=e¡³Ô ºÞ~¢š$6eœÊ^îp¼u¼Qð«¡ŽwÏâÏ­YÉU¹•™ÿ±ýU2ziMA—„ f2•ñ;¨i\/ñ V‡Õ6jÚ‹ÍÁ¯RQ‹kèí9?‹§p?ýÇ_"ËÏÍ¿î5 Ú?¬âÇKö7Gà?bØ {m³ªqŸ”¯¯—Ì;ïñCq•n¹ÿ'ü¹-¹ÁÏ_ol)¿‡ ýüN›-†òZqVŸ«µ*ðçVýÓN[ 5½ê¬Ž$[¡ªLB¾'òOÀ¯Þ‹ úl¢®aj§ð‹é_2S”×Fпä‡QO¤È×ûSÄ«÷§"Ñ‹(u¥°¡¿:ÿQ‰Np)Å8ø‚'jtÔ¶TE*ñÔV"6¨ÿ XÏ"²-Š¢¿ÄEpág¼[e‰$zÓ?±„8ù†ÿR”üc£¨Ë0^_ ;óžžD­À)žêɰ9Y±¬.°óï{1ýwó*+‰t— “ïnA䔜ï¼.z€þïYxˆKFE‰¥w]Ef’K«ÎN9¶õïqµq`¼Cá¼à7žÀ8“UÀ*z€åÄØx[Ÿ‚ŠIj6æ1w±¯²?ü"ÿþsN%£Úÿ1 ÿ‘ ùU¼äyLÆc.g‰æ¦a²²Š@ÁžØ~#Oßò5"ä?(>Zoªe4ÖËï RˆLä£n—3ôÓÚ~ê?Ö¡¥ª-—à=}¹Þ¼ð7‰¹ö6Ž77d£gl-5?Ñ›|o!V<}€£Ï܈5ÜDv0…«ý„-;Æ|¦‹°¹Ùß:|×Zþ»ª÷Ò¾)C– þtHm(ÆMæ¥?Ç]ÙT~À]$ƒyÃ$ÖÚ¨|jP©VÿáÊÂ}Ô¤Äߦ¶ã;¾$ž>þþã£b°ÿvzž`â|Q ò¬p(7©ÔKkf§êùù}p}z¤¯bµÆð.{À¦¦ã?òé•=ažôhÎ~g΄Õ×ÿöIÞ¾Òh/k»ÁÂþ@íóÙg¼c~Ggú·Ç#mÁsÝB…åI„òIû3Ìz áÛÊÉkdãVþñþÃþ‰]Pnµ4¾’9¡lMk?†ÿIþq,lµHâOG”|F%é)Z:î`,er7 Y[#²†ì±"üÇ<0°¦t ^·p”øû&~c¡q™yêMÌCÁÍ>f‰´§ÍuÎa~åI¥pLØø'ä v#™Í#˜£Éø[«_ûcêÙuûºiýAýàK¦/nfJUsÓš€è šI}>ýwgˆ6ÿ±UÙ¢å$‡® þ—V>÷É?ŠØÛQŸRŠü£‚yJ—ÝäJ3é†r¥Ý,ÓN ~E£1Q¡JýàñïMHÿ«ƒÊRmä\2û|¼•¸c'È´kõ§d—9ľÓþþWSÈd™‡Œäfc´ù=q¬úÁâ;Õ¤qÄ*Çüç>l·%ƶÿüy¶îÿuýGå4õaÌ?/Fý ÕÁþ¼ZB ¾ãý:øó‡DëwE¹AýG="ú\X­êU:–L¤b7ú—tж¨™~‰øþó²E¹Ç½@ÂjÃ;3¿ö ²o¦¸èµ·ð¯Å5zŽ×•@¥²øLôy”´‹\FV§J¯®¸DÞq•øVí+âÒ7ä G¾;m4õç±¢k8A»tK±Û–3þ 1‚ßo鼤n!‘¾WÜt<©ÈÖK© !ß#b€oÔ%ãŠRt ¸^:­‡§ÃB'²_2!a”øÕKu6µ+ïðaS÷aëšS\Kº þ£ ¶9)QçEò¤÷T”´¥þ£N¤õéðÙ°ô‹¨LÀ*(MD´›xMñ±D\ïs<ˆ5[c^k:ý¯šh!vB®{²LëÆ,±ôUñå¾<×âXì˜à訵½ä{å,ßF®z÷6™~,¾"¢ú?ú·û‹xñ…Ø?kNœ¬Ê\âËuð!ÃP ý@uyÿq’ìÄ ·‡Ÿ8…èaŸ>PÓéýï¦NDkP ^s/6²µ#‘K%ø^Fíæð­©Ëkß|Ð $ƒÿ8Håb ££ŒC-jpOúb)!š‘ç-ÁG¼CJÊNòia$ÎÓË¢€9”ž#‰'Ì7LdŒa+A®³ö~§3¿þ]ÙfÅê{ÑL÷ÄóW$¨K¾—Ìȼ§:²´ñ7HLxÓÞ×øA§Á.T8VÆg.ÆîîGå´ýÅW­K˜õú‘”ä$Ü…ãù‹lë¬ôB%0ÖXÈf²ŸD½ƒ.…ц-`bì&ª4ÇßxÁd€óv¿êèx´éßîAÔâ‚Â_Ð –¡6s'ÝW‚ãïClï‡]>Fþ±Ù &~…ûAêf±»Fz—]§º{¹c½uDŠïÉÜ€ÞÆ0b€p^Fϵ†z™št!»ˆ^9}«¥´§Å|3Ï™éÐ7X“-;¡()wéYÅ~ÑÍá?ÖPÇœ‘(´¬[IyG¸é«Ñ˜5‚ï(ŽÊì“92P󑙎Ȓ>]Ùð›weL{y£'™üâË$¨NëýQÌ&LaÁ»PÿqË(€ú­>*ïÍh ž€Š93ð3 …÷hJVª§QG=e8Ui8kµüÇ=qE½z‘~>Nýyñ ,õ¶h‘|.YŒúÁúðh£áæÊЛ¼,ç÷¼ÊžHW ù‡ÚtüSÊAVuÛÉ8jƒŠ\Ån]¿@ñŽºéŒú2q-Êk¶+ƒ¸&_ð«¯`³KȆcRõð'–x)¾Ïžú«ºüœY¨h…æÅНÕY03­8ÙûáÎc«p΋£J…µÏ$·ÿ? êT‰`Àñ×M”ÈtÙ'Õ‰¯œ‚=KˆwÄk·óÕÑôÃσ¥ýƒë}ÁÕǶEù?›Z–æÚûÛåø4^Ù¬uÆz'¡Ê%¾ü0wÝb‰,õÖ@ÝýUjâðqÄ ð.<÷ðõ1ÈQª8Þ\Çb6?[7øóQüìq`^NôßÝ[=G¯‚½ì'€a½Ö[aOñ_2P¶ãxààBÁ[1¿6¼þjý§à×R`Á=±¾Ÿ°;ôæòõuÀ¯š19µjÖŽFq²¤þ\wø…¾hi]dB}*è½YŸ^+6N[g4Ø+°¹OÉ?2Àç»./á?ò¢ÒQí)ŒÇXÚtÆr¤Ê Cë‰òÇËòh>„›ÕMM„Úcù‡5Å©)ŸÊEê5ŠÉªÆ2Øß”è¯â30>Ó?êÔ@+1—Ÿ¸t˜ëz®õ ³Ã!¢0ð9õ$ ð ðqë©(‚§¢0ËmßDÿÝ7Löó†Û_ ¾ŸÞÿ É6—ãG¼É?œåáê¸ào¶Åøœ† ½ºéÎz_f„즓m"ú·»ÑG±,ýw‹Ð±Êþûý»›³ÉŒÆà?T*X2’»÷ ÕÖ]¹¡Æ¢X˜ó[iõoOm 0,½skÖùÀüa_„~-õƒ÷Œ‡t?ÌGuûi"“ì²,'¡”ðÅx)ç´Âô:¨K>Sú½Ì?Ï¶ÔÆ#!š«ñtQ¼`:S—ø‘ÝV¡—I¦Re2rMqd#¢§JøÿîŽSxŠJØ…¨³ÁŸ†I}`4BÕìë,¿?W7Àîž8Ù>Ôœ £~Œþ»uàÒ£\'vÓ¿ä;§!¾psÜÁîƒ5ÿc͸ô/Y@å_MüÆðÞmM7fd”¦° ¸âhøø÷ÜË?àùº†Ò>nQî«?¸swx³lFoÆ ªprš骲–)W;¸ss©úHoO€¶é&vß•»»É?šÉ‰äŽô?„¨þW[•—Zf²Ù²Ôü:Ëþm8óks3o°#YÖsð¿^L£Ï7yF§~ü)±ÒÌmtÄÊKÙ’Ó_Eú¢°ùyúŽ2ÿ|¦(¢;’êóÔú=¼ÑNòÝ\[eö6Æc?hÿa¶°w¢îü´¹•Ý]“mÍ„DN…;U ïxG“ˆ­?ü÷´½±½sü¼·6×àÎ‡Ž¿øYéå¬cþ`Í]ÉËé:k«F×Ü2êXúï¾üÍúlÊ=í>ÑisP–“èw«àW×µÂ)x~­¡Æ s~£ÚhðÙºþcVf‡¸bÍ9M)~uýìú'FV·v튢¶à Þ%¦­B‹hÜ…8À:GÃ@áÑ¥6¦T2XÑQD4ѦÒ}³¦¡{*¼Å ²îDä ¸\S|„ÇŸ1•O6üǬÚ}lUswÅDÌžõe¥Ö È{Wÿq—¼² ÈaR™™¼m«vBKežHýÇ"4n aå¹±øšÊŽ77äÉÞµuÔV1Ä$×èÈ.t2«vdTMQ˜vE3;N¿!Üù-lTnxŸ=dpGù÷[ÜÑ6ôß ?ÿ|™:@Läô¦ÅâZùÇ«à'PNâ/êÏ=Ñ'®`Úxyc [JjÞ÷Ë¡TX´$ÿè*:„»âOÔæ¥>5þÃm›ÏÉ? SÛw™Zº"(~®›yé7R]×J*:ê¡lÚÌš=dÞ!] Ûÿj–š”øy%Þ·*ŠÜ†øxŠqFUð«1èw ø›Twÿ£`hΣB¨@&v…ükÊåZ×0;/JãaŽò4jã±ô r-Ö‡ÓAf$ЦXÓÄàk[ ÍØ`4ws?'pÕ›ƒ3¤ àWsD[ÇÃxËü¨ÄÈl‘÷&Ã/`|‡KÖÍÌ?ïƒe½MÞH#ˆé‹ÝÍäyãñ„_±ùIåMâ·]ŽõÜ•‡ªüîxÓ™’g|’úÁZ̪†-þȼ޷æ"ê÷S2ÿ\°Ë•fÖ´Þ”6òê "â5(ï”"â±ÌÞ£µä°ùeI²Îvâ@0NÏU~ ¼GÜhe”5µ¹ÚQ¤j ‚ïÍm˜†¼ð‰Í“‚9•f‚Gv¬ãv†\DûK¥Œ§ñ:Œv3ÔQ©Àtn£Zž Wú¯þ»™°}Õ°¨³ÉEÉ\R—Û4ádï„‹ ‚ÿ¨D6R¶r<8E6¹ÜíÿKIÚ^,yôW"Ú—Aɬ¦ŸKMJ¼P,ôPõõ^à n mͨ"¬Ë»‚? X/cóðsPL¼ˆ`ÅeÊ*Íþ‘}eÇŠŸÆÃæ¿O؇<Õ=ÔŸ/Çö×” ùW7Ö* s™ïZÉñæ†,{ÕÖ\Û"F“L%c)‡²þc‘ïrÐ¥‰Ø‘·t&÷¥Çˆ?–¨<ös¿‡kï£}g>sØ_«Õ®b :·„ØH,ë{²©ÃX–¡±‚ú´=`Ø'a«K£¶F%fmxˆ‰ Sm¤Ûhît¿Rlà˜®T»,$ÿäç§F•ÎÈg\–;É?ÊÐóðŠù‰õË13p Õ~Uñ»°¨SñÅôŠW˜‡¨qÀ#ýˆZ’ýÕ'VIBÿÝ©F üÇR&°Æ²?¢ GcØ•žF5öY™kXLÞã Šåg Ô:†Yo´(Ä5\#ʨÇ=äFSà?£€k¼^9SþÆ’-MâzrO'-¬A9áNç­<ÔŸ÷tÜÀ×¶‰Š;ê§ê¼ Éû:¡bËÃ4õþàWÃÉjÚÓ?q+*® ø†)0ÔùáAó\f“ËHÃÒ€û‚_…äþ³”Kê'Nÿ+žÖKÔÑoõórÜ ÿ³ŒïM(Ö€†Å²ß2ž£f.Å#ï™­ÇÕæÁä¡þÃÕÁ,€‡ÍÌ{ІŒ²²¬#Žê—Éœð½éi§ãÈR´W-ÑMÝ4ö¡­^ Ú”ŠúÁ:DƒqÁ¯âÂÕEÇ—úó‰`-A°ªÁ Þ6 ßÅ÷’ýÍ$Ùä»ÑïÚè‘RиC†S–>¼5Ì8r‘ØLTA×9göPß·òÿû/›Inðó×][»ÿºþ<‹ò@i„~7«–NÛì?Ö1ÐTË©ÃᾕH«~þì°¿+pþÄÍuˆ>‰$tܽ¤´Ç§4Eµžü)P‰æü†ýî_ÿTÅíüG¬)È{}ªR“¯jXúáâ#úÝðö¯«XsJù¦4¤ñ Ä„ü4J‘¼èw; ˜cp™9 KE¡Ekþy-:5-aº Æ2xZpη>¿H\ÿÝæ'ð­FúVq'ÊkN®Láš<…Éw¶Æ#ń͠ÌrðgâCo= Ù}YîÂ2å4Zxž6ü5©îx¢öx´Ã ýWƒ5©c­L†h´,íb²?ýŠžÿqŒl¬ºÎÈê? (¹Ô<ÔPM€AŒ‹7Kÿ’FhŸëždåôÙØ±dò8º~úþþÿ£±#¸î¿w­ž!9U.¥á±}y÷J’c‚ìtÐGrW¿ÉI²9:Ö¨J·qo Á×g#jÿð±5ÖV“]) *½È0’€ýuD¿[›îJ¦U…[­Šî´ômñ\ƒW:Žwm¥ÅQÃ+íöSÿ1™g–Ž à$×õžìòÞÈê/R §\@1æ×Ö0J›ÁÇr±O7ôW×P%è`ú×+Eà tÁ’.„¹‹—Í>•_qPRI¿0Þ7&z©:è¯æÉJì‘)·ô FuRø-aVì¥jdÉ›à?ª¡«ªÇÓK`ô‡?¯š4–hR‹?Œ;7O- WØ)/8®úùÊô»ÅÈä÷éqŒ\óéþu…ï_GÿÅ%æ7´Ák©"4Í̯Æ”ñâ̯ÍÀ³˜H,q˜‰1#Cñ[•š“îâzLø”ðBÞÆ\†8Œ/µìf%žH •>­Y»<õ!…f°Ü ™?hC ^#ÿáF%lê‡ð–•ÐÓèAF>ònTãĤÂ%–}”9È~þ£¨½-øÕe:¤EGÐÜÌNOç/b.õÕ§ðdñÿ'ý½lI•'Ž'gÃFg sÎBþ)ªOi•¥8S-ú]KzÚ–Ö»ªÚ™Ù³O`(çWLåvN´%î-€ê'£v޾˜ÛÒ6µÕ o³~°ŠPé6vBôÃZÁ‹@p–Ãj|(S³ð¯£Y?øN‰£6‚üà ÙËjâß\²\𘬑0É`@ºésDnòÝѸä¦TºMÕõè’o'ejOúˆ-ë„u|K àcp·Šúnq;ÊgST™ÏWn…'N‚íœC.”œþœ%ôùXã0ɾÀžÆ$¦ÿUÙ(V|«zÀÌô@[lyÇ¢ùàv x~RCÀ®8Kd9|‚ŠòÅ'U$sù¨l ³âH´#¢Ê Ò[£•ªGuKF²…FEú—Ì¡óÆg¤Í.¬ÐÃh€ÿhMEâ.¢ûsØýƒÜßûšÕá.ä×$ð«’ DÉÒFq¯É3v½¯‘ð­{˜?›ú¼½|ÿH”¸Aáƒ_íÇ„yI'ç…âÏŸÚæâ?ÒrŸ?Q?x à$›Ÿ©ÉPéâ ÿQ‚#éìÑÊÆ,®š0 £Xg4Z·„Æ`ê6Íítln¶òÿQ$ì¸ ã“¡úáÕòÐ_¸™éÉ,¿ML;™KÍxZ{&vܧ~Зó»8©‘!{™ÿ±]ôuä[• Z j{Z‘#—§£¯>õ™¨ºìFeã'”Ýxfælf¾»£.>I/Č̬J1&ùGl”ê;ôQŽS¸_™DìRïчXщü#ýÿ‚;y@—®Ì™fßAö!íÕÁ¯®Àñ«ôoïaf¥–]C#xJãm+–9®øŸûàfSCåÞïÉ?~ ÙiFê²Ëª7ÔôZAm{pwܽ¶üôo¯¬ÎÀ| ïïüúd;®=áF Ñ·#‰ö ¥·âÏÔ„z» t3‰æüFµvCTü+^á-\ >gøóXx€¤ÔÌ ôêí¨ þ÷‡Š þC‚+=!“Y…v5»,lÅä}˜§Ð ; ‡¼f_4VlÜ?±qì|ìÕNÂUðTø§·ø¢ ñ…˜[Q•JGOq9ÊkÎ¥lIðŸDbÙS®Âd@ßW–aœŠ5õèð²‰õ¨–Rj¥¢X1¹¶6»±Ñ¢ß'D蕸ʼ¼­+y»þ `/ç–Rl • =BÍC{ùù”œjmò•)äèq‰Ç_‰û¢5Q~€¾?”ýnM´S'`Tb“#;ÀݽLÇåˆfMþMWoôn±áã«Â~œ'«*Îîâ <@—EUMûþBNG}ÚC7Cg~Tl.üÇC9ÓÈnú},%Ï;Æÿ1y¤€-ú9î Pú+»ÉS­©ìä-*LóR?˜ &;ÚCGÂâtIÏÇþº1mcê³æ$r²éÜëìÔf ™Š{tSN©¦¬ +sD7 >/]ZJƒÏ5ÁSHz­'´¯§þÜò·Á‡–‘7XõçIÉ;7 9¬—{Dk‡ÿ8J¾ÂÁjêýz:oÖáJ£Ûj ²¦›ÏÉCÆš-àCLêäûfÕ5 Ù3ÎDƒqe+ê€û’³røOæŸ÷ùƒõW™ÐÉ.ö;pOîÆY´ÊßXmªý¸=¯ý:egãÊï$f!ô»YÈ?6ãhz}G¬pÜÁîÃ.ܤã¬^²uþ¯ýG&k®þ£¢æ¤íU²æ~[)Õ‰úÁ¹øÛtSü_B¹¯]m¸§V×»"Z€šJˆîzùÇÅüª«°éC$ÒNÅ_]…Žd!ý¯Ž(W´à­-‰òÉÖ‚<rarŽ®ä_‘ôãZ§ßÂŒE|ú·÷¢?V%ô»)‰ë;õ&²ëå8…þô/Iþ1• 3yôø¦+ê·¿èÒDö¢RY2‹þí)ìï©o¯MvsßÙü*«AÜ:—øð!lüÿ ÿ±Õ––Ù?]ýw#zWþûú=ŽòX©¬ÞUsj5µ'Š…«Ï‚?Ï©ÖTW‚|±íøOßüË¿í·yjWEKâæŠØÀ"ÚMµ€:þc†h¨-Õž‚‹etìú—oŽà/ª’1¸QIÒ„7~>KäÑÓ)ëÔôä ùD1ÿ‘S Ñ1G°€ã¯á'Ë¡˜{N¬Õühx'áƒe}Lþ‘}9úÝââ ã»"ÿPU›þ«.<ôßx£µè“îƒ,d ŠŽ!{yid¼×Ð_UÁzGÝÿŠÜŸìb;õ‘’÷x'èU<ýu˜SØi¬ô)½ëWÁlÂäÔÂǹá÷ùMe®ì“…¾»§É?ŠÂX”%ö]Ê(­yíþpÈEƒû—ÌA70T¹~‘ÿ9’P-Gþ3UXl´ZŠјûõP÷ 'ʬw#Ž:"ˆõïâÎàMÏ’ÔP¿;QY¬µ/LEþ‘6âøN^,ì[8ð‰tÅœªIc)ö§ùÇ!p°å°$·E|Ì:Ç›²ÑCôo·ð«Çúzpþ¼èˆ­*ë™°®ã?¦¢4•Ò…J‰ë ûÙàT¨Æ ?c·‡´˜jø³sPí!F¡¯H*õDþ §åŠÇ)E]K¿»þüþÃn#­É’†Ét 57à^tcœÌ‚R"|ÿÝÓJb°9W¼Æjºˆ|’çÈ»®ÑkÄÉð‘×`òQówùQTj§2<@ÃꢨÚGDîâ§õƒk¼/íÑ_µ'‡z¥—Ê[V:=Þc™ÑA‚˜Cõ=øŠAÆú´!ë%ËSwò|fϪþ@ëf=k~­Uwƨ/»{(¿Ì¤þ¼#³÷ŽQã—À,o÷€í‡ïÜÍ®V£ ó½)³ÖüóþܦtUÎòtä®5ã=èJ®Uüj2ýÛ{¹¢ØÎ*oAvÆ_5c¿Ëð#ÁÜŒ¶èˆ2óÚßñpÝæVÀGî×ãÔWè»è29ÿ3ȼ¾ÍÌm_Ž+µ=&üÇp§Ì??@ÜÔ]Z€‹£ßëÈ?Ö‚ƒTlÆu’^ÄCŒRö2ø‰‘èàžQ縇œ£!:à°\ÝéU—ŠÀÒðç™ÿ4‚å›ã8…ðƒà?ƒÃ&ÁÚ}2Êkt"ÿxÌ”g¨Œ'ÚÙSÚ¿â‘jÒ¿äU……ð,%ˆÄ¾‰õ¨ežãËŠÙŽ+þç>œ£ïz"ÇIøaëò›¼BÈNuÙåè¿[F«®bÖ“å?œA¯*ªªBo[ï/ƧÛ6_í2uÓݰuÉõ*šªÕ¦‰¯6W4¥2̇l$¥c×ÑXΖ_$¡ïëqüG Xþ:úèeS®ªiy‡2Šìb®H‚–5"•ϯkßP¾( Åb™Ä—nXœÒø»î,N“7óÁІ“qíu„á\‹JÅŠ: cùOqggп$²ü#7ó?š*¯ÄÞg…y Õ'üU_FMs)½¬7} ›lÃ%ûXÎzˆ'QL3—þícy9ä2"ó³ìÏícyüY<9@Ï&<é_²–²–©ïÖבçDÇ–»‚<‡\ï>ò¼ãGú'ŽÅ¤”y £`:çà?Æc;V:•º~U„]®ao‹¨÷¹¥{hª’ÃÿkÍcê1–ÝOÑ™©*¢QäT¥ÀžzÃx¬¤ªì º¦Kð¸Õá&’ïÔˆ²ª»Ì ÏÂ=é7Jrð¹êø#wøͰ¦S\B•”Ûþ'üïG3üy#7þÃ{ÿ õ•:‡¦äg?”iaVìŽþÊ•Óð\¯o ¿‡la£áJ§Â™ðçfðüÁ±øþø·ø„â¬fM¤ZÅó®Ïü¨°þãõçÁ¯î[´aµr)HÓTøŽžðÛÀ¯šeÑïÞ)jú¡J›Å•§úüú«üry¨úó$ÊPåú²Nð(­9 V×–BhV'¡nê‹þ· Þh ~啕_DǪæü¾lþ(­Ñßÿ†ü#„?ߢœUc²»—øoò»ø¢o¡þcÌtð/+1üÇz"}ƒìá Ù×>ô {9÷#9åõñ—uÄ9ÑÁá?<•cZIìRsüoz¹[<Öÿ6ÛKâ3ºQ5x–Œã$ è¶x·øàcP6²Ã4äÝ‹!;Ò3·[Šê~5B…_ü‹84ÛlF·’fܽ—°Ìžæxú·§eaªB®ã“²›AfJ”(/Åôù_ˆ 3ÿOú·³%WtÇÉ ¢ÿUTéBÞ¹°Ÿb(·”†êµýKnן¯²5P›ª-ÔETûÙB©„Ã~_$"G¼.\ðÈÎàMµØZvõý¯f‰?µõÚCêo~mEñüð*qþStXÞX®,Jþ£³)ó‹¿±·víy$[ û×Wà?°Ú}ôW°p9 õéPUü£?Ö‘õIú‘^%:þÃê¿ë.Z£o£_ ÛA™ºè¹‰cƒoAS†¾MÙ‰v¶‰ûŽ'vO!ʧ,À{‰o Ô}>‰ڔöú ²„ ¼‹gˆë.À¥\!&Ï­kZ­(VLªy‚[ýÛpÿ^‹E¨œF³^%2ë¾Þæ64GÎÂQ÷Ý"TœI)©¿Z Wž ¤£ h£÷À£ÏG1SKŸˆ¥NIdö‰{p=8gð„G?&êh_B.Ðñi²‘üã>:Ï5z!®î$÷©žäÞ§ŸžPì%ÿð N­°\¿úá?òød·wD~ŽÅèÝP;HÅÆs¸üñ T1å6ìë|îXpúi°=Ïñ%§å=¬,øMXþ;øû›\û M¨áõ»îê ð«* ^Øñƨé†àŬšŒF#øâôò(~UϨþj"˜KbûԿ͹AØÂ¢CVýy žk#"Ø5ð)¯ÉàG 2«ö¶|`Ñ™EýGZãý¯2ë@íêƒ_ùç»S±VEO¦. 󤫉x¦;Á+!µ—ÐïÎÄô‘Õ蟸DçùÎoÜÇÒ6 þ¼…d0ó£ÑÉÅ“9/µ°n€(…ù>÷£žL®öT.#ÿ˜^wøÕn*ÆÓ݃þ‰3ð‡9=KñZGÈÎ|e*£¼\ªþÃêÂç~°:þ¨ ™èXün8ã!试÷gšˆ?ø#ñþã*¹Âs>ÈàÖ‹e´Çœ¡ÿ\ˆÿðP¨_Éä/‘¼’ŠnòSG_½FcëÆº›ñ$+Ì ¦Áü/ÆgаÕÿ¸³ÏâÚ¾þÈ™33¸ww—B€`ÁÝÝ¥8ŵP¬8ÅÝ=¸»… îœàNpû~“ûï!Ü„>ß½·}Z^ 993sfËZkïM…ÞÎt÷ ú ؈m!ê—¡ãq´â•Xï¹Y6&™©í2`VÝafn˜mQ†-'ÿèMýÇ~*EWbõ³¡¿ª@®¬âͣÃùÐáèïÓ·Qu"È\ mA›³ªUúóÖ¨¼_ÐË©?_hÆhv?úy¤AÕ„úó(ÒWÀêÞçNù?Á¯®(™Ô`&!Pióûï¦R_ªµµ—Ì,§Ÿ êå¥ÓZ’̤÷á%2\òßwTQžÁŸŸ-ˆ= Óù©±þŽITÞêC}³è«¯… É®åõ>gøŸ*Ǫœ€¯½†<ÿáNýG!bˆœ"¯˜ÄŸ‡µ᯴K•Zñ„ìà&ˆ»Ö®°lA-ƒ‡Xe}FÔš„lÓÏ“F ¿j O×—ÁPЊš>gÚÆMòŽÌd Ñ8ˆåJ îJG y\œðšs¨ ùzúC¦ f\ S„ü£.hÕ¬¾?,F*¼HbçudÊQ#¬ÿH O‡Ïnƒõ;ŠW»-~ƒgTµž Þ•üã%k]b¿Q`¾‡ÄïêÙðoœ’ýnqìÞX0Þ d3Ä]Ñ‘·æƒ1[^SB”üêXÞ-bãÝd ¾ o¹ô°Óýœ0üªøUêÓƒ›ó âÿ &Óш#fénô/é"Ëðó6ÍÂ_ÂRV wþà-¥ýr¦‚þ^6g=oó|Þô¹øÉx‘·p¥»‚üGØŠ#°ûÞhüyâ‹Á¯¾…¹æ=Z71üª0^áÌû=ž©7«}¦ÿU&j¨=±,…‰Î[Á¢ÏÇoä…§=BŸøOŽ‹ ©c˜'íôO,ÅsËB@ÿÝ£ðËWdj3üù5´HEao/ZÙ̯ØÿxøbÜKÝÜg±6¨¢S›jÅhGÚ p{ æû3ý¯¼ÌÅæjÚç²VLê?ÞXSÍ{ô nGŽÓ‘û¸…|ÐpÛ{zýPë…Q?'ÇjI^ÿ1—þã“á?†˜ª½Ä)!ýÌÌZÊcí›Å×íB‹ìKmyQ¹,„ÿx¤ U™ÔòˆÏvº0xÒãÄ韘ÄêBUÄ`¼ÑüÇ :…L¦K|9*$f‚,N"›‰aþ†/Þgü¢öj!ó?`é/->——ÄWãStGÁ4`ŽH|kÈÕ,j£Û™­»æx–yd7ÞÜá6°4¹È5+ /ÑÞ•lbŽD|rì|2XÄ9ô¹…ÈcºÑ¥þüÇ:P6$ÿHÞŽÚ’:ð#e̺d†¬b˜Ô:®þ>2;É?þÎÔ –è¯ ¦5Í>ÿ1›š—“tYék­¤þ#ªßîfƒŸqz7Æd–°Ö$¬ÚiðŠbÒß þÝ­¨jpÝÃ}¥Å?ž•^ ¼v]KªçÑ÷ñ;”ü°yµšF‡ŸóÑ©¼/ZòÆä Gf]Ñߨ^ê&½ÑGè¾Z-f¨óÑ-«'Pãa‹ªs†è¤-¢•ÔóZr*ã ‘NLQŒçßõÀ ÍÛðçåÅG,q¶hè‹»,3Û†üc±tS,l{§C<x…¿D¨?­¯ÏÔÔ]Cµ; ;Ü¿ñŒä7¬ý=pû»"-«®‹Dÿ«ôꬖ30hÈ#7êßd]Ë ð—صNìÚLÞ ¿S¯Á]üªÍÆâ·&£Ú:õPôä½é«|•²6j©™ MçÁŽ2ÂÓœåÎö@u3Ôõÿ&õƒè‹×‡|!xŽ"׌(ø½±Ä¡œñ'qzFv'Ðm^B¹ =×Ac??‚q}Úª.Ó›ðu¦Í:ƒqúï–Ãî7“ÔÇû'ÀÚ/ÆúV0b ãÃàZÓÍ—²ÙÖ¼ÅW”cµO ?Ó±§µ‹zh†­(C–u L·ùÚg㫜Cÿñáà]=Í8AúÝ@æØú‘M¦â&2ºÑ²¾u;LCׯñâW×Cy©LT?—»j'? gE—ö„º”hô/_Ä|¦‚xßÂLiA†tIèèû”ñ(S°Z’FŒ_mQ}µø ¢O2ù©SH¦ÂŸ»ƒ"ªxK‰ÏØJÞxTo<€IêŽ"au¨mÈ’<9›åÅBÑß•ìæäåá}¬MvœIú _ê»!u‡¥ð’·™gø ÿQü*Yæ¯0ó©Ívn³1œNÔpÒhé:…ûÔúpQëì _™ÖV,ÛÌkªéǬ“ƒ¬»È^a¢Je•ˆÖ9Ó°ÚÁ$…Ñ})PaëtŽó?á?®)©Ô8®“õ”úԮ߹h¤>DW?¨Õ©?/ªWÓ/«MXe¡RQ+ªÕЦ0ÿü½Ü%%2Ë([õ뢨FV°¡´ú'-Ž6O}̤¥jè•Njñ´”?µÏdâÑÛQ‹Ó“:BË(©^Óƒ]`~m?Ûˆn—¥ï÷º œ.ãac ZžÙXäâhòbõÄ>lâ XZ‹øwŠø §‰”~·Œ¾^ŸÿÄF/ÁÆ$ä-lÎÛs;Úorž¨ú¶ˆÊOX-®FxÍÑÔ.dE+ðoÙ×*ظ\°ÞžØâõFYy™\!oWìélV|«¥‹`ÅsÚÞ·FXòTjÀ”äsY°/Þ®lrù×!|_"r†…Äö5Eúôj42¾(`^ññ ൅öï `óA*Šcð©À@lÆ5îÄd°­%T½ÔÔÕpvÙO¢÷à r>ÌÀöW½4þé#;ü¢{éQÀo~'§™J–0u[Ĭnm$2iËÝ. Qÿ±OŒpùÙêB=qH5bªG¼›øÊvk|J4¬sÖ)ÔÀÉPó>§»J?xŸ¬è¯~1ó’¥Çÿ°™ÊKìá:…kÕ^ðçåñ=`èÒƒ-w{”U¥ÀæŒÝE™ÝÍÞ€†­ *±j¦¯u“ùMéFœZN`­e¨‚nƒÎå \wð¿÷á$ùGðÙ¿ÃüsòˆôO"õ’Ú„ùµetð«2¬²Bi Öêió™?¨©ûjU[=¢_£*»"ùÜ=‡‰µY5:OaiKà?Îjq²þ£€xC»:î½äë@ÞK‘ ì2éš,^2c$<–öûMûÑ¿ÄCø€—ìÅb'),Ýyî è£66õôÝÍYT‘êß^‘HyÑÇ3"ÔÅ Ò1à¡;‘w<„‹ó€¨ú‰Hʼnþ%ÉÔŽXÑ]">èm>¹„hÆé:ëL²ØN÷¥{ü?ñTi¢ñ™Ta¼×"Š|µaS¨±¤Ît“÷b ùÇHlÎ"È6 .óðrþ¨ ²bóWrÝåEMõÌ÷7-èO²«¹´LðÛ³à+’°ŠÍÎZð«ƒ_!o›/Ëó~@áðÈxyÎ4|ôNú_}gŹê&½xœ*G¡ ;Œÿ¨UýD•Ý U×a½z€?ŒG{æÔäÉÓxâ•]onð²g•úúQ1ïó¸JZúLl#ß5\‡ÎtÿBþq º•¿K/±³¥ø©%äI-˜ÿV»ç­u@¿Û‹±‹(»1øÃV—Ät'ï˜õÛHæq•>~æJç„àlëe'XàŽ2èKX]µ­}CáÙÞH‹7: 3îG髜“ á–£ç$Új#'ñ@“µeC>tU+°¨tÅ'’ÚâPïõp-*þq~Ú“+jÍ\£„t«Zh6¢²n&J¢hø¨Ìÿ°Ìf rœJø|(×2{ZÏx¦ÿÕBá‰ÿ¸KüT†sñÑx+S¿ÐÓœ+3›ï úâ@3ª½Ê4̉LïÞ†­‰ÿX¾i3Ÿ<ä|ÑÕõ0n(“ÕpÍ…Ð4#éÄSÈd^¢”nU FžÎðe±¬èÃë—ÔÙºÈÕŽf-Ýl ;uv!8ÿ˜¥žÔ¾ð–Þæ¤F1£Â[#Ëšl=Gǵé+ÉDVƒþ¥@u‰úómÖ<òVÞÄ_á½J’+£þ£ƒË¬À6¡ß<+þÜ©ÿh^Uü##Õð1QðÆÆ£ß]ëFþPÈüsQ—œQÊÚä59ï£\§p—: \¾ ˆnW¬] ã³Y oQ•§qfë:ݽ*S~Ôja@?pÀÃÌ“„àbÙåPj½˜ªÈÕ%³]wð¿÷á‚òM VÂú+þñüóxð•à?êuõj Në%—V[s×6Ò?ñæOöß}¤£þ¼ùGjp‡Tº­'×v¨÷ô¢4‘åæX¡Þ‡ˆîX^aÈFðÄáíeB7²dà ß­KÑû,õW-ô÷û©³wljÝÎòݱsðщ¼ýyþˆr{=O˜TzEbÅÂÔ³Ìy‰¢æræŸû£üIÇ»“T¶$ ; þP$ [íìHø‰ÿ¨H§Þwâ•Å«¨GJŽ÷©æe´GsЬÜÜm3Þ*†ñEsüü¿ûç¸Æœ@,éXèvÔÌMkJ¶¼7¿%ÙÂ:®ØaU’âõæbÇ‘ÜøÁ‚éè\œ™̽ÀoÜ×à}‘)ÍÅJTAùT×!0&ü/Ì&ÿŠ'öÐï…³b?ÞºNÜý§0 ey×ñ ™a‰^¡Qú݈)¼À¯¶Â,ÔÄ¿½[ÀUß>(¼ùk˜?¸œüã3U(È>4é…ÕFýÁ¬HO<Èø½Øî]hŒÓÂLC‘П9Ýh~õ:Ì}´žb<÷#=ѽ6(m¦ã?aÌK`J1Å¡¦yýUesì%Sbï׃ü\&æÍôãÐÓýåž*@Ü[çe÷ð²¾,/Z«kò4hX4°|aeý"Aþ#,×¿šº•¡²ÏLj¡ë?zi6Y²Þ¼*¼x3®8. ™õ°ÔÓQ° {ú¦¦f\Ð«Žø¢ø·) q;`”wQes!Œ~wøUcô§¨?ï€VÍáÏçÑ+r z°”öøó[æ[k¦éfަâvžË(¾~j²Y gÅÑ_µwÝÁçL±;A^‰õ~%gn w‘Îôeâ^«4ªÖFTÛ{¡°= Ç0ÿQ†ÙQÆ áÎ|$kIˆ›¢Ô*:½½½AwRi2õüjþãj©=èwâIvÂÆ§£ÿU ùŒ¹RsÍ2ôo‡—›ÅuŸ2Ò‹­¢‹ËÌ¿ÊD”3+ŸÜ/v»Ì:øÉô¼J‰Îl)5è'©=ÿ•êDo³3yCóf³4ãš¾`3Þ‹&(#[ºüÇfu„ÞŒ`ïY2ÞJa•¥â²:WzmÙ%®®‘}Š{ØÄîIýýq0·äT$þj%âd¿ËÐÕ|2 ýú'cþG°vä±ÒìÏJ­¾¥ÿîú'æÕ7ªe±KÿQL«¢MÓ¨¹ûÉùQQá:Îb÷<¨¸-Üôçš®mRßës…'õ—´ôZŠ,Ÿë8}È FØÝU âÔbä°s—µ؈‹àLE ¸äÈuD9¯¾V³’øË—ÃÆQ]$KS#ßNœÀJû¡—ø‘éT%¾Öƒ{€†ÞMÈß¹ëKô¢õ$¦ø€ý_çN…‚U%ŽN +-Én¢  .ExÍ1ÕfXÑ•".¸Žú«¨øQ þ{þä:X“‘t%¼Ébª!^h"Xñþã=(ßo\ooôKƒðN#` bGÚÀ,„ßD.–P¾#ol¸Óר7äå…øœ›Îañ‰ðó–D·²ØY 0ªoøÓ ãAÄ“À,xƒ@A}õww4ùGùp+s&2ÿ£~ðK žà}ÎÆ•}#nlbøë¨ÿØ$ûÈ"rOj2TôÇL©°ëÍ ÞÜ)¥ýwÿDÏú;þ";ú«ÍDÙóðÓȺ‚0ÝÂ2îÀfŸB7@ÕW»ºŽ»Q“ü#¬‡[Ïü¾ØÙTÔ¯– ±¨ýÙ…;ýÙ;Ñ·}9VêÞྫã?Öe ÷ZF´{$ØFèîèŠS3Qæ´&{œO¾ð/ëÔ¦7mÓO> kZj t;&õç¥è˸‚l¡¹ŒÙJ?¥ 7ª§‚¯VQºÀý5A­ñÿ± %­-ã›aЋÒÿ}HŒbŸêgF‡Ãè‹î¿¿ˆþW{yî[yÎoÃÔŸÏîT¾"ö)òìJò¾æºôè¯*Ñÿê]G’0£*ó£:¡HhÉO^F%zj³¬œ%š»¶÷V¦žÄ?V᮵â¾w«KNŸÃQørT9¶…íYIÎu’zì…àW Ñ=m¤Jsë} «IÚ+D7óêô»ù¥§ê‘ü(¢Ò©r¤9ÂzgUE~øT=t[…É?žÁóǵŽàIªÁt{³k§÷U&;šYÔHNØܸ.Qap„ƒôo/ óþ÷AW’ÍȉÇÙÂÊQ°yÀê÷¤d“}ÍÊ~÷æ×6m]­dà_Å~ãšpãô¤ ¡8sÝÊÿø‡ VÓu²î+-Õ¸®ßýÜODtYZ;ÅüÚüðçN_Œ…ЇVN}Ý_+çj¹èô(» *¡x/ŒmN®_ÔRjSé©8…iØ‹ô}Z2-áOí3µˆ!à7ªb¡»2¿ö©(Bþ‘ê-sÁŸþNCþ†R'™^\C˱ƒ÷h:±w>üÇWÑIÓ?‹ÍˆGÔ\ér3ü†ÃôÁÞ"¦~„~×þ#âùµÕøÜUäSÉAÓé.BeýpÀ Øã:ä~¬z}û g0¢G¨¿º«ÍÄâ·ÅJ@wõJà;ÈŠÁàNǪæfÏÏÀ€ïÂ#F‘[øªÊ¢Ãë?²ª©´´ø/§KC:ìùñH4$›yml"'ªfL†«Hÿ”{q”|gŒÁaØÁüzð ¾uŽ~×é¿‹=b~œ”<ÏÏü„VÆ%ÝýÕÙ–.·uBjøó¤x˜Öáø½J9üÇhV›Âue#ÇØÊΦÁôŒ—Íá·§ÃдÂwÜ"CÈAýÇZ¼Án²²3`êCô(ZX…ñ:­…èÚ‘+Ü3“+5¿r&®¦®ø"s™® ¿ª€Mî%SËÊðÓ#ÑTõ–náô/1´÷"7oCúÉûâ“ñ]&ÿHb“·Q›þþÀJBªÔŸ/ÆÞ»£¡=ŠE…KÇØÚÊPïKMr}Û¹oÔ"`ÍM™ŒþWkÍ&ÔÎ…øžó„h7> ©ù,.?L·bn¦~p/×uGïj½¢:öþ$yciüÂ+ãÜõ› “߈ڈ]X|§/ÔezÏ0sYǸ˓y2»Áýn97Dý ¦W}©Sª‡ÿh)_bqS“=§¯|P‰DÞ¨ð+ÎŒØÖjê?êÀ4,Qýƒ*Ï(f› vjhk:Gݧ½'ÿ$ýHý 'TÞœ¿íK‘{ôOüfm±Žâ?b[/ÍWÌ Ü‹FlºÃ~tÏ,ʽ. Ö‹V®üã ºSÏBÛ”h,tº§Ï1óØ%é:Ù–ó/©,LÖ ¯öïÔ›:þâT”4ëñ̤¤šž«Ú¢ÿÕZu,srÓ#O úÛ*Êëÿu"ƒL¥jiï±àUºãUœ)ÀÌ*ôõuÞ¾(D0gÄ ø8ÿ“þWÛ”Äjpß§ÇÌÿø¹¸>ø}N]-¯eþ`!}MÐüÁôO̧ÕÔFÓíð½ò£©Á+„üµ¿h ‚áihFý=ˆÕð«ñðç³t?ÍÖ~ÎÏ5ÓE×I¢¸uX®’tuNj’Ž9åÃáÓŸDÒœEgæ)žïî â]nR…‹aÔ?wôW=‰ÿû€ EÏôÃ!/éŸ=©ÿpÔ_ˆhW_}%šïÌs• ¢¶Þ b©°‘ Å£Pïlx ¦Wû¬†ÿˆAºšSžˆù25°„³@]o§»‘× šc‡‘Šœ+¢ùµQõ¹ÄaMA»‚à?F“Zƒ<»8oë4bžäÒ‹}ûáA à?ü¸þÔŸÿèª3007hÕhr¢ô¬âøfܯ<‡×7‘Ø1¦<ˆÿˆë‡ÛEvwYd×_„s©#©lÅ×¼Å‡çæ¾{âç';úÌ¿m™¯zPo.@ [FÎÄ÷­7œª÷èwK3öûåSÿ±Ÿ«“Ôïõ—‹ ÞD®8¿oƒB‰® ì‡ÁåssmâÎAàkôÒ¿©a§a.ÓšŠqø³ŒXH|ƒÎL’mT#~•­™ù´’éEgQîžAUþ¼ŒJ)r›¡Xèñ2›1ð»ú7ªJ\ÐŒÌo!þ[ø—t`inôºº@þQ‰iÛÓ¨KgÞ¤ÿºS?XH–†??ƒ÷š'«{èÚ_¡ÎN2Áö\Á2¬µ`>þ(ôWµùþ%TÂE¥ƒø;ºƒDÃø ¯TƒõÖÀ.ìãÿ»8§Ãð+Di¾ÆÑï–BïüÀx-§;ˆ“¹R¶@{´ …Ü–/!5!Y­dãÀ¯|È|Q‘åg~Tpþa¨#ÔóäNílK:‡Õ#»M–3ÙÊŽþj®Ùj—Cð[AˆVQÞd*ùÇX<°n6à^ž0ÆŠÅ®‡<•þ%ðçWˆ6¨½÷µøí~\µáä5[ɶvÀyÇ Ò_½ƒ»Ød¦§ÿ•Åéù •©b©èíò~0oÙ@Õ[ñìS2¹ä¸1Œ® u‡ƒÈ<î0ë›yŒ­›õ…î*ýQS0KÛiÌŠ¼Õ x— ¦’­ Q¾C©·ùaÓšð¾~q¬b¶ŸUŸÙ·ŸÍdøµnV;û }ÁªŽ¿û}Ø8›†Tág’‚/¤*áˆrT1ÅuÅÿ½ÞàWÁêú'ô/IêœE~'ÉèUŸùQùõúµ «¬TòjY4OmºöðéÈ/ÅWêèw¯S­Ñ‹ÅH¬?ÒRÁŸß¢þ¼|ÁQíõOâlÕ…AÜ{FôÁ:÷ þü¶È£îÕ2bsпd–POßaØáox·jjµxb±X•ÁÀï{CKÔHl‰Jv“Ûø‡È*ÞéGÂ_"ÔŸ ¯ʣ+žÎYØúèñÔÄáBöç-zJFûBB£º*õƒ¹Õß`öæ¡×JŒUXë.Aýë°ö*"°sø |¬1œøBbE/ÁÓ~ª1g–¸èw¢ç¬4„ü£x´£Ã)•‚µ¾Î=-âs”¯jŒÿø‘Ò.‰šNKAþ3ýU&<Ú'ñX´óûLýà%¼ähü‡…XÛ{DöÛÉæ.Ò¡°<¡&øÖMV7è­ñ‡Ž¸0OÃ$;ŒƒÅ3úvò•ز²r,(×lþÍÀþÀÓ÷ Ç\¤ÉvÑôp Qg ÖØHœáô,þM¶%>(?sÿ|éß±C&"?Ùöíƒÿ¸Œ÷¢Çÿnþàvò!°wÙQ@]æº^ã[·Â¶>“=à?œþJ7è£xüª^n0w²•í“é_2H©læ¹|TZSÈ?^Z @²F [JÏàϲ­•S^ÍòŒl-AÅ@ð[òŸþ´GI©~uý×äÁÕè®?ŽÔ‡Ôðçµ´'Z>òsª£_¦Ðri©?Wx¿NFj•¿¿è¥r ÿÁq,¼4ÜtºãªSÔÃzoQO_NÿݘZü0oØßßþ¯•D4¬ñY˜í3xùiøLª¿–Žh4ºÈÀt˜÷â^”ûýj×áÏË‹WDnAKf=çÇ^=5…/XþEr’ÔÔü.ˆ¨"2×\›{[%ARüGçpüÇa¥"ùG_¼Û¸ŽôxÍXÿe uCAŸZ˾hR+€DÝÄæ¦ Ÿñbw˨“÷§{ íf˜.Á €±Ï‰Þ×ßàÜý´©2þã$u…lÀ½M¤-uvjDeîÙcªêOÃø¨2–9ÀœN&PÊ\Aÿ’Ä»1ì ¦¤+Vó¹ì/¨m…yÆâùÇÇ0õƒëQ±6â$\$¶îÉYxNýà:üÇL: gG;TÈ<†}¼­/𢕨å!°]ÛÉN2ñ°˜\¢þã 227§j¦-ÿõ4rS#ò^¡¬ò ót²'¸æƒhÎÖÒ%¥ÕÕΉÍj Ív2 ;ü+„ve¶º‹úzr'þC3£pbvÂî¦Ê¯ŒÌeÓýîaØ7;.Õ—©ÿØŒÆøqL7|RUðº\àWM\ùÇ&ÏdÄÒ;¬[2ôWŒYäXe¬?yÉ­WôcÌŸD1>u*cÈnJrò˜u@»Þ‘µ˜è¸÷†ˆb¶3?ª»ÈN^Þш*ÑÃ*M=£'Ù É\—ç¬ÛšùçϬŠv;©«ø¤dð-¬˜²ˆÀJð…çFzéö?©ÿؤ$S£ºNÖ¥qPææeˆÔo¨7Ԗ诊3ÿã¬Z‘57*eµBZ}m’öR5Ȫþ`qu7ýkb‹E"ý–U› §>H”e~­/ÝL~®ÿn>,~_ 1‰õÄ܉v÷(3®ú£æÚƒwSíô7IezðÌ¢Éúh5;áá‚Y¸ÍàW=Ñî8oe|«#ûAêbà‰žÓ¥—}Ì~ÄüÁðç7È™¢‘ÑÔ‚?Á4üêyò?Ñﮡ´5¸îá•ÒHÍê\¸B„2©ïÕ^Ú]æ¦Ôw«®¾GÉBžWëÏì'S=á !¿ †ú þ£oQïêÚéÀpFï ŠëcôUÚÛŸì3_ýUï Ià»Aƒ§‹ ðkÁ€‹/ÑïD bcÈ­„ù|þ£!Þè ünc>g(“Ìk+¶¡T¿ŠÇËMò»ˆKadú—TÕG¢þ&ƒ!¢ *ò…˜¶#J¿—Äå¿eg¿¯P÷¹ÃúG<0‡ú+Ñæ6Xó„¨j¦“+'%ê.¥[A,}‹ñ ËìN¶”ü#¦ž=‚§ýVÿèH¶° tê‘X@þ18Ú‰CkÀv/ÄßíÃvÇÇøl•g~íP»|jêîêÑÉ‹àPÖµÄçR!GYÿÑ»}–Ÿ÷ \h)¬Å&þ»!ò„›,S}õ–°2šìƒ}< ¯U†ÌË´í3>b·¾ZWÀ¯ZÁêN⊽àë³·DNâ‘váäÇ•ÊàWÝñ\CÉYâ±d3©ŸÆ}'à?j‚]³OÙ 7s Tð&ñC]ÿ.ÿØ¡µÆTFWyœ©9˜$];AÀ$3•þ¼3Šê‘4£ÿÕ ³TÜÍ#XÀ§°/™¨^)Ê[UÃbÕ$*ËžÉ=Ä'é¿›œÚ¾Ì*N͸nÇAU’žîk±zmñE{ÙíbعRFTm]¨']C{AVºš³V D®Clêÿ4 â?&a±¾2M$¦ý³p¢à½÷SŒž#±¨'ŸOg°<ðç¡;߬U¸‚<‡Š uï™?8…«„'ëCmÄòÏæËmØ`Ô§¾äÓðZûñGçèm•MN ]ïÙ[êÏ}ˆsJÈûh>@„ËÁ‘<¥î< }gŠîŠAó€?-…e)F2o9ˆnZ¶Ù†§³™a…k½™êVí&ö"§å™| Þç¨JɆÿh‰Ø ><þã þ2ú«®~vPÿƒ¨Á þœ¹ÃbUþã0‘K"FNg&Ù„ZâóhÌ2ð}c¬¤t@ÙÏþ“Œ´>šWè³¾™ªÇÔº½%ÍøÎvìp ëR»ã?xêhôÒÀW¦¶ZÙ«ð”ËèùUV¶ÕßÞI?€v{k0ûó6[ø¥Ôr(Üðºj\7²üåºâÿÞ_%aˆIâÏ•nÿ¸~0&ùGí™V‰üã˜ZÓêÌ?/KýÇ8æGYjdbñàë~©ìР–jƒ½B1Aÿ«ê 4Y™F·L÷Ñ2i™C½Áßþ§BœšžÜéÆX»ÊÆaåÕ›ZFìMT:åöfÞÓïz¨†¿Ò!ú'VySŽ ßOL“üJPÕ¼üæ$§=#vÕƒIÅþð—õ§Nÿ«Ù¢86x݀ΞYM~üôo¸HOv}H€‚GðOuÖs³ˆGæR ü*'Òiбÿq”˜^b{Š“=9|@Šñ+ð«ûäA¿aË[¿O&Êg䡯Ò2,TxÀ¯XPoïÄâÄo?Ì?2¨´¸Ø÷QhL’qµݧ›’Û¼0VH/x• ¼¯nx¡7dìt#Í ãø•ÎuG¿Ë¤E®gÏá:Ñ}Y|ƒS‡™@’—èKÉ?NÉ^àaé×soÝé„“„k˜ëÍ ¾™{”úV,þkcv( ÞЙÿ1ør&½;F‘!<5jã5Ð`¥ ¸€Gòæúñ|fëÑ¿›ÿ1G«ÿQüj7“Ú‘Eö¢ã¢;ú  tlßÀü³lw#ªóVŽ¥ÄZž†0¨˜ˆú¢m˜+Ö5”® Qù ¦'5½QC•”å& êQuÔŽk>Æþg@•† ä=̆3'²9§<ÕSÁW«(­5o´ï_, =úÝôô/™Æ$'wô¬K­Dö]+¹=ÑŒ½¯Í>=a³çáýaQ7£z×Dèüc¥¨É}:~UµÁÏÞH•ä@s)ý¾ Ú{ñ öúxX/øs?²¨Idu> kg`qÈmDG×öÞ)]Õ}dn5ÈÚZ?µ„ûNo¾gbG«’¹„мšÄàn0ƒ©Ô¸‚Vª_ÐüÁd3ÉÌ<½“਻\ë-Q'jŽÂã æùE¼§:¥&â1óÏ7Âp{Ó9ÑÄɰ32äµã#éÉxš“ÝoWî£Çê¦þãˆ:ÿ‘‰üc‘Nn>†ýÙã‘}ô!ÿxK>Ó˜5Jò{a5£þ¯„éfç3KQ½myL8§½LØý{ƒ{Õvzk‘ž£œdt#ƒUþ¼:êµGÌAÔQívµ·Úo`E€j} æ%™•Èé‹ýAÌ!ÿ`IÄü¿ü/þêMý¹á:YŸ•_Õ¢®ßýÜ6«ŸÕ®Úg­žP?ÔEë–RO«¤5×zÑ»êåOÖ¤¢âiQ›°õ1µk0æ‡èéÞRT¤¢–Y‹(r½û†ÜãnÄ» á ËÉïMU©§æsVQAÌ·„ÿw5Ä¡Wøûw'U[k îƒT¡Öc>S)`ë?ªÄþ{-çת õóÙ×E"‰Y L_YwÙÃ#bá^°ÁÄýÙ±SÅëŸMÕ™¿¾G¤6LºL#šIÔluE~3ÜÂM,‡/¶Y§ÿníVü¨Í 3j2y ^䉘È÷ÎAcãKåWkú@-¤:d3YWB>Iê*ZÿPå®Ö1üL…} "«zÅÎz“‘,KðiÈÒƒ=À÷í#»[Ž'¥g*ó?‡¼aÿ÷yS|: ‚KÖE:…ï(Lö÷ŽŸPÓX§ûÁŸo&o¨!gà‰ö‘Û9“Ó‹×r½¹ÁËÞ¥¢ŸÌ÷Ž$[ÈB Úfb—ùFøôÖ¨pjÒ¤>¶îŒoqþö ÷ã4öèqÄP=Úwý¯Æ2ã¸7̯ªª–„uð¿2ÌfIªªE–4ïËô/Ù GŸ´ÿùÇ7|UAºÿ‡í¿“|!/è\V,îy—X:)bvú_]GU”Jˆ•Ö=+Õèe˜O5ƒü£1½à½F˺œÔað«ÚkQ—3qüã y_b†Þä9¨÷›ÿáfߡޮ/•jæQ°)0§Xæ~jþvÃÄ5Bœ¢wú þÞÖÀ$÷YJ×±ØÿZÔHßèLx’üh†Iu6YÞ`îëI2 ¨Y[´t=Œ7Ì<óW‰*Îò3QYNüÇ;Gñ™Š±Fº,•¹èÒûüž\®5•ÂXv˜Àl†Ï‡8&xÞÐhõöäCþqM&o~(ù!øþu¦Â´òøö¦<ŵ“‘¼@×5ݬ7§ðWÖ̉ %ø÷ÿþÙŠþªv©DRy@|4ö’_8ùÇ`¶÷æQ2§ãð j7Òmxº•ÖŒnW¦~Ð;S¼»Ïo°ë®Q{ë}‰ûPcšÂÈÊüJöò•æª$…½ÞúÃÞnZiìŽtUô´7›'Ìôf5K'¾|)–£*Õñîÿþüˆ’A•®“pSé«þ\_ô¿ï©Bûµ“[¯®×/ªµXs;ó£ jÕ˜ÿñP} œ þÒH|ræŸß$:í€M¸ ,ý¥öTä ¢ ú«-俸v‰å” Xü!tªl€µ«bÌÏDuõ¾–4?¶H ~õB|ˆdþáǽFâúÝÄ—ó°L©¤ ©Žâ0¶ð¾£'~‚°E|q0[+£/f~mYôW³Àè—P;çO¦” 6“ø¯S7O·_|ˆðšÓ©Ý‰‹6¡SÎû¹V!#P¢ïí¨X®põÑÀ^Ê“5­¦N%žîÌùúwÿ¼ÒÆõeò&‚~!þ"êO¶|›êð‹ñS'©}Œ »‹¯êó{ý æSËh)ðŠ£AÎR€öF™lŒõ`ŒÅò¸CÀQbq½¯Xí z[/âû<ýzáöOœ¤®Ç¿šENq–»V…;_Ïì¤==Õ·éñÌ (0›Ê¹ì}^/%ûËþÛºÞÜàúPÿqX0O\¾þ#lŽ3ÿ£4ñ~klfkV­ƒ=¾‰çÌÚtÌÇéªåÃGëñ¾;;s8#ƒÙW:ø«Ø¡×pC'ˆ;ßÊAt,YMÍ‚/“ÏoÑí°º¹‘*w¬ï^¬ê7Øîèæ¹Hí-½wš`û¦Pcx›,-1Õ9Ì,Ô‡£è‚Ò®æ a{ÎÓƒö.“1F™‡ù}kk çùØfjPoÄ>×zËàÏ¿yäiNÁùNãÊ1ìâþcC~—Î*x‘DvŠ ýÕtkþ}#ç~0([i¹É(ÈüàùQûQþå ¬†™™Î]O¨?Ïlçf {O:¶ß2ñ,6R‹þ'5“ë˜5—®+1À¯*a)4Y¬¢:˜Xo×)\­ö‡?OŒúªqUZ#Lùô»ó˜ÿÑÖh<þã˜-ìlv«üþn®=7ªåŒ(‚Þ‰MDEÑñÿÉþ'ó?N0?*¶ëdÝUz¨™\¿s=€H}pSª}´(z)ü‡Ðü=J­ÖTlÿKåG¨xø‹¿RÎéw¨[hK•Âc.öF]@Ä9šj²éú~t]?×?±¦xˆU? ’³f6zÝ¢êc- oÂW=žè)ÞFZuþ¼«yƒ5 B=†Ò°}Ú?™cœª|ÔŽ¿J)ÿQ•zúùøs¬5›ŒøqmKìÄض‘XÇ{ ×á}ÝPGqÅ@áß5…i’½Asö1?ê1½7Ìå¥ûIEc"¶"/Vgž†¡2»_B_ÏÁÓ~§ÓéLl´¤é²Éê³xwÉ ä71Ép>à™Ž8=CÒ˜·¢®zõ›+†ÿÈ`ܧÎ6#ÜùT#ž­¾ò™ñž®0‘ ˜ëýôSŒ+O38=·pÕ•uÎ.—0ÒQK¦ x‚ž"ë(Éó|NFÔ€™N t&ZÐK£>õ» ÜÝLè'â€öp½¹ÁÝHxDP“bô&~ÎJ>°UfbñgÉ–X»Îx€ =°=Ø¥ã?v‘†ÿê¯ÇÔüƒ— ú4‡þ%£¨|K &ž=<"ÿ8J'ýjíVÔÒU„ÿ(A“5p‰Ðh9ûÀOJKlÚ+Ì¿Uºð6äºCÑ_ÝÿÈȯ™ÌüÔŸG¿[ÕZD=ƒjÞ¥~J@™Ž§óï±Mp=båøÚÜP+ÖѾù£~«6úá4TŸO6s¿¯¢£Gû†õµ7z±æüŒ è¯6‚œ]À—ž#þÐésò’׊z tÈ=Q <5Þ¡ßÝ VµK¶§wù>˜‹§ø‘à_Á›€ ŽÄ«n¤âo'ZÚbrOˆúA¥¥/meX£ÆÜé–œ‡ìðƒ­Xô]Jçò ØÐ¤èwû g}Eÿ’FÖ$ò t€‰ÿÈ€fk¸ØìÚÞJú·+ì,äJGOèÅ.ÊYg¬VÖ2fŒoF¶üÊ ÿñ€.+ñÝÌ$“튷®"÷ù¨?îµSݦ§À.yàŠËíb1ÙÌg§G¿Û†~3Ïâ9– `©ôªŠ ŽuK&¶›˜žœÕ<(pD™Ôù÷wª}á?â=Ò7•(G±ªØ>VKîß+Ø“O|ÿú—Øvð«Rfûžéo~‘Õ¬_ðä—ET*Zs„¸â¿WþÏÿê«ÄTƒÑåJë\ÿK} vÖ>h¥ôÌúµ §ËGiH÷öòZ[Í_}ü“õšzJ?OÜ\KsV|¥/ÊKõ˜zÿá©Å¤Ö„:¿Ý©¬â2ø‹Ÿ(MT[üÊ_4B¿›•ªg=¯hO¿(úˆ úû㪡yˆX¶uØ«¹ AáÏRíÅ»E,@<EœÄŠ‚ò ӱ̃òÄ5g­l÷Ö»ÍÜn“®ÌIàŸ‚jSj»×qüj.ê¤i KýP×>é9„ýÜΊÙȹVRÏ1VhŽÑIOðÝÙYLÿ’~dCɱ;Abžã'é ¦Ôy)6o}x¯6Q ‚n7<ír»øl¨÷º†y.6úÝ̬gaûüaÙO³òuŸdDø©€(A”zÜŠAFSÐ,ˆ~·4¼ÏüÇ6ð°&<³Ú’P+v`~T{žœ?¬Î*r4 …ÓTö•˜þY“àâÙþØ×æY9þü*ø]˜”(d;«¸ötôèj½ù¢9ÏYT%•@¦>wé¿»­íÑ^ª±¿Ð¿}ß?ÒŒEÿÄd 5ñn«Éò›äjÑÚõ0¾¢Íö&¯#pÏoqö²Ëlæ[˜„øV{jäÛPß}ÊÌÈdŒVÖpó¹Ü kÏt<áW|uBrØN!ú—0/P{Dôt‹ 𜌂†í¢Ügtþc5z›QØ.¦J#¶-˜?¿ÀTªªôo§3>)1Rn±G´t½{«©#ˆOf_ˆ§UžߌChÌÒ¡¿êŽÞö 3{п=+úÝw†V{ ýnjôW•xïZ²Ã®SxšùƒAœ‡ðD2²&°Ê ßmÊ÷¾³{Md0Å>aG·s¡ßõ4oÑ38¶•޼&‘Ó[1® Qá»R„`|\·ò?þá ¸S0~õ•ùƒÉC‹ÈoÀV/ª¨?/¦ç¦~ЩÿØ­Ô@¿ë¡uÖî¨O”C‘_НŒ©n‡ÿ¨5 öU= N˜F¬Ÿ¢ÿîÏåùÅ#,Ô^Q& 1¿žÅ@Es`M¶ë‰Eð«§ÚóHíÐKGoÕÐ ô4°À /äoXã8þc7±ð+Q™üYgáµH¬XW_¨ÏBWü˜‹ùXùhpÇÃÉÞ_ÁþI,} ½F|x&º>¾ðÙ¤RQ×R3‘’ï®,'’µ$Âû8“¼`!Ïñ›Š,wö=ÍØg­t+žÑÁ0Ôäl¯Å+žGáZKì`“eWT§KÈ—¶q/¢cÑ–ð¦W¦¯Ø…\u.ÕÅ[lT#¿ð–Pyˆ×n :qÏXòÑÂ.›a¹  {O\?‹N1QõÒJ7ÃÙå*NHü`î’¹ 7wÞx &™[}cýKLsÖ¸ïÿ^˜âd8ÏDtÞûö®77x£û™_ë':q5“È?ÊRçµkí…ÏŽ?‚-{Ægoz¦ãs64s‰ ÆpW¶õXÚÝू>-Õz‹1ìK¥[Õ>üÇ |á~ò6N 7vº]Œê1ׯ,ýK¹'”¨Tï+_°ã¨÷º…¹â/êG‘¾-#Ê¥ídÛøt[Ÿ ÿqElqz™'µß`EËÍ‘¹Èî/ùá?Êr_2jkB­ØN{Žßû_žõúQ?˜ìc²Y΋™ž—†~Ÿ©ö~*ÿBÁ{ŠÕ²ƒä}@K6ƒ FjÑ$ÔzËESâ•°‚õàÅã‚Ó-€©aúÊæÔfûÀ&_£2o™y‡þínÌÿŠþ» èÕbö˜üc§¨çºƒß”™ø,hç¡ùxˆ*£_óÁDýào°ò}¨FÜCýà.«®^£·³þä*†á?t³ê9¢¹àÞ¥ë™_ûŽÚÍ[\ïyNHXö‰æ.ëýwÁ1ì¦ÃÈB®9ó£üQ‰m¶šÓ?ñ Ï® ,qTe9áK;ºü‡/õƒ¹ˆÌòsòÝdvqÕh`忚þêú—8ÝZ–Óy\È*"…“Ö™þ£QV¼ ü£Œ¼Òû÷ïR;è9™ÃÀ-ÒÂ^ƲÁyÔái<ãœøXS¬ø(viæµ7@¿{.¨ M|ù;æ6TA¦LKÿ’™/ø_üuý¯4×I¸¯tV“º~÷sÛˆ«žW;j7´rzýêàêK”ZZ)˜îÑÚ35@¹ùS˽Tð>7äŽ&5ÃMœJÄõŠ:„ìb þ&* œé|_"ú_Õµ[ ò"ú|‡ÿ¨ÈïÀãÅÖ="xÚw´É N=a»·¡â  &Ž9³x¢£`öm@ f±ß`8*uŽË@ê‰fêùó:Ë™rœeSg,ßBÃé^2šü#@|¿„«ßÝIÿÝ#¢3ùÇ(9\ %C4àyZ‚/5Å6–ÅF]S(HuáQªuÖ¡W>€©§ßÿj–Ö_›‹±Ƥìû`Eœsüªw©7ùZ¬ŒÞT^ΣßWLô»·Í(Tê €·Þ ÿÑ…ü£ zå|â ¨éò{U= §©qIByU””Þôß­m £KdVg&}½Ð^"KrØþtvTÓ²s‚_%B à ~UHžѿěþ»cE"xÅΨ]²¿RéAŽEÝÍTºYlê%™?xÛ*ÏüÚ)°ó‡éœ•Ì„Y5†Bû@ÄQM¢âÞu+ÿãv*ªzÇõSž)íT÷PçÌõW~ȬÞVÛhç˜ÿáFý‡S?¸ýnð«?´Kêm%2µÁ?$­ ?¿ªG¶·X:^E¥ÿÕC½•H­w¥þãMˆªÇàïúñ§_ÄØ© 0+x›ö‹s¢¸zJKHÅÀZý6ÙãKñø»2üÕ®«ŸÔâ–cfï`Zøó—âqe‘(uVT@…›PBÄ@á¯åüi }*S cEg‚)­ÀâÜÄ^g#Kˆ"{aI/²âsŸNŒÄü¨Bê ØÒm"6H‡ÈM²—Û¢تssÎaocðþWâgͤ¶ð}„ýwïkóa:ÁÜ.§rö‚È÷ŽÂ’®ÇŽu!fvú'å$$N\„~ q©ß.¶˜ú«–‰«ÍôN8ýK®‘©õÁâ/„%e–<(6Ñí;0¨­x£)xÔiÆV*Fƒ;$/½ s8øÕ7¼¶Sy¿Y‚U¢¡qie¬×÷èqÌmDöuä"¥\oZPgŠF^Wä¼Ú ¥úÝ\Í(òäò>§5ù`10úúXÎÖè*¡¤º‰UNDßÈ-àW›AζâGªS?üýkÍ•Úð«ŠXÁíDØAäÛÀµWÁ´ƒ1_iÖÄT§ÿU3ø-ð©@È¢þ /PéÝͼ…ŸÕ(Ä»Íð ÐùÞ‡ÓeÊ컌GÖ. ÖÖ:óÖ¢â Å:Xû­è›fÑ¿$‡‘’êÛà«UÐï vä(窂!uÀRÇ7ûÁ W”õ˜ÿ±žúÁkÌ?ïF~3;v¬© •Ÿ@ð&ó„Š–hj½Yäò6u;õ¹‚@&l,ÄÒO4R!™uS^ë>“+ö’{M@9»Š¬È‰?öÒøÌ}91Dÿvf©` ’‰{¢šêÁç<ôOìäI•cw¦Q-e²Òø†ôÅj`Õ‘¿OuHF5{“ÃÒó=ÔüÚ³Ú+ÃCÞà”œ–O±÷ñ±Ì^ô§wúh%ÂÖ¿#zJÍË{‡;Ö!«'Æ·KtÇTä,þ‚ÿ„ÚæØX‘ DÉå<ñÒ¸A–¨®ò HίåÈ92ÑMñì~7¦ãF£kUY³ _ýßkPU2D³WJ<7N¸5™y YÍþ¥Õ$ó •¡*YG'{ ýóÚ#©D/øÆ%‡¸ËŽ”µ yþ|>¤¤ Á¼aþ`ºPç"ò?#•zY =ÔRÿqNuصJmæÖļ¡ÿUd´¬Á?MÇœÄÚ×â9]ÙÐ_å$§ ô úiºñ¦ÿ©}&AJŽÂÂÚœÂ_8ýw3ó†» U o¨1yüãÿͧ[êµ/ú+oÐφ è£duf$öN?Ö§¼•q±<è?)~ÔÉ#äòõatõªŠ×XÀû¼ÜÄI¿]ÿŒùýÂÛúŠº˜äW^sbµ79Õ>üM|ÇîQ㑊ø¤2Öx‹Q’œæ8ÞnÍ:ŸdF=4 r_ÿú|][B@S©£d —‚j†Á øcMœ¨uzc¬FJ*&¶’™ô¦òíÊ÷ËýIfð«Ì a£©LwPÀ“:ñ= ,åIô,3°y‰ðn¯ñ —yNÛ‰­ŽRõRCÛÐYn5þ£?èÞøø°çŽ®>.=êÆOôú›¹š â†r%qâvc)u·EFòÃðô»;©Ü%Fq5ÃÉYr‚_m$‹¤f„®݉’Çcá›à=.Q³ë¼|ÄîœqÑèMþñ:Ì5ÒúŠáœ´¬à]þd/p%'è(HþQÌÜ„®ÿ¶ð,ÝÜ«š;ˆÆÁýùĽHgLFzÁתMdÚ ÔjXTs7'䳞 0Cý Ý´DtDz‰G¼ÁwÅoXšòÆvâ 5PK‡šÈLa¤¸ÿñ!¢E‚þþ2õƒÈ?.Áׇ xJVZ„©¶ØÉïî-å…-…úê½þ£I!PS}š>‡>oˆv×ò¯"¯“'oK¥v 0â°d¹ñ¤^âq„לýnNø´Ä§¥AŠRsο :›‰É]žÅÞÆ†¡n‚µ2˜>Ìëûú×çÚìywp:_®î•øû;Ù¨…Í™‡eÎ$W€6ùQ½—ö<{Ñå‡ú«œj5îø}pÞŒDÄèôóDtå©èXgêŒyXh¦êáaÕòbûãüÿ¸¨nþ±D]¥3ÑŠ·Ü©Ó»óàÉÖ'ÿ`n5ókßéÑé,Õ;ºæa%™]>üURðƒæ®77øz/(E™73–ÕFñ:n hÕñˆ÷»ƒù£Œ2šã ÎSC˜Žþ»^<©ýÜ‘óøäƒ— ú4ýÕìAI,øiöðÄÉy)'ÑO°$sb+ÓãÕ¸¾þc#Œs*p¶#Äö¶9FVeÎY§0O:ýFÜñ“¿-Ä6ßȽ°À¾Øú|ô¦:A/‹"L9}b='ÿè ~5kÙˆXüýV6ÈÖ -9´i¡Vì¨=¥þc Xi0³ºälÙ±ÌóÍat£Ú„þ*¹} ËÕÎṳ̈¥¾ðçÍ@Ķ3iÖ–æ!yPî0ùÇTÑ@½Nð?&ýQ?xÐadGæ×îÄ¿%¥^o1óJ¼@Ûæâ?fPÛyߪՕÇE[×|£¬‚ÿȈ?zŠÿ¸ÅI‰)+𝙨›¨|-–¿´åGwžz!úÛ‘Ôëy£ß²ü#ƒ¼@wô-®õ–Ò)õ8ÝžÀE© |ö‘ý`S$=«Î™¹­Ù LK¬VJ;×Óe ÙÍn2å¡ôl©³WJ Ñ?qƒº\ÏK¼ãn쬺}Q~®þ£¬ÙïL î„…oÄ|ð‘[Ý­Åâ¬Ê¤Žùð/¾Óð‡í7Õoj#HÕÂ^¾{ý €0XΙDÂøwòÐå"ý¯"£¨¢÷ÓÿâJÙxÇ\%ÿÈ$.Îü¨ÏT~Xp6È?"îßWí€Ü‡^+¥,+gƒ§&¦~¿8ÈØvXï‹xhXèÚdÞKðÌ Ãt¡øþŠïi›y{Û±“3LÐN‡Øý`ïó‰Éùø²…,DìyÓ»Pþ#ýURæ‹%ãëû²«dð±Qwâ{ÞA*£±QÑQî*°×ð>Üás¨›„ËŸ/cêN3‰·xë:Xñó keag^ó'ÎüÚºe.#—¨)çÁÆïÅ8óÏ3ãeþt½¹Á×{@)L¾ÛÍÍ(Ù 62 Qg=r¤ÌØôfp ÙYMð Ë`$ÉÑ÷îâž»:EÅ2úïÞ ^*èS­jà| ݧ©9¬ÇSìKþáô/ia–¦gSUüâØ÷–f5s'v*¼ÇE,àW,kNOï°o!z[O£®‘|"‘†”Ž•‹š™ðA§aYóá?nZ÷á­ë›‰aJâ³â]$ÂojT¦þ#tþQK „[Éî[‚ʵ—Z®•t\jGýù*b£ßb×3ï tmg>,Lþ‘O²›ü¸aŠJ¡v8V4ãþœ)¬ Žôĸ@þ±~¾k©ŒO.SƒÎ´š=×|,g›…-¼à\<Üiþý‚þ mpˆþí•5ô¿J¿þ‚“vT…#üùT8Ojg¦Ñ-ò:‘¹?þc¬y×lMÇaj;‡âÝÍ~¨.“ÿot=‘iê íþãQÓ-  ‚èÃ4õäv+úf‡õNC‡®Í̯}ƒ2ö½sOé¯9ì‚…ÙÈıýb ‹ÿ˜§ÎÐS£¾ªD4V@Žšô¡bjª>JÓ¥å’Ùöü0І1àaÞf;®»¡´Y ì8®ü %e3¹™Ùoð õƒm@œ‡ ìÉÄ[ñ oôâÝø&ì ÖÃÞo?¦‹"•“æCjT¢QGÙÍÊLþ¡r²ŸŠgF2Y:DÇ–¿WþÏÿz‘ü#X]¨4øÇýK²1ÿüí“ÖHÏFÿDÇTšhQï¶Ö3c$2±xðõ¦A«{«Úš§ô†™QZZºÀû3çq ú«{Z -[¨óüá*Iÿ« ðµ=°Nͱ¯„'üGrV¯.Z‰Õäoµà>’á¯ñ¯?=¯ÆÖšˆ/¼y[AÖÃrçîh™:ˆ…œôËAþ£?µâ‰`Ð#ã?*é“™Þ`ïóôµŽÎHÞ•ü#)ïb6ªKràED‚?¯£öàdo™ˆOKÉñXêÔœ¯Ê cGA‘Ïa•Á7"g˜ÄIMª‡³öʵǫ̃ëArˆú‰p0ýɼÕѵ6 [؈½^…- uòš?èßÞBýÑU»©eµTè|‘¥çí5é¾Ðšß½4~çš‹‰`cÊ}hØt|èþ]Ïç+¢t¸õ+Õz¼†N’舎à·Ë“Å<ýêf\×wêØâàö3ÉRœúÁôLÌMFVÑÂõæ_í)¥,ñÊ ÔiÈŸ QǸ t®Œúíf õȯjãÞÁ¢ ÂÝÏUŸ!þ¼Fî5ýnØÜuŽÖYôGOPˆïù$%{Å.ꀲtÆo$¾ÝGŸC*÷èÆ»Æ%%hãqª"Ls8lÚR18Ì鎮}EˆK2Q÷Ë À%Çö¿Dÿ«&Ä÷[ÀL¢šïY±ˆ¹„nUmˆÅO€Ô¬–õñ9µ ¡Vl®)äjëyzõaÚÃ9çA6Ål†"l Àѯ/Š=ŽÎWƒÍ¬ÓûxZf6_áEs~҉ơ֛(£÷»Ãùòä^)ôÞB–5Ö\ÁõÆ*Æì§öYØšetoZ‰Gþ“Ÿz‹|î ÚÜÂrEˆþWÑÔ}êIòçºøªpá]`‘ª3ób úÝ‚ðï“AÃNÐõʆa2ýKzѽe)'‘‘e2[p-t¡߮zã?а;ôW*Ò™Õü“ª¦xŠÖ`&LÂkX¶n=d>ÓfXùL–ovîvyNB±×ÿéO»”,!æ~P*«?Ç+ï/%üG/-P+¯g×/õOÜ®TÑÊÁ ЩÏ~²þãr<ºÈ{1ØÖüú3-¾vF=¦÷]à›}µoêÏáWÅ;âæ{øgõú]yªµ$dyE>1z;[‹A_[ÈO·Õj8³kľõá+ü9eÀ!›‹eè'n£á.н,’Mìù?ø\›þ‰ À>’¬ÁÎÇ _NÞñ¼/hþî@ H‰Ý[/î†zgÃ[0—Úüjj@7¬ñô»9±ÒµÀZŽÒÔ—8ª<.¿f:£‘$BýÕsm2hRc,òIx‹ <Î,à8ó°xnr!Ý‚ý'–_Yû£'uÉ?RJ$¢þ# tTmõç¢:«ÆüE £'Qs,v'ñE`+Þxãdçeõ€p.u]ˆšƒHhèwƒ›œæ}®@„~Ÿ|¦qMߢÁ·$nvê?öá?rÀÿgä‰wp½¹ÁËnQJô!盀¿Hv¬f öa$~c<Ó}"ko?¼ ý¿À¯Î³øï„ñ—žN îAú¯5‡iíÅT¼Y~ì ýð*ÖÅÄé!ý‹Ë5!êÑîáW­àþjƒŠN&º.„æh3 ÝÁØfÐMë ýGn[“¬YÌ?ÿݪlA7†$­ÙN:wQ7­r=Ü-ª¯ö–{—SKÆ"§¼ƒwëŽÞ Y`xНÖ*þ’ÛI¨Q†éíÎ=ê œÿÔ•T5îE¿ëAä´–h&#¹Q%r›y(ý¯`1~X¢ä:à?ÂëuU]€gkJï’  9o¨i(MRTøC\ÂO±ò~ð4Ñ@/ÆÑ·®±rÞy4î/RÁ¤]‡&,)w#ëu".ÔÇsL¥@Žjñì{cÿ#‘lgÝXç½¢V˜ý¯€B÷âç¸(Þã<èUyø¬/|gªì¹ÚW°ÿv¨‚fŸí<”/ÀõšêCÃðKùá?Æ“ ¦^ÐîŸèƒZvLç2¢Ðùä$ïõæð½wÀHRímÇÃ^$ó™Jý¹êfŽÞjg1‘#JŽÆèçu‡{º 5×cùÇfÐû Ì鸃µ¯$·±'Âw"÷ùˆâ'=Ùk‹Pë½W>¢=oœXDñ»‰,|Á¯âÊ‹ÆuH¥©>x€ÿøýT~¬v)ÔKŸyïSÌ+lĵ­Îr[ÑS}!“?]ÓW'È$“xן/3S[_PþL’—étA|DþQÏ¡¬&ÿ¨ËÔœvnë--yÏ DøU¹^WõKXè½ðçKÑÔì¥óHô±‡À¯æÀM¯œþévöÊÈ +ÓEª­k³Ðiâ*ùôðG—‰7¢®Å¤">øÍ4¹Â¬oQ•úƾæ0y¼ÈÓ\ ÓCgæ´¤îöóÛ¼ëmP¼Ô/DD{ÏŒ—">ÿÈ¤Ý î¿»ÅQG­Iö1‰úÁWŽŸuµûÍ"ÁŸµ‰¸raeŠiªTÿfþ`WÑþãžšJÍý[Ç™J\‡°'RÝ‚=ÞB=iyå…š¬'±H*Ɖ«ôˆK%úãÑÝT¢¨mÅ3ªÞ¶±Ò:Ô¦©rä¤mQBtÁæµDçÓ­m4æþJÏúÆÚxm9gú-×f¬fDã†>ˆxþ!™ÈD¬á#¬ŸVõF¸çœCéƒÇØG¯½HD´“‰¹Sqýªq¬»ôœ¨dÝäªÃ6zÐÿªv8+>Á¼ ³îƒ}€ýIî2’ªà=ØÔx¸µ E§PÆÇßÃoÖÃòýŒÿˆ©4$ã ‚?OÏ1N¦Iè@fóTïå)®§Ï Ê“õ‰w¼œÅGŸ%4%Œ£ô¢þ£1|Ž­nÌïûqòá?^°^gý¾v@û€­ë ‚5—ìkƒ¾ùš>0Bt>uÝÝcŽ2ÚV1Œ»9 Ÿ“–3[Gî;WÏAÓ 2† 1Ý¥N’ƒ¤!Ùt Åà Žpú«Ð{gþÃ yÛè›Õ“,¨ŠñÚh- Sá ò^’úójðç«@)]"‚þJÌ›GŸ%F…:ã¸Ì{*¢–Ñ®®Àæî€ßºH®‹~“j’’ &7èŸøþ#¡œë[nUç¨tXd4ÆççV¸­ØC5Ø¥;¹VvU}]úïÆ@/:^öÄl„?kÝ£sÖýT+é—]ëœþ|9QH-ôWî*C…§QeÖ%º¼ôÇ~3™/Ù%X/ÉÚ†‹Jt™¿_%K™ëÈ´fâ§ÏqE ¿* ]Ëy3Le¯²F­ ö2()úòLäóŸNßRÌO_ ÿ±ÞÂßìm΀io60ÉŒ2î¡®O$s›üÃÅŸ/¥~ð+JÆÛì»ÿU ®t-¦ÌzX QÁ¥Ã ŲV‚ZŰ2½ãèÓ(:RnC‹×”¶²±A/,|E;gì¶\Y¢-­ ÷ýîmúïfƒ‹_F=b<<Ò"ôWÞ v­…é+󃳽2*Xed °ãÈ ç_˜•r–áû UiCDžôu¨Ì³ýäkÑ¥ùœ=%ŠÚÆ™–õÂÌc5eþblë:¹ÌÅÍ…Îðƒ8Hmˆ¦ð¿¢ß=èH®¼ÿ~"Ž÷Ž&ÿX¿O9þê…Z›ù'‚§P]qUÓ¨ÕÕÁê%ð7ù‡r[ó5À#ìù¹˜_×)­øU?-þã÷òÒd CÈd©6Ó7‹Ã¢ó£b€ ÅišÂ$Õ?hø—ÅíÅS%9Øvñø.4Q[È8²±„MñCÀ:â?Ú³;â‹7ÚA·¿ ûµ´áàW5‰|Gcåü@ào‘u¥¿zI8ø‘Ò\ÔÄ«Åßn6 ¬õr*ýÐî!_IÌ3?†®èÉÙ¯õðL»õ¼DùˆŽYÛ½ÇMÝÐò†³b º‹Üÿ±MH´Óo6AoB·Ëìa¬à(…'Á»kò²=¬ã{Y”¦j6xžQpúɱ GÖ¬ï>„ذ$ý¯ìºïÓÁÄÞÏ‹léú«Rš#Œ£Ü¡lÑoét k;G•|þ{JEãú í$ýKVRyQŘOœ½‰|'ž4-^¦¸óÉuè)G-Í_ŒÂëö2ì¾,ŒmXÿ™z&ŒÖpÖãÈ?ßß¿J ÿ±‹üí¬¾ˆ÷÷ÕÇiÕÇ®¥‚_M£I_ð«BXÝ»x¤¯DÑ;õ:ðç­¨ß>r ï-£9üùrÔ]©Éæ®ã“59ÙȧOAÅæ¾ P¿Ñƒ¹>wuÉ0¤4¬[B&ÁGœE \œjç f|˜õâ|o‰Qv* ºÛ—hë° rªSÜV¬­FŸó%׫†êDþ‘î‰Ãdgþ~%‘~ëùÇ0ò?e'¬~î>æ }ûmýEòÌG¸X4 äy¢³JFOp§sÆFòÉ0ù]éèì?<¬3òsÑS“xëNƒ:Âe§þ£©s9üÊ{_Õsã&Ï…=¿ö•ü‹~RE©ÊžO•Þ™`þ|°¹Ž % ׳p)“ñF±e0"Ô®ù«?ð«´xµ£àWDr© rží(ˆ]wz)úaçÁvÇ·âÈj0/*X…E'ƒódêßOx—2\2ðØØÌà͆™ŸŠ™ªr þ£½UšK,_汪¡ˆÛ‡F,*èVú'öÛ߀~÷Ouâ_BË¿¿çÿ__:R¡­ýþñÖQý÷/I¦¼¦þü¥ZQK¤Wв»9Š«yè¿;U½…Æë÷úïªÊIí$üG{˜Ö—̼@öqþcùÇ æ×ÆV#»íßïgð³¯yÅ-"ݳàí AËÄEô#wx&K¡$I/†2Ïö¾zûgìöýcàWõÅM,Ö6òÍuX‘F~pȆøÞĤe¨oËüÌÈâ­ö+ýwPO?†û¹¾˜|Øž§áO„4=*»¾*½dxº9¿ÀŸVÚ±÷bkL£¨1‡H?-¬wEr›U ®û± ˆð=ù×Tt„†V-œ«øA]²Ö#ÙCýMŒÆþöe%oúèÕƒ­XŒÿ¸D.‡ÈÊýnkQ÷§üGvð« ø0ÙéðH*^·>÷ƒ>‡'¾ ÈQMôñ>øøÌ 4o3ã Q5Ìþ»»™"Úë„?*Ï]Ø=,Kþñ”+Øžùx¾Ú'ò†ÞÄÍ3¹¢;¹¶ônä)­¨7t>¹®{ÄQ üªµ.ù›<çv½ä4kÓ`¢¶¼×K3ié45ÝYù<Èñæç7QLLÐ’ª¡;t!GµûÊço¾Kæò uÍ Ö¸bpÏØýô 8Hÿö’h”F¡ .K4>‹Ê¶É즱bD¨û¢Ðo¤|[fü¶†¼„Âû$ùGb,ún…Òæxó2õw`š©ñ6r’S˜ä&—ˆ kPy˜Pé¶b=ôÀÕôõàW ДuâŒãË‘Ôæý²³„^ðqÀ¯Öyƒ~¹Ýå ÔaQ½&‘·¹¦^ À±Bñ“D%â•«°OuAáÞë×µÄσ™?ØýÕVê£`Ÿ7à1‡“9x“i †g:ˆ7~+ŸÏX¢ÿ•TV ¿Š‡¼Šâàxg)#³ÀAlÌ|p*ãˆíпäÑyC¶3k‘<æ}ð{mð÷ôbóæ® ÓÄk,ì öÁCg÷F‘혆û‘>Œ‡ÁÅFÃÌÌ¡ãºiy˜OäÔSÛñÈ^ä¢ñÖå9ß2b½¨çô«È?’ó\$&‹GýG#P–´òѧ½þ㙜ËXƱû·bÚÕ93?ý±’JºqŸ«Å”4¶¢Tü~€©ì*"êCá?"‚_%‡)Ÿ Ó± ýUUîÄds!ùÇgXõQfMy‘ªD»IW3¾aÏôâ ‰ÁŽL)~_ðøÕÛa).tൣê?îßžCy >ñP-¦Åж)%Ù­G…Õ jQµ#ó?;~¥— ëÄ£µzBÛ‘jŠÂÐN1ðrýn ­—¶4ë÷柷¯±gDs"ÚRÌw=BþqXLvóH+Híø+ê?B×»Ž&ä«ÝôoIþqNulþ1bï (»º‰°6:–»1X¤ ïÁø“×Õ´ ô¿*†åGN५`#]õìÆ#˜•ø‘+Dë·DŽz¼8áfÂZ°²²6À[$€Ù+ ¿fwJ¿#š¶ìaÍãìøT°›µÈ¼£Æýª gEU[…}oLn½tîùG ,aubÖí<ÿÆBð«­iZØI»þ¾“+~¦´Ë£ÔVË‚E Á’ÇçZ=/l™×džíjø"ÁA6ács%6óé~•_ «3ÙºÙÔ ¾^#9ãsüE)¾V'{ùÂ+/íüù¢úJð»8Ûqä<×A jéµO®ë 8ZhÇñfŸQ÷&’NÃÎÌoìro"QÉZDZ¡»@ÙRòS2#|Ò%}‡ÞU“?Ì®ÜHþ1¬0ùÇ-øÁúÝ:ÔÖ#ïØ„â6€9׌ÚtqßÍú™9ÎÓ(ˆ"ËAè¯þ0ÿÃRž„Ö7–ÞÐ$݃³ˆöj’D¿·M¦¢)5…S8ƒºTVøá½†à?2ëqÔinwº“êA”²5I7ŸîØÜDT†OÃT”Ëá¢Roð’±÷Såi£ªX_øó³Ä gÁ0?jMÝÖ[BÿvO²H:O¡6H®ÊK.eö³áÏbñUð° ðñcèH»Tp$yÞ1jJîSyRÒ¢þü½c‰r„ŸES#”°üù9v¡.5uC‰í`Y÷™]Íe貺2Gð*ÙÛd<‰U©Õ1RÙXþÃ>\Ié­2ÌZc]0‹Z#쮼\Åw²š c ¶q¿~JD&#~¯-tmçÿÙ«`VœïvþW9Ýö…óGᾈEÿ’ê̯ÍAÿö#JiVÙAþ‘†ùƒcè}ø™i¶¿óä8Iÿݦ õÉPéÄ£â#Ž:R¹£MùàÏçÐ?Ñü­ã¬%¢½ô]ÂS_N”ºHH½ þ#*ˆòíì•Ðc‡9%õÇc¾­*­Ä'0?Ð’Y X…ŒJä5Äp÷ Gñø~GáA^—ýÇu¾§2õôCE„)p6ÿq —{ü ‹‘L×Î bÃ6/§Â=gUÙª¶‰>ɰZsá8~Uå8·¢ €ÿHÌ5lÁ£D×chöœáÿëCÑ–Â^öÁ3àìnˆñ\±¡Ä¬Ox²ÚbuVp¼§àF_í‹êFýùÏú_åUÒª%±î#ñôa\3{†Ñ_诖a“èÑH”ϸþdyúa7æ’ßy‹FaÖŸ¯QŽjÈ#ÓÈÍþÆŸWáÚ—&w‰b ÕÏk>ÌÜŒªMþ±æt%žô9u••è-óão¤¢°þj¾ÂfÈ—s&ë¹a»Ãûòä×Ã{<%bÎÏQnb퇧òÇ× Õƒýgí±øñø1ÛêÞKÒ »¢'hMøóuÌìö¥óÕ£ý}x‡ÄðÓp è^G9àVû…º/ÊWrÐøéE°AÆQ¶kpéÐòБ0«Ù ¾æN\øå½ \méßîÿ“³N¯”TKÃWŒ£ƒCd}šµÏd˜=ñ“3ñAUõÄÌ û|Â:¯Ç;,Ä×WÕž†±â e¹Ö›üCC¿[…,ð(qAA®Õ2¬^̧أ%µÑw£¢1–{=\Ezò¸XøÕVæú‰>`gPC€ƒ= Ê7ÎÈ+2Ž8ù3ÈÌl6ýbƒùp*c¹ž{ôNÚÇÆÿêzuX_XŠ£d-vý _•Aè$ËË•è{vɲ诚ÚÝLˆÿ3  ÞŽtK„ü£S¨;}G‘xݪd•3ÉSžbÃã³n1¸òËÆyúï&‡V,A|_þc!gPî| Ö~ÑMe=ººÙmÅæ`·-©*õGá´‡ KyHÆP™i²K™_û‘è^·ºPg0ŠÇ pãE©„y‹7]Î{7¡>³»ÛzsèŸXݸOXÖ胥>E‡ô…ôÎZlÔg6¸ú«§2ÐÜ€^l:“7¢˜L>·6eøU^c~ˆüã‰c±²Gu8ÀzÆI˜£, uPÂÚók'ÉÖô·õ§2Û¾z6UÚ©¸AeMOª’¤l—»°Ô¹g¦)¾"ð'_ˆ*‚´Ý7öRøÿ±K¦¤sû'8tQŒd¾d>ÓQ¼Smó({aˆböu>A/Wgþ1CÙ~•‰è`|Ô*¼ÁMYߪ‰‚ºøUlê>š`¥À‹Ü•§äXt^Ùe~z`1’ckȾ/I¾ÝÊé?v)ÓáÏ£ƒÃ6'öŒNýG-0«ò¨©}àÉ^Ò]¸7ú«Kæ$Tbõåa:g¦¢¤=óϧÂ讕WÑtÄÿWæGítx(ÏœWú•£Ù?®L¦ÜR<ñyµäÚZ¥»k³£UÕÌîxšõ;q•Ú%êK©îaþàߪ‡º‡šÂv"§6@Ûˆÿˆë¶Ã[;xÄÝÙG Ö|0E⬨Jÿvdx¯–TŒAâÛ=ŒÂ^óõçÕÅò­Ä²sˆA’…Á4ÿ»Ádüà8£G ‚•Ð~%窤 ¡~°»u¢î &öKmwü —iµ ¦èº¡ø¤Ãážs¥J¦ü~ £*ùGªˆ2ä Ëm¦”ã‹„gÊ ë6ŸúV /Û|®.À£ý…ÿ°ûؽCÀ™–[R/žÿäx¨'ØÑ“à*ŒuœwcQQq)_ܯ`n¥ªšv¢–<±û+q]t ªä“¾ 䉊·ºÙ£Äéo9έdK@Ö¢ß ]Ým¯»[Ù£µ@ð‰ÊŠê I'ˆ5*~Æ—ÁÉÓÓzÒ›(v18Ø:zı;]suª9Ÿ\×ñ$ÿ؉w|¯Àçä`NÃ4Öš‹Å_ƒuŸ‚ÕŒ’a÷/9ŠeNix£föÛGf×T R\9üÖ\¦v“x¯´D퇰„o‰-ö¼Ç’Á®Wƒ¯{“‡<0þÀ›øñdg÷A§uw˨÷5]Ãáx¯XxÇκ­;£²WNµC~ê?î“”7Sa­›RÁ¥b†zntCW8êÍäÕP»%TǹízÌl:ø[¶Š;ËHʼ»Á²!šàø¼äƒ9@ ù^à&¿QŒŠ'Ä ÝŒ%\ïÐýwÇŠªdP×ô³è¯º3Üÿ˜#»RÙLF'v¶+#.Ò¹)9½anA;o¹‡,v5/ù úŸ8oF÷v=¼VøsOòïÖØÝô¹šJt_üj´ƒLÆÆ¯š™óà’º3GêUþýÁ+ïpc²Ï›†À¯æS)|›|ÆÞýÈ?’r•£2Sá£Ó?q9“·6›—Ð_iT¸ßÉÚJW“=<{µAÿÊ‘¤G¯ÙÔé?6*»´Ä(‹òìg¤~ð~U±¡ ®ËãAÞQ˜ÞaIÌ.07¨zLLïÝŒVJôW ‚ñ«ˆz!0ê.Î]¸U™¨uñÐ ´ {b&ý›, ^…~27‰ ¾‚Ò ¶ŽZ—Í&ÖP³'üùi2¤£™„8齘JW¿HøXb“ó þï^lgþùkçÛ=p´T2ºí3çÂ}I9©4¢‰=ÿÃW±çJ,wTuª¢NPªñÓ©Øa/|›ùƒ×Ñ µ),²i7ð]áÔNC¥þbµø÷Õ“ˆÄFOt»Å°3yõ%B×ó+TI„¸KÓà?2ëñÂDI¾ÿ½ëëytf•á?ÎòY[z : Û–Âq~ ¾þ ¨E_­_éhÖPëªM€á¶°Å‹AêMžÂ¶D\ç±ÌðW9ÞËàö©Èx/„{o8†ÀéÑðЇǤZé6YÖìgY´\GuIüH‡^üGN]·~ð„ŠÎÖh‡µ·£íbJ°«&u-xwlÉ”hð¡wÉ:Ò¿½úOñ«øJ5¼/ó§ð‰“±ç—E7¢ËWôo¿AåÔT›qŒ0@¯‰‹}@ئàOwÐ?ѵC]÷aõƒÃàÅ¿á?*½Ðɉ+UÜ%†ñ§þ@[¯Å–ËÐNÕGŸµ™Ìn2ñûSòb!˜K×j žÔ«öA-=È耧ˆWTß–ûÖÞøÛÉä8¸³ÄˉȻ¶³¢7øâb}&ýÛ…:w§ÃÉEããö“ *°>>Äú6bUœ¨"t-âú²t¤ÝÀJ…™Jpolzëµ u§(ñÈkè±èqr ‹»Ÿ,Ë[C1NcKãÃÖF±>`?ËP?8“ );u5d ùGò­n+VPMìßb2ÇÂd Q_ÇÀ{Ì%ˆ'£”Õ­Ôö¢_UÙ’>+5Xo:~k ï¿™ú m¤Ûz[ƒçG]À×#³ 'š± üezàBԟ¾%¯bõ#¢égn¢FdÚ¸½ u+Ф5–ˆŽÎ›ñÕ±HÙ'/ËÞoŒ/êʹfÁ ¿ÊI5Ê@33sÅ+R§ÑŽùµ‡Q/4ý9ÛÁøê÷ìÊh<;#Å<çz“•mêkØ¿òÙ‡ÊKÐq`%â¡¿ògÓ\Îv=¨U|ë3|ÅCüð,б¥<‘ɹòûõ4â¼hèô ”­Áüy^²ÚD†NþQÈiU‡¯iFÇÇ F w—zû.L9;“ƒÙQáÏ+“­(äEâNÿ±šúÁ6ìÌaðçéøÌb¾µ&¢Ôõ’÷éõ¢À…ôa~ívP¬ fy¼DÍJºÖ›Ä88ªPˆxRÿ+ýÛO;²Qþýã¡£ô?Î?R+»èÏ}œúóÄÌÿ¨ÉîÚ⨪ÆT÷¿ºëðûþ&¿ôÕ¤Vðqsø³"ŽvQ xKÛÿqŸù¿W§’X<$Š>Hœ?K¼X\"N^¤Æä:¦éèw߈aN™øñ`ýÑ ÔWxòöb¯¦c‰ÓåQ L2a-Š]üƒþ‰iÄ m×þÃw*O­@i„…[@Ôˆ‡ëΚ—áÆ­ŸD~CxpÔã„Û3ûÃR|#šÒ“œÍãAÔ;”x&&ùGy¼Åz´,÷‰˜4c#Ìß:üAÝ¡…WE³EMFÔþ×ÌêoüG˜àŠDâ[@†RkñÇPÝd ëí\”Ñöü(Ÿ°Œï%V2 XˆoÌçã‘Ѽ·D |äüÇ5¼ÙÌàüc‡î0^âÎa¡½ðIÌÖB«cí7X¢,ÕÚrVšñ¹Ëiò£:à‰õñv¦ùùç::¤\…Éx™ Ü©dôÛŠŠ k~Ô6GEm—IŽÝó$+8Újò™éøô¯Øà>0eÁêOÑ'E­ä­¯$vX…9¤·£~0tÿÝ©j=üG1=’/ú+O;Hhô…ñØ úâEÿÄ ;å@ÙF‘ÑTê ¿ÞßHCÿ’ÐøÕså™È€Ýމ?óÃV®Ç¦d*F:yÜ8-Ò+Ó~· øÕ îLYØŠ­Øû X¬zªPóÏëªA¢»â!g¸ï ©?ïƒ^€ùçóa“ã‘3|0›K‡*[S¯Xœìb µ¼¨?ñæz'ÅŒ5xÇËè JâŸS?¸…úéé°eLkõ)Aø/*÷<æ.®¨-øØj`j;r£bªéÜ5Ïó»?Kã“ÞÈ8R/ Éc:Ve13ÕôÆ>ïE¼ËlkN—eSüÇ:T ÃÀUð«äd ÃCpÓé_r_ÏÇÛ§?7‹$Tiö— ñ=àßÐQ±|èækZQÌÇòµyŒéTiÍ5<-`iJã?r‰#¢‹ÓL¢ò(Oe.öG.cªÐe%Ë“ºõa WGÁך¢eH͹Œwëkf²jП7­ÌFþÛ¨n½qާùû oS†À€*`5xZ£ëŸecë”Y‡N“èP2477Y‡¬@³µU…ùY/àÏ#€n ¡ÿÕ|Ñ*TAº‘ÍÈ(~_ðøuý]{ÿ‰£Á?Öï&U(õ™ÿQTË­mV*aé|¥Ô„j-u¤úŒìgS!Â>Ù—Ž§ÔŸWB#’Ôºv™I"•'tªm¢ÍÒö¨CLM {÷ïf_Ù‡‡a’7ýzÑ- €2LMLŒ  1‰GׂÜÿä'ÿ²ùóÆâ-kÁ'Ñç0ÊQKQQ\†»ˆ ‡…Nÿ«×ÚŠŸ¬òÛuéß¾J”ÓŸ¶/åè>I·Ç?)hK¼ù˜Lù¹HÃQÏÃõÑ•éÕ^Á¼t´+‹àÏÓè繎Kˆ½Š²kÁ‹ø`«wðNét¡…×…Ò_ƒë‚';Ãþ¾¦_/Y8w-þ#!¾à=Î'Cå9ûnºþOó¸Jeð«¨Æ X™øx˯t‘©‹Wf–î úXât“üã=¹ÓUršÝx¦s`Ž…Ãôì«PÁŒÂkD‡O©‰7¿†ÿ(¢(Ábº‘Uîa~Ô2‡ÊDiñ3“©|+’€½Œp>¹®û°Ÿùçg°øQQlö š3åüæ|½39š½°êŸÁR.à?΢.J Þ¶…üs.ÿÝÖiß~À¯ÆÑ¿}*v65v ”ÊxÍU;"c÷³Íÿhƒ6§„¼e4‚^Á{dÀÇ\†+ǹˆžíùk!?^+D;øøÙÔt¼Ç$¢n¼ŒŒÿðg¢xBsªŽö!óŸ’Éu .uù­c|.D1ÚP×BñçÝUAl¶ ER}tÀ-Œwz¬ýY {¿KϺž³\¾§^¾>¯æøá£†‡ÜKŠ­l~¥ s; ¢5wï ëUÄ ¾Õ¯Áì&£Y̼Þ4XçRæ;&û)f4YñÍx™üÞ|áTdÅÉ!ô»Š²_ñgÿ6"¨jÆ å•:SÅ ƒÿo’é(åOs† ‹ùpuùÉ&º°Låîh²÷ÿ¬Þ5Ä4×%0ÌÜÄ-×_EFîHóKRïX„úø“ôo÷„W‰nÌÁ2¬%ºpr1þþ|»#¶âRGÞw4úÇõçðçÕÃjn­æÜ¿d5ó£ò0Ávßþ&þÌqO;MuÙ_`ßDF훚‰Ô÷¨³)­-мUó‡Ž!Ÿ¶_ñŒñú9ÑkWüÊÔs+ÓÕL0Z1ZÄ×#i®:ÊÿÞõkÊMòÈÄÈ÷Qè¬Á®Ö0è±éÑyþã¹Cê &ƒ^}Ð|]öÓW­ÑÌöüÁéX¹Ýà÷ì£ônˆE¬ϸÿÝP²ŠcnÏlXKÆTæ`µ¶±cƒ¤oÊHÂBXÂåXŠËXŒ˜†}ö9@sÞ´°«êbljrësú(üGOøç?‰ºü‰ƒ[€4/Õ£Àx_ÃNš†/gð“+~6õ$‰’W­€Úy6Z*ø{ý‰hÆõz¦/…õ(CýyM,ó ü‡Í‚œæN`ùw‰*Z„0Î{±²ÿñäl2QÀy*Ñ+ácóò˜Æý ókcG[[O„¹^‰oÏ s™„s†ÿX ¾“ì*1c"ùG<2«:ä¹°íý@FZ_Az‚ÛùÉÀr¶pop·^¡»žºþ|õçÉ?ò`åƒÀÐ>°7üYá…Ñ ¿aûæŸ?Àx2åjùB%Ô§sŒÄh§ Ó}#tÿö›ŠJ$Є^9ëáP„N‰‹™_[Œ©QƒÍÖ +¶õ>õyå5z×ç5Kr"SÉá}ð:üGÜ¥þ|5ýKÞ8¯t€ÃóçIèU[=‚ÿȦy+ÕÙ­›%ÔljUužúuÒù.¿ò"Ðq_»&šRwŽØ>/ó?¢ª“QüuµuôOŒ©J·ç!¼5RСõµX_žMñUíˆ.HK&&ãO,Mû¥¯+”Òâ=8ÓmlÞ\òœFq:{TG‰ nàS2ãõˆÔÔºöðϯƒÖ©XÕAN6¢Ç_Eº ^” à3û)1]&2°,øÑ¹¿Pÿ[™†Õ²õ»±‰™mÎ8#¿Ò0½6ëmOmEž`OÞ\… ¡U 眯«S@ÖzS~~ï!1µísó³.€°yä 2±«ÔáÆ„Ã˜Íl¦n?•Z)¤æƒÝ ’_£ƒ‡Õgåç(¯vsÔc¨rŽÁ+û4ŠÜóh°öâ ë‡Ùÿj­²PkýKkÌàŽÚøU>îG9r—Èðç÷µ-Z,ºg "Š n±%Wn”à ÈsÆ8Ÿ\×]Yâ¨@ÿ’©XåÅØ¡Ì¨¶¢‚³çwMe…‘0è_™zr–¼ë,ÏjVËc»ÂݺOuÌVð«Ð ±è¯F‘Á‡«}Á ¯áyNÜa>G.ìt#°ÜXçú°!«àb“-Þm*'Q¡<´ëØìWו ‘›H¼-®4¥?ç}†Î‰a¨OÉ\ècç3Ï;ªühÔ@¿;Ÿ¬«=ŒÆ1"òydcµu5”ÿh¬êxìº:èw;p¾P6Í¿*JôÉf2ë*ú¤Á¨»ÆQkpŸÜ¢4h“E¯®x‡<5¹áQž|ô">¿&ùÛ]ýýKÖƒU- _Kø,0Ë9¬(Î&ÀM¦ r ×iÆ7`î‹S?ØÃyÂÏ3ð‚Ÿß×;?õâžf¢Î¯/óÏû¡]ëlæ£Â/+ý"Û™ƒ¨‘h s½˜«7ü*šl‡ö7ú•éÎõ¦+GUE=?*¶UæšÕÉÜh]²â[4 È?ž“•4§®$š1_´˜úwÄoÅþ•üc›#ŸâÂm^:+YÝö…ó&„û"‘r\i£^S›ié´}J1V9í¨†jªº:ý•©üÿäx¦]&ÿèóEdÖ^ª_•Y识‰Ú‹¼gsª/ä/«¤Êºo@¯¶2…0¾ÈÑ3gʦý\“ÁÆÿØ,ª8ýÇ$&_&EÅYÿ›‰þ%Ÿ±øÙ¬¤è¸êÐq÷¢| –Ø‘ž*s˜µÕñTºv½3ÓËž bºQÕz ðÇ‘Nÿ±—þWƒQ¼Øû8=þC3ëX›ÌfTºœ¢æ^Ð5quÑÊ`Ý¿+&ÏÒ»%!•¢ýÍì(CLžk?°ùìF1ÛyÆÿ»>ôßuu ¿Jê¶/~ýHÒP?ØQ½§Çì î_rþ#ƒZVMÿÝ{ŽS¿¾¿ŸZÁ‡X—¶d‰7¨@>bµL¹…¥mJ¿Ú*ó ë8+ ýÕQV¼À}Ÿ)Î O塚åŽ!JR]Aóƒ†&ìTtµ¹ø†åø›8lK*£:ºÆb9Ï1Ž8œðH[ÜÒÖ†½„ÛwkR>¥€[±|Iåéûëð… §^à<;õ¸}N}¢ð÷œ3+ð“E X™tîIÍç Q¤Â‡ ª‹m <_1¡M ­ŸÂÕï~UW£ÚøÕQü[b$Þ±qô9ìX]˜€yïF¬FBç]äKž¢‰–ÚÖ>åìÔ—æ‘ Ê›_ûPü ïÓÕÔNÕôÖ(Žc‘yø“øÛçhéà.Jh¡»ÛÚ«mQöjÐK%2¦ç_!ò-ÊÓW†¸õuv“à?¢›÷UGö±þ#9W"9\@3ç“k¯óŸG}혘Æy,†qÎÎqÌ'«ŠýŸ%Œgûˆ–w7lÆæ½$ÝÚÀñy:ÞÑÒÿ*tÿö…ê"Ñ;[”Jý/F+Ø¡áœW!PúþÔ  ÿ8‡öö¦Ñ’úóe°É1°–/È-¢Ã}—C½:ÿÐÑzdd_ÇŸÅC¥{’ü#ä'&>â5j)@ßýÐïbÿsÑQË®?òÇ'µÆ«:BõOìBþQMßEæXŽœÈööüAÛT˜ YQ‹Þ…ïoNýyºì§:þÍ)ÒçZW·½¸MQI¼þ j«GÁ¢¿Z%ǂ͒q­Uø·Hfrk޼gŒ—Ýr—ÑÁ¤5»Èw ~5Pôú~+_Û”ãÄ¥Œwøo"ŠàWuq©ŸÛ†MÍ †SŽº£ÙÅTg~²Ï< ¼.5üG<ò–þb¢s½åJ€jâó¯°‡ß$+‚Ì æõÆüƒNW‚É¿‘Q›-¿ŠHo©@2¹ø¸­ì…žDIeá*Š o‘ßé?–+‡ð¹Øu^dâ E^: ³²Q‡Ø†³|Åd‘­ÔüyšýÉf6Àö/Gu¬[)d?´#©æ4ôlä¯Ý»ÐO™ ®›è«xs:=™Z/³!Ý,ŸÐY ªÕÙ\JýGëyWuyþ<«4&‘“Î1ܤ6:‹‘6DÅ‹óÔÿë/®8b*.$è•ã%¼ˆôg‡›úîjýKriûƒõ»«åÁ¯êâ?¾P?ø+³0\kGV®j7Ds:gdá©O¢]B<•ž¼]éß>“ùµ©T·ýëú˰_êÌžˆ¦àþ•Á¯®‹²Ê 5-O‚C±}Ó›bȰW T‚”Fâ9Öã,ñå ¢ÐŒ<ñE ò6|¯!•©=¨ NÄü¨_áÏkh‹´¹dOÉ>vè«AoˆU#ó <Å$ÆæGw Üh¦Xî9§QÆ“_mt*çù\‡ïIN×Ãt»Z–DßBfsV/Nt¿žÊ+\þãùÇgøœqxK{þÇ@†!x"»¯kmìè*üG‘u2óSø™Ì5½ö…c§•WK“ŒÅÃFÇ£½ã([s­žësñ¥ô.D°É8ºwx»’ù,Ï»³¾Jh.…‡kéMÊ:m,G• qIüÇ…Bø·(Â<õÕÚrMÊ•XQ»ûZüÇ ðº[" ­nÎ'×µš¿£ ýÆÁm¡¶-*Ïùð)ô¼Ÿ€e„ ë,Î]8dt—:β«È{úi_é¯àþ±H&ú”Åã¼Ä‡=EÁv”þ»ᣠ‘ÔGÛY4§ ú][w•†á1>9Šœn”†ÿpgŽ7ŠÁ>hÀ=\‘ÒÆwÎ0IÊ“ðù¨\DåB|øîš26]§Ê5ÅÃú%‚nGœ“Pä¶wÚRÿQ‘ýv^·Œœo”V³%**¹‹“ù CI04·Éã<Ñ Çáݶ‚ÖÕŸiõÜÖ[Íü¨ìî‚ÑÌé<þc%õç;éÍZ‚ÅK?­ò1Ž!^芧³æ¼k =«RDsç|ïØ©œÀzW5ž X»Ãî‹J¡U³°Ä ™|‘… ò0ÝÝÌIò8½FƲâ=ü‡/ù[G#)W»§Øî\oý¿é…ñDÛá?tö*}e˜éZ¬“þ#2 ±Dúñ©4­ä†ùÌÍìÔ‘ÔtV5öèE™ÎÄ­ÿ÷±Žþ‰Y±KEàŸ'3Ë:VV¨ŽB`ýÍÔ‚Œ4¿ ÔnÿQ“Ê”²"üGt²Aùû}€sÿDfÜk—’ç5›YyVu¨:'÷°Ò_ÌòµâZÙ˜wUXá¤%i>ý®7*xH@Ú¥»=ÿÜ…ûßt4ýÇý¯âR—ÝN}¬–Ó k;Ov—·£:ýKj©sÐN=þMýîmÇm?v3îÒ=‘ý•PG€_@¿»ÿOâ¶¿ßÛŸ}ÍÁ5©ïFµ¶u©x‹ÿØ­&à‰|§} ªýƒP´H¿´âæG5LÈ*‡¼BvýnCq ´íxp ÑŽü9 øÕ¯Tô´Ô†ÂŸ×@-8¿%€ßž[û‘\& 5%Pàæ ˜!Ü9аÎ5ª2K¼FX<%uedÃÉ©¯ O³[v‘cÎ~m+oVaÅÕ_ð¶B¶¹õ¬éua×Z4!´‘ëê .‹à?ìJùBÄçÇÉPjÒWïgú“*ÅÕ*ä?ó¨¥ ¢öýn#Îõ ý/’_õÆ C_ñI—±mûÉA6Á”Õ\ 뜧PÜ›Ü(9ùGе“Ä¥ð±éÒX_ÎT®¯6vÃç|֚ƈ ~•¨±«óÉu­¶ÇQŒý6•¨w ö/§„º¹>|{ê©qXã ´¤¾œõI#‘ ÿ±\Ó‹{{£yülVÀ%Ò¼@ÖDÒ9›² ,#ñkÑœbþÇú'2‰º¤xûË`:RÎ5ŠÃtuµ_‚_¥b?PyB¥¸g`ÆŽcóãÃhŸ‹IcëoÆ“©/‰!— ¶­N•ƒ/ùÇ6T|Môêj·[¨ÑXÍïWÿÑõCQÙ—ùµméé»!Ø¢þM útùŒþUÕ9ÎÆð‡™¨~Eð>ž%”ÂxhÏ*WX¯Wü­þüj'zàÃF;úï®y¡2ÂÚ‹b`±ÿ6®ò2PÁ+0Þ™Bæ2æˆNΛƒþ‰ô”¬÷šúÛ\¹ÔF^jæ¡2«§2–Á ÿq ýU?zwâë.êÏDZZiOo¹Šºi‘s½ÙÊõk<à|ƒŒ«â#GWùá–Õ–»P„Ê˧pß+™¯H÷–3²ŒyB7©„\Næ¹Y/ÄN­êô«”ÕZüGn2Ê dN7uiæµ²€úÕ$ÿØ#çQ¸3SáC¶t‚ZŽªÌ°­€& 6þã«(B”4ѹ (ýÑ_¥‚elŒ²=>ú«é°OUÀOÓ À›uf30Ž•ŽÅRòU4Iñ.CÌìüobU ‚Œ9Gˆ‰‹ÎSÿ¯¿8ÄüÁ¹·Òì7çú¹0•r^馞RK€_í îß~ÄÑZÍ¢¶Q碶}ö›þC(oè‡Ú efnø¡ÚÚ{<Æ𫞢5õWTã7û_¥–Ñ]k=¸TúfŠQX¹¬f$ÿ¤%†ÿPôwjèÒun!_=V,µ½°;4yãÝ–Q1•‹œT×{‹“ÄÒ÷ˆ}Ó£¿$2ŠÛš ƒ ¹‚ûë¦Z_m þã‹]OðŽØ{,yñ¬èòk0à}Ó£ß]åfÜ×ùÏ¿²)ƒÈ?6‚¦&ÇîÍ„ÿˆ‡ÕüOÿ«R cûˆå¶Ãì&vJª¿Ws…³â[ê£ þÃKÿ˜ü£ qR%âÚ%<ßÑ©’øŠ 剞ÿqßjO_ÊŸuH­ÔTëaß'áÕ²“Ñ(ð)ÍÉYÞ“yœM™B›Èð…÷‘ XûxÚ7q=.ˆâaÖÎU|´îTž$ªGxÏVž£‹„­n¡o£ÿ•Nv°™Eø»Iœàü£\˜õƒ§]ÑkŒÇf¬YÉž³™8c–žþ¼ˆÌ žüjXã7°ñ`@ö“ÓØlÒ]ÞyýCï…êPøêz"ì0QOaM¿‡È+·û$ðÒv7E»ÃozŽôþC€_ÕÇŒu_>Ñÿ*Ýa˜þ‰É¤&WË^&ÿH$O1ÿ¼´™-˜?OAþQŠS˱'MA›ÎÑw>Þ¿ŒžN]ï¶b'5)h˜?ûµÌsØìdKdø“#LbMn½¡þc LKOôW×ñì5@ï"Á§¯0΃ì¡*äwS?XƒÈä!üù@üÇßtÞ#‡Ñ/k”Lh­fb`Tð¡=ôcœN÷åTÎažå½?ÀŸç3F‹FÎíS9¤AµÁwT%—éM„VýÕ"jójÁ*Ï¥O¡­ºav&C: 2úÁçøcL(é†/¾J5¯ ;Þ \P=˜§u ÷ñI¤%Ë+ÂÃäVOð«b N1¬…`NàW—©ÿX@¬ìæ|=¸åzüð&æGí Ñw‘K^Ôy@ âáùõçÒ“þ»+è§’„‰¸;È8ö‚_3#°þ ªUš£A‹/mýn£þƒL–«ßOøùÇdª{FøŤJ)¶ÙŒŽ“•ä y[N¡ûûúïž°>šù,:Õ£¿ZDʸt‘LÁó(¶ƒ_}æ©JÂc~_ù¿ÿõ°#£âê;ûÒQS‰å¶Ï~ýr*W”æêuµ”–LóWгÊ^GmÕSí¢ö†ív(7~})~3ŽòR»OtÊT:5µk Vç”wèÜhs˜†žLý=ž¦’ø:䣲_\%5:ÞÉžb•0ô¸šõKg~Q‰ 6‰“w ,c½ FIòVb3Lß]¾}üT‘XÜÔ~¥þ¼–Ö‡þíˆá—açÖ]Á%¦wƒi #bù@´þŠú¬L¼t·a]ÐàWy©ÙŽD]Du˜ã” ªoÈã–’?”âù>†ä.Ï¿ñxýµš=œsŽ¤ÍÆ¾÷³:EvñZt§Cá lÎNâÇÖXÒYüt5V¨ 6?ýKjà?~¦ßM¥´VëðÄÃs¥c•ÏâèŒWb-W³¾>­K 0¶í|'uÂŽz÷ª€ö0ŒSµŸâ.`|1Y¯¸É>b û™~ekŠôSÚqí-õ×Á]–±¢—>ð.×¥¢îê<äZö¤ãø<c5ÇŒ ‘³Á¯f`çæñÿ@l÷n,žÝ *!Õ!öäÉ¥Ÿ>^‹õƒp†:SôEQ þfà1„KÄúO@¬Š¡ªJ¥Dó•dq¹ ß‘o€MUP,µbþÇÔP÷%†úEäC——åRX޳\Çcðç‰È l. ?Ö5À´À‡ É,ä…`,’É}ä(óŒÎøÕì¡ò~ªJº‘ܱ=½š’o%ÁŒ“àOvÀ Ûók_›ʇøŽô/KFs&g?ÕåÈôD¨ ‰¾¼çEîƒÍŸ¿ÅNo†©#Ñ?ÑDÝ”ßL„’h|Žÿø"×Q=4Ÿtô²‘ÕתýK„²MyzTƒÜ»»µ/\OnˆÅ4©¤˜F•œô€*IEêÏoR—ÞÏ´u\ƒ¸")d3våIøÇ¥Î›»J¹¢~f‡>$£½b$×s€vÁ2kÔü†éèMçÝÅæ!ª_É¿ñÌ—1Ìíx°?áùËp¯‹`!ê:ó•켔촊ìÔÆ´4{eM«úâÊðç'åŽl³ÇÀT¦ÛÊ=²†(Ôö…«‹D¯Š·¢{ÒU…´K™¦ åy"Úó¼æÐ#™U¸b•©ÿ8Nm‹°¶Àx[oéªØÜì O¡1Ž€"¸‰™Ê˜ ì£__¸BCxLç©ÿ×_g~Ô]ç»ÿQS‹Eýy>ö¿¯£];Ñ¿ä%3ª8ßåW^$Q>£¿*GÎÃÔòÌÿHªW^i½EGø‚çèwS…zÂþïU+‚8õ¢­–±ë;…/õçì*QL­y|R{õ/ñÿ~zS‰®V »…ÿ(Œ¾ÿuǬÅîŸ%ŽNˆŽb¸H&®ýRþQ_›ªÍBWÌ â™ÃºDÛ«ø7q[=ú« (ÐR’ü)„{ÎEzg¡þRÉg S_”ÕΪ^æ‚Û$–;‚WÚgmÏtèÔð¦Ý‘¼Æ/ö"cC´3€ûÑW/%…Šo¬AtTVò%œ{MæüLi—ŒþþUô¸dÝ_E"¢­ ºæ7ÓÿÉ@–UYÿ‹ˆ¨ÄŽ*]ŽÀyoçg ð„Y?¸†) ©‰ˆ—¬Ä1\ÀsçÄR¾àh<õ ÚNò¹`$eÁ-×peÇRýq”.ÙåôÎÈÏuÃO8škûÄ0®Îhú_h@×íO òm Æ=µ;ß»‰^¹ñŒ-ä3LŽ"™«÷¤Iè+kÔ¾øÜüý!äÿ#xð]x•õì¬DIEy^JÀŸ·wúõÁþ#%èä6â¼ùBÁd¦—ÖBf~˜æ}¹_äã3ļŠR¢ýàKˬV\Yžh0¦Q ΢1±–«~Ð_™BýyBòú¦<¯iõèf+êÏ« ‘˜Y˜8ßZGýy«}šãHàx]̤è3?ˆÝ Ê&=§£ü+üÇQò[Î+ýÊÑþ÷ßÍBÖÙýnU-+ý¯ê°»¶9ª¨9™þÑI}AŽsØù.¿ôB „Ïl„åʈÕJžˆ ÚÛô/iÿ¸ª&Q£¹íßðÖLŽê»ùGâÔòôä»)ŠƒŠ¾Ã~]Öò‹qÔ|Q¿…·Hðϯ)Ï”Râ<öx ‘þl,q£ÇØ\!‚¸faןϤ‰;~aÅNô£Ÿ~÷"=ª–óéËéL¦{ÿÑŠ(ó•‰]’ Íë q ÜsN¤Øó×<¦,ÈJ°¢{ÔŸO!–¯Àó¸ýî~c-ñxTý®š6œ©Cñ¨¾óâ¿› <…°„UAÖí®{iˆÍ>ƒ ]fºÂQЦºô¿*¤üLiQ) ˜@F•ÛÕsC0/•èþÉ®ê_†ÿ°ùƒ§¾Iþc/ý¯öRùIŸ†JM6µŠ,rJýÙFK* ;½–ÂÚ]AÅZ¿y>~#Ø›­ëj¦Eúaï,Vlj¹Mú½ßƒ= äú€f=0ºË¢Ò—îM+¨ý;Lþ‘ý®¹”£3JW0¬®FüGŸP÷å‘âÁn«Mì¼I‘Gñ{QµÆ“gà‚ó÷0Ÿ›_Éu Kz|ÀД§Ö}lÅD£A0ÿ±ÍmŪÄßzÃÞE“lϯMJÿ’90¹˜01þíÏ™\Ô¾¢‡l/¯²ZËopè³á¡™â"†¸­·Q´ÂÏž§Ê´ˆß3ý.<Ç•>ô“‚uÎ…2Ö´I›ÿy#7pGà?ü¨&9Kæ“ýnkç³IñQ®éI8ªç aW° ¨Š¿K%^rxã?É7RS——“¸¾ þc½`º™çÈ¢Æp&¦lê¯÷ 1ÿ|µr]@Ny“ˆïµÓÿÂx†J963ý¯FQÿ±‚™³ÖyV>ÃúûÁ¬G;ß—]^üª¸8¢ÿî\ô»ñÉu •ä ~°V[Ð\U¢Kýôk>æq»áÔ‚œ½Ð-§À¿¤ÀDñ­OÜD'gŠï'¼ƒþ%]ELtfÕÀ.2èåÌêV?³"ùÇ^z¡¤€Ûeí±ž2Õ¶ç{þWï¸ ̈ä6~QD62…þýîGeÅe7ßÒ?1‘Û¾ø~ŽáMAÿÄ®èw[ky´«JcVÙäHõàŸÔ>WžþæüÚôOD¹ Z’ü¥ÏÓ¨~ÊGm¢­íÕ>Ò%Áo§"ncUŽ Oì`ýˆx(ò+çÕø ŸˆÈšáëwã*±¢ûГ}!'°{ '!Ú/ͱ®‹¹ƒf(!–¾ voöôA¸øÕ)u8ìF?ÝÆ¯z’ Žãh†è͈‚½pª+ÐJùÂ|$'·Y‰.¸²¨üÓùçºRLÍMT·&81ÙŠž« õG½Ù\u}%1öâ¹n÷¿ò%CAγÆËµC]—o¥2Zëƒgˆ \«wÿQ’W*õ#˜å‹~w!v¿ºÑ¯ìÅjqàRW§¬óÉu­¶Ïêüê> $«×Xˆ}O7§eغ‘hÍ^aËü˜µtgÛÈi6û·õzuøó·®¥‚_-à %î/St FY'Vôf5IOÚÊ̯®G/óœèwÈ*ÒžQ”Œÿ|©7¸úS„™'CíîwŠIvÕFÏ‚& ¶üŸORüê€qþ#jŸ¦ ²UŒ¦|JU˜i/æ,B¿ÛHO­nw[±· }À^®s)|BŽ/ ‘ý*Y”N·ëA_âZGÑ`Õ‚¯˜ÀÄÝ‹ pyÁœ¾¡^^DíIS=’p×ï.m¹F×ðç%ðYAúuc ý|GËQœa4ziÅD³–É—Æ*¿×S™7\ð Çww.d¬eWð«c“òˆÌ­:9èû-+øÕ#:fnŽrÞȇž_w˜{>ýnW³yŒ,ï/¼{ ñƒBÄnÛé¿ëaØÓÙ·’¼½©Ò\-à#ë0?Ä"ÛŠ†ö'çz%Ê7æ~:Üæ5wèŒþt/«€­Ï%ÎüÃKñÖ²ƒ=à™ÒŒ‰b¤ÍìbA¬þˆ9W«aÐ3PExoR),c¥¢ÿndj[=é»P–osîF¿ÛS$áùj€R?–>Ïü üŠ:NЯšt’éobþà!³°5•úû-(¿o1r™ˆÎ<¹˜ä0ô»‰ÅSíWò&äËéëx›þí«ØáÆåàŒýXJ²‹xô9ê¾°ªáëw#(ÝÈØ6S)‰æçÐW% V¿$~iõçÏÈrP/’ù`¿#èAjxý¨=QÄv³ÚÁYÝDää2-` ÖÍŒ´ðç¯ÉÀÎ’<"£¨ çg.ðÙŸ\:E)«¦†¿G‹ßþ&à?úÃX¬4>íÏ‚1Šw{‡÷Ç;ﱊž œÿ±–.DÁD4‚}å>ÔÄ/ÖáhãÀ˜Ð.ÒÿjÑ|3c:ϹmëcÒ?Xkë|r]º‹þí{ o}"jÚ\àW›ØC±b3Yc",Ê ò·-`Fp#IŒ­`?ë9¾µ¬]O‹­:BíÆEôßDœžþü&¹Å;0ÃÓx“·è‘ ѿČ=-¶¿™Ì&·]%ÇNm%» û\šãìj½Ê7‘ \.5ŒF$¬úvüÇvr˜ÔöùÂ%§¢â–ùü¥.øÕDò™Šô/ñ…§š6ýî·Û“´ƒ¹:‰*ÙVWEùGÇŒÊø¥æ3; ®fu–oàWÇQ!$E¹kÁŸ/Æ¢·d"Ÿ{ýàjÑ/y 4·Qû#ýŒ±û7D2jIÉü¨DæÑ­Y¬7 üÊ—Œs"ñÇiüÑ}ú'Ò;R4sÞŒOŽ•Ê%ί9_ #€è% øÕ3,fL3+9ÍTøóÔ œš ½™ÿÑÅôcBKÖ‹)Û“œ$ÖrõÛ[Fý`lø›[ðñMȵæq––Õ€úÁH°=Ö,ó‘þcyIÞoŠb¦7/“ûw {XY㌞Bœsœþc®2_Ë ‡—‰§?‘Ñ_ÇüaUB)Õ†ÿ5ÇJªÙ‹˜cÍóXúd7ydq«®,Ú•-Š‚ªl_ˆùQÞÊ(m$ú«þøehs"³9ý€=Qéù ³ÈC—Ç9ÖvY¬®Ì?? ÃòH–¡‚(.OÒ'Pó#T$6Rþ+üÇAú'¾tÞ¹»ŽRJ·}æüQ¸/+×™~U­Eÿ’£JV9ÿ‘ÿ1•*ô玟Y•°þ丨]­Q8e'J-£YZ õšbÑ)×î¿{Oð›ókS â°£(Y¯Wî‚GM ÿ‘…("Hû…Yà¡m@ØGÆ,,¥6š½SØäÒ ßרKnDœ_WœÃFÝ@ƒ'ᑇˆ¸â“æönßmM?ÈðAXÔu`bŸ‰¤û£û¼cçÏè*‚P<‰A/†‰µáÞ›4ÊHÎÉG$Äû1f`3£ƒ5'N_L×Ã@p¡ÈDø•ñ{ðyoÔŒá¬øDKŒÕIŸÄ³×›:”ñ䃣Àñ·á?ú“®Á@Åjwüðw« Úü”ÿÈ£”Vó’UMà¨âƒ'}€uj¶1£ûÄêcA›<Œ³\|øþy"YÒQ‘;LϾœúþx þ¼š?èNN©{®_Õi ©^ëú4ƒüÈ‹ ,9øelîYû0üÇiG%í”èfØ¢ ÆJžæÉz~ú´ôÇ"öG\‹Hý ­DŸµO¿;¶Ÿ+ÚN‹†~·™‡½/JÎrƒÜâ ÜØ)2˜àA•èìÑä=5ú¨–°é+Ðù¤Ãú‚«°Q˜üX¿ÐþCƒÿ(FËŒøM~Á$¦{”Ý¿Äßð£þ<üÇ]ü‡ƒ®ð á§3½G¤Úï ù‚'ž0Hñu»ÓÝUlfûµ,8X+¢”Ât«š#ÂÈÌ`’w"ë,ý|[’錿zŠwËMÎ)åP¬½ÄÉ·´&nëížœÁUTížäÃìaþ`/òRcº_~æ¼¥ŸV 9‹n]Þxå)ÔŸŸ$;{LmGYú'6u>ôVÀ2WF;ÒžÝÚÕ@>¾Tô\+'€cD3pî´³å:ÜN¢þã%ÍI*Tš3i÷Š>_¸T€Ó˜ôã0Êàv躼+âã+[¢cŠJýú.ø»þÜ4ÌBõ!X¿{^f¢þ#¾| yÜa=ƒ8"†;ýÇFe¥–†:7þ·ÑC\ÖßËzV&º_U1ãÐój,u ûà?†¢>OŸ´ê1Ñ#µ,&'ˆ5Sk¹‰ipßOøõçmEVüd4õºivµvÔ/F›\þc€9ÍZo]¿À¹ÁTÃ$èwÿ4sá?>ŠúUaOÇŠõ¯èwPìªÿ¸åhþõ»‰À¯Úп½¢VF;Üÿj%úÝœj[u:ók¡Æú'ŽÛôCmjœ Øü£¿º[ùJ§Ú‘t6ú jáFÎîï–PÄÕ8ßñë~‘Z9¦&æÉ*@¦°\HýWû·ß¡ÿnu<~ H=0Ë'àBUÁF 8á»`Wim&C$_´î濚 '›‹.L#N^‚O²;—´'c¿¯G7Ú‚_9°'÷àÏsâõv¸=³a-U™O¾L8ˆßšÂÇ)ú:fOos ‚³dÞþ M¹ô´ZÎpV|¬n'céÎ]‚1y/fò·hx‰ö|`³ƒ}%£;O]ô7lx²°š?í¿›^É©âŒÖ%·z#žpÞ½ÉÀ¼ÖÖ·‘d2l5pdã^ô¬Î³~U@sMpóxú_õ ò==||]¼x^17žäùÇú‹ûkiäjlJ²ü-¬4‡ûô<’k•ﯶ“ì¢b\Dz §v,"ÄšœqqþÝ‘O¦Žc‘oðy¬)±|~7OûâúÏŠóÔfbùGNú_Ýäï#_-!S ×è,Hõ‚Ì®©½¬ˆþªŒ<ø ÊaUN3ªÐ¦]¨û¨D!ލ‹V|wBîÒ3áÉ Ê|’„6Ê~õÚŒ(UÙX&ËAþmï9VmÆ56TwÿÑZM‰ÿ8Æñ—a»¿|60í²§Qœùç^`;Û˜ªÔ”úÄLܸHWæÇ"cÚN~ì©ûkî΋¨¾¡qg¢Þö¶~ÇØˆzhZf'ùà XÔ#”‘©1)j„E™ _bÏf|Co«ìÆ¢ó?>:&)×á J´Å4%:ÉŒþj‘ùï¸þ¼(ýKÀSÔ7—ƒuoÛó3 ®) Ø]:ü×Bášb6AÙ®Þ§;†Ç!¯‹h \}`ãÓ[õÌ0åÓ韸ô/…Óü$¿ÒËd7ÞÞTØtæl+‘oå[DW§ÿðRæh9ÈckáÒ-Ä ý±¬he§ÿUUúØô3Ñ{2¸Øsy;¯0°„•YÇçÇ3Ú³ï˲\ú«øVìL&Éà?…0+X^thßHßIôÅ­à?vÀ£,0ÿ`>ÉùJ¶£ê>6ûü“ØGWØìÓ!:~}ßÕÿý¯G±BÌÿxGÿößã\G˜‰úóÎÔ¡þcCpÿÝ½Ž²è¯þP»Òmä£ãŠëWáUfEݨMÜ-ôΚ¢µSß(¯±´ã©?¿N7¬d¡ž°ÿ{Ñrh¤»ã©{ öéˆÿ¸.2*÷Õhd D3üÇ#ñA «ËÒ«þ­ÄR;á±õ °ËïØ™µtS/'|°7@13÷ŒÙÅeíWjî‹hýñŠ­Àü§G#㸅µNeÜ×鉽ˆ`$‡÷M _7N¬÷œË(£øÍù"";»‰1›™ƒ8¿øÍ&²†gØÙ”x‘:è•Öêó?Âëß[Û ãÝ–,á0ÿ‰˜‚ÿèFÓžƒÑÏHAþ…(졞‚ ‚ãøÍꢳâBܯ^N¥–Ú¯8‰Ê÷,œígñÏ6Ô—sn®¯q‹~µƒŒä!Þãžé2Ó_J…Yÿaóç¸úŒ!pNO‰î sæ•ñïÉZ3?ØBÕäig¿ ßžŠL63¿[/ ÿqŸþíþd ïP÷‡=Èj,;Eþ0>d.8Kzp­ƒ WgÀrââ÷á?’5þM¯”xj 8ø¤½Ô&b$GSŠ¿øO„v*@/~·ŠÝm¨OP?h÷/)Bþñ§aë¥n2-Õ’S‰F¦‡bŽØô«Ê¢¸Èa$ùÁØÃ÷£sT\r˜ó õÙ¨Z¸nš2ÝóÈY 5­È?.ÂÖìD…QOÿ¢¸×vR#³ ¶à¥mÝW'pôðµ“à»3Ñ} ½iÏPUW~~¶ö6ZÛ¼ŸäˆWx*Ïk¶BÆõ±¹6‘É!êÙmýî#c þ¨ýÞ{SûàE5öWùÀÜ„Z`¼üD_•©xé– þp*°ËÆ ÑÖ¹Ø3Ç\å<û´ÏX-8ô®øÊüüÕ*jHê’»M2Ë•ÄT2 ¢d/U£¹KYäŸøêƒô/Ùï\o,ýwrJ?¨Æ[‘”°lJ«$Õ‘À«Ò“!=¦çW*¯¿Í=ôoGÿ’è —»Ñ_m×sˆE¢Ó¬E•“ÝTŽ.1U&@æ‚ÿ˜~•ˆùç“éÿòq˜ ?xîû䙬,²&‘ SȰùUŒõ ÜßЛùƒ½ˆ‡±Gâ[%2‹ÁÔàLW£-S`͇P?¸Óìlµ§_‹>îlÁüÚôäÙ_Ä:æ<Ä^$ýWê?9r).%ÓCG¬ßFýGwôWmµjÚ9¥"»kŽ£8þ£-ü¹C}É4ßù¸è8©]A-E'sìq-N(áDf¢ßõF¿'ÜÎMîï–D¨Έvdìcôõè­R++Õ¢½™Ó îAnO„ûß»þõD¹§tÑ{àÙU°‚gþ?âÎ¬Šµ{û{fžyf¶»»»;°PìÆîîcwww'¶bvba·b7Љúý†÷râ ¾×÷?G/eSÏžxfÅ}ßk-|58šâb%qÞ;vA1úŽÌñÄ-$ ùýð¯ZhCàÏ[á×Fà6ÃÜ&cOîûƒÈ+/‘p%";Jª­bY¤GOYŒµØFáôXãå(¬©{-`·Ã<Ã*çáù¯H$¶ÂÔJE²âWuOo°r}:±ÑTή …ÅŸw€'XN¶‹¬+³~6âYšSWö»þ%±•Œj 4ŒÖúÒdë*÷Ãêpö üê6i8OByþ?wë|’êŠcôß ¯Žµ®áe¥Ö‹ëüÊÎý,ֵ̎B/ŽÁúgmÝðÀÔƒ ÙL¦0Äú¶HŠÿ˜ïxrCîÅ.úï½È×ÇfÀž¯à'ǃ ¬#NOù†×<†½óƒŸ¾‹cÛE6û]÷Ô~&°FíÌÞª@¥å=ùKù˜hÿhØÙ êú1£|©SÐñ} oº\ÿ1 ³5\u·Í¨|…A^sà?ÒÓw'º²€‘ ×iô» Ð_½1?Ê·èo“Ñ7?¹\bò DÐ-ѸÅàé 9[•YÖj+º«&¾)w/-ÑîZ£-kÎ'"‹ÿxK¦8ÌkïÉ:-¨É?HÜî¢sÞ+-l‡®¢~Õ‹Z Ôçý-õÐ,î@[#-Ö¹8=4ûVr¯it Ù*a6Öù<øšJLøŽÃûj \¢ú¢8Jººø‚ö¼.FÕÈ@¦Ë6ÂËÍ23á}+ReÑÛiúïö¿²f‡½ƽ»D­íÇz‹•åê{Îó0QD|~åOÝÿH|d[ÓÛHÈüó|ÔxÓWÇsÁ}ß2Ò˜~¼k üGUb›üâ°èäðÊ­zz2Ê”x¾Ïº/Ÿr¡ZsCY,P¯¢6¾øÕÔÅ…ðëÑðŒ†Ä:iä@¢ÁêÄ!øÕ&¥—Ö þ|1Ô¡ê©Ìöx‹: ‰kÌLŸªoŽb~-ì ,;ò£ÇtV¬IQ˜¿ïèwoˆç0DIþþÜ‹©p/Wúƒ­®’!Ì>s|+Ò)©ÿèÂü Z*íDpý ósQ?8—ùQ¨ß¡¼f~mó`þÃЛÁ˜gV/(¦è'þÖFÓ¿ýÅæåD,9…L¯¹nM§ó¾¢šrVM F‘M¤+ñ'jÔüÇ Eªýˆ9NcQë€bÜÀ¾º¡±í‡b4ØK?XÜÞDÅKmk¤WÍFߥ‘ô/iŠ3•é.xï+dEV···(Žó‚¶„w&ÞY öFzoò+Ã}Dhäü åbjQr’4Ä[$ÿxþ*®¼Hå“56‘[‹¬þ‚üc ¨üž?§Å²%V¢;vÖUêÏÓ:>sÜ€(½HL\ÞÿQK+ª]R¬îjž¶úLú[Ûð‡úÝ/¶ËÔV'¢,ÚÑþWyÕuŠCÄ”ýOÕ/Jd•oaº’ˆO‡Í bçA6‰ê÷ªÿG8‰…"ŽG{öW~óÙGEà?¾ƒ[lÇ>¬ÃÒ¹ÈÆð „/õŸ‰‹Á0OY„"ÖýfÐ_î„?\#ê⇖Á<&ÂgRD°ÝίP„H=½¶Š¥‘Þ› ʬó.ôéˆæWÃ~¤„ÿ¨‡uÝÄdêk¬—§¼2±ð:¾ó2r›¶” £3ØÕyÐ1+†Î$gVî `MV­x>øe«B½µè§\ }z¡^PJª‰›g»¥Å×Xå[ñ;ïô•ò…^ZÍ‹-ᑾ°¢¾î8þc»¨áYÇüÁ¾x ;(]cüöAî¥ßêN(vÏÒ%M%úmG\¿„;µ ü*1O®Õ1s^þã*ùÇ^ü‡ÜÙ¯0üù.2†áàE“a'ÆáS>‚E&^>DuH<´žäH»8öújMÿ¥÷¦—Ú 4¬:š…«ä@t†â ]ñ-Œ2èwÓ/-j¦†ôßÝ€uÎȑއø‹Ú :¹ü’(ê;ú—4äxVð3ºq™þ%>ô/É{➉þí/Ío̪²f¢/•E¸;õí§ùùÆ\•/JXíwKõ˜éTEø™¶è¯òc±Xmˆô7P —Õ@åscް7ŒÊe’b C¦q˜ësáK­}˜½¸QÔ„?¿ËÓP^ì…~Sn¤2c•M©ÿØ âäDÿÄE̯NL½—LkU/çðo™‡UX.=;åm›r[K5›~p”9ñn/ñ¨c]áOfã. >cö1'QcׂÜÍXr8ߎ¢%µ)åaN ÙL?¬íÕbÓ‰ak㯶ƒ\Ì#ÿ°úˆ5BÇöërÞ¶ZôOŠ8—ùÎø1 ¿ ‹´ti,¹Ö3bá=ØÚƒ°)É?¼ðkɼnè 4UýnÉ%êdÑ‹H"3š-"í·øÝš?Øüj+ÑóVôW§e]ÔXV'±”Xß{ðçßð!µP_ô w_¢©N¨š•o!ÿPŒ½¼:sà ÿq”<;œÅCÓ0Þ²~\ò®"¬g7N€_QƒÏ}ɬ®³bCê?ÚsUβ+N£,KDÞ1–ؾ>ø•'½à3à?t{ã…ìa¸ÃzTó¿ºHEÝ}ðÙØ£ÕAztíIîÃ>¯Þ¬øU=Gþ±úÁlzIþ®å(§â?.‰íùPä_1§}ÙL1TÐwÁ¯zàMòÐ7á†ÿˆ&ë…U–Þ¡ø#äýÙ™ýÁpãQUûÍh[Þï± –'ª«!öÕLÿpï¯j€Uy ~ÕÅÌ rÜú¼øF´˜û_™õÿÒñê õƒÌùŸþ¤a.ß õ¥Ú˜þ»g•Ь²ßö·ZšîW³T%ÀÒe+*ËÇ£ÿÕeøúDß±ôš¿ê¤îUîhSEsê?î«iÔdtœU„ç8GÚÃ}ß+n¢z \UOÿ±]èôtŠÒŠ/”èê(ñ}阆ñÄ4éd^lakqTFQlÆì4›°EÉôÕ¦h›©KùˆÂt£¾ v†?þÃÂñãó1;øU&,î|áé–Q¦Â"ûR'—ÿ1_OÕ U@*öÃÞÞ…r×A¢a¡©VŸ²ÿöÇÔÐp¡¿Ι !~‹…n§…_eÎÿ’ó…e|òü z[æü®þ<›ÒL­ËS9V&3ÚÜØó†¬üNïÉ_["ËÑ·ð2HÞWXª›xè»ü» *E8Yx·²N›Û‘Ч¨µî=¯EÃtPÊfú)m¿&@OZªÌ#NÜ€÷‹OÿÄDÜ›øsè¯|ð Èü8¸òhr%YÍh=7ú«–ÔJ÷F Tù V;%UŽë¸‚—é®âÇÿÓ©ÿ{ÌPG‹ùäÖ”À»ðão@‹vÀÆ[ùGA”5¥¨\ËŽÿ¨ÎÿÖ”Ýäü»ÏBAY )lw›í£¢s×:rW=˜õ\/)ÙPFj=Î3}¢4líxÚ¯ä:u kîbfpƒõo ·mID#ÃáWÕDÜGO¼_>r€2HÏnŒ¡VG,ëVüÔöOh°†eg´>çQ”"ÿH„ZxµÜÕ ÔÚ…Ù9[EkYAÞ&¯-.»<Äì¡þc!ø•v_šqÓ¾Ýð—óð›@§Q—éÍ9¼"g(.çˆÆŽmxÏv[¹.Y™k^Ö»¾2/©¦0?ª‚ÑF:3ýKœÍ Ô}L£.½©Y—Œæ0^þ,3O:K]fFØ2Çzƒ”ûj4×Gˆ™®á?Š¢b ÿaçqÁ™^á1—Ó¿ÄšÞñ%Â.ô»á6_U$FÊ'vŠòÿ±^9¢eç)+H\‡#O‰‚Úþc%ó£$ŠàItß݇ÇIÿ’CL2¼Æ}Ék¯dT!Ö‰ Öý–#ð å?(“˜ÿ[ÒL×YÏÿ1ÏìF÷0_ú_½ ;dû û×àþW­és f©ókÊ¡àWQ¥ÿ ZL.æ:ÎøŸ{qÈ–-Ôìæ¶æJ¶0û"êG’‰ºˆ>ê'µ®V‚þ‰•Xe—­¢Z”Š›ÕåírÔ—â'S+™ÿÑœh¾ Qjbí ®•Ê9ütg"˓̥JðGÇÙMĆm:O¼{ Ÿ±^\é¼6Aš6Á¼ùƒˆø€ï*±ÕþB!=O±”%·,ïÕ &«7ñr+lvvGjøÕ/櫵©ð°¢‹ÐÔîÄkø¢s¢oÜGžœX<‹etõne}rüGYe ?¹GÄÅr¹ã?bÀ€¼µÁÆV€[tâóü—§ÏÊFr¦7‘úØÚ<ÝR¬ &èˤéÔã̇9Do–°Ý˰ö‡±ö…PNy)ÖuÛ¿=›ÒTmŠÝLîŸE×ô»ÍðJÉ?|É º5+`×oˆÓ®³ ~ún8«¶ÚË0Wì?ŸlQöhCP¥f:{uXˆ]<}® Süm¢oÔvjÒ !ÜðLÝË1,ïºí†ö/ñµ5…?w[)ûsiäZ®ãÔ¨ó°#ˆmŸ¢:C´ì‹ÇJG·“{½’Α7ôè¯Ìp»q6ýw-¬¯¨Ô2µgÜKoº)¾…1/Çüú ïé©Ë«j7Ö‚Ž%ÁÓÝ¢&â;qyS2Ϳí'É?,ýnY˜§ÏØñK\Ç ÔÁef~Ô)æ×æÆÞ3ŸÉ@YÃHaÌ£2§ž”ô×:A\/rFU [;Ô’ü£upæØF¥%v-ó?Ö­%ø¢¸vÝngþàò‡:ô¿ê(˳VJ2‘õò×ðU8ÿqLßÿ²Þo¯p€è¹ÜN'CR —•+Ñ¿äüGv¦=í”AížcõßÊdFZ9"”~÷½íøU*éfX V_r¤œàB ¨rÉFlª™õA.xéöLyõE¿ÛÙ܃gV˜Æèx“{¼Á±g¶Ð¿D‘…É›|túæ—¹AÖÖ lªO{lì³Í¾ÀÜO?¬ÔûÝäì×S£²-÷òZD…w¨þ‰û”SZr˪ıÀ>èåÍŠöÌ¡ªËó™ÎŒ;éÙžTíì~ó¤™Ë¨Dÿ«bDšvY™çÑšÄ3ÂÅÇŒ B@ܘŒøF˜žöIäËÑ–5᪭§þc¦ý¶™ÓÞ þã"¨˜ ~5ÒL>ýR¬¡~Ð&³Â„ vŽSÿ?qÿ‘ʱW­ùƒIŸýÙ›'P>*=Õð.ø7VÙok¢–Q›©ÓÕʳ?ìŸY°ªUèÔÈüÚ{ªÉüóû\çŽD–t^ÿÃþWõ`,úZµÌ ë­Á¼E[åµ'2¥èÿH2Gë¿ùUÅP‰¯ÄãgáÏ—°^v*†DKzšü ŽÒmjªKÓQÿ•;ÚO›¨­â¸^ÂÆm!›‰ÆSØ—}y.¥'*ÆÇ Pho\aU#×_U&ÿ(ˆf):ÑS0˜„XÍoDùãÈ< ÀR3ÍP>‚K¹AìÍ@ÕHîv2m»nƒíªEÁôAÌ‚5…U<‰]jL>•ؼQ9¬ª?Ñ¿ü;þ#ókë‘ÍLÆ#¦´êÅ}ðÄ¡¬0Ÿxº¦Þ…\Á”çÐEKù€Üã*>Á,®}„“…7‘t9K~U;~À²®ì—xbj½©´£cm/ËÊIĉÀ¯2S¹•”{S×ñä†ÜçÓ¶&èÅGÀ¼LGYZ†wÇ.ô¥âHênz¸ÞÚz:s Û fØÎédm°/µ_4óÛ‡™Õñ{—Ðïvf.nJÙ/ðççER¢·8beÈvþÇ^]bþù7Ç»}³5Pþ¬¯­ãWéÃx^é­ÞUëÑÿêPpÿĶŽjyµ:‡þ»_þÐ$T£Ç¯ –Ÿœ%§vžLfžòMë-º3Ùú ÝCP·cøý«r N=±«Ȱ+ékèGP ü*ˆãcÍ u÷7!´¨ùoÌl&>òäb¥X¸t²BqŽzåD­Îèlj˜ÔŸG%ÿè¤ÍB¿Û$Vn7Öô:Gšÿ¡ ïNµ/@ÝEЗÑbk˜g6¢³-¡ 'Nµæ™hÒdÇ™X_ÅÏM«-†/ò¥šã;ÿ(HY4ý¡Y¶ùE] BÕ+ïø [•5aQçòde'·‡ò¥Z1–ÜOîå.**¿Ó!¤£þ£¢žBŽãž¦Ö‡±ZnG,þ²ŽºT¸R~Œ†þI¨£÷‘5xЋ¥~„ýÛW0ŧ~06ly,ÃyÑ>]Pd+ú^Í7*˜ká¾ß“mê‚Þ«&üB7ôY#ñÖƒ~Ñ_©êWjWªëNïù*7à l!WHMþq“¯Î`N÷¨ÿø&ÝÉ?f’!Õ¢}jÛ±°AUu;ÝGCÎÖfë«ÆÄZy‘/”†Å®M}J4"û…F殡slZûqâóið)SÑ_ù‘ Â:?ç=ÁŸ3-Sf½Uèw‹ÐÍâ?¦£ó»,W¢2lÌ’]˜ÿ±ÿ–.!çWr‘µíH,s ú;ž…óNid‘ãE3ÇáÙö*ïÉ–ëʼ‘•”§þãˆj¦&q,½¥vsÎ~fæ~@£4ܼ„wœ!uÇ–è}BYÓµÊ Õêw‹8â üy=ò·qÆ.ôÉnæ|#]°/³ŸÎÂ|Fõ‰:÷AÔž"Òê ZXÿQI\ Õ?qókcÀFaÏ¥•kDZùžúJ¨Ö*ƒ°= ²/5³„³à?|+°ûž ýUrƒ».jõOL*×è}»ðüùh‘–¸¬ú«4ºbf·Ï!ÓØJnU/×Ëìa÷´Ÿ6kØ»Rwî‰ÿHDa3&Ñ›<ø±HFþ‘Bìu\ÁîÅA[zå¾ãí>ÛšþÏþ#;õç=ÕÛjk-¥æ<ÿü‚­¡šýî2õÙMÇ»DåEåýwk±S“ÐõÎYÃ/©‡U  ëJØdè?˜æº“þ%s°1'Å æ<ãʦŸÐTº¢¼Ôˆ¦¤þz¬/˜?ØL¼Âžna bå‘eÐÈ6›©i8Bö ¯×ÿq8JóÏjƒµå0Üþø•Dµ&ˆoW´çça‚‚6#ƒ¸'bëNÔv/ óÌþzl6[a…úqê?ìăã°ÓÉÑ9UÇ[ìÆR<„µ‰XŽ÷™Ï1ß´ŠFh›9¢¿A¦_¿ÖLÖÙDâ;д6)XräKÖ•œÍ¢š¨õÛúôJ-µ0ö} šˆ”pÓÏéÕÎä ÌùuzfÅøò ú+|h;CO°²#¢X„ùÇå¤fÍýä4@vÌšðúW_¿ Ý‡?ßUA.älW£tÈ ›{VÉñä†\A?[ú­ âlú“·„ƒÝˆG› š¿ ]èDTXñ±ðwÁŒ¼È´¬îî–O²îþ úïÊ_öÎu|0^„ú‹‹²!­3j²ÔôÕ6ê3Õ´$—ŠÀF»SA¾šwL‰ÒxÈÏcr‘ 0]áó›jã¾6áΑ/˜™q}XV12€(]g†^B´H¯™ÿqŸ~…–˜™Êd>›ÈÇâM«è1ÕaöN[5º¦Ýdy °á8;'¦•Ï1ÚÓij:• Éè×÷ i øêš°Ÿ&ëå{ø€¡ì̲ú;­u˜õFS?˜‡Èä*ƒYèwýåNð—(zñaƒóQñwËaDë$ b Ž« Þm+¦0Ê3¿¶³ãf|²TÎý—‡‡¯n8EoJUË)&‰5*ƒ±63Ò¤2Š)7X¤‡Ì~´i?×·1þ>½w¨þ»C•+jþÖR„ߤû`X§êt¨Šf¯€þÊ™~#à.^¢”µò@°'º’™KˆLÚ£ÉF\”NœýùÇBô»™ØMˆœTÙZt—ÉÍÆä2Kè_$qÈÕm:~õA)u¥],{4zg3*°âsâ—¯"èúAo” cÅ_`Ä]Á¯Ò‘¸1±YêIú¤%‡¥iÉüó#f3{æ-ž¤öÞNuzóžõ‹XA·´/ÄB,p\ÁîÅ1ð«ÏŽ·{eëð?óç©”+J_ð«ÆZFò«~p·­±š”üc²ú’úßU•9Þ<Ì‹dÊ+킨@„o¢ºµÃdQO‰ôµàÏ_«FäÊÓ0ëew°¢GEQjÄSÓîuˆJ,ÿ±X»KUâMaFh¥Â,ü‰ŸòJiD6sûQ»ºýUQ0¢>âº]oüG4âð®tE¹¡-ûõ×ùJ+ô»3È´¾`­À÷ ®9 /0~î$à»+'œüê0Ïì/Kñ… ÊP¸/‘¾&ÊVg"Vy¹MaX†ËdÜQønâ¯þí9#YѪTáéÆqfõ×bÌÅ(P…-ÄÁmˆr—ó]<@nØC0eEczÕDü' ó?JáOå¨R࿉·¢ÖAeö!o›*«‚=øà?¾‚]‡šC}šú ¥•2…º;Ê+îhuÎëV²(c‘ôÔ}´³Ôî F­"YþR}w+¡~U|F[0ÿqÆÖþ¼=ì{,xºVþ1¾aêÛQèMƒP-_‚ñ=7Rî\ã¹ÏTþ»ïC,øÕ^µ‚JBLì%| sÿ+üvy”™åé¿›ÂxDw¨<åHzn4ÄÖ"¿…cn8u“̓Z×|ôGJǵº :´Ï²‡äIŒÛò>µt©‰ÁïQ?øý•“ÁÜý›ø®ÝXÕJÜïʺ0wº3Ú‘æ\•«T”ì$GàW3ÐÖV¡SÈJ*-130ÐlJ½ß$£üyiâðÌ ô »°æÞøjaþù¢0>æ<þ¼6gƒšZn!ŸjŒ”]hàW…¨z»D¶P¯â ÿчuê‚®äu£¨+:9® “²I9O¬^ôFÅPÆâ2ŠÕOT[Î5&ÛßÙ9h–¿z@ýà`s;kWä™R\øvbŽc½EÊU|ïvBg‚¤˜@ÿ2TÀ7ñ?Ç ßñÔ]ôXÆkã“'éMôíäe‹Áívë9ÄüPók7Ðÿ*-J=|Ò§ :œyè?ÿ!èÍÕÌlËÚyP‡Àë5Çççä4ªñ왲*UTɈ?z9v¡Ÿ2‘þ»)ÈÈ›S˜DWÍJ U•9Óí°ï ˜ÒÞ‰þ%¨1«~Ƽg|‡5s5ãËüü2ø/à±ETÐÇEùÿôb;ùGÞð†ùiÂ쳨¿Mzæ×¿j©%Ö<”b¬rÃÖ«ßU ~õÙv.êKñ“éÁ¯.•»©®1´£Ì?_…&«ƒh‡Þ5Hµ«vœ%Å¢7ÑšX4ü$ó`”çèw3‚t|ÖvÑ/ê=3Ú£òç¡òMi*‰º·ñMgOæ”Y`(z‰]x““ÄÀñá@zß?ŒÒüÁúô¿šE¦õ…ÌÈ“¨[â1Zâ?ÎãGê×ûw>Ùø”[ÑÑ–VFâ?6áoc¦R—’‘ü¶ž£Éˆ¿¹ câ qŠhú;õx £š¹ÊÁ[°Ý%Œx¹L²$™ãÈ,ÉRìÏ^áîËWåNk¡Þ„úô>W)ž©¨‘ÿq“ü##,ðCS7Tú—Ä3†ƒ,§"b'¤þ£µþVñ³bgf§UÃûÞ!²ø—ths{‘T“.Ô̧·àIó±Ù ~~]}Qs•`µ—¼û¹…{uO«f½E¢,@æ| Àòo¹êéÆPò!ü*?¼²¼´3þ#¡¹\q¹áþ®@OVDN ¥ß5ñuGáw  ß­ ~;ýV K܇úÁ2tõÿqˆ ΋®Œë 'TX}éõ˜<ñ’ •HÛô¡ØäYÊ)êóÊ= ¯¥ZZ„Ž/ͯÌ{ÚJÿ’æwrêSå®2ï¯ùÇê¯ÜAiK¡•JBýÇGþ±‘yÉy²J‘“Ç•-Doð+7´À³LôW¹©ûhKÍG>ú€@GAÝÐá?ªÛظÏèU¼¿ós÷íPfÃëÆ"ÿ¨ÛKÏzX×lˆ~÷ZƒäÔ¶´Ï²Ÿ1KÛ»™ oð« ž%ÍTD‰ ÌÿxÎ>3BM\ü¹òÿýÇ=¶Špì„«¶^X—r„é”@æG½Q«j µ}Áõç;lÕÕj]u‹úüêDÈFá•©ÜÔ>‹vô¾I‚Õz¬^Tß)=•kÚ(QR[¡y«ùÕŽ£ŽÂr¶ê0îp±uÀ1òR]ô8ù1Xuª¿LÑ—x=(Šý¯®(Njoñ„Hë0Ïób–œDŒOáÏoƒ(û`_ípÁ}ñRD¥gKSm³6N”%’™L.³ ÿ‰ºæ":¤N°éÐsÝÏ`hFD¡þ£2€(&=²›°KŽ*=jð 9Á’w -â«ãˆ­Ó誖?’«øE]7Ý…/×ïŽXö4N/Š%݈2>; /ç Âð4¤+ú«jJDÓf­{T”ùQ®(ÖrÕ“pVí8Ç@}ö^E6G|™šŠ@øýØ úæ6×¾Dp‹§+ûµÞ<Á±a‰\¹zw±÷…Èü>[¸ƒ¾„þ%1 üG9œÚ—¥x­ÄA¢P„ü‡—­Ž¶ƒŒ!þ|‘oR"DkÒI+ôN}@dF¢‡+‰U¼hiD±öô߯×Ob]¦ÓiÑÕì?‡zTí!&p<ÈY¼¤¸w_®Rleo0˜£DG@²ÞÀ65VÉVä;%°¥Ýá":ÈÜL «ŽµÙ+ áµ,ÿ±™¼"Žq–ûèƒfÊš~‘nMIée.ìŸÈ?ZRÿÑ—Î2eÑo}# â_e¸ùmÑŽt"º 7AQ6]PJc¶9JÙ%pñ í~æ}³7ýKúááü@qò£¸»F÷ÆQp/.úípõçwˆÂ›ÁPŸE1,Ó_.&ÿÓØHh?ãoœ-ÊŒÊIµ_ÖiMî±ÿüß9A4tÜãï¶ùŠe+’µuáH&:ƒ‡Æzh¥J¾+õçžô¹`6 ÿU ³%}§v’¹¿zF-KtyýnH5ÝBæÜg½ýÄzoä !ÑüÞ†ý¸k–3W¢eZŽZy“yÍ@ Ý|ßà=‹õÌKø\=+kÏ'öŠV¡üÇ:-!ê“|ÜQoê¾4f‰¤´§¡ßU::–8™ÃÀÆž2o±YÒã,Îf9åñЄçìÕ¯¢!ñLJÿð‚?o%â³C‡2Kp•~¾<šÙÙeìeÒùg³Ÿ¯¢Ÿe)X‘®FYû;îÉéff—Óy†f6<ԳɸÿÊü¨«Ì¯ ÁýŸÚº+±#±(ŽÛîE4ð+wê?jk=´Áõçóé_’Ym­®†ÿúÃþ%6êï’-T᩹-òhÕ·JCô»ÃQsž@•Oý³ãÌ/tÙ–ºì*0Ç9AÄ^‹Ê 0åÚ< Ÿ´Õ"U”çG]§Od%q‹½s„d!QwqrÒ÷¢±¸Êý'gg eÖl4CD¥bGmú+âø) ";ˆhžaÓÃUXuZÉx²s±$¡®h…˜齉‹þª2ú2;Q|¹„žOYée鯖R'ÿ’ˆ3ö¾7A)ZdõOÔº!;ÂPï†7#–µdþ 8JoPó1°Õ'©ÿHJŸ‰Íä]™ÿñ»JŸtô¿J2y&G•%»à†ô£¾oYTï‹GÊ‹¿ü€8Žm›G¨o¡þ< Ü^³>®lÖº‚J½åÜ\‰£w¢Ý-ŒÍ"óšKOÜqäûá-‚¾í%OYÌ{ޥπ ØÆ¯Ë³UÿÀ§é–Öʪ?_M48šnN[É ÆPr¯y‘~ ¾h³’Rë2 ÿ±XñÐRÀ%Þ‹.;ˆÒnÖ±Ekh¦€ãŸ³ŸúÁnT£ß¥ÿîc3›Q‚úÁRø’4pÆ=Y¥*ãîàVg°ðßøÊ|^s¨9ÿ1´î;×/Ôe±Ë±Þ8&ý¼Ô3ɳ Ž/ä7‘‘,mýkÑxjâ-èww ºr²L ¼ÍÁíÔ® Î?Æ“ÇÐKˆ‡¢šÃ¬£~Й§¬$D"¹B$“׌Ìÿ˜•„êŒd4SÉú£ß=h 2÷`õ˜ ŒÎ¨aÞaÑp¬ôôýy€GÐ_©áP?˜ZiÖF¿[Oûј _ƒùçì1í àèËûAÅò˜™© ÊBfýFÌ£ÂVà3_EI­óó=ÿ}ÜeKªûS[g%O˜}õ÷)Ê\×ê1µ”‡üÃRo·UV3Áv.¹Ã‡?įŠ)?´Q“'¦2OüDÍÐr1ÿÃKß“ÎF‡ÕQìvøóø›‰ïzcÝO '>DMÚ}QPù¬æãk…DIqLHý†Kûó÷C>¾Rü•‚ž7Ø2Øå°{u‰bÐ÷/?qëp‘@œ×ö„üÚo_5ÕúÞÕ@5‚üãQÏ"®‚°Àvì`1x…t c‰±ãÅ‚HïMåop©¥ÂÀÕG ÝVH÷zý ̦՗0Ï$9r«~02ýî u8ZKý ¨ oˆÁXá‘ Òxö»ÓGp%µ>ø&g°‹)èÎâã?.ÿæ\ÓR?˜Žãꃢ8=¶×âÏݱ«õ‘ø¡F° -ñšÇQ[¸w¡'˜ˆí˜.rii÷Žã?:‘W‚ø£^;ª¬ »Å†—¬¯ÔÃXUˆi'gkå·À-³F8¿öŽ­-ók‡‘ÍtëO_±uÄrP‘عΜ«K²²® )ñã:P±D “ôZ´_j‡æ«‹žä:èy² ßðˆŸ%Ž%o«ÿaõo_EïÜëôuJK•c*iЉQQsƒkP„ìµK¸;­ªÝ!;‘ϬÂo\%çË2–ƈi‘7Œ¤0ƒ­®ëÆ3˜æhô/É;õ„Ø~)^ÞLõ™2:ÌŠ]T;YÄJò¶Šð5ˆR’Ãv2 M¦ó† àªÙ‚z¿诮½—¡òü6hÓ`é;?¢µ ³Þ4ô»9ä¼y-ø£Çú5¹‰ü£—±B¶û_ + °ÏK¨V™FÇÂíèšF¢‹ÞÁÇ# gy¥»håØ5¯m§”óäWUðõÈ?ºá5‹’' £K}ª"šÓMË—þ%OÌ^TjxÓ‰v 9µÙ42¤¯Ä ‰ÙEȳ7Qy¥~ ¿Š^ ýUr³Q ˆ7¨Ÿ¾4îc>]¿‚>Ñÿj}ã3ÿ#)™Ô X˜-ôOô 5ÿc•rQKSQR_zm¡¸¦?FŸ›™¬m¶™ˆ9Yo舲œcœ‚æì¨Û f™ß2cÀ”_°«ì°›ž¡¦xã?& $¼)±rjºùºÙ˜]èR†ÿ2¼ü|û{{J{YV:B…{v3W؆gh#¨l ê‡Ô…ÿ8jKª^øýÿ×þW%”—Jõ1ù‡ÔÖ«¸ŽÛj’4S»à?þaÿ«²J l|3®hìçx-¶–…þ‰éé#Пz»Ã°!ÍÄvlÁ_^ôÑAa®cÿ¾`¹Þê?ž«%y†ªˆÎ¨y¥~3ŠùÇKå½Ò otÛUT(UM0Íâ<8ÓÈJ:ë=Dbá¯Íûå8~ýBC­/ê½Øá¹ìÇÔg¼*‚%5É?²¹F‡iŽÿè$&„yf]Ëf+¡ ÆŠzA ou~Š Ópëè ÞæÎš—ð7±k§AÞ>‹÷jêHV|¤NYÈßM° ÏÅ8áI 9¾<«-Ñ!Í€ë^@›­å*x›t¢R(=_Ø#L‰ÿHÿèò+lágñ]TÄßêKàúÃkºËï°Ì[tõÀ>†Exâ…ðç!bÇ©âÆyI9Œ¸Í‡+gÍ,J&ô™¸¬V øóÎXµ)d‰žDw¸6~¦¦#ò 9¾[¶Áš¯èOîÓ•£HJàåd5óõBDÓ ˆÏÛÊoz9°¬ãØäJœ÷V®Çn²²åük¨}VÂ믦ªóÅ üXqЦ3 5vŽÒ›ÜGýù6úïî3—Ç‹X~#6|?™ÿªÒE¬g¸ûbªÑ‰xê¹at¯ÃÈ¡'í9l~ øFZ3%Öë±éd7¬Ì[«iÀÿ÷Ó¿¤‚yŠ|/sþ<Ð_å¤}™Ý<®õ ;'y‡ço–c½…ôOüB$àÇ>¸$?ˆ’äo«è ÿƬnn CÕ2”k‹áÓ » –æ-ìÏbª 7‘u‡S)@¼•W\­ùÇ2v^2¢ZöЄ”W°ø™Z;ùÆeôÄ+¨iœm^£‡Ë:Ãg5®šIöäš,F¬YPî#Çüy€‡™D0„zØwXìJÿ’¶ì’‡Ô 9Ù§›‹í;í©íÕíåèªèEåéW&À 6Ó“Éеô/‘ìò¡*^~®üÿqBBjŸžØêýÏùGex>ª·Z^Ë© ž¾‹úÁºjKuþ#ÀvþN&†bgºP[Ð’ìÖ¹Z ZE¡ä^¢¶AÛ§&RÕ0ÏCd‹WÄG·#ï}GÅfr=Ym"ñÌô¿ò¤zçÍ/hÄk~â<ЏÒÇÂŽ±uQ°ÔBeÜT\ÓBƒUk;üêµ¶&â%Â|µ‘ÖG€Bê ~mùA,´”ø ©‚‰€­ˆ/³âï’ïL‹Bþ¡)³ÀÏfëàÇÓñña½-ŸÐÛ“Ùø€Œíæšî„­ÐõOj™H®â)ugØ1¸V ~YŒÃ;ûǚ´ÇYŸ:€oЇÿXK}t)QN ßËãçéÆTêª@ˆFSeÜâ ¨@k”]_õ9hcÊ賉’<#ã9ŽÅŸ~5þ£Q„þc3õƒ±_A é×ùа®ø“W–eÔhVÿövÄõ3ðôë‰î¡å²qwj;žÜŸGf³²uÑöˆÎú{X˜ö21¬(ßJ¬ôªRÜá@¬zL/ÔTž|/=ùÑVL‹YzUíÝ/šyô¿š‚ú<7Ë6П¯øGÄLŒÊBgswf)e0nÂÅtÅ îÔxžwËAöÚ2Ü}y¯|Dáé®g‡Ñ±:2îåÕ6|…³Óm#6ÿ¾˸A¥D"jس¡¾»‹¢Ëš~U mB@8ýU?5.ª¬M襊ƒ‡¹Y¤bNÔ4,yaêóFS;¸žø~´Dÿ«Òôß-ÁñMáèW¢1ÞM–wFæ'ˆ&Xî d¢èŸø\¿ ÿ±Ø‰~·øÕXò@&ç­1Þù'¿ .Xÿ±Ÿ¬eå`1Ðq3¾Û6*xNë³è_Œ†&]ï1WÜšÛº™ÉOù˜Ð‘ü©IðüÌj75þã~3ïßZ„àå3”Ëê;2Á‹ì?ô»Ùù©ž0äÏøý•tY—¾ÒÜŽæ,€þ»v¸yÔ8®G‡Ñµ™ j®âJ¨ùË”Zf|r¢Çœrµˆ†þª¬½0˜ÕT:¬<÷4wã?¶š×™4Yž&ƒ‘›šðç6YžXÓEîÕ÷2U["œQ‹´€UÉ¢5šÁÔF¿ö†É.éícÉ?6ÐM¦¬½“YÚøBíäà 5sb’×Âþüžž^¦›WðŸ{á oäx»‡¶JÆ0ûÂñ­H_dQ®*ÝÕ“àW´ JYVñ´µ½ê¨n€?ÿl;é ¡ #ó?Ήz<1ùÀ:º¢ØmBþ‘E¬}µÝÚ75áòç-À›s¥;‚P ×O‰G"9ªð"ìŒô¿:!bê÷£Øÿê*øU„½?B²V¿/]•™çÄEøÞ;Ø®BØDkþù}m[èSúÍëJÚ²×üæ40z/t5?ÀHSÃÅéI2]¿—tfœ˜é½É§´çý—ÁÄ‘mädöc<úLÕ'78J®ý¼ÂYz“ClÆ:«ø\‘¬x^]BNÕ…,aÖÒL¦ ÌEYÔ. ‰SÈMpÝ{ÀÞR “YF¶˜ýnDÙ‚uòI•rjâÊ¡xx uÏÅGQ _ûC!OpL3àââI^â?öbñ§ÀlŒA3—3Bþc¿²Zk‹Ç~¶Ö€{q‚è-$€¢¦~H{¬Æl,@ 9ìj¾+¢ÄP‰â#ª‡üc tÅ.}Q¦†¹Ó}Á¯“9^"ÃZ‡%7ÑtM£VVüÏfáF§æïÙ’~¹­ZøÒ²<þí6Íx¸©²¨NZ…Yo•¨‚BËê„æÊµzBÅz<&4ÝP ¤”ðEk‰Š^ÃHšÿÊü}6&Å:öþ%A˜}áøV¤/ò0?ªüGA-º¶8˜??€þÊüjýÛ?ÙŽEºBèÈ ÿHÜÜŠÿ½È¦=ÄQþ“Dk”5žê³?ìÓÕN|ÅÊœ ¼ƒuYOÆQýU:ðŽx"ó£é~±¡'äu€rGi.èÔpÿ±»•W–…Yî%.€ ="/ÎsÞAiAQœ>˜Ýã‚?˜û(Õ O8k;»=€úætàW ×èÃJã“"¯?Ï© åçW`'M¢Ê `­éðˆ¾XÑ/Ï·³<ëIò™šû´‘ÜíWêLüGkŽäöæÀÙ €IöG)M$¾€ú½X¡Ô »ë°÷EEëPñHÈU³^å¦þ¼Þb0Þ6j®W ”-È¢ƒÙ,õkC̬áÝüyÇ£àWS°ùKy:ÊjwÃ.ü™õç½ùþVªmöoÊó ¾¿°¾B;­€ÔÃ./Ä{nH@ãW">î×ånÙš¯tÝìŒËņ‘±æŸ—¤Î¥vd& Ü¢ÄËÞ°&d7n ÷{5QcI-¹ú1Ü’«Õ¢ת0à?^ÀäÇ=¢þ£ ]Y bç‚ hh¤'KêB&W‚ÌfXW-òÕ¿ðçAÊWj€Úaí—À_áý9šÆgT[þÌ×ÁNÞ¢¿º‹O‰flÆê•@ãà>Ô ÄÄMd&SèCì¢ÆâyØEþÁ\p2UƒùçÝ™7›Œh% €šWt W™´Tþ£4ÞaìÌVò™-<“'´ÞaÖ;!êÂÙ_¤Ž³.?÷ˆ:ïC(uûÐ¥+øÕz˜‹7ÆsúÝit 9Á™.À+ïBæÅY°¶èà8<'Å[¹çuU³ú_{Ê…ÿèÎ ‘j BSírÁ(jÅ,…Kªd67×Á£Œ†‹‹/4@‡ÚŠCŽõÒ©(u'{êþ£$*…©°骲ˆŒc¯VÓå0šý)ÓÔ˜GèÇkßüŠ9ózbìÅx‡ÿ8ªÔ2€ƒZþ#šÜ,ÈùF{ê˃Òå ûUú—dÅŸ\k¶·Ž‘Ê^ͨŒæáÏq ë;A£à1e¤6O?pë¤x“JMfúOž%ÿ(ÈÔ¨nè¯Nšµì-˜_{ýÕuzZV0ÓÉÖÔÌŪù“'Òý\ðüè…þêãýÞ2¿¶t˜}áøV¤/Ò*Ô|Së0ÿ|µ’›UÖÙJ©9Á¯«¯`+GºBèHª|ÐÞñ¶#ùB$«ÿ•§òY›Mÿ«T£ÇR£ýÑqÎ)e7®t?âåúôo¿ *+?Ô8؈2"ùGBbñG¡à·¯ï2°5ü‡«"qüK°ÿrXøöâ Ä78ÎB n=D.ñY‹JG³’œÏ Ñ«9 |ní ~6ùKlæG¥Å²ž¹ÏÇ{d1}ð‚3y×£äG§¨‰)%†Ê?¾ÙV+wˆHrƒD¶BùÜŒ«X„®'«éÁXÿ1üj7]۽黻ϸ’ÊúÁ£dF{Ñ·¥þã4ýBðò™Êð«ò:ù‡“ñ€Ì<ÑF;!=sO2ÿc>ÌÇ\¼¥“=SJtûQz#ç4/ë ÁW;îÕaNpøMÊ^-5L…÷>¡t‹(@oÃì_]”aYÈÞ2Û*õƒŒKtçŠg/h²7ÜôøàWг4À rìÂÊB­uI}Èc£ÀJoÞ´û ˜ R€»ÐÎì~$«¬zF¦”¼„©êa&eç+X “T£å?©¸Ù×ÿׯ¶Û¢+!³ îÛª+ñÂ쳨¿&pê+µúÝ#Š+«,µ•S3Ñ·j5j©?Í?êÏbU{óÌdÒ»hju¦òœp’¶]»L5úŸñçmEV9’¾æ]Ð@L¡¢¦W.ÓD”†UùKÿEþü…òNi)~`ãüÀ•wâ? K7ý£¨-N€ )²æd}ƒH…ÿØ…Ë×€|jœ¨NÔøJkÞ`2p´åD£az¦ã=F`c?cËNù¯‡£‰~f=þ` WåºÞ]ûB~öÏ µƒHþQ+ Dì9WЇëöQŒ˜ÙÕêàdÜGÍ›kO%,ô5tXߨ9(ˆf¹k¸ûò]‰IdjùõàRvcú¤«ôßMox1?* ÖÊêÂa3ÞãŸÒ°b%¼»aì&"_ Ë DT–†Y±žê§µÏ_-]+øýÂhMwÐﮥ’:Žý2ü@&N¢ªð9Gè“£Q ²XZ“µ¶k}ì·M9ڂׯÿñHÎQ½¦¢ç›…izùðo±ÖUÈJ*˜P±eÍã°÷9Î<ôo帀?lƒºüøwy›R˜N- Ìã¦ÿ±žù°®XøÊÌÕhNÿ«àYMÌäFS9Û˜F+ÐǃÌoÛíXo²rRµÑ“æ4ûé›ôÉ™˜Û™9L¹ì ͳhŸ·›À‹®Ñ©0yÜS2‘·\ѽpãƒñreaur‹ã¡øóMÊ2-!ª–ê쾿düÇ>£.ÜöJ4WEÍlL‚ÜLmb!üH4fÍ›dÔ±§6˜NK[™Yä*àqe”ÖVä'ÛmEfþC$gþàN³.•ú{˜óŒé¼mìkì^å4ú¶ß7màw‹ÀÅ2cÑ>‰ùt»»æ$&þ\ðüèÅüÚ&ú…ÍíƯ úB•Qo©.ZYí²R”ݵ–]-©VRGªïá?þ¬þ\…ÿx.Ú5ÖÄrv¦ã®³:’ùQ³Ä\ÿ«m¢,ÌõIøµ*Tm¿×ƒä=ã¶ÑÿÑßHAý`&c$aòQcÈÓVp°ðsÈnÑó0§'º8nÆGÛ8Åö:õ$­áìÚ¡ß-ËÔÛÓ̯­ÍTÜIô™:‚†õšå%ô……Ý„'ÁÙ&5꡾>®w 5pŒ²C}MU©µžßñ6ò· ¨®ÒÛ›2GD ¶ƒBl9Dæ~Bwö+º ¹;šà’òë9áîÈ?Ó9'#ÑHòBr”`*´QÝ^Œ>Œu©@fzP_26ý<óÊmöþFm{B£,‘˜ùÇW|­O¨úó-Š¥à/Ž.¾-OFB= Õˆ'éåÿÈKTЗúó™öçfû³"þCA6ÿQýUXLTü’ü#¹X긂ÿÜ‹stš é[þ™üã­L§<¡þüZQ+­y«¸¶ØJ«Ô¶ø7Ôœþ£“Š¡økþøk&PN½ö‘ŠÁõÌÿ#fã?ÎòÙŸñ4ÍD9‰N1c@Ûï<£ÿnê «9RÌ";¥·wõWçÈ?Š˜ L'ƒy„×<ÓÕ™ŒQU¦bá3>ÄÒ¤ŽÂ|ÔGᜫÑ?q¬¨ î25è^ž8øLT}à+UÑú¤1͆\)f…±-žUù¼k³ø ^בH1=þã³hR{˜XÚŸ.ùár]`-ŽSçk5"YQh ±TÈ9.Ná‹eUC‡êA~“^ŽÇ.@µé‚Nìþ£+ó?Ft`|­€R\­JUÖßz\ž¾Þôo¿@þÑÛ¿´nˆn!bNÁQb||Ü5Žð•ÛèXÒá3diò¿9ŸwO9lù M14ƒ;ÖFÔ¿J _VýÃQÄŸ>V~(…†Æœzb48Ÿ‰Žj` ë‹x»»ØÅÒØÛéÂYØBi#^Ëújú'Õ@mæÁì#½C-v&üÓ[r™BR—ʼn›óCN‡#=çÊ4ªƒ€óÿEÜ< ÍjZŽ­%+ïÓ‹ËËÔ}d„¬µ]Onbh%#YQÕÆpdU8"/,àkø£üxÈÔ,#[HжñÖù,¬Š ú$}CñiaÏ:‡âž™ª§Bà¼ýÁnP÷Ò¼iÇ䮇ÿp‚ÝÆ5½Æ³~«±ÿQ>Âþ‰Ë•ÝZ#¬·|JY"i_âA«ÃÇGŽ·.ýýÎi&þ£•USXi“> OzO`\#ðçñÞd Ì÷…{Ž *Öþ>3ÝLšÁö.Ä–Õ…w=ŠÅKEMûq<Û¾oåHS5§_r×Ùjwr5Wê§/µ»’½ "S© ¿[Åîæ{ºˆÿÈ‹·Yf~r0Ö´|ÅXÑ#Ü}y«høæTÞl£®C5¼°¯×©^w6˜©‹–5ðˆ™ˆLÁ…œd MSªäö¡ÑšŒî°ùGØÞÍÍÐ_uãÁµ¹7î/YnŒ¥'ü ÓÓLl÷'ŸÂ6ÔhKUb3<Òvú—áúäJ_ Ç,¥ª¢þã(_w²··ò„ácŒG¹5þÃýUlºžƒI™Gíä)”ųð˜ÁÄnÉhFÙStwl–¯¶ÅÊ>,³+ù‡ž|Ì3ŒöVzƒÔE;Šùç^Ì|¿CÝùxãó£˜ëÑ_Mçîü ëNÀ¶U?8’ùç﹓ˆ¡nÉÇ"×è’±ÍLJ?ô­ô«F´˜¿1¨ÿxƒ>v=þ#§éIfÝo]n®ES‡ÿð`rYêü\ÙWѨ»ˆ+ëÀrçŃw§‰:ãë`båé_¢1I}$¯‡Uèß^‘Ýõlá‡p—gBí­J'øôà×­ÀusêyM?øó®œé+c/êß®æ&ûz»Í¼­,óOÓ}~¨ÑÙLÿø*æ¢*}ŒÎ_ŠŽ+øÏ½ð¶Åe¶ÓÏ?wáÏC²‘Ÿ_ÚÇhÊ'¥¶ú,¸¢wðü¨EÔŸçR‹«3ÔøLë©ÊzÏlgµDp£±õJðIÔ®ÊUòæØÛC0*æ?&‰Œr:•6=Ù—3É?Ré%”#j|,tQê?–‰4z4M ÷ÌF|œ7À隈¿ˆG_‚˜x’7dG¿ûV¸ òÏûdÛE@{¦ˆ¿˜r<â%Â|µý„g‰bDáKˆ¤7ÂÜǾöýu‹Ct¥R"8ÞNáéÆQVÂn.Ÿ‹v»PO¥g'rGeºŒÉš_›–³vy.OíjóÚþ¶I*%ƒZ^¦5J¨„䯂ó–Äðså~Îy8+Fçýɼ®â?Žð|n¡gY-„¡ 9ÖôoŸËÏF“d àrLjösòï;W²#úÝ•Úwlg}Yþüþc¦žƒÈ/,ûÄüÇFú_@¿ÆÀb§ÁZÎΟH$ß µÙ+½2ÖÎä%%˜Æ>xË:½îˆ&1ÿ#<¾‰þ»‹Ù ™°áÞÃ[8™ zyøñöF*ëjc’cûk2pïQœíÜÇkÙM¦"{mî¾ÊL•vgt³ËðCÈ>âéÒ’³Ì տăþ»_ñ×Pá}À¤D¥6•@{;:µÇ@- p„KÌTvÓ|d<Åø£;À»v€íAdžÆf“¨íðëá»Ãs[Ý'RÉéb¯¾”ùQyÉcz€Ó] ³9ˬ„7Iƒ7„θþ£€Ñ…ŒF— xšK€û†ÔîVzÒW< Yð«8àWMÁ¯š÷©ôßG'”ÑöµÔŸ¦#c)æëúu™PÒÝÌ+—,…!ô§V^ýWò£¶D¡«@æGý™]yžuå…ÒýUøãÁõGlUÕÊju³ËÿP•N¹¢½A‚’)ÖÒž¡¸Z­<Ó†‰^X†ýä52Ìþ 9Žˆ_õ"ËœDÿ¼! 7c`œ.‹BJ²Ð†º‹è)Ö E?÷Ë  ˆWº«ÄQÛs¼Áfժ݄=á*¶ÀÖøcisaÇ'ê£RÑSW›«M5‰NaÓ­‰4g°5Yxâ‹| 1IY=?lÝáé9»(ÝÉ×ÖŠ$z°ÿ¹`T©ðMÈ“¶¡½BÄ™ƒJ?Ø‚QÊ?âh“ôêóbkúPÿ1 û;Œ3¾E%Ù8IË»,ÄjdƒU>†ÿh*j(#¾p¶¼J%µ"þ{*èU:âñoèwQ:cñçIOž! _ñ9ó[p§É’N ß-¡ÿX«xi±ñ@]²_Xò <©©‰}{¢}!Æm«»€•€&$߉ƒš§Iþãž­1õƒ£À¼'`ÍÓƒvìÀ>ŒqšÆuìûF,¼›½ D¬¨<ÅõôæîŸÁ7MÐâþͬPÝEGŽ«6œîC˜wúŽ¢ý™:ã?6ßž¦÷áEªÑ ¡ ŠÍ+GíÇPêa²<üUŸpwZ%_ˆÃ¥ã‡ tćúólôo?ÿ(ÊÌŽ£fl2…jFc «Ž4Ãä 3d3®v uI˜»© »ì~º<|xÝTvo1:Ò¯jstû;ú_µ¢Ãã8:ÞFÓ\O(Œ³(‚¡“¾®ÿîaúï!wDÖ§Á0lgbÇPòÑä™Oâl¶/0üù<>õƒKȺíE%–ÞÈ,§ˆ¾Ž]óѶR¹‰~·‘TØÀ±d~ éHeõOìbAyT™¹9¾öL¤: ~Õ×ÜÁŽ‚–+ÑõÜy½½8éXo¾rPý“åƒÇ‰‰2ñÛƒÉ?: ¢6Y×´/¥þÜnÿb¼3söÔ“›ÞØä¾ ´ÜAºJïíþc;ý³ñd•%ÆÉ,W‰Êò¨ÑËžŸuÚàáÞ‚ÿyð·#G‹J’Ùd6ýŒtö"Fmv×7jJ?‰JòD(ýÕ~e„Ö_äæéé‡ÿˆ«·2 Ø;›ÍP \¡KÉqªì‡R?— Æä_—ðq.ÔQö3á?bPÛä-ž‚ÉÅKgüϽXŽþ*„IxbkܹêyÿDô/©Fþ‘ÿ±_)Ânõ´c~mIæÆAµã}d{ =-@5*]Ô4ú—̤ïÌD¢Ñ ÚúúÆ óÎÀ ææWìÞürB­Z$+¨³t“üão²T¹Ìà~Lä©>‹EýÄ|Yö¶»ªnݪÆ5¸»ww×àîî08 îîîî ÁƒHww·`A¾§²K'I&a¿ýïÌüv§ pûVÕ­#ï{Î{:Pa¹ [+žTÇ„k •Cáñ繩¯(>7šÊáäðŸ…5á¾übò˜vè—ÔÂŽíúÈ]…ù K:©{‰FZð„àû¸œ)¢ýyš:ϵ¹ ,Ha*ùûÍõ@m“ÊØzD⓹Öõ¼éÈxbÅ Ãì±uּŮfÖ4 WãN5åX2­ñ AÁx¾ÀÇæ÷òcSöðü—ò¼ê+´ljèžûñj31†ø¢û5< .Ï kóN¶‡?_EWò1xŠÛXûÒÆ*ØéÌø¹;`eÑŒ¡D¨«…sto³Q>ˆ„0ú9A~¾áeŽ‘wÂ$azú)ØÞ¢ôxû›‰ˆïËÀQ¯ÂÕ†ÿ8Ž÷Z,›Û¥Q=žt=5:§Ìê¬Aä^†ZŒøõF#:õV}GJ³¡Ce¢ÑŒ,¢'<À&¾ùùIb#Ã?STÃÒ'.±ú/è·äNTÒ§¡3ÞÕ0ìûñ’áûð'SÉ?N‘½N‚S9O>wÈ´r‡èáx´¯¨¿:Æ•–Ê?nå©KGO·Ž¢¼å°ûEéÿëgŽ¥C¯¾`'W:ÿ‘Êè {uŽ3ïä?rʃäŒwÑ/)ÀSp7ú ÚÞŸþÃ/Æ®t3×Õ.˜Ròé ùáyÂxkK7+üG°~Ée³V …"ú:NßdñCߌþUAtG1™ä¢qœ ¬¥ÌB¿ÊflýrÓÕ(koj”ÆD“½‰béD…wýuÁká?FÀÀö§.2Ú>©à?˜˜q•T‡ñJãì'í‰É?ÚÁÿdµŸ4b™Ék2ÈvàW[Aão¿¥ŽTµÎ¯ïüoý÷®-SÆã­£’ÒéœEþ{¢*6µ—ªi•µ¦ÚÅUö0¿¶ Š+¨¿zc;ù¥ø“q”ëÔïÖÀ[W%‚ΞD]'2BtÒÖ¡æž-ÂÎç¯ë+>aÕOaI¯Pñ³EÜ@ÿJÑâ?Š‹ôb1ó^ïGÒ\W>*­ÄWlæìÖXìG~Yδæä±í±…=É?˜Š$’‰ïš—ó&ÂüUò©9¢.qìP¦zBòå¶ä/ˆì‡Â+€>¼¹©yY-ÎEølò)½Ài6‰äħårbîDøF¬½þãSbŸšØ½•puI#ôù‡Á9µú?z³Éä.Ó°Š—Ññë…þîxPâý vÉèÜ8¬O%î몄7)¬ ó? ó Ä{dÖ'U½-ñ·oñ>Xë>ÔÚ'g•wx¬X[wÐ+zïA/øsËèn‡×ýZØ Ìʾ;;ù‡å}ºêÇ´›šB]7*‘&èðE‹a‚¢ VŽ=þu¹3Ìÿ8 ~eq¦ÝÙ…„5mLýU]ªzú£µ14È\ÃÖz‚ÔeÂ˹ã‘-õ~,ùGèúÝmôe7°kÀ‡^SplGES0+5MU`€S¡¿[Þ¨fÄ:'—-ð3“äGгRè„V:³“dƒÿ(…ÿ°Ÿð_TP•ÿqœl&'5·>ÔïÞ£¾+±Ð.à(ÕZVþQVÏ€zCÈ«îŠÿèÄ}¹IþáÏw›pñëù·ýç P0·Ûï3ѵ{›`Ô£°98Ž;þãÏý é{ÍyBÉqQÄÌ—·¢þ7&œ;™Áx<ä8iæGEc>ìF<ÑlÔVv€ª Á+Ÿ`½{d™åâýƒ¶1Êpܲ`†õˆŸ†óÿ%èÅ^O•ÀHr·öhƒ\0 ¡/ßÐnÜÍé`ÎdzýÉzºÑšä1ÂIÇåŽTk¨,^jåbO„zÕxúùÔÍn%íË>«‚Uf@w¯‹#ÿØÎ¼ÙLè’VäTê³E,yÓ¨mOÇó¨Sö5žó,¶2Kj2š‘^FúKÚ2Ÿ°0þÃ…sU•¼;;á8…û•Nðºiy#Zc&ÔSP¿»Ï,f¬$7j*9Àlk÷´Ç°'µ·a2Ésºë£w6ÓÐÑ(–[oŒË?‚_yƒ_]tÜ韶¶J§sæø­?¤aþG/õžÚPKªVJ²ŠŸ­5V¿«ÚS½Jýîïñç˜5h¡exk^SÁyÄÊ[ù®õ}´ÑÚMQ,…øÈÿcul )ì¨{â“vÁ˜—MM¬®‹b¨¢<§ÿ‚a‡½º¯’ZýS|Ï¡£+ìG¤T Ëôþc2˜Fmb~7N‡‹¸¥m { §Ÿ6ÖFj‹à‘ÁA°¿»°û‰ô3a¯¾‚¿§Éù&®‰$tÁLŠDÿG e2 ÷a'{©‹åÌ‚Õü&ºèk°òÅ`qOÿŸá¸Ãµ¼ïÔ¤ÜEU› CÞüj'þã¥è‹ï±ú?¼Ññ¨Kþ±ôi9 3™ù1ê Ð?x×éú‚aÍ?χ7š ÿ‘lè ^»3Oå5üùmÞÆð x[wó“s0›¹ûÁ¯Šh‚q|Ú¥l¢þÊ1œ¸í"ŸjÁõd?øõ]Úkê¯VP#V¼l<Õ<|ÖUãÍu,f{c«ÿ°Ø±!øŠ‚¨/#S™MÿƲ‡aXøxàõp  8Ù¨[¶&Ez’/ú`CšjIÕÐ3שí@ÃjqÏásš‚_Q=üˆ~º‚Ìr£—.·q—ü#—áÎï'du¼ÝG8jô'u õ\b¨WW‰z°ø…— Eññ9Ð@9I¤ž7Õ?·Ì¸àWeÈI&Q5Pû4=‰Ô•ýPÜV F%KÛß]“\²%ˆSJìÕ<£šZ“ˆž“Ùσu3QÛ /Ò~æ ß|‚ûãÉ=ü¨5wZo™(nt•¼±YT ~Gn&3Eýn/æ,%.@d)z¾K üjua­¹—Ûá?rÖü¨–އqÍ6OñÑ™ùÁ]«K5_oÎ÷ ^!ùÆ<ÿÊÔÅf‚©EýÕOò‘Îæ,ªŸâ/ã-©Eð¢F;xöÎæ| ‡9B6{ýÝ6LÙK× tª7Ћ|úçeÍ߯|C{¤]!–’i;üoZ¹ £yb˜Ãì„ÿHÛ€|F£ÿ#™t?ÏNö1ËÌOÇÇEjæ™ÕøÿÛ°5M¨Åªg¤b~mA2šœÍìà°ÞÒq ƒ_CaqgZòóÝ™p¾9ƒ5ñfÓÑ/Ùoe/k¯“ò t-©½™LÀ‹mAö%ùÇ·Hu+;nò郗M(ÁêØ¯m ”Nç"ò_“GyŽ~É;ø„Ú‰ þã¼­ýçíÔIôŸÿ.ÿ‘ÿñX´á ´ÐWí‘ZVõU¢Š ¢!õ®Ôw!X›È챩¸Ëûâ-*ãVÐ÷ÓTUƒ\¼Yg´¯ô¿`Æaxu§ÎëŸWµ™—‰ç·Â׎)ÂúZ שŸðA¯+u@]ETq-RŠüÕ´©ÚÑ‚³=.l øýYâçr¨0¨rœeRƒû\Ä ˜,¶Eølª+3`(Ö}}uÀGãë?ÝÉ;Ð÷€“·¸…Óìo1Qû3ñ3Â,.±6<¨øÕv¢£§b¶zñà%jgº‚ã¬ÑmÄâO‚ð6w“™zûO`-w²¦äð71ÉË;Þ\ÇÖlÏÑß=%úa¦”C™ÅÒß]ˆà\Øóeø”$¬t‹¼ û”vd «Î‚ŸÙ‚~b4õmðRAŸ¶ªÃÅH,LI|ŽÖ÷5yéΗèÙVb2i}*G]wTË–2¶Ó‘”ÜËÄñ)þ.>Oô õ¤5òÜ#*èþ ¿:-+P½u„JÙôfú/£Ó÷¦@5‚_UÅ-ƒ¥²ô¯ éºêá´bwUç=ØAæX“HÀªyÍH§à£6ùË:©"àæ@ãƒe45ösÅXí9ÈhIÇ=ú»-œÖó€ÿÈ%ýx ¹WÑ`Ú'ÃÆ1N¡_j¢ltV¼efÖê¯âÓÿ1 ]˜ÖpIÛ@á2dÑÊqØ6á?bS¥ðNo@åó 4e PË:`µ¬˜2?=þ<–Q—Lãuäûë-V®«ßõüô0ù‡Ð—Ënt“ÌÒßÝo¼@ïPCïÖü*>ã1Q[©†ÿØvÜš§_€¼%)þ#8ÿ8Fýn:ÞòrÜ¿ëúD1@Æ4 Ú3€ ö#´™÷±øË˜%µ4숑d¬¸¥obT§w6Ù¥BÎw8D’—2€þ¦N‚OÚñýͲtz´¤ÿµjÏÌ¡f7»—]·g°`Š¡‹Ý½þÎè_%„ý)V’¡?ÅÛ"2ÝÊŽ›ò_úpÑ–2DÅÕ7[c%‘Ó¹ˆüפ ÿ¼úý’RÚ^¥«lfþyµ¤:F}Ц^°—ŠÌš.AókkÓéšD?&Lð« ä¯ÉóJj3µãªù›üGUq öñ ¨ FŸž´³¢¢"´ äó´kè>/#ÙÿqE±«- qD Å±«îzbYš:ˆöšÔä ßéæè*ˆëÚÎH\ªz‹©…¹N.3ŸdrÎÛ‘Ó¼™Ή»@¥àã ýö9âD„Ϧ¶2„iˆ†]­'Ç`3énz¹{uy…7È~ÕŒ“¿³÷\MÁŠI´Õúsp¹‰dpGÂêN…UÜËûßÿáuª¥ T–œänä-•«á\u&¥¾êFuîT¼GZ|Ãò.äïô• ç}ôõd4.¼YȼNâé6âåN’” ³ÿ|úWí±Éϰò5ÀM,V§(¾ÓÀ~Œ€ß}¦%3ÖÀ,Ô!ÿX• 3yCèXá°ú?®Úk·ÙÍk½>'Õ<ªÒ 7ŒÀš²kr÷X øÌ]d5ãxú ôªè—< uÍ{Õ.bì]þ¼/Ö÷çîOàõQ•°¬næ.´ n2¯õ»ÝÀìK£ŸØ›ÎŽ^ÒL¤K¨çK5ÉÄÛƒ•nÁâ¾ V:bzfPyËÃXä$h¿¾Fÿʆc c*þ£yϺÏûr:+“ìsZ±§HUžG{·š+ÕE´©jÓ¸Èô€ÿð#>oghäíèú¨J>³œÝY}'Èò.hÎÒ)‘…ê‡Sä ˆ+>P';‡Ê¨> _™´}`}ù¹x¾á(†¦SrߺšàC2á*—Š&Ž;(”Ê =¹¬‰ÿ¨IÌcé­e3£Ÿ¨ ÿärÓ”( ú%µÍÙàO-¨{ú“þóø×ärq9•CÌn›¢T_ÀŸçi}TpË„Lf*h>§²éú'[¹ÒMæE0;a¾B-x8~3“鎇nI5Eiâ­l/áÈ?¶+K´¸0ÝyÁWÓË "@ß`”¶§EAf ~òÊ(Õ™fXÞüùGs˜ù\àWyŒ²¼Í*½ÆoDc¹ ¿óë‚-þ£›p…l vCט48Ú…ÕhÓgd¥yfcûêwK€·Õ%»ùd$e:a3#ñ¥ÎÙöþ0’)þ‘ùƒ[mI•àØé›­—’ÏéœýºÆˆÿ›Q‰E®W«ªÒÖé_]´U%ÿpSÇ©˜Ï™ZÖào)¥¼Ôba±Z€i±µ;jõ?*Ü´EÚÎßö«ÄwPòƒÂê¤Ë¢/¡c°¶òYMA¯Æ-@Û*~Šgêà¯ÿ›O¾Š‹Ú[|ÁríÅ^Yµ¡%eM˜v±&;–¬‡ÈˆÿØý7ëüú­jÚRm¨IýÕB2õÝð ç‚ìÎ}püÑd¼—èþ¢æ¿4 úW ”5àöëER,zsüG¼åkP¢ð UQÑØ ë8„õû$ª™"xÚyµ‰Ø÷–x2O23({[…Žì1ìHpžåäK~`F9@|vãŠp_ÃcºZ’4ª ˆÁÛ׉üç¼Ï ÖgŠ)¶x þî_ãΑÉ-¦¶Äƒ™‘9ÂÌ?6*QDOvËD±÷4èNvþ“^¸öº/ú»1Qí- ÉéxæU`qxÓ¾ŠÒzÇ›ûëØlWÉ?nâMØŽ` 岇iè‡ÿ‰]šŒ¥{HÔhõî‘Ù‰"·a‹Ü©.ßíˆÿ®ÿך‹Õ?ÄbVȇ}ÿ)9å52Àò"ôy—¥ÿ£º èÜKüŸˆüà ëö¾>Ú¬¡ë¯>)6ößž³¶ ÿ*ùÏký"lqf×ú+‰ÿè Ÿ•ʬ* I(]é®xK=n£–.†êŒ_µWOYúWuÉZ _—:«¡F&²¯‚©Ž~uÍì‰~I+£:;,AÿÇüÇ*Ð)îóÍÙÃEá»÷‚‡5$®Ô£>Æh ßÑ)¨þ*ók/À+Ä3F1,ÂKN­¨EðÄ3Ç5²Èa¢±ãa|²-UŽÀZó£ªÈ» œÍ˜”õÐèKcùNè—\¤fà(øÓTݨ•Ó Âê•„¶Œ!´~Ú:+)"°(áí-rC~U›þAwÅêK{n«¥æQ[ª3Ðß}m Õ{½lÊð«VD–Y`½ãÓ1˜U=ª<ÔÚ_M×N¨ê_*&Ã^ç×O[€V¤n·"÷;§>MìM˜_—Ú.í‹6C|@‹6à×þÛÿÞUu¤øH¤u®c.}fYf 8~KM.ÒuÍôâ™'Ú]›Àô‹?_ä?Ázò¼À2ä|^Ás܇OOM×üŸMe8ÖÂ]¸` «‡'"¹KÂ,üfAÖÚÃ[á?ãÃi}-n«9"Xñµº ûÞdêÙÅ#1–Xv4ï¢5ÿ£)HÑt¸ºU?hMdDû‹úÝ+áÜ¿ÔJW5ß?ËôFÀ80Ù+x§ñì81ìSlãMîî*"²ôê”ÓBG÷Öì£~· ÑWw©)}–~{)®Ìâ?ܨ‰z@ÿà Ù™÷ˆ;ÜTAî„ \rqÇ›¼Ñ+¶Úi1§Ð¿˜E&&Btƒ?oDÔ=›9 e•ºà#>àW±ð/ÇôÕ<­á|?½Ú;å}ðRAŸ&Á‘MKƬw*?Ãy‘_±«ÅÈ?꘻Á¯î¡v[’,©/yWQ*¥ú ™ÛKVÆú9wwÛlJ ”ç[`û&“û]ÆÇÅú`>ùü‡+ºãéŒf|„ÿÐŒ%T64‚™^OþÑtµ€O]ëô¤« ¸ã‚x¤êøíäF7&æãï‚ ˆg¿ÿ'|Êø;8Ÿbr|BFÓÛWšþ~g·BÔå NKTæ*îëgdÔ‡óÁŠLûr꯬ùËñ˜#™D»šª„YðìÀœÖÀf§‘ÃEGǼhÛ£Õ3¸<à¤]"ß-(³ÒMÒÚŒËD«ut^‚CNŠÆm 2…h 65ÿ€?·æüÀòÝsëÍWsþ¼«ç$¸•ÔEySÝ´ýÝ d[³è³ˆkÿA6r6~Ýî{ôïôV“•¤‡^B¬-þc¡rTKÅ{UŒhÑEú‰´h g´§§¥':d:zW³ñmñC/Øm73µwæGuàìÁkˆò°|ã§ðþc¾HÄij­§ÀÞÅ¡Rm ¹ßf&m5e*ÉvôK6Ùš¹ì Ño9ˆöU*ÓOv4‹Ë^ ]«˜_û™»•Pü^…«ãöü}8fKbvZ ­õ\¿›Iy¨LRŸ«Í´<Ì´úÒN€_S+ª“Á¯ÞÙ³*ao?¿¢Ò#Þ¤%5ª©.T\ÅU‡*ϵɢñú)5ºú{}òM„IÊ âü9¼M‹è* žÃOb“(n©OÂÞJ¨Ÿ¾#Ï.¬I°{8 £°«ée~´»ˆãüÊ /ƒØº3õW÷µE¡þnX¿¬¯ÍÅXs»W®»yV†ô>ÿ ›^H='窷XédÂZ­„2 ¹þ#1½“Èbc5;Â6¬Y¸Äþ%VÃæ/€W§f‰`Å[ê*:¹ºÒ­±Ûênãɹ†QÁrž¸±Ì*7åK÷ˆÁˆzéùDýpçäAŸ ¨Ü|]£n}5ÏÀPú±þ0°Òzj¥¢“]OÙÇ»¾– d¾ê‰×a\êe—6 ûHÓŠºÑÃØÃ¼p̺| >?K»¥ý úîLäŒ^&»þà]!‰Hš;ÞÜàe}l‚üÇ7} hR:*¬VÂt. ›ÁêAlI.÷“üڵߒ’Zе zÓ`•ö3æcˆlÿZs.ýçˆPÓÂNŸ"xÅunÕKÀo4Æï62ù(7ÝÍ­nÙ†ot£ÿc0üHWYÛzþÇ'E%“üœ{+*¸÷¥¥Ó|Uólø}`ìqÀN^£¿{›ŸÅ4fÀÐÔ`ÖÈj|à ÙT/z(ÿÑK‰wû~åFLgÐËàѦPËîЇJ¯h^,Î7ÁÚ‘É?.…ÒO\JDVž¢/ŒÅdò†[r=ºY ,lŽþÁEès=7n“D7úšy _4ž»zŒõʤF|æGµw<Œ¶ådÑŽÞYyÇÜtJ~4š1…ª;5b½©V>Bð6p¬ùä#¹™Ø1ß1šõÞscswšŠyŽõæ*¾ê ô|½©ô8*£À¶=“‡èÒx ~µÎ¸B¿ä#büÃÔ‡™¨ZÞ7û¢M–þO´wøeL.3Éòò¶“Öcd.ô¯&áÃS’sÜFW~ü¹;øÕ c ˜VP±ÌF#±8Ò¼¿®<¢þj—2ž Ìd`Ä­©§Ê¡×2«RqPÿh‡‰ÚÀü(/»b/ÆüÖ†·¹œ„uÓ£ôB¬AÍï1¬_’¿ò°ØŽ:îôw椎À¢8þp¨™Ñ…ꬾVëk1´uAý`ÊäÔiè_½°]õçÿþ—¹)^‹vX†t ˜XûZ…¦{7QY[¦U£¨Ñ~kŸôcÈnè¶[:©èäva¾©Ú`Wîj’©êß…z÷ï·ôïß}Gÿà$E^Ä^VÀž€Ó¬EM÷4qتƧ¤ÅîÉÅ•HåõégY,êuO¦žr%Q¥—‚*Þçàw1x­ 9±EƒÅ毹±2תK ©àªKä—«µÑ‡0¬6?{Þ£G§~¦»^ /òC¨Z⫺ûÞôg^ä±èƒmO7‘mPû5àQ'`,rSg¹ŸPBÔ W·¸ÒQµôÛ»À&ÀžÞw¨°kÏ;óɽìFÄ…7ë9Ý'±øÈæ6ê‡yâ?Âx2'ˆ'ï~Ej¯ß¢:¶"„¿Ò¿~§/O™ >0¤ÇˆãV _1Xù®ºÂ-&•» M¿IEßçJ<꯾¢ºáNÆr,]™,hº¸G-‘7þ#•@EIñ0Rüy}ò©¹ÂšÀ:oä…5= žÄü;öØg‘›ò”x…AÂÃëšk*£ÈvTÚS²ì¸Lí¨Ú²_Ï ƒhíö ‘úøôOâ­Ñ´©­ê³q”]Ý£±Ñ–ªÊ~bû6Ô´®¥ñmÊH…Ñu8Œ¶Ô6Y{-¡4TA÷¨ ‹ƒO´jGî±3txõIXë¢h­–¤‹Äoô˶™·sz³¨¢}ãRÓM:owE¬Å]ó£Þ¶?jªž ÞÐ Ñ%]ÅÈ`£cƒ¸t¨:TKekëÁX¿ˆrÔë—ì%ÿ&ŠÂ~4¥N©fIûZ³*7ÞF1ªêú˜ýìKìÌböafUØ•óä%nÜ…¢ ÁŸÄâëŸDªXï¸âÿÝoôƒû…u¥ÝœdQî+ýÕkj-«æ¡åtùÙZÀz·U§ _h»ü[•®ü*þê]÷‡ÿ¸¥~UÖ*Oµþ¢9zQWTý7ñ«žøè¡úQáÆ;“|g:MQµL<Í"§ãƒøɉ"ß•øêj¡Êëx¢* ,¾z"Y†b©8 ÓG%@õ~"ýƒ‘á?ÚSO¶\í!êF²„pò®ALÛ{¸Ô¼?¹ˆ2RcG çâ°n¨þ#3Ãí̇¨,`9âÁÇ´‰YKç‰CêÓår¢`$Þí˜Ø)ò O2ÝÔL Ól£ x{KN•@s°>2˜œx‡h¨´äF“êˆö_Püa÷u9¾9>')!YEå0ò‡¶îš—èÂ0¶#3õH³àSféePãhûÑ‹Ÿ”ž'qá÷Fy‘<á#´€¿èïZóÏGý ¾~‚úª÷€s*'Q4|va½gð&9é·”Œ›ÏÀþ”͉º9Yg›í½³ÈÙ@ø:-á?SÝu •Î\‰ÿHo¼bþ Ä#åqúˆg8 ªÓLO£§VG:­8„z®ÆÜá;ÔbŸç» Ïè;Ý–-¦8ªý&S]‡Q¿ÛÕ(~Ռ˓ï;;ÄýýJ?qš¨€ÏºE=p#8K¿}ö¯›Á”(Æÿˆÿ çå ú%QÍã(ËLÁcîe7¨"K+‡†ðÏmôöÀ«•€,#¯áù«RãkRÇúƒ{· ½’’ä ¥±ÑƒP&ôC‹¤‹9›,jTÐ;“ø¢ÃÌŸ¯Tîà? âsèd4*K¾’ôAÿ½9ú‰‰éÏ»ãVòøæuªŒÛÓe¢›[t…JŠ%DažzM±-¾åÎôœàrÄQäJzÁ|™/˜½ÄúL(Ymt`rí r¢:è'nE %Ý~ÌŒF=²!ApE>þàþA‹?Ÿ†ºÙ8õ“+*f5û1³*Ï@Ùv€§Í²Ï³ÿ0ÓÚk€j2'Q{öS¶13ŠXµ§äA™þ‘þóK¶œŠæ8Y?lmþãþÁBè_MVck-à?Ž+eYó¶­=U·á?^¢Ñx+,sîÏ\•˜ôôµÈ j ÿ÷ :Ç}´ÚIQ"²|ÎK7ßA•á?’}o;QÈ~CþQPƒ¥ß# ] ew^ÅúÕ#%…:D¼â,îÁ>ŒÂÚ'qx/Æ‹“dG@PÒÒ0Vd/"UÕ=Èå¢ HÂlªÅìÇN¤ ïxò?•Þ:¸ËDqÔñ¤þº¯ý¤ž2+ºöy5coTKgæïþù~õ <­?èËŸäÝX½ ØØ>ÔôZ§o„ýöf§™¨j=HfҌ΅ð"…ÂJcµ&~–< yÇSºn:à#_‚HDþÿñŽä,ww¨Û.ªÛk„é?62…¡;~ðV¾ù”7™1¼›MÞ%*X¯íÕ>‘#õ£Šg2¶~ WC¿@þQSï†ÿ8~‰•ªÄ×ãÈY¢’Y¹éK©wšN×% ‹¼—lâ þÃ…ýnÅs¬Ä^nÖ€_…®½X¬…ÿ¨†½ßÑ¿Øä´ùG+𫵨oì1’£æQ6d™\r°¡oä;-Pßœê¹XõWñ“®Ô'0ˆ\¨›JfD¡·ï$ýiÈ6˜)Œ·°Ñ?ñ›9A/uÊïGÈÊ<³$ê8§ÿ@?Ñ ÿ|4ÇêO±ÉØF?þ­)KÛX)‘ý¥ù‘.µsØÿ Æa&s»Ê =.M½yOb¸”§xŠe¨¬tÆ-²ÔQì/Œ Æu¼Ñ ,ô vð˜X)V+'VˆAŽüc Ê1±"ÕõMDC;E¹Ö¨dO‚åXꯢ€„màs;ØôWôv¢¸4] 7°Þ@bÎ/¢ŒÜL7ð¯ úã?†ã?&òÞg`Ýr(ËϤ~wºñZê—Ô†í·Ÿ°G·_f¶aic·¹ ]År l™eS]e~âÕIÄÚ_ þÿ{©>ÁꦟèÿøOñ«4Ê]e±úTmIÿÇ¥&§ë´m¨ZSJþñH±…èrÌåeÂWXúW ‰ÞÁ ¾@÷˜¢‰aè'®Ó¨éÔlNç7¢5ë%ô‚ÿ°Þ™|à;~¢¦rEÍŒµÏ‚RÕ9¡ë‰µÈM4¼ ÿ1HØä 0–JØ|/NE-zJ'‰ 0§ƒüGCô²‘çÐáﯙ¶†þóR é³à3=±‡~ä–þÕGüI"ÃìðIYw²8á57#ÿȯ{ŠØDOÕ¨ŽÊ­~):ón‹yÛŸ˜÷¿ÿ݆þ”¦e`EU[HÎÝ+¿]ˆ)ð0=‰£¶RÕ„JÖùøŽËúSò«°^OŒ —ÿH ^„ˆm ±[*ü—BöÝ”µoêó@Ìs”£Ë‡º³'ÔAycŸ×Pßtý«¸aìr±²@ëߊJ?b;v`)øfçí³þ®«Þšüã êwUéúIþ± ï—„ûòM” ?•Û¶6Ú1ï=Ë–™»¾Šõ6c]'чЄ)ê\Þðç'ÑÉ…ÏÜÆIZ‹Ÿ; ¡ÿüKðRAŸf¨D/0ÇTä~dAø/êî21*7õ»­@N¢KXžnô%\w*¾åhÉmÙSÖcÒËèPW¬2¯#qIì¤*]oò¬ƒ¨z$5¼¨þIOeÒ|T8’¢”[Žìd:™\c¦\ç9M‘U8;©ÔIN+öU5NÁ6ò¶ÚXÝÎÔ-¤„™ÿQŽùQëá’Ï£çÑ ×…~/îc6îæcÖ›@_L¿®5pZoœ(Ì]ó¿ªÎU0ÍKΤ± 2uéèžEÿy ñæ÷“mÄ5½ðjcáÏwðݧéÿÈ$‰®Ž;øÉ6_ÙÁ«MìTÎnùGY0ÿ.x¡v¨Bõ6«0¿6ÊÈ®0‰°¤ÙŸõUý@¶t¨8êXorFUÉð|x»¼àÏ‚쥛$€Œa¾±‹NôÓä6á|Qƒ¿E¼ßµF_˜ÂæT©×ä^3Eo‡ÿX  6§JÈ-"« 02ƒ}ÍÁk$4ï›ÍndƒµÉâîÀ`dwKn|«"HVûÆ}3h¯ zÃL…à»P›TOJ¿ù^:ëWÏÑöú@ÿÇû6{|{){MôÛ3Ú·Ñ=ŸÕ–"(Yÿ[@åOðF&øGòó¶,!ê¯T¥»’Êé\üºÆˆÿ ⤌e~mC­„ö@©Á*—lÝèþªÎ¢ÿü³íNÄK„øy•wÚÑ´Áê~¨Cÿ`X”d(UÕVhÏU—ßÌ?j`ñGr§»y7GÇÂOVð(îaé­y᪺3ÄvB|¼¬dRGˆ÷à%îÄñ«ô«`MࢧQ5šø«7k¶ Ê?^i‘Ñlé¨mÖ¶‹Zؽ…Ä´°ûWà–3È{DÒ“°Ëßñ¯éN-«/Ç#|6•Xx‘‘øÔÊ£´Xê/¢-–ø –ªKD<åê¶Š³K³òÄ¿û'†¶„}ôÄOzƒ[}hïÒž‡ê«yD¸åVÞ‰³`oʼnØ=ˆ jÀü†7i² ÒL- £³;Ÿ_£QY× ÏôJŸ)_ƒt³äñIA®Žò‡ÀœŠ…éÙ7)K5ú<ÀãVbW/ðgës§JRÇö™Èð<úWß±µxÿçp_7“Íd`~˜ 8`XúWçlÍè? ç´Æ ;|²;UÁÓ±\sÈ>,ýöÜä°Õ§`?ÒÈuä{ˆ n? Òô¿Ô^ì'ÿ­È†t Kx œî–ë¹lJ<ïær푇²=,úV2|”?XÓOºôï„ÖOŒ§¾„ÿhK¹Žüø‡ |IR4ýéLoºRAôÝŒGÿyq8õ‰t½4ƒWðãÚ/™ 'W'8=鑪B5°ÈcMö×|-õ¶3À¯ÜÀ¯<©ßÝCWDKã+ú#µèÿ(M_…о»¸—¨T¸«ÕvZo­(Sp’,ºl‘ Ìn ýƒñgõé?_Kä,¨KZF¾4†Ê[OîèT0Ak>É5›driˆúݯAþ#;™ã#Ε?YxuXýÆj›Z‹‰èkÃdEï¶•9‡Œ¡ºYÆ‚Ÿ†þÌ©ÌÊÓù#~µW9¯>ÑÓrÏÐSƒÿ(JÕÜXFYSPD/c6ÌÇL&Î~‡»xÿ±¹½iÌ]ø†Žä…Áe+¢.ñ§ÃVæji°ó%ˆK¢U­z“ùµ³àS ƒ…Cßͧ!°4‡é‡êz{5£˜ò+x¾Ç¢ gvLÿ1–¹ùˆ¨ÚáQè÷ØmÖ Rà,O ûúwÃGe³÷YóEÝÑÊ?ºá?zâo6qª_ðVÇëþîEþ?ú½Ý¶Ì!æ5¼²5QŠõ"óåÑà?º¨—ñE´»JAN×QôK¨õÐoÿŒÿø=þü‹íµöI´1,bU:hI´¶êE%!,CWm,jXñ#¬iÕYzã5-½•kü©>b¼RY^)¨6ÃßLç-IɵjœüZø+úD8‹Òú`2&Cž“ÿˆ_8b¶{üÆ+F»\®רá³æ4=Å36—Ïö@ÖúFÛÿ±œ¤ªœ©oáúÇr/Î3G¥ž>Åñæß¹Ìÿð=ÈŽfÁä‘ÑänV!§ëŒ9COHª<éS‹Iþqîü8þã9ß·P³ÿE?q¥ZGX³Rª’¯Ü„=øAþcõfßÁrUÅV¢)}­ñ&óÉn¼½?,½jLoZ&†‡ºâ'èïfÅCfÅ'FÅ ŸÄb\“)ŒôÔF¥1;(IT»~!+Ètv[JJæøÂ²W%¢H ŽpZ±½ú™X u10µSTW}×ãÒý1ÍhEN3•úÝ„v/𫆆ú®¥ðXvc¼Á~ð³Ýøz¿Pú%óÁôs™œF£¥«Ó™£²…~{; áñ>ÞL+ ùÇjò†Ô²Y ó©”r]ˆúÝ‹¨ðyàKQuPÌuoX6ã,úW:øÕ",gæf'Kêd.„?¯޵‡«Éó‘FCúÏQ!lo¶*kÔ ¬ÇˆIöÉï(=Æ4êƒ %¶W"  ~W³/&±æGùû©»íIþq–÷oW[\î£*}¶Xåð›ÐOLI H9"¾G¼k±™àמ¿QŽùƒŸÐÓRÑBίrÓØG¤Žþómx¾žzüG%üGI"»ŽS¸Ué ž•7¡5‚v]˜…í>(•ìÁ·å¢Šá³ÝÃ~ݬHÛ ã´¹žû›²›YPöàϯ¤þêïhî¤ÿc?ú%Á•L/lÍ”ßÃ…‚ßÀ8àWÝèÿh¨e×<ƒP°óô–TëSõúÝß›_›G¹¯©Øá>d‰š^KS´‚TÿÔ¦ŠÚè ú«ñÔôNïCð>ÂþÔ[ر[¾¢Ö Õ ôK*)oÕäpÍñ«èdû¡Þû¯†úéC¥Š:‡n’‹Ø:ÄÇè‹H7x¬éAùÇMÎ@n,Ï(ø»‘â?*k[µµT Ü zßED(ˆ¸†€S|!ŽžŽ~øpïø·d8—"¼æzôÖ!~mí ÆºÂ§tÝO¡Þª,xÀi2ݳd`Þ ß„]ËÁŠIµµÔ÷#³:³ø*ÆËNfw›ˆCËR‰´Žýž¥ò*'»?ž¹¥øS ~so]ið«ŽøùA^muŒO–Øû1Xž4z_êwéò?giæZ î×Eõ0™©Ê­ïo4I|JövëZtù661Ÿ~\;Œÿ˜ Æž›»°‰û:šo½%ñþÖq¼¹Áû{hk®í¦Ÿ]%.^H÷Gj¹O9 ÄiÖh]:"Û“pø´Ô_­ÖOò¿‡dI=µDjè™'»ÕÖ¢;÷¹ãyÕgòR?Ðüwð wf€E{ä0üG)ÃÒOÌÎÓº@½èkгºÄ¦ƒC=Sý&в^av’UÃk…:4¾„½:ðèï¾Áyóë|Ë)´«˜ÙnZ¸tNPapÙ²¢‡˜îð›Ñ/É [ƒþ5S&€ B¿}8}±Ð¼êÉÓ8Vp7úýèZñ0SïP\¯ÆÙÍù{.r¡ŽÓËq Ï+£è?¯{ڂȪ >ƒIµâ)×Ð'T ÿ1Ðìa?`¿mV°[ó²NR¹÷Κ>fn*#$qáUñ˜¨ÓB±>ø\ÿ_òƒ?Oè8 _l” Ž_ýÞwGC?q¸šXk«•G¿½«l·5¤z·…ºŠÞ .ªö·Äe~”fÜLâ‡(ÈüêyꯖˆÚræŸgWoŸ¨¸ˆÿh†å&bèE•(ZvÞ„ôd +E|]D¿:£¤GÛè)–í0¾b5ö#‡´ô¯FŠCĸϬð«Ù°ò.âRØçôÓ¦Úvê¯jÃ[uB›ˆz.RSü*õ·i‰\ËÐ%”Œ®ªã ;-â…”a|ÿ>ê¯ðEXޏxŸþ¼9›±e–~bÞÿ²XÛùðÉñ´:<í„Ú<ì{<š'ô1ï8Œâ@Pýn¹–:w,i.”E¯àï»Q—ž.¦Q›S <Œ*ÅLT|y݈àW—¹êÀ˜Æ—ñäÛØñVöÕ´Ï!®ð×ÇÌ?ïÎýŽ-gã5ž‘T!‡)Ïj?`Ò¯i»´OT‰ÀªÍ$«[‹¶XZ”J5|L°ò鯵l¶{èïZóϨK‡G40t7ªÖÊáWMÀë4ò³ ${ÁšÒñçG‰?Ï‘Î`~í‡à¥‚>íP›ŠaAÏÑ„¿w§5>±øU £4ùGM´YË’´¡¿b#ø‘ ¹×ejw_Á D?qlèç‚ÿHN†•ˆø }|‡ð›¨µJhG=<;1nò;ýç%áÏgâáj2‹ï~~§3'ýçÎq;ª÷k%û/oO|#§£ŸX‘JÙtæÅ°Ÿf¾ßÔ÷ 9"k‘,…78@w gàºÖÔi‡kEqôKŽÑWT‚|M¿ZJ7¼«½ë`.žÐ?xÈHGOz*s?¹Â üònøÃðéåÑÂqoÙ+[Èq‹Ê\ïEìj3ªŠ¯Ã©è?­ ¤ “pó OØ•^l/£1} žxÁѬö“{Užƒôq¬·¤á1ÏÎÁAiÍŠK³‰ë+ ÙzÃS}ð€)è*“/£„Õ…ŠNDea:ëÑÝ5ÂñîíC7%5„•Éá/ñ¬$<¦½Júp£³’ì/}ìwÈšÚ™QyK.W^OSUøÜ"IJCþÃKùS- ó–5"/wÑcší+èYŽN’L7©ißI?N; )ðç;ènÌC•p^pKÿê–xËipWü¿ûàoK¯Gò_l]”ˆ½ÃÛ›‹¨ŒVh´jÚE¥*§ë0øÕDµ¡:D½G>¼¿æÏS+ûµÏ¢-hCvø_WzãSťйp!óè?/§º:ß0 ñÃ|ÂË~’>‹£ð¢î(¢×Sbi ÈìUu›kâÁ_0ˆ=ÄÇJ"µ¸ÉsÛAž1‹3™œ3aêÓÅ TΙŸãÐÒE¤‘陬Cþ±„ú«›Øå©x%þ£7ÙÃC}ú7ð#y˜Û””Èd…xá5×Ušâqψ˜tý•¢s.lÌ;Ñ+çK×ß32ø(ðÅôàñŸÐ¥lÁŠ?ÔiØæVøwêÞ‹1`ßà2Øœ™Ø‰Äð·¹æó°Øñ0 ¨Té®~I!¥‚Z‘ˆ}ߟš¿1Å« ^é+6›ºº@*ÃãÅ#}•^GÎ4«R´Öd»\¤Äܹ‹%¼ ¯åûQƒŠ¨øï—Ú}ø`ñU¨ß?Ž/š‰‡:MÅp2Ëóß?0ПîÈOúH²€2T[mç).×KƒÚ Årî’ßèlðÆÆŸ„ŸM ÿ9—5‡â'’Äÿ‹v§Ú™\­šž…,áHÌc¢–³ÄúßemtKUAÞkWè,k¬iLNr’;úô¬0úýB]qUÅjŸ‚M=¡Úûê‡~{ã±<‚Ê^A¬×Góµ^uÑ43•ìj<šUÓà?’éYTgD¬þ£9>ú1 Ãz,y|ºø¦PñSÞ¥pɱÉ?.’ØàÀ»Öäƒ xÈ}˜¢”E.š9íp5E‰LŽÒ±Ñ ¨GrÜq7þfsæXó~ôdÕr5ÈAu kÁЙ–ùµÁúWmë•£àMn¼Ù9ÿÄå²1wêa›é·WYHÍ\–TJaFCóÏf¾H3*ñì.¡¿¬F»E¹¬²Þirè2&Æ™™x‘’Lñ2ÍU¨Õ/¤ûò;õ]—èr3ÎÁÖÜ3éÓ±W7Ê‘Ñ0€š©ìxÚaŽSxý]K¿½1ƘËüô›/ãJWã}ò±¯Áf;ûj»§Y›>þéì{/ÙQQXÿ\r±õRpí¨œH×=ßÿW?ñ¿ îî}aë©D¤hÞNå4þ‹DýÕ¥§k›­:v¾š:åCUñï/†ùóï¶ËÚ}Ñœ7&ù^T훚B½§Ü#ÏË~µNÍ º8ß0 ñÃÔd ÐmϬ‰ÿø,r)ïÕxp÷´WÚHq^œ‰¤þî=å›ÒYÜâÝ[ 73Ÿ9³lÆ6Qì…÷>AT’;6šùµ™Ed0»ÖÌš'ÐfÂ.¯Ð­¾Û; …àcÊá¨XYþ㾈Å}X/â:ÎpˆKsú˜@iîv‹hDᱜ®à©Ï¹{õ¥X kZ…!ýðš+Èt¢ë.šU'÷wÿ\W‡‚Nµ‡ÕY…W»,fq÷Fë¹QÈûI®£^ìâ~oOË ýÝð²®²JU5=ÿ$²¢ŒüÿWPÃ6T½_¿º~5žºYhØ[*x­îþ‰ddÛ±ù-µDaìr?K‰íMŸpô=/u££˜bñœß)ŒæádHñukð~ãe:}\Cùø£Ü—ã0<Àº0^ôä§&ØêŸŽŽ½ºeÖ"Ÿif´–îó”ø…ìq>§.CuÈϹJo,ta²¨úK¹Kߢ‰Æ|ì^jâòkÔœE£*+•¹Z„‰<›Õ°9ÛøæŒòXˆúÝ϶%ÊNòäjò&»³*Rê‘i=6À-E±¿Y õÉL°ü˜ãЯªÈtª‹øø¬õžL)˜bL5ÁÊ!õoƒ7QÉaê¯ Â’´Båë:‡;Ps܈òÕ4ºíãQƒ{Á¸Dÿy£¶yºŽT¯—;õ†L( î?ŸÇÉû޽/Å;ñ¤I¡ff¸”žàW©È´:‚†=âs fÙzÓݸ×|$?29±¼Þkb Iý‰Ò¯#s…ùçSÉ?FÐo öT1ÓÿQ”)c[Ñ/¹Iurú/š-á‘:WѬßb¤d‡Å™ÿˆÿx ¬ŠòlÿHýÕ%[VE8ΪTþÇý1”Ê\ôw;jùµsAó0ÿ£ùÇ@õ.ýƒáY•_wÑù¿B9Ìü¨®ÔÀ¤õ̬٘_û@yþU)m¶æšâïáWñÄ{¢Ò‹¢:g¨ üù3‘þ#7ÖDˆ¨b(“Toª/œ·ίî*Ÿ”îÂG߉©6{†»µžë~ [x‘·²yho‘”ü#¼J¤K7ÓjÛDy*)Gù —܉M¦ HÿQT¿Iß[I¼_üýGbê¯  X|ÜÊ?2'½‡ÿXK|ÎÔ@¼^|¸†:ä9s©g¯Õw<û{ þ|^ÆÑŠpÞᘇ ›NWÄ:li%¢æù¼Çà€¢Ñ¯r˜ ¯µh¬„—u•„9ŠË7‚=%Wû‘þóÞ YŸ©y:ËN§`¥bÈSàW6lÔl²1KuåŒè&¾T™¯õä»_ÁË4cûñ…ñ ߉ò:3ÕÅ_ûžÑÛ¸ æaO* Ïÿ«(«—q¼¹Á×égk¨¦~÷•>¬?9Æ6°Ó±`“«°‡ó@•’à?vÁQ¬ã¹d$ÿXÆîz‘lÔÛi±ÔÐ=“ÑØB_|êJ7cYßs.˜ÛJÔšþOæ:œ£sp+þ£ù‡UsZŒŠ„ö¨÷Dáo ,RðÞ¬Oï”×h4­›*õLÅ\,³›à»pY¨þykJãõS±ŒåXûR¬åçë'sñ¤]ÕÉN+vkÏ]¹†…žEŽF³1þ¼ ý#[àÒÛ}é̇µÍ9CþÔq×ίSލ6x°“`;ä¶7ìj9ùF%ò—ÔèVE·ÏÂâ§Dÿêú ëͦä‡^°p¸Úšä5ÅàýçÖɋΟ ÿaÒo÷åë ~U”ð´°QÍf|>Ræe3±!éÿ(¦ü“\9ì§Þæ×û*=´ø£~D¸ÉyV¯jLüÍ~É®òuË£ì«È[ØW3?ê{LÄ}èGþ1šüuè_éè7gûGøÓ¶ ŠÝq²¥ÇÜÿC9«¬P?©½´ôàW•Ys­Úþ££z“üãâ¯Û©ÿ*ÊYí)¸K;re.µDšøU4pÈjôkûªiÔß«3NKBW°šDUàA¾ŠtÊ]5ÇEĵf?‰ë™áöFï(?”>âx)hɬkY4tš8G4|w·Æ'íŪ¹“K¤`­oT²5q¼¹Á«´•ÕΊ?ñ\c±CÀ¬ù瓱_ ¨Nšƒ¥+F¼|¾w½L ³ÈUÜExÕý vÉ?n/ôiŠÚ•\­:ug@VÁ< ¦âÛšÚ¶Fq*û‹ƒÀä!óhÅ.:ßÒáç6bSPƒ•DŸ)ú„ºbE  Â³ Þ*_ä.øåCtnG¥ç*Œ@vT8èøƒóhÆÔ"ôPÊÒÙíI}ì Yž‘Që´â`õ¹ßVâšta´Æþ$@d¹Q—œf;HQíˆ|Ýè4BqœÝ¹ÊÙÒ ŸpU•Qmèî´ÞDÑ „˪¢.?ŠN•Úc']«±Ô™ìØßS”Ñw°ßiÔÆÂcN ¸›»¹?E\ò¼h븃Ïm«•#0í8¯%‰,†‚ûUF··ýòÍÆDüÅuXs*œVÒÿÑÚlk^Ç· ‹ct#º¬ 1?jƒâ¥~ïã4—¢~éâ¦Äæ„;ZF&²Æ"ž=6ú‰çÑ>ìC®³In6m1Côp¼{Û”…Z,t ð¾ÿ`6È{ý3úìÕY'/î × Î#Õa/Á¯º›ï™?(ìŒ|äTܻϢ>W<ÿü1õWãA (ZÊ ŒdeÑó¤·%Ž}¸Ù×~ ÿÑÎN‡‰ñ”““„­›™Mv¤#k>øÕ{âÌœb›ãþï>ì±¥ ÑÿžÖé\D~'ºrJ™‡ÿh©eÔüWVÙgk¦VU»3ý%õ»~‘_Š?S¹„~{zÕŠ‚þçÓbj-Ñl#¦PÍ9˜ùƒŸƒ¾!òKæÏ©®ö%úä4 É÷L LþQH'ýsà?~F²þêŒC)>ÏoÃ^-Ånå–µ©æ%΀åß î*òˆ$!f0‡¿ÓÆè±l%/ºAEë¬Ò7béAº+½·åd°±"ó·Ô •¦kÞpœáðÖËKýU ®/Ae"ïÔœG®z¯Tƒxî0ü‡ûÛH|ŸJOªEÔÅ[M~Ðëçµ<'Æ‘s-ÕkÁ"/àýÏ-·Â³;²SsÃÔiúÏG(^álÎU©¬§>`Þ#þëú‰Ý°þ–æí}¼îz¢ÒTò à vh?ù;¾é;ŠgaùYÊj­Y }ˆÛnã¹kƒ(”e·šl¯â”ÅØ §Z“ZÉ•XÊÑpöoEÐÀraø‹67íþƒžØ€ÌðœëÈ´‘³Í‡•—PfvùÇir…¬d'«‚P±½ 6µTê½P×¼Nm)&ã2ƒ"ù‚Ö|$®8Í}{/[2Oc9ú%GÀbö£rÞÚØ#;à7+bK‡‘Y ™èìê-4Õg`¯ÍÉ:–ÀB¨ÆI,_jmãPÃu-ØÄ¼wÍ/òø••äe½8åcð yÁ›¨³VìKÿGC}g­2±@=8ƒøÆø«Ób.ÈP2ûâæøöFê¯JS!¶ït_ºŸ¸éQ¨ÈcŽh Þ´z‡Š f_ôcr+üÇx•4ôwSô þc xÛ(C.ògpÕëȹü¨ÍÍ&=DSÇ|k›©À"6–`· ¹t4¡ZüžùƒÑ™ ¸Žùºà)Êã?ššã»ð"µñH{¹s;et£™»?õógë­Q|Ôèìߟ'vAF¥ŽDð ¦1/¥þ#-ùÇS‹›Ô D3Ïàåê*8åîp3»ˆà‹aìf56›±:‰8—Á6J'íÒ—+‰~IxOÚU)­–ÄßLd&qfVù*‰þtݾÑ'ifÂr—Cßú(ß÷•ýî%ºóÕ{.Ú„Ù?8ž*ünd†œAåîþlwöV‚¿û™û§ -|½;UA‹‰¶‚_¥ KÂÓï†ÿ8b«EÿÇîþ,l[VúP6_-‡e˜¢ÞÛYÿáMrˆþW²“ |÷\¾‹¹õZbõS¨#³Hm!¦À£ãðlÆSìËËbÓ;£¸™G÷,Ʊ ú«Ã C à>ÎÁ ¨ÆbY,tHèÓ­~™ñã™°hïYåLúfŸ¸0Ô—©æÊFýÊ|ÃïÔbFÓžL´Püøw‰¬#–W]â´búÙÛcOO“yÈðNéð›qô.cxZûAxß^ô"ö¤Šê¨Za¬sb”wIfœë‰D[§õ‰àWÈôòRñõI?ªÊF¸Š}ÌŠBì\ˆÚÛ3L ŒÁLÛ´àWc¨®Ëýô¥¢¹8ú%>!ò¶AÊ:Îi9ù‚¬¥(½Suíæ ªcë£ß>»ÿÈ(L•skAˆú1ð.YÙxr™ÔF|ñY2¸“Ž'²WÙ¡F¥£òÙýAù ô(%½KÌ öªTQ¿B‰÷//È?bá?Nš¾æd|À½AÔ¯Õç\׋D/Ç»·L©eE½=ŸUy|Nÿi´±§ç¼4×¹‹:±’æUH½†ÿ®§ þ;እѮ K‘²h -V“.’(b´h¦MÒ©iÕŽ]‡¿Jðï$@Cî‹NúypŽÝä.Ê5Ùd%xŠiâ–x®¾ þãóÉO‰Nÿà"y«Ãl V! õWq¨§8Ê7\ã äÃÖO„ÿˆ'"ƒÙµ×Vj›È´¾íîÂ|%&lÌIÓàTêéÁ±jñ&–õég8¼ V‚ÿ(ÆüÚ$ 'MäRª×rR£Ñ6Ú“þó—ÄõqåiVô!Iªç¥Bñ×U©ëˆÃz“ ÖLr…ÕÈ Ka™7á?òK«_þ4¹M*:Ç/aoûˆÊÑ¿.ô“´Ì,Ïu.ÀÃÔë&~± ÈØ]ê¯nó6Î%‰ZpƒÊüÝ.þÿ>œK¥0ýÇôKúã7Òƒ·åžá®ǃ|Ħ·Ò¿kçµ·XØ^²¤\ÏZǰõ)ñEñð5onðF7ÛJ 5Š÷p>9‹Õõ¿.ewqšìâfÕµ¿; B1ÈOÜñI~¬û¿¿K‹÷—Ù•cÕ>š_[†üã5ø”!‡êw裶ôsaYKÒ[–›é|]éÎ[G†Žä&ßý™¤$óëCÏÿHÀ¼Ù¢<‡âØï¼Æ'yüj¿Ì VåAÿyI“Ø{¾¢ùÇj¸©ªÔzݤ_å(ê:õœêR§÷eˆú…wá¹^#¬x;üv&c&l§È\Ôï7“ñ½ …ªNÆ<`.˜œ tÌ𤋮¨ÇU5ETÍ<Î;Q;fÃî&ÿFåo=¸O:Ä£‚Ý3à¥\Ík`u“AÍüàû%ú(9ä>ÑÓñ0~Ø& ßž‘ß·tNræêrמ“䦋b-øšågg²æ?='ÂïÌŠw@ýØáh²âsX绎õ¶*kU)3I/}¾VÆfµ8ìb9VO*Ânâ/¡«ô£§&c¸J¾ÐLl?gaϽ*¸WIôKÆ;Þ½•ÊX-ùG&Nò#fEêò¶‘Ú^ÁœG–+ÕQíØßj±þ0?€áÕd²a}ô‡ÃŸKr£æøÂp*3§ðÒZ›~5ƒ÷Ò-øb4Æ{WÂt¸ÜæêF0¿ö¹Yÿ1ÎHn¿hÄf¢ˆ5ÿ£39ü2êw_cƒò‡@ì—þþá ùGÇÉR”FÊïÍe Þ`4åùG­½Vèßþ㤭¾ZKm£ö¡~7†r=øFâSåv‰¸y‘M/ %Ö¨šúýÄÄëÏÔ„jÇ®#±œ­,>z'Ú’a7Ñ׊‹ðçOÕäàW-Dz± òå/54a¯ëÃüÚžBÃZîrÇÆå•µáZˆÍ <—ˆ§ËÀøQQ/kÅÆè·oåJ_a±öbç5ù L'ˆN|údz_U&RÏM®sL¤pœá°V²~æ¦ô%ç8 \ˆT݈¡3¡?ù KáËÊ•Á…½éa:„8†­§çÒFpߪ“É:‚!çmÑÁ¢Ý‚øómôÔ5_Ⱦ}©MGÔwëo f…;¿6óÏë€7ÍĤ‡[ˆƒÞ’Zº‰4óé=e âôC¬x—^k2Ó ª©î‘}†…_MUVj]aS’ÓÞôêÈ@%,Û[|J}]·µ'T‰uÀšÌâ)YsʳR‰aMM V ¾‹»l9µÂÒo_LerQiJ¼Òr=5v® «¬3ïNîa)ðºì$û<Ã]üÀ¿{4›z#x© Oãè?_Q€¸ø ó ~òýƒàϳç7ÁO Q‡î¼ø¬å¬U•Ãð–K%Ô´ÒÏØãK¢“9Å!/y´¨ ‚úÝRäv³­Ø¿îdX]Œö}¨Ñþ þê0õWSa¬÷ãcÖpÕ'a½_[¸Êý!ê¯.Úú*kðµÁ¯Rpª²ÇJÆüGVªZWÂ*›1³¼'üÇ[c:&ûðÓƒñ–éNœÊ ú\'üjŠú‰÷áÉA_¯?ʘi¦°÷‚Ñ¿b¬còÖZêdcRåO–tо—º¦'‘Ñ@ª'ªáwêŠî!ð«5Ì+Ë»PŒ7VAù1PIŽUüc Ïá)Œ‡+³ àM^¡Ô?ŒÕ»ÁôB¿$çª>,bòö™ÿ±Oi…~b ìS30M?k4´ï¢Ãc7–uy -Í.̼lÖƒ¯™n¼A¹ sG˜ié?OŽpKÜ% ÏøðçGmiBÌÞ|Éü”Nç"äùûÏ?lû•ñð-´2è_Ug•¶Ì?o ŽUß+O~s~Ô›?ùÇät…¸£Ù´/jqõ ÇE[m Ó@^)9~kŸ¹ÄOâç#¢Qcu˜è¨º¦lW“qÊ1éi>õ¼1µ‡ÿþÝëÊe°Hˆÿ€+„‡¶¦:4 –®ÿèíÿ1PïKþ‘B܋Ċ婘#jíXë;t:¹ˆŸsáE~Rsš—ȵ¸}n¬ã!+Bÿ‘B€…\$$–¯þ'*Èz;`LÖüA?lrrüG7Þóõp#¹5«Oçïþ¹Mÿ‡:Á®øYøßÑ Dcõ¬`õk±(Yåt®Ø‡{›q|`¦Xnÿy%—Z xŠž˜÷d™úQÛÿX_H•Y:XJð^DôÑà¼Ïq--Å÷¢®VOÒeÖž˜>™œÍ{÷ž|°#O³(ùÛc*$žQˆíì-KË9øÎ=ÜKWk’%O?9¾ò­AùÇô±ÌÀ3æʃjêË@fƒ[ ÛÊN>w‰/2=*ùÇ<°Ÿ½Ôc~Ò·héþŸÏUÝÄTjsƒ^½ ¾Í™ðÇ›Ð_Î<¿m°¿w™ ¡”_8÷5©ø:ÆŠùñ ?õrþ£/»kv³|í»ñÁôƒÿ ‚¦[c÷¹3ý˜¾ØýÜÔïž½üÐÖ ü*!þãùß%˜«²8ÓDº\ê1|(:éoYÅ¥qÍè~µõ—¾<ïxFG™ ß?%„þÕf梢â ×èKõS2èkj£"ý)ímÐñ= 7ñŒŠe®9 }‰W©ßmAÿ ‡ž&l ÷ñˆ^Šú«¡Žwoý~&‘A0Ì8r–¸ÿ¡ÙéÚà$cºÓjê‰ã1'иƒ•ÚQ‡àÉä'K¿ý;øöш7s©ÃP:icD!Ðï:`?Äe£ lG:#¯á)üÍqfw»§=þóŽôŸ¿¢ :…ù@Ž5kÀŸÇ™õþ¼U¹þ‘þsè'jŽ“Eiöϯ5•ëÊŸê[üG>í„’—5÷ØÜP/iJúc%j¸]Žcãô!‰rEû@?W/pÛ"ýçù‚ú‡‹Úpí²šH-ïØµÓ_ ç¥Å7òàS0*ÛxJÛè÷È£œR‹aqJŠòd§7˜åZƒ;ì¥. ßÞ[ü ö^ß®Ë^‹í4ˆã;ƒ[ÂÝàÄ="b~»Vƒ9ë¯\Tw<Íz:ƒ€Žbåìy4YÝ~³[“â¤=`ÅÝØúF&Ý~NÿéWùG4Ù‡‹£¨Ë^‹áÄÀ“±ÇÀQjéÌ"Ú?•ÿUÒ<‰»˜øËü£€šü*ŠtIŠÆ»gÒ™ËÍèw1»ÌiÌsI ½È?48þ]x„ ø–ô¿ ®P ¾ÖQèw§²k1±Á mU@>ÔaOÈ—úW蟨˜~ì=Ekžh)^번½op¾¹Á«ÍWŠ£×h‡¯œ bU‚þ[A£‡ã?æà7cÕ3Ã!ÛÑòUê?rc‹Gx^~x«àWWƒ— ú4Z+$ÆáϨ_ÏÀ‡SìMÆ<ð ðçölÓæ}øºæZÙû]…ÞîÀ°fÈBÆ"Ñ3Ìs9©¾‰émŽî\–™Ì<nvØþÞ•ìä¦Ó|AEI s þ£ùÇ)¼Í*Y€<¨¢¶+ÔŠ-´@Ñ™ýÝFô³Kþň¤ßíAþ1f:ºã!ˆÎc“4•+Aª3àwì>+KÑïÇŽ:àîâGÖ‰ #Âþ»ª>l¨~|)WõD±¿§Ç渣hM@‡yqº„ÿˆÏê#È?F«Þá]—þ¼¹E_¸ÇLä&¾Áî¬E9*ÍL‘r……?ƒx…]Þš·ÿp_äÒƒºà¥W¨§àÏïq?³ðiØ¿øJ¼õ_áÌŽè;õ{غ¶äcÁ½×rI¨Ô‡‡ ¯ûU¥…îC¼ ¼g~ÑwÔþüô»cÈ ’¡º‚½;ާ´YÝõä4ž6?cÌÐãhak&§iåÅÎAyŸïj~Õ›'[?¹Ñÿjý1¼ð·¨k(ozbyíi/ðøªüôÂæI[Ú;øóîÄëð1.æ1öñ2z¨´ænøó?­ÔØó?^1ÿü>¯(ì×¼ü]( ÞS‹ƒGÛÏY«I^Ñ ¼.1‘ý³ Õ“èŸ(È?4Gì+ô»ÛÉ ÿ„ù°»mM÷1~èuC]á2‘>Ì—«ìÅjäkà?®‘9Že :*õñè?ˆÞ…Gñd=ÇÉænÀF$’«BÌÿx¦ôV·p§Å`Z à­`uLØŽÔÖPª"ZXÕmô)±(eÑ_µ¡ïZT̓ɊM³õ[P³?‘•êbígÖoé%¡ìÊmöÇ«Äó˨Ðð¤ó˺iÅr$ ãYî¾+õƒˆ]p•ù¾èvæ8óUjo=!•Y9¯™ÊóȈJ•Fa4\Q`ÝDÜ”ž(åÀ¯Þ²ý¨rìl~“¯"¦ ŽøKT@èÂ4Ò;‰¢ÄgÕèIçbV¦ÿ»e³¼Èe;ö8þ²RÓc«©ù[f+½9Ϊ Û_͇ÿ¸†Ž8õ%ÿ¸NýyðÛ©ª½ÔÜ¡ÎEðûÑ'øóÉZr½»^]¿ Ö`•]Jkº—ôÔ¦jÏÐ_íˆhPÿþA9¥ßDÕÚŸÜû¢0ô@-š¶[½®w¥ÿîjý–M³^‘ÿ•KØóÅOÑ/܃¸a™x!*©ûµ Ø×XØùIâ;üÇ×H-ç£&׺‰7Ä2û°ES9“é`(^3ÙjyÃIlFNp‹™¨wSG*ÿ¨I§Ø=¢!oòB|Ñ<ð—›DÒñà?L¬s\ÞŸ¢è†J`óÏG‚ÿpU{²c»…/Ñü* ú«›¢9–p5½œNPœڳØçµœ½âW÷´ÔVôÃ3lBðP æj¦³ÆR:àå¤SÝ ²Û+ÇfœÂ³t+Ôƒ¿ØÇ¬j)­½­&‘ ¤£:ЀïVw—Îíþ¼}°z Ï-¬ò~Þ°ÆÛÌ^¬ô üj“>ž×ð•ð`§ð"uPU¾‡S¯b¬Ò‡è—`-º‡Ûó½øyÑÈ?4¾¢¿óÍ ¾Ð½Juò~ÜÍTò¼\Ç2Tt3@œæ‘õ‚1¨¨¸~ÿ‘[nÂwøp.±“3ôä?åó´Zb2ž¼ û]¢÷pN>p wè’Éô…ÿð5 нT·€³ÛÓöîá?^Óÿª¬±CLsºß“üI Á\D©¢°:gë ¨ÕÈJmÆ bé¬Ö,zæºß§3ßâ‹Èêh¹ÎáW•Ñ4ÐF‡Z±³æBT`÷7.kО,.¨¯VšÍd)*#V²Ö rQæ#úWµ ÿ¨~uF~/ÙÅEòªä"tçÍ…"ûäG4œB‡ó›ÒÉ<μ{þy&*6ƒíÄ`JUbË¥{Q&âN·êÊ®|55Ëâ.w—?ã|®ÿú¬äV8O–†ÿ0ú½Ÿ¨*1ÞÌpüÇ!¥<ýK¨°‡…Y ~%ñÕñtUPóV Ã_ûtýU °,opÐãØ‹ góôLZØÓ=C+.‚gffJ‡?Êß'ìØÎuêÃSÓ—¢ õÑÅV¤É þ=6Ñ»?>9š9 5ßΟæõSäuvùÏ0úÝI¢0xÓ>Î!Ù5Àcæ®ÂJ_” Àn¦à?’‡<0?È^tߨɮN­É?u7]å£üÇð+/#%;rüï>oS}»«lGRüÇ$&2U°Ž3pe ó?Ê£rõ@EÖ‹g“˜;È@œ´0„öq­:üêO¹‘çuþ¼,ŒË,sTøó-ÌŸZÓ3(?š#.õ„ÑNu6›¡ßUÈ:·É²¨Ë÷óká?bÒ׺„1ÿá)^ͤŽ\ÌNfäoæ÷%VyÖüÊ øvø”&fê?ò;Ťç¥ÈAN| ªõÁåóÂ1¶1ãA4«ÃÇ*ŠR9€*Éã<ÙŒŽ½äYÀÛÚÑ¿d3Õ§¹Ì™àWÁ»vÑ":|]±åWFáÿãߟS↨Œ¢výM^!øÒLõ¦:B‹÷(n÷Oô¿ªÈôñZ=UU¼BÈOºzRÿ(ܱ.ʼnRá?²j'éŸØœúóiú^-ŽìõB~߯>7¥ãHt­õɰkÚ1ƒ(­&Ñm¼ÜDg»Tçz³ÔÝš ü‡/1Ée™žŒ+âdð¾šÖ"ó©yåÚ<Ô\ïè»`PÇQÿ±-Ewr³Šò<úÝib°óÝ›¥Ž!ÿHÿXImÔñɸg¥I7«:†tä/ëafj¢së†/Áû9º“Ø]J3· /ç}‘ózQ>PdiMŒ“ÎpÀw¬·òâã.0å=ºc·9\Š£ LÊqj‹XiP¡e ª%Y 7±p¤¦Õ97åéÃc%YÿñåuæPç,ò?æƒrKmƒ~·‘^DßÄŸŸ¦~°œ–‡ùç¯Tð¨È/ÅW~‡?)ðçÂÊÄb~mí=3mGŠÊðçG4‡–ú·®³…ø sþã<çq9ür2õ›VKŸDD¡~Ð2d$çøÐÿª gæ«4XÎyjºêS ב<¶ö¬ÄÁ·ErlÓ»#¼çlêX¾~}ž¾§/&RLMƒŽDß[ê ([á%Obe=íŸd¼ŽpŠümšñ6´¿ø•­ß€Fó(Hcb:OâðC¨Ÿ2Ánâ늗¿¹¡yFõ-?¾a0JÔXd3"±®d3Ÿðôö0ì‰B?@Ø^áŽãM—°#ÞäŒÃůæ©'ô\Õc¢QŠk8ÂWO¢SCÒÉø ûꆹXÂêOán×óvºÐ?ñÈM•Ð×eÿÉWi«ßÆÏ~0FR5V”n‰+ŒŠxÝjàý]@þ_‘uÔBuž7&÷íÖn;²‚ël¨gÐÂj/FkÄ`ÎB*<­/ë}†õ9 šƒ™®E`–ËÓ÷Oøí T£ïÅN% åjxt_éºò§þ‰þàW9ð‹9øª[h–.²çàÏs˜ÇäEºìe‚]¾ÊüÚ³ÌÒÈ?RR÷r‡ÑŸT [—X›êìÔ×^‰Ö¨*ÎmÂR+x®ñ õ-èÉè‰ú4õjçÁ\n“?tág”¢£ïZvavÿþãÞ2Ôz“É?êóã&±Ú[9Ÿ½¡`sÕ‚æG¥‡?ÿÂ=_"ŸÉ`훇.a£ýK2É¢¡ó¡|Sz‘ä@õÌõ;]Ÿª”{ø×LKYÃ|æðÜ©©x@¥ø.s$}°F 5L¶õoŸ îj¶Žb¦«{´¯AüÇã©Ì‚7ʃ°œúóäqà*ókW[Vlë:]=àªX«ŒÄDHóɲ/3ÿc˜àôêt=§©$ïPryJ$‘Í:ŽŽðäe¨P $3¸‡’Ý­ ½ªZá?þÀ47 ‰Y2Ñ`0ä%ÎSx,ˆ?¯L$5ïÍÈO½ùhê—˜G¨%YÅ<öÁŽåŽDŽtŽqäç™Ý[’êô‘VfÙ ÜÜ|ú<º¼²b“sÿ½—•XÔöýýó¾+nj2çŸþþÛÈýþCy 6Ð\`? 邿ì¦ÿn&Øö§óú[åPä–ù¿_õYÙ©ÛÝ‘š²£Gá¶ß2ñü¦zGï.\õqú!ô»¿×?1¯xˆUÙ°…(ÕC|BøCË%õÓ¿êcñ'BFLÿÓ¥îe~m}@â.*õ&ÛfASñ^´â)¶'n.¤Óï/R€DÆg– ~p¨†u™ _¼üê6v8 Vð/ÞœÔØüÔ$…­[+~DølþP‡’©¬ +—ëÈ]2áI¯§3Ñ9l|òñ|üœ±(cãê%#Xñ¢æ£Ð ?é{ûAŒ¿ÉU-CçZ«g+¤.ãCóHÌ¡Hq·_ö/I¥fÓÒ€ ŒÃžÅÃ×Jv­%>â½±†Èµ²1”$&Èu8 +hK'Àl‡³ª¦+á\åhuƒÞ§ù™ü£$¸‰ÝUãOží7j÷ÇQÄ&Ý…ÊîF²Œ\BܹˆJ¢Ìøa ÿWÓùæ?ç]Ôœ/}kŒ'~ΠDZ 4ûµ»´ ä*_âÞt'×˜Ž«\ÆC`‘Ö]õ„?ÍÿX¨Õ}ácRƒÑxàÍ< KôŽ~„¥éjQš:|æIê?*¡ßµó.W¾®V°ƒ,€mæŽðé9iP¾21Jò‰È5¨Á3Óc­zXŸ¬Øæ3&õ% ÿÈMÝË=²tõ(K –S›jÅ–ÚwÔfÛ©Ó,„l†ßN>Ý,I6°õPbÇSúi ‡áïÂü¨xÀ °3 +‹åÖû¢Ûâ‚ eɲNUUÃDÇLéî†ÿhOÿ«µø·÷æfžÔ?|V®ªÀ¯è5õ3j}VÙ­T¡þ¼š6åm€r'ÂB~A u‡þPô`G3á?îjþZí8=S °L?HÿÝ,¿u®â¨ø1Q–hµÚ‡s¢¦ªëY±ö¾ú;}"s…îjÁ}ÀB^IØÏûá?:‰;x»Ø¼9ø‘tÄ4þ¢·8ýþã1xZUâèËd}x;?ÕÃúwª‚oDÈ=½Á:Œ¶«­“QÛwÝÌ>˜ºé(ä à?Æ`íó¡lòä?v•4½º£Öpø¦d£çÉR7c©ãRy2™ÚðVÄæ³ˆÍ8>ÐÑcùŒ­ßÝÈjñ@öžp#É2²oÂÌœ+*Êšø­F9ð?Øì¹Xú6&½}ͨŽMèþ2Ciz¬‘è¯ö¢ G´°øêé£Éí¢³óÑ^§~p=8n3X±âÄ<ƒñqšv]÷fnM£¿Tnë÷P1þ¢1ýx=ÉûÁv¿'‡Õ@‡z†˜?¸ü*Šl[Å}AÚ}Ö²Áá§ã½w©™ŠçíË=³âÀðûƒ&£Wüy2õöè&ŠÊFK&Ìõsú¹ÌŒÆ ÎÇ©z޼ùG)G |PžÃ}¥+àaÒwD€³å¢$µ/ð­y>¹Ýëô^j{}¨(ŽõhK^žÁ(auLµÒ¢¿º –8šlkókc9R8ÑÑò'纻BVü‡à ¹&-¦ý¯Ìÿ¸FýG°îÈTûÿãþ‰ºzG­¯i°Uô£Aók*•µ|ôoŸ¦Ý¦Çï1çùˆÌ‡Ê6ýrKxÕÌ&?«}T÷¨ûôÖ áã™ÿ‘B o¦Ð¯W. žCu†(>’}¤ó¿iùˆ¤¾êéŸþA¼‰dÿÄj,­x‰}óÆb-‡WÈ*Ë1w,ü¹˜xÖoŒÿH!ôgø×WVN_¢/¥ðC³°F °ïv'Žtò+H–;~ä|¼Ý= þãE„þ#‡:kêEœýÃhAýaF*½¯¡cƒw*@æ±Î n9ï±kÓ =_+^Ǽƌ2VaOñ’ìX/» kR«³kïû‰:ù½Ø·ò¢­zà7û‡šFËF~ÐEr"ð¤¯â™Ñ,¾A^Ô.…ÈïÁ ?#Vw'CñÀß± /ÿ˜­nÒ'á_ƒ„U$ÿ¸Nt^Ž•?Á —4V£ãx>Òøq,^Ý v2ýÿÙPóÿ|G•&úÑ ÿá^U…v9÷;Ãh ÷Ñ®w) FUüÇi0ö`Cûyò‹ÉÖ‚ –ÓÓia‘J­¥˜À“0ÈY6ÂÜ¿:ˆm}LýC3âÊ"ôIÊrU üj=þ#vj9ð,\v& ó\N©_DÉP.íA+u,Ä>[[ºƒ)%Qª/s&^0ÖÅK ]E´MˉŸ'À§d0ŠkãC­Ø\‹B>¾SWÙŽH?9ÕãÍÚ2ùÇrz›¿f~T'ø‹¶Ô«ƒÊŒªë\ûPìiV¦æÔ µÞ øjÄ'ÞD-v·¯ûàW èµ^Ö»™Ì¤&Ëún­4¯â?¢2m¶ ç§9žk)9RB3–\¢þã&Q¬­ó¨ÎÙ/ƒio´ÂS¾ÆO<§Z ú«RÔ碲®3ªX?zœ×²VàÛú°Ó?Xõ;ïäXñÜù½ÔZ22{zÚy™oTq1^£œ5º’ÉÌþpÃâ¿$_ð1ï‚;Uãgm R x€_€ÿ˜%Æ:ýÇbu–îB T€§ÿƒI‡_ŒbÔ[æ%*a¥ ¯œa$‡ÉI•ü[|@5üJQêk™ÀeßqΈ"øÿ`þcÚ\¾ï˜±ç[ñÁô§~° ûçkî¥7‹›Õß±Ú…úÚTîä+óûËUvG¿–SýØH$SˆÃÎ;þ÷>ÜV’‡¨TÕÎjŠPç"òW¢ª¯Õvšª7щ¨ƒú—x1¿¶¨VJ„þê­¶Âê?¯¬ÁŸ¿ý°!±ž)õÓš@¿ë‡~·öö”Wû½ë¬#4ÐB_QŽ8¿µŸEqæ#¦‹Ó½üêi$çQãh]ñ>XzD 'ÐÎÕq¶Fs7Z Â°6³˜þñM÷ùÏ7ô¯MáÏg »ù@b {ž†HQ*Þ‚hrQýQ˜žUWE"ÿH¯Îàþvˆ¨D¾UˆÃ’`5_ »“ìNp߯FÐÝØ5?~R8Ÿ\<í³Ú*<úòßNò·çb9×Xk±:•±z+QKmáÚ3q½gñ í±|améß›\ͧeÂL'H»‹z»Â磱ë\̘Lœ.‰a_Ã\ÚgW‘7ø1³<Ÿø÷!~_Dý`/îç y@ 4\¶."ŒÔ[qP[üA #Ð,FÆæJïÅÃäFCÉ”:&8>¢ièKsš™»±Ñ_õµÊÊ~Բυÿ¸Œš"ú¥ÿ®“6‚+5?(Õì¡ÎÙß÷ñïBõQûP?Ø]ÏŽþ*/«¡bE­ó?ÔÀßÔ_%Q?ëÏA£åÿ‚ñP‹®ù«7ô~¢®>Jߌÿø½ü£‰ˆ%‡õ¿zBô½]\ÆÕÒó&dÇÒo¯Ä“HæÏTf))}ÐÎ×%ß8w\ Ë:þí]ø“]aWé”™é€ýnKêÏ磿z ³EÌãëdåüJÖðUÝ…°³ù±"1ÿ¼:•[Dÿ]»¢y ‘g2øóú0;A‘/×ÿ2SÜb;ú«¿´J<í›äÏðg“øú¾ä-ñccàÏ—RP‘n¢Ó‰÷·û—¡Çebñ1¢Ï/ýGNµ¹V”ìb$*“x¬öP¼æ ÷àoFɧ¬;Ìþ+8=8 ¾¶žèø6ž¹œ=œ«\Ïüó‘Tÿ¿A*ÏwÂ"ßzBLXÖØ®OÒŸ©÷žÌd_íîóÑY+O§—óÍ >Õ×”¦ÌêmDG_Ôk™Ô»8žÉîÆÑ›9L¿2ÙÇô40´›¹ëÍ<±KdÃõ(ڛू>íÑZ¡oªI¾p”œ¢*jìöÜQù~¢²¹ͯ™î¢>þcO*<¿ð%?½"5i3ÃÜñCð«¬dX9Ø÷÷0ñ‡Áñ““!gžP|8doêÏ ¿f€M) Û½ ÝØ Yš^5´Ð‰´˜ìü~ã&½h¶€<ŧ·•;½©šÑe–µÿñüªýPšQ¡r'“è/Ö›…=ÍgÄ Ó?Ñ-ˆÿð%ÿ(_xeœ¡þ|;Z­ô~C=I^ú—s½“CÍhÖrº¹XgzƒÂE3£3E#˜?®LRwñÙ‘'ìÿ Ø· ôxI;iÕ!KšLôstñõ¤No<ókëÒk ¹áp°°o|×'°ú!¸Çmêvíëâô’™QˆY¨¦{ÁšÇ£}3‡XïÑN£æ% S!Ó'¾ ºY[¿ÛŠn_%°õ-˜ÿ1Æé?–ѹ3 ï•=½úXñ#ã =¾ ãÁ‹Ò!øýÃŽ€­•&ox‰R»©ÕÏÊc¾"—+GvkOý(*ƒJ÷O<¡¤^IüGt‰Ù …z:£ó Ïÿø™>Ž5Í‘Í1½ÙjTâXYP–mˆ‰f_߇Y)$ö‡9ƒÿÆ+1ÕÎd©~s.“ó[ùç-´Z=¾]-Æù?¦F•[›ÿñN îGü=¿þU½ÿ˜†m¨@½M&ý£«úò±úb-³ö{u*Í…!Ç€„µ5n`_7à/*â?â‰giš!„qç' MøWwKý¡Žö„Š­`kžØåL²6 wwáeWØë¸30Qˆ3þZöß6Ôè QÝÇ®.a=Kž+/È;øêɸò.øÕ{‘üj©¸ƪü¼jju"Ñ÷&ñU¤$ªÝNHýy³ Z|a7oä-lèò&Ëø¬•Ž`ÅçÚ(ø‰^œl/¨þ¢ ìü(NëzÁ¦®ÂúoG{œÄ=•Ö@&wÿjÒýŸjUíO¢ºžÔÆ'ú ÏÈ0¢ š—ÌeØŒJj¹•¿á öbo/àGÄP=<­öJò‰X„oäCùžóÜUê]î€T6‘Õ½¿êŽnsOjYORrƒúN·püÇQ¥³î-ÜÈ^ÆÀb"†ÝJöW†ï¨ ®4ƒ¬£ùÇe|HT®Òîü±ÿqlÑ]O¤Ý ó(f2ÿ|+€ßÙç×doÉ`>Ê–xŒýôWò§vã õe°±ÍY½‚¼^êˆS¼ð0Ïåþ#7úδ Ha§O’_z£VMoÞ¡þ#•ôÄÏ2Í'øÕœKg2{VÕ^r†Éð‰rZ×P+öÑL2¢õpxeàØk=jDöÃÍúôqŸfí¿z Lµý›âç‚ÿx‚í ÿ9Œ'‹fB{KQÜî°HüÔøÎð—«Ìåð è|øl¨ üù'ú·¿¿ŠMÿÝAL iBÿ«MÔcÆ0“Ê!òkÊu QDAX£ò ª¤ŠÜÕ³;Ú¦œ\co« (Q¬ôk>1z¬öžÍpøsaV!òÚft Á=n¡ûs” ûðøûe&î8ªÙ¯a8èZlJ¿'`Vä#1˜ÿq˜J–TßçMìEöVƒûm$fŠžNÿ1‘ùçÙ»+øæ ¬7Ý>ÍØôOÿ!èñµüÏ‹Žúm©yÙÆ4ÛåV:ºŽt2KóF€±x°ƒÆ<ç)ô£ÊX,À@âƒä "ïÍŽ%ä@;¨çlCWš%ÖæÜdÆúúGî¡F%ÓÑûZùe_T`¶þê=8iN±5Ìü7þxB‰ªÞsþ MuS“‡:gΊðCRõ’:M3ôþÌ<¡fdêKku©¼ÅLì³®ò ²¨Ïô§b³+¬wý–ö]½ ¾×ÛˆÌ?_¯ÅÔ~O'V üªHa"VWêë¶3§ûhJV#©È(V ëô×Þ†¼€_~¾Šï)`/yûj°Ø8©Ýãq„ؽ¿F¬^”¼Äìã‘þ+& äâíõÉøêX"wP¦µœ1?lkZ"ró‘ÿ‘ÝSbê‘âI„Ϧ½:sD¸àyJÁ¤‚%¿ ~µf¥¢ôÅêià×Õ°zsÉ£çG½Ñ†ƒõD[¸øè‘èFÖ>-äjìXA,éròËTAd'‚>ÓKŒW…ÚåT[k°‡rük |Í'q‹=æ{²ôÇëu€ëv!2SñDGÁ–Ánœ£æ¯¦ž²aƒºW1åpöæù€­ß­I¶t‘Õçêgõë(‹ƒ_/ÅWî#Ñé÷Ÿžþê¬ÒŒ*ÎìÎð+{žÒFø²ñF.púVðSà_«c¯/ÇBËãÅ“ßÍ®>ÃÃMÑõŸüÇ8²AÄ>©ÀU¶Ã¿ÄßBÍõ†xÔß‚nx€0]–þˆŠ‰ê½‹(A‡”3Ú§ßÔ—‰áQ¯‰&Ø’´0ÑÏè5CKƒÿˆ&êÏ_ŠÇš¿sþÓ‡sÌš)b bÚ O¾‰õRÊÒtœ*öÂ3£v£H/º—Ä‘ñ™uÐÌ¢þã.ÑÌBò„o`"µ@™ùKíBÎPN-Uç…â<ÿºÂìêxâÔ".Hy}TIˆ“nq×KÈéKÉ ð:W^Šk_‡2:ªÑ´°GàWOáºíI±c©ŸèŒ…î*3X¯$•tËÀ6û§æó âñþX¾_©–³2¿¶"lÇô@Éñã©hΞÝ%ÿøDþÑ[ÿÌê9ŠÝ›pÙØ'þ-œÛõ¿êt?ýÐÉ^Ç“ÔàÝÌCÜj#~È2^b?Û’%Í&ò_Oþ‘•JÊ8Ü{盼ìvüÇAÑïß‘Ï8ƒ_„§ìŽuíƒ&+*ÛÓxƒsx’|ìá¼Ûb|•¯1Rÿ®†=ÝcµÊÂÖªå¢æð lD~ÕVËßÕ,NÍB ù׈nê‹f¨‘xor†TLú©þüú‰ åF†=…üdWê~• Û~Š~ÞѬ™ð¿qÉ?Š‚Í [(–õìË2ª[S¥µN¡ä\Ý% l Oô?‘Þª…ÿ ~Í´¨ŒèLÿ*³ÞcØçþpU/ÙÇXD ÓBÌNØÂ¤†ïDdÉiWÈäFünc|®tÔ³æÐw,“·úÑ1 ø•7ýKúY…èn²+èLÍdp¯ºôOœç|÷fQÿõyENßjuË—ôhIO1œç°ƒüh¾¼ë\5ñ¤=Aݼ¨”o ËÀYUŒ¦øààú_ê§¢ BŒ^þ¼Yþ£Sb€_âÏ}Ñõ¹ÞÅæek+|×k9Äj%»‘¬¤ÛÝT¹Dd¢Uç&ÿ/}ØDýùçZ/•~ÿ¸~Ð…þ»ƒ´—ZG=“~E-ÌiõQÚ‚^¹2=€ÞΟ™_•çô¸ƒ i‚aéOÐ_­!'€þÊM_¦ý¥Æõ>D´f5‘BŽF)ݘ3ä ºôT䤫Zr…/z1G¨Æ÷HúgÌZ)rª¶`a<‰¸Ò1¾G¡qÞâzaÎH_‘AdŠ”"¢õô#E¦ ÌeIÈ«ð)Qäb·“È;h•î‰\ä4Ç"Qÿ‘F…[Gœf–Åﮉ_Ú–â Ú–„¨$ˆÓ2lxÂ0,èÏ»xÿñ öÃ3’J’¾ ~‰ª×ƒÊØüù(x›ad ™à?ÎÁŒ óø¯¼fvµ0;þŠ -&\Ä8r¶k¢võ!ýÛaùû£èŠº¾šì;»guœÞ_Ýõðze.c õ,àoÕÁñϱëùA¥_ãóô9ðvEž+ú]»Æq:ïæ]ti…Â_»]鉊º%ñøD|NNê±g³Kó¨™ä=ZàSª h:†ÿ(Žé‘Ã.ò“³äIS˜?x;ÌÖÒ:[•`·’±Ô""ïÆ½”§r£.}¯N˜ÍéXk_•úÝ(U“a¡}Aub}³‚m„íßî«~I¹Ó4ØÜûx?t¨ Íð©í΂T'BåJþ1ož—¯ÚLÎ0R¿j†ÿè§}ؽ (6“a¿Ro0‹Jðæj&€ÇrÜCìn^”m`ÁOq%ðÏÁ›FƒReùÉÔ%¹ƒ³DP 7.Ê©èw»‚Í•;ž‡é “+n‚‡õ¢âÛÿ1¯ºž,vÓÈm!ú_]W«ëˆœÊ{ø;¼M˜Êû”šðØVOjƒ_d†ë2ê>F¡QêÈ”¥1(&ÂÎ| Ó£FÜÔ^‘ÌEýŽç=ƒ½_‡wnŽÿØ‚ÚÍ­‡ùžùQ_ྷ[ºÃÄâŸgzVI³¡åM¦Üž,)ÜCÿÄIb”ÓŒ`òŒ .\¼àÑ™)¢ß͈Ҷ;YÇK”]‡á?JYÈ—RA>‚iOª££™þã%ïögakº‚§ÐœT»Ád!~l†÷HIþ‘žì¯8¾ç0yê{x•ŽÃŽÏV|ú'Ç­Àcf þ#¯t#ÿX„U»Á[•TlwÞñ¿÷á¸[ ¡]W;©áÍê‰Ìõ¸ÀO¸ÁÔ$ÿ8¤ÚÓ*åµüè¯ú ¿ºõ›úÝïôOü &«æ¡ÿî{í™–TóR¯è­D}´¾N‹­E®[ÕßWÞF¸ÅË"£™/nã?NQßÈJþ1zÂû?q oèß/Ñ¿dgæ ÈEUc9<ˆÝ¿ä¥,öÁ‘îäï ‚¤¸ƒŠ¥‹ÔD—fÌsŸˆ~÷9çg>ˆÍ·"ÿˆÉ[èAÔä2é3ªÓºÔFœdV‚N­ôƒäMZŠï‰…ÿmGþAßa|ÞN#–¤g™ü¸7S·ç|ý§_×µ9Xó¾`ÐgPW]&ÿ(‰¦z/PŠ\è‚ßíÃ2æ$ê³g/ÔàÉÓ¡WΤþ©¥$ã ¾”’lý3O¡cg4‹ø<­Ñ‹ 4æÿñŽYr3øÚBìþ%Ôcôð´v[Õº;?ý ×ÕgqÖ©(ÚéOxRÆøóà#Ý@°æ`'Ë% šÿQÝèNþ±\iÍÈ6ìþú7åGj÷oMÆ0–ü£7,zlìÝz‘x£•Êþ°íÄlâ÷#äq´`kõ?÷f>Å#ÿÖ_=V:¨³a¯kÁ}äuš„~·-¨! ËßÛ¼Ï̉^y Í!Ô¬5¬qäšàS³,•S!âŠóðmQ·h±Î^ž˜üƒè?¶¹‘=W–ù·w¹ßG0)ëÀì\`¥À7ä$×ÙAþ1ÿ[JWúïŽpú‘ª§î@'•Ÿ¬ö1ÑÿgÃÇ´%©!iBä]s?µìLçÀ«)ÖüGeªý¨¯oø 5åáŠõž_ë ÿ±…ÌÞ…ìøæû¦+üG1s¹Qîr”ÕϱߑÄñŽî¾­íêNüGZP¼Â²3øeT0¾ó-*¼œwüï}¸ ü¡£QÔnÿX¿•ùQîšÅüÚ¼úå ù绘?XF+¯uÐ.ã£ÂNØùÏ÷èPoR> ̤qjú—äÑ.¨¯éÓ•ús-ö{ùG;,þH F ÕŒýX®<ª©—ÂâÔÅø·‘äÏOÒpšÐ9×'ÁVf”åÐ8M¿êŽh‰jfŒBSDk§o¡{9ü±ØøE ™>`:I@¤É©Fzâ¯$d79ˆ±×EBUUõÀß±Œäă°§‰±Àí‰éc).¢¸±gk”å:ÀDÕ넲*??“@m-öØ Ÿ±ÿ½Ao[?W­éÞ¬ÄÒƒwr>¬svüÝ%âõNÔŸw޽ž«ÚY+ˆ"™úuøóÞ òOaf:pöÝå}4=“A4LÞÖ}\#ù=¾yÅS&Þ‡ç?öSa:†¯ÐÑÕÕ!oØÇU¦ý±óyõúm™qX¡q°>'ñű`5´Õ•Ãñ~J}ŸhïŽÿ(MeË4ð°äl ˆÎéÏEÚÿq k™Ž˜t×·–ëóF+œP ;)lµÖEŒ‡Ìâå‹'÷ç>ORøƒ~P•¨ (s›Ò¼AwRd­Qt5ó™Žfj$§i%]ðCïÝCUg×ZÃ'oÅ~A ”¼&=øÕMyÏLGý‡ ¢ æ{ìuRs T)ÔRÛƒøî|gmj¨GiQñº;8PAu"fOFõà,s½W`K“ ¿ºÔ¿¤ Uä»yÖEˆîó(øÙ)NXzòq‘–Lo?ømqи¸äYKˆž™÷dó5…TLf‚oäú:D£Êew¼'´KÆ¿Z,ú;oø2U]Ä9i op®®¢0ê+ó‘úÁØVw4ÆÃ°ûÞð›Ðﺛ§¨Ñ.Ëüsx_/ðÁ&dîÛà?‚EOøj]ì±–L_G_‘XTWT£Œ š1¾‡ù[ÑPUï¢Þ/)SËדÇö&§©!×ÒUz¸èîôËÔ­z*”Ù¿+(½rÉäôoÏ ~Õ˜üÃþh3³ý¯ÌiÀß—aêQÙ~Ââü%ò‚ôsžÂój?:•ç„üÓx`Nvl±j ²¸E.3/9Á±‚êÁŽúÜÿæ&ÓìlUÑý!fP{öˆÝ*(~¯ÂιÝÿOü”t!ê?tµ{óýO–ÔÔãjwæGµÐ]™e«Ãï(]´ÎZcm˜ö”úàx 2«'QŸÒ¿½¹*¨u)æ×VÐí‹>\4Ù>«ÅÒR†z"Z³ªø+}AT&Ž.EÓ "›z‡ü#·ñ‡øC,‚ÿ¸£}‰h‘ ¿~5IÄD•qˆz® à&YÉ?ÄôWƒŒÛØÅj H£P_ÅÿQO_©{Š ¼Évÿ’EÄ]§¹ÒÄD„ ˆ[âàFY°Eë#Ñÿª‘:Œ稈Ήª#WÁ§jEžtÐÈÏ›¿ ^ý¹Ì-Ëp 3Åáç ø -ãèOŒo÷çz~UݘläÁ.ÙõYäbªÿ|`†ÿDË{š;hEýGØY௚@-«Å'KOFNóAœÅu"óM|žÇÂ0Óöo®xe¾€ÿPÂyÖ[Õõz?"À¢¶ÆUlƒÝ}·0×óËx_?¦¿Â~ÚZªÙxÏä )ñEqxëÃëå…~÷á#1þ94XÛÉ?¾Ó þýÒâßwÃ)ôãg–[à?ˆÎNÿ1ýUròåʆÝ=ô¨ˆ#71•< 9Gg+-<Ïc´\øª^Ô;®2Ë‘‡T1¯ÐÓ× ô–xø›¨„²¥·Ó\a~íQD·-oF.㜙ܱ¤jyÖÏl’EÖ&ú·'vxã…Û›>ÔŸ§Å4³JPÑG@Îÿ2Rˆõ!ð¿ôù°"ÕàÞÓ?”6ÿx~”®S‚_1-NßÄŸŸPšR^DëDÿ«Ûʵߺ£têý¸Kkb§"¡~GËÉÌóWúQý®·öü7ý\QE1öˆ’Æ:ìëNá/’ª›´ D_tS "yÉùQþjTð+»ÿî6âܹX‘”²üù4qfà$C6ÎH'WÄ¿R"…ÜŠú<}ž( þ2œxw¸Är˜TÒIª+2c)вz&ìë6ñ>Ô;r•¿?WP'9ÈTY–%ë:„ýdW× Âî_¦ÿ•ÎU®P÷ëcáH>à±›¢ÚõAMò UÌ¡ÑX—y¬à–a»'…ß±ùŠæÎ77øÏ(u/â•7Æ¢q»3=}ñ9®Ø¹†äGvo•FðçDZÉYXóçhxÝVîÌü'ÁK}Z ÿ1Ÿ ÉGV•`›ñFO©?/Gýy "èDt“*”ô þ"yÊpìn™‹þ»aõW÷Õ7ø¾¦œ‡© WÄÒ&Zâ|Ô Áã?bÓ')«r‡þ¹aã ÊbdKkQ$ åt&1Êk#Cí¡;ýKšãŸïEÈ­J£žûÆ•õ7k3©i¾µnàÈ{[êÿÜ貕»Ï‚bâ9ÿ+é¶ ÿÑ(Ôz]D)~¢j’|(s?ÇáÏ=ÍÑæ.<ä3*r€_}uò£/V|úïvA[´œ!ƒùŽm;xG‹~7&žà6ùÇmâRà|/É3ò2Ù©õç©ÿH¿laõF?ÕÜh4ëôÅ[þ…ŽAÞÝWø9×[¨žÑâˬxf’ÉbT夆±ýJšXÓÌ=TrÀ¤l±L‡A>r–úÁD°#ž<»¶àWÙÀ*k‰a!ú_ͧóÁw‘ˆ,~>±Î32˜‹U¬±ä ©¬gtÐÚG6XŽ*š·pàUñz•™1ÒάA^ý¯Ãh >;Õy O©ô­ Ø3‰ óÆÞ£ã}Oô»‹èÍÒŠ*Îåô/ÙäøÃ!ÕQŸ°Vƒ‰%@ÍœSv%\ >s-ªØì¼ã‚nÊù㢩íÔL¡Î…óŸ"üHÝAÿöÇZ3=¶¾1ˆ…¿§4Ò22ÿ£µv^ý¬D¦–.ø‡dWëWá3 €²¬¦‰ ßm$Òë=ñÕT¿uEÅ+ÔR;ðsÁN‹¢ªê«e#&Ý«_¢þûüÇàÿ>¢‹ì¡ÊX¸’<ó°ÉEéPµF€º’“#2)IÇœDâ©þ+$'äòu˜§¸‘¼èhû,ð|…ø®Ñåwð×é ¦§Éh‰”Ø€iâs„÷\V탮j­HÂûWä&»Í®MÁ/-'Ò¼ŒZè+¹GM®}œM`„]Ä´¡ kˆWA?‚ÿ¨òUu¥¬§¼Æà9@Lù[ÞÕ()Úÿrþ`ô»¹ðCˆ‡“ÑYà©ø!zâ#LÔ\É3ǰbTüÇÃ[¹¾Áø– ô\¯nýàFu›Þ<î9o]®Á f²<ï´”oðÝô£ºÝÿª¹ÄŒ µÙ8¼–7ýK²%œonðs8§´ÑϱOoŒ)² Ñ{4²–ÆøÆøÉÔº´â^mÿq´'.ÿîƒí â¸?\Eý¾BkD6Sþê0;U…oEþQýúó6ØÒÄfìt=ôWaŠ‹§2°1üÇ 1=ì“ÆÞÇÁ¥Ã¢¥‹ãE#!WS…(Ðï&iÞ—þèÅèi2Ѝ¹:¹Ò,tkò$è¯&‡Z±+õç±=þDø³ˆâÈØðÍÆøò…ØŽ“ :½è72îêIrÁ¤¼ ãzO|gbêCÏê, Á\æ9ä ƒŠŠŸÿáf’š_QÇþA-ÄyªõnÑe+‘u‚;ž!k²3[ÈçršIäôúÝÇàWh•ÊP©”Dž¡Þ¨,SSt¦2%£ûì}at¶Ù±Ï•™ò˜ü¡5”u:à/U³%ÏnªÚ`ýîvü‡ƒüã1ÆNê?ŠRñ¾†ã +.¥¯Ö:µtsR_Í£ô/™ËìØ²ÖNÑ6h› È%(¾;…˜îIæ«pšòóNIùH¼6N¢(ÏœŽñèÌž0÷0>(5‰ÏÈ?j¢Êªj^%srEWø ÿaÐ*®ržÂê8} ä`rû¬zÀLᘆx‹ù‚« àiÌ‚ÿˆER|ë=‚óÒ·•þü‡XNtùÆ0õEµ_1¨ÍøûW ú—ØÌ÷?ù•þWi´ZøéAýÛ¯ÁŸÇ‡AŸÿñ] ø­EË©oôD¼›]@`NÐ'ö"ókoÁìnúHê?CT=Ffá!"6Õšc`©–c»ì|£¸z@KÂÓº¥ß¹ˆeäÔFêÎ÷ª1´æ"Z¦µØ«e VMAà_‹."€HØ›ø< H‘S\Ð#£ˆ¨Ì<ÅËôV=¶+Šô#ƒ‰"ýšø×…ÿφ¥1`j¢o„W˜þWEÐÆ!¯ Ÿ™½Ñ]áŽ%ÜÅŸŸÂ‚äG%“1(ÿÂÌÅb¬øHLTkôWÞÔÚ½Xo1;RVêr2ÿº— ŽÔŒ­Æ^–ÝÕà77ô“)¯æÑZ⿺³ë©ñ5:WÖ ë1 ± yTÙöo#ø»tâή‡W“45·í?î£Ð+Ë÷ìá÷Jx wÜËp£*3df–t*ÊÈ ä;¦áÏÕ 4;ôuÙº¨tÒ/pwŸ™b5†èÝ’SÈ'µÁº€©ÏCýÙ‹}™ˆY€xó¬<¹¾9œÐJzFí^˜%Çпd8aF8|{Õ'üä=üÇ'ê!Jƒ’4ÅÎ÷] °Kš”œÇV~!_HCo‹IažËIê?R¡UK ~uÖM2&YU¿ò2ýéç±Ô’ÔkÔÂ+ !v(…Zl2}WŠË„Ä`‰´2¡VœKìÔ-èÉbźøG²;ùGu"}»þ\C´Îšb>B/Õž,¤,~xøÐ 鯩JoÐÝB­×C‚až". ƒ££¦b.5[2oªÑ[ÑWð-• ëQœuÂÛÀ#•-ÉvÀ-½";sCœ;ø þü ~¨µU`œéùÌÜ×fT»#ÌÁè­ºò)­ušÎ‚“aYÜè›;Œ}îDÞu?lk—…ÀŽ·ƒTà\œ'F;!S¢Ð®D«òT楦þcõÞä^èyÿb×ÃWk¨{oc퇑m–à}\Êtê¡NüÊ®Ty¯ pæèV'²áÁËPÞ¦ <Ï øµ`lséY%W'ëžôÆâW"3¾J~qVà]Ÿä<…‡©'™Kî;{W€wó<—µ¬VäÐle´Žƒðç1™—Ø„»?Dų̈̄ÐÒÉàW{ð!ÙðŽEþ+ýo‘ãÕQèŸøOóK=ª6¦ÏaSæø¨ötŽCJK- èÕdíz—jÂßùüê‹ ²›ú˜ú­*°bˆÅ¢1ñúm>‡§éüõOH$ÒË.àV¥‰rÅ>‘F½ªBËûJ o¦¡E²ûq5¡6þ×l¸±ø5£´l€b*ˆad# ÉÜ@7“ƒ_E&ÿ¨­¯#ÿ(ËÙ Ê´æã.w™,<|$7‘yØùlÄ-ÓŃPïlxw[ˆÊ«Äô§ðåå2ê€ÙØÉn¦(<'NADW“HlýK>i¹"Xq6l¨7üÇ~pÑöˆ-(/=éV•üê=>é×ûeT£rúWu°ÑÕüZ>®k1^-1ùÇ1ñPôµ‹ŠI ê¿;¦R]p •/ùÎ$"ü}\}I=¼^îjð«£0­Á¤àß“m¥OûsÑVé-ê£ö²¢\Ä®®ÇOEG©ò‰JšjÎ77xw(-é¢ßßePv¼ö:ÖóÀrÍ"®j“ê ÆtþÃôrì‡'^ÙèÎü§ÁK}Z¡õdµÊ†…\‰?ºOlyĨ>Õ‰þ%;èïº)´×É?R?Ø­De®Áx¨Ž ,Ų0Ï%#ùBF£69ädüÇ=”uѰæYã¢<–ãOT¾«¢1]]?wÅo”ÏGé_R™~¾ë¨Dô°™O`¾+qö‚Fßmx‚û'Úý¾h VL1¹±ØÌíØLÏÅcôùAßæä=ö¯fTtî§÷š.øœ|…ïº!®ÑÅù¯ø}èw?8ŸÜ3¥Û?®ÿø¢\TkkÇ´ÚzUÝ7ˆÿØ¢ÔÀÔÕÑ{ärÂùS"óáƒrE׉ûRïLÍ0õ=5M»CžWGŸËŸ-F¨÷!¢5󉤲º–œ L%a¢ß1Ûi/h|aæêûE2#•¹úóèwû á66a%V¡¼lЦ¢(d?¼@5ЙfÄS)…{#º,þ½ª¾Qߌ_»²+ŸÅI8ùô2Št's7@ÇžˆtØí™âe„÷lªîd#©Œ ¼ ÍQBðÑ&àAÈ“Îó~ä­,dŸF|½H+žÕFÀÍõGG½8ð†FÜÅ””uà×YÁ†þ³\À®)ØÔÖFuúZüŠÿÈ­&Ójào怰ÅÄ'ÐE¦)«E…_°dqòÚÄŽ‡ÁT^Â#í%ó Oº„b;e8Wé† ~1t­ê_v¨ ñ› —ÐÙØLÿÄ/Dþmd^9žUÖƒ¦¥/ñN@pü\óÏ»‘†ëÈÏ®/@1Îh6YQ;¼@,ûIôíàWiåª ÿ6þcµÑROü“~÷„Öüª ùÂiù¼T2´ÀÏV…»èbµƒ¬Û¨ÝØO]Cuð«f¨ƒ RýÖ |¨3Ï{‚;ÿü‘ªpwõ‰'Ö€ˆ½”ëÉûn€ü¤ƒ¡ÞE~FWó­Vv3ú¿§¬Tt›èyyb^Ndæ0øÕ4ævå™Úü¹‡¬O~d™kQ`õ‡‘™Å‹ê¸ 6Ö|ƒ¿kc†)@îq4oO(ƒqRoê™ 1W9_½e€qMNÇÒ·6Ï£0{I¥†­k5›ÍOr˜ébÝÀ ‡W²ç#®9Ë,—†èßþ”úÁ­¼-ÈgòËëød joÉ3¢`?ÝAþ+â/ÿ´.PYуZš®`w£¹×ÞøÖ×è¥ "óÄç»çRí‚ÿ°sçdrtˆJÐxŒß9l~Æÿ¼…¹XG=úKªoÁW7£îâ?u;YD53 iW§ÿ˜ÅädÉ›U†gÿˆ(è‹1 ‹O #|L*Øí5Ö}®¨4z^^UµàEÀýÔ3›ÁŸ?Æâ|Yåp£óú¨ÃõU¢:™lMú±Ç4Þš^Ô0Î`þùe´knÖ2ÇGFÇcr¦Vænªøkñ¤Xùdwb¢åtPù†·•ÿ•ùƒçèõ—s§¿+“Wp~+<ü-µ‘öQ«¥×ÕͯõD¿[@+Aÿ«˜šP#cKƒWû¬¼×“SóeÏàÉhtÔßjMÑì§ÓúP}†¾„^Š¿×?±<ç»?¼@IjzÐßã»x«ŒÓÒñNÄÎïÌ3Öƒ÷!ø:~þtJMªõ"ÿxFsC2[Õ߆çØMœÇÞã´ç&² 3÷ÐÏßþÓßÔeRÞjQ„Nv5Ü*«Ëàby@Ä%ùinìrâþDø*¿Hð)è_’ÿñJ¸ ‘ÜÖ7¨þ|%¶¸ïânVdæ?gÚp®¬;¹õ.ðòÛ¢?¶£ŸQˆ÷j#øt<鉵ß:–°Œ¦ ú«_ÕdSSi…y+=@¯2`õmþ¼þö©1}’+Uè YÅ‹Üè>^~ o§=þõçqùÊiÌâÝá»ûóNžGùS\,%¡%›«ô©ºb®¿* “±Žÿ&oÝ€q©·úó}¦~pÞÑOi’ÿ\°(øaEøj7˜ÙItT¬ŒFô>-¶ÔžHµ=õ&óé «?Í:ÌüÚIÄIñ8^ðçöô²“d€Wd+³0õÝèB‘‚¸¾¬Y¼5™\IüBO¼Í™žé•¡»­3‡EýK¤fÏáÏÎÂcÅož¡óyflû.bè‡ôô²’cïsÐÿj5wm÷JY‹½#3â9³„éß>^SÉ#· ÚÈÆÖ—þísé×׊ú,¨pœ#*Ÿ þÔ—*/´´y‰ïïÃþŒD{–Ù¸¬·õLFˆìA–Öüª;8©¿\Lý`øòjæøølÖê?ö°ÞPº=àª&ÈZxÝ(Û¢˜Iä1ÔùP|•vê|bõRôßÍ„ç­Ëé*mÆbÚ`\ú%N5{ “õ7óƒ?uBa|,°%õƒÇ@Ä–pÏÅaâ.Ý+ªÓ?ñLÔò…ó2¹²JþQ’~W=É®à?~Ð{Ä>$&¼üNð«2x'_|êÏíªÛ|Lîô3Õúg"άH/Ö³Æ1,~nkë¹ÒÁ7¶ã,;Ø0&\wZлbæ},Cz^>$Âù(rÉÆ(Mþ¾ácj[ð+ø?4 øOZUð èÍÒ“i¸k­.ŽÓŽ (ì¼ãÊ‹|V6º¤äÿPAÐïŠÛp†ñ"…vüý3ÿ·~Ç©ÁêUmðóêKµ§öÿQœùQ9]~ð´²ÚTíùÇïU×§Vßé&ûÙm®dÀ¬.èËDô»{ÈhÂÃĽ+µEF|þQ[W?²WXê2-.=- ˆ8°éÄ-xbÀ¯×QoÕý•Âq‚xa!ëe’Uá¢GŠ- <çÁõs?Œ¢þüºÎîFø«(“Ž|¨ÿ¸ÃZk@Õ_÷G©óœh¥qÅe¬£?üyAc²øê oéÒèw3£ˆB\ÙåHB°‹ËÂîÔ½Š®;ÛÉ–l}W%2uäu"Býî-øgðØ}°“C©tµ¹‹>F*‘)DäÛü[™·Ó½mT¥óÆÎð.Œ¿Ë®¿úÊ•,}ý¯ÞòÖô‚} nUÕdǼXñqñÖÝ@ÞtY¤ÒE8÷=]]§ ß{ÿ(.ç »œ®è ß]€þW õ Gñ3YÇÎ?$øÕæô„×÷ú«½b ™ÙØ65\†—]L5ÃT؉êXõ¨²9ÈÑI0’„25¾r;²‚hÄ“è&úOõ é_2‚+ÊâuïBty¤óý‹à?jÒ‹6:¼tæG-Æd€7? r‰˜·$<]Xþü»€ÿhAæ·+îÊ'¨EIÌûä6°(ôß½`)ær’ï\sa¼ûÇ îe4È`VêG…ÚÃYèw›9^$Ã]EÏDÌ™ ÿÑÿ1e“ê8MWóÆèwëÒsÊ‹ ¥<ˆÓKð¦þxølƃ0'§“HI ý>Î5üíkƒ+¤b+ø÷¦`7‹˜Ôô‘ζKágÆÀ„ûNí9†6í¢LjºHÑÖyjŽ1?jÈ_ ¬mNþמ5 £ßí‚:v¬J?ú_Ý¥~p+õ+¨?¯mÕµf²ÄKR7+¡^HüÜaºK‹Jþá͉:,3›å¥·Ê"üc%kÏb:õƒC©a¨ªw‘GÇÇåÝë@FSœ½.,š„˜>ŸÎ1ˆ¾Êá?^»„&_™ È?&QõQÜz N׎ڔšd4¹ºŠ¨Œ˜÷¬æfer㻜ͧ¢¶\"ÿ8¨ŽÑW  ™Â{––üã™Î±¾d)½…+Ó¥~©UϱÇa9Ò£¿š‰úˆ™ýU;«ºìÇ;¼¨Îîß.Åçþ{6*)ÕÎ÷^iö›ºXç·*–zE­§)z½Œ~U­Ìi=§ÔÕ²ÒÁ}ª¦S[q(øK#ñé…òB7ˆzWðÎÄ0’Ó÷±º—ùCàÏgé;Á¯2„z"Z²*üÇ`x¶XšJÆB¡yÔnZrlsê4ÖÀŸGÑF´Hпû¨&üGzm_òéX‘ô²*¾ab7ÇÏh šRŸ šp ÁþzéÊú} ùÇâ¥X¹¯vFÚï@¸{ÂV|%¹@ÿÄRT=ªÎèWëÅQGò• ™s‘8ð¨ñ]¤'jEö0,fkÿ8Jd½ô>¦K/Á.žÒz1ÞnøÉhÝ+°cˆ ¡ÆÉ‰ÿ˜€õ?F]ò¥£p*PžþʤE¹–‹üÊ…AlÔ&Ÿ°æÀ¼.sðIŒv²´ ij}DSµ ›–wãøU)ÝfÓÂþHþáο«\C²+ÄYÈÿa–Ó0“¼¼~€x´'øõD°¦-¨¾b£ÄøÓ\ù¼æF¥(b47ó¨Â(Âõ,†•_Ì{9ëÚŠ "6ô0o[àjrȵ¬y–|ñ§`ú«{ÁK}š¦UCñy`<ÎÁ}E×íÅ.ÍÁcdBÙßä=õÕ¨®ØJOã6tÿUŒþaùóSêm‘•X*™ßGìøYXžãòìóZ,ul˜Z7úÉ&5ïÓÓäV¯?ó#lüâüBd{¹ÃôO$Ò#ªØÏþªÜ¶¨?Ÿ ×ñ‡ÌÍdŒUÌ}цSktg'º£`wta["/V‚ðä9º‡àWyè¡ß”.Ãý@Ú£ßÝ@&ÒÍ”aKež4NÑ «Þîèw{”!k¯/šŠ™ögo¨ù§t}RK¦¾ Ö_m’òS5ž[§ÄVôHQˆ?ëˆtS %‹Á7RhqÔ‹Š·ÜT> ÎEÍ9W]Ç4Ûo¿1’ŸVÀê7‹úDÓµÑ^gÑŠP­¬)‘ÔþåÖ2¨QË?ÎQÿ1V$&¢|Af=ëYH¯E…_Ká-|@œ™¤g¸°‰bp,þSK=ú™ÒBüåf¢0;gê)âé­ðª^ï”´õÍ¡ÿ´Þui=,ë qU$¥oÓaPÚ”àWMA~™òªïGc›_¿˼‡È9—VZ­Ê „_ý€2K5 ‘>³Ú!üoAòh󬬂þê¸Ì}P)S?_0L Œ”ÿÈÊäøFš¥JŽKL0 ÿÀýàÚiËàÒPÿQ»}›ü [{å†wº(Jªõªé+/WW -ûÀ§=Æë6äÊg%ƒˆ¯wШåÔ—X©ŽÔ&ûØÁ9$ÒΉh6Û‘ÇùΓZÓ¿}(þc#š×’pä{ðÃÓà¶,ÅQ{°™÷ZЧc QÉ`iŽâ;¶“/^æ6¨¿äGŽ¥‚_íUJŠqì´ÜàW0(o± ÖNyH=vY:«öE…Y4§±Qk'¸®Jh–FÃÿÎB5Bô s_öÉÑ_5SY‡"gð“Ç™Ê—ÐØ¬Ÿ3Ò˜?` [Ã}W\cV¯"õƒ§¸O õ|ļÎÊŠP+vSdŽè(êÂdTmÁëR‚_­6jèÙ˜Ó´‰àþÔg/2>ƒ_u¢FÑ…®‘›A‡,½Ô^²ÇÛj«PëõÓ/£ŸàÞÄÿ¾'ÿØÿÛ|¨´¡ØR—} çÇÛåíIü•×yâ30M1~M ³_ÁcdªT·â·5®Š¢7Ãâ—ƒ§°¸äÆøó&(“ÁÊÁ–¤—XKæ×ža¿¯§–½-Z¤ãdÊöõæÉK•ïZ}wìŒîÞœœþWãà;êšó f4é¶>Áüyzºt!¨Œnö%»¼=9a#ýªôö¢•ýÙ.¯P’͆»þÄ|LzÝÐq¤6<üd:Œ0óƒ|èýKFs¾«™3ëÉ<ÜG棑Øö_ XÈDþ¿pÜŒxexþ{‚üiÌ|Ôæ4–’½”§I{3ÍË&Ù2ÚFÓïñó%³U/9õñ`3‹9×7xÇDb×ïÿ‹_ÏHÑå7öÏûNæø§Ž¬ö_óâ§ôJ®Mýy=µ‘z+x~íeæŸWE75ƒj’Cåæ~›R¾~Õ–µ:W4­êÏ Ü%òIuºhD¿AOúïFµ#\$ÄÛSŸNߌxÑví¶¨$»*1Áš’Ñÿjªx'4Õ1%ÄýÜC=YÄÔ/ƒ}7À*{‘+4G!5BøR?ê ~•›}"ó?D”ú'ZøÕ4üÇ["‰ep¬Ñõ+ø¡âÄpˆ™@R*ƒŽ¥ƒsÞþ£<5’«H‚çéË›˜÷=£KÈ*V¯ÂÊ»‰Tvã–P¹ þÜÊÿéÏ e6 yk¸}òbXH_-;XÆ4TJ×ô-ˆÇˆ5¡µ]äÈ꘲ÁT¥¯Ê<òŸ$¬ò]\åá‹>hÓ8ÛÂTîUÑ¿€\½æ©Üÿ°ÿñüªd„õƒ¨âš@ðƒ¼ 6úƒ&x¬\¿ì™Ùjõül|Á¿ð«Qš‚r2>þj¨ýÉuœ¹;sX6‰^xŸ¹è‘Zr‚ùó¢ YQðŽÂŠT‚y¸Â߬ØÒ}dÆ;¸†ÖD®±ªª8jpÿµæ6¥hXMö†7Lj tÂÃÕ%‚ï ãá fŽ>Šþ CMa0Zý”Ä–Ž¥ÃÔ4½»',~E¾E imâ f5b%½°¯gÑ_9¡ÞÚOD. ÈLhÜ¡¦0=Baò™Xû]1P‘baøóQôßmÃn³òWò«Éjc‰aõö˜ÞdÚ.¡á‡½ÿq–̰ Ñý/±1œ{!‚ÎÐüyüGN"ü‹ ¤ýYíª¾ÆXv†ÇĦC1å ÿQý­aºÁžÏ±ÛJ>çŽ 9³~@4°ßŒ#R}ÙR®[W­0Åh­¨š »Äì +ÐýÕ¥àþ‰Ã™ˆû5kæ×^$ïÙ—BcT cCøýø7Z0Çýš§žŽ#ìÈdqX¦¨¥ŽÀHDZ ¡cîgæ\ úïý¯ê™ûÙ÷ÝɹjÁÆWÕDg»ÿXCÿ]f±ÜõG­‰È¬4s0Kd$¸š“íU2þËÈñ~¥†²Ø3ÀÊ×5*¼EÝò\ÔBS>ξ Ýè¿;Jå íEL÷^h¦¯m:œÉvò|°2óÌÚôOüh· fÞnøUv²“ᦳ>–le+]™¾àërýOð«³RRY¶Û7è¯rØ¿³ßÐ(½ˆ)Ÿa~Ô]e€ZŠþ».â‰ÿȦ4¢þãþÃQ•å¾HÞôOìK’n:zK ”'ËGé_R—Îx»”èJ²¿:μXüAôm¯&R‰¯EIy¾¢c ¿ªw©ŒM/Á¨é¯NQÿ1„Õž`7kcWWÃTöW±³çÁ,â€au"ÿø¥úÁ’ÌãÝ, AeYs¿”{¥‚¸Å –+™VÃ- ýw£_UÂþHDª @|3±Ã®ŠÆx¦©Ø¿Ã m?±%@n]Ñö&Q-žêŸþ\Uf‘Œm:Œÿ¸†ÿÈN.’›3C¯Òi$Šo2…¼ø²±Ö¢£¼>’ È•RXè1("’­Kàr ¨þ{¡­Ϧsù¥$£¹‰W^Ì'n!Ê?‡ÿˆˆëš€j~9þš.wðPw‰ jÁe¢CDL½±6Ní¦~À6uUYÃ3võX4®c|®¦Cùâ8ÐÃÌ?ß-:ñÎÅâÁ3®#Ÿ™ • 餷ѻ‘Õ”‹:’ŒœæG¶—ã;G1CýŠ>=ôŸÍJØø*D½ÇÉ*c7ºàiZè÷õ.Fa¢ß6TÀF)傺é°> %Bq"è1d8£õx¸©aîË19€ü£*×y!*¨ïú1ÎÒ‹\! .o¸e•Î33&ý¥Šñß ¶B°ìûñ ä"ÁøUhEpæt /»¢Y˜Z}pÃðݳNº³±ô^?ÿ ÿу®W58ç­TjÃî»Ñ án˜üc¼ÈS°šûT»ËL¥íÔøÀ\|§#H úz\ÊNbBó(«LÛ?:ÂÌŽ$àWìð‚TCžOP üª°~“¬+«HÄó&ñóá?ʳR.0"«»'™WKæ\Ac½ צj¶0D7¨ÝòtEF+x”;öQOÀîs%¿ªk.KœM§–!ô0ÑmiÈ’n1—ª¼Ã%”¹’•y+ˆú!ôW‹á?4ª‰ Ñ¥ÒÝÑÍœ¢G};øót˜×螘ǼdæCuËØD&sÖû •õAÈjߊŠTö·ûãrku (Ä€R.šöÄÈÿáÄü”)tiñ弛ؼm÷˜5zù{ä\±™Ò ýîHb¢•à /ÙgIþ'ú«CR ÙÑYä‡Ôïßæ?bËwèeªýT'õ’\„ýUª­dd~íå–üLºißQy‹ê0kÂÍxª5Ž‹øª=PŽËwÕ.¢¦:\= ’"ÌöÏ«¶%ÿèFýqS,SVj?‹†ä ¸_†ø¦®Ä(ί½KÙyB#ÿ8Bž°ëé¤×$j˜*N?œ»*F$<\¤GÍ@*ÝÖÃ\ÇÂoÀ»ýÂvà‰yEl3¦!€õ‹\àWÛÅ?žs”+ÎðçxFâ;W0›$쯆ä³x²OsÌqôKäñ{±´OJž?¬øL™ šÔ ´É\ð&šÏ\tí(J\¶Îצ¯€û8‚ÕÈFÔw?Ó†úóe‘ÜŠ|r)¥ùÂR|ajXï—t‘iÄÊ/´©dYÙ©ë*D´¹Lè™Ç6ò™mÄìLªWÕŽr…ì®Ç~+ À5x/È@YŽî%(sifÊŽP>Œ%§Ù̹ºÁþÇd- V#¢þ»>R'õ?&v­?‘´Ê»êjsAÞ·á?:ѧÓ[3áé$(NlÑIî•ëZUÑÿêu˜s^ ÿ1‚z¿ìt¼²æŸáuýÈ?Þã1*0Ùµ|@.Ð&º™lÂ$µìµ&oAJS[º[•$}†?Ï ‡RŒæ%üÇipN_z]eC!{”X< ZTøóçÔ¤G3&ëw¿á¹NáçËÑäVBOTï£Øˆ¬ëë #ߟ˜œiE3©ÿ¨²cõ¿ºƒªuãáT‘{âaJëýÀÞÓ Œ¬ý§Ú>Ô=†ÿ(Deˆˆß ýµæ¯ofÊI[ã¼ÞÁPm˘ìú–ˆÿ”‘ü)®y†ë95OÁ½ø¤Ô7Š&ö+è ²ˆÈ©¾#+hî`×êàW©ÿèH½ß4æ3=F!µ’œk%þc<•{·¸ãˆj‚`ª~pgf ‡UÛ.»)&÷Ì‹çõçuô\ØæUäXÐïÆÁ[>§GzùHÓÏ8„âi$¬÷9´n`—*ã«­ü£‹=ÿ˜'OSc€Áf"ÆùÄSùN{cć?†—Ìe&$_(@6“ÒlKsŠ$›èøÿÑ„½úÄü¨ æ:Ãî?.Ê=Ôñ¢2ÑWOð‚´Ú3£4[üù2:%>@ÉUÇvÔvÎ,~µ~æ(ó? ƒÁ¯Ÿ¯¡+èW¢Îäÿ“úóÇRÎPú«.ÿ¶~7Pº!wPÒ·=ý«°»öIÕ•RJô»÷™u×¾?¢òâ‘ä«~Ùã¹-½4úÝ×Ô'^%Ïë~TI¨DÔ“5ò•«‘1L«lÎQþ㞨,WâS ‘¦{:Lnb5F¨'"²µŽÈq•>â›vŠñÎ0h> ðõéE>A\C-vþ£< Äæ¦Ñ4²Õ$©øÕJQÎã±Eë5 f¾¸ù#ÍЇ‘Å?-J {Ó¾‡#[/¯<šgç“ÌÚüªùr[löjbé}ø·¤°‹%‰ÄVhÉ´ìßþB†ÔWG¼=‹þ%ý‰º:£JÝ‚¢58Åjð+Oô¶©Àª½Ùÿ-D7y$—ÉñåxâÆP%{ªà\øŠrÌ©6;ûfæöŠÜcŸx¯zGTU#ªõ±ºh&SùNÞOÿJîCìZQüÇ7rÀÕä?AÙ;òü/­ÛÊÕM‰ÿ¸;ŽÎuŽõª£‚ëÇÑM§¶>?ÈÉ:<ÍDâßÙø“fØ»h Lw@IÜ©ìL•܌ߜÅý¾ ÿ‘0~媔s8ŽBè‚|ôêÜÓNxà‚XþvFEXպؖ¬ðÒ-èµ}V*fúâí^á—ËÁð/ ³ýðy@Ôr“}Ô×ó>‡r)kÜ¡–.=ôsS?ÈolÆ4ª‡jèȘ;¿ Œþ‰ÃC­Ø^ù.†¡GºAVºKþ]KŒ÷˜ftÇZ€–5½í ý¡&ôÁ ìÅqÂÖ‘m@X©kµB­7Läæ÷°ƒ+ê]Ù³é¿ëJ—ÂkL蕘»jñWñ!™Œ¡ÄÔÈ?fàµÜés–úÁŒú)ÑÊ~3>£ßÝCŸ¢äày‰Ó:k@Á¾P÷¡Ò•v%_ëÀä¡Ëüps]j;ƒCù’ ÅÃÅ6šà‹Ïß;jw¢´|OÖ±¨ÉSÏ@7­ÄœéŒàùµ‡ŒoÔŸkDöÏ™•Üô@»ýU=ó6y zå¶Asô»Žþ‰ ‚çGed'm$öÙ.$=€ù©ó¨Hþ‘_Ô6>1SJ|Á££ RŒ¸¶¾FÃ`ÿQ {æŒþÊ¢†?$ê—õÇš ^uØÌgl¤LzjÙ»‘ì @iÛ<úw¸ŸµF~2ØBT´iìÓKÄÆÉõÌQª°_äÿ£þRº‘ü'©3Ô¾ˆúÇ|•îã?~*}Õê»`ýÕêÏQ·1CùˆÿpôÌʚ÷¥½êk*xji°Í¥è¿W¹"¿F§ÐWÝ›žN±&TEýÓLøæXÃ&¨Ã߉*òQ%'LÅ4ìJ²§Ü…ÿ„ôßí ^‘wœÄ&lÇz棲]§*í(Ä•`ÿÑšúÁä"‡¸þíá~RAÝIÿö2׬ú"¢ý@âÖ<Äp©õÙ 3/@A…^ÁS¤ú£ÿ("' wÉÀ¯š‚W•ÿ"ë:޽+@<çÆÏ=Ée°ïÒiÕ¶¸ŠÏðÔ1ôäØ&“1ŒÂ÷ ÖÒ&Ò³é‹É¼±âɉúüø—NL®8îÿõƒLô·)*·„«žd2‘SKò»ä±@Yf11‹ÿñÿ± O² >ö’¨¢Ú"8Ê‘òjušv çBtI¯ˆ-kâG à?>sýNÁ’€PÏ~µÕfr¾÷E\î~DúÝ£Rô»Óð×s°lEÑð¬c½  æ‹¨}茷TðD`|ãI’èkAÝÉAÎR­² ÿq?Ì9oWª‰I`V9a.r^oè®rËH'§ìX†¦ íÀ…Ÿï3`“Ðwä=üÙ¢XæŒßÊO…3þ¨ Çó å,yª7“3Ò§£TR¦=0?ÂÏ×04c4 MXö“XèmðÏyµʺP+ö žµÿgÍlÎÙ9ïN6†÷ßÝj¦±=„OéK.ÓÏh…~ת?·¦;x››(ã‹Ðú«î¢ Þެh5yoorQ¸'2«s–³‘Ä6dç*ý¯né™à‘‰üc"çQ—oÒ7%‘_¿#ZÛ¯à5©‰¼–ûZ—<Ÿ6œëVÕïhÔM5Ј!"?cdÁ²:k€ï˜þt–éý‰g C)w…'à²}=o&Zþã$XÏ=>>Ý dhþ"ýKž;ɶ&€þÙl)ˆíOÒ «‘Q þ#Þå€^‡júºèwþcšâ‡t þã“ÒVm®>æ?<¨ÿhŒÿ˜ ÷ýIŠŠ-u|¢"Ÿ¥I/°Ï<\ïJª¡¦D¨.¤›÷Jæ×&V2þÕq–?±X{ˆó¯Ò%ÀÿQŒªT Kš’N¹s‰×£EØ%ÜqD¿_­Åï'P(â9š=^GcØš»>@œ#¹ÉêUøù8‘šúA¯ßoú‡¯U¨?ߊéþcÓêg;»õŒ ~úÀ@üÁC‘ÈúXôWä^xšm"–°¾EK ¢óQ´ÂÒ­§Îf13þ£Ÿ4ʸj¥?\ÅwÊxŽ~äžßW0™RXüÌt™ ^ _ðà"û÷+~¤upþáP¾„>m'*gjÕMçÅáZ X£¦D]Ïaοbùûó'ÁížÃtÂ#lGí%ªEˆ_ ‡ÿ臷UàÇ+Á¹Ÿo²zÝ#&¬«¹©[Ô/ÄÞ‰ý—â=¶‚E%Eé¨q5gÛŸ\Çñ#¼(F’óM—@µk=k¸ôj†eÙ‰Ô}ˆ–OƒõdÓቡ˜ñ"â^Èü¨°Ùõrò‰d0L*¥©†Þ›ëSN»}¯öR=ìiä…ûnÏüÚãè|’éÖê=°ÿ}õ Ú4± Ì}ù&?ctãxæã¾èDZ¯çè|žq +“ íè[óÖ¸”ñŽ<¦ŒwLà µØNK¤_VàÆcg­ñì{8²…ëʱÄÇDÞ[_Úšë×?·ì󥟃?·"òâ—Rèwû“B×®ÜD”‘Äïý©ÿ± Uœ¬a#Ø"r$ OÔYiyèßY§'9§RÝétøxÄöErGôjϵ±dYðÚD¹¿Xe#?±ºSæS™!®Ep”˜>€«ÿoÛ•ë~„x°LÈ}ô\µ©ܨÞï >‹ëzü*™vF|UA#Â_½SRÅàþ‰&~q¶&:ùGe1«êº)ˆÌ`ŒØ;O,J&"ÜmäsSÐî$+ë¤&UÂÞéð“ˆ#’£rC õn”zS:¯7gþ «Q‚.FåáJ£æÝ§mñ»d:çøôÂà Üñ/ù­°ÃäDîa@|à—½˜ÿ‘ŠŒà*ó£’ÂÜ4`·›Q×>þ¼8hÛvtrcàS’kEÂÔŽU>‹®\—G0<+õ¨Lú_-0êèé©DÌ:ú«ÇtyŽ~·7øUIÎz6ú ëÁrÆ¡'M•ô†úX¨h LP»¨¹šÂíÔ6b7ç…±¸Êäî }<ØW]Mïòàœ÷ã?rê'EûM¹'M·‘4¤öÜ´¬“Vª–kpF/˜¿€™È ›ÇÈ?f2½%ºÞ3øéAÔûüBo«‚8-ÁŸïcþùkž$K]|KOOPmØ\«læ¸èÙL®E5»Iÿ«ÝÌ×XTüêƒÖÍ@M¼byÑ.TýùTú·Çä*ÌA²E|Ó¾Qñç‚~·:¬‡ÿ1Åá“ÌÿèKv9‰5%Œåw£¸m—‚ÕUähRîj;kºØ&2‘%¶íš± lñô.°í‡aG­^Ý•BTLþ^ù?ÿÕOÊ&;ÔõàÏ#ê5•ãx%‘»+qÕvj'Õ[nÈþ_.µ‚=¯§,PÞ3ãðNT±ÿÎ=é ú\ äŠ&Âj¥SÒIëüJ]NýÇõùÇßññÅC²CWžÁUXøâ›p¢«Az«r@½¦öOE2õ­ýÓÿéÅNYVÚŠ[ +¾àÑ3Á/ ê5À¯ú‹óðþ°¸qÀSŠ„Â9Ä ‚ÈW¬­îƒ?/‡°käÊŽ|Œ_Ê£œ•xfêoóqàsþó°Ãùµ—a”ßË…U±hYè²(Èâã`£»‘”7 ÛFºÑ>¢®n7ýÇ“9¸“[ôÇ2[ýå]ÉxÒèÞ!øó©ìÁί~åDÅvW­øÕ3c9L)êçÂL!çZ‹çXc¼„InaçÊ @-%MÉ~®i‡CpîðçA Â;¸gúOÑv€:îøàWÇŒøØýwÔè½DÅ› ¿äG%H,ú_måIlǽcê½VI´}ìÏÞ*y8ø•D´“Ü<ˆ¥/0ËYµáf!tʯɇ’Sµ‘Š*üGiü:Y"¬zZ|üGMÖò듵‘ö]¸WvQ;× 'Ë·Ñe'–ùÁ¶¤nµ±“Êžíf;²›í¶f)Ûlîˆ?Y\bÓ™,,«$Dñ5O>=ÍÿD¿ë-%—í{_‘»üÛýwßI×eÅP+ªùUŸàþ‰nôO̬Sú+é_âÀ#í÷/dÙUõƒˆNó’‹ê&QÈÐ)¤¤ûBÔ¼§¿J.ž½@å05ãñYÄ”)‰xí©ú«©DxÃŽøðÎÀŸ7'ÿð„}lˆU:HÆÞ«›¸ˆM¼ïÈ@Üü#]”ð«bLZ]!Jã?–‘ÍÄú§°æÁÆÖ'ñ¡¡:1#»õ@ôWNäŹbIAbå¤#ê¾E¥ñ&lE+ýÿ Ï]’ïÑ$Tÿ¤¿º¥L„QhAôîÆt¬çb ØÅ,¾à:MP.mò![HMÔw†H±…h!GV›AvVŠÂûN…ÕOŠß0`¶Z╾ÒÿÊϘ ’uÏOP‹Ú®Æv|éôW_#¸#è_2–¬ã6ÇÕÔêOf)r¯àÖMµ'êy5©±,Åò¢ž°=óøÌëàz5˜‘~¹Riõ ˜¢ T<#x“QmÖˆ#ÈE¼]Léþ±“7VÞê_bÕŸ/%#;B^ÖBMά¥ûx"–L >‡È@O}À¯¢¡†-†®¿ö´&ØSGØt7li´øääìÙ PÖ^’ÞßgÃÄÆsû¡Ò:HÄyšÈ=;ÜÄ-Жܨ>˜ïè¹[þ|xFI°¡#ä –ÿÈ¡ÅS6‡ZѪ?ï€_=Kô³‘l@‚ÅžbR÷¯¡â-|í}ð«Wø»áTÈ—''[ "æG¶²—öMj½Å¢2YÖò¼ª|âx†ÅÔ³·6¶“oe·í‡ ¸†ãjÄ‚yp2·€˜MÀï!¹¢—4²ëCàW¯¥±äÙ¸îè´v•cYXý»øÏFøŽ!Äù7àÏW 9[f¼?oÇDª;dÄûuatåþܧõrûMvÃÀDÃÞßÖU¼xã2}®^¢—Ú.¶ åÕZ²­_Øý»¨Œ×S]Q˜ù²Þµ]#PßÒ¢¶(h÷ ä‘j|XðLì©w éô¬pÖü¨2T~Ü&OúFßÃ8t1 ¤³~KØù˜Ìð­Jþ‘¨° ymbG¶“ô¿r!ÿ˜È™ÒýJ+j·­6Ë‘¸Qõ²peÛ!ÛIòñÌË ¢ÃV3-W#&ý)>‰ Ûм"2ݼýBü^<–lò+ûºß¥röPûÂþO|¡Ó¿¤’‹î»µñÖt™íR¥ùÇ å†ü4ëoþ|“ö©ÏD,RrªR«¯¨cÄLÍ«W~„Èš¢²n1ñØB …yew½™å%7V9PM"ÆPò#\Õˆ×=)ÿ’ëŠ ìÆ)üÇ þ_ ÿ¡Ó¹ãÅ9¢ÖØðÍ#èÞž(‡ñZÖOK«{éß^…øy51÷ø[àEÎàWßaâ_e¦‚#œÁǾ‡#[/£Ü•§{z­¸z+XÞdXÍWðkð x·¢~¾¶…X, óÏ-õ?ýy§L#ï…•?ˆ5ü"Æé»b]©“¨Kö2¼Ëì}ý+9Îòv‘ÎÊ/WPŠi:U³™ÑÀ{ü„÷é w± LÍE£×·ž–Èþ?9ÌjkÁˆ.qÏêFØÿª7ç Žê.xZ%âÀ‡x†2üý…®=`~”l,#.еú~Mðç¾7ˆpþÇQ©øÕp¼ÏH5!p%V4?ûë0<;ì ýwgÑ?ñ zà<¶­(ZoÒ×üýº?Œmøõ‘Xæýü=5§/˜¨i_î©4PÞ¬†×-­Ÿài@]d\Ew›.RK˜_Û€<6–µ:õƒWéÜÒÇÜÕëVÃh‡é ìô ûznô¿úŠæãhè=w!‘q‰þWŸàÝw0c|#J³EæU0»Løoó¬Ù€î(žK]­¤PÞEeûï¤çÅÕÂ’ÔÖ&Sï­Ê^Š3C.êć0ÿ<Žêèco[/|å@yˆøæö}+ÖÞ™ûÉ·á-.Àžçã9FWÆâRïû£rðç+° ß´ùä¢ÖüÚ‹DÑyÙi_°Ç)À¯²q <‰ì{8ì*¿¿ÿ.MàÝ+Ñ„÷=‰×ɆÕl{¼ŠjZž $úQŽðv/Ÿ–âþã¸2kÞ’ÌúùõcJ%°œy‰ÄÑ éõuä%×ù›Ìû *߉àâŽÎC¿ê__“ÊñÈ?ba{ÓãÕf‚L> ÿhÊ•\ û€>-±ÐñŸàÄq-ÖÃ\gfdÓçô¡û>ý'|J¼Ç9޲ÊR‰ùs£é/>RUñ=±úÛ@¹Ü@—3“‰™xÁˆøóµRõŒè‹šNSf%ûdúŸÑxµAè;ã/“øá5Kë;ñnûÉÊö’…Rã„Ë]*õÄtñŒ5Ûï9޾ÉvÜÅDDõÍå%ê4âçøúDîà ˜§ªä!ÎøknÊ^¢Œ×XÆ>àWóáªöw¦¥“d\®æZ{äç¸zs%gòÞ˸kû*r™Z¸îðç“ɯ,þã¬uZxŸU ¸ªžð?›ÕhJØî<ÃÐ_1Ùûç§?"ü¶éŽ7z­¥nЕª²‡høý˜„×6y$kV†¯˜ CÍÄ@j Âòç§åOh"ê³/VèAèwqWN“3äÛ> "”…ÞK1lŸÉš‰èè[ŽsøF¶t‚L±ž°ˆ²#Ôî¤(dWÛñÏa!:‚Î¥À{x€þä¡2☙Žx7®m;Û0ª8¼ô¾0ò[Ð ¿ ÿ°fa¥¦Ï™ãêIÒQãÉ^(KmÇYí,øÕNc ³2F"ªáÊÂ}ß7‘õ¤'‡'}åç[–÷ n<³®hÝíË]‘ É»¨lªßÿ{»•˜*’Øøøt^bŒ ßð7¢¡L‚=Ý­ËŠ\YÎ]ºf£„à÷¢ßýæzæî–þNdáº-1R¢×íMÿE+1èÐuŠóMžåM½F/zýž!ÒÎj›ÒB Q¾ý•€ÿp†ÿ2tWpk_£:\Êtµr¦±/Ø•a:‰j.¢ã\æQ=a~TErïhzWú Y=¡]<½åÆè¯*Qu ®2´çFcÐÃìTyü"³’ÿ´Ú9³ƒ÷ÆÄó_ðÝÀ¯ê‹s|ÂMöh)4©s@¯âF‰ÿh §óRY¬æ"؉ÝèDîq„[ˆƒeÌB]^i2g²Š'"öýG¹*¤Ý¨CÒà?ˆ‰=_ kNâj­OÂ2š3Ä@^°¿…èYúWñ‘2=ì@®ÙÞaéw+àÓO_0õ HžÁQl4¢Î%Ôv÷“•[¡¯c æGÕ$·˜A–žl&!ýDÚ¼Ð&£ò¯«Í†Qµ‘-<›¹A${–WAÔÖW#ŠizÉëÔä©ÁŠÀñŸ)RcÕí÷×N«KÈ?v`;ñ¬ZÝgk1Èà¢ÁŸGÔ?q™TB=G¼"8¯•t¯OfU™óÎzÕ‚ü`(Ù`u¬¥ÆFåý2ÏcdHo8Âjúpó]éß>N§Cîb Ÿ€Mø±S>êCè9r˜Nwé]uƒ¾²•à?ÚÒ?²ÝQæQ²½írºZ\’Têý2kmáó'£1úE¤ÿ@£“£Q„È›ZˆôÔÜaþùc*µ£³ðpÕàZüˆï]õV¤¦â@ÖëŒ¾Šªâ‘û-)|-«è¿»ž˜7‹í¥ùÓœrÕýÕ92¨âü^ªÝ·bÑh&8eÈ»;‰(¼þ øøÁ ügôI°hØ9îX½ uxcà¦ûããºߟ¥æþ]sûǰõÍÍý(Ɔ¥ ÿpæw ‡ p­¼DùAÞ}„ìþ’“Õ:3?ªº™ÊÖ‘‰º?Ý(w×à3ãØÒ‚²¹RWRÍh~›3Ù§7CÍU™éÔÍìÏÞJyøURò÷p$`ßš n»}v]˜_`xÒ «ÛP3ë £ïÊÇì¬FFY4s Ðj¾1ˆ ;Ø£¹·:E'zì'ù@|4êÙV¹Ïb6ofQM0‹0?ê—™ÍÖÿqsÏI…ãH3¥>€|e=þ#y{ÉÿIÿÝ;RªˆÕK*?S†Úö›úÇ/¥órMEÿè¥Þ ÖïnJ‚_åQÖÐm=Pú»îô—%7ú—ŒÃʸ–WSªµ˜"âE§¨êvu‹_‰šµÿ}ØeÁ¯¦Òo©8ÑêÏ3j²|HÉB„˜SäCE:´HF”Îü˜üA®/XÐC°—] X¥ukîK9qš:‰à#…à Vˆj •šÉ*V?aQ”h=û{~ä*ë¿JÂþÈCÝA~æŽg"Sz!ÒØ÷ðïó ûõ­Ô—sZ$¾Š$ ö^äÙÈ[j¶¬ÓZè¾è]‹QåU^a+¾%}˜)aWc† þã%ùP?í2–þ•ƒUDã‹ûÿH~ O 3¾–¸4²³Ž&ÇW:b¡pLñÉѾ ?ò0KÀwJù7Á[^3ĸ‡°n·°’~¢–QMkk¦ÀÍÇW$¦Ê²Z8«{i^)¬5NóGGþd¤^JŸÒäA.‘Æ%#(×Aû“ë8ß…R5êÏj6lø&r¡qš‚5ªÖ!ºÞ  >#>±¸Õßñ:¾ó5ñÃô»ŽnÿZs¾ÒQL(‰÷xD]‡¥ß=Åä»G̯õªŠ) .T}‹>€|§"¶t õêýƇ«ÿx(‰É?ŠÁv§§jð8ûä0ÑvB"üëh‘r‚“ß3mÆøjÕØ –TDê<Èa½xS]ev¨ÝÝüª7¹ã%ºjžÄ;Ê ?kˆxÇÐÛc§y„ü#©ÓÛð猫0ìèèŽ~ƒ¾ËÀ”„ah†‰"œÁ~PÇò¬öŠÜh)õ$#xK#•m3u±áNñý ÃÙ<Èg.%¯;Gͤ€¯É¡ßƒì7ã‚TEv#VïKDRewsòÝäKè 2×Ïì PÐôÂN2îÑ·1ùÇK”žôÉɤ¯ :9ðòƒò$%>ÿ8Èë=¹–LÏjôWÊnëIÿÝtTÛG#²ß+]-Ò¥‘HÀp±`«½ðíÏÞHy¢“J¿¬DeÙÈ?®1ä´•#ûHç«mð)7QÝ6QL¿ßŠô¬êbÐm„ø¨<Ï£ANÜ; OËuàu+³Û†Âö>/ð÷ÌtܧÔÌ´BÑËvÖ–ÔÛÖÞ,Žwr£§V€>Õ¬€¾Æ°,XC½œp·_ÁÿÞ‹—ôJÎhßYŸ¤nr<ûwwð­•_Ì?ïDÿ’ꬲH*£TQ *‹`¾þeý¹¿tL}"&RP‰Ý_M©æ¡çî¿ð«ª«Kù»þ»Ù„LœzZ4ä™éEv]‹%ŸP’±zn‘EŒG—¤D¤ò  NÔq<~Õ›ÿ˜'¦¶°(øUPøžDè½@ ’‰B"*˜]Eò©õ¢6ÈèLlü:ž›ó°2 ðIuº¢ø«ÊŽËM|þ4 üGyùÇ:au‰k¯Ÿ£Í¢Úÿ±Ek®°_s"Ö/Mΰ™ÊÌôįN(SȬþ‰÷Àê^‰Qè¯FãÝŽ¡CªÏÓ0‡Èÿ8QgFüç°,KE{yoø‹ü“tÔŸ[ÆM ’AÃt!¦&ó"bm¬­çQ8梺{XüÓÚ#^ùâ?‚"Xq±¼VË¿gÐWÃ{¼&rá\sƒë|@[öB]¨¾‚ý¯0îf7Ñ]*u“sÊ{Dzë¤zðC`Ÿ6Ìå#ÇØ‰€jg"¨Ú`8á Íêu–.‡i@Ø7iLÖeÝÏܯGàW/K¿Z¦Ô3ÉsàqÑåb_ÀŸW¢²® ¢,øFTÄ­'ºKve •m CÚÚKäö·é‘Vƒ>1®XxÃ8 ÞyŒh»¨qS÷¡«•ÜEwú ¾Z2Öà=ʵ\çÓ=ôÆxÎâÊÜPÏõEǵú—æœzrý3R=¸šÎ'ÉŒÍØÒìàíAt ¨÷âOqþ¹ar’ðý.îÕõ§k¨õzˆÆì‡í`tQV¼ÔnÐÿê$È×uø“¸Ô”§®NØX/ƒ¹ pñ‡?õ0ATcdÔŸ‡¨?¿%5–·p¦.äÙÀ\[±» ÂL†OhF—®qXæwôµ½„bvókû™PŸ×rïÒáóéÉ?xÇ.y¶ò“Hl9öþ¢žRë F7 )lõá;RqåÂW!©ÄT¯óØþYô¸~5ƒ«Ý…x«Ó©KÛýÇPy¾*SÅ‘Sų±O”„ÿh‚þª ýwK›;åTŸ»ƒdõÁß­ÇÖ‹zGæàÂÎTô’ôÊ‹«¯/ý½e.È ƒùó)è-@XÛÁ—ïã=3¸‚"ÖÃÀüoäóQõ^ÇÇ9£¿êffÓ­ªmÄ•ñy3üOòKRÊó£~J.ÿvÿÄŸÒUæŸëðç•Uw¹.»ë¨TT©®8+s•w²&_ù}¹¢ôõ‘t˜ú©<õUé”\Z®æ£ ü5ulêbu9ý¯¤Pû÷O‹fÅÌÖ|ÀK“}ÏyOAýGZbÖ2 MK…M{ʼn">øfD—°píAÀo{÷BQNø€›<à¿ü|†È&²†Ð G~|Å©\‡~×êß¾Ë'ñ|¶&ný¡iúÐ¦×ø£'ü{EúHþ™?Ï+ÅZ,§qæy>û‘½y òšÝà/VLŸž"7~n'|r*µÎ®â e&6r8ø•'¼Çg¢{g8áuXf Ÿˆ½ÅsžŠLi™Ý92Õ@V9R Äx:üy:ž½_°4uˆòßkë‰2]ÐïÖcEOü‡ªßÆ>ßàj4Q6Bdq˜ì¡ZxaL®R]²€ûÜË¢xP¯.šþã9GÙ&`)^s¾Í‰Ø.Ÿç@žwåT½xOÎu Y@IØòCdZcÑïŽ%+ÚŽ×ôÑH@fhévýX5БðaëÏgÁŸO gÌ©?Yq‰éÅ5¯Ç1Ž%Ljoo9À…Ãx`£Q®‹øo¡ÞmNXüê‰üHü@­–tÍ¡º†çôÆž;gõËFªÕ“$3žÀXüyuüG˜ùÃØÔZœyUeY¨;=ˆùýQKEKçƒÿÐÑïN£6£“žÍXFÁÔ¶/tôXóу)P—ðp•ÉebáñV²ó h©Ði;®ž$õÕÐøžE,‚,H»­Ï£ûFkã4² Û,*#˜zfwŽü+­yÏ>O·ôW/ð®dúiÑÖ¾ÜU¬ÐJpÉf诊ÁŸw ß-Ìü¨iø®äHkÌNhX3š»øÉXã ýx³’Ñ\ÂÓ»S½Ò‹ˆÂ_[/Ø×óç(ýØ1ðÕ{zR0Àh(ú¡‹ªFIBX•~é+Ñ1/gX·•áb^IÅÝ® VÙ\´ ìþc¡3Í0+S¤lÌÛÍÂQ~ÖPÞ6Ã{|áiþ,r¢d÷W©œ 22‹#6¨®f6ƒ?ÏK¶-C?ÔSl{È>òØÆ˜Ô6/ã¼Wg3«>’Øp+»:±¦óÿ¤þüø•·ù,õ”…Úö›ðǪü„úASm£Ö`þ‡¥ßµú—TTj)sÐïþxä—âÞÑÿ*ˆjçV`Û1´R* ðÖés\d{þ#ñ_guSƒÈ?ZaëZ%¿ù䳊AÄšžb õçr„V*ü±ž–”9Bò¢²É¼=‡^WSQ…žÀÊžÂ>§îx¡HEâþíá~RSÝJW–Ê 8s±™°7ÀÊ“P‰­é£`1a¬_¡Ï*OMT,û·ÌÿÿAay,¸Ôò„àǰÓi¨>l ³½‰üã4ˆKJðÜjؾu ¸TËÏÿÓ«â,ó¼ål,þ(¼ÓdX™ƒè’ÊÁñ/º³Z)"ö§ø™aÌ? ©LÂä”`SÓÈ5²õêD[­°«Ú"ÖòÚ$VüŠE{ÎO|°ù—ð/-¶1ÂúÁÞDø÷¯øÜ¢d•׈Πàe_቙5®.¿:‚í·øó}œ÷4Î×WÄÆ¦;:×9ÎüTD=*°ÚB»5À¯Ö‚M9™‚1ÂTØsOlTJl‘;|Òm#Þã<ý„ëÝlå½ÁÊòñž[øÅÇøËSØê'zwê?N̓çzÓ­ªˆU+4§õø½‘°Éóô²L¯ÝmD’^È~"ƒÜ°Ø_±ã'°E{ÉcѯÒ##QôYó>ý‹1Œ™Ôû•…%±¼Ý ½¨z9eZ¨;=ýnwb‚ ¯‡áT$r™YÔvÛBõt!›jûŽs¾¢5ŠíèÙâKFóœ¸á<œZ,ZyÑN¸ú»¬'Þ𖾋.‘} *$ãØæ÷/ 0÷ðG™©ö ÏTëÞ5‹‘K÷]ì7ã"úÝÕà’‰¤r£Áê@åR^¦†ôejmmò©p û‰ÁO’‘Œ5ã?Š™ÞtÒÈ®t2†ÀÊÝB혂é+oT‚ȳN‚Ù^ÓÓÀðµ<ùUyp°hä*øÕqò£D¨§¼ÌµtG/a'³ìÏõkˆÞ£¨Â,¡ Õyæ²WS‰/ÚvÓÉ– ¿2|cóÏ2³<;sÏ5ssžÖÒ»ä#óÏ+¡ ù Ÿûÿ±Vëk÷Gå¶ð¥Àºâ=>ˆÄ¦m=³ÖÒ½wU$cÍI¶#6aËdÇO¯×–f~m.}qëX½œséÿ‰ÿ¸)Å Ñÿ*ýî¿[ÿñKº ÿñZ©Kþq-¸ÿîn©’Rüj†r“‡a#4ûv‰ðE€t\ #±ù™ñ¯%Õ¯0ægáÏçu²º•¾ð×§«üÕt™Sew½¥ä[Jœ8"%ýK¾ [„]2ÂÜ99¹Ò—=s¸»1ÃW-Pctg9ÚGº&3Y8á?¢âáW“¤*ÌÿpÕ-ï±»ïr’4ÈßÌóZˆü#51¶wú—¤—‡àqWgÇÖ«á?ŒÀ[áºKP X= S€çÖÄÚ®ÅÚ&3Å!üñ]Wú“±5à ·V*Œ¡~‹Z ÔNÏrE+Îë{üË\ú'> ¿LðO2Ê©”Údü󈇭úóo"Ï6Чj¾þ†³œO¬GU^ã-¶Ù®ÿ2¹Äm1R«œÅüÁÞÜ…˜àWÌÆÛTåÌ©Îâ™n§=_}‡…툒u qö.´ 1áâ?Ò§n‚ýÉuè©¶êÅÿ¢MÀ¶C¼žU§“ÌÆ ŧ$$¾@”{þ#;,ÿZîÿaÎþ¼¶_Mnþù"¥€AQ©‚çðo‰ Žæßчeà€kÓ‹6³¥Üe Èv"ö4ä ŸÐ$}'Ó©©Í³BY{Iz&)`œÀºìžå:žáˆEý‡/LfüG€y~¥õçó`hjâg®‚ê¬Ñëã9+*‹B­8DD»{ÑNWbE‹ñ–Ñï.0ú`W¡@ŠÁ¼"Ã6Ú¸Çö i¦—Fmüj7¾°¬aãP빈â(N±¿êÂæ(xÍ­Ì3ìÌtöúàW‹˜¦ôÍøFç¿@ødLëX€ÿhCý ?G™ü* DþqQªÌ‚ÔäP/ðß÷ñš¥¨ÿxFŃÊdŽÆ|êÎo2Ãõ«¦0?°%ýwo‘SMc EwâOG½Ù)™ vTâžbGÖS³rN4p+A­Šaí¢N@eÞ{ô¼ÉͽT9®'ÿ¨dÕLÆÛxŠNhÍDÝõçóÈ?â >w½Ž¡/ÞÚ{ú—T//A2ß1…ü#ýwPéS¾ŠÎƳ³1lqSr}<÷ø÷îó¥ÿîHöåd´›ñÁªßùl×È?v‚'VGË5›ÎWël7©ÿ˜Îü¬«(¼²št›1›Òw/!qàcð°øz­(M«ûý™ÿW_/S?øÁ¾X4¹½‘VÒþ ÿðÂÏÊí•JeµŒzR.ÃîÚœ”¡ÖMù³tòÞþŸ¢ÉɃVçC½šK ¢cÉsù“žZ ÌÜD]»£ëJøw‡ÿI)ñØWXÊ£ÔüÜiåëàWyµLôö/faDÿ8*gVF’øO6'²}L4ÞŠ¨¡>ýKƃžôcÍ–DIA°"CrB_u?ª€X¢)<};±ûV†T€§@Ò{àGÞ’A|yÙw{„íùGAy*~a|NFð7:w§EÑÑ“HyþãüyVPåšà ë™ëK B„<®½öWFâ:À€Ú~Á£—%N* 3=D\Òg¬â72“x¡.ÿ‘AΪ4µPe:‰$ƒ[øAÕf3®×”W¨ˆü²Ê <‡¡æJìá(ïQ³SAMÊVýëÈ&¡¿…ýK OÁkf&}8Øô~ô\ñÑ ¤‰Ûj¿ÈÿG/n†ê¿ûS$G µ/¢þ1ºüPî§HTŸW£ÿn=VÙCý`;ð«Ždߘ&õ7ÞÁŸkàØí±ÆA"¯š„ï‚|G(ú`ö(Yþ²bv¡ÁFŸow'š^G¿«Œ²§’‰'!…¨„º;€)QSty0…u”øÊι³Žø3ÞgÑGøb /k#ɘÃd¦‚0lW½ˆ®@søó½¢<pùð.öØ]Ž0üyB}.»þ ÕoD*æ+yD¿**ÏâŠíñ°«Uôøž @M`ÏWhµˆËÜXñX‘/¹Nj-±ÚáwÛS±æs4%[p%>z$ú‘'ŒÒ’ê'xþËÒih&£DJDÌy’1C˜ÙY§b¾q¹u(ú³ÀÞÚÀÃÚ¡U~~õ‰ìaˆ†ŠÏÛëAI´¸ûv–ŠÑˆbšaò<µ;6Ü@ÏU“5¬Î1Åùûž°Š¶BÝLþ±‰X¸¢nq?»-ÕýK¢á #šÿ±Cj¯cˆ9W`3ª_m&Ê^¨å»j%냯´ú·ïí©Í,W7ð@_îþCîÿ5žr/Ì­]¤´ƒ½³æŸ?¥¤V°z€ÒôgªodÇ4¿*„©!Œð½;Ù[]ý þÃ4ã?ƈµaîË;êÏÓ°¿Šr|ºÏpÃÓFO›wŸ ¢·¦m¿ ÿÕCô»I¹¨šÐË܇ÜgøU­‘²*ÔŠ ð£¸Æ×µ†\¥Áðñáϧ­ñ˨¬Èi{ÆT¾áÆ-ôÆèðX ŸyuØò1oðÂ4að«ö¢þã ècy£¤ä«PJu2\ñ?ÙàÏóQÿq™Èùõ÷èª8œ®>éªþŒúó<úµþãˆÔYžJª=þ£Hm YÕ'xò$t!\Í|öæd2ñ©nn1‚¨Å¬OG”ûø]t$„-} Bíj¿#ÇåUèwé3LÆxS×PÌaÒâ-ºî¶FaöÑØ@çâÙd3_è~xýîúåÖ7O‰Œä~×F·ÕWµìþc‰Îƒ­Âª Æ_R£¨Œÿa#ÚK†“ µÒ×¾‡#;Ò¤2ÓÉ™žóK|B™¹MKE¬‰NGóéÖT äz=¸ò=âô|ÖO!©eCY•𫞿²jZ–÷$“±f²NÅ»( üärª42mɬ׉k ­ >¯AÅúÄý‡‰¨>’%®‚Mš†·÷å#ÔšˆzúG×VË•@!Îý9þŽ\ª¾Äš ð}KÁ‰­+ñ¤°‡=òsœïf©³êß„­šÀ™ÅåÚU##t¯Š÷ÌVÁ9‡µÍ:äÍÙ2eh©6þ<,f·Xé*¦¡ßÍ ¦rOþ´ÈmÒ}*yÇIÔ£÷ gÔ°aŽôëxãSd8~ øy°-añ«O²D$Њ\w5$ïÀ¯|xNüÇnæd¤ÛÒPøàÏtñh‹_šjWfz5Z²Þ°sº–WYêNOÅt+|¹|.¸Õx:˜ÔZ“ÿñ‘9|Ôv@–‘î$kˆîÝðWˆºR‹^¡Öë!ªp‡8ǼÁhØit¿sñûàó­þ»ùé¿{Í€jŒÂbÆ£öÁ+ïãœ/Pqâ„~·¹ýf\E§sü]QÐmTIU9º®™ùƒ+©7w¡J,ô²ƒÍ1ðƒá†¡lë‰Z*¦Ñƒsù@¥×NûzÇäuЉ~÷šÃ{zBX¨ÆºžH¶ºÄó×ðGo©ý;LϯԦ;«Ö™Ña”|ð CȶZâ[€.Ô°?{“ñßé0W퓬7´ØèsÃT´€‡òA«; ›U?ø–³Ía¾„íÎŽRÌš©ø’ç罈MÎÜÕ¾ ¯2ÿcþc*Ö.-Oå{£3ŨŒôcÉ*øò6_›bkdk ~ˆrϦk¨YLg>À¯ò†P,ÛOý?þâ±”Uþiÿ”ŸRÿ»{\ùªÁƒ| ¥-öÈ[ÔˆÐL•ª“ñ5þXæð9W°÷Ex¦¿aYûhÛðÊ¿ðÝôZúJîÑNm¾ô²øD/—vö'×q îRUæ×E¬wÀÞ§„U©NõjQút­oB®ÕöÛ›—TÏ¥Åå|w³ræG½q,üj©â"†’säÆÊoÕ[éŸáÊè—¦¿Õ'bß7Q³pÎ(N4_uÓ>,_lfެm{LÌ›04Û-I_åç`˜=µôDîûÁ|Na‹ÎÀ*—$‡q§—`j¢Ü›Ì?ÉDÃ$Æþbä3'`+ð%Z\­V˜üc,ú«áÑ=vÚ\X¢èLî›Ò”Š”åô/q¢Þù1ùÇ}:Gxÿ‘ åULð¨qd±¥Q½‡Æ¯ú‹†x¬ hÌÊs¯Á¯ÆS¿ÐþÃÿqüè#sƒÍAy»‹½3Ͼ…8ä’žÃ(ÿÑÒ~¤ò>-+÷î¹– œ¸-ǘŠ>»˜Õ‡©JCé—xŒU¾TÖ e®m'&ô ¡Îf8W0œXf£8j_ï´¼Z‰Ë=ó&_ð×ÓrOS¢¨ ãQÍÜNþ²äj¼yž~-ÉÐ_ÝfþSFºæºÓ¿¤#þ·1ùG;Ñ;Dÿ«%ò"5%ôb°ŸBß@ýùgjì àÇÊß?aÚÉ‘µ¡JÅfN5ÊS^ UpC£YúwvU4‹ƒ!vá5¹›ºH”!kOŒ—j’Á¶ÝfNú_¥Êå&sEjÙ®ÛbØ’¡7îbø•³>_týnF0»ÿ ÿá/å Q?¨É}ÿíüC¦Éå½ÒEm¨ÞÖïî’Z“”$ÿ¿ ÛáÚ~{#|$SE0‰ü(8KPÿQŠ.ð÷ÔùX“êiESœþ`ùB/ûY}ÂÓîN´’z’ƒ¨¬Mù RVú»úŠêûâKùãôoŸ&âQAvÌe:ˆoÝ…Êì¶ì£Áè†Z‚‹¶Ó¦00K”"‚¦ðçî¢vxxú6°oâÖ‚D¤™¨|KRÞ76ÿšHÿGÿ‘Rž„^kŸÐè?×¾zMžUkÕüÇ+æ†Õ ½7¬ïÖÓÇò‚è3U†~7ùG-LT? dh=uèîzv£¸~Ct°ß”÷Ò(y6¶-{ßIFõª51ð,HPLs6ùÇ<‹/§Šä º=~e"þc):…ÁœÉ/veB>S6ÙCÞ¤Dƒ­ÛÇSà¯'¦b3º&®6™µ¬ ïä11áv™ÉÑ_yWÈD$ú·»ãƒe–â|»“”µ?{3™_ < Oìwz»e~Tq[-2ÀÚðPð3;ðGuð'š9×h@¶ä ÛÒü*žþ Uø7øapò¿OøúÝAT“,#JEGÝ›FWê?²ÛÑ鶤º±¸9ÃvÅ–Õv}ðP&ž3ºš*8 ú—Äf>‰©ØÌÂcþ^ù?ÿÕWJKoÜßÞKþíþíß%O¹­r_i¤Q=åì®Ýô/ÉBÿ’ ŠP¾üeÿöÒeõ˜JžO» œT‰þ%Oá?ƉÜjgõµ ÙBíßßgÙW'§¾t®(©-澯)µŸÒZ%=\Åòe"ˆç~doõóSò7¹3hØQ,jebñÍXÓpÁ.è0Úðü”#_°*ˆÓ‰ÂÂ?Ô;#þ¦¥:I!J ]@ö²èÙ‡÷§¿ú ÊdÓÏáîÀcjâŸõ»ß¥õðç{…ÞòéÑ:ù¡-_Eœ_Žª…š†/ ³°Œ@þcÿvwe8øUwXMä /Åx¬ê$Øý=Ìy­‹i)ÖÿŠæ§YÝæOaOÑ×âfÄ'*¥`þ`q²µ1 LqÈ$*Z:€n?Ö&óÄ'¥Š°2y¸'«=Á/l€]˜ÏõômÕˆîuoy:¿ðÿQÿ2Þ¼"¹—À~ôD¿;C}OýGsr‰ <ç®d)IÈeb’ûô´?¹Ž%¹0p„g‘otÁž¯ÄËŽ!Þ_Jºd=»^ ß᎕OÌt?7®è$®Êjžßj®pý;)­ÉfJ¢´±:VåùîˆB¬"9ÁP£5oèü—Ù8«×ãÙÎ'ÆSYOÄ}’,'!Ýc§„ÙÝ—äo"±Ij*ùvÁ’¸j:™PJô»‡t7º$¥‚g=gÆ¡^¯ñn*ýoð[ðóåÉ]s)3C­Ø›ùƒÃØÃ>`Càïm¬iéw­ù®æ>ð˜KÔŸ§^£;šÙ½ W©Èøìéúzž šðãøÓÿQ‚ÌÖ”t¹³?ùÇRЛ[dXšm+lÀ3&wo¥q˜‘È<‡žÉÙ›3—œ¡¬î/êÚ»ÇüÝìü°bÅñ¼Ýˆ¦R^ØÒè¨`g <*K÷û´XÖt˜×Ì…0 ˹r9Û 4ÑÁ¼v†èŸèEý‡…_íd?$Óiëô •Ù%p¯Môž\À´ÞÉæ&úa%D|›‰±/ôêæaŽÀ…s)I®Ù@4Ýíþc–<]}+‰,\¿úk5µÞÓ,fkhõ©bŽ×I&ÞDÍPï5:À&)˧Í0ê{‚yNúTzDü>á›èwGŠ Ø’¦ÄžiµÆúq冣q£{ÖRæˆl ~Ð D±:øÝWTÅÍïz=35ùG4Îé–xGÞÜ(„Çü½òþ«õƒüÊ€ÿÈj_Dý¾JÇäÁÌl‹þê˜\UNH ”ô°çc¨ÿ,ý~W¡:ì)þ£/ùÇyüÇ5:¶ûË7˜ÔQŠÎg•_ræ¿:ÎXâ%ÙÁìôj|ö4q]ä•w)NX×—êGüÇu¤Df÷B_ƒ#re˜xüìÕ§‡÷a4þ͈lÛ wî¿;˜EeâĮ̯%ýncu¹ê)j $ZAN°üã"œ@Z÷d7ö´1x:þ0 õƒ¹åAäÛE4-ñÛrŒ´Ú=ÑP›‡ÇÈÃóíJ¾p†¸x-û.+þ#ﮢ¯²{>” d/×ï“‹ÉJ³ÁáËÂV,?÷ÿHOT¾ƒãm%¦ÊÇB_0ûw Ð_¥ÅîÍUKŠú'H¼q˜„&~öµ˜6‹“÷¨…924‡èþ!È ³?‚£œ Š0’ß²ø—Úx«ª¥4ÿ)T^¶Ñ¶’Õ½£þ£˜Ørò˜ChÃÒR/3ÂþäÚMZHýà1Ô_´~d%À·±êx-?ö²6{™Qð #h†âa›q×àßÝAÐú«IÂõO\¤´³àCSài7`ƒ>¢€>ƒ­Ô§1Ãb/Q©‡‘ ~»¥Ñvº õEˆÅGÀÌÐÓh£ÃÍz/£Bd%àß÷‘Yxà'Ó‡#ã zÎÄDÑÇÁíÀŸlÆdð¦ÂX{/ò1zVrWgeS¨k8HQ¹J›Qä"¯èN¬’üjÑ„~¹[Ð_¥²§ŸVìÿ(æG¹ÃÇ;‹ÆúÿÀ/Æ­B­7Y¸°,îª,ŸøCó"ÿXf €éè‰þj/õ /‡èÏr™nœñ@®óPÐsd<u?QÅ~3îKcä]Zt|ÿErû»d¼¹ÉŽžÑçJ3 JZ„ÞêU$Gè¡;O0þ|-Êå>ø£Øü_p‰;CÔ^y_iøâëàWy©àŸŠ7ÒàÏwÑûe•ƒ©™üA}âaXþ…føŠ£(›Á^aGÖEDs»ÿ˜,O…ÿ¢'Ä*|Ìá~li!Næê¯’‹dÑÈ—êQ™X„žø™üö3¢•mAˆ]x*¸þÃLÙ…Z7E 0Ú3-*-þü*¹`iôÅôoÏKG€ÜèÏÞ£ÜËe b¹à]ežì7T3§Ó‹‰“ö+øß{qþ%ÞøÔIþ»¹~Ž#ò5¹¯òHi¢æQ/ëw÷IU•J'æDW>Ka;”:ÞÑ«'Òø 7©FÔ[U½­ü?âÎ<Š-ëÚ%§NUãîîîw×à.7¸wwwww‚;ÁIpww·àà+3tÒ!LÂüßÌÀso:!}ºäÔ–µÖÞ;žöB}JŸÊú}§&µ?ósti'îÝŒ%½Š}ÝŠÞ*µº\ËJ¬Gb¾¸/tý[hòËÏ©_èßÓ)Žm%ÑsÙ,¦½8Dœ~ ßQûßöSd&’,4×Q?øŒœË›ÊñÁôˆH„¾dpgÝl‹vî2øUPï /u5þ#7yÄjð«ÔFj4™&‡þ‰çÀÁzÑy·79WDG ë"üù6²œ2ÔFF{°ÉÎ’ŒÊÌ òcÕ!ú¡‚5 c·­7wfzjÙÇÁyD|úÁE0>]¬W\ÓeSV­Bþ™ýM>QýîHç.uÞ9»âŸÅõη*B=¨vÐnjÕôTðç±») ©Ó¨‚%ñÆDVà?ñÔ×°«Öô7Ìü¨€6Gu.$½Ëþ :ŽÐ_e¿êg\D¿k«·‚ƒÇBÕ%Rbá&–‹[ðç_CkˆŸR#hc…*o`ÝZã?îùdSú_õ[‰W‚a%Nœ@õ`´põO,Ò²º”Û¨œ9XÃwjVƒÛ•æÉßɪO±¡‡ù,8@½hWñ¹¶Œ·Oʲ‹×bWo(QùV,*jTþG÷EtA 8â ÅÕmΣq}]Í¥•…ŸÄ“ <Í®?o†]5`\ß‚iM{øŽÚ~*ЃlÕ{(‡ªß8?ê6~·/܉ zeØó P_xÁ¼Ã>õ!k°õ»¶K'Óþšþjõƒ×Aœ¾ƒñ¥É¦–±Öt£ ¬q0¬•ØÏêtß=CL_,g+knÁ'Ÿ§ ÖL=ñ/ú«Éô/WšÕ«¬ £;€¨¸ ö½Kö¢ ¹k&7ÈÖTç“Màä«P 15ë™›+BÜ—×ðÉl“¡{}&_ËcT]Úö<* 7L –†Zç˜?x‹ùÉÌQdŒO 3£<,ÿ8§ôS=áïê‘{”ç¿¶° ùÍ,渘µæ­_¨8€‚w25]áÁâ}‡“-Ä7»’Þ0–ëµT~•ã^i\”QjZºÑ/±œµþ£ÌÇdØáˆÆÄòÔ‹W‚¡>B,Ñ› ©¨o‘K´r>{È?¾‰ïè©Ç²w=Å[·yá?ÆYðã~h¡UÞû Òƒ²å#§s7[_é²$˜Sa9Ýϧã:ýw'‰ìø-¢*•~W‹­4dZóéss^kºc­ã!3Y&‘o%pì㜒¤F·#ˆ9ïƒ_Å•nbÿÏÿ‹_÷)©‚ÍÿxÍüÁ?Ó5j4uŸê¦ÝÑš1¿öR ÿ±Vi®eЪjÀž>(ÖRU½õÛb¶©(W´úݼäBôÄšŒ€ÿxõ‡}‚SŠH²'ý¯ZcïK0óþ‹È .Ñ"Q[a뤦Pò^ _…Ê.êÏÇÀX=!RnŒÅú}ÛSŒêR1ÿ)\úÝ"tÚX&Êà?&aåVŸfÝ\Ò¶m ‘™¯åØ!Ù±fGELçºî®¯r«3ñ¸'Ð_E'^Þ rQ+]-?/+“D&J¬Dt¿ž&¾ž3„r]¾áúrµfd ð@OðèÉ?ÒbEfâ?âÀ…?e­Ëx”Èò"Œr?:ÿý®j2_Š‘O!²OAþñMÜ=ɺ>P§%AY&5Ççi}IWtûH7±²&߉vz¬PŽrŠºA„õ¶ë‹às¯Á•„?·{fyôeú3¹ˆh=\űoçYÿˆ…oͬSJê>¢#yÌpª5àa¼@ùÆsý§_uÀ[æÅ\Á>{ã)SË.Á#ÍÂϧÖ$Ñ/øÕ8­–˜ÈNH„ÇñÆÃí¡šá3ýq‹Ð—Â"³¹ŸnŠÍéÀÞB&Ãޟ⓯ÓW0UüãCœñCõ½ÈÉÍÀu÷G+µ›³\G=_rr˜CàW6Zr•ú+ä&]K’ó|¦3âi4­ÅØåECðç}Ñïvƒ=ðËß0ŽÙV© ØBýy"ÇKsôÄ4ÆßáÎ0ÇüêˆÓ%")¸á@Q‰ës¯_üŠšþWsÈ­­¡ÙŽHì»ê\Ѫ`YðAæ×ö•yþÛëúŠä–a&üùòÁ<Ö1jSÆ8V;®Â±ô·š3Iä=½[Ê’ÁÆAgh€,¼Ÿy ò˸œ§þqEÉäÒÿª±šÖe_„ÿ4ÕKm¡½ÒRÿqQ-Í*Ë•êZ.­¶6XS‰íÿ´âaæ×ö n-›bB÷ÕÒjÇÔô/©§÷Ò/’„V“üû£È5ž‚ý¨rS›ú‡‘ü#J ÄLzšM%td=à÷oö/‡˜ÞEÄ@ÅH]*jàMD•­©…ëÿŒžÞ{ïNw´´(xÓs¹é“é_R“]“±’ŒøïOˆv1ŽŒùÌŽ{,⣾þ<·:ž y%z­dX­]øµÌìÈZ°Kˆåìþvÿ¨<Ìu(h$Õ …q·?jSØóm‰ñmÿñ{Ÿ]mv¬Ò<üGB¸A´wüJÊ»xûÉtþÛìj™]M¤U%Â_Bï‡øäjßÄøÁ6rfʼn•²ùžÇTsìƒUñá åÜkëj(G9@]©·"ˆÀUªÌ1^GY\OòžÈ¼¹qž®ø÷ÈZÏ5ìÊãáh ˆ8ø®IÎÈ/èèVÓñ\ýѤZp)™J"ßyà( ±°É°È'É&Np¬¤'Wtÿ}àÜèÑ™†¹^«(Æã§“`#ãÉŸ²/˜+‰M÷0s›gèŠtÉ,º©üÇZ>1.ÖòŸ€Þ63ÜêÀgü‚úÁ,œW&9öÃWná:zQ†û¤Y~zó0>¢Fo ª¡òt ô泃_%#ÿØå²b?M>Ê~- ïÒ‘óÏüóé ?P&¦þüVµ³ùžü£)¨Uâ÷C C·ðɧéÉùMoå²^Q–«´D¬V÷Ža÷o_I¶0Åq6ù=óSÿÑ‹} ¿> k?Þõ¡Ìfæ’‚Õ¾T<à?â²m\ô!V57=Nès%Áÿ·á?¢’ÍNýyokAWxè¯ú`í3™hNÀz;oîu’æG†|š|CÆ€Ìgæa•ØŽRÖ^3.usQó&wÄ¥zãëRóÈühd¢û¹û'è•[NôqÆn#Õ¾º´Õï°•L…÷Œïf ò¹Vuê\žƒ§Õâ &„Õ††ª ]ºªQcRßÊSýëÉpƒùêâ¹S­§÷€™ÉsŸ%ç+³£ãókWð7ÙG}æ®c¢T^ÇTµç Ÿ9­Ï²• HTÎÉ_<+-쌧þq‘þ‰÷ŸòΗÿ.~eûVÚ­§^R÷ä?*õµ¬ZòhÔæ…G‹ä<%@9¥¿&‚+ç¨ÂüÚ|Ú-õ5:…zÝG{ú‡óÏ#ÃŒ¤b1p˜üÆ^¡IÔZdâó„BŠ™"€ùçá«ÿ8£ÆÓ†²š«·‡½:Ww±Á•À…žƒ55ç>v»ñvˆÔK¡Oaú‡®þí¥ô…úFQ>t4f)™è)øzLcK1QlØú«T`^áèU_JÆ1WV¨%7’¤Äê7ÇÖ-åY¼‰uuàEÁý®DÕ™N/é¼÷¡ßž·Úhê1ÚsöÃ&¿½°]ù™Ø•^VþØŒkä`Ïç$øqjÐä×5³«µ’dUÃÈ?’‚öúrþF—ôŠÊÁ¯xºnñkðÀ;Dõ'`å÷¢~£X&ÔΖýÕ…z7ÎÇ |˜ãèòrt_ð9åÐ_­×oRÖUÐfìä^ð²XôB±à¬BãÏw(eÉ?Æ’M òe"›ZN”=šú›î ©iÈ%kbá퉑y½ØXF·’]ðþWñ™ÿ1H« _¿zŒš‰Zd“=ña•á.ÚÀÝÄò“Í7¢:oƒl £R…ê’Ñè³fÈBøÿÙ!îË#õøU"عò ¬ÁÎ{ ùGlr˜Ä£©¨Y{mý¯dQú·Oã róY—Ћ­†ÿÈ`”ÓÖ¹¬ØžúÁ^D@Ù½“ˆôÑk Ifv 'Ê,h&)Ž^æôW¨1)KÍý:‘Zùùd±Å #„~ûµ¿_‚+xÂ8 çѾ‘¹ÿDZž¹|Ÿ™ {šõ¦Ñmey8œÊ1®æ°©Ìòb0ÿñ4°þ#&‘ÿKö•/gïôW¹¨¿^E}|²™´–'ùǺ¡ŒdÆÒ~ò˜Ad[¦Ùÿ~‰H1(ÿØ©Î×^À$n6æ·eV#\{Gº0&€5_GÿÅåtŠœnùR™ é<õÌêÖQ°Ó\¿Ê<%é_Ò9˜ÿè¥G OUr¢Ç(r¯8o,6ã9â‡zá5öRQÌ:Kÿvw|æv˜®“d ^TþypÏÞá?T®Ñc”3й 6%..DôÕN2ŠqÑ,ïØc¥b²»‰ní¤UÇjCÿ«kôOìþ†žÁå©N¯nE—ÑÁo‚ßü Nš'\h¹ëùÿÿÝ}¥p°úÁçðÿîüÁOÊiµýwûêu]³ÑÑ9àWÙàχjŸá?ýÑÁV¼àÏû±Çk€`õÒ£ë5èõ„:ÿÄëwÐïæwyÂZ\¿Gÿ¼ÆØ™Vô1Éa|Rºi)°4ÕEJ1ž¾ ôOa-øïûU]«#T¢öÂx‹BðXä¤bXÌ ìDY2îaôß-,n„cÅšúZª"KÚÌ%æžIÆñ=QZìq29„(ìÈÕ3ø[·‘ß¹‡·°¥Î‡X>gÝ02á?ìþíëøÛ-Ë~ð«DÖvÝ[q£°nãŒÿêÏÍŽ±z]áéóC9»^ø¦µD£n Íc°ð‡Ñ說þã:•ÃÅh5Hùâºr<”ÏÅð_kyòâ“Põß_y߆'ÊNä_™³ÞƒM{ ²ÄlQöCòÊQvPGà?΂2L&ßxM&R“ü#à-ë)}þŠj6XÿuhÍ’A¥àJDáÚ’}þòg¬’EßÉÙ}‚…YŒ%Œ2WÿQœ¾–¬;ŒH#lÝQþ ´¬kxngéÆ×íÖ¥v%ÄŠóµ|bÊ!Éü¦sx±W쉣FQPz»â:T9/ð#w¨®èf?d §ùúû\ ôÞµZCQΫtÜἨ ¯ˆmi[ˆÍONÿ«f6p÷iÖWêÞ^ȪfdüGfþÚl…6º8gRD;âr Ûk¯E+ò»+héöÁGc¶ù0zÛv%XNÌ›ýnBÇó óž:˜{ðpé©®ˆÊ$Â%¨›ò¦ðpYo (bØVõ'ûùjl–³ÀþûÃT2sRžÿñžØÜ¿ÊBÿÝþàWa†^Ò©·Y€š— úÁ3J}u/q‰‰T"ÊÆd É?Á¢¸£hZ îO³›*½¹¦?µy­¬(FÂÊå‚ÿH†ÿx̬Vǃ_e#¾™lÜ”vd•ÚìE†‘ÿ±]ðR˜óéXü(Ž”èyw¢>+AOF/r…Üí&ìë"âoAo¿þ¯vÐt¼³+þ"Ê–â‚ñÃ,àÈ O1ϱ†÷ ¶$ݰüéÖU‘>ñåPw1«²›#ÈV¨àó“OsîÂ]j½£ÈEôṎL½“ŸÙݱ—ùƒ‡è ×ZIVÓбÝñÈrst±Qy’ þlx©ä<—q°B…}vnbóÏü/~=Ϭz=h'¨ÿmýnTõ¼ÚIóÓZé¹ôjÖ<¬¸kÅ´fÚüÇkåwªÎÐOÖR/èŸÉ?fwÓ7Žþ%ÕµøÚkêû_Ñž©)‚Ž:ô%\~šQD“£©D¬AÄØ•JŠ/"¶ºBK‹š¨ •~Óè‡7Ô(×e‘Ào6Ò·‡°Ø£çÈ7·`¹*“ÙD4šŠè”Nai 34 œÿ±ÿ×·ÿò“ZúJ}…(‹ EްDÕ—¸5i|9{!dÃZ¥"x¿hÎ=üË2ÿüA&u*øÜú_%çùÜλR±¿jb)6uA€w©œ$^?cl…ÉH¢‡å…ÁøsNÃȦ‘)ÆFO"*ÜA¯ñâðcø×Cä`ùyÎ’Sxˆî¿Å¯¢«iµ|† w߈Žíý(.ò—0?°qÓñx_9Ò[D~‡ñ¥ÛÁù^T×CãäFQ?Ø ¼ÐÎÛÜÉCìnÅùûžç¾ŽáE”¡˜±üåÈO6‘å¦7„HbÔ¢ûÙ¯Wo•RE÷†o£š„ȸÚéõDÙCx.§ÊÚ0³í9WwfLœí‰J¥õVÓ+8–Ï?K®“÷þc¶Vü£Œ‘Šw ÓÓ;²¶ØÖ'²9wÓ£õ¾™Á|DþáAŒÞ™«W¤k*þc¢L‡ÿÙÿêžê+2±ßRñïÏa‰Osn¤«GóŒÜZÆö°úŠâÌœD·Žâò¾ãzȤ2h;\ž—ZDòÉ~0šöè¯âÁwÏ¿JÁüŠt4¿ª3ϼ†Þ¶9NAê'6㑼Xï{ ²¨ì²^?Q^–&^ÙƒÊo Þr?<ùbæ¤bÇ~æë~!rV­gèÏÒ0­cº¶úø÷G bÙÌ¿¨ÿ¨ì¼)”nðç)ðׯ‰Íü¹›)$“yÉÙR—/"ßèJg˜èl»S! KÚÅ•í€Z*šÙœ\î$•^A|ëu&øU.êÏ—dž­L¨Êß7 ùÄüs»C×5T¼)à?v64£¿2dW|vÿöRÄ‚ýÏÞú·S¶ˆŠp ÑJ3±Þ¸oJG*k>,|8•t¿Ú Æ6”þ%SéÔ <Øjiv!vÒdEú'æ“Ãéw« õ¾d—ˆƒt:yßC¿{žþ%ëÍ«tØÅÙ6tøÐ?1•£žU*þût¿9'»Z™e{üÍrP¢¨ªâ€ó þ÷^\ÃÎðIiöo÷/ñWî¨í´ˆzS½üG ÖÜDýy­ÖþüžYAç}[Ù@ç¡’ØÃZô/ÉŒæê<•Ú­aFð:hênл~ÿ*¶Ð¸g§D=T·½Œ"¹[¨Å…y-.bˆ±èyãêÿö`ÿ²[ý¡– ›9Ohëwo‚fÖ·s±šÌÆ[[|h¼pˆÔá¯jR?¸M 2“sAÃæcï¡¿JkWËvXœwرg"5(ÖÙpÔff~í_ÆNê?ba•ö‘}ä¡{–;~nžQ ~;º–süÆXì4ðç¹÷>Ø){ùX›Œ}¯GVµ‹có£þ#k`WApøŠø¸ÙXëÓ¨ 2ÂלÅ37§¯^Гl!^FTckÅÁ—æ¿Ææ.D€ÛpÇŠÙók¿qÎÓQðÐÙüÉî¶\l-¯Šüz†PŽrù‡Ÿ€?Ëæu/R‰£{Ï'43.éõ°ÿ¶°üóP/oá|mþ#¹QŠîý®Çe7KÉGý`K¬ò0¤êøú ðDç#ÿ¨ #Ü‘»Ñk|F!ÞÅÖïnDŸu–(b3ýK‚4ðÿX{¸VDŒ!wާ»QV€…‡+ƒ½lgæ™hfÝfvà9ÐV¦Ý ý ¿Ù5„~Yœë1>Tï6  R€¯ŽÊ±Ägv¸—\F¾ì°´×­HæSY Œhjã¼p!vwÅä3ôD‘€ €EäÞáêÆ9Å‚ý˜i6ÅŒ¡ÿF:øÚ·D»Gew:ÛXâ¡.öå3—‚6~è\ް?üyYŽÊî1Üku5×\³Õ¥±­»P&PcwØ|(š ­}øûºî!Ù!Óš©å5QÏy‡É?£Ñh„"#?W®1kÆËégEÀ_,1GQgñ‚.('˜ÍçAÿÄø‰pSìwù_ƒ {‡ÂËW‚_E¦£Ënø/25=Õȵf25ª"ýK‚d©Žuèd#8£¿ºƒÚ8&5×@‘sUbGÕDS§ÿ¯ö¤þ#^y"¿ã!vóR‘Tã<ïÒápŒ~c2ƒùê™9Ú h™GáÏÝð¿'PéîbµºŽ#Ž˜Ü‘Ú0ûªã4ÞÍ$²;9H2¾W""ìã_âwºç…ý¼¸Éü¨¯ÎuߟÿY\ï|«ò üªªv_+Áü¨ójv—Í¤Ò jôJ`ÆÈŸÕŸ¿Sö“ô'ëÏ£”D÷×2¡¹:Fÿö²0£ÛÑò&pÙ¿AÇú«¤ø®ðe°KåŒþâ¹H©.Ô’I=ÑŸ’=¾¤~ð~èo ñSOê?ê‹"ø[`9s°LùÈIß°íÁÜeq„*8n¸ê?òƒÔ¯y@ð—á£\cÉÌS`3þiä=ò„ ô³JÄü°õ»™Õ&øŒ©ÔÉ%$óö¤?K|Xê&XâMèíøŽ÷âñ(Ì< «þüŽ6[Þ ¦pÌÎ-ÑÛaOå;¨¿2ðy/‰«/Š=$Æoe”F×ù»úDÌÊNÆ? æ%#Ÿ@Õ¦þ#Ìè)XàPY¯¹ _p®Àî/5 ¼m õçÁ2dçÝŒÂ{øKYBп\õB0žLŸò0nQeúëÙÖ{"«íf­( 5úát ÅlVþ†ÿèŸ[ÿ± oÔÜr8]?”\ö<¼û(°6ËÄâó‰eðïÛÈ{èY~Ñïz2ãx:(¬|‰]ƒ¹Üú¡…?oÊ¤í´æ]ô»õÍ-بïàH^DÐAa²S=’?Ëü¨\øTôc̤©Ë m‡¨ÜNOõú:j Òc]O€™¿ ä?¦ÈTxGðÓ»±úÌ C¿ëšôÔýVökixZÄűñ«ZôôÝ~•Üq“ú1dÝÍÆ(ŒSðwéúá3øë(!ø¢*¹Þ*DzdH_ãr:Õìy53󣲡k}O×̯ܳ€ÿ¨G®ÕÿvÅrz3½¼$ª:ïìYôW'ñ”nìŠÂ\¹Fä)Í‹ô-Qé·»œùçõèßžŒ¨3|òebû®ÖTò˜ž¨ã¢š-8—‹ÔŸíÂó(e"¡³ÇÔ_”&ãIŒÞù9}Pæ£ ^€Òl< ºBÿÝ㨌—2{<“µ¦Îƒ#´§èGÕÌé?f©ƒõHF,8¼ñÔ"ž&ú?kæ ±“fó2çý¡µeq Ö4­ix€ÎVô»íÐïÆ ³KQT€ñ}œ»ðxXgÑ£·ÆÚ%@ <ÃÒ̉œ[Cø±äçI§è¯UʼfDÓUŒþWø•àŠÛóÔé-þ¬BÂy¹ÿ¿^«Ú ¾È“>ɰ‚«9×”0ÐîXÐ5F%˜O#¹ô&þ_I,ýUÑ0¼ðum «Ît+ WêÚs"¡Lðú ~S“ÉrMé˜쩎ÙÐ\ƒJÀqzQñö ýg„¸/þê}rÔúœÛXüÂ]"ýׯYªêò›—åY"údTg_³ÂWÔ âp¶¢ðç;aЇËlhr„è_ÒUû.º±+ΣÛ!Û€_%B/5Õl ámµÒS?x‹î±È#º™Þ°ñiAœÃV,€Ïa|Ö]ë?–ˆô²ñ‰­1›~õþc,ÃIúÉ'p¬ÄD >e#ëÂÛ-[íÆuÝI¾ukžAžÕœ7ã¶2PÝ€ÿhÄžªNe|sPÄDä í¬o b^ð Í镎.óíè0ÿþ¢ˆµnªÚfìÏ:ŒV1hŠò”2‘û'n7nȤF?8¢ÔhÄp”aS|:_ErtCµûÕJAVø&)!óÀ]µ#n¨.wÂmµÏÞêÏ££œÍÈóù,¼|c¦uü «_“JÆðG¯ÁÀòÐÅaÙüÇüú2‡6 ]ЬFëbr Jžðiµ+¸|EÐß–h]„ÑýÕp+J³]¨Ä¦ÓK«§c½#¶#>ª,ó?^RûRͬÃü¨ÞàÀ»‰Ãb ,õ?Á¯Ž+1Õç?ODùª U“‡Ø¹Î ã…Ÿr’þxÏñîúqµ5«,QÜÐïÕ&Á¨ê½0ÞïúÏǔԷ"šÏBŸ½,zl0‚Ûê}2Ó – ßM¡Ytœ1ÅSîÏvz˜Î±+¨ÑÞÅT=5 4ãŒþüÃË ŸGZ¢>W ‹WxŠ#Ý0¢Êв§=ö|(uŒÓÀÃíåa*:»Öo/êÈÖlÂß¿ÿñUѵä :3äé“Ùû7§8ã…ò¶v9~$é…¢é6¶Ö“ d6×xŸ¨¥‡6«¸­:L·³¢·ø³ª WÏðÚˆŒ¿7ÎÀ¾ Ð?cûÛaG§€_-Çûeä ~á9 b.ƒ®ÛôW'aóß½A«òà!ãÑFƒ•O$®î‡xf´D!µƒjíø2¹\h,&ñÀ/m3ÆêI韸P«~Užˆs)M~"éœS~lz7³:üyc* ™»e)³"øUmbæ¿ðL°Ï­etòé!îË#õ=lj’ç @¹pKýÎ8ªSÐÜX?ÃjM<ý‘jîÂ&³MñGä=ŽuýP ° Êió\Vl£ÙúÝ#øßTüVg8·¸ô[Zhv!ÿX²)’ã øÕ8ªKš£àÝI7”¨ôÉ:‹Gž-“§¦OfÐÕS”¢z¼=\œøÆ9˜~Z½Ì (o¿b¡ Z¯±|gP ¸Ó1d»¬‚GnJn· Œ1õƒÒê_rO) ÿ äñ ùŸ]ÿd2ÝêªÙÖúŽöysl«ÃS$£ÊqTàüó1Dþ;©ì쀵ÿF¾ÅÁ`ùÇru€&¹§—ñõ2954™©&oÅs¸ÃM˜x’pÝs๓’žâU²†h¹[à‘ÜØ‘­™ÔÀùìõU'é:,xðÍ\rµ8gÜcâlòŒ¬p†úÁo`WIè `ŽAg<Ҋ˧U5›±ÉÌʃ7%©´ýyý΃_u&²@þ‘´àƒYÙ±Œ Qñ•½¬!LéÏüóÈŽ8Ž~t‚÷³®³{Túwe¨;󦪗郲½øÝÜŸŸóŸøz‰þ%Oœ j{5™Ë¾pþS˜/ê)ú—\c~mý``ýÇv¥4ªÛrÌ?÷§GãŸñçºz]Oú£ëD±aùmÝq QMý]WM¦%ÆOŽå Å¥oÉ;ºÆ4Á3}&óxϺƒAÜžÖÛœ¹UÏÁB¯$g,*~5”þí=ð^« ,ÔxV7,‹Z &{ëCõg0 ÍdIôÂËY«7ŸyM¼¥Î·¥óÉ º=žJcôâ½°Ê}É3ò ¶Zr£yÕ,zOxMV%ZÞ'‰Ct¿Ø}(àFØ ÊÔ=CÿXs´Æ Z2¢ï0ɇ°¬_ðÁÞàWá£Ëcjc©²˜û˜ö×€ù͸zYÁJ<à :ÉÄFOájíå¡úE¤bÇB·àCÆe¢‹µ²½vé‘H•YTºgì¶¾á?ªšš¹˜l¡ý –j‹ÿˆg”Ò\3ÔD0P;ð»¥ðÞ­á_˜cáNþ±Õò²R;îS8μ-‡‚°—ŹªËè°²‡ìì¨oÑÞe/öµ¹jçÈÊË’<1®á?†ÃìGæ˜ÿˆH~´ŽõÆÀ|/ƒ¥èMâ vv kžþ¼µófø+SÉ?`ÝX§ ™©;ñJ2¦Ný 6äFïIæa0ç© õç]¬Þèo'¡ÃZ…ú +L“j6i¼Á³²Ã¹Þ:u§¦’5îãéz-ãMñá3ð)Ué¿›ŸÿÊÛ­–ÖÿÓŸ†ÃuW±žãû‡fþMFÜÔ¥ûXu†þœ”ÄŽÁdwWƦ6à ¼ª–‡‰†Cð¿ é¤Xy%ãé”ÙÛªAÏÇŠfsrã»ìóo²Üƹ ï¨Íõž Øc‰XRá[˜6ê*¾R€„µqx2ý#!ýVŠ0ÿü>&1Q±Edç›?ÏPXìsžñïÅ[%£úÙùq_•Æÿ¶~7&ú«öÚe­¶žY¿¡Úsíî€_•×Úk˜?øE –ã<%¾z<¡Ñ|:XÏrús-:S¨^Â3 ¿ò×L-4N5èý!_èwÙ‡ç„ÏL^cX,ŠªAS Q?XBØó¤LýGÈ7…úý!Õ 7Å#Pÿ£ø‰ÑàNè¥2Õü+ÿEF 4†éç¯ôá®àúâè¯6‹ªà÷‹àÂìùQW°©QÐí*rYü;âæÛ")žn’xíò̺®óïò¨ P†,§‰ ¿½¤*7ØZ PúµXŠ+Tú%%’¶U‹±§ñu›§úWvk#É?zcý¶’1{:U£81ð¢fþãÖù1]téƒÏ!jþv~mdúïÆŸ›Ì3”/ôƒ.–mÈÙ¾ämlíxxºrÍøa׎³îrŽó¸(ªG å(‡ªóõ† gAÀñû§ùšøO\¿«úU]Å2÷#ÿ°×YÄ9D¡*à™ž‡óÉ :óJ=ýªŽÍ€5O ÷äÉÞνNV0d-¹Œ~ó0lFL®ì|¬ÇŽu-ýh!ÑÙIZg1bzà·ð<×QÀùROQÑôpJJ/¨CL…x ~•ÞœL6S\¾A9ìÎXV¨‘6ËeÅ‘äÞ]°ö—Á›ÖËøÄdäsÍÙä «™•Œúó»t¿%7˜ƒ©ÿ(ÿ¼ŽäÜü pÂd!øNô/)Nþqн1HÞ23ÿ|¾Ù‡î\½àÍ·òç­µæ}9ÒüFÎÔ?TnhWj³¨¼)*:oÆ ¥jO†­‡ÈOÒü#‡ùƒúÁ(ÖßÔ,€‘¶û·ûPáÝ…¯“è0µn¦žÚÿˆŒw¬šný¯Þ)áÁçe~bØhÀ†RÏÝyñPq}kòfz*T8JªL²Q?¨ããìþ%óé¦Ý*>F¨û“á'ä‰È)· )ïšUuðnV,«-L¶šÀ¬Žþ|·[¿Õñ *ç+SÓû4A%kÙK„ùó„/¨=À¯Š’!£—Wñ3kÒO>?=VÁò·£ÿû\Ç.G2&H†Iy…ö¬úݲôO¼ |:ÙaÛp©u~~æÿÕ× ô¿ ê¿«ªÍÕ¬.û,üŸ‘þ‰õá?*è%ôëª]—v’þí5­?Óž¾ñÝŸüy§\!ÿèJçŒüX­JúC­š«;Ôiö'²|¨üaÿ’¨Bà­Oˆ‚ ´ùÀwnˆTêH-)èX<ñM_®S÷ ×TÔJBƒ×¾ˆ¯X€Ý/Mý ŠòÈ‹û¿ [Vˆ8bœÈFÿ’ðøÌÚúR}®( iþÓó(|C0ä„r(öŒ9´àöñ¨["^†yoj˜ö©B'©-Wð®´øÕxüE "Çøcè“vóI© +ÌþWžÚpòŽDâ{™OòšŒ0/qka4; ‰pu9‹þ‰—À޲àK®b#»ŠVêÎß\Ç´jz-!øÒDX™Œ°ð‘è¬Ü„s½OÏ©O`jSáq#¢{‰ÿØÇ‘î#óGÉ_1Tÿ1„þ% 0aÆ‹“}<ƒy* ÷ã –îiÜfþ¹?¹BPù9Ä `ð=—¹Ïå‚uÎ:ЙJmòžX­ÑÄÏ•Á¨Vc%§yðm‰Cû ?rÇÂÅzK™R.ƒÙJôà EÿÄWAK¾¡5ãlí9œÉE`1WÍXpßU©ÇÞIÞŒë¾ë>V°¸±[¸Z{Ey£>é8Ã,à†WÉ?v£2ÛI¯ª¼Øöýf.&wÏG©óƒõ³ƒ_ÍÀÇe#×9£´HÉ™?èou¿ÆTÛ£ä ˆ,c‹±ÎUÑïÖwY¯“(ÒcÏ䬌gð3v“·l¥þãý³üàòQ;űܼÿ‘†ú»Ê¿6Gw–«“ËÌ.o7ç¼@»ÞˆÈõ~7zj—þ#€>%I© _†¾ØWŒ¢+³Ëþ kÉx"s„‹jXšzô\±«¢s¿²ˆ(b)øU¢pÖ‚ÿ¨âáú+wc*Ö5Ÿlžh$ÖãOì.â9ø:Ld€AOþQœóYOýùbdÐð˜»Ô($¡T Ù‡üøþè–H ‹¾S< 󜣩˜äWßDB2ïµXûà£nDJ+°^>x$ðçe±§;`!"èvοúsL›EvÑŽß®àþ,ìé¿Ý©!YÎóŸ «gëÏq%ìŠícø™¢¢‰ú;ÔΠbž¡ÑTÙÆãÎZàrmÀü^€\]Uìv­ÂL?&Ï?ƒ~˜ŠÊ³ð¹Cí_Ò‰)pýÉ;`ÆË`Å÷‚ʇÝ÷#Ãid¤JÈûÔîz2(ÓF>'>ŸÍ(6î×3ö¤ÉEôW¨EIÎI®¤»\þ£>Ñrj%ÝQ_í¯O·°Ne ›7Ÿ;RøKýÇ<­©˜ÊNKË1Ü ô½¹N…À”ÜáÏ€_2A¸©Ö¨A4> Ÿ—-ROøî2Ùëð÷åúyˆ+–IÅüj‡fRs3ý¯r[1‰xO’ÜDͤ›ö$®BtD<¿[,ËáUSjÛ\Vì­™ä‘[È €ÉÙ3û’ ÿ‘­ÐvzÓ>¶>£¿ºˆ¿kMø†è‹×0ÿüüÇQüÿkÝ•ÿ˜,*/âzTÆÝ4ÎÈEtßÁ„“¾T,,²ˆ–©¯XÛ?€j¦‚õᓯ ¿JŽ~÷¬ðpÞ”'ÔxƒjÖÃSåô±È´^R3Ô,ªÇ3÷é*=#Ï€:õ£®°'‘þ^r­>d[qÍvÜ©+ÆÚ`ÚÇíêRøìx·é†ŸL€ŽMN5þMȈ¾Ã¿K:‹$zÐÆïþýÕWmKÎz«Y› Œ¶1C=q Ëz RI›yq„^QßÊü*7,æ"Ð+Ož›]Ä!™AÌ%ñEAb°jì8Da[„êÜÃÁ(øk¡¶ÃZLeFÙ…×ÉI÷¬†XÏðügˆVRQEXÔe({/R˜ú«›Ú8åvØè}°1_³àÈ^â…ÅâŇGö'³û'¾& ªÛñ·ýwS«RË1Ÿ›;>¾%(Ês£;>3‡1”(÷<ý|èrªÀÈB¡Îÿè¯nÑmæ%üGHþü>ó?2À­¥…ÏM¬}˜ÝwÌ)õ×̼V"¦lŸµ ð¡¼f4sŸX?s7_–ûÌ ­q>åövÑ¢råW³{ “U Á®%¢²bžYÿs›•ÀñûÚ—ÕÛSýv+’Ïi¢§š#/Ó~Ð]çG-…ÀK÷€½Öå,îçÏ¡K}Oêëš?°¬ÁDtìgþù:NáGÈV\Ïsd\Éð—E[ç| ԇȾØU!öu²¸Èæ5Óž;˜cHÿÄS°(G`FSW8„j‹5xß>h«“™½`j£” ªBòQ‡kv„¾Ü˜ièf2²™ê(›:À—7F¿ëo.¤~p ý'-G2ëž¹—>V•@‡)x‚ÁÒœ3*ˆ¦¢‘óÙ›€Þö-+’pÿ£ÊÞâ½aXE©í›Š.,—u|mž¤>ŠêÈÖ0xšfV^V€ÿPȳ+Òo$±ŒÿØKý`O‘µH'ú‘<ɬªŽ5ÖWlÍ>¨”«¢¿:ïÈ¢X‘Žú_¬cp¾2*ùGGöô&㑈‚ÿ(®n{΋üôâ±’:˜âê+ÊëL.û,üóMy®–Ñbè5ôæú}æ*Ê1¥•ÖBk¢Q½Cþñ»®¡‚]ÿñRtCáRŒkšW¿†: ~5At¤^âªAû³9WÙDУ¢>χ1_¼¹Õ}ZLöf>_,’ú‡Ð%ÄO·©ßÔ¿Å+ÛûäÓÉŠ0ß-Å ìÖyt6ù±U˘?Y¬ ñÞо͡¯Ñ‰üà/Kˆa­/‡¤’±Ìˆ7?b…À‡gÕPœ{8´•ìŸÅSûPC7‘~^ ˆïvÁºÛüQò¤ÙðG‰é“É‹d4áRß´¢aÜíóš]ã]Kº Ä郆wj ~{Œ:„t½X‚ÖöYWBð«mœ÷ߢ—„¸eR5’–†'nÇ”ÔÖ]á?°Úsc.ü@£ V*2«Üá'v\ć*Q8TeÜ u¢Þž³ø_6ê"¬S1üÇ5®d=cÞCÿ@„Þ–,vr½el%¸ŠÏR¾ßz¥)õƒíX̓îµeÀ@æqD=È?†{·@Ûǫ́;}k›€êŠU°_›ÀÓíc¡'ûÅLÖªPýŠò MÐlÐK|°Üòyæ‰CYÓK•Â<Œ%«l®‚ùµÕFÏÈCîð_iÊýKîÒ¿=6¹mVô\Ÿd$óLÿ9”¯)Ðp]#ZNKò;Vtˆ|,b¬ÂîèYþ’¼U2cÞ+ÿ ÚC‰Ë‹ißÑï¶£¢;»k…ÒX«Y¬Ií¥r+èWÃñê¡rþc¶¾$>Öƒþ‰ù´MÌ?Ÿ+èžô/‰¢%rÙ¿a-™KÄ—Ó¨?¯‰}nËüs_QH=Šþª°ñ“=E4#¹®„kÅUðçMà?îbAêÀ*øñL7¥¯$®`oÎa'ròdŽcU+\ùG ÎgÖŸ€^ÙH}y„ )#øÕtOYùeâæD05‘$TgbµfweÃîÂë¡¶±‘×*âçËØÑxò<þcœrzò°ô»>ÚH®X'<Ù.x »Iq°¬äõ«±ö)å\¬µ7V>;°Á¤š1—îÈonF5š–þc¹FB¬~$"§–°£ ˜¾‚a XA |ÞC2¯;04ûð§·¨Ç-¤eÈAKO`~m{â݈CuŽÀ¯Q›ÝÅç0êê¸K{¼Ülþm=G‡ùa&YJPçº Õæ+é¿ÛÛˆŒõ€f‹:Bð«þp[½È:c‘?¢žzâr€°<¨Äæs| ð_{Yzí~ÐR¯–kÄXpÈôàûe],jW~·¸ôƒ¨DgŠ6ÖSæœìß~t,ž,¯1 fc.f¹Xb/¾VŸP^ ´NjL²q»KôZÏnúÈ]XäÔX¬;Vløó¿ÁÅæ€6•&[¸Í}Z~UŽþW®þ£·…lñw¯ 9Jw¼c4ð’-æ &ý-£ÿF:Ç'ë=hÑ%ÙÓì„ ·ɇO¾Œæö2ëÅM]Žpü‡­Tò‚]  Ò8Jgá] ÿïøš”h:ø•âXm~f.z ª5† hÆ¿Äcf1sK?QÛyï*-Õ¥ø.äøUy*ù¨ üLÏbiõÄ÷âÞaBÇaüGO8‚þ°[Y«ž: ,HBvÏÎ`ÖtóìÕ½DhOä,ANs4^(¢£½uÐŒ ÃÁ1õZdGjô¼gÈ?zã_²/ÛÂï·ä)j$zë¿;K©[¨1R“¥%ÅE#'½àëâ?Z0-§?ð5»â°31àWÚÀÌ×bö{³ ŒŠ% ò<æçX&:ýÇvµ>h¹õ»ñ©~gÎfþ`js3ùÇzԻݬŽyðç‰-¨|e½C»[‰¬+ ú~ƒ'ú XCzé.¶:¯àïÅMð« ŠÁ—Ê54­}xŽÇÁ|òrÚ{­ýÏ«ÕØ]k©?¯¯UÐf£ß øÃþ»Ï•ÕÌhéÊSW;×^«·€3¿§¯=ôíú-®f¸ìß°Ž0=øÕPð«zDÓC©¯Ó ýUb›ÌÔiŒád¸VôQ¿ªµ… Å?awð. _û^gÉéE Ü‘¸1逵=¬ÃâßËQ?¸Tå"húZ"åï "¶Ý±¹¶á|ýûù”X' ˜î“00ž:˜ß\Äù%Âê€Q.L|ÒŒg<õçשAHÈó_{º"@+ÆŠ¯µDºÝ±¾gxZ ,jnXrô–<ÿ5É&ÁŸŸáØí~ÁðÌMDiõÜoÎ:ªš\+ª<…#Ì"öƒ©]îøœÆXì×߯,†(rŸñEÖ1ŽpWã½ +„Z?è¡ÎÁ\‡=™Âw R\µ*—ùô×ðÒ#`[ûR¹0 ¦{9w= ùNt|~/ç“t žJNøó<á£Aæò‚3LÁ Ížßî8ñí¼^¼Ê;²‹+8 ¼\'Šæ´Tà«yZC1™ãÊLtPVE…Ú ÿQŠþ콘_»Ñ¬o]63šçe+ºamÄg%Aát‚ˆüžªÕ§cBÜ_õ¥HƱg€ÿЩ¼ïty±ðGÌ”¨E'Ð7ö=½±ÊÒ]q6Y?`§7pŸò•ÔÖ»¬ØOSÉO’;#jo•NϼŽæBYÍÏÀüÃÏêeÞ VobžÁf@‘#ž #a÷Otÿ±N¸*üÚ ÿG õˆZBóÕª0?êr ÿ8FýGs­¦æ©½F¿{/üKñ›†êÅŒzÛ”ÅÏ·ÖcéM´ìÚm}¾è¥ïÖ×1 =4Mçï?"#á bÙ†°Á@—nˆ(ªj T,¿ŠmˆpÖŸ¯£þ£žPˆ‚…,&oÈ,=°…u… Á-0­ä #áÏã«aúý‘F5[”›I<» ná$u°¤±äôß©Ö~‹ö¦=ះyorªMa§ÇØêBðའô†É´w\ÁßeÂT‚W˜ÎðI «ûM­'1~;ªÅw㈾Ü.ÝQ*ÓJ‰/¡þûÇžoçe46* ·ßòéÕ¿´<ä#¹£‰É?¾Š;øóV `ÃÀš#dq<Ò.,ãgú2í ÌÇÖPß[>ÔÉô3Ôµz#ð8_|[Mªzî#÷³X£•¡‹kôO\ƒåÏʳêÉùÃóÿ(‹Rî×»±C©ÄüÁ>|òpìÖ_(r¦ÃANº‚^uµ‰/ÑHL„»ß6Ÿ+â é¤ÿÇÚcÑxä>fé³»úrö5è¿ÛÞ,ÅdÒ¶ð¬iQî–eŠÔ2Tb‰Éiö⩞E—áþ…Ô_=Sï¢ßµõ\‹Ègžâeß§¨ÙH‡†kµtÙ¨ÿ8AU™]“ÉÍ”ç·öP#2þ#µQH[ä²wº¢¿jËÕ; ~µ K·kÌAfФéà÷IPûDpŒ2·ÃŸ7€ÿ¨ŒÿXDþu&Èîå§×rYoŠ(Æ'žf/”‘ƒåKð«)°ñÍÉWZšÓX+â?b:æ‚Õõ Zþ$ú«a|êò¹[`N å¶`þã¤2ÿ‘šKÏ_Xî\¾(¦Tk$úÝ)èœî€Ù]EáÔ•‰Vä#kÈcú¢–Ši6CÃwžÓÇy“'«ë´è`ŽÛ‰Õ_ÈL0!r ]¦­Ô¯O²¾Àžï…?ÿF7ÆðƒAǼðxk7b…*¢I°úóÑê8=‚ªƒ §’‡élámfu”ë‹BÌ‹ a­Ù‘ ƒ«ÁO«€ ¦7íêEV‡ÿHCÎTÿq‰y†CE)žÈfäåQÐ_uÌ…?ßh*0*£È‡ú9ŽSý‰ú æÅÀúÁTø?!» )ÜK• þÈû?éu—ùQšs'|Ušþa_)çMR¢Ñ¿¤*ýÛ+èEàÏí¸v‹RI«¦¹iCȔߡA+•€ZX~Øv£¾MÏÊ‘+ÔŸ÷™X¥ÅÑâ;:øû~÷:H,{—ÔÁÖµe>øUFBÛæˆæb¡Hb|Ö>þîÍ.?ßGòæB•ñDe±Ê—°ÈÍ Aø ʨ=øG×Ïz ±Þå¡S\Ÿ§/Åa2Ç ‘Úƒ®ÿšÖÔ<ßðG Á€c7Á×Sõ>ÌsN§v†[Fþ‘>s;¾Çî¿[—(OÃI0û\°’刚їßµ°ê?Nk=Èl”Éá™MFC†Eÿ«YDö&µä‰Ô_‚³Ñs?ÓA4V§:‹@ç—è`Sùä8‘êל ðŽÑ4°®Ñ­¤Ý{bœÒV[ KCÇyò mA×p¬º\Äõ÷%³¨ÈF5F“þÜ®ñÝÌüÚOø¸–L‰¥Ÿ˜ü꽨ÀŒ’ U~¾Ú¬Ô¢‹LoðìaXñtýËòD!‹«¸ ÜzX»Ý0 9ñ%Û¸SKÉ¡ö¢yè®ÇÒþ\èŸ_§iÅÁúìα;`LŠË'`›Þ ’èx•d» S€Š‚_U0ë ßm‰º8ÈXK,ê@øñ¡Ì¯}ÇmŠúzü¹/Z¢7†7]¡R“G à­õ…x¾¼üPððbøª£0ÊsdYvDAm¹ËÞé©©ÜÕ\çRàR ð_™Ì L ,Nÿ¬Éx¢Èô øÝÔÚõ„ç/ƒVb…üÀ¹L¡*#=„~w²°'‚‡*…ÿ½bœ§š óîÓÀáiå„»ðcÚøIð°·xÌÁÿÔ_m'ÿHk¦•û‚õ¿:Çüµ†‰ná%1Ï+pÄèª^àsÓS·žúAwôW)-{úbôNheâÙp¶̶ØÒ[ C+wd%&¾ÀdÃUÍlD?šy–W?àQðj¯¼Xí#|÷¦”Œµ  šz ~5kË­DEÁëϧªãõODh9ÈéQ‹$t(ŠÿÁ;ó“í “É,«0–ÿ 3Pòâ²Ó¿½©Ù˜<á öì6ïXfÔrîÂËè{P>™ø+5þ#­UÄ1ÿ±mrªQæÃ§? bqòfjÇšÿ&¤ L9‚'iñaBžÄœÿ“úÁ§JR5Šsg½RZ¨1ß9o@¸^DR/©uµ»ZU½¦î§Va•½J­ùÇR¦=}VþL¿ûYñ%ÿèKþQؘþWí°zH}¤¾Iß§ÅÖ‡6ý<ôœðÉ}Á¯êÀÍö¬ÿH¬öÓ"a <-’áä?6Ð?±ø†•?H<¸ëW˜üCÐ#g?1ô¸ïBÄÔ è¾› XžŸÇñë×"T*,™±ÒãÐâm¿ºÎ:©°Wï±Ç)É?ò‚pFƒÉX(‡yoâª#‰³ç‚Ç% ^^‡Æ*1U×u°„KÁ’¯âE’ñtå§^‚ÊO+ÆŠÛµ1(”›Âì Î!ZSQÒ…¨Úîßž Ôcÿz‘ÿR‚·­¨-j¨=ÉÀŸÄQ3i9Ñ0ÎÄÃÆÄùS?Ø¿ñÈE¤YÕèbÈd4ˆc7áûp=é jþ1†.½ÈST9þãþ·1¸JðÇè\‡S%t‡è±+–o+y¢mHÄ“ûÿT¹t «©ÿð&ÿðGÖ3ÓåRøø¹DÓ£d}l{Aް&™Ä Î< ±¬}ý–¢¿Ù‰'¬Çü¿š…~wñEaUñ?ÉÎ úËfN˜Öôù.l¾ [pCãÔ{_œ êÑäd1"Wk¯(ÌÞDãQ…¸b#=´ Ó,ä?RšÞòµtÉé’¡8â€f¦íΠ4¿w =ð,üG!£º¶ÖåNwÑb¥¬çº•%jÁuÏN½ß8Ó]ÿØ@ÿöotNþЇ,‡£K—üfÞ¡0õ-]Ö~·4Ñ)α/1ÏUtº+ÍÞà] Í”Ž­è’¾Ò¿d?õ Ý霻¬h<ûóþaþqO¹Áüóت4`¡¸JM¸³(•ÜõàW"œÝF~ßK=ŠLýÇß<ïMÑ·¾I©tðd}Ô…." É_Ä´ˆ(/c·ÆÒç“m™&STEtÒÆˆì†¡¿Ê(výüøñµ¼>CßÀîyƒöj½±4ç&¼J2b/]öyCqWXTkì~.Ïlh‹¾Pè9>ç+bƒjï æNŠ‚©>ø?Óðäì] ²r0Óóá?âêöœÈõÇS›Èñ0­3ŸHE1ìN:lÎ,³CŽñ9‰½Ï‚}]G¼]“þ‰ç³`5þ#)YQn4cx? ¿j ƒ1€Š³"x‘ÖðÖ»¹ÏúfÖ[jvŒŽËANÐÒí©ùÌiŒêê,qj.|ígrˆæÔLÓ¿ñôw"Н´‚,)%ý¶>ˆÚ CA«ü|µLi {añ5¸ü¹dVñ¤'Qöhô»C±cu`R`Ë®1Ùó?²¬ä~õ$ŸÛ`LÑÔ³'Ñ¿ÄÖP‹€Fµ*Q€;üG^ø‰¡ô-9Œõ:uâ—Á¯jà?šRÿ]†Ì¦=øÕ@™†&¤þÊÖï¦"®ÈÊñøð<›è¿›”îY»¨¨ˆÊ®8¢™OÉâ˜ãõWwA¯¶` q&y´=.wº/ý[ƒ–^å˜v¿Ä¿mn·< -Rd&PèŽ1æ{ð¶6æ1PœìxÎWðÉôO!†Ž‚?ï/ ÂÙÛýÛKQqrnf •~}8·šÌæ;@ýàSj 6£7LÅ÷&ª‡ÀÕÈæŽÂѤ?+ªÿ¼Ê¥­:O^K>À¿#CMR÷Æì;Ý›ú±p'Ð lÀBçç]ÐïNåʶ&ƒ‹À$•ŒõÁrÿÝê2í3Lâfêç2.û¬¢Y‰ªð÷ð(ËЯ¥Û×BÔÏQéß~Œüc9ùBëŒ!ˆ>ÖÈêò¬QU´UœüÇLu:üùú‘Mkí.¶Éf Gs² ¡¿¹‰iï[™u5€)‰›`{6ÂV‡ñncÄ„W+MÖÜ·¿s>¦I?ô»ãx~ü©pÝaÕqL³’€_F]v…ÚøÎŽ[è©K;‚×Xá~òÂðG&“Wàö¨]C¿Wå‚_]¢Ivý)wî/—}漩a¾ø®œQËkgµÊzø;:9¡ÔÖr£Àš¢}ÿ¸æ ÁÁT2ÿ£%Ö868yAý¾–‹ Z_üGEæœfÅdtœÏô¯Dó›ïRQô-·è¿; |v50S ?‹¡F¹Á鯽à?þoA#NÀsÇg“-‰‹}øÝX©(ü¼Ÿˆ(T±å×·ÿò“âèwç“!|ÃJ{âÝL¢®~ø_p˜®Ä@É¿nQ¯bÐ÷ïJ˜çI퉧YËïgÄ"-42£Õ¿‰×\@v\ Îfñú.üÇ b1˜]XÝ6k#á³=xRö`M}ñèy8ª ÔN”•P²NoóAÅ“Qpìõ¢®ú»9é¿› }€3JÃÓò•©]îx#*8°¯åqD¤þã¶cWr)ŒýzŽTµ~p’ºGBxn¦¨ÕüG~˜ù¯ämSŒíú6ý hKo0±Xúyè…#ÓUï‹(L9t3<ñ§ÅüõH¢ñÌÄsó9›aðO3ðõñB1Ñ=Áâ헊Ó;—¿Ýñ"ËÔŸ‡Ô_ÍÖ‰QÄÑÀUÉ xŸÖäJ¥ñ@m©_gv´ö‘\ašm[llð‡¿X»-þiý$19ÄP߈4øÉ ð~t&yŠªa¶>õç[ˆÅ-bß[–?ÕåLiŽÃ)Û¿žŒ¦»të–Öv»¬ØWû+¶Øà/²´ÎpF ¨>_l¶ Õ",s*Ç!úy´¢—ÖôWûY/=hà üÇh¢F¢ýÛŠ¼œÁq•êø¬{õƒÓàÏÒ7žchÎ f€{âïfƒ¾xó‰CÁ¹Vó»ùD»{ çÍØ© T ón$™üÇZ­ÉEJQ3Ó>¡=Â-<2£ÐÁª1úÝä#}Ðï>Ç ÚUè5ðýOQè/w®·NÝ ù£ ÛÎ{ÂÕ]ÇL’Ö>º–Ô´f˜ûÈ „c2ùG‡ŸyÃ|m] Ê;«u ÖÞƒÚüôDaUD¿`üÇ ôW¨LiŒ‚Í;,æÉfEGGª‹Q?èÇü¨„øVOº£L6ÝX¯(5ÅÌîF$¼aMzåå’ËÉ1à µ ú«‚àµ=ؿҘ~·!šßeàœÙ¬ÇÖD«‡ã‚ã*9N{&ë~%‹ËN¥èßðà?–1•ù‡ þãÀÏÿ‹_/(ù‚õß}Ëä–ðu¡ýõ¿)[ÔFÚm­žSß¡Vd·Pšk‰é_2^{ª>ýCý®CõÖ¯±Ãݰr^"—þA‹©]W_£“v#^¿…ÿkr^ˆ#Oðü«ˆóG¡™^s[F¥Å7’Ëõãú2ñH$gýù.ÕÔÚ‰°ãðГÀTSËÚàùýÄ#ì–18N+‘V|Ô‡ä?¶’úTen¨¹fð½»^}ºëŸÉôß]H¾`3E^Ør[u5—?ú«ŠLÅnǤmPqØä¦ð©y«É5í…Ç-‹Ò32dýà+ð«¢àr‰±hÏéõtO·Ë›FaSêâ2ã¦å‡‡ûÛü†×L cóˆèþ×6Ø`nÍÛeï´Ö>Šv6vÎÎq2©?_†îÌLªipÉÉ?SÝ‹®Xƒ¹ŽùaH¦£èòâóÏã¯ãÓg ø·9É'ÃÙøÕ{ã¦\È”¬nài5á?Vëø0ÖËÌŠ?ŠCýGüGMò…5äHiÍ‚øÂÎå>(ýÕU<eQbÛó?ÚàÅË™7QÜêV XþQôß½ç3¼cç¾Ýìm”ÀmPˆ}áný@K±Tlr®·ý•]ÿ±„ìû•Le´¢6¥ìyGIæÕÆDkxÿ)ùVdêý­{Xg7ë4‘\gôWnò´QVÔíùÇPµ£þÀîXAOvn²‰åNþ1ï‘ÎRèÎÕl&.GwkÙz@µÆr2‡æF"üG2—|rúÏ< ¶%ÿ(Èsåvñ@d¶ú8&ò;Ð…íéÀüóãLéD¿áò޽hÒšÍéÕÕÐyJn‰¨ôß-.µçÏÏü¿úzŸü#h²“ŸÒóßî•€þ»5´§Z{=¹¾UµëÒÒÿ*¥VWÅüïJP=hxŽ=±ú@G´Û„ücÈ«ßFqõL½¯· ˜µVû¬j><ë9ÄkÔ”;„=¥ÞOÌGEYuf÷@[HÿÝ)â²p„³ÿÕq5†ÖF¼ÁrmÀ# ’O Q›6\çùÞ‚ Ke”ÄÄOõ =üûcÌJýÇZüÇ|Ñf¢‰;Äpà¯ñ(Ýñv·Ó·" G:UÜsyfC[³œÚÆc¢0ØÙ…a$ò“=¥çìD¬]Yy ½itéêì(Þ/’qK‹Ɗ׵EDöÍaòíúó/¢ Qb9»/xY¬Îdro¬wf2oõ’ôß]Úñ³Ôjn­Ÿ? –âÿwðU\]×9sÎ îPÜ݃w)îÜK‹»µ¸»»;Á]Š‚» Ü‚‡ïyn„PB¿·ïS~-—”œœ™9³e­µ÷ŽÃÛ"ˆÄš‘k¢“ $VŸöq ćìnˆÙiª+…ÉLõ×w˜£ø[ïA%Ê£{;CþQ˜ë àž ¤ÿî3–yøÃBîêtâ†è0AD8š¯7xTk>‘yr£À¼\S·§Â6 Y ª4›‹xø.Þ`#>.6žy6þ~~n–U›Ù˜¡kOwLCO“|'6(€,é2ˆÌkêÏ«_uÂdBÛ ÿ±ä%½,AþÑŸŽ#ƒdQüÿâPÏ%šq‰x· ÷yýPn¿<´vÉD``Ñ¥µ_Ã"_²¯ÉçtDyOd\ú—\&WòeN¤'9¨§±5ÄŠƒŒxà~ÛÐ'ädÂTsžäOdE µ/àW[íDt˸iÿ¦"èÎpôåá|æ‘ùìÁ¢ž¿Š!¼B¬×Y¤3ÛàŠM@à^X‡ä|¼d2—ÚTL¯d~íQW__üÝfzïG8Ö~ØÙ~:¦»‚é¯niƒôqä©UA{²Â¶²³Êu4È…–ÃïWaNG:Vu¢¾Ûü©¥}_Ù¶ûÿµ‰À¦ã÷èëð åb’™Žg2Té,å"è¯Ò¢›Š‡ÿøÜ¿ä¸ºí¯ÎTd ­\ì‘\ÉüóJ¢…ÛŒÒÿ0oq’’Ãåż·ZÙuè¥ÕΣ€ȳ=Ž: Ù‘?¹! F|r6Õ”œÊŸˆ.­óè`,ÜaüGo‘ËÔí?ÝyíÖNkð«¹Ì£“RÍã,r®Ú™œ¾T±¿¦~ »Þ4 YË è¦D°Ž‘_Ÿïë+OµŒzP%ž¿Ö!X5áýÌ7Ú½ ˆþjˆy>ð®™ Õb•KÔŽ[ú•ZnŸ¶À|$ºÉǃµ-b*f,ÌÑ£Tª¾ÝHiüXžôÁÔåïTyòÌ +¤¶닌¤°óÍ{¨çè7h†OE–Ñÿ±›¸»&Z$o«˜ìFl[DœÅć|/š&’’„§£r-ó¸9 AÎ%—Y¿ì r’…7:*;Î X–’1Ùõñ1Ä;Ö ý¨MEÝCw阼Ÿ>ä"ùÀ[‹¡ oÕB—¿ d9É\b±VôïòûÉÖs®k W;”N(àN‡ðn!jý&y,oÙ|žw ×Þ\ü[2cê†QqüNZ²âšèJ®pÕê ›TÛZ†Åø€ží.… ¤Ä²Çñs[EÉ0;tÒ§á?ñÞé«sÕs6Á/&JC¤éov0£7÷;²Æ¼8ûÓ䵈"¾¾s£˜_{ŒxE§¿ÓìFZ´Ï•ñ”yø³k¢Ôüx=ª¹÷`§è–qÃ|ÇŸxÍÅfãZ¨%ç¥Å²ç„|Ï~ø×`ûè ó„zº²j3 þGª”º~UN-¡î%’Lƒ­§ã,øTyØß¡žô%ý•ÈG$žˆd.w¸òíô<ÌF‡ª-XÃX '¯˜Sô EWTúïf€ï~Leàøn/xü¢Æº+67Þ¡8̯ºdƒAç²a™7«öTcÌ¿Jæ<‡?_¡n1¡½~¸2œÏfºd½“œ°Tâ÷ëQ|ÀüB…|€uEŽÆ #ÿ¨ÁüóÍè¯î‚ ]VQøš«þ£=}|Ës/wÑ7³*ÿQÏ}ojUôµV <êuϺlÉšž¨¶˜ÓAï°‰àMm¨òŽ Ï=ù³e¨»È"ø*ݪ¼Éﺀµ}´6ÃŽ—é£ ?+™ÜN¾A½Ûe1°¾—ä•à;âƒÅvF€g9N:{3Þh-ýËÒýZî¹Dç™8ÖO”sû^Lž‰@\óïþ%Þ{Gy9¹œÇ̵Jå·µœímtæúªSÊ"Ÿ™©Æ¢y†ï ‘åŸÁªX·êµÌ:ƒl·-NO+ºsÝ)‹^k ÈOè²ÛØíœÅÎ »¸3…þÿãõJ1¡$—ÿápªîˆ”h¼‚]±ûVþënh™õ ¾å/´Vÿ8ÿH©ßÔ»oŒF̯]©»¢“CZSº_u3º3-ðÁê¯Þ¡¿º!ZɧB_ÐÖ|mä%ÿx`ö¿2/ü6ú«ô!Îï÷nTtáÈöè¯jÙV°6Š#ÂC¿š’‡IEÅVôMF˜Vêëu‘ 0;±yýx3òÆ›Ôí ~8ŠO‰„=ûƒüã•4ƒùëu¾|¥;׳ †[“#‰WbÁörŽ’‘+âè¤(c²’A”f§c‘¤×—àÎq¶]Šž™ M™éíXû¿ þ÷V9%|`~”#s‰Ç_žß¹‹ûŒ© BãxSÎ=ñcPµ™:²ZÄä+A‹fÅÇ':îVAtÔ}¹´P¿ ½‘›ÿþ1ùPDvæê‘~Çj‹J ž5+Y^€iy >\n5wù¸h`Æc— P­4"ëÔ#¶eç¹îÀ•ý¡ØÚã4ØÎ3úy”!ί ŠÿÑ‹¸fÅaŸÇ@`Ž€=¢zhb¨+~­¿iði°hÔ/¼ÄoÿH¨žÊ½Ìrc÷£ŸyôM­àU\³Yª“-ìÇ7L’uy‡Ò†ª?JýGö~ÉjLN5žëÍŒÞv©š£¿ô>Ý–ü‰vïʱª9zÛÊxÔõLgÚnéâ?bˆ!vØE”!kÛ~Ûî±å/GÁ,tV'©?TÎ"üÇ'u ¶úÞ.Ý¡äWfîDƒå¡ŠÈ½¢û´Ðë³ð”áë2£„ouäª|Âkf§,ScèÆxT¥Áη‚OÿÙÞRtn,\\øó´Ä2£‚Õ^-§ÒËÕác5o×,ßr¸_ïÈ7"Á2¸òæÌRo±œúÁÈ̯=ȧgògØÉs[DÖéªÿè!ʸýÇæD²~ƒ ÆùT$±sD(ïøÂq¤µ3¢D-âr»æÔ¼Œd>î2"…F0-sÐ̽'W~)>ðÔýçŸ}zw&¥#(F§íL² “8BjPöð«25.]ì)Ìÿx>¬±ã ^Žæ.1Š EÄùBd„--,¾Õ÷úËÏù7~©UЃ*)®1ÿwÅÄój£Œè ö«Eq\ËÓüöVB}u¼¾R›r˜\£F,"ž®ØÃbógv¡ª»5Žþ‰Ìu¡¾7¬?F4§˜ÂP<Ç­Ç'E“÷]ZS¸éؼ9MÀ€+pF“Η¾{ÍO´TY/¯Ä;:Ùía+ ßSvàO«§ì)õ×A×a¿³Ð³%$Šýõþ|Œ?PçvD{° ÆÄªWÆK4)˜KDtvèÂñŽ£¹LýlKË»ò­<î¢ö—žÃŠ" ¿Jc-aè]Ñ¿ñ SZКFD=_D麓HvJëÔÒ4ã„qÝèÔm ‚§2{^‚5j“Ç%…)­,v˜±v}ñr½@¯–“5eA?öœ8¯©ûÍ ºÞ=Z:s¢˜ƒ:l$–7&™ÚTP»YVZì\S~-§¾¯9Ú«ÃhD“1ÏãO2¹ùüZJ–ÔÍŒö•š|©ÑI µèÇEV±ŠØw° Z¬ZØ÷…tïÛÅìÀgDçuÔLjãaÁÁû‚eyÐ}sd¨+Nh¼ÙÁ¯²À?Á‹­!ÿ8Açó0Ô{Ô[:µþ†=ªáDt5‡Þ–ÙÐînÁ3Ì º)dE2ƇXñ°‘Ü€µC5Ä.˜{VjìÜ|5n¹yøcèw?Ê&ô›¿FfX,å&O}¢¤_‡u Y^Pä–…‰OÎY­ñXà¼]h˜:E=Ê5ú1–‚»8k¯RqùÚOöFp¡ø¤ø¤]tÎ%׈&S®Ïã¹VÏ­:ð×±Q¹•ÂÌA¥ÜT-F¯[™iê®ùQ=Øá8xõ^öV” MáS”jDug\æQéw·é~F,žß%NêOª±Tk9†U4§ þ¦ÿU2g16?žó4,\úT]þà Ý¸åäN𫞢ŽÛT§F|ü@e‹ 0R‘™÷UcœšÔù5¢þc-ú«eö0za ¢gä":ý‰~ >ŠØ0Ð…µŠ²]°.ÞTÂîõÀ¯;pb^ŠvMG:å©¿<¬þDÜÎÞâøÓ½¤ øUuu™šÛNK…|ùÈÄT-ÉPtTÆø¸oå¿þá™–/~õD+®ÿ˜]Ú`JÝWˆ¿ˆbš¦¯žÓºP+d”6¼ŒÆ-ýƒv!识ãÓ Í—~ÚyÁnâÃ(ì2ÓšíF 좹Ôô!£Iâ}øÞ’'̧ēËÄÏ %ÀŸˆ ÚXƒYdL¬Ïôód̯ =Ã!ì5é'õää{øUûzððÉÄj,è=¢ó¤Ø½±Lÿ8k†§#Íkc)“z›Ùöä€Èh1ùÇQ°òXœwØØŠøB¼ Éù 3Ä£ï¬{KÁ><ÐJ`—§Ó¿ý*©mðqÅÑ”×%³Ydu& >…"o²+Ð,úo]ñ‰­ñG‰Þ‰ñ ÝAÂÖ‚_¥›ždùƒ7My„iH7ʶú¥`û þQêgô"ÔŸŒSËĵƦ®¥^óÕåg^ô»u±ý«ùIgÈä|±ðI³EZ3¨C[Ðz5©nŠ?´à7<Á†¶SmÑöž¸q:â¹øexƒ\Ò5'i!>0%]ö‘tq¿¹A«íײQŹUÓìZ2,×Tª@GÐñp»ò"êÿÀ³ØŸ°¬9wvû›Å>'ã?¢}Õí¾ÑÿQ—þ'ë±å5üÇv«Õ ÍUV”IáÏ3Ã]”‘ñ&I˯d²»Añs³ÃÐõ/™_[‚\-YÊò Ø×Kô\WÔ°oÂÚ]fÄBú—<¦šâ56¾ qóMþîxl`6îô;=$£²ÎHLõÊp¿Jä<^ò¥¾vžjIEcO*Þ~rŽ¢h‡‡k¢jòß–ð)sñ+È6-m6CÖöIÀ¤NÀ^•ÍA%Nö±üj³¬¤ž`ùKÛŠy†+ÔúaÙö>¸xæ,r{É¥"R?8G4t?ŒZw} qTâ(¿Å~+µØËìØL–Ëä¤êô©ò¤KáLê?æñçÆö:°«ñü«_¹¦ñsÜëÒoOQr=%)ªÊ‚À2oFa¾‰§}¥“—¡²éºÊœ&«™ŽW‰Nüö;Xf pÙ<¢Q°úÁ~àè±ÀJs‘×¶';jný¢j:˜yîe§ ºï¸}ŽÏeQ§@±ÜœéﹸÅÕ K¡"jÊ&kÑ©áËWêKͱ¢7HnGÞrÃ’vç­é)WÔ_ô†œlovn0¿¶]K»¦q1³$#}ƒ³½õx!RÂDæù¯ä7¨?Ïì¶!;a®~¬¯Ô—{ Q‡h¶1Έ`–3éÉY³¿–˜ê/c¥ñA·¿Éª­üÓí(3†+Pàv²ÂLbN2u“Š5(kÖQhî]ÿ¾o}¾i¦–MÉ?JñƬFÁ(i3ŒÑ˜X¯>ÝL<¬äfø:2NÔ/èIñ°]?}¾æ4vFYøbížbËa÷æÑýJ –Ck_šæP©p~#Žœ@63­ûcìDtP¦¨² ö+ºÌî“ÈÄ;ókïi¿á3æ ³ZXú²¯âœ¯:ð“­_áR¨U®‚Ý[ÀЦ«ÏþßýsÃèEîŹøóhŠò’³⽟ Kð¯ô Ï-´Áo¸Q:ö¦ç ¹r:¤ÂNBµîà#÷½<ßsýÕ6Þz2š‹ø‚ÇäÛ‰‡€—ÍA1¤ðZ±4õƒ5ÉŠ¢Éœ‘sø›Äv?ƒ{D"ÿ¨"V™ñÕZ¼A¾Ïù‡7¾ 0Ìå Q=˜ò>h5o­4ùÇ|ÏDô»¥åkîW ²-O®³£l„r72öî×}$ÄSº”róÈŽ–sÕ=ÍOÔ7…üçüÇPðìDØ{ˆ}/p.`«QW”:½Fð¬é}ØÐÕ Î#>kØÿ‘×ê†ÿxIìS öj+¾@ÿùÆ:Í´ÖŸÔeyŠØü=7\ýŸÑ?72ˆXf4ÈgÀ裂`.AÿÄHFHE×@#Yò^Þ†<ü­ºà*ìÇ Õ–úóqd2‰¡oÙƒÉú«Öd5uYoÊáÙðûGYoƒÙ6ÄÉé-2“¥¹f4"{j™äcU}µ˜yêoloº Æ Þb;Lr3•’iå“КUƒýØJ.•Dy2…é÷ ôÅì…ת ’Û+9).[±©?_…JàWÕŸ|¡£}G•„ŸÅüŽù(‘šÂÈŸÇÚ/‡jÌ“Yž Ö¿äºþ—ñ†z‹· ³z Ó°“Ó¾èXNI”KUu´ ì!Îç$^e7óÏÐù&£í‰n !që± VP¾á²6î›ü¿ôÁO+ gpŸŸÿÿaaW?èÃá? â?\kÒRÀŸ×6ÖÂV|Ò|hÇç´m¦?øUê§ÐÍ(©¹‡UâW¯3Ó7Ó½ëð,|ÑÌæ¸e”«x‘È:¥-4üÁßÛÑm'?©°i†kÅåú_zaÊd uðjsØ´û¦™Í âÌ,XÚUô/I®ˆ %• ̸ ãè5žŽÅzƒŽ) \Eõb0«¹‰›Âíç¿»ÃÍZw¢Co*+"‚ãŸC½ë¢ê…Ïœbµ“o‰š=å 8‘ƒXg˜šPVàë;yÀè„'êMf}‹(þ)ùGPøœ(C—S_"P¹ÞÆ °Ò±ß%d)í¨ «Zõ²Á—b(V/¤#·z#nˆúøçÖ@éƒÿ…åIÈžh1÷û¼ûÀlO>ô0#»[…g+Ê]²°ôkx“MýU_˜ä‘ÜÕ•dGäO¯D¹0ùóyZf#ÓSþ£,Ìk~zGÞgÔ[²6å_«ß{’ naþc—k~íó™1Ô“A·&F {J*µO{|ŠÕ®É–*§ò¡ÿîv˜ógðçåÔ"|FlÞ.,°//ÕR µÞ ê?"ÐEƬ™Z nwÎ; šÎ(“¹©•©T~¾«õçóA}²ã«p6gÉ"`ƒš± ÄŠSŒX¨=’o oJ9ÎDµKíW=e5Íhtøó7ø—àW•É~ƒŸÂ]Ø ’w› ûŒ94ÄzUENüÁMžZMòñùÖ+PµÑh“wÊœø5Xj ÎÚ—z’öÔ4¬G)Õ˼‹k¡6Qå–>Áæ®×êéÛx“jI5€ 7°ûÕKtW)ìVÔ °û¢a-MÿÄÅd4³@ˆ~±ý¸³™µ]y¡4.&ˆ îqú]: Þ** ü7îÌt0º|àW&\w>ç"#Ó:驨Øî´†=%FwNCeyЪń¹Ênüª™~ÏŒ‹ÿ(Ò:Q¦ÂQùœŸù;*:ÞþLìML}Š‹oÍ4Ç\d51U_øû<÷âV"hþàj}"}™ÚátG—x\hvU'…“=Ã|zÝï£J~ºsËyÈÛ=ô/yÃRˆ>îmìÌ0§Ä^¬C>b¦bÁ*&¿~ÿ­¯œ¡þ#ªû$<Ôšê?6—)h_©ôãzTc‚‘ÉLnîûÜÓwþ£¤ÑÅb|‚?ßôWÃñ)P{…þª$JÁ ¼÷³ÌèæVziEƒé^nN2ÑÅpï:Ëi/Ͳ:½À+!¸Øí“ÌXb<oB÷ö÷"›U4œú«Yú-Ý“j’ë`™°‚/‰‘ÚZ1­¨bˆÀCt>1‰ìFˆœ Xëñµ”tÚ8ETlR±+KÜ«ø»úÖ>.'ôœˆã<\„¬ kñ§Z;Ô♈ª}†;§‹‘#’†¯@, ò–7Âæûp_c„ê¢úõŠça\i{"í«¼ÅAIxå ú“@¢ÈyDþkQKe‘ïÉžÚYD'ýé×Ë|þŠóY¿›Î$zç‰èwß‹_ɵž¡“܃Fh*:¤(¼­›ñ«ABæñßÅ`Ž^a"‹mô¾fì•«ËK!XìåxRd6¯ðÄ­¬RbƒU¹ú,• ß™ÀOÈû~I|ÂüâF‚6º[+kN Á¼§âw“‚7͵›A]ä$لʸuXø¦ð½Kˆ\ó`íD»´ŽÝís­Lÿ’ÐùÇcã–ﱋ;u—ê™XC?ð«<Ÿ§ßmcÈ=Øôhb[‘äE-ÕŽÕGÉ¢(í…:ݦñ’Ì áó—€Òì“Þœ»ýô\Kn° ê[ú¼ú0³.€z½ jU÷E`”ÿ$›$KTF6B2*ShTí Z&3ùQÐÇ$jµ«ã:õ#ÐÁ#²³—©àÈeþ âLf” &è.Ú܉ÄñÙð­B찊ȃÕþ‹›ñì°îÈcXövj9 Ï[´±µéuÂ^ "2M=úØEÄöñp[@÷RªÂr»øÕý0ŽÑÿj×WV¿¸Ù±ÿá ÖÍDÿ«5̬KgÂj Dƒlo°@/ø[ðmYïµl†ò$»\%–»×;Œþê#µÿ®é›™T=¢¾‘ø¬ ÌWÌM²(t(ŒŠZ@s28I©+ñ‡IŸKþ™:’.ðgÕäzzä1ßÝí?‘DŇzrFzÊdD{­U2zS-WËĮ̂Î`WËàúGqÍ+QJ<¢£/ÿöädÞ!¦¸´«3©¾lp “˜‰*D+]‰=¥õBcúJ ô»Þ°äçéÒ2ÀyŠžz}ð+þ‰ñí¼ª øUWõÇ蔃÷Æã¿R?xKË­§qŸ„ôßý§üG*ý¤†qÍ4æi=kNÒ’eŒÆŸçhzP?å/÷íï~¿ÿqưÖ8§5ÓŒbÖ1 äb`»¹ÛÜ…~7,NõÛ+ž0Ù °•@cÆbAŠ[Úãšh†¥oÊ,ÊÌVú0YÚ¯WŠÿH",ð¥<ï™ä-dk4»ÅbܧDç9ˆ5‡ŠŒÂ ×üÁÆVó¨¨L$8{¹”ýÝÂBÇåÝÑä Þn›÷ßÅú¢ªì„ûI}½¯ÿùJ V¸I†“ÉûqÊ+ƒ_5À3Í%žÓåüÇyð+o¾B]Y¨)¤_¯zÄèŽOlŠG{7ʤùø¼TH<W„/rT3t‹ñ¥·Xæ^oµ¾ÏxE$p†S_eãœxSCsüªyŒF›lë#õ‰è-uû¸o¥Ècû‚ÖU‚ÿhÌüÚ‚nÿñ+sP#’óæ$ÿ.]3!æ¨Üh¹ ¿*ËÌóÔ£ø ßýÿ±ïvÊ® §žDÍ ¶ë xò=qT ¼Ûl§’i®èÀ»?Ž. w„aOsL§8wj)S·QGÒιïøÛœÕè¯î€_5´â?3ƒÜÞƒ …ÉÔRýWô»÷´Á:–\×*ýãþíéôCz£‘Òtèåâe·hzF_c…aÂ/ns?Ïð|x«B¿›Ž\ó'ìÜó “¨"ÄEqßfòW„ {ÍÜyĹ—Àpˆa ò‹3ææ¿[è?ÿÐ<¾"É1 þëA¤oÀõF‘0,̬Í-BÝB4ÎÝ@áóÝk–z=¼Í!ò•¤ÄËÞØÓ¢ørXºVupés–ïQkg?©ˬû7-`8šàs÷átòìÄ­?Ã'Ow)c¨ÿ¸eæªÓa§T½¨õ û]Ô“ÃWô9ËA-WêÏ›ƒ=±šÑ#ÂÓZLœÿ»|Ni«ú€çͰvˆÚfXœ\½£Yä,ù…'qïÔ e¬Ÿù¸rqÒ|­mµw©\Ú–”ÖeápÚ_»G‹o%`æ xU&bìµøq\— §¯†ÎÏ×ã?öðSâïæÀÐì@SE_Ió‘û\Äü¨!Øû,p&L%›Â¬/oPI‰¾FíÁrJª'²Õè˰ÎYá°™ Š?VÖ§ûäPÏ%½ñ˜í¬lh–îP+7› u7Qtb8øí®zU›õýQ9lþB~bI*UöÑ]j‚¬ ²טbÅÕF.N×i”JåX§%ûËC¥ÛRöRIõ½ÿnr‰9JéªØ«9˜ÝLj,\Í}è³[ˆõ~)à….‘“÷C³Àt] nã?î2!ë5}YüÇÛ¾fŒËò“ÉõÄOï&c¸N•Wþ)Z¸Í9ú— ß)’[‚»Q›k\EO©¾êú°º\o)Víd/V»É$úÛW©–ÀzIT+´ÐåÂ`lÀr}“ñˆs¿›gSýÄ[ëbŽþÂk¦ü5ú­§sNÐÃ=¹¼É½íqüÇ+€N u¥/¶¾¶(íöÍõ;frr°œÒ!ô½ílE§wo)øT ¿gNbT|P:f€X¨´[Ú©R  ‡âlÎêK,M pˆpú»ýÇF}±9“ºÖqðŒ®èïœZçhN 2­U tëñCÝ Îq»³ÆnDÿ]?UÔnF’‘7飸 U}Nª¯*Sœ¹oå¿þá•V-˜~÷¤Vèן§eþ`z£§‘Ï,@ÿö*œ®ÕZzãg£­±Ìˆd¼ãO?òÏYíýK<ñÇIx ˜÷ŒNðç¯Íâ’ék¾5t#uˆóû½µaP䯟ó“ÎxÃàQOãÝ.‹vT#ïÈ+šv¸Vœ@KjØ…—°¼Í`YŸY½À¯â[1ÅLª‚žQç\¯²YäÍðÌ|OFÿv_,üGt±ëAaÞâ7jâ?$ƒ‰ýJ%KÒw<:wb¸ðÝÕZ¢×݈~76Ù÷)0›œœ¯²¼9s¨ŸÀÚ—Á6V‡«XŽ%MgÖùΊŒ~ä]¨|¾ŒÏ¹#ú‘ÑÔ…‹œ’‘>~ñþ9îcTòú8Ì“j#Èz¯ üß1`""g¾ûÍ ÚèR-™9LÌ@G64Ç㛇ÿMþ0;W”*Š1чµ²ÿ8ÿH¨of¾Ü #›™Ó<ñ9ÿðÖr•ðLoÑ?¿£%*ÏLd™ÿ±Þ¼j4îã÷O‹ƒæø?8'q“™PVÅ7'š‚qM<Ç\çÏÞÂÕÍ=üyø±Qúa=½°±ï×aR~¿ù ”²â‰  <±9^ĺ„ý¯¾Õ‰6øã`î Ò¥¼þ€ÏˆH4bÁšDà'±„]À»“Ë|Ì?ƒ^pª¸⠾ʗÏWµrðÒ‹„ŽehD”œ¾â(ƒ¥›oU•9B請ðóñ(Y­DfÈ.F_V ú}»Ñ q®ó þ1’Ì¡!<ð`øU/ö"ê!Öµ¥ÞüDOXñ±Xü©²†5@„D›4-õƒÑ©³Ï„ýþ@0ßRØ`ê?ËUê}cß[Øû"d5sñ¥éÒ{ žØ[–æJ2„š_»ÿÑ’¸þ­Uœ§>Êî¬êñîlüOg{6¾ãSùF€… ¡âïRvrÎÛàMKÉ2ŠR?Ø,Ä3)+<È¡Îó,Ûàq÷Ò¿ä<ëõ%;*®^Ïx2;ðUi™ ’Ø>ÇuN#7<Éý¸JUB®ÆŸÿ©ÕÕGai]ó?jQmŸ÷¢ ¬ûJ;9þc!½¤~µª"àWSìMôëKÿ«çܽ¡àu)U7Þ!Ï ÷ÃÝ­ûÀä;Zb%W•ÐÛ¢Û×Ûéh_SðGùœ-LßÊà$#yÂô÷èwcоw¯QWjô»Å‚ùKàW)É¢—Á¼(§T ç7¦66¤»²ûÀÈïÀ¿õ¡›ÉjxŠKÔøÃgÌ 7~Füò_[Ñ*ë>…àÏW/jf]³§ ëªå¼³‹R¹’)ƒçAë&Ÿ_´ËÑ¿¤9µ!'U,º›xØž ³QÀ,\½Š¢Êÿþã‘V0XÆáGýG¢çÂý¾û!ø•müj¤6Ó™Wô’¬²œSŸÃ¨KÿDÛxA7Åùg‘¶UR6"§h '³Í¿PìúéGÁ´Vš«ÌkäY~hŸûÀ¯:XSDið«IèwãY÷µ¬ÆžÚð«sh# ›iõb[æœ$„¾Æ»Òæ15¨ý¬„V¬ÏÀÏ>¥™èt‘šþí‡Âqɺ¹ŽÎK¥±{]Ñô,„ù¸I†­ä "Ìd¦ ÿqED&–Ý)ž|w‡;´†ôÄÙÎÿ ½îvÐ¦Òø“’`-ó¬(g`¿ÏM¸ú¹çµ }·~ðœÑ˜x¾'û˜ëZQ©'D1EüM5™QõLr½üJÆÚóð›È?¾…_¥Ó½õÒV933¹UòzDù©Œ0‹È?6JÞ .›LÆàʙѠˆV­h}(õƒOñ`6.‘ ”ݵTc,)ª›BmÀ2‘Ó¨Ü;™¼, ú1ºÛõÏb­]È&‚PO±(‡=DvÙ¿8’]uÀ6¹& úbO|`×s³Ëõð=»ð!{¬…ÔFõd.Ò?±/ÜNN¬ó<Ï#´{¬ªtS¬CýàzzpìC×t‰n!Uà?º`óŠÒÝv4ÿ¶å1#ÔzoõÔ5•\Áz1Ôj|ìæZ\ãL¥Èfj¢óyNÿÄB`N«ñÙÈvP§3Q–# n¬±âLð«FøýVQržÆ°y©ÔüÚd™›øyüÇ)û¾=œY¸}QLIõ‡,–Hýà|NUëO³uˆõê‹´à{çÉÇ:ámoZ÷¥Ÿ:Íw^§žä2v¾LÃzÖ'ÓŠkïúÌV4B‰¼”ÍRÅåÌ`õƒçPîYk ŸÒ¿õBœ¿¢k/Ö¹ U*C¨÷xÀ ¥ÔFôdzO¢»äd}ñî‘”k~T, –ºŸñvýO#€swŽ3’Z¹ØÀûtòÚE×Ý2öuæ×þŽ'™K5b'"]æbý×P£ò .¬#¸%÷&µ(lþyS}¿™]OÎgC ã¶*ë”c7•Pð>Æíef`ªh¢ÐͤÚvóšÈŠ‹FÆ·Ö|À ÃÃúYêü×™@³Þ«Z Ï÷›1e#´<Õ°ð™]ÓŠ¡—¿ªkuE¿{‘î—UÍ <ìïVª_¢~ð~Èì~<™BpÈ„Ô̇Yquñ+KeïJÔ»2\åc—yž¾*.-ì*XÛd eð"/È?zÂv¿%zôɰŒ[ÃQ?xFk„Jj!þC'nöáþ•'Ç­I”2Áª"oP«‘™xª:ùÇ4rhO³Öwžö%£31jk2¡{ä&";W™ºWŒ@î{X¡³àW7°÷ÍaÛ~ÓH}‹ÎQˇþíÞ`I%©9[2NâÞ&4¼Cìp¸‘‘çx–8¥WÕˆh(=üùVøóLª?Ý7l×èwßRÿ1HÑužúo<ÜjòN׌´ífÈþWeDbüÇV²æ¶²º­~ÁC…‘„ºøz~•šÂ¬öpµ?ø©{PDûÊÈ*‡Ü :º_ºƒÔ’­&ëmNX?x_lµ*ƒ(í¥¿T[TÁ}á=\3”N²ÏÔ‚a¾M3šªÄȪ=ß‘H>Æ&×7¯Á\“/dV‘Èž‚šm±S9åÉá<œ©öMfžÄa‡~T«Ì¥*$§ =w» *”BðÕÜùGwüGΜKõ7Hv":kCý` TÏea@"ñûNj1?êŠèÒì»*=\r©½¼Ñ7Áþ.Ð?1_°þ%³˜¤9J´%¢Áªþâ¹Êé¼±+¢ß‚~÷<üG#ç$þ¼øUú«œ ÷ªL½O-Ô+‘yK‰f£ÈŒÿý.ý.ô|î“uŒÌ1¬Z_÷£ý›1õGz$¸ò‚fUóåæ&¡~°3õƒ‘ŒçÚéwQÿñ v»4:‡–ùÞx‚îéºyE6¯ÒÍ]ÙÜ»þ›M¹ÿ×1ó9ñäRÔ7׈™ÇÒ‡5‚^ÃðUa¥;~žjš7œøU_ý­U|µ_<œQþƒ¹“ ç=À3Úc§º‘d7Í <î|õ!"õ~è^XC©SXƒ{„6.Œ˜Äòå 3-KÇœLD;›Ä©ï^ó­ ùÇFtªÑ\ž3÷BuTu—ÐËô9SZÁÚ‹:+=¼Ïj2oö8tõÝWüù^fŒ à9z|öe¥?ܸ§ô/ÉKev["Óòô^/EÝ5(^s7÷’åøÂw× ?BÈj?jgŒ;äÈÍñ ðåJαõçIáP3ü5ý v2ÿ<€žXD¬,|Í3âñÉxúòTŠf¤{uð§;ÌHÁi=Hô“ÿQL*&LÀb”[9Ù›kî=åÑ*@Áâ?UÙßL0¢IàkûÈ䎙C¬WYØä<ûaÃ*˦XêgÒ>åu›þ%¯X¯ý¯^0uÖ¦ê%õKðkõ¹›;±ÐÑUE¹[ôpo烙KŸnéðk÷È?ÒÉWb¯UšÉ%ÔöO뿸Ê*«ðK£éº2˜9æ7è\ÜvŸü†ü3޼löç1}a€ÞãôP©ˆ ¢s‹,Jýà5êÚs;+m_j^>¢!8ˆzyª,üªþòyŠjÔ*ÁôWm˜mx®±Ã(y ¼3ŒÅ¯¨ÖÊÑçK¢çšÃÉéîø‰Ýy‘‹”VÃí4꘥cV±Î‹²˜Õ×} ½õ9æÑÓÞŸ·ë¤ˆJ=ã-:´wF‰l¨ó¤Ö:éŠE…"õƒ{ð©è€S Ü#Pæ­ÌûX9b羕ÿú‡Zv<È—sIk¬›â—¯†ï÷7ÚK=™1ÂÈcÖ1ë Ysº–ÿQÿñ“¡ëû·ÌþÖÍÇ|~åšÌDÞ`¾câÇqý´ùýK.Â8?ÈŸo7“H/˜Ó D» à®’ZµjÔ4¶ú‰ºÌ‚ñË Ÿç¢Ô™Ñ‡ü…GêrÒB6 gû'“SèOÚb³»1á0 _ÙŽkþ„~÷$y—°G³@d®bßÀRhøô0Á]‚Î,{ÜOê[ ïÖÊ x^Le^XÛí¨=<ùîøÌ9°þœøŒ ¥ˆžçR’Àìô÷íð“¬aDø“á?æ`‹ª’ÌÅ®–ÓYE½Å´RYðëˆK[ˆººÿ76'õmz ®lï^Nr‚ˆôÀn‚ÿ8Ãûü¯L-]}ñOck7“ƒÌ%&›ôùµôÚf{¼nJ¹nè4»¹V²¥Ô(z#ˆff {´³}ñË ð™ÁË4ðç î77h£µ¤øYÈž‡a×â€7-ÇkånMÂÖDê‹è"øÿAjµ\ÝÝá;±÷EœNõûÍD?ò…Ôøœk²ž»HC ,zq:^b~ÔU t'—ò¤Z£ŒolÚpâñ‘ÔtøJÁx"²à?’QysÖ`5üò&P|G£Rï=¥rÀ´fÅÞgS1AÄJ“W"_„œ¨ùGlf­z«Ù|ûˆÎ#ð«T¨´b~m y\n<×eøä¹äÖEóëå“):s†·¨Ýz.Ñ·¼¥:&3€ÝL³ Ã%¿Ãêßf½Tt;\ ²Ø|mú]‹úóS¢±ûaìÔ*ß_oõƒ-"_Š]°3Ññ)è Õ¼©Ù[rº¤gþàŸÔ£Wµ¯“½ UµUT‰åá`úÝ?õµÆ'Nè5²¹ÕÏœ“‰ü½)àWÅÙÑ-5žLd"Œw'%o¢˜ÄŒöŸPqõ%ûlVYúó’îü£¦~ÎŒ {˜Ø(Õ)m¬N*Óüª":Gj)üÑ|;'ÝL"Pñ’ÈžJï’st¬Z:úówE\âlµtŸÂ­zos©pE9C¹³BÚyáäæJ—Ðçf“‰;:ûÇvc¼œ§JÆüÁ\ððŸD>¢Ì<Áî[ù¯x§•¦¿ºˆÿK+žmÄÔè™ùðç9Ð_•ãt-Ç”5Zñ5 üÊ'<‹¸ÿÎAí˜ù„Œ½œec&šgaÏ}™ÿ±[¬e^à}±°0 ÷·õa¥EþªTŒHµü¹¿ˆ§—#¦«ã[N\©Àr’†x#¾Zâ?_EÿDKhD%»Y©jÛ†(.5+®˜ŒÿðådăW_!’‰'áÒï¾5|¹*/ÎÖX"ÚñØ¿ã`` þ 6' ŠÖòØÙèXûyâøwwx\«/½ó3~UUnm*¿Vø{ÚWì/3ète¬Þ(,vÜïÖŸo4šÀO4·úP==&eˆ•Œ÷/ó,³Cìÿä$¬ÊE”­ªô/¹ÿ[w_;ªÇµ’ƒÓUçj†‚ù=Y«GD&“«¶ù26ÈUG°Ž=ŽàšÆüÚ,a\wE½†Ù|*&hU^ò€uxÅò¬ÀWzXGÌÂæk¬S#xéáÜÕ\Aƒ—¢%_oÐ[KÃlËy|ïª!2r§–Á~ŒAmЛØÛ r .ã2üÄvl}J~æFžÖD"ø‰ÖT3öWüùNúïvƒ?ORƒ ]YîýÏ(„jÁ!Oþì?Ѝ£ÌeÍ [áê•“µûá&ÁWü*¦†ºâXÆ#z´']Šû€7S Si©ç>‹¥þ@¿Øšp¶éPJƒ³˜ÕõmZÏÕŒ—ÅÁ€S£B¬8ÎH ßæK´’›«j‚mM@ö1O‘žÌ?êF¯û*ÝcïÈ‘ÊK=•=åÏø?ìéXy†»|Ãb½t`ð%aîQ?ØÄÇ€ý8BåáôOí¡v.ûºˆu>-ûªôöAX”¡²÷rÈðÀ¢û¡¬Ðjé­ñ5ÁD’ÄA5˜Q%Á ¥÷o†ö ,+å¤/á8»?8Y/âý³xËA¨Ã¢ªæ ‰äº`ü‡¾ÁˆÌ3; Þ˜DE·SÿD.±Ÿá‡î‚T §sâxªK"Ò¿}/»D¿Ü8öC"`vä&T…uEz·ÿ¨Çl»Äà%8uMd6±Úz¢2;yñõQ]-âÙ®£ëH6¼IêSª¡¨†— þÜUœŸþWÇAm«¸OáR:¹-K4šF#"ýJÎ3óv8üùjª«ÚC=N\§‚ÓßΨ.à;[“4³ â?Þ‰S¨ê†ñùïô¿z¨U Ö?Ñ_«ýóŸô½z¦}d0s™gõœ®¥š‡‘ݨo,íö׎»ÏGx>øi'©?OFœ±¹y„ô æZ1Ë4=×yÖ}‰UõG‘•d§Œuþ<ªœóß½æcZIøŽBðý5é’TŒ ä9ý¯–´‘‡>óçÇñ#Y»õU¿³âbøû°màŠgpòpÂËY@E¶²>àwÁ¯\}Gf#-¿™п=>vo$Þ#W*¨Ç¨7ºEþq DkÅ–{ÈëNã;æÀ~4&kð¦~0,­¶—žÇìÀÝ—ðç…@“Ö ‡¡_!¸y$2¹f-óZ×®x¹á./„¿Ìcï– 3ÿ˜§e1ÿÃðâC±¦®þíÞüô)øŒ ;-ÀƒÈtN}Ž—ÂVn†YÀ“#M1#|Uͺÿ1;åi;y~µÅ*N-a5åA\Ù.x©Ô Ø¢j6* öþxÉ>×&¾Yê¹$1^ˆ¼ðaÙˆÿ£ÛItá+“ªûØßÕÔþ…~ׇü㉌CÿöXäüò&öÙç·R2?jaˆ½Øä”¸[™ÉÊÊgV4òaj üyfQ ê ž Ž½HÿĦTVÆ¿Íç'CÓº‰Øû](ÿ‘Adá*ÏküŠ7Üj=”ë˜FÕ‡ùe¨x[N¥Þ{e9çX©“JÈ´§5ÄöõÑKmcÿ¯ÀÚvãÏ÷i õ‘x¢–ä3µQu%âNWf~Ôbz 4 ðØøýÔî£bG¸¤Žd ×x6ÝA›¢¨Žd™ÉgV¹ß´ ð±dq"2¦R© D½éR?‰zÁ¼öix•–¨ÍzRýÛy×» o1‹Œî#üyöÙ‚Œ¸$5Æ9Üþãgý"ùGÞŸÅV7²ßá?’ ßgפê|#õŒ—Ñ[Ðïq6þc ÕsÉA|Ð~ÞÁœÄ&AýK¶è£Í-¢6QÎþïmq…jÄ:´ru”ù\ÿáíÜs’9éZÔŸG…ÐÌNFRTºê–·0!‘\æ`ŒûÒÿõÏ´òÁô»Oé<ócq}ÐSéûð}ŒüèwÏ®ÿج•1Ò1ÿ|-ùÇ+-<³”‚V{¥1“0ˆˆ·¥9üc!}/—‰iæ^Ð,õƒõƒÞæ5x³)¬8 õHm*ì2ë9 :aZšL“Šo• sÊDÐŽ¾|¦_'ÿ¸¾â½lÎQ…üã®H/Vaq6Zq‰  +®›á©™üÉ<‰~·<ö`&kÍ‘>Ū‘ñWÈcâðNæ¶ö‰høÑnboðeGÁ¤U¤–q2vò*hûl¢bä·•@p†ÀåÞÂ2§ë.kº•ÈzjúΊÛî\gëÏXy®r Y{UôW#±K9ä[öü‘lþvDÄmÉ2Šrú·Tgq™pœÀJ"'ñ÷Ò²Ÿâ¾øk½çzx¤ÒðÍ@¬¶ÐUožŠO4^k4ÙMRbfo"è-`Y9™µ$Ôs‰gÜå ´ÀŸMÃ+ì»Ð_­AEô‰Î*«Ðsþ…Îg#3OÈxJƒO€ÿ8Ž–Ì՛ѓ+Oi¬ ±âø–Ö²Ý|üÌšò©õQösájè¥úRÏýšî¶º3M@/VC=†‹H„ï8ÊÝèÃÏÎaÝ UžSć5:OôÓÌp«u]N z¡¹š*³Ò¿}uwTRg-½ZÚR›·ïÑ“Äü7¬‰Ù±£Õõ„šÜ¾ÏRÂ+XÿÄjúa3"HSò~Ò@‡PP¥sªÁæ7bêà_ÔzøÚ ¨•¯mÛö øóööÏê¹áH0jò–½"ç$÷)ô¡þc¹hɃ÷R\%›yç>o¶›ªý*¶sÙñtîà…KÀ&-UÅí¸àw±É³ ž¡Ê[æÜWü÷á-Œy,÷É:£µÓS¹ÿôc»ˆ‡~7‰1üª‚é§—g•mZe#õsè|øFûÖTº°Ê=íók3r·£ó«¸¹À¸®÷Ö·Qi7œ~µ—zºÚçpó.ÌÕxáG•Ê*.މŒzã8ùˆNj¥ˆm• §ÿ‰L'k܇’«)qùF"®ªøŒ"b vv-–Ñ‚7*RˆËáše G> ŽöŒèc¿.Ï£¹EY䇞+:ºØ´ø¨(–Ƈ¿:¢K[,>ŠûT«Ñ¿‰8é¥(‡­£rCž¶þ$Š>‰¥ƒmô´â™e¿sgàD]ÙÊâÕGb8û¨Í{0—8=Úâ¥àWG@›RÁ/w%È!êë…ýHµXè¯l+þ#;<ájg/‹fÔ\·ús•oEWfá0ˆØ"2†¾pÿãéDY*Ld±8S¨±6ÀLBñ¶OR{ˆ:ªlc ¢ŠõXO7l÷ îã ~^fp@&:Öýæmt¹–Ó/æ“»ô­Š=]ƒ]‹ýTFäxÆf؇àâ9à}¼YÑ¥xbÕ¿z´ÔçO{Áh™ÝS<x\s ¶úw‹PÃ0œƒTG”R…P‰µÂcEAÙÔ‰ü£—LNý`èþí±É?¢‚kæÄo/bë9/—>ןï–ËÐïú©ÚLiJˆÞ)ªz–˜þZߨãó¼ßëGB<é¹Fv´ Ž-'Zˆ’ ý^ǨÊðï¿3I2ÿ<’3AùÊ.ÌÛõgµ\0)>¨&zÁ½¶Î™íC¬WL|´ Ê Ö«¾a±õ^Ži¡fÁð\¥ò¯(LCrg9ëõdþàvVé‡byèÚïòÙÍî`ú«SL±NÕ ‹_´ð¥˜Àt’{ä l/8ùVàW>ø"û–h\k£žÏÔëõ#_0¨¦{¬ÿÕ9}¯vFIoªì3qFòHýÒvº:.B5Ð o95pRç©Ú‹}nnÿ¡®ª;ÄnMðH Ɉ£Š "§;ÿ¨¤ß2uP†üœ±(½r¡ Nêd¥ë ÂöNIª«Ãøô¦+Ù@zåN°3ÀdVã-%ïÅžÙe5tŸ_ŽÌvüÇZ”ìóÈ/ó¢ñðÇÄwêªNÌšÊl¶=×q"x:~ì7©Šȩ̀«IDüGVøs û#¬¢ø÷œ"<Ó†¾üÌÿ­ßoq˜î“pF«øñ«œô¿ÊkŒ1Š˜ÕÑïºæ¢îÒŠ±à?æQÿñPÛþC[О“äÅúE¦ƒIus6ƒÓÉ—ˆ‰æVó’q÷ýÜnóO|*s>\57åÄr‘–üã¤Èo½6…Ø#~"ÿˆï¾·ÕqÌéM*Ž{øa/›¹rkY™žh¥Ä "›]Äç‘ÀŸ¦<3½ÿn¡ÿü¿4æú'–%ÿè ¶¶˜Uü£ â61ë[òøâÖ!ôT‰PŠíûî_j±ÄTXó}•åB¸ôlü̆X¹ÑÚü‡«oðìé'ã{œÏr£9+õ3vU7݃°üuQ%M$M&é?%R#ƺ×ÛÍü¨øÈDiñÍ©?ÏG ¿Î.R5=Wê3Ž»šÈç)Šä©šéÍÄóGè”;ƒfÆîßÌE?ß2ÌL V[QÈÝr‚Ú&“¹èÐöeƒ»™ÿ±$×U›זйK¦1mqWTs¨ÿxé`Æz~;šJ@ýG[© ̯ŒuÜæÒçƒÆù¯Ô~¿ ÒŽ\Ä5káË•þÝï©?ÏhŒ2Šš¹Í[z N—/ó£màÏMã£öcÙ•GåšØéÉRVs´!Œåô-Û†þj§yþ£Dˆóûw;sý¿éæ[˜äÉø‹ÉVR8ó™øŒÌÊKÝx4âà4ü #\+v¥þ#¹x ÷xeX7üH)Ùþ£«8ŽØ„ søzO]5·~o[üx„:×ü¨•ÄÝàåkcŸ±~ìÙ38 cÌ]MFÇœËßÝ¡¡×Æ*¯¤Î r%Þ#™õ –g6´8ìÝ>"Ø¿à¯{a¡S[QÍŒßYq›1 ¤¤-¹Ñ50 û¢'ç¿©U€¨|&•Áo± ÷áküÉjîñwZYYEóoâW´‡zT0àqx Xý§¨Ä¼¸Vký;ÒÒ_¾ ø•«†à"ÞmkwÅ: 2˜"Œ]¶Ô›™ƒÉÕ\}‹ËóvÀŸ—Ä'FaW¬Ff5óýZà?Ú~ö–]x7ï?QËé~sƒÏ-³ÙŠ8×&¯*OÌÀOnÊ+bÿK²Š$U‡ï=Œ}*!×7LÁÇMá®”7¡k&w1?ª';J…߈}~Ížb[1¼õƒ#˜‘𗏾œjLÍ^[p¤ñ(dÇÉÌ(ŒCç±è•Š Ïß°,fÆjf ÆP«äN > }–bªàEÕ <\)ô»'P´Ža½‚Ö'Ðå «Õ´ýF<*ÚüÇ\ð9?ÉT4b~H'p¡äð‘œêšl¡òÑ£±: ÿ8”dcYo¹‹I2û„X/#þ#;gà)Œr¹ßò— PŸPKñ÷as3ÙïÓšäPºÇÁ ºú‡áß(Ó¨šr½häÞÞ­¥>¸ÀÅê·"Jy&f[…P(·BÕ V Ú¦-*Œ÷0»s:¥/A¥0„ÕnóÓÓ…ÜãÝëÐïþô:è@&•ƒwöj+Ò¿·>Yàaô¿Ÿà+vQoÿœlæ%ÙÍT]O¨,júØïû`fiÝþËþ»oDÞô™~ œ²©JìxØ ºJeߤ^r ¶Dø‡jèZD;ÏÛSÍÿ z¢Æ/#½¬ŽîS¸›úÁ5¢1Y~/b?qGBU—ÜåƒÊÃ\«AöRæfs²à£’À"­AÁvH–¶³ËÁ û[°8=)ExÔžî›ò¿ôáZ¹ èî´Vã÷/I¢?ÖSƒÔ^Ô]¸Èa­®‘Óèhl"ÿ¸ýƒõ·µ;ô¿Ê éªAkncîüþU±Ç¼Dýà=|Õâ_nÓüGeê‹–GyZпäŠÈM§ï"â:~¥„ã}ù®°~Ô“ìâ¨ÎCVì†þê7,T,z¬í;Mtžä~’HŽÿê!ÖJÿó5‡z?üǰšdÄŸÀƒš£òKŒ~”ÊpûÈ X£ÃÁŸëzS+*J߈0·Á‚Òr"müÅbÎz9ðäkd!à k±{Iða)›‚ïõ ÑËŠCÝ늶p ŒJ=ò)X€‚2‚œÍ×÷àARË›`9¿YÙD=ýhð‚}Ôîéè쵂>ÞÁFü œÑ&G2›5]ÖcØöYÏ5“¸jYÃVËGÄ ÓÔ b+T ±Ø])¼ùtð«äÿ1à'FÒqs„雂—îÈ:ˈb09ôqÞx÷›´¹Ìÿ-Fà?Fƒ­dÀÍ'›Kl0•®\^èa#cÎá#ÖKN ¾Šýy³ËV'æ¾ Zêó§ÓƯè¯~f~”(AÖµotù{Å`ª]Çó Žm šµÿ”‘¿s€Ÿ}„‹£”XÂ:kZFz}Æ#ÃÊH'Ç›DÙ+È?.Òÿ*-Ç\õŠ®‚u™÷d«GXcÔ¨(>+eÕ9ÖKæh{C¬¸Ëˆƒw>À*ùÉJ¡Ë[;QõQëŠâ4¢³}²Š‚kƪ5Àì6P¾•ì>ò=o³sˆõ*ˆD \gy ñ3‡­Gr SNº ü­£Ó*¾ã˜=mØ`ú·ï„ÈL‘3d4[Q‘5”sE'÷<ÿ1^«þ¨ç_K$ Br1ý$z‡uF{ýÕF*¼éøˆ_éÍDª› {> wý踘HÞ#Üë×÷}lÎá'UÙÑZt oLeôÉí jó²8“QGfþà¼\{z¨bñ“§R“ó‹?xA/yKœ³š«ªÔ’,F!æŸ<…®«+µ «ížKCû ]þã'5”l4€ˆøˆˆ#«ÿX«o4WÓwïD*ÐæÑÌC¼H§Äáê*ÊÖÅîàÁ{>šß·‹Baö¿*¬w7ãk”œÅUº*ÖKà?ÒðTRðî˜ LKmCKZˆy#ã`3Æ£:#ˆòaÖŸÏ@¿ÛOÌÄõÁš»ºyÍ™‰fmh!4E¨$ÃïA šþaÏj>÷s“5žú+Ô}ÜdÔ¿ª‰^jßQŸ»ÓÞÚˆ7º>Tœýè¿[˜ÚÚ̯]gžâ0ÌÁEürk˜Ù-WÓ>è/A0«®Üi-ÛÉ-Ö9™«l¤n¡'Öé[¾2—õš<­$‡ré¯v“!]¢ K]êÏ;¸O˜ºk®§kâS;²Üë<—ôê&œ‘awûëH5û!0»Dù+ÔÕ”Žé—¥?'ÒUËÞ_Ÿœe‚{½¹úã!'ô.Qõ6D/?s;SϘ½î4µæc%wÏvâRÕùä³*XØ®>œ#ñHÝP§Ùƒåýt_3oyFÞ×áô¿ªk•V¹œdAµáyn£™Ò`ôcÃ"ù¡ˆÎF-fú·§PSáþxëΈè²Å— ºú·Ï"’Zɉ‡¦ý'êoÛù©ÿXËq‹<¦¢sѹdd~myË™M-L UÃNÉ9{Ahjr靖•_ü?üý‰–%bå§5Ó„8gáßJ<ýµјAÿÝâæÕÏùÇz:LÕ6shƇôOñøZDÐUyCïþ çÏÌËb6|Á^øóð±_öȼ‡Õœ Ïpßȳóqôߌü„¢Ž8G§”4á¬ì­?×mq{z¾¼èK5ô¢Ñ¬4ÂU1pžë´H¦ÿj\ ÷rQñ»8)’[©ÂŒr¿^w¤~M/`¹ÎS»ÐTY6£†çÿwðU$[·o©®êƒ;www×à î0¸Cpw÷àg€ÀàîÜÝýý;ßãD7á¾ïÝ ?ȉÕi©Þ²ÖÚ{§b—ÿED×L²9 Ì4ôOÜúó¯ÿô•Èæjú_Õ²?r•È7м‚gjA,­É4à.Px‰¡ž³ã? F.‰šàYˆ’î¢2›¦VJž%ï(ë]›ÈÙa±£›Î}úW6½Pç¶äÌ|±ø/AxR_ÅÅô—ÙåwTRï‰ü¯a'ŸáWB]ë—ú«âd¨ÑÈ?fbå3ð¬|G UþüžÕŸ™½f=THÇÈ>îÀ>ìã§óqžøÃ `è޵>Íìì’^ä‡8³üxÜ/DÖGLOó ³37oï5ÿ‘…úó;h«…à?vÀŸ/ÎÕÿ ]© ~µÊŸõÉ^o^¹‰s<ˆ­ÝÆëL|¶7‡wfu¿Ò‚]G_£#ùG-8Ø=ØÜ {=ðŒ…±èŽâê1þiUS=5˜f;›^Pñea¢ç¾äCe%ð«àý¯¢£5Å~HO=ÊyAÎgwì”1à?.S‰®} èàô˜x>#ó©2 ° ZVgRáY[ö0àÚiÚ<#lÕ^Ëâ\v1-ä2ùÇôW ˜W>&Ø`Þgª§ßÊôo¿–’œág¿šY„þÆA'”T¿Ê‹½? JêTl¿–sÔÕ$­ ÌÊˤ¿'øÌ(ôt×ñãà|œþW»¸" U 8ò€þ%'µîúªhKÁ4¤ÇÁCá ïýA1I|4úâRö^bp_"þÑd9Õé_rL¯ì~TÕ›»—EÞcݧ{ ýÕw2ÉìÔ\ªÜ[YpÈþÌ%OMÿÞgjýwר—í$èw÷ã?ê?QßÙ ÝÉÿ"#®HŒi»ýGúOØø‚0ZcåcžÝb*ª«²=šŠÁ¤ôXYŽ^`­›lDgbVmØÅìv—šËSý€z¬‡hÕòNÿö0ÞV?˜%tv2ú'–$ï[Ru<­¥ë´ë]L|`âý®²c(O;üùcq=Pé!‹=î3þϽÐá¡ó³L‰dŸ…ýHÒëçôLÆt#+õgüë?¶hÉÌFcc#ù‡úÍùƒðï`+ê`ÿÒáýc<Ó¯q߉™æs‹ññ7ó­æKâæÄ»÷°î}Å?øVÆMQÔJ& ˆ#ðç¦ Ó™Óïë±QÇÞ$æ­M„z˪A½ÁKæÕ®åþo![JÍQÏ ˜ÿ±! —Ò<)Ê`÷F­aמÅB»ä=Þ¡-¼ôkâ¥#äÙ­¹âQ¨GÈ•"ò,O]€˜´•<ëÿß .^ž•†ùµCYqüÇ=xÛÁÄ9#©,ǯ*3ü!Ï÷øþ£Ø²,x¥Eà+iDSýÜ/Î:óÏcƒÍ´’ƒ_9ókïãÏrž=äS¢¨!àB¦t̰l[x:ç’7ÌBôíÑï¶Ç‡b¥âx7§{J®Ò”mé©ÞÂüwýq½G>Ëßs‘Š“Î:רÓÿjª˜V7 ü*ÈÜÈáVò§þ¼~-/µn±€ª¢:ä´í¸Ú_ðë)è3ÒŸyâ¹Ô|oIпøÅ0ÝKÉ?0ÿüžr#ˆÞ_òwj¥˜á¾¹;èß ´õ>?™ªHÌ×H*ª$ïÁêoR_Ôð«öqû ÚÛm M¥¨Úø¤<È?f‘=ö#‹¯ Ò_5Ño™Q‰¾<Ù#õ@ÊVZÕ˜î‰~·>Þ#^m=¯âÐ÷ж—ÁKýCî1—Š¿exëwð‘÷Åòù2î(Æüj¡¨Åj½‰=oŠ*ôs¼€§ìÇ<¯‚Ô"6°{¹®»tWsתH^2a$•>è°2 »³›¼º5˜je–iuî‹ò¿ôâ%ýw˜„£Z«¿JÇ\¥Ì:ÏŠòþ’ތݵ^Kÿ¨ÿˆAÿ«‹¿uÄwµóæâæz(P Z=ÌÆiô»ûÍ5¢ õËèŸ6¶âÇ›ú˜ÒUm ì=Uâ´H«g3ΊrV|°ÍýèzsšaCî‘geÏ­Kà6•Av®ZõaÃÞÂÂûÇê¤ÄSMÅ—0ÍÿH`Î6¯p\߬¾0²cà?îðû_‰Á°ËÒÀVdµN¤¢É“ Ïìs üÑW«Aþ1‹ùçO± >`i¥°úµ±±£À¯Î`ó’bõ=Ésfâ[b›eBYq¡ñ—ƒ/Á€øbM‰ê°ÐMÈŠFƒ gž„ï8b*¶Ã‹ëQ‹þWçP ×Ï´“z ð¹ œKZÞÿSXÊbcý@n¡B ¢fá1Yþ:ð¨¼#}EÓïL½éÅïF•ãÀãN TÄÓæÄÄ’T­›Ìûhmëƒ O°¦±Î0˜Ë3äµ¨Ž tPÿ÷å æŸOÓàÏ'‚¿Ð³…AÎ(|uyþ懹~°'[Á×3ùM…ϘOÞ3î‰Á®ãZc€ð‚ÑON¼~Žoმ‘õÀ¯C;üÇ>¢ýüj 1n*ПËÄ»7PC• Cêl=eܙȈ²£(½N÷=Ä»èŸQí•ÿ0ã5qî#[Gœ LË ÿÞÏ;oƒÉæh[ƒ¬8ÁHÄù‚‚$gi…f-=‘üÕük$þÃÃe2ÃhÌG?ôW©`> Žx!(Uëµ9;ÈzùEÎà.ÏD ôë­ëàWSÈ5¦ÉÜTä­b¢ëGõ‘îè~²+sè”ËÔ5ôlGù«Ty[ôpß”¿µfú$îcY'Òñǯ¦[‘¨ÈMoÛBª›rdg7HQ´lݘõŒckO¶M %‡+¯Êg¶égŒøîÓTXäR9Á±R÷?ƒ¹ä¹°ÅÞ†®eL£’.yO7ñÄýQ´E¦fÔQD˜‡óû|«‚ƒ¼q¹ óé¼ãÌ`®ÊüèYôOL+n]¿êŠ©$ë`£Ëã?Úâ? IwbVyBñ5Lý¯šKÌc¢$éX oèø hDKψ7=°Ë9È›\ /“Â0ÿãœVMÆx‘<¦úÝlü¶†}NÆ\ú<íWu9»5+ýwó†r½ ªÎ­þœÑYr¢?XHôãÐ_æ€ \Èwb½Óȇ0,í­Ê¢õ/ï´dL+<|E®Ñ$tÎÇDKr¸óø'0‡}ÁQ"£»ï\Bd¿ˆ¬‰ 㢞¦Z]ïa¶ öä;È\ÿ+W\%¬‘-ÿÂT#ÿØÊVSä܇’¦£ÿÊCQŠ’î*øÕd1›ë>\Ö‚ÅÅ™ÕÁçâ<béÒ‚Íd¢FÍF:žsÜB|Çj>ö2ü„_m1z‰ø¤(xŽþ|`­Uì”ËàAQåtÇRåD;U‚}=,M*4_ÛÉ=®ƒ 泆Š1ÁîË{ý«žÿr×6Îs>Ó’ :„"ÿ¨ZƒÀøe¤þc¨]AÖ:€Ç›þ™ÎRÆ¡ +Î6íÃW—w)O~žÎ¶ÃA’²£Gš‡ÿø@ üQUž¦l×4NÛ¨rÜÏ={jö ²^‘EåÄêw“+­çr!“CÚÀ”@»ÿñäe…ú[ö“ù‡L«yÝ~üñaê?êaï{ºoÊQüDzÞ6¨šã­“õ&TáÍc2E£“Ÿrc÷S1Õp þcÝ :Ûw9Û±ø6 ™‰ïL ÿq\ßf˜x@G‘Iä®Ô'ë鉿Mò{‘É»É?n¨Í诺ÛéŠõÝaWrÇ.r•QqÝøU5ô»_E b•UÖtùYT°ò*ú—LÅèLÊ«ÉÔªt¦^~ uíÊ×Ρ†Zq86‡áH-»ª< Od~m °ÚÞ`õWÄM•‚Zóò¨–¨’dIuí±äÊUÂõJàOöN¼[Zú—D„ç{*öâ?ª°{ºŠõî+øŸ{ñH+¡¨ë/Rù™9Ⱦû‘¤ ?nvc”ÑÐ,cÞ×+°Ê>­€‘ÞèiÌ4ÒÂì ûRüä]-Z™ÒD\©ˆ“û˜“+útý&uþÌ5æSãÃoæI{̬ô ð&Þ½ÚÑ•Šbztã(¸Q4_l£Ò½¬)Ãtæ+Áј %`9ë  ®¢ yg!q-Ñlu,¼Ê‘^Daé_’ÿ±T^“°‚K‰Q|Y'‚¼O\_Äæý•}Y$‡z„Ô^ÁMF§C6%–ÏÞô€úA¿Ê)JñŒè»ê’+/B‡Ë,ÊŠKŒ©àAÎü¨“d çD[ùæDâ³A rŒNþq ;”Ì|)ß©Hýà¯ð«cÚ=½O¦ãƒ2Û¿Ñ®t¦ƒVâßØÖ üGLâü« XÞ XÞx½KÖ>Ñ!Äþ%uô f;¼w9…õ.ƒ%UÂ2Äë~å9\j–5¿‚_õyñâì—£­OKmïáÉDªŸ·â-—Ù‰üÃðïw• *ˆaÌŸûÑq+·‹èŸ®éä'Ó¹WÛ8ã5p¨ÍÍŒFðÚ¡³Æ$1‘kŸó79Ð |˜ˆâ]ÙY•ÅJ "ÿHÂìÀ:L‘Ú€ÅMHÕÂßXÀûTóåäþ«iÂøÆÚ¥ÿ"<Ò*¼ïZÑêz¨ ô¿Š€Ýêþ’ü¦¨2Õ$Кxg^É$™ Kç2ö¹Ó‹ o¿«•ÿVG>¦ÿÕX5OuÃÿÀ*ЋöVu,*èu“X$uïÏñÈôß‚gzmzY¯’Hƒs™ûàLkÜd]–³¨þ@-…~×pm¢û–zEב}²Ñó*ÿZûXçcqLU*¼ýîiTœÂÎüÈžxƒÿè ûc½ôÑþüÇ8âϬhÚ/Qîá* šèƒ*"‚«³íåºâŠC“ôMÔ]»UD;–*C‡ù¡DDÿP^ •HýÿÊüóSZÉ@þã¹ÖTOd_ü8ÇÐ?f¿Jfô£~0‹yÚ¦È*,’P2ÿñQ;ú~â©ö–ªˆ¢þüG«³9Ãx¥/@¿»Bl¡ÿîC*C«| ´/wš.üÇQÅekjwN_Å1®ˆ"Vb,ý.‘Ø*bÔáýÝ ŸÍÓßê™Ä[øéð܃ˆ¾«ÉpÁ¹Ä â²Ýä§YÉþB¿ûÞ KG˜æB¦*æ‚ñ˜‡šÇAàý°„±à¾/³N"×lØP ãú3÷ãot øo¼«È?†ÞGr°Sº–Âд€¿N—”s›3tªôOý¯rŠL\¥«DAÌÖ[~rz®àWåÔ&u”»úbo'ŸéEÝÌî‰e>Ì9df`iTLµÜ ,E-½/OA â“øU“}Ã^ðçUa&Òeêõã'àZ£QL¾tþcXbª)ò»E÷ê@z®ëôOüÆî¿Ž¢/¥ªÄ.­@ÿ’þöK0¦¿™?ØåÁBª mæl¢¿í¾…ü#*¸â¼Ò´ùEE·ÿh§4Ãód¥ ûì'cã• ©øô6œK×îÄp»¾#yÌc0Á?ñS¥ÐžeR‹Yñ5½>߈"²+3ì~œðFÿþ% ë ŠiyZ££·:§›_‹ì¥5ø•ŸëªÞ?í|T·ïU‘é®XÑþÊü Ž€7¤ç*yþWøó—šg ùƒgé†'È>ûqŽ¡Ì©ïÒÓŒÊD~~z5VÙ¡•6R2ÿc©‘œúó_uÕ yå ÚE3Ø}3ÐüÌV;ÓÛ8ÏôÓëæ1ÛÜNÿÝwz”ß:Îsf2P¦eX“Ø¿ÎààuOã"бDbøó„ôß ›ÿ˜ÿ‘A8õá¹û€³Ô…?AÉ^<Ó>¬˜qøH¼Ò“0õOŒen¡*²{~6s&^É™+Bwnò›àW¯É!ÎÀÄaªàÍPÏùºÖ„c™Býǰã5ìÇÜhÄKƒüöÄÆŸKÿYô~ëÆ4K‡²âr£ 5ÅÉ^N`…ïƒ$ÄbþyXéÄävÌQ2ûñ•;ìÿšTQþ©Ÿ ù–j.:‡%¤2rxJJl‚ Ôˆ\ËétôŒû<Š88ÑÞ ¬Ðj”MÓÉM¢Z."ÿQ—úó6xo'SÈÍÑýM¶–ÏôŽk6ØZk¶7 µ4ªY¾Þ¥ Ïû]q5ÌýäèBÿùµS,éÿqñŒóÁÉœm(øp*ì\`ÌÇѰnÅ»d—«XsG¸•wï~õ&`)ÿW»á?&馇Ó] ûþ p'è<ýlËR³6;ºØ° ›`ùS‚ùPQw,+“5ZŒv_^ê¯éÝÖ æi"ØËmø{Žü*&6–3mÕÑ_ݱ߰~"õ†ŸÉop•(ûLUrbïúÎ +N3ƒ¶ï#ß*nVï›úéjùËp:þéøOöõ\ÖD'vYrîù}ŽqYmfëª94Èzåé èðçQý âè.ÑÕq6µ#g¨?Çܼ\þ“ýþQ¯8ÿHÌÿ˜6Ôþü8’®*3¯¼•û Öê ¿º[t=™¼ë–iT#‰ékQ>Éö¤KaV4²CÐ_m¥þ|”ý¯Ú<,žêIþ‘ZÞT~^ßiÄDáz“Ý”SUǪxr Ûßì¬tËUÔçwÍC}Çõ•ÕαZ'&Ê?·˜Û ØŽ™†±€úó6úaS¢!L¢;ŽúJV}ÅUß¿Ëpj” ì“h°¢£â½Mw”\Ô'Vì¸jÃ;öèS§•{ne~ÔT|¬bþ‡/üÇú_½ÔuÅ}øÿâÅ:òšþýK–q;‹­"+ók¿ð'M—X+R[%Cœr÷ó’ôGz ñ>à¶Udg+¨D[޲‚X¦’ŽN¹U­Qè¯>› ~þõŸ¾òÆØé¯¿zKô±’¿ßˆ¿X)ààÓ¥frmªµ†ÁÜ×ja›GÓ?ñOòrtNùÐhÔÆ[ô· À©´Áæ½böš‘"ˆøéà´5F?,rk~ÿ ÖòpT[¥ñS°¹‰Òg`¿÷‘‹å%ž GSFäûeÿ]?­G †jyBzìîwqY4&³ylõ LH“*ÔúâáïÝoáýº£rš!ršß~>0­£^ßü{õŸËF¶°›¬-¿•—c‰)‡3_µŠ©+§Kx¼É4þNåZœ­È½ùy¹¹Zy³¿˜ŠBf Ù@2ùÅZ‹Ÿg•$iÈ_,Z¬cÄß›Q”Æ’NÇÙè æ£uhjF >6ètkb '²J0Ÿ<Ò’QG”Ç?4‚ÿX­þ²×óñ:uÐÕ¢ûÔ ?ë‰Èw—çäþŸnoE1îClüŒYÚk1•w£½ ÿ&ñèmP32+õàS ’{lÀÛõÀ$ ÿîŽ wzïxœéñ™éðXU¾´â€_VídzŽÍ íÕ};²køUuºè KJg§ÿðLüG)ËAùóR".6ìz¸–ø†ƒÖ¦²÷á¯Õå÷¨?ÏÁ„ööqu_6Vö"ý•'ÖÙ^5…îã¾€û´Áú2£þþ#•”ÄU}r[3ð8ÙFN!üC½w7´íÐ=Ý¡"°üǰ@ o#~uJ?lH¸cDéTI²®‰hžÇÓ/,õ‚:ó™âº¦_Åv¹ðê±÷ž D&S:â[Ë=°ze„rçôS¦N¤Tì‘òœ@o¯»šR/X‹®%—ÕX˜™ùÔ&þÁüÁð†+<5Š)Õ|ž¤Whá΋ƒDd%Ü»ð”¾ÈœB\3û‘“¥Žv:ªÿóÑ `5(ÕήŸë™+†«’«ú¯`náÑËÚ†ÈDž‹ôÛë ßU2ÐÄE÷¥üÿþâ±VXÿê~—{Zk=K}æþV¨/RcW³“\fAó ^ŽUÐ?1®Q—üÃ4i¿ŠJC^ø³¦SëU/ÿU¼¹Ì)Ì9È}› ›{ÍLCñ[Çém¾/r££ŒŽöÁG”Ö;oD!&E|ƒ9uÁ%ÛaZqýÛãŠ}DÈ'Á^Z`ç Éòp ùÅv2ãƒÄçÏ©f,âà?ÂÂhYæVø2x£^ÖvìåS"éJ ú/@Úz`/®ñôïG¿•ˆeW¨GøNËÁžÄ5ûB¾1«œEy9lÅ(+Ïõ.”¶¹“±~¬·†Óçò_ý™b #¿h zý¡èK_&`8FùÁÿx =NJì9{™ ýÕ¯øýüGzìy.Þ{<üÇ5áÉ5{ ð”*ÚnرXrœømü½…à‘1‰+äΖ͙ÚÖŽèLp®m¨ª~$¦nm 4‹šÝ—zb—‡S1:¦*>:èË ˜=ÝOnÀ™{k•Ìñbªƒ¾²Ý¿s6Íð:9±IudlãNô»A£ß&—‹ðÓXsW¦ŽÃàÿgÍ}Æ8Ñ•ø"’Ù,0Ë=ðpEAÀjSÿqBµ°ã9¶ÊÂLgZN䞆|ayÈ1ürNª‡‚ëw•ñ ì­;qÅLò€sÒ[´Šþ‰/Xq»ÄãÕíÓ¨:þü ¹a"0¶ƒàWÑÉæ‚‹nµ÷³¸x¾­XédèªÊÉG̯í)ɼ'/,¡‹ F™îwþ¼>*nèÛø }D‚õ/)&Rà%/±{ÛbÇ·X/åLê§©±ôß}ÎTÿq–ªñ¿å0ºÍ/à*;óÏ÷À£-B…\œü#@å« ÒgÓÖ¥j¦–ñ&¸¢¥î‚½W)UôVYì=*15ãìîÌjg÷¶×¢"ÀÙ¾Fë ã÷êß~X?o|;ü Š™ZehDÞÓ \)+úÚÜ‹Ï0)ËÈ·\èyßa÷; ßUT^õ$ûü“ü£Ž(+â¸ýGýØH”2­ÁÒOPO¦b»ê‘wÔ`bífús-e~íw:êTék¹šúÁ0Þ½‰µ^ò{7Ä5…†î]¸›þW‹Àê§Áö– G~ªJÓ},'øÕUŽYïµì®]®X®t®RvD&©ïgVqø)™’"Žòä4‡j-~oBxÀÞÿyõX« w/ðü#A(ÅýÃÁ^¤Õ/êiéßžÇ,dúRU¢iké3ÒÓX´@M¿ìçÿõ§µ¨Z ƒèä{ÍÍ1 V ôkæáen0ý ?=ãoç83²,†þ* *ó£ö‹²zC‘‰3B%ôâDê?²8üDSâ¤ÆÄÒMÅ,ì.pѯèÆú£¿z¦üÃE=¤Ÿ(‰Ý£k±ôEìLe¬âsò?ýyô4Öa[O{C=Â{ZY:¾Ì:Ùw)9ü*õ‰”†SAu¼>=Q]1ЗaD‘QÍÐÔv#®äAÈn`Ñ/‰¡ìO²ب<ò3YÄ#Ö<®ô(W¶.ó£:êG~qkoiGðiñjyÉ@¼¸³§ÈŒ˜Ïn fLeõGmN"‡;JŸy_|ÇXÖ> Ò†Øÿª¡^ÇìäD¦rOò.<™3ÿ#çĪ›YÃ|bßÿ1†+;Ø=-þã. Š©î'7à@×hÌÑb‰¥Ó½©8±öG¸êœw^γ–.™üæÿ9Â9üfB¹šXvìù|~®‡™ÊŽ}î£þc,öRã?`Ÿ ÿ:‚ÒâõÁµ‡ØK©Å~ «ÀN¯·ŠƒÏZÿq¬,šå Óf5-ñ^¤Ã£%ðïÉî+ºo™YQé_ž¨·1,¢ÂT¦fœž‰ N‡ðF'QÊ%æN¿EÝp¶hëñÈÚî XÎϾ"ÿ˜¦ªÆt¦ˆ®)o©ƒ¸!á?Ã"%g¥³¼ûxòךÔt²^^‘ž|ô$»·<ÀRë4¬þ"˜ÕdX×°ÍNýÇ%æá^—3èÜ´EÂDÙo|Ì) úÝû¢©ûð2E V­ùr%͇‚²\B,f“Dpõ}Ò\ÏÁ¯ƒgå„IHžY‡nå)8Òì"«Ûx꾦E”Ÿ¨l„|JuU_Uþc¾]…±7zàív˜ô†TƒL ÉJüú»•šÇS} þã¥H)›2#ìÇî¤vƒ¨ÊÁ:)ö©Ì®·v6ºYžCÐÈî`oqbz”᪀'Ê+UˆúÁ'ê YŒŸØ ^-dQ–n?ÞóëãM­¨ɽ.Rþ{¼tÀqÄÓ_èÌ?/Šþj¿^œ5×Ða*ÐW3?êv0àGÃðê¼öÄ|‹n¨V&±åi®0n뽘~VLBåÇgÁ÷ÿzÑ™ô¿ª .& ³UCD´ò2­Ä©Ì>`bšð°š„Ñ,F§œX8ú«wØ«&Ö*â¤6dYÅ?䟧±e¼ÈÔW̰DŒuæi¢oìÆà6/Ádª‚£<ƒ´†G÷aŸn¿Šûzýù*m6ùìLqA|m_CŽƒ®U‰“™†G|ˆö YÝD¾Rˆšû î{òõ›`Ô‰î ÏsÙI´ÓT•Ê’%ĵY±¤“ÁšŽrÖY¥3¿¶]©Kÿ2ÿ¸¯-Òó³×}Àøâ£<øÎÜ®&`u~ WeVkÏj$yOu'};ˆÓØéµ"Yˆêé]Í^[8¼EFüÇîFAŽî üÇRk*r‹¸y>i<¹×ZÎ!¶uÝ]A‹îö?ý™¯•" ]GÞ·Û–™ É-;s¦s`Pzá…|¹žGAì¯ÁÄl"CñÂg.¶ºR|f¯ŸÑMÌÍNGβ™§Ûk½•®Ëöø ÔÀ-ƒG?…«¤6“ßćÿXJåÄq8Û$x¸ñÁîËký•Ȉå‹ED|öw7}+á?2Ó#r&õdg¨3¸Çü»ÔDP£ahÒ±ÖNÞ}:úÝ&Ögºÿ>é†Ù“/ùVZ²G)›Œ£šæŸ/ ¥¯mtðöD®ð=U[tÆùÉ?f“øâEÖïÝ5{Y¯†È"«É º]ýŸ—ôO\ÿqž ëìtn´±ísp3íé|¸„Ÿéj·‘#œ'5¼ÖÑÕ}xg©"XFVJ—\"ë¬RsXAy^&ª]úÁ)ä‡é µž8,Ë{–½üjX©6hdcÊú—\Ðç±Ñï^!Æ(¬xëf…T æŸÃÿT­ëÈ1Z®èm¿Ó‡¤=¬ÈGzåwà»ðÔd%E^·ÿ¨£ï4¿€Ž$!ÿð”̃ÖUÍUœ£ýK®â'MWw;¸XDjÅ‹ÂÌ'¥þ#§rôWyω̲T ýîJ}¹oØ”?ˆm_‹^ö!×?tjŸ§ö¡Ó;J]É×-ÔWÊÕÜê3UüIí`X±ätzm Ž*;ù¦ç¥ÿÕ+îU,÷Nx¢UÑsº?sßÐ0½H£ßÒãsŒœôo?©×c•mZq:ï6çkQ©ö;¦U~üÐ3í†yURQØèÛ¢>óÏS?xÍœÅüÅàWW~³Ïã\SÉ"Tpç¥ g5§~°š^Åð­_ÌWææbg ±ÊùÇñ|œŠtè:V³ViêÓNÔ€Ö›é‡åKîàÁW§ˆDâ¶¹%à×~ù*º¹ÿQ(¿6p5Öt/8L8"ÖëØ/"áÖ“ÿdž¡û­-,Åü£ fíLÈBþQž¼f>ª÷Øú\ò:1ÿXÿÎ íno6:Yç°}#ÀÊ‘ Ž$s¨g£ Ú ½lbûG°ÝGQ·¼æZ3é³~âçš –m6•3» b­¦øÚph\náw7ñ¬Æ¤vàQìÔJ[`ƒ|¬½"Pá°t+}‚ÙˆþX¶ ÿq’õÊò· x*Ò?Q2=oµ ÀšVro2€ 8Gæ„à?Öjåà0gÁ &ÿH[>o8Áªˆ½l×›”ÞaEÈ=öb•c¢<›‰§ŸÅºÈÊ:šoõàýÛ0¿¶/çﱊډWhŠ‚›øÉ>ðç>hQ7«X° É?V`KS‚mG¿{ö øUðü#²ñR$åˆÒ0¯o˜ÕV"_ú·GQaª£bµjQ[½†¿T}§EÁ{k„8?9ùÞ;}Içzš‘š+FIï‚æ‰ù‘p+7°SùÙ³Dfòµ?ÿúO_I`®7÷ˆüÄ[ˆ’ç`΂Iù…MK+¥üÂz‡E\<ݲ0䵿àwÆÃè²9V¦$Ä©?_LvSK~â2T%rZHjæ å*ú€_¹äX´XÊS0À¯rÁ~L€™ŽDiÇßQSc°¼§9þãWwú•æ«gÑ™ÃQÑm—½DÀ>sžÝ©Ìc-cˆÂÓz+»¾~;Þá=Ë2„¨ß-¡WöçÏÓäºo!*.ˆÖà%ÖHk¿ÙÚŒ‹õú‹Þ‡ȶœÙ®ZCædíUûé¹>þ¼=°¦3¿v ¹Ä2˜‹•ìÍð‘7Pÿ7°ú¸wáB}–¹X4'—íÆzúóFôß-?ߤ¦ÚØF5ÙµŠX®¶T!~§:%žDá?¾‰à %éß\û¿RÿñE+¥¿s_éëTî²/Üß õE&G×jL5Š™ÉéUˆUÖi•ŒdFæ†Þê À@õÜ¥<‘j ¦‘ž3.ëÛé¿»R¬ÀÞ2ÀÊ~ë8÷™e#  p³•¨ï½-’éÕŒd8(×nŠVâ0êw—éõT"¼|‚Ðá.»±79Myá Kpš83:¼¡" ý¯ÂR?ÁÜh>•a2‡‘½L·cgþWxN¶Û¼â8Ó‘ O7U\ õœ¿j%É76a'8ÌfŽ…Šl‘kí…ÊïïC^¿žÏ³”ßJjÿ«ÝÆ 0ò!xÆsàýáÀ±òuÅ&ûEGVüã6±ÿyPôgTÓõµêRùö«I÷w´kznr§ÿUl´ë_Åê&;³~G°iªæ©r~M»ƒ×ØF^·‰c$cBœÌÒRolÅzÇÃñÉWjàA2rÕ,ÙÜšKÿ«/غ¡°@Èœf¢}Eä÷ZÔ§‹Màö?¯1ÿ|¼˜L¾7;”=ÒlªyÆá)'Ñ· Ì~x"ØØn_Э؜ÃRÐÆ5œûk’í'ýî £ \Qa¼å ª*“óý.¢úÚ?è¸{‚Xz?õÏéŸXGM&ÎM Bt,ç29Xê?‚÷ßÖš½Yïoô_­L»xÀ1íÃF·W&Ò¯*žzˆ¥ÏI>s Û|K„4†±9ÈÞYGþчXJ'—ZŠºì#•ƒœ‰³äÓí‰v ×ø€àO ™Sr]–†áŸDÝÉ"lª³#ÍÖAÖ+&RSÿq”³!hÜüÇ\ê?©…ôûz ²“Ç~«.0]ãŒìˆþê«ô&Oñ…ÿð¡+c¹5P½øßZ{}(¼V[´#ÕÉ¢_‘õfCcÖ›úRLô›d¤š$ üùJ&ÍE¹<Þö&7wÓUx )÷‹™î›|\?nDâ=ö1&¦þ¼!U=Ÿeû=óÄ73÷O&Œ°÷‡Dæ_SïÝ\½?‰‡Û‡¾ã,"¹Û4§ÿîGž°tÖÆZÙý{õƒBDgÔYѵ7W[ôeúCú—Ì1ך{Œôßë¿{ÕüL=ñ6ºÀbÒûÒWTÕ+1y“Šb℈be #ÿ1ýUñŽHë55acˆº«ÂD±j‚D¶ÉiG„N½„H.N˜ÿüØ"ÿâ£I=‹¨ÊG¬œìÌu"ýðæNÿÄd¼×ñ {D,þŸ†ùQ¶^‡ý4O|oÐ3m ÎOKœêøq¨.b12’TĬ$Vÿj„Öók¿ÑŽLàOk((Õ 2/Ô`uÑìŒDA“Ô| ¹Ç VÍÿXÈÎ#:ÿ2RˆI…i&ð«™à)` %ì_3®Õ'«ÞÒÄ­ÿNvVc5YÍ.â»3ÔNf 13lªÏ4{b¿¿pÍò‚xíá^V“<ÃW²þ@ø¥RìòpÎv*±] °“s©þc½–ÜvŒ•ÓÿñÛP˜=oaìk®Z^¬Ýø‡Øþüùz2”¥øºt™‘~š_»Ãh'úà32Àá{cÍ©ÇaƒÈz* ¸öPû¬Ê€õ/Áü¨…èƒSûW—L§#ýÙ†»ŸÉÿÙ:ó] ‡e`ã÷À/ÇËî”R=áˆv ¿zŽêv?QéU¾ö uu²‹Ä÷¾äOñ¸Óá‚õ/Yed¡Êè0{8^Æ©¿1±u#TuøŠÉøHäºk±:Œÿ¨CÿÝÂ\“p?«ÀÏ6re.˜‚a%áêçÔ’öFE¶Úº+W‚_µ¡º1/yÇ|;ØéÚ “Ò‹ê·àWãd+<×v,txvÈÜ×Ú¢¿º÷ñ˜üƒ©†b‚¥+ Nú›*ŠóÂîï"ÿ8ʺ­á?:¢ÃZ+Ô„MS½±Ñ:ýàüÇVý¨ ïö–,4“*ÆY™*™~L†-K†õ„ùSÒ5‘þWŠùµ;AÛªÚƒèÖ¨ÓE«xe¹×ŠÎÓœÂí?Úë̈ä9Èæ‡Ê7Xþ*TŒg@U‘Yƒ©õ¸c·´Óò/¼=–ÕeÁDK«Z ÿ1‡ü£5ØCo¢³gâ*êzdWP}Áìö£&na¯¤~0›ë1õŽy•é: ~ü.ÌŸ…͈Žz%‰L/ÂÒ­õ_¢ë[W‚̺LåNü û"ì‹f‚Hoô7²û×Ôg•©ZòNÔŸ§Cõ{õƒû´7¦‹,¯(cek*õƒ»õÖä>b‰yÔ¼c\„º…åg™q©Ò˜E½àPòÖø‹\ðç×Ñæ Óú!‘Ïj"ÊþóÚ«è"ûÁdB&–«1œŸõ§L<]D"9 N’vaU‰Í?ÿúO_ÉŠÿØÎû¿Ã¢úÜÀ&Ö¶¢¾ÄÅä}òS·ËxD¼ õÞ¬ÒÚa‰¢32Áþ·#åÀ"þŽí9½Ë@TW¿·,$£™-”'“<—òâºM£~{$+– þ|::Î$D=óÈÂŽ›d!bŸKüÔýÕ¯¦ö¾Ò–‚_9µi9*§šä²¿þê<*úp0žÃ±£ï@­N‘åÏÃ'­"8kíiBì_ROo‚ÿ¸I¶1•|æ4þ­ ž;¿ëâ~t7˜÷Aoº`û‡âýpORQ›¥^œr?¹7c¸VÅ,ÆrOGÁ¸'€}šJîÛÑÊRŽ ’<ÊY‡Í8ŒL+7ñý5xü•¨å†šÑ‡Kù¿ºh4Âêå$œ…ÌÝ 'ÙÃiøRtÉð¢69+½GjÓÝv)ÑȬzˆœî*T*T†»/wõûðñþÓ±’wPȳ¶P¹ýâC,ú¥ÎiüÇu4½ÿQ<ì9þî4¾$2gò^Ú?q<õ­¹Òo8«-às7-f-T5ñ³á’Rÿÿ±“ùçõÉBÊã?–ÐykøÞ"bºÁú_Õ†ÿ¨L~{šªÕnXÜ—ô/™ó¾úÁÔiäa–kt&Wì&ÿŠlo%—éG·ò(ŽßB5|#~u@«ª/ÃlÃQÕK¼*úáÝîQ'Ó®GT>…:ï̯=Mò'Ç\þ|˜Þ`°½O¬ =‚ ¿Ú¥/1l2Hçž–Uô”Aq_Ö‡ßñ¤"å!c¹Æâ¾ÑwºË¼Éê¾ú²×‰+Ø“ç%ŽÈ*2¹ýGCÿþ%‘Ðj̤gÛ9ôW¹U:ú·OÀÒ§ƒÿØno¥3þ.š=På…å/ÅýÎ¤Ž¡‘qfÃ=éd92õ[f®>Ý%LàO¼Ò !í6®d®< u×ÔI²˜úö8×#Wf×Kü]*ð«upò/dy»Èí;ᆕ´2›ØôcÁÿàÇ×tlåÞ«·Qófrö{‡‘ŠúÁ„ÆôW¹Ì¯þõ¾Z]#ƒÑ‹ùçú”°h‘Þñ©æg¾µ°Æ)Ⱦgš'Æý1½É?®Oôä¿uœ[ÍhþøU=¾ Äw7E<=•ñ]”C[Q˜®Þ™¬zfØ*Ú§èwõâ+ï+žËÁ¬×†ö;ö¯ž@c™ lfàåNè—¯b˜›˜ªèIþ1+7?r¿ô»èôŠGDžœ¾ã.lÑ„0àW—´ÄõcÄ3ñ½½‚:½ü(:š€-%Oz@ÄM^Àƒ:³ªÒ13+I(Wq•ÑDmÞçÿ=°ÑÕAáÇÁ¤æƒe^ÀwÏâ?ŠÉo =¨¢l­ÿꬓ±CRXqå|Î% öô*†Æx±×és®àtžñ·øÐ[Ï1­-»R•cXÇx5|*?±ýFòJ§þ#"èEgz2#Ã89Í<Ûjò¯t rfÊ,u?¹7e‘–›Ús­¨Øû–àçðr­a·Ê`¯î¦‰PPåB ëµÆ÷ÝÕb|ðIPë1fÌŸôW»Œ¿°zU­8àK[É.îbVp•ŽÈÖª0=c{¢¸M§.É⪆š >ìî ¾ã,‘yAºoÎ v_"O„„C)€½Ý‡ß@ŽæÍä%&KÈMèwïèì·c’ÄSššB=@Øþ#¼ût™Á¹*ƾ +Î2RÂÞý Ú—D¬1ê‡øôНšá?×'âšDwø¶Ìÿ¸ÎÑ¥òg÷⨄±›Í‚¬—ýnü½xÇƒÖ 9™jĦj>úÝ'0Èy©ý‹‚òôþÈÃöÁÊ÷@¯åÌãšGÿÄ"Ô˜ÔŸ;øÕ"²ÐúÄ;N/ËGb6ìÌ}æZ9óÇ¢×õ„eHEÿÃyv[Tc]©C_@·áÔêDg~TLvÀ—@½çŽ3?*xÞKîXNú_õ?_ÁüÚT¥,V—ÈD¢»–sõ¾Ù_ély•ú1Ìz‹ÿhÛÕSžµÂ“uûÚúYS€Šàþ ;ò±ªNÌtú·gY;N½d}˜?È—:ÓçpÚ«Å0ßà¿C.òŒôríÞ…{ô•æ8\ìGrä?íÊ®óT vS×ÑR{sízºNÀŸï§^%Ó€¨ltª)bǃçû Ö“WgcGV Ó´¡€ÿ¿óêøU@ÅÇ%øÐ_½oZý9úݥ̪ ~Մݵ–úÁ\Fc±áÁóõ{úÝçZ$¤² ×»©åe¾A¼Sÿb£ÌCæyºaýÿáÿÑÊÚH¼ët!¾‹èzCÃ&—Í$rƒ_åE#¶ùó¨ÿ/c7¥lM}Þ›ŸJžÎ ÷­ðw]`°SŠæº_]¬@_b^4·Rÿñ˜Û‰g?bãk€[}#Z޵ýD´~üª0ºS¿ Ïl EÜ/_k¥¨ÿŽ"ÀÁw¢“-JÖP K8‡Xî ü‡35°4~j1Ç%TýÕ%£'Œþk<‘å°ÙàhÅ­èDŽc°ªOÉIž¡+º·ò”¨›UVüñËNýú =••¬Û©ˆc)븨Ä5»Gýì]0u/xääçð(kÑÉ­çzœE•7Ä*•:t}Hî£É)ø£ãEŽ,.WÍ%û[£Qq„W[±ÆeðcˆíñœÄ× Q¿»ùç PÜÆÃ 5ÅÞK9š»0ÖuŸ çÕqr,_Ðzr…”r!×s+sÇ8ÞLdÛ+Ø_ž¶Ò‹ ô»méå¨ S8”#ožþ|£R<„=Ï Æ6‘|¦õíÐUoäß(üÇ[žºÃ"ެmupûm( çPm:ÏVÐ:$bØÍ©ÿÈ«z0³÷/º2grÔkW×]µèÌ?ŸJ틉®+ŠìG îEÇö°{ê‰Ýî3þϽø¨åÖ&iÜ¿JdŸ…ýHb ßel52Ò9â^‰UR?XÑøÓXG“×Ú¯ªÊB~‡×ä.âÉ:`·ÕA^mú'òéÔŸ?1îÿfŸ•ÓèwëSKà Ãç°oÉ?Ú'ú««è¯J›a›œ5•J¬ïæ-ìý<›ÓݼúÝ¢´Øëf5"ÚJþ‘ùç«B>¹ _MaÞf*V Vkyc“ރɔ³œü3ö8YwøÆï-®…zo¤^…N'CÄ-¡È¾7“½å¿*i±Ü%¬l.lY˜fyR?ZÿöCFsª~x ß'1š£ñÄøÀÑæ¥ÿÕtlýaPog:èõÆ¢ç/û'Zúa=qZ<<Ò7q–l ˆÝ ytiþÃ"v½ŠÞ ¾žw2.úÝMTZDÃRu`RD4âû ä$3° y˜åK¯“12%‘r#híéb#5»Ë¼®8ëUÇ®yP+=EUd>âXêý⸞¡gIubkbç9º„ðÓÇñs©,hÝ6;9¦"ûnüy3ü­¯uOk^UŒŽ kà?^Òã| þ¨»ÊLþ1­ì‚Ó‘2¶jEÛfî›qœžûx*Ég¬–™^º -ƒ:áðçá?ÚÛõ¨ÓˆÏd¥‰öôø _®=ŠúêÁºÁOIÅšî^o³¾ÉøB'kDOEU|öo2·d\¯\ö<ê×'¢¼Z ~õÆþ3u™¹OÑÕÄ íZÙŽ'0úÝüîü£!õƒq@‰3“ôËE#ËS¥¡–¤;øU<ù9ò¡Ú(κ’su#OjgVÇ`¾ÿ$»}ÌóxkUÌjâÞ…>újW«‘ ÃÓŸ±ìÂtK,®z«ËÔÖŸ Ž¤œë9ÓX4W”\/m§§–Aÿ’¸à´’ 8–UDµ‚ø=†À}yþŸ^<†1¨<­5ú·ç:ýK2+‚f7ð«Aì®5Z5òÖô¿Š‰¾ñ÷ª#S>¡+v¥5Õ`GŒìÆ:ú·eþùø—¿Ùçq½™+?Žêã[¬9ZÞ×Z\ã }FQHì[nÆþ%Cô—º)"ÊÛ(ès…En€ŽNX)Än<ÓIŽ9©5ÄšŽÿøbî ý‰C?á-"Q¸ƒ1-#«ñÉBDþœØ<>ºŸÜdñ°‘§ÅÓ ÏlH‹¯ÕzSßOÜ‘зlã·r~UÇÒ ´<±baº/c‡æcíËZqÍü¡¬8ÇhEõó%#8!Æ<å‚Ã…]ÊK¶0öûgí OóÉË‹®ú¯Tg¯´ýz:¦h¬"ëËH6óˆ.ÈuÁô¯Å9üÇHp”Dé7È@¶à=˜®;\”5"œ€s.¨×4ÿBùeÉqxÂËØñ"øÝt(pc‚Œ0™šŽz´#½9zà-—â?’q%¾£¿Úå~rV›Lÿ«ÉbÞh:þ"‹ü÷R“’Ÿ¨»Š¿}ÒƒÖ üÊÉ?fpý–ò3›PЧbpþãú«aD¨Ñ@¯ÖÁá?aoø’ÿ/Dýù*ײ¡Ž­:4/뻋ÚóshP Ñókt°ûòXVL"©4øÕÌ\OÆu­n85SzÓƒüVõˆ™L!’júÝò¾îùG$ü˜¬ûl#>9é´™ÈhJ¡Òˆ ´Ly’ŒO°AKžÚ£à/jSáèG®#»ˆz`"*«²TÝv r„EIº°Üâ~”ãzm²®ÉQè¯:fPwè_’–ú/XëÙôOŒGµÆpŪø·ðGiTüGÀü‹ô_GþÑk[]vQ,¢:þ6úÝTöÕÇ÷6A ,ñ#É–2IpøÕc2šõò-QS¼q\kŠûæúê>†E p…ÝZTe€c¨NŽ®%eí¹Ìø†Z`­½/ªÎKðÔ[õ•aG®`gª¦ QBÔrûZÔD@Yo´ü&Ò[UrW{6sÓ¢„».l³q§qÎ#UajÒÓ£iK¢fc1žƒµžId=fHü8À¹úTrßàÙ¿ÇÅW4Vñ]‰ð誼 oG×m¾bÒ#%ùÑ4:?ÿH ¡Ý=‰'+D¶™Oìú±àðã3­¼®¹wÂ9˜«W•I¿®2éè¿ûD¯ÊšÛ´ÊL®íjì  –¦ÿÞÙÑ>š6ö  ¢ütˆ8 Z`.óÌmæYãÑoί=fF—í‰ëj-W´:ŸÕ’wÐÅ"­ðFáZ2Œú«%ú=ÝC¼Gô<¡÷¯Ì|8«€XI>ršœ)%º¬AÔD¿R²¾ÁQȧΊÂìù?¨¦bpf°þ‰Ä숿¹Z™Ðä–ÿ}‚±~U {:ÊŽê:BýyêÛÐqêj®tÜóóDøÓä <õ³w#l Rà%OpïJ¡`Ûa]—Céç[K-—©è(µäþ¹:oÏF±<˜Þ„NÿÄ‘²Þx7™l*ÕD^íÜWð 1íZ<[qvE92©b»õQcfcòžèx«ÚÿPƒ½8ø“Ów’|S±ýî(¼G ù^ w¯wù犯ú¢ÍÈ©P?mAøótøšË,/›É~—ùÿýÖÏñÕbꑊb׎œ°­¼h)46yÜþ£#ü‡ JœŽßI†¥mÇüó¼xÉ) b/Ñ)×£†=ÙÑ-|hV{ƒýE®dòÓ$ËñÍIæAäпý€>ƒùQ ­Ñ éèôEÕ=,J>x…*óõ¨º20¢+5}ÍåƒþꋌÏüA– ÞkZ…‰x²ˆ° åî‹ò¿ôâ¥VH¿ã^ë<Õ ÿ.ž»š®¼¤YŠú¼ÛsÓ¿¤1ËøªøMýî;í‘¿ÿÈŽ5Œa5dþàúÃ?DµØô1wWõ8U÷‰üôb‹)de”ÿ¬XÏb·ÈÿqE$·˜BÌÍÌÆúóùú'ú·?'_x‡2¬3Ï`iÙÍ Oä}ŽÏ°¢ƒÉôq©?ßóÓqüü…”ÔCž†Ðå$Ы%ð gØáß±ÉN}{ty´›k‹™¸ç‚<³?¯¥iBoŽp<ñòÙDIéш×B 7s~D5 [ûֈʊ;?±æÁï±ñÃ&&ýŠ…-ƒ}³p%Á),ã!,d>ؤúÖŒ¯eƒ?޾пŠåšh ŠòØêƒuN‡©@þ±›ìã:yØbÞ³?G‰ôæ×V¬®1[ó“|ŠÓÿjuÀžð/È@ª¢¿ò4_à?ÊÚ QcYg:ØÖm0º‹¡ä‘I8†åxÚ[ä»@î ‡-K;87Õ%TQµ Ä,W`¯£‹@§ÌþÁîKJêÏc“¥%ÿ˜ ˾œsøU$*òö hº†&ç3UÉgˆæ_bÁúóóàC»PÉz{¼Ó7Yq ú«–þùGz¼b¢j -éŸ8 Ë—Úµ—ô–(Œ[Ów7õƒqÈ<Ð £¿ÚH qÈü3Èz­DZ¼ìEîG}²©CÖY¹ÛÙýVô»ð)è•}íÞÌÛIµÊLÙžl¡¾u5þ2¼*"w‹î+xZk§Ï®Å5¯&•ü*ÖZ6~¢óüÚ · î´üi>Ú¤qê%žÓ‹þ»ðô‹äxùd çÄH÷z[ô}ÆgGsEƘ^f7w`ÊûBû}P–¨«Ôf|‚‰Ãõ{LÇB-o5TY&ž«yJ+²©XĘ)ÝþcsP¿b9J³Ë¢•ÕÿQŠyƒÅ`ö«R‡“šAŸÁÄDm1-7£šFv{™çñªH-[¸wáJ}¾9WÔaµþ(Û.Q?Xõ[ êϪ„ºÆ‹¢) í›LQøÊ×b©Ãcœ.à›a@Æ¢n›‚:QˆøUžºN¼û{Þ79~ÛÿÁ¼qìÎW4 Ì æ[¸ÞÞ¨J‡“9Í"ÚŽA-É]QuóϸM«ËlËQpïÀå  /ƒ{DÅÆ Ù¥P,¹ß²—wµ¯ªÅì£þØóÉä %ÌÈôw úçýg’©%‚? £{.e«Už*é?UIüÇ`êò1W£8ÝLßG">^Èǽ\×4ìÏàý¯¢DDòÑTþD¿»‘}²‹*ê(t´=AÙ«ÔÜaþà=ø ]µÇÚç£úc; uÖKÁü£Aîôr#:ÑÉ~®U^®Æ ±éL8I5Eo;‹~#q\¶ë³½€ü¦“ªIž”—þŽCð[>ÜùuøÅ[fŸ ëõBU}Æ úïÖ‘~Ös²¢¡0ï™GÓåͤØê ÕyñÔ@*7Å@kX—Ýø£™ô¬*A½_7÷¼¬ÍÓ×£8›²Çnòd]W™_ûJUg~T'ìþ"ð«ÍôOEÁ!ô<‡ò ;Þý >Xáÿ/‹ îõèWpððŸÙ%‰”ŸèL7Æ~x³k¬³ ýÕ0:·Ïàêy¸>1qã‹Ä㛉Ìé}„¶|‡§DtÉä˜á9ÖL<Ë#4þcÑ“x~$ê¡[䯅ӽ™U[·++û˜|ɾ澳†ULTÖ¥´û¢í…ÿ(Fí[uÞ{$×é*OMu”^ò;u— ÉbËPs]å.âß ži¢\ˆŠëͦøÚDø°<Ãj¼y)¢»÷VrY“ÌAf bóéD¹ýYgùW øOd uBðë´2Ìÿ˜G„8A6Ârhè¯já13íˆOɉR¹$ìö~þeB-µìð>dIEͨFðÞÿŒ ¢/þ#ˆ×L𫳰xûPÀ½Â”¦FÙ +ê¿æª,Cì}.±þ0ã“ÑÛvƒƒÝéè†"·jí¨ŸÑN_‘kð“è_’G=“¾ õ§a¥Ï1…ïþ#¼CþQŽüÃáûÛÈô ˜‘ ï +n5²rÁ^%&Ÿ)F´âúj­AG•ù &©]ïí[Xç/r„jŒ~7'øÚtVßÃÿ'A”¯š=ƒ¬×JDCátÔ±,žá åGW•ŪŠÚ"3Sÿ1ÿñPb®ø;9A¥¦I¬x¸mcUU ÄìÒfè{Pý Áâ7».X}=é'U¯4€ÊHÿÄ>öTuÿÑÐ>(Ÿp—¼åWþÈ:¨ÿÕ ý‰ù U•e/¯¥Ëý8ªÎ‹2Gý¬Z`§%縅ÞÌ 7áúa•gÚ¡×ï4U@QPDqûNúÓb7åä)ÿQß¡ »êà?J3Q$ê«ót0ŽFûêÌÆ8#ŸYÚ<ª7gwÑÂÈ ¾Ó0Œ—¿9ð–v‰ùQTæà?Ò0Íúª‘¸§Ç§¯ìó ó£Âa«Öøq“ÌWD§cé±™5Û0ð«VÕ8GÝ÷m3±ØŸž&Ô^´ÿ³VOýœžHèDlÏÉj}”#ˆåSˆM DgYý£ø¬)©¸dþ ÉùqTÎÇÈô/1Y)¢»Øz 2V—§ÚĆ5?ÿªTXto(yf¯òãõy­ñÈBø’hX üV^ާ Þb±ôršLòyÂ|vk1K™Îœ¯õg—1’:—qìì+XËç¢+–¿%ÿÔ'J_‚—»ã]þc‰UÒ*.ÊýR¿›üª0 ð"îDŽ@RÑ€ÕÞ[Så7ro0hİǹ²ëÀ±–àf¡„nfF á(ëêCÍ®xqPº|dKñŠå‰ _ÃRŸ¦¿ø03"jÖ D¹“AÙæÀTyà?Þ€À…4?júݩ›ë>þ<¶Æ Ï6lr‰lNÖËø˜xþ•tÙYs#÷Ê©pœVшì—ÃÄ "Ôþ9K~pïdªžô'i†ÇØ G½\%ª¼Œ$1Œ÷flÜÞ« þcy°õâû×t$[XÅ1œ ñÛKP¡æBq5ŸÚˆSè||@qüÀŸb«aDàžòïíý+b7ÿ1×HF¶| Öé¨U‡»—F­¤—ÔdYœh<³Ï_Ðßc+|ÅhÕˆã,° ŒhxÓ®´&Æ9Â’"9ú]?rÉëlÂÌV­™Ž˜“¾‰Ëé¸þ‰È~žzŒ.+=…Ⱦ :­ œïQ*VêÉ—¢{.¢ûBvE7ôÀõQ"_3¬Xä ™?8œð%û$ýKå÷ÅOEétµºs…êI¦”Î}ª{½£ô/yE%ûKöHUU‹'b8•ôÃí¨l7’iŒg2ì*¦oÅs}Auœi" ¨vOIýùHη gS@T‰Üþ£~Ùü€.»åM™›p—mT~z‹ÌÅ”¡æ|0jàIÔvÃò¦®sóg2Ûk ¬æ}öê=Ћ~ð«}úzæR´ DmÚ%æw=µóÀ’yÁÁ[¶¥É[²|õ:=óQé“Èö “ƒ ’Èú“x¡¹Xî>ãÿÜ‹wZ=`ïßÔêÿ&¯p¤’é¤)éß^þü¤ÞŠÝµ€þí¥VÆ #žñý7ë?¼µ›æuQ‘èi…y ðýHÏ&óù”.Èþ 8Ž_55Éâtʆÿ(oÕOÄ-==éêZžBÐÇ/5ýÛÆÜͤÎþ­)AÈïÐݱÏ`9 ›[춦’¤èk­±á?ÂRžŒ~ô§Eq+º4kí‡e"ý›šä$7Šqg^æ±;ÔsÞ¦ B§:îÒ_ñù­¢ÖQï1ÔmX• X…ÈGàE¢…ê?æí-)»ƒÔœ$7º,œùL‰B?3MVD¿;«x˜kS~âìéÏ$šè·C¾ÚEm-øU5¹ž=öÙ™_Û•Ó%òïû¬»™g5±ë¾²‰Ln)?ƒNLd ±3@!½¡Ù“{Iz¡¤<€‡ðäol¿¼C|Ñ’þ‰;A[*=9jåÄvÏà…þ` ÌÏ8E+hŽ`ã7à+J¡ X2Õ™óò"NîD†pfø$Þä ö)ƒœe­$š]È5ñ¶ú›ßôOÁ–ô5úŠÁÜÇ\0[É?î‚nÂì¡ãUNâÊT'¡ÚÏva9ŸØµ/ü¹/ µ3¡}r°;ýR×ñ¹ÝÈÞ–±¿ÀgÞÄvy€_yƒéØÓ¼tí‹ "VLÅQSyÇ,Dä;ÈV˜@Ž¿Žñ“ÿˆKLpŠþÀNÿ«Zò”‰~ëkÔpæ´¢â "x»SëÌ+ïMžT‹ã[€Õ]Hös¿øÄ š!åI¸FÐËõÇn´îÈí(£:©0<·Ðï–´ï©÷ôü:#‚¼ì¥Œ.a?ÞpƒŒ¦ŠR…€_mGÚ‡¸¤ »¢¹ÞiÑ ýÕ |®mWRÃðé7ìJÔŸzÂAj4½«ÎâÛ¢,øŽj$üÇ1É}GNßS닎jŽUN…§î¨#g1½AEŽè3•3‘©ôF/`à1]®.öæGIx®žx$ºÓ•§M ýn!ÝþWIyÒỲĦLT)\…`yê_Ÿƒ",üGT*Ù À®ä»Ë¤¦“¼aú¡ÞlkµuïÂÍú\ê?P÷ð”U§âµ‡^Wùé4ìÃT°•åtòov)×P¦àÆq=¤â¾8õÙaL¿ÃºF#²I+ëþWêÏ©”q\ÒJè¡!âîÛìE<ºå6ÁŸW4¯êuÙÿ«µFêϽ8ä¿Wÿq™þ%Ÿa+2‚Û$°›˜a¸ Nä¤ð5˜.óµž-Øìp‚}Ú×tÉ"诊cï‚`œ6Õ*EetØY©FÏg5 ±Ê Ø2|:V?Ký „;¶á=š‚µ4—àTR‰ýàWGÉíƒÜ¯¢~ðöÿ!î-À«È¶­í’Uµjãî®ÁÝÝÝÝݵ¦qwwm$h Á‚‚…`Á îî'ÈÿVîa‡pïÿõá>ç’ÉÚ«ªVMcÌ9õÈh–ú!Ýî㡘«‰iÇá5Î󾟸 þŸ˜ï\àWÑQÍ.ë"¼æµJ=¬ädúïFcÞ‰eÍÇV a<¶ç5xOn´š5±Í®xC/ÁŠÓñÙDz‚Å0vw”‚tKœ‹ÈCþ1Tæ¶>+ìR0¨šðJ·ÂÞ´ ï$P÷¨ùɨfgzDßÊV|ýÀèg~…ã‹b󭱌ØîÆîc¿ëìÆüÚà ×à¥+«ôÜýØæ0Do5‰‹££q±@¬® ¿Š!í)%õ@¢Æ’Ë çžs_êÎ77xµÉÌÿ#ág5™ Šø'5ƒ}PÖ–$×ÚOË ßëØz°üÇzöº ?<›þW¡ûïz“ CéÎ};øÐuî:Ë-èwó1£nùG|ê*ÊÉFTv3Óó ç¹§g`ˆÅòPÏE× Ä)+þc 8ÒR,õ|ú—¼ÅfzÓ¿}¿¬kÙ5j×á/bÉ%d3ÅÍ/¬xœ5ñÙFRª§‚¯–ÞBZ*âwa¥‹¡/®KÆÆoÙZ$üÇŸLPJï8Çäíåò8xVkð«¦äûx ›ØLLrJïb½¼"?6ì±D3s€¹Á¸f.ë,w¢ÿ½A4^Áz/?ƒ]6{õOœ‹N¡jåý\MtYÅ|$þrnÏ*´y䑽ÌÇF2³{T%c"ù|ú··f&Õ4XêãðÇ>èÃd %¿¹ ó1‘L*/’-‚òSýÇeu·–„g@Q\VBóÚ”Ÿ«¬ÇáOLÞzOα‡~-Ïäù¼i‚¼#¹õƒ¡a&$5buDgþQƒ9¨OA,2pÖšvÖÔ”  ¥wÁçïÙOdÕ†ïŸNžàI/D_ú'º‚ŽÞÇ>œŒ)ÎSèÄtÀ2 kð§ee‡áÈEÿ° r¯U6~-ókз O8¥c>)ó^2·¼+1av³™ðvÞÁï‹× VÁêú§J•ŸÐ¬ßÛEJ»;ýwóëEõÛAúÝÔŸçf"ú>MjÏ•_M…ÿS^*÷é*XlÏž3쩟Ôî©ûÔ÷úAq[¿©gaDÊÓë.ÖAW“kÚuÍÄ‘B-ÉL·BÄ™ šþ%B¼!?ø¿†¨×ÔtB1_ÒŸªÀK2öqĽùÅ:ììY¾“¼d«¨,üôÁ¿ö˯,}»~ª¶ïXËíØàD…°;Â|J>›…ˆœž]" Öq°ØáŸ*v¿]7ð.‹Ê¹äe©Ó«Lœ¼Ü¨Ät üè,+ïRQ#f„õçîZ'Þä¾ 9>xÅ@òÌÄHÙ@ÁçbóÞc=’53zEþÑ™ùµµÔs¿¸Ö$øøžyx®,à>üª)«½Àèf~c8ZÛÏðæ>`e0±Ø%}nÉ?Âë5PG©wÆ×¤1=Aâ«ãwSòŽÚ}_<ôšúG¸îQä=È?–ãmýÕ{üÇ|盼QwúïÎnðN£JÉšNœ1¥À(xáâø ¦þ¢‡õ;Š ¾µ æc;ôc§Kõdڇू¾òÓ&‹qX‰â(h÷ÃÝ7úãekæהňôûbñÓ×E©‰èVÒz?» ‡›Y“úϹ¡žtFô» ÐäÃ]«Yò´žjk {²L¾ÄÒ4¥Ï«”wÍtðçvÅI-ªC.áÏ7ËðÌ2„ê¿ë©%Å;îàÔåc ÍFô¶+ähæ"®æ¸Lÿö5T~ØýÛ/ bÍ‹-}>#HñHïb‡ô§%+;KÖ `¯q•üc¹ÕyÖ»ƒ\ÆúÂä£uòŠÙŸêé|æxº~àJ.˜±euð¦ÁÎ;xHé¤N!2hoú“5ä5¯‹éF!é°fc;€éØóO‚_ùá—z€ºõ%¿ymÞçIyÑ¿d4ç23ú«UÎõ΂_ÅbçD%…d^Êè *ã5óÞË(wXûɹ>Êsò.Shw¡pøFd2€ûÇÿè-‘ÿ§þ»mÕ‡ºÃHËiÛjüMvT‚ùñùñb½¬dx¤µLbiÆW­©wœÖ”¯7 k+ïä;г3°§ÝÁÐlЛüÃCt&VÍ;y[<“‰ey§è&ß“U8îÓ÷&x[fª17â;ÞQÿ‘Äâ›8Ç™oIÙþ¿â?^R«“ÒyÐÿ*¸Öë‹Üßé¨ÿHE·Ä"àWOƒú—lVÊS>þ<)ï×áÈ-óŸŸ:¤\ÑÀûÃÒ´£šøJ`üþᯟÓß0ÿ<·sבYx¢Å숮¾Œ­1ꇪª ~Õ”ZôZ¨•*â?"—y-`þ`lKÕüqÇøËHþ_¬&{¸AmU1b]wQX¼‰”ÿˆAÿ«søµ¯ØâÄÉÔÂ5¿zf0¶"!¸›ÚͲÆaq<ÂkÞ¬4‚/wŸ‹ ›p¶»€¡‚Ø­'7ªd¾!WÈJ]šÏ²í­K„ó?&k½PÄN†=ðçw®ˆ9ä ù±² ˆõ  ¶]€Ï;‰W*[³ ¼§‘è«ÞÿÅy¢¸«iQÄ. *ˆ7z+|É?ªa)†Ðÿ)ZÈÆxÍýx£+h]/¡.]ƒÚz§(nfXEm¤OB–É\BŒáÍ+c4å]zÃGýGý=±údaƒƒü‡Ý5åšPà[ö;ßÜàÎVÊÒÃnWæžÿ1ë?½Ó˜„|è£Ná5}ÑØî%.MaÚÕðgÈ÷é ÀgCþñÑú‹Édj©°ºAöyö¡«wG¿»ä;éß~ʬ"ëH»b1-h` Üùø…¶°g‹B=iýwS‘íf‘ÿF—À5<w"w{²Y~“Þ²]û¢ÉÛfQ8êx¼òæó1xØ:³8kLíLˆ×hé9WPmƒ“©f^6ÒÂ~Ì•ƒÀ¿Æ0›/> Rű©1üÇ]l}A2OôC™:X›ùç}C¬—Z O»€o¾Êð1·ÂÿþÁ„Eº¿Ã d .ÛáX[3n›ÀñzÁ+Ágž¡þ£’ùâ'þÜMè<žlð«ŽÔÑ¿¤¶.:Ø1pÒýÀ¯Fyƒß³6Ó)wx‘«u…j—‘¬š í@<ûÿŒ`ÿ±úÁ8f#žà4Xž¼Ÿíš+Ý–7¾·5ÓN&áb;è‚¿R»±I¾‘Y@ÎS“ÓÍmBºÛ÷Ol >×MìRNÞ¡¹T>Ö2:É:ô/ñ@¹EæG¤÷UFØ B ÜÆü¨}èwWÁq>!v:/Rš]~â?<ÕÅúFчh©hP­zŽ$ŽR(nÑͱþl…ã9ÓÏïX¥­äø–ÕôþJ‰ÿLBöÿAlå]ʉb êŵÔOþÃ_©ü›saƒßš¨Ì?GÿÄ"ôßU4»»ÁtôWÙµ¡ÚQ-¦v_‰ ¼Ú帮€ 41‘÷ný)3Dv¨—õ#bŸî¯Õ¾ü&O3O×x/‰ÖX«?˜_û]…ú=C€^­‘-ÌÜÄÊýQ´ž§ßá¹ÝìIà üGb{"Õ4Ó ]ÙYÝf8ƒÿTAU¤Çßø{ÞxÁüéôßõ£å •ÙÅÐÞ¦q¬—›¸þtÖ>¢ñø™½ 'Èš˜§EOçb‹é5×xG\fÏÖÉÁ¿Í¤þã1˜_ë¼Ù«þ#!ýÖÿFeãEÓ¬CæK”¶îddýÀ¯,3º±Õ¹Þu‡ݬÄéw7 Ëp;¸7vÿÄN(Âvá?>Ó»ê Yˆim£I«—¼-¿a—‡ðrŒh¢ÒOóÏ[ÍÿHÉ{@u’ùJ¯iœ‘y)É?ÆÑ§å$¹ÈN°«’Tñ¿—£ÐJ­¤þ|å"7q>A#xŒw³ÙOþc³º ýU7ÞÍNäFOD4æ×ªŽôß}-G°3k’ã5ýw}É?¢J˱UVFÙÀÊ~õUøQ?˜™Œ«â…ÿ±Jâ< '•j ç9@¤¾HHþ‘þ¼^ŸþWUYåˆR„ùƒ½àÏ¿ªß”ß›_{Q¹ªkày@‹Ñ_%$¿D¤~J÷Ö¿i³Îq»‡g¶{u+×;"Ô¸hZj Ãn$^¢Ëjn—×°—>R}¦&±îÂl~BÆ>ËšCì ¢;Ž¥Í î´ŠŽ9÷"5ÿ<ª¾þ¼Vs%˜É"B_ð+Ã|ÁÿF¢‚Ÿz˜Bx…s>¥>ºØ¹dT_Pel%/ʃޣ!ös1ÓEâåJ¼•Õa“§ˆ0ÿX¢ÙÝ`¬ýÖ¸+Æâ+ïÌ€WÎLþaÏ+9 ß]È|ÇÒýnï_Îz¬ìR3â¿–q-ÙÙÁ7º¬t$B¸gL"¾OH¬Öh/½É?.ãI½°Í«±Ñ›DY=¼ZŸªj;}0w? ¼Qq¢/ÎI¢Â/¨ì‡íô2úWìÉ"ñAÔ¾¬K6ðÆþp8þc•’Aï'f“/ÌÀV¦%»ü›ÌhÙR/âê¨à@Ê.à]²Ç¬\Ãv¼Ç ²Ù;œÎaê?n3ÿc2qzZâëãä—ñ®x“kÄóɨR›ŒÅÏ$ïQ]×ÿÑ ÃZXçåd ËÁ¯æ…©?çDNâ‰BÔï%XÉ]ÛJþ|ýKQ…}èYæF“3È  0 ä4Ÿ>Þ¯‘ ÿ±‰üãO4n¶ÿðãH‡Û¥äEÑ_ ¿ú»ðuìQø{~m3r°-¨›Öà?Ž˄Ư ‰ø«<¹VàH{Ûæ|j:ËCÌÿ¸O‘þ‰/ˆÍ7ƒ‡%²|Xk,˜Ø} ÇÌD²8UÜÁóÏw0pñTrðF<‹kb¼‘F{<š¦!Ì(ˆÿða•«° ä2”¬ó-_²²ÉxBíYZØ«€Ÿª±P?“Ý=„ï.-k’É…LN¯º–;Ï¢þc ø•å̹î4‹Îé P~ áÙu&ÿˆÉüó2Ú[Ð;<yù(ó9É@™€þ%³éXR…NÈ@ÿ´JqÕoìŠ~úäsK!£‰ü̧ß³²1Ày Ð t¶èʉ²§Uœa~m5f–#¨‚oŒ6`š5ÀqÆ‘ «}w ¦z¹Ð鬘U˜“­“¡G!zKa6ûlð_ü;–ÚJ Ö®ßQê«¿§‹ Þjfâò¼Ú<­†^R¿Äœ¿*MG“=ôoù›øÕô»¯à?ʉxR›é¸• \À{Ÿ„o~¨]VãEhKƒ÷¦(žú{¬ÌzÑ{×|™ŠAú·?»l-Ú3m)‹Q7’øÕú_eFÝtŽÌ£='è:‘I†eÔk@yüÈAò}ðEÅÖHõOŒ¥ûê7QØÞ'–÷€•xGþÑžüC1AÆàÏ?c¯‹Äè“þ"¼fC­‰^w#þ&&Qïz#=Y¶Š]]Šw*H}°ˆØi˜ à3©@-[+zir£¹²“Tpò&§Ã*fä]²ðŒuN“}\&6¿ÅmÿÑì—óÏ“¨oÕ|(ÊlÿQÏÿ€Šº ˜Ó#£“ˆ× ×ý\è4;«nÃê¯A5K÷ó£üÏ×-ÔéúP˜’ ô'©È»· ¤®$ø±?1ˆ™ä£õïT?ô%~ý ÿ±Ÿ’„>Æ þ*<þc«Ò˜wx5*¸¹ðºÙ°53`f†À 7[€¿‚å/†öêDJØŠµìm3ãY>wºþZ}j‡§´Q .MÙÝU°þ*(úà?ÎÒ¤0q¾+•éä³´¬!Ý±ß ù¸ŠÛDæ-Q¯õ\rSëš”l77Ýr_`ÕvÂülÇWDC±§­^@5uØúŠÿÉ(r1ŒKIr™K|ÞXòÂF2-¤öb§–o¬¯(+ÖÇûg¥ÿÕ49ŠùVýèDÓqŠø~ú«1² YMsžö&Ц=ìñ4qÝe½yˆ–©ñ0gÈÆÚ`uwMð«úð'À(L°òaKÁ±Øí`ú_ye ÁOŸd‡—Íx²2õƒÁþc2R]‚ÿ «"ùGZ¢5F]p¦>V*اW•wJkù‚4õã^&î?HO°qàWqå0z%Kºâ®t>õª|𠧪 ¬JœñO%õÑž{K•ʘói¨×¢:^Ã8\cŠ ;G£þ|(þm´y5_A‘Ëé?þBÇ5ˆY\n¬@9VÛLÿ«ÊÖ ,}!z–ÜÁtÃ̰ΑÕÅ75&ÿˆ+—‘-?#ø"^ÁöuúÝêvˆÖœ¦á Ë÷ÄKYÞÍQüꆬJýÇ:ùÔ2„¸æD,æß¼ÑçдÆ0ïÁ+¡ÿE*3ƒá+p²&‹^ó¥<š¾]ðç&ívâü’èw[“i/ ˵gÍÚLwxé5°ª½F+nÒúr…a¤o <C±ü¥ñSá™ËÒõo1>o9V¼ú4xöÚ¢ƒú«'ýB¹¦æ‡¯˜Í;”ϾRtoðF·Áðçi™Z œÈËØI\ìC汋=nB-ULÿÎík®¶Öbe’£¥-I.°ed=<Ó;ôžÔŸ×‚ÿX‡2¶²9€'¾€{l@ħßuWj2?Ê“î.ñ9‰¸û3A}¨à@ƒS t\,lª'üƒ€¡]€÷XÚ–}îd~Thþc¯6_ÛÒÈE|í‡íz‹Ú‰úüO/:–x‚Á&ÿ¸oV¤;¡'Š×ÄàóϘ©òšü£þ#ô“ÎO¯¶ø,DîO`Ð=ðgèuõ VÂø<*¢ÍبËf]™QÎÆ#ÿ¸£<Ú¬AÌ›Só ñ¤7i¹ˆ |áϳàß±¿˜àW³åHòîDÒQ™ÏäsÞRvkJ>³ϵ Né:wúŽnw˜þ“U¸pŸ|9½íàÏ÷Pÿ±œþå æáÞ¿ÊÁ„«çLÛ8ƒþê»Ü+4ŒÈÞö¨‚¬dž‹ùQS0–çØ…¼%hásÀlðçé?þ%sèPuŒ.('©ØëMǪ~ì×0 t-.W‘löåOÕØ‡áÏãiÌ\Q Tç$äþ0ÐêŠB`Ñ7*&OXI±èËøÕæpG“â?èÝÎÕœ5âˆ|¢œÓÔW¯éqÉËòÍ1£‚ô“¥˜ÿ±œ<¨²u“ f‡Õþ¼œÏxö=Öb“•K.ä¥|LÖrIdKïçô^êV}?Uˆóíüng©ÿxd•¤öð¹,G-âpk„ãŠ#! H!ô» ³‰²Ðÿ+ª9¬úŠÝ{E`ÃÿJþ!±ô±'áþ#r*$çÃv~‹¸<§6‹úòúwµkº3¿¶¦6A;ˆµWÕóΟŒÌ”zp–îF*¢y?2Ž„ÚNfÚ^—ô úGíþoöy\¥'5‡D øÕµh,ã£òY à©õÍÐ_Õ3º„ËÒ†ÝëTõŠê±wL³7Ì@§q&]K2Ší°égÈAóaoéú'îD ¿J@=ýUQ K8L}á§­ ÓöÐüJšEñ)ñ¤ÇÅ ç“ »¯ÿùŽ—2€úó rÌë5}P¶‡§n‚ÿ˜rtŸ,"#Q]Yp·‰øÓ º3þÓŸ•Z+®pÑûy,ô+””EX1QèT©àåý°øtdÄ-æÚë0ÿÃ÷ Æd‚}v‰Mè¿Jòî½·ð›eȼƣ2ÓaÑ»â•ý°Ô·àÃwbݦðÿ½˜Œ°/]W¢" /Ž--„_O¿‘ä&øÒêÏsп}=o)s ×:(¥q•'݆»¼Ê¯(Uõ Xü”xˆ tfyÍoÔ Â¯  +ŽEzçõƃøÀѸP²žhv?Õ[7íú'5j¨ûøTë$èžEþñÿÑvh~¶™CG™Ìdý‹R—gÏ?ŸÊ8¹Yžd1(þz°ÙbA¨õô¿ŠÂõå‡#1É:–“Ÿí63ÈäðK¨»B¥€üª0ÿºO\ÓÔ±Þ7yRá›bÑ}ôǵÚ¯ÒÒñnù§‡¨E®$h ùGôLãá?öX7ˆÃ½È:’…üÁ=Ù@uâZT²§Éô¼ô¦!ÖË/’â±ìùƒuÐm\0î˜ Ñsµ'ÃÊÅü¨‘Ôe_”ïˆö™#a.lÕîÖ<‰Âø$SÜ;P/ÞÞ¹½mJEu>èp?îZ[r¿Ûb"ìþ3ò&; ¥Þ¯•uCÆ¥ÿÈdê?N¢Xlmý³ùóè¯Òâ£ÁùÇ#u–”8âÙrù ÿTÀ²L­í…þj3ùL*ÇTºV¥rXàW­ð¯¤ Ϥ÷¯¿OTÍœþ£¬º‹útä1Û˜\“KT5&“1§‡Ö|2£KpÞ蹞ˆ:Âgr¬6Ã}ìµòÉùè¯Þ•…ÿ¨Á Ô¼[Gﵦœ§QX»½â«ìD·ÄÔÝœ“ÕàõûZ½—Qïº8:À›§s,’I¬Øôà-`Ž[¸ŒŽ±ïb¾ÿJÿݯpU‰œ'áÓlúq%£zYMD¶‘OÏÂûT‹5á?ÊPÿ±ìéÕc¿óÇ_9H2{¢u*Nÿfý LÊ{æœèß~[{ù›ú«mú[ò˜¢% ÅX¸+oñRIOÿ’RFi2…'"=¶²;ïÃ?ít”@<]yx÷ºñž'ÿÆ.s ¦!³z]ìT'Pû m«ÿi¡ÿü›ÊõœGæ0çwÏ'븊þJpj?âRb­òÑñ9&êÓÉ"¤†?¼Å?À|î(bÀ&l¿ÊÿQ¿´ˆZ¬—d»Ì%~\Áç5è¥"¸æcÚ_D‚}¹g—ùO¢?MmÃ…º´á`öo9óç°¢þصâë(Ûþ²þürK-nGø`jYÈVâRa÷/y†þÀœ@üJò+T9î#¶?‚Åõ$ÿÈ¢áì²¹Ú\ï‚oKŽ·¨H¾²¾»«¼Aê‡b¯«þZŽ^hmÁƒ/# )`ÜD7Ñl1ìsgþÇ$±¼p!9‹o,Bµ4Á(«F÷ŽBT¨Ã{¬'Z·õ=«ð/{@ö“!­Ôãh¡;Ä+ˆtàW7¨Ji Žtþ%ÞÔ4DVžŽkÀuÞÐÇd¤|möƒ?ßÈZcðš—©ú;Ç*iz‹·²[é¨."hÆ™êdŸ2±ÒH'÷â?¾Ò}q%ýª*â}]è¿;œú¼åtBaÙYÙD|{LøB¨1ž‰™Îõ¼T-šYžs¿ÙÈ+K±LÀ/, Iòùð= ýK.r½è pÉjNÝË i‘ùÿIžÔÔ7.ÓŠ;ýG'ú訞 rF&¢¦‹*=¾Z‘eÕ&ÏJfù[©¬¶L"œLÏ/7YUVa8ú8r ùÇ;~Ë‹ü£…ÑÇy ÷ÑÉm©hÅ;:‹œæ 8 ‹Ð{,úƒåtxÖù±™­™—õŽ?“uǬDýÇ bÅ£¼G%È7‹ˆ_õ rÞˆÿ_¼gVKLçIxF7¬È©XÃn%¾ºMÕ©ÿ°ûïÞPíÓå¡”Õ\´†Ú*ªÅ£ÿæüóóÊê?RÃ%RŸ3P߯=¥î≾OÌÐOéèe’ƹë°{ ûÁú}¢ÁÉÔ{Ø8ymxAµ¼?±ÈG=ýKryÃUù„]é/Õ¡9Ä7Û[p]± ­Í?©[Ë-¼àhwónE7Af>‘òo´]0=µ8[È@Ð8ßÕ%·¹…­ïMþqÜæ0ú«$Æxq"Âk>©ÔS[lçWF3˜å\ØûGøáIàù%xów¡HõƒzQ˜ùQ#Xq«ÖFz èÏ v÷JÌÇò×2²Q•6 9\è:wÂlìÕâÕ@ñ:©¿RJ|RÖƒ_0½ñ_9ȇ¢Â$v"g¿K=ðSªº¦šÌoøKø¤-Ü×ÜÝå¨2é"œ]–W»é=øô¯Æ®ñþÞ_kÏ?M^è­çÔàºóf¯3©¯u]sc–óÍ ~º®J6}œpû! ÊÆ~–q5±ÿsàC Á¡ßä÷‚áØókíþW3ù¿©äI£>º©= ^*諳Zw1—ü9;ö{/‘ì7°íM<‘=ô/)LÍÂL"ߪTû5—µð °U™°Uè82Ñ,OmYèúó/êk‘ˆúÁœà†Xüðö{ÍôàW[Ì-2†uYÖ°3Uè&hÐWtÀ¹à?n²â 0übÜïèÚþ÷ÐM+Ï9DIy0®ŠÔF$dzÔdÙE˜í?âÑ¿]qÌ‘’ ¬=ÁÁªƒ ­ S™Mvá +yV·;ÿ©+lç4ÑT b‹ÍÆ7Ó 4¬|yAùÊšk¥c^ÖnìòwøO¨º‚Ù5ájO£q²ýwƒù0õ¥¼UÁ[R¥úJ 1¢ÁÎ bþyo4ƽˆò™þ ßÀNÁ»ÂƒH<Ý0žw|Ù%¨?r XêÜÜ>õˆöÙ(C޵ÿÑœ,¿‡ùÔ*kïÓA¯*ÇbЬO–J…ãKªJz¢ˆN'õ¸¾?1øUu§ÿè¬î`þ`Ïc úÝÔdƒå,G_º9Vƒ¡I…^*™H *7.q²Yé˜å±žÌa-ªüûXŸc"Yÿ'ÿ±EÊìäad3óˆ=_‹MVc‡«•”þ‰{È?.ÁÒts|t\µr;FÒ™ë;¨br]ŬæHz8§ö,ê½âb“óŠÿ½/(MÕà·ó&r„8‘ßI,Õ[ý¦NÕrèEôóAþcƒR’®#]5Ô¶Bý½úóKŠ9bbð—wB ô­Ú]u}C.ŠéÔKÜ¡›bpוÈì±?þƒ¹€"– ùÌ<PG±ùYÌãXȼxÑrê¶_<fˆ©1ùüy¼Ci‰Ýä ɵn¢ù”füG<Ònøz¸7rž–x™¹"­²? ªÚSGýϘš\`¨X ôóxÈÁä9ôÏÄò£°|#±ñ‹°õéàÏ_à©Ç‡ë?JÓ¿d1~û/*³re3à8'bÿç—'ú¶;OžÀZï4cÂÐ.­›J?‹\³±žˆúØüµŽb&-9Vw ÙÀCò7£$Ñv™‡úÁXü ÒŸjÂÒrŸ‹¿ØlŒ·f¦2ÆŠy¡ž‹ ž€|77º×)äA«á?¶€_E—¾æ6ªŽ¡}f «ü¶†ã/ó² Ý×̆Þ6u¨úÁÅð8»ßÉhæéß5ÀÄ`{;à?FÒÐZô»5_ÔŸ*Ž—ÜDÜËãÜÑ)°jUŒÓ¡êk‹´d2¶~·Vwø•'þ¨•¤w$u˨\8JÄú1öÇúÍ…ûè ªçIÆ0΢ ý‡8oà6êÏgÀbUgWµ¹ó7Ä~Ø™ã²3¶¹!¬ÊTºL”é©·Ÿžu“¹„ÓˆÇ_’»q{ðt£ß Î?¼ÕõÚNÿêsËÌà»Èûvào]èuŒY–cÙH|Ç7æ¾…ÿ¨CÕFt4Õ=á«úÁÅ¢ÿn§ÿhL¿*æ—ò&l0f›Ðt.—má¹›SçbÂʤGuû¿öŒéºY¬*ŽxÒÍÊ ç pöOˆÄäÁü¹·ú·>ddQZ´úodoÔÓÙx[@©öà-›;î9Î0Sx€ÕDÆuÌÉüEþ\#ÖŠÆû˜Ë¬õ_éß®ªåUÓyV¯‚f…‡5;í?|‘„¾‚‰Ñ_•&ò;©ÖgÍõJ*?úhîš…¾qû?ünØzCÿ+Í(N®‘tÀ¼S0ÿã´XļŒ‡¨ÙÓ9wö·Ã~g”þÞw4‘øbßúÂG¤¦[ð%êÎéó«“Q"™´fΉ"ü‰ÿnbç›ãGÚ1=s ýÁÿ÷bÁ¢`o§ã?.êa7æ;ï5æ)báuú'ºÃ1¼GT‘*Û0ÖÈFΑÓî"ŸˆCÿ]߯ù’R“ücø•JT뎨êdssñ'W°ÌI±Å@ff)}Ò‚kGÃl,èîZ=ò!DâGñŽ·ÄHÞššp( @2U/Âß] ÈE|n×;ä•~9ÿ#«ê£ÆûZ‡˜ öýîöõÀèn~„ÝþýUÜ äƒÝL.6ЧµRdw²WUu¼Þ ¯ök)H$½™h¿ ×ûÿÑÓ8„Šã=Ön&QìB,ý2ôO‰È?ž¢ØŽÿX¥ÑWà?>S_{—Oï„Ç,‚ýï€R œ¹Ÿ\ÄF~êPaº’M#‚Ÿ¯ÑRO¨…fø¯köüÁj° [¹WYÌ'œ w£"\Hg™‹êæy`åÉZ3?j%ú+,€+–wº¶ÜÌÉœêIÓANÄ!sá'†’W¸Ã-'׈+Oš›d,ë,3M¯ZßÑ\U—ïÁ\’¡®Þv¶«_’|8*Ýã~~ÂnZvø"?x¶L ]M°k´¦SðåégëA¯ðä ³èåÛ[¶g«H5åðFü×^ò™{¡øz诪_3ªó-7üÍÅèOëâ? õOÌÇ[óáf¦Ëhôo/…kͽÜÅŠ"ëã#þrno]À±³.p€Í`†/jMÍcðoé69ÿQÿ‘ÑÚ„ÿM63¾æÈ]o°µÇx¦Xô¿ÒŒàùÔ|Æw_%>K'ë¢ßŸhŽƒ…×)èBö’õb;æ3m1ýÛß¡ûK™†8¡ÑÂ_æÃ4º¬Ót û[üGc®1OÕË"kâ?f¢+Îe¥`7Ŭ½Ô~t€¥Á ÁÛøõ~V¹LÙŸ¬ÿºHo¶ùÉìbþàhò7ú'&¥¼vgÈýtiYÿ¨ç¸è¸a•¢3W}éâØ#£Ðé,³›Îo1ȼ“‘CÖ1[‰3Î;ø/~¡6þ©~ð5Q]úç,ò;IÉüÚ(Aýwü§ÿÕ:¥’–Nk¯c ¡ø%«þ'ÜU®ë¤2/ê¡Æ8Ýþ%^ê=査R?xŽðqkŸ#©, ~•”1¿ÑRì%©V¹ˆ5 ÔõÝàWµu—H­8Œ9ïŸõ³äï°0U‰—[˜c±‡EÅuìÉ>ØêGôOÿ]_ýW“\¾æ÷š—~WЋʜ… \OrÐGìÃSüGó¸ÛQüA|£G$øgJöâ*¾ã4G“w‡i  4œÿªNÁ€/"ÂÇ7ë%#¸æEZo™øŽ3ØË‡ I±FåÀ¯†¡ÈyÍ÷öb3`äÉ–Âï–æ¾zÿ|y?}VÝ©~ù©J)Å'ÀÓ<¦Ã@E§±ð¹¥XÆä°ë¶"x=žc«oGm[2ÜúêD½=P˜öd¨Ã|z=<[Zî\bÐ%º@G-4ÿa×NÚý†3Á#½Å—Î Ç,W ÓÃΕx|˜Ù6™[ˆ}nÔ±i†‘–>1î6û4à[ ñp#ÑW/&i¦Ç×BOH¼IýùR”> °i3ñ÷±2[êp€XyócáEº{T—[@ÌRQçèÃçBÙ–Ÿsºþ<*ZÁ¸X¾¬(§g’-„}³ñ«Œt$ô¢ÿî æ<µüáÚKKNÄ+”„]ØB2ÔÌ c[ ‰}®ÐR€"·,Àz˜/è05ƒy°÷S°„ߘǧÂÔ~ÁÃýÏŸ†'3Öy9Ÿoϧ¹«· qr:+8…®Ž7ùOò#ä[K©*iCÿݡΓr‰ú7Þ‡úäÞ¥ø\?±Õ¸k ÏU<”°cÈêQ'ž=Ür¥cîßt*<'4žÞaßÌþ0†ÑLÃî\o/óϰ±o8óùdZpÌkf tºØùýÔX¸‚ ͘ŽO0SiÃÑ>)V:xøQÜÁxÅ$"éOýKêª;õëLHÏÓaŽUŒ%2ƒ£ Þ,;þ#&þc% d3j&2w7¾ƒÉöt¬²O×uÎê L±ónSgèóE_"’ád¬Þ²*Rk^¥òVª\ÖYÕ­räwño#¨$)ãØ‚:,þã+XŠgð>–0ë‹]Î+þ¿P‹ÿÉ_Rü¯ç$Uªñ57-¹^GßEWxEÙ¢d¡þ¼–¶I‹F|ö{ý¯n*çôPDωŒŽº¯vCOÝçEæG]fší›ŸX›ÈÜ­™úcrâ(–³ ½ª.ˆtjMê[·ui Y˜q^—¥°k¡ï‰!®\ÆÂtÄÎu4‡ƒ%'ÿ…=+@ý^}Ð<â…îö×Ã|'¶~D¿~ö {¹›ÕžS—ÇoØZ[{~í²°£ÂAµÝ 0ªÎ0‹)×”ö`¨}©hùÆ»·—}•€ehL´?…ú‡Ô»eã­ÌIïØœÕv1>¬u%¢Ÿúr,鋘À¦*x¢E¨]ª£º]ï8ÄUg7pþK‚_•ÿe¤_Ý¢¦¢þÄ›'‘üLE _ »zäê>m9M"âü‡`b[‰Ö×ð~Î…­È©‡§éÈCýG>ù3@&²#{ÕrøËÇFlsqK/¥ÔÖMÂ̆!“’[ Œ‹«óÍ ¾îJyfø, ×L,×üL}J%²Ë`êMèhRW!,¼96m ÙÖl|ÒL¼HoýƒºBå‰6TØòS`Ó?AÁæ†î5ùGpíþÖvz¯‡ © =À\â`¡©õfýEäcÄß!¬³¢|QOC´'·Js|Íð¿Ê)O1w6ýUFæGƒQ)@ÿÄy°°Î;É—F™yÙG´Põƒ ´øœ®“°G.ð3ÍOt¸]N]|æ= %½Ò‡ÈºÉNò«e_»û²_ÙøjþG3â•Êæm¸«0$ “µ¦Ê¦<’(bç3¿ö þÃ<¬']w€5uá¾zÂ'-Ã4¢Þ¯—óaÜBºÒPðCÀ¯Rà?†Ïͳ²‹õn/£àA*¢äŠJ_ôAÖzào?jÿ WüB^#Ⱦ^‹ùÎõüÐï¾%/ú ÃP^ÃãO¦»Jo.À†Ä ur#»—´ÌUJ¥-¡bSý‚ÚUvà?rпÝ[KÁü(ïÈ.ôs·•Çú}¢ò’ÌmMc¸é‡´+ª'}Ëv‹Múýý¯ôßÚçÝ4Ëà?*aA©õ`~m µ6õƒUŒL䦷°ß5ôÈUNN¦%ŽxKU6êB…{hÔGc³sÛÂúàS¢sBÿ§ÿîÚH\s*}%ªä xŒÑDۣݼãÇ"2̂Չ[† Ÿ¯ù‘Ò|v5qvjp˜}à9e™ÚQ$:XL4´ûÙaÑ‹‚µnå_’FX~@cÆ2þh"§9dÞØM5¢òÕ0 ÅQ“¬ä.Ük+Æ>W7Õ¥Õ ¿¸êäêv5>H—;–>7ÞRk€zþÊÝךּ˜÷5)Ñí|Àòoò±`9•Ãõìå™_Û {eQƒ’ÞÖ{_„³ Ä|—qBï®+ÄæñrØùJìwîã#ÑuAØ Î'ÿX"¶aO×ó.¦ÇÖ¸òt5ÁÀZƒ‰¤67å]¿ÙÏ¿¦~p3ÙÑbôþúû0§ñš6RŒ"J ±’'qÏ÷$6dŽ@åIÏqfѤ1 <ÉåòbŸ÷PSw}UU¦¹†zÒŸÕ—p`ݨžY‰Å=ŽåøŠŸ-ðIs5üÇK*ÍöÓ…öüJ6¹„ÂvñÙáÿ ‚T&£{ÜÏW½NKÔÑQA[¶ŽLõÈÎ,üÚx"ó1ô«J^òþãõƒ­ä ÔÀ.èw?-3A¼Ö»…X¯ŒÈÍ}»G,Ð ½ólò›ÿh#ÑáëLë ú«±¬4D–µ6à‹†cï³ÞVêÏ›wêŸè¡tS'Oµä|uçJvb[ã£×µû·WÁªNEçäA#DüðK¨¿H¶ÕÚ”˜r*Þ?©y\,p^îÕW‹i6"CžcÐ/¾ >„ÉôO¬FFt_žþã>=¿é8uîZ똛 ï5Œû7½I Qó§ùƒMÔ“ÌÿHN:͘:¬œÑZf£ÿî]äYK—KÀ¯Þñþ¼TÌòŒlpHìXÑ+(ÿ(G÷ˆú× U‹È†²ÂEµ°zã?¾3åj S¥.1«¸ yH{+ÑÛ3qŒü£'ùqÇÿJþ¨üñí«ÔQ#bT\uè¿S¨÷™_»P«ŒþêÑúïæ¦âPíók¿+~¡áÿûšrW)ʃ¾¤ƒE½¢¿ÛOýà9ô»~úMØßós³õ(f=ô»°wc@‚N C-¥©`1ÃDcñþ%Õô`ó?mm†úUÍ"x™©UF ÷šnlcŒäøÓÄÌ—°ƒ¹ÈC6€_‰~•Y?ÆüÁXé…DòAÅ®à7b²¾jv‚—v˜Uà­5,îlq0Ä;Þ._)}ñ¸K‰\¨Z;žÚ©&ös.±´ 삱Þc+^DDØóë˜6‰x~÷ì!ú¡÷báªV+7Lü#Ø!ø Ë*§¹-*‚r¿Ì?>+ÏU2ì}I2…id3wÈÔZr[š–ÙÅØŒanÁ#ß$» ²»…\lõƒÁ¢ƒ¯¹ýÛ{ƒâä÷+nãMõá¡Þ!Zôiz,y€]V]œ7‚_½ÎckOÍàU~|µ‚ù3„ý¯¶ßç&ÿXNÔ>–ŒaqruzYl#ϼÅóÆ:¥áß`섳߃Y­UCãW'´ ¢7ŒL°¦­üþ)Øx<þ¡Ì g;Ÿ:‡¼Cwó*rZ¤”0voÂÓ|~mz² õ¤3jQÀ憂¡­%«¸V±çÙe^yÿqúóà9OAØZпdXRq~êñ3ž3‰¶2ÄŠ´4t59Iµ~ö×MEyH®’Ì2`õóà?ÞQ> ÇúLñxo¶ÂÏx±úN²©³øé{¡ð«r";,ÑMžY3®f­ñÈ<"7¢ü=E…äWê!Ê¡½½K_›ô,d-ç3GÃL¢¿ÊºÐWD¿Üw+ó— N>Z›»}TŒ1r1ãdýÛ»‚êLÁÜ"ß:NŸùadM“P:=ƒùéÊÓI€ÌÇÉÜ!‚c·ƒÌ¯O…„?º”lCöÝ¿ÐÏzÀ¼Ù}Ôâ°r:VSíÕñþü U…ƒ¨*‰CÖ8„§Ýƒ|¹Š(#â8ófê]ÝÁ™ËÈ©šg ²±Ö2§£¼{Szg½Ãc¬¦1 ]` &Q•·N[iÑ_¥’ˈmÚ¹›¸KÜÙÂy ÷Sÿ±E´'ÿʪ÷E «–Ãဇ¢‚¦yQk,ýwã:Ê::£êýB&—†þW˜?8uÑyô@-ˆoʈßS(ý8ùÿÇ¿ÕFjtçɺ«ÔV#§B û©¹Ôëj>í­ªžþ£kRJi´Úí›úì7û_}T>ÁQ•À"ÙýÂÏâ1Õ÷ô/ñ'¨?¯=WS9wv/a¿³]†Õ\-Ú‚Ãt þcŸˆ§–×.;ôݱ*ùâzŒH­8Vý¨VÑ@SoR1’s^——*±—øæuÎÁN܉Hùxº'WÚ:ˆ?ߊÿxƒå¬Aþ¡šï‰“˜xjclÀ0±7Â:ÔÚ ~KáÛãÁF&ò,I~[‘h&ü#ì]^ô$uÈF¶Àd¼ÑŠD°âYm<‘î®èo‹­¤Ì‚w+„_$ªÞˆ?ö#7)ÀýØm.%Z¨¿Ê£ã«/ÔBàWKÀª˜fSd+ÃZ¡‚½.e,„iø„7²£Ø5üí×ÛE/¨zx\WoTó½‰R“£‚/oà7jãA²¡¿ŠÊwÎè«©\MôXtq2y]<ðîKk:.‡=›•2`Ð^htW˜¦‡OžBŒ8ÿmÏ9ªiãÞU$÷ðÂ&'F™³ÍXD´°žÏeL ßÛËPKnÓzˆa .XªmDæ÷Yo}&ŽÁx”bZàz„!ÿhF7Þ¹f{l^Iªó¦à¡Öšµ¨-[ê¹äÔnˆ8ì½ÙÂi:æ.¦jf³™BøÈò-({Sæ?7ß3/öë”Ào¾„mñ¥IôÍ µ¹ë.- ×w†¬·8xX ââô¨}fÈ¿áßÑÏÖÁ<éK¿õѲYH}<’+6z5þè‘÷q½Oˆfñ°a·‰2šaÇw÷Í} ÷ éŸØ€ºÁ•ô¿ú(Ÿ‚æ0÷OÆ?_@¬Ð.ÉKÖ0×þ¤ß=ªŒVÇúuõk uAÌ4Š€ù`&Su*º—à?ž0/ëVzœ<ÿèd]§–} Ö>†ˆÇ‰nî Oä¬zSK€OyEÖí"kqÒ:áifZoAÕvý`Zï ê,Òпd;lwüœ·ŒÊ)ÎÏ çjJŠœ?ùêy]AQ€7bŽy¶“§è¨OýGS+%Ö}ªµ )›5ÀR¨¸¯ «^’Ú•XÒ•wò)Ïâ¶øˆiæ<…¾ÌÿðàMØŠ5)LWÑDzý¯^¹òÛË迌ùQI]¬¨öQ{ŸQ–±šÓà?ŽboêØx¥Øç¼âï NëÁvó#ýÛ#…‡Ýa*xå Ú`-›žžþWvý Ÿ’W+BþáÊü¨¯¿é?n)™U‰ûƒ÷~ý¿ÁÏ_¿:¨ïÖoPž!Äù »Ÿß¯¿âíÛ{zŠ·º¾8$Ò­ë©hD-zñAä7JD2ÿ˜¨J-‰xÆrÝè 3{Åb_bÛ¼b=öÞ×èŠ3O•Œùµ[Bn"ÜÿŠŠÿ¸B§–¯Øômœp[½ZÙø{þ~6‘y%fÊ$ ['ŽExÍ”Šø² ³ß œüLDú¢0:Ó!Aý¯ü‰`?¬ÆÞ5bD8?ê„ÖÏÌ7…=wƒÙޏ1ÿlª´‹š vì ø•ºÒ콡Qÿñ+üêýKŠâ7¿æÃž~  §554W¨ÿxI%• àXž¬w ¿±U—óì¥~0£ß­ûÑÈ1ÙƒlA<²…õèÖñÆŸæç†ê†ö1Ô³=­#8iàK¼±½¯aiv±—MÀ¯ÎP· þãݦÊJ7”C.üÌîê1þWùfSB=é¤ÌÊÆ5§^â8Úüän”¯Ñjªî¢nõaFê33‰Täl¼fº\Eß4>>=ó‡XÑCËF¤öAþáÿñ„Èž8;Ç,…ý›H-]ü‡ ÍŸ²SÀË|—MÐo-ƒQ¾~u’ºö1`càžQí26å£Ù—º8°óœëùâ?üÇNpbÙ|´‡¹‹)Y*=GΣôàj]é_Óñ]2±—êöþ2@æå™tcwƒá?’ŠÒ"ž3ÿh¨Þ âKÍ)žf0ñO3ÙÏÑþ£=sÞo 'öagé¨jŒŠâ¬Þ3?¹þü&Ý ˆ¡šÓìQ'éždâëPÉç"+c%ÀŸ¢vÄS6±¦2×Õñ„þ%àèsÒ]k+U…Qð§±ÌI°¢§ÀãªrÍåÄçÿ{_|1æŸ) Õðb½Èì'9ºÖL‹Ê‡ròD~wýw“h}©?O­½UÎFfçÏ<ÆDÃÊTÇϧ7¦éîÚyÕW=¥oû™þ@;÷ëïü¥øÂ[ÿ гˆ|c¹Fk*“©YðÙˆ-*Š‚áF¹a— >Wcˆ¬b±«w¨ìn’SlÄÞxèg";]Œ~÷Œ¾7쯇ùŽFýù Q–¨Ûxvº«s vðN~d_ ᨙÎJýy.ð«S!l@˜¥øF R‹º¼ñ"õì-A9ñ{DU2ˆ‘Ä®>XåBèIj¡hƒŠ7º‘>¨õçÌÄú݆ñþÈ›œÞVO…ŽA…„†/wœ½cÕùäyEmõWu°ß”Cj5#ö¾v~}NQÑ ô«-ø»XÌy>ÁŸìh=ÿ7–ÁK÷ÉWè=¹k¶þ*Þp^·íwF\žÇR½˜þ ¶÷O¸‡þpëÉcÐÛô6þcžóÍ ¾ƒ‹•ôúPª#“Ó—¾]¿ ¾VƒX 3WZ‰Ü ¨_vª ìjÀhø¤u`!+¸{ÂÕ=µv/x© ¯Žh}ݳ¸SÛá5²›gø|Op?𥲠$£¨‡È-÷Ó­ª*<ÚÒ‘1#˜`o,ô\3‹1U„D›% µJ©¨oÉ‚?ðýYDü‚'Cµ…üーìMwÖ3h²Þƒ¹åF7ðˆìÃëÉ‚_OʬÖr ªÛ‹^ +O#ââXÌÛ^&g™°Ñú<¡~p¡ô¦^¾¹¼…^*-þã þs´éË ¸¨· qË J[?ã*]'üÇ]ôW«eyyˆ Oy™þh|?óÏã[»ˆ>F¢¿²ë×3?ª =»8ï §ÒZLTQ†ü£-ÙÞU1Üøb>–Ý,Íj#ûâ/ªÑ™0Vz!ýwã‹×[Gé_2ßÿ˜ˆ!!دeüí\ï¤zL°ûv]\æ£Z¨%YZ+p¥êôa¼ÿüê üùG0¼gtå"¨ƒ¥¶ÇŸâzc‰Ì¢ŠÓtQèQA¬Ë’ÓÏ£Ò½‚Ñ\æv4€ŸéŒŸ<ÏÎÛ…ÿ}A-Vô.9RJéÆYµÕ0§E³4læ düÇ4üÊ6qN&cúJ~9RúË•hòZëdGt¡ÌÉþÓÓ7*H,póh<ÃØÄ„…Í6âàÿÅ¿ßÀx$tž„ÿ‡þ%†z’þ%´¬Ô^F¬(”ŒÌ¯ýS£û¾õ—]õ¿ØÊyÝžÕPìÌ…úAw픺\½OŸJ_}/lÈM5rjÛ«/ÔàW·ò¬}‰žj€ƒeWÓ1?ª*ÓÀQr #Ù·'(L,ñ«÷_1ý\k³µpy„ÙÈQlslÅôW÷õÈL´ÿ¢y0 ³±É"òy°þœL¢p¤-6yNôW:«ÎŠ„ÿ¸¯”Ä,¦Ï“Äza3óƒ_Q3‡Ç°ûKø’)\Cu¼ô%õç±]ûµnðøùí'¨°Îˆ~¼}͈ėÃL§Gɵ„lá„q‘8ý3oç@æŸ×UÅt¥FÕ`*ž+ ž'ý¨óƼ2Æð^%EùÔ Ôî01ì#þu9Òxq‘5Üü£¢Úÿq?¹$a/?_õJ ð¿@ršñzòu`Q•‰ÒƳážSÒ¹.Pü®þj±RŠùQëñ× áËcùŽç:¢Kîr^ŸA×Y¬½æ³ o?~d w¥­U{üã ýçïKÔŸÀng ûØKýº?¾È/{Úìn×›?ÈÕcæŸ×–+@ÈâácŽ @=³\‰H!´~ס݉ÉlÓƒ"­ä'7`©½ð ð>+å}¬`+ë(UØwÐO}âÙd3»ŽÿØŒÎÆyŠ£…Ä>×iYñö»8uE¸K•Ì{ýa™xךùSsÁ…;žÒÃd1ý´þ¢æâ {^”W/ðÃÍ# ,gõFN«a_ru…üã4±F|§ñÊ\@§‘ÖôÏ* ï1×*€žUuü-}àã³Y»ñj#9ŸÇPxÁŸ×£êí¼ƒgˆbgÏ5ÃØÈÞ9XËÔQŒ†ÿè%gÊøM¬òœ­YŽ·ý…_uÈðçïÁpƒsÿ½êfí;qÓKž@!©pöª2ÿ£.óyó2mö"þ':ýKÎo©<•7°ñnðèqð˜ÝèóÞ‡g÷IÏ&Š8ýG-øó*Ʋ£wY`öåé_’ üj#+Œü êgêX™Ñ_E³þgr£pú&ÎêkX5?ábÖçÿ¸à­ÌZ(ºÅ8ùÈN^ÊúŽV)º³Ô F­Ü•þíÙ¨KL ÿ±]æCUŠùƒ£‰Á|¨].÷T[DFíùã3ÿÿúû+ó?‚Ñ»T~ï3’«¯Ôdtk/Hÿöjó ÿQXËIýù-.ýÛ;ÏüAI†XkXžjâô/qU€ÃœDÍQär÷Ëô˜ðçËá©‚Þ—À¯20Ó­.¾¤0ªœøÈU$vBe hÆ¢‹f_0ä?¨ãÑÈcö“È?Ú‘t¿²û'n ¹‰pÿË¢ÿ®ÍßK‰ºí¾Õ牤íùêϱ9ÑPdÃÄb×ëÅýïlxËSÊQ?¸PüfGòØÖ¢:ìùTÞš«œø"ì¼)=$WáG3ëù"Xq‹Ö%å(؃3x‘ð™ð¹¨X p\l=þãvíŸÑÝ('ª¿ªcJŒþª8]T<ˆ_ aŸcâ?Ú ¿ºk $ïHÁÛzø7‹ä¾ðÓKá·UV+8%»Í„ø½æ<ò˲9ú«h bÙ™µU ,çÑJ3þ#™v4ÄŠÛµœìè0jƒ|ø·¢0YiÑK-”­è(?Ä%ú+Ó±FAoܯT•k^GŒ¿Ýü•¿^/ÄzuÁ¯ š'aä«’ì0Þ_-£óâ³ýhg—¿“ 3ðý©vÜÅ}œŽuöß¾£ã|Uf|tt>ŒÝL!š ‚[ßü 6œ‘üc2쾃ž¶Ñè 5ßÛÆòe îGTNP &ÿðE=ï+åD“Opk®ÎõüÈ?2€_=äý*(Ë¢iweÖcvë¥UO±›|!ªÃnŒq˜uEÞ„oXŠGNBæ3v¿'þ#šH)’;ýGgò—" þc‘Á¥Ðïu”¦K}s¼ÆA”©LØ­D'¨/Èw«HOjƒµÞ#ó~.ršuêŸè­.@ûׇèq±â Û*íˆÁüÁÞèáºÀªô·ú:î:Ê;®Ã÷GÅ »ÉúôOloYæ pÝF<¢·f©ÿ ~¥©e~ªø¸¥4ù_ûØðIèÕžþ»7ÕÚœ.%¿VLDýylú'ú;Ÿgd¾xðŸþ‰ÕÉÎ*îú]í»zX½ƒþjó?nÁd q~#Zs¹þ‚uÖˆ† ÖMáºÏŠGŠÐÞÂ;ÔEЕ¢Š8rÍ pºïzTcƒºóžp½mÍ~°é„7xèQôD.ø%":õçë#ÚÿþM»¥@ÇúFy5ˆú"˺ø¦WDáQü‚ây‹øè"3?ê¡ÒˆºŠ 0:ÑA‚בe—¢N¯'s2©Ûœ¶Œ NUá“wãëå"¸‹›´îdDÐïž©ù*Æ¢‡+Å®fPY‘ ”g!uDZÕÍÇx’îFÑ^õùÅU*{ÔÒ6ö…²õ»ßy ±ùþø/Ô×OD¤ÃŽÜäžÚóO5vˆzxUò5ÕŽz[THIÑ_¥Ã/®Áª•] @»6ÄEó{l׎ÛýK–áéプ=MíáøUJEòÕ°û«‰83ÂŒ¢rÞn¶³Þü¹Äy°¨Ód'ÉÍ­†þc= Â:zýšZèú‹ÔŸÿ…oÌ"uÖÎ@‹–¥±èMéÛ¾‡ž¾Ô¡_Dí”G®eKx Þû ö¾"ùcèü#µöœu9k¯ƒLž1 \JA…Å ªÝü˜4´ÕŠ)oÃ| ƒa.¢žý L@Ië>“fÉuæHøó5àxÝy6>øÂ‡|b=óIˆü£þã Ú]Û‡ä1¯‹®x7‹9‰™ÿ1ì¯ú+ë ߌÆu8Ö>îóv˜JŽc§éÍ(F°þj¯º_{EÜäųÊ*KN1³‘¿ÜE»J¡NÜt¬CÍÅ8úïÞaÞ¸]Q“Lq8>}° à 2‰ôNÿÑ›ü#g.'oë\ó±èBÿö†ŽŠä£¬Ö'\+é™XË ‡Óge"ÕîVA¹Š“ù‘Üûø²ÐÝy ÷«c™?ø1Î80›"•æw¬ÜLæýf7…þï}×ùaÐ+XªŒåpGÕkóÑÍÁFtÞËÄÜ¥šfqôïÝÿËo?± V2]…?VcýÞç¦×ILþ‘So¢d*•¢ìTJ£¿š¢y_*k¹³ÊÕ üªÞµ1®1ƒê$¼•Ÿ8‡þê%ó£~¯Ïã:ô»5y/«íö¢þü˜ø¤ÄÒ¾‰úðXYÄIx‘6áV„ÝôXt`1…Ý÷;ñà_X»nÄçXU±ý QkZü‡+óôÈt4‹­?¤þ¼oò ¢îÕ¬êîÓ”DQ}Áòß]_ ÿHKÜ|>„ »7E¹©tÆÏ¡Ö,ªÙ•PJ¬ý}ÑÛ5¤û1p ÞÿÒ /KÉ#êé¯<µ&øIÔßÚ~¿J‚›ﱨõVÛ+dOù„µï‚~·û/û'æ§‚'7¾=¯# ¾ö*¸Ê°Þþ0çÄôÆ_fò£°ç׈Œ¯-Ž@¼W¸èV8×]L w"J¥ã:Ý!÷2Èó2_ç›|=”Úú\1ǰ»yü rñíW-®:-WÚˆüãYQ&üÇ2Ûæºéwí%ÆT] “ÜÔ‹©œƒ"d§ÐØZ‹}xÙÃfWü†\a]àïf5*âVc¿àc.ñYð…è~³$Ô' Ö5 ¼Zú±ß ³îZpèâIw:¥?¦#JÛ¢w*HÏ‘ M¹à΢nZhæåyÇáí ¾Zj{µ<øÇ=œ’Ü0Õ` ÀÖný)ÿa秨Gt%gý(kÐ'&ï*®¶ZK«WÒÏ© Xe;úÝŠZ'ø8šö›ó?¼•ÃºŠ‡oº×ÜX ã¡h—Ô[XÚ úý2½ÜOgì¦b©¦¡·ZºTG\×”d`ÊeøðÛDnòÈ)Ï:«O©C±û‹Ä4’\@gøùGN±{sog÷‹X(²Š'‘êŸhRO JƒÎÇÊ-Æþ]$3ˆiÀLS ˆ%+…ÝKNV3+ø•?ù‡Fä+bœ&æ~üGmÃFéFÛ#_ð!"> z4ö·ýmõ?ýñÔ:ÀHæ·°Æm1©UqKÑÆgfë±õ§Ášr±öjâÜàW¿Šƒ”•j,*Sx‹fQ?hϪŠA¿Šã°<¼ÁE¸ú†;ÛT²¤5¢ˆ.ÃÙeµºnWßèæJ<ìnò•–ø¥dÆ'v7ɘþ‹gO/GaklÂd&¶{,ê…;¿Ö]©C¢%† œû`,Ð#ö× «üy¬}²¨ÒøNä £È?&†©L§}€ÿ¨ƒç¦c8•®Ø~/3LMD¿€þí—±)߬@r~VÌ^*ïáªSì3³¶'Ä=Ü¥å"öñÆJ'á§z=FgúÇ9|a‘sÇm+­Ã•ÅÜ sK9;ó·y†yEïb½º">^ÈŸgÙ üo‡ñ Ýïz:÷>7«¢Û®s‡úÁ d\Až¶Á"4ãMÏ“Ñä”MÍSb˜óîWJ“Hò“ F;|ùyñ7ÝU>Ò'×ÄLfÒb[øó$̤´í‹…ÝN¶5 O_Gs1£Áõçá?âÃñ~å–ÁÆÙuêô›lÉDÄtÂr8Ö æŠNýàøéAè¯tØiöèË™¼k¤¢I§ÿ¨‰ÿø†þªYíh·ª†«ÌãÈ k4—^Uåæ”w¡’p‘õ@ö¡ÚeU‹­ør9Ñ “ÖÈ?^ ÍèèôGéµdx.ùe&Ø‘TÖtÇæ…Lƒÿ(…oœH=úmæ–q4¥ÃÙ307¿ª ~µ¬úˆa¢Ë(eÖ¿7aÉy»ÿO_¼Uªý¤Ø½FÿÄ`5Öo.¬ÞR…6Ÿü£ýw{pºÖÑ¿½¬Ö’ùQqÉïoýÖrÞÊ4Ö•éQö^a¾Š~÷ˆz•þ%+õ{úuú—ü^ÿö)úP›é¢ÈH |ÿeñ])Lýy^ú'fg^_>£’ž9Äñ«íަÎå»þ¨Ù¢ ZgP–^D¸‰Œ¬âx¹Vù6YÎô»·ôÈt¤ ÐŽÓ¿¤Vo 6a lÃQ8¶xX°«Ø¼Xpˆe˜  qA"$ÞÏŸôO’ ;MÌp'•È?ªáÙÀz¿æêÓÁP—%WX†­uè¡€ë´Ú I“PBà|¿#¨ÿ¨ K`3Ó9ÈV‚»E1–ÛÑ^µýÅt½VV© ð4ØÕ¬Æ4üÇФÆ0óƒñEŒYT©½# »Á'ÎÃ-4Ú`£g‹ôzx9qµ¾ÞýŸ›Ù¶¦x¯"di߸wÁ”*꟨ï‰*Èfÿçó¤*“ñ¼-ÃåÏ=˜?8]Ì5âóµaŸ_“KÖ'K+Ǽï&øtæl·?ÖÓEi*P67r:›!éJÿö¨ÚÃPã¼6F,…½KDü¿ïðýôzV³ç‰gs_Œ,JþÑNV”«à?âð3k°˜ð/å˜i¶&ÔYLW—þ<%õö öœ?O:Æ¥zÝC>`þ`fê©_â[²‘“Œd‡.|½¨™•·(1Ñ×Ï[Ü£ÆBC˜Ä®yÛä ³A’*0Oi™•ýUtÇd©Óƒ¤œ¼K–k¿Êz ̃¬w-ÔüÚ"§öæÙ„kße\¿ó~Š»èP^t­÷™6W¤ÿî&2ÍvÜ×M¨ á?Z›EWçöÖb…¦ ª¨ÍihEuUÌ2PÜv…?Ic_e_f¸®`²Ò²¦‘ô¿oﶈ/LB¾˜Ü˜í\o“zRû„näÏ,—ÌÆ9‘JúIè¯RƒTQHþ± 6>Ž#:üù«]â/˘0>£¸Ó}°ù©ÿöµÕ‹º¥OÏù˜kîB“Ó†ú®x±úð<.¨¯®1SW·:X¯¸§iÁ²â3³=¾ÜiD7ŸrFŠOÄ`Áõç‡ÔúFÔz®œ¦Füë ™Ã¡8òÂôlÃûìEœÖñØñ˜*ÇžÔOú¡b«‰R¢"ókmÿq‚÷½6Fÿ•úÁXTús¨þ¨yEˆsæ|~‘X}¬¾Qݵøz#}_ÿX¢dƒÿh©­Õtí›ò{Þñ£âJÿ’Œd7E £“~TóRש×õôOܯû17Þoís¼~+3YäÁ2Q9JåANµ´vÝî}=¾ðiŒ*ÚÒÿ¹½á?.ê^àW©(éBì݆671ÊA"ô‹Xl¼i"snëÁì¯oß{í,ÝJƒ÷ÎÃZþMrKøMì#lS4-¹©[àÃEÈá­ùBIÆ™Ú ¢óþ•7÷‚1Ÿ üj&±²=z; £XÙÁxã›–'‚»è¡5E#Ûÿs6ÿ½´bLð‡^(†Þ‘#ÜŃ^€Õ8ÍÏd4 ‹¦êþð6Æ÷Lu¥ªt4çúr·kÌ“­AÌõÐo^äÍ™Cä“ìè qñ<ÂPôËtI§bÔpvYZí­·3<ùüÙD‚'ð ñleX-Š9“ž"9ôGغ?°£ãÉ%æ‚å6Ίk¢ÙYØ îU*ëSÅ8²™ÁÄÅIxϧc­‡È?jÍÇ5[Rõâ~µ_Ç\Ïšc‚2”ºF]]ÑB-飵ãÙO üÇx04…ÿû`SN2Ï5?õçÓA!ªÇ›¸’áØú«XUO¬t!£—puűéßž~).=:<‰ÛWr—¼À±>ÙÞÃUìªè.š™åW|Pò™ƒXç­`c.ägÓ;Þâð«iœÝ÷¨f™-@ŠÞ™óáÏ‹›.ð cèh~Fy(ý¯ZSÿq»˜…ë8ŒzxŽy„3î­O ±^3ñ”\ëøUM"‹CÆ%sš$«Q™L‚æd™ÞL7D²%ÈÓrg-AìÜð™}LMÖ0Š1Îí­¡‹Ò\òª N=ñoÄfã±¹…ò#f§ü'Јº4Ö*k 5Š^(¦ÎsÆp¯¿€Š%@‹×î_²O½¥}ä„^$ûŽ~÷!ž÷2«£[•¹àx¦õºbõ˜7ë…}aU¤Cz\ê!ÿ$NjÆûXŸi>éœùG]úð©D_¹‰ Q¹’˜šÈ¢¦ZÅé0Ÿ™Þ‰ËÑì~ âiªU2[Ç̾ÖGÐd·$«q@Øo@Kç)ܧîÑ—Ùçä-˜e}†Iq¡SýRØ“^ø¡xè¯NXÉñQ…äNk5]³l™äy¯©?‚žücóþ{_ÄQ«ÿ”q\Cõ¿Õ_¥VϨiáÏ+é%ðvÿÄýôß-HýÇ~æ¼ç¿~çÏWæ êfál£ëõuô¯~„?ß¡?Ðã‘Ìç7¢µGé—±—K©÷pã¹WSÐïV×.÷ßÒâœHiT wJjØu{©_ØÇ΢\-lg ð’èô#¸…•Þªé í@Xù]úʰ¿æ;¯É?¾ˆ¢(ñç‘,à Ç}Çß$f–Ôd¹Àû*(õª‹^³ªÖ„¥pÃߨó?Öí”1žŠÚœÍeFeXê3Øo»G× ,CѳE°âB­-;o8‡5}ú5ù[q¬È$ÚØåSìú$º «`\åŒD¢Ú/'½¤TÁP°¨+`*²Ãç¿@·ÐqÝèk²ÏÄ{–é”Ϭ7leì`Ö´ýGxøUíÿ¸³€¯"Ù¶~KuUÜÝÝÝ]ƒ;Ã`ƒë0 îÃà, w‡ÁƒCpw·ïߙˉ—ðÞ÷î…ß½2¤RÝ]½e­µ÷Ö{š,/îÓTâa§òò72ŒŒA…ô1«›±Nã¨ÄîJþ1Mol˜»¢9yÜWA[«•c~Ôjº1Ž Ï*oqÍ­øéåÑË6C9„'‹ÔÑva/ÕÆïjV1óƒþ9Ì’~Æ_¢xSjªÏî½§ÉU6Q'¼‡zŠ¢ÔŒ··Ò;÷üy¸õø‰°õ]ðOce ú#„Í?’Íÿ Ï3ø•Óÿj.:ÕpïA¨VÐp•Š‚—¸EÉ?†‚-–E;´ ¯šÌÌÝŽi¬õ¤w9ȈŽól³‚E6à¾K5 ĽþmX~užcO…Ké΄]úÕbM'QQ2/²‰üu¿Ù:ÔzyDRìö%bÚèþv[™ÊރʑÉ2>ÓˆÊ/«íèš^ ß@þÑžžb¿Q>(UI¹H pßÁMÚ }1<`+TÝ•P+|[o¥yGdêÏG“TÈ^NüíÏ?ŽY*#é8r ¶§?™Þ}ªã㋟ˆÑîõöë·ûVyžìûƒÌÁ™a ŒÄU¼ÚR|ïp2·Ñ¨ —‹®úç˜UÒƒŒ.>Yg_<\'"šD"¿Hãöu˜c÷N$ãÝZ UG\³¡ß­Fb9üG1§q0 ‘ùt P:EE¾y]Î!6 k9!Þ-UqŸBÝÓôD#°Ž/èqÓ.@§Ý|(V©‚¨ÄŠÛÝ\ûPïfpõƒ‰÷'÷rú'zØñˆ"‹C`çuˆp ˆïéVÜ7âÿâƒþ{&ú²V>D5úÏý¸ìè£2¢¶*kÖbþ`[N—§VÞÈIÿö#L›Õ¾«êüöO¹¤]ä¦3ž@w¹šþ»õ¡ú&-­0ïп=êOæõÌ@òŽÉðk@J“qÄÑÓóNVF7•Aø‹"ä9B½ßÞ—¦õÑýõæ"ߨ÷ÚD¾­eotN…E 6g7ÑÀ[ø†%"‡8ez}o‘_—æn”¹‰Gqç“uäýŒ 7}›§aó3Ø?q­n_E¥!–ù×Ç+Zq~þ‘ì(/ˆX"¸†÷ø³%¬^R^Å¿¥$~,Nö1Žûp×Èôƒkžo4äMžÀÉÀN_ES”˜ªÉú¨/—ƒWØx¨ `Þ·èrü¤4‹|w~ml}µžÿµ>#ñý+f¸5'†¿ŽÊ?¾,L?Ž>òyÇn|óR¼¨'9Ã|ªÅ‹šæ7vY–þ‰õð\¸–|d,³‰öË¿ÃCM³:˜p“Ðïö‹š€÷Kd¤R´¹µÒýæß¿eôß+–‚ú¡j,ÿ¨M†Qšˆ»5å2hZÐúu`.¶Þ“ØskŽÁÔe~­f‡GŒþb÷9r±û9øupGÁ¯Jâ?Ðÿ*ùG9ô»sÑ-§Ag´œŸ¼†œ©:=uÂfšYÑ Fæ~¤`£M¢òe­L®2R18‡ê=hr‰YoÑj vo:ÒöÆ•f~TØü#ú«“`°YÈxj¯Å½š¡:°£¾ðÀ©¨VKâ:«èKqD()ÿÎÿÍ êm`Ù¢c¨+.&œz‰cNNŽ.××ÚÄü~ª¹ú[¦ÇL§òíøÕ%j;«¤öx¸’ü‡SIM5—Eo÷Ãðf~mâŸöò"øUj¹Wô³Êãä¦Ýük ~=1øa˜þÌŸuð¬Wò!zÃIä2}`§Š³^0~uD¿`Ä‚ÁÑä*ô»éx»þ@=˜ŽW%é¿{Œ¹"é\‹™3‘úóm¨ŒKÙmPuEÂsuÆŸw>–‡¨&Ò»ýG.ð‡gø2 K¥?1PWú·çÀKV¦ëÕ:ÉL·Wã?º’ƒŒ£×ˆíº+»€_mF•ÿÿqLì¹èî>…‡©ÿð&Ú˜C”V þã´*‚z¡lÔ$U™}¥Ç\sEtÕ%Ç)F5æqæ×Â+Ù äJªNÓä;WÜYpßÁÿÜ›þ%Áç/µR!ªA~n‰°«ÙŒ)ôß-lž×krº–iéÈ?ú£¿Š†~×ï§–û¤9¨N0§ø(xW˜>ä0gÐïîÛÐ+Ý3CdMáYx€y_4ÿ±‚ü£œX ¢ëùŒçT(…±Î©­ªß¬rþzíèÌ¢Šë`ô©ÀjÞ½hD,çl²¹Clxï™"Ÿð5×~ýí_}%%õç—`uŸaá7`/?a9«`ßaWRËðœ{p˜º…$L¼üqþqS«….vžpaõÈ5¨DŠ:õ“±…ØuNâ©rÔÌÅÖ~2R‡²_mN›e´Æ&ôÂRž&»z.z bªŒÞcIyÌv=(È2’;DùU­4¢Úw•O´£zd~þ|ò§£ÊSq†û_Åro)@m–`?5¹dæ þã(÷b!YÅôWo¿Þùæ| ´*;OÕV¥ ×ôÔJ.ûSÓWÍü„õ J2˜H{!Ú–$Aók›-~½Üø b«9S3‘YM ê.û[å-Þ¢=2¼@…áíæàO&â—PEQ×ÔÁgCÿ:b,“A¹ãÝOŽrºq¯Óÿª/õÐ - Ï¡ÕèÕÕt"ñ xãuøÏÝÜ×rV—¯øóÌÆ]4Ü=@ñ§€ ùË)œ AZÝíL¡Ö3ÿã5·dA•P»/E,~žºùG~ú_…®ÜkdÀ¢N5#¡¼|a%T^0èØ¨ëÔŸ§oCŽt•~]õÔØçôd>WáJfßcêAïP'§ŒÈfª[»Íº*¬½úS-câGì©ZÖ³ö(u^=ý¯:Èžè|Ïq?}ÈPªÉýb¤û^Ðz꓉JþÄk×Ã[­áÏ »-ókËÐÍq*Ùõt6?DœßŽŸ2’õ7ÀÍô$ûÄ=Lîh¡ÅJ÷zGõËFRÈ·ÑÛ–V ˆ×k ³_£–ZOîÆœ@0«5ä ×A³^Ýÿˆ‡4†‡ èÈ)*ŠÏîë­Gþñ^¤!«[ÂÉ=#è&§Òº*€§u¦câßäGËAÖb¡à}CFW“ Åðy±ÔZ¢‰ÇD±'Äpï`ýî1ÝÇ\#Zð.9=>…´=˜…èþwAmÂ'yؾ®+®¬ôÄÊ„þê³½‡Ü##u%‰y“bð®Ðaÿ^Cr_ñîíYˆ‰QטÝ}Ÿ~n±ôczjæòõYe úÝÆPã ‘‚þ@?W]V»jZ`÷U੊¶§~p¿þÑ<.ö™wéeýäü¨vækìÞ *!΂"7ÇÑïf¤&ËÃj*ªP?X€þWáStMÑÏé‘Åsêc#€i7$oèE[4f”y¥‚¥r¿Ld¦~0<ˆdêYœ O/±€Qƒº@¬*‘<£~°&|©e½@ö‘–ªŽ5?|6g´è1æà?eùàË*Á3”'Ršzò#;Lwq~ŽõšYè+n4¦ccFa³áχ?U„#uæäåÇê/#ª>ŒÅ/ 5¿YPÔÓO~çàÜÐüõ¤dAžüü„d™Yé«3L|1´Í°Ó+øûyrÃìÑ™§5Oä1]ߨe)½¡9˜*ºhh¡¨ÐG‡’ ¿—\(¢aýiV4m:K$Òí䇆âãOõöÌoøÕZ!ú': ý  9‘ñڣɌ†R]×(=Ñ—ÏçA\ÃŽ$?ZÈïÙìp!Ýuý¥Cÿ:iÌ/ ïLœÊCvÖ D®" B}U˜iO3l?´SÎ4©ºðçÈ?ªá[†£fõ’5ÀÆ'…¹â´†IÜÓ m ß+`é·¬åò3ýÊɈP íÏYE~ƒ~…QÀ¯²bñŸ èÚHT^'Lÿ’}F"žÖ¢”Ô \%Ù_2üÇ õý¯ÁLgq½"nžCvS ü}þjMPuÊT}9Ñïv µÃl"5*3?üGkð: ´†Iå-èÕˆú§þü1–yˆò¦~0±½W?¢ûÝܪXªÐ/w°ûîÑ:ëãñÝäS«þ·(ÏüÚ¨vw;šý;¨N_»:ÛBÌŸýÛnLÿ’qTîí[ëOuŽTmñïù˜g8ŽÞ)ý‘‘ UÄvÞ²*iiÑ¿÷5<Ê&§ ¢}<¤<‘òLªTo°¶S©Q²ˆº~Øÿê°1Ï6lê,ßó@ "BªÌ®Á,”¯Ék|©?†W°ð ­ÈôKëþ!öòã;í­^Óz2ÿÌÄóoÅ• ÿqÖêZWˆª®ÖäÞø‚øŽ<ˆ™§Ènê߸î*zmówÐ>:®_ïÄ–ç纓¿½Ç7 1;à?|È Ênü}:ÙQZü°ƒ˜­û†ÿ˜­U¿Z޽‰]Ë€§‚Ÿìg#ž- ¶t?Y ¿•ßY`“g“!­Á~¬uXd>øj~Ô!ô»£ðgùè5².û&ªqV;([ªLÌÌ[ÈüÁÔ*€îèÕðréÙT™h|$ža+QIׯ柧1žˆÜyºßƒ"!ò ´–a-ã+O9E½$^® oûJ¾"ÞO¦Æ°Ç22·†|¦"(kFã@¨{¸ÅÈÌiÝ>ZWH?¢šFoNô[lÏB¿{Ööoú_U¢Šã:«å ›»~5–¼†uÅ _åðX‡ÀkÀ¬±NÑUe4½ªîQOr=W꣹Ʃùr˜zªfvµßž·†,ª¹<.þt•MZüÇ'ºÞ¥š$¹D{ú—ÖS5™õ›üyY½¢9\ wË™Ç[ÀJÆnã ¸*Oÿ«×Ô´ÛoÌ›I¥ŽS¹Å¬6ô/_Ÿ˜¿À¯ú‹–BÓ’hî~¡Wœ¤® þâ4HY6,·3ÿ<"öii1×°œ=Î2ßéaûïúÒw$jN,Ð,«£aÛˆ‚úÛs¨“j ãÙá¥k€MæIÅÃGù‘ëfªG^ø‘až‹2^ õª¹óä=8¤ûà}ÉÔg¬úl¦GGÓùÌþ²UÍí8·”0ÊÛáþ‰t‘ 3¿v®‘…<|+1P® ÿˆ2iŠÛÔ´¥ž;9Ý2â¸F²ÃêT8Þ@ •’œó*|üTºU¬€0øUN‘üêyc%üÇbë»­Z“oä§~p.“bƒÜO룔½”p8yÊ<Èúïþ&¯Š‰î‡²’ùƒÓ‰§þä)t&Ûóè›{;ŸÐnˆ¿ÀkÐC0.ýꇑьdÞÆ(:¢<"‹ÛˆGíAþA1ܽžõƒÉÆŸ‘+QÙÈ}å©Ô²ŸÀxÏÇt ’pèßGû.ú+ÕžßOÅǧw"C¡²RŠò"¡›ÿ(¡0·ÙpPgÐä4¡þ##õ³í”¬q‚þ\éä>œk ÜXTk´¶]j%ú«D9¾ðç5@£¿lp»>Ç\/ñ. €“ß'ž¨*®·ð3ÕCªz^0Gd•ë èU Wð«”.•ÑÞ+=ìØà’w/:,QAY?Dǯ/+ÿßÿùAû=~u›þW œÜðî!µîGG©Feê/ÕÎÓ<˜_ëôßCýÇåð.ôïö¡¿º# Á'%¤ºxý¯véÑÍm¿:NÿÝ—!¦¶‡gá¡æ x³…ô)9€uÎ/ŠÌ¡=/Š Ã®AÿĪ–‡¾Œf¸~VO‚Úý op7,æE²Çì2ØGzŽl)?ªo‘ ýnxòwÆ<¢™Â 'ó±šKˆ+÷ù>°œŽ€m±Žï±ŽÇ„ 55ó?Îk,ì'(NK2ö|D[×Dk±ìÝ>²Sà*£A[=,Ý,õƒ§íkô§"oHÎEÎ÷{jâÒa=âëuÇ¢Üð²®qOsãKÆ“•×U¿ËÜÑvèÅðÓxK2cy]̬ÿ8Ë»ýÿÑ­écÖs&RÍãO§žß—gVÑ Ë.8O¼¤^Éìnä)ŒOÙO,X–è-Š¢䃕ÌÄæÛ uhØáäNÝÀ-£¿úÝÚì~sƒOÎl­˜9M,ãÊFƒ”'g?3±ºð¶óeMbà£<ÌX»åX”àQ3ɼ–pWVq†¢¿z¼TЧÌŽ…‰‰¿ÙOôþÿµÊyà9a+–Q?˜ýUõ+AK~bAlÚ@þõ|YnuB˜çb€µ¦!sN…ó¦²c ìÛFY}¢d#ü‡¿ÊƒÿxMÆ‘O="7Ì šˆ7š~_”i»C­8‡úÁX{§þÇLõµ {µXÕ#ßJ<Ñu d´z#£xz?›€ÎÀo:U†ùQC­—U¤å»LÎÜÄg¹ušzQhu糟ÛàaEa}À ¼•ía2à õÄkžÂâ/Cáûóƒíý­¥¾”çÚ}x=ýb<Ýå/Â{Ä´›±Ë^Té9óÏ—£r­3¿c*óÏŸáWJõãiÅ”7ÄT÷Y¯o7bÂbÆãTyÉÐ7e õ–…íÕðïcÐïGý¬\™ÿq:÷#ê¾J#£p%{¨!¼Kmp5Çí?ªè§±M’3<Áš-ÿæíj¦òÒ ~"úÝLôXYOßöápí LTI ¯Q­qšZxŸØí˜0å/!ò5ú|úŠ·‚é…_9(2ê%þã¾;],;Ú\®‡vVWu»`PÿÄÏÄ %ì((߈›¼GM‰åêˆÍî+þÏ}ø¬µ 1IÜ_+ø“} ƒwEßÍüÚF1³¼y\oÃéÚ¥¥72Œ½tqþ“ýÛjÌGXÕÒts*f-6×qþ‡òÜŠ-æ ó Œ|ÊPç7xßþÔÔ|„/Ç³Þ «†ùƒEôÆ>þÞ…ØâõU~ˆåü³rWýKè°ˆ@uº‚¶´ýà´EYñ*ÓDq`†‡ÑÒ͹ø2D¾ÃÁHƃÝ%3ø p›Ø7 ú«Çh &¥ÊùúZhu¨’[(n‰ ›‰ÇKÀZÇ$Ò|‹‡ÊC<•6}÷5ö5g Úìe–ôŸùQÝñ•Ð|N„[L%¯ù§&Üé(,nñ«~íëm}å¶AÏ =þ#˜Økò²DùÏèT!d\þÿwù†*‰³TÑxã9–±úJø"æ·´Ú5Ñïv!ïˆÛ‘ÞiIV9þ7|TM3ùˆZ¿îØå¡`Q‹¬ €—èÕÌZþ ÿ1JËJþ1ýÕJ2«¼X®03£ð¹ó`PŠbC–[Î,ÁÄÌ©ÁrÖrGga?– âýÓ´° ã}Aó?ò£v[ƒ½/n1Šk©F´Ýýî5µ-R6¦aÔFµÅR<ôR~ gû¹¯‰Mÿsº#gD\â‰ÂÄÿþ°$ó9'^ôßÕÔVú·ß§£onPüËÔŸWÄæ ÿ€À#­ÄæãÎ$ Ó?q½‘ tn7§.ùÇ/ôd‰‹Úg–j* 0Ûjµƒgèµ@½c½¦Ê®+-˜åUEä¯U­Ûaæf¿Ê/ïãÏ;౦Yä\ú7µA[–6h~m.§@þgƒiűgq•@†üð—K¤ÎO="F¸OÍ bÚ©<ÇæÜõ&páty%/;;è}ÿ;ýw‹Ú©«ØLÄ?‰»ñvû¹ZS –‘äë\ýÕò‡ÿØí`¸ªolazN¶ ²§Vƒùµ“ìô®™6f]OÈ;’¹º3•깊B|ÔýAo²ö¨¢ŒÈîöÌ!z(œ¸v>˜«"Ò«©êÒ e ¨U20°n0æsaÒ±o£¡z£¶0»vú«•0‰÷ñåDDY …ÿ— Þ®O7Wˆ6d3}ñ.GE*²¿Ñôo$o³sÚý˜_{ ýngªÒK¸|Xó-ü¿E¼{ѸK¹àÏN¡ôå§ÿïþüjâÇYæþOëÏã?2’mT„??”øÐ¿$±1ˆþ‰èuä§6ê¯9¬rEÞan½À\ ~ÛV@þ±ÑÜkÞFõs<ÍæCôªž Œ{A9 Ó¹¯°þ^?nÕ¦û%±])3Q˜wöÛî¤Ô ‡?zÕ“÷xnV*çv/ò®&à«sDqØ Ž¾½–óÕÏÆ\ó)Þ©0[ÕúRTÎá:k´¨Qxÿc;ÒPý¸é‡; ÐÚàq}˜eƒÜl$û(JEeúiVUPýÝØþ³DêÐ_U´äýÇZc ˆÐ *1î€æ¼=ñ”åáPF7¦…õž Îs˜|Á™45Z)ú—|oÒKt}¥`.o^2ôW&ýÔrA®É´Öh˜ëWÖ.˜agVÕF°¼ 0¼[Dm3¬:Ö¹oEô.fGrŸxDañGÈ/kàI^ZY@Èþ0ÓšO¨¨èˆövÈÚþ—ÿqO4ù&~5U+þj!÷{ j¨ŒÔ L…ÝêCt> %SYÞ{?2·ÓØÚ£Ôú¥”«,§×Ìr8¹p-Ÿô°;\gôã°³ àÃ=y»Ÿ‚x/"ÿ8&©UF3êeß@'u„jšÔ¶$b΂_?2QVG!6"Ì“Ž ~e«å€ÿØ%ŸrÍ·¨—I£«rÝb1â„}§üùd~bY|É© ø97÷8šq!ÔŠKŒÌVKNÃ;ü¹7ò%n'Óq½%G¡$*êºb æÞ%ÿh©Î’“¥§âçþc¬ZUë™Ù"ÔzEJbàSd娜níB5ýî$ø˜ô£ÍF_×Ì¿„b ùÇrâúVìφZ©ÚøŽÎC úuþc-XO?Ϋ£löå™}–äoTôV“˜?¸—ºn?,v;Xú)ôÃ:A¶5µT,õÏ']qƒùó³ú #1€!—1¿6;¼EU¸¦N°ÅÉcnP+ùç—èYÿô3æt`òF|ºdŽÂÃu'÷üh–…Ýþ£¨~ȼ%Ò£çœd̓Ég5Ry˜¾À®BËkfoE„º¿ÜÓBä9d€@ý…ZúßuP$‘-A¾\¯·îkÎ퉙úÀà9ùG —?ý½èõU_”ÃKÿÄ—ÔŸÓß—Ù gÀµb«rvB”aÅâ¢ê(üjþWú·¿%WŒã> gèœ>Ò—kþ3 uÙIaËe~”ÐüyÌÊiL4.Òÿêv.øŸ†ãÓ5íQyqüGr«æ6ã.ÖçyãEó²ùÞx§vï:ËiÓL[¶ ‚¯I„ô‹å0ñ¨ÿ¸"˜ñ€þê-õmÃÉŒ×/èi…†EyD<Ø Ö 5~*0±ÃàV§Á†2€¨,¦~ð޹*[‹j®0/cá_c‰ö¦;™G}pgÔ´D‹šX–åLErøe±â‡×|FkJ]àÔ!qe ”ºÙ°ÕQÍA¸(w¢”Ú råLö+dÅúaÍý^c̾{;XM Äó¨A½šî%@e–ãóްÓ"26µ—US4ûnÿ«¨ú½¨Uë^{´€³À[ãø¡¼ó¹Ð²4„?_Gþõ/rTÌ ß´AÔü&~UŒúó¶àIX/ÿzìrN|Ä{,âZ&VÖ2…Ú†E®&Ãßx’'8½ Þˆ?@˜¿~,Kµ2ôOô"wYg’•|a6Vr¾h (x ¼øF|ä´JÇ@rÒËEäO‹ùíÿЌ„>=ô¯³Æ1†ûž†;µIVÝë^|©+}¯N¡ÑÙ§RbM› ¿ZH$žìî4ØÐ-ÔZ}`º–†yÒñ œ».þcVÿ±”Óç)ªhê ý¯ž0¯»,náY*(UÉÉ>Q“}SÁy‹ŒÓ¡VÜf¢rs7§­øUc"ýd`7[Èò¨þàøé\Ÿ‰Ç§á?ZRrŸ+YðƒŸ¸yFòs˜þ%ÕñyñNÖÐgxPú0™ãwµ~(—¨†ÈGm÷£ úÁî(orz&âÛ/àã.ÃâüIÿÝnîx\ë ¯â-è"o¡O$Wˆt¾‡ßˆ~5Š™Juíç¬rýî(ø~ô/9 ~Õ“ì-¥Iþ‹®¸cÝëÐOIІ?å¬6…ÿHBÿ«•²­ý¥Õvî][âý™LO¡g‹Ú¤„«}#o¨ÔD£È6ó¥uDR·ÿhªû™‘8s9xþË¥¢Š5WU¢ÿÕúr¥å:gÑ y¡‡ªû—hpKØ™6;ƶ•'ùÇs¾ëŠˆ.ZƒÝ§põSDgÞÍÄžûDüùKz.ަ7dºò× òº+'HV ˵„^Ññ,Ñ@,Õ·±¬*`­Ä÷ÿç>¼×„Pì^ÑéiC³ðï$!üGRæ×æGu8(ÿØ®åg~í`Ën#šþsèÜê?ÎÁJ4»fAuýÕ)ý­yQl6WÓ÷òOöyœb¾)™@þ±ø¹¢Ð¬Ø°5'ø ]E9ñ^¤b |QÚé.#¾Pøûäƒx~ýäxòXŸÑä y±aƒ¬¥¢‚8kn Çí3Í]dÃU±Òý‰¶ÿÆ\¤’áqô âÍH œ)[ôw8øó»Úp1³àZ-âèƒäZ•É?~g™g9Óý6‚b]?Z ’•…þí?zÚGŒ–’C‰´n‚¿<Cˆõ‹ÃvÌ&Ú+ë=Ôv±y§%àó%E]ý{yt]¿a¡VÊwdSóä~2×[¦S!ü«<þ£0þãjÄ!Ô^”ëÕRð« tº½‡2,?¼ò-Цë²;Ì…7^z(~9îíeb²ž!úïžÖÚé È+{bm;¡V8Ž'6è9Œù5aù‘Ò?7…Skf^­$Ò?Ç‘ÎÜéĪ7×ò‰Ly¼{sGô½è¯j‘­³r©´èR¼Q‡ µ?£ [ö +ÞrÕûé\—ñÃÑðQ>E#¿‡ÿ&w[š(¢þüæ¼åy8Uå>¼Ze—¨_-ò¬{ô¿÷…CIÎÿžQí˜]Ö{9ŽÉO›­0¹É‚©•AMùeƒ«ô¹æ\ñ't3q|Å ªév)üÇbæŸÄ+MqÝtEvU¦Æ=õ'U$û)üGÎydô6)9Ðï®ÿ²àðÏ·d±Ý'áüyB÷ß~n‰õºÛQÊ,ažê_2O+idÄ£x‘À¯~.ÿX§yÃÔÂú}õ¬Uæ:îzQ·s–ª¼Ëøÿª±ðì³MV⽬NþQ>ì5úÝ[úð“*L |DýGÓpæ3õ‹ôß‚Å{‰íkÍÓ^öÅ|0ýxþ‡±`¹Á*¼E|qÞ\Ž­¥5÷›ÏÙWDÐÌ5œH‰Š%§â ïvl·ÿØÿÈj­ù**ýzùMZOê¦qEŸ¬ŽÒ<'üGeÖízrËœÖ;•5œÌá7üÇÔv—Œ¶DMÃav®1Š¡œð| úC@°SÒ¯b)°?qlQ¸Ó¹<­ßE-ýî×Û úJj}^|cºÖL 9@’š¢Kºjõ–±ek"%oë |ò62ŠKøªÅ󛑾q&³ëcÌf }ùåzKžÀ‹yÀ̤A‰îlÛL V£À,/í€7½œÎ/EKë¢ûÍ ÞèT­0üùnò½ óY°\cˆ†Yùˆ÷ëeF“š ÿ±…mò üc%žs!>n=ú+‹óú×£…˜B†—Lå’ô@wÓ ]ܤŠÝKj ](bª@þV޹"ˆKVlý`lùZð«%b\˜+¶é¿ëL2(Ÿr™<`.wg1Óöâ0!vúHGøà9i°÷¿Â ÇÚ’Ñ™¾¾$7¹a< µ¢¯‘“ëÛJ”Œ¦%× &y²êFýá|,aj&à}`FûmôXíÕcÙUì"¶d[­ÆÌ¯íj½ DT¿€ôl¥b£%æŠ\KïÀ†xðàW³É?ÎÑy<€|d:•³¨êÿ‹há0÷cÌ ™†æ¾W˜_ë ÕUÞ ›‰%ωåÖC¹¿&©ìwT‰>#±ìkT|÷TwÐB·£k˜Œï„9 œa«¿{½}ä1¥£aØ`•Q¯EGëSH–À—DÅðF5"ó˜iï²¹,x•WL)Åt0C£ðnme Q¹ÜùGeý°éÇ-N 1Yf§ôV3™5ƃ~#ðüÔž¿g.n<ú«ªöL9Á®§¼Qv<áLlF[Ÿ'„ÿX©/3'Šn¼ýxË÷ŠÄ̜¤ÚÉäímæOÍu]p%¡ok2™®«(¬oʇŠ'ü€¼´(ÑBÛÿŠ~7²þKˆI°t.ûQG=÷c ó!þŽÉ¾F2³…¹E¯Áéš ÿQÄhlÜ!ÿ¸£…‡K^òŒhÚ0ÞÅÉèJ0t7ç¯~ÑÜ/¼Íçæº¹£nÁßõýOÓ̬Óœj«fÞ"¦^M}Eë¡MøðgY3|žs°~Ga~Àê=å}nD¡Ör$˜‘%nì%Ú$ŠYÓEløóßßû¿DÄ>Â܃u*]Äçä6ÏñLùÛiòÓ½Ô-D³~•ºq¸¤µ¦ŸÁPöðŽxÙkŸËzFþÑ—L¡»œK¦8ËÏ;ßÞêKÿݰøÕ3ú—ôä*Ó’Ïl :„Wÿ«FþÑÆc=Ô=̱½Eµ^µD–¤^<1‹@øóúptÍþ+ýcëåC(vþóÏã3ÿ<²1ÎÈh&7}ôjœÿ•ôoÏft0V±ŒøúÏͺ me*xì²Éï-¦õôÇæ.±{»ÏxuûòþÝŸÍÍËðð“D"Ñìä«ñ¥ð!‘é´ˆÒ«x8çGõÔOQÿñ”*…í0å@XzÈÉ 2YÄ]¬òNìàKÑ–Ÿ”S3gý»-ýë¿E"ÿxOŽ]ŽÆj:}ãÇ¿#2¼¿ââÄåÅÎZ ¶¿ª*ûzùkZøóÕð%QP>zÏ”àþUŶ/D%…Ø1Ü£4•X,e˜EÃØ©°+î4:‚„ ÄÚ%¸»ú+èõ$ºœêäL×­=(¦2“™c+%òéÃ.ò¯¿GÐ7èY¨¢X‡]-Ÿÿk^™{xà¶q1à÷õ4¹ÎJbc_XšqpVy¾Ù¿ä}°Y(<’Ç:ä?ªáÁ¢c­Ó_¼¡™Pí¢N­¥ì‚¯\Äÿ’3Gå*µ‹ÝonðFçà?æ_*[z“ ¤ñ]Õá3‹Á4•uÈH˜'E&±•y1evþ6ÿ6ÿ9îÐL— ^*èÓ!ôWƒÁ¯’cÓ<¹SOðE;È?.1O£ (ÉbæœfW:µÝ¥È?šÁ$S鉽ò•MÁYLJy.áϵE(‡ÑÐÒ3‘û¾ ¬)›:€–è¦:R¾ÒŽSñ˜ÖT²™Rôæ=„Æ•áLÆ4΄Zq³QŠÓµ—Ü23¼þ2ÝúüøÎ¢ ;+츮Ä.áòSOé£Û—UKqOV3¿v>ÊÛ“ð)¯ÃäpÂ%¥ùm+Ùˉä*ÃÛñª‘w,²>POloò™¡ª€ý7ègîê*T–Óñ·%üG÷\¯õÒWàÙZ¡æþµ›—¨o}ésÑ®OWó…àDûTN*6Æ0ä ò¥ÂΙ_;”;Gu¥RGtw¯w@4"Èꜭ%V UŽº9õçýl Î{ÕŒ]P ô±o£ŽO†Õõ+]µ>+§£å ö7ŽóšA4ñÜþÃäþ#'oëZ·¦VÕÌÕÐJ=bnòSö:ª¤ÆîÇ…Ié‚®!@ÒŸï¥qrÑMû&Xupý óIÌÍäÅ^¼AA.ÞSÿ`WŸ{¢hÅUöp¿Š‹2,6ýKÎS{ƒzQå¬ÿ…ü=—¬õ_™¤)†ûd]Ò ‡ð&î®)õ}zZcý¯ršGõÒ¬9›ú|ô/ÙcD ~ð{S…¾½øSø‡Xû´tßÈoRñQĸƒÝ~€ªé‚yŸúðUk|Y}˜y\i¼(ƒ…omU~â‰V—žtÕ™˜—73ŸU?œõP'iŠX¹;DMÈú ÆÏoEDZ7{°Ê&Ñþß ¦»ÂÕ¿ý³q€ªÈúXéaxŽ¹ÔŸŸ&& :v„!h.è>|x!”bKÜOêËu…ýó¶VMø*a“+—ÅÊááØsÒXŃð«Ì M¥ø9ÛAÚÞ9~°â£=™Ð@ЗÓ·ÿ‘^ (ud+°Xu3Èe«¤|GRÅÊ%r~·þü¶v\‡Ï':ý¶c¶u—)^r—Ñ|¾÷ÅÖÇ•{ñgÈ“v‚#Â#R˜aÕ±ÎUWÓ;šeñ\JŽàMÞÎNJ“d²>‚h­Á 5S0m{"7Fb»gZƒ9Kâ¹hŒ6.ì]Ó´Z0„UxW§ÛzAÔ3ØÑtо±hZ€ò¬³ê‚¶l#bŽ:´„Ÿ7ƒxq!±}[ó©vBâacqi1+±Ü*ˆžkWT’Ìaˆ*BÿÄÙ¶/ýKž¢Æ*©¦ñîAlü°ÏĦ3Ã<—‚Æ‘½x˜§Õ *+Aù|ÑÆ¦FõڈÅôCÚ@uò}Y^ÅPØa>°ûí CÝdüX\cg¨ŒLœÖó¨ r€KÕ‚?O¾HyÑ?qõçIñÂEe‰lCàmY™ÂþO¥_îðf“PëIÉQ΃76Áž¶¨p¤v®5ÌImæGM¿z­.‚—ÃÉ?Vs¥ðˇ¨ÿðÂæ“‰„¨ÿ8¡%ÿøDWòüG¹KL`½GàAºÝ¾|¼]o”¼n$7©ö<ûhPçÝcèw;s†2às‚óú # ÎEÎj^‘Ó2¶d.õƒ¥á?Lûw˜IÜ=Ýõ‚ü#.þãut(1(­5 Û­¢±øä¾ÞŠÌ‘ˆH4’•§¿Lv¿[Ó°ø…é_ÒÀŽboQí˜88®¦ŸmØãék¹k?ÆÛ›þ%wyëv‰ó(‚û_fÕ|ð«•œ÷:ÖQqQUp ÿ®£‡ƒF ¬=ÏuÒ•ÊUÐÕÊ®ªøU-¦– þœîÓX8Ä%d±ýëcýþUlR÷9ÿñ#‹ò½-9èDj£§QÆÌnÞê¿ëĦ\ôO\K¶ðá'ýÇô»·©Ì ÿQ„ùçÛT¼÷ÌÂÏY÷Q|‹Ó±¶>.£È£‡¥ôå92?*¾UÍoc+üËkú—8=×É?žsÍsxW?Áð;•÷KˆÖ÷aáfaíÓ˜ï¾,âÏjzU³1PÊ~VrEx§[Ú}®pœvôW>T?””x.“¹âÄô:'ê0Q=Ä2ÿú¸@+ŠfÞh"Ö<õ(}©†ì >SÖDßjcEòÃÌ¿hJ§sÿ怊çÏöôO|fÉmÆd1­Sÿ1làwg7Ú³ÝèWËa¥ƒÀ¤¤»T jì&ƒÔ$¥þÜå×6âÝZä\ýÜÅhäiAœ¨mÁ`!XC&‡ÇPë¨ÿøˆrÊ•S:¢SŸ¸†,X” W‹ð‡Îüó(aøóÕFZ¢‚ƒœ6r)ff<´,¬•jƒ^j(•pÉ韨»¶PÞù·¨xI…'=ÃsŸI–Q“©k=Cí0·ˆÁO¼ÀÙí çc’˰ô¨¨«žÐ§ª3•t×øÔxâ‘[ÂHlÀŽD3ÕBÞƒÜwp-ý¯Æ²³N’nr2“ôý¬'ò 5ÜŠù=ÐÇ–£{XzP¢vôX3¹òcøvhÊŸ±n ¾çEˆþíS™Þq<~qå/2Y+eLæ|œZEîÖ$kŠ½ÑŽBÿ«m*Lx ²šø\qS<ðyÑDDwçE©c¾/¡!œoí‘OÌ|Ö ÕØ•„œ£E|Ñs]@3%‚ò™ÔÉ_¶ÉŽÔî!¦»F„³Ì©Ý´¿\ð}ó£ZŸ5(ª•®(®j,½¹RË™ÆÞázæÊèŠéªBýG*×!U5pøs_Ðò‹pèUÐïÖ»¾,øŸüSo¥'qŸ„ZÙÝxn1Qפ4š‘ä0Àª8ó?JñŽôOŒb˜úùŸZ.@;TQ”<)höF㣾œú‹âˆyÒ|c¼øÉ:ÇÆæc⎉tòØÂsÏJÿ«¨¨Å®‹’V òÇ¢ùGp°·ÕqúQÝÉ;Þ kë5‰i%;‰sOsÆ@ï3üãH¸æHs±©@˜l"ÞÍ(Dî‚ÅÁf_Éù,?‚Ì ~¯õcÝOê{;<«5Âã΄oÿDì6:‹2Ô–Ã@sÓÚÒöxÏHûèwÄ"M4šÁôt犜þW¯ÅpT°ñ㈃ó³ÒlW]mWò±,¢ÌwŸ´ƒ_Åâç¯æjSb½>£ßm káðçŸy*ýeCPvbØv·EÕP®"‘)¾qݵô‘f{¼ŒÓé05¼íò2dG­drÕȬ`>ÀÚÃnt$®[AN˜þ»÷ˆ·»ßÜà»8W+~w. ™UðÀÙðcãXm2|ÃDÔS¹åSžLâ úó“ì1›\ÌîèíH:þ»‘Œ°º¶#E;ìvô¸›á`žà×X•ÈZSÃà¯V1ÿ<º‹Ú¶1  ±n|Ç"ò¥Òé40/ÌÇ7 ¸¬æ ¾\Õ59–ó±ˆü#ŽZ%÷¡ÚFÁj0’ÛøDjú«RèwO’ü%‹PÏÅbðÕjÚ#=§÷8øUFüGkyÅJ¬ŠMd.µÀ‡fã?Ó_ÊW]¡ßzõ@.4SÏÈ>&¢²ªi=1›†Z/H®à Õl@á¨á!ÿ˜‰þjöOñGYì«ê“=Fm‘£±üñE}Ðïî ›Ûç݈zîí§þc*Ù}KPÍxƒÄc/à‹»R“הм‘ô/ÙÏdŒ«DùýÐc'wØHmJwüÌ8Ï'š|)–¸×óÔ Gø”¨¤¤º+20¯ì¡ìlß@Ù´_]¦GÈk*Ùwr½ x`2FÓO,&,WžÝüe4ÑPrûbúQó<|dR¢½•ò­YÙš¢ º²Ñõ¥ EÀw¬á×èa"˜¸˜žî¾ÙùZåE4x•üc»ˆ/« ~Ùà~ôWsЕ¯µFqg£XWU;×#»4•õÄõÉ’|\OQï^FÓ•HÅwm «b4úÕD¬H¼{ ð•¨?ÿ¹ »/?ý÷§Ò‡Ð_]¥{ŠPç"ü«§Ôwé‰öF *·.è®~„(·‘GÚ÷Pñoÿzµâãk€A'ç÷ s‹‘š αÄ~qÓô7]敟œs5Ä|†eŸ@ž±‰è»Îãê˜ÿQ,+?ìBa«•™,\WÞŸ9Y.*H¯¢©K„úÜꌎÄäï ÖD¸äꜫV`ì…AÚVûâB}õýU]"_gæÞrp+g¾ì'¬ìE|Þ†ÜLLŽ kþã‰V|cv2.Vä–ZÁÄÜÎdC°°«<øu ,ß*¸‚»Fª\óz£5úÚ‘ ?WXCG‘«Xu!¨Ìmìûª þà 9‘º•ìÂCßêú‚ÿÎ/9Q×Î'OÈóÞ© oÌm«Ú˜âLnjF´¸Ø>WïOFOGbß ËN;k6ÓG™Á"GŸ*BÖò7~­4ž$üö(k²ÙÆŒ¬fÀVA=6¾9Ï)ò²ötaÞÓ—OžZ%zØí°2ÁÁÔCÁóš|åWò–ÜÄûUà/\’Î2Û½­Tr¨å`k‹ð_ó¬ftãÆ—…þõçú'NÂ%Ám‚ÀZKPÀ픈çOCûÓçð9øUcjìšòS×1„ÈSÖ¦~gj˜çRœü#\}aôY{©A™Ç=Z ‹¼Žþ‰{ˆÎ7ªR)Î̦nÈ:`4—ùûHð°†V¬0õþF~Néyë•—+ª$ïY‰Qï.VéÈ5ÍO|×{;ªkèXb/Á¯£ß}‚Bv6èT]ëN˜ùçÅEB²¬‹äßNÿvg~íbøL8ibïÿ0©'ù‹¿cþÇb¬rP³£ð=Geõ‡<(úºï üÇtEX¯*'b)œU>úØö³m»š¤ÙðçGè+u ܪ=Ù<:ïìËîb¨Áô/Au"º×Û­Ÿ¦~ðrÀ¿éßžDü7k´Êá*ÀýïJÿĵô\÷$ÿˆÍÜÚöpê:Ã…{1¹|ÃS"œë"'í.îS¸G_Lý¹ÓßßÑ_÷X-²ëWüÇM5樒½Äu‘üã=3€¯TiPW¶MNvTâºt¼Ù¥©?ÿ^ßR÷ø?øðYk¿zªü?í~;:õƒ©ÌDæFXyMÛ å3ŠÓQqñ™þ¤Ç~j÷4_ó%O†¾`X'Ìch¸˜ FÇïCô;¿˜&Ìöï—_bÞÂ*OÂ_삽-#6ŠZnÃé_]T&ÿÈAÇ‹ð!w¿ë'˜?Q>â4t 2¿ ÿ1‹g˜RœÀ–ƺ&Ãö,™˜”<ƒàû»³©§ƒ§Ôä2 Íd›°ùáAÀÔÄ‘ùÇ.¢ÌVOáùÃk–zEP¦i""Xk/”VéXëàÞÆò#YSôÁ™@ã—ÂÕ½þ¡ÿ8d4 ›á ¢ñ‡p(­¿@êZXià¥ûà?îÀ+¬×?®ÔéòÞ/Z^ÿžÒ.5 ºÒXè9p湉µã?P3r;xÉ™ô'äüÇeîÁ>ž”3EÊW$ü&3UýU'®'¾œÈ›¼?Vþ>_I‡ža¼ÙœùQ‹ð9eO2”Åä†I¹3oDóoÖl¦~p drС¶°Ù/y—+qݱ!à˜ãƒb#;ð¥HÎß’xqí[ñ!ƒÐÿ¸Hÿ«±œ®Œ¨›öÕ³÷uÔ£pèGxÌÞÁ¯.ËVXçEÔÄ%Ë9 Ò@þQÉê'F…yÒÉ7ôTî@õÌ~y•Ö r‡(—\hÌVÑ[ðÝi§ÛÏåMúDTsÉê2#é(¾f¤,Ä[%Œÿ8hd!§ »é‡õƒcŒF¼É½È;ðö½Ç&&Õª>žúª— F~ÜÑ5d$ÏAršâ™û.þB›¦§…ÿØJ-F6kHïeµzàtÝøîœÖHüÇ[âús|e÷õùÇêϳ³þ#—žÛl ûQ¿ûQìr¢{ìdR2’¨ d[ͨ¦†mA”;„kŸ„r=‚?g–ûÍ ¾ƒ£´f±ϸï)~5Œº/üÇTòbLYûíÔ?ì&¾ÍòïæÃ>ýèø¼TЧëF1ˆ\4ßs ¥óCjàò· ÔÏÂÚ¯FÏšS=“5Uå Œë.š¶[d+õ­Ùbx˜'m‘+§á‰UÄ]”™Ô\øÅT&¥Bo.ÖîhPýyDu{ý™ì° ×`©kä3Þ²83®¢Ññ'ä}„V,Ö'<ÿ&bìûèw—Ð}ö™Îv¡Ñõ‘Î}>T·Wƒ¯¹ÀóãÙn‘«x•4¶^|UîB·È n‚´Í:þ 푺* Sÿ±øºJO>ã ÿ‘ž‹—Fžr‰øþ&YTj<ú¸··d:ùø$rÚß¹/ëAM_Ëèb£ÂlÏ`¾Ueò¤ØûYvG*'ç£ïòGËÕ ÿ‘ZÍ"÷Š.mkŒ{=oÝÓˆÆ9¸Jl&’½LN±þ<©ñ»Ì£5ÿÄʤƒ}*Ìw¬Ã{üB^CS/Ð¥Ýfióµs#`i»‚_-$SŒ rUÕF÷›|ÿ¼ñ£Ä²³5 Xññ#ÁwÙ…?ÏEÚBþqïqt= oî8pÆ<ï­Öhó½þ1x© O§Œ¾b<¾ñþ==qÁ û‘SåFÁÕWy¨ýؘ*¾zZÔ@-D‹” é!ZßûØç6Ö ¯&—5>‹øÔ«–Š¿„ÙXÈ Ù7‡úóÅtÛ8…žs5ûYŠùµ3ñX¥énr•|føUm+·!·xÒÈÆÙ=ÃéÍCÃêd’IÁ¯þVý©×O¿ª¤ø®µðçuè0ÿ Z)²…O D3Á?þ»Î„Ÿà_ðç%à?¨Eh,—[7ØÕ”¿~ t÷è³^ˆzº7Xëó²?ó£–Ât÷†¯8M×ÃS2•ªJE÷b+´öúD"ƒnœ×¶ø-_PÎ\(jgb«R•=Žüã ùÃExš6AüÇH:·¼éö¥Zq"l•¢þc¦{½9úYÃFÍ‘¸¢–j„Í­KÖÓ€ùîuƒú—´Æ¤ÎÛÑ_í#KªBWÅí*Yã8*^FH+’ðÉÝùGm} ó£’ÀdL¶|¤âmíÈüÚ²(¥Ê£Ú=¡ö£¸êÊôó‘ô[»²’Ú 0W8­À¡‹T²‘5Ö} wéKÍåb4¡¼âŽ*éz€R`ó¼V¡Une£~0 •liŽþ*2Š®rôßa¥WÎŒ†.Ÿ¬þ_É?âè}Bt,yÂüÁŸÓź’–ޏ<5hU)ú—ÜÒï®Ô*â?ÆÁžžh?§.; ÿáTe—ç­oHµëEzÀïÖcbq.šÍ×Ìü‘å Þ™ó©½yŸ¨~!±Â}ÞäZb‡ÐèHýG7ú·[üœ†fæPoDèïþ[wæè ᛽/ù'ëõ !“•D fàþÃEÆ´Š‰e»Â¥¿ŠBÿ’çâwë=\‚·c㫃_Ýgýžà‘eJpû( 3CÂQ~_«d)ø ^¦¼ôá´V°^ 2[Ž -ˆU<ƒ½¸„­‹åσþ*Ë®y§Ñ &sÕ-Ë›Ìj|ÿÈ‹:›˜ç˜'1ç%âô@âÙL®¤oŽÍ}í€^Œ9¨8™‹$3ú 7€}vð«Æèx·Ì\ò'¶Ÿ "¸R$1£|c—åõ6fGØŽDÔ çZÎ3ü•kzl¥’Dçf]3“™ÊŠr×>ƒø?#øÕCòî77ø©.Ñ šÁ¯œùÝd2«¾<§gñz?UÀŠíýÞ ÞÆN„»Üj+9ÈNb… ¦ë+þü’ÑKŒÊ?ö2­£<1{wte J¿©ÒX©MÌ?Ï Þ€j¿‰Ü#¢»È]= ›ÝŽþ»Ã\q>bLèJá_üˆµ—­A¹Im’óUsóÚ›Ñ_½–™ÕKxø<üÌgìv5þ¯ÑMBã\¨™9­g-“Leõ–M'Âjó£FÃ+¤u½ÃòVçàÓPEèô”ôÁ͆‡ãþö µ^y‘˜Ÿy‰¬±ÞÐÛ:+}áã»âÝj©kè¤Jaû?ã?èß™ùƒcQKµå^‚îESÕåù|Å1­·> ¬§;þ£¸Ù&°˜ÔH¥þ¼‚êDæP‹ÉLÉá?æÂOÏâïsíë zQ'V©rJÌüÁ^î‡{R?i$£»EPUD£1úóžäè*ÿˆyåI]SQÇuéxõ¨®ªö@Ñ)ðéƒáIúÊÔÝþÃùç‚X*Yí!vW”ùƒÉ]ùéÛÞÿqŽÜrƒÝÆgxØful'[k[j ˆÅ=¼ÍAÜw½> ýUÝ w´"ÓÍö¨¬®w(•W(of-ε{Û+]Çð)]¿ØI¹‹û™5™LÕcþÇRÞu§›D]NdÝÿŠþ*ºÞBÏè> wþóÏÓÃÄ2†EÍLf€î¨3–jE £µ±Ïx¦ß׾Ǫºs¨/µ“ð祰~IQëìfþà+ý†þÒ¼Âü¨Ód#wu˽ëPßø¿ 2//¬¤NÐ u)±]èzVãœhÊÄŠš â…­¼fø±Žì#‰0ˆ$4Ù«pÖê ûË&ÃL&n.€þª)=‹á?–g7!¿¬È§ž‹’ D^Ø£µd5GÙá+âŠ;ÔŸG&ÆO‡ÿø_uõ¹Î?ŸohE‰`¼ø÷6ý!6ó½È?`dÙ[}P¢£XÈìü,j&ë­‘îwqüÇ}ìï0|Ûp¢¹ð͉ʧb£ÒðFzòNîæäè_È, |·þ< * àÅ&£ÕÍ„¶ê¹8)šå_°zÂÌ”µÆaÇ âü<’'«n´&²ú`‘ì›øUK}‚Ù,%2þ£¾m^ÄáU>’³ `&`óµi}¨õ›€ÿ›ƒ/Nʼ‘§âOkî7üÇZêgo+ÈJ;0÷‡ÎýÂËÄý‚eL 'œW¿ñÂ:¥’Žg›´…µ;š¦9Ì}¼`L}©.Í»p$ý!? èÓæ‰WÂÞobþ`ìr UV-ÀâfÆ>{£\:Š.¡’ÕRŒ³^Ij]cC¥g§Èb–qBvƒÖDT›™Ôt'hþùfÝ“…”RcˆG‹cû޲ßþðy™ÿ±5ÔŠÇŒ4œÝcT[f'j/Tÿ±œŽ¹½¨ˆgÏ¡ÿÕ+û-êV?ò‘_áiʃÚ-&Ÿ‹"Ú™yÈìj½Ò"JÁ0òm`Œ<áÏýÿ sRY=Äe¶ï0™i¾ÚC=b$¦= 3«Ömù”T5¤ç>Ì'´Nú╆°Èõ¾•O™SþY•WÃñoU‰ÁsÐ?qŽÝ‡ücëŸ&'›÷ ›‹çã+æ¸×óA™+8EΘGÕ&’¨„ îtQ…møóê?öدè}xþWè¿{F™ø¿à{:9¤¦ªpû ú ó³ˆÌ›0Ÿús›H¢™ªGoª àW‰°îìóvcj¡Á¯^“kF…»ÑÔ ëñ›SÅȬî>…õ•poˆGè‰Z2•×µ×®~š™)ƒíàY‡À¯l|T&úªÒ¬XüjŠ–ãøÃ6dÌYÿ+ók#è½CtB¿¤•Ð3…:î‡ðÃY`GÓ“Œ¼fñáW^Z9ªþz1?Êøéþí§´K¦‰]ÈŒ5n‚58f\Õçé×Ì£â‘y“þ%ϲÏ|OóøøNâ:,U:±SdÔã§E-«1üÇKQýîlé?·`(}ê# ]î§R¼{» Ï÷q¾%¶ÃlÀ^'$ÃYlj;jzÿð®iZ^Ó‡þ%UÁ­¢dZ ~¿{ÿ„Hî5IáÏsÒw#þcp8æœÑÚY¯Ä"ú·»dKyØJÃÕ~¿Âw@9{Ÿ8»Fæ ×Ìl?xÚ㌺(Š'b)/à?^ŠdWÈ—ÇaGœJ’ax¼“¨Îr ,é [•N”ø.ÓuM[¥gÁ Ï'.OÉ»|þ¼‘ØqPn¿êEþ¡áó.‘Å9úÝUø¸EhR˜ßŠ*ê%ÌaÜýLr >{7ÿ²2;KŽþà»jŠ*±ÌAU†sµã±óÉð×A,׺ßÜàÇ3‡ùƒcÅ+þ¡œ²Óï°xy9púâØöK‰/6ƒ_QµA÷¾³j-:Ÿ-ô ?…ÿ0é_’œ|æ {õÈK^Ã8jÅMøÞdD(ÿ2´Z·­´ðËT[æ}L`r^JéZM­&t!y@ôžÿö „mªÜH }9 ^J¤d%?üyC©m`k³ÐïvV‹éŸu ’øUL×pêAz3}u)WÚFÂ…ØNTeå^ÑÕý0N¡ßÎûÐQ>¶*8•7¢¥YIÔ±©ìºÌH »°ýî=xš?ØótøTÛB_ä\F&ÿ˜ì^ÏG¿l8ݨrFr+Û½ŒÎ÷혟^—IµG‰äñD'ÀëÞSÙùÒ™¨®«DäÄÈÆ‘;c~T4·ÿ¨«Ÿ¥þ<ïÖ2kL(R?XÕï|f•çaÆÉ8&ÖV²c¡îÒÐ_ÅÆ›$¦ßYtµ›Ópz¥1— úQ?¸Š¸Æ»Q‘îŠwUgøóBð·èŸØß.`{2?ª”ë<«G_[v•‰zÑ(r1Õ Ûx•k®*Ö}Yð?øgb½cˆùƒç™ù-¬ <JBýGªÍ‹ÃŸŸÕ+qZ½´òF^¾â…µ¿«í Ï"îsB{`JâÔ,T}U²ÎšGŒ¨Æ`ú—ܤªâõƒWBTÍ»¿éß|øÍ|ųYˆ%}†]¨ ŽÐ¿$—qCÔ³‘|ÆÔ5„åü³|?ý´žLù„ö…¤¼ýSàä2‹³ôX:‚ÍHh‚ë.!®š‹ÿÍŽ¾ü§tæfÓ™Êý‘hf3¸Mty†æ=ñW«çŸÉÅüÚ—"þca(ðe…ÕÓed:Õ(TSlãþ•DÁVŸÜæoª×^³¿Ò(Qk€ í`§ŸŒ\?Xq¦Ñ—ŒhˆÕ´ß“ÊH§V¯0vpô/1 ä,ü¾"<Ýd'úÝähÃýUA•¼g-÷° øUCú_½UMñ”Ý죰 ŸÉ?b¢¿j¬.¨w޲§×þ#¥h%2»ýGFý–¥m6üÑV¹Dä·&+üÇj¦~¤ c‰õ½˜DØ“þ‰U4ж8ÔFQ;È•ßá½ÎЧèþ{»Oá}üG"º~D{{Ä1UˆÞc<Ê®§%ýw/ ¿Êâ*O†™T± ùV;‰\‰¶ÒáÏÿÄw7ÇÝWüŸû ÿQÌ}²Îƒ_ýœ.6x§Iè_’ÂXîaî ¯VÐ?±¦ÑÝØMýÇÍ'øŸ†ãÓqíQyaîö[lþ.SšeÕúó­Xgêâ1+þÜü¨Îæìå øêÜÊÁŸŸ×ÞêgÉkжTw7´j˜Áuøÿnƒ-ÁéÞ›IxW,ÙKÜꇂ4ŸõÒÜHŒy¬96j‘ÈÎþ‰1ÁãbbQ€ëì"ÿøH<_ôé¶© úJ&ÄÁ¸EÇ⎋ÜOê{;\¯1³ˆ9ï•a9%æJôúÃA¬jƒ8“ÊyÌÂòW…j.øƒwÝÁƒ†‘-Ü„ÿý,¦ÁØÑ=—øq¨ÎCVÙg9MmÄ Ø¿ÊTfÖ/|gs—´­ú¯DÐG°g©°÷ŸÅuQ›œ…nràÂ…À¯j‘mígµóô¾ÚIþ1ˆìf¦(cjߨe!½¼Ù° XR!´ZKà?ªÑkò ˜ݾÌ*¦‹ÊŠáØÇn\ý|žz6:ï>ƒÿ€ûúê×\-ƒ9H¬‡?߈OM­€3?ª'lÑdð«ü}ŸUœht 1s|"S_®|-YÝ&r›efdãU˜·‹Ål¬A TUpÐDÒ}ð±pµTµQù0ÿ<½º)ëÃÌ¿JFþñ[þ¾72Ã*íRïEFΗ“DQR­#¾Ø×Qï3E]e _1ûœýšó’JSc± •Àráí¦£;ì†ÿÍl62ó¼.Y.*w¢0{Kÿ]¦¨ÉìhüytæÖ"_¸J?øÆô/©ß “3†õnñüž™mB=“ü" õEا †û­çÒíQku’üãʤ¢öV¡!Ô¶¢óájôýáTs7ýèõ'õƒ½Ýwp¥ÖV_7˜SÑdÿ¬fEAÖ>¡«Î€M9ŠŠë*¼|Pž~XëMÔTv&Ó³á?r?¾¹×Û£o1¢â?œ ¥2ª1ÏZ)ÐÅÌ,ßB—yº¸¶Û×ùÿGpþ·Èsšã‘SƒÇõñé‰oM'šåö…ôs¦ ⃷h!;¿>ÈÕúÁvzüÆØó>ðKÐ÷£Ï|r: O‡ˆ5ŸÅìÏQEvrŸÂ3ú6sõÛñ*%ÐÊô±»&Ði·/ºÀD¢Ÿâs&¢g¡2E*—Ë“^ôÜ·#9ÅÜó¬øÃî+þÏ}H¤wЃyãÛZõlúÏí"s]cysͯžƒüÃÏø¤¿Ò¾•~û§ìÐVšèÙ‘ ›Ïò4Ï·õíúó¤Øo~‚?fÄ u~¿½JðW+™×Ézã‘6ß'eþ`,=JPÿ’4(mo ºP„Ïü©O&þøŒõ¸ vߣìUý`®ç==dYô»ýƒúüâ¸é¼ï~2È?t+'ÊߌUº›Pœô"kuàý¾MÄ„Jí¨ì~À¯yV]Ó,a‚$Ô&Ì+ð€«žFlS7hÖu'J‚ŽÄäy­;?Ì?–5àazre§Àûu¬eZ|zA2ûÞ`$o@˜6Áì³’ãï:ã¹22Wþâw®õ¶6W¯„E]L%gzÔ¯¯¨»!ÿ#ÿhož˜úÁæòyÑa~Ïrz®ô Ï/o¾ùÆŠè_âôvüÄ|ɶõ»»ª«ûàîîîîîNpw‡Á&¸» 0¸»CÐ àî>¸ÜýûwîãD7á~ïÍùÍp€¤RÝ]½e­µ÷NJ=I6üÇ Ô­ux;ßàséƒ/¢ ÝZM·ñòª-; —„Ú,g&À6÷›°ì|-«è%×r‹àu©(œëÁ¡gå÷%‰½ßqõYèß±û‘nósàFæáßœ™'ÃÄëæn6& :-Stœ%–° Ñoe>ׄ7÷eö+=ýKòZ¹A *Q%š‰Zìöàc=T=žtpü*‰q_&§~°hÓa¬Út,õÔFŽ~×›~Œsé*u“¾±WPtECƒ”+zo·˜œ®Ï/¦q ÈÙYcäAaöù[T8ˆŠê„½íl«©Ê¿Ð•^´Ïì®Sð)娗ÿš{yuÁh|§‡ù·èd½,2–ƒÀqj=T= ÔZk‚ÕšL(ýþÿ ŽõŒÞ*Vtúïv…—nƒ6m«¾WÕèßÞßý06ƒ‚Ì"èDÆPŸ{¿Žg•^ÝaªÓ ØQ´n±ÂÃKÏÄ>w°Ú-˜ÎôÝo6* Y žßS9ݽÞdú—Ä!½Gîè¯Ð³ósûп¤ üÄÖ‹íšcŸâÿŸ¨NüD•Å|T·©y&Ca÷k©½f YO¦tû4únâØ¤¼[CÌíxªÒf{X‰è¯ÊS!þ’>ÁÛ¨x‰ŠWû»ŸÒÞOîÑÅÔ!¢B§÷à üGàúÁ Ì?_'=‰—é’>ô¿ºI½È¤rT%F¿{Œ$3“IÒ[Q]¨iÿHþ‘DÍQ>Gÿâ–ÿü*šî©Ô û‘Är.Ü!Ôá±ïºÑÚÈ.2ŠÃzVY£U52S¾’i_µ³¡®ø ÎQÿqÅ{2ЗHDx[Œ#(ž‰“ò¹¸Eýù‡@U¿ïgŸ ‰=X¾ÄpkÌDðae=ø•SÞMF"èÆþ%˜bqPì%W8ûQ÷¸­š@™TÞ%Ƨ×,mKú—&S Ëü¨{Æ*¤ã96nVõ+×à=¼.Ô|úû=&-x‡62è;Òµ×¢ÒmÑKjð(9à1ó?¦ºeÝV Áo ¢¾É'Ïd1¡Íìío”€‡ùïÞK ÷'9Q‘(}ºÐ ¬· Tk3,D6,Pgî°. ü´ÉmŽ‘Üe9¶4/;ú@Ø«•æGüÜ\ò[ù’mçg­á+êbÁGÈL!ê¯rëeD[²?M £vd=±eeþMJþ–”ücH~兟˪zà…¦»Ç ¶»L¤ðGþc––ÔßDïnMþñïÕ>336¤â-øLDà ‰è‘,ãþõÁ_¬&"Á;tí4FÊ>ÜûèØ´…ìá\Ù°ÃÝèY³bïW15¿uK¢}5üu¦KÑ?q¯u½Xë.ÙG6úÛnƒc耺ªýK‚öOÌ/ã²Ò2šF(+˜w@Õ~‡ÿX†:×IJ‰©ÿ¸[}C Am¼OÙ…ÿvÀÇ{’OµWçd÷öÖi5tG[Ü’üï§ŽR%ôNùÑË\'*olM¤ºÛ—~-;í©ðuѯ´wPIÒ‡¬æYH¥ÔU9˽Þf}§ñÅ, .¼Ü,`µG3Y Üð7û õ«©ôhg W{{ýwŸ Œ‹î*Ëœ«ÛVB"“ŽàuÝÐ <µee·ÿ(¨û‰ëØŒ¸`°ãTx˜Êæ0í‘`MQìUðü¾øŽ„v3øÙL0Šwüù.3qï“Ì êRq ‰/³M¼g @uÙY]ûÐüŽ£+'ÙKbæ¼v%qÅu²-üÛ.zÇày‡§ é›Ü‹9 *öjr•ûŠÿ¹áôö&1ù¡ß ‹üããë7é_2ÿQ‰ü£§uƒVÝ(c,5ŽÂ0~±û]m¿x(ÓÂŒ*Мâˆqœ~ägñADÏõ\AÞ‡÷ôOò.%¤bQ' ¤¢þCW©'Ì,«Á64»ŠÌaZ±š¾†þ›N×ò7Ø·VœóÎÄ©àØŽÑÆÚG!¿_#ËÉ" OÐÝþ¢Ë;Y¼ŠøÈéŸxŽÿ øÿ_Äß1°Ñ‘Èx?óo¥ªÊ¯ó¯Ï÷µŒôT[K­Àsð–ÍxŠbðÔÍáÄÊ ÐÅ#¢>ˆz¶ö/Šy6Ô)*ƒŠØ÷qØšXh ›ŸÌ=óH¬ì's5§Þ +?«cɬúϘ.©¯Òß‚“¯ÅþÀ;¼”¡Ÿ®‰Ÿtæ~¯h޲¿|kíE†TÊߤ1ÿ(ÅüóŽÜ¥ä9Á$æ‚H— Çx„¦w´YXT?Ÿ€½Ë§š²Ê<2¨XÔažåÌ Á¬€ÿ+W˜‰àuj ¼ù›XЃ{V5Q]v·„L#lïjð§3ÒBù‘ØåßÉËпÝ/Ø£¸kŒ•=ð‰Ñ_M…O¹ŒÎ—ndØþNäWÈ?èÔGt_ üj,622öyªc›Ñ ÓOINv _efü`Vê/f±-à:ןkÖvõÑòJ«ó‹>aEãZ6@ UýÕ:þíÿÑÅŒk\ ²â# ºßÔ™r±˜üãµ)è÷:ÍjÞÔ¸>"Õj±]KX½.üÇm2¨$ìo/ÿyòüÊšÇEPæ,—|Ç©8ÈÛPþc¯ùX ÇþÕKký\ùƒ±]c¬ð)Ñm/ú\±™ÓâMŽ\žèï3ÓD"¸ “}Åd#ÏO,Ú¶„úŽª*¹WZïwxÊ(Ntr EißB³|AJgñÿÑôâ0@é#së5©É*FÝxcPñ|f‹Pµ¬ÿZ±¯~X¿-6‚Ñ_åyW„çmJ4šË,'ß`eO`COÈßèŸX ÿ–Œ2¶`š!õ&Õ¤Àƒ>ã™J`¯aÖÿˆª2±<” Ͳ‡ûI½º€ß=תSÙ4–þ,¨ÄnvãôO¬‚gÅ[#Ð^SÏ𽱸)Ì[F÷°FàO“ŒšÔ÷µÇV:Ý!oÉÁ¬˜›3»š$l>þc3õçÅÁ.“7EF¿{.ð>_׿ë P4­F —ŸÕÞÉ«x6˜šNt¼+ÃüÚVØfG¹{„u‘ƒŒ5ÇÓ‹6§nE+鿉ææ;¢µ qNçÉüxhøß(z»ˆ ô/YÄ>KS 2”½yòw§Ðï6ôælný¯FJo32v3ô§`•ø®Ž°ÁÕÁ¯¾áÏ’ ß]ŒEN‡çG,;»Øæªùǧ€¥ü?Yd3³`à“ÂW8Jçíä*k°þ‡˜/[¾›ì[Ìÿ¸¨Ê¦¯ÆòÅeÕÕ`%Û¹¯5Ð,ï¿›™þ‰Y‰'ÒcqÇ‚‰"órº¿%Ãð¢ÛßêÔ®Ø×ÉÊÑ·?õ$Åaî}`ã=U8¦¤ÁøóÝð£ðû6QöNÊMÓé¿»ÔêŽÿ‚^*Žëª¤)0™#ø,.×~7U_I:Ò9âþi.y3çx+Jªj°3TŠÀl7°0é/ 9õ.cõ]Ö ºÎçJªÌ3ð=Ó™ÿQ“úÁ€y›µ¾ú<3þÃd?…Z€Âé¥zÃ,¥ðÍèwØ’ITI`À'Ù#¬¾ÔWŒAtƒXa U ½¸—Ÿ8©ãÜ›;‡þ꺰¿8óé¬ÂdÑ©YG¿Ýüd›™‹›Ä5Ͼa‡w}¡ï®b·+¨Úˆ~ÕÇÑ[óÎD—Eõ/© ~}WJ°ÒIæ<ð«jÔ¶pµ¢ßUúÔg Úe·'ßjŒšceE ¼Ò²VëÜ#Ö9Hÿ«tÓþ¾Á-ÔL•cˆ€F’Íž–1ìf®[ä,½ðè5Á Ú]O¨ ïêGÿv§*'©]‘…*ÞË„°bT!¹îû‚ÿà¯ÉõîüÇøó”AÎEØ·O¿¥'05DqLwº«mÔjYÆIê?k¿Ö]ø–vE0—‘úðXÓëâ õƒ‡¨»x+? Žzï¡naÙãpñ,gHêyÐ9œÅM}}jÑë¡ßÍk¶£~÷7ü‡-O’_;5a5ȺªÉø¦\¨º'cõr‚G¶¤R±!üÇü0lÍE=½ÄÒèØ„ A‘‰w ÂY¿‚Iï†ÍФ²Ññù«Lm¶ÿUýqùZC3e°Öòp IAŠ‘ÍdoÅÈìÏ›%X¿¹Ä 8ì{¡Vñ@¥±³ìf]†Ç‚zU„žŽR|a%xÓ<@qxþQdéeýg”¾ZOÉ.v ff?`#ªqåwÍæèv«ÔWŸýõ\g`‚Nóßt¢~/ž¶ áLÑ{ŠÖT Ä=LG³ïU…ë=O•ï*NëŠW ûAå{aç'ØEAù\6§Ý÷m¹V–þ»[Ìø¨¯Zªd\Ù´už¼™Ó¹áχÀ]¢úz=?Á™82¯ê‚¯ŠÀ|‚ k¾3z€HTÃ[®ÅF¦ç¾÷å;ªPÞÊÊEÍÁtz¼Ærxiøéª-øCU¸ùnx¨eÊölK°õŠßd |PaƒÕðSÈ ×3áü3Î «w„ùµûÀHîÂKk8ìy^ô\Wàûçt2“炬¸×(BLvn6„î) —Ûß’•ùƒºk¡õÚþÇcv— ßöög©ÚÀ©¿.ªY¯üy!üÇeT­”ö~úÓfÖ ú9¾Ç¾g³[OA\ÔoD´§“Ë8ókO²{_ú_5VÌvßÀ#Ú }!½¢º¡ ï‚ï]È)yÇüÞô³-Ëü1ô 9À\Ó̯íGýàt¢ý{hšp#X3Á£¨Çú—ìfþ „? >\ËjÄûQCº¶…‘¹Ç ™_{ÊNéºk¥?Ha¦J±–k ˜í•¨l~™Ý8ý¯L*/2sª¨à#í¬F®jÜ5:侦ÿ½7;‹‡n÷¥õ'½ªÎÛ)¬c(§&Ò¿ä#‘æ.™Tµ ù~ÁÞúZ±ÿ±‚ü² Áhv¼wvò·…`kÓ¹Ún®óè¯3Y7YÜ^ÔayÁ+‚_E!bML•LnUõ¿2ÿ<²Þ;Ð$Ø×Zùÿ¸ÿUJú'f4&3?*=ÝÕù»˜ÿÑÜX`x£¿úª]ú~»Âôë#í8ó?*“›Åø nq`@â“)DÁŠ îbýòà ñ†v!èÅ%„nrªŒ¥—6,lD?9W&âï…ØåõǵÛë'áaÞa3ßÒn:äÿ“yîyä XÚ«ØÐ§rõç5¥O˜êÏc‹‹Â r"YÌfé虜ž…ÏÙiЦ¨*;Œ¼…÷ë%»ygÜ›¦%ÓK‘Ÿ¯¦:6qàð«bÌ#¬LæN×t¬ôIrÝwx€õT„d7ï1BYñ‘1”E)õj›ññ”åðÓArRÃo.!._Í^K“ÕLâÚÓ¡ßÝÒÆø3§þƒ9¿è¥Šãe€_ݰEàÏã2]€Öå ^ãïÄv®þ8+of’c,q7„«ê£D[²µjQÆ^ôp¸Ö<•j€yEô1ài‡b÷à;¦aC“£¼·xúkÝonÀ²^ZAæŸûPÙ²È8®z6Q›ÿ*€aTåJ£Â@o:Ì%5? ϶Dj5~p ø¦? XÊÿÓð+ºõë]ç; cYû‘]ÆnÕbþà5k!,hlô»Ma„,_sˆØþ:6Ѓ9Ó‚=—’ÌÊ4ýýÙ¾âÑeÓ›ùºÅ &ØÞ5ÔS/·£[OU1øù!xÀòÊB“t Ï™ž*˜ÿ8iäÄ«#ÿȧ_—3‘UØbϰϳìtÌ?ÿF/òsÔƒ4¶^5eƒÉ gÇ¿î%þ8!œÛÿxSgWGÐÒ5äþí1?«•x£úÖô¿_A‡èÜ®³”þWígd\óÉ‹áM/óobú_í—žîÅhôUÄemÕ#8»Ê ŸOÜ O®ì†(šÆÑ7÷°•™þ%üùáLÚ¸LW°ßñ–Q­ÜËhê„æ^o‡~ ýUQÿüÕ¬üæMY f£›ýžÈ~l~"ûå àÏÏ1­¤Œ}Ž®¼Éà¤Gñ<~oM(“ËnÿQüC’‡ç¿ôR~²€ÙÛJîÊ ^ÕÖüõƒ{è_’ ý‹5Ò*Ž:, >N·|‰Ÿ˜Îü¨ÈøôvîSx˜þW³èV°‡3’Ÿm_­BhòX“PEÌ£Š¤¢=Âu ü*†«>ýÛM× ËäIçµÎÓñxWR½eVÅåÏxG÷ø?ø‚ü#€ñx©UÖC«HþÙ&’ã?ÞéyEYñ·¿ÿX®•1ª“‘ì3,ãå/ÖîÕN£ß­EŠ/ûY|1Ó:"ˆ¹¤®Bð~mNÉ$a)êDeÔ© ÌíW-+ù‡hxØæâf- CûÙ5:ÞÑ©“¤[Ãßœ†¶X%EÇ„Ehùr£¤›N,ÝŠ2ž¨¹Ü&þ<:óx¿ Ør©y ëÈ?nsÕŸYý¸QrÞŸl(þYO—A{F„´Ë'ZòóÄÙÉx?š™ˆÃƒÿï#öò¤Jo?VЙ_;|¬€ù%Týî}ãwPÛqà4Ù=T°Õ%¨!Š’Ÿ±r[VŒÎë°—dÙŸÖÜÓNèõÍJÜ­rDa£MÃÜ/›r¿n˜mÀš˜óáÏ¿ñ]D{Ô|Æ›±“ Âõ2ª^ç\yn½õQÈ æÂ’]åû*€¬ÅÁîDÁº% ŽbmÅdQ½Á¯ƒ7E†›Ôñ%!ÕŸoÔʈžrxÓd,†Ó¿d(W3+üyAll&å Ky†ö *„äjéc?·­ðg]±¦šöØè%GÃÇä!ƾŠo¸O.¹•ÜÏ=S¦uxa£¢XÏ`§kS1Ý„Ìé5š.N{Tøóà•>Å ÁkÆ_JÇs"Ï«¦3ÿ#׸Özí/GÔÓúDÿ‘o¨ÎŠR1µÓA2†609qè8ø¼7Š‚Î7#pm—ñÍ$ÖjlóðªÑÔ奠[†A¥óyú'¶³ž ÉÍÆZßPLÍ¢ž®ýÛ«Y¯²ŒÁÜÄ#5Æ3l7Ÿ©ÕtojIÿ’²Dô+Àuž3Çvõƒ¿1p!HSìý=XïW0ìu™_ÛȽ½MZð«Ï&ÿ”Sm'ÿgEUÓíšXäyÌ;¿G½Ë)ø6ÖoÖz‚}\EOò²HøXx{Ã\â^ï þÈHÂ38 *šÃjˆ½í rÖÿQTí9x˜r #{‹èzIýÇ:¯Ÿ¦£q|ð¾nˆB£AŠ$üÇ&œ7+ñâ uWv3‡Rîf÷w;5Êbx{³Ï‡3Ív$sf7Ò×Ò‹ÌÁÇÜçLÎülQàú%ÔŸä Ì=,#Ó¿ä©‹Ê”ý|_kTÁ#]»\.WL&ëÆdŠã.+¾×ÒÈ?æ¡­áÉ‘d¥þüg}KÝ7âÿàCl½q I°W´rЬ_ûq‘˜«ôNïƒþ*¯¸®—çtyS?ØÀ˜Hý‡Å|„Ÿ±ª!ÿ?m ]¡*ñ'ʾ/˜_{K† ÉÄtˆ`mB^!èŸñе¬ÇNuX*¹‰þ»yдt£_òxêLêQ?˜=Èôû~׆.N±dlñkìKp¦j<§"ªDô‡ˆì‹»E3ÏR?XOö(]]ð«Vø_Ýëäa‡@²–ã÷ÆË(ÂáÉ¥ëõ@Pº‚j%oо¯V.PÅ( ;'¬„µëO]¸ð¹æ<ðm0 æ^wä°AoøàW…Áºâ³Js¼fA¬RIlgPŒâø‚µØ¨˜üýl»ü»þgýB,åÿé–á)ÿÀŸ–ÇBÞ†_¸Hî°EÜ!:^Õ¤Þo‘oë6øUiØå¯EV1…þ»ëÀ6:þÐÿ*ú]ç9–¡ƒüS*ÕñôkÛàM<¹ÚAÌJ€GoLß«ûp?%˜RÈŽ‚ÅHÆ3ÌÂ;—ùƒ‡¿/øþªŠ»é‡ÿHä\„}+.ìjbØŽr¢†xæ_?8MKkTàO. ×OQÂmõçÕ°ÅqQµÑ·ÄH`Ö_Šò™¸Îl‡O¿ÈÓt‰Uspâü•f%yŸü#·ñœ“¹–ü#"QiÓ0ót’Ȇ]ª5§$^Ç3TrÑù jœî„kdiy&Lõƒ1à?b€X…'~ßÊì4²¡—`BgAd²Â\æaFdx·%aèß~Bë‚â`.yZDÞãó`´uÁ{+M‹|Ãþj ÏZrè›Z¶yÙ³?¿ñ€ó­ÁÄ„‘ÏI: Æ÷-~.öÞ™_{ ö¯‚Yùµ7B~¤ÚSm)ùGuµø5;0­;ÝdNFWyÍ¡ø©6¢[¾„78Jt<>hý¯n‡°br½ŽhJ~–S-ÆKîçz<¸oÉðçá©0¹,ÒR?¸ëŸ_õ#bX€oODgAÍçM÷›°ìH-—&ç‚ú-B[K½ g©"+5È`z2£uI‡šs„&¶Û±…ìc'YÅ*ñE׃½5/ÑaJ‹Ï95¿ ƒ´ŽÚº“XŰös‰qÓRíG=ÕµÉhJ ·Nµ±é¸"…øÆSrPOö°tYÍ"ÿXEþßÚ®fÒ'é4ñø9ª«üø”)äK9•‹õwÖÔ!:JMÿ¸€«Õ´=FNîÊ)®7 šªŽ E©-/<ÈLÅÒOª€ë93@Ö‚_Õ¥þã¦*ÇpÔ±^XÞ3ø±{Áú'—‰ðäNÞX«;Ã|«6?÷cwYA„–Ðÿê6‘óNò‘aèwçÐeþc Í1º@¶PÏñ“ýû·;õƒÉLsªõ éŸ8Á~K-cOúƒ4²¯£‹½ÎÖ–yª=ŒþW(»¸7ÑQdäÍŒhÎq_îD}‡EU"Ú™d¶°ªOÕÄ/t¡þ<¿½6¿=žcª}„zIeûXi\芅â™ ¡³7QX´óÉÜþ£†~T|’‰É@™«ÕK4%™XΣ>þã$6ÿ"Q¼Ú70¨ô•y£¶¡˜Z@¶÷ŒŠ„Cò §> É6ú—Ì‘}ðnx3É÷V°C‡ÿXd­F#ÐÒ^ຄÿ0]¥l>ì$üyüRr"£(äÀÑðÙ™T–i§î›ò¿ô!®Þ!PÿÄgZþÿ¸{$¦“&¥~0—H$èNv»üª¢1•ž&Âx ý ùB®“ÜF«_̤…y ýU\&|d~Ôcêµm–Ð"ç ëö¿òp¬:±mW³¸\ˆ~7š–jÄëÀ¯jš5EØ2š^úA=ªL~õ†Ìh€ùüc,p<¹Žõ"n$°’]2‹Ü ÂÒ³å±E¤•‹²ÿñk\„ìãoâò6`&±ð7d2â–r|ô ÿõ»OšS/¸uº?yÐÌËü,ë‚Ô§ËÚ´¶…°Éƃ‡Ü3b‡VÓ´#F<ÙX|ø},t$ö>·q"ÈŠ;Œœ® Ü¿tT“4£b">ó?æ½·$žŸngt½`~­—µ~î ÁÁ*á3÷©gÔ§ÌVDZ¯‚éwÓËèd(—ðü ¸ç+Í»àWX-¬uôï}IF úï¾´Z§”'Ý#á)G£S8ÁµœÁæ7¤þ< ßÈ ­‹Þ›çؘ¬¨ ™ß¢¾è¯ÆÁÔ&ßXMýÇUô«gÈk£çZŽâé¹Ñx¼e\«'üG8uD.rŸ™q诤ªÂ¹_jV·Ú¨vÁWwÄxØÞøÞƶíší_ÿñÙÚeIWMT½7¬Øä×C@,*_êÅòÉ4nÿá¡_f6j2P‚ æl¾¶þ|2–>)ÌŒ7½à‡ÚÑ@³Þ[ƒÑ‰­²ó031®µŒá)ïÏEùŒ(3€??§ÏdÎðt2ø¿$ói]ïÉ?fS?8¥õƒ×]©ÈKÓ?ñüy9*ËÚÈ‚-òd¼Ù¹U¹Ï}Åÿ܇˜ô/ °›~ðçÝÜm á?R0«¶ Oëu9­;µRFIê/ôO¿8ÿü)úݧ(œŠâÂæ6úïjÆAý­ØGWÂ3â½ñäç$ޝÉâg£$?ƒÅ*%WÈäz6ô»u¨ên 2PÆ,-¦\Ddd©o"Žn‡ï¬†¤ˆ7sª²‰¯b*•o˜æGEåzbÁ¼!CpfÚi Ç5x³×w¦þ#³*Œ~7&箯ìÄ„ô|^hð3Ñïš`Ö[aÊRR…“îI–û7v9ïAø¬øÖíš·¿™6qŽƒÌ-…‰÷$ʪh"v5Ùø2,ü¼fØš HÙeõŸÎŒÉ„˜2øž¹øŠô0QY6„#¸l¶Çä#ÿh o½ž+ß Þvlh9ùÇú·G‡œ+¯¢ƒÌhXÞåd3{ÙG!~~ Ó`_CÀ”jŠÏ(S‡¨#ש֫ÿQ•, ’w©ãä ½É?æ[/½¡ˆQš¡SØ€¥¼ŒÿºJ§”ôjßˤØ;T´—ÁL¦ U× ¢ö’ôb¼ C=®¶Ž™À¸dÅÝF6NÄ5ùø´|ä¤.ìÕØk(•ˆáÏã¡¿º _SɺÅîÒ¢f{€÷¢èf>̓¬—D7+ʾKf _ ÍKjÚÕ¾øzð3™ þdh‰uH¶âÀL‚[hèígÎU-uPvr?”ãÚdêRøókä Yéß^ ÿqß Tþcýw’œ±Ú]­¡ø»Æö Öúì(¦5ÅÖ+ð«€ùµ;ôËF4Utm‚YÄê†Wo‰kŠ,G»Æé!¹Ã)ÛåzÂd¯ØøÉ(j'ôÆ¿õæ}Œ"˯Jпý™ŒÍ©f.RIˆLZÕ]e𒃨üØjí¤~°‡ˆX¨OÉv—€÷4ÖNð+?ÖK2¶j‚†çûcþùAÎåf¢Ñè¯LÔ ñ9£áÉFÑ«›½ŠúÁŒt0Éc'³ º¶2ø‹úhj„8" §"!õƒ{¾/øþ[o±º§Ô ë×¶A¿ÇüóFNQ\œÕ«pº¶Ó¿$éŒOú;íà/-÷J; ÆX ›ð^æÆ4¢’˜Ôm\GÅ3ãñ/òçã…á.¤âüHYô»iõbhZÚ™ÕéÍüQR{Fþcþ@ x‚¥jCdwÑ©†R?˜N^Æ ìAA‘Ä©?_¦þ»©Ä1*]šs¶ñÝ^DãÈQr¬>Èf^üGtîEOÙ+È;Ò §{Ò¯}1ˆú^"óâÄùuXw4±ë[ÞïbðˆyA†æñwŸœ¡¬xÁhA&Ó›7ï¾I½\<žI0žÑàϰö[±÷á “ÑT4ãËRúÏâ ëÚ>½0ùÏ"êòÒ‘­?”'‰ºªÙtB·[Ôœ„ÕP»œZˆGØ Ç°’g–L<áRKëmD'rÄàSqˆÝÖg †wÿ±XÔ¦þc=LrÕÛ=gä{ìÀ³ùq¹Z1ú'úš©©졊ái'ÒYe02¸~&bZzƒzxÁhx¨ùø%¨¯ö²òêŸ[òƒ1HNÃV¤Æ:o¿ºÌ³\6é jÂüKðw¨ÿx[]ƒçNÿörXû^Dã‹”ƒm, ö\òÓ?1þ#U™l¾ÛJ% ÿÕµ Ñ1æn·ãPïWµÔDŠ*æ+XØüXRûõög©ÿH~õÞÀœ]ÔRÓa¾}A‚¯]n“ .¶‡û^Ò'Q?Ø%Ÿ£ |&ßZÞ¨usâÍ׃%:UíKÉ?RR“^/ 0}°ÃÌM¾D>å̧©(}Ç?öÉ™_0·õžæˆ ùµM$¥bBªÍ³3?ê–ÞˆÓå«Õ5 ‚_yS~C;ôKË}Ö‰'2|Rxª=b§ñM¿ ~uZ>¡ûº)þOÓS| nž V¹‹¨°*øUb½ ñ„̸‰,/£Ñ7 •ˆäøÙv;è–aKA®þŽü ;¼€'úÖŒfyí Ÿ€Èu/爕?[$Пgfž» Ï#P ­ÆÆ¼'¦-m>%?Gv“ä$/Šhäa½dÃPwøE뿨½2<Ù‘1s:2+ü{ œLyìýE37üuZàùp6OBõÈhB×ôåßñ•aVv—üz‘ácÐø Ç+ÝÅ'Õ4cËJúÏx¼;ÚU½^ì$«åäÝ{+¯Êš0?/À"¨j¼‹-`hæã¹ÇСÜ‘å2¶xè~}ÿXÿáô—Œo”Á< òWžü# nð÷-¢ªˆN÷¥X5§ûãŸæ(ÏÓtªiŒ¶áû¿n¥þ|<þ#±½_Qu‹ïhÍs‚ÿ4¿J…_ËA÷ܵØ< ³ºíÍzìÑÖ/Ìúï^3úÈ¡hßœïÙÉ÷_Eµ…'rŒþ¶…¬ëÖ& Å@-U™éâÀ¯Äƾ³ƒ8Ío›&g{Ò…Ð fá<”# °é¿K‡°÷4Vdk'üùYkþc)üÇ#ð&Ãêª á4Ô²¾xÐø˜ÁôW‡üë?΢Ó(FNÑ5H\ò…Yèw=˜>ÊÎì²ÀÛwçxÐ÷èO^2¯»TSŽÁžÖdþ`í ;ôáñÔá®è&Šÿ8CÿÝ™ÔvŸƒ¿†r*»-ÑÛž´|Ô|ë«5Î¥ ùÂIн£Ìÿ¨­öš?è­Ôg˜_Ìßñjm¹×÷äºsݲ¦øûaÌN©gŸ%ÿ8KþÑ…Ìk!×+do£ñ‘éÝhäv úÍúCÃ$#;NŒ‘Øúœ  †+Ô” º€B*–k2ìQL×szGreF| ýU 2©ÓþùVx™YsãWUôÃB‡MKÁzh½ñì.®ÄTÙ·¤êü*µ'@²Ú™>ÅzÁ¤?5ÅÎþ”!5³Ò¨Ræ÷)ܧ¯[äÞ¥1œÑ¢f{kšíLÊZ î5œ\ÆËuŒþW1\ÝÈJ<èßþ]Bú'Ž¡ÿî#òêbœÏÅÖ[Ò_=ùÿÐïFdþ¹Ëð4J0yúª.M[¥•†ÿð4Vt¿_ä?¶jKÅ%™“œÝ©ÙGýà]ýOúÜ‘çÅ5ê?žþbžTQ\‡Kþ“üc+v&#‘oVý ýۛЛ93jÞ à!ŽS9át<ì~¼bl憃ÿ(@þ±;>™+^ בÂÚMþq…Z½¬ôß}†š©3mGc˳£ÓÚÛ?@•à>ª`ù‡/üy{¸× s‡PZÜ2¿¨%LýþCa>Óò/tßc]ê)Ä×­ÁÚÏ‚ÿð¦îé’hääÑ-©n‚¹VUm”yV-Âúµ„Ig]gUNzAi®Ãô¿šÀüEôªêKþqo¼1J@ó?|´ÆúlücOvU†ç»L6/ª“èb#ÙE­.èu;Û׬hÌow öþó}þÜ‹ •ÞÔçÄS±Ì€þ»‹õ#诅à|ú裂Ši¿Ê Ë­»²£bØÏüÚL0ÜEÅWôÁN”ŸWŒ'ÒçL3ÑeIYÄí?êP/‰x.'Ï„T¶7wX¹¨ÍXŒr+)5$Û™d8ÒŽ¾k¡Oð=›®\øöÓ(áòŽì“ŽÂ2 ‹çNú—,—cðFý¹³3åú_­eBí<&¨üŽ–º ó?nƒ&FE¿ë²²¸èñhgÂë¹x¿cÐg5ÙU*â,Øaü?ümt”R‰Ü'ážV2òk?66uu±éÖ^Nä>z Ö\¯54²K˜ÿqOÿ[»þKËÝÔvã+ŠË¿’ù™–yÐol¢îû´| îˆh ¿6ÿ¼¬¸ˆ¯ËZ‹yvå*™] ~U ÿ[FÄÎ6 Ü÷áßmµ‰~I7ðwxWbcΙCÔb‘’ò,6b;ª¢+²™N9_„E‘ýѸ.Â!ÆUb’70'›˜ü¸N3ªA_xQ †üã‚Ö˜~%K™7•Äá~-Ÿ)9•‹°Ÿ¥x¯Îa¿€«tѪ`ú…Úñ»^MÅÛ¼†øŠ¦(.ß]•¨|Qóg,¨7û½a¦÷°K›1¨?ßõ“Ûgè›u«õõ+Âw¾”~0ûµ@ì:a“«šËÁ ¢‚Ì\!÷˜G´¾¥Ã8øóÊ"8:äü€¼z'Qn?¶´ÙÑF¼GiîÕK|Àys»@±Í´ /Uþ£‡žƒÎ/e+¸©78[K ~µÚù|Gr2µñ C°× èbQÏ» ¯ùë}™=FBÿ4¼a2þsÿ¿êZ°³sÅè+ç*SP1¸•èj8ðí®Ô£5Ã?JþqýÕmºñ¶³«†øŠä6È棿š.7[/Ÿ­MK3VÜ›LeƒuôFÏmíº Ò‘×Þ‹ú¤zé÷Æžä#"ßšýTiîc\2öÀW}ÐÈDTp‹–Ø’'µè^k3z«Áج„®ûTeO±>°^?ô»¥ðG+ÁÍæ$ƒ.‚æÂYÐûeRÎ̳ø†íæ!µ“l¦'|Gðœ)DúŽ~wW¼ˆê… CíÈ6OÃx/QѬÊ诺·7Kë¤OnÎShï²̓dÆb{üG}:J­¦;á 8äÓÔ C;°“~]'”¸£½=A¯\ä,cÝëÍÖ1À$ŸsV³Z¹@׫+ÖEªó1?êýßc»FSýÅu‘ºóì®zv †,x}OðÆNjüGM™Åí?jÑ¿]½*Áó®ºËýæl«–« w­š]ÿq%Ã$øó~èż¬÷–/ì~E»ˆõ7õyPôÓ¼›¿ꢳ^_ >”ó>ôû’Ìm7põÀCLµ¦£ÔÆTî®Ó®Ûô”i€Š«´ë õÅúª²Ú™‰bg¦¦ž7‡ê&O¸¯øŸûBïÈc\§û:¿6º¤èÌÿ(MýÇj¦ª;ýwkùñ(+a+žþbÿ’;Úañæ#õ˜éÍýâ†‘ÅØ­'ËÛôoÿ ž7ÈûÚ«-öaK‡Ê¢ "ÙÍÒò¨Œ gAY ÝTvæ2+‹°uné¬ïÀX Úx›ÀŠVèÊáϯ§#uT]sPü­ ÿMœðþc+þãj`-}k&^ÒY‚¹‰šËΡ^ók­%uÝËatL˜cæ!ÁI|“]ñk#°±X5g¸(¹ÂT¶ç¡òç÷Œîpøð7È 4¬jZâüò`£Ð|µ€ûéŽ^fp4)2þãgu° Ñ_ç{×Öef5z™Éæ D/;à'-Í5ä4‘Ꭹ¯"YD„<†ZºXâE7»ÞKÔ刦Fód޽ű׉¸ä æ!1Kdez‘œÊ r‰e\qfó<˃‰†?.7_«ÁüÚŬ6GÕD³ðüª¬’tíh zô£hýV**4¬ý ò?‰?'3¶¤½ôë`KÞ0†q×™§… _'÷Ãcû¢ð£ÿn-0—í '©±ËÍ©ô?OH}ÛtP¾Xßðsƒ=é:äÑðéñkÉhæ£Û8@¯ö<0Üó¬-ôÉHG5Äcª°1Ó¶?+•ÔðœUì¾§+b0ýî#-¬Èê?…Ymî zn°¶aïþ»‰éöj¸Xé—û›õ'5˜Ó%¢†áäRuMoÑ,È+È(diWðHa6¶™ñkð×èÇu‡õŠRñ—ýµ)á?6á¥;à?¼¹»Sð¨⾃›Ð_M5ý]ÕÃoÍ•ÍÌGê sÊ]ôOœÞ+]È>J_øaÌ÷)z‚zÍé v_µÑŒ©>É€úÁúA#"õø‰JJZ•8%“añ}éLXÜmúúfp­°5£DHêênW´ÞZIPfôCýÐS[(!=Üþ£õçŸd|Öé‰î¹ìd΀?oÇ4ÝtÔŠM.³)»z£$í,.iµ†ù>€åhüIYyÐ÷âûŸ×}ÅVéLûלּÃüÕvrò·5Va°°röüÇCÛÃÕ,—먕ï’ÀŽJNÕ¼Kì›ß]Fnû¾à?økøóqL«÷÷o¤_Ô ´ºUDg±’®Œš¶˜ùQžôT|¤üEþã„æ#4âð¤ AŨ{È ‘Cè¯ÞRÕýV¼¡£Vhÿ‚ÞÄÆâvx,€n†ï,v.7óÏ››EBúhd1«Š°e4]u_ý½xŠ÷¸‰Â³yÂì…¢¨Š”œ§ã¨eÏËztŠ/$·ˆ€¦ » ü»8â²Ppµ–šIþ±˜¸ëvç=èÕY”QˆérÃèf$*V;yg¯òýó~­üÇdicGƒÙçgg‘á&‘4ƒe¸ |–¹?‘snó¥‘;”¯-±1øî‹(œ>È!dí•ÍŒtÃù7^`/<ÿ)´IW±õ™É?rüt~mb}«Þÿ± ýnFb·WøíÆøœ{x`M5¥®7vÚþü(º«SØüx½îÌ Â.óÐ?±úùfvm·oÑóëýK>áúŸ§àÄ·ròuYY¦wûvØ{ž|a¡†±ÏÊ–k¦]Fž™µÔ»ÌcH3û 5”í¤® pütÃ<¹} ¥*n6rŸÂú&1QŽ…ÃÀ›±AF²ÇýåÄÓΕ\Šï­IÿÄ×vyz4RÝã:ÄìÞ,ô;K­6R+|‰‡AùJÊî+þç>$ þ#Ÿûd=¿ú5^:`§qÐ_ņë(&ŠˆºƒŽ†?¯DF²láÕ/ί½Œÿx%3“|aîÚbq‹øÉW§~Q|AÅHèÞuÀ~þ©-øUz"Ïb %©ÿQÕx šQLö‚U-b&³ÿ8ÁüÁ»0…O°0-ðG͉²Ð¹|+vj'ÊYÙÆéÚÆù–x%,PœXôÍ 6·°žUÁ®®ÂK;U!×É! ;ý& Êö¡^³Ð™À'ÈHXÔb`AiáÎMìÇhs oö}°¡TÄ@ ±{Þøæã¡òÛŒŠøÉDâÇÈXœü#ùG&¬ˆÓ£ï*Qø&¢ØëØì£DÇ1MMfÐïÿä1DÅäå+}X!/WûAÞDV‰=9Ž<É?ZP›·›;ºŸû°¯èm3—‰CÌ?è#D üÇö‹Ø~!¬Q)žñ{3¿šgz‰¶"ª5{—UµcÙfSâ´ÃøŠ”/Ý >F®û€^Wòïp|ú³:w=쿦¿9üù|xU‰…œÍ=†_-‚rï™þ%`)ÿO¦˜/rÒèt½J¡îq}ûÈ?þbþyNÔRsìôo?C·©œÖjr¤Œ¨Eg‚aÍ…¡'˜ìIaÖYRð´Âxîd4K`vS?˜ÌBFEÅb¬²7SøÞ¢ßMIGJl²S-?«^|3Ù{à-5rðTÃ8=åóq&"áL±&£ëètßp=†_XM.S‘ ÷°â±Po#jÍóË îDˆÿxÈôä(׉êªêª§ù‘ú>–‡u„úÁWöøó7Ö>æú}RCéd5ËÜ]‚3[kœ2¬Jj¥å^lúÝ…ø^ܵv<¿ 2…Óz ~%ìdCÎüÁcØÐ} D­©n€å¾…ï@7L~ך§MM 4ÿãúÝ(ÜÛ§œúüVÞ¦d™Mì¿í<önºqõ°_‘/œ¥‹û;Ø›IP³a‚rªpìr/þc3ýV[ÈxnÿQƒùµÈ?ÒrBçÒ·–éÉÄòºàLeí¸öM|ÅVûOûém{uï©ýXLåÆjbº“ø“қܯ”Û€OY+=Éã»r‚ýd»6Õ›Eè4émÕ%‹éh÷§¢éÊîª3ó–žÁ©Ña);%§à«<ÅY›ó™EþZ…ûvÿ}ˆ ”ÜÓŠª&üµ…-ýŒž’þ‰uE ñ—ÿÝíZk£e'½×ßÿ¢~÷:ýw?É|ظp`C›¨|¬O¤ÉØ C¦§{hÌoÐÝçǰš#ñH‰ŸË1°(Ý‚Á¦6µém[Ål#Ry#‚~Àï3?ê„ØE¶ŽúóŠè([ƒfd¿:Jþ¹•Sµënã^aêŸUœßdaÎÖ”W+°¦Ç±;×Á5÷Ò¿$'##Š¿Ë2 ¯B¡îð²–›ªŠeòƒ|N•ízô€UÀÓÊc톡Ýq© úçÈ¡×ãéèËhhï®0ð§ÞF9®p (Óiøÿk”ýåL¬ê]þlþã ±ù³õL(%º³»äãa³=øÙéŒkAVô5²“ÍìEëœ ^G¦É º?õUm­^tB‰äºN|>׺C¾Ôovÿ:õK¨{‚0R³#~²^Y <ó2¬`3²ÈæµÜf GW‹7þ»~Ö9¦ÍžTé¿» ¯'O{Þy:šÛÊêœì~¾ôß]ÌÛ5„|¦&ØÚ0™‹þWïвƦn®§5 ýÕ«(üÇL›~ºè±V¡ ¢œìî|w2PнüÑZæÄGö棬•Ÿ÷#ÙJªÚ+ñK­az:Ró§¨ÿØGí^vû3•ßÉ2ÂtáÙ¥¡Gw@þQY¿#l¢º|d ñ|‰ÌQVoü‡/µ Ù›ümµçu¨W™HÿÝýô²jddž?Ov\˜ AåïîSxLŸ!vËAdÜuÁL}äqË“jój°ÌC+fÏ þ\º"ºRÛ¯T ×°»̰ÍŠImüGežNuµ§û&ÿ/}x£ ä1ÎkÍuãýµ‘œúóÂT Ù™X™ÓµšúÁ&tàÚôM»ðKËùiëÑê‚mÊ€5/›‰Mtà!oËÑb…Xk¼ÑýÒzÍÄkìÁ&â݇ØÔs²ŒyFëa¤&ƒˆ%sÉVÔÛ…´â8}®ã6ž.þ0#È?¢\ÝN$ìÇ™*J2KF§VX®¹'.’ÅTK‰¹—À˜çQ½Àð?Áå66SÒª Œ[|,nL3 Ï϶zBë Î±ŠŒÊµ_ÏwUƒ(…_ûÃlDd¶ìiöv0žÊÃ,+Ò±?®:ÀèwòÑóIw ¼ªˆ¹Œ{5Jœ¦Ä®D@ø»=dæ—¨ÌÊd®"?ů\Ô¾‘éÔBb°Ìx°T¦tƶí4û€ŸTcžÞïà8»±Œoðòkàð´æÊ’!âW õn¢ ö*‹šs„ü¨¾²8~ø)ÙH}êLSÙwÄúï\–œŸ‘g3Åýæ\ï ÍSä6üõp¹(ø3oP¿ifT⿈=AžÚÀ}nµf`_ÊX[`+*ÁŸ7qÉDç­N¨YÇ©y2-ÑMÀÞœO©ØôéîJnµ¶å¿`ÝôVfkÚm9s'ÆÀß^D+\ÂJh-Bõ]‹z Ö\…ùî)ðŠËT¬ÇJ§¤"±.Þ_1ÃÐǪ†šv¢½ž‰|’´ »©eu„G* úÓ”ëŸCÅYAû_Á%‹<‚¢u$§BÁD{‘+øÒO%ŠË—ÎPq°Ð¾ø.tÎݳð;Y×4gŸ™Åá©’˜ëÝÛ;ÇüA/3"^©ñü®ldf¶6Rÿ•ús_j²‡Ã3Ô±¡ëšÊOiét*DÑÚT,>ÝŒÿžÖìé^o¾¾Áø‚v:©"Z±Îƒˆ¾w@ýG~{;\”åêFmÅsr®Œ¨Ä.Àª¼¿*Žÿh…Zbzb²s Žd}˜—?P‹ªYÝ`hk£Úê˪®ìð+úÝÖ|f•\c^à~tÕñ])¬è¯£6ÿG“š‰ïÜCÿ«¾({V¢±X¾ÂjàŠåêÄóxÄ]ÜNH=æ×ž·{¸ú ÊÊãJoS–y/~XÆÍr¸ü-3ºJ÷_éŸxEË®t§{~7qsöýCÿ5='4·±ÌH' 9ÓÉ6P?˜×hjŒ2tâÜó¡/è+kÄ™7ÐÑ méÄH#–aÈ5²è‡ëº÷—öÙAHtœ'À©öÅ­—qͨÃúÛ"‚ì òé‡@¶èã`ê\"Ë;D w8 Óð"ÍUo2†¬’^M Êcñyõaê£É:òn ïûÙÇ¢·Ø†§|JÄ» ßæ]îA\ø Qïôœ¸þ¦L‰×Kf–uçÐ?[í„ÖÌo™|!ïû2rŒbæ=®z*™ƒQôV:tlmƒmÎÏäîØ¡ÜÅñF?,³3'é$k|–Ë`M:b³»J¤¥ìû8H8õŽ¡%‘ZýÚO6÷Z;®ÛDä+‰š’ð¶8JÊæäwÌîêªà¾þõç‡Áî^°O¼ñr°³™2·Ž9? ŽÞ^”ãÍÜýBø¸}¼Ïõ‰œþ»ƒ¨ø:!ÒÆ´Àþ삹ñ%Ë…âËÆ+Œ ÁŒÓâˆrz©%ª–C¥¡£<c/”;¹É.¡‡>IްˆŠÎ¢ Ïk¸‚Aìò&úݺw°kÞdŒyr¹É6è¼í:ÉêwT+4·›©±øru€þW¥à?j±&sáÑ´…Y!Óƒ]0.ü¹ÓI´$þ͇*öœxy+:z-1nflèrº.PŘi»…õ2Skâ‹ý§\œÎcÁø? És<ÁÓÈß‚+1#XóéX•‡šÄ‰ö: 2“‰èþ6ýºªSÅ‘T—ŒæWÃ(;Rþ-+s׉ª¨?é|xž¼°'Y×D2†Ï*%=«bê—{_kîr~üGmr“¦ÌÝFß«B°{øu ÕÝùýñ«éÜ˦ÔË?FËÕk ÿˆÈYŒaöqon޾ ÿápXÌÖÖn&Z>0O¨Éd˜ÿq}quW$×;™« ]‘_QMò Et>¼P+´Í=ÔjƒëË9îëíÞ”ƒÓ[¨ê-ºÁ§²¬ÎÕÅ>ÀxˆnÃ;óÙó3ë©.U*E­Zv4ëÕ6×Án³Ñ)´—ùÀí?Ž€Äö’NG¸ÞDygäQ«³£ÕEe‘ÁDsÕ±ç»D¸otÁjOÿá¬Ô§”£ÿU:ûþk«€fäšõœ*^Ü—þþá£<Æ+憭ŠîÇ%¤.¢¢±Õ¨.Š‹'þúÝÙZ #£Ñјf(#¼~üÇoù7r‚þ‰e $·Ã7CÖ?«„¼`!1›ìµ õ^ìm 5F'Á­’bÁ¢«.øðª}ÎS-'0ˇê?Îj-ÁùWr=Ÿ°wsˆóóÒ5°k7k©¯x¨4XÆ2äM>Xî¶"4/<Î@LÙ•7e™•N”‹Ï%áegb™c‹Ê¶Â¥.àûº˜…eãŸâW¨’xš=ì*"©ùMöæ{®™Ý°ÎiÍ1`ןÌCx€°*;ÌùäcïyŸr ³.¨÷U¹WŸðme°[ÇÉþ+q—¾˜±±îW…õƒÞDöÕùžÀ©¿/ÃÁ)…T>@‹c±ë˜ ß‘k¹ËÉ"yýˆ½ ÀNì¤Æ­™WtМuüä¹<ï­ìµ…¸¦×¾xS?8ƒýdÁßld…g`q'AÀ¢gÊnm‹ùhUÅ.׿Zˆ—Tl/¹{b@& vÅñè}Fn°)§d.×¹Rå¥þ|±ZÌì¸vT£×@Ëê[éû•ŠÜð,Ùˆn"ÿèdÖƒêwÇ;9Ú M÷BzL>?ŸŽIÀ1àM©­¸Íð«ª+üù)U«ÜÝ»@¤œéÂ7EÙ ;œ#³¢ óul ·ÿ1ÿ1Þj«›o¥ãÈ r® ôƒNõô-<Ç0òºyx¸wT.RIÍùî—â¹VU_MæÇÏ#æ)¥–ðvÜQç©‹Ï„2j¦µ >%.ŒüF”Nã‰ÐGQß¾¥T+î°¦>^" è‡2M÷2^Òc0%•™-ox·ÃfSôÎ/ìZö4'™×d¸. 9ËI‡à«Xç}¨…KÑs 9þ~˜STÙLNt_ïFúï¦å-wæÃ|F]ÙÌnuÅÊï¡ãKò£ÕvUzî–@–„Jöèv1—‹þ%9­` OñåyÌU ÝþÃGŸLþQˆ3ÚŸ,y‡,m·uÅwo±\ÔÇ[`kÓ]£kíigµÑ)ÅäŽåDtä²~/3uŒaé¶ç¾ÉÿK.iyôˆî;sUkúû|ºŸžÓXCý`y¦;µfͅ诒“ bvùKíæ/íø²vSܤ:  O©>jÁ袩±»½\öCÅBºùDuï:, /–êŽ-ª†¯®Eþ‘ÍŒ W2r²zOŽ@›4Ä)©?®=C߯'$º?…î´ÏüÝÇÇU’·y¯œºårx½2‰¬ oÿøí?üIZ1^x¡*}²…ì(±:Ž§ËŠ1©êHÄòôÁÉ?*Ñc«\¨þãœ6eÈtp~§ßΧ0ñQylÝ8°äHØÒ„Øï2ø½MØÛ–"f(wq‚1ÚŸÿŠõ›o¾–Ó°óžà­«ˆÄq΀Ç=ão«è×»™ÅéŸxù‡kü×8ýۓ½¯#óIŵÆÇtÁJŸ¤RÌ·`²jƒ2vù>–m™Ü&ìÛIY(Ä'SŽùQµa;"©QÜ¡Óp0µ¹GEð>i>H¬y©ÿèÂ]XÏ:ë¸âŒÌá²ar¶… Òâ‹%’NGDÏÕPn:³¥«ò<³ÁÊ6 ÓÊ)"46##‘óv˜—àé{yBµ©ÜìšOc䬇 8†»¼ëGð~ðçEèÒç…µ&èP¸«ˆqc󴽈ÊáCúÐQçÇüã-8{[ÎÅR¾b—š‚ÿت²Ó~¥ÚgU…I××Kä/嬘ÖfTgA¯¶ÁM/TÁÎèw‚<éøZ<9ßèLè}LeöT,V6øîåX毨Q?ÛãÈ?<™B»öÀ ®ò.õ%+ÁsFÔ ²ÞzY¼ô¹hkîØó=S­–ÑÛpøU2—J§Ûèl·ZÏ©'ÉkŸdŠú0üôz '£ŽrˆŠÈ¼Öê+aökcmÛ‘ý-Uéß~€žÅɨ ?~·§+ÿ1޹#ù’3ÿ| \Š?@¶Çt,÷ª¯1¨düGek ØÀsJ…¬o¯²^¢+®êzJÏõˆ®4ä×ÑP'‹(KÌП'>˜«ŠO5×÷õþ¡¯±ˆ€Jð&D²ŠR[YË^i{‘/ø_-Åûæ¦#Jv{ ̇Uã½é§{ÄL„" 4ýªÖ«öæ#·ÿX£ÏMñ눥˜{ä-« Õÿ­VTüÙ;»¹ÝÓu‡ŽŠñ$WUvWd²¹¸ô/¹ Cx†,#w=‘Šó_Á¯nÒq7ºûζ.Ö˜ Ýäo7°žÓɺ ³_G!6üã›ÙY×Ðû]ü-ð«Äy¨Ù‹¢ë yéyØëª›•[8­O9´·õ¬*ÖVÕv!5¶?a¨Z‡ö;Y°³¾"9{Ï€—YL¬=Ïé£r[L-gÒ_aÔ¢MP:óÄ‹Sc1ì#-_uþc©Šˆß9¡Ë ggŒûyºuæ†Å¦Vþ| jÓü0ÓA†¾Òsd7ùÇvÕ‡.$GP0›ð|/™<²ÿÑß\)†3àŸ5Ò™wy‘“ÐÞû¢iûwC`ͧŸVLð«Œä‡èæ±<¬¸},®;~y1m%·ªÈfû{Gk¦oE ×¶ 9¾z4•˜—Õ4kqíîäóè•ÚÎk_ê‹¡?hÑZ”mÉj,ò-ªÁz¸7×S÷6ž¡ð0Õ`³§Õƒ>¤©TDæ‡û¡·]L¥ùu»=Õö—íè.§ûú=ºÃoB••?Ô–~ú#Aåµ»+Ý×; ÿQšh.1Ù3vþIV³Ê¸j؇™›"ìgL(ï ‡R=3m­‚ä"©ð"-Gqó{–Ý\JÞË} ê³DoYËÑþs¶|ÿñÑ®³‰ªËv'»ë9ê«®žöMUÞ%X;1ÊÞ³¼‘û¥£ ÙÆ[•ö¿Ò¿ý‰VJ·Ýwæ‚ÖM[¶ûá¸?¤Ð?Ñw;üGUò§û ­8ó?~3æ¦KÿµêÈÛøàž±WmÌá"…hnÜÓo‹…r“IçÐÑ7ll÷÷ííш>Á›ï¥o!ãÀÔ2ÞJ‡ÿr‚Œ`&¯¾ñ¿ýu†~˜äT½'¾œLäÛ™ÎUÎä¤ÓØÂ;þüyMºÂ'%ç=ùoWú×_¦3Å üš¥Ž€. ºë“Üý)ì~DÞúþ%Â+D0zðülá#Z[xÖ±è’yïá¬f‚ÿÈß1-Ñ%¬^bušèl"¶£)3³¤ûÙ‡¼âã7؈Î|÷!²õ{rŽ™ƒg’îv$QùkX…—pݾpý¦šJ<À+ò#Äbû`7ŽË !ò…Éúë²7C$Çr¼ì|Ö[2’5øéèw—büj±¹”+È‚òÆæmu¿¹í¯¥§‡ÄfP“eà qñ +ÑDL$c茷HÅÎÖ‹lÇzÿIvRŠßÅ»MÄ/Ý2Û‰Óúþ€¥ü?ýMþ1ƒÀ•œÇ&^†ÿÈH÷¥9ôIò ®¯Ký‡¼ùW"ÈSøO?0üÉL+ >—Å4 ždîüj±íj<÷}¿Ê —²ÿ‘ËÚ̾no€CÉGÅZ²™²Äö·ðÓ±pÌÍúÇ Oz ±S[4è&¸Ùv8¢§èw§Z ¬äè·æƒÄ¼¢'ºŸ]†Á­¨wÜãケð£Ká&2ïžæ.Ñ5ÈzÞ²,΢Œ.xÁUøe Mͬ)`lÑ]^t‚º@Þ0’‰$ýœÊ?¦N<™eàC¶•…þ%‘Í­î;xI«®/1uÕÔ¯^éÔ%WÔ^0¿Äv7üÇXòv²¤ix¤éd_#í`uý¸wñ1yz±ÌîõF“ µGìɤòåtžò3o¨¢è<ì™T|œ‡ÿxΔŽwLïðA%–lñ–Õ˜¯ï ?3G4Ê¢z—Îbþy\²üÜð@à(¥™ËJMýàt»:Ï5»ËÂæÇ§#|~*hÊ£«Nmue!J[¸£’dð}yøú"Ñ–k%'¸€Œa×g?ÌŽ§ þ2èÜ»¥ëÕñ©?C¥{V&ìÆBswž7äø•Ós:³Š(×¹¯øŸûðþ# îÚO«ûϯª¿×óB¢…xç_?¸B+h”6:+¨ÝˆñÓ®Þ!_ëYm³¸Ç=mŒ½ò0§Kd2vèÄ$ÙýÕvò#Èù y•€?$èç‰åhÄûÞÆ'‚¾†b'šL);ȸf¸Qö€¾@Çò¨ËW°?ÈgJ¨DÔiå1"ˆ‹ð¤àÁ¦È8ÒCþõý›þͯÉAZn‘D N^ILk©¬¥­DÉù5R9p—\ xØ 1dH‹úi½Á~‘Ä_òf/…¨š+D1”Z8g†G°—BØýÜÛ®"xœ|ÍÅF7á'_9ÿø '“ uêÎs)‡NrDnƒâ$‡¹Xîæ![ÿt~íMm‰×LíÍGÎíe&2ulØÿ#î, «È².\U÷Ö­z¸»»»»;4îÖ¸;4®ÁÝ]ƒ ¸w—àîîÚèÿUzxÂ$ükÍL÷šá‘†ûnݪ:²÷>ç´gå`Z);X 8¤oø¹£TÃ\‚𖹃ůòémEn¬h"¬Ba4¿›á3+‘¥=AɶÌ|$&1¿Ö F>^t!qÝH´hoðíÌíÁøZb±Q®Ç»Nš&ëX…g¸ ÑydêÇÒ‹éÞ`øzQ8¤øOî§ØþSþ±úóÅ<¹¥±ÎŽõ}„ÿØJý 3¿5ƒuŒè.•çǰÎYàÏâ}ã£íJÍßHøóÌ2¨–<üy)ì¶ÃvOa•%è̶£ßMÍ5®#Mˆvô ]h·¡—Ц•Š t_²E<†|v¯þ=Ðû2ÙˆíœÞ<<|3õ%Ñ,ú-E$‚_b¯¤ö|úØF(w;⎑˜ä›/èಋøc´é#þ ´Þ YuÔÄg=ú«Ã°)ݬÙÌCLÄtñ¬XÂéö$»n°5‡ñjTc´—Ñ{e²Ú« æF÷£wèr"‡ÊäË­àŽFÃßY`~žð uáËGÐ0 Ÿ}¨ÿa bÞnù½ b¨ŸÜÎÝ“ø£?Ýë`þà=¢§ï¼Í­Õf+yìo2óØT³[/±ÏŸa+¾Ò¥ë ]VÊR«rÏj¦8€3œÃ›M6 ÀŸ/ÐOŠhD?Y¸§¨$ö£«ho#ïÐàhÙ&½¯bØí8ðçUé«•Üjbǵ.Ù<‡)ÍG¼4Ð|寝6ë‹DY„ó/âœÝòlÊ3øyNŸfæ‘ ±s£ß½Dýà@ê €²e¢þÿšNEÓHØDn'±\ï¾âÿÞC/¡»ÜOÂ5ÇîßýÞ.²ê_™Ètب!ʈG~ýׂ_å2ºkŒFä_vÕ þ[®iÅð«&غ*æ`A$„?¿!ÆË.b®Øl<ÕÕoísØKFó Üf„|$³èíÉ?j’Gf’Ãá›S‹ˆ¡Zq J–XäwPÞÔ‡O¾¯à`%¨ÿð “G¢ûÖtý‹+KÉÁ_\ ŸÆCÅIê?Llèv¢è ù­©C¸ETÑKz<ì9Ú›RÔ6 Ñ\Ö¦Sƒ=œ&}œ|਋ÂgçÍŒ-{=k"—M|K‰ùóÕFª1ÚsU‰¶ÿæiMJUõîPìª$óz Ö´“o{ÍŠ¨¦éªÿÊkÞѶéÌ]ÊÄ3¿€ÚÙGð½ð> °Ç©x«J§ï„oy„½?„'¹ÅŸÞ"ó;ÿ£°ÞB‚Í ï¨Abï+i_\m>åŒnM…™. Š·Œ7m:ßðNÆ{™Œÿ˜¬¥‹$Þ±lÂ)»Ð41çqZ½@¯"ò~z™EˆF½` b`›ç‚nÁcžçû&ˆý?ñç¾ÆüG9ðÇ5Øç|DÒN}XFr‚šVfú_ÃÒT‚—®†þj%ÙWtqç°€ïÀϘ­,óy£1?*%Þ6ÙÇB<Ío€Ýë|k¿œŠÊUh4Ùìè^¯»¾’ü£ Î ³‰5Èì'ŸÑ;¬%õõñ¨¼g=²«QÝýˆù¹ì‹ÖmXõ (gkÂv!?B#FþQMŽt_ï,}?þ#OÝ(üÇ7iš ,øÕº¶?¤ÛîJæª{S âÅú˹Ú{Ô~LF¿{víÑ`Vòæy·ÿا{Šn²4ˆrG"ÐÍò->â9•‘³é ¼t­/üŒ¯kŸ]½µ2®tù-‡ áXÇ99 ôöQgDéïÝ—þÿ ôÊ<Æøóß«ëöß`rº—T3®UÅ_Ìót²ÛUZeª?Zg¯zDý¦ÿ ŧSÚ>ñH– ò-lvmMBÇÝ%ú11ZëÅa#ªÍ}?C±œ¶Åÿ8Þþ£?÷¼¶îa¼ÄŸ$•åhò¸"B¨VJŸ–øò&ëü cÛŸˆ«%ù‘äyðËËx”ô†ÿ¨$C£YÎ.–’iUÅ[ìÆÂ¬çWúÑQ\Ñp¦µ;Óo@UÀ„¬¿zMþ‘U†2³ÂFoÆN‚ÿÈO¦ÝÕÔm¢~ÙÏ#°UU=‘-„k>`ôQDÄy…(Þ oÉÈýHC”>Œ¨ÙÆ\$Û…ÿ€v½!º?é•ü?·µuz*®j)1Abð«d(çsV{ÐìÃëv€eø„ÿ8c¾eÅÓ 7áfÊzâ}0 æÕ‹‰JxÛ4j0YÇy´kM‰ q?"ªå¨ë»‹äÖp§RdaËØ÷Þ÷wäƒèFùórc4]Ì–óa3¼Tg¼E8µˆ|¦«À.fă´GÏvÜn2™B^¾aûžÄ)¾0§Ñ/4hïì]è¯æ ÃË‚½Ý{pל 6™ =h+ÔÉäå­£¨¥ ¸4&ºOåÇ)=ÅíÉdÚ ÷%¹¡ñ¶æ®zò¯/º…׿b•ý®·ZceyiIÕÆk²ƒœVLôW ðq`-k¸ÊÈyoÒ_Zqºáâþ_ ÊO‡"¸´zhF¡_ø+:zÚqtÒú št‡Î04çÀð>Ò+ð) ˆ솇¹S´ ´Þ$™ K•ûã6™o•Ó“«‹“Y0›o.øÕßÖjÔ­oUCжÔ5¶ÃOχz®¾‘ÙÄ4ý±Þ­ô¿Z WP€oÈéCy†™¿S@‡P“u¿šjuëe׳¿áSû‘¤â4£’|–#Ý7¹õ<˜N¦ZßšCw˜ÓæU¼/“¢îX7í £>€ž7?]õo ¾„)Ö=Ãvⲋà¾Þéú^‘ê8­/*}-“YŠÙ²›˜CrÛJ{>½å¥n°þ£2YRx8þ·ê0ªüÛ EЂ Pÿ±þ£59Ö b©ÔZvA×{û/òzÓ[Ïé6ÜÝåãzm·p…áÊèŠZ™ÇJ`_"ûõ’³AL0»|ÿ“úÁ·äŠþJØWÔÄuŸ“û„êCTý…^¸jdò›mÔe•Uôo/ct¤ÿnT#¶þ{ó?vh˘U[…ˆ«ŒÓa˘¥¯¨"©×>ÆDuÿ]‡f{½„3ÑÚWÖWoƒ¦›ÕõúÆyøøôf ÿ‘V„N9ÐR?¦'“g°á3»a]««‘ĶùänìÍ¢T¼ç«d 0Óc¡ØZ*±ŽI½•ÀŽËnÀv Þ€"FWõQ÷Üåú¯Ë(x¨ˆfó#Z-:8n¡~0 Va?Ì@qú·§G;5Ðaoá¿ã¨-Ä£ QK5 g}ÒîöT£ ¶Ùéx‚x;ÏxNð«TtÑ ¯+øÂ,ìØ1ø»Ôìw-•:µd+Ýß¾üƒÚF=ïÐVò„œ~üÇ+ÙŸ{–ô(z––hd²ç \ó6°¼`ƒiÀ¯J -˜]VÖ ˆR|{ôWuáPc­KsJ¸/;ÌÃtaûˆVª6VÈ©Êtê_R¡”I‡9Œÿè¬ým,—k°ZžØµô0 kyNƱz;bïôdZôFÅúÏ /5¶yï®ÓñóÉ?‚Ö,5fÉ ä±ˆ‰²‹؆ãf&°fp;á|_1ùã"ݦ [³`ßxûwŸÈ|LøSþ߸ ÙËLÃ1ƒ?¹˜'c!õƒ)È5ÖXʼnï[PñÒ¯~0*¨QL¬ù-¼Ÿ¨g‰ÃSà«ÿè g’î^'‰V²ó'JI…¡Ïî:+Šß¹x"{z˜zñcðßÕ¨, †×‰O¨øÛÂó°^ ´ÞpY=îVìNËó»g¥þ£%þã Ì@r0¡uèw·«vL?£úÓ ¥ ÜþuÁÂDŽäŸ\„…uúCÖU/ÍæäF eFÓ Oâf2%c¦árøs ÀŽ¿5,KS*ï?à9ãAXkQW'B³<ÐýðÍÖ×ßÌòD;CàÏ÷>0ǪTö ª)Ö'ú¿—r½ýÓ]Åí5téŠBwÆ=Vt”D¯|ÆL);Èvîë¢_A¯òâ? «QUL+–«(¬‘ýP3¿q"{Ëo^ ÿv& ‡"Öcó ÚÂØûæh>®¸óÝ~ùGNµ3oé.iiÜb²ÉBªPsuu©??ïÒ]eÈ?6«®àW]íÔô¾¾WNa=ƒk+ü?™ÿñH« zLåN÷9¹o@¨>ÄÓ¯ëYõFiÑ\¼¦«–¦mв‰ÆB#Š‘R-õÿ¢ Úú··ÄdÄšnB„3fꇄ‡œI½ÄzêÏ_ûÿáP|š'>‘+l“õ`øþ4ÛП¶’^üйðãdT3S°(ûÏKïÑwêÑeDð¥o0ñMû®ú¢'Jü¯ücüCcP e»PM$N/<Åvî_àWOãÝ âå¶ð¸ Nµ9¿^¥¯=aÝb‡¢þü6€Ìz¼|.£ò†îb/ùè׿ðç}Í ðëÀPöÂÌÂúu¥~0$ÿ1Û Š4€¿Ï¼Tâ÷%d7u±ƒÞÄå…ñSÀÿâõÒíìDÕ€ùµ¿êÔÿEÛ©GGXÈž’òwb‘5…õ>lvSÛðz©ªø­|ß¾í"wê-ûzYA+T×»‹ZüÉdxïüÙÍx¥ÊxÆÇäò^æüÇ7j¥›àEWá-=ñ€Ù@òp-{‚ñ´HôßõvjG°•ÉÙÇ<ï®ËƒìÃòç̲õE‹»‰ÿZiÞc,ÿ½9OìÓ÷yP6PîèÂÒÝo#_qr¸x cª‡• "õtùчՂE_CÞõ… î$Võ%h×~™ã'ýîWý«Œ‰ÇOçžji.ÈÝzú·'±–Óé¶ i/ð’ì®”‘úóxh†¯–ųæ«øÕµ Ë·8Ì;³•§.+ü~-§ˆt{ÝnÅ!‚_ÂļT ܵ[ë˜WÒÀ:޶9‰GàaÔ9îú"Ñ>Ðzð9Õ3üiœÝæð«yL`†,¬k5ýK.[{Èg–©V){7,N¾ÕKÝ¿J`õWñÍ‹îíÒ:è`ÁZ qô½Ñ>S'¨ËKLÝÜrüP:KåÂ^ûÀ2"ÿ˜g§'ñX˜¡¸Øû(\½fvv¯×Oßn¼%ÊK Î\ßJ ÆúÅ<© ¨j¢ú¦¼a­àWG@³RC¾þùÇ|æFRÕ ß¼ÞxNGßßù§£ˆ†Êö ˆØâTúh¦û Ùþ<3ùGX3¯ð×1ÿ»•Gѧ%¡|A$F5ÆÒ߇—ž;‘—ü£7>`,¶± vY4Tüy6±Aì“ QRnÇ/Çz9‰"Ìä3ùMnóšÌӟĬbþqHkBÿ-Oücdp˜ÍN úL•'’å~€È‚=ÍΓ¿䨾)Zo´Eòàß›<­ŸÈ–“°»ìð³á?¢«éð?ÉLҨˬØÔ¬-ËýRiwNÛ¢‡EY¶š¸<%ÙJÖkOÎvˆÌc¨_/"ÿOdO`ì}`E|°ÎñÕNôWÁ1S•ôü¢:Ü}r´ÅÉ8.g”p2’u<1„Ü+åTŠO?J¿Ê{s8ÿÑQ³™?èÍ™¯Awj¹Õh¹†a¯ûÏFIÁ[¿¹ þƒYà\óZP±ìu-þceGf›±üª¢ŸÿX.à9’sŠCôÞ›¿Óš “ž5™;[5J»2þÓ^´)en÷;ùÏ ˆu2M%_…›AËlð«8XhozôEÂŒ³à«2‰¬¤ö-'»½‚i†Jƹ¢¿ò4âñDœâNƒÇ¬ÎõEÅ^-·RPÁ½ŒN¾¶kúÓNÖ6ÕÖªNבÂxÔðñ7Qìáéñí°Ÿ,M&sŽ«Ê¼Åæ;º:Në¨ ÓÑÖ‹Ìá-•Ý#ñfí,ôYƒþª3þã* B«Škú×ûÐ[`ïÃÄhmÈ݆¾T—àŒlúvlÀuã?Èr¦ô·ÚÓmê§×“³qÝE€éH ~p¼¾„ü£:Q@+³®µßlzpXű¯€Tµî[ÇñŸÉFtW¦²Ü!WŠF_¬&hØú±Þ ¼bXøfîë~•^±1™²2›¦Y*ñ|äk“P)Ÿ¶.£'®v÷8sÛ¡¿ê…ÿhˆrê*¨]MA‡œtûCú|1uö ÖÛ`úÈûVüG[îÇW:%^`þà<×+WJæŸW±Wƒ_E€÷„¶÷%=ØŽÂä&  gýÿ„ÿxάÿúóZµÝƒ¼!ü6±~“м­F^ÑHD7:qÚ3´ÂFYô»ð_µ_¡Á/{úóó Mý8íúøê”Ôh Õ¯Šr²˜#NÒÑ׿ê1øÿ´xAä¹ ¾ü0Ö½¿f]=ýw«™)˜mìA¿ÁÌ"(æx…¿I}8ùu"ªºä›§Í¦jÁÂ>³ÿ ÂåeKýÖ£ òë;æŸ'ÙBþ‘L)™}8‹ãœàs²&G‘sŸ·èâûó0 é•ýK‚ÓJäЫ‰¦xר KU8»uÜ×ÚìîŒú^s¢h/ÂbKZQ ±{7þ<+$Srã?ziáІoE‡¼Ž]ÄW‘ð­8¥¼äYÙá曃é<»7l(¿r*7rÅûØë,±í§þWó ˜:,L<Î"*ᾑñ9õcǨÿȼ†yàÙ­ƒôO¬ÿ¨:” Û? {º”y{‰dz·µúçãRÿ…H*~ÛÑ_3]¢á+æªþô/‰GýygtM+T zðnÂöe W¸M=ö<¸ä¢æYýY Q0Ê6D*‘ð3^(-΂_­m­bP›²ÍÐVû…Ý4¨±_|I¬orÇœÏr±uÂyÃýÿé#‹ágó4ô†±ßj~R³­ÞVwðtÌ}†ÿ˜kõ¿ŠOýÇ(ðÏÔÞE1Ūÿá?5ÆéÂ7ܳ±º‡^_uCÿ‘‰:¾duÁ«Ž(;?ùÃ2»2ê°öô+¼ÓÝIM‚á÷Âû?iïÞÜd}®ñþ%‘`ÊzZóÌÆòˆé©"PoÙ˜úõ‹t˜Êïú[ñ™³;­¯h˜pe5µì 4]]3cÓwûzë§DtÞò<¼ï­(tÅ)`½µKP/³Ä~ â”Äuœ ¿jðæÙQ,禆#!Ý-•uÿá¨) rF£Í·nÿqTŸCïÎ4~üùsùGeWzWÐ6XÚ-º!Ÿq¹Âdw¥ƒ£_£ R¥’Ëþ¢ÒÚ¦Z~wë]%2I%—¸¯ø¿÷á‰Ö4@ýàú·rŸÓïí"3Ý) 3ŒÌ¢®øâ×ÿj¥–—úü,¼‘ú—Qiðßr^[ ~U˜2+QÜAüª³¾™Ûcé7xZß«ÿ¨,nyî£JguüGý†~@Ö1³í5G•*D[úÏNûê{õð(8ÎÁZ5à>Fž=˜{XCî›|ç[’ƒðL”IQñ7÷(èõÆûÅuøó«(zN`_°rGp™›ä N½XUþ<:hkx³CˆþãæÌLñbþàk³-V. ±çKðã9äEåxz½±a;©õÈOºQùR·šA†3KwÚ« ÄÚ’<&)ªthl–‚ …UNÉ^,©M½Š’²Ì(ùU¤°OÛ ¿’‰ÈªP£â V·A(;ásÛÀmR]M$ë>†ÓóÐßœZA¿\eg%=§¨ÊÞÛ^™]åÿë€QÇ£x3“¼³xGÁšM!ïrê?^aƒ{¢Y z4­³nm5|²7Ñx <È TÔ`z£ %+¡–°0 ÷NbÜ„ \{ñ¦G9ÃÝTW®§~0¨vrŽÑWÎdGÉù>°ø/9ÿ\ÍYú&EW³Ô/–¾„~·‘å̯ CN³Žµ_óý^2 STï1¢ñLæåmˆï§ç:~õ„ÞáiÉe–ª!0ÒÑá–¢b½F¼ÓÚÍþ醫^1|3ÜB)ó¸þ!ЊކŽ'=›†¦ŠºnºÐÛ®²²q{€ ý †õ•yO7TAxþËäšOé2ó{º†j1od¯@뵕ù8éÇÜ3üÇ:óššÅ¤Ž®Öhf\}¤NƒœÃÚ‹šu9ýÛ3ÛwáÏ;ãµ–5„£†¾¿ÊdÞt_ðI­‚>˜ëk §VŸ~`ÄæÕ]ö•ÓnÈLŒvìj~ôfÞvOô»ô÷`þùüÛõÌ2=ùG|sœ{½ÑúVã–YÝýÕNs¨Mϯdè±>Råþ%A?tÚ=üîÇ%3Œì,{»¯w¸î- ž¦§ßûÚ„ô…Êk,02Rÿa`ë5m£–ÉÈŒk;s£þ&~uVÛ(,ЫÖX@z/‰o†m4Ó/‹•rŽØ&n÷ô  ù¿ÛFâ ¤í²>w© Ý©þ–@„/¬F§Òoºœz"tÊåŽúQ=*ùÇylfâçíTcÏ žn"}QßíÁ£$'²Ÿ‚WÊ(þûMùý×èbµð…ßø€E:…w{ˆéˆ{O¥Fs¢úhª²ùLF ²ÖÍŽ!úsZgô dâðn¼ÇÎL¾2Öo øÕl^Zâñ¬DÖKØi·ûïÎ0Šƒ¨ÍÂÖ\">ú[Žæê*à ÷¥$;:ÉÉøO_¬FzõŽ¡©™GvÒ÷ýâªuê] K+È¥ââÉb£Kn@þ±ä*ŠŠHRþ*NávyµŸ‚7%“±“ËŸgÐk‰f ˆIA+áG|à»+qÂaxSqZS¼éiB–4‹ù‹Óÿj!‘st½sQ+¯mtr¥eâœîäš·Qÿ1žýdÇBn‡~Kþ²ÿqZõ±RS³68º¦Št—šG–ôѤÃÜÆð«•ô¿*ä-Œl<cm[1ƒî%‡¼mNPÙ°½³Õh«¤†ú#öm¾+/þc& @Vªýîá VªDðq'ɶnq¡¡ñ”㬜úÁŠê&Óéßž‡œ¦;“¼£¹vÛ]½¬ódHŽN¬0 ±–°ûïQ“í&ŠØ$ZÚa™’çá&9–Y]ÜÀ¯&Xý¬¹0a’³¢½Úg¯·vpýim_0®xæ™X} .>Οÿ¸EÁ82ïfp ¹ƒÃe4ò™ÓÔ &ƒ/ŸMIâüTÔå̓¡é®5“úsGý<œúø¥\Ñy´]Ý—;Kßa¼6ÿ€·k¶²Ö¡¿ÚN¯çâÌåhÿØ/ŸÓåËéEr%‚áO§àTâ×F×¼à^…sŸÌEôW!uDúÕÞbé×ôÌô/ÉK?Ù7~ó£úõ¿jhì1¢.}÷¯þb°?ßÿñ·l‹ÿHŽUšÉÄóˆÆ$ú–-‘SÄú·ß×?û÷~õCñ®b=H것ðå9©¨z,ËšgD9ø>wˆ±ø?kÑoÓGEòlëèÉ{ƒj7‚YÉAåõ üÆEXéx|Ãp¿þW§µ?*–‰{0Ü_ñDë±¥‰Ç+ó¤=6¿Ãp>ÆšV± ÊišÕÙ€‹¸?îצÐójú+“7o 63/Uãy°~=È?NòÄÂ2f¬Ä÷• ¶²Û½­È…FšC‰U½À›æ¡¨ˆUœJ•Xn¢©ÉØÏ3ü·0¬=ýV…ÿøU×Ȱº·Dh¼r:üD üG_¢ƒKÔ,_ ;}?y5'z{¿œ\l9ÙÒ2Ão·ô¯ÏiáÏk‚›}'j«À)íåÔÚÃqx ëòXðÂ:õOéß¾‘|nš‰v!ÐzSd 4¾w8fä¦ûͨÂ| QùàϽ°¦g˜ùÞŒ•Z pÝÁ•vÁk¡mBáɪI}æ+­¡¾u|'PÍ&xï¾2­ù@Ͱº¡nŽwv?2×a™'Y¬?é¿Õr: Qß¹ +ÚlóÏÁñÿsõ݆T•@!ûš­µfKð«ÓjŒGJ{}áwÙµèòÐŽîJi ûH}û> U;²ÎvTLÎÀ|Ee÷õΧþ<(qZsˆù·*Í„»\ViªüŽ!Æc»;3Eƒ/¿›@æ1iùàÏ_€ÄëD7—ªÚæ-wþ±]éPY™ç½íRÉ.ér¹:“i]¡Ú>¢«'ú°ç®¿íFÌ)F5MRú®¤²’Ù‡y¦/ɱäA'ÍÜ*ž ªtÀðÃ--U€N„ç´ªÿïùƒau_&2íF¿Û‰yl:º@KkÄ¡}¡ñYºïo]Åa­—¸+ c;#`ízˆçÆ%}®>[ô•uÄx±Åo¢úï,XVøÂ›{É̦ƒÖ“¯™%ÆXMg„⾨ OÊx!öüçû*éçô‹â*Vþ 6¹¿‚€múSây:>×C YB†ÆÇYb+ý¯2²ÚÖZEÆq|',îgbó豊1÷( ýš½Cô7µ‚0 ³©¯‹.Ì;™*‹<¼ñÎì¡K<£1aÕá;æsmCÄì9°æÝü˜âåðSÁ}›ÁÁÏ&)¬þæçgA¶¼°fɾʘÙeÕ_Îÿ¸§ ÃcgPGx‡’ðý©ñÍðM»M§ÓQrlE+T Yï ^~ˆÏ\Xâ‘ðçÂýîúßó0zQŸ¬-ºš‚ÿ8NÖÖRüÏ¥™ßá?^€ÕUÙÎþ¼X·øÕ[Y+Øù ´÷Æxò𰱑Ñï6'gH5,‹?É@w– Xw¢}j+Òq†+¹Ó/2@ѧùoÌïÓM£»Åy8ÕÝ à6žiœáwǨÿHn]·¼ÀØ«W£Éøp蛼±ªô›b"jôŸú—Ä6.ò6tÅ ÆNR¿7Z®â‹–¨µ¨CãÛ ©?Ø "”ýÕbðøh…÷a‡+Ñ'Hýà #2«‚¥Ž‹w*õ>À£¬¶$ ÝÑ`9_¨­¸i×·^«â0ü¾0>гS¶f“š€—©ÌSt†áÞä»ôŸz|F+¥ÁSVçyíjÖ•(ï*åt'Lít…G‘”´¾aU&í˜G˜Ø: º©îx«}诈*ÌnîÍõÑ7OÌjxÔ f#«3üGz¼ú,ì|\òƒc(®Ú¸¾ØgÀ슀>¤3üEªM “hƒÞl¹qÙ\ú÷ûš©ï xv ’•_QWÑâüaÅuUÂ4&ËŠIÞ™0û±`‘ÒÑŸ1;¸ØÕ Æû4èè5lC9øæiwþ±ýUYƒ'´'þc‚ gos]µ‹[»©ŸŽÿ¨Ï<Û£®Ûv1×Hªã¹b1í%=þã49÷AéÁ{tÖLˆŽØ¿ƒ˜ûÒÿãÂUùëVÊè¹ý¤2¶Y@îé]XeùGn#Ÿ±ÑFýpè—âOîӯг²$þ#!ÑÓJú_ÙÆtx«I² þcÆøø[ë¥{@—Ã3¬$í,oÑg£°qWþaî¯Dú—d©Buåà?.‰ƒØ¸{X˜6ØÏò<—ÅÌRò xè)~¦_OF•W†Fc,Å*%óRG²;¼<è$8Øs"ë8è ßð†—cb³‹f¶ Ñì×RQ×½üêxýZðœò~õAyŠ«w|G:åeÆÂÖOl ‚ö z¨ÝÂpÓÝøÛ×y¶Mxô‚ÔÏÄ'ö€ÖAŠÎâ?¶/]Àªd4‹ÉŠ¿Ì4iô/2øY}¼ÚR¼Í{ÙüêLÿ2Í~p¥‘Á«ì€s™Ã`Ò}5G°] éÍEüG zÑæDypÿÑKùœ+¼b¾!Šù ŽÓ T~?žoúÝ”äqoÉx6ã?kŒÁÒ‡÷Йøšüg5(ä@31¬ll±¡ªœÀÆÅ—äRÉäfq.ëñƒãÅn=è»»ÍJþQ¿³Œø¾¬ºK®²×Ì Ö˜7Àð#Øù­«t)^LÎ&Òm…ÿ¥¦I)+ycÑ+!!ñJü×Hløø7/•‰^Œ»™È”>¹¦=Ö~E…c.+2¬CbФóÔÔE´Fª8X˜ëtÇxogôâ þ b7KNÏ1&sxYiá³GQsðŽ~´OìñT8V‡ÿð%‹û„žïùÇV´c¨¯™h=™ /û~­8uG¾æcð¦q bÝTë ö4Hþ2¦ñí¥1 ý‡ ÕnÄ‚ñ‰d VaLÿËw©HD]kÛ„ÚÆ¿àn¨]è¯Âã'ÑǤêƒìÔÇϵ{à?z؃íÈø–àMŸ°÷ô‚"Ÿñt_îtý°qžîIUo³¥5›ùQ:ªªöô»ã¬ôoÏçzLý I ÇyKƒ_ØÌÛZh¸ûQñ3[§þ£{€‰“¨ÿ°A²Óþ­žÛe£þ£3þl8“CQèL&IÿÈFøÇôg¼¡ÊQƒþŽË™ò\H® ªïÜ«¯WÉOV7wh|hå ~°=ÕœÈâÖ¡ÿíîÚAÿöRÔŸ_¦{»‘…Ú‹<õKñ…Ápã«Dÿ“ùçOé˜Öý$|Ðjþ¿û·G£¯G9¸ŽR¢üy_Ö\®¥3²µyàW‘sþà)mª$gú`jPõ5â+à9äíåp:`¢áïåIIÄQ"ÏíTé,#ž ~Õ“ú«dƯÄ{ÑVÞ‘ÅBä’ÿ¹ßé[é| ÷ž›‚X5àm.m––§°SÛ°ý>d©ŒÆÌ€àææýxj~üVLcRoº>-Á­C{tˆ!An¾ò†¿¤® üyüGX³Gˆþã’–ÎÒëd8²—Š(e³á} lóhj—sã?¶_yr¦ÝˆÈ«š]EÐ>K?võã×vF>®tHëu؈¨¬“…Œ!'Vu$VÏ„Wvøó£ ÷×yúË™Edã_N~@ÿ’û2£ÚÅÈÆ}H@çëfdpÇÍžê>5)ƒÁþMþë%þÝÎYÎÁ/Ýf–IAáÏÐýØ—¦å×ËŠÖ|»¦†ó½ûØesü‡3ÿ#øÉ9ÑF¼ oòrŒmk(DÿD'ÿØŒÿ覽2&Ë-ðN³È7’bσç´zðûØ×vðGñƒá?Ò¨¬8;ºˆ*bîã¿1¿O>ôßÊ &øù|îÄENüùÇIúw¤„?o¿a~íÐp øCpÝðxt„;Ëã~'ÿY8±qÌþ|<ÌÁv㯩?OFï¨ÕTz%2¯oa.Óð¦ðä]‰°¡'P~=¡ª.g{\?hÅMF$³ ™®“¿`§¨ï†ÅJâߟy¯Q£^„ý½‰ÿÈŽŸ+Ή´Àû=ãö+.Í­7L–Â|! mJµ {?™êó®VKÓz€®5øÕüÑDÕš†{ä(íèÚ¸%À[Gñ…öï~½ùµ#‰œÚÁÇÿ¡ÊáO“c§w2§6u¬™ôjùÂÌÞ=èv{X­æð/ÀÖÆªiðçèMéæ ÷Y®_2ÞÀþ%RÝÌæ–¯Ù^Þ7ÑÀ˜çDåô Ùu‡ß ,óZú·?¤{û «¨eSTÁó°ùe[Yß}½Ý˜_ûŽjtœ¦fB™)OÝàË=ðÞè–À çÀŸ¤DÁ›NŠ)©Bc}AQyÔ¸(£~lpóÏÇ`‰Ö’qo†_hU¿Æ$ª'–N­yy{ªëõƒeÁ×ö«L.æK1GÊ´ð  ‹Ì Æ^%”Ak~¬ÿŸüõ¯ü«³îkõÐUAü¼§¸ú ½¨áí×÷îTÛÌE¿›…ús¦·É3ÿ8¬­†ÿ¨ ª‘k³\<22â?ö‰~Ô®çŒúËŸ·ðo~’O܇?_-³Â1T¦þã;sŽ2Т4¹©‹ùƒOe¦gaü³|?tBÞÕù€}¨c^¦ÁD° Zò!÷ÿIr“ŽóTµ§ ÕüÚ˜\Ï)ÎD´‡ý¼ÒlœQˆ¤:_¹TaæGE‡ ovÑìÔþ`J 'ùJ,¢ùífV¬ækóqà'•aÖ€_-†iÍ7u0Š uA°“цèf¹õžÖøŒDPÅySgâ?4?~y‚S¡íɪE˜ÿᯤ ¼Ú[mþ’8u§•oeqCüÚ9˜ÒNM –QÁ®_„ÿØ‹ïXKŒNyÊ”ÁÎÿ(¬WµaY£«iä{{È?ºáÙ’áqÃb /Ð…- ‘}câðmĉó¹7éa#pÕkƒñ]µ·Æ4y„z58¬ù ЧQ¨ß‘”Poù\4cñmbzƒ¬fÿ;ñÁ+Pgõ…/U;e ”°éຽ©?‚ÿ:ˆ­>K=wnëùÇgp¬“Xç†Ö|û÷h³v“Ó]¦ßëPô»ÝÖꟅO©‚ð@½¶ìgËð«ÌÔ’ÌV£¬t¯‚÷2è[iüÇ1ØóT MèŽ>U%"º9JuVÀ-nAÜ‚“ΊëÈö™±a6[éTkþã+3@ö¢Žev øÕAU ÕŠêOx¨£pVóƒÔŽÂ¤ÇÒîqšÉ‰¤«ã$*à&‘#Ý$ÿHi?…ÿ˜`y±Û¬TûÍgµª(‡/«èÌÛí¢ÞÈ{îííÕ:ês‰HÿÑßíAý«ŽMïKýy|k2Ø_{ª/Ûàá¦3¡¤¼Èû)žyxX8j~"ò¯mŽq¯GÝ1ú«fÜÓvfk¹L†¥Ê¥ú²¢ö|ÖBýÇyØïwvû ¬"ƒ=mcO±ðçO9Ñ£f"Ù^úÏ[œ§Ÿ.Xjä§wT Þ¦žVcúïä:÷1Ee.'7 ýîüÓ`+LRq8þxÖ3°_¼G1|Ù_D8?6è ®â!‹’ÉWÞ%£Ø•éß>oþ„Îmíö>×EôWÙ]MQeJ{W;/º®;¼Ã»åhžS ÁrÏÿ‹¿¾CëðÞý}ŸÐï¦ ôœ¹ÿSˆâÓ×¼$ú«‚¢1üyVñÖ Ñ¿¤‰1݈k¤øMýÕm½¸)«ßE'rJh̯õ¡îsùÇ ±Ë8¦‡4¹"ð†ëÒ·½õ +W4;ÊfØþ«²ˆ}x²ÓK2(ùþÌŒ'5 ]µ&*}CeÒDzŒ”Û±²'yR‚ÃÏ•1d Œ-žXNÿ«ÄÍ»Ám6°ÞVüÏgúÿDTñQ±ÐjÜ!o*C]GÿýÇMí/tM>Ryé âš‹ó{Çêž P5Ôkô1éÕ8õ X¿Öf¿ó†3Q|2Öש=4ðBiÈŠÊ`Á&c"¢½þ´Œ]¾"gV“½~é?Þi+õhØÐ•س´dZIàÏÛ!Ü1Ûã}ò˜3ˆH¿òóÓœƒ¹‰½^#/_²;˜g2¯^[TíKMTœ?ï‹g¨ŽzuUÄ_ÔŸo÷³R›°ód `f¯Ð_µûEþáôOÜe¦P;ù;Yà³WSèAÄØt'7HÝø$§ºoÕ!…Ô¼Ó/ù|Õ|qõ§þW«ñFÎÄÜôõó! ºÌ÷_5sPÞœþí§ÑïvÔH ¬ÚÖò Ne'õo9ÙÙðçi‚\qZüG,ø§~p ª¥q<S©ÿHo-Ç"gž¶³Gã?|ÈhRrÝ9aižª»XçÍÄâUÍ}úñ@+®3br^·È·²ã?jpb‰¨ÜgU¡þ| :T¸óvGê?zQ¡w‘X$¼êΊïÐ_98mQ9ÐzdüÇ#NelÆ"ð«}Ô¿MeòTnë v5܇·_ÿ’áVû:‚žàMÎ$¬ô¿£Ëkîöþc¿?OÉG«ºÝ›êýU®í®D®Œ®V uP÷ w³²O‚ì–ƒ@”_šTt†²ûþƒžkuÿgõ¹V$À4ßûÚˆºž‚YQÅDñίÿ•§žúó®FØîX¿Ùw¿–y>Yð­9AƒÎˆ"­±FŸ"Ëè¯Î1ÿ#šû~†fŸIÅ¢¦«xùƒ¼…Ýä9Ibxʪfe™vìL+ʆjÅZúeýƒ¸ŒÅúBÞ ûQJ-À f—ƒ±Ÿ‡‰Ssàñ6QU’VfÅŠŸŒ­àWŽâjHÎzþ‡ê$ë1Q…Se¬Tuó Tu±°[Bô—´DÄö«QÌ¿§ŸÔ^³¶ãoXž%æê§ïâ5ðÓò`/»xZwÿ¬<øSf'‹õszs§ÁC&å ÈDþ1d:ºòÂëíƒCŽB½ –>“œ«ß ~)íˆæ©?—Ñážë‚ -b¥W²)¾vÜæs²šÁ°¶ÚG:Ç·í‚¿Ff¾R& vJIl=ºÈ Æ—T lè™ßŸøñ‡ ~ͤr¸ ~ÕY¿v” 3ÉÅÂá³Z›+ƒÉ?<´K0k¨&YH”Œ+ÛE>3”èO²d¼÷sˆ}ÈN¦ne"^ßΚ{ðŸ™Dº÷'ýîæNãÉM@w©£\×w|ÑE²›mðQÉ?úÓ‹<38S Ô±k;¥²7M„³FýùSQ4È““Ä8 ÂÑ…«‚º€…¶A²S?8K ´âÚL¼ÓM¯Ñÿ*:+„£y¦ÞZ~•Ç|ÈÔ³€·ÅÇx/ÇpVQ¸–Íà4oÁ¯‚¶7$ÿhE%ƒ/Ú¦uvw뉪DþqŸ eØmÖÜJ†8Ù$ÿ('ã€ó½‚ÿkÃl3o*_”G“°æiÀÿgÓIð3š³¥T’ µ’ƒ_U}a§þ‰ÁȪŸû÷¸Dÿ«VDg°Üц­@‰YSèIX˜Ç9dZÉá{NP§Ò…úËáÄã‰é…?n*¹RFËlæ‰Ì×OWÐ_™ørÖRs‰¼eVí®¿èSò ^¿ õ›Ñ+g£sûköšÖ>d5&ƒkN½‹WU]  ß _ñ‰=Õà™úLåã{êÏÂ_Ý£ƒåi²¸íœ_3¸•›Ô©ÌfÎá(»,Úã„Ö',ÆßĆLÕ‘®Í?îÇQøó… !^Diûéˆ8ÕŠ‡žx,Ùq*{¡ãzáú~•%ï]•ÏU}p +Œ}Œõ¤lE>³—Ó2ÿ'üGd½¬žÚýd]×Úè1Ü¿ûq}¡û5žþNOb|4ʈ>ÔŠ;ùÇJ-%ê«ZÆZã5]á7…n™ý©íÚVñ… »XG?óýK²‡ô£ÄˆÓÅB1ŽŽŒO~k½±" <ë Vü—Ú>!¢^Üx-Ñÿ ³íC¿(;X•ÏÏ_Ò $ žŒOìX5Á'½‡ sÿdò(ɲ‡B ecá?ÚДü¼ÎŸ¤‹Aêºð&ÇûìÂbåš#©o`ï]À±^ç<¥»A2Ñ!úÛÚ0ò”iÒe¦%^<ƒÿ-f~“e‰TÆ¢…|†J£v‚AÍeŸ#è‚W$„»½Ù˜Ž‡ìÀŸ½MO gœŽ>qø"¬NXµOw–Ì$<ûÜ_ÐDÖûegË£š·Næý)·¬é»@Uç³?üymú‘wäª×aƒnq[Éß2id¡¬&³ËzQ {Ÿ,§»`ò6~1 7¼:d¦‘‹D|k'øU~r…õdHcñ‘©élÿÄŽšb¶ÌnNg·êò•Q5âl{ª #›RÍ5kÁ ¬yI Þ³š,é4{½ëøc1_ŸòãvþëדF9¼¨’Ã7ƒô½ÁæžçÚOûõ¿:HE ôW÷áJZó°¤’U_‘Ó½Óö;( ưÉkÛ Á^ q ÜðúÝäVA8”…ô¿b28qª/Þª >eRZj?,RÑÉö.2µ&à§q‰v€þeS;¨:aF&r>lÕ£ŸÈD”IW˜fq†êé›Ì ¬…ÕHEb/Ц7\Ïp›9¢f õV”WÎ4”¾x¸=èm7ƒß·A¹•›ùL۱ȟ,fóífYÉ?nà?êƒì=¤¿ÉW˜ô/ò²{{w`a§£4«Wsj‚Ú‚…ç^‹Rϯ^cžÊ.MÇCO{z¬fLȰ©Å ²ÁÚO.‡ÁôWTÕWϹ{ÉT³¿µÞ¬ ]°\Ù˜WÛŽŽ\hS9æß·ÃPC~o—_wOš–=:õœ‰Š:ÓôÇë'D6²Ù¢dñ†U–)6å-›Ù€§ñhјñ-¯3@.ÐW~ók™ÎB‡ÍzNþÁ´9"¥:àW3ÜþcºÒ‘²Þ`ÏéryÛ*çŠâ‰ÿˆÈ<Ä9pQ5é¿ûÊnçn_§I&½Å­详ûõO,À“øÂ|!þüÇkú'fsŸÌ¦¡‡N…ôã,ýM^Ä8~UB|×§k‹–Ú¨n4ÆQ­þ—ªNÿ~:¨GåŸD´Ù‰ñ}DÑÆø ¯Óå(üÓr]‘Ü»ø÷~õ¹®xvïôI?AZI¾—õ4†¯bV”ù©÷½'c„’ÿ†þ*’`³:ö½rm5 ‹˜@.#únöÇj46§¢¡©*_üj;~I,@iöóìöròްª˜ÑmÞ zØ‹Xx©·2%Oks@ˆþãŠV ^a3õô‰ðgÉ• ò¿"ø¹ð¿÷Y?)ñI¬é\ºE/•B8ÅFs˜™)DÏ7É4¾HOªqÆšÉàz£:Õɼvƒ_­!OØ‚ÿhJ6×é—eNj»ôHXdx£äøÚ$ø¾Dù éT±É°Šxp6Wˆ‹þ [ð .5EæþÎü.›^PtÁÇ&QóÈ;öâ{›ãi«€†Ý$‡ë"}Ä'bÇÒDâNVGE:™ì;™€{³&˜ü£§öÕ˜*÷cáב³$CM» •Ø ø&èÌR«?©šëƾMN4ø ‡ŸÙ†W½HÄpXlÔùoÌïÓJc¬œÏn²€ÔlT-Q¶Ž!óÍK~QÙú¢Öc£ï3Wãˆ_7ÞE|C$VÝÏ7_ÀJO”—~êÅ–œX'7w!3ÿ};:âex.ojÅþºSÁÂcÂô±O+Ó*@=Ê,ö|Šè^ÁÄÇóœÕïºÓÞ¬çæmÙ.ì÷-ú—xƒ`5d&•Ó þ Þö@êÏKÑ!ø8˜^XïËÔW¬Æžö0GéÕNDõ|‘»ÐÛføî­èOâ½âZÈJ`“wÚ3¬5ª–³ROÐÊ0Ji¬œ®núóçµVúp\gªnMj5çÈf ë.º«ÄT . }4xX>ìsoøóÁèw{1ùd-:€TÄì@¿NE2½Ýwd:ó_™…xZû™m¬Íf}jkϨdàMÅñ?›¬[v— ^g¸RÑý&]}©ðlO|Ø uñbÞ¢\²›¬í>¿¡ú#ÃÌ@´2žë,…ÿhˆÏ¨ÎÔ­ÅtùÚiet`}3òRvoæÌö§ö¼&ú Nû ¬{ Ψ]›lp¾^Ì“™ÁZ‘ån—Wè_¢¹zƒ_…õ{H÷—>.&üySû ?ÓÕ.D…Êi2–õr8ÑàX¸÷bÝÿ‹¿^DÇòÖý}wQ^­|uÿÇ>$„?Ï€Ö*›È*në-8í…Zbò„¢Æ`üG¢ßœ_ë£Md1Þö¼ 0½á?¢gô ¢¼¬/Ú‰)ÔŸûï:„ùýçbâ–j, \ßl…¿¨¾Z¦6?N¹dºÌ«ýOà!PÇÖx‹“`Ò]°ªÉå¼ Ó¤ÌTè&ÀÊç•–û™ûõ£‹ÑàW%±ÒK°ÀKy®³Ã/¬ô‰çéú¢¢è¯â€E7‡è?ök…Ð5M¥~ðó¼‰Ìóà}Ò1:ó+Nð1`†S’!ÍÇÞö9BØá£xZôx‰W`éÐ Ä;AMMGˆãäkÉU¡ÿUýþ/.ö‹¶\×`4¼‰Ý›«À°>ËæØþÓtÊÛ…7iŽñ¿q–Xˆ§[ÄŸj,ýÛƒ‹ èuDu¼mLbñbìn+ÕÀÇÞ#gÞSÄk"áŠxã¬4Ü(þ*,µ5 ‚ñ=´oÆ<¹uÁlÕËáÔ¡4b¸ø´,x5KMK9Fõàþk |à^|Ò0½;ÔBìÕý­Õ?¿ØðƒÙWò´]DæBuǤäs +½GÚÏ­bÖª» P^U9ÚέàWP/”¯DÐ)nÒ¸D á̚NJÞìæos:õçÑàæ‚‘DG“³ŽîÞKÁƒÂc¥“1í'ÛùÌõD&+óåix[–Pÿцݿ'ãÚ@m6“¤ˆäZ‰˜æ4‚y¯P_%Ú?Ê„’Ú`Cå°¾Pwòœ?}žs/ÚZ¯/þ#+YÖU³3§>ͤ®ßüÚìñ0/•yδÙ-ÔOæÅ_…¯¬E¾pŠ é"Þé“|îÞÞE­ŽŸÿhAŒVœ³‰×Š??Q‘Šº9tŠŒKGF/üÜ8–îä^×QÚvR}¨ÿØAîø›êŸxÑ¿ý ìßëBÖ*Ro˜÷”§} Ψ,õzôWOè–û½íº$³¯c¡³k@~4[3ãÊŽÒ?ß Ÿ6Yç}W¹éTšúÁt(fÙwÈg⢂‡;ÎJ#Ñïn²SPóÕzÆp“8©"ú«1¦§ÛœÔG‹®D«‰f19è ÕÔõìt•Á>ÉôxO{¤ë‰+‚ëO8zêÈ7´s ¿º[º‚8;¹úGú¡í¡ã>Ðÿà‡3tLôG‚n3 $¨ò#´_ž˜ ¹ˆ1Ÿü£ý€šótm¿ú¦ç0þ2^€Š íB~î€æ)ÎË2`™8Ÿ¿Ä3ã1õƒ#D Yÿ1Þ¸¬û?o¡Y¸„ø@uÎ.oìˆÃôÕ¥±‰»öJ|eå6©Û%üçµÇ0?*²t¦u¼$‚w"К؆Tfs¹› þËŽÿ`FftY[7÷(èŠ1˜Ô}^æ#Á1lðk2¤¦Äów`>šÀ¼Ã\'ŸHÇwŒ ÑìÓªã?–Ÿ ÞÏÅxß”ÌÊɓޥÍyvÌ);¾txϰŸìTÐÝu3è~Lì< ôe9õ3ù»-ñ˜ð %ÁðFà?§aמà\%Éóo]ä_¿¿®­ÖßÊØj_¬ëŸàb¯QîÌ âè$ž‚•%~=볆¬)-~8æã?ºi‘Åén¸ Æ<)6è<3ÿ¼LBBušÌ™8t?ù‚ß·‰ŸíÀ»Î~¯vá?f‘÷eÀÖ{ƒ€=@WqÜ̈Eoļ‹Ãèw_ZEP75DÅ»$ð™ÎaDg8×FòÈ:kZdã þ£^f"ÇÕHüÇ•_1QM#º õ¶ï“æ¶ÂXѪ¦§¶â õƒÓ™ ›ÑÜÉÔ€·ÅÓø€òó g•†õª¨Ët"ËìŠØ 6CèÄøÚ„¾©•5˜ÿq Úgz^GϵFí·dþàpY¥Ô ž‚dHÍ×jµÝ¬®0Úïá¹c0oq”½t©Õ*wØUw2»±ø¸Ä–ný©¤é?5æ±ÖXŸoJ<÷¾³œDþ6¥ÈR.ø…Ô~± Я~¨Ý—ùíáÓãÛ†¢* fo¬ÌÉîË]£Ÿ69`8Õ“þ‰^ä¦ö®7רÜ/ÿ¸~µ²ã?¶Q R ï)«&üG[êÏgpo\诪¹ÏoóÏÑì’E¥ê2yWÖ²î’q‚ç¹E¾±“ùCé‘;Ÿ|i˜õ’~îI¬J(Ç®ó¬hjS]Éýlð€¾[xÉBd3à‚°skàÏc»ÊZ;èqµÊ 惘ÿ¸ìú`W¥FQXµ˜r•Ñ®çõĤÊVvïØK¶vW¬ú±àñ×—ZÉÐï¡¿ ݾŸ·˜˜¹JEèÕ^ùƒºát7ð¦b£ŽáÁ´ŽHúÁŸÿÊ¿ùÉ.m ùG5Þö,à^"–OMÉbÑJvd^øN•ßÛgáôßuò³p¬]äé¡Ç6“áD•á$½Gdô`YÚŸ·ØO?¨§”Ïñ—±—]°ðÕU_ž¦rï•/ïxαò½¨" ÷3÷ó:?~’HŒãJ‹â16CûQ_!3ˆ¢‚µ!ºUêì^\ð«ôæ‚ýÇU­ ý½ñ7y?}Àêr™Oèú5[WF½'®Aü_ Û—.eBØ¡‡Ñ$m"ª€»dnßå0¬p P™‘ È¥ˆÐ&â]­ÔW¼ÈjËQ§ûùÇ¥ùUò„(ò¥<ñqðFIÐï¶ÀŸ"Ÿçj©ÊmFœ¾tŽXl&xð^Ö)K‹,fC¿Û‘SK¤‘¡žwV‹/Íý0<{ˆ2>`%¨¢ O8Yt_Ñt0çã?úÓ¿}"þÆ?o&Ž»Q…½EM¯@þq¬¹Öþ#œÁ)v·ž]žÁޝ¦þcak]LýÇð´œø°Íø›/œà 0”³ªýÊSCýžÎ%'ÕŸV>p§¿{ªÅ§ÀlôS½äçŸüzüG:âçD(ˆ½`ÚÇñ\Ìb¶_^k¡ò´ªaŸ+REwLÀ˜Ö ® 6ÙÒI›^&y:¯è^îô fßÔ'[и6Oöw…ùµK©z¨ BÕËç‹‚h…ÝÒzÌ„ÝFx‘Z(«k³»·àDgÈå&ˆÀÚÁ²<ùèÞ®¦Ä‹Ñ7Æâ·µÆQÁø=WJøXi_Õ•þ%OXå/¢… àW±É?¨×fuÞÔÚé“9Ò°uñÞs‰ò"P3Ó ”.üô2ðª¨ôkYÌœ¿>`d}Ѹ&†YéýYu›Þùî;²U¿f¼7«â÷Û_m'¶SäiÝñ©éTòÒÚMýàº)ô¿: šõ§ýÎSÙ8ÁfàW3ð­™`H¹Ïo~GD&ÃiFTfZ¥ˆ‚ªXOÙ¼þK+ µçùð$ééŸþ%鵜ܶ.ý ¿ªgvQÍðç·ô5ôßÍLü5ŠLþÜjéˆ'ò¥ð=T\=á?Öà冒ÅägJI»¦ÓÈð«j±ÿ¹€!úvæŸÇÊ=ÅõÀÔR½ACÿLÀžôi*ÎÀh²¡ Ž÷ z aÄ<± †ÛRóáýî"épp‡ÑU5´OaUYüGZ¼hs|ˆþãþ#:e§Î¢‘Ú‡÷ÈJ|”^n2õè÷@LcÃ0äÅÌóüIçtwSŒšØðiøÉóæRSÂðä„?Ï›Adè`G‡±Í[LeÖnk–‘=~Y?øJ;¨G4£b™ó‚ÅÍã¯dkÞÂØœkäW}ðxØù%<ÖF²±Y¬¬ÐïÖ vþ`½•h?’\ÍS¾LîÖd­Þ÷§øÌé≅mÿq’ßoâò¡?vºqÎÆ ¢ÿÕh¹Íô 0¯4ØOrß‘ä#í`;2_M4óÑ/·KÄOöÓ8Y3Çx¹¸ Åž·ÒÿjH…3©q>ýwü㘙‚¾.ýqÏ2ãô1Ý·£ß-a­ä¿ë ö;ðÊ×@ÈÆÊ"Q·0õiÁÞÒñï S™D^:l(è×TØÙèÌÏü=ÔF¡"6=ºÎâg¢1>*ÏÀ9½e g“t37“¥&‘*ÿ™jV>X÷nd2Oímd!-¬çì°",Hmîu êÏßpçÏàK—‹g•n²$J…[ÜËVxoó‘ÚÖÃêE•‡Ô‰' þ|ÓøžRñ’Š>Á»Èšp–¾ìð6êà/ò¬{½ûø¥äcÕÕ z;äVÃÀ¯ ´HCè9™œ¬f.Ýѳ҃vþczÞ–ÌK/Êøvjè8°MáÌõîõæëç ƒðOq%koÿEs…jÈ5¡ÿÉG«fÌÿ¸É¼“hö^üGYú·_³ªñdµ£âe.¾5«# ¹Ïo*}À%Z’¼ë/TeüG!º6BuÐ…Àuêg¶áCòã?2ƒØ½¡?cRæư.âýoð¬Ö1{ƒ_wççôåø‚Ôõ%jÚ ÷á?^Ø]éò˜Šœývò«x”z®~L(Îë*Lmbuz»?%~Ù"û`ÏŽ€z¯úŸø Vþ•x/È?þ¿þ# ó‚Ôz”‚ÿøî×w5õ‰ŒjFwØŠúQ÷ý ͇ÚZ±«Z¤¼0Ó€t‘ÎXEß™!²•h+VOtÍzÕÄcº?l%’Ù Ð}R)Øš»²sg…¬#OÈHÁ¢$?¯=œëL+_€_œ#;ˆµk¦âã Ècà<[È’‚_¢†¸¾üpÕdbüyiØŽUDo«ÑƒÚªÿû„¥m…uŠ¢JÂûÇ&Z§jy±Ølvû.§h°ÌTN=½hÀ9Å'¯Dö³ ÏÐåÚ#<Ý:ó!¾£–ªGW&§ÓÈjrÔtr‰Š¶z]0þcœ ý3IÈê¢ÞÅÙU¿ŠŒ†³(ÈL üG5ê?Vb÷2c›à‘6°¿ëøº…àWË_ª¶þÜ“sO‚ÇYª )gþÇüÇM:î¾Tg‰ÅX…ˆÆkÒwÖùƒ™”Ü¡üzoðšÏ?yÌ„Æ+騫ܨ\&Öá¿1çѫĩõXe•¦2¢†=»¼MUµ"à32±G_VSV¥üüG`ýÕv# ;:V-E*)_*F¡ÀÊ1¾â5Ðýîiøþ¢° 5¨©hÌ÷¾À¿nÿX œÑÿŸÑàW%a¯vš Á¯¼LNŠùµ¬fäH¯áS2ØW¬ÉTç-W#àŽ „î ë1msë¸]ó±{±[Ú`}'ß½Gy¬ø Pƒ;j¼¹‰î‹ö ó£ ¡0že÷²n‘xÒä,™bVóÆûG›í^o~ÙøÌ[QMf~m]ø„<£É?òQÿÈÚ@dÿ¶" –y—ÍUȞ̪%y²Z¬CXö§¯ÂÇè·„·U?jZ[™Õ–ÛJÆßÝKýsô6;IåàPüÛ”Ws˜ < íUJæŸß5ÃËCiX Ä{®ÛœÖ1¯íD|È6yÖ*ãºÏdÞk0è{™ÇNç:ë’ø8)Õß•‘‰¶%ñ{y«çʱ~õ/M)ƒ>ƒ?öûŸüõžV% c®7  Æú½ï%ÀëXgü!j‹‡º“í-bþyJ£°1ÑO¿{á·–Û¢-Ça+ `i šÍÄw£þÃSŒ¦ÿnw1‡ü#Šû~†fáÎâ.x¶LÂ=Ê Wq ž7þ£"u<ÏDn¹Y† ¶Jíçµ;éôÏâ<‘Ö="‰V°¿ùT}¬_^ò!X±‚Ä>¹ÌÒ”UBÅ$fþù^øóK03›‰hó Õ&æ‰%lK,ýý²´@|,³S(üG)º[­¡ÏÓsø„ °|ùˆra¥û€hdm þ< Æ(lmWQ2„Sœi8ZFƒäæä¢:¾ü*-ý¯¦`›â?Žà Vùu]™@]b)ùç/•vë4/]À!_!KpæÆ"ŸiEÖ°æ|;?ëJòL÷ Ôò¥ÑDcèŸøG°úÝlzqÑûÍ\U𫃜]Mø2dlßY㜃ÿX‚Í+«˜Ä·ÍåÎ\%/«Fo²ŸïjGM½@ À̷ÃÒÄ"¬Ï‰Ÿ‰&¾šjV@÷´ÄOÉZTíâaGõÙDáû~åe,Ó±0qYoHÌSNÏöû.ó£âl÷±_Xe¨¬hå±6í/´¹½T?*ZƒFq‰È âÓìãOnæ”æÃij–‚_•¡Ûkmª²/‚ e£ÿ•ƒ_%„¿Šx”ЇÏßEÕRÀ«vú'ömuTâëɸ.›©Cô²r‚7 §ÿÆlòJ¦çíU-ÀÙsŠßQ9Ü ßÁý[~8Ÿé&Ëà?nKÔÀ+¬3ߪ‘ôßín Qú›:ñ,ð3è¿;År"¿ùQ-PÌ&GzGM»‡ÒMÿXëºÖIŸEÞ|¦•ëd s•Úbµ¡®¯^Γ>…Ɉí·Õ¡VK{$ŒÊ>N¯®V’ɽ£ƒ¿¢z—~ÅÚú´ Œµ“çङ’Þ†>Øø%Ösææ Þb?5÷‘ìí–p%EÅ{Éj€â¬xÝTôWå`Y×}~õý"V¤,ëQMѸ¤¶ú¡ßoÿ…rËǪeŸe¢nfTËÙ¨¸7ñr‰¨ðŒˆÿøÆ“íôÔè¨F›Ýþ㸾ŒÙÉÅxža9ŽÈev.”V©Œ¼Nuü.g%úïÆs%å;Ž«"®‚ôo)D_”“Ä/ËdOÞñm`¶\ðÿ—>ßÓšˆä_i…TþÞÂëkè_2—ü£ªpŽ:c¹–ƒÊóúðçoôXº¿>/4ë^Ö¦Â*—ƒÎA佟ùQé…ú6ÑBöôË6®ê¡Á†ü¿)»8‡•ñq˜Dx„Éò}bÓù]úŠvr'S&2¹Ÿÿ¿÷ó§‰ÔIF–—°—±ïVEAZ‚©yN©k0kô/)$Å\5!ý¯ËêDð°¤p ؤ–àú¦zæ]gê´cÂ;$3§…è?|µ&fLú·ã-•ÉC·ß1 û•½”¸ÀJδ6µ™9ö'hÀ9ŸûeÌ;øž©\¯7•$£xûÚ‰Ïõ¨ 6½ÿq’] ?™‘‘:«_Uݦþã…ÌÿZÿ±þü“lK¿âËfwø…:æL,€öq“ïÚDö1‰Ì„ªwô»ÁÍ Ë®g5ñ‘à’ÿ Ú ºSŸ÷ï=Qþ!ú—,¶u–¶œ:Àjëñí)PZšØàÕÁøžÔ “Kyjììxe`§ƒ¨î躓 $eýw¯Ã Å2VGÑ›ÍÁ¿ì%Cì#¶êþÑî?'ècô’Sñh à»§Ñ=ê™Ù5@6t«]¬ŒLuj¿²’Q×ЪB‡‘rð>ÉñMý©Çî£:п$h^˜˜þ»yðÜÉÉf<`6f˜3ƒµõç«éŸXÿQ5ÑU¸–êÌD_KíB*´MÐóöS&xái}[ §{›ñNæÞ½e‡CQV9ú«qÖòhÖXô¶鯱õé9ºº×°®³C§û.üÇbr¯Yfç ÝFûËü MŽÿLdqм¥6ÒÉc„5ç‹M §°‰n!«Ôê?îÔµÁkN€QzÅTªŽt±õ¯ÿ¸†~×›ª&ëÕ'›è#%Ýå·à×"¢ßÇìøvX4Háø;Ы-ùÒ-®¼½f$h …·Ni.t?Ê[ô‹ÆW¼dpæ®VQú'Þ0÷¨æTkƾ?gKjצv<¡ŠÆ—ü#,Æ>«)`Kò9°0Qe+ÙÍ}~ô ":*•l<¡_UzzygJGeòùLy_â´-u2šìÌWO†Ê8>.ºu•·Ùé_RÀ¨:ð—è_²þ|øÚ4bœãÖAWxfwí§þã5j³êöúïfe¦m=û„ªì G¤žå3Oõ¢S±•ö?É?ÞпÄ?’ šõÿ­ÿHHþQŒþ‰eEQñ·^ƒÓöÒÊÓµª¹Ñýnä_ª:Ý·9Їýš3U©K¬‚¯È+úgõ¯b¬HgŠcÆm=¸™B–ô›æâøÕ6YÛ”„¬/ƒNÏj„Á’…‘e=ú—¤IÝOH ¿ä7=éDE¾·xE$ÑçÜ¥)ÊÕ3ĸ—ð( øÝ™ üêi¿ÜoSˆMâQ±"âÝŠ%¶a¥›ó¤¹ˆ[€ïÇSÍhoªÒ—¤}ˆþã¶ö§…ê;éLÌYE?\dÌÕñl“þ¸³³âè¶vwWuÕ9¸»»»»»îww‚{ðàîîî60 îîÁÝþ·áãŒ0sg¸ÿs¿$OÂ00uª»«·¬µöÞDù@vbŠ”‘ZD>6 XÎg“Õ”Ú¼¾XÊ Øh æ‘‹sž;êTk¤W‘—ü¦“ºC6ßÌŽÏü]&ß;Ëüól`_ûÀ€ã’ %ÁôÅ®o£Rþ wrˆX(ð+/bë}܉¿ñXQÔ™E¦c+lV¥ð=[š‹¿ OT½ò[<ñ?Ô„Ÿéôr‰¬xщDhcñÀ¯éKܚꘟ7ØËˆJ8§0 km ÖÏ¡ Õ ©@ÿwÛm@„fñûØNÍ÷ïoò ÏýÄ*si€%Ï_­%ÿH‚÷˜ÁÞðùÇÀ¿/`ßÃ3ón “"²ê+° ™õd<”µwæ¿j/•Œà,æÅÞ—¿Êˆ>k4§“§nR™áPæ¨ùXäHäM]kðÅ©ÿX‰K‚xxÙpð+|³ùÒߊ­DDçÉF“R…Q\ù`¡—À-TšŽ^êlÊrT>΄’VäIe”º¸FeŠ:Ž_m+œ aߦÊ\ …÷œ§€œËjÃÈfZ&%¤~pÕtˆ¤GQÒR§ÅϪȕÇâ¿#Ç{ ½=‹=4ºš‰Zr*šªBÌ m'Ášöb:ì@¦bLG) •ÔWwW>£%¸Ñ>üG<¡€Ї߉nð¬·Ú¼‰ÿÈBÍH»±e÷’ûì#ª<ŠTÄoÕ]¹È?Ž‘$D¹û_÷”I(µùû©Àœ ~Gm=×ûý¯âó …x‹Þ«"ÔŸ§ÒñÑìnu s¹ùÙŒÌ žh¸s£û ¾†•HúQáÎh~â¥ßí-žüã>üùœoùG,ˆ¼Æüó¸î ÚK‡¥jæO£‡ûõçÜȳ*¸£QëSX¿Ñ{‰Á6I0MÞj:£ü+ú«d±1€x¿ èSF|Ê»ÙÁDüG"ìí~üßîâb¼Ý$ác®ôÝØ·¯ÎYýÁ¯JÀöŒ)ˆeOtàÌŠ-‰Ç8GþñN—C3T‰ ò%¬J½‚ÿi€i‰½Œ)3{ÞÉï ‡¦ÿnFÎV2ìÙ@±¹øØYhckLÐña–ócï?‘¦ÔaÀ¯Òà?VÂw¿e¿aQwl5¯ú[q´õUŽäž½ÁòÌ'ãº<Æ;"ŠÕþN?)÷vúÛN ~<«® ÿQ ªùÇ3|ÒjüG›øÕjY€U®ðvuAÚBýùh=XWÃ7†×¯É2À,¦æåzà$DÑ­ð•õɤŽÓSKêîê˜ôíßþ€™¨Ó‰œªªd3Íð§ì7j}U,&Á®¤÷ä0üG!¼Ò_x¤Ú wù@‡v±Úøý…xâ—¼-s dú-±~<,t6lýL˜þþ"_0×\ËJKÆÖ•«º„5+‡a¡ûcÅ&‡ÖÆæ9ùÇ!ògT|ŸUDv Rµ†¾Ü‡e,uÿ‘Šw/:×Õ ÂòãØÚÁ ÏÉÉÏÂ,í@͵‰¬á‹=MfTYÝÌ Š 8£†ÙqØÃüáT§œåì§›C3¡QÆ:Um«ðU“ù”¼t³Á€6â?F_éßÎL]ø…*ä|ÔB¼xWò‡šøÉtê+ovZô°3ˆ®ã±æ^v7 ½Ä|âˆAðýÇYk¸œCþ¶{œ*ÂïGl‘ }TCê­}èenÓUo/Þ¤¸^HdÿÙN‰ïèÃâèw]2G€çùƒŽÿHÀ}oŠ‚w§o“3ÜøéÌüˆÎ\¿YÔs'%kHÀ5œBÍå¢>ä³Ljbê²ß38›|fþã=ça†*Æý·é6²Z¸P¾†^‚»ð"Ma>ªéúøÌÄ ¿‘= ½U­äº{˜?8[fD%ðÞ†h® ÷„2ª¹n ÿáv/@¿ûÍÀXvÛˆnóO¹ÒFàaã©w1õgPÆÒ÷}>FOð à‚¿ÁÊ´%Ëm(Ã3g|õ‡ñQÁN¯êSQÁ5 qOúï¶…a~ANÖ…Ü-ŒÞij{Æ;E¿ûÜn„Æ­£ÝC³³“0Wþ¼8óo æþæ¦~ð°ËåÎì:®?¹ÝQÖê®d¡‚_­$›"ÛúáÏçÓÇ5¸HVÞ©û*QU¦†Ð‹ÿqL üzîf¢£Vaü[*A’6EÑwíT·– Ži¤JÛ‹=þã¸9 ì´Öc8úÆyòú·Gr;ùÛýVwKçÞJG÷îd˜%ÜÙ©MIÿÄ[D…eWÐÉðlJnñû€ÿK_?7²ùéØ~‡iR!Cq~Þžižbþ •Q4 þ£§u*ó£jY•¬iÖ}¦þZýÇ£=ùGk8L¿òéEk¼¹E,’ÓÅ|±Îú$ÊþóΜ·Ë<öv]ãäKÙ”ùƒ—dC;…L&ÿ€WM'¾³¯ÔŒþWÿˆðaUÖ|d·&®ÉJýÇ=Xfç¿ð¸sá?ªù™iøZÎwµðÂ4Æoø`·âGLê5þ#2*/vBU–¹y1±¹ñí‰ÁúkF1;)øÜWù‰7y?{ÉFtž›7~ÕÎŒ\êœùN_tÌ=™\QÔŸUùy—ZEȆcýÎÀ˜D…I jeì8¢å0jÞe'6?<˜ótp’Êðç·~^æÛwöÓͰvnµelÞ½HT66få9x`o˜®Îª.iLÊyršýØæK¬;Oæ43LcæU©[tú—”‡—Ü 3YŸlËé^²Á¾%†Š§peɲÿ© M™©wMF»+ÿ1ýî ¹Š÷p ,lrX³X­5ƒÍ`p£±¯.vzÔB3A^’b)×ã?Vp7wãë–ˆÍf@îò<󧀎&GÝ´KyËpÜo/‡f2ƒŽ¹9¨|¨¦K‚¸üAÆ“fz4lÀ45›ùƒ§¸%²î€_5e½é(ß¶aÃ/‘¯EÕ1±È3©èŽáªªs]Sê7q™É–ÎÓ§|¾Š ׻ϼãïIo¥â_ömž­£¿ª ¦øVMF¿›ÿÑfÁtoÆÔÑ;UA:<¤&6,Å]ò™p?£àÏ;ù[o¨LC}‡'דqˆnð›ð5ñ^é© žˆåEÿ«?aû»€¶}ýì†gXÆ—È:ʰ}õø»¨?Œç-EþQ(¥—L@þqMÏb~Tq°¿f¨›’‚ˆ¡Ï|¼^ê.î¢èF®çB–JݦjžçNeþÇC&‰8þ£“m·‘^LìHÿáô/9ªß1YüÝPÞÓoý*j±xä!Nÿö´Ä oɦÙq¨?¯ê¹Þ‘æ5ŠhÎé_òšúÁT76c6Çvò¢zƒîNæÑ™a;Þ ¾k@ýG—­ÿÁbøpB+ØT/bâÜGÿÝÁ²,QÎ ÎéjiŸp Öñ:Í©q¬ïêâöqÇÓêËü,îø •¹©s¿ÁOì–}@¶’çÊ¥âu# ¹Á+¹ÊüÁ€Êܯ¡à?ÒZˬTÌübÖf͹Ft«þc¥õ×…àð÷çáÏumG¼u : åe­UèwûÉ™ÔḴÞÙeÉß2žßW° Wà /’3Œ”áìâLKô’¿Ûy±ôå#PöDžûàù±@¾hL\\.!<þ£/ì@}¬h1ô»'Á4îaEãñžÏ“ñdE?=Yè?ߊÌüókÔr}Æfniy‹ålF\H€‘dÑè€è9¹Ý=XÿqÚ¨ÅÉ^.]äÊ£AnòñSdI{$™‚£¯\‚½ØóÍŸ¬fïƒÕ_·ª\MäM¹ dž{˜†óêÂ2Óxήü*•º‰=­CÖÒ¼ÄÅ~6¶˜‘±Èñ©ÙIJð«\ë&ò-v!»é¿»ŠÝ@ž¸‹¯bQ=V4ÐÎ Íú¢yZR5ÿá’äÌÂÍM„÷‘ŸCŸ´Oà<Žzj-Ê除:29ÅÎ@üG#¬˜)Ï ·ZKd±„üclQmVˆ—:žûwÿ1ü*³ÚÁ5°àU?2sîOõ{¬‰Øç"dÛá$ê€ì µ“cìTítf¦.‡ñÎ?Sücº37xÓnr…?X#?‰ìÎbôW±@KSà=–Sÿ1–s<ü#®žR”Ö;3†¹°Uvð+X¸©ä1ôüG æ×^÷·âzË„[¼ÆýK…ÿ]…­{é:'g2ùÇGª/2]cþ¨2ýKZc}›ƒæ¼¿rºôü­7N¦Á«þÃYÆUlÁM‚o®{ª8ô¿š½¬OÐMðoÕŸi%¯¹Ëma¦¢èŠÍ~™Œëç]ÙŠþj ‘A=uŸJ»Îª3¨ct±#À›ª“,Ào$¢â-*›1c­þcþcÙŽ¹×˜:_ÿ1ý•…ŒHœ×DO°›Ê-öBõ\Ÿ%‡‰î «|õ1WX:ÓÒ­Éæ6ƒ_¥eûÄ¿Áü~ú—Œ6¯ 7tUb °: §*%>²]Û7¹®ÃŸ¿£.¥6þÿï’«™+ k7üyTr¼?ETMjÚ~¼&{Í™b’üx©çt­¼¡Ë¹ïÑ¿}’N b7ÙÕÞ5Ð}ÝÇË=’ü£]º ÂÈ+×}Îü"9tšçøØCçÇúÿ—¿^bV½/}Ç(lþÚ\qß½%DךÐZÂü¨ßÄ+³9§ký¯²X ¬ùt1ImúÖùþLÐ_4&Á*·+Iƒ®fýwó[[à™†Ê!b„˜mݲËkàkV±}>2cuæGi»¤ùÙÜoE†‚? ²Î_C™sAZê.lX¿od Þærèw÷¯^¶GÿW²È´²–þÞ±Àw–”ùQWde<ÅZbJoú1îÓ±±¤‘aÙ^ØÑÕoà<éáâÙC‚õ^FV¿yòŒÈº8?7^33Ñ7Ê)òúÕð׳±'#ˆ]ú€_Ç ±jaõâÞ]`o‘À¨’À3$ ž†Õ{‚Uö—9ˆ/½ÌŠÍí?Ð9žüBÌ´‰ð·srò¶$OjI·mþiòÌV E¯ðR‡È@`±ÏgœO’yõå˜ÿQÜ7w¿w+^»!±Ýi´ÄËíW¢xŽ=iNõÆF{o8Y×stlmm¯@üGã5רedÚÅZìÃ;œêD\ýk6Í΋Ež‚•J*¶µ¿zÁ¾kïÛê5Ëê+Ç“¥‚qöQµÔ­o¦ø,ãsê&Û¡ô_ö­?Ó“ë ¸Ût*yGoôZ¹G=âXýYû¸bÐ3ÒÖçð§¨U*fWÄ“-òø/ò) ë;Èë¶ 7<¢¸_1¿v!=#Wèdî~ø·3ð3ƒé7oê°òÙ©& ãzïœA0šüœÂðÊ’û=Wüßûâ-Ï“»m”ô“üÚ.Âà d²&ZÅïBZõXsŽ‘„úóFø·•"È©ØÊFcœ¸DtZ™(•{"ŠÈk­1§‰^r6üÇ:¢¸=»|ÿß/®a3w’ a~mó9Ÿ~¼ù©ôk ßœ;„ú«6æn“bNÕ#êEÛ_ #Á"þ.7`£îÕç#™ÊªÙý¼þwã÷waè¿ûTIX ¶Øþ&vð ñ¾KÕ%öG¬rŸ7¨,¸[»`ýÇq# 3óÁç"Áþí"2OA÷wø<@~XÜí`OkáþFÚ+±ýãE¹`îb«4ˆÐ(îÝ-ò¢XÌÌð&1@éû€š‡Gt’˜soû T²Õy7»Y)zÆX`¾—‘AÕŠ`ÑV²‹ç²ö|;xðE2’:Tk¼'¦:®²/êô& §6Ñ¿$°^5ÙÀ¯ZÀ¯'%3(ÇÉÁ­©v9ÏOï°ˆ¿Ä=°ë:ßøó™d 𤯤ÀËÌ Ä 4ÞYÃäV›þ¿ä©¹²õßâ˸d0ia<´Z útžZò¡ü.¿Zƒ×s4Æ'Ùíf±ñ§é[@Ãfa+²Â9“ Õ„-6Ñ{YôQ÷˜…á‹ÙAýGøóZT¼EGA4}ìßÌk)rqqè_’˜l<¾>üt ýÛ£ê¹Ôæcšzw*6¶-çÑõçIñgÈÂîÄã™y›Oý=éyÔtà]øŠ‡vîÒòhc8#Tž&Æ? K{Y•ƒ? Ã/á]þ]ß…ÖašÝ;~5@V¦þüÞ»{ØhÃèÎ0'õÙãkÖÊ2Ô‡úóÛè—S-LV½9Ÿóa”éûÜãk~zd&Ñ òÈZDMQ~õ“iìähž§'£ËÊ$øø„¨Z7t%kê‚/É£OR‘؇îÞðä7Ѭoõ¼dcÍãÖ »1A{»™^@õ×Óœ(v³ÀŸ?З\Ü‘éXhÁL_GðjÝ B;æGÍ'ÿÈ&[S/öcÁ!à ïÙS.'?Õ1ÉïË“µÔ§Þ£ U’a]ó¸Ëñ˜ë¸ê±ðÜ«©ÿÈE…ã3¬ü>bŠFhÔê0“ûÇzGÈ?†É ¡Cˆï6Ë£ôßîôCÞ†ÿ¸„J¬¡û¡{‡«œ{2õç9ܱ©~ÉKý¹Vq£ì 2q ëaÈ_›ñãÓÿÿ~}Hÿ«pž;sýU`ïjH>#:ºÖÖb+þ#´Õ˜5×À¤·êÑSñµÓ¼’E<gøÕ1ì^=Ø_&V‹"‰5ÇÜ)þfþDZÿñÒówCòÅoâ-ìãfò§CîŸÒ°››q­{² )‰.,;c°³\¿N:Ñ¥€¾ÍÜÂÏÿ«¡¿*kÿú1Žüc(±õï¨(ÐUër¶F,ƒé©B6³…èc+yÈeê’LÞKÕÇJ¦j!§ÝÏo·Ö3jÃŬº±ƒŽª)7V:/‘’?¿‚5Ï¢6³Ã1Ä.È?Ryž}à[jµC§<†¿{‘½}•cÉ?Àa8ýw‹ÂLá~ú`¯ÃªóœýJL¯iú*ùý¯ùÌXmF‡‘öÕJOþþ£Õ$‡‰¯•9“6L¼ÛYPÀu`ygñžiÔBôWaÙe³*þ#2Ù€“ý]íªƒÿ*…wÛ}EÞýÆXM|Ö <_V:¹Dä™­Äô6"!lÆš®ág¢Áï@Í5oÛõmlªqzâ öÓ]q“¤¸›ðJ'í+àWš?¸ýÕ8NE C ùÈMOàNÐq7>øÕ4SåÑïV‚]XÆŸ[¨µO¨!Ô¿…ÿ0ªŒm}•1¾q0K°¹^øíö4loz½FÂ:¥)ŸEý¹ýK¢èÍ nɨ̻‚ÿø[Åàxèß>üª'ˆÚNÅJ”N(yÑû,ÑiÀĦ¡Œý|‘þíUu]Ißà, ìóuðœ£h&ÒùÆ©ðòýg¤,® pÞ|ìdpûÑ_­†ÿè¡›0¿ö#Ìr"´W«a¥2í*-õ;¨oˆší63Ü_ªîô/ñå?Žýð PãݱžÌÝÈŸ¿*/Ýÿ‘HÓ[é—˜ìéu*uuÝ á±Ð²9øUL½_ü¤u”gsèßîx¿Xª‡ÝM¯·O¸áŒîÐx‚~~ÕÄýÕTLw!òËþ‡Gu;2ÂÖ*’Þ‚oM »û©Éí°v,tTýìg*qF|ÝÚÝÿÝÍužÜržcÜÊê?&ë<—ϪùÇ´wø©JvÔ|{<þã üù"Ô‹Yo8ˆT1WN÷2W ú{Q‘sW÷fÇ£‰òšd!Á¯¾È˜œ»vŸ`ýÇi£uyå{üGSEÇ øóÒTEôædæVíU0°à&á·°‹€:QÿwÍ0ÆZ°÷Ø­Ñ`kkmÿ“T':(Ë0 …óÁ.z±Ëëpµðµ‚TÚm4–š ¨]_ƒeN '¿Ø„lf „ƒD C@4¨mä×Éu‘ÁÃ2}®H øUV³´hŒÿHÆT <Ü÷|z)¾ºcŸ"’{.†‹Ïì²1ì…7èÝBüg2êøcóÄNâ?ÚO¬±ðçIÁ~š ¼ ­fðÿ„±øƒ ÇŸ4± ÷Ï%ÿˆÎüó­<©Í¬{ ¼\ìþ ¿ÚfuÁ×V³3¢¸:Š8ÅÝ9ˆ7Ùƒ~Õ™ J’…n´¥t^½ù ßrTçþiõµq¬ûÔµd½¹p[Éx©Ç;ÄÁ,¡Ïw Wuj¼`‘³“ÌÉO­¢ƒ_WÑɈ7š×'*‚Õ]I]ÝüGøóèðc¨¡þ„ÿ˜£gªnôO|ˆn Û5GÝß …~÷±¼í9zgàÏ'Ñ6Âë65«+#Ùçé¿®%YÉ‘ºR‘û|е+[G·@9p½õS½˜·¸ýÕczÌð¬7’þ»€Pì®ð5ä6û”ÊKÇÝÜà_×Á—²ƒ_†?/@ÿ’O OŸ©"o…¢¡wc!zz‹Ypõ=×;ƒú ”:7ìßCÛ‹ïé®K?ø‰T®D¿vÍTq<ÝFîDdµMæ ´³L&ð+‡‰‰£&‘»ìæÎwé,‹÷ør•)ÇO°Ou™Oèƒ'ZÄÓÅŸÕ‚Sðóóíeÿ$‘ô`ê?²QÑ|èÜÂYØß]T8–Õçx2q±ø—Õ¦¯ï&›'ªû[oˆL…ªà*1P;¬ø1øŠ‰°)­ð^I@`Æ3¯fµÓ ÕA'ƒ?Ÿ~U_y›yUðÉ÷üôª>`Ô6Ç㹋©ûv3rÒöD}/Ôæ²&Òf¡¾ë*sÕ;ÁÔ¤ä¸UGð¿Ïì/..ª½Ös¹NÿÄ#< ­&€_czÃ#{£²¨ÏãêN.xÜUÞžùQ¯ÉâöÁÄr½†{èŒnÎz3ðŠad?úÝI¦·Px¨¢D%oUrÛmgÕ¡Ümé€2Šú[Ô³ÏGa\ÿTŒþ\Ð'ÒµðçÐÄÜ$,Œþª1ñ î3W`×JÁ-ö²×Ðãõ°NÅ´ÁI(¹,Ö›†§DÿÝÔîèw·ª¸îD¬^]Ê?´„=ÙÇ;®ú(þ ýîgô»¾ùÇ)Øt_oòãúBö«4™‰é¿›Ito¾uû\j¤¿úÝšÁ´@ý‹þÃËÞ˜·½ lÀ&U$·Ö1§«‹œ¾Ãºb¾Ù¶þó·þ€ÿo;þØAþCtxëõƒ9d–oõçYDoDPËwCõN¼Ÿ K}Æ üHu5ˆ]–’‰1`—‹“7Ì¡ÿnéwãˆmâ ©‡à8[ùùODÝõXõ5>¤'ºŠ˜x©26?£Ý?Øüã£yÊ|©Ð?¶Ç)H¼ómGlaøóØþx•QXTjƒíŸ¸ÚjÂκs\ÄZ~‘£P1ճ驺‹Y§j"ÚÁXÒÏ w“ð›Ùe=ó~·îýKrWîÂÃfçóÓ—¥ Qþ~Þ§õXþhe¿ðNžÄcm&ÛY˺Ôj™#Pþ#•ÙHT"?IÇõ„Å?C\ÐŒ¯žpçÖÛ.9T¼ÄJ5"*^ÿØÿ“‘û™§:ÿ1Ĉ.æË½ô˜\IA 0Y\çP;Ür& …±QøÓxª8×°¿¹‘Óô‰J0,@€kÞoý.ÿFiS¯p€Ø÷§É—peá¼}ôS™éŸø»Î¢gÝÄx£JxH½ø$Zúj"¿/Ùº! ðÄ €o­%¯˜ ª8¬)´ž¢©(Þè¢òSèâ Ñÿj#œMJ"ò»(|W©ðD¨ûÍþN÷Ë"ö9†EË@Å]5§—¬³\ÇÇ' %æ}s 뺋ùAª 7l~õŒÌ᧨£¨áo=/™”þ%Wˆ¦:¡>‚.i6¸¹Fþq=Rþoþcüƒøn*6†ã?²c•jÛ]˜_[‹j•£àF)Ðï6”·éß^ DWÞ$೫.ðîýNÄðöwŒG~y‹(Ýé ”2F¦¹äÍ vã÷ÛÑÅ~ñXÖÂìÇjnÇ€ãýDg"g~­‹Êµbt@LB¶œÕn¬ÿxnÔ ¶Ÿ¿†üË÷¨ç; øÓxþçd ÑÁ¯Éi3±¤“­¬ð»»ÕVtÝáÚo;ØV°)±9C±)‚ˆîûÞa;E‰†)™“°×ï~¾~žFÃÆ/# Gb¦4´ævj–/¡ÝŠåù€Ý‹þʙŵ‹;G-–)E¼@žL<³‡hÄ{“[š‡]ìc…ÄvgÀý¶Û;™?(á‘«Ã^lg-g¶pVîcNÔ†@üÇP#”Ø ©—¡6¯->)¬ZÉjcÈ9Ú‘mD$skM{šº…(–ýÕ>ö7…(â½Tx™û¹NçË V]9ƒ|(—Ã7cŸòŽ;«ŸÂcD¡þc3±t6íd#yɪà?á?&â?Fп=æO•§1Á¯¢óÔ2ƒqmÄ/ !w˜‹Z5ž^ î”Æ·SÀ½ð~%tlÊþ:cz.Á¡K¡~ð õuQí‚™œÎ5$CÉ¬É æâ?þ4>2ÿ|W¶ T%ŒùlþéoÅe–&¦8ÍiHâ“ÿý‰þ%u\ú_õbîCØàyÌÜ€~7—öVðìàí¯9\åI÷ P-5Z&A)}‘gÙ] VQ/‡ÿm©‡ROòËš–Îæ«àSº21+¶ë"ÌT#ø³Ù qqôîñ1?õ¾é¯Bƒ½¡gBFÕüê¹Zª{’e5Å/ Ão¤Ä†î`x3X–òT뽡²f÷.œRTÔ‘ìÝž'2Á¼m½B=Iõ³;èvO‘ž¿]É?ò€¨mqNÌû»çŠì.o~‚Üf÷þ‰‘‰À @ö±ËÁ²Žçþ 5 ïP^b‚{ªˆÞ®â4صÞè=šÛDä1}\9ѧ¡¾$#?«xäË}‚Øí7;êbw÷ä'̵ԟWæ´ÏÂxÉ—:Ÿû&µ7«¨¼ÄÓhåÊ ÿñVw"„OTµ;Ý´’»îeƒÅ*AÌNmýWüÇ'£€éÛyæ ÓÐÿ·øUxæò¥²¶ZÙEKñˆY³žÆJ†YÚ”äóãFqugCë,D;akÓ7¹§ì¾ ÿñÔs>BòEb±Ÿxr3 ÆÕ‘ge ª÷’OWE9yÿ‘ØsBþ§[ÑÉôÝ´v¡¼iL¦°Ö.EÂÔ!^ƒaY‡âø ñþ@º¢ä ‘þ*Š8Æü,Ô},Ù‰ç8 ¦óªIåùliAæ×FÄv3-ÃÀîãêŽ#]ɘû'ÓŠOV?ð«2XŠud …ñÜí¹®Ôøˆ::2ëxæñU¥Ö-+Öy÷þŠÞ®6 Ë*^ìŸøóØÖ-º´cãàž¶à?î¢ß Çüj¼Ã(Pa°€ê²ñàM.j>"‘WœG/vþÆ æ¾ÓüÇßéÞl¹ì¾°F¡Ñ§M%Ò€Åï ÿĦ?¸Ð30¡=®úh£2ê¢ì0Xs˜öGø¯£äØ£…Ãpúþ3S&'k{FüÔÿ»ß¾…WësRDélr:˜å¡t?<¥z0¿ö¤*«Z L'|¯Þa§?ùÁ¯ÍÌ¿A‡{ó™õUi5uâ&5•ºø—:ýÚ€ÿ‡{ZDzêBŠ =‹ wSiؽízNeÇÞäÙÜ0ó©uŸ·4Œêo7Õ©ð®× ¼)*üû(*ÎËaOÓï0k¿ŽçÎ뚉î©+§ 7>x.÷&ýó\ïÓKØØ¥’Ä—aþ“Ú…±øƒ˜—Ò“*É”®pî¬h®RãŸÒ0?ê0ÜHXr15spñ¬8­iTKÛïüÚub‚üƒ÷` Ñç2y‡š‹\Ù1ú_-Ô¦»üþ÷y²?`Qòƒ_5¢þüˆ>µX'ê§÷%ýK|è»rM½ÒŸðká¸wÎD·t¼Ùû<ùÇeú·Oµ8ïS8Ssä ½ÓU þü e–ÓM%²û¨{SJ:u—¦ßp)ô»É?fÉþØžkvreËíž+þï}ñˆúAߌãœQ¥íÿîÓ?g¨¨ØnU¥ÿÕ3Óa›ü*ÐwX¯èê{ä—–=m ÷À§þ¼ 8½Kd°V›+Å4ÙM,K`ä}Ï[HN*yΑixFà;^Ê~f|k³,DË¢8þ#«H¢+oÉü/â–þ¸vpˆêåìS>â½ÚE&ò¥å`‡úÁÔDà?òƒ`æ§î8¬ªBrÏQ“qpNÚØÚW²p°þãŠQ•¾„é祈½×»åÆzäÇVtጽÃΆÁæÇ VŸNîÔ*XÍÙ« –j$~ã&¼„30%¾(5üçU(} 6èÈVd¨þ|Vmú•¬6F›Ÿe<µ‡ûF¼‰yäuðMÀƒÏr­CÑESë°ÌWàg`›×€Ï•¿ 3'“ÚÌ&nF¨ÉÄùûø©NXüŒàɉÞÓå&<ܽ¨äTÅØŸ¤_ÆbŽü£)¾ã9úY×°¥‚äIÞT¼„‡ö_›J =’ÎÿN‡ ߺ‘W¦ >ña„œ‹Éäõuzk÷|¬é]æŠÜdoµ™¥tQ²=ómtbªûÒw êzøóÑ eÈ—ëá?zb–³^gTféðq=Á­Ò1Áv68ÖrX–~h— SÙÞÿñ‚5íûk¹À³¹ÑôO|`—F›1œùQý©‡Š§–¡R~„†¡—> ï¹:ã?®ÀW¸àNә졾¯[pÛà?r6c ð¯ï¹Þ!æqa2K­ïÐIõ†3œ‰ýð]{`:nãÉ·íÃkÎÕŸôzïFÁò?-<Å;RÄΊÜ·~ÐÇ\C][üÇ|NýVy—i†M\¸'ÀR]ŸÍ}Í}ÉÕÜý7SDbÝtç>ÖÏ9õ[åÞñû¨?ˆÃ¼E±ë[ÉýÞhüÿÑÿÊÁ¯¼­’¢õçNwœ%F+°Э*qUežÇìï‹óÆÐoõƒE‰»³Û3ÄK:&N1'ˆšøib+ýwÿñ÷÷ƒûMjqÿ±Mf‡AŽm7—>èLY[eVêx¼E3øl"—ç„üO«547™·P_&.¯Ó±\Ü©ùÈ.wÁìÅfÜ–9èÐC&—!ш¹õTŸ>Æ{ì÷w¦w$¦¿Žþª–Ô¥ªÓ¿Ä€¥{+ëë?îiÈØæQßòÚ¦_,g¼(ïRaò®0´¯°ôIÔF|rNj=ð«€sŠ^yg+ G3<ãYþrÌ3½¨þèÚY-­8C ®ˆùÇðn•ƒT6Ü5Æ3?*HW P°Í<§~°>üI;øÛ:ôßmHϯdvÇñs°Ï[Qô&ÿ<™äfEQU˜­úq÷÷a€1凎ƛùµOP*5…«8Šÿ˜B’Nö ,n~ þ£ýK¦ËÍdg#ALbÃ쬧ke'§+ ô™çš%ÕTjœÃG-Äoüï[‰ v˜¾hÉ÷;¸˜n(£¸S1È&ð÷òù¨µ8ÆÄ¨ðL&I?Á"p½Uuq½ÿ¡Qu­ÂB¯Ã3ÿÍüÚ€ý¯â[—e4ò¸ø·Öä4cÁø¦£mJBþñaé¼Ô\§z¾óÏ—Ã!;½¶Î`›û©øà•gé.ä÷Ù.±>ËÆd «ß &â†}Qõ¤Ú9;v»cýlúA­gúÑ!ôRåàiÊÁEüF‡®³jZëÁðãü­×YÆ©xL6Ú,røÕtêÙë.`l˜˜žy½C˜»SµÕ]WøÌÆäy3AÃ^¢hÿð­bÞgô2»•TìÚœ²¦¨ë¯¨ýôow4Ïí°Çmð$¥á†ºÚéº} ßsO: Àzʯéá?¾Hßþ%]ÍÃÖ#»2ºÞv#=õþ°¸JÔk$¡¿ú9´ ÅÝ÷©F|Í߉}¶QÍnÖ½Q‡´Gé6–ø#ý}ýG_æ7Ä`…xßß+O’˜ù%Ðï¶ÿºÄœ“ü[<+¯kº~¯w£ËÂv‰¨ð?UT³ Ýçqÿ1ýÕ:ðo/Þ]ÐM÷i*ë÷èk0Rºjºj»·¸_¹j€‘Vqø¤ß\© ¹š°D9‘æ{Û”Ïàõÿ/ýd42C{NÂ𫸞ßýÚçÆ7/QQ±Ö*.š ÃjÍ*KŒ¬ WU¬9Lîˆl^û¥åv“ìãž‚ Ãï,Û`NE§°@,Û¨H|ÿKëÅ(CìC25¸{%ê/ÈéfëŸO~˜·”*Ø^ß?ð7s‰y_œ~ŒíkNt^‹÷¥¤]E^$Ê=ˆÃ÷—ÈHèºBâã,±›úÁè›ð>¯Ç.Ä^?åD|ÇzeGRÕ˜ ›Ön¬ÿ¸`$™Ý&¿ÈwÌŽ>ÇW}z%NfNí'¬v*,tVlßB´ÑƒDÀ87àMílå`?ýxSn€+DžIù¹Tp¤Ó‰ÓcÂìÅÞ/†ç ËPjþÆAöO\lLfþGr>¿žf#Š€Oò¾ÞC=Õ#~í §ú Ÿáƒï\‡eÞ‰w§æÊ "A g2™H4"ÛHBÿ’ldƒ'ðºÕAN`cOÚGè_òþ£.¹Âv6û½p(üG`ý¯†÷°ø{ðóØ…‹üéÿhÿÑö;ž¸2•8'¹êÑäH™Èì¶±M#O:n¯¤ÿîŽ7nýK¦ò3)P¬æN]åþdµt¼JÌ,¤©Ì˜È¾VAÔK°¥ŸQšmÂ+Ÿ&[Y# Y8À§¶œ¨¤W»Œ eú‹ç1¬);Õë2sâÎ JtƒÏÊGýàbüGz°ûÛt¨ ð1ýëm·[QÈ®N‚Á¦Â#•&÷uÁ,ÌÒŨÿè~õtÇ‹úcì°þ£:ÀV¨moÃæ8J‰^·_•séÍeÒoõƒ˜²5D­°o ÖíuOò® E7ÐÝŽ¥Ö¥ÕŽ·ñÃíˆîWÀ§ÄÓÿ œòö£5Ù >€˜ÚQ­U§v¦L»E¦ç}M_AæF¢â8š&ºýw'1ÿãyÏ vïEîMŰ}ŸÈhú—ܵ+ ëíFÿ«]vcy¿”œ—,èkß²¯¼° ‡ÑœÆH·›á cëÄ¿á?ž±í?ÿmð«±È?~Â÷רæôW³¬Â¢1ýwÛ°æ4£„•Ùja-‡­H`÷ý«!øj/ýKN’Ó•C‰WÖ¾,âŠÖ0ô»Ãä ‰Ö30L#è…S‰“¶Óÿ*Ö®5Ó9L»þã2õƒÉé”Ûl(w°¶ôûê=Í}æCñœý9(P[,X]5Œ­œ¼Ž•rú—$§þc« Qþ‘Œþ%·`?a‰/ã¿!–nÃ{ýÏáôßM¤~Çî%†‚ù燌ÔÌÿX$ŸÊ„ÄÞÛ8[Åá?J~ÃoŠ¡¡Ù†ZÈ=þÒÞ%2zž}à÷®U‚Ìc ãÞÍ «T?QÙ_XEI|ƒnó£ê±»²x¸·°k‡°he¨E©Mìöcƒ—Ñ•Îá]Ê{6ƒî:;é‘Ñ= Ø;‹ž(]\3Üë™?˜Ï]ϵúÁôn££ºžÛ+ð6ýxÃ߃úWê?nÀø¾w™Fèëg\_È~ …Â<Šõ—•\4ÂrئuF:+›UýU8+§y2dËüço4†Ñ?±9C1ÞÜ "‰HiÍ27R§¹Œúóåô/ L“ôGÞ`8‡èŸxµ38FoØ7*,S¡®0ì¼"›ç„½Ž··Å<->w¸é‰78©’ZÄ™(( Çñâ¿äx¨Ù2µL'#„`E7øÙuxüÛħgØÝGÎQØó¯0­ˆ,²©šöC‡Uc‡ ÿ•·‘¤k1ýèúÁ DI¥A‰rS}>û÷´Åé•°½Ô¨`¯y¤• ­+Ñó=‡àêâ“Ǧ*w&V/,v̺Š{ñl¬±]V¶3ïqûÖ1ðĆòTÓg$‰®O®…²ûõÊFèw€@ÝæOw€÷8Qùð+ßê»t!3—hÈ=J Sáô.=ÿQë=ÆÙNO܉â!µ_µˆÃÏ“kÍæ’äÅ¡Þd{ þ£“ñÒ,·ó†;ÅcqesȈFÃâ¶ÆŽ„#?êþ`¥'¨]nµ Û»—k¿BL¹C1}­Õ÷®±È1ÄNÿ«³ ?÷ðÑVµ˜Ùq ýîWSáwy`+êâ‰SÒ~öy-#cÈ<NNtfÕdÆC¦%?Z .åÌ£Cïó(Úéßžü£Ñï>²“ô¬¿‘\ —º2|+>žÚ;@ÿöù–Á3½ú—Dª Û+5‘™%Á¯:лý3l°Šã?ªR?ØœŽ.õXï ÷À‡è£³øËßÊ4tu¹JŒÑ¯½Ó~~5üj˜J­Q—žšŠø£A询P-~kß-ÙC•f¹—úGÆð¬·‘wl;ëMNÛœücŒÁz—é¿–‰º³ñ½ÀÃJ3qv*× ì·5Öy ÙBúUí&ÿˆƒfÀ·þ¼þã6Qž¡úØ-ôòãÔŸÇq­‚cØ¿ð¶Bã?öë“T™DtÁïæÂc*´Ð7©ÿhᇑêÆ¢29ôlû¶J— Ô« +ŒBev„:•0éUÁ³²ÑŸÑ`J{4ÐÅxú§õ2hJYpÌ–LPùq–O™“ÄrüÇ2,ÔXê?næ¼À×.ÔžgkMdþyJw2wuüGwrW;Wiæ–\7Þ޾Ÿs*ÿ•ùQϘøáÛ+ú‘Qù_…1~Óï&¡~дªr–I©>¯JNò™UÏþ¸]!úõüÇÐñ¦X„N iDBk8á$¹T,Ĩ_äÏ‹‰ûd‡eA´=ìîØ×ð>T(æ¦ÏHiÛ™ƒíõ}ãÕÍýæUñdI‚õÆÞ×#ÿ(mG°ÒÞ ÙQÇN§,§Ÿœ<è‹'vRéR†õöc÷Öpb¨ÆXëð-l‹þ€•±{°¸IíŽÁâWwŒŒà\“éGOwyµ‹}U‚Ñ/þ4žæ ë'P»ALÑ b‡«ßíkåÉoJÞq’ÓŸ{›kVĬcÈ?¢ªÙàEgÀ¢*GÜÿÑÁ¼ÄÅ®0Ƙpf! ±{tøø&\ã "Íuä}èßþ÷À‰é©$ïy‹ÅÝ$ ß ÙwéTfÑ|+{HL³‹sÒˆ»tŽ,nþcx£PîbhÝhbÅôø«pJ>ø¡Ìƒ•Œè¾'è©Vã ‡óû–0ðoñëõíô¨kbIcP/±‡ÏÛi/"Šø`ï'~ÒïnEµ†MåùÝï†ìWËÜKÿ«MôOl­wÔ}˨ÿøÍªIýà'ªχl™ÿü­MßêÏëÁ¤#Nz!ŠxÖTs#·Ro·ä[µ’…³Šë<”µw©e*ïÉ¿Ì0¦è8^Nb^_!0æ |ÝFæfó’xÞ6"º«Þ XÕ`ÊPîMŒy;™ª• 2ý?¾„¿ï~µ¼©ÿpº¤"÷Â+íÂ^AYô›ú Ë\EpbÎ]t»S°þã–›J‘Å\Ó{ θ,ÙK!*—ƒtÿƒ­ŽÿO· û8IÄÙýmß ²2Ù¦ZýÜI|ØTÅ ”RÐÛ0?GØ÷­'¬XÿÑ;H¦ë9õç/d,>¿6ïÞòÉÖÇ·cªFfIøà<ç°Î»ðWgÈË—Ó?10M`T3¿(c›äN?–£Xg§“C:îáG2¡}Ô:j©ŠäËy&Sȸ2 Œ‹JÖu(ÿ1•9ôãäz´o‹ˆ{3ÁgÏ #jG!7ˆ‡ní¨]jbï)ª3ÜzA¼ËAv¸€{s—Ï:hnpã3p±f‚o*Ú"ê>ØöI°¶Mè¯4Ýù£¿*¨ÏÐÿ*nm´N¿õ‰ð Ô^M–ðF¶°÷–(wÆÓgñŠZDæ3ü*ùÇ*ò4ýúÚƒ_-"Þ©·S¯‘þã²úΘo}"@ÿÝõä½¹W‚ücOò0LðtzŽä¤âºýc_PýÁ< <\f:ŸÀŠ»Ñ}Å¿mD5Àn+œ /ßúÉôxr§›}"‹¬6“~¾­A×R髸4ðËéç;žÝ¦sÝ£Š½)wvë%Ò¯ðO¤/ »È¨gv$£m¦®0?ªø•›ùQ—À©"¹ªÀ(Ó‰‚m>êšÂ”ðFTr ‚]8JþÑ6e¼Å{2.ßn´ÌkÖ »<áp»Žnúàe/Qð‘9™ˆx ýnAâýƒøËœ®ƒøIŸßåºë ¡â rÇ,²¹ôín4šùÕ’3WÂ^k¿P·¨µJBdüYG”[^Ô7.¥›LS*J²’q|7 øU}ƒhð"?WžNB=ýÌÚ‰~w,™ø&ô3È(.ë*ôs¡évÒâo¼Z_곸£á?6¨ìîè¬^‚¾ÁÖÊ^¼9÷9Y.ùoÌ?GÇ_Æü*lHXçÂ÷„÷U(2ä˜ôºÊ'šŠ¯f[VÙg½ªn-„ÿˆñ‹þc±1V  èF~ØÛ-"¾ˆoÍ6çÐ'f&õë¨(ñÅKƒÛ™óçåµHÔVÉ‚ã&}šâ[Þ²’Kß~:m°µØß?§õçwDx¸èÐäƒà?ú€ ä†9¾ðí :Ô˜ ð¸2‡Ÿž¢Aï1š8 î°œŸ½°÷ÐIµÀ+ÝÆTÂ>JUÞ¾.c;Ÿþã‚QÖÍÌðgÒé7qŽÞ“ùñg…ÙY?;»ºNŽ{šÜmç®K ¥üîu UN§/JÕ‹¼-n˜èäX7ügU‚õ¦2Âs$ᙆþ©:ù»~ðóõ=c†ù^fþ#1l|òÖpÂSà?¼í¬0¯5ÕKüÇ)bëu`bkð¡ña“³ÊŸg0«“„kÚÈõ"{«Ž•™üò4wñ„èIÓµ1 GiÕ^v=_$/,g¶â?á¨-:ç´f73$&¢‰èEŒP;"ñ Á¯Ö~ÃHÜDÚ+Á¯vqG¼qµ8dîösΗ׬©àWe@*Ö¡¹ªŽ_ÿˆ…í¯ÈüÚÛÔbG§Å ØŠ´0àÕÑúdvX õ†ÿfá?|£Ýï çbÞlzpÍLØÜ}ü;ìi2ü¹©g©yè¯lXÚ.ÌœN¿ôȬ¿ðm“æÏS Ýižõ÷^°Bqv/“¿%e‡%ÁøÞ©Áz‰.†ÿè ü”Yz÷°Îc˜'’NÚ™UL–À¿›•:ÓŽæGý)³Ñ1å<üZc°Í]øõzþ£·J¦C»W¹¸îèsDûýUwþ»›ðà ÉeÞ‘Ÿ|T}Õe?óÏP?8ž3ÖD=ådü®š€…Ò—©Kq¹êÁÑô…ÿƒÿ¸ Ï_‹ì¨=‘‹+c8•aÈ"‘ͽ’#uÅAw»^÷‚늚yžºek&•óÜ¿væ¡x‹q¦Ü:!šq­ËºËà u=EW{‹þ‰5À¯ÎÂú ¤ÛpK°«(Ä^^„ÿ€+UÍéZðcƒWÍùœ½òpç­È(ÊǺ‚{å Ýú@×Éf®!îËä)á?¨ŒÐûÝ]™t8×]Îßø2 /ìgbáÿ‹¿†17}g@Ü¿ ï¹O¿¶Ðæ3:ýwKPù+-‡?_bäÁ4‚ÿeEþÅúÕÆüGÔ2é9çÛ™?Ú ÿ1™ùç Ä.ô»Í„zÇ•…Sß¶OVÆ.÷£Éyp–¼ðåÐæ¥–Á5òˆ€5[¯VÀS!°(T-¸”/vMtYá?îÁП#²OŠ}œ'ãÓ³3$5*NýùMY [éC$¾Ü¯¶€›¿!®ý‚½øÌ¯å©X‰E ™Ìîlþqü*Æ·þ% æq~¢îDÝmì"D¹kA„¶¡DêM¤Såi@;ðšÇX™`³ûE ä;ûùd.¡¾`™OóN¬ 3¿ô­£Væ×å?è?O¥€Øæ`µ˜TÆ·"gØbWQ[©¢­G_©d‡àÍ×à–ñu,¢ñÜÖd2S‰ª \ñÔ|"AoøìzÜ÷ÌØÄW¼…GEñ$¾"üÑ>ìÝ2'§ÿ•3Cã@ þc´!™¼ „i%ˆUTlÍžBgìu3Ъ×DŽuð¿û‰æ'¢-E„½—ýMÇ[½„??en pã¶Xä8ôWiQ¨îÆ‹Ýä\¬ÆwŸU é_².Y» P^úsg~ÔS<åøß—øÕô¾Éà-ÌÁüÁÄDS9@›|@ĦpZFS›—_1Zçdž*×^~:3øØ2º·g%K9›1þ#«}„·Óï·XáÉ–÷ƒÈçÄ•Á ò…:2?1ß›ÕÕ n¦<ü¹ƒÀ õë=!ÃÙþ§p:ùþ3€çš‰«åª;°Z¹ªÜî˜ÔŸÁ³Üà'6SÿQš³^½Ïàýþ_þúÔ(f¦ñÜ™øäžßýÚçjæGE´v[¥Ew°¦?Ye«‘Í*ÿ1ß2­|¿Ø¿ä Ñ^Ü•mñÈ9ùoþÃm-eÎco¹þ|µ|óÝ쳜pªž÷£¿ºBTÙîÿ‘Ëò"îÏ cËf2´]:X,çûçüFýàØ”K`ljžÙŒÂ:óϧðF¢±Ä2Ï%ÿ(ã'¦ zŸ¬³â4ÑÇS8ãµä ïùÿ¬úQ[²‘Hh5žÈ(pqìÁÁúûFvNö4ùD†ÅF›QЍ;¨ÿìß,^ âõøäyäcÁϯn¥ÄstÅÖœÇBGÅr$Áâ‡FÓ»úçwbvè²&U0m‚Ôïn0þ4?È4ðuá)1ü#âÕWqþíµT¬ÔF>ï2ùǼÀ|ôO«¨Ì L¿›ÒÌ+ À^'RÎ<Çž·à¤dçg²ö º@ßë©L\¿ï7*1u4axúGñýŒGÌÿX7X;øÕR¼Q_”­ˆC56é7ª^ö‚±BZ\mÍÛ‰7=Éš ÿá;íîû“¾lµ—³É`va/øÐb‹cdiÇ@¬¢b³¦ºLfÈy©D÷ËØ¥&O:B}Ìm9•Cc™\Ö=j_Û‘ÏÌ…9nxÙžE´…übŒÎO'ŽztÏðA-œL‡Ò»ðqYá®+“Ž…ññøÌ þÞëC– *yç–éÊwK8˜ŽKé2ŽÊŠOXÃót—ZAÿÄ"ôo/І žëþc§h€hâo½©2%Н³àWýÑøØa§ÀtW)õe×Lús=ÐÞÔLT-°¥7ÁsŸ‚î…Ño཯H߇Œúðç ñªO¨ j­ÈhöµV§IMú_-CçÖU|hªë݉þ„S\ÿàS;‘+°»à´…ìYžWn’yÚzB÷€çÄLÍt»¥|m{©<ðÛ¨°_¥7¹â1?j?õ„©áÏ_Ñà¾Þ¥;E4§åZ¸«Xò?ý‡ÑGéûü¨¹ðúY©NI¬c¹+pÇZÀj=$ƒ™áª~u•õ{3µgjb>6ç]¾B¶Põpm¢Žðþ#’çw?¾²_#›_MEþ‘‹þ%ᬬ²Èˆf¥¤d)ݪ"9Õ4ðÕo£„ÉûÛû×Þž%l‘„ùç‹ÄD¹ÿ±Áº$Køz½ÄeÖÙŠÉ Ü¤ uÈméµ[V·?ˆ¸rè·üÃ×¾Æ÷ïÖ¦’÷•xL祘ª3UÅçÐÕÌ-£N:D ‘ÜiÝë…(ÿxií`(œþí;±‚Oˆu뢾28· Aµ®sâÞËè°Qì*Áú‡?OLõ¢A¬Ó´5;±g*2ív°HÔm8ºÄä i±¢óÉZŠà¢…1V*XˆÆDïw°W?AÍ7øC!2ò10Ùwþ ƒUeój·o»1Ð4aa¶à²pö± ².y•(|¯4ÈyüÇ:2šGäaN¾sÎ"ók¿²b3·¨Å½ræ¹'â)ÅU…ÿ8Í=\aOMÄ=,Yø=p×N­_8˜ ¯r„}#ÿ1‹ùƒ£ävøŠ• èÉñ3àf:ãsëâÕ4VY;96j9S[±•Ha wâ žî/ê?VØá)«›È› ¤=wêÖz'¾{ŸúM‡¥§Ålü’°Óåun4­øæ2Â)=‚¿-?ý4K u¹3ý|炨ÐÛ¿„è86üÇ|¡ÈX™±Ìÿ˜Epfx¡[0èÉ>Ëpöº›úÝâ6+1Á#b”B¬X ËÿEÍ–FRq©³8Ä,WG¿Ûš •Êô/9@ð݆æ5Uí8 =Äë9þ£ U —즰ô S[Aššé!*¾ŽäM¾pþ¼‡žLýdö9¿\}Ãò –ý–ôí‚qÀøÝÉÛUK½ÁVèÜâFÍú'}AjéÝÄó½á(rÂ7LE!¶ŒßqI}/4ŒÝ{ÈURÌàô\nwæ<¥ÑRÚu.z$d?kÊüôÌ?§K:ü¹vt}ÁÞï%[2˜"¸Q7„CA…ælÞšÁôßõÕR:}”l"ÆRø£K*£ŒkgfjasX£x8 {¾ÞÕÖâ$×{ëä7P ¿$ÚŠ"2öá(Ñ’¯~׋¾}ew|ÇX"P*at]úq5 ³zM²‡ª”œî‹îRäH™PÝ™¾_Q!œåÍ;&çá+Ã=EýWôWOðõ.ÏIxh5ƒ«ð<–_$4¶êã?¬oóW¹éžX ý•mEûEþ㥱ˆùƒ#xc*€À,ç¬{ÔŸÀ̃Å&Ëûë? “1ô…9-ÁûžóÛüó¾æ'ó„,nþ<²ý›¨ì¹.Íßo[™«Í›â+oÊlROâÀ:j<‘wCù1¦…ñÈQ{Ë´2½ Ê’ú]06z²K2 ‡Ón_Û‹rô9Èû{ò„ƪ´}ü#‘ç`ýÇ?Fzú7NEòÑ.S™,Ûd?;¸ú¢äGa öâSÚ“åÔ§‹Q”`®¹U|ÉÉ?î€S…†‰NŒíOž1Œ=4ÈÝiâê=  ·9ûÕìD²Uó÷Pÿ¦ooO*2õì²4Wí¶àE¹™Ò\=…¼Ê¿XmY*ÔH„È.£™iEC Nrû.±b/ûr þc¬CŒ”[¸ëóT{¢÷Ðjöáÿ÷àQdÛ×wUS§ªqwgpgpÜÝÝÝÝÝÜ-8nÁÝÝÝÝÝÂû«péá&ùß½ž™tšäô)Û²ÖÚ{Â? F”«‡¯ÿƒOŠ Š‚‰-%ZœIî´‹.bûôþ/)¯; äDâþøð)±7± »8oßùQèAƒ®ÞËUvê?Öb_™1ñN©0™¡¦Òû&°–£ŠñR¦àjf&ÃØLÿ’)Ä=Ûl-QÝè xÕªæîAEEKà—rÂÇ¿-óACôšÊ‘=æG½3’Q\Àd ã*­šPÖî± Ñ™¶?šÑh®ÃðÓmPÃVf‡WTÔ¯ÝùÜGô^î_OÔpMòÉ(pFç@[£Æo^¥þc½Jš 1>N*=ýKúØCQ‹µ#¦¾…Rª%Øâ|õ”~¿>ät'¤Ÿÿ¤VJŸE¯°¿ñºõÉS¦ÈTÌ?ßaUÇ:'ŪnÿOÅüÚeü-G=úb¸†pì´3HXr¥XœÍŠæ0÷£_ byž¤Qf-«Ž¹^>âÜ5‚ãIHÿ]k¶ÂåaŸdþ`R{‹õŠ.+Âö¦óJ.Ž82|Ê'3’, «¸·öþXr|Wž2¡™ÄºLÇ]OrÀø³]T~ÌeêÓ|ÜHŽvìL{8wྦྷ°>‰™Š•×ÜïÎ?ž¢ :';qÇ#"ñ–ó¬L®èÌÿØo½¡ûûú…õrMc"HEj_2ÿ#Ç^Ä Cýùó”œÊ>.Óà½ðëØâ>ôÿü ½®žÞ}f®ƒf‡ˆÿnKõ)Ð_¥D$_ýÕ2­ªÑܨk¬gþ Òüîƒ|ÿÖZ”µQœ¤pªÃD<‘×X£ŸóäTú_Ý¡#Jèð«?…7k­•™PtÕ4GP_×J/CÿÄšä‘èNðý•ŸÂ"È-ýëÍRÔìûayïÔÁ*4Tƒ±ÐYåclÄ1´Sá±bSeDô»ÏþÝBÿú·ˆâ´x#ë“/xb5½A£ØÑAìÞp|]Z8€Õ<íÈk™#Åž_æG2ÚÈ霫t*_sÿ}›xšù€I©Qže¿¦vü4lzˬéÄlU™ZŒ®j÷Nn÷3ùc¯é™ÿQ˜h%êØd13¸*³ÑZ屯¨ Ô|·Š‚j·¡žb X’Ïl SéªâCÐDÀïÏFð« ä0_ȸ& ì#’„í+LÇÅ`îïð!ÛìNL¸ªHÿ’Cø_¼ŽOž¥M´F€õ†Jë5OEC8¢ëà: PÚ6±þACìè¯âÑaeн˜ªŠQV|æ\u€=oKýÇIúïÞ%sØãOkr@k¨/IlÃY© ÒW0—r”éù’ÄêJ½ßò™òÔŸO&ØMýù0¢û=xš1¬æîVe4=Ý;üê1ú«oqi«-µ½aᤆ€Ñý #³_ž ýÕiŽ™Î\V\âû¼ëD]©gg¦—… ¥uÜÇ;’þWa¸×+pçÝFßÿŽÙNwí:ôF½½3¿¶ õ)™Ðï ïŠ¢;@\ë!w×aòì œóÂf·ÿ8‹?š*«“ÍL&bš'[Y\—èÌrÀzmÝfžU{ºk¥ëWW:ßsåÁWUƯ\%C?/G²³œ­•ÿþ#¬^[÷›aúNk®GvŸ'÷Ñ‹8ÔE„ÿ(ætŽðU›¯ÔŠ ŒfÆãøUèêÏOQÿñ€¼µÑ|}¦e&ÉŒƒØí9’éâ¥Þ¡Úg±k+¯ Êr\–Ðó×ðPwDÙò‡ø#D+vÕÏÐÿ/Öà 6¯*ˆU=õ79i*ºê 6ƒz<†e'c‚`…¤f2ªØ‹ÿ¨ƒÕÛ "²ûç(k_ï‡A¥ñ™L$?ýKt0¬÷²Z°ùÇ1-Vy…ü,MžÐ…f^<È Îã`ìg^õOˆ…=MÌ÷ãð}EÑ`޹—Q‘L«>?‚hÇÂZ&Á»ÅÅŠ A-õ•'òǼhx-þ(9ùGÝoPÀgý?Éhê9Z0¦„ôOlHtÏq vª'–ú3ÛFXOö;ŽkõÖœ~”V;>õç%ˆw?ó—#ÿXV…suÕŒn·P ‰°Ì•ÁqÖ`»{m§¦b8>;¨ùQ}´èw£GrÔ´Nf5‹ã‰ýïÛŽºáœf:º‹Œ"&• ì+¹ZãÉËf™óéåá­Žý.Ñ eº°”äýá6ÎÀÛ¯ãÜ;¯"¢“B=D2ôWeè¿; Äå1Jå1ÿzÖŸEÿÄ®Køó"|^l›­ÈF˜õ­¿‰Ù£Ã¦¤±ç“´dÎîr;·ë9üÇ#rÂ5t[¿Ê{Û­†D Ulk*Þ0œì(+ºw¦~_Ø0x¹@sO¨Ä@y­–Ôö-CG|„º¾T®(±²Âïg¢ ðl×{ò™ˆð0ˆrv∲æ:·ÿ¸¡/‹@rƒÖ!ÆÍh§u-†yb½°Â;>Ò®æºàJè*áêcŸTÙ\uð—)¬ˆöwžæÕøÒppÑÈ?–|Üþ+ß½ÐÚë~ìäcô»AÍz ÉV\äyFYòitàlo¦bZ££±j¿$ú•,âþ™­ÚüG T«©a[7ŠX"3õƒ+ÁV‰íø×¡ÔÇÐóÏE 8 ›:Xž”½uIÿD*—ÅÑ”~îåDàžîÍxÑU÷fþñ9Еçx¤òÄ¡¥yš ˜õåu¬ì!®æ üÇhT]eHŽÙ‡˜_›˵‰8bj§íèl>QßÄÂ;*¬œè¯ ²ˆ»²B°þã°–Œ®R+ä8Âd4y8Ú§²|¹»êä6a†€4ÍŸélý`k#ž£;/qÄ‘±ÕNÿ’Ôtꯊ£PÙVt[A`×)ÍôèwO8_~߬цëפ£§mÀ¶áÅÞIgfà:·¿Æg6Ã#…UÛÈáÎ7ÍeŸGf>Næ rþGz=…¨‚NÍV£y’wàÝûeÃD†ñ˜ŒÿøÖÓ”Ø܃ã‹ÒPÿóœ (ýUGíYàt£éé ´¯ÙƳ-Ç©c+€”B“0šÜ$«ZÅç-cÝEd ÃÅÑ_úïn3FÊY[lýL•d§#g) EÊX˜Y4-Q j 3…pxØ[ìøbíuü²TþÔ¢?Î_Aú—äB‰þÉܬÆI/3—•ÙÕÈîÏ~1ÿã)µ c8âƒd]3|çS…‡¡Šn}Y=Èš´·,3ñ~^ÃôC™s÷¼Ó!#ý³Ã=u'ǘC÷âAvô»Oð"5ìWª­« “Âr2CÆ™µÿQL!¶z+Žü\ð¿øõ•ÖÌ_%Þ7º™„, ÿu‹1™ž­U Qùµ-¸»¼´RÆFC|ŠEÿ«ƒ¿þÊ¿y縶‚ùµN­:ÐŽMâ©ÓhOß2¹Ž~Q'Á¯BÒ›Ðïâ 'ŽŸi%v³ƒ¶~]Oî'à×nFY<ÚtWɸ"`Ó’¿• ]L´;ædbëÑ2?#Ëm&cÎι€K¸¿[¯-ÐcšùØUmp¦õ°)¯‰ºššûÈ”þW“èõš•ÚãÜåku—;uœûpÇêgÈ?šáS{›m,/&ʬÂ[6·/ÛôejïV;%z§Çôl‰`_²¾’+ÅbnÇޏ7þhYUj‹öãO/pW2wûÖIÇ3–NJ挿ð°ïX_¨?ϳÏã?&‘mÅqÑgßvYOP á·þ2{«Z¦—ÛÜзá?*‚èö念òüùa´o+¬˜öBë<³»¹Ž’!U§_—fUv ×ÌMgÅsÄ®›åhìÚAâ”ÿÍü¨—Z+“`ŸiýU£ÿ<_!û…¹|ÙáÊ[ˆNâ‹îxëuZe#¥ÑßXç[?x8dËüë§Nhâ»ìFž\ûøjdDüI¬•§©?bÜ eÿÝÌâ+ ½øˆ¹šÁ|ƒ{«_$÷Ì-_Š…°a­‚¬rþuÓuõíôO|˳÷+عQx94]÷°S§àYuìãXº'&‘!©¹—b·ˆŒRÇÀ®¾âNø„=®eš $>ØÖ°x‚æEò¦„ôõm¬ÿ¸­5çóÇÅ$šÝJ¤|zëÔbéê(YÈjò„>xô®"®û©øõHwfuQé ÁûÜãÌùÈ1äÕ™¥0V¸%(û¬ÿE°« ÎSàÂý›ùçOèßžÖ™¢Áùɰé'Ò˜3x™žI‘T[fÌu£^Œ'¸Žï؃…~à°íÌôÓvúí2Ž^S”$ J¥_>8“-Ü+e¸[Þà>3ÿ|©ÈkÃNW‹AÙÖ{fY|/»àýVùùêí³1H%š j‘˜ÿoù‡,躔1>ɸf/§ÿî^Žù¬9ö=/\ùx+ª}ÔªFÿ¥Ã0õè_²Æ>3Ó®ž‚FMSˆVêuÒˆÆU½ÊÝ– EY%î ~U׬Öt\ììûqéJým«S§RH½zÈš+ñ‹é¾ágOCîB]hJu‰k7n}ýn[ÔÅ‘¬Ô#&¡þ|¨½®|¶ô¬Pf{m#?ŠŠ` "3tŸÁCX¡±Ä9]Èg:€b5¤þ<¼BoXøªÌh_Ft—þ¶sñ˜}¬NÌ©a?„ÿhÍÕCÿ’8tÀJçÏLÕáyŽÂ©¡fk&=NÒ1'þ±>ö}¦µÆNL¿ôûö3ªTnZ>N—_ÛÓê Ö‘üc%GþAü‰.ýç{Ðÿ.ÕK‰I^«hàÅ…­ˆ®’d0[Ég£3Û@ö–ÇÞÂ:ë­ØöLº>æ¡þÜD]¸î1)ˆE>óˆÛ\Ñ׋¥< Û¹"Kñnçé¿Æ5‹þ%Ìt±náåæºŽ¹¸j¢¿Ú­:3±±‹,îËEî²JT§U_Dà{ðç~ÿ“_Ÿ3«Åk}©åÑÓ¸ÏSè>÷›¶‹‰~ÓÊàW±Œ6¬²CK„zw$3mÃYôý¡Zn¿6V¼–m±s…¸[óÒišqV"öJ]®ŒG0*¡Y0¢pâã 9±%sÉ>3è·ôý²ªÙK–— Ñ75¥C´b9ê/‹;àJºjƒ¥÷¡þ| ¬XyéàÂNŸî”Øå2 !™‘¨Ä9ð«*0`§ðGLÁSS•ÿÜm ñ…Uó$¶ãO0Ÿ¶ÁúkZ*,ü"úy%Âò#Ö)kQ”ø¼¯Y“èþvê09ôpì_o³ŸN³<ÉÈ Jîôßý€5O„æ(Ú–H <‹U5X忱òÞxͤêXýžd×ß2]^ÚT= öê6~1¯é‰Gü ~Uì©:‘fM,OU<œží$Þà ¸Ø3=ÓÀS‰ zêDÖ£‰Là|)AšrSÕC>?9»MA…I%¹_Ä&ÿèH§Å`W+È ³á¯œ©LSùåÏTíó£6 :˜²’µÑl¬GÐöª# se¡ù w‘¸&L§[ѲY&W‰Ý¿àW‡èß¾Ž3•ŽücHÍ r™#¨O21*µÔó¨üú‡«"6¶~3™OGâûYj'“ýÐö[-c¼ãŒ÷Ÿƒ"ø2HþksÕƒE­ÅTä9êØRt_ºÂ§å§þ| zN§þü:èÑ }œÐw¸»¯)ñ~O¸’é`!棧 Ò²ÛBM{]:Û*×tû ókßßw§Op3õ•þ ùÌVôãͲ"à[ÊäðçLjá?Ž˜ïÔ^k5üùYöx’~Yé 5™¹°÷UGôDÇá¯Û‘mͧÞþ=õPµÅ_ýàJ­·Þ ÏÛQ="Ro þMfc¶î"VéFl1ýÚ›‚­D×5ÙjO_¬¶èwד)Nf"ü.ü˜‹˜k‰û/Ó/RÿQöo(óg0)ô¾°)õõÝmëk¡]Þ¥\ï}ç×Þ´>¢ßµáA“™1“u?š1dMÙÍ}þúê{Dî´ÂÄd”Iw¡|VLP¦øIg’×5ºEŸ¹ Àúfí±óquâYoÀNòDÆB žm?7x=ðZbe&³‰-‘`P¾£u^`¹ìÕÖ¦}ä¢ÿÕs»¼J «¦«"ºàZpëoA“OÈa ;`$M¸‡ÎÏõÿ“_˜ûyŒ›Z9=ƒû<…îs#Ñ×#µ1Õ¨*ºÃu7e•eðçŒÔ„Ä¡ZðGøþ$ZŸœpÁKàÏsÊ·¿[Äßû¶xWÄÊFeþèÊŸ÷Ì?ðaõ÷f^U‘úgÞY„àW‡µÄԉ̢>2,Vá,vÚáÏ òÄ÷¡~ð U‚j%'’݃—ëlϯÁS_ñ‰“¨KÙKýà4VÏOUJ_,@jô•Sy÷8>$…zÇ¿†il¯_òwtþ_nƒ?¿!ãÃÔ1Ó“FOªÏ9n6ßɇò3'^h çà&ÿ_M^sÎzüyP¹¦®'ù`‹|Èùó÷nål9h箈§yO÷Af Á=x€+.ä’Rÿc’SÕ·—öÖ#÷á=` Ò`kÆÂmu ëJ-^bð+§–|?ª³¡Ø•lèvrì3ÈëN™‹É?k_Ó¿}Ov1âõMðç˜nµ•,m ÛMTý³áWóZ{¨Î+cMÁ¼$Z&züøV™J– t/f¥ÿnF4\©È?ÈÐ ¼5Ç“+$´¼ÔßLô ‹žu<ýÛ—¨œôg\‡ÿH«.Ò§÷LU®Ë9ýP€ÏQÀïÀ¼Æy®¦ê=u$­\üÆ&ç½G}z‚øý©jY—9߈“.‚`-Q›¹›Z‰êÖƒÿÈN½ÃJ?F/¦Q­¦þ£*¦ØÖkМtè•ÇÙ»¬'Ô¦±/}tÅ:¯Œf½wºá+ܪÕÖ'¢@l¦îƒ3µV¨Ú¹ªgØÌL™Æü¨qÔ³ «YJÿÃVÖ(¼SjîÛsO kyƒ¥2™ÿ¸o½IàW:YäW²îzÖt:LíD–•úÈìLdßϼÀаÓ÷™’ –ÿŸòýÕÎLÖÛ ›³—ûxG黄à9(Äy¸«’‚8¤±J¹šÃÈ7Ã|§>å(ØZêgþÍz‡¿K•ØzÂÓ|¤:5‘H*º6ÿÜà6új,$Vö$ÿ˜@åqC» k3³†S¿Œ®÷¥ìf®sTV¢ÉUÙ•™Ü+õ”×ɪOËù\Ý“¦RïDà4?×ÿO~}BÆË}f^j%õÄîïB÷¹Ÿ´Sz,c©QƒÎa ':Ùë—ÁOMaD#Z(û·o…ÿ¸-»-æÅ+‡—è¯Î‹ ò‰˜A5á-ý[¨¶÷ŒÅð«šØçÑädÝ6ö5”©åâûŠ!ìU‘>õçÄe÷ÏÄô]ˆ;ÓM¢˜YL^!»eΆFt1ùGAù»NP¶Žùª,…7ZM_ÃþÎ’ÕÜA¡š…åRU©˜ŽÚ'øÕ9--U“©gqôú‡9{9a©sso6&ÿ¸aîÙƒö°øK'³e°ùG#={Ä}}™Ý™æ?¨¦òµÂ‘‚ÜÃÙ‹æÌœç~3›¬ý[¤ÒKë¯ß“…¨¨È¾6Rù‘ü£ë6#HJåYIõ”¼èe5ÈÐZ8’xðYÿG!rƒ!21¤éo!~nlu†OyÆ<õäLfšÍT?æÂæ<¶†Ÿ›Ã/,iõV7ý=+—´Fôo‚y†6¾¥jÆ4ÍèÖVø“0Ô]ÿ _1µY9ô»«èÐÕ¾¿2ÝAöâ…F-mæúø€öNu?d‹ðŸÑ|DWÝÍ:Ö\³†\κ-ì·viæ;]Ã/zËÌÞøôO¼Oo›:Ân\‘ît³ß„sÉ þøôá‹Fö\T÷£Š` S£ÿUAЫšÔ>dîEòÂx‘DàO÷àgL¦Ʋ>òŒ_C©™×l¡²úëŸx‘þWSäð«~øß5ÔTtÝB«¶Ê:G È*2›®CôçªâêE‡åôßýÓ®D_:€lO%²9ÎmÈÿEÿ«/ÌúÊç¾³^âM⹿s_€½CýGZz%ÖýÉ:²ÊJæÖ1¦QSè2lýVˆVùùC´‰â²lþ’Ÿ¾”o…K¤3¼õ/b£¼€½½hÜÕÄjŸñÄ{¬Á2YÇÑ=Ò¿ý¾Ì¥G0.Ⱥèn+Koü#pÏ¡Ÿ{ øµŽ¾S ®€œ¼'>íEœTæ˜*yyuÿ‘ y61dÞõ/‰FýÇ;xƒ˜ö4õWþßëp…g»1ï¦WÕÍëôÝÈN¿.ÁâWç´T.—að>•È4òÀ̆h@–Ñ®'9^¤¦ºÅ*§yg#µ”^x½°Ê™?T¬]O~õˆ|*ê…{Xòfä}¹8Bk}Z4°Å °j[Ía`M£ðWwéSƒŽ6ÿ1üªŸÜi 8zªå–r4½Ìp ð%ˆæw²F>ЖÉĸùÇJΟ'«nãóæ‹ÓúŠ€7 Þ¨—\J•K6z..V•±„CàÆ²PßWÆŠÏÌT/¬Të0ýKƒñäSo9ƒ^à8Çùi§þ`þщ¼2^è8Yƒ3?êŠZÃ4Ü–T§„g~Ô ð¦'ÖtôW^øäT18}ð›‚Ä=¢Cˆa5SWüõjØLý‡ÌLKuœ´…êŒÖ) }ÖGÑ¿=5SEV sŠA‡©]Düý­¾Ì’/ /p’ë6oµKE&Nãÿ˜¡_&ÿ(ÈûƒÌFðä^´]õP\%²§­FûõnDWjvùäé-‘o®z扬„…ù"JJ?½r+ð+ ¸(gвžÓ¦¦j¤Þ¬;,O²·UT`¦Å¿¥³·‚3ÍeþGð+ UÆŠtäÛ9èðùó–9¨o¿êÈ<‘<øUFúqµA»»Eõn¼Rð«•vq8©{Ìÿˆj§¦qû wà19‚{~-yz¹îç‚ÿů¯´žz÷u—i ¡ãü¶þ#»±Äh"Zˆø†£ÎؤÕ7ÊýL›5õË~?‚WµeÌøjœ‡§ô‹ˆ ûô0r£<#¼ÄeãI(q¶Ô‚þ t.¨NÖ0‚þ‚aÌ"L+y"Ë1ƒ/ˆhÖÙÝçáßm°®¾AJÿ«¨¥ZÍú€ÑÎ"Ò,-Ÿs?Å>eäÝyL,¢úÁäbJ‚ð2»ˆP‚[‰ê:Ôzø\ª<ˆ}bVMhV ÖÐJ‚t-„ÿƒí<³\–ºÑtlÏ;X‡Ø0Á9À^<Ù}‘?˜cîbE74´ÿ8V\bî?ðH‰ÁšÇà |ªzóþvê´ß²æ_faúïûÍé[ÿ…(þ(>#;þ!.õÍðb{‰Ç^€©µ†ÿø@v˜¸x=á?â«utðëmá·t8=¶¨ Š“@M¤ææç®~äòg.ÂTä_À¢*û¯æºL‡ÃIÍyTÄðƒðý´¯Æð+Ç4¡ KNYŸ›’ØûX²‡QD×áð‹xf‚_­‘˜Iý¹ŸZôÇÏ£¿š+VÄÊ‹,è*ÑËV[F<ŸÌº„M1í´ðûͬbÄä¥È»R#Ñǃ,dʽ̮K9îUÎþh-|ün|æKóoº&€="¤ƒÿm¯&ÉŒ=žûñ'\Êe’ÑÊÀÂlG5èwîx6$Ý5ôfÉèÚXE6M§’ÎÊŠ‡Hg¨Ìÿ8K‡à³Ì,o{?õ¼i÷ϳ¡¨`½ž2+™Þ9ò[gþà<ó–ÚÁz­¬6àWïÈ2™Ïm:ÀÓ‹ŸÕI5d­Wðëߨ³¸*ýô™ûÀ¯¦ƒ¬µWçÁ̪©¨ëÿ„§J—Ž©˨üKCWó­(†Y=¨¥©o'ÁoôãüÅ!W Ë_ÔeîÃ]Bý`T>-Œêdv°VšõˆþRõññÑï²¼í.ázcGp%£oÉ3T¼‘P7EmÒtm-¨\TYJúÍï†~&*™ÂdpŸT8øÆÌ`tM¨@lL•dBÔ³¨ú‹ ¿’~þ3ó“Z•™ul–üŸü£üÇj·ÿx oBå䃸§æ2ÿ<ú«–ÖfzÁï°"¸ Ów—k·ÝÃÕ„:û\T©ä¡;V8ûÏÞn9<à6¨E9Å}Äÿ½´Îþ:î>`ˆšº]D¦®.ƒ±Ñè.zˆ$†ƒ.Â45&ã?¤‘J?ªå¶ƒ_ÝÅ'·Á[7_ˆïF cú«Ýä[Ñ_} eý`ê?rmšEw£'ÆGY€~§dQ³ HÓê’Ë‹ÿ8€Æú:ý™¸‹ÿÐT3üÛsØß‰p­eå1ììNìTlâ$™V–“BpÌÅza“ÕFUQè¬'«ñÿz ~KÕÇ;V%©( KD• ókoj5ÌHÔ¹˜ä%ˆ¼‹‚)½•…°ÿ`ížaec£ŸIÀN7¯Ögv7Ja©g8ü¹ÆµˆF¾üc ÑWpûñ™{àÏoñº“vÚü¶þc²6þ#½Ú––Œ)>;kÏþ¡òWäºöÂó¤Vb$ülz[áÑ–³Ç#æòÀüùNªÙÇ€«š‡»~µöûõxÉ蟸 ,&èPQ¸«Ø¥ñöFX¥íäž2å/ó‹á°XíĮ́¯–³Ád…ÓT z1ÎV­ìðçe˜¾ÿ”ÁzÎOÄ!9K¾Îú —‘úÁ€þc¯¡ðý7ð±á» ©ƒ(nûÓ379œJ[{õƒ³éÂQÝ:O=bE‹9WdˆMQ]¡'Œ7X7¡iÇuÍ¡.ƒ8 3]aÞdþà0j[jÃ_E/•þ|ª=Ô™Èù:ç±9Uì1²õŠ»é‚<ã~VŽÅ®à|´â~m€¶¹—|+ákŠe+°ž!¡]õÕDšîôUlC½/Ô•|k×ÎV1Í‘îõ–ê{(àeßxZéÿnv—›Í*ª4úätv?ß~¾¹\¶ë­Ö•þü>k¿å MÅ µáüyªûfDY‘¾ ?ì ‘l6Y¹fÅ¡[<æGuñkjŸ²îÃó§â &¡L{®õÀÚOÿÝÂÌz†•w"ºte©hnsû;àaKÁZ<¹GçÐQw—•Žùƒ=É>àÝ®SíÑŵ×u–¿™ýH•v%‡ûÉÄÜÄ‹è=×Éñd4à?ÂÊi?7ø_üúžü#ûÌÜÒJû›fºmDaBMuüGCÑ@Äöå?Öj Ñïà½0Æ¿EŃþ”ëÚøó¦\ñ ×—…!23™Û²]æ qÍxÊùçQLõ„m* .”Ëì#—Z&ŸúTr6üB2ä®JÈïÂéŸøØ¾ –~šZ ¦S\> ÎÝ CeùG y-èƒ ðná- ðœHÊ©œ[OVO5À{Ü…ûpP­<ªûŽ‚õ‚ùµ'µêt:ñ&ÎNƒ܉+‚õ(Šmoh'ÊßÂêÛˆüÇ öèKU¿k`Sîoz‚_9±s,õE"­‰hxÛƒãw—ÍEÎ1;ïL&L¦®ãW„?¯¢ÿÎknÒæê±×ap˜Dæ&ê?¾ÉN ”^fWõÌ¡£ræ`lÆ#Ý¡.oÏÓyT­‹dvq×½¿áõ„©?K´[$Æ ö±‚™Œgi'v}!w¡Ad_[¿ Lq.W*1uü_äð ýGWÍÃQ@DÃþ4ÁörUYÍé_Ò äã«¶ùÛE÷«AÄ¥ÙÔ*|ÔRøä;ƒÈ?üØÚ;܆~דòò;³}ñ©&ØŽ´|WžüଵŽü##v¹Ý —«"D÷`Wºªçœ×ñÌŽ ¬‚Ìc`úCèÁ5wÍ—ÿøG¥³~M´R¢vòãdO™èßî {ž‘ZÛÊéeò•ÈVý˜û)wvxØH Vr<7™dMuÒ|§@—¬ (~û2ÿã#ØÐ%ô»Wè·R×Ú3uŸ„`Ð7ª‹üf¿@øÕ`Ÿå°Pñ ûÌsj¥oþÑuîgúz$±Ï1·|$™L_+øÕ4jhj“›e†b«­ºì¿Ú®ÕÐ监Éïák©Þdß‘à‹kƒ7ÅfÕyðç ¨Ñ[Dý`_º|  Wºfm#_™ ’0«$<þ#®9Â}«l×O_̲ø•Ñf[« ±]5EµG¿[“þ‰+èßžÑõŽï\诎Ò7 ,úv2§¸ø8-Â53–¬F]ÓÏGЇ/ Ùl Ø¿—*#Þ­šž®†»Ñ…]Ç%7šb·ž]Τã;‚UÖ~§žqî"ºü“H®¨¹Üí?.a×fÊ.DTcxšNÉ5ÖHêÛXÛÀ¾¶1u«Š=ĵ„­«6sNrº,´ùÈ9÷à?¶øòçoXY“Ënð¿øõ•Ö×ßü7Z]hVè¶ÑQ?XG´!ÿhÄÙöÔÊS}ÞÃØoD3Òü¶«wП²]›CþÑ ÕJžþ‡ô/)dlÖïR§yùƒ¯Œ†é¾žA¯ðÝtâ1ØË™—¸±3þã!¾ëwaÒÐ)w(ñzÅ`{ þX±2Lä+а“äµ°*ÁR€_U”wÉëw8q*‘ëX²š2òqÀMù]Lôd_Ø×wlÑYþ3`ê îwî‰&àWñÁ¯.É8ôoc6¿:®çZ$u˜Šd4±­wɲfK—ÅòíF´…sêT¾Õ3ûŠŒÁœÅîFv5ŠŸ¿F^Åj P¢¸àóP¥FÀvïáß·Ì8. p6›ê¿;êåÚL]'‚>ì›'¬ƒMù&¡¹Ýk¶ÂB«¨Ç“¿ãµ ߬üTw—·J’AÇGÇöÃ>OVkeX XÃx 9 ”kî¦Áõ˜€Z5ì{?ú—¼±JÃR_§º0ýµ¾0þ£¹ŒˆNö˜Õf"¿5?´Œõ²°ÃYÌïpüÇ@ú—xˆ „÷_ CÍËh÷E^®_3×€i"fIk—ÙS¢ö2ž“_‘-¥ÿUz¬ómúU¥°—à $]LŽYãÉ?ú±û%êŸùƒ~üÇ@ýªˆÎ3DU?yVv¦óägþy5x¿Ñ1¢ÞeÊâ¢è2ÃÏ쵆“ý ÿñ…»i‘fžÁ¢ôÔø¹Á›àW³@r½Xo>û+=ókgÒ à+ª cs\g]Q]Õ\È0Çà?V¡½¸Dþ1,–ž,àW.eÉÀ=~®ÿŸüúPk鿺GæèW ºÏªïÒK¡¿*-á?´p™VË(h´¤b$#¼î‡o†dݳÚ"qMÖ‚ HŠEþ(¢ˆ†Æý¦X'׊-â­áJœ-œ8 ¾á)ó×6‚?ÿ Â|S&k˜DD9ûÜ6„üycê?Þ‹w îï‰/[‘‡´TÓPþ”±yÞfSêÄ ˜Á°³Ëp>1Ä&ñQF¿»¸±{øä& õ‰ßˆKs1†ñ*Óë?.kYÁ¯¼Àç¾›•ÐÁåï'ÔÁÌ|7«b×ñ9›È?œN à?‚Ó 1ò‘ 0—Ðÿj+G6›|° ÈÚP¼ØÙ XEg’kvÝ „(#ùÇïº~-Òâ –ø èr/!¬õ¬˜–cîE>SÝý.yäž üGWÍ“äf3<ž±%•-N¯ïºä’ñ‰‚ÿ¢ªq ;Í ú4›_Î}´DÔ©Ëœ'6è;íp‹á!çâÓag½?ÆØ¡Æ*ËÄÁÍôø¶í,ô•jB’©ØúGà—óá!¶ ~]FFØ”4¡ßF4«» væ±9î üGk:ÚÞ£þcÖÅKýÁL©)ð©é_r†Þ„TT,Ì}w€Há¾,òüyb¸ì|0–y®UÅÑìòG¼Ñ}»øU1𫳜á›/læÊï"î.üøçÐʤÔkßånhHå…®uLwOÔ_a±§3í ÌÔð-ZÇü÷$Ì?ïK–W„#>CòÓ]ùÉ}÷iMÐïF òüúçJðÑÌèp3-¨Ë«ÀªÛè(ƒþ%+aÚÀù³ÛWñÒÍðIP$"fHb®u¯7‰úAÍ76éi6±<™µÕ¥¢£¨d¡~pœÉõµ²BµšúOT®,£&>çú;gô³©ËÊ2îó׎|ÁÆä!û6­øô›KH—Ü‚ðËP)?¡o/´p%à?R‘ v0Œõžªçð ¿•ŽkWÈßü¨'ôCÙˆ’}9÷Óif-§þÜvu¦âå9*«Gv{ë+>ý›1p0þm÷Îaë1?}\®„KŒ‰º!†Üä>âÿÞ‹/ÔêøU|¼bþ‡_7÷Ðíâæ*å6<¦Ìçg4çlïÒ3p q ü*µ~4TËmÕ–’âÜÄ;¹&|˜£î©¿çå9q•ïÞøëÚ’…Ÿ'ÀrÆ1IÀ±&ãå-:œ®Ó/Ó]/P?PMl-ÄÏ)¯/Ñ7ˆãX9KU±¹ŒF}±jUéù%Ömö= fy6[ CÿöˆxŒçà@»Qâ…#k¨/ü ´´yHRUØÜ+-¢õ˲X°þ〖+¿RJâ·êj ìBQô…Õ`zkÃ2D#öM„Ÿ«½Š½V¿ÛÄH‡§‡¹iî‚ûI”ÿ1+ñ§rÁãžä˜÷€Š]aÍ,fJYí·‘‚§6Z·Ì ê*ž< ßâÉk‰¿ÅóPÅV «qøzp«ë kk±Rk8ŠôoJQ$Êà-R(üøüQwÖJ\…üc¤h(LüGsl½ÃOÅ$ ó¸+ñ ÿÑG OoÎÝXøYD¼à?exÊydi©ê˜ÿñ”=xã;¨ZpÞ×èñíƒvêžjhU!ÿÈ­>ã?–Ñ/Åf­ù,á¶V?n¡®†‰:¡¿™›ýõÆîö#z[üª?É:„³×óû™È?VÂúd"—9¦î«v*,èè!¦ƒú¿?ɹ'.â?RRµXûðð«8VO½wíGÃÛѺ£Šã?ŽRÿ8éØRâ¹ÌÿðãœuKI/t†j˜Ñ H³M”jôßmBÞWõØž†bè´Õ×·|OªåÏ“9Õ¢‹Øß3¥YƒèŸøÂ½½Z} ™Ñ`ÐÌò`zõÀcmjSj ¿ª_>ŒN…Q`)ÖãçšYEè·Ò“reEÁ²ÅHøîõÆëçðUÉ'zšµ­åff9â>¼2ŒþüZXײ­;LÜŠÿÀ‡Ð{e÷@Gõ ´ð‰ùMTöWÿÑ\¿à‹_UÀÞû¨H¨@’RåW”|Èÿ±Ïú^7íUTqs©!gV1¬z4ëÏôQЉ?Ì*?vçç_¡çÚ";“‡;UºKä$+¿Ët³<,Ý>CöÖÞžï:Iÿ’z0éÏUcú—´¿zk}‡-9.§Ͻ¢N)Šôó˜?WþÏ5õÖþ[÷?0tŸž”ºº"ÆJô»ýDBÙn¹V«ÿ1ƸNíFTý^¨–;¡­6Ï™ÚÚÇ4äg£º± þ|«|'ƒ_…V¿Nì&IºíàWsä%ô»gQ“fþ‡àþŒC£à´H? (yÖqq¼Ã›RЏ|Yu¦š}#½‚ÍF/ͱ2ýK~‰û?¶¸)¾£…%‚wlñ¼H-üSkTiTO¨ÿ8AÝÂwpÖBÁúëøˆÌPXÞRêìG :÷Ö±îdVÄ–„!fº(JóÕÔö×QXÿûúñº‹‘„JÉX¿3Üß_ä`,t)¬j7¢Ö¬«œKºº£4ûŠjàõƒñ¯¨?oÎqÖ…?ïb—Ä/]å:æÚ‚<$#øÕÿB¿ûk•Í}f>iUõ˜îïÜ d/ôú†·Q—úF]VYþªúÝǰaõ![å_?å ~õA6Av½‡•>ððOÈ?NÈ÷â–ød¼ eý‡.n…—åÀF ãG 3õƒgd%,^9WÆ2»ŠM^,ªoÆœÆSÄR°˜ÛÌX“šæ_ò#xø쓬`.¥ª=“¼‚cŽ)Þ T®I6s ³F3–ª nó «"xJV•–)1>dŸd™`ýÇ9-¼´|ŽxÕx™\D2£ŽpGW±óÎüÁh O)ÔX_ÕgTtHÛˆý7sÿÞÂ+dR[u}ßoŽz»ÖE/ ©‹¬—? ŸX­Ù*h,"²! ïyŸ©œ¬¸™W›É%¼é=Ôy4¨LƒŒ¬¼9Ê=ì®Vró:|Ì~ó±è&tâð¶ lK°ócy6£Ã¼’½èGüëçh‘Åßò(yÔZìVf°Ã‘äY9ÒìÊ™ÆÒ ýî#°¨qÊi jQÇd2¥!â¼X;ynZ+áÁlp¾A°—ñn[ø½Sè™b¡Ê\aÀöï¦þ¼:þ#;ŸÿQ ôe¡Úÿ(è)lm8Y_òid)|þKó´±àÊ'Üd*ì"ê?VRA÷… 6ÇpŽ˜üñ»£îÛ¨w °â# žïm6ùLMüÇkæ×î° ÁGT¡ûWV»æËŸ²Z—8‹O©À;BNƒÍçn(,ôëM–QÁÌ^eô§Šo‰ù–úÁ)tî]€‚ø8ÓŸöN«þãŒêcEÇ4ä3‹™ÁŠj QäC÷EÙ†&t!×µ ÌCk”mé>‰¾%=Ñ”¥~p =šì#xÑ8TJÅÁÛ*R¡w”\s’·Âè$€_˜ë^¯ŸþÞðÁó~ ¾oe-1sI/ú—´eÆIN{05*‡¨|ãc2YüüyDòÉtŽÅ™‘ÖBüG8YE:íÇŸ%ä øU!îÜÛÊ$#OkÒÃ^Â\ŽOèuÙ.'ªZoúˆÆâ#8O}¸/âÄ…¨0¢R¯ø êBþÃC»GÇ‘køë9`ótÃ&ÿ(ÁYJ†5¬¥nbgëózÞc&V =×È“ûh2(ÖJsºx¡{ø¿¤¼~jô‘ÎT˜HTd 'z¿Ëîö¡5>BÏÜøL×Þ@×Ú ;ÝÊáø¼xd>íù÷…jŸüó—þ‰µŒ2'J*ÔR}©™À6®;¿=Fá¨Ð"{ ًì#RÈ︨^“)FáØÇÔÿ[¼dd5çqMMTSɘßÈöZ%`Ü[ÑD¹v?×¶®_µ²n« `xõñG§¨9I6ÛHT °Þ©“EÝà^èƒ÷Z`~W7èç[ \¡u¨¥öÀsO “@ýùE~¦5k®&G2Ààú«]Òp¯·úñ 2-Ô5³½ê¬ ó´¦g.S?ôWèŠ2Ýn » ñþD:—d~G=xõ]äšÃ¨~<ÎÅ"¾Ÿé>ÜEÔ|"{ O¶ÜÊêÓzÞ/Àç2Ð_dµÝ.Aï«°®hªÏÒ7.sFV[ãÀT‡À­U÷‰_ëɶîý Ð8æÉò4¿RùîÀQ\MÑïvÂDg®ˆEnôüLLÑAÆÒX©§Fƒ'²(qL:ø}?üꦾ[¬”½yúg:wýwKÂücµc âk¾ÛÎBýÇ|»¤k(õƒ­éU•I\áí7æ2Ùeøûà®Ñÿ'ý¯^£Øõ‹»Ï3ÿ#”vÙ}•"ꚑĘad£…4Zq¶×kYŒÖF[ã™ýîf÷O†äÅ m9¨N5_þ|ª™€Þ­ú=æ¤_íqð« j~¿rDê?Ú0›þ/2„åT‡?‘IõpÆ9ÙÔ¬& Pÿ‘þ‰9Ë W+¯{Áã?Â{Ä¡¾¯q`¬I-˜ãD¹×°*Q‰wgË¢T‡dÂõŠƱë‡Xµ~ã%wUžïòª:»Ã¢ß•fí`ýÇ-ñÐjtª yBO¡6¯>ûqÍ0³(ÊgRÀqô8c`[FSÉýT}´ýŒŒ¨t¨§™=Ä‘Ey[_7%RP—)Äß'Ȳ Ï¡«…™–ùµÛ‚^ŠybÝõ²ùGgŽpÏ‘Îy« ãÑœ¯Uè5Y‘Þ#<kñZçAñÒÀ$ƒXñŠ©ò¾?á3pÓŠ¬ÆéÄë‚íÖeñÿÑõÔVŽvW?>}ÄGð2ÿ1V #:Èã s+Pñ$'†]ÆÎ&bź¡ ~šX ÿqï1½ZR3†+Ó›þí3íð²1'»¨™îWë°å7áJöq4{U[4·Ûè‘$ìÒÖ]¦‹7GAUv!-–yŸ°_m££Nî@×¥ùG*ê.òcsÇS?èÌ£ŸEÿ’œÖ6t·¶ýÀ*NÿŒC°© ÙÎd‡Yx†ÿ©’qwÄ\1Ò²ÿøËÔo9¼˜0²¬ÚTÌu¤.,(nŸT½¨ã83ïþ˜Š’#ê~³—ðÓ³:‡>\†ÁS_…/p%R؈HôOÜDÅÂAp§ƒàW³­Bä T#|ûfôW1­HV_…gwŸÁ™øœí6<-ÁªÉ«2ó¾`“s³›Ñô'ŒgƒmXjÆGg>U,&S ä“ò5ž¢¸9Þ½Þæ×~IqÁÕ¶Æ0©gµûu¨lN~0,1ýÓ³>£}nóéñvžðJ ð]‘PWK°¡ÚÔ5ý\p(óã"ñ,%.y®b•¶R`Õ/¢àÕíµø£ÊÔ6VÅ$¡o|òJV%<ßGüÇ9üNbpÌ¿ÌÃîüã |Ê"9»4œçl”¼b•wiø%ÌuÙÌYËb×w]fÂÕŸ®ÞöYU¥ð0” ñíø¯]诪€ü¥"þOô»ß˜8XÈ}fžÁŸãþO’ÀDÃÔCé_Ò€UÖiyÉ?çxÆW-týwwk+™ÿÑ€ø>=ö%Î^ÆkÝdîÓ[æÞ2bIñûâ%Ka ºQþIFÐ?èçä*5ª0Ͷ¨ÙA¤ Ñ‘7…ÿ¸ à«|q¦†fD"Ì•Dš‰¥3ÿ#ºšŒ…†Š¢˜Ì¢úsS<>ð/±Hû°ª URUï¤é8ý¿óªàö1‰†#›Áç—µÊÜÏËäGõSÛØWu:`Õ$OèH”ì*^%V?ŠÔæ"Y0Ç<ÉHÿè Öñl"wld~/±²£ßõ!w¸€ÿ`Îø¸3s6?ý¯~§X  Ò3  ;––›cST›(n<‘mxU<¦&õ,xfÉ»ˆ*ÑP¥Õ~™S¥ßýª¥é‰è“í¤^f×µ˜ÿáÌ#qÉþÂem9ÊÿÑ?7 äà%8åXüé¯7øpí#ý¯Žrd{P¥&˜ÏjÉez¨\ëhª7ÈUЭáÔ:f3[K¦´ŸúšY#w™ÿqÁ §aarƒð¯†wæÂœ#›:¢[ÕUëØF^Ø…QTWÌWu@+‹²úhêß‚_’~˜À½V748£Æ¬·”ûÍ›ŠÕ˦¶¾€ÅÌA+‘sYÔ?—á£+0Oc¹a6õ‘îßÉcãûNÿ2ÿ#+Ùò,Z2®Êäñ­‹Ô;÷§£úÐh®-x‘^xŽ.Vð«¦xÔAê=z®5ê,W¬v ùµídtÎô 8«þœ¡ƒ¦„8‡þê|þG,~¶ÅTu/SÿЩëd§3âZÖ‹kű†ªÃò¦û¢¦‹«þ£õýñ Åe$³88ÐbP«êtÕú›Î‰éè¨5ŸÇÞô[[€þW£ø›+2ècFs–{½Iú~æJÀë··Ê3ÿ#ÈYV;†«“X—Á‹"ºîƒ`åÁ^¿†Y‰o1E•hçÞ‹²Ò±h?þôÖ‰ä¼Å‰ÞªÄt—oJÇõÜä+È]^Ÿ{q£ÿ}Eú£Äb—¹¬úhx¿ ^ç^M’œÈßüëôõ[&»ƒFÍå®Z!ŸXíè'?žÉ$ŠŽ“§é4ÜüêøÕXû€êãJÈü“æÌ9¼@TxJN„…½Ϊ䂟ü/~½¨µó×ñꈖ÷ÿÜ?1–cݼ¢½ˆìËŸ¯Ô²ŒÁø$†Jþã vT˜ ôTMsOFÃj¼ÕÃÊ=Ò‡y}ºß¼™œ®‚Bªö¾úݧàää=é£=Ô÷¡ßm)›±j^°œŒî;äß­ØüêHË]šQµcÏL/µUw|yûy¤$'vg5ùG:ù»HÜÿúIÅ%Ø8§§íY_þü31p¬uòæÆDúe±¬gdl>x^°ùÇ&­.?·½o|ô+{±Óaqÿˆþ*"ŒH^uˆ{5û4ËÑ‚9æ!Fm´`ƒ±5¯@“b‘ ¬&lØ ôWŸù—-d ‡Ð¶¾Âš¤š¿Ž¾Åÿáù{}W¡ÿÁïî'¯JJÉ|([€Õ¡­­Ëg‡S}8J®³% 4«‚:+óˆDAì2^Z”E ‘³_ßv–¸ÊäÛ°‰[ÌØ²•Hky£Åͧæ‚\z€Ö¥‚GŠÆü%ÿ1@‹!Êód›AÜ“ã1f`ºqþ»³˜|?Ï÷ ?®? ˜Øjž÷±d^WÍ-âÔ/ýwÒÍ÷tÅÙÁ÷×áÅnãuOseO103WOÐ7‡õœúöØÔšdoia»§1©%s:âF†‰Þ¹¡™þÁ›ªí…ØŒiTË¥¡z}Üùk,Ô4{'ÙNüÇ2ly´C_áVªð ;ôSV¼h¤BÍu“ª£Ô7–f=§«ÊN«ú«ÖtþKB¿¾{vWúï¶°jÀZTaëwzÈ•ßJ4QK °^î·lp`W¨?Ÿ ¢øB]°NYé0œÑr¹ÖÒ‰ö1}Ò—ÑY~<»½ŒOm .¸œãɼÄá\e¿©•Ç©BÆýß̬1šŠÊR3‹Q×í‰Ï­½ŸNþ‘Vùu*í¬6 <ãí¸“É £áOS2}1Ÿ¿üc.óÃSÿñ¬´5™;çÑú¥'Ç*eOgÕ.æŸ+*öÓsä´%\éÉ"æ[sg @°]=7%Ñ _ýG ð&­z1žŠOê!ZùŽVW]æÖޱºc•qM!©ÅúeÁÇ ä-Ë1Ç£¶? ÷~6t€Uá?NøË?62—¢lîÓÉò&øU$×pËw™4v–.-£\QÂÄu¥võcBq?WvúËÔ¶"Ù÷ä^I/"“Œ*ª\åïYûo½|¨5Õýfe>øÿ0ÿ<š~Žþí}ŒB¢>ü¹3ÿcó?Š“ŒíFlCÓ…ê¼µ…B'¯„Öt3Ö †hcÜÖ߉ ò.þ㳤B‡³eáUìjlt!t¼—|ñ«+ÄýõèmsDæ¢#\ÊOÄï¶Û À%Ä%½rÛ'æF¢úR(WÏb£öC8s~¶ËäO~·ˆ¿÷“ˆ§¾ó?Ân#îvp€²Ô5|áoMT9•Ñ_]€ŸÉGÜR$Xÿ±U«ÈÏ-‘·‰±†«Ýx‚ø¶¢DßMgJêv2Ý£`a£‰ò›=ƒ´Ìþ6§õ0˜kŽ#~Ì™ K†•‡«’üz.ʦoD¢‡ð+{È“¾²û¶TQ6ûí¤— Ú`]rÖNÓ9%-GšýU'®ð$“þy bLõäY]ƒÂa'8ÈyXA»õýnø ®L=¼¨„•IE¦Õöƒ7• ÷: 2w„üc¨ø†}ê†]ŒRj \F|*)?ÊQAÎêˆþj€ÜoƦޯ3•>rÄ¥àöÃã…ó“&WýÍÒÌšF}Ÿ†u^FF·Â\Œ|Á$ ;¿Ô þc9¼CN*:Ž ßEI„WËB6â̪¢ÞaÇwƒ5]Å;œ&ö¬¿ji<“™9¿Ì!…¸&ù:~2+üù$ø‹*³QTAÌV…X˜[a°¡·°ásUz*Y6뗜ÛFÔw˜•ÃïrÖŒ†½¿hUQñ¨Ó[…"é,õum°Ê ­^Ö ~ÂÇl¤nª{ø[\±öð«j299£@ïÀ¯ÿ¸ÖÚÚ¡Ò mÝeg³_PIÝ ThÝ9WÃÉ/Ö’ÑÄ¿‰ÿðÓ*nÑê ßýB'­‡&ÝKTi˜­Oø„v*3þ&þNB¾uˆ8¿ øÕ|¾‹ïŽwOÍŽcrŸgõ7p‘~ËFøš°‰5uû3‹ÕÙïjaÏ£~ä<ùÇsÔ¶ßñéG­çh“Ù+,¦Ë;½–É?¾ ß-)ް?þÔ¥þ<&ª”bÜSÕS9Âìlõ`þà5¨è"„Ë›Ž\•©;ÏÊ€º¸´U“ngÎDÑcDt1Éd“Q“ðs½çú>±BVç‰Ò:UBiuÆ·{8[Q…ØÈæºæÊ'R…]ŽR¸ š»» ^WˆR*$Q‘B­þüÌÿ¿¾ÞÓêûã?ni¥ô f½…äÓRÿÖ˜iuÅ_LÌÿ‘ƒŒdø•¶3$‹¸æ˜v@„Å"”'†’RÔ6®êaäfæ×®gŒ-ú3÷φäE)•nU“É3^ðT“Ò «ÔŸÀ,×âiõ–)ˆÅCV9ÙD_£ß‰¸K“©ºðŠž+é¹›E~Åš¾ãžÊ‡VÇ‹US†¿J,ÎÃô§Úü ¶x/ž#©ª€‰‚ +=+šu Ü>%ýjkë?Žâ?|¨‡|(cs÷o§¡xkvsÚO°m­4`ÝÉPŽì"«*,÷SôYœ`4?Í¥¢q=Lü\"ü–ä«`jó¢ÙнßIÕq&^¯ä_*Èüúït +èõ×,WkÀž¼AÜþ»EÈi:€1CùYƒ,fçà8ž7,È=³¦º$ˆOAl.5õ祱ïI‰ó™û8ž–Ô&&;Èw§EW•úà3+9ö¹<›‰Ìûð^c™çûërCµøb¤<ƒZú Ù@x"E§ÿ•3ÿ¼v1HgjÙ.£žƒu*Îgzâ=f’'=C+|æ—ù眫"ð›@|Ѝ›Ü‡Mf?¢Ø¥×3'3Þ¨NàW0ŠÏ8Žªí)ý^Õ‚®Kwê3p·ýs°/4<ËC¥´Ò‚Ñy1?ê³U¼}ÊÞ2äñš©è„èC61OÅ'?[©°â3# Xûòúß㥽á?®ãAšƒØtaU æM< ;áVÕ•.ì'°õQ¹Ÿž£¶ÝÍõ›Däáu:g³žŒÓôžó1QQËÍWðç­®(”ÓY–‹´öCff£²q6•*ûP!÷[ŽK†¿›ª¤éç?j õEð½¹§œþ»åQÍÅ@˺ ]S{T­cìt)cŸ¦b²!èÚ ôb6½Œ;ÂwE@;sÉi÷E^‡~7œ‰©W¶–òÄ3ÁŸGvUe>àQ"üÒ®§¬ö‘ÉçG©þ+H7±MÖ$Îà(úùnsú$ ‚Ëþ\°)ókHiN¬ý[–þ¤•™ÿщú‘ÅtU¾Å¼—0úµ™/R ÿtÇêj×´šQñ§ùòYˆc*«læI·ÿ¸£¯†?ïGD2€Hl¨ÜIÿv—ëok3jK¡Q.h/w½vårÅtuÆónt¥¡ò¥¢eØG@P7’Æê¤S¶œýsƒÿůÏé•ì—+_Óòé¸ÏSè¶áô¿ŠA¶QKt1}û_-£{&c(ó£b1~[•ô§Õ IÌ\ 8l(ª(n¤oá\ù\,§k¡Ä¯¢ f)£k-OL[?r—~hÏôÝäUPÚ.†›ì#R„èÈKÐÿê6l¼Äæuæ‰~lΧâ¯Ë`gO‚•d+] +ŸZÞúà¼ûÖ8-\<á`}þCú2oùjªR`8)°¬7ˆÀR1W ÖœÖ ׃¡Ê$ ¾§ñk…È@ÊaÛ©¹ƒ8ÂŽ(},Oz_fö¦ æ˜å@®FÁ?ÅþEÄbÆ ÿ gJÖÔÄSƒñy§ˆ¬3‘,!>Î#û껟ß7ËèŸøUæSç9Úijòú¼^N>[Õ"Þ¬€ZËÎNF] yn¢3R25ˆ]†Ó£‹D©Å•þã"^£ x_züÇqV|/ª‰°ÄŽMÈæ6€+.Fm™ü#žómþc„¦‰ò:G¶Ö4 Oú2¿þ¨z‘=$©kFwåì4øóZø/øçMøº§ævqPŒ=_3:Ë©D*©ÁÃvp\N •åYÕ€~³ûáX£ÑËéó[ÀV´#ÒNKuÅüÇ.ø|¿èw›Nÿ!\Ãùø°“jG˜Sk‹o­êXŒšýñŽtŠÃ¬Bw‡®‚'àÑãç9-œ\àVͰ÷±ñ#áñÙUoÏzK™ ƒ ÞÜÊž ÿqŸûÒʱa:¼˜ù>Íiûá®qÁ|`òÓ'{»=†³-µ+á®\Täôõ\ïPôûÑÉtóà?L;"Q¿ØÑݹÓÊyͽˆ‚7š  rÒŽáÃw”õÓï*ò¼¢Ä8õÁ{üÇUó˜.»ðŒ…YÚ"ߨ%\‰]]Aê¼éÃu^~¨ë¢k³SÚÕÉvsôWÅPPøóåꨜ ÎzœÂW,ò\ñ¿÷Á2ëÈ?îå~°¯”ÿNãÏkk®•WŒA¿[“ÓžIÿ«ªV;ëúÝØ!veõ_!à§ÝÆ,ªêš£JörVÄU˜9øˆúíbØi½1ƒÓt\áûÏŲײ.øxmú'ž“©Ì$Ö_²™Š%3Ëé² Šö8ž'äûïýþO5Íùæ^5ùG#üÑâšìLܾFq;›8OfÇlþþ[ƒý“ ýU4öM¯Ãfn'‰K†ôÛù7°‹Ø7h#«ÄØÛò¡æ¦d“Éøã£-†«<–®­*MUõn⺰cyÓû¨&¡ö/™f•¹j€Õ½ÃS «™ˆ¼%)üçXârI|ÿqVþ%oSc´-Í“Á^§a¬6úšÉPjæÔrmÅ£“HsvHoyòެj,šÎ;d çÁfNãK¯à›¦~°¸ð¯ ð_:œ™E¿Êÿ¶ä$.UP¸gȯP_E/\¤#ØÑRôc“ˆÿS3Ç1&Ÿžã?ÚRŒ•t#ºŽíýÄÛLE#xV7؉ ‰½ÀŽÎƒ»LäÎ'å W+.# 9 –Š}Aê? ß‡n!xÔzüÍ}|Ñüîú—|¦àfL$º¯n—†Áø5ãð7‡¯§–.Cþ»¿[Ñ@Û²Þ’³hŽòÜYv6{­^NE·…Âi.õ;™_ûv*ä3zÛ{ÔÏGÅÒm5÷~÷tï±’<æiÈ¢«&q±Mõàa»•¶íÆDΙ~Í)þªú.yœ{žÓUüÇn}™è£n ù½d,ž‡Çxµ–x…Ùô«º2ô;bEyɉà î*GÎ÷\ñ¿÷A™50W©ü ­" ¤½Å7µÐÊ)ú‹d5†1ÃÈJתªÔJ+òÎÿ8`l&š•º¨ffÒkÌe­Kôß=+‰ëbµ„?V˜VÄÒõÉ? ¢îɧºÊóè¯ÒX×a­–~ˆÌ©Š„jKÿ¹ò?ͦÍÛb‘U±yŽ0—74¥Œ¢ð|ô@WTÑ9d%–™ïqÄ5æGUäØ òrˆºÛÄä6°$óˆÀ“ñ3õ¨iÄ0àWû‰tµNƒxñÌGa,s="ð¡ª.õ~çàiw°–»RéOUC$ûΪ½·ñ.íÎ/a×55g)P©'F4¼;²Uô檋’9,!¨#«„ÈŸß2&˜1˜¼° [ž‹·%LDc|Ózªß³Ïºª~ʾöÂ{lËsÇö9õ4YF| º1#®Ù\ÔÆËf H„5]ÅOw?-÷É_–©s¢‰HÉ»_mÑbv=‹]'¤óŽ ºÜd#®èƒ~7õ `¾²F%l~Nø\(8éAøÈóX¼Qè@s‘ÃíÀwLÄkíVS…—øÝ}` —+P.dZLŽtú“­x SÌO’Øé}àWùÑ5Õ¥þ||ŠÂ>ßùñïÚ/ËÀZÀjVd?ÿ‘•ÕYŒðË{£aOçé vqç+]ú2?júÝHö4:[fB-æC5à@‹å¨þã õyÞüN†q×î&Þ­HÇÙ>Ì ïºJ=C-ð§jÔ±ýÅ™ð¤sú&üùUpÿöú'Ö’IAÂŽñ,ŒFa°]]†?_~µEmüG~:ÓΤ›ùYжüÎIžŸÆ(°VÃ(…G¿;XÐkt4ók·’«µÕû6ª¹L®ÁÆÏõ›™²ÀN¿Äˆhc—Så=„~XSÀsj£ôj…¯ŒB½ŸIφÔj’ç&Ï0ÿ¶Ü<â'ü^WÛ¡6«ÜÊ.®1 ö}½Èʽ¡ûÏô.yÇTô¿ˆû{è×êOøžuཅdYÚó¦”5ïQñ‡¸l­ºª}DvµÍ.àjáœvZ’U>†ÛŠDÆuXzg <Å|Gmúï>ç­ÞÇ%=²=þãþh%XË:"³¾` ŽsÜõŒ³ïAŸ›=L©ï%ÿðaŠíHÇ´[º²0k„*"çŒÉ2øDYQõW±ÐsÅÿÞ_£F€ŠóKä¡uD io‰á?R0¿¶ O}Mwýù#ýk[çéŸÏôÏOCZ!à×ÿbþ CeLk0€™ê²H&:¼§äqZ̳ž™aáüWüIœ¿š/³ƒY§¿z!0­ý |ÈIv‚›¬FüÊ=ðˆø»ëè` Çèƒ: ?…”èév’ƒDâOd4Y#ÀLÿþäÈ´*ã?ŽËnOOˆÇˆ¢óU5Ã;EA‹xÿžþímBÍ?ŘR¾ùç&þƒŽKäËÉÈ?¦4&Ê=Kľ‰è³_SÕµgd?« ™G'ÔCgðm_°‰qyÆcâ=&èRìq9Ó%¬h²ŠÄV%èŸø4ð%þÏŸïsͨDÐGÉ?Šâ5\ê9×]‡·  º«J0¯myÇ÷â9ðµUìpõÓä¯Á꯴Ù@”!OËDÞ–»uˆ\µ ™Õ#4Qs™X9X„#6o‡—[ŠïOÞ‘„ÎWÀ è‚äŸñ详ÈxWolKQìùtØ‹AàYí¨ÿp©màÂ/ƒEM&—(£W°¿edp>\ÇL±É\hÅ#L£ZŒî--xÏ<Ö»AíøÎ ý>ý ÓC6šô/)Gä\ ¿É\®ÿ<œÀ:+Hý`]ËEÜÓ m4ÊéD*Ô ØÝôp^ô.ykÆ^íÁ.g´ã‚Ûe—º…vø ÙTlüëqó’Çþ¹·zÑJ‰? ûŸŽ ±ü¯è˜»Õ®bÓšøÙåÚA¨ÁT8–¤ÉN¶hºýïý\âN÷ݾ[¯—ÌçrŒsÜØrº¡Œ IcP èv×*½ÏÚ“¨­ÛÿSØyÏ®jƒ`M'Ÿ‰O=þÌ?¿á9Á-ôTÚ¬Ü=ÖÜóë> ·Ò>ÍœA›. 3ì1ÌÃMKï‘UøÞv]øNÎSN¥7¹Y |rT”ÄéÔ\ÏzÌVxîAxâ¼?í,t˜z gY ÿQ F—}ÄÉ_}<« sÿ‘ïtÒîÐüïYP^Y'#UÑ<-â[V"Ͻ¥ʸ*¿]ÈÕÐY‡.ê!ûóB¿µ}ØXŸ¥¶á»*Ão‘Çúàubã·Ó*úûýÏ?§Í ðy’&¡CaJÿ«ˆô¿Zl?";êÏJu\Ç™PÒÒ5Þù¤«1¿v®ßüÚ“àˆkäpÖLäJñdHºùo?çÿÇï¦ÙÄôg'¯1¹%8­}X~r<ó‚™ÛAýGW¡­Þ<]ÓŒ¢Væ²êÏw‡eÏßÙa¬Ÿ@7óÖ÷V·E1Õò5¥Ü%÷2oé¸õ1Ä)ž%¾ûðÕºŽ­ŸN$³´cuÐ X&Ö+<–~¤Œ­ ˆÀ3{¾[Àó‡Vôß=/QØG“мƒÓÁ{+0?êkÂæD$¦$£¢ßæù®?$ÆHöæèÃ`aó°™è[¢É?> ßý‚Ek@•ilX÷²^¨þc«Ñ?ã®ÌJÃAøb°îJêntm3ô”›@Øúñ´6P-„ï³àwØÊjED?Ьê:×›™”g< ˜Çp¢jÿØ‚ uOFº†=*Iÿ’_ÍÁ/…ž{Š™„(þ(ûÉËj±©äc†.ØZN³„šˆÇ{IMÖQ~–¿® ÆO@ÿ’b"Òw¶êŸå³šÉ…{ÎV½†7È­¹úƒ+J…ÿ½…?û~• mR;TÆÛðxãðÙÁËî’\ Æt2â‹ÑÒ‡Ÿ·X; ¹ß,vÙ _þ'JF°Ê®p—°x£¹/YÉÝ È,ü²7ó£Ö©?ßc͆?Ï‡ÇØDÆPÿ0¿–þ££ý\E‹ôÙÎh¿&º¯LQŠJëDö-À·æë™2FÿÑÙr¸—Í8ù±t8ñ¹ÿ‘ØNJ‡¥0 w°PœCxŸ"àWÓá²SÁ1\¤†°# oµ’éÒoË#+59èm"âŸP• bCÒsv·]{߆JD—kóùÚÀ&TgŠà^NÑæy:s¿«>¶ÐÝaÛÿŸº2 >Ë=¹¥>v£º£çR)^ÉîŽûB¦P€ÉJÛ¨ߨ»2-ñ^¸1¬ÐNÔ—Ǿú±¼éYl¢Ñþ<#jÜ—ª lÔpUðÝð¹Åì©Ì±Lÿ’BØç‰N+úç¤þc;÷­=ëD³×à'JéÊ¿#Ù2ÓÿÑõÈDUßnŒ~÷oµ]ÿ‚2¶(òµ8?»l×ÇDÙôȶhSuˆÊ‹¼-mÉôæâ/S30¯çz3}D ²ÁàGïôa™E•·ãâ?Ö8ýÑÁýeGûkžú üÇ$úŒ4v’Û¹i?ƒÓY /[X-ðø‡àW×AÖ竼[Så=аgÎ0ôWÉ?.8Ýž.#\W3Wg³®ʶœ‰†.ç4öf‹œž†.ü¥þü1ÃßnÞåOa›Âç¹Ùžɨˎn±JP?hZîjÿF ëWúæn€?OoîóüͰ|¸klo¤{"P&tS/Db1É2­'äÞb½ØÌüA½FXÖsÄ|ÅYTmP)É?bªF<ËWÖQ¶ü,ÚRŸW^$ôâÇ*lpgçàSkeñȳÿ)ÍR¢ ø}rN?3ÙÊðÉæTuÝ„Ã=­žˆ)"\jC°ðx¿á¼ëá©ô/ÞŒÿèa¤BseÀ˜Ý4°«àχá;è*ø¦„sÕW`?:ûáësˆ='ñßV8ÔþbMþã„5VNä‰K6þü qÅøT|D±/SóüÁNnïÿøÕžƒý¾ËOZ £¼o3ŸŒ8i ûRŲ‰ :À3ÍÇN×ýñ“=˜užŽg$³LŸÙUˆ~W“í…žÉ~ÝõìÇ©ÏëNÿv¦nêß~ŠMDqŒh%-Mm|ì}ÝÛœŽ~–ð=½8N9%ìã¬W*ôRTÑU;}Þ…Ïl(üõ¬î{RW&†]Fÿ1‰þ\©{°2ñ“©‘¿Î6 ÈÐDg2ìD7;¶s–œ§1ç<žz˜ëØüÑt9»ê¹µ^èôÃD c½N¨ªËT§,¤âï3õöô…B¿›ÔéL¿¯uè¯ú3¤„“Ó>©›’m¾Ã·~äiŒ@¿»Ü¼mÅÆ7Gå6³•ê(#Ìq^Pï1…*•EN ×]G¸¾:á™·ñÿq$ɉ04/É”¼UÙŠçúÛKPï÷B*õÅêo}E˜j ý¯ÚÀµ$¹ggrícwù˜•ŠþZ/˜ÿ®éŸÛ~ ưÖ=1\2µÁã?^‚‡oÅÖ-˜@wè3öiøüÎöj:ì¢:e¿3þü¬z/爮íJ#R×e2–õ<ÏEðKJ¿S¿mð_üÝ—úøž“9OÿÄxž?ýØ6bÑá3jÝR¢­ˆìWÿ1ßÈiå³:Y{©Œ¢*'øŸ²ËN¯ö?@ÊS'?IÅë.s¿È=b­Øm]4ƒÓä¿–û«Ž8Î:Ód1ì}r5}k>ó‹y’|äpä@úÛþ&ü²×1ŒªøÉûÂÄèwaçè%DÏ%å1îþ>æ<¸àq§£¾Ê@ÓòŠ‘˜?øý—ClòxöJÎV¼×÷x*Úñk\xÿ»Òň¤††ê?Î9éß¾\>‘‰Üv甄Û/ {üõo_±wñµx†»[[w5Häån7¶ŠÐÃc$Êôç\it®0#šŸ°JÓQî¸Y‚S ¹[°âîΑ ÈôÛ‡¨”xf,3-"è‹0ÝY°÷ñÉêPM²fÿ5qYg*ÊÞS]â Ö€„ìÁŸF"/,\Áì2¥YR[K¤çbé/ó÷ëröYàiÜõ(áäñ‰X¾ª Md_Ëá  c{†bx[0þc !Ä@éÍ™OÓ-`‚ã!ª‚ÏIŠMrë”ã¢ÈŽ=žˆ7ˆš³Û±fn7¹ÒqÜ ¬Üm ”ãÉN³‡¥Xß'x]w—Io«ðô™ZÅüÁbXçfÔŸ¯ÂËirwåûA^ËÁ¯ ºâfÖ#™„5RsîãÙÇ|ž•^T;¤ýšHïÄWt]ãìú—µ•½5WþÖ]úi Õî^ã[éð+ý5›Œ.æBrµVú6üùÌŒª’°·èj“п}üq§*õ£±²­™ÛŒZÌ­äšî|á¨vÏ4.¨6x6·Òü(UŠû¶D5°{Û¹'ÎTužÐc}6VÚË)KÿöÇhβàå®Qeò æº/Uˆ]è³JßtOµa.Á·é`$"SÿQ”·á“£Ò83ÚÚËìë6ùÌYú<Žç¿Kü·☓Ø.E†ôîÑ›+·Š¬Ó˜?xüWú·¿¡âÿàŒQÑ Šóí,ýOÁ„Ì Ö$«ù‡e¹ÕáŒêV!«£uµTÔ­Šÿ ?]1¼ÅrºZ¨›»¨}"œøÃzÄü¨ur±X&P‹î?/9à÷…ô9‰ø€}Y [agT2Çôoã*ÕlETtÔ.CÉ?*„jKÿY»ýwMDû3¦:Öo%Sø2¨ò187oeVv< U×Ï2¤Iw™N¬áɃ òKp¬/°2 °ÖwÉàkðd$×Õüú—¤'kèªÿ8dô§2vúÝäèN÷cY ëç¿i¬j“Ëœ@ñ¿ƒ•¦ñ“:«Þ"4´²·ÕH½±O\ïîß>Ï/w‰‡Rr&˜ÎK5šö"g V`Þ´„l¢2î1Ÿü#7?¿9Ñ:êùžbÍ«a‡ëê{øÇNر;Ø~oÎa;lÁÄ, ¸Š·”õE&`Œà)ÛÈ‘Üóè{Û'¶§2÷)7Œoyð«CDßEÈ?æâ=²à=îê×ÔDS)ÔóÇþ¹Ÿ¾#VRr²K三¹¦2įõ °—üØóÔW(ú…{Så|JÿÃRWƒª†~àõç>ä]•DÝïÖûƒ˜þ'ôRèÁÃÖ¨s¨¹ÆR[߀zDî4-Ñ`·è?ð÷ðÃÁ—Pè²ob§˜µÝèfzçÐo‹Ê º‹L¬ QMÒy°éí™øðñŨ± Ñzô&œå˜žÁdO‹ñušøÕ"æŸÛTñ|$‹na·WåuxùŠô«jO—ö~§*½AžPóâfù£œRÔ¥wCÃÖ ÿAOd¿ü£˜çz2oÖ. s÷š›ª$5öõ¨G™ÿ¸nŸ¦j|;]s/á‰Ó÷q†“Œž‘ì·Db;AÏÑÖ“œ[,Û…âýš(ØÕáÏÛÀGE§bæ‹ÓÅéâòAÑÛÒUÖù¢ËS?X‘>`ŸíÓø ø2àaSð{ÕN?ÿ1 Ž¡¦leÞ᪗kÍ„T”ÿ“‘h<>z®šÜ=°¤·8Áæd áõà‘Üþcg•Éeƒr•ÆŒ/âmsaû °»ƒTGTÀ/ÝU/±êGE7ñFº¶~?ìùB4XÙéœøZÒã2ÿÑÞ°y¶þât¶“[¥'*Ÿ ÙƒH±%Ù† KÆÌvøèid1ÁÄö𶯆¹ÄZ'V›+]óJk¤\LÝ:‰½XÊ'øà-øˆ3àÿéÁ¯Ö£ò©‰å¬Et¿X—$ÃI–3Ííj½EF’°ÞÐ…¿ç1“:‘=ìîõ‰íìàWcíÔT,T$N½Fþá®?_F.®Å—¼tLlÝ@ú«V5œð±úTô»'ÕWS‹ìlLï…~÷Ó,öbïïéÜvaêäë¡çhè—Ôîþ»•D¿ïÞ–ª2;(Ý)¢ w°þc&EªÃBG±ï9SPKùbçÏÁ‡T§ÛüS|`;üÑ:°«ô¶a·Õ§¤ô¬·™91SürÜ[ª)ëOi³»ËvOX”¢°*³É;R³â2:Ûö¥FñwüÀ;®¼?ZåXöm|!òSž;2ɼc}€½ù Æ¨öL4¯ÇáÚÞ3°>úß•ÌÊàúL·¯HXæëôßÿqÈžóØ ›¹hç2ËÚ:"·1½A bƒ W·õS™Bå°“¹²‚§­¦Àbò™™ veÑä ‚ÿµçyí<øƒÉ1;@›’Rœ]òøC¦úÝZ<ó}ܸ€ÜGÿ’WdFËíô‘? :×Ûu„=\ƒèü2Ê•9#é‹r{³PÃDÏÄÏÿ{|fÏ»fäý_ןG£Â5õ¥èŸßoþÇJ#›UÎÊL©ØV2óÒ]Ônc õçõ‰‘óòß‘_t³z.–Ëcbþã¡ùþ‡Ö‹)®b_vÉ<ái™n¨tfB붬MÇ¿œÔŸÇÑ ~Õ?é+^‘!¸t'¢ú+ômZƒVç¬ÏbÞÈ% œÝPQ¤–…eXzÿ, M~ƒ¾GŒoK´ã £i‚nFìŸF×¢ÿn,bìÌjp¨þã¶Ñœk9=¥#9Ÿ…ý(EL^‹'½ª*ã®ÞІpÖyÊÓÐð«‰äïÑÁ¿ã©ŸÃé ›Kü+ë ã©ßÃZIQ­ÄÓ§þüZwf‘±ØŒi'¶øW|N<øóúä,ãÊPüRðfwÆ=hÐöâ—Ï¡>+MÿöÒÂñ<¡þK‡7s‰’ ~¿€)»QÉ}ä—•¹²+|>Dý`7a êîÍÕÏQýøy¯dì8>è|?üÇu]ÃŽjï¥*,<³,éÆ`<‹ð›/éW~ x•nY;d¸ õç5韘”Žœ¦*p2hâf3å±½˜4ž‹i"Ðé\+l;x¤|(°|QÛF€KO +t$¾ÓR zoyê¡0®Çù?ÓìvqøónèPá@Ýêî_¬¡WM?*ö¿U_"›k"üû ºïIy™„œÇ‡]Ç9¬îëù̯í “ˆ~-|÷kúWõÀ5µ“±ÏUðJ͹Ö{ÔÐÂîï0ÿc¾ÑÞœÆÞ“I´¤¶±¿L¦âÒ³¸7UçåP÷&ïH7}œ­5ý‹¢ß5AÆòL&²wæÔ •¶Áä_ˆž¢éÅðyÀ–£“ÁUAU‡þ»çèwX ¾á®óÙ¯Jå<*¯ÓöZjRR‚±Åµ7rï2Ȳ”ç¬oîQ@ò§|Ö)åOê7&–WG§»äë0xÕ §ºÓ”~¾å8Á÷衳2óä ¼™&¢+Ãw>'ÆêñÍÍà*-x¢¦Q×{I¾ Æü Ê­yö[xü]N#g˜ë:é™]-É0KSµÒ™sød?Tôž%­ª¢ÒÏ–^þ/Ç¿öé™1ØôïÛqþ<¦çœ~lék^ÀoUÕDZ««¬aþy «µýUòįÖ3ÿã˜ì#š…¨KÉœb0šÝ¯œóu±RÜ´žüàüÚ˜â3xÿVYÈ­øT½á’RÿqG&b® Qo×DÐÑ$ ÿ43›Qexð«8º% )Íä îayEÍEY1h¸-ùGnôWa©yÉ*vÍ”&Ê?ŠÝ<ˆNVrY}"+-nRMWwIOÜ’N ƒÿø“Ú¤å2Ê­ö¬ø31pFìêd°UwîýÄu›AræƒS#„ìü¥OµZ±‡ÎänϰèIø¾ÈÜ õñ«&W~k½/wŸŸQýU‹û—œ3¼Ì snþ<#~'z®Úøµªž. üGYý˜¯ÿµ‡ü膺€æi‘Ì(~ æÎ¤6eà%~&ÿ(EƲ/Ùw›¾L¥’]E${ Š®Üè&ÑÓ¤'qY~àt0ùGWòéò$Ââçä¼éãÐ ±n­‹RoîËÓSºï`öá‰íW¡_[Áª×¸_gÅrsn ãÛÄüóÅà°·Áåž“IŸP©¨À+cGG';Ä)ìBMСµdr/Ñ!ßÁW%_9 …ÌèŠóã?RàñsÃ5b͉<Çst;¯=ü*j®ê°·ÇÉ9 ³¾[ÌAlÿ‘ú·Ñ:9§}ÀÜýÝŠ'¬˜`Oˆ’¹£ûRoè¬>Ç.F¾ÐŸê·ÏØÂ-°´§˜pUÛÞ¯+s"mÈ¿|ÈN`çZÒïviÁ{ŽóTý©gã?N  g7…‰II?¨YD⯙ÓÑžh¾=ÊÓgØï®°] ÀÃ>°Ç!ø7žœ >æh0^»%,Þ0Ô#QÁ…:’”ƒGŸÀ<ÜbNmê?ÒªŸÝ åÀOtJÀSÙ^J¦”DgQÛ=ëõ5oÂüJÞ8Q5±P›Å 9]QÚ™€½¿H}÷;ªÿ^’Õ\dZ{¼Àz{]І2 eOvZü‡ÿ›Ò$&55¿µZö&v—ÍŽA¯ö‡°»aNVÐy·þü*ý'ÚÛUéT“ކ‡•:Šuøåb5Çã?nÑe‹¬§–ò¼­Fåmw½ÀóŒàšk‚‰5tf¸Î¸ ¹Ò0#÷†ÎGוþ\·p|aK÷ÉIx¤(\ÛW±ÀsÅÿÞÓü#@ýà]£x€?ýØ.â ßýÉšceeÄÓ­ßÝ`ä°²Zõéß›þWþý5òîUcšð•ݱUùxsïˆä¢·å²|yÇ7 /q^X!¡$Á¯žXzˆZKußßžÎK±è·âƒîég¦õŒÇ®ÔÔQ4øu æý1߈Ÿ¨)KAÿ’VX%Ú=)(øÕXt@c±f-A1³Èjf„´ša$‡¨,Å3µØù$v!1üÇm"ÃËàcOAÐKQ7 ô Oªÿ¸b4€Ù[EÇ X(G.ƒ^U!&¯Â“ÙW¿Ú 6ìà Œ'ÚéÇäîßY• »\a5Á“§:‡e×XŽT0,Àpòûg¬±ö¨J?]Í)T‘•Läàûõ|á?rP+ûY[2b÷”¬W—W©úú:ꢦÄéÏÈßܳwãAnáO ÂŸç ¶ÿn2³žÈEôœ[^lh3±Æ¼aÐWÑq¢®ˆO,Ú»tî|:Ö2&ù޾x+ÿÑ …ÅD¹½Û ò¶4ú3ˆWaòÈh°¸ùýúauÆÜÅâ £ ³ùÇf®w Þ“N+ÔŸûO»ûçšw_#ËJ Ÿ² öùXØ~Øï¿`̣ыcytMµ˜¾.à!Ü^"è{¨x½å× u%Á¯~ÝȇU]ªw¢{» †R-—Æ^¨çØi©?¯†zô¹D^æS­ãT2‘§ÜǃŒÕ±9é¿ÌÅßÝéÓV²«‹ð;™ñíx&Þã‡VÚ¹Y³ “™>“}ø8íì º4õWQÆÙœå%ò£}ú"J¡†Âž«ûŠ;È4 ~·‰%ƒÂíS×è Ü…ÊõàS/™LReÒtg´=‰,'}æW³b#*cî‚8¹gì  ß‡~!ùYê· ï´=–þT…ðc¨ÿøÉ)ãì'êNÿö~ô2‰2Öž§ò'r¥W¼31•5öôWÑõoäóTo»¶ê.w¨›:/5.%™ïtÇÞêüî²\×é™ ý­åŠÿqØv?ßýðG+ð9é_RÔs~­¨? ñ+h®Ë¾ÄLät¶¹EWŽx¢ã®‡®¬®Ÿ©ÿ8ÊüÁ\ä[¥èuþm'üy%â¹8ZÉ9ÿ䔈.²X/™Û2O.«„·õ÷âW™ÅK¬È^PÆà@ÐgeZ»,î”u^4•;ÔXüŸ ø<뱈ŒöÈFUÐH=†ì ‰¼ƒ=9¬I×EAC–’çÂp͑ŞÆlDÒ›±IûA¬Áx<Åv¾ÁξÁbTRgeDbÈ„ªG¨þãˆÑ «<‹:‡ø¼¡WÀFKâ-Škà‰A‡.“)¸‘£D;]Õ°P{¶¸ñ«pz,^ñ%vÝÝ·7 ‘t\¬X?,Ôsþ| K¶–=ßâùÿþí%Cì4p͘j¦VåˆÁZ‚ñ¹çŸ¿ÍÈY¦(wÿÙª5ˆÆ p-7´oº Q ½LfÂóîúh³˜ÈýË®—SMr‡¿ß ítf²–“xºG¨?ƒEÕGż\q'ŒùQŸä`u1ÿ1ÔøÊħ£ü¼ø´Ä°«ñ“`^ºYQò¢z`i·ÉN†gçÕkñSɸ.`ƒwˆAúï´†ÊÙœ{ 0¯}º4wb(¼NZ2‡v¶ËÞO/Áô/¹šUüª™\Lª»Òáv­^%?é…PÜŠÌýï„÷Ÿƒ?ºŠ:ì´šFýG^ìæ$Ðu =ýÕRøóˆörXŸ"¬õ5ÕŸïc.úî ·XqÙÑ P¢x b¿ëCäcP­ š¯ q}æGwÆ€–¤ÃÔ5]5k/ªÙðÓrÇz‹¦ß­WI&§*Æ7v ›ðB—´”JìJ gÉì÷ø£äLØA·ÛIøÏ¬ø%äuµA±^à¯îÑ? 0ëy„ÑýUrò›ª¹[mªaßéÓø(èt‡à‡F9±©ýó"OÂáë*éPÓOö6¶þØc&ZÍõ<*Pžÿ‰ªývÕE@±QÜù›’µtºɼ Óuús·Jì=Èâu2Ä~øÃîZr–>*ú«_<×Ûý•‹<@=f4®9:þÃ=£!/øÇ0å~ÿqyê›d_²ÙÉØ»¹ò&¨®’¬`žð¼å&g<ó?^9͘KuXOr¥£îåwòsø¯µr:è‚o|÷_éŸøž‰þZó[Fe38­¤çVü‡‘ÌËt$^BÜ3å´wŸW`úA+<ùÇÕì6– ¿jNî‘Þ?"²Ñs÷ox¦5b‹Øa)ëåØKÐÿ•W| \Ž¿¸Š=m~•Á|ožãÏe&Ù6¬t¨½ÌÿYµ=üÇs›Hù-6¹üé´:äòøÕE5Æ/šFý`q¹;èF‚|¥0ýèVTc±Îþ‡»®¶ë5ÿ¶Õz‰;Æ3“œ·W¨þã”Ñýî$[ÕUŸC×U˜¤v¾þã+þ-ƒ^‰%Ç^»¨¡Î<™iÕ†„ÿx„]ŽâÇŸ7†Ã Vÿ 9ØüçIòøDi `¢sü+È5þó…eÆl3ÅMNíWð)þ£ªêy0ç×ñsÃ`»Ÿ(/NÁ]ÇìVÆÞà*æË¢ÂÛð_:º™V_Ê¢—±Ú|F]N13™ÛC¾ó­hCÿ’h ‘+Œ ›‚_¿M¬ØÍ£ÿ*ß> 4Lø¬·h˜Î9\M°»¾Xׄp¯¨ÿ8DýÇBìPíMŽã®twoY"Ö™þÝÂÿYqŸÕ[.!óû ýî:êoÃâ…ëw÷#ü¬¯’Ä ;¡7jÛÒì²<1sr”§ˆð×ÀŸÛAø<Ô&áÜréYägô²¬XËd㘓ýÖ®z²š^ñ9=ýwQ/nÚ3t8+sƒÇþ¹wxÄŠ‡*í2 “{qò£ûz<«JëWº+öþ Öï¾Óœn ÅíbüÚ«Üöã6>ù,ºåA¢Ówë5qa®tÅŠTwõ!{¼Ý¼*9<õRêÏßÑ¿}€½ü.©ã­Éš ðHIÈ?Úê›Ò_c·‘š´Y¼yRêÃÍÔ“ Ô[½×Mÿ’Ÿ©*YŠR9þã„=ñy}áB2ã?z‚ÕÅ ÂĽˠâXó’•ØÀëv¶Ó©Úò!\[OòÜÎx:„¬sêº"¸.â? »Jæm´»Òm¤ßùÝRñd›ýKš2ÿ#1>9OÀUKFbUW-êI:3¥7>¸Ø>P§ôœ`iü“ƒ·³í¼ä_xKv“!Gó‹šäñðó‰¤Öð–.£×s·\/©lÙûÁKveþùu¦”ÌfþùÏ®Ìh—[QEã®?_#û£@y ù^„¥ÛÅ·çýÿê÷·F]´µßV{Hçäà°æoÿÿ?ýN†aæ°†YUE9Ñrw7XHýG:« ü¹iÅùaÿ±V\CÝ9 Ô¿±º ~UšúË‚¨NL¨ 7í¿_%ž½ÍF‰tÎâOùT¦1š»deð¶öE—SNd÷œƒÿ÷ýô‡¹ž}XÚ—{Ö „û ìïp”ìò »½ŒÇKÍ.£À«„ÅÇÅ'ÅWY˜b#XØõ7ö¸8ÊG¢•j¨±’hú3Ë(XÆèaàÏ÷è’;ýnLúMœ$ÎÏ©>q•îúëBXÁ  cK°'#É”Rù–.”kžkU‚íõ}LæÆÐ`5D4[—‹7Ò=ÿã ±,}d¨ºª&+„XéóÀXi¢UaWm‰ 6âç|eo|äQÕø)‘k}ìØ*òœ;¼ ñ!—Ðï."ÿ°ƒÙeR³ˆ(…,µ^J$èÃw5‚WÉLöâèuêš(+Þ‚’”BûtÖf.üO<æG}’ƒèùô®6,1Nîa½ àò™°@AN‡Âq ¥þC°/7~uÝé0°‚bäŠËñt#Øû~úï. ‚_ͲzÀl ŸÙOFQšü¥ñå/Øþ¦v:Ó®w"Ó‹|3ó?šPÿÑ%[,ò®øuz…|„‹+n=—‚=äǪncÍ1`ýèu˜ŒúñvAø:°GÉ?òئ=Ô.-Õò>ä #ÐïÆ¤þ|ÍwgxÖŠBuä1õ•+\J&p„h„½Ô·þjù‡åZÆ<¥átEÏi—·`íüè)ö·ÿ±\•4ÿã7íYˆ!. Œ'b÷Ñ;@¯ª ‚Mh?£¿H>4MãœöBúÁ§¢ûhîu+˜’›ðõ¾Ä"3ôß]f´0‡ éŠ×m¯ËéúðçqðmCý4Ï“èÖ‰úÁ¦°ò+œ®°,a²ÀÔtfÕXö1ü{6ýLú«‘¼L+ÏÖÃT+Û­ß=Œ–½.ùÇ/Ìç¸bopò1/öo'ÌôU¦%šT¡o…?Cìÿ{V%•¨ûöÔÔ2OÿQ‚'Þ²½¥fºn\W}øünÎ=æÊÎ`:ûp' xVJg5øX.úï¾Ae–f5±\T¾r´ÇÜ@¿ë×»‘÷l16ÊËþÅ¥\ì-°0Ëé\Õiê:KOø®ÔŸG²ë»†Ãtµ³¿Ø7À;Üþ£4V⊺þ_ñ/™Õâßÿê¡QÀLä9§oç¶ß£R?˜ÝêÿQþ%îîëŒô̯mŽÿˆl% Õ~õF/qE6ÌÚqCØ"ŸµÑœF½‰xý€uûû·¿´bûf˼¼ÅÕTy’9ÝÇÍù²˜Š$Ù »RX Ó•·6ïÓÿÊqù¬úíæY\HþQX^$ª?BÌš˜Xz´L+SÉOÁ_Üw_•â™ ?.p%wÝÃs"úÚüz‡ü£4êžLd#—¥ ö7†jþqÆHMýû"yÿÑFŸ'[.£žÈ¢0Èî^²Ÿñ™à¯±s÷Tס¡ê¯:X¹ðj³¸²'äFѰ9iðŽ1Èì;?†ÙMF·fØÝ¿½]\º…x§×3Mt èw:»­§£×GY•kÝC”ùž¬¾Vê:ÙÈÎÁ‹_/s9éfþs°ý¯„é™Q¬¥"ªÌÈûs Ýoy—“<¦ÔYÜ'¾mÿzÝ/½LIÿ«¨<ÁñçígV¹’¨wøU:8ŽidnÈÛéÂx·¿¸¯9aÂÑJÅåsÙÈÌ"ÓÙ¯6‰ AæÌ¢þ|ÏA|üÁzlà#²ßøÝ“º5}¯öRóœ§t#ôW[àv_¢Þo¸²³H~ò,fµnÉ\Ø—äØÈKä4ˈ3FÛg…/G—‹O å3‹x¿¬è¯æQ‹‘—jùKdCt$î÷sëwO÷.+<÷ÿQJ Xˆâ<Í·Á¯öÙe™:5ÌÝ}ܵ’ü£¾}W‹Ö%ª¯‡»Î.r×ë‹ß­W^þ“ræªë½W'éQ?’þ‰Ýu8*à&Q¹qœh&WÜ‘ª†KdQÈæPQÓ~IæpAúÏ(žFO×.œ‡»þ£%Ú‚(϶ëÉè˜"9éPuÍwÚÒ%½2lÃ@úƒ b7ç”]nL5\d®=«òŸ—½ýî[Už]QÅì?à'Ÿ¨9Lé}C•Š—Sþã)5/é²r‡ZǽÄþÃu1ÞÉÙ¤A¿›ßs½eÍ“"9|aÎaÙâ#õ«]ŽúÁƒô9OϪÍìn>µç‡©rœG ùlú'F¢ócVÜÉ“Ÿ\>>Ü73pÖÜ.6`ëVå„9­zØÐéHþ6Þö¡¾6õñç\'œú®¶Î}]ƒI¹u˜ãkÑw±Ð t1¨X2ä‚o þ‹¿?1*™i='s×(À›üØ6bЗ6¢5ʪHÿ+aUfÍàWÉè¿»ü*zˆ]-‚ÿ)'á?nÈrdìqˆV Gä´6pγåZú}ܱ¾šÁŤÁ¯åþêCë èÆ<òiØê–Ì?ol^3—3SÚG<5©?+^†ùƒ'Ä<Å{0ñJü^[Så"lQ‰ïCýGŠ0å±ÅCa‚ÀDÑÛxŸ÷à7vÓù•÷Y=ÃöæÓ/øðÔî Õ*TÿqÈȆÿÚKý‡û}÷Bë‘Eý-&’Œvç%V/*_M€É­Èê'÷ |‚ݬ˜Xª®Øškpšˆ‡éi°åý‰íóè|}˜Ýe]Œf§Ee£+}¶3Ì/2?¨Ä`ìü˜”{²Ùà6Õü¿(þ£µ~åç˜F²†87<Ö#‹Ðž'ÔñÌØøGôc™Kþq’¸ÀÝ  ç•ýrÑ_¼Mîû½ ß9J !“= Þ‰Óñ_åÛ§aÆk««ÜG¸üª@ýykv4Æ>äv…'¾ÿŒÍ?h?„=ŸEß¡ –Ý™Gµ/–€‰Â•<û«arƒMÓŸ1£]Í•WGø“ðù”}'žà«, †ÈDô¿ ÿñÉ:/"ó,z?–ï0,÷f¢è'0çõ%¶ùGX¸ªg¨ùÇ%#3hÅLô»±±ƒ‡Yi)}ßÝ36¦*fÁ±$Ћ©éoNîÛËÚÝb¹Õêî¾nïÙ‰å(À5ÿŒFs¢®Ò<Œæþ#–8¾ §ìb¥èMc¢ùNæ9êFư<î¾l8¢ÚñµÞj–ÑÝÅe³_¶™Œb?ör›, bóL~2JŠ,à÷qõVb6÷ÙÕ oKMÖ–Uÿ­ž‹©"1XÆxøóýj$ûï b}›¾’Ã9Í Érô»-åQ¼ÑXt é©ñXÆÕt&»éH—•”\{<—ÿ…5½ÉÄÆ©ñx»mTÑìR?xþ|2™nF½Ÿ“ÿÓž(/ýIŠ`ÏÛ[À¯rÚÏèæQP’G{êðXÏ%s-èŠëQ«”†k {2'¿‡œë˜ZFý9ýÌ™› ܾ ¨ø%ìqYð«eº(Ö=ªI>ãÇã)ØaþüÝŠ—­ø¬vmvLxƒÊ ~Ïôf¸ä~|Ç¢ç'TÃíƒÿx€^¬Ütýú—ͬ9GD ]1¦º‰|·ƒ«jÜ[ aÛÀïÛs"`ŸW3Íõ󣯠n‡å>ÉUÖÀÚÏÅ# û {\ WÃL£¥ÙŸ¸©%ˆSS°µîø³ðñ£P ô…˜HuwZ§;ì0›¯×¡;áyòÆÌ\ÜJŸ«dúgåÅüi>´Þ±ûÈ<­Õ©ÿèÿx¬Û€ÏpÑå¢SË%Л½wºhGr1UÖtò)ôäø£‡**³àÊxίõ~áxš˜ò£.èKĤ5©?oï\„—y ÿ±žI¸õáô/¢án›ô16QÈ%´#¢Øô&GOÆS–T5õø›Ä£[ˆ¤¶1m¦þc‹ýÕÙ3sÀo†ãmvÙÝuÔUÀÎUÓùK§sÅCçU×ÇüÚyj¿@ ûžm†Xô±þÿþ•7Fµõç'¨ÿÛ× ‹g^7]ÖôWnÿQœÓžc¤¤IYê?R1Ð ú½A¿rÈ,ž€ æÃÏwSEZæŸ_3oŠ]r¡ØGÿö‡!Z© k¹¿C¸µ¬SyWûv¯JA·ù‡²†ò7ññTõ0öß-N·W¼Â¾¦ãR}ìÖ|žŠšèw}ѱƒWØØqàWydX4Ë ÿüÊÝçÚ£/DOÕPT$Ó¨[&n–hŸ\ªZ¨þã"þÃF¿û=LM}„ªõ’ì¦;ë¡ê€Ê¸ëÝ5€£à,ú€b‡V3ÙËÊ£$õƒÙ‰>l,t¬ØxT6P²NÂcžÃƒd$æœAö“Èùxð·À¸H¯Î„øÇ³L>,ÊŽ’ài›€Þ.ÁJ¼bG[ÀŠ>SmÂ'/ãM:DN‘ˆnPùÅç`VdÖyÛGø•ÜÑcüýºdU™¹ñ9¹”rªÈnß,|šƒZ '‘ßM©È¤nã?п} ¼j\ßëWÈWø+dceÉPn«—ú$Ú¡Jö]Eìl'3ʤáÎP{+õƒL‰Å ¹ùeú9|ý+=\oþ] ¦ÌÑ u=ˆ*ê¡»m,ë)oð°a K%É Ú9ƒœXÔvo÷èA?Å©ÔYD¶÷bí‡ÀÆ/e§uµÊóÌŒ6ÏXQa‡×îþ»`?£ºó2ç#>| J«ËL¿EöðÞûŒÁ•ñqòìà¹Ñ5fÃ5Ã^|[°ñ#š+žáEäóe Uüªþ¢µó”~»ë™Œ;œ‡©g_óÑ׉ˆB.–­yº™¨ “ùž¯¦ÇÜ£ž}¹œ„erwuî#ÏÓñ~-‚ëÈ@Þ£Z„ÿØJ‡ùJèw—èìtéßTÎðÝr(QÊKÞªbÝ· þ‹¿G&SHé9wÿ]ÿnX?¶¤øpÖ+¼h(®ùùUF+UÞºåõWÇŒ⦬‹2!öÊ[Ęy~Aì—«à?1KêÂm/®¸ŠçŸ. òÞgT5ä5æŸ0¯¢ßÝ'^1ÿ#‘*ÆùQ%¨ä]#¢[%/CÖ9 ÖH)ièéÄÒ}˜ß”K ’ d2¹3 {|l]ѱ¼ÁYŽƒ_ÝÆ†•óÓ_ÝÆú¿&×-ã‘Ø_©ú¡ú9F>üÇxæ+¦ÐU‰3ùÅäåÕìfyö|D~7ùÇp"ö¦ªŠˆà¹÷Áou°•ÝìÀkþVŽÃB·„%ˆ]Ê ê2Ì=g6¾~«QžúóŸCÌ4o1ù‹ü{Þ“¸À[øÅ†d˜#á?Îcûçi|ñ[ï<þãŸn¢ß'SˆÁl.ýw³òæüDT™o´_µàMÊöõ¬íè(²ÚsQç'çZ‰­lO…âu¿ùQã?F1™¾4g&¸JLlÇBpåÜ‹¾X÷ŸÈ9ò£¿: Ö3Ô®9â<öèÖˤboýî k¢œÈ¾"ÃV,ž¹ñ« ØÄ#àAñl_ºR8N{·nbW@[ƒÊœD÷ÝÉ?¼ôl´ßùjÖ+rç0÷S8ùÝz Ïʺƴ×1·#sFºBí@]œÓÖôÄʆšö. Èü|$üÇ3ÛwwÚ‡úÁ!< ¯¸Â™<)tÓ§b|ƒý;sÝÈ3/õÓ5è\xíä3.8ô½Ì¿Zí‡V÷¾»'Í$]jÁt×SÅ3,ó«õ âdr¤7ð™ætô²gë¶T;^£–¤ë-ƒ?wOiFÍ‹ÿö©F3s'×…˜¤1œFKº&¯ÖÀÕÞÁ"Œ§>~굂äG£à:Ø ©Ç–`•á}4§öG¨ÑžýÍB¿+P9¼Ÿ5íîD‘ËTUz+Wú«Ÿc®U&¦GíGo–ÖÙÊ´ÄH° ‡ìÎôéÄù-ÒÇU|jýß”šæ9ÞØÄ`CÕ]Ü4—ÝÐÕ˜yç5ð<ç˜írÇéÍܳô8ðrÊlû3ïÍnüNž²h*»ÇÜ þ|£H,2‚{²J>§š}:žqµ}ÍŽ@VÙ‰úóctTl«>GWv•vz¢Ý‹àüEî¿þ¼$–(n/–{®øßûÁ¬næò"&oüòƒ (š&ñ\6!ÿPz,qp3úV£Æ5ýwýgØ„¼b"qKhVJIÂalÌß¼9¿RUò7èt1üÈ1|Ô)ò£ŸˆÖ Õì2š ‹Bþ‘‡xl/û+…«@fÜÔþ%Qzn"ëDDÖ§á1š Ósïƒßa«ÈÚ0˜_žVë¤V}±ê]°ˆ3Q%~ŠÈ:•~z[Q¥—¿…ÈøP»ŸZU!žsw¥qO£ºkØd­¥¾€ŸëSý޼èWïÆ°¢áÌ­·Ê„°’vúÙ¨'ò±·D\O*¬©»Ie0±Óh²ÐoÑ!#¶µùÇ6v?ž,6wþ¾«,ôZ‡Qè¿{|g5Ö4ÿŽ¿BýG7ÙTœâ$³ÃÄž¸™€uœÆâÏ]ì²#ý¯fZòõç A8r£ÙZÃIùÿm§þü(øMTzßí‚NK­[{øó¥ô†}AfqœÌâ5YÈ"˜³ îK-K³ƒÎìa‰îŠÕÁùL&ÿÈd¯¡þ<ó£ò8]iä•Y5ˆ[QbûGôÿë©_u/3½¾[ñšUv¬7Ñu|¬cO§÷FôR=ÝNd"ò“诼áãËãE*â5Û¾ù¢^…º®øã»õz“äЉ1Z“ER¯õ.·²þ#;ý¥†Ã|_#ÿè ×Ó¦ÿ~nyÝfA—ý¸?W¸Úh`®%žêª¨fœM~S]ÔgÐï êp^øJ Iô§ÿJýà[£`€ù÷2¦¿ŽîÛõ…í÷˜ôñ5gZ¹É?›yxº–Ù­üV=ê£[ CTå¿úac.S•ÚâÛÓƒÓ¯­ –—y ýÕú—,A¿{>øo á«Ä;7Šƒ¿8,'oÊ*f"ëª,­î‹8rºÞ¼¡ÎâûgéÊôi¹&$*~¢!XË,X}zä¸ôøîÑð%a°ãÐÁäP» øe-Žr¥îŒc;Ùÿ~O¦â=¾€Õ¾ .sKÆEï= ùÇ£ ot°ñM@µ™èDS„h¹—* ž| ‹¶• ZóùYýÕèP}fo+?Zâð±Ñ ;%RV0ŠÑDáoøó>ð«¿øiïÈÀóà•Bê_²Öc&‡;ÙO\PŒ¿$©ìÖ PŠû¼‰H_ÅŸRîi+9ËðXê¹2_°õƒ¶™þ­>³|ì¯w8!þö<{º(Z ÐKº…÷r!W êɹêJ0ùÇDð«FòœJBüß…è=‚^M6ÓƒëjÍ ¸:]Œà±ú|,iQr¨íxÍÕp÷ˆnV˜ÞR>ßÀ,&{vç,»tað¹؇ìdÀŸßµOѼüy{;3Š¡ DÚ™±¥Ã©w>LÿÄÄ2°.î7ë±1¶A…Å ò¤ôI?éHæ_`ºÒ%üG!¸…VØävèџ؇H¡T ¶°¥tðDWy*Â¥šdhG›4 HÑc{%lðü[*ð«}d mP6_ÑØïH=8À¬œ#ð“ÉzGèçø*º”̨RѳxUö9ÙåHòL¨’®¡žÕ-o:û$Xe_…pB®þe€Ømüy4¢:2ªþvUU–H¯¦níh&i,„óÙë”p½M‰å*F–tßtÙ¿JÊ3.ðϾÔ” h¨Æü¨¨àÉi8ÁOz/µÇyì®2Ô{tæ*u„{aôÓÑ·’3—æ9ÉŽÒ8IÁ¯˜fû‘wûói¾=2çÍ Â[· w¢*oÀ¦hWgÛ߸vg¥SÿqÊ)~uEç§ScW§*]`Žáfâ?ª 2¿ ã´ãÛÏü¿úý‰QËŒæy²®Ó¿$‰çO?ö3¢Ñ!ú£9ÝÊ$ª‹¿Mw-Å# ókkZG­„VlÓ¿ŸYXÖÝgŒ£ÿnS¢y° ´ ±E*ë~ýKã?.šþõªaY/—xî2Ÿw ¬ÜEê¤#[^Df¯D9üª\ýGó)}TžK¸û«× ¢iFOÀ…`Á6¹¯™ð ·Ã°µwÖ#2­Â`¢Ûøî30çÉÐ_Ý@s›ç®J®K©22Yo8U3Ôüc­‘BE`΢¯ ÇzЍ¾4uʼnÀ»«_ai—‚w¯a‚Ö\” T'ÚÝîa¥ÄÊü‰ý½M¤Ž\! WgÁt@%yT#î¿ÿHŽå_Æÿ)-Ë›{B¸êËF3ÌjsÛDÁ4ã{¦ÁÜĸ'ýÝå ñ·bŸ}9“ÚKæV0Ïd4æ WË£gD»ëÏ[’dæþ&‡y.ªŠðö||hnð–ùä[£ÉyΣ“ÁÔª \Iýùy…ÝúÝEØç|øÓ!̨õ×ã0Z›cÈÇ;óL5Ð t%üÇ!½Kú o;ÃODŸFþ0õƒÒwý°’ØgÉ{†à­ÎÀž3ïQ®ð\îLó„õL•àžNcRyeõÿQÏ.ìULÿʘ›ô/ùßÖŸG4/˜ÊZLýàâ¶Y§k™Q„ùQµ¬+–e™fXbqÿËÝÿñRvÄ·fÆÎèÁ8?=A2­G,´¤–Ú<ÿõâã?©íTBt&‚.(—Ëú°ýÉGþI¨?O ÿÚ,ðVkbî5™yK— ::Go!N Gí"ƒŸäÇâ&æ«ãÀ¯’˃þñSdñ˜N_áObû¶GÓ5Ènƒâ”&꣫`ñ¢‡%PuCõ[ÂL+œÿ4ý"°qÒ¯D^mQݾÀ.'×ë‰Ä ÷¥çphw»—•_Ö[s{~/³ŸVlv5QõLXõd&™°±‹¸[…åï!öß½…®?<5ØùÉ9É0Òr]åá%_]a—•Á¯^òõ}¬¹™ž_)­×Ê"Áö¿²ýêϓ¯àô½ùŽú ©àLN³Æ!QWD¶`™óÀ ÷†cq÷ß½(Z²àú_õ2ÞZý%ÁÀ‡†b{Ã㕪òwÓ`çòƒdœ&)H†0™Ì+>_Ù€ß\Oþá·ó{‚Ôœ¢q¬ÊKþr¢(ïw'âƒä0ù°ùÀÜ“;Ùà¾ÛÕl/Øé·øõSث۰í›áÎJ|g &±=•îêÍŒXçC0Kð˜ƒÈ?ÒØãôbòy*ÖEôy‡‹ ^ó4ì8QN{C úÁ“VbÞ««Êþ·‘‹¸E·—ØÙôSÝf:‚ë (~G{þ*ò~,-ÈnàmŽáƒkˆšßí°4éDvž;×nüŽ:OÿöáTŽô3\S™¤ô„¾¹óì…èz“ ¿šIüÑ…ús_z°Xv/}8@ÿÝeFYsœÒøƒ»T–ÖÖ­ˆò¦éc̵zc'ƒ/ïŸò™Žè{©iL…]*'c±Ó¡øß (¾br¿R+5ëxø÷ ·‰+*Û9‰"êRÅ8”©"ùÁ~{þÃüê3œÊ:´³¯¨)Üm÷Á£÷@¿»¯˜@Ö‘å<×Û½Ô™Š§n®Ú¦SÈÙ°*5˜Ê±•®‰›é9²Ü¹Ç  ÎN·ÿ™¬$™ñ6ð€ä Éý¿™„kæ\±Pv㹟'9S*'½«Jf‘§FÕêíÌv­w%uewµv&ê¡dIƒ2è¯À¾-%ÿøõ¢2ÿcÇ·ÿÅßo uðç?Îåþ×ùG&dFC¿û3ë>˜u9íÅè¯2Q?xØŠd%ûÁúÁ«ÆXñŠè´v¥•Ú,>’ÃL0§Š^r®ØÊüˆÖã:¥Øâ8lèZ™$§¨ª+×ÉÑfxk=¾#žŠ¼›ÅD`Ì9øÐþ»ÛÅ=?t¥ÌÂF2vwÜM¾&Êݢ垾€®Œ¹ÌÄ ~-÷WßYwÉ´jk»õF'©ˆ[ÞtëYÍ[—UTçâ=\ªY¨þã„—:ÃÑôO¼¯z€C»{_½Ä; ‹ÉÆt Ð&4m=‰¯;«á"´jŸ®Vð«¾dVð”.‹îºÛèø¦áX(åWÿq‘ü#£~L6ÿ+óÏ+†ˆ_-¢/Þ ™AÁgdáçGeÖsYÎj;˜—àÏÁØXXf0¡-x¥=Äöq`V‹ ÿ;þç˜ÞŒ&r€ö¥çzò‘ÍlÂ{UäݼGLU„/ÌCg,ß>îËpbÏ„¨åßñžW>Üxduƒ?5íMÿ·­ù ›•ëü ~–?%óë®>…«.ÀÏ\óÿˆ; ð,²lkWÕ9uª>Ü=¸Kã4Ö8;4mÜ¡wwww .Á]‚H‚CpwwûßJ_¾H‡!ÜÿÎL?ÏL¾„äÔ)Û²ÖÚ{ó$ c—‡Ì©b—Vû²žüc8Þ;{Xw{ ]Å!î@çù™¹½žZêBô•*Ãü¨ ðáTÂÜÂl’òú«¢ø,hûrâÁ–ài–“©N­©L~1vöR'Ði#þCZ‹É ~¦Vã2ÕäCT«›ÓŠE“èàWþTf§;jy³xÿ±LLÉ~5ê”{Vl×N»%óÀ›T­šäòst%pµ°7ª:T*®böØ#ë±á9šü#9hú,±Ù}Æÿ¹ïÐT:\ÅßÿÝG¿›ÔýÝןFì«Ó¿=­±ÖÈ!j‹ëúo¬²^«†r·«ác¼ÕM=¸4"ëùi ¨lNÔœ†u›xcä5–èQJ­ þc ú«wYÆý;‰ÄM°¦M² Ñ©ʲSþ¡Ç7NÈ¢æC_Ž%¾/ûÝZì¿k¥ÐÅ,}xŠßÁ&ƒ&”ÿ¸C>» <ß™5ˆî%É"4ÿ#¿ðoàõ_‚»ø²êmp±ßXõÑaC²œ·ø»äGq°5¿ë?|á?4s‘|,ã¡=ÚH¶ð ØéÔÓýÕ+0¦j.yĆfïæÝŒ*ìc8ÕþÂñLÿ[˜ÊS=ûl,è¬ÆyöÙ‡ˆ=!¸à5÷Uýa}¹ XÖ›ð$éù›¸Ü‰üÍRPîÓøÎĤRm&¦¿ζÏ|˜ªüE2o¸þ#«ž]”å¨éÔ<š?¹@;üm~ð¿ËØÖåb¸ð°VeV«ØõîM:23¾Ð'üj®–˜Øä*:²udVÉ©gœÊ½„Uï;‘µ%¹Ð%ØþD‘™ƒv¹’øÏ#+ÿ1¿vµ1GŽa79¨GØŽ­<ÇU[‰õßT?xþ\ ¿ºÁwÕàϼ+¿7 \gªCýyX¿^Éø(±÷ìÔmQ×ÉxŸâ?Ò[i`OfXÉì»VIª öq_~·^ñÿ©È¡nPÝýL Q©ˆy·„éß~Ä ß»XɱAú+f’[G¬ÚØó¾ /á@®`ØOGÑu½ØB;ó?þ$_°-o´ÐSeç¹¾9ús#*ŒG\5Ĭ~Û .UQ’)Mô[ÏáºGõøCvyÈzJ6ʺfÕà ¥ÃØuÇL&«Ã—~]°š~SÄâ nhÎ@g6þü«Œ«*ýîgR‡³’ØàšÝ|\Á¼Aü¼ »ÿÄŠoÅÅÊ;ùGnâ/] ¾®wz€í0±[‰òÆÓc騕õtfX *R£OÿÄ .W-ÛŸùç ñ—ÝaTxm–yN_Ük¿.øüú˜^eÁº£—Ú/ºí¾N?¶øÔe'5ùE qE¯Â*ÛðEŒŽÆ#†a~³* ü£œÖv3U©5Üñ/Tüí¿ª`L×o0ÿcøÕZfD¤6/xíŒâ–}•}> ø ¥sRã¬b>±™ÿ‘Ä,%rDèÌüꥈƒE‰¥Zà“+ñ½Âê'FŒƒhõ¥äÖà |óS,q^8ú«¨Ä&—Éaßa3Žš6èP-|ÉiP¬‹Ò"îObæÿ®ÿ8¥5Fe;†úóÒšþ“'A\6£ï)Á¿nwóâ,®‘xëÂ,yžücþ#+ëù ! $ÿ`v©Ã…XéÁÜ×SÁð“¨êÂÌ'ÃyŒ®áó1þË›Þÿ©Ã<‹µ An5 ä G~ %Ñ5s þ£>r¸åAuE%æD\€_i@øÕ¨wó§< ›˜¡€¸ 3?*ÐH˵¿G®–“Ž_5@ž"[ƒˆÅË£`êÍìÁDÓ[í.ÖôÆu±ÍžXåìþ&ç¿5Eá¼áÁÿ5äyKOfyŒ{¹„ëýr§3ÛÝéçxŸ:ñàWK™ÿA –ïÊÝzª!Z€GXhÝË’×Ü‹mÓFè{Ñe÷â©hŒJ£‰LL?øô_Œæ7þ|$z®êðÕ3ìf–ÎËÛ‘YÙ™ƒ{OvZÎt¯·X¿e$ªŸÙÁê‰ SǯþBÿÝüô/¹B¾Ãuißß¡š0YÄAjhR¨® „ËÕ3üy°¢º¡~TXôUª‚²ç9L}jsËRs9 ýÕJøø Ld¯CýyE{¦uÊšº–ÙÎj <ؼGô¶ïär·ÿ¸I\¼Iö"ކ–d¾<‚†ø49ÐNëw57¼ÖRæGec‚Tò‰ôoŸo×å:Æ;¼Böá­‹‰•xø_™õFkªÇq? /´zÿëúdô“ÊhL7ò‰|ðçXs‹V‡ùcÉ?l#‰¬ïvߨñáž¶C<¥'exÕØøà`×ô8r‹<#fŠÓÆ=¼š²o/XUDSLˆ$£9%)ȬzA4-Pœf”«e:úD¬ò¥ y–-cbQž=7#–˜@^ɯ‰n¢ŠÍ‚Wi-³É(rã·7äþ—TÂG|’žhv˜øjßTc¼‡MœÛû˜Aå6¯ÊT؀ײòwýÇ]­%]mÓÿ*j¦}\½ºøzàAÄÓX>§‡8UÝDN;±â¿÷œW°©ãavž“Å%cONÞR ÅþX¬Î²š}ìú¡îº@÷ªkð¾èwƒ1å¿×kg¼“ÉáÏ‹`¿÷Pe> ”o"¹B5jÃ'ÃH b3{ÿR þ|&½psÁ-Ü¥ºbˆÊ…âg«¾×ý–;+>6R8ïþ# S8¢bã˜ÕBeEÏ´ ÿq¦!®qPÿ«v(Ò†±ÃK g»‰"ª‰’¡Öû]J0ø;d4‘!c~ÔzX„ßPÓæ!ÿð¢²â-õƒQ,÷f·ì³+üùòi=#_#¯þ}¢üÿ­Ÿ¾ƒ;ñ—zN6ã©úÈ›òŠ:o µß[…¨7_AÝGzl³þc0ÓIñù3+vçÈ‘¹š‚çü³ î(3þ<Oë{žÞ:ÖLs¦ÜnJæÅ¡Fc.3šæÛe]oð—/©O¼[“Ù~ kÑú?Ég–ð¾Ä%ÿÖ+—eþ¹ª”¢¼EwU"Þö¢VS°¥«vkþò–•ÔuY}X>Û‹³]CíyUf€¼&[ÞB@‡•9„~÷>ýX·c뜼n>ýÛÏ‘ÍL§þœ)1tÙݵÀµŸþ%¹~·Ÿ{ WnTÿ±„ùƒ3xÊÎË>ÁŠ÷¥ü·à¢Áú«û̯ ÎF~ìàx=š1ü£,üG~ž®=ô/ÉIGÞFb#ËúÚ"üGk45¹°Kq¨ø“.ZwÅ æ×nûzDzKŸA&!Ôør²ÍÌ¡ß×OQÿ1A¦1kD°ÿU˜Èx£D`õ-ð OL/,s::jÖ»pœ±Ùcà?ÒE¨þÜ…~÷ ¾¢‘_ÆrÆ¥Pi"´©&ùGÕœº…4àFYÍ?¾ë?ÎiN½Ç¼ ÿÑ¥e)üN~"óUØÏ¼á{A@.£™‚5›HÿÄØ¡¬@ðõúúiªá ;×7ï »‹ÍžŽ(© É""û{d5ûÉöšàãËñ¦Edýo*%vhãÈ?èaޏYGtúïöà ® f}¦µ€8ÝAØâ«öó¦ù“…U„YevË×í„øýîϼ7EȧŠâÁv𬔠ǸÆçËf9S¤¦oSg¸é5œíRvš…9Ž_ä4º‰…Xæ>öÓP~üjUùAª‚BöŠ‚^ ‰@ýªÑÏÀæ%$ÿð‚=ŸÇª'ÀÚvPï¶vËÏhIþQÝü•^#©}¾M\á‹ï>KÇDv}}Nk³ª…XÈoq¤³x§ëß›ÎÕÂÜ—²ø¼0Vy±ß‡ØÇPÅ©LW-D|<uŸ:ööVð¯¼ô<\‘ïq {:“úó¢æ~½h¨oAç|À¯âpNÉÞƒ,mBok[-ÐEA9N ôU€ •ó ?±Tu¼Ç8b‘Š"t–YXxò@òÀþð){Ì'j/ÝàëY©?|/ξžÆig%E…ºŠìÓŽ_·`>«1jµ V}  ‰ÿèFVÖ/ÒV¾—à9zá%«3ÿ|¹½¥T}{=þ£»5<«¼ˆ3=e>Y€Š¾˜Ó ¶¦ôþ2>ã»m²¶NVgê?Ò ®ó> 0¿ö:suë3é9ý¯rÑ¿ê,KdævÅ€m/»ˆ)+†`¤Z¡¿²àK’~VWå™ÑŠçêŒlî…u‡OãÑ×Ý…?_ r5“NgeÈA ¢CäÎÔÌøð­_ŸÂ'¬·JûN?SúX¹]Ñ]c©?ß„Úl;úÝ‘ð÷ì_éœøP5¤þ£&ùG|ûÏàzüG”ŠŸéç‘hõë1ÿ¯¾¾Óš„˜X{S«ù¿æ?¢3O#õƒ%EÅpú'®Ö*5Œ!ÔèF”¬<¨M,olÝ:jórÒÿê9ýKNÊb8b<ÑoþÐ%È.¢€™’úk2Q¢ÞÖ£¿jBþñ‹œ+sQ‹œ¡þ«¥Kƒ_OUdUßÿÚ¡¶ùzȇĬ×y·Ra7¦Éd ™™S< g¼/›±œ§°ÖGùûWø7(Æ,âÃ2ô^0Uø­0õƒ¤nÆÃ*ø8ˆyK-¢ýf}0l_~N?¬é ¢ò?¾ÛÿÊÛȇï…Ïx@ÄûYNÁ;–3ÓЪ Vö ‘èiì¢/8ÓžþÂ0¾©¿Ú ÿ‘Žú0|LeŽº<ì u*9ç‡î+¸ýîÔÒí`ÊÚ€býIµ– Îc$èR^4ÆëÑÚ¤ÿÕ6øîL×F/ÞœÔitÆ·Ç‚q‰/f#Šãô«F0Âwæ ³øUsI¯fåÉ”ÙBtTñ§—~}—‹‰ã&ókOà?â£óròk—ÄÚ¤nÀü£·D?“‚kúïÐ5ê?Ò™i™?Øýüi3}êËcx’_à? Sþ˜^g¶U]·xºaÏba3bÑöë ¡âz9Ê\„Æ|0µ¿­JèÁºÁôl²6Ó ¥½Ýýî »k¸ý\Õ§I]ô»Â¾Eäuˆ7²4˜÷OÌ ›]ÿßùõ1Š«àÉ(ÎüAPÏEÄÿÉð2~¥þü¹^‰Uh¨þè ÿ×(¦D|)~ó 6ýU3"ð,ÄÉ/Eú—Ä2ÅAé˼pã•&þíCÄÛ`Q'ø6`08F1ºÍ–eÌTTjŒGaÞT”ˆÐ™WE5El"Æ}‰ík€¥_¢vò)§|H”~Œ=1ÊðQ2·Ì#ß~{Cîùlœ¯eVV[‡5Úr塪áê> Et°’rؽ/òŒi¶ýnþ᯹°Ê«°“÷á·rõŠbS«À¼vÁþ}Â.'źfÀ‚σÿ«-b|çœÛQØU_žk쟅ÎOýÑœ¤ßýÈ¿¾Âé †˜*úÌ}kþà'mÓñ›õ¹Bsás¢:ùƒûÛ ŸY˜wº´º„§;WïtQœaNãn •9ÂåÏc¢ßMˆo3ÀÃ~¿ÚÁ=ð$Û:²†»:D<‡Kh¾Ük 9Ob3@ÞíÃíß>Y3ц{›Nô&ÔÞéjž·#ú©^|œ£*—Ý lýˆoáºÉŸz°îD®À0±ñú+£ øU ¸¬edjÔyvà¶–xþžòƒ p‘ìU%ˆîçÂá|Á¶ÌXEfç%ãÊraîK#ã“ÌÇ]ÌÈñ§‘Ìâ~LF]šÙÚFýyZpbiûì;s¶ñ‰Èb÷§ø©F ,™áσûÿ9Þ#'Úk?²Ê°Ä%a.˜ÿ±Âʪ,”I[¨<‡é –wœÜâù‡Ã}`óºûša0ÅdßÔEž¯Ž¬·üÃÛêk•±šRáqÎòÉ?FÛíàw‘í3xʪ<ùÂ2Eýàý¯Vhô¡è"Zƒ‡ugÿmxö tL½lÃNG¾1~ßî{}ÛXýé•ÉNÿh©zsEöQ•çÙà~Ãfëgðn&ªƒß­ôfcIE“ªJ~‚úp:¹—v=%zkç¤ÿú}ÅËô[Ø‹ümYvNô»ÁU-ôMBRCUŠè¢*LMY0«Žä ­éùÒòƒIŸN}ãþ·”:Ùô/Ɉ†÷5+vðFfåŽBÿ× ^ÒÀô!šÌö–1íÆ®«tvø¨Ã ‰‹íᮓôhDýà1òäÌ?©Š6ë6ê9œx.6c©ˆHµÀ×cþ_}}®•Öƒyã‡tS ¯×iDŽY?©ÇÁdD$£1Ïÿ|-•QÓøË8oÄ1r}SÕþÚ'µ>ø:°ç)Qžºdb—ùµ‡Å~¹O쫌§?ˆ‡Ý4æ*ÍÀœæ­ž¢Ú oç-«bñRS?˜—Œ¼z˜w6üyâ?æ‰ÄÆWÈ*‡y‘Õ5KÉ7ÄÌ'±)iøé4™R“ÏÂ_"ÔOŸ/Åc™ݕӹc71®ª…7‰E¾Ýv%ïÂcÞ 7ø¼fßõÚ;™‚Ðaó³a•˳³Üx¹Ø/O¢ûM(‚¼É!ZÀÔ56û†ÛÙ6äö<8Ä”Ýð—ѽ–ãaTG%Ïde7sάÈ[Öä,#õçߊ¶iÝôƒ²¶ô<Ú6°OAõç“Ì&d/t»%Ê}Fÿ±_<—u-ô-iEüpîLT=ºÈÊ=ˆª–¢QÞ ÿÑÿ‘›¸ü"gùYôkcùÖ)ŒÇ¯{ Ü½-»…[ÿáEýÇpy”ë=Qõ$ç³”Ó}¤3ÖµßÅÆƒÔa:€n`(Dv<ó"²²Þ\Å©æ@qL¶V_½F79]˜ÀŒÅ‡âmö ;X€bׂÝN/ò‚Önð«r0¾%Ép"«Éªj¢š(“KÏ0g\͸/K€&ŃÇ/Îá9MmEìåTôW/è5ÞÞL¯ß"ôß]Š Þ×þ±_e4ý˜šò¾¹°Vg`@¢šã ~Ž~×ÇÊ ƒßîã_ˆžýíŽø¨¨Ž’ͼ4«¡pðµ=脺‹Ð;l$ŸPÛx—\²x—yOͲútÂÁ³¥%2ŸC?ÆéTܧ&Šî æTž$ûˆBý “!ÝÛ[ަgž¼99~kâ”®dÓçÕk SNCÿăª¬Õ UŒø 2J2_²š=øöŽ¢I¨õjËDŽâ ¸;\®³ûGwCð°gÌ;J…eE·‘¥TLþÌ‹®øÊŠdRþTÓ¿wºbþù\­§¾O9ä¨5¸SgùRÚÖ6ú&~¶rÂÊÁ:ÇEåƒÿè‰Æk&ZÞdd6íÉÍ>àß¾àÉÒšKÜwd$úÝgÔŸGRÃáÏÇ™m¸ÏmUmæ”g`ÊÆ C´2Nê÷ÄV Ö‹5ô/ù±þW/ŒKø¥2yC³öµŽ~Sß*K™¯D\9C&ƒ ÎÃþÕVês¨ƒ¿nž#Gèë{×<€®îèwPÕ'#–%Ó“ÜùW ýϿŻéT_K¸Š¿Þ c[UÁ Þaý‚(6r©Òô'ƒG­äù]ÿ±Nû(Ñ–£S5Á]“ÛÝ)úOÏ)Þ cf>8ôŒøŽ•ä Ãí rÓµŒä £©í¸~›uâÃ3ÄÀª FíYÍv¬ýaІ'x™¢dsÅõou­_© Õ×Éœ¿9»Ú=ÿ" ßMÌú‘]v‚±yÁz¾œû"мåXÜj²¬®ÿH¬'Nm|25ŸÕvóžøÉ¬\Ã}ä6çDSa[ëPm:³Ê‡ð¦÷¿:+ÏɾhæCžáߟÇã?È] Þ +™ñÝs@³zkº•ăŸˆ< ï3ŽL!¿ZÁ½î‹'ŽÕ_ìüÇüÚÍÆtéL5NH®0‰;q öÍÇLò›™þ‰+‰r³Â|”¦ûN,©Áçá¹fƒéÌ¿ › {Ò÷Î!ùÌìøD0qøØèw½À¯®Ñ?q Ý-–ªœÖVJç¿tèH‘Næµ#Œÿ8F\0•&=ýÀï&cƒö4ùGøéD®øZ ÿù©?ÉÛÔÁlGµùpÞ–Ö¡ìD]•ø÷®'yÔ=ô»Ë@šXmÑW½gÒlAæ޳çPÍ݉ÎTwrMOöyŒ yËê¢îË`ÄZôW³@n««<ÍUžz ó£"Ù¹­.ä1ó¨Ôø}ñL»ýGÑ+=;íÞ¤±W…?No®tßäyúú—TƯÌ5Y­xû‘ñ@qUüê0ú­²®·öSû³•üã)Vÿ=™Øt\ƒY/@Ýd*AM™Ç}¾%é—…<¼"‘Ï35I¦5« ¸íëÑ…þ%­U kóÐÝîµ[Ì<©³Ôº¨!´@ÐÖádÁ÷'3g¸ýÇyøsêÑ`3zð-•þVUØòºpçP ̰[Ú]]»¹˜¾Oýêbr%“Y¢ØOy‡W¡G/Œ¯ýI½?Vaç¾<ÿ_^qgŽWé¿›Û}~lálä1@«ŠªèQµÇ>­™QÞè‚þJÑmäÇúå~Ò@·«€¾dã-¾+ží˜•¾UÇÅt±Î¸ ?ú¡íeQ±Ê ¨ó^À,OÊ/Úk=ÏÀ'‘]úò Ôúî,Œ¿X‹:a¨ `ǵð·L_¢ð*æ¯2ºšÂ9»X…W9[F¤£@lA7-™lt!–úV*›ªLö!°©UàLò‡h7³‘䈀ÿh€µXΉÈm7Ïêz¢àÚ° uÌFDT¾¦ƒç$ÄîÀ£4ñ¾s·‹p†­Ì)x³}f4sXz70°qà,ÙArz‚íyÈÕh žWË\ùúÙú(ú·WR̨ãlVRçx†k¸o;üFqtõùº–ãøá=ö³îq8‡ó²ˆæVƒWL®÷%ð™T/üámüN üH*0‡;9,V‰ŒÖvò_ÔîI_°†Hæ)êòšÛÂñCµ_˜m27Î$ ü—€ËugºCà ©{œõJp²Üñ]AñâvÐ^¬Ñƒ»…ÿ½ÃCÔ:u™¨™˜„-çöMü^ÀŠ„Æs7þ£} £‚c‰*‡JNþÑ{:@͆9 Û ¡ž™þM‰&ÆP5q ÌNçg°Rk,±â1§ëú)ªûêPÿ±ÿ‘‹ÚŠXçI*6ÏéY}Z¨;}ÔHþvÝN*2æÈšñ­…̯ͤ^¨á /É\{Ñ£¶³üèÐU*Âr<Žþ,€#œÅóÔ £ß-#ãàu¯àÏ{C-2ßÐ/· ÜD3ô\‘\Þè¯öP§±”i¡•—)ÞÀÕšpäKTŒæÓvŒÎÑÚë«@q{rÌ.ä) ˆ†žPOB—+üÇ2z‡C¿[žx–Ý™‰5öX´Ð‡á?p´ÁhùQ!ÛËý¨ÌÑqɱ$}²ÛZg¥¿gt¼ªñ à·K“\²_Ó•ñ"zÙ´ôýÚ¦–ßû¼ò²©är¢ûúe§þüŒÎÓ¶Õš¯Øfæ²¹ªqÕúSÇymDLAµ…Xa:¶tÌuTáÛ°ö¹Í¡ª‚yÃí?Nçx˦ø'ÎÉlÖ³ç»ê’¹´°rqÅ„k¨=Ýuž~d ]½`Ž–ƒ_é®ñÖ$ë1Œ·l¾°8óÍ¥Écó`ÏzKË­»Ü×É}"ô!ž~L¿­75 ñ³8Äɯ×"ÕŒÞô¿Êi¤ý¦U ñ³Ú@q ư™Þ3=5åŒKzl8€ëâ8þã‘Ø>xí·ÆA2Çy2;×¼Ù›9tUáû¯ËFôâýMž¢{Yûïö¢ý{µÆúr}ŒxÄÜ6Y¸ ~u ›ZÞ#¼lΡޢ+]lr€‹}Ë’ïKcîöy2­œ0ÅK±œ›A(òªÔ–Ä€±¬LÄC•7É>ÞÊ}R~×,Ò⡊Ã|“Ô{m]K~[&aüBFbÿF`XYá”ÎÃýfWÙrwmŒddlð“DÚ1X%ùG|¬Rì…­œ ì3xÍTê3~…l‚ºšM!ñÙ‡¹¤wd*°’n¼%Ígò8ú…žØáNð5èçÔŸéLdºzµ—k€žv™,%‚{ë/—L&²àe’«Ôrí‚3/ˆ·4ÍXE:hÑEG‚¶×§ÿÕšÁÔN¤4}éß¾ˆ+¼Ê×OóPsut×i†ÿˆD,PŒè%V)1è’¥©o™õB%DNËÅ 8íXy´ÙZèFð´»¿W\Lýà"fÅÇ…sž„-¿ã´¿»=k,bÒCvbæÓt, òR›ì- 55Ð_б¾œlæ-,D­RT~¹a§—ãeœþÉ}©õSè„ÖZñèâð¾Ôh”!ÿG¥ZZº¼ß"ÿ¨ñÂ,}G¨ýŒlpBGxŠ“ñ´WÌwðç§­ IsPîþìJáÊìš‚¶¸2Ñ18 Wfuü§Ð90Çbr¨õ²Á”oÚÁUš§n™ÔZMÐF $»HìÚn'ºK?­>jýÛoÁUT£þ|%ëÝ£ Ë\uL~øz+´)ðd àeFÀ¹´%¬Ktµ™zöŽEU£?ÈpòmÓyš‘ÚVv˜ïÈ*~—ƒæ®¦{Jøêe(xSP9øšÚÄqxÒŽäSÕ;®6µEÔÏÕK¢{ õGZž€Ýª²Ìư!ÔÌ¥ëÕ]fÛσ9*OƵަ7ݾ²QÝèˬɤĂ[A¯’ |-}Üþ×úÁµ²xí@ÞÔ®r‚]‘É$µ¬âıá¢jS?#Ru&€Ôµ'«J®øtþ*ßµã-çÁã¯"ƒ-!ÿý“è-BtÆùH7÷8¡ž ÷Møî‡âð ʘld¥Å“ ùçZEc„1Ú8‹Zê•vé»+„ü…zKfªæZ'º.\b¹>VŽsW¬WÈhÂãTC®ú³ ÅT5žƒÂ&ófÍ:2P6Ðs÷`è—¤äY(%‚#ŒÐú»rú*½¡xC<îp¡ ]V>ÈŒús%(ÔP”}5©1(&7‰£¡ÿ4ÜïâÓ>=ÙA|tINMš"K('º‹Ê©vù#:©Xh]ï0³äþwïf€ïŸ@¯õ [s¦º?Ñçâ“Xé‚(ZŽ hŠ*C¦UZu2kaWÂpGÑ:hÎǃ8sµæškD#ì¦JV#ÖLE¿¨Q\+¸’ýf9²‘RÌ|ò±æbñS•³² ðiM­ó{sœr ºFÿÝZrP˜;½ÐH‹ÑÞ̃¶j S>à[7‚ Òw/õ$­¢LÃØýó4¶`u³¨çäøAÿ«aæ¼7šó"J) Ñœ»÷„9†¬¿àO–P‹]½OzWÔ]õébu‰kòÉt´¸ÇYõ¢9“éGÃBí0ªœBÎ|„·¢²*¥æ¢K:ÝœIV%¬ÇtpÊGeÞUô»[è\˜Š>ÁÝ©Êl…÷¸Ë‰fV»¤æ^ÏŸ*æÕpC¹ }9rGù‹™™ÚÆATwWÆxÃ/d ·Ôgê?*±çCvJûuþ­PG¶üÉ9—¨&æ"÷33V×Å+4®ç¸÷%­fŸ ®+].òg.Õy&áN†ÿpú垥Rþ½o§räExÓŽ¼/©L3DýyT}9Úžæà›[Í»TÇW3‡YùÚ>zXjüõ&Û©&¬Dý¹A}ccº«¤¢Ûá•F 1ᢻ¹Çí?Îé‘åüÇ4Þ ®Ô6OñKàj‰by?ØZM»ÝÁµÑ•Œ­}]y0Ŷ1üÇcK¨uä¤K±«¹æYBt¬wŸú¿ýƒKoB¿û˜ùçÿÛþWÑu_=ŠQÏ0E!ñY/ÃÓ°QËk´1¦§QÞ~Ö~¬ÿî ­‡ð—ÅÉõ<ÔW¾Â­Ñ€í¦^û–qûýœŸ± ë²¾c¶d |$óëuûÚÿñ½»[³þÅ/¢Ô' ˆõ=ì{w@»‰*zÓùé 1õ-V÷@·s‚Š£SšHüÒØ%œÖ/XÍ=x ¨+ÀÊÓcËŸ|º«}¤âñ¤ŒüÝüc±–Šn‹›ñQ¯¾w/vµ!Lôpi‡ånÂ3œ«w†] 7²yÞÍŒZDÆ@Òž ZOÌž‡©súUDUóÈ=“ƒ”TA5*™ùdI}OÈB|Þ§ÑÈ‚ jmXo3NËVØÄi¨)S«âðÁmˆô½ñ§ñg`A|©vÜFíhx:¶(¦"ãÃÓ‚%eB÷ãE]V2¤drgÍHrˆ†¦s$¶{ñò(îU\úÀDçhOÂñýÈ?šÈ“ØÓÙxÙ¨àIcyÓ[7ãªåT׈ sÃöNǃ|¦þ~lÕG-ƒ÷œ(’ûCœ§ó±·1Fve?1±‘‹à²ï°Ö$t'¨ÏˆÌ\¹st¤MV_Í* þ ™\$ú~4…ÿ½¥ÞÈ^²“Ûšþ½ðFC‘ùµ¢zf9{@GÌ2´&‘5–¾ë1`JÃzS@¿)L+#éÕÝwÉ~œ~žË`'Cnñ²‘¹õZÔ´‹»¢¸Ê¹P©ŠèpÁBŸcËÏ‚7mãw—˜D¿Pëm¾Dõ7ðÜžd¦cÌMä ó¬VWjTbÒ¿½D2Ö 9ÃJ`߇©ð„íYC=É%ô»k©¢îg·T«ªŠËN™ÍA»Ë]256½!ùGu¬êIxó¨ð ɸƒ?eH˜þŽàW±Àîòãû˜‹Ý§;A?dHê€ÎpO›Zyyû› ¿Šïú¶™ú‘(®å M©\?Ùk­Ï°–½¤-=gò¥È敦— ÝçûH[(nƒ(çEMòœú¤ò°*±èuž:øH0ègÐ?/ ~Ðýî,¦½Ei—’þí±Èáüˆ¿^È¥D2ÇÝþã²î-Nƒ«ŽâŽô4ÿ’Ó­‚\ýNôóæI©‰¸#þã ýÛûÚÛ©?/LËRh0’±œ”“y£ü.¡nßî‹òô!‰þgˆþ‰o˜_û=Dü[öÐOè1aFl‘_ØÆo\í­šÃžÏ7® C?ø­? ÷ç´þÂQ,æ†MX‰*4“ˆoÖ ic|˜FxNÎwÃ] ÌýµØ¬²(o|j ÎÓgü¼~LÖ2kɺ¨y«›Eè Ý0 ¸¿-Ù[¼¤î#¶ª û{ÍôFoÒ™£ÓXÐ7 ˜‰øénY¤m›û¯¾ýáø•‚£øÄ³µ—7³0Öª(Öú#Xr9âW‹Xj;|‡µ}á~†¿µÞM¡kš Îÿ˜wä8¹í.pÚFÄÊ“@¦»jªî‚jõ‡[èŒf-Ã_±½QÆ´Ô"íÓètS³Jvâ®Ć‚±?% ¿‰o:Ž]3@|ê "(ðÍI/[áÏ_Ë|ØŸö`j‹¨F ÍÏnê?6Ù{àÏó³É`%@†Î«ÛhˆbòtЄzvîÙÉ"M›»8…YüùBô¢]ð£±Ì AKŠ»F‚þjUgË€V¢ j® ø®M\›ÊbB¨õ„¼…¯¿Ï]« o±Û¤Ã#•âí­ž @Òµ ç Qõ8«‡êN,~üª0|ÊV𵇜ÅfuH ÷zÞø(b¹ÛÁäE…Zˆ¿˜ÌñVu XÓð›çTêýE§õ)ÌýàVíéê•kš …Ay3˜ouæ×JpÌ[<u­ªÌØm®Q9¨/Š¢x µFÇo;õƒk­+ô2>Oï./® ¼>Œ×ÓS& 1áƒ>ÄÈ%Z‹7AýÛ×kEFÆ\C#¿·°ÿ®6FÜÿkˆ*†ô àtqåmñýUp¾û­…üùsã ñ[Ù˜ë Ùp+ê8ÎÊßáVêË»òOshûïÔGÀÜ>ÆÞ§Qbõv™3Ô|,tdø™æ¬ŠF%‚?s^ˆ°QiÈ}ýü,hþyYò oÖÚBÇŽKÔbâM.Sý¶¶ZPݹ_Þp¿c_ÿ:ì×ÕZðýåÌùVÄw'àN˜±Ò‹‰ÁÛ‚å\1«?¤áY½@ôë»ók‡Y`ö;€þÂÒ)ìeZØêûØ®úð÷9ÛCXìkôéj(Ìž^ÿV…IÌ ¸+³°+fY‘w te¿‘¹³&VeÐïöGñÕõã:¢A;°P&7Þ&ß?ab`t~+>hIBv1ƒ|! ÿQ<û|zâþ,¾PÙà‰öi>~ >]ÁŸ?DU9ÿ1UK+~—þ\ï ¼‹©ˆ§¡&kOÍe/,YF3¼Ãô¡Ÿð @ÌFa?ÀB÷ÒØf‡çAr4ŒL2ð¥Aäd‚óXa .5ÏWÀÚ£cë~…?÷RÅÕG¢÷eèÏè¹¾K6–ÝÂÜéF†‹ë^~ŠÜ-ÿ,ì¢ûÌíPöY+ p«Ø}zú¡ÏK­^Âw_ 2F^¸™§=ä¿C\àL’QŸâô?¾ÌõM“Õ*{¯‘Šº_]ù©üþ‰ûðoÈ\¯’ì Âî2‹Á¡Öóðä×ñµ@ãöP_±žþíµ¬öäHšk›Æö×iHFØ•iW{¸/yÀw‚#ª8hÈæIÓ½Þº€·‡ÿÇóU›»‘\&aw+á?¾Ñ¬§ÉŸ|*Æ|‰öxäYÌÝpÁÑ´ÃÞ?aóP}ÉÙ×»Ow”~Åx®v&ÕÓÊf ¶òRMé/œÎJ—Û~TÛ_búÓ=êA¼¬cvæGÍ´æƒ6u@}<­&½$ªº÷—^ß-^ȤøÕG½‘RT'õº¬9CËDýùŸàWQÉ?ÖFt¡ ß»©5§d1ÞZ…v溸a,€§Ù,®Ë ÔŸo ~ðÉ­wÜØ ¾1þãïq&:–LÐýô‘د̲ SMóPÿ1åYA½¯Þ\ø“<Ç&5!.ï¨Ö¢ã2¥/ÅqbðD ç`ÜnFh¢ä!㜈Sëðçëy†žbO‹cŽb= •ÆReÍÃè?Ê#ò©ûN}ëägk÷éö°F¾/‰UýÈ?êÓëÓQªw1Ë€‘\ þc-xÏHzã‹ïu1nl$·ÅßÁóÆÇ Å¡~ö3µ$5Ð(à?VaÃýAt,5 UU™[_ðÍhÝõ+²¨ò‡)‰¯4ajšÀJm¡þCW¹ÉBê*§ŠÒ©h_ *v‰kO-‘ñÂÌšø{y¥ÇøŒ°OI¸îK¸…¨€ß ¸Àì'²‹Ï`Qž`C ÙuW|E÷„¬à^8øÕ-ª(!w€Õ ÿˆCfåðç=¨ù˜Cð’+)ñê»Gâ?ò©åÄ~#àÄ»‘´ÂÛm©ÑeL:ò™½j2Lì9ŽïE6µ•yLÙÐxÁ¯`¢I]kñ¿dÕ™xüìé1ÙR¶ s§[O%3jÌÔ W]ƒüÇ^êõ¿€ÏoV ˆèÏX…С|Ré˜ç7 ÿ‘•³¯Á°è!Ë“?Z?jŵFjîÿNòåTpî ñ7éøÚÊ¡Áœµ«3­¨¦kª¦8VE¸éôDááf®á‘À¼W¤gdÈÛüE¬ÀWÞæ>Ô$7j^AUÜ„ùµUUR+‰Ë »z•>é`‘{À(ÇcÖÀ:S‹ÈùÆEÇ ƒë–§QÅÜœM$+„¦ ¹Ü!#[묮 K@Å6ã?Ó'ä~Xæ…°+¬Ñ‘{£;W`tj˜ÁÓ\{Pž€l'€7ÿO«¸™V2+¨Â°<)É|é˕ܵ”è ªà%t{¼f½§KÊzŒàÎ&wìNGËŒîóMÄ|¢Ÿ~GóÓ¾JÓ¿$1øÕz&~¤»ð2&ÿŽ…Ÿˆ—›ruìê¶õ^Åâïáý‰…Žî­\ëÎ?|ôCÔE÷æÝÖÜE¾°²Â>5#ÿXDvuµn ×^*BÃ|àyáÖ»3Ѱ·µ‹§r\®2‚(!¹ «áyþ]Ÿ-ý¯ó£Îiõ㥃÷•„þ»ÏõöFrQNÕ+sµ·jF6£…ñÜHkDÓ·ÿj>íÐF‹3²$‘x\rºkâ€Ñ_OOÿ>ù@ˆ]Æ)ýiV þ•gÆ^P›éXÒ9pÝ9‰Ðèõò2¼E%y‰L§uû'æÕçê]ÅCæ3¿Æ–ÃúuVˈðRËëD爃ɫÐÐ<Áà„ýtɸ%‼¼ÃìÂFg‚k- :q¨>7QØ{ŽáG†ôÝás÷3v•¯ß¯Óc—Q©Š$Îßi>‡-,IUœõ]ûP²ŽÇCM4“„é‚÷u•à¯MŒâT¶ÀúGáôNNÄG¤£Ö±6' HØHP­“Øûj(~VàM“|ë9væZ_“%ù½fìkxÒ-Þ½–à“ͱ©Aq›ðu(ÞiP¬Kx¬Èp^äσ7äþôVË~u«µvŸQˆ|-&»¹#ßBd‰›â?fâýº“CÙäq¥7¿ã^Äý¡Ÿ–D4ûñÖS២)ÎÁõÃ^צvî 29G:>´ƒ«X‰œfž£ ¿µœZºÇÿ˜Ž¶™jövä±ÈYfƒ€=äø+ÈX÷£¿ÊcݤÇ^<»ˆåËtñêÖ:®å{ò¨9ÄÏÉ)΀}†­ld\• ¤"%þbÒ0Îrlql**–€s\•~B_ÂøDÌ‹ÿ ôþ#þC£Ò‡zv?íì"¿+Êןœ÷šOl_fö¯¢ë'W ×&k+óë1¶zDþz‡úóC°¶ÃP›Œ µ^|¢§èœåI"‹þj´ù˜ü£¥UÛú=Æ£›ìOöa,á\”V=Ø©øU î/’Ü׫-2¦{=/ÍSïdAhæ_䤉œ"ÁsObnú·¯§Òåš• Æb+ú«‘Öê,Ðã± ¶H–7W{¤ÊlÇ«½õkFBŽ÷ õ`w«œYÿQQõâz•…çXL]{|ªóÖ€:¥µ×Áö_£ÃÊk >¸/ý¹fªã`ÜIep_§Xø×Äs‰àÄÁ7 Xy]…È`£ŠH€Žá8³èmÔaÈ?ŠÐmþ³Òì ÑðÓx¾ð Üþ㤾T,‘#y¿zRÃÔD~±ê¹vSkYÅmºŸ4·›¹.¡ß-L­eªšëôÁYÐL8“žWÊD¬CñŽ©äv÷ÓüŸû[o‚ÿ8KÿÝìîûøc»HI?Û„Æ<æŸWG‚0±ÚÏFôWçŒÌƪA~ä¿@mS•óLJõz&®ûõ’ú#qýÕMæ¾Ð¯üÈrÚ3ã.kMÄ^Ý0§›À‚º¡6>-+P1Ý}yMj!²FèÌ‹èýôEâ Î{î\Y,XwÜ*̸dM{“-tâ¾6¿Šˆÿxg0ݦü=öåVý>ö:4O¥á_ó«¿èØôNÆ%§ùøÝÎÐr‚òÏ¡þã!žâËP=R„ø»ß¿F›”—ŸÆÇÚ>à)Ž,¾×¡«‡QMYg¬Ÿ/»æd¦‹¤¥*¾ (…oö'¢:…¯+ ~åL|­EåBØ^´_oÔ­¯þL:µÛ©¬ÛB=ä é B¹Ïñš¼¾*Ù ¢t'óÚÌp4Ò•ÕvôWW¿.âkL=·p®S4üCê S/þ^î"_Zc޹¨2“Og÷]ˆì ú_}‘[¨Z ±Ìÿ|l§¥äaì©3M6JË‘XÝÎäƒQ_Å@YTÎÌ>›ò™üc3ž~*ØÕ þßé_¶ÓÀvcìE§œ¤è]ç …º€Ÿ\ ÿ±þ³Ù¬W $y‚ú·ÿ„y‚—%†)é gqKùã?ʆ¹ÓíŒdÉUÈ!Ç`'ªá<#È?ûϤ"/€áç¨N^n[ãØqn¼Ç=øéÎ*g2X÷ µâ #3÷ÿüG*x†¦ø„Ëð{È?RŸwË.çŠç*ìeÍ`½¦ð繿­PŸÆw­À¡¶Hò3èµ´°$ƒÕ4ìêZ« çV„I¨ÿȈÿ8FOò¡j >íázj±–MJ*`6…àÏþ%]ÌHj4˜Y#Žš›·5!üÇÔM œ®‚Ìo½B\Ƨ¢õ§åtSLH-M'´ð$<—ãUNsŠû&÷Ó/)TMîéX³…UÄÌ*×s_'ž/Î|ÙkôÓJêòÁ¼€¥Yb™.z`Q 3 °ýPf*_8íL2›ûúE¥É[ùTm^w¤L~•…üã¦ýõƒ§¬ºtRìMÆT":Ì{¡KmG…ÿpz£&OnC ³×í?õôo`îã-íb“­"Ì#éBþ¶Áúh5¢º¾¯+ÐõÑ.Eþ1]5`JI;-ûöç-Y/7ÅÌDå‘I®qŸñîÃs4ùyÝW抖‡(ÿwôôä1˜•X”¢þÜyþ·jéÂÆã¾QÈHøƒü‡¿6ƒ©®¨kQ]vj+ŒwàW'Å!¢ú@ñŽþ»‘~hŸÇ©ÿøþí¥ÉG™må:9Vߤϕå̺² Ñz]úÑãxÿê ”ÔWèÅ0œX¨ÿxÆl>}HD”ï\Åò†yП<£G@”Rj2BV¹'«ùs-w _4ËÃØ.$¯h$»èßzŽ×héG¤“_ý‰e]ˆ=¿@fÔ\£5‰Í¢ ÷áNà«ño@着—h'«ÿH®¿ÇÞDo° üêÖ¹WÑ6ïáÑg ‰J ΃õT#ÿXŽïìEåðŸåPp¬Þ‡Nš! Ëø™(¶>ÂéŒ-šfÕìÿH§©/Oáß?˜§²_:”#3§Àï…U§Ï§ÿÕ°X 4ëÈ¢€#.#ÇðV™è™{[šÛŽ FRž 'ÿøL¥£ô}CmùCÙB¶ s_Z·d<|Pn°™I¬¹œ®7Ѷþjœ¥£nªŽ½ºƒœþð‹`\Ò°Ö8Ñ*™ÙzÐÚg}ÔHÂî˜ NlŠê¨vš¯XgåÉ_LC1TØߕӵV!øÕuúÁÂ]];ÛBæUX µž)%ܰ׺Dÿká[C˜ÍÛ í1 ÖÔö9jî—ƒQ>Cõ Óÿj¯:ŒŒa­dÊ}0n>—™Dm‰¢f bh 'Ô„8#:uy#˜Ï‘’ªö½èXXyèR¸–¿ƒgõ¥;º¯êƒVÊBqœ’+”->Wa|Wû‚ßkGþQIÎæ:¦³ß¡—šF_”*0燂fžØðç_Xû½ƒ½@¢ [AýGUY½Í×ëWD_‰~7Ïhóüy3…u …Ù&úâ^ÅÏ ÿèJ/”EÔ·$^%==‡SXd@§¨^Ž…úñ³ôvûÛôC:*Û‚Ûöç9í/7[]‘]ó¬^ìM¢ ¨ÈüÚ£Tã”w•±7© ®´Ô™”w;Öë'WƒÏ´ #Îù_Á¯âêõî+óþ<8üz½"ö5-xaôBUZ< òÞÌÿ¨CÿöOFjÃCÿ1uÀ5m¶¸*[‚ŽÓm„nFÆ8•+b7ýKüJ#¶­ÿù­ã"ÙÂ4ÙË9ÉüDµ™~M÷“ÍŸeí þ¼‰Hæ¾ÿjéÒLõ¢~ð ö𻙘ãEG~$SÚÆ3•–;ê% É4Ê(MqNèØÓsØ_ltl|Þì'¨PEãe©ÂæAì^Tt¹ÚwýÇ-—)éžrI¾1’y`‚Ìk¶§ùóEß“àbóðN=˜"÷=ÿQÅÈÏΜÿ,¸’3?Ê©ètæŸ÷!.?Ïó~ÍòF¼’R+9„þ-ÕÙzå<Æ<ÿ-@þ¡SÓR»²ý®"J®MEÙir‡u°{ðo·@k©ò7ž¦ü³–]dæ7³ªqÄGù«zØk“ûr–³$~ KxZ/ø›nœÿgÀ/ri¸ùÇ0Øø¦2x¶-!hÍ®~sª[³Â'vS—ZsTCi–_9XãfshÛVsý¦ÃöüšoL“íÙO4lý|Пw`{cñTëøs,j6¬s«$ˆKiõ‚èý(ÌÁ[ò»²Æ?üGgúï ö“„j¯ÚÃp’«¦QË>œü# ªÑ6Ô‹Ã?€©]G¾ž•>¯TéÐKŒÕw†zº/¿àÑö²¿¤àWݱø&1÷v«ú­t.©àŠå*íšh1¹ÜNáÇ{¾O]å¬K‰>¡Ö» î‘•¾æ ¦–ïún«µÕi»¦ÁL_A³<šZ—aVûÏO]Õ5óy‹Üø@Õ½Þ4zò Cõ7Ž'¥hb(ߪãÌ”0Ñ‹¨ïE½=³Ê‰ó›0ed=|² þ£+‘ž«ƒëXÚÜï~‰GëŒ$ ¨ ¢‘³Æ7ƒù³úqDöGõ1ƒÊž²¥ÝÊ5 fÇ“)ìyèó5È…ÿ(àÊJû:Õ×UɾƳãe%âÜǹÔE¥V_¥ø¯øèz3z~½Ô·µRÿëùQÑõ;Ôô4⊠B3J³ævô»yàÏ?YŒŒ?˜\Óæ ßm "‘ ”1º¼0®9}ÆÊ7øcÆãìç{ÿшú2Äã“Íú0Ì#˜#¸šºb²¬jó/œ‡}½á}ͪÏÖg‰ûðÑUpºª M¹åCÔ8>ø§ô|݆*8¦<Þa~öÖðG ˜Ê+/²Ž3(™œIí§@ÎOÇ$ç­†J/x'@Fý®ÿX¥å¥¾a³¼._óîùÚ,"_.ˆ¿EõZT¸ÀvÄSI±Ž‡ñÄÇ0» ûm##v¡yÇ)² ‡7ÉÛƒ÷:ùÇuîÍUìµ?ø•MœßÏ\ô›úÝÕZ1„•F´;~ üª'׬.ìIö[Dl;»ŒÿðáxQ@ÎÊ𽜇nŠd`UñÔ<3¾×Q¿º ¸‰îBEÅí ES!l}o¼zW”|ÇÉ4g„«¿êªi¢1úÝxÔWTÆZ~ÆS–ÀfÀ›T]ÚE¶–빈ü þÀ¾–ž,d/õƒÏÿ¡NŸf –£`Š’bëWSox“¿ßlæ¢â¡$øÕj~¦þüÓ@Z[N—•§A¾eý^OÓ *ß?øóZÆ™Žþ0Y©\ ³«3l()ÞC™q +åcÃZÓo]³Ö;;õwñGcð?“¸ßrçŸ7R’“^‡OIŒf«›ÚoÞ†?_g5Å'&²¯äJLþ1f¢8Êr²—ð|á÷½È§ã?B÷C‘ò Ú0ƒgk$G\j^P«­ž`K£`7^ e·OÒ'}&VyÌżrC2‹ƒàaWAÌV¢ßMíÞßR­6üù'sœ}²”º ·Ô.«“Í.Nùít'|^ù8sv»Z3˜ß1ÎNdÝ„)I7”½ènûªôf0^>R¿h|0«P[´šú¨fƒ<­&ó¢jÁœ·ºÙÑQˆm¡+Hú¼…ey`-%‡ËJŽýŒíö"5ºô¯ïFnúoŸ‘ÉQ²/4o©g"’¹Ò*éʸ ÜÉZôGíŽä—>ð³éM6ù)èð˜ý4=ä$~ì³\éÎ?îëëàu{ñ¦E%Ì}ÖæYu!;n¥§'ü<üÇaÐÄ\®¦ö,•Ç•žN™‰ÁØeî–N?Öä\9"4­îë9ü_}} õÁ˜Ÿ†?Ïå¾N?v ð«”F}ã'üÇ5ÝáÿÖk5_)TfC¿»ã‡–;©ù ï|sªt¦š¯Ñ_%2úèI¨x˼ðÛ̯ý±~Œwy‚Z™“éRæôåk ÜW_„5«jV—x>š}DĘŸFú(}§ˆŠ-N£ÚÀTìÄ, öÍ*nPg‰ÈSc«·ÀÊG–›#pΑÅK Ëð«wˆ¨2«:„ÏW|øU-'îaa¿æÁÂYä­Á¯V¢“Fôð¯úFÎ?øç»Pÿá‰ÿH¤ÙJH½_âºaøx‹h`6Ý9Òq’IXÉBØïÅØß±œýs¡¸øuá.c¶ìÁ}LF4>O•3ì>‘o’ÙÊöp•úäÖEÕŽ`9¸Ýîû.êÞP±áÏ³Ó ÌîC¯„÷²,¸ËP•sª/ÈÝHf}$µF ¿ŠCÜÛ ¸3h¾Èk41@œÞ‚½ ¦.yÐ,ýh¨/i±;—È$Y` ±kïa,–[Ì´‡± @ñ£¹²¸ZG¨pl6T üª|ÊCÎg%<_v10Ôz.y%×C|=ôÀKÍkêó+’ý˜¨Q—ÚYìSÖA؆•j$ú+g®ðÄÌ;¨|ͨU2²{½ÙÚŸz7v6Œ¡œXÎü-õì“ìwôžB¿‘ä…Ñ_m„?_„?éFw£xþTä¯"óÉ;³Ì}“gÑ7™èžÐæÖÏfKyŒÚË&Ôס¿ºŸÕÌNè:†zêœÅ:+º‹î2°êá?Ú²·¥øÄ¦2ƒ ¶éõtÌ~AÏî æK5ˆú¢VNTµÀ•|ñ>L¦ªj祢$]t¯Xì(ô¬Ohe¤óæ)2 .zWîvûËäûä0žáápRý¥¿•Ï×5˜I½;­’äZýíYðÙÈ@ÊÛ‹Tªû ½°nØÈ• Æä[*Ž Vœ¹Oýßþá£ÖPÿÉ}çÎiUôLîï~ìà)õ‡zZð«b¢™ø„_íÔŠ¡¼~UÈH ÿXw–ýÔxÞ•õÀ¯r—òºñYŸ¤ß;䣠úó3zp½jDöiŠKD€3e]ZøTŒöú} áB MWåïLJ¡3¯C'¡#â‹iÒ•ÕáÀþn@ù“ÅS{¬bSº1 âHÕÐl\ŽÀÖ,qQHPºXÎ}¨œž}—ÃDþ‘—,§ˆò„M‰ÉS÷PFûnþ±R+‹•_A}Ë;TMǰ¥‚ô»SñÕ±*p¿~t‚Äuècúnÿ«.FIØŽ¿ÈU.ƒMÄ&ò4Áçx Á2?åÜCr‘È:¶šƒÅmÀœ¶àΧ¡OÿýÛ¿H§+p'”I˃ð+ŸÜ ÒW¤ ÄdYù1~vœô˜Û^ô»z8w&¦î!òaEssÜœ h 9ÃBtšðg¿[̓¢¹¸O­_{:;ÌÁ¯9ý‡ßІÙZä(¡÷å|7BK-êʽ°O3È?²©çø†bì3 ÖÚÜá%W+¹Ç|¸Ùf!åÅgò¾{X.ÿ˜ÿqܘ„_¥%~]8Mn¶­ñ~êçJR p[õ3Õõ`§g f3aYöá“Á0Ê2ò÷0gÜÊx…þª ꇱ¨^¯ÁŸ?@·‘ÊÊD†0šúƒVyºæÞm)o='ïJ of€déà[ɹ*^ !ÏÚÏÈÌûpžH 9üy3µÝ|ÊüÚmÖï0òÓÀ… ¹l*Öœy³e¬¬àWU`â?®Óq9×&©j½Äòœ´£ßmDnºÖ<§6ZQ`ÍÂ_>´çÓIðv~>•#ˆÅ÷ð;ͰΛÐ7=ÅæOÅ s\ ´–zkžÿ©D8r´NQ™Øul~ú—ì·3¡ãð«t&E/˜æXçCä=“`„6À6MPô¹sŸîxôWL§C³±•†ŽE·L:£Ñÿ¤¦½ŒyO=èd²Žæ÷d ÙÒê('¡¿Ê޲ù ç{Mm™Ã}¾¹èwøI&%vo>P=‰í*Z©]E©÷ÌYîd‚È+»³]„ì(­=ÙzNwÁÿâYñˆ<®‘+?“ `b—¸ýÇyêdž¨±ÄtåA«€ë½+§Q}žŸ4Ò~•Ï•þWþª:YH_»,½±.Ã.“‹`K»â3SüWêÏ£ëõØî+s›þW9Ýß¹o@„>d@áñIoiÄUè¿ëpÑk´ìF<£ºq8H¿û-Ugø‹_`þàuY‹”’Èí¬8 ~5Ž9óKà?ÖðÝ^ýzøøŸÚ"uÐ4ôº#X±$þ£õò+eió¦H$wÊšæŸ"_„μLäaiDVµaUÇS˺œ?|ÀóyÍN&Xÿ™²´´åáoì&äï_E…Û¿Oþºkìõrl¶S=W4HYÝ<†B,ºy5üùn­ÚŽäoñk;Á¸7ñœ—FƒàL-ÿ„(¨¶¡Eý‹Lg ùK˜)r!÷õ÷çF|Ùìï V’dØYˆò3ñ†Ž•y.tO´ ÔíL@O³5Ê¡ouªÙªõÒ£ƒt½$È ÷ß¼Iï‡.ØÕÆx¢ŸÍ?ÐÚ8æör¬xâ+|­«NÉ"¸¶,x‡Jÿb¤Á«¥… H†×Ø~Ulêy”¿>Nÿv›ÒŠÈÙÁ™ÆÀ€8ók%³Nþ1T‹'j£9ˆ ~ÕŸ<í)1bfÎÖTï_ £#Óu,ÞPˆ"j/ùÇdîý.Ž6ŸzÙUÁ útÀ˜%UÄV›áÏ‹ªgd¿[Ì„ þ%‰¡/ÂÇÃÜUMÑïÿ€õÝKTþ lê$q­0ÏbMã¦ô@ ‘SM¤æÎO­Àg÷J‰ÿXiy ¿* Jt ÏÑ hþy^p©¨‡l$É>¼¨Î ¹Å«F:îj …dì¯6ò9õƒ»­VüÅ—‚.Ë•Ú5 V¡ŠUž¿,Ïc/üG ötOj®0ýãK3ùÂ^²Ü¼ÙÕ ¯*‡õ;ïÁ„ÝUö&k>]âsÒ…| š¯¦pñ×á?2ÀQ• ÝûÛ~Õ„z¨¿°·MÁ¯ú0õk“: þ–n/ƒàAúÁNç ‹àq»¶~+³Ð?Â, ‚÷ˆ—óIk³psô{F”x7ð÷õ¬`ºÞæ@«xUY{=ÒÇÁøÓýå|Åaëõƒ›`‚æ¢7×j°ÇtÔ/éÞ_1}ð Æ¿=•‘9Ç.®VÔw¶oÃm]¿ªGîá Ç5.¥7³£"ÁÜDGÃæ‡/Wä¬gåz·ÿ8MÿIJ‘Óh"´1ÒÓÎîêg7²Æpn/9ÛYöj×Ы"ôßý{~TgôW»¬}Dœ›äHlGâ;Dãwúßû9üy ÷•¹~7¿û»;rJý*õçÍéßžQx­rD«m$'#¹läbþ¹Ï-÷\óG¿[›k¼Y,§cû2ý¥˜#/ /qÞØóƒúÝäâ8QêB:¢Œ%î--ËŽú[ý©Ìo&"7 ”YLÏâWžú|ý ˆ ÊtÔ©øÕ"º!e¿²T<@°Íß™´^ýnpýí“ÿb<Tf@×z¿/EÜSöã6ÌôÏ0?©_¨[ˆ uQ^üî½¹¬y¢-ŸNŸŽxAUű3¨G…mo¨¤óüª 8SñNmÍð'‹‡ÜëzãbÔ ÷Á• ”eI¸©°t-Ù§Óój-+d×–š„}sæG}«SÍm¢žÕ,ÁñÁìx1=êŠt˜ùeÔ <…WéKþ/äŽçËÙ_áˆÔ K\ ¹¥ÿùüš Ó¢ôoJªñNžÄ’ׄ±ˆ ¢uÿ±Sô¬ÙÔ¨ÕU3©^™Dþ+‰¬a_8ùÇx­ èŒ†(!yUY0çÄùÈÒò°Bq•OÙ¥×}Э)dZÙ”Ã›Ïæšz³r業³ÃÛÆx9”Tj¶|ø×*òª¨• ýîNzq¤Å pÅzfÊ 246Àü*7STB/Xß0ynÿ€Ãš ÿqžsò5G®d° DA÷S‘®´'àW*Ð}õL ÄÓ\iLg»X?jÅ3F.ž9§ßW"5‹'%ÐŒm9õçuè&²KXÿüê$ý¯ªã‡krýnjä­œs$ºÂ±´|Žtæ×6äŠm1y2¹pšJÍlŒ9ðçÐ_Í#ךee&ÿDþÑ”jš³äR/Д•‘Á÷x•ÖE_ ó×x§.W¿¶LC¯H?üÚ++Ÿ5?4œž ùá§7Ó¿ý޵‹:ŽdQíÉ #ƒÅ@}-D7Áź!²Á­½Ç>×¶,Tü1Ð} ¶HÐ\t]ãì4Ô®E–>bïè2‰þíC¸†]É?ƒ9ÕE ÓÍ}ýŠé{©?jcsNJÀáU¶ª¸ÚP¿ÙÄQ ÀÀ[L“Ê ’}×aò¦§*ü‡¦tò¼x¼EÓÍCrµÛœe®êNòˆ5ðt5Q0FÅlÄ3Ž¡7Wdºúα—»¼ÑÕt5·«9캭]Þÿ Oà1én[†s{¡jÐOÕÿÿw1õ†z)÷•9Í4à<íÇV¥ßÒ?ë‹ —(+6é%XóVúÁÆ#©¡ô“?´Ü)m1ÝUkòGâ9ß&®ã?:ëôn—þâ¬ð5îê7~h½â¨P?ðöá ùä9Y¥o#ÃÙ!RË%²†ÙJ¤s_‡µtYt¿ËÅó±e=”õÞæ0,'ýGd6pžãDÖeZ2€\ò^„ú'¾0¤LÌÞ"óÖíÂjfT>اp §ñxIÐåC¿ôå‚|ðÝ®ÕÊÒmÑ™o¢xŸ|‰»„@îïÎÌ#Ïóœsˆ´ö 7¶ß·ª)v6 { éjýDìU™â[ø«“½_Å7ª ÚêI³ˆêÁ›Ô^õå:»á7 ’…7A9ë(S/âSöÐåw׿DdÔ_D°¹çJ=ñ3³H°gˆÅœiÇ ñ‰xãèm˜ÿ±;UIN#çJž#ˆúÅ´ñ«Ið=Äi®cV£8Ú ö85‘S}X|É+ìó(ØŒrû\ˆWÇï=ôuOøê#‰ óÂ_­!cÉÏõµãšr£‰*HU6Q*}’ S×Ýýéröó²Ÿüˆú¼M¢L(µè? ×Öža¶†£žˆ?ºçãôOLB=ö,æ×Æaþ`iæd/áïÊÓ¿d<Ø}²Ö«/S9JÓpõƒ^è²Ñ5+¹‰“rÞxLýài³<üù,_[ öÍá?ŠÀô ®öÛˆïnä §ß- ÿQ”nñÁ ’ò€Ùÿ1Y¦@5%ëx9æbÐ6¢|Ù¿Þ_¹|Ë"Æßªû,T sxòƒÀÃzÀ’–±C.Gýî"òN(± Ò%}¦õüÇ<*$RšÇð‚ÀùìÆ4# ©½jŠ~7‰,œ-ÿn&'ÂË&Ÿãͤû¾Ìì`¥³Ó=÷ŽÛÚAýàIx /j‡²Ï¼ã^úy"õ]ï^)õ'/:hézîÔe‰~²»úµÀ«Ü½ ::&¢¿JBk¼H¾õN^ILAäá×q¦xæÃî|>2—T_}‹Š%“ç)<©¾I`µbîãv²™-ðZýíÝö=0ÅÆÖYÐn^×3ôkã#¶UüÏ—àÿ¤{\µžšÉugœùµß³(Ÿ¯:üï ‰ç?ªÛ˜?ø»¾Z?E9®”ÓJ2?êók£~5* ¿Î?~¢ì?/Ž}N€]XKýy2m¹j21ÂOÿ„ÿP´ÛÿàW¾O¿Fl:œzõ`NDwQEͪÝÀ².ÑM±VÄ1ÊGrþÇoê&ðJIDÕ`98ÈV¼/"" õI»‰ÁÏ‘L1½©þ‰ñôûz2VÊ&²ÿOî…³¸„]ÞWŠƒåA¢oÓr¦ דúÊe*ÏXQ1j&¬Ö6Iåȇ*â+:1¥§(N¶”üj/yoZ=ÉwVÜ£ÕÅF÷õ¹>k½Çä™8¾ÔƒÊLÖeçyCœ.’¾:™%@Y¢¡ó»3¹ª–7ˆŠ¸–\«•pD·Æ(âÇøC¨¶³¿íx*L„G„u4‰Õ&z>X¨´pÙ ÉÖ£Õs´ËNEúec/YjVÓ‰sËÊÅxÏØo7Ã$} Á—wo ó£:‰sØç’ŽKò5Þá'|Hò Xwz°R³¬Ã¦î…ÈÇ]ÃÌ éKÿ’u_¨Ch‹ÅüG ,ä4üö9ü÷ #'|q?&ž17Y¯LøófÖ¬Èõg"²ïNÆ0MîQB©}þÙkwæªÔ]–‚Ÿˆ&¸ìØzùFa;ù[Íd¨X÷ÂH7¤ûh<^~²”kx¦)¢[C÷êÐW}Osú—\3Ëtä’]ä~#Ó›­dú îa"Æm&ò £zìØ~®ø ø•\æq>‡YõVaÖk 40øç<µà«ŒwÒþmÈ?*ѦÔæbÌ6·Ëð‡P×G­½šõΠ—™çöù¿Qèô–ò$Fq¾Pÿorösƒ3fæVøéMàÿO͆°üíÖt™K…EtWíá+ã ßQôX,ú¼œÒ–J!§c´WkaæBãq€]öÅÊgbŽßô‰íSÖmë^é¡y„â-•øsÑk ¦[ýÎkuQJTu]o}õ„®G䢎ãšl&Þ þœÙQìƒÎô\wRð'nð±¨GËtÈØæ-bÎýFN#‘VNc£Ë<Åx‰þøÞ »Ã…N¿ÄgV'§‡#…§Ð¥¦}ƾhe³+Yûð)Ðy5â>œwru1›¨¢š“mês\Wü¿û‚(N A¯(%BU£ÿØ.⫇¨¯™zIýu°þj‡’R+¢÷©–X³Õý?´ÜEe!ú]G½7¯¼PõjÚRõ-}“ßSþ„j럸\;×=Bd3f1ÎÞà™>êIQÝmrá…²e¢ÐûÖV ©3Õqúkƒa'²&ÖïùÇ%X<â ¶Ï—ìÆ@±Ô¿µÐ¿þ.P;«Ç„§ˆ!O%~{.v—³ö –˜ü½é¿‰TßåÏ×*©Ð­¢_ï{Ãí¬°“x§Ï0T~9ñµxÿ“câ3¿×­¦¡VýÕP¦ëx„ØÌJxµô¼©b™Ýˆƒ·a…N…xÛ¦ãéË9ÏûÊUÏGëGOeôôS‘²OôRüF ?ƒ.{r’±Võ QØvÖÛ̧yá›’ÉùÔF¤•xªÄÑSS%“V®'ÿØ€ÿh~e€›K»©oÓ˜ÞDÕäfüÇàGIéÿAüùrƒcCoŒÿHE…Gü¬ƒÌâ©Ægiˆb7ªü üê!Ös6þ£¤\†ÿ˜ Þ0;9I¿«ž·äú—ŒäÄÅÅÖ/çí~ˆwÝ„ßõ‘9踻 Q2j§ßÈ.ðç³ñXnÁS:ã_NHjOÃ×VÔ.‹”xý ì`>ŒEo<æ8j5~&Ÿ`~À#%!?…ÿ¨GýùxPÏT(¹N€ µ•ñÈg7ªg\öÏÙª7ÜÑxòF7üÇPò¾Æ]¹Ld¸ü(ÛÂ,d¥_†¤û{ø”d!•¸ê¾àW×øü3à@õqaÖK~7>9Š?ª9rŠq ¯6ÌìEn$¯[ë¬B(“¦R}˜ïg¡þc2ùk+Ôb>ddnæ*¹M„dÿ3”öj?rÜ1 ˆmètÐ ÕeJðþ?é)U†Î†Î¼Á Áú&O¬l=ú¯7A˶¼qŸ¶úóÎä!}ÕKÚ=²o•ªËÆfw£…XÅ;•*Š––§ù·¹Âʈ^öú«ôôùh=Ãl€ÓO&;¿M$ù]4•þ_Ì´,8TÜ…«4ŒwEð¯õÖ”¿³ÀÓf¡ÀÚʶl±+µnh°bmÁë¸ã?„Ÿû3Ïð€èK|ñ7Ox¼ð5;Ùqì¥(“?‘]MFéÝþ<)‰íñ5é<’³sÑôãDí[‰X+sF“Šð5HáŽäåAJ35£ë$øÃŸGN…ôåf’hõ¨èwª~{üª¤6Žùƒ µxêÞ/äßÙ­ŒÓOˆœdÞ6w5›È¦wÑ®¨ÉÅ;¦ÂПÿpÿ+í(õ`#˜3>‘Hwu–ºTõÇ<Ð5t9UŒnzHâolL©¨zªËô˜œí@”u±Ã[±ütÖþ(:Õ?Õ_KU»›Xü­…þõw·5?ò¢¹Kzÿ‘M–Ä{ÜC‘Uÿñ‹½Yèx…m‘ÐïNSr1v!ú« 8‰åüìrf3a-:ƒËÜ?:m$æïG]=BËzÓUµ xÊ~XßK\©;ùF^ò·ÔôœÁj×!2%§þÃáÒ5ªŠê’Ð „úz…2R}+ŠK´H™àMžS·Ù-ï:òï·øÌ%ÄzñŽ·ûx66hN1=¢YÅ ÔÔz*¼E9—ë9 _‘¼Ê@±ö/þB_¤g3—«{P«Ñ/Õ ææ&¼£½µ©}9‘þ»ÄM¬Ö “L¨³âãºÁ‡T!ÿpæ“y27ñ+±’yñ•KÁî:àe&P«øEttQ›.Æ%!Æ^Mdþ…÷ VÛB?X¦¿yߊiyàßêšµAÙJÊ—0% ÐÑúàNˆ._ÔôEUŒû–—;¿ŒË“cúÝtfo9‡Šîýä˘?¸½T<¬v\NÑi23ø¿¸ÄsÔm®·Ü¹äZ ¢‚cø·X|î¯r—vÒl ~ÕäÅÃög†Q?óúÝšæ¼° Þtþc9øã0×ĿúÆyØ€ŸÎj;ÍnØö±ðãÒ^G4¾…9åíÍ«T;&§O×߬V=Ûey‹›è¿#,Ât$ëíãÝTªñÝS¹ —VCsxÕtú£—'ú‹ŠÄ~ôãmo½DçÖ§£pO3‚Žy{þõd¥³zESeUªIÆ’)Ôffßd£#Ý_Àw Ê{3|ƒJ|ÿ†gâÍ\ÛfBúò.A3Ñ›zöqòë%BåyÕUè¯bRç5?¹Cl3*˜Ã쨔gƒ€Å¤c4S…©ÂtÇcf§KWF3?ùGøœkèO¢ós·ÅaWþq<|¿èI$Ö“˜nŒHou±Ç³ƒæ¦a6U{„Õܾcßb H}ë•,e—¥Þ%= œŠ^±„̸,ŠŽø‘ªVvÝ”ÿÐnð!•ŸOé¿ëæœEþc²ÑáÓfþ¹­gЯ¨•YåŠR‰ùçžÚm-–öRù1uòKe³þ´)µñA 6Þê/µüÚC5»rº¢ëþÚ9õuä·Æ¿|«†‰(*ã°T]Äfê•^ ç1Îëéévλ©§ŠÔ•çQã?žaOß9öK· V¡:øU 1û_W“3ú‚C4„_ßì-ü‡;:e“¬ß±š58ÿ¥P®^¦º«<ñ0“oè²y Š—;(¢57(é©’["¢ãÊÃT!’Ïã=üª+<ð¾ë?ŽH¨Uÿ^ÊZ-üXW0ÖdG1°Eˆò“ ßmBTˆÏ8O¦pdÿ.ñnTh%ÕãmŒï£I<¬°v™ŽÔ5> °‰ãPîÔÌka07ï’oÇZîÊ ‘H¨×Yµî‚(‰"@' r­â(>’µL6öè3ôÌ`­¨ŸÇµO'IHwüjuþcœRPo+.Á×/—sçÊÆ‚“ kO5¡¿!ˆ©3Pïö7³7 &JÍ`ÅÉÁùG_£‘þH éþÏÅߥþcW™‡z»Ét¿AN:®æ LGÏÃô¢U±^ÔÔ6â£>á¹æAû‚Oí#ÿ(î,öÖb¢Ãn·3ë8_Žä„ %:Ž\ÿñЉ"9Q9m ¿o.æ×.†ÕÈ [qŽÑ\Fe‹@B?–§Zy°’S|jJ°¤Æò¸ñýÕ9³ ÂD:K³/Ъž£&S<ŽÁ|4~ÇÞûÀæœ%‡®ÿUnñ_tV¦3ÿb„qÿÑÓ,a¶§;‰i;õ>ÌlÁ/¤âivUo¹tÏ©)™ˆ ö•k{žðçíyŽžpjÍø—Åaþ ƒ­5§ÿneú(N&þNÿqŠ>XÍÍQôŪÂtñm<©Ùdd[ñtõdR#¤Þl,ýÛ“Êß9¡ý©,J7öõ`½À¯JZ¸ºVzÛ6å-ÙÃ.óü¹e9óqgîà¯3Õ¦L¨‰^9Ôch{âÛ1žÊ±pxNýÇVhj=7_Á d§B#ûûÊ”^*]c›nd×GñÄ*ŸŽºüGýKÖ G{Ó„r„xAþÄd’Áp=—é>ÙË*þê’U×.dÝ“Åí_˜hÛŽº•khÖÏŠD&ù‰P^é‘©6sÝäÿÐQÕ†jZ×Éz dû·ý‡ù‡NµàG­&ýKгæ%ýÿÔè_õë?Ž+ƒè_R6ÚéßS<Ñ iSÔ@ý™øH¿+Ìÿ®]GæVœÐ¼É7ÇŸ/ÆÊ·D=t¸Û¨QEV¢ÒbÆèHâW¥èŸ8 6E€Šw¥ÚcgÑ—g˜Šèu 8ygP™¶è+*‹Oºo$¶vKóÕ-®3ªd HN¬U!€ÄÑùx'ßòöï#Ÿ¸+D‚ÿX¬Ä6®ˆâ°xIV{^f çµ×ü‡Qæ×Ÿ÷û2–tV¶§‘.ÂÉ¡7]JKEFoØgo² ƸïM4ÞÕ¿eVøÍa¬s‹_ ûâtŸN.²}¿º«tSO‰Z¼-©­`â6ÝpkÁüì¥2øbñ«ñ¢ëˆ¯ÏÏf¡ÿn¼»<j9=%^<ÑnZ2Ž5xóÂ`uŸ¸oóKz7=uØÁì6q‚˜ž…®ùs'û’É…¾Â¾^¬”Á샙ûš4n9>½YA+üÉqôp#@Ê΃ԯ¢î§œ\B®9“Ìx¿OÐïqºoj @´³ÃÇo bÏCvÖ‚fïOo–5ïÂQdzßÛДˆù°w¬>86z¿h"š†;Ý-µ@aãÅÀ l KâlîÏ(j5œúÁEtWÚMœ{]ì.Y’™è+°'±àlh¨ŒÂÝž©ú…Yñ²–“çï ¿–«Û“ :H.ÁF·Aq4d§”}‡y|íÌãð`Aj`ûZ°â ø_c–‘Pf½¢â¡“Ìì QʰÈr?õ¿˜™wÃ^OÿÝUæ´`üj$õƒ×È4åÙ¬&Cúˆ‡Ù$‰D®õ–+µÔ¨þúá©þ ¬/.›¾ žøÜ"ÁøÕô»?¡ÞCÓÍô±ºYõAÆú¡ãŠÇ^“Ãa5 å?¦Qÿ¡ƒ¶¾ÅmNÿ«ÙØÜŸPÕ~¢gÕlêÿgY)í›ð±í„Ö^ó&¬H:t·sQ®ôcw`öòˆü¡*rJ«uì£Ñj¼A³»ÝÕZ'—ôÉédèw-r™TÖe”ÅðÎüÁƒ¨È?ˆ¼£Û\þãó¨Ðƒ¢hÁ)é+RY5ìÅ\Yg©ýÔ£´J؇ìÓVA» ókkÓ?±¼Ïó¶ÌÑmý†*ï™Løy¬ÿëß1áÏ㻞\ ʇˆ´ö‘ÙFõ$ó?ÆÓ?1-z§ ñõƒEµÅ䦦|Ñ¡ôÛkJu›îÆÝ,E¶×ÇxHÿ«|Z šH\„Uð¡þãŒõëo¯ôÏß&ÕS÷1¼jqjgñõ¤‰©é­ÈÄ£jâžÈMY R+–DG¼COˆ"S—ÝQ†^wa²}´,êÏ ŠMIL½Lü Î>*h§AÚ#ì U‡p²ÁåÝ/Aöq‚•KÒ?<ªÌoxѽ]Pxÿ»;|¨x—˜nòAd c¿@®0‡Ü¨"WÝäJƒ5‘‡ÈİӦ Øß{Ú“µjÆSìý j1v¢ IMJ3¬lOb³ è5×òF\FÛ[’·Ó“|)6“óNGt™|ï:½:_‹r÷§0ˆÚcâÊÚ¬=ü*ˆ·±þã6+naÍ ä‡Èm¢Ëé"º‘V"ŸÚTÏÿ‘XNEc±íAMüˆ¸‡7ÞÒ›ü#èI÷àùQ=àÏÿ0âõâ?Eè?rèļÑxù3~öw̃“—…R’_Þ'VÈJõßbð¥wd[KPSMŎΤ²¤»þD ûÝÓþÄÔ ãØƒL°;hu^VÈnÆ4ïÑËã}L΃6UF}T‹H;–jlò\é-² 'ý_W-:‘T˜§Ñèm‚(^Du•ùµƒ©ÔûH•syXê àWùÍçü‹,`bOðWˆòâǼÂáWAZA²À#Øüâì¯=9é¹kõšàLÆÈa_·1Ýï†lfv¥ ݉:À¦<Æ;\àn&Òû„Ùa]ñ Å1"‰n €‹ §^|*×Ö›êÀ´ö :Ñž¤/ʺ¬ƒí¿ˆÏj &¶ŽêÁtéšþÄu¹ •>ê$žÄîJ[x’Rø´àý¸gå¨ÌX@^bXýt†êünSñ}Ø›eÎwªJýyvì©ÞÒ2ñyY[}3£Ñ›»–çÓL³}勨×P_}"«9ÎtܸÌíXeC™1>e¬6ƒ\FEà˜ýâp3δ+ÆÃKoEÿö5DôUàÏûÃSôÆËÜ„?›Ìýø¼£ß*Ùô¿À¯Ò ß­zé!÷«^3lzY®ÓဘÞÈßnÃÆÌÃKÍá×Zc¬®iág/øhžâOÎn|ªÊד`æQãqDf4‹š¯©QÎa3O3MªÊ¡¬™È~xÉSøóAtGÙ›óUMí£H‹S¹…=Læþ "»ˆjö‡ÿˆGw*ÔcŸ!×ÉKOÞõØ“ìÔŸ¿Çƒ¬ÉP‡{Ö†^q¿–ЩÕϋݕH_À{™ÄÏ‘— èØö,*Ï£ ð"Z)‹¨>ªùýÙq®ú­–?¯,.âÉ_p ¬Xf‡MfpªMùQI,/t]g¸â¿ajÎ⇵í6ztå2c󜚊(®ýmPj¨ƒáƒ"¶À·Vå4¿–þæ_XöŸÈ?ÖZS¨'³&Ó~ üGª»Oò¤æÑòÝezÄLÁüK=©E£¿B¤ÑÂü•jòëÆ\™¾»£5™,i™ öË~X)¬íàW·èyèTÊgÂw¸ƒ‡]DïŸMüâÚ_mêÏßσñ~*'ˆ*F%³4Ø’7:xžÕàX¬Fð1˜#’V= ÞXfF4û8Að÷ˆ.??êj}“ð$LßY1ÓÙ÷éÌ5Þ4­]t÷ÊlUµÏ£Èªb7µÈ,Ì?b•@ÅvìãZ²FAîâÇ*ì>úÿßï]mCôW×”<¡Ð¬[9zþ£õƒ¥ôÁ5%˜_[U›Ž~7•–ü«SM#þ?e®~S”“Hÿˆ#žâƒ¶¨ïàÔã‘ù]¢$0âüÊw5ý>¶tœ(‡ujo4Â$ðFwÕ…I³ï@–ûè!¤¿²Hð·‹© Ôz\NctY»zmú´Åà&ÇAÒý¨Q«Gÿö𪜈ֽ¨"ÿ( Þë5á?Z 7˜æñ ¥]+jß«`öy±‡ð WQqõÜ8U¦§Çëæ&ÚM ò·–•<àÈß±Otzkð«y²±è$4¶ž<—ÜÁWèì£FPîø_Ä5äµxœàM=ᶨ!ÿÈ †øš7;?jØ9`$oy_ç’Á-C×5¼mñRøww»ÖCÌ"§*ˆÇØÏ3¼Aþ±…k?ÿìú°UÌ*Ò¶ü¯3½Á °¼ä5¬÷9ÑH4wY«.½¹öHdÆR”E-å+¨i¹M ÛLböBÑô†*µŠLíp:Fþfšæbç”øçD÷cdLžØ\U„Ñ‹ŸŽÏ¿\Æé×\Lß§T\!²ÏÞ§„=”ɵÌVè¯êsOúÒþ”Ï.‰>3ÌËrïRÊ{dí9óÔ\KÁ–&ÃH¤³7ÒMÐÎg´y–ü#…åG–לp5*qÍTd`ËBõ¿òVjªÝÐh á)4ãß•oÑ_]ÃÖŸÌĘŽßp§¶â0~d 9>½‹åÒÖL5£é‹Gl'›„Ê?þÀÄ5©-‚ÿi N&sÀw´¿Bþ’ ´n7ü¹;:Ŷ©sŸè¨Ôs E2¿È"Ú¹®· ýÛߊØdñ“ŒOr’ ó§™Ù.ÍÔßdç̬۞þ%è÷Ø™ ´½PJde‡)Pa¼©x"ÆSC¸Ùå?vQO²CüÅÉÿ“÷ìOüG6[£÷ñ Óf? `;*ØlƒyU­áô¿*nW’ö8ˆÀ гF Óíd<±?‚·ä¿ý­÷ô𠙬õ@)¬¼ýw>5µ F£[{½6ù| îö¥¸VY믽ÖrR?øcýKŽ*ÃÀròSð¦Æ—µÜÚõ3Ñc‰L“‚ûþ¡MZúÞàáâlSKôx»™g¼E]%êá?ê‘4fþ¹S³òýÿò¨ëÐï>ÀNE‘@b›å~¬ª)nžJÈ9Ø*ö@?òýå”§Z žŽÃ”[xûÀZ¤Å/]‚WðCwΧ…@¤$8ÞùHÌ\©d‚—^ßþ„~W·¹;ˆ£«“'ô$¾-c‘`«§`¥‡P?ø=/ü×|›9$k[Æ`?/ ‚¿D¨˜D–”€èù.ê«;° ϰp“aûB®VQ®i9°U;Ø_|XìÖòŠñRÎF¿Û 6¢L°‡} o}¶Ê0ÌIÄ4B-uoèÃ5'ÖG†Y/)qp|"žåL§gr#Þ£ÖW¥âJååÔE´5_ËÉô‚: þY–{%{|ƒ‡Ù+W‡Ê?V’€6òž™V‘˜]@çJ:ÔÛØãø‹LšÍF—z R)¾•yJÎ,•®ôvIE6— ?ÒÉéÂÖþC%+¹I>YÔÌòîÀÓÁ¯<èèX‰ü%«ýˆ)³ïñI^ð Q™µ¯ž™u܈AŒŸEŽPa>u*ó?œ»ºÍG5¡Ê–f ºR-²ZÓ•&š× Y6Óu_‘ÇP/Ÿ„ªÂfX.;~A|1TÿÄ Ô¬£àÇ‚xŽUè§Ò†¼,¹ÌV3€ú‘øöQòôo¿#«0é°3ó?®™÷8ƒÇÅv0Nœó$âÇ::…> ÿþ×îj{5d2ÊEú—D. ÿòÓ3OãºFË«ÿ­ŸVËpº¼•ø¡ZL½°[õúòG¾ñ«ÊZ=ØF1‰ƒhlýèµK}Mßä§úªÑïªÏ¿ñÓ_þ•¦¿c­î¢%–„©Obµ(¦©»E;#ª|ø~=G˜7âË5þùNUõ ó€,¹Ë¶àk[ŒUàã%èà.;€*T'þ/cÌe†CB1ëk‹„ú¾A=dfx)7“øƒe’Å©évæ5S.C.¾¦à=»ÂÚ€P‹¸¾œ¥!¶ Oœ TÄþc3'¶È5ßÔÅÀ˜îÇ®Íà®ö¦ÿUìï\óp­6º>7OuTv®9 ØC;öyŸ|yÒ¼Þ]”5éFYCýZׯ›Ä*QAº²Zµ—x9æuÂ#ô¥«ltmzALåƒ_Lîá‹_J/·Ðÿê‚ëúB¾xª4Ô³‚­e”3a¶ü°å5Éjb’µœ">^¯×Ó£Ó-£1^n!¸À0|HTtÐïÈ ®Dà?*©ôFdnxÆ‘0;ÉXJGæ§Gâêgäq¨~?ñÁðKÉw¦ÀÊO!#¢»iáç>Ö‰™¨² ƒ(1SV^B° /»Cz˜îæ1ó,µÙÀZº‚ÿ<£~p)•w÷˜/r@4ä.†\©óU/Í ¾¨¾Qÿv˯=EJ3-8Ë"âÔSLÕ8iíÀÔ‚_™&sã`»_‘¯¸¡ß« ³âe­6wÄÛ°a›ç¡Mºd¸Qu}Ò¬'c˜í‰£SQ‘ÀnmÞCaü(VqüGkz&KÚïO®þ¼šðE wÔ„*Œéà:k‰Ÿ›Q‰¢’Œ¥â6p¢QæSXú8èwG’Ñ´@é{–ÆÄË,A® ^¬TûPG;þ£;ç, úÈÓr‡Ù…î„dI]¨ 4KÒ/rŒÊNê7:3ãûI/ø3t‹é%«Ó\ë UÏk áëßñ¼ª˜ÈQ÷ý¹Êt¶£Ìß©GÌÌÕúXõèþæ]²|9\»·Ü²`ô»Í\÷¯”ºAI9ucŒÕÒGd—PL5·v1×êžâ2hÝ_Ô’ld^â\&Qm¥j>‰• ýî;”éYèâ0 ùiWþq]½¤ïEí½žsštíO2¿Öè¯ÚÑ«~µ¹Ž®(éÑ_&Kú•Ê™uÔøá?f›NÿÄÕbþã¼qè·´ûjH}PÄ+„ý®¦?c£²Œ˜¹‘hõ®zXt2’Ò'÷Œ¨fŒ‰äüdà^ÃõÓè¥tÙoáC/lW"aÒcïq®ä‰nCƒyKÿZ'¨Ð{‹®¿Ó£‘¿Ä–Þ¬uš\ô 8þ ,ãâêÔä •è_òœèó¶xê:áWýõ"%½¡‰ó©r»„ ÜCÜÝ»?•“ƒë7&~LÉ›tÁ˜`”а³mèõziÉÑ 49 Â$2¦“)1Oüa.ñ£ 6tÂxÌÿêp²êèÚB:G„^‰™ðWD1®¯/>hïÐ}úÇ4âê‚ÿènü…­PäzÞ#oìÞ¿ÂìÁD4ÿü’YOmcly¸ÇY<_ø{28ÁòÒè ‘ýØ‹…dZñŸP±9 ²Çø¹Š©ÿNÿ’ÄXû¶øì§xØ_ðˆ©ð”öŸ—›úóÄßÏÈ¿æñî®@%¶7ƒz§½a/UñÑú’ Ù†_()OsçsßÎSÿQ•èu"è|¨c{ÓÍd9ŽSG¿’ÝÒé‚ùQ¿¢B» U¸Ââþæ‡%Ù½}Þ<¦%•@'4Ê|‡r*þãÌz'3¬Cv>ó±½3C+ §s®z-ÌŠgµÌ\ÑxLx¸ž<“t9†½kg’^6û2Qo+ì} øsŸ`LolÅ-¼GðÅÃÍÿp‡È î8Q >vá«?Ñ2ú_¹Ù{ÀðJêiðñ3ÌŒ––¹=¿6IæÁobþ`È$5Ìjod–ÈÊêËrèw"ÿ8`vµî’-,…@_Xþá¬xÏÜORdl8¬|j¸št"©þ8‚-ÆU[Ã%‡˜3¾uS‹xÞ°!GõUz)xä~téZÿ?ôÒlÿ¹Xl‰ÀLV¡¿ `½™²ùÂ[»*h¶R ÔãÏî<ëâD£sð‰ÈOœéQ˸«ÛŒ±Æú½…ý>j#Åž_E«¹( npw’—Åá,>€J¼0ó˜ÕkU±PååG<Ív{‡.Xš‘5”ZôŸKÁüóh\a=¬ý12\#Ò°ï èHø’ÎUù¨y¾þUÙLlŽÀ†–ÝzB¬–2/ðfuG˜'¤åÆ;^&ëE €ß>f¼’—±IóèŸØŠúÒLPýd-d­&ðàa¢a’Óì–çQyè]ìWL<@kp›hå<î\œ‹þ¿&%eþù&)]Áî¿"_š@þqœûXÿpŒîͪ(Bzœm¥âo"XߟD¿Yç§ÅyyŠþ%ïÑ_­Æ¢öcJË.çQ?¾ýn fq­£ ËdþMœòÆò}¨ÚÝ‘j€V +䣞›ú‹ÆôWh˜^H?­"ð ç˜G˜ “ T)¾a’Ö2®ñdpƒ9¯àH+¹®7·z^O„šï'òÜ‹ÒCd7~3«Ó÷6õˆŸÌÌÖr”WóчÁ‡lįûY’nóoå-YoÞɹ*G†üùP0OÈKLâ|8ØÈDq׬€Z÷/º'îB¥»Âªf•²}ñç ¨9+ ¡ÂjOݽiÆÚœ‰X‡ås‹”Zçógþ§~O¬v …XÝTªþÛú«Øê%õ‰ê©£sÝÕàþ»K”ÔZuY´ô?<ÿã€2Š^% ¸Û‰ÀHrЍzuõõËâ­þJß«½üAtQ; 4‘z·øë.(”Jѯë‚èHÅ[ET]ÍŒž‘įJ©ã™?v‹7O…Ù.É™XŠE®i¼Ó߃G^ j½*¶™Ž9n‘Ê(…~MO ŠOnòÊãátÖ~LV’ +ý³qýÕCº’œrá¯=ÿñŠuKÄkñ–šŒ[àbÍø_W¬Ü@´™ÁáËa+â‚öø¢æq×?|m¡}žV—õ‚ñ~šä®ÕYb”)“ˆI?`Aw×ñ ?Ã|ÿÅ­"²|QK÷ù#®*Ô$ ]¾ä¿ƒ!|"ÿ¨EŒ>žnD–üÃ+ÿÎc#Þó$«~Â7%ƒŸôˆ0ÿx¯”Ðcƒ¿‚©HÅ}›…_+ Âv®û>cæêéÍC(b«ÂU ‰šÆîï_ͦ#çç…ü>’þí-Ðï&¯h.Sá Wן;zY÷K ?óñ7½É‰"³1,dÅAD ³ OýÖÝA/hËE{NG ðžy<ÑSèVñDn€XÅ1ýÌKXÀ¬æó^æfp»(ø¤r ™E€4Іïß>ýU”š%ñosá5œùÃd6ªÏÈ1ä[˜P4ÇòÇ·tdþàª: ¡e}ÂŽ{Ê,Üãõê±0gçþÃ~- M[΄Í@mr›Í°Ì?Ù©íhöXó&ýPZáÊã?f’+ø£ð%Ó,  ³^Tq–xê'¸6ÞÀ˸$½Ì¹ 0›daê7bMoSó²ÌÜI•b*k#9J#~Ã#%4à÷͵Þ,¥¡:eØtÐÖÆ<¿âÔêùÉëð˜ßTxô©Ü½Bä[+­ŽÄ÷GÐ;å@cÜþ#§y‡ˆbŠLjþÇpõ‘–„§úä¡‘YÎh'¢¡1î‡Þª(ú(ê5ÜmoÔR†…zïwÌÜfnûLÈ,êOÃDqñ³kÙ©ŒA4R·ÈKÖE{ÓÔllW€Aéo=rf± ¸š†ïXM?xOj}Fà?,ú—Øh÷à9¢“)k¡ú'žT½è Û¤ùO²ûþB¥ŸÊð«Þøht?éoÕ³/ÚïøÿnÖ2ÙÇ®CuIIó†y´â ØË¹†!ùÿ‰þJ¨ÝBu¼òg~Tj×} y»"óUð OêTÍÉowƒ×\~ÕR›¥½×bпd_dqý›# 3bA› ‚ÞO7r‹Ôz f~¤o@\&H9üGdf3¹–S‚ÐïzЋ¯&Öª»Ñ†:’„êêÏûÁU§[íPú—„èB~î˯J¨ãÐÛéDòR¶_»`lô¼ÃF_!FÔÀ›g9SÕõÈð/5\¸HÍ.lñCê³ É\XU^}JþâtÔ ¤Fe¥ðþî³Y§´ÀÌ‚ª¿ªò –ÃLµ9,w{£¨FëŸD‡;𼩧ñZ ‰ú¾¼Rç;3´öÔ=ôäŒ:óH¢€ögDs–lz9;“ÄþÛˆbýé.¤QÞ„*ü궈—¿§æ$‚>Á{Rþþþ£~§ú£NÔ3üâíôMô%3Âc2JÉäõ/qSKéÙŒhÜ­¥ä¨ûQ‚U÷Óð:/°b/õ©ä{a@ËÉÉ\é08œxÜÇçbE„ó?Æ*ÉõväÙ±ÎM‰ÞƒX¯~7#v'?¸_2I†Šµ[Däü’;²/7Ûz¼Èýæú+_æGý “[¿ê ¢ýõ¨±NSñ‡ùƒ¨LŽ}DuÞ22E ¯´Mö§¾â*±s}ÔaoâôßUQÜ– ;F3 ¬s1ØÐoð¼#Ñ_í„ÿ˜cCíÕÑü„¥ÏK^á{ñ OŸÍÏ„pþ#PËŽ7ºM~——ýõîI4\~¬–Òì 3]ŶéÀ;ƒþ% ̆hX^5žä äz´¾ÓŒlúÄ0;L(ñõþ0W]PÏÎ3®Ñod ¾q'ùŒfϤâ•ûÌ•ôOÌimbWÍÑÛî“Ì'Lnn Ê'¿¬Ô%ÿø`Œm­O.áÌ=OÛaÔæGo5þÃÆ>Ÿ¡â¾7=ç£ÃŠGýGwbš,ì5):èÆt× l«úkiÈÃÞ‚cþn¦ ~0~u:þ¢u‚k˜k þüøU tÐluò6ÿ"ÏοÛÀ{Øžú¹¬iéŸøZÄ ·cÜ™Ä c™ÙÑNLþÑíïqú|Ða%;zÞäxÌ—ôk>¡Úb¼\Fÿ’]dšµÐVû %û„þj úÝÿ1C©¢`µ ä·É|Ú‰Øð ñwéå8—Îë3ḋÂX¬¶~Ãþo¡ïT<4býx6‰Ðç+*ÿ¦újÑa×ß±ïzfeà‡Æ³ý…k0‘}zåG–?6ù õâ{©– F¶ÑE:H>£F>UaÑÛu½Éèõ‘š”|äµ{ˆo¨ 2{3 w;]Ûo¡vfáV±Ê°j"ËQÐbåmJ@ý¹Fì”…ù<£àÐ\øÕõàü£/ìPâÑ?DFÒ[7̨F”|ì ýÿÆÆ66b|·~pŽV Œh xÓX‰DD\…àÏ“ò®vÅ<Ĭ†çö'.v¦K×iÌ¡~­jòž² ý.]É*r­Š€šøœÝF7vÖÊJQHx+ÙÄ~îï |\Jô»9õ[ܹ×t\Mµ`A¹}í…Ï®@¶¥ÃöÂ/¢‰m.}ªˆ­íÆ'vy;N_ûÕàÏ_.·LÉ S¹Ef1‚H59þãoÞô&hRûðnF•¾:FmßèhA§-:ýw‘ɤ~0¼öþ”6Qôàî§%«ØþuŸÏ_¦ŒúóØéè¯ršè6ÒÒôÆF¾F½4¬ÿ8 §—¢hîIwמAt¦zgÀ|æicݯŠÀ•d½f^& ]„=©OUÉH"…ÔxÓô;ì/ãݬS÷‡Yñ¦–‡½â٦¿5ãŽQ{H½óB²–áÖ9ze1|†¹ƒü£Ã¿vø7úݳd`^<õ$zØæåôg¦òÕƧ™ÜaŒA›¼Iæ1o{ ‰=δr<\²?¹LMT_ûáãŸP³±F.!¼ërPôžÄQc9_5eeY‚Xÿ† v£‰iòŠ¢¡ëþåAõ–zÞRðx›ä”˽Íþv¦YÍG¿{‘þW‡­_ád­”ÖHóJ¯ô¦nÅ0³€xû >žüïˆËø©‡uo¼]E>àWImOæGÕ¥ÿ® V7ЪmŸ°ÓÙµíÊÖJÙÿ±‰³sÝ<ÁOœó‰Œjó6f§\Wü¿û⚘dïýs¹îÓíÂ]õVjƒéßÞV¬¶d/%‘V\ë¨ùjɵ$êšZÎ_©E­`f0‡w¢ŠñF¿Í ÜiÔùÔý‘v]ýøCë­ÖF’Oi°¿5àÏ»¨ûÔèG£ŠLÉb ¤ÿȬ.Q»ê y²Vu´(Íå&|R,±ÏXŽMo\ÐÕµ¾úõHìñ†v[wÇò¾ ®Û ‚²ÆlçuXõOÄañH÷ÙãFðÝg³_¹Æh+ÑÑüÅÎøv06D^½`æÚÁ\ò*¥VXé&L!ýÿ1SsGÓÚ•Ùœ(1^(7$%‘r'xþ@8ä•°¾x¥@|L-òÒ_å?‚”ê A NœU—Õ,tµÉ?V åöØ[§ÈUä`G°P[Qâî32Y(…R›rCÝÕüºYZf¹–œh5?QŒ%€7е¾®×_GôeätàžT§Ä¢ÛÜ 1?²Êç¯V*qéu†."Seu¸§f²"z¸åúøðÛØÿ°[å*¼I.9Þc÷txè\=†¾SÍ ­aEéR°¬/˜O{2¤‚Ò„¥ŒyŠùQñ­R¨›ª£û€±)ä(‹°¼°Ñ¯Ådñg¸'ÝšþWnàØÈ¾Ø]GßüÕÑæT9ܼM‚À·bêùlhfüÇer?eT"Ô“_ôOÌÄ^£j5-q~2†£ KþL£ŠNtéKëgûoóœ,g6†›®Žíëÿ¼€?ôÁªzH<îÜCî]ù€g×”§xÓ8Îj ™Ë|ÖûÄdÝ–s àÑ—ÓÑü0{*SüØáa:‚m— Cõo÷Âtùk‡&¼™TeQýÕ³>ìöPP±±øèhœÑå¶#õ û¬–b^çJç WÞÞ8ZÆ2BPÔþôO|ï÷$¼š©ýDWÙŽ«<ÃÜÛiÔo·âÐ/dõŒžúkèw{Þa¼¹ e<ùÇb~®¨ˆ/zºžˆ‡ºH7Pƒ òÙ*U1ÀXe¶³3Óg×tϼb-É*Ž+‘Õ;ßÂJ[‘ÔÌ„Fqþã…É Ä½.ÿáÃüÁ¢ÙÄ|Þ‹{âÙ†Œm&•Ÿ`O˱÷ÃF5dþÇ òÜD y™þ6þñPG£qWv™jåÏçý?õ»IýyW÷T)¢†ä‘?ön¨¯ž¨Ë˜>Dßì“(yµ_`@î3ÿ#ᮿ½úm¥•~…l!;žº­qR—zrm>õƒAâ±þT¿©ÝR#Òt~}Í-ÚÖ 2¡ZüÃÈÇ,&¦ªëÈ?ŽéÑÅ”^½ô ®òõu:Ü{ªõõÝDÇϱ—Ù‰AÛɃD¸¨ ˆÅË~T‘þWµÅ!}ó·ú×ß=Ñžé1°½/9»À8²Ë«F&¨8kéð*G¨ö»ûqE¬׿»ÃCJòcº·‹ø/°à5MàÏûÑY"7p]lYR"'_ôWÉô;ßÙáXú²%wí<×öILý+oDkn¯üœ¼æüJ1<@{,x*‘÷«Jí·ðçqá?Na¹;éTDVäΣKÅ+îÀ0øc]î&²wæGÁ/à³gÒ7|u…³éJU]ƒ%Ê…—Œ‰ŸÂšÅéŸø&‰>°zÝ\}:Vgö`®?5Ÿ÷œY‰Àl†ÿh-ŽcMW€Ìgb?S¨lA5N t±±ï΄¯ûØøs\µÓÓw2ûì“3Þ¾7Ü}¼©MÓðÞIù‰¿Ð_ùƒ.Á&zá?Š¢s:N]ÿÑÊü †¶&Ün":ÿv ÷–Ah¿ÿ÷¤{iïÈÆ m=¶÷ ‡R|$ìnA¡ñX§+ô³¸Ä\?ø\üÇd¬n¼ÝMôÂPó50vª7ìøP+Àî¯âŸ3ázÊýƹ’)"í‰àP QÖVìŒöŸæ}Ùü0lÊ{Pö ¨¢GZ`äÓg„Y/·ð&Ò¹MþÑ…X¸§q‹ªO˜÷µÔ¼·æbí×S÷÷7YÂpøó;ä¯Ný 7xÛjþf£ß 邱™D}À%ñ&ÔC[ó|Un7»Y:º£fw"òX(‚ ãíiÎ1gR·÷LoÜGðµ”<ÁŸe®'2\½¬ TØ1ä\˜îh³á·š“¿´GÕº”ŒL;9È<ô(¨Œ/’Ý ºb-QÄžÇd®·„(+Z¹®×C]‹ŠÎ{9‹ë|¤—0üÍ‚v&úW®•|BnÙ”É"ÖMj wó\–3?*HR²Bo8±ÇœŒW¨3?oð‚zP_!FƒÁþIœç/üÌö-k"LÏ;˜²)ð¹™_kÚÕíêÖk™Ë.aõ¡÷ÍuóŒûy±ƒ7§-ïc ±ëó‚ÿÃßãâ=’»îÌ-¥T¨n&?¶¤T(=P§S?XUßì?|éÚS ý•I=È3%|†ÿíÕï*cÈó ¿2°]wõ |ÐZÕDZEtqšŽða__ó¾vˆüÃéUsŽû]D  `k΋ºpóy`§›íôÈe^ÕÎêLý%öMÈZtk¿î²UÅ3]Ð_ç ,îe¢j/æG펔~×ÔoãÿŽÒê1÷>¸…#Äø·‚£ú¨PÊó.œ†ñH G]OêkWzQ©~5_hø¡2X*-žˆ>h؆%D¡Ÿ ­í}lj =êwVœ¦µ#žoDôíLË”DHQ@eÒ pñ„?¿"°žâ¨Ô¬tu# }a®esç”QjaÃé*?mÓA¼Ñ%Q•ž2Z£­ìiLÛ <Ÿt ¾>ŸË’I?ÁŠR­«'ád—³`$·±ÞO ”ïÅMÀ“Æ6}…žÂœÿQFNàJÿ&J‹Aÿ›ýž‰€ÿ˜¢ddþ²ØCC& û8(®³hÖ+b…"h£–¾ɚĻ;“xa¿<™Wp(ÜŸÀŒÀŸæ?Ÿú×ï¶ ›øXö@ƒzÞô'‚.NÌÜ |5žøÙÍVǸåD§pÏeœ–ˆˆ·#9äT9˜¾CñÿÓé6[ÛîIßõ=èD/YóQö¶£ÿîTÿ"Ò¦ÉMìoZt;ÃÕŸGÑëà¹ÏólssÚȽƹkÕ…þYCˆÌsÞ' ÿî=Y„9ûQI”OÁ×ÖÂ¡Í smf‡EÄ;¸«œàŽø†)†E/ÆYLYK‡aÛž Út™:ïænò’¬ð4C©çëŠø0;¢˜žr@(ý®Ówglçëw²”èâ¤(Fn4À2á;NÁG{¢¿Ê`]GoDßIôâu§þ¼ ¹Y\xŒüLFc´ë‰LRïj¹ä/œÐ±F“S1_èAÇÄJLÙØÈ<ªìö¬¿›úóçÌ Lzv*üyv7V6Z‰ ¡ú—¤@õR$†Ýa$5‰ÔFm3½]šû¿¬ò¶ù^¥']sÏQG8ÂLÏt« Lòˆn¦Eyq3q_‘œ Ÿ7x›þ%‡Ålz+ŽEÁÛS ÿˆeO4瓜ÇT²20?ê¡UÒ®KþQËN‡G©Ç\ÜODM>™†Ð˜$ŠXõyÁÿáïj˜ùµW•Bj¼0ç"ò[‘œÐûê-üǵ «ìW’kU´aèwݵ8_UåDü géŸx—îT0 Óé K/ y©g驘L(â„öD ß1"âu>÷(þ£¬£Ãqa^>ê0¯äuçÅè´þ ­åX=¤®<¯:R¥?5 :d÷G7µÝp&42l"þI Zí@Ü:Ò¿¤£PÅÑÏÿߟh ~òWØ”`þ¾F òæà2OÀoÊáMJù^‡ÏÐŒâùww¸CÉ`<ë±ÌŸPÊžÃ{l ÏîNÄèi´$2 ¢¾€~w4ê¦áôß}ÿ9Õ]«„F§-ØÉœ¹!°„‰ÉìÇ©}ï„ý¸×ïYÓhÿ±õ+k^W«EyvÕšLa%1˜ƒ_õaÍî2ŽlÔ})Ó]âØ—ä^ŽºjŽH!Kó^)Šî9*ÙÁ|òÝ\ar#º¼ž3nê£u]j‹¾h9ÞÃáé ð²è 1"È?&(iõ^â6ùÇlø„è¯ærNºã‹jðNçüŽG~z³Z¾à.ã¾.åžÎ‡ó¢SÛúݽÚR1ü*9}{¸¬aÈM”œþü5 )­Bø6Ôho¥oä ìå |î#ïD‹/øžàW–¢ üÇ pŸ™ä¥ãàº3™3™?x åT^ºVÆ"W4…¹½XªU42œ¾2>}]樷Ü[ä•ÃñÜѹօàfûa¼1#v9Mðûô[Êh÷4з†?//Ÿ¡¯ŽFýß)yÉpæ×†íUXÜãYÜaW-ñ— øŠÉØv§£º;hL&3-'ÿð†ONŸ®ièr[â1ïâQÓç!Uhëèâ: åóœ†ä¤Ì›™ñ‘ݬ(t@Y _1Ÿ~¾y™ >Üêaæ§B¢ Ý¥öá<ñ'©Öñ$ç éhÙ[}¨Åüƒ457JŠõÆ'ÙÅú~5–aUÑ~‚µLÍøuó< Fqx–ùÜÁÑdO›¸Þþðù\÷¯€zþ<yøh#PžÍZfs»%yÆ+Ïõ(ÖêSPtÅã¹ä¢çp"Óìú(±ÛsX¿ ±Òå?®PÿqVŒÃ2 ä×qÍÌDÇûþÔö ÑEÜ>ä˜}Ô*Žþê‚,€§êHþñÈ< KxHl!ªèDv•RœýÊ{÷ßüö'zJvÝ™sJ~ÕrýéÇ>7-øÕGõoê›égÕò¬²OÉLýÇŒàúóø?Ø¿$@¡_%±}o‰ãRŠøàW«ÔGÔFc‚Ô9Mhç~h{g´Íħ‹ˆwáZˆ#¢<ÙÒJQ Æ·Œ@}ÝEQè}kéêêTõ/ýQ·DsÚkÕ…ŽR½áQÞÂ\$N}€þW7õßZè_÷Z{¨§ ÇŠ)·c6ñˆUUðYP¢X•¸N5|ÆK±S„­!Žhñ Jjì²Sÿ“:¸óhPë“ÿB¦=ˆ˜+!¶»|slÇq2’ßí5œÃ’=P"]"'ˆCãFÞþˆYØýAìò\ÀÏùq‚-¹ ˜YJþÕNgw”ájzµ;Êafb‘'äM*þذYø/X äþ0»Ïñî0ÕKEq=¤·EÈ5[j=Y[¹ŽÌò |DQ°Áº|”¯ÞH§£ØLQþ¾O… úÔ¼Óð1!«|þj󻉫 L{Ä$¿ª^äª^ëzž?¸Ñ&ÔO ùÂ"v½‰«ßŒÙG~¾»ÛAê?<ñÿiéб‡îþÄÓx¢±ï…è]tŠ^á9°¦ÌjÄèÕÀ¯‚µ£—Ç[ùþ‰áëÏ»i þ¯9Ðvº_’CÈT=©/OýšáçƒçÃW•1“#ÅÅgIó#h³l9ù˨Îú|­Îïϵ‚ÜoºdDÜÕB ë¬7;Êäæ@:1V´£Ú¹íAd7ÅÍF¦Z¾wÆ ò3h¦üPdЧ‡Y/¯xmd"¾ö2:“Á͆ÿØMÝa}ô\Yð[P \'šmÊITH\%—iËí‹jæ62ó$¿ê<ÿC‚G]îN÷Â#"!¶t9[ ôºsñI¬šd ÓèÕÓÜ:¸2;ý ¬)‰y¶‰:Pý¯ÊÒ¿=¡¬@V:‘úó&d ¨½li½d~Ôd´k­´ö=KG±œÖÚCføŽi勸¯9àSâãÝoE‚ng`~í+4a?ó½còn¦‰Ô³âuÛÓA«þ¢ŒÕ_´Ši ‹èKæÃ¤°œVL39,Å!ø˜X7b‹Ë\Swê'ÅÎS72óQÂÛìÊ´¨Á0ck@:wXå¬Âø•V~æì¦~0…ÕÀªc¾7ý¸ÛÛÅfNæ²ì$"2ÝöBŸÿÄתZ_Íé: ÷É?"â*#óI‰Õ‡ê#u¢–Lÿþ¼*kîVjmé¿+õ”Z쯲ª¯}‰ùQ÷@› s·ûÓÄM·µÅê}]'Î¥hšQM@Äk9ß=­ :yxû\c…ÑDx3¡çººAt5’‰žâ>jP$õ»¥Õ‰êÝ„ÛKBÌ\ެs°ÜHþ „3Ÿæv:q¸ŸhÉþíõƒdÀXK/²ÃDò(Gˆ¿Á¢ƒ½—2ƒÛdÏ·\OêkWºHÉ]^Å¿ؽS0ÊÇñ'ÁZ†S¿†Xª1ïfP—sdËôÙ/¯8\û™Ø»ñûM„¹ »æeª ~õ l|,ïSêŠk=­2~¥JvÖv;ïÑE²„GøgK½LTÑ#â䨱ôÄø‚¼“é¸sÓÉ/ ±Ã»èÖ|]zuÝ™ƒÑ |f&þãú‡8à+±†w7쾜?S„^Yø£nÞã‘Ï8Öûß ìÿ Ú†F2°úüÏÆ'-1Ö‘AM%‚§Û–þL ?)ì6EÍO¬w D>÷¼Šôè¯²š…‰¥èx˜§ä/fTÆeÁ¯â€] ƒÿ½.ã½E£pOº»ö†þíõáÏ—J_<Ò>w0ýwcR=2ÿqœ E§­½(³J‘ŒDA–—Ø9ˆ1Cf"Џ¥6 ³âm-›1lÁæêV¢†8f<¿ÚlRe'GÒ9¶üj™G%ú'îçÉÄÀ>ëð!§±êŒ¶zˆ^ʹIÄ-" [DÄ=øwã ú41°¾9Ðé1oO [äyêÏwÓq$ùÇ”¶í`fΰb23£¹B^Oe‚ÿ[Lÿ’þ(†Â©uÇËÔ"Îð@#0Çúw4š~„³‰ó3c—wÑ· ýs‹2¡éYÇtr™ëTïü)S!Od˜zS3É#pz5S~€u;X1ì’ j+àe*Ðð,õçi,_& ?¢s š°ÔdIÚEô6DH_ÀÄôo×Ðü¥á­ºïP€©"?ÁM\ ëxK¦ÑŸ^¾ ™-²Ÿ|i=¸âr´WE-Õ”ÄX7™?…ŒÛ¢kÚçë=£ÑŠ œ§Éä›Å!s2üGO³ ÉŽ¢VNm•±÷Ña%¡=ÂÚ,‹ÚEÀ몘q­ÛÔ ëˆ*ºòžœÖÿ/ú—¨ô/Éî:Y畲¡º™|¾¾ÈýžZ} ~µR‹¡×Õ¨Ž·Þ«ä‚?Ÿ¨zVæ†ä“‘Yï–²ÿQ“ü#6*Šx@ÅÇBUƒÿx¦_ÔkQµË‘YÆõoiÁr&ƒW-äUAÍTjÇ뢵áA¥ß‡àü#$sýX_TR‡¨“õhdÃAx:ØÕ±Dô­é¿kËi|¯'(O 2†âµ>6‚Ÿÿ-K?GýGCâm§ç“/üÀ5®úöÓ©‰Hz’Få‰SC‰ùµ+•&ô/™LEK ùùGIlÄ3êø§’!µÕ¸ö²+»“}÷¥þÜp=ûðûúçϵ6p À¯N“©(§òÒ=+¶Ö’Ž·aqø=ò…Ú°#áRÿ[ᬶB鯖Fku;Ø€k½ß®…eßNæñ ì©qð]¨µ¬w„*Àwô$Î,§¡¿Š¨³¨¡¦Õs`‘Ë‘ ÄÄn­Â'Cõ6ÆÅwM=±wOY~Ä™?؆ìé&5xË#ô=½–x§n4Þôá0Y¨ÊhE…ÄsžF5,Úmp»åø– 43ñ€N¿šÕÆ ýÐõƒgµb1×TTÞ#c(€úƒgËŸÓÌ Û}‚ŽEè¿ÛŒg.žþÈ”?‘»†¦÷½7k‡{.½´(X¬ZNM( ~€EÆ5†<9ØÏ lÉQ³& "_еêæKêèâp%QÌ÷ Qá?Š»Âé¯îk¹A_|ˆOò¡In)·&š£=&uôɽ ÿñ‘þWýéЕ½ñA´¶*¼‹m>#ÿ¸Éu××Ã24YÀK“s•§°Ìs¤§¡QW1þ£?»H ~•žþí¾Dû#åhøs_®´xÓQù.xÖL¹N¼vÀþ`"‹af&qº‚@¦×EUS£kû}3¥9 ÿ1&=üÅzËá&c«Ë’´£7q*ó6Ùc/ÍîZ¯³zVK ;âÔôt0[¢ñØŠ« úÚBt>ÃÊ¾Žµw³sZ;è|Ñt³¦s_sÀ EG1vÅV-QÈõDb1?îxr2ôÔñͳ"¾QÖ¬h{àÍzã{nRϾ„Ì(ýÜó¡Ž&(³QîιZϳHÊ›—ÈØàò/Ñ{¡ëXÎ;ÚÍè*ÞíHÉxñg¿õ绞W=!꿉¦ðçƒè¿‚pF¸¥}³$_†éÔû¨Ìë€Ýl—[á—£‹":lU\c0óÊøÈTô|bþyN2]®#'À•Åù* Ÿ‡˜·‘ù úŽ +"s¿óߥëñX<%'8ML~¿Yœ¾7Zú$à(¤/ã5ØIz׳xáñZE¬øïdÜ×°ÑQˆò ⓞx[ÓÙOD1v˜«.ƒÿ˜ÏUT¢É×êŸ2¿65þã¼B5üÄkTÉM©B™¦¥Êrø·Æd4Ûðmgñ£ñ ÏØóRøóØ4d—¶ZÿñÎøYNçŽ'«¬ ¢‡ŸñƦïaŠ€j.%¡WWÚÕÈß]¡®rÞ&d•Ï_ÍdþGwq ¿ü*9Wó7M[#Zžøà2w9‰…ˆ—'’Ó|DíxÕxÏ}\Çzú-lÿ¼Ð¿~?Eý¹'¾6 ùÄ9¾ö0íÂzøhÿáƒEÍAt_Òlþ3þ*?‘ýô¶/ebBa­³¢tÕ^RÿÑ»7‹Œ rž«7¶9Z«h|üÌRT*ŸE]œ¿–ÜЃLBÿþÉ´ª{Coñ†V+vÕW.ú¦´àL< c8dþJ=ßHð«²v\;Ž=’Þ*ÔŸŸGÃ7Ø»ÝåjÎóÄÊè…Y/5y9ä}VìÄZi¼–‹±ÕÉ?›qì\ívüÇ\øô¿Ú‹ÏjŠE÷ÃFÇ'¬–»DÈ<ÑÅJGêÏU²‰Ûœ 棺†yAqûì2òùt¨ªH¾µÄjf–¢¿mnºnáJã?Ãv…A ©?¤^ÓÒòm*\[š=`AWÏeaæ»ÿŒJösƒySµ—Î:d~ J>#º¬i\ñ@ô\+¥Q›þ%¹]×›þã±H6ò·Í<$¦Ã¢/€ÛÞGæñg;‘ɵaõwÓc~’™-¯Êô(f,ùƒs?œ3¸Ûå?ÎÀ8ó?œúAt}"Ýó¢¿êÈœ˜¼pñ­­̯}†ée-¿Êd5´rSWrµ‚ØÅÙnMÌ“L|-ïýÜÿÓ_G£SnH½G诒¸îÓ}VæÜR3ÿ£ú«¢¬âËü6T„<§~0íÚ·W7ÔŸІœüä¼ù7õûô@y¨Æ"y¡ŸÐ—jAêÅo/îo3èÇA7–мõ?uÅ(úï…“l‰6¯#±DS£žž&RWžúÁùz8óG`Úa—WÑ—¿r#ÿðA…÷|£È+.Fªþ\r=ùa)è/ÌE×!®w4Iï°Ø•Qì”åO~ì0š±Nœùîo)%éK¸´+gÊ‹kÞõµF13œ:•Øò*½G¼ˆ~–cõ›10öwV\¤5!Fí ËíÌ–‹‰ÿÈ’†ì£ =-îP °u ;E·qÎL禯éЯ)ÕÊF+´>퉤—’\æ w#ßèÌ›U•*ô2Äz;@G®r'ÎsT40Dâˆçpá?ÊÁ¤ËIL¾²™5KòÕcöCwH}¤.Í X`0½åKÐá|èIþñÝëFÎÐ`£¤Þ#ÌzEЮeo:C-è`îÎy˜ü£Ž9\–¿šn%¥3ºµo7ÑLKŸ•9äMÑÜÁ_}bcBͯ]Lÿ«ÑÄS“ÉÊjÈF2ýۓЯcŒu_³œþ ³Q?ÿ„ÿ˜Á×ì7ê¦]ðí3ñFûȽšÐfŠËŒ@U€ –¨=:˜5Bb QGK£ÿÕ:t]³­4öyjòžÃ[ìBu™ï­Æ$dŸðé§é»ZX”s]ojuŸͰA¢f’µ¤& U‡í¬«è¢®š—¨s¹ÃüÁ¢ðûÉÑ_©Vcz'º[¶©’ìý}/:‘»Ìuù×è¯Î‹ù`¶ƒù5B(ôK|Ö`ÝsÃÉÿa³—Ó¿¤¨ÝÙš-óÙqéè^ígþ€ØÎÛÔ÷¹¢Xv]úý‹¸è¯B<ë#¥œÝuŸ~ìÃ3 ¿Š¯Ò’ê?ëûƒû—ÐMKë¤×žiÙ5·ìwxOY©?D][’¨ÑÁ†Îk‰´}ª»8*^êôÍÌzøCÛ“t©ˆÿèLäíi4£EÑÿGÜY€WqmoföÞ3sðàîînÅ] Š»—âîîîîVÜÝ-!H®Á îÎ÷›´œIÿ÷Ü{áisNBöÙcKÞ÷]k1mWƒñýU¶ꦪ‹@èß–®­oÖ/ až)i‹·ø &•6¤Ç³0‡Át@ÔëÚˆJù9ÿ¶Ð??‹*Š´c,s¹Ìø“èwoa±®á¤Âš¨[HCú¥ï^?­j­¹ÄÙ9`–÷ã+w‚_Õ%öíóˆ®ñTRÎÂI4Ãq„ÇwV\c´‚õí†ý½IŒÅbq˜€ÂMî<5Yxé+Cìðœ±U:³¶ “¬Çœå ®FÍ{މQ¹© »K—î„Nu÷&r€ÏèwOSñð‚Ïбp!û_MÁ¼çîý•z’­x¡ñÜC`wÓóÛ3ÀHÎR]7‹üc+|…ÕNÀš™ŽnõÿÌ¡öPÝt‹7Œ|\…ó ‘%ÌåxÙÃÌÿXLßò¶0Ð3ìK î‰`ÐÇá9*YˆíK£6œÂî£ ð©Œ*ú[/¦¼—r‡û·^p¾R ÷Á–z‚× º9%µŸ‚Ù­°VÑ¿$±½Ÿ!-É`QQcS/߃‰9æbð« ¨¹F£ê®È]œíˆüÇHØ…ô/9’ý•S^›*“UÔzÇG·ÛM`dk7yC}¦/pnOý£‘ ÿñ†k_ßÊ€:úOA_ê= ÓÿêýÒ}÷”ý5÷[W¨ÿ؈—š„¢pþw!Ú‚æ2š TgŠÿ‰<ÃÔk³–Ì«ºZ%˜ÍñÈ®eß"/Ø6šúÁ30£¹6ƒmºAÂ|"¶É ?Ú ùJ·ÿð¡û9„'uñèRy…ùçè|2‹~)Ð(÷·ÿpv½´Ë¸ÆØ‹À¯Ò“Ñ”²[WˆaöÉÝ`Á5…¹˜ç>âÿÞ‹ð 1©Ýw‚wú±(üÛ&¤ÏÃèhÄÅÄ»üê°VÒ(nŒ2^Q;n„‰Š»’ó#Ú8qZ:ýÑñäòó?v1gåªX_qÆx§? ýÃøîuc+øÆ4ô»Ã@sªËòWô»Ûey•¦â’ì¤úÿ`ýGYæŸÏ¯ÀIüy%¬ßsøU4y…냫™wGèêû@„…äݤ%®ˆ¸Ü7°œ'É ²£ˆÉëø§à •˜¬´Þ÷©Ü/Ÿ¸¯TЂ¾ÞªåÄ_¬¿ÒÌBx¤2ŠŽDXЉð2Åá?`ˆ§2áC=aúã‡Ú=èz3òè¯þ$V½ÇŽÒb‰s=YðÒýˆy®â—¶cÉüX;¬é¯t J&ÓuR›£g Sñ„ (Šå Ò˜ÞoDú‚-Ô¢r …ùšœ|:Vh#,Æ+ÔÍU2…ˆÊq'Ñ ‹Ü`îÅÈúRá=怞&*Ô±õèFÖBD€íƒå[Ìî‡Áx€_ÙXñè¡àW“´L¢!ú+g¾F%zJs±Å@òv K‰ÈH_y¨N"É~´”}NçS§«ÙB3=i¼Þm¬#ÿÈG¿Ü“äYˆ6úqL¨/HOôKôô@ÕyÍlEþ±¿…nÛÐÚ>ƒÛ¯˦!ޏñZÆ fìÙ>8ù©ä½ˆ¶3¡pZÌüÁ]V ø§ðEè¿»‚«‘þü%ìõ35˜û"¦KÝâ)#Ï•7:E[rRj#±›}PÀ¢“l~ð« ®•äyéÃtÌ, 6ÕNë7á_N‘ÍV _¹¤Ó»Ø—û¶6ç|)jà=ÔOw¢ž=–¥è&›†›}Èškö‚?¿ÇÝS²û=Ú<¦0V"Òšë-¹úSÌ{h*Ê›iP£6[}a=RÒéks£ÒÃȤãT]ÔÅS±°¹Ù㟵3ȂԟçQmEÑZ±œ¾Lï%î`ÿ>;×Á™j®;±È${cÿ«Ò/äwøJt(«"èn¿{Ȇ«â?|°éûÁ1¢›ùAÕ«”UŸ± •Õni¡c^&ï|w‡{´äÔ'–÷¥™Ì&0ü]Xõj õ­À_>¢MÊÚ=ï¨"°v4èž_02â)[áɼ@Ü£q„9°ŠÈª‚³]Usü‡/9ʘŸBDιÂdºökËôøªùUWüÇ2ªoÀGÕ†C©‰ßH…Š·ˆ˜d7¨Ð*`v¡qÛ@þZ®N+RÃåËIÆñÌ%_(Aç°×ìs£š‚Šã(I'ð™ÞÃ/ÔD·•O™•!ÙÃbÒpä+Qˬãy††wý/|]蟯ëé5ˆê%§ã.œ¼Sc2®ätù…œàýK’Ø™¨Æ.€ý[b6ïÔ,d·ˆð?É.²mˆ+ÝþWI9†<ÓFP¤xó pÏQ­¾Ìÿx âRüê»K‹ÿ˜v(7\¼†«ùG 5A÷ ¶âE#7çýœ2±iÎüõ}03É?š£ˆê…åËIý` lØpö[ýU^²®0*÷ñ†>üf)1!Øzò:«ž’7¶GµQ]B <ÑêkuE³™?˜•ÜãÖºª9Œ^´>xÊ*D 'é~åa¥"+¹*3áÑZ#}¤ ÷šszRõŽJºêT V ªn.š4ôWµʮæ6=o ËÝ—3ê¼÷zV¯q_‘ú]ã-làKp̆V8UFÖ#ÿ`ŸFo;Žy†mì—Ô"®#ÿˆeo@sŸg"ªê´Ô¾§šå’j(Ëéßž™ù?þ2>÷ÚD¥[QàÏoXi\±ñ@SAØ^Яå‰]y…~(­È›"ÛIèÇÊKâ §ið4iLûºÁÛÔŸ–=x"‡ñw§\b C½0‹Î\á©›¹aÄø¹R¹’’ã 5ÛºòÐS± <‹SçtJn"ªèiÖDeð¿¨ÿx© ÐJý},ÿ?ú'¦çMKµ`AÑŒzªšÜ]›µ*FòwFxã™ZНgðÛ¯×ñ7©ìŒÅÙ®ñØð×GëïÄNù¼Ç_ôˆÁîßoWþUÆLP›‘tD©Ë ~5P_¢¯E?úPD“Èt†ŠÀ>.Á7ø»Ôz?½­8€ýøŒÅ*iA…êï*…oË‚ÿj¨ïSÿ‘€Ì—c ¾î,õÝYÁµ}°-ñÑ •b>Ó"r¤'ô›ÎñŸeýOr‚ìâJ÷1ü¹«º«bXÕCü]LŽÖl(õÑCÈ?.Y¿€çœ€ŸÉf rŽHTѽ"OñcÍl°WÇõMÁV|bäÂV ·L ~Õ|ÍŸ.²[¬ÆLÜ›Mdÿ ýKê»ú•a^â)lòK¬Ôi¦#.Ã.VYEë`ë=78wO¹Gêá¦(”téku¤Æñ>ÜB&é­tYÌÚ(ôO¬c–ƒ¯ØÎß2Eq‹Ù!ÈüóyZ5½ÈÚ4ÖkH6X5úisŸÕŒy~e@ÙVo<³rQÿ1›yèð}ì×deíÀ¯Â³×¤øaK-t_‘¡øp|ª¨õ+™C2óœÕ˜ŠÁúöpô¿ÉD.Q­ñTlˆuÄ^Èg,Çg¦æÚÇ´æ›×Uzù‹ìå>ÞwÚ6ñB&­©fšÍåkÕÓªëÊGWÇìð©õ o¸”}t3mÝ¡ÛrZ늕ÌÊdú_f¢wûbµvôë¯Ð?ñ¬œ8§kš|ieCiÕ—>i78W:S?z¸üQ3”bòàfs³m#¸šX]¬§`ÇgåT µØkfyäë‚ÿůõnzI÷™¹þê{Šœ°6[÷Ò#ã ô/ñ¨Ü^Üèi\¥÷HÊŸìß~M«.vIêÁ®É²Ê—üã!ºVŠ…Ìò1Å]ý{ÊÓàûfô} Z™h¼°l)ÇêkÉ?Êã›âÓ_çÕBêЂÿnðw¿è½õJ¢)–þ39l+ÓÁ ?‹mØ›¿Pç­%YCýÇ*ñ#±kôßMAVôœÜcwD$´0i°‡sÈ@*€æ;/½™puZN“»ÝW*øž߭ЮI”Zo¥ÊFgÁêàó‰°×s°!)`‚Ÿ`Ã|ðu‰ð«(ó»õçýŒ´§Ó?q/C,Ž6-# 8¥ã'øÂLò…³Ôk$4s6RÒ"c˜“^nÑ¿äˆLCýÇxÐ$/Vó—uèâ¸5×2’Öh5ßðn9ùÃ\xÿ5ÄÛçÔKÜ <@÷+¡g±`eÂdÄÎ'[ûžZOÕp¯Y¢‘¸…²¡uc³Øý°¨ðœÇ›r!,ˆ{÷‹ZxQýUb”ÉõA@Þ[6å¿ÄÄ 59k»8“™È@3ˆÄs‚ Î%kÀ™iKç4a„ì}z”ú?Q¿% [˜b&1áµðˆyði¬òà#ž¶´µ®3­üÔ±å@ÆcäÇá?®Ð]ghˆ+=ü* W­,Õâ#ÉArŒƒÈ5ÒR'=Îv§•À~`ûbE+R58 ¤2Ÿå a˜±È7†è¿ûÜ(Âwà?œ>·u¹zÍE`/=Ñèö ËA¿Œr®vèw[,_0Õp¬ôÚzs3g;›hl‡1©©ˆŽ²Ù©_êj.RGÍéô:üÓ¢†Ã|‹^* óÏ7PSígnµ"Ù÷© l¢´‹=ú’3¬1çw|½ݵòz3Î\®BUò”4ÜÑÞôómæ×Tl*ù†F¥ÞüHjì<ñ¯Ð·?—ôz̉‚±¨ ì]N¿`¼'û¾O¬WÞêÆëC*ú­kô©…îH¾°—iê_¨*Ùhy1)ñ´5Ó:[Ø i‘é¯rÉ´2ðxÓÑ¿= ÑhEêK7˜Gå\ÕÞJÅ?Ÿo€¤¿Ê °0Oú_Í£–ýÕ)ñIAiÏP?ˆ’R]’WÝþc·~š¾âƒ±3ˆS†ÉVBêÏ;¢?¸K~—\¦øÕgû7øþ{f2WYøŸÌ9K”é-7V$žËü?É?Âá?ò»¯Ü[-“×ýîëõü±¯xÝ4¶åD5q"@å§ýa40¶áCži!;ýûª/µŠÌL‡êÈ©¦ˆ ¯çè’’ç¿‚ŒÏD¡Ï?éçV-ðEÝẆÁ„¶d% {0šª2½mrðtOÅ~èÈÓê}ôžÂ™’w OT‹?‹X•{ì qÙu”T»ðJge/9YjÐÃ>ÚφAÔC¥SßË]û^Ë^ØÍšàBþðñ§P œ‘‚ÜÃa­ç¯Å…{9 Vž„çh™ÃBìt_µÄÁwÌbDÒ aÕÃá­ßD×ÖJ¢Q‹Z”nØûÛD«ù½,ô5/€þª+Oé[üÒm·»ÜÁÏ9ò‚\©"ú0–<®M×Mð«ãDâtx¡†ê…lŠÛOÍ@ ³¿šÍª÷É·6à;à“ö’;=QSå#4?üR«ÇSüŠóöÏä!ФRd ‰ùNNó–:'¼DØßÔ‡,"߀ÿ|Þ+Þi}(þc––DÔ•/À¯†a×¢aÏÇrM‡ÂŸwãýSüTeŽñ=ë‚ãOÄš+xÚ‡©É¬Üû;$ÓõÈ*G‘¤ŸUGø“³Øþõ°ßwñ5¨yÞ‹•BƒÉtñFT¨e—ÊMfñ'lû^ó)Œ\×e“aQwÓva¸Ï**,Ž©éfr°¥¿ÌqÖn*Çc1 Ã’ÆÖGf˜dƒ{Á,*_r‹Á,ï`6ßt½·à­ur˜® R¯É“›eL¡æ¹×›Šþ*Q 9üª1ŽêfµÚí™ïTÓZÊÑ.£ç—Îä“(s}æá7’qï¡i ö“þ‰¹7º¾M˜Ø¥L< Ö£±•ÉÕ×~ƒ×ˆŽÏ8D‘aÔœ° *î3Í墣V2+çðøÕ39 -àq·ÿ¸¥_~r9ñÒ"òûÞÒÏʃöm¨5ŸþWçè~ÿ KžP!ŸÚ••!1õƒƒÐ µ|‰HîKG(B^†ÌÝ'à?øÂÔêÝÝgÆŸþ»ÿWýUTýnŒ,b ÏS ÖôÒ2QdE1˜?ø#µzžéëÐXG‘è¯2Éâ"ª±N?#4tNñåg#ÿw‘—ÀµœW#Œvhs†ÉÌ<ó»ayËúk}‰ìJo‚.ÒDŸÓ_8˜Û÷ÿ$×'2¹Èé;{›PK7ÐÃ_'ÞÿhNž0œix* ¬HT"û5øå¤ßÕ,ï4 €¬u‡å~Äñfc’ðHq‰pÿ j~Êû=³3µô gÃPYeJý|hã{™ÿ ø:8BŽ.1‘X!|Û2Ë®6¢•ýÄ‘O$ŠÝ„'¾Á¿yƒÏO/¾„²"½¢yŠ£ñäÀ¯mÃ?–Â[z°›èô*/ÏÐ?q96/‡9ܧ;yB ¦}>“³Bíµ@û`”—þÔ0ÌÀn¥ÄÏvg`%z  MH}o •li5,÷'ÅÌ%⇥\õ±xÖEÂ2BFGÞ佈JRâ?fÁ;ݎתæ%l>}¯è¹ñ^ú&ý;ƒ9êØä65à§o›9ÐûŒ q/®0îâûZƒAîa½m“'ú+ÉZkÍiÖVk!õdkíwØã"ø¥èž™a‚÷ð¥~¢¾ï®^9ØŠ·É?&r®¢‘Y ÄF_P×M*ü¬=T¬wÀ2ƒ¯äÚ‚6ªBö"}Qãðžx³jJ/‚GŸÄ,¦àúˆVÜa™_»‘Ê‘ Ì?¿g/´K¢0ž~*"õãñèÓÕƒŠ’nä¾TŸ|᜷’Ü×x’VI/Í=Öš«PˬŠþê­|fΧ’î)µŒ3˜;õZLú·¯‚ï®eí§Ž£ç¡!VxüiRÀsr{½)ú}ã%žü9¿´5W ‘[©Ûø •m"ú• ³FÙáÏ·Ò·*#ý_Ò}¶û>¸?Üóš'³È¬îóþã¡LΓ0HÑ¿U‹Z•]ƒQ]ÕaBblòè¯2PQ’Ù^megÚlú“Å¿ Ç}ƒþ9¹A˜k¸ýÇtAžr)˜ÃJ"µ!ò˜u6¦ýKÖÓ‘lýÛ#Pÿq/Òä/« º³^VëÞz«\…†§)žÉG„œaæ>ÿÁÑõþAî,-›žÐ}ž~îcã‘!ÛÆ ô»uÄ#½0«lÓ²è_rŸn¹Ñ²ÞïŠÖLl•ÙÈlòìkBˆXÆQýŠð‘Qäk!EôŸäÏ» ˆß&²â0¢û$r å-}›ìL-:z>2€á¢âyf:AT›É>®Âw¤Ù‚ÒX½Ldà©®FOþèwÛI/±èNáSㄈ†}ÖÌyØË#ª<÷fVõ¡( þŸ‡jÂÃTÚ=•KäÎïîp‹&ѧúÁŸßÇÞ'6Ù V ÏÖì#,wEsL@ïDF…Ú™0è¦û™± ]°¾Î”Á” ¾Y‰ª#bS[€\#šwºU]D5ö™|¾ŠHýyXL×q­·.™ çÃ׌óç‚ÿh†o©ši@S ;êL<@îñ¯´SÑ!^& uJbD=ºH ¾—”®G9žl­( ÿ ò6*Udkê?æcQ ÀuÅ?wágWäcâ<=þ|˜öÄHI†Ø¾Š«x†º°F9ñ&PcE§?pºÌ$¾}ˆÚÌ™åÌÄí “ÔZ|úf:ÁZc‰,GõM,êIÆðµ¨5Ìe®CÏ”‚ºâcôÖKƒþª8øÉFâe¶8˜sº÷—r°ìâJ¯0ÞÂ4REð ­è¢> u Z©(œf0#uýKön,2Ë[–µƒª—ä7QÈŽ‚YjËüÁsÁV¼kä"#ófñ±ÓMÍ(Q}†ÏîŽå+Œþ*‘k$(N : ^¦ƒð'ø‡QYOþ:]e¡ßõXËéqӋ㘦nÀsôB[6Íáø]›¨ô¡Î¢èÒ&"òódÐõÓ*ëõˆúam+šÝÍTL¾yk^±þ ëˆ~5†îRà?ÎQ1YŠê”Et» ÆÖ¿ÁÚÐÆL¤~p‘þþé[¯ÊZi¹7΂˜Öƒß.KÃ=¬÷æ{8S{+óÏ·2Ke4uˆI©ÕüÀùö&ÿˆÏ\÷sA¿‘Ïð9ÑQ}0£ÈLjU‡È;†Sáx¶…XjªTâÙ=­”vg;= ‡¸VtÎár°é/r2vXøŸ?©ggf(?ÁsºZn²–¹Â»¦‘÷Ý"«ŒCýHg×^ºÉäsU±š%]™ìÜ;W¬WD^G垺Üç9þ'ü‡KïÀUü}(Ï´zŽÀóôõèkL}§ÝèNþQZ؆£¿:¤ýbÔ1Q?ýUÈ ÿß½¬µ+O‚²æ‹üCÅ‘~ÆG}ú+/™“¹â†x¥Þoÿ¾Òß?nÌÄŒ“%Á$&Ró1RŽÔOé‹Y»XV °ûÙ¢ÑyN}€^Aìáþ~FÃ=<‰\§·JñÝþ%q@¨ºÂ>Ÿ%#JIÆžŒßVD…-°x7A¢fáç|©ÇŠ……­ª’ÉòßØÒ¯'á™6˜Ž1•ÌcÄmõÀÏå[oCލ»ÌÃKÞ­ÇÒE½|›$¡yB&Z(Ç-ô"1{)ð«\Än³Àr²¦º¸êh+þ| øÕH¼{gŽÀ¥ -&úuG_çiº(ÈL?ü˜ÎÎNqr‹ p±Åé]~ %-¶n8¬îgUÈ\¦æsÇn‚kIÿ~w•1MvaGIP\̓¹ÀçàÚž¦¾¯<ýwù‘°Ë¿Â2o‡ãþD§,yb"ð™!óaÆf'6QyÈ>Æ€õ/?š€Â*º5™þWPÄžÝ*Éüéf!®õ{ôRïa7bs?îÐ[;‡ñÝñÒ‘ÉSœ¹óÕ3ÖÙÍoZÖP:–wÅD5OT-`ÂUeªðû)Ü"ÿ9¦þR…Eð>ÝOÅ>…ûá"øh_ü‡—¹ ¨Þ-Žu“nP9É?^Ø#é ²ÙJg?àœ´àhw ç ge°6›>R¸÷7K+¢7DÕß|¦»µYAž•é9gÝèÕ“y[¨¨pÝ'ÿ¨BuÊF*ìr0 x"žÚñ#)P@TRýU1ÿü5™›nRX+Qì¯QÌÞBo[ÑËÐåÁ6²‡—v ò…ÇtêrÙc­ƒd¡SÍhÄ 7èÑN:ˆÊߢë Å3žÇüx`!49¿R?XŠZÝØ×Qê7€¨ÇÊ'°{ƒ\µbZy;*üG8råìäÈždÞ ÝþãAÿч;j÷Ó¹ÀÊM÷ã1œ÷V^êÓÚÓ˜_›Ú%©WÙbgÒú@1KCx]á.- òyå’„Ó[éuÝg準0H5á×óõc_c辺 µUr‘Oè†Ów—–Ù¨gÌ1Ή™_rBÛ¿¯zI«!vse’býšª˜2¢ðÇÓ]#ÏË'Ï w¡õÔ {ÍÁFO¢ù¥L– f]ƒ Ýõ-úY|±?|wYú·7tŸ‡°×Ñ´Ìà}¿‹5<)’¹JµÁñ{¡hê¦"ÙNÂr /b:“ì„þÊçßúçg— "*õ-ð«} ÒÌóä·;À®‚ŸÄÅö ?cTD¸²ïãWë4?ð«#è¯>éï%·Ý ÛÑ}4•{Ùà§^°)ð^XÒdÂøÎ1w2’²®ìÄK£jv ùwrÄÓyú‚Y-;ÂOœùBSø´\ÄiÛÃ8ê—ÔŸŸ‘¹ÙU?ò­ƒ h·dM¸‰½ª.ʰbd! ÙßzpžœÇÇ(T/cUWÑ{9°6 péZ:¡ðáÌíTïÆ”@½b€É("䢆¸Jï‰Îà[«ñíÈ¿"sU4v™0ÿ±U³èu– a-ql|ó)AIŽ6ØN Þ­urMЖ¾ä'QÀ|€=/æ3—’‡¬¤ÿî’À¼Zo –-¹«2a¯†=8'Ÿšµžùµ9™‘} ¦5}A b·‘Í}â“£žzIÄž{2ð™ü{áåÔZäP…èѱÎÀé”ÓÝTø1(boP¯>ùŸUÊ õîl`z2³úÁ`Wú¾Q˜ìê"úèôä,-Í]ê*–ý˜Õ 1Î…éŸXÄ5ÝZlþN¿-Ä·.<Ñ#óº¹}à*OQog‡˜Pd"ü‡ªÛZuo4ÃjM¾‘ÚzH5DAºJ½†MžŒ.+œ}›+Ó üê ý"#Á,o1“z˜ÕZc½*ùø¢‰öì­‚|Dÿ«Gø7x¤ÅÔÎYˆC®EÔT¢®¤™]„þ‰íÑÚ&Å'$gù,+:3¿ö%ÜÓ;ç>¶Ú“#¯R-ÍXÌOïH—©iô…ÿ—¾…ú(ð!¯a¦’£ëÝ ~5•zÄÕÜ“ÙP}wŸ¿Øúv¡õ;õÊ:$³ÃʇCU{fSgÿ̨Ž]Æv¹œùç¹é6’™ùµ‘¬´ä±§°h¯ä:” ûÜþã’îO­ÛžƒáÜÝå~üG×:3 Ÿ °)#ñ±]éñíÌ&®ðô/¿$‰ÏÈ ²1ÙH$ÊѨg{£–ÝhME¡¿‘ʈõ“õ§´¦ô4N >ô K*™šgt¤~ƒüÃ&ÿxÈüÀxåGö¹ÅX‡:g*:Ý…D¸5ä,ê?ÖëÓÑÿTGíânÀúìäµÅ.pÍlHdLuåékOýàVüÇYâÖHX«²»Ü*BªrBÛ©ñŒ:†ZGÚÛüê#±gìPüÇÍuäu4ºë©m‹ƒâj>}9Gmvu¯Öÿá…ò!Ï‚OZ…ÏÇñÓ/˜{soˆ3FÉ>èŠ3aqTZ¶õIŒ>**¼ùqë,Ù¹ðU°óAÌ¢ÀúnGYÁzj¾—=d³×eŒqO†ç:cÂàQ4]s9C}¨Ý¶­èwoSE]€Jãd'Ùð³Á3òI:ZÞ1fZ´cWÐÉÝâM#'jÁ#œãxx¤dÐOa¶½,§'ü Û‹þW:þ£ùG:„\oB¡ÍÏÀøà?LCœýUdêû?0ï!œ äô€ùƒ8«CÔó¾,®2[q\%鿻ЙúÁüÚ±`NmjÇ@µGõ ¥\Ó™•üt®š/©:ýçÏ Ýÿ1HtÈ(¹ÆÊìzaO Ÿå+ª[ÛìR®íT–¦sâs¸+úàÜh­ïñ _‡±6 ˆh” «oé×ÏùO|dþ㎖õ'ãúÀ=E§ûÕ;}‰‘F´„ÿ¨ÂÝuDKoÔ âCG¿ûsݽ¼´Jâ†Ì 3ÿªËwÆ'ž€ó⎌C_'Æ==V°û7p¡¿ò2–ѹi©,ƒ¥ÙŠž{´ìKD¶UþFÇØÑ°Í5UŸäÏãÀŸ×NuÆc¬~¬~SØÔ¦Jñ O¡g1õÙ\nø¡þW׌W" õ# ½Þü¾£¯ÍÆ«ÍüW¥ì3¬Ð)ùþ‰ÇåñïóaüÇy¬ü)¶ë0èÐp›*X×~(Ÿbñ •5O!/i¯Ò‰·¡Ÿ.÷w{1A„~Ç¿z²Ÿh ¥À¯>£k*ÕÉ?|`ÖÏ’\‡“/£¢Ë&aò{´Qú'ù±ø°Ä}øÙ‡Ôtà)¨Gö’¬».±Þ^pàCd_·AônÒ…u»Œ,î¹÷øâ•öшÁùÉ‚—LÅî’/äE¿ëÄÀ«ñyÄ9s2\Ajü‡3ÿ½¯úL³„µ ¿Ú¦Å%åm𪿈xág'sîúá3š€Õ$J(ëóìh‹ù–})ú«µ¨6ƒ¬¾©™¼ >[QÎdgÊï6 4k#jÕ<ð °¨ùéß^ Fx)›@-wÅ`¡ý˜42c|‘ ðµE¨ÖØŽOšLVèÌ#h ÄRßgŶìê4ø•g(†Sã?â0 DY#̈ÿæùÇu#;9é>´鈲ÿ„¿BÆpÁê~5Ѿh¤_FuW{ë8ùL'ëpÀ§Ãן¿ÚCî•I÷p©å&•Â|¬ªÆœó ê³yö·¾1¶õdÍa¦÷3Õo'ºÞˆÌ¯]N–ÒlÏé0Ÿ‹,g£´Ü÷vú_5'ó^H|RL3#|ÞcæQdŠHs”‹Át$¶Þžº'úÝ]Äãɬ‹0ݳÌdÖ³²Yͬ­k¯2ê— òÐOxû’V"êÏŸ*TÏôßm€}ÿƒþ'©\WÀ¯žP?¸Æ:L/ã{äNëA›úÂÇotž™J¶tïþ#/ÏÁTuºïŠj ú«*è¬62ñÜåtƒ¡)†3ÁÃ’ f+ ÿá²¢±â9jÆP÷9íwûJú9±GNçYêKÆ{]·ÚºîRÿ1ÛŠ ê· ”-§k§ë‘]œg«YÞ•ÐîEï4oë*OÎEy€È¨>dby&ðáø¯½ŠG5ƒÓëðï?ï™îÓýîëwìk,úïzk_©üõ×nÇOµJTì¥"=ŠñQ «ª,ôÕ-fl¼”å‰v(ãm±Á¸Eÿv“æ)áÏuô»÷[è+ÿî c3hô0é0ýÐìÖfþ`xã„lNlÑ\¦­(2ýБÇч2ð0×î(~%–öæ ÿ„ò9ùñi¢ž×‹¨º&ŠÀ¦à» ú¦+Øø<Ûv¬þMø“ø9/ºW9óEs’¥¾!ÿ˜.7}w‡/4º-zËØüf!žt‡Ÿ‘Ø…ô_¢YB!bÍHäÉ·P½7>ÝJ(¯ ©ÇkÇ=z“¬ ˜GØ\¨:œòIüÐ,ýUŒ·øÐÜê‰ø]«Ö[¢»ÈTNÀTãH‘X%p5` áQ t"Ò¿ˆ_ÛG\¼›þ%:LMs‰ŒÆüÚ*"øKJs57;‰îÇFÇѺ‹]_)j ƒÚ쎰߳ñlÙÝ3æÆe>Š~w»OÔ’oÕ/0ÜÈÓî`sçee)nÒO mr~j3FÂÑ~%™‹Ör-9Ên>w´x¦‡ÔNúcÑ_åœoñJMŽT¿˜ýU|f–_´ÖÓ‹#§åÃüÖÖr(ûævø)5Ù7éÞ8Ä•žcXø=&g¹ï`êk®Æ(ú‰D¶è~¶sÊ*†ýÚiî{ò“ Çe½¥úâO3;×Å“l;èåýbTáŽpê%“RµÝ€;å3ŒÅfêÅ“QwÆÎ€ÿHîjj]§_W#XôrdHãñ['ñ¯'‰"ÒŠ@>ÀY·45i@g.¨ÁxÁEê>zéß>’Çxô¿JEgÛ•v[ŽxÑýAsº°Îh¯^|&Î ï»·7ÿ1Ž+1,°ºÛdR©„ÌÃ`¿ÆÛFìÔd¦{IGê§2a©³Ï_M ;Îe4=Ôt÷zK™UR™“Tm+¶J)ÓòÙh€á'†¬B©|ïûŽúA_ë:Ÿò/µŽ§ÅQ(LçxëÉŒè5¿.Oß(¢ò$ã8eÞEÅ1 @æþÆ\«Tä5i˜P º­DÍÊC’ÌŠA”äPÿ±˜.p~í-ýºØ'ç’ÌÀ6í–~̯õg²¢SÇxÍÚgW·“¸ÖºöáÓËÙ—é¿ëÁü¨.p#·á¡|ñÛ©þÕ|)+^¾îô?ÿUè­ƒäϵ?Y׸èúUæ,1b‰?‰Çp¶—k‘úÆ㳑Јý“óf¢ÎÜ*ËrçGÄfE‘’gts[<Á¯ƒ_½Ðý?ú^­5œiÔóeAPèÍôcî#7²Û)Ä¿y°ôOe'úaÖsß!ÿ¶`n}˜þ›X JòV  6¿7x{;%¨^žCÜÜœ½&=DjÉCâG*BïD2î/ø )iú‹à?ò€‘•3ÿ &ù(ßJùw‡‡´øš“ü÷þü1ùp›FDÉ#É<’â›Jò”ÇæNݦ“DØßY±‹&{èÍElCr®=9@ÕºÁU¤F¯ùù‚?YSm¬êìe9æ:. ãô¹è à's¡èGþq€+ëÏùoPt¤*õç `öò½"·¸@>°I& u~”Òs‰/ÒÀNn¤¢ñ(Seð«ˆê ä4§Å5êìºÓ¹i6™Ö '‹¥þg¹ÞåÛ î?o*}a(þ‚±GÞƒ¬­V¬˜>ñÜ}º G;T>–hf— ¼x¤‡D*/=ewrµÔà=&ÃOÎ$oÙoæ¡®ø65f É?¼Ì:ôô‚ã’fl{ìé3x¿×e*üytî­b°+Ñ_9úÝaÔn{P§0Úˆ#t%<Á\ñ#f+2,u,X‚lAo¥æŠ¥ÏvУ~gä‡óB¿›š.O-ÌÍäP‹Ž£§ï jé ¹¢¸ 1ÿ×ü£!ÜBU<üH,½ƒÆíåH*…¨{¨³ð¢þc@@ý9óÿà™|MïŒÖJjîõ»K´ z["ƒQœéNø¿âäéȰºØ7­ß¬ñÖLÔR¯é‹¾ß^ÎüÁ|¬[À®HÿÝîI"jjbâÚªÀÞASðÄŽÚ¼–ÕAÅ#fÏg¶Âc¤´`£'Úé]PÝÚ®Ìö1ú'†‡G_ÿáì >ÜÌ 0îl2ŽûüåÇE€/O.{Úô¦ö8—ÿ±ÛnÊ„ÄäÔᜠ2>lHbp0….+Ǭ¬Dìì(C’ GPõÜù‡/¼îY9Ÿ'u<ÕDcà?R¸lWo«#ªˆ»xóœv"××jTÆ-íåf&WrûWû7°­›<Ãû`]›òü´6—ˆýA/ðéu|P¡ÀZ¥×LŽkþø6bÒð‘¾ÅH+šÒÿ*7gû0ý¯ÚS™(˰uï_Šé¥u¿ÊC¯Ï’)‘âõƒ“á™îË'â™8G û#Žû°¥3e¢ÀMäãàÏ¿èGÑ“u`œÛÑÿªœû { [#ôæÂVàV°,Ïq7s ùËcq+};ÞA÷åoò´˜ÿo ýó³ðâ¥ÈÄ=ðޏ{+hX>ì{>¼Ç-ð±è¯JbYo¢§zŽŠñàww¸YK†ªiK‚uø±Â1À¶hbÇ,¤1oªÂæz,è>¡µŠò]üj±Qýnk‹K(Îbâ…2“Ç}a­6(‹ýy¿[ïMý‡4Gñl•±¾Ár¾ž„{ÚL=2úœsØzQ°Éá¸ß¨“¤‚¢Ô¤L'[„Ïq¹0áÉÍòrØèÙ–Mÿ«¹ðÕБ=äó~±–`…_»·×Ykª·bgCá þÀ§Æ‘ek} ?ã-–L¦z& YÒ»õ$KíòvF¼p ”¹ñx©ðùEÔ\÷z±õ3F"²ñ‡àËõ-:]Ë“ÄRåÑëf…OË<ÜØ.o²…‡teÜÂü¨ÛTíMµÄ8ò™Åæi0ŠœÒatÿþã¥m1@ÖKrý?¢Œ+ŸßUùQm¨Œ ^µ›ÆÅox0…ö5õ%̼º„^E}ˆƒäíZøó*ò: •L(v§söÛRñ×ܬÀq:Ø]*~¶}o$lóRüÕJìÑ:üç:úï†Dg3e?鈱WÒËÐNl~g·™ÎÊlí¥btú'¾4̪Oö–†Õ{“3¼0ƒ— q/v6žËhÄ+åaðWMã7|e*uG©‡8j_!3)j)¦l¤÷4­ô2éefã¼lÐw[ñŠ‘Á‰žUlþÝ ³ ¶ûà`'Á›b¡?ÝVÛ•ÙµÌÚƒ¸¾uÈ„[yNɳøÅÌìl½8r‡ŠƒôEØÕœKþ±ÛÁoŽEð™~‰PŶ—€ ÍG¿{¤©-üùaêó\ôOœlÞ–ÝëMЪê͈¦Á#>È îK:œúÁ\Ö*êæ!È„^` ýLÚP79–þ‰§È?ÆpvÓ=`¨™O­v_ä~úã=qÙ8«æVb"Æ´\Ó²øbtt\˺O¨>?LÞ´Ì4\§Ñ³Í²6 €ž‹÷;HßÕg uˆ¥ï†ÿÈ=MÕŒþj”•Ú•‹ŒCÀÕ|­T–ŒƒñYNÇ©Ô9ö·M+†ý®mÄï®c ç®ùçÏyý8üy?b¦%Äc×ä|«;ê…þäoG¬²`Ue˜¯ëãºÏLúæöL³²+1×§ }µœ>Ó‡9ïMè_]ÖÌ+Cöðüºþòk$¢éÀ;á­VXO뾎?÷¹‘ÐïF1©Eñ6óÔrQ?8ÑøDý`Ýë§–»«µ†SÊ žˆ(ðˆã1R¿'®É¸Ò’ºÆÏÕÉ/5Æ‚¾Ì#ÿpâÝr”œ¬¿Õÿ¢Ò¯$•âoÐau¿þБg¿ª&f`Mé Ä÷V0œ|Fþ± åŽ,…Åï$׉?pÌþÆ‘„éÁ!¢ÊBÄ·°5'±¢U©eHjæÇî×åd¹á»;ܨ݄#:Êù©ÜD;•ñD©ñ+A»KƒU<'>ÂÝÛž»µ¥²Eôï¬8ÅàSMaPÎ’¤ÅJgâ=`º[à?ðDn óV%ÌÛ|JLºH¦Õ;Ÿ?üGÚ ý­,M”:äƒþê)B=¬}3îz<µðo'ØëþæS>]Fo‚/ð.¢ž@¼—6OÎažIg–ltf1ÑÅ…#bôB¿ë²¨;¶{è[/ŽXàÕ_Ê¡âWË5Mä“§ÈÎ6 ãIG¾0†Œ¡+Þ¼)Õá/ØM ºî]Æz/‡͇ÏZCÒ<•Nª†’óÙbÌp°Q²ŠÓØôR¬×ëk”ÅÕ5ë4øxz˜î:VÚ’è/ ¿IõhgÙ'Äu™bä]U)>ÿyzèþ<¬”Ö\éë°ÈÀsn”À+&vvæŸß'Ch%3[CµlГxÕ ^ÿ•Ñï“Ê—9TGQkQ‘HgÚb®”è¯fÁ|d£ÂÛÁ¯ ÔÅOèˆâ O·@•ó‚­÷AìB»ö™,µk±ò†M™ˆòw©ƒùCAu.X{°Ö³Í£°ÂÔÏ“Õ5FÛüŸ”†uO&r¯×U«©×A­°»µ¼E5é/é» ¿ÊƒÿØÄt¦çÔøùQ3Þ„9¹{éçQXOVÍË×l°+EÕ4÷á–Fõšús_"œß¬pj…Ìa6³¦Û¦«¨½Šy¸]˜$µý•„™žƒúv#s7Z[‰<æs6|àä†Êä̵ùº`rôRïd¢8 3œ\¬†[•èßîe·Eû{ ÿñÍUv{3øØlËcÊ-•ž¹‰<ö£5MÕÓû ú]/êÏÑLð,-àŽº.[íP&C÷vž_¥È?¸‚h¥p5fþ`-¼È»èž½S æMê‹Ë1Ì×ýþ'¿&ÒgÀ€|ý„gÚ/úÏõEÿú›šžùŒ£FqÑ\<Ðï¤ÿUg½Q…i<¥ägþœÖZ0S%>öàì .‰÷tlï«¿wzòʘ2Š(bü\ýÇZc XXOéÔŸVÙé¿ÛX7Œr¼wqôŽ~·ˆû<üÛN ëƒõ,b5þ Ñ}E,Ws5ùÇ+qýîIl¬¯Ì¨¶Ër±Xðo ýó³OôOÌŒ'rúޝûÿ,¡0^i;¹Hy˜êST\øÊ+üíüMTúíòÛ´—têõ„/ñsbUl½¸ÿ`ò¬æýÝXÐ>øê‘ñàÛ%‚}gš‘ESc"ñ‹Te¤&ÃÊŽ%B]#T©/x"=ÉFáQvƒö'V±eŠ0#…{Úý þã<±{m¼ÃkùBVåÕÕ$¬¡êHüý†Â’Ì%_êçï/\ƶKî5poýªè¦ŒJ‚ÿ¨6Q~"+=dÏ‚_½`öìeªÅk“6#‚ÿ-3‹À¯Ÿ4ÃqÌÁ«+ÀsáÏ“sÕcUW¢á] v1ö<; Ã*tS+¬Ttµ8ºõ›õ‰Ï|Çgß›*Dž¼Q®ÝÓE}øª'ä·I`Tºr—GÇuÔê…âh>øU¹üj(ŽÃŸŸÁË0Ñômz€£d{ED¯`OË{±~è9¹jíÿq‹:QÔ¶L¯“®ñTb¯±îSí=ÂôÁò_0kÃKµ¥:ÞF%¶µÌÜ+ß¹Ïà¬Ð º¡L4o¡ËhnV"£¾d¤Ïá ú}u‚ïn¿µòÑoê/»ÚuöPz{â†3ÿc»™‘W9Õ÷z‹õGðY‰væª VAzC¤6Ï‚*íƒ_€§èm¿‡ýØLÞÔå$Þè4Ÿ°HL ¾‰Pß}0ÞˆJàóáx.ϱjðüDÃY«8þã5”[éŸøü*ðJ…ºßœ­ÙÊ©rø,ƒ×ûÂ|l§Þz(XËXUÌ੪n${îÌ÷[ª7F`ÔúŠ}¼°ty!3¢[«šˆɃ•mìÄx°Ìó°ð'à?ò˜çˆ×³ª/Lq¼úRôO\¥_E‰u·³Þeâ°W²~mg0žÙM~ObÄýœƒUØ!_ž§eø¦5R…оÑ"ˆÈhò™ô%„ ˜LöQ‚Þ1_8îOj¿X,á?&c›puFÂØ¨îŸó¼½%ÿ˜ª}1ŠsÎÂT„sò#ŸÉGÎ’L¤=Èùj7:ðˆ¿&GJiÎçºãNêI<ÒM¤0ö„8æåàWm‰.’c!’Ï\혈"îúØüpÁçé””ÞºiÖ§Æn-ù‡£Ó‡ŠÆ“UÍ–íBÜ‹—©ãLVV„j>i:<Ïxªå2PaÑŸžKóQÅî±=Ñw5°>šLýü­ðê&%KÚ†:2èß°~>èb`m;rMÞ™“‰w—2p Ê¡LLà.½To0œ‚æk5€ã¿@ýËiÎF!¼ñ%ˆîköt™hjŒ¹Zm6¯1Y¶ILê?&ÒÍc+u~M­WT)& {S1ºnçí¥ãï2óHùµµ2ú`₱œéBdºå{yüªÜtøòM¨cŠ®ÃàEÍÁ‹ü±Ö&ž® Wç#ÙYÎg.ÕÆ}¸õ³ÆÐÜ+äà•­ªƒ,Ž?^UÆži·“¬=r¹>ÁXŸÇ7íGw»•ü£þc6¼{6™[ÎrŸ¿MÚ1æ¤àn[Ž~7œ¢ŽY¿¹*Ь ¨¤u)uñL’,î‚Ôƒ”"ÿÈh¥†å:MŽþFî„å¸áÎ?zêÏÅ#95½jC¯¢kV?×!»1ç}6Š8~»¿¸¼]žôo¯`5 »rP“þ3_Þ‚!ÜL\!.)g¦“{ÝGüß{‘FŸDõJK÷“uÝ;õÐÓ?ñ¸Q–þ‰—jJ®hMqþã¦UßøOàÕS­¥8$3Q©ð˜úœ‡B‰óú,=#ügjùA$£ãP\÷õüå´ ä‘T?™“gi,{Ê®z,ãºü_ÒžÞ ØŠ  þmÅxôQ©î Òò‹:®íD¸º|ÅóM%üG~x­ÖòOÑëßúçg÷ŒÏ¢šê²—57ÛÃoì%?ƒõaú)ï€ÓðdÅïwx §G§+È-üdîÿíÄ&žèœnn.X@I-eÉ?"£L]Ž8k<ÿÎ}ŒúpÔ•±5—ðщ¶dè[ôTq¨Œy*g¡°ÿö âšÊ{ðƒ°kQÍ«äõ9Úüø´ŽTº¼©¬Ft» *éܲ‰ŸM¸—þPCè R©ýÄ(‡ROY¬i(ŒÉ!p®}û1:*ý¾~Œü#¹õ¾^./*5‘} ¢èæ ¸³@Làï½^4"á½û£^[A}÷LôW7ÔJ¬`!ô»³©‰X@¥òaô»Ž¢+ª§T­¼¦—ÖmöŸ o½?žB4aÿO`×ÒP%×™ýù,]ƒïDæí|®;X­®T4²¦€³e¥ÃëLb»à_Î5¤1?*‰\–xŸ¬²"õ—³•MN4“ÜÊ—)‚kÓÀ×YËíôvÜgE·oàcªá—ï±’Ž-ýÌùò…û¢ì§ ­3÷Ø0²žòdº¶¼&‹Z«à?^R‘¸ÒšEw[&Iq¼­˜ÿñ.©³€ƒ¨¥šä/x¹ÊfD»UÒO&GðÄ®ºõ§z+Žâ‡»ÃRd€‘™®ËåZ æä¿ÚDõ¸ Ö{9˜]2j},>ôè.$'¹íÍm)uÌ)x.ë«Gæ)Y@UE#М|¦yVºS †áOB÷Žëv¾,HY‰¹/wÄ8ƒ‰ï®¹ýGmpo9¸iv §×ÛƒúO³¥+•íEa—®b#nÉmD±¿àß“üOð«LÓ ÄZßh%tÝ}žÜô‡^DÑÏèÊ8o”3„_@O_O­*ý°±…2nj›~h•¯ÿè”ö»¸*³£¾”}”‡LÃLÉz|©@Ø H! R‘ø3ÆSÀ;cÙGq óʵ²‹Ãx!ûÒq¼- <ú³Šœ?täéôfz-±»ü¯‘ÛÙÎ<Âï.¢B/T}^²2ªÊ5bâlÑQ… SŽ6Üü«ö5‘Ü ,s¾{‹ûÔ— §ñs¥¿»ÃMZj}dLð°¢`JÕ±Ó:Ǽ.¡‡YÄ©xîSÙŸ{¯©:þ]i‡Q]Y¦3ÿÕé­jªù*%ÓƒŠ8S#>’qàûÇÈmžá ƒ šaúWÚdùÑ|ü×eªþ4П¨–;b)f¨­ÔK"õÙÄ·Kù¼Ýç ·L&·rý´T kËnî ÿ85,~Eû"oa^ëEIbÒ™øÑT×´YŽF·ÒërøÁ·ËÍ'ÿ($oã½¢þ OåI/T -èLמŠ‘ñ'ÉQO}ÀÚ]Ûʈ~w qH£x¯‡ìß~Ù˜o—ÿ±{üª9`a‰øëùG2ëªÙ6}-ÚÒ§Xòµ æ”[õB\éWFT`ý¸zóÌväHãÉÌæ£•*Ç3ƒ²­÷hºýn%büÞä3y`2>±Z/øøæjÓy‚uQUÍä'#7ú5Äa¥ªÝ‚}ŽI?Á-àW©\]‹Y«.}`¯âá‘|âhNà?f Ü«l=®ÍB~|­±z¼§) M~ø¸Wô£¥;5“û- l(‰½‘ø£) Œct>ÄDƨ`Ÿº·WS+®·E92ÞH®8ø9T Î@{µ‰~+ ¬Úä… á1R‚_ø¢‚td*.Ôí?*éOÈ?ðõƇ ’{­‚艇[¥É†^Ó]8&Ù ¯ËÏŽŽFx±YÖ•ÌnÁü¨ÍÖE"/éCdÓ„ü#Ãÿ$ÿˆ÷èê>3—˜þsqý×sªi1ôËúSÝËH'ÚˆÛ=·h™Pï.6žoé6VW½À‚¾Ú«UkññÑè¿[‡Ø>+Š«ÉúSê?IS¾7"ü¤~wŽ1€(uª,ö>‡*·•r€žÆ8 ›Z“nÙ°³UCLÄ º› ¯sèôÆÂјÞÀó9ébn&2¼(.ƒ×Ÿ'V¿csFþ)§‹yA1Œ×ºø òÇ37â}ŽcqÎy³þKx˜ËÒê* ”çìs°ûJ…±S‚ßàkîÐÑË„Ÿðe‡ ³ð|ËÔ”1PD&1×(EôìKìù»ýw7eÈ?º€u]¡Ê<>V:L@xó7"Ã\ M3±£ÎœŽßÐ_5ÀïÅ‘ÉÂD*Ÿ€_Åã_^ ¥^'<øUcØ¿%(¯Þ;<:ݪž“}¬å,áSÿ±çA\ åpýñBEÐ_åæ|M'k«DþáGMÜ=å’ÓDB°ð) l“ÙÎpt®Œ†FÁ?”üc‡f‹ÒøÔÄÿ}@n£„©‹}Ȇ-jÎ4 \er™àõ/@¹fƒÏ ‚K¿…ÎÏXGÜCGGø’Ùè¹ö‘«nU¹°ï©¬Üè2=a€cQëVt?yG ¬Þq³ý¥n˜iÁÛ{„¸ÒgÈ< c¨³YG¾°ÑìÆùY„?K>?ÍÚWý‘ºˆ“ [¿ÃL¤+b~:K=!`;["ÿ/*UÜ¿J îSƒLõ½‰í´vS1בü£8ú«¼®©XѺ(žÎ›uÀ×Pr}ØiâäL!ºýD•ÛUlÓ\²-ˆ“cW¯ÃL7'+ˆ ³–ÊŠKøÌÙ¨bg¢;Lnј¬ÇFé=¶Và?^¹¯qw­Þ;Šyj’¡fz¹HþÂ,¥!ÔsWG¼=ðúEúS¥W…úË}v´lç8/«ê? q2©±îõòëŸ ð*û®cõQÏÅ*ðÖ¶ÔŸAo5¾ç¹ÂNô¼Ìî û=:t­±NsÕW¢pó2/ÂGeb.Ú×wh„qbqøÎGæ#™Hµ´Š’œ„‡‰h?´&Ó kžd#ªå±VzØŸ„–ÆÉaTöã?¶õÑå×õºêý‰s·OÀ6 —‡É?t×p°¯;VEjì+ØÕ\Û\—ñéÍì‘f—nŸ‚ÿ`æ=˜ò 4ƒu`›9䪯 þ¿&A¿˜<Ô2þŸù}/ŠØ]ÔVôW;´ÒÆòˆÔç†ûÉùQ'´ßÄvtLѱu­Õ]‘œoŠ]j øCÄûîä¼à'qª1•ømŽLG컄œc2Z± 4M°i#eZ2‰¦¢”û þ»Áߥכè5É€/ÃL4Æ\¤ô_Øâwâ6l±Þ;TE¾² ,ð¾FÐwïO¢ö<"Ìñ!,qEòƒ_± û±‰ÌÓ‹/B6óŽP HЂ¾Þ¯¹¸§v0ë43.Á l·ëŒ­˜¤SYõ\¥‹nÏluÇø^¶9ͨ¢>ƒ ÕÅš_Eyµ€úóô(®ª˜¥ˆªï/m$ù…WxÃ9ȉÿˆª‡Õ‡çœ¶HÏŒE½Í^š€8E#·¬ŽÿX£ê€¿W¤ ¤(–?ÙÇ>ª ÐÅ „¾ƒ4CåÏŸi…D¬L9¼d~Î×BÎVqj{Ïá!O©ó¢›ˆA5õpÎ_òžàW‘ñê‘àV¹Wáq›‚‰Õãº8«0_€:åAƒS3ĽxßpâܾäËAhö’SíW3Aû±û$ìþ4+-3‡öã} ÑAÜ…x;­eXÏAŠrs$»Bô¿ /Z°÷h ”¦–¹T½e2Ç.˜ìdÌÿð¶¸Ò ßQßfŸ®”Tw_ÆCV³TÙý¯\rZÛ\³ØqØ}Ó S#ª¸SQ±ÐÎa_f’^WôX;èh¾‹L¡4™ÑcôMQh͆?ìqÖ–*æ!ÜcãP –&{‹!ÊœÔ[ÿ…º)ö~.ìÂm+']sWÙU­²Ö!ø_Øc[ºã³P)ŸNp?±é¿ëÁç=#§¬EÞUcÍßñèR8‰¾¾‘™»‚ùµ Xþ+ÖMk)ùLüGØvVfð¬$ ‹Y­TtPÙCôõQVƪuû†ú-á/'‚(€§k/Q(]áÏ¡(‚JlŠk?A’¸~±Ç™]&ùaqK·/ 29 /±vc-+wºø¿÷"®><ˆÿxIýà§ÿㇻðáŒ5F^ôW/8ù½ôoïclDõRfTúÇÝÒŠŠÕðç±@ Û£M@MI/úÄ\“i¤’šHõ]ä%øºSŽÔÍ“ÅÀÞg© ô/€·[ŠFf€œ+ãÃ4 ‘‘ÿýÀwiõÚz]±"ÀÂÕÄîG}ºëô£Ãô@ßÓ¤½“\ ÖþZ˜¯Rÿ‘…;ñ#‘ó^ìe~ìa>°›£<Ýå•$Æ/FÄòMÕp9=„UùvQ/Íéur:ë·ôÛ=ÎqmcBÄ? Ï”™Ø¿61P<"ÙCDüJDýΊԃ’W7ăœíȉËŽfà9xUEëXÏóXùSp·8 U"™A­ZÜÙéUm¬Ö›l­9¿ãAÖ„ÌfQõ3‡c!—x˜[sÌÃÉðîª^`—·¿=Pí¹–’ù ð’çÉ×v€©”sô²dm&hþ\ñ‡ðAÑÔ”Ø8H]_®‹¢ŽÆàÓ¬PüÇ6ð«ò2èáJ|D*ò¡>°áC‘k]åžÉ"Žâ‘xFsŸ8S $^œ¬VSÛò˜Ñw0ú«J¨ ö‚½ï [›¾›ŽJÙá»Ðk)-q} æW,‚ ø~u¶ÿ9E~ÕUŽ q]Îdl0¸šø£ \Sàˆ†R?¨cñ§P[·ThuÝ“ˆæö8~5üÊG¬t1|×ÅEKài|hT ¦¸BýGRŽ˜N†ê¾¹n‚Yíð Þ𮆮¹T_ç¥ ®(D [éuxŽ ÇX¹von˜VšúóX(§Ÿ¨¦ô9ȉö0/ ¦~t©N¾6—ùâ'˜Ë‰*‰RV7k³]ÕŽòæäùÉx*âsJªîõFê7W\Ù×ĵ¬1ÊtD3uú@ÕÖjgߢâeœý|l¦uÁödBûjüFj²ÍŒÔ¾0»Eæ’NG¿¿ÿ$Ð=E$ú0Ô"§|iÞÁJ·¢»²‘ÌaVÇ!ë™HIj½èäÛ ¢–] eB<+/ªjzüØ ©ŸåH·ÿx¨_Å,âéÍ=5Xú0ÿÎWA¼5TX<‚_ÌõÙ€O^Æño¸bÉÆ0Ù‡œ*' ÄNjù.°Úž]DÛ9à»ÏKÇ·žÂN·½)…Þ6'ùGМô˜';…¸.ç©Ì >Þ†Ïߊ™€ßž‘c\f±þ²2Ù/è߾ͬJÿöéônªÎ, ¹ÈP³L@þq/ØŠÏJX«û_boä:òÓ)Ä{#e4+“ã"ç™QAì¦X•¬„ŽŽ «3ýÛUaiÆÓ{s¦éÇÙ>'Ï‚wÁ’‘™Vç<ÉÿK/’“ qž™§JÖ_ì‹þÃ6È…¶S«/£‡oÅš»”ÜTŸ¯Ó¤x§FSýð«¿<­ä«À¯\ˆæûQk N~"}Æ^ÈÒ2¡´Dzí×êTÖihçñYA¨”ůSÔ)Ä¿k@W3`]ÚFrþGbµZõ"V´55ûÉØ×Ÿßžø/X€Xhmîá¡öªš#üw…þíÙ`Fãw%òÎF|^š{i-Ö³¥®¡&©‚JyPÔ̇0U?[ö¼ò@z RKJ={I¬V òxd7 °ÙÀ*î±ÑZJþÄê"óÚ‡¿â&­Ø ]ŠaFï ½Z€ú*»ªO|ŸÈgó™S5ò¤ž›Šæ]s·Ýë\ßllþIsƒ÷úDwZ½œæºøj¯éßÞ—s´öã¬1˜Må·b÷…ð)˜±AÝüÓÝä' Šœ4`C>Æxð°–ú5õH¨?jM¹üÀœŠ¢Zèn 76ÐWe=®9v$u´v 4ŸÑïqØP98¡50*'xÿkøêÂaú— 7´ A ¹½áÅ{Â ØøU#°¹øô¦]„.i#5/›èøµvÁ‹]1 ‰ú„-£¹ü*$’iÊüAºÍ »æ:fx§üdÜ£¯ã'ÔkèW5ŸÊ “]º¡¿jB_”\ð çxßUto¹Æ‘3rêœ÷LaüG ¾{‡8ÊV¾Ö›ãé—X„|c<ý“8N“¼ƒ³Ø`úÒƒä(™'ñÑ<ô»ÆM½]¿CôqÔ"÷Ce¢>c>j™9h”«Ã“»¢ºªB-ÉIk<½Û7ZŸñ¡éÇ›‘n¹©ÍL†ƒŠ–¢DM­ô÷òŒ3ÿئ>Ïá?þÔ§r´•»Ìž_êÏÇQúšýT ?ðYf—st±5àÏ;Ó÷ëùÇaê=Põ»+ó_™•Œ®¶#wÖüǯÅõ΋¤¨ø]Û§•¦þüµj÷Ù >\[ªjoÕwÊÁ_Ä«Ôs­ÀÚÛùG-ýžPÄE|Òvr’ÜðÑE*-"ËúMÆiMÀ]ÖÉ2<ó ‰’›Ë5êc‹ÌLôÃ2=Goaת†[«N_——üE~4mÁÀRSýgdf–’´Ò2°=ÎwÛ øŠkàmð Uôî«?¿«½%&‡§ÝÈÀ¿øê“°nŸøz ÕîÔ.f®Æ£(¨Õ|ô»è<õžLe´Qßù$ŒÿPDy<ßMTÞY©OéL†u…ÌÀÜM?ªèšª¢¾*èØ ^UÌìNÖQeÜnêïÿdf 'ÏP Z!æ#Örß"ƒ®MfAßcHSc2‹èô/™†ïOgÛet©ZMþq[ߔΖרQùjä5¾2¦óNœÿÑ€; ç½9ùej:¿%ÄçAU¥ÀêIüͤôKßgµ¹ÛÌübä=éP N)c²é!zª§¦ã½À>76[éqä~"€¦ä UÑYm¿zC'”mÔƒ¸ ç}~u ÍÙ 0À5œáÃøþ…2Õókƒà?D£¥xj_]d*æ~ K¸FÖ׺M=üQ± ðçñáW²XS­¸d4éÈ?txÅQ1æ ñpú§ê9á/gÂfŒàù¢n 5W,fwÍA«é镬BŽ]ŽçV]G3kó?²á?³Q!†»ÒOÚ5^Ñ,ä•ÿ ü*9UÜWî6Êëðf…þýyûûwÞ*{Õš'õ“éGúkîVJâ?¶iµçÔœûûŸüÃwü”lb)¸RBT:]õGB0Ó°¹úMoqX‰D^-s×ÿ°ŒóG3´ž¬5®k¶9½@æ3íj»ì«‹ñS¿ëÝDÈ„1矅ó"+HrZ±ßÿ S›oãWôgâþÃF# °Š›²—ü#Ró?^Ò¿$öÍÚt„È;÷X1}7hÇiXë¼K>zâøSAØKÚYÝ?ÿ»œœDçüÄw6•AØÂüW¬â \Ãz¼Ùøúús-u+. ÿ`¦5üp¡40|ù±Ö |jU¢ôóøâ³ä%'a5>àƒ3ñlº¨?Ùâ]e•‡Ž„çX¥-þ7(p=¢'ÛhF Ýf^³Þ,|Þ>âëËØèëh®]DxŒüc%¾ˆAÌ[Ž|ªKDÓÂ*Äh«É?Jr n`smýU0°|d/1èxØæoþ#H‹F.>–säÎŒ>œ™iX·t¬Z@þ1—¨~»Eo*£&ª®©T¬ä&[øB½ûð«ÞúÐå/‹CØÓóΠÏÂUèG_/øí¤øýX¬ Ž Žm WíahÎà?¾¢¿ú>vÔr¾^F´ µÞc±_þüÖ®ø[¤?¤^|8ÈwÀ™h޹Äåô/™ Û‹êi´‡³ïŠ8Æ' ù‡¯|æÜÞÅUmÃj‹Èo]A¹â1ÏÆdÂÉBr¶lè¯Ý?¿zŠÕo °„¨8z©aœéBÔm”$ŸÊ­Ïs®×]õÓ8æ{â½rfsý•@môB[Ùr%êˆòj%XXt‡<ë5ý¯’œcŠØ,м­øD­!9—•">¹vÎ`€Ñ‘š²²0-¬'ÔŸôùêE-Iw惭…ïOŸù¯LXëÁüù>­¢h†VÊ®tÛ£ÑFjëµ·Ú3õÝL~åßMüÇ6™{ð 5¬—ÐÀ¯êª×ظ䙵´¿´ÏZKÔ¥³Aª†àåÓʶrþc›lª·¡—{!WçÙG™úòb%±ñ{¬`UpŒÆJ‚GÔÆòå§þ"ýKúÈQ"dóÏýö-å0š›XÌ=z<¬UAâúÅpÈ­ÀŽ娛¾-ÊQ²W„Ç|U9F§¬wTD¾Â¦€ãÛÍ9HÄ8ŠêgMdì9šÏPþl™Ùr™üõBìÌ*ð«ôÙmT@¿;V<üÇ ò‘Ñðg]õLýà#üG,¼î,~{ 7ð˜ýÌé lvÿ’|ðç¹sͶ|?©u=ø¬v7ÃïsZ€ÿøàÜ^gøóžøµÜ õÈf\¤»übœ1›RÛÝ5Ør«¿HdžØ±ÑjÂ<Ûý¨²cïÀ˜d$o¨„æ:¿¾Ò¹^Yõ¶¦QÄ=@·J=š\†b) ýr‡YCÙcmˇeè§>ÒqÅÃ:ˆ¥— gf-3÷©Ç)̼ëï ~QN “¨®ù©¯¡Ð»¢ åìp( È8và'—XuÀÔX*]H£ .E]bA³U97ñ;od-ºj\tú£ÄÅo¤];6ˆiº\`&¤ûØxüÇ7³ÝK˜’å¸.Š£´5ĘIág«%yØž!IÇ|&Ht4*þW榡*o’óÌ<@¿‘Eù~Ã~ŽÆüÁÌÚy­ªè‹ÞŽåO)M´ÞT€iL5ü5uÙ¥”X â—^M%ôãâµvG-­ Oæ×&c¢iZí×ú¬ôÒ»aÙñÄ'—­ärõº™g¼uv-iãHæYÐTAšì¹à¥ñ®ÆflÍ+±|õ¹ƒ¬‚~w)ÿñV3%lˆé½°öD¸Øè¥(1ÎÂ:<΃ ¢«U›HøÊ]Ø·ô¿zÓp“Üv»nwÛ­OG ™†Ø±€±•¨¶¹šþ(Â.0K´¼tZꈿ“’(¿ì¾€•©€þê,ÍV0‹k`e^< é&–V ¯[•}·UΪoey” °„>ÄÓ\ìj²—äGm°Ô—ð›á@n“Õ¬àUgê?†½ÙøúƒòF£:•ÙE¼ÛI}Y_E4]ÏðÀgé†Ù\¢LŠ5GþÔ MƒÆSû@nàùýûr'Ð_‘ÐKo¦koBÃƤ kf%‡©ÍW³Ð奈;Q Ll#™—}¦ã §’o‡Õ_m×ÖÉaÜ%‰¯7£:ÎîÖ“ÏÉJ¥Þn*²Ò)·üù°ùèwOA_#"Ï­÷þÓõVKÌÑM'ÿX†NˢFþ1îÙ@'4•yê+©P;ÏüZo£µùL+?¥ùˆ~Œ}éEÛ_¿¡z8Ÿrûèã‰vìÿ.ˆZBÔ®=¹Sî›Ð¯¤^c"ýÁó8ÞZÍ™aä‡uïÿ(#¿–ÚôôO<ÇÝ”R´ µÞ'2òDD'Ϲ놰»kÆ)0µŽ`s¦HÃÜÖIóÂy‘£«Zò±+ä EÍ6p“_ôÒT3¾· €¨•¦ÉzOž§ý=5+¯˜RríØC0ÀUFr*bž2• Íó?Ü”‡":ÏhâÅiÆD™Ì˜d6tüVþ<&Ó?*_%C¿ëG“ÁÚlå¢ã@.³"üÇ!¢ØØø_yÐé?ªŸ…>—˜1þ£œeÙ@:Ó5£ÁžÔ¦¾ñ8ŒHEGq‹éfŽ L¨jÎd©²½ËÒ›]´@¥–KF†muž”ÿ¥‰ÔÅèb¿/æPÓS©ñý«_ûœ\=…þj«æ*ZÓkÝöÇ•ŠZ'Í]»Æ´òê¡_Zîž’YL“võ` ,HoBCÜ„w¸IO÷<2©L+Rk¹~iŸƒµæÔ-ŒdVØüGjø£t[™![P_Ð]&&vIÿ‘ýn)1ËæKTZýMMlgK4bG‰÷_”eõ+̰+ÖE☟h·Diò—˜Ä¨»@u쪼XÎéø¢æ W–‘ $o1g·\„Ç|R9#/Ê÷(’¿íÚ«M°ýA– %-i|á}6à?a¥Kë¾ê¯6i¥ð]9R»ËU,Ž0?è­N4×Äþ j„ üÜ—\ç Ö26U0‰Ôë?;jõ¢š€|á.¶·¶Ë…jvðt€3Þñª=þÃ@ºK{µð-ö »ZR²´Pã‹äºÉ1yÁ{xòô•'£Jƒ]ƾ<éŸ@­Ýò¤¡¼Gw|{ ”ihÙpüÇ6å•–G>#_Øc›Îx¢¡1ùG9° Vôî8€ẇBj=7ÞÁ¬Å†.FÇ:‹xdµ­aû'þ©M 6©¦W çàvlà%2.7ª©oç3O3ß äüÇoD¸ Ñä¦wU'ÂOŒ¢úDº{†©ýÊW³çGÍ¡Ffd? Ã[}6Ö- ¸ÿ\ºým3_ÐÑÉŸŠ¼Fæc0¸8ø÷Xæfª4j³ÇãêÉP+JÑž«`wóÏö³±Ol¬Än®¿êM/Ú¼ŽÏôOl »Ý†ù)ÙŒ Çþæþ„qÁÆ Eh-GT¹[78ïÜeÍØÝ Ã“¹ùŠiÆ ~°(üùI4E*Ç ÿÑ̬7hÝKXÌÅÆépîo Ò^mž7™Hª:¿—| 9AüGºjM¡ÿÓu³0<õHôM›àå› ë½ÄznFsG4 p˜ó6Q?iïñÏ÷ƒùjtó®ûâE_ÖšdE/`:ÖÃ^HÇ7Îã#4Oç`é¯áƒwÀm#æ+sý0‘Þ±¸š‘}~4j€’ì&ÿ(aQáÇT—üTÞÄ%Å {cŽ˜è¯2šeñpˆßÀËä>§ÿðQ?Ð?qéãd‚`æØÎ?bŠ ð‚>´…™’S”ÑÒ;wýOë|ÿYg­*ЉÕ2xI'=.øÕz5‹vŒqwârÿ#ä¯Ì ‡±u±àF߈õ³añžàjR[ñ ÿÈ[Ù‹Zå½L‹œ‘•za“ïìÇÒ7çÉz¶À¿¤~*Bþc¯–‡L¡%±øYìy6,G^$IQïæ¥¾*ˆ}®Ó½ŠW8͹xIWŸjX-Ò÷=û*§ÔTþ>åé?JKGÀnøÈèwkPQ>-!§ÙM6ïE>?­µ·ÿÕ3LS~Â&âI¾BUŽÁ…ºÃ\d87Å" íÌ$xäi\ó9ü÷™bÏäbâÏï; ù¼S¹¤·Á¯Ü@\ŒçxœVøv>h+þŒieôÊMc®7féO¢Öl•ŽŒ˜@54,žê ï×Ýè~y/Œÿ°Dw0Ó·º=×u!èÇq'wxx/²–¶Ö\"Þ莎Ó(Œ››£Ì;œÅ(¼³/{Ü/dŠ˜hê^|!fá?üñúÁ‘vë÷Ñ_M¢þ|ù–ÿQŒüÃÏZÈþÇcºâÙî³â^¼àrcˆ r^ŒÎðç]ˆ~¦ãWcŒòL¿QÙÛ@СFä4Ë™@]w}¦†¹]cõ‚p4]A“s%ȹ®É ÎõêªOµxܯ7¸ Jš¿_>Ñ7šóQź2§vÙß±êËOÖ=üÇuø?éåG¶¾˜Œk!×_fïþ¾àSÅ®ÿ¨AÖ»ÝzlÙmqMGTÏ•Ùa º‹ÔŸÓ]-Kiùk ×ïGóÿ÷9¡: Ö÷5^¢¿ /ÖûþóúüQ™KG©[Z%á*nמPjhãµeÚ%ͯôkêä ÌFÜq…Ü5»¾L$gÕ®èÎØì9ɹ#´|¡÷ÚN+@ü6SæË©©ÇÄ,V3€1üÎlÊEXÛ¬zöHöoOÍlÞ$<}ݰ¨í‰Bƒ_ý¡ÿ¦ï^Ä«ô¡ÛHAx­ñ²«zá~¤]eˆfoa‡ÿ$¡Ü|*÷ÒAl“AA½ÕטS’Õy¥Â]ŠoÞ€ÿX•L‹MO kÛ «•;·€½‚ ~BD¼…þW±üô㚈`Å}Za,}s>ð‘…{<÷^¹œa÷«ØCäï‰'Mj¬&3¡ú[h?íÀyO9¨~#Û÷÷éÅñælÌ+×F)Ö]Ÿ Žò†³ºŸtw›ÇϺҫìv>œÃ}ÆÄK’ <¥#çn"g¾Ú0[w¦'Ä ú—lÄ¢ä„ÿhªO13ô³Ô †ã? ¿Ê ®‘™Ê„øø{júoø`<Û`kZ_mƒß¾ªµ‰ë>‹Ýõ$Ç#î©WÂìðˆ6Wá)È_L¤îf/àz²´pÐÙ©óÞB?ÚXXçòfUj"JŸÀ-'µmÄ?efþ`û0×%)+ Q@w4Z½É/Æ鯀‹·ç.F§Ó…è ëˆPMüÇ|{1”\y÷Z†+WïB˜úsÑ|(%@f4ήÄÅŒƒ ,Ç©Zo¾§Ó&àÈÚ3qã&š&{¸Íå!RX¨'BíД aSlõCE&ŽÕ/¢³²û_ÝÇ}(fyRW7—lÉæâñr?òº[d3ûé˜2×h,¿:Ï`¥¢Úƒó1»¡"þ/)w üG-ë ,B7s¶Õ›Iê°¢3ñ~¦=mC£ÏHÎ^ÐÀŠäq‡åpçzªú@³ë)©h¿›z_÷§âc«*Ù!ThœG#5“|äv^uì3÷ÀÜâÌÌBͼ4tøUKçñS¾Šttë¬jàgl‘•ôZfiGGÀÃPìzš%˜l5ÎÊD÷šsP£OÈ„–4àWQ9Ï¥ÑWÖJ/§ÿh«Æ$/>Às´˜;¿«ôb~íQ«!;ó¥gqr¼PÇa®Ç7r›YFnGFøùò\«ÇøÛò"ÏRS”1ùdHÇzç¡ÿŸ¿0Õ?Õ®J”Tê§ÿð=Ÿ+ Tí¢Öˆþ»w‚û—Qj“´Úmm·úM [aõÏoã©1AÆ9"Û;,,8ùfj\&ë•”YeBü‡=a=òÿ keuS_%ÓóÌ7‚?oD<‘A»Šb©œ/3‘4U#µb<µššW4'¦÷B×SXšš.boqšœá¶êŠ,@\0M6ã"±Á/Ú'Ñû.°ƒ¬X¼!xÓZ»*|&6üÇúã<—~˜‘ð³…)7ävº_¥ƒÝÏ;˜DL>Ž˜~ö¯*þ#¾±N©1–?“¾]S"8æMš+YQ?îÑC[ü<9R>"ÈTd3;aºÏÁ ç}ËŽ?¸)’¨o²¹«Êõ“ÌÄ6²Þe|vrP¥¬Ñæu²>ÿ¡Y/ã,ì¥ò|5YJ½üùÑpV¼«Ä¥ÿî3ú±l>L.Xÿ‘Vœà ùGT¬Õ*߯b»GòŽñ@‹_â?ÂãÏw £.(_ã{&Ã'ÛÈ__²²í°.™ õ}Õ˜?±ŒˆYòžËÈ?<ÉqÊSoV)Ä$ ñs,¸:£ez ªÍÜf"²£ˆ—›™ô 4ìŠDܵ/‡í»JÒÕhÏÝtU½êJǽðÏ/à{òã/›'ôGtV÷5OÒß±…mñ ý¯–€ µáyÊYL 7´8YÏ':†Z8Âjþ\ÕÊ0Fžð‡‰žgR‹’‚¾W³étëcƦŸï*#ˆÊñ›XøFd›7à{¼é9ÂTÇæŸ/¢‹kG"’ƽ6¹D6KÆÄ§¾° ƒ±ª}±õ—`Q¢;ÂL÷¥?cüÇq˜öµt”ÜÁu5bêƒWd9üGç¹ ˜›èŽÎÑlż¨¦Ö|sŒéŠži Ã3&Lbþàj+æ =ÈBýy„ÉíiŒf´µûÉ‹Zg©oë¿•_c"ºLÆú¡ŒÑ÷áGODØEÌC«ÈJ͈`/‚–— sÈOΕ”¨¾É°§m0þ¬z|"š~^ÄWïÿds”ýj2*ôü©ºG5Iø’Þø¦£àWÑŒÙÄÓíŒ×dK±l¶:ÁÖ£ŒÑkÈÏZxÚ½ëT½:Qâql³'{,‹•·(þã¬8%æ>lP%£;~e4HzÅW2|üjâ¥e–É,F'%êƒõïÏ9«D¦(7ú©  vñAøçÁ~t"‚hþR½æ˜iÓd?ð«âÔKLÇ¢Î?JÀ‘ëh¦N¡9õ5ãPßW ýÕ:¸Š8ô˜Æño ÃIòägò¯…‹oèD·i.'ÿ˜‰O¼­O!¶ÏFŽ5Œ)EC@:ã?ž•MШ 3½=o[£.qí]¸§·W4áZÚ]3€7µô¡bã0*¦äfk&é¥w<Ú‚êe6ï‚_e#º$óÙD¤°\£…Î?N‰©dD_ùÏŸ½ÿqMX}Ã7Úÿ¼üS9¨%“Ï9;ÓÐlÅ!òíÂù‰·ëó ¤ >‘õ%*ó¼ðšÄâ\Ÿ¥üÜžf9ùh!Õ -è¦Í$ÇkÅ‘ySÇP÷G6ýWÄȇÁ¯nš.ب:t—:H.«·‹j3Ù¨7;ÿ<.³Þ‹`·ƒû˜c1ÆgÚØ8°ïQ õ§Wë"ëÝEêšOàüsà7ßÁžeÍêúx=HÝêÞù¨õãIxJ”´«w°·±–º/vW›ø>ŽãžUž~U:óI‚bÕEs¶ {¿žÇód­C­wEâC”zþzüåPýþcóÏïáîØxõg˜6ëgì7-æGõ!þhLnö˜$t™ AR{‚_Uæ9G¦Z ©ªÜ$30[·µúŒ%è¯úS!^ g¨5Ùdº.Þ©8•‰ÝØ]aüi%TÛQõá΋\†þW±@µ>CT4Ïé§³Ž W¦ž—ƒÿhkv·üéèëêÉŸª¼KÔp¤²ÆP™™•#ŽC€[zúï.wo€rT¤€ý¨‰:å­Ÿœ·==¾ú±BW¼H˜”êp ©-?ë2þè7r¹:tƒé2,23¦É `ÜANÿqˆþ%ѱ#vGµ}èyFšÙ©Ñ¾‘™2ì+HBê?Z¥e-â&VÇož0Ÿ­Þ‘ÙE=üq‹ÿÊüÁÔøÎ3óN‰¡†è° R/‚”ÅjTÍCk jүĮåÞ«×fÐë´v^ý¨„è±#³Ü úItóÇS/¬oªØ£6RÄ YL¾ E-‡sבY¯¡V’˜|ƒ,ŽÓW.;3 ö­ê!;P­q‰'=³^PÔŽÔŠµ²ZB !cØ/i×çU§úª3_çø3§Ân< ñS"±µëš·h f×°{îÁúÝ"V]…/òÀêÅ¡–­uŸÉņÈìîð™rAn$ß/¨Gq¸Zg÷ýšC|î÷ZÄx¤§"[’x”“Øû'ZŒV<¤UÆÒ·»€Îˆ½ÌŒoŠÏÚÅ™ùäí_†ÿ¸HPbÁ ¬¶€¯þ€ÕN‚i…u˜ŽH×NtäØB®`añçcU7e…¯溤ïeÞ«/ âÙd)Ñg$—1@¿Ö5™“ê‡Z¸œÃ\” »[Õ~ê?já…¯…ñ±E/²’øžbüFKc¿~‰Î†ðFqàÏç¡õ‘ŽŽf<ªûÓ¾6ùÇ.ò-øÐ“ÜK"Lÿö7àW_øx„ÿh ×/ã?Üð=ó¨QyÏ]κJž0 «¼”ž^œãVðJw¨¨yÀÄ‘YÆØð«Fô/«;¨Õ|ÿ1df·¬@ýy7úIÕƒSYj¦&/+ý¥f[]@îNYi¨?÷ÄSG=v„¼¡¼Gïç¼"UÕZF2æ\Ï‚æIý’èê¢*þ£<þ£7¼ü[Žxýw¯²g?þJÇw\µMðçîÆM½d¨ùƒÏ”}"l[c²û7†Ž>¾¬ßÑ’®%¬øè¯&P+š•–šu© ©lî5‹à?¾q×—»Úˆ’ü®Ó&.þ,÷€8,Ãê#g›E.ôÎgÒ Õ#Ë8êÒŽƒÌʈÿ˜hüî(Èœõv(»±þðç#ˆlšÃŸ_tñ¿÷"‘:í‡þWÏ5z˜;7²{ ¿Rð•D œœîŸè¥yk^êkå×òCJ Ö ÿñ3[E?'¢Š#ð*¶¾²|'²D‹ÿ¸ó–Zqlê6Y?‰úóîÌ£Œ¥ùÈúU–Úø–F‘œ_…ÙŠÅÄl¬Çu®\[,WcðáyŸÕ3⡨j¯)æü¸…Ÿ¼~®]¿c3“Ûzä$¾­:²„b LC£õQA߆ʈªÅå©òH•1èòùì„Î=ø¹tx‹DËý@±£kÙ‡%]Ãw\õÓÚ·Ÿìêû·Ojeõ[p:¨uµ+áí©®¥©ðÎŒ­·ðFÛÈoN±ïüÆaž§XÄýùÔÏßÿ8ÌçsÊ.5‘^aŒ~…ÕÒba;à)k wêAç¤âFú&>Î`Ï“,Ò›Ëáòç7éõF~Å÷г h»¬A®uýî%ºYöÂüÿ(@4ÜŸýæ¨ï“ÆÍG½fc|y@9¡e¿*H¼;ƒsîì?F±ÛþdˆÓ¡Å:…E9ªÿ±Ž;`|Ð}zÃça–ôÐzÊþðÿ¥°‘;¨ôÆOna¯Ûѳf¡þc#ÈcšÏŒ*T4l%—C?ƒNkÕyÞF ®tˆ¦þ¯…c ½Ü´~ëÐhí6p÷‚‹Ã1.ÃJ?ï±VJ[uJŒ?™3éJ§ÆG°)ãŒ.6.¢îõ\ǹç@" ãß:rï½6¶c嶃µ´Vá?â9Ê;6£¼*BýÇk2×”ø÷ðÿ{ðËõÜ¢{¨õ‰¡T0}ëìÄ9Ÿ?½›îMuÍ x‡ëô©*l]¤3ÈBø”?̯ d‹ðÊ}AÛ^1Å7WSEÛ¹^Gò¦ð€sÈ?\©LODT9çËèLUo6‘þ%·Ìt­Z‰~· )±ÐÑø g;F”TßH¦t^‘†ê5-1þïÏÁoæ<݃H/žQ •TutL“Í: M3ȹ¢8âÑ¿ý4™R4ª/Þ™­c¾Ê.b›œL=îÜ_ â#‘íV#ÿül¬– ™Š…Zö³ÔÅg¶žÀÏ<¦B%™u‘)»`W¨ž¤ÿn!ôW*Ï_ÐcwràkNÿ±Gý$äZæ™([È?Í‚ŽŒŽ™Ôôl3;1“ª´ÕÈáþ*•ƒ½ŒžŽ’Ô™4嚿湻/Osg—¥â¥”ôrñ¿÷"™:S É•¿*‰Õ>f¿¶‹tW‡þª‘hH¯Ü¢œmôWë¨þðÖ.€iÿ¥å.+ïP@æ$ÿxu?-b1S¤‰E^u¥ £E*-b-ÒoØÿ‘Q_/«aGg’´’3ÔÚQžñwò‹ìHõsýHâWqñyˆ¶6Q©Öž,öøÕ&¬—¯ØÆéKš‹Ú3¾ZUÄô·ð“×Ï´Ë¢+64>˜É1ø„"ØÐßÈbÖR;HÍ] «bùTXð~2âšÉ/ÊEyZ~“%xšk§@ž¶`¥'’+Ùù‡«ñ.XÛ°  @ˆ*éÇ"äÏŸiMáÇë’#ŸŸ(ƹKoñª8þ㫯 OºBd}ì(}§¢¨/r¤ÞÊ>5ù95Ìþ2ÿþÄå[ᕟËõ3ʯˆ©Ü9·G8»öó>-Òçpóóô/ñ“ÉÙÇ}vG7(žçÚð7õ„Xÿ×ô/ùŒí™ jë âácQ9WŠþ÷ ^Rniyå7úïεHf\ ÷ëÍ9aÏ«¹îåî©€5ž Dk»“ëìFþ1tB<ü[ýàam8±Icªé®¢·Í‹ÏlÉo¦$QÍ$ô™šOý¹ ºS*¸b#ê^òð³îx#/œL௽~Ö4üí½ùÇ>0¬±äXYË®‘œÌ¤ÓQðã¬ÆSªñ®‘QdÆ¥¥§ÇiØûFä{ÏÕ=Nûg¯˜Š{n>ÑN*¸ûéD¯ô›äñe1±YC­Ìt wu,Ɗ梋î9£&hÎòÕð3»É¤Rˆ.¡Ö‹%'¢|»ÃUíIƶM¿gÀþõf~m*ó ÜtúB½}ÚM—ß°*sø™Ç bgñxsŒ™?ÔvUJªÝÈÃç4%+Ë‹ö°?x9¬GYøîäAL¡JêØ ŽSùõ­ä4=é‡RU‚ÝÒG:/r æ×¦å»Ï@_kø îb£] kÀ „IÿˆÿpãÿApôPŒŠ.8€ n# Óð€’èwg:÷5ùG"b<»?óSãõ¥™Á^ýï(r…ÓæHüQ0°³¨Œ§›EÐô@••Ó,ÿ¸Å]ÿ@Î5íôûU¸®çAž¥íz{òDŽüø%ð¬ôOìïØÉõ«g¸ÂL%ÿØhÚS‘ý¥»¨Žï¬-O9øß{‘MOú÷÷{¨¤Q#B4¾ÿnØÏ*´bP^—úÁ(šÝ©i—’Q›¯Ñ.hžªö‹úÝSÔsu¥ .¹…8ù&Ï÷¼7eùA$Y´Î]‡ÝIx_÷Ö°\T}áÍ×3Ëžà™é´µr Jlbà‚zÑ,R+&£þ<A¦ðë×¼Ä~úÚ0Ó 4€("?¨Q \&[Gªû3æGÕ½ÇòíG•+ËY‰U½K~ã€ep¥ó†J°‘2K„;êYyY 4¿ï±wWˆM˜¨NÖp˜Ì¸}ú^±þüѼBeÝO‹ÁŠà~g‰ìÛÜÂCÌ!o/ÆÚeA b`Ww’'ýiÀºÏDáŸvP{®œS]xÿO\[é\µ{>–±³#`P@I³¯?É™Nè7ˆ®–€8ÔG¿¶;¡}…)I˜úiÀ\‚›¸²V žÜžçåÀo Ù[xcûÙQmvà§}a®ÀŒ ·ÿÕ-ø¶ÜòøÕ|Äõ&‡ÿèžî‹ï,HD|•ìd»ñüc ǽ<},žð ùvØú­¿ìÌY+ ƒ}lê{Ø‚—]Å4¨YØ@I~Pþö€Qÿ™—ÉUƒ@`nÈ¹Âæ–ˆEä: ´”•±Kýõ|XÙØ’¹L(šd}aõtx¥éDÛå™ç Ûßþc$õç'B]éx¢ÔSâð‚ aõ8ÂGðç›P«º˜Í@sÑ·žc¹L)°±×(Œ3ñ{¯‚½×qâ‘WZèúSNf­‡\µð ©&ÙGþÑÍÜad%ÿ˜—§ƒOqGåõ’§V´+¹Çà e>3>B”€-•Zê<ÛÍïäÑ%w‡ç½OÖZ_pæz;YWbcÞàO²ÎÙüŽ;þ#ìüÚ#ܽñuÈ'–¢v>C¶³´…~³±˜k½l<üy)³:1yur¹bØæ¾x¨sFn48Üë¡þ%1Ñ̆)=F ßø+úZ<„AíĪݦ˜ñ©J~H†T¯4{RŠŸžå·ûÕ8z?õJ¨SˆÞøí ð«‚x›vz7øómØ÷˜f{¦wÇsXŽ2øo*ä{˜þ¬– 5Òz±x,Ò¿iíB­§É ÁùÇc­¿Óñø:þcµ~ëè@ø§ ]/éè…Rw½hýÐ(üŽjø.øÕ#zVÍ2:üP?xI)«þNýù®cmеTÌÊe~2»R Ѥn*|ü-æŸçp̤o{z—´¢‚´ÙÞ71øUq2 ]ã<5™ªŒ<48ªœy¤`6~Ø´>XȈºÂŸ?¶<©Ö0_á+.2¥=…5Ï| ¶oº„]4¥kRJ3W9+âc•\¹ãžy¸çšš±yác61§÷ ³]öaó[ÂïÑC²›5˜j;ðçu¸»í™ ~r–(À™ŒQ%ó6‘yÏä>.™U1Ë`?âP{ØÉj`ÅuøÑ?Ñ`~Tð«(°+EÐï¾$ó‡?ï­·…A«#÷8øß{a÷o_æ¼”Ôªt~õk»øª‚?@ÿ]{þ Ýw§R”êós𝶛òkõçÇ”çLàIAþ!ðÉWEjqBmIŸ1êÏ?3 $Q„‘sèÝwÑʇåa¦×ê ä0üGtm›¢?¯ƒ-+Iý® ÇVLŒÄrú`ýZcC;xB/‹=¬|Œ¡8öê-3oêGªþ\Š7¢>5:¸òI²š¼Ø×ZX'wüG?T(L¸ÀÇE#¶LoôÐGõ÷¯Þ*7¥‡ŒV~{w «¼• k*6z«Þ|è5i}o§áO*ê—#į®ƒû=†Wh~åÇ™ÏÔœbXŠ<<¥. Û±Š'@›ò'ÈÌèÂå§pn+×á?jÏmÁ3^d¥äXÕ†¬P‹¼~•Ëõx‚5üüïz¼a<¹¢ßߺƒØÇýþ‰/ˆýŠÛÏ7>lQ@+rÌëÁüù^1Q<5Æc§ò1?ÊF†²;_Σ[¸øÕQÅ[Ë!V[DŽ6§3Ww4v¦¨ß}Ì|Ô·‹`îÓé Ö¯<‚áúvá÷7ýÕYm$µ©íÐKÝ€3ÉnËZM6s„ù´.Ô~킈o¾5jÑ¿Äöôì 5C`ç½Á¯êÈÐêXEIMþ‘‹ßœÖÀŠÂ͇K‰ ¢4¤höuuwŒêæGŽ;×:¸“´*9Þ‰0óϳê5a´2ÁÍB±ì©ß¢~ÐËüþ¼)ñmjøóèw¢0hÒÿ±®{õâöœÍŒaº5¨ÜQ¹û¯SáØÂ˜®³-ÓªxÌ­BþqÆüf 7§âíž²Þ|£‰ÑüJ!)\ú~ÕL)¤Ú“Ç£ThŒ~7™|$óÒãkœBO¦bŒ@kûÙL€*i±U›|Ä“<"©¹Ó _‘Xd,“>ÀùpHõž–’kð’#®b6cR*Y#'ýJzÂÈÔÆ¼¤v|ùÇg8ëÖ1ó-^J3íŽYÉ?žê­evæ]_p´rOáÉjHìpÞ!·ÞÃŒëÈ@¿Dw«8¹®SÒ‚Ž‘Þt ŽŸ›Åü£T>–$ÿ¸N¥Y¬£f:Ð÷õš«ñ¥J4rôz›¾Lî7óPíAŸ/fœ»àãjX±§/­‚p,µ¦ŽX(¼*¢ìò!ʺ%ïÝÍ'ÊÉ&~_ð_üœ‘ìcšóÌÜSr«E¤?ÛÜ;Åþ%µ† ÏOT[ÝwH) ~µÿq›™^´!kŸT^h½ej*Ò‚¤«¾WdÕ.êqIfQ‰H]´|Î]‡üÕÏ_uÑ ¡÷YGýùt>>ŠŽô¿Ê€‡êÏLº“t5É¡WŠdÿ«¨Ì6)(º`IŸpÿÔÁzþ~ÕŒm#å2±pjpø»rªì#–ÿ|CΟ|%ÿ(Ém€qØ–8«á=´»c\äÎx€·,úÝ/tþk++DxÌAÊNô»ñÉ‚kúúas’a ·b•[ º Ò“nøéÄöeôkšK+^ÑRsL•ØÉa¢ÌXͼx‘OØÒ¼T6^æëMd^è@}*ÛÏÐÃä Ñu°ŸIx£"ä+]ˆóWñ½à;õŒªp#vuúZ<ÈM²±‘xãÌ2V¸ùÇKQ±Yöß6æw‡ÀEÕ‡{òCó|Hß~‹ÒŒüc8<ö8ÖJHW}GºNþqXÙ§Yò)¸øtâì,\‹nÁÚâ‚p õ° ÛQÿ¦ÁºÏÿB¶¯· }ÃlÛÿ‰õ‰ózþõb“6@öâ¬U Ÿ8†ÖàGºìÆ ¿4èœv‚g*Lÿ’ÝàWÏáT6ÃÔï…ŸÎBO„‘a®K\¡rM‘©mEvØXº9_ô¶ˆnÓáÖS×}i~/©XIV)ÈŽ‘[Ô&Êy©n µ¢CÔc?‰Or€© "f9kÌÃ&-¡¿J𦬎ôôoß›þ»È Sà·n¹)LÕ“ˆßC­÷RL&ƒ¾JfÚ ù}úicݯll.! W—eÎÓdø”ÝX竨Ú½¨?¿‹?4©¡_ uçz •bj]âœy N•A¹êÑ{ú©±…>ëŸQ[3GÁ3 üª'™Èº?·¾ ˜=jm£Ö„9 xàÍô¿ÚÌ]>þ<Q T. "ΚÄ" CîÒ›¦£ Uˆè5Òž¼c-Yƒi°®Àa|6'[1ðGéÍ.èÂOñÔ¹Ýý¡âú_9ðxêçRQîonv¸£u®J\à §iDeÊaôWIÑ4úÑ)¥Ù«§ùæñ¼ôÆ“õƒÿÈ#Ï8øß{‘ ]F3ôQIN¥øöï½ò§šžiµ]™jiu¸¼”Ú@ú—‡?7~™ÿ¸‚~7˜õW™œiÖ¯47µœzHÌ&ˆ)“ˆ¦¿XÿÑR‹Z²F~ ÙÁGQRž„íŸ.[ÑÓ}ƒL;ZUÔsÞÁÿt’©¥è_ÒÛq‰˜–N6DŽÀ%¼‹PmÅŠ}¡Ò놜$Fªâ3í¦¨‰U{œ}ìÁ+'7Lìë¾êNV ýÕz8´ˆÿñPñ@c cå¯è©‰¢û𑎽þÁ½YÎâ!–#ÙQ_VÏ®ÖbFpÌûð§É›`¡½ƒø”Äø&¹Gq8ß¼Ê>¼Þ u:?’']ÙÔ¯?9}AÊIõ…,‚­Úqÿ‘†uëƒV¹Ó·"«iØ3kWñ\®Ä“.džwÕKÈ7Zxó£ža È ö·½àh†bÉ›àé`Çè$&ªŠÓØÚ¾ð¾Ãñé=ÉÒ¡V±ðW^áø}Êq-…|ˆ…_nÛ¸?ÈÓ\oÒ€ÈuO}"º5-a²ñ«ìqùá;·þÓœ­¡úõ7žìR0ÓABŽa@¼¬<5ØõRìiJó6Ñ}9s›ñ›¡ƒ.‚XÁoØýK…¹. ˜µ˜t£4,Éxþ›ï6™ê¶ÔcLÇÚMÂ̶Þà?ª˜wÑ-Çg=B/¶“ÝWáx¦ÿn îà…ø àWÃÐ_]ÔÀÃÉÎDÇAVL:ˆ—q¬ÃÔ¤Šã*Ñ;uCð+‰ÉW7• £¿º!ÆSþŒÈbï8A÷F6›Ù²ƒáßo  Ë~åË4¥óôÑ "ï *ØêóSxC‡¹Èpû!ÿè TÇ(\»k/¹yìù¿Q™‘ŒÊ¾QTW\£Šý J:þtܯ‹jõe~mVäµlϪ‰SW¼-°¡_á>ÎÀ¡•Âvu‡…?‹…Ëw]Œò6bÒVÆ‹p‡•§òþ0Os ž¿‘àT8æ#|´%ýÌw7±Ã‘X³ú-"µö­JÚ.x]Ü­™‰·+ãg jmj¤%>¢HÚAýùMtXèIs—,tFʵê‚2÷°‘–JŸaÎaA{µŒo=ìÆv£/øÞ˜ç<ÄǓ̅p­ÌIÖGã½Ñ ¶{‚‘ÔM¥§àm4hµÉ‹ß«ÛB­˜ýÕ\Ù =9Â0Þ{°W~¨~Ë7¥¡¡°c=ùBs°1bñ”Xçw¼óaÃã.&ÿðóè•pF¥7Ã:ý¶ |t [J:*´4ïQ7ÕjC½ßêI¡‹O_Æf%óþ£8ú«–d[yÐñ–Ë ¿ú å&vzOÔÒÊ\¨ï—é ½‚þ'µáχo]fúQ²›?·—Í bŸ`¤æRÿAÇ.˜Ç’r²óü R¼E*0W´ŒÔ1£;ê2O¤%}¾îšëÈDÚXÙÁ¯b[3Ì~Xû,tG. ~e×”MhCŒR?Ø ]©B„²‡Ú´uz-¹žùµùK銹‹.îx¥*ôß}†¦ºõ]5éÿ5†êäy>2´%Ÿk'O8Ïà¿÷"Šú‡:Úyf(IÕ/ÿ᛿¿JAµ`uüÇ7µ>kžUJjk´›T Ÿ§«Öö_Z÷Œâ¯õ•*¥dcÝ!Ë€X­QSÑ¿¨™ŒŽÿÈø‹øUQ-jÑ•`•‹°Õ©?¨æÖ®ËQØ”K²¹I'ÑÈyþi«IÔ\jÑíñ¥+V®“q”;3PlÁ´ûÈÆâI&7ß/û§…þçgw5QDù+ëmEÁk÷¨ªK6{’µúñÝøF"E¿DÍcÄõÏ”eàW.âšžŽ}ua¥ôð§PJu™VÈv²Þ0lxýJ„STöiÁl›cKw‚§å²³X–QD#Þè0™‚ÇÒØ CðUIÙ¿ÅâßOÂe“j῞aài‹à?:`Û÷èMYiþ£§ñ¿bמÄ[ýÉ»ö… x«Ýý¾ÄŸ ˜º*ŸÃ¼Ü#¿8¯)^”¾Pù°ðUèO‹j†àl£aoFã±¢£ºNþ^ÿ«ÍÊYð«;dgÓéÏۓܧ»IUŸŠOj ÷àMü½ƒëÃ,pî¢qäMÈâ–׆­ÿØLÿ’Ñøµ<¨m÷ƒ¡yâÛVÀmÃÂg£Kß° ë\EêüK\tv#P\¯%ÉÅLšÅaîE;ÿ°UzmQù®áw‘¥Î‚ëNl®2FÑgjùGú—¼bš_ŒF ÖÔÌ}ì¶üÏdýêjÅD¢5¶êŠ0»K`ã˜îËdŽýt}ŠNýùbüÇW+—ÃËüjT¥Ã”/Þ-)ù‘/˜ÒBãXjÚýãt•ì6•Æl㫹cÿú’iDcnírl¨OpýÇøó×pÝ-ÈjÐßÑV7§2×üÐÛm)ý¯Úƒ¬1•s>…Êj?Y‚è͉éëÀ—Ï£ïH|*½Ç<øôîTŒw°âS?8Œl+…éA67œœk†ó^qSïk @ô®cï[šèŸØ\,?óCŠY^6ÊF…ß 8ù/t…ŸM—Ç[¦ŽþÊÍÀä› îÁ¼r¯óüÝQNˆt U¸CèX Û˜Þ|O•³TŠ'¡OäoÖ#¬~ 8yÝZ@«V%&âf3&±NîÂ6(A¿8ó{ê¡çÙ÷ý2êÏ—áâ8Ü©¬w§ûîxP»ÑŽÝŽD0èy¬F.ò£Ös§ù†æõƒCˆlZä}çÿ{/’«+Qð~?SÍF§ªï_ýÚçWÊrøó[èw[‰jV9©ÔczízbW“¨;~i¹CŠþãµ}Ἧˆ2Ì\®&”odY)eôWE~iŸ´´¨Ž2w$'ìöµ vNŽcRàN™ÎÂ5’óÏ£SŸ˜Œa4rð’}0†›XÕþ|+9IСRèê¦ÊÆ"äþùÁûhqeC²–·dAÃ2€¾ÔǦδ+ŒÑ}5º ƒè+ëËtó9eÙ¾½­ç&êíC4ŸÌÎîÍ8œýËXKÍËïØð”ú-¤ëPø;œ¡EÁjUÃÊ{]eÁ[”ÂFûódÇF½…§pǃ×3;Àµn3Õ9¡šø'»ôTþ â?%ùÇòö˜Ù‰5ÊãS~©‹å?ÃY´çl­)Áš]ÞÓÂv·µ÷z …E ¼I…ånÎ×)° Eè°”— '=|@a²Ÿ%F:½‹ ÁþÚkr ‹µŽ f5¿3ÿÁtPü7ä]ñGýͳæ,ë l‹=o«åFÛ´—Õš ¿Z~µ+ÔUqý8ËOà{²âc]ñ—çЇÉfUæùEuܲ;ê™×`h¦’5”DS0•Þ-Sxÿ#Ä#éÂ̯}Fþñ-⢩QÆPý ÙÌ*j#×°ÃSÖtª#NšþV s‡±ŽNÀ®jƒ`¿Zb|ÃGO•΋rŒùƒ½É#Gam»p¬ùì;lsz£×¢e!Þ/˜‚û‚΄Qôú®|e­–É4¼µŒ:Fv}¦s½zêKí yüqî¶æ.º¨öÕWÑM묕ךf–4«X¾0>{`©ѱ=µVÓae>3gú5ê9zÒË|r…óü-Q®Š$DŽ6+8Õ¸/Ë¡¨í˜FøÆTÂÇÀo´¤b&?Ý¿*c%p”¢cMV³0º¾Ç¨kJØ+éçôÕ¨ÄÅ«‰—fñœ Ý,8ŽÅfvÓ\­ JCŽÔŸg¶v ß-d×ÓÀ¼ Êz'/Ã4 ¨.=Güï½H¨ÎVC2³ÏJœŸ²Ÿíé ù‡ ~UD4W©õ³ë+¡ßݪí¤ÿ®¡hP??Gþñ»|…÷¸/ ê E\1XmNÍu[¾¥o|-§óz†úß|ÑNcjž¾‚^ðóÆ¿r‡??'‡êËå*ü‡AFn÷ìŠø_tµŒš^4Ç1Qƒä´^ht0þãѢৼ‹§œLþ1"âå˜ tYÔ%:~K¦°– ëWƒ{i ùGOP¨ÇÁlÛKyK6‘i"ÜáUòmTÄÛŽg€w`]xÞwaaÛbž2QdQKÎC&}¯‘ÚÎM+HŽQš'Åœ*»JU×`â³£,~Ë>Ý8æÃz|hj=¯‰T?­@}ª¬U=e° ¹X{zö¢¿êU\Kgà+Xëqp½oÈ;f±_wÖœOþQUO)_„›¼Tr¢¿z«½ÿàƒ§¬Ã‡g* Ån1D¼ ‚mÊÖŠ³`#a)ñ_å pû·ŸT.j.ÒF÷&€»ëø¸±œ}»²w¬ö}lí ™™XykúaÛÖ³ë©ä5 `š†‹ÌgýoìÝPðÍjðÃ9[6¾>™ñáfZ[Í4ð ¹ÁÅ·¸¼E×Ð‡Šµ)ä?ùqç0W:…ˆŽç^Ø ;9LÎOwG½ôœ~–z³Ý¬èøŽÌd5#ŒÔd OÈ}Và“ÓsnN„™_›BôáÊ=‰+ÈûÖA¿{ŽŒá˜9nT™ËÅñ†zç¬UÖF¾Ÿ¼u4ïµÿawµL¦ÿUl9…\ùª pî aGaZ1*'ó?Fcá/0ñÏTh%þã(×¥5>ä4ý(—â?†«ä+ç lNýù@rµ¾XÛÚd|Yä]ôWçÐï~¡Úc u ã,olüu¦4õF]ìk¥³\Á™º€®¥ÆCeídzwçz%Ô@--áK<~!ó(ÕÈ+‰Òj’d¢£üJæ>†ÿ˜„?R­æe˜šT>¹ÈD_q½½õn2Ûõƒ¦ê#’rϹòT<6Þ£¦ªÉŒ¨^ô+©GÕ`¸V¬ùÿ1žÅþ#YÈøBÖX–pO ÓPc)/ÁšI&ßM®4“Q-8Œ¿]cÆBWœÅJæØåð°¢Äg´„©o”ýæ+´Š—¥•S9â‚r«óˆÿ½Éñ!õŸ™þ³îíé5õi´GZ ÑQ<¢×ˆ=¿¶‚6GÛ«íÓN« 1ÿ8§¼ÕºÀv¾—þDónBCUF}(|éŸC&~q~Tü‡J¯öì Eƒ˜ÒÝC®R“kä(z*ºÉl`<ÕEÅ0ÏløG,Õ"ªÝ½Ô¾Ö°o>ð «A:îŠíä 7ð)ïdmýN=1?ü%B}÷&ýKªaÍŸc×7’wD1N‚Ǹ³O?¼Ê;z…€úD„ÒA&Œp‡þÌÿØ+“b›}Aö¢îCç“id ÓÅ;(¥VÓMk"Þª¸î©EÔ-s­–=ÕåiÙ«{’ÉLÇ —aO¹a \`-vcÏÃ¥¼âçũ𼠒þTþüêüùMüÃ8ì|.¼vkx…ÄO>på“È¿€»Ù ëø—娩îzVùD ¯²ö¹’ެ?@O`\À]ÄŸÛ\|²ÂÔÆUjú† …º‚öØÁœÏöxªè¨UT0ŒsáäÊy-—|Kÿ’I¨Y52·ž(x‡aÿç ¿ Ðé5(ó‡ÀŽÖ‚ÒÄá_£OâwZ€æu×ÿÖÿê”6OŽä]Kà?FÉÄâ¬Í‡_H€^j2’aísŸo0ªw©—‹ÿXæMoù7þ¼€p÷­C£¶ ­æ\c$êîéðç·àçݨZw1•(Üà!{NƒOzÿXOdZ%À…0øUN:(,„»³ëêú³âNý §}æ£$›¡mMØ 6«ÀÚ÷9‹‰ðmø*Ø7îý¢Â®ùç"'ã?‰v:ñ޳Àu›+0áä–4+ø•¨ýAc•ŽPEWåjŸ'£qCá;‹úó\CqUqއ‚8µ1‹&÷Éܨ~Ga““1ï· §ÍœÔ{O·ìê”ôOLVÙŽ\&.ú«òà êók3ëw3€B.ÑËšÕÑ[¯ƒ…k…~+ ý¯¶šé·>‡>SŸ­—x“WÖ*ó¹YÎ'¾\Eí‹M/øÃDÈ/Ê{‘œ|²Ä%#¡¬¡÷43Òqý,]wãYé£f?S¸žâ{«°rQ:Ãd@#*Š£7jÈü¨}̯ÕÀ¢l=ß~5fSGfÏOÅgöcËcÕul!Lá¨jµ1š;J1i·¹Ý]42>ø6úp´gmþ+õ¹@¯8ï„wJ†Ÿ>ý!÷Jø¯^*™_û ýn7ú5eÍóJWzï¦'Ö49îáÿÙO¾ë§$sd*r† YI_ÏüÁõj+øó@ð+þ<£s×?Y"Ô·j•¨d_‡Rw3V!–l(;¨´`Ôgè÷Q‚x½‚È©%ýó‰ñÄÐWÀ\ꑳ7&Þª­ßç°¦ç±S*–ìø“àCí!ü/¤x'šûsx$¢xî±j<¡«P(õâ)Ša‚ ¢&°¢ü™26då@å>ù‡BýÇgVÚŽ}ˆJv"yÂFžìòʼnÑϼ•ãy¯ú-NǼC«Š~·5–ð2?üGBž»þ<=›Tc%(“7w½ðçGÅvUÄû)~…žŠ ½Fä;´.)¿ß‹ÜfVñÖzQT^Êh߃÷ÛÊY褗—ïµ°ÕyöñÞTÒƒé´M>D`Àëá?²°|B̯A\aIûá›z’Äѯ‘LD±r¾¾¿:§\ÐrȨxØ9Ô1Kà •^î” Nˆ@7ê½üÎPÿàÖ–”s¸<ª Îõ’ªÑD^Žà÷j]s¦~VÌ¡/|^êÅ€_-‡7:j­ÁÊ¿€ÿX†zê¹MêÙK“kYæ&ⓎLÍîë<“•7"3ÙGð°÷tŠO«¢‘§®/=k¸QKRŠÜf#šiTcö²JÃN%1íêÝ«` _e3*YCæ×6R-•;xqQ ýKR9ÒÒ¿dŒùŽ\«œU“iô'šã&óÚë51¨Ç¬‹GzÎùý.Óy`¹òȃÎ#þ÷^¤Sg¨SœgæýKBúüÚ.Þ‚_EÅ´#ðXsýÛw€^ig©*ÙôKËG]3G惋~)[Sñ“”¯“]~ ÿUG”Ò²9w™…ëhÕáÏ—Ã¥¬Çz%—Í™ð–88ÿÄ27#šh!ÊEjŨj>µ°‹ÿðÇO4Ã^u$¢o +w q;u™ª’ÔŸw "±µ{ÚÑoa€!#FÍL|^‘hd.Oã@lá,Ù7ê?¨£Œî­xÓ­468Î7xä Ä&+è5­gJSð«º`/Ar ¼Miý¨–$‚cÞ ÆOÚùÇ>áþfR#V»\JB,龯Y¯W…lT™ø§œ/*[TS/Fü¾\ŸLüì‚EïÆ9ܤ׷š¥O [Ò¯s.vƒ^pf—áU`ÚdxÊÄcJR‘@K_£ ìî4O‘]ç›h§©ÉX(^ÂN$—˜„÷† ¯þ^Î ·~p“rZK.cÒ¥u*ù‚Ê5ÁÞúãí*‚î…AJ‹õ¿ÎŠg¸"ɈÁ—°»Ñ| ×ç2[àa˜+}P›E”Ù Åîi¢b»~°31BÐùçÄÛnôo?fF%®¯ þ~˜*•O0/¶g8FDžþ|x˜ë’_ü=÷œÆP¤ä½3`È¥9‘þí‹Ñ ½"§±ýGnüÓ ò…°ëþDøCŒn¨æžªgB­˜Y ãZ¾Ô3â'£^…~wUn›©nlJ\ŸŽiEñ'ŒßY=µ¼ÜÿV,þî©:aæG½†ÿ°Y£×zbáº?ó£¶2õ(Þá!þ¨ zåÄŽ¾Tz ²q–rµ_¢èºa`¿'àÏ2ÿ£Yä ÖûŒœôoïNדþLgšHO”Øio”­™Ð_UG¿æËÜØ¬¼SgÐ°Ìø‘XÓdú癬¾Ñ⢠£ã=ý‘ ש®¤Þ£=½®*2Wý½µƒšñ·äËÍ  lá§©,ÿÄx×öõgæœ93ƒ»»»‡RÜŠ»»K)V¼8ÅÝÝÝ-@pw·à ÁíûMúç ô{î½ðÜKRÈyÏœ™Ù²ÖÚ{ƒ¹þã9üyveßÕ. ›g­$QÉõV&dÕ(N ú•¬Ak»pøótè±n ‹l7å¿Åäöô* 8mAt€ƒ±Ÿ<ø•s¹ÞüÝ<ùsÐ_m²Ò ~›ÿñ.‘Õá?R9QôF!ÿ¨­Š;‰À%7y‹½8"јõÁ›üOôWq©þïy²j©ÿµþêìhLã2þ£—p¦Ë¬ ¨??n¼4N1“nç~~ÏçP÷—ˆM¦×ÁÔP\%4þ¢O¥F/þt2½Èf$öìú{Ö£^{µBþÌ[¼ÜÌ&[Ê:Ôl—ƒLiFàYhköå¿kÅ0zY=•è nãKô\€¨¡ öªÊÕƒÜýC¬Ÿ ¬=Œ¹\ ¿ck·Œç¢*‘vxìàžˆÔ’Õf¥… 9­Á ¨daa¨„i* †ºC_mýKb€ ½ÁÞ¹¨ûxãÙÄò xk“d–}”#A´Êà?BSk/6€r¸“,NÂfa¥<¼OÍBô”€iÖÿ ^3—:ƒÿˆn6Þ7û·Ñ–êe:Ð ·þÇ|% yH3,q^öÕ®´6jóx äÈ@fàg 3ÿãkùÇÍweLT–·ðo‡±õð X7ñ¯%g‹›x®œŸÛãw64 ¬å9íä—·e‡vƒbµ`Hññq­ñ8£Ð%×Rõ`è÷àÓs‚_ÍfößC*ApŸçò÷íACWÐ/Ô7Ä’«Œ‘²k'¾žE${…Lp9ìÊüG$”ýËloËVžÿ±Žâ™›Onƒ‚èùfß hûß ‡¥×pfV¨‹ŸÅ*ýŸÿˆdA¿;ÃÂüMôO<_á Ê”¿gÁ‡[¨ÒÞ [´DN÷)¨YAðº†jŠÛåð燩?¯NÅtfæ”u†‚…•$·¹Læ¦â=WDíâÊ+„˜_ëKDåfã:õ=ð®WÕy:Ķ¥âsõ ž¢°}ݺIUÅøs˾ˆÏjKÞãKÿ®; nKÔÈĵ׊èÌÈä1'éL0EÕ“;eE¼N?êÏ[YÕÁ±Ù—™¬tžŒ¤ƒUÔÚ Æó3+wÆg´Náïûâƒ{.·.ó?¬ÈsÞËJÖ%sƒè ~Õ†~‰£˜užÆêC±Õ>~W]D—Ón ó“Žl1¼µ…ûÝI“õ—·µ{"-V»*ÏÜåòª¥-ÖºM™¼`Vуµd~ÔzòV úº×„*le§KÍE²H?Ù‚ˆP÷<…‡ôâ£Üln!?ZC—»y a qô‹ÁÄÚ]T²§q¼Á¯ò:Eí­j “–l©1üÇKrõ;ò ‘Ó 8¶A28Ï¥ÿÇ¿HB÷ÄÀYÏ´l_dâß»…·Ú,òæöGR…§uŸVîã¨!¨Ï•?ÈlÔl1 ¶"ùGWúT? ÐI›t?K/“ŠFè\@з0ê€Þ/…°wK˜©=RÒKdpm†(J{ÂþtЯ#PÿQ@ Ãþ2A~áG÷`ýüÄ~büX¿ŸÈÞ1ÿcˆøÍòu# åÉàJ[áß?¤“Ô1lèÖ‰Nü\¼é-YRºÂø”¶_î¦K`JÓFÕs¿èÅuÁ­„e¨ªGüèZÑdÒçCõkŒX…ÚØÒ£p;y‰Šâ'4ÞÑ’ â¯ÈºâYÃëžÃÂF3ü z\A¾¾Iÿ݇¨Už²›aøœLø.dpS@Ü#ÁZüÉ–a'·óç)Î`ªYDFÚœÀå.0¿ö©4ˆŒ¯ƒ$¸•’nýyBª:ãªLZ ÞÁ6 B‰Ô‹7¬:U9Vó•çÍ \müGr)ñŠ“ˆ ¼a#ÔSmÈzc]/ƒ#þŽ/¹Äß^ÃkFR39‰3äLÃÁrvâ?Bîp‘1Bvã„‹¨3ÄìY©g¯`®ÂGlFß‹Î;l+-þ£0}-6£EJ¾r&û,5µèßÞ'ijOHüã*z„mă¬TƒÉgÓ‰1œµ˜ùç«©q°§:|H%4³ùĬp§”¨ã=…±+ØŠqENâÑDFø¦xÈ‹L?—‡zºñv:hdw¦…WÄŽ}ÀņûyMö³¼>¶¢c°õžÃ§¸ú«GfoüÇZó©:NþÑ”¼Sì0Ç©±[f= ¯I|ûD€æ«)ç©[ÏUq<è‰ êÓËø&<ùÃÉê ÍÊ&ÉŽt}ŸË,ð:èw'SOò’)†¨ÓëK”þ€>ì¹É”já{ódsUF3°T}ý©‘’<ë19}M m†è†'ïK¿’2èw³ÀWÄuöÁ†hŽIíùmû®•ÌîŽò,9~Ú„Wùdv–äÏõÎמˆøXŒÚDAoÔ °å’ÌæíC½Gw®SÁ{d¥B%&Uè˜ÒQ¼æ'ë…•Ì*¥”ÚMôuG6‘~âÉ?èQ°AðúX¦eæïrµnæ>þIÿ’© VáGÎlrÂVö.êS1«ª!z;›8é*øUMú'vAå|-ðqþ¯}…üã/ÏÉ<¥~Ðÿ_~ö+¬ƒ2îµDGæ×þÌšGµ<àW;Dô—‹£- üèZR±Hæ¦bí‰a†“µEãuÀœà"h±“ˆÖFèµt«iZw£ èýYÌœDöXBÎ&–/h¬”˜‡Á4ê€Vô¿zÎ!èO†ü:ž^Y//&-<#žÉ‹¥†ÿhe^^ ÷g@:Ra¯ÞÊy²×wåï7¢XHT0÷}0 @;jc“w÷·‹¹rô½< ~ÕIº]aþù×Í®]á3Llá}žñØ{Tfع Xý7DÄ[ÙÝvüܯæ­Pç.3J³—f è'A–RaÙ+Á­<¤|üÇu®þ ×| =Ë;0À´f2zÌËœÑfè‘A´¯]õ%OHG¾R‡Ü¦ {zÉûø›jAnrwh5^þ.þy!([™V|MÙ~Y‹)ü%݉9¡’ì«‘]EâC GÍ2r€xÚÔ‡Óì‰o‚§ÎY}#è$öån@¿›Tj ¨sH ®ááurãMʢ犪:ƒõø’#œÃÇÅRkÈ=–â—Ç¢(8LýùÅKî4æ7׃ÿ¸“ÿQ럗Ù€M)B›“ÿQÊúåP®!+¾åwò‡{ªõƒCBÜiã£L SÔ€h56|(ç7 „*2µwcˆE'á?NÒ÷ŒÊs8ƒdd 6ýK¼ð õðïQ¿Ýb4ÑŠ˜å9Õû©ÈÒ˜*~uì.|DYê±K8á¨?ïŽç¨J‡?® .ØÛ'µý„g¼¶hl½sbQ…1O}ôÊ+Á¯ö£RnC-ã[Î9HòkÌ!\Fo®©ÌDº ×S—O½Hþá †·L½”vg¼ö‹^—øg4™ec´õå>Ùa Õ¨üzE°/Æû \¾ ~Õß:Göº ,lÌü 8ŸižËHýyj<à}îi=k7N¡ÚëL})¦xu·æ0oü2#8‚ ÇëTF…_pëÏ7£–Û.Б®­K=×ëèçE\øJ¼WÌ S‡þêû2}äsÐ#w(Öf’l²ßÒC²:8V1ê?RZ¥áŽòÖù˦t”xåñwÑ•Fæ‰?‚mZˆÿØÊj ÀúZÑ?,¦Ýˆœ&•s¬®¨ÓùƒÙ v_»õøa•7Ñõ9ú.´¬"CÎ0óÀð öú'FCú‚õzÂÒ7"ZX;½—O¸Ë>ºˆ²ÁžE[nÆ\宵F]<Õ|¯ÎŸWfq¬t#/ ¯¬;£-T+¡}JýÉ}sóL,ù•Ö» Óóšhô^ ·C8éø‚DOåà’gÚQ˜¤Ñ”:ûqäéw;ƒþU5èRÑ®Ag”.xË,èwsÃ`•7{zž™"ú+#ŒÝ-ð‚ÊÖ6óµM¶Õ¯‘ V¦ºâ˜Îªã86þäH[JtYg©á_A†·ßÞSæ‚(ÎÕüEtÔâ¥xBÞ)›g †ÕÒéOI”Ę@•Ä.!3q_PXÁÞi'¦çW8+u@§yFýe[žÁ—ÿÑZ!}är¢¦¿xšZËJ0;»ðŒyÈ­²Øùǹé,¿joobþy:ûøC–ÉSuD^åêD7±Šr­çŠÿ{_$ÒÓ÷óç=×2ÿëúçš7™.¿RþB¯Ášë©?_Mþñ褋î^¬– àjßÈæQX$2ÀøË‚2…L!Òñ=»þ¼ûú³§Ñˆüc¦ü…÷žª`¦s¤£~ðœì˸Cý^3³cˆ7â[«Å ÿnU¸òu(`:€æ\1©)a?+¶ó$ÑH‰íùÀ'Ìú®úó«Æ{òñ`"Û‰7‚x$WÅ@–‚t2#À¹äi‹„ªkЬê5×^ÐÒ_¦ b.¬N‘lAo;EìL0¦RDÒ©Ô·z¾<øU‚PVŸüã“kŸÀ.´°6ÆfŸ[`€ÏbS‹RCÖ)Ä}¹cÄÇòLÏYA†„Öˆ3_ÎZn}ôvêÖ3ß°ŸÃÖ»‘ó8lŸ;ÿãÝ¥æ«Ò\»?}&‚n1¼hÆv—ü#=hWµ‹êÿØÌü†àø¹{vqf¨VM*´/â#s޵•+¸L´ÓYT ¶^9 –ÇDÍ@œfš·Õ9êè Eýy|g }ioÐwßO°bÙ9ÇrªÞí%ù\y漓g<ÛëH˜5žã0ÙÌB*ãvÈè¯VQW–~WbS—çCmÄøô»ô±ÊsSߟ˜Ÿ<®²9³^]ý€‘ŽÌòö¹šµ7u0ž|³î¨¨·Ómø:øU ' óo`õß2ës5˜;Õqæd Þøó‚ϵ§"9oeâ*ˆ6”yŬdN7ðévê\&ÀX¬£d…ýŽ, yIz~¥µ¢8ÙEÖrežM…ëçõvb×^Ëù<íýy¿ʽVn'ºó ÝOLém…ïMç\q¶Û•ÐïVý@ÙÜúÁ‹ÖCÞ½ãðçUQV6ƒÿøšÊäógü§þLH÷’Áž“y¡åÿf÷íÐvðžþí±`;ÊŠæÂ0ÜX~‡–ÝX ‚õĸ©ÇÐìêÖàW ÁasÚ>"¥ÐCº¿ø ³Èò­‘çó¡†O•™ÀÁ›šqä(™Mgl‘]ÍuØÛ,< ¾“?¥wÖ«‰Y®OÃNs™ŠüÇR¬b7žtEÿ1?´Cãïo¦¬º›8z/wx»JDÐëÁ¯Ú÷^‚gvõW¯ä4c¡-xüê8Þ&…ŽˆöVy5ã‰5§ã? W—ƒ•|Þj,÷ËPçŸ{eA9ê“ ÁJ‡,ŸxcV‚iN¡^¸O0ÿýú« øÒø(£#ꩾ±Ë­Ú=žæ,9@_N*/~¬!V¿ ù‡ìÉÕ t€oáTO‘ñŒ'Ư*Ó}¿º¤ áà? ¨Cø“ØÈ¢x£tpÂÑÉëãsúŸ`|{€ï÷CS=„<)jÇ×r,»üòhÇÐ_EÅ+.ƒ1Hˆ­éÍUÄg ÆCù’ÓÔ!3ôÁî¥I®\¥ÌfòºáÀ,9N|g¥].à!Ó6^ª¥0{Ñ!4õ9‰"øº*aÍU†y̳½ ôß­OŽ×ƒ|¦)ŒS>òúô÷&ÔˆšÄ¡äG/¬Ìö-t¬ƒÀÈ.RïŒJ•&pCIð%àæk™>Z߃þ*+Ùòt³º5ŠI SQüõ·_Q‡·>~šÎ9MöщM¿‘»ötO£Øi P6eyïTå(Ïù]ÐÞ ¿ÊFýçj­’Ò¬ ÿ1ž©Q¿£3»DlžÞ‰ið!¨©Ï>Ó[†ÄJ¬trj•äŸh×õW»ðäjë1¨\ÚÊýÌ?WNs&S´ÒÛ awâ:·ÉHÚ£¿:KýGfjÒkY‡­¬vVaõɳkÉžüï}‘õn`gâZîovO mOïµ=zæM˜?Ø‚ÓöÒ~2&€`Ý3ëÑõ«ŽÜª¥s™‡l¯=µy‰‰ñVS÷ù˜Nï…ÃüÐk±ƒî¸‡QMë™ËÚ‘v¢œÆØJ&9—ê¤".†(\Î?ô_qÑ—‡-ÜÀÛ×¼ËÞ[‰+ëx#ïaSð’'0ôÅêЗÓî~¢ö<¬ÚÚO)òê°ó‹Ñw5v@³h*ë;&H Ó·Þ­]“Þ 4IQSQÇȶ“g2×/—"Š$êW›™„ñ;û.gj"´Ž(^F.®©‘ÖU2‚ÌDž5±ÓoÍاxê#oäJ<ÈfV=Çge0S‚ ¾ýÆæž_½‘é±2c±Î.î©5—äRo@ŸÚ£B|¿o'ŸçÎ Y`Ö”ÑÄý¯¬èK…P2ükQìB<ØŸà“µð›Éäö!ôî´Õœf_T^CñëáðêäT¼ñ—Ë-¥bù ÍóL«¨êŒÙ‡Ä?õæJïUvÅÖ^ëY ^›?¯/àn ^a®÷õÀèùïµ÷Òÿª'ÏÁÏdk¨ÿ¸LÔ²$€ã0™¾VÔMåÀ¯R¯åðÔb—È@R¯8­èïõžà±ÜJË}dÐ_Ý6×ÂîÆ²f¨ùàW‹ÐꜷÃQÑÞ„¾Z‹ñ€åÑG;žl¶­ùTäÝmÑ‘§Õ‡¨%þ²&1Åm*ÆöG¶ÊÁüfr^Ù…àÏŸ©07±õñJ •ìnžŸÞf-Q.ØÛ¢äRü6sƒáÏÛâ]#[7ÀþÛY×ðqQÁ^R¡¸}€úö=ÕòìCøÑVü»³TÐ_CC0Q=•\?PôFðw=¹ mØ]Uy]öŸ› ~UÐê ²À~Æt}„Uüªýw¡çš—²Ón¦jé¿Û‘úóȨIÜžÊݬ)Ô(-@¥2Th¸½+½ÄNéì¶Ø¨¬˜JìŸÕÛò¡Ì8Îp3\a™7HEg8ÝWÄäi¯Â¹*ëúÝJø~àTcÉ<î .ÈWÀ¯$õí%ìávFjîSZT䀳AE>Tå‘'ÿدû\®{Åï¶rUÐICþQ‚>ÀI˜?X’i—mvv&×ÞV}¶T·wb"Õ#Þáãò&OÖ(j6+Ê?*ÿÕÿª÷ Rÿñ@ûé›ÓGCÛVý¸ÙØfTF¿+Œv<]û™ÿ1ÏXa<3®êõU¡-ìï·01g©ŒNϪ×ÄqwE8”©úc79dtùÁH*rl9­½Q‹xw˜,Κbf ÿÈD·•-ø¦Et:LNtÙ,DGŸà?ø]<½™Þ^ÌÀ¹=’òƒÒ·GýXɼ$v—ísŠŽ‡ºÆ„ª™byà}ó+C“MˆŽ¡Zq+ñò`KK…oÁ~vƒ N¨2añÞƒI“J¹o-wNó•—ù×é±£EðY).¶o1`bÈ®­"ëJ¯F†oÁ+åKÄ]=d…üc ì)AEÆ.úÒ_e½Õ°ñëá,ÒÃDUÀú¤j1p ¯ðdÛ@ðo€˜äƒ?ŸÌ:kD¼Ó,п½à\{è!r«¡¨eŸ¢&ÑÏw)ùÇ%úï^ÅÞû²Ë´t ‹mvcùáøŸ…è¿ûÑhÍ{p”( QvmµÓ¼¤ÖQÿáMýGc"ç Îyð«1àW Àrüà?¢cŸóéÞ+rÎk·aÞ*s67Ÿ«Ä?É­êNoª»ÒÕñ¹µ/2 &d&ýP†[?ÙWì¬ÔÜDZ²€EïǼ”½ˆ ÏSxŠüÆSÚÆÓÖ*óÙù'du­Käjc©’èœw6r?Ù‡ÕTv¹Fþ¸u”(s›<Ù+®ó?™_ïáÚú¿…Ñsýëüã“¶†úóÅä-ÅkÝNÀL2–ŸÀ¯ê?ÖÝëÝ)VȈfD0ëv¦Ohl䜙Ì*#3;¶Õ³ëÏ»ÿ§?7:º8‰îÌŸ,dÙôtcjmŽ@ikcûZ}çüHz[½"Ì*xÆÔPx¡ß§%GÚ‰M¾Àú¾T)ÞmZ(VþÓ–þïï|Ð_UiOFîv9,¬žâ?¶cŽP9h)2å'R™è<0Ôk>¨Ýû(#“#äÙ©†Í‰Cþàò%QÝÅÚ oÝf¡–ùØP¡¬¸ÑÈÍ55£’Á Ä);]Ez;°Ÿµ°óg0 ¯ùÇɯœã' å3ZÝŸA«ò™w$ƒ)Ã-,žN#ÿ˜B™[õá=I“®–6äkùÇTü‡#o“£­} OêÿÑ܃+ì¹:ÙÃ%öËxÍ´üùNe4'é¶²~ð´1l´¾Y¾` ¶ë0x±™5ob+7lÅvf›¶î«:ø¥°.±È“æ€cáw>øÚ‘‚¿ñ‚>p‹èç±ìg“W§2ÛJb V³±û3™uzÛö§º¯=sÒ)#=j©Sð½É?zšôíÁîô+£1XätsÉÐ9ÕUKLåEÛõ(ŽºÓ 0›óÖ.éL‡ë¯É ½·`¡ñQ³™Öv´ÃÑvŒ ÁÜ›ðå>xï†xÜñx£SäD­xˆ(Î1:{x[ljîñmdÞTuÔ%ë9Šº×Õ_ÍPaÌÀì¯Ö‹‘VèL0Lý$Â<·Æ£‰-DN3ÿñ‰úcö2&Š0ãÙÀ¯Zƒ¦'C*Œ'©jÎö<3Cô£FrP­{äMM­+æ!ц·lõ¿ƒUu¥1…sŸž¹ÊIo~’I‰Ž=íZüpDð°›ðùƒðŸÐï&äÞ–"¾ø¤²ýŒìc÷Ë.¹Äi² ¾ÆAÜ™û’Ž™½)-wõ6Ð& ÿ•J©Ï<¨ßW™Ës?…]W¹ÂÊä$vºþ]ä®fÍÔŽ/ ã"ôØ:  ;™èõX„yðoyOöËÃD&-Q@ÔG?/ø_üÓ€=¬*£gø×üÇKm¬þXŸÚê±N¯ÄÓºNËg´5z§càW?6k-Ýñæ13 ]š©5"†ˆmÌ$ÿ¸#߉'â®ñFþGŽ)ùGBÞË,äÍè¯JêOô¹Dþ¹¨«x.™…¿³þÜáŒò¡Vœ@~P>é‹ð;ˆžˆ5°©'Xÿ.xØIÙ ö=ý¯îÇDb˜Xø•DÞ:YnR"ï%Ds%ùîû>C÷«»ô|ìê5oÓ.¢v|~íÐ*b$o:V7ç³b3ôM×y#—QÛ–œ¡¢i+”ÿ2rà'[áßN’1dÄæ$Ž@¾\ü꨹. .d¬üa°£Xœl’/j!>ß'o­N73u™œ¥;hXz˜¢úØàUœà 7;Ñx æeî —?†‡ëÁ¿@ÿ’¯å×µ·Æù[¾“sZÇ]-J„=CV¬l9MÄ$ÿ˜J$ÞO9;Ù| ŸÈލ—?ï(ðϡԟ'’`g¦RÅŸÆ‘ýýF5g ¼Ú=¼Ù_(«ïc=¯«GT¥Ïd×S9ÅÞä›sé÷¶+p©€¯6‹eÐÍTØúyÔv\ÆÚÌ#oÙ‡…Ël]°¼¨2ÈCì]‚¹K‰ÿßR/7þcl¶CýG“÷Eˆ'2Þª1ñbÐPU‰è¡Õ‰°+˜uênb‚X•„SG¤››ücÞhú½áftck°_WöÁ%Áü†-ŸgW¨ižN5_+2™<Žé”f~Ô{ÖŠþª½Ç‡ÐKw3Ô^âä=¢C°õNŠäÊ>äÙß2ó!ª°(·Ž’OÅB{Z™¹'±¦oÐõÆ…i€*¡ ØÞ)ôW­Yª¨Ø¿d#üGE²È‘<­¸ÖŠ($»YgéïÝ®JW¨•tye¥a~à»›åöoï`G£^£:g—Κ۔QÅ ÒÿÊ[?g$â‰õ#ºom=gïuQžEgêGwòÂÖ(ø…ÓôP´™ ;nZÐv5w=)JdÍZ_gËr™çz¯iÇÅ[YÌ¢ƒϪH?çøt]l„^w*ù‡½ùKÙ½í¸ö¾o5¡¯Ië1w;.YöQÞ¡ç27ü~ÏSø^÷\L¬4“÷«=X]"''³ç;ã?b“eU³:þN§‰3Ó>­ê:5Лý„Öú9OýU9…÷8 –Ò+Ä3øßø6©ÞUä9™pzá]Vß­Kc¿‘ŸþW/|’·VØèkL5ž¾z\}Ï]Î)í'±›úóXæeÙýnZÇØƒÿ¸…;š„95"{vý= 3Ú‡÷ë-ɺTOOlì€ÿèN-z3·Ùç;ë?¢é­õŒ¢›¹¦–þxXÕØi”|dðËá ÚЩµ¨Ig_9]|¢î©ñVéx‹¢f7–35Ñsб•hYÊ…ùRoqúÁ;àWÏð·®ù vOó† ôGØ»óäÇÑò$ O-ï/¼á5Õv,hO>­ª©‹°¡œâdÃí(Õš+=‚•Xk…K!,†ç<†ÍØCûož·"ó\?ïu¯6^?'ÂÓLÄ_žÀ„Áªöä$[ðßcy~Uïa•–ñ_¼ð{gxŸSuï|ƒÿ¸dðöì`…Á¯š`­«àyßÃãÂ̓_äÐ_v üy2¼mÏQó=ò¼¹Ÿw¦i»˜PÞ4“aý†ªêû)J’4¦–ŠÊµVÆ—œ'ú¿KX¯ñ •ÍÉ£›ÃÅE=ýý{ÍÇÆFù[€ÿXH\AvTÆäguŒéµù°÷[¨§+‚u®Š¾i6y‡"kJ´¶údˆ ü½Þ9ãÕPÓÁ×&àßÖ¨Ax´yøøÈÙØ’¥Và°Ö΀üc(‘nAºƒ¬…íï¨"`çtã\°;I¸û¹ ÿ†¡8ÏÄ}ªRvZcQýŽeFQæ¥qvЪóŸñäD"/óa½}j5ÏÓœá„~(zÆŠ`ã—˜¬µT¿µD¯eÑÍi!Ò/£O&ÿ˜b%µ×‘+”ànÄ»ìR…ðFÿqF+HÿÝ8œÛüå`&üYfYL#á?¡i;}׊LÿÄ­vôScà«SÁÜ´§r'z‚´0éÅÍ?=77¥þˆþ»ÅðÑsàÏ÷Pþoú§W{flD¡Ú~,ˆ?9Îlª|Ê&:§ e^Dp%eZ9Ìs~5S&áy«Âûþ€j7Ò­qiD>T¯ žÆd,ÝLâÐo¾$Uó°<0U(â`æòò^"ÿxëÉ?Rêš|$g‘ÕÍšL’G­p1õ8½…VrØ÷Jvyç5!h²èß^ΙŴ«Öeë*öâ¨ÜAtÔŽ.5äÏÿ÷¾ˆ£ÿžÿùóÞÒùòãço~ðOƒI†ïôÕF%QDœÁiu¤Æc‘ñÖ¸€ÿØ÷Cë£þcVPÉW@•^„5öé:s0’IS>2¢…Úù/øÇ4êR­6RÆÃR'5SȾ².õ;À¯:ÈN<Ÿ…`+xÎ!øÏÿ.¾1·èÅ»|…¸ü¢Ð.(§:ÁÊm ZöÆNèXØ}tË+fÿѯ~wËð!ÿh‚¦i>c+, œm|u…µÂýd #¼ÃÔ¼Ñß¡ßÝ£—Ì÷&gyÊû|Ë¿ß8¬b$ïb9õ„f?8S?¢ûŠàW¡© §€_ùÛ· ðm±ØcEûÀMcÿá±oÛ+9ŒI\_np™¶‹þ%Éf¦â/löØÍ@o3?Ý 2w4*êìÔrlFË2 ï1ß7Œk°x©±ä&úïv!ûKË¿~u€ëœÊçÍ|؈ðkà2îä·2‚ •áãÁO ðdG٠ijø–^Ÿ¥8•šd3]¨ÞþƒHe¡ŠþjyÃv´²s'N°Ã_¬ðÖTXŸüÓÏÂSg2k›wõÁV #ê““^%WK‡¬¨–›7ÕVüÐ¥žØçŸœ×tíëO={f«?ÇDàSÂXxc§™#Eð é“!3»Â¸µšv®*¿¢¿z©>¡³ÍEeÅc¢új!ó7óôÔG×v¾†~_èw“˜èË_äÝaãÿ‚…*ªW‘ M#á?–ÚñìêV:J GUv¬ô »,ÁBºDÖn*3TLt9ÌÀÞ¥Mu_##j8°ú–­ÖŠ~è-ÚRÕ†nU½¨gÏ ÿqÃNàøs޾ä6‰é«x Lñ/|ðnð«â²„ ì¸\û ¢ò¼å CÕ­Iðáï”áŒ#ƒiƒ'ËÇôÁKÌÔ©Âô§ÿn-ò¤–N†Y}qʆïX üÆã?3ÿ#,ïÐ<Þ„Uð㬗ôŽi ~5ÌÊF¯’zvç-zê&Î{§ªI–4¼nœu,}¸ôæ©ïAæÚñŸ‡ƒ?oïy² ¿ú·ó£"êûta¬2*ˆòÂ' âiú—´EuƸLÿö!Þ°þö0ìèdx t1µ¹JÄ£'ãIpÂãøû‘°ÿîÐÿ1…ÞnfXø”v²¼žÝ˜KåÞLæú¥DYÔð;ç&¦ÿÕ/¢±Â&¬j)ì|+µNùŒ˜‚]Ü'ñçM?C†3CLûç‹ øÛ{ÌÌWk(·KÕz¬~düÇfìûeöjaOópŸäm&ªï™ýµÅk‡©’SÄö¾ôh8ŽMß͇†ME¹[ D 7Ñ¡ ¢áêw¯ßšõôyíµÆ/ðæí±îÛù–¯ ä-}i‹ 9õåMØO†³–Ï:O ªebýõçñç&:¼—YÑ ŒI¸É™û6ÄKTTWùé~ âoÐem²­`Ý%Xý fY™L|­3Ãsí,+5¶ÙíŸØ™úˆ kwa^â?ú‰¨mûQW1´l0H|ð39 ÅvˆñízíþÃ1ÀBúU§›Š¹šYê%þc†þö.þ£ 5…sÈ*Ê`¹·€µQÑÉüõÃÁVŒ(ºðçéP+ÀCž ^Gß)è‹Ó}ƒdþíCQ!uÁ>¿JDŒ{†zÚÄiÀ_~bº7?óú«ÚjŒyþc&\Å0/_ÖËaŸ·Þá?â?bQEÝŠS­ ~uûß꩞ÈÀ ®7ó£à<±‰LÝ À¯ÞÒ?1"“øbÑ =¯Õ—šˆKÔœGÇ[—Α‹™ÙŸ•ÛÓ8*¾( YgŒ úÝè¯"Â/½Á>W±N ´Ÿƒ÷mMÿ«¢xñä5޳kÿ½Ô_Ô<„­̽Éöà4÷o9pñ eVkE$âІDa/©TLeæãÚzRÿ_Ö<Ý_®ŒÅ@åg °ºÂv'åî$µb(©vŸ¿–“ÁB˜Yû¿é&ºŽ¹Ü]·‡ûÙÙJè¤wzÌÍ´ ä”§û çþc4øUô»=ìRT´ß¥ð‚³+CäUNõýŸÌÿˆÍôóIž'á5ž?‚ç»Ï×÷ê^ˆ ÎPÿÑ’üÃ}ºh‰ÆzòÞÒ#ëÛ¿s™¿ÿÙ-3õçñ©ùRĨ'D4’;t‡i ùàÏ?1~0ÿèht…˜ÿÑx>‘¬/óÀöû#®‘ á+òSÿñ}õçáõ z}1ëq\ v°·Zè*®ÄòYwš¤ƒ7¸ƒ è)F}Ç5ß5^‰*`jIÕbbÃÄÓq™Ø°&äþ#†JŒåòżÀ#…ŒJ¿\þ‚vKž šÉ‹ò7üįÄ(?'¯boáÏïbÃÖr¦ãͽ°Í¾¹ó?þZe”!Ãè„×8KVä© ?—޲̵–±ÏE¸ùóü›Ät¦Œ¢¿øÆŠ´™ú3YL B~ñw¤?5ÂüŒ :z¢¶äG‰Ñ¶ã•}ùÿéÄdd6ñà++úi8æG7+`ÝðâEY--l«áŠ%§ˆÖ|мªyD?¸ƒðæEú§3ÏyÞÜÀe×iG¨ãtP³ŽDE \®;Þa6yU7˜„Dð2UÐ(ŸÁ¢lÅvùó•ä^}ðÌ]Í©âœÒí2fH—·ÏA¼>¬Æo´Áü•‰ñ°ù;°y‡‰¤/ª² %K‰ÿ#‘Ó,ù9=Mdvù"RH*,¼ä|³6ÿj33úàÃ׃…E²–3ö¬5ÍÐnû:Þ­=•Î3xjª¡œ=ÃÄöa`9uèµ*ØÎ.Æò´]âùʯÑPm¡’ú<5›TæOFñóŒ¤ 7"Ý· \±`r¢P qŠŒx˜9M ¶Þ ±Ú-²Þnø™Iæ3uÕÚƒÿ8‚E¿ƒÞ6§ýÀŠHO'º÷ÒSöØT3P¦ãè›ÞP3> wÖs31?ª « SW˜»±Œœ`Ö¹zç1 D{™ÒþmR>ãj p­õÙajüH UC… ‚_ÝÔ/ñð€wÌ™fëF@¥¯£ÚÚ:ý¯nÀ¿ÿ ÿ±À>ÿáÏÄqw züÈU<ëlêã·s½-@Í÷\¯¦Ép` %y×…•>¼uŸ*ñÛü¯<±éö N06]Œ£Âï7¢—IIº?&&ÿxETTžüc¨g`ýùiú·‡'žÛÌýg’#PätÆ¢4›I/²&àW•*ä³:Cì Ì,Äê¨h·¹,ñvvâÍ®ô?©ÿûÈ<¡âñ ž›®™úBøÕä¥ÄG½§½S«`ŒcúÇãl÷¦Àú_ÕrÐ?1ZØ(°”áé¸k+É?î ¼‘D”P-_ðé`´£š'óa™šùàÏFuŒñ¢ÜŒ²¥8QdèÕÝîša™ƒØXŒG!tS€ˆk®ÚÀSá/vòÜ'JNìzW–cÅúà›øêw;¢ž(.Ú obù¤D¢e±î>¦ÀJDy/M¿‘÷äb³¿˜júå‚»Ñ_yã?RQõ—«ÕœøWò‡-Øù*Ø”'°ê'9ÓÑ|B 3²­þ|•Q™Ö½yÞ/˜×ð«°úL‹g¥ª 2Ïàûfóß·›n¯­&ø–ìøeÛó¦ßßm»—ZSðâmð¾ÉÁ»\éOªÄ^aã&Aúâ§6§lÆ+=â«ýh’Нuöñ§ò2¼»pŒìÏ ;^œ+ÍÂ]‰JÄXS.QèÚ+0ï1‚\"o›I¶c~¥~pýwcÒ "øP[ò£`“MÙg&êA*ñ¤@œuín2 k:[´šS…YJn|'ø¥jËŒ òžƒüÄØ[ð®x=ÕèÇTi0§MÔ>¶Ò×¶…Õ˜V홥’¥VgØ€ƒ*1=,1¿6è¼Pg·:«Íá_$+œŸžÚŒ)ðÞKщ.b.“õ~¼y6rÍ(pÊQ:å$Kz¡vW"ˆæÜ;ž¶\q}rÒˆtð=}¯Íüî9Ì*úˆkÈÕ°5ðlY)2Š`åöy›.Ú[ï1½Òó–{9NÍ2Ï+‰Çè ÃSÇò#3*ÁìÀˆÎ0~~-óŸŽÀ#µo:„}ë2Ø*¢yÞs‚Ë©b'<›;ÛOÓ=ájX“õ(‘3Óuu¯ñº³–~¼íéUˆ~‚§ñG+8Ý£¨ª«Ræožõæé—éŸèrýÐïn4‹Sf"Õ›®%ÕèUrÉjÇ•n š=žóÎ?’Žli™W!ütêÐÒ3[þ%Û™ÿg­Ï\8+1lb'ë=S:.Ù¨ö³8½ã¨¦ß'ëÌd‘ÆT;¦·RЗs?Ñ«Ÿ\GŒØw™.ñG+ÉÇõ“k¬tNF§ŸU‡¹ÄìyxÇŽÎqêq*;m_5È)i¯¦ß—nâ-Ù —Ò•sCÕ^îò\ñï‹èúL½•çIx¯eÿ×þ#«IýG-Q“~¤yXs·VÀÃ)G¼Ñ_Q ò#¿niåáÏ3€ã  éX‰.ð `† J!ßæâW#ŒI`Žsdð‘îfA° ÄÌÿx$û£‹=EþQ“Ž>¥=çðO;MBýùh± û÷ØÅ'°ð‹A3jÐw'ößmjZð‚`Ø}ÄŒZèÿþî£á/Êcá…Ž±»¼¼û¿ Ó¸ƒýìJýA!âÇ·ÔMG¦z>°‡Â·Þ§™èA$ØP$"ï#\W{4NYÏíý]+_T1m p”œéùwÔŸwBéÓÿ拟HKÞ?œ‰çµ§Ê£Þaƒæ‘Ÿ žw?¾  ™–íJþà»Ü¬гЫd{±4ìƒìFv4”Bª†¦ÛSÏ$›ØƒeÞ§=Äß1ÇHM|Qy£½2â‚›åa½¢üûnøò|ìîvl?*È­â'´—ƒø{·wÉdîK ” aÉ ü¿šøÉPsFßT„êQ]Gpš´|_D$þ£¶s{tð«©`[a<§àQwò|Ÿ ~©Ú!cžìŽ*Æ¿úSœÎfXÛs*¯¥˜ý³€*µÔD÷á6sÝñÈ|öÂd?Áß$ÕÙ7ø$‹q›Pû±–'n8÷c ÝÊÓZwÕD·nVas5nª¦d ÓðFÈtž°Þ2jéš‘löt'Í@4¯ågÁ/”ñ{¯>0eõ:zÝZXÀTNL§Œ3ɺ­ Üg‡Ið¤øþ(qÎdüGpüê¤XI.xôðw³é诞¡2kµ6¡np=Š!ÃŽJ=¢ÝV Û7@ššñûÞ#…UÑš¦Â˜úÌß´úzgøiêªÙ²Ïó +#}ÐãÓ¯½¿u€êŠ(tõˆ ð™×': ºýwkƒ­å·vp’EÜÎsGÚê¯T¼ > ¢õ,·ÿÕNêD»ÀwT¶¯Z7™+’Ñ9Jõ~\Ç;#v8{4ÌM^®8ŠåâW™ÐìN¤ß¦=qˆ{Ê‹¼PˆÆºZi©í»Šêª¦m£Â:ɬxMÇž‰–ë/üG!:̧T/yNóñ6_0ïËKþ£ƒþ>e1ïäTüÇ$|e|—+·úqW—‘Ô±‡:'ÐÃUtªÚÂêÃüó£öÖxë-ú«ëä0ùpIeƒ €žKÿ]¦Z%COL¥ß¿ûP¡¯×#QïŸZ¿Çõ§©?m̤§û]×7ÿв§À¯FÈD`á° ÏDlj¯ê×É?2Ë3L³•ÆO?´ÏàWe̵2#w©—™šî†å™vµL6¢RÃ[æGÁÓ&DGÑom7ªÞBÿU,ÂÒ_ãn—á=ÞÞœúÁ ؽ{X æÿ1 §ì÷è¯.§E"ÄŸˆëöñDüŒÿ(É*Ç@…ZàL´.ÿÑÜ$§…zÍÇèß¾ þ##,rIu vȾ;h‘;û´8Le°îhø°ª)EšPV&ƒ¹¤´øJ|%ÿØJþI2“„úòúø‡üL2£د* uÔ³,õÒKÔE|]2°Æõø¹Eøýæiú…†ô™sŒßy¶š™9A¤cÏ®rÖÃó$†dm@uÙJn½Ã²fãtbtÕ…Ÿ¾ŠEúCq_> ïÌœKblo~gä jI"XKÔhzyÏ¥~pvùý¯^ãaR’D@=u8#X½Ÿ~3ØŠŽhƒµº¾8¶¼)ùÖ;už®'©o¬‚‹)¨ÿ¸­À­H«13xç*i@u„ˆ®vˆùQ'ÁÃLPÈ×f؇%æEåc]Au üê1uÅè ¥œÕÖ.º—°o’ôQÝÁÁ©¤µFªcò´çÓ’è`¢úsjÍÐ/tAuÝÍŠƒJÍ$¦Žh&ÓðÛpÖÛ½¨2¹Bש\ÔûuÛK‹-»*¥ª™ØñýŠLò4÷¾•Õ†·ÿ~x²È©Â¬óéè•ÓRݽ‹þío˜Ì¢9©É!FqvYÕXf}íRçÍŸeš ó£îi÷á?*‚9ôEgÖPÆ1ZEæôÝíÌu†¡=¢ó;XÛqüÐ,¦ãޤÛaR;‹•ÆÐõ€Ï¿%#y¢˜ÌÅ‹Êû9)@×>Iî³:9ñtFû‹^ZéÖÞÖñr4'7= «¬“„¬#1ÃGÞáËò8q`Õ@5ÿŸÌŒ¡ÿ¤â ð«¸Áž3ÏM õ‹°L83©7Ï$‘Tf•ƒZFãOc)=yïèQ~P¿»GK#æ-&«ÿ Æ+ õçô£â’L,/ˆGÆ'=Éís­Ñž\a%Ìö$ð°˜øÚø…²‹¹Q®A՛ܬ¢£Ï·.8±ÞQï,¶`—`1Cž C‹ãÌ…x“¹h€j Ñë~µì[‹ùï7Œ«ðÃÁ¯6â5vÁŸ§¤cÉ™‡xº˜àÎÙÈxMT‚›dp ;È"ž//k§åEÎ-èWFuîÈ­M¡K$y¯ä2.CìE%„?W6S‹Ðúï^2JW¶§–Îír•FâìtxâÑ :.~µ”ˆÿ0ñÜ9òœüfTYà›ú+Sߦ'%Â?­ïv›$©ži¢Ù¿Vôïê ;õ†E:‚>õ&Þôš¹¨"ÌWîµ/ýÛ°ªôøÃ<üû¾pQ¥¸·Ð<Ÿ1«ËEBXãA?òRk×5’Üä þc°©}Åì£1“|‚^wž1+tÀô4és~•ëÞy»·ˆÇŒ(&Vñ{8ˆÃXêýõ‚Ï}É­ÀŸì¥)‚wí‚OÌJwöäàWû¬µ(P‹`ËYåPPUçž§™êZk'\Àï_(í¬£Ü™Aö¸üj³F¤¿I%[IGcøÈ° wÕsò'’ v*:Öû*'æäXü*™èȹß6#’[M Wñ¿:Ã:±÷•aÒ;OѳÆŠöÁ¾DóǦKáqît_æÖvOâÉùhïн²-Þh‚ùH=„á­D>žüc.ÙÂYëÓ™N©dûñì]À›N2‘Êå?F¨«2°ƒØ¬Ðâ©vDm`°*¢ºîa¹Uבˆä;0d©BÌô¢ÏÈ:ޤ·s‚ÙµRYËí_R7hçh©ûɉ3Îòn¶³ºÓÍÂí4zÁœè¸–â?R:kPßÚÎæu„uzËô&ŸÉɽv`„šeê øÕFí”P<Á•¸ûè¥c6c6oO~ U \175“ɬ_Ô[Þ¢t湑øRzüGKúユ«ð 3ˆXzI/+ýKÚÓ7¿Ý{—PÕ^Ñ9D…JüÇs5Æ)‹ÿh@ÿ’¼Û—¥7ºùv¼9Åÿ'óÏcê=ôÀYº^\ì¹ðÜ„P¿°uoý½¾ÑH,‹WüÇA-½ÑǘÆLGºúÁþW˜n=þ<<ÝR;›D jJ.è'Åu2ÉÇâ3Tä%ø†7ÐÛͤqv3µM¨ÿX+ëÃWM"º/Žÿp}^è¿’ë¨?_‰5õc-fëšãˆF«Àñ»½Ì¯€]ÅÇŽùÈnX°ïéHs˸'òƒ¢‡S ÐSl6‹ÁÖÅ"ûÿjZ ï¥Éx#`û6Ë5¡îðù‡u—‘ÌwØ®#ìä|E'ò5t Ɍ²4xbç«ñ-Tõ‡²â>#?ûè _qoQ k¤È?*‚hDs›‡?oàG’ºïäz`$ü4h‹t&ëbFœƒ£‰@W lKï2Ô¶&¶?NÖá6tšwmYHLçóà |ç£ù‘8ø‹Tqnã]®Ž•ÞGS'Ƀ&ã?€Å§TóÐýOÃgÅâ®Ø`g_ë_²Só1¢Ë¨†ªÆð§Àü*ãk2‘ÁTÁ¶çPµà?î ÆÙÈsc!Wp¯&ð©ý‰é{Cìp‹1F¶€i+DƱ}Ó>,ü쬺€ÿ˜IoÖŸ©ËËk³ÖR£˜û¼–Z÷ÛôHIÎ5‡Ä¯ü :Oö”F5œf(Õ1K©íŽfMV3©_†ªéuÇñHº ôu‰ŠòÊ ÷F?ìN‡myZO‚šD1PUí5ߨ[ô¿ÚM¿ÜæØçØNX§¨³…¨¾1Ý‚or&ÑÐDÆŸœTKñ›SEðZÖwbo€é¶BM6ý®/*üd4"úyôpºo}¤ÛÔ²¥Œö6”q`¹oª0T;–µ£— ÔHx1ÿƒÎRxÓæoä%äSY“ªÃ¥vDò¶Ìë˜D—tö#lë`üÉêô\Þã7|Ax,ÔÑ4 ŸŸÓoѹ‡wˆ~:Y«`*½ñNí°Xb/²«¹ô/ñr;æ:ñí…Ö)f‹¼F!·úsêâYm¨Ç`Ïù½×n¹t¢’¼úÝ<Çõ¬”NüF]ªÎ#Ð=ì ’`—±ì‰ÖÏ(p àÝãZ¹Qiï†u&7c×lÿØ£?£qìù_üDÿÄxNj§º• åB^ú_Õ Ù.çŽ]À™B†9’.ŠËÉ?Y÷xOvÉ#Ôq5'žkü?éß ü*°W *w,Ï9…x%Bù6Ohò7¹Il åÌÜ¿>Wû.Á‚6€`åE‰SÝÛY,&…*B”áÐucºœêßß/N„Õwë?jb‰+À¯ƒç®N,þž7ç qÿxЗfZ¹ßÈŽçû{‚§55o`%,~xú%4¦Æà Vt#¿ ‘Ûe1&ý¯R~1 ãó!¼@¿¥ÖIüG7®4–œÞÓøÎ6ðæ•Ìî ç¸òDêÇÈäîòõvê?ˆ¯uY‰ªÂ4m"íkxïƒàC…ù3#Ì UvOÀ¢ºãåèz„WïE^x†ú¿ðZŸwøçªIÒÊ[øÜ X¶Äø¤æÔÎtê‹…E}_5”Â7°¡`}2Qÿ±ÜH|¨¹‘úÁÝK|µú¶ ÓyQ\m„»=Éz;¸#Ûè¹.­U`0—¬,غ_¬òðçͱ,IÉ?zÀ°\RIèŸØ5Ä~N­=3Yá™–ƒÊ/$ÿ8m.áˆ@íÝtüÇ+ UOa'ê’߬{IŠw¹B·•Ù*WòŽ®;A·(E;î¥,C2®rÄ65ÒèÎjã›Õ‰ääqVbÿëPÿñ@ÕG]¢üAœNç 0g‹WA—££Çl¸øóäÍȆ—_²ö¢­½ÆöF ú]?{ Ñü\*êÜ È?ޱ¢me¿Jmžñ¬7ýnWîâu eÑ(ý;²þc;z¦bø¤™è®|ðOÉk€‘´;Ñ¿ÝO3þãÙa4=ëµÒ_‚_%#§œDþ±Žy_ã¹umúŒ°–Яå%“D¦¢â nÁ‰ŠoŸožsN@Æõþ<yõç×1ÿã½t+—fÒ7õdY-‹úÁÍ(¥²Ò¿d“Ç€cëo¥ewy`»ÓZÙÕGâËòä¿K@åzøfºŸÐy“–IuÄ\²22ý±“Ý—ÒÛ1𮦸wÌ„lÎäßNF»´Ó”ˆáqÑ1yä·›*¯ÂÊ1Ìçýþ'ÿL­×•þZ&Íþ»Ï‹¥e~í.#½hƒVÊÍnéC@÷’E†ÌÅí{°œÀO¾¢å[QÛFÂÆ´3o‰pâ”þ»~ü*™ü(>â?ÂýÐ>Çâ?ršceflü ÐA2·þIß){˜;ä™îµ±(ó]+æÕ»èuy[¼Íx¢œn„L„[Ü|$\=ŽÛ÷"ØÇª‰ôͯ‹7¢Ñnxµ›ºÝ¬@WÌ\†½öÓ‰…ý+D¶û åÀ29.ÔÔúC¿ âêxËY¥=œaoóiزì(,“«œép>«¼é„ê?Ö™±2m]D”˜µ×ƒ·¿Tëxî/‚UÀ—ÔGúI†ûfÿ’ôß sËU¯“œ)¿-ˆò÷‚_½"ÿóp›O9ëqÌ|Ef·+ÙE¦ï¿rz˜ÿ/DVpFf5ŒJ62Œd)9Ép²ƒÐÁqcIƒ¿Máï-óýwg0ýýËåVâÇcJ?ðª%صèê0xS~&?úÝšX÷›œ™±×`Ió©ÉøÌ›¼c3²OZIྠ3u>Ö91»>¤:¡—z¡¢™Í¾Ð_1: ä|Jƒú«0 ËéÖƒücúÝ¥DõÞö}µ—úsw¦mZ,JdËù°ÓTZ¢£Ç¼A¯:.þc1F>w2xÏó5g`ŸPO7ŽX7Ò%DáM¨#÷ÅÃDÀ êÿNçüIÿD·CQà¯ëb#Xâs8²>XïYÌŸÆTÄŽdXñüG&>9Ô4Lc·¿Ðÿj¾ÒåϹ)VNkר@ج•Ò[Rú'HgcÎ?—<'›Ð¯äÜô¯è­¦¡ˆ=f•¢ÕZ¾oe]³[Ø)¬-ð.ônçÏ\D7ÙÍ1žÍyéŒLd%Ï9¿ºVs:ÕMAKÒ¾¼]¹¦Óa]Ña~/þ#õç`ú {Ui`|ÂÐæ,5Ɖ¥«(ýû—ö¾»::’™æÐ5ªöhNuú C:jF Ü †´ýžl©øS.ffE…?Ã3]$àíˤÿÕ&柛0ë+@ÿ2gÈÍp±–LʺD5JLr·šÎ)'†#œš(×úPõè‹ß¼e=[8,Ž@ÓöÒ?1¾>… ŸOÆ_«ðƒ}¥>ÿ¤¦EÔÒ¿}­QCÔeÞ¹;)o©ö+õçË™îþcó?.h¥Ä²…H(a'˜÷E"j|gêïÅ=™‹þ»ï¸Å?æ?z#P>ŒGiµ·)9G4]3ŽËÖè{æS•^Ãü=ÄxeÁ¿ ƒ¿­)¶_½ ©B¿»挸@îqŽ.ÑúM2œ…btðýêw~†.Ëò“Q±1{‰Q“íÂn_© '™RÆéd½kä,ÏúêRüG/MR_mbéßÃwìgmˆìcíþ;Ï‚­MÏb€æl&n‰,B‹¼ŒJXóöxs(kS°Ð•`DêóöÇR/¨õÛÁßì5Ë n©·*$«êJÌà»<¯Í×m*Š÷±—žœ_Z"±f¨ :™Õc<ø ¼’ æíŵ{‘ø°Ç«æR÷«õç/µX"=ç“[_[>d ,Ð5óÙ–è#"QY1ŠhÔ­þø‹˜9:õƒ>!êWòIøtòö~v(&WÓ‰½¹ýK¦ðn~BMÜæèÀJ8þtj.k ™Ó¼Ì*òíÁ/U[c̖ùÇZlù^þÝ<üÇAºÍƃ?ß òž 5ky¢Ì)0,aÁ7Á)?!‹n•CÜéˆ îé8Jä? °“#ÑLÄC$ÅÂϤOÒrìëRÐ}ðϰô™á\l˜ôg S¹È4/PÝt‹1E+r²gðkI¨ÿ¨¨ÖÓ‰ü0=]«¢T,,cþÇ{»˜³”jŠfÌ?¿ëÆ·¬ kºH#çš"[¿"–Ã;] ¦jŽ´Ê¼§ÂòôDKœ×z‹½/E¾•ÌùÓú“jÇ<Ìÿ˜‚f xà'üiU¼„fà|Ò)èwÛ¢¬ûƒ|¦*š´ZäÓ=é—8…úófÖkŒôUtMÕØÑ?è…ßÚND¾ÐSå…·ÈD. ßMhŸ{`=ä_»ýKª‘óUP¥÷çÿ‹Fbzm ²÷BKý¯ùpú=½±ÆÈ%ªÑ·Oë6­¨1‘üãŽqúóƒ?tUç´²b#}©¢{763ÿã#øÕ!qQf•Jêô¿Jì}mñ?öX¨atÔêG”umzð¶m²=±ÁŸW5Û}gÿÝ$zê§¡¥ô'Š.…™CF_ýÕì´[‹ð°‡úÁ¥ßÅŸ?§ÿÕ/æØäýd›QŒ¦¤ûôvž§{ OϰÔTK_y?73Ôk>¢Ý–G馇H°¶¸"hPlß\rÝ<`'é+tþ£yX5ú'† eÅ9Flx{З£Xü¤dX%`$ˆy)bf]޵ßÏ®/²Û·23v‘ìàwevX7ÙÕyÞãö¬–%T-~ÿiV#ïˆÖ]üè*'êvP<õ¬æS±È¬¨zÁR´¦ÿU#úÁÛx¢uvdç#ú«'öG˜›áÔÎ$AA—<ä–™ŽþWz­Ú+÷¼6Oˆee¢{++«“„Ú¢»ÅÜÕvs<Éj^ÚÀ ¤Z\ØÑ­œÄ!;±4~pïämÿ˜ÿaˬç-MŒ»ÍªâÄ¡þ£*=v{Ò㫇=˜ùµ‰+¿úÓÉŽ~·êwþ‡—ÜÙ 4¹´ü± mÏñü}SŸ„ÿúÏzŠ`ÏÅ÷/‡þ‰qé_R”ùƒ¶áVJ{keŒzè¯ÎÒ¿=éöo?‡~w1q´ö_ …Ëc¦×Õ¯“$–OEL‘ØÈúCûìl”C=4ÿÑÝO ºSýª?Ð7Iz&ÉD¥¹Ìî!‰ßºòzòîäçˆeó€WÍ¢Þ¶„ùJüÉ×Þ|u.)+ðP Å–o-俟1î‹\ĺ1à.s%V>žªC„²«¶ÐP©éõ N|¦œê5ÐÖËàWÉé¿›OQ \ƒ8z>Øo~j!á?ÖááÚàŸJ™a„[§óO¿FÉ`!z“ ž'ÇòWäÍ1Pr•ÁF ´³Ä@äÑ™@—3PWžúÁ«ßXð°¶J?#3_ ÚM<‘뮎G/«ž˜iÌn çàt½¸öUØGjqái:3ÿãk‰÷´GFT°³”xÉ2äAÉ?êà“^ESÛYøñþÿAþ1þ¿·9œìé½%G0ÑòË nÔ.ñå)ðœádA1‰¤ã:Ñw"ø•¦ŽÀ¯¤V»a¦‚ƒd£âg.þ  {ooΠ·g`õÂßkÏ6&Ë–xîDøƒi°Ù§ÈÇQA²«ž©¦[é^ëú öpˆ‹€AÿË»”üC˜C¾èÔO–Jv5õõl8˜‰ð¯ÍѨƒ k”ZFÝŸÛäóÏwá‘»ÄÊžÃ[D•›üÃ1Ž»ÓE}ÎøV::\vVE¿5ÜÚjMTþc’œzç*ô`z¨ŠQ!ïÇ“%Í68à™æÈšºW|Aà3ÔS±:¨°{š×™F5تo­¢gñså"pç×ìžðûÓ±¥>øärð盨—ßI2QÅŸïf~mg3]ZÎSMÒfx»ÌÇÓ,§ŽUÊšAuÞ +“}Š:¨”†¡šl%{‰:aWSS5'{nòFýž†l-ŸÙÛºbJÙ‰.ó ©¯eOMì ÿ±ÌI2¿¶Ýà?2ëÐõ™É}Â[gÉ?*ËLA&B¢þCñF”x¦ ‚7ä³Â9acZÃä'§e95Awàó°3)ÁÅŠÐ%†U€»|ýâ'9Ÿs×ã?6èýK¦ò<͇˜(7X©œTÔn6ÌKÓÞ.èt.3“¾¢ÑjFÿ«éÌñÝg=ÀãÜ”»ñm©h­$CΠñÀð‹(ú½ŸçÉ2©ûKêùî?V߬§4ÖÑ?±†Hn¸ê o-'üùãŠñFúE‡Ò^}UL”á:ïÊD Ž8IÊqLæ„ÿH ¢hŸUÜøád4‰F«Q?Ø•üc¡¬eþ%kIíë-ë(ÿioñè¿[^Ô!â=M)}îˆmDø)èqŽâŸÎRO²ýîRÕùµu—E!"ç0¼—;ñ?éˆÅëñç^´«íaƒ£¨¬¨Å¢ª,·…zÍÞÚbyF¾—©ˆÓ€ÕËI‚õÜóY€*tÂ^àWMÍ¥è™3Šô¡¬ØËHÏuºgæÖƧÁÖ¢n‚¼ý™Ðä, ë¾€õN J\–SL,‹}³ÿÕ æ×n•Ô5¼ä0ПT¦Ä¿•æ§Ë xú…sì rß¹ ï¶ /2‚Œ~L%ÄWvùF»j„­ÊANU…¼íO8¨ò\ës8ðcæeÑ[\ÇZwÆ6ÇãÍLųôTþøå}ðÒîƒ#žÝ[ýKÀÕôäŒFr7&Ð# ˜{3²òÅ2Ï…M®VÃᬠûÿYÂü@ö÷ïµ§“d#"ÔèxœQ(Aï󬬿ڌ}NÁd¾-tÎȈÍ+N•ñj¢Ç°Ø·±ÄÚËÀ»>кgˆ+¾‰Ö,ŸYŠ, 7õƒS°ÔS±–¬™Øý“(º :µê 8…™?¸ Ÿ«>CÆÔW%ã\Þ©vwèoÔ ¢¸eÆãZ;Nm6/¢¬ÝN5ÉÕÌ¢s}!\J}ø¨Ü$þí)ØÙZ¸’æ!:\ ‹÷FeE;â©kô)Fô½’üâ6}ª~¦âN{HØ ´H7áHª€¹lA/pXeƒ¢?禌ӊêõéq0Šüc«ý*OËÊÖU«þ£®UÚêAýàxi/¬þ”¶ÛíªLظ"x1š½<›UE3°÷ÃDý–aðÜæiªmíFùÔX þ6‡½ÎÊG½½tfszïìðÔŸ%óCùä 0„ìé4±DN/HþñA;+ÂÂcÔ#G}§b‚‘ä³öÐ{wÿˆ2lyÈ`&”LBÇÕž?ŠSÊzhE¶ ò”»Ý„>É­ô€äÏ×Ó¿ý(ý$ÞÑ!f_9ŠjĬh§kròIÐRgBM½ …X|ÔGÕÒyÃR™˜áñæyê§.ª–J Cöðôèð‹¤äýKÞhé@šþÝÇÅÖwé¹-F'Q‡zÜz¬²KëL÷ÄÓÆKê“Ñ¡ôŸ?åõç+À•"‚‰t¦·Ôkã.“®â ¿Ì/ÃÒÍ$‘Zå[ðõÿ0Zbýúʂܡêf9þ<¬q_v1[‘)d¹o'²à?ü»h\[S1ÛÅØ‰)3ÅíR‹ˆ£SÉ£X”Äz×d^s/ó?ƈ¹Áô«ß½3žˆFXøh¼Ã‡±¥ˆk¢Óð‚Áh¾pÇåèч¿a~TPïÍVí)ó£Þ0'ëØ —ȘņõöQ@¹ó©6Ab¯ÍGFŒPVœgT0Á (Ã7Æ%ÿ(ÏY%RÅà(³*?rtRG°»ÉsâÒ¿=³îÿÕëtëvéáÌê(8ŸË§d¿jÅÊSÌzð9Íià.s}€œfkîg?fö€ÿœ ¸´ŸöÚˆE­yQð«Bxœ6ì« ±‡ìî ú« "98Ns"ç±\¿ÛÃ$ÌÐ‰Þø+þcöĈ ~•ÿP ¿¸›ØÒÍŒÜî ¨'| OžE]Ǻ_äJsã“æPC3ˆóbŽ1Œ= øjŸ1‹(·Ùä&²…¬\s-¢ƒ²tŠB'ïuô¿ÚNýàÕ{8—lNƒSYH“ƒèc13dÿ’·†/µKËÌòìo89ÈpTÓ‹AWÂb{ç0+v±e1Ï—jŠÒL5œöRîüõçƒá’{›×ô­ÁîttÑßw )J òÇj ñî 8•äiðá»müÇ`ð«’(І²÷ëh‡{tU‚­§É™D@çÁtûƒK-2/¨Ã0 -Ð[)*º×Û¹±ÔG±ÎÇÕ4˜Œãø¬ºüï0z‹0ösÔ+yÎs‚7Á¯ZƒN`½6äååMY•Yàm`&*£×o÷³ŸÁHïB'Ö…+?ÿ¨ÂÊM8—ð|bz4{Ö;¤ß5`y“F3©|;üy»ÿGÜYÀgqmkföž=óâîîîîܵ8—"…¢¥8-VÜ!HàNpîî<¸»|ÿI/o¤IνßiùC„ìì™Ù³äyžµy\wû5þÛêúI0Þô/yƼò©¬öÜh6:®øpüŸðqgÌÂ̯ç¾ÞÚM‘«]ŽwꮊA6Ÿ Å­Ó'±¡ï3ƒi'“ìÈèáÞ£Tgþ` ºë'±²‘¹nEÄÙhJ¿mp;õƒ†éM¾=Ò_z[Ñï:¸ál²,¦“ØÉ?6áÏ[¡°+é‚¢oË~ë.ÖEy Ú‰æÊÊïc˜¿ýöÿÝßiô•Aü‡¥çÓ£ºïÓ÷­lqB‹»†¢µâáWm‰d$/Œ'¬ºê»–;¨å>èj%úõèxM<Ô—á?`¥†E‰jü®}¶6Ú_ –9°ô•¨'õ’yð7ñÝ`*RÑoð·öOLF¿ûJb4Ïî6¦ Qåô»­M•<žpÍu`iK›û¨0™!þã†ñ\T!:MˆÍ:ÇÏ&®oªË‡è° ˜À=P£ûô|@Ψtëfî…ÿ8K¿ ˜à8é@µ›Á¤xÀóîædÖÄN9 £íÌRïz_ˤq8wq¹QÑ{»ž™© yFR6‘5‡u{é_rkŸüªÖ93ÿ®ФÃêúCæÂ±‰xK¢*Eð+qöÜŸ‘*9ùÇBµåí"P¡ÝD§×TAº–L#ÒͺuÆbœJs_% ò_ÑŸÕ®ÀÈä¤ÛySrÒ«j)su³¿X¾B.?;k ò•a1΂FçrÁ*ûðoWm9oxà/ÄBÎêmS§’mZAþ±…¾¹µ’ŠFåZH‡õÌÌZ‰'šsq¬¢5~ùöù]X–+=Hÿ’¾Ì’8W]¢2nŒª(È‚Ömð«dt©ÎüÁôÖ*‚¿œÁü¨©Ìno—A96Œû’ MB&ØšÚæ¯îÍUÓŸyÁónsî~°V›Ù¯ê@ýHAüÇŸÖhû3ŠW¶p½¦+È [á&ZÏyj“ÁÖÎp¾²ÉìAæ¬ÐïyÎ"?31p0|kÒõ* ºÝÎx¶ÈTŽ?Ã;Õ°ß‚ºY0Þù©<=€µÿ(ïÂÄ=rûÌ?-cQ†€Pö‡?ÏCµàPëGý¹ºÙïT;Wú4¶µöYoÁ¯öËkäð%èÝRN.p_ñðçÃÜ'!2øUxŒjX{‹ ~•ýn-ÑV¤6~b̓Z!c Åßp ¾³þü¸]Ìm²èVT_m‹ÌùÀœÇZò lzÚïôRØzOâòqè ó3]¶ŠúÁêæf䦶pˆhå¾a]£óõ¨z=½Šhƒ]>ëͤ(s)YiSÿùœÏã`ŸdC4´#ådDò”qOT†Ù‹¡N‚­¥AVÕv`Lð¯àÏÍ2¬h UZú]š¯~'ìy}"æ· áùÎi´]~|'ª™Jzü­—à·UúÁÓ²0,«§9œ¬%•2]¹sý@e"©Zæ,㼕Ó}÷0Þó{ +ÙÝœ&gi‚ß͉-n »í§§¿ñ!^ÖÀ|æ-.$ùƒ?ÓèæyâÛEþÏßëŒÁþfªƒ‡u!Âtz\=CÑ:úóãøSàWU±ÙÍðÉàZã_N©›²ŸâŠß_Uä)þ6™ÿ4ýè_’}“§òF5ƒ ƒóÏKÂÏo¿*‚6ö*;þ]E}t^ÁVä¼ @GsÀ+;}ó˜Ï°ì[¬Dð5©ËËàzH½óH ¼„ ãŸT z‚Í¢Ûá)2°íø÷Î!²õdäI±Ð×ÌðØýÍ“jWÙž¼S¯™¤Tüê¤íö•·yÒ­‰®€±ùÓñw5˜Ý{÷¼HðîÜù©œ©ö`H äVYÍzaõ°S‘Ô¤§‡Ã”†gXÄ|ñ?™Ø”¹ ·QÌ¥É>™-ˆvþªvV¼C‡Q—œ÷);ïgî¡b£õ)µÉhrPIÒŽ+Ž rÚ™F°+5­Ä EÔ;¢­BøEN ã>…›õ×t7[ ¢1¾ïOO¡¹f£ýGÕýr´Å]Waø³º:“”sý„‡šJ®øTú<ùGk³ùGíeþ` }6L¾Ýê÷Ìÿ kþöýúû)ݹc^Ì̃žÑ™uþ|6ÈAê?b|gÿÝ­Ú£¹DFN¬\74¦ðÓïÂl"xÍgIð˜ßà{õ0Ò;¹™Fs,ÖcÑB–¦ÚqŽlÿØ-¢él*‚WXÿùÀÏ ½4ók»ƒ_ìǾçÕù6Ó©ì‹=9H<‹Hñ®/»‰9?æG—Œ}¢V(½ÚzµnözÑÈâ›Wä$ãöLjH aXËÕÖËõÔíÃlÇëƒíMf“‡7<+ÞΙ?8“=?0 ¹Ÿ}è+N5ŠÁ{´!kÛ ’´??¼· B/EŸÓXx§S×V¢EgÖúpâ4aN [£Í×/Êlê8–·øT&ªëó4‘½‡éªîò ^y.^i«å^NÅ׿5BÓ_½`b¹·H&ך h yVS01'‡ØŒÿh/ü°´½Éæ&a»ÿÀ‡d‚9Wx®}î77ðš©M1 ð«, C­±•x¶-üG_ð,§®a¢™ti¶£"³[Œ?Çóq0ªmè CbÏ“_ÈmÛ‘©lÁ‹€£é&Wo ÝÕff!]°ŠÓ¿½0Õs[Um~c ê™#‹6÷Ói‚O‡ÕÈŽøàr¼ÿr®ÊK „?Ÿ«âã+va÷oÀ÷¾S‰…^*È\fÅ6oTûÈòqßèÁý‡&Z«ÜƒÓÉ‹_p:…\SK°IsÁ¯zædp]·pmÃyà?ž’¹&e¥üöÍœª™f½oË1öªë>x¬%æYÔ\S`€à/ŸÀS°7YéuT±Þ¡sfVU¿º/LnRG¥é>‰çÉ?êßᮠÁ†×”d0ºNT!æ ^±ý;ÕMÈöÛáöÒ«ú«Ü—”ä!¹Á“˜kÜ·ó%˜ÖìsmëÕÝy êÛáÝw²Ë&LxZC6c»^ÒÍ}L»+{tf‰¹ð€à­²¬œèÞßí zÛJdÌ¿_9u9u-ÛÕ5 ê#9þ£%z³±væÙ>aºHúÌ×%Éjµ¥ÝÌSLÁ¹x!oºó6äŠ7~&QΟÌò±RQ-8O9Ç*N­’v_ú'î³[€_íQY©ñ²7’+¾…#Üü¤Ê«æÿJÿ«Ä BJŠÏZþÿØhx¢4Æ£Œ¨'>ꥸÛë´ÒÆxôW»z”¿)Ý7Ôöjv`6_`<=˜6SÓ—êgÀ´òH!SˆäFe÷ó u_LlÄÄòm@×úª˜‚‰0º¿¾Šámèš’£LmAýÕg8¢ô¢±ÌAâòè…ªb¡šÑãq>e+˜ø3øó“ä½Dà± Ÿî6ŽˆºØå¸¼Ã»ð©ˆž±=è@GžÑeA…fÓñyT Aöá>m•\E7¶Jd/yay[a‰3‚³¬‚KÈ Nr D¹Ì¯Ø¢ªfžÚn°‘‹ëìáa'CQ9e!·I¯—øÐ¤é«çS[ÁÙè–Œ~7¬Êœ#Ì<.s`f`ÅýðqññK X¡¶ú;Q¸ñ=¸Ì Þ£µd![Ð@`´¿Zÿö»L|z)ŽUgᜎq?â©)A{tÂŒNý ¶§qøH¬|?ò“xøhüæ+¡úðçwà?æàsR‚€õao“Ì”jþäVâë ì7ð™áÓ=Aÿ„YèMý`¢¿å¿}d72¼Ôh¶–½û«îÀj­GQ›eë|ðœìÖUˆîå[á{5²N§síµW½a~í §[ñVÅ[Wgà7FÓ͆ÿp0º±p©X_Ñt)ì}>TÁ‹øx‰µöËE¿a, ¶bAÝ 1FvPšÁø-æµ¼}5ˆMºoÄ£þ£Žk-ùGur›T“$@ß$,ê!ÿ‘BŸ°ëÔtkê1]sz‚ÿy™\5«u³Ö+É|޹TG\°.âC®SþÛü#9×ê8LÎð«y2°é¸ÖXoÊ ûƒ“Ò›ëmÿÑκÇÜÁô¹êlÍ£¿ãGlüêû“?cTVîÁóÎH‡Ç¬É\í~/ÀWD\²’[œ¦êÖó´ŽŠ<¬Ç${?õ#ÌÇcn!Qöpk‡Íd&ëWK³Šá jˆüÐh¦Òûz—¶KÄ+mþ\½+neEuy 'ö¤¯ã:øý©xôdqÏÉ :Ó—q6.KY599‡9õ'ü¼äöÛ¨ŒÍYó¯GçèqðçÉ]sÈÞ¾Z•ɱ*PÿqŒ~2¹]P´¤Rñ!¸Ýpë›sÒ—¾8nÃ¥~0º¾Xë>YB/®SW÷ý§ëËõdÆ>lG(Ãa×NkÕŒÉÆ&ã5õ ¾³ÿ•¯ö…Î×ôË ú_½Ò·ë_¨ÿ(&Êì"‘÷»ö™Ç(Hæ8‘þ»}ˆsÈ12þP?"» ´]Býyr³Wˆ‰aÝ„ôK/Ú%ßâÉ•C œItŸÄ Þï½DºeòÊe²µ˜Ö"A¾~Äx(j€–(µÿq”éˆÕrÖz†ÍzI<]Ž{ðŒ ˜µ“ùƒ›ebNéc°÷õx¢5ô lƒíZˆ•®Ã ®E¬/±fk‰œ ‘"œ»Ø×(A”ãÌâ;–”ε4÷Jãm,¢ü‚ìc1~Η¸ø6ñjüG–0óÍ[?!‹ñS3°ç7Ñqéø¥†ì°"YÀº;bNáñfqΰîBüq;¦jsoÜMô»t"Q¥`ˆšàãHÓc„¸< –"ŽüM¸àÆã熲û~ä ˜…ìâï(¡ÔnÒ±äg¶3èûš–Xõ|ï2£áàù±Aâû¢ueú* wP¶Í%–]ÁZ?ó÷^ºA‡œ?¸ÐøC¶ÇoeCQ»…=åŽo½8Ã8ÿ8SŠJЗ°S¤V‰Å· Gùµ{Ê´VÓýuÅq„MÜãÍ ëÑiy2ð’9‰h›\FMböJ+«}ÈþŠ¿(AE÷Låø÷¯`m7ù·Tfš¦±.Ø“Ž$:àõï£$K®þä ך'П†‰Hc5³çP;øywáRÊa¡ï‘¹Æ ˆÆ÷¨j9m.1*ØzgÄ\:¸=#_nÇ=÷6ï©Í0Û=È…bP‘·”¾—¬w‚_Aeÿ¬¢öÃÏ8ŒÍuI~u?ÚvZa½5™àZ"©î XuÁ¯ÚÁŒ¡&¯#ÙÐdö—šQÑ•×MxëÔøÊVTú§`âaQÔHµÌ‰îõ<ô³FLâGWÏ:kny.ít¶=G3€Êp>NýùrªI.Zo­Ÿð™%¹’8Ö"NSUY\Ît_ï'm‹HJ5r!Ö³­°´uèñU ¸ È„.P?†&ùˆ3O½>¸Ö|*t XUÔGâÇPý)Ï»ýÇ,ôˆ,|>1É ³žœK¥L——õ þà'/õçgÈHò9=RT2îŠ]¬ûD^çñ­PvüH——ˆ åî›òôALªº•_´œÿqþñu¦ þ£Š¨ÿpò̯Ž"ëŒqGOøõ燴KøÿñÝÉu‘S| >ñ«ð“õ™^Ä9‡ûyFäV$5RS0¦ãgüGZ9LVÒŸê+eWÓG®”iô»›?øU+¢§­yÖY«þãwµKñVnÖ¯lE ¦R ‘­„W¶vØ8Fþ1*`j…qn9ÇÆîî Rt›}¿£ïÆ;Vìî5ïÖÖÐç$§û.¶ïêØ…èVûÍ/2«Ñ§ï \ÛüG_>¯ÍüXá¬ø«‘ üª5÷ lz~,qì~¬Sa*Ït<”c…ö¡H:ÿÅðça! kµ%ú5éØ{ožÁ5jg,¼G3;d`ß½Zi½«Må®7¤ŸL Ô#e¨·€~÷7,û ÖK‡*éŒu7»³t ÉCe|S™à+ªÀ`U1'¹/·õç îú¦¢VGÓK8]J+¡¸jk²úXƒí8®ð 6“£Æ ¿: Â6€.—9ñ¬_ÉÐÕ-kÜŸXCXÄxåÀ7u«’Œe.¥koNü™—]Šœc5ʰîô—¿Ï Û^àW«ìN°Ý%¬ø×íø·r }oñQåG¹ë±7©½Zª“kÌ"3:Eß÷Y le][]†«¢«=FU¢Sãû'ú_=„‡º#7ónf¡Ûr±E¿Ôiºûd}¿zã¾ïß÷ÁcmýÛ—%Dcâ±J¬¹Žþí³é¨xþÃõó?vh;ŒøðçDó"Ÿ8I”{âl(uþ#—{×Ùg #6èýB™‰wi(õç#dê—H§»·Œ&ÙA´ŒÐŠP§›ä‹AèÛƒÒ“ UÆ 8Ë™z‹Ç;Íoè+ÖG`kKŒSäsá¤s–a>Á¬27Ëuá gúþã¹ôG¨´kámšj•Äh‘žóŽœÁj­e&ßÏ0+žäÄ`Q·Jò¥UØ##Üùc ª¶±¤ÝÉ®rö§ó¿‚(5K‘¤`§>ìó,ž4YMð¨Ï"O˜õ›µIúy™>r1þò0ñ[\öWŸü£𨆿OXê/xÐÅü– àXNOöåfMùÐxÊåúi/Œ«ò Jþ[xÉ]äjuÍÆ(nà ß$Ãl+ž€ãü®Êªqä‰C±óé¨Ãü,GÒÑàïËíÒ61á"Ó`Åû¢×ufÏwMÈŠòüÇqÎMâùä—à\s_³¿¾Ü›­Ìÿ¸bÉ5ÆÏò70µBØûeþ¨¾0}o˜i·.¯WAò‘ °xŸðPïă¼DÓýµð=ã=³3=Íòpã±k£x*ÓñEé¬jZN/ës• °«jÔŽ£b±0•ÇÑsuWùÉòÞê[‚îFüÙ 39Yäh»©¤*žL ²Õ›•ÎõÀ®çš@”òXè窞rú,Þ…­Ø¯Yj&íwS æTÜ7ïÀþ¡Ö˜ÎœÚ…`M'PXÝ¥2" Ú«ýL | Ûÿð`ª?ÚÑoäŠæB¨†“·~»…?jYõ ‡CÕ1øóÙô¿Ú)33Md8ú«VÖ`ª¼éL˜™y±SlOüÉi» Ým÷¢˜Á½ÂÉl‹þjÝ·å´ÜúIã3çþ"QDqk¿¹HÔãÄÕ¦ÿb;æŸ7‹éò¥É;æ=M´Ö%¥f>¬Â @1°’óU“®ICÜû{¯í…ï.Æ{EŸ"تô¦‡×5e.L¾XGÁÓÚ1ëêþn=Óä·à?ðœ[PC³¯c—¬â?<õ‚îD°~ÎLËzr6ýK¢2¿ö7f[E¦ÿn :?p=²‹À|\S\­ñOP'h¬vG®"ÿ(ò[Ap_ñïýwg¹ïÌ[-[˜Ñcx{z£-c~ívú—T± g:Ùz-%ý¯¦Œ«z}Wx ûþæùüBýGRüGjžx:á…§[NOÅ4ò«P¢ˆQÔ½ë`?Æ'e >¿ýnìBL9œúÁ;úï²Sý&ä¤{Äøó/Z]=ލEü¾<µ,J©Và½P•%^Þû™ß²œj¾"PÓƶøò㺨 .Yíæ¯'}‰Mõä+±?÷ÈoŠa—_É»²œî5ïÖ&È£DDåA¿r©sDäsÍTظæd4RE‰K¨ÍT¿ö%én¦ÂYÑËHRÒ7e?^"'™wqüÇKòÿ‚ <‰§v‘'ì¡çÔîÅ•úÁ/a\ìUÍSß' ¥zá?Ž“»ÅbåZØaGƒ[ ËÓ• ÿ(oÑXÞô ÜËY Cµäs#[ \ú¾Oœ”Að/ Åßʽ/Ãßé@2býãËâñèt¬ÓyæC±õÉô»˜¿¸Ê·6k»è_r‰Ÿ‚]Kȇ= ÁþOyÅ=(fÆÆ/BD< g?{ч³ÔÓyW?ûm¡ÿù{¶ÑF¶#oKN¼¾%ÏîàüÇ>õ™z‡}ôß½„ÿ¸ÂüórdÔgXÿßùMóA ÞJÙ;Äs¹ohêé<ð3“ðŽþÊtåÑüÇ(ø]ö'vWƺÅ×rsÝ÷àû÷ÃmÄæNß ¡ß}ot†ó#Ê/I^Ñ é¸ZHÿ«‰ä }ÐÅ&v] êV–ŽSwQ/%¢þã*׿Qý ¶—Nv= ¸dù3ìPÓŸð¿+͇àW ˜Íëàuþðç•íUÌìIÝ8ø/ø¬ª\µ/ލ*ñRÞ20n«Ó»Àå® ãþ ¢)/õƒcÐÄ6· þÒ*€]…Êõ'‹ôÁÚÀé—²S¥§j´púó²úãJkœª¼Ös‡èC®[ŸºŒÌtj€\\‚õb¿'ÙÏL[ œ,üùDÔÌ;ygšÉÄA°ãغ¯¸‹r³,QÓPäæôo V‡þí5`â‡ÐsÄ™Çò‚¢>¼Jo¦\%±‘]…ü,ËÁeîtçiŽy?°‚'2‚Þ™'`ã?Ø#ÙËd*QN¢NΊþŠÆ®Æö|ÕÆëÏüÁÎÖlƒ¯ÜKÜÔ‡§\YF„m qLÿןÆÖ§éVé#øÕZÿñu¿4öEDYú':þc-ýÛg€`]6n1{íwíu»vÂè uu sýw{Ó7ý¨8&ÓKCF¦IÙoØ?/_Á(DL¾ˆŽ¾y㿈β¡~^_@Ä:ðžôàW5#ÈŸëz]=«èãƒM*E]WM„ax!–a£}ˆYcbÿ° +þySßÝgõɬc¨° ¾ÄIωñײÖ¼ÒcpžbNÇq°¡™rL¸×|@Û$×Ë$Xù( r¶â}Ú1¢]¾ŠVö :©¡p ­Ìœ¢H8+N0ò£»jEžpþƒ?¢®p Y±PÉÔSРä%¾ÄægÁÃâš9e^ýCW}W›¢?¥ÉTfòžâž'"ƒk„'.ïLnþ†pø\½/üÇA²…ô2·Bí¿ë§Åäü‡ïäA´05ñEÙÉØöâS”%lïP|æBì]âšç­9[]ÀöÁV•û‘«*Šõ}ë½ËòA›SÍòmò bº óÏc±ö°%×ÔCÙT:ó‚þ÷Öxö|<‘æJìózõ+ªê±Ô²¿ãcoØÙDõçè®wBµ±î“ñdÀŠ~¦:ï6êá¤Üã·èôƒ®çÝxvçñZyð³ñ‡~Ôn²¢ßÂäÕ$®7ô ïòªŠ5•WMê ç6æ÷mÁãg Ñ¿ä6øÕWÁÛð#”y[v&3Y{Ø£îòd®Òëlµ 2¤œ)H(†ÚàoQÓ_ØòVWd ÷þº‚÷d²Užl{п‚Òú7ä Ѩÿhoͤ&ÛÏ*kûÙ÷³ÆÂx =GÖ±üj;¸jUÙé¾ÜRú#9Õ€o9u­™æ1±‡·l>ùFYtLÓèÇϵȾ`¥Òb4ú«[àW=©â/ÄYH`­æ4ÕBµ¨î—ú¡óŽÖÓ¼¡¶“ηò‚*=¡|jºåÎJýùê‡0­÷¦ÝÞÚk²š¡ÃØD®lòs§ä.·ÿXJ]¹7b&oiE¹ÄªÇôà1VX­È`‰å˜x͵Ÿ>ç~bê®?ûìa]$‚Ý~ÕŠ®ÌíTÞE•ïÈŸßGy¨ƒp?€}ð’é¤ïõ#FQG<Ókrvjy™^»È¸Eýyýû¼ã.ÍÏèÚ6lÂtìÏ,¦Q§²M‰H—ŒEÿ’Ôîó‘íyT Ò[¦ö}°™‚ü£¢þHŸIÿÝõt×)_Ð2„¢=¬U•^K%ú™»yÞ¿ç_6›«<ÃËb!ï•Ó[6#ŸÝ‘Sñ›ÂZ$È×÷1¿¶2Îé_âÌ¯Í ãQ [³wñGô,—ù>飜'Ch0ƒ¬òíÃýÚæñêpÈ4üYi! ;ÁxNge0à"èw#áùÖc!ˆÌáÜÅY†þ¡%3O7o`~² «\üê)ÙÇ,þQpù³Øè\ð…tÿo› ñ÷Fm ~ÿq™Ø}hNbƒŽüYgó糟à?ž£@[Ên}ðþäHÇñJ„¦é¸¦Ý3®IÝÒmPÄãÜÁšx°ܵê0e-ñ‰X½¸÷düÀïd yÐ_ÅÅîg…ÿð¦ÿnI."ãž\ÙY®¹%*µt|ÞOyŸŽO´¼þã-(×Tžõ:žõD×gÅ=°[Æ_=Çh&ðy¨Y"ÿˆ;¾«µ{šÿ±›Ø´:6σ.Xëù~d*ô¼ÁÎŽR/‰ž‘?‡x.WŒ2#UEøuj<|ÔeYɈ»Ç›{S?xÂ~OÏ«B° ³Ñ å ˜?xÿ‘Û5ꄃ>Ž'F'Þ„Çð;¥¹¦Þj§¹O톗™JÕÈoìJæª膪 bô›•4X†}j9­ñ\ÐõüaÿlòÑ<Å‘ŠÞ>Ì9÷B¿»(õƒ¥íÃÌÿØ6ÌŠƒ uhS3®VXêÏÈîåÚô/IA^t×lƒÿõÇeUøóÌÔ(G¾0‡¾W/Ñ <‡èfu BÏc{Ëuæßf€óÉÅ},iÎt¯—_¿fÄ À‡š5¬ÉærÑÅL¨ªÑµ$?Y‘'õƒé\[íÃv|Wdìýq¼Ügk$UüiðѨ¼g¶d~m ÷õ }¯ˆEdVœ·á©Z ÚPÞô­˜úÑÔ*-ìþ*4’uÅ·µªÁÒx °ÎmÕ¿ºÏÛ¬c7|™ômƒ“tþD»9OÎ<²²rµ•ÐõeYk;iŽv-­ëŽë]Ý5Öö¢þ£Š=}ñjë6ˆiÕd¹u9AŤï·ÿ‹§%ÿ˜á¾3ïé¼o¸?û¾mØú&=øUyøóûzeV9¢¥2&žÆã ^éûælÔ“A®²Ñ+¶1 ûlè=¦à?ŽÊä2¾üj$2Ôwí³õƒEÌùÄ Î,ìOb.<ï-}ƒlHNrX¦ç©!ÚEhÅhz =3õç[@Xúc¹.‚_Í…Á=$V?ì{ÉLö9*G‹ˆÔÜûWEiЗ8Øõíæ6¡ëœÌØÐ›XÄW°ÓE`T"›ÏåÄôßݬ•;àÚspÜþœòExàöÄ=cÀb²×B¿«“)¯&:Ž.ÿ1›üÃá§ûÀr\…ÍŒ¯+‰}JK$¾äè9X),PÀ¢2³~/Œƒ³Z믿•YÉ&bÏ÷ƒ^EF1Õ \w´¶¢rÆÅäa;¸úçìñ-üytZG”3DO¥Ó׿ü +Æo§a7IÕ~3’¬$¢XÓ©SË…­ï‚'ˆí*ÈÞ2zâü}ƒ[ÉwÈÜ£Ù`^™Á¯P?.¥?þñŒ©ÍTDó“QP93«æ½ï2çq–¼Í«Ô&…|wgåX¦ì`üûa7¯±Ú*<ønø…\tJ?I|ZžL!‡Uý®£¿Š‰5M‡øwÊ™ÿÒø¶™—¸µ&õ+øÓŸ§1…%©ÁW¦¡7õ±¢Ñ¯ï9ìIUë(Sz•‰J@?ªó¼Ð²Ö`þà‚`§û­Ñ?ý”(¿(yÅ0åL,_aí†=ˆŒ=]i—q¥sUuùPÁ^–ÿ‘jÀÔ“e|ï<5ˈI~]ƒ­÷^LÄo¿Áçwæ*6šÔ~k Öjò‹p™ñíä##©?ßÃ_ ¾û"Þê5÷`9šåÀ÷¹%Uhí8¿“Yoˆ^Qé#›Q#¹ÜþÀ½ûúóÅxßÄð —¨ìî ãfe7S=ñ'ÁÚ~UuÌñî‡\I?jÄàŽøñ–µ¶VšsÄpªKŠ€+åƒÿXi¤[ËfÐ&áÊFýà:h m/ˆLÀ0m"ÿè!SÒ¯âÛ‚ïµã™FŸÿÛÚ zQÇÊ„U? ë¡Á¡Œ±¯Øƒð$+`ùûRÍïEuüYüG9ªD·â?¢ž•KÜþc‘~Kœ“Ëͬ7‘^)»­l®/(‰ÛQ)Жy ¼òwÝ´S>AÕrÕ#Ãéim´.“û«9e?f’™vúíþ¯þN©Ï â?®ƒí‡×Ñ"¬ß¬à·uÔºUáϵti“–ØGÿ’GÆkj|ÂúÁP¿¾ë08€×ÖÑYŸ àë†ëëêSËx(îS¹Ÿg¨ „øbð«̯Í>ÝŒE…oiæán£^*WË”œ†î!:2„XÀýég­¾žO [9ŽM¢S;Óf㟿šIN2›èÞƒK¿¡ŠˆÿXoœå99Q‰ÚNÁ"T圗Æ:­fåÖæXÒ蔾Сsš ŽA¸·äƒ%Új椿C§ìäW@ÒVÃ!ÕÆÊy♊«WÆ~ " 5X´Ôáú¹F>2•žìÄ?’ ýUìôk"ðœÔ¨½d•3Øù£õç ˆìsÉTú û úá:m¼~RV7¹Gàwóq§š²2¹‚S0»‘ÞáìÁ‡œ ïzC.ò”úD"4Dì B¯å;"òSøDn\gf²¥|嶨(txÙ_@r&³§N#>8÷#](þc|[tyþc:Ün*ì};¼ÑïàEcÙUlfRìãr?õŠ5ß±žœbwäþcwÐ åã¡Æp´}­ð?Aø+’[6Ã^—¡V$+=sbÓ#/õƒT‰íÇ–ÆBG»_åÏŸfÙ-Äé~eÄá~Í {Øò™hÊnRé-¬ØÔNÌ%_LW½öôQ?9/­)F¶ðˆú<ºÿ =‚R;[½küJŒâ&—›kúýÇì…‰Îi-ú«ô.§~ð$óDò…™ JŽþÜc#r£z0¯EÉãZ‡"ÿXÎ]=qfŽtíJÊ._k§Œ·ò5:`Ê;¸¾jDIÈל>~ÏDqñ‚jŠ©¼Yžü¶nÄ ±¨£Qä"ÿ±‚þ%‘åq8£yØ­døˆAx4[hzê€Ý, Rˆ÷±oðX«Yg:'i žÿ²¸ô7ÿ1Ùø]:Ú²èÔn)ö'Z~µœža\mò«41y}¢{ªæá/¢gM®üÇ5ã“,×-N<¾–Äé;–|@Â=Of6Æv+.YòRøUDÛEQ>ù«·0 Nw…—úŠ`÷ð‘Q“»|þ«»Öfø¼àWË©Ó{ʼœtüj|šZô¢äaȵғ‡D‘ÖÜâ>…Cé™Gy *Zµ™F»Ðô¦Ë°rUÇW¬"C0à?SU‘™üã*;ý„ºé3è)è¹n‹Ž‡?ÄPßÒ­Þ( HwÉD+?XØ]»;š)&£¿ŠIÍpQ&L§ƒõÎúv±ü*ŠœFR÷óŒÈÂ¥Œâ<·ù2väw39ohmý(ó£jÓÓdùGu&*ôþiE¥WÕ³ g²êðÏ’X‘A7~Àx8s¸¿H&Ýý&‰ˆä\§Ð_)ÑÔAP˜íD˜ûáfÁ¶ÞbÕgĈ%°³o¨P/„{Í Ð_m¡kXB”0µˆÃ˱£Dp Sàõ pÊNðUXiüÇn|AæpõWMŒ¬Ðž f»K%ÎÍÿ¿gΪó†$þ$Vü2ùGj³üyXýÛWâ?öËêÖøgì¼ÃG4"._~õ t¿µjŒºŠ¯[޽c¿“üŸd²PçGÝÁâ%c(¡ö<…é¼™U¸ÖÓÜÉ3Ì”-*ž¢UÎ5Åÿõ%j°™#o¡JŠÿ˜B¿ƒ˜ò,ýKœž½ñAÞ{“] @Ï;@U…çiÇLŠÿ˜M?òç\½3-n!ß_DNà+.êÝ–þ:;ƒPŸ÷pöCÃ:bßs( wšÕ@³túînEszŸÊŠ}Ô^—¹oŽeq¡Ôê­žƒ9½f¢Y—Oú¦qO–Á_•Çw,C¼€hc쮲© h[÷£j:jßåwÕ"ÿX@6“väÕST|,ÌÓ U^Îo ÁÚ›I°¶óU{µ%ê*øó 6Sé&XiW×Lk‰jOo­§dqѱÎïñ{ðÎÓÍ*¢_°î½Š—ô' X¨fƒ†­¢z¡ÙÀ;•Ô5né 8ÁêMÿ«8ö[—ÒØûËä‘-4µ Ïî^¯&þ£"žm,ÑDc¿¬tˆˆBÿÄI¶IÝÜøó° ÉÓ}0¾¸'Ó5¶+Ì¥ûÊi¼sUÜ\à~‰=ôýFT<àU0Ìl–/9rc|Sbúª·§^p¸ÕÛþÀ”X/þ?3|÷:<‚ó‰lû‹ wŒúbô;ú¶à}í˜x% ‘ã †ó¦ÜiÖ¢ãz9úìN°3ÙÑé«õ•ë­..“k ÐͽZæôVCî¡–&Øèñ þc¾þ üj™ñJr™ˆéóíñL»@öâIþÒÀ%"ås™ä?¨žøÝÌ;Yk]#O_+·ñt룆Ìú¯äÉÐ_V5¿Ðòè¡Õj}»sÿô÷cú—D À¯šŠÛzmîö:-#ê«iÆ}ã-U%ß—]íÑ 1Q&!/¸.KSáz¥®új± %„.?&áÿi7!¿WÐ(å›$Ó`F› épZÿ±^67{˰ª¹Íö!:Â…\áÛçñÐ&§ã°¦Î\ðb° ÍÔ<ØÑGb#qÙ1bÖû23úîžrZ„ü‡¯qS”ÃZEÅoì'ʯ¿œX•ŽvÄÕ_°¢O`¢="†{Í«éuL ´FoÈv²¯íàiÔ¸qÕ…U,kiÔ1oåoÄ÷]ÌŒáöOìÄ};‰ýmK¼ëôžîÅÿR¢Ô,«j¹¾g¿»Xɱ»×AkÒÃþ¥ÔCëvèÜ=/m²~@%šŸÁŽ®Á£hdàzšÝV`Vi{õoäVæƒç¸‚¾Ï|–¯F`lúí)hÚ#ú·¿ƒ?Ï€çbÞ#>);öZÐ6.vg3(êsò ¼Y“È>z7¸à?"å¥ ÅŒ†Qv†!ÿ òÍämp^øŒáØ9¡P5iRO1 ëžxÏg^i88Ö^ñB‰TŽ6†Énh“³ªãø…ªì¨3ž«ŠZ ~•†wÿ"~~´¡Eиn!SÔœÌÀW]VOÕù£ìâI?3œ™Ä#É׃^-SãȇÀUÄE»4lg‡•ÆÞÇüÚª£õþ#V4¼…†† 'èbýÕ3£x‰SIŸD¬'9é u{µþ¼?ö¹|mð«Õª=d?ƒ¯ÇÁ:'%ÿ8®Žð\š‡x[ö‰yä}9uMÀ×6™aã}ÐFmT½™§N§Ûx®!Ö¯ô¿ÊmŸ£.§º„Ã|7qöº »ÜW\CK­WE8—§Ð‚;VM.–­Ðïöƒþ‰º‡¹ÔŸß´ÒÚq©ú«ý÷³°Ó¡,î ;•™<$«ç7»Ja}Ÿ‘Œ‰W‰íÚXûÍU¢ZºØùvðåƒè_ò õî^þ?7u'ìëô¿þÊ™`• ²¿£á’¼eþ sìx÷;›/ñ ÍòV4øsêáÛg™mžî%ÅQa¥ ß|Ij Û¡LHbU¡ËÛÐhgêÍm¹Ùxé~â™\†÷˜Í-‡~7ŸË¦þ£ªß´öH¼cS—)‹+5õçMU5&­û1‡ñ¬uþc\Å;ô#lFéí¾âÿÞIõyz nõb¹Ÿã÷í"* dZmQ—z\Gí¶G«û±üê ýK"ÒË#ð7žÑŠt›ˆMÏ‰ÜæZYÌÕ'ã§}e):ç'1¿³{Uð«țÏKÌÐúV2½~Y÷“­Í!péI©h!Î?üÿÞh5ô&b1™æql_IlgGµìý¡ØB\¶ »ã'3 ¯Età ´°×½n\mÌq°¾¾äè2rTÌé_r ‹ü‹žNòµ<‰G ‰Šÿ}Õ#Ú æŸÔ <ò†ß_Äymk®À€½÷;+Û—“ZÑ<. 8Žû¶þ£™¹ý¥â¡8`¥|XÙ‡D@{¨‘§²P=âyÉHú³¿o+à++´…º¿s›Ûv§~±#ØÊ:f.>ǃÿNÿÙä3+É>v¢ëºu>AïºWFhs€ßjŒ÷Xü¼“ÕÈY_ÕÅ7<À6¬3‹é‰Ig¢9› OÕ’Œ'+ÚüóÚ#Ÿ|ÉN¼U]ÞóódHMX3Ý¡*X'v¥ÇøíÇt«ŸGŽäƒéØ)üõÀn]ühôWƒx~Yà"¼‰ÞWËážÎÑf‚?¿N^^¡×uø8üùrøŸ;Øç¯²ÝßæGI 6užÓŸkþã–9¬)©å£þ n|åÔœ€«ï` k4Þ#øÕuÔM½ñµÍGúÄ`§û…ñ+«ù™éÉSÆ€_1ïÀø`-cQ§·ÃÎI¿ŒÊ®áø“nôßõÃúFƒ xÀŸ_³+bÚó ± .Þì±-Vw‹I¥ øUKf)­è®åva˜êgD÷cÔfZøá£Àì¯{AÎÐMùÊÀ¬u5U]@汫 x·|òôÀ·uÇç¡úNúïÆ æÜ¢®¤8Î^ê¾SÁ›wr´Ö.®¨®Šez¹Oáú_e!vzFß"ÖÐŒ¶hÅ+1?ªs>zQžÍu‹î“/ñOãèî{†û9ü*!wưæ’;þ! ñèÛ´}Ì{JÇ©ë‹ÿxEOÎ!Ìÿ¨DbXÛÖ#ôaué:òŒ.ó­­<ö@»žuÒJa•$__N&›Š÷ñŠÜèögõ»ä3K°«yï[ÈÁôOLä ïdØEX뻾ë½+;=MÛÃT.¦–aÝyÖìÅY´ ˆRReò ºoÀÿÇRcõû»O–Áü(ËýÙ÷ýÚÇÚt&2M3*ÁußÓK²Ê.­”1“X‡Œóäß§¿:@w¼Žò%}Ÿn{w_±(ýÄ::)?az4#ŒÈ>3©ÈGâ)~àmò5e扗å;²=óÂu³VýÇG­²žAt#¢õÆÆ”$¾oÃÛ\†*€ÑøÃ0ͧe"òÓI²ž˜­í16Š–ø§þc.¬JuŠÑíyx¶DáÙ‰›Ë3D¥Â}6{µùô£O†oxн;D3+€-_ˆ-Dã‡Å/ª–€5!Èlž5ÂÓ_ 2r¡®jNd¿–0àŠs‰'ÇÞe®®ç _ćDB”È|$Ÿ9ŒJ»Ü¥ÍbþG u4íW>Ö¾OäM2|.þæXâêô8»Ì^V¡ßýEDWï‹>u~e0¶#2ªÓKíÖß—[FÿÝ$ø¢X­òàW7áZóTR’tÍÚˆ7ÉEÿŽÙè¯î’á,áY͆#éC ±†ùGC,9þ‰ˆO3ãqœùµ÷¹Ò xôõê¶JM7¤íL™(a ÿÈ•egjÐöVðëë™_Û3H·¾¿ŽÃZV¬(ñø0ì¤3{v Öòöu¢uÙZa}¡ÇeüG!jôFñ|Šƒ„#Ÿé¦  žû€Î2è]¢?Öê!§-'8Ñï`€gÕPÿIXóŽØ¬L®Ë¶‡«¹uYÕ¨ÿÈEÉ>h©vÇá Õmƒ­·[LáT¼%²èFçm^ þ£µ-›À¯áÙÊÐ;q#l÷ üÊ'ø”¦0ò͹—OÑ $´Fª½ò³{{õµRz5¼Ñ$îtküe]ú_Õ&ÞnÃdÀ©i÷¢?ˆ>öŠÞ¦¨ÃQG^„XáøóÈpJ‰U)0»©îõ Ðÿ*>Okf·TC…Ø+œ˜|£¬5ˆJBXæÙ>À?í™Ò©¯0­Tìà=z¼KôT/,»¯WèÇD,N}CÀé üA-Ëtõ¦Î¼¹úÃvul~fø«V_«óÏ›ƒ æ'ÿøHÔY‡÷±=oà^·ÿX¢ßï×j"©Mü®ÉT“®ß©tYJVyÝîC'™»Ôd†ïߦÒQ¥2ƒ}O´ü8õÇärª{²/d’»ÜWüßû ó?õWŸ´LaNooO/ñ©™÷QRT‚ÿ¨ÎÝÞ¦å3ã?|ŒÓzRý`x ûþ>úUõ‹ÝŒlŽOŒVäI[Å"&Ý ™8íá~žÁ~0ŒOâŸeºÎÄsª WшX~Ÿ>AÖGÕU§Fþ˜‡…±HÀ—?kõèŸX 8ûëW_M!о#QWí Sp–þ0 ¯¶""¥/þÃtEÁ/'ö–Dq%‰¼GïôO¾.@œîáçBª:ÿ¾OOm t#î´™˜¿ “O¢ÊDúû¿o+à+G˜0¶BæÇ6ÏG æ‹J ÑX=Ö(þŸÜì„ÿpê?â_¶Ã+9]G0 ê•ZE»?õïäq3*ÈY<Ø úÕ¸ºvܼþêÖ¾Ý,Fò¾ÅdÄ¿}$+8Šÿئ6tyÙ̈ ú[~OÙ=]&¡v K£øéTXã1h‚_SÛæ‹-ÿ“½·"^X*žü­â8üGçþ܇¼¢´:o[@–¶†x<9lêJfaÔÃça~Ô>¾ÿ¥VOòy°×e§ ÖꯛùŒ\«>¿3ûùƒë‰íBõžzFoë(©®8œ<ìDºUÁb€`= ›É5¬t üðk}|°'ýÊè†Ã^"…Iôo^¡r‘ŒÜ†'òÍíϹ;¬6Y³¬F g©™>žþ% éµÑ:¯æùã×+‘\åÏ!2žyÁæG9ý¯ÚÀÌL#ÚéF-`~¦dÆ÷¡¦»&]ͽ™ÛñÀʆ~w¹Ý’8ü>Õ%¹—?€ÛÅ£{vªÛó™ ݧ0ý¯Š‚ì» ÕÈ|#<ÍÞªýK2Ú+©’ïEý‡'ýÛŸS•8otØzHÎÛÊÍ}ÖY÷¡9Zæ ^ìۂϵ=ÂE͑ß/W å<ó;jÓo·.L¦#>µÇÑ»d5¢ý­JÔò×±,hu†®ÚEd«±@z»ýÇ4æR<•žÄK8s[ä²™›tfÎ󈊯ˆšxÆu ÿÑÚ^¬²»ÊÉŒfnïq²óMòQfu²«¼òûžoWó¿û;ºŒ!î;óÊÿ4ÿxÿH _^^!Ÿ/Æš[µêàWËèß~þW!+¬þyß¾ô#ªGÔíÄ݆يz}Ý_¬’YˆqÓŠÌâÿy ßnÄB7÷§Œ‰]hf~UáÏ‚_Õdþ 'Y‰ÅüÁ–îûô'C~,Áæ NÀ÷ÑAǤ¼`WŸˆÙÄÎ 8Š"ãY@ 1'ä‡òù*c•h^r)v3ñÓÏdþ£QæUNÛsùˆ?Ýeápw¸@›G?–ÔœÒ/fròÿfx¦œ02…òø› 4K™Žø ˆV)s¯‘6œ뢿ÚÇ=« ßs?ECz"üäd¹A›€kåO2µˆ¯_’ïD´0|géµýîsr¢Áø‰0Ù°Áðï@“Å\œŒï\Éo݇ݣ•|bÜå¾=×"‰«òš™M@ ¼[GòFÜ«ãfjЧ;¢ú+ÐâëAÔûvÊŽ*j^ ÅlÐöéå+r¶XñØì£wþcvé YR$,üM¬û%ðp¥Ç Á{4fÿ›…Ë8b‡3Œ_eSp¿”pÝC±•§ðáðà;©vHJÍÁ,{ž•ÐÚ¯Š3¿v5=¨â¨tj$~dñökžôÀÏ%–ˆDMè8ÿ¢qñò˱衞²§éÌõ¤ÿî|[ +@ŘڴpñGPwR%¹~—\o+ÄÐÿ‘\¥PýÀ¸|Í[Ì?_B%_V«'Ö/3ó&ª»˜Œ‹x<}æ‹Rÿ1 =×Á=DåEp,õªX‚bÙþÕ’-Í“j5HScÖËb} OÈCUÅA{ÖxýÛÏRÓ‚zñëì~;š©éjkþ¼¶VQoÍSœˆÅoˆ/ì&ã˜ý±é½íÏVQ¼î*4I÷ð_щõ³Z׈ùkY;Xo&þã§¼¥RæŸî'’^¿eD'ްÕP3³õÐü] 4«°òéìhœÚñÑpz¢< >q¨µÔÞ [vdeá>:³T˜™_;ÂýD^R?˜œèëÞÓÃêqétëžý3xZ}«{ô/>‡IõòãGêXs­<äï8§¥áášqºýÇpyÖ™²½ÈÕ“Çü²T†hõ ókëêç°fuM/柒_ewÑ B+¾eºÍ£*®%àßàk©éÔŸ_„SŸ‡õªcNçDíþArxa_ífc—øÌE©ÍþÃÑzÖ$¶þÿ+øÕi·¤c.3Ø‚ô k½åÚ¹Ýs1ôi°£•áy3‚³ä7”£Šøìdó=µ ó‰×ïáéw[Ù9¥uù·ûÈ4ÒÁÆNGŤEßø1€??ŒßÌgêèq‹$zXkúhÓàÏÓÀl5‡‘W•6ã¡×á§«a画©ì…mÞK6Œßu™œ¢ß/Çüó¡\î-,¾¯¼ÍõœE °–»TˆüÙ¶›œ9’l"¾ÍÁÏÄfç)¸‹o¤7*¬¿/·jS>@Y5„œ%¦º€ÇéOõïDvÔB,"ú™t¸}OÔ>[> Ó•ß»]DùÛ„’1ÌlÏî“â<ÁNÖ’—z“û­ â:1ÕóÁ¯RRŸ‘ þãxýGv=¦e˜ÓWÁ­½¦ùï <ÐÕ6 ÿ8†(¦eQ;1~(žÖckš-PÕ§'Ö²BÊZñ x‡òĦ19Øé~m4ÁÇŽf àí7c S…8Åok&wg b ׺J5!z>û&ùÍ´+é¼ÜÃù‹á z÷Pׯî?67RS7‘€;@€ü©„¨J§Ûcö$km@ÿvÍêĵ¶gwþ`X)ÀžŽËÀÑf¨xš¢|žÿ(Ío- ká?þD•þ»žÌgzle¦^|5ÌÂ,ë6=>êàé‚í¥"›+GƘ.ˆ~7—~аÉJž˜ÖQô½ÌEª&UxÅmêGjØ‘èn;Ž©~‘`h¼í}h½ ŒÎ̳wqýð«^îû'ô "g­21ƵYÎ6Ç¢ hFÍe/¦²:ÀÌ÷´ ÁŸ›ôÓª`·¦›ï*«¶ÕXà„µˆDj35â\ÿ¡aé¼ÁCgcUšÉõtd¹`OLJ°&PyYÔîâ:âJ #•Ó R»&ÑŸq9ÙÉSrøcr7oIFÔÐ%ÿýnr¼Ç0÷Ñôüÿqÿ]mó£Ö¥D.q3 ÿ¸¢5¥ŸÉ^þ"« ©Pùû;ô+·˜n]fJ‡ó|%û‰ÇF}!ùÇ:Yþ#þÃé°ñÿrÑÿ!Ycjž])S¢§(Dµü9ÙÜÜÎüÁü /Í"è?üAg3Šá'|@™Š`婢n”0-¹›¼‘ˆù±¬H„?Mf“"°Á]ÆiÑÕâ’wøð§ XBa÷åø~ækôDÉŽÞȧtŽ,î5?¿ZO=KüQ,«£òOÞ|ÁJ‹©Ú Êjh]?ìlJó@¸ùÇ£6Ö¾:(Í ¡Œä ʼnƒ£Á¤'²x`DZ³ûèÏô^ž¥õdaìr6oÈlàs°çÇð7‰Éàšƒ­Õ·jeÎ!ÿxH^²üj?Ù×a|èŸfyí¢ä£–HøË§Dø{ñ·GÍä\uñçøÊY¦yÍ1­íÄô™ÕhÖn‡íˆGÊ„ØàÝ¡øUôÑÏ*¾s¨ŒŽG¾ÐÏ0 ýîp¬Ñ"ø‚°ßŽ>Ö©'‹ƒ?XŒŸëÂýøîl©K!žô£3þcÞmYPauäͽß@3,Z°ÎÎü¨DÌ‘‰ Çaë·cOMfö¤ûkáôâ‹,ȳ,ÆüØ!pNíÆüÇ[*ú†ZÇA3^¡#º‚EneÝa>Hb…XôภšT?ŬòrVŒM >‹\/.<ÄR~ï!*6V²¬¢ƒT{ôW\ïíJp¸{Ñsy¡º*«°Žî¶§ùÿs\I†j÷Ûb ìg„Ã0%Ù/«bI7È"PƒÖjš¶Øø( k:¢­œˆ‚ê 6z>çéì¨@*J¢àAzÈá>›-šnIg‡!¦§êA×XÎ5h†M¸ô½dw­¤-®‡rûΑ1œ–Q”3Õ­(èÚo(¸êP[¾‡š¿×LûEijÃù$ÿpæ'öFÿúý] CÑïÎ×¶Ä;³2ñõHÞF?î:Ú<ò*Giú†3š9™ý´P½du¥ÖsG7âAFðçý¯B²{ëŒA²'ùc)ò‰Óª­!ùjz)¾ÃB/¡æm?XÌk¢ûZT¡WP:}D&`ÿ®À(g Îutˆ{øÕø‚qêµ]d4 ˆXnS?ÅJE®Ñ>IÓ`SW±K5¹_*U¥—†å_ jqN¥1+ØŠŒf ˜×‰\K —¢VÀxŸ¥üðµnÔB¤rEq5wÍoê€é.''/ž*>þä¾f¹O ¶Þ1ы߼Kéj7uÙ÷P™µËOÁüÁ¹Ìå;j½'§Qþ„<¬Ö%4bI,¼ùAô»Õ´üÇtÎok¸’t¨k§=ΖôE²$«€ÌµÆ®B¦p‹:Ž:ì´%Jéh¢«±rs¾ûÌäÒ·‰¦ü9Y¹-ºwŠf]•yµìE̯ífGsí¦gýg;óg‚$ǯ¸¬ô\I ºËÜ7Êü²‡ûz£ê[Dl¢ÐÒÄeÏÕ5¬Ç8úï‚3š†Nà ”ís^:À£ù¿FåÔ¯â?éïÄs¢Ï#ØæË‘Vj²¿íÔÏDfŠH»1ÝÈ^¹âѹ†]He£Òdµ=ÜîïÝ%éÃÉ/CÜS[žp_ñïƒD̯ <«7™ÕXÇó}»x¦Ñßè‹ü¢–¸¡;s%Öã?Vƒ`=6럴ïó˵ÙFcêàRQMQÊ\$Ò‹±èÄ|˜U[~¦½’ÞäŠà»jÄà‰/–¹ˆÇÑk¤¿,¦_Ð}èq÷F^—µˆ;†P”ÿùÀÏžác]ÂQó&ú,‹Íï†ÞdYñ@¼Àa΀Ÿl„WZ!‰Pþ±ÄØ/úa1ã`cvó§ü@2ÙéXˆvTzß‚½Hzâ"* ¿ÃÊJú'î dØLÇ´„Q‰Gü½̺YîMôùãÍÒË\OŽò.Ü*šñF~*ýÚáuþíy@ýËÃç&.w&Hjgø»KÖTnÝ’©™Ux·‚~ä‡þꬆ½_Gþq®;&žÍéÃÔ€ø»-±\õûïÉ÷7Ó¿â56z.ïîc#´šÖûZ|qMÆÂö¾„9/B–”\,w0‡l'¢ÒÛc qýžy?žUjêøÓ˜SC­ÿ˜©m6¢ÊÈôÁž cƒgÑœ¸n¨’ÃÊÜó`Ý+àÿ·¸êÄê yÌbëI1:GÃk¡þüw2ÂÝLœ=A-|«!Ï9]Ê5Èå CÓ mZ?rO–“;­ÀC] I¢ÿÕ ñ+¨æc°Ìêx££æeuÀšOÜyøž®Mø[àL+‰æ—cŸ³V-Nã²­Kô˜ZNÿÄäîýUÐòé•Í‚°W÷̦ø«úÔŒc>ÖxzѶGå~ îû1=s¢¾Ë„¥6Ö&ÖóRñ#•aˆ~ 2¿65ó?žƒü½Cý‘Ë:aN]Éã¤ýÊîÄ|ÙŠôû2]Gìí°èÙèð¸’ÊœôÄ÷ÿ¸³ÏâÚ¾þÌ™3gæÅÝÝÝÝŠ{¡§¸+-(…ww‡ E$¸w n!¸Kpÿ~“ûç4¹ ýž{oyî% pÞ3gf¶¬µöÞ ¬209Ék^Ó¿½ŒìéÞ“* ‡ÃhÎ3wK9ñíOäXõñ?+©s9į5hnÃÜ'wk`÷e È!²¬NTi•|äɘ-÷»ù̺'Wð†®+î+»[É\šËÊÆ»ÌÚêg×C|Œ‰ eè?MwuäúçáŸJ?‡ÿèÍSÛA}/ÃkÈÃ=’ÿ‘oo€:…dfa®¢²(‘mãóÏßé~øÔãå´ýµrâì‡eGµ%²áÏO¡¿Ž.*lB{ó¶QÖðAiüÛ̲Ïj|/Bž·÷âõcÁçcŸŠÉ6ô#x ?ñ=*¬ÊæÀhöO|FÉ„Æ0°•+äÃMÁ—ú¶5/û¸ÿwÁGÎÉ® 3;Ñ_…hÐÃm'Ô·ÛÄk£?±i>êàüx":cC+°ÇeTþ þOR8·0?ÅÜÏp¨Â|¹OÛ,½ñ’µéœQKÝwÙ8ûç…gjD¬ÞˆjÇrØÅ·æ¶(»PnUá"€ ‡É@WÄ)Ú«\Dtoñ;°BÛYu~NÄ”AÛO‡ØSò•YäU%ÑsuCŲ„þ%.ÕÛœH7K{õÎÞÇüV>‰°~ðŽÛ ÿ(Ã;YÖ•¼¨:°3àL÷Ì4r‘ËZŒõϢƓ= €?OlÞC·5t˜# þf.Ý|³°ZC,ÛzQÃçv»eUꂱ€;•úó¥(No€7;Ù‡S>_w߸õ·žõÞb‚tzþVÅç@mtŒlÏÓ,xFñí0¤¯@4‚ÈÊ¡8­ÃõgÃsu‚ñ~ƒ'í/—†»Óɘ¸]û×´Œm,þ×Q—&%Ç~µÒ’ø§š¢5“W§‚V‚y@œ?[uãJˆaVtãðFgQ9À'LVÍcôß=O~‘Ó&lU,ú·ÿЇë'ðeX<2Ÿ˜° ‡¹GsÌ"᦭ӿ智c±”ÿ®zWû.&>ÜÀö`^`¬Âµ‚þ»¯ñÃá+ž’m=ó¯–ʾßõQö1Â<ÝÙô¿:'GXoѬ¥e~ílú«¬‡Y¨½ž>ÔݺÃÜÌòÆN$_زÚFÅ5C¸Ç¢ú)Qüí6xbzð«ßŒfÕÓNFÿÝ•V#êÙKƒ_†OÏH=á2¬~<êߘÌco Q“­¿ ì4b’í?÷GíÐÌô€±˜H׫Yv^4\˜Ö;”Þð¶ÓÇ·S¢p(e}Gô¶Ÿçêúš=Òßí?ö‚_½’«xSs²åR¦á:Ç£ {cÍb¥ö&\U¡«–¯*Ó²Á^‡wyÌ¿¸+w±‹ú0>)ÿ'ó?22}0$W¾ 6RÇó÷·ìßýäþ㩾‡þ» ™_›Ÿ§uƒ–üj½ Ã¬Ê×M7Y£-°ÐÜ^—µÍ5FqæÍÒ½Œ}²Ñ×¢¬(æ}øw;sþ,¶pa_ÖËb¨f–0`–l¦?Ò—Ë.L`¹,óƒm4¦~W×+ê¯D?ìÇÞçÊD\è÷ÓªÖ¡Üÿ‹Ø”´ØÄ;Ì,ègÌŒj[ü¹£¿jŽmIʳµk\˜x§öjüGWØóS Fiá0^ȱѨ?÷ÓÓí:C<æ§&Çð$_茭cr&: @³X÷'Ù â{ó–HÅ)®ŰÈ5‰µ.`±r›ãÉŠ¢Ó,ŽÝ)¬>âOv  6q/Êeä‰"Yó‚¶Hÿ +Á‘o‚Y>GîFÏDVöÅ*¾ÀÆOÁÎÞæÓfâ;wà­‚d-«Òðѽs¬'àÏÈø h7ñ–›°ä…ø=?ç•{Ÿ[¶5$µÃCUõ~¸?Ö2Ya,²=ÿ±P[Mý ®ª! A½t[ó§9ÿ1=VJrŽbðò׉‰Ùc|µìj-ÏÒd0ª×Æýq¸;=Mt%·í fèÅm‡ êÄ5¡¿„E= ÆñˆéÇèß^ÑÚl3ðÉ]aK®¨ô¬ËvktóÑ``æ˜Õ™'â‡éCt1—Úm“Ø} }W1ih3qýQÕ ›={’ƒNV·ÈGF«*h›‰9aîÊ+Ñ‹“¸…îº~kº:nžVûÀÕ–ÓSëg& eawCævŸƒOYÿÑüj-ÝPöð ÇÁYJ„›?èLߌ‹Ç¿BV4KùbWPÓØ˜|æó£æÙåà{΢Áz¥&á .ᥛVR}6VÜCýyn^…ú03#‰4j±»0z=©ÅžAÏûfàW3ÐíÆ‡W¾Æd¿îÖ¯ÄþaΑk®P5¬kœæXr¸‘î;’H?!bó´>'jIgýn.4œÚ™9T}ä¶·P¡1äéþÃve¢ÿînú_ÁµX)Ñ_­¢šò/ufq¢î¯1qR~¢ù»ù„¾!¿š‰ìô®Vð)Í©s©Ä®nQA“‰Œæ ¹[qºÃ7¿Êg5¥¯ó)ráD¬'å·ÿ˜¥¿0žK_"›¹DSå&k¬+„ê<È'¼ùàWþ®vfæGuV%ÉBf ;>j=à:Mþ1МʛÓN®v_ñï‹4tµ ©ÿx¢åŠôíjOwÀ¯’ŠeÔV4žèNuß&-=ÓkçŠÔ$ùÊþíôºß¡¸MÄ$ØÂæ8*;ë?êÞÆZ™ýU £æWÎ?ÿ¤›°¬Kd),ÉTôW}ñõÜ{&IÊ´DÖuŒŸÃ¼a‘]ïfü&6ºcÙÖ`M¿qjCDßÞqë}ÊZƒ"8§fÐ '=wÆÅÚ¯"Ð_Í îŸ¨Ð©z‚æ$ÃÏvàß Ã §Wì-îGnîÌubõûøØø“x¹‰ lSÈŽïë×CÝQçËAâ'ÙŽ¬§4ÿQüÇe0Í¥d#ëÉ?baí×1'¢&v´ü¹¶ô ùâzÕ´æ<þ£¥îNÇ2ÞÀ,‚ßC|ï ~õý• ýî~5‘>IóèµÍ~Š÷ùεjYzR?8E} w¯‹ÉaV|(~cïfN2®õÄíÇÐ_¡¾Â?ÔC̵‚—t¢âôÀN/JðHÞ0ò^p@ǹæF0ëí4I/z|ýŽÿè`g@i¶ÔŽÂ8³íËßÃjL7¬ßÈó_Åâü 4!©yP.qûéúc㶜ƹÞÜh¶§þ<Ÿë þTXŸé_–iôGñÁ…\=í¾ô/©Fþ±Š{uƒÊÝ3ò(+ŽPß«odtº}‡{Lÿ¿¿Í¨/ żвýãú÷ÚrÝ«Eã[ãs°~w-þcyðüÚä{¿j¯§4oQ“ªŒæy0§ÉFB¦VÕ÷ëé_OÆ3Šˆ‚ažß¨!’bßæ‚UöÃ*<0†ÊÊú6øó–TpnF˜ÀlitÖŠ´*zrc8Vn­9«·Ÿî³ÉJã±MçˆH¯€o>”³©@ˆNÿ’KÂ×è„eÈÉ[·ËZ{Xš|ÈX8t,Yð«×²·lå7k»¨ÿȳ|éOøF²‚ÞìÒÿQF¤œZl¾·Û‡U¹#¢š>A|SÛž<æ$™A^P ï±û&èU.lí lâþd/¶ÕÏÌI|ŸX&Ñ#ëlySóÄTƒÃߌg;ÌÌoXi/³úÈn&ß¼Äþ¯d¯;°gø´ÑtKµðêXçn?¦~~ˆø1&°Fü'u›ÿ†ú^FkÊÔbj)Ÿò8Sþ•U½í\{Zg"ߟðÍ9› x¨r¨îR›ó‡$ø¿ÏÚq‡<4$¸ ¬Á"c¡ù³úÓŽÖ.ª/üÂ!fž®tö(Ø•—ðÓèr™>%žµ eˆƒ_ÕuŸßu퀑˜¨®=ÑÙCõ›²ÖŠIï«xô7ÌHg•^ö÷dH¹è¢Ã£t´/Ñu~üycX¾íÔ›~Æ¢”>nÿ1Oi<QÞÂÓ´‘YëôOü`/ãJ‡Ð«¸Jxðç«í®þö UµÀ,{+Þ Â:F†¼?UU)¹íËÿ®MAûåcèþqÿÄëÚoDô›DA£3xpaÖ\ªekÄ.qOÜ?õåC¢õûmš¨KUM2r†vô«JmìÒ»ëË©ÿh+ ÉÌFF‘ýëè,è­Çdikli%,o%ÙPï¡•PBì†o®mÎ ×.²UµTúsQ‹Xæ(1ef,Sk"ênø¤)ÄeyªžÈ†Dâ›å/ƦÈ õóÕð-°E…ˆinR.¬_>,×Äõ Íè²ò³šS‰ÿ33Cýÿ\ÿ±^fÅÊ?ÁvÁÆ%g€=Þ€ý¬D¬ù¥Ô."ðàQMÍËQöOì-âãœ.#‡¸ÞdXĬ NÀrêSò‚Ÿ.ÄâS5ÉîkòI9¤ù7-Ò—.ÕúR?X$ý4^ö"XÓsll5s”é¨CËayÚàñœêôÕôdŒƒ/Yɾ&ÿˆˆ?¿¢­¥T5ðGñõñ_ELÛV 5l"NßÑ_MŸÅ΃5è¨ãágÒF€_×V‰Ë†¤c-Ö4 h\Ø‹aDÁC`¿uÕŠµ‰ççÀg\€åš‡ŸÉª}È zx7KÌGÛ×ÃÌzåÔ€ß'k›O޹‡’ttÓÛkŸ¤£ÅYU/r„üä5=ðVªqXçKª}v<ÂÝéDtì«FWƒýyÁ€ô2ßÑ·SRC²B 'NÏñ½v,ìu+몳ܪ<ÙÂ<ÈrøóYff±8ÌŠOEMt §y꜎_‹Ôs¿º/ó›ÞœNð•\‰]Ý©×xŒ:j¾õ¶;+Ø[røOµ?V†y _î«óûjc&ll”ÎmÔ^þÆð«MÔæSA*¶ï;ò/z(~PÇÀdöÁ¸4W:­^Àà^„Ê?Jk™õ\`¤ xj×5–gäÌÈ»ð=ýw'‚¯}ÆÜ±û“é!‚ˆ|¹\ x¡<¨œúÁœ¦·{{Eè¿û%×Mü}K©¥F}ðÖ.ôo\ÇýÓN¶À.›ª½=(p³áé¤U &,;ëÞ1ëS{R/‡:fÅsÛˆ˜à±JØÞJîhçv"ëÈO¿Ýµhv_¡ä*Ëz ì”®ò0á -G¿û7ÒæI8(o¹ý‡—~‡ücOûVbŒŸdg+ þcUB£áÏý©dŸéºéògMö•ÛU™éT“èXó–|å‚ÜHf]Š·± ßÁ}ÿÁ/²ê#ôTä3ü‡ ó\Dÿ£ßksÐï®ÙŒÆF=7«\ÒÊŠb6ý·ÁŸGÇ–†|Z ýˆPnbïÓª‡ñŒþWËõKÆ*æ¼4î‰ì"ËWí³õƒi˜ÿ‘;ó-o|Ù@Ï!.œoE)•’!•ÈpB>?ò¯žjµ¨ìÍ;¹»ZT§5ÌãD5žhYû‚5¥GûLV7ÆF¾ŒûOvŠcÆÏXa©6(lñØœˆ=‰Í{F<]äÅ"v®/G¹Ã§ÔxƒÇ}‡µË‚ÿhÂS™žœkHY0  óˆÄ§ò“Òôß ™êìÞP˜/6‰:ð5‰ì÷‘e”QªœÛäCß“’¬Á©xôdzdR;a¯ïÈÏFfM†YÂýÍYm‡þ^Ò…Ø}9Ha˜ìñÁÛ©2¾ŽÇ{¯ÔI>c9oÒM”¼ÃðWßÈW"„[u/¦éz:lªÍ>Nó&oÍ/ËÞ¾ϣΘ©äz#Ý—FÓ j÷¤3Þ 5uü©ÉiöG€_yi§E^ùÌÁÚdzèK\7š3ût)¶ÚÆg”ƶ)ƒµY(¶WáåúbƒPkb‰ð*¾¢ƒl‹©~÷(ç~ƒ¿»•Ú²‚ Lëð"ÿ¨€u®Bÿ«%DÌ‚üÃDÇQ§$î -&ÀgÕTÇø{Ô8®“©} ?{é[uŽ"ž½^ú´r”¬Ü›h‡ÎŒUÈ2…ã?t£'Þè86¿4úÝ‘€ë¿ ûU9Y¶ŒòÞÌÕ&âSÁÀÄÞmÁÖ/#ÞÂ^½ðs?ð¥%ÿ@ îÔÅ|""«õû²ñZ"&×ô ϵ~$3ö<šjìªéLå<óΜr…ÿÈÍTƒwÆKME²Ë•Úú,™]½ÇwŒ*¬­«Ç þˆ•ïhŽTŸÝ :›•¿FtÜ/Z‹iaá­³³»@,þ&y‹ †3œÐld±xhòÑ믹\n¼I™IÍýlò“ÈrR ¿ú$ÇDˆ_ ¿zn‘»8zÝ4ðÃð £É?ú€Ýñ³9ŸN()­j‚5«ú^ øRw,ߟœgiõ˜Þ[QçVÄ#'ëÃÜ•G¢ÑøQ|mfr/åÍj»ÁD®€‰ýJÌÛÕÍÕØåE­ `÷Š‹ÂxþÊßä…N¤ª1<Ìz'ŒÅ(6løázøË§èw¯ÀÉL±Žã#,êüJQ—@¶Ÿº†Ò8Ž[%È@üP´=VE¬¥ê´Ìà^¯‚–[¯†òp4Ùr½q0?£‚û·çGo5„9 kÁ‰*Pïýþ£ õšì¦8Y\+*ORYãðu½TíPó£2é›Å+³2ìÃx3—¥©QÆøá:ôÇmKVÔ ÅU9âýýøÌ˜ìð^*-?€ç{ëí oiKÍrHG™ÔÔ¡¹ðxó­ÊG;•þ% ìt®avRz^-¤ò¼1¹Ò%fH¤;ã »2:­–D gˆqÒ-;ŠÙ€?ºËsyôê,ùvc2ª„Ìžßrø¥EÛÇ•’ùµéCÙ^¥G…5Dlõ‘wÏé¿û#j²BTðÿ/ø·Ú`=dÖÙsòOáÞ„è~{MHGôöâ­¸*–êéxîkdÍb=Ý׃ŠíîBÁÏ_[ RËóô.¹,ýe=WýéwxÏXÁôÁ³ÆSQP8Nôÿ+%žƒRí–Éy瀇e#ÿ(&€Ÿì¡¢E–“Ǩ­0£1шˆ¶=,u]¬g¦ÑÕ3ïã‰0“3?ZO£œÑšÿ1Gô1€…bÚá<‘9‰Þƒ„­áKõÇiPÖØ°'a~ÊD¹C]Ç´§·ôäý¬4™®UÈüÑBÖ(¨¡.ƒ_Ic©¢Xq¹hŽÿøäôSÏ ^S‰ý¤æí/³`*<Ó.²…Wø§¼håп=M$k×Öë7e2ðŸeàs»Ñ®e¿u%ƒiÁ;:Õô潊MCTï‹·ÚŽ‡kn–Źnt½¶ñõ"ý¸±ážü«Ìd–5ð?UaƒOŒ<àW½ÉO¦ð†ýʯ˜ø7gþà÷›²ì6ÍW|/ß™y±õ•‰Þ?á;¦qWr_µ¤ÖE°¨ïÈ=V‚ÎnqœËÞÛá©}˜F¾öw¤h ÛsËÁÿ΀»Õ”£x«Žö9ù8ýÛ€\]¥ö¡ꦪp*™ñž±ÎkUajV…;Ãóâ:D2˜µdD­¸&ÉNâ ,¥"ï5~ñì9öØ÷Fô4Y~Udh³G~T‚TacaLäÄor}5‰Ú¦áq=¬Éèw'¢ßÍízŽk&Q}4¨·Ù<üÇU²3OðœßÌ’FŸìœb\é(®?ñÌ qzd¾V‡éXÛ:¢ô€úóÒàuÇÁ¯ö£~J>ÓŽ3éˆ; #ôF5VCä ÷Íè¨ýªwÃ|Ç©ü̉t&ŸžAa_ûÕšnò¾äÛìb~Tkz >CõTTŸëv¡GËv÷@†à…ôBba-µÊLi0×3˜­Ö ½Uú ŒE,]ñ&ÑÛz¢æ=ŽBlþ#Úƒ‡Ô~îÁF|+—¸ïH*æÍÆ!ž(éðŠê–nn³r¡(ìú‘¹$¬‘ð­Ð‡‚?…šmó£ÎZY¬"œ¢/O´N´z^z»óú{üÇtòÙD%«äE«"w±U޼g÷»ÝùWíÔ®¢öA¦Éw±§€_ͰîÃÀÈ ÜBÜ“òˆûÿ{_L¯íâ>™OZVÝt÷u»ø¨ ÐïèMÄSq]LÒs±Ê&-ó?Z‹a—ž{¾j¹³ÚüÇ>sôÉkœõô¾úAfž3&'ÅÓàOˆþ’©ðié:“ ÿ‘’8µ‰å㊠`ÊsÐb½’ ¤Íùw™ŸÆb9BüÆ^Ô§“À‰Œú`BþD¤g¨šß'»Ë´Æìhlp©èhT Óˆà§ðNŸ‡óøvå,Ã,üÇAll"êÏŸÉ.2lÍoD‹Ÿ£â"X£¦ødj ^®+9R/ó*ñþ/°Ã·ÉszcI{€´0Î}úwÿyˆÆx²VdU¼EÁýªœLŒäQÏù3*Ïð:,uº¶4 êÙ#Y3@Û©_–Ñ ÌÅS:ÝP’°ÖœYS|JGÓ‹D^äèš¶ðkŸDg(«c'Ð3¢ß=Ãií‡>Œ,CmJe4)¥Õ;X÷ƒFJ¸åaèX=Èð§QË‘ üJâG¼"ðÞà¥yä[ìi²ø‹ÁàÊ àybë2¨Ãä/-ˆ–Waã¡E:bnâO‡ów~6ýÀ¯Â{¸v¢¬Å3R¼g!þá-s?5l‡UVjÆ¡A= ~õ„yy%‰œÛªœéPà)Øß›²àß”v…g!üêkrªQj*Û™~Ÿ¶ˆ¼á/Ë´{ØI±Ïµà?Vc-ó`ínU=T~–—èdBßgiŒfµctÍ©ˆÎi qñ-ú'n±6ªòV3ЗäLPMáÚÈ4z0ÌWˆéÓ€9]âZ¨d^©Â±…†ЇëxµøØ#æax޵ôªòT-è¯>¤èýÛwÀ”ûQÓÅnpÂãìþ2þc€ê'ϸ·÷½Ö”ú7pç÷ÍÞ¨¹`ÿÉ¿Ðܼy*VLE×Ãd97ÉE  kÊ'Ç+AdóFþæ^/®~þ< éø3à^æUùNuØÑ%î7h¥f ÂJcÏ&ÿøŒ~·5Lnø¨÷\ï^êφÊ?L}¯‘¥Fâ’cê¡ìg®¦ãH[üQ?r…ÃÌÙ=M¯®œ¬šŽzÇèÆ&pJZõȼ·‚Ÿ+öá+Wºý‡Ó¿Dã]_A ´Ò,ß›®å̯=iå°[R?8ÕõÔ•ƒ‰ôõìvª†ë{Š®‘Öðî]r61LzꇲüOú'~ÖÆ2öËQ?EùÒÇìËO£÷û˜ø ú¯"·‘Ò8ÜÃ{—Vþ|¼Ø~7ßß2ü¿ê&m±h ÚðíwqzKå6Æë3ôÆ%ØóÇÆ#ÊÊé°ë§‰Ñ±`ÅØ-“9Ùõ·ôoï@O¬¥¨rÒše£™PÝtS44Wñþué€÷]½>m8óÃN¡¢žä‚)ë!ô°» ýŸxltb­TÁº–  L9U%"›0Ì¿›/¨‚(*#à~«F£ÿî1m)Y[rìî32šûä!ۉʻòÿÎdÜÆêŠÈñðç ÌmðçEd\Å—vyÈ/~ý?Á ©À¯ pÍà… áÆæÝÚŽ'Úö}EÊ]yܰÐÚ}ù×a_® Óýd¢Ô-X ‹ÔÜPMˆwìkÖ Æ–â?>òóYÄöóù}/¼Íf^iÂ.üÝcí™X//QgvÏá…§ÿSŒl¦ô5òZ‹yûsªÕøÏvÜ— è–ãóÉ7"ðèwOj°Ä£@ùâÏõoNWýqdZɽʢ?x ÒsT>Î<0¶vx®ræ_ÆÙ¿=Ý—Åt?R?²û\VíƒC‰Jí º©²Ðü ½Fõ…úÉÊOý`aìwZÐ’ú îÞJ˜þ†TšF<žß)fa8âöê5ŒˆàÕ@¼FÁ[Œµ¬Ùð 'ÉcåcSWþž åˆê –SÃüªJØ9¾„Fw2Ó@¢‰‚T ãŒüè¬~&;£5ÆÞ ¢ÓUÔkM?FòíÐxõþc5×>ì®ûc)gõœü» ~ëˆùNù3å¤. LËpyƒáï³vaýïhö5|rþwtê8u¨¢³¾ûç£þ£;¦^šß¨ýª­<*ÿ¢—Ç6ô»¿ÁÉ÷'Ó’vUøó1ô/ùƒúóÔvm*ÛƒìÅÀcU€I#§¹×{Æ,¡l°"&§s[ô.1ÚÂ`u¥GdjfEõdâ`×yð«®TL¹:ÊÔr›IWAàWÕKîžS“‘XÖw?Õ›µê³£dïc>QÓˆÖFZ]³©¹üÙŽ‰zk'ýKÚØEíÛÔô£blW;k©•Ù*¡¤ÚHÌT€nÿÑU7å%9ß²=J'9 þü:ßË Š˜Ä5N²Ë»¾‰qÛîB¿•è¯êÂη#+¼ ªºM®åݬÀsW†(Ü—þÿâ±6\ÿÓ}2ŽÿÐÜß}݇ßÔFƒ_ý&9ÁøÕJMP2™ô;zª¿½aÿ~õÕäÕèL5l.s‡QÈX¦OÔ×;áσŒ¢˜HþUûtÑÿ: ÏAJâÝaÔ¶dÌ)ýl‚~w…tæ×Ö2œ™WÑøOÏWû±üªÑo?Pœ_èâ=\øQé1YõÕ|ùs´êÏ׊uä¿Cxc¡šz‚\ÂZN¿—d í`} 2Õ)« øûngkÉ­2 >ç3H•Ã|¯&Ûèƒ÷Âs´$®®«ÁÅ/„og‰Ôùïk9?i* ’ µ!ðÁ$¢®êèt±c¥±P6{öY_ [öá3¨nüHµqº§tê€ga›ýAw£ç؎ذ¿9¬àx,YØ2ü¦Ó{Ì?ÁæÞRÿ±GÞÁ¿@¾¶™»š‡Óâ?Šâ¡ŠÊ‰†‹hw®ã¸;¿ã àßâs®o#ðãµ£"‘tÐ=ú}ðož°^WþMFúßð'¾ÜéüÔJ¯SwÔð»Í\Ã<²»?ñ {éŸ*FQð+|Ån’±ÌÀmT§À- ÉéÖÉõµ¨©+¡Iìa>W?É̦'ã•ÁûæÂŸ‚_ë]Õ¾@?”†t3žK³XSø}X{IätP.rûéúu:)Ì"fZþ›lfúÊj¼Ç ÉödZÕÁ¯ÞÁ¯ô²««LÔzSç¸ÿ±Ÿ^kyÛÍU•ûÜWüßûâ31áî'!P+F§ÜöéO´‘àW½DLòzfVñÓ”˜.ÆÐëºà]_µìðè2`Wqaò0Í:›áM¥ãc9þã¢ñR$üJýîMÝ6s˜À°ºÚòøoØÜÆ0Y>DïäÑ쟨éô˜ðÓ°§©Æ>EÿÄõ VÛ¨\ ޲ MD”H3d#DùůkbĦ x¶Ö‘‘æ#ê*eŽÃÞ_Ó¹ Ò ïöAbóåü(ïÍl͇zÈ4XùûØÑ«p4k©VjŸàa~K„ö¬ÈÉ?z:u1“Òm=ò9R[dùêF~µ?‘ ¬µvø8|i-Ÿ@®Ö5mÃN^A'–ܨ¸/’5wÓasƒÌ ¼´é8ñÛ'Ù Æ&ÓŹSw‰ÜiîV;ð;½`Ÿƒ”š_Va?jÖÌ•zFl?•m rdIEÈßËNßÓ…¯ÉXuɬÇê!ýd#ë>ùUyºz ±æÛ«é„•{ïk7#;‚º«¾¸¹B:vUƒ,l†(2QUðÞ¬¥Þµ¤³ÞbM:âß^ZŸá¡WèŒ@9už™'±\ØáJ&@å·‡Yñ¬ °= ¬-äì‹eÞPõ‰èƒ kÒŒèçžo"ó£ŠÐ÷=LG üäò·~(2¤³Õ•üaµ‹n5Íɲwµe%>Ü!=Üþc‰~\e1Ð*<Â/ÒÏÊCÅÌ~«êÝ»L;iawt=½jLý` •ÕÕÈKv²Õzɳ¾K.æé®€ž¥üÿd~Ô;m‰>Àý¾ëh‹þ©þê®6U©ÿ,’2ð!xɵb* ÈqQÏù•ý·h‹¨?¿.ÓüªPá[ÚØ‹Òxµ±YV¡ÉKa‰lî]G`\þö£ ý Ú]™o= ýU_üÇ }1úÝSÔK¤“lc„t(øÛ?õƒTÇ £ŒíFâËbð½x*ú˜—ŒnØü‹ä”AFRÞÏXêßEöåB±Åpæ×æáÞ†=.‡\ º»ÝƒÂ0´I±{ä$¹,Êk^Äü-臋`ã«¶Â§åÆŽŃ”…¾j6#gx*À«ô4™£ÅŠÍE.|bc¼s‚õWÅxþcƒ‡·cªÅ;v¹ÐyŠað΀äÄ1“2#ñM$—ºƒ 1ÛdYüãjžyò…çø±ÄåE™ÕÌìCÄùˆº,³/J”뜰7H”f¼`ŧè¯öȧ0¡—ñâ{ÀºÒc%Ã/eQ·Í’r,þc;6¯¤šAþᨩÒï¼'΋ÿK™¤ò~Ö<3ÞðO<Æ$üÇXÿçœAo¥OaÏ‚±e!ŸÇÊO硜x Ÿ ·Ã>b üV,>Š%o]ðÀËÉn¶ç‚??â 0(mkYMˆ˜Û`YÒ¡¬êZsOÑÿFN w_nŠ@PÑaX ¼ÇDð+jh¨dOaÍSý¬Ûô ‰CTî Vˆœ7qÕùQÆÞ„_KþQücX˜oƒÀN#‡ÉM0 ²ÿ±Ø:lùcÏ{ÀÔpIWe×||[M’'T@¦Ç+üËþ®§YÍ«0^n¬¿zÆ=k#>ßÜÃüó¥XÀ½`^ºk›]›¾´™ìw\m£¦:–µ-G-r™·°%Èz®Ë¬îýUÔòê%9í™à¯uX­ƒÜ&ë¡DM_©áte\†ÿÈJÎqÎR}ùŒ£øg~ÔOx÷œüÞ¦‘RM—J_/îã‰îqOXoÌF³+ü‡ínßdÕ; ýK`»Yu&üù%ôWìøV~¸—T\ÁsõbNGØý—†>1ÍoˆÊZš”Í»¶˜Ž‡Ðÿ®GIüȺÂôÁ~t­zH–4ÁªkC«®J‚¢¾epžìÊøèÆS9Œ§~ïXK´Ê]t¼¢zßE.ô¤³ëxb ú£,¢ÿU7|Ýp¼óüÿžçvœymUüÒ¿ýƒ¶º¼/'óŽÊš<×&Ò?ñW!Œ$ÆMÝén¸Is1}…8*^ñýÎ/­ßjE9T«Ò¼*Kã?’ûõ1ðVgQb_AõžŒ&Z ýß_º¢§C4OÑ Ín9}hüä7e:jzÚ„Ct#[ý=µÄFs3qwGlûUú'nFOôÈèµ;‹È€å¹O·ÜöƆÈ õó¿Äj¼ÑpØŠ  >tLzJ|2&í_ýw߸ŃráýNFyÍS¨ÿØ%3`Ë__Âòφµøÿá…ú§žº"°œ©ØÅ/f)£P+¶%¹¦Î0 PÔ¦* ŠŸ½ øÕS<7HØvtKDZÞEèVU=Rt5\ÛYTbhÕ)Ц7òGPO0µØªŽ9„:„ûxMO|’ùÇ 8ê«æpùVDT“t\;&ƒ_Uâ,‹ÿ ®V•»‡ØË³Ž\hÄ´6€Í”WKð£°)赜‚sMÿDrRy^g)öÇé_2œÌh we(߀¥ŸFÖñôèÞäåÇZˆFk×òÊx£‡ï}ÚWt”CñÞq°å^à†ñ%ãð“gÁ‡’ÁUø3¢Ö¹NÀûX*51y_ô¶U\³íßúïžBU–SûŽüc>i‘þ0ª£Ó»„[Þl¢êïÞ¥5Ñý:ð¦¼TšÖr°oð¯ÉÃå7EuØÚÓð3µÈ¸æªƒæq2ƒ› @/˜?`×wÙ®o]Ka>[¾¬øÕ¢ýñçÉN’1–1B¬†ó0ï2NÂà ž‚öìn3Zˆ£(¥Ú[›À§bÐ?ñòeÌ TžVr;j©¦äà ÀݬÎ07æËKQSË¡×åŒW‚"6àj›Ê½ØÔËÖ0²˜®°ùkí} W5é2µ–úÁQè¯*Ú}8Ë_Q’å¶PQÚA1C´óÅõeèw«qéáo]0ð¦U-ð£A›:ã1ò¡n:Á<©’örX–ÇôoïgiVa|o62¨ÛôC®ªöÊÔ'ïÀêõ]TwÑ5üaÙÌ&OꚺoyØ¿Òa¥>Q²‘'Ô¡.Ñé¤[þÜ䜿'séan‘³Ýù‡ùÇUüÇ\°ïãÔ6·ýw½Ñ¤²éVÞ®åºîz‚Oïe3ß ¦~Ä6XˆÏÉe¼…aØ ÿOôW´Åz÷{ƒòZ¸¿ûr?£÷»‹x>Hï(Ñ«êù†¦­×Rá?6Š ñù«ùýÚ}ÑVê(WoËúfYä&ý”q]ÖJšF ‘ñ«ö¤WB4Qæ%ºÝg–%;(Mÿv_Ù̼;W{Û3šýwc¢üJeôÃfnç9(‹HUÐó!€vÑù³üh¾”£È?ÖDãè¶ŠmFU’øj;VsqÒ[,¡Ã¤<ÄÆ Ûy ü‡†eô’‡¢¼fíŠT9þôÆúɺE&“t1ÞãèYU,LL4õ¡oK hŒÿ¸C·œpöÓˆ)Ψu(kÏ‚‰µ£ƒlm—ËU‰þ%—©pƒ–µüùöîæt»•śϜ7Ž€>ãYhB…ÌzÓK]óÿ ꎊ ÎÔŠüc 3{/© 2O©9i̹žÃ#%¦½¯Ú@ßÍ/ûk‚±>«-Ær׆¯ŸŒÿ`F•Ÿ;ÇÚA}Ê70ÔרÐG•ݾëÀÊ?“;æ¿*‹ž-‡»¥$ÿâmøJPÂúˆÞºw°ýK~ #úÁZÂdñ[öUª3Sÿ1Ý —Gýy²×Ô(ÚÞ€)Õ•!V2³>›ü£ èUoSY©ÀsÛÃÁô‡ç0 «ìFÌS/ÍzésX….ó#PRÕ¶ZÓ?qg:üÎJéåö›¨ÿ¸!çà?Öñô–ýaŒºV3w~ Іãö·ô>ëÚhßSI]#Pô®ä<5—K@Ar;ó@åî/øßü©°!üÇm-Ï?îŸøOtOï,òPþPOÉÓ°]Ë%FŠùâ–ˆ‰µÑcGçòvi—Åod `™oðIôÍúnpÂ"ò¶ñY|п®IQ{5›È|6$½¤J2ÿ|1ÃTÂÀxÚÝOð¿Ûa½¡žÙŒrfœV¥‡Ð µ‚¯‚øÙ"˜åeÔUÓqEzÈ!Ft­ýb§QšÈ2<ðlg^u a:Öé*ª¼“u¨÷3°}~òr”;\©]æzLlå rÿ«ðç A¿šãæà? )§Z~ ÀX,t?T4Qéw'‹Ê(¹~eGÀ&òòoŠ::XðÖÚ¨$NˆëÉdÐr©+`R¨ö«ª?Šäø¶kó¨â,¬fêÁ›R„œª.ùüz2£”ª,õb½P8žÄŸx›{aÏc­I5U&4B´9!K?Ð΋S2–ò¼Ç>x,ðè:¶-¿ºaV”ŒÖj´Eűõ£ˆ<ÄïÝ¿ô‰ÿ˜¡¤ÿîNßQ§ÄMõϬǺA¦‘"8ÿ8¢^¥¬Ão8ÝÛ™Õ±åK=<Ó5U ‘ý9ýÜxŒ½œÕ]³¼N9ãøV.úú›6DTûµ=•‹þ¶sð#·ÐÈ&$ÿîNû¡Ì☠öc59Í\x¢¾069Ö¸å=V&æM\º7Ãk,…ÿ(ˆ·{:´€“ý–þ‰3ìxK4@u‡ª“"Døj‹yΆçñ¸Õösû{üGS×*Ë“G<Ã|æþG{*rÊ÷d QzÆfƒÀ Á /¡ï5lM'|Ák°uŽOOîÏ"þ|Þî&óÒ–…,üÕ8¦/÷Â7†?÷e7ùz&ÙÈI,Ræ4ù3뮞uR5´jñ4ƒÿHAЕhýµo“þ6)ì²x#+’UZ 3t¯UZüÇB8Wªž/Ñ?«›õ›[ ƒéÏÙqAöþõbè-ˆ6ìý Vº<5†£ÕÓŸþ»ÖüÛ0`;[À“/ƒ’¤03×Eæ?®£õ;'«ñ¯ó&æ*ßËö¼… ÐP¥¥›¬€ &óZƒ×»‡gö¡Š¬‡Œ!~uK‹eœ–ð‡Àûü8Áüpñ ±` É»JÉF2òÙhæôÃóeBí"ʳ#ð«´ èwq]‹AV’aï'‚Ù 5µawùŒô`W+ˆÀŸ+®#W‹–5À°Å®p7Ä[´C›Ñ_¶‹ŒÆéOߤ¯,wýK®£eýdÕ-jHÄaºoÇâ3<‰ ¯â?>Ê~²_¸;}E¼FÑ Ñr~­PýÁ¯úâ?2YËÔ,ëøUZªÖ΂_Õ·®’sdAoëd /øº0×ÿ(T—Tg«—D[Ó™Á’» ëOýÇ~NLQÛxÍ®éÊåêçZÂK0©è9Ö^ñ©†uAíTû¸ß©Œ!avHD•öÊ™8ë͉3õel#òtô¿rð«sXæ@˜øþÖGVË)7 ö¦ŸUzk†Ú!Cª†¾×âëñ“@ŽªÃå´’Éúôvm®Ìü¨½ðæ™érÙ>ÒÕÚGÏônTÊwæÞ•q+Ày× Õ¿¤˜>MÄâi}Ìý,j]§þüOªKÊÚ1É?–ÀCϳ+».Û§låJlÏ¥ Ì}ðÅEðÐnçæîÜ3© Uÿ‘‘>®oe1bÇŸÐïÞ–5Ì߬p™È L:«xÀ¤x‚©…¹jÕ§ÏV5üG.« Èí&‹X ©kä&·ÿØKÿ«“r6Ïý*©Îr”•îÇ£é[9Ük$þ£†ë0± ºÆÙðu©]ĽzÇ}¸ §Ýe!žK.C:Ö‡{ÿƒß&…•™{ñþ#F˜ç"úm‘<Ãd4ò—ƒë?ÎjEê?ŽŠOôôþºüc·vGô¿Šþª°ékÜêèžÆ<™\0ÿÃþJýn:øÂæxîz[òv![1ÿÃK_‹ÿøI¶F¿›Èìg„d¨ÿîªcè•õdƯx¡m`÷%‰¾û)§ÃÒ^cÐé›r88Ï 3±U¶9ÿq“'´-öþ2u(ƒðL‰L OT–à1õZ®ù€YR"ˉmÆ“ßèï#Ú?;­ ֯ˢê:×6‘õ²â?Úa¥—R󢫬ÄÓ­ÔóÙ‡3ýWîÉ' £þãC+hïÄ~ð«Üä…ÉÕÆãÙŠÒ#ê2üÇ%ò ’øÅTV”Vsðî}@ãÁŸÇ#LÿX ˆ8°)%É7êª 1ðlCðƒ±FNK*üÎó§§ÀÑãPC³–ha;‡~Wáv¸Jt“Á*òPÿ±Np†óÈ[¼ˆ·Ó¢—ºJ,Ì¥*sMÐKìHÒ4pûõÀ©h–!ïä¿ö.ü_oîá:ârÕ¯Þ ¬)ܳ7ÚÝÍàW¾ÌÕX©ê¢¶]‚÷ˆÿñ€Œi†ÊÄõ?cN\è-Þ­ð'̬àH“赂jÄ5Ö,ù 5æ·’+›«µk/ð+ÐGü:ôqP#=_Û†–y™Í™Çç¬ûÀðEy†÷n·6þøUk;LéZB†àGþ±Æš f3©ý7ù†3«öˆ¹ë©ó›L‡¨ ü~õÖW‹|®x¨ü£ ¾V¤'["Š(oQùÉ^3©vø‹‚öB:–L&sØ ö ŸäÔlÀÚ/`.{fò”( >ÐÓ0lïÞ_"ø…÷¨bûX­”YÌÍ–‹Ü#1ø•@ýÛ•Öà;®Ø…Ñq}3RÚºHýGs¸LgjB"°ÔÌÇür?–ë'É?cQñÜדƒ¨|Íüeô“ùhµ¤±™ë”ëýQºØž*UŠ£lØõkæfêÌ–ñŽç¢ÃN¹îË‚ÿÅßã?ú»O&HKóõ»Ÿ´íÌôi*ÆQ½kn¿š~÷•Òc}%ÿ±Ÿü£/1wó¬¬f®±úE¯¯ï0¶Â¼@•9ÊÉya±”(Œÿ˜‡ÒêG¬Â[£¥ì®ûè›Ð_ §þü“Lev2Bž°ÿ6ìwŸµzúS1†LÓµòðÆôE¯ØÊÜmx›ÈÚ™ef"ÝAò'#<ªv¥}wJœ1ê™ãÀ„¶ã?6c!ü‰ugƒ³Á¶Þ#ê/AÝÛgyBΔCÝw*¢•œŸmÐüäM&ù ¶+%µ}ìi+5yEÑt^ m%þ¨ûohšQòçD%¸…ŽàsX›ìDñEñ"¯Y«8 m«Ûçph[ æŒÔ\¦ÃÍY[é%ÜM^¥“µ ª­>ÃôÅ¢c•êF½ø}õA6ÿ[ÿ’sB¡ÛéÅ ž¨T}Õž‹)äñà[/©/Èͼ‰[øªÚt—šF·Ü,Lë¸I5ÉU’;óBŸæÙ¹ÿ„×¥W'*çÙê€ye­¿5›×Ð ª¤+§«ËÃòVM­YÁš&¼‚®VøÃõÄÉixC_òcc:øÕ'vÕn|¥y6~&½ 7 7Ëîò¿:…f`•5…úÁøöu´R߃ ú£¿:Oʼnò•!uË¥´D:Ø*Z…—fCTù˜‹ ËÉ?rSi¿†ZPŸw”¨.ÊØG`YåÐÙvãZ“Y;9íÁª¼9ɽ½$ú*‘EÚ[2®<´¼f k,xUn{;*ãîXþݰܯá+Ñe·uÎç.yÌD• ô5¼iaùûz%uñxÚê+N¤:>.‹¸úP?ÒuTQ˜îBÔ&D_\n+¨ðÌoÕ'9Ç[g¡ˆô U?è­ß¦S3ëA—›~2Y¼é<ô*µU@ý]º+ ž£±JíjÆÊ«É‚xï¤7OwGª@³Ëî+þï}Q•ª¼áî“Ñôo‚;çþ“ÏO og"¬·Hm¤7ëUXó†V]x1ð´¸KÿÝ-_µè+íoàCú—ÜÆv¶6‰šô¿:BýàKã¾ß(.Їì:+ÿ*2â÷=dS•ÍëS'õÔÌhŒR§~ꑬÍþí)ôNº„+_ˆ•kFn°e`°˜cŠ–½Ä»Ñ?ùeˆVÿöCâ„QœXðöÒ. È XιØÄvø3ÌEúLõàrè¤1²K¾©Í‘Ûå;0¿Oh‰öyn@ƒÐ“'Í“J‰|ÄꯈrL"çùij÷£ÌâüÄ7Xävd0×Àªr€Ø¥æÅ êÏCëR>x¼=ä`™ÔNNö‚|häÓãGrgiût“¸ò‘û0ËÌ#Fè?bèŒSòp{ÌJà]Óñ™•àö¯ƒ_í7 _ãxFOv9™«ýt-žy ýîBb¶¿ŸÞní6zñÇø`5oÁò¯&Ro1|$…ZÌÓSüjVþ6]Wr§&ãz³?#_?è!šá?šÃǯ&ŽNÏèÁ•5 _àKêåNóž@Ñy|¤0^®Ÿhc/ëW«ÊÆ2Ô;¼ÙO"þo žÖa+Fª%ÄëÀ“4kŠØ«tÔŠKW½‹ø:p SÐã Zåzඪwú¹sÃ`ÿÏ‚¯'ÿèB¦zNmd Õ|ô´3ìvNW|êϧQ}ý-^©T l³ðF[ð^9ØFƒ0wY—“yâN˜Ïáï~W‡Ì5x£ùV5r«L–tM'÷‡çIµãf:uÝÁÖ×F­¼‡|k3^©·êj~mS­þ;ÑÏHN¥5A…e"xêô© ¤ç‹ž–P=SŠ~U#©AþQšþ»žôuMÿÄmԟס«áB÷MΨ_I¨½8gzSÿñ‡Y€®7i¨’ÜãLÖ ÿø O²Í^ —¨ß‹üã*ùÇ]xøQ ‰;’¹]úÿý§ÓÂ=oÄ[:HMõ\d¥p "ªEÇö´¬d ´m‰•àk͘Uï—Ñ*…~w+O¢Ø:ñe½múê?f‘Lí*5˜™©vOê?PÉØ’LÆå:@Eúg®s"ý[Úgì°KOyOîÉ¥¼ã%ˆ»Þ_7!ü˧ÿÿýžÿñ£ûd£œ‹ª#RdŸ÷†îª‚yçÅŒjÆ=½(kžÐêÀl⡞B÷‰ìFøó‹ÚcÑHú}ËÓSÛ}^tÑÛêOŒ (!bÈ”Fò¯œ?˜\T@;üûgÞêÔ²½¤Nè7d³ %™á,úES¿›ˆÜ*;øÕîwlà~³èF=ó³á‡…=LÄ?M‚Ç“´0&DxmaxM\5ªƒ¾$e•õ0Uxû ’¬ÂÔý¸„M|Fâ³ò;YÏ}§Â®òÝ2í43‘ø[,õyv¸…˜üOP›p¹5ÔMø‚Eh¢›b¡«0ÿ#*´²%ù‡7gÖ[sÓï0>9°Šy¨%©AÔ¼?pšÌÈÉ'Á¨D¦ßÝ©MÓ÷Ëïɵç£<ðǾÀÏ9øUGìÝs3l÷G|Ñ_Á¾ù2Ÿ;¯kÊ q7äÝ_}Ô>ˆkò*˜ÐZ4õ[ˆÂªñ{b9‰ƒ-9ÝHM,:œd$v¾+ž*µ¢©ø›AøÉZˆ!oཨ žÞÕÙu Á‹WmÁô^Pþô¿Ú€¯ŸDþуÏõ5âŠjƒmðw1BÖ"¾ˆ_0“:ÅX‰þjYA¬É!æ×f£ÿU-lì*ìâä¡)g¶ùÙH†×¾el²¿B°óùÕœn:£|e¾u…U6x»â»^(‡&‘:ùÇ%Ø–ª(~õf(•¾³Ãç¢þq'H\z¸ˆ±<{×Õ>f4Í!âH&ó­+­«*õƒ×UO,v Ñ{BüÛc®fç½ÀÌl„ØSg½Æn&Z9Ýv:>Ƽ\ÿÑÙZ ZÏ5”JìãTv÷…­Ù§»‡W¨‹o_‚µ™Œ«ŸZ 8ËÿW‰ «ß`(fRŸÚÞX¾•EñðÅÁ«ÖÐê­Uüc¸]ÝÚiÚíí’ wíYÕDÏ\Îë“ Éý3è³D6E÷2îiZ«7 õn3@ ¤^¼:«eèwc‘!m„ïÎk½ÿqÒLî–ˆ:D—5Ìi•,J—>.¢Ðö<ª˜,¬NYù±ê1©!¼na¯ÈJÚçáezá?&°ËËt(H>µŠH,z˜ûr®Ûì".vòuDN½`Ö³Òýx•‡«`RSþ “ ç¸î€·µ°» fû–;èÖyÞá³Ò‡È¨ïO\éõåÿ‹¿§Ôgë-ÝVé=Èc"÷w_· %—%VŠoŒF@°ÿ¸¢ÕÛñ§©?©oþªå^jDgį“tß\a‰Ñú|ÝB[TG¾gšmqQâ«öYBdá¾M’iˆ¥›™Šx¢’[ܔ̙ôow"áÚFÃh­h¢¿Jdt6Gbß›óž6›ƒnÔcF‰/ïÕìa , Ã0˜)‰ÑñÞ k¤ÔР­(l6’ÃL#ÿ8Cd@žD쉼(+ÊÚQî0þc¥L .ÄC¢^Jö¿+]Îâ^d&ìL_ThéÌÃ"S+NU@»»eïÁƒdÇ”!FJK¾\fá*Ïü|æØ]¨h_ÉûÌ?QÒ„½å>Ú\ý’̃§Y 2tÕTlÞ&ÃùXªŸ¹8øyÇbÞ£C !§ø[ž(q/ˆ«aú×wzlPã›Ô ìD¯°ÁÁ&¨³Žƒ_r­çÆ£0èË*å§€µá—âºsÒ;"ðóé±—C~=Å)e r¦W°ÿÈ êïLµêI†ù-Ñè_XÐ;0,‹ðl£Èzr¿éÅÁp;œ$&Éšø³ÌàM+±¾W@8’Ýs*M·7ýÛ“Q©Qþ|=ø•3p >Ùë >ÓŒi¼Fe><ÑMb~Ôms>jÕ DóѶNúþü8õw°¹©ðy:•‰‡AߪÀÙ¾Öâ³P?¶Ì`š3øä=Xü}àWçéé;Æ™XáJã*â‡?j Rrö >ùÇyØ—%üÝYfr£q˜'g§±† ê=x«c÷/›žÊŸÖýV ËrÍÁ¿êƒgóG¿û®»&öÞm³7,ÿ¦W¼pŸ`­Š>œ¼r± )üIU–ïe<¸™Î¶²»ÕøÀ.¤±/Œ±KQ‹yÓnb§Äo´PSÉÈ|8íÒê˜ Ñ®$Ô÷Š"pN?ÒDÖBæµ,£Ú¥ì{.aã¬qv bëøþ3}ð½˜)µÉþxÖ?A,çzGÊl2¤K ¦û:Z‘ºü:IþA×lú·w`Êl ;6qÁ òæä שdU³§ÚMÑáæ² À¤xa3bÚîf>Í—  ÿÕVÙ2°ˆZ“!Ö ¹ÉdVÛ©; ×3ü#…ë)JÞ?•ËU€YWK@oóv\‘[y;ñ„>1B*üŸÿ='þã'÷“ðŽþWÿ4ÿˆ§¯Ô“ˆE"¿‘†ùQNþqAûNx oqV\Ñ]_‰_=ÕÞRÁû‚ ä Üñ@ã–ˆñ¥±Ë߈c$yÜ»ŽÎ)•ˆw'b?ªq×_Å`(ëÇå·fuÙ‡:÷³²Šµuþ$½™ž‚·ÏéPÕ«²ïß vËpx Pwï”TAÓa+«13[[%üŒo‰d4,°ODüG“ D͈ù=©kxH¶SV UÙÂw´MÌ|'+ f¥oÇŽ2‚ yc“óÀx;W§‘Ï´Çò'5/D9ÿc”(Íu¶!z>Ä~rò¬æâšév¹˜ð/äð@û迈·â²g!¿6á=f`—™ßÊ›Â?‚Ë}§¥2.ÈsØ™ØÇMæül òÁ˨QnRãi$…ýB¥ÊP¦ž|b^¢µøÎ¹Fà?¶”–O°WÉ^]X®?ÉZ¦ïOAUûž,vôôêþ#¾Z‡œˆ=êéTØÙÿ–ô¿ Ëé>´{Z>Å™D_VíGQ›Ÿht«}†ÉçTúZ0á¤&#vüøõUê¤ì&{‡;CÛx…ÿÊ NOú¡Ìº Þ÷žþ[Ôâå5VTIgèÛ‚þ»Sé“—ÜÃA‡©ÒD†fÅ÷¢1ÙÌa¼V9Ø‚~ê žôUñ¥~p4ê¡ÒT°õf~íj:t %ÉE„;ë÷"KºDœ×hf½ËÆ<ð«[ œmð0LBR`x[“[¥·î£m-dï$.HFèŤ+iuÃ4ã4üñH×éWÕ+TþQK««&F™kTƒó/Îû™š Š6Lvê„U…€é.K_èy‡Ðï6móI­ð¬Ÿ8ï¼hÙÎÊîg&¡¾[¤ǼMÌ÷ äñ’1Ê\¨²¢ßªLeßïÖPûQÐ]Ñ=w˜5Á>bÝâ§š••õ>ðLî·¨ 繯7Ž¾Ìø(³À„·1w¨Mr„9@Cø“>L(¹DFT~( ýU{Vmµ²ZÕÔcâgþy3ºj¬pû£è¯ÞË%¼££ˆšÉÕLt? “?“:¡Xvw~qv%GÑËþ]Ù® t„oAß–ËÄ0ùw¨ÓÕëÿ ~•MŸ†=ürÔ:ºÛÝ—ŸFïwC÷ÕjÝ¿4ý/€?ÎΠ{Bg°­2 VÉhŽ yÂH]B•Ÿ:½ Ä©­TçU‚ÿ¨‹½Ïƒeþ f|-1ÊËAáÎ0®ÊÚ;XÏ:\e ʼѬåt’šNß‘­V2ª!Nói­PÛ +†’*¾¥¡ªŠÏÿ€z1ô!ºŒÞðçÑïVD!0ŽýÝS[áõ7ªÂÔD‹ª»ê¹ºY{è‡2Ml%êIV€_í¿ùs.IÂñ×…£‹} —¿¾bêµ2Ö%øó?èoáʹlɹЩÉAÿý;" /O¬žÔâáŸßpM3›ã }»ÑM.€¯H‚F>“Ö±ÎZKׯTÖüGBz̦RÅÎ=ß“ícbe)ô6_0‹:OÇÝ[|\nsíæ{k Uûí­Ä¨mÏZ]`fª’E³Ö`ÿ_3-0ʱœôqÞ‚õ1à5/ ¢Žý9Nýà]±–;߃ü¤£8e–t¶ÜQ*{ ûýH7űƱ)‰U­ãÔ´ Ïï~´ÁÜQ/ñ^]É"5ù\ÿ_ð‰aÂð«—J©ÿxþ  ú+‡ö·VTo¨ßSKp¶½•Bø“ÃÚ{-˜¬fó×Ó¥¯Š®OD-“…AÃ_wè=ÕnøéðçÉD4½˜fwH‰úŸ’Z+ð‹EXöùdßÙ˜ÿÑXõWOPpf¡8±kw½YÔVTSsèó¸Ú^Dã5 ”t;è¶*Îåð_,0aÌBA:/ xP;¯WÆÙõç{A‚:ÅeãNZl×~Sç Rû¼h-úýô÷£ßÝ cTÊÄѰnë@j[b‡7à %öo@ÿHŒåøËAZÒŸ¬ØÿáAÿ½&ø›èFúë…?®Êƒí`¥]صàZ!¬øƒ5¯3áxýwƒ°¼Øi&ú²tf[@)bËNÆhlÝCØx7ò°àûvÿÄ­F%ú·GT7Ù§õ…’Jw@ÎþæIöĶºÂÍüRb–wúB=¹PöyG–ð„é$džtmüþ²ÌSîj…Ä+ΣÖ:çi(þc9Çb"å‹ì²øßu£c\|ðZ|üx‘ÆA]Ó"j_Ü´i¢¡­Ðl€ßxÂ>Wâìþ„ñð¾V ªÊ®¢Å*a.£pÏíB•äGÎ×h&†G8‡×4E!fWâ¿ÂœÞà‹¥ôÆáÖ{ _âŽûH¿€^ìw£qÿq‰þ‰‡Éb1§<‡å‹e¾¿²ÕLg½ÄÚüÇEª]®s>ÆÈ™â³óð~GÅÓÕqÒσՀróPm­Â:WC/åW‘„è"~Äž̼§~èwëru’£5Î…‚7ø›üãµ²^KÇ>_’&2ÇõÍô<]Ãü¼Ötø”õðÕç˜xŸ,ÉÓœÏ Úê°ÏñnäwK¨?ÿ츭s¿ñÕÕº-­?wA®½ Oê?ÐîZõá*j2qvÞ¤õ.ÖßL9E¢[¥ÌÂè‰$Q~ôÿ°ëÏÄî§Exô?ij„ã,ýKÆQ+yˆé$É`VþrLeëj]a~T;æGá?^ñÓ7ÅÔ-¥¸{¢‰ˆ=tœ'ôÿð… ¬w3¬äW?ý‡ŸC= ~åÁüÁZzôPvÛSI{¾Y ¦ÿnÆ_œ_{Ay¥ E¹›˜±®ñAO®wS›Ó7ù¶¨!>ë1ôìZjçõŒÊÔa/gˆœDÞéò7…üc«êIı›|2¯ñ§sŽ|Ý„jmµ”>;·›ø´ZÖA¨òú£<ú ßtû”‘ᄀçBÿ(e”»4½$Ö-7qÝv"ùŽàë¹B­ÓCÖQAt*†ZÚkb¯áìøF){Äa‘í#ü¶]yÌÕ dµ*Xwú˜=F0þãyo°–ë'g±‰–+^ôþÌB|"®B°3¯ Oäsîx;gòDÛê†÷X¤58²ã{÷•ÎêQ†c˜‚fä$>û­굜(®lgÌÑæ NgÕ½(A¯‚™]¥×eLýK$+šêí™xÌ.a÷’e5 ©Ýź!´×Sš«À¯ŠËùø–žh«ãßbóit£üîÏBø¶"ô¿rE[åMèT ø”ø{÷V¼x6âïñô³º‡¯ßz…Æ‘m¶3Nê÷¿ë¿;Ecþ$XfFâõEÔ>Gõ7ß°û·¿eêÓ-ü‡{9*Ë›EñmPÇÆÄî6½z(ã1ÿ<¼ÚVQŽhqà][‚‡ÍŪm•ÃÑ)OÂ6Çaóé¿ëm¦Ϲʿ¶¡[îzP»”Tî½æ'ìþíí™?¸.Ü•¾®µçœxå—Æç,ǮŤ*þ!ùÇ'”IÇ蟘ÝQß±ÿQÚ…§ä`ñð2/Q‡s¥AY#t‹;£ŸCAøœ«6ÿFî,ŸÒ±ì~L3&úÝ*t%ÜÄ´¦‡r™×Љޭj ÎF°ÌÅ»Ã" õ,E¾¦ø?yÚá/+PÛËŒjתIeÆV2­4¡õ;¨’èa†`a{r.{‘/d%o¨Åʱ¿™õVY­}$C2FÌñÆý0ÚƒAôOtEo5“õ 8|è¦õÿ±†*Çár¦peƒkJ #ôÀØÿaW´ýó'ùGˆÈÊSÕÏð’ó` .Òñ°ªÛd±˜ÃbWÆ7A–‡çrsœdþy_k©ÌàèˆgºÈt©¬E€ð Ê¸¹Ì*‰í_ð¿ø5:Uã8ÏÌK¥øÌ¤Uo«‚n‰ùõšz|Í•5(™ð›´ẊΪ®ú¥]TRêóP,ÆbVEw´ÍÉôöôéÚKÿÝb"½x­eÑâ9:* —Ò:cùæ‰üD·‚t©ªº«‡“³ÅEå’Æè}~´jüXQ}²/ñimt²ÓxúÚÑé/<Ê#ž­dØýÔ ŠRÿ]?í’ž¬=•<Ëš;Œ®ò–Ð;×ÿ€®}•°| ÚÓ"¼ ˆìÇ ¿:ߘ” ®òøÕ^üGCî´¥d¹ô7.Ü#ù>})µD?9‹®Zvò »Ëúö'&ÿM\^dè- Å22/¼_ zà`æDKõMdÆ÷®*ª³E]¼Ú<"ÁsðÀ¯jƒ•Äz¶ùø“gõ2i–í-û߇Ϫˆÿð‹dÅ/Jtý¥¸Å'%': vœ j|ú/&&šN-ê“Ì›)€ÿè§E.{þËîûåÜ•xzêÊ‘_T¢ÞãXy%ØýÄàýõÉ8ÐY+½˜fóß%8—ãc4¦ÏÞ¨ë#,9N›KZvÿ8Ö¼ ë55fÙå>–ô¨jÎ3W (‹¾Ž;:ŒÅ~ŽîŒR1‰ðÕyô—ÒT²¿FØûíð{PlÜ0¦ Vnn‘³Íxà.Ù°ú·ñ-¿›š9´&#jã§òô7®ÿ;ui¸+}M£s÷›‹,‹‡Ü ~"¯mþª¤#­£’à ëù»¹EW’¹Û%ð¦mDE"ô/yªPñgb£çR¿Ø8'Ÿ è@ýÇGC+P²z£›š¢¸ÕÌHÿÝÍøÔæô/y‡¿JEÕ»‡S’UÊ„æ³í³ÆjmÑÐt"ÿð ºâ7s ³S¢œªŒÝÄüó)p‰èã¾èc½a‚ðˆýeœoü‡¢nÒè¯>·¤4k1Ägc¾ìK=Ei˜‰µ¦»•˜üÔ¨$uÝ'¬—fAò’'dpKè¿»^ÞEqQQdtž¿<ê”Ðiô5ÈàŽË¬bµlE{åG“g°;Kñ[á?³ë¥æTº3ÒÊLþa¢åj ÿ‘¾ëËœøÕQu~‰ˆnak:oˆ]f3Ç1T`m©Ü<`¶`§•g÷Ð4 ?Ï‚¶kÿ)ó5j…‡øž<ÓÅÈ?Â:G¸ÿßÆç¾ Ã¯â?â8ÏÓ¯}ltõ„]KÿÄŽzŒÐêŒÃÔŸŸÖjÏ´ÄZÆ_ÔïV\ôÑÔ…Ç¢æ«#þ#žÞGíCÿÄûâw0’øzFíG(IäG]L¦3Ddæ)¾oäf:GEæQ˜àuþ¼œ1„,òß ÿÝŒô{ɤ¯F´—\´$ªÅñÒ®>¸©{ãßÁò§¿Šilô%á5ÒwgµûzyîªXò +¢$êÊo¼ [ <À!Ka±‰gb’˜óÓ#ü“þWǨ6ŒOüf÷7ln•ëžjW2†kFmÐ…ðçÞx…xºËOV,¡å!SèB,þ¿›Ä&Zçh 2-èS÷ÈX‘^‹²§_Ùóh“ˆ÷ʽH÷©(§”¶ª»¨%oÛ7'k‰Ï$Ù^èè·Ð)8µ¬Ïü?ðx—ðœëÈ;nò‰vebCñH»ÉŠŸ•OÔDø‘ùœ$#Ú‹5, Î ^ º…ÇìKV“]Y'PE»ÿnAYÝX*;ƒå ¢±Äÿ…×|Â<Ô"Ë?^à? ¸"l_zŽÀ ÿ‘ ¦è¶!ÈRÃ>eÄ `åi\§pž¶¨…#›ÿÑG‰IþñɨÚÔåÚ *™È~:/Ç^ÄÄL;¯»ê_à;å®Rï±[{©EÓÒþ¢~WU êkˆ¿ \mÀ„·{Úhu;ú+ª°?ëѨ?Oá<êP¸o7Òlýÿ PËáÆj0õ2"'zã¢&8Ór¼JrchE{¸_ÿæM"ú¨´ÀœÂõ!Â|Në SlÄ–^7Æ'Væ™!ªE)ÿ8­} ÿJž±‡¸î,öýzËø"_ôÁwÀq*Ã3‡àGÛ‰q?ݳ—r <î øÕ'r{BÉ 0ÀV¬»È( ~õ®aqøPüGnô»aª—o¶øÍËfZe˜’®0 °ø©°–¹°Ö©`âëã?^bû׳g/úDùc-_ˆçz<5ä›ßÿö¥2Z=/JϹóäí縊Väj»ð¹`yÝÀ¯îrV©_çóžr†/ ‡÷Ñ"ë½™PÍÌ8?êYNÂü&È„26pLô»Ÿôiz°áÇÅ„¿›ñ?‹œÃ¯š_>?U =`dsDAôÀçD{òñ<™š1;BFþ÷ÃÞ¥¤D&}qî^°‹ L(þª ù‡1ðEâ‹'"'±®›h¤{„ýÚ_§bbˆ$ öGA–»ÊÛ0ðë°Ëa¿ïñý" ö¯a56‰½ážÙÈ–¢œ©†L^X†poíÄn6ZAýt^8–œÄÎ÷ÈéŽrÌÉôõÊýºvY­6Þ¡ÏÊYlCrìpú¿¥@ZËóKï3r8ö%(™Ò˜EŒí¶×{¦tWw¡¿ºaL'£9®ö†§¦&GXu~-0éÑ2¿² ëùN0OÓ;új‘1ò‰è(€%‚‰·ë#Ë‚(˜e|Pº¢3ùÇB&RU”#¸*Ãá?)ûº»°¯ÓÐûU÷ñž(K3_Å{O$ÓZK{4rœ‚T}“œä¬¦¡‡Ç ¸Ÿh_fQ«øL «vþgÍ ôßmÉñ$`½uø°K\O¼ì 8‹äÄÒgáÏ šWÈ?šâåêìƃ‡èNwßé+þøNi·ÿ¡Ûshù©õ`:Ã`‡ ¿ŠeºÉ9 B>ôß]cðY ™Ñ4›óiO»ºÃÓdnî.] Ÿ/\Õª‘3ï]+ÂjÓ8‡Aä>ä Ïå$ìsNG4Gqú·o–•è”HNÍ”nž±#›jºýÄP2<Á{ÏDýEwg釦Ÿõ‚ÀëK¢8u§ârI¯(ë=¹L T»Þðû—ÙÅLêÅîq}Å•ü#çúwÆ*Y‡úºÌÈBwôJÔ=œ§SK6üÇkõƒí™öšd?ëM§£ËC¼qf¦É¸;/®¦®Ð>¸ŠnFq³%j/c‚ìF¾eíüenÇ~f¾?gÕéðç/LWp'üjjæU쪇¨ðv¾"ü‡ÆsИÄO6 /3YÁ«¢'ŽMÇ–¦tq·ûʰvYµ™DëJÿáëªb¼!®8ýÇyìÚ¾Ðücá&1ÞüÝq%Ø4ÓÔ®´5Òæ˜ïx‹Ê¸‹5Ef‹Làlž2-<Ûò>ì-µÌ#ö;wüß{‘üª“Ó*½áÊÙ–ÿ?ùO½Fÿ’éZ&½(Ó92°ŠŸRŒéçÇ´wè¯Òý"~õLɨÏñÈ?‚E-´M§´žêJõ¢î%ª1ÿCÓãü´r:üZk‰ ÇŠÒÔ{µDyôgéÕ›™Rsà³\Œ zÄžÙáWøú.>“Úêsáy7’5´¡Oz¤Uè¸d÷Ô»„yŧÄE¿[JÃ`¿þö÷_À¤Å¾¥Á¶{Á54—»á?V`C¯7¾ÄNTC•zWRç¸ä§×f³rUøð³ÙˆÂ‹Â¤4!ÞvÁ²{A7Á<‚YË>7ò§vÆíG½F¾g­)ž²ØÔ]8”ØDÑ%P.Æq)K|öެfƒqkïJæÐ5ú=¡úèë/GøzE§^ÕÀÏgÃÐÃþ¼ ¼ÀIãwì]{øó¾D°~ n;ðÊÏÉ v£h,¨?°’ý6&S Ÿ‹»XÔSdRGÙ_q*ÚÓ úM£ž_ÌÐãà Œà8×ñÌàoFßþWÛðZß/7WI¬7Oab–ØØ ç Ï^äÒbŸBëêE¹ŒF,>çÐq$,{z5Þùn:ÁR­·¨‡Ž"1õ[Ñ“^ÅcnÕ_¥¦’ì6PXù‰ë«š8ÊZ ãùA‘Á\@{ZRô‰p¥×j*}”{…È–á“ìþ%öü(Œ÷dø{fk´õ p[óˆYfrÔ/C,]ºõç—µ:œ_"לDíä9üÇybg;LJþ‰qÓÌݲu€a»3àež²û“xçÝFÝláGý&ÜÌsî× Dí ááMZâÝ3ˆiàù¨_ Û°…j•è–?LE=ÐÊ3ð37ðÊåDñÑyQ*)uÕIh¦áÅઢG¯ŽÿXDÎV…z?›Îe5´îå—'ÿxƒ¡1VºÁŸ'¢þ£„üb×E8×êÍ…}¾Àç§0›0£¦Œœ"§Ò51 óö™CÙ­79×m+)ú«5 ‹Ì4oQG2•êù‘ð’#ðsW¤¡:V7yFíùçG9ºF:V´žÚ9è§0çK¬¾|¯ ú°a¼îûŸý•ÊÙ¼{œqFx;ýG }Åw‰)ÜîDUnb«ÙÚ±‡Lh<]îÀ,±ê8æ:>âå:Xe,G-«ÝŒwšˆHÞ’tE!È?Ž9wüß{‘TÝùMgµ/t.ûOýGnõ>ùÇ ­ª^_Oª®½­” {ÉÍB¥‡ÿû=*…õíôÝ`õp·úmú`*ÆšÀ¤¦{6çõü÷+ýó¯­µ^Ø—á¢OÍ*0‘ÖÌ9Úª¾ŒµÂ–>µ1^ß!èG«ºÐG¥†¾„xüÑxmpúáT@W‡£±§‡]#ª¿#Rr] ×(Íÿ¸¯}Ô³b{]äbï‹FO¢Šl`^0È•ˆÂ“Ëœ(6,ã(QÂîáÝv%@¼¦ë‹Žý-$}É`q@jO+UÂ.Þ4Rãí®3ý_º£½ÿÑBÿú~3ò‹°3ÝŒ[ø³¤Ä:ÙCñ«ªv]]G6á3¯ƒg^ª^ã,¾ã.ÿͤÿnØÔ±òJ3ug~"hk=bŠ"ºÛ#æë¹™Vù“Nr¡oºIÇápÿÌâú›ë4G&1OÃÍ•’ïE˜".þ#1ð÷éÌaLØxa¸Àk¿¥Rp süÆ¡ðD½vÇÊ k½ˆùƒ;9÷`ΦÊlæÂULtž¿ÒêDüG~â‹nÆ9_¼1Pñ7 þ¤±õÕò>ò•Ì d=wú¹÷…õ¿CÿöÜø5»#öGQýÕ§ÿ¸Dÿijb2O‘ÏÂbñ·i9úàk›ù]6«³Ó¶ŽåŽOLÙíey_¿ 2w™ vçØBTQR~¦þìÀ·ø¿ô:“ºöüJ¥{çyúµCH©z£¿Z…þªýìþ%7©œªíÔÞjRsù®B÷߯þBÉ®¯‰ADŠ*Æ>=@ëÏüókt¬(,žéqè_bg8QÿÓ‚x+¹1FdÇÎ6òˆz¢„zL}F¿èJ‡­Ïb€Þ&J+ÆGïœQŸy7!dŒ"ý™†6æ´[¶]|¢»(«‡õþñ‘zk·ôlÜ*q´÷W]¹6¯¡×7˜>UeÑï."ŸOÿ«ÓŸê ¨Í<ÉgÖ¡À*ã?šQ>‘37}F²ŠBÄw`gšQžþÜ‹ZñL¨’ÎR¥×væ0½°r™;dkÖùŒþº×Ï4–:ï™êFíŠóìXšˆÄãfKêý2ӯă~‘ié²~¹)À³R¹w†O¹Bþ1‚n`óå j2ʈ1Î+â ~DWŒÆäµƒä>QQ.181Á°=¾çýT9þ„ß¿N½ã,ò‡žVff%Ãh¬Õ¬¼ ¸Ó1§ÿðFtBŒ¹°ûRoOÍäŽx¶`T:Xk²cõœº£(Ê5¥ðNk7þCÃRh<=ýÀ¤]d‚ÿÉüóê_j[ç™yþêgÎËáENõ’ªÃ—Á¼`FŸ¢(e´•ð篘•D=áçÿýÛJA}#v8Ö?šý¬Öù¸wuOôWufj¹GýïWúç_{iM¨ÉÚÞ°2=Û›ƒ·½…`Y.ä9õêQZÑ…‰¿Ùõ>ØL/p*d Ý@Ç‹19i?>e3Vj6‘âM1ŠùQé_ò@{¤äN”Ò›X~—ÑJn§šqyÃAìÏ9ìiz²ñëâ01ШŸáEåJ­kø`òó W«À[›±ò\Ð÷RÄŽ¹Á>ˆÞ|'‹qý§õ´¼ðö$½ë|Í„KnÊÊGLKn$jò†aO«Q˜øþžó‡õƒ•ñêQQ®†¾ k>ÁJ_1Þë›ôLÌ‚Žå›ŒF¬hϯMÉóv8ÿ±AI§w(YfĦFp ˜Ý8ΡHKj‰æÂø ¬e>1ó+´[ñr¹þ}ð^èE"öÚÆôš¡œw›?™-ˇuæJTbúT+oÓÓVL…úʨÄò“ä# h@]Äfyµè Wz±ö$”?/€YHÅß"üùdbû´Xø™ô†òƒéddz´Bu5|. Üô² àÏ™] Í ·¢ŸVŒl;êó4DÙ °üWa&öÃD§ãëV+>zÓ1ÞÜÄüóéèŒsÓ?q&ê°ü݇·.ÿH/†ú{'wÙ>¹ž¼¥©9½Àmà,0ü[©£›ƒ_yGÑêNd>>œ_»ÿî$Öõ¿œÒü# þôxbWé* ÑPsUÀçöd¦ë ò¬DåA䮨„AÛ¬Øø¦ì$ˆsS’û\Çyϸ¨»µ·°3/QÀ%0óà?ÆÉ·tù:FÜþðñît®ÚŒúÙ¶÷ Í ØæÛæ*´ y¨ÝËç{ðèaõû•Twº‘Å"ß]nŒïõ:2zµzÌýèŽö×ßü“ÒÅjMa|*Ï;ñª:ª¤ø ]ÈÚ€„ñç—UoôWð³¹§¾ˆOÌ?/gÍ«;jWÏêÌüÁuŽÔhzsZî2z½Ô7®1ãpç¿›ˆŽâ¬¨ßtlqnýÿüE*u>õ _?æ½R@å|÷õ»QûšT½¡ZÚ)-ƒÞ^¿ªVe•+ô¿:©mÔ„k0jËüë§Þ¬qáCý™Yî§'Õ‡©³ÔûðyD áг’ÑüÊ‚­µÄÍà)ºƒj×AÅUJ=£>R0*±ø“õÖQZ1%ósèc±nûñEÙAwºÉ X'Cø‚éŸÏŸ‡6#@Ì ôYQ8Äsš‚ëAžqÛ¶Ç耚+¶z¾£$lÀò¦hDÎDý(àW>Ê=øóËðįò(ºaß ìØ |[NPìËtÀ˜K×ç?Y½üGÊŸì¹¾VÿP7”÷‡ÿèI¬Öµ±ruôˆžøŽ#ÆFT´×ˆ×ýÅ;ÝTŸþ`×Ê\õ´( ³d耑{Þ+}ˆž­Ÿ±ð»‰›Ÿ„"QÛð)7ÈwVãe*Š{ÚÅHVŒÿñ ÅTzyϱŸcO¶¢G"Uz!†EÓœ`â«áÆsÔí±–©ˆE’€\ÄLWÒèMÅM€¥Ä±.<é3ÁþÆâs7³èh€ËÐ%â==<.±Ó¤Ô$®áiïßïaìÔý¾Sþ­ý8#Éᦒ_ ›æE½7ÔÈÆ^ k-HÉ'pÅ9Dä¨dOý"\—ýðç‘O6êã§sC8?k`8rÑaj²ùˆÎ¹tù¦;Ò)Ù‡®%Ó©FÌ s} ûÜYÖ娓h«Â­ø„xjšón÷dÏG>]ÍAë +N7×Rÿ‘«ü +]û¿–®éñð| ©•ŒFÞÌáÛþ%ÑÕmš„¯ÿ@ÝQs õ{¹×r’o”'#š‹.89üÇqø”¤Ì³]dí5‹P±q—,f2þcÜ׺^„e„¥Õñè¯2 üèMžµY,4ŸWfj|W¦ß¡å>™Èò7øøŽdI-™C›ÑÌLþ±‹ûð“(Eפ=Îü׺¶ãb,wûBü˱Ϭ„ì½ÞÑ© øW~Ç!‡áHæ(e’7éöµØEWý—X‰ÇbŠ ô/ˆ!"S)Fòàüÿú­œê"µ•óÊ}äÊÅu¾ûµJ¡Þb¢ß^­€Þ~r%Yå ’Y;€q!>‹õ]„öïW¿¢Ò=¨‚sáioŒ66ƒ¾EõR¯S?Øñõ?œÃ¯_^£—þ#'œ÷~£˜@½ëZÕ®m .$Áˆ–Ex"Âÿ~Ø»Ôô{É«O;>ŠŸ;´cƒìè}ý4öÿ wÕ~Q´è£GDÅÃV {uF Ö‹aá Ã+Ÿ'§é&¯ƒÂìÆ&_¦7xý\±ŠðíDøÜak„½š¤<¦Z×[c’#\a]O´`ÝñF+PîÚqpqéNÍ}G>«žñP‹ñ“«ÝA+RÒ.à xZv\+­lF\[Õà<Þ^¢ÿ² ±ÏѨ ;œp¯(CÕƒ¢&ª­%ØÝCÔXÞ=Àæ·Ñ¥¢€œ€æs6ˆ÷E¡¬ù‘ýŸ'ÊvŸ´«áÖùçM<5¶®Ð³Ïžr’žlj9 +ñ˜?yÚeqZ¯hî‚I.­·§ŒŒÇÜ#ÿØŒëûåæ*¹ôv¡þc=z]¿šf×û¿U½E¸®èÿ´{w™¨}çsö£#Þ]ô»¹ËÅøn &üÇt2µ;ø™•Ôy] ª¯ ±ô}üG5l)³.œ@´¥™±V ñפƄÕðÝef‘ýu£^…½_%G£Î›ò“Á¤îÚ¼ÇÔ¢èXi/¡T¾¹‘}—àMÇd+ÙŠ$†?üv×g´º\ËãD-ùÀÌæËc†E,¿©!éE›Úq“©à•Ñ[•Gä ¾è`7ñoû`9–å#ô/IÂyOÂ=pÃhC´È8 wÒ½©Šéæw—jˆÊôOœF·ª£°,þæ9 ]\ º;^G‘¦šÃå´oô»½éâ:ýà8øø>`RMÑþF½\˜í?ðJn_9«­uÞjEÝ`òšf4ªhZêŽ5˜ÝG±Ó¹ÝÌêvÍÇ|Nßa”§ oÙWnk$9Ò«¸ÃŸy“úÄmætj13 4S\B8šød=V' ¥)¯Î¦þ<#èåc¶-þ6¦˜¹é-rßêCÇöLÌ%iŒ÷`Z‰ãØ_;ÔË­˜PÇLËU>BewÑñù†ÿ¸Bÿ,Ñ:rèŽÆ$qËLM=ãn0´zWζZZ1É>:R£ÈD+ªäûÒïk±ù”÷)ùGGòÚ82©8êÜñïEZú'örÞY•jlç»_; K½ÌüAO­ŒÞN¡ÓeÏ)iéݾ Eo<ºüZý`’þ<™‘µLWªšSëûÔÇÌŒoTYéŸXX“¿tœÕµ™D©cEQâÊ“FW¦fV£¿êl4aÒS:¸Ž‹ðDüh÷q˜ZAŸ{~ä±¶d8¬ÂêÏopœ'ֽ˄‡¥þ‰‡´Çzvò—|DoÞØÌY° ™ÈÖ¡{j‹ñ‹mO^½¾EdG¸JyzuN$ÂrUåIoÊëÀzîÁfW‚+eš:lÍU1›è¾ñú§þ£!8‡Mâú@2~œÅ´ ÜåÐ}"ž:„õ?ÛíŠU­}þ¬ÇVÔ4áð…2LÝ#Ë[ð<Ý8®¸( ìþ‰ô…Ç´1<À¯¾à9vá[¼©« Ás=¥ÿîÇHû·'¤‹¾ó?2Ë`†ˆÝŠÂÅÃÿda* ÖèùÌÍ û…à{úÃR 6¢Ã|$`m%ÿ1UI¯÷&ƒÌ5­V£Êän#©øÛŽ~‰?/ŽçõžŸ“~Tu,š‹ýJmÉcý’úWø­*Kè¿;<~6Øuò¬ d€ûÁsŠÁVø‚åÂ:ׄÿX.ëi'÷é€~게n”ø®ÿÕ$jí£s?dçx¦€ùLŸJ>‹?‘كǩÊi!ÛiÉTÃåè¯2Qÿq2X6#tÑ&„{^‚à'­¤æJºÃð6n‘l7g`Í{`™;žZñȪñ? CŠÇÏùÃÏß!ÜnTÒ›†[ÏEœä\=0î£f߀þê„þŒc*]Pÿ‘®+³ÀÙNšOˆÛüÅ>"˜>d¸éÿ'øU"º®wp^¹ÛJ1õ×x…0 ‘P=©¦¡þ£¢Þv"#kž â:º;¨'ŒþËøU6}™H¿pŒ\£É"ÕS=Žb³šHNGïä?\vdö+WmOUƒ<õ׌ÂLçÈrç%šáï×ñ9 ÷ Âÿ~Ø»Ìô᪨ âŒ1ŠèÙ®?_‹…:©¯‡o½‚Ý7Ѥ~nb`”æÞÐŽê¹±T)ˆàoqG´Ãv¥Å:-ÄÒý†%d&Ì0œÆ±Úy¥ÂŽ'ü«¾ÊKž6¿V\ÞAًݬ f×/ÔJ_0êƒçˆ|çú'Z?Y± V?Ùgå2ç-HXò†øÜ¯…éùù(|þc¸ÊÐþë"0Týk¾¦~ð†hÎþfs\§ÉfŠv`N« {þEjž‚x »‹Ë:Ö "÷:‚·’Ñ®‡ßdè»$Lˆ ”Òž$bûœD!à( g2þ# ˜Æâëåp×}xn €Æøÿ˜I½jUqžý% å)ÙÙè›;»“=¨rBRz«/‡¡ ¦‹álb…e`£9¯!ú“ïªcÿ@ÕÙæóñëÉ/üÑBÌ!>çÙ×úDuÄYÃ,LÍEs4]™A¥ºÁ_¼‘)Þbj„s8Oû@5m}ò£­ hwÈ?¨J@ÿ± •N ™>؇nÍé6²V<ó?‚éa²@6"oqhnáV<®UÂóÙú«bÔ”Ï&|ÆÃSæ:.ŽÀúåuÄ¢~p¸y€i»óÌ7h ,¢ñð7÷Ù‹§QG«³/ÇK=¬/€ê›öð$k æð2¶¶Ù—št\Ø{oxê¬×.Ù®ÿ¨Ã®ÏÁ/ãã¦1ï) õ¬ 2à$ð°nÜÕÅ;‘ýn{+˜n÷ ˜Ï´Çª€*éÛÀœ²àZÇÀÖÑ/÷.üGM™Ã‹Ýtú_}âùzóŸÌlJv—šµGP¯‘†:ó•h© :®Ã^„ÐÿÊ ¼è„‚Wy€gƒ?ZO¾¹FTýföguŒþ‰NzMxÞe~1Ú8ČުàWUéY¯1=ʤ-zàôð+…¨~É C•Í,G]üq"ŽÇ¨È¯ŠÝNÿqý®‘Ô&b[/c…˜n¦¢°³Næ C{PÞq‰ŠÂòT%.‘¯©þè¸Û´c­ ð«?Œê(0 ÿOêÓ¿=,îT²«™ÂÝg‘<¸?øVøóÚdø>z‚Ðé²›Á¯þb‚Tô¼ ¿ëPúƒeþõí³JR}'(L~bejô+Úê5ö¡ß-'"®žî§“ó¯ßVÌÓ7Z¸bI¼È`;ßO%na ³„¥®Gä,ïðõ]Fµ#þc'vè*5ÍõùÚ‹ÜÂØ®Ï%¾9¥õùÀá‡ÃÌýúKÿæ«7ó£ÒbOí:¸]ÆßTù#ÿ˜„=HǨpóÀ4ŠÝø¼ˆ]õ¾_v¸âGÇ—°ŽW U·Yaè:àa=‰¥sƒ´¥EKtCtÂt7ü:E¥’VL»ûôÁcF‡‡Î '•|½ 1îb¦ÝìyƒQFbSP%dŽœ÷÷‡úe zU´¢Ö` ÍE²øëð0Õ­¨ž2ÊB ½©»¸²µ…ìèÖI~ÊU$Ôý#YQ¨o¨‰¸Aþ±N›1 ;ØÀcòú·×Ñ3R}0ÿ1‰Ücˆ1Œ^7EV-Iþ1O) 7>ðÓë`vÒrvgàìô/Ù;¶ îÇ,ßÿ ß]K¬8Ÿ5‰ý¸;ï}7`,ókÛ™¤‘‡Y¡)GÔšßÈ~ƒþ%6~õä­)üÇJ&W@Áaw{PQ÷ÿÑZŒðŽÓbE´ÆË¬Ãêz“øs¾TÓ„}Ÿf&`ºFêÌöò¯ÕèÜ´€j4XûOà÷Ãdyζ#‚þê²Ö˜èç,™T!eãå#€Ê¾#Xò·r úžbŽDô¿bRý C€ A§öå?û„\eQ#Úk‘»¥%†¸âv=èÞZ¹ÜÁìÎ~ž’+ä&ÿXm¥ŸÖ2¼Ý5Xßð T´q”säÑoêk‚ÌÆ çþêJO îg‡y$è½™U×yâï,Vm,þ«†YϼŽ/nFebS¢…Ìøüøë\Æç=M]§©|÷1„Ý¿ý$q YŸü# øÕ:êJ28vƒ>=oZŠºë$òK8³i‰%ÀNQï~õ»óŠU{ÃÃÆ¿ Z°Ps0c±ùFCvù>þÊ[‡æ7S͆–/èšfe4sÂ^àÉ~'Ô\pú3ê&òQüËL<ý ñÖŒæ˜H®6•3èaæ²µfŽ èS98RªŽàWó©®±{U‰-\Ƕøº¬"¢Ðyþ_$R×|ã?(Õ'ÿá§Å…ß¶´iZ½•žB³½Ð%ÞÃ]SÀ³R¨‡~iÝGðnðÙyæ£mz§M„·>£ß@¿k‰ƒGr\ǰÓ-É6F¿óÌ^%¿±+èúã©úïê?òÜÅF6Ä[Þ¯µÇJ'å©F”žK¾5ZÃ'¬†¾Bþñ˜þ‰Ÿ”W‘ß{¨tPwÜÇ’6%oIC>ÐLf“QoTȘŽÞ>ˆÌcüùqø–g¬ÖøF»ÉН,¦]±±ŸfÏ^)A¼ÿD„`yÈJ蟘n` ÌÊ4Žº/þ8SC_‹í°íß/÷'ójas£·ª rñŒØ gÈ â¡ ØÍ,®tj¬Ý_0 ôq¿ZîÖ e4ó$ž}7ÿ£—Ö…Þ8Pú«±ùñÆàWôŽazm9ê,Ћ¼qx1"êÝ0ö¯¹Z«àS1žÞè(¦8­Õ?Ç:ý•ÿÈÀñì$§~:žÈ=yõƒ¾Ô¬²Îõ35rŽÌìAÅîÛG\ì,¥¶5ÜŠçµ:àWÞ†ÎÏ­'«:I'ŽEpÔ»ð]É?R_•wŒÀ*W‚qð#ÿH‚5}‚ﺆ ô2~ÜÖïÑqä#^­# ¶EÆvøiÌ?Gó”Ðe~úß,äàj™™7~“~¾I©ÜE.÷Ž=äΙ‰ÿØÃõ^#ªˆvÎóW‹þ‰·áÏ[=œsÄ<ã´™ ÛhU¢÷É'tfì¸úg”Rfap± b¨?ÿÄó<íUV㬸ìôÕmú~²˜íð .¬’™*ôDTu—æ9ÕåÖ?ƒ×s•Gù¬[â’ó‡ýw+£¨?o$}á›±Ó´ÔEv k9 Çcó‹QÐÜç¬îÇ_IŠñÂÜÕî„;¦ÞÄP¿hÁÔÆ#>Ló7/R¥ÁubêsF=ÑþÜ^LEä2¼¨Ýi=9ùN D7'Óï0ìN¬­TT{“ÍLa½ÆøÔºTNFÇçv¦Iyê?|èÏUE×G¬t|ÞuêÈ+›û©Ô˜Ä9EFUMæ7Âjw¥:K{Ï•|K ËLÉ„ñaè|Çcå3YÃà¨Ç0íý2ˆÓ3ªÚm6ý>SÇgsí‰ôv~ç‹"¿ô7ІÒêd:w&ÃÌ56RÿqÁôVOM¾Q„틹‘ÎŒîÔ‚¼g½Qð!¾V ²’¦=äÖþ%ñªúÀ¯·Ì~ìÚ ò»ÿîV,Þvæn&ÿ˜Î^½©g,Fÿ«íá¨EUâLüG~úO ïãSžŽâ¡.àWeF±ûë‚ÿůÉéŸØ×ygÝVÒ«)œï~í0R©~j2mœ–V¯Ç þcj\è½OhŒHü‡;ý¯ኂ¡W‚Ë~ £UX¤ œå½1´"ÜÀ|R×QA­#›˜„~¢ õ²nh³ë ÚÑŒ|( öÞƒè= Ô Ð§ƒ2Ž™…>…§‰TKп¤¼Ù Œ¨!üOB¬UWÔ±WägîȈWz–BNYx6 ú)9“3Ô<ÉÅŸMEÅ柯bþÇ:Y…êŠ 2Èlütò>àW‹ÂÝÝ絪 ÷¸ŽÙÙÓ<°Ó N›Ì©hÆ¡eM½ÊCÿÄ ²±9˜¡çd)¹Ä5Á¶æ®f„n š¸€W½‡ßo îD&sÎ'‚Е/å»Ðþ%Gá½WšC¥ýK‚åHØó®ÔcjàMv¿Ç½"àë-§”C¿; ß$ø”¦üT1ºIÇÇç6 õ¹½ÉÜ`Êa¥—2Oj°yúsW´vÍ©LuÀ¯ÎcÛ¨ú†êþYWˆ8u;\@sü‡/±QG¢w±r0™\<+ÍdÑû°78¿ÏÈ «aJÌðwÎeºOTG˜FFpžüãºh…?ßBýyRú—¬¿º†ÚŸr^éëž3:Ó¿änø…Bß½bþàC@V°þ| x\!0¦Oâ¾ìÝ,;éÙáFû/³ÎMj\B)qš]|¿Üdê;‰ÛXø¥ð°¹ñŒCñÝAª¶aÝãïÿFnòöú*\w:âÍD‹ƒ±Hó ]ÕNEXr¼6V4E±¡ão<ˆ´ýˆÜŒt{Šê?¨eȉš©¶Yþ£9•˜ùänDä/Ñža1Ý? ¤þ<Y[¼Œ?º¥]ä½#ˆ¢“’c39†Îg} WR?ƒŽðéÈ5Xà÷õá^£VÿöÏj5ùîa:ye ›&ï ¿ú‹ùQ³Y½—u­h4GEÇ Àvà(øÔhàWÑ͛ԀœçŠ—0-çƒ~žH'¨eç|õy§ÍøÆeø¸÷TCäeb…¯5‘ztꦭ/ø˜²-¹Ìg|\ôW>"¬ks{T<3‰§fáÅ;ÂÔ¥^ÂKÚ‘Ù°}`ó£4‹‡ÖéyMM¬¬?¹H”]a»’b÷Ëç0&;·›\¦½$ï~BÊg‘­Þ5›•Q\•±¦âåÖXI‡é’{¦aÕ ™hkΊShw׿aô•¿éß^Ií…Ž'£QЏ¤§Ü(–É¥fGqú©L"*ðbŸ¯É>þ ¾1s'Z=¨?Æ•ª€ÞýqÉG|Åeìô¾øób€1‡¿•Œi"àËС½5uðO™k_ÓªMÿ’øŽ«ìs¤4˜Ú¾‘¼i»ù‘Ø5Hx`Ñr£f)ø?š?8Kmá¼³>*iþãþ‰™Ð_}Vç0ÿ¼"èR6Ö|JÿÄcš—„~7Ûw GçåôE 5¿¾þÜî‘TÊx£?ÕÆ ¿z¦„Éz¦ÇÔ]B²H5ÒoÓzƒ-eññËŒ–¢6󣮪~ø¦éb-xdêÏ:ÏC¤Küë›qÕÅjK}u‡±¦õ M’t­2„Xhì€%I~ZK:Íñ’·Ð¿þ톤Wľ™Ø¬MvV€ÿH‡­Ù~Õˆ*ò'è¯$U0w¨ûÓ#¼¤\D-ž'„:ºÓXœíàþ]ájþ‚)(DDWÛ÷†lù:Ö»šò“jµ°ôȯnà)3Áä‚IÆ3ÊK¶à?ë åT ²i_=åç×^SfŸ— ~Iþ±{®;ý†¨Gô=Ðø ûùÎÜ®ÿðÇ=$G¹uY‹ŒQI£Vc Ü,êfüí:ñ-6`»Œ-?*_b­ÆD¸.›´{p7Œ" Hà@€Ó-"—Imî¼"£IJÿ’ãàc]áÏ'âóÃÔ?AÝÔUÖÀæÐÿÊ_«ŽÚã,Wò7<¤;×$Dn#ò¿õCßd9îQµÖ•0mÁQÎÁ %`¯©÷û›s3•ùµÃ¡Jþ‘‚;÷´Ñ 6åÝ´Ž1Ö®ÌfZ½¬âÖ øAxŠæ{ó¾²)ýK. h»‹Çl/Wˆ0Œ²œÒIÌ‘Íàn¨#2ÿ#DÄ ³^è¬'w[Ëzµà/ú‘wl0ÁƒgçÈÛÁð›äœyˆP^ˆ°Ù I©*°¸[íšÐØæ$£±8a¼—ùÀ›ÊÓïª7}³9n¡^;ŠÚŠ7 ¡kú¸Ðüc:úâ! ³cÐ_ípî·†: ü*.ØCWxž½d­fFP¥÷ôUW˜ÓñÌBÕyrG"ÖohMcvTR+½Y”.#'¹ócâÇÐã;ýÇEüÇI1‰How±›XkÆaâïsœO¿?Ì*ëØ šèp”¿zcãYÖ»· ÏöG±ì<õç.ÿ“þ%IU·oú'¡¼6ç)Â#ñ“·1Õ{ÔNÃT¿ÊÇ*W•tO\¨=ÖžÓÿêàO~?ü?¢¿²ùbÆ®tÈvè³Ô#êêü‹‹8"¶.Q¿[SÂõ'Š3`~m_QúóS¢6½ý=ˆoâQÿÑ4J;OB½e~}-ÖÍî¥Y†·ÙoÃG_Æýy ûP0a‚žkõ¢Ô¿ä˜öDÏ–šÔ~'Ö³3ùrZc9ØûY*ân‚’•Å*¾ ~p°˜ÿÓ#\¨\cÒíi°ò7p—ˆî÷Q=Òhîù‰ É•àL=‰ñ›AÚÏ®öŸZ|O ˜[xŽTXÁ’0 i±ÊE¨’xÌïçû±kĤdI¯õèêê?”þèw‹“ ¯³»i=ä8Z°ÂïÄËŒY0 ïÁe6sÌ'9¿7ÁI|éµY»þæ}g¨Yô[â!ºµ#x£àRÅÉ-ÎZJ¢ýÂb¸žÛÜHd Ê5À3ë¾ä]z$ùÇtêj‹‹œ©ÄÅñ9ŽYøÃ?ˆ‚Wâ+ñ¶ñïa×OaÕâã?–rþ mOåhàwúÝeZ[üG9ÎÔy¬}8ƒN°£ñ&vÏo4§/©# @-U™ÎMå@ÆÓóÉÍÈVÎK£…áJÛõƒ×±$ ‡^l+‘ʸ…Xèwç·¡Ây­u†kLEÅÔWtË0ÃXü!ËrŽG𗸮½8Wçço,?ãŒô0·’­|‘#­“–â¸KWÚfXÑ"Dü·ð2 @¹‚øYO¼Ä"£Lþ#>V4)ùÂmúïΆ:!·aƒ«³7ƒùQ3aŽQÙ=È<(Çšoá}Ʋç.xËä ï¹îK¾éŸX™)ÚýðÑÃáãÛË~²õ³0á?ºÐo}–¾úØ“VËön¾¬Þ­vC¸š’p:éñÎ{&ºD{øŒgÊ0‡SM` ¢¯T0óGÒiw¯•ɱÍÔUøô-°éÏÍXÖ>øø¬d@ï:s¯ |3;ÚUí£?£7FYžÿér©¨&—ÉÑŽ "Mè$Ÿåk”UÅzƒFb–Y—>Åð™éÌàj6ÿñP4$ó¾äôG™_{Xüɼ‚#\*Y.ÔxLGß½†]¯¢þü­uÀ±„*•zôoB.×t+Ð ‚Ë{,¶à?òÊä2“8éÜñïEИ°\9þüóøá.ª¿¨.Ð’é}É?lÿ±›þW‡µáZ4ê?\±þã°[Ÿ ÛÚÆÝou£N“"#-koé8KjíÐÝüIÿ’ا¼b"óŒ§SÿÑ KÓG| .EýUu6•ÏËyö|@uraéFÊý(R}ôm\ýs`N§áSBàχék¢pŒÇµ»z&¸çä¶{l~ ¾.3–s ž£ ÿ]â3”J[A5Âs ‘->X¹C¦â‹­yGÿ«{ðÞðíñuC©Éoª ·Ñ=y‘U<ùiýG-v¼wýø¤ :™øk9¬ÒD=kBmüN0£x_!Ä+tV‘ÿ QÚ«ÇEEléì.^œî Éá<@¹É2Æ:zß#‚Ý@>s‚Äç#ZT"Õïê\j]ð’ÇÉ×ö’»eå‰6ðs±ä#‘h¬g[žfÏ­À;7!É—fÝ$‰ÄÌ„?/¸ö¹–Œ_1Ä©'šÝeXuþ"1»¾›q“&•áfb?Ú ê;«?þ®»Â­µ- ùmX!{KKbËxÔêÅ¢«?ùGt«>õÕñ&ËaÞƒ”M"Ê_€ÿPáä†~ç?4g……Øñr:Wc4þC1™¶¢é¨ÐNòíø×Dîqðî÷ñu·À`~#Šˆ§í ·â ­6w„]ŸsÓ7e{ºÄ:ga²ŸÑw?³• & wħ¿º„7Š=÷C#v ½ÜèáiI‚&6yŸúÉrÞh“Êk¢¾#?ÓY>ƒuÙÅ´X9L&ôª2Y‡·¼ºà-:§Óßô/©¥Rg£‚èO¶\oTíºßèj½3+±ª'“²2XÕ©’Ÿ‰ßm¢ÿÕï¦==~›7;ª Sóœ7¡¥.ÕÞƒ_½"_Ln.66Š{F/úïzaí‡Ó¿w•yçÑï¾¶’Óo}!¬ÞjÝÃŒ#ŸY„o]Dï¹öÎóW ýÕ'bÛß¹§ày„+˜\}z«ï_ bÞìQ&ImE5u•|f.½´^3éþ½™ÄÌE ÿ-Žá£(M¦~Êé?6Pÿ±üʃ d ûGôWÕ¨•i‹÷Xhö•×àÏ÷ÒÓr„5YZWòiäŠ÷yJÞâ?lþ#>üùÿ‚ÿˆƒUÓ_(¥U‡ó<9/@”^Hú—„¨+µœzG=D­Ì*ë¨?ßHE¡BýGau[”VùúCÁ£ç‘±?§D1cþAkOÝ÷iý˜È êÏ3übÿ’bZ_ðž\õšX†ìô/©¤ŽWo‚Q'ea bƒô®QÚyfúM&Ò‡‘;îã¹,€îO݇)[‰ËÎbÃ6ƒ»ù2Õ°o”òóÚ=8SR¬Þ!Ã,ç&c5Úf_`Emu‘ÛKG­ˆ¬ê׳öu˜rˆìÃV¾SºIä¹›Úÿ'vÍKFR„êàcb"¥ó?~V-š_ËB¤[gå"yFLò¬‚pRñ¹Ay>ƒâl ð`í«`xǘ͢¨aðÂŽË~õþc— Z©x‡dðÙÍÈàöòÛÑe^êø»RÛ|ë´ f÷f!5ˆ£û„_(ô]<êÏߊ›ÔxqL‹A°êÀà¿¡: 4°Oé@†&Ãù¬g舵4Ñ ¨¬˜<ÿ1Cɦ7ç`Æ7bÙ’#ÍÀô!j] ƒŒ,9܈ÙÈm|° þc^°1ŸéjœÀìŠp„ƒµÁ¢hvð¦IàS¸–KÉ•¶ÀH¤„í>n}6a—K0ÿcóºÎâçæ“§2š|×iy¼ö^ÄÂ{€ÿ˜€ÁÑ vü þi¶©Ð0>5wáZÊ›ÏCýGL"ûs¬ÖQ6à÷G˜uD«€%;G­L~zôêØÏR-r“ʺƒDÀq…™ÿ±CæÃB_!ZxE?ª@òSr?wS{= õ¶·n$fâê=B±ïæIŸö)fc³ŒN Ç« å3=œõìþ%`WEPðƒÉY2]z}ã?ªS?8’̨7õUÈ)*‰O"zÕ¶Ô¤Á:`m ÿh@Ç‘…Vqð«ÃV &üÙüù`rOê›Ê/"ÌÞ-IHNÎ̜ٲÖÚ{g2³ƒ²U…Y‰&©,¶ü³þøaþù]G76–d9vu;lÑUÙôç=g1Ñ­/9È,ë:[Îü„׌Ž:ŽJ?ôR½”­Ôß>Œçõò z‡É?’ñ{Gãïƒ,3[ÂGtE1µO'Ý=Tqx\Û–FÀ:_ èÿu_Öpwͳ×â½¾^óÔ‡ÛN©í0ÛMÌj¯zLg®ÌLÌ› û=žnó·Y¯9Ùêþc•zoqL¸»6—f ê0TtÃ@œ*“…¦ëPJøæD÷ ͦè¯Yùà¾o ’-fì°•‡ ›Qt EËeçET4¹Øu¹oÛô2hØP™Ô¬.#‹˜äRÝèמŒŽŽë™ÿÕ¹×Zƒ~*•5™êÄ ä‡“M»ã4jhæo­£ë…»þ£ü‡=á³þh·ª/†Jø&ÔŸ7¥~*ôòµû_=³¡³-G_÷4ôaÏn&%Ý’úWý¹Û¬g~íQÑON…??*W‰žfLú9ÎÅwì0=© MOåà :¬¤qV±†Ñ¿ÜÄšÖúïÞ]±™“Uü7Ö2ÿÃfƒÝwæ‰#‘VG ×c öAêÏã3ï<¹QÉxª¥à´î¤þ|) ¬'ºÔ ü"ÿaëw'ˆot.8MµÿvæGµÑzÑçØüê™ñM÷‹ú«¬z'øóž –¿ƒæäã -OýÇ âßpéoÉ?Fþ¤ÿHBǰ4Ƭª=‹2+ϰ§bj9Í\¬þQlØZ¬÷=ÔR?Ç\Ðw£ßm&‰y/OKœÁÂÙ“QÏ¿Þ&^Î@ÜïÏ}hûú«Áð‡èW*©<ÈÉŠ%Èbq¶Û†ó¾ C¼ÿ1¯ü&¿é¯ƒ=ÅàŸ&Õ‹óíÁºü¨vŠÍLOÞ‰x§]²_cãwp'ö¡HºApC¼4d¨õ/蟸^”"Ö‡OÜÇü‘§Âž_»þ# øÕ,”‰‰íÚÉ+ÌÿØGþqL–¤þã}ðmñy<žÂñ„¨w+whèP&°ÃÈð&Q~ÔÆF;3“Z€Éì¾Î]|ÿ±´ëÇå&9Ò0ÿãVfþ"*™•]t°‘*Ô·ßñqiATüÔt4§×Èp–áãÆákâ Ÿ4wµÚ_kчhÿF¦â W\¥¶׿Y%¿:Jþq‹9R{Tøµøïd7£øsööèñƒÿ˜¤¿¿jÉ SA›¶ªiœ”q°»ŸÁצһ}? ítë Ö¸’ޜҞZ½ÆÜäžÖgƒõ¿:ÀsH dj&ùÇyÄéˆÙ Æ}ý¥âQïœÔ9Â\È„Ä!ððy±}ÓðFëÙŸO¦b°ús‡0éú⇲©)ùÇQ¹DmAû»Ùá9lr6:KÍ@5žúÏæk|Vx¦C0èûñ‚½ÕVá®[.ç(«F—Ò ¤³¼ê¦ê¢\Ö¸g½é“ÕdÂÖ'¿z‚•ÎÉî.’ä†ã·;§|†AÊÃý~!æ»òã€ü#—zˆJ2‘Ù‡Š¢{2.sžàÕ†š›Íñ–tnd–ús+¼ÂRf‹‡Çø[A}Ñ< ]þ·Œö§q—ü£!¾`ê+ÖÊ è¯ŠZß­>xIf8âI†ÐÁý6õˆ=ðzg©zŒl% È?N€˜ä¢š¼æÊ?Îikè«Ñ‘S?k²HÌ_AÿÄðdáÑ”²Æ97Àž£ åú·×$ÓœF ò‚wå…ØÅ.ªÁwÁ5®ðÿðª 7ÿñ‘þ%ÿ«~7z¦øú4ú—47Âé¹Û»¨ÿØ‚ÿx¯‡§Züת[n2n VÝ®»Î(oàÿ0gå0úÝïF4# Šà_¹-¹ô¾Ø·¾è7Ø*9ðÌÜÔú¢¿ê ZRçWÎÿIþ<:}OŠs°î°ú)A|é:RþÑXJáCT·K¨ÿ¨oLþ‰-žƒÿÈ—„À—7³µÚ ~5 <æ"öÐRüÉmq’Œ&è  çø,îqÏLüGM¬qeü‡3-CŸ—ȼ4¶ï&1ÓMüèÇ0ùóŒÄ©hj°Àþ(Áâqú3c£cÝæÀB} ¯Ù@†ä…6ø&Öò+ÏÆªÿ¸í¬m]Õ{îS bߘœþ†d³éÉ•Jå“ãÁ ƒ’Ù]\î¬øáE¢µ~©_ áR_;¾R?x…ØË nb¾ÜÊÿsp­/ñwÉ?ªS¾ [ÛØÞæñƒOˆøÕ(òhˆŠ“/TE¿ó–ü¯.õ¡ÉÈ?J“oÌ!»É‚E^‡üž¯î"#™Žr²µÍtåZðÞÙô®`£•¨´ÜD?A›ßhDþ‘ÿð…CæVjÒ™—éRÉÜ/6àØ—`íþ JþþCÿÄ…ô¿ú*ZÈ$XðÉøYÜ¥AX·œæ:xï/LÌ‹Jö"û«ÃüðI©ívÀ7 `ætÆÐ—y_®ë5ð> fiño“ÁUΠB½`ã‚äÇÇZ¥vö4=È?¦™÷±É©ÉÌÞƒF‚?÷”5ƒñÅSr­¯d¦¹c^r§Ú@ÝaW2@ƒyàƒÈ|Ñ9õ0—Ò¿DZÏÉQʃVG-| ž˜Ú,¹žq G.mñÔTPÄ!d[­À±‹Q—WÇŠlÇìB¿Và!u ™é¿kϵçÖÁ³FÄä"›,ǹÖûàðпñd¿’Ϧ2'Ë*â¶,E½å,ós¹ˆnõëÐïžaªÈP¶óf«#3O’ðD¢ÁË_F£Y5ÐD¯BÚC'fiŠ~⦚LÖ:Ñ,Žþêô}©ë{@æÑüÊöGSÈF6RŸ¥XJžÊ¬ý[Ñš÷ù¦ËÐö'Å ¹˜åMó2ôW£™BÒ‚éд¶Ú8—9c8ïsûäGÑ5ßò†èò!˜kOYŽêœ"â×:œ»nÏÿ¯¾96jm]'ëóÏÓº>ûµ…íúØz=Q‚~ívß}Ž toß«¿ÒM=Ê/ò~̃›M]xD43E°Í~ôÍüóXþ·FT#2ˆØ¯ì/³>0+ð›ñð¨1ô»ÉÖ`ï{’ÅLŤ$2/öùÇòïoº»j+ä­vÐëã?Z³ÎC”M)Y©\QZß²x£¨¯<ˆF7r‚oED] »OÿÄ×¢ß9åÒnø·¢ ‚7šÏ´èwçƒu? Û†ÿðãÊ#ðÙgÙD\ׯ‡°¹øâ;‡˜Ú.~ª4~$>Y›=I¾œèk¤37R½Qˆëí‰÷èKæ¤óÑ£ý¸Üpøóú‚.¹tGÿžó%ž¡?—ؼØÍr‰|äË©€¸Á³Zƒ¿Úf6–Ì'…ðÿaþàú'6áÉ%ã¿­*«k($æÃ®¡æ/þã,•™ÌD÷Uà?ŠAy5xü¶ÂK‹.ÁžôT] ;þh/V÷˜š@t1þ\§þ|¶»•›(ÿµ!5±|sÉ ¢eµÿ~6øU/™JÚÑ÷¾^–«;@”Q—+Þª.R±Œh¿(ýc31í.3üùj&\M$‹iÿX÷ï¿p ž®P°l=‚¸ö”ó?v…ôR'èðW‡ì(<ñøH«0xÝ4©«ÕDú—Øu˜ ©ë¿Íþ>ÁyQÓÅ×C)ƒÿËjÔ:p2–ª>â¦HÂŒ¬6hž‹Ð‘ö!õ)•©ÿxJýy%úñ^…?¯‡ßh~ŸZùBèâÊU®õó£,2ÜçøúxfK¢Ç—ò»ª‰•MEüvs¶•…ùƒô-å÷ ÿ¸…†j¬rÙ‘P_MÅkúgºú¯Ðýç¥9ò“E<°’Û¢( ûûzm'ó?΋Œd~uëû'þ¡÷ƒÿ˜/rS à)k0çÑîPÍV]Ž¥þ#&¸GwÃpþÓÞ¢i}´ß£ÔÿÀÆTÅN÷U>à:÷ŒiØ”‹œß^~cñ?-ôwL?@þÑ„øó ùÇôGÀaÖÙ_·~çZ˜ â#\Ðp´wH‹¯wÜ¥úü0œ‘©Š‚º×$šú mXÞ!»_Ô&¼Û(l@#ù*ÌùµÝô†dɉ˜®c±RÉfâÿ é^’…÷ô3'x y7 ª‹à=‘¨Û‹§¹-Aоt,fâ|cò 0 ûAþˆ®ìÂü*QòLÕ‹áCf²ä*VûS@‹3ºÐ…>s¢bøê^,))u"ëaѳÁ1_¢óÅlz{#8Îò¤…Øî¼ë饢Âð±ÂË­¤{+ô»UÑ“¶ƒÿ {÷n(übôWÑÔ:”9‰Í·€Ù„ ±ßõÝr"ÜÍD¦›]û¡;èT½‰hÆÉ qÿñ„;·ë¿«ž~öWùÊçLœ]oRóMþqDÇpft!3(cÎg£âAmáC8•k\I5ÃuÚ;´°¢±ÈœïÒ•k;ù‡§:JþÑ þä«zI-]˜åTu/VKéÖu›«ø¯qûìO†2èŽë¡äs”ÓFàyqZ€†õ£÷[có1?1‘jõˆžXúúØûiVa4^WÈåìÊ’äŠ Pæyérk½{àWÊ;rÊæ@zÛiýôÈF ãf@wÃÇè¯6èÞàWŸ©<þKË}t”4Á(yõÅã ÞXódþù!QH<6,#Žžä—ö¹@ïÐÿ*'˜åHð墴öF{$Ê0dŽHÆ3ìm»ñµ…Z[c'U{È`« 3쮼aÄ¢‰éà2ǰ[D üÞX‘ØXÚ"¾~^?ŽÿèŠÞä"¸À)æŸÁΕ^œµ†ÒKéL\ÿI¼­"ÿ¸Dÿ«+tÀŠAß“‚Dú-X3öó pYÞ»wÓRxëÉØŽ¢òºVµÏHøkèwšaŽc§;ÃÅ$A¿[”è,7ïÃz¬ýqò…\p@­QϾ4²h¡å4Oó4CV„׆GÛÄj_ÀxêÊC|-Žj ÿÑ^½—9ÁÕ_ÇsD¦jâ¹âYýV ûõ÷‡ µâD_±ÐžxpºÊx6 /çPÛ˜ÿ1—þWÓÈh²Át¡kf7z¼ˆð®†P¾ùµÝÄ9²™UôÛ5Áùf‘qŒg3Á#pÏJÃpûaͶÂU¼áª7°Ò\¬!R‰ëÚ•¿·õÎÔ«`s‰ð7¾ª øU_´™¹‰Þ#™)Í`øÒÊn^ST%ƒ²âý/öÔEë°û"ªÕþZp²þL|ðÓÛQoRÓ¹OcÈ?ƒÍÀ"?2“ÁÞž„ÿ(a s8§¦ Í\áÿ©êqž’ën•¾½âiòdP1à±à#/ÊGXöMxÜ—j4µqñ à?6³^?Ó˜ Ìéëy¢ÁØ~´þ<¹xFvu‹ÎhcÈ?öÈãêÌB~s&‘ä@Ù:‚þíóÈ–®Á§,WµÉinóÛà•;©^ôWõM´aäx£É;àeºP?˜—¬¥à,Ì+¿ˆEÎK ÝŸ¼ø¨}ÜËŠ €-ÉXb0G*+j6¿@lÀ øsîï ud³7ÕäþÒGÕ£þ<2m+ŠÝ¬Îc`v—æ×Ž þ#®5†Þéyö‘Ì~ÊCöyÅ—½)¥51žP^î«Z* RkŸØÙ˜õê2?ÊŸÜò;½Èº£çÊ|ªÖàŠQÇ%5³©¯°{Ý8õµÀÜøÕqmý{Y'šÚ$³ŸÔtÁ_„§éŒþjŒó-3!+Y«Ô ´%ÔYöTLMncÅxäËò?Ñï*mLÀ¬ò¿Né;G-¹ë>ýõµŸýí†öYÌ´Ú2Ì?OÆ*WIé¾»…ü#²žòùó'ެ†­cúB-\yǸ¦W¤Óü!c·È€ÿø £ÿ—ö9Xÿ“xaŠ`Nu}Ñþ»[@ã«0ox:Ñzt9å'ë?i‹´’ÆüÇN,f-,LSL56¦cs.a±#¡qÀïªlLû‰›çÃüóÄ`?‘Èm=±Å=ù3§bX@}ØàĪ \rø!br˜×¼Ñq’hí p€âäâMï†ÿH‚õ¿ÃÞ €_Ýf¿+agpªã?>†±ÃúzE®´È®?O†ÿÈÆzá¨GÎÍù ´‚üc3ØÎÝÇâ³CsG’A¿ïèGDZJx…þ¼'^ðEcj6v ùL©ªÈqªŒÍ%<ËBT ï¹ö‹ðuÄ~ýeÐ…>K§e¡â búåd{`ŽJà?âQ­QFa×Ò°ˆ¦;©Jä}Éw€¾})ØëëüÇ G^£§¸‰´»Ä‰ÕÇÏņ¨ª$JªË¶6•wõ¾`'i,*­~0_—~8ÝkõÚ(j a·ƒ8Uàšíœäx‹ž#WLjÞrÒÿª0ˆŒ™â ”U+@ÛÐÅ!ËÿÐw€þP|ç´¦£ûî-,ô4NÇ(´R_°Ä«Ì˜ôÜÈŽÿ¸GŽPDh*Ú¡¶å&›KfWN&fþAà›¸_/x–¡ {šL¦w)«Mfnà?öƒÀ˜tÀ¢Ê€óÑ׆OYNÿ¯+x›+œÍÁØÂ äù9]¯Ù=®äQê?&¡ ÉŸ³³üÖp¢ùTsäêÏÐK« ÈY´»WÈxú¨qÂýŒ›8P?•üã%Õ$3TCqKd£6eó 2ã2¶¾¨Õœ~éS­B°Ì§©Ó+oîæYÿI†tŠŒ*¦ /ÝÜã[Ç"ý=6öùGs(Ý?•#_ˆƒŽÉîXÂ|&z~]F¿;ËœdÝDÏ6<&ë%¿:L,XR¸ï_k­'/ ‘Ïh¹Q-^rI@ÿö{ÔÞFàK÷°Åt½z /3ÿ±ˆúó¨ÌÿHK”à‹è*}Ä Wþá«­`~m[ÎÔp2»9ÂÃL‡ÿXföAvÝìL¥}k§|TtjÜ×*Ý™‰»9œþ‰ÀŽ?ˆµÄžôPñĹÀø_ú8¶6*Pý‡¿#“'È9ûùmÄ×>R?8[ÿªw5¾iYYÅÇS_¥/Ð-CP?¸ûç—â;ï8j{àÏS¢ê.¯Ó¿½“®æ2§+’ÐÄ}=~˜Ê¡ ¿®®Nÿ'"¼r ¼)€•ÒºPÍÖXæ¥ý‰ÈŒÿpÏñ ú³A?KEßÞÂÆRÞ”Ó䡉¸F¨íØ‘×Æ&ÎÆr’7"#ϵ#lmÐ ñ³›ú[㓨 &rDd쾞JŸ&jIÞ³æ„9}‹þj„¸æ³åxA´¶HhXß X¥ Ø÷ðàæ^Øì` Fê « Æþô”‰ ·ê%ÄÍ9JéöüÁô/yDÅARü¤m…?õWļà̯ã>x¢ >‡OxÊü¨ØZhk¾v´¢â¦©ºCöñ;? n«'•/›ði|¤²ë?NÃ+ù‡Ý–ïà–œª¹8bÿ]¥¥B¿û«µœÈ‹Ÿ+ 7Ž<)W˜^44bíÇŽN#Gh޵ŒÏ“É?M~5½_KôW©±’­É†ž ÏmŠß‰M/M62žŸŽŠÿ˜Ãpün=XåbìÇ9J¾4NÿÀôÕK‹>؉xƒd0Éñ,Wг*!û­¬V.ºCåÅZ¤Šã¡’ãZ­Ü£þ£F n}=—>ú}_›±þc< QKêQ"áwƒ;a&Etˆü¨˜ÕRôq)‰_ó‹TI:¨ÅÓ9;—ôJìýQKq¾{ŒÑU5¼½+,Lð«Dè¯9{Ñ8;}˜Ž¢–Š :t ŒíŠ:ɵ·1ÜUcöS£dÈD–õDÆ7¬$ÿð‚w¯bö'g{ 3“†fÝ ÆÛóuÁí†Ý´ÅÒ¨vü :X¿[ÑQU[Î:‹ß“½5‡¨‰Þ¨ùG>д]Övú'6¦þc±UƒŠôÓÔ‘W‡ëjƒ~O3¯0s‰¥‡ë@¿uŒÖïrî¿á=d)¥V]ôR±èoHÎÅüÁStO|Hÿ’ÍæBê?bâGn‚öNÂÍR§Á(ò ww£?´–ÆS*Uät¹ÿ±K®¡ÿn²¶z̾5ðCáë­&¬oãW¥©–OÕLÁ®¡…{ "_xºüÇ ô»;@rד¡ÖäÓpwÃÌ´£d+óÔÛ3?ʃ ù8ÎÖºQfàÚ’™¼‘"$¾ÊøŸð‰ñ]'ë¡#¯Ïõ™ëüÔ9µ§šŸ6 oÑÔx©d•㎸ú*B>éß™ª¾÷§Vùû›t­)¾" ýŒî‰Úð·õ¦ÚmøUz¡‹7Ô¼ûû[êÏŽúb¸Šá¢–~­l&Ú3?j¼vRT”ÕèKh€Ì¥CÊÏ,•¾'ÍÑ_}ÂÆu"y!€_5’Å)bÑ‹0÷Elì@Ñï§ø'º¿eM8uˆhþ,lÊv³=êMªK>ðV'ª¾-N1'ñH˜;\Âü¨Ob9-oÁ:.€á{¡÷¨D¦Ûü>5¾)Z‹G¦ÓPÆ5ª?/¤—ÁÔåÞ]Å7&&“I…NÖ©š•g‚ ØÂÊ[±Ý±­Y7¦H }í6¢À~ÿñÏÕŒ+ŒOJO2›èScå:©úqÖãE½A®îK|“uè_r/„ãhùŒhàWéñÞáɦ¶Âm”ÄÓ^ g¹Äü¨±F$Ðû^ØåÄð¯žëŽ‚ÿ„~w¸¸Š7Ú„Ö("W6 k=Ÿ1{$Ô0VŽvu:(Ž?:ªøå•ð8sY÷£±Z >)¬þ›hG†—’{ÝÂüÈf¡}[OÍFbªý¶¡«©ažfºFørä;Ùa5† ½®b‚_×_uÄhܵô(Àö€LâÞŒ@OEÓ3=qoZº.í¿*„ט‚í+ŒZÌ e¸j†ÇÌ,ÿ¸¨ÇóäÀc.Æ'œ¢ ÇV³ùGO¸äOÖEøåzäF©ø¾¥Jrfœ Cz@~ØË¨ä,–¯eZô8¿³ÕjêÏ÷Ò¤¢Ù½ÁkˆËa&nü ›ß“úóÛÔˆ¢Þï+^ä*º¨ð«ß¿kKñÜ=À ;±ÿÞ” ÈZ:Z神gz¡ˆ-d5ošHgÛÆÔFg§[9“cé.v–L)‘Š 7¸ÎŒ¤ûwpÛ¨j(ùÇ@¢Ç8ì±ó íùƒ«P\•qÞãzŸ3åj/üÇMfqͳËÈwô‡Ùn³ªp[‡VZwø˜Ä$“ä&µNxSÿ‡ŽíW¨|kf£’ýõçu郕¥6ùG3‘ÅLJWýíØˆW¢0 ȵ.ÿ±þ‰ÛÁ¯¶¢Çð’â°™Þ¹“\­4Ã̆Tº$uzRŸþ%óðÆ©øÊt´É‹eœÀò\[Âÿd~­E]`ÿ‘õžž\{DÿݱzT£ ýKìù'ñ`Ï'’‘ÄÐãýbÿöŽúôJL2q—Øüœá¯¤ÿ®'øUfá "9v˜›\Ç'àƒAúìÁ ‘Ÿ·xüGæŸOÑà?ºÐ—P`û«¨ úóîÏ’¢8hb€ÙÞŽ®ŽÝï…Åo,?[ˆ®S|¤û{ªÅ[ëÝ?êGÐïÆ 7Šnu„7º=~$‘áòÿñ»Rü-ªª¾âxw6¤%=OÈöw¶[hö“7lg¶I-¹ÝY&]ªÁs_ÃùmŸùªëa¬X@ÏÅ^jã‡îqZベ'å™|‘5Á=2ªï¬â ¾Î€`~î‰8"tüJ׆£X¨¯NaÍkñ3Ña›±öFYÅLfæÈ×Å·\àÚÉß¾ ûO<[Ÿi÷!1ò)™â }srµ‘§w]–¢Â'¿Kd´/¡œ8(×®‰b ^ÙÑVêýèãØ^ Èp9Ùþü!x-~t?þê+xž?™„4ܳéÜKÇ@õšŒ!Žò‚߃ϱóhð4_Ùk1ƈBØÑrOåO2§Ûh˜¶£ƒu¯ò÷G“˜_;PìGß´»•Ï8ìÏž¹5u”T»ððö¤ŒñàG/ÈpæóûvÃÍ%zlѶþ½ÐÿýÙþ£Y¥“\aì³ÍD-aµXËäGÐ_Õ3«f.*8*+…Í[5†‹ðS™ì¥DSÝŸü£ §9€­ßž$™_»tý5 sàÏç¡—zEþŽ Dâ?‰•çÎdVÿqN¯ ~En µœæ•pãÑÂvÄGþ‰é+Ñytgys ÍzyÔA50 ßâKýË,]_£e““Q<"×ògWÉ¢v£ßÝIßÞŠä3÷Ô:Ëçc²R_¢æªù4SÕ@çvuÚªJš1ð«ëVv4Öf‚¬µ'þiÑ{‹x»3(]a³¿y”î„yÑ_ëDþá…èCWÆD˜78å-à?ޏÖûÀüÚàa_ˆ£˜Egb:IWøí˜Ì¯]G?øäN_0»·d5 éÕìl|{Z|—aÅ_*Pn»#Ó_ÿT ÿî)ð«êø‰Lg§âÅÌìlÉ®ªYûÌXTÇ_±öÐeÄߊAŸ‘–¨Ä"£¿R¦ÝÆ›xã³8 ΋e.ÿ1W[]ëã¶•äøóHÎp0ï-™ ²Ð¬Œö໵ÏÙÓ*„ÿ8«¶QÙÞ ?wÆ|A®þFl$nIýG¶ÿ¤þüŠc¡æÎD¿Ó¹ì­,žOï©Ç4’2-wÛ—üc>@÷Ô¿Òþתë¥VÍ ^a×oR3<ËØ®Ôê0'x¢8ml4Â…ôâ®çù÷sý§?§éˆÅ׋¬Ä„=eNø6tëz"ŠËÔ‚<—è6T¡Új…àÝ °qvLZëÚ€K]eblá¬b¹_8á»1ÿc_h‹úú=}ÕH5‰Ï‘OØ<DækÝ«Spƒþí“Ä»0¯y‰cƒðáßp •Ýg.Œw'ÖÙþ*­ò‘q•=¤% }YÃÈÆŠôzÄØ °÷>¬ áGÒÇ(”R¡8ËoXɾ·³íùñK—èk&–¶·H¨m ¬IvjÄóFW—ewÞÏ{LãkH\?_9;›‰Ì01W³;„ücó’à?€WÅ&ð“ƒ@í£Ò^ ž•—ùVã@ÙžcCÏ©×pö6W5…¬¦ÜÊW#®îîÞôףͦ…S+AV¹Žl ö¹ {(ûlšqˆ¥§Ð·0õƒÑ˜ÿ1‡]FÇ>÷æ7AÿuJTû?®'šª‚÷ŸBuàr"üp,ïZ5¼å+sî6[÷ñ]éôêI\è* Ù*yYÜ`ýÛOé ðh[PSä…mïct_ÕbÞ63cÕ0”Miéß^Ä9ÐÜA‡ù:àMðp‹é­xŒ,é¾ÓiÔ zrÄ<ùcøº0c‰Ë—€{µ6 Qáq ü*.Ò,ª}Õ ¦µ§5;S3ÙŒµÎóßužûÜ@ýë;jSÈ»€êÅôáÊ#ã?²ÁÁg ^ã3ý¹òXeˆï‡2·v„¹ÑÊnÅ2O+ dæ‰YÈ" w½ÀÇDЇ§D9“dB³úÈôÊAE¸7«tg½a MãéÉøœùåËèfrn#]ñÂex"áÍ^Ü› TMw]o­œñœ±úØ'½á?Òã'ZÒGfý_‚` G¿]ñP<ÝØÿtfXî·ÄNN¬Å)±Ùå?vi‡é‡R6uoÒNÑÑŒK?Ç}¦=×å(ûÌn•pgBI=gQ:d>E0˜Lni¿ßNpŠ~¨4>£¿ÚȪü[~w ÕŠºîÌ#Gi-œë³_ÛC:Í‹úÁšè¯²ŸbÐkô/Y¦ï¦~0ŠžZ[öKË rÄS"÷ç‰è&3 a¬×vhŸŒK¢‚ø„þêå/æI=ôµ B½A-û2ÎÙEDú¶|IaZ‹Ñ3·\aØœØÿD§~°§± ~׎I#qMaIÌxK¸‰·ò0UÎÏEgÑÔpϰ }ݳú #ÚÓèäÉÞü;&:?_'Á¯Ê漕)A¯üð CÅÙ0wxÁ¡òï&»~ˆ–h?öÔœ¨)™Í<Ù7û5ùÍ|ìhìmn¹¡ïÌþ›xz!r ?°øg¹ÞøØÔGÌkÄ0WÄjÀ¯|ƒéå³È`Ò ]'á9ýK ¸>ûµ ÄD}õBëA·«*†N¶`ë¯$ýÛ×éþzLô»>¿´ÜKG90Ápت{¢•üBÇ«ÑôG9ÀÄ (â8h–NG”_Y°£>Ž·y(ùÌ@Þü:b®H¬íÒìÚöfô%d£r´Ñç§V̈~7ƒ±ÏubÊò¼1ƒy£:Ê'†Ýé<Õ<‰r_ƒŠ5ú)ýÕ9}:¢ÚØ$?,çVðczÊ%ïç7TEE• þ㓸@†4Qœ s‡S¨?ÿBE½ Þ*Iæ]«žu¼¸êÄšt-¿úLÝÅ^,ŸÓ°ÂX±"<ë ð«–ØšK(në‘5Ä…ó©DwÒʼ[@e.á?R•V•G©ŠŠ¡¹•˜AŸ¦u¢ÿ•ݸ/ŒþlýCÑéIþN%B Ù ;zœíÀ['¯Y…—¶ç†TÑEËl¼…»üŽGàgù©’è ì¾Ã©±cSÄB#3–y2ÜôF,eþE€j Õ4A÷e6Í‘Ñè‹’&3ö"Ù€¸ûLÿQ‹ôVnjVãAü°â ðX}É?Ûðßmú·¯ ¶d½¦¨GTbâ?¶ã‘üøîy°»QLe ˜þ åé5Ø… °üEðIáÈjb-·`‘ªŠNÁžK)ý¤0¸WáÑÏ㿉ð#QWÅ3çÓw=)Õy©‰KÏÁÞ”0¿ÃúÄÄ>Ä{Ü¡‚"ÑIü`üÇA½yøaÈü襖rÇ|™ÿ±Øì§Òû¬œ·Á_&ÀdÕ:Aþñ^ö&SØbϯâ,2êÙa%ñnß74…jD:š«õÔÔ Ð_ݱúC_Y˜‡¢x(µŽOð¥9?ÀâÖÕôb “›ãjDÿÄ5ø0=¹ÿíз¤¥7p#úïÖ270¯ãˆX3ê½'£»jŠ!¥•?Z“Œå kffÖUjéî¨ÿÌ1]¿ò÷”g˜Àì!ëŠÈà\ÝÁ¿¢[=á.X%á?v0O$'Qÿn¼Ô7º¢œ„-Jmc_uTŽcƃ[ÑÐIkrƒš|ÊùUrSs×rZ~ä ÏÁþ†Q5î`¦íð§etíŠA†”‚{x„üãhÈ ÌS®ü㬶ÁX…t="6Èbƒ™‘~\^ô/>eîÄkþfÅrž¦Ÿ~TjLÖP™—Lg¬¹×üNøY¬ä9¦?O,ÜŒO°ÃøÿðÓXÚô@óŸ8ÊhÑ‚œ‹ŸÿÕ‰áÏïh+teÔ¤iaV9ç0t/}ªî0RéiQ¿{ÝQœ™ÀÑá?®Ç=5¤ÑC{«-1SÉóÿ)ÌÉ«AwÞZB¥`OБb¦HŸrÿQY4 cT ú'vø©+¯¤Íbþù6N °°ŒXø± B¿3ÅÔC·#hKÇùdôøM w… » üÙsÝ—:ê²T½]¹ñ‘­ÀH£³ÒD2ˆZ 1ÉTð¦Gâ,}/„¹Ã)øæ½ZÀû`qöƒÞÖ—säð—,ÄÑ9Õ"vØ ïÔKª™éÀ»K¢gÄÊ4%·>E·ø3Þí%˜]jÐßrÞ7“ìDYÄdu°F%"k!u±×Ô´¦Ú •^³ñGý±øÃ©ÎpâÓK’é=šÃsŠFÞµ&­w¦ó?Îh‹ƒ-Ù_o/Z“G¾æª&p§Þp·w°Â"Tµé¨>Æü&æA¦»f¢I^ð‡ˆìµ¹Å^u›jƒ^ÁžtýÐê“/LƒŸƒÿ:'™l‚µŽ¶i±[ñàÏ}øù|t-™H={:ü‡7ꯦœŸÂò­6;ÈŠ»ô\dÊÐd'›™¢|¥uˆ«ÌJüÔ$ê+¢‘?µº°·DàP'vØôj# ÍNž]£~õêâ?rb¡¯Ð…f*'lÞhúÝ~ TϬ®ô/9eŽ³Ú™£ÔŸt"y ûQÔÎ ½À*z~µUÛ„{êX#T øÓ¶xÕ.0%U™ï–ž»“É«™èw¸é-ÈFX¥ø»™û”¦¿\ÉîO ;[’níÊWÇdøó,<ÅY2µ™B¶U.³ºµ}T/Tb§™õ –ûLà s9õçÌîÔ¨¤Àw< +<‚ÿ¨HÕEk޾¦“ä.õ͸#¯šùe@Õj²C…ø>Z¸A bY­æ n«­ä¨™Qá?vr×?‰Š¼)]þc«¶‡YM`g¦ƒ_D–ÍNÎ1ÖV³'½´fQuŸÅJéôvF£#òoÖ@uÕÊMwßžhåìwå‘XKž\ÿ‘ê?©?Ï€5tOFѨÛHä\{-þáÓ¬ðçá`Ë#¥ïZNV9刦Ϡ#ïS=*þcß?üìõÁÑÄØŒLŒF'›\eøèEµÚÃú+Æ9ý“¦~iŸƒõ™X€?±ì‰DsŠzÌ?ï¢yÑO1±Åuøæ!Fð˜ïÇ]Ù_É¥ÍÓêãA–Ž Jªˆ¥kËÛ\ŠŽ¯c`²6ò_b“+ðçm~ ¿:MÿvƒH5ººIö±[j÷ʘ7w„ê’ ÄM¹ÁyüàÏ»‰[a^óÇi®åÛY «Py)hKbø :{¨ œºÎDýµe$#,´2†žœZóïMì:J¬~lÖ.F]wfðîÕØãS\uL,l%øŒF,Ím ‚ÞÁoð¢}D>â¹¾øV»HT‘Œ£ŒCL|R3îÁy¼ÇjvwƒLÂÎÁ*Š{!ö/ÉBgbü¢þ#2¸€7×Z™\ë:»[DÅPãüg˜¸s»ƒ{By·~%h`Ð}ÙŸ-q¤3þGéç±ýŽ=‰u&ë Cµ3À<#1ìúþë¬rrºb›µ]·1Ò-ì/¬óPu^ÞQýñ…@½¦ß¶§a8šKP4µ$OãÕtÈžuüªµQ;ÈY,(¾‚¿‚/êGF±”ücõ …ÌZ0îWÉŒRƒÇêíVèDòœkh‚Ùƒ‡ó&Kª§f ×C©Š>…L«8dr“E ¶´ ó`«/ì@)Ϫ‚ÅïnU6k37’ÍÜÇ?õÚA®èø±»þã õ÷áÌ߇Æ4GȢ⹘Œ¦V¾¶¸šŸü£ÓÈJŸ§¢ÿno×}ú³A?ËÌÄÆêÆÞ”Äõ¥±ò­”'"µ°;™ybaÀÒûŠ>¢ÛOÕøêûÈ?rÓîeÚŠiõ¶ã¤Ì‡mN¦2‚ô܇¨ÿ¸æg8Ñç{»ðç)ì‡í¨Œ„•Ž7ŸD­7;{ÈTFh½Fþ¾æ·ZôU5ÀrÎ`Ô9’ Ù]CÊÀŸ—ËðLÀÝœDå•ÀcŠhÚ¥¿8ØŸ–6H›$*’µ€±Ø £ÈË¢wp—¬VA6Fñ¼q\ÒM®þó鿇8?*µÏHÄw¥¤[I,ö±6*’?\þ^y”(&–¹õq;‰Ðá³¢à9ó„Bê5Á üÊGf%Â.Me‹ ¬ÇóÄæ…Ô5o!ý|ð¯M×mÛ(‘Ræ95¥–;;›/•âåD}Dr’ÑØu‚ÿtàÏ QÿÑ‘úƒ¸¤1È;ÙËß‚š/_¬ÔÞJ‘‹¸ =õƒ‹ÿ`(ßÕO‚ü%çôŒX#ôIé±rK©m(K”™ýÌW*ä÷‹ âJ˜;ÜäøHþ±DÂpßÃ:¯†7®ˆ%*ó€Bœ‚ö ÿè7h.cQÃX1‰ž‡|à®ï™"É„w 'P ¼Ybe7E¯¤ªähÛM¤µ»Iýàyøó#¬W‰Üòð¾]x¶ ª„@¬ü4l-¬ùf<Ã9ho¨ï| ‡T‘˜\Ëo¤åÉJ}y\ò6[Í×U©°îoÎF8°©ø‚MXùöØïxxáD _BÈ?ìùS`SrÀ À¯ær÷{ã—s/xªõñTPÏnà³Øèy×Âütqè#´û×c®‰ÿhÿˆ µ…HûÜ÷NÀà?è1N }vàókK‚UQŸ`êW«.ð~ê•H,{.åõ3Ô…þK¶€ i»Jž¾CGªyÌÊÀ4‘èTÓÄ.—6Ms 4#ºØû0þcUa˜ŸÌÁú'Ó3£CÛÍÕn‚%º"ý™ 8 ¾â™êdG¿{˜Â6(¹r0¿öZ '+ùÃß1à Ûëß^Z|ÁWÚõƒ½©SŸ-«Ýtª*^uCù¡Ê`@¿»½ØæGùó\j‘Ïœ`‡÷¹âZ̯u×ÔuÔÖ€¬UƒMiŒª;ó¥3˜Þf]TÊ•`å·ã?‚_m!Êïa¶E›‰Yò{X¥ù˜Š€(*¼t+ªß8Æ“¤äm˜% üG[qW:¨&¹‹?L?ßTÚÃ{\´J2ÿc>Ý´¢Ã: '7@}$~8ÊLÙìð«ÆZ3ã~5JzÐ?q¹ãݯ[ÅòÇ—qZŠ–÷©%à? ¾-e¦¤þÜâ)oåÌ0ßåú.Wþ±B[ilØÝTÎÈf±6eõƒP ,$k+‚žk‹s¦•E_×i×Þ£‡óØöb §»1Müÿ¿JDýyY×Y}ÁäÈ®ÏB1x¡|9-øU|}ŠžÞ(n˜º½ÊYGæÐß_%Ôö„òs!96̸!rБâ«(!ïÓ?± |÷!c—È-ÞvE{¼_ÚçzÝÌd–} Z©àWµÚSj% Šf"<1鄟îuˆù1'a&npÊqu!¢®²›•í*ˆ‡ n÷èvØÆø™kþ Ÿ`kâÏS`0©%ÝÎû~ .äu_ω›J‡<„?oKŸ¾ï–û«gáÉö¢xü *zHg%çµ1ý8Šdð¤)Ô$X·.dËeÀ¯ÂB+ á?Γ´€W𦺻 ¶:!HXMbæ¼°[ˆ˜vb“ãàõPY•¹*nKàÞ—ýÑG/u4­±@'XqÞÍž—{ˆl¢–¸¢~·VÞÈ!¯aËg£Döf%ÁûÒ ½Å—¼6&±Qµß_È6„Ø3:ýc÷½Bð£é÷<ÿ‘›úŽDïßÉ€ªÈ± U ±îºêÍIŒ›°Ÿc‹vqå8KS‰!.ÞÚÁ —ê°ë?:¤`VÇ:ՀʈÆì0ÙK|3óµQ8QUæIuEq**ä4Û±WÇð"ODx1<Ø“nÿ‹ˆ7+ëã¿¡œŒÑpÝwØÏªÓnÑÿª›µ‡õ«˜º9<<ƒz³ð‰;PÎ*>8ÈŠËôœøToøóø·EàW¯™ì´Äüü£«µ -Ò{ªû€\åGñÅ–Ç#¿ÄÌYîËîðrÿ“Z$%ã¹36ƒm”ûÕZ”Q5à?ª[诲cû›Xë¨HiI÷–üÆjœ x x¥zꄸíZ¬®£¶\²1¨ßïtNé'òÑwý8üÇ+± tXŸNÆQ½òx«*×ÝàW•è‚ß@ƒ? ÖS9ñçߨÿxÊ“} fÎŒ+çŠ~tÑ’˜þ%»ÌMVEç ºŽ\‡GÙO—à×L+ŸJn˜ DÑ0‡èw‹ÊÛ¡¿¼I?Ó²r±\®¢ˆk2:XnjË[—ÌxµÔüF~“€>ZÙñ'YéèÃŒ‚ÿðâ®kè©¿‹õ.ÿ± ÿ1^”&ŸE´—Yž3sN¢ÿî@sstÀÊçsîs^¥ŠpB8g¦ŸLeNÕ;Þ¼¯b ïdÐÏØâ„ëþ{ÄÖÆi%\'á­£ÄÿŒ_e§{b}8þã7#l…ÃqÒŸþ%‹ðôL?LˆþçkTÚHò, ÈÀ fÕÒÖjëŒm"•8k|¦¢=‚k×ÿ¼Ò_»UßC¤;E”ä½_@u@g‘ ÝÙ=ø*̆y‡,¢ mÕòÌ Yd!ï°{ÙTh‰5©EÉZñìö–HÇùh'ºÛC[$Ð×_ÑW'vŽ£Nsï`½­2y’u‰ú»×R(?z²w¼æŽpRÐÁ_¼Ä\Åâ”ÄN—Ã/”™‰I™µ„~÷ùÇq¬[,ÃÆŠ¹õòàH`zü©D1ÀéLª#ÃôÖ¤š$<¹ÌJö¼‹z >奈(²i¯]]éübûm¬W ;N/É‚<ÙifUPN€þBα‡(í0þÊ7yÍ,Œí!òy˜™Š]%„ÿH¿9ÀõäÇøðsûèÑ=ÀH„¦³#¶y 9gOкdðHiÙí£üÇbê?¦‰CähKø‰4Øó•`výÉ?&’Ç{ãmS¡‡~ôÿ¹Û±Ni"~æ-õƒ{ƒ\¨ÃÑD¯…þª Þíñ}Cð«>äH)ÉF*Ð?ñ=œü±…ÇT:ú'.CyŸå »â ÞóU¤Cƒ=—ÚúuØÀº¬·wHMF_`GÛ1±—cÌTôßMK}ÿQþc"64 µÓÏùŽª,õ1©ƒñÇô,ìþ§­8W<ËÿŠXæHô{ý@½ß•.Ù n! L·?¾ë$þc²ü3Xÿ’‚xɇ²?Ì:øs:”4;Ñaå&õÉÐ不ìJªÜ?P£1EýŽÞìî)yRCu@¸5í}µqd‘v7æ^¨x»¢ºb^¥ï•™jøcD÷˜ÿჩ>þd }n€7µâYIÓ‡³UE—^®'òÿq–gfk"b˜à¥pp>ªþ#ùÇE¢< uÑ›eD Â6Ÿ™ ®Ë¾{ähòw¿¯FZ ê5¾ó-•ë˜_{Bn4ÎBt}©gù X‡ÇØLÇk0ÝsÌô/ɃGŠa&_ß ¿ªH&¼Êå?–Òw-(Ë$ø-ptGL§sùÇЫéÔ2´:×95gg5k¿z€Z¹þ〩qÎu2õ²wJŠÓ®+þ÷>ˆd£ù®³úБ›IÿÛoϦizb}œúó$ºÍŸ{:âÀŸ/„É 'Ó~M]öÁуZâØ­ÈÜ´…6‡>•Gá?>·è_¢ýÒ>GêW±Z D1lÂ\ðÌ9ô/i¯=ÀëW ÒþªãO­˜GÛ«0ü‰Fï£ÿ.@þÑD¦¡L ûº€ˆ®'' &¸dW1Иÿ·òº~þ#1Vï:ŒÇNô»û¨d°g¸¾¡âyt#E@ ÞŠ;tEtèa-8ÿ àmñIÇjÕ'ðçç‰À RóçMDŒâVLDOÕO¦3¢‡qÍ•ôß°Ñ•¸wשLj†ÿˆÿpÂ~–ÁŽ¢–rͰ¤ÕYP©x÷4¡ÖŸq Ónˆ*j/û©ÈÏ$”çE3vè!ka{²ÊXûOdu{ñ£§ùmŸˆf¿Ð¿äEˆú«ÄZN#ß‘AmSóáÎWái$ÆËiìE‚F¿ê‹ðÄv÷!çɌߌÁ÷} ÁŒvÄ3¦£¿JBe÷šÃ]*ÌOEªF,??œ6 Ú_FJB*F÷åŒà'¿›47Úþ×úü£U.Iñ>ª>?34ÀËî&òMÏ\Ò=Ìò®Žµ$þc Ïwx©3ä7Á_ &ä×’—ÖoRqÐ(cY€Ùnw?`?)ð>T Ò*¾õ‡õl«øÕ\âÑ4`/¯éM8RÕã<¥×ƒê¯êÙÉÈȨ¦vQUÿ\Þ&Ym6á÷÷g¾ßG¬©pŽ7רb耎Áv Xv[|HaÝFÝ|€}ÅÉá’«ãèzÁãxHµ†ùy%;¬wÂêb¥!C *4–þ=øÕd²ºäQw©þx¸„ÿh Ïm‡? z¨‘tnIJ%]SºKåÁ¢À"g¿ò¦Æ¢¼ÙÊÇfÎø&êÏ‹3©–΂÷?*Ì pÐx} »«ÿ:8-õ«t¡­ƒçZˆjÉGÍÅÃöÆC$gîÅŸÔ>¡þ£uoU×|ƒ¥On§™`ØÇ¨*ä™õ‰Ažô1=ñÃeºä_EþñBÍ3›Ãa³mÿñëw üjž*ÏüA{V4Vºâv8ëX²õÊAÖË&¾¢N>ÍëÎ÷-F×êAex<øSüG?üÇ{&!5=Ô¢ûgT8ÖÅ«nÇ»ìgkª.ªììh«ÍbgõaZ¢ëW}S2«€,åÑñ`þG~¦ÙîCïT”ú¿Vf+ Ê®ZøÊ×dg™áúÒ]‘A›¥_çé½!WŽmCµ¾×,O~œþ†[`Ê0?Ê—ë-Â\¦ ÖK3™×<ð¼ý,ò­>¢l þWíè¿{‡s¶>o¨Z#âÀ¥€ñÞkÕ°.RêI÷ûÕÔ¢Ÿ¦Óatq³a÷ãZqÍd×^¼AoD-"™üÇjc#ц­¿šK •ˆ=¬Efoúܧób7k”s=ÓS;YÓ”p¦£ÿU”Ywy·ä}Éš#©Dÿ‘ÿ<¿ö±#»–1ȹÕìýð±˜Çd_Ùõá©dF ýwçÑ÷‹žþÃ]ÏóÆðgt_ä'¢tòŸ2nêm´[äô@#ê0Þ£ž áÇBýÒ2Ý8?ј¸«èR$ê^’…Ä3:´ÍúÉú´ÚUöv’üú}rcç:«ÃàWJØÉGØí¬ÔMØŠ*†û ‡º1G8ã.ÑL&¼…Þç ¬ŠMNB¬º›w1QJðë× lDq>ÌkÞìˆ-#¡áx"¤úCÝñ˜‹umNŒß_ƪlÁö-7j‹Ío(áÙú¿÷[VgÊž¦z€ÿp’‡$’9ArjÅ’î±Ý'ò•#øGBP—š~÷³£ÇJ¿™[€_;‡ê¤-þâ75ð_"Î÷ W‡ð£»±Ïà@>Ðíî‚îîô÷¾ŽÄZ#"~&ד‚Øí(X]a,å0™½2 Õ7qÀ¯†©²ÔôÄô„ÿxLž¹öǽÊß r¤4¦¤„¨†âÊÄ+UÅÂ:ÑÇV#šE$“¼e:õ¼Ýf°‹%¼¹ýù÷.õçÁ+}ëUà?òSݸ‚ø¾žòc­ud0˜h—,f'±t>4¢y©Ñ¶ãgt TOø…MÊŸh78~UþÞ8žêîu`\ x*“ññÍ]L„‹êËúué´4_%RqÉ=nñýðdÚ`ú«ƒz2Ò}Xé, as‰ô_‘1̃?×ÌvT2|³ÞàCú’T6‡ã‡J`¡ÆÒå(œ÷,]W£R³XJ|”™ñ’÷ä°©òœÚÀüÕôÛý®ÎY}Ar®S·1Ä«¦“| ª±"È>²+¨Úb…ÝúÝzŽêÚxî\SõT¶çê,*ËÇê¼ÙŒ«¬‡7[ ?S„¹®¾Ö<«$óÐ÷áM¢¢hɵ:è¸RírV¹íïGëøè˜ªû’ß}Fg.Ì×hKâ›èvéw˜ßZÁÏ{À/ø‘œAe¼Ž]>cÖú˜Ÿø#ÜLþ1Ž2s\×;@«eÜ‘âZ9LE™U«´SCõ\Ž*I_ó®õ›ß ÿ‘ù†‘©RIÍJlfät{o¿…àÏ»üÇ|òê7….%¶ºcærvëki¤e¥¦Î³Î˜Î×Vk¥ŠàL ÿ3„ùçO±ŸÄ6Ô…¶â#ƒ8éºâïƒðàWnÝÑSüG>×}úµ]d¥þ<¦Þ[g´5’êEXåˆ#‘Þÿñ]OFÿÄ£¿´Ü GãGÜTÞÁO\Šaîp¥#>ùÇFñ@h g±«é[Þˆ¼¸7šÛÄXÖlðçE+ü^'™À0ÃX1«^ þÃFb®€M$KÌ‚µŽÉ»_ÿñ’(|=öºÒûx™7Ìf‰©…Ômݾt]ˆÿ(GüÚ/»&þUSvoÇF k±<}yÃ9ÏžÐD,°]×þÂØ¥m¶dKê?ÃjEÄ{x`+¯Â³¯£Bû‘oT´—ÞÖø»èw«âå €_¥)@Dî­nÒíu@°çRŠþ»ÀúbQ­ X„Âb,Ö2~wSX™yT—úó¥ª úÝù¨Î2b›ÏÁ-ôU…¹/R_dÅ=z&v¯0WÔ ¦úªšÞ{ÞZlyo¬¦æLõ;üÇ õÒ ò¯K0 ·ðƒ‚ÕŸ—1¨ú¾H”Ñÿá%W“ÍL0ý¹ ®Y½Pʇgaþ ÿñþ|,÷¤%¹‡?ýŸs/‹»®;XŸùãÁ%Ûñšã{û‰ò:þ »ßìo5ìG3P"æRÑá|?~ "|wgÕ›\æ8=¿ƒhºgï|£þÜG&'ÿXþ;Yhf5‹~{Ü‹üe.õƒ×è~xÙJÁüóYø€¨ôUôá¥ÿÕ®·=ŽÜø_'­ØÈGQ Nq2ìL<ÔÙ@œŽYí¨ã0?*‚^˜5÷0?j4L¢±ôìš·ë|ų̈ÑIïøFþÌðÓûß/'L'^áÈ?bºvý3ëMÇ4d&y:¬æ$ð«‘èLÉh@Ȓý åL£ÙO­˜ÿ1ÌØ:ÏŸ{Õä©ùÇvj6¼ˆJ¶å^‡ÿ¨óSøÕ'úï¾g_‘xû¶¢…mŒOȺ…M¬|>Þ‹úß0w¸ý®.=éöþ€®RvïEb.r.OiÏŒ€_-%o†}n.ã/¸yeô"t”ªGTô[m‘»å è_R]•Rè©·BÎ![XAݾþõç1µ¡¬é¤þãº(Êû؇La&\…?1z[Ъ øÕhØé÷Ø´]dÇA¤ü@¶¾ÈßÅåùó¤Z#*Qx\ð©„øí#0ÅáÈoâsÉhb<óÏב/4MéûÐHä!™á>üßéÈC‰ýä{áv²ð¦Ûópû‚É,gùŽ¥(†õ?½"4+y߇‘Uô„ÿØöƒº°«žO ¨Ù&ÕH]æûÖ‘cø¨ØLÂ>‰fè%ݯ©f}ll ,ebtP݈ïï(Sæû¡bMý{¯Âµ­g½‹jW>Þ„ÙÍj8ÚÝG ìˬK¬ßÞ4Èr ÒÍ{°á£U9¼u}^³ã©ge÷›Ð_&ã™Aþq•ɲÌ‘àMƒÈ?ÞÄÜTˆøï’!EAÝô–jòÃäR‹e;£aõjŠpàF¯À[ÿñó”¾Ê›º‘¢dÔm,hëÙ‰®„ç˜Öž>]“@›Z£gû‚õ™lÄW¸£ŽŽúÚ2pµŽøí~pëƒáÂѯ£ýÛòçfòRÔzoÁŽv§îEüGJó(Ø`²»<½ *™tcÇ–6üÊžî!•©£mùD¯¯ÙÔ &`¢Õ@rÁÂô++‹3»*‡ª.>¹[vk>\ˆÃé„ňC/EªÞ©?OC_œœÅç°°7Ä}—ÿXOÿ’ÝTÒ® JYH„æg&t–Â×v†?Ÿo¦Ó×-kÓÛ*ë¬g=¿*ÄlÃvæeó%ïÈKôWd%Þì ÿ ~GˆÿxGæ˜,ȹøñM í+©Ñïjd‘ŒÁôo/Ä*Û˜¾Pa¤gþÇþÐ~0įß%ÿ8Ú” ¶³½ü€âj™ö\Û¦•^D_àÏCê‰âR_œ¡ŸÀ–vi¹ÛKQ€OIàÏý9™QE.qƒºFÛŸºòÚ*­µqtåvµ V~¸:†WŠ$nÂørªöã?n‹^¢÷Où÷úMãºbÛ¶ÄFÿÞ ?tû™—8<#üÇGqZl&ÿ{þàG4R+È?¾¡Êx®æAŒR™}õ‘ù‰«÷€4-b½6Ü…Ra©jë˜ÁÑšèý¾-2Ñvìo\ô8%49Øø ØÒøj ¥‡(O#hwBy _Ýàϳ«ëð°¦PªµÃël³K¥ªËUXŒgä6‚es*¶:)‹‹sú­VŒ¢Õ0TqÆWÔëo㧪p¿â“%%R7à?&¹à?æ³OòÂ>0 Ñ™ªS©n…à?z;r ©àÉNßÛ«©…ø£žÄûËØUê½SÉ(غՠLŸù Ùÿ*ò²®°—wŒÍ?ÌìHÿ«î¨bÃVx‚Áܳ[O |„Ž%iÑèxYŸÌR`$%˜¾ ko‚¶ï‚QÞJLþ•¹0ØY,¨£&ˆFŽS0*kÑ Lʆ¯èFrˆ µþÖð«Zäãñ™°ÍþT¶…Yª 3énüž™G©üÿˆ; ¸ª¶ím¯˜k®µí.,Äîîcww»±»=vww`w b& (Ø…Ýß³9×Mˆ¼ßÿÞ«¿sØaî¹jÄû¾cŒÁøiƒ<ÒÆâµq Ny³9™ü£5ùÇ+ºpÜ£šîž¬û˜ ‰:²íü½FÖ9Aof‡ E º@Þ%Öèf¸ßا<'˜Ûñ%ÿèfå§+zC¦3=“ƒ™d~V¼^õûóã¿.ôl Ñ_µÄl V¦>C{Ù“ü£ ñ•~Z®àW•PF­·ÖRaQdšÕ>Ä—ZÌ:¦??‚î0yZY:”~7©:U³óˆA\1ÅÌ޽_–€Ó?Gÿ«ä\;¬?l§AÃ.Q•¸×ÜÒvšJü=ܓ㩾Ÿ‚*`Œ¨JQÝRíÊÄÐäÁþÃUæ£ä]3/µ}«©ô{Nÿ« œ»ÍdHçè9üé¸õX:‘¤äªø£¿º$Ê9=rø½ªºÒvÆüGG4%á?î0g±'ýšÑïµí³ùÐS¦+ú«ªSÆâ—>˜N –¢7YscÉ?:н‘îÐΟ'1– ”FÄŒˆîw’Ld—ké’STzƒ•®†çnCüZ1 ýw kíaö{Ð%ЮßMï‚%}ƒâ¶&ñ^*"͵œ/âv»Ö+H¼Ôªágaü8 o•ª·ÈÍ®ºñì­çÚ>ÆÆöÄògf¥qÆQÏõ±mxçÇÔ‚x1?ê¾øc‰P_3«%t=ÙõiÉýÏ¢v. ÇqÆè8YË ½èÉ"¼õ>dCø·g\ÿœPËüëå ð«õè¯2ƒY§N’qT†5‰ElÞÝÁj¸ëê B›±Ohó<<üB¸ó^ø¿7ú†Ÿê?šjuñu`Ýñ9µ‰}á aÏc“x›‡˜8›Ÿ¸¾*¥õ¨cßÓ-CñàŽEn$aÕRŠR[» ©øÕ:l8u‚xu7¼GIs'A¾P“ƒŠçkøáp"+°åÈ?nÃx÷–­ÀÑJi³ÂÜ;çµl`rǨ‚Í Ÿòÿ]8N˜sé`Û[zëüØjeBÝ5•™â¥Á^fâ[r÷8öÉzÓ0ëUƒ`>#^mþäýÕV³,Brúyü…B*þ£»ÝjÆ……þª \Ï r© ÔÞ"¤GK¥–º‚¸©+™j{r“Ñpå³(]/únb~mq«£õˆºÄúÔ¥Ÿ¦0.¹\{â×øß¼tÃ1Bñç6u¶ö»â#Wì£,gœÝ¥/ýKž¡×]B‡ô½äûP_f—»xݲÁŸ{ÓÌ¡ÿKwâ¹=hlz8Ž·‰ÚY·O’©Âs5A6&":fV$ÿ¸IÍG4¼Ï &Œ£ÿî ²¤d]³ñnI¬D™ÏK?üG0}ÿq„ùçD{ž¤ÆL¦?¼ žjoó(lQc&î²™¶ÇT‚l—~øâÑtxi~æéð¤ƒàL™Qøý|[ÿÇ¿S®†tBû¤dP#StþjKYÕ›jšàùQ%õjÎöS%¯¶FÛ¥iÑáÏCô¿Z!ô÷cÐ#y½ˆ2Aïêk§À¯Ò'¦ ¸­K=¡–Òq=CÿÞ¯^×ÖS³6S c˜Ñ†Zéð3uYÝK&6j‰™á®tWæFçÞM ¿¿‹¾-Xþ)LŸ*Î2ƒ‰~þXåfÖ9,ò03>Q<ˆ Oý Ö¢ qHúpøU VŒì2Zµ¼p:Cåã.Ã1üÅ]: º[ó?ÞÃ.ï¦^cþ£&9ØBùœý_@µÁh®×³Ã4 k{Ê¢ƒ]§elF͵ôÅ“ìâ³”*R™=ßFeÊdØþ·L1é€_¾ÈŠ·ñs#åþPÓW+)íÕ5d‘ÃÙUsÎÉXÑÓˆK¼]»O¿\_²6ð =¬2`[aë¡5…ñ13±Í² ¡rJ[bêü†‘‹ÔBÝýî7T£ÑîÖ¡þ#„ÿ8¢º+·Aää%à›èв•jœ¯hÕª¡åš@ý¹‹-¾-·µIžÇwºR;tÐ|Mä–§e ‘OF“…þ'õƒ’ù­gæý£;Þý°!Qûšûþ]ÏüÁô/ÉÎ*OèµDë™OK¢†Ì‹Êzo”Fô„IŒ²æ•¨ ÿñE›£Æ`Rø9‘Žþ‰R·i¿·Ï¹Ú:žæàWyî[ˆ‰ÂE½ ‰Òô¿*…÷ÐŒQ¬Ì£Vé÷¨28‡5­‚³×ö4îéöúsoÖ?% ‘¸ŠRúê(êíºnáÇr_¹Ã€”‘>Øèع' ¬/‰§‹Ó±é‘¸JŸ•M‘^›ÕJôº‡„ÄÒ ªüä*:ѾÊŽTxùÀÇoDõ×;Ûü*2i”Ö–ŠŠNh«.cb£"ráobžêÂDË6ÖrÃþ¯5òËcDã…!’ª!Hv¸Ã§c~"´†ç±¥ÍɵbðO-ñš•‰]Áˆƒ?ã1è0BvôDÏ>Ͷ>þãy¸…ìo“¡¢|'±7vd¯?/‰Æ>S  «!æéÕÈ?ÖcùÖ‘{LdçI ªOØm¬òeðËÅ^0ª…TŒd$ÿXj”kˆƒmkÈy»‹ .†¥ÛD¼üÊH(·‚VoÇ~ ·ù¬Ÿúi:ÁPô»ƒÀâá¶Ü#çÚOþq„>Ù‚¿õ†ê:oYþc 9’ '¿ŽŒî8U„þ#l¶ (%µÛÜ£Mð\³°÷˜†x͉º´ê­ÁèM¯1«núݓ̇ÕAÄ2£¿z/¸O ]ƒ,4“¶:̽ã®ħžE…^Dl:ÿ.}|wcß?ÈØÒ¶à%#ừÀá>ÅÖGÇš> ÞßGìp ½f˜õÚŠè f7¹GFã?G蟸˜Ù²ÇÀü.R¯‡¸¼#Õy÷eo*➀Ö­»LFs†šñ~r](üª…RIÝ‚R¹¯|kt?jjÉ$ðwÌåØ w´ö¼õ¬–ÔØÝįTÇ´#þˆƒÇ* ÿ‘ÆXá¸g’ÀŸqÍÞ£ðC5Œpp6æ<‡?_Gÿ’MÌ?÷ff–]uÊ\ž^ÄãYÍÕš.=‰;ËŠü¯ƒZŤä~oP³#6AfòËLvŠe%#¯9²x°eØœè§U†þWiÍŒVb3 :ŒƒøÛ òþtaú±Á£ê ¸·N<ó3xšÖ‰CflÛ6´©`a똚ÒÎWkðp ¨?÷•ÒV‹º—Þxg¬W3ör–¦­ÄÿÄ$aš^Hÿv»~7²Žz?Ž:üWòM0o0š>ˆyç帻+_ÔÝÚ:í%øUªßÌ?îпý nKÜÉH+¾2?í«ê©_ãJ~¥ÿUê5á÷ò~®¶›¨~ VË/†rÖ“íDIý„üe‡‘n23½yü*õƒèvX¼9 ß4üã½ÌÀîÃ÷‚n ~å„"ÙÇFêÀíó?fÛ'â·'2]â4І[7É?ú0?jxF´§7É?&H{Ž—J›æÞÙ§åÃû›,Å×9Ü„?§æOÞ‘½±ÌqmÐ ¢*¯‰9̼Ã9ÉHæóœX7¸F‡~zÝ0ë5oÐgMõ!ãñd®ë1s¶YžúÃ÷tï2tÇŒ_õƒ]¸ RY‘î—Qt]Ãæ—çBÍÿ¨G×MÄ?݈:Êî²U¾ïåW³-ú«\°ò»ÈÒYÍÑOõÀoìc~ …BöLû,æ×ú‘çÃg†è¯â«“È?R’ãMÃĦ‰„ÙŸHÜìô§:Šþ*%øÕŸÂLýÛJ/ÊX诎°Ê<ô\‹yº§Rÿ1Ùq¼˜ßpŒº6ùéùZ·ÉN L±˜JÒ’üã9ÚìKLÃ툾8§5ÆlÇ»hfv¶œD ç±öO°k¯Cåø5äkXoÑß³Õˆ+Po6o‘ƒô´²ÂŸ_À§·³ÜP³å@wLOdó+Vâ5ªÏÎ`ÞÎ²Š¸îyûo¼µÔþjsÇ™¹®dW—ÙcjõúAFÿÝæº Î?¼ ï±üʤþüxÈFáÕ¥ú«ÌFVlRCzƒ|ÓÖ“Ý¡§Iaò÷ôOLáØu–Sâ?*3·6˜öNæ€ôšº‹þWõé¯4‘®¬qzë(­˜‰)Þ}àÊ¥üysM|\?¢¾AÔ†|åúŒÿ˜¯äÖçÃT„ï®~¥É… ‡c±ê#9RH¯ú |Áil-,ø•;±Â(rάb»ÒíõïÎÑŠTÃjí ¯¨ˆÿ꓎l€:dzql§gS ó’¬CEõ|jTìÑûAl}5éé‰0!Üu©Mÿv»~7/ú'/jøæ“§M„›Nœˆöê< Ñ®Öþµ1ÕyÓÑãä¡÷Æ#|ÈRiW?ÓÖ„Yñþ£/‘B°› „©)ôOœgN…AèK/(i{ÿ1v¾:uÐçÑ4§DÉü’Ý…ËÙd ÇT¯¨Ä9Ë®:ÈùXÉCr-ùGAêG,ó>üG¸‹aXÓ²+6ÅpüÇU*èoð_ ¹7”z¨*Ð¥\ÅîxêÞ ‡Ri‘½joª\¢—òF–ûüÌšDÿ«5ðªUÀÜ/]AÅbš'àjâʼF÷M¬=Byð|(¹YÄ¡-ç¹ö=õç»è¸›„þ‰~ø£<Övt½oÍ„°×‡É:çN—Gé»ZBLtœ¿¦jî<ÉÝ6YC±Ò¸ff`þùi0µ7¨ËöZ_À¬z Î ÞV ÖÂïý•àÎ`ŸmyåÈ?¼ðkÅ@üÇâ •Ì4m[È€¦3ãü›™Ÿ•jÚSãlë`­’‡¬,è¼zóçö{ùOS)ª;s‡BCž’ÿô+3ECüÇ%›šÉqž~ï³3á?,úï&Ñ]õ”ZQVñVÞc¨ö–º¼jˆ"*ë¾V\õÓÄñ…‰RGP›SŸ¤Þ¦~ð˜HMýà+-ÚoÎÿX¬]À¾ÍYÚ ³ÐWŒ_•etÓ¨&k°Ð±ÔnQœÿaçÏ»à?bð„™Œjð<Ïâc}56ú"6ÇÞ18:X™k”ô»ŸÈ?L˜Öò4¶ó(h¤°¡ûaK€rÿ!+’{Î_ ÂüÁ¥J<¢ð-øC6 âj€g‹ Zt [Wå †2o4€³P‹úÁ‘\Œ6ZMMÁÁnãÑ’Áà&€OyFÆPÿôŒ{~%{^Á.oòY¯˜î•T øÅšO•¡ª |îù@]ò"'ò îx¸å¨¹ò¢2Kœ~‰LÉ> ê2‘±39Í7ø€³¤´jÝ_²ÏSÌHVa×0Å‹ØX⫉~zZbÇ~àl ‚õǽù¼—t–ÙFëç V’èÓÄIŽc;vÈ Ï¸€ÕÆ’Œ‘•`'÷`-2ã;ÜÈ ^’¬ÆxpNÇ’‡d>?ÕЪÁˆ–Åx’1täH‚òÅE±ZÝÕ bÔ¸`÷ר/eÎ!Gúbd„ûÉ÷e!£X(µèß{­¥Ý‚ ´Ï`w `wÜsàSñáPFPï@2ޏ~¬~µ#HSÿ–üÃM6á>ʤ­ ó\_ÒJ‚êù¡¿*MÎ3óÄüÁõä_èß~ÈJ`¶h¶ù cå¨?¿^™¿$ëWz¡Ñ1\ÿÄ?Ågr·'ÜU½ñ3gðæ\°¹%Ì{ –SÞºkŽUX)Gš*<ÿlîÎöxB-–Íì)=ÄUÇEéD¥åx¶Nt‘iOÒ ;ðTz™ýˆî+“Õø‚¯•ÃVŸg2S>ô¼`WòÀÜtÂÿ:‘4Àƒ¸SëÅ¿zD„ci|“•É?Û£R«ß‘‰í¥ßHÛAæGbéÝðìoÐàŽÇ¹q¥7×íM¦F,DÕDue~ml¢ƒ xËæ¢Ükµe£ëýŸå%æéJÛlöw•þW½é“²ÈJIµb"3xï2ÖÇôç>#.8ü‡umy–ƒŒÔ¦~0 ó0yj0ÓkãsŸ”³ªØvØžƒbu¶–Ó ?Œ¼+è#ì³~xÂ[þŸè¯à?BêÏo*ÿmü*ýKúí~ÐQÿQ„»õ¼ò^Ý  ÒÞhiÑïþ^ÿĻʟúUòBpž- ý)ýÛ÷ÑËCèh|=šRoä¸QþáÅ8mž.•;ˆ|+€YÙ;GÚëÏë¢å}šbJùóÜÔöÕÏ¡œëQ^¹“Üÿ¸£/&ÆÝ‹­>C~úVôÍôMÿ°£ÿôX»„¬ Jtž(ú¦QõPJ*“ÖN—â}™oô\ÜÄÏy…±?Výu€’MÆ6ñA(TîÞ%?:ˆê¨6Ã<Ý`±‚«¨»˜ÍgÕ2¾j1#Y±‘V=tƒ‚&¥à^M‡1d ìr.P—mðàždKEÉÁ¢lO/ä/õWB©>E±?é¼4ìY{3P¿*<«%°e6š†Ër±ü ¼ÓDò8ø¬¶éXÏr°àè7@¯3*ý®‚ßÙë(¦†ãÏK‹ïà†'9ûƒYm'ûÀïÑ¿W3¿’å%wØa­G¿;¥ñC~¦½.¡@~‹W ~RuÚ‘ù瓉§zsý›€b5GùQ^c’ø]jff¡°ÝDþÑÂz`­À¬4‘g„KêAw'ó÷fFé*ÿÈ¢öÖ®©åÔçÒ¬K·EÞg.l þcüûz:z¡9{D—•Ô<€¡YBΕ<,&÷Ð)zè!èv}ê¿î ¶m¨1FÖàŽV°ð±Y¡½{ýÙaÃÔÀ@+1c‚+&¦»¥½þC‘¸î‰\t^ðsø]ê:´BÍAtGƒ)Ó;ÂüF'ø%f=f|ä„Û©c5·yØÛ'¼ð"Ë–Ep#î¡äÚßÅAîÒfÄ 9Åï1ÌánØó-½ÅÔÉŒOàÏ‹…¹Ï¢¾lVõó?†kNàWZ0ÿá©$Ö¦3ðüG5ŒÊš÷©?¿ŠUÏ “ÐȸEÿ«–ðÓõ‰äŸt›ž*RËöS¦kû‰BW‰¬DÉ#ñm„³ÚT=O¦PIÔ£b‰m¢tä…ÕÝôO< šsåue,K3Ty­É?¦r%×Ã5¤Jñ¹@ýyT4ËOÐï*Ä2Ñå ìðtêvfyèÈAü‡?¼_að¦»â¬˜"öGºÃ Š3˜èúy=3jƒºÔQ}%cç‡O»È½ø£…àL®|RMCÓ¿…=M?½k Õ„Ço…-½ŒUO Šï‚Š×õ¨ÌjŸÀžÖsÚw}‰ê¡ø¬ÇRoý´ÊßßPÕ¿ÔS¢‚¼…Ÿ-õÁ“Ԛ뱫P¦"Šê‡ÿ؃'Ø&vÞþ,ý5já?‚"X1•šMw&J.·“qáwÊ“­Jôjßñ–·õÊzlð«‘Øæ)øôNüMEÝKãP„ùÇ%‡>Iœ£Ú‡b«ö|ùÇTT@ˆ½ïTÁ/Ý"¶Þ‰ÿp&çYE>ÑïÿŬ‘§?U75Ó\EWîŽdÔ`lÓ?çgò{«ÀslĨWÁìK0?ª4‘–ÃøZ¨E“É^"ÿHFÎ5&Ü•®ì?c7bßÂaÝ1F¡°Š¾2›Üãó‡×/`¾†nÎDqœ¦å1N¦Êæè’iaVܤ•âZÅG;“¡ÌÆ'<•£akûQ±>™É®ñmwÁKú˜£e Oþà•xT²ð¦«äpãÃñçÙD,ô©7ˆ5ÚÃb­1¶Ó'qݪÆá^3¯;‹u’šûqxŠÑæ óO9¼¥ØÕ]½òº8ï¸ÆM¨"Š~•õêÁ´5¤Þî™|ˆþê)õçó˜µÊ*C}Þsk:“5€ge¶œñÅÝeŽù,þ#¾Œi,s¬÷Q™©àɃ°÷–™Fõ¥<Œøõâ舲–Èþ˜ØMêÏסƺ‚?J ËoÏaéT‰ÿë8UÕVôƈGüÕɘ.ELYÃ*e{ALÐ Uݬÿ4&#v‡?Š…Î¶0Ö>-èb39Ðaîý ð¸wâšÃx¨»ô 0î`ßCùW/³¸­“HzÁÝâ7G¡ó±½±\˜_;L~µr£ÈjMµ7¨¹L¢­¨ÔÒË â÷Çéùÿz‘B]ªÚ¹î¿ÿÜ¿Êèx÷ã»QûZ„ú,ÚXæÔdÞ ½ÿî)Å<Ë“Œ$½–ã7õW3þΉ,(Xb`çâ‹Úu sWÀd}Ðcéâ7õ» 4w®örQ¿=^SúüÕQ_ˆ’h+ê¢óŠÇŒõ¨ÕŸÿAà~ú-Øä‹èw+aãºñD5c[Œ½9'±ç×Q×ÒÃwõŽèLú2?ÊŽ¥& >:“YÎnãÉ?΂U3¡—*E_'Ìê%¼#½6ë•øÜSÌ:ý@Np»¿N -öxQ~)r;~uUtÿ¨jP»Ñ–B}¯¢Öž(§+ Èut¼©À±’“Ùõ¶Íy²“ ß]ˆor7²™×cŸ~ù×õƒsaœìâ~äE+°õO‰ â'`±Ë³°ÕŸÁŸÎb™á¯ìý¯ÞmÅ=-ÛÙZ&5·ž CF”¶Îüü&ާèÚ[zNÑWN¡g½ŸÿXÈ®G uÀÛ ß=aD‹ ÿX ¸Àa^âìÏg/±– Ê S6ôSvþc49L>¬Ýj÷^q­Üà:—¢éú‹'þ­~Fݲ±àWõµ¦àW•É“1Ô‘÷¹ûÖãÁÉ f°ëô£­P*¸Ç }~T|˜’‘è§®H‹™ïÓÂ]éÊàW_ÈhÒ“aœBµ†h"Us#õÏYÑÅšjùÃ…÷7-ô»±à?>ã ^Ãf·Fi—E[fųäùß>aW÷pÞÏOäX°œIø&W"iÃv™ }ÍÒ•:hY’ýMÛòŃÜâš÷ ‡_e¡^5± Ä«5'C €?_CþјÚz8D…èL;ÿA®ƒ&õ<ÚÜxÕSœÑkô\ïÿ’tWÚ¨sд)ìËÖ¼'Žù$(6öx¸éS] àuµéòqÝ­…Ò«3X£ižC%¢I›±ÐqErÑ÷Î °g³:*š¢œ—¢T¸Ô¡¿awj9m×a/®¡ZÃ4Âo°ÝÁÃ2¢8K†ÿõ‚ÿȪÿ•+õÃwD ¢•îè”;І™ÀV™Q°÷¾ðùÏɺ050.ûíF7˜¢fb+¾™†îOÒ1 ù[‡ÿ8©.¿êÁ<›èi¿XEÿöäjmÌOT§ôçXÛØ¶’¦³•µðát ®Eÿ’›æ[|Glb€AF®Nýÿ ~•H VrÜYo•üjÇ;Ljҋ?è_’˜yçõ¦z\-«\V²i³4í›–\˨ºGi•?C¥Ÿ…ƒýG#—ø€þð–z]÷-ñÜÉø„Ô¿µÏuÚAò±¢JÎÍF+ø—Ê4úïVgYgáÌupÓFiÅ4ª¿:B¿Že Ä&Õæ9úº£‘[,ÇB\Á;‰¢ÆE1T4Ñ£Ò³å5õçÄÞX†â ?l©öþ4VûÕãwy*K¡Ò{Aÿöàì?Îϯ¾.Wr:'"Âöç_1¸p‹ÑÌÉ ¹`0ŸU•úAÉŠ­5æmRÝÒþã*þ£(QZ¬D °¦ºX©Õ O»È%Òã«ZÂUY"Ó/'…½Vf«¯EMž¡ìk+Ù *gòùs†…?jjЉÆÔõì9ÍÎlÇßBœÑBlKÈq§‚ÿ°#iΠ%)ÁÐvÈCR°Ëx쪙8¨g2·ÁÈç„?ïÅ“9‚HäHMÆÑüÚÉJFêÏ}ð¹GéUž¤a:ùÔ(®ò,Ø‹ø¼y°4oÐcïxZãã6ã“ÇàCb‹£jøÙ õµÚ¢¹UJ<†;XÍt7Gð@AlìúÝ“ÖWð‰t)gnÂ:¿$/´÷o÷'É`”ùÉüIÿ]Ùd4¥ˆÛç¢ß;^†bvæ™™™¨ô ØV?3!(Q*üGló!?1Av媕 ×?ÑK+ÌÑÇeµáÜ˱ø»Ñ¿—ƒ‰ÅzÑ'ÖŸXúz诮sNà;£›AØ^1NÔK†¹s s¿9ÑYàYÑ|ü÷*y¦»!ú­XÔg¸¡DºÅœ±æ+9 O Ñ ×ã ÀÃÝfÕöòL¨ü£­ÒN]‚_…ÞÕ•lp¨H`¨Ìlü“ž/£©JôbÒ_Xe{]{/¦,Ñ_ŠþW^àWön¿žd6_á3×:n•ØêDí±‘–s<Ž9†£#쵌9€ùXNÔgŒ¿ª„~÷ zvë ìEVtXÍ3œÁ±TëL€— *еŽãí„ÿø&’qV'KåñÔØl–¢·Èz^%²bÒû¥.½LšZ*HÓæŸ±ª’!¦1SË· ŽCà?úã=wøêQxÝÜO‹A .ÁŸ?G° ß1Fj «ê6w&´—´ÕCa—Ì–“9»#©-üDžÿ1À(b ×ÿ$ÿH¬Çùqª_*…S×ôã7”[ïU¼*•Þëž“5ýSs×öj†îÄü¨Í!?…W”úQkL"½4"¡¾[M¡yê7DeñD¦½úÍ:•ÅÚe,È4‘‡x‘o1½à|òÚÆ$ÑÈ.‹±XÑ1ÿÓ]Ô‹ðA ¯È7+íö¡¶ª-=í³ÀíÚ¢‡ôëùB‡Æ®Qê_òþ㲨Éý}Ù«I|‰ä}x`á¿’/T"ƒx&Îàón8®Ô¯v¸C‰^wü‡* ò¤×#£qÆÊ]¯/MUÀ£¤\N=âXÃæAÓßýj¡}¿¥Ö ;ޔʵkàXÑðl¹@°®ã‹€iÄ…OYgxpg%‚¥Ú85¢lÁ¾Ü'êϰWöúÚøˆ8üü^‚/Fx1Ø×y2’kd_ñ¯†ðçu™O§–ÖMüG:¹õõa~§, º ç-–œaüÅ|·Ì0ÓC@!6“Œä¹M nçŒÝ¨þc¬’J_"ü©Î_‡]+€ÒrˆÕÖBKr”íÑ>]@wº”KÀÌõ}|â îÍ.èw7©‡þu¾~|¯åãɲ²ÃlFÑõ?cïÓâcœUæ ë!•ƒ7™_[€.+ÅñI™Él†aËà?\ÄôpWºŽv ƶ þh7¬óC0¹ †}~m Я10ÒÇÁ:\­ ¸Œ¼æ;*Draýâ™O˜_;Ï\ÅH§- ³â­1…LO—8bw˜†@éfnƒ?¿-[¡ÕAÛï`ï/1ÿ£‹y‹.†.ø—(¾øtò®zHÔi?æBC¹ æ8K€¨_IuÊ2Ö»ÂüÁdt•êLu·@•ú™õâj£GÐÍ;Ô4“{Ä£§NiMÿÝEœù^œ•N`z•ñœIÌGf}ð«:LTr§V¼œ¹/“bÛÑ…ÒUutWÍé6” '÷D&#„{Œ¦×ag¾ 5Od¶«/¹*½èS•>R«ÍÍVmúï·n%¡›{ p¬yàaðG9©È?EÜ™=”"®)ýŸRÍY Å:™]ì1Ð?1/3뽿3ÏÁÌoÂÃÝ„?Ÿ~uØ*ÅtÈDf"ž—óäò/3=ÅU‡ÿد.Ñ÷ˆ.ä° 7Å~³Ÿm#µ23©ñXËÔ÷*VÛú_Ùg¬{ÑM,8YóüÇiüÇ.î¬ÒtDÈJà8•ÿñɘ¢ÔÑqg=Pòª¦ãÝï}xVæ×¾…/ÏAÿv¬¿:¡|UÀ¨…ÿHÿ›ó£Þ¡ß}ˆZ& ±÷hz¦Ðg©RóÓÊ.ÓÍä­úþ·¶·DÛL|L×]žû£T—¯7üG}rÓ‘ôbÎblˆ"žK=Oÿæûð/À$*¶wíhOÇð¹h9ýÁ<>£òÒÀÈ:ëQÑ \ÕÞèöúÁ¸¬·tå3ûë@¬z Z…(¼´lc}‹þW3ÄãH¯Íú_}sé(üìø2m+<ðxìñ âçL|'?Ñù x‡«Dþï5%’ëiö”š<+~àu’ìûçðŽÑŒ¡<ÙÂ>žÉýä]©¥7>†ªñYñýŕѨU½'jÉ“äÉRÁgw%rÇ'ÃKN&þ~‡ÿð ›`ÇRú£á­$¼´¬˜–úÄF"¬ÖVòž=äG5È@\ȇÞg6ôæ9ˆüc&ZÎij𲜠mÉ"À¯fÐÿj¡8Mvæl+¿U›g=:xKùÞ™N–ç`Ó烱¥”öúóý @ƒˆbŠ‹?ñ#µ b8þ# œû 2Á‡üœ;hÖ<†“¹§Fïñ£Ø§ÂælòC&™êGD~ÛWí§ùõ4aâÇ“€rå§è“Äùº…½<‰nÊÀKúyj÷Z1p=üGló°¡ÙàWŒ<áúï^вÓñܺ,-g_6nÉE¦›ÙÑÕò²bÓ-#öwºz˜·ƒsÍå¬x‹š[äØcÂñçØxø?8ÁÑtQ_`\¥_Õ*r«Ò…ú¾i0WaÆÃFσ?®X•š’óxÓï29€þ»!ªï¶J u)J¸~ò5½†Ã(F<ó©Ùë\ÍœO½ß,s7øî…ðçµÍØ•’Øû®Gx‹RøâÂFÈD–xêRÍ>GçÊýØf à Õw6êÏíõ«‚µÔÅm§±òöÊî]æ,¦¤òe0~• ÿáe ÅE?Ç“ÒýåkªqªâGÈQâ¼±ýUº†µ·$<ÏL”WSÁìüÀÕ†™Í¨v,º˜ÜÌB>uÆì (È£PüùruþÃõîTlÝqÍÌi[Æ$«®èô²P3™ÿqØö=p]ú·_·R£¿jÅ¿}cµï“<²"ê‹Â3‚§ä?ý­Ï̪áï)EÔ”Žóô{ŸCÕµ¸Ú ô»ƒÑï–b•è¯öÁŸ[zô»áòÿ¼ú#¥·þXd@õ™8.ƒÈ¡ÛAßäl"†xMEûÛ^ Ü¿NÐ|Àª§€ˆMãÉë-ÜÄ¥úTüi¸Ò)÷uó¢8?ª¬ê§6Ò°yϱ/T6Ññ'‡ìKÿ+,ßbý'ðþ¯DC1B¹‡Ãm'ÔÛ»Ú3=HùWøŽØÍî°†mð§`XJó£ªÆzÛÀ¯¾EzmF)ˆSgá?î£ ? ‚²N`$ëΤ«8V¾þã±èÉ^ëPþ9ÔN"zYIKÃùjLôíÅiAÒ³a£ÏbwÊÀzï×9à„²¤*³7¿2QýW}@¿+“Ô«¢˜¼†-®Ìï¥Å+vÃ#y`3 «œxÃ9ð3ìu0îØ"û ¼ââ/ê³é(©ˆ³€>çgk9ÑXð;sŒlb¤žìº;þe™Q/rÅ<Ô+&À¿¤ŽÀŒRœõE‹:È(Fc‚€l€}êMUNЧç UM°þ~ âÙ£3àlö=œ¶ÑÍV5ü¤û®èw{a·sâ=ŽÈŠàC#ɸ2=(Ìÿ çøwª#.aDzb¡*»Ù´¡?ˆLbä3Â]éòÚ}¸ÿ6ðñ[ðÞàW>ÆbûTXŒf^Þ#4§}­«ø:¬¿œ )ʦ۰Sd=|t¡pþ㌖ï·}B.òžÉxê+r ÚØÉð㽈ìß=½Ÿ/ 3‡ö wN<°»;ð3@EW€ö– ³Ã¢BI¼EüäJµÊ8F5û³"Õ'Þ2ˆyG…A†VPÓ0úsݺ\ÿÑ Ïõ+üÇ=è¸ýj+õÕ)äã®øí¿¸'¢n‰Ë\¦?Ñï6M;Dt_þ<+]DësþœÍ=œ½¿˜èE.[F4N9Öêòøøpzæ˜5Á—ËÁ;åñ( O>Š|¦>Õö‡±úÙ™¾dÑ^?èGæ:Šn—KPOÌõéÕLmÃÄ…ä<óA²3G¾Ê¬CýùVzúê–¯ù…NŠãÙÛ'úªŒ3‹Ðí1“™ÏzÏÓbÏìøD^ð„ëŽücvm3ÝÒܰMèÞÄ‘EÖJŽô.Ì–ÍêD'ý3LJjkm-•ç,ïlDû؈<+#Œ.Ä_ÅÇÿ÷^¤R{…Òï¾PJªñÂÜQßI^º'FÓ–‘ôÒ“ivýîe%:èÕ4í#ÝÖ ÿ”áÿóÊïz„ˆt %ñ̉Eb}+ø•½~0“xOÿÝXZüßÚç|mVpˆØ º7M¥–û®²…þ»¦èwï{ýyû(­˜G=ˆþÂ>!«T-R7:^ŒfÕA°/>å4Oú}ÑHü¥ùQ>Ú¢™ä1Þä¢gÁr¹Ç¶+™ÒšJ-½&V {é)çÉ?Ö‹{+Èmu2¤èØÎýàïű§á›ÝPhÕ„/(kH=²«]@Kµ¨ˆn×ÞëœpRê(¼è8’?¸OÔzlµŠh)é¸MŸ¹'zŠ_ê¯4ôW‡ENöÐ]͇µD¿ÛOa/éLv”\â ‘Õ ¾Îƒµ) ®h©Ä2ƒ_%'눇µÊș߃¯¬LýÇjf&b7èI±~ýØçJŽ}ç gñ“pC÷ó½·XÉ¢/û¨¯XB^••J†åXÿÁx¶qDʾT¹´ÅGÍš 7’s¸„ïµÃ–5é‡~ê_Ò[«Å}[Ým?¯*o’©¬CYÇHM-šÎ‰GáB ™³ä`¡±øäR¬¾YÆF/2.Ü•nÿˆC˜˜ÕvR£²†»oøURsºÛ$Tw›D¼»@pJÀ1L #Nï8J®âJþšÎ¨© ³âMòÜ#:•7Ëøù›ÆÖ™Šþê¥ì€-}Gý…ØF&\õ7À„â“îá ÇÏ3é•ìWQ|ãèNp¿¦|áÿp£þ|&>ì$ý6œÉZY=ÌðôW©pì ^mÿJVÓ^ž!9fG"»¹øµAxêVd3™ïöUî€?i6¡×ú·×·š0±£?:¤¡ÌŠFÿ«m¬Ù‡~U{Øë2®R…”IÝ¡Ý1Òl3L³ê’¸ø¬f–7u‡ÃàO6YmaÏPïF¿ûˆ\gˆ¹ƒŠÉ…°7“äQêqK‹¾ŽãDoðhܽ5ÈÃVÉÉb“±Þ,k«…ê *³Cb‚û¥§æ£=üJ,2®h|ÍdfÃÄÅúKô»õ;ä_þypÿÚþ¼µ1%ÇhìàT±J|‡Í}I'š¼ôâõÃS¹E1ÿ¨¢žQÛêpÐØäIĨX›Áð绉YÀŽÃÒ>aÚì }g¸]Dôö:ý¯^ÔÅ$ôÁ÷€«ÍË]±$«*|Û²vû¢X"ºˆ‘^›åÊ¡«ñˆ÷à´Ïá?¶ÂZ”&VîoT'2;E ¼ŠÝµå,4†? ­L©åiol4ÃÖœ@_Õ6%)¹R)™›ç4ÚÙ-õv|ÕØëSÌŠ£žŽè0ù^4µ·º^”gЭÙç¤ ÿèDw€cÌ Ó¼ŽãÜv·Ÿ¿Xu3þÔ^ÿQÿ«¸jzüÇIp?ªß± '¸…ØÝU|ÙE#¯'†™žó»ƒSl5’b3b+£U%—Ô©tE_· tΉÈ˜xgÖÎuNlB%äú·{†[²)þ£'GI…%+T Ò²'(_¼C,øm_l aU#VÎeÖ`—͉î+WÅøÊ§ôXÏTׂPü´#ÿ˜ÊÏm„ó¹Iþñüg}×]¨Œˆ‰fÔ.£ù 6û)øÐE9ø£˜Qù¡·xÿ1žÜô‹‘ƒÏìK¾õ”þ%»ÌÚð÷ÝP&}`úêòãä á(J;÷Gk{ŒŸ’ÃM×ë„Y¯²0Pã]ä~mâ7Á؃Bv1ó]ñ`Ï©L®Ó ë|~_Z÷ñÕñ–{˜¨rŽ ‘Vä·Û«¯´R·çt† ëÏNÞ-ž1°~pýàdÓESIbð=Äø]ðG@tJs.[³ª`ÇÔ¢Ê\¡æÎø0»ê ¾Í—šB/ð«zjªßÆÂ-¸á?&ð”%yŽŠh~íð«Q⸑kÿu–±å4î—Žè¯VÀ§gDoÕ DÅ´ T%…ÜÄ}´ûáʧú£ßõ uÎì/«hD3<ѽæÁvõå“óR]Rþü 3Xßã9|ebô•hT-¢Ó9 m@»¾0ÿ|E¸+]Y»$Ttß…dD[È©è~@·Y's·œIýù}üÇ,ë þ£ªù™*•„hÈîQëwÿQ–Î`y´ùaV<¡e nÝþ = û8g耛C©ñèÌŸQE=œ|¡ùÇ]< ‚—yJÆà W²˜úÚaÖË+^QñçÇ]Ò‰ÕÜè+H%lw/ºö: v8MÑ9жçæU|CuYot ïK9X^Õÿª˜úð¦¶ø¬î²±ü‹Z ‹H¼Ó™ÊQ•}ú”ÌŠ=j-µÚ¢¿=D]üG32¤WòGžVF7Bqª:úÁøøðù耠pÊB]`-Xž¤Ô‡7·YÉ?üÁë²ZkQó~¥Be.¼Rz8•þb~àWEBáW5ÔŽÁúÝŠäaKä ñÂØi¦£6c+üÉ}ó1ùŒ' zGò¸ðçP—“…‰†vþü36ã/ò_&r Gþ±QÝ®‚‘\A>³“Î݇LÍæFýà<2¸)ô/Éh•µí´Ý´ ÙÚXGå3êÏ YSÉaíÓD>ŠäÀå`ÏŠüOô»IÔIjÇpŸùQ.Žwá‰HÞ¦V«‰¨4ôRôO,À*þÔ.aþÇC柧øÍúó/J+TIN`E=ã~‰øé¢ê«¿:Eÿ’Ç¿Y'o¯?oÂÊ\h¶g£+â2¹WÇæ¥.ÔŸ?‹õ>Äÿt¨ÕíÄóx~Ob=J`åzÉëT4$ÛÉ@/‚ô™ÓŠùQÑœÝ×nèo©8LBï…ílõˉµ÷&*‹ˆ7Ñ©|;GGÆÈý‡›òŠj§0åW°`Û龨˜u&“å@¿›[xG´#Nol|Ó"óÎÚøž6œ;;/‘€W9@‹âc•«ð78ÊZüÇz²4Yäïñ!LhØó¨s¯íåmìrU,¾Q˜:JK&YÈX&‡¢s:Ffdïþõ,ä$øT{ú_= »Pð»,j>=![*¸ˆŒä0GàsJQÇó›xªÃùzNxWª9¶ðöùçɉ֢“Ó|‹¿š¯dc~í~#5úØÚèwbÁšÔÀæ›ø“æèö·ÁuåC]; úÉp&ÿØŠ×ÌÝÔĸ ~>Rh¤Uñ¶ÏPèØç{|àó·ó{{PÕ& vØÓzfV1Ï’ä¥Ê‘YOÄǰ€[øûH”Õ-ãïCo¦ÝaïñXÏCîDÃ0u•‹é†"61«Å¿º ¯PýÕ ¼Q6:ø1MdùG5#c8þã¸Vœœl?g+? åaääP:.õ„›ïÅdؘ¶@ø…™¬^þ<Pà‰ÈhŽ€ç¬%[¯ÆN$ŸÉÏ‚ŒûDä›ÉáÕÆá?þ‹]¡"úÝ‘Two}Í óþ£1,Å!²Oº2Ž‘'ÄÇ5vUšÂÄ~m íåLâ±Oè¹êXOèŸØîh5 ÖzðÝc­Jä¬hÙö“LÅ_nG1CÆ 5ÿ#–ºF;GÌΪ›¥ÐöÖ¦ Wú%:cßwÂw@ÝtÚºÿqÁ‡gOÌNÃÂÏ ÃJ¼3A£ÇÛVmBþ‘˜ÈNÞdGs$µ)¶ŒäCÕÁOƒ€ù“!µ$ŸÉÅ,X+¹éwû@’GúгÿáÁüÁÍ¢ Þc,Hñ1‘År©ZN¥ý:|5+Ðÿj‡í••ÉÖÒÚ‚þª0èÝ„`ýî.CpL­Èk?1…T`:Nåü…¡vUí½ªþþóN)¡fq¼ûñݨ}M­~S£iÃ4ÉüA5Øø*ßT7mýK’á?¢RKòI_àÏï“ä†?oaHñ‚þo÷Ô㺷ÈÅäÇÇôOŒÈ¦„ü~øW35o¬Á$ú—t%ÞCðZéþ½NËà?’ˣܿý üÙ~òŽ»øZ°µ£ˆWû1ÅQð€"þ«¢ö¾¯è£ï ¿Þ_£+=爣½°‡PÆÃÙç|ænòãù.Í]òEÜ‹E,-‚Â|k£ò5ò*ПÃߣ:ÏŽmø,£uÎÞ|w-üGWžôîF&=¢Î ¡Ä©> `Yᜑ Kìb$!Æ/&µQúbÑø‚Ôx¿Êt¥¾¯§þeý५ºCä–gùä*Äïq‰Âš‚_ÆâgD13 ­æ'VÛÍwŽ“yáG>Á¯"òrÉÔ¢zjP®è×ÔK^ÆHŒ‚ZHú"ƒ&Å27'çÚÆç $qÁ_Åæ|$Ž¿r¦‡öI¼ÑLªdR`ïíþcÙà`tÊöI¡MÐ(ÁF¯ *N¸´¡'w@üÇ5¤Úùï³×œþ%CYAEUµ„=|€mØÄ ˆ|ã£î{/ŒÿHg–†c®Çó/¨lBv³Y®…CU;ÿ½^êíó%èÕbV±óCaâÁïŽ ¢SRëüyI3&+&¥žý>ÜÂ30˜š°ME´áažëCèwGãuŸr?,'0î°Î³=>²=ÓWm¶;Ø¿NT_WÄÜ C’D÷7°öä5rÇ~º]!ò§†ˆÆY;iÜ‚Å!w»@ÕÆ’- ”/¤l²a…x‘œo¾2Ãm”Ãx‚†íÇF÷ÛC¡÷Õ”FêZb”ØÛÁä&ÝÀ!RÂ%׿ÊcN&ß8É ¾þÌ œƒn×þ<7Õœ½±x«íàD_‰Ö;6®®'Ñ̽%¾KfÚ»ÃåE÷V›zl诎šsÑﺓÍ<¦Jå(,ÿsfÎÎ%Ÿ)I¦›_¦©J(E\3&ÜGS\Ž{`£l&nÛÍ?lEÁ­êÞoåÚ*¶ÅTã¼c¾áx³(\H-ú·[Ô¾'"ê„ °²CøóÔ®µØÝlb’ b…™Ô¶ÇÚ„ÿõBeõÌlc²m²Å±ÙàèQZÛ»¬0×ÐÏüÈ]ÿN,Ã#•‚ÛÉ-9Žø¿÷â‰ÒC étWIþoׯE×ú@m«½ÐjêT{ýàAå™ÚJËÊ ôXZ¥Ÿ:ýó1¾Qjá“Ëa¹œÐÕôÕïi}ÕëÔíÌ›ôÕú$í¶zñŸ÷¯{´èÝ·à/jC·Å[²d{‡F]ˆAâ”(Eü*§z„ë} · ûQ•è¹/]7zÒ#x+ÑÅs¢§â¹8*rŠYúõp»ˆèísmL ö|ùèNðhÖ€GãÙnˆU|†† 6kbûVFê?Ö(Éé+µŽ,/ÑŽîÁ¢bÅ ¼Ñz£1Vå(ˆ7Sظ[·cU×éÉÃXŸ÷—\cú#ñÒ@VðÁM ©‹íªˆ÷(„µ_Ê:gŒ™`n mÅ9=®‘µ·¯¨ §cŒEe^=™•ðÏÅhvá‰ÕN%‹KÑÆrޱד¬ìƒzG/ÁÀ{õ'DE]“¼êOq>~ö Eg;aD“{â¢-ýKæRã\Jú€ L%¶sb±9‚äø¦Êm ˆxˆ"ø‹xÚú0Qg'9I”üò mâØRäqËÀă[N5®éãÕaáN]3-L}»`± $F;G–¶‘ªŒò 1j.4§ÇdQ39([!î »ÛœH|¥œgŸîºÄÓüPüŒàئÂW,•SÙÙTЕ·è‡3{ð 3@2b]¶1Qä%]RR€`]¿º/[ÉDðC¡T–ö­ºiN¨œ·bïsÁ²–÷[² ù8$þc Ì온ÀîjúÉšœ“ò¬ëEÎàÎO¡ç ³Ã3¢ 9äMž† ä+À¯ÜÑmÕ3ék#¡ Kní!_Ö‹=ò•`З‚^y’ñ ’µEH'Ï^J Õ äÐ^ÿZ ½[kôð’ÙˆÍÈ 2š;8wËé?žx¤Õýîdê ³Ói«>5I~äo6þ PÝ Rª´=ðd @n“šÙ`ƒb¡rn†ÊL¿  J²­íàYÅù„É0ýÍék2“ ®3á@¹5FQÍq¼3éüüN¦÷þf¦“ÄBùÜßÖ̪­ånf¥Ïúm2ÔŸW‡Å¨Ä÷kÓ{å1XCa0 x ™zGGþ1W]¦OG:‹r‚XqŠ™¤ÊÄn7¾{?«¶´­fÂn[GXøÑ0?™ÓîcÞç®+Æ’G>Fç¿0JÝZÃݦÿßo-õO5³ãÌܦÿ•êx÷{‹QÝ`¿‹bä RL^¢nû—ä`~Ô~ýHÕb‰bT¸5!zìFÍð!ìêMìµ½·Á~‘ ¶ á¯Ïåg­[0ÿÞìæ=v¦qõsbÍ.èý¢ßO‡Îû>=I–Eê?n(6ð}“ü¿¤l]ð§ErðÖíÏOè?É´ý ¢#ɇèw…™Ç2Q:âî¡ #WÀ9袈õ¯nÑ]*1À´Ãwɲá÷…Ö3ÌŠ´$ÆpÎÚ5ÆGÑ8=4Êè¯RÁ7µ†ã=–¢šr5/ËŒf_ò?aøyÀ°ì$K®îι/r‘-ä*.4|á?&óçÏäzfudµ|ÌR 9ÇÀ¯ü`øçé5Äør~6Qaó'zȆ+iÔËä)¹†ÚëéçÔ«ú«tt…ZI¥EMzÝžaþyK3ú«“¦³¹œý5C¶+}ÏPŽ2IÕqÚzðá$Ü­©Ì¤†b$§æ¤2]|mð绨)iûH6s ÿØ>Àìaµ1çƒ*vÄÿ6áÚ·ÝEȼÅÁôßý 'SfÐ]¶É™©XÖVy†Í­ÅÌ6mP¯Í +|Uk'ªµVqf·‘—x¢·i>#xžg:üÇ|u!³ÊcðçO¸G™™4h.¢³.s®†[®¶=¶—¨ŒÇQ?Ø’o|Ö|ÆuxCÖ‡ü2waTÐòçøÿêk,ô»!ŒùKæ×þž.6dNÌó3™wž þ<)õŠâ¥$Ôfk½´3Ú5ÇoÚûhôñ‰Tó`Y‚ô¯ÚvõmyÞ]}¿~]{©FV¹²3û«›Ú&¬òîÄv`NõE7qKñQ%LCBá$6ŠÓ¢EõWeÕ×êc]Asµ ÓŒ'æOt"•@Ü}¹ú¾X±—ð6«DI±BJŽôZÛ _eè$± }Ü(>ÐëH¦Ð ëø«˜È_øˆÎ‘úS-D´¹œZ³xÄÑk¸Çc¥‡Œm3êåŸ3ÒÈ)TvÇ©c´ý)Î {Ö¥‘ÖŒ|"÷öKÙüˆB¬.ÌÆZÔWî(´j1ÅïŠã vT¨¾Ä9U©»BæÓ@7 Ð󫙃•Ô6¤wÉ*4²u˜q¸•®!.äMaLr¾MŽþ­ØâXOQgQ?˜ tÐÈk>ЊU7‘$£_û)ê×ËÙ¾P-~ýÕ3ÔX7°ÙíÍÉÄÑ«²·\kÌ@;ßÔqþÆ«St•øÿœL î°ÑìhkˆžË•~%ÇÁ×ÞX»èšhØ*ÒÅj,Jã¼øçdS¬Ïrmú®»;üÇzú·£ÖméI4ŽÇÍFÌ¿=J§/²®ŒdoóàÏcÚŠÚºÓ¡fÌ|ú®\0oq÷ëyºË`^G©Z ä¤üß¼z£´Tó;ÎÌs%ó¿_93#ÖM;©5&ÿ°óçk•×jW­•vK+¢9©¨±~ãÏ1eV5/ñs"t"Oô¤úø•è¤=õ-úÍ[(&ýõlÓnƒ\ÌÙ@9úCÄÐÂüª>æ¯K±U(Ô4vœ‡_¯£Ð[ጺOŽæê"ž¨ ÿ¯„­fß>7ïOå;‘†Jµ`9Q©è¹¡Í¦{³ €;ØÍ¬ÔXùÍ W†l†ñgí×èq¯ˆ§bb¤þc¸R~p#z€wF V,êD¦½™h¹9Š’íh€á?:À°tÅŽÉ1—ÔZÌ"òÝÅÑ}-±ú9ØY+žþâXÒ¥Øx/pôè cõy*R‹´ê›_œ>UCÿödØâbd1ÛYç¶B ¿ÑÈŒþ()XÀZ,ÆNPÀx£e|¢'ö¼ƒx£E‹`—ÙÕ^z>[ÈõèvaOÿï+Œ·äP¯¡º 24ˆž!žB´‡Þ±9ù#À¯*þc=(Çpš`¾DSÁåzç•wÁèS‘·Ûý–Jš-\©™ÜQc9¯¯ôÕêÄpÇ\_«.܈|˜ðK|Ý„ãN†–öÝ™ž¹O±Y.VYf­ÖBµ ~ä5üîHöj¯.÷ã AKþµ°vƶþl8 ÈÎûsô»YÍ8æP9 Œä>Þ Öi¢ù*àc³ñx‰àÎïÀ¡÷¥²Ÿ}h“ÜÃIÚ1’½gOGaMGôÑšc¦§ÈPzy܇>Körú=v" ©NvшÝ{ßoÄnM×ígŽh‚;¾n%Ç»Çð’»éÞÔÃ@…ÇkÓfOÂLÏ5§Èôz´Ìass²™3TTp8'˜çöãöT2ª»™Öë8Ÿ+8ª_ªØ©IdÕ0—£oòÀ†¶ZF×Â\ ÏÓ<|O‘%äze3BøVK¡yrŸÄ!t2ÿ@7žˆ©Š ™rRÿ±Ë¼ÂdX'æûÁ,ܧÉ%”ÂõÀ¯  =ˆgŽ•ë"jˆšŽýõC?ó†g¼wè^é*î{Ì–¶x !ÖYüœe;Lö1‚ŽÔž›Q;£ö2ÑK}#Îj ~µ'ÅÇá?¨sõD|s¹›–“<`þàb2Œþ¦^bhâ2Û}[IöØ‹aSJª[sè"v‡ëð^,!:*J$—ü¢ßKÚ‚Ž3s‡ù±ï~\Ϩ}­Þ¥ÃˆóëÒ¿Ý®î;Oýàæxk_U—_NŠxõ›JO=P4Â&äá9~ÊÄ]j6m-þãš¾I÷Ôü’¥x½ú%l §¨ ×ÛÒ˜#Üé÷¹AUá/r‹ôTƒÜíÂ=¯£Ð!ì›zMbãKæØkUÛÙüÊ›çñvå;ù‡'Ÿê·~µH¨ï¿ÔN£ÌÀ½ëˆõ|E R†;ã!¶§5ÿO*k?|‡ã¿*úDê?î*yÈÖÓèÜÿ›¸Ç«q¯6`¯kÁ’ã³ÓJ Óqˆš÷ñs}ôò‘\íÞZ 2Þøð›DÜIñ½.xÍd² èu!49»ÁqNáCb÷´CûLÿCýUeŽ®.VùzØ¢p éá#ì}&–P*M‚[ØBb÷I‡øÏBeñ6ÂþWy˜šP–]‘cAî Ôê_]ŒW‰äS£ 8Jýù|2šÌà-“ˆÜ£Íz(‘]‹ ÿè¯Xz€p'kë…f+)ŒÇò³Y`a½Qp¥dÅÑp>`‚&çÎç_§3`ÓöëƒÕÅ¡®¨ýåR­”°+þ2`Ñ÷ài£¡» ‡»WV@Cô«®z~̯MOG>ùG®°þåežó;½ ö9Ö‹£ÎA•µ¹}´rͲÉCÔ¼ ÓÕ|ó¾ þ£ vá»G«ÖÕ&éûE ¾Hw'ÿøU”ñÇDÓ¯pßl±›ƒŒNb–PÖ¨D~t·ÎÔæ=õZQ:ò*ô©÷×íseí\XSp§Zr%J©ô›w‘Õ%vv?ª®%º_Ä› óÝ'ÚrýÑÌ'0˜}¬ð<¨hÌ]8±F`æ‰e5Œwìð„(©ÿ8¥èx‡È‚8ú89vUâÜéãÐL¥ ƒÏ‡íI†8·ÔHOÉ1·ÐêµÆSž$r·óN`ŠÑ°±¨F4äc)<…ݸÃ=\oô,¿Ä¯©ËÔ Ï/A^é£ðAô#:b”]ÏóÚO¾ÂíD›°ïá‹ëA°ÿˆ¨#|Õ þü?3Ÿæ¿ßŽóUä/‘¼…ÿX­'¡²{Và4¶~*$]Rá¥Dà?†)©õ‚ÞŠr(ÈO*üÇrƒŽò¼ïÏcï²?Õ"igÐè1kæ`,{XN„Ñjë˜ô‰Ét¢@ªò*[~DßáÔ'âÙQTƒ_ùƒ¿•Cq_æJ¿NnûÜl¸Ï#ð«ÉÌÒÈbkøÐ Ø…]°ËgÉqúšwØatYôí Þ&€ž™}ÃÕÍÁ›®²«Edp+Œ¹ýP%s5#~ 0E`¥ËPÿá#¢> âÊá-±âfù„s<\\wœÁáJ9u?ùUqüÀ`ü_“é¯z2Y6ùÇNæÖµÑWjÑõ%‹k€¯9‡ºYr7½Ûë% ÿîy|ÆÇÜf. ¦=šMЗ%²V“×øZ5èöåÏÌaÝ4ݬÛäsÍ5°`3ÀÿÚ¢ÆAþi T[ê_˜'‚XÇîòwÕf7[[0¿6ðå)Ñ_ ƒIC¾V¢Joê@Ò˜ ¬§pßødÁòŒîvøwuþ£$ÙÇ PV?aXu@ªQ?¸ÑþÕ‘éê'l‡¬j¶ötóâÈ“07ÑǼÉõ{'6ÝÕ£:'¶ðtñïÅ;¥‰šÈqg}VjOüw>_g¾¬Ði/µ úYµ8kÞ¡þ|þÃG³è6ò{ÓMªÐ8ÇVýA4¾K?¯ugºÈB})ºé•º—vN ÑkDe·ôm\Q«Y þ¼›x¥¸£ßMDý`Fq’úî¶zGÇyø§Ë«_Ô3úgž<_2Ç?‰àªóôÿAOFr›Ó°ËKuŒŽk½ôè×+úkîúE´ýoAš|ˆž³ÊKØT?âéXÄëØê:<ÿŸÄr¦º‘úwJ"#9}¾â’äÅÃÃg·˜±&ØA"â¹x”ÁøƒRF9=M$Ç\N«MLÙ –â>¹µ3,;×ãÇ\žõ?³êf΃6ûŒ½Ê„Ú΢¿TVTVª"®ü‹]åçj¤f~TîþXÅW\•¡`-7ðEñ(§`‚üøä[F=±-BýUkÕS¯ˆ_¼7“ÿñö£˜Ø1ã31ž‹Ø¢yè€78˜Äçe"Zsá ö‰ÀŒQòƒ—nƒ_BÆâLÇÝ-¬6ÕH€MÊ vs ¤3'Z¢‘XG.` øÚ*Îâ_dLJõÉê’px¨V@,&ÓuÂãl$CÕÁt®‚ú€å{؈-,í/if1§‘áèd £@tóó'©-ëîº|W½™]Ò4‡ø~ú+/"ý—(°6Ê hw˜‰¨É>‡¯*f¾&ºGþq tÈŸýW¯Œ¯…ôÿ³ou”öFt#¿{G<á§òÎx/‡ÀX$fjÈX*áQ±vz üyútU#ClAõÇ1üáiüG·ÿGÜYÀgqu[æÌ™3óàîÁÝÝ­¸»-®ÅÝ)×âÁÝ Á]‚»»w·ï?éåIH“&¼÷»}Ë’@rræÌÌ–µÖÞ;HýÇ&Y‡N1—‰5æ+OÔ§à9¡MîŠfí0;õ•È?æÁÒßÁ+õcµv°=GÑ;úOyÓ}‚-´Žú^vVRÝ¥š¤—ªH”…®½í©®HÈTª]XçìvSôWCÈáêÁŸß?÷Æ´±[F¦ô‚;0/Âнij}>­ô.LGŸ,G•Áÿ±ú¼kpò{áÏ/0Mä©ᥢósöY§yG>à?úšyð™ºÜé>Áï—Þ"ÐÄÁ‡Z6=^'7¬{I¤?Ö#Ñ­$‚Qþ»%Ye³öÏ߀ ‰éÇ»+¬ ùÝM­½qKÖ#cωE¾ÃĨàcŒõð盌½âFˆV*øóFÜ NÝJι &´0z«GZ;ý&*£Ì%7¯ÿit Ó•¿Úh\„·}̳PûÞ ´¼8Ø.âf?ððÏT^ÆL5ÂÒ‘æšXrØd={ÛCÞq”«>O\ýÛäÌ׫A¥„DëzCv Õ\×R`'×Èçò)zÝ“ðÔõÙOW,üª¦"ÁlæF£GíÆúÕ1b„rÍùD>,r;÷§dGÑÈCbsGšM°‰¹ý+z—¢æ\úr‘¯B/3ë!u¶ÔõÉúE‡l­,¨äT² gþGKXޏhf˜ö‡­pxx§âNá>˃þ‚õÉôþF1Îéï]züˆx\53ŸóN‘dàô ´û¿ƒâ- Ã÷Äˤ_KÌ)G†ÿè¡Å2vá?¢a3êàA¢á7„u·°r‰ƒðYZØÔ©¨¤¾áI–ã“V’Å£>Aèä±k,ÒIO®3lÀZ"÷/|ýI*Ø·“q$—XLì[ þ£•o“áG"ÃÌ+9D[_ª0¢Ý¿–â¤L‹ÿpa§©°ûG˜õ ÿ±•J‹˜p¾ÉˆK×ã?*2¿v Sõdè#üA^îØGýÇŽZcDbìÎA¢üLx£ÎdlŸéL5׊N5ß`øóG°ìÖB•þ6jÛˆ yÇØß#bùf¹ üùô»ùð÷Ì‘¨–ð•j5µÓ¬^àa¾ÌâKc¿jOÿÄžÖ{ëREÞ› àkÞÔ´T“áWݵ*ø ~~fKøó‚èw£b—GÀn§¢þc7yðIÇÀ¯òY™¨Ùé­Ýðû½P8삯BnäQõ‰b/5;qÈ‹<¬÷ò¨D-NÝ— jCà»Ù]wð§ÉNÀ)kó“í— cs„ieeq÷›2ýÕùM–Ñ=«JÉ­æÿþ‰Wá?¦¡N^h‡sQOÞ‘ =Vê:=˜vèÌ×ÁþSõÔÐ4å^dÒ#¹ÆÑd÷»¨<¾I5‰ƒ„u„K‰VÕ”ú-®ð`lµì j5•“yÐݳòæY`Þ³QV&RÉeXº%yLÿןÚðú«÷Z±ÿ˜?¯ßÓá?<Œüø¿ôWáÅh¬#âúݺ" ±õ¡†ŸlMµ_E¢¸7Æ=1E'¶Óãî±ÕðÅ„„²¿^",þxP¥XèÆà™}ˆw|ôwÒƒICmäEøóVFc÷üým!ò»ðÀ˜†à?b‚|ÁN—%ÿØ€Št2ŒArÔ_dOãÂ?-ô?ÿö€þ%—ÑÖÄPë°0Û‰àN‚]$óxÂÕ¿#ï.‡ÿˆ‚Ø-K‡ê?^h‘¨«X m:]€7€þU ÿÕ2›e01Ô>ü‡'éN§ù–fQ#K(×\_4 hÍ“ý”<Áƒ?+>4[ð^§¦jÚ™âêt<ôPgð1÷åg£™îÂUÔ¼õÛ2•ÝE°hžÌáxÅn‹ :RËÓˆsÿzGð ÷M…Ç«Ïüà´vôFmÎû!W—‰3»–X˜•÷ƒÜ fâØ|ã+õ$]áÖñ³úâ1Ó­àÝ&ÿª¥26Ëy -ÍÛ ÿј736=%ìÅ!rͼD·s‰í?q¯ærÝ3`å§à—îõ€iE]üúïöÆç$QÚ.eÁÆV¿Êc·–£ßÍÿQŒúó±pßЭâú·£ ºÇ÷{û"ÄEÖºÔ§ŒoÚÄ“fO¼C:‚LµâbASÁQo"ú®iép¿ÉÑj¿Dt›8¿0ñB&Ñã‡G Eæwn«(ÅPüGtЫyè¯"2çi3ù‡S¥×œ®„ŨA8ŒOI%ßur…ýàøËÍÎAÆáÏób¯ãÕFó”]Tó¨ŸnHýzBë,½F2 7ÀÔ¼Ì|mùqÊeT=¼Ç%V¼ÉË+­ÖVßO0½õ…nwç™ú¾tô9kÝÅ\¤§ïq¼Ü5kZèîôeœHæJ¯~o8žüÃatÿú¯ý‹nQ¥›Xg£úÕ÷"«¾+/=¯ÆÒákû{Œ ¸3*¬\ v“¨D/JïàÇp{oä lCqjpç»óeúLcOæbŒ©ôر@ªú¢w®ƒ&;½¸úÙ=\G]1\Žžë¤ {ž‚úÁ Ömóïо¯ïI¹ãûÿÅ?£èƒÕŸ?¢þ#4ENH›K«ŸÓs‰…ôo¯a¤NýÓí£¾šúó«ÌÿHÿ“üÇ;m"U#lC <¶-#Ûè¿»†úót;)žè¶û~†´£À_¼ä©ß++`GúšõåJyT›Èütf=Ùšjí×rˆÑ1L+Ò·>ŽŸQêÜ bèH÷+ˆFu³¢¤«5vlhJ,cE9Ö¸x !}lÆ$%ÛpêöÀ…µÛ†U½wñ÷¨1\,_Y?TÿqBsð]/ù…w¤lyøüðàOÛÀ[òmƒGô9š2ÔÆl ÛÒ¶þúûF¢žrOöcÖH€Ç,Œæù”Ùö3–t5øÕ.¼H&§ß¸êð²¼þ1„%ßi^L|Lʪ¢¿š‰»Gÿľ|LôBEÌxâGþæü„«p?'û«<#³b ²Ñ: pTÔÁò\ªG¬QÜã÷%=ýK¾‚ô´Å^oöóg@2£VÉÎw|ÆôƒÿØ,Qu04Å™5ŽÕþ€•êŒvUWg'K7ûô–}MÇ{¬t˜•OF§¿å-3ÌáóS8x”~1‰kr:heaæìYf°JüÇô»I­¡ØH‰úÕüî Ñ꛹/¶¸ÆÙŒªž~°{ÕRVë‹~7‰µŒºq Ëš‡9CAìª05jx):Åû‘-t%o&?vd+b‘=ï'FÉ*×E½6%|Å «.z[Ç<¹ Š3¾¿|wYМ?Іí{F×<ˆÚd(,rQu‹œqê0”èt(j9VØýÕfz>]ÿ& òºe½%‹«¶¸…k9F†Ò\ ”ô¤¢7w±8ÔdUBõ£òÅÅÔÛÎvLzNŽ'ÿØoW «ù'j ’yRËo_Õ&Û|€ÿMÉ Ô?1±>_3Sqgš)- ¿ùÑ|Šæà‰]Õîƒ?Zfgs=€ÿ¸ ÞtÌšg²šâ9w“Obža4"dµ@üÇïzWúð)ªV—š^ª°l®f[Í`¼ÕÕ%bƒt®§v{º^Åq¥§û˜ü°èïÔ´'‰Å¶b×"šëÜþc.õÈ3ñF“Pôõ''Ï ÎÞjµ´¢Á§´À+yº.»2ºbºŠÛë”g™Ln¯u‰§^ÇfLMŽÿ±%˜·äÿú¯^h#ôòˆþ‰¡!â!í(º~SÏ'º‰XÆoFÿùQ«´úTÑCÜèß § i…ÀJë^Çß^ 7ãJËØ¢?ÓG^2œÜj'’?ß Öt£,†½Fw‹3r£V þ#;ýÛ› ŽI-]Û ïlàý|œƒ:ûcÆÄ@PÚY4 ãëpâÕ£d9±a‡?²ê4ãdÀ·…ø‘mxéŸb£k= úO—%x×cx¢'tù8i&VõÈh¾‘/?–CõË´ô L[a÷Âñ>g¥yÔtëõá}4À]Š •c@¥z˜ C­?Ï%ŠcÇûùÞ@[–†ç;3‘Ó¿½x÷ë‹ARVÀÚÜ…eÄÝI«Ÿ áZ?ÐñøŒL¥’s8øUjPêNà?¾h+áÌö¼¯·ÈNáC‚K½F\Hµ¿ ®ÿnB½†Q ø™Ì*yˆÓ¾:Lú%ÞÒ ’M AeEj9¶â?&…8üyRâö_‚Á¯Úh_ÄJ"€8tƒ*¶,*ßU…'%Qw^âÙ]ø‹Dô^pª‚è~‚¹Ü““™b&’Sô “^šŠr4±O\4ª»ˆŒ9Ñ0”ítlOI_Š ôf­bm'º/ŽJ¬º?ÿ±ÿ¹~ƒN.¨þJˆË2™¸Oô!jŸvÑWE§Ê Õ× ç~²ÒVxk¥JFõ…ê·o0Õyñ×±„×Owa¡ô þŒçm/ùÇMó#ýÛçXA€ºcK_£qÒ] ,_šŽÖ<\<×eüŸ‘Âa³e ÉSÃÞÁ‹/òg÷׫Yä3í­>xÏt.ŽþªÓ6ö£ß}>ü³ gó–_ãvÈD3­€îL¾¯Îó;ŒŸÜH¦Éu&‰Kø/|ïr]µí[ÔX”‡£gZ¢•ƒ`I°¶Œd¿˜ëÝOa$}ŒØI‡ƒü£¨µD ³—Š ¢¤ƒ ÃË­Gïô‘|ëXÑYÔ]‡¬^ôÕZö§Š<`vgšOV÷ùõ׫Pñû]y›7ÕÃÇü`5q%"™Žî±:¿‘ôüŠïJb÷gžÈïv zÜ@£`qv¿ÃÖ ¦;êöóõièw €|O3ªÞ[Öd×ú—tµ> àõ¦’½Žë¼ËrÕs•¡Cæ:ò8vôW÷±=@n‡òæT©ÿ+ók%ý¯Woµ\>s߀0}T¿¤§^0‡QÁÈ/´ðª–D ¢â‘NdùÉþ%_µyÆ3t £ˆT»›Qè´\ Óó#b£V¡nÊž]=E½UÛNµ^Ý—·†AÎЄÿˆDþ‘®{#q;*d³Ï]ÖBæ×FD””h ³AjÀŒÉŠm¾ˆ¡ÿ _éå%ÂÃWíësæ¶yz§Rñ\œ—®0Óá®B¿ÛŽúÁâÄôÝÀ¯ÃÈŸ ó*¤û Y—©)7A9ÇR¡B3üÇH´QÕ[u ˜Ù¾‚Åÿ;5 ·`eªâ-}É}6Âó7¢Çîm÷ öÕê>ä 5QUÌ#«i‹½uQµ^œª2=º.0ϰ ¬õÌ@/O—Ú h¡SX{àS<ñpëЕGQ õOŒ®ÏçÌäÜÓ•f^ë<}ÄÚ©dt¾HÆ6Îg# ¯3 ä59g¬ÙÌÿÈLž³~o¸‘;Ìn"S_«?B¿; ¯æLO .ß 4á(ú‘È*ºÙŠØú2«yóë þãÞø½YŠüãNàûŸ ‚_ÕÀk¼ãÊRãoÎcï+£ƒ;à Î7È9äS±Q…yÿü­?¨Ý™7Ô7ÿ1IËdlÁDÃ_„ñä0åø> [\ëÿ‘‹þ㈮?G®€çZÿ1Šû}Û˜ö·éÌí™_;Ž &¬Æ<øOœÑ!”ÓàKi‰¥wÑ;£}m ¢<AŽôÞLF´ÛnïÞê"^¸g§;&õQÙQt˜uÔñýÉ Ã(r˜Éôû{‰ÿ¨ÿqyåOÙcL²'ì÷1¾¡<üPŒ ó?&‰´äŸ[@ròÀ¶V±Ð½èß^žl /HÌr”¢(¥ Pÿq ÿa‘¥œÇ×ìU¯ˆêÑïn’NÔ\÷˜YÞ][*rî ¿Zjö§›D#Õ_oj<Áf%õQ±äió°Uœþ‰{˜uŒ~ígÑ µk1ƒË¦Nãwêø³€.>WoÈ•é…Bmñìþ*wþ±Q]+È6ž,×O>e~m”¿ý™Õl«Ž]†ùç™b[Ñ~¯–Ò½Dà?ÎYçxG¢™+y;‹“!›rƒûŠÿ½"è½õôîgõ™–Æ¿rã?ùù©ô+t™"²Ñ¿$ó¢4íš–FLƒÅ~—zôŸëWAÿƒªºFD\`|©øho½œþ‰wŒÆkñü'ý‡i¬ÅÚ{ó$.Æ¢vƒ3ÿ¦mEM¬ j¬³rœ0a쟮?/]¾ná?èxÍkŒ•ˉ…Ê&6“»¿îÛé~HÖ“€h!¯èGÿÝ3ÔD%®;v—è®4¶æþ£>lz8UŸ,õµüD—•r¡úZf¸öy|µA_4¨åðgձў WáQƤWëaÔ»cq+˜eŒÐ¼pkøçd*áy`§Ç¯(Mü˜¶b1Ïïa쉄?ï>tBpÝFœë¯ïÔïIòŸr¬ÑìVkËÞò¶Ä2»-<$ÏÙŠ·lç$ùÇóWy[< æø*é=ŒràVoÀ8S°·KxÉê<+gÉYÖ‘±N¢ÿÕõ¬\sw÷i‘™Aˆâ?„¼!÷¿(ã–q‰ìõ¾ÇüêQay¬èa¬ 17ˆ«#ð¼…#{ʪÿx«E &ÙXùÃS€°EÃîœ'º)¦q ÿ±3좲YÌÈÊÝn!J€ÓuÁS:™AžïtDÕ©‰¨K“†Wóx†÷€%Àvtµ»nÔÑUkÚúBú—¤R‹Ð%UÆÅÃÓvàé¿`þ‚Å.C=uWt_ÖÛ„çpfÁûâMËÈ ÁÎÿ(ªÆÜà”¦¢ßõe•V kð:P¹¤"ø†m{áÃþósS¯˜ Ôiw°þ#¡±D®„ÿpºz`—â½ÇšŠ˜¶4lÂ&|^utk5¶ö3Y×*|ýXlp{æNÒƒö®/òËždñÉÖЫãÌ ýU9:&^…xi!º/†åGä.ñÓÀšæâANÊçF— gOeêi;Îyþc÷ðœ9˜úÁøt”š„–è=Ü30ÿc3ýªL«/.êÝ«àMuÁ¯R™‚ÔŸÏQx"–);huæ}x”1V›þè›ÎÁŸïÀºú/ýf]ÅD…Þ—ãnÄǬjùa‡KeIò¶« ­Óñ‚§é_2“Ú·Zì„ÉOàLYìÓV¦m,Q­àÏ}9Õ⨠vã;¦€ÙÕW¿Ë'î7¢›6T¿BEQm²¶°íä0ª¯à?Y¬Áø•ÌäkÄþúS!ïÍüŽóp>ÛÉ5’s-…ý ¾¹Ù½^}¸„ÿpº/$²|P?•@Æ9燙•†î%{±ú™XɇB»!º„ü¨µŸ“lï.*ǹ¯wøÕê?ŠssÕY#’zmµu¥d~z úï>¦žD-´d~cJ¦xt½{®*ó[¢ó…3½*[Áhð«èä6UVâ~Ì"—îhÚvqW=:Ÿ fFí:”[½Ð_­q}e~mK&7ŽáÚÓ0×ð€u ÅÂbŒç}üBÄ´Ï}Åÿމ蟠L³áÒãºÏéçv‘@ÿBýù‘ÜèdäNÿžÝš-–‹~âžÈ(rê;j¹wZs4Ö¥ ßÃâJ"¦[åGãŠ!©pÿ9þã²X Z=4Õ~éM¿è) )ùÌd2»\޳̦+Ï®_Óç§°Rψ¡+`áê‚<µ6³É5àöÇ@´.ƒ°^cþyç0ÕŸ?¾Æ;p•/ØÌ“DÏϰӹ±5Gˆû+±z4U‡(ãš<çô˜ÕìÕ"Ñd ÝAŸŠe…f°åxÒ&™µˆª×+¯½kL®TÓ,b„vŠ%DMöÔ |’L#!R"r­·T¼æ *·¨²s¼Ç|3Vº •yWPt…ä5£1𭌠Ú׌}M *~-»ññzêÏS©Œhm:«—ØEgÅ­ø¥Ãd!÷Í ”šH^ø;¨S ôW_á?öG\—MybO»óõúc†¬jÎá]F‡{VW]”¿5Á¨>ÁŸÔ±§º¼©ÿøB'ÞCê.SrDZîë2Ï@xr éf®-ñÅDÕkª8ÿø¿˜î» „ýwk3?ª §}K‹(VPr‹úóúv÷ý Ëi°8y:Fü}tç)oxmø ‡¡.ŸºŸáà÷¦iŸÉ?¢˜>°%ϱÊ;9ÁJT4%§¡¨øe•æ-Yì6»Ñ¨ý ~Åö¢2¾¬žÒél˜?™Œœë¾¨(þ#¶{ÿ>µÌr2ÅYä†EtW»tò2<èF3/ˆR2j"Àkïf§–jÓžáØÝ.Þ³õìy*ž)6óï³¹Âd¨Nþ!Aµó°‹DûåøèøÕ~³} ”5•è1'|Ò ~Ú`ªç/‘oÎfvÏß—óÒrÇå-Ó+Yõ«BU Ÿ›l'õ»É䲃ßx2Ùê-™æb2™¾¬ü õçsôµÏ_kO€?ïÅS‘•|b1ˆØc2•äÇUu++så¼à‚ú ô/“äôéƒMÀÏ?#ßPQòãSˆcä”Lüâ+&“Í$CÂ*6kÌ ~ÐÏJEUÙôQ•¬Ïä1‘Á}®ñÙ1ìoc¼j<1䇗‹ÈX²ýÜ·4j:ÙÀMóƒá NTÌõ¿zÄt¾CTAì ÒîWüœ“»vÁl¿z€Þ®Rþ|½ÌHþq,²7ˆÙeó´šïß¿d¦J âÒHüÕÕÐRæŸ_‡Eïèï?¶²¿…øªI þí­µ>úið܆dmXµ‰œl¾TwèŸxŠ3›Bî6 ¥íoðßðÉ?"ÛñÈljƒ_]á´c“]”ІoÚ6q†Îñú1­Ë2–é«6QãqÞ}S6Öà §¹Éªƒ°éû¨5ùÕZÎ>ÿV{Õ\}€ÞØö3µÇ+@ëÊÈêó?ª z®dåùÇXÔp\ ì9ÌŸmFí`Û°"ñÜ\@ss]i s‡Ûøè+Œ?ecžõÙÞz§{dìÔØøx®½(Œ“ã?–Ь0uò­ø—ëĈç”xèrÿßàÏ•>-þAË ÇwŸS0/í?üU^ú_U„?OCý %Ò°Êk-½˜ò\$±Òd º V:G'8êÄä¡áW)D¼ZO,á+²åXþè˜. $*Ì/vl5Ö~8ú!8ñ‡Ôæ±²Sè«ôØ™íøÅäḷ­`vÁg¦Wù©<‰Rvþdg{²Í)·‰àæ¨TÐkùøª¨j8™Ï\lZ~ï´0Âñ( o#3!Úc§†ã£ús ä;I°úGƒÉ?fk5è¢O¿Iø…|ð/Y±9ñ@P¥R ê£a~Šbé«5œF8«…µÒê†~·¶ô-õ_©÷[N¿Ü†àMéQ8ŒÂ·¬;»Ê³™Ú(ÿóʴh€ ÷èBnq¾æ3ѵ¶š«Hh•{Àœ²† g·/¬wXå|ÝiØ¡yôdì¨ZÐûû­™¾„“oƒWmNÚ$PÒ³8^²"¨Ø)úÁçÅñÅ^—¦/ï;èÐjä‡s-Çî? Ïý¾œ¦ésÄm®ó Ï\Rk”t™jU„ñHM‡–M̯}zµ ½Yrº†lµ70K¾5¾=wã¾¶ÙQÄTäÉ»LÏŠÒÜÑeèž”JFøh¬Ð…«ÊaL LÔœ\æ0ººöv#×h×+;®+1Ζ³ryò3–ˆh4â×?Èš?›R® ¸âí£X`Òõƒ¯´BzÆž‹°o¤„.D1O¤3FIýñ«#Z\±"¨GO¨{‡})¾RêÓéq‰ª‰è¹ÅeÑ[§ûeĆ͊?³àZ±ÒKfÁgúZ©¡\¾Žj®°ôÀÚKóXë+Ál5ñæ]åÎ"üM€ð›°M~à+PS=•Ãda#¸¸9访ŠÆW™–H×Qtí4+©}Dø‰éßcgOas*“íž–‡äty!Ôk^­¥Ãß.Áƒ°¶GñpˉušÀʯ0k“î!¿™K® oÕÍHF¤PV,'åtf'N¶ƒ8>39s2°‚¼äñÈíç™»QŒ9úÝFLfújd 1ÿ0õIúGY€øµ1Ø'ïÐ+Ù‚½m§‚&#x?ñÞK"X:E~wä0÷g“8ôÐø<]ì2ù÷·_AfáÍ÷ý ß“ˆ:HsBée8šœ s`)€ögäç%ÂÛE ¦~p –ÙdÛÈÎÆ½: ìZ<Û039V³1Õ;ñA WÀÏ>‡e¹€ëì Ú˜î›õ •¢ÃEméÌ?O…žjí%ü‡ÎRó—ëÛ„û=[QNÀé_’Œ(¼™ÃAõ˜‰fAñ«⑌©ŀß÷Ćã~LCÛ”ÿ1Ê2Éf¢‚sì„=i ÿ1r*§òBÝGçÔ¤êÑRàC\&RïDýœŠõZ©c¦MeÞk/àÏ½í¨‰"¸ £¼ªG…÷Ir…(¨«¯å zbf ‚öö—±ù‰—ñHa±¶Â¬À2· ‹ÔGµ‹e´÷ƒ‹5„9Ÿ@µ¼­ d Õm~º/g>Hp\µÒúÓÀÇ<5›_eÄR¿QÛ­Öä­¬mÌ œ"V› ©"8SG®ÂŽ ÒVŸ^À¿;uNáÌYîˤo£{"аIfËOž’añ[Áwd%?JÇ«ht'ô†ICÿ«Éö:«~iOøpª%;Âñugþy ÷ùõæÉ{ ïÈÄ«T|yÛ¼lusF³Ûœ:ÎèÌýÈÁ„ÝŽðݯ­ôÏm`g…‰fE£žùZæA|…‡yÁí?V2¿v¦, 5‘¨îÞQé.&ÖN¯‘Ètj¹¨™6é&è^UÓú£‘Œ^5ᬻTüýþb¨ùY_úʳD~îéN9 >m´BO¾Ìj¤Î©!ØÒ¨®›¶æræ•ç‡bU¸³åh³öã‘Nó]¹Ði¾)e6NíÏì²È9(œfÓ¼)ùÆõm~âéîôÏ GUÜ#VíËŠ½ð-7èsƒdV úóVÌhs:!WàiXKUGTŘZØÉ~m¤«Öê?233j¿=šúÁÊèƒ/Ò!ùÊ×T9b†”æ²€íé ÄüóTs‘¬G䠱ѽ£¿a<æø­e=Ûµ…œæ4 ¶ËÖhr¹Þv;ú—T@÷–z piú· ü£ô†Ô6»àÓ¶R=“\¶Q»­ª® øŒèàlÖ¹R >%.üÇtÆ•ð䊼/ô£Ž =µyÞí?Öêã¨Khwß{V¦¶«ÐéjW¶Ÿi½}éõÕµÔåk»àèý”Ê.i¯¶NY÷xK¢€òNE¿XH’{®ø_ûè›ÖF¯ì~PÃýÙÏm"2üy4²hÆ<#•ý Q£X*<Å[‘ =ïÏùçÌzB®Öj&6䆨¡¥ÏØ6vÑ©?®'RÈ;>#®a—¼$*"Ë‘rùG5êÏ+Ñ˽A¢á?‚j&ƒ_­0þc˜ñ|á1üé/¦â­¿Ž2¦ tf Ýä§\!o²©Y­o7]õš8‡ÿˆ‡Mr²ýd3ûУÅ/½!Þ| VR¦à…<ÍžÍPõW#ð á±_J¸Ë²¡}X×*¬6Ƭ Þ´™ücÕˆ=À¾k›qzU}ßeUÑ̽18Øy|c20óBä„Á/èßS/b%/Þö£° 7PWÇÖï|ÿæ FÔ‡êŸñ{AKò=±`‰ª£¯B)–U4‡¢}Œ}÷Ã:Föq—\â3õƒ‹Ep}•ÞüÊéO¼€·q/WX›ÊÆø[]¢«@K#œµ5U>°ž–dPÃÀ똞‹ÌŒÿh§¥F¿»}Ót²€$ê O]e|DtâÏB°Ñ»`¡2£gZMìÿûãÅ»>½L{˜ùr±4R˜Èü¨ÑxòÄ|Çvð«ûXë5x£M* 3XóÚD¥»¨Ìm-Â|%˜Žtˆü«,.ƒö‚Ž,üxFkµÌbÅûài8/E¯Ä)TZX° 9éÓz–Ý•£¦Ð‹þ)˜÷3XÕåé4ÄÜÞko‘ vŠü#ûɉ=a~Ô|«k÷CId¸ÞÓE¶ª¦RèHoâ£s27˜¯qlû±YܰÎm'Óƒ4$"ž‹5ѼIþ1_у ¼—t - ^7ÐETßŽŠ ?¦Rè¤/ÀOoÇ+eÆ`@­mæGmÅS¶åù™ÊÉÔì÷¤2ï´šên§Ö‚ºÄÖüG8&ÄÃÞÿ?õ#¶I¦r™ÓÜOß'ÍKœ#C~Å›_ÀúÈ{ôÌŒGýDz¢^ô‘ZcGríÁ'Á'm…MßNÍE ë úf‰XcÕ³¬ K»Ïo„^ÎxIǼ,Ä@;©¼l²jU­£žÝ‡~ðÞ »`£žÙQé_²,)¯•ùµŸÉ©.€Y‘Eá-|ÝþÛxt*9Ö"âQGÝñŪäåLž¢ÇîM´Äõ˜5ÉuÃŽL¿•Åj.SªJá÷öX™ñ¼{.ïOr²´]î+þ÷>ˆ¨ÿ¦qŸŒF-HÊ€Ï~j…ôTˆ{S?ØÍHæï?.iŠÙçkñ©DÆŸœÿŸœÎÆî5)÷4cÈ·¢¤þ\?dì•©ä3ãпz&x²á?sm ž´¯ŒHFÿŒ~Xýä ØææŒ0Ö”B'°Å0¸cŸÐoÖƒçûج±Yýî2îh_ØétÄüµe#L5/èÞžYê6Ïãó ¤:pó§Á¯jadeíd0gå +TÿqOK@¶²ˆXÕ$ÿ?Ì Öw|ÖÆéò¬ø›Ò(S%8Ôq¬[#j(w»·è„oIx—Œ%q|Rt[›@œJÀSDš·r”Èú±øô»åõ$âÇHê«uÁ{¼Ö£¶7Úˆ&\ãFÞ«HDɽ±ÜŽm36þ(–è`6¹YØ–€KRÿá UŸ@ =ð8Çñ•…Ñ[ÄÆ1S ÇþD\Ý_°„«D.‘l97žæ}0üÇH-¯±P®„?J<à0õT7ú¥÷ÍÒÔR®.êÛåXчìw^o.¨XWlsD9íoèìløîd0±áðWªJ(o$ÿ)LýùAzö}µ’X‡‰ƒóYƒðÄà¥fó$Í¥¶ã£|ÿ·\8ƒ¸÷_ªO,î.5 flõçš5W-´>S]—\Üáê‹YOükÁàÈ—œÞ-ˆÁR‰+‹´œŠ/ªx`^݉]¾¨1Ô4 'ècïÃ^¤¤>¾-«Õ ÛœUÓ,ô>ð ×@ ™¶6NÆ'‡¼36Šüí˜yE͵Q>Žæ. Ö‚Dö^èG¨nÖ%ë~ý¾îõP‰õ¢Kf@<ØD«§/@#Þ”,p¬* C]ÎÌ ÿá C%骵ÿV†®ŸÑ8²:ƒ¾ 'ŒS?8 „qˆWDõ‚þvßÿ3uñþÃA3Xgå™»¼)õÇáÏ=è_²=pqæpM&—+D^³†ÈcgØB-fžNQ0Ýz¤ÞÇxH‡ ¼X’C*’-o[E\Ý™?XËÚnxŸ v:×v× Xš_˜6ÿçb~ínëÏ@l²Ú™èú\ê©TCþýúÿ/ÿL¤·Óë»mÈ3ǤîÏ~îçƒÿÈI½Gõƒ§¸‚˜ðû¾¨ÃN€_y›yŒê?¬7T&â¤Ïñ¼_e¢3µ&Z ¬–Ôž¥ózv*ófÓ-¤;úeÇtÅ/´G›vyTµTä ÷SÓüjqA3,î,ب„¼­‡tÅ} Ú7Ñ:ÈäÁÒ(°ÎÛƒí¢Vw&4=¢.݇ÓÎy8ó?„ÒÍÿ!õµâLVxN-·uQ.•O©#Œÿ^…ÀZzéGq=¿rúa³FÚé–[^)+ý•ê _8Öµ¬ûzþã:Š–dÄQÛ”‡¼Æüó.? „î¢%¨_ˆ¾ØvE„_I—ølV6û ùŸnîgÖGxs–Ûì×'Sd#˜ÄÉ`QÇäú_5±·X•¨CÙÖ„ý-r]¡Ÿo5:,‚µIß;ˆÿ¸EÊ âëÊè#üWú'~Ð~ Ա侖ì'ëºÝ7]K­Ò=èv•ÜhndN¶·Eû¢Ãà?Rˆä?Ù79þ#ØFcÔ>#¨Í¿J³@ÿ“?ä-ã–xù“uŽñš¹¼ê((ÓPØí$z-ý*1D},½Ó¿}F˜õ»†8j\&R}DLY ü½èF³²‰M9…O¹ËrOÖ”u ߀ã ñ£âñ7ÄÀvž!²{Œ‡ËÜ„’¨Qx&˜Ì(gOÈ©2r¨þc§ŸÔc‰ÔñCUÉ–Kc5˜Mæ,æHøó²ØÓÔ&œÀ;Ç0â¹ßŠà7XPÔ%jÿ¸Šw‹ÇñÝâ]³$ÝK<`2pª»ÍõøýøÒõèwS†Ø¿=†îŽÌj9QnîBD2µ†ðç«ññÀ¯~+º§[9‡¿ºéÏ¡'‘;Dp½oòé¿ÅÈ;"‹{`›/7¿Ú&³Ì´Ä>:£ƒÈ Ò£ßÍÈ ? &ÿ¢?_F|?Ì*%h+9µá¬>;òUÁÌH¼<>­= ¯ø½aÜíŽæ#c¨>?ÈñõueGêö"ÃÎ囦Àb³b;.³£Øe©YÈm²æÃNk䆸s!üÉ÷ r_’Ñ?ñ«li~Cå¼>ÛÑýî{ü'Üùm4§ìåä5é@;ü*-õçwX­=øUNô»?ÖlÉÀÞœ©ÉÁƪëægüÇèw-Û“ðç—àÏQ9˜Õm¬}xØ…£ð'À¯öš¹ƒø.ž›»wÛAηԼ¤Öл©™U†õî_eažE7ª-ŽÓ¥ñ&ëõFÛtŸÅî· ÄŸ·'ÿXn[‡þj“@Î*ãõ£Q Ñ ¬˜µÿ1ä©)õƒ˜ÞÀ:ÍÕ'@)V¯ô+.€^á³\è¾#ô¥â¥Y€ѺϻFDDGÜ[vxŽ–¯ÌuÄé"óϲ­gÚluk?œô|Ô-x_&“sß‘ß@NË/xo|\ Ù\­³Ê¸²Ûóà?Y9è›XΣ øÕ7k*ùÌ|»6Ú±ððÝŸˆ¼fã!À5Íynÿ± ­é Þ„¥Øô¼çí¢®Bt>©Hmý$”޵ة·k&ý|KØŠ~ð©{ìƒÚᔃÕÂÁL5[[Eû¯Ìÿx¢µÓK¸O扖'P7E÷ Óä…ÅDú·7ŠÐïJÓ|´‡ú*ÑK<"/ñЮ;¤Ÿ6ÁxNHXÊŒô°ˆ¡÷‡1ÝI„ûÖxHEâë0íêûMAÁ·Öœ-Kb Vñ<‘¹õpè¯ò2w¶½4“ÓÏ,¨æåû÷þøg1ýyÐIòþ#¨KËñœ·"ªhEœ¼E·«”Eˆ :ÉNaê¿ûLâiŒ€?: ×½Åì“„7{'•ƒY/«ªFüø„ ÇÝ2o¨þcŠ–‘Üxõ,_¨J½[ jó HE˜ùD(ó«Á7?$ÿ8†ý(ª~·„púïvG™Œ_‹`Sº€NŽBÇCý‰:8-Üù"´³7`ÙgóTÎB5Ñ…SÒóoõåEe9„~*ñÁÐWˆ}á¹[‹wÚb×òÇÜ£Ûåèn[Œ*ã1D ß`Z¦ðçj:È>–QþÖ¿=¼xÈ3Bo °žåh ÆãÕûƒ®|ßý vužô öy>«Oþ1Ý¿þü-\ÊN 8ÙÞ7´oqŽHEþ±Ÿ(#=?s ¸á7êHfYÙð:“Á¯¾Ù¯ˆŸ½˜ª‘É€ «$:ƒÐŸÃÚÃÝ)¤þ¼›ÌNžv“çu‘j§–›;Ô¦ÖVE®ç-yB6&3 †ç>¯š J}+S?sdYÒ,5IÜãÖZ}¶¶9üÇDUEÕä}Jd½¿òóïuœ\!+¨Î9‡ÊTŠo§¶=/xSEÕ‡úó+િ¨ÄæN÷åFbþÇ&2AƒÈ%•uOF+L7®Wè­F£9[a'q¿º~u‚þ‰»™_ÛÖÚJä1ó¨Ö›sd6™Ó}~]ôfèwßÈ|ø£*ƒ4ÕK«¤ë3ëE%†]¡—Iû,ÍXò50]¶n}âvxȃ¨mÓÓí?Ö3 m,ÝhâÑñ Õ7aãÀ¼×¶¶P{3ü% õƒûñçÝ©"YD7±(tw?e]Å[GàýžÊ›[%•a‰V݇òÿéƒØèw3¹Oæ³VAÿ« ÔÞ1Ñïîû©Ë WUu x;‹s>IåIQVßNO÷%àWçÏâËOîÓWìâ ^,«‹ì0ÇË^2ŽÞÿ‘}OSy•Š ~îsø§­ÖÓ_ê»kèCî}6FÛþ£¢YG®€û¸Rb]”Íe÷0ͯkøwA¼"bׂ} B.Êr+ÝÚ U ÿa’3ìCõgµ\4Æ•m±j«È†p_â“Å¥ ¿NýÇéð㉵ӃöÏçž©jR÷T_r.cV-<ùÈ”ã9™®æSc¸þgkîËüAOò¬ Xç%(ƒ^òÕô/ÆVÖ gî4?o¬Äĸ٭Rä¹à[’“ù´ÂÛlR~ð‚Ü—´ðçq@cbÅçÁBL&öôD¡„i²d' ýKömU‡?÷$RÈIìü„ؾ5ú½ft1ü‡7Š(xÔSTr¤'?êHdÑ}wŠU¡½<žÚ'°§¬•ÌKlž 5´é8é WRÂг:—î)«á±nKxªnjŸI_&s´²ZÀŸEqš‰Á“ªé?À¯ÎZ/àRjƒ¬ÁÃAsÖ‰úÁ—îl¥5ÒWÀ155ú“ç,3¶5U#-Ð_¥¤óì>{ëuµoP?˜’UëàÏ“S‹Y»ý•ý¥÷º+:Z>Ó|Ä+*^uµÈÌam“Wdi•–œí8zÝnÌ+ßl›ô¿šj— þc ž®Ý]BÎñ+g³ýU™Ù}~ýé|pS^#—]mQ.ùØ|HÆ>¥£½ nËÿá¾öÊÁ°>ÕaºÊ؟ѺÔ5⦲6oô·ÿØŽd>e:OéòƒV]WúÝW´.SR›û:ÒµÄõÎV®töÕ>¤0Íaë(y¶‹Xiš™x!âÅz=‹ûd¾Qÿ‘Àý™û††éƒ”úCæÎ1ÆFnáô/9 EëÅtñTÄ¡[Õñ0­òý‹<ðßQO=ɌΠÓ,ú&úÄxÉòˆñœŽ¾¡Y¾ï+ýõçM±Ès z«^ܧ²þ£?Ó¸Ó™¿ÈÆD$¶9ûoš—WøþY)øóÍÆ ÔQÏÐd¶$‚k*TÓ¬.7‘ÙÜdõO¬úRÖ’MŒàpûïë|ÿó­¸Aÿ’‚ÄŸN¿[º>Ø©?;û„¸¿ {oä{üGêPýÇ­8Í2bÕ×Äo°ÔË`¼%ªßr;‘ŒØ5~À›È¿D¨ýw{‹F\gâì»äDIÁ2ÂÆ¸ðM9à)-üÇFØé¨@—ƒ_9cKêFO¥¯A±î¹ ¹Ê ´#_dgjì—™E‰n™c±#÷y'¶âŽàKÏð“ÏR?xZ\þ~Xþ,O…i)r”oäý¹ØÅiΩ( ¬»(¶R :Çpúx´!C1 _«’ÆäZ0ù‡§–Õð•ÛÀ¯†£¦M…l2þuþ£è w:¿™üjÂKJŽW`Æ“ôälüŒaz@´û×Ðÿªþ#!a-ùÇ ¢—ÃÄ—T:Gw…ÆósÐ÷©¼¨±œŒç3øå,ú@ÍCôB^0ªÕþZ/-õƒQÉDãá?|©ÚžÍ•£~ð õŒc˜åGÿÄ|L§[­ŠS]1 <#Ìõ%Ø€æªùGDÑó‡»âð-Èïžá ú¼/ ó:ÆYìDõÅ–Þž¥:o%ó?zп¤0Øçüç¼§¸;9È3Ý ô»¥èBß= fc}瀆5$z­öÑg$ñôHÔ²}é¯r ןž‘àSÎà½N`£+Ê€³ÖT÷!žj‰ÅÌuT Ò·­;Lìø"¶¾c<5Ul?üR~zœÏbzÖ7®¼:+ú±Ã¬dˆGe@G™gÚNñÿñŠ?¡uA*κš ýn<äTzDwݲ'Qž”m>=¬r¡<Ãs¢CpôW3èŸXRVs_oW}ˆq•бÌ<¹}À¯¾š§­–®Ø0(=ñã­´®Åðç}à»#¡ȃÿˆe±ŸÂ› "ͱæ.üaJsÛìÒç“”%¢šÒø@Þ·²Â”£úRcêÖhØž*®ùè©#»ŠØÌŸ‡Yi/¿ÜºÈýû*½©:ü…Œø…±9ð ù—>vüG@þ¡Á…$rŸÓÏmÁC ²ÃŸç#ÿHâÏ\Ô¢‹Mb£ø "S¾ó§–K§ôŠs®È[ßÝ|cìg"îF}1bùЈmdÉ~jŸOÅvbÅq b“° ½d7æ¬NÒ‚e†ÿ0à,f…Ѥbþùfã"8ÉC¬p}ìÕåÌùË~5œüã7Pv§^c€¬¦þ‰oÐ_]–ÙÀ¿/ƒGûPñ‘Xe"ª_†ïhÊt‘3ˆEöqXŽ—B½æƒÚgú\lÅÛ< Úy1ys¢ÏZÄø3ÍJÔQ§neÞh 1z!S†Ú?±«( FÔ¤î)ÆÆGÄA‰$À¯cSÞ°Ëu0+‰žÃÕ/” !ÎL¬ÏÕ_Ê<(}k¡)›IU‹“a6$ÎGþQÝ?r½•¥ß~ã2œøf~{\ æÙ©J„áÌÅr:£;ª«»¬Z†»Pn-£ºwøÕ`ÞþäÁúû‘Ü%ߤsm0þc¾V”Üv%g?4%žq<ï²'~q•nÏá6‹˜9ÁògÓ/ö->}5XÃbr¾°ìŒÙú¦ ;œ$šËvŽBuÓŸ¬ðÈVbý#è£b™ÌE‹Zÿ‘å©X AÔ< ¬-ìÆc¦pů∠&åÌ”ì`7:âùDúó°nÜÄ´D×Á¯ºÙkÐ×–¥Ûú”v9¨};C¾ÃœXP=-ˆÿX-Rs/}Èo³y".þLâ«>Éüê ÖôSø|U:N¥†™½°ÿÞàCç‰FRå~xgËÜ(¾ýî@ÎoúÝÖ@ê?~§^ò•=ÅÐ~ôSMàÏû¡û©~píñ¾j& €ßT9ÀšÕÓzéká?ê1t “ª';™h‘é8ò̪J®Åöz/Rÿ±\«õƒµðýOÈÀ^4 ü5ó?>Â^= gŒhÏM/•—^#ç™›Þÿ1Ÿ+½†&ø"¬ümøî{Ìì7•oþpY^6w_o#½õWÐ_­€ Ö0*s1Ò#4Cï“uöòtVÀ–â=šB…cSlttóŒ)Wøþs²ˆäø²Vx²Ûì%ùVò›ˆÄä)ø8|%¾iÈ®7uy3åF#Kˆú«HúL}‡¬Š> ~Í›«²©Ÿ)g.7 Ã÷6 ry€ºÎ,#Ÿ9B.¶—ˆlýw‰àr× z=#h¤S©Qû¾’l5·™ÿ‘«|e¬¡~p£¿Ntq{+~fb¼pJX‹ƒÁøqZ!ô»'ˆL¨¢D°’S*ÌýcÞ‚èn0S.ªñVâCPÙ9›{= T«.OÀ}cÑߪ›z‰^²µ?æ5Ÿ ¤‘ôoXŽBÄúq`êÉ|d2Úiä³3ÌViW Û‹Ó›ƒžÊÇååZj¿á#E?”þ¨Æ£ì}"™·o^¯$¼ý-ÃП‡°ægm€¾F–eWýÀÕ“ÃßÂ2T ޝÇZ)ÍÑT/<"[Å{¾‰“܃Ve³)åAœöÂÖIÈR⨥ÔË8Ý& ïGàÔÍä‡}ÊIMÀxl÷4ð»ZÄvÙ¨üMÀu§ FÕ_Klô&ÿH†…¬ÿñ]UðèÈ|^OãžÔ ŸÖ$bðä‹ÁÄÆs%á^^>ëÙÒM4Cm[¾{q{I8“N\WF,¦Eÿ]o¦Üݦ?ÅUüG”§Áb¨>ä ƒÁs>Qm0-õ¯ÃüM<‘áÀà\ä Ó¨q˜ºçÉ~RYÓ™?h¢ûùÒÁ” ÕÐ’ÖhòØTP{À†º‚ÞÅxv.ˆ`‘—ð¶ÉÁÍ:©ÍXèAØâaÔŸ7¢;õÎÉ\+­k0üÓ­3DôQñ3ÈÆÎñœ^7£áÏKÊϬôœ§d ?q¸¹WùXóèM5€õ.딣³`O4¼É–Yñ%ѹ£¢ÆaåW©ÞÌýþ_øõø!< ùªŒò£Ì…Þ¨3 9Ý€íEhJ‚?§3ÈXð¬ÓÖ/0ó-ñƒ¯ü3®†*š ß½¢]~äYWy ÒS¾[^1?¨zô?I„B`5Gt×AÿúÁ´Ôž/Àê¢.äÏø\껪%èþkÊFªõƒod,0‡ÍôÐ'™}c¥aþàòÛTüÍAyu†ÞòøÕ«¼z1îNË"K¸Ã¾~@á¿_ï }qPvÇs8qîËSÔ̤“oúY®£—Jjæ‰üéz`§¢Gü]u€l®¹½‚^3_yÖqØL³1±\>yáû‚ÿâŸôÓÑøx?ý¯ $;¡Þ5èñaüÓŠiõ•zr£71Øið«lX×vê8Ûsc&ñÈ5žª% $1Í¥²˜1õŸúŸ{Aþ‘ˆüÅŠh¢699OæxëÆ`CiT.Øó³Ìê"ƒVü}ùÖÚ-©Ñá­¼g'¯ƒ%Žç³—§³:¸Ì~4@ÂS4"÷Îf® ¶2/ðª E^,}3P¦kÄú«™š.ŠŠŽÄyŸPîRÕO$¬¬$øÕzã…ö6ð>6éu°TfTgY¥)Œ~üGcr‡©äEUiP…!ê1ÕŸÜ¡“þøÕp2Æ$\em|= ¬*&úÊBìa¾< Í}O\Mv021Ùo +À³´Çe¥¶7&ï[¤`üGož·!r-Þhqg ð¤I SýAg¡ ¥^’Ýä"ºH´ì/3žkèȳ”­õ}úïEØ—ðꮵϚã‹]®¦ÿnEòkd¡KÈ{JoúåãœÇÛ寇;×È/õ,Ò²Æ:R‚_u!ÿ8‡z+)ó?0Cå»mGUzf*sšvÿÄûdÊÞtzÒûÏ£qý•7J;ûhƒF~™þc }6_€J6µÖÇÇ;úiű®Ã̲&£d[ÿ¸É³èË3h+ó‹ýOô»ÑÔcª«W´_ý^_Û΢¤WŸë¯*ëÌõÑÊq¶÷*9a?Ž€_ÅÖÒÿÐáÁõ›á½º¢¤Ô½„JXãa" ÕNv¡(@5Û]bÄJàBQÇ.ÑÃÆ|a×øûóT°ÀEõ¡ ÙW‰KcU™ãŒÿx¨wŽÅ3Ž øóI"K„ð«ëÚ=p˜ L½áîêF,˜”\v"±\pœOØù(X¾ÝbÀQé;¯§²é(úÝG ";AM6ÃZ´‡G˜KÿöRp,Ià¼ýÈ?æ€çì×¾ü¸D¨¯dÑÒõ7ÁþžÁ—Ù½pϾ‚N >naj)ÝÝwÀ¬/ÛõÈ?åÏ-:¯¹Àr&âËýð’6¸0ëÃÂ'ž$Ÿ“Õ-ã !ûØ çüJÜ Zx}`R©Iõtdôóæ)*‹mKAÜj‰šº0·ƒä4£°Ý]9þd0Ô%s6Cbð'‹•jz;±•zˆEz°†ÁXÿ!Áþ£ ¶ÓO‘Û:‡ "Ȱ§K&ëêŒÇªdÜÔýT¿0Kцã?Š‘¿ì#*. ïâkéA”@ËÍU¨ú™™Éâ2%h:ê-øÊ¼òx,þg:²õswÖ‚ˆÂ›‘=Îaó‘;°Ô“ìÞ äGˆèwS±•éB[éßÎŒq²…”`/çx÷VàWóHšW¨ohµ8ºã°G©Y¡'v-€u.‚_==‰˜-‡¿ÕÆÑÓÜ%Ûaý‰PP[á vvd5f˜üÃM|àβ{Üô†ÅÙ`¬U› òÕ›óuüª“ùæÓuü º¬ l­8ÖÖxŽýäœô”ÃÄçl¨´QÇS7K6a ¥6¿¶(ît›Š¯fð¦Ãä1­ôÌGlAýù:*Tçí'SY#t6¥€ŒÂr“1Žþ»ãç¯õWE Íqd5©ÅùÈÌËüÚiÖPú'Þ1ŸS™²ˆúóh?¼ÓH<@¦¢›@A¬Ã«]$ –†ËìWW€Ë÷$™ÌÓõLD£R0&õçuÌô 뇸¾c®ã;^)¦uÿáÉD‘Á`[&ç;ñÐr”•n2§¸è<ƒÿ½¹˜ªáÂm^Ò?1ó<ýÞ.ÜÔjní˜VO_¡—Òj²ÊI%…v€ ZLÍí7û'¾P*ƒ_¥3¢R-LžxŒ~·¯zžúój"(¨W öPßagmhÐ$xêæÄ´Ý‰å³ª'˜ÿÑ„:¿ÞÜ xdÏyõ"ýÿgRÛfOT¯OœÜ–¨¾#±ÍÆ*žÈ¢XQ7t“DF=lU@xû} %YÀJR‚‹\å÷íl&=~d-ïК#“ÌlD3=*j‰ÐþðVó!ÿ¸)΢1±¨œ»½_~Õb©ÑŒçê¶Q@®¢O;P'7ãö3¬éŸµ›jU8ÂØûgdZq@a²ÁÎ$#6+ΓPÃgîe·ÑÜÔaÝ#z”Ÿö¿z«LT7‹âìj~áþ•3þæ­=:,bÿïÄÄö¶ûœ‹“àóÓ ‡Xª]úg;!>ÆWËèÉÑZeÁKæ$“? _Ï{‹øÈH"féià§‹N"{ꄵÌnÛ‡ª&?ù$Gú†÷ n0„h¤3Ê—S?øÓðçí¨ûŽMþ1V–ãIïÄqæÁ¢§#®ô&ÿ8KDz”é~©à¨…OÊ.Õe•Ÿü ʈ~aîʼnZ1AVXÍÏ¥æå9ý¯R›i͵r,ùÇ þy0ÿÃON4¿Ó§ÀªÔé]$ÅùþªN µâC­"Öïw‰ùÑ@8©/L ¼E¿*ÃA4þF9»£[/8ܰñö$Þdç‰Aïƒú®ËQ_èÁúÝ3ÆY Æà ý7Ò9k½LÈüÁ•TZÂ’ƒOñ&ÿ/Þïs¬ýyN§eˆùµ á?Vsǯ÷C¥]$5â¡eíÁü¨è¯¢Ž•Ôz_¤¢2»û zWÅÜ Îè #tKö"²‰nÌunî†rE "â àÉÏdÞûájƒ¦}¿G.¸À2^tO<«rÅœGgý Ôm\âªmAMÐ _½ÿáB'«}¨MÜuóŒ2–ˆ!ÍnŽrä/Õð@¨¾C†ÔÖâ‘ÂúÂ70“RCVí)ÏÊy‘˜HìŽ3ÿ8O¯=b ^~ñ^€8Bþ1˜þ»MÑ ¬£;}a&áz:fZɘ*õMzÒ½¥¸µí±Rlžã(c2à?›’ã< ÿ¡…ÔÍjçõIqûͺ ×¶’S—S;©µÕÇèe´Ü¬yGI¦ÝÖnhÑõ¸Z’߬?¢¶FOY N61OhNñA¨>S?R“Þžy³¹ôìšKíÚÃÏ_MЦã?f‹Z0¡è¤èÇœX«EÁB…Y¨€Æu•6æ µxèˆûëë`ŒÏGW¡^£)ˆ~ujTVë3?[_Š8x¶H¢»0Øðײ¿zN‹"Rb—ÓÃKÚÚÕ.àW9Á›ytGZA–7òÇä¿öpg•â ³B’ƒt'£ù lÏÍö…•îVA7x¹ëd¬sTÃK{þógVL¦‰xSá'SâÝ"c#rQfÇåK±òÛ±»vý÷N±IO¥†×-×^ì2]ýNþq—8k(|E"´î½áVÀ’æÂÊí$òÿK¿Ûü } o–¡ -¼Žð)ÔšzLÔÓqÉþÜÈŽ¶¡ÞMË1ÝÄR\3J‹º˜ø2xš‰°ôý¹ÒÙðêÅaëÂáÏ—)åôþâñä0"ãäî ‘CXk!XK8·¯9çì!/iAÿöÔ¦ª/À˜bGÝÍpúsÌ\&†rGM=.îš-­5øÄ°-¬VrÇBÇë%KnÓ?±?¼ÿ:üè8°è0¥K¹+L™!DÇÈ¿ï™ÿÆÿy`\÷êC%Ç¿­ßM@ܨ­ªé3ô²Áý¯>*Ù´šŸVVO«EýÍùƒ±Õºz:…l0£Â"ŠÞUM¢=¢RbZì²zN2šß9?Úžô"?Lë9c>Óe55–vGÔƒ™~ŒWÉklÖÿˆÐŠÕÃjsÝ¿ñUkp§–r/v$²ð¡¸Š'Ø+ªi¨qϬ»îáŸïõ–UÄ Óp ÆnN±îÃNÛõ~ÏP÷|¥6»”?QS>1ð—;<¤\DµYDO©J¤ßË”èÏNm0§ÛFYlÅ=²å]ØÚÕ¿ä?êÃì%ÿh„ñGÚÏ膕(‡}ÊËŽm”É¿™]—¤¿ñ.=éOë?)KÔô»—°gÝñ:éÈzc—W¥¨ÕúƒÎIµXñže5ç1€èj.Ï”sµ½áœ¾|j#øó@CÈed;ñ ¹àÑ ’Cn5Љ½zú—ŒD7´ÿÑ›'ÓýÃñK•¢úqvh"v(®| :UŸ“œJñÔogŸåˆû§£éŒÄç³ðrsø~u²]¬SÃ*%ŽkD¢‹Ôè}½`TÓEÁ ÿáÍÄÚ„ÔŸO„óMjn£~0;õÁ5²Á­T…ÝX‰ÿH,ÂÖ²¶Ð^ÁŸWÇOo#£ÙIMÂI´?A21³fÑï02•n-¾¥2øÕ <^Aê/-5‡Éicd×\(µ}2k¥ð~àçhVaÍ/Ra1µÐ ì};Ô§Qð–£µiO(FýGnVÜJ5â:2·D7IõR¡îÅ6"&gú.Wm8'»ŒûrÕ$MÍeÔÞÄ––¢B~ Vy¡OýÇÙ/=€léï~ ä®hˆúÁ’Ì”XËs0‹?ýlò¼L-l†u¯Bã:æƒC6­Œðç;àš“Ó)¸ ¹ã;:Ä4Áß^Î{æ±rX3a‚¸fI̧b(þ#7õ–;PÏåÌ-µ¢:ÎZkÑc¥µŽÂ¦6+SùrüÊî_Ò^.áY®âÙÈüÚ‡Bß\klqðœ~t\Ïbm"çx â4´Ìî)™Œ;]»Ú[…èn¼IÀè,6vƒº?§ÿðeþàz1€o”1†góÝ|»‘ UeF­~.¿UÀ±ÉÀüÒTøì«Cw“¥æEj€’Íÿý b»ßyÄÿ½ÙÑﺘ¡·J65E¨û"â;IÀüJÚ­•¾UoÚ¤(7”ôä´ôzLæÙFd†ëÝ"«í‚«" ‘LDÛôU«£^?÷mèà^„¿6Ãñ?#É?Ú£ß-FLég4}Dõ<ó£ e=!*‚cïÖC?a?[;#}Tšê«aFo –hBa;y’ouwc$v8Qx9jÀ§‹¬º‹ÃûÙj ¹õG=¹QjP{_r£¶ AI¹3Ça¥ãTÆ$y¹'š„È¡¶ž²GœEt4B© oj—*~új xÂ/‚_„Sj…WHdlמül¡ÿûz --ž¦&öþ*ÚÌää ‰àüñ Q_ùc—bï=©Í>LßJ¬võg9Í+¥§JüÇìùV{EÔU[œŽx¹¨Ñ\VfEÛ#y`Ù]ÍâÚkàWgÂÙeð«Æ¼…­™> ÿR¿ÑÀ¿ž’Ñ$eúÊ+l¿­Yž„Æ«1 ~ýÈÁ4ö?.ç®ÑˆF*0´àWö¼À:Ü1 äP²o°ªo¦d ÷¹þ½h¨ç¯¹¸O®Àu!+Òñã.óÊçÁŸƒÝ8ÅüóâÔÌGm{˜úó«àj=±Î½ÐB_Â_ûÂÔ 1?ª”RM³?ü£?(’&biÑ_ÙÓ™ªÓw·5×JE÷×Lv-ƒÂõU‘ÈÃJâ?¾¡¿ªFæ`«ù†²]{‰§¼MÐÜÉüt0GC©°¯ OÞŽþ%¯a@VÒ³*üÇ ¶ZV[”gÙðAÔVzЯ¢bˆ‰ý¨ÿx‚š!OëBøó¸ò:C ÖèKEÉ+ó.™à:¸™„Žkæ"Ð1o+?:qÍØò=ß‹þ%É©ÀºàôûЕ.ƒ¹Ç†ó|E5ÎÑM«,LòÊëfC¼Åk«c£•Žëôä! )¾ÑT¸jÉÀc'Ó›%¾L&þõƒ9Ô…jGçð’üãßÕï&dþG~í V[¤—Ưî)ñÉ>´§t;L÷›úÝjýúÝôäõÐ6­¦ãZõ˜¾›n#*õyƒßÁy‹üòÅB­Vp‘(íò1Z3ۨúFõ°ög`E„1Nwáxÿj¹¤ª/øçLã ØøØ’ò䕌„ØÂáDfÍ@õ«‚í1t×=üóojß°ƒMQ ÝÂvz5°Ä™° ãà‘ƒ¤—帧.ŠÃ¢øu‡ùçÊiqYœÉÐgÇéjbRC¸X¾1¬êìÅ:ænŒÂÎF1Öi?ßXðw:h%9_­@ïïÁUÇäxS±»WÔI$Bãó¿´vìÍQ˜Ÿ°™Tzñ÷Êõ°(É]? {>´é+AYØùLþ½po柿Ð,á﹤tÚ¦èüöRæÜ5S¡=…:¬ùÇ@®tv¨7Ôƒ´–Cìc×F†ZñùÇœ5ß5 ~ùçKøû'¿5ŽŠ·ØŽÇØ¿Êø¶òÌò¿JÊÞßðθFG 5Œÿh$"üûÄ;£à¦'É?¦3Á{=º¾ÁM磳í8«üÇ|òÇäY¥©öyJ†ä£ÒQá?šÀŸÏEy0P¾1†‘“š"²;™É?ÊÀïƒíN‡~÷üGªã©Ü  ¥7Gº…ÃyòÇç ÒWäšrBû†~I¬ßüHþƒ%¡gŠ„ÿèŠ/HF³=oJz—Œ¥‡n-˜þKà¿‹©øiO%Ðrÿ Îó×þ<41 JÙèwÇàÏëÑóª ]èEÆtÝ-d /á¸R¸Ìjh¾&ÛŒA—õ»Ü5öü(ÓØéô'ƒûúõäÎÎz ýn‡YPC4V^æ(<å5:˜L‡¯Éd)d7™=6‡^eŸèÑÊØL”åFþ‘ôÒ7 jT³öÿñïêwã¨BËA½`)Ýþ¼XÈ¢X´n'=2±ønèd=©y«Œ) õƒ‹°ÎŸ‰¦¹Ï'"OO„aa®tsí!šˆføÅä0Gà?žÓÐJ p›Õèt|é/¸Âº†mk¾ÇFA÷ͼ âÔGŽ&vH­y†Zñ²Vxþ#ë Á§?Á²¯¦¿È}æ×´¾¡ŽÍàhB]êŸðSô:£;úq,þS|W¦0óëŠïÄþ¨§'‚8M2.Ë­æ³³9Dé-õâ¥-_,ó"2áLòx+» ˜ [|E¾oá¿j¬4T§ã?:¢¿ò¶DT£*GØ=lvдmÖøªäƒ©?ïnÞÀ7•3·ËêxÂOäHÉfÃÓy÷ u¯&ˆÐßp?%2?0‡Í’1̦Ö}+ ý¯VPñ™èþºu¯tÄË2}ÓX©õd‹¨/šFìæêЕþí:÷n^¢½2½H.¯šyé \ß“™J/,~M¦– ž¶»ÿ‘‚ í‘ÉØŸ‚,'.Žjwúƒê*}Ý ì;ª+ÝWßšåè´»…Ìt º]-øŽúó¨ºÊZg˜ÿQߊk-E·lÏÌÌ?ÇhE¾Y@ìvñïEnuNˆúÁwJ15j¨û,â;ɬ~PójþZ}&þ#?«ÜQÜ´ 휖X­¥QWF|)~2®ÚK¿Nvì øÕ9üÅõ¬þ”¾¶YE:2œßã?¶hž à³D9ìŸ1Ínõ&ݘªP[º¯’~ü¡ÆŸm7™z†ú¡T<\6F`?¢ãڳij‰Åبpó Q[5FäÑ#rÌç´Oðƒ¥a:nƒ0:c_sÂ~¬‡ai}iMÕ%QXLûåµ¹¤ƒ?÷†QyL¦q^Å {ß ?&%¶¼¶ˆº‹1¼WRcƒå+6ÑŠ±§6ÄEðnø£TðdÌYƒýÇ!ž‡ýXüLì$Jøê¹UW%XèsE£žÀ¯ºák<Áøž£zσ·È _ÿQ ;{x1XÙ]ÞÏ+.é=Vk¯ë¦6ÔcãÕ>‘¥¤Åå<åGâ‹&•Ù¸dB°È-°ãAñ:½ÈMÞ‹¼ Háõß] ~5V—[ 뀟‡/)Nž”Ц ü‚÷Í ?|–ld3(ÍKžõ1Xå¡ÜS ˜µö‡î «´fp; ñ›ˆî3É;ÄsÈÚva¹R˜§Árî`|e Øø—ïXòE`5جÈ0*aùÆÚX×:Øèèm}ˆ‰ŸR„Xÿ!@Ëc—^ãÝJ™:QT‰ÿq6b¿—J ˆÑ R½tÁäg«É®_äÓÝ…vLðg¢ÝoXQ»C×p¸äpB«e »óáò¡ssèúvÂRx–cžqQ®!o©‰?ú oQ]ŠÞU½¬•ø6dAÕjã?îâAÖƒˆu–Bôoo«ôÿHÀ÷¿sù^ ¡07ðË/R;ãaî¥R/#¬òcê+’åøÂZdA ݈«£Ñw¤,×<@lsÞ|ו=šý4ÜgßÉÍ á%^Ïd=ê£ÁÈl%Œÿ±zôÔž ‡¨Ž®×ž¹¸X~¥š~"õ¥Cä]Ôú}!¸s7ƒ_¥†ÿð¥cUüFU2¤tÌþøLï°ø§°Ö|æ×f´,ó#×8;i?ý)R;œþã´:üjß™IÔx þ¼‘cõçõè~²Åm•ù˜ç8 ¦XÇò—ËaY¤µ¿÷ˆë;1˨$úuñïEJu±êºW?)å~s.“k§ÉÕ8Z.ð«Rúz½¡V»tšþ»þÚ:-%þ#çoÖë¶ôï÷È ^R«ëSyòî®T2üÇ1øúøàµ§Ã"—Åë%Þó«mñ}›ÿè¢!Æö%žŽE4½ ÚƒHÿ k'¤b|œÍž_îpºrT<© ÂZÝÁ­§ªÏº ñ‰åq£4öïNpý`Qã¦ý+fÖìÞè­Á¯‚ %ƒ1ÎÂ=ûu~j¬âWžHIYDßó-èá‹kLùú“£NªŽPWÀŸoë F‡L­ ½Š½Œ Ô¤CßÔŒüã4ï·ˆ—9K`+Tq@ gÅljA=ÙFL¹‚5ƒ®UçcT28MzE]˜Ãé=’QÎÂ[ ‚qI n—3‹Zû‡?³”Üú0±ûlw«Êžä‰ÇèÀUžšþг˜ .}Þe‡üÀµb¦y±=³ók«a'ìºkE£Yêì}9¸ÛæUЯØp½>ôü»Å,½=2(Ö_ .$¬o§&"–Qõ‡L³üG$òŒ¬0ÅÒØ¡¨—¤9OÎ1ã2³" ùÇ æ½Ö2ãòµøäš&u gSˆiÒiî¡®ô ­4ÑŽ]IŸŸ3„mî†E†LD¿¾<Ž^æüÇdliqb˜ú¯<Ç3òê¥C­×T|E åœ@0ÉØ'Wâ?úàÈ1ÀrŠÐïk½5ÝA}ÊW2¤®d Íñ¯ñ‡7ð°;„KµWúó¹pb½`'…dCÇ/Ñï6·)fŽ@¿»ÖJD,þ‰þí%‰ðý©+,F.×”Ú˜ØÔm´’ÜO†«£åSe“v“«÷6­€ù¼º%ç­®u½îpzÌG-àMÍýy4]›ÍuÖ>³õç¶þj%çp°ä.ÄØÅÿþÓ þü5YÁ`WÐ÷‹‘ªâP¨ù &žI“°ô{¨%|d™àcKÑKåæ Å4£¡¿AÞ½•hP5;ýÇnu³g:á?F+_·ÌÎŽÎdUàö/›9ñjÙË{­øŽêt8›K?øVTÓì5 IDN5š˜3‡,"ÂëòóÏžÿS3ÐÓ®¡óÌ| {|çg¿÷ž¹àÊi×µú*½ ÓÊåž’ýÕ5- ú+7uÿo-G®+<È Y„ŸVD=®Þ¤I_QŽÊîÆôSü×kyÒA­ˆ¯ž¢(üù)Ô¤%™â€¨µ5‚ýÛÝèÓ2XßN,ñQü¤!O_%ö¸›²œ$PÔ‘+*ë™™uC°ÝUƒc“ ð'©¾ÊBLMŸg£%ÿ>€ÊD1nˆ#ðç[~yÌוâ!“B¾ Â|«5›·+9‚»Q+åo¢Ü¢õÄ@W´d¿XÑMËÎ^àÉngËCɬ’ñ:hw X‚õø]Äa)å.®Õrqâ_ôßý¢¸«¨ÿ8‚jGîýU+£ q|Iì]!޼<Ø/ŒŠ7‘Õ5˜UDíÑÄ¥pýGv5¯ž•üC—^ìÉ‹ß(½ÎŠŸ3år#¦ª¿½ª f0†wë€ÿˆG¾“”ç÷q8üÇRú'λð¹3ÐÆáÈÆSÁSLÁv¾ÀS¤ÂÒž³_Îg–\ÊY±û'6‚ÿøHÿ«°Ïîl­¥øƒóƒ¨}Çu› h-Ùˆ.UîÄÒq±QñÀÅç€}æ zÂÜ/"¾Oˆ–or˜ëÒþC’&„íÞOV1 ÿ: öü-ï0,òEp÷6T'O–ňñ‡bí³’Ü¡¾¢üGs£týîM­Gw•tVüÂxrBº¾ƒÖ»Ãqt½ ~õž~‡^ô›ïbž#?Œ~õ×ù€ë]K·'ü¸þÔïÉÕ±h#¨+_oœ£«Êdú·»ƒ‡]b–RZ+ÈœfµáXÿÀ&Þ$«(¿áGGøe¨Ú2Еc6Wº« ÐÕ Ç !ËÍÂS›Â|dÖ£{Zz¢DéͪEþÑeÓFú)ÞÃ'ïî Ü© wæÃýÛ*ûµô)¯‰2˜ïÅ1‘OÖ4;“¤·þ âŽÖ“cÞ¿°eõ¦u´%ÉÂÙ”fgò-¢˜èâ<Þ~ê0ýH€^d-ùQTñÆ8nvd ƒVK:´a…oðç=è‡õ JW²#Íz+¿á­¯ç±A\·;ýÇ)uþãâ‹aÆŸ¨Ë¯ÑÁw¬5ž^‘·Pe3‹Xm^ðQè/ï ~UEW_2“W<‡Iù­™àW†Ì,޹.ÇíUòWfûN© þ^_)×Fã¡¿ªJ¾Ñ\_Šþª6gû±’Vû„¢7¾nj1Ôƒ®À«tjy||Nò‚Ïb4ÜÐu-ºÙ˺¯èNz*Ü«8¯g–S|µ‘ð…£EqlÓIê«3ð¼úåîVî§(@顯Ÿ­š9½ýôX©kD M@KšËÃľ ÄBðËS¼Ë=VMHÍj鯂´¯z\X€XD¹—ÑoÚdÂrÚŠÈ?rÁŸÇ¥þü ªœ_OH P.¬'CþHŽà RT;Ý™8~™Q•ø:†®¿„ HhÌþe˜Jà䇰¤-áK\uFy/¸7ãgøäïÆ:ž¡üËŽÿÈO_c?=óOëÏcÐ?ñ¤HˆWë‡Ý D”¼ª4Þ¨1}ðKÃ-ìÃ,Ä{¼#ÊŠ× Ô…«Ë‹~×ÎO®áêÀæ1˜sAF¤ÊeX`/ý¶0–t<8R?vž€^jéy~‡ã?Ö*5ôµb;çlÙ@:<­;±Ápø†)p37x®Óày‚h,Ä~>ÅçÍÁsö$3+C³Q ;éþOøóÖôÌJ>ãÁŠWÑC¬À†-fž_vjÖ†Y»ÌØåtfs©,A¥\|Þ©$Þk‚Œ"–éj­ÝŸD}üÇ$`›ñ™×Œ9°»1Xcüùæd··îÍW15¢þvÖ¬—ª-'£=.¡M õ¼økÕˆtΚæ†3éB.ýUÎ$–4šJ8Õñ V 5¬tM³/6936y-õç¶~÷•}/éuC­W+šœ'â1Su˰» r'}³š™ã˜—u-RP¡ÃVws:]~ã׺ƒþþê µ'ûy]W¸X³*ôI[Œÿè…÷ ²Î‡ê%) t tºuà?öYó¬Ä°o˜±‘;ºÎºFw©ä3s¨~Ü ~ÕL‚á:àÛÊ=íÏ=lmló´¸%ªÂ•¿ŠG[_{í_MýGZ®ÊD:uÕ¢Óün:Û/C¡Pƒü-þ¼›óx[Sÿqož—»` Õ¹åCô»9P™¦ëúó"ø•§5Få63UFXµñr­—\ãxxXoºcoA8ßé?Ž©[Àê»b=†µ<ÏÌ”ŽjLø(î±™Yï™K©QqC¡Ý .©ýÛ—˜DX©9¦ùtÀ þøŸèw¨KÕÎÎ3óE©Dç‰ÿ­nðuµZk}‰Þ+8;8¤$Ðîh¾L´Í¦eQ·þÖjŸ”áô¿Ê†¦ÿ³˜Býà5V\ªúéۉ³á?êþÒò…~»Ú|â­) bai–‰é">}¿>‘yŒƒD,ãÍòçEàaêžàJ¯¸è×oôYIÿv/ž+{ÈN‘=×tTÆÑ,?Ñ^èi°½±@ƒ‰ç?ò¯ ¶f8[_¢êÜDæ‘©Y]-zPgú¨~ül³r“ÜcY¢SŸñÞ¸>Zh™f%x"Žð”¯¢~p Z¯lðç~\"ÔWhàNZò÷9wkZV‹E=‰b×»Â2?'÷XŽÿð2³r)ÃC¬×Ó«á¡Mö¢–:Cõ%È1lÛ¼ŸÕ>¡Qª JU˜j’FwÐ¦ÇÆa<ÛSŽj§¹’WÉ= 3;lbLÙÂ, _‘Ξ3h.§ÒÅ›üc?ú«¨±ƒõ6 L›(£˜Ýɦ‰j!üGSj›ï  kýÔW–y峄£,ú·Ö(‰2ñšÝ~x‘tžÅ«š\¡Äf ùíÎb°hÉ·œþã ºU¿[6 >_µÝÌ ¾ƒ³wýƒ™Ú*çXDÿ’[äkäzªÜÛ3}–ùä8w¢;þâ3¼*©pœÿ§_Ц.R]½¢ 5׿ݿ$¸Nqm™VDï¦ ƯN¢ß=©­°tªÅÃ*äÿõa¼U²ëSé´´¡¼ñE¿ 6ÿ±•î»Az 1[áñ?ÍÑï6%ÿÈÊïm Âg$V÷Ò¿¤ŽÑ›ŽŒ,ªgû_åVQ¾{z¯Q—²£ V²$™9?BýK.k'õ(ØçHÄÇ@­Ê‘Í”Æ&5>ã?nrØUq§È’ê‰9¿<æ…Ê#|ÇðÕ· g‰gÀ".ÜB–[DÒõV΢B¾) }øó+Ѻ£7è‹-½Ê‘º±Rnò$Xº¤h>ÉÍD?ûx&bËTÒ¡«hUþdÍxtÌß-rÇâíñ’YѰôà·ÖÐ)8™¬h,ÁVÜ'“ðæ‰°U¸G‰ÿ碋öÒî„s¡S¡¿r°«Ôà}Åñ‡ñUðn0"Vb©Îè#ˆ_§q•:‘ËdE¿›¿õ%ÿ±€þ%‹Å^ìóZìOnù uRŽÖ¤"¯±·O6yöóV ²ü ¿9 fªÚ„”⺶ÃJ5­((fòo2Š’ìè"‚ì 6љսÍÏ3«ÍKS> Ôâ=¦rVË[ðçMÅ‚0ç°ýÛ5îÝ8ÄØÃ‰Ú¡ð€=O„÷™j:ˆtcñá Z™Ñ8îT\›÷ø»£œžì´°Z{¨•£3Á5î±l0>ãáÅž‘Çì$z,G’$u˜ŽŽðµ¨¸¸ Údóû÷É>¶s¶ùÀ)C^”ÜÂîùò4üÂ_Æ ú·{ƒ5ÍÁÜ`2{)ê%÷[KÌ™r‰©Ò…|]²ºÓë$ùÞ-þ ÞWAµÌˆ7¸GŽÕeQúŽÜ%ÿÌå˜ož§ò¯:€pLµrÁPß…Ilƒ· ;³™÷¯!£®‰•%Úyôw8âL¦a,îÌ?ïÔÀ’TØ/A›ÆqÆZ‚î6 ³kW2e¤5uíçA§SMÙYz2— ¿pU×Gù o^‰»s1Ó-YŽ ¿ L©Ïü¨#ôsüJÊ9ôßMMÇ–môÕoG‡äÔðßÈÜg£~ŒD sÂé?¶¡ß=6{ š5x—íf=Çz­Îø÷f#«˜Õ’ü#™ã• ëåyTg=8ž¦"ÂlÇïÔ€?/bâIÈ+óŸ}B]©6pÞ ßÑï&t~ö{ïœP=­ff~T9½´žœzAEy®”Ð^Ñ¿äëø·–ËÄŒa» up KåE\fLU5TEl*ó²O‰ø’Ó¨t£o{4t8c™ÏCÄPªëhô|E°¥suW†ú¯ÖM©ždrÑ>p÷\ï‚ÄIMy¢Úғчxä0^j¼p3AÿĈè¯nSž †71hÓqìf+lr ¬û)ð«^0Õ·@HTjŽv 7Ñî—׿¦òNè†ÙµEä}•OzÒvä.[KýGAi÷ƒ?BÍdò0ÝX¤ÅýÅŠí´X™Þø¡×ø´Ì¶µD§8”…A!}ð™·ð )ån¾¾€§"ƒúî'§ï¸²M}$ªÀ%ÏÅšî$ÿWY¯&>³ ¾hXr2¦ýœÅ5ø…Ëü“" Cl ·J%‡š_’Ÿ=G; kTŒë¸—¯4Z0C<-ʦ¾TB,-ë‰Íq§ß:Žÿ˜¡¤ÖŠ `øóÑC¤ÁŒgoíá/&Â$†‘od§Òm ª'¼«'v`0kvà¸Çü(zÿ÷ÁOÕz‹^ø3>c>–è:ùÇ rÉ­ØüRÔÂyÁ´¢)‚ÎÛ¾>ƒÂ ¿‘Ôx¬Os]Fi0¶­ñ– È–È9dƒ«åGøg»ÿÕ Á&(Q øRSš}¥$?¼‡÷Ø‚`: Z1Í¥?µwÈ"OZKN'Dï ‘êPýts€-“ Ä3c¿YÜÑ‚,¦œõžf¯:еä]gÓÿp˜•C1uPÑÄ[§©–ð­ÿðyô»[Ewîö?ñpWÄSøth¯HŸ‚GôndUt+ãÕ‘‡8p,ùÖÞ`n« üóBì*ÓpQ~vDï‡2˃ã¿J2‹H7ók_üx JF5’™,%-þ¡ 8ÚvÔyaŠ.ƒ+ž3z wú'΂£-UžýOÛºNÿDz´?.7AqÓÇ‹#\…•X³Œ°&Óñ ¨¯[œD–Í X“µ(á¨â?fçEŒoú5ì¤âüZ Qÿ ¾y6þá>;˜;EOrs?]õÍBæ6ê+ÐãÞ.ž{™™ÄW&6*‰•a®K[íQk ì½ Ì0¹ËèßãA<ä ØÙÓð3én±„Î*Q¿à>çmeoPõüš«ÊË>úKZ)|³/ñp62”Ä—鼸‘ÊõcÔlµtú·§¥¢JfÃWØ\×Xòžõ|ÿ<ñB>Ý¥G²×K~‡+{Tm÷ÂN¹fº¾9”ã¹joº’u,Ç:Á¼6TS–ÂÞ_ÇŸN”w`~Ö‹[ö2Á*)õÔåÔà „ñ Ò«öR£“Ç4I­è§å‰¦µü÷,&kÔ4¯À”1·ã)‡ÂœBÇ[ˆ»ié?Ë)·•…šÝç߇§T7“ ÿh"ÐMë,|âø>øMä4§©« ûsÅ,jM4_qÌc˜ïØ—xË‹ü£†óŠ4P›é"WwÏTIAeæÂwl†—xj&¦ö#…ÃŒé•ÙÓµ•ñG3 øÕ;lÏìC,¼„KµG]IÿÄæX‰DŸ7Å3²£•µÊl¶x›y%p}øó@VmBy‰,¤ }ç7›Ÿñ¢,ºx‚%ýŸèwã©óU—²à½òïãWqÕ/àWÛ´tz_¦sØýKn+QµSÚ-PK¢Åú¡Cóò†ûâó6¢KŠ×[‘^ÇÏQ¯¡Ïñ ‘T‘‚úó2Îëîa¾ØHL9f¢Ï~u1Cä¤ÉQÑÚÒÞ„µš®»üh˜_õiæGUÖ‡€ì3&c¹^‚8­¹|§wC-t˸ –öróE¨~ðŽö˜i4UÁ¯â?¼à’wãM¶p7r7Feq]ÝÄú_óBê?Åatª¯°…÷Ya5uͰ¨“¹×“ÿÄ•+Ñï6į6£kup?|RH+Ä^:€¼ß@ –O’ mk5ã2KiÏô!"÷cݶŠsz¶Ÿæ1éß~F”’Ǹã[{ÈÞ‹¶àWK¨&I)S¢ß-*m•ðâºèqâ?qÅJíåûRðÙ¨› —ØÁ‘œ%_«KÝL\ð«ûÆTº3½FµŠÙƒçÍHTÕ½+ka~†#IF½†n>‡[(›¢óÈ©…®h?«çŽØFöœôj$™êc9]±Ý“j•݉_Фƒÿ®iö#‹È‰‡›ŠþÊÌé8w~B=4~\It¨Ÿô2ƒÌ‡`MeÈó®Òq:ãÓå4ñØy)•Õ0û­ÈFç‘õ¤Ni>UzN¶6Ž~‰s˜4›Žfó?™—©‡ÈdúÐiqÙÎQÙæ"­áî\ï¾â¡áÌÀ§%4Ñ» ºæ:ð i¬QÄñ=Á›â‹ׯ&»9ÎÖhÄr“ÏHsxÀ*‘!Äü¨ôæ;' P‚ÆLùV"S€€e†A©ÊìÛ«f7&§ì±š êŠ ?߇]vƒÅp3£Õú³‡ãDWèTýÏ÷2ÿÜ[t$¾ÀŸÛ¸bwÌDV×\ÎiŠWëãXê¸cÅb*È2™ÒÑ ÿ9}kò$ø•7W·4ìTñ{ Á?ïþÿïcRø>N„ÿHëüì÷VN¯êZum·VIïª îNu‚ùç[´5ô0ѵäjx3€~þŸ”zú.‘†å¨X˜·ú9*تÛuªuú—äÔJüÖ>§kã±!óDnpìF'Ñ@´gŽÇmê =˜˜ÿ1W¡©ûÁ?çÃ(À¢ì‰A†ëCÖQ™\f ˜ýŸÆeaÏÁ!Rêa´.h¯ôX 8öŒ¢<Ñ å!Tkàî‘1=婬Fäì/΋ZàÏ*ûÐ_©`F ’tÄj%Æ~žÂkVÆÞ3léØÊa&Ñ>׬_s pòä/ȳn¹7%ÊDÔš]l6âÃ5x¼]x» ¼™ù =ËOû—¨ê`êÏcÚöÀ¯mB™ý R^µ¼2’Ì@W…güknϸLþ±uIR±,Ü)‰yÕâzð½Oðì(ð Ua@2à>°bÑV‚elD}ܼ•=A1>þ# žéU8þc-ùÇŸâÑøHì_ù ¦¿t§Ö}:Ö¢(øÍhp[¿»„ig·ëƾjØ]#©?o¬ŠðÁ:ÙécR>[5sc&Ré\˜X9ÝÜg·|!Ûò²žÿ¾(%Ɔ¹.5´G⥨‚÷ŸÍÏ ©ºi¸³–bΕžô¼mƳfà?ÈNð+˜ž%ÕùÚ»”A ]ѾK+Kèƒz0ë—ç …Î [ÍÙÁýKÖb« ÷þø¶ºø ¬}°«W w—åiÎuæÜ‡|zËŠÏ D~䃳ÑïÎ0|岬!T7jô§êÉdØ›`vCàWvâí>Ù¬8üø#jÏ×Ñ!k¤œ%^;—«§4¿ŠŒ?UØY3™RD5ò_u#ºo„*x+ú«È0*AðòÌf }Hòš»ùI4·Y7‰”ÆçzW”Ú}8»XçTæ+¸Ï¼²vý3z)j^¦ ^ÂÙ»Œ¥^†—{ ¶Õ…Þayðæv ÑNpÙŒ!ð«fj5ú':ÐïRéŠ~7ªtX9è­¾šÈxŸÙ¬¼-ï]ЬAæ_|u"üG*3¹üÈó¼-LY”#{þc·:^_#:‘™Ø ÈeôW}³èUôÊ´’â•2Ó׿ä [«äò‘¡Ì5ÜdÆ”gÀMöa…êÐo p´óÐÿã/²2EÉ•µ¤º/ZÄ7YuhPë6ÐGÃNØÖý ýÛ/iwéIË¡FÄ–ºÞ-/=Ȳp†Z2[c'+lƒ??$Z0?ªžï7ùócäÍÐ]åâ|o¢Ž0 ùÇô»ùíbüG c‘ú sí%ô«ìê}u¢¾ƒˆûùpoòìÖØ—ÚF± q ÿñNÔf½þâ½Ìî¹{±l÷'²=<ÑÞXéعgøº°¶ àÏý™ižUÌ õ̆Þ×ߟÅT/Â-'£úFUê ü[#¼Ï<¼ÅF£6e7L…‡ñR u2Zä_¬8T«†ïiK~e+£ °³ ”ï§á2Qó÷ôj6gtøÕ ¨ƒb‡^ò§óÏ¿)Ô+"ùGk¢ñyøØ§Ì_)¿ˆ„ujJå@5¸‘x¼…ä:·yÖNcáRŠ áªÄꩵô”XQæâÁl#ï¨ÄÇ8x’W¨uóˆýú3lg=t±Ó±Ýap’‘ȼ˜ÿöã™;¨4DEçJ4›õм³1Ö‰K|_Ý3s!Šä3©æx‹o^k³”kÝ‘#QÄáê?€_u çIGG*»¿Õm° o<ÐQ™—úsæŸT:ç„È€ÿ˜C)Œ²䫸¢‡VK)Êpí6·Û±Þ2~f ÇtÅð":Ž?–™©þf2º.ÝÀÆ7Á§Ì[,N'Ļ츩Èu+®¹ºÜÙGþc¾V€õ,…y¹g$c†ÈZs³;üù'ØgV'TMa¨€D§€½?‡¹ÝÌ« uçTÑ@Go³ú}@`Ê 2†.°ÅÌ“Öp*õ^‘s fý5L*QÌ‘øÌä&çáã}d]YMÜu^”zÊ$êKç}3Çxó$]¿<Çy]¥…7Y-†šIÄž¢¢*ÀÏŸ¢³<;Ü ;Á<–`ý®;{*T7ÝØÿdô»ŸE6ô]F8ü¹‡’½¸;Y‰ÝÊŽ˜…?оuf0îGvUKëN„ÿš¯ŽÆú®oèÎÎ-«akhÄp»ªï±[‰’ˆãÊNåF!úSí0çä5O2Ïî_R ü:)jŸðó'Ð_™"¬þêí5˜d#Ö›‰ÿðGƒíGý¹Ž~÷5T¼Q,bÞsü~MÓaNF“të ûËQdµ4Wülß7/´rœ÷Û\I7üÂTyÑx,÷€8mÄ?t šî9Þ#ˆ)§éŸ¸ ?W=ð|D®€7« ã?šªËk\™² ?ð«“ð{ä'ú·cZì0»ƒ0ñ£©v ·¨ÏÑž—OÉ¥®“wM÷·ss¥¿ºŽxjñú"®`GQÉȇ‚i3¨ÚSѽ—H¿0Õ.—é—ÞÈe^gpS<_ øo¨Îš’9$4\µWÉÔÃÚî“gÜÉñL”ð™›2ƒ®è¹Á¯<¹iÛè_rNå"Þ$“T†â?òáåfŽf+½ç\üÑu þ ä¢.÷ÒTyGWe3¦¤TÅ7bþ`òŽ×Ö~øógèŠgâ?ŽXuð43!~5;Ãüóoâ˜ÓìT·é{ÅŸ îä ­©foO·]&Sz‚(އ-m-vÌ¡ ÖPëó?jó>§é¡IÞ‚ÿ]¿2“p±óTþÇ_ÄQ'„à?)eÿmýUjúï–׎ku™ÿQUkŽ¥»¥8´d$Iô ¨¥~¿ú¬ô&§Ë Ɖ3^Udбþnúî7¢;3ùÇïé¯k;°sãá©O–,F³¨œQŸ‹–t¹)Š£ÝÙ¡ÿ²/GtõØ‚ëØ¹šÄÉÑ×´eÎê<”/ȆÁs^‚¾( õ°¨xx—óž~°0¬ohÌzvw;¸9 «~"‹èïp_Ü!ó:úKÿ±“úAÝ8‚ëzݧx{~ÔHŽz$óÓ³vYÐ…'Øí‹øÌ_ó%ÁÉϱJ[ؘÇFvðšD`s§Àr2¢lzA¾´åÓ êîNÓ%å P¨ËtE’¡7Š:Q=!rȳähmÕÔ‹mКÍçÙ.JÿD;ÒN¦´‰|æ*u™ŸxÇóÔlÑ\µÉ®³ªõÔäéåüÇqlC9˜²ŒxJ“ÚñFbªËlÏ\ :Ø ßž¼,=þI„ã?¼”̺§Ø‹Õšþ‘Šüc(lüL²Pµ¸äm…Œ< Aã±ÞOñ“aÏmr_PÑøbÙýÛÇhuÄ¢‹h >Ëaä“§¬2òc-ËšÉà>'¢ò)Ä\¿äf>¦\ÙÌTr`§öD¯Äæ`¹^¯xíü u„þQ$ãjì g.)>÷Ì´fÊZ ©ÿ¸Jý{ëŒõ'ûKDæ±WõÍøÄhâÞÚh/zîßüs/Ÿa®Ñ~žÈùø™äðWÍ4ŽU`^mØÛ6ÎVôÀ[;é©ßÇ: ÏàÝ1×ð8zàKäðëøî0E¥þ'þC ¿êä¼Wß)9Õ$ÎÏþ9¾ˆ}L¤Æ€ÿ8­åÕ×Ñÿª>«ø)ßÔ»(²b“¤T¯»ð#¥-5ž…±±ˆÅ[£ß­¢>VÿÒÏÒýÊM¤!ÿHñ[û®m$Þš!*ãå£Êùb“ø¨ìR}Áßd%=®ÏˆÐŠ¥Õ»jgüGòá¥ÄðéQ ž!ºŒ$æƒy"çÂÕ#æ_(:êaUáÉGZ2,>(Ùíø÷!¬–›|”¤´ª¬ óë'®Š±âÖ/w8Gy æM ¡ƒü {ï‰ÅoŠÖÃhcqµØ.ÔÀý°³À_êwKiõ@9º€M½SK ’•ˆŒPO-+K°c<Ý:Œœœ¶är±Dõg3©tî5‘šXw(Œ.JbCÁ‡åõ+€…-G/ˆÄýö4ªu ó/à?>âC2‰ÝZxç1£S7ל·0GÁ­Sñ—Á¸;qʨ-ºé&líHìã$¾Ó ÿ™¿™“•Ó…ã?f))èu?¸þ7ê€ ðñ ŽX†5Š+÷pÓ›/ÁyÂ4 F}W½ž© X¡^ siëâ?Ú³‹zõSø‡@2·epO{dj3%}ÒíþíEÉRR 2S6–ÑÁ‡<À*7Ð*µ‘A, s¥›já´ðUø†ãpØëÈ£gb-S˜kd?pŽ›fdÐ÷çø Þ¦k¿1‰ó¡ëÃU+ª…Îhj•Éžnp®ŠÈ}¼óã“Ü àC`§ÇKêó†³RWsYƒÝÓvµ“»áÐ_ríšé.ÔÛ>ôRâ1úæ»ä=Á¯PÏɳt<F7‘¯ò$uâyAØ&0gv…üËŒJã$rÍVè‹oÁ÷Üã òOg°¶ÒUõäãL¯Eуø.;Lr[tVe͉ø£ð)Õah&0™©;z¬óœËM\'&¦S+ß…Ü&­ñ—s½çÊÍ+qŸ;-µùùídO暎2äÞpQÉà<égR^a$]â{27ðwŽÍŸ÷ã\ï'ÿ°-Úßš2ÛÎýn]žÒ9LG,Àüó:Ž|dmÉ|©g7à*èO=â`:M#s³²ÀŸG‡gÚfìEá"Œ=Nÿ± üj/lÙd0Ö™øªÃfG òÖx—(·rZe;GèòØÚò‘Þð)ͨ“?b*2qwö`°ÃúâÆ?ü/~ÌHÿDWÿ+*þþíùç©é¿Ûþ¼“¾Oïì?(1´ûÚz柧¥ûïù ¥>¾œhT®R7¡ê]àŽÑÓ¤½È…6³˜–Çy=#rºúkÇÉ ¦‹ Ä©ßéÙ>Uø+ ÕÛ0݇=5ðSשPŒÈJYÕ÷j}?qüSxÞâX°>Òî褀WLÂê¢b¥&½9 ·#&oƒ˜iT—Ô%åjê°û5 ÿøWñÏNKi ¨€ï òþþ#9F8ê bñXÅ/ܽ;°ø ùü6z—ø¦§Vƒþùå0?+sÕÇ¢ QåT|Í*²™/¢1Ǻ,°¸ÌoLGõžnf¯·ðQ_8úëF2ánÿ«djøOä»ÈöØTcŠO^%ä5ªzúé)È?úEãø;áÛÓP÷’íPšpüÇ %-øø¶´)ØÏw¼Cø¨àE•ñÞøòàF ñ7¹ƒìüÃïwâŒÄó~ÐïvÓ¢¿jÅ﯇Ó(-ßÒCd­‘ü§0•{aUo™åáhsÓîx×ñí³ˆò7ã²éÀ¯ºiÏEBÎZRö·–,`-Áz­§2}eó hF<¦Þ½ëGÿ+º4‚KIó1z€ü”­6/Ô½¯5—œò-øëZùÙ#“ûð[É1SK™~}†ÃÏ»Óë¶96 àkÀYQtƒ'‡¼¼å„޽=ÍUL7Ä)ägLr… è¹£@Êÿ1˜z¥Üa~&/EÄЭÔuŽø¸Ó"ášDÓD騮"Ó R¸ŒÜ¤½ˆLßÃX诫:jâà E9@q|­‘VØý tN¥©¥iIvh™7ðK0XÆ!çö¾2Íë$¸°Ä7ÓRà&K£‹Õð`‰ý©ü[ ÿq…]î4§â¥jÓ¿äU9^è«G¡9Ùæáª·ï 7{„¸*9ôHYEÈ#‹Ât½ob=ÄÍãÌùà?`C†3µdùGvæ×F—‘ÉÝ–ã?¾‰wbŸÓìU7Ñ—©˜h_î?qÀts,¦Ãî¦×Feæb«c5õ U‰»äüÇcÔY[ÍÏÄJö<ÍÙF¼{ ¶›óü_¤¦~ÐÅßTªüÛùGRæ‰7Ðviµô…zsÍV÷]T íùÇW-½–÷7û—‘ø£¶­„‡]j/´ê=úÄ좋GFøìtDùÓ2R[ß¹T#f<‹6j<õJsÑ*UdÎÓ0¸°LÆY=t‡‡Ÿ­^^}­6Ñr%¢¬HÄÕAžÃ|Ò{¢ÇÙç}$è ßB?û³EB|ýƒöZg%޶ˆ·–Ãwìc7yuüã~ªCΣ¿€N4Ä/†ûr´"oÌÿx#¾±ÒWô¥+°ø-±ªC¨šŠB,Uvà®è *ØÀx«É_¬X‰8Õ—(»5+|'÷艽· žP%AH^Ã6,?Ÿc‡ö¿²DBÕ¥ä½ÅoÊõº(ŠýugGG9J¦¹`ó=Q——™°äØ/ó1'ýÛÃëÒ•A¯'Á“¥ƒÏ)JTw‘\°ìÌ ôW~L«£Ç£úm™Òxºvõ…³íB‘q‚Ÿ½/û³QôË™&¼Ñ%o”½Á#?áÕªrUcSoQ뾆+x½Þà.Y‰O­;ìysc¸QüÊ¥öù{í:Z;ш¬2øÌJò‹{ØðåLIÙBÇÝ4äË@ÚÝÀ…1ùhXÎWìø<ô»k¥b2óæ‡N5uµ—">g?.;ð!£YÆqŽƒÿÈh®†?M×ð8Öë"ÙÉ0ê—’Íä$ÿB4TvÇÇ• “œÓJ€è£?}2¬Qàs ÝKŽ˜öŒZæt›? ‡ÉH˜ø6T\Ü ö«È=v`ñŸëÕÑ+„ºsR ƒž[`õÇ’1Ì4ÖËTÙ÷0÷âORÿQŒé¢µÎÈ´Ä üÚH®uGô\§ðÇ/È…È?ê)T»Iù†iê-™m›Èˆ <þ¼1¬òUºÛ´Ò¢Ÿr·ÒÁŸ_×JkF77¾û‡Ud.Ã¥×ù¨¬ÑΓœÆï¥0ýDh-+˜…ðá9Á0¼¢÷ý<æ3å·|LVkFÿÝ'Üô·Í󸚊—ÿh¤ö`þG,0ï}䀟tEZVQGzô[s!9®ƒe¥pLbæÉ7<ÑôÀã­*fzøs:¢§äë'Pb?®ùçûÕµúUÑ–Œv>$³±Ñ¬~uü* ®º¨†;6;";ÞpÌ+©Æ,~·Â<…?º„¦p3LÜ"œbÿü* ú]þNÉôoóLŒÒÚjK´*ú,½ºV‹»Ë_‰¢ #¯¡§ÓRÿÐaîÇg8äWnâ?ΉÌp¢’X¯³`û«{ÔCà„-ÐÞÖÖsÐÏ=äÏÿêu'Í‹ˆ×D̘v–ðï”%DÃué9>Yä#&=¡»GhŜԟwÓ÷ðäÙ³`J¶÷† øƒ‰Eý‰›—ˆ¦`3²K×=üóýÝ×.êq¹k’c³±öÀ˜ƒlÃJ·"#h» ˜º.&Š‹¿Üáå–ˆd×Ä+<Å5ìôJlê"ùyF øXú¬ÖO×ÜxñKÿ‘F+‹ÿhƒ¾‡­Î‚’ÖâúÝŒ<_ª\Nîq®9ÌJ#:Û> ÿp)1CuLÕ]Ý/r‚•Œá½÷Áÿ†ÿÈÉYüÊÞRƒˆüï‘yíbÏçx· LqG´°Ý¥ìu¨±õäFIÀ§sÛ¬d0žˆ¯¨Ò‹Žýtë7O7“wD®ˆÎÈ9¯ùÃñc”¬úøØ0U9²o<Í%È%?Ó°î äF"Ãôü‹ji»×¡'×y1_kFeLN±õýnAð«X˜·Æ0¥vÄì}Á·sÂgKøÝô|Hç«ëè€JÁ4¢:/ 9iOÄßd<ýäðäþ4S:«‹ð§ã9kë‰SZðÔä·þ ^¼?üùk7=is…±ò‘ËÙq~12›æ¨„ùŽÞðÕÉáöÿ³œ¨lÔ. «g6o‹=¢]ó‚Ñ5²æ™À¯âÂ.ÌGu– üj6»$«ž“¯‘qÌþðç›éß^ÍùìUSûRÿ‘–xå/c†ü ¿5bZ…Éñ“áÏO™ªãhXor¸¯xÐ!ô¨ •ÆLË­pçœ'Åþc½ºW?-:‚'þ‰y!þ2³9vQÔ¥óQ³þ§’cŠã þ²’å)oÓµe %›ÍØÒ˰‘߀⬦ˆÛê<)ÿ^ÄQw©}gæý¯~5âgoœœúÁÊÚV­«¾YŸÜ¿ý˜—úóCè¯ò0}6"¶Ôµ¶¿Ò…ùµI¨.{/ݘùQ­èwx‚ùMÈ?ZèE~³{ymÏû0Q’8ô9Ç¡¨³Ô[Xú©büu>ã¹¶gk7!_E&j¬¯ÄJˆ•'Jþ«7Üb‘€/ÊTxÿä:-õˆL´Ðb€lç§¢û3Ñ›§Qûšë¾Õ’z’,²Š®KðçîÂÇy¥Bî(äëöŠÌ^€x,žÕßb7ëÑ×¢îuSf²È`(±Û=°£-¨?×±b--ÇÔr.&!xMþ>GŸÍTT°°uDTÓ°âs‰×× þÃ¥¤ ¹3E‰¬ÎTwŠZò#g«ipþñÿQŸ™Žˆ1“aOþ{Bþ±™'â8Öuè»–ó)~þÑø¬R6mD¨Ÿhå¸[OâÓÁè ‘WŒ9n¯kä[9ëÕák¹9ê¡«fŽ5¯‘ÅDã~üìÿGÜ[ÀeÑmïß{öÌm+vwwwwwwwwwwvwwa¶b Š ØÝý~‡çç}âÏÿ=çœçã6{ö̬¸®k­å#â×3Rçôî–ÆÄ'¸o}ñ–«£àT{ͦdG7äy,`næ×N§«Ôiªå?‘Ï´åT›à‹¨˜F½ü¬ óÏ;1ÿ|­a×5>2&Sw2šÚˆhäF8³Næ8ôVkaª«ZžLâkg6ï ˜J†V»:\ƒÜ¦š³r†«^9¼zHó=­`nF»î šd%¨URx޾æ$+²cœÊy¦î¦K×'³œ5ü* w#:ÓFjújŠZÎëmDüè£.ÏpVù^?/Ë[­EÈÚÊ[Ñ­DÌ¥jE5IsôϨÿ(bÏEç÷%5c“¼Á‡ö©ÃNüê8ýÛ/‚vŽã¿øÄVY¬œŽ²T26‚ÿ8OvÕÑzjÍ ¢]uÔ±"šQ.±¦£c6aUÖm ¢·W!áô†ü—>O¯nc*õÏ_ö]ɧ&uþí翆ícõ•ÚB;€ÿX¦— ì.ò^)€ÿ8¯ =¾ó/ëÏ#ªõmÔ %fæOC7µê#õ,üG}‘^TÔ«jåÿjŸÝµÞ`0vþQ‡÷x Eý ¯~UM´´ŒÍ¿ô¬ ýºã¨ûáϦxz¦€¯1ša•;‰Ådîÿ^T¢‹a¯?Š>T©„…óñ×>êéÑŠÆ@âIDS ›œ _7ÇŽÒ=ð¡Ï©(ß-Òþ2Uè×®S|©ÿ8Iÿ«×𽧈§wׄõ SššÚÛÒ?¿šW°O‹ú‡S¬£å‰© 6u{žˆh;%ŒÔ;VI‡•Õä6x‚ƒ¨Ÿî‡·¿¥§Q]“ä‚ïOS—Ó¿¤ñûüÐ)8¢ð0óñ”øH™䣕|}_Åžw‘lç«£Ñ_]ÔB²ÓöºÔØà~öUî&S8)€I€G±Èë Ðÿ*><À0ê Æá£€ý¤¦6+«†6¿v¦’U ÖÁ/¬’=ˆÝ%¨W!~&üE+vç…ÒŽ9Äêwð%ŸÈ™&r÷ígªºU\øeþyc­¥°û—„§bÐ\í1kÍA;}T)ÝWÐ颒yŠêˆšô„Ê€¿ §\d?Üof± Ä}é«=¶Ú >V|{ÚD>Ø ´?œ¹Äê 3™Tª®‚®µ¢:o™a2Цk(Ž;É)èri“‚­è‡þÊÎ?^¢ÿXcpÖxDgªeæF®±5µ é(h8ì)JÍÌ>°ê9Èhæâ 6à¿Xæ Ñÿ*1Ï[V¹ÿhÊî–£æZHµød¼Ãe*àrP—Ý“n‚þr{}F_ýjt&9#¡™:Ê85~ÕQ]’Ø_~ û« Ħbº W¤›ü1ü[¼°¬­™ÅµmW)sŒü ù Ä®8»U çÃ÷E9­ùã'Ï‚I~—ѸsÍdazؾ¢_{?æß.©[Nº'ý·2¿vÙ˜›ܹoìt1úÝÜAêË ¿ Jk@ìT‹úÁØd¥AÀJQï÷•Ù’¬Ópé¯áe–ÃÓ7‚å×­øfa*¼¼@g/Àw¾fRÎÏ ž&ÿ8M÷ŠÑ<÷yð.QOÿà'Ó`+]‡“àÉG8vPÓY×v^9WÇÍT(á?&£ß$KˆC?ü/~̨nP]žUW‹ÿÛøU|ôQåà?Òÿª²–‡§õ³R–þíÞÔÆÒÜ~‰ÐþõEF£ÇÔ&ú'Æ@£“=ü!ÁÕ7º»è€þª†^O«ì}ø×«)Ê­\À4ô]øo,ÏC65®ö]¤5Ú€ˆe¥a›Þ'L+FÇuÑÇQÿ»ÛYX¼‚<ʳ”EŒçùÜ£>Üí½#bëÿ´-¾Nb=v(1àu¬pâå2<ãkQç·Eóttæ ÓÏOá?Æþq‡OÀ¯îá?âÃwGÐ9MäüÚàåᙲð;²âŸ‚Í/¤þ|Ïç×6??oÛˆÝ\Û7Ä%!3о^ ÿ±‡k¶ë£ÊãœÅ>êÏ+©®NÁ/ÿƒ²™Œ/ïñМUðöüÁð6_™ü£±|EƵ?| Û¶‡ïOtT Ù]Ê^7šZ7ðdÉÁ*áË/òûó²Ãgä·È?<ôh ïCQƯ´ÇÖ'¥î>çº:”úÁ½Ja½¿8Èjv7ªØäó‰ úúް ÷øùÊò=øÍuòÄðDØÓнØ8\ã£~V½üR•áZ=b“ªt%9€UËÄŽ†ÙÏÖ-¢Yžz ñx ð«lô¿Z†ü^3†ÈÙ볈,–‡¸ÓsµoÄ$•Éׯ‡ñõŽn&5Êaä7©!lBu€lˆnއíÎ. z8mCM6œ“É¢ÿU€V•ý{€Žæ@!ÐCÂQÙ·ƒ* fy=Ú«ؿ֨ÚÁسÀãÃ&ŸçÏöºÜp Ñ·° öòYQ7T#còÞ¨•é^çIÿÄ4T¨ ¢ëß%ºlùš/ð •À¯.°ß œPCÙVè˜7pßf¡ö†¯J Ÿ™†áP}µwÜÉk¼_¥ ʉ)Ó¥ê)úÚ1Ìòêæút~e7õƒw¨·ë3°·×d°îô¨ÈDW]mBǺ$!Ó/¨Æ¯«>R®Á}x 3Š@†pÖ|<ú« ;ŒÔø€¨¬ÅtÀJ£óýcÿÄIZ|X3ö÷–ŠŒLàXáøÿ¤Äf5`{£ã9W)¬Auš,e™8Bý øÍñW¶©¾â!ï]ò€4øÅd-»¨fÏ.Û;Ñ}ä Vâ—oɞɚbDavqhüG\µ„n’¤ÏNŽtš•r‘xƒ>£›Ì=vo5ØÐ(ò˜nx,»_J´Æ÷Bñ[”bú@qÖÈF|ßÚk|XUð©$XàQø 'øÐ†°³ûÁ¯^ $˜Ï:óÀ…ÚÛYbë/ú«5Z°Ñ2°Z[@h2HoòØÄëX®Ìæ9ø×ø‘»² +QBçþO”%É,¶É˜Æ=¸ZJQækOá?š`£àáÖpý‘2Õ#ÇäP¦Dx¢oíj=!ãèf~†9ˆNvøoµ™§s(*"ZÓ`wå“–þ<ÿ– ]nWy™úóð÷˜xa×~ĦÞ]~'k›øÿÔÂ{íÅßlDÓƒë‹_ïs<¯=ÈfÖ%½P¨ê»,c›—á’ q½Ý¨Zð§ÚÑÛ¼CÅ{2£Kd “Q“u@=äRÖR©;yN&Ÿ´"JÉŠHA¼]ŸÛî赋J¿*Liêc5€¸ÌlÃ|xášôòý(â?Ðø‰£Î—ã£rJûÄôæž}”¶º=*êvøŸpè`âË —:MÍF:ºÊŒ!›Ñ¸rŸ@Ïjן/a"\® ý¯êƒ?Øj¸b<ídfá&½ÍjŽv¬P‰ÚõÄ|/Puþ,kŽÙ”¾ŒùñÑÌh( o·]BÝòUÌqú³Ì?¿$úóÔÓ‰¤ÚÓL‰þê0XÝ:ê§ÂS¾²VáQnS÷á-}è^2ÓÚîö¬7YílÄã‰þwÚÎãùú¤ ºEã|²žÐÕ4šóo·ðEÕrÐk·®¾RoX?xùµ¾T¤ÇÐãj™T¿ZÎSIÄ<ÑøhE}ÑšÆ9éßþ…ùµoèßž"p~mñ¿Úg]­6UCDnb±-dGÑ ¨_yLJŠþD¥ñmaį¢3ç$±>‘xÜ—ˆ¡,ö®5¨Ðúï2M†l¡*Qx2:eõ]a¸f_-õ'Mx_ž“ìܤR€(¿Hst™Äè*+­‚ÔÀþná^Ê1"£ãB£®1øh[Ôkv×õS°·ÍÁev˜nG!V ÝTú_…ûÃ)¶ÔjÀ(TŇ?²¹"ò4à@ϱ„шš#_-£®z¿m 8ÛBqU7Ûÿê3uÅWDnlóò­‹äÞßá?ì.¦9‰2+»ˆHŸãV`»wñõ]DcŒÈÂ#Ôùnj\¦0<"c¸J~qüªXXD²¤„d ýÄx=½9›œ[.ijµ#WHɳ”5þc¡’›ù»ØØæÁàMºì³ßUÜTt¦©°d9Ùåe¼Á>r¤Ç¼µ³Ù][8—2F\ñðüjú«ðçrZU/<ï,ì)"Ú ÄÌ ˜”]˜š…¬ XK¨?×P`§ÕZ4ÂnFkœ­P”Ú;öÞ´½Ô!tt7ánïàAfËñæ{pŽgàø'øZEê?FRÿq—ï ÿ±Âˆ¥Í v§Ÿà?æã¥ïë,Âßœ0¨aâìRø¾ öÑà€c:ÚÀŸ1Gâlìe2ëí@p‡§òEà„8×S˜_Ð VzÂ’M†½ö0NÊEôªjŸrMÚuâ…É?&€Í‘˜êm׈WånßÁÃõÓs—-‚Ìl T‚?ƒñ3– ]ËA•V4´¬eðÀÄvSßXÌ*ˆÞ¶ž•†yRG¨óÎlÚøÕ˜¡ÃüD9™ÝØàÜœCݧyQóiëwSšþhö—ÈÊ`jª#!óGŸ? ßÈDð°Ôðé3ÐÆf`Ò®­¿š‰Bº;ø•­¿jæ<¿2Ìÿx€&¬$1P ùC¿&›eèµþÇ«[‰òà&Ùà;ôW£ðš¬¬ýÛ“%øàíô[þãœz˜ü£+8ÔHÖ˜FRú»Ñ¥we2½† 9V8¼©R©j;àG[³çŸ?ÄìcÈ /Ÿ9È.ç¥ÿÇ?ÉLWt×T»×JÁ{~Tê²K0-ªš¾O/­uä´o+É™ý±N³ôÔüÝüÚç̃ۊO ÆQ‰y:‘ôêNõ<ùGqpœ\z%ú¹ÿÍáÔÐ:¡EÆ;؉7¿©$’«^ )Õ©è§¶…±{rØìéyîwyøÌÄZs”|#{Ó¿Ý¤Þ ‡£øS]ºè^ç”R;ùÿçEvw üªD°&"w‹Jw]ÔÇéÓ> ¸aüÌU:¦~ðQ½=¿ÖÛÜ /Ó­×MðºKd=‚ô/)þjW:œL§ß熾ÞÍüŒ%½AOÚÞôO\c^×ÖJ‚þö¸Sz*Uêâá ò†–èØ¾‰•Î;òIÙ¡=ÇóÞåˆaê(f2È‚èb¯“ÅôÀL#™ÿqMײ‘UfUæ‚ø’.b÷ñÕ[Èý[8¯·½]Ÿð†Õ…Cœ,s “^‘9áQ—à*¯ÀxßFs5†®#ŸÙíò‡jæw3¦™\ô¾ü˜x$Š]NÿqCÝI­ÂÞø!°#Þâ4ó§Y‡x2n1k+LJ æ×Þ¡ž‡ÿ(IEÉ(îÕkrt4Ö¨û¤C¿;Þy2ššûßÖ_%G¿[üª¤¾—üÃ>í«Jjí> ÈwÍdZ`X¸dç-W¾(¹ô£Äñ©ÀnZÉ©,ÊôìsôO¬ž_oJE‰ë»ÿüYOð+&|_"¦E,êhÊ´Ù¥¢Qõ²0Ö&UO©Õõdþ¬UkUÿÑ’.ÞKÈÎñ®ˆúäMƒDÑ0áWgµ8¢$ñqbpoüO¹ßH² Ú†¨)µ,Œ¥}Žÿhô‹ªó×뾨øˆÌÿHŒ+…¥ëŠ‹ƒµ>ÀÇÚà2ž¼GkáÏíúóìÆ1íwXÓÏ•û·Ýfw­ÀKÞ²¯öx¤|– ‰@¢ðü®H#os—ÅS=öoù/Ê|:VV‘×AÕ:ã¿R©ß `ÙL\YÝ¥¾N&±¿aW‘{a§Nâ?vk!«+ìÝ%¤ÿ•ƒì,+ÈYY|Ûòœìí&‘+½Å Ý@›4XbÿZœDZú·Û=Sã…â?æ+åá?Nr]ë±YÉAÞûƒ‡ ÄØõ„‘¹º:ø_òƒ-Äß þcû€éodûéß>F«)êâwS,Q¹hOÙºDÅGVâʵhsòšdnæŸO‘ùaŠ“‘;4ÇÜ$ßL,‚O{²ù»G"*,j2¬»Òî9[Ÿ€Ž##Ðï^¡þ|´uÿÖ¯1¶"“rßâæ¢—èNÿö)ÁÞ—GZQ¬ßu0ÒìxÌQØ5o9Í܇ ö-ó?ÎYq¬$ŽÎ0ç•àÏÑ“Ñì#£ñ¤#ü'4ñèñó±?&ñ¯—ðÞÓduƒƒLÃ]ov¥‚3*z©¾ÔŸ?#OnŽ•©+ôCñU…úŽûô/ÙIÆÓU6_Ë•PZ©Óy¢:ñ›†²ZLbýpæc&¹>7À\fRS:f59-©êßðÀLóߘ;ŸÜ¦5yÜSáÊýß*g´Wœ¯Ý›Îa¾sE˜£˜ØãÂV³»9¥Ô&fž£+Êú—ìCÛÛš%vÿ’¨füÇ:bÖ¾Îë­¢§_ô† ñ–±…"¯šÉ‘ñ?}`ÌÏÀÏœ§fcõ%ïð㘾˜v*š™ æ(ôã<Þ±Ùé?N¨ûõsb8ñˆÝ碸hfuL""hlFe2–í?Þ[«ª#€üh’\Á®ËYcémòƒ<ð›XF¼U ÿ‘Pwžàï“,h*›;Oæ£RTý»¾R®:Ô'jº]Õ×Çëù4»»Á'%þã¶æÐMô».=ëg~ÿ™®æ¥ÿU"òw¢* —wZ-õ©ú@¿ÿÈ “ü]ýàl­àQ.àœy5‘^¤ù‹jD'±ß‰‰úPç9ü~_Š¿3Jwñç)×dÚDcP¡Æ¼ó³‰ì^µ"qzÞÒ³+,×üD‹„W`¤Ç†Ü‚KèL¬š“7t*N+ã ùG%2ˆÇ‚Y%Af0ÿn‡·•Ë✸ÉÉ}5Šâázs%äÊ=X¯QéYxÄEhÌÇÁNg5–jÑÿpÍË´æØ„æØûd ¹X/5ÿ½ƒ'ˆ ªÿ‰·a%þx¸¼Ý?}·¸¡çQ?üfs*…Qµó|üÐð«HämÅY!-õOUŒÞx<_üÑd¸™[xΦŠ{ Tþ#§ZLƒ}.$™Eöq.«ÙÑ1<ûnlú ý uqýÀžú‘yöaçöäÄ\ìøJ(üÇ ôW=Å%8r&Àò6~ÆÚW¡ŠAÔ]]~ÃÒ–ã<Ï€hl’ï9Ûx½•ÄcñKÑÅ.õnˆkžFýyÎ='þclBÎ5†ü#-{OÏöcôp  òã õãùÉ rƒldDÛ-Ò5™…†¸/s´/°ÈM9½ ü‡ð 7ànoÁN¯’£¨¤›1ôa¾Z‚Ê…ÁTŠÚýÛ}P¿«Cýàˆ`+>תp·éï•3E^†Yj.`5ê'P"…C•ΑÇô ÿzgøÄΛñW{é¯ò•ì8qˆþ‰%à?Êsà3#øÍ§Œðç#¸¶%TdøÑ97?õ’‹˜*~Šþ‰ñkƒÈRºà‹¼`T®ã)êˆ×ÎlÿÁ¤¾GdzE“±D#óÏ+Ñ3¬!q÷ò£(xïÂ$WƒaÞ ã]ÍÜ„îk.ݶ.Ê<„kvô[å–ö$òú›Ü+&ˆÕìªõ–JþæLð¦j*îßo$ÿ8f¦×:Ë<ÞåœFj5·cslDåŸÿÕÃ<±y¶=¥¯þÊH¶T þ½ò¥Ðïž…¡éhIÇ}´ÏM¨RÉ £ÃŒBâEÔ± ÿñ6Hÿ«+êÝ[ŒÀÍà©Aý`&Ç\vQƒ8ã4ªƒêø äZIÅ-: €Œ•`Ÿk̯ÄWz8•Iwé™RCþs¿ÿÉ™ÕEªëd>¢j‰ç<§¿û½ÑGUЮh ô‰z­,«„S hŸéˆeè´xj~faX8†š^ßHýU1㎾ Æ_õ!Ï«ÿQ@¯®åú«}ÎÕZ‚‚¯…±#s˜N—^äQc€ Ô¡§Éø¹˜ÆP½[˜VLDýà@}2Î lrC&•†/,†ÿÚr8Ó_ä£kWwf¶¯ ÕzÓ?±U)©°gx"+P^€Lf:ow,uY”§ÄL*3¯þ´ rF\¤º%'Ѝ\<­Cðq™ðiöTìà0WÈK¦Âôñ‘ÆŠ?ÖNÐlÛ\Lè9YG.²«Ôd! Þ#hØSö»æaþÄ®ÿ^ÏTœÔêßlò¥²NUÀª®`uíiJéé_Òîb½Q½i.²ðB`xvGßE¨SmozšÝ‡¿ºÊŠI˜?è†J çU _nϬʚ—É]Vs7Fé÷°@¶ÏŠÿëþ)^¸¶ïL(þc½’Zï"nó&. ŠMH¾1 ¯Ô‡JÁÙ²,qã*#׸ìˆ :¼ú ìÀnr¡ä6áÅ–_j&—jíDe¾–k¿<åA 'Ok«—ànO3cÈþÜ“¿ìTk”A™““Õaÿ‘|×焸ÓKµ¯BâÅs]Â+,Ca1LúS?±žHÿ36Ù¤OŸ>¨Šù <*¢,Jçfšƒ¹ã si½ƒ­øP«Êîo£É JÓ ÿöš9"+Ìqt°ÿÑÝ‘Ô1W˜,â0ÙGLö÷ŠüëüÏf#uˆúÁÔâôubΜùAãœÜ ÿQ¼JP±Ð…úgàDÓMôºäJOèØX…s¾K}Ê0½j²rÿQB骎ÆsÇoO@’”ùµé`ÊÁäÁÞïE¿›ÿáGÅdô·áš3ã?šPGÍYIôWÛÅrç3ãÿppOOñæ¿¥³»ýK"ÑWäóÉÛ¡2‚k ÿ¬•«Ý—îI˜u,Æü¨>Xáfò—u¨¬¶£7Ÿ¤£æDž‰ˆ"¿¼MÆP€¦ S‰˜^ cG¸hFãÝzXµÀ¯èÜÈ]±ŸÍ Â_¼“œù‡—ºA?!lMb/rä}â%ý¯Ы¸93¢PËØØŠÅü¨}Ô#–¶¶ÉE¨ÎJZ ÍAæÐm7¯D6O C„%ZuÊÿOŸä‡?wÕŸSªþÛþ#šú^­¬=ÔšêîzÀúÁJò‹Z<=Ý7ÿÕŽ#]ž¡Z#3ª™ÚøVú2ª{À¯Ž£ß-)êСñïò‘Zo¢Áu¢4÷|ÑGTé¨ÿx‡åž)¦ßä1Üèߧ^W[ès°ìW@*”âɬƶŠüøvâ¼(CeÃ`ø-a¸æ+Z4¢âÎĦ~ 6›é2²‹Ëì oáK¬[Ìè:9EN1<˜ mñÊ=¢=€­LòÁNÏäóöXùyF9'O#L÷K1Ä'¥±ñùG;­5»êŒý}§ÌÌ3ž„\íj–l CŸAV’1,Û9|ˆþí9U|‡÷”Õ0Ne‰u×°Î6°Éo¢;Þh1V;™¬A˜ê(ÆŽîÕ åWØn$ÛBÍ?¨ÉôðÄÏyQ•f稚á.—GÇQýŽÖ_ÊÑ BÌg¥÷HS¬e$TÕÈì^†â?VÀ·µWŒB¨›ÚrmŸ8·2xõ8Ø·ª¨™l¶(-¼ÃRœÛ\¿;÷ÞîaÒ›wÞËÔûÁ/U™¨µÇ”æœNà‘J’SŽÁçØýK’ÓóÐÃ\‚¶35uyÙ@±&â?'`÷éÝIŽ“ EpHüj¶&P7@ƒmOò"§ð¥þœZulû@ó Š®XXS?lq+ó9‡c$ë¸ì/Ç£)O¦uöì¼Ð*¢ÛyH}Nx—ñø„÷øµäB1Ía°É–#®cþ£.–ê8§œ”ßëG¶pA¾µ}¿üýË(üŒXÇëTÓÖ‘ Oy ÛYÓœ ¢ôˆÎU9¸ÞEt+ÜHýùüÇ@®¹3üù¼’7ˆS]ñÂy‚e”.ð±Ù•”}È|’/GÁ§‡VFs2Á·Xi©ªø 2Tļlî³Þ™)ñ ±÷ᘇR}R¸ôž/•³š‚ºoÌE|S¬ûèÓ Ö<}JVŸ½ZËÜòÖ¼Ñ3sg¯ã?Ö‘!Õ#ÿ¸, á?Ÿ¿Ṁå,¿éŸŒ‚VIGtWàÏ_¡­»I†4‰U£ÑÇïAí¹i%2“¿ù›@¨ìYÄ®þ»ÏðÞbQÕv¨;ÌRø“f˜"_üf=úËÛüù{|ævæGÕ¦ÒdD ~÷:ZÕ¼MÕéã2ÿ<£êI÷Ÿ·îýK9ÿöó_Ãö1‚ú\mBÿöÆúv½V…U))µëÚ-–žTË †¥Ûõ›î+…È?¢Oª°ÔÉD2½!™Òaý>ý¯2Šjz“¿Ì?*hc±Y£DÔ ÇéÇ8VDQ׫wE[¸±õ¢¨Íý†q~mJê»ë °§·°%ˆÊÛÊà Ìá…ݽæÏÀ]²œd`e õm® úígàÏmþ#ü‡/OC[¢¸¬h=`A€aU“¥ðFÈ?èÚõÇ{ÓIùÎd´§"2Kò€j·$+Žˆç¤ÛUS‰áIãðvÓ_Wݸ¡9þ°b­˜D/ð¹‹ØšŒàliðG_ÑÈFŠ wðô®Á’&%ælBþñYó[þü‹2U} JšŒá{/cï?â?Šc…Óðv§¥Š¶>ˆÛaT23‰c=Á¯vãibæ²-®cL£Zz<¼dzXž"üÔ²¶Rèw½àqo2Í«‰›b£)£ùJ#pË<؈à\ÙBá?Æ(‰É?N±Ú~ÙÛ+ù©ÚÜÕXt¥ªOv´oR˜xy#öÝlmd*üH]®$­ØöKÿ«QÚrÛR0›ñ È-©^mÛ«›ÚáÖKbæ2]*棎u÷ÛWÁ±2ªþŸ¦þCÛ°U­»à f“¡MA †{µÛè•4ÓºŒ¯jcšô4II þ5“BäL¢’ÌZpíÅY­OÄ}îd<ÒyÂð¢³:ó¶ù©qtòˆLÿÝ<ŽØûº0Ì×ð¨á@î‘?]!ι‰ÿÎD6CíÅS2šóZf,“³É :ÒÕð‘|mM _Õó&Ñýv€ÿh~Õ<ì ëç\ùháêÚ\^©©Î¢ÆfQõ´TEYã uyë;ÞvyÑZ‚ÿ(‡[`¥2ï?g¦ü!üÇ4ÔÇ~²==«Š©^„?Í5ΡÑG\óAÑÈf¬^0úýèŸøƒŽÃ3°úIˆëgáCb¼ ³ËFômÃäQlD=a#òÿü¯¸:‚ùƒQÈwWâ-_ëeB«¸ãy’LáÙU7v¶ oþ™JöÁtNìcEezIt35¶§<§ûÉ€^‹}Îüc¿zŒZ…v º#±ÄN3ÌÎvzBF´Š£Êv³ú8ö:>Ó?1—µA~a2îAö9Û|Æ;daov*xü¿S(ý¼šÿ·iÔcª ý¦äú·ç:À—êà-†ë[õfݰ”WJ~fŸû£¿ŠMýùßáW¦ZRßCÞšŒnámÀÀ=™¨~SõEÓÛ ÿÑR¯¦ÕvÞϰœÀ@­1(Çx¥öäÃDuê?Þ©OEnf¢Ï"¾Ébì #ÿýU{}vê:Èc!ÞÁr𵤢Öu/6ÿSŠ"ãDâ0)²ïiIE)ì|:ìê%˜è*r9üÇð«cô¥”§Ê2&®dÆÊÌÙÙE6£À0g2&aWÓÊ F+üÆ |Û}ró°6;àÖi¡u¦Nª2W†þ™9}»Çã0Ä<`r×y«¶Ò·5ùÇ\0ñ,r$LgKj9Ò@D÷‚/þºÁåôOì,®‚ñm„ÿH-¿àŠ~1V¡žºÅŽŠTq€_íwˆó/ÓéCßœœ'š8©†ä.—j£±zô>fV¹ü¹ß;—}ŒEêÀüã:õƒG±OEðyù}YÑùÖÅšî’ 3ßG†xºGiŸ¹§}Pi-…c?nù5ÈÙ“(Õ„½¯e×gT3¡9ŽÆu3yœy‡Ýåö‘Asá/öÕûƒ_Mæ”#£?ØNÅÆUãß§ ¯U˜Ì·šÙ|7¬ìŽRø“Tzâ?â™=£;Ø9ùš»¢é…ƒí0©°ç²Ý6ìþWáAvÈmðîMÍtT¿ŠMCeÅ4ª5Qÿqþ£§ÚYÞƒÁÙ×PÒ¿¤¢ÒK³?k;ŸZ ¦Î5¦%&ÏDÿ+/²…"V øîvôß]mα^0ÿc^zíï’Åf’§‚XÓïÊmÍçÞæ¿KñF4”À¯Ž1m¶>ýPlüj19Í!ê w0™e›}ì Ø¸¥xÓ–œõVòÊ_þã!šÍrXîA2‰(žÐ‘ ýUzúè'F}5ži"©¡ñFƒÖö'³|£š)É2ýɨ½ð—ƒÔ\Q÷¢Í;?ŽŒ÷‘8k~…3?c–[;ŒZ ¾•Ö1Ôq„ùé¬wrµÔ*Êœ’]àWô[±BÙ¥7ý“<~}¬ÿãÿ’4¿ŸóIp0ý<™óo÷ËcS^E;ˆÿX¨·× ±Êe%/óÏýá?¢i1þ2ÿøA=ð Þö¤X„fô&ôfŃê}úïŽæ^¶ÅCïßö§½¶ÖjbûF`©{ƒ\DQõ„úˆ's·X(Êa[|ôÉaºò8ôq¬¯ÂNÁÒ5‡n€Þ½3='¦q÷`ˆZÄü é_ràOÛâë§µgz~ö–gë)8{Ml|Þ@ëôˆÕ°y©Ù»'D‘ ß-|P9'¼ÄlÍ#VôÁ.Áâ·e—‚XioÞ£ ôñh„5Kh¬úãüÚÒð7X¥˜ÿ]¸¿ŠŠ·ˆ…/Ê“º+zˆ]§ Œ°Ïˆ;èwþfs_•UÌ?ÏVâNFt†}Ù±AЯBX‰¢†=¿ö>§ºˆ5¯óÛ|`^¶1 c›Zg¸Àœå„+ WåjÊ8u.™ŸÝ?q •¥Eiê“1øÑ§d¤éK}cP¡³DâMÍYô3ñ£.}+µ†ãÀì^À¦0+J,s>…/?ÍžSyݸiÞG•‡»Ðü*®Õ‰]ŽÇ[Î$¦¿ÈTõ£è¯îÓ‹r,:®âܹf'ô&‹x÷º:¯·4ý'¼àÏ‹7MC]^¾3óÁMìÅ«=7“Ñë% HGúïú³Ûæd6¥@¡RšIQ©û“­_@Ýr;ˆ~÷Œº\¥ïüdv@ÿvñýUGs Ý!‡á•29Æ9–RORÞz$GGòœÍø»¢7oÈ#üZô “ÎKÿ’E]©º˜5¡¦Tã:Ïéï~ybõ™ZQ»ÿ±€þWeXå!ú]Y´Zì¿Ôï µ´¾“8ÞÆÈ«_õT W’çU…?ϯôPaßáP­QØtüG¬SÑFd¢^þ­¨É³1M¤§zYñ«xê5ôßs .aŒí}Þé“XèTb´1ž÷§?ÏFrÃàweÖ7…aƒGµØðaïoof^Ô6j V;AÙ;cSÈb†E7/r¦¬ê¯Ë„?¿#.prßÀbn Z†Ÿhj³Ä¨‹M±ûÂNÓ‘n<ÆÙ?êw§heAššcïŸs¥)At‘·<#އР7ëŸåORòúÆq^Ï­¾ýu[ÿòAYŽbº˜|òÞ dÊÆ&[a¥ÝñÙda&×ÕÂ6aÇs°Ž÷±nÛØ¥›Ø¤ù†²b5þ#&×äAÞe®°“òS ÈHJŠ>ºg0ñõ(ò“.08Y`û¨:ùu¹½J:½8N5Ä|ƒÄ0注äéê±–4–< nW ÿ± >ã9YÏbÏyøN\AbqHõ ±ä.æ×Ú½é bq7¡ÏõÁóÎ72ÂÇ¢f| Ujþ̯½LBIòì询b­êâÊÔL†D*çßG&žÈÇ×SÕa×öÿ±ÌmèwýéU›>·`ßë˜o¨èH!“‹?q›*í.óÉ´¶ÁÞë‡ZqÐ’<_ÉðYcñÛoä2jñ–Ó?±LpTǦò ÿ(ˆþê$ N\°7?:˜Ü”ÜoEÞÿ:«ðâÜ/ðü†7mì•;`º«š É·Àd%G˜Aÿ««Ô^ÅL#ºoV÷‚õ€ã¯„?¯¬´Qçñ„D¯4˜l0ñzdó¾YÙ:Ož1Ÿyêk­|TúS™WŽþ¹Ö~36š“»<Ó6‚ö\¬Ô>2—TúïÎ »µM¼£J=zÝ7fo'ñs¹ñÓÇ`Ñ«1¡øùL.k5Xã'îß1Ÿ·¥°Dgó?©ÿ(¡n 2¿VW󫉃=g?¯ñÏ£3¼<¾¢‹>G/¢Ue•¯àWo¨(Œ K-í_êw#©9ôt«ŠößÞˆ îà?Tí1¸cOîei&¬çý«}NÕšcÙ—‰âäCèY’[¤U“kDm0ûàWIŒùaœ^õVÛ꣩Ü=l ‘þhô“gàÑó‰yXO,­·(BÜ ýÕö?›rL‹'*âÓÈ+XâcF-PÒ*è¸6òt ‚eIJd™žÏDTñg…ñ;eX×ueoŒ’0 ˆz‹#Xk'õƒÑÁ€£ÁŸ¿ ¦f ÕkÿX¾T«_Ô•øÀ÷dç^ÄÆ… vãýúA•÷^/}wëùTó7wærPý,R帓®Å"k`Šiˆƒ Q±×ÿQÿ±˽Œs8Ǫ#±àßõµZhE2©éôˆä‰É×J‘7lµEB¬vTXìпɅ(°€_5çzÁÔßYð]CñG•œð°÷sñ±ä'´¹Yñß6^žld!yR ¢ùid ¾TÝ­æ^ÏÃ{ôFÝAìùE¿{Zk Û] Ìk;V-¶ÄÚÃꤦ†"6=×w¢ÊÜo¦ÂD‘™Öôþk~fßÝxûË,šÚ[a‰—&Z˱K=ô*œI}¢éÃäò(V[ú'¿zFï®;íÂ'ÛüyN­s°»òMk†õóFÍލû{Hÿ’æZù•ÚìpµèÕÏQ êYŠOâµ_"ßå8ˆ‚>Ü)…XØ5ξ?ñÿZãÜKeFô»?äYli&ôWÃQ;ma·'ÈZÊ"ØùÓò Ý-²¡Ìd~mE¥¿:†\m6^u¦,-ˆ8Fvêë›’³e¥£Ô:ü[L4H>([ó 9ÞŠ~×a®%œ‹Ï<ÁýÊ îBÃÃD Þ¹ :ÉŒ`t¯™#Õ‰ùéÑ©ˆŸG^ägͳ»D}…'Õ$GÌôè¯nÁÜO§¦¡œHG¢¼A:PBŒ$īᠲ¢Ú;k¦rÔµ®Zeéåƒ>Ìá8 ·ïMÄa°óíõWš‡wæ6‘Ç%q ÍÝé?îRÿqSŒâMÍ3â)®˜%뛳VxjRjP>ÈáI~”ƒùQKðš½é5Ý|NÌŽŸ˜„¯½Âü!×½3ÿÙÏsá?\½4µð¿_eCUU{DÿÄ z ­OW€’‡Ùµ×´ˆú5–[êºVS-€Ö*š™¯p½±…¤ßÎ1ò&Wˆ|̪­• öüº~2ôÏúiÕɉBDú;à&Úˆœª†¦¾¡±6+‡ÏXÆúA7õŠZDoûgw'l–ÓRz…fä ˜‡k‚¾"7CD"=,š³èw“€ŽXðçöÖjr7|ïAž¦{àÝ@c2béÏ¢‰óKTúëµWæ‹Ã\Q,°0»ãh¢šxØ® ðñ¥©*;‹"u9 @]2åwbËûï¶Ó⢩‰ïõÁ7¦Â¢Æ6b‘7ç#–J nsÛAs¾—gB ½†ù¯~ÝV࿼U&0ÿ<#öwÙÀ>Øø(Øõt¬Ÿt¤:xwUÎàh`šß6ƒ,… }¯v6”ÓÒEæ³xŠ΃HЃ˜¸8ÌxLæ.äËuIô; œ­v·>0¸] bPPüÇv¥¸ÞBìçtú`qÝÀlüjg8ôI‘ÇñYa{'a»á›W‚¥%®/J®øH?üËüZ­+üGUXà ð¹Q%]nø™ÄX`ÿ±”d?¯Ná?ò›‹°Îoð„ÈúÚ5Ôð}!û·oÔN«*Ì,X¢ùàWwÀN>ÀŸ,„·x k«—Òu ýî'ð+“»ã}^ Ï0Ž('£æª³SèUñ¤×ÈRݨ‘é"OwQF-6—ÊDz)J"Áü¨Ôô/¡+:5^œHLôP§ðÛ@-ÏÑṂޔôâ:ð1F+¢ÿ Æ)ØøÑäãÈ0Γd¢vü8Õzå8¸šYY–纊w¦G7Å ýK + ¨ÌȽûBŽUýnLx‹ fvú_•§"ï$ý“PE§:šY ¨ƒXi}3#ã?*“k½ƒM©NeÒm¤w)óÏŸpöy²b›I˜åékŒ1ó/¤fÂÉ$æ²€ˆ-¬ÜA7Þ[ü¦v`‹Ù¸÷/É —SÿQ:v\R_´t"1E):*l£ãa)ú—Ôcöí]óµå Ÿ2‚ús:©A(ÅŠQá)©ÿOD·‚^D×…j¬vúSê!ú_ ½èÇÛÀt[ª;ѯ¸:u=I¬ìø‹pwúܧ s õç­¹Ó“ÁÝÞðœ‡GCìùýî‘ 7ä¿ôyVuþ2C-¥ÿù·¿û˜D£UÑÞj=ô àWCXå‚_{ÇüC­¦UÃ2ËÕõï*QõÍÂÎ>Þ‰ÎÆS=£.Ô>äy7¹“Es}l`…¢ëûÿôY ­ oÑ4ùfXþÖb(­ÞR »'Ö ìwBüÇŸÑ!û·„W7«Qô<à+»ˆÊë`å›È-Üû×úHâe¢’Ý"÷•Yëa¯¶j¯ôìØ!»¿Û lL)ÞÂŒXävØÁ¶ä g°Ë˜\á!zˆàDhׯ ¬7ö¢5V‰9³#Åq=Šã7kÆP'¨óÐÞ?!f†^Ø ñû|´Q©š…­‡%Û‰ç8É»áŽÿèjìÒ/j—]r~–œùµ÷Å2„[ðã{Œmœa9òÿã`NÇa£ê3?jŸØÄÈ›ºðµ[ Ö“©q.âüd§’Lo-bÅçáAÂÉ÷è ã!’í×Ý9M§ˆBXÏÉtkzb<äÞ3 ™X¡9O æ>p®ôÏ'Sµ&¢öþ«±û\ȼ'Ño ìåsTSóð‹ÌZæFêÝRa³³Ê·dvßøaüþˆ0ò!ŸEw-"üMÎ}×´ }‰Ø÷d1ŒôST¬þæËŸZ“ú¨v‡rž‰©ô»ÛßNv%VÈ©×~ÒjQøD&BåÜýÝ¡2|µ9™ýMb~m8‡—ÕÓQITQÌÞ‹E4~ìë>þª“>ËA/9Ø„¯½ÈWj ôÝB/³Mær°¥9`T/­) .ÇÍð vàç`CõQù6b‡»@nË1rŒpå˜Õ•Æêhê¡ìùçCPæ¥àiý!}̲Ö]<’W­dþy6ê7ª[ÕÉå<È2ÁÜ4'{û‚Þm{ŒjìqnÏ_9¨Ý%>;LL&Íwh0“Àxw¢CdLòATˆß§#ÊLüIp¡ùLö’ô奎“³ýÊ.7£â),lDþŸÿUW»2ÿ#úEÅN%Î2Ó½”£K P?˜ˆ9†•ÐsÕ ‹Õ z¿Ì£{ljÙÁ »9Ê îoÂå?¡+½%úbMº¢<&b£ +B®R ’fiVšhÍqt¦_KZú'¶acwËnDò\Fã)`4ä)¯þ?Á¯¢«GյΓ1Õ²jçß~žWØ>&A5†YµƒõzÍîéë©Ô^R?øVshiÔƒa[æÿ¾ËWI«÷¦Ëq<´¦뺂ÿ(CÿÄmtßÍ)éµ ù½|­(ÆTð {\%¦s4cÞ®Ÿ¨…O™ˆ–âó\\~ô_­—‰ñ‰ô,Tx`›}×’ëx³#‹*Æ8lD3c¿ÅaL)õ3ÿj¡ÿûÚYí0«µã=~‰•]8ÞƒÜæ#â1òløk°5ÃÐÿjb÷†|C÷¤ê¸>YÃ0¼Ð\2›Tü‹‘,`·µ$¸ÛåµLì©^1€+NÆ>ðç羽¼Glýhj>d%YØ v½A¢ÏLÂ߬ùM9¦®YÀJ&iÃò†ã´ÊßæâÍú!jƒ<¼Á¯Lå4÷qºãñ[Eˆ«Cö€é Bö tuUˆ3Œ¦»q¾ã »§FO•éèúÁŸ{Á¯ô¢NÀÓ|h.c:Ä)ÙÈ|NÏ»ÿÕ'ð¶¹h«ÜùÍYBÔz#²+{ s6ÛÃȽÆ=Ù M§ŒN4 ®ö4šÔÁæEYž·÷ðG)Ð^a=&]ײÛá ÝîÌy‚¬wß9ýî.˜í.fkçРb~í :KÝA×{ÓüÖT‹¬ãœüTøsw¦ç½t¾+c”žê4ÔçƒäSz W”ù‰Ö#à#ÓÃ.$€‘¾ #ýŠñoV«(Ùvþý9™VSþX0,cÁœtÃeo«÷µƒðw{‰¥’à?†Âx¿”ÅÀƒªZÍ™î^ÁÚAMÅDëŠÞ|3гZuÌä1KP¸Õ—cÐï–.ýAlu´EFkrïå2ª¸dÜ0c:b¢îŒ~w=ý7 Áêo=dšH;ó Ó¤zã2›%àsT¼Øú YÆgþqM½¥«`õ±MËð.mÌÔk­Y™ºÐðtú*bpŒ§~ð9õòÉæÜáω@Ìd3 y;x þOú'VPw3Uôç­‹Hþ‘Úù·Ÿÿ¶q™ Þ¬j¨¾^¯ˆ_}V*jRGÿ+CKõ—ýÝÔ”ú"aba¾‰ìÆ Ý¥éU!¶î#Ê ¿š¤¹úa†e´Ä»³X«-oa/QXTQsi:â>fÙV%ª^¥‡Ä B_WÂããí» ìÎ=ÿHŸ ˆéXÂC؉£ð))Éð® ¡¯eÿënÍ TmzTG«`i·`«ìùQo±ûwÁŠŠq·¨*¤èïÖûŠÿ8ºZd"&–n yFr"”˼;µÀ |ˆç÷ÂJ?îÌþÝJÿüûx-×Ùoöˆ5Òc£ÂòeíXY{ZÇ"V^AÍÞªÓçà Sµß¬ùQÙ£’aݧ`ÑN¡¶†.Gæ½iuó²øÐýÜŸA|õ"ÿÞ‹·ô»¾[ e“9À¯‰âÊ}øXôâä2YÀdb Ó£¿z€f×/ßæ?³ñ\o¬áŠÿ¸ªÄ$ÿðD/5‰ê7<ÆT²–°®ké«”€Š†d†g@ŽNÈÇä³ðÇ38{Æ CÜú¥ç×*æGµgÿiùy›Ã¿Ã²Læ(9C2úR ¾Ì .¤P7ŒßÖIŒäúûóûS èrÅtÿ\º—æÆéƒ\ cà.·¹ÔVD0·’ܰkòLw+]k¢ŽD¥Zn2‰sp*á…´Áwæ Ÿâ/3Ënø†¯\JÉeºf œ_ûÞJãXh^ 5¯ÈôÄ뻡¬•?È“„è_^lÀÝÆ«uÅco5NÈ-ôoFýGdæ É]ú_†ùè–󬮦@ç’ÍüvN¨IÿQýaô/YÄïW:0÷ÓYŒšcE°â£ºíÍdÛàbÇÐ_­bÅUøã}d6Õé_rÈùÌJýàfÅ¡§ñ‹ °ké¹²^àÝ@Ǧ°èø¨܉=ÔjŸÀ·|ì&zÆÕk¿þ—ž_´ú¨"ªpŽâÅÊ¡YêÈÕ$Åßc™KõóRzþy¢#-Šå+Mþfö™;eT#®˜â jÏPõuÃÙ=…wã?®£7x‰Úv1sgoaoš“­pÜÍ—0Ïi@‘4ìþìó"î}žüÇ­%û¿Ã•äã »‚„øá? ·z,kÃ/¼gzTjôWîðçñ*9dÖà·{ðœúFþÜ $1˜¦/ŒENyÔð”[™ÕŒŸÿ*?à?òÐÿê„5’¿/&“ˆb ®ïG=ÉY¼æuP½Nâ½óa©£”VÇqVC@{–ãRߥ‚ß©N·0»Y×mRAh8Ó·}±yþ#‘y®;Œvi®Ù;ï•Ú-â³Í§bó ýw üÇ'òÂTæ·T*ôöÈd+ñáæ;ðŸ#~åGÕm²ùMÜ1ÃÜN:ZzÑ@sä…ÑoŠ~CG¦ÇÓ?q!ÕˆëèyÛÇTÍÒè÷~È.äž[E¢ ýKrâ?¢·;G§“ŸôCR±2;² *ÎIÅyBø±ðñ}ño'A'[X­òxøx¦ÝoTsÚ-6ÐÁÄÕ¿}‰º >¾ qSÔ)†ñÖ|‡ºl‘™Œ**ÙFWò£ ŽCøôÔÖPy>ýž5Þìf¾#jŠB–>ƨμòÂ×õrü×>K‹¼Ñù¬êjÖ[õJñQ›Ñmw‚¾C¨6_Áü(mù‡† àºì“Êwm >>9USí ?=†þ@É­.Ñ÷Óýª µÅmÿ¿J¤•$\@$SýU 8V°¹GÉ.£†(GpRwáx®}üúYušPï@ÿ¨#X¹:ä£yådðÏz[¼€ïê›äü®:aª?Ÿ©ùé¶å '½‰¦Wƒ˜ìBÓj[·°vGb†NÏØ¢¯°½ò¿þ_7e8MÿD7:{$Ã#uÁ^FG%{û™Tc'Üá*`+cͲ›ÿ¨¿j£%&S©Ë>Øê´\g"rÂ;pT穱“¯î¿J — WZ#üèßnýf—šÚS="R`eæ‚ áÌc²¿ÒœXN31ÈÊ`›l¦f,~ø$oG/¾þ ÿq'”‹v¨ªnkĵ­Až¶ ÿQ‡É)'©›9Æ?7ð«éðåx2°0.Ù¨{‰ÍÉF%ÿؤÄÒ󓤦æx<™Û]¬kE®6Œtqr­Á`~ѰíåA²º¯¼µKð{}ùžRLHÜ­ººÇþ³ÕÑðç¥ñÛ ¨<$Ká?s⩱Ho‰È“+ì‡ó=CŽPÛ\LŒ­“/,D=†õ£©©\8ÿ|<>l>Vè:OÖ•z¾÷0}©8Jþ±5Òf™Ëôç ác€m"ÿ˜ÅýI«Í vW|´&Ø«ä)ñ ƒQ ß‘½Áî—²v}l–t¼´j;l<«õ7óƒÔ~L'ÿ8v«2Ï-èMy©/Æo_àì«Â-5VH:Ù‚þÁ_úY-±ö‡ÐÙ^%KËô“W²#j©ÞœÅE¸ûCä|MÄ;çryéÞ“3î-SPseƒmN ’S€Ê¾âØûµð/ÌèXÕ9ô¿ê‡?¹D¯Úà uóÉ?®ñ±þÃÅŸ?Wök/¸Òí¼n¦Oñ%lto²„Xô)éM‡Ü,þô¼nðÒ£¬%XíÙÔ‹Á³†7ûs5ËÈ?\ý.Ó¿$@HžªnDc9E,Î>õƒ“©JyI™It9·r UWs xVз,f"êŸÁìm¥?„7F^ð!u‹~Q 剛DmÊ%1ÕÊS¾”ŠÃùäjCÈŠÞXóá?vƒ¯ùÓ¿}(E¦›sÌÏÜ¿˜¬7€e’åÄ•Ÿ þ?æW¨SOBô»7—ɵUâAµ|ù0}úÝʬyU)®hOøï½]=äúÖ0|QMÀ¬óhD}áÐõ?ÒO÷Qoë ˆÂs‹îz/­“s×aXNi¡¥!ž\'2ƒàw4Ú3r¬A åèiawq7Á#]ç¿ZÑŒ­¦Þ”¨ü0ñG#žóÖTÑÕ6ª‹DÕ»ˆ­ýéÒÿEwÕ0ý~E/í“^ûd—Ÿá§‹ÃÇš@t8’H¿õ_ÄmíÕÿxÍï”ebXWabäèD•AÂ*‚žq)2v ¼g#5®M±)÷Å8íw\÷ÏýŽÑÊð]‰žýX#/õ9A°>ÚEѰ;T­Ål¤Žyü´;üGñßN°TéÕyL$‡K^Äõ@ù [ÜÆ5'—µA>Jñ~mæïSAØÏr– `4±=ÔúÁìjt]gqä!lóºáÖÀäáÔ^‚|Ecôlk ”˜ìÃlyï@ìïSô´#À¶Ãµ…??Fe\tsWPÚ7o,`w” £²!æŸ×:°ÿ ¨3 `u{k~&™mî%'h~ƒþ‰E#ÍÝüëHX¸œãnü‡={ý1í|ð円'÷…?ÏGÄ~N^Á42GS?øŒ´9éW¿Ùš ;±Öô3ßqÆ5Éz®ÁôçDÛË Aú'ÖRZ«ƒ 7­ïÆlÎ&!j¬ô‡,Œÿ)Ê4ÝõàaoP ¼¶š3výock7ÊÖœÌgrÄ6h¶® ~¥©^ÚGÃàm`€é)š d Nð +ŽÂF7¢ÛHY|Ñ>úî1§Ã-C¿ûæc>R#ðÏÕôë^à¼Þ j't iy~Wƒ!~Ó¿¯ÌÌŽxäM™ÿqÒ\ÁäßàmǬ³(%òtæšó˜vϸ¯0œçÅ]agþ㸺V÷}¹»ùÏOxš¨?ß@­äc3>ºƒÔ0Q=Ç­ýô Þ,wQ'Ú?·ÌÔPޤ`½áT-½bbAhSr~¾Çÿ©ùá?\vó;ýÛS9Ïéï~g,üG°ªqôO¦ÙÑÉS¥²–JwèBWÐ‰îø«åbÑÝh“H…žMðæ5¦ž@£†‡^*‹þøFµÏZI°öu¼Ó«ˆÅ·‚ebþ‡ÍJL,¾G‰9‡¾áoÊiüGkü†?r%òâZà%½úb ϧ‘©ìÊ1_D Sý §–‡¬h–ê3œñéƒX|t±:Èë'rÓªx·Gø˜aàÏ "ü‡âØ{$XÛ[Äï¸ØÂ[Ä)ý‰s£ßÝE”Óö­˜úGþcÖ¿Ñëû åan,fTÎëhsÙYmVÑžUW^Îu3}‘ÂÿæÎ¼SvÓ1&| 0†+Í@fÔ‘¬a±Q†7¾»1ƒXó&Íؤ›ø¿ƒXé:ÔÒmÕ¤U#S¬Øµb¬q…=dÃeÀ/¥aê#NéhÉ”HíñBm¸†TàvÙÐ;†¦¿ÚCÿÄÆÂö®‹±[I¥/ß_–?ɱÀMQͬáoµÁ¢‘øÃ-äLç‘ÔeíD¨¥Bvx\FþQÿg3æËÀj.ßÏ7Rk§7£“íC<»œ’ÈÙÎ?4TK ±X‹`,2Òozsˆ3ôÑ>“;õg½5xƒôD<ízÃjÏñ§AÊU:ö½"žïf~J„ÏJBÙe²3¸7£Fˆþ%?´†äy7Ér‚õÃß–k`¼?Áס?¡ê0Q½Ì ²{Á¤Rƒ3=Í[‹¯£ŠHgF;Ñš]Cå4N¶…aó;™Ìт̥ ºÝžVi¦Šïµºšô§ОPR…sÔ^ã÷× ’”$Rì»6ŒHj ÜPA¼~qð«Ž0Û5a¤—Á4ÄEÕ…™ãY™2r„®·©@Êšr‚_ñÝð…«ß^8õš,Œó…´g!$§Ö¥#YBZòŒåt¨zÁD¿UôIŠÅïO¥J9üÇ Ô€óñG¥Aö¡¿è¼#ÅÔ±ú7,Iy˜Ô2¾Ø+#Y•©èÊÕ…”'ýwUÇjk.¬·y1l÷`¦³$5㡟Hfí z¥Ò¯õ§}¹­ÞÐß‹ ¼]±C>¢€•ÛÑ­ºˆaÔ 6±Ò;&2p3ýåÊUtáÉœDwÓ”gàm·É"o/ô?á?r©Ûˆ ^É%Ÿú'EçÏï ùQÒ¿¤þ£§~Yíx*á?îkÑô÷ôE —ìZóŽMŸ~•íÑdºQ4ÐóªÛ™óø•ü£ºh‡ ^OëúÉÐ?Ë¡U†š/Š3<ƒGß"ÂSïèMÖEjg,öq=¤æ%ô•¾+;©|î@>ì…/²ítOòöôèjÃßÏc§ã’ãd$Êm  }‰`ÿº…þ»¹±óiÐàùb›HO,á 2(r8QfI”I à?‹¶¿ Á üËe¹ÊG*P>‚ ùÁœï$Fi…Úv›Ñ‹­¬‚›cg‹_ý®VãçÊý´âDôv—@_ð´,ä3YÁ^ªEÀÊÞÂÆ/%›˜ÎiØýo§ŠüüïôWB«ÞÇ<Æ? å'‹ƒËµG·ÄFdAc<ÿ›&Ä|l܇’ø°upXŹÖ}óàŒ6Ô„ƒèÍ.ûcå;ð;Sò«@˜ƒ,óŸ®VL½¾¸Éé¸ 'ï¹Òºø‡Èؤ¶DÜgPp•F»:r+¹þî^ ònç/ók‡kMñA¬N•£“L#rËxXÿçä À¯î ¼:Ný_ süÇgîöB0±Ôüå0’‰MÎwòŸ î×Þˆ(è;sãVÂÌ"Ö~ïÓ…îW§¨ÿØc4ÅLç ’ö2ŸGV³Ÿ;T)„þê+ïÃpÈxä=ö”øÃð“ð×Ùosâño¨}Æ9*Àí—¢Òù"•ñáÁÂüøN?¬ õÁý Îuž’þxôÙÆ y4¬—yŸs ¼)/\òUìèq9™¨ú8])*óÞÓ‰e!äIršøè¼)••ŠêXN~*üÇîF8ñEd¦ƒT}òŒfOpº]Tj”…_èIe÷(ókg³•gðæqÐïG¡–Äpõžû¬ìÕ «?ßÈ`þíDl|ëøôÖh¼c'&-®c¦ˆ5%[Ð_4óQþ5Ã*ΰ%þ÷ ¬««þ²¤ÚWÿ’Q'w©Œ'~€†et$C\ŒŠÁ4Ô±ŸÅÃ5¤ó8Õ‰ÉKꙺ•ÚLBVøšhl/=üÞßü¼àݪ'||üù(âÈ#b—™žùQó¨,]GÖÕµî]k¡c¼ÝQ–ùQ»è3P}ï7užÄè¼)ƒŒºÒúØÏÿ‹óÐEpóYý¦”Pã;ÿöwÛ¿Ôj3/j°þBŸ¨Žº¡DÓ¢ëþZdæ–úËþ»^Š¥¯C-“ìfŽQ^TÑ£Q鸇¹_EÑŒúºµÏ”Z,Âd0éÁÄIC¨‘ˆN¿Çëôÿ(>‹Ä'õaZ1ýw£ë¨¸¾AZÒxo4æÉœƒÎ´?‘ÀQ8‘Øë¼Ä,5u0á!-²(¿“Øä±x]¢»ôÔa!ÿèFŽÓPVäÏ‹a˜?8I™Ò÷«ÈÎOÇ…îCž+ý–¡!6å4xØ1räNÄÿyuÚŸªE+kT4‘¹5Ã{<&‚€Š)^2™¸ µ…wh9–46gPÊX,nÁŸÿ.ÿx¦tSw‹4òøÔÖÈÍÙwãÏ„©ÉÌ_›ýÝÁŒÂÖ ¬W´ûd}Ñ=´‡¡œ£C}¨ùóîæ“÷É l ­w#žD‘t±Iõ‡XþœBk¾Þ’,?+µDQÉ¢„â?æ(qôŠâ<^|ñk"ߞăˆVcélî5 Š UàW;ðq^\÷4t/}À¯J£ÆX§ººÿ³Õ±ôOlÀSëHu·ö!5¾äèSÍ‘ôr*`ž_/`."ïÒÈ“–ã?°ä2=üÇâÏâMeýŒhìÁ®AYÿè þŒ® øûó¼@<ì}yøó ¨^Óí-ô“°›ÍCøûZM<àYžÞè•:¯=•3¨‹ß‡EïF‡ÃÍQ ýîbYÜœHýáÏïã½.á[oiõrÁvhˆC<Áç‰wú {Fþq’,« õëÞò•9™÷~ÊZl#Í÷ºj‚\½Å[Ž‚‘_%Lj7Î{\UÉ«v¿"Ÿqµ¥ºÿQýU6ª"öYT$~Á/Õ㼦7J:£Ô]‹@Ì`üQã°s=¡n×Îp¥xRc˜7ÄdÝtmºf¦þ¼‡ÙžJÂþL÷£J~“é›­öø&Ë0gªhœ¯(¤v·<ü‡Z-¸Ï)ò»M^įZu¬pèÌÆ³Þ¦<=D¿Û Uõ`«¬ù•¬3=T^‰¬ƒÉ|"®:ýÇAõŒnÏÿÁ37>ö¼É¼(k'ý v›ß̤œ]<ú'nß/nm”{Xy.Õ!KM7Þ–Ø<‰#`£ÁýÃì<žÿ§Oò©›T—nUUK‘)ü{ ÆV_©õá:Zê›õæZKVña~m8*7"’dûKþü…IŸ G•™ ôFF8ñ‘Hy#uþ§©¢£vC_ü—ú«ZÄÑíU¢$èúq£‡¨ ~¥k^ð_ÄwQ™(Ø=Œõ*yPv½&P• tç°OÉ…­ˆô"Î(ê`iÇ‹ìzXÙ(3õÔX¢HÄ ‡±òeˆó‘ÉL!ƒÍ΃I@äü”¼käïÍEô»GÉU #g&ï„uŽArÎXfÔ„S=C{ˆÊì3½±‡¹Âÿún÷תò„¶‰¹ŽÕÈÂgˆñ_·~ÆÜ3ÖãCOY'á©Àœ6/=šô7kÚ'wAd%JÎ3ÿƒsËÅ)¦’_ÈšÉà<Û9ƒÁDUždHv墽3ýBÙdVÕ¡;P d»¯‹5]µ®ˆòÀ;v¡¥nw[¯OÍÖˆÀüÃVz}I_d€zýò¿mJ"½‰ð'²q;NìEÙMê,…ê–²Fªÿ¦Á|‡uÙBƹoÚˆ“ICÿ]ÿ+Ñê€!¶&O;_( .×O›|ê%=š˜ý,ô™Ð •1w‘„‡ç·+M¤2Š!ÎpúݘøÀ\|ÇBTU³ñçK°çáû'Pûqÿ1× o®“ÍDæ,Xñ¼h»îuõÇŒ0iÁµß÷´fT»^5ÍÚÕŽ3|-7ã?öËWr0ú&ÍñÌÊçèAmJk*ô.ñ]©P|Âî¥Öa#[ˆúÿ°8÷'Æ|Í<ã´< §ß T)ö}0=d¯š@íûȃÌRzÁiEnøo5‡k-ÛÑ_•Qº«ýaz¦ ž SXF:6€nJ¿ur…ïf~fÆŽ¤+áX:œ?&—³ùóEÔó_‡Íi ߉Ɵ1?êúOž´(æE1D$7´ù“òÔyÌɺO¿‘)ÔŒ§%ÿE5{!*þnÿĽxÉöõÝR]Ýww÷@pww`pw÷ÁÝÝÝÝ]‚K \ƒ'8 ®Á¿_g.'B2 ÿï½wfž{“À¤Nuu÷–µÖÞ›lx.¾¾¶œ†®0¯èï¼#¥Õ‘è¥ÒõM5ºËÏz$ôWé¬Ñªý¼é§òÏ6äÚƒ% míÌ/f3#Ïâ;žìãt¿0Œ#Nÿ±\å‰hG´Ò“§î¬8dq,·6Ãõ|f’U&½gwLqœcªp k¬ÜC­côWsÌh¼-Ɉly}3ªü+ók «Að+C-&ûâùåÇÄóíµOÚXýº¾0ÀÀdÐßj©ô¨Ø©ˆpÉ‹>¦žk•ÈC?ëTNÔÓ©“Ô«º?Ó:šˆAúp­«ó~þVØß¥×b•fRÙ·ÍÎ,»g‰ê£ú‘yØõÔ=°=7ôeZ1žºWÍ©w&ʽO®QÜ¡3Q}_zõçyºˆÕ‹§*D_ÆÆzD4Ë'4»b_lË[¢·µXùKXÖ ì6¦ÈŸYŽ â6,Ñ;ÜÎP¶Ò½ýìž=õ-m8Šýî´ Æ=‡ZÌÕz`osë´ð²Í*Z%ªí âð.<߉`c‚.˜Dö`»§Õ-#²Þ Ÿ8ýUlUc—‘Ôõ䥈šNaÑ΢ˆpR3ñ‰@m:Úûá×&‘\IÚOV×Úð¥bhõƒ)Ôší?²âªÃíäÌ«Âf"Fç*©1µíRûþDŠ]°–…¹îÌì6´ücó?Zˆ[œÎ0¤ ò=ïr v÷ÁX /ë‹'gF Lï|ºm¼\‡ßÜÄNkÁ/é9 [| p²‘õÒwzÄÎ¥–î&žÃƒz·œhžª€ %¡SJY˜³è%2°bðgy“¦ó\õƒÙFu_® š ÿÕ\$[€]DÇzÙòg÷˜5H×…¹G¬9€xa‹Q]û+ØŠµÒdb·x2Âï'º+g‚—ܤþ£%õƒéFÛÍñ§¹~(c¨“w¡CÆqzYm‚ÑȦréŃ­÷CwCkvÿ1Þ`¯±J¦š½ ³§ò:ñri˜f‚“%ôASôœ¬£1È”Ý_~':W®/œ\„)¨sa±fðü.”ye)QÞûY‡ùç]Íñæv:¥Ç@ëô ¾º”y×¼ˆ.«™SU~C3o‘ “ÙÀÚ]?eú+âÆ…†Fýà{1Vg8üG6k Sè{“m-ó¤+Ê ú_1óà?Þ¡,XÃý±õ»¯© ô¿%Ñï¾C!_•§ ¹ü¨“½î3‘sä@üzûºxàäGgÐ÷dJI&¼{R3-ž÷LÝV´"?ßJ]ÛC1”h©³Ál6úïjÌœÏÎ&{5„‰ßŠþj!ýwsYÃäF¦¾OÀï­2?óF&ŸLg"úÝ#ÿȬžT—:Ÿ õUBçOΡo¾+Þ̼§õÕWë}ºSݦ»¦ŸÑ¾hÏQòYYî¡C ¢€9|#Gx«G¿ZŽŸö͉êð4ø­}Õ ë.e‰ÏÑ¿¤‹È¡þPψ6¨¥ÞSQ”ÙX¬‡Ô܇¾Oƒ<ÈUoD¦qˆˆ²šÛZhúŸôº /ç±}_Dô»È?"2p7ùG-ø÷tX©;Xã\Ô—ˆÁ™lÃyT?žqV£hî5oWÖPþUä9)?1˜è$qòylqClÀU"ê Dà­±錥ôÕý*þiíOPŽnXI/2.Wx„¬ø#…|ù­‘Õ‡ÝÊî·n÷/)…æìó?’†±¦…òù¦È†Ny.Yà ¬¾=Ñ»<+¸Òq*9±œ+ˆîN®}ÙÉ)büÎTP\ÐφªßÍªšº‰ªÆ…,«>n1@uÞ¿³üÙ%ãQO¿mjŠÿ‹•ïÀ}É@˜(ä>/BÉ?Ö€_Õ£E¢Þ!Xß—` É Ó6ÄWîÃ%ŸELÿÃbüñZ¼`K¼R^±ê—ž‘è?/kä‚?Ø.u“ÌÇ;m„3þA§Û>Ô«§+=j«¢†Ž‡í/B4¾X–¡^6“üûN,%ÿ nlt ×I²½`'Ÿ@€VRÑm×Þ'îMmLÿ«Éøã´h»N‚è´ã~C5$Ø]y µåÜ&ë-Žb gx?`þ ›|#›Ó!ãèN Çj<\=*..‘ÆÁoÇ¿mÇÇ_¦þ£F°õ¾ê»Á÷.ÃŒõ&ÿØi,GgµÑ¬‡wó§ÿUw"øó+x´©h‘¼ÑHÕÀ/?AÝ5À$ÙEr\Õ•vêPÿnÏèÍ)sÀZFâúêÛW£îáì‚B-„áXÿñ–üÃ¾Š»Øãø £ø¥yèwWÿ|„•;ÊIí xîfž×òoçH¹êoÿ1ÑìF'­A(xϱæs-«EA=ûœ n5ýP:Ò+Æ—ùç6¢ò÷?¥È?üÀ¯ŠóÖF–¾º‡|g–w¤@_[Ep0ú0Ý; Dxƒ¨ÿhÿØŠ³‘îßé—›'Býá?rÂG“ÏAĦc!è"Žuï 9î!–Lb(t5¸~ew5þçF*óÅ9Xñˆ·’ȃXÀÙä¸=ñLãPÉf'‡7Á3˜gÀÓšÿ^_«¢Ô?é…JÉ“–¬á9o÷K<Þkp¶¹d\3°¨«ñ™cÄ)òÄ8aìÒ`ÖÌ~‘[:‹HÚ‹,+&²±½ ø†ÿ(Šm:Œ• ´™÷¢!5%7ôáÖÆ¥«Ññœƒ ^ Ñ[X¯ø•—‘O\J”×ï€ô´Â 4C]Ý/³ããëüCñ[À¯ÊŠ3Ü…XÓdò)WZ‰÷9¬qW¬ñ6ê&3c?'…ßàÎlÄ á﫱øâì/3ßÛj½ÑzýÉi{À™—ãš[­¸b}_‘ÌBÕ¿ž™—ÈFª3s£&*~+#\Äj™ˆéí!{±­ÓTx§.`s£ÉèØ£5ö]5WÑŸ ù:=s‡l ÿ1]¦F7 £~Z6µ–g ‚6*Ø]y¦µ2Æ‚ú© ]#d8·{ðç›ÍcØôFàM‘¾Ì¯]…UîE‡AO²£èðöWÈTu^0âêÕƒ­çnp`×y2ÓK€®šr®=¬¶Ÿ|‰þ*5Ì 47Ê5诞á=ê`ç‘Mµ žeµ%;PVR©“ÈëÇ‘áÏ„ËGm]4ê?*“gäd&Õ,´N¬¯9&XÙ@†N¡íJÁ'µÆûZ £¹‡éƒø»Êyí|åqÞind’Îdé‹‚Ú*½ádW@šz€Åö/F ¼Ÿùƒó¨?/ ò×l-WÃI”“×›Ÿù—ÀFªrG›È—z©[&^·.ú«5fyVÞŒJÊŽ«1Ÿ3Â*€ÏÌnæ•:8ÝâD‚Nÿ±Y=©_ÄÛú«·éËÎNÁéx˜e- ®§>üÇ5ð«¸Ö*ªiZ ëª!2Ñ`r,Îh Qd7qñŸMÃåoó¨‡@~.ýCÉ­fsþôóO#ö5•ˆ½˜÷1JßÍtÛÒcþ‡¢?¡&Ý›ÈgEd½«JTæ1(`%>(墋8Ô»vV_ê'9ûâb¨ÞCëõ[û4´bD¡ é¿Û€Øq0óó¨T_ñ1é"Ø‚b«¾ B+jÌaϨÅšng¥¢¼KõÀ¯F‰ElÔn<À\ØëH<%éô ¸Ô›Ú+½ ON ,ò)lf5ÞåÒXå F6Ž“K'*9 Ë_!³ιeÛêLÖ²Ì(‰½+µ YÍar°ø¤Ç¼½±á_É?BËÌ3«w´[Âîïrþò—È rnÙÈ–òÊOø>ôß]U\6ÀÆwBœ‰^5)8o¡øUàWÄî Ц¤`4P¯ÄX· ø“é\]-:¢o%>¿ÍÞ6ƒ] !^¨‚oÊ)Îü‚ÙuÓFˆJtT‰_°þµÎt¸~õ¸æú_­&¾|޽k þ‘Ò’5§sîé{²¢¾2:wÁ¾c*¬órø2\ÇÙê5ØšQø¼™Ö:%~3¼ÅrÙKî&7«£ v§oiµ°W§ð—È©šé߀G9úóY¶Ââ½ÍÉåè‡6l8lÿYŒ÷sí¶ÿü‚—ÈÈ}ú >Ð=a¼=É–{SkxÐXNw%µÐX%º¯‚=¼eõ7§Â‹˜Ö*Äë`ç?¢FèWÚ-g /çrU”?Ô1°w“ˆ&Æ¢‚ªK¶œÛ¼g·>šàä÷£µ¬r5*&P×.ȼΛ­¿ò³œ"sóë½R<µdÈ{È”Ms'hÙœùÏOGܬ®7ŒÅ.ªÚ—0ïi¬C?ɸgQ98 _ç%Z3×ëŸW¼¬ÕãwÛƒ½%êÎF¾$2O*ЖoøËÅx¢eøU&æªÆÏ‡…_ù+wÔäF1¬;s?Á™òR)Ó »É¨JÌ:›SYúóç£øÓóx­õd ÙáÏj¡UÖ&£â¡_ò+£Y˜ŠýB0ƒÄk=*Ñóx_[Õ“¼#ØrF¼ÓÆPüÇAÅÐkã²Â_¼Ã‡ÙúÝ, N°ˆWˆ6[/o€ÏðæD¦â3—à ‚Nƒÿ0Cœã"æGÕà©HfÛF,Û¤àWûáRb퇀og3ŸÒK±"Ö¾ ù‡ V¯">d¼,oäî!Ö»®i þc"øÕyN´AˆzÛhdË£9ã—仳Qœy‘Ì£¯c ªGêÐËÃÍhBG °°0Ö6žœé&9Á}[bê|‚>9iÄ!2†StÙlByÒ¸JŸ’EDß>x±«T¼UD{;”®èß™Kø.¼ÝèŠß„õöááO°ßAæ´£ÿî8|íhîÂ0üG%ÑÉÈôøÕ8j/`écX™ÁsŠÃL«ìô’™ å@)jg>³¿Ö –ƒt”D~`®g8_©’'7‘*|ù]ÖXMô–îÁTñC¬zˆî‘*u„SÌxó9ÜñÊr¤á!*R#úóz©-à»]xrG½”oäu3³— ßÍdÏxbrí^|É#r®ù̯båÃËÙøULù¼â$ýK,ãžÓR–Hi*ØÇðäH2ÿ]·Š"xψÐîË&et|¥$bô ð–éñE~Ä výÇC"ÎUät]ᑱ¥ZX\÷ϵÇiUá=Ú`'_Áš»°Ï¼d ð±°zÏÃY /”½9× =e˜¨”Åd|ňš T¹°çƒø­ÍÆøÁ†;}·?À*Íâ4Q,¯)j\Õ‡Ú?1‰úU; ~•ÛÜsßH&SŠãoSt¹Tlד¢ÉY Úþ¦/÷ª¼Olöšþj§I¯!®‚0-'6Ο=Ä©ª†=x”ŠòÚàFh“–‚Ø¿å®ìÆ.Å~4£Ê/–©ß~ؾŽÖj‹R [©ˆ×Çâ?|Xm«@qw¿øU:ÓPUð«?©PÌêTîw½,ŠÞ0$~u„ü#.ydT´áT6âÍgÀ¤Ä!ãèB÷«¦>)!L÷_fs&«Ùú+»;ö™l¶®XÿfoñVüÊ›g¬×7Œ¸â™\oÁÞ?“UéûnKé ÌWLY«ž÷8Zä XûOè¶ëó0ìõÒ‰#pûÞxµ¾2ŸX曦â¸Ew&Ÿp¯"™näÓÉ?ÖØÛ øç±rLóešÎ žż~uYž4§Ñ£%?õƒ3©å|Æ´òùô'LIÕ÷|£dôOüŠÞš×VÎeby… É*«}ô°[U9ÁZèwÓq2?üÇ*P§äH™¬{‘ª{Ö{r· Ô…$†¥Éa%Öy~µƒéu~ÂÇé?ÎPÿqK ƒè€uªo\3#;Š€ UFàmf¢Òåµ’ŠÄ·äL‡åIæáÎ%ÿ8bÚÓpcò¾Láý‰Ìà#ÿÈC4=Ãi7_Q?ÉùÓÏóØ×/ÊEµ$¾¢‹>OÏ ¿úÿW÷Ò®k·Ôêáˆ-óŸÿê‰â‚Å€û} |QO¥—¥>ñ!}“›‹´¢üGÃßÚg^-öc(Àû¾ÐhGƒTjKÍOôÇßߢI$£ŸÞ'B+ÆaþG½!hÎf|EüHCt] S Ä&_k>ž**¼J*}e®Ù]{¬W KÈʳå×P“¨¢#Qý®} ‡GøÁøÁkÔÎú¹/EI‚~÷ðÇﺓ)¸sʼnÞJ`ÛÒO"J3=SèD>×Ïœæ<1¼…g(ùÇ>ú'¶WøÝ…ð1ñq]©yéN]ý Dø(jt°ŸûQ Ýà®,gÙÜÿ®|vrúïª!®yõ°q¨—˜‰ø2ŽüþjÜ–Un$fö’i±+ód-üS ¢ÝÚ0¿keU´|»C¬wU‹‚ ÏÖïnaÛ&ï7ð{¹—#Ô<3°«eš—Qc½#?q% ˆmÞÇßu"?›bü© ¶âîë°˜Xû‘r üÇŸrÕË[/ªpCkpXc wq•±?±®Û›.*~èmKÔŸƒ¥˜ƒÉaŽ$V舞ëˆÝ<⨀. > ýÇPùј„oÍ?‰<ãO2ƒ:ð;X/:M$G[æ×ž7/ ß-ïñ'¹GT¸š¡d±ƒôßõ¿zOÜd×äF3U£• Z^â;ÊØÅLÇêJþ1Œ|Ä“úó To\†uèJ®Â`ŸPWΆ7c:ƒóz «“©\uáYF²¤‚ÎfZGnüDsøsêÅc2¿¶ õÞÔÎÌ«c¾13›Y‰k^óTï³Aæ™iôŸÜÔ³à*ÝÈ{Á¨\f:Dz€þšWYë«™$qøÕ]üÛéÎÔ¬õèwWä™Á† ÙŒB–véç‚ÿï™ÔÕê çÉø)ÙþÏõQToµ,þ£™¾H/PᥤÐ,ý"5 Þä©…¼ðûÊ'­ (ab°–ŠÆÝE¯¢VïÑw¦<@EêÏk:wø[a—N‹Ö´Me_N¼3dÒ«©µÛ «ú­WÖÎÓÇGhŘøÛ¤àWûQrÏ!.úè½#1é¬éy*AÒ3 ¼˜؃'ìÕîëµ±nìÆƒwº:¬X+,òPf[åŸCö£çÔc·úA4 a­·-@¿ûI#FN‹}Þš€U/ó7 ¸AWÞƒt.±ë¿ÓÓÃÕ_ÔÖtBåŽâ,7øU>t[§ô»ÉPâÚ3Pã£ÒÉ-`MÛÅm=¹š6Œsü¬lWŸñî>a?A­òcÇ‚ø.@…KV‡.!}½Ü&.`Ûv¡x­Hþájþ‘EµPsÀ&ƒ™À·!“©Ê„«cØü•L¸Ÿ¨¿‡yè‹ÝëJþÔ›Œ'-hh¢‡¡ø]è¯:á?²ÙµläV¾¬ÕŠ]&@eϯ½ÄÓÓ4c Üw >[¹?³ù·?1c1^ý↴×:ŠÊ¬‘îä‹É_î¢ [ú´ûüEn¤{¸!. *ÿÑår2Ÿx«Ã²6÷†8Ú¿ppZùÈ?VcÉçÀ]Lg­LôŽïØÇü¨n–Ž7iNÿ«ù䇅™´~ÿv<,Øj£[ˆykÏ´`¦wA9ó§ôÃߤcîvÔKþèwçÓ××ruL`õvôpò†ÿÈCîô ßuNÚ}vÊèu‚íÐ!Ná?.Mõá“—Û˜ÿq¶Â /öekEjÿ^ƒÉLfÖë0²qTÙô@|•üè ùϺ þ£²Òþ#%¹Ž¯±ž$«Hi”¦¯!Lò³¯¹•H?1Œ|9T®Ù©ÿ; ~UåY üGJó<þ~ªt Ò?ñ©²]»CuÊž§fL染Iͼ`tmè•Ø%ï;j7cïs »êêÔʆ¸¯,½gb™Íå "Ž*b¨óz«ªé’̸ÏT?&·Ç“þÌ?O„*j¢•Þb5ÌÇZ{š°uþãúÝÌ<Él&‡³c§]b,“ñó-ê1ý•°gŸ÷!ó¾-Nš nÖz÷~3dC%à?Ö8.Òÿ*©5F^%—kŠîØüã:ÊL;ÿhEüÕô_é_’ˆš®UΓù¬ä sz\ˆä—Ÿ*÷à?®jíôez½€îTW”š`úhý&œêÑ_~ãŸþà‚r‡î :"_¬qBQ\/GÝ÷ytn©¬ÿñ{õçÙ4WâÉù¢,oüYð«9ÂP³i>¢ê$T& óˆ‡;ÏáŸv¦«3Õ|ú0âq{¦xSlI3˜†‰Æ½ Qéq¬©?YM6li}Å?-ôŸ¿Û®yé± ia ï±b}øà¶DÓ“Áæò) ä_DÖïÈÅ:Š?ÂÝá:e8‹¥©@dé"/ ÊŸ†R|}]ð(ù௉aøªbø°´R?7Þ[+KÄÔ…Hü>¾ÌƯ\ÁO©Axba7ã?ò¿Ìò(•Ø›Ðï& ³Ž­¿òÕñKA†<ð‘‰ÐíüãO#–ËNnW+  ¼&“˜>Ëtìçv‚|M¢¾´dI®©.ʵ¥ø£ò`kˆù×µÅý ЦÄ|éäè*– n2+_5#È2ÿùv ýršÀ”¢ÂÁV¿¾‡ó©ÉîbÃJ´'ð©ªÐËÊ?ÿ%€÷Yˆÿƒ  ÓÊ„X²‹Vþ£7ŒÇEP•êä–¸š4d·àÌ7PÿqýÕ)¬k8j;~Ì ûÛÿt^61’þR?hן§Ã¾¸âö±Æ\®x \Šfοò2ì£~𠬉ÿ˜ÇI—ɰÓk9ƒ“Æ2£uþÜWëÄî}ÐÍ%ãZ€&à¹\ ‹r|­µØzŸºÌ?߆>l4:ã:<;§ØùJøŸ¨Dò¥CàWŸõëðöüóAd>sñGÉfZ“ |•¾Ö jèR§1ÊÜ"7˜ïaU6qª=@؃R=ç»ÙAø?”Öê,¢€Ù ™Sä_2­ˆjä þ¼>¶tÚƒtÉBF“ÀÑÂ*ËâEoÆJæ NïýÀ.‘M©Œ@íü9e›vÏøÄS;܈e¦2ºˆ2ä=ȯšÁŸ×¿2 ðI·©i_ÈüÛDýƒLͬLþ×ì~Aäèvqu˜‰8ªøeoYPè2¶•‰ùQ'ðGÙÁé‚]-G3Ïqi%#­V[óq‚+'çÏÛ²™ê³'â©3ÿØÿ°#ºÑÜßIÆ!±ØÌä Ÿ<üÇ~¯&¬Êk øUBG>kÝ`*Ñ~s{£`)bŽÅfÄ”½DhSrB<–ÿÏÌ­îTOæƒâfôÞG›ÔãÕÒ¢ß]ªÿ€_=¿Rìêaø\j`?šðV²ÿþ1ýÛûˆ0ÇOESbûtô¿:OÿcQOäBÛ?Ak®- ú9Åð±é•ðò×è‡ò—È[ã):âÁ³ƒe4&ês#´bêPrë]QÄ'†nC$^Knî~Ñ›p÷Ï?ÇG¹R«XBÄ`ƒî%ø÷ç5½²1˜H÷˜Ø ãOXȲd2#¨?wÊ#k9û‘‹µŠ~µJ&‹dDGþØô{h:¶ðÛ]ðÓX9¹Mf´Ÿ~b*•19ÜúÁ>Z!l¥=Aã1hy>p¬ x‘‡`kÏÙŸ·±|k X› ùGQj&¯éÔBaœã7eê#J³«µ°;gð_ ±Ðåðp©x³\Œ¶ØPoüܲ±+¬½‡÷½Øåeí^ð# ø)ªÓ Í$§º­·ó«¢ø‘¼ÄåßÈ [Šnú#˜ïú\ó`¿ÕZ>\F9~!®¹뵋Î%'©Î.^ëOCç¿Ö°Çd æŸo q†g5…lm¤Q™Ï¿F°§xš|Êjka(.Ã|ßfÒ¶I¾Pc.'Y‚ÛÎ?wO3:†˜õZëÈÓz›¨¼~kù‡ó?VcïïÓ¿}¹æÈCþqEV!â¿ÌÌç~ÂÚ_B…ºÅ¨«× ¾CòøÙgtå*ŽÇ¦Ï“š˜¶fË—y¸…Àr–[žðÓé¶òžuZpwÞ“{,–—ÉæÉ?** ÔÉFzð¼;Ä÷ed*‘ÛHÿ¨Býyc4][ñÂJOÿõ™ C»Q+]BEåAF³C¦1Ÿ vë/¥±ÉùÌœfþù#vwœç*ýKvŠ¤ÔæM$ÇÊ…ÿKÇÄxÌ•¨°R’=,`®‰þêu,{è/Ó ù=¿§;dW»éEþ}E+C¸ÈùVIG4¼d:Àg]zÅôßnÖuë*Û1ø•ðçÍ42.ÏÁ ¢Ø±Ì ê?Üõ{t„èMv?Žë¨YÈ1ŸJÆ2hnØÝ¹¨ÿX䘧RÌ:&½¨šlGýÇ!36þ#Vh.HÙU„e9á¿ôMbòÀ¹­”j¢àÏE„?÷•rSm¢#ÿ˜«w èß~KIÇìÚËÚ%Í—®Z‡"¼’ý^U^jˆ£cÃvV3îÒÃ73¼ÃEÝ+šHtÑ·…Г„·x-;Vtþî¥Ë#ˆœjí"ù‡?^ªXÎ}D„®ÜR§Ãt!šÙƒÝlF…rm"”¿ŒÛ P“°^ËÀì{ò¿åÌ:Þ¶øû5Ú>½ ¾-8Ìq~;xu%c+¾'3½¥®rÿ\Ð+X´w‡Ã˜ÿá)Tbí÷d4±€Xgò¬QŒä(úV›:”þ#¼ú‰y®€u\'«êˆ·ƒÝyŤIT½ ºoÌ»‘•—ž0LTª¨Ø,†fÏÿ¸ŒŸU/Oæˆú¹Xäq¥±G°Ì}ØoZO¢þ»L°ô åS¡bø ~•WžÃ«y‚ÑØþ#{äõÍE9ý,¶³5™}oxõ!¨óâ7mþü{(øÕ¾€üÃto#þ##£öaYÜ<Ô<_é¯UžØ6í&ùÓ¼ÜJ|§=½)Õ¨kU#Äi¯5G«Ñ‚{p Ä©)¿ÓƒëÊIõŸ/ýKƹÛõÄòÔn@‰ð•8a+øÕ<ª «Ò¿ä×úsÿ1š{¸„ËSÎßFäþœªŒÉ¨tŽR>ÕŠŠSˆú™èŠÈLæC>Ïî;Òè¿òÁÌ%ßM2µ„ˆýºaOæXJýÇMÙŽZÍñš©Û3Ù[C&lÜ€O k9×Ä(¢~ð~¥à "‹¾ä}ñY­ TžÈ×L/a7ɬ¥Ë–yÑLÙ…Ý‘·á*<øn8ï¼ÇÅÀ¯¦“ùMç莶9Ö6-P=bû t09E¯õϰIë¬ÂÔò_²Þõ¤Š%xà90Ë62—±Ù¹Þe7ù‡Ù3tó“!èW+KP?X;<ÿ*óGå'G×´€©¹­V ŒÅð͉̎hŽ‚™ªT³Rÿñ&µ)‘ÿDº«iR|©Ö÷ÑÏ÷2ZÛúÖMúw¢ž}¶Uet³”Œïu£3Þ"j–¿;óÍêvôW}ˆõºÃýÝÛÌdŽÍÖv³,•ŽGŠeåt,tœoKhÍçñR½©[9l¦•ÀM®U4#Jê';¯ø÷MvõñôÏÏû¤¤R3:úù§ûjRÉÞR;‹þjøUEV9‰ÿð¡¢ðœöüêTÄ–ùÏuYùF‹üì½hh\Gì¢N&ÿØ.:ˆøLfꦅoKƒ~`|Í…7x™¨ 6²Ó¨+º‘D¿j"þ¤:²1^ï¡+7Ô¡jV½lÀ "åúT;/’_°4†¨Cns«’¾ —±RdŽÐüóóÚ^={‹/_E/¯ÒèxeÏRÿD|û¤¨:ÄKºtµákS~QhøC{"ÑY2˜Õd3ËÈ–ÖÐ%'—<ó½ Þ/½±\ûôBù¾šVŒªØŸV3;~.ˆßeTa‘¨A»2 f~j™•x¹½ðçY¬ úª¬UwˆD©K@ŽÏá?bã! bƒýá? ¹æ7ÚŒ•޶ç3ÿ±Y{ÊÎR«~ÚSñÿá 6tž<ÈæÏ3ã?¾±«ê¢£þ„N¬ 0ó•ÈFñw¾">þn(þc üycq‚|a9FA8Ž~°*Ýðl›az¿b)%ø~,ùÉ¢ì x½µøîD¹ÄÊ_üGc­º(?KJt½¥ª7ÿåüÇ"r†¯0ÕPŠ&0íþ»9ÌÔ_Ä&çYJ2–!üùÙÏâ>Íâ]è‡Û‚½}&W“‚ÿxއ˜NuÁ °ŽîVl󌬀ÿ˜+žžþ&¾¡?|×ð«Àúû0¯k5ñ¨§ðµÅñŠK@¤|Ñïî1¯Ã4Dj00³cùC]j¨½Q¥&?z 7í.}Éï¾juƒí𥾋œÏ>½yÆFøõf;ø5Ñ"ç;æ Ø†eèwoc›gPsßmÖeئƒ¨y›ˆgÎ{\þ|4žwöq ÿ]g‘þí&]g¿™ àäÃ.è :y3¬¬ôˆ¿i=ÃÖ$ïØF?1OÖí! KœëÝWnhöOO®7²yŽz²²=Õ$ïÁ™&á{¢5KâMWøY¨ ï˜¬žfd³gk˜5äfð«zbªózK¨]u7oA ™N:ÄY™•^a ]»¡»]Ìœ¬ïÌjÃ<ªƒœÝ*«-Ýàï¶«d‰ÞVQ}¶RÜwúuàò÷Ð(à=‹C&¬êàinô¿:kÆ ÓÊGuâÇS6‰ÿxLEÈ$”ÐãÌ$ä™xòë£,_ÃÄ‚ëÎ+þß}“ Va±ód"«Yÿøkj}²®úÌÿÔx(ù¨'|©ÝÕî¨qÕ“¿uQ·¡w§fÎžçØ€Ùâ1ô\êlÕ[?ÇÙgb¶u»ßìUD+ÌÝÙB.Óç¨Uˆ™Ôxàçv?ÀäŽ Œú`ç9üÓV£©Ë¨lÂr’ˆ²1ùG-êè0³¡"üÇ%О¸|R*ž’šÿá¦ÝÒˑٹíE˜„RäYi,øÐV/,«°Ú#üGEQ9Ü®Q戓âu’ŸŒ,XºîøŽìÄŸOÀÚÚƒŠ_#ŠÞD?Ñîø¤Æx-Z8+¶ÖªqEM¸7°è®d2® ~g±÷±` ìùçKØëDú­¿ÞËTç²Ì ýübaÜyå-ìî`¢Á°ÝÝ©ù[JKV4€¹<ã}˜ o} $}+Þ¥(uýžZhoF52ü¹É5¿òâ·rbãÑê‘ -0Jˆ‘ú}üG3T̨êíI’ýUZ<´O(þc³’Vï".ƒ_- ~‡Æh ^ç/bê9ø÷ø‹܉#üt_`ÏíMf7ûÖ åý5ä9VÔª {þ`¢ö“ävÿ«±ü´™þí?älýY3X½N]€Ýß]Å·/å“–àòÁ¸‡8ÃÚWPÉÑÜÓ%pÎgåž¿Á`Cþd-íѰž3_D‡_(:4 ïÁ´0Óσ ªí Ú?ûî\×ZsnÂä$ãéM\ñD®¤§Ò^Öì€5µ­ÒŽQè¥JÒ!ý&Y@ <ÇCò†}<í;äzp- ¿~‰gà2w­7ÿe/c'ø•¶ùˆ”æ'ð¦šô/yÃtØqäWM»bs²Ns×Ó]7œMqæŒãJÇÉÇhÌêÉV°ÍÌfêûz³æús%Ë ž†aˆ“‹yy#˜'¸X ÐÐ…Îõ>ôo*=¸c_¥ÃP¦Ôìç§¿zgk=æ[ÓIkÿMâû-Ta>4ËÑWEo»†¦.zÅ“L= ¬²®~¥`7Ú‡5GÖ]ÆeB‡@5‚\á,õŒŸQØŽ¢Jü »[G½_mîN&3 oÌ ÞÅ­ ç—„î| ÝÕ£úѫі§ÄW0‹¢ÛAM?31uìc¸Óég¹—êÄ) iA°†š[éŸx˜í"­N…?Ï‚ÿį°ë¬!ž\çmç›XêMµvCë ~ÕYkÄ*÷•âÔƒxkµ§h:ÝÃùýà}]ùªuBs”ÚøŒgöÖ#ã?Ñ?ñ,sã‰fzW-bjÛŸ«–‡ÿhN¿b :Wè_2BPsj—¨^IK#ˆ_Å¢b?Þ²ö´5HNSù’ü#kOÆîmÅ*þA^¹\¤Õ×ÿüøøº_;£Ûs™²ÈGèšac<‰(fèr,rLòÄd ÏQ4÷Þ¬£‰'u3®xž” =ÀØ2’=ÂJ·@å㉎q%x'lJRc…=œÛkÅÁjšá_Å$ãô2¡&¾F¬ùšý½fÕàW3É?æb¿7‰ãôeM̺֚<.ìísð8ÇQ8E#+¨Îõ”«Ljt á!HÑÞ$Û;/£®¼¤ñP?ª~7ý}…|ÎY¼ÛòâpÅÐ}å>T-õ»(SË‘…Ù]!&qžÙñù»«Î77ð¶l¦_g=qœø~)9Fdþµ½ÎdT¤Ó°/ÉhUAަSAøß¼•ó³;u5E!–ÿ!B\sk­Z¿&è¼°¸UAvšñ´$Cyû€üc55kÌRp¾»2 €Ýr%_'À]dÃÜ ±Þv-:ÌSO#7a7û2°§Áä!ïØï@°«KT ¬´úÝ¢ÔlLÁ«2íŽõ'¢’µ;R¶Ò&[ÑO«Eþqt´ >q¤ô2Ë!æHê5îÊ6X¿ôôhè¨Ã_þã;KMu¥Ôù{“þ—þí¸º»ø¡h‡‡{ɱöÂì@³öë\ »ê…é8ýKîP[1fª(Ò%Ù•Š’Þr°¸à¼”®êlÞ‡áœû4ìw)žç¸hj3ÿ¼;þã<¦RÀTKGW:£÷5ÝéEŸk­Cþ‹Œ©+Œ•Kþ\SwjÉŸ÷óŒD5?Љ´¸,uϪŠ"¬ ¼üKÔWè’ ýU{Øø”ôOŒbV%[üÄçO¦â´ˆ8å<¿|jý³ÈÅ;»˜w*®(%?™ùÙY£ àÛìo$5„#Ñïƒÿ˜M¶P—î]Ù̼xÞo<ß›é¿{OÄp>…nê)t¥íyW{àA£¿Ê2·Í,€6Ù€-od=µæ8<Á“YWè_RÓêL'ÊEftX«4ÜÃ.ìÂß%<œ'ø¿û&3ªØùΓ‘`áU„µ7•úóÚðç=õùz—ÿq—þ%ÞÚMf ?¢Éïñçg•ÚpüÄhf ¡ÁùA§ÌéÚƒÿH)êê-Óäײ¡ÀÜ Šƒdl± í¢]-©~+Jì.`ýGBôÎqõJD¼›±žu±Ìåå6P1K4 9Jñ”,#µŠ©"TÿqD»¢»‡Ç!ÚºŠµO"Où·¿ýÆÿß&/©@Ì]0àº"xÍVhwb2U§kX ø ›-ïÀŠ6:v…ê[%êa¤b·÷É?è™kŒ·I­<™KS¸"|p|)Xï)3Tt:6ù‘},¶.3L8 üÌåZ«³~0µªÛEvX™eä§`R±^Y®2ö3.oAIù æc總ðþ‹¼Ì:*ÿ‘MEýÇ-~÷Q›'÷âO¼\ vùmW-QE?Nsê?ìîó°Þà?¢‚w¾¹'詤b~íy¼7½Yá9?²{qèÚdL»øíؽUò>×¿Š¬k)Þ´6511Å5†óú{Í.àWňPS“}¬Á‹=å¹› &³S^'ç˜h6£–ΕºnÅLk®iŒ}ïÒ‹ü'ž[±Þ:¸ž¨äP.Ø´x¡Ä/#ñ`Lú„iÝ~F–Óš†÷ÈÁçìÀtKyZi­x‹¼r"¢ SY Ù™ƒœ ¯¿ÿÑ~á~1GcÆåÌŽ°è…à÷w©Lä<®c‰3é%‚­'Ű¾Ó {Cùä¡ð[±MÍÁàu÷¬yXæ£æfÔMö”‘«ððÐr퇡ڎÿ-n9oFEæ×ÚúÝáxê±²¼,*b2·ü%;î3mk,< õ)ô:ô£²»­9˜¾Œ>° ;YsˆØNΰ̤þ㮲ýîKž¬ÙÆwŽ©uÉÒðÌûaŽ0ûâIFÃ^œ$²_K7^3 þ– nRô»Ðì*ª+© ©ÿÈÈS7Ù¨ÆtöºR0 1U—…­h¬yþèVÞ›kŒÒn5ùÇE3¿™Mþà}Þ„x)ÕÀüÇôWÞ¢ïDG²Ù/â°™Ü1ÓÚDþ1k «zZÓ}ч³.ÊÓôã­dÍ@™7) O>ݱñKþýU^øÎ'á‡Røÿ¬ßêCµ…öM¡ÕÛL¼®ä¡ÿîuÍK{¢&VõtÎå¾¹¯¼ þ<2ýT_ˆºÆeÝÐ#©ÝéSy$2 õƒÃCÔÓþÃRUGËÀ»¾–¨¡¸zYщX>®ö„8\¡/ƒÎk±>Æyÿ´Z &6&Ð+ç%rnbøRý¹;ýMÖ ÖžOUuy´–SDþÕÓÒ?±:.»CúBPvò¡Ù(o?ƒÜ†W¯ÏlÏÿ¨/J†»Ã5Êhô»_É?¾¢½…ZƒÝF\¸þ#µ¼º³˜g{MdÌТ†³b7­Šq Ö£áÍ^ra1s¼„õñdz}Û@þ1_7&c-óÏ R+úùÙZs"'¶t)¶k/ž#.û+ KúJ'¸îp_áVÆñ)ž…K©??’>Œ(rJý§¦tLãùHj'2hªöÈZÆDëTPn•ß©2¹Ouzg3øUXØNFîÉxqÆy‚ÿ»o²©gÀó~ž©æS38úù§ûj¨ïÕÁÚk­7üyY­6«ÜUòk¯4mvC•¿ÉŸßQ|A^’|‰Œ1úWí£ò§º™R™Dtøó!ôìáí±ºÿqBäDG¹ÐH+š0˯!õƒ-á¼D$ãŠè§ŽÐ•ÇV7â?Ê`Uí±íÀrrP=Øœ>7ɬ߸>ÓèNÏLjõ/9¢g%Ú/¯åŽÀ*ïæÉ„íù/º ƒ^ȈN¯ªGxÎðk^<•ÞâýK*2?Ê ¿íÃóòd>!몎•²;®.cmClýNlÒ’…sÍãµ’0ð=È@nƒZdDzgå™}Hvó€ w?¢©UäXu(™ÉB1_o&ÿ_½§Þ±à¦[oJÌÓk”oôZtÂæ½ ï˜ÇŸzbÝzóYt“C¿ËlË_þÉ©*úEñ„É žâ ~Ò®×û¥@4®{¤h¢ïÆÚÕ‡?ï 8„³s¯-îÔ|相èeðÒâùÂâW{NÜ b‚ñtúZšûZÖ¨@¤<‡øö1Ã6ž¢)d5µÁÌrÓÿ*wˆs쮕æY«ƒ u7¸T}8“VäT™ˆoS>ÌÌa4³Pë¦ÑMqª,+?€àõÀò6‘e,#²¸b½×šAáA ®dk¸Î¬uªÃa°ç@HÒö¡ÌfúƒÀ¥#—y"ÝdlóF®¿ƒ|þ‡¥×䄯áKâ=Úi\§cú‰\—•ˆë/Z­Øôo¿"+šõA2¢mX ×òù=¿>±<–‰)棾G^:‚Üg¹±N.Ã2—1gâ#Ρ7­«pÐzL>3jù/ðRõÈó.â ëá¡›ËAú'–Sú«£P ÄSÏ&ïé(Ññå¨ /eV7=ág^› à¿»á1¯ÁÚoãìæàQ—ñ{Íåدõ´rNó"ÂØC¤óLzÑ_ôUðƒéÑ’ÒšŠÏ,g°ª ¹ÓßvšI݆ånŽüƒlËìq$ú«Jâ󎤧ÿÕ'”7y> KS4“M¨Ob­av­ÃºEç{|G=ë,ýVºÓÿêU”×,¯ö’¸Éýî7áçäϧSþŒ(¹hx}"µKæªáÇ¡5[hƲŠX @Â;vÔ§\”wQ_M¨£,Fþá\ž¬ô*òÀÆÏõû»¢` ™Ùú_%vžÓï}öGú_µÔt½ ý¯jh­XåšRúÁSèwŸ¢ þ½ùQ·”[Za‚+=Býí®'Ñ µ•ꥻÑI9+õ‡>!â;LªEâœ7‰”X˜YàW-DÕ¡=áÆÜDR&QŒŒ ÿÐàa>kéà×ñVª šÐüª3ùÈyâÛí"…á IÄôWÛ¨?/º»j+ÔsâGjÂ(Œå]œƒ•Ä£ñˆœïó W÷ÞlV†’D%*ö¾ ³Öb,Ö~]žÓŸǔëÀ¯&=Ç4æj±ÃY±“VŠ÷®5~ÒæF]‰¢ ðÿŸðm‰Õ¿‚€,ÀÌÄf/‚Ÿž'6êyÕìa¬™þ|»H*±ÜëùBRPèƒËJË3œÇGðš]ÙíaSE¦éä=·EÉŠ ±Â+«”w¬¼‡uj%úÝÜàP.àWÑyV=ÁO» ñØé?¦ªwAb;¥õቹ(N›ŸùiðËMÛ#€éŸâØa¦_ä ¹ö|øÕ<3üf "™àW&*µ;?7ø?üšžéõçÁ¯þ¯ùÇSåªZ‘ùç}õzíu”—’†~¼çÉIn3¿Öí·®ê„rJ«(ÞRò\”¢†,%ó?Ò§ò"þ£0“ýFj­÷3" ¿T ¬òZPËfا:bœÈ¯&Ô¼Á¯¼Ä)‘™*©äÏu°*õ¤X¬¥x¢Šd…ä^ð˜Ozw¬Þ ¾ÛÄ„š¸ÆTQDß­Ð.êô.Gt–gk é%¼Ò þ#WÁ:¨²<ó}ñJü)Ê…{Í‹•ñâ(þ£&Ñ` <Ñ_ Cɰwa{ÛˆùÞÖV<½1FKΊµX‹ÎØÉ›ø ì¬”‡üã#þã½jý¹úåØÒ…èyí>¿s…»žF-Æšou—H *±y ï—ýÕà·kRÍ^͘…~õ3ïÃ2l½;þ™‰íà—ÇÁ¯µ_õÕŠÛ &çÙß!®Óž–Ûžœy„˜¦û‹Ž‹êkTÁÒ`ß7©ÿ˜J¸ÊÏïvÓ/'¯¸ŽïõINŒ=ŠÕFsZ¨"É‹ß-‹­ð€­>Èï’uMã9̹”†íÞ«Æ qÍ´ª¢0Þ;=Z©yäU^ø£åpÂë‰h5PötxÍ.,d#üÇGðË>`míñ6®ôRÛb=E×ðÛóáÚìŽ$tG'œN=øWö3Šþ»[¨écE5¢·mN¿ÊŽÚÖŽ¡<Ê)·Ó‚wçù€ÿ˜Á=ˆÛÝ %ÔMÃð6ó*÷ÊÑ/÷.hI Ç,˜ó6tˆ:Gõ‡Ýÿj9Ò2öºÈÈ«ŸÿqG_Ì3áÍ3ò7~å&à?ÚÀÇ|—û¬–ØÀ[Ôm¬‡ëÙ‚ÿø~U“ë½JöTœ¬“$¼Þ ¥£RGíEGµ9XÛ°OéDê6ü¨üˆZ·=ÊÃQ¸Zq#¬ÌhÆ^0ÍÖf‘š‘!½¦š¾-*±hF vå‹â¡½Ai¶Ÿóû!¿ŠÔ¢§Ö‘ù€yÑëÎdþÇ5lòpæG¥ÁŸL¦³L4²Ã¯ôa±«=ëÊ©¼/.AæfR;ëßD1TCÑ0dAµ÷Òüvå?‘Ž™˜žr„k¾H%É(¦ ϶RšîtË,@-’¨÷NQ -pþ¹umñÃy»–¢î؆b통Šé[+Ì’äH1é_2ɱ—ü£¨µD¥ËÖ|«;Ê®¸dµ‰ˆ¾Æ2™AÊ6ÿJÿDêÂÁc~Þ:ýÕÿ5ÿx§xÁ¼Ò:é£ôÒZ;Ö<­äÐú.4½WÐïþ~C¹LýÇKü‡šýÙz\ý«ÒWݧo ûH/Jéûµß«ÿH~\“Ì 8ˆuWQþü–hJ7šÃtÙŠj´×ƒ3Œ?Ï$äWÁ½d𱫓Q0ò¡“êOàDÕÇáW®‚¸E7&‹Üú–¿ÊÏë4w°„y MÏx¶&â5ö¢„ÅŠŠ¼²bTá/‰XjŠ5¿¡¬¶OéDýG\tHÉ?¶ɯÂOôg5ð4¶Â2¶œÅjññÙáæƒÑ_í#.j‹o»€Âª : üñ'tÑØñÞÉõD²ö¬’øÆ4±L/Ä €P6ÆE§ƒÀi‘€wh.~¿‹jº'¨ÓF<Ñ[¾N‹‰ÿÅ®ç,’1FcNôE-´Ì<“úF{-nÂçÜÁ¸söAÙJ±ÏddYÄtýŒtk0ƒ†°Kƒ‰Ò²ÃŸGÁÅìSt½ˆ8 ~5 G>a=ð5 ‰÷{7.B V }Ï$¬èúð“ñJåáƒ$ú«3”šÒš(ãMóŠYØzBõ`=**F“ͤ´²9Z£ß݆~×ÛŒÇN›rw.¡hE'Åç"°v7†ºU»Ff´ƒxàLO/ÒÚdGU@­ á'þ2ó6µ§G°‡…¨:•{ßè¼¢¢¿šÂVEN"cM¤~0…:Ž~U9‰ÑZe!1JÞ0]ÑF ¥‹dý0Ó¹d2üÇa4¸=èŸèjåÁÃç0ËҥƇ'uÑë áéÌ?N¨>àW¨pñHÕ3â!›Rž“®4 ¨l¬‹Ry†ã®u dm²Ü§›M•ÉR3>w-1qá:Û}£§_hYzÐ{ôßø>¹êNÞŸ+[¼û)œ?ýüÓˆ}õWN«©õè«ÏÖkøµJnfGÓNÃÄýMþÓžËñßø_z~Eƒ“‘9Áã˜?˜n4d=mx{Ô°5Õ 7‘‰X”) àWíÔ×ê1Q§ioúc1&‚õ_•‰tîKŠ=ž6TžÈ7µœ:a¢âLd=“i9`å§‹¬š_»–úó Xø˜d ×x§ãËcDæ°y¯ùÞðÂpËÐTýùQë”Áä AÞý±ï×À‡ÀåÿδÖ(I-„;(ÃzÖ7bÿñé²n!ä96Ör‘Uu$k»€²© +壚ñ{{GÆt Û¿Š•&¡b^Lž³F,Ñ‹†É(êu†ÈŽ*lÑû9ÚƒÛâ甪·öRx‚“Ÿ%¶?ÃYÅd#7Òƒ;\M¿„/hšÒ–|®¾ *6É Ÿ ÅìVüµ|â5 ó‰™j­i‡Ï‰&Ò‰ld(ª²d“Á£ X ^6,ªHTúïj!ÞšjZP—ÞÜO¬yI”­x2ò`}¯£ße…ùÍK´ÿž ó±‘ßÈ|zƒcuÆšÇ`ÅøÕƒÿ1ÅH?ëÎ*6ö4‰êó{x¤þxC`X3©t—•@îçÒ)xÓÐ8ó¾ ?· ?9.`=wy«=7VYåÉ%'ã·°ˆçtµ‘B¯l½ 䆼WÚ7ÄX!÷Ÿ÷À_3qÕ5Ú Þ7"GÅln,šƒV°Ð­©ó¨hVE-ÕVú’^š:t¸•¶0*¥8Ç;< cøôhì~.˜X¤¿çîþÁ[Z榆¼mæv”³Æ3Ðb†È1¾Û×ý ]GúÄ´ºÀŸç43 ²óÆ÷î ™9ôÒé?ö¨·À¯þâiéÏÝ…‡×1šþW¹¸æ$ðúuaú';f£iˆbÍ•©ðš³­út%³WËÄ{ÔÍF•Lh*“Ÿ{þo}Íþ*Ù‹¢–ø… Œè'K¢ËÚÚcêçéUºQ²j´ƒÚ5í!õU|VDV<É\¥ZôOŒD̘ҘEÿ’Jfêü§¡¾J,Zè+²ˆ¬ô÷MÄ GÐ%Õ„9ÎGýy+õêkå#PUöMŒŽ`þyñÑôt Uó°"5ÈŠ3É…X°„¢!é ,Í T^ñŒ"‹¾3Ü¥yÀÆ!ÞºMü6”èù(¬ì bWâô›àW¥XÌG|HýG3ç3Ö›À¯ösjõñGÑÉ6:“¤&¢÷ÁÞÕ€ÿ¸‚îvg:k–ÑØªÉpV •¢·A¿{n'?×Y„üÃnæ)Üòy¢Ÿeð@³Á¯Ö“óìaŠc!Õ5Œ5£«Ü®<õÙÑ9¬z ®²>>(7Õˆ¦Ñ[f÷ß@\¿›óÏçÒ©ÄOV!yô»´ðGde:œ_Åd¡óÕEò¯õøÖõÔæö,šb1ñÄ5òP{bàfcŸÜû[ÃÜÂvÍÀ ½¦ü¹»·{‚O®Å.Á€LåD›=ßt¾+••îê0ÔÓø¤I²ýÛ‰YèÏRúNÿ’–ævêߘ9©¹èd•ÀŸ°ŽÑ}*·5ô» fWAþ;œë½Röá?>ñü.1♑Œ†¢2™[[úI¥´&ÀP”£?a3z¶œaªÈ t½÷Ì8V7r¤šxjÝlÿ±Îäóz3RþŠ=Uâþÿ%s ]ZVjG*X™òT¥<‚ÛÒÇɹÜáõÇ’ö±*Ñ?±°™KF#NpC͵üê‹ÓlQ=ô§¢;ÙG{âœKâ„iÀŸÌ@_1l-ú+Ó1˱‘œ0-ók¯Ö€·™cJnWâ­¾F10ÕzâšóŠÿwßäSO Šùùy~J5“󧟱¯~ôO,ƒþª~˜þ‰ýY夒Lû¡§ýók¯:òš;»þ‰è¸fGž²Æ6òÕtÅ="ßÉëäù±«¾ÖVôXóQDl+•_ƒî D¡0Œî§JY¥²ÚŸ§¸á ÈìÔŸG¦þ£-Uu¨)YI§)_z&r ´ P‡}šº’¬¦Œ<ºüH70;ÝXì\ï5=JýÈŒ<ÈAÈ<Ìÿ‹.›™-•þ‰3Á¿ Zωòû’'d„µo] ¶dœݬÊÝÒÍöh.R5Ø¥#µ:Xÿ‰'ÚËŠ~÷¢éÿ±ŒšÁ`i]­XŽõôÖ:¸%]‘»Y娙Ìe–¿zÅ.Žž¾Nÿ±™¾~oÅÞ…ŽÄTnâúÝ!ÖN2–ÝÔ¼ÄgÊnJú_„¥ImM_ð¾ðçÌtÒ—^§ŒÁFEò~AÐÎKÿ¯Süê Ó†Hµ@ØÝ'ÂÙËGÅG­«©zo}ƒ^Gëà?òiñ˜_ûH»Š¦ó÷ü‡ó?:R—ë^ÎØ¥'Óß(¨[õ­¢²p¥þ|‚Ö˹ëp6ð×ñÐ?Ö¡AQlÂ6ÃUôB¿kj‡E##6ýX«¡©ÐŠ&þ#ª^…8w'Ö¾*¶´jJþÀ<„ (¾þíñCå©Ù)oq:ëÁ×qBÌ?«Ïx&ž‚_¹’Ao§Oâ~´Rûˆô¯[½˜×qÙŒD=É|T·Maãš;ÃÕŸ¥ZòÔ<ÈüW¥ üGltŸÈ±jÊr"‘šþWõ­OàAÕ¨c_CþáJÍÅ0+gþ’^b›`Í—£H;EnÓLF vå¼²T{ ³ÚžÎ9…ÜÿyBŽÐ ïX´®Õ'QO-aÈiôWmLÓ,ɵF6ÛÈùÔå³ç—^í«¿¹¨ZC|PZ\̨ôoŸÏÌèô/9GýÇBüÑeòÔ³·²™gà?r£bûˆÿ8,&’\púñê5ý‘hZúùóIñšü£ýK’2¬>­½õšÏ&úÝ Ì¯íF²KýÂÌlEutÃ,2wÓÿª„yˆ«Xx^¥úÝ@ìøŒrZ{If´øî9ùÇf‘“3+@—ÜÆôAo‹Þö.üù:~%G×4ŽN]Y™kšÕØÙWV¦”3ˆÿH£2ÛÍCâ–btWAíejŽØäcéà{ÍÜI¦°…œË›gP/e{N5GeüÇžl71PÜdRçÏ»±Z½£?ý‰F†€`©ÿÌ|˜:æ-úïÚ¹Û+k©ã>=ýwŸ2‹k<¼ÏJ3:ñ[bü¸+w  ý\ù¿ÿ5»z9HþñùQ©Ã±(aíÉ_¹«¶Ò>jKô=úˆÿáþÿ÷ðU\Ûû÷ÈÞ3spwŠCpw‡àZÜ‚»((œ`I€àÜ)î÷àîîð~'÷rBBÒ„ûïýµŸ–À>{öÌ,yžg­Eÿ]]BÞëtõÝÑ_ ÷û'• nÞ™W¢½A3×®¼z[?ÿQ•Ù@£Ãà¹á.òÃ7cá?Üè¿[ŒˆqÓézS‹÷D½(z¯¼u%ÚÈ(ú8 0õJÄ»°"µ°s Œ¼Ù)EbñCd öŽÓ¹ÒCfü°•0_â_ñFSÀÆ¢Ô9T³ŸS_þþX΂HmØs^åU-"½7«”5øt Bq°‚Wð¾DÎC±¯›à³'‰ë¶Â ÄNgó"íŸØŸúCä/ÍxÿîÂËt"ŠOC¤ÅG*²…µøÛ‡d1–‚‡m§þ#G„ýÛ¿*'Õ§¢$ØÐP¯Kè¯RÃ4Àòç¯Ï/‡1³â[°]þƒÓ= nÖ™Ž)‡Á¯n‡93û·ÉÔÇô„r¥ñ»ý¨âôëjÌNÈ `ƒÄPý\Â_èN»Àt¤§š=)în8þc#|[9ñ{°‹VÐøÌ™5ÆÅÆâÿAÝþI4auÀÿ—¢ýJì¿oÏì‰qE›“0Ìi¢5¿ÄÝ|†µwÃÓö"* VD¿±T¯-Áæ]c^EüGê¿Òã?jŸ¬0*¢¿:f½{Ú7ÁLdеðþä÷ä(ÐÝjfA ïh+G=ºKMáÞT‡ ¸BþÑÕ8„ÿfþy€Öý\A ‘”¿“qX>¤3Õt¦~?1Š£½ úRÆ1¦» ú«3(ȲQ=xdh=׿‹þ%%Cíðª>“˜â*‹Vøšùr%ùÇ:°¦#èüá\éµùƒyØÒ×d†-ÈŒãÀt1Fý >­ÌüÁþx^o2Õ~¬V OœÓ|æ÷ÏKO_æF)0ò/Q¹ÖÆK]‡—/mnãŠWà?ì+¤ró™¹Gýà=;ìó}#†\$šÀ©Þ1ëÉ,±W; ÕÔ^üÓrªÙŸQõ=EWqê4¿À -d&`^1Çy½Y™þ^¸µØú«d¢ˆqÃÌå¨@ý`N:¢ä²¶°¿Ýä6÷èæ;œúV>óúÝd™ˆoöˆiâüó£6¡¿úÄéÎ32ƒHq«yÎZH­Lyú|Åÿ Ó×LÇXP«zV qØêCn3–îÆ ŒSØ­­'ûL`RÃ9F¿êf7OÁÛéBfb<õÕpüÇJåŽVV\ÄÂÏEOKó‘ÆP®t 63-9NCY‰¾S ñ'OÈÄlÝÀt2Ö(Jˆ“ªÃi]þµÓ–Z)TÜ­A×.·7!&h• ì lÒD&¤z ¼ "ÚÏŽÿ¨FÝ}ròžZÄÜ«áÏdkÿµÞ j%SðT"ÆÞÄ>Öƒ'£Ê+´X˜;»úsÍ9ÍüÁç\wA|±‚šj<(‘÷¿]üê„Ö”<ï:º‡òdiƒ`¾ï0Þw@Ä\Aì¯Áþ&rìÀÞwÁbãÎ&Ú†þj&YÁZú'V uÅ7ô±ä2—È™;ÚJ-9‹þíSQKmÀî)ÎŒÀmÔÓÅ Þ/na9Yò§Ä÷ÈF‹3Î[\þc0ÙÌ$"ƒ.pBåÁâáuÊS[QM×N´Rº•–zmO›ûÐÝæ1×S;ã‡ÏÜÉ=ob$“Kœë%A¿ûÜö(OÁS#6h”›Ñœ¬C0pÕ‘A®&£8h™ä#3©2‰NÿD[¿»„ü£-j²Ý"¿Øê¼ÞLêHüG)bÇpŸéEKC±~s°63™# u.éç{ÿq–¾\-™&5ꉯj–$*ypPLå éß~R½ÿOÎÛš\ç¨ù˜êõåè¯æ²“dE©Ñ_mŪj­64G{+–c,1H2X50ï>¼ÙÒèõƒÁyéÿõ/r©GQU~ÿì:“ówß¿µ_?“Ô¡ÞãO}±î<]v¿RýÕ}zðÞbþà¯õo¿¦|¢~ð6Öý¸žJO®ö§Îf'S”\Ð_ѺüÒ>3hq°õ DAþ¿ t¼»¨ÿqþã-¥*‚#ÎÓ=¢´¢CõVãêÅñë°YõAwʃFw†?o‹²+ÑX|_ú—„ÌÐŒø hwõød g‚cñ]dã±Ù/ðJWe<£jàûœE…(Ìÿ8 Ì†? –ó Nû,ÍLž±¡Á+W%ÆÝÇ{¹„3í5K+}µ¸‘\ó$­·'×y¦0áÑC¿ zÓ¨?¨ÖX8ä\ôØŠÉý¹ŽÿØÃ¼Ë"P– Â|çtZ’v Si©ÿè7€2¸ø•ˆËCîŠ]ÁâËšÝ`í3¡Í «ƒDõR î_üÇ~؃¼ÑJ*p6Sóþ‰m­™fztM‰Ìbædwv®Bä%Ø¥=I¾Ÿ«÷Çòµ)…OÊ(ŸÒYÆ üùççæ°[¯.‚ð¾ä©›DuÍñ:ˆå»ÂÎì@ÙÅ(|Ënö”Òžü>‹ÔI¦Ç„=Ç!°wµÀ +Ûö[Àsgó<[°™‚žá­Ñgf0oe¹šóÁàbÇçòI¾øƒÂÌ"Ûæ ßR?˜™§Â•ŸoC³;ÚñY 5q¨›ë„¥ÞJEð«KFcÔM“P²•ÁOÝd÷]xžþ’ÍÃøEoÅ=8ŽÖ "×Ôæ"©$@–Þ¥PÿÂÖrt7/ÒU±7(TÎyØÛ>_Á{¥ã>ÿxŠŸõEäW@ÕÜÈ?v¡ß¥_;l÷U²­mô¿Ê ¾«ìO_Å TÈ»ã×þäg‡ñ˜‡À÷ú‹÷¾Ê`µˆè ã£lÇ$Å ¢´kéšS?×6\÷GøïwV«Š¹Ì\ ®•Ñ<Ê)o†]:HWÞˆ'Cj¯2¨g´¨á÷‘\å'ûÄã´9 ýn øŽúàb©©k¡Pÿ1L):ué³hå7|ë"“L?Tt>Q&èfpµêhîh&1˜ü#¹ãwºrõ£CÕ{ò!w¦Qµd*ÕßhŸWÁ²Tàš‹š¥É1ñ>®+éÒ?q¨zô'™qož²è¯nâÙÆƒo~23P=X&eúÝXŽhÖ2ã ße ·Ki0‡…|½ÌæWÙðÿ¤~03}N…< ÔŸ§ ùÝH¤_ ê?jÀwôÕwë̓­û¥¬fé7´ÇÚKøó_›?x =¾»ÄñÏé1ò^¯ ®î©¾dn‹üG?ô»Í~iŸ¹µÔDº³ÁÂܨï 61K#žöV¸Ã%Ÿµñû‹tÏ(­˜€úÁDzÞ½ý<í¨‹¨M„×_ 1Lã8þãþ(ŸUYÉ¡#>¾í þcºÚ ¸0îÓpÊ«áycb%‚ˆ€K‚r^gb@]:æ oÍÊFq¯[‹ž+Ø[í‚•{ÉU·G•s„¸n×Ü û—‰ùç¿ErÍóµ:XäAœÚ2l<«™áM€ %a5 ¶îš1Îa½ çÒ.s„lu¯ú^d ƨþBûS¥ÚŸd!k‰Ÿ²Íå*lÙS|èXð–Ýä'Û`°³Ê‹øðòTøÇèwíy†íÁ¯6ÃÎ4Äßœ€IŠi4óõ”h9ÇQWaÏxê-=8Å›".ÌýÇpüÇNÅÒ«ˆ D¦^ÄìɉÇòé½dflõ8Ø™£\]Mlÿ"¸‡[Äís¹S>ü¿™YAlKXÿá®5õЃB¿» ä2êrÐ1{¢],jÖ†a©òa]“€È,ç$¿r‚s©›žæþ{¸õ Ñ_M fP–²æ""/ªÛb˜‡^L?_AïÃI– {ìNç¿ùp_eàÏ/-t#çœ-Ûk£BÝé÷Zsü´=Ç¥\v<î3c%YŒ=ݪÈ_Ó *±£—ÍT€CÝâS5]#SØ –·ýnh•v,áK¾k{Önä>[äÃMqKó*°»Ø;{~Ôº£[ø¨Wðç]QK¡K 7 7ÌX(:çÞŠ«:‘¾fÓŒû¨¹j‰EM©Rµ^?1ÜìC¾1‡þ»ÅÀsÚYMP?#æ/‹r w‡ù´ðUcâr¹s½âê-Lk7÷þ¡Ë?Å0£!lѪRüðåÝñDý¬#0>1°øË,ÍJ®ešö¬ù˜fOc!ÁyÅ,çùeRÇê:sCžªvFÇHmvd´VÓ©¤xÓßôÓÚO-ú1*ÙÇ¡æ}dãŠx¸œD]°÷ëDg0'ú÷ Wƒô— ³ˆEþ”+À¯‚˜Ø8‰ìÍ—ùQƒ­üôÒïD—ÇâÖ㚕ޣPGÇ2N `*gÕVÌÿ¤OÓ+i9íkJU-1þã¶vNM¢îú~\Qúõ†rOk†4á'ŠÉÛz^p‘j|&Ú¶¡Ž®™>ôë?ÒÓ·<üGqj•—ÉÔŸWKkrƯXæbR—££ˆ_Yô»Ï¢’;á'£Þ“õ`}‡Èb,¸Ì1âñû¢xØ4ð«eQ¸ÖãZ2Q‡•2RÿqÌ¿8¨Óp ‚ ã·Î!Ìròð>¡9Ëð¿©lCh‚€Å‚Ÿ¸ÊJ3ÐY-ÆNìCS€Œ7>øÕÑSHÀüÚ°ºÓ°kÎѺçÁü¯Rá1Ï” û™‚w!7Vo;þc9HNøór¹Øƒ®3›óM ½š®©*Ÿø;ð•5ðl#ÈV‘{¥7FÊ-F9XùmXÉ^ìö ™B-öxX?®ÿÈ Jý¡x·8F~t|­èqqxù2àðƒÄU=ž¹ &9ƒÑ‹Èa$þ85~3 9Cxó£Î(šNløîqp±ð}yRFbס¹*ΛZE6í]‡þ_º„ûìÍi ä*bŠ5?ùÑT¿þŽzºþÇ¿Èjë‰ Ž¢ÞM`®dæ„§™ýÕofEð«â\w2"ñÂX¾ÙFE:j s†_áÏó`·©Ue È®ËtïM BÔ ›ìIýy[ôWOŒŽ`Z^hïJ“ìÇ2·'w,{hcB­hëwI»k£+ƒúäG7Aœ¶™ÒÔMWô¶×¨î–ŽyXúaØÀ›x¸ìø£¬·ÊxË•”ÒˇZï¶>®è*ÑTK2†Sr«­fþù} +p ¥¨Ø˜¦>+o©Pftà¿xÂv0òM wñÔù°ÌRšª¨¢A?¡É+mÔçýÈþªŠõ.¿'aÇR˜®MègrÃ|k½"ºß@¯UØûu0Þ-è߾ع^zu¹öIšÔŸO•׌ pjmPÜNa~HQê?<87J’9t¬W­-t×2¬èØç÷œÌ"ã)¨˜=±2ƒ˜à¼^M¨¥A ‚g··f>¸/곓L¥3ã9ìþiøqàW~V<ºÏç2ËqˆŠˆqâ:oÊ÷ À|Ø€~¨yŽ‹Ò̳ªÍóáJn•Ÿ”ÿ¶Ô± WÉÚËü¨^tÖ‚oIDT“]îà)m@†\ëÿ¤þ<ýCz%|A•ÕyN߯/j¿>S¶«´‡ÚXÝ“þ‰Xå´RF‹«ß¢â Þ¯Q[æßê€rŠþ%oAbîñ^×+`—–ªŸô+TA”½Á¯†ýÒ>c¢¬BñÜD [Èõ• êxŽ9àMˆùï+ ° f»ÁÕì—%Ãô/¹®¯àI=FVä†Ü$W öùºf|2΂Õ„ÿ8¦h«±šJÀ¯pÜ­ø÷1š³ŽtëmL÷¸´RQí~5 <¬/ùGcÑZÁO ~°9JÖYž– £ÉŒÕÏa> ~0–•þ¼%ê¶·èz Cˆ-Cb·ûÊFí5¸­­t} ~õP¸Yáx‚¬òä#¨ÿ8‰âl&yÂk Ö#êÏûã…Kr·_²¿%r õƒÛw$6ý¿ª·„ñnlÄ+7fGJX™†V&ë”YÍŠëXLþq–úA7êIÃîŸgÚd¬ü|ï&±AˆùµÛÕ»º O9€Ó¶ø·æú¯ebá~sí̆ŽuŽ»Ìga­7îg]ÄoÎ5“{à0σNþN¯í~?tŒtåý‹|TlpžŒ®æ‹pzCd[ùHýG+üG}ŒÞ@ëŚוòÔÜÐQÿ‘D ÑWD¶’ýóóèw›Š§âƒx \ä~=+þc†úþ£½ø»éƒ‚?!*+ýëÏ$Ðb ÏY.r¢ƒ™LýùQ]Í­Ý Ð;l9à@¼ôÐ~Dk'À¤¢ÉfìÞB8´s¨‡üÈ;_ëð{ÈD¢òú$ç½àV‘L3Ê Pÿ‚m„,œ\} Ý·ð\öè\g)üG)y•ÓKé&zé_Éza÷ÜÈ?†q_2 ¼RñôáõOÜ^S‡}êÇ߉kÜdgí°7É`$Üy;/}´­÷ ®?Åø‚ˆ ‡gr‘fcGsÍýQ–a_Ya ¼ðx»úÏþ‰1ékÔ– ƒbXWÉ\ìuüü™í?ºcÍÓʬd4!Wjõ ÿ‘§£ Þh:–| ¶ÿ/ð+Õô‚ñØI¬¿’þR¾¢ìôd0¤²Tcͦ†Ý_¦¦æjEUwãé ÑÉ}ÆðgîÉÓÆx8Ù+DÜ5¨†¸F<^ÃÑŠ~ZÍðv'a„2­m‚÷öÁ×ùÓ¿$g¨õžÂD7Î’Û] wHocJ«vüÍoÆAø”‚`9»-7»dßPØ6Ç2ûsõðcŒîâœó‚ëÐלt:Lý0òžr¢­LΦ*àWLÔÊDúÉÈ>ÃØ5‡`Cb’4%/ûÊ‘ÛD—!ÚyCݬ}á9!ò—ÒäÉ9 V3!­Eݬž¢ÿÕPž¶Ž`ºÙdò¡T2V¡·JÔ[Xižcš†äÖãùÇp«9³¥âGxƒ“)7éÿ’ä'ÿ8á<»~0,’ë¼­‘|ñL¹ª6§ÿÕý0ó£ìXþ<ýÛ£3ÿã‰vFMÿ‹ý)g´VÔŸ+T÷•’—uW=›:E=ÌÄ êtÏo®OþEþ#¦–\a*d7XŠšb®pU3Ñÿ¢ÌÂ1”2qäD=¤CÁ?^ª:Vý¢e&âÝŒí¬ ÂTœücŒ|¬O%ÞÏWçÈm5°²*Qê¿»V{›ò‘ê3b‰qXˆ¬êÓ`Q¹t[]ž9\Ì Ÿ÷;ã‡+>ä’|!Z°j¨^ÎF‰Îa¥ƒ‰£ ‡/ý¨`SrRÿÚ ü¼º»VES¼®­:ÊͳZ;ƒçõ-U±ˆm}Yy.¨ØJÖ[.néY#įªÇÔ+¢€ñ™¿1_YSÆæ´j઱*r®aOH<Ä÷†“•ÀÐ áÏ39èç) Ô×Ú%ñ ýKï×)Á;]ˆ3Ìߎ~˜s hT£8ØP°LÌqø"Æ“Ëý¼Ü!ææ§©†˜M][BrÁöØ|,1mÖØIþÑ–Úor‹œ…7¾}^¾.>+ýwE˜;3Ck,*ã3rÂvO¤®ü"؇շRƒ*†.ÌÊE´—¾H+øùWðyf>u…)#¢‰ü×^? ÿÈÍg–àç½Ð•Î#W‰u‹nî1˜Ž÷ø›úÁdØÿž(‡&ƒ–É8LîÔÝXÁ'wÕ&…Úá{­OÀ58ï<ðLr¢2{ã7áÏk¢E:Gwó¬ŽÁèwÝÀŒ®áá²RÇrÏ>d¼»Í¿2…ùèmPήXüUÒMÒ"®ó;¼~•ÿ±ÒÚ†Už+üö¼6ÿ}àt³b7Ããþ£´RIµç¨0îÊÖð$É©ÕÓé$Ø|©==QY+Ð_•Ât±Ú£µvsŠ›Áõ~7`T&é~¨Œ¥®Ô¢ûçÐÍì2³ˆsßþ¤ó¢þ¤—¥tt¡cîEüÉ:ú7s¢®Nh#×ûÈù­&Þª$BTFÑïÆB{Õ·¡£Q ÖìŠÇQ}T%ø7ðû/ÁšºÂƒœA»ö7ݪFÑaÆÕ,‚ÿxƒÒc-üÇñÙ‰_Vï£²Ú Ÿ¾Jø™¯ÁÒ¶QÓ2ÝÔ¬ôDy`Íp´¡&¤ó£.‚.®¥þ£ùÇMÞÅ3D:n`Õ£~P@ÿü|ÿ·¾“]õWO:Ÿ,“ù‘1ªíä3õM´øúT}—> ¸»ÈMô»)õÚ{ížšê—ñ«ûZ ËùX9‹h¥7¥RE¥"ć Ñú²`Ñ^~þþg5öjžboÞ|±D¤S‹k¦¶XÓ0ÑMzè7ìç5þõOÊdòêÄãÀnš€2µ$c˜*¥Xˆ»„µµÀ{RQ¥T5Jõg4…Àlz\æ}öË „½X‡õLB”ù„7¼ ÈËC_6Eœw*¢Ý­P¶ˆ“ô–.G>óïslµ ÞéƒÍ³\$[ZK7”AìµóÏ#ë6ஹq^Ãñ OñeexKÀ 'ûͰã©]<õKÉbc¥ ‘™¢sÈÁ.?(ÇÕ{¢<¾b+Ùúe°<û¿ƒêׯ挕wä£ù´ÃD²[øª‚¼§?Óî„s¹B}Œ_â-ê0•ø ÷ñ*þ<±±JœÔÓÓ}iüGklürÃì\wbø —áøUèýò‰K a›À‡Ê±. O}8ÅMð!uñí•àJŸ/¿» ~5—“C–صí"5ìǶZ7ò&ðs&½É¹êãsJ’|cfàT´¶s©?i¤% ñWTQ$¬$˜þâF/ƒsaÎðfñ‘ï1Îñ“Œfó8cµz{ñIñÌÛÆhøó©XûÊpó7Ù{0Ë•ò0zÅGZ0ÒÜÉrø·1Æ9ê?¶Ñ%>M âçktÏD¿‘Wø9¨ºrãgÁWŒ¤ŠÐFó*ÏýxSn賉XŽƒ_ å“O€E…‘éÎÆ¥n–Õ¢?áJ´a+͘Ök8—vdzŒ#dw¬:÷‡ùç]•6ª‡Lƒî‘k”7*‰Á²=E`¢™6ØÏÜA¥ž öËÑÃêÖö³©ã…+{Ñ \5úœd!ý.Ò«Gµ0€‡¹g73tC)¯àOWšðçS˜›òµíR&fÅ£b|Õˆ·©„I_áºÕôÌNXï¼ÞßT_=1Q'øÝ~2W†C ¹ÊN %W"ÇUºT¥“–·Ù •— øU³'÷”s;ÕËoÀ¯Ž«×è‡2”·ì/º)µ–¹áOÒ2ɪ:ýôKÁ„$A¶Ô1Þ„þ»©™-r™jÌ)fa²ÆX(vÆQN·âÿý•CóýIøŒ~7šówß¿µ_ï*ª¦õ¥[É m¥Z•UŽ)qµÚ m†6Ÿªö_ëå¯,ÔR ’–ôÜÒU®×§ïí}³¸£{1"öû/í³£v–<eTkbó+úd° v|¯;\ò{lór‘Lo¥c©åÐïþEî:„¡'ùG;c7öé˜Þ(X5´œ8·<9È$‘EŸ…£Û£U×Ëà?>a“¦ò YØÃVø‘•R%ã~NÑË‹‘Q˜uT™ÄtøXå»tÀ^N= ÿ1ÏtYö¿òXK÷'Ÿ˜A^ÖrGrÍkµzä͹Îc0&ùÈ j±æ™Ž ½!ÉÖàE}ñ¦ž°Ìÿh¢Ö‹hMu ú+͘CÜ>„÷¨,oK?bü}Dé[¹Ê9ààO`ëí¾èñ0Cà?,z >§÷òÏÿ$U«ÃbžÃŽ®E)u‚¿c+ò[i¹ÀßNúc"ØØå)øoîPR[y7<ÿ±]9«§ø»­±æà‹ì~“ð'mðºÉÁ26k^!ÿØb|$ÒÞOô>닳N¿Ž¾0ô›hùQõõ‘®øŸÅô'yÊ5_…ÿØ€ÿÑÌfoæa”'Sˆk&&Kª:%ŸTæ·¿ñFÄ ìç­Ý¦«À(ôa~ H+h§6²ÖôPÞô€Г:ç ù¯° ™PLíÏiš™[ íÕh#9ç° ØSb–³ÌÄlö…¯¨M§ÃÖbú{,"S(Í̦°ØEÉåÆc£ÿâtÊwZÏP;L'æó¼^&NYÍŸ™.™I|›‹÷•}¯äßõìÓƒë>KÔßTmÁ.cSiôLÄ6Öá5†qN¥¨~êÉÞ¨ámþ¼=oØ>P꿈í‘}EÉûú;-,»`ïÎE­ ‹y»°˜à8Y+C3ò¿œÆé.öéwá?šâMÁÊO—C9‡ç¢ßÈÄpýGæŠ%HÎݬH^uƒûÛ¦,=(K{¦ï•6惲ÆD9·ÿ1 £–Ü ßü‰5lÆ4ªšxÀ0æëXñÏÊIº£øQƒ‹èv(Z¤ h|˜ÉP‰5¤3kF,_1¬êŸ†& Þ¥Pÿ,Öžã?¼e|Â:v1ƒŒëorô¾KÑéxRkÖÖJmž#ëxÅÏs0¿ö¹Lc>»7þ£Ú«?×l{e³aÁ:ðÌ=2<͉f{"îLH=FßýΨ`ö¢I}tÒ£±Ï`€®Â‹0ÕRYÄr2åÜF#æ©í3æÀð¶1½axæQ‹Ýºlž¢§Ó+Ôbg¨?÷áT›r–“¹voG ýô{X[o|Â(øýñf\t .øFøÇÌúµ »P×ü›XTu{;Oæ½’á'%IT—þ xÒ}¤f2k6Pµ»«mRâk«´ñÚlm#ùÇŨ.ü电àÑ÷Ð_™ô­öÒ‹êé[¸C?.’‹õ`b¥´šÎ]GeἚBmòIQÓUš(èJ«)´ý¢7ü”‘wDY}@”VŒ¯VWó齉›g‚^ô#RíB:ž·UWÀ…¢ód=g«­oŽÂÖ¶¡8HËߎ¦fkJ°Ž¦D¶‡aüð÷±Þ%˜oMŽÝ"Ýáfe¢˜ îç ¿}¹a³qÅ'à£[Cž%¢ž‡U½Ï#ïkE#Yq†V¿Ñ;YîÁ #³©7o×7'É™KÖ´™ç_¥'>£×VëD°æ-e øU\²¢Áø¯Õ aÑ` ÇÀÁ—S«.=‰Ÿ­ÏÄÖAß4–sL*ßèO5=œ“ªñô¨ÂäTm`Kþâþ6%c¹#r‹NŽ[ô¼ÿ]É’ÆàñF“q%Gý^ `ŠñÏ·e#ó’ ‰õðå]±‘‚Ѓ=.”©AY’ÃØ=úKÁ¬¤þü9þã,»ËŸéƧ®ÕïüT3YG«-:Ây¤%_YŠ%¼Ë­„?Ÿ&`–GQOçŠÚÖÅLó[K™‚J¿ÒhˆÜ$2®˜æŠg2k¹Š´Ü : °¸S˜àƒB7ÌøÕh"Üñð´gLæ3>±vï,•'½PuÇäÒBß•›ZWÐ7»^­¥Íé0Ùi„ùl‚}‚þbm7¿Ð¾;YMIü›;È^#bòCà…©tŸP;TQ2XÆ#PÎyø…Eruæ àÏ}ɰfÃw¤+H =ë_£PR¥1“µ„ŸñA+µÝ„‹øä¼)žJ7µ5ÊØþFœ ƒÓ–ø®†ù‘¾ ¬àþÃÉXèB•7ógX)Ð_y¡"›‹ºm,§=ÂH)Cøøê3í'gÏÊÌo‘sÐi Óùä-˜u>¾âìÇtò™W¨‹ínŒsÕOÍB}gó©('Î8¯7·:GB%jqîÇ)#­’&ð›ó9L„³@ CÒw sUP‰6ˆ¥9üy³”c,Lus“™®£ÕÞñÄ‘Â!É?.à?,¼]|}Rc;9 oŽèbR±Çy‚ÿ»/âÑUj¼ód¾()ÕxÎßýÚ.^)>êkÕ]3ô8úiµ>«œRbj«µ±Úpm«çû_W–hÙ@òãòÎG—ÝôLÜLÿÝ}¦NÿªþEüʬ¼¬<-ÊIwÁÖ/njYm3þã©xJdwQQEtõð™¬zìǬi{pú0Ò£¨‘/MÌz›Ÿ#ØÞ{S?2-¢Õeóðìü†Np>Lg|ã±øtžõÄàoX±2] ºúN#½7”ÁÂüª )»§H{bÖìØ×@øÎ ØÇd&c3jaDù¹åk­X$+ÎÓŠ“¸¡f »ð8žØ"z¾`WSûyØØ¥XÆ[ì7'Zè½zµJk~VV«É?6὆°jažþ\ùyê"N’×xaÞà¥fó^NaÍQT÷g–ªx¡Å gÅÔjð«kœÐNÞºíœXòºì$ƒñ Üný&v¤#YÒp>m:Wœ ü*ÃôpüÇßÊU­‚8º× ÿá0ñ8î䃿›wã÷õyW›DZÿ;ðšiAjüøéRÞø†t>öÓÔœ†ô¿ª‡ßÍF» ‹ú_s\æÃV‘/G—¹ån hSRûv\w<•=Óu8±s,¢‰üד3L»@W³Ñð)«ñ‹É†î›ëðÛ똸¤ü"–*­yŽŒøÄB`•'À‡:`ùGàñój¡k‡njñÐg‰ˆ«!¹“±CåeŽFÁÔ”úé ÔDÏÑ©x¹6x¤J0èãÈç*“1œ!†þ¬uObˆ•pxµ™x?yˆúÁ…Ônd?Ëàã+‹cß;ºu5³™sÀÍú¢…žˆwÆ–üþ|®ÒýUr<ùk¹6¼ž³ U#ƒ°ÇMQ`M¦þÃ…Ü!ºÃTgæý½ ;ÈJüÆ"º‹ ûUã£t¾r©ÕûÚ}êfmÖ*WÎ%A";Áð䳎0¥½•瓘x–uvÑÿê \Wê2«çùàøQ³ä¼Þ¢êt]‡s%†œ~µE¾2ë8:R±_\-<Ï6No¨Ø{2Ã> muÍhÖT}v |ob›žôˆ8êÌ?6ªúyáA6˜'>»¼M6³î½ ê­†x¡ÆVmÇfÇú ¤BtÝËÀžyš©y›³¿¶Du•úå_ë0è<žÿ§/ º‚ÌtžÌ{ºš†ëEå#^(^êCµ·ö}0~þc‘ÖO›¥m *ñdTqþ™ ÊÍ….Çqà?âɺz ½9u*3õâó Ÿk5µ Î];ÿÒ?|Qƒ^{EQÁæç}/W1E4R³jKEg8ºð¡HʦۚãÈÿѹ¶ÔúpüÇl‚m™›žDø‡ôºð§±ù)Á¯ž‰QLàÑF¼îz­“^„X6¡ê‘l!1x ¬²7Üùþ;½.†—ŒŠ’ÈýÇfÅmY\´¯±ñ'`.ènK–täµ>ùq,¢¯TA¯–c¿ïk¥"¹f?­&1S]¬¯ÍÂæá ]Ñ ¨Dõ)Q_}e—+๡[ÌU_a~TcµvkÆ%ƒ|"â¿zom&WH67ˆ•FÁV,ÀÍxɶÏáÉþf⫊Ò{ (Ü)»µ(ô1¬ÖZüÇ þFEÔ´µÈ“²÷墌‹¼ÿMˆÃǃ·ŒÆ‡d`*} 2)¿püÇ.ôâ¥Y-ˆWY¬y œÑ@¼˜*u«kjŒé±û·ûsÕ_©‰™Í½š©Kw¶“?iÎZj•D{ê‰m¾bV÷hª%,ÜMüÇ0“õTÞ‡‡0ªòóÄ诪a3ÿD{ú^akÿõäôA«—sÉKMÂ0®sê Sø_»ö¬£»•’.`-Ý—‰ž»c›Çp.9ÃD ÷49<Ì,ƒ~¶¼ÓUú_Í2{ÃÔÇ¢šZqôi*MÄÿÿY€\a:ç0Ű'N<Ó¦„ºËéñ_Éýt¼Lmc–â…âÀ,¼g‡~d2Þ HËÉgN‰›z3µikJuóÏMTc±ÎÛðŠñ@™ÊÂÎ6âÕGcí_ã?óÓp?ÔÁd vTÕ߇³ÅtjAòÝRÁžÙýwçrjMQðžÂÜ£Btª~ {Ò‰þ‰ÃØý,N8-wÅö‹Ãñ{è÷\‡Õã?jÁtžÆçŽÄä³iM]F£<,ÍeУã°#ÒØÍ}žÇ£ñ§GÂñ]´Z<[MÈìyåt>Á¡xQŠIÍß´RSÑ÷?A•ÚÜÂÏMö9Ý^ …TÄò0g製…ù´ldóùoÎêyjÂmÝít˜ß¾TÓÝF“„±ûå^d·­à-ìNô™µ<¡V|¬õæ^ÚóÏ+³§vį·@–曃¼ô3ïLïñãô0Ùn&‚Å`Þk*ƒ6l Ù °»1òŠaK-¶¯\ÃÍäÏΓ;˜5¿;ÑÈLß«ḭ̂xȯTAŒÿHˆÏìŠo;‚…®k "Ò+8ïñ`òNx£zð)ÞäFõÀ—™ŸÍ1ð•ñI½aÞëwÇY“ñn½¨M,ΊÐ^3…—1ˆ¾5¦úI» º¶$ÖÅÌ$Gˆ˜FÑ‚ û|Xé…æ@æÌ%ç:M¥Þ.êÒw™ié˜{ p!Ùfnà Œ¢øþ£ ºB¿' Ïý”âåV³0Z®ô:ŒM]ã9*/ï¡6^k=§²s2ÌJEj&£›ªñ…çz¨ô¤áÚþc‹zSCyÞ™D FòÙÌêXˆ ,'gåÀ5µ Ÿ·R8ÚZ§ŒÝL!ÌoF7„¬=9Œkm4Óïé3zÌy‚ÿ»/LÕ»üýó>)9@š¾ÿî×~}¥ÌWߪS©Œ¥RmuÔ:%‰¶^¨MF•þûïQVi99åÄ ÿ_˜¤ñF˪¶Q—2?ê¾¾þ£t¤–/ôîëi:Huï`{pËú0QN«ÍQÆ^†o>*\ô?£tåÑиèÞÄÜ6¦Þ¼¤Þ¸8Ñ}Mh“©¤Œ&–„¹/ãÐzd"ÿ'£™Â‰.êt›µ»3®¤b¬BSê?®£—zKc÷o$³èCN3ˆ;–Y+jŇÚPžŠ øTDöÆR?¦þÜËìÃÔÛæèš.Ã2m™>˜¥‡*J.Q‹L®³™ KŠ×0»ÀW á«XéôìŽý7èû…;å‡ÂxøãHð«SÎõ®(ñõKpV7x7óÀÌm˜rÒƒ~RuáË}á〰MÆ‹|As¼d±œÕ†>Œ%¸Þýàv6^Vwž_nuýªJ£M—S 7ñIƵº9’QŸ1ÿq—‰çÈ=ºÐÕ×JÂþ¢é{fÄ%CÈ{‹÷èH¿oÐ[=£Š1à¡xâˆoæpÇzÝ—@O=Á* RWÃáËü¨Ïø¤=Æ~ôW-Ñ_ÑÓ8€­¹ÁÓß›˜&½™˜õ}åÿþ¯Ô‘ê$çÉ|SrÿÇõƒyÌu&°>ã/ìé§É?vkžÚ|íýÛ­â5e—Ö„JÑdäÏDE2ŽŠêlæŸû OtÝõëûã?ªÊ½¢ þ#¶¾úÝ:Ú)²ÆWtùÍ!Oˆ‚ú ç9üÓ¹ µ‹ZI÷!?˜‡þƒûWÿQMp{¬ÿìX<²ÐÇb¸(¦Ïþ§…þý³š»^ŸH6 ï¥Ý“/66¾ïö4šK@÷Ïb…ŠÀHÙ7 ýÛï)kÄRòÚX†x¢NXaV]Kžû;ùÇò…èwGaû2ÈÚ­sø§.i}ØAcÖ¹lñíùuÉŒÒañ’‡ÛyÂ<ˆ f‘‹<ÿú«ÐLmÈê1ÕÓjV²¢5|ú0‹ÂœTgòù½ÒL­+ú«6à8§ðFSð);ñ"Ñ'¾`ÙËEœ_eRÛèÑñj1ÁýÚæÌä”Z’\cµ£²µ8¡?kqçšÝñMsÉ&R3¿6-wlj8ùÇaå!s¯‘o 7ù@VéÁg°V¢ó8x¡?d-¢ýL;z‚•ÜË5¯â XˆÏº­oWÃêÜ´ò¢:™T<Æ^¢ö›¬v‚>‘»¨ïN@¶0ÿQëŸþ|!wJ€-.#û‹Í*ÂÌ“°üÇDí¹ó48üµØ´iÆ4üÇ.*Ÿ±¾/µƒ°Ê½àÏïù˜)5JÄb¨{÷à?ëq¶Lzäýq_¼×¦ÈñàMIÀ‘.cÃßÊT†{˜öñÎØÁTPgrL'—iÍü‡Á<ŠÚfÔæÝ…ç»¢ µ^q”ô>ÏÁ|Ìbð+s­ÙÈ܆‡ÜÏz…­O¦Ã1.ë“ðtÑØa;*»¯ƒíõÃj„~7¤ÿÕ$e¨:þ®QõXîG”“}a|Ð´Ž #úT˜jÚÛÒŽNVGô·c¨ ÉÿÑï ƾhU®r^n,5Ž~Gp<[á?\¤—HD–•…*ïÖÖQÔÉmÑÛú‚±=æ?–ÓÓ¤8g‘Ǭc‡¹Ù¨ñ‹‹ýÎë-¯î¢k^t)Þpvnâƒô7kÒ¿d#û*j7?ÀÄ{à‘nQ×H|ø‹2è¯,SÑŒ N}–)LPÏïܯ>c~­'ÞhÈõI¡Ñùx1ü¹Ýó«x{Щþ´ã÷$ŸµÆ8Dí}«1 »¿Dùœ'º;þCë¿/ø?ü5ùGþZÉ®&pžÓ¯mã‹2G Ûñî»Uûi=¥8´íàWSà?2¨G~i¹+Êføó»øçÔ VÐßS)íCÝÎ|üöZrÁ£¾dmMa?Œê®ð$øUEÕUóÔÿQåîÂLìzÏ(]¹¡vRêöì ñüÛ …T%à uA¯ŠO Àæ§Â›±%"Ëe·²ýnRœXdaæÃ¾wG;Š/¡+êb¦øXðETïÒ\#¹æ£š;±}žl[»îBWìèùG P…œi=ú©eäKØå qEo!~õMÙ¯f€ßY¦æŽ.‡ë®s«xôÉË­‚û¢¥ZA}ˆ‘Unù–Ø!Û¹ã9È?ÒÀIÞ¢v¬á ßKy•“¿l/ê±Æmñr‚U^£à¥Þò<¤²3d•ï_­Wé×y¿8Âøkìã˜bü¶gLóY,Ê®:Z¹µ\ùN²¸þìpùOSŸ›i5DN­"Þã$XÍG®é Ôzj¸a<芴‰ú'FVøóà7:ˆÓz,êØ’Ô¼Ìs_¼µ ¬É·Ãk¬Å[”KQrPÑîEþ±” é_òÜÈm~•!_xÌ'%÷ñæyL¥ µâ'm0ÞèOIÅ]Ûò=úÝæX|RCºÑÞ$&áè@=am:¦a“ËaçW‡mÁÃôÓÊ!Ð{ØóÔç“«L‘gŒýd3-a%²Óo¤ý?˜Gèù%™7~oª(Ò~ð¦™d ."èû­Pæ’xòŒ5C•ºTÏMT“ƒ˜ èNžÑ’  XgAïÝ7ð4ƒé§8:‹¢ø†øx¦Yìh㕘á\/ŽúJ³«¡Îàñ š)äz‘ÊÅ>Ly*I”¿˜üã ê«UÔƒ|0ÏÑåñ:½}k›§È7¢çÊ…ÿxI׋Œ0õ:Ù»+Oèr¼[Jj% :òX‹È²á-ŽÃlÇî@³¼œÝͰ ¡èúŠ #O÷ &Uß~À¯V1?êžÎýøƒØì¨He¹:|@ÖŠ£ KMÖQÓJà8Jý`nüåu㈕k(ýÛpE ˆåúË6àŸ¯¢¤ötÊÿO_$¡+z®’‡‹PÏYÔ?æ®2K¡MÒb1«üd°~÷¸’V;¡ÑjûÕÔêå¨/ÅŸôWŽÃ¼$’ŽŽZ¨¹U/u½î%”ý±èðµj¿ïZ@KBþqR”GIT~(Óµ¢.ù‡Š%»~wh”®<†ÚPm«O«Zˆÿ¨O]Ûé†OªŒ(ï!¿©#…œ!êó¾ü?üê¯u¿ò=^ŠïGž} ¼Á¶ú-^åÑu!…H|±hé÷(»Ä|‘ÍVlžÿ<ó¨{èƒUÝÏŸÑØ-3`óÑõüéþ0QéÏÛ<© §ê³y™¼XŽ póoà™SYõû¹|a6¿_.x[<ÖDÈŸ«ê~5#êÚ `Hð÷*ˤðîd"%ÉëËÈqØQLw*^j/üÈò‰BÌ¡«á\wfµ¢Nw,¼ìQ¼å!ü¡+W[^ «qZý1àW“°ŽYŒþ|Š'Wœ;1¿n ÇlUî’1\Å Y‰ÁÉᪧË\ÄÇíQ ¨T±—¿ZJþñ‘ë߯U¯ ÷ZÊzºðûijN Ø”¶`[ÅÀN`ußqr¥=ÿã1òóOk+ú«§F"çÅh¤t¸uXÔ1ø hiB8ÉÝ“ÅÚK¢‚é }ÛÀøWc¡é®‰Ö6¿µ”þí‹Ì;(}ÒÑä5í¹½¹A°>»Á†•ô9´ÐŽ/´Q$Ô=‰)žâÉÉ|AÃ|äc=,O[s5ÙÖ^êÙË[èSµ¶g J±Ø\sx+Ô.…q} ™ÿ1úw)øÌ§ð#º¢¤LþáASoæMœƒ.‚ºÃ“.b#Më&½m•Û\´ sÀgŸˆÆ£Ó)í±L̳?_23Ó?Ä@E]@ :® Ãú3l¼'xÖ*öX©NoˆÏ,KFx¼p:=0êŠ.åYT?ý {*·tí¥Üg6v¤@sU%q<Ñ{+Àê+eúá§5“X1L+@žìøLá÷·m }™žŠIx·^<Çų.ùÇ.3++о¤õ;õ—™JE_2ãÞ£˜5 4 šÀôtÉë,»!»þÐqøûÊÿý_ ¼‡§óIø ¤aÒÓö©¯©ÿ0´?´˜:3?‚ëÏýÑ_­!ÿ˜ªí%ÿø5üj²FKE•ftÿ”²…þ…ü£¯:O_Œ~w‰S/ý‹ýsk ^"@TÁ[·’Wõq¢šNÛ#Ú‘ß¼G•u†'¤ÿŸN .ÜNa}v0"2Žøþ¸ÆŠGzbàK¨‘²ÃZ‹™rµçŸú÷ÏŽhMõÒØ!‡±‹4<û zöý6ê¥<ŽN)/ÙG~êž"ï9¼Y9Ç''Ç}Dí³te!¦¶Dš§eüÇêz×Á;Œái­'_Eª‚Þ¡µ‡÷í Êt‘ ¦V°>þ׀ȅeŽi, ߆ßÓˆˆËq–·ôVâWAÊ5=þk3«ô未â?Ú“Â_ýŠ­ûÊãµ·ùyä%åG]ÓÃÓ”'¥ ç«x‚9 ¦|¬É/^/—„e”ðÕOã?Zi¿Øÿ<îPT1øõïpü‡ŸrZ«*Ë”ä ¸º+ÜÁ䃰s©u‰kPÛ…¥õBñ¤À†øû{ÈÄâ0}GCßêr°)åÈ{l½Ô1*;Þrâ{ÈFVƒ_ÅmêG£Twg0³£qmHg‹4(©:‚·Í4JÉúŠ0ëMÐΊ|øé4ðñ·ñ>ä½S©D¼^´üc!ó]›XEÉ?2˜7a}Krn€_õfí‰Ôì䣴»¡uÁ¼ÄéÕC5û„Î'ÌÙì®üù1<ˆâ¸H§Ã*àWŸ¹‚R W>6J5ŒúÁ«a_ù'}#OÜ r›³÷“kŒôßmʵ¥!ïN?Ù7ôÁºƒ¿†~7üG3²žÓ¬ÖŸY×H+B0ÊiJgøóײ§ñR®Â§ö…¥lc䱬Zø$ë/+>ÜEüGwú™L³ZYð]ÈžÂÒÀøPÿ×yCb«†@ Ö?ŸÄœãÞÔÎ4w¬r<£&§«uÛØAýG;Ë›–éA*’ƒ+é{Á{²ÏyÅÿ»/bPR?¨©ÉÔ¤ažÜ¨îÅî ¬*­.ô‹jyVÙ¥¤Ð–Sÿ1ÿ‘S á³¢²âye»–IÜoÈÅ[O§ òïê}ªø¤¯ca9­ã/í3 ù?“Xá4ݩׄ§Fþ kT$6ôAK¿D`q}N‹Äà.‘ëw·(KÅ ôÈ È\òŸôÂn•DKô„ü£!ˆÖ>*ª7’Ñ À’ß´Ê‘œâ­½ Oö1<™ –:ä3^(%ˆ=—ožn ¨Û\ê^‚¨Šêaÿ•Y3q‰x·á=¨ÂEAŸ€_k¡"-Mþ‘›~² ‰íO%NÅ{lડqaN´®…³ËT¨âóö|EjÂ~øI»;ð28ïsr X¬Ÿ…{m f÷~hrÍÄø’ðê×1ÿ¼¨8;Óü# ü¬ÅØëRøäô욌õ@{”\$:×°‘ý-fÕæt>»¦†V7)JMð«êTæÀcf…·Äª{duЧ­Tmø¢!ÚMÄKz¹§§rº!ÜjâðF e#Œ¼Ôn sÅãèµãÂS‘@4›¸eÚØ«à;³Ð^ͧII«þ#yƒŸ—'Ÿ¹Þ¸HÖtPõZ¹P+^Óz’9’íVÿµ!.¾o '–÷ÂbÖÁžå_Ýáç¨Do©Øæ’x¶ådˆž¨¬Ü¥¦‡t­°f!€8]£Ñÿ»@n0¦ãÓÚá?n>ôJ/h™oàNƒÉ–Ò˜›ñ2ÝвÍÁüAÅxŠø™JoÕ Ž©©qKúñÓa¢²lk¾4;€Zµ¤úd2‘¨Z3S?Ø‘9àƒ`C²À´¸áKáçÉ?ÜŒ ‚w¤¢ßé5´g“Lo¦!ÿL‡r­ùAYüE üÇq4R£è2õÉôgJûº†4¤ç×ïä3ûàϦ’±”·ç—þü+5)9xNWÕªfú'®ãÜÁÈää¶Òwä2óv'²Û&T“è–I½_LãñÆ1ù¯þc¹zR¿!þDCÓ‰÷ö¥0³9Ð>U[j]²Z“;æG=Få€Mr‡÷ÉÉÛ—ûÓ‰þq÷¤‹øµ ?˜ ÿ‡/¨+ÕuΓQU5¶ów¿¶ìe®šEóÕÒé9õ `²šþ»»P_ÍÑv±î¯]Ý1å(ñà ‘‚ótÈf`¥©I\©Ï_õz:ü¶ø¥}–ÒÈË 2Êüz_J/Ûèw›ñ½;ÔžÁÚ{DiÅ”j{øa<;vLÛN®*lf/ùLÏÎ÷ã?bóéBU2JýÛOiÃõªø¢¸ðÊ«øUã9/ÕŸ!ñDÝ"ú/ ³ð…šÀ)hŽ#»'»•¿™Ž™ÿ[³û<‹ì¥>`Ó±vBôW±ÈHã—‚ÂD¥?¯¾ÿqïØXõ4+¹ãÛʲvb8„ð˱ô;È»>ó9ÙÑ©œÐÛFÈÄaVÀWŸÏŒç]žk>Æ<76)£ì[ñ/µÛmW•ØŸ•\2§MÿúóÆ”j^=N0â~†»°Ûꊟ«ÊÈD\ÖJÌ×¢hjIþÑ—Ÿ{r²ÙÑbäŸ;ÂÉ?¶â?J‰üÝX»V` ‘ L…nÏ{ÿoR {燵ýR³ |q5ôÈF¾ê×ÔBaîL[­¹n+|ÙznäUý‚ë\VbÕ5øó.t^ÊJ¦Dg>Ö^%΋uî–”CÆì7ŒYïéˆ.RÀ/ìGš†çô5L˜íÕXäE g©‹°{—¤¡[î<2¦lðë±û9ðì-eá0®kí9‘½ä uAÄÜŒÇòú«‘ætð«2ÔeŸ¥þÃÅ1€+…鈅·'3ÎÀ7Ìä^§òtZ¨~Ö×ò Üf½ Äícåvc1hXKsW;[Z ýîEk ØÚüG*s&^º?'3˨Á‰7` lÈŒ—©äíÈ?ê¨qéÊl[fýÑÿª7ùAøŽáÖ ²™êð3¬1ü~¸“ ÿÑŽ³¸Äùµ'xþƒ~76“Æ.J“M®0ŠGò Y‰úóiä3¹ÐÖ^E‰µüJ:vÓ™¬?ySEºG7ã€÷^&r›'† Ù ™µ„¾~—E/òÁäÏOÅ-Óÿ³­óDrÁ#(¹2:Ž8‚¬ØŽjtbô£Kp,x/3“ñ7št{úíi_é×ÃyKþÛߊEWô9Γù¨dûù¡nSãkKè~•N¿¬6cÍ=JNô»^(°ürÿÝsÊe­>ùGLôµÑe+]Ò¼‰:MŸ% q@OùËþ£› VbªmzÁu÷=ÔÚJÑ…J¿èËŸˆzzç9üÓ©ÿ¦vUËëÉ’½±myëƒ0·”×ôºDt—Á5bñ¿Kè_²öŸú÷ÏÎiSÁ¯Æð|¯ šže 'þãþè }KP©ô‰Ê2šHwxJñÛE<üÇ pœ­Dæ‹ÁH{˃ì³qõ"êµ°)¿å´È:úÑj`ZIÁeÅ‚UDÛõ’ü#1ù<Þ "ñÅüÞ†&·¢»Z:‚]Jú'ªÁü¹;HÓZYPê¼1]@ªÃzT“}Ⱦ`e½ÈrÖñi³ø“ßÑ_™á¬˜\­­¿¿²»¾¶ÂørNðÜG¹Â@™—Ívçô–x¹¾DucX33ýÛãà?–†ã?6)´æâxUÔ´&÷À®?÷„KéÁ¿.X²¢ø{þÇa° gþc&H\# _úÉ4C¿ëFÞ“ >c=–è ú×éÂ’eëH´¬YÑźÐÿj&LU,ÐÀÉØÒöä©©?Qûüë1i~7'>Í i%qö$yOÎ6Tð«õÔl$ÖÀ¾Ö¥R<5‘óT2Í¢ä)›@ßJ’´Ã0]'µ®xÇ}ä ÕƒýÛkùœúIæH*Y¶¢õýK®š¿ÁL·Ä”0ˆ’È=jß_äª?i!VÃÞa^±…xåy®¼Á(yÜXW«ñAúcYo™ë麞{™ ;„êÞøâ¿Ð,w!ÿrÏÿý>(JwÅ]Ä}m§ö ÿ(/ Â[¼‡32¨ÄëD¾1oTœ.éôY?¹BV²/´ Íòlö8Ü`ŽŸs½ åvž÷j?w ©iÉmâ›|m4A#ÏZMÿ¬6Ö fjŒ¦n¡ñaþy*«þ£8çxüs.ÑeEqÖù ÖTgÑï°ÏÓ*ö×P$0v›å°íÓ¬êäà?¾PØž®Z—Ð5¸3™*·™Ô2Ì÷øüCÄ!ã˜Äðú‡úóMê%}‡Wîr}Z|2s:¦‚¬e嬞3½±ž|‹ã4}QY÷›tùÍEõ§™Ã8Vç"ïPGã5ÏLÈ;/ý¿þEB¦2-vžÌ[%ãÜ¿]¨ÛÕdô+I¥ ©ÍônV hG´ÅÚZm'YͯáW‡¨çj†r7ºÕIJŸ[/@\»Aß(ÒÁ<%Óë‡éçÙAuÖR/ìű„¨I*~WÓÿª6ì9Z˜ð¥¨]ßqý{ðí3É”Fð<Я',ÿÑŸþW]Øfr[ij²×6à úžLTºÎÌgÞ6ò˜¹ÌYhmãa¡§â톂èd$ÿ‹_MÐ…]?˜ä 6•ø|6±ý]ÁÞà£Í ðç™éRܼLÜœžõƒ¾ô6J£¿ê ‹†Ñ_½Õºôùƒ‘V‡¡éΉ=F5‡úA‹9†í¨Í>IµÄõ Q¸ÞË)Næ±³Ö5ýUh¶°(øUnN&2¿á%Ï~ØÎL OI¿õVô 4oQxÇÉ,W͜½dÜåší¾(m”â†ó÷T©ÈdmOäx²Šú¢©ÌM?—~ ùá?0íéYR,Ç0ø1Tü½Ã/­Àïo$ÿðæþ 3¾çz©_–6~µFæ2M¹[$£Ê²!úÚâ¨àF™­©ÔÁ¿è±r/7Ö¡"“¯ à//Ø×M\Tý‡þí5UoêÏ òD0¹€Ý9¨À©äÈH”Ö `à?’8öп}+þc&ýkYåÍÖ7ãXë]´ cE}ñNÜpâW›áÏO‹ÉØ“¾Ä¸'E4+›c&úŠTxàöàW¬ªŽeŽ—ôcll3ÆÃÑ´úÒ7‘Sp޲LQn±ÛyÅÿ»/\`?üœVé#ýwÿóúÁujdwWáZ‡pÍ3©ß«í R²ª¬AE÷:bf¿¹ƒýÏçŸMÄxUߣsŽ­¨?¯Ž¬(˜Êì#“ôðà%ˆgïñ±*­é-•Á|KuD*§íŽ¿Y‰œ«Ò}c(úݸ0ò¡/yþ#±kNøó=ØÉIð[«`R‚X݇üÃþ%tÏʦ5y*6¾oX®¤óCgš×47VÛëVžŒj ñP>D5Ù\'_þüœ@:Ç ó±QýÕ9bû\àW³Q¿ú þÃ7ÔcsvŠq“hgŽQŽ'ì”aÏlÄlÅxDô-‰Êo˜ªc5Uƒ±Ñ‰àYšâNâ[+¡¶­Ký t®ç® Sûƒ³¶Æ-gõÅ úï> ’·çGµ¢OËK{rqüAgôÉ(œ,+^¸ „‡x¹ú\¿)Cô:ï”Øú ‚—P!V2ŠõÔæ'ËZ‡WÛDßÌÚ„âÖƒüã>J„t ÎG}ÅqîŠ7g™çÕdâÜçþªÃ<Á›çæÉßbü&¾ÈÏf}GVh¶‡Üã3k÷ þSº£,§"½^å)9¬j\ Ž-*S“°Úé?và?.â?l]{ž;ͪ³ãO——=p>P TB¿ûž~-%˜ÿá+_˜þ»Ô=ÉãhPšŸè_r:ô#ó?ù]ZušÒ+á+õƒÿiÿ«0))è·WϯŸW{qÚËÐï‡Q_¡íƒ_üµêúcÔ×ᶯ_5±ª¤QWéÐ_]Ñ“èm´†Îû•ƒª…þª4™k:bÕÊò¡î!:©ßÔ=Ô®èqèÜT]¥“‘eÑû‚c.Án5ľÿÄXUy×ÅOüO\[1±»»°»;ÇîîNìN;01PÄî@ìn1°»ý~‡ù¼„8Â|Ï÷¾3Ïû:ã¹§î^{¯µöÞánPÔ&Ô³ÐÇŠDüoŠJè›ßŸãe¸Z…á#9÷Jê”Ä®2d¾ó‰ÒËÉúQK¤Æò‚­euþx†¾’ Û1ÓX^3¸˜•àÚúæƒrû‰¨mÒëk©f¬¹¼¹´-ÊŸæ·¯WŠP4&ÊŸ¢þ(¥ãîÕåN¥ƒÏ‰ƒÓfŸ°ŽóœB5±Yø€ms–6y›ü@ÄDÿhZla@B²|kWTmp­¶FÜÚ>ƒX¿ ­s$ˆ Ð멪Ÿ"¹}©™¢or•Ïék¬JŽ¡N« òÞƒG ²vªw胂.݃øiÍÊM~|Âq·!ü8 ½?ü@ï¦dî?¨¹fñ]ñ #ú'Ó‹3gàÜÑy´‚`ÞJîcîl1m‡zá—ù‰Ø_Ûšþnjij¨÷@L_­(Ñþ1ÖÝ©?Fá¼zŽ7™±žOŒCäBÒ’Z /óK¼#ÜC7æ—Ä'¶¤GÓYÊ §òZ‹ÿêa= óŒ³L OCE“Vl.lX.ÎÔêÏ£»p¿‹+9Âñ¥ÒŽœå2Yy^®©ÌS >‰œv õQô+lÀ‹i[`¼Ó 0\§J(ˆ>3ž düÕDð#4žZG‰ŽÚwz¡‹ Á6åd-x´v¨|ÌMö¹Gÿðgªï8ª„¾ ×0¸Á œeÎ0ó¯HÃä–Ô}¸kûÁ&hÕ5¨Zºš?àÒZÁ_¤RÈa&³u¤³{u×£E¥ ÷ú M8>E»hg^HŽª¥ûù“çä6’i{D ÿtfÞz%°¢-×»õ|úù-¸µÌ&t2ËÞ\³+x_ˆZᄄ†Q,.{¨OEntÀqš5÷›6ÉhdËcö£Ï%^°Ç8±1 ë=€³QŠ3Í÷Ά8ðqÔ­CEYâÚ6;~ìe/ÅYa±¥Ý¨?n‹ïÆ3&ew1e~9õKvÛ~ÛúK˜Wõ x¼²sÝÓŒ|° Nð˜Ý´:ð£?Ôè1<öÛóú!­¼„¿"†œG6í¿úù»Qû§Át¼”x­˜Uu*d„¯THÙ©ŒfÿÇz9Q4ç_]”®+%Å=¾ï7Ù5Ÿù% ð…nÄ¿{ùW²Z]ùó,ó°çÝH‰I4òÉ “kÕ>¢™ìUŸ¬~‘ø,ü˜‘~"CØ?öç8rgÙYíBt™M†Z‰ÈUUC;¯v#£;N̸ÖÜ#b°(¥þóãÊHµ"]J݃|v,™¼…ãy7Ÿ‘Sj›ÈÁ3¡¼í¢°ð„´€ëIãÿŠoÌfI+ùÓ}‰±ÞZ-¾«'à{<Ðè,üH¦P,ŸÜ?ýµXiLÕß–ÆÚ€›Œ(]‚ª@ÅÏún†mAüÛõàÇ+"t˜j-ö£D~D“J÷¶ˆÃY¦ ð¡šq$²†×© wWA[E³2ÿ±üÞ̓¼ª0^„Sèç‘áGf¹¢š týÒ´§¾š ºµåû„çé.üõ9ñ2µÑ -ƒ˜§$ÖvÄ{;ýx"u¡¹]<®$²ýƒ;Á"Â'dþn!ôóSü÷¸w¹aü;ƒA癟_šh½žˆÂ¬Î~œØÎ?‰æ®úËyÀv¨)ÈUœPLÆ <à öpÖ†Š$° pÐU˜•ŒýQy™laÍoÏŠƒ·±ny–#Ö•£Ô=À£Éè3ôàÇjôÎÈ ¥a$“ÿúã}"ÿ& 5ÏItözü´’l"ƒ’5Ü=¼¯Ô$’ù£”mÚƒo_ôAĤQÔ5™{„ „ºí<[\Kÿ/~ ùäJzîÍí’âîx¦8@ÿÇcÞƒ¡T¹Û´½èçÓÐ*\ÐS6P/¤G| z6@eªÖ|½*G:Î|•,Üá²:öHûñKóå¿Ð»[èÁÚTXM/ô÷fxÍz‚ ÇØÿqýƒçØÚÔž•ÊpuÞÜ¿ñtÔ ³‘¾¦ìÊüD'¾—“˜US<Ô¶em Qàk ð·¤ñ ýuᯎâ”Jo{ 8» XP‰Üœyˆj»ìøÁ·‚ù»}Pðº‘3%ÀÍǶ ÿn2¸µ¸`[fœW¾¶è3Õ͸l_,âßíaÄEßL¯]'v4ÔŸjÔPÆîç·÷ÿÿŸ èêö°?9Ÿmlû¯¢÷éˆ)”5àGJõ\~xK á³FÑrBÎÍý§%?%§8Oò@\yÔ÷LÚÈ'P£žï ÿ£u4ý»Å•Ó"-þ«”ĤØLLm)–â› p>Ño÷͹ªê¥+OË|À´jIx—9¨Ê•ˆù©ˆPµ‰s-Áo"÷%·«b<óK¢2‘·2MMÊ7’Í;Ä̉Ú{ÞòÚ(̃ˆ„à‡/¼}\Ì÷Å0Ñþgè/5KÑ?Ê0Û(¾¾‚jÈ•÷ÜÒJ·K'×ÏP•,CKiHnQ;§”ùÃç(Yàeÿ"/: •…ó*†ÆðÒ›·Ô›9¶'^ã™ Üvªòö!³Ï"{w~H^²—øŠãy o%Þ'âüFr•Õp"g^^7éHà‚s`g‘Ý^·Ô7JÊHÎ2ýÔUZD[2Ë©ð A¡ëhÌ—µôb :8káÇØÅ‰|NzüÅ6*²‰‘Ô¤GJ>±‹¬·©ž“lÎÚ‘dm-´ø«ö å ²ŽüÔËq+}‡éßI]7éHº¾6â•VJ:ˆZK४£Ç庋«ƒ˜0µ” }P>n£…ÄÁ¿[ÜLJ,MOTª'ÑŒ0Óúþ¾“³y“sN ¹¦ Ò4”ØYt˜ŸÆ5‡íç½™Á[“)‚è(¹Å”Ô`ÒNøœJôŒºª•äáîáS¥5ÙAP({ký þ+«p$þ«z–NË<óçDRP® Zr ¸µ iøµÓxž(SÂï«z¯Ç#dŸ½]`%GkmŒ§#| Z@F¼\¾lÛxK¶¶ÉVp0jRê£VÌ/ù¦†ö-?sÛ  ¡ši.h:ý‘ƒà¯’ÕÐy0g½¤)ÛzRŒa—£n–¤Ó½3n`ª™rÜñ"T3{)ýPއÔõ;5›ñ•­q˜ªR=¡²¹Ð‡x:“ ;¢¢ß'Î{›«ŒtÌ¿Ú‹Ž³‚'^D_Jõ_OøÚ¯·²<œy¹iˆ$³˜d¤U¢‰å˜—"#Oè»8¤6}ñïž þ8%|D,zó ¨£tåIÉ5ÙUHáNöY“<´n úÏ­]ãÇ@•Çì+¸LPÞ(Í¿:¦´Qs1¿Q#xå^PÃT¢Ÿd¶vƒú=¹<øñCÄѺ‹?±MVÏæ1W¤FëyŠŽ¼ŽºÈª?F‘§&ûMþ‘K߈þaõ…$e~Iľ…ˆÏf¶R—I'*+ E&ίq:&è—é‰ï¸z/i#g=OK rnWk೎x”¿ýNbÒˆ¥{Ãûõ³ÃNu'çB¿€¿*ȬŠîdœþdõ@å-ü»bó6ó¯žDrÀl¸¨3¢Ê¼¢öh 74“þ¦à¢åÈ Ò¨#ÔsÄÚVä=ùŒITLENÌwÔ%ü8,}¥ÿ㆖Œ?Q+»Ä=Î.¦õÁìK÷a¢õrñ'Ôp»¸æI<¯Ñ`–«z^.ášk(U©?zk™‰ï3Qt_rU{᯶ãßr ‚Ö?@ê$ô|W@?Ï?TNg<Ü}ì0jíß—¾VyBî3?ñºËçƒ ßàÞc2¥i…>Öe ]M™ŸhMÔº¢‘ýã:Ò‘nŒÉ¼M "ÔŸ”œÿ>-³Ý)H3©a\.ú½)}Χ`_bÙvõZ¡ª4Á¼}º&(rŒk¹¤ wÅ9Äiêk~û8¸UÌo_Ž3ª»1zh1»\ó³ 㛹Í8¢Ï5Ž3¿dGìƒZ1oZOþDÜ0ý¥Iò8¼ï×2ü».tÒÔ4¾Á3Å0ks¥ýͶÌÈ­@WDöIÍbþÈ|Æ«@$oj®å¨ñƒt²Nû;sW2Õ»°­Ö´x†Â›–\ïÂŒ«èîpv%èOiþq†ÍQçÙÏ´Ö(ËžK?Ÿß:›>S;„â}Ê~½%äåª5¬÷¡˜^ZŒÕ/³±¼uÆ(ú¿2åQ¿£yë]‰žÒÔ¬i¼5â‚ë¹…b6GôD! _rBÞÇü’¸;ðÍü(23éª!½–l5î]ãÌ/ƒnQ©=\ácü ­Áœ{âŠýxO¥XàG"ý,™P2ÃÐü„«ì2Ì!P?P5|Á=çlø+?îá$ü»õåÚ~QJ\°?‘ÚÄ¡Ï!þ«ùš‡^W|Ööñ;Ps”7“‚ÌToÍég?“‚Rœé+†‡úã:ÊŸ›è#žÿ<ÁÍ̃¿A$šË÷´J'û}éÿ8 ¿9ßx‡ë¹+›kçØ–š¦­‰‰t­Ä&û˜f¤ƒeÍÆ7»;žGx.B¯øç‘ÿÿÿ™P^†¿R™¿ûoû?¾KëÐÏ·Â_¥‡¶zöIiéý˜Ë ¬ÃÌ¿Š^ýqYb7*“õGb­™ªª™äìœ$b‰Kª£ÚJéhžQ¹KÝhä‡†Þ Î9µ¯)ÊbцtïPF‚è¥#:ʵätj/êƒÅÄ%f1ÂJ¸ Ü¨5ÉFÏ€iÈ„ƒ…ûk£Ò¾WGý1˜Lp=Ç\@f‚2Gn=“î kDÖœ¼U*øQïgxB%Ö¢¿Tໜ@·úÏW€g½ˆýû‰Òqàá™ÈDÿGmüÑ1%ߎè®0åÜ»3NYÈöªÜXBròXúSê«{p#ùTò±í¨‚-BfŸEöLtjÝñ®iXHý‘¦% ›‡æÌy•¦ÿ¼Ía¾G.Ô žàGA4ùûê#%”Ë=n"¦Xª|{¾ƒ5Ոͳ©úê¢û\FÐ*ŠAê6bI:{¢RÌAœ˜2›+_ ~ì–^(Ñ€ô¶ziý¨=T²úÏûSÄÔ_S­DûžA¿ž ¿ulŸÊÐTÚ¡¾bogè™Y?TʉRTÖþÚ ÄÇ ÐèoÊ|zæ™ÊÚÇ\cäAíNe¤DK.‹ã+#™}5°jœSK'öD8ÞdÅÚ¥†Û ¼ØE_ÇdžÁBœ\'aŸÜÈš§áOêÁ¨—øwÁÍôï1çÚÅÂ,¢`„þÁ!øq—leýáמR¸}á¯Zïo¡ÖƱm5lF£(U>lñ¹-wà¨y+ÂþÚ,b;•ó}Pm*÷oÀÑfõ9 ävRôBøe:Ï0Å}*<á ýãªÔ\5ôaê¶ø¯zòöZów×ç……3}Ï WªŽÚ°iCQªÙŒaÚ0Ç|ýz·é’÷À+°uÉšÈ8X"îØÈ]IU­MY—©¹“OÄp8Ô»z3öcZÕ\6QÁ{; =þ;>Û`JJ³‰qˆëpaÚYü»gDé0Mä‘ê˜ 'Þ€ez ñ…ýƒ¥lµÙOR‡X6Óefk†Õr¦GÖCõ‹óì«L¾ÓC›Ê6\æ;Úñc¯ì¯ž]9ZkzÓžŠW!õÇüÝSØ_ëK§KÛ6ÛEüŨ?ÖáEÈfºÂ»%ÖOÓÃuŠïxeý9=§ÿ ÿnJúÏçÛßUkÿG\û¯ì J?|“¶‘—)‰Ô,ø¯p)ƒ²÷Õåó­£¢%‡~Ðé Às<'O¨;±ƒ.-ú¹;û?LzÔb¨¢¹°-øQ…<¢é™bR9ÊüU ÙIu!~¬#l¤Ý×*Á&´ p(ñæ¿QTfSѬ(âÇae¦š•XÏþôŽQ•_óES¸‚4¤Rø /:F”üã³Ù+Mž¨Ä•éÑ(A–\dräš÷Ñ?X…Yp§´Ìß µ‰öÏþ« J><²a@.S‡ä×ò‚¿ßˆÑiÈì?Áðx‚/ûP±ò}:ó)%×üÍYš0œ×ĸ¦1àÇ^P–Íö Ñ˜µ=àúdòô×tÐ,ãê-O×$|©´@õK¤ø‘]ή&ÕâÀKX]ö³@›–ø¨àg8£%sÕ=LvmvÑb—SzºW6G¸‡Ó”@ü»ÃÀ³å ÂJ²¸»õØL‰ €)ZEåp}Ùî*'Û™<ˆöùa‡Ž¡Æ×Ô]á3*ÕÂñÒ7ãõm9ý0ž¥{Ú&®5ÓY× ½û&ÝÙNàÇK½6õG [}3wÂÔ_T&‡;^NîÝgÞVö¼S¿MÕŽê^œU{êJtä 7ӛόÛ8c™‰ÌþÓ˜Ný1‚ i=Ñ~¼þ—_Û¿ü=¤Áò &ô£j”¤j,g|a“¸læG/ ¾=0ê›ÉmÍ¡ðYËèKÏnl RYÏtüõ ÎXýS˜h(ÅT¯£yœ€oŒ‰þqZÀÚ¡ŸïFã>ÌüÝ6æJ&¢ bžâ¸µuèç Íz(K…Áê»è÷s`'œÃ쯭.ÏÆ¿›]Ñw¢š¨ Ó§a«†O· M0>ãwæ<ÆÛÐS–^èUŒ`ܸ*Où ßëÉ¢)wÃà‡zL ájËœÔs"û£ºâwNel7VÓGRĬDÿy0uM1󜾙îó¢ôŸO7lú-kw­;ŽÁlÿ•ù%)Q?Bû?^HÙþµþ¡â㊫,P’Ð~šY‡’´QJ ~¬PÖ¡d—÷Ûߨüp‰yÚÕÙ,>0‘Öœù‰9èaß .ôÆQ«)¿‹R‘½ŽbÂaþÕ²é›êÑÿî!td7T€þÁš6D~Ir¢¶Ê«N&Òo„{iIžß«#ûGó{wQs3aß B4T×ÿî a~ÿˆ2Yµt…pê«`¸Ó t¦ò˜ ’¬eÖU° 4ž±xÚQ9Üw6ÌAì?®—Ã_%$ª}Fé°:#vPgÌ#ž¥K/Œi5}5è6šïRAíÌûÏÝ•ªäöíq \$þå#‹.AŽÞ‘ƒïygéŧ-£þ8-N«UCfŸÙO(Ì*Nñ@a͉J߃ÿÊÑ?|ˆø»È­—G^“¡¹ ,mÁ4ž'–‰úã£ò1ÌQ~þè$— Á˜àG3Ü\¨/›Q‰\Ö2ëû™æ°E¥#Ž|9õG/"bÐ?âù‹"Áo<:uDøÑ)?`qMÅ`WÚÀÔ=$S`Ê<Ùí ý=¹¬/ŸhùÎÆòøE¢´Wjˆ:Ü· pHÖ¬ò»Ü¹ôyyëÁ ˆ;Óû6Åas1%ÏÞ*ñ~%ÕÒ(ú'2hf˜m_¯«5Ø&ôŠMúó‰6i™æåÍä÷ÕøÁ6£`ö•B?ûQ}<§8ÆB*­~Dg ‘Æ“7hâóÏ+ug~Éð£3wÚ–«üUCã%x1à•ú£ŸÏD©¨Äù a2º7÷ò¥‘Ù°¶¸ûèïÑ@êÓÿñX²ïœôI¹ÏñÎ’ñ9Ið?%Ã÷VÿÕh:4Æáç²ÎpˆùŸ”*M9tú“(>V·h^Ôœ Q1Œ£¡”¼D},rð¾¹Â!6ÁÚ9æ—dç(³Í\ÔYÇéטAϤ?þµ¹†µUªîcÙˆEý†7qÓPâi^vü8,¤ÿcúÇ@ò½Û⾑϶ØP›ÀÜ_äyæ&oV˜²ÙVõûÝAÂüþ1eºZ€è–‚¸ºJÉ÷³ •ˆ+šÂJ¾ÁBOgþnwû“ s€p?®—V£Üǧ‚ù„vë ÃfõY,Q/À‰à(Ú…n=þÊ9 ó¯Ö(UÈè»ò÷uþ™Ÿó, +ó‰ù%Ș¿pvR)xÂûx²]dþUëßÖo¥Ãòq‘\ß ZàÏY[ûRwáÚ/kÝÈÓ_‘é[›Ó~gbÊÿõþØLWMˆÚ‘“þÁ÷ôHHÒA)«â§ø(Ç”ëpO¡~º¨\ÝEöQW†³‰GÜ,¡y°ñ¼ƒÜƒþó­"Ÿ¸CVGé`?먯¢’†¼y›(Šÿj2ûyÆŠŽôx‹^äâð_=-ÕÑQ:b+µÈ¤ü5Gôõ]Ü¥@í9:Êl˜¯ïèçCèý8‰wýUéø~ ZlÎ:îÎlj±YÚeR¸+~§úƒgÑÏgSmÍÖöÁª­Å¿ëma_mfän‚µÿ€Ûø<^Ö9àFoðx®)7°$…1`Í/iËü¶Nd y'Q]kB,€nÜ ¤\C´w¤Gþ:ÿXôïÔ6¥ù¤†ÜÝ`j³ö(+šŠ‰äÊi”žc¼­™çÂW¤g†™¬|ÏY¦ ¯ [#îÉ?¤0'üÕy”¡U8&*èË©«ó OûõÖ”§Óÿ‘Vy¾¶šýƒÑÏsØ1g·"HÖåhµH}ôŠÆf¦/§¯ó;4ß™yiaïÑÏç ;~ì–·¨7ÑÏÝÐÉÍÄS#§m*L.žG<\fÍÍ\ôî1m¥ØP¼Õ?îow#YŽG¬Ídm›žND¯C; ¡) ÿ‰‚~>×~g~Héÿõü]•:ÆQ¡¤Pó}²ôƒè~Ê"Å[ñ—SÈ¡ó0£pZÒöGÄöÇDÑô”@·ž­z Y¨Njûhîl¨|;ö1u Ùê;tø!°m›D{bÞur‰`ð#jóãË]™¼Ô‰HºJ¦5ñ®>Ý CÀ ¼OgPâ»m…¨%üØNýaMæ¶âêªkÆA òüe(¤®°Ü¯ÉøÓ2ØdnŽÅ þó_>Òöׯ%Ž>€ÇÙF´´p¢_H]T™*÷:8µcYîãÜìÿ(û‡#ŽRŠ¢Çtƒ ¢§%Gª‚ž/£*¤äh*Jé:âýfÎs%ñù$óÛÛÊ5~sLS>Lÿ¹AU4Ž;çGýÏd~bâní,ÌÓ2H…s¶6Ë»rÌÉ ¾ƒ¦‹7Jdów3È)U…{õ õ¥5UÖЦÈ{…šá&ø±@=…ÞÛ—³ûfU™©2?‹ÚúHðÃ[º§”ûÑuzÁ&9r„‘ î2xºaôë9BíГ®Âàì ‹4Ðk–ó÷|mŸxB}-ŠpÍÍè?/òç¢>ØND}gwŸò.¶&…sï…þ‘—hêˆ b)¿Ïɧ«ú¢ÙÄC?ßáxã©?Rr÷³¿­-ºnàÇBbó]j‚ lÙ^ÕÚ,Á”¥üÆmX¶‚à{•OþÉ~:­‚b9"Cÿº¯Ôå.Ÿ£’,C•Ò[ÿ@ý±ˆx5gRæ^7oãß=I¤wf â ½&G\…ï«#xz,þ¬„ª¦ÖQ_ªd% ÐKæ_Uâ­8AÿùJfK­eþî&Ô…Šì˜ÝÁ5¿á¿Zgmö ©?ª £XûjDAág?¿òòõV~¸i õ¢†¾šýQuÑ?êÒ!Ÿ–n’÷(òm™uŸÉÈ®L¯/Îv ½; ¿¶ÙF—Ãøw·ÊGà¯zð¾÷§{ðºHff°Í¢0ówš{PË›àß}Š®ùN_Ï<÷Ú\÷XüWñê\…­¨Ë‘mÿ•ú#óK–ÚïŒÁžŽö_…¾mQùéýçiQËÓ«yÕ—rK޲M*¢œQ<`°èkžÿÊŸùWÄñ%dH7ôóTxì½ÕÅ"±¸~ÔQzFë< ) ,Ðf&SÕ‡c|Ž~>X~M7}Õt¹§dÂM—(îJ.”sªƒÈ<É£k¹ªÀt„§¯J<9 «“ˆÿ¢‚º: 7nø‘›?¥Qn%®' /Cn8 ÆÈEò¿ÊBVòE ê·úgÃ_}¹Ñer‚‰Ó©p’åW#+=GF¼J«û1‡v<ÂTÖ_Ow±âŒ‚R•ûúy6å–šK,>1U‚‹Ú “·i¿þªÕ?ôlÄ¿k휚 ®¡^ˆËìUÉ-®GiæŽ(…aõ} ?<©lFóù)Åcû œ ~´àj£?Ó&ñ<ªÁ`çÂÉÚü¨a4CGIÅQ|Bÿà2c®§<ôk´á !¨g>‹Ðiñå/Ê2ƒc ~#%‹Þk‰˜à…ßv çXÆi¯›WèÂô¥ë/EˆÿÊÅçÕ(ÕøêˆËGÿ` HAþ3“p ¸ Íƕ֪*®î2sý»¹š^t?ôóñ°muà…›þÁ¯p cµÙ¢7̼g˜úã¬zJXA{‘'Ôè—èµ÷Ægáμö&ÌOÔmL2¹À6Ç"f>öN6’êVGÖM²ƒ:7¦þ7ê÷Uhýñúãßú¯ÞKkP¤g(IÕìêc8Iò@ÿØÈüö¥Ô¹äèuGž•v*Řœøèþ %A¨ée™¹3S… Ž$©Z9šóÓÓ¿[˜ÉÝ©èpÖ^¨Å<ù†¼XÔÔÖ2ÿJÆ9TW åñì¯r$?$—»ÈñÔÊÄw7žw-œ¡ÌyæúU-F|ˆ¬õ%~à§b"ýƒ{"ùóË[™Ï4«ÿÜDšJlº 3Š¿ŸS;\$z—&2>Ã1>: ûOK}ÅzÞí’Ú#˜0o¢ó⺠Ñú oY!˜'â÷g¸ùÑx7žFpuF<7Iš¤¤GË.Ç{}¤LMÄ, ïû 6À¤›DÒW€Ö.¥ ^ê=àGõp‘%ô˜Š¼VöïˆõýÉÆ}¹®däNøóeõ{¨SðÓ«ÓÃpŽ äYl£éÿ( u—š";õÑ4œ¶És&kAÊ¢pÇ“ªìùN{œyÓ4?})üU{Ã<¹}%<¶çèÖxŒþ±Wðª…úaŽ™N¬½ž]„ö ô–úËäLÜ‹ÇÚ@0;ß§,Dö.ø¬ºâ×Do÷£ùxsüW>àÉfEíÐÛRoÞá ýÅQ¿‹öŒ÷<þ«óÔ) •üá&sL²#°XÈü«JLâ…ûö!=òûè–_c¤B??rÍ£Ö«Î;~‹ýƒ{í×[™ýQ7‰&åù^áh?f¡xwƒZÀ,ÕgoÔRþn¶ý£?½%ÙqÇ)Ô_©ŽG3ëb ßæ=vüX-POŠÞàGÞ˜[âHë‹vâÄüĺ¸ŒÛÀaùÚ.˜)mùM –²]&½p5¤Ô/ 9^! µÕ_òÎܰ_ñî‡Øòœ0û£t9-ÐÿݧëòFöGmQLµ²zœ¯’´K*ÎüöÊBe7úGôü»—¥“JYê‡â½šÙðàÄ•åMê ñL=2ÿ*zúGeæ_§A9ÍŒ>•]Û¯v#äØì¯íŠ*í%‰}¸m§EéÊc3›>™Z‡|r œH9bg~}úÀyÕrM$>Å7ýóÛ ©³¢p++ ÕrdÇÇâIäI‰U.°8÷‰¤7áP Ò…D/e‘÷g¸]š/<`üª¢›ÄEQi~äåhÇñ%5À1u †!=5mɃi»”œ8â2¥2üR=²—‰Ñé8RU*ä;±É˜“¡šoCE\;0y({„ów7¿$–¼B¾Šw3\ÆgΚäF|ˆú¡S×½Q"Û_›ÿÕ+q’X~ÜXÊç[zC\ÏV_|.Ñ]=ÿʪ?¬=Nq©$ÑîŠ<³Y‘àÇ é g/SXÓ˜,¿î8¾é éߥÔÙ³.òÁf,D}x볎oûx0¡!w×[ ¦o*ü£Æ4”ÊÔ=ɉgÓÁs Ø6ê¬ulåH‚«³Ì}&Ôï$ôŸÏ‚#ùF¥3€š¡±\ "òW~Ê üW£À£¥zèÖþÁe¸U/Á»ƒVVßÝÌžޔT5c‰º¹ñ-×›Ó2 ”˯”w†kónMe?áJÎï½ö‚úc¶1I‡þÑ õã2Y´'ZŠ3[Ï£ÆÓ§‚eyFÇÁÕ+Jøn© b9çˆ>ÜÄÞ¥mÕ“!·0¦ãˆZmvB?¿ƒ2íoüÀ-v-yÓìúÌ]ÜL¸wÃ<ØÀIº¬…òpòªµéý*.‹ÆñC”ÖëS­]?–p–Í™QØ=稑|ŒƒæN>«µ±ý|êÙ`0‘k°¿ö«¨H&µïLÁ„,£Š­&êy#*¤Ô¨µBúý˜«ï‚J¯ÌßšÓä˜SE[‚;~l‘ï©÷àUçSrÒOðÒx‚[ûk—Ié¯g?üÁ7gó‰îŠûª!ó¯fá¿Ú¿{ ¶>ÈmþWæ_%gËÞö7ëõGè3ûÒJ|¼VÉÔjÌ/±¶sl”é'\Œþq î)*¹xè’6+ùÑ?n 4IZcõ‡’VN C·øª>Vó¨£é¿Ê¯\ab¦¯HFÔJÇÆ¸†Ìßý!¯ÈF'ˆ÷â€èªŽ·ß‡Ðóøõ§”Ì'O¢–åi¯"_(EÉ~4ÒÞ¨õˆa~0F.ða—Ù^G=øëÿåwŽ*žj:ÞœXøP=ˆZqõ‹d6cˆÔw‰¡×P¯«’ñ¿£¿»°XÁþk¯4}0¸ö®c7¹‰§V€L~±ß…ót¬Åeþ¿ï¤ÝùãüÄeJF"}Xþ‹ÄÌ쨨È!ˆÌ ø±–Ü|;jýZª…{â(úùïœÕ1åóèVt™Êõm¡þ×y÷;sÕÍñÆ´¿êÄœ#¶ƒ{ÒþÊš_#’ëN…þñNœ?ŽÂ_ys¿JsõÐpÓêO؆0E] #ÔgJ>e§Ä .¡¥¯ˆ?vK÷•4ÂØ•ø>Í…oú<î– ‰ ¥Œ¯ë,ìÈÎÑÀq·–ø; ý¿†¶‰}ÍE"œa[¥’(Ëy¥&-&Šß gßBõ° ý#1«,óÛ³Öþs'ð£&µ\1âiI¢ó(=ƒ–ä—úc¹r]$ó“`3ˆøSÀIW¼MPfÐ>Ñ8Ƥ\èÝ…‰ù‹¹ê"œ­Ê Š;UcÅr´„þõ\©Ç38À“Ì ËgõÇŸÕ§‚‰÷yÉx÷±?ê³¹Ö¾{w©\ó¡~x -t!ÎÒ$5âü’u¼ÁAœ•Õñ~@;O5ßl,Ð%üW]è™~ÎþsO¦J­£ÿCCÀ¬þèIc¨öP9d†ýüÆHãä&ZaîǺcè…;uÃKx¡'F£}ö]Ø3[ÌLhÁŒ‡ôŸ¿£§ÆÂO®y£ÞF,‘öÔ~±±äÄêI¾W§x“Œõ|ßýõfFmâ|:R\Èñ7sÄ!ôû½0N¡¸YÌÎÆ.Ô¨yx›™y‰¯°^ÿUüWÏD!¾cS´E Ûm6>U²%§ƒ¤'úùðèˆÔ” ø'©?ºríŒ{h>–‹/€·j¶è+¾†Ñ?öÉ×ÔÛà‡Ï·Ø|Æ0ms˜¬’€š²ÊLr3½m‘íý*™Ì3úXP¯>´Yï,þö|'›r—¾¨¡Žû¥ÿ¿ÿ_^‰‚þócþ+Ýþ«Ÿ¿µ¾–VÈ阿›^-AÿGW޲†þCÊXe—rTÎ$ïÚaþ÷¿:(íf~Éü»÷™ŽëLý‘–ÉÀë¨?¾«OØ_Û,šóÛK`ÍCÿyžzaj…q¢·,ð_ Ño&+6‹òþºLÎÂÓ^ÃQ™_˜ ¯“vUL< $ÏÜ'Šà:^!ŠªK¢pÍþÊxذ DšĤÑÌY8€~2™·âØô÷v¤blñuÐzŠª|6G$o6¯'ƒWSÈìöy/%Iô?B–R‚7. ®,™Üy÷aÿýW›•&è ©¯n§3óçœÉ»4&DÅ N8À…­›<á}6Ðr‘i¹õØùe”öÉoD<ª¢±Ü%*ÁØDó^Ô#­ˆIl*!vª|Ãær7ÖƒÄîÔ9èÕy­¼ä€èajl®ë Ytm#gVô¨†žXˆ*楺X½B®>R/~´=úS“Cô‰Tÿ؉ßϪ?âÂøT¦þ8 9„(Kß ?ï|\l%ð yë—ôûô¼[óÛçQ#Ž¡öÙ­^ÿ¥þèÁ4”†ô]”D]X >œ§v8¨Õ‚±¹æ1ƒ™3@ŽÛL;Ì‚—µ"Hœ›ª¡"ç;QÏLý±%Â=ô¥ÐÜ-v¸ñ÷(ôLb|ÆñG ˆ‚¾ÌÔJƾŽräâ3PºÊðIÇ@.6°sÍi#ôÊjª§ÓdåYQ5zé·´÷dÑ+é÷s`²Tðcýy£Èš» çq;S;í¤:› ºk7"èçšðç­Ò^hC˜Ô»MóF?_Áþ¨xÄ–ïJS;œ&kþÌ´•kàÇ|º4r/çášš¥÷Ð3†ñïº1ÿª?w®‡þü¨~Ôƒ¿zOõÍèDÿGWê™+ìŸÕÈù{ãÇr1îáHÖþó-àÇ\ý«8egRÓï{ä „]NgœÄŸ—û>ž~¼æf£9ñÞšß¾”'™’2ÛôF[iLýaáÇ1´©ñÔ Ãèåå5Ì/ÉC&ÅÆ=­x®5êÙš¢Ÿ÷4ó M\9æ1¿ä*SFvÛÐÓëÐýhï¿.ЦÓÍž˜÷úç •/áçɤˆ‘8UòkGŒ$¶¹àGê gêRL¾ò¶CïInžFÿ¨Ž b†slTº$Ú%ØÞ:T™¹Ä­ŸüþS¡þuR¼—R“åÿ»ÿÊü+KÿH¡V?†Ì/Ù.%eþîb0$€Ù¹ÑÛnrF: ¤Æ{õ Q´ÞªMmÂn«YôŸ'a‚{2öŸÿ.JE~öI©ÿ ÙS“Û—a¿Bw1G–ÝD;#€Ìî^”ýWþ¢,jGžö*rÔ¸ èKñz¾Tkï-ÿÕ-áLf½œ©Q©?¶)£Õ\Ä¢dúIbæ2ø«§¸¦ò}6Ý%’µ bZ ö&wþã³9 Í›‰4‰„Y9bOÎ'Ñ)ά 9érà]0WcA…¢L1Š˜7G¼{‹”d8l€I;a$÷¯†–„ŽˆŒt¼Å?6€«ÑZvƒÌÅU|ÖÖìšÈþz(‘o€^àÃprßâœGGŽèÅü·7üÎ&fw|"K_K~{Æm ˜Rý\¨‘ir)e›úEÕRé;À™j¿àGU|gù‰ÆåØu–ÞºIÜ…qð7tmQY“j1Åÿ׳Û(]TŠs´˜dÄÖž”ÛT‚ýy*`Zú}ãèåõ@é[úêm+W½•ÿªÓ 墮¹&ÙÏ_<¹´ô´-#Š?çŽûáSÞÃ4‘µ‘‹¬”nñÌàGuÔ¤|Ô)ݨ~Ütgôó‹Ž·Œú¹þŒ´`â0d¦å΃ýú‚¦?šNï‘l^mh:1Ù¶<êôŽV/ÒØ·ª<£Z%¼+î¹Òvî.Õ[)Ž7V¿®=Ó] O¶&%0 Á¸øó÷7¶+9QF0ÊTj§(3x‡\µWʦpgøDÝEGÊ3Îj2Èà£íÔý`Õú‘ŧe"áô†;z€×þ”Ìz5×:µÛµ{¨”]8Ù7Lš!·ÔâðI˜QßOo-²ÑÿaàÚMŒ®Ý‰>ÉÌI/n¯§°¿Ö ljϼª û=üÌ ø“ µ{ö‡,ó¦ð½²vé¤1rj£Å-P ÿÕÿÕtè0“´ÜCð#wp½…]Ë0{ à S¯Ñ1:‘,‹Ç<¥ÉT ™˜‚ï@…ç ~ìÀ¿[7Wf¢Z}ðççÓ›’,¸±ø5[Ì™‡tÔêY\H4Ú†î2L{ͼçïNgê>¼iÙaTì|âó­ýƒûõ8œ–áßÝÌ|î÷º3S×âv£<Ñf ŽW¦þØáx•{¢O-ÿ]âš;¾î9ìfúŒ?x8{NçZœ={î¾Á_ñ{UÑTTã„>N̺9#ôŸWZsî÷y’¥ÀÄ6à¥ÂYù;™é[ž¸|‹i‚ºmYsS:ßí áØŽÓvª~—çóàÓ :EWÁ@5fú|2#oÑêäÙô>WìõÇvyüÕÐh¨U? Ã,³ì™À~fË[]%¥mûlÙ'\ßü¤{R8š 8²#‘"ßžnZܹÄûÿç~ø"Í’GÙïŒ*Çú×üÕ[ɕ޼1Ì¿J¤¾ Ùÿ±ýcóÛWÀ_%•Eë¢.J¾JÔXt^ÇÓVÃXµG·Þ@ý‘†Î›ôjK¥µý¬£rà\Ê{ü”gùv‡qO*fàßM¡øñ·:+*ÁŒ÷‰¢þ‘~&:?$jŽ)Ž£þ®#c~®–&¢ ›7s«^ ×x²o¶=îb‰Í)àU­½2sDcTÝÐùí~!ø1ˆ·­ôqqÈ(Fÿàœ ×éu™ [5Üæa3léüx¥ïËДNL7#ƒ Ã݃dÓ“‹èMø°ßžÿÓþ«Ð7áóÛÙŸcôü]òÀ5^IÎvŽÇ!Æ.)r€íçîÌOLÍýQ×Ð?ò±yÐ@Iˆ¡uQã«åjò æ_%"³LmÿnyE&'U@Nô.dT"e•èDg…Ãs ý<|Gíï®>)»‹¨3ðí.%{î3TKŸË[ñD-N~x”¢(l þª´êùÝјR¬ôWóRoÄ!®‡·ú€Ó©x4•úc ¬Q@HýAÒªMîyñõ’­)õÉ-³R ¢JÊ»vž­!^N~׳ë;”Q»«”úÃÓ^£T†ëoÉßV‚ë,ÚÒ­DŽžŒL|×»œû›—“þ¼ÓðWõsÌW’·|S¨T*ƒˆ»{8Z|ê£î(3ՈǕµ)!:îq0t$Ÿ¹L­GðþÈø«r&ÕzO£¥).ƒÙ¯œôMòà«Z&1\Ý÷Ô„Ê~8Oi&ùøµ¸Äñ‘àÇvôâ´– ¢!×v‰g9¾ˆîãüºNדD”㨠±ùÌ%ä‹k¹Ž6Ú3õÙ/ýƒ ¨fþâ›m1V{É־Z"ðU¢%ôR†7+üU}Üa®Zâ<‹þ‘ê—úÃÿ®5½2'úù1‹EÔƒ+QRnðótúÓ^›ýwè?~Fë â“ûQ,?œ#ä[•– ài²òæ0`ˆÔᯖËtìM+öG…™É„Çê¨O¹‚"ð\›Á1<«Qø¯f…{Ê?Tœ}OÐì\@¤iÚ6} [²¢"ÄÆÛæŽq‰¬ù€>Æ8Ádò-q( ø0ŒN$B{DgHmåÄûμ_ p3ÔÙµê!ýƒ±¨7â·B5SÅLŒ~Þ„ø?Ûê&dÿG]ðã-Ý$yfmù@^¶—w*¡Óÿ‘ä-ÌŒúnæv´W!ò»sÌÛhßþt³_2˜0e\ç“Á–†Þ-Šˆsöë-Fz)r¢ÍñÀ”>ÔNEm©9Êt6sØÀÞûøoûR…„e‡[ª´a3ã1ys®ñ½ž!:ÒÿqÁ^xËWñäß ${Ïþbð_׌Zì‘©SVº€Ÿ£¨ÒÁ¯e創Œ?Î0ÿª¥xN¼ïGä}+9Äqƒ¿êFT«Ÿ£†iB%±–œ>Œ÷ƒ§´vŸÌå³/«²’7“Õ”O­ŠþaÍ/¹Å38 ~la~I2x‰Žh«pOeCÿXJ‹‹UDÌ™°6é@¿-Ž·“ú#3O­lSüÕP”ê5°5WÀˆ…d¹KP¥ûУöYÏKÿÇžMEÝ z@·X‚KÚIiŠÖÏØ}œüÿ!úù:ª˜‰ Z "Ö " ik…ÿª™1ÿUkÎχkï†+ê1ò–2"Üñ £<×PáyŠÍøÄcúIXµº†zþfx¢"¨ Ûp ©tÔ]åÿ·R¥ŒAKZËgÏäèð/«¨?f£ßÕ#*.‡ßª-ZiÓ ©Wß–ð_ÓˆÓÁLûúÌdÂá`Þbæ'Ö4ÖÑ÷±SM‡#¬ b“ý‰G¦ñ^K¨?¢'»‘Œù5YØ5Ú|ËYí£g8Ãfð7¨57Œ|fE:KÒ?t–¶»¶†‰ëGí×[L>­J¼íåÈr¼ô&BÑñ+01¬››ã}NNü¯N=³™'³ž*§ÓõcßA×ëä%óÄ..{íø±CƉ>o‘µâ–ðëz3û¤0ÚLvSØÚÐɹöÎ4lÍçúa³&x¹ w›¥è¤†1ì U‡÷)¶Ø¯ø?÷ƒ.ÏS8°½6•ý>Eï,¾I«e¬0Ñ?. 1[û£’âÇš¦¬R®PD¯;ò,þÝÜâ"SŸ^³?ª þ«øèçÓÔÉâ‡z„i¼¥¢é¿ª¨Hd¸û…3±°^©ðW6e«è…òñ^¤£ó­¡:(JWž€Ú*·ÚŸø>—ØW‹ì»Ù`_öG•&VŸ¾RåHLy-©î‹Â-ôU¦ªe©?¾§-Q0ïXm²dÞŒYüïªLàG |ã]þx†ç¥©bõ~*‚TÄâ69'ÕÆyfU´„qº¯¼ÆÎŠßµÛ¬?¶(uCø«6 Ù!ؤ‰0D•À8 Æ> l“5{wß# T*„WîŒÚú·ýƒ‰qŠ¿è÷.DVk®clÞýn0Yµõ»àú"õK8O+n>Z‹#ýƒÏ”Èæ'&`ŠŒ~¤€ñꂚ2k®Ë»£¨5ƒÕäò]PF¡¸pIĦfÜ ~—n2oíÚÉ@tØúYžèpžpZê>ÔmQæ‹Ñ/½ ù®© ó ÔõE0JqNÜþEóéA7bEp«"ê‡Yû#r˳üjŠFîØ”øÞx‹ºœŽÈW-D?_ŠÛÖšßžX‹ùKý1UyÈ[:¯Ÿ7ŠÊr*Þ@̓J殨)pá+‰|=Ìœ(*™èÎs‡¿ÊM'ÇQrü {K-ƒÒ.Ü»¨twÏÑjsE]©?Ø:ÅL¥¥øm뢟¤oÍÁ¶Ûˆ‰_¶,Ygòðèð3Ÿ _GÐ?âˆuä÷8Þlž¢»æ£ï¥þhËüÄÌ ·üWßÙëzýc(½i _îÉHôx/X¢!èCÙÃÌß(õ“[óFuç¬\ùävø;qñ4}5*£tL¥WãÎVæ·áx ÉÇ«{8¢§.‡0cƒõ—a¶¹êòg垇«àý=%»tâÀª5æ Kð–åt” gÞ¡ ¯d ÿ«nþe\«ìN…T“«9ÃÆòÐ)³ÅññXѤo~fѬt¶•ÇÕÜÌb¦CûHaÛGGÉc0s [³æp´o̰êë¼1Ëé?%VØñÃWÞ¯^ÖF…|#N‹fqÛtfe™+PŒù%Ì¥±yÚî£GÕ5©?r3;ÒØ~œ"£;Goék¯ÕÿÆþŒòú6~†9ƒ9p‘yíþûúç'i-ûÏWáß-¯¾­þóR1唲ÿÕapiß?ýá_þÝué’ÒB܃oâ{3Æ*5=ˆ>êJ2{jüWÑÓ?+ÉÑW½EIf¶ 'móÛ5å è §ñV”b¢G?u ý>ür:a~Éú#Ÿ:ØáGLªO_7L+ö·ƒÑØA\‰K‹C_{©(í¯½Lÿ‡3™¥A}½T!«(а€±ü¸Èyg?Òh£0¿ý€´IøQQY3ª ÂTYÓARÁ?Õ!+õGõÀ‡4‘ ?vðû÷(MéPjB=ó”ëµøTÈËS‘•[}Ø›BüWpù8ás<«Va?|˜ÛæG“ýƒ6œ¾^döý9£\ l/âù6ÀÃpPÓɃ©·\Q+Žp¾‹Ð¬Ó£Ÿ¿Tî…9ÊÏ“ÉåTwÍ çWUø« ÌóªÁ½: çtz°zXÜ—ïÝxÓà’RО’Úf$ø±EúÎþs¨Cýˆfª~öÊÚ_Œ.…º(§ÀÍÒ(‹ˆÞ÷ÀÏM0w‹Á÷ñ à õ2¾÷Ÿçõ÷?Ç*õ…5õ¥ ¿/Šî=Ðh/n`_f0Æ!Ïœ”J!9]„ a›¾òÉ ˆUSÁ†¼Ì¿Úáx+”;" ¹k!ª”í°hñ ¬kz¾2üÏü«žf""}qþ7“ŽÇRúC*†þøn½©5 Gø¾¼VúqO®e”£þèô>ówçÓ˜‰ÒøÓ›20oý Js_êªø%ÖÂ`µ?nó¶ÞŽ0¿½€Øÿê6ÕŸqw™vJß Cßo@LcÇËe>5>ÃÚûÑer•.ÕÂôuÔ! yJŽâý¶“úÈ£yOºó6,¿óÂÜ5Á;e»5þ«±T"P½óƒµ8çåt]ä7|øÜtTú8StUó°ï ûk¿¢/ÞC©+af£½§0-þÝÄá~àî)4î)ðWOÀ¼L¶,aÖ7ÁØ-Dÿ¨L5å+Ê„ñ_•–ת2—ªÜ‡…z!é>FI[&s-UL.zQFÀüyâÚ½‚>t³|q±Í¯¨joÈÂæáßíHO‚¿?ÈW˜§åBEÛŽoÚ1ñÍÈHµ±›ùí·À¶ÉxºªP¼æx™ÌìÿÈLÈzulúqr¢|‡:rä8ÿÿ•Îô«É¡ï*øñoû?±0>ûksª™ÈÇrÌíRnø+wvJ#öG»(]F|D&ýŠ™wõUMÍJâNÕS$ûÔTªs„|Êþ²ü懺ðWÅqnâ U¡þÀ,ÂØÊ>ðã¢8ƒÿêŽø+Šøa“ûÊ5Õ±h§îdñ͉~åô©äùÏÕ†Ôõ—áD¿ˆò8}\Ñ?ýælÂþöYÅM-O$J¯c9‚¿ÀJ—?f `,F©>þ(¦6R”}RaæçƒÒ:±I$ ;zƒ÷g7:ÈtŽ~°lÞðWÙô °;ëÈÀ†ÀÝçˆÂþAê#èÒÍP?öcè2J£Ì8 (Ç%ë±zÏ×r/bè›Ðòî‰Sjuæ\†9¡0?& ×H…¿Ú>ô¥šq&ÛêDÎ則ôOgßü—œéD¢òQþž†o 5üÕ=%0ÌQ~þ˜Š)úßÄ xºÓàÃNî} žmEª7ýø1J½BÛÿUSžÎtŽš‘Z6!Ÿí ~l’>3ïÀšÖ›8dÍIuáç‚¶CùïœUcðן ÷°Ägú„ðkˉ̭µ[ì¯Íáš{1¿¤8w-7|Êfê‹sÔ€A 5x€““óö3}à'Î3m$»cWÿÁÓšDLgâ¤å­þ¾^7%WÄ0ôe ÆR} ^ÙUhÝÁ“‰!óK‚Ù¼F¬5‰+3D àŽÝMô-¡/3Ó*VGVè_¯•¼aÑ?JÀˆu"¶ëËÑÏ'1¯ªùý5bj [œWÕ‰°wC8¡µDû®œ¡…• ᎗…NNSÍÛkí¯¯¦þð0ÚQ ÄÀ5ÍywŒSl=º£O6®à°6‰Àšq5í™ÈÒüå(IcäñðW=õwx*Úè…p.×fÿ`op¢šŠ+z/P½5f†t@ÿXJ×wv*æh÷èðìNÅøBì·_l|ú}ƒx+.ò}Jo$a¬‚NÒŽ®"Žâjàî9üWÓ™9üØØGÿà6º.JWõr ÜÔWm£('Nد·Š¼Y—¤ x¾˜ýOµ}F [°^Ì:Lr4”Ÿ0uÄ dŸŒo,?êM<â½L:‚ý`£Ûñcoˆþ1šÈ1˜lä˜xc¤µ­Àk‡z0sÈVÃÔ6/Û)3«-½©‡¨š’3w®á@Ö•œ,³ú‡„a·ýŠÿs?ă¿o¿36Ø+Gû¯¢wßCæ'º+Žj6ðÃêÎØ(¤÷|9þ«ÃrùR´wQºŸðRÈp"6­;èÒÃlS=À³8¼Ê(¢už5k¦ùôFäÏ™ßÞSŽ…ÿª+ž¬§" O­½:,JGLÆ~ïê$*+ûü vÇ™ w€¤¶B9È·2~ˆþá*ª©žQ¸æ3Š‹š\;6¼ÎZ"–7RoüšóÀ“œïßüÕÞÃÙÁ¤…èçd¾ÁÄÂíD·¹p@ýáNvò–eÔ¯Ðg²4²ªå¬Ú¹?ê[”òàF+Þë àˆ5·"ÝŸa“u2û·|#W  oÅå²€Åj³ß⇣|P~-¬>û¡ÄóÜ¥8°?CÈ «ÿ¦Ó¦^p½+ù_þ^„¶]ûHÿù»H.5•\G¾êÔmM©ffÁ«5I‚q<Ð ŠÖêUòÇ6t© C˳IÉ.ËØ|×D‚;ñïVþ°{}P~àW›Ç6[ˆß‹ûö,+B¿ÛöG}¦¶ÛÎ} 6á³/¨wÙ?øê]Cx³ÌÔkA¤à䪙}ú3vFm5Ú“_¡ÿ#%Sºçó‰:~Û™àÌ0òûLZÆ0ÝÎ_ú\ð#1çT˜{ (6ŸÀÌùWëÁÄêwlÚ¶é3¡yÏ¥:,@v¿ !¯>‹Ú+m„}ϯ•^œûEž[±Öè39Î\fqÅ@‡D.~þÝŠtØÝ£&+„R¿˜Ø<WŸ«v-Bÿ ƒØÏ|ƒêy4Ž¥Y!ýKÁ5è)‡ñ%Uc6ÈFz¾êÃÀÔ9=À‡@fK¶Díî ~¼²?ã!ÒTy0ϵ7¬¦3HÜÄøÄÞÁox’ú¡w FÿÈÏþs•é8d­ùí>àÇ–ÿ!î,à²Êº¶bïsÎmwwÝÝØc÷ØíØ-v·b‹-¶(ŠÝb`¡ˆÝÝßÿ0¯718Âó~ϼò›n`ßûÔŠëºÖZÆ8ê\±ob¯s½J<ÝÖ_]âÉcÆ¡?D4[Ó@ªR\…ùÔ]ú£¹@ýÇ”lžd ¹­ºÌªAý`€Q–ú}æŸowZ‡‚ô×`S'Âð2Zˆ«Tü%aþàf8Ø(•—£ öÅ\¢_ËLvû‡•uulð¦dhcð_ééwÌé?<ñ7Äž¤±<¯WÅe3-õû¸?昩`áKXY›–æ(ÿ±þ#1ù¾4!}&ºÀÌE5¢‹ËÎ#þ÷¾ˆJõ`°~×¢ûnçyŠÜ.¢ª+È?Fã?Rëׂ0Œ½JAú—Ì£§ÉqºjE®~ðýˆÐ<ˆ×(¥?Šªú#-«Z”úó9Bg©&,¯ýLåþ®Kkqéã± þ´ðŠÞWtR?«gDsy•W”Yô:òøô.¨÷D}µ¯Qü±œ1Tì’Þâ(÷€$B•kN}~ø› õêqmœî‚epË%õ¬<Ñç°¬ýyå6þªíŸÈ?Tºúöa»ô…Z(è› Ìÿð€5²uH1 "ò™àJÝØ¥*ÙÜqiÁ¾‹D÷YäíW+.Ñ*€[5ăìÆÎ'ÇbÂO¼e—Qáç_“;¬&[Ž4 à+ö“ü¬²S¨ÛÔ'"‘±,§PYxüîœÃmdpwY×v6ª±SNÅ¿¬«BF‘ŠY-š<"øˆ³ ‚‹ÿ°ŒÃx °¦²ØòrÄciŒ@YHtÕý±xýà?Ú‚XŽ$JË ¾ö‰ˆ!¼þí•WÌ+ËaËj€_ù Áƒ%oÓsï”¶z=Œê ü‡=ëË«5šlö¸~‡º©àÙ_u׋ªœµBÔúm"¿°uÿGé¹ü*ý¯ºÓ)•ù‚^î©ÍéFi"S[YU«:4ÈW«ýµîL펰ûïf'·ð$ÿ˜S=üê1÷,ºnL£>»=ú«çôo@É•þã>»mÿ놅I¥«dìßh­ðöüó‚쩇a稸&€_•£›ÇØ€xŽmÔ’”3ºŒÚ6+øÚ|ò¹Þ îSäÕ0ý ±ïYÑì÷:z{QÕØ—N*)Ì-ðÀ†¼˜6~Ò˜~7©¹”³ÚÓ8€GªˆÏì Fì?ÚÑ?Ñî¾Ð¯6 MEMQJ–§É@òŒ‚Ô{x€‡½"ÿŽQV|ñBú £r¾¡1™ïëñÖ} MnýëÄñÿ§Ê[í^ÿX.S›±QÖS‰a´ÆCÖ £Êú·ïÄ#uÇ8¨ú>@Ma«£y ÅÀTã ûb¯\ˆùYÔÙú‘”»s„\jÔ/ðmÕèÇØ°JW®‡ÖQŽØŸœk1ݺš1?ê-•ž&ùúe"§‘¢vm•ÓlV}è5‚ˆq(wðcqÃLïØÀ¹ÊÃô"èwóYKþ\‘JÖ3ã(¹\7kSéMc/ªþG-B+¦PÛÂÇÕ±ãp¡ªØA£?8ÌU½:¾cÏêð£Ûè¯JêÁŸü>m”žä•@+±†qŒL©;ØØ "û[0É%e*îÒ¿ý×ý¯N+˜ÿüêžL@§ø´¼ìÕD¦8þã48Ù:4Ët›‚§9§…Å]ÂîsžVQ rœÏù@jbI¿R]¢ÐÃ$:ØúV2›Å ZÓ©&_+Vë­ƒ´a×±¿«¡ÿÕWx»•l|R˜ïÞp( ±Ieä@¬Ý70y¬ýZ0±®°Äô»1¹2Q1œèü{„ìhl{IüD ð¾4 •Å,}ýþÚQ»1ï>3‘®–QÁ˜ç„“œU^‚—@sÐØ¨I†q’}M ÎÎJ<=tŸ^¤g‘q”¬ë+èÛRZÉ0 Q9úl5ôw$›©Î¾²aÓã쩼›ÉFö¿$ÄN—³¦¢¼:‹ÿˆ–SÛ’€\!3Úá6F™J³ž'ók³añ™FC2 ÄôŠôD…jW¤Ì@¿»À¼@E\ZôW‰aUæâ¨Ó„­iH—ý•àw´Ð]>i ‰ ¶Â2”k‡Oê+öÒ5ÖÎ?î¡EÊ„W‡'´k 'R?¸<Ô£‹ñðù.ÝøfxŽM¨¥–Pã8¸¼(\ò;˜£+UЉÍá b=Àíž_õŒÖF!œë b®D øWاª0IÉá:ƒZ•çcùÌS³8]¡ÁLOzH¯sO<Ò:øŠ¹ø¸ÁÌÿ¸à¼ õƒÛ©¦ò&*QÍïôº‹o4¥³'i¸ÃÑ€b‘# gxbîfÞìM3)uŠÄ“@ó£¿8+j†È+a‡`9*sÏw¤»J<ÃÛtqÔcÊb*ûXc™¿5hžºüÇ"Ön`~Bs+…{jýß‹ñNÿ±^}Bÿ’ž\QàÍï…Ÿù .þ Y€¬²?}dòX5‹Ñ±îÓÿ*=gs²ÙÍ̉’¡ Ïe}êRГ)rÖyzþW_ÄU'…èß.Ñ8×ñDná¿ê?Ü©̨ûª¸6*é4_m¢¶JÛÌüóà~üY÷´²Bˈþ걸H­M^ð«TjfêÇÑÿê¨ùç¿®…ù>YèôÌiBú¥æ&ÿè F©ÉµýÜ;ÅdòOúïŽpÞÁ!ÿ2ìש˜M¯ŒÊt:V¾÷dic<‘æ#½=¶zvj6½ ®‰9LT_öÃù~ŸÖKÏ]Ôºƒ²Äá®( Ò=L¾ÀFù³b5˜Š·d¼ýDè@á,†Ï(Ö‚”7BM™N»->)kÂ.7¤œ?¨ÖjbÉóÉZ¹_óH­^¬1ºX?lz!¼ZEòv'á;8Qö¼ +äNþ±˜Ÿž>zç íDx{‹¦îP7á?ìúóað1Eˆž:’M@rÛ`‡Qyq@®ëÙ̺¨Ä4Ñ:èáÖŸ'Róé—…ˆûÞ þc(g­>ÜÌØÓp¡°–»še[9 ßžE^'—í"ç†ã?¼ˆÈK‰møÜjXóom/¼ØhøïÁF'ìúÔjUÈ?¶ žýÆ{î"z˜Êo´ãõ=ðçÅœÇzä¥ñºiÀ@&`‰ãÃOÊRô¹†jjýw'‚\Ý3Ò‹/GÛdëÙ€5µÂÄ”qÿÆŸ{hÉ?æÒ%m&¼ó4c:úÝFj·#ðs¨\èOûÞÈ„fj.üGA2%lp~·ƒ,¤Õ µÃZ;"áSAùÇ ì÷=yŸÊŒ…äB1Q&µ@CäK½óð«²T‘ÂiPÕAm^]Îè92¯ÏÚœPëI±™ˆâwFgиòlÊ zUMc+© +L‘ ö~FÔË1x½!¸ÕIÚZ?:`•bâG0±eº›x¦_dþy“0xî¯Oþ1,G6¢†‚ðÄB5üy+¢Ý >æÏã_'ÐËcá§E7‚?.G7Ô6ò€þåwÀ~ø”ûžÿ±O¬Û•¬±ÑÕÚšPÍ ŠÉÚÀ†ìùu©oü†ÿ#lUÛ?ÿÛ¥Øó3cQðÄxãá<ðÙ,3öÉÊzô»½Aß ¢¿ú™VêÇ»LÕò“T†ç¹ bcw‚¯ˆÏüÈ.Uø{¸uØ+±îTsìà?BWüXIQTu—zH¨ÆA²­þx#;ÿh¤ß¥ò‹wðÀv¾Ã»,âØ=Éë†óÇ&W|¯iáwæG}BMp6âÙ ½Õ‡?OAÝ@>1S?CÄÜ•hx^j,+5Ørl²ýQáøÊkøsÛÊ´ [ÐxÎ{€nO'ÿèMÏ“jÊÊX§Í`.áXâ妰f;T_›ˆ—Âúá–Z+QÝl**äf`#oò”oAå…Í4AvÐK0øU|"ü…p 8SjË¢á'U±-Ì{1 /÷\&lÚ$tesˆõ—Ñ ÅŽcÕ£LOú·0?€}¥cj|Þ^2•ê|ÞÀ> ‡É4¿kíÁ"÷¡{(.ÕÜx$¯ýÍæã«Qœ‰G;˜bݱÿQŒŽ!WÙW^z«¸Âд%†žNþZ­¨ oX±wܳ½Xq§\ÅT«Qd.›ñ“èåQšØÞ Nø%Õ*'ÈFá‰ú‘Ë cÝ!¬)E°îsŠ2Im¯º·¡àf Å8™Œ®øU™ÊRÔqÁ¯â¦óÆû¤dÖO‘w%óežEK4kÃQT¤Kúpôfû©p†Š÷ºy„.~fT®Îâˆ9dœñxº’_‘B诞ÑI­OmgØ™‚ÆcüG\Ñïö šÄ¤[Õ|> Õ\+%]æã™q`¹}¹gF‹âAˆùµ«ÕSä3=¸Ÿz“ÝW—Ç™5Ø:”¤£@+Šc½ã4z劖iÞukgM'·K¥ÈÀó×–üãžL,œGüï}a¨óÔàHâ»’ä?{÷ïÊL,ò<-óϨ•Xe½’þ%˜`»ùƒ‘CçN+›5:•ÐýêóeÓêwè¿[T] ÷ou?¦¡·Œdþ‘Dó£Šõ8þ#>ûˆÞD c·[Äïôoß„Ÿòe"Ø7&üp\½ö`,¼lyž¥ôF+,þ1üGOlM„ÎÊ™ôßÈüóýÔŸ&>þ>¾–ˆF!/Á=Ñ—Hz2µ'ö?9ˆÓ 1,õ^J±•juy“ücÈÍlpÿa<9»± ¹cséîØ™L'™<®•úÅÕž~µt®1™­Ð€NªõoØglpžµä «ˆë^aíc¡s\LýÇϘ©÷Š7Ú%»›ÈZò…døÆÎac;J¶ Tk¼ ›€wYÜ–kõ‚9 _´§áÜ’™ÔÔøolÖXÇ5\¬ø ºxÜdÆS™ ý®ñrKlrGp­±ø¬èÌÿœ‘>áø#Ô–ç±§µð 1vW<Ò,™·5Öø,=Ã*0ÿc&5/@ëöⱆ‚ã4ó$ÿÈæ“Å-c•E\‘\Á6ÆñÞ¹Þm%­nÏ´kvÞÓ™7 ¾é*5vÿöt‡¬‡Æ©)Ú©ÍÖ9jZ#èßÞt|õF¢¤Qr½h(®:7þã‹(H5ËÝ@Ì6ΘuÉ?¦YÍñkØÏkf4£rc#ž}Im8ýÕâ8X5æGÅ%†ý±ÁðçÅ@,IW&»E“_Í×ÔËøS_zŽÚÆŽ`b.Ži䇭xÖc•*Ó,Wé@UÓoÙUF& RäJ?Þý÷ÙTÇ©gæ;SACßg_ý£²†ùµÓµXz.êí¸v…’™Üc6øÕN°§È¡s~ÊBüÇAЫ{Ô3dÐÏÑÉ@7×’úÁCtêÉùƒY´+dûD|,al´R5©?®Yõ£E2»'¦ÞÎyþé¨cÓ+/•^lc4¹FìÝo¨aÊ7¼¶žúó©0*9å%ð«¬úêZè~vJë¢ÛókÃÆü§bßýðFƒ°ϰR7ÀÊ¢›}OO’ÂFÿùß~e,õƒ¶]~ 6±6f.þg<Þä(QâèÌðôqÿ2Øë¿ì¿;O«“ý–ù>(GPþQ ¥Í[™Ë »‹àF,‡;üÇiø®AØex»üHÿăðçû‰|íùƒÅQô òmƒ‰ RÏ0˜<üÝpVÜÊ à7ëï´`n5xÝ´ð/ij䫰啨e%yRTヾ^?û9üz ~}8±bjE£pÍÆ…ã?+·è¿{ŸÛ–³3ˆ¯É9*»;.z(¸ÊÆkòÓÆs“\q︊•ÛÉ­úôéÁ;³¿jËü¨Òü,l÷

    ° *¾ÓÊÉéh†“ÏMF³Ü//EðŒ°IJµW¢›ñ^ÎDÏPZ4•LÕêJÿÄÆLco"tþ\¥çT;X–¡pÖ)MoüÍzØ¥ \Á–Æ­ùÇ%™îGdàO¬þc°¨b|6JÀ—÷ÀC6K„ÿèÏ÷÷ÌóØû#x÷øö2¯<Òøóâ–óŠTPÝé•pšó"‚~þf9GR¦ޤBãˆÕküo{2‡µ(«wbï[0]8‰i%Ø}q–3ÿ<‰ tú½êuüGOžRW®”.·ÓMk£È|ã8ôÚŒWjLþñˆ~Œ1à?æàÝ3“L2©ON0Êä!:ÖÛWäßù÷E™ª+¹U5ýì?ìùÑ4æRÝw,HùVɤùÞ/Óö¡ßÜü¨ÓÊb-»¸I%ÜkÔD=Á¯2]Ôw‰¤èwé•#Yž]CÅ…>¨±h?ðåY¢šPû†×Ïdñ<ü¤¶ÞÒy‡üÓ¹×é ™Iï ¶´š¡ þ¿¡±‰H$'Ò ›¿+[C ¦åŽÿqVë¯WÁsd4Ã4ÌÆâ܇™I^ªžÄtg°‰9‰K’Èá"4Þ.}•µôOLƒ?‹åøcðÏÉ¿vãåV‚ÜÍŃ<ѪÅÜǡZ#QÿQõÕAlîÞ÷Tƒ@×*wf±®DßÿÁ¨H•Ø ¢ûÏp#v-öò•LÔ‚«Eÿ:t_í­ÈAU¶9J½ý _ɨÈA >›n…­ÁÙ5V}NÞ•‹èùƒq˜ß¬7ýw+†Ú¡¥·D~†{¬û þñÚX‡Zè,3© øÞKÇN:­Û õKÖ©JÿÝíØú)üîD  µž)VÂPÓ‹Ú–¸Ø×ØJFÔ>&;ŒBwf轃™~JçÝ¡L|Jˆº© hØ-¼kkØŠV¨O?8¯ñ¥;úÝtüü‰\ÄõhÉ“ÛÂüïñµî\tXcPJå±ÞáG†3‹ë0¶¶«iûÍ o«ðq“É?‚û]‚øšÇ@²Ëª( ‹ÿ‹ùQB¬.tž™ÏJf5¼^?ŽôŸ>S&« ÝÚu½ñØï¬¹Gɦ]¢ƒÉNòtê¾úã¿ý슲RË*®“ç½ òú½žSDýùAMêQôZ-ç®ÿöÇá¼à~\‰.%‰QÓkd%±|Vm—èÈú 8É Ñ ‚ýKâslÉõ)0›ˆî«c~GM9\îÐÛðDÚ,At˜µØd!õõEáì$ìKÞš«^ lî&]ÆG4ìS%î²1<ˉ¦íj‚`Cš\ú_eŒ8Н©ƒ¿(NTß–X1-6ú4™sW*jσ诠~p&¨Qi¹M Ûw<ìî|´ŠXòZÜ×çØI~,j|æ]pIþ¡á5¶%m‚U™ÊOý¸6uÔ¦?¹2_•ƒj )ƒr 7¢ñ2U;°*Y;Íç½X§7ä9›ðv©iäŠYåÐÊàØ4xñÕúwñ…íQ|Ú²ÿì³øUV¢±Â_Ð$g8Þt4±]V®µí±„ã?|è·VAà?úcÅ¿“­Ùó?&sœmù>]´êÉÆÆ)Тã`l/¨†YÁ•^ÃÙíŒþj'º“àÙ_ÑjŠê<Ù5aÜw`{_€¯­C}»™5âR;Ü/HuÛÈŒÉƒŠ oß„…íw‘Qþ¦¿òÒÐÿj"–b9V| œø´£oðçÓè5þ¼¢{ Îb:¨Tqú·ûá¹ “t—eÃTú|Ö:ñùº¹€ñ ?ºdÌ3'’(›šPq û<“µŠ’Ü ¢/ÉqlålеŠ+ó9ÎÈjÆ‘5Ågiš…Ñ×Ö…+†ÿØeÍCµþü¨9†šÊä9à`+È6s Ðí5‹W8üùWØÔ\õF¼‹#7*®Îx¸—T & þÜÖoYÜG7˜Fæ pÊØÜWåø´ðºþÃ[½€¤OdðÐ'â³™Õ1ÛºmfæšNÅW–¶ò;vS?ø‚Ês{~T>ÿ‰<1Ñ`Zî÷Þ «ï©³ý¿è_’ýUW癉 ŽûŸêw£«kèh;_CfÀüA[)t“þ%§Á¯6ß'$þV¹Fýàuþ¤ˆîÏ Ó™êA}®0ÄôWõÂèC?½ÿ®‹¦r½Ïi”„µ½¢çÃÕ‘ZwæM4^©å&‘]­ÿû½"Ôfjs}ö}<¶£>ö3-èFIy[ïN>{Œ§ò³(ãö§H¤ÏùÙ"!^ß«¹éMˆ¹£Ã,¿úR :4`!¬Ã6üGÖ þ¼ˆÈî¼R!õeBu½é“áÙ>bû|°ûcà{”uá’O£ïšGÜ?ƒ½~ZXÝi¨Åøæ”Vœ¼9Hþ 2¢¬àWv•ÅS"ðwx¼§ýFìÿv=›ìÄ þ¼£Úä'»|¤\P ¬ÌâhWloa²‹>Üý>TV¬$w˜DÌü†3è¿[‰ÿƒÒËA]ÿ³pû'º¨èé𒪱™`ö¾<òÁhœÉb»rdOF„þª;~#v 9XWpüÇ~å¹ÖD<”)à_Ëà?.“Qæ,¥Ei€¯¼€ÿúóMðÕ·ˆý÷àáv’C-à꜠þ£`˜cn¥U¡ê­—¬CƲ7ÈŒ`g¹@D.SaáC÷qt.yеOgŸþÛå‰vÛâ?zy±¡§3)LS{€~ÐMÖC|’Œh"™©=ÿÜäF•ó,ôI½¬læ-±—¬’¿ðv½ŒÅrîÒtZùP;4õñÜk'¹è]‰~+¿#Ñ…u"§©½?Jw¨¸wªÊB‡‡Ï‡§Ú;3«ÞWÞß§G8+§dTü[{c©¤ë°9جűýFýy3j^1p'þm6ýw£á?:±ÒM°³† vŒXâ‰óÖëÿ1œãë`|¤⣆p‘è õ'®"xÊñð)ÍüðÉ‚_­7çYx'wüÆ*ã1ÿUàxˆ Îõn(Yôo2±¿·Le&—SñŸŒ>ðÛñ¬%œ¹NÖ¬QV sÔ÷³Ú93>ú«‹x^7ÎMz£ }W ‹5ÎóWE=IåQN¸O7¦eµ1ŒfyG0«úV8}_ú·¯»Át‘ ¦z¬âæø/¨›ޤ»);ýÇ õ†þHŒ)èÍÝtEhVZÇ,ë4üù P»ÇdƒÙ˜u˜~–,Åt8 Òr&¸Û7¢BJÁÔO½‘ÏôàŠç¡ÿ׿HÈüÁéÎ3ó^)L•Åö¦¯•yLÔ˜£E×Ó“ÏWg•Õô/ñÓÆh{™•1’øÕ5ôW©Å¹ &ú’`Òƒ¦¨iÕMôO|©ŸÄC5ÓÚFjŸåá‹ËË¢±}:¹Oï"þT£¿jÊõ:M-ÐIª5GhŘØÇ zg¼‡[Ðõö‘aÇçz{ìâa¬Óf¨š£²0§ÒWë©À[|!¾w‡yF–]…•ð<ÚýPì$©ÀâÑ?Ñ>«ÿüo·â&æeWƒÑÎmìu™@ƒžØºÝز´Ä`ÉáÏߣœ ž³ù—ýkõ@iêaÉϳ“ôx‰2øÊ+xWñ†ø{5¹Ó<üÇ4Øð½àWÕª¿ú¢l§b|8“ 9Tc£ijÉÞÌæÇ3Õ¶";ØGµ~rÍD미V>\+w|à,ÁÔ·ÿ­Ik­ùî ´Ä{á<â\ñˆÑ:£Bc³ž¦Sÿq“þ‰Yˆœ+_Èšƒ˜¸gÀls¥7k/ÐïNGµ ^c;Ë=4NßñN^(e·2ãéürbóŽ‘ ¥¨l¼ “Ì÷Â$B×J&ÑlEKð¿—ÚP®Ø1ì})ª0FrÞï£QLu#k©Œ}ÞÏLŒït¼kT¦âmbqê ×6¡š’S¤¿6<ÔzT¬oØÓG:BU4–ÉÆFs ß7’xÁMgGu¶áúžÿ‘ÞXEýùp¼BféóËüc©V˜ß¬Še>‡ÿÈÄJ¶þù.Ñá7i5¯Æ*î 1 7üÇ ¢þò?Í?Lô»"ªakmûâ%K¡¨mËã'sŒcFù/º»» þ|,ŒŠD¿+õàØ4øÔåSsè‰9ÊXe ÎÒ(üZSê?±<ÇÁ”~×a[ÓÉ£ñ÷D2䨪£ñ~ëÂñÛÐï€ÿÈ‚í±ûµŸÂÞÀÇf…hŽB'®ØþEXì[øø£àW³±G“ñáûÂf†éþY…¬­(ö!p¹r‘-pžTHǃí®‚kš þÃÖ9`,Ü g#á?¢¯0OáíaÐü¨x0_p•© Es±õg°™¨È› ò2–é¦ï˜H%‰ú3Rÿñ\¥3öo k†0õ/5»‡åòÈòÄØý±kàÏ'›cè¿[K½“næy]ÑsU¦cÈU2ÃBDö¸BcŒ3Ä$7Ãôo7ÀþÞpî¿Q_Ö`z¦±6¥õˆÌª%º/JõSVó!Õòé_2šXa$ºfqv'e%¯œ—¶9ýw{‘/ô2ËADEQ¾´1_ƒùiè­:ò¹£ªÖ¦ä°ø×Qt-a¥ ðÞäHè_Ì·SbäãºyÈôf»‹ºBÈ`üÊ3È $—íHwŒ›"ÀLLþråô":qÝCœÆáãXž:ƒE—}˜ŸÖHsú«ÓÄDO¸ŽUaìLqÀyÿ½/°çsgFã'r~¹]¨ôñMFÿÝßôâô²£UäéµRÛE }‘ZîŒrTËIÿ]óiÊ*Ì0uàÙ6Ò7{j½K˜~p¿Z<-\yaôW¥©?nÊÄêNô/‰¢-¨){€g¹/šè«hO‡þ* ìãt,ó0¬Ç!YÝÍ5¼­7Ƨœä.ˆ .©r®¤¯úÕ¶øùqò’ ^ñŒ-XÎYØÃsØèi<£ùÿ-ôWÅЈj`=cEh "¼Å=˜5ÿQ ŸÚ8HuÞ|üÇØS`ñi‰3‰`¥‚¿Ú ž·IËù‹«=J+¥oÎq^àH³À#”'îzCÜ“)ᯰ¢Ëð ë`ë—Ï ~°ŽúÇOÖ|®l£cLbŽs þч£ŠÃÓdϪ€r§–z;îÍš»8'U©0¼N¶ù0œCÍÀüÁd¬’šü£+Ì8ÎS]bƒÓœÉ+Lðë®ï'²í ÿ1Îk(+^8G°>ÿ±N¹¡Æƃ¯­N4ȵíÈùÏ ~õ;½"wƒÎÙø•9ˆ=ÿÞy♚篟Ss‡9æÖôßíÈû¦CZG|}¬€ÿØÿ®Ñ¿½>üy¦?eD—3Jƒ0/6ÞV ·ÔCX«¿Ý›þ»ùÉySƒrmÄê–wèT(a8ÖQé½ UÓmz¢dCß”ä~YWiãìox••D¨™Âðçï´¶Ü©§AÿÊÀé´‡1ºcô‚…GGÍZkª?.ÁŸ/u)‹6ø*GPöÃÓhÊ9ÝÍQh!º®²Å¸â¹ÛKòÐ`fÞrYÑHf3d½Ì)·°¶AÃîD%6+?va +wå/’„à?ê)ƒÈ?⢾ ~Õ–ZÐbä©?ÿÄÌ­ªôáÔ?Ñt ¤ÏÈ$s&yC!Tl­±÷WY±ùRlqÞ3~ŠÔŸrß_$ËmÆ—ÍÄ]úV5r¿šb¶Å[Ž£Nϯtšþí¶¶·9ž™ÉQì0¯Ñ QF[ÉBª‡®¡Öp!šZi4C¹¼ÛÌæ¨ ‹ÒÈŠ‰Úv4“IΡ»½``:îú'VeþGbÓî8z…ûj¨&>„èßî£îÒo¢ä™Ì}ß%_øóãðyɆ¢Â¾§gÈjÇIòÂÖc ªãüÖ@În,ߘȞhØÏôIV 8ý¿þETê?–:ï}»‰Ãù]äÞü øUTm½–’üãZþjýKaDŽh#ÍœPà?®Òoâ h~{W9‰ñvèÞ" ùGòº‘ÚgZíÏߑğ¡÷£/޶Mô!¿yÉ|‡øÐŠ’Ÿ}æ$ÔûÑz‚½T¦ú <AâäîðØœç‚ m9OÔÒ—ül‘¯ûjÃõBèƒ òkO,½]UZÛ9ß1“èâ*5Ls 9,þÛþ‰‹ÉU\PÔf ÒïDN“Ûi÷C¯D,u æ ›2›ŸCnÑÂÖM‡ØXЗ µRÄÍ-‰µ.g¤f_¥±ê·Ø¥ƒa¬ÀŽÚ“à£ã•Òr.ýô?Í?>(ÔÛ"¬ÌP2Œä?qˆÐ=ƒ¸Ù‘þ=0•żæÉŽ'‚›å†ÿ0ôðê?Òª Úâ:Y–/WÁ›”­ÏSJð+)FëGá ÚÓd YÎòŽÔèRñünÇì¤I1qT&…;hþ÷gÎƒØ¼èÒò£œAÝ1®#}âý–Ý­Å×5–¨w «ßí¤5ÕÈþJ±Ýõa:”Àöß‚apGkëi¦ z< (Ö|Å5:(&eþùKæ?ý P…õvòÑ“ž&ʹF¿›€sg÷wº^FjŸáC•dWªú¢€_õ ®î…yœkYÎ)¼Ò<üB?:tmÀÃ…óI%ž977Pé«N òäLm•*BäWÊünö†ƒ/Èšý©õ»Ïd¾ ŽVŽ})¹Mqú—4Æ¿½æìÔÃÇ=‡œë½Q¢èwáÏ/‚Œ¦7È–âž”Dögaf›£™w² ›?üê1üÇzfJeA¿ë‡bÀµC1ºÛíECÌÿ¨ Î£ò(yø(¹Â¨ .È5f}G!zîÚº°˜T¥ÄqxÀ¥¤“Ö\¼[w+•éá;ÙÞ1î¿É¢Ô«6¬½VnG;êÇ æbš ®+çãwþKÍ5Ô'»¹ãî3Ïk"ùÛ¹ùvÿ«iL;ÙO¿ª\ôã¸bõ`ocèÔõœ ª+ÝÄ#Õmjl¤1o¶­ÒU ¯5š3ݛՊˆFø×ø—Ô2d¢x”XMáÏ›[MAˆó]s.~ ê±ÝœÅÌ žÆw^ù¨Ý"C>‰ÏOi^#E*to½ñ‘…˜8_¾Šù+ÐKÝ5÷ÀWì„ÿ¨An˜™úý(Ùú¡ß­ V;·º:þã7ð×áԼƦÿU ýÛ·¼éó• ë°åJÿª¦àckPJl'—ËÉô’¤&ž¢™r‚(·Óé?üàãýÅ⦠­ª¼F7ß̾‹z+-¾­ŽõÜò£"$¦#‘¥ÁÇ7ÁtÛŠOä” 6¬;Oc¬3fçÿÓ¯Ä!ÿ˜í<3Ñ©ÿ0ßEî-^0?*5µ‚ùõzú› üÃS) °Ñ+üÇoêÎH-wFñÕJà?Lzn'’ô¸z&0°-úb‘Y¼× èí´_÷òù†4|c¿(Ç5jNíg7᪾Twˆ¶ä¦÷QF>f~Ô€yTµ1•kÑJ-ÇöÕÃcA!Þþ¼+xùQ,J4*ã>‰ùâw="œÏim¡î2‘˜¨m%ñ¬0Îb¯'b©o±Þ%>JbùÞÁž~¹ÃÕÊ"±¯[“'95ž¨ ˜Zlç~ü\5j6ÎböcGí ½‚äau§!Ï™ýõ2­ö½|ÊEüHAVÊÇÇ;vIÇðŠ5AùÇF™•hæDŸÑë]û°ëØßkêiõ‘ÈmìÇ[Ž¢wFn*;b—’œ‡aDüý¦f ön'?ŸÏk9ÁßháùLä'1v¡¶yùTS<‰?¹Ð=æ×¶ÕÀÎög—Ýx*‡òŽ™¨êL„/ oþÇå–Oœ'wL̪‘ÆæƒOmì¢:²$Ú)O¼Á[®Œ]ó²ZNå£ή }Ľ´¨ðZÀxÁ>7¿‚wáܯCqkßÌZjæÆ:§¡ÿ®‡‘Ñb!¬s1Þ‹û¿1ÌzË©ŒI¶VmêI4N£è_²$Ìß°#z/*@зFß”…ªÄa(Žó_à’»éÈ]©?!=Ðìþ^Ç9WɺrÞ_Ãl£F‚)E\~ÕúŒ õSóÊ Ê: 'žÿ±ˆsÓ -ÀôW¡»ÅiäÑñ³w@!+ƒ_yPM²€YO+ðb»­átJÈ$¾3&xÓ~{fퟠMK8æAÄ ©…î<â–ʵ5«u1žÁ¡× C fw²¢YùÈ?ºSSwÛÌ`)äm±Ð+­¨LˆËuZi<嘫’Ã)ò°ó‚V,ý *Écä“1ÍDv1ÉŠÚ3§¼(âTê÷2¥i"*,•ŽëÇ©¼ÈjõÅAíp÷ŸÆô¶â!ô»…™~G¤'×(ûpáÆ1³ó·Z5Ùaa˜ݱ“œë0HØIs.\H"øó4fVãj©¥ôωJþ±Ïé?v¨Kô£ô/q#Æh*/ 3G¶ÛLKœ¡ã× ÑéËÓq ¾¿ŒõѰ¹š6ÖÔmñȨb£ì ÿ¡éþOêÏ2?ÊÝyå¾+v•žóÄGê CÝ©¢ßn.½¨þ!H¿»^ùþ%tàõ£ÿîéH­v›þ%̤'¼†)­¿ R–ê æŸëtŽÉ¨××úDjŸUµ«¢2ó)rbµj‚‰4¡smµhMçÕè­˜Dí­ÆÖ›â=–•WÅÈIý¹í“J`]÷ðŒ¿±À°&‰ôúšóam¤žø8 ÏåbüH\îójX›ÁÜkó°Úû`‘Ó²æg1JüºBþˆÒŽþ‰±ø›ÛT"zq‡ÏÁnŽá.;H-[fã8öv Êݾ`©å%-lÝ[Ø /ÓŠâ#Ú€Òø²BQ¬o1¼ßQw)(c¿ã[ÖcGçƒèL„ÏØ*6Ó?ñg]‚-õ¼z þü G;ˆØ=/œ‚=Y„þZF ÙÃ@øï¼ÏrØ‘m`½A¸ ªó¾„;¿6›Ÿ®sWÈ×¼y‚¼±†Å‚z󟆛 D£;__ Þ‘ø±;gsç3õçÉ8–áä‡ñ.b§ŒCôZ…làþÕ+œ‡Ø¼5Üö+|gm"ÿUàGï8ö½dŠcÈzà?è_þÖ?±ú«Üø¿TØ e`5×9¦ed0ÛáP,ØîŠ 'qˆq 3¥9›ÀAÕ•½6áÿ1dJq&̽¸ü*=ï––È}-5"îìa&½¥®¢îZÀÔŠàWe¬ôT$æÃšLÕBzºƒlÄ2ƒOá¥+j•C­øM«Î;Æ•¤>à‰¼dtmYÆLCþ¨Pã;Nš_™õøUêèܱËuðÈ×AÏi¡«|¤pcG63Ôo¸OzÓÿj=ýK–‘ay’/”¤—ùIêüî“é_’Î˵îF}ãtVl†Æ*ˆéÜ_ÅUý“+Ñþ|J€&¢ƒŒ‹©*®,¨‰'YCá?ò[1}Ñ_í'—ûDü6®Ó2ã^®žäqˆþ%ä–ÈŽì\YšÅt:V•íóÆ«-ÆF—µÀø´!OøDoG[¿›ÛªfÞâ>˜‹÷/ÇÓ½Æâ˜sÕô«rA8šl+ú«fG vÕôê:ì»þÔÆºÃJ+Q-O Ëüm3§™½Écâ¹µh3߈Nÿ±\å¾°ëšÛQÉô›ÜˆÿØÎ¬”|(K³³÷f#Çtæ×ž·b1ar$SOš‚d½<ûÈr “‰$ ¡` ûÿ÷¾7¨Êëí<3ß”¤ÿ1~õQYˆ¢©¯öMsè§è·«(>ô¿Ú­-ƒx1×0rìÎ=ÅCK!üᶯџª’~ˆù¥U?}¨0…7ˆxÝ_vŽ }Î2i7QqìÙ)ê®ˆŠ¢šN² ئ·0è›Î¡ÿ&üï4´þõ–Xæ¡pñ¥É ‹°¯õÁX±Spjû°éq“Vw ‰P¯úпÄk)°ënd/öŒŽZ|öâ•EèSOã¤ûФè/wè«,óDþæøÕ6âqpªADågé¬]\?£1oäÎëñàÏ ýbÅZCâæ&6æGŒŸ•'¦,lH,‚øD¶cê¬õüÆmüQBTl«à?êüdÍ›tؼ)0ïi:¶×\.>Þv²JDæÊ‚[Û¥–ã9–ñ\ àý¤|©Ón†:c}“„)’]½õkÉoODP‡‡`Fe9qNLÇqؽIø•aäá&£ò”N Ç,?¯‡7JUËš%X°?û̈ÿè‰ äL2%ët+)Ùïl³x™r· †î¥(´?DM®BNzðM€à˜vƒtî¡Ï‚Uq9Éf¾GÉGþQ Ÿô¶´4þn‘ö?-ùëh=´/dÉc¨ ®3þü’\ÿxÆj9HÑ|öŽVÜ þ%IAÄ€_½Ãž6¥6q Þ3ƒº÷Íkm±Êޤ,RWÎûÆjªÆ’ô&_¸ƒ5ÍÀüÚoF{êÏ/Á"Æs.#“êU_Iý`°Õ°w˜Sà $3et1;hì²+»ÍÌ9»Püêº5Än%•äÑÌÉø¬>Xû)|že´1J…¨~k¬TS§Ëdè³ná‰Á—«M¤I øw7ôa̺ԧtÇÎû† až›ñ V¥>'Ž ž½s‘ÞÊ:ŒÐ îùfvº‹=@ÇÛž¿oÉ–ñôƒßOõà8ògôo?€ò©ë>%ƒ[@†T†s½HTçœwuu±naçKqÏî6 Š@yÏlŠìƒ5—ÊðËìÏb~`{º˜œBçÇÜö†Tæ4íÊà;ÄÓˆWSIÕyPë¯Ä â(z#ÀÎ2+¡¶: ~ƒkÑœ|£½c«ã|Jë”q’NÁ­­èÎlåa ´,#˜,Þè'"Òmﯻéÿßÿ3“}¬pž™çôOüOõ»ººžŽèëµàWà˜©=SòkOð §´#àbÁxdDvV9­U/Äw4¼EäfŠt O×[ý,“ìcˆ‚z÷0zö_­™OS@°Wò 6ÓI—f¨ß {Þ×%Qœþèmô¾ÎóðO«ÅáØRë=‰Á6bá~Éh£Ðþ»ãˆÐ}¸š÷EI"üy¢š>ùŸúŸŸùjkt»“ÎoÆr…Xœëh‘f‚])Xú@y •®Î/Ñ ÿªÛˆ¢VöÐO8÷ög°˜=D÷ëˆQ&b•ÏÉ&DTÇeiâÑb¶1…\ªýÊ#­Ð†È“dÕ ñŒ{‚üGÔeѬàW¿áEãçvâYTcyÎ^rÂjùŸœÇçÔŸ›Äàa’ãu2£TëÞ/›gÀ’·‰ÞÁ¦ Ãr¯Ç«ô¹“L‡}«…7?*.ó£¾Ã„ÚuÅÕ¹#Ég*áC®bcß2?j«Ù•œ«.»Ó’”Òà\lw>¹Á—g Gqƒ®^ƒj IgQÂÐ)•ü£qp V,+»×/ã?[!ìI,; ,¢Wç,ý†9æ…ZoÑo–ÌgC­}K ç<æbŠ00ÉÒܹ ›ñ6. ‰UÈØÂVTŠxjŒ wˆŽþª9ïO¼ßmâ¾F²Q8þã€r™ús»KRm:×~'ëÁÞɬDÓÕ±=/Á*;àOë×ä<»¹>KÈi¡ءߥ¿[è-þ©µÕð»%A¼Â>eÇùn mbXÚ¶øæÐ R6ì}nò”¼äí’Loßf½3ÚPÉápmËð cŒñ(ó6¡ß½eì5æƒ_ ž֡ÇÒz*êæ ®OÔM«ArÒë9þœa'Mê]`w.à/«Â¦Œ…ixil Úm»khMÁ¶¾´^YSÌFJ§Øav´Ë`DŒGË]íÏP;|§!ó»ÂýjsN‡äqüÄJøsÛŸ »Të }ªF±ß%ÌrýNmGmÎì9¼%õyœá”!æuôä ëNôÄs²™(œjÉFxA¨®J’,§Ö/1½G’8ZÑgdùÍjí–€ý­Ã»/戚ÇÅJçy¥$Õ%çãÑYR3šì'úœM€ßvAk5ŸJ’ó Xôm¿ºD—G,·Uf)¹Þ>r™ºò¨È'‚YâRêJð«xä³ýå2#¿0Œ"VUG]r¶ÖVt<›ʵM`v¯©!÷6/3$¿ˆ*-hÅêÏÇ2G ˜?÷§É31 Ì¡%Hl,éoÖs,¦÷IAô»•é¬RÜjîØã¸iôغhlB ]Ýò`ó;±«Ê5‹²RCÁ¹ÝyzþW_èô/ V6kt/‰꾈øâo•TtÔèéÐ_•e•mAõƒnÚVmùýш/Åožcþ`vð«û||%˜]I­EÿÝØ…ýzR½W$ë?ââ?JÈà K¨@+%z‘øˆöòüGjªLêDP¿—Úþc86¾æ&8Ò —‡õ|ÄÀ~Ä8gð_ÄBQ1Býw7Sÿ‘?ö fš#î¶t÷Ú4p!ìu&*6¢Èþ¢Ê/¯Í:æÎöö³0Aû§ã?FÕo¡Ê; v,•q‰­Áw_ÖÂÖ½…½H]´$Xúf`¬>(£R±«â|<«°Ê/À™èÞQ©¿~ÔÑyáoín'.xÍŠ(HãኊÁºþ£=õƒöŒòqFX)wäúÛ¿­Ô[`¡š‘KòÁ\ƒi豺 ëÑŒ»Ü7ùÑ^¹á?ã?|Ù¥=².>nýKl¼6ä¿Êx£|ð á?Æ€KÝb½Ýðç«P„~5–1ÃÂöt§µˆÅób)“â4j1E•ÅÎ0ë¹i×è¿;‚îÉn`>3ˆž ¿ú„G[jLu™B‡×–ð´Ô{NÞö Þª*¹ñÜ—™´Ð¬Ô-­>ñî1êýŠ“Uüi\“—™ÿ1ÛeãA/Zò æbÂDgpz{~íIò’¯¼ËSáF×®àèççò„ÖG·yé7ØÑùX9 þ£vº'Xé\þ;7ÉŒž+¾ ~]óâ­ …L¢sÛå/3…ª?»Ò˜˜œúÁ3 ük˜¥> ;‹¼£øÅ1Ó ãj`¡cñscS]@rî`+ P‡¼¶Ž•–ãõ‚“ÝBUÒ0H;ÞñšêFu§(µ’s¯ƒOŒîgÊEÄš¬ûwüÇI2£!ä:ë9Ã5ù !^iÃYΞ_kòôèÆNôj>œûrxó ð± ð ½¶îKdÛÜ¥>c™B*ÔòOé¤püÇnú_£.¨JEФ³¼{72¡,XÍ?ŒÏøÈâhgýñ^øý®‚ uãwšÉýú½¿õOì^ Ö('Õ+P$Ýç87¢`XzJ‡§®n-Ä>œÝIÿQˆú¯\°ÞUñwS „>¬þjüí?ò“L£‚†zùÇa²‘æ!,ÿ!úÒ¾ËHŒ¿6>/J¯½09±eš0ÏËK­þï(9j5NÿqþüªèMþÑ™üã¸8jw¬d~T^pÉLp)]­޵ŽCV,G|멱 …pJºßÌ0cGÀ Ⱦkr=Õ}gðßû">¬ÂB癉†ÿOówT‡¥„-O­—Ó5­!kn ÿî*ÒÏjGÁÅ"×åõµà>^0A*©\¨;ôdju«¾Tä¤3wZôW?›rþ¹+®Ip /8ôž ÑfLS?ªÞ¢ \@ (ƒJ¸>ÝyÂ_ã¯WíþWéôväëÈEkÑó§šáF ]´ÁÞ_×x#j“Wn!£‰HG3m^ ‹™‘¼cüY"PÍrä!s°“YýšŒ‚ø¤¸r¨hüË.gþÇ<°Ù²ÄÈ…ŒÃX°¥ N£Ét½e °ÜsX´-øWâçbòFXTão>HK‹¥,J$V¸4ßI*iíjÚ‡Äýžd6›eLзjÔÒ\Öÿê½ü·…x!*LÛ&´“ÛÈ>úãw‹I‹«A ¯¬@ü[ýn#âü# a®ð5Þ<íðŒ !ôàØ4xÝèt!{).q Ÿ2vf6Uñ¬„f4ŽÇîƒ6Qt$*öuúoÕW? >Ÿg¹œ"ÀÌè8Hý`>º©¤aÕlôS\çØ‹~·ýwà¥R Dp3cG‰‰nãuz‚þöÒ¿=:úÝ©Î;AgÎlbçwÎ ¡/¢¨[ÕDš7úÝRú}°&E9 ”¥þü4ýÛÃÊ׃Fd¹Ê:@|'s}C¥ÎD&FUP»«º/0ᢷÖ~Ö%#üÕ›i ‰êwp'ºa³¢‹ÞÔŸgÓ‰!R§§ñ}÷öO4Õ~t^šÍÜÎXZ²¦ÆºÒ¿äªyÉZÍÞæÐ#$Šikš]QKmŸƒæ aýê*íÔY(†äLð«ß@{Ðw ó³›]èi>4¬*Vz0úݱÔ¼1Ëšvß+/ôÐð;t0“·Êuå›ö™¼þ™t3™, 0e±üNu査S~ÿ1Ÿù‘~#ó¨ ©BÆ€g]N‡®¼dS«Ð_-w^‘Ô¾ ›EpÁUø“Tü¹82“u  ‚äóØ%úÛöðñç°ò;áD\PÅÆÆS²¾é¢•xÊ|ôQ‰@ÄLPÁ?ˆ26‰Çf)¼ÅUrª3 _ÍÁ«9V:­Ëxaoc#5йéŸ8ÁLLT“Ü»è úÝõ?ü?§P燨ÿøò¿¨?7ÔÍø/-Ÿ^ÿa£K^J!æxkû´=x¥ÈåÊ :@¼DoûäÆUO­U»0'x¯È ‚•Cÿ3’üGGpüâhãJb;ÈÏz_üGíU;±©1¨‰iAý•Æ>Jà+æà-‚¿<’å‰ðÚÑE¯'öþqiP­býK<"p%whóÉ?¦ñ$ïæ{À࢑ÂvNçYœÃÝqL?;ë}íD>ç=ü³…÷(îb#z•šðçÙ“ ´öü©XÕC²6ùÇ1^ÝD7_:/ÀìøeýÇ&­Qj è¤rr„e9̇ ³çÄ®â,x±ïXDi©©?¿ª7ú)®ªÞêW‘œ»~2gÎ >;6º%XU^k#G¹¾Æ¯LÆn¯g¿vmwviˆoÚóp7¾ZZN¼› <¥:Ç7|¦çê"þãYË,=t½=~®ëŒ'ïÈ„ÿˆÏóžþj5ʵPsj2gç#ñITc;_á1JÀÒ%ÿ8‹BµD.Ƴ.bí7úuâ®Ð[LýykîŠÆ~>Zq%zY”!Ç$"ŸI¯uwò{°9°¥…a\Š65C9µÔ(+3ÿm~­7õç‰ÙSa¼Ì%rŽþÜi«À¯ÎÙÌ'o˜IWÂÉ–$£Éó»6¾”•²ÝÁ_ìyŽ©ÃÌÿÐôð‡°ªµX¯¶õ}´f™½°ÀÝ‚l߫ޣ7 ãšf_¼Rcjäw£>nƒê1Ø­W¨#N-ŽI“ûᣴ+:¦€_ÂWAoe¢hêBÿö@ó‘Õ#žÌTÖ¯xÁ.äÏÉi†Àª42 „À¯ìþ»ãÈfúO𽌼౭L/IÝÁ«Æ¢´­žÓžüÕã~dV7—â‰|Œ˜àXíøË¸ÒÓyA®(1õAºxÛ$‡¿þ,ŸƒÐöÂÔƒ?÷A½;~A§C׈ˆwÂæ5s…Öråýõ¾Xý«r7Lw{tu›Eûñç5O=/ìjJc/öh1ë&™Ò|X€wXë÷ü¿ØÉ[}#Jÿr‡”询 CzÅJÇÙßZ0RWØôòœê%bà­d[® ñÙ™õ«úAw­$V¦.~è"ŸsáwÊðÜ|‘é°ËÑ`í¶à;¶b󣣪ÊNŸ‡ëzÙŸâWŠê©žÈ¦3í!ÿpÙ\G lrWüG ãVv¸ÀJž´Eø&/êÑÂůâÒ9 Uö99oMYÍö¿cåO²—‡2Ÿ¤Ÿ¿v…Iî‰ÿ³ç¦FÍ¥áÂ5gÔŸûrÎÆÇFAéÇ1FÕë¦7P—Ù½HÜÑ ½—_ÉÅ–“®äŠ·Â\[ ý¤¸jõE öŸŸèÞdåhØ4Ú+ÀÀ’- £ókQì{&zé*ä ÇAÛÆóudáf½ùø˜x´ÄØû±ºÓÉtgÓ¿ä>1òü‡m•§ã?^)Áˆ çÌCuz ÈVc/¢Õ µâ}­ ÖoLN#Xv7òÒ—Æ"ò¢Ù ^u°YO¬§L`þýÒG™7È ŠQ'r7ÅðÇó¼Ò&„ZO›@õ®MMÅÿn•Ðï.5ÛÁ—Ç7_U»ÚHµž€é÷§ÊÑŸ:,o¿=–=Äüs¿êN°Õ@C©ÿÈ-ŠËŠô¿êGžaw“Ÿƒÿxhf³¾Ñu½+ø“7³q›™[ˆ<8æÝ䃌„28^  ·Ùž¯Sà™Ìo¢ƒ(HoɱÖ#ªR<áSÚ’yL¢vã 3O±ú)ô»-͇TÆl"wÌKtx_¸Poüã VGQ¹šžøg–\ç;&ãXE™Ê±…|&=·[vÿÃÚàM{Qj¯ÂŸ¤2ŸswÎY¢¢Ù¢úÝSNÿ±þü€ÿhÍS°W2›8ÖÐë>÷ÉG2tØKÿ’§ W·eVAKPÿ±ÜLKÄ|øU,:À\û±ÁñsBüÇ|ç™1èÃù]ä¶ñYñ¢ÿî­¸^‹þ%výÇzúïž§ú|·v\MIþüõõÐîJl]&9BO¦—¢ïíòßÄ3:üvÔšEjŸ ´ôØÔâ(–k"ù‡+ùGBí(WM% ®ßQ¡ã0ß»¦>»¹<¡6,Ecžô(ë6—ùåkÝÒ?…s+&SséɈè2‘»T›kT“ÝÁ·]–¥„›~ýLw4gݹ£ñé÷¾ÿ±V¹Gþa« á?ìú½ø‹qð ±ê±ë Ý¥±ý Qäܤj{ ™âb…5üÞ[ô†au-µ†¢ Ö  ‡;às/rœÇñ&°\Ѱ÷]˜­‘;šŒZlÃ…ã.ja·ПV CD»ú"í ØêQ6€ ­1Æ’—ºÓ…ãþdVÊÖ_ýAŸ¥«0*ñR©È;¾ÁÕt"Ù„×φéú õ#+¹€Ö "^q°qM¾£q©¹ïV î÷2Ý¡2¿ö³QÏÀŠ Èh¶â¹z“]ã zÆ´1¸Šï¤]8Kž€ÿXfv2Wƒ§m*MÆp›Hç+ú—ø•6¬ô Ô˜w/cd_œ×¸ùÇ(ú¤ý‰¾o$ç¤8¨suó“ÙÿQÂì CÑ Q„ú¿¾Öà8Ë­Øèm7°¢;5/ÛPtM4bJoçzp[ÏXï(Iz³08pLŽ¥üG ‹ŠøóÍt¬Hýà+£ ø’¬{‘«â bYýÞøÉλ:¿:å_âÑáh¨‹­òˆ™ÏQšþ‰méL‹îíïè~_þ»gÁð¼¨/l~CU›.#—Á&‹¼ôoæÏ÷Ð÷®CdÛ”âœY¶Ü×tA ƒþ‰eðNžŽ#L©nù[¬¬¬=ƒ³›š¸Ð¥Z&¨\pñ¿÷Åge ú÷Ó©Ó0ßýx5bŸê*ê÷á? èïÕš¬²W)¡]†Qß­íPãªû#¶Ìÿü–¯rV«+Þã?ìîT#P\`Í‹ún‘]|×sê-ÂôOøÕâù´äDõ»D=,àPÔ9™%žHócx+°àBvpÿöFj>}Tn3€>…×d=Þ‚ wåÞ¸ ®‘«ÍFs}ů¶ÅÏïà?ŠðD*ØÁÿGÜY€g‘lݺ»«Z>îî>xpwÜ îîîƒ÷ Á݃»C!¸»ûÀ};çç á&9ÿ=çÎ<3H¥ºº{ËZkïmw9LO|W {7-Ë"ª6nGÕV‰þ‰k”ðçÑÉX^cYwb•í¹€C`öëv•ê •Õ\í¢üôúöë?|𛱃¥ñŒG°¡“ñ:%ÐÌÆ!cŽe|dÇk9‰TÆmÀO‚_Uþmýù+ejÂHÛµâݰ½ˆž:’ØüùMÞœD·ïàRsŽ;éí·ÿQ„º~!B¸ÕM ž{•h÷Oö1ž¼¨>äv°ÿˆ'G‰ë0´]à¾[q 6~••D"þÞÞpüÇÅÅå%2„‰Ø¡¼•-á2í~éý¨TøötœÜ%Ð¥óXIϼš\q+þ£“~—þ»aõ»­´¶Ô4Bq‚Zƒ j}¹·Y±ü׌˜¼û½@N¢ãf13˜S°Ÿ±°ó'°•Sé9Rƒú°ú]oí>þc ùÑ&fͧ¦åœN•(ËüÇFªÉ‰šãàOÒR-î [Q”êô‹`Iv7ªžz±0õ¶Oµ>`¦G‰Z bqÛ›‚_Í7WàÝj3WÜFÛS9¶€7U6ÛÂÃ×!Ÿ9‚Õ’3=ÏSðQse'ÀXx–/¨Âjßo3æ°«¡0ï©©ûè€ |Àü(s¿±’žPþÜ ¿ñ&§úæä!=–Ò¿} ápãO3ú'–Ò›1‰o0ó?ÊÓMÞËê„7jFý‡m™Çá «:þ£è jnãš{Ï~êß~^QÅð«,t3^ÿqÅ(~Uþ|×»ÿ1Š*ÂWô\YÁL©ºÌ¹Î]ñ掻ôƒ²ÌOýÛK¨éü\”gmˆ¾‹éº{õƒfG ªØ‡X:Ösr‘Æôp¿J¤°epQó=>S£âËÝ©þ.Ï;óÃêô»3‰š:'ûÉ3ðçG,?fò¦¶¥=µêRþ̺ 6vɘ€Æ«¼Õ Ï”Š,9Ïû`½7 ó´2¤ãWÈ[òŸþ,±:›ü–˜à¸ÿ¾ÿØ©æÐViyDMñ$¸‡÷AåOòµÚVíyMÔüÇ)ìjmòIÿöôØöïXºÊê±ýÕG‘Wt‹âüóZZ6bÓƒ<‰± èŸøÝ‚ÉhNÿAK¡ëDWç9ü8ð>&PÛ«µÅR¬æÎ`þã.¼ÂD’àWÈO§£‰h D£÷§˜Þa¾ç¯yŠ?ñ±ñëÁ­RÁQãã`ý8³=1¹–V§Z£K$æ×îTÈù2)¾ò=Ñî*,ðJ8è1ØþÔŸgçÎŽýÖ±Í[À›6iÍÿبÕÃJÖ"O`B6b*¾­$YQ40žDÆ V]O&±COWÊÉYÞ ~ËŸW©±Q8íÄŒ„±(H§É>ØßÍLP¹J1 ›ò€Sõd¿›@¤&cÃ3 ‹âV˜3³¿L¦æ™@’Ò¢2«þ?øU+vw)H?'‰+pÑm©hJÿüG^zeJÞßðøåÊgúà?FƒÕ¸¨~äî°EˆU2Ì,`YøT¥ÿàå–¡uØÊ^ëпýó5Co±ŽÖAVÆ”†38ˆo¸HVµ‰ìÁUm XÕ¡Äâɰþi@)<Èuâ;±ãcù •À¯Ö…Yo‹öœ t\Û2<ØòÇú"¸Š‡Ø¸¡æJ¢è×(Z?bï’˜·˜ƒ‘ƒßù™ßíÆÇeœdJ-4wöAëˆ5=§»P›rÆù–þŒ>ŒLÀ¯hFíÂ!М ŽIæ ô»½ÀÙþ$÷Ï©ÚHî¤MµCÒGžÏèwk²»]†/ÝPzã'â »ê ÿqÉTÓÌÕ¨¼Žá9=ù}8ÏÙd6SX;·¼ê<À>ÔÎ@Ñ7Âx ÿÑŸ…Iô:téÞ¥Õ<…;t™ruŒÄÌ£Cá+f©ìá¾-Bѵÿ1ØpèóëÝcþÇô\çx®Ò˜PÿÁô3#?óe»RÿÑ&eÌÅpìý+”>p ‚û·DÍàϽY ÿQå§úÁ\ô/1y2kòþO1ÉOún*6² ÓH¯õoæyÎn-µ„·Á¯¼ÍñTOæcþ9%Ëäµ¶&¬üK~’«þã¼î}9†?éÀ›¿K1s9¶ÀD3Pƒé!m­VŽÝŽèÍr¢¿úÀYV²š+ÆÁ#&çí ²ÏPåçÿ÷>‰¯nùi~­BÛ8¡ž‹ÈïÄýUNØòb课ãW¾Jí(üÇVòôê¹È/Åß<£<…ÿø"ð«hzjÚ+ªÅÕ b¹ßW ¢¨¿ª¬%Bé³$uHÂcÑÿS»$›ÓS/PÖ¢f¼©©+O§6EùãýXƒ¯‡Ç¨†ÿhIŸØ® NÇA Â1?‘ké¿;3×|M›JýÇp«Ýúr"ï$Æ  ™d¥Wñ"w‰Ã«ó¬~Ç‹ö•¡{¨†·ø>e-ž+>ç –ÍàNö\Œd«ô²ÁüyVt^±AÞûJ­,™Bc®ï hyRxWÖTu»Ùß#ûØ®ï :à¾é*ªÄ*Á÷>¼½)ê)øóxø»oÔ6"úøò¡ `åðYéÕÝÜxÂN§Á¬‡µŸ‰ýÍ©¿‰ÃÍ?Ò1?*%èa28˜šx0»b]TRþXžkL`ê/Žc´Éa¾'Þcþã6x]ÝÝ*EUå5VëOÄkàzáióñ'Y»HÏx,ôMrÅ­x½%\ù$ÞùÛèwÃúá ZK¸¶&xëcðâÕŒGø££°ßk©ÔÀµ{ÂÒDã“kHIt¢]ŸàèÞÃ(¡g”Â<‹µ·Dý¨ö[E°ö¼O…™XIÝÆF˜ïsôõˆC½F6ü‡;xF1ãž¡-¶y×^Z Óû_t  $*¯‹ßêCNñ˜\s_j0·:oòNò¼WGxæ3šI`A£ƒüÙóªÓ‡°6z=n=ëßàÛ䊈4“ñ´…?׌\2jÖy<ÿ«OâªKUOçÉØýÛS8¿ŠÚšºÿ±ýUê©ìnm•òÔnå¿ø¨ÍÿR.‚ ¿“Í~,´QQ–¾J{ñ‰É?²ˆ¶ZÇ(í³¬æB¾¹—úóÆüûH %žˆ®–n°©od 8H­˜\í¤æ=a»Vð>×ÂÒýIí\+ô»CˆËÎâTXßr"üGdu7´‰Áü¹ ÎàË¿1x?KçÏÃBÌFÝ}¼(¶nûѱòÏw¸I™/'ËÄÄáwõDämñsÙØç¬uX‹“ä9kõ/’)hìò ^ùÿ~—§j…°ïn0 ç±9°ìEÉìÚA4ì!û݆gZݘEÞuV°±ú»]Fc~í Û;‰7o7ÜFBö×™*[•Їâ?îáGñïJ¼óxp©ä±Ãÿ‘…)ÿ ¸klcw;ÉòPËWþ<8J.9ZìÅt†¥i®5_Ÿæ#~Á+ÿ±ƒ­ÕÀ`Rƒ!5&š;‹÷èÁOeÃÊõ¦÷…jäÆ\BítÄx6hw^‚¿ŸLq…úóJaαepýy ò…ƒÁñMNn;u’»‰h˜;é¹´„˜ù6Õ1ˆÅ]‰LóWNÄšÓcÊ3aÖ[EÿÄØÄ%á;.ÀÌB·1[oW¤Ì kÓTX…¾ôÉxLEû âïäàM¶:¶ÚàU\KÅ0z“ëZ"”KàMv×óÖÆüÇdlñ|P¯ªè¥®Â$ruÉ ãpNº8Ì=Ûc(§;W7ð…ÿzùÐ{ümT¤£Ì2º/@këk¤3—‚<•³®“‡\5£ƒÙ«®"ÿb7o3Và'üª ýw‡èðV(½¦€œÕGåRÖ|ÈüÁOLì ÃÝ“N¼9é2˜Ž(§ñ›ïÍʬX\/Ý€µ£ýTŽ]ÅÄ@·±Jo>¡ë4TÔsÑä#ÿ˜eºañ»’Á¯0Ïä(sïqóÑ_åB¿»üãœóŽdQÇп$'ªñ‘hòò Ʋ²R˸ •rBº¡Ö[ò·Æ`€ÍådM,…ùƒñà»aú ßí.ï¢"ýñæ-QOÒׯoEKþý"›ñ©ÜIýÇTTgg¨ÿÈàX#ÿÉŒoìº5þ£ƒ™–·9þ£ žOt|;ûcÁÿâÇäê *@~üBìü¿›|bþGæGå] `F¸¢Sê0{p9„Yõü_©7©‹È'ƒèuoñ”J…òäyóQ_]G¿Û,ŠüGuòÿ\úNâÏbØ­«ÔŸQóige{4½g¥Îÿ ŠÐE·ÍXè‹Rˆnp‹ñ%ñùðèø”©ð¸è² $g°Ì©úÚ$Q¤êqþBìÑ;°˜jX»aø/¾»“¸9!YÒut#…œwêw»;Šþj!ŒNEò–¤ÆRXOø pàGP9eÄ7¥3fÍôÂ:GÓ×E¨¿Ú¨U&ÊnM&°‹îŠw´»L ccSð~¯å_[Éú‘'‘ýú·ÿ®Jþ­rB}%£‘_ýGÛ†½ßíHo•ºÄ†Õ`^ÝŒ×ä3xÇlýYwV|Dµè[- œËM  Ää+ZÎnt0ÿQ–<);‹)çŠSØ»îØþüù(°jfáʸàeƒÃñè_R޾ñ°¥õá?Îàgzsþűnm@êN a¨ÏìÀÕXÑçDÚ[ð™sðY­ùþNž÷°wf˜VA–áêòa/F_eÏ-ÝBË&¬¿NÍAkŠœ[LOÜÿê;¬ÍîOelŸÝ¿}G˜;}E{)3²F9<ØFú—Ì ;] VuvÞ+5Ùg•Ú÷MxÌøtÚhØýÛ[SC}ˆù⛩¯ã`£8ù±õcŒª¨ ‚°Ã/ÂÌßI'·¢Ý½ÅݘÄ5ìÀŒ'Bî‚o¤Z’¾æ®ô¹É<×@x‘mf,³i|üPú[öÃÊ(ƒœ÷¸õç 8«®Æ{j‚ª ew='Uë5a= šuÐ>wd’H!+¾£3ÊØkætêþ™ ÈòÓ!À¬­²ñT†è¯ž*±ÅG=>8çZ=µyHª×sœçt"ýÛ¿IÝùÚõçWy#'ñ%äYÕ¬¯dXûÍüyyPI¶àMDç¼Oæ8¸óÍtgôãw¤ÂŽ ½¬á5ŸV&ÓÏËÌëض/øÕ¡Dš©2r%ã ÒôEvfß±ôóaº²þºÝ5ZaüFk×ðk™áJâ+ãP;˜€7?¶±ŽÜîáþäÂ|•‚î’¿Ù¥¥Qƒdò¬)xÇÃ`M±æ=ñÍŒàŠ;È]Šæâ=½°Ï-Ph}Àè"ÙaFµ4]çlêjþ¦ý^&‰DÑkÑéq™øq(6¹>êo2ž”ÁýÛ; ƒYåÇg'•Ô«^„Ç€e‹Vnw=™L¼?7‘^n"õ œüÇò®5à Ó¸ï%ôõâ¢V×C«*˱ŸŒxœáDÆvÿÄSÌ99Dÿ÷ؼûYÁ'îƒ_e¿Êa|гâ?Ê÷1Lú#„ퟸ[3É#Ýуm…XbúVßLoçd7ØÉä‰åëa¥1u³2fÑ¿½ÙÕ{ðè˸ú"Zè 횉7: “S‚,ÅÍxªß2¦ïÎÙ)ZjŸµÌ®Ïƒ£éEþq/\¯46¥…qOx=Ì<Ã$ø·TɼÔç‚ÆmÖ7Á“{ƒ5-3ä­‰™¯™›PÛšTÊPA9µm΢7¸X|6O~Ü e¸2PŠçíd¼"ÿ¨d´•îènšmè¿Û„ ¤üùuX …™±Íè,5—¾&LK3tgçà@Úƒ}–ûœë™ ¯ñl‡Éy]Ì£r–ž]¬7xU¦x•¢^Ò Ë?ïuzs-&'IN]b :®x¸,Ædp‹¦ò•ó©.D¥ï².¨é"ºEDƒïh•vTCÜéç‰Èö1[¤úâÙL'±»ÍGg÷ÑM”é6Ï©·D…ï gþqH½ ~5‚(¯5j¡Ùz:eÀ‹å¦ko.ª×“ÝìrœAÅ›Ðún #Ë)lõåŽç¹ýƒ3o¯Wåþe•Q³°Îãù_}’ ö<„«sQÓAñß[О?˜T» õà[³Ênøó«ðçGµ ̯~Éw9èŒû™¸û‹lDNS›¸?Hl¦÷±J?¬.Qœ_›…ZsWüG:P˪øaàWyñÝõ“ä³ñQžÖŽ$Ü*±¨=š‹í+@Lc÷ûé¦û‰5<Ÿ§°ûË@ªoQ?XN„px¿?ÓsÚ,¼Ñ Ô¶ˆãçò‘J?¾^K<· „ú¼&ò ^>Â{sEÙ.—©Öà§S+°û ñ>ó`J¯Â²¡ñÁ-ƒ~•B_¢•Œ`Å£Z3~¶!1Î5ïg*N æ3†µ¶~÷£LËõÍÅOîÄ;¤Çoö„Wî¥Ø¬Ÿ·þŒM›„eÛ 7݉Ì+¾¾—nË·ÂY0±šI<’w@«ìúãœ{yаj\ge#ñ'S*?¡î™KÞ•Spç~¥¥³eRXñeáøýÔä‘Á|‡hÒuîhWr–ŠÄ ó±$Ÿá z_ðg©JxÉþ–ó=Øiú_î÷öó&ûS?X… ¦,Ö~ç~o³ ›xýUBx†ÖÖXê-Ó•þ%+ðëßôœhƒ cI{£ßý"Bbº­zUS`ðÃç¯c?“¨‰ ‚cˆÇ ª£Æhz!õjh"§)È÷ÆÓi¹‚ñ½T PüCœv1-g¨»’\ Òg’/H#7ªW7ã‚îoL4×iD§²¢.½7ü­; 9yñé’RœuÖò7˃:=«¼£ µ^éE¾üÌu Œü t­ae:€§¥2 !*LßRì³+z©KæG® þá*MYd÷k`‘=X-ùÇ)5lüZGô»©¶ñ%[¨ˆþª8[~Ô¶AtfÑ+w(}ª^ ßM~•Çx‡Úz8«>þÃ}yXýîSíƒÌg-zåç1 î ×ñ½ïøøfDû…¬XÄáɨd$ÅÞ?´kIÀïýˆF*k®¡îtуÂîÑ\‘ÕšÂ\< 2c‰yÿ‘ùvÇP³ÞAcœf¡'½ ð÷ÐN 1îò”~ÒBOËùGl†‘yÂóú7øÑAr£™ tˆâ£êÅdð7TbOÇ*/2RU2ŸÕ‡óM•ÞdN<ñOüGÅþãò±§úN¤ºìHßõøÇof%ÔÄð÷¨RÑá¬SG7‡ž!)Étšswìy(Xñ– ±7ï”ô⪊ãúRÝ4ƒäI9œ\«OC<¤;ÕæSéø5ʲ'\&ÿð5]­*xÒÒxêCðçãÉ[ëÉ£Îó‹­®‚w²9óp#§,eèV}G^k'× Y/¦§!G:Ât*?®z°•ŸùŠìCåìFëcÐZèÒ<Ëô/y-‡ðÔ·]ϪŸ5“àŽ \¤¶¥#Ý›£¿ºM~ô=ÃPXÿÊÖ(zíç2®ƒ§«PV†T¼üXù?ÿ1è•·ódTp¦$ί¢öÛ?â?ÒQ^–úÁÇÁ=,¶(¥Ñïú`í!ÿð‹Òrg”íZz2ð1õú"ìDuô»«©ÿx%ò‰IQÌ?Òá? è§ñ­@?Š!r¦šM;$PÿñŠZ ç°Ýí"uåñÕ*j:ñÑÂJ¢…ÆØ‘ÜÆ¢UÑxC_ÍZỽ迻2× ý-Ê‘ÇÇfyaŸ]ŒKXÂÑx¤ûx¨ þ_SÏâƒþ‰6*øÿ甲@úÈ4XÌ×zZÐ¥®Ä;9‰’ð±)A6B<åÁ>™”©åŽ`Å…ZE27XóøÆüØaúÐÂv¨ ¹ñŒx¼ÍØîúS¸þøú)¹Ž,Îî}Þ?O•£ê}i×qÍ¿ÚÁJéáAúƒÐ•1®€ýÚ\)½LyË;b›7ðg•éÛrþãN8Ë%T …èËÄK6ä§úðîµÄóžäºý‰Öˆ+Æx¬á¸ÿÆÄL@.âŽÿت<#ÿ¸ŒÿèF '¶ÇGƒÐ[÷žÓJ ÿqÛ}”=> ±û'z³Z9*ÁΨEÃ\s3­‘,‘¼iùr™Ã°ÞD´ŸŒq(|zâ9îÐo#©9®û ÚÞžÄâÃŒ´ôGQûüëÒƒ´Oh?Æ¡/ž?IMÛ]}5õAØËþ`½±£u¬äx¤ d5Ó˜-\ˆÞ[¸þB°Ãõ’a&…%ý±WçˆÊ‹“÷´#ÿøŒM]Å^b0½µ†µ•nNÉCM…$}ÀîÿÀƒÌ¥ÓH-¬:]©ôïÚ„PWüTlÅ«¾G™73üê Ó°Úñè[Õ5Ò*©{›Ÿéuän$þcXàPÐÂáxœ´2¤F´Ÿ2Nm¤æ#ú¦áXÆTz':€ ¢ò¡&HW«3Þ¨„%å­îØÿÅÖ°/òŽ (º6 ÑùD†Ì;½¨d7àýü‰Tr˜éôNè¯N¨Òk­5+°Ò\øóÉd\ÇÀ›fâ5Û¡˜ºw´Ê8Ì•O îh%¯;¯7§ê->É?À1xðnL¥58ê¢ÙLg‘øÖ*Ðwˆ½¿ÚÁüA¼ Q ÍøX+zñŽÇ/¥ú)ã çuù}+µºLõpžŒEø¿ËŸ¿Q–«PÿQY”¤IÖÜ¢ÔÐnÐ=q³æ‹>>jøU€rˆ~¨Ñè¢Ñ-¶ó?j2cúžX+ ã?þ¢XžWK€9 Ëbó›èª(GÃöß–ƒˆ+ <Ê5øÈ1*öü‚b–s#q},|E°›.ÌÉk•¹EçØ =_äRXHܵ§ÚQD ú];¦MˆÿhJ|>îÜDàÏiúï&&ïŽ8ÿ8¬l þ<7üÇG=± h‘ÒXx”«z=Pì[x»=ä2ÓØkj}K„ùÇjí/²ªf\çltf¼f1ð«ïXít¨Ÿã[–pë°³KP‰]•[D'õwçøPñS_Ë\ø¯áøÛmäUv={g~¾‰HŽ3‹7ÿHÔx<Ç>ÿ©d: ôçâ£v-œsL¡f:è^,®²6–Œ†ø­*ùGgbëÃV¢mšd¼W½§u µÃèr/oê…p8=ôÆSbîÞÔ™ç€? ær‹`ÖQKWÐ\•öC0¶bqC¢Ÿú_5W†¨ðÝAõ¼97Iœafeê`bê2F˜À­^›MÑ_U·ú‘ålÆ4B)\‹³xfÙ/üê'4瘒\Ü'>;ˆ¿Okº2a#)ØÞ<ËÅÑUñDô»¾Dùȹî7-´âÁ‹44ïâYçp·KžÔd4’AÎëÍ®.ïe)4%Ãt£«=5s;úpf5­äsaæw²â]ë³Þ/€ký~· ©“]?"g!û“<³F^;Nþ.²ù5û_êÏS‘ç ôc3`&‚vøë-±S·Q¤n£[¤yC*}–:‚kÞ •Kj†ºGdŸ™8¾ vÿ»ž^:þc~h+'‘ΘGžsš©±Í[þùµodbNk,'wýU"Ы^d"Õ‡ðË ‰ƒoæÏçðÓ·ã™ÊÒæ…x£=¹@çg.jrøó‡à~~äñåyÈ“jà)íºªÒ[\%ÿèÐ’ïNÃ~çÓa†ÆÒYƹˆó“ÍÊ=­˜¼ŠÔÎÀOÔ7IÏ ßžç;?íF¼¼ýnú«Cäs¸òixÖâ2u·Î¥‚?é§•%‰*jbïW±âUò“äëààUú·w°fÁU¼ :;9È}aîre”Uµ`¦eô8¿ô¿òC•†Œ¡(ëí€QV4&þ=5 #èa>ýU%Ë•yå9Yu¨})êLöc‹6"˜)L§Uô BÕZ×$Ý…Ú‡Íæq¼[%øŠ Ô>ÒáƒRªèØm®’üÞ…xø‘Ä ‹ôÃZÿPWüI ÉB ¤5Ô2é[ŒûæzãÞ0Rš«Áuª£±ÝIOŽxøº×ü1˜Õ ´hKÐt#c1åCç¶Q_e –òøÐ£ ™WGê=<ˆ»[_Í!ÎשÁŽïèk ‚ó?Im{ºÀ4";4Ìõx.Æ[¹Ï¹ž?õƒ÷yf÷Å0cPÿŸ»08¸ÈYüOýàþ‰ Ñ_½4ïQM’ 4«5/•ðnwÁצRw\û'ýnAuÈ©+¸À žÙìò~‡Ž‡EésÕÿ‡|Cuìd;ð={L?jAz¢Ãµû_éà”côQ¬féOþcŸzX\“ƒ¹»í‰d?£ß-îXÆö²ÌµÏD.ãjsÌs<@\Èzil¦ê¥žiŠ™ƒ§*?Ï{Oøaü!ýœWüßûÄ"ûÉDß(ñ™äٽ婪_Ÿ/sŠÈä\‡˜?˜*8ï8Ú«‰§±wÈmNù K;”©±˜¤4JŽŠp‡Jw¹š\ÅžÿQä¢1ùǬȻí†ÎÇ_/Æw]°}¾ð±úÍZq®³)øÕ Ö¬TÓzˆŠ+ê«ç ¶k=Œò²`}ÓÑã·ó£¢©gT´Íüþ¶ÚŠ•Ò’tÃS”5ÎÉ£rù5ž`(Þj¾;ƒŒ1…þP<×Bz#…Ü¡4jº]±ûsùqW áiëS§æ½êƒ'óûhÊÖ»´Œ«ñÞö ~,d•ŸRni¥Y-ØGKêëÄ=@Ó‘4 º3Œ’T©ÄlµûŠ/Xß®`§Mõ›èw „¹34»k“W¶ Þ¹¡ñìɱÍQ\,rMæG¥6b]“cùÊÃØ$k°+§‡‰é9|(Ìz‹µ;èÁ ¬æ±g‚_­®ôiX+}Ƭh%5Ÿ¢èzEÝt^üÇsªMºƒYnäé,ª…Ö^¼Ö:àûNÂFU€5èŒÿxbį­Çë{Ùo¤ëë6ó£9Çoaíóâßl¦} §;“É1}Cíð3þã;ÏÈG}:¿qž~ĸâÔÛ¼I†5.¹¬õ‘9¶ÛЋ-¦;×ܾ„mþCû©ÿUú'6#3ê€ÿ˜Áý¨ ¾ÜÉLF'¨h–ýGÀ|¡ÇHJú·wÇYÆWµÌ-ø¸uÔL®Âgv6¯Ž(/µ#xÊmܱ¸f½¹LOU|ëta›ùù?­Ít¿G¿ÃëLöäÿ˜~å°C!cuÇ¥~âÏk¨è7R”¹üyyE¿Âü(f‰Ð'21| <¯üÇyËoyœ.aÿ]ÌXðrwyNg0=âµ¼àôû™ÿa#!SÉ»¢þßG7øCpïEAú¶â+]­ OÇCüSz+ÀXB…b#ª‡¦£ß½Î;tD¥–AÔ$þx˜ÿ‹óS=b•¾£ß깈üVôOב›êŒ‹ÁüÇMôW¯µƒš·¶œü#jÝYtõ>õçïQÖÆ¤ÛFñX+¥ŽVßÒÿª¼|«ƒfwhŒü?µ¤èsnÈ*à-y? ƒ_uFÓ;›˜›þ7e"çȬg¨]Õbvy yF°ðRÆ ªêÞ“ø ØÓ›Â¸ËDbN$<¡­nüdp¥åÄÜ©áAl=Ö<]«A)žñ磿c"= Ûeé×åS¨^r7zâ"¸ :“aOfó\Ó;¡á÷ÇBzáÝfó½GrR„úÝ‹Z”`uyê/€U•à /+ñ Œ(.QºÝ¿Ýž?¸tå:Ǩ kÿæ+§ÕÄàs6?ø=ýûâ?|Àuö³£E`)wÉKˆÐ@±ì.'ÕÉ”î¢Ý¯2*‡ê&§óßP‡L¿jLÞu[w |.n‰Ëäxg[`?'ó›bs—mÅppüÇAôW-å-T´­°ÐÑ ™þ4œxú&YQüï Ø‡#ìñ%Ó›{´’¬¢8ʉãjž0×Üýn3Ö¨:´t ÛÒ¹Á¸k1„}!nÂV$§r¡8Y¸‘ØÔF~Ø›¶ö_÷ø†f÷›¢×Ÿ9¦6 ÿ±…Ù°—É<ÑâÌDÇZ è£>„™}`a ==Z²ö)®½„ºÂ1Ž˜Âj'°ÒuaôûÃTÇ .|õƒÑéÞÑî÷²Ã1À|dt&Ò½&UÏçClßË «ˆþPêŠÓÉœŠ?>dõß ©& ¤b£³±R€¸ô°ŠÀ}ßc*Ónc ½h“˜sñÑ¢ÙUcX5áOö¾2ýn*£ñI_Ìÿ[‘ÉýmºP_!Ñëv¿êK%D+¿£"}ršèÆ[þ£9gó•Sl˼!C´+™þ™·é0÷뙑ƒ‰B®Tµ´c²_skŽÙ—ùQ‹Q_G1p‹=—Þ(Ý­dN¥@O‘e÷ÔÃX„è¯*©›„ŽI¸¨QºJo#ȬìÈMÆæzu˼‚zÍ—^&ôð5_Ѳ)áÐmÖðXÀ9-Ï^§ÿ¸¥>?ŸÉ»ßÜû†tïD|&SGÍU“ŸOèXï¸ ßÏZmò;²³ï9ftã9Â)Ñûÿ€¸:.þ#}üë‹Å¿[ä§ï_Ò¦‰ÒXÏx<ß^DHY°ñuÉG¦‚¬e½D×yÀq1¿6¬Êç§eþçS»þ|>HG ]3lþÞÿAÿâ`ö»Vå\›¯þ^.A×›ùQaëÞ®¸D+‹¥o Ö{m3)¥ÁhM¬rþ}Fžà‹¥ß#°œ\á¢Ü.šÑß%ì*ÿúúšŸË„\çxÞ<»®>)¹wG̛֯ÐMŸ‰Æç>L†=Åw ÃDò‰tÔe¾Ö‡³`ªpI<×.<ö)®±Þ£ù_㬞\ÎÀZ:È?Zc+Á"=&ÿEÿì_—Û¦\†o äg‡kKø€Žìm>x0Öõ!lLR½þcÕÏygO°ËeèiG€VÇ~ñ½µJ²o6èV¨ˆZ®È®&x$àìR¯ÉùiÑ_¹ŠNXüÅD㹕Œ¥ öwE?ž[ ãÏÖÃûÀ›zÃŽl—EÝßêwãª~êiÞ¶-pˆ#É3òè ‰ŒÛ¿TSèŠò³2±­¶¾?籕 áøýèßþô—})JZTýßäìÌ>ê÷€•ï*EgRVÉ'牓ؑÎèĺâχr×Sè¯éÒM_Žÿؤ<„±8ÊÏvE%Œ£ÜÑ6d@¹@é›ƒÔæ§K‚ׯzÁõÁ_N!„ÙOµFá0w¦5Ýà+Ãeàï{Â\$9{1ÌF¢•jiy£¼z‡uOvQã¿i>þ£úÝ"ú-¿ÚƒÖ<3§o+€Á1ØÕ¥ËÉîgÍÄ!{hGýÇ'Áü”ÁøÕ~ò[/ÑB/¦â?Z'ð«³øj`H­Œ+ºEûVs- Bi«pW-ñ¦¢"ó?aåKÙÏm²õ»£t!F†ºb]®'b¹ÜUÅ®‡Ú výî"ð«Âô>܈>5/¼ˆjzPÕßth<×Ü^.¾üä¼ÇÝÑ_õ&Oío¼ÔÝ9F2¥Þa}ŸþÄ'D7õÆ,@?ðÍ=p¥™TÕ üêzYÎç•<â\ï½ÍÂÌØsË’˜ya&cÃ܂߮ƖñôkÙÃ? {¯Y7¨c¶Ê2™«,žÚþhYAËŸ:"fþù}2ˆJ<§žFG:º5³Ð[}ºµ4¨£á™®‘5†?D=‰U ü*® •Ä5N}¦ÌCÿ+§ÿ8¦nWd_ÞŠv¼þòÝà}Écrṿ™ó­\Ô“¬sàŽTb½ý[JYkP·e"«Í@¼Ô—ü]¥Jf·óŠÿ{Ÿ$gúÇç“ ýnçWQÛÅeùÇ6­4øÕeµ«\PjW舵ü#­282ë~RNÁgÞ£ƒûgκ¡¸¯TÝÔÇÂ[f€?ÏFý`ÔüG/Íß8~·öø³(*=U7ÞÉîä7–ì´¬*"·b,z{Uƒ¹Û«Á¯ê€X2Æ`U¿ Obñ@lŠFnû%“ ÷H\jýwë“YÛšžd 1±‡ °¯SƒõW×Q5„'øF V%õƒO/ô»™Ñ˜}›ðâj݉Q&‘ò”¥6në9@µ\Èoæ¡â¦*ù×íÔªû–ØšíT’Œ%Ö¯·ò |!6öb ×¼›͘ÿ±=¿úë7OÐCô»&×·6Œ«-ˆ~·/ÑÓ&òËàJ“‰…ïÀLç½\Éw'Ò½Wâ›öè×)éÔB":o9k¤ïægJáçâÏãÍdÿ¸EÛœ­=w|–>Õ½)ðÃñ”/ô¿zŒwmcª¡e°û—ÌÕóÿ‰?9ƛژücÈ=”Fvß–D}Øã&òüa®¹›Öž¼¹#žq7V¨šº±œ’Ý‘Ïÿ±‚èy,Ú¦û ;‰Í¿œÆPÐYDζ}ve¾òÚ0ëi*Þ{ ±Êvò…†;÷w!þ#{9=× ØïVVJð«ôhn§ÀNÕƒÉØHFW¸Àµg ƒT&ãðö¬øZXÝv\ŸÁ*s±Â‰él[‰øÙßJìXƒ‡s…zŒ7*D&5ß“{4O®µµC¹C¿þ?ú«¶0G ?ê{2ÿ<%õ}¬ô®ÚG·Â¦Œ`KÝA™&¡ežÄiwç¿Ø?ͯm ~åAåÎoZnô ÿU+½‡™˜¬ã#=¡Ú¡°ÒTþ»‘UZÌ-Ì/aΡ ã*Jø+üÍ]º+¶?Û5öw^°ÿHŒ-]Šßøì?*€$ 5RèŠÜf½<¿yØQ.ð«# bLÕ—¢•ºÊ×ý±RÙ?X ÿñ¾ú.v>9Í+ê±ùy zë5Ãtø¬uáLöq˧´ƒÿb,!¦]Œ_Õ†=¿d9Ðs51GÁŸWìÃoÕÃ\";| …îVýZ¬£Þõ>–;¿sõƒçÀ¯†ÀjÇ¥?U[bèÇæzå·\¡Úo2©.œç²†v\¿”ºóŠÛ¡¿êÿ`<§§'£¨Aq&)¢ÿnkô`ƒèVuÉ,c•rŒ°êRûâÅÔB(…ݨ=J†X—ŸyöS7ú_éÿšýÚÈIÞÜèÊÏ?G§ìEýyIrÖøôa»¨÷';ü“kþuX~s݈~Ư « ©×(’;œh¬µœg\0Ë8òƒ‚õ€á ^÷ØZ ~•ÔXŸè¯T+š>ç1É"ÔÀß~š¾ùï%u…d1ôgò½™Ì1˜ÙéôפWË2üE{Ç2‡êØ ÿqÙ˜M/˜ °g^fz#fô ÑX5ò?ULFÆ"þ¿ù;ÑáÏç:þûõ篩ÿÈ VUJ”øŸúÁEJsüÇ2êÏÓUË/J>‹ÿÈOþñÄÒ+adzÝ^2ž|+rˆéZ'ç®#³pnÍBow†wº6ìÂ3Ñ–þ%´@Ù…zGT¸_‘%…[¤VL >S@ ÃÆmÀ®ÖÁŽüaŒeÍbñÝ¿„~Xª)tYY‰­=шX_»çÒf2l¨¢&–Ëžý±²t-|ügÙ1úÝSÁýÛ à>ëÑ…uƒWÎÎX¼†¨:ýy¼éŸ8ëç¢{ié"¸æ¥ZC®°úÌDr‚œìçH7/­ñ;¿”(|ßñÚLý`+µÇoÖ|§\TßK{*â"·¬–Ñ–õÿįÑ}Lü~c2XW°mÎËNÏ2¿6¼þW1è¿ûZ^£ÑV®ò(ö¹ 8MIbê”ø{b©¸EîàFÿ;7¨‰Ü—äè'âqÏ…ã?ö)´2¨Ó×—§{íÑ`eñ4‹¡dO%˜fOã0Í[¼”ÍŸ/åÝ­’}øÿÑj’â¬QœTv]Çl;ô¨·3p,˜ÉzU}#ÚEµ_û¢T¥&¢Ÿ‘J.}œá ík: à5d3<«XéøÕ2‡1 E Ð_}Eõ%1LÅ?(nëÛÛ9«V.ÔŠBôÅ‹_"‹üÿÖÿ[¼f úÝõÖº¾0ŸµYû,J%˜wüÈP¥åô¿ ]ÿñA¬å™¸EV4„óó†Ûß—0ÿ‘ˆ¹ºíÑ™wéÚtØXƒULhڱ ã<¾'^ôþ–ó]é¢ôUG“/LæùCYAÖ×›‰Å¿›M‚ñ«îàL•èÏU“ÈþöÚ¢òe~cÕ5 ÉCè±"7;× PR‹Çp×Áÿbšøët™ìfÝb_ÓÌšÔK.m†ÿðž7{ÕlEz¶Ä7påôòº¼è<¿¼ê"a‘‡W&û\@ÿÝèF«ýׂ‚eAY|ôoë½±VÒyÓJòÑ}>…ƒèè1±Ü\éFMô9'~u‘¹x¯¥ZŒ¾<§Ñôm¦ƒþ»§ÌBüTMöF¿D‡‡ãüG&üÇ[jù—S÷ÒÜ´'òfD³Ðþü3Ç"£ötÊÿ£OâÑÿj²ód¾))ÿmýîwe.ùÇBú—T"ÿ°9ÔÕJnz_ÍÕfi»Ñ_…ÔƒFfëç•…ZBù@>Ç|bÞ¹ÿˆ£î3å?â&õçàÎ]Gf½ÚIâ·ÃàÁ±ˆÞr¯šýn+æž#ó“Å`~#³RBø)Ê“k.®÷™£§5†‚d݆™ŒÿhHw)‹* !2O¤ú·ŸÕF±šøÕ.ø=O"ûÃø1Ø»ç YwÈi²Â¦¼DËÜMF|͇•ÎàWyáe^ó®%º ÿች;~•œB3fc•»cÁcë~ÎÿðÖ2Àp4ÂÊ_ù$¤ïÍgbÍ·DˆävÿÝud'}aU|å,Ñ>¸wfx'i ß½(~àc¹ÊJx6›—XEþq–·ÀµÔ×àºA»—Ã,r“”øâëÌ~ùÎrÉÕdâ®<¥+¬g× áÔÚ°¦=GõªžS.›©lNýGwøÁø§Œd™‚û6(ÿqZ D¯á¯ç‡1iŒNÿ0ñÁ0,lúNÔœ¯(o\¢#Èìç v¹–?ú–Gß.®¨eÃ<;@_]y*òcϼ¨ï8…§Ü@62“B¾PË• öÂ…¹Bôèú@2®¢l@r]ÿ%ÿ¸ÍüÁdÅà 6Á:Oƒ›ƒ‡8…æhZαXª&V6ô¶ èA2šü£<Ñýð«<ð}tW-tW}ÑHøgU„ˆý/ãºþ€ùƒsÍåì¨Õâ«Añ]àÏc€ µËÉ 6 F¢z‚KìãE˜ú«·bÑmv5’«† ËîŸh÷oObz€å䥗ùbtH×¾—Î-žXûTBŽ&ÿéÃªŽŸê?zà?Ú CìmØÞ¨‰Ñþ#j®Æ0ÛÕÌ6ÔŸ¡š¤8öôOú¬ƒyÊ.}È—Ákx-8ëò²ó™¹¤DçxZw`»5³*Oÿ;½-Ý&ƒ¬üLdĽ8NåÆ$ë 3›ö™Cè<•ÃjfWš+>G—žåÔ4¯w¸”êA¾P‰¨ª7šŠQ²>5õ¨EÙH¦ÀO¢ãMëØ†Õ¿ǵ—z’dG—¸Û©Ékïð$.¤zà#* <¨¤=µ ^é¬\N¦Ö‰Î*Õ8« V&ª:f9[÷Y=ê³VÌÈ‹â./¬!3w°BÕÈÔ\eÔ‚¿ý÷1>ýÛ78OÆA÷éü*j+UV©©µSø>âÚ™UV*µãÚ>øíªkû·_QVjiÈ nóŸ¢w`~mi*÷ˆ¹23ó£ò‰AQôyñ‰©#µµV¥™.Ôˆy0)µ­äG媒Óÿj@¤®<µ‘o´Làí ±™Y‰¥Ó¶dþÇT<Êy,ö¼ÔS9NæK#q„ûµåð磉ÍÏÇ:ÁÜ‹!XØ|} Œ¡(ùÇf¡4•W¨\WÉ2- ÊkâðØýàWÓá{ýÈGŠW§‚ÿx[7ÿá¥e‹àš×kùÁ§j`݃ÈròôW§Gˆ­šµ«¡ž€áù’5mÐ ¸zOÅtüÍš¯©¼*ðÔâwç¼6à?îsLùxrw¼/+·åíx./2ûåA8瘈úÁ ‰‚^´Üôîk5vç¦p_/"W‰ØîþÔÉÿÅ÷íþ%™ô RÇ„׿ä¼rƒ~ÏO8ÞD¼±Œ›ØþøðTôOL7[?Ø“ÊÌ\mc¯wÈ }ˆ¦£Ë¯ïþ<ß¡·ø7õ%ˆ%2á=&ƒý\›XOEÎ,ÖˆG_¼šÖú—|$[HHý`²<ØÒ‚œ@#‹ž”è&ôzÚG™‰¬4ý®ãÝaæÒ+÷6ÕS±%c©T«oå¦K_f0¬hï\±¥+ÉB r>3õòaú·Çy2në:øÖh¤GúIüÐftµ •ޕ隀¾u üySs˜yå^vê?gH§ÁUßhmCí0¶tG{õ•xwtK³õ5tƒŸfv4§ÓÅ“zñS‚ÓÈœà eÐGv¿Ê­ÉÔ¤ß"²»Ïü¨ßÙ½ÐO‡~÷®V뱃ç§ïRnòõn¨p€éï's8ÒðNz2¿Ö+ô†ûÕyúïV$"w!7XGÔŒÉî²2 -Ë2ÞÇÃDÏ©PÜ~¥ëA•¯ù¼2“þ»iÁÓ^³Ò~ôW ‰œ'ƒï\¢Ka ž8WvûFÎ{I¯ÏÖD°â­ ¶¼)–ð&ž¬0ˆo¼ÛìN4zð~aÇ›±¤{ÈH¦ÂÑl’3D½ßÖŸRNªw¥=_qÄ®FLŽîI$_Lf€¾’òÜ,¬ý<}'ÑX&Ô ÇÑïÞçä¢Óÿê±|„…>Ëî¶“-”†ÙªKž”‹8¯´Ü~ånL#çj32Šõ“Ð_^¥=<üj»ò„üã.|Ç0,¸Å~Ú׋ îE ÀEÐ97lÿÃÏxìK·q§§ò é[Ћ” sŽ}´Æ²,ÞÅ iŒîEâmÁìE ¸î Wx‘ìñlÕtl~GPÿ¢ô2:f½@øó %ˆÙ¡ôÌu.€ÿx {1ýÕLøóŠVzÖÌJÿ«Ñ(%ʯÉ,jbÿN’VÑj„Z1±Àöj&æwz’s]Ö/c¨ÿXн/…^ÊjÇüGI"ôXä‚ä=3A±à¸;qDhü*†\JUå#Ë"D¢£é6ÜH~ѽÌòŽVÔ ¶²â´F¶õøCæmx‘´æcSšñ‚+nÇ1°œ Ý¿Ý_|‘ýA™;£s¼$™.t+9fÖ€=ñ€;*l•qÌwœF_œÑzhŒ%ë*Ãüó¹fJãþã±]U¸ÈârŸóŠÿ{Ÿ¤U'R÷÷ã÷iô¿²œ_ýønä>¾Ç¤§[I~ð«ójKVÙCþñˆŽX[´ä!zºÈ¬wúsWy—<ï†|%Kˆ´¢sQï‹Ì]y"R¢¿ª¥}æÕÛ+ÿ@5Q’™¨“¤‡Ú‚šôfújêíba¢sSdvf0_/ލų³ S–œ#+igú—¸ƒäìÂfì§ü 9R"±à ô»•Y%>¸ÀB"^ã ;ŒõúJŽpž*ÅŠ0¿å3æG…íÒ÷ëò—”YÒ›x­ŠÚ4ð˜µðoé±;[é¸ÑÐHOœÚ˜¤•ÃÉå™h¨eàš}´jú&¬rsìÕtÄcÈ>ÊߨZöXÆcÖµ»_­ƒQMŸ²år¦h¢†ŽLCöh_¹­ž"*L~1{¾ƒúÙíD_> -¯‰ìgà=½9Ëvüù#éGÿÄðzÄTˈ'Òîvu€ûà‡g+ÎUW Î?^’anwÉ>Z£ßm¯>ŽüÃ…,3ŽW„ƒ_íQ^kmˆ$S™4!šó›èÂå„/j|…¥Ì¨÷G;å ñ_ºÔmo|?ô»ÅÁ_ð«6LS¯Å›]LÞ ýîy2­]x§ÕD¾_°ø°¥®XÓ¸ÁóÓS?˜Ï•$©QX'C0ß-:yälÝf+¶Â%ÿXDµ\ ùÈt*üÜáχYê5ìAøöRp#öo.„ÿÅüÚÐõƒ1ÅP2¶ÓhôJ’Ø5çÈ?f˜P‡cvÅnŽžô×*Iñ3XÑü`w³ñF]É:ê1Dè*Ÿ$r.ØÕ}*J&5ˆØWæ ¡×ábæ,$¶/ Ætþ#€.È»:á?Úá?º³òp|]æŸôW•®ª;x^_Âa\Km”Ð…A€*3I©:HUojÅM¢ðhfk¢.žˆ7‰AG-ž"r®‘ä}ŒûrƒóÁÛ¢Ä÷ˆ¦NòL}6¢3«z´QÆCŽUEX9´p+-OkŒuÛ¿4l…™™úÁ@¿5Ôú§1†ûsÎ7%óϿˊÄC¸9ä`#•UÈÑ ¾úÝ4Ôx±vsë5€kÌ3ÖpÅ“¦ƒz?ݸKþ1EVG}çÌ?öÓ—é¶Âڈ鱤›—cªµŽúó‡`k­©*ùÇòuœäz…uÜ —Š’1fžª8(v:ÂÒ=Õ È¨MxuÏÿê“lêtþý±„®¦Cõ㫨}üN'­tÌ‹*'jÙÑÎe¥:ýWÀ Ïó‹ÒrÏ•K OƒÙ+²‚PÈ?P§¹X&“ïÈF:D1ÿ(ˆ~·¹FAlIaæŸW¤B«³vGÖç{x•ý2{$û·'¡6²”¨Š%]ÄL¡âã’XˆÕ;ŒÝÙƒÒë óÓEªâum.þýû."ñ)|<+? ›ˆÝ/Kàsù,‰ùçß”¥ÒýUWì{:c <ÈæÔNÇ*ŸÖÐKÐVMƒ£›·òIöÕ2Gp·×k ÈTꃠßÂdàc)òרŠü†«ÁvÔ‡}»ž <>r ,Òï<ûGô»ÏÉ?Nqv“ùÉ,ºUí‰÷A劮a 8øS¨Åx•M|„6ö©<%^i7ÃyvÈ…íúü«-YË`ºËWà_Û\ГÉe"(¸~0‘Ñ|k"\ëœWüßû$>ý¯f9OƤz0‰ó«¨íBS}èH¸E+!j 5¸Ûçn¥šv–ücóksD‘??Gÿö|d/Áý£é½ÐàT£ÿî-±Dæ¥~°èEýnJæG—¢þ#?¬—øro¹þWWek”Mvg¬ÛԘ؜MÄÿdÄ7¦qš w<KŒb켉M<ƒ)V앜EÿÄE/§ÜÑFŠÂD%vÝÇAÞi[gØÛ9 á«?@÷d÷/y+“ê½eÄ ±KôoßH¥rUîÄXåÎÄÈY±t{±°ÍáTðv먶‹…ΤϰþÃK«îÒ~ç ™rF"òXõ— ª¡^iyãåÖêUÉÑÉomè/þe¿UΪ·e*âÀq ?‡ÉfÒq½íY¡.ö« XrK2šXÉ^ [ûˆš`µ¯Ò{ùe8 f& | ãߨ‰m¶ùéBÄ%ˆËã³JU¹Rœ¿î…É ÿ1•|.)‘g4Nve8þc›òYË#/à?F?'✆ó^ºãÍÇ`Ñc¢¿MKy jð3ÙÀšËXµJšÝ¿Ì?¯Jÿ’üœZ6TK3Éh®“Ÿ­‡M_JV`€Ù×¥þ<>6*Èý|bû/xšÉFSøþ±F~=®<æ Ok¯XoøÕ ö0›f3Õ Qòc ZÎÙtþ«me6?ÙÉjÆ)Tb†¶¼4üÇ0ô»¡ó…Z7ÎÙîV ܬ%þò‘1üj!|wA¬éIªëâ:V“)”1»‚唃;[‡©exà?æ‚_M µÃ—b-9ée͉FeŸuÔy, rd ùÐ"zÑ–±Þ™° `ŠÔd[æ,xøÒÉ<“Ýðu©äGç=QmæÉÃxNÿ«‘Xh“ùçOé*ò•nŵ¨M—©Jì¯<“ø°ûÁ¯Úá opÏKã‘>ÈõÎõN+ª"OõMd– þXy¢_o¬´þ8¿&±Žzï.mTðÿþÏAæGmÁ4„¡Èˆÿh‡•Èv\§&ìçUØš¥ MLhÙ¦*à×µ·j õ5ì§Ñåy<Ѳ¢ð¤¯ag¢ó~¯Çw,á,¾‰g¤¿Ô~ÑEý3M½§¾”Ùˆš¦a™ýà+²â=ºá1³¯ZØŠ¦ÆK¤©œ‚}’èÚÉÏ_ !Nÿº1%©*P=Þ#NÝ?³ÿQ{]ÿ‘6¡Jâóp©Ý©“ïÀŸÈ{[€:âT`cáÍÜ£<§¢¿ž ¼¤9o£=¿vûLºÒ>ý^³zS»þïþc3û_ßå‰ß{H¿ž°üGM­"Ym2ŽÕØÝ’Øç¾D®¨¥ÎÀzσëö¢£Þ{¸ôœØÒ"ÔTÇÏÔ3º°ç*ôo_æN_C¿››x%/ˆÊvXxòÁi`Cþð!Ó¨Ôódr^ + úÝœæ|^~ç+Ðûz|<Ž'®fÞ!Ú²÷0È2¨–㿯Ðe]ÐãSÑÔÚû›À± ½Tiº ž'3´û—xSß8Ò¸ƒÿø¦þã³XCöqUÅ`2šQº/uÓ™âaä5·¡“Ía½¥’n¬ôR˜šÔä%öüËäfvµFô»o÷¸*ùÇDpÎQ<_ù[éb”ß¼IÎ&¬tjŸE?_ë/¦ŒgkŽÃ7¥£V² ýñ_0U?UcoV¾jt…ü~.<|U½¿¼£_5raß«Ódó?f“ÑŒ ãzμ'”Oè«õ Öj>j‰¼dS;å_2ÀyG²«S…ÂÖ‹ïctç©aÆ#ÿð%o‹n]f>â{¬aø'î̺*Çû¥6c’eÞ .Y€¶ÿ¼äÌ?ö0?ê…ÅÒœHè\lÆuÜàgKðÓ¶V ¤U ýî=ôW¹¬kÆ#Øó¢¨/ÜͤxÄÌ0¤=Qu?ÔÿÑ_¥ ûXì<UM®º8¿rÞÐH}òÿ‘™^WDyñ(¸‡ÅÎàùQ›èß¾™ü#jý¯®(ûxŸ?/JâùŽ"síJª/ÅJúïÞ¹D“(âW嘿Sl±zŸ– ãîrZ^»$[Ât'ÁN]…#Y?˜X3Ž ʲ äј«Œ±œû~XØ ñ9°øïø Å"•<ÒÆˆ‚Ø¢`$vOר׿ 8óÑŠ/%;=ÿ‘ÍaüGï ]Ñ"'ãŸèEÍ 6ÓøéÉÄóg‰RìŽÏ9 ”WSÙëúv-G+žÑšã7šÀþ^%Æ·çÍ–G¿{ ¾üùÍcØ™­ìz-ÞÏtëž\ ‹Ôê7k~W®ªñ±Ègð“ÉÔ Ó·%âòÑ Ì@§Ö¸Øú^P¡ñxÒü­*üFK*"¤7RÈ£˜Œ.däc*à“÷_ÀOÇ›D%–Ø¿òçÀ2z ßí„™ŽÉ :5ç±>œüÃüª&lJøŽF†]ÉЛ{êcуJÇR–æ8¾à²ñïyŒ“û´C¼ß™Y ]ÕùUëÀ3p–Nf¨iìJNõ˜Ì€Y~FLjSz ¾Ú ?½Žü£<ùG Z¤üx%Øæ¶¢þÃÇù¨ì@u‡hç1Yó=ÕDFEë @–ÓO‹.&ÖDú>%ÿØ[sˆŠ:ä%9çã° Sõ­0Þ'×[L"bñVÖÅŸ3Kž×7Sñ—úó®T8¾ ?r¡[UwüÑiô»;ðvÉèùeÁŸ¿$k ÊÛ5L ÓV÷‰Kr(Ïh2ï¤úQ3‡czçJ( ª“Ubºá ‡æØm%µnˬ䨡{¢ŠKE|˜ŸÝ ôŽ ! óÒÿãŸ$W½~¯¾)ùÈ@þ½_ª©›©ÿا•õéßÞU¶)É?vÒk#U%!ó$#³þSå.ÀW™ˆì ­Þ†ú&h¸>ˆåÁý«ŠqQÌ?Zii¸ß×ðsàEwpšZN½+ÝFb¯¿Â±D¬Žµwžm€Ý?q*1o/îøYP‰%X›cb^à¼B*p”¸ti. fDâRßi«EbÁ`$¾¬jÛ¦?‰—Çá¯ÄŽ K®»À%÷9#¼7w•rXWCØ÷Øt7P˜Tð GÀÙ:ÃÏ^f·k9S{jGV}u„õç´†\ç_ä1xʬ¬”>åubßuµ&`9Ù‚WŸ|hh ¶þÍ. õŽš€ì`?ðd°º\UÎÞžÿq¬jõƒ¯‰ëG/{ó]OÔ¸)Ñ9šâL8瘚.d&þÚŰ瓜ãg²TgK`Üg‚ßqX¾#úý:äƒÓxo“ÃÆ§Ä_m ׸ˆFò!þ¢#q¬‹q—ÙÚçÜàIy;ý©,©kœ%V¿lÜ„ÿ8‚‡›ËýÆþ/Š‹Áýz~Þäd­¶,Ï Åð8ž`4gÉ{×`—‘}ÄÅÞ»G§Sn "ç™d _õìü½J0¿ýÜàW>aÎ0H‹ÅÉÛz°¥DØžÆPîÁò3 ùéò:ƒj½¿¨x€¢+€!=¥^ƒÒÔƒŸ>ˆ'Φ_u"ÑšïžÂ×2ý Kÿ1 ÿ1|á/ªéN1w"‹c<ž£8Uþ°ð™`êãmúq6“õËZÿP;Ì+7€a>æéÂï'ÏXÊ2Ó¨@Ew{làó33{w1{q7*ãAô/iÏyŽ4ªò_òCÎã««´S}9¿yú‚@ÒwZ¯‹þª=ý©jà“fþâÞ,ŽlûúîªsêTuÜÝÝÝÝÝ]'îîBÜ]‰“„¸+ĸ÷wwÏ÷+îMC¸äó~sÿ“'CÓ„Ó§lËZkïMlÿ˜.]¥•à‘ÇšãñMIÍíøýUt7^È×øE®õ|?ôF4®Á$#©YÌh-càų k„ n†?>‘¼ÏA®ö/ØS7rPÅ_œûçžx ŒwIyÅu¼9˜ÿáä~­Æó¿ýÕc£™Ø™Žú!VJ0¶£d6+¨'q:7QÏ~„NŠÙ©rTè¥>ÂÎõ1<älêX™¯üïÿöß?“î`¹vÿ«ƒðyévu’üã5*³ž°ò+œ¯Øo1‹e òBb¸:kÿëCëêoÐÜã™n 6ôMô‘[µÂúÙ›¢ˆsoÈÊLXÿõ¯ÿÛ׸Z]*º»n»hˆª&¯rÇ:\­ñ÷ÈKRP/ñ‰)€9BU?èGÿ«|ü–¤h%ÞMÇÆW&ËF¬²„¿×Ù]vú_…£oSÈ=[üîr^·2ö%£ò…™F^06Á—.9™Pl¤R+ñnsø¬Æa=UÇ|J/ÂÚó?ncÙ3`¥ópt/ñŸØéSüÐv¬è¾s§¿íe¹/ü§]:µGÚެ{;:®¿kÏŠª¢ŽÁØŒ‚y°FâºÙ¬9’g4Z‡úƒ`.H-+]ƒŽkïÅK^Æ’—aâþš¢+Fjê?vÀÐöÀ~6Å›ÎáçÙÉ?p¥‚ë¿ëGÿ«â¬–Šh¸š­›<çݰ×é°çn KŸñâe°&ë©!|BöåCî1=¨]›x[œÒJ9}¨?ÏÁ~²à1<°‘7¸¢t¬Ç_µ'ºâ?Ÿ¿òïŸ8üê9Þ~(ìB;ðšÌrð²Þ æGŇ»É>u!H×$ªKgÂuŸ£×(z@Í‚ùíeEgöG"çñÔã“6ƒLeTÞ{6½îo+FADàÄJzñ©—{èw§+E1K€æl£kl§;®UÈf2GÙþ£Ç2žþíã[/²œK¼óþ£/þwœ±‘¬h³ =Èg–À.T c®5šühóÏ#›“°ò=á“Få·g)å}×5në¢1läð)˜fWÕ®û¹ÍSÔ*üGs½F¢0K)‚³u~ãM&Ñ⑼ÑÚ­„ƒ_ª¨>É­®õ.9"‰SìÌÔ4 üù&©«Êøˆ§–ÍBU¥îÒ“Ž¶#Ð_Ý'ÿ˜J–”Ô*IÿöJä¯>œI:Éòªëx+ký„Ž÷hȲTµ”Ù@…3LÅ@+ {ÙJî¶Ìj@Ènô\¾ÌM,.ÍÈD @ÖËèȸüÇQÍ%ažÔÖÜù—ð¦ÓîÐ’€œ+3«–a’ðRçSú‘¥µn¨Åd‚¹'îfRüGN"›6¨À>‘§ßtñÿîE¦Ÿô/ OEl×y Û.>:Ž_]Õ+‰–Ì´1 æ^¢‚ÐGßË|¶°åw—˜ÇðÚ72¹Ñ™þWÕµBÔù“¹©ÿkÒÿ„’¿ë^z ðöÝ2xCê?ÜèPWV?)™ßA•IQ—¢k¨Ž<#ýŠž þ›‰ðÿø¶ÌšðŇhX²tÁ-*F¿™ßÞ½«{ˆòÄ‚ ðÞÄÝqˆêË¢ìègÜÀŠÞ%ÒÍ5 “ü#_ˆ;¼äX&íúÅÊè’Òø¶ÁÆ% Ž>TŽ8÷4¸ò"а©XÔøÆJ=¤Œf“^J¿f˜1ÑÎPv“›þ³N¸Àwø”%äHÞ`NQÕ2üæ9ø¦¬?wh—´w2;õ°h©K‰ÏqöI«Š½nlŒá‰µû'NÅn¯áSGòŒ&€]øª×¿ÄƯJ_t™ø®B”aU9ó·Àd®±¨?¿¨€ßÄBÕ€óÛ½À} ;>?˜üÃ׿â5Q ýÕYöåÆ>Ëÿ¶gwv§ìêà-K°(·°É&€1ö%7;&öÃïývQcõÚÄ*LŽ„¯˜€¾ê*Ÿ¿ öb3‘oLx†îÖ 3>–>ùÇtl|tþÍ$ügg¬,ô¢šÓhoôÄP„'¿CÿÄê 1÷`¼Ç\ìëpú—|¡_Ⱥ‚$VåÔ+>d$>f0øÕVV뇟 8CÈ?î ÃŸ2›±¯¨Êl‰g¸Á*Ž/§2êß^‰ùQnd~Ô{ª'¡,Šid ê°µõŬHýùHð«ÏÔh|£Wzgò‘™Øìøæz˜”Lñ@ÜQ½—K\ä ã±~“|ù¨1…þ%…Œ‘ò¹ñFÕƒái U~ðËé軘þ¶¨÷km ƒK-޹Wî JÿqPÒ›Ùu¼%µ¡èwK×u3æâ?^³Ì¨pùžø ÌhkO¡äõ&oxFÿÄ͵³kýÈ6ÃÃÜKô-è©€_yk·ð#ˆÀêWyÉfú'dÊïS*—ÁôHæ²¾Ò¿åƒÚŒ~7¢Õ”óh+Ócqz-Éš â:ôüE*ú_yºÎÌwºšþ]ÿai{˜_kû¶â© º‘ùçaDöèÞpßûÂt,§·ô†¨¯¢¢2Mÿ]h*ò¼]2‹ü* ˆžAž‡¯¢Ç·ßOMWkþ|}a(óégüó÷² ÌzÃPâW©é ™PÔÃnn!¯‰UȬ¦Â3œÓ°Õ§A ÂÁ0?ÇÔÓBÚ?ª/™‰#©Ãø¤¹ÄÓÇ©°p/¿gxaµOÁ8$'ÿˆbô•vWãÿþß-Ç,yÿQ“ì …Ú圯= µÓn£,Xø-7 ÿ‡þí!­¸]/GþÑŸkÏÀH…ÿ¨DÝø<ÈW*LüÐ!mà¯7(’ë—Çéßþ'þ<ªvB{$“p×O%ÖòÁDã ö4–‚©mcòñ…LÉ›ó:„l"½f"‹çÁtbæŸ?“W„à3ÍÀ¯Æ‚—ù»†áüÇhüÇD²‰$ðõðHÈžžá?Ü‚­??âx§×`µ$Ä× P–åìÁy+FmDpëk ¨UÀй<âÈ·'ÌäÜöã®Úƒ~·P+ÓS¯/Ër®2cß=P/Ùý|7Rc¾ÿ̤5È{v”R©é¿;ßï ê;[bYÓÂl²Þ)üGrî {þà2±hF3áüÕ ã`&b_'SE÷ ¾á*k¤&®¿†Å¯޵ß•5n‰Î`¤û¹Û*ámúá!ŸÒ‡Ñ½|Se­fÌ¿@Õs'âútðwÈÒÃÚ{`í)?®ž)ü¶CK®I¹ ‡>n€qXíSkBŸÄ8æNì}vôDÛ­ÁXÑqøÃ ×Óî¿?ÈØ4`¹ä ×5nMÿÄQþÈ>’“öSEˆú² `jOžŸj”^诞Qåø˜úfoôWwÍ æRVôÄŒåú5E€wø ­»EÄãÃ3ÇLd´—Ôs*7ë ÊØ…ä/-é¼ÞŸŒëõ‰©?¿BÔ_—³˜“êӓ䓌£ÔÞwoI­—G„ÖŒë±H•7 ÃJì¬È|Ý| Kué›xˆXõÉgÖRÿ±¿”Û|AΞ,á×bÝà@ýw÷Ã|Ô²âfž4Ál£>h®éÄ Õ ÓãBç4ë%ÙÍEüGº4°gƒ`)â㑺Rk©¼2¸)k®“ú½H¤Í„_iZb-¡ë<…í#ø•Ý¿¤˜h(>ù×mqd£}­¾šþ%ñ´°U·søÂ@¾F¹÷‘è£ùG9øýô/Iå_ÿÑOo¦}V¢V°¸±Ko¨k|èÇ\P? [£ÜýÈ“³¤¢öOGŸû˜HÔÇþ®ã^¨L䛆­ú«©Ø_,ÿwYžÊ†±ÔŸ¯øÓ"Þ¿¨/¹l¯ƒYM²ëÏë׎¥KsÜX±<¶+H_Tåh™¿|èE=dL,×K<Åö5…¼ ?»Ü‰ýËŠí΢ÖV^dóêzÖÎân=¾§.J»%;Ö·09ó[ð* u̼Ç2†u°-T°Pî…ÎÚ®ý î¿(ÚÍOšêG7?‘‡ˆº?ÁBv¶ O×Lã-ùÖž¤e¬;/þ»ŸõÁ,—D‹…jþ2Þâ0k"®ËÇy+E1JNÞØQ7z!¶„éÃg¦_s⯂›~?^ˆÕ’ ¶j_ì‹ÿH‹…kLýÇMz‚M]BýÅSŽ;ÑÃ>³¹â^úï rÌnàWE8¦lô¬†ô<Ÿ»Ÿ:¯eÄÜ?Ô20“ihQo«4æWxéôàv™°|Eдº©Ü°7Û‚¬wBÿBT0œ«7|Á]õµ#e²ù þc4üys+5µI@^¦P?ÈÜAôH ‰¢—“í ŸÕr~Or×åÃ'¶SWP$—™J¾PœÞçé–Ó¹ª·"æó&,R<×,˜œaäÆw}ìo;Œ†ÿxÖ×TYåyØ~w1øÕö¸ t(±ýk/Ìù ”b¯ñBu©9 ÂXš¯™éB#üå«ÇSöSýù|XÜæmø‘|iðªxŒÖ:òÖ‡™ W™úÁæä‡9;¹8‹_åR×=smÝ}2­ãd¡‘Ìœèw_ Õ(G…}AkõMÀ›ú’\$¿ÙÛïCý`IzF–ÂSïǧÏ6nJú¸Ž7—ÖÿQ–ì¸7šó¦è¯æ˜úÝÙdYñ™1;—Lá ~d;+-fêû+Ç쿜ç¡ô/© ®rÕ…_íÑv¢$*Ø’˜e…¼`æ†ÿ8Ìü(w3ùG+’s1É}ºàßR›àè#[­ˆ’s%s46þB1˜ÿÿDýn@þñÑD‹è:O® ª_kµìLû($Š‹[þý·Ñ?ñ8çè›ÁÅø±Ð,wÞáCýù2Çœëj"¼(MþqBÌ”‘˜‘LŒ ò<„´f6ðã¢à+©ñ5Œ¢½\®å…ÿhÏLˆg dwQK…Î#Åcþy*üÇ(ÔØéÃ`ã‰.‹hrNƒíGÅ2jd©Dh*zžèEzîª/0ÜÞø‘(Ø×*DË#AV£g¹‚&5Þ#:y÷Ÿ"û€£?ê˜*WÂΕ‡9IÌ¤ÆØõ4øì¬þ<<*ïzàWvê9B¸Úz1vÑ |k“ Ëžìê)<©“Éñ[ð!{ÉNÆù竨ÿø]é°·ŽãÚ¸Ëóìg$Þ(šäŽXöFyu¬gˆÆ}¬¬Í®OëÉ3˸÷õ&`׫ø¨àÞÈsØ›ß߉­/Â刓€Ðg ÿ؇½ë‚ÿè@Íϰ†ld…‘Ã_mFãYU^ÄuB-õ“¨®/¾mŒEWÞ‰íI@‡õÓDþ°jÏðêËÙ¹=?ªˆq\¦§¦kcþ/ª‘ÍdåNËǘ .uXu/ç~5}xxêÚDÎñ°þ1© @ãŠ/Nƒ·Ë‹v¸‡Jl„ûùǹãâ½3â;Ö ÔN7M½#Ú‚ÝßH4zÚ¬FýÇ*o€»$ÆÜå³ë±¦QDþ ÏËG½wð ´öLöÖð©C…ÿø¨  CÝL5áœÞT”þ‰·°Év5Ä(¬}w޲!E@Õ˜}À?ÄzbŠ—df}TUê¡vª tØh 6 þ¼=B¾2'p ªØ©èws3ŽôG.üDa•BÞuÀêŽÚH2#{îc_2²ò²ªQ€iêuÉ?™å˜ÞNU¥¨Çn‹ÿ`Ú}Ý“š‹ñó›¨HœNÎÕ@½ Ôv§CЇ\Ù‹ÜWQÌìF;9scûÈòÔŽfþ¹]BÚ>ÓÞÓf­—C)Vß¿¿9“¸£‘¼áºÂéµ!D.eÐïþEþQýU8ö’pUØó;f{2…sԼ췑l£²$ùGDøŠ<㣕²½Œc\qù½dòîÆFï¯/c®HØú·_¥ÿUl˜kt7Ü-£ŠïtO¬Í#o¸(|D41Dï¦}–ÐËdhâ‘d%¦mE?Íšú60-úE]• éɺü#.õÕ–°;ޝ,b¬$†ëM$rK´"^=*ãùö]ÙRf=xþ|Oê ENîÄ»`"Ó‰Ž×Â!ÿXû±˜{*øÚÙM¶ ñ˜o8Úq<‰ˆ|ÏÃP̆?…ÕŸFÜsÚ(p‚ºBP¡aØhËØWþóÎìŸxéùÉ1js|Çð”vÿ’2óKêâß¡ûÎ{›ØårÖïBUâúïöø£ÿH ]e~ÔO°¦áç:,orüR<=1¢œÑÜú=–y{æÒœŸß§EDñ%˜Mf`~í]yeÔ&¼·Ù%vÙ’Ü &YL:ɯ¦Ž®ý'Ú“åLå2å%>¿v0þã’ãŽ^^úIAAj*‡ºÎ B•–˜» >è6 Tu¬g·z ~åÃ1`Õþ yóÅ…ÿÐ_U¦cjîª5±‘¥ð´ƒ92»ÿî%̵̡n>q똿úŠ×kƒ>®zŒï"hý ¯®ñI³ñ@‹Ahæ¨9°Õ3Ð_íO›DŸ w—*ÌI}~u‡='Á&ŸÏ©EíÉýTJ/ñÛ•þ¬wå<ïêVÀJ6Ÿ;¥ZRS`÷/ÉN…Úøä'0ÉßUY&þ=ÆÃ‡§°™Š>`0ŒÄ¢ÿoëý³P„=ÃRkµ1„nð£á?ú‘L×É€¶i8SDzu†ÿÆ•iǹì…~¸9Þ)Ž ˜1ÙÎ1LA^ÙT=1<ðWåx#+üNiüD~ð´ènš °÷Í­NÌ=鄚75%•ð—G@  Äò Ô¿ý Ã‡‰§¶C}U¶rj£ºEÉA&ûM¦Æ±:™C 4­[hŽçP™cÏñáˆ'Óý2–šA]l[iê¿n´Ú4!¸sÛ3AîSŸÌØø7ÂÄö€gÌAžžü¥&µ#ÅÑEÄA%PO>ÕécÝa~Ôcú'fÃô f¨Ï—(³‘ Oâ ÔAì×Êÿü×ÚmžëN0È¢¹¾ Û§¡b6æÕæUyžìHy¯£¢ÿüÁYú ô)¡™Åð‰W˜•ÊV)À\G[kÏ?O¢=“e,ùRd§û_aÚgný-úÇ£v%ö8.ä­$3ÑÛ¾r´'w— røü?¿J¨•9)HïÎ=T¦76wX=0¤gðëPnÒ£Mæž^Æõ“gú8QÏcÀs®„?‹ Rduì‚'¨ÑUê-R bÖÑïþ©3ˆk1Ç]ôW±\h° ^Øà™FjÖºâRœä*6l>èÚ>ë‡Ü¤çᘗëÕÁ§Úq|ñ©ø½²³Bo«úŸ·ƒ Éæ?RÉ¿C.b WÇ?¬éÔnj/ej|Øü×!*ºSâuºñ\÷D‰8ÒXŽnæ-Vv?õ2öPY‘Š¿óD Ðõ*––.ö$[G½|¨ ;«ˆHÿQn°µn¨*ð„M§ÁÄÆ/Œ Æu¼Ç<57' ºH4Ø5Cbî>h€gQ6WϱÈçÔ=Ÿµœ i^®ýÛüGýy+½ªŒö°kPK•Âæºqœ••YA$zßAA£aSÓ¹i©÷FØþÒ ÷U.ôË‚œÃ›º7I>´ž}*š ‡èw£›‰á'‚…Ã*heÀ>צ«ïhÈÅ©-ôÆ:âÜ0r¹ÒBôÇœ!ßÊëü–ú5:àå¨`Ìœ(‚EÝs»”õ†Òÿê~£8žp9•ý•=“æMú݈r)ÜÇcpM{ÞïôW;ðjÌU¨l\';úÝí¬÷L-2¯Â%Ïâ3;s.ú±¿žüÍ(_ps Ò¦ñáFlŠfYÿñ Ìï9=KPßÝv ¬ýnCüæLô¬L»zh!ü¹'{¦¾ê_òÌ‘D0ûÍÑ3Ü‚O ÊÊð2<Ý8Æòüw©žŒGN~e‘‘ÍÆl¥^µ¼¼Žÿè@þ¬Ü ìoµ=cÑË–w(BLýýÔ)|ç{¸ o<ð&Ðl: ‰Ýÿ_ÕÓ_µ!_Xä_?x…#=€ÝÚMWÃØ([KAFB™„ÈÙf|¿Ã´O‡yéODž þ|i{‘Z23þ¬0|¹ùÅlÔyËA¿Â™GÕ08àv0µÉÈ?"P¡žŽ(9Šp#uà¦/pn2é¿÷.b {¿ž‰|¦œÔ5:®¯`5§™{¿üê±µ…é$AJ®£EÊ‹öx6wP;õ?v_ïñÛï==#c~iô@뻓Þòóé¾Ñ\(*ºâV¬xÓ¼…žõïÛZÖéœçþ°7£9öÎì2ž¼ìº´ƒ#4ð²÷Æ0¸™¶Ò ýÕCzG„5*eºÁïߥJ%óë¢QÚ#`pkáÝoÂÌWÃ+iF@ÿ«ލâúÆÓã?>Ñ7[¨æG]×{ˆ2dÑáwñdÆ;iÀêS±Øk‰W¶bµSƒ5ý„ÿ¹BåŽcüGF¢b û¾äf>|…;Võ,*ñäÏ Ùí9ËØªg ájïÓëb+Ûó¬Ü‚YÈŒ¬Ûðö# ¬ò3,èF<ÈVìÆ\&´ï—óDÿÙ/Á]¥ÝÖtü×mŽv$jà"¨Gºƒ§þãG~Ûôo2¬‡™=x–RÌeñ»|Ìrµ¨æ_Q/sˆçØkX?W/— œ¹ Yê+"úÁDfÝÁµ†¡PHÂUÑyJ§ã?¶á?²Èûx£®ð°Qýùö\Õ´Ø£¡ø#M7ÚQÿ±LíÅ~¾fÏÛa–6ããê;‚©,ƒz0yQvþ½;ˆü#Љ-F~"x?ð+wÔC]a>R?æ·(HüTC0ü¡ðò?ú_ÝÐïLĬ&«ZˆÂé¡1ôëþ¤+¾-xFFfl[ôCyÈJYÈy®âíÊðjW-ù_õžÜç¹ÛÊÂϸq_ÜPÓÈ6©¯*u«¬è›:±Ç*T‘_ª€÷E¶ÒücŠñ"Hýîc1Dí6ƒÀí3Ö+o¸ã&Ì« ?Ñ’N··™Ä×9¼Œf`,ª„~¨h{å÷a‘ÕLuô׈ø´hòzª²“‘’Zìfä è_Ò‰i°¬ßˆÌkSó¸ÝmF2§úôv9ÍÑÔÇ#=ÄÇ¿¢â)ÐÖÃìÛ0Ó äTa“ð…¬ýsa§zÖB¦ñ š$9~é¡Í¼à3ª¥øºò•ëIɨ zódŸ[UmùÚˆÿQ½Unú|Õ¢öã=x› —Úº¶‘Ï)å¯ßê1wuoªk0ñô¹Ë\§þã§Á=ÚŠÈé¾\L5ûê?ÊÑ#1%Ú«ætð¿ú‰~×I5fuX–Ѩ2âõ“Q9Û™ûꛑ_^ æ)ù§ß2™_ëá:3þ#¾ë»°}ö+ú_¥À[äEÅU4JÇ!GIý6ùÇxêÏc‡qþÇyÇ.ú'Úók-0Œªè¯òÑSë‰Ø(ãÊsx¨*Aú1„´×‚úwYŠùç…ˆQ9‘þ» ™)åF§Üëx•E M¡Ë?Rieèœ1®Üž?Ø}Ta5‚ÀG Ç–^ç]Iì'ÇÉ$b~HÛâç/ôá¢1xMDâ£yxxäe@[¦ƒ²Ï8&“ô$¶ÑI†ö4ܯ XïlÛNµÛXâ½0øn:6~Ö¶ÿâ'uVŸõ€Y¤'4*†¯òu»Ø>§4W£ KèÀ¥£ýµÁ-ôo'ÁU¹kQOpÂ|GFtÚ¬ *Ý:L¥}øSè‹ÓYoÔÎf k.×<%™e"Ìæô¿ºgd”~-ø?üê¿ èD éÞÞužÂ¶OŽEZJz•dåÑ_ÙÓj¶; ë[ð(“áÏ£„qþà9ð« x×ò«ŒhTš¨MºCÂÿqZdÂX?XKÿ)Ë¡£ÈÃOw\áFýGVý ìILúMÒõµTƒPy*|cj1™¨{1Gìj-Ô”ƒÀ¯:cõΫ°£•°{ãd:±&§ð±>BÔÃZ&Àl!ÞòûCˆ5ŸÏ\ϯÿaòw¸ü³ð1wËåòúX†d4‰õËbw®³³fDOŒ4jÕ$+ˆÓ‡ôæG]×ëk7ãIùL씩 ÇüŽ $"ÈÐK€-xL»ÿÕB~zK®C¿ûû¤¢€½E×^h‰ÔH‰Å_ û1v#©Aî ²Þ1ú&Á×ÖEº„Nu‘Å<ð´K(Lݱûýˆt ÒEð³JWZBÕ`Y”T>ø£‚j/÷iÙ x¯͹Ãn•g…vøïëjµ«`gJãÅn9^°¾ÕÍ®ðüM±ñ>`q­Èènâ¿èC~ÛaD9…»ÂFölÅÔvcŽZ VÕ\§RБ°%ýK>˜‡ÀÃî Ë:‰f`+ùGü±7Þ¹/úÝtøónè¯ú±3;ÿ˜ÊÞjÐå4“é@ÝôNÀÎ?:£Ä*mEwv·êÑ%~†Ç*k.G°–‰(óðÖu™ÿ±Ãu§œAu]ÊË53¿¶(dCú—Td¢®;\Ôò‘ñ}ÓÛœr”ת`^d)ü»ì¨Î3ñé”ëx³hc@Nÿânëf¬fÒåãSÁ´¦¯Ê[ðµ/øß¶Ô#^á¬ÕÊúØ4ã%\â.G[sЯ že®ê[9Ÿ´äŽ;#·šñ9>øõÌtKîVÕ9Ëù„ù©-_ú—”£L£3ŠÝM" 1SÓx¦’b~­üϯM ”üpÄD%û÷>ÕҿÿUuò»Ra#·~„éžø8ZغC^vÐs“D6^y—¦{¸™]b‰L"‰ØèwÃÖ¿¤¾®cE®’ƒt¹/úáeÕ·ËÞøHĹO˜q²ºÉ>3ÉɃ2›ýØŽõk ß›C¹aýöÀ‰Ìäj®¤ç_ ê5ÜéåŠSy]+ëŒäðÊÛx¦#¨“Ô]÷Æ.½$½CþQ¸?6ñï’ÚÖáxì˜ÍüäüÎO°{ö7{lØÓ9ØÛŒ¬ÿáäÝE G{B¬ÿ¸¡×â7›bîqïçÂOV@õ‚ÕP£ö|s xÖp¼Ÿô¦{Ë?ÜA†vGË~v¬Ëîßžþ¼#þc·Q йÐXnsgXÉ»sA•ñ“Ø!8ÿOËEÿ«èäT§¹¢¾ ZtL½"ÊÞÆŸ¥äJcÉQ>Š7Z® ÇÜnZÙW=ò•3pÅWÈS²úfrEìXÆšærŽùƒ‰ÍäÏ‚ ÷Íøì¹ªŒ‘™èæ÷[ç ók2àQ+Òcö yÀT¸»·Ô}^ÙƤ øó#ùdzäàM’º=þá÷i ½ïo+:Er\»~° ¼ÈŠŸš/ã…þ* úÝ](P39GÒ¥, È]V)€ŸÙNŒ?+hÏÿöÛz1äbbŠ{œ™n|²—áEýÇPµãäó‰˜óÑ×ü>óÓÚ¯ÀÚx¡jã¯GƯIýy@þQÃÑü*,øs£ÙI?ÙÈÈÉ|“f–F½GUæögFðœr̯ÝjŽ¡›{PÀ¦äŸÈ’:{Ý 4¿öŒã‰~væ01Æ3Ø¥ÄFgj]Ú¢/kV·Þbìy7ª“/ÌC%þü Ǽ>¾8Ù³|äG×ñ¦Ñ“”&FköÐB.T©ø+KÏÄÑ0Üo©“ôæì5%ƒ[ >]o6êÙqÐ…àZ¬–ˤA¾_WØ]Ð Ùƒ(¯&ù.ùÍ|û¾’Iï—èùÕJÄ$ÎT„üä8Oªd!èÛÒÿá‹å1­H@î@gð×Êÿü×TÚ„@ü‡ƒî»–ë<…íÓMí0óÏêeD}ú‘Ú5dg™_ë£o"'Y­% cÿ’‡èaÉ—òüy$£!=ôÜèrL¬”É™ÿ‘…ùƒ!k‘ï’ž«|Aå*Õ£þ£¼Cÿö]ä‡ñRLô¦ÛÈŸì^àuŽâZ­XWqœ¥weN5 »ILĆ^ÃòGÇÆþs`Tfüþ«Á~§ÄNQÎ8>¶}ÙÂW°‘RXÓ^Dè¸ë™/Â]¥Á€4’iC¼6ßgè_Þ(ûž^í&J²ûκc»¶ '$Î/¢V¢æ²­~tc¹ž(„ïéMÁ¾’#¿&ƒI ~•‘ D ½ŠL¬»XÑMÆ2Ç6«’ù~èSö{¥AÀAGD•Ž §°ºñ…ɃڱÃuXÙKœ·±Ä¸ß9Ÿc8î(—§à]óœIq;`׫4Z¢¶ðDÚ^dDvO”<Åðö´§b±ðÅò·cŸ5¹âãÈQâSEãä‚›uÔ—žO@Æ‚¿¼çÓ{]Ž'²‡u}‹ú92±ÿ~þã.Ù–Þc>çp!á^q] šÇ âî- Q Ÿ³ Dì0>üùÇZæk$»n)=v99\²'öî‡QÏÐŽnO“Ue#¶\äºl×£/ö@i³^½dÅ)ðQKñDw`ŒgQi1ÖšÕî£ÙîŠòêÖ=«1H¼×Ç€1G•çè$DÒ#^/ìÚuhÖë©Ŷì kQá#zu{k%ôKäWè…Ùî·®hª+hÝ´"°…‰yÛ¢%J主b»ðFCtäé$S È1T$v ÅÖ‹ã¢ù@ d0ÑÕîˆ X¼ 0ÉŸÈhJ£Œý"cuäÏ×{àx#×2u«$Ûìt•jŒíˆ•·í|Clí5#“ZKýà|c+õ=Bįné­ˆ*›c%ÃdÄÊ'Ãî?3«xpv÷XÅž µUÕbp»ór¯(Ä|ßà·©4?­Ùš­ƒ™›’ ¿¹Úz°ŠØ×yT.kœËÕ X;à1¶ò„¦5žR;›¬M+(¢°\à3µ°÷cñô»“‰Mþá`É;lñLb¾.d%6C•œýEáú &ÿ8èˆ-êÉw°#`l#¢·rC 3˜ŒahºÍ—+ò«¨qoóÝ{ü½‡a#˜S‰B7Qᅳ¨7!j.ÿñÅê–Uí íôV5ýAŽÚ•3ð)åÕ2êÏëÉý®óQ›! ¢ºZÜų”©•aÕrFBU‡Ü ývß0 Äî!vÛ<Ï•öcj‡f½'ÞúÌÝÙÓF6ËxãòÇè k÷o·ýG&]bþÇdk*g~U.³¨‰ÏüÁ‹tÁªfS~ärµÐ_­0¥ÚOVü“,h,_Q¹ÜuÄÿ»±µeš›ëÌ„£ûÕßů"j»é_²Y/(ÒŠþú«ËŽŽøÝÌ$\DUbØØô“ø‹üã%ìÄ™_¼k¬ é-ãÉÏ¢ŒhÆüc¶ž ”ê¬ÆX™›¢¬ÜªµÕÈ!Ô¤„9'Óˆ =(‚¿ é´vZ'± DÝ쥉qÛ¹?rAx‚äÛqô ”ÿ÷eo] ~‰ßÞ /¶‹ü¦­ _…Lj«ÎO÷" ?O®ôš,¤(±¯gË-c¸®ÔoKúæ‡ã(õ–qùoF*µ”R3V¿“x¿š²;CåU³Œrš1>]Sô,!¬øFdœã([À ån êT œ[À+~a‡kY{%þ#Š ôÄiDÕ?òç´ðd)Ôq޲?¸_ü‡Ï“ǼŸNÄ| ¯[>â ÛâŽr@ÑgÎÁñç´²"²aòälÄ{‚Q©ÞU×TÞt¸.˜è 6’PýÅs9Œ,?&±‚“ëÓ=ÿáFÞ^¾4r£ jˆþê"þ¦5ûÈL-sõ‚Ý–õð¥âaõ.h%qˆèÝ, Ô;er;ë­Éjë Èì)€'PÉì¦Ê~už%Ûé¿;Eçc椿Ê&”ë×7]Õ£úÑ;ÈzOu“\lˆQF÷1YÌd|÷Rê?ž=ŒÅ&ÿ(kEûÈJGÆÑ\ªä;‰îóa79ôß¹³ØÂwO‚BÖ#£©¨žï©#Ylî¤ÿ{~ûã°É‰œCX¯‰Ù…ùé}³k_Y åM0Ò‹Þ¿íÐÄU\nsÝÅ£3µéĽÈ?lmï$9Ó(l>¡ÏH8ú··‚?‚ÿ(†*©üùV&vD¤sýسÝÌì]ÀŠeÔ9Õµ^T-¶øÆ]±‚»7è¸n7cX}È?J]^]¾solmµˆÓÖ‚¸s*,Gâ?Ò;ãZ3ahâÐçk.¾h3üÇ9*—Ã,‡?d}%û°xþº“™í€¿6xCû >‘l·)±â9ùÔ¼g³¦0ÿã.YÖR+•U×yÉù•þíá­j=¶ [Õ©»Dä”Ö©9ç<>`hª•}æÿ__R=8Õufœä ¿Úƒÿða~mIæŸÛ• çuõí0 «É?âha«®¿KÌP›,ï#};¾Êžâ›>U+¬½FUÿQ ÿñû<ƒÎGKòÿltþOÅ3]Ü/[Ó9§~^öCm{_Ö¥þ£N(ùôØÇ¢;X“7k2z䑉ø‰©°Ò×°ŠýœB—ùE!m‹Ÿkb­¨„·ˆ vËã>߇Mls„Äfj À"¿"r® üê®ã0øU[¹DF³ o9ÿ1œ,æ XJ&ìbVµŽcîoìÀz¯Õº®}ð[½ª×&ÏêÊ:Wˆ-sa÷KyE‚ïM3ýŒs°Kº8–:|”-;8‹Ò!$ÐÞh‰ÉŽb—ûañó iGf°Í¨¤î`¯—©~áý¹ +žXÛÞx§QjÁâW)¨?/ßÁmŸò⌂çÈGž”¸5&“د`ía÷Z¢@èÿ¯þ“#nþÇV‡Sü%S8œˆX©[ WÙG&ôP]8Z[ÓPм}Øÿ7 ü+À¯ÜÉé¦`¶00hÿ’:zKi÷O̯ÁhÔÆnôdE°öOTb0“¶Äâ P7å¥~p.±qtò(O<×0¼H9#»\亜×#à?Æþí¢ƒÊrüÇ]òµ8ð[¨?÷¤sÕq¸ÖØä±ùƒá?êªg|Z}üÈbBAê5Þë¸'ÈÕÊò7TOŒÏ0Û[Ì-x·rè›nc]ã8G€7uaRª”ݹq1hÒ(®ú#¥úÛ?ƒèÞ&¿ƒÅ÷1P±‘Þ†>*#ýmÿq ¤>sJÜÔÄ´àÏe޹)+V z! ¿ê@ú'Næ*Æô„Íè-ë3·ãŠ)Á$ñnØçÞðçeÐOU€ho.öŸ_;—U6¨‡œíªx»7r±ë†þìø¨ûò$mÅÛG6ËÀ‚–QuñàÏÀš<Ð>צãa{Ô·w˜{4Ìàsš˜·™<莯. ÿá!+Iéª?OþJ'BkÀS1Fu’éÕQ³³:,JEð«ÖN˜­p+~øíænp²Ô¦@[m×Ü„£›#W£ŒèŠbN¡+}I$;œ{¤èêAó-;šhÖ¡6>S­ŠX…èß¾y"Y­GêÙV\«CB‹¼ †uá?ÞE¤—ëˆÿw/3?jŠëNÏô¨¸®ï¶‹hÚ1-£~Jo*Ú K¯É*§Á®êûô-äû´œøUkžö¯Ò†1—2æþE‘7É$¿Sá^3Œþ£³^«¾ýÕ,IÙ…'´´þXNÇÚ”Á›jŠÐU$æ#ÿ()èðC„Üœ(ä šÊ9Äчx‚V¡–šG®P¤ÝSæCCqÌ?õ½¢&Þ(œ:ÂïO&‚;O2uî¢ÆzΊùa?^ËF}™4ÄkóÞqýU°:÷ÿZrÛ¶Ä(vý‡/Zú ê<5“ª%39A¢Vè!©µßé±–ÍyR^°¯¬X°ä¬¼% 5Î7±ýk‰Å—b‡6r/¿’E½?âW1µ§Z1pþódê#àuRÀÀ "Š;`ÔWïð^h: =S8úMd=sxBSùóç½YNhx-Ÿ¸/¡+õE±‡§¯"W£OhzõÊ('s`™ÇÁŸ×%;G´€®2Q‰áƒãÏ8"À‰=0 ‚Ï´ÂøÁsvàªæs#yÃqÛó*6¢Áz…²aƒ?ÊfÏjhø¢7,äÊôÑËJ°P%ˆÚW`£‚Lì»;Š)“•úPù,èv˜ßLJ-vr%‰v7â?§âªYèîp¤ö«Gz\vÐ¥ÚV¢ì­(6.‚½G¯:ÍÜrwT¨>è¦PӞμ‹åƒÿøÎ§õ$ßÇ.³é÷Kt'Ò9J½dð£®êžñ‘޹ËMæµRÝ™î»7­OÖr3 TjéÊpž÷`Ÿ›¢{BDà:åjrå{x±(ÉھꞢ›y^Ub_'«4õç‡ÀìLs!ù‡ÃœÄµ‚/^Avg×Oû\Ëõ£û# gþlÊ™2›ù†¾„_èéÑ Eì0ÿù–³6¨:â?ª0r“ùlwWÖ¼DýùQó€ÅàåÀÆÍ¡Ïb~ò–µ²Œüä:Þ¤Ú@ú­×æîìk\Ríå^ã©™ÝiXÑ™Eæ8ûaów‘Û\¡ÊnŽþ¸•?`švr•û}5³­?ÒGã×/2?ÊžîIþ1Ù#mot˜ÉVvm}|R&«¤s½ó!þ¨0ý¯X&:¬®äIÉ?2’õµ…ÿÔŸ¯ûµàÿðk ð«…®3£SýÁõ]ض¡´k̺¢7ÅÍóç-t?ý†¾‹ú¸aœõ”™a}Á®¾ãA²ÓDj±Vk«%•wÑNÇ“Ek½t˜ö9M¯@伃µl[+¸R«®ûÉ© 8áyÇ4‰ÐuDɦuÖª‹m g@8jóÿüêöé¾X€%½¼Ç@åG¸‡âF¥ŸW}bø(°Ñëð¦:ŒXd,æit'ºƒß‹È.%üGȳY^9ŽËƒ2±¸ä‰ß‚ÿ† ÞN•êa´,©à®søóžì5¡1]OÂYüHþqö£%^ä:x"^§$¯£DWWÈnÖ7í`ÕÅä97°ÚÿÈŸGÓÞjeÈ.ÂoŒ`?Yè˜ÕŸœaøÕYÞ™ÏkÏ;æ¶ìk|xF[§"ŽsÃk…Å»»Ýíá8ós5òa¥“ƒø'–»„ªþ£,õ8nü‰Ê”—8\©#®'7`ÙŽ8¢1“Š`¯:á/Îòïãkr²F+õ”§4‘Ñ.|1úîc%ù{Í\¥žÔøiÙƒœÇáL?«AdX ªm‰ŽÍ¬fg»à,â™c~T8ºÑ¦¡~p!œÄBï±™FTÛH/Yï’‹ ƒôE´W {ZD¯‘÷ìi•zý`j«YßéÈÕ•üy¼ËA<ÕÑÜ“EƒðçñDKÎòI¢ü àW­É^ÂÃ/2Wâß*Ùóaù‹ùƒ¯Ð_Ù^ 2ÑÈþesôÌï¹B‘‚dëi%Se¸¾0±£<Œýu„¾¨RU"pwfè=4obõ|Ô<óUžø¾ÔR®äl{€_ =ptÓ’“N)ì Vš.I¨àî _›yå“Ñ9=¦þ<µ³>“ýÖS?˜é+Q@Q0B;•Ș㺸·Á2tÎð^â±dæk9^>àߵÔ¿šnÖDm;NÍ«±|ÍØè¼£*žƒ‡Ë­[0 ÕuE²‚_‡#Æ«Êó¿IÝWÌÒMÌü¨>x2_ú—Ü¥±&:Õ$x»y–f&´tð¦wD7­È?jHAϯ ^¦þã–´;ÞÕÄ$5Ž™Yœ¬I̺&Ùl#¿s‡ó#>)œµNÝÁ¿•_óFÏuLåÖ¢‹}ÿÈ¿ü~Íú[ÿöðZV¬¿÷ñQgæÔï3ÿ£®Øï_sÔàûåú\}ž/Œþã­ã°íîWðÕ9DLêšÿÒ~ˆÝ2‚|!ò‰Aa¬ÜŠ~Þî\œ¤ÜÕ8æÏÓoË>ÌD§'“ SˆÐ!b©µ!(Ga‡Öa·Ðoïnåën1'ò6'<‘økÙNÆ •þꃾL4ÃVJuç|ùè.þÉXj›¥}ÀŠÅa ¾±Ë†¡À¯’kóå^™’{û«È©v53Lï¼Q}êN:lMd"È1Æ9RÏÂÕN*šÚÌ ‘Öu2­„x´ì J¾¬þ•®bçówßuÁË-’3¨¬ý‡5óiÉÈãòd5øÅØp¸Ý°ý)yF»ž<«y<ÈÊ¢±x¾çr'ÜWpúÝRZ qMF„)¶ýÇQlkQ2–ì-žZo¤‘w…6ª)œ¥=О šý]t¾«ëzrîô;àWä øü– ÞŒhp:¬ÄH00?éb¡¾]MTü‰(rû´yþ)`׉m‚Nfé¯W–ùÜ M^ ?¾0Z‡ˆ©7 æ O¶…hêº#ƒåL?wÐq݃8|^Ÿn™bYsøBOŠoÄ É0æóÕt®Çð´“äãQ:Í‚“oeýD›å ÿèj——ùƒ‹A¦Js¾ëYôßc4b »?fDÿ_ûdܥޤ›9Mpi?±Ñ¦3?zà| X{üñ«Í|neø¡§œ›—Aú¡ä"{zõ,> ÷Ý6ú_ù ÝòRYÀ¯ƒÁ|Á_kÒvUÂ_œ×ƒøˆøç÷Ìk è¾ÑݱP[ *ÜÿÑ—\¢·ìÆü+ÌL¹Ž–¸.{1´tgDú˜O1GS§—–Œ¦2u•~d\-`‘îË€Ù —iÅ"» äÉÏUIîþ.°û}Ñ[Å¥~°)ù‡=aw(×[s›9Šê¼ghÎ|P6{’=¾åI)a4 Ôÿ*Ÿ¶P„ç9ï…f£–ê/{Q+™ÙÙV&•ž5¡¾€Æö9æZŽþ¼ÕüŒ'Žî_ͦÃÕ{3Pÿ+/p?” £@sË€|aâVrµrÌÚ* ZU }‘s9ò­Ø–ÅË;‡š«É?N_­†+Ä5N%çÜÎÿ³WñµÕÚD×½GKŽ‚÷ï}x m§V‘yç¨?¿G„ÃqÛÑW¿L“ÉúBð«3aZö ùG3rW°ç7˜ÄôP¯ .’L.™à?Š–AøÀÃóWÆ8M¥yP˜h²–<® ×< ›Ñc7É""t}Óh=´¦¢?OßJ,\WâåœÊË,l#\p]ªèr‰÷–፶ÅÏ51[üÅj‘‰&fƒì|F+Úœ•‡bñ÷ûoBמZ’ª€ Qî.ïÔ6¢1ˆO$ó´ûÖÖb™ýGu¬Êy,Æbt³¶õ¸/—éª÷Ÿëùê-A–j¾Ø»IÈ北}M¥¡lzMü½™œi+¾nžá@ =^µùî 8ÚMŸŸ†‡Hÿ1”ˆk/Qði›ãF¹sO0‘Ÿ.3¼ýÙŒ‡òú«€ÞH;̯ét»DµÇ2"‚øó|¬Q ¤Nÿ†—gÅPö¶DâÙÿtØ”œE“Ï+ŒÿØã¿=Ä“uÁ‚Û× 7>sŠ‘†·½úJ>Ô íìUlüi¼‰Ýów5hú4²Š Æ òí üG>æGÅÅåƒ1±û²ŸÇö¯ »ñ¢{{t¬JIøÑ(æ ÖŸŸF,s)¬y ËH ×9‡ ‰x‹Àñä 6pYʺ̦ûvz€ôçèËT¿šV\ôX¨|â?ÿÃö3•È6â33É?¢ˆaœµ“àŽeð‰ Èž¨Æ0ž(“²7­ƒS~‚Jô•ÚÀr “çÍåèËÃGÜæª}Ð[ý¶Ã‹Â ïáÇ]ÑŒf.³I¼˜°ZÙì¡*Òß°;võ.y‚ý¹<ˆªà;š«þœË±ø¹~Ô%e ä?f8<5î“ê¹1„·¬(-ùU»êo6Ûü’úóW°Ìm™ëNmbxT-¨À¼¿ßåáiéíºUÞÓ?ñ ¤7QÚW•™¾ ½Tv期´2²£Áfeê³ÁrûÂÊŸ É¸–ÔÜA‹·á$&–‘Q\üÇ{Çl‘‰;m4Hø<5@VVg̸pù=ØAo‘uÖD&ö·ŽXÞÔLàûtðçQLçå>ñÒ1º}Ç—ýµÁ“ÚñMæz4&º½ wš‘èŸ5ú d]k˜ÿÎÙ×¹Ñ_,è§•–¾7Ù]R˜­ì Ü]Œ†êók·ÿZðø5Óç¸î„XôHÿ»þCh'™{I/‹uáßÃû¸£6ìù.ÝC÷Ò¢jûÃtT~Žs<Ÿà¶_ɈF[jFi%´·b§Ìÿ¨*f‡±ÿÕPú—æÊeÁ6·‚]í /jUt_ÙLã?y.+‰ž®óðß¶š’þ€IDkr…Ä´u³( §c•ŽQÿá퟼E.èv˜S„FQ÷‚ùçE°E1Ô~¬ñ,0ŽhZÇÛ<†¹OÔŸ{V¥•ü3°ßÔúeWÃÆ…S PýLËš‰—;³™TÙçRŸÙØû(ô¿JÂ1ß¿ºלøížhèUY"͈ ®±Èf¡¾]ˆ'ýBFÿ19ÃÊ?âk´¨ÂNâ?슔Œ(Rm•Ó>8‘3dJ+ˆ–m¥ìLlílìs/:–¿‘7ÄýQÀº^%Õò‹›ò.;YKœþ£^³,¼@"ŠzÔ÷Þ¦² ;–´-Úxÿüè*¼eÇ`û—œu|&ß=ËÙïD4îcëÉ¿œ@>2‹™’ÉñyÆT#¯‚øŽ-²õЃðsQ*,'µ‚AÎã òü\8(Ð$»gK¼,sz±™±á+Z‚_%'ºO c1›þ»ïйaKkà Ä0,¹'Èz~züß\«±j“”=?ʃj‡ÇT4N¥Ê`”¢¨s6ñGÉ™à‹nÀ¥äÃ6ïÀ bïc‹Fœ“ÓàyX¯¦zdÑeå#Uv=8öYXؤp] È·ŽrÅ«ó;OÕ¾¦7Í}4ç>D&öüóa² g®‹%œáÏS£·7 ½Ôsò](¨^1%÷™›]žŒ^•Ǩøàº"ÙµžB•6'zœDÿ«ËÆf3™³4U$ùÑJ}7YðMMéwx‹’K™.b˜÷à|£¸J\²E6%ßèŸxN“M¸›±ÃÍòžù ÿ³È,Kþ‘­rj2OçúW³N+OTƵÐ/7“uäÂâ´0jÀDø?é¿›–êÁÀýwsýíùQµZjúµ—Uè'gG'§­˜‡¾Rß@þ?Œó9îÐOâ ½oãE2 Au_Ií›ð’Jj²¨è¡‡®Ûú¯›²¯;|ÿQs~Ct–§µúUÙÉX'O3oéý¯BǤGK)z}Ø1irŽRªWÞKL‘܇¾ëõß—åX™] þõñÿåë#}¢(ÁoF!F…]M¨ža m5Æc<Ôq¢ÿ¬pü@ñšÉ4®{øO ÞrÌ¡bR¸ž¬¸†<Æ4m(ñ¹Sfb«CF°¢¯r”1 7ROŠÇôJüfU"­ Ær¸ྥPÚHõ˜¿wxϯ·µð(Öó’ã@;üaM' ‹ØFRu϶»^eÁôæîŸD”¾–¬fùÇ+>mVƒ54‚oyDÁôŸ`7ƒVŒþ%¾äkȱaëKãçÊ£j¯Ž`÷гX &¨&²ö0â¾xèÃL,~“`òðçMåM#*Іêʤ~þøDV¢ã6ŠîPä]¶×›ü‚i‹Ëñ™£¸ZóþhôW…‚sG½"Xi-rS{þG^r®è¯rîxÓ¿dªYÃêK§Ããð½ßÐ5%Sïñ«=±Òõøü†.WYï6õç9àdò`ÅGâ?&Y¬W¯Á²_-‚ãÞÄ|ðŸt÷uš7Ùs\<ÇmôC¹Tjµ™ëŸÏ_Ñp¿ënìþl[)PŸ¦ EèIÛÃÊoo:€†(¼³±ùPå øàr`MíLª#ñÍ4#"}úV³çz`¡ƒkv!£ñ4¶¨5 KµY/}¹<6ÏZÉdÆ£4¾/Õ’O=NΔã.¦²RŸw´A•ÿò4¬“H=U:r¬"ä09è4܇Ù~¯Q hÎâLä b4.¸yFüG £,([î@¿\‡þ¿H„ú*@ë!™?ÎužÂöáþ#/Z«ÒTg\ó÷»Ñïî¥ûî4òØÚù0-wÊqH/ ïP=ø€$FM­¸¶O ϸ BÖ/H<Òâô‡2•}‰‰ââ3k¶ž¼ªÕ×WË"¨±7Ð%å²ÌÊþ‰yµFZ Q•k=†¬£"5¼j†…:Kþ1o’+|¦¯L*f‡´-~þLŸF6ÜŸº…õDÞ°ÍÞXèXìø[…”æ×ÁŠuCÑ¿ä‰c0êÀXx [tüñÄZçßbäEWt‹áþªU«Bì_²F/ˆ%¯Nú!üefðµüpvwÙåkžÈ¨¯Öà=ÖpÜÃÐÚ®£è"ÖôwPíŒv]*âá‘üë#øóXXþ.ünzÐéý-ÏSÖ‰åNR¼ì¡ÿñŒŸuäkI¬øÆ{ðLþk§éߌ'ŒAW˜gw|Øxu ûæ©F1ÿ£7Ñ~+-U QàÏÇPuo+‡gªâd‰KÈí2‰·LÑî‹; þ­!>ñ²ê Ö]½ÅÆ{쿚O¥FrjöŽá…r¢eE6Ó’\j¢‘P´ýí*G• ñhOQýuÆs¡Âb u‡uÍ&àuóé.•…þ%‹Q;½F-¶‹Î_Íà?š“Ëu@{V…ì.U üª$ók‡á‰êU÷&Ÿhϓԫ >(ó£Q[qnõo¨oa£–ßiE Ó©Œwß@Çl¬xV.q]Ü=Žçú1rF»ŽRšUèQU¦ƒå.òwvÙˆÙçµÑŸ¶®2/pï xù;àW¨ôOªÆ‚Q Tž”ùµ/@Âëq}GÑ81•—Ñœ9©š)ÄN4ÔOÁÂj39p7Wf UÒJEwd§ô9Ë*ù—Ë»ð+wí ‘PSî¶øÃòùÇpz¿'¥O“\«ˆUÐéî<ÆüÁäÖFµÊÊÉ<®&èÒª£hºwÔ"SË(ãrú?þ"¶¶ë×ÇD¡ÇÔßů”¶U+®ïÔë“œÅÆ:«=ø~µ>ŽÚ¿¸aìßþÐqØð/˜ù‘N<Ñ£j·WÄ@‡ÎÇåDÇ0âWíõ¨Øá2ygdã¨N?´"úÙ~ûÛÁ¯¶Éò¡¬L€Ž8¥hèoáèG¤l©ŽpÜ äHr…X”£²]4‡Ë”bÔ¯û_¾úé+Ev|‘Õ[€ERàÕ•°û£á¼çõ{aÿã0ÁFÐ÷­´ëJýiÁ äë¹·Ë‚$DÇSt%JN vOT˜Xꈷ» û= N~¥ž*„çà?‚ËvÁ›¡~ÙL1ЪxÍ7àçØßRþþ!"G>]tùcþ¡k§´#2¶:`ØÝ €«Åä ì ^C­#“ëLÛê>Æò$yÂɷ䊽”o„¬þ*™þ»{ðbv\¿*nT1ºfÄW»á þc0ñ­©Ê€kÙ>)ÌÔÙ<ØúÁÍŽz)ˆ¤ ç•®Îqγ9ÙlÊŽÊãϧŸGJggòœ`9¾ pùà*ܨ¬°»³Ï„?·;Üü÷Z¬ÂsŸÂƒ ¡æd1³IÖRYÑÊl‰?›G/üôP(œÀrà=š(üG*þ¦WÉåe½µÁܽõÈŠ†Á¸L–âÔ§ê#-VGú;ç;ÍYç2J*iYæ<²˜Y¬8”£ §.b“wпä>wÕ-uNŽ6Š˜¹PHíA;€L£ Z²øë¬º€ºôAàWÕÐ,çáLoã™ âY_~s¯ÔÜÅw®FK*ºÌŒ²ø† ¯–&&8–'Šà¢èm§Ã(UƒI70»â'îÓ~†S)²o]þcšvY<–ˆDë hkda²Éøñä\ÕÀÖ [ «[é_ÙrWº³9Nr»TðéX±%*ñÔ†­ÃGÀµûy•ý•]ë÷¯ÿ"¢CLâúî×»¡ûZufb}–U俲k¹_;ÊQ?¸F¿¨Ÿbª^þ‹ªµãQïjTR$3‹Oúò$M^’Ñ_+†X9ýû‡Ö{“,G¿; ËRŽ–´AúÙVa¨VL£ Ê¡ß'øïšqƆˆ#øýþ¼ÀM£ˆP/T8[¸ΠÕx þµT11:ø%~{7­.’ ë .˱ÕɈ§Óðu¼Ó­°§y‰}Ÿ£"h.Cªw8ö9îr<>ØÉ»ØÑyØÓñäA‹–ÏýÀj§Rv‡ù f‘Œ#!âWmô6ÄÍŹ³ïÀÆXûTèœ ,]ªiÏq6òóhžæáõöÑm=íh‘~î3ÇíLªfÂW”ã¸,êZçÏ…ÿXÆ1Fåóo2†?ñwÓ8«]Œ¨2œ8õk‰@_ëhUDjþõ+|QTp+ñG™ð•·ˆ\÷àÍç‹ðͱÍ]`©:r×à´=© ´Ì¿_Îp4¦§æføŠAYT2ŽÑì²;>w4ÌäoE£õnsAØ5ú»ÛݯÜÙ]P¸Q"‚+Ƚ“Go'Ëãù“Áö' ¸N¦å¦õmvzÉ.ÇTB#š”ÂTè‹ÁœT,Ö$ð©d lAëËë©†Š†?sEZDÿ’÷ôÎxG5âJ”N™\‘ ~õþ¤´ù »޼â)þ®WÊŽEi£~Ûáe½,;òd•rø4wü‡ƒØ{‡ÉŒUsõ %0ÂÎvT—#ÒÝDåP$üÌò§•äR>þ·õ*Éð0M·¸ÿ‡áæ;Alæƒ5Âÿ$¢wS 2†‰ôƒ²°‹wášàe:«;°Cmà¨+«jò–ë¢t4Ó|‚ Qx¶:Q›^ÏpÒï©+®<ðå‡èREðO8‹ú0Ûè›[Þ\Í5Z ¢w”³ØZ6zÏ­p\Ñ_QO{Žã±Ë1èzX·¨õëÿÙŒ':NÖpk²ÕL—à˜¼Uõp8$:¢iå–vEÛ¿þë®U~(CKqWy«Ø2‘ºcÆtV£gI*ËÁ›dm7擼A·Î'š™ãÙKÄ´Øò²êòWµµâœ“_ÒMÏXe棳ðæ¯QÜ Ë“Â¹Õ¹×JÇrFí¤3JæîÎ3ß“?–ˈÚ«oÌ ¨àÿµÓþ«©-ÑÚ»ÎL -Ëßî_RA{Ný`æd˜‘ápÜtt×WÁ~\ÑÁª ÓÁ|åy!LÊÓðÉKÄM}”Vÿqýî-:¤äÓ ¸vš…÷飰Y«d!xï¶Fr9Q.c~Ôm¼~Ô9±ùUBÙ?±zµ¡âº£­X˜D]Å”mé>‰ùø à;od&ô»ýdA12[‹!Fˆhk>£¦œ‡UºúÿwÐUdY.¹u«ÜÝÝwwwwhÜiÜ]ww $XpÁ‚î.A‚ó•^„d’Ì¿f¦Y3„@î»u«êÈÞûœÃÊ`½W’3 S>ÎóŽLìµh)ÂÇ]•Ëø«TîûK/$Ûª†Õï‹Eµg5Ç‘WŒ4x»Çb(ŸÙØ¢…W‘ØI«®ÖŒ_¾ØtV"Óÿ*{wÆOÙª>‰Q´…«ØÏ}ý²]+V†œ¤µ¼õÁq¼ÉqFsõ°RÍñÐI…¢j;´¢ZROÁû]öµòç+îWLÆŸM(ÖпdØS69’S膗‰ÿõ“èó@(þc±Ò^Ÿ/ŽiQý$Àh(œªqF¶þÊæ²Ë–d—©?I5úWr®Åð6öôÚªÆ<=áoçXDëET’á êSLÞÂy¢žò‚O(d¾Æ–êV1ó8ÕzvçØBØû¨ÅÊAo”–ñçoý¯ê¢ÿppj Àø§¡#^„=·ð”š9wð–s b3­+Äßmèv8ü*ÙÉrŸð?Œ—Aª¼ì3|¦æ^zÂaÕ `ä_&ùÂ5bÚ4t¼l•Ásô6×HúMÁ¤Ã«®…ûŸµßÅioÓÆ»ËõE4¢ë»<¯ƒAÏ–S ºfº›™EÖgšÅbúB]@…ÊXÞ6ß™voÛfT»3&¼È <ð êÙËÉéäÕyD Êè/µ1xS "ÅþÔ,¥U¥ŸùZö«d1îæ:–ÜÿëLÿÉ×ôpÃ,® ÌÅ-l¦D_pƒx‰,:èNÿq^Ý®ßYma"ã&Õˆ½ðµac:’m5²ª8F9n‘•”³öIÅÑvd"§û™¸í«ðäÉî@ýG.¹Ýy<ÿ¯/RP?¨[µÈÃÃcTÃú¸LêøóZN=3ýÛ+ñt=„??Iÿ«#Ú9¦â ëCý¾Šu{®‚f_ú'ö ÿÕ!‘^<Ò3â?ª{~C]$È7j݉÷ˆx†ÌZN‡ÓZÚKüÇ8ð«ÜhYKFÿh¨ŽT›é»ñC6Ã[“ˆ¡¨œ CùR_ELæ&üùÑUÄÐûÙAX_fÓ]õD`%š<0ÃH*mÄj¼÷YêØÂâ a·ð ÅÅû°q~¿ršþW/E:t}i°é•‰jb`çñdÖ"Bô„]n¼#Ù¿‹±2ÜùQÓµæÄ”-±øwxZ]°Ã™ÉF¢ jL„}…ßI^âzÌ$ç,S7ʆé?ž’Pk>7”o/ö\CnE¦U\­Š1“ÈõXØH~meÇ üGañQ;â¼¾À/JÑ?Q!ŸúA.U¬Á•%¹‹¥ð12áÉ>`‹÷ `“†Àþ_ÉñLkBñnJ½·¸Œ…oL&Ÿâš%d'ÖoÏÉ$óJ‰—wó¿ÏÜ£ÜýÙd_9‘eº‹–"ÄÓØXk#jp"Ù`tçãNwâ#é§ä'‹P;<¤#ƒyIf'rÞ ¾¥Á0¬€ž‰5Ïl43C¬×_sGVÀ¿mÃÇl%‡ô7–ËÄô/Ù+W2]b­™ üý>ÙMSªÚ¡¿Ê$Mº¥O”iåxžª÷AT2ö>ÑZ²£Øýl¨šè++ö>…¹Þ„òßWÔÏ´AX0¦~]ÏÌ.aÖð4äÁÛõè[áχ‚OŸ#y#Àü<ÒÃïß^Z½+®ã?ÒÀq§–K±›£Ñ­îç9EýBy;5Ï1OuJL —ÿx¬Ù*Nx²·`U ±ü©ˆö_Ò…$7Ê”+Øy7vêIàNätY¬Ó¨aqò~Êcµ6úáKØòFð&p¹¶Ø_w|€'þÌ:„GÔUÌÄlÍ[ÞÐ]ÉsmW(çX[íÍÔè·XÀ© “°iE<ø—dGŒ»zášÊ.ûð¼&ÿ˜ft Åx)åõEŸœ­3Ñ«Å>fò¦ÏAŸ9Š9%‘cGlÅ zŒ\oxð5ndpÓñ uŒz -fˆggú«VxÉ’Tˆ¯Ã#yãiÂó\ÀfÖs™fŸvº4õv€‘üÜf˜{Ô´™ô²#ÄzÓ´¨äkõYá {XŽ¦ê½±n:ÜöZÐõ5fJªê®ÀP4g"îü]yjÛáIJÂF´4ü™óôýµàWð¶MéK++SÒÉÖ‹úóÌDà­¬é޲xŽ¿¨ØØÂî’ƒ\]§"q¶üˆ‡Ÿ"ÿ¨)žÃD]5>cà5è—#ÂèæÚQ[·”üÃ×\Û½K^á¹I–÷'ùÅe®¥± Œ.ë‹Ë*ÓÕ ´2-OÓ.‘ZúßzðoABssSÈì¢)UÉ©™@V‡j¿tÍÅü­Û m Ùm3‰¥˜_Ñ7Ÿäô§¨Œ^ãôÏÕõúI1¤ )þM1ȪŽRw“¢n“¢:V;ΣßMOÿÄd!í­1Ô=Sø!ìîÓå‰äžê¡½%Aïùâël ùƒœO–Jì˜Ðù§È}^qõ© ÿ‘]¯£ è¡÷Xi‚ÿXG úQæ×®‹ÔrþJuøs ÓûP$30ƒn"}C,ô¼ ºÐG„« þqWµ>Ø–¥(£¦ñfbºÓaµ“vY 2Ú0/¼ ^¿xˆŽ¢Á>ðOµ˜—2ž7Gì¸éÐûEÄÊ×õsĶ×ÈIŸ_}DÙñ©uw=){Š-Ïã5ÜxmU…]Sq…7ü‘unØøóJ"z¸÷æ¢òIÄDÇ¢gDySKmg7;ȚɟD÷¹ñ*þb¨S c“^F³R«.³:.[ÿÊ ¯©‚èdc?É*®ðßÛÁÙ<àꯉzæßj!~ÝGe—Zo{¯Ý •ëjŠ¿Ý@¬y\x¬Šmòb·ó±Ì'X{6<šH¤ŸþµDßsÑ…ì«x—?Fæ ž,7¸_zt 1ðç_˜Ê•˜èw8ïÿ`ÞÙ±¼ei‰¢²ßÕ¡øÙÈœ@w:~yÀ.<%²o„Òö5 ÿ8Vl,;?çr5”Îêz½tæ. å_ÖÁ¤[JŸÝ At§-ÆŒ;ôy,»ïG7Å¢ävoIþÆG¢ªv®ç¡œÕž¡Ì>A”ÀÌ Q̯“õ9°óÀ¯öZ±;é€u}ðsÿߺö+`€ÓQH—•3°øÙD *½Ú\H_× Ü_n¢¦ô4S8Z¡ºªF•d]êUǪ>>1åÊïäKs—ºÎ(àqGP-,¤6ì~mð¢ºG¿ zðÌ⽿&.š)Q»Ñ+r}ÍöÑ à#ýKÖ1E*§õY^²ÚQ¥ø—9×|ò\¬èÁýÖ‚tûµòþ÷ ê|úþúœhj®;ÿˆ­>R]4w­óÏ/©ötÀÇJæÖîi>ªT#§°èŽ7ÿ¾6ž1CȼåþjRâðä" XÓT-ü^¿®Êþý¦Öë² O1«Ÿ ž£è¯^p×&/QލºXçGÕ¦ßýdý"<¯ÏOM¢ó¢ Ñ ±X^ØoÞÊW°ôï©pÏ¢ º…0¾N®oÔcÇÄ”g‰ðí "î¶&}í~µo†%‹ÁÈÿ€ Ê$â9ïT‹)Ï™uuy,ì}*¹•L¦*>x –bJƒw?5ùŸ8ƒ?Ñé¿›,œ·jÍ`xaÁ£'À(Øéè0)Yá.ͯÃÃí? |™ùƒ…ÃÔ_=U¼Ô$ :® `°÷‚ì»ûÛ~»ƒ÷jäR[À&Oà12cï'c[ò¢n*~µŠZÄÛ{±õ;X¿ÓÛ]C¬7Ts¡Š´*ùÌð0O9ÝÆ(º ó“6ÞÒ'#­=•Ožƒo°½Fr§DðÔóñIcÁá,mv°5½>÷à]»DÔ¾R¾!Úˆ-Êüé¨Q‹9:² ß=‰ÿ˜C“Dì8ö~-;|Ž?bn q$÷9ÙŒ;ÙÙ=ôWÓéŸ8þD'Dz.€•>%Oâé.ãZƒ¼'§™Çuבeƒð”>ê1êhínþ]Èx ŠÊÔ¾5{у1ùìtFú ~²Zâ?†ÓW륙 f¾LŠw*Í9~½œ7dµrÿSA×ÝLE—¶3ÔíwÀ®—¶†’ .Ei;üÊÓRÀŸ6ZGÑP5@[Š“¹~5„ç&‡¬Wî¨Ò_ò$U ê[ï•ZöôŽì jõ-/ÓßÜMÿÄ]T´¿°,k;ýFV€_E·Òš?‰²NcíWˆ™â…XæôwÕÝúyñ9~âÇ{â¬9ß1À:ÃqVZV-âXéØ_ÆÚÿ(HßÇQ(ïi>[Èà;3K!ºØé¼âÿÞ9ÔÕðÒ¿>OÐÇ'³óO¿¾±ß˪Ô¤ÚV­²^J÷˜õŽùQ´;šJëø‘ôYÕ¿Àlr“þ‚¾+ÔT¢óqA½†V Rûü¨ _Ù"ja7«Rëß‚Ùs57k±8*jònÖÔuÌÿêŠëíÖ_á7ì9OM°ÓE±6íäâ&‘ø)8ßC¢,ººÞL¤šø¯úçß%Óèi‰¾°¥Øèû ;l+GL=üÊÐ'êÞÞˆ,"üÚœ÷ÊG®ç°p!Ì!×±Rsª×÷¸°*¾ØÛ©XÒåÄ.ÒØnþ±IkHÎÝôå-–=U‚ê_„ÝÌ‹¢óÔždx»ë‰ÿøˆÕn&ÿñR¹®`W»ñ¹V ]dSа(nOð½9`.·@Ãqõ^ø+s‘ôܸIwó<°ÓyÁjÉcð—A Ú¢ßÝb½Ú0òpX‡ù…ƒi˜ˆÖÖÚj³yUkqüÇEð–’tôR â>¶neŠõ÷jpE°ŸV…9@&U ûmÏŒÍÍø­à9UÀðÿp´ƒ®DÇ)¸Ô¨¯ü`gÖ‘,†9 ®ß­"híG}Ïp#£˜i‘ÇéÕÒü[Ž5ýé/•ˆ^ëQ;fVÆ;ó>,SCªTî ˆv'›*!‹é_RŽúã<§“ñªðç­A‹˜ß¨;NžqÓ܉ÿȃŠÕŽº,“ßW`§ à…ë“›%Dw[‚_š¨}œþÊ…ýÏXT³€1U0 ÇLc95à¡_2OÄ¿ÕY|*@¦2¿6ø—ÌNø™ˆù•¶š7Õß´wª¢îëCý¾®öÕW3ó"65Ê% /=¦¾[­&¤—IV* ê´°T¢¡.§“„ugÞ*GÔÌØÐ-œ[vƒëª‹í_K•…'Ùá ªÓnp³Éâ½°;y7f…¨ÿ8üü©¨ZZON~–þ(‡ù™üJâ‡m¿¦/Ñ_¡¿ìŠmëw;÷Ŧ·i<2±K¡ø¥äãÄ+2„d )åSüG)¼f𬰉e°£“pÈñ‰Éá‚>ÏÄkM1NèÚoþ£œ6…\7ŸQ†Ø“îrÅ;Œ”xŸfU0˜™Ô2TÂ:W#r^à?*€_uϹ'Q“’ÿhª%¿+Ò½‹Øù$1À=ôj~ò˜Òfó+5ÝàÜX#ŸyëV°ø.ø™°Ê“¹ÛŸÔ¹ÁžgZs²Ò[FBY¿0dåýÛ=Ì&t”_I%Dqä^u9±÷Ñ_m¡2':•,?¸þ]ò™}¾!ò™RBãyðåÉfHÿ1Õì`Ž“­ÍŸØûìÔbo°†“-­D1ûRN"[è.¿¹£ám%›‹Î{\Fé¤ÚsFË;àWÉf"‰QÝô¥ûGêún›W@ŠÊPkñŠúózô_'Þ§FÞÞ|#ùǼG+™Àå\orN{OÏf&~¨ÅÜÇðÙ˜hõšü#¥ã=nïZšµ½ÔE&Ž2OSÕ8— ím4Žü£µóüª¨íá?âùT¦Ïp‘DÞ¢b£*þþʚt¿ú‰ÿ¨bEw<‚?_mí·*0Ç<ºG~Ãj´Y >‹MNÿqZÝ6õÿpNÖGx³ÚHú_5Æ7®1£:úX9à?6 ñªd]b~m>+ú]WóïÐ#±Þ½ú«èÿ“úó$êzµŸód¢R?~Œë¼1Á¾(¦~gþù>òúúË€w•.Úi¬ÚCº¢„C[ Øb¨3ô5"5±stìçFzèíPG©ñìÊM‘–^¹u´LÎ]ûÁ0þp[[H¾éALè >RLüEþQ‹úÁæ ‘¾¢=oz«ö¿ê‡r¥þ„hÒ ›TÛY5LOô»{ñ&à*¿ åþNýŒJ» úíÜúÝû|ŸzÞí ñxâúÉpñíÐçÇÏx‰úꥨùç Û·ýÕKð+7òzøØèF5ð€K ;ëà&ãO¢áÎÿ«U ¿(‹ß8O´*±ü õð†éy»÷ã1W‚Ë\"ZÜMžôˆn‡9~«Åþuµ/•Cj|¼šìGmV5ÑCµ[ZA”~Ì®5±Þ-º¤Øê«m0IötñþFJ]ßøk‰ ¿§W+èéQd"¿Èm^ ÞT”*Äsà(˘é4V÷Å’µc–yK¼h[îM4ð5“û>ÿ1Oé ~u›X`ùFx˜ñðÌ4$š. ›®ÈâüÝ,ó^y•nîë8Ñuìt"+e^ZHüªž6DT3’ú`wKó3½É“à ‘qøåªTxÉ¢fXþ²L)©‰r¨«Ÿ–àÙbEˆ§»³öE¼#O.H´~Leþܶ¿OÁ³v™–µzìÍ–=YªÝÑgÐ9;uű Œï¨>‚ú«Ä,^œ_9üÇ“dz‘¹+ÿ*žuô0QS¸ž&ÃÞ§Bo>Z-7ã¼6:ØzÕÅ{ýs<ÿkÑ«7ÎS>ê…Ú²“©:æ3Ÿ!A=ÉY£ç(¤šÊ^h l…ØvîR#TPº«ÛQA —oŒŽd!ÍD4æ–ß§bã-zÝæAr…ÄTek޾t„N¾dÑj%ÜWÀëÈÄAüÇJåŠö†¬ô÷ ªYÆX$²qneé2RŽ:¼K(œ®Rå=Œ«ŽI?÷ÕDþÙ¬Nhã’ ß½™†ÅÏ¿úSíNçg£“qL6?ŒMð¥àà[¢P>lަ_Õ6ºa½¶žáݘËÿÃLaJP `­Û…7|æ§ÿ¸ŠçøÕhâ•mD7^f~Çz÷ö€ÍßDýGv«®c’ã z® Öz ¥p3úïÎ6Ú~\ì%:lÇ^bIÐü_ú:7ý¯u«ñÀþ]üª¼ú„ùQnZ1ú—ÜÐt]QR=xTó×>ªi#Y?˜J]¥/ñQüÄ$ºœ«{R¯TUý®éDt‘K¯nç¦àxO[‡rÃlÀ’d¥Åµ¨všt8õõÁÍ«G0ÿ¨I%Ö%øsO´ºMÈ`mÎu*xL\È^|·9Óa+ ˜ê&ŠD(ÿ( oÕ¿ §ýN5Þ¬ÒUþ—,t2èt'ô1‰á?|ñ›wDYQ(Ø;ü ÿñ§GŠFσ0G~ìk=9A t;vïŒ%Øp¢ÄÎLÍP±3ZÖpV®ÕægÊ€±>%ÆwÁ|ÙñA©yK_gˆÀ×ãIÏÁÕEí'®ëÕÕ°8y?嬚¯¶‰Ušòs‰ØA{v¸’ìåêßÊðÈWÉfã?ÀlعÍ(°FK?Ê¥–VËë97è—Ÿá¾–æWf7ð;â•ïbÛ`÷zÁ¢t#?˜MÕÁPüÇ"¥·>]ÜÂ.…?OHJâ fºc‹óc1ç³F!¬ÿd*¦_aÛ–ã;×ð9#YÙUOª% qŽuµð¥ñÙ—ìšpéV>ßH~UÜÌ~5 ¬=¿¹kÝÈœ ÆžÂÿqÐfHŒÞbYˆõ&hoбW5Ê’…qž ×0”ìãþd=ŠØ#ètX'°Å©?Ÿ…¶!“Ìý@ã*ã_ÇBÛlůZe¢“ýäo5©i\ƒn¯n&s¢è xíÐg«¾£ª¦fks3Þ(6Ÿô‹ê&à?>kc‚­—_ЦËxµÅ¨–fÑ÷ÝÇ»ã:ÑjõçGÈF›nôå}@f8ŠÝŸóÆò·çœ÷¸¦2@ÝÅÉ#ÓAþTUÔ0ãs»1?©¿{ÃUD È?º[M&cHÌ„¿mT²oGQðŠjÍbòkþ‰{•KÚ[8»c¼IÌ‹b°³ªáÌûhKF´…zI_k6ú«ËÖ7&Ào¢~07þÓi ®<Þp³((F9¯·œú'ü‡àùd¬–Oõ¸² LEú㎥kÕ¦—Ï¡f°(Ö9|¨•‰%ñð†ù݉7öá4ÙGJc›Óœ£~ð*oÂtž¹•`žGÍVäÓ馳—cÔ6r,£~0‡#š5U¾¢KJvºo.7ïƒõÞ[Á>:ÂGºéã<ÊÿøÉÕCAæ5ÄRóÓAñßûЂê59³¢ªëÍõØzE¹ ¾œêóÚSP±‘ZVªÃôU"+ ð‚~’úìjT´¼9ñ™Ñï†oKƒ~àm+wfþc–¹%Ž©EÈ?ú3@#SqÑC¡+ïF'ˆ©úkªû.c“:ƒ#Ô…?o‚þú:Øæb}=é71B´‹Ðü²ú<=%YK bÀíüÂJ¡Œš p“ »Æ"Š®—Tua!CWzF‘DKLn|³™{!8‘Ý;|ü¹*÷ ogšëÔ8n7H«;^}À3b'k™Š:Ìh`ÃÅÁìïðÌ»bë·‚@yaaŸÃ:äPÃòIþè¯b²«ä•ÉLò –d^k@e€Ùu’¥À¯v‚ÜM‚³¿‡Ï[Lä\U$Ó}/ÐùUòøôÅ-¿Yf%^¤»{Œ2é=Õçë÷©ukHåt_ÖîÆÄD%ñ[×Bñ«”Fúrq ?“X[àisÕCáuæ€ðصեÙå5ù«ò6>k.ç¹–«ŸÁpÿ%ijS‰ùµö<Ý"Xû]Øð3DTèãM>Àp¢§ ´ŠÀŸ—Ñ_‹ZCáä!Û’Y\ÕñbFˆõ:PþGi _VœŒÿIµœ_=`Ãê{ 7¦&}:Œ6²+dcÙþ€ºÞyt|ñžûÚL—ëÂ~‘§/t>l6¢bnʦ¼ðñ•°ôµ™Â}o¤S÷ÿ±oºß¸©ßamñ…¼ï,9È4 «ŒÃ䣨i'K˜:ú«T0 K©‰{Èä&ݺNÈÖ²«|€?]CÎÕÿáëÜ^Me¤zýUwò±¨¹Z‰òFZt¶í,´k'©?wy*~Õ fzƒyž®…åȔዢsÍyÈ#œëíQNjÐ<çž&7ÓQÑ‚ú-àßó‚SyÓŸË:´”þí¯Á×ÃÆ§À>³œŽÿ¨.§Ã›fÜçלú‡Ä¶µÉàöÉr"¹|hfq4 oIeø÷Rðèþü¯¡õözº’Ý‚é²,ÝÔòÿZô¿úûîêôwÑïúŠþÄJC¸#^bYÀñ7™L#ú'Ž2Oе=Ÿc‰cõç5a¸®Z•¬LGw3?Ù݇auÚ0Ù'Ž8é¼âÿÞÉÔ\Å?>Qcþà¿ë?j1(£¶L«ÂüÁïjNû*øÕ:º»è±4=’ü¹ =’w-b@A`.믴íhºž;³ˆ'òë5µ?œ÷3"§õA[Z Þ¾žè6Cÿ«‚ôOœ@7Voò…ÒF&WDd¥®(Ö&ê`.Às4»©‚ÿh@ÿ_"º`%?Ð_iFOÑJÄ`Ã^9§¾üªÉI¬à#HPz0MøÚDº·È¿.ÐEò‰!£ÜßWÝ¡¸Àß{ ÖúŒeÝF^4‘*‹Áp«Œò;èP}Ö7àö‘Û ¿¬ÙýJâßp½Ò¢˜w±$(s\¢êÑœ§gQ‚Šº2ô#y¢ Wÿïû²¿óDqWãiåv²™x4¿h×H¬‚%¸Îg´çyÂ4²<Ïß'µE|=´7£ˆZLO¾— ~#3{pGV˜,æ&šƒ Æ%øT¨µÿëÔÅhAåý ÿ±€þ%Ä*Ë—ÀÂDÃk ›@µÌxÐÇÔב÷B-t4+œ´=÷d,©êŽZœ×Ü\ë)ŠÃ锄í^ÍiÝf{ÑX=†‘­@7‹•Td¥T óØî?ø¼"dMá®Ë*øÕ!ÖëÂüL“ÎA•ÈI²”uù‡Õ~+È?S»Qúlý°“¹‚Üò§| _QƒóYhÜ á?ÞÂkõçxÇU"xd|Bi»¼é;þ㼕ӡ ßíi .¤5ú«h ÖaïWÃ)?Æ?¿ÖûyØ÷¶:•8_ÈÈÏýá-V‡äsŒÙ̬D¤ÿ‰Þ„ÉñS¬YæN¾mÓŸ² þá&¾k"'ÔMöwìeþ«§ SÏñœŒä3ûÒÛ¤™\ló}rÓ¹÷0ý¯¦ÁTA?5Úª‚uežRF0¶pûzæR )‚àW”3ÚbûiMgæ1æÃŸ'å¼ÞSÕ8Ï;–ë]EÏõ‹ÔŸï6Ýá0’ðýChî–âMë鴯 ¢›óŽ”SëéwÉ?ûœ”UÄ;c»™žúA{þ¹;ùQwêgS£ñ¾HåDü‡Jþ¡àWµèÐ~eP`þqÿq^ôdwý‰IN‰f,GofÏ7¤û ôĹ­šŽ9Ž'Ô»de~íyº®T±zÁŒ<íx-v 1i+3ËXâÐ?Ïï¿ù[ntáõ'£Ãü»øUjõšEÛ¦åÓ‹2-`MuŠvJ{«}¢þ<ºØŸ "×—Wmƒÿˆ{þ‰:åúUm·:\ÍFeCI‘HÒ»DÒ(zotC®pš}‰»rÀ¢ìWÛkvýZoªy*ƒ›×‹ þªŽº„|ó<1·7þ£wü¹ [㧈ìn‡Érž£ßM®÷ˆÀ¥&ÓÏ¡¿ê¾ð$±÷2ú‘¯ ÿXGd{ ¯ò 7ýªîÁòÇÏÃ]ï³ò•§ÓƯžYáeêCëøµ½Øù*X• àó‰ûç öx+þÆû†ü€iZ3Pµ2dUw±çI±–qÑ8}ÃÚå9/ÞŒÚ=ì#¶êÅÃì€óB¹¬Æ3ÒÈC°E ÈZ¢âi›d€e¸ÐLÌÕÕ<‡ÉäV³÷AFñ]Ûr[ü¹¸ZSgÎ ºþøžóœX%ª83aÁüÀkzê>úìR üK˜Œž¼ëŸÅ1‘Uç†â?Ü•Îô˱ñ«± ).`1“Xo6õ3‰@/ríÕˆÔíy݇å}´hÓˆémŽjW=[«¹8ß¡lµø•­ ¨£½‹v_³“³¿‹}΋-œI”›íTNüÇ 8œ7xàõð¾ˆÇK ÄâëMÔ”€L¼õqgÈV ÅZïàϷзÊËÌD—)O>­ ò”Ú%ˆÅ/’/e¥^´7õ냭øA«Í³qE©íá×¹€7­3«`—S —Ž~™_KWBºXíBÑœ_t>e6Ú‚5ÆÛúÝRâ¾èjÁÁä+3ò?×<¬þc =h¡³mŠ"î8ê;œq#<Ã9²³œi%Ù ˆõ+£ŒU½8«1¨†sú]Eú®ß¡VaxãmTÔit0ñCÃ[È|ˆ: Ñý¤Ùt>„-u‘¯Ä$ç3³\¹«}'.[ núC¦çÿ[JjË'ôñíAuË@2‡e`O—À¯Üaù·Q->€š—tä÷A/‡SD… -s¢ ýÿQ]FmYJDAVßуž»}¸ÊŒtCYgÍ‚ ù`¤Þ±lE"ó;žòN^$v´Æ>gþqOÝJýùž©æD»D+­CÂÄ4£6RƒïfUvlu\ÃijÜeløÉVmT ¯y3¿â?úQš)who‰óþC_ØýÛ»:Ÿ¬(j5µóO‘ûÈ’êk5 ÝÚ«ëmð Xåª2H[À·ÚbÒƒ‘Z.¶ÚS߈ UoÏ`,¿š/ûùQ)ÅGæÔÐòGjŸ÷µ™à+kD.¼GC#»è+¨¥´}¢øH_Q,¾™þW„Vì>T?KîèÅJͰÌù±Ó-¨sÛC”¾v–çý­ˆþj@®9·¾IOÂ»ì‡ Ü :Un¡³‡ÝüÏç#¼HaüÇiº.táUk(ÊyÅŸ/¶ÿ¸c¤„©®ƒ’¬u?WÿqÒHE½ÄOtg«àϯÿÖ·)ä†gi àñm­ç9lº‰Ÿ‹Ž‡Œ _W”ç&«»±Ï°*sùWŸÅm½\WÈUþñçØêV59þf|xU˜Â˜dFÍÀü6Â|ØKâtVƒÿX…XOD6Äh!TýX( SKè‚«e¹:LÆVýUn¾ó„µë‹õ‡ôOlrß,ìO0³”`±áf…â?Ö+5ðg¨NY@“xÜîÞ8¼˜F'‹i~ûy¿Ôt¯%³›Æ•Œ4Vë´]«kMÄDe@”æÃúÂe¹_=¤s_Y¸`WjÞ Ò?±Ub[ÐJ™ìÓFÊl}Saz²…ì_Ò\{ONY¥+| š`ôc±õÏðûРÇ,²¼ñ?-ÍwòoØŠüd:P4ÀNÅ vW^iU8ywâ“z|â4ü›NÿDwüG|ÛUz_ùÁ”FaÜc3œ {ó%[Ø(Ïr¾OCðç¥ÄSj€.:ŽBG»ËØ„W~·¥,ˆ~w.ý÷‘,7ýå}ø j­˜õ%òª‹×“±Û51@³ÏjkÉ?2Pë—QD¡I ­t¤öiê±W[DAîQY|F!qU]­=L¬³àY¾`í›FhÅæê6u9ùÇNlrlæ>Ú%X°øâÖõ ¶ÿ"ì˜h„nhhŽ0—®€wõGÓsÌÊ“ÞËÐ_Í'ö=¯³À…²Àû^gE*!ÃÝa\õ1ó£¶c'? tr…¡™Iýåßø5øð«› ü`’íù°ïÅŠßtC!7죵%²¯Å³ý†§563Quj0æ2ÔWG½º’•÷‚¸qÄvú—„´¥¿Ö|ª_ôÈuøpÏÿë‹êX57Ž^E@X—þ#.ly½£îÐ?ñµÒ]Û ‚å‡ÿˆ«º‡õƒ¡~?:@ßcøŠtø×Úau€^¹ÉE2ôWm"Ù¿äƒ6 Ž|Ú×c òŠ&â„:A»/Z ©ôËKE]½m°7"ÔmñÍ6êßô/9êâ…i®SD£†á¯ûÀ€ídží„ï»#zÑ¿dLX‹ù~6Ý[OÉ•Ü`.¬ö+ìfyž‰™¼Ý- ä «ñ ÿqŠ(z¸;üªÄb‚ÙFê“>à)`Ÿ‰¼ã“)-÷¯ qÖÈÆw¿‰!X¾bæos+‚l,àË“Ú`2Xy_ö<é+Ù•|yN‘û`8«ñ §°â[@Ýöˆmz®0ÐoÊ µ8þ)|x3¼N4°É¦Xý5ð){xg“>ÅôaÅ-àWýÁ]ÂUY¡N6ÈŽ ßOè2œëáÎõ•åì³hEÅ?Æ+»€¶Oâï»pŽñÅ)¹+.¬ïŠÿØ®tÓ'ŠGdýQü;°\£ÙÙTú¿Ú]íé•àg^ àÝ/Ÿá£¶ã?Æâ•ºò¬Öõßø±ÚdrÛRøŸ=X¡<Ø®.DũبeÖ KÆ@úAe7?Ã.7¦þ#+xSr…âØç­² œOÈþ»[´¨œV!0È-02®r:™°ÀÙ`¤×˜w蟘†®¬W±È±Ñ£dü†‚>x0ë.àZÀH‚=;©õêx´Ð‹Åð1ýˆŒÊð2#@×&Z'­ÌŽpè•ÍWL%ìF†”…ggÌËX²¯üÜaæ)}Vj‹gxÕ+œÌ|ô#³øÙ`,#e+ú&.d†·ÈP¼Ý!êïà1špÒ·É¥Âè””Ämçrõ•‰êiêzÀçŒÑè§óQ?¨ÃšôeòwU8½t´MATþ {Z‹*Wúº˜óð˜ë¥?úƒÒüz'–9×»¦è:¡>|ü½®EfTf“™WÛš>»ðW™&5þÜýw£¤s wQm;Å@>ê÷÷‰"b¼ózëRþJ¤ßìoxÈ<<5ÌÊŽ¡Ôœ·¦ËpüÈTr!–ḊÝMW¬ÚL|ñƒÉ´;Ü·E¿{L~®3ÿx¯ž…?E&Û–÷t#õç͓ȂZÀºï2Pë ýîZ¦&·6Ë{tþ*Î$®åæE°ÞÏàWôwãm|­t^ñï‹äô¿êë<™èt/‰íüSävQ‚úÁôÚ1­œ>@ÀÉû*èå£}¥~0¶¹êHAýàV¤ÅÀv©"!3Þº«)ð&å™åRDo©EާñЖ`Kçž'nìGþ{j}0á诎‰?±Ø}õ>ºòNx܉ú!2uo2ØvÀ&"üúCÞ+_ñ¢6¬‘ðçGà‹èGõ<9ñà÷v|Â3e'?8H/¡6¨ßã÷ÞÑ·å6ýwÃÇï+ñA»¼èwòZê­ì¯5<ù(òš D†©å]º8í ’ŽÝOhìü-n¹áeZcâÊfXßÄÏÑa¾p†‰‰˜ PÙý·šÜæ,„WÏMÏ@r•þY=ªf6Êá+슾=ÔÈø‰6øà•DÕ7À‚¶ÒÇû-g8ÝÕaòÙøÐîý2õá,˜S­Œ æ 8ùLÎË/TŽß£a¥“Ê×F:¡‰4æ±€Ø&ùG+üh ´õßÄ6ãd(þÃ]iEþq™ŸD,§a#§±^¢s»ÿU^,\VXJ_¸‚G¬N/sö6Ÿ×…Û&ô†C\s7m4QDøo, ­KîŽçÊà U¨?¿ ÇðÉQod3³´¹€\.1³+8ÖJüÓ®ÄÒëÂÄÂCRýI°›öĘG…`*óvÿ&ºÓ tpò—ÑK½JBÜ,È&’×LÆnú¡“ zˆQüÇQ¸Ò(”ÿ†áùFFoªðr˜ý˜D•ÆÝ‘Ê1… ©Ì.òhØú#¬¼]>&;¦¯¯*|aÅ.£ b¶Ø8EO¨íô/Y(똷­ùô¿º~uÙüIý jÝâNצþã Þ²3˜[#YY|qn¯ù‡+qÆTÅ3e'j éšF†5˜3kÓ³×r…S®HýF«ˆÓiêB*ƒ_Õ‡úƺ!ž)£±À¹ÞUå›v‹7Ƀ'+ƒùN,CÉGã²Rÿq¿¦8Và}¯Q—÷€úwärÓi%6žõ«1SZÔíœç×^íÏääTÄŒ½èSW|4ÐÒÑÿj/]¹>2ïÜ dl]r?SϾ—NýטÒ׿ Þí+D2[ÅdbâyNÿñ@=†~·3ÏSÞ§’T“´t,gva/æŒ4/á%ïXSxIê%ýä5”]™,ìf>'÷ðk‰²úÀÅýŸôßͨ.è5òÃj:å:>R_üÁtëdäôüÌ?¯Æ*qÕQš¯öF{®yªÑTïH®ÖKwE¥  š)j<Ñ-jÚ_ªõ…nÔ‰E>ê#§¿z®u þ\ ‚¼Œq¨(+©k´„œýßDöbyêFèÊKãq—èϰSWÀ.zðÖ–{Ñ£F/@¸¯`O~Šúøîø¼¾¸æúN=)‘Li×0œAYŽïŠ}}DϤÄ0›ù¨½"|„%ž†»^tõŽXÅ””TޤDiõ' EÞ›õDÌ­é%è ² vf¨Ô~Ñç·¸9äІؾ(oÊY®.z£¤hÕbcérà üÄÏ­ÀâÑÚJ´íÅüÚ,jX,ò@Ío¤!SéC^±3ŠŠwkjW$l‘±†˜ôûú›=ïAíµ_ÜŠùQµm!·ÅŸóÑE"*Ÿün??«­Eµ–ÝÎÿÉŽæ±éx×\†ýL#{sOÚá¡ÑU&*~av(þc3óÊæÒ&®ìÁuéØûA }ÈÖ†`Ým•R£µ}«Pœ^é_Í>qךpºsð?CìpüyY"Ô<è•:‘Cã7£´ØG„\ÎôH5j%aÑGßkøØúù¨—ŠÑ?qZˆgq©ö4·Ì$ò™Ùr0‘ì\Øâ¨æ¹þ|*ùGk7»Ëƒ~·7þ/µÓ;dG:#"ßûÄ{t‹?¹¯ÝˆQ4Оi0ÇŒ„°ç›Ì!¨~G‚äq|@ßÚ+ZÔìjºS} ÿææ4I¾€; ýl½Òâ1™óy1²9ÊU¹¹Ú²æ+¸…lÖ ê4Úìa·çAêìúÁ Tž´ÁJ”QÄ5çöª)sÕ=ÚPÐè™ È›±.µÄPq—þ%oÄ@ænÁ«$2ÚGÐ4a^Ê`ýòyּǵåjîü;ý(Ùç <‰/õNáÏ‹èô°NMQ’é«èÃÑ¥îq"ñåx Wð˜µXÑĬ?X1?*=qQÔ w*¬õ<•[°ç—àoaåa7Û`SéGöÛ“wèþi!xX?¬¶Iþ‘$œ§i•°Ñ%ðC—`9~À»Ç%ŠÉ»ÏV¹`׃†ïƒÿØŠ—9 ~•?ÌþW†ºWDø»a5ªe¹€Þv v3Š‚äÂôc^ð)y#vñ©³ùÛ¦Faê¡=;9PQjä. %yÈÜÖqN¥ð ‡áxv7õ“º?Ö¸+Ö¤+ŸÖ•÷VgqÀ¤æ…ê?*ë‹«`~½ÉüТŽÇë 0òc]+â'PÕW´~àVwwjœ­ä¡æd‰nþÖ¿½­Ö™ü#;?¿ V^ÆZ/‡?(3щõ:³,|Àž<™ö—Áœ†dóçCð#L6—9ÐNq_Rÿ¡ñ@4– d,üùxr¡+ðó;éÁ±‡ùQk­Xø2 CƒÙq&Ð6/þí²'wèJþ#‘nO^YÖ—•j{pÍŸ²XNe™•zˆ“Vnú·×uÔ7·ƒ°õ4=ð*þÃ5Á"štÞ îáJqv©¼yc,à™é"]ñiÑ_Õ6ŸÒ]* öp¥Õ=ð&ªŸÕצ3ÉN§'¬w{™YÜp>ÒEé¿»ön(~{×Ú "/ÐËÒ7'~Äîâj7¾ÓYª,:Ö•äµþ©ß}KŽ”$K3f:×;È´¬+<'ÛˆG2˜Ùˆ4zÛW¿ÊȬóËàWŸÑ®£ûKªI6Ó)¸´ÕÍÜ&d÷/)!g8å]Êk¨M¨Œ¾ÙÅ8 k IOúŒŽ6h€Ë_5€=’Tkô¦?ÊEføÎ&/,keæûwÞmïüê.Èʧÿx П€LàyšŠúþ¼Y‘|Èœm²iP™˜‰ùƒ·éߞܺ+ÏÐÙ7%ìúS‘ûQÌoFUý•DÁæ¼ôÿø©?·{åþã¿„èwÓ9ÿôë»û=õçi´5Zz=XSVù© Õ.ÁˆœÒN“DÎ;–SkéSAžñì|3õÌ«£æâÏE…!²S^$RûŒ£7‚ãX+Jƒ9Ôƒ“Í~µTSÀ]ÅuQ 1¢óÏË0pŠ~4b3Võ/ÞãB(bëé…þã2Å_Tåi*>kã"ptqô-zfl¦ 븖73ùAVìòr°°!T¬ú缡ÿÕuá"á^s<õõôwèQ¥£"šƒIÆ0ÿAçhlþm£ èÂO1 _uO¬úmîQÈ ¯Ðê‚OÕÅ¿Ý$'ˆÉÓŸŽºº÷Äé™±)WÈ·×`¹-<.Vé•ÂT`¼P.¨.ØÐøðöÍYy-'x”“\„¥öåÓF‘Õ‡Ÿ…þ©½TÝ3ä¶øs柿gèÀ1ÿv‚,¨0u y`p_Ëè¦ï¯?ÁÚ·…èþª'¾8¦qU$ã íŠÿØ«Ó'cSQ•›èý=»¨Â])Ž+ˆŸ|vdwY þ€üc-Ÿ7‹ˆq¨èrú—„¬Ìi£µ£þ£9ü¹+lvByÌm-ÕãÇPÜæ¡/Þ ú«Æ2}˜.žƒ,©8HìhE˜ñ²=#ƒWç)Ê*í«HÈóVJ.Á†ÏS¡ÃJ€ÂjÝÏÁ¯’æ\ j~5 {R”jqÔd9ähðÇ{ê¼`ÏN½!¹÷ã'^Ñî2ùÐÈ„­Úov€“ßb¥ÿULGjG#ó¨ìN‡íhY3\yƒM•oQ Ñ‚34åÅ=”o×8™)x¯yÆCù˜ Ý}©'éa~cÖFjzT-ÂZŸ’שоcßžÌÞ·;†©¤LÄ”WfÒ¿$¸Ÿ1“úÄFqtVMÁ¯RâGŽ’ÏÄ€«ŽFþQ‘úq{~mzª0›p%Q ¤`¯WDà»çIþáà9ð"oŠb¦§M*‹lÆ ÈH*÷§Á\,¥8H¿Ã³ÔÞ¥;8^ _ŠÊnTl”Kœç—’ùq·`Òò= ‘uÅ®µùÇ1|ÆyêÇ¡ÞAò„•Ö™gØm'vŸ½”?Y|¢˜ðó£>ª;Ðïö'ZiG´LD‡/Íüºä—ÍüV«±£úÝÏè̼ä;ª?ZZs©»HÜöAäɪʛýNw å-ùO+A°ùç?•”a²Ÿáí$+ókÓjsÁ¯Zèï|’—ÒßñP»ž0’ü‡ ‡ùD‹vÔUÅ8¯ß€?/CÿÄðõÕ"©ßÝ£Íe>ú«‹ 9máÌYùƒ½áÆÎR»“Æè§÷r>!ÿêZ«}àfá)®w ¦¨‰EüÓø@O“qt¤G\cWŸ5Bõƒ™Ñï&Ê&€›Ø`,€=b5ïô«—Œþ e©›¾É­ú˜?¸O¡¢ˆŠÈŸÂì}=¬!û™¯¿”ÔæXÊJªÆÄTð¬Xt1ŠÎ5Ðð³¸ÒÛx‰8 0µ2ªLI\«amŽ‚i×àl‡±Ò–á­ 3ƒý¤¸©þ"úÝ.ÄöîÌúŠ~¡Ö¨Ø]s˜×šò&5”³ñJ»°FëáA†Ð_…–d ~ð£8†®6|øWa*ãã‘<ÅÝÓ·é_°==à|’ƒõà3SÐY?)çz,ÿ±U©Ì¼2»~pJ@¯Ž‹Dõ¹—YP—WñÆUÁÿÎÀì•‹þjk+.™›ž&Ä9ÖÑú¢Ê( ~µ ™‰ëêHÆ—<$+ÇYf)½Ã¢‹ ˜?X¤&™ÇŸ¨‡€Ý C¬7KsÐï¾U";átÖÊ1Äú3e<øƒô¿zžU벃Ԥ»RõBG ìôrÆ‘øº‡êþà+êå¹_y¾JÃÛ÷’‡ŒDLÿ8kvdSéä‘%­`>:š‹Ì#¨ ˜Ù+©‡E ³+~•WœÆç^ãmXDÝßxãˆ|I÷¦QfOæG}J–s‡n…ë˜n2ÅbÖ¾'ù“/1þ êîˆÇΗ®¶ò—º¬o¤übŒ$ÿèJïÐÂTBL£ê£*ó½É´¢aE39†YEaé[.V.˜úÆ£(xKf“KÆ7&;×[Ë´“‡ÄÞxÌôfnc„ÈÊ”ÞbôÏêÈüËô•?ͼ§t­7À®6ÓYf ™Ò5òYð)õy‹ ú ì__í£jD¾àIþ¡Ð7Ÿ#ýK&Òñê ý_î“! ·ÞZ·È?à?zšÉñp¯P»=àg¼ÐÆ Rÿñ ÿñ˜Nv-êb°µfØf-æ‡5jÌ$õÆðç÷©oŒk-•Ï­¢(‚Œ}ç©§Z˜7°QBBšJÑyÿ¡/Ò2Í¢‰óÉú¬dù·ýGõ¡šJ[¯•¤ÿîã€ùQ~ôo?ÿá¯=W]"é?’3]n)¹GTªÊ§ô—Ô¶VSÒÅ£†¢´^.’üÇüG)ê?êGSi&†à?ª1ÿ|Ý,>‹¾0ÃmôÞÎsøW‡]‹ùµãô{¼+W°ªƒOF3ô»]Œ7úø—àDéÁJc´H¯ûW ýóïb3ÿ#‘‡)Ïäl€—?„\޽…wŠÏ,¼rxÑäb5#PÿñPy‰F픈ÆÛ\˜'¿!¿ìnZ÷@ÅšÃ^7áí¾’ì$ú?nýà|­ 9w9üÛk¥x 0 ˆÆcÏÿ8…Õ^…µ>BV± /óXÕ+„Ù÷£âMþ‘‘úóNx‹ÝpÝ"¸ qù}ö9,å,~n<ìÂA²/Wòô¿2B핃úÉ¿Š+g£Ú=Ë¿,Êη»ÃбÄeý>Qnuìh[²˜øâ4Æ ”¿Ôþü²ó]©¨tQÝÉIíþ»ƒð¾³6L?æO=5[¡h½H¶ù;úÝ?ér¿’Ì\Å}šÉDøk0&Ùec¼s=7漄§ôä}Jn…ýL&¿Ë¡ÔSdµfrÕ³ÑÛn±¸ŒO?b®¢ ¤þãùÇ ôE9ëÕT-ú†ðþÔV ‹Þ/ë üG*ª2.€_½6óbç[X›¬¾ð3Þäaû»2ÅÃaêòhw;<ÄW‘É8æÄ¯žªûÐsõ%ÿ°gÄÛÍ è¯Ö¢~^Œ7ºªë¦5„Á9˜1rC¾&ó*ÎtÛ•æGžõWb#9p%"”¤"r¢œÇóÿú"3ymyç³ãÿQÿ‘G½Iÿö%Za=¾~]­ÈšqÔAÚIØí"õ¡Í {ëÙÔúú$j<ßÐ' >ófú_m¿ºB%ès=¯^V³?!âÿ¹è=À‰¦Ø¦¶FNð«[Ìÿx+þmÒ¬bu½Q„V,Lýùý!V~ÏãlIa9 L'µX Þqä)%hÖWÑC|Õ†D`ƒL·Ð `)ƒ¯ýω}/Æ.7¡¦ïÍûý\ÿ>îH(BNIý}ù$êY±G\9ÙWZüG¬\ú4Ùq=¨0‘tIù7žc!¸Óm±V © ¹âV­:¹@5®ô5'Qt&ªA¾SÝõõƒW@ƒV±çÓàWÞpá÷Ä^½^˜ý¿)/ÕØ†Ú׿± &%Ñ{'2‚âò4–x0ÊÏkäE‹ð^d_öL!䟴Ðú'TÛRl[ÀahV<•è¿J’¹]€1ššá'ýK&À}›²ì0¼A2*^r­uÅœR Ñ?Ñ+n«ÔÞ±ÆLv9Â`z!ùÇK¼^ª–ƒy`ë-üÇÊ€ú1ä>›ôÄZÔÏÎhÍžÚ]ýî>ø…ÌœÔxòÊü @ÏáÌŸ£}b¦5oÒÝ#™9 „Là;7ËFx‡é²üyÈþ%ô/ÑÈŠÂàï 2{N@ýÇw&:¤Òû.Upň _Ãx†] Û]‰üã,5ùYgøóéÁv¨ê¸§yꪳBð«t C[ÍéÔ,Ãu$u$ ÿî ú¿*w¶¼i+ùÂk2ÆSZpµ{VqŸ{—°µjìt¶aˆúU:¸¶ nî…ÿkÏú‰È5s²æäPü‡R ¾Í«Õ ¶â3j¡`’sñæ=@€^À¾6¤VìxÐYêç>`‰Ö‚®M€]ªaìÒËü¦ƒî^€s+‡}œË®“ì0ÊÀø‘sø¢ò¼C/§«T[¤3ÿ Y„H¼"6z¡,Œ~wEˆ§{‡&Á¯:`)6ãf<23­õ{r§Ÿï.úfôf®ß1ô·Oñyþ#:5Ô3àWKù«Áõ¶–Þ•¨iº‡ÚpØÁ×R€oJ‹o»KÇŒ¨Ž<Ž^æ^Æ#¨C,††Ìï´|ï5¾óœÖ9Ø3rvxºTØž¡0Õ^ò5µxLúšŠc<ï:¼Ê4¢ú¦‹õßѽ™ÍÌ?«HýÇuç=n¦LVW’«-’ß »Ï{32¹¬¦n Êʬ¬tDOKWÁïÌkªˆfìùG:<_=NFaÇy¨¦¹Då ÿaÂÚ1JR3 ÝñóÈ fkøèºÔ\gýq¨°¾qŽK¨M¬C©c2 ÙÛu|[°èÜA<úôVú†]jLμM–§f^GmN­?*sô™ÿ —>Àzj=bíêý†›Q¬¦A\r•'ñ,\\c‹Ó¼SÝàSF¢˜iÎså%ö›UËPrýIדh­²Òw ãë%±NÉè¯ÚX˨Êy…½ø.vƒu—¦&ÉOßí<ÁÿÞyÑ_uw> .x,Î?En™_›XÛ¯åÕ+éçÔ ö*êhæG]bþùIUSCÓ`†ý Åðñk@«¨c€ ž¦ÐæQw‘Yœ§ózLæ4ÒòFjŸš>ŠüÃC”&¾Cþ‘UœdwÏDW´y~T¡GôЊUÔ¥Ì&¹úÊt8ï,±ì.r¤aøÚœPޝ]´þC#¾ÎJ´]X ¾:Ì N¦¿‡?£Hvç=oÏ5è(ã €9Í Åx(eõ!pÀQ冷} *P?”T¯vš»Ð”é€3ˆþ™ÍÅ,…éÅ•ì#ÿÐC<;õºDÍðûAÑóƒ€ „ñÉ_”ºÁ‹ð篘c{Qæ6S£À-%¿Ò îöc™Ìe´‚–üãÒ×P«ä/zP½³Ÿ³Mé]˜þãJ§{Øþ¬ 0ÇA³êP?8X%îi¬}Nf… 3Þ©ë‚íÐ¿êŒ‡Žƒí^AÜþÀÈc3 æTú,ÉãønUu”AÅÚÍü›^PEaäׂß-çîq†Gµàlaô~ß@ÀŸ÷BawEªt/ïkŽýé5‘žã·¨³hãs”I´ðá7n€. §+#sáÏk)Õ­dn3å{8§aLodä&k ÖˆüÅ‹úó¤XÑ·ô/)@/˜Øýæ|±•ttñ‘ðuEàì¶ã诞!Ú³ÌFg1‡ÙŒm¬ØŽ^tt<ß}‚ê!è¯~à?Ðõ0#ýAÀ¢ÌÄä]˜@ÿÝ5Îó+Žrü™HJšçûl ß} XóÜÕ7æg&F¹Á˜Ô΢Ó@¦\%³baïßµ„?ÿ{²Æé?>3ÏÔWŒã©mÿQœ¢›ÖLúÝ·'—yC×ÈIVÇ8‡/ë%a~ízG6¦’¾y {¡ðþý…ÿøn|Ô#7¡/”WêßøÖ 1åœ'›Ø1rv9ð#³«Oéßî¦åDu2 ÿˆ©ŽÐöjO©!<ƒ>>´°ÀŸùU!Ô™kP¹ ìU,c"þc,ùGvð«‚â…^L/¨•tî:äφöçZC0¦¢16¡‹QP¤ÏÕ•àWmåô&lϧ”ÖëGhÅ’êZâ»Öï÷{ù¢Ð,ø¡p"íáRªÂ$÷Ï´ˆä±õ+z²–äøÍÄúé¨ÿȇ}_Œ‡L|xèË€ü#¾PÂÝaôW»aÏ3ñ“ñåìó4X‹¿Q3¿ÿ‰ÕÉ#Wâ?6ƒ˜]Kµð&ªƒSð“õ¨„øŠZ'5g—4ÈAnŸ™çkX’Íœ„xÖ^¾ÿXl&ÿË'}W>«)@„6³ZK®/1'U3ÜÀžÎò½~Äá7Xm:÷Èüj'ñ}ð«;ÚÚPni9µ’nÁBE£¢2>Î^ý*uógzBñËÝK:þ£#'‹ýýÁßu ÅœÁLvÏÉaT êœúªg£—¨ m‰——ƒ@½ÂRN&ó²grÍ£Ú€ÿYuÛ‹þí‰#êbsg¨Ü"Òð;¤{–̪¿X{&ú_„ÿØ€Re-x€VØÓå2 õç‹BÜéZLtõ¨´<@…Ãü×”²1éÊ·‹Š¼Gpßi¨ŠØ‹½kŒÿÍUÅ–^ º/~ß‘ùQú!û0u½-ùÕ9*ÿË‘ÑØøURÖpƒ‹qAtÉúÃñ oJ2¤.Ô°¹â£>Éz ¥?VÎG«l‡YŲ²çœÌ²/ã0š¤ct>Y€þJ¿Êm]3çY½Mù$ê*^º'Ë4t2‘Åp0……—óÿ© CUÿâ k‰Â‰˜ ò_ÖM´Ä·À«–Ã4¢KzuødÌ-ÿ~eÏ?_ŽG݃·¶ä~ØûÁ]y¨}Ççï k^#¾ÒàQì~è)é_rÆã+zã?üaW¶ïÇfÒ.³Yð•×Á“è·êî¼ÞjjKøîèqz 9¥7”YåµèÓ^lëHÇú—|Ás§NÑËÊMUºa¾C~…<Ø4:“áîô¯èŸxWŒá™ê…§Ïj\0K:º[ëè¿» –ü«~³Æ9¦YñÀÛ>Ègð!%许мi¸aÖ§ä€Yùú?É?RÁ´pžÌ%‰šÏù'ç ÐE©?OC½G½üy]Vy¬üEÿvo:`Ý‹ôüÁäˆ3ð¿òP¡uK[¥6Wßê>"©ø@…b¥Hæ÷µD§[EUrï~Ì´k+¨Ý´k¢ókOˆà‘­õÀ<ì_]pSæèÒoÏÛó™vNä8“HÄW?ÄŸOê}ú?âÞ>‹k ÷ž™½G^Ü¡ÐwwHq îŵXqwwww÷ N·'XàînßrnßI“œûÞï‡$$;{öÌ,yžg­ÅoÑà@Ó‹à ¯è"¼E~žÄO @+a@ÎàCR’t%ÞoŒž>…Q•Þ3*_ÊÉÔ‘Þ›Ì??Ê÷+V4?‘~;¬D"tB~ØÍÚX©+ÃË÷&&€ªv|ìg¼z>bá‹Ô#î0Þƒ .ãwŒÂ7÷Çwm‡ÿX¤ý%Ýôìð)[¨ Ɇf  ¹e.øs*רïA”›ô©ˆY›š½büò£:ìÊ:# ýÛ‡¹Ó›á?,väÆ¿¯† C3šZÄd4›˜»žžã­§¬ß˜Ž&ñíXQ¸äµ oc8É êìP+¦vg/j„ªâ·úþúwæˆ1{SŸ2ŠN%ɮ޶d0]AJ¼É6M®ä{\eœáç6j¡³õÒ · ,¼?ˆ<6uDZ½à?z£ßKeöEjî§Ã|øÒUö¾Ñ¨ç8 "ÖŽ«id1?ª¸ÒY=ÎÉÍ)ëjt0òŸ[ä#93|.ú¦…LP*Š•nl¹Ñõq'uÞiÍU vó@ôö“Åf0Ìýƒ_} Ó:Ìýt!ÿ`®Ý' ýn úHÝ'C8bm±`ç¿ ÞLÕF'úòž£f¼" ¯¯¤ê,x~TµR‚Š6ÓO®’ÜÞŒã(ò'ã¾Ý“[Z1äg©*lm:Ðï~%‡¿Äs¾‡. CøGên’>ž·lÞe¹™Ù1 ÿ1‚¾4ÇÌVt™/Šþê]SZÆø”ÖàW³È?Ö÷n ÿhMv˜âÿ‰þ*­ºœ¾„[7“Ø1›ó³¿¿µ¿s¨¯áÏ/iÕEq'¨þßúA?ò!Õ˜jôйøêŸè¯²¡¾²ÀEÅ=íˆÚ\u¡sŒ÷²¨§E¯ÏãM õ=øU]lô½¡lOÿöÖäè½@þQ€ùQ£tåuè÷ÒPø’«+Ô”U@×Qƒî]õ'â2‘ó="ˆ²)³¶G3¿v@Ž.¸"á‡,bÞÕØ˜†Æì ïbwðä¢T>?½zÃüó°QîÏËïR,ò _ìä,ÒzVZ‡ÿðaòBy•Ô8»„j—™|å7Ý_‹¬"q6ˆœ¥:ÌÞ#|Pj¬p"¬õt@éôËdsþ¾¬zo§ë—…k„üGb4¤1P…íeµö`· PØýç š½DµEÎ}bªI(wO‘ï¬Ç¥“´ðz߸¨åÑï2] >¾^g ÙQfe‡IâšÉRc›ËQOe1Úƒ]µå,… srÂþáøMŠ›è!ï“oL"°Qè§Q±V[Ç’•fÊô#øã}Æ5üÇòQd-ùžƒÌúæVLњȪè貵χÛðÆcî°çœ üqƒ?Kþñ+LEUTþˉtß‘ƒyR÷výîŠ0Ïâ-.ÏUIT­ëQ$í5`‰2›Ã2·0ÿã&vYÞÖôL]ÌpÉ ¿ÓÖ"ÍáéœÎsõD]jEKT=Æ•”Ä#ô‡xr•ŸŒKþqm¬æÈHýÇQ£§9•<© wÛ‡ë_Ž÷:by@ëj½¢èw?’3Ú]¹âÝ.'AÃ&¢ßrÅ,‚ï~Ž%xU /ð Á°^MÍÀÇ5bŠF°þªšÒ[=ˆ§œb¼Ôgá¿ËËDz]ó-ú««¦ýK(LròÁ æ…až'­Å#3;®žuæf¦‡Zøç÷^ñV³¢A:ŽªŒˆO•ÎpK@yÈ6Á•Þ-ÃÞ|Q/ïŃÌÕ3I!6‡³`fµoÝ'”_Káõ÷‚øý½þˆ"+lu1ôW)ÌEØîÔF/˜Œ¶¼ÉQNfÃoÝÇ,Tê“àsg ‡ø<Ž«nG¶6ŽŠÂGôѨ¨÷¯ßÅÌ£çz\8éÙd2ã8úM!µ°oMoòJè Š€ÑÌÀ?\„mØFEÎm:Ž€ó]MÍÛoðÅÑ_-!ÿø/µ ”è z?*6…9ÃõZR¼s¼ïb8ç}Xè‹újã jàÃtLô3÷€,³¼è(UÓ|EÞ•¿}×r¸•Ä©/@Cb Qëw V .¿q‚qA×±÷~æJ²–a–øÕ+øÔ¦?Þn†¹oO@N°ßv}»6,Ôz…¥­[ Ö˜ ç´D?b\#oM÷fö>?³ŸV[‚­yRÿñ ¯P ÿq|i¿¿Sün8·Wüʃš†deù®j0n¥ˆÅG£¿jC®uEl1«óŸJ[µ‰ð_¥)«†'Ldž lHξܹž¨½&>ó#OfºÙ¹¢˜B~þcŸ¹€I>t< dJû!:Ë\'ÿh r—Fê%üùLž˜Ê2¸_ËŸtîü&³ƒŠ¶E'ÐD~ÐϘ5è8rÂjDTà†š«™µ.=™ã.÷e-ÜJuô»IÌÏÄDð+äbü‡‡¿z¢ú_ „ÁkË»´M®6]é律¸ #,ÏQk_)ËüÁ;ÆFøxWtÇ“Ðs #ÄZð”Æ¨ÔÒÛyÅÿÞyÈ?F;Ÿöã¿í•Wý &ÕÀt/‚fª?¥þã:ó?Þj'™_ž3âëü†f…”X˜h¦Nˆôâ }Ó3ƒ:f¢ÿnfÑ,RåPèµh]±Y ðãx›ªË-èñÆÓSh jÎc²<–§¹Q…þùàÏ*r^õÄ)Ð%bÊvúc,¾Ý?ñð#λVòNæ&Vì#Ý¢Ô7Ø&2š|ů­Æ–V#>ψuÝAÖ}ÝØy®$¥eD–9xw‡•‡TøÈXì+…± K½ÜfkoÖûi±¬¹Á^^“-ÏC»±4Rüj­æJÞQlê‘ûoè²Ã1|Ô³°–k? ?g³Ý±°eõÅàWy#ä? Õþ#'XN âvo²™dôºÐ+ÃôwÐçbàé&°×=°ËðÏ-ˆá|Îr© ÄSiÏš‡‡=ˆ§)H’ÜëqJoa™¨EH~U‹Õ»áe|ADç“…:q~à©”}ä• ¾¼4ò.Wjç¹Aó› jl”¿ÂVc»™ÕÇÞþSÝØ†llý¯b8ß¡ÿ,ÙV"]9·ÒpºÓAvc7¶áëèÞ BtŽ::3ð¿bù2cQ‡],g>õ>ÊÐÕâŠ2SK‚VÓM/…*i;:£1Xë¨PÔ[ÛlÌ 5Ï ÄSÝŽ¾×€¡zMÆÐ?ˆÿÿj‡?´Ä>—xFŠ‚_õç¹x`ÌoŸJ~4ôåwGlGAGKv˜Í싞‰3YÆî§ò»¯“ÓúiíB­—WÞ"vºÈ3;‰.Nt•_Moá‘TH~'ÿ(Bî0ÛZÿ±œÝ¢hŒ²í ;lƒß¬Çáï¼nÊXuî º%Œ'Si&cëy°¥Òó¥ FöQ]Q–â)“•ÊbG70 ¸Uüuñï¹GùÀãÞÉÉÎõ+/µà‡ÀÒ™YõV2~ᦞ§!#ÚiÎ!ÿØÆé]c¾ºÙÍeêÏÙe ÿ8Íù A©XXöp^ïŸÔ¦½•éÁ ¨%7þ’/õ¥frGSTÅ¥ðIðn—Èeþ‚ßK•ÆAË•ØC:t%"+¼†¶U}_ëôÔ=ð)ÉH†â?K3‰c›¢Þšhv@Û1ñËzIÏa/c;Sr[“`F^€Õ¾‘+Yñ/®9‰Üã¼âïƒTLCç<ƒþía#©¨î¥ ú]ú—Ľ Nå6ók©ù¢]RãE¿RÔ2bÝJyÆW›bŽÚMMŒrÁIdZÑ$šõƒ£µØ—2YÈx=·œ"ý©Ny/'èät™mgSsÿÊk¨#Ð/ÅÖÁÂÔç´’½˜Ñ~kz wŠÌA‡©²L”ú_%{„ Vô1oßR¬`~ÃÌ`Hhϧj<Ãú½“þTuÔ’‘÷&;¢bþàQÞ¸Kº ‘yòƒ¸ a[±xuá@/ šÉÜØ¾Dù*þßœ÷>ü«¢•€‘) ß} üå7¬p*¾ûÔ5~!?ºG†`¯¼úì üËy¹ü*_k~Wލ2™±ïÑÿ˜œè©->x1úÝ `ɉü/a—§ð&­Ât#ë)¡qÂí —ZÍ#^HOò¬za¾{.~-/ÞíŽþÏbÊãâö¤\êPN¡kéèw0[Ãñ+•¢¢~JXÛlØÊkœOSþËdÏÏld£~æ(ûFîH r¸Ù =ˆÊé+ÅW5¬¡V[ÚÓ㳇¡hÏ!¬#÷ÚAG¥DTktE¿›Öð))Au’9ÚZ鵊üäR±.Þ÷>õwð°8úçz«É?Ž‘3àŽ½°†1ÿãGY?ê(;[«ðL/y«ß’ô×íÉÏ å©pÞ’ÿõ— 0WÆî•ûŸÿÅ%ÿøoùó ªm‘Ojˆœð翳ffušv›î%·µ‹d5ÑëŸXuÍ2jtžðßw9Elo]¢ o^KtÓj9wý÷îÿéïÛZ=ìè^”QÈtËɘ̯ݭ%×X@µvlim܇øŸVú$yžð€çug¥–àE‰èËè9äAÔH>znøëL0Þ ås­ß?-ôþ-%ñ1ˆËÝñJYAJñÍ òŠqнKÒO^–"òþíYÕSLÙ»ˆíú¦äŽÝÅ_Eüùm"ØDâc‰ò=åÈ(ÔTǃUÀÎÛõ©È“rí¿5JUECÊ>±vfv_‚úÌÅ¢¹š9‚;ó\y«Æ¤ÓÉ~ÛæøXTm¶$3Ø Kpš¯MFKzÛ?»lw7ž£QLÏ/ßh{Ã9ÇÒjQ“(<úÔ*x›Õàg¥ùþ[ôj™ËüÁâ&øCs¼ÜŸø—¿x×8Dvürpòo¥œX)ßâì*”÷¨› NbgCˆàßð{rêµQ×.à¿ÛhÑ<‰ÁçëCÙu}†Èò“~·¹ÖO¶Â•!ÿð0Ò‚[´…­. ºò˜ÚµsfkýÛ¯Á_d3DZ;ð! ɿ쉉éôJ?Íô£ÿnVž·Â°³ø3M?§­¹J>àAOÚùtèëNwVðXóad ®Æ'¸ä¾üîDÊoB  öaÆÍÉïö€–àwv6ëŠ9´½-ñ˜^ñ‹ã;ý=êSÍ]/°ŸÚ’³dg=È¿fë{´6¡îryŸ{ß= ?sP¿Ê®z1A¯&þãµØ¿ LMµÞc—ùÀ À'·`oWágZóý…øò¬óWPFª»©ø_`¼…sênŒ“u¨N¹d–YJDŽ´‡ŠŠfQæwÔ²JÙ¯²’‡Ì¡îc>ÙÝ:<æ[˜Îàüc§ò^û„~wÞþ­‘_ß-]¨ªoMýzNê°¯í°Ý½Aí>ÁWl¶ö›1­aÔ¼¤ Ê £¥> ÿ±Ôy½©™ÿño^ž(ˆžŸr†qÐÌB/­ÔÄûÒ `"ó:Žá?n1ïdj¶&èwýÌ8¦=ÕòOü1×ÔúR§ÿøBÿvæµs?Ú“n“ßé¦UƒúA7îë.úg²ò9º9¼­gVzkŸq–*ô:ÖPŇÄ0¶~·QÏæ­sžà¿÷ABõ ýdÿþ}ñÔ¢ÿ5ÿ‘S}ª–c^mcQO¼U«±æe ¶[»‰ë¶š<šüùKôø©¹~‰VÚýîUúE'P5¢ðô¡­#*kõ»þ{÷ÿô÷­*‘â*ìGOÕ¦b šC»HEVo¹¥ÌgÙ/ŠõçÔžh‹×á?v¶Ð½‰Q§`ñ õ‡g(¯Ÿ–ÅÀ†f¢ß Ö€D¼·„bµÈLtú‰Ü¶4¹±;=»†'ãÜBTä=5¯áFWŠl0?§öŒ¼þýÛÏbgÛc?Ûb?ínå¿0_÷7lßúpü‡§’O4—çA}Áëð0ðþñæÃAà?á=ËÃ]ûážÅ»˜äP«¹öQœGKð«x?éØª£¿ÊßÊë<¬æ¹ª'ï¹YAV8Û&Ö 3ƒyÄHc– {IüG.2ª°ãËŒXT¨„VK)ÊBô»?dNj-}—SÓö\A…y Ÿ/g¢Æz31ôM¼‹«yþ<9YÔºoÌÃ6ƒ¸3?jZ¨»âU9Ûí(쎾­Ñ/<4a­šSA1žhO­šŽ: WE¨•ØÃw%ÄSÝÆÎ4îØO“Zm’Tn :î˜f[¬{“g¬$Fn„Þ7Ö8"ýDömÉd¶›::ã~xÞ¨c½ñu›ð¹¤æÜ_]¥‹:ƒ“B¦×“ÕþÀÀ‹£˜2é—¸Šˆ t0ÏG”ßÜ*ˆ_YNw”òØû:0CŠy•¿ËBßá|)×5_|þq°‡„fZ}tE›V‹ü£;øÕ"æemDû<€®-·Q6̤‡bfòkxà±d‹ˆ×2sh¡såèíz_æ"6k¢/¦s×cÝߌï(6ˆùS7áó·±âHËáØ1 ”,;µ0Í„d™×°?¾Dx/äF§ÿ¸¦nWЀöÃ2­ÕϠߎt‘ob~7/2u±•ÁÑÖq $†åiœ²êQ;ÙÞGåýSxûèσ–%ƒ ï-qÂÿèƒê¶þ#øUdŠœˆ6’Y½¢ºRÿÑJÔ"Ÿ·³ƒSJwêÑɵ«Ø~ψ~0ܯÿPJ‹n øŸéú“š7ô.ÏkÕ!÷Ê2±lÆüZÛCEý µ¶Ä§ëeìBwüGùBuÓnÊÁú&yN2}ƒù£´b9æý6^<ÛÈ^þIJ4&á9ž‹­X“‹XÄoø£ d¹£Tž¤Åî·›ÝÕTDY`óðù,è_ P§AØ¿Pý¡èµeìHwè«\£ûSô»ŸôÔX¹¦X¹ ¤>x¦êØEºiÝ¿”³@ããêû"íµPk‚ßøƒZ:ráéOÿx‰µ»|Ç;mEß «r¶øžÜ.*ªy#ØåG%@Uaeì:®p¿‘´á-Ü+ì…÷‰Jô!^yxýn®{ Ñ}-îURq(œIÍ,>Ëgà}3xOè3ÁØêÁøc÷RMµK<€QhsÑŸÜ£> Ø€ þnM8þc³’W´¯°Z³‰cubì¾d #ÁŸ&°†ƒZ—b°4¶=>o|Ô c×½šß9‚·~ŸHñ“ÿ¨¦µ$Š¨Â™_"*®BþaÏ‘GÇ‹ÿÈH\Ù ,?µÒi©YFÆób5ÊÓ-ØÀôz½Ñî.Ýî_âÂŽªá¶“Ñ,'#µ|§=›Ù®[ðs¬kT7–ÄòõÇÚ—@éu…¨Bt³Bÿ¬†ž×a{öÙ^ü~%T¯CÐ'¿FǵÙNÕáHºAåq¼†Co«›]±Í®ð©™Êv‡Üq™ZíWzƒ]ÝçùïDnq\_fø˜kÌ.¬ç†~wï 8ÑR*÷Q¡ý„í/<õ[ò±aä5£üò™ó·SÚã?òƒ”=Óà?šË±ðÞwáÏ™‰áOýÇ2ð«,Ös4X•ðF~tsoÀŒ’:(\¸æ Fe#aýÕQåøÕ¼åhý«!AY7PsÙ‹®‰EáÉ’!<¢¢}¼u–éžt™?—4?”_þ™gr2¼i¡!ÍÿÈÉ»Õo™M65R W+ ~XÞzjÖD½×áEþñ…|i5¿g2O›)ÍTðh7Àá?¾ÈNÿñPÝG=É`ÞÒ®xûòÞèOk%•AS™Áõ…lã™ÕÉ1‡õ ¢¿:JöÕÊZbN0?’Ñ>—ëx'ËÒ/óéç<Áïƒ ¨šF9ß÷Dj52F5¢½¥VŸ«©à;ʈfâ¼Zƒ5Ÿ)CÐóÑ^€_Éhößµ˜N:ÿ¡€Õƒß‹‡Údæ69ä™[Æ@ÛU«èÜuD; ùõ}è¯Ê€Â^µÕË?å-µ»ˆ×Ÿ&Öˆ½yùj?”?»‰“Ï{ÖHM„RS÷ǰ9'Py þ3áU²Eiþ` qA” QÀpÜÁý+ôL|>–ßÐÿqŠ}¿’Ï™õ‡üò’Âýø£r–úó+2 ?Y«Üþ#|¢ߒØÅ3t›_Ev´ÿáÐ×i¥"9ÅCZ#¤2œÙUþÎÄæÁbþz¡ÇØøyxÑÕÄ£9a'K¡ë:Cý`–Ö|«œVó|ùvÁO$§¶§5>r šâ}œdw˜ÏÛx“dGñËËx›š€ *"¼Þ7ÉÕ\⬌ ¿±e„¾$©({;ËIžÐ¥Ü'ÞÂÀ6!OjDä`sÝ&üyZжÅáøUôßí"?ã?Fð3ŸÉ°†ñ¤L'™®þ¯—^¯Zh&ù‡Ýsk.Þ`1ûœŒgò¦ÿnŽ0×ÜMk VZŒÜt?ö¾8;jÍÈ#¡¡ß=Èüó³ðÜ·Œ fns"¶þ%¾Å üj;ÿŸƒücY˜õ.j1ÁqëéñGñ4 Áéú¿EQ¼´ÿ1ÁºHeH-lþ4ü].˜Œ³ä*%È϶èÕÕ¡VŒ/šqº;Á¯* tDétÅÔ6s´{êbb×vDÕœ.ºvMw”þ°õÓ[Ø-O-¸êØ~“I/vôˆ§¤þÃ;ˆÿX‡ç¡zƒ HÓé¹qÝíRÖó¢’ã%¾£'È}®¥-ˆS£hˆúóâJ;uŽž _ýE·³”Ú¨íž÷M‚f¦l§#¡U%¨´û_9,wØùßÌMðç‹ ƒúA7vû-Äü=Êí 8çü‡03PEÚÍAGð¯ôI<‡’w—5ƒÚ ?¼Ò敟¦Cð˜ŸÌÄñíÃèiXXŽtž_!øó2og-îA9¹Úxm¦sÔ³²b/© Cµß ë=õŽËðƒ¬RÔL&0í*¢;ÄD‡¨€ÿÒû÷ |GÝÅüÁÎD"É ÝÁ¯T˜òÍèwåi­Rô¿ºß“üêÌür*1'šOÉ+?Ë¥¼K¹ˆ?âÈðª¤þþÿ«¿óÑ×`ˆódâñî§t~½ß™ˆþ»Ù´ Z9QIø¨¶uÿ¤ôюÈܤÿÕw%zÝY2«ùÄT©cã^“ë ¾Zµ¥šBnãN&‘%é½þ»ÇµØ–²^ž.ßôó÷‡y)ÛêóðM`*F±ÿnu"õÛ¸w~ 0Õ‰£Ó€F—Ò;¾9ÃWžÊêd èÛÔ% Gø õƒ®ÄÜñ{Äu+èÔ7ŸgñÂξÂäGÍu‹ R–|ézÉÕ (µ>£˜ÿVnw”Ÿž¦{àçjÀœ‡ÃÃÕ2-6`³–.’»ȹ'jº¶ÿÁ› OýŽŠ¿˜p´ØÑ…Dâû@Å6A2°U„ùÇ…9Ø…ýp/}ȇ2áÙ:ðzRn÷2ÿñäj4 È.²¯e ÂÕà?žháM6H§VF¿ûX×9ýúàÊKðÕñ$7ÈŽéß„"?ƒì¤‡kmÞÊŽx[U›?%ÿqXIOÿ«¯zP¤êØ­;œ}=ð«"ø ®TS˜FIXÊ»`-ØÚox!»ÏÊ B$p눞KÕÛȸQÒïæ¥{q¢Ýßðö~§" ¬ôhð¢^ ±Üðש ˆt‡qÕ{AøUvQùÁ¡›Eÿβ#¨Ê"‘qÎ#ÓÈã«tPˆÈªøo·Åþ¶ƒ=­'!7øþ<1519óEX•d ð' PàC{D¡ç|Sª¹ñ¶¹Ú¾øäLw鄊e Ìô.ö¹€Èñj.úâ®°ò\öŸ€þ%á=;)èõI~!3˜…fú0±tAâýld.ö¾ž‘Õ=ÙМ¡ Wl +~sQ8þÃ'H¿ûž7±–\£ 69JÏNܬ.Ž‘Û}›üà Ûw®ÛƒÿFpméÕøIMæÎ´ÕºÉòø¼dc±¾þä?kÀé.SŸ‘Ì~]22™—ˆÎ™³©”ð;°å›ùS•þíìw*hþ¹Ý?Ñ“ìÃLå ÚŸØôC@u®!%ªÖSÆsæ¼ÅƧw‰Íú‹@srÞ—é“ò‰ÎHþѼ16ß7ýì9ý;Š©(   ÛŒmþbs”oêlŽ„E¯Ä lÇnÀËÝÆï¬Ñ‚U7öº.ر‡x+zGP¸ºqL­-õˆcÍÏhcÓ’;¬¡â]¸ægæS˜ézF7°½ýüö}|œZÞrn¯•ÒK]JF;OU,*¿ì¯§ ®o…=n׳¥l°§XŽêàWþæ6xï:èwks¿?S㘗Ÿ¹¢âaå»ö‘œùü4·dÙþƒn(dEÃÐ>¥âo6{:E´¯ã—&›yÉüÁòk¤ëý¢Þ"ÿ¸‰Ì âZÕI°Þˉæ¯P— û\Œü#6¶y¨ØüHëÏýð»8±¶h®ŽƒòuÀ »âë\¨‰‹’1Äm š[˜aÞ¦@¹_Tð z¤¼Qsá?¼ÉŠ:aïc’]Úýw7€Ê\$™KO¤{x£‘(›Žƒ¿­ƒ]éªg¿ O•S-‚ æ1xß@"A›Ê‡ÿp…çOh¥{×ÜJœ›ÊhGÄ0ÛÝ@&~ÛˆpüÇ.æô’(Í‹˜èYìUàOæÀŸÇÁ£äÒ{ì$¸ÿ؈Ÿó$ç™J^qTdø)ÿh£u—%ñÈ(ìŠv_bÕðœ—@•J’Øúþ$ôñ¨aÖÀä'¿©@¦Òo³Õ¨IÿÄ ažE?Maÿ°[àP6«©ôf$0UÓ‡º??Xå\°7@´þ¢Fo4ü˜8¾e ¶t3§ýAjÅä¢í¹ZIVHÞ§ÓQé¹F¿ú«,Ž”ŽTŽ6 l£a1¶ÙÁ+÷€æ¬àÏc®û€;#µÿÿCJu‹:Óy2?”|tªúï~K*òlô»ª)º‹›A>é‚ÒY»ÊI>bªáÙ€ˆ“¥fcdR4žïe%æ¦'ÕÎê¯à†åá²ÊÂD9‡^{‰Ö»,Š¥&^•“™?Ø^»-§¡—{){`yÚE9ÿ®v׈è‚6ƒ¯-ÉÛ<„y0'y>ñçµ@fè’ Ú†ÞD¸ŸeB)T›™tÔC$4Àóùs‹÷>±qôè½¼ƒ^U>w…_¼OÿÄd+)°q®ÆR8¾Õœá"Í}à/ É?Êü€‘ÜÀ×ׄQñ‡\é?_Ñz P® –c³.xß”TéÅaÎIf› a;ÝÇîÏÀŸß–çEÚ íöÏ+)Êå‡Z¬ö<~±½~PODÅHs¸¢¹z|çj´,õáb‘Ç’OÜd‡“y§RËÂ#œå~U Ñÿ*}:rÀ¦•æO lXJ&Ai\Ð’IF £+oú0ìw† þWÁ~^n=õä2„Däv½G_òh³P÷AOÞ û¹ä9^Ýžº¸˜<©?î4õƒ.aÞš–ZOüG)ð¯‹Aó-|¸æ|vžMe±öS™e‘ û^Ý,‹ÿ°û—ä¢ÓIs¬ßqò62t¶ (LŠÄÛÖDƒ½ãcLÄON…«p1Ñ£›²çŸÂ\%ÿxAÆ“;“:‹)`g ©×¸£. µC‡h êwJÇ÷­7zpb1P"4= ‰~w3üyRS¸±¢ èÂ~Œ )yÂøóÝœÆ6:ß×Cا©Éc WWоu&»AýàQTf=Mw£ óçÐÇé±ùКe·ÿøL2¿Ð´ÉŒèúáÜò¾ó¦T¤û <÷2½ŽF £¥\Nwà[DöïÑ´.1aíÓ€ åtÔ‡YàW.(d×ѽÀzŸ¨o8ôàùQû”oÚ+pÎó< ÌDú 9ϘdþNÕG*Ç¡¸:MÇõÁäo‚ªÑ=¨-Ž !~ú#9ñ,*6JÈÎóË­Ž&:D»«óf£ˆLϬÅŽ|¬ÑýÕøÏÔ̧¿ÖU¦<ÕBÕ›šŠŸ”f\ãOõPOЯ¹Nÿ¨ž§ž}<–©;Oñ.9›š–Ô4CõšzF:`9&;SO’ÊšMÿ«ÊLšBWý·Ü¿rOV-Ѐ„ÒÇy‚ÿÞ©Ô]!øó8ôÉí<§èí"êÌœt+i ºE³gù]¡~p/åµö’üþx´–{©¤fþ B^ðE!ˆ-ö_݇™ä’A֣ɟOÑ*Oî’…ÀÖ3+°¯ü¨VÖö z؇6¶6ˆÑÑ#JW^Q V³`ö;×Ñ̇¦«~ILÃÞ\ç™2ðTšñ"XƒñÅÇž‚™6à³wÀÔWã1ö ¿²mèqÖz×P–Lá±|Àüóø‘îð¶²A"úÞ?ØJÄ:þd4öuQJlãš®ëñGƒÉb¡âŒÿجe'w錶é§ ÖÉŒ•–Ì6LE±+-ÖóÇ+¿ª€~÷¨¨¡C¨·Tåï ²–¾øÊ_É@ìIRk‰ÒÏ‚Ž"n|ÄØ5%^°.»Éès¯>iÁµÁç˜JÍ žÉçdÓù.»‹\v–•]Æ2.Áœ@ÿ{Ev£2¥3º—ø(«Scóë?wW’‰öòyT?£ Ù•=»«.ñ@8Ô¶ÄÞ‰ 7lw z¡cø¸Wð‹È˜¦ð]tô†9ÃÜ™ZU:ìU Ûó!¾nÂŽâo2tÊ?Êá‘Ú÷õ@2íØwfyz¢4Ž2Ž¨Ú£  &Â]…‡›Å™>"ß|fþ‡­>|A.~•»ØXb«±š¾YÝÍ1ÌC¼ß[€þ‰Ö6<‡JªGp­Øeüù`üGT°OÛk¯ôQûS9ÓÛø¢·DUÕN®Æ7+Ñ_½.µû^ð)á¾ßSq_ot˜úúæ2NÙÝHÆÄÄÆè‘èkëRîkgðù»A‡¿2ä¦4èÚ>þ'eðkÌÔۯƶ$] çRµ‘’L)€“[‹º®±ŽÓ5DG€âjGñEVàüÆè½Œ¤r½P²¸Ãé?gö”e9¢’2ñvUáV~ƒWq1Ó•Øöa‡ÜŒÂÞÛé?Óÿꮆwk R\—þí:Lù2æøàÏî3ÿ<£·c¿åBøÇFRG®{!Àb§‰Sع5ovVyÓyÅÿÞYT5XÉ€8*s¨ç,ê;ɯÞPójþZ1D\V«²Êmô»ëèˆõY»«ZÑÔ_}WšÁg~Gõ–üc¢x¯W몷Ånú·ç’Yá?¢‡³ ÕQ‡·Ž»Þ‘ =ÕáWÕêøžÄz—¤ª¢f¢S”®¼zçÆbø…?w»:HP:"”†ú-áM,},þ®,G_åv°üQ©L#®â?úÓß!§A{…ÿHÏÇóY-P£K`2výùé&#¿7§•ãä*2ZÊ‚äEygÒ°ÚN|HECGaÕ·àݦÀ?¤Ð}µÈºyjð=­XçzÿèÃñÜp!ŽR ?_Ä:Y=ƒáN…ÄSyV4𠺪\Q=#oÑL"­ãðÁŸesr¬Éx¶K¼7=Ñ â ì¾è;a@V“•uÑkÊX"¼ÊÚTj\Pè×zrøáºèÞÁÇ$*¼¢uR¿ vˆ@øó~Øf»Ûï_ø)ä ¬üÉpòJVÑJžE <F· ñv .¿?Qp2Žxñúøwò'Ø¢¥x½±ø"›Y9DÿݰüG­…,EV›±{vŸ{¹lò59À¯†‚ç8@sJ˜ùÍéx,»ßú"r…%° •˜W´<̳x^ÄåôÒü»ÝCk ñÁ ¢íx N‹Í;ô/Édu´î¾Fwó!õ&þCÅ“LbíYøë§øîï².Êó&lÕß“÷låš}õ§ÔŸû˜óÈ?ú£GÊOÿÝ Ž&Ü„Ùmlz¢…­äR“Q| ßãûêH…üU*οà;1·®+Ϙ1y¦*=Ow 6c ,n }œÓ|PO‹‡p,¥uÞ(àHNÒ þ<osâØq¨Äӷí’rÂÿèƒdê,µ«ódâ‚]§v~½_Y\ýJÿÝ-ZvÑ_œSmtô¢2†yèþZlñJMMÿ‘ Œh=Þã#he^}›ð×¾ªeÕÂC&•ÉdQ5ÒÎM¡w]›Kl:ƒü£Q\yY_¾V{ie5=†ì&³`£û‰ÐqèŸþìO:×ÇÁo‘ÑÔ%†ËN„ÒU¿..\„_> s£Ë$[Š…Á?áGåÑ_Å'‚¾"1¸» ú+û>ßPHÿ*ÿ b¦ƒÌ,‰ÜgÞWRÐgž÷(¶p-5Ô[ˆ»‡ðlÒOÿUpËÈz'‚iiXÈ<Òx£;ð13Ñûì g¿úJ]]˜é ¬º†·Èžì½ÿqM>~â’ÿ¾tS½¨fÕÓ’Åÿ…jé0,Ì› ÿá…gÛ ò;œwõØÈ Îa¹î‹¥ï»â&“ï¿—ñ÷/TqúËw¨”§SIr„}¸q‡3ö^…UzId½^z$Þ½=:/þ+«¯ Ǹ+ è_r ÙbМÏtKIöÐÐr|ÐWŸjp¹t/¹7òœa.þý?~ÁC¤ú©ôíOÙ-E¢kO*¿b­w³Ú'˜ÛÚ°©Óè^Šè¾ˆÌl}RØÚ…h¥èûadÐGÉéaÞÂéÚWÔˆ¿ã¶¢ƒZŒ2â.½=âá}¼É?˜N¯ïy–7ú«ð罨4ÈN¥É%´±%ᇦ귨qxJbQ‘ÓÝžRŠõz¿>g_åÌòêÏ}©Z˃Ҷ…ÙÿQ˜gg)«/'?zÏSêž>äzMð½2“›èw½ ?}›qÄ\JåúJúg=®¦¥ L2ÜÌRóùG70¦–ìo1ž+jAõ[°¶°š²\]ÇÓ:žº›‰dÛe}åaÔ4 "_‡Ú¶½níúúTl쥮°¿ÉžÀõƒ«ÉߤëÁš=å‹È›t€{ÿшMœ_ÞØÚàùÇlr®5TŠoÅâ_³>Ó¿d (ÙÖds<Š=ÿÃüï$¨ù,çõŽV;ˆøjÜýcÔüœڱŽQ̬CSÛé±þ«ãì¼Ýs¡Žû Úû´¢™~‰Cº¾Õé?žª‡Å%Ù»Ô¥åSYÂñ»ã<Ïø°I*I9&ÐÑ=üy¦ô´r¡„^c°Ú9Ÿ,¨)ùk,y:ä ù—>ÎL_ƒ`ÏúEÉa÷¢È6dן»Pk^AÌ׃ê?ž*½´ô/qažTÂhί£Ûe6ýüyKæ=ÅnÚµ*ÕèÍe%z4ÿ©cö?ïï¦æCmÙ|Yû²XŸ*£\¯}‘㙵°€ç³’>Eôv>!ÿ´Vc*yÛ‹TÛÁ¾×)÷‚âç9ÉelÎY =J6cÿi¡ÿóoåÅ+ñQxãÓQ•›Ðñm$þ¾ÌW“å7oº@–T]F®9{£¤×oÊÒAæ’ÀXLŒÔ“*½Eä2ûôNð´WèÕ¹y8‘¢oÖ"CÄ.kõïèF{q½¾Ôk CmpÞÑ|Æ;r/þø‘Õ`Iýe€ÈþeW©­A`΢3hú÷evbôíXÙ#x¨õؽ@¼”;9hÈ"Na>¾>»¯ws ª¸®K6w ~°í¹ÃéñêiAº‹ÈÌ2úÕíèDGò5Á~ǧ¿| òž³áøú—L“÷±Ï“¹Ÿ Œ» 5ù¯šÐ^äEyŒ¶ú8z›_$ÂýÌ=šƒzw5^ÙV` > Û5n„ÖFÖâÚÜÐk‡=8Ì ï0Ñý_ø³p Š•ƒ˜´#ó?V²þ 2ýð›Àœ*Ó?1ô´'EÙò959TYläRxÈÎ2&˜üßTµëô/™ÂÓÔLôdò‡ÃÓÚM‡’T†6$»JïF?€7L–°fÙôM?á.a7쭡ߢ¯)W{ p6WWN¦5]Ëɶr†›Q˽»"o‹oJŠîÌM%P€E}Åß‘Å&zjNv0- óçyÈ×guø¢DX'Y¡t(»->O¤–We*£|Nj0¶™xr`<'ð›ûéTRGþÝ; Îև̤+q_2Þ¶Äx+©ÿ¼Ü*üÇ ù€\rÖÌa|Ãç”&oË‹míŽ%émŒ§ß­]í}Ÿ(û3~m"ʶ‰xæL7{¯*a®¹ÖD¢ö~>{x£Cä–/¨ÏŽÍ›K¯¾” M±ˆ«Èåžóyò};áÏÿÒ[…¨vþÏ^i ÈûZÀçûàgö£ˆƒ€ö7D ;š(wœoqêÏ èzEÔþ O¨Ã{ÄÏÄë¿¡’±WÌ!Z“C=$j)NNÑ“»÷ÀXF·¾'ôk/ R’ÃqUk/ó=øÕtºŽäå9\v¶/ò¿î¥…öGùä3¸ø»°VãÀ¥Îq/½ØÓ´ªæyk'6PÃF/4qôOünt‚åîv ­Ø÷<ò£ó¦ÔTæ©W©ü˜ÎUÌà·Æ¸Ò¿¤þ£5òë™®1þA 2ŽX¤+¨è ¹ŒnðK­ãT_Þã^4¡KWcÇ\ú—$t4¢BÔ›Ù'C™»»Ì|γþFîã ÿïþúÿ‰þ* 3áú9Ÿ}µ_EÎÛÁyÔÇjFm¥VM4±‚Ô}?”¶Ôƒa‰—èw£×¿ä³Ò–þ‰iy×?Êièÿ½ñ PdÕ”idEQ>šúÝeÚ¬È$Y(ä È·åjõŒæB±“ñí‹bþQ‘Œ­¶¸5=MÄÛ$çÌÜrý­¸ðŒx?øÌ79.QÉ?bÒÿ* Ö% ù­6¦HF1²…½DüáVÞb¯o‚_ùµDÔY*ø–ìWFyð«ì…†èVµ'ì÷"ÃܼáUaûméÿ±O‹á¼÷Ák„ühºVº07üä-büT°)9Q¼e•¼Ä<‰—<±ö›¨ ôÄZ^‘¾Â5Bô±â¥¦BWs„w¨ ~".H{r¬`j—É^–R‡pþcùØÞ§ùôJ–âDÈ-ýŸÓ©YÄy… m4–uד þ#%1Ù-ö´FjT‰Í™ýÍhî3”;•B?Êó³õÙÏËMT*Ñ/ç(8ÕP"N\p þ°j†IàéïØÛR™ äáFL>›ˆwéÁ÷Öw‰?c.KäE9ð#ÉÔ.òû’"CÐá?¶¡@M.”ÅLƒÿ(B-f6lj~¸’5FQÆ›ÃÜ—ÝZæ¸T[†E]Mÿö»ØÖoTû¹cÌ@ò¸ ø^x—<è¯æ±^rã)Z©)àX}ˆ»ß¡:yÕoµZd3WÈ?Š1>G©œ‡Žk²á ·Š7|p ú¦,æú)ö0wàáL2³­ðñ[ÇÜ™ aøøx2€'îüÇ ÔÀ;ôÝø­àWó¨'¹BþáF/ÚVTMK©Ý»G¤PÕÕiø žx‘îÔŸk ›ÃŸïÓ ±÷û<³#ñõ¬¬V Ÿ[™úÁô—êG­÷ôSMÌyTŒ2ãŸ7û™æNôÝTú*çåž…ÿxÀ•ž@•R̬¤‘&~¡óf3QG±ÇœÇJgèžxVe7øÕm¬ý_æaÞ–‰`€®ÆâŽz28Ê.Ký° hWŒŸ3º¡î0Ó:º¢Z+JÇ’ÚÖGújD çâ¸E·ÇAXûßɹtS r»G¾U΃Ï\çÌ?¨ü.íîyAa·É]¦ þc# ù:¼Ûs®2õƒ›˜EÏ.ãýx™@ˆ²ëøÕg¹‹·ä0ÕØÿOêÏ2ÿ£›óÉŠƒú*l%­ó6DòAQ/¡-ÕJŠúèQ𲦡¶£úÜ 7™ÿ^Šˆ—Ôà†ƒo<¿jMm^Lq }W")è‡ôN¸0ÿ¼¤sׯü/´zòBÄNûõÆr-þc¬öÕÃTìm^XáºQœÿQŠzKW±•zîíä° À‰cMz‚¸¯$Šx/ó`;É‚bFð"üè›¶D$ÀŠ>áiX¡¯Ä6ÄÞMÃR_5Ò°Ñ®ô«ò“§dWY8ÒkÞ¦ì¤;‚ŸŒË“ä¶9q·ÄÒbåz ¤G‰ˆ·ê@ì¦ã™ïiI#Y±«Vš+uc+úYS½`¡™Ž¥ÿ‚Fé_‹ïpçL“‹Øõ êÝ"ì`à`†ê]™˜|¡¶Ë oôŠŽ5È/mL˅̨"8Êa¼Çb¼Þq¸•¶¼¥).„sz)¹ å9lù<Ç÷"ð L_$;pCÜ*îcíËcGÃRuå b ‹IÌèŽÿð¢ÿÕHy5Wg¿ßa8¦‚ivÁâO&‚ÿÆÞFœ€ÓÝ‚oÑéX³´º3ßSH_/âü„¦vÑÚËšèèRcqà?üPÂm#ÖXEÇ«ô s­ïÔž5’9O¿zÉo„&z˜‰ª÷ø©ârøØ\C&läPüÇ(”y#PXGµ‹ìMÏ¿!X—¥Fjj6ìþ%É™]±—ï-kÔÃ{Þ “Øþ£#QŠN´¾ˆšÉ“øÉpÕè µ%’=0££;™G)·Cx¡˜TúÇ¿­0nÇOÓ†‡zrr…K¼ä=X™v¼>ÆfôWm̦Fú_ͦZü83³ÜɈ|¨äÐÌ–Ü™®è¯ö“ß­!ÌbþGqe¸º^žz(ÙQcîZ&ôWe­¦mùÐ?Ñ“Jù¬oÖ$«= ;üGRs%ͼßI®¸‘S_â|f<•Ëø/<ÇCõTff¦WÖßQ]£Îü>¯‚=õ·®[1Ñ_í„©)d5§ò>3W|änªîGýG0º]Ym.~€­Wô2JÉ[ú2†¼ôo·»bÞ6}\ć8/@ÿæ[5­(,ó˜ãq":ôW÷ä,§ÿ¸¢n7dÞÒNÄKëäi3¿c ø™ÜÛp¥õð·¬$ôغn|%ûËšºõ?~Oú n©ˆ^û£¯ÊÖyÿ£ÒRW4Õù$ÄWKü×üG>õ»š^Ûÿ1œ|ÞÖïÞTZj‡µfØ>Vc«Ñë.¬¢qò`ZÔ')A8ŽŠ·Úµ½—sw• ʦªZ9箣r4›µáX—™ÒV­Ñ›È©r·ZO{+é³äJYm}OÑ7J+Öcþ` ± kzˆ'¨ þ£‚±ÍÐW± æ2‘õ+f˼£Cc%1> [Ë&¶‹$D–ãYÌ*ý#¶036•©gà<hI)pž‡hªzÊÈ{FžT.2Oñ§öDl#ÖÙÖ÷$Ú_C—DÆ!"Ød½ãÀœêw´ÈÐÊÑZEžùòÜ›­‹ÿˆƒþ€zÉ3{üj.<7³Ì½œo õåÕˆ4ÁiÔMêCù™JK˜]h_ðÖ4§*J¦T]‹3دäÏ.òÄù¨úé¿K-\ýU.¦x]{6%ìh?ö<çÀû>LNÿ«ËøxƒñÜ“–è&\ðo¾i[8þc½RCt•{ÉÆaÅ¿ó¦ â?²bÿËÃxd3ºð–žÆ›l1^£VžÌîFâcZƒî‰µ/aîôŸÌÿ(¢ö |ÁHr »ºÒž¬Š¾‰~LIýb%ÿHCä< Ý`%hI)¼Ã"ƒz¤ŸøõZ òjìc&øÐl~¿Ý¿ä)õL³5Ÿ¢"JJr/~¾ýw§ÀडZã,t)üÇ`øó`–ÓÞj,Që·–ì­¿qœqJÿaÌ„‹n€ÿñ OÞ^þ|«QÁÂ>3Âæ{%,ÿYb†•ZËPoKQü‡BuÑc}øß:Ý×ð…?ïe¶CæpÌ€¯8ÁÜÀᨚfÁ(f}¾« œ½1¯ÜÌ(./;O°1õçK`Ôó4ŒDå[œ^·yÍðÐ_§Öf"ðŠø.äËஃ·éÙI>`ü‰?̬Ïw®wZ¹§]çŽÚ½,æ;&+”0ýKî  ›Dî6”ɵ{©Øx ~u{Oÿ«'üG6Îù«NA “WwWm‚mz€F¦ÎA㱸«SËãh€¸<õçn¬õŽôžèÃn³»°5 LÕŠk~áÉ<È{}BާÑ §ÿx¬nçàÏû ò˜ KÈü¨…Ö ³‡7ÝZZ3é}4ó?⃑ݠþ£ӀטÃÌ;܇WhӒƬXv^úÿüƒtô5VR|Q~}ˆl+ETEËHý¹ú]Mûƒ§Ëÿq‘îWšx­&S7E¶@¨ÿ¡4ó©ò(U"·—èw§©=èõM–¥»¸hMüjŸ6ÇC×}¸‡]ä\‚ŠÚ9 +–K)æ‡z#Bm'Ä'åð¸9„J<âÁ†°† x_úéwÄ^búóDä¯e#lãÙFÌ ñs}øI;ƒÿhsr c÷OÜA¥Ûlìòyp0»nÖ*Ó@QÒöÊÿü?åÕƒç¨y„µZ ÖÔüƒØb7T6Çõjü÷Lp/j¥{?ÕM‡]}¨V $©vòïŸÞ'ÈnêiÈe¾pÙ³=K);²¾~GÞÅ"ÔïÆG+nçîÄYMñ9º/ÔÑK‚딀ñNO}·üù Þ¡y`e—ÈDl–!/ùǃ°Ûâs©æ~òÈÝ‘ðå èžX’LÄ—Üa;ˆçlñ Ô»Zoü<ó9õe¨{¾‡’Úü„MN 'èçÕƒk‘Zp•°½Õ$¢4‘ÅV˜¬ÊDøÉ?ÞÓ“v—Ù‹üc:s8 G^GbÑ_í :>™ÇYЫðt+© VýÛë%•ËÈûx+zâ6ê7Œý(„Úšý®æ+ô»9©ê^Ä £&î5£Øâ<òL´¾éqŒ_•QFà? àwŸêCÈOÊ¢Ø(ЙΆùAtŽ‘/d° Á'´êÚÓÙ™_›“ù&œ^<ó#•íãìzp¼züã)Ú§³àWÙÍ_ôžàW—"¨®2Zcáå—Ð k 3©¬$Ö¦á^AsÛÕôgþÇ,N¸¥± OEì/QÿaÂŽUã­ßòvKßj¦t$¥ÿn:&žå:uÇQª6ÞX*þiHVmð«XæWÞñ;Ä2{doz^,rúûê øóv¬6˜§j¥  Ê\kZ³{ÔêWÇ+UtÌ££¯ ÿqÐxÁÛ¦ÖTÛ‰…_ÊÍøzDsñeô&ôÙwíÿþ¹è ²Ôù¬ æŸçw~½ÕSÄ£_b.ôWZPwÎsн¯.i1Ä]êJÂã@#þ †Z^,EE{ÕP¿&¤˜ N€gz,—ñdú—ü­}îÖF‚ä씥ÀÆÑ{ŽœLýÇÙ›i2±bYÐïŽÒŠå9±Âä¯Aoj`™äÍx2OS2 ›?—ÚºtŠ$kŠÕ_ ó_ÞiîB²R<ã6uQÜ,ûÜ Î»ùG#/ÞèUä­Šþçÿ¹+Û™‘rÿq&~ øJcTSƒ@‹Ü©“axc!7¡'™@Äîªß´~p„VOSÙ=ÐŽ8DO¶á ¤8ðàw°¡¶Þö08Ï^¬Û]øóBf°)Ô5êE™È؉7ªÅÏ%$ÿèÌO-Ñ‹°ÓœT.ÿeÜÄsL½ÛÌInƳtוºîm|õY©?¿,/ão£sÚB~UžLÍÎD^ãÏòÐIþ"sO#•Ñ;oÏéHŒçˆMfçŽÿð¤þ£·¼„_`ØóÏoð.×À뤅È .“Öè òwNw©ñ i-žÞVNÚþã2ùÇëà}ÔA«N¯Æ|ÔpnU)Ò¹ Öº0Ý­Ò‘쥫…EW‹£øâær¸€x0 s¨ÕØN>‘…š¤¹aîôNí‘TSXñ5ø/c8÷`1øÏE"dzCí4 ¢õ%;r3?“¤æ¹Il¾Àæ×0ÁÌ> %Úü¦UáêV ”…%±ýÇüгx-•™O¬ÚŽvxŽŠTœ†¡ù®ïÀšîÁ¿=å|7i¡«¥’ÈmàW—°ÒÃð +ô£tÓò4;™ÃŒ¾¦á˜IµßfôM6§ké8ò„¼¨&š„û\Á®§(Ppõ[øu(Fã©'r?ŠÃZå„uï@w’ÔWì²XyðH™ˆÒËŸ/€ñ.†Þ¶3¾5¾©&Zšó?Î*Úpaoühvó7ÞþÏtkIß]:Á;ÌyIÅË,ë.uˆ;Ð_y™UèË{‡Ê¡E̯ >ú…~G­œw¤þCã™cb&Ži‰È?’G“?Mô%ò«LÔƒj°÷ÚBµ¯ú–¹-9d"™_´´r!ôémÐúÍoÁSËi%'ÉÅÔŸßÇ럑פ]ÞQ„Õ܇^áïϪñ&æG`Ê×2¹-ë:rÈkƒš¿3äÈñAµ~ct þþ¡øû£¶_$ÄÊ'äí[ ô ü* Ñôl8ïAº=‡ÔË4P6wÞ©ˆôP¶‚^]Ãó~eÙŒjôOâüÞìuøKJãîäÓáÓ3PEœ/’{‚“ŸÃÚ×Û‹‚©!sc»âac¿ãSìþík±ùiaUªRÿñPdÐHu•z[&aWñg-xŒÆÊu¸VWãÜw7ð«óTeNç+[`Ð=ñL#õ¤øá\n:4H»Ç4<šï’+ït~î5{ra¾Â]ò:p62ðÈ[*¼p2v^ýà*%øÕ1ŠAàçHÌ@¬u_=ño%"îDtÑsö/ Zà^-ÂÃÏã\í ä8ýK‚«þ³Õ’ZsYl+ öq.yÕ9r®õ EÛñYÌýpÀñ¬’°Ó)‚æÔå7¦ÃÖ—!»ñ3réíBTüg½=Z Ðæ }‹‰×׃É]@¿«båN›ÀðOÒÿê€åƒÖë,è4²®ÜÔ¦?mªdô'ù †VÇn<ë¹’†7çä«?§ÿîõŠÓ“øw î•ÍÝFyæ×ž Š_goøÍ{ñŸ;™<Ö=Ô“óYì#ã½Ç£ÁfÒÿj/õƒ}Ì1F3üÆ|¢Ó=× ºÄ¿"CêŽ]„Öö2µƒçQbÕ Á´¡ÿî<å0¸¿1|Wm.¶õ¹PÄxuõƒéßž˜ÉLÍ5×hís ùG}˜‚/¶©©J?‚ÊÚkâßp*°==İ(­XŠË’bZ“SdFµÉꇱ"—Ä:,ÊUþ3x²ÑÿªQ”êc‹CÂÁ5Æ6Nóô¬A#~œ¸ÕÆ×/3kTT"ƒxEþÑ5 øÕ>Å—[2 SJ,uclN ò¢]ÄòeéŸx\`ˆ–Ý¿=î§E¦¡•ã)-ÏNžÀ*¤„1~%³ð.þ—"Ps-#¯YíÎol';&o‰ò U/ð«ŒÄî]È@lÿñ^Ö%ZDft.+mé|aϯµ9o<ñòÉô x¥…ÇŸgRó2µíÌýxêÝì¢$9L6Tqïè¯QWÎOÁzÀLÁûµC…‘|-%×}5œüÃ[É)êÉ«TaL'ˆÅ•‚óé€?YŠ=ÔÀÿ›Â]â_×oèµ?Ÿ;µœ¬³'¼Æyæ|ó²4¦~Ðîæ˜‰ÓÀ¥®k,€5:I~Pÿ1‹™GÕÍÛFfòÕFUð‡$ØúßáéôŠrZ˜gq»M_ ”jk© Ü`LàIf¼D‡z†I¯°3¹a•ïà[JcDZZli ùNcr•6º¡-µ¢.ªólxe”„Ÿ úøÉ@§kv‡ß_zïâ°éåO=ÈpøóœxÙF ¹Â>¬útý‘¬Ú´/=†Üu U›¾Kß ~5…É…]Œ?Íôk*«°ý^êªÞd48Ïc`mžt®j(¯:O°.þcú«~Æ 4máÏÓÀ[\5[ÒO*3™Ö ôÀ9èÿ üª»s§—qIÓÿ±mÛ%jÛqô©Îõn(—àÏ?ÀŸOdhÜQ£ýsPHýG Çnz<^æóÃàW§ÌüÔwŸ r[NÆUžçë“ü-Ļ窧_U>žªÁè>Šý¨™Ú‘›©V…QgÆ_|ƒ?L¢[£QJ §»c +‘VáGD´~ëÏçß¼¡žOäPòˆþàÏ¥?óÏgÑ?±>XÝzüG!ê×;ÖZ¦£µú7ÔóPÜ]‰¿‡ÿ¢w7¾Ð¿5z ¥¿ûÿÝß¿—Œr>Yµ´ZÈùYôV.¢Þ£~p«VZ´qµÚ¬òEizuMûª}¤¾Ê;ZËÅ¢:l-j}AôÜD?+k³ñtoQüg—±ð5ø–hüoƒ6¶ÂS–á)ZM}Ö_r¼Z“üÅ5‘}3ë"tG†ˆ¯¨NA¿w}“ÿxË;½žÞ‰µp ×°)?Èr~зI”üÇ[m®ˆ‹ÇyID¹–È.†±.`öð$ÖIAƒRð‚]‘CG´»íÊéþ*1«åGyØ‹o{û‚ÃæŸ§öv _ :ô‹ åäÿ?âÎ.‹.}ÿÏÌ9ækwwwwww×k+vwww bw7bX˜Ø](Šèÿ;ìú‚»ÿß®ïgW@8œ™9sÇu]÷}÷T등U ϺEŒŸ”H^ÃJ{cµ“0¿öVÔšÃwÏ Ò:/}Eq%Sk~µÅÄŸëNÞ±ž•¾É¶ø¦…° –æ¬/ö]r*ĉ½Y{ ž|@ ¯I&%“°¡Q‹I÷ãܬ¶ ÔÏBŒ˜ÉÆO׿²t¬mQÆwÃ[YsÖÓñ¶ÙñN§ÂñÛÈ?úK/-Ö/þâ6WjMèË‚ÿ¨„bµÞ…(ï>é^Ý—Š˜õxkbuwNçiú—èa®¹šÚ †µ÷|;V¨¬~Ÿõ“¥í@_[ ѰöÂàWÙ¨™Ž1°÷sÐïΛÊÁ„öÐÕÌòT?ÃýWÁ-eÅh‚n¼'#8¢Ÿa"Óbfó Ý@ÊÁŸCµœ[zoSýYíS”Ú:;þjy¼£´}:2Šº—¦P‡¸Åè„^÷ÈN*ûcøó.¨š*À‚Ã3ø¾gx®=úkNémµO¨+Ž'ܵÚ žâí8:Ý5àW“èlÚçSþÌð0ÛôM°ýŸÈ?ªã^¡ˆžŽi¤7 ÁŸ·´ â?¦Ñ)fþ¯ŽLª¿êF“Šz?K• V ]G*ãO¶P7žÛØJֱРO¼q[ÝЖ[—ôç6üÇ=®ô2Xc#ú«gÌÉ}Ï`Î ÒÂùâ‘–Áè¨faeƒÿ8Ã5£ &FÄ‘Zvr\oyú·¿“‰A^[kçé¼òX[kd´3›Ë~Ü8Ižôi õퟑ(%š™%èÙÓ°æGÆ>ì='LJð»˜'ÒôªoýyüjóÏ«Ò), “ãífkð«³ø"¦«~•p)”ó×DÂäjtt Ñk¿Æ0ÿº;ÿÙßIÑT†ˆ»™ÑÛÙïÁ﨩ÕUj ñ7ó<-uÔ=üÇõ¬ ~Óø3þ㇭ýK$ˆûgÙB»$ÞS¯Ôÿñ\æ”qe^1D-áxž‘íÌú÷ ê8lÖRYK³K«ÊÌóÅJJõ!YãjâõZX >"ô„¶ˆV­Œâ¹…8IþqŒ˜¶5oL}ð«! à›ÁCoa'd5,ôÙ+JŠºØÌ¯Í‰­’ ½®XÁjúIðª‰XÕ{àöN Íùá+ÞÐÇe¦é5¯·]¢RÄ[ÚðnAªá7’×\¯¯€Jãë'žšÈ×3kÔ,‘¬ØRmKD_…Öâ?sVÓb‡¿à/~²ãKð}[ƒüGbTU¥¨}!Š19ü{÷Õæ®\‘Y@ºZr½Öüï²%׸ ”è8èÒ½~`õ„·fŠÌÊ?ÐL¨^á,XRI-ÞKKq;‡íÁžçÁe„÷ dퟨ8ÎÁ£¶'¦wÆûµÃvdÄÄ˹ŽÿXFÿö…ò¬–Åkfx"_°Ã&ä ñ°!­È8„ÞœÒ u«fÓ¡½qáß{ó]WE¢ßôW…ÕöœÛbZnü þãù*`Eo@°.ƒ‘§3Ë¢5Íhä1–à?$YÏb˜û-Ä÷)艚í¶ÙÖÀŸ§£Ú¤,ɾk>Ïc(Ýa€Ù,Ã:ÆÒ\eþ‡;Ý}­î¶qP©(y]Á_úpßsjCÞÄçj ¬Õ ¼o>*ZFÁ;ù3©c3þã%•Ùç¨} 4»Ù+GõBL1߆7pñ×asÎà%iWÕà©AÖºNø@Þ…gdE–~× üj&èÿDôfïá PUá[}•ðWã Ú«ºä^¬8†ž0ƒtgùر½¶ÖŠ ObˆþÿÑUïÿ‘ž¢:•áU¨{ºIV3Tã5¶ÉÊhŽâñfëÔrÉ/êýp.7,Ôsy&,žp«æyXókÇ—³Ä"ÿ®t–Åïë‡ýNÌü(ƒÕ„ã?¶Øò‰¡ø¨›rƒõ?†Û¨OB @”š^‡ÌÍdÈŒ-6ø•+ùÄ`ö×A»N¼VU_í.³sG˜ëËŠeÁç¬>ÃùÀMŠ9èì±”š·â`ìyŒRÆR4´ŸøM«°€@“Rk›µ] ”N<Ë T[a9&ðUësvÏjÉa‰g“øhÀ¯¨Y£?×b§©ìqì…ì£É`Ê0Eð$ÌŒ’ìþé ñí³\a­ûM¸ÁP¿D5Íýr`õ—S9Ò•úÃ>ù/ར®ÝlP3ßOo‰2×—ücë¶ÄÇ™¾VKÏ¿?¢švŒ^EêØý¯FcêSSáw­m2êÏß¡lªBv'µ˜Á¯ò¼ãÀTÒ«èÑ´±ŽË=m» ~ 4w¨–ÁȯU–·µ3:Z[êÑ~²yËÜjNÄê;™‡aSn ¿H“Ïÿm,¸gÎÚùfÊ0xØ´à›Ñ)·”ðtFt{!ê?ê0UÒFw®f&?úFþ±eW9®9•ñvè4qÉé"ãi‹ùÇ}ô»ï¤5ál$Öi¶\mäµï'“iƒNϪûfmûTûi3ýwéïø-­Í ø«_Å3¹+Qƒx!Îÿ„ÿH *ÕFWòE¨¾t<Ž>È~¥©KÔLäNjuNë[uê¯Ñ¿]USÿ!ÿñÝVIL–~ô|*+iâ:‘ž(ïÅ)øO¢¤¨û‡õËÔÄâ.°^½Á¡+Ér‰C½);ikä>Y?5HwH‹àƒ¾Ü¾(³Øƒ;®Sv9æ/æçÝ ‚xÊë¿¡ªˆ £¨Î*ZŸg¬´«dõßÍr³ü£¨VB½(6û1ÈÙ/” o—lå <âw*³Q‹±® ‡ʾ¶‚ß§×éÒd)²¶c±ý"ÕU­Œ%o†ÜÇiÇŽ “7êÉb`£î³ßEømınÜ‹kô¿*þ[/ó_ûô·­P®K'òŽhw£*ûGþ1fúëGAóÝÕ£ ÜØMæ gDÏT—þ‰«Á÷š°÷wéß¾›þ%7Œ¬¦3βðìß“M­Dw“\ZŠ ü) t§r5-ØC_í²>QnA•Î^ŸÑ–çKž±b_ôW¦Ù þcœÙ܈iÆ5sr|‰èNS׿‡¾ã×z×”ä3ý°L¬:X¹ÀÈdßG%J/¸'Ø“ÒfSû,ûGørýšY–ŽZýÉÃüy~¯ðÝÁ¯Òè™åŸEè¿~ûöwZ4•“w&øUdŒjD¿/‡bª‰˜÷QTÌÙÕ6¬yÃV^õTªªBÁÞˆ~0ܯǢþ|+Qtb0òpCéÄúÌߦO>S\©ìniäzÙêhÐì}d afGS£½ ¶æªìE7šT ç¢G¼«ã>„þÙПUR– ÝBß],L+tXÐ®Ž¥ Ò^<ÓE¢Òwd9:6 ‡ˆ £¥‹ƒÂ$²´ª¯6Ó´ÑÏYý ½9 ¥X e,ªÐ1dè}ýã³6oé/ÝèõüÊ ^e+z°®ìk3é’éçñ*ñ(Óø¼°GŒäšÛ«åðcVŸáwðúñ±DVÞc§ ð‹á¸WY•Õ—¹O¤&+*É"Xó½íˆ³ŽÐ›}í„ÿxI¦Ö’5Šê_ðLÃàJ?â§V©ŸàîžámÚMý‡*^„s©)”ätH{ÝÝÅýÚÆõ”‡7Š‹msÒÏ Ø&|ˆGû‚ãŒaíŽp Ì¡›ÚRTX¿/·þ|š<÷žAÄ,q<||wòªÑ°úqÈI¬Ù×Q?íÇ·$ѧ‚CŒiëý}$ªŸÂ,ÙB­"‘ük7§¾~š¬Ç¹£™*IW3 ÚÓ{ÌB¯f̱·cÇÀ¸‘eÓÚÉuaîáõ­´:¾Zx½AÀ¯.Á-ûÀ‘ï#oøÀT×ìôÉð*k>¼)þw,« 8›“º9ÔŠï‰ æ’éF3£›–~]»IÿöíÆP8‰‰ôßmfOmŸJýGq¼ÀY8i'|Ó3Ö?Ç9=¤Ý£ž7ä%Ç# ê÷”‰|mˆRöãÕVSÿ± oy nºý†Ñý"õ ÆkvØJï…uþÄõ¸ñÜûȯŽåzп}Ml@ñ'„v¾ŠÒQ¼"­N¾pRŸ#=´nFú—Ìb.Ç9jþ†Ry¾…ª?z Œ :±³Y)‰qŒ@°no2ÿÃtOR´õÿáIýà 9µxÞ¬Ur—‘‚Šý½ð—a÷+Ÿ'¢ÉCªÐk˜›ô‹f^2ŽÔ~ ¾ò—ûˆ‹kãÝÓüOòôJßðÙB3ÇCôƒ‚t¿ŠOý`Y1‡ùç]Xå®­ þd‡ Bíq¤+„ü†÷¶*ÌŠò“*˜CÍE¼$£ª<^ò‹ˆ)3Š–jä½ B®ç¢ö€?ŸF&<4¸€Ä„·\ª7¾)ŽlB.šSë)‚û¸„üɰ7EqSÌ&¢÷áYÖ¯$ˆ~Gøóõ¶‰ÆuƒLŒ×ëAÿÄÙa8œÏS‹"ÖåÜûZ¬Û]"ðhÚtâÛ#A^å…Å Kf^v•µ"}6GÈ?ü@°üåUlß:,gs*6í¯£zM))úfìvg¬YnT49#Y±?:=DZ °çûñtäÒRàÕRaO’`I¬J]Aþã(Õžèw‹F˜Ä"p—qÈTšreëñd3|Ó ­¼î×Ü%ô-4AK‰ëwqõ‹ÀœÆÑïì³z*œû–^I~µ‹lc|‘Ø_>üTìÖßþù=¡æèwÇ€4t?ÒPÞÇçyí Ç,„?oïD¼nUcÜñª’º)Öý-ìu ø)Ø»{d….øÎ¬‰ªv.Îoþ£¹ÚXæÁCÇ„­‹VÕ›LÕªsñdF.z´Î¦2¬8º¦ÔFA4Neô¯ gSà"¦ÃŸÇ >)4Úd³­Ç(¬‘½ëZââÚuî— ’÷¢ÓÔ<’øÉN°¨*àWÃP7dÄ:»Ã×TЛƒÃý¤ö&äM4„5{y §!«µ?|@fpÀ(®èsá§¥ý“YÉ^ånE¦¤B¡žïW¿‘Ül“Ç‚»æY릖ôãÇ{Üqê¡/×Ù…~·›QfÍ?Ï ³¼žiçõ¥è¯ƒ1UÅÊßåjÿ¦ª¿ú«àùµÎ¶ÊrRônLhEýGIôRû™ä÷Á(o|€l!ªÖëô3ok}Mš+Xs>5÷ç`|œõÌš«ãrŸ£^;MUÐ9Þ|k~­b°€i¸g©?ŸÎ…NU›à?.ÁW4¶á¥b£»=…Ϝڡ6Wã%³†À¯+CÄ}²Áæd ½ôìr3ÝsÚ[ÃÔ¢’± }µ’ÚÏ1 ý=|ÍD>h&ášòƼ"›ÿ¶”)óþã±r‹I=xJÃxÏöÊ´(­Ê¡Ð­K÷ÅÆ[f|1ØgÏ4 C¿7ÌOêÚç¹¢7ÒâÏ» ×Ž)ÿý¯‘tuœ,SÉño÷OÌÿ‘Hݧ ÅÅb·Ðw½zþã95;Ï3*ÄCã0ߪ»VµÉtoï­4‚ÿ8,cI) ¡ßý3?·Yí ^³„Lc,~$³ßPò«÷P^%“drlYý(ö¿ªO| 1—,æ¼raÞAÎYÇ=òk%oú¦=åS£p©qé¿›{ú ¸»t™È<À4ÎZr’ÍX®ôë<ÂüÚÈ{F¶]–—™"ÐÂÄÙ©AޤkcðIËР˜fÏý ûÂК{¤óû’œbwÙ×I:ævÁd!–‹âòŸ²üj-QS\} ýCöÉóÌÿˆ¿RwåžL à eÍüÄŸ/ij1­MmììN¸ŸàVÇñ"ù΄ðáù"Ô*<…˜pÙd YÙ­\(º\"^`¹[êñÉj£ „¯?‹gŸ®ÿØe+'zÀÆ'§wR ØlOÞåÒ` L§‚•ø†Þ,Ý×}¨(ñÀ~úñŒÖá•[q…µâËoõƒMÈ?˜þA_°å¬˜Ÿù7¹eâíFVbÞÄãÅŒ£ø\X¾,dsq`±c±Àð5gعÐGg+ú+…ë°4¥ÝAºÀ6ô¢Vü+ÛÙHÿÝUL§[E¿ªw0ÑaŸ`ï'¡Bm͹|¡l µâ{ÕÒîGP–¸#üÌ=ð«F- ¥Ä÷¹À¯ŠÚ€ •‡aØBý‹J~t’»±\¿€îçz–;Ôa¢4Ýšq<4îü¹‹1ŽnëͨŒaŸD½ø˜ä…ÆNýµtïɸ*“ƒ\¤Ø0ò&zÝüG[ e øÕâ“¶°áå@™ üDg¦ÃÚQuÝ2gÂx䢯b(Ò{cµ™ÚŒn¬B¥0“Œì>kWÃ×î³ÝTœt2nÉr þÐH×’ÜðçWTû¹˜]°û }¥VÐå1€î„Gt2[šrdS^Ì?®·Ï§Œ#ÿHI6Ø œ¯è¢{Áä2WÓiÄ‹Y^“©÷»D/Åh$Æ3 ½»© ¯ÖÏTÛ#Û+Ýa@–;üÇ å(þh8Y¢õLüäUÔÀ‰P×1®§ŒxÊâöô/‰Iÿ«Õúú'ޤ>~©áÅ;òR®" n¡ÿÐbÊàŽ-!ŸÌÿíljáÏ9NB"¥´’ÁñÙŸýf«{IØŽº¢šøÆ¬@›M0áÏM½ËL©T%þ:WT©-fà=îÐ÷É-«ÚWé­Ä†ëNƒ©JþÑüöyM­Bâ£Ò“³rÔ îRZ3Sº€V˜¸>~¼­îP𯮼]œæˆeıVw’ØwæÌÀŸä‘›°úó©W™‚^䚬FÝô”µÐ?ÿ-…8%’ÐÇÔo‚)Íæ ÜŠ…Óp‚ó~œ"ú‹ò ~3}¤×lWNái>gà}žCŒT ;=h~õ ‰°Ó&þã½´úïž“Û#í¿»\m„µhúóï–á u |$.jà®w9wàÓww’'Õm‰Ö.üËþbû¢¼•™±÷ƒÁý¨´‡¥iJn³‰þWî0ý#ˆƒ}±ÿsðJ.ø—ÉèÆÚ0 ê©z&œKÐEF…íPàÇ˰Çíèw j©ñsïøéUâµxL¤Þ6ÜšvØž\!6ó­Ràgz‡“xÚ ¢¿ºL^5+Œj^s6QüB,5™¾U~µôèù‡…4öá¿ÎD#{Å_ê÷0;ìHþ‘Œ|(%{p¦ã>Ïr#Ò¼ôüFЦ.ôüËLŒ›„)„SÁ5ö9 Ë; VYÂù„Õ^U¿HI–›üj,=£VÃT†?ðƒ“q¥‡ÓyòqæI,r#Øé†x÷b°×ÈVrP9_]ê”POå/Q‡»²‹+ÉAÎÓCg޼1. ž ëZòsôß­H4ÿ7^`=ùG¤c|ït0|4jÇPëIPœ7D;7à?ÚëgÁ¯ŽÓ{¶>xØßÆ=°¡œTå-•¾ªïÃâ"§kHæq$(;[ÓP.„þªŽm®²µÛ8ô»Áá:JW꽌*Äó…ŒcÔŽBÁZ•qQ³)Ý|ÇQgñ¿[ƒìèk–†¿:+—;žÈÛGõ ìÌ9žçwÝÙ?ûô°æw˜ÿÑÍòdúÁO…ãw§úo«1×\ ÞÿQy Ï9FÛ*ó…èNé'>‚d4µž§«²­ž[•rs¸w'üÐfêv30I}U Í”øXÆjƒÝÉîÊç2–6Îá?¾)—áÏGh£ð Èh¯ 쩨?¯†–ëw­“ÙÊ>Æ~½€aúégÍ^ä9ÃyV¾DYÏålEAžÉ‡ÿÉü¨TÊú9ýºÕÑ•bJd¿¾7ìß…é_RžyƒEOa¨–~÷­¯z\õU¿ªo‰IÝÃþÀ¿ü܉óˆ¢ýÈA’ ùQ¯TVIMÝq™XÅTqìú_.ôÏœ¤Ž¤ŠÁ•ÙÇ ±måDyŒiíþd=Ñ5U±j$Äè(­Øˆ:øîb5¹Ñ8Óî±Ë뉓ã‘Áo峺èË3ã†É2bn¶–M…89‰õKd ËQAîÖ2à‰6£…œ@q÷•Œâó£ÊDºÃ£¶Ÿp%eLl|RÝêTØDm Vu—V…7â±þ"¢–x'XЈlý¯ÏP-æ£ ÷ì¶:)Wü]ªÕ=1ñÙ» Äm)ql|ý$ñÿ}ê?J¡ÿõÓ¡ÿvR®)2'Qj?ü‡ÅâûËvtxܬÕ¿j«m£ªì)9¹Õ™p'×muIÿݘÂ;ôBAŸ¥U²ž!ŸšŠÿðÀ¦åÁN¦äçRbýÈ“â+önÊ¡¾xÑÖxhþ<+3å·?ÛmEÅyQË@ÌY3H™<Žüc6±Ázúü½)î…7‰AÏ­xžpèÌ€`ÞMØùQUéßž—è"%rÍO³† æ>xPª5ÐèÐ3Öb»  ôRøâìt¶ªÅú`÷~Ë?Nªzµ†ðçÖD¾uú\¬õt=½‘” d1==Îá?–_=Ä^Õû}ä‡ÉðÂûÕ¢ÉdÍ?LÿöX¢5z4ÞÙñ1È?Þë ±ré¨Ò|(¹ý=Ü;£·­ƒ¸L–bãJž’},c<¨y©¡{éü…ÿÀ§=KiÉ)ÛCW•íT.аͥ`¦™ mT«¦nX]N†ÀÇ{MíF_PMs\ímC”]œ±Q¨*ú_õåLEžÐœª ü¹'Ö9ŸYžü£5üùúïÞ·êBÈbvÃwŸåiUÐU-¸w©·ÍGõãJñ¼lF.Î ¬£ùÚÌä–hÒÝv3ëÙÌSè¯ÀöO§ÓJ ½gÜ¿ÉÔÅ’c§º Ò‡È¥8þ·¹Ö^¯%‘S¥¶o¯Y•rV˜øÄxßžL5ô#£ÛGa4‰Øh /+x¡Þ ”ÁüÇå¢À æ½h„ž'“ë›ËAÿVÀr,Du•”ùƒkðé ­ ÷dJiÌ%Æã¬æ ¢ÖîÄ%þZRùg ¥ß^ë ”MJpgI“:¿Èñˆ~Mqå©’¶£²((>*–~W(]é¿ûA}KÿöXʾˆ~0ܯgF5Ÿøô³tu?&ު딣J:;å—*ùG#ÕÊp¢þç©ÚërT¿ê¥u‘äFæèX•ɨ•êP‰ÐR„®¨hí’øAâ2yÁb…0¿ÅÀn‘?î$°8o_Y¾+ƒe¼(áWªð¥a;Lý8X}‰ä³áB—AH¾ÀŠ…My"ïr†#ǯLÅüÊD.mÍ.âîÅ a“Pæ»iÕñ(gÁ\¨G\¯³i>jdÙ¦‡Ú¿Q“u¾$&.@Æ`bŸrby|‰úWã‰6`g=yŸÞÓÿªk„øÕ7ò¼üþ}ä}¸{ØAs2›ƒàÑ/¹Ö=øWø¹•xÏ›ø«£Dù.Z3é§÷Ö ~*Y•ܨ`ÞM·Ú†ç­ÄÊ¢=¦6å@bJÅØŠŠ¯âwtÄó¥â)çÆGoÇ\³åàŒ’Á™” ðD›Y‰È.36dZ¦DT!v§¶î€ÏÁB¬©'‹ñ“Á_Q.ÜÆ6j+P{Rª¶Ãk\%“Ú¢'[a:ÎŒ&##ú«‚ÔŸÏ·l=z-<Àâç’Z“ßò7ÕOÆÅë–Àw¸’¥, Ö Cn]ã tžÛé»Ô¼®ßd¢ú r¨h(ÆœŒ+ ]5À_jkÊìP;4E#²R¦w3i.þã¾öRŸã½K âr„Ùç: ]É?ªýù9Á×v“ϸà½îóTî«-C­÷NláÄÝ!Þ™.µZÛEUÊR*æÒë ÔØþ…ð'àÕßÒ×q8^f¾x?• ë¨{©&Ï9m}ÛŒ üj1ú«AøóÎTÛešÅçKŸÄ=Æ&–¡Vï*úÛrèy7À:Ä3–£¿ZƒžëвDúm9ݱÞuú_ùi:ùÇ-µQ^«&/¡›ª ~U˜þ%çéß~›ú t­7©úžÎÔÙTtêòæ©§?~Q}‚¶]f”Áìhz°õ áå9Åçôò‚¶šþ‰™Á¬:\Á3½ 7ÏüZÕšˆz >õƒ_½Fæ¬Ý€ý0˜—ýkƒþÊfNòxb¥ÎÄRåú_­¤É`îÔtÙŠÙÅ>ß~ –¦œé¦¿‚=¯IßÇ9䛈gáS?ˆ¿ü/þVY.ôëj°çéŸýújÔþ.~•¶£žh*ž)5Xå§­ƒúD}Ãô'Š“r"jËüó»RÑcƒŒ¦E'Feºœø nA7›”:ºÒMD=µêíó¤ê }L–Â:Íbe[¹†þ»²l·7ÿoj#¢8°8Läßâ 'áþÙw°’þûMîÁêŸ'ý,ëU”)Å¢(\sBqBäÂzª¬² ŒÃÒ_Õ!ò]ÅÛ8‚Œ÷&˜þw2^?xþÈs®xÊ}yš B'¸:´:ÄÝÍÑ–Í€•?ªÕ WÅrÝU`lëÐnh¨hFr·¨­ƒð«VdVÞ0çcƒ­‰Àbë7`‘—Ã@E{+ýV>õ#œ •·J|ôR»ñà݈ßà?ÚònbåËÄs«±)WÀt]P6]äîzà›Öò¶û©Ç¹ù™?xSúbçå©f/JÀOÙ@lììä#–»3–¯'v¼‘Bü[1ü¨[8þÃÍ–E ¦†:#Ñx!²«7øð a<ÚÃÙñBÍõçäǰŸ’Ì5ìsOh¨¦ÈøêÏ0;ì®VçÜÖÒÊP·„ˆø¶a#ï¹7zÖ°©‹‰MSÝ—E5ðÏÜ—•0¿;@ rÓ}eS˜çrMðXuy¦k±÷ ð (ŒÉf>aƒçÒÛã=7ZÓ÷õâÏðšÑñþ¬5þ`5*NêôP+:‰Ä>GàÈ Ñå¥üÌ} ÓŠ&ÀÈ Ini&³W16Q¿Ñ‡Þ„YxÚëñ~óÙ¥çüL˜üßÄ÷Zó£Þ`ñ»£ßCýù.&°ŽO;OgÁÒôÙ~5!h~í'žKk<Ç#ØønøÃ zuyÁqÛÛæ)LÏ»N6Ó n$+º©L•Õé²ßð¦V¼"+‚ e¥GÔbfq%56°â滓?æÖŸÈ`íãcÛ%õ zû–¥5Ò ¾|¡=Ò3‘45gÓe¥Â68þK¬³ 5¯ÜvÔ±âü¼‚K…ÿH+ƒÕ™9•ô¿JA]Õñ 0;¤U·¶• ¢5òR“úÁAL:½(;‚ÌŒˆ"~U•úóÊb+ê+O,f7êÜÊ Õ^ˆàDWÐì|‘õy×çÃòsx_|\qT$â]Ž®ŸÇ¬CÇ»5Øbm)HL/XR©W„)xÌ”öaQÈ?ŽÚîÁ”xñéð-`Ðcb?nbïJÃZœÆZ§n-¿¥°ö"Ò.ÆëðÇAþêÐïüygº³äÃJÄã±éÞì>šs\Δ^.ò»¨®äŠàÉ$SN)~2YQoÎüj5l¬WŒw&–"1‘k òû“0ý³@±î€Š­!7) ~w–ÜéCæ³%Ù!î\úæ"K À÷–SÅ=,m#,ßô^–§O·ÒØÌ áøcàW}¥lÀTyÍ—è¼*O5¸zstkõB¨ÄÀŸ¯§ÿ•'þc³y‘úÄ*ä½á?²2£õþ®®Þ‹;M ];üª;ÑŽ+› ‡}]»Cg‘†3ùÇLs'܇ݞÓ^—ê’âä§é颰·[°/ëÀƒ|†žE“™è)(üSôWÍõåØÕthêbôÒ¢ šŒµ÷¡²{ˆÚ(ã£á*U—äÞx(k6¤Š"˜ãÊþjžrŒ~o4T/K¬Ÿƒ+l NU~WçÉ?òšÉ©ÒsfþÇXüÒur¹­¬9S·Ñ³¥Œk¢Ms¼r‡è_ò”3{˜s—ÝȦ哂'Y Õn2æÞàY|57¢žºˆOw Rs¥`>ìSNã44ͨÕ<~·¯ãTסþã›´f:÷¡Ž½œÜ@ÿ]?jÙ]àôßeÐÁ æ $ÿxfL3¦¢ë-H‡€DFtý;QÑXX¸CăÁó£¬þ»ävמ3¿Ln bß­AÔ[.¨ž›ÐÉw‚Ý…õ*˜wôëøÎ”Ì·šd¼áÔ?‘[ØE-4åÿ¢ÿUN¦!MsÜ©”ø·ë?r¢ßM¬žR«ŠéB¨uXóZPýÇiU§ÿ®©„§¡q<âß>xg«Cý`t캿l¤-1EOp¶×ôOÌ#cË¢—Zαëß~8œ/ìQûƒ`ì‘5°ÑûµÒUnQjPÓÛR[k1 ]£8ÿ£¼²ä}+¸Õ=âKÐ*tMˆVïŠýd çèy¡SÇ¡F±z”üGlqU8lÛ±›±|ïðp:§l*ÈUwØ„zq²™ w“Cô烾äCýÇMyJÚY'–ºÈÎ.€ž”†>Dý‡U«‹±ù%µË‘újS¾³¾÷×f²#•8ÿz«ïXQX‡yäît›8AnrO~d~TDþ#ŽrZyƒþŠþÇìk7œÓ ôWÉaRã×r0_¼qÔn²¥…<£‡øù]0!Å¥]÷f ¾î¼øy Å5û|ï*˜”ŒdHPéËâ9‘W˜ßnøùμíéàgcE«ÿ8ÂüónÒ þc:(Òwíþ¦&˜SZlH+°¹¸zAê/ïà?VP£"õMä]ð –BL‘þŠæ4öWqÖJp·÷ÀAäc…†dS9ð>éX2.À[x‹î¶åŒ…ð#?ù·¥èÏv€ßç¢þc]˜õ ñ=•ž<K <•Œ5#ó~-ØýÕüGÞRêmä)í3Þíä0]™?xÏ8rw+ãó ,÷ê5ŠÍú¬º¢Ô÷~QÿñN96ÿÑ…“»V®7Êõoï†&ÛŽ&¸®YÂ>Ö~~_yÑïî2ÿ2KR?˸Oþ ]ÈËÁÉÅ’î¿6ø_ü; ókƒ# ‹ÿÈä¸O¶ÒŠÎüÚƒj±ZhAìÄe[+ºïz’ø)±ÿÐ|· â?b¢=ªÍüó/êLòTg!ÿ("ºþaÿÝ…ê4¢ðÍ` ‡°w ä¹\É©Z]/ŸW…yÊ„‘¨\q:Ñ5ëQ*ÞÄvTG(‡î­=Û‰èÎ`wžÉ DêÃAÙVFaÁäÌ?Ï»SŠí\Å[x„ߊmïae߃sgÁ|‚¥ùƒOÑ<ûây?i¹ˆ’›CÇ k`.V“üc/Xé>NÝ|bû\tQL-1Zmƒ-o”œåª:Â$…£¶ã‹bau–°òö^߯uPúÓ%ÂÎÊ-ÅG¤:c ïÞibƒ¯ÜÿÆØâœXŠø`MA@â3ÖbÙâ–å@Ì­ßÐJ2ñÄ)µ¾ ̃}ä)f„‹yÅüNÿÝ» G]éÙÒ/Õ,09onFòÛáøUàWÎÔ%ÿ¨Á•Ýç T"^MKß^·úÊ–çþ=Ár»ß8ÿ¯@IƒzÏôV¼S‚§¯þc‡¨ÿ(®–±œüã,¶a!¾=(øÕ lÞO:_ÑéàÏKR?ìD¶T{ïNþQU. s¯ª*ÜNÔs XošÒgô{ñÃ1_İ£ŽÍGò]ì®$ZÖ!°Ýéa×oÂw·ÁÖüÂôoT›cwÎÂÄ'v„û„RjùBo'ŠY'¿QŸôkƒ¾Ê N²…_ æônÁØQ[í4ZqN1ݪ žc¤}±YžúWúôX¹ñÄ+È?­emNý`€ø3…Ò¯ßþŸýkØÃqg$½'"StFôûJ“ä£~°‘ ~eeÏl-©?÷P ñ’þ%'#úÁp¿nWÚ0ÿÃÄZ}ƒóvOèÝ]ù*Îщ?!ø•³ZɱëpóÅ5êp,énYï’CÍÇØþg²5sf·ËŠ`=E0Žæ‡C}Z•7±¹pg¿@þÑT§ü:hÄ)¶x)ÖûAÿÄQê¿_°p6¸ãMDó÷‰Ìsa½&à‹êÄžD§Rûºl'­ªÌýçüÇ=zÄמS­æ¦Tnwìëb8n“¯$…Ýü)§a£Sà?’F²âTµ>ž¦.~ã.Õ‚‰ñ˜`@·ðÅ› Á^ò¸–Rg²ºvYÞ•”Œ¬M¹©¼“ õØÝNøñ”Ú'ô»%á¡Óc¯“¢mD|¶K[À]8Œ÷\E Æ<êÏ?ªÏ¹è‚JJñVz£¥OþaÍWÌ ^”˜'ð€kû!ÆÃL¤ûÄ?üG[<ô_Ä‘ ðvîáø¶ü𞨠˜øóQ\Ï8tKÙ•Ð_“K”!ZžJ´~ ¤ßÔm2w·#'À‡ú°ý+¨=ñUEÁ×€eóiÏuf…ÿ(Ör +¥`ûÎë)aÓçÃñkÔ€,–/%ÿH­µú-ÿ8ª*°E-9k³ðpKÑ_=ÅR?¥¾í*JYIÏæ|ó!ÙQ~ã È ÿñë<5’…±…Õ_½Vk²÷SÔíÃoõæé=×ÇS…ØNÿ‹Ùì(FýéšÑÓØO‡®.†;÷äIö³Þ2°®=ÚµC¨§ì'<4…è9*5g};q¹ “{Åô&Æ3s ýÛïÑÉc3צZøá±Êá—=È·úâ«2#ê¦ã7¥þc9•ÿ“ÉÈûàe:Ð92)9[3øt¨ºNa ãA^ÓªÕñ3éÞýUSvçO>–C/«3Ö±Þ]›§zSÓÈŠiy¼dwO´õz)ì|"ê?<Á¯n²â üG"j?Ör/S“—\F™6™ÇÍ9_wàσ߽’J+ê5Róô{kì|ýwïRå· •òEØÕø#OjT>áŸf³;³5“ÑŒúG²Æiti8 B0Öá?+ˆ‹Éñûsî×ÉåT\º0E· ŒW‚ÚåMew7u{Mó°~Ì«¡9Ô˜n|àÌ…}éÍÉüLÇ…?›Ðç¸=ÿÑ)¨Kî8 ј~žÍñÙŸ-\JñWŠ¡ßm$&ˆAÖý–­…z’‰„:xVteÿ-Mi/ÖR‡À¤àÚFá©öPª)ÔŸ§–ñd%Ñçõ»sð©Î„ÿŸ&ÒLî¦ÉkI&W“/$Ò&ˆ`ï_mµ¥²\©„¯¸HþÑ q“¾ÿá'v&*¹,+¡ßí)kŠùÿj¡þ[L±]$‡OþÂz{±˜%ô5x³‘œ³KØ‹xÔÜ…Ëò.u*õ"}6[é_â" H‚ÕW¾.ÖØª??B,Ÿœa?þh˜àXll^í±š=’G©­Àäs¥×ÙOBþŽK=ÊC¬v4,Š«oÂ"ï$²>Äïº+ßÑ7¢5íÊæ×f%+ê‹ÿ8H6(;ÁMg§‡ñ}Ð_ã·-ä¿£ÜõpâKèµÿQ o²sn%>ók¯’!Œƒ½:‹ÏIObç瞢±z&æ‰ËÄÊ­ÑïàMoŒÏr [o†ã?¶Ú*0¿ö8Ül,®@OÜÑþ|>è5¨X)­8ˆÐ|øŒg¨,}Ãp®¢OîõN~ažtQµ¹nATuëÈ‚òèžìÁ…lä®,j©ñà9©ŒKô¿*l,Bã£0§}1ÈÙ<|Tl­y´ä oQ£a+°Ÿ™(Ä–Qz›üã3øÕ&:þ R¹ ¾U^y"Jí`4ÇÉ—ÊèíÁ›B¨d¬ßX™å8ý9zOýžöZ7]~$ÓÀÒ¿$½½¨P!êÜõ$ V³á»]Á¯¬úsú …¼äxò"þ{²ò`SµƒtåZ@çÞ6LÈzOŸõÌôkñ0ÇR+¹ÿ¯—Ç3xãAFÓ#¸üypýGyú_¤ªj$ÑÄ`v7€~‰ù©bÌÿHK5Ê9,uv4¬O©ÃNmÌF¿ëdƆYiþAþQ̉ iŽíyÙΩ¾ uàxÉŒžšÕg qOƒWõ!Ž_’µŽ¿½-ŸvÆÓeƼgo‹µô/ ®w)…þ2@æáDµÓÖè3eL}ª‘Üž€þù MOò¤)(ƒ÷ÃÜ¡ÿUÔ]ƒè”éi8N L^ÚxìÃ1i£'Ó¯ >UÎ ±/Þ‹ÚJyËHhA'ùjd»Œú°2¨?¿ƒ¿Ëe.Ó“ÃúBÉ6†üý“Ÿ©Ì‰û?éßž˜úÁŽ“ðÝ–óß®¬ª(É?ZŠI"A:ê¼íoôX^è¯T5™rð×íŠÒßvú'n%ÔÑ\ÖÐNRÿ1I)ªØ¸óeeYÿñ«ê,¸©-2üÕvj ÆËèÅȦZ_¹JÖ¡ölbùóªô+®)‚[…“­€í¬@5Àªv‚†ŸâLDÅüYYk@"¾è¬ÌJV’˜èÍ+X[š‰Øv&Q~ÞH_ìâGùd¬´ªjþõŸý¶7T\Díë_[7[EÜêŒ=^ ŸµS“øË Xý¬Ì?OÉŠý°3§Èaš€—çª:àCâÂÍ' ûÁצ°c¢M²šÓð‰d ó?òG°ftú'ž#ÿØ +S¦Ç &»6­Ã¼Ô’ÑE´18Ö1ð+ ]»G¦¸ Þ¦”ü©º‡sÑÈ?‚_¥=ÌÁ÷Ññ‚ Æ¿´ó0ýûQ3Œ7°=½ˆ"ûñ-Ã4;†wîm8þc1ýKÈ˰ØSø Á³ bÕveì®Õ{¸žý±¾´åøÕr|ÜH0±ø˜wôO|f‡e˜_[Ž¥AS:~›'< 뉮¸)É?fÓ©µ6*ú݉`$ÈM–¼lMNOþ15Ì=ô ÿˆÃSÈGEÇlXìðCuƒZÁML„ý>’®Uçð˜¥Q…OÉ-=‡½¯MåÊjôW®¡V|¥Ö{;FþQŸÕ‡¼TÐodÑaóÅãÛo™UíeñE¨<Žw{§mƬ&[ñ"fzÆø‹ãTå]ç´v ê8¸ VfÌûPjÁ-¢_Ë6¦æ­kþHÿ’.ä“©§qŸÚ~Õ3ÿQÏÖVYAF;Uq²”Ž2¿–œﵨ/~É<„†µùB{3;5˨ÛH~õ7ÈÞ7”UåÙA‚õƒ×lÇÕ Ägîä”™Œ¼ôOLFmLsú÷VeGÃÑ2<2×³Ç øÙtô¤Ãã X¤BdFñËx£³ÊŽûWüÊ$oîKŒqZ¯Iç7æG•âþ;›·oèÍö ‡t—¢ YR)ø©Ôðç_` ™\/çÓ!â€Ã<¡~ð•ìÕDÊMn$ÿX…Ö =U#÷Éfþ¦ÙDû!0ÅŒæR=R&Ò~¤ñ‘Sé+-죶€þjw˜3øßø4hÌ ÇÉ@ýyd½#ÚUyå§Rš~W•èõ‰Y~Õöã‚úB}ÆüÚ?Cç¢)íÐ㿦nÎWÆÖzˆêz¢Ü'èþM]Ôà|2¢…üúau ÈÒ6™›¸~3%ÈKJuõ©ì‚Ö~¡LÏsè(æ8îCÈŸ ûq3êP:à+<±ÉÍÈ΀¾LÄ" 9/âN |½È[ÙEfÁ3˜Ã®üyN±T¤ÀÂ}æÝsáM¿‹=N—›‰%‚ÿ8BŽóš..Wd÷(ðçÇlžòв8šutÓÁ(šÓݼ?Öx­V”„r˜îŸr$–_ÓÞªøäùg™Z[^ +lVå¬þ©P8 ЫDå ðŸÖü¨øªŠÚ~æ×¶Ž0ÿH©\Q>ËäÍÙ×&2Žo²7YË6Pp:z UÔorWW  ÞCŒ;.i,úÝâl8{,£ÄE¿ëI>5 /î S’ ¥Eqò¼…•äjq´©)ØQînSø‡ÌàØ À¤¶‡ã?Ãt—Gx–cˆ;%ö~ ×lñ®(p~À}ŒÓªÁ',…Ïx€ÿXOf4ÈÏ™+y+òüÖ?±ýÛsbc²â?FáΓ«Ì»¿š8,µÎ ŒC|–Þ˜é³f)¿rß,Òó£ÂžÅ‹jLîW"Íü·TŸÀiE®ð½Ö&º»>€ÿ˜b'¿)ŒrhHe"¼Ý ršªäã´—JhþQ~Sf£×ñ;ú—TQþ$3ú«¢§Z(Ëzá%jOì𠙈ˆq<>c ¼‚~÷¡ì§U݈JÓ2¿v\”V¬c”],Ášžâ •sªF¾Þ•.Þ'Ñܺ¡J]Ìz_aXJŠ¡7îgqÄY‘…P üÂvì ?qwJbÕ¹ Fðt—õ#ï:ÿ‘.Ò· zð>÷%9Â60Õ¶Xé‘ìÕU« °âíà¹ÎXétÚI5^$+NTk€”4 ú¾AÔ™Odâ/4]k} [¿F`?|ÁVyMd‹M¤œTnÊTø¯ø]wòª@üwM2¡ŠT"B¹Ó˜÷à×¾FÞÒvõããtòS¸ý“+éÅ)b¿Ô#ǃ­âÿ³¡\»Luüeº*/·‰•[£ßíÇîÑI€m€»YîüóMÌì.¯ÁõÀb}ÃÚôãévEYuz5õ—–ýôÄÖë0ÄK8Ixç+iî"îoýKšR?X^&'Öq õlçøÞÍTƒ\Óó‘w Ò_•4ÞÁ¦06ƒoI¦©L€ó^‡Â).ºÃj÷©6X°¶Z|Ãd¼Â$âQàiA\éß~…š·ƒf<Ô«å‡ÄôñÁ¯±×}ø¦Îx®çœÚÇï³ZŸÌé4øZIðµn0 õ)Æn£¿ž þcµßÍ’ö9Æcú¯÷6ö)ÄR]²Œìç,÷øl˜þ%IäbŠgœ’ŽDìWá?ö¦´7Fê-/Ôvç€á_JÿÇü–÷ÆX¦Òä —èVßœ«³Þ5DþQÆÖ^qᜎã4ÔáîW—µ÷ôómOgÜô«:H¿ªtpÝÞä ÀµV€C•5VPQ2ŽüãÌJA=qˆùQÞ¶Óªš3ÄÂȆÿ¨¢·2ºÓ7:ØT轆ûžŠj õç;Ps½¥Kü4gcAë’¸¡×üÛqÿª(ÎLNn„ÿ¢­ÕKËì- ½Eöã%=øðPÙÛ ú_Å¢â¥yÍ,B'ö8àW8f_Tä÷ä[9Æá?)—˜GÕó4’\|'ýÛ_á}Vma&0×¾¢ùÁœˆ"ë©Ù†ë|úTº›Ì7îÂ!¾”9٥Ș¿üOøólôÅYê¸36%y„ÕÃ!O_xç ÿU~õ•Z‘ú_ÅB تÞêFõ»úþí–|²U¤ŸÝsòŒË ß]ê¼¥éä!ñdÆbûâEë±RZ파Î=>Nþ±ü£4‘dnP“fº?vp W=œn+ëôN¨™¨ç¦ß­'îzPì˜úZv8ÿÞ’ª“c"Þoõç=ÕŽ2 ûÊE=à * ÜÈT–k™ÉRá1ýž`Ží ½˜Q N „þ<‹5û¬Ñ_'¬þJ ©­ÎZ[1RŸFF¹ï¡P‘· ”c==Ç'š k _ò®@°²AØYnü'z[âÄ71š°Ø_wª"r±Z;ý¨æCeßzc€ž˜Î´kÌ4Aý¯êß—6œ£¨Ã>is¸þ) qÞøø}ª5á'øO yÿá¾ßõÓamÒWô×[÷Q å wð1'Së2ŸX<SÏáÉÝéM6ÕR/!ï;«më¦,"'L¦WŸúFð“ú)£.5ìYÈ‘6³¿DfªôZ€_'_’¦i,Fç0¼É ü±†þSÏ‹xm;¤¿:Ï3ð'["j>LSßNW•®T©L¹ZI.s’:’UT¿l¤oáx«¶“¾.OYu}ÓòÉ®Žë­ÉlíÄ0_}xþ}`gê;\ö‚–7#ô…ùJ/¬~ÌÿxÊ4•X)ø)»‘˜Èã&Ïâžœ-ýå‡ÿ`.žI æïNóEãìÎ:£ñœ®f-Ñ$²³ƒU±ð«SAþc4ºå·ø×øía䵚î¥i§Ž›üÿéƒìÊÞ'ë/ú·çpܧ?û™•W诮¨M™¼ðS±ºãÞ¶µSw‚h=Qï) þ?A?Ô~ 6aŽ ¸íçê`t¡·Ä^º—¤ù©´*L¢þg”Zdi&qy7m)qySlWaé ÿQR½×/F]w2,YS*Ü#»FëßkÃUã°X±}•x Ó©ŸöZìŸsÇŸ'ã²^{™^8GaÁtÂKd§Ž9¶î n3xp3QôTò\ ['jÍ@—æór¬%#¯Í9`ó‘·QD–©8ùcãc‡Ïå—¤ö%xúeÚ-Ùû§h‡ÔX‘\óxµ–¼&û³òÿøøµ”ì'ýnt4Cȷ׃…sØ ± ÿ‘]‰(§ °=UeQÐIœy ¿R¸Âš\aIýhÑb,Àîàöz µ€  -³‹©Á³Hƒoh\% UW°¨+áSÜX³O#ûìë;UH MÃÁ„z³N/žUR툌GáÆpüÇV[^ÑLú¢v ›dn¤V¤3 ø“3þãØ]7ýõGô‡ >‡Á¯–àõ™=­”°þ£ùG:|N"|ØPô¹×ðF+xÏÏë_èrŠYîô¿:º)œr²¹„ my‰ wé)Ðw„åÏЫ ]/UÙKà–éKA؆c-aÌ×á?Va•— ¿ò¢Þû#þC3û;= ß5ŽÓô Õ`ð½³ÙÔZ<Ó3ø‚ >=¹¦—dGŒÔŸ%c Þ†¿=8öâldb7ɾ˜HDq(ÌüÁOb3 õg²Þ!xê?Ná%ÛcÈ_^’Å_®eZ,+¦)ŒpBCQ&ÿXÃTE>pl¯ž­™2þ|,Tw*xZeä0(ÀŒÄ}pÓ Ñ"ùce+1ÿi-üyNc%Ïm*Þù Õçåõg!ú_í¥þÃ깑§õ—:šnúsx‰ô@GýÇ(¦ŸÏ@c|†uv3ð=Ø'·áÁf1᪲>Åw:ÙÎqÿÊÓû“,~ÕIc¾Œ¼¨Ç2cØ‹2õ·4ü‡:Â@Öjø–êÄ™Ôå´„åaÄóµf°ßaÜÜ¿ý­rP<Ât⯦[ÐÌkOaº [ØIGËqôK,Hýù&~G>s·îA7ÊEð4³Œ÷  OåBòÈRú{NüVÇüï}‰éµÃw&9Øõ¿[žKñUªQíQC4Rµ–ç¶aê õ>Ö-%ÚÖêJU1ÝÞ]yG¾‘ëÄYøºÊ_Dáy¥•ÕjŽ]GånǤ7Yn4¶u´ö²ª<«´U?É6Ú$9SVÄB·¢ÿ(Š^­†X f³œè³6A–®«Å•;À4ÎòŽo„9}-{Ñ·iX¶–A¸‹d ¸È6lŒ žŸ‹?›?„ªhDLŸaϯÈÜQð/lwA¯Þà‚–¬åDvÄòYý¤jUÈ?.â§æÃàõ!k¸/¨é#¹‹ËÔ°¬É¯;¥Ä÷ P»èDË)@u|ñËøŸû܉í¾$ÝEE¥xkÊ7å“ÌDž5•|à8µñño5ÁüêÿöÔ¶ƒ¿Â6Máß/ÀþLÁj­¥”ßÕàÚ€àšQI'¨uñ^Ƶz熯ÎD”™køX|þDûàÏ;Ã;ÿÍJñ@²ƒ;n ÇxØÒ‹ŽòøÕXg• ÆêÚ; üjŒÈ_<“r0ÃÏàqÕqQ ¬BáГ´+ùÇïýwë©Ìãt¤¤Cà8ØKë½Üyúƒi„J4Ñx>£–±"µÜt¼kaââ?B`ÊA—üYµÃÿ÷#*ß û±Z_†z4Þã=ñöb0“Fz³ýOëm©ÿKÿ’Rz,zZµ‰Ã¸Û~ĉÁ÷Îf Të±÷ DµÉf&âß^ëÁ‚Fƒ¨uG=Ýþ–®m@ØšÀŽË•ßÃ#OÇ;lÔÎ…©ÿx!¶’=¢ßç`|àí¬îNíB7c¨˜/sžòP;¾Áìn¬mûaøá“›êƒƒ~¼a-½^ˆúª¶^Ê*²å¾DÃÈOÆËêZ:|dY&“—³z£ˆfÖ†¿¨næ€!ØãˆN @U<^.vû:„ÿ¸`óRŸð>ì'úÉlTACM½þm¼Ú`øó±ä3ƒñInðékÉ?¼ŒàZXg:ú„²útdÇý+£ŒÜ–•ÓîÔ;Éúe#ª¨Ìÿ¸DÊÓ>¥ ý¹î2íjjÛx¿¤FtX®kä‚÷Q¸øÉéŽüã•rNÀ—òtûã¶Ë”LŠú›,ÈÕÖQ#½ZêÚ;ؽ¨RIf®×š­˜ˆ;¯þ˜í…\Ê;^æÉ&ÝB>àÿÒǹéæ4Áqg’}DfQ"ÚXV壒¾¼¥èN>o!->¶Žê7<È;õ ýÛÿL¿K)/¦Koüwþ‚ø©Žd¦a,” ¨å©~õgý—¨Î –kdqìèBúÓ ¡IõìfïM¦dZ‡(Ö”R&)]ÅN<Åìj[ª«f´¦ÿîa"fo¬ßsÎ{4êÚÓFÉ$b~T%,UBý)>i¶é žnΠ쨊N6ŸæâäKÿöÈ5ïmWèQüU¦$ ÏÞ™|+-–Î \¨!Õu"êø€…X}©¹«©Ï>üçºKm¯ß¯ø ÿ‹þ ´‹š•¨ü#ïä¼Þ1v {S^E"œÿ¡(Ÿ'°Z«GX_žC&"AkþÒò»øõíX€d]sÁ¯.j·±RVE*êσ{ëï2ƒ’Õã{òÕä»àwòå‚ 1AÃ>ŠXò'‘í *§ûóž÷ÅóÅE­buzߎÿ8j+$z³ZAâëjè ˜Ã :Ù‹þ%cðjŸÑSëIüí†}DV±Œ½­Å¿ã­÷aþ`Øþ»íÔî²,U'U©qXDž5³— G2ÓHC·ªX©ŒÔ¨å7J”ÓßÒÛd;<À1|^úC‡å?oÛY«E~²O3—Ìt Õk4µS •$°Ôà?ZÓd:ÝrËÐKðµ²>šÓù!Lý‡!ºò,Ïr%EX­œøk‹ÍôÉÊü-ÔÜ`ê]^Ãüa’qš¯e­·gµ^»¦¶ur>ŠdP€±X©yèW±}ÍzGã1|o>¸€½Lí^‰·ó‡?Ÿ/Ýë|•gtÖ Äü¨è¯æíLÃôa)`Û¢n}¬);3\}ñÙÝ ú–B¿Û€š\sel¾B¿{üêònžaL£–]h?õÔ÷Å¢"e»1fz%=µŽá•Ö‘\Çf¿ÊŠ'¼÷Oÿ‘Evr\o%e(þ#/ïDoüÇ@yý•bo†ÿ©Á„«4èºF ÁcÕðÃr÷0û“<4’÷ð2þãŽ\NÿÝAÿñ\¹ß—§Ô‡·r±t5ÒÚwškð¾ áM\™$òÆœdßEÅâæ ý ^¯:㉆/gý®\E¬Y‚øÃ_ü/æ×fã\WæÇ#*â¸OÁïjT>JKþ‘CuÇT¦Þ<«ÄV†Ó»ý'œú…:“¨,âøžÜpÔ£©²yKåC\m›¸Âü´½JnjÚɤ²˜¨«þYŸ`wµ¦Õ¥U–ãMf~TyP™§’5z£¥ë„-m$‚ïƒcá|›þ»íÄ*l¦å5Q—”‡÷¥8ùÇØ€‹Ø“û²>*%gùMÎχýR q^T}I®³‘8š‰Ù`9sÈn|@Xmúk"t¼(˜”Œ鳡ǭ\ Ÿ?GßKNÜ^{.Þã0odlpüL:¹XüvpØ jdŠ®ƒðF;Àz;c®€85Ň”Àg:¸Þ†MØ’#pë9õã°»÷äQQ%Âúó·¶ŠŽiïPo~N‰~pÌë´´pêÝ´1Ø2/lšUÛ}µM›Æ• üÊ#ìMãó|ä@œRá?š’ul¦^£¤–ÿó%}ùE|éi .4˜;hM¥½u˜þýûrž¶øè¯ž‚0MEªã#†Là.ŽÆº½ÇZW×ݯÆÚ€…¬aw»È½Vs×Ð_} ³d;µ6ºŽT߀ñÎÉõ ãä]ÉEÿ’»Äø×Œø†'Ýxs“ä£2 ,\rgN«éUN® ó¤£ …»Õ>ù0ß7]_…†a \ÅC|Úrbs#7ˆ‰/¥ Õ‚z·2ìÈ9¬o}Èb,5¸~ÁÚª&œñ7ÑX”"C®ûhÿ¸³€¯"ÉÞöí®ê꾸KÜf°ÁÝÝÝÝÝÝ%¸;ÁÝBp÷ `!hp×ïéìÎ dÂ&ì~ÿÝá73 ºÝÕÕGÞ÷=çDů†ßÎo; c›ÀÍÙÊô¡þ£-*Þ²D {@Çæ£Fe½«þá ïŠì{ñÔÀ·©MÆaåK= Ú-Õüj=n—Ï¡·ü:ª+¾’Õ5Å3_¢~p:œ|•X†ôXnì¡…U gß„,e”t3 ‚ϰ®Q-³Ú<Ž8¬²=ÿ¼(Ù<ì~As¸Ù*¦«ì€·ˆ¥ô¿ò õ†ýëoo92ÓèQ÷e™Ò˜‹þª5³­¾‰½(!¾Šâ¢jp‡ß½Æ÷:¿ ýKò€?®4*S?xDËCý sŒÈ?R ÑA„Dßÿdè¯K0ÿ<»˜Fä½V¹#\@qê?úQ0ÿá}rb³ce*ÿñUŸ'òé~$â^a,1* ÕÉJ4>$*§>]/‰X†G`þànÇZyÕZRl|fð«æÄòñ¸çëX¯jè{.`Ñ6“õ.æêc3?*¹ëÙ‡¾Ï|?T¯ÌUÕ$’¾Â 9«°ÑAø· näI+±¤;@‘v‚Ö\‘~¢<3Ã^+švýUJþæ@î÷,|{Blt9'ñOñŒ¦ßUücáózžWKê?6²Æ5¶z<êÒs ^s‰n3O²®ñ§EÉ?æcC ¨¸¦?jàŠÔŠL7¢èë~x*õ¦\ùj„òQ8€œð…>œ ŠTÓEv¾uoc.d~G_P¬ŠØd/%LOò£Ä"WBÕ>;‰0sêzÀX¬Bu–g9ˆú‘Ç(ÃìÚÛô$Jý Dg¼Î~µŠ¯`üR±Ñå;þ£¼£‰6Þ°'ϲÚpú—¤6r2S¶:«ÜèŽQîÆ Œ”ÎÎVæ,´L"ü=øý¨Ç^ñ¼²+ÓXâz"ÞŽƒú*©öbº™-˜ÔÌ-¶õ%ÓXú€t¥þ|öþŒ]ìlëøUOÖ±;ƒ½dÕ¥ô­Hþ#UˆÚæD¢M8ñ[˜nuÜxb^C¶fâ•æÛÉl–X=à?n`åWÐu½=úê fjPßËäÞv-°Ÿ\ëÊ?n“<§ÿU3N»'3¶G“¬dVcSx˜‡fuº&–¥â9ÖKjTÏ©|)ÿXn>ÀÝ‘›ˆ*JâiÍÿÉüÁ„Ìÿ©,Šõø4äùèWRCô¦þ¼§ÕËQôꆠ_AÓùkÓM^;Rá?>u_—åPHꢧMû„Å(%5*»ûüâü(úic6‚IÏå’#å-‰~]%àÆŠQ?¼a®ãê‹2ô{I…ÿ8 ÖdÏUDpóŒ‘X‘Y`W׉Iãa¯â ¶"¤‡[¨E¾ûö‹¾Od!¾£®“Ó¬1ꃾüA\k÷Ojû…“D0 ÏåX~mç&Ç>|îjü,*¶‚ü¯ÇnŽ!—Ùþ£LÏ1k)þ#ùCS« õè;è%Ö-[)|½›ù °œr~Wÿq’ùQW‰óÎ’ÍjæPìèt!kM•F2¢þäOÈhãW[ÍAÖ³~å%üÇü[m”…§ear¿ÅÁ¯¿a•úStVãdku‹ßž:ÁÎx2“:ÅàW™W~üjÝð»Qå˜ÞŒN\r‘xî>ók××G»!Á4Å Œ¤†ê¾…jƒÌ£ÿ‚në8ê5gç+º3‹u@†e)»>Í|ª =ˆÆê1'”ç\;øßû"9ókCúÎÆ§~0óç"âWâFwÕLº¯ÞúgpuøqGð+ý~‹ùƒ¿†Î½r$¡Ÿ]d:ì=eŒE"ÓóioèS˜X Œèõ‹øÕ ½>(Æf™.y/5ãÉ?rëø?Øx5£+*"w[˜y)ÅBêÛìÁJ¨E<ÃݼAÓx«×U7çß¹²dóU"ç& (É6~ºHP~®rÒn†ÿ‘ÓPðñ¯å™6Ü+Ü@ýànª“r€|åW‡@…–ÑÛkæ¦|#Òi6÷Ö?NÍ_{vpŒ{ë›’^§¬Ô$â§°'T¸õ­|²çGÍ$IˆŽíXË%Ò ô»àYm¼o~¡$ ùDz…Ìr¡@Ù\ÅQˆÛÛáÓ£òæfæZ?„á?Ö‚_u“oy–›ñ9_è;ÖŸ¬«“Í”cÝœèëÉ&ˆö'ûû`‹–sßË`ħc›¿À÷…æ?édM®«Ó¢÷‹œ•Å仂ýÇjÖ® ß½Â´ñ\ ÷ùa’r‡7&9«Šþ6¿öžn⟛µÉ><é¢2Š+Zó C¥é§¸¿RÅ\GZ£â¡h.KBt×zGéߺ¶\@šƒ©(zgÜVe¨ÒHiõE#;dh õç‡áCV˜KéœÀhÑ¿}ú„Öj.qÇï²µkÿŠjÃD4bªF¼ Lw‘ÝäX%™ÚX” ÉÜÔž;^ä"¯èq6üj›Uü°0üùNýLz],ïÊ?¼é¿û@¶Æ &ëž)‡›I©6÷bn×|4Ð[ðöü([ÕUßòd~m=:¢ÌáOžÕ<‘+ÉZìþinr³ëŽÿ{_d¤ûr×ÎH-ÏPÿqÿqüj:ú+{~Ô!æ8Äuýõêõ»o©ž o¦ƒÒ×2¦ 7Ñßöt™–ÈÞS?ÿ~;¢#ªŽ¶!=#}Pé_²M+®ûÉô¶y/ÛRÓÐ)‚ókK£ß$F }Û'´žëAT›ƒ‘öƒ£Xþ \¦ Ñám¹‡:)ü¹ézöa_Þ<âÔýÄ÷MA¶oÁ¤t¦ê0=_;ɘ¿q·›A¯v±¶IF~ê?|DV­èOÖ|MþñL&&ÿè â ×ý/Œ¿(@Å@yc(ÀöÊs±Ê›Èv– §’ü«VïM7í«~I~E·äÉÓÛ‹-ÿ“_q¹¯7ä ¦\ ü@Ð[À æM·Ñ»3 V?ìü#ž¨ VÿÐF='è„ÿ`$§:¢qp îá ÙȾSÜí4P¶™\aoã±xª½ µ}é• ä1rXÒ>bËå`mA¬Rk·¤ŸGtôWéƒû—…?σe®‰9D¼ÐR†ÄtÿXø£çUüÊ }þÇùQ„Ý¿ºGçªØLÙ8…÷ËŒZª0yÎ ´M͸ÿ•ÆgíGüJ lëÿQÿÑG0®«1v-ŠL•ô/ynÕg~Ô&üÑê?ò¡)8‰^j*Þ ä-—©Çúþ–ýéÈ`áý!ø…ÝôÊÚͤÙö`s•ðý©Œð1ïPÿ1YÍ¡ÿÕò˜TçùwèÚ¾W\Þu-—ÛQO Î:ƒL¯ÿíÁSKƒÆ¬êذ4[A‡R`U g?+ùÇbúŽ”5½Èæ«äðÇoå`×z‡Gõ NÅNÚ{•ÝÈFœŒç¾dE#Ì£ð2Gð˜ý©?w×ÓËÌŒbê¬Õ òÖÔÚ¢j –ë~ók#…â¼Ú Ò•B¾2¶›Ò™‹U†¡¸: ×¹‘§ñž‘CÀÃúà?Λ1̘øÆ(ã²\MýÕ#òop°¶–o•^óÍ$ÎYÖ~zg½B·Uzø"ÎÙΣèÍ2[ÝÔ ¦^5$“›`â?nËmØŠ2àŸ±ä!×ÿ÷¾H®m§žú¯Ï“Ôè¥t}÷×ïFìÿ©´@-ú«Nb<ó<ë±ÊIGýúÝHâUíaÅ?_ù#ýì$¶ø¦,Â>Šè~uŸþíe©ÿ(-Fé?CÙÃ^³‘Îü椆SXCO×ò°–\¿(ûR á'[b[Š¡ºóÜÚ-‘èBóžw-ÔIY@ôû·ÄrÖö†s}+ËÓÇo¾,.„}1?üîcý„ÈÅ»ƒÚ¹mD³eÕ^,ñTÖñcÕûÄúÂüÞ#ëùµK%õÕd ïÀ”NÁàz€S Ç1¯–üã 8Ù*NÝ(X‡ßŒczxi”^”Ÿ¬Gä{‹Øò7ò¬$Ø1w…ÌÈË´;¿˸Ô툼!ò1ù‡t}óÖá\nO½B•‡Š¸îäsÈ?@S†óði“¸û#Ä×àn] CJVÿöôÚ+ê?_ }?ƒ¥÷$º/J¼Ÿ&ý!/²\%.-4G³ÜjOwKB™Š7ôAùÇzêóËKX­åØ5ëè êÕýí,ò‘ ¬u!2{^÷F¬¤goO œL ?¬ìÃßê?êèMÐ0Ôb_N`++€€Õ/I ÛHα„ã7ÌÌÄõÉÍ|æ$4¶¬Õ^l¹í?ÒµåÙ‚Ãq]—ä‘ðþP@­W#és3Ž|à_Ï¡{â.fm±nâ]J“LVI±ø1Р.'§Lþ™RŸ÷ÃSùª×!ásÔw¡—ú~µ…Ù­–ÎR¦=·›y]eÂïÆ¬ÆC]ÿÐT›‘‘¿â´>0Z¨nœ…ÝêÌD?ò™ìôOœiå¤÷º'8εþÜ2Gr]ÃÀßüðHgPl ’/]ç¤ ýKF°WÈoÛ⿻ɯ2;O#fÖ$_ØE¥^4H·˜ÌTÙìßðÁ¬À;7KLŸ©ZøÌFÞqÆqM÷ã}دm7RÉ«ÆUUÝ ´âÒ‘«/öþ ½sçñßXÌþвáO«?å±yðÔßè 0‡Ž‡©¿Ã¯Jiƒ…l²q‰§/·kÉ?š“gäµ^Âî¬G ¼nßt)L%kA—”tfºÊ\ãü]–óAåCê?îRþ h{â¼t¯ègFw†áèMà)ÔÅ%af¦àQ’Ø=Õ)Ыòèw'šßðr)^¬,ó?œò°kÿ{_äжj\'+= ÿÝú¸š/ý#½½¨.„n¯KïˆDïÜ}Ú:küÊ?éé15š¼õ=xc›Ð_õÒ¼´"Ôv„A¯(Öþbÿöz>:eœ–±3céK^ÕÖè1±Ûþt/iIoˆ¢™kþÕ•ÚŠçæbòJ~®7çòµÛ™FÚÕ±;_dA¢ôúòŽ>è_-ôÏ?{§ß…ð±±Æ{Áa ª0v‹pèR]1ú@Žtl(j¸Wø»¶Žéʶ42úÃà6î°'Ñ6*¡e ÄÞN…wØ OsJNÔ3†³ânt ©}ë³sÄ«Vøì„·¸âUüZ€wøÐ(cwŠ?­?ëÐu…]8އÀÏ%Å"6%ƒ[ V€}níÇ4–ë]÷\M.×ÔH‰Ží@ûø§–‰lôz®9°('°Î@°Š±koÁkÒÈð³¨ÝH¨:ƒ2v)‹ ˜œ«wþãŠ#Žè"Ÿác§‚¦¼+·ýÇбExµ'ä#¹VXÿµ -O¨eÞNcw X޾+>jŽPûØü*;–OÝ)BþÑŒ}Ê‹¾ö½Jeî3›[GñPc%2g£‘r ÚL¬»Šü†›\j½4":ì±ÁúÝm\ãHl¿]ˆÇXnúš'à|[`[~#Ì]—£ûIСjT·6âë!U^öfÆ=8»W9uä£Áõƒ¯Õd]ÕUjð¡ßÑ+}3Èu›è«ÿý.ýýëzìd |ƒ­ÍÌF¬“|æ)¬~tXæ«x¹XѨ™8Jg©"ËOýÇêÏoò¶ÄöÃâ§ #àppä©Xí[ÜóTâtPÁ)üù~-a/;ñéß~ãï戤iÂ?˜ÿØ–p¿P’!3vUcóÈQâÖ³ùG7ž|sVJ×¥ð3÷Âð»–¨(‚E΃Ŷ{ɴ箇¢¦žƒ¥3@2Ò?ÌŸ?½ÎµFR¹óÍä'Ýð—é%Cíce½u2%YoK!,jsP9*rT=wWa¥¨9Ã:£Ê1§¡ýLç”mø‘íøƒ”Ì4›j½—z48ºÆpXËÉ6+wlõØ@~b<Ó‰ö‚Ç̃?߯ š±È‰È+¢Á^xà 'ñ£é!(µ½™ÏÉ?ÚL$Æ>.PM¸Õ—^ô—ïš5žSwæt£ò<ˆÑ!!*s¸ÿép÷>DAzÍ®ð*§ÿ-9£¯Ñöa³±‚þ‰óéÀÑýï#zA¢þc==È?>ÀMaÅð—ðGðqÍeHO-ú·OÀsQ¾øËªjB74ÊÀ¯¢™#È7–RIW>ÙºóÕø“ØôOÜÈ*KÑœ]æŽ ¨(Æx×™ñe~”úÆ-ä©s ŒuŽªúÚ (£&Óáð ÈSWúùF!®ß~ ¥ØKtùãQHWÇÿ¡v·¯ë~3i]…äÌõâ™nR äcš©è-ršÆ30í­·pè=Xÿ.ØßhªÅë=%4“ñ”Û\’Á¯æºø»Úøah9»ÂJΓ¨}Ée6“÷í¢²§WUÂÙFå1ªå9ê™Ítò&»ÿÕIðýÄtX9²ÜïºãÿÞ‰µýßÕ:µ¬ÿ¶ÿˆ¡=b~”§ÞZôQ‚Õáýé}uâ­%úÅúDHÝA–é&›Ü˜,žêƒÀÕ#Ñ…6·tÂL×Ñ뻞gDv«…ž¸VfÁ.Ì3 ÊnÒS«¢¿”Ý w¹‚Hñ©lAþ<•Ö_Ë zc vQûVÝð‚ñžG,rSL`åÝTao“‰È+»Ê˜bx.홾˜ü£øì#"T»GÒqðü~ä7‚£þýØù—ô$9/«G ÿîÇJò ôW¯À^ìù磱÷3àí<мl…Þ¨7Öù£Ü¦ÇgGèÅPÃVâ×1ün\ò™ôä3oX›T‚HtW¼ÿS­;Ú)·ˆêÚÏ*si7´+2:‡]n‹¯L.×Ìi ØÿuüÈ "È«ìç$®y¼Êhì~#ùGXúÝÌZ4qÄ)ìÊ:˜ˆ<á?áÏßr¯oÄ:qŸÈ¿qs7Viçs·SdS;Âð{àÏ+‘Íä§v»>wö€¿ß¿›†ü£±zO†U˜ýóÆ›œ%‡ûÆîm ;êλ[Æ8)"éÎPûX€ùç鸧?±ïK±g—°ýóøî"XæÊµ´v™¦éuÎb.$?ÑðÓˆòG€¹¹¡¿šj=K$cíÊY›O4MÕ-ð>I}ÆéKt5·¨ ¾ÎŸ•5ƒÔX°Å?¨ÿ8JDž_ ä“?j?®øFovðõç™ù™Þêá­FPר‹ü¨/õyçm«*úÝ1ÌŸígî£úÃâ“®ðé³ÉwBÕž@Zo0f üùz ׃À´'ú 7]îûµ5ýîó“ùos)vt ;ÔV ùNÕÌÑ–þí¥Aáìþ%CTOê?âS'žŸþ‰éÀ«NZ^Ää)¬ ÎÞV"˜Ÿõð Í­°G[ð™t F9Û©ÿ¸@÷°û¨*Žð–F2çÑqÛ߈\çWÚMw¯ÞTü-€¥8c}Å›L†yˆÿ€ xø`5Ýf…ï:êgÒÚò4ª÷W36ã?b¨õf*gFæQõgÂî æ“D¡þ¯£%—`€ÒU±c3yíø{Ì}*×»üÇ3í¦ø,ÛëµÂ#,–‡LáÜÁüÁ~è"kv·j8'QÏy‡®õÕuê`Zпd‚éT›`ôV‘ÙfSäÒ3Öæÿ÷_I¯­Ò¹Îª=ÿ#™ë»_û¬”X‡ÜºüyqÅሦM wÉ5f¢Ñ^9~­~0ƒO´ 3ð¡â|¿ì"¶ÁÈÏÒÒS—C*YW,Ò›ÿÒu®Ô#ñþöEŒRô#¸~õ^–Äßo"+ñ“¥D“­˜^¯Õý@˜ƒÙSÇ:Æ"µœHn³UÑAÉ„Wð+="úÝgú&QoYÙ†ÅÚï: ì߇ϸmþ(Ë ñ³ÎR!O*‰6ë¿úŸ¹–¨{«ÍÁªî¹Š‹ÿˆ¯ÆµØ»<å$=C8÷¼S¯Áß­Îɾµ¥Æg]ûJ4÷ ÌêˆÝJ˜€ÍXŽyìïr9‰],þ“5bÞÊèÜß|Ãjð˜8ð*eñYÔ.|Àl:·^#/]^Ο÷†sHièÒ7Ìþ%Á¯ÊËÜåâ@O®¤ õEAž4"F‹IV6rÄó³¨&ƒÂL«£ùaEC4#Ç=€"¬> deÒfùM¡?pò§3 VFþÚ(Emÿ‘”<åµ~ÃÈ“çŸçûa½Âæ?.€æö@?{ݸ nÒ“ ¶B54ïS?˜©°3¬Æ BÍÏôœï[ÑC]àêà1‹€_y»qÇbm2ž|ˆzCÛZôv§îžõ Yƒ:ìó,,éït]/j5à¾ç8ýiÎÃKo†óÙJ7±¸j»\êZï¥Cˆ'ðEˉL¾©ŠœÔ¨0ÏÏbÞà)ógT¨Ì²NQ=¾ ÿñžð]èý’Œ+»¬2¨Vt¼I#÷ºî7ùGlºØõƒ3U3pëûÌXl~õ'KáÝ$øS+úïúÒƒ¸5s!k ŒNdšê-˜ÅPúS\§ÿU~G¿Cÿ’ÞœÌÎDcKä0朥¾3?½ßŒæl†R ³s:ý†+[1a“ZíÉNš™o`àžÊ©üT µß¸¦Jѵ ÿG_$¤ª;·‰­ý¡¥píÓ¯}dTížV•n‰DMâ±J¬âÍüóëú>jB.Ó¿ý×ü‡¿ãƒ^—.è@¬>Éä Ñïˆ50Y:ýK:ê!¬MD®³\ÇŸÔ‘&&âµçGu•~Z%ôWÐË­ «âEæG ‹ÐÿIý ­^Y]mÞ~‰èy*¶æ©ÿX‡Í;,cR#ÔOf³"piïõEðçƒádÏÉO#?„ê V{•³v Ä4ÙÌA¹O¶’éýÂÍŽIò(¸_:ð¦ø¦¬˜‹|˜±±æüÇ|äîX¿WÒ3\þ¼¼ÑRb­Ê†mÙS“gcŸá>»~毆«Øˆ/YÂgî‘EÕŸâWQ5í¨Œ„-AtÄÊd½²d¹Àwr éµúOÇ}¯ç¾ûÀ9d¡/Ü+=¤6 dCi_ôÍr?J°=x·=xà` Ù±aŸ¹Ößå"øó±ø´ôooÊ~vàêOkµW„á?Î:LÑŠn¾ñaËÿQÞ™xp¢ Īu—ÑTø#»ÿìY06M­†GN~Xmó9ᦇf¦éQ ÕEß´ ‹[L'ÿØ~µü+ª¹þW;@®|±Ö©Ð<åC1œ Ö"ÜólÏh"·„zÒïôXÔýw„ßÊ]-%&~ÿq‹Õv©)¨tŒ²$Œ|aT»C°}Iè½±{_þ|¦‘:”~÷‘Þ™}>åÉM•u{0©‡è¸¡z¥:ÒßU8ƒèáÞÇ<¨Jš­©sÌ¥¾KÑLàn¼‰’„šßvSà³ÉÌæTñ#—ÜJ-wWsÖk:«”³¼é›»´J@§ÙÿÑÿqÎgYb#yÝõhˢ߇'«nÓs¬¹ê.›S ýn>wy˜j¿¨èw_ÁS7¥Þ›nÁL?Nþ±€Œì"ùb•À˜ãZï¢ã‚~Žç Þþ=Õ5dU4 -Ñ閭ÿX c~”]í¬ÌôšƒÊø"ók'š3Þ÷ :±9D„¾›HŸOë'tÎÜhð°y*§ô¥þÜr–fj|QêýΛ¬wÔ’´³>Á÷O0‡Ãþô¥J>¥ù'§ûïãô»å6Wþq•þ»÷e3"œ®¼I;äd2¶yôßíDàz³(wšÖÙ˹úÁªÖAu_÷Ž¿¶ù–È빜GK==UõG\wüßû" ú«­` ø´¡NnD¯% êþ2ºŸÞJ4¤IIVÙÉüÚ‹0ê{õ£ø°0ˆŸ¯}…¡%嬋0 e˜UNs¢s›&cË'¢hF=úÏúïRƒ÷/ñq""Ô¦`"õå)­¡~åÕ´X&ÊÞšÌ?ŠSÿ!Ecb™Ièkª`óÓðµ4N‰!°Â‡À9<à¯e[tCÝþ~!ûèb®ÈÇ©zÁ _ɚшÅs±RkdwòÄàoäI2±Šè_rÖ±_“mÓSl—­'`÷¿ÚJÖM]†‘_Öžà…ÜnÿÄUzkî°)ì]˜[Wœ_°_Ñîâ/÷à_¶bÍÆQŸ·_®%5;vëŸdÚ;íªŒ¥N’+ŒƒçÎ~ÕýÕ&zwů„y„ïÌ//üRžUã+±Ã•0–K§EAwýZG¿Ÿ+ xQx©èi ’v=˜ÿ(¤ò®÷$WHAýG|“{þãz¿ºÔ¦ƒq/‡5¿ÇiŠ˜ëÖ Ì›<£ ñþ lèS¼ç&ø©ø¦d§D\=^¨{n¥×‘i9Yà+Fà?쾚먒٠g…É®yéE¬>ŒðHô«à@ûcËÛQ»ñB–ÿ-ùÇ­g'ÿ(ÌÓ,?Ç>üc:Öò2ŠàEd;Í(ô/yG¼\äe(Þ#?Ÿ´è¾(øÝH査ÿp…ÑE îî¼U)8’¶(õ|TgléLz2¶¤ãßm뢕Ù9æ£)=0™ÔaÑ½Õ ÐÅSz…Ö{ ¦à·¡¬K7¯Ó\ÛRz—·?/`ú[½Á\Ιo¨©¦?$õQÍ:XûŽä3Ûððkøü ò”ë×r´Ð¦ò$†uÀŸ7•ÑÛ^3 £ÎdŽ2÷bA_ ±Mëìbå@/»Ò2¬(¬\½í72003%a®õŽÀÜ¥zig@7M£¿ì¦Î™­˜ëfõàY `H#jI.Ã~Ï0çÀÆâùž“Í@qVM 5–ɬß)ª п„Ã0_5Œ¾*¾l­ÒS¯Ÿˆ*É"(v¯RAòžzÄÞäG7@Ûá=KÃOýfæD³xüêº< ~5ßå?>jâ¬Æyk®›È8^ÍZLýùzF¶£_IIòsp*±¬åê0\ÍPævÇlÇì ÎIJþEþÚ„%×öüG_¤dþù"×IˆFxxŠÎŸ}\BøóŠúI½üÇ7ÍúÁót/9Gÿ«¨yåŸ[§(O·+;×{&û‰{àUúÝÅd’Ñd-±âýGS=-l¦'JŽî¨Q É6Ô–ÑýeW8õµ²<ö¾èïÚ‡u¥¹èWü»hM¤°.˜W¶õ»îغ»Âëœ8w¿ÌÃ\°I2©9ÃÿbEá!Š}ㄯÁ®¦%žÎ•‰Í·5¼Çø.2yª=Ñ0üÞ–Þðç'©ÛÏ…Í3Ð , Ü€7ëTBçb[È•(ŒíþŒNc¯^¶¹MïO¦P;yW:¬jb|úÝÈDöþä À¯ví¬‡¸!7‰*?UðŤâ{™ë2–û³½¤ü¯^³j°}=ÿq—wb$ïØ<q{t :Y=×C¸Õ}L­EgšØEîç0Ïa??U-W1ràæéäQñîb€J¯ì¾B#±õñ©¶JCÕÆÊ0üÇ1ÇG½š¼lµŸß'Ö·sÀÌØë‘XÏO¬ÜŠj ªÕCÁglàéŒ!íhÜ¡^6r¨³ÓˆþW鸮ôê{Eìscî¸2?}…Ól»Ç-=c/1 $Ÿ¹þÉH̵–ƒ™«èwCÞÉܱ†ÿHŽ÷Î@ŒÝ¬Âúü5LaÕÌÝä >TþEÂÜÄ»U#ºŸþ¶ô"´‚êÞôÔ5dïÜmsv÷8{•| dθ­&²lñïjÍÀúbŸ[QUÑÔŸŠl£Ýk LÇ›ŸÛj~Â[1Š£wðƒÀûŽ{Õj®©»¹ŽúõÇÌâ+AW§ÖÓƒi%_̯ÜkSð«[x¿±øÔžL¿êº¼šÌÿ˜düÁ^<ÀôÇ7p¥©?lKE÷yú—Ä¿ŠÃÌØì NËÆ5÷’÷¬„óyLRD)c‚k½Ë¨Ÿïp.vß»™5è­ùÉx¥Òâ/*ÀÈ,€á>Fî6ü)€'3Å:Ž~·¾ùdo& ·Šj9AF¹ØµÅÑ_ÙúÝf {¹ºyÆÕö¿ê~eQGòžjö9–›ÓØ 3ß›\,­ùùú¸H.¾LZûëïh—Ä[Ùw¬¹É¨¹6Yûð=ðµ-y®)œC÷™c˜Ûê§.RÞÞ¦‡ù‰(ëƒÜ‚+¦^ ä¯)”þúôÿìÿéµÅZ×ÎÄåÝÿµº¼OO†~7ú«f¢´x„ØáÚÝŸþ‰Wôs̯ýµ»‹Ët¹Öt9¢Ç+j5oê}èÓ•Lî•Á¯ÚŠ…ôsùì𿚯ÿIv$‘}5™O^ÑæÀ4‚S ­èyX'‚ý¯2j#µzb0Ö`¶¯3WZ5&-²\¢µŸâ5±Ä!Óû‡aŽ÷úQÑ–S‰ÜÀFm² š*@Æ0š?•¸þ‘¯Ìô4dxÓfŽÚ^y†(»–!+µe¥?P4]ÁÔÀ–úaçS‰½4ø&ýËn鹦šäW·ù™,XËtøa „ÙIEÀ,Ó<Ñiªç7áY.Ë­¢ÕOû—¼wDÑ“+k@>”þ£ 8²=ÁñˆÖ:,ÀüÇžÑ6ÃÏÔ‹·4‘| ‡Õ™¡U8^òÓ b‚}äjvÿÝBì—Sí2þñä,P/Ôœ]±Ý“ðTÉɸ~gížaúH䯹’ôO¼ÎÎ5Fÿ–…| -üù7v µºM¼|¬çŸ²›¼k™R'Ë´›£Ò ü*QEð¥YDÆ'øzœðy|PБ–T$A_›þŸøÕg¸‘%XÞYàSIÁ¯¶†:݉±X‰Ø£*0â Q&M#BýàKÁîd^à8îÌÿ¸OGø÷ Lñð°Ï³ðIóÁlc‡ª÷svFvýnªô±ï·ÔªÐõ½.ÕØÂyÆJçL?_žˆÿ»˜’{¿ÏÊîê%QÃPý‹ùØÆGdE½èxøÁð"ÏØDÿ]Oô¿7©¥³s‡uè|ðR_á?ƒŽa;D>ãAÆ’Mžw½+ݵѰŠãÔ3£'³u'ÔBcV=S[4ÆÛ¨Ln+ºÐ#UZLשxæz¦½tèò¢ 5ººôÿ踩¿æ™íƒUŒiò~ ƒž)uÑÖ¡Oâ sý‡ÀReõÌñ5Z-ñ%À.½Áû0×&• ѯ%ÖšÓÖ^m Õt¥ÿUkø÷d0Ñà.f @`ÅpçjÇðÕ2‰ÌfT78ûôô{#ç¸üÇíó[ð”Úñ.L—{¨¸\‹gëJtN7`j:9QÿÛzAýG3ê—ÁÌ¿Ä^|“Ë8ý ˆgÞüOú'æd.À×Y ÿ‘ÇõëFè‹Øðçùô;ô/™B?났âCýà=&J1]‹ú‹þ#Àñ™ ¬×üz,K… ® °vÅMVæ”=‚+#taÁ©»ž¬z™Á$âÒr†¼[sEö€©xˆï‚þªG„îüæfCÁlÖâ?Ú`W ¨¹è8‹‰¬íƒÕû$KÓå|ùGˆ†ðçWúQß(*‘†ë°µLyÕ0ÉØÃçœ÷Ïð"ø,ß;òðµÕ7Ûäê.óaã³ c툊ŒE¾JQ–Œä*<â:T3ÉŸâEæ çžOë-¸§jÜé}4Hé8«yÑMÝ%»‰•xÄõ®$û˜IUâ>¢_ySÔü)~K»­0¶g±ºî ÑùÈ?ºƒÿ¸:3ŸX/ˆßÏŸ-[ÎW Ð%Ä—ÃØ¾DZR±W¾äÝÙG–r Yô*=Y’kÑAJÜÆ2Vy@ë¹SKŽZ>#>~oþc7ç­º|¿ ~þ‰;³«ÃˆWá#òQM‘^¥0×ïÃ\é_ůÅ Á ¿Ÿ´X¡ö±>èk éœTÜM¢ÆÂ›ÕViì@ÃtmRsøœæAÔ¶åè9U‚n0™°õµÐ7­ä“ªümþÇ7=ûnwÊÛŽ‚v½nGÁÙÌ:¶{S««z]ù÷/™Åg »Iê¦úD7£ŒoÚð®0*øÕè`_[¿Õ¸ÂGuCW<‚«Ë@5özfƒÿðUÒ¿ä,Z¤xT¾øp ¹—]†W°Â2䱉©Xè[œ’©ìßc½Úz߈ÚÈlæF<›Í ì ¸­fãé¾ûÁø£¼Ä>¾«ÿ]ÿöªôOì¦?PÁÌQ e #OS˜‰B¨’ºÁï§Äƒ¼Ç)»¿Í ¤ÌFÅ•Ò|FRKÅý®ûeÇ^ýÕ)v¿:eŽ3¾ ?ãŠ*ÊŒw'}З¢exö4üã- Ðþ›ŒL))õƒËÐ Tgÿ£ß Ù¿,ôO4à¶êݬRîr±Å|w~•€IOßN¬¼Ÿz—èÅèO5MWX‘ f ÎÕMìÃmô»'å—ÿ¸ªÝAÒÆÃ±³³å`3Žs=Û¡gØÆ4úHT:ަ#ÖSÖ_ ÿу_f=ó5ïÊ-òVÄ„¾†þ?™ÿñ;ýç¸NVüG×w!§#"_EÕjÙá?ꊾâe0~uÍÑLŒ÷¸­ŸÖÒüâüÚ Ç;&ð|CoùVf0†Ñ?±1ó?ž‰²ˆü þ|L¨þ;á]aG=;±é>YŒ¨q¼‘…ZîíZSÝæ‘?H¾a­ÄÝy­'“ï†ÀtØ}_Û`õ3¡¿jŠ g6Ѹ/Ö9'ËÉ9È!ýn±UTUù„ݳµLŸ9ç¹y·û’3Œ3tÞÛRðïáhêH·p¯ðƒc3ý¯Þ“ñ?Àöy’c·÷…*ÉžåÆ»ï†·{/çãÿ4c—ž+œÏémÈ*q²oÁÄäÀ‚%‚A¿f¼4¾ ·ñ%ûXS±Ëxår€<þ3ý•¦in :—ñƒù¹,Ô´#XNÔ|¨‘ã-c ¹Ø8,ÛÞ´A`,)åk=¤·wÈsN¨éb§|Çýìe¿w°wÅñ#hj;ÎÖŠ{ÄòíA^zñç}ðT™‰Òp­aéwO0Q©¢¼Mõæ0Õk~ŽßfÝ“€×4‡ùb¤Eûtti¿ $ÃÙA¹üj9ÁsÎû× þª¾^_U ÅîJ‚`vðØ‰·ã‚[­4ÛX{Q^]‚Ç-JýG ðÀäÔñUZ Ã[I†ô„øÇ†ˆLõf;êã÷ƒ#-Qó`h†“xSÁ½ÿq›×ߺ »_ä~2¹g^Ø‘Xçʨ;FV¨þ‰ºè‡G=GV7ŸxC 4ç˜î\_w¢çÈÎ/äÌ#ªulðI¹ö;|²»ºÉÏ ¥ßõ«Ø£Îìp2†cÆvüdz*zÝÚæ'ì])üǪ*öªù°ÓŸ`hjaÝ!é†Õ‘ùQ¾®,‹ÿ˜bdƒ}xA¾Õn½&ý¯Ø3oøóiðç ­„0*ÊÙÄÊK—ßíÌ}úÓÜú¹[ŧ§Xmr›Ï2;>å8¥¿àÚ<ñöïQö¾yÈËÕg`Îùq:¶û¨Ø(³aÓ¯™ñ™_«™EÀ.?á '¢»È*»ºÞ”<ðçQˆ šrz窯┡[_™‡¸ŸþTOéÓ5ÇŠäô&¹e¡ãÅÝ74/Sÿ‘ ý•]|[ŽCÁ;Öå?kWÅcÙŒ³Þ“éœI7ÆMä§=Ñeëä¹Q*÷t.¥>>§5JݧÊd2swÛ›x‡ŸÈµÆPPÍW†úŸð¹¨?_ëÚ]ËÀ/׃ü¥/œô/ɉZ·† >k6º´×QŠþ%gñ gµÔ¿ØÿÊßñD¯ ²¤¡]eŸˆI\›€:/™_& ÿ•»^ý—®³®žƒ·ù4ý‡ÃD’ƒ¤·VB?Jײw =Q5Œ ÿȨuÔ”höèÂÑÁŒ!ËKböä45 ë%0†ËäêŸø’ü£<üGtõÛ¹Xâ(Ìr/l…?yÃCò…BFblý;8›ðŸcŽ< s›F"J®Ü­[0Z´Û(…õ2¬÷²^w¼ßoø4áìâ~ýOì^5îô.wš“ëJK­å¼Ü°µ»ÁÏî hª-è².Ë3ÔüìÉÄÖžjL±Pǹ¯ø³œd@Ñ_ÍáJ÷Áªô†«¼¦2„7bo={PƒZl!ކq“ó­ Õs°âS𯓉ޯ“Œ§žý˜i€á¿ÆÆ—ÇÌ„­ø&ü ž¡\ÉH#²¢’±7SŠz¼ ÇxtÿCº†â¶“ø©¦T’|d†^igÔ°u©ó'sƒç¾FF7 f§qæoõçãÐt3÷Â~ï0–Q¿ ¸á(lÅiabñ+Dõ aûß›1Ì`u}é_² ­ñfžRiàzÆMµ´ðƒñÔðeEò†fð¥’(š6ƒ5ņÿˆìlCýà#æ|€EÚ…êj“ŠdÞ'ÿ¨­>ÈÅ®õ.8ŽÀ<&¶n¼VõƒÐP»£gª 0›^2ûÉ[ÞÌ™Æï/7³Qþ‘§1µu-µ u¦› ‰.ã3?*:1‰]!4QœόØäkY­=Lz²è¼…Š©ÚxŽ'êGÿ’æV3:ög6sñ”ý‰ oÁ•\þÃO»Ë$4jÙ‰rf%L2S£Ö]ÄôßfRv®™Ö üÇ ôbƒÕKøÖ•/QÓC¹’ëȇgŠ$ÃzK\›ðôE&m5Ö_‹[hd3»¾ûëw#öÿ˜š7ó?‚ô6bÂ?矿ºÎDÛ[úqV=±eþù·®94QÌæ=3@’Mh¸T\sC§°þ<®,+‡ŠÂ[¼¶žžw5Á°ÕB¶F¿[—þ{à|¿ÈzàM5Eô¯V+¦õ£6¥vjùGlUBÕ?â)Fãžsr¥ÈgÆÈ̪?ÿªï¹&©ìn Ky`ýûà‘öÜ îwV|ˆŠ ið«§Žeò }‹óaES™×r㞑لU=ƒí[oW[Æf=[8OÛKg¾7«4!çð&ÿèwÌF¤ùšŸÀîÏáš7G;Õ¼ÞIyýU韬Y{Fÿö”ê$àLvª(¾¨kÏ¢*ŽêF:'!î?Âå3`õÚ£Žý""„[ y2±ÑïDq›“»lÚ5?Û˜}ÀžÎ‚QLû‰Ã›£Y®OÖ—µ"¡|‰~ÖüÚŽ×zqyƒX`¼jì?ìΓcÔØâzÁ|ºeÔTwÉ)»þ>c_®µ­qQÜþ~Õþ%iÀæþ ºž¬J‚ÙõåÙƒMN$ºÔ¬cmÇæÝd^E s…6Î…'…5ÏläýN-ú;Ž$€öçNAЦô©1­í%4aóÉ?ö™Ñ`l?WW4ƒðnd ùn˜ÍÉ“êzÊ`¯hŠŽ`®7A⊃‡µQ>Æ]5˜Þè£T&³hÎ"êbΑè»Z™ÉBŠ‘Â[¹Ã œ†:¨×ùá)ßóÀ®ž‚æöT Õ9cƒÚ„þª·ÙIÕ¤þ|$LÅEtRWȈ6Ÿ¿Åc5A—öœžŒ£Y±ƒ*÷]ý`mô»ƒƒ• FC¸ýúDyÙéÒŒŸÏ@O¨uÔ_¿1õ£‰'øÕ&UíE…°QÅâJÁÍ?““]GÅæÏ‰m³Ï€Ùˆî)T¼Æ7j¡ßCçܬu–u<Ì™xöìè°tìý2üGKòõ³ô/iéºßßµq¨š£{ªaŒWõd:u@uú·&Ë*Ü=l½ÜŸ1I}ÙH;¦T¤Nô0ßóàÉäÞÑQ.ÿqúÁç²+§¸=ïÅb¹¥Z:9V"×ò4ýèõÉ朇&®€å£.[¨Ç¼ÉŸÙÊõWr)±Q°äØr›ëŽÿ{_¤$û˜æÚ™àWÿ®ÿˆ^_Ñ] 1‚³ƒSŽ.ú}ôðIµ½¿tS>àWµ¥îHuÆ"ñVïBCnGÛ˜HV#õ®«ŽÈÂ¥õLè}vɬ¼Çã™ïÖýUuý™ÛÄùTFgÑ=B+fÑ:i EKœkð5‰¹ò`‘›b%¿c÷üþM.”iDDøs~·™K<òOâîÚp­…@ßÇó>ÕJ¢r2ê•0"ÀŸ{;<á?¢a›c á´ßuäBö´3¨þT·á›·Ñkö/²±=ÜþW{ô¦D9õÈ@n‚ó¢ÂàN_ÉŠb©oÆbꩼ—^x¥ 0#~àWEµ ?ÙÇ÷Ž7Ú™]Ýä-ÈõüÁ•µÃÆ.¡³ÊU®t:–ú6Qâb´½Ø¶¼O%ðŸÂįZ qZÞ=ÜÍ›w \ >ÈöÑ”¯‘[îA G}a.ju&‹Gç줬º-Œüã zñòö~4§­…ëŠoë‡ÿ𠚢^£¢®‹g'œ´]¡¸…šÉY¬ÕâÃüh¡î¹™Þþ¼:ÈÂ8ˆüDäm81EÉžÒÿj6UeÛÍ(æ ºUU1íù¶ù䥪ˆÛ•†þí B­—H$&êF´ 3S OÏ´V li Ó‰6Ðs£›õþ£“y—?IO”(ôG™Nü>ÔÒCú7Ùï‹ÈMO€¨åçï àÌù«™X«½ô/i'z‰uÍîìóÑŠlé (àWã0ùÎr>ÝŸÓäÿ7ÿ1•SHLÑÄ礱ÿ±’ŸœÁü¨— kÅÐ6]¡fr³ÚBþñIµæ^©D!6 Ö»j'ï¸^ã*àWcx®ê!ù–þ#.õwñPô5÷ÑQÊ`Å8ΦVf>c§õ \Ëž(²ŸÚþÛ €õÁ¯Bf·wÐïsVóîG2'×ÄyêÆóRc_fb¥ÙelGæÍž£rpÕ„Þf&ê»?ñ¶l!¤Ãºïße+×ɬ %l„ÿèhìVcåä%µX+5üGÁŸ‡Æ¯jèõéõ\%Øc,Å#Æ·Ù}êÑ&`*D[úãE2Ÿ2¿¶(ùG~<}ɰ€3ˆy«åå’P{MD%+íÀ3\Éοºb ÅCXèºÁ².ÇÒô±Þ‡P©MûŽdža½"èÓ¦‰ô©?¬ø¼r(Šˆdüù4²À¯&`¯’Ó”Ç>Er^·*ŸPíÌæiüG"<×=|álžú~ÃG¯øÃzçÄtrRüî²™;Ô‚®³qGo•Å<ÞRÓºcÆtN6W2¿öúݾðÒ]Yï_¡ê¥|ázÆíè_2´u>«XÝpðøÔ4þס#º'ƒ©ˆÊ3;[Yéàü×ÚÙˆ¹ ¿±jÅ»d6uÕo†‡k½GoÝÖœÀß[fU:GB P…@%k.Õ-õ-?k×èMýù úÝÞ5ê€oÏγGõ(sRà?Bð¿ð‰ˆ|†çìP¹äÃÇ|‡*ê9Ǽã&¡Ïc¿¡YîH>35ðA®0ªÅ«ä¿7@Ï}å<—ÿ¤®MqÞÚâ?öÂŽôÇí§^f"œÏgêá»1iq.Ïã.ܼ=°ÜÊpº‹Ô9=ƒÿè Ëí×*$\Ûó}‘HÛò]ÿDEõ`øm؇úÁRô¿jLýG’`ÿqßÑ–þ‰§Q`ÒÔ/âW¾]´‡Ù~Rˆþ»Ù¨o­E¡½¬LHgô º]¡ñêé¹A,wÊ|ÄõÑ_­’çµ¶úCéõYV¦ÇT³öO,ÉüÁô¢/¨Í:ÎP¬|!µKs\ÌÁ&ûƒ‹GEá…8"— Œ&6Š2\U²þÍpÉʼnžK‘LÀ3!ÿxL\ÄÉîßžÚÖá8îØ¶#&9‚ ‡ºKìÏ0…ë:hÔR©±ÏùÉ?žËÕ úÑÝzÖpvq7þc\aV¸ß /Qì*:Œo,éfüÓvò®X°*¹yÏ‹ÜÚYC¶@Q! ‹|»kWÖç  G°^ {Þ\~ˆ­'ŸyÝlÏ7™_ÒÛ"dµhtØ#Yo7YÀav0#; þG´BIl˜‹Ðï¦R=ÈŸÜÉQ2Ók99š©caøŽ·zU¼Q¶`¾CÀ'w™Žž»%?õ׉¿O©à4ljC&rvgøçÂÐCë¯*3ÿ#=ùiV¬îd8j›?_Éw«á?’wµØ@EÙ1ødp¿ÃÐ'u²g^¬ÇöÕû›þ*†Hï4‚èb]0â3‰øý>m4ù‡—™Šµç0üÁœFÓµ% øÕ9°¡Šj$™RL}ÊOú‘Þ‹]>FÿÄòøžê˜¤ÆÅ,!?ªH¿õhÎÏLÝŽý¯¿t-6èÐM<Ólà^Ã[/õÃz—…GpþqÛh_äe,Vû©¬èÏá†~w‚U‘ücœ°7~%È| ~U®ç¾:NÈ,~GÒ£¿ óçÉÙ·[F'r£<µæ ꟚYóýÛ‹XiàèëKÍãzú椦 ™L4fžqS\GÅËqR·§ŸÁÒ:Í–T¤2Í@¥#ÇJoMKe…]ïçMUâls:ùGJ« øU2Â ð«¡Æ9‰âÆu¿¿kƒDf|y{²òÝj¨d ]tVÕaP,æØ>eä0öаœ)‰í™#˜Ÿþ‰o‰ã<‚ùËßéwÏÿh‰B¼1é6ÙÇ|Fmʳµ.ñè†Üý®IÿöêX[WªÓ§›ŒT/æd§Qïau~­Ã‡k{þ£/Òhû¾Ã¯Q=ø‡kŸ~mát§¨„^w€è)³k§ð¯ÉHlþ#¥ökÕ‘oôJTi>Çä4–‹ßDK­ók¯ËÚøÚàWÍé:«ë±ÀtöRW7ˆ÷¸4èÒ!­þc8ÌÇsY^‚ýDï­X†úó˜på[ð5±Lðþ‹±`çÅlØU·N¤Hf™%BüÇ7}šøƒè;ªº=ø,¸ÇD;£Á꽡þüã‘|Dæe„{…gë¨ÚO¦ðJ‹5ÄÇÓ°ú3ÈåfPwɶƒ°Ù ¶›1BÏΊëôŽ jÕùåG=cFP ðäþèÂ^S-`,cv`íã¨Íd&žðçµ-KÈ)Н½®ôÎ0.‚e¿UÁº¥R—AªÆÿßàÓfƒ×o$Z\Èþ–$ºw„ÙÙ'ùÇ ,~juÛ쉿ý/WOò”{Í/7Ó¿dèyÕ—L¢7±bì@³°ôWÛÁ¯ªƒ†e•¯q6³>w V¢ ïý[ô‡_é@üŽryð[íÔ%øwüÚ8‰.ôG{jýîìÞTÅŒÕÏC4² ´i>+ú‹œ ¥Ü;ú0 ‘O ýwk·ì¢OÉD‹™gHDz&+Ýcºß æJ½0c™áeÆ‘‹]$ÿ8FTå;ýnYG+ð« db7ðÙ é0UÇøZˆRØ÷ÊÁó£–¡i-dýæ`@£´ËŠcå1W©jøÒt¯¯ŸÃXë:xžÌ|+vŒ·áhð‘OéfAúÙ–§ÊÛ-õi*^z9}Æ*3ÝŒË|¦ÏTÆ,á/Ï^_“…¾C³10±AgxµåL¾:b<2¿ZÉèŸ5üã˜YƒþW;Éh£+jïnÆóÉh&K¸Á©I8'—»òËÚCñýU |ÒV4¢ý韸Ÿþ‰ÝÈ?ÞÓÍ×ͪíìÄ£ ZÞ¤4g]&/.§~ðñ‘`;ÎÕsüÇÿ‚?O¢mÖæ¹N–óÏÿ]ýn$íœV®£h„ž±0k^†ÿx®ßÔw¡ßM®ýZw–W޽ KîÑ÷#xÕ7½ýw#Ó[6ƒtÈ*b€1¶â¯CTO ~qL¡¹B2¸è‹ZêÏcóNñ»dËößͪ5¦r­11ô4NPÞ¥Lè¯êþb|ë1Þqp·²Œ$úþõñÿâÿ÷õé¢$Óî~½’ÓSéï¶z—÷þ.8Åïè†îR‡_\&u=©Ÿ-èã)—¯•f½xØôÎàó)¸ÒÓœµ¢D‘G±® ‰Z†ËÞ’ãô”ᬸH/ÆUTÿ9Ú‘ >7¬÷C²®Çø+ð‹Á¯ÖÁÖ£ñ¡ÏÃjÑT«ò“5ch_À¯(o<Ä@l|Q2‚Øü-Äšt\ÇÅŽy±È=vÀåÇæG–oõ³aÜn^æzÑ¿$¶ZÁßÜËOåÀ–çãšÞpEQèq™h¹Ê¡&\}ÅŸ”!gIÖ•$j×^vn¨ñ›Þ퇧Etâw¯á÷ó4åúnÓ¿ÝÃ\ƺ¨‘n w7O¡¿ježgretØ€°ã±Û™|œÿ‡õ.ˆ œU?®ª+ÜÆc^m·ÙÜœ¥Òš§Ñ6åËñµú Xö€?f¶"[ˆ?¶;¬ìË*ñÝôîvŽÞÚ ðÜÑ|R5V›"k7ܤ~ÐýÕ s?±}LT­Ñ ­| a^̉M‚ÿ¨D%{tº·4Esæ'Cúïž É5b/²Å§ªoj˜œ¡Le£B¼Óžú£ß½¿2†n&WP‚YÊþy—<©/6"‹\íºßŒÚá†ÿèƒG_¢È©F³&ä/ù@À¨¯æ±bOÛ¨éƒ.«'õƒ)ÌÄê¬ÕX¸ÌA°º!øÕkíõçˆWêý,–íÉ?N’a M{gž@%ÓÙ͹>>žuQùRõ²Ýq óQS\ÅÉrƒ“Òþ'úÝÚšïú—ÄÔ’üÛþÄÿ¨[ÞL´¯µrìö~øÛtOܧÑk¿†ÎùR3ú'HÌm ú•¼¥Þ<žöX̦®X“EÄÐPïCæ‡ß*«ÉÌäñyãÛ2¿¶¼¬¿j¦µ ~î,=}[¸NÈ?ê›ô̯}©g!Þ]ª†ü „´‰qUt ¦? sHFç¹ö’ÑĨP?Ö·çõñ"qø;8àÅx¥ødÿðBÀ‹¦ó†{ÁS|B/~E6ˆÀüóãŽ:rÊÑB Ñ8‰.ø‰Tä1'È ßžâ-_ÄÕu"úü"W…[>[OcÌÇ.W!óö$Âï –Ÿk d}M½ÁãÍÃy ŸÛ*§Š?åÏ£k/µmò:à¹X{/ð«ä(ÖªkŠôOÌo¸ƒÿ?Ä2äÍœC|ßÝr4ò'z·²ƒ©µçº±ŸØK_V›À •©9ið«’rØC¤Þ•Þ#]°X35üŒÉªÓÂð÷ôœò4žlš­Ø\GwX•©|?ƒ5’ÃOæ&ÿðÇþ¯WvŸ§5ø·Qø¤:x¬ô" C–¨p*2x ÁVž‡CZ ÿqZ]eB¬;½8fыܾ73š§|ø„ølp/U$òãu¡Ö3D,üã*Ø=ø{jÏ`$Õ Oðgs@¯.`iZqÌ«ðÕ·°¼v½ø5*ÆûÐ×»O©‡èOí=üª×cŸ÷PZÿÖ ¼ÎOõC1µ”ŠöÚV[z7²’;§U$>ƒ8 ¾sLI_P÷ÝÆ¹Pówn‹Ñ`š·gÆpUV]ÇÌ¥þ£#Ú€´æú—¡þ|93{_«LegöÁÚÂdÅ)ª»*ð~UÃÑI‹'«nÂ÷tTA â›gÌ2ô“*ª³|- È—àɰG™Ë*e®§£ÖööÙ^ôW+\Ge/ø•7|Úqžç=¼sY®Ç˜§°¾û ÙB÷`ýÕpð«f9N GW%2³çä26ã껉éµdƒvýÌPø}Ðõ Æ"»µ NF³^Ámùky±ROú_M îŸXÐ,J\r Üó¾œ G¹Ñ•\¢.áµlŠ÷èmŠdl¢b¦7õƒ5Áæ¡ÿÍD%{[2š|æZæGMóG¬öþ£™‘\!© «Jʵ ÿG_dD½»ÑuVíþWá):v!J»¤Ó¯ÂtA`MÇGe²­ôt÷"ÿ8ô³ ó÷9Îã?®Ê;ôÀúŒ¿ˆ,êii¨ó)•ŒÊd¦#¿X^DƒöÿL„-éÂËnÔŸ·×ÉFÌñ€/¸„¦«­k¼¤þf&­3‘oAðydœ%±úÉAHÞb±¾§m'dbr2J„üÇ}¹(HTò˜èm–ÞîzhóÔ=Á‹ÜÁÃüˆ÷cÁÒøÈªàÏ9ºÊ 2 Q±]?¸ +8–þWcÐÞ¤J/%vâ-öþ‘ËŸ¼’ËôðÔvSõò¼u¥9£ç‰Ò‚þe‡£~õúHåÅlÿr…x—ð>ëåRQè§üGBô»'È?îpM£‰èKÂëtaí dF[ù„…¼÷÷ÈܱËãÑ"4Å_E5Ñ?ñb$«fˆµò$*å À‡`§KÀQ—å«”xÉGb§8öÔ“ž_õÀŽú“Ó¤‡ø&{ãÃðçáÏKÉ˨»òë3ê¯îøÊ¼™³Al"©ý`w À[ìùƒ>DÙ—ƒs¨D#µ˜öŽøèÇK¬Ný`&ÎBzÁõƒ àŠòaí/à30hŒªýÆó’PÔ`)³Á ŒR:úÀÐøUñ§b(ŒÞÁ]ÍGg¶ †ü5s“È?¶0¶uþW•™j8–l!K°uŒfç†úô®ð³ÞîÉ ÿ‘‡ŠŽÖÊÏ8­Рăœ¦ »7ŒÒ8[š›¨nïÿPø·y(xG±öE|»gp‡í{~(ÀP?Ƴv¹?NÿÝXæð)ÍSô2·û·_¥[ú µL&–ÙŸÚ ïw„úÁEèî*È®ÅlýÕDNëNC-|Kmlkf:yTbæV1øn2­È`9Iœ%ñ˜§Ìùôßo® o<@Íäü3õ›Rÿq[òŒˆgç䶪cxÙr3#ú¨Bt ‹½ß…úªöù™ÝÁÞ:Þu\YjGýA3§“1äþn"K>m0Þ¼gªO´‰ôQÌW t àµ%¼·­´Ýg_£s?¹ÛRÖnO‡»þã=^akò6‡ôO¼©½/e-Î{ ¢©Í2©õÀÊc¦WKU¡Í˜vÍÙŸ‰ê>Ô;Úó?ìùQýÈa?a{‚äJ~.-™M4V—Qצþ}‘ýî×ÉR°ác$a_ŠÜÿê!ùǘöO<èhB>² d7]áÍœq\æ}¾ ûáC zw‘\4Â=¥þ#³Œ#‹ŠCzIJ…¿®5§n÷ôD“ßÛU@Ž–·´Æz ìÂÓ¼Êü@ÙXôuíÃ_?Öÿ³¢ß}¨gæ,ÅzÔ#žÏª–øŠ‘d—±S@¾éù(³‰‰a-ê÷ÎêK„]×­ClÆ*åÁúUã7¤܉8ý¥ô—Í"PÿqÞÑR”qøGÃVêv'.OÃàgœ1êçÞá_F?ß•dߤG¸øÕxð«µä•ƒóÿlØœbä6ÑP"ÆC¬°û^ìÄ&õÕäIr™¨\;ê&ƒ¿MŒÿð” ‰*IŸ%“IÏÿÛãʱŽCÕ@=â‚¿›Ellצ'¢Û%B´9!ë&Ñ„X†Å_Ôï8ÏVþ(þ㹑KÞO±LãÁ†z’LÉKI–¨Ñ# ÿqÎñH/$o“/ô@?d÷/iÍ{9frñqò‘üF3ôBé?Dîuާ? Ò‡ç}‹ùç¡ßš:z-b•NFb<†;u'þ‘a°ïþ**SŠ Zké%{[%ŸKßÝOxû)*#Ñý(Ÿîó¡ñ«8ðç¹ð‘¹ñ`ƒÀ§¦qî²Ò[<ÆPj¨W¢oOýÇsüÇ4ñaüŸÀ÷Û=Dz£IBñç& ôÁD'Qø{Cð\7±¬sAœN锇ïö!&Oä¬H5^{&Ýù¢‚ކ§ºæ4™gµƒúA;B ùÇ_L} 3VopоþT¥ô¥o1Óþ#³V/ü*’¥™ãÈRzááŽá»¶ÁXTünþy}G=m1…»ò¥_K+,t;úÞE'åo6¶s$ËïQ•l!«9yÉ~tYeÍÕðKñÍç9E-•f,u]Ü1Ç!ý"ûewª½ŽŽ.ƒÌ©š“­Ý¡Êls Å5:t­æ¿ÑP²ž˜‰éëžØ,„þê Xw†ÿaGs ßÇùèL´Òvæ«qËt8‡ ™*L_ǼÖ"òíXýOÌ|_Ä]o§ÿÕZ3»™ þã o¸LæE9Ü•œî¿[ [Ò °^Ž2ƒ@è¶2ÿþ4ÇXñ:õ­ð*¬ýêÓçãI{š÷‰ÁnËEX¡?Qª™2dâ»ëÖÿϿȆ÷˜ë: ±˜?˜Úõݯ}¸¦¥¢ÛWï!† ‡^U.8:ëJן‚_eÖÖÿÒr'ðeèœø@^è)RÑ¿¤ú«Ë²²LN?÷¹¿Ø?ñO=h»'úÿ¾X§ŒÒ]ÕêSÿÑ `ƒ,–Ó(‚ùGæmEU`Žgb—ª“‘棚«±O,äwNƒè‘¥ÉB‡Êd¢Wîù ó?j‘ÄXÁ …ykŠcõm„{Ö PÖä /we3ÜgsŠúÁ%ð@¯¢ÂtÂe"Þ÷î6Æ>]âjð>ôGéõU.ÒÛ(2_¯ª¸*–9”ô§ ä Þé3ÜÀG¢ýí n˰C;ùœtÍŒ]†uãNí–öPæÁOÎ'’>Kæ‘ ¯Qΰñw_ã8oþKV ÷ã r7Œ~쩱ΟõÞz!ëÆEÜ,Áɽ`“•f­¼à‰1Ô-£±ôïð}É?Úàñìl"%½ báV…á?¶Ðÿ*Ÿ|ˆÿ˜ c޼ b\pÿ’®XcK¥7ºQ °…ì bÙ5Üõ8,pOvÆWÛ„\™ýUQ½µ,ŒÊ æã¢rdb<§'þ'5 ¬É`ö¯©ƒNNMv<^b¢Ý¼Dã“U"æc® µ^‘f¤Q›ü£˜Úx®aµ÷áWfRé½T¨·åÀŸdE;¾"—zOµIlóR2º$úèVü¦÷“žåÔå θN3pjŸ#ê­ÊC,ˆ5Íäìm>QàíN¡ÕŽƒ÷ÁT·y:—B)/.‹‰xU?NÉ(ø‡äÁ^ê“o$Ç´‚©ö%™CmüX3ÝÖ»¢•èÂÕÛ1Ãtw•å×–rÔÔ†)àZnQ?¸m¯2Ò’_5€™(MWsêç€êDsÖ°Ê ]>gW£›óÈ?æ*'œREV~%¹ÖÛí8Hýù+ÎqãÑÓGñÐHjÖ¢Kn&t°ó‚ç½¢Æñ*èÓsF*úƒ8Í Tjú‚Š%ûÏ+;ºö/9õçe=¼QCj8—J?ãŽéæ¬gT$ͰƱò8Ÿ¯Üó¤ÿWÜYÀWqmküÌÌž=sâÒ"¥¸; .Eƒ+)nÁ[‚wnw÷ Á!'A‹I€@Aüý'÷q‡p“ôýÞííï6!4ûÌìÙ³äûÖúópw¢¿ÿ‘›:ð3<‹ðç×Az?]à%ôwŸˆÞœ¤äHË…—‘‘nó«t_.¥2¢½éb¦µ³¯ÇßÕ5é‰!ŸÙÌu4B`ý^Šéd×Åe„žê™?˜ÿ]kn§G/6DãÓ];M«SªPÕ_ûý«†ÓÏÖú«;äG¨Ö÷wþ͘þ|΂Q˜xLvm‘Z˜!60#5üùxê_aVmæÀXuwt{€_Yþ#XôÒ#àXÜ8!ݵ.ŽÓ}úYA¥’AkML·,Ì ÿQPŽ¿:¨M!>€? “ÐOôøôKÿáëSu¶Ö”¨$a#¿ý3ìceì~7«B“ÿÛdIx'¥¡pFÙ¿^öœmÅ…Y!”Úþå As°›^Tìo§S"8Å<Ês±†AêËÕB±ÜórµìFCPšøF«º HΊçð OÈM–³Ò&­U [WÅ^­ú7õ5%þ< VaùÀö.ñ{%®§0ü@ìasðµíx»ìÄy>« 9…`þyLgÇPÕÃQ‡a"Ž`JáÛÊâL¹•ÚMðëÖ ÷–—·ø¤ï©|ÉÀ'oŠÁl±…ƒ—¾Õ a3Ú2ð.µSÝÀä~€CmK·KJªàšQ¿º„xÿ(¶ûHpŒÎ{:§},¯¶á³ÜõŠtˆÏ'†>‚g›Aœ¸$  ³À3'EEqjT^˜>¾`S«e¼ß§õ héÈÖFÒˆÿf'ˆé>ê ž¢æ» ‹|¤ü5•Cwø´Rp ètÎ/ z!,©\k uÒ+¾P»päj¿à1'Ê}ú>z²ÑB—d5ð‘WÌÿ¨hïbBq0õ»Yéh?ˆÿËÝøc·N;Í?÷&û~f¡å)úè‹ä |Z´½2›y@Œ>¬n5Š#O©hNõˆìl(ÿoŽ z´Ffq[=ê¯ÒS9ÿ1UþAÕ\ãõ»6Ó…™"[ÐO´âüÂö?™Ç7ò/¼C–#CJŽÇkŒ¿Ö?Óo?IÿG0Þm3QD˜,D½µ Úı÷ ðŒ¾èE³ à ²µ›^~wC3\yö·ðm(a‹‚bœcÿ (ã´TDŒƒˆWÓÿ±EO_”Â<Ç*¯˜ô1¦{+ŒJ(XV[c-,Mwøó¢F!PEâ¶0ø»ŸáW”@ü‘;ñJWΕMïad²ï%Ãè‹ÏL„//Æ$áq(j]Çkö”èÿp§îx¼a' ›9ùY`VRŠ_›ƒÿ÷Ÿd¿šàØ™¤Ì-ìøSü>\*éè¾¢öÕRbu!úÛº©Ï¨È:«žF»*~Óy/PsWžÊÚGâ¬H©Ôi¿)%•Þêú"³h¡W[Æë: «i©;µ,kÞûÒàWg”†êc1dè±h@z\ûÏ]ð‰´pˆ³ñyg ÊÅœ¦KÚlÞSª*95è %2kSâ°…ÏÕyZ+ì°UúfÙ©FØÐá0~cXï!–'9ú%D<"I¬÷ìc[,¶ROVŸì #`µ2a_o£YT,ÇŸŠÒµL'™¡oeÕùNU˜__îlÕšÕ€è ØmN®ª¬Ä+ò·üÝb¦Åøª5ø_qI«öMý«ÄÊk%Pä£Zå=‰µOÅ;X‡X¾8ýzEõ¹ôI\ÇyÙÄ#l‚vÕ_iB‹I¿]W"ÔË" ë‹o8ÎoUÀËUÀƒÍ*/&k·°ž­èyiKfòÿM&v1%µh1é—²«µÄ½ ÖÔ÷üÖµ+zzønpÇ6™®ô:{–çt“kÞŽ%˜IÖ4åìH%…Ó“)£6/힟£µŠ<ÀI™©ÿÿ~ … øåL¤óÇÞeŦf"ÿ*€çhÀú«¤‹ÞLDs’ÿ~&™alóáϬW@¬?˜^3ØÌ™ôï¡Ól!óýèH¼LÖ•.Å}š‡ý³°Êtêà/¯PsgOÎr¬þÁñr…~l±…އzTø<Ô%ÿð£þ¶Ÿá~•ŽLç­Ëñÿ‡èü²KôšfáWÁd¥mØ¿múr4=vÑ[¿ŽŽ¾k CÕ‰§½á|΀’=§6Ö^¡7Ów}a_¶ƒ˜ÀQû<Å\Å4õ£Fôw?ðͱ0'xÝÙŽü#H¹ náW=8½kDWêw}ñb½É?Î×érLj`?ÈUfGן.ÅzTv†ÿØŠõÚÀud!ÞI#¼wüßû&5ýƒÑøU¥ÐÿÞ§ å<™®«Ãð™¢ì’Ÿm€ú“ ê>p±øáWþ¶«(`Ûà%‚EV}¦–XkFn$©Èj‚~I[ÍSm¯ë,®¦€G8Š&êP¬|mñ'ý¿£¿KÕý]ÈBº3¹".wžÿ‘LëŽåÜÍónJ—_Q¹tâšæ&~Ë’”Œ2)uxY´qXð‘ºLk‰-J„]ÝÉ×êØÃêX®~¼óy'I«ÿüšìE‚X¯ð¬m–ØEçZC‰\x¢á ,™ðF7á*cSü±®ëÑ4^NüŸBÿW¬üùBüÇ,˜n7ð¤‹ô@ô Ê€O³tKMtû°ˆsœEWêcÏ¢sY÷WiW>(w…+öÇš›q>8 ;_‡Œ¾õ‡ùôap¹—؃Áävg`üD}ZúưïmOT_a‚ùa¯¶²JAö­<~ò)~¸”˜¦Çò·Å4Á÷&S@÷eÉax¹¯—ÛË–âÔ†Õ¥^j¼Î5r fÄ©AlZÈÇøß< ¨Ç…Ÿç©läW“{ƾ#ÿ0î¹ÚŽsÛÉX7ÉªË ÿb—–Ñ ¬Tu:ìÆ^ô¯ ^Ôíjø˜íä ôgËü(4­wZ¯xTþ1 >ùv|»ô wðÀŸí£fu ÝÍ{Ñ/h> ;*fÜÀ2'£–-#}z°Kùä ªç+¾V­ÌÉV”o„< ~5*ÊDÈú(1¾cFj1{'ÃWVGƒÜ‡'“¶â#÷?ŸgµC÷uâ?öá?Þ“•_uÄÃ.–>`þi(´Ü¥¸4]ÝWÌùTIíÀ|o bW§H׺‘™v²þg쯋­2šˆd!§µ!þ{0¬U&ê“›ÁLXýƒ{È?RPëô$§¤¥L×E úð›°wÅÈmêã?Ð/u<ä‹¶ÓêÎìYlþ3*×ìDoeúÏk™ãxÍÍ-ð Ì-À*÷£Ò¸·IŒäïdM9–ˆ£ éØ?eÕ ­xòõ¸ÏIàW‡Ð¿*EþÑ™JâMôÉ?¤½ŸŒ_kGÕÙ(´ýŒâFqz¦n‘ÿž$¶<Çùüt¡Ô4cÝL=O_#5ÓjÏq§ç©vÃSVµ÷³_Ig’³™Mà?ÖQ ¢üHl#oIŒÿH'v~Zð¿ø5+õWÑø•AßF^Ç>Åï2R(G©¿ ¤þj˜–V­Ì*»lMÕ 2’ ̯µ+ûãµÜú?Ê¡žøˆºÕ<úM×ê²ÆC»+‹¤¢ž¶>žùG 5%–ϦܼÅU ”’įîDá6ÞípæŸ÷ŒÓçVšÑùÜ™'½ëט÷8«œC& 1Ôå05§•Á†æ å‡{!ÿ¨€NJ¶¾T½€< ¦Ó‡è7˜³L•S ,½‡ë$2Æz…GmóÅÎ(þC­Ú‡e]îáEõÔ>z—ó`?׿ë±³R_­æˆeÅùje®Éªk Ðÿ¢’k0^¸0öó5•š/ñJËõUXÒ•ø’]`MgÄaüü·”É„rO ?‚¡yýoþ‘V‡},‚¥(†å©+ýˆë­ÞÉõXìä!Ôh‰H5¦þóôTÁmïÁ„À‰“gUÅk–ë‡ò^¥@û,loc¸‹Nxù¬™Üî'8„˜ô¯Î’Oák—€ž'ÆÇuá}‰Å=| û°zujo  {ïyŽ}åèºøNMé´©ßÍÇu•£Cn;Œò~r¸p5ÛàO"åh£6ó岂eט¿·_ŽrÔJv÷"+N¢þê”a§~ô:ÙŽ ‚S©8.p N¥A~õ““~bjíW²Ûc\Q5|Úb|põWÛ¨bz*›bï_ÃôµW6._ „“.B½“{A÷–Èg`™{Ô/UúoR}øÓú€ªâžt“,»`;“Pû a½:pß·Íæ¬7צÿc{2LÒ_±ÿÚýÝ@Ç»RþóqzIz5#©y[!ûSO˜ùQ–ÿ¨‚¿Ømn¢ÿ£,üG3³øÕB¢~WcwºZf7Âx^Õ¥¡Ïs¬wŒü#”'¶‡3ò¦ÅïvÃÿ¤C§½ óʨ–š¿ð†þAwê¯ò x¨UØÇP´¢éÿ˜âx"••AZbÄAÄsáÏ÷éI™Røb(0†¢'?•~Ô‡ùà{GQm<–u{I]Ʋÿ â°˜åð!صW¢'®7lç.1Í(`ßÂUŒ¦Æ*’ìhú»£ìÛñé9Ìò#ŽíÑ c¼ã9¼«ù½¼àWödþGNôw£ó„°7ÿ·]T~†+¨yá?¬¾æ3¶è_£_r\ùh‹~uÑv<á%ªOE }úíu%hV«(ý«­êïŽçé8(ÿᛲj2p ½"79Jb´8Âü¨»Â“è<)ç ,-š!û Ù²*­Ck†ÝÜÅŸ‡R£³€gxA›…廉5Moj×çÑÿ­áöíoª›µüæ÷ÄÞÞQü‡å?ÆáAˆå`ÉZºÿü*i¬÷|Ò6[l&^«LwFVРAX¹tXŠìjep’§ä `{vbóè Õœ±¬8U­…ÝkD¤uz°‚ ÈÅñf Éáð c³4*e½Òú1qþÊbúŸÂù—(*±‚ê?P¥ï@ʲ~Âo{Ñgw ÏÑ¿”¿_NeI9æ¼S£±ñèu“*/Ôe"ßsœëó•tÃå¯ßâ^Ë‹¡šÕÑ ¯ þÚ•ùV¹Øék1äGmÏU½_AÅè{î°kTÎòV¬vì"9`9ª…ÆãžÖ%öÖªu˜F†Ò åº_õŸ·¡›=Yi|ÎZjh½AëæsŸ+°˜VþÑ.jþ‡?ók‹RUP¾Ã,ãþ§ ä¿r®ßͦ¥ÀôAiò0W°DþI=Q_økõEøôhg£函¿Cmzê¾[DýÕR<ôê—ŠðáêïìòmøŸÁ̆s?wål2†up]éÆ~Ë?…ìÃÁ›ê`wÓ9”í®Çø·iÄ §á?¾ì½¨  $é/ÿGõõô™{3i ÒfŸJÄ$W?j‹×€ê‡óßÔ£V 4o"ýƒ½e“Ïô+ت)¨&ÀÔûÁ9-cþGÝ•>Á_©¯-¿Ø~õýºÝÓlˆâˆS›Ê+è(YŽ·z2ö«L v•¶#j$è«/Ï#TzéÁÚsü›]â…™?¸þãœ÷ú?¤9ÙèÁ•ÚÌn†ÀÞÏB¦½¤ªþ¼ãT—Q¨ça­.œÏ¹r¨Ø«ïS+AÍs]Vx bJ.bƒ¶Í¤þªcvÃê¿ÅûˆêþcŽÃ„*744„'‚>ùÇúwÃÅ̃ٚDgû[s }#YMIsªTí-‰Ñ]FÌ&Ö‚çbç“‹˜¦<;6áÿé›,Êb&Ø~ZÜ#r®Düôw±}M \RÊ0í¼ú»‰£¦“¶µW‘}œT÷2¿6¾ú%7© HÿyšwC´TÌÕΣ|Ðv£_’ùƒ'ÔÖŽ«Žíʬ¿/ª&?ÁüØèÂt€@måŽ SAºÐ{ÆÑdQÚ*‘jW¼ÐÚ¨tSÏ)qšö“L$ÊA¹öá£XýÝKê\­*QIN×.lLyÞ¾ŠD¾ÝˆUPƒõÆ:Zë ôÖqè?ßo)¶³c•¨ÆÏÓÑKœ‘“yÎóßøUððgD-[©¿Z«þÕÕ«¨Ë'ÿÏ‹ÿ(¿¯³ú;2¿°ÆkXi:];aG®Š£ôéXµ1ý/ó?E&ð)xF_°¦ \_u‰ÜXŠ<Ô²Ô$—ðæïºá›¯À/uÁ«¤Šv:†å’*Áêzñîý ùãa®¤.O¸0yV05Ï ˜¯pŠÎ‹öXÒføùáú0æŸ?eg¦’…~½Ü^æ!胬¢gÄšÙ‡÷²3Þ{ èJ0ë§Ëñ<ñü ð«W0›ñ ñ1½ÑÃHü•þUMæŸâsËaïWp_‡Yk'e%ˆ¿EÂFô‡%5ÎãKrƒA‡|Çbݹü;—ÞElqÚà tç³Á~lb•)x¸±p'©›º~Ì~úW'¨¿: Ë–õ ê»&‘Ó,ÀçqâÏ#8Á“‰v¿ë™Ã>ÔoÈñôÌdÍŽÔï¾1Ï›5èÿXO>ÓE­ðG™Æ·üê!ìÔI§üã 6Ìö™YêrÿÒá'V2#oLùpû{FBû8c”\€'0ñ+ ØçÛ pÓ¹æÖòWqÊñPªÛÜöj.O¶)þ¥ õŒ…ŒÇÌÿx†æ}+:²WPy[ÌÂ×̼àEë¨ßu…¹©ÅÕeÄî·ážéKëF÷&јõ/QcÖt*‘ÓÓÞØìË„§>XþÉô>¤÷oýç;äÒhÈ>>#7šCÅEÁÏ*ª³)R¿Ûtµ*<Ïp±[ßm‚Û>Ngß3žÅ¿ÌÇ(tyš‰ìt«Ìgþ¬;WYÔ( ‹DT$VD÷Ÿ‡2W•颜–Nà¶‹á?ž›»Ð/ig„àÉÜÙ»¢ö‰àW—ñšå%æ4§ïq„‘Pn#£ÞÎo¥‚?ü¨Å/BwlÏÿ雕 XŸ–H{þwõwuå2úíשߧ٣𫃶?Ô·x”óô¦Râ§îuÃv ˆÚ¨àW#˜ÿÑÉÚ!Q^hè'Ž'ÿñ‹jŸïS˜È, ~å¯ÔR¯ ”FBšjÄ«qëÿ(¬ôT>ªm±™«@8Z€«Sí>ø!{mïÄ9â„_=T/kMàV“ðo ¯F|kUjö&ÂÅ©ÿˆ/ÈÎùŠ™%ÎU¢Ÿž[ô×öñ‡NÉjºJz”¨Æò±ôÛ©%-Fý`~ï‰XHæü*¿ãÙG¯ñùwóÕšÜg}˜é›Äøù¹¢Ò°/ð‚ž…@VßDư‘hqW}ý«:̉ü|…èï+ÁJ¸È64 rÿ‘žwðgþT€ŸÕÔ'`g““[3ý6b‹Vâ~E‰ä­m[¢WËÄüÁCàWE`y~'"ž×­;ÄÕ¤CtŠvˆ^Šúì‚…2vûÉLýUf>yO þãí!úíð±s±XïˆV{Ãn€XNGx$lM:¸õÛÄóLjõîð¤,ÔnùÇH˜Kó+üªý™ð(²`ï+ÐãØ ÿQ‚Xû>c2Ië©ß½$SPeáW¸ àwñ…õVb±ÓæÔ2ro(AÊ#x r4Ñ(Ô™‚Äx1[é–fõWW™?èO}o ü‡>o'>ß[{øVí@TÁ]á»VPuI¿Œã:c˜R+ì`˜ék6±"ÿh~uŠü# ¼K(ÿí y ß¿×I?ñüG8'6Æ»¸é¹oÔËXÈüÚ§ C¹è??mö4öɵøäp>é•|L5Âð½î²ægú%el•ñœÖ‘xêz`H-©z°ð«ÆdµèðÛÆ¤Þ”àE¯Í–f5jÆŽ ßÞÉØÊî­Ã[éøÆ2¥>ÔqTŽÙ6©Aðw–~É]¼Átq_¯lt ¾ö:·à?.Q¼ƒ;N†.Ȳœ üü;£<ժќùƒ¢„ðr<‘ŠJW‘º§ÄSÄ´Z"È=Ω¥cÚõOO3±ý•ÚËøùp2D#+UàOÁnoÁx‹‰Žü#üê-6Èêl¶º“ƒWµ'ÿh‹~É1Ôé…I`Ÿ@¾åbîaüÝ4ºC:wð6÷Ä¿ð;y8“†ˆCàØžÿÓ7™©¿šëؙ̠WŠßÂÉÐO,£Þ£þª‹ö¬Éf»‡ÿø¨ž£ÿüõ»ñ»»@æùÔŽRO¼+ë´0õgÅMÑЪrIDCôKZÄë:«¨iahPÕ7ÞU4g•hšt͵ašÅQ?ñ'¥³’P³º"fòä:qf''®¯ŸÑ¦IŸ'y-Ê€_ )ãä?î2?ª>yGZy^r5³`Ža£q–nç„Ma{ –WI¼‹õ‘¼±ÇEYbñÔĠǰoV>4‘Ú[?bálÒŠ×s…3‰ŸŠ1jîXvñÚ˜«jÈÙ~ÎX„»+EŒÁ?ï@q®bçw‰o¤dþÙWìÑê+å¾±&‰„ú^äU›‹åµ&Öþ€ sãzÊ€‰´Ð§¥ ŒJ¦Ð— â º+8\ªá¾32p¯ÐˆŒ`§Ï°f®Ó »ž\RW„~âmØøŽü¼'8SJì@^ò1øãà¥eÄ[âûõà÷I¸‹_î£[ó£úc÷ám둬‡ÿÀCm×—qß^œ¥‘ÔïfPu§{î­þ,rb êaÑW!íÓ\…ÿðÁâGek´hÓ2×/3u9ó,®Ì~½“ˆïËê¿‹mNë1)ê׆Ç«˜Íþ £â1X `?¡;Ú4á£+‘-ŒâŠK€=À·¹çŸÔèþ7k3íš;§õ*¬[mVMíÆIx”å°*µaã@`Þ0ÿ|ë5ƒÙ—–Ï÷€²¼ÏÛæ¤ßDõúsÎ ®êyˆüÃN¿|J]ã5ˆý/f8:UÛ êw¹ÂZ lÏèÈœƒÓ^VçϸýçcØ«‘ðN%ÈRúŠÖôkXüÇvk$ë¬@í6ö´“Y‹É°»á½Ë;Ù½µð×ð#Õe¸ˆ®}ô³P X·UV.‹ÒýÅ|-º {*ô¯–ƒ7Â~xR±lPÕ0šú«WØýì Ói©onQá3ý«Ê-%gÎòî²€¨*]è–q¡~«“tìŒf?EÕn˜ùµù™ä6 x>9<ÌE¾É;}WŒB•)šÿxGÿùsîѪà] »ØHgïƒÖd®b þ¬6jú£éÿ6›š3d$™Òs3Uq¯9…Ä2®$7ë[;vð¿÷ÍOøM޳*©“Š£ùê‘TB¯½6‘yž†aéï>¦ûãšz‘ú”ƒ1ÿÚ7~êK?p3ôwSé–ÿ‘@ûUɤ¼Ö6ˆŸél®í'ÿQJMG¤ëMþ1 +3øUõ»wP-Û„MØ…NqįÊ)Í•—j{Nã1¼FKp¡`3[èÞÚ’¨¨º¦~˜Œé…*Òi}¾qwŸÿø¹ºE³z,tjã+½ŸJ¦aØÎÛQ¼Åz”í È]ìþÃ×6ZøŠäT¾Õ]¥76°½ž Ow•w¾¶ô,gm)½$>Ø]Ÿ+ÿ±WmÄoÖäM¹’V˜Ü$ŽDýî+2ûä2V%×ÝJ\eˆ“ZÅoê'¦¥~× ®&ädóüÀ ÞÕ+äcÈvƒ­ÌâªF\•J;òù†ýï÷Ry§î‰À*üÙ«ý¬X‚˜° žÇÀÂ'AÿÊØµ;üGp† Ô÷f¤W4;ßùÄà?.qÞ*Š×Ô_- 0ˆ|{€8u%+°êyUyš»nÛ°Äþ*^@õ–â›­t›P¾òÕß8kð7øœÕ0(kðÀ 8)§¥N߇§ÑŠò'üGqþ=íÄ—zA˜ñ&T«n—Eð_²6[E"Þ|ؿ†Œf°Õ]Š÷ƒO™Ž¥^Nþái†qu5 XÞdTÜØÒQ°Éˉ’;é—$Å mÍ@ž2 ÉêôB¿} Pcêmmö;àW#P“*Vfgýà[æ‚éÜ"9Õ!ýX.hƒè_zCžÛ‘O|¨o??‰VÕJÙÿ1 æ¾ñë¼\KàçÆÁRx!ç³÷£1Õð³ùµÍéôÔËÂ^½Ðs&z ØAô ¬^VyÞi‰õÓÛÛ›ùÁí¶¢Æ[ÂØCöº™zè‡ìvKÉÌ4ÇÅݳ]P_áÛŽ²á2'zeP~鉯pI:Éäa>fR¿{”þøêSè_õ¿*ÃÓxÏ? ^/¯˜ï°’镉Qþc4oýB™VìÔmÌæÈgž0ë£0‚bnZ»Õÿñ„þó6Æ@¦ÚV¥D-Ë=oQ+ƒÕÔ€¡¾ŽÕÈBW”:„÷x¹G0ôw¢Ð«…œúWø£´ú\ô¯Ê'~uYQ?øh{ Ü©_š‰¸Þ• ÛïS•L©ýƒ5xNaµ'c™s÷Åa­ïjª~•Ry£î€±È%OðÞà U¥ƒ·4»–šhÌ.VkpÝèœnC0žUÁ|˜xæå1øoð+UõÓ»u¦§+÷”t5\¾(4&Þ_Bü ÏéGÕ²¥13œⲦ|Å4 ÿœ>@2«}0À%A{â‡ó‚_Cudú‰K™HçO/H>òòD¦©AKŠ’L•PŒÆþ½—yµlDã°§+aT&Êñ`‡SˆŽ#áôGÃ~¬3^ uoU&*º·úý’©>®Á)˜¬+NúíŠÖ ~éª[. >åð«q(®¯¥bµ.|E¸yßìiÿ™ ®hÒž$CJ!ëôÀ#]¡’ÉG-ûÅSÔ€_Ýålþ‹/Ú*{àÏGU¤ý°ö—˜ÄÚÇ”·F÷Y•k dw4‘DãÐ4·¹+ýA…=‰O,ý«^¢1xÓeò;t”L56q}ª™‘(¿œÙ•”­Ì‰íj, “Z‰÷{ÄÊ­ä1Ó±Þ1ü‡€aòoGM³—H(÷QguÇLoŽ$ô€ùATÌ|BÇÅ$&{ýH]o"£O.R6çí@5ÉÃq¿y•aÚ¼Ÿ½y˪ î¸’^—¿Ð¾Ú'ódr§™Ù¾ l-©=îö1xwTW Eù«Ä/ô \e^ħ |¤„iD;¸ÀÞØ“•" ¹_a|íïàW·Œ£ÌykzÙPU”ùµ'P ži>2¦< †°ˆ±°| ÷OôdS6+s;“D)ËôO÷¿¯ÐOl‚^{o­3úí†dë¨ÅdRâWüÀJ<ø”>Í@jxiÏÔVô¤ ó¦¦ø‘Yå œêÏc»Ö:ªNõé!‘Ž÷¸™^GT7/Uÿ>Cƒx§«o,Y" ¿*…œ~ÕŒˆ"­œOœFþ±Ta$ŸR”ºˆþâmà7ÖøüÇoÔµZC¬• º˜»X‰±¯'\Ê"Ø•§ØÍœ"£xñù/Æøý›õWYÐ/QeXNO}4÷½’Øë ý Eñ `CD/løÑ+Vüj­Z Σ)oÊ5bnK¿½8Ê{bMf®ï"ÿXÎß„sï)áþ¼˜?Øà'(¡¢ª×E y‘ë7*Ì•ý е+{Ï4;ò,ª“¼JK>Õ¤0¡“ö¿]y¥úˆëtÀ­'"ðaÅÒ°%•È[’“”Eÿ*„l¡ÚRÍø¹;XTbtTÓ`KGÇà?NÙÞ«ÕÄ+²€±à ‰ÁÑúx ‡×™MÐO¬˜Ëø[{«fa€ë8ñ1 ˜übSpºç–j[øóÎzqøŠ±X¶£äˆ©}è™ËLï° ú% °Î9Œª†'½âoé"šËóñÀªææ|Fcÿ~ÌU´ìTªMÛƒG›þ¥Ûä¬pú«}DÑ6¦)½ÁÃyð³Qò#ïÈUzÈzø¦“9ñçI´.xÇ‹úwø®!`DþúSæGù»Q°­}~Daz{/2¤‰`0¾ zÙð}quCÈ?èלê¯h“Ø•GüÓ‚l⪾„ú«5äYé¹ÁtØ’T¶dêêYyË0Ì÷°ç͹×H|Gî¦ùG´zlUÛh¥ŸžOz[¯#ÛJO1VO†,oÞeþùPæŸ*Kžy‡Àn¿À:¯–U@â’ã3+À\ ï‡/ZÖ¼šý<¯ùýƒSy’ °Ò¹˜¾”Š«íLd ?ý‘‰MóMo#ýƒ¨Š³ôw‹“ë]¥?ëÈ)ªŒÒrb9òLçÊütð‚1¯ V$-ÅÝHó4ýì/¹®ñL§j@•Øòt¼17ÁYω>ÔEë—¨ê3í;lIÎÜrä!ô®b ûPtiÅAÆrÚûØWƒ‘52—Ê î~Õ½½Á¯6QÕïÅof%’{©­uÜñT_­uœýDôŸÿ]þ#Òv–þ窧6EKeÝým­Õ<Èõ²¢*ñCçÚŽRõ&Jÿª ¾‡ùµ«”ÚŠ6Óž\²æ¯ÆMmäÓNJõØ÷qj*{ÑÏÐEÌAÊõ¾è óAgz˜ÖÕ±Ÿ~+¦¯e˜ÿqQ-Lþ±Ì¥ñ®«Ü€¥¹­ÍÃ’^à¿+Šc÷æˆ|qÒ¿º ÿQƒSeU?nb«‡®ØÂDl´Å<"ozG'ÌKô¯ÒÅz…ÛÀ¯ŽÓ¹V~â'¹•ˆf.ø×2²wXflÅ=VÜLá¿ôL™§f‹eÅ‘j5þËfDöç`zò‚ÖÔ"ÿPé°KÍT¾—àLKõXF •¥¬Ô',ÖZ|s~Ô+›ªIñëAòýá+~"3¨Æ Uå+²¹½D®/¨ŸƒÝÝDN3ö#èÐk5&ÿ¡)þê"qMw‘‡ñ’¾ì¼¿qˆ¼+\GýX¼„Q˜„5iÅ'MÆÇ¤Ã¤dõ-1øƒ¶Ëjfò &½Qÿ8}袾؋¾UV¥2õ±ÿEyœæ4ÑûþéN¬%ùÊTT›€»6çlÇUc½Vœ—J°é/P¤Oþ±ÆHH¯Bn"ê9`pïùdꆂ&¹2ð°ÓsÉ«ý€î±Õ±{;YÒ/N½sr#1hÕ4¬Þ ã)vÿ;ãÊ€¡ä]IAïß›üÉýï`¿ ©³¿XñqA{b‚tÒŠóÛ±‡—ð‡™ž!±Ó݈í1u{9¹Œlÿ²”Œø¾ýheyÈ'Ä"·œôçViÝ8¯×ÉŠºÃfÜ×gÉe`þè%®l\ :öO”=®šûég߇ÒÊwFø˜V¬G”ßW‚U;^¶N¶ZŠ;yøHõWUÍäö^Ôíž"BOi怹©‡‡KŒÇk?Jª¯v¬÷Ñv_½A|æÍ»ÿDN±Î /uÍïíÅÌÅÜ]-*§<¹Æ#\£—1ÛA`aÓá?êˆíŽýË­,Ô r6bïȑ‡Y‹¦½«T…å9Áœ’Ôöý¬héùNgê¢ *]ŒJä3Ïõ{0—Å\ÔP9òJ¸¦rmyëêKE6øüêæüÇN£¸Z~³¥}+ž34Ê3f[s ÓǼŒT0*ï^o¢!å?R¿›†éçÑ“-SÐ=øwý‡ªœTÊ£ŸØCkþn=vû<ó£BÔKêÕOI®ÄTƒéxÄ_}s•šíÂäd)ôZm¼Ò„úݵ¢(ùG5ð«¸e Ÿ.¡á?¼E"ÑYzE1U„*£ÕË¢'Oó¨ÖôKÚ;Nȧߊék¥‘r«:K_…MhLe'=fäž»4b`ÎÔ >%˜#mœüÇyæVÄžÚÀ6±jVy,ÇÒûóÇFÝc(Ä) ¡ó¥fô¯ŽÛQ¿›¼) |iY̬þ Þø]ÔåãÍçºïâ7‡²æ¼Xûw«¿ÕÃü²dé·»Á#éT’(z?ÆÚo¡»y×:žø~³ØÀüÁFßØÇ¬è_=™° ^d?ä Ù­fxŽZøÎẖ'û?†OYBŽÒ ýÝwêÕ„¡„¨ Å-*¤Nâ?Žpy¸k7î43ÝÜÅ+ÍšV>mô¦Ä‰ÓùJî8!;»,ÿqžy3µñea›â-®YtÆBd‡ý¶°–첕©áXï³2ˆg²ÏË•¶&†ÒR|å?ÜÕú¢º$þc8ÊL{9!T¨ñÛÁh^Må˜ÍD¡ëô+4bÊn^ù†Já¾Äº£±ªÙô_?›6ñï[wÑÒrÃÈ?6“ÏxÊaœŒ•ø;½ácÐôa>xôwïËÆKlnJ0·{ØSOìôLNU§÷Å®Y|þmªdË’­´Æ]•3@œ®Â©TÍyÌ4Ö2ö:\a:.Ná=4îýÿí4y†(y‹“~Éyú3R]å?NèËè3_CÿÇa:Â/ÓÛ] ìÉ›h?D4>p…]ɹ<ÈåöS­° üÌõ3ý’F¶šJ¢²ið(布ž¢ó?,þã:5IƒÁ¯á?\à¿‹˜Õɽ–SìfÌ"oÜAöt†š»_¥¢/qœ™Ûõ"Ïl#oÃ3Øp?íh]gêw³2ÿ|øUŒÏªxoÓM2ýĦ+¥àf‚ÈÇPq[᳊†bàWy8G=-k/gŠIú*|£‡ù”.{G±—ÎÁÓ¨Œ$·_´<;ólûá r?¡šÌjÑßžÿ‘@ ÕLâæ¬€FF#˜kñóšŽê×°’Ù§Øg‚_•1·á?&áwPüš¸€9'¼'9“)Dü"tÇöüŸ¾É®¬BÁäÓ†âú·ûÏ-ýv¦ÕvÖ&ÁŸ×gÍÛ¶ŽèïUýÐOL£ìýô!qúzÚvŒ÷ù¸#.ƒ9ý©åÒ†(îÊwâŒ(%~`VÇI§ø'¶EK¨‘¢ ~€È|û]ÿqG¡Þ#² a²_eþý{õs¡¿{S-€ýXN=y NDC¹„'?S[ˆ]¼Bþq›.÷7ÌÊ¢õí²ø{î5‹ß5ÀpÖc«]‰%jÝô!gF=K ]’އô&w<©o-|‰þƒDÙ•ñGIåAò…9ØÔd>èïº‚Ã¼Ç ÛAˆRëcõ»TknECP¦ûxÊüx‰âàWš £Ú&%ÖÞš}¾ˆ:r1ù‡7ó«S¿ä½ížrK|O­ÏR<íz3ÁWâM¬Í½B¿½1±íQžÏhöÖÒámCwgö!FýÝ N^⪞{ê¿3•jã“üÁôÃ` Cµ·ÄÓñ™=°ò^<¡ô Ï ð ëbð'Ñ{¶øº¢»‚&]ƸƒEæ#{˜„÷È&9…pÕ>h˜Ü¤6áøÕ`8ö–äOW5SMïôd1}¹0Ÿ›Äkue»£*-ÐZÁf&Å"·F/­,³¡¼1û1ý?Sè±èB”‰«ßì´Þ/Z2:ô{ë5¸§AÔhM#/ºò’ë™Ïü¨­¨‚tF¿$X6&‡ û‘üê ìÌg/äV§~±¢®õ¿òÃ?–ÄgõÃ'Ü@Gk|¶FÌ; þã,pòÖôD\™ñ ë±ôƒà^žòüv«_ª =E„êåoX³ r+1·¥¿X }ÜþÄÓáÆ>s"×¶Ó0Ñ鲿’ô£¢ëØÙ>2‡Bâ‘ãH×°ý¦ ƒ+ò$oJFÖZô¦þê.ŒÅC¢ø¾àC“ÍïáT{]³ýÞÞ¦Ýt¥ó± *©ŒÛXüÎò£ëX/À¶K½Ï{º ®ê©t‡¯ÊÇδgþTQ¹fž0ß}À¯|áá×3EåùG##™Qœ:…»ä2ƒ87•ÅxÇþåTj–N7:³Ö <¿RbþyYê·š¢à{,lw{|ð-ž´'Þ˜yê¯Êeß = ÿqELwäÊ-)µWýÉf}Á€‘påë‰2€JÖ3+ÑÉÙǾFª 9ŽþsËŸcþ  î˜ÏéÏJÆýá©¿Ê{¾À±3ɨ¿Êçø“ãÄíe?õW·Õöè_…*–ºÁ [ê¯üÔ‹êa%I<ýÇ 8¯øø4úoZôóƒ_íEDfò#ñœ•E•0¿'éeïƒ t㨿rW#Ä(—ø‰ªt&׎cýUV¥£òX­Ì;´€Ø¹%Q#_÷ƒ¯XFþQ…¾ž¡ðçq©¿ SWiÕ°òéÉ 6Q)S’·¯g©ÜÇ ÞÈ×d9vx²gÔ¿õIì·uÛà_šQ•NZ½EsÉ?F‚·ÒÃVœ¥Šªþcñ}ZüGXžöTÕëÓ”7ï¦em°˜±Ña`Ýï±x–%YLDµ ‹ºŒþî-b›V>ªv"¦ •è_ˆ$ò.wiõŸ—#Ÿé 2¶ÖaÌÊ&YG†‚RÃN®aÍáøƒ\L‡M Å¤¿+©‚Û,ö뉥ïÝ)€fæ¾€fæ>pfVÀ43“À43“@43[A433A03À03@ð@Ahf†Àhf†@df>Adf>A@À@@ffFAÌÌAÌÌÀÌÌ@33û@ÌÌä@pfVÀpfV@œ™%AÌÌAhfVÀhfV@ff*A33A`fFÀ`fF@(A˜™!Aœ™Àœ™@ÏÌA533Agf¦¿gf¦?ÍÌAgf.AÀ@™™Aÿÿ A`fVÀ`fV@ÐÌä@hfA03CÀ03C@˜™ AAš™IÀš™I@43AAà¿à?Ahf2AÀ¿À?AÌÌ,Apf¦¿pf¦?ffAþÿA€™™¾€™™>ð@Ì̼@ ™9À ™9@œ™)A0AÐÌ\ÀÐÌ\@dfA”™%A˜™IÀ˜™I@33'AÍÌ A@3À@3@A™-A˜™Y¿˜™Y?,Ahf2A€™¿€™?˜™!A˜™ AÐ̬¿Ð̬?ÌÌAff A À @hf&AÐÌ4A43Ahf&A@33À@33@hfAA™¹¿™¹?ÊÌ0A23?A`fæ¾`fæ>è@gfApymvpa-0.4.8/mvpa/data/example4d.nii.gz000066400000000000000000012444561174541445200177450ustar00rootroot00000000000000‹ì¼TW²î« I w\ƒîÜÝ-¸www·àîîîîî òþkMdî\y·ÏÜ—Õ¿ÃéÓ½»Ù_ÕW_UmY«²Ê?1Zf.]¥ºDõ¿Á%¼ÿÝu3ÿät?{„å÷Û¼¼–ãÿþ,Éó§ß"QDBKÎayëËWºHº”é$n›´)Ófˆ[¬`Ý2S¤‰[ºAÓzëÄ­ÛÀýÓ¬e“­þ™=ÿGÃá(9}ËÈBI~Ü\5äìGVÞÏ]øÆgÛ’¼¼½…··¼H™/Þɸ×y>mäôw9„\µÉmS¿`Ôí:ÎÊ®ÏCçüuû¿M“¥ù¯îÞã¿< HIù^òJ2I%Y%ƒ|èú‰%¤u1É")ù)À³T’{üïY%·|'™¥´Œã¿$þ‘J I]^Í,EÀ]G²IMò¿ÈÙ@XDŠKAÉ$äÞm KdŒO É%¯¶‘aØ'®|#çxÌ”¡>&þ7Œ¤š¾òAâk(=-iô!Ø›Ê]y*?b‘¯$†l—-ú‰åÕVOÊe™Ã£¾äâݺ<þµG xÝVæKB­¯ßiA¯÷彤×ÈšDïÉBÉç§kKëi‘ì¥îÕ :„-Ó°U.#¤‹t’ÊñŸÕ¥0žÜ(Áõ{«Ût¾&Ô(úA‚ét§Í4‘6Ñ#ZÆ"ZKh™lµ­·©º^ûiymª“àK'%Ó¤‘” 4”ÿðHAüŽ”2F·ÑC:AÔÚï^Ò©ZK—j%ͤË5¡¥³{ú³F·³šÃªY khC-§}e—áBRâ%´~®|Áö¯3¾–|ÒCÎÈ$9!át–ž…Û£µ7ˆi[]¤™l¢VÑÚ]‡ilÛ­×õ°>ÕHÕÞh0bá˜îÐ;:Gkh.­ _jÔ „¤4¬rÔ—„0vƒòQ²êD¼½T§hgm ó÷ M†¿‹i=ž¿Õkú™Ð-úQ#Zh»¦÷ô€žÔÙ:P«Ã™ÜúF:“?z`Ó…Qˆ —Ž=>(‹PùºÔÝÄÀ¬?éZ©ã´§ÖØRSëp= îpà™~nñ-JxÆÒMèeCm­%õ˜ì’ÖÄS™@ƒû'Æw05;™üÜO‹×gèE}‰OWëeݨ¯ô½ÎuͨßàÛvÒAvk Øp\WhpßÂFOØþ¬¾Ðwت•¶Ðæú©ÎŽèiP1é?kÈb¸F>Ó–(Ü=½¯ÇàÀv½¢g`Âf]À¯uP·dÚ‡8@c¡G°Ò¶øÄ.ñþ!ÝÅ㑞Ò1䎮dŽid‚ŠDVÆ@Cü‡#µ^ié&«%³ÆÒ…zÎ"Ï­å±BWÁ†™èÚ22à ‹dµ1ñ>^#êê(XÿLcXi‹‹^ƒ/÷ÑÆZU›ÈV¿uµ@Cü#³D#ë7’[òù­W×àùc°ã¾a«—T€_PûÌöŸX‰%zkRjÝT‹«‰—íXèmHníMÏX…Î1èØX ‘4”ñR—|µ}žŽî {ѧà/ƒŠí£º_‹¶ŸçÝ# ½ˆïŸë]ñ ÏÏàë=Ô­"1’ÐY*êgpc™î'2VÉ ²e"x%Ð`ÿnD’øhó÷èS2Ðô„¿ûÁÖŠŠg-ªÖLcêé„ÊŸ  :Êï-ø~¿/²Ý[}ŒÏémýÀgž5ËЀS(C0‹A_ÍÎcdzVvJ=-¬¤œ¤¥Î:£½$“”èþ<ºúÆ`ÿ‡áçõ(ÙvØ>‚¿¢°çOP¾å¨Àe0ná>˜p pvX€ÿwÁ†›¨Ã9ê…sTóé’Û·ä‚[ÔÎ%`PZKc1µ¿ÔB «öŸGkye€|,Ä÷[:¼¨÷|jºíÄw›@í߆¨žª%ü¬ƒ«°Ë6âzÛ„'÷ÂWõ5õá*¤«twÈo4¤íçZ’Þø*ññÍÒCr-üÍó%d Þ?#9tÞÝ‚ÎM@ÁfãÛÃx|)lAýžWûÓ÷¯Bû÷ð…^ÇãS`þf_%Þù%Þ9N/x»l„GîxÀ" nÑm&]Ò}¢¥œÒjÚ\ÊKÉh࿎DÒ]úË )îÝ‚ÙÓ°Â!”{vk#Rãtù#у½`^ºÝ [ÉÖ{@¾l°Ó+ưo9Ïù¦nšXò­ƒø»ÖJn/°ÉS-d-l¯4# ” 4ð_Gv‰Gm>•~¯#8ãÓ#pu ÏãñýÔ‚ä¶l ç›Ž?÷úŽp+¼_ÁÏ2¬1Ï×J«ðúºž'ÔËùTF½MYR"a‰dGµm|>±•´º@2ðNP9WÐNÆÒ—T”…t§èê·¢q³ÁtïÔAT¸ŸãCÇ€9x}Þ]ÁózÚy µq,²ÏGýS~_g›©ä»/´ ÖIo‡5•í"–†±}rBÝŽïk’ ƒÂÈ@E¶KÖ’‘fÊ ™ƒçâÕ‡xqvè‡Ç‡i}r`'TÐÅþ2>f ÀãÁ9ôƒÐ€å^/^ÿ›áE(ðŸÒÐöõpj¡•þx@Íb‘m€†ÔNd€š†Îˆ'¥5ÿq4pë†÷®ÁÓ“X`LèEôžÂÇu|8ƒèŸOݳ6dùMþXÏF²ÛcêÁýØë9ö c 4­6Öp–Ä>¢Ùºàxv¸jjq¬¯ªÖ nhðŒ·NCÓ µÀV×ñýE²Cgâ#Ŷ´6Ä^R ÷Gû'‰£¢É$uùz‰?÷QŸ–qjö‰9­_¤?€nj¿SËÂÿÅÄ|_Ø=¼óÑ€šðb2ª8 žŒ†ó‹àÌ!˜Q˜Ê¹ŽF·Xìz°‚Þés;H¦hcã¬¬Ž’Ú²™žª»D4|IH[JËç`œ§Yô#õÿ Iw;”ˆØ‰øñ'ž%ŽÑü>u‡¦ò{&z0”×§ª‹ñÝÔ ±Á#¢à’ºÊ×u°×V­i]È¿Èu¹,½´˜Ž—.†/©ä[”o˜¼—lXà"y¾:p„lµ‡º§+µJ'ºØ¡ÄA/mËß#ðù\wvƒˆçÖUÅ+Øb8×c›øü6ºÔfÓ1<Ö_x§…†°Qð¿)ṽªvÁ~µ´w áÓ‹eEòÈ]ÉËþìòG«ºÀæ“dò­ìu"¿¥ÖEÿçé·ÄÃj´nxFa…=äúet¿¯ñù(<<•Þh:§W°ÀQ¶rÁ#ú¢™°& Y` ›Šu[¡!{ua8'Fr“‰*ÊA‰@Œ7„égñf3P\£¢í‘7# †à׎xn±=¬§Ù¶ž>ûÇ‚x;¯®ÕV^mM%p‹îÀû Q…„t£´2–¸…­\Åø©v GÄ¿’ºÒDŠQ§>¢÷-Èn%†ËÃùåøw€–ÖRhYSâ!V¨ ú ü=\khð> *î1}±Z_^‹BÔÓŽ>’Ú  ½ñõ^ýÌâÙm¢g–ØF.X¤ÉÑü’>ÀèÛH.™(#¥©ÜAbhnÍ߇ãÁZÔ4K!üÜOñÊ×Z hR½,¿Ð'—$ºs_§É ñ@¶î/éOñ‰¹¼Þ“ßÈ×È 'Ñ£¨Ç)¶Ì¢t‡¦òŽPüýñü~Y%]å„{E:ÒT{-Àß %hijfðu0¹nh§Ïã`•‘Ôà ‰ûƒ¨A/-‚&ñÎX,8ÖO£Bp¹q¯t!JfÛˆ¦î`_Ц~§±ô€—LÆ?¼–·X ªÆÔâð¾ .£%´6¸ÇÂÝÅhõ`ØÆ³ä³\02b™Üþxp7b&§¶ãY%ôq:}Ólþ‹.lëa4a$š7 {ô„½PÔ||KÝ/õÁ; øWHIŽ›’¯%'—å''VÈ ¢¥d³#^ч€ÞǺ‹5báŦX§¸ÓP•Ôül›;´€?c@Ú •[N50nÜ…7Mˆ¥¾X¯hÄö¹øö0º–º3½Ä (þ½pð+¢¼œ¬¨ßÃrÄwN4/3Z÷¾tµïjßN Gì®`ËÆ0½>y°°fÕTš€Ï·Ã6í`I2ÃPøÒ‹8¤È·ø=ü-‰Aßu¬MOÉN*àhÅD È—` …÷?ÕgRŠ=ûFÓ{5·ëoFúã>Ó‰åÞ ¿M…X¤õ© âÕ¹l׊o@ÔŒE9•Úq$ŸÝKžÛ„zÌåøž°¤6(¢ï$˜ž îˆPü/©®J#ö¯-šT/V×”°3?}» îË›ˆâ™`ûÄÖëS)D&,Å»}ˆøJÄÁì3 ·ç;ÚåZ¢”C@»½ßÀÏ&" ÑÕÕè‹Õj£ŸÙ40‹$ (þˆšLfË âr2¾Žori\X]¬¾•X اÁàÝxò}£/$>î–áýM¼?hŽ&tÕØè@_¼¼ˆ×¦ÀŸ+hþ4ê¨þX¦1í¶`Õ¥T“‹x6^Ô$Êœä¯å¨bþ§<>ðJjÈI:Þú¨vÔ»;Y ±]–¿ª£Ye°Ì ¼8›(ÞŒïNPí9>o"Óׯ¿7ô•†³UäËBd‚æDÈt¶ßzàã5>wN¡jÁwu%ªšÃ“6Øe&š8—ÿÉ]1ÈqUzQÿ5eÿ:ãëa°¼'qÿ=öp]_ö°5ìuQpÍ_r„: ÕÜýÊrØi_ÌÑuت \ëEϰ {MF×øgóüÑÑ¼ßøtôçÕæ£Œ½´¤Ô(þƒÔþC¤Ìí@è†gá9WÛwÆWu`A[P,Aû‚}'6x­ŸZJj+íµU6ÉöY’`w-¦9…ísˆîmä½-T~WÉ ÃÉíQ»`¯‰5‡Àšáx+ߨXóËOÅ/rXÚÿmÁ: %ŸH|öÁÕø»6LèˆÏêÂÜéàZ þvW#[V+Î#´• Ö6˜ï¼rðÞÁØQ>¹† y55ÃETá˜Þƒû}ø®Êú-þoN.&LñÙEG”ZÓHüêî˜ÿwã–´£ê©Êöìù*ü? /UÇóˆ€Áìó`^›ÇÏ’ûŽë[m+aô4¹Ëk_Y+lQ°ž±ê6×Üù®àü‰(o‚Û€¿1–l†ÿÝ£èãY¬sMHÉÀ‚÷#“l•! w•ûHöyÈ{jØöÎdßÀûapeÍ£•ÑŒïô8–K§-d¦D!–ëy$i-ƒíD/¡€›ù¶éèÉ0O@9NÁª¾þÈñ<2@,ø6 ç€GJù/wÁG=Pï¾þ÷<_ù¯ñǰ®ón,²bK2vLby¼ä"o–ÒYZÉ. £%49 ‹}ÐXÝÜU!ì&ÿ1äú±äߥQ ¡ÿ:âÑ5¥>oNŒö$ò»âõ ÄÂ~ºƒ=»>é`5{GÖzfç“ÞRZ–ÉfògeÉ-UéåfÒM—’è|6ŸÞ“´xùvpgÒö /é„z`_4‚Àû!tE aÿyÔ“nòVÖJjlЉʦñ¿ƒ ° +¦»$†”ŒÌÊYH‹¯ Ù:TíVKêÇVÒ\JF+‘ùü3*áq¼6[&!ãˆú :”ó!š0•¸ßÆéUihØcå[(%èÈÚ“ñ«á­â Åþ£R›K§2/~eqmâHY!M%&ÕÁUI¤u·„ÒcÒÄ׉‚áʲÛKj¨·r Õ r¶Òc¿¥z쎜ƒUG5‘f—l†ý#d¤TÃ#©ÔB·ÂSû‰ÜÚàI5°ux¬á­î¤fØCÖ*HÆxEæ<ŸŸËn9$+eŽ,‘óR ¤,™]'&!bNøcA7QÐ&ÄÿÍB\‘dAê  6’ ‡ÿ/Pß .@ÿ?·žhÞ\4kYì’F±¶t‡ÁP‰j: |ìzKH_£%¿¤#Ÿµ§§:©ñ-†m¥nŒlé¨>·¨v‡z§+v¼ªÑì1šؾ÷oÇ-I)™e›”@ñwé nùÀúP©š…±þÄÄb 1±ýRP÷ÖÔˆZk$' ŠÀëzMKyñÙ¤©,œ-¥_ld=l¦µ²7¼rž­ŽjhÔo¥d gþþzt”Tä´Ãò~ß*¹pvŠ|¸Ï$—ŸFˇ“Å×’Ñg7qQPÃê'Þ´¢kø å!*²HÓØG²f*;jƒ¬—•°O,½…µmØRm…î—hd 56HùRˆ;ïÅÞë ðÞ§F;‰¸«þñlÊð#öè+"Áˆttt7©ŠÂ„°LJVÏ„Í.û+%Ãý·ú5È+Z8DÀ¦?£7Í øoFí+1$- ’½Ïe©‰àDÄðrôp¸wéÏØdZ6J&¦'K–‡±5سÑ7÷õ•s=˜²æoÀn‘‰œgü›5Lo{É ù-'ÁH¢mq ÿÝ8Î^Å—äÔvUäˆ|â;µ¥t,}AÕ<$³_'?4"æàëð ÏCÂþÒú,èJ¾ì¥ü9¿Ol¶®àùF2^‹þkØ®/:ù@J@ƒýÍQÄ$ª¢ó$]Qg¼ÕÔ ÝANØL›Œ‡ëÂ÷œDB3l_óÂwž¬0›‡RÜ¢[Ëf¯É%×tÙã)LæŽÿ×’È´±%ðç½k´—¨¨@aÔ¹ ¬’xäë^pº;~ÛJNœ…?gkCr_mØŸ»´]n¸ß“×Jj&j§¶ôŠ+é~ï’Û=€žz3j0SMëS7Ç’,’žz;(ŽŸÈJñäkòxvªš¨ð¾•úü¼€xÞN×:ß×Fõª üÍaÀhÆlø‹Ñã—§JCöc©ã¨hâÿ°.!§Î¢‹JO•Ø€– 4Ôßu3Þ‰Oe–AêÊmjÆxv>š‡z ó¯t†ýîz  h\=þšOuØ„š¹ìÖ›ú?ÐØö æŒ ö]©œyögŸ ö7Æ{êwÇÎ\2WNHN¶²,Ÿåíå|;ÝË Ó+ƒx|HŒ ÷g€ªÍ@9mŸ¡Oõ]°«¢waÃçzCãé)¸Z#}€úüýHG|ž¦ÊC5ŸLŸHA­…ÿÛ¢mGˆç­dýæxþ0膵‰ƒVxv¬·ÉOþ ù‘° UÀ$òß)ª…Ÿ©tkØcb篴GªÃ˜±xJ ÁþÆH«ŸéI!ûe3ÑWóûóÞîì×u˜ü^ÿèNF‹¢yµ±Í`po&º'ð{<¨‚4Á"3üñïCÏ>¥4*žytcô ¯-&»v4Øß égçËz ‰jŸ¡K™ gwÁä+T=oÉisÑñ“° 1*WÒŸëíâäŹüÛÔKù·§gÃx¶sJÒÂ[C+okЗXê y!´þ$Õdzã¿è7Ô²Ÿé~ËBí—×Ü»ìõ2wr EõÊøã¡£@VŸ§Gb%w–ß]»üÞk¼Ò'zGݵ%-‚å°6–”9lÀ†¥u’´ røgJrú’’ˆší‘&¤c9Hÿ’ÅÊØ7–„êíýÀ1´¬³Ö Ž;P·ÑÛ© ·ûëCgÑÛåqHßk~«cõm,¾¯f 쥦0±ÅÖÍŠYf ˆ³lA¿HtÝM]ºEvh6ûÖBÃÝXV„*&Œe¢ƒÙä¯}]¥·‰ wü\}§áÍÝ ¼_f·ˆ‘¡XÁï¿MøŽ^ÁÝCxW Z*ËÌ7Måq‚œ˜@gêoŽŸÉ­ÑæšÜvSµg¢¯)M䣗fîÜp-¯ãÑHƒ]Âß<@éßP!v!"–ÀˆSØi¸?¼F;ÑEµ§ÿ+j•l€µà“G¥ ¡þΈ£•d€œÇ‹·èjnÊi­m ˆ†Kp{©¶Dùiz¸gä³Ïí ìr‰HWÔá9‘½•Ÿ†œàµ¥à_" É­½–±uVš˜š«Áuz aþîÈþÊ’RCEégRÑý>’¯ñûY²àYª¾ ºIŽßªõ­®ýB§¼V3Z¢å55R'j„µXï¤ÆµsÚÒ¦è°(«‘²Úèo{$¬þšçß#¤ ù\ª€ET€èÔÓJ%JÝ“znÚVÒúY!; ã¿C!BØ>¾?Ý€ÿ7èv#ú£G!í3ô3ƒ=ú‹„¶Þ²SWXe‹®  ñßíe¬,çßøÚ¯Ö§Z{Mn»ª]Í:®oô hj£,MõsdÖÐVüÉMaE[H5¸¾”ážYD"æ¹DÖܶY»Þ?1FÈPé!kä3‹ …e©<£ÎbYm*>”'É„1l‘­©ØMÒ(ûœWé–Ô2ºBæË&MÄgÆSßÐ$zB¶èò@Cû'Ç.Y)­d³ü(™ä–ÄAéèûÞúÑÙÒ,Dp6ªÚøÔ5 lÕod8_;;Mdž´•Ñ’PFIt¿¨Õ§zÏkä°l 4°zŒ’I2j Ÿä§géªaìuз֕È_#%«6Ò÷²V/dÍâRFªc­l’Sñ; ¯$Ó2ØýŠj8¾6’.Ò7аþƒ£°|#!逳h›i+Éktµ¬•ä†ìÅB3¥ƒ|-ÙùIKלH’K\É!¥%³¤”² í­-³Ž“ú:SÆüË¡w#·t#òSûÜ'+Þ–Õx¶œ – ü½‘ÿ'“ÄRK¶Éd}(i¨¬ZÊÿÁ½þïU¥ˆÌm^”xÈ%ñÁ÷ûèÿ4R •¥«„£ÛKò?²Ÿÿ/ÇHI ³¿#¦£ßi‚À];Œ?ÆãñÇøcü1þŒ?F`FlI*¨óÓ-æþ‹ÙÑÿ‰è|3Ñ‘jÒ“.¡!vˆIçÔ®mú¯Dt>‰éï‹ýÅ\Ö ù;½PIzäô·?É"wÔGVÈiéð;ÛÿûÆ×t³™Á™Šgèf³‚n‹_ ƒÄ“<ò½,•;òЇè3¹'õ+mþøÞñÿ†¼YÀš„¾7½´— tþ9e–¼{5I+é䌌Ó:Z«k>ýAëêA-¢¡µ­¿Î%(Îóøùx”‘Š2Û¹Ô¡’A7KY-%½Ž–XdÜÕöJ?µlÍÜy¢ýØ¢€ñ+‚¤ÀÿºG?RIQùAšƒúž¾Ð¸¶Bwh"M¬g@ßJÓé^"¾¼µÔVÄBY›`xV× Z"»êgúŒ%q$jœíôßIP:7cmd}«Ÿ˜»"|¶ÞUwÏÓ­¨‡4’ÆÖ<àuó}‡·ÚâÛtûÞÚYW»`åm²|C„ä4èä¿ÆÌç9òø+ ?Åßmðú3~ën=©Mu¯îá¯Å:­ o!툟7ŽE±$VÜ~Ñ0–ÅŠZuÛ¨õѲœÉ*¹þÝ#†Ai¤“¸DýzI -t$ˆoàóAºL§ùk=öëy¢a‹^–RzÛ<ÖúA¿´ÒXൊ}i7ô„V±^VÖž`¿v(¦»¦0hÏüýGq8[[ºJx<8X·øy^/ëB¢t¦žs0{×Ûhp¢ÂÅ~t»?Þk>ž‡°ä€/-½åS¡aÈ0½OÝé_2¼UHÆËEIª ñ¾»ºá'¢~'¨êvݧst‘Ñ¥°à‰”Eý?µ„&hÿÏÉ2ð,’Ýñ×KÞÖ'Xà°vçï¹Ú5º3ÿÛÈ U¤“ܒ嚟<îÖr8È¿‹@½ L—Às[è&ݨSù»¸Þ”,Üâ˜Ù?ãÉU<ÿ†ˆˆh·ô¢Þä±ö|Ð$¶[«J t hü¨þ~iBwÁëÛ`ü<}ë ? Þ0ž-ÕÞÚ%X§#°D *þeÄ׿æ<Û>ê}…V:^¬Õææ ¸ ®h#MKFhˆÿpä ¶É©ëÙçñþ°©ÚA»ÂøËþ^Ή: Ôã©pfýw$›ÔÕc œ ùÔQ}úƒÕÒ‰Šü{Ç3g:½¥ÇèrI¹@ƒüÝ«L-_N{ù+ÝGÁèA~F€Qü=üKõ€¿³eÏöòJ&í(­å¡ ‚÷‹ðòsl?¡ õ£Þ¡j(ˆ †·§DÂa*‡L6]oH%)h ¿3â }méÝš³·{axø>&ïô3;v×ÉØc5ífHÞ®“`Æn@EÐv÷ЖðþŽ~n‡È}—¨™ž¢œáÂäÄ›ØF¬§}nsu–ô!½‘Y¾¤ê¹(7ñæ:ôm0ˆ¡Ûne›½àîêçôÚ¡}°Êl80™|èæ:>¤¿ üá­+|8ާ¯ó‹`°Öyª¡äÆ>#'F¶ol´-×ÇÒ=ˆÝû÷§ŸüœOBiXŽò Ç£}м£py<ì¿Èï!øñ%^/ɳY¼·+¦30êÔÁ‡Ñ¸dË5TG‘íêñ§»cÀ€}d€[ô ŸXà9~k¤£B+ í$5Í5tn’¶%ê·ƒ})Ï›éVê¼ Øa£¿nú·Sõ×@ÿÞÏuþäóQÂuø=©Ýã¯(ÆE˜r^œÕDÏòkzýZKê 3ó÷¿ w×ÇbB?w=_Æž»ùÖ£Û `þdP÷Ñ:ä÷…DÁ8¢ÁÍññ5<ŒöÀ’dº_àÈ~b&ùÁ­‚sÛ×—Ùê –JoImŒÖâɨú©~ ]j"”/,Þ|‹Ro"ï·£ÃÙD¶ëò¾ÖùTka‘ êÖú9à+¼Ãp¢*ð\À×·¨OÜËÔ?Áì1¶ù‚¨ØÂïh–8©çàÆx­''è³öŸGøŸ€n§©_Ççþ? ëû£mQ¹qèû°¾£"Þ„ßoÂñ#Ä¿«ööcãºÿ öج!¨÷]×`TÁ¿hXTð4Záô1•'R¢[J*‚o´’¶ Bk!}/¾–TzÓüܾn¾J7£ë0ü½”¿ÇÂèóÚZÉiòÁ¬4 œåZøü˜¬p€¨ÙAot–Œw”ªá‰&¶+Øñ1Û¯RפFú•ˆJUÆk þÏo ܯ،2@Náñ~Dø8t{~žãïý:‰EÜŒ¿g°CAÞwѾˆ÷.Âòñ<–c£¾¾¹JdÜ#ûíÖæàtqŸÜªÙ8sNò< èî ûÒ Y&T!Ÿý2(Œ(T¤½©ËÂÛ0ÀÍdzÔ¯p³Åß ¿& ÷wÄÔBÜL€;ýê^ÛáÉ4¸áî?àïø¸Æ«OyÝÝ:‚øØÊÃyþke¡Kž=YF*(–Šn0q ¡3RJ(uüÌß•P³~®ÎGp|>tëù ô³6ÌÕŠ¨Á?ÓùHâa-Ï;éP?³å^å3î^ˆCèÃp2fQ=,‰°Å:u÷½ÓRtF‹±Tf«B5ô³&–2ŸýÔô’œ.›ü(+$†c_Oãi·š››»lŸ×x¿·éwª ?àçÃÚ€=f‚生ëj¹?&¶•gO±ß ìôRæIL²ÁÏT@È ©} /4–µ°’Âÿ<û§ù©zWÈ)™Dl”zÕ>wßùy+W°Ï©‡†sž¶Ñx6–¨_†FLÄˉŽ-ðeL¹F68+¶j½$aP w}ü(ÀXÿ¹­`kw_`Sëeu€Œ ×Nhøx¾ ›ÏF³jýE2‚?¥=¿»Òý j¶‘¨Ÿâ9hA_­Î¿?ñsMXˆmVð|±ðd1°k Ð0àïḞ¢š˜F.ˆl üÝïó‰ŒýZÀâ“ >È:©K·Ø#"ÑРøpà­ôö3“ºÙþ>'SŸÉ6ø?_ëƒy4\"ÌÑì _îgµZÒ®ÚÏ7#ûÙöûu!NjNÝ%©5>ðNØÒŠÞ …¦šˆ…~¢*|KVÒc×ÖT'ŽÄös=vøs¡÷ôfì†_Å¡¿¿û¿ožÍÃ…àúPn«Ðùù(‚«vQ'lñsŽ×ÌYPÿÍÆ"ùÎkÇ^©Ã .D!w ›Ùa[©)©Š?Þσ ëïçg2t« ¬!NÝJF#Ñþ:Äü@žÍõsZæ ^å3ÀUpw™°@Yp6Õ <Ò¬ŽËãaé*ô®ÏÜœŽS±Å<ì#–Õ|<Ý {¹û}û#â;`ÌZß'=—¼».„.jîó³Ì7©‡·c¹'d†ƒ0*¯úìhI|ßZšÈd‰NÅÒ®÷ôÛÍi>ÎÏç]ÞßÛ;;tõó™n£»-D$,Ã>‰5?¹a¯.À›+Ér[x¨_ '=\éÆÖGàÍ ì5šØXNx öÈÃ(H½Jþ/Pü‰þÒ™üïj¿¥Ô<-ðk/¸5ÜŒ˜«ý¼aþ:ì°G[ò¬€U —o„­&âãUüëævs7Ôr°{‚Ÿÿ¨¿ßý'¾e<ùbÊ9ˆúè²äb¿‚zÝK Ø#!ÅÑþ9²@‚ù™þ»³—KA_ůç{“°t\¨¤U`îl4Àùr´¥GÏ*²Ý@pÏÄ“•±ZyìŽm‡À„7hƒ[í±¿/tzÙ×”Í^U§òW=HÍU= ø áû[òLâá¹êZ[?'~»Ãê:d±øÉ©º›°,Ü]Iô¯¥&ê¤alœŸï|¤¿'ºèSóþ6ͧÕPø^~Žï#ꎋmöÇ~vøy4šúãjnmÁv~-­ÌzHx=à¢2C>Óoõ{ö©)•nMØÚ OVѼ2¼{`ïDâ %ˆÛ£týùÏŠìͤ¹Qr஀íÆÐÿ¸.gø™â砀׈]ÎŽóù2Zկߓ Úÿ©“ÐëTžŠÿGY#ù@œ‡ý™ß[лY,ª¢`-ýß%TóüZCýú&§@0‹5%BÊh-I_”Œøè€g¿²^èäÔ`¤_'h¯¯õnb‡~| 8ßÂkìHØÒ›¿•á0 c‘ì’ÎÄün¿êa°º¹/Ý#'ç§“õ6øYÐg¡ú“Üy`‚¯Ý¼'546u\PµA/+â÷ï°š›á×­½¸‚j¸£Ã£´56jëg ©ï,M`ûPº8À³`“¥â®iè Çù.j¢Ë¥Ù·<Ø  XV«Î`ƒ™þ8î^p»µ±ëb w죵6fûr(ÿ|lÔPc±ý2âR¶x!v= ¯ž {Õ±n?¶o ;&²õbX—AH»€â¿%…¥Š?žÑÔÕÀRÏ;þ᧦cw6Ì­Xô_&wÃZKA¿ ά‚ÛÉì.Ë7aoï$¹}¼¿Ìë;ðýJºÿ~ý‡&ü­±j+_;wåÿº.íŠÿýgIð×fß«€¸QYý«ö¢ä³Îøýœ÷ûÔíùà£_ï§ iÛk¢ nfÿ±p}¯öñY|{’Ç)ª@WûB–€¹ƒÏP‚îü¸¹ƒ~ ßv6€'Ôßn5“jx¯ šV%ω‘ñÊûÕ-Ü +ýùŽp~%Þ>O¾ˆeZ ‡/t‘e²:0ßÍ8›ÇëÇýú©'øÔ4õW´ÂûØ®™ºÕÅg¡K‰¯µI@ñÿLÿ• ö¶‡—=ð^3°;¯–Âß³%ü 7n•¯K :¦ÁíÈâØmô»>(.ÑÝG4·¦O[MÅgŽ/nþÔå _‰üˆÎ!ºFÁüVÞﮪÄûn~Í“0¦y@ñŸ¥{+ãˆÅvÄìØÜ >WÛ…x|O Ôñµþi æÅžý/£u!-¾Å³êVÖbÛ"¯Çü 9'ôªç¢`-þÍëíPË>àwóEíÁÖK`ÃiªŠ'ßë÷Åý Aeïæ§vëÞŽäw#T <¸ûUŽJÃóI¨ÚZ˜?Ó_ëwÿN·;öÔÚ{c1ƒ³*¶û}à½zÜ ëÝñÃDD¸U´Àï{ЉUüO¡m½À }ð™ 7Èdi·†‹;Ãݞج¥YñüP8ÚÙÏçŽr/„×›PôÏì©ÞÐIV×ÂZ Û@ž¥•l¥% vÝ Û´òŒŸûo-–:ïÏ7 JêB^pó¦MÁ†•‰yÔQëÑÅfZEÆÿuzà1¨Ñ ?ƒYm¼Tšê®>rg®~‚éóáê:þŠfY-ŒÅ´hVÆfèVé/eéœ/QÃͪöZ[Ú=P$ Ž`­µT„îZ·ú×r›Ê7Ý€C)°È`M£ ´‘;þð™ *Ès™ Ûúyÿð¬:û¼›vçùf{ο‚#?jŒ]È×¾Oì µåDÕ\zBbãõ¸6ÃJÁëkþª¿7`^îÏžÎÒ-Xï¥_ag5µ¤;#–…í'‰%k Á3æIy Ó%û×Ï4‚¯nuŽèþA¿Þ󰾓ЊÐÔEc¨÷‡Ð9<”—ìÿ>(Û¤ _Hu°¬î we@h{À³#hݬéo$‹¾ÖdÎvòE‚Ìý_I#êÀË2˜˜ŠŸ‡ÃàäÁ;°s—쑲+=’ÅêÎ]>¥v)'¥Šd—ô¯mdŠT–|Gr*±T{‹ÀꮘpçƒWú™sïhbП$ÜĦëàÅ(©d®í„'¾–ÖpÙ­Z1Œ½ûQ/Âܸt¸ƒ¥ªÌ—ªtñO4“%²lÖ‰Ìø˜ÎÉ´ýséÀ'ÝÌ'¤4ÚŸÁR™;:Bãé#Y­nn¬_¨*>%"îóËP€ÇäÀ¦îÊÁ@ÿuìH’= ­·‰i~%Ç#há:ÚdšÝŠkùíYý9Ëõ°MÉjÁ4œ“ƒR t‹%'Õôxy½ô&+¹Zï!1¾½:AuûnŽúRãU&Ƨ²N+  ©ëR'õF7 Èܶ‚4³¥´¯,yà•S|‹lkôʨ=%–Œ 4ì¿ç%¿D•êÒYÛa¢`•ÊN¸ɆR\"«­ðWyÌÅ ˆ‰f(c6Í­_Àü’t‰…ÐûAô³õÈ—ã°b0»F¦kj¥Í­€0؆ØI§p-ìN}UN¢Éæ@ƒþ‹ñFFH<ÙI+X\KMuûœÈmåì¼?¯9“¾å,Ú5œ½ïà×È,çݺq5ÐI·¶Ý$¢`°Ÿº,qWED¡BŽÿ3¡ˆ!ƒýhwQ’çhK zž4=ÐÿfÜ¢,@ˆ‹Ê•A©Oi6+j«ýÚ½n}ë)0âìŸËÝLUñy,Ðί˜[™î¶3Þoíþïòë^^ÔgÔz·5 s,«j廓®ÑÍhЉþ?ˆ:’* Y¹5¶¨ƒæ­ów»-¢ûéG|»ó‚îÊö±Úœêµ¯¦GìàùÐûŒe»Ä[ïý×úËmåq5 ŽFµäæt5>ø-ùvC ÿÝ8D ”f6¢£ ©™ýqÊ’0~Ý€;ë¿ügðùŸŽŽt¡Kî+æiâ~ èL$¸ó„k°Ò;m©˜\%¸.Å¥n•l¬v³AæÊ¿¿!5‹¤“TÔ²%Unϧ  ¦ád€µT‡óaxE¸_ìmüªðîhfc?çõ|¿òm”p ÝÒ;ý¨Ÿó ±Á~âa¡¿jè-}CI$I ö7Fh­KŸCJˆj^0¹#!n>÷qþ|¥;ç†n¶'è‹ÑàÝèÝ`|߃gsø·)vi‹­Vú£¥ñ¨„_ñ‰háeXá®&‹©c¥¹6 Áþƈ¨5©ã›Ël) ÷ÝÑŸD¾Ëú+aþ=Nþsw}4£ömç¯ùCŒ"îƒ}¶_ñ¤ vHß{Æ_ û…Ý5[ü‘ÐSÔ;õ{} ÇâÐQµñ…&Ð:RQ&K_¿‚¹»ÿÁåú¡þz¿-`[FOÓõo;êÑÏA&¢{kxuŸp×JU#»õÒíøÛÝ+wG]°¸uoÞò=ë±\Zz…{†ûw#<ýLMºÚT@;‰ÕíڞȟòKþ ÐRpwåõ~ø¸¶v÷Dd_ÖÐqÁ完:ÔÀNëàËc°»ûaW£ùÇȧáÅ1l2Ž] 4Ü¿ñõg©#ûe¦~@ÕûÁßd¼gô{¯ù9N.œFTô{¯ŒðêAXáVBlO#34'¶%.€5K4"µO*:欖ÄÎÀ¢ü¬¢;úD J„€õúÛ‘TOK_úõo©ÝÙ»Æm^ N'óZ£Ùý†÷%&j‘íZ‚u\XDÐÓß+°ߺÜ_Ö Á ýÝòɬ–5¶©ô~/¨Žù³ÙlŒ¡g4Þ¿Yõýxke‰-*6¸Ã¾N÷÷û† nšíüí®xªD”÷ôG·c…õ Œµæy06XÌ'®Sõ=Ò7Ô<ñí« îiZ˜ÔNjuÛ¡MɯÆû·#,ñÿ-9ฦ·÷ú¥=£r{è5?‚}m‘ÌÝÿ´À_ýÒ‡èŸÎg0ã ?§ñëeßWt±-žÿ™J?Ý+eé±Á—äÁšôBÙ-5uC-‹Úïߎu…ý*"?‚+Œ]õg:CÀ„t®éé‰v‚“¿Îk Yž^Bn?J–[äïƒYŠÞí‡ûÓùügpèg,’Äí;Kîf6Ú²Ùm oi´¤ÄrøkKrí/M¨‚>Á×WÔÌÝÑUšÞå ~"Ú)2ßòØ8?Æ+ÿ=‰F´eT=±Ä!¿2L2Æ]}ª¡, q“˜¾§Ž5§ÿÉaƒ¬v=¤«‚dõëÎ^’ž2@‚±ÿ±­ˆÃwñÜgDn\<7Óßá|Ó_äÎë^óuý²c\ÈkEl«_íþ>¶‹ÍBúû]²€º< Gç××®é*à zôö­ “<ú:Xÿ%°âü¤ÇÿðñvVÄÁ¸LmWÅ2‚ÉÍ|ÞÀ¶h ûÄšÑ ºõßWûûâZ¾áG›fÕ¬­å‚É-•n¡þ ºc„,™Ò]ò¢ç7aq «€'‹ZxrØ3jž]èÝ{,áz¼–~D÷ç¿?µÌDK2sWFæ…1ûÈë´¸Õ¶õÖÉnu­‘²FÆâ?[ä')e‘–E¯£·9í¼fÀs…¨ æ×:¨(Y-“å‡#m¬®ió­5$Û+HsÀ‡„èfa”ïƒ% –ÑÞi"ëÁ–StV€¯wù÷Çé(½%µ6°cVØRSµ¿Õ—°ý{@V|eïí­µ‡ÏéÐŰVÖö¢ë•@}Õ_ñ÷ýLG”Ï/¶á6Övb‚hßN¶X$Öûþ÷F-rÁF‰Jÿú¾¿ÔbîçF úÚ.›ú0{ÕnªùyäÅ—’Îö¹¸«™:òÙ¹tÐݨügõ#lºuC Xm)€¾ü+Œ†øi”¼pë[k«o®&N…Ö½çñ‚˜¨¦ßé+¹ 祂FÐVR˜ž¶–”!{–ÊRT¾’dÒ_ÂP ¶I|º$=@M­(Å ì?0ªH~™!C¤>ÕKDë“çX¶`©‚…´SrZ ‘AZJºÒͦ”¨’WòI"I%Ù%‰¤…AäªÐr6’:`-ò%)hHÿá‘›z°*¹þ™²5v†ئ¡4¯·„RA IiÉ%ßñ<øóHzI Šñj1^?%ù¨’ úë]éh0ÿ©ñ-~ü”þ.¹¢ëY('¤ËK 0&ÿ«»÷"óW ,“Tbç•Ùf×7ZÓ–h.ùІܰ ð3üügGZ¸žŸ'–WRAWê] f§µ£n“E’NûÁ…”ÒK+[kj¿è÷–ØJZ kmºFÑ9ÒV*È÷0$°3œüçG "<¹d‘Ë’Òb[Qp~nîìÇJýT—jÍ&m§uµHÖÜBY<«mý,ºÕ±´–Ïöé}y/“¤Qðm™çðí×~.ðcr[sãW7‡ÉÝ¡‡ô¢ÎÖÂÚ^?×ÂÁr[43ûÔ®é×vS+Ø÷–ÝJX}»Ïk;t„Ö—" Ï$g¼ýýQGbÃþj0ÿ„´8–ÁÜÐGô±~C×êiU+m}u¼ÍÕ0¶K7óøÔâûódï4‰u´¡ÖK”¶QšK2IU~ŠÔ?=Ü1®r¨ýSI¤—õ¡žááæ¸9¥+xvL÷êK´î¤®ÑOðþU½¥[°H+f©ü• ì£^ÓÎ¶ÂæÚVJSéPòdÝ ?÷ù¿øp¿³,“©zÇÏ~ïÎú¾ÖÕº^Ïé6ÝÉ¿?ëc½Í+'4¹%´`ÜG4¦}gá, 8€}Z[:«j…¬1,ˆjµ€”ú—X*3Ù-”—Ïô¸çMÝ£ãðù+˜¿{œÑ ~ð¡0aù.¼}fÏ4:¨¯¨»72Zy•HI‰^&²»ð'©µ´Y–RÓJ‰@ƒûwG.êùÜrDê"½ OÁq/»;ûöûëß·Â…ƒ~Nü¹úލÊvÁíŒØ€uΡ¯¨Ô’Zp‹`)-/ªxïmm>5SP>÷ïFN*žÂRT§`úNX~þσëó@¿I€{´öÔÔ<î>©krBîb£'ºüpS#À…*ææyÌdnåô#:høEç󬶭hˆÿ`¤“$à_,WØß‹ºX'QÑŽãg2¼¦çu–ŸÕÌÍy¸<8Æ]Ó‡GÝŒÓÐÀ#Xᦺëa% ‡ÿÃW°â2tôûÑÊheºÃ z.(ºW€¼WÊßï{Žl?\n.¸­~ŽûéØc=Hv ÛýÕÜ/õŽ”wWW Ó/é#Þ9¡ñðüEý¨îÚ©;¿Îþ)µÁQ+¬-È,Aqä$çÇôk]Ýÿ5¿ÄDªú~îÓcø·/UŸ»ßþs;Gôï‘êFÛ A÷Þi([ ^Q\&;Æ'7ÄeÛ×°'2ub/,AwYOÿ~¤¡ŸË(C¤ /økUGëOÔº£ÁvÏ'âÝL°}ye›ýD{qmëÏúy~‘ŽèòÆKb{`E"ªÀèßy¶Èln…  6X_Ð?µ‘ïg—Æ2K;îºUæóè^wË6HM¸V³Ð%‰ÒŒÚ7ÐpÿnD£ËÍ,CÈikQ¹=T>'uª?¥îçD^‚öOÐ E´Eïws']ahÛBÆs×ÿ_‡)[¨¯h82ÀA×Ü^KhY-2š v€OÕ×v䘠5¢Ñã’DæfóÞNÝãæîáïëÏçúu€âóIx¤×U ¿ä×}¹M6ÛIÌ/Ðaäwl+ö‰¿bt r.¡#üê׺øj1Rê©Z(.N ÉJ^¿å5ü,¿àó‰~η><ß nû™Ýœ>KýÚîΈ+µtÖŠj }ñdi+¥Œ?:= Ù-Q£þÍ…àØåg»YÇkð÷8°ÌÏdæf´¯Ž`—ñ~ ¸E~•„=xþ˜Ÿ!uy¢lµŸ`@w>‚®ç\:ÎvÇüŠXe,¿…±ZJÏËJ”'#p^žK^<ù'öoä± ~?à§'Ýß 4a5àT¬âÖ¾@=àÖö9ê-~F·&ÐVòåb^ݨ©u¸Aÿöúû}§ñûsb_m·ÿîg~NäÍ~î÷pzR†tŒï`_\™$G$‹_ßw0UÉhxÞŸ¯Æ_ÃüÚûÀàt~Þ=®é~~×güÝŸÛ¨™òÎRl¶Q£ê.†§wÂ}—#Vc¥û~ýÔCl}v #ÃŒ"® ê3éPü•©üÓÊd¹Lþ¯g““zj=bÜÝÓÚ å;êW1º¶¹™Ý*/5ôµôfëÝ YF…Û|ˉ7ë»[5r©ÜÃþ)w'¬›3Ø­|0–wàsXà°?‚p™øê«{:ÂøŸ…¼% PÿøeŒ_ã¡Ê5Ðk½[»jׂõ Z·”:è ìö«ßÜÀ£n¥œë¼ÞŽxp¬ˆ¨ý¥0lè¥ÙÈ• PüðæT²7z±ïyê~Tµ÷ØvŒ®”¯ˆê_^–Éc)ågåuó{»¹^Üj'ùQü±dï¥0â$ž[ægðØëæ”þüvk]KC*7óG,ØH·Á¥%|‹›d 6‰h!ÍÍјÒÜ@Ì.P<ÅÞƒtê¸5 ÖIl©-§%š–åQ‡*ÏÍù0Я÷RŠŒ8ä³üª¿ÓðÕ l3V_—¢ÔºÛÙ¦,OnùÄp¶é©åu 4Áë ÐË Dÿzÿ«ú†oéÇßõÈ›yíÊx™šhµÔN Pé ¡4‡æ„í#ðö=d5ûû¹o$¼ߺŠx"1ß?DáÚª—Ÿÿ¤/¾mJFFµäÚ\–˜Ù0Àéº@Wxü¯ù»¯V…OÃØr™_?s3œh®1tF@‚ä—©’Msk<ÏCû]Ÿë|5\ËPõº#àn­S·êåx~Fª›+>LXÆTFU±Jm¶š‹ .b³‰âÖ¸<ˆ¾)Þ6 fsшඒhªãg>ž¯:ó¼‡Âå±f Wƒ­%û¤9ÊïÎhNõ`ü½oÓ<ä¹&ìïÞ_׬îç‚ú [Ü‘¬(^oT"Ûç!U¥:p«£VÒºÒÝŸ ;âï”Þáçè­l3Ub3lÙC‡zôM°GmÀ+ˆ^¤½ÜwVs4þmÈ^U¦~ïV5 Ó«€w\M·‚Ì7ƒŠÀÍtâÖÃËBŽEýæj9¶ª…¿›ðÙ~<Ë¥±ÈŽýºÀÛ}¶ßªOøæ»p«6l_†ÏÀ§élïfO@d½ (þQrXN¢míéq úµ,ª€ºî沩®ëàólöz:yð¶è÷[Ñ”ÖïÁœ­ Ú ¼6m‹ß·ù³(®.ºÏgvbßJd·’ò1_Kve«Ú¨m=PüîšÕù°½|¬JìwAÍêø˜.ÜlÀ3ñôN¿–ý%?‡íC¿òA3x2ØÏt˜O—BAZú¹c»ÐémõçÃÞèýº_|j7Èç‘ ¨Å4¢i"|‡7ÿ]é-kÐ¥†Df{ò^<ßÈÏhVW À„Îøi¦ŸÍø> ß„{ýùàñš '¯_Ó¤#؇ßEÑÆöpä$H·Á˜£d{·Fä"øU‹ou+iÍ篙üÝmø•RfÿZê¯Úìcm<ú#8Z²gÝáqð!&ªÂñºèá=l°‹î­¡ŸÙþ{>‘[k‚`¿6¶c(yUM #ÚÙ­ø~=ÿÞÿY˜SŒõñ~ 80b…·à+th@ñï¡Nƒ÷:÷í‰øfXÀÍoX„%‰…Jø¸<šçŽåfÙìY"’ÝÃFã¨uŸJI´}?‘_ˆ¿Ü ƒÁÝÞ¯¶×÷Kø´›O¾ïÖ?‡~¸•wc{~u¥Àö¿û%µdC¥&‚zh› ýaPÌà§*viÆ3W͸#\ì ¬¾„Â7@¿Ã¿Ѷ¶(@}>7p%QpÊŸtëFô&*Šøxj÷çú£Æ›ü<`•èC`ïˆ?!ue0™¿7€ÆiÀ0,h& >ÓGi˜¾Äwtgвè6H³kz k[ÝJI6ÜRضéBýÛÉ_w¿ž l +¸9Bû™³\õ°ÿo"*¦S£˜Å7výG§áýLÏÅÙÙþèïd|;ߌâg û9‹7“Ïo¢‚®oÙÉïXVÔŸÛa‹l·å²x»–Þ’úÊÎúUNÛ3|Í0ÏŸ3tÝÿ}>±§ÅNñ½W¥IÀçx"åÄ4$Uíb<´Å¯Yί^ü cÙû-è™ZDû¬üì_ý4Ž%·N6Á¦Zu?ÛMR†ÌÖ÷ä¾#~æÈ~]Ìãèb/¸3ß5xL%·wúFIÙ`ü"-¤)Yp=ð.Ð/c¿÷ÇoîŠ[ýÖUÀÛÀ³öÂËüª Ke®d•ØØ #! õmm41—î‘ò𦜿Zv%1³Ó¯ü ^ƒ;kyåбËvÓ®’1À«Ÿýiœ ä‘‘òPÎci`ÿíÞ¤;¤ û9ïí&û§Öy ‹©gËZO¢É4«Ü‘dÔo¯e¼FÐ4èC>=!‘àQMmØiؾH:‰Õ"™‹§wDÄgv’ßKô¹4—HÒ=Ðà¯$}pK‰‰§Ï¡Ë£ØËKð5œž“cò*¶ÌÏgÙ’,ÊB¡|—ˆõ:F†KOý‚XY#U$"¼.l1í¾¾ßI¾ÁK|‚Ea‘ðö…†Ð„6ýا±-“½Äæ±d@ Á3BhQÉ)™¥0jµžàæ¯|‹ŠçÓyR}ê¯ 8M D´[Äîm½ ‹;jt%Ÿhj:è.RC¡‡4²…·C¨»¢ooaüQ,ºŠï owQ‘»ÄÙ^Ôó„ž‘ì1ÐÐý§5ˆ€/Á¿O¯#nçÑÁ¿ï$j—Xâ>ˆžâÕlqusk›öÒ¬—Êot” Ô}Ðö-¸âçl}«mæo4V%KÔ¯m‡†£^zLeÕXÒ‘óß¡t†D–dRÂ_ÛwYC f éx> aî:ÐÇÒÜõ,.º#úwɆ}¨wωÂþh@MرZ'Ûe°¸¶­îðx†ÎD;kKûÖWnuuwMum.߉èôë†ä¤ÒŸ_WÇÛeT=÷ˆÓ1Dì+Ð_¤>¸È«{øÝÅß°…é|si*ÄRÉ5ýÉÏ{ý3ì–¸k 2Y:û>4¶*Øå²_å V,£åÉ}+ ý×JGáÿkèýÐï&R7úU‹Ohh{Iô»+‚Nùc@CÑÇèyUê…˜šBëÑ/þ ÍÉ›+è…úc¡õÄø~"ßõ Ñ-†•²;Ô‰Q„ÁncÕ»ð!‡Æ’ĆýçñQöIB)D7ãîbqg±Üµ\ï@¼„8šˆT½cy¸.¦x»Q#”ãï­ð¡µ°O¡Zæ×¼ÛDÌ>·çX3.1Z/UùîGøÿ"Ùôµä’À®|ö×#”r3ò_Y‹d{ðyY‹l‰uw³Ÿé}:¶…ZjAºŸbôKn&Ø<Øh~ßÃ6®â›ˆ~Ñ—äüØ1ƒÕ¶È '‰Hþá"–À†¢}Aeõ7¾ÑåD@e)K~ºç€ºœ£ÚBü$Ê·Ì_õ¿€ßý´¾¯§ùÕ7uó#»uÝû¹ ÝüÈ üŠÁ«ˆÿþª ¨ ¯eÏ4Õ£nø<†5Ù$•¼ 4è¿'Ñ£,(ò3ù/õ+~/ò¿ûó9]QøÕdÃÉÄ~-‰Ï;ò¬1»îwÛÖ!Xd臱í,·ÜŸñú‚Èφö%D ŸóûÐÎHRO⩹‘Âji‰+ßJiº¡(]?|jZ°ÚÏ{<Œç›ˆÞ‰h÷÷h^o4àm WVáýC÷”Î͹•ÜÞ>¢ƒ›ˆýZÜÒÛ'öE­o›´¬NÂÖ¿òç¯G *ñ$¶”’Ï@Ö]kãGús!n­Nw½çnM¥£/ÃÏJ†¸/>FDÌ$œ'î›ñÚ@,°õŒGü»5Ï¡‚k©ŸÝÊ`3ô‰ôDi3Ȫ@þ›KgS%—nTsóÈO­ý‘·*ô0jµþZ¿ýd¹öÚÀù›M¬÷Åß[áù tn7öYsûke·P1¦´Ðv–XšL,\ÃîZ¢¹T 3Ñ™Bòub¿HBÝL?žŠ~!uLEÍŒ÷Ç îCЀ½ü,ÐYþ.wŒ³,¯¯ šºÃþÁ‹è¿;FÖ›c»åøÚ]íÑ_#çjæ[Xe¹›ÒRRÿ/ЈÿzÄÓeï÷c¯§ãËï´ û¾8J=w ´CaÂ0<^Ÿw&b7Cúð_$ó_„å'°Àh¿f†»æÓÝçòÿñìwWFÎ ~AØBjJÞ †?¥. #y)kô*\ž[àþ¬ÅX~€çQýö°¿¡÷ý6nÌ]+¾Æß½ %ìJFHd¬¥{ Öpæz>wíÈy϶EO‘û3IÆ †?žV‘²Ôã›ê£v>Œ‚ŸýUáשƒûßm´¹¯üQêcÔÿw½v}iרçÝÕ1цžþº ›TFG°Wh:ú³<.ø*±)p&ìp×>äÀe¬½…µõX*•P1[Mí‚í‚þDekmf±ðxV«dÁl­¿zyþªØ]ǰ€øîç¯Ù¾àæÖ{éïúZ¿Ý*a£È•+©ûÞøYƒÓXJKfùýÕžiyžÙ ÒƲŒApÜtÚ„>8™]Õ¤ø,*ëH-°[­1¸7%fú«$âÁMø>¼­ƒ#¿À‹;ÄŠ»_l’6ñwKlæÕÔö5½_Yúþ¨p'”µ¢ncym¡·2;Ðpÿn<^RLbj~+M•z’…¿×€ðF·0vì=ˆl؇W¦Ç×PÛ§ÃMîû¼þJñ9xßU?·a~vüœÆÊYN>ûJóÙ«fí`À0‹fƒƒàêW“å’”‘Í2P«*Aõ.é "ýÜ}©Q8w]X/ðm¡áõTyÙ‰é—DHp[ƒú»UÞ‡¢€îʯú úWÙ2šYjÐgl«}cßi™h¸¿1.I;,ÐRjNKeiñl0ªvw´*!}àIô®'؆‚ß]}ÉÏïFCå¢1èôW¡ôÕÝ{‡~ø¹Æ·¾Ö’¾ßñ)Àc¶.–R5ÐPgLÁÒGæÈemŽ$ z;¡ál¼ÆµÍêîãÿ‘ßË÷âïpÄuL8^ÌzÛJzæ t÷ˆ1WІWðæƒæµÄ|J˃ö±,VE JÎ@ÃüÝ1A&É’‡ÈÝÁïîd¼Kÿ6‡Hp÷Cm æoÂû÷ü{”*éº*W®dY}û…œüÙÆza½–®C"Xxbum„Ö’Wræ?£¤=¢Ú¿å²8öÐßëõ3¾½D“€h®DL<'·¥´¦®š±S&ÁvÛË Çƒ3÷4|bWa~4â> ±ñØ; 0)Ϥ]WÕ A‚»»;$ ž A<·`àwwwwg°àîî\Ïý¾Ù³öïžÝë?{NOþ‹·¯azº¿n¾²§žú¤*=`=¬ª¿Û$t¯jÒMrë › v•17­ÕMóKÌal‘]¶ƒÖ ÙOȳ׎Ú# t؃ú_imýX£ê *ˆJT:ym¾¿ë·1RÀÚ)ûÖ2†bßÿË*~¦å@»šÈsøÇ0×kÚÝŸëžl}Añü°š«Ô¿WÀ¸Ÿt…œ|ÒA¾’Ï$Ìá¯L°è6ˆ@ôç´6F%á'¿…þU„ú¼¾4À~” Z™(ކ’bùøAwl 9<¢ÕÓôº“íŠÈDÙ,Ó©çjÊ×’IÚÊçò(rO®Ke-‹—Ä0w$ „~†nâZ´{¥ÅŽ9Ùã,’“ÌÕÊÛ»dQƒ2jbwô®T–`ì™GJ¢¥" zNùÄ÷ÿÏ/‹¤¢&Ô"î>qû(h"Œ¿7µufIjæÿ;«œäB ù$5üÿ;Øë«T1è‘ ç|¨Se°¤”ló½ÄS#[쟜º‘PMnRáí$V°ÊºRFKù?`´ô<òÉVéleûaðùàò‰uƒôEÎøzN| Hëï$‰ƒ¿d৺ü@Ý‘:¶ôN:Ë·¡nÞí¿»Ò#Í@y‰FËJɧ‘uqázá§$üdþÓv ù+[ç%"Š ¼RW¦Â$Âkhšóüß[e¤1¬µ†”–~ز2Ö®"UÑÁ?^9y?“Ÿ’ð~½_ï×ûõ~½_ï×ûõ~ýOZîêíìÔ¨w¾÷5ÿfê ðÞÖÞµÿ«,ÕŽ“öwr.÷AÕSvÿùª/Y¥*1ü«ÜTw'’Ô‡šÐîê9]£Áþº·¯ì¨^Öž6ÒRZd´SÏšY‹hEl†´Â–ÐŽH?'ôÕÿ°ä÷˜龯®±ˆëCºX/èI0ÀÝ[ÏÓ‚öX_iË æEÅ÷¿Âúo5:žRÃj£‹5&öB»ë÷x@64úÇX¥±X~ùTB¤¥¦´ðøô=å§ìÖëü{VÝ™ï˺Pizä½§¿é6²@qk:$ðÝðãYKë*Ô¶ïí”ÅÐRR‰Høc AIÉ-™$‰ÎSwÕGˆîÔ«ÇÖ ãe~ñï¯ëù•À>²þ®‡}`aA‹f1íz‰…ìõ­žÕ1 Û9M¨íÉŸZ´c}«Í…L×xw$s]î7è¸Md;Œý]_ÀÍøôLÝ6h:Û¥{ð±Ó`dPÀõ»¾­±AÀ¢ ›ÞÂÊX ­G.ihñþÅêZ'&¯o‘uÄz{‰ÄÛ`6kõ°»‡ [ÃÆV£“{ü‰|wÑK~M]WÁû#XKnä³ßô ì ªŸ!}ù«ZÀ±ªHNpª¯lÖ°äówiÜu=îúÆ=øû dŸ¤®×ó#^q½b; !àa8Ûïy˳×ê00µÝ#"Ô\Gü¨ÄESÛ¤…à¡úâýÅe,ÔÌ6¹ï«»d ®ÄVê ½DÖsW>Äﻡ‹hVR‰ØR=ŠìOõÛE‡ý¤á'‘¿f ‘°M]Ð26ÑVh1ù$Ôžÿ‘z&•ÍHý̶¨Úx¬;S'#“ë[÷ ¿-òïÀçû“ÎhsÝ¥‰ˆêéØ?yð>RžÐå Eø€ë%zR…ß@3Ç5•APЦ]-è?\%à{ áûÝÀ²sÈçzuÌðÝÀCü} ®³}w~ŸW7ÓÄõóß FÓ¤ªÖš¿ ¬ÆRZßû, C>H"&ä•Î6†k-haÿÁÊìÏh ‹ŸÙ¦ƒrK‘w;ÿ>Õî‚Kð…~þš÷‘:ÝìBÚ´:SJê2}Œ…§ùl‹gÛYòälÿ|HaϨÞÀ$[ðo |&E Åý»••j¾ Œ§&ùþ>Q»š¨u½ßg¢‰%øô~øfßÉo€ï…BF˜¦ç¥5òn#ÿŸB^‡'ÑW\øà#$?À›‘Ï(‡ÿg'®Õ/´v(º÷ï÷•I>’$âØËüû^È÷,§£‘v¡ï‚°Þw½þ‘g«ü5þKô%ÚÙ7z…· «ëyŠ ˜‡øst]#‘²“ÄâãáÑeµ>l8m Eþ«•ëç–äšÅ~%“_TwŸê!$ìÆÃõiMMe×Ñõõ›‡gÌ ÎÃòÂ[X<=™Åæ“·þtÿ??%-ùóÛ½à—à+áì©~D•ø™#œºk+BÏñ±Dh ‡ÌÅw÷v‚â÷y,GΟt,ò ÔúX}‡ÎÇ:âÕõÐǵŸ»O´"ˆ‘„Ûè³Â!ÐòVOÿÛ¡C`¯@Š\ðÜÔL±AÆÝD@ ÉGZP Yy´Ä¡Qí„ÿoÞ.Û·ÃÓã±m|¬íè¤=ò×êúð6˜m¥Á¿ãcå TGÑÂ}2@!ª@×O÷Ƥ&.?Œ : /côŒÎ¡Æ*ˆ¿*a‡êò ržÃËØ»ÒóüÏÝÓÕ¼óö€€«@†_ý5ЙtÞ°hªU‰71â59¢%ò¾ã‘™*à>ay ”´„Äÿs¼b³ºëëoà%Ÿ’9†Ì&Y°~.q}½£ÚuØù‚ÆÇS;‘ Ýr¬<‹-Æ!á‡`B¿oú¾Q®#À#²{d8ÿEðâ¦f„ûì@ƒ[`ÊŽÿœÒòx@j_î!#~L|fm¤frùÓJO™€ï~Œ÷?á·c¹÷`s´µ6CæQê0!„¨…ôA0¿±Xp—¿ãÁMþ¹âg¥¹ªx ºÙê턬ñ]`^ñW^2`i3| õ@KeÅÈɬi(8.TDbQ—5ƒ·Ÿ÷×ôÇÑW€m|üwÔ& ~Wí ê¹~ÿ4¢>•¡H·Åß%=Cóê9ÐÂõ;ÙOt$€ÏcÛmDÀV*£öIg/4'Òç³_,1y ¥¥ V³¹ðí@¯|øþnùØ"‚OÙß§xû|wŒûÎÔ)¾Ë§»öŠÎFª_ŸÉ bá:ÒÀâz Q}–¿–á‘5’ŸžuOßÀ¢¢×–Ü.¨«Yck…秦®.lì¢|ppç´ÃP/€Z¿aÅuHäîüÞξ»®¯ËÀþÞú3¾°D;©qô±,õwƒlfj~6‚òoAºû bB"&¼í#ƒ¸>wî^¨'  ›Ž±K !;+oýù™I¤Å"ö¨`**þã24‡ o·ýü§yØñ&Ïšâ ©nºá3‘Ýõ6+ç‚/Ü$œå± kOÀö7ˆ™üåz?%´½~nÚD4xÝÜW×3h‰Ö&¦µ®öAÐ\› kXŽôµ<ð/ >›A¿×_é*öï Ë co¢]°s_XþT<ÀݳŸèNü¯ðÝ×áýãÐÌ"?éá°÷ù™h%ª]'g¸¾W“ý§RØ—Ë6ýŬ†U¶i6&|DتÙ5°PRJÙ+á5žÖAÞñxÁ²ÚJP`µïü<Œ8p–ûNžîŽ×1zKz“Ó‚ÑÀtົ߮þ>jÃùðýÄѶ™íÙsr+®nàb[]ûΪ‚†‡øÖû0ãRÖ3€ÒDôv’YEj5j›æØwŒ€%ÈÓÂOºZë{ùŸóSÖ€…/ÄÍÂuý 7"ÅZ~îàýûØfúšèïÞ…ôq¨ æûûÿ? £,aë·|Ë],5? 0 ñ>øÑ1`òç†ûT’åò¹&Õr Ú/A¾0œ4xÈFäïï‚mã'Óo)Z‚1¬žï yžÏ­ñ]¡¹9èh¿ÊÝS•˜¬x/KGä}0ùÛùù‘}/—ÆØ¾uNy­ˆ:óJEêœCØõŽÄ\¿ÿè£ ¬ð7|w±=AkÀ}\m´mŒðçD¦ƒ1©ÂÙ²ä ð£7ÒŸYJ$í"WƒK] Özi ëÙùHA-åû“º¾ï­´.r„ù´Yo¾¿ ŸþA¿cgyÞ߀ªÀl1Ï'âÛWý\àë°$÷ù¥DÅt,¼ =$ñ÷E*8ï¦~ãï]í{ƒ¸ãDoð„øÒx Ö"ùŸ®ZÙûú¢×õÁv~ú—]Á~סv ¯öCCˆ†a`à Þ¹ÌßÝ}÷wÈ?©ðIWÿÇÞ£ù”; ÎæsMµÕþhr1˜xØ'Þé«I´À#!G$ŽÜ“9øp¤œÁcZÉÞ¶Ã#Íc}§ÞÙüëz¼woD£ñwìßýÇõ¹i‹5¯ãÙóÐÐhì{Ý÷¿> âBÚ0¶ˆB Mðs•ŸûŒ¹?™­¿Ü&ÿÝ•ùìýþ|?±#Ä÷¨]kù>0ó°ê*42ýu÷Ãïⵎì}^îï„vGƒfc] ø=ØMŒ¿ï"›ë’qM5Çà“Ø~ѱÝW ldψ¨fBN¢ßñ÷SÍv Ír¼¸¯wös/Oøù‘wº™:üŒ§‚{³Ðš›†=„Xç™Âv>éŽîáܱÀÝ|þ:ŸíŠfÆøþ×! Çfxñ]P4œM–¼“?¦–“ ⦜Žõ•Ü8ŸÓgó÷^¢Üu·ŸŠO/±î k¶9LKõS˜A¢¿%Y£)Úø…í*óS ¿‰n£±¸;xQÝÙ?wþðškC:@^pçȶxMN#cÐá=#VK¶Êì6™û‚ë}‘e®÷÷úòÍÀwOúðÛyî][±Í`Ðo¬×ÁH¶*o n¢“›QœxZöðGD/`çU¼×„ûsˆOàC‰•9ü/«Üÿ»…Ì‘äf7±ÃíÍR°¿Èç:[5@–ìñF$póŽgit° ébõ °Åª<φÌMy}š@Té.rÇÊÔ6¢77ÿ¥=ß¹xï…Ö&ú©¹í ‘1ûr –b’{ºYÇñKw”–ïq×ÿ¯ î¸'§´:G3-õ'<åK-4‡-Ä+‡áß ÑÄjM¡iñëk0ÆKD{O¾½'[w@sÐÒ1}ÁÏ|Þ3s}CÛ dž”–„Ún3 _E¦w“#ã`ä*‡Œ­°’ë¶”ØÏËë«ÈoàË•@´x‹ëùUA?]ûÁ\Hw-Î%“,G' ð•™|÷F}è§»¾@ø¶³ÄÇh ìµÂK%Db]ìNÅznæítžµ@Î)xÁwZ½8~0 è©)©W`ËNšoè€ÖNàѽئL¾ ¯Œ!6bãMøÀ*>QÇ¢ƒ3þœ ˆÆBøÊi™€Ê¿[ê“jàÕn‚×6}Å~/‡õõö ‡ñ» §G¯y ×bU-€§ÔÔšžÈ~¥)©åg™ÃåñNj¶pÝÎCÈóÝÑV"d6ß¼”9á"¹¹á/<¢öåSíÿP¦Hll9 ·û^Ljö)þ¼Þl2ßx"½-Z˜H ìS× à[½,神.Iq$tývPå·P ¾×ìºG†’ùö°µ›%õÈйá»Þï†õŸð]äÖñ¿\$ŠVI‰€Ê[ÊÙ)zü>ˆü ø™†/lÁ¦óý9ÀYð½~Èx»½FŽá|æ­”b›}üÛN¢“ärYÖJ?ü$ú®üLä8‹7á³ëx<ÑðÛÂË4£í—±¿'þ²t‘ΠÀ×þ Ç^öq=±à&8·ñ7ú¸®ëil:úZ?—bĵYwûÎÙi ¶töî'¡ìEƒ;üÄŸ‘0>7w™ ßqDts4„Ê?ˆÚ8-‚û´ °üªŸQü(©|ÿ*W,gŸ¯à¥°ä òâR$š¥5ñääšEûËDI¤ê;Ù¬•ì˜ µ¶ÑZX ;LÌ‹¹3ãk@€¹|×(Ϫwè‡ö \á ±µ„šç$lr7ÛÎÖd’I¦X~‘ï¨@ËK~öúžzœ†ÜÓõû9­œeß'"Qa ¯±´$<ÎuE»¢Aþ¨îj@‹cûý¼àûl‚¶šúg‹Á‘µh †­Ac稚ݙ¤ÛÄÀSMgóõërÿ¿¬9ßw£æÏúO!âÝÙ¾0¶Wb ã(rà ä=6Öa¿0ö+G²ÄÄñY2ç~©*™-·}c¥í1Ðý¸. ûøÄ.ï ×ü™£ èé ßv›GwE¨5ûóZxVˆ¤“ì²QÜì3w®¯;Ùk<\¥—ËiÐü¹k£¿ªá†>#«ŸÃòýŒ‡''æÛÓ®ßU\‹fw°o}˜Ñz_ûÝôGºB@…]ÔEa̼¢ÉÌ;| aÿÐpÈE)*Ù`‚SÙ»ýìù|â`‰¦·Kú~Æßç+xpÊÛêÈóßüŒ§Dyk"dŸ¸N™K51ðÐO|HtOÜÆö ¨ƒ’]¿4µó~.V8[¢™`G¤²üháÅM@©+Õ¨\Ö‡Xl¶¹©ií#,y ÂÛv4³ËOÇ诇!úÝÜEz †* œ¾Ã;n±›žÞݳ‚ÝT@oàG l1T߸ò§ëhÃªŽ¹¹ݯð:Â]ï®Î>î<Ö4pQãÛ æïí‹ ï®yž‡•G‘Ͷ`Žpjd„Kò ™3†~Êö+}eç:†.AÜ4aw¿DZ{‚=†!­¡î]績°s‘?§” ´è~ÅÑRIfÈyßëï°ïò}ÍO³ÆßÛô%¸x’ˆwÓzÁY'푾!Uím˜À"o&ù~©ï8o8àûG° VØÒ››ƒ1oKd/ÐÂN_ÿMAç -º_Q‰óò’AN éÇ óHP º­€µžÇ–w°Öuý\н~ïz6þ,Ò.~:T{0ÏõvgÏ‚yý?¾—ÁRZY«.î&o|‹7¸ºç߸N·Á¹;ûï/+Œ¶’Ü0¡GXý%–>GLœÂNnÚ—;¯{Ÿv]Áû¢ƒAä·Jø;+°ëö¯t†ã-fË`|ÿ1ø—²‘#“XàÛÌ&ò“YLž§³µ:F*Zì?¯ÈD@1.“=^‡µ}~¦óU¢|†ºk¦ãÏgð~ؼÖýšè;jÿ¯4ž~ChCtçõilë®ê5Ç¢["+ŠGíÕõöM9„M`Qù~Ö¤Ò,ÐbÿÕ £ÙaÁU@¬Ó~ÖÕ-ðþ™F†©·Å—ï Áb,ß™Z¶¿¡Ú:4‰ïÿê;Ä»#ä]Ñ×âd´¿~ôŒ¾õ½T+Zv;jÛø6µOøÞ~àK>-"ó-ô_­KRORJ_iUú©gÁø´›ï>TxàÏl÷Cêv~rm#ßÝM}(‡íàCýÜØIð§|ÒévG®À‡çk\+I,Œi µLq˜¶“âÔÞ¡gÅÑñ’UÒH'‰¥5üŒÚæÈ»½ŸEÆšŒ$ú{ò»µÖE¿Ÿzâ2âi´ãŽq Ç7–ø¹ñÉ›½0 Ëp¥DVŠ((`àñ­„}o/`>5¨¹-õ_V2ª÷$Ôâe$"¶Ð"äöêÚØûÂPänC\OÒ_ÐJK$wLJk¡wÄx%~²œÇì¿l0} åµeþë LB¥pÜ_p•Ÿ“°æÆT¡i%Ò·Ô¥¿ÒÞúÌÏ»úÁOziE Ô$›÷AÑE ^uù®qî®pOž\F¦tØßù§ù«&ãkáÃu,ú‹/ ‡Cmâ{[‘o?‘mùo–ês)@5þVV‘¹Ý¹O7É`hÐý¾„TûðŠŸÐÍ ~»+ºù«¢Ž"ÿV2àØî~=›ƒ2ö3 ðs!&úžÉËüt$µ|p kR$Ôu~"…¤±4Æ;7kYdìR¯ô×÷¸+]ò»;¸ÖæÓƒ,8/wWƒïóâûÜQ®Éþ¨ñH8ž›‚ä& \†7¸NÒ;É/ýÝ„/´•×r¡„ûýeí‡ç$Š"e9¢ûGlæŽd,ö׳ïó÷C¸ùG-±þHÄ ¶½Â'Α)×#á9ÇPPÂMBÖì9œÊñ§õ<ÏdÉ- 5b +GöÛhÿn}¨Eå°f²‹Xk4X¶»mô½Ïßa¹ ~nëtÓXˆ, Ï/òó{cã ê®øvG ¦àñ Á¾»Ô¹é,£E°7x»º°²U#~E.X¦äB þ»eš[z#éCªÇÑa7×Õþ>~}YÜ À™Ävgrß28ÏYjŸ#HõVÆîã#nRø^ôrxä[¾'Ñ^ös‹×h kcg`Å£ÑI%9hÿnÝ‘R2†½û=w3ïvÃ×bÍIàû^s“ ÝÌ›®ð€ø}‘±ó]Я#ñUðÍu†ÞÌcþÓrØÇD@x*ૼ/Ô¬œ²ª~!×-ðß­Ãàß kÓð€ÂæîúªnF­»’Ó­XèìŒÿÇ¢™·šßKsúÞ°ì$Q?ƒªg‰ŸkYÒ•´‚°ý " ”5bËBVÜ:Y}k¢C-îY+©I/­[ÍmŰÝ38ËTè[ôC;M7L‚ó<ö÷5&´©XõF´·êî÷rW@ŸBîY`¡›uCsÙ·ö¹¹Î­l ²¯°¦¶ÛÎÛCù1Ðâþ—õ#õhm)¡¬û›Ìî ãdÞv]'Î`Ûi`£›`݃o‰¨îkZaûÉ/Â.ù¹æ}‰Cþ8ÐVòB«LÕÞòÀz{[w»hÔX7Ié@‹ûV/< ‹$×òÈâ±×7½Ì#ýÕmkaø“ˆ‡5ÈøÊy†"YËk‘ј»FÄóÛ vœò÷Ì»3!74žñ‰5±v¶Ÿ:à‘UѾhzv …ý«!>CZË $ÛGÞNi¯°éUT°ï•H¿Ü›ˆÜ Wþ‚_ÏàQƒ˜Q¢a[Œ52éÂØt殊BÌBþš¶Øšê@i+ßZÔ²ªˆ›L¥°¿í~æc!Ëlî\Õây(èÎà<Ä×7ý-@‰ÄæîoIޝdBWnîÁ2ÝccˆûvÍÒ¼6Ôv‚uð”Þòi¨î‚]HªË¢YÉU®ëy̶޳IãR½¦117Ù¬Š»‚ÁfYì ŠAçl#Ò妺}¡}mEZ:¾õ×@dµZ6ŦÃ(:Ú%¹BÉÔÛ¶òÀ„›èÐêc{©¹­,.,HØòƒ_›­-Ÿ"C\³~&A=ƒf ˈ™Íp£çÚÄŽÚaPÑàLùžÞ êlJ³À1BÏ]¯ÿl•¦ vgù¶‚ÁVšÈMn5£µ·Ùö«m°›VÙ7ã{©>Ór6C³kFÝ"-aQ¹õk40Ñ!mLb¬­¶9hñÖ å¶ÿ}%’rR‹ýW‰Ò—·zä®,Ö_b=l*8¾DÛ¢ ´ŠFÑ>RGòIMùJšêm$ pB×ïýñ‚ÚþÊ þÙ$iBÉŸµ²È\"µ®4ñžÐYæÙ:›kï°M¬ù• ÖóÈ _ÓTN—¤•ïdD%ÿ—AæÆ6ÆîØu› fµÆ:¿oˆü”UšUJ2‚Ç$6yk¬õ²qAQ‚îØË4ßÎjR.¿ÈY$ý°þPž/–³²¤×²šLÃt®ÛZÛ©µ¶d–LˆîG½¾•’-Œ•ÓzÝâí ZáúØJr]!])¥–T“¾ü¸I¤©”S²&}P–É>­oÇu°>‘ÊèñKIhqþ[+¥ïè_[ ÃçÂS½&ýsXa=ŒÅ“À’J:¢?¯dC¾ ÁÏ2ˆ¨ù&5Az€‡ý¤±Äû÷@t+‡””v2ÉHeÍ¥·ˆüBR˜x/F|*ù%¶ï÷Ÿ („§g´h#·ïØ«ÿ“« ÒÖ–ñXôo뢠ä?[ŸHb¶ì•ï×ûõ~½_ï×ûõ~½_ÿù• î›vXö÷½Ì“¶šBs‰›ù~ÇïlóŸ\Y$Œ. òæ…»¾]Åy-“T’þÙDÉ¥SÜ3ÔDEµï¤×vÿ'VX|^? îs˜m*ÞFÒŠºÆÍóû@‡êmá{ÿ]ÖLÓFë-¤±˜ò—ÞùÿëWŠH{©Ž• Sç.Äëój'Y “ý”·^ÚÊ:Z°%°$–ÇRÙ:kkoÕ¬¤N“‚TÄe$pÝþ+6.%Ùu¸ÃÒ®ÏY6½®=%,'ΧIeQ-†åµ¯-µ ÖÔ²Û÷VÌviL]M}˜÷Øýý÷õ¥Ÿc·B\wˆ4X5± ¶vJ¿²ÍºTÜÝW´ºÕ³J6ÖÊ#ñ-½£q-™å·ŠÖÕ¾µR¶8($ípóß]E@¹¸²YÆè½Goõ³Å~ÓÂÍ>×UzA–ÛínfXA¼ÿ†ÆÄ’Ù;ÍÆß±­ª֜څJù— š€ì®7ÎdÊ„g¿ÖTvR“ZJ¼;¹—Í­Ÿ¶¶8–ÈJâ÷1,¢=ÑÔ°­»&ä¿£e®ÓRHîÎlª­Bþ2Øùf´Ö¼zËwÑúЪ!1ë¾±CšJËñïvøï¬Zâú”çòw»º{9V"Ï uýà]ÛÇþ:¯0öBOéz½¤ûùÉcÑm­>Ôüè᡺‰Çw´<™p±ñ-^ð±‰F@ÅCåyÿ¿]•%%Ѻ@îàÃîý“0÷ï+¬¾™"õôòLŸë½~j'|„ Xþïoy½ÓœÖǪƒ„¹m ºh¥!ð‡¢ï_¬%Œ>?Ùý´ŽÕæî„r ƒð¾;æyuGõ'éßúP>ÈŽéKht¿ƒ—ÑyÄ·HŽŸ gB0ä¤VÓVäÓÐ=©=¸/­ˆG°å;ß­d¯Ö#þ®ñð Èy4؉/lÕ:É_ xÈ+"#5þ•,˜ÁÄÜù‚Ï:ÃohlͪsaK¬ŸœÜçú~-DÚè¾gépþ:¤®3âodý-øüqþ> ÜÇÖhr;ªWx?¸Jä¶–Ï¢À6êÍ ʇJ[±É†=-æ?YU%75NÌ.—‹V,}o_Àc+²Ýò½†ùÉ'ÕÝÛoO«W%&ñ^ľ€½c‹}dÿä˾Þi¼ 3±p]/\a=,£$»†¾U¦^†ú&¯¤²«X¿ÝŸú!­Ô=<»Š>\·`'P8 á_×17™6—>ú„šï6¸ M=×Hö?¥»ýïaÌÍ‹X‰7Ó¬Ö­Ý–š¡ ¸IÞ¥åK-ˆ×G¶¥:ˆÇT8ÏVPÿh¿ûо:ÙÿE54ƒ¬PLI}Pÿ^±‹»»ž¯úyÏÔM¿XÚ…G¼ BÖ;§Ùc=ïgk…®U…*ÿKɬem5Ò.ÔeÚM§ ë/: õwóîçñpwC/„…P”ÑÚ2@SÃôŸñ97è ¼!3¸áîš a;whNbãßòÞÁRijq û>üíÊòÕûxo²Ùn¬=SÇx¢ÉtnæEÖ¦óÁ¾ : xdȯeÐUrðs¼à.qà&'ıtæîs;Ã÷œÕ´Ôé`Á±}­Ézj©&±CÑ|t7«2‹tßÝÄ 7Çâ¦ïx>Ýß×´FÝ•|a‰îÚD؉_lѧZEûk||º<>}ÿŽ`7A‚S|ò´Æ#”£&XA(GÈK*h9,§et3¢ô+ôèÎÇYY¤œ?zµº®œ‹<ŸÛ óèïü¾MåwœXpýÁVø+"¢¥ÉðC+Í­7 p‚&ÄâÛ+²ƒ»#"!–>vD±,VŠŒð9<(/<èk«"–r„,@]RDÂâµ®kã5løÈç7׿³/¬ö,ÑE—ûF ÐÇ]J|DZå~æA {ª_¡¹øÔCǼüjé±¶ãGŽ¢jþøŽ+)Ú¼ßÍüççÐÿÿ­|x&iåû•oÓ 8k´?õ¸x­‰÷ Ú°<œFN7÷«Yð2¾±æ·Ncó|†:¾{KÇ¡Á4ÝWúÈ’#u~«iuÉŠ±,•°Ÿ@Æuä›À{@""175ßcÐÙ]ÃÆÂRùyW1©ÿºb÷mú3¹`Ÿ¿ëe*[-#*jò\m±° û»®þÑ©•6’ý®'Áx@¼|¡»‹Þ>€ÅÀîÙ`Âf‘ý1‚l¨‘N’Z|‰ ö—’’›Ç¶ÓT4a©rV@ÁvX|‡¿`ÿ:É]GãÄÅo „ëûáz#º£Çy|lé´%lo/yb%Þô)¸ÿ™ï„p=E°õÀt\OØxùmK.<ƒœÃ÷§à)'É€KùÔeøÍSu3]‡XÖÑkcÑ´ ~`ýÈ‹úH‰Eì`…}&üÙ.ÿ¾"ÒU»û¤¨ŸÏT¦ öû€hwj’æcë9þ~·”háïk4&p—ˆXïkSd}³gx«’ÏWød/ß%uÐþýØwÿˆn­88™ÕúØdª¡@#àGOÞÉ]ýÿe®7Uxpk&’mÑ× Àßè$r÷ÇêëÑÈB­‹Në1Ïðgã‡ÑFìÜ_ùûg"ÿtÏÒ™ëù‡ 膟˜B%讞¡…$q@¥Ïò‘5Hêðú6uýÞ§øþU `nâQGßÅý¸º ÐHKXß üÁu°sÛEOüÐÁ< Ï÷ÜÓYøþ?9í L Vß…ŽÒZKkK 4Ñ–Ø ëhÝõSþÿ@®|h`„#>“[x"3œìû=Oà1Ê÷¼u÷¹ÎFš½üLÅóûêwèc^qÖßÑ}¤<çÿ#Y2{ã§CžC3ÛÐÛs꡽DÆošù«Y/«H.ll㬶ý =’T>—<Ø~¯ç× Þ˜Í`¼·¿6¦ƒ ñÓn¶`ÛµDô0¸Vä[ç{£lå¶xÌã[æ‘›;x möwD»YBð(w å<òÆ+’X%K¬¡µ  ôî<ý™sŸŽµRé´ÑÎxûPíŽ×¥µüq¾d5wlºYn–i#ðá Þ° ¯¾ä;y»£À{°ÿEFåŸÙÞbï=þ.É5°ÅÅZŸO¯3f’Þ’sc{ªGxÑ«Þ ×vW~EÂþXø'òWKdŸà{ÜtÓ"ðý±~ÞkVv3/×cç~hä'^;è'b.%'F‡ÿC^×?Œïô²m'¢Édv m%†Zá7kˆ€§Zöךü?z .\£¦v˜ü¿}’ÃcVÃsiSös2Gê~ìqE$è§[ƒÍ{£× ÃÝÙ:›|øZ3ZjxLBj¾BX±uP{ \\§ïslá:‡à%½øæž¼$¬ƒüƒ°~?PXÀI ÜLÜá’WâÁW—jeü½#1ìºw9ö2“¬÷…ïóÝmüâûáÌEªa<_M””êfv> #rȪÎÝ)¹Æß5¾ïX'Ho[ù¶çøÿp¾o^˜Ø’š;rüøØöh€É¿Ó“BÂqðùY~¦ùvÏ|6#Á$­êû¿ãÙû½TÇxÞP{Ï»´0ì¾!Q²é~%zkây$Ͷ3À‹7D»;*rF¸nGxÒß?ü(¼`>rÆOU¯Q4pÇ€Øÿiøör40«­Âs°—«Ér?€ƒn¶åYl¼˜ÊfrÎaÛiT Ë@‹Mèj1:Ø7ž¿ðGû¶ù¾Ž^‚ßAÊUh¸ œcÚJ~uˆ™ÚÜ$”õú&€wC%ÿµÑx¶ÊO1»ìûr ]À \C"ù úÙJn\ƒWlE’ü^ÅûÁÄûl\Êî#Ý ­òOÓføÃ;réu?÷7ª‰ÍõUíK%¹Ë»#„+`Ìç©Ìâ‘+'°î‰#95Ÿ Öنͷ µøî1bþ<²tÃ˜ëØ»XŸÝñ×½®Î bz‘Ÿ“3÷‡ûþ&‘`R›ýÙ’W ˆC¼ÕÄD[xÄ þ‡–Â^ùJé^áέÓü¬ŸHVi/c}$n³Vaëì÷y?ÖͰéÅßGØóÍžï^Ò(6ŠhH<×ô ‚ñ’ξúЯßñ ÿé ¦8îë&OÇKZ’=Æã[aa†îLQ$?çÏ–íÖb='ZšúïGßËbòm&r‡ø£@둲rÖõw{ä:Ç»ã5–~ëûÿÄû›ikãÐò¬ ÈžGwÐö1"j`@åŸý·Ê ©û§97WaðûÉñ­ÈsyÖù;#c#tÓDkÂ{úøw•Q-͉¬kÈ“éð…`ôä:ÿþÂ︚ØGDþn§ˆ‘oˆ×)芣õèz7ßXWHå€ÊïŽç‘[}ƒT›ðË#ìïxäYáþ4ö+–‚‡ u©Ì–âü›Vd 7!É] ÒÔ÷ÌŠ?”% &‚“ت3èÙ]kû~™ ¨úº2ûѱcЮwÄýY–púÓï«’4¢ hNö«Ä~Ž#Úw±÷óðÿ/À³Èø“ÇÀ¥ìõ M¥}^pS.ÛãÍSÉ[Øz£FÓ[’ƒOöEâV ÆT¦Wµ Å²v†jþŒf±6@z×ù8Q³䮜˜Bþ[£ -~¥‰Ùf=qµ•W¡ÃÄR¾€_!ÿ@’ÉäãÔ4PÍñˆ Žñ¾fû —K¿-VwçÁ>ðGw×ãÉ9l¨¥ºd)-†ÝÆ¢Óˆi§›1äWO¸.€Çø¦ 6_Ïì'þŒóæ)ßýF?ÖOä‡Ëï:~¤”Ò>ëg?4bO±d*>êd_†µ‡“Áëâ¿mA´ŽüuŠú.±=¡‚ÿÒ¾…õÆâˆ€†H=ä;åŽC«ˆú>*Çî¢[A™ë0A×ôn€§ü¾ê€½©·ÀXGƒ÷õ±úhö.‹w Ëöþ:Ñ?͸ ‰;ÉW©í?±Ï­®Å¦µ-6š˜çkʧ£Ç |ƒ;‚>ŸXxê'ÂU¦nú 9Lü¸³¤gx}W¨¸7 '0_:úkWVùcß'ÐÂiøÙÄé äè‡Ì{á/+Éù{Àˆ'à^ ‹b¹ì+jþotÅ·¼T³»ðüu¾NèbŒöG:öÀøÆâ1wá¾GÐÇ1lÙrÚUpbV¨þ¿U†²§—@·í uXëG† Gœ»Jý(yÁu÷\ç{?=P7é"<Ö K× ¦MãXËC&HnkÉjOÈîëÐÁ:$ܪ÷4"8yX³ñ‰cä„õ|ûq}GV˜«­¤n …g“r\Üó½xþ1ïø=r}B…w‹××£ƒµHµ}¼ôïÝ<ø\¶M¯Ê"ÍdU¨t³Y:‹`îê/7óíÛç÷ij}¨äæ¦<âÓîÊ’Õü´Ô:Ý/Ó*rH\o³ÖXw¡¿ßc3,-ª%¦N‹Mv[àqÌÀ¢ñ‘AÄÁlíž0)^ÊrÐò7d¾çÏt¸ ÷gñüíÄúK´“|¬gS‰÷<Ľ»&b>pWPO„†•>üWÛ£A6o{ÉýQl.Òº˜pnÇÁëÆ€‚aB#ý¹ÐãX7“ÕÑgr _íg~l#ó½ÐŒææ¬ÃÚ¬¨UµT Ã&(xíãÛ:J: §ÕÕÒJ2k{ÛŽûýÑåÚÒ†hR?ëÁu0dîzØ1 ãpœ_2˜ˆ˜§ßj ùa¢Ÿ´„ß„ÎNz¾ ¯OF¾ñ\Wù6üv×HE³×øPêP"¿ë~ÜHjÉ)ïuïBfùÍ ~Œ•_óús‘¹Þïfž!CL!è!Ø#þ8r)È·Xï }â'­Äû3”ÜY•œ°€ˆh :È«…eT ÿÓ*¨$±á½î,å÷ vI ²DûxÊaôÑ=8ßwGD`ý!d4cÅ=õg,¿¾· ÞüûUa-‹]ÆÓ¿´ÚÖŽXR3“v5nVø;ih±ÿ¼è/RL>Ð4Öl2²ysWE·Í~î›ãu \ìŽ÷'Æ\­ÓëOÃGÔZúÉî(ç¼`Qs~œš*⊦‚7…Y¯ÐrZÕ~1¡^:ªEBÕuðK$Ÿü(}á6wa{CÁ®ú(xV-Än¢–m©íÀü´ÇÁ š›g}¨i‚FzøÎÉ+ÑÈP"à òç&ïw'|jÙm§³óšÔÖÚ.«oµ€ô ´Ð½4³”!7Éȵ^‚d{à)ûˆ€õ ž;KÖ[kûé&-‰‡Æøëwî²üm˜qKÏÿÝŒçQ¾çûFò]+b×5‘u´rxÔ÷V™XÈhµ¨:#ÿ“@ËüW+¥þ(餑´%†GúkÜFñù ‡ õ't2«v€ß»éàñön¼çÎåAO;ÑGg>Ñÿßɧ “ÈÿÏ55¹/©='F^€Èÿ|6ÏÆZ[­&-ô_­Ø:CÈb‚/OõçF#ClêúÙþâ§;Œây;$ï‚­[¡Kþª@w¦p ’wóÇ̦nþG°ŸŽ±Þ_ÿ?ÂO€ÎžSNi=üa!ù&F(šÿF‡R‹» ?ŒåúcšuÁùÈÞW&"3žµðç|:°ÕNðï:þïfeŽ)öRºã¦¿`}7㟜§½ø¬;êUžÈF^ýÀé©-ÉB‘ü…´¾d—Κ™ͳïÏÙ4Äþý|-ߨÏÇŠä½<¶×zT¶§ü,§£ê®òÃgúùæ#ÑÎ*pã>,à*ÕóX¾/ lòkdKU^°RZJüP$5ý\ªÃ€ŠÚ#Pmtѯùw˜¿–åqï®ýæÕîÈ?i{à'!øÀ-pn±°ÙÝ‘¯9þÞ˜•z™ºçß7 ^×:À"ؘuV[#Íá–ú/+·Ö“ÒI³Ø;öv^»˜ˆîJXé ýê;;÷ƒùuëf “i~Jš™› ÄWŽnjâþíëï;…nî«» îpm|Ž¢ãùmªMÑ’<É6,+ñåûH‘Â’Yz cîZ×¹dýDùv2@0°¸à®å{Ä+‡-+UýjÅçp~£">vFxxæìxÿE´y–HxÆ"#¦¶^6:teêßV²SšS•ƶÂX*àY$8ʾO÷Ç„†áù“@Åñhä‘¿Â!qüP?47ã/VÍ^‚÷Éü]B)-¶Ýð:z<Ö¸ÄCYkKmøV—|îë߯6ÒI†c×`”›eñ„*¾ =EúYþÜà$Ð`X6Ë_'Ù6ÑøÞ/f­m½Í±¯‚ži_hqÿÁ*'©e.90йë_ÒØ}wËy¬<•š¨=øÿ’×—`ße`YZ댇¸*·„å±ÏðêüÈËÜdã{þHÐf4`=Ÿ*ïob=­“ €÷“fúüŸ(éå ©C ßÓýÄø=¬N®¹cŸ©±b¢|£¿Fô¿£ù™žµ1ÄzKg-‘2¢­×hþÞïãèaèq[kÚ@[`{A>7û抔‚û…Ε™}‹ †ß¯Ïù³›IÍͰˆeû5Õ¶’VÓ*‚ ›AùTd ×ïc½M ºKHÆHn l9RÈãaÉîzßlÕÕ%BJ³ýÊPÝÿ¿¤ì“ºä´¾X>?X.ë"ıvÖéKÁb+ÀÃáñ?Øäìo›w§-·ýx€‚ m«}м%Á‚X¿¤ÍÄ÷?¥î­À»»C]æûÛ•SH|;:û]þú5oì ‘®”UA•©á_ê÷èè]·AíƒNÛE;k/ì„eçqÒnañ¡ö3Ÿ¯kíù†N|î›dÅñŠÀ]íýï®/¤’”%rsYsdȇݺ ÃpsS†÷M¬™À#‚ÝUÜAƒ*5'ÓŃÝ<ÔvÇ*IÐWvÏ6‚‘uÈÍð‰c¶Á2[ ý]‘sS ß’”d¼"V=¿Ö7µAH\œXøÂªó|–ýš¨(N®ìγ²°£TÁÓ5¦u'Ë×°OÐUq40ÚÛ´P‰ê'D‡Z¸k¥‘iòŒúÄ]ý;ÂR‘×:‚ß]dR4·É¶Ùæbï—ÚÏ¡“ÄA'áÅÕáÊ«¨ó8 Ï™c‹í~S—©ôhÁþíÕN†Ë]?vw|[¸ §A³‚b Åç·Û|$›c‡±î6p¢E¡:N£5µ,õÿ‡à\ûɶ€ÑÃL Zeá¬V.‹$i(ª÷þõjDœ‘52KÒhIË”+(ePo*‚îvÍŠ=Áª-uuÓBé#óäWÙ(?Qí}2tÐèö!“7è9ú«.u¥„T•Å迱‚ñƒ&ÒnüœòZÊkS{‹÷G±« DI$…ZÉ _t]NÓIJž&õñ•r’GRÁ!¾ü~:Äÿ´U[:!9,þ·+š(=z¿Þ¯÷ëýz¿Þ¯÷ëÿçJ /,ï++E%Ù]=TΘ9u7ûO¬d0œ´‡ßñ¤±T‚ïÖEúOdœ—“ÒSúIKýØŽÃÿh-]û+$½Óÿ¡•žŸþ›\²JE))?ÁóÈ^m';5—µ öD«[*»£Å-ÕþMÍ U¤ ü÷¯ƒ”ðþðû ÔWñò¥Ò]®øj¯¦¬³ÂÖÅFZ-Ëf9-‘ ¶†h ¾e±Ú?ÉF ôG^°~J||¯NׯѶë}¡õ4§Ü”®RJë[e‹i4DcZr¤.m5,»%¶ÜV-LDJhîxûZŸááe«,ÐSÚ )bßÔVûf°`©¬Ó¤˜¹ù°9¬ þQok4‹æ'æÆf›¢6ÍÆ®ëuèétøï¯2T±…e‰„ó÷mÓezZŸê!Íli-©ÕÓÚºK†Û!‡6*±;Ï·ÁßßšÕÜ}1¬3þðH÷Sç ÿX«Žä’ÒT»£õŽnÇã_i:»…GÅ žk›¢4¯V³pÖiÝô‡dh`…ïß>@µÆ"Ú>iõ;þÓÙóPéWð0Žúî^¯uŽÞÐÈVÛi[¥ô¤$ó‹`{×ã1·½ñÝ~\g‡ä¦D‡øIKëjyl™âó€ßéûﮯ‘> y®6²¼Ógxõ;M†4‡‰qw-øX{Ë¿1ô¤>ÒÈÜËj§}—Ø lýNÃZ\«`U­7±±ÕÚÙV/ wûüë•䫺ŸÒ‘ó&1}A3šë!Ø5œíÖ}úD[iu0á!šq½Ð£ÛmݤWô%±â®v¹­q­ºïù™|,bù5¹6á{3Z¸¹2Kz)&]$¬®‚ÑÝâ›u­>Ö·nª3¾p‡(ߦ{t¹}ee}oè(ö9x·Iñê=ßIî"[ÝÔ¶6ÿÿ‚<øXGé)I©5~·ó¿^YÁý¯e™4Õ¥øÿaü}•ïòwI£úy7ÑÁL"=¾1Es€ó‰}üs¼³K#^ÂòwD{¨Ïý,€öíÔ6ÄË= —ÝrJ>ÏôžËH¼Ü]ÛzVb×é³£:Ì÷F !žâ•*Zä?Jdp[´ŽÉÔE‡È·ô2Ú¹ˆ6Ò[X$>£ËÑA° .ùF˜ÕZÁ6€)àÖ¡iU‘´`óIi«{ç3þ&ÝÈcº¿ÏïYý‚¿“}¸pÞwø>Éó‡Ú[«Êä¾'¼¬ŽÅ#ö_Ážð‰ÅàÁÞ½ŠVŽ ßZS»"å%?uqhªŒ³’—úI|?.Lf‘—u-ÒOПøw%\×Ý0!xÃnßÍñâ—ZG¿“¯´3ì7 >à:^B7©,Upl;ï»*Ò½èà ¨‘ÜrÂ>Õ–üyù -ËÍæÊIä—a_¯èD°ýˆïÒ°/ŸÞï&ºO‘Ù÷ƒ‘{ƒºþ]CÈvUô3m§nÚ…Ë|nB„ënv i“S)Ýö×Ãõ91£Ÿ Ï~¶³:ÃÏÙIh±ÿ¼2H¤¼vö½Ö“É\×O×y1Ÿê/œ¹»Ü†ø·¯üDˆ8l3[ÝÝÞ—‰÷Ž»'æ2~áf%¹.ò!ü•Š9§?"’Šj 7¼±y³ <3ðÝßÝõ¤ˆDÖ(þ^¦¡øéepëÖÜúO§o‘ßW"õ|Þ?Š­2ºû!o ójòá!~®‘ç‰öé°‚]TÊÙ‡þîÁ—šœÉË[ XPi¸@3ë }@œ¡¢øDÒPŸG=ÑOìxM®ÏÌÞßð]7ø~{©lÝü›‰X{™`‡¯õßÁ #“é]Ÿ»¹xùï=?\øØÄXÐ!ßóº„} ®oýlšu³|ö=UQEm ±BpW°”7²K¿E‚;~}êïa>¢ƒëþpÝw@poÎ’ãvóÎp"È\oࣰŸ¤ äã@‹·Èäg&:N˜˜wÓºÀƒ~°`¸pXÀ;ýƺkÇPPå 󕔨,]"G¹#ÈwQ{ÿ/ƒf®ïeˆö'âC@ˆ¾&xîï|ÝMÔ»ÊèªÖ„ïÝýƒìùò*ß´ƒÚ0!µÐM2c «Šï—±Úè¦(Yp$ÑÐÜ ôJG.n%nbá3*×g¾ÿãKuŠna¿±þŽÞ žß½&¸É73‘k:èݾ?Fl¢=†5Ó–ÄÍ>¼à±Í÷ŒÎ†µ_ø;eÝ”„Ô0 \V„G^ë–ëÇÀœRCòc³â t ²TØË;âvƒïR;žF\g„k¼2 ÄŸGLüàïz<ƒ¼%ã½Áη´'øð Ô|ãï¡ÚN€óE2W»’AFwüÄ'OND|jé,_€ûß»+¾Ic,ïCÅšÞRÃÞ\Ë)HÚoŸ‰äc‰úS`ý$ßá»<îõ½!Õ¤vgÖã5Н›=ð=cÏúÙ9y_m+ïº!!÷—ÔA¹­ÑĸN í#Ûä”åßÀ5—¿Ýœ“ľ»¦w¤Çþ9Xô;Ï+ó|vÁ£÷óÎBt´…p:8€Ìo|ϬgxÀ<ÈÅë„¶ÙwÎwQ‘ž³øþkcð€>;’šÿŒÂòI°HÐj;ñ>N'k'­ »m‚Ç»Jî2QÝBòú·ä‰ÝZÏßû?#Þ »Øv D´+ÈúHÃÚ)ßOh1±²½MÄ#^’U/þÒ zÿe]Oˆ€ÊŸ‹ÇXáÚ>ÇÏßóë°ò °¾´6Ö®D¿Ã±ùì/$_&ð{œ¿2ÄwÀ¿¢®«ícâe3Õƒ›t cŽ1Ç0ç!í@ÆK>®=Ø*¼}Ú Z9 .#UOa1$ÜäÙÍX<ÛumìG•ÛI³k[ž­Çª!ØWl,Ö\ž òµÇºsfÀŸŽ’,E'ÝÐÎ ¯C5w4¾à&ãœÁkj+© _ú~èÁÛ°  ¢U8»(ܧ¤TcŸvb÷ÈuÛ»?‰×÷¥j þ­ñ“N¶Â;¦ñXƒõÏ#¥;>Áæ!Í5ô¶ Ä܇£—Ãhç ²’øxëï’oEÌ„±b  kHP•|3 4²mR1`òW…ý´’qìçXðé"6;ˆ|ûØóHà@mNý70ÿô)õÁ,êæ:f‚õ~F]” ¹ªó—›z8Ž­×ù,p“­ÊóF0”Ê醱‹èæ¹–³¾6ÚFØ,já,©. ý6Ër¸Üxðýc‹ s;ŽGoÄO!õgøô|ø0°’™ŒüíøÝÕwsÓMï _s³_ùû=âÃ#>仢›ë¥œÄ†io¾ÿ®f´˜T€ »Ècî®Á\æfd½¦þ Ô ÄÇîë‰à×`ü1üÿùÛM÷ AâòZÙA?×ÁM¥cððŸ±ð@|}Ûág3ð7´4 ”¸Œ¥ÝñðXH*¶ Òî`Ëa?1'ÕOAr€ë uESØ}À+…fS”B²D°ë¶ŠXíe»þn+A€Ž ž;¢óÔvý߯ƒòÓÈuÉ 7Xv®ƒ­eûóú%ú{IÍÕ2Àûb ç8,?î4¯ÚÏ·à{žùxnR^Røp?í0ùwQû$ÔÏñÞdh×ër¸¿ ûölÏu8ï†e]g‡HìsÃ||Ühÿþ ÚŒúÃw€rO`CSý™²+d‡¸æ:Hÿ>G5„wÞ@þž`73:=Ñî“ÿ€Ä‘òT+Ág ƒö£ˆ×Ès éÝ4§Ÿ‘ϧú®#´[ôg߯ñ»+X6•­' › Ü>ßûŸ%ž‚}wˆ…|ö;­ˆMDw®óq,;GdÜÁGÜ13Ã[§ÞwLRHe¢¹µ(ض ti ß&|»ò¶Bn7·7v‹ùFÃðÚHØÒûÀx$éï{BMEæúXò] wÔ×( Ûh¶þX9­É©}2€øÕJÆïØ0€øíXŒXC4»s–®'ë9¼t3¶Ú„Ÿ÷‚ÿTeßGzi†Ã4¢Ä¢ ñéúäÇA¼ëz{þȳ¶~VLA͆/l%{ê .ÃᇭaÑîlª›¬ùˆkQmzŽ jgÇ(½HcI/ód*øî&uÍ'ò7á­Ã©{š`Ó¥ì{ dï†gàñ•t,2f@ÖþZ‚÷êxëVßuÂ? ¯þ|¦ßÑRŸH:ü£·6╾¾òäwäö¥°> Æeý6 òwÏÈ?5ðÙmDý5ßée-¶îó9ÅþÎbï«#aktÑV<Écj4­Mnȯ94!zª¨ùˆ‹ |&¬ÆP‡øµ‰û)>v\ÏÜ`âaß7Üw½ïÏ­½Ðêøþ#•*ÿ$‰--$Œïtp” µÕ÷ok„ÕÆ )~zECPñö½þîDúDÈÛZóíø] O(©Ÿ“å3ëé@¬ãÕøÃ tÒŒªàšæ€Oá»¶Á"î¨cKg5º}k=\ÿ‡ÿU䄌¹w’³ ß(|w–¿î¥1¯ºI ÑÌhp}"Q>»¿‘’Dy{¬<’j` Pi›hN¦ktØÔwÑs½’ƒ‰+‰ýxÀEgqì<ÑõFEÓ> òÒŸù'Ÿ“­Ýìçw¾ÛoÐÜMAF\Ì'²Ý‘ÿ`uóŠúcBÅ4s þ±<~ tŸ‰ ÿiâ+ç©êކ-+æ¡æfdd¶£àèß ç©ž÷Ñh:ÉPù] XTÚI6,2žì—Êv³ÿÁ`a8Ïê¯À}†¿gÑË|Pr”…Úxz-^½ á­"LÖõÀ¬§)‰N<ëˆ,‡ïìôǦÂëjlÍןà»Ä-×¹ºÑsîvšHRXþ†ÔÅ¥û¼½[‹”m}‡ÿ`ìvP¼¥¦Ýàc£(_Ÿß`†™àô©ì1V¯§åÈßè·úœÒ­B{ñ˜˜6^Ëú{g×€žÃø¾¥ÈîúJÑ/‰¿À®Ž’ÆM&BWâ·ñõA쟛çùˆ}¼â/ä騭 Ï× O]$¬B>Ç ZzKhAö+¾\ U‚¤¶Hf‰Á“üÑgl;€~iš€Ÿ;-ÑðÁTȸ“Xˆ¤Ë±v, &›o`¿gïÓ±Ùxöz>2€-—%ó÷¥–Éd,EÐ$*Ý3DF˜A" '(8t ö/öƒïðžDxÉ¢Þ!Èlp#y µV°ô"ϤˆºT{®om»ßïóéígÆž@ÒÓ~¦\â›®kZ? Û+¸&¸3ªûCÅuá³%µ´ñ3Wùž¯óüÜóËÄè9xê-¤YCf˜–$ã¹ã;ëU­rdñü ¿œ~¢¹›e¹^s í¸+‡ù RWÈ#‰|ü"¶žï¸ˆWÍæ:gô—’žµ[IG?áèñ: [½fßæ#gB‹bOÙ×­àÖz,¶ éÃÙ|ù ñü }BŽü”J6¬¿?ä?ú÷¿ÜXζ@9×ùñ1š«n®»þQž­õUö­hÑýzþ„ïcµ¹`ày˜Þ}MmwÈÕ£y¾͸٧õ•^b¿{bYµ«0¹Øf–žxÅO;ŒÅ_+ñž·hÊyÁ:pï*ßó\«X$›Àëùm3™ÿ->q­ÔÖÐàý"ÏñÂŒXí1rÁB‘ì:ØTÇrÛ%lÿú‚¹*î-Ö\é;^»{=ŒhŽÈVMj{±l ‹t³1îé9PÎûËN½ïºÅ=¡ÚÝMäOV×Y+®•¶H:¦¥Üô“*>´p`ô98[›'ƒµ^Â÷Ý190ÀM á]l¸žßsñ’©dɹ2AØ›ñÜ_AòXÝ™€=lsMÅX,KfIù<9ˆWlDC7à}CÍa‡¤œ”Àž;Õõ*ݧYQ«m‹ñùDìéiô±çó}_çÉ>JæÂF"ñ?÷ïþâz¥®ôÓ­öùë"Žàåq@¾ô–Ö_ñ`vml!–ÚÀ°ƒ©ãK£@ þ§EëËq5ÙLöï(¬¾ ~ð+˜pï?­ÂØ!Â@mv»(ïM¦tÇ<åÇM¹=Æowž×ÍF^…—¬õSnbY|+„í›)3)ÜYîvÚw¬éå` ÿÓz"¥¤Œ8+·õs]Ú×ÄÂ^?Ëå<]êíà1†ì¾ø¢]aK‘ö>yó.®¸ô_Û[†Ÿ,& ¢€÷±©SX[KMÍŸšœYÑ–[W˜ßk]$_J¤PÒ*¶¶¡ˆ¹NÎûͯZíçZ»s½û|GO×óGmÎï°ÔsÃÕÕš¯\÷³øé³ÉÿÛÑÖP¢ãïU”#&Yð¾T¼®%mU-ŽHÉJäϧ§©jJa?ñØåf=-`ßû³¼ø3Â#‘¸ èïft¢êâë{7Ñú„?nꦞ C{`½ø]ÚW8Ú=!Šâ÷Ž}fƒ©š Û™)ÅC‰üéõ78ày#u°ø:d9ÊžžP7÷ÅáÖ ¦òýÞOHwÇsݘSègQ²—-Æá®v<öõ¥Rt×C¾Õèä:‡üIì6úœD½\ÕúÙ+i¥dR ÅþóʯOås©/'$ˆÊÎÇèèÏbý~”f:ŒÇ᪠k8vn©?ã nVúyïß×z ¯ô¥ š†ãîŒ×vðá-¾Ö²XY+E6H€/$²°,²7Ðbÿy×»ÒPZÊj¼T7nZ±›{´«ŽÂ—{ûû†býa~ú«›çì®ë>î¯xÌm;À‹!<†ú¹@®^l‹w¬A{ÛðŒ»Ä~P°²•1wí¢a”fÛûÏ+·¾‘Ü2Hòhl侃 ÷Q¹lÔAÔ=ƒñô©þúŸHÝWk¿[£íêîðY?ŒƒM]…7I^/ âázÇæs×<³ŠE”‚˜Ô²Y]òA 왟¿YÈQËF¢?³Ý÷G(ûy„ëÖ¹'3á3=ÐF/´Ñ™x˜H–å+ÂXæràZÓ]38ÛÏI~ü™\èfGºûÆ:y©‚Ü}a5àBîÊàbr9ÐRÿõÒ<’l}B›³ão÷öH܇g3´µŸ~Ò ûûãÓ@ÄWäø8äò ª›¨ü>‰ß¯C[ƒx˜ì»&¯ôçU/‚¥¨"ÙòÿWTÊõÅB ú»uGrÉ­eË`:}mpÝGñ{ uÀ4p¯Úè€?ô#²Ý¤‹C°Â¨æº=_§ž{K\‡­W²¥;WÚ›ŸY À5ÁE¢é.,ñˆ²ÉöaЪæ¿DÓ4RM›™Có=DÿMpÛ]Ç}vµo|ÞÍÀÈcñàæû®ÂçÃYtjKD@bÛéï›Ú޾Ü}‚ÁÚ í¹9·ý¬Ï‹|ã2A~ê¡–I¿´È·ÊË.q à^=µâYBXð|n=„øïF.Q!D³óäþ<+DnW2Ú9MË¿àç¤M jÜìãÙ à5}ªéA7-õP;»lyB‘ïÿ¾ZH^i†=‚£”£¢X*XZXÛ„üSh þ¼=Œå_µO¬º‰lo5#¨Vt‹Ï#¬åókü5£nÂõ,r€;Ç­VÝÆÛBÛf»íg‹T(ÀSïÿѪ$_Èò{þ5ÚÌ2#¿»~kæfÀÌõW€/ 7àÑ™ÑÏGÈM°äöŽœ?8†l‡žów~9 ¬âµ'Í*YGÛ`1ƒjÝÕ26ÐâþƒURÜD¾7rÄW-îx°»–é ºnçî¾.7Ýà58ö+Ü (žÜ:c÷jT‹ßÂîúY+ð" Zq3S_÷î¡Ô§ÑÇÿbï-À­¼’4ܪڸOpww n‚{p„4îîNp×àînAÁÝÝ=È}×êž¹Ýs{fzä¹ûdž¬óŽí½Ùe_}õÿkU%fŠY+Šn[JO™laÿÁrç ¾”m2Ο\xæÏÿ\®шƒB BU Ç»à#:v/ný­5³‘HÕ¿œÐ‡ÈxœŽdóرÖË~® œLˆžÂk¶Û6¥d”Ÿe2¿E·Xîù*"žÝ |‹ÿü: M“É ŸmODo´n [$²{jË¿MÈÏÝáxߣ¹óhÒí­L ÿs³b¾³=Ò"Øbþ+¥Ô§ÊD}VŠh¾®·©W¿ðþý¹Õ÷çøcÇš„j&Œ®‡mµº @W;jå¬-^=$ÃÕ°YøFh;Ìk¤ã·¯4¶•´Þ¶.DÜóø÷W*©.‘ÈvJ^û\Kdßò¾³Û| (•ñ]0 Ö—Žx`Óì˜þL×Ú k„Gä¶BA¿ãÿŸ­ìRDzȯ‡wœnWÐÊZ=޵3ƒâ- VýË·¸¶ÝBvvªÙl»e§Ìíné6vG Ÿöá1™Àh^#»íœúôÿÏ&™È†õ¥ 6+‰µÃcùõ¶ Áç“ɉ‰üŠÄDE‹Høù[â%×l™E5;mˆó ù¿„KdàU~&">³0¶9ØÂýS+¿” <–½pàÒÖI‡ÃÚ×k-% VÍŽ/µeàýX{`ƒY‘ô;‹ƒ®rû™·•í'[bÛ°úÛk y(ö­6 ¶`ÿôú\rKGùšü÷•Åä Ì ì œ#ÚóÁ`› ‹Ö×Ú‹°À(«¸N.ü Çì1R¯²¨ò“Æ2!ÿP´2Q·[¨ÿÒú^jËIY (jmEà»PO•Wmª­Áæ <±c ÜixOM-€>*[ut³ZØ<3=<{·yþ\&Ä1þÿ|õò‹ ‘–nóDk¨ˆ˜Mv;M-PZE÷Haé-_ø+?n¶Ù§¶‘š <°”ö:2UöHMø”Þ­òROŠ"a##Meü'n¯…ô¤t’ª D!ù¼,(½ä¹$€ëÐrX®JRí쟙MЇ˜»\ÿýÕY2HRxk;¼¡‹t—ºð„Ä’\²R5•”š’V×”œÑŠ¿Ô’xLnô;ù:Øoým5¿’b䯢xEi´ñ9òÿËÊ„äò½ ©ÂRM*ó›?ןëÏõçúsý¹þ\ÿ×VJÉÈKîÏ h)É´†Î‘撇ܟ\2ûíý¯®ü’ Y]OèpÞ&pœÏ}Ï´«’IKjͬÓ5ŠuÑ:ª`$.ú¿± y†ßMÎË5*ÂnÈvþ×ë×é~õnge`£ºë‰-¯µÑ/aÁYƒ~ºã¾jHøýª¸òzKOhͮ祺hK5TÕJÛFŽÚXw+`Uì[þmbÓíΧò©FðG^¤³´‘²Wßë]kïµ¥±qÚ^Ë]jþwZ©cZ9kfõíKËâç_¦¶Æ®'‚¶2Aìoð?]ßHO¹"õu?±ýJ/ê=Ý­™­£Ó¢úÝL´šÞn©ØÍj¬ºIŒšPý¿ÐìÖKCkvôr:=þó+'1>T>ÓÙúD#Úy<+Òß×¼¶_ËÚn£nûôGkJÌ»;~W4¿=Ñðö=Zˆey¬§%5±tš(lqþ‹«28ß]ÞÉpßýí¥žÕãºÐwHI…Œ¹lžŽñ«YX|ý >ŠY<ïÇ4·U¶VVÆ"â ñ-ƒŸy[ƒŠ¹P°Eú/¬Èá©åœ¬ÕP–þªw4`ððØÕõãùl›†¶”ö©B @‚;êNö—´ªd‚‚×"3Ÿóü<KË¢!õ®ß¿]_È×ÒP~•cڹ›Úvâÿ¹>ðç¢ÞèQüa´Æ·_´‡&ÿ qB«‡×?× ø@"äOb¡ìwþZž¿5µŽW!¯ëñ?Z™¥ª¬—ÜÏwî€d›5¬=ÔX÷¡?!Íæh]¯]õºFÆË³`ûDÀïhæïŒ{Õß#Íg¥È _ØjCô{)ù¸&ô¥²XÒøPïô¦¾ÖH~Îwƒw}võ’Oãb-‘ó¶ã{ÇþåŒAð{xQ1òB ²C}ý*„w¿w«~ÚVJ,fý­~bou•º½ðïÔ`¸á{¤$¶œ–Ö® ‹pxHbä½nà÷¯}×ø‹~fH4|¿hXÆ¢Àzi-§¥Bp÷{·jƒ|d…DÔò:Ùw2¾BÖ[¯ëð×íí¡.Öq:×ïqýîFh&Ðï®>ÖH¾³É5ß7ø…~ÄO^‚ ©ÐR!¿C&¹r€ÿÌã¿·òJ)™%áõ)ò÷Òåz)O íì MC?Ã.ú=íÇðóÅDÅbäºF)CGˆ’–pQ?óoݾg·›(¼­Ò³ÒI¾ ¡™À]¿î$©4¥¶Õ :‹Ažýø»;ÉtQÝ„£H¼]÷é)¿ê¼ݽp×Ù0†÷]^h‹FÎÜ f /–á£:¨iéí¡<—áÔP!áÜã߯"’H’Êa‰§åt–=ƒŸŸÑ¤¶DÇë¤|åû¹=üót>ˆà:?‡œ!'F±zÈw܃üàoüާËZÔQ 4´V˜Ç<óÝCf’_‹HÚ` üoVOeù\“ê¼=,ç'-Ó¸ý[@Ä!:ÌÕAèÄõ7¸¬ÝÈal—ºyÇÐÉz¼&©=£ZÚÅÏ ìk~ªÎ¿Cõ©‚œÒí2€8Klÿneãý¤†ïç×X Ø9cÛ±µ»Ë9ë;<;†ÝøŽ§n*Æ^pþwí©eUÿ#ßõÛˆïªfµ¨Ù<*¡:Ö M¤×†’"T„i‘?¥L–³•¸}w»DÄÏDâ¡Ô·#ÈtKüd¯]d»‹øÅNPq¸YÛQì6¿{ÏÏ[%#Ú;È##ƒpi©€_ÁÝÌ8ö9²·»3l¬e·AþzA0{ÿþ¿ò§sÑﺷà¹F~^Ž„£Éôm°ýî0a¿þ ðüe¾ ¦;ëÞ¯/kQÍíkÎBõ“R£âë›ñŒ¨–ïWs3t\ŸãxC~+h߸n‡ÖÎÊ£‘µxÀFk©­ƒ-¾¤"úëÊKMk ¨ßã™ëΰ/ÿI¿!¢û!¿ë‹¶‚L¿–€ZK˽Œ_D¶<–RS §Å æ3ð.!OTÛî™Ã-^a= * ŸhHFÖ³äÂßÉI‚,J¸èy¢É©Rób©Œ|žÀ¾nÞm+"`>½ÉCÛfð`Ù¡R€÷]ó} N!ýb~±fÀÚ«ýéÿêNϸ“áA[É”»ñ‹#ÄÇ-MMEœ’ÿ£%m(úÏTùsJy9òÝö»§žÍÉ»[‹kCmž¢š´«É?á£g¹à1:¬¨ˆÁç;j=ì¾ËO€Nì‡A›@Ñ“þÜô2u“¡Þðøúdÿ*ü™,µM´púc;`’BŸø¾6o±Þ2ön0ßùSÐoì&ã¹n ¨qÁæQÌ®Ÿó¢³Ôvdx…fòÚØÍ- ‚&;©-¿‰ëÑ ¾êºüG°æº8}ÀÏïkc"ÿgM“?¡nÆé>¸áR°¢),¹Š¹ÉfnRÖýÂr[+sÕÒG¬ÿ ÎËk<öýtâ=#<^JîOоÖðó}LÔžˆÁ«¦¡"®E ²ÈÔÅ×Á€ÂTB©ìeç‚/†ùß“wÈó’~¢Õ;>Ÿ Å[bvŒ?Çï&­Æ‹Wá ®3ŒYi~ÿˆ7˜È¹@Vè>,4¹ƒe¯øÉHAÇü4¹N)ï4%1_ž˜É‰^)ð¹ô6B¿ šü›É¹¤“ŸÚè:¶S7Áöïÿ¸ïáÔ‹Ȱ˜¸wÝO\§÷Zú9HÂŽ‘Õz¡»ã˜›zy_+óï ¢¾ñÐ o.^~@þ¤š—|°_H¡™5Òv„/5ñ1?ÝsåU¼Òz8Â|uWBÝ5×_wˆ¹Œ<ã8òtù2¨ “ø’Cû»=“ýD“6Dó4o³bæºv_æçeh£/Þ1™†à•ð‚Xúk|ÆÍöû4Å;šSévä/ݺÑpŒW:@®‚>bšË„‰–NDÂ_UmוR%¨÷‚ÏK " ˜½në*¼ÁȱÖW¶ížê®…lò=ÍF!oSøPl_ „tnúã þÞÃw K¯µÁÇAhç+ý’W;Êkî× °ü~¼žÛ-ðÇD7aè:šÝ£gñ¾`ž¿+éäS‰ˆ/nõïVãÍËðËSš“|uw¹Í_í;ægÞÐÜH_kg%z#…™»ïÿïø–ß¤Ž¬¬uøk$æùÿ=äžV4EŸ‰4w_ù6|ÐÍü %‚(½[9%™Ü‹d€'¼£­þîîKä=¤±m/ìÎyøv,v{ÓHšCK¢žÈ±È÷x¬IUÖÆ€MÑIþžJj)0ÒMFºÄ+¹Ý0O¨ž¢Kwå`±…š*13è=`+IJ™'|ÿß}d¶•Hz¼K@T»þ«ùé0Hæ:š·ÔœšK #¥ëô}Ê©Œ ²ª0y×!­-Y ËBOíþÏÞçg‹}bn/Ys“ÂOø®y¿£Ó'xÁðà®’\zÉHßÛúHý«Ÿö•ÏÒh"߯uÁq3ÎÖÂi[k9"¿±]RGúZ95Ý'æîîB_nPY¼£2ìh˜²êè¶v{a?±Oí68ò rŸRw$`g4ø½0¦K/#x_®ßïi¼Øÿû5Ç'“×_¿ïB~ϬÅñúº¸âûX¿ÁK#ÑxOu~_‘è¯Å¿k}ÿT×9ÕíNt$þkϬ+àÞSêÅä–[ƒ{íß­mRHöÊ"|Ö>é÷xºyÕÑ­'¾zð#¿ Ìõÿ e°¿+®Ëøyä?¬sáÁ^Ñ´›‘óX¨+>p޾|~âÑí 6<ŒVÖó»ýDój4q‘\÷58þ©UÃ'µ!Vü+hm&‘ñúYŒ…÷’I®’ù^QCÄ#Ö“Y«a™l?½ôᮓZJþ`‹ÏÚ å0>9¸Ü_ç|ì'˜Fƒ± ¶¢AÈ¿[Ïb·{0„ÉÉâ"û¤ùŠj66Ò¥§¶ßH”áë±ð°Äíû¨©Ét‡‰•$Vî?@úLj°`Ï>úË:.ÄY÷¼¿GñÝîƒSˆÓ€í³Æc÷=d´ëTºS@‰×üÞMðÉ€m#¡3×éö¥º.áñ×ùþ&¯Ÿ%Ã`§4 ¥í">"ãY®Gzð®|þíÚ. Ò¿G¦;`Öï ö¯D®‹ÔƒÈä®üÍC÷xÏçau®ë÷+?á~ e®[ØJØQ${ÆßGù©ïçð‚í¾¹k‚+üN¨«XRßAÎ+ÜëØu#r!J>1Ïøûdüþšéï¦&ÀþyðõÏì#Þàî–¦ÂR\—RÁݯD:[ŠIz*× T9½ÀºF°y7«c^qÁ÷L8‹ŽD¢0vØ^N ·\­axD 2üNßñ:`Küä÷Ãü{œgIJ"ö9ÒDz`kd8Oj¥©Ô€ç¤m°E÷+¶®•LòVZ‘)ài»‰ü”䪥~~ÕxÜN2ßD?×o>òX€©r{ãéuª #Êâ%;‘ø‘² Ùï‚&Ïð¤—Õê[vsÀSù»@N am°æ—QÁݯ”zOÊÉOÒ©³{Üφ½îaÁp?wöÉÝÍ^â»:»nñAþCÔ;“°äaê„•òq>CÝl“x<óšÚGœ»^XàFéÈq@‹™,ž¿G¿ ¾ Ú¹N¶ ù~ UMo2âþ€.z¡•= ýy­6Àõy~&J|d9òO;ï¡Ç´`~8Ëh®cô[Mìï}e¦fº*!§ba°¸„äQ÷N%ûmôW¼—aõÙø}?ßÏ~¤Ÿ‹9»wƒ¿Mùo¬Lîßô»(fûGO$;t n’;r"ë#ÍoMÉ—Ñp)0 öO¯‚-ö¿®×2NÊÀƒbš«pŽ÷nâhßõ~òŒÔöÚ9áý]>× ÚíjlnÏDT»†7y ƒ1DÂ8´° lSp=«e±˜ÈŸŽA¶s•ò_x„‚ùèò ^Ýž"»»WìŸi[ìS¼?¤Lú˪-KÄMåKnNòÌdëXd>W©/ð'Afò1•¯‹‰‹ý°™ÃßSÀèbÛ²âçÄÁ)Rv¡Ÿ3]Îã™{ýu ÐVŸ/@LJF|­«ƒ-îÿgå’BF‹’¿ŸPŸíÅŽ[a}ñm¯¯þ'æ‘ïæ·«°d.XM|ûÇ-b5¼,z¸B­p üܧ®Ø“Ú®†I܇ ²<êòÀ*˯{‚-î?X®‡c#ÉïwêÞÓ¤ðüØÈ´-,ög?î!÷N¤Û‹VêÁé2QÏÅ…ÓUÏÜ~ÿÐDC:<ý´¿êÈkj0%¼?¼g“ͲµvÊ~ׯ24ØÂþƒ•C Hei!¿j8Zsó¯wêIö-%þÚÞ#—»ÍzÂfh?rû×¾7zQ$&Ä ²=ï®lƒÁ·ï3¹UñûCØ[jµ­XW)%Ù$¥TS‡þ1@¿ìvŸ?®©ˆY7Ç.¿¹ª>ªå¤²«¢U´®¯dÛÁƒüCÈýŸ›»†æö9x´c’Ÿ‚t":(,n7¤¦T¶¨ÿΪ"±%¯|;š‘XmdéÛVRgÂΙí{¿w{7?Çþ÷àB-¬ ¶ë¶Îïo< ¹ØII>(I¼7I¯ku[¤ûmuN´ÐXBrìrààwðÁ/u Ò7!šÑ>Až­.þÂßñªhcí„åÓfÛn ꡇE6^WÄOìd&Þ¿¶Ñ|÷»– ̵³6ÀŸˆ(ô;¾ÿñÊ,¹Éýå”n g=¿£ÓÓl(> vŒ?£w©ìºÙòø8Ûlì$úôƒ]@?y--8?ÆZo«L†ÈDõ7ÌšY>˧ B|' Œ’/¸. í'ªºûXßðå‘Ö–ì•Ö\¯‡ Ã ,o¶×r$0ÿ¨cÕÌÍùx¢Ÿç+mƒMók’%*á Cð^!^z·ŠK2©./¥UKQëW³yäùDõW6 Ûg²öHxÝJžXÎÀIP 9YÀu½ªcnNL<¬¿Ä3‰ƒvÚòZSý!Ø¢ý“+£Ä•²[K#k¤‚­DÃm;ºØe[Éú‹l®Ý¶'vÈŽ‘ë%Ps9¾Ü(*ˆ1 <‰Ö¶Úâྮ”ÁëŸ^%%;™ ¤Ö°—V4 ðÖV é[`ìšU„ŒE+-z`¡]µîöQ¿áç”Ô6Gì©]âqûí ÜBÍðš0úÇêXAŠÉRéêöíX´ÀÚ@öPÛ‡ñù~DzE[F<'Äï“ÂØ ü{^0¼W¨e¥m9þ±ÓzŠæYnƒ [ ÿÆÊJUÔ–ÚpµìÓ#v4P?pÃBòŽ‚÷íÐG2|l8r#ûŽXø.P °ÒæãóÉün—ešO¿¢j,­ƒ-Êse¯ËJEi%㥜.ñsÁ«nfZ c…5§.’º²KFh2êš“ C|£ÑšÔRC¥œª#Œï½rIzÉOD|ºÈJ¹#Çe‹,”ÒYÊK4°P’èZé-«d‚•©2ôì ›*!!cÆûÿ|¥¢>L/9%å‘"ÔŠ•¥!²á÷p”•f|#éxTirglò'ýü¹þ\®?ןëÏõçúgVNIá§¹•^ró]'»ü’DzÈ{¹FÞ¯(Ea™ÿà}ÏÿíÊL¥œ§´ŸŽ˜ ÓK2é.´ü¾³ÞÖC:B[i4 «ÍÑQÙ?pßó¿_9át5¥ÔÖ®ZEhy!•dx)©©m'ÛX[G%”Ú^¨ëvÜÜâÚqùMªÁþÿˆÏÿ~U€Ã·¦<*kUì‹cYu>M¦Ëío•lº}ã;€w§ÌÌG3ªßwúƒ>¡ðãàïpÿŸ,×½~ˆL“ ²[·h]‹g -?ŸûEõ¸nàjŸ[;j¾%ÖÙšX«n)­¼²xZU¡¿Ïƒ-Ä{e$Ö÷Ijø+šÇ®h5dkEl€Í×j’ZF[6êüK›¶jÖ]¤±6VÆNèU] Õ´.XPoùãMCÉ,i¨óHi=®-¯Å´ô–ÎiL‹êw³^[RÉöjX«aõ”ïØÒ£¡n–Ì2X?« ¬ÖAÚK üá°0—d˜R_š#UT‹l·ô¡Æ±zK/èÏú©=×£:_sZ$Ëe¹ý®+úT« ñ·ÖتÚW–HdF|”ÒR.èç¼þ++…ïÏÚTzijK‹MoëyÝ¡×t¿>Öäö»†²TȬö@3XKj‘¶˜ÝÐß5˜¨¨kUð’\xBt e)´Üˆ”‘lxÿy™+%, Þ~Ig“ÙÝiÆzYcá ®GD%l¿S‹€÷®ûIv²^ ¾»¢±-´•#+œÇ_ /Ü.™ÏÐ@]ù2Ø‚ý“+%¼&¹˜ÎÀçOé1pß»_ÛôºïôýX…ïÄ´ÄÆcý ±:«Ã¿yüïšÒ’[ 2åý ´,>ÊZ6ýñ1#ƒ¤•¬x<í¢®«±ëp=CgúÀsüN¦Ø{œžÖWhá&2w¿77x—Ï¿¨gˆ’°v_ßj‹O |e9ɇM­¸6üÈŸÎÖZšÉ$]©{¥áìßѲMOø/Ëõ¤ÆÿÃõt’¦! XVò~—GŸU7!ä#º{­9, +f±‰“îzš× Ùw«bÿ.`uIMj×ô¹&°p ÀV0“nFú‹ºD×ûsô |p¼ й3/`‘È{b‡u-{äµÑbX +*`§ô‘L†‡Ü«áÙ¥‘Ô#çUÕgHž äÎ~òý°—ñù+ßÍ æëk=Ç£\7è³äþDÄ{br`T¤ÝNÎлÄÁSu'ÜÙ¸¼ b5[¥[¤/µC` úWrpo´Ì—`ØB¿oÉuvw}¬û-›ÐÀ$¡t5ñ4ØÎ_ÝI¹J<ÒíýŠ@VÜ~ÜÙÿ[ßÏkAÀÖÄGy|¤Žî£*ª"Î=þýú’¸O"-àûîä?ãà)ö¹gÁuö¡×ÿ}-ÙÀuñX¢KùØâ;B»~ßî쬛˜qQwóý ¿Cô=ü¡²ÿd?Zm< MÕœz‘ŠªZˆêþîV©(ýåsMnâUoì> ûÏÓ~~úŘP?üÿ¾qÑìn×çbðbzI ŠäÀó¿¡h€–À ¿³×šVš„¨ùˆÉ%=Ø—Ukh_$œÈùKu.‘°û/ÒáÚTèô3,Ó‰XúÛ .Ýà„—üéàŸ}ç§Aºí-廃 ƒ;÷›Û~°áöµ5²­¶ØzÚ +¢é%^°…þוErH*‰ qû7ì¿ÉŸÑw=ßg`Ë-:Òwê§µðüá|·šÇ¸>°@ùo¤"|§¼ÐõÍÁs7 ÿ´7‡ï¯ù^*±ÀÁ/‘~ ³yÖΖ‘ ¹ïïß®ÌøMCµþ€œþÞ NÐþØw>þîN>´Õš¾¯G톖ÎéFìý”°ÚÈŽú³bëÐÏ\ßïÃíÿœ…ü'‰‘‡ðˆZßÖØF›€÷×±…vÓêh·`‹ýו ¾SI.Ê`dJc®×ùs¤Xˆ ;"Ãü¾#~ßXËi+dÿV›é`²þ[ÿå´ƒœ•ä‰!èì„ïwåXÿ+fóÑáePÒuýKö¶Ù6 œgøn Ž”øÁݯ"T<™¥0>üÄ csó«æb÷6Äs}m‚ÇÕÎ|´×ïµ9òw&;ÌЗ0€N Ai>oC`<ã±¹Ûíý Ÿ_OƸ†frà ³[Qëk“m0Yp ³Žv' ˜\Kg-E¾›GÄ0wšq¤öDêAXÿkäv“z¢‹oõm‰•‡áëÉ1½¥oOñ•õÄÌ\¼ ‰ïlyÜJý”…PÑïˆl‡üÙÉ­ìÕÀ)™"&A%‘R–ŠïŒýhµä‡´]±f;,Þ ©¶úq]ÐÅÏ Û¾»Ì¨ÿ_À”³Øß#e˜9ùãÂS9Ì$+< ¼× ^RûÌòS-F±z6‚lpÖzh—` /núIò~/*™kT|aí9ѽ€ˆŸÎ5Ñ:ù _Kñ„šÄˆëæºâ_Â#bSï¿ÂØoøÊ1rç`xÁ%Íe©©BÙf²§ëŸ½ u[ï o@ûü}€Í… Ö¤AÏy¤€ ·có#òå_×ýwNÕF ß04ãvÏÖÖ|ÌB+s‰þåü\Ïßâ;æ¼F_}É€ûˆŒó|}‹Ì/¨}Ž'æóŒÝøÆB´êæÄÞ$"Þj^«‰ä¶®°®à^K þ=•(ö”J?²ì‘F²{HíÎ|V!Ö§ú~?#Á Üþ¯Gñ‚Ÿ‰gÄf| )µmE¹Wøsp)Ì,>¨ßXŽõösS¶Â*·ÑüI€è|ö·\Z,È3¢ã":°ü7j·CØq¼ _ˆìõÈö“°ÿVßßb°ß ÿÂ40™æúéo…°ã|ÃõõX黾»*™-X'Ì…;¸st y…#ÈŸÉ*øi0m&^×8¨u@zêh’yÚçˆÖ È>œû Œ«¡ßÁs»ùIoëñúÎÔ]4f OtÆÛŸà3¿oë4ŠÕhÔvÏyÄdÜG ÜÇ/®Û@…¼òt4±Ÿ#XUkl :­eƒ(½øýj@?×óëïo©¯aÆa±øyuâ1¿Vwáï£ñøEؾ´†ÒÐZIÝ”ãf謼Ÿn¶^/HGøðddÜIíï·!óD·½¨–öÝţÄâXuòà ¸ÐÖÿÞµ€Ï¤$ܸ DªUx¸«N]¿~× p“×ñu9`þÐéûùSà‚µ¤f°RV„œö™cº-ÑÌz…ØÙ­¡ˆû=þüûc_î×ÄÉ}~Ö2X:KHÇ3»Q'ÐÖAôÿÔè>•¼XÞM,‰h;‘vïv=|ß…ÿºù5³©iobÙUDÈ"¤µV¶4pšFVJÛóušªgîÜ\tä|óuýä—ûkgÛ4 x˜©Û„r𛜌lØHóñÞX=ÉÉG#‹ëû¼ÂŸñ‹@à:€»NHAÀIÔ9I,¡UwwãRíã1kÉrõì$6m‹ÏTÄ£¯€Œîähr Oîá;‰Çò{𭃚]ÕAWÉü+­L°•5 w4Ñ´ p°V'¸oNYL;…o¿Ð”p3×íå ök÷&«u'vŸ‘á¯À`\ÌÍ ¹»62—ß¹Ù¿w°¸ë‰’š<¸Có,EòX~ÞÝXÑepä8Ó²yî›ÞÊ{nV}þ×›üÿ±‚&ÿPä//£±ª›ØñÊwê› ó ZïB• Üp¢›ï‚y tî»ÝÖÓkR~“Àn ÷šéöã-#М»tÂ_5SxÔN¼g)? þoR ösƒÝ=1×m¨~êA¼7>Ø3ÿÁð²X|§ïô4éÇ‚úS‰üÑZ é[’õw“½\?ø‘Èÿ½®•ØpE7~5BoâåÒ´'/œðùÿ0˜?­þæOÀÎåu£YVøpj,_Úš›±”ÎZP$·kR;hòÏ}÷wfë辯hïëÿ±xÊ·XµvîŒ\‘!`îjaw4òþß]öôîÝ™uÈùÁw <ï; Žç/‹ül…C|½Ž&óõNà|i'ÍA¦Ýø±‹ßa¼÷£Èîîç´ÄvWÀ­ ÂdÍ‹­újSm¢E‘¾7ÒwÇÎn?À#"{Y h_- 3ÛiB°á<è*Üw5Z eî>ñ"^wÏr3ÆVƒ¹]µ¹Ä¢ü»©~ˆëRó¿uvœÉ»» _+ ƒûˆ.Ncµ½Dr!M­UÉ}m¨+ãéßcë­êNýÞC?“ˆŒ†püÄP<$•Æ#7ª›ÿŒ(:\ñ i7•àd ctû&§èÈ ^?+ÉÀßS ôvßÁ°q~(½£ŸQF­ÏÀ·Fæ“Ë~Æ»º¸?–üÍßûÝÃs{ò›ªþza;Çc3¶á}%–Zÿ ßö÷Änƒ€Ÿ˜»n|^Qz‘ûx_v©Ê_¥\Šýðn7a©eÒ”÷~Òß×» "¶BúèšV«`ß^zÇ‚žï/ˆçíxÏP¤w]Ârk@“j²âN¬}ƒ¿g€YäG—'ÉË}-• û_%&ŠkÇ Ê/®ï›÷î"˜ë[t‰§ó[e"ïÿ ßp(/¯i?…ŸÐÛÎQ·Ôõs OÅì&æ.);#}4¼? Ÿ|ל‹<&&¬7í%Ÿ<³΃}ï4uÐ -ôëßU©ÓðÞÝ”ëÙd§{HÕ ~2™Ìæ®b½'.õ“\Òid4Nó€Ý}k×Ç{Q.äɹ`{/ØQbHì»;éîÐ+ È—ÝöMIí¹öwt|—z!§ Ñàßìé¦@ùcüÕ¿•øë2¼=•IذÚQbü¶œêÅEú°øvr­Nª¹I¿á©Ï!Û*¸Q0ò3}+xÌ$òýI"Èõ…¹ªm®ºÞŸnBj4‹o®“ö^üð‹¤˜´&‡P7íÆÍ§™ítà&º+ý§‰‚mhf0Ì(Ž†Ñ¨DBV?/©E1·8,õü3Xrv¡¢‘ÈC‰Ží<Ï]5zInÉDŒ¶Èð‰ëpŸÂ~/ùý>ȳÝ:.åå{üÜax\{A?Ýý\w8œ-ƒ ¹øË‰ÅdÁOˆì ÜlÍh,•LL"9Cs©ñõNӒ̸ëïU£Ûlp 7õ6¦õ@£ëÔÍÀŽj#µB8s]ÊJf2rXLl1|ϰMUÞ«a³÷0µ3dùÝ0ÚŸù˜HžÏ·ÉmYF2˜»úÓÖÚçÖ’ØH®±‰“ƒd†Í~¢ÚE^!:Q…Ì[´€]&šNñ:9à>Á÷Wœ’MxåGÞÓRßõù1øôž»üÖõ7ßì'®7Áj¾¡ºÿlÏfîšFrtÇ&RÏN¥6ªBÍ4Û÷ý^ç'é…Fòò×"Z?øÏ*n¼O*i•±(´‘>dõ1øwJìô— Nzwø²»N¨Ç@üÛÈ߆·Š¿Á_7%µ<—0 @hsS6×ôd´ÖXHææZìáûõT?¡··ý±âðÀux\F„Zþ5¿uÓNWûiJËÁÐg¼N +l™,%’Ç'Ý=‚˜v×L­ùåa°…gÅÐR—wRÒFYN2{¯ÁOÏbq7Ñbuÿ<ßÝ|6üð Ò?ÅîOü|p·n™qƒ îÁ¿]Ý'šØj[ ?&!¹"¿Ÿ}Î÷ £%q?–’ò#Ÿœ( ZÝ¥>y F» …;ýÞŽ:äë 8G=“^ KîÀÇX8Qf¸Ó"!¡•ƃܜ³>kÞ§’~ŽVÓZQžÎï‘Ïn•|—¤.väÉä©åK¼`-ñzÀßù¹£1<pûŸO sðü0£Þ { ¸Ae_Ï¿^O]ßOGß d-ñðá<ã2¯QŽ ™ ÉÃãñÍ­¸å –×ò ™­€ ¶è~E„‡—— R‚ªÞí|eg±²ÛßýÌw2ÝL/ó“;€úîdkhØü×ú½v"ÛuÕ‚zVóµ7¾_Ⱦ‡M§Zz çMlñ¤¼ê]8oe+Ãß ¯Å-'ä`°EÿëRm(íd ÀíWŒf‹ü~‡›dë·d47çg1±ßƒÊ ±°ê¶@3`ýV°üðÿêºGúƒšíµ0¾’—XNþªYìž«qøEýëö ´Á#\çÜ,hðƒ¶•P!ÀûÝŠ®$¬ñBÙJ|×ͽvûÛßç@<7Ñe þ?Xî—k¡Í‰‡ Â0¥·eƒ,åë8ªâbzDÛQéw¥fLm_ãëq±yIü?¹e¶ö6ئX7ë@\Eö „ùU3HcIjöÓž;ƒøÓýÞ壠ø)°} ÈWwåj:žß䟾ßçÑ¢ÅÑÑ t2Ÿ¼Ñ-^/À cóðžÔ`_hâàsôáÎÇ–$Jæj_‰Bä#_À'ﳉè.xö÷è`!:øOžˆ6FáÝ#‰ê¥ü<’Ǹ‰¹®pT›¯Ñ‰îðä³Ñ ÄÁ`ž·]ìÀ›2zOOãç l÷•ßO±ð®2ÐÏ­_¥¥ ˆþ÷Xä›Lü'Ìâ'·ÓÁMv×·ÝÄŸ@ÂÖØ~?œ÷­æ³Š˜‚tkx\??ÿ` wõâ1ô×âÛMxÄ?!*à;‹GÅ/Nk¹`‹ý¯«ŽÔ’2œ˜uñ¿ÇwñvÓ "¥ÓÁP,ßhï£õ´-Y`˜ŸŒÕŸ¾c*›[M®p½ÏGñØöÈ? ÄÜ…>’ .úûŠûµ4Òç±Îp€ÙØÿ§`‹ý7k´Ô–UrKóù õŸZ"jÚ×dÀ×Hº_áwŒ÷÷Çf’ ïÁdËÂäò‘]øGêúÂ^Åæø}㉄Ñ~vèQçç,™à…γŸm>Ϩ*l8!$úÝj,9$»ÔÁZ¿hRj•¬øm {AUs”hv»ã~ö1?¦»PWâûùàp)`4n²Ñ%X^l2ú'vŒJašK6p×–ø“ ð¨ KU¤?`]­™–NR&Éï:Üd’œÚǾóÏçô£†#ƒ»»ú ±êBâ÷ÿLõ§[à%9Éãîêßku­‹óœ’æØÒDPt6¸­¹9˜§õ >°ù/¡¥6ΖimilÿÍÊ)dšÜÖ­ÄfFêà˜pÜw¼÷uH<‹Õø¶Ûõ=KîÇ¢nG£Ëì1|·Û8vW?á9‡ýuÄÉTÊGý‰€»Ô¿‰y¥{ ß÷ÖÝF5EícЧ>ÿ£UTŠKY™ o-b°mZÛI¾_v§Ù¶{‰vÁìÜ\›È–J¦²½Çû³Ú[žw”¿ñ“2ñGÁÿGšŒpaRY-kþ#V ò y«UP%.Ua¹9ý´¢È»ÔOüØC<Ü€n öù+_ŸPÃ\Eºv\˃ÙÈsîÄQ²Èq2ÒÍþþŸ×~°F–Û¦ñõ£7"?Ø¢þÕCŠHa)&µ4EFwÕò²쀳|‰ÄëÑÄ+q¬.1_¤¼¦½AŒ”pÜDÁyXÎq1ƒ¯¦“Ykxðß!c°=±¼ZGê[Ôg}!q¤¦ЉVÃR#ÏWH´ÂÏ{¤ññ]ßöáõßÚßÓ¹õn6Û¡@Í÷TIA…Ë~^øVžõˆ´&ßÝEòˆ–v6N~ ¶˜ÿÁúB²Ê¢¬‹M°Ž°´{°öÓúŸÛJ\_Ó¾Dt=°/]´ÓX¾,þ@µtÑÏŽv¹þ¸¾Ô´ ]rbAòd} (d}­Ÿ gßÿv%“´2 ¸¬Ÿ2X$°p,|(UE~wž? ©¸MƦŒM=ר^¢£ý<ë,Ø·‹Ü‘Jw²†é»}¿i,E`™¶~ZAr[Äÿd•$;u”WÒξ#§gCº´ÈÒŒom–LL4°c0Ÿapáåö›í@KÀ:×!(´=+Ÿjtëm»l8~”]E³Ëd“AÝí÷Ï®R’œŠ ¹Ö¥j_o[@ƒ\D[[‰LsùMðq"ý„ß]²÷v‡ª~>ÔlgmøÎå‚öxNw²^rd[S‹¬®+àc¥‘èhàš–Ùé9ìw¸át0ü3$Üa‡`3g¬Cà¤Ý²_í<>°|‹Â7#+4µþäúªhe·eü)D›KȘwýϬ,°¡L"Z˺VNX»¥m˜ÌÛ„GO/Ú »jÛí9^ð=Ýì±-D_‰±ù6þ: ð«õ°UxD_©l¡þK«9ò”Fúʺ’zê6îÚVÛ ªÁ¯«ðýz$,Øl¡Ÿ¡£ëèâºÅEæ¡Ø¼Ý´~2xÅý#öAÿ/+w%¿æ±16¡ŽJB¢ò*nZ™@ê@¤@Ø@ä›o7ì‘% ܰ8šüµm b`;\÷=|°›&БÁ忹²’ «·äŒÄÏâzبHFKèKíHvku³@×ÀŽ@õÀ[KƒVŽšIì„|dzsó*ìUQI$ùZZI*ÝB埘>¹ž”ÂúR–ÂæGH"­®M¨~&è4*¥âUãèÉÆßŠûÍÿ/­¶¾wWr¸Ñ™ 3¤±|%¤>l!2~# ý €N²Ž:ê{ê¨"péÿkëïÏ©òÔWûíü¹þ\®?ןëÏõÿË*#àr™%'ß'¥:HDîwSSsùR£¥ž¤’ÚdÆf|–ö›ý_]9¤„t—áÒ>ÜPzQÆFî42[îHní¥=ô‚~Ô•Ú[3èGù] ‘–Á~ÓÿK+‰|ެ? ioýY›ë%Ùà§¢Õ•iòZ?±¯ý™ÞöVË~ ,jql·¾€¯“øÁ}%rø{[lÚT?h$ËaŸZzýAÞHv-­­‘vŒeµXö£·VЊXy‹n»´ÁfÉ+ ƒ-Àÿh%Àúmd²„Õ›Í*YJ;«Y¬‚¾—=’Bè ‹jÙ±ÿëa#­¯õ¶Ö6ÌzZz»®Kô;mI´¤ ¶ÿí•FŠI!I«‘>¬¡½õ÷y§ÚïÚ€¿þlݰ÷3}¨ƒ­"ºJTA =ìKKcoô–Û72æôˆùG[ùÁòâ’ ŸŽ=ã`ý/l½†¶?»sOQÑÁA4Ë"ûþÖQì¹ –}ci-›ÅÃKÂY"á ¤ChÏç´ÒÂb JvùL;‚ø3üé—£ºG¯é_æ\Ü×dÈžÓâÛ Íe%-¦õ½ BÙZ}E¼Sw"ä°°oý^§hè'§~¢úýþG+³$— 0ܺ—|Âïc¹ç÷Á_×߈w~Ãõ‰{ÁoBó}h ‹Ï—#ógë;MŠT²Âü%Ù!Ž%ECÏáPÁ?íôŸ¯DØ?£T“³Ò_7€ìGô’^Ö“ºßw>t; ÃØkhîì£;’œKo©A‰üd†Òæ&D´—*|~гú߈a©l£’¤ ¶xÿéJ R¥’õ2R/"Gb¢ÛõxwûFë$]ˆrØsm«î~ïkt’ÝR`i·¯- Q?ïÜžÑh ãâå¤>Ãw ó˜;ïSPJ[Àÿp•Àö©¤,ѸÄmj¤N°ÍÏ…xë»}\GK…lœM²Ê¶T-‚‘0-\7»l—:Èê[m.ØõF×â«üŽÎÍx¼ÛsBÓØ!ráj=‡§GçâÛ+°¡™µÖè\u§½n‚@Ã"ÖÑÏPŸ¬m%œ¸B°ý‡«”¤öÔ:14·¹ó¡ü™àþJ¢c_7añÃÄÀ9ðp½†Â¾×ÐGbbà(1rŒ™ÆîêâO‡?ÔLhæ;«n5¬Ÿµµ–MËKy)"­‚-ì?Xy¥ õZK†ûÌs½ÃyþoÔi:¸XG<ì'#N„ ¹.yáˆü3üöˆÝ"Ú6ß÷j’??”‘j¨­ ²ð¡Ú¶ÊjZM]4 ÿve÷JÉT¹(Éí²ßÅ⤻?ÂîË´›ŽÇ öƒîTà.ßéþØöðRÏø¹ù×ÍÚFœô fâjYgP±“•… £6ÏÏŸim‰ÂveEþR^gés<÷5±|__‡,Ût)uLíGöÛ CüþÆi:Ÿ¿^æ1…±¬ÓC(øß5ßùô#Ò;MM#ã[)" +10ÔæSº{Á/l‹u”Ê!j.\.Ù×jK°ßu:Û‹FZóýT$ÙŽ§láo4 ò6ž‚q%õ‘Œã·ã=gÚ„w¸îX÷øtg7"ÿ]üþèðQ]7¨¯­*™ –¦ n¬„`ð·ªäþ#Xz†?¹Û9j#mC4Їßüæñ® 1Ð×_ '|­µ´¹®¦î—2Zβkq´3Ÿ…¿Ï¥þ îwÃ÷?ßÇã7òýQpñƒŸŠÙÄZÚçV\»<ˆý]øŒò½´Ã_§c97¥c;8Ë·ÔÚ $ØEôŽÉÝ<¨ü;A3k|¬[‹j朖“)zÉZ ó?ïyo!¾´d¼Éof{káD¯5àg!š¹3QÅñÿ|nê wÚaƒ4ÂöóTì5¬ç¶~ žEÎ¥:ëv \Àð›Ù¾ûEw¾þ áð‰‘Ôö»4‹ŒV×7ý ì1 yä ڸ⫟õÈï"ÿ¯ëÎW0w <‡}i|`ºv”$A”¿´”“ëòïï,9k 2|¤jws‹_÷ï‚Ý?ê÷TEnš‹›í²F{^ƒäY,¦ÍÑî2GËPÛ> ËÇ¡úw×ÿ?jL«b¯x†›õTÝuÔ, ~9+aÉÑALkhѨ³úØOA¼˜MªK©ëûRð“{óù’¬ö–œ~…÷Þ‚ˆo+]±á%üù8šé…Ÿ‡³Ü<+ (ñšª1#>íξKs噩ü/ûŽYx½¸–ÛÒP–ÅæU¬®°¯¬¾í²Ã–#ˆó_€~ŸËý fúTÎf¡A¤–Ø\×Ú—Dípo¼ïÔºY×ÇwSí~@#É‘+³¿»—ßhaž›˜WId@„s  ›üº9àÏŠóý´r“ñ¿D;u‘¾‡u¶·– XûMþRJºHgPù¥&77Û÷,ïø¹ïXz?á'¾ $Òo޳aÁˆé_ñƒd¼ÞÔ4åôy¿œÝ×fxK,ô!¾ÀØÏrãApe¹Ðõúts¡ý±øˆhÙ-¬ÅµÉzQ‚× ñ?ZªbÑÓHý3ìn9ê ?·=ÌOyû´àÏó/ æ“ÖÿßR^Õ† ÄI)#e°;ëG|EdüÂ+¸)1SÉ3x•!|w€G»y@)ˆý\V†øOBöOÖ;ëÈ ö@%¨Áöàé®ßãDª½ñH꺙ùúð1 ÞßP› ‰ë‚>Øw}ŸàÐNðrž‘¦2MÎëPÐÜuŠ;Iž_í§õÆ zÀæ“Y$"^€4)-HX€J8Z­ƒˆÿ+x÷ƒÄ]Ç=¬‹=OYå§"÷Xü~?o#ã…·£( ¶â;×%þ$Œf¨^R·J$|牺ª×u¸ÝŒ§ 3¸IˆmñŸy7ûn®¯ìfáuð“2꺤>õ]’fû«„£xÌhßÑwʸ£n2Ê\<á–ºiØÑüyÒ3øE]7i9¨wòá½næÉBÞï2,?{§Î߆M7ãùýÈm3‘¢ž<Ÿè‡OwæëPüd†¯íó¼9<{)?OÅònF†ÃÉ>haqiÝ®¡åøÄYÂMš V¾×øäÌÓêöNoå”-òynlöÞýѪÄùz|ø:Hf ÿ[âyƒŸKŸˆi>Í‚GÌUwMõ Lç¹ï®V³‘ö zHNˆüõì'mlñ¥h8wH¾ÃÇ øIA»Bþ¾àwº‰h+ý°G#« ð€7p¦YšÖQÓ$ßÂÛªðäóÄZXCþ¸ŽNúÉ‚q`Aµˆ‚1VˆÇmñS“ZðZÁïƒ5þ]¶³ KEö¸Û¾°4VÖ>ò>/“·öcëU~vQmMøWÿîHdoÑ<~ŸsncÚÏZŠz6‰¦ƒ GÈ#WÔM|ˆBåŸÈnU9uO"æ¹Ì ê죿¬U’LRÍ;ÈK+ÉX‚%/࣡ÉÙa¨VOð—ÍÈzÐÇÀOl§‚Ô¦¶ö—–Ê¿†M³\¶˜IJ”Eg+xµƒ é ]5”EÄï]G(·[<¬}fSaþ±Õ(ö:-Yå¡D€±ÔÙßø™'WÈúîZöodëÃÄÁNP|?>°“ˆhÄ£:“)®ëh;ny`¿®ëñXà\rgS-B“®þü<¢Æ“2¡¥…šÚ²ûñ‡È¶M hÕ Ö~ÿ²ÒÈ`¢ 4üe¹lñîºw¿à½ß÷ u¹`+ZX…Dcax“¨ï~%²kÚM|?ØÞÅFÔO£«•xFW*ƒCüþ:¼Óû”×,HþßÏ¿™`‹‘íìâ Qß þj&ed"ÇMã}EÆ;_‘ Âá§É·õ¾Ÿù{T]5Øö{ßv3œrÛ·ø¼»šYËÚ[sóq ­oa÷xô4r[¿ÂGÜÝÎHžƒŠÂàï@·/è« Þûù—µDãÿÙ¿¤¹)•f¯‘ñ¡Ÿí» /xEœäwü´…ÿŸõ]Â_khlùØÏ‚ƒÖjòÓ ¤ÚƒÔ#´Ñwò[~+Ct¼>#Ä #€„¡ñ˜ì² ØÂ‹ëþ›^fH'|öS[B¥ëö~ÞCÚ§¾{»›‡tÄßÙþU›S·»é ÀÆ¢d‰ƒø{7˜N7¸€CL%Ë¿á‘ð×ì<5Ofò&^ ¯ E¦Œ‡üáÍÝcZ¢¹å\°…gÝ’²òÿŸ†¼°[({OlŽ„û]Ç‚'±¡Ûé1 FÜt'޽õxÔx¿C Ÿ ÑZb¤_ïïºk#KÕÍ8ú –³ÙŠÁv¢€|5ÐYŸÝ ‘sZZ„€¨¡µ§äÒfDq}Ðî‘Þ¦ƒðsû.áá üõšá~oìü :y/—­Ö†~>ì·ê¦§‚Ñ×ÁÊn~´»"xˆqºHj¥a ðögêºæå´¯m²ÅµRÖSÛKŽ ÿ'ºxŒ˜~Á;ŽhnÂÅ|$xì;}º­Û|½××q¤,cÕ`s´xÐŒœ×D[¡‰î<*›5²¢–T\ fœäÙgˆŸç¼îwp¿ðöͦ´dT>ñ-¯…Aþ0ÿ"®ž 2žr‚Jæ$‘Î\Þ{êg÷]/cÈ|K©aÆZ;kF. ¥­‰óþÿ{ofÕ•´mWÕÁ%ACpwîNðà„@AB€àÜ‚C°Ü=¸{ãîîîî.ß½Væý_Ÿo23ÿuz¾+ë\MwŸ³OsÊžzjェàÝð¡dþè§™5²¦øM?t¨°âxêX_ÞžxÏ/ ÖÅA—§N" _ó=7xPÒË\‰ ä¹ ï,‡5¦»¢iÕ°ÓKt1‰xß‹]‰&&cÑžDtYûŽXž lM6p÷ —£Öï6ÓÑÔ…‡u²?ÔsêöE¹‰°yb+À£„ß'ÕØê‘9³X}YlÁÿ².aÿ»R×.èkrÛ'ä±#HÐÆßõ< Þ?ôïÚ/Ò¬à×Xän«uà‹?"y*MÎkc9ú"¡µF'B2˜;‹”šjçS¿{ÖSˆnô·f _}p².^PL¶[ð¿¬Còì”°vœµf³éáÃíýÌÛþ P7²Z_rúš¿x¼;¿½Jã[ ͈l©y~â1 ¸Ý!xÌ%ýˆhúoAºsÁn×Ð{p¦¸õ¿öù·ÕþsOZ«Q¨bVï®sý6ì=«Ñqh£'?5åzcç®<¿ÖßËYØzñjnä<gEŽìÅë}ýSnzæ-Ч?§¼•jð!¹ä,ã‚V@þÐÓ!äKéF%ðÊ#‚T7ñÙ{ð|7Óåþý ¯ý>þD÷²Ú Íi+ñ’ÚÔÉGA‡5`@/?'ÇÍ߆ìÃêGù¾MD!±VðŸï,L`•n ¶Øÿaõ“&ÒC›X>¼5’ïèû1L-:Uûl½Ø3½ÙD‚»ö9ÛGÙ ™»ú°íZ ¼tÝÿï#m?âc¤þ†üs¨(VëülÙäÈ=ôkJÕ4ÿß'áBöÿ¾êIu©+ÓÕ1ÀðȔ۞`a·h:Qà¦àñ³Ÿ´ˆxÎMþ*ä»`w¶`Ü#Ø]lêw%ÌÝ/ì&&­ôTÜÝ@çaM•ìg[kl¦ „”ò6ØBÿ§•L2Ê P­¿Õ2Ùߥìl¿Þ? F;¹~Á²ã±¾»Š•Øïù,„ü%©”£Âl SéC;£Éœã8jLÂÍKzªé­¥uÁö;l«i ¯þêz€ç”tRVÆé`sëùkÀ³ÉTxóÑÃb$šàïƒ_ëg¹ï†%>õ ûÀfkʑ㓙»¾,C]6­h™¨+Ò¢©zü” ÖÛŸ/ ‚-î[Å$+°YjP™¸îÕ;‘ØÍñC$ðwMð{"\/„ë`™»¿ÿ>ß‹X'Qy¤,ngÈnæÇj°ó þsUÓà÷ÓÑMXÀp²!`Ö…o„¾• 4zpܸðó[~ÚÃ2<ÀÍó[Nõûböxf[Þ¾òó?Rý9Aµ’–Ævû+Ånø¿î úIa³-\`£å'CVÿÃ_…ªÿ¾’I6)%gäX}ÛŸïÛçç|À£§©›ëw4s}JaÙšÔ±nuþK7ÄvÎvtô@sPë»;Þ3Ù,»a‹É}Õ‰ÿeÚ[j[Ôÿe}*ieªü %ýŒÎðËkfrb"ÛKFÛ„ìð;Jj¦vïdC‰ÿx– oxã§ÝœÖ0äº}×÷Äh2 9?^à6¼¸¿°nÒ4Øbþ••˜:(¯VµÀ«Ê–Ä6‘ÛkàßWán‘m²ŸÖ7ê2ùfKð€)°üVTui¬ òÞô]àÓñþ¯á±È£n?Ý»h¬;šúÂ*†Rïÿ}•™–Ëi-޵júyí¥¤=ƒ·'…ç1·S&5ÜdûÖ¾GÂ5àù÷T5 lQÍûiünßdÔ{Ÿñ6ËJ"ꄊ_}•¡.?,}4¿e&c5¶öTlEðî‚Tm“@y·×»°uãQ×ÌN’ÙgØKä­ÊïQàNà ‘~hWÎÏûüÕÚØ‹8¦ß†‚+>Ëj)ƒåqÞÇæàÕ,6Uqiä\ Þ%Â/²x{o²ØÌ!ûy¾ótKÊqŸø˜èj£-BàŽoT²ãòE°Åú›Wb×éX³ƒkݱ^ 2â·Ø{-³vÖD, óss]÷a׈AÄI {â§²Ž<Ü´”ª6ÜrÜ´„ÖxÃ0©l¡þÀª)E¤²Ò,vìjˆ×¶v äù?'¾ÝYìÒèC-e`¼½·p¢äh¥ƒŸúÑO ±¯Õ»lUb&)l¡þЪ#üN¾tw±Ø={~Å|8 .¶Ä›§ÚX4ÒÛ,. ®ùÔ4¥ÐÈ—DË1{h+ÐÌ ‹8X˜ŽODÑÅ>èßÉÙ"ý¥"xgÍWm‚ÝÄîðµß"nY@ñ@’@Ô0•)ÇA„Iv/ù"pÅÎÙsàþ¨95©~lQþÎUKÚÈ·ÒKFH,8í5dJhhø<¿/HxduÕDEùêŠÝ¯Zt´1ÉÆéd©"Y$¥ó¿Æ*cm${Áƒ½úDØ Ûj½üõÍíÒD~’Kò1µBzk _“5gkAd¯& ¤¢4 ö‡ÿ'­¦²HVÊv9$‰ô¤œ’Èú±ñ 5crzZ)$ßË0#wd¨T—83ÔÏ9úãkÆÅ¦ßIwéˆF¾• ü;¸þ\®?ןëÏõçúÿw¥ðýþóú®=ÙäIOÖOËoå`H¥›ô‘Vü;EHý`ÔòJͤn6b2mÉóÉD•xHÎJYí¦´¾VÒ>ú©Æ×eÒE~EýÝþÑ•V’!ï|)¡µ‹Ö‚Ûžæ<>•ûúNÍêI=«³Ý>/‹bôˆÞ”Rfø¯8õí?¯D’J8µ|¤ôC?º©uÕÕpß0:KšXBk`_Xykm™¨ÿ{[ ØX­£íõ:«ø/VõÿוV2çI¤’F²­°ÝÒ‹ZÄÎàëå©Ô×q–ÓjØWb¹l„õ¶¼üÖ… hŸ¿‡ú%ò× âþötUÆ‚©©~›ifKm嬀ԴÉêÙm­Å$‘Õ²ÛÂØ¼ ¥µµÊ–ßÖ[]´‘ܲ£NÚUJщÎ×ÿu奶)#_Jg­m÷5›•´ø¶Z_cÙFèbŒžúö‘ÝôûÄv]ÙëôÛƒã*ðzS«ní,Ž ÒÑúgÞþ÷•ùGËDY&á톦$¶‹Ú =Æå¶ÏÌí÷™äû†Dçç3ºÈwÅpý’Ë[\0â++ "Ô#N‚M¥t¨¼âù¿­t ^b²Ýÿ¸îÕ¾CL‹h»ÀûˆögÏôŠÆ!.¢™ëstNÏkTûÐòñüs¿ƒÛëó%1pRi‘Pq§ûߺ2Ár²Så'Õ™úFÇû{¹ÞëGÄÿ$u÷¹ÑœDýBÍOÆ+iáì©f²ËzJ_¢©ß÷ü¤B«57‘pßõÿÑâAísõGV:0?»4ƒÒ]×ê3ç|w¨wZ…hߣY|Wðê:ƒÇ·Ä–ÈÜTœ6ľ»§ßõ?zJ¦Lkßû^?}ÁݶT{úWIÉ#®œ—õºJê~¢ü‰®×»z¹éeMëïh=ì»ÝœÃî©@„\ÄAÐÐíêÞª¯üþö,øKNøAbžÏf}§—Ð=û\ÈvÉ|'è"àØmüy¹ßüF\{‰„¾Ó2ÚQ=¡‘í’Æå\W£»ú1±Ï\Ü·<-¿*¾QÍF£âdÂÐ=»uM*ùVXûë=ÕmÄÿJ]‡õCt‰UÜÜ|û÷zGÃÚoZÌûÀã)—ù½¹!¢­à]‘ýpö¶ÈfÚb+nÏȨ¹Cñ„¼øg^ât¹ö´ôxï{¬ýÉöéA½ ƒõ´Þæ·÷ú¥Ö€ÁÐD8p!VŽÇ§!Ö{£‹ºx¹¢®ï·Ë– aI-,LàºÞû À§Cç*[M'K¥RäÁÿSìÈþt8 ÙSßaìk4’\¿…§»ÙÉÉŽ7á±`@m­mÒ¥º‘gÄêÃÚYp¼p¯%µ ÔQ¹¤n°EýVf<¿œ“\Ø1öܧñàø ÜQݤãxD&ŸŸ^`õ[Hï: ß$ ¢ûÛ5=ìà¸V‡óFþi¼r_ GõÑ@W ±Ghu4“ Aß÷þ_Wv,ŸP¾2Ú«‡»® é>ì{ ëOЉ~×Ëå­î†ûEFCáÍuG™ ˆgÖ]ýî6>·=àå½ë}"0 ½Õ–Ûc{e‡ì•ÔiCWT奕îò“Ÿo’ùŸÀi×øÎ•«´ö óÇæ¹»Xõ*Ya•.ƒ®'×Ñy~¯\.¢¼?¢ ¸±ÝÏ y[,JE”ÜJÙ›l›mšýbqW­±ü½ßÿ¾R“óŠHýYSáÜ…ÃlǶ{u¡ÎÂ~ÑȰ‰êvDÎ…ìE+ëÔÍúIMÝ÷û|¨hÖŠj§?ÏÄ6w·ûLŽÙ'¼©)ðÿ±¶ÍfÙTð¡³% œÑš’¬ +©¤‚Tio‘19,>:–Œfç±øzè:Å÷„é¦óõ€Ÿ²•œx˜×]ŸË€B#W©?´Å0¿8D†Ú~ÈÃí|D^,…÷϶­ÄA[ÛeCá‹+¨0BËlÄä r*i®é¬ŒÍ¥Ž)޹‘æœîÀ¯[û[ùÞ‹N@Sùy6zq½®Îë7°£Èä‚X°€y:ùs’“ÃùVã)ëðŠ£—`÷þþ}¡*©&G`½µµì&ÿH¿ehFNø^sOp{×RDþµÈø)ùþ¡Ü÷rGŠSÆ¢æ; K˜ Cx‰?mЊZ‡cÝÞ }dÆù`æmÍ4‚ÆÑ©¡â¼ ›Ê6TIU$<ˆ·žÐÞÚ‹|?šxï¬]ùí,•¯ÛÁÖS¿'bÇçÐÂ⢠´ˆtÑè0á¬Ô WtùàcKknÎ âhßC5Ãï'~ü±ðÚ°ëÖš9èýÿSIzØè/²K\õžŠOvë÷õÓfcý¶è" Û ßÙ¾ŸD‚ˆ0½ÙD÷¹¾þcxü}rÿ+u`‚yŸG“çøÎPKyþ<)1’™ÿ%›5DWý$GåÏH½7EÊ‚÷Ag'ËfßËÒõ³­Mµ>Ÿ<µU€Ìð]}]Ýû¬¾Z›I6Øþ÷Zæ[ £ÙN¿[v è&ï)ƒ/ñ·¦ ÷iâ!–±rT‹O¨R[1´ÐÉ>Ò`ß›UjÈ1yƒ÷l^F¶§|¹~°“@¼ïˆ ·ß!¾9+.DŽM ýAýB¿”“:“\ÿ©¥ LÅÎàŒûù nÀï³â˜û;S`” ýì“|æ:ÿ ·©#S VáÙ`_Jó/E¥îrú?­ÊÕ>f§ˆÚ%ÄAkŽå¾´d¶h îM!š¯j]ì¯ö=¯ °Ž Ý;9áû‚lò{Ä"_ ,|ô_CM”ü¦i¼…¹nÑ®Îu½¾ ê²ÄÄÿéf»>½ë|·ª7èàqp›þ¤_Sĵ~Gà˜àp¼b:¬¾4Ìg þÜJÃé‡èd¡¼ÄëcÀ!^òw.«ëŠ” tó¸Ù“ƒñü\Ìxæ&a”‚·êlèT`ÿ Ù­b?ûÎ_§|ϲ%êl‚%'k{´àæ5°Dæ&?…®¢¡QºD®ù>‡‡eŒl–¬ Âàß3â¦æµ&v’#ûó7ÍܽËêú¤‚W'Å3\_œ¹è#FP{À}%Menæ:…µÈqùöQñ¸™Ný°új]n²£›èúû-ÑVº\VJT={Gþÿßp¬ð ï}©é­¸%¶]=\ˆln.bzˇO±VÔ Z;¢­M´UòeåO%½¥4ŸôŸ8qÿÙNb«;ð§…a¾Ûëp¸]z{Al<ô»GójK['?K$m ‚æ—ç2…熃–7ÐÛU—˜?„G¸îÚñ­´¥ñªÃ}[ÂýËYMaKl@`‹|4éËÃzªI5Ðý!ñš Ç0wÞ2&y¨n'OWáǨbgÁÜÎÏm ZsdÉ »[,mðýCrF‡Ûøõnüߟ .½ ô_Hµp¯È‰¯çâ*ö€ýW"ÿ·´…öFMþr2LVƒbim9ê5>xM½” cCˆý¦ä€N ÁzxÐ"$wóŸÖ‘'Fƒæ1­£–”0†Ô¶qñx’›Œz†<àö~»9ZW怛ñ¬3,Œ7%ôgWçègA<Ø@¾&âv±º‰gÁ§û|ÆcêÎïo·Æû‡jG-£ a ÁˆHÑ‘ °oï@(íßÝ9í0uò t4ÛïŸsîKÜ'š rÎÃ7úžˆwð¬ÇÎŽ1å‚xM¨#)®Ÿ×#2öT¼u‡ßçìÎù´õÌÝgïB®kÆÏµÁ|×ý~(~½“#SÛ=/}AÀð@×+Ëõ; A‘vÒ»é‹É!~º€›øz¾å3D°> °ŸÿkÊXY†ìn¦½ëßÞRۀ쑽7¯À_#ECªØ.0žž`¼ëñ±ÑÏ{ß„œý‹ïÝ<üÞC·@+´9¼Îííè'ì£Æ9̳ù$6léC»Ž_ïDΩdË)D@$þ™XxõŸQÜÆ³¦ •ؾ°}úU·¹Ô„¹‚:³½ô“þÈêönÑ |>7ãb V<­EˆövÔË3\»áÓñ‰nÔă‰îUäö=:MSj=ßõl¸·yúùón~ˆ›|LS‚Š ÌÍÓ½³ÚÏsà·É7'ð®1Z<¨WBúÀÝVb·CzÆÏûuóÝô×ÝÀñ½çÏõ®ð“úaùnDB_^_Ž¿lÆnøwðzwÅk;¹Áq…¾Cv/c¹?Ž¥ÄÛcšã‘ì*Ï9T9ÃÿèέžÓ“A½+ #øÐ÷hßHmûŸž„åËݯÍ!ÚV>é~ßM íÐÀ¯ÞÆËý=/IÍáøqß÷£q2V;`ùIdÌüÍß%8‘¹I™çyæ>ye“*•v» ê\Ò\Ì;cºIf9Ìçš·YŠDnÂÝ=°ÏÍ5vÝ€.¢‘Èîæ™µBªþxÁ`^á§\¸ áW}ŸÛíü>‰Ì8 ÔÆ_ŒL…ùœÖ·H™Ã–ñĵ¡xýCü* URR‹ßÎbk5xüG¤ Ñ×Y³kErQ,*œìð—£Èpïm£ÉáB'±áQdí¨ùñÝ Æ£… èÄñû÷Ô‹îˆñ~JˆãKÃAÉf|wý/]¦{Cõ“Ê¡€íôýÔB¨{“#YY{~ ¢ü=@ßÄ ÜØÂõ+KGͲYOúFçôºº«@;ù­¢ÇÇ;’#ê“%ûàÿ+}gø0Ty³|¬"Gºƒt&GW÷Üä—Hö k‡¡(A¤ÜÆ/Ü"Ñ,+¾ÖT{µüL)"—å¢ÇóÈ1ßÏæ ¶=A27ÿý<±=\o¬õsXÑ0²{KÿÖÐMxj©ÒdÃç ú{…2[rô1Íè÷Á_’Ju™¤ñ×½öÅO ‘ü&Yêž=ßw€O£4™¦ó“¢V!ý ´uU¿¢® ¦ ó(1Nk!ýGúzpS…®ð—b“õóÙoüå§ ø;Eã€6CÁõ¥òß%Þ…z.€}^û¹¾çÈmÏù~)VxÖûµæÀÞHpÎͺ öFCnÄ3t4Ñç‡ÔÃYáHG|¯ Ûh(‚¹\z€¼±ÞwSý,¸DdÔ’$ØâS}f‘zËÏ~‡÷“³ Z^kȧßç¯W-ÃÏ]È…ÚH3kB|ÀM„Ü„n:óê]¼%¦ïoÛT,¬Q57•Ò&¼éØwF]×ãæî‰x¤ém¾²VÞXž½*Ÿ[|©TÒòú-Èß^³W“©ò`ÑXv Ø ëßî§oÂïóh"às¼Á@õæð…ÌþðîÄs#=¯ç×ÝPð Ç,“YFøÎÇø{vôT.|ýb9mN(¼$—€v•…Ô:m|Ï6×ïþ5•úcØÊ#<`¹÷„Ø6N¬¥µ¹2•5±•Xr®F´/­¶µ±=ÄCe4ÙÞÏQv/¢8~äúîRwæ7>ºuÜçÑ–ÙºJ¾`‹/Á 8:KÎú(dnæÁnßãûÙÍÍoÙC&;è'Xoß?#ŽG!ajke?âÅnvr1‹gelÞÓߘæ3èzÔÉîÎü~ ~ªßø« wˆŒWT†álJ(¸þý‘&•-ò+ÍÝݱoŸGn;‹Ý¢Û{8{DÛâïóØTõ;n¼…WÚÖáÅGÑRu?ËöўđküÕÎKd¿ È æwù¿67Sè2\8-^ÆuöÛï+“V¥œ©nÇÒRtp„›Î'OÄ'_BT¸k®’½/,Cö Á²§ðúÖßú™›õ=r¥$nŽ€†ûýÝç=o<„KÚ=oÉÀ?W ‡³Óä“hï ñÛPÐ#¿6šƒÒ l£×ÀD¼³:¦~.3 pWu— u ³º=`‘¨¾µ ÈÿÍý@,ç4×/óª¯ù¦5oñw%¡¬U± X;qõB?°—>¦Þƒ÷u¬ŸÿeÓI,¥ÝMÛO× )»ñÏ×€S×ýõŒå¾f??ï®ï~˜ÙkY[Cd¸ŽÆßøa‘ñ™ûdþ­¾ûí~Ð4€^ “®£Ïgè26XÑ£¶GŽ[|qóªÈ mLŽžD]—ÌÛ)¦ÍƆA#wíÅþ®Þ]áÏ\G'ׇÑ>¥‚mK.èÍkï´¶åG÷y𛽠õš×õ½ÍKÞ ä·¢VŠˆ(â{dµ²Ür ØÂ³"i]y&¥üN–;ø~ˆfE²*Øõ1Qz’̵ ùGÁpÀô.ùù}u@´—OSé<ij´ó%ÕsD*\×;t¦nCSùNç©ÀWW¿%š'+Ûg°W]æ3Áž•H§K ~Ç…™¼ŸÜYÏXo%Yÿ5ÁfrÚ ²û<\±a=kiY­°fÔÖÄÄWðºð‚—Ú“ç‘á·6ã?aÈ|¯xG¬íÎ,^†W|l)¨ÓÚ¦k ¹láYIt2<,.ò? :÷úþ£À/õó?ñ™·RëÕvdÅÒ0½æÄ}CûYS¢#×¾~ƒõËóýëjø:ML¸¹yÈsñÁ…ÜHüŒ\ .h)ß%®‡¶ä¡ r,Ùd‘Ö±àת¾¾pþ|â}xþ:l9 ôëKÍHõÑçh9*ᯑ¼ ¬¹*ð-Õá­ê¯pGµ`às*Ÿâ×Nz$}ƒ6˜»[ÚÍ×úÈX%)iBü"«©>@:7·f”»§•(p{›¦QÑôçë7F³',  8_ÌÆ"w'­ƒ•Döް¾VÚ€#kã'µ­#±=ìÿVœÌËG´Ç"û—‚< <Räqל%¸³ÿ}탇_”d|ºdöþè*äqsMz`_wÇ‹ë‚?PóX²D7Xž»Ö½TÑäÈßQËê÷¼£*þR?Ÿ§î\g^¿Kâ ÌBÖt÷×.ÑOáC™­¿L ¶àYs¤±äÑ|ÖLÖ–è^íÏøÍÔ!ÈÙûOáÜu¿ÎdÂi^î6žç.%Ÿ×'DÁWæùÎïîh×ù|9±pIÝÞèk©7𜛠v€¼˜ŠJg¿Êþ` þ—å:˜=•3Ô¹Ñíµc²§É~·ù¾¸PgÃúEên~7@{_œ$ëç´iàzâ{»Ÿ=˜<1Ž#æû=`çvmÈ‚GA§îÚR&rHiël±ÿ¿•YFb‹ZþzÇlÖ!pÄ>䳎~ò|hZ©à5¤†¦‡½$öç©bàÿ+‘Ä]ýž„G/Ä·Ç€‡`pnïçm2¼›Z6[ŒŠ ^ó\OûÙÀnGÈmGÖ«A¦O‰fP!µåvÅFÙ ù\BÏô“ßW2I!Ë·²J¿Á›kR£¸Í°ÿ¼×uñ>Œfë)±@7#$’7F¾/xTA¾‘ÿ:Ø·ÉwI8â°ï‰ö¯8fÌéWꀊ–IóõžŸÿm¥“LÔA ©ÖÀÎáÁ‚{~Ÿ[DüÛyÃpo.Òmý úŸuí[û É¿¶úH˜ÕÂ!ÿ=äÞ…vù]ÃeAº%ÖXŸz7+Ü9šõg}ÿ§•VJKq¹"çülÇ<X…§g¦ªÍ "l๭H秊A—Ý›RÍ6¢j ëmû¨WÉ–ÔMB9 <ÖaöÔ6ý.> ÙLt»6ˆw<þõ•ÿŸ%©Ï>ÑV“½öÂmj"}njڕ؇Ÿá$üÞÆšk7tº-¶ ÖÏ÷….o·Á†ËZæŸÍÜ츣êî÷¿nÑÀ½ÎøÂòËÀ`‹ùWÖ(é.¿ß±¬„DaðôOÌÓ]‚m/"Õ)?Õð›fƒ,f`±ÇëÚjxÍÇ0œ¾÷usþBtÛA$D$J¶Ø3›Î£¿½’~Áò¯¬ÞRS>Ćo´¸ESÛDwy$™ë'¹ŸåßKþ vRtò%’³à¯âä·6Èÿ˜×:ÙB˜A2~ø›)û©ýb騋[Äÿëj*‰á¸¯4‰%'®‡ƒòi‰ëà@¢þ†¿ŸÙ‰Éó%aò‰AþíZŸÿ•ˆ¸¬á¬“ ¶ãÄÄ6? Pù‡óœ±ÚŒùWXé©áRø¾ ©xóâÇ)ª~íö?…Á¦J~øÔ~³µÔÃÙ,Ä®Ùkkmng<ÀO'í¼¿Çÿ ¢a¢IW$ôÛþßV.ªÜ›êºY¤„ 4Óðåï±ãä²â–‹gj‘Ù7[ô@#ík—l>Z o…‰›rÄþ˜ä{ŽöÿÇl”†ŽÝÎÛÚ+?PÍŸÑuøôüx… Á£¯[{µþÞ¶¯ì'Ûi+ì™>•®TFùþ¥º¿ÿÛJ*ŸÈï¡,òw­&7³y¾Ïé‡ÝŽé‰b%íñTok g‘,¬=ÕšÜºÙ¾ã …´µQ` ó‡W9¤·¤Õ¹:OÓaå¤h`®VµXvJê( k©-޽Ôº\¸ä{]º}Íw´Áj£Ÿeš]#ñ` ô‡Vb¤Ï(Ä´¶Ý«°x8¾®é$½£Ï5à¯ö†Eþ˜Øý޾Ó줞 ìÖSšØÂ[·k8[¯5µR¨ï|þWA/5Øw\2ëPüÙ톸§‚uï}ìgúVaûCšÞrwY,Œe´¨¶ì· ý<Ñú”#¾³–hàªöÐÒ@‚¹Ï÷¬‚0dð»]ÒW/ëq|:ºÝÐðd½ì–ÐÖê}}…lá,-Vlà1,3‘žÝÎèA¬šÇ}©y­ª5°¾ÄÍ]©Ñ5}(Øíó·¬’à~RØÎ ¬îº{»{WÝ]ÝûñíóDzl~w÷È'¶KxBä®lÕ¬¥A}ÇŒÓèáïq–Âòû+HÐÑZ f¯—¿må °–2ò³Ì×”v#áõ®—íumŸnÁú7±ú=´ávHÍàˆL–—,䇼u£àA"sûZ’fZo˜Á%ÍE„î‰PÕÈÔ©¥‰ÜÒÏ|‚K:SgëNrÀp}»š=$ö]‡è#`_L«ë»^Þ%$·2_9¤NÛ82®µö÷†t· ¶ÄÖà éd‚Ðëå°|^‰'g´'¶Ëm/ˆý¾ø!]®cAÀ±ò®wÇ'¶U“Â‰Ïøy/±ÐDbÛ«Kˆ7!ñßÇ:à {ØkaÇùyšæ“úTM¡s—ÆÔs©µŠ¹k^űï>=©næIˆNF®\V D²AH–Ÿ’šbåw0‚Z™Ÿ¢À¯ÃNøø¬QÁ…†xþ÷0æÞ0¢ãbåµ$ÿO°»^þO« |¯›,“4dù8 ö#Mm›ëorRÓ>è ö?BŽÛå+¡Wåvtd÷\gÓÒÍ\o¼MºV¯á7ïôã;â¿(Yß~°5öÐ~³¶ø@]ÉlqÿËÊN•› û›æ#ŽÝýK Á¼›Ä÷Po4õí Íi÷ñêhÄøKê€(`€±ý}@Ù,+ïît¿Hüß >$w¾€9ÆÇ›òÂ…¿·ùØÿŒÅ dÔæ’%¨}/þûÊ ö7ÿÒPélƒÝ]ÁÊ‹°õfb³~ ×pȾO7jDs»ããánößEŽx¨9¨ßã ‰v§:ž¼›Êà$šºE¬d惃‰†ðUVSªcCÏJE•›CÞH}]¯_dIì&Ÿ{ƒ¿ûuŸö×_u•ßѳ-œÅ+žÃv÷“Àc“¢ƒî®·M,]ÒwDZGÕðœ,q ®pt˜d“m |h«M5 ÜÓq’MŠ[쿬ܒ†GN™ Žï糦€±D"¶"Ç|,ï:úìófø=ÐÛ`=ÛÀ¸'Hx‘L op}Êáùïµ*º‹v÷¾&ìôóናê[´b;lrVMj®Š§„ñ¥„Z ©Oñ©Ý½«îŸwX÷’¶Ó ÿyßùqþ±›è^îû,å§=ÄÊ#°~“".>RZD¢à6¾2 ¼ oØ¢W© r‘O¢XYðp¸uBg_Ã4ª[t¦²¸,–¤d·Ó¾ëq?ý Æî$»AÐRÛbw¿ëMª cp»=ÈäÛ‰ý;éb<#œM#]Õ›ÓJ =©}wâ³xÏ!|æ'òÁ:²B>8A5j…l©Ý‚gU ¶ðâßU; µïÈ5“<ÿ?ÉV`õÕÚ\›è4*š5 BÑïzƒç_æßûºAÂà-w9>Œ•°ää:7 égA4¸¾q×x_E-‹7hf«¯¨hì'“@*r@iX_mÙ‡§GÁöú.ý—ùm†ö»–:k7l¼k'ò}r—„;y> ­e&žãv5&7ÓPï¸>¢ƒl¹b´¯†j"à8l©(YÇ÷Y­iìí ú¿¸Ý?¥åŠD¶Èå¦Þ¬ðˆ} Iûãµýa>n÷Ö ²àuª½ˆ¶Cǃ}®'È ýR“Û5+5@p —}‚º»F÷[]›«}ÑÞñ¿0¢Xd†ÊÄGTô”ÖÒY+êáxÁLBæ««BŽÛÇÖ×ý¼·ñüîz^o߯àùëȃÐRd$=N””Öýò\îH<ç‰ïgÔÜ3èfÛˆ†Ñ:T|@Ù~¼âU7+°°…çÑÌ6i M" ‚,Fп˜DÔ¸xt\*¾£~Ÿÿ"P`e`ÿXúk{ öe¤â=Œ|·ÐÆ ü$¬æÀ+Zéx^T;ë÷Kï†7º»}‚€7ù[a@÷ˆŽ¾ûõç°ävdÂô  û·iÐÏŽçÊÉI ¢Ç°-ä·ÍÈëº@¬Gš50¿nøo *Ù“|w³ÐánþÃb-Dèåg‚íÆ_6ø.šS9¢*øÿ«5¥Žp;ǹIÀüõ¬HÿQÑÎÚÂ/šóS{tùÓJYi+gÄU³GÈd{üw×ÇüZئM±àAøK+`ÛÁÆ¥øÄðp Z¨­S¬hà==’Ü”w󟪻3|&ï]Ò2rCTË2ºž_…ÀÀ^Ö”hnßÚ×ö­{Jx|¬¯ä§èH±WÓPÓd£â{ˆOöÑ?”üý-Þ\ÚÏsJl,ÇÎë5<ÏBÀ„<ÄÁ{ò_xüg>š¨n‰ïoð‹Ièð‘ºù—®Dqß'§·5ÁJáýål£Æ•ØA”ÞÅþiÂßô½sÅ,9*¿ ©=ñâÜẌf£´Ø‰¯Ô„yõl• RI]•‰ê<ï*‹Ÿ—ÿvà'k©SÁ ¢cïâà•¬–m²JžIUt±šaƒßÿs[k[-dÛ†üSÐJZ¸o^¤/i ÉŒ5‘¾œå#ö…½úA”?½‘šÖ> ’½Ç; ·sS/“ QðߥàYwü=ªeæÓDZÙH´šü¸Tëédi ùJ¬'¤1 ÷'"a3±²‡L?’Hw¢b7 ÕÐiDþbNô˜ö[Mt´þv¶H÷ ÊŸ@zÊXK8s¹-:x^½ä“Ÿ#ËÝ%ÇýDÖËÀçkcàáÄê¬{ä_GæúýB̧?ûΘóü9þDÉN4ÑUË;!e hçº"+v‚£ÑÄhâf¹s Ñ2ÅgÎÝDX ´Pľ ;º™8xZP¯W ÿ/–ù~âãMoÏaiÈmSº“Ö$÷wĆõµ<òGúqÈçz œÂ®±­ž.“ƒpü£Ú¬Lß9ŽÆ!±cIÃàP›Éûý_G556´-nõ3Q\'€‹*Ì«b%¨}§J7ßñs'9lŸ^0ëi#{Y4Ó¯ø­vw{ÿå¹9h럽¼¸>IÈën¸ë<ÑÏŒ\¶ú{IßWï=ˆ£¼o)ÌÚõM®nßS ô·Aõ…¤‘EÒˆˆ½ÇçZ‹½Çñ]µ=¬þtr¨½µ 1Ð K÷Šs‘nZq>~Üû…|ï²Þvò¨ët1½MÔQèiº>§êuó/Þ¡•Ÿ‘>Ϲ²?«|g ä« Êÿ¥Ä”ñR’žÜö›6÷Ò÷Ãzñô‡~Êá38ß42ŠO> OžâùßlÉ. µûZÐná ›ðõY¼o¯ÏÄ[~Eƒ'aˆ%¨Œ&S[=öó3çák8òyÄÍZiTþSQâÈ1©¶#ÓOögº~ÃñS0§‚—ø¤c‰‡Nþõƾÿùhä_„ÏœÐä°¹— ~DÛÃo“ðžèj’ï< Üûºk7úG,æ1ŸÿaŒŸ,ë:Œ­ ê!Å%©L“ŽØr/>ÝSkù»]–cc7óûxá0­?òNò\‡ï>ÄÁBâøˆïÜ¿ä¯ oEwýñòöèo1¶w::szƒ?&ººÑõR›Hý4ÏÚ®‘É´ù‚º3.7öï+uáó;ˆÉý~û^d™Â§»¢¿én÷=B@nDv m‡”3ðòýøÌ~ó;ñ–µ>:Úù.@ó|ÇŒpæÎ|`þ‰-¦õóÎòÊ>rÃ#þê{2a8eB &ÿ͆üÃäµì¿Ü=LnBÏ ?­ÄM*¸â`#VÛ‚”ý@€nüÛ$ŸF,F7 }ƒïvºš÷÷E3ãðš™Øx£Ÿ uÐ÷?ÿ€\7/xƒ~÷ñL2ûˆê/ ^‘Ð~ êÕà’’U6Jðy-øõÞ×ê.ϹK⟯üõxÀ2ªýdw7m„ïï²ÎÏus=¦ù‰§ÓÀÎ>ÄÈtô4ÚÆ{’ÿ’Ú3u÷ä æsYö²æ ¯¬•‚:ÿâ+êßIBmþ«fÕ2Ä_¯›ÖE°ó`ö]dX†gÏ$úkáÙý‰‚NxÁD?Ñr-2¾ÃG梻uÓG¿÷r ÖõsÏvªëû„ï‰ýžØ(vSäáï„SÕ¦‚ îÐ^Rü÷\D?‚ãÔÓØ0”Ó™ø’Oþ’XØFÔ®A#µô32Àd¤ë¢nâz?+øñ2|¶Ôs]â–?›"Ûtß;o1tÀß+TÞš[|ë¾^õÝ¥ÉnRJЯ䂿¯—Nø~T*¼¦ú-¹ÐÍö‰åïf:ý7#ý|¤Ë¦)±ïP|<¿oFöUHíªåChl0š@m0ýTÔ É:ì~ØOºÊçO‚ôu¬”Ÿ‰øšš(,µÏ,ÍôI‰‚xµë]ÖVù{wžƒYóµ¼í‚åÞð½æ!×C xpÑÖ ßA|¿,r¬%LA#c9v"ã~ßA.q7½}ns©®cYr«kÅ-µ=ö³ôšë'A·Z©+½´¹i#Œæ¢ÖAÒöd¨õx­›ZtŸŸÜdÐM [vÍâYítÐn2?$Ë¿#ÇïÁÚÑÜj?ý&©f1Ü=3§ñ¤û0Ë8ö•¹ëE©©0óá®ÏêF"g°& ²ôî Ðç’‡ú¶„Ÿò= üjŒlYìè¼\ ‘ÍH6… 0O+#Y~2€ë~¿šÈc‹àp»À´˜¿ˆãh:}'ßñóÞq€œÿù#PU?ÒB–Ùb“ ÃS'¿3%^‚9ûê÷ÕP>%þæ³dÔÜGcjKuwô¯@Î'|úkäì¾Øð¿´&§îNŒ\ÐVÖºûùnÊûY¢ #ü'«#–úù™gyí!±”˜Ü÷ŸrWG]ß”ÜV“Zùë¢ÁßÝAjJM½*ãav»©t‹|J¶vyº9ð|þ‘¾ùBÈXåÈ ôx}/rxk¯i@€CšÖj8CY^=†OìÅ?ž¨»o6Ýö”ö\³S •Cù¹‡•êì£ß×dà¡V%ßjÛZ» è'ˆß×þ:Ÿ»Ò»žßVqÄ r[ym[¿j"EOx]mgél¤m!;ÔÓú<bnÆCî¤-™Ÿ~öóÚÏØxƒ¶Ô"“mÞJí`‹/·¨*“ûÜõ«uXíŒå<¸ÓÜýk7üľ¾‡åìßNk‚ƒyîh?Z3+dm©5´ ÜopÀÁègºÚï¿A‰ÍM¾~F¼§D{Ñæyuû'ÂÂ;=û Ü'ƒì—ß§^ŸT7©ÐÍvÙå'5¾óÿ÷ÕÍq40ÿ® ¶öÝ᫃êŬ†U·ýÖ V·ˆYçï쉧ìFg.÷7³+è4¾­†M¦!Fö‘UR˜ëœwG§„‚}!á e;<çr]ÓsÔKàøÇü]k±ñÓkhÃMDÞA^ü îÿy‹'çÄò#‘?š °!æºç¾Dƒ§É]Ð×Yß-,Ñþ!¯e!C|dOÕÝ-…ßÝ¼È :Pš[|‰ªMe› $ÚÝÌ×ð>GÖÑØo3¾;kh»±ëªš–°^7ù0ñ{O[[ow¿‘PÉÆ‚ß;¾x:ßsèmüÕ|– ßx ú»¾Y‘ù?h5?91£5 ARê,òß]d#ñüdäñ.0݉°¶Ô@‰±|4s¾1Ÿæ3ZX?Áû­Ž!›¹^ßµŠu€Ûºi7Iìò'Ú]¿°jÔ¸yБë…wÍ$0wgí[u3ÇZlñÅõ:j*QAè‡ZiÞ¡kñÛ¸¶.×–x‚-£òB Þ›ê-œŸ^Üßw÷·$ûÕ"Ëï§¶qýÿù;ÜÝ€éí9/–9 V6-ê’sÈ [ jà¯{ÒBêiSKš]D~w~ò)ˆÕœ¿³¹Lö[?jË+¯|/Û˜ÖôïJ^ë¥cø­‚c~ÖÞõ¶D©k¦sì-Ší§?±ÐÒÞWð9¬¡¶·_Ñu"tü•NëÊS©`gÁå£äæ9¾¶Ûä¯rG&Kàý£ˆ{~îÍÖ ”µŸ@ú~¼6A ƒ x~qÆN©»—ê,º¤¹‚ñàQ‹ÑÈ:ô>ô ºêOf)"·ƒ-<+',l’” õBàØBçrÿ¾‹G„P¹³Â‡© {zu±`Ræ¯ôàñUó0MgS½\í Œø y.>Qu–ìŸîw=¸¿½‘ÈHO TÖØP[xV€<”^ÖkAb;/Zp³ÏzƒnVË?Ç{,ö_­ßY+m­ñèV~îAl?DËÀ;kwÍm¿ðZSÞ9kßÄÿ ñ÷Nƒ‚±@‡8dÿ½pÉã _<+o#´¶$ ýÿWI @=×–ÁîŸø+ü¯øœ[À¼Ú›zoœ¿ïe)œ§Qþd¨Oõþ±'rW‡u@ƒ4¶°ŸÍÍr³!˃(9©ú¢‘1Ü4½•ÄÖBòGQ?ÿ ¬¶¶àYs$dñçù¦Pÿ%Vgûlß ™:á¿[2ÕñC?)·%’×@/ß“ç;-{ Ÿã8.œ}ÿ/Fþ£~¦žÙï$˜²î4_º¢1`¿5, 3ƒ-ø_VK©"Ï$§U%²Sƒ^Ó±Òê_7 }¬Ÿ~0‹è­Gj4ñ6Ä–‘ã“Yv}-‘Ì]ûêìÏ~öƒáô÷<_Áƒú¹ÈÛýô°Iü­Ùþšh$¿g~¨@?·JJ9 ©ðÖ¢d€™þúõYj 7Áë,¿ÿæÏ¹»¢Û!Ã`dŸ·¹I~/fy>3VÞJ”t"Kô×~ÏÄ6^ßÅ÷3~¦¨‹|×I{1Qt„©h_Z+2O°%ÿ}%—J2QÞ{V{„Oê8Ï*œÛÈÿÚ_×™‹Ló׆G‚+ýý÷ýdß–„ÚÏݹŸé…úqÜ&ßû2 „¹»Âܹ€wäÃç~btRrÄ^ml±ÿÃÊ.å øý„ŒžÌ”ƒ8HÆ'Èc*Q;ow}íÁ¶«à¾™È`eýW{A†×»`ÇA‰Á±S(wws§Å²ãküäÈsÚÄ&Ré†ñ7´ž0£•ÖÆŽYÍ@ m Î|ýç•] Jb¢à–¸Y%‰ýÜ*·“e’:O.ŒŒ±m-Q}]?ôÓAâaûØv Y -|¦º÷íF°¼ø;üD°AQNt]<²– °M[†ÊnÙýîç1¢–ÈO©O“ÍE>Œãï}mo_X_áîõù«$¿WÇÚMaö™l¼o øV–º‰ í\€å³Ù ës ¿_6V7TìzúŸV{ÉÇWjÛ/­¦ ·^çé© ZاÔÇw@økzL£€áno{xltTh)€ïçÈ»ÄK\«ÅëyÈ{÷´9v‚gŒ§nümõÓÒ,Ø‚þ/«±|'i%)ÈÖ‰«Ùklzo¬?‹w•H8ONwSÃX>´SÇ*Y;»¡iíFÅCš ¼Z•Wª€y‰‰¡Äü;këÈyÓñŠþ¡jîÏ]Í%©lººGó’ÑŽë)-i«È ií­F Šq÷¶ÞõÝßS€iC©v Qíµ·•:Ì–›ãnÞy+d­ÌÏÕ‰ˆÏ¨tGØt¸…ãhfml!ÿÊÊG^ª'¥’ß­”” ߆خ ljå-ú ÿws}Ÿkj±/1RØî¡ƒ[:š(HláÀÈ·Úņ#·›ýXÏïa-mŒm² 6S?Ô!Áñÿº¾–]TƒÈßµÀwwǾ«`3û™/‰Ì푺 ¨h?€x-`4çð‹>ºHhF<òWçÙ~¯áÏ(4°ï,/ o£¤·4¶xÓJ®Ãýä‚|òþ–éÝŒšðÂÖ6gäÇ¡Xu+œ¯hY™ÜÖì~Šo¥l³mãµÆHÞÄzY›Œ>ÊiÏ`‹õ7¯¸pý 0Þ¶ö‰jÚ¯HŸT̆_¶Q _y›„L§ÐBQ»f›QÓñ÷N¼^ ´èÉñm?¶ï,·—øM«` õ‡VÍ “OCÜ–#ƒU&²g‚åí"1?Dh€ôóìˆÝ±SzÙŠš¡Ÿ¼v•gË“ëIƒŸæƒ5íslþà*+sä…¬$¤ÀúK,Là±²e¶Ëb.Ù0ûÍnZø@ ðeà#b;S`7^ÃÙOmÛžwÜ·v(#L ;¡G$c(˜tþÇW )'ã© ¢i3ëxa¯ñ÷)V+pËNX¼@–À«8Xhë#-z kà¹Ý²ƒ¼ºÔÛ'oì¬,ôZÎôýÑU\* ƒÚ²H êgHûŸnˆ¨˜Gd¤´s,0ÜÎj>·WZÔÖJ ~«Z*§l!þáUPJKXÁ§úY {àH`iàÃ0k·S,[ { ²fÐÄVïÈ6qwô§´ÉÚYßÈ)*äÛ`øÒúfÔKKªº\~öûo–I“hijÙZ’Ów( Ó¤?šÊz´ µUÎß¿æIjþm "Œ—5òøÐ”ØÈ)¶/ÐD=¤ÿsý¹þ\®?ןëÿ­U’,Ÿ‘ŒçVI%ù$¿d•ª|åæÙâ0¥D’B‚ÝÓ⟿òJÉB¾oÏ)&=d°”’ʾW!ò~C2ÿ0é&ua|9¤†|Îñù‚º¯çŸ»j`á|ÈÌ_ã¥;å ß7UÉëëIij®'ðcÝ¢Qt<Cz´“-¤öGÿ‡WeiÇ+'3ä;d‹l-­•Ðý’H³ÉošÆb[:jüºö£õµíÖÊڇÖOÛJy¼á_¹û½[E±p?|û„$×UzW¯éSMa¥-œÐˆ‚ô–ÁòXm[kÓüµ°6“ºð½µ¯í¼ÔDo5øúW]Iñò~0ýù鯩˜»K6‚ŲZ6_’Ú]ôµÏì'ëŒÂX «bù¬‘­²ÚcÖQûJWªƒÁäïZɈà*2SNJ$mM”§°ôöÌ÷Gx¡ùì>~XB#ŸÚ§–ÍjšÛéžÒÊZ~ôñ›Í³YVÏnj$m"Ÿ…Êë}}eð]!ûÉ5I¨ítÞD¶ìæzº^vÑ­”Ò ZÃ2í¯ô™¾×Kú!G¤°ˆDÂ^ëou¬¤5°{úìüT²[ ?¸Rcÿš’F«ë`]ªwô¡Æ0·ƒ÷¾†è=Ä7‘ÿKn©ð‹çúš×? ³ƒ ùl1úÉ`ÀÅØÖL Ò[ ?°rÀqòó‰ˆÛÕ|QkÀÎèYï¯yÓ·jö”¯#šŠ¨ÏŠ¿»]­÷ÀÇô–Ùé-|%‰Å O|m%ì¨VÒ¹ ihèuø·-çùÅà5ßi$NeáÉì't½~„\Àê7ü^ÆZvHaÑ,ŠŸyÙn#ysÓÞâ—y­›uçÕ—ú³N‘êüÝnËÊ*‰a°­%¥º;¢ó#³ØZ¡³õ¶º½ çôïúXwò{9ü¼”ï塿úŸ VvèQøÐk}£iÉßû^Oùm®Tõ熒ƒUyáøŸHA}DDšÅµk:]§×‘Îu¾Ù‚6éUuz‰híKdå,Q˜8‰å¯ãoÔM…hcýl«-²W¶NëJÅP·>Ãó3À÷Ùá,ùë5>íú9ÌÓ¹È}›_–òÓcMlô€ŽBò¼à\A‹d`ý³h/z©nímƒ]²Ó6Å>·ÞÚ@¾¥F ­+’†¯ÜÕ~VÙ €i÷u¾þ¦‹t›Ñ™øþu;eœç_"ã}c µ·f#+fÆöŸøIwÐË =ï$CâAäÁ~xˆÛï°ÃBìÖ¤: ­•QV©ãùQGbûDà^s{ Ý\Ÿ“ ß^½§áˆw¯ãUý¶S€ˆOiŠÇÑÎö›À†m“˜g+XZ2AYâ ¡ ·öž(ÈL^ mw¹U ß ³Ä1Ü„dòÈ|%áë 6_¦Su¿®V×à à rß%;|ì»Z²»;üjBð¢‘òFã®ëC>ÏËÃ…ªÙð‚ÔNu¥A¨ó"Tòù©õÉkjœÇþ~Öç乨¶ ëÿŠÌ#t‰îýÂÛGHêvGÆEþXÿ#X »6 _…mµÖ7aÿWšš÷§#R¡ŸH–m¬F®oV>Il‘ÿÓ*HΫǧJ‚ oj¤Þ¨®ÿY?`¢ŽÑŠèc‘ûv-DÇâ1ÉQíhWêÏínÏ,Å;Ïá±` Å}§Ï¸< ¡…R6×îÚ!‹¦_†‚ÞÇÿ¾²‘ùŠÈnrþV­êwèŸ!ƒŸò»^·ùþGÍt¿¯jd4t4È…´nŸo.¼þ°nט¼32áûü¸Î'ñí­¯ž¡Õ"`Ä ;B.Ü ä’´üŸ¡c¥ó³Ë&$¸ƒÏ'Â’nïöEpn/²Ó5Úƒ Áöa× @Tò0ذ= @ XÞ{^w“0Š‰Í‰”˼/‚…ÿÞñ—.œ1¨”ZÛßý>ƒíBËyÂŒTºù¤ ÖŠYOn°? ÕÎu<{þ¤ u,ùnŸ®ò³ÏŽÀ ^rLt8_$-q]Ú:é-‹´7µ;|é¾ïÿ~ôˆHr{Ë¢6ÕF“줖4TÁ_©a¥)ä’Äñ_úΖ[‰ò Øù1HøœØï¤}àÏ‘,ü.G¸{@]Ÿ„[ðü2ü þ{­íæwŸà*¢@ðÿ“DÐv¼áœª=™p¬°¶ÞžÂ´Bƒ¤‘’TÚ“ÑΓ¹ßñ™#ú½Ü‡|ßö-Ä}_ʧ߬]ð€±¾Ë÷c,;=,ÑØØ9~î¾Ò†1wx»þ-ßûžbK©¢[SŽøÒRf· vBI’` /®PbòñA¼ÿ 2]×8øpsÝÀ‚úÇt4¶ŸÇWâÙ^4Žè¿Ê+]|É®E`E¥¨|ݼ¬S:…Ìb­ì€ÎBg·ÕõØ­I‘¹ÒŸÃöya ]É 9CÅtÔ|RI¦ˆëÒu†3M—I@&{Iæ Á{§À|—Â÷:÷‘ñôýØ÷ˆ¶ä;¥e˜„Aûßóyÿh­aKlÑ´½=^À2óWóYKä®àÏ e³ŒºPâ[x"?5õÞmòÝõû=–áûï‘íºîÁƒ·j¢`"|n‡þ¨õÉlœV"¶£íó´€4‘©nñžóÔI=Ðâ[K¦;¥+È7A”»ÔÕ¬6oÉßY ëfm­±þ*éƒ~… ;ï¤vu»Çc±Þ_Ý(×Ëy­ïãºQ ‘óÏðÛ ô3Í÷|Í¿[ª=e­ÜÀ;N«t”6…?Œ¶… üiÏïúq®B,Fä€ }J=ô“õ…)ÞÒÒA¯‡3HY"I`­Qm«ïW¿ÏÞEìþ†õ‚ýt$é j%µ_t ² ý\$®ãÀt&kuÄ{oC8v—·m¶Ù&À‰›O«›’•‰Z PÏîû!µ´¡xͰ ×I¨{vËT2TXÙEPû9í ¿òŸÄÖÍô"¸?ž[)Ü¿-xÁ þÝ©¥a‰í5†¯Œç¨ëŽÓ¾²£ÚÂÿùÝõBNBm\Éï‚`ãðý"V>Ü ØöwÅrr@òâ§QüÞo׳æÑ‹L¸…šo¶¶A®¸äíõú‘¶ÂÓ]oÛËøÈ3ýL¯ÊX%}¥ÒYà‰­ŸæÒ4ð<·[h˜‹gõµQ!%"êÛ4jÂo¨‰[k½ N‚Kÿç–eR’|†ì]˜¾ÊÏu-йévàûõðbágkv´QÓ6ƒÃu0¯€Nn²Q®I7$oïND@CM±ö5|j>:toËXNs“£Ë#}êàÖ0æzøÄríÔ)X9¾˜¬‘É䳈ة®¹©nÑàç®÷åøÎ,°n0±u5mi0`~¼sàÅ•5!l¿1R‡ïcyæ±r“ ÇÜY™p¿ù{õÉø®þIEä¿ "Ò¢‹Ôðà&Ö*¨çÃRP÷ô,XÊÏÈ>»y‡aýgÕÍsÛMöï‚VáщÌõìÞ‹´®ÃemÁóÓ´'9`8ßC{“Ûúº1/Uîk2çz?å!µ@zjŸ´~Gˆ›Ž\˜ ù£í¶ãÒ0ˆò§–Êð—1à^ sg·ëkÛõÿXDßÉ¿+ÈhÝÀ±È|ú*d¯w~V--£Ë‘x±±<˜Å³Ÿk5pPÀøÁd·D¶v<鯀©ÏA×?«Äæù[ŸÃª[ »ÔëÃÙ¤šL–)|¶Œd?7÷16Þú„ÜæÎø!Æë7صyn¾}[ s=ê8ÈÜãúâù{áÑ8²ÒžÓð0ÝŒ°§£<»É“E÷€$îªëúèfgç¥f4‹jñí…Ô ¢ü…‰þŸÅõ3sÓÝÝ9ïG~ÎÝH„‡w€ïõÒ®|o©_õË‘ÅU?ñyxŒŽ ÛbÝ#åÕÝåÿÔ÷Ì^‹|à‚ëÑÏüh°‰¿x„ÙM¬\öݳÜô\w-¦}®µ‚(E< ?ò_&ãE%;Ãfƒ‰y×Å{¨¶ÃÒcÈa}ø©¡ïr»ͬÐòú™ÀíxN¾ÆÊ)…öù.°«a÷ð¥DÆr"h‡NõÓãn •ë¾#æj¤ýšÈF< ê~¸º’ú¯Ÿì9ü-.5ÛB,ïzw-‚ý´&ÓmÀsGâé bÚ†”®æ=ì}ÿHhÏ%…~ê;ÛnõýßÎðž`Â<ôõЬòЍq¯—µš…gÀuÝ̬#ÄÎFt4•L8¿”‘IiÀ‰v¢±ú‘}†ô)ðýͼ;¾5·¨Z7ˆòç’¤ÒI>ÃÞ®k™ëÿ~ÄÏ6ï+—{¾ÿ—ûê„5Gz\C|,÷]]®i›noÅß_c¥SØu,1ÐßÏÅpÙ`"ž°ÐÏ5tû!Kø(YLä, u÷ g éAØoXßåÝÍ|‰n@ÒyDÇSt}ÞÏÐMŒw„Õ A”?¿$—úrUV~㱿›lzžÌí$t¹à ‘}mC¢á¾³gKþNl ð·*|›Ž€ý¬Üge°üÈÛÓ>G_ߨ.­g?#W?²ákrçZ<Åu¿Œ`?hü+ì&QävUÆ%ú+ƒ¬«U ¶ðÿXš/hˆ”)ì2ŽÆö{x÷áñ‡@­ópùùhd:¸Ë5´ö`w=|?¾Í!׳ùø@0í ßß¶ˆ$ƒn&NžÁã÷wá“ørûˆ7Rg¹¹ASx¥ØÁ–ܯ°ÚÙe&ò/båöú¼ D$vѥߓûÇè0tpPK[«`Õ°{×óÆ;ßhK¼ïEÃЊëyøX]=`0„þpÉòèá2Ïø º™0¿k«Bôĵ`ï}ùÇ: saaáýisþZÇ|ìšïòøþ|Œzg õÝ:¼¸•KUü÷*ìÿ+$ê†WS t‡÷€×ôÄ+jñ:ãÁ„Kšä‹dåàü׉ˆ©0‹U0 #DVR´t'¨“_ÿ¼&J9£iÀÿøü)ÿ¹þ2ê¾%`þ<äÍ¿?’ýFÀú*€Ûý,h7 ?úê£ µÌð;_¢ƒ3DÑV*êÈyË良FL-Bƒ‡Ñê&?[¢…µÓŽÁü5š*ì²"rÓúy#ýüYÈÜ&ô½—¬ŸìºÂwAè?û ë;ßÏOø^é'ÛÓªð_7ÛÁUÿnzö0_¬ñ{ã'÷©·û,x9?}D”%!Ó:ö;Cö[ð?Vé Cd3–Od+}å²ZÝÞÕ•ØÑ} ´/Ÿ€NÖPÝ:ɧ¢•ÝòW?‚Ø‹ë7¸ìV"`ß÷™žÜÞºáýoô,¥´pƒm~êá ²äB¼}¯ºk¼½Ô]óšD•äú!¿×î–Þÿ5÷)UGÈY%$›”•%*Üüùù >| ™Ý~ŸUÈ’[?ÅÂÓ|?ü'Z {¨fÜDã“ZVœ„:!Üù Z˜’¸¹iUÉ{îlä$ß½$šÝGü”Êùíô¯ÿ~¥%Ö’ÕÒ—,p{®ÆªnþÑ;j8·wÛM±ÚO=xÔ3˜¬ð¼ÉTF7õsszËj™ÐHDj åêv;ÖÊ6 _ÏiÝ‰Ç 6úúçˆÕ·­Ò=Øÿ§UQJI9+ ȃ®¿y2ª¡DæÎ½ðY7±þíØN$r|"~z«£l7–ïk'­t } e £ ‘§ÝrÓàsÉ2­B>¿®Ù¨ô’ðoFlÿ9¼>Zدn×^rX)â!—´ExÀvX“›ü‘[‡·è¢:ÿ¸©‰m¨-§ÚgKm]°‡!ºÌg’BBé Ödq'›“Y%lÿ½5°Vœß¯Ù9®%W×ÒÂ.Y]ð½žõo1ynvëE†ŒÒ§§Ö½d£ñ€¶DëýÄÇÿnÕ–j’OR¡åg³ËšJµ#ÖÌŸ_‰éçÝÄF²Ì<>ÊÆ"aZl[“¸¯ŽÌ426/v¢Âqjq¿»F6ÉwÛÜ@5;ôÏ»ÿÙjCl)Fž/€do‰õ ö ²uÿjZ[û‹žÑè"Ž ó‚á.*3n¯ÔkŸz€'ÑC)úá+u ìÏ»ÿùê&d¨”!ÓåÚb=—¹§Ç]‰„ÞÜ Óõá¾w0Å ÚÁ‚oóñˆ0 @1¸Q8ë@¥¶åZ| l.HÒK‡xëÿÛ)qá§µ‘… ź‰Èí°óØ¿ÞSwýº?¼6¯v³«6ÄV‘ø½'™>—¥°‰vÖÜÕ²wdÀHuÖY{õ¤Ç¿¶¾“Z_KèïºÆ_ÓqÓob`Ë¡Xzù.-™…Ì,ºÁºŸØ9òC/ìËÆàïiùm¸Í¶ É82ÐÞûæß¯µrXVÉK ‡ÝÝÙ¯eX»Üm;vºˆ‚îâå´‰%|‡üq‰‰-v´Ì3¨ãiXAæ¨AEYLW[ yU ÚË6IŠõ·+¦wͺ'ö·@7Ó»§ ²6vÚNØ>+Šü;ì2Y¾ÑÀò‡ªáºÁéé%!‘ñý³UC¾–/e¹Äs;Ÿ^`ë—ð™–ààrd»Àò€ÿy7í¥ ¬H`1º:n‡íË€ÒèL0ïCœ}ðo«§|*m©‹RÂoKÊ„ ªuà‰Å”L„ ì ä•Ö"…za%l‘e , <°%d2vXÃêÇÒ#Øü%«²—¯ä¦dµ^,¡R†ªê“@e»iJޝ¡{䡼•T>Ù©€úk,mŸ©Lÿ__¥´D‘‰‰ÝrN+˜;Õ~Q£‘%¯ÉRi.Y$£Ô”9ÒYúí_»Î°Á~Ëùˆt¥$‰¬äö•´–V2J`ãjRTòS×´•*0è¬R0Øoôïõ÷ú{ý½þ^¯¿te—\RèíÙ-(…áE)%³¤‘R 1Äw9ý×W.ò~aÉŒy$µ4¥>îÉ=Å¥"ì8'•RjdO"É`y^eI":;ýU«„”Eö:2XÂjM­­d½t½h¥¢\’*šT¿Ð5ºL'k ýRRq«'EðˆÁ~ãÁ*ê§Z—$½nÑ’T¹å¨hr½‡í‡ËÍaÓ¨wØ.Ûc›y´»¶ÖãDAi)#åCôÕî¾ò빩c:`ñìzNóZ4 oÙí®VÒšRIŽê\knµ¬“­´Vßö[üÀ{glÄ ð×®TÛ H{¹!iµŠ~ªk5}…¤§ºl=å´Œ´*¶ÅNY oÍÐÃû•ê÷ª… T 4´¨ú9õ@átZ >©Ô•gòö ºoã{4µ¥°“šÂ>µåò‰þbÉ­‚-°YþDC^›n£,'5r»l÷,ƒ-Ñy’Ij}€>DÏì®Ök;]áÏ€§@²8Û\ë6ØÊhKmeÅ,#:øÈhfkͽ•¬”õ¶³DB_+D´ŒÑÖÔ‡y?8H…ôåetEú(VÙ_jN˃•O¨ëñÖŽj }¤I- Zq}’C»+žö“•¶ÏìûÎÆY;+Ïo]´:žôa]Ë@ßüÞ Ñ-ºŸö›Û.j4«l¯õ¬¾Ãþêæáê82B:«k¹ð‹P¾§U[kh)AÈtè µu°ï­ˆõÑ©òñóه뉗ëwÚÚïΌǴ…ºOïëqbáv«]l0™.“½Wwö¡¤…#+¸óÃÝñ·÷÷µÆ ®£îi.Á<éÿ?_¥@ýA­rMK[ $‰deíŒÎA~w*ÄuÅ=Ed°ÝðžL–Å [uäO‚®îëMhIñް×îhû‚œÐXxª¿Â‰BÆŽßÿ~•‘FD~IÉ!üîÕ²æºÂÔ‹:Kgëj¿§Ïõ8é»7¼Ö~zO ‚ “Õõ¶zíÏÌ<×pvÁŸœˆ‰öšX°À}n˜Âz§!{NSpªÌùZÔbYbnQÀ»-~ïúFò¿;ã: G±Hæöó÷ÐrMÖ»ü›ÇÎ"ù9=ϳÞúÙ‰þâÖÕ:[TrâZ"_À(CêÊ âg•ñ²Q›`÷”0×uòŸð½·òïUîߦ‡‘1-ÖþÚXs#›ëop_Ç}÷´Èö¹e7ƒ ñˆ‚ßm >²\j„XÈ$ù$‘ÓdH•ø eì Ö<ƒÜ{‘;²Ýý²[s'AÊ!uÍ#¼¿¸¹PEì:²o×ýúJ3âµÉl4Ya‚I`/¼8ºý § þ¹¯ÿ¼Jùîª}»Ì{O1|મ×ëH´‚OÿÇôˆîÐïô¶ Y_AÇ‹DCt"%…±TXú8¹”Œõ“‡ŠQ!Œ„²¡0Å DTVi!iƒ-îXÅÉÏÅeª¼‘ìÈñŠwïºà>DæU|¹Ýcõ^¿—wH›«÷nG§ëØIÃéñÐV5$^ÍãÔuøP{èûÔ¶Ævœ¬lÃm“´þÚ ÄÍCrsOòÿÕÈkWÔíÙ~‡çï!öë0À g—ð„½ú­6„_Óg`ý*‚[<šÂÜ.¹êDŒë™|“ç=EñÈ{áÉ¿%ßÀ¦Ø/öÀæÛ$ê¤ÁùO«ˆD¦^_+§d;ò¬%z]÷×b³îÔ_È€ýÉÿáÍuñ[ܡ̕¿‹õ‚~UÉ‘/¸/—¹ž)cø›GÄÈCô HSÎ L…ÆP-ε±VI3੃-ö+=È÷1¹y8ØõŠh~êÏn½ð[®Áh&â÷u÷ÕϦ!:Þ}ßx«qüŽŸ¢HZÿÿÈ~Ò•<ÓÅ=ÙÁÆX Ê!xQ"2Â\¿W¦œ#»÷ó¿­ÌðÝÒRQS¯¹Îÿ®k½ëôÙ”÷>ê·8pÞÿQØ ÙNâ"öOŒeŸÂ†ªâߥyä'æN¢gêºÈžò§fŸðý¹~ Øc¿ÚM»MU”*èÝÜJˆ¦}rWÃ"A*ã¯ðÞëDñ[¼üïëÔÇŸV4“Œxß Æ¯õ‚)3˜;ç™’z7ý V GúÇ䋳d‰ëäÎ~.Ö%øÂxëesÀ€ÑvÎŽÀ…BHMΧÖר [(¤Ì»NN¼†·{~âÇ&è{þ¸.vÁ¶×þ4€;Ûë&åtê©í𦄠TB;“|¨U<ëßÆŽƒDZR¿r›Y`¬x  Pw8ø+‘$–b2w=é²R¿eA–„þŒÃ5ÞûNû_ƒ',ölðšJjWýŒäV^§ó7[´ ùÒuuê­ËÑÌsžý˜x…åݬ´÷ÔIÍ©“àù#àýñ°ºúeˆ¸*FòË3É‹í¶áßûµ¼ÕCú‡¾ÀjdüÅ÷»Ù³]Š×¿÷3PcØapà¡Æ·;’AkØ>ÍÂ_&±¡²J!n±‰ŠÆV ݼ&ŽZkAý$¨ÝïÝJ†ÿ/½vQ¯„¦ž G}ö†ìuÙïïrÝí¾×apÞ’T;qñrÅo;£“Qº¬ï¥/e³¼“µú#YoT³÷Co-÷ÑÚäÜÌ«n8 ÆÛ vPÍ|cEÈðMÍ])ØÃë^%Þ¯‚-øü*¦Ÿèþ‡A6dLÔ0¹`¾™ð×¥x{-sgÓoÂØ =ê'=­Áú!ßH.¯¥ç»›³ÐOEèí'C­ðµq í¡é°üLrÿFë„·_òïWÀöò7›œËÜÔ¬ÞäX³šAe‰ÿòT6«»¾¿«ß¿ŸûÞÿ“‘p$ì×ù¶ëhææ:µ/,3Y ?÷Læ«· ÚÃŽÚku< (ü~œ¶vž°› ù”Wp´Æƒ"¿ «h8¬¹sáW5ÙvqP¯‡–ƒ‘½’WÝt§ÔT~°Ù|»¿~‹W÷âw¤öéá{âw$šó࿉ÿùXv ºqŒg?h9 ¥·l~Þïpbþ ,ÂÍ‹=†N_"÷´3]-!f¶pïa^á6˜"¨ýï«á}£åºŒý²¥úÎߒdžðÞ÷‚Šn²I;¾ç;ŒÑ/µfÖWòÎxFss™¬86ݤ¤zLM¾{¹>›¸@Ê0 î½",„#9mÜ ‹¾A3ôSå¯.å„̦ίh®ã©ëü<›®Ÿnò§ƒó³ðüAÜ×ןé]ª•µ"·äH—ÙÜ$ì/yö;˜Ž›ŒvÆOƼ <è{H»N€¡ý¤Ì8~>¬››äxáu?!85¾4,ˆò·•xR<ÛB\ƶ€MÏ7·al+^}ŒØ†‡ [@þ“EMGôÖ$[NÓªZFöŽ£©ƒ<'”¹ÒcøË7dÿçxÀ<^ý1™#·?!Ï÷à ÈîgFÏ ¢ü#¤½œãÝž'V÷Âóçã¡Î‚næë2Àb¬¼«¯sLŸžv~ ®éNU´P³“ëëj9B•»]ÇÓåØx5qî¼ÅÕDüÀ_y­ßÁ¼FÖÐBá nÒbk V¾×qA”Šl”¬¶‹Ïð=¿Né[ìêæ¸_ô}?\¿ºÞ®#Ìj¸ßohç*½Ö°Ç™’ÒŸ‰¼ ‹ºMe´i§‚•'°yZPþŒÿÄô¸ï÷PÛÁ¡Ý©ÂÌ`m d3´]åï+³%]çîÄöûÔÍq|Á¿Ûðß¾{ù1üõ- ðsàzã÷³<÷ßN†æÝŸ•Ÿ%9µî ßÑÿ$ú™Ã³Wÿ»ˆ„¢øz6,õ=4ÒþW„{ßúôÓ‚º7¦‹|)Wô>•œût÷ ¹Ê}ÖµX4«±X‹Eå6«‹d]‘m¬p_ëàï½l¬Î‘Üæ²†»60ÁOA[ 3u ¯´^ÅÜÜÛô䥑ËÌù' %»<—qþJ]+a'`rüU¯›Zβžß\wó‹`øß Ì1‚oÈs@Ìê:Í#jªSÍDî)èÈ}CFy€~ÖûOÈÜ'ˆŽ€ß?$ÈaÇ­€U±UZ=¨ýZKzØon2×;n§°yt› 3y„JP\ç·"¿ûLw2ÖwÓ \÷÷°÷ $¿ƒôÝW¢ ×'|;¼q>÷-ÅúѪû4/,¿O ÆB‘_âYuâ?³­Ñ`N¿²Uä_Æ»=Ç»^´)`d›°¡€Òî*ðïHîzàì#¦§ÿc|ïÿ¥Èîºï×üÄÌqävS‘ ›Ÿxô'ðÃ]é:Á#OɨO© ªÀ‹Ë€…îúO4íf´>Üë]¤¼4–uØ{µÿŒÿ4þžÎܧ§þêþnþ]6øy^ÓñÉ|w½ð×øÙ†-t™„Ã6ƒ ;ðé>s,7®øOŽS¤·Mh¯Ñà )á Ádð7¸« “ó ÀaÞ÷Iu;Ø¢Z»éç^=Qwf­Ÿ°Òcâ_»ÐSð‡TüsåŽÄ%ëßû¹óy伺l·“¸z®qÉô‰}ÿãwŸÚà­F# $€|nÃƒÞ $äÅ~®³¥¿«ëìÓŠ÷þ¬æ5~¼›\æ®ü%ê§úyh®ëçh˜ÑM«ÑÀýæ<§ úîwI¸©®û÷u¤ß÷Gµœ¾;r8ï-2FxªÄ¨xAr8@U vÔäÀ–øý¬ËÜ'Þo5ŒØíe¹®nâãzÜé`6™oè7nô-ÙÔª‘é®PÅæ¶ÁxH_?+{)Ï>Á+Þ9/RK¸Ê71 («=…#¦µ‚ÄAb"ÁÍÓL+ù‚,i'Í‘åïyr}ß¹ÄïQÈÙ»Àn7ël½ïg~žô™¶Õ/‘Ùítܬ#ñ铚ÍÖÙ1òúüÞM œ‚¯äù7ñ‚cpŸDØÿKP/9šÜ‡GÅù  ³Ï5£”ªôéµ²”’ë²7€èn‚áKrá-ñ(žÊf=•Þ*<ù¹ýkm¯­ðþàyZ+k¤©-AúÊÄõ!ß!~ 8¸]ò]ô3Ym«†âš›rJ]¿07÷1³å·6š)¨ÓEbjkI++å„ÏjãÈêë@Á“~z•«ÛÜ>¸£~nÙ tÐù¿ó³Á"XIIý_¹SXh{MÖ¸Ë_Ï">úQî„ì1ÞÃ*r’GoÁ6ú™ÊN£áøŠeá—•%¸=PCébI"OÅueu3Üω¾÷ù 2Ûñ/˜Ü€ù·@þeXö„« @ïÊVënÂÆÀ·ßAÀŰœñ¾V>ËßÜäÂá!ÅaU®‹üð?–ÏC m¥lˆÖ©A•²"þ+úõG¾«Ÿ}7’ìà Q½ºÏ+—·RÑ×#ÃÀª¯@·4H^tÅ–ÝÑDX{†Í &áƒ@Ë…þ H2˜~¸OäwÓ±ó3®RUûÅzj¹TùEâkc©ìû¶Ç·ÓØoï|LïWl œØyP|6:iƒÿoð\o“%ÊÚwHß i>Ež¾ e8¢à¾±í&–ܬ€§ÜbZ:äé?A¿G¥&÷¹Ž*+ìL§¹•D”“’ºÄÕeÎÚQøù~à:6_U× îq=N;À}÷ Ï-¼8ª¹ý|-m4|vzd5`õÎ=Ô7èn<<`•Ÿwz™WØ’œCïü-æ¶rxÎÔÐ#"µNò…†•Å&+¹“,ýµ<,ÀÞ!Ïüb ^½‹êå¹:öÁšÁâÛ×:Ú*…ö#p”#“ïÏbûÙøÊIÿ™òcßýx6x‘ëÇÂ#"?Ûƒ-<+¢”rŽj/ àXO"ÚM5‹ÕÄÔ.‚Ý+Éùƒ‰mE;n2|=ûÚê¡öÖÓÆ`ý¯ì ü¡.œæ ~“çˇ@ÿüøƒÛ%¶}œãÕÒÀÿ뢷è¡kˆ˜°W^Á†ë ª%(˜=ÌÃׇáÅ;á‚Ïàòátc©mÖúù9ðùD}W¢¿”=Ñ&Tu¬»Õ±ö½9$ùÄÜD®&\ôD—Á‰¶Á$vø|0Ê–ZsûØ> ¶ðâz¿R@ËÙsªÔ›¼ÇAÚY»Áo‡ãÁWÞ±Á¹xô4â9XÞßok­à?—ÐHkž3„,mÐ_cë‡_l"rÜѸ`êMõ{ ¾ã¦$ v}%—ÙX t°…÷ë¾t—€æ%Ó]†½»£´0‰Ý^÷ÝØrˆ¶’ú'¾^Í>ËÏòÛ÷páöøF?ß÷ù±:hDT܇!A[á‰Ï¨ƒGó7ó‰ºI`îZÀ;‹&+[t¿†ÊpÙ(2ÝßéÙa}{¸Žãù#aó«ðüq°‚µ°šÒø|ªD7 ²7õN'$›¦õÉ´?(™Œ8hGöX¨Güç\¯a {ѧ›*Ö’Z*ß$¶ÀhHéŽ4 „!n#×<¥w ’ñý¼Ý¤¿Q^ó‘÷*h6ï„—|JL„´â·Æè« ¾Ó“Š'–-ÖÕðèMhl³Ÿ€>ZÝLµ{pä es¢'"ZÊ©!¥p_ªðäØä”ŸqºLÝçYW©àÝLÀI0¢ÙØÏÍv‚Ìñ…îHÿ¿ÞÑÒ!bÛÈomˆ™ŸÐÍžá&&rVúÙ³ðŒÅ0£¾fr…ë7D&[ð?V©$Ýañ˽•C³Ð@$¤úLpؽŒsû{ ç4âb‰¿&x] [$ÌžGOnö§»F2Ñ×ÊWÕ‚»ˆ–¶ŸîZ˜ÛùP ô‹ê»+g—±Áü•BZËZÉd±gÔ÷™OŽtY± “Ëᯇ‚Ol°u d°1!jòÇŸW3©,ŸÈIýÁÜçÀõ©ÑR`ÿ‡T1®ù§ÄÄoØþŒ%å·ÔÜúÂÆÚkj¢4`üP2ÜUrÇ!´T ÔÏo·4 È7žç5àóÛNmf>þ÷k’Ä‘ó’/ïÊ;îJf¿KMSO(Jž+g®ž9 ®¥¬îׯö»¨ ëbw7#ÂŒwWº^k'éW<Ð2ÞöÃm ¢s·çÿdU•4R]âêÛFµ‘zµ•ï_T(„<ý¹ÎðýÂÔ0ßÚ›g5xDÉô„ßõ}T¼ß›Ì_ßÒÁ(¿²Ÿ,mà“ÀT)'Ÿ[ÀºÊIY©+ãõ€µ·Œä½0¸^Ô­åø½66wÓë³ÛÏÜFÚKøÙÚà÷Qì^ãf<»™Á/´ºÙ×ý¿h¶®Zx­þtÆË+I¤“DÕf¶Úšr«Â?ÒŒÈÒß’Û AQ⽫²tYè¥ ~rQ£“2š›xø2²>VÉGûO@ʼR;÷¾ø÷«a9"_YÙÀGñÄuB2Yj8Q¼Ý]FãŠðø·<&°ášäø¯ÑÕH°??e1×ÿå+²_k ßJ”`‹õ/¬bðÓrU>·+6IZO¢¹™å³¶–’¼˜<諹 üˆgÄ$ "Gt+úXM³þñJs"ê«Ë¬Eƒ-Ò¿´>êHtÙ!wõSØëN[lá0#Á»:`âJ½‡mAßÁmê‚íìW[`Óðºè¦:Yc­y ª}ê7 ¶@ÿòúâžž‡%§]²¤_ÉqKáooð‡©¦·0úé¶VËÚY°  ,*ùì´Í¶ƒÈw’;kw¾üC\•Èe¤•¬”Áƒü¦vÄÚ2öáÛm+®X å¶WVo˜‹½3ÆÙr›J¼Ð :W’ó*ò*áYqé »åš¬ÔMv{Ÿ³laY»ààiëXma×ì±½ ¤°§°æcRK’‚ùÿ7,ׯ&‘;­¯¿Qóo·‰J¯Oɬ?Õ@6‹hCz¢ßÀö–Ú;-¦+áÒ}‚ý¶ÿÂÕH*JY%õ©xZ#qoÍ¡Ut´Ü“ôºS²j=½)C¤»ô– ²T>—1Ûù¯^­%œ.„²~T@"KF¹ “A·&²Dà!™$±”pÁ~›¯¿×ßëïõ÷ú{ýÅ+%LèÿíYQPòû¬—n_bH2Ébºzýµ+>\¶$’§.¬*_SÑå–üT–¯¢H_ÈW¸U¤´äB#!¡¯×_·ò {,¤mD%× î3\ŽH?™$åK¤o#Myä¨Þ“jh¥’|Š_d¢v,ì7þ—¬xpº”ø|_©¢Ý5–%±âvQj(-(饃vµÚS§ZKfqm Þ‡g’lRW>þ@;¿ÿy%…í¦—ÂXtŸôÑT½ŸØ [¥™ô¶_/ôˆuµrvÃÚØz‹¨Xká,‚NÅú剈RÁàÿh%Ç’i¥Œ|!aô[=§1-ƒU²jÇÎéZlœ\“Ùj (kŸáߘ«ŽoÛï6ÄÆjCÝ.ŸIv°ñøêûW?= QþXzªØsh…ìwnYl‹hÛ¤¹¼Õ¬Œýà÷xT·zö½õã‘ú6ÁzÛl]«Qµ)žó!Êé“£ƒrrQNkQ$Ll¥­˜=ö}ÐBáóŵŸÄFæjVÐj¤`3¬.ú˜kãm°U°„h+±6!#|Ïÿ¼ÒõɈáßd«&EòÌäËd×ô˜^ÖÚ Å# ,Zqç*Øp?5­åµö…•$&ªµ48ìs~ÿÚÊEܦ—ÚŸT-o-«¹-Ç|?—GzDÂC4¼à±4h'œ…µ˜xÂëŒìɬ¡ý„.jÛ"<ä‰T$K~830rÃrŠK*™"eðî”VÅ #Ù2Ýã{€»,·õ¹¶³€ÝÐT`A{¦ }ÿû§Ú}”Ä¢Xküâcke㈌/uü!U°û­,p¹Oñ×íò«–Ǧ‘ñæ¢È¶ <[¢×4 V-ŒÔIìžF¶öBß’á÷õ4z©†4´¤ d,ôQÅ~±í¶ÅvëÏR3ȧÝþ'+'’—&¯7×VÄj ¥ëaÇ’Ûö‘ÞÖ”à@ âü…ÆÀ;¢Z-kn©ý©Á{þt[#«Ì3^é{mî³±.xÐTžý™|‘°QŸO~‘¾šÉ«º^>·õ©Æ±ÜöROúޏI-½Ÿø›—G¾häþ¤öFY,~ ¯È×$!Z[hó핽$NiorHþ,¤L/£tÓ;Í®ê.ÿYþaxOX cOôŠžÀÂîSþ‹ºAÏhr»‹DGæ|æºÂf@ ‘‰‚¾b<¬>»ßòñj9+yætR‘°<ÕlaÉ ‘"“…·ëH¹ù¢ÃºQ·èoz¹·óuG÷á4¾?/c`a,¿#æ#ÛÁsèGÚrM- ߯‚œ¹mx1D:ÈWÁõ¿XUÀý‚púl– Û½ô]ý/ê =ˆ´® ÂBü᢮×üîNñßôg¥Ýà|ߎÁÝn·”Øÿ qšñ‘ïVÝšàï´µÃ1¸òAÍwdDú,2UÞKJÞmÞ^#íd]á÷´ìÆêWýY “Ø=%¨Ñ#~(2dß31&œ° š»ˆžŽsÿ=V8æT¦û]4Ó¨ÏP#dÒ!.¦„íµ”î²X¿½£À÷_áíü´.Çó'ù~槸ï9hÿF'ï'°¾äûÂdƒâö)µQhbâšîU×ëhÙ"Ÿõ´)ðá<<ÚÑÚÛ#[c3µ̲x°EþÓÊ-±É|_ÀQöjµYÔÇ©¬…41\ £$†õ$³²ÃyRãËY‘)¬§0øÆ÷½[ Ýê^‚ Äž®£ÝkôÉ܉¾¤Üšáý5À…ŸxÎN²Å#b(•9ŒÌFÔµ²0ˆŠÔÇ{í’åœÔ‚Aïýüåæ–æ”Ïe>ŸŸ{“ o€ë/ðïX|"ò¸ÞÆsA¿×0£°vžü—ÜKM´ïò3°Þib¼Œmå™{ð‘ FDô†Z œß=™ƒìPÝFQ©¥ËZòmHÀ7…!£œ÷£û“?a2ùˆk×›ñ¹Ÿ^0ìƒü®óÝ9Xëá’Žç¸)@çˆõˆä?w.ÔEÂOþ¬Èž¹ËŸÿ|«iy^Ap |I]´I߃¶ÉCħä©$™o†V$ZoôçUðýtV 9cÚ~Pnº?óÖR‡#WXdŠæ;æ"CÄ-^â—y$¦%´íhi·Îô]žÎ’ý^á/÷4, 6¯žƒzð$ à+[Âk´¥¾ ×É3âý'%2öy‰·ŽÑüxï½¥®#ø}°ü–ïæÖB{ù¶§ôv½žÇ&Ó'Ãßwªc·¸ÿ Yñg¤oÇ_¥µÍhòýî"#m2ô‘ÓöÛn<à û‘XÈ«¿Rk»ÿ½›~RB¾Â‡câ½ña2ݰ÷d¹O–ߎ&¢wýši¤‹‰€ßÈn×AËZÀèWÚÄVpï5´4ÿY¯ÙÌí:Ž'„…I¥ÆûóGRZ" <¨ÚÐÜyûˆöN*JŒ KŸ•Ì×D\Õú@[Á^¢ð¾zûi/qˆç=d¹¥ú(° ù6huÐ}ùðµ®ë PÕöH*þ¥—¯:¬ˆo‹@ùX ÂB¢â#$nOXnØØr‚€_‘%>%3ÄGw%ƒÞÿ¾Öß$é©ó•mªÅ±Û>oÌÎðsüa¬Ö —_Ôoµ¯þ€Ol¥&^¥ñ,¯Ôôý/÷êäCŒ4¶s6‘{vQ;]S‡õ_añjdVð¤àz¸bC²lOI½ÜUŒº'Ÿf€£Ä„ÍÄÀ[]ˆ¸¼Cw8¾íÃÊÝ|gØ16‰¸=¥_"ãøL: >ZË7rYûê("¿ŽöÓU6Ó†‚çñœ¼‚ ®ç}gß÷(šÎúÔ®itmô‰Y¨Æ¿W×£4Ù:¹*)– ƒì÷†ì¶yÇ`ÿ"¶(o¿£Éýt¤ÖÜšY›ãùS@¾^ú™×àÜ ¢h+¬éð„<ÜâÕú ‘)­Lá n–ÖAÿl ‹$•Ñྠs>â3.ï4 {xO,´p•ˆ_è§_•6×í2‘ý’C#mµ,ºp'åÝ| 6<ï4UC.ª½‰v,² ½Rõ§7âIóø~ˆš©1žô–øI®9ƒúyy"É#¤.Œõ>V‰èùÊmrÜ }Aì^Å£ÃûÑžZY³ Õû¸‡Ìýt Z˜Å3F!ÕTr^c¬[Ê~Ýž"zÜù¯%ØÚõÓ|’„·ãzP×ú>So´|(19±òg ¢üY%—L—bä·•XcùÜÕïËô{dj šÏÃ&é7X?5è™ÏæËdsaD½e,òÿŒDø¹5ÂHKdákáëàþ÷AÊ›>[†ƒOºî2ËÐÉ9"-:þ4C‹uR9ì?D¡Cw>˜þ\× mbÞõ¿˜Ã»Áo µ)ä 6ܹ®3ž~zÁ ~æ/ë\[Šü{¸%·ÕÈ|؇¬îDäYðÐu¾Ïí-÷'äçРäxjïà­RT6Èøå`8Í9â`)² ŷ׃íÛ}çï9ÚÙ£û8xÏP¶=§õÀzsà7C`|®S²ûËÆø~[o‡mV>éûG_W7ù%_î3#79BaÍîڢ붓”úáIP;@–&ÿ<’~T,ü\ßÈÙ†|·»¹ W7ý¬ÏÚœA G7Ê ÙªµA¹°æê„l0šTvߨ€DÝm°?éw YM\ìõõ‚ë @'÷`NëÐH!b?(›oê¯Áìÿ[ü¿&³}¿¾ÇDì nî÷Ýßf½Ç°ðBß÷`9p ¶.¯µ?–wS²vj ûƆÙC~«ôùÈáø-¬­ñ]c·û ¯©¬²Â+Ý|äP`ì[P`¯ý†™ŽÊá› Ê_BÒK4ß—)>ö9¨}@¹øíj|v»^ñ}mna·9àÜôpÙëçà¾çYñêŠØ|%Þ^Y.ó.‚tû@Ì^‹nRà¾"‚õa9©€ÛXoXÔ5ô=ÓQA”¿•””yøyxøÏ&|ü„Ÿñí¦sÜ@SÀ·¾ê²ÀxßÕb—Ï sÀ 7íË}©Õ|§¯ÇèëñbvÈÏq=Tú€ëx•›: ›}í¯”e¤Vv#JP1ÿÄkÁ=¥¡<Âfsy¿Ã‘îÑyÄ÷Àt×ð‡P\ÐõÀ}d˜§Žo¡&øT‹¢™¯Èü½ˆ[Üÿ9ú©`ëñú‰dýĽ«£ÝÙи¾~e*À×Ô?U}ØüÖÅžaƒlA“¿«|+áìªïp¸ éc™ë÷–n¾©ð]ðØðvy¾Gþáü;›XØî¹¾XO *ä/—¨ëp“lÆww=ò#WQÍ}6t”¿ƒ¯Ïàµßò¶JØ>?<9¡~"ÁëÖUj‰ûs)_1¨Ù‘ï¯#‰Û»3XïNÅ#®—ùYGƒ¹MF'3±ö<<æ^G3/›¹ÍÇ+–ùÙhóÕÍ€]‡FÛë[Ñ"ØLMeÃ1.RcµµÚàdß[¶¤³` É'a­Ïàcî“½Ôæ&?òÝ{7‚_CA„P¶œèÿ F4 <쌓ð‚9Ú=Ô˲X^ß'‰„=ØÝuÝCä¸>À[Ñ^t¬]ÊrãýÙm*‘±J³“cZJj€2VNOõ„TCê¯-² ÷šË>¶é°¾ø³›{šÄÜôÏû0¢EXµ·¯û¾ç·øw°æ÷3Áóh;q3ï⻑ÚU«ÑÓVòær ï?E‹bÈ÷I¨“ø‘aØñmЉÚp[Pû 4–$2Xª"‡Y^0é„Öþ¿ÂÐ÷òËÉNáë¿àóÓ‰}7éG~r`êà ϑçBëP9H$,æ5f ûtnÐáïJxAjêÅôÔÿ/Ðf:ËÌO¹áHyÑH|ØO|kTû×£Ú)49Ùï6í~Þ ‰_ðï>¾}„{¢qíGä¿N<–×qÕôy¤_Ìß'ùÒÂ|“À…ÝŒ‰MX?¼EòW™‡ÂýJYþÊ’Q>Ã*ýyßýܲ0ÍæÀn"sj c×yÏðþÃèä{m¥ñ‡išÐšÍnŠCð-@-S/êÃã|¹+;ÕâG#ÛrË*"é¼$’ýã“óï5§Ô ªô¿KSI*͈ùq¾G¥›ð¼Áw¬u1ílü?výïwˆ£µ#þ>Üׄ_[y+Æ­ýÒO†ONŒß7ýj€f¬;ºp¿>!³ÝÁöÀ¿ýxÀj´°Ù¡Ã­DFûä_ã'`u· Áž5].K*ø…Ô¢½ùJƒw/Æúí´6ð5?Mûfƒ|îêphx|y«eÈ}e‰{× ½ñÑcA+tÐÐ2Úd"ÀÕƒ‹ÑÄR¾/!š¶RA\ÕÈèm¨å†a^ÑJV+ØÂ‹»~T*IR-Î?"JWãñSaº¨;k#2Ù·°ÚŸ¹o!>x¯Hk wß 6 "ËŲ>~v^X¬_<ØX6cW,à/÷ÁÞQÿÄ#£¤û‡Øªß`ï}ùÇšA {UøKn§÷qþ6®Ma³íñ„ïÐÉ,м þ;ÔÊáù'ñð¾ â×`þ;Pb0Z3rû\«š»Bê&»k`Ó}ït7÷: 5@l ´NB®IH¿”x®¯YŽ7t÷uà"]°¤Ö§Všâw!jF) yÆzu»_æú]gà¾[øëš”-mýÍ ÀŠ'Ò3Ø‚ÿ±šÊ'ò’Ju'Ö}A_ž —Ä«YøëŸ3ü®€…þJ¨û|`­¾1’aá„Ô÷ëÑS™†^¾ƒ7¹«ûý5 Ø<=5âfuSÒzØ0ò3ûÁš…€é?ÿXe¥‘”%o_„­>Æ^Ia'qÀö½dÀ·þÊÈ,|`ºŸ6Í®¡H|\Ÿh-|?øýø‹»><]Í 8ãOMõ½Ôo•kƒûæç†ò“c–€~%dÌÿp;€[ËH‰oñy‡¹Í½ÛDö;¾û¦ò3 ~¦³à´¿úŒæºÛ¾åV’J®hpGÝœ\7%}1’ÏCð’- þmäÍf®cB2C Ëe‰©3JÚL« Æ¶Øÿk%–ŒRPʑݷ¨ëÖŸ’Jî1°O¿Àz«±ý<"`Ž¿Â9/ˆ‹Ÿ [dd GDß@ÒØüüÚ³f÷éÀ|¤ß‚‡5°ü°ëšÜòÁêòüvÀfJß`‹ý§•D2Èé¡ÁK3RÍfâ«>y`Z˜‡äëÉŠ«ýûùü®X5µ•âë®fŦïÁLA ù¨òú}ktQâNË4ïÂ–ŠØ—xA_-¼ãñZòe°…þÓJ/%À€ïÄíMqËãÿ÷©ÚNyw{V"ÛCì9‹ø_Ht?Ò¨X2µ%âw`yxôq™7ò7;<>º©ž7Ôëç§C´)ö ìq¢¶ ¶ÈÿaåœRJâh=˜;ózÏò³ ì[I¬g±Û䆤vÈ×1Ôé&ŒE!ª§#eU¹Š¼%ð‚[ü¾ ëÏ c^ RˆC¬t°1T{ݼüÅíšÅ¶z::Øÿ§UT È )È»»J¥úÈöYæ·sš›‡nt ‹À¿OÁn’åjQËÒÚÄö0tÔîÿÌO>ÜŒž–bû: }>o¼mµÅö?x‹¬”ö!²x©#c©K’ãÿnßj$²Ü~McnfiM,—ÛvÁqùk™Çð€¹þö.R~õó¢Ÿ$dú~Ò×~¿‹¤9õB_b¾&Ò¿±IU7D[°wýþ׫7y଼ÇÂÛ5®/d×µ®U¢>~‡M¯Õoé_ ›¯äQõ»ëÛé` UAÎ…àÅV}¬Žég³‰ÖÇF¡¥ÞnO¸ít$ïU ¶ ÿÍj-5a‚Ë´,ï66k‚ÿºœ¨ì3Ánû—a´ ¶ÎÌsrZ=b{¶E ÔÁÊõ@¶ÃXþŽWš²›ýD ,ã~µ ¶N{†è~¸í$“<•6ZßZÚH¿Cç°¶ïˆÛ¬Ä¶;Óá*÷ëÚÂOz¨«klc±oGž™iÏú«Þ[ùŠmÀü¼hi·“pžÚ0ÖPº[IJºJ©-‘ÈÐ_X˜`xòÁXL$Îh®ûÁ}÷éfëmªuÓ¿%³}IHbgý¿ƒþ|lzûÔ›—jC½·ßÂ:X—qÞf’ZÊËPÙB”ÇÇKÙûš[IØÎª£Ð°{ f™²wháSŸÝ“ïÑÎCtp–Ê  Z j‚;ÐÕ¦H‚`‹ö?\U$ª¤ß¤©g°µ°~?0 .Xxƒ¼° ››kÛÐÛM»îûüTóóÝïS5º)÷o4 hLh*õqniZ/£`‡M±~I´¨ÄSíJ+©?R –2ZGë")Ùõ±|ƒ´Çe­î‘‡ZÂwŒ¬ ¥"œ°¤ÔAþbAßÝÿ¾rKäI„:J9ݦ®ÊŸh4”^—Yr =,ц–Æï€ÜMuÜÊNë Ïdì¸ ¸ða¯$H‘kv’™šÙ"[rKD•»‡ú¶®Öè¶ÙFX+cÍí;ûÖ¦[o«b›´¼¶ÑRŽ*0$÷ûý߯ z4ê›F2BÎh{£íæ³ZöØõÂDþ™þýæ–ÖšX›aË­‡µàë;»§Ýõ3=)µðïÚŸ[Y±\¾×•¬Týƒ©òÅÔî¨ëö{DÛZvÝ"nßw‹f¡ÐIÛ`ËÐBaûÒ YÐàurBêÄÜ’>ØÂüË+£äó3Ë™ªµ­²³pH}@ëy}¤n®·Û5ÄŠ[>+g·ô¹Aæf6Ú¾¶šVžŸ[)«d±m+ö/Œ&?¤•Fr!{iY&ÕüUÝVËïÔùÇw}|¯Wùi¯ºÉÎy-–4ÿÃX2k`¥­ª çÚbk¤:>ðáh Ö¯„ýKÈ"aÙ­(²%°»º ümù-¹¾ø í*xPÎïw½@ïÕyžQœc¿€›,£‘ú°¦ãZh6p¯°ô’²X«ƒöaA·kšÓܯ‡zOŸjJ+k1¬– …6rú®Ë­ûÜë½~–Ak™ÐCnÓì®}fçdÌ(¤ìøûïWAlŸGK!-`ƒ@÷ØÈÕi]ËmŸóÛ)¢ ”¥GâèxEKç{å¥3w²#¯EÇÂ#mcÐò…&´ ¼B/;`íKª•¥CÝùño«šß VV"ëÍlÏü)î›àëø_<»ì»¢e±ê`Ýib!™%´WªöÌÏ=pÍB“!YòÂ3M…üM¬³µöÈzÚeé.åCô§!E‘?ŽdÍ]ÿ»ÝºŠ/wŠù92å7‡û—øý 7×÷7–½ô]Œîè3}¨é@…ÜDÁb š•°T`Bb »Õ³>ä…§¶Å kP5Øgžÿ»UŒW[ÞKjÞ{6Ðm=²žÔƒúÞ຀oÐsäþ»zJ·ú )ìºÒLo@t#îÍî«ë Ïx *d™;š*nÚ(ý&„V¥ÈPùÚ ¥É÷ÙÉqçõöýMâÝûu±pˆp°mÀï/ ) €|i@dƒ00¿ƒ~‚Û){;£•vÎvÙX­B`m˜ ÉKH?ù]J[ ì¾ïZ·[_@Úßõ0ßï"¿;+»ƒzx­ûÐÍKu'}"ÿ£ÑPg<êkû 9ÒêÚ;2L<)l‘ÿ´2Kbp¯¼ü$ϱêz ‡ÝRXTb8’Dî½ Þ<ìƒûÏë[}¥{|·§pD},P€}l7?‡U &‚†b¹@Ã&<ÒÌ‘ŽÜÙ&ÙV¼(޾[è?­TøI¥¿L•~og"s=Í##FXÝ}ýÿŸƒÍ³Y<;œà-qáº9&F¶š™ÆZS˜bA<ä0¯ŽT‰‹{tg¦ªÀ~±ùvÝÂÒXÙÓýßá~l¸éÇ’N¿¤jK|Ç!šÉaQìwu½Çò=½=רhæ:‘Èžj p.9öŠ>ÒÃ;ñÛNðrºŠƒÌ‰ñŸOà µÈ(±l‡-µ6“Ê`|0¤ìO/&C'%‡¦ÖZÞnè tæëúV”" ×EÈßÙ3 SZ¾nòø9McGÁÿüð` %ñþ¾ÇÁV¼ã%ØhTa>ݨ‹¾Ç?¾ÛSìÑ‚:?„\É@ì§—_¤3ˆUNsh~Xþ[dMüÇ37ßâ¸@#côs]çùË ¶¥C?‰ažQ’ç*•@|[çÏ9»É)}¿ØÒ0Á |õµoàGém²E ¶1Ö_K"&@¸ôÅ%ï·–µÁ.ôÆÃîYÍu…v§ZÎë÷:E«;ç¹ÎÛÕñüWdHw=(Ò»êçw KE¼ÐÏHxäϺ‡óŒaIɨÙ`Ìñ”­D° ˆ­ÔT`NðW²ñ,iC&{mc#Y ¢ØY1,ò»ÎÈ{©û÷ê,m¯]u:2'ïO‘wSÄ·Š– ݼŸÓ~ç÷B<â5Lù¸>†!¾Ò˜hÇ+®.Dþ«mn–X]⪾T< ­d’F:B]‡¾B¼ÏCÄA}ð/LæX¶Íwr8ûí =µ³.Á?6åGa?mþ^™ˆyNÄOá™t œ€î'g†!*Òàî4Q7쟿ڥñAÆàÂc©ôHOæ‹ ›5 2”Çî®Þ©®_{sçÎaùÙ¾“Ù!ýIÛêd4õ“ï²PÀÊjC-d®ÃéZªýu˜F;¯ëXÐF1(žw÷;ÒL‚ëœ&¦Ëñþ{ëDÁ4] û9 þO“PT{gáúÓÑÓ\ÍL®8އ‹í@cn&æ2a$^çqÃ÷‡u;hCÃwƒ©ƒ,Ii.Ç% ÖwÕ\h8OF,ï¦3¸sñí"vüQ»^w6 瘶á÷Úy\'”|2D’Û ?ùc9øxXÛó¼û~NÞQßåèwâÄås𪋾ˆë3ð{‰ƒ_¥“2òXˈUj‘«Üð¬~Âå5êú£Ø8ïÿ‚~Mü"“ÍÃþ£´‘Õ-èb¨l”…xº;éÿ#QP~8ÛjÂšïƒ ¡ÈŸWÔu ß7lò=…®óý!šnEü5èU@RXHYÞÕ+|õy?4QàÐÜð†ÓØý7ÝŒ·ÏD’/‘¾%Y<=è¯ã°÷ÏZK kUüÞñïˆFSãlµåhï*ŸÕh#Y/,º K¼LV¹ÎÿunPÑ"éÔAÁ\ÙÉü=d½ïS,æz•,À‹7óÞÓÕ ÿ8lìúN£îýĺ©¿’ÅÎr#ˆ)|õDò¥ÔFcxÎhÍb«m¿-&ú1ÎÎYÀ¿rÖþW¿Jˆö"’3ÜÙØ\èùg¸W03@nùTÊ ìrB]Ÿª[Ôü‹À÷A|õÁËÇûÎÃùw,¨ÝŒ¼^Ê÷ïˆhÓïûn˜+t"Ya’?¼n¿ˆ›ëqwZß`é\X¾,š«‰d÷]SJû³±ÁÛf–˜8ˆò'“ºrGvc§ °µ'z—ìîz-ç¶ûo#þaç!è⦶ô3œ\æ®g[±ødíÅ×܆’ŠÃjwØ0;gKÌõüwçÿÞÁ££QI‡A·®Ÿd6ÕMW«AU =ŒÕOƒº["¹T•%ø¿c/GðþÍÈîzןñý ÝI§@Ái¾çá6rb+›Ž¿´ŸÉåáì0Q0Ø@ìÔ‚ß̲áÔ¸‡À‰+0ÉSð(571ï¥Ï®ßùžyˆLâ&æ9-Ü×çR4ˆò–²îD¾x 5KûRãžâ=^҃ྻ p}Œ#Æâ{É…ŸY;¾ãH2øN<ü ÑpÀwB™ê§Úá³êzZ–ÃRù¨ð& _&$ºçmîzŸý¯ù‰Á¨€jaéú‚ìZ–üQ <¸Èk¸nŸi£ ÊßNâHj¹ØoTø»|åw žbéy ÞldÏ×52Ö2Ã*QÏÄ‚ó&áoy–z\àPàZ¹ïç;m"Û¯æ¹wÉ—½£ïš’–{Ðw‘ýØ{ p«®$ï{UÜ—‹»»[€àîîAB @p 4¸×àÁÝ‚† Á58ÁïW«{fzzú·{º¿÷ÜÌ“už{¹÷œ}.§ì_ÿÚ{¯ªÛ0œ°…UèMÐŠÍ >z8â´&vºÊ>þË’EÆê W;ˆWEËÀÿÆc£øfµ©Ù¨ìïø3—õ&ù?2踺gRÌE[ñƒ-xF$‹¼9`zk%¹n’SÔˆûý„ì5dÍxÁSþê¯2l\ ™ðë…6VjéªáMð‰ë`Ë W>ˆ°sò¿¯£m¦ùŸ~+± Ù^Q¿<Åšý%:Vœ,½Èñãȃƅg c‘}¨lrµy× ¬<ÉOȶ~ñëÀÊU¾Ì¤†•Gë ’3ë+™u9bY¤l° , êõЂ®³Û‡%lšï=é 2M‡Ïw•ðÚ bWð–xôé9ÎW`ât0…8˜€t›dŽÛîfðú¾ëûa¢e Ñaýþ† …;øS€ü—•Gr@ØQ~ØCذuEi+ØíŠQþ"øÞ0·JšcͶÚM›Ñ·ƒcS¤%¶/ Bõg€~ ¦øx?à#A†©è`£ìtç\âägä^ççãlô½±§ðÓñ Ñ“ ÖX Æûê*:\!Vd}1ã’9Òé ÞÑÈUpÇÝ`I#»GÕcÕ¾Õý|wH|N«ÂÇcU›4–ds@—âãGå¸Ûå¶¹VÈ> ,–…<¦£¡IøÉq<',¶®©ñÑc&ꀇü}¤ó×Mr’/S謠Nœâº |úüºŒ,5 ‰¬÷{L;+6ÉÖvsG·ƒ|ßÉ·àÀhä†oàÕ’QœŒtÏÝ|ã2Ï‘«9Ò*È-D…¨õ¾Ž£KÄzæƒ5¿–&D™MÖM‡&ÞI NB_OXëF#ó6d_†ǰÑeì W³I¨‹ˆéðøa þDä ÒYŸ·ép‚^ÒZ²£;‹þÙis¦ÐÇA±~‡¹`ºó¥6uSFÀ(òâükŒà%^TÚ% ¢ü{øßÛ¹O|—Ò0|Ö¹`Ú¢ù9ÚøFû»~"Òg!Û·2¹æùØÆ÷Çx@),©uþ°ÄKo0 ÝÌF;'A€(êüùß7‚ísóvÍø¦õÓ_Ñïhiäþÿð¿_Ü÷Të?KTªú)xð&ßõ×:ÿ_ö3¼¶áý‹x~¢‚‘d‚%È·ŸL‘Z:cÍûdÆRf8„ø°kEÖå|‹ï•“\#û{CÞv¯Ô[P!/9`”?×¼(ÈÒ[HàúºèÔ"V±ÍóyÍfs=ç³ÛËsøÀ j¡½iûe3£ƒ•~Øf4]wt"6Iñ ßX—Øíöãã?ó¹¿#÷o¤^ÿäK ?‰÷yŠ\‹ùì ý ÁxÈmoSâ¹;,&£fׯú5¸nw‡|‰vÖúpûñ¢ƒ0ýØH_€(ø}ØYëgóUì*â^Éôûã[º®ŸhˆŸx5žû=òÞ;ûo÷tÚT,;ºÂOú‰&áÉ´¶¦æí¨u´"µ]~pþ!–æsÿ|¼%ï:AöˆªÖò –·³(Küë|VâÁ+¹Ön7À¥w+©E7ó°ûRrüh"x£ïbvŠÏÌçõ±¾>¶®ÆÓ‰ëhX ØóÜh 5YÒ&œî#¾E[«xÿeùSçÿ§ä›¡`sæÞ¢ÏxÇ rÃM)äØ+¬úw3A¦„jsàžƒêgˆ‚ñØjžï_þ˜|µY–ïý±áIêƒsH”®XÈ×q%¨„›"ÿ´·ÊljA´ùWVE½%^‚kà×%àÁy|épðŸdÁšnZPåŸèîƒÿSøŒï‰ÉTséUAª±d±oûuVNôóf!×øÑu‰©_ÀkkâÿuÁ€Føÿ(=è"¯Ï@3}Ïë{b“µø©8·¥$(Û ìûF+ÀŠrê3ièŽUþ†.*ôƇëç…—F×°Ô¿ÖíúKa’ŸÂs sЇÍv9ˆ‡„Q› 7 É›kKý\+ƒævUä–ØŒÛ‡`Ät°€÷ì÷oø‰9Gˆ†ÄH ÌÒ%ÚS»KSw!¨ò[ÿÿ"®†Û)ŸêsÀ:X-CÎÑ ]o¸Ý0,> 9l2Χ Û~&Fð,±¿³×°«~†:PÑì“”¾b8†·Xh³ŽwyÛ[Ýl°|¸ Ã̤ t¢.uõƒ,½­Þn”›,™Èu‘ôò¯áSÎÉ»JOiÏ—U=ƒðåîÈdÓlãÃáßÃgm†A¾>&ÿµ ´Õñ×Káÿ“ñ™ü•eèa*Þ°Ú×PȪ¯ˆ‘pÔƒ¥uN¨èºÙõr 4ƒŸTø \þEì.–1þÊVi‡/'š§âÿ#yõ5\9«–Áç›ÚÌ­ ö‚ÏÕÇjù»/ó~Ä¢Èþ–o„$éɱ{f-¯CAƒú Ymy`?H±ÙŸ-˜I^Ü€V~D{9ÉYÐV7ßk|°…wƸ’®¼ô™>«ؾäÓµû]†ƒ„#‘b,QÑ_®ÇWùªƒ”{ýŒŒGäÅÙp¦ô0º:­ü@ÄŸMlðyoÑêá 0‰”ÔX†‚eù©¢6 ¶ð¬òn$,|æ6¼÷Ÿt7¾j_ºIrÀWò5r[ôèà®ôÖ¢<^bá~~NÊ0¬;”cìÜÀI *­[8ö„¿Gf‹Ÿd\ð8yÁE=HïÁ hèØ']ÝurG\~Xœ¥‹ >]óS{û;ºFƒ\óñå¾XÑîý\‰gt!.ZaùIxÀ~³¹Os8ê$|ï?ûÇ:ßoÂvóµÆÏU~åw†”ÀÏbè$Ý*¡¥GNc×Õ=$wG…—=†ÝçÓ_’DÄö>2ÙXÐ{¹¯ïûßñŠäD«Š+Kið|87€×Œ#mã•%ÄûnbàZ¼Ïã:ûEâcQÑqãpjúÿ—t¥Ýä5›`tÌóÕÇðØ—ð½ün¶Y­÷u?¸ÿB¾O@'à€¿IlnóÜW 9<æòû`vì4JÄ_÷·™ÎïH«•àÍût¦6òì¯ÿXi]+×ZVñÉêê|¯SêúXD©M~ž‡Ü›<‡±éž‹ˆèEø²] |.‘AÁd›8×Ç 44ímÃú—ÑAA¤ÎÇ£°FóäÇÿ7ëz®Y,ØbÿûŠçšb‹œð˜dº‹eæ§ôð¸»ðÁ…Èdç~¬«û~[Et_Õ¾¢ ˆ¦Uá1/@½<»É{øùÇëÀÏ}þ^Ÿ7ä‹N:N‹Qíûšñï ]­=tÿÞ¯[I]bI!Ý!•)#Þz 8ŠOõ÷¸ÌCòÍät›µŽ ¬Ì¢Ia=cð…z\loä3´3 ßßÞý„ýoI>¿p ˆì§½Æ&G~¢74•®t¥‚-ö_¬”.‹áHd¿Au{¼-WýDã©Ä¿Ýå2ÑOt\Kn{†\EÐSb"y |>:Þ`=££Â}lâÏj?ÿp°¸¶FæÌ:¼Ïº<“ÊÚFßbý¯]ö` ý+¿Ëäê¸ .íÂkíü¿M~]æçyÌðß÷¡›¾­\Í>$cÚý¼…ðéÈ|/¤qÕf>.AK?ú ¡»¨»ét +^?ì¿U’é]©¡›CÁä³ÿ¼òÚ»aÒùíLÎD¤¶®æ‹@½YDÀ~dIÁg_@}¿Ž#vbã‹DI ]Ç‘±qJ¿÷á çz‡øÉ®€í”ð:P÷ë4­Aô7ùÌOˆ›Þ.]°þ/«#y±åa|xYlž¿ÄßÝgW„‹!cx]J^·ç+‰ðSäʰo 5_=±Ú•£hÀöKÅö¢‡—ÒMïëyjå¼z ¯Hxíº‡ÂŽ¨õð¡îµ4†Á†è-þb Ìw$ö¡¥È]ÖËy§Ÿk3‘×l€òlDý\r×mXN?Ó~óò§ó÷a@6]íWu¥:N^éMJ;!×så\7ÉO¶ÎELßB†óȹÁúé´%YñÏñ]à÷øùÖÅu±D“OÐJdO *,ോTÉæ‘àÉÕîªh¢Çô’f dˆ´úU¿½*¹|nˆkLjÝ.¢PçÑÃS­%DŠJÚ•êÍê8ë‚¶ø¡F§º)q‘³…vGgyÔ®ŠÅÃîQë_#+¶Ó~dÊ¢:LÇ‚@\ù$T!ÿ^à‚g\ ½MWß.G•–Y?Ð’ä­ÚHw¿· ¨u´ °R„,'Ô :B@øß¤¸±u +£{µp`>æ}K©0CãûïWj—Þ}ênº¾°» Ú‰'é`Øì—ÈÜT¿#ÊË»4J`9¾^LŸP1åÔìzȆÇtÕZ<ðLßÈ÷q°…ù­4°Ô"®š[ãÖHì;@'ëz¼z±Þ¡†ý N³^÷œ _K?’ ä·º¸3ZÚ‚Ö6è*½àîñùgVF—ËÕ„ýæHR*ÜN:SÏæñ/t¥ŸpF×ÿßhC*½¬T‰‰–øÅirÆ0˜qíßßÿõŠE$tvõ¨ñæË)Œ¯oÑôËT´ýÑÇQü|!(Ù¹K£9b¼©™<·³JÁþøÿ’•ÎÍqe¥˜ô–ÕðüºHcjò¶ã Ëà@íÉ Ýðúá!p”×Ê×ÍÅte‚ýÁÿe+Ä}åú¹í.‰|!}¨sƪ…©&Àp*áüHßÚÏ;éDõ|´/æŠû#ÿË×Gn¢›ë"HI$ t@ ŠÎqÇÝ tòJšP}…Ý÷RA% ¥õí?¿Z¹oÈÈ —R’J×Ìõt]©š^€Åµ»ô gó~Þ?ÖëõÇúcý±þß®TT ÿû3_:WÈåùwf×vŸƒßËÃs » ü”Ñe ê~®ÿÿVÛeFú.·Këz»C®Ž[슺ª.Ÿ+íêQ#ep)]9WŠG ~óÿç+¾Kä’¸¬HüÚUe†srÓ­ÂÖ»1.¬²PZË{·>ÜÈõuµ]4õ¿ae®Uáô Ý7H†Ê}É­“e«»ã~áµhã&ì?–~­y´¨FÕEr×íq{‰ŽRhì÷¾R`÷\ÄwiwÙ¥Ðßä¸|¨}'Yd·»êêIG-­Ÿk1ýÒw¸œ 5ô5:Š(ñ©þ?¡bÊlþ©•‘¸ÏÞ}í¸*ZSŸJͧUô‰ì‘ïí¾Iß/(³Ÿòú¥nÓåÔ€¹5¦Ž”o¥?¨*þÝžJKÕŸ ´s5ä®4Eê|š_Ëha½ ©ô®kã&jU- ‰´¾öÓÚL»ê4P <—²M>‘Ö`D¶PÞõúo¯ääô,.ž‹+÷$º†hüÞz¤ÔäúP’èRVÆjMâï›Î­¹4Ž–ÕÁÚZ§ •ÚÆOÀí†Ò’~oÜ ‡ËN>OêêËm¢uñîlúX‹j)äO«9ÐÇ~©§…4±ZŸïg’Roƒ ½´…ŽÐUÄÃ!]¯ßh#$•]]—þw‰A¼üx~uwßE‚úÏ«o婜åß\DÀÇ:ÐÏèè»_~à÷y&Ö›b³0ÛëPí¤³õ2Ñ0IêÉåEBG¿ÏÿÛJM¼&wÝP^Â#ßi|;¿ÖBʲd¸«A#h Í î‘ÛÒ†œ×P?õ ñjXâ>•vÓ>xK5²Á~~Z¯Oõ‘Tw-a‹¡ŸÙôªŒ.ëèICµî—å¤dÁÊ15/øÅw7ÏOÌ„ÌÅöVÓŒè#!^‘ <–üÚA‹sD%]@4Ò3Z W‹¹n.Y¨gIùŒ9]·O¬ƒÿ$02 Z~ f¦!g¤‡1)¸ $Œ8+õ]—P<ÿ ¸÷ÏaÎzdð]Z­smJ=‡ •@¿=Ä‚õt{'Ë%6¯ÙžÉí’cKàï•´ ¸{—&ó'KØ|„›ríõ…LÔd½R(lAÿæ*N†JˆŒÓ"ãûw¤(VÏDV·.7åˆlñ=rO‚Š7$"Ò[‡û­Œ&šðHfÕW~6åƒDàdR0£*¥.Ì0Và¨&Üüä–:Áöo¬¬T³¹>®(ñûHŽâÙq±æ‰«×‘Éîx;MþKC…óˆ×Røÿ!ÄG]ü$(—ƒh) Cþ ±÷$¼0ƒ¦5ê.GF\ /5‹|îj[Øÿ²ÒÁÑ2À÷fK3NÔþ©@¢¿þYzëðNªß¿Wd¯Äð ƒý•µ±6Ð ZY/ãx÷ ©‹ýKò|s²è ¤_£“ÑBYm · mµq>WŸœÌe‚íĹÄý+ä|)—ÐÅY±IJ¬–ÅÕHf½¯mæS~Îpÿ;ð¯ï:.ˆ8d†"àÀ]¦ãÈ éÑ[&]¬ôí(]1p 4­T®²ûÞÂwûùϦ DGž7Èó³ü$‹Äú×”Çãsòjtµûí®°<“ÇïhšË«Åõ(˜xÕï«§£Õîwÿ EÓ½’ß HøN·¸¯`Y¡gEù¦»Ý.Ù>H^ ­ p<—x¡ û½õ@-ê–¹H`X† ‰TDw€<÷Ð÷=.ó‘kL•i2ù³¨u·ßÎ+Ù‰ÿ,Ú“üÖYo»©v~Äqá±X1+PÖÏILBÈLD|£É ‡CÅ ˜d®•Ùiù«„×ã‘÷î"YJòÛ¿ìØ |)}e Œ›€µöŽ7´«Š7Øì„ò1t‹‡‚¿J@ßK2þ^bª8v¯‰’’C‡°½uª6ÚÁÏOˆÿ!ÅðÒ,zÏO­ƒíK‚e‘ÈÙWÉüÖÿî¢ï 1LCÑÅZq§$§t-w‹ÀˆV‰íÛ%ÖÂ:èþJ¾Œˆì}A¿.Ô¹ø{%ÐCµ [ŸhyÉlñá} \t×SìN¦D€Âv­wí=2Zz?ëò,r['¬Ÿ}˜~è`¿¯ç÷»äÛ®˜_ùÁw|X Q‘yù£ï{W­“Ò}tq…ÈHOîL¢?‰œ¬õ¤R°Åw9\l˜Xuy$Ñá1¹¨jbñ‰c½Ó0Þ·dòK2›oÅÂuÀ ¾¿Ïd¾Àú!ºÒu u¡u¾›NLŒ!+î!„Oº+‡Ñ×1üç')M¦´s‚È)=@˪ÁßevÕÜa ÏÎgNAβýù?ùg ±éqä”â°¹i°ýIò Ï|ãû!ß“InŠ‹§}<ø°Bš’é ®{ÿèM|ä½|ˆVßÂ> þûá5Á×TøL‹ _-Mêʹ°õ«øöϲÓw;¾é;¾MB¦²Ÿç¾#ïÇg[‘µæé éAô’¥2Ö:üº«îùa&~ÒV ê&êÿ"7üôDT v•¤‚¶Ô/À‰:è'&²?æÿ<ã öDФ.½›I®Ú‡W¯–A2 «Î‘îÄø@¼y®Œá»u€Y«éEvøšlV'#ë`ž!•¤ ~²L´}ã ô²îáÞ;$’¾–¢HŸX3Âí¬ù^ô3𨝥@šÒ²J0˜ýïmßg.7O»DzâÓ&éWÈ? ‹Îó=MwŠuƒšé{~õƒÉо):q´uÅ…Ž&ß=@Ãfº—w3–Þ‚ï_ ’z¦WÔïˆ)C}˜G»ÃˆcãÿÅáo¤‡ËÔ 0É]ê¾9ø»íÚDÃazùô—ð‰›üd•ï?×g·´&s5$s÷аÙØÜ¦ÁôÅsFðŽöäõY:Ewbßµ¼ïò‡GSá;eà?¥µØ·SWùÙGmÐEc­(­‚º.3Þ_Í­æ³îÆæßËfrúU¸ë#?.<è!üå>°KO@#a.¨g›j7²£õsH„Lá=Ý`·½u˜×Ý#áN…A¹{ü­Gþ¼™í!L…ã½6kâ=ž´ êÞˆ®Üצß8µîæ‡`í—%µ¬Â? ÿçÓä¿™àáBt,W˜çbC|÷ërð@úâß ½ðñ1¼ë:ÏÙ©øäÿx à 2K*äOÔ¢^Ç¿ÍA‚ò µgðVA×Ä=vi}3ÃOtJ¢EÈÎñ±zt½ì%‹¯ö=P­ïu;ɯU‘©§Ž Ê›Éõ¦l¾›Žër²Ý^yEö³YGm<§ß%ÿ‘ïüdü¯!hÝg…8šN‚¹¶¼ËäV¹}xèlü3ˆýœ¨6/ø ¯ŸŒ¯”tä)2ñ1”x' ¨äÒÁi«Ãu‘¥<ѯA:‘g*[VCü =«›¨õV+ŒÞ áó!øÍx`#ø¶r•ÕƒýÆ'Þ/ø¾léàºÀòõû]~º¸ ™Ô&½žç—ã k8:BýŠdm}çÇNZE[£‘²H¶M^å¯Ýñ=„/ÜN‹-ŠE´¼“ù>š¬å÷×¶".F“‚M¨À×M{©x³PÓ:d²½ÍÄÎñ¾Å÷WÁ‡2ñ™m¶•M~Zå§Xïî6ÞþÙ9¾‘Uëj`™ÂÎþZ÷£•ò¨bgЬۥUWx,h€–r 7;³°JºJ=òoð:´tYÜ}ª”|ãèi°’u~D§ƒ»G„±M”¤ºÚ2Œg¤ï…´Š|ùBÊû<˜ T+¨µ‰äÔûñýÔ†ûýù’Cøyíª ázuÚzd4'Nòë¯zËwSO(ç\]¼>`ùð½Xð³xÈZÔ[ϵ®­¿òØÀW >ç2<`Žg6g&ϯ;N[‚¹ 9!õ¾uKÝC~¦¡'›+ç€ Û|‘ÜT—ÅÁÃD°Ÿ¹àÀWpéÛr%¨½Røî·ãá‡ä – ëçwGÓx°uhµÝ»ñeëk4âÏUÏ*¤·°»Éiõ€d$–æøóü•h` Ðcàö*pÐú´]¡b&Û‘â8ß_›àxÃñê©~’M[‚…ããýÕð¼óˆg³ye.\a6¹ŒU"¶Â%ÈWxîŠï¨~t ‹WѤÌ>X ÁÞn=òn‘Èo9~•ÿ~?©ïšDA3×ðãÉ @üd0Îwƒ:ÁQ[°®ÍJK ×û_Ÿå§¡Ÿáhc¥ïò†ˆ‹¥Ãòˆ­ÑÏqþzX‘õLI(‚(ÿjWÔ-w¿Àÿzäž/_ƒ×Åø«M´I‰õNb¯MDvdåÏ Ìæ•‰hc1rï¶åyÕ" ºZê'Yg¨k IC?!Œ®!Æ^ñšÍÀ,Aæ,6¾ âôëõwc%6Öˆs»…lë±›1×°ÚŸˆ¿Š¿ÎÅ7F£™¯‘Òúà ã·.øHt8 EÍ·ÀýäÞ»Fòè†gX½¼ÚwÑJ¡‘5õòäŸ!÷ŠÍŠªÈ³-u³¬tÁäG©[º.Äü`ÛDk™Ÿmq\ºò91p W ïd^7 \ƒ—Ø ”jÒZ’ãßõˆ‘†äñá Á¼ã[¼e…XGù›h ¬Ïæ^ö}Ïãû 5«A«·¤„¾vŸQz縰~ªÓ@tE­ÿù ìÿ}€>Vƒ võo&–_È1À°°H ù«J ªØºI“'~–Òz dâ{e®FÖ-6¾·ÿ¬¾ì)’i^bá{ã˜Ìúù¯.£{B„#2ÏÈmêü ÔcßÙ0;9úØp oþß*=`+Èg%&L®$u`f4PŽÊ?•V ¯‚‰SA†­`à:x¥Í=LT-åµMhæ©T†/ƒ;¾–.˜èg«·Kã2xævω[÷ë#|âsDï;ôðÐO6ŠÜÖíÕ²—uùê¢}¨PÕ¦×ú¾ëë4<ú&ùí `#:X6ÞD“Ç‘{ÞpÏ÷Ö=Œnl6¼M›&E‚~7ÜLøWF?ç÷5ù~5l11l¬fûïGa8‹ðÕa zo|غ¾'ŽãQ)¥ò©Ÿë€/ÔÓw~ÞÅErÇräç3 Í^ ZXoüxÄAPðºï.Ô($µ\× Ë˜üSOòéyrÓ5âÞ: ßBÎ Ò˜ˆ¿Úä›IØ~±±Œ¬ø&sQìn¿*TöÆb­¬E¼X¯7›ž¹ L#bvúóçßûY¹G¤0ÚJÎñ65>1ö‘únbå¿àª»bXô¤ä¥6@­ò|;ˆä=ÀüOä3~ ˆ`s_"Ý=Ž|î÷ýÿ뢃¼ÔÿU‘?>ï©;ÁÁõ;-lôãÇð^›‰ñž*89¯´ï‘ž,pÕÕrKƒ,ÿS÷¥»âbP«/#ÛµÆË#ªœô]åc©Ï÷1DÀ"ù9ž »‹|Ö©ÛPÕ¶FŽ.Ú”ŸêSÿGV›³Ùw‚µ<9ˆ˜ùD…î¶€£O%¹¿¡ÎÖº^G¸Oá Á]·ü.Ž|æ&øûrò@8²Õ6¼¶úh,í¸ïz܇ÌxÜ è3±3YmÔæ˜Öá?%ªó½¨Ÿét½Ÿ³ÄB$nfû>ð3yfñ“• ¸£ÑQ®F¥·ÕÏr_H<²˜F#³Ï½¦ñ°yOý¤ƒt$óÆ¢c°å!ª½Wذ©VFí@¾jjç6>¥’)OF+ à½+ÐÞ¿¨]I ØD›0‚ßÖ€žQôCj‘¡bþÁWܽ–ìÔýwÉMv§ÛAßóצý Ç~#ü~C?›~vF>FòVdðúàY3½‹4±Ñ@íN°^ë°ºu=çïÙêy]9ŸågˆØ|-Ô”ñaÀã‚-º_Ë©ÀaÞÁSK?£«v³Œ7Š¼ß Ì¬Ûw9Žê5ÆÞÑô­?Q§SÜ–LdÄÖ:m†ñSC¶ùN¨Ö þÙ`НVxE âÿ¡ausí`C±i U²òìý-‘ºOØŒüƒüµÀ©~Îå—ò%Çe‡Ñm÷5P[$Œ­ƒ¥?õ…ù¤C3iu2’A'xعó=T?ûùÒ·å-øñF’ú™A¡c7H5׆PB i2?½b',}³{~­÷?Íq&~<?ˆÇÿ‘(¶ íÑÓ¸@o¢û pþ¬kWý—â)§ˆ€ŸáB6=sé’¿ÄÎd"Wæ k^б$hMw[Šûi×/ä 9þr]÷g4Ï"÷䙉ôÅþ‹@‚ÑxÈPm:öí#mø>Ù£Üdü{6¼o2·sH'@”C|½…=%kÞñw$&c–#g¦—ÐqÿŸó{¶§’ìÊWD*š¨`A||£ŸS5Ÿ8žå埲Í#³ âßüôΘ‰,™RŸrÌäž[ÜáçGœÃþ—ÑãS—p±?Ï‡Ž îGÓŒ°§¥Cú[ð?¯ ®¼ËçgU5‡ÅåלZ?=âo'›Oåæùs{ üô[ãt#üÄ xÊ2~8Øó2v|˜¿s`=–ßÏ+6ÿ:1¹> ¹îcp£ò§F9È“t¨ëlÁÿ¼¢¸Ò®—« sù´°£ýÙûÿS*8;«gW¾–c[;³¹û>Ãö¶ûÍî~M¤/~‰Ÿ{:ÿ_á+¿­ÄÎuü½,Yr y!R·õ²9¿Õ ú•†žÞ`©] —Ö-žÀ`£êüö(8v+.õ3]¤6´{Þ–ùÉp$.U_"⸚ï ü7„»¦¾åös¤¡ßU"£Š&Õþ:EGÀª¿Á4¾ÔΓ25ØbÿÅ*èʺq®Þiçû.Ê^?átø>‹.÷³\w ×:˜ðø_Bµù¥4OŠìLg*ºë>Jìì×1꤃’‰oJj˜Á]K,F–©SjXâú[è¿XÉ\1WÒå¡ §«±ä4¸š]íîQm1Ò?£ê «'ˆƒÍ¢Äsdâ$'X¶ŽœŸÅßßðÄÏùZMlØ>»Ôüä6õB'_+Ö±šMD¿pIƒ-ôZùñ€oÜ}ɯkA½%øýVtð¥Ÿäµ$l¢¿‚ ‡=ºÛ}ѱüµœ—à€ÝÏîd“ׂ~6ëæ…œ&3&€ç¦&ëY­Ü‡ªoœvãÑßµ ¶Àµl·w{×WJkjø¥h`1ˆ6ØŸ÷<Î?´ØùV=‚~Žø3[‰ô=Ö·{#«jL¤ßã'%®C;/Á’ìxÅ6´”´¯©/9f¥.ƒÖ)àâ[àÿ²jº\fB®‰â¥dü¥ØÓîƒ8-ɱdr="»yí5™?%:0•“M¶½‚oìàkèWóhIþÎ%¼%Œ&AæÆøÊ]«KÈýõ\%ü;ŸÿzUwe\·;5V»_Õ®ìFn›kr,é'ÙÜ&3œ§Ö)„©ñê¾Ïy.·”Ý7±‹¸9 Æ'å¯T’4 eM®¨¢ûôŽâpÎиZ»lAn.Œ¬œ»Æå~ÂrùI¯·Å®–åT«‚+¢‡ôMàKéá´õÑÚìHùHÛùñ¥¤B_Á:èT}`÷Ï…ÚÞ˜áÕÝ×Qçb9›{ëÇЇ ] ßûÛ;ˆ‹íËáû-ýž§úÈŸ ”¢~<ó·+üˆ•~¦ZxßZ®ãõg=¢_HúPÜ| ð¡‹&ÖåØv9–¡&Šˆ-ëã½íÁíjSÈsIØ®p›hds}ÀíRé b? E©ðl&ŒÝ–Ž¬ß ÜÛ¤{‰ýÒ:8ègüÿ»õ‰k†”¤š fM@rc5µÉÙŸP±|N]ôèn»|l·sP ±/z ÔhŽõÂ;âÂr𣓿Ä{"l¿ŠØï®»ñ¼šOB۾׿^6›£Qð˜L0F{ã×üîþÁú56€D 4@x"µt$Ï@WˆøæÄû}¿K$>Qò‘ÑBûi=´s ÉêÇìšLBçÎ÷¿^!.¾+ê®»ž2OÏ ßXßÕÆîX+KÌ×à{¬6&XÖ».$ÿO„ß &ß¿ýRet‡Ÿ [˜£iÝË䬫lÁþî•×U£Û¸Ï¤ƒ^·ôCþò`xcmK;ŠŸbè-)‡wO!»' ³WG6â¹!·öÒyTyët¢ö Úù4°[Úº$ÁêZ%\#ºø®Û½mscí©]ð…vØ´#löCrÂPÝö»|éïqøUê-™°UСÆ¸À2~ íjfýý#+±KàRº\Ršz.X°Iß« l!ßwòW;²ëzPý+ݾ‡ D&'¤Ã,2Ú£™ËÚ50_K¿PÇöÿÞ• dvCÜ ²ø7È¿TÕÇz.ÓŸ_£É˜¤±ÿ©Œ_´ù‘åðˆ “ý2Æë!•õýLÂáïa´8þR[ÓhYݯëðƒ'úLçJjן ÍWÿm%'×W kw¶|þ2¾#ÂI‚ôå5*Ò¿Õ€æò÷u‚í´G¾ÚVûhiíëg@§äw›“̘Æócȉ¯4b`¡¤OÒ†ºÎ×¹2Âò¹ê®½d¯ÇcÑ/ç…äÀžécß˾ޗs`¢u ,•Éx4á¸Ï‘?9zøJG¢»Ç¼vÖ¡0ƒ¾zOSIwW$Þùõo«ž¿Þù‘k%á3Ö»´rÕWR€O®å6ÑðT¢Ãváô‘Ñ•cšÃÿñ• ¬(£ßâ9éˆÿäÄH~*©=´– ƒÁÞñû^Õñü n›Ë ªòWt+Âe #“Ý_vÊI£¥xFø½,Ùn›ØŽ¡ÔxzwX`)Pñ7|e"?'ágëþ”…Wºñú bÂ&gU– ¡t|"³˜«åfË`>ûGzQÒ’ïrƒé/ÀÁûò Ö~ŒNbâQ4#ÇØ®wá'ÛýÖ ‹‡µÉß~E~N¡müºvCqäsØtõ` û_V>"³›_·»Û#‚ù)ðÛòøø}¹(—Åzá=”wX·8˜B3iP9hXƒj | ‡®õS3"£…È ¥õý(†ÿ#Š:‚Öïr1¸!Bž¿ÿ¼òÀv:»ÒTRë|º8>›Œ¡wȃ·åš'³½÷wƃéÇE7!Äw6"á•ÄÁÚõµý®¸wò‚JÉü ´ÎÒ5è1.±4(jBnȦK] ÷u°þ«•Ü‹ E‘¸ŠÏ{Öµ(6Ÿ;-–<)Öy¹\‘ðøºõòJIÌÛý™‰èŠj}>Ó —r à+y)Oà@a‰ ²ŽCâ¢dŠ­¼¾TÄ'*jdéæ§€„ž•vú¹«.é@¾TXÕîVÏÆOq#DÃë99#sñ¸üKŒWDàˆ¤ün½­nKz"ûcbá)92úˆ„.Fé*01^ "Ôƒ]“ºò…¤³ò*Ô°áñýžðº´ T°û˜dåŠg%rcëuÙá»;¥÷={Lþ¾h¤ºÉÄ3Yȇ‘}góÒð£Xÿ þߊœ—îô!ÈИG*¢Õò#ŒòŒ$„W %L òtS]<¸{,l˜ÔŸá8Dy±^G8oJ0k»\™¾³ù{Ø`$ìOOH äç¸üÙ[=Åvû½“ü­'è´:,Bv˜£ É'Ku*9ác -ù_CÃÊá¢bÿ‰`^잎ÈNÜB¾DrF>{*Ý/{äß´ûÆÀC¬S‚åˆddù‚ ~fÞõ 6p^N/åµ|ÀkñÑL4µ;À§Âо‚)åÔXDÉ'TŠM$]¨¸Z^¨àГӡ²{íû¼‡`MücDê}$^'Gx~|.Ší=/7ŦÀÕ;c}ëq›qçU­‡F4ɦMuòwñ5Bt2KK­F}øµŽ%ç¥w•ÝH—¿Ý‹—ß&6’Ï’ðIcPáF޻ȿ ‰×û=ÐCð„cþðgøÌ-8aeP½Çß!Ρ¯—x€M͉«6%«`I5Žˆ RdÇûQ1lÔNü8©À¿l®0Þz9OÉf˜ý#)Iî®^û¹æ;ÃÀvù½¿Kyç“3:G„Gšó~§ä&8âoDÈuy„V~áõ˜È\ߨN.LBîL¶Œ£ªÂ__¦§¥f°ÅwI\¶*CÕš„j®Œ¡bÙ6Lá•xr<¹ßßù®@£d ˆ¿HRë$£ßÕ³xß^¬ëøOÑd0±9ÚM ïˆæjÆ@ pO‘ ËJò î/ìʹ—.öZ –e@¦}øl0;!ì'8~—|þ#èo=]¶Jj—zxðäLU¼•Çl¸`Y‰}{è7:¦û«ŸqW ù6A/»F®£›…y‡<C‚‡´°~Ô{fòý"â©[0ž¾%ã=Â’ê"ØúÇæ“ .Ø:,íF)© û£…Nd°ÔG)ÉŠ“¨m€ý@Ç2z–:LêU‡¶…M¶ç«¶~Flª‘ß®ªdóÌ*Øf¿eƒéïÂÖl‚Sð;<ÓOÁíâòyoóÛbl]„ì¢6ñ¬˜ÖC3’ëÚP×|ED ×/Éêñu©ï /ø.¿1ýµðþNXen©ûˆ†Z<œ)¹%˜³`mÆùl~ –ööó‘|&âÃ…7"iLäŸ@ ÆdFû9 —¨ ²kY¬ogý»¡‹¦:Þgø>`/µNÊ|W¨søËtQÌ,HpŽŸˆAT%ð½Ö ëTI%ƒ(ˆ+á~“ôT91¨d‡Pã¼¹^€÷ÇñäàØH©ÏÛùo©ØGƒ6ߺæ3,ßyêúê4þ¥ÔCèmš:A0°}óÖ¼”¿¢R°~-±~dŽêÁ¸® Ü'?^œXÇIÍG¼¿ô]z­ófýdÜ@~Ÿ,-‰ý ÝK±ÁŸk;?ßÛ8Ý 'Ö=KÖ¿í§Ã­'›^¥ʪ鉄 ZS+‰ü¬Ì&üdû/êÝ!9ÁÿRøôù’ˆGÄFÑs¾cU|ð:>|7™~ƒïîó•L‚Îá· EI¼ÿK|>¬¶/¨WI£ªuzÝ÷ç*yyá lÊÎ>ä/¥ÁcÊâQv.¬31—8Í|† A“¿ýóýßúÞ§y‰Ê‹Ø;“¾’ÈXó1‘¯àÿr¸^_ŽšIÝg]1¶s|!mLüGúì±ô9t",ЦC,óý’"ÃSàùÖ112HXÉéwø}u²D|.­¾w¥‚èc\E÷Â-*|¶%äìü\Û×È}‘¨†÷³g û\ìºÂw6ƒÆ®ÁìÊ y$ì8H¦·x}2Ú±þ†»|7ùˆº•÷×Q»nr”¸¡þûÓˆ7èÆ;Õ´®T â4ìYdß±n;Xw Ÿ¾,w}ãÃØî:x V¬÷ÈŸ˜*ãý—uB¶gÑúÄÇk2Ù§È_R­ós_ì>-Ù,ÄäÌmOò¿åoÙÔÌ£üýCaµA ›£·ô[ NÚÌb~ú[4oÄZ2Ë ŸY¬;NJ°±ž³øì?Û-›€`ç®,ÒG¢Èšªà)²žÇçúZg¢ï޽ˆ#ì|ð}¸QO$K«ó<ÆE’(=›(°~é[eÑlR˜ìŸÔw4VµJ"ûyPoüûyuþÃtð/3¾þ ÕÏIßÙåv›‚åÁ\Rënü<p¥ô—~X¸?µÎpÏ„o‚ýáµ4<,n66 =ù+ð“yhq…?{߈åß‚!çñ‰°›¨G#è5±»sƒ:ÿcŽkçòŠáÑJ´p¹ásNëu—èý$¿†Ç/õÿ–#a/$Ý»¯¬›ÈaÍ@¿º¾›ý2ÉG6Û|sAˆuxÔ"|äŒØôè˜äT{ô“µl¦FYÏŠ#„¿¢ôÎMu_¸Úî:^i×,"é3ß ~¢Ÿ}y…ܵÙ:6ls'Së® ÃêW°ÂȰ½Š xðÏÎjÌ!sÜ$ãïGfÈ,|d7l)¬Ú4¡ăõÏ;$†ˆ{»Š˜[KH‹ Ê?Þµt \diu>„û%&co‡å ‡_ Ý&*.ƒ†?×gú)@vHFm¶ƒ[ßóâÔ•aþUÈ·ÐÎj$O¾\†ÔËÑ…õÂÛBnµþ€»ˆë ÓæÐV÷K£ N¿û“Ò»ÛxÀAÐú ;×wz†Ý×’ÉyT·øž®ÍF6ëð}SžÊnøo3r{eXc9ª™:0¼—þœ™uI<ŠíWñ×&l²D8R,'̹¥®ÖÆÔ~Áã~Zß»Æ.¼ï<ö™Æ}ã½tŸz¢Ïw#}ĹØsºØ-¯ðpëóÞ‚®ˆýín÷Fþί‹ Å-þÊQ%`3¿‘÷õ>¼w‘$' ¦![äëõ_,êÆœ¡àúÏaà¡+ç¯Û¯Ç?¯‚ûÉù[Éu_"ûé€?˜å­ýY¹NM?ë7Â2Rñ}®SCæ§ Þ J–؈õWóŽ!¾'èôVš:)1Ñ_ŸÉ cH«']ðåèÚ»Ýκ˜ÜÏÉÒ·áŸb7 è.]g<™ïw|EÿY>Çí@-<§)¾Ð™æøé·À^¿—蟂¾ã}æ9 üÄÇÚÔ_PÿØü Ažþbë²ëéú¸dÞ7_c¥ðàuµžoç‘aŒ¶ ß§ñó2à~±+;7¤‰ïwß\j= ÇOeü]^yušï=ä˜ þ/äcˆ£Ù¾ƒòY´k^_„#¿÷÷Æôâä»ÿXŸ¹¢n¾ŸÐVSá—Q4.ÖyJŒ@ú!x€u]á»Z÷ú×0ÿ/àûÕ¨é»bÍ;RÑ÷v-Cm'dLën="í^ë™ý¶?BTüä5-}EÅ´ÚùãPÑ¥/õg:¸hxÚð{q< ¼€Ý¿FæŽÈ?KÚ,èZ0 úÄo+°/’¤„÷1%U;#ÒTL¥+8f+™Ã& n€ îÃò?ù©‚!äŠX°„,ðÞ<Ô¿Í]³` Ïú–Ô€ ðЏ^/¿úÞç3}ߊÌßà³ÑÂì:_j€Ñ¿“·û6?Ýà¬x Fíï[?ý¸î°©ü»é¯û)sÉÔ®‰ýF]T7Ø¢ûÕÈ5qÑ¥ yì¾D'»~ßÏ€ü ûöýÎ×úë¡cå꽪Ô3ËÐLoé 3ŽªýÐÂPî4õC\ðc ˜wØß ô#üéq`ó/ñ×á_6YËá4tô )B®v£µ³¿NM× ·aÀ ²Ù=¬><íçÉ&ù¹Hûð‰X¹ ¹}9¿óSÆójüþ(é^s@®ÛHµ/˜Ž¥§#ít* ›…Ù}\ÜH‘›|ðÏñK‘צ_mC›øvßpþnþrE6¼^«¢¨uH* ƒ-úŸWb× \à3íÍg­  4?là.Èf3 ­£ûrVËäŸØý/ yf;ñÑ›¸Žª?áã<Ï]‚l=÷ù;G¬ÌG,=’lä‡Äh!ÆÖJú*ØbÿûÊ຺n'ˆœ—O^ ÿžù+ó‘fè·Ï6¼ŽL¤œ&Šíš–Õ=ËðüacSowú¾Á›@>»—âš|¬a5ð¹vÔh¸9cYøBp+ÿ¿\‰\>WÒø|ǰÛJâ{-»v³yììǾVøšp#G<$¢ÃÁ3’í*jf¸Òb4tã¯ðú übø9£´™ï1È#©{Gê^ݦïôp¨™~aWÁò¸â‡î­íü­ÝͶü¶©×Óùí(òYto §EÔŸaÊQuQŸÆ÷ɽGT‡çÝõ¦×Ý/xÌÏO¹áÏýç¥BÌ æ=¤ömª´C ‘L¶Ø±>ÆŠ».Äêu±ÝÝçüüÞe~ž­MÄ»"vMÀîÿ[†VRÁÑÀ0Ë v.3©?—•ÙOø~Œå·qÜyâÇrýMÉêçÊ<†ÿ=‰ûBxÀ Jî~þ·•×¥pÜqÉH!ûÙœoˆuëgR’`cÑ7¾¦[ƒ$ù@ÈŠÔvÆ03ïHsˆý?ЭþÜáC0>5:²ù7v¥(Úý q¨þë34¦” eýP‹¸´®œûùÍšÆTßI4 ¨Ý÷oû¿¢ó|<½î‘ÝfÜ?‚ée¡Nz\멇m¬¨Í|ÚÜÆ/ ò6)ô1GÚy2Û-l}QGéA© wÁås9\©‰­2`ÏŠ¾¯{t²àvbü¶ƒÁØ®× àþ6?Ûå1–ÍL5û3±bWòÞ‰ÝE³žì`S h#êâüú¡^…í§'ê[ù꿾.Ñ_\‹P¸®>ÐÇÅ¢’OŠ­Šùóš)ñíë’„OK½[‹X?$v¦ÌîèHl¹xu¾®Xz…•=bw’Ù„¼æT¸µ|gxó§´d¼  Íø˜Š;ô­\®–‹év¹‚:”ØMç¶)ev"/nSŒjâÁǰ¿Ýù- îå2qÔipaºØãw‹ý©;x¯³AZM~6ÖÑWè$'±:÷Wu¥ÑÂ7J‡Ã£RÄ#lR½uõÍOu_J-£'…!¶§ .¯Ö¶*µ2µ{ÇmZØFSÞ‘Ç÷Â(µ¦²ú,øLiêÀIéÔ+>ÿýêêÊS œDþzX'é5¢b3x?Qçk¤¤¥’j벸Ð1á÷_±Ò‚`U\÷žð¹|Ø ¹¿Áì>Òbó-í¾n%*j:Ê*®íþkWlРxxؾz[×RÔ‘g.@ü“1ÒXêƒ|£a CÅÎöýÊᲂ=Ý·‹¬?NnÈ×ÒE¦"N(w¨[ËbW"”3üveÆ ¸¯]m©-OÜH42Ç’nÛìöÇúcý±þX¬?ÖëÿÉ*érÁJ¸J¿ó*ïï[)¨R¹â®¨{àšºþÔõMüìøb.»«ì:¸r.¯+õ¿”ÿÅs…]*ºÖ®™ëêRÈj7XÏ}â>wä¦î&òS!÷1õr–Pvu÷Ÿ]™\b*šbØ}(Œ÷[×Ïuw[Ý4ÒÑ}çÚÉzyíÒHKi!×\-bÁ&<—þ÷¾ÿ·U+Û™°R®·+ Ã$¯ÔtRMl¥öùIŠË{'ßK,íèwFõ–hÇv–…W¹ÿ±UÁu!΋#Iq7È}&Q}çÃ>òRÞ¹!n²‹/k5¥VÓLZR3êõã‘d–"Ò›w%b2[ˆb5Àæ#‰ë-.‰ü*Í5‘6Ó&ZIéQ‰ Ü:9©µ¡Öý øè:ÎwÊ­£—¤Žtp9‰œ‚¿Û©0%]E7…ª¾­¨^”Ïu¶¦Ö<ú¡~¡íµ˜.‘îîC]¢_j=-¨Õ5•&àõaºF'j]®£õ ¨ð>ðûÄø yu0î#9,õSS=£‘5­¶ÐÜZX[àíŸù°Qy®ZÈ¥9µŸF ÒuèAù7©qÕÐÀï-'ftéAð¾îœ.Ñ5¡NÖ°zOÚ"ktü;‹Æ×ÍX>¯Ð4D#h ¤Ï­±5€ÌÕË:B;ëXM ´ÂOʸü Áïe¥·sµkÝ/®µ¼“ÄHX•¨·»VKk,=,NÃë×Z–XHͳ)UýŽþŒúL®K|e„NG]u› ü¨s¤±4H:îøÿïWr0+‡«ïö¹‰²@^I$«Iµ©~„m³'d¤# Êi+ýUlçKaM‡´BÖ¿4yù3âõ+¯÷ô¤Ìõßó¹Ðs×çß^9‘?5¬v§ë Èjõ3µnøåoˆ…},É4«fÖGòHŸÉKƒmù‚÷wÔ!`ßp-Ï»6jÞ¹Ki ½[n¢„æY(E]¬_ÓE•IrHæê]¯ÍñêlØñ#¼ü.  8¶¿%)°.ßéxäóß<“ 쨋шÝ!•T[“+>×hñ™1½$ÂBKß㿵ÒSË䆽“'rSú#ug0ÿ®Xwójú\NˇD€Ý U›Øï¤ç$£öÕú0€O@»æHŸ ™-¶ÛÕæÁ4Å/zè4þÒÏúPÈÂPŒ]m"ˆ»"µ¥Î$öKbÃ’úTßùõ…\Ãî_ú™7Åñö>¼ò ºIFäçÆÒ-41ROg «˜ä…8¾ãI+r‚ÒEzB·èiî[п¹ â›õÜ0wÊ–Ÿe€õú@æ"Ä´ƒÍ½„åöýÓiM­7\0l¸49?¿ßn’Ãàß¡›hjÀÇ`ÿ®`Ã&…·ŒÕ¥ a ilQÿæJ ömv¥¤­4•/¥>yo'žÛ™l×ëi¹+Äæ^D ïÅ…í¤Ó:ÈÿJêú;Ûs‘!Ëi|¾‘Îû¬û±õÅ) OXˆO4òXÐK3h/9@ÕÚV¹)‹‹Eý‚Uílo{5l\i_ÃþÊOþ¾îDÄz"-…nj8Mbþ‘¤áí®ð'ò‘Žäßw’Y¿Õnº-Ô"ú¿Dönðâ‘z^:IõPwu4l·˜[(6Í*2ØõZŠÃv2éÇä÷’úRnÉ ¢â…X—tp½JX3!ç+¾”µ1UÁ!Ž(Àsæ%Càß‚þ ˆc U‰…ùè">‚†¦ªÈzà'wÙÉë5|¯²äpëYÂ÷Ô x8=+ËàvѰxBꀼ¢šH‚n>ò÷‚½”8xKRÝ&Öã4Rœ8‰ì7ï/Œ}¤SÁ¾Ú\l)ÅCQE„GNGZPËvÅê€mW%2(Ÿ—,ž [Ç×ã²YÎø½ ‰@¶Òà]<òAB}/刖p~wDLÐà<>òBb£¥ŽºÛWÆ[RªÍ°>©|gиÚ]F€¶ ƒ-øŸW,ªZ.à¥ÊG´&ƶ™ÔzÄ!ÏÕß"“·VÊF¹"ñôr&ƒÝ’íØ<ï¨ê%À^‚ï%ü0ÏW UÕî íIôƒ^ÆR=„«°BÇŠçJ¸§®¾¦Gò#Ò Ùc€ç±Éz¿‚øQ`:ç|G'ÛxBŽcÁ'äÛ/c 12ðï;¿çGñ„÷x@2< -¯Øä ÚH?C§àÝõ0HØOW’Sž†’»AÓÃxóºóà]2l}Q’ãߣ‘;">¿AN!ï 9*[øw¬å™rÑwƒÃ)†×Ç#¢m"Jbƺ<Ý'sÞGI¨û yÍ{¤¿‹<‰#£öÆØ¤ÐPq—HV°¸½û.ßL£×ñãœ`€Ï9/ç[á­»ðý²X&ûþ28w“ÜÿßÔ¬†ÇØì“[<®ÉI9+µo¦£zÔPE@ÍËè'2Ïf$"rêr"ÁŸÞSÃ=v©&é­Ò²yyòWf~»†4|gð‡rIÆPÿ3ÜC.|‰^²ûywé8.?y"€ÇÜD3—üÎ÷0~TrBQ¯ÉÑI2ßÿ¤õa<`«ô ¶ø.¹¯¡,é±ñ |úYκ´Ãk@f¿&W‰êŲ›îÇú3e†LáߣHz ÇÃó?Tó‡çð£sM"Q1]ð}Rl2‚vïy5,ˆPË÷½o®ÓÉ©'ðàßÀ%sMÝrI­[l¥,‘¥xøfâ>*xðžB²ã¼b],΃fý¡øÁbPÐv¶Ù¡œ°¾÷²ýíF!`‚ÅÁOøºõþÂ1‰aL‘¾¯žgIO0#[à3 þN˜„®Œëã’µ¾—m°ßÃÄè=¢~=6Þ‚<{üßÓkÓ`> '¬‘ 2IºðêE$"C`~N÷ËtŽ>nÞ“ÿ&o KLAî. Jø_/îêN]¡W¤Kdù“¹"®‰[ϧÞÊg}ëñÉö~]ì‡Ýnä·}À?Iaþñèn2Lz ï ÞÉ.—TWá1Öãæ0zúEb€%§‰Žhzï¯çû†x*rW%ÔDÈ‚]õ0ºOdùc¹ n)Üg?y>6œÔmùÈS†áøÜYß kßÕV>ûŽÓ H>À÷ø!ïÝk÷ŒxØ,ùº)¶çÑ ¬ÏÁ]þB¸A ¨ÚÂ|V¢‰Z_ƒ8§Ý Ð'¸+%•X/>õi¸Œø¹Íñàn©ˆè¨DÄY r[ßÎÕ b<]¬©g é "Àz¢þ$¤2G¦‘¿À«“¨ñ {Èî4àçaÆ…E& j€†PÚ®¡/È Ye·Kdù³¸–T}™á.vî>5Ÿ*"è12-çgñuœŒp•ì5ŒA wÀ#è42á¥~?]¬ë¸¹H¥ð D÷=ô_;ëA„Ûb{¢xB)ÍÍ+ëä…‹'уÚÿ>uOggÝn~"C½›V‘OEDŸ«îNKI^9å{£•–~šÇPrwlÌßÊ(ô2÷awIñ|Gü§‡±Ý“pØÑúWŸv–ÛWË$Ö·]?_ë(rã\¼~2:˜(s%·NÙ'ãßßP+CŸ)õiFmŠÀLÐàŠXOùî’>e4ÓÉ'*(AåÏ„ý_¹»ØVðû¸|Ö°j]=„zo71lSON»9d…ýü< Øÿí zwÓ¯8r/1¿ˆL—†Û­ BcÈ‘?A$»TÕüÍì0¤jÔƒeÑ^y]6ËÀGÊX #_µÿwb¸uj–ÒXw“½l¯õp8ãû—Xÿö š×÷¸ºB\*óÈ6Ëï3òy¬yAöÄÔw_ðhº ÕíZ{/—tú ÞÞoÊïË©·áË·%UBj á˜öü…·`h4 æ,Ф®$Ü7Jŧʗ6ÉòѰÐwo§1µ6έxæOý<­ÏÙgú9\ ?gÒFÄCSlo&ê6½}wÔF“«j _r`5B:¢¾„õ¼öç ÚV"ËCÌþÇE]·’Šÿ¨ÔßÇ|-1õ9öŸ‡ýŸPî“áTÄát›ïah;Ü+ãÇõ´QPHEFOÝø¥~«#ÐIµ>_V!Þ€ÿ„ÿl*z"@Ñ@ªÞ&èo.G'þWÈâ îŒËâ*ºOáêÛÄf^G⇾k‹ÍÀ±NÀÛùŒ÷á±ÖÛ:O!RŠhem¨½}×ï¡~‡ø„ÿ½·€—òJÖ½WÕÆƒwwwww‚îN€' $hpwww÷àÁ]‚køþµfÎwçÌ3GæœÓ;sYýcwïÞÝM—=õÔû¾«Šß³`þKá óÈ+Äêèˆä¹¬dÿ(~FêMâ("8SžQH{Ha0a² d´.…Ë#á±ß!ñI¾á.?¹/, n& Ä‘Ïæ!ûn+‰‚´°Ø2دïÿ™.7mL"¢gá-ãñ›oÑÛF"e7ìé5u Â~.£Çä k"­˜¦ÓºKàg]óî«ü;\²Ý$)‰…{ YG;çñ‘Œ}ŽÌu¸ŸHC¦€‡¤Åšãóu‰2ha0Þÿ¹¿¼¦—¶DÈzß÷m!|â8ïMBNNy„Ozͧ^";Þ% kié7±›Këº8«p kN]J–¿Bü«ŸyuŠïxBl"Ðmøÿ4ßý~<Ù~&U}JìßÃOý.å;4Ígé-9ï~ÀîW@¾ Ô‡‘A’Ô Ä|ê?zdSä~Å£>‡C'%*ºÀ1Ú° êL²¯õ?R;lþœ\~™Šßzýâkøw¾{§Mƒ›ê;¼ ïS»4Bþ–ÚÖw>¨GeS] ”ËnZšC¦´>/ÈŸ|‘ô®8Çg¾õ® ›k’‘<²JšLz离\î¹;‡ŒùÆ;ĘÛF0l ¿‡ÿœÇöðh,v°,‚±ŒG¶»Xµ†öõóO*øHhI†¯¥¡$ Ñn³æÉ^ß9ýž£TÇý|õø×:þ~œOßÚ¤C›H«Ê?ºþ` p•ÁÔôí©ä&øžµ{òØì–#hg!<,?‡ƒ€gaw¹ÀþšHÞ6ØV‡’ Ço8ëyesGáí Ħ€]õÇBg!ó#äÿmÄÐß½7l“øL”€Ú¿“«åúã‹g¤¶Z ÊÛ¬›ç¶Žü÷ÿµï?Ûé‰LÇ;.ÁË÷ÕÀ¿¶`@5¬ØÜŸi3Úñî9èÊf ܳý<ï.¡dÂC÷¡;ÆùŽï<ßOûÙŠ6ñ­wã Óü1?›ü±¯6TBÌ·BúJd³‚°;ÚF§‹M[C´ÄÆëýÄœ5 ÌqDì ˆ–ô™~”8:_)½sÃ]KÐï|ÓƒDöxËI4p I{#ïbl·Ü's¹YÐÕHÿɪÖ¸¢6ÑðYëô•<,‚F¡Rê Nð3lnˆuÎ_B¼¯GÑÁ‹d—¢ð!›ÜNTþ®îWÔÕÀ:]øæ ñøgòÔ÷?(mü<›µøý@î×y\ØCü~@WÙ©³i" $]q»”XˆˆdN¯'Cx¥õŠïÌ;²j‘t”µ‰Ùt…n¿–.Ð] ÇÁ‡ºk`Q3µóqÕÎóM»K'/»õÄ_í­ã¯Í‚Œ¨ðƒšÑ÷€øJ‹à`ƒ 5qt4µÉ;ý9{Ïx>ë:¬1 ‘F_sèZ=  ‚ºJÈêÏÖ\ü˜ ï­j³—“áá÷7‰Ùòµô g€úóðéö ú¬8X€ý_ù€6Ëû[òŸÍöË 6ñsÏäÓ¶¢­EÒË÷Î=%v•@ªŸ‚pëYÌŽ#\z[=Ü(—v©Çƒ}§A)ëci}ðç¢ ëûng~§I ìwâ9¾þ5Œ¯5÷õ°}wò˜ß­Nýs=õå}'ðùUhÓtw”ßRã'6Gç*¨WN˜þ?àGÿmµrå`m18üz/ñ`l6åíwxîY0 ·ç<óÐBk²ä`нŒg¯!Qß«wAúŠÜºsZš9ëˆÿx‚MÍ|$vÞ3³ ^¶”¨z"¨5^K1W$гº»¯ÜB¬òBb¯ûâó/¤ÚQ¯iXs<¾$+ù%.Ù²Þß…º¿>Ö·ÙßU±f?ërÙýkÐo‘rŒè_ƒí_WQ©úRÀºÖ=÷†Ì¡.,úÂôuU\]‰DFJ¤i‘'–JŠ'Xï ŽÁ—§cU¤žŒ!Ö¿EV›™ð½ìÕßK~*‚–è¤.áõÖòÖ?D¾L¥áñ‘TÍ©á~õñ˜‰üÛ­©4™+háYß»<îWy z«[v›Ü`S,úò³`³OìÖyãé¥á1;ˆæ~dˆ»¾óñj˜^r2Bzý…Wï„Oáß!^•n ;'…)ý ÓµŸ¶Çß2‹«Á;¹’î®Ë¨÷¨uø 8ëÀ®ƒžÿM“Ad0ë÷½ÈsÚ‰X5:ÚÂãoÝÎ_#ûðº1èç¾° ?Ùà~ì÷lÀGÉI®N ”–ÈJþe¦zx"-º_vb‰+¦ÈR6·~#2Üã߯xöQLw˜ÏDp|©Ÿ4V3LìÇ?CÆaDyùXæ{%ÛÒ9ÈÄ=ÛåÏ Û,Õj³à¢Àì¼zhÓ9 ;f » D@~mªJ„W;kÿx žòÝG!å8Íf²Út?ÙjYݦ‚¬â¯ý$^¾OXFŽœéûdö›ÝxÚ ^ž¡Í_`Ö+ò#QQ+˜ÈŸÞ¥BþhºË|F½›H…8U2ÔCd˜åÏq­Gþ%hbªŒ€!LàÙˆøcøuwIK6»‰Ìó<Û_ËÏ­žKìBþƒpÀSD…]!–O£ëcþrÝWÙõ9¸_ý<‚ÇÿRQ3Öÿ}ô]À+ÿ¿\E‰Ün H=k½ÆnŸ!Ñ5´vqmsL.#Ï*ŸÝÞŠÕyÅ«#SÍF‡ÑØÙ½Øà@Xô¢ÿÒÛù“;ž¬ã3ùÞïÉÿÙô“ÌŸ|ø¯Wvn#]Wl»ä:Ø”žDûZ˜@b¤{F&ß¶Ù5~1Õ®k‹¡6/ Ùï‰T@.Ûtž8Yá3~*2^|}ëyàªÊ†ú=¾ßCQ#4s--ð_­ôÔ" Ü"7ÙöcÙgHº /¸€üAÈ—¬uÍl'Bl blÍ‚-ê |ûÒ–‡5Ùå¥p… ¼?¤VÑ8d½Ò Â¯ÈBKèP]Áí‚FüÁÌú¶ªÀ‚fºŽ"d«°Xî,gž¾”Tc®I©Öøªæ8™ý92æÓˆþª©Èxþc|f™Ÿcü' Ub"ÅW^ÞûR"Âx›ƒüSÀ€ZäÛà·òò­Š¹ 丄Z[Æòy-”ÚT°*~šE¢ÜÎð“ÎP×'ÂÂňùXú›¿ZtžGɵ°žþ˜Hq²^¿«"3ñÒX;ê2­ïÍhaÿæêH-0ß ÆÃ‹À‚bÁRBñÍ#€ð6©ZÈ qõ4Þ|ÀOÈŠ¨aÐK=*9»jî¨Ïz«üQƒ-hÇöC5á/µµ^P f÷{oÈW®¸khQÿæúÒµ‚ Mq=¤~ÚÜïük«É¬…A»t`ÜòÀ©ŠÕíÚŸ¨þÜ_^üѲœlq~°ƒ¬Ÿ†Zj$òVÖ1:ij^é1ƒ*éFrMðÝ]Ûet…Üwnœ”­scñ¯²¦çëQýÜB›Šž{Ùø“V#ÎïÂwæbý äúýÔMUÁùÆÚÖ_/ÚÏwÁÞ«×5RÐh©Žü=-æßY…]62áp×OìºõH?^œO®¤6·,ù=#~ß ”|÷¯é§cüJ¶<SÚìóCl­¯åy}c´ÓÿX¡«t9‘°\†¢á@Oüýû«ßÏêáP`yD¼<7\°ÐW%?‘nç¸êkd«Às{Á5ã¿ø£;`|Ǥ¨`óRéLêž²`à2G¥¸È¥G¼ÿþêA&ˆëö»’Åï~Kª¸H~k®ßÀöàùU5v'&:áßiðÏõ9ùâ¯W¼ • -i$¯& úZ7bÍú:‡X.òõÓ†òMñŠÉX9ž"/tã™8 Ýt¼¾`P– ®ä€¢úÖ•üu¿ùË•ÞÕu5]<©îÓKz‚Û6¤´.(ý‘z>¶Í ·¦×©J颥:èŒGT#343ß÷Áá<Çm¥ &rC\|*ÁNxõGEVlF&ìG Ñóš‰L0Zc’)†ë~Ý ï¯îëÀ‡®"9ä+,Îrý×Wv— ìJ꺻c.<üæˆ^ÖÇH?ÿÕeG­êƒf£ÜGéNÕ”ÒÇ…„õ’VRVúÈ6?ñ"e ¿èÿØÊHD'pùÜEòé.]O\Œp—\4¹êŽ»>.] ¿àÿÊJîú‚‹S]©€6 S1NC ŸÖ§õi}ZŸÖ§õiý¿²òRßr_ WUX~zj<®¼·œ+„.þyWR¶—ÅÅ…åîwÛÜ*j¼ä®¦Kë¸:®#(‰'ä„!º«ÃÿÊßMá2¹x® ÷é\7wÙ ¢häÂûw»Ì—Úg¶kéJðרcÿÞJçr廇;êî¸ ®;¿uÄæÉ]H‰"AR×w½j+µä©ïJ£ƒLø@¾?hçó¿\vÜ6‹Kƒgg¥ÆY)qôªÆÑ"2ÒUpm÷Œ^¶:D˪ÓÓò-,—ÎàB"¡Œ+ð?öU ›ÛÜ®®K)#ufÓ9ZPÛè<¹èzºò«×¾+ŽjLÍ¢su±Ú~‡®ŠûDHý‡Ö@f¤¯îÖ»†r]šè(‚# ñú>‘&î jÊãÂÚÓŸ/©­õ€&J4FŸJy)F~Èñ‡Õ€Ù>‰çæK6,¿LoKýY?×Ìh º†–›ò\à»Ú£©VÖœZE{¨ÝÑÙ9(NP ìêƒ<4,CV·þÚuÌšC› gýJKh# ¡v½_W½+Q´»fÐè~'P9­ë¯“ 3u¿vá·%Z<è+]ìÊsËŒúþû+h—ÏïçŠI,M®¥°o]åsk:Ý/Ïä‘Tá™Ôèã¾äÇ;Rk~°!¾Ð l@þÚÚO'k¶ |zôZ¦´XÿÁ•ÏÏèæ»¼òRZcÏìZFkj; ­ï$¾~CîÉ )­ñ‚ øF3íîõä‘C­tœŸœOê:¢b˜ÓϤªû’XjhÑþ+˜mŒ.””×åxy/¢:µ~ƒ´aõ¹Ü—Hv[ÞI|tò@*‚Mu¥¾#/VÓxZHǃ“Í´–¦Äzù¨°½Ñ3ý‘á”®–ëhÿîÊé3}_²ê¢º· ë¶áþ–¿î/³Ú.vëÛ@¾ÐYä¾ øû8Ð!2ÛÌë­eÐØdË–Ú„8G¾èO¥ðE Eü;+Ì-Öï&ÍÈãã±bSp>$ÒZ×¾ìzFbh.r@.ò øNÎYõò·ñÑŸëgÔѺ¼ˆjÇúvÕ×wèæ'½¤ŸétSðØõñ·V¤ïGUK’ E+ýRëáÝv ëçØ¶z8'‘Èñe°¼]˘èO¬üÞ¿â c*ðÿs2Å4µ.€)ȇU±ýÝ¡[`ïõ )1^ð} ý›+³gì½] ©'K%1Ü‚ˆ®¢è©€t ×€¥-"ÊâÃ5©¿*¦Y?§ŸY£3s´’¦D AÆnº˜X­[uÍ@UpÉชƒûÝ ×CÖø_Ö ¥,–­‡·?‘Xÿ²œ—¸DÂ`-OŒå{åÝÛ€Ž•ÉüɈ‰„ú­Ÿz*¡®÷ûQ:ÎPÏ_=±ŠwT’à8-+¾_ún·¼¡Æ±>÷¥Èfk$´·ë˜Þ]9#Á¿œjÝ ¢‘ƒ 5ñ“œÈü¥Ú~á’¬[Ã;”WuCúx~Ÿ Ë §ÍøÀYŸ¾óë¿^ ü±Œ/Ég_Ù‘ô½DÃîñt¶8ü•<ë ©H]\ÿä‹ 2Ô%΋ iñö÷p¢’‡œ×ÛGäS~$â§À†ârK†‡üˆ/ÌÅk I/X)JD­ßE’:ÄöDs) ¯×$,XV”ûBHsU.Êa1«ú}ÄŠ€ŸÁ‹ pŸ‚èØ+W%8™ }%ûÎà ê‘/ƒxUs0 18¸Šì±J:¢ïàñ±F wÍUåká­MÑ@°îš„á£àßqõ®ïùZ*ƒ§|WØ“r ŽÛN®Qý¿‘”xGÏ÷¡èä2 ìy„Oºjê£z .!Øô¿Oâ"ÃúæJm¼ú‰Æ«cú.À!õÞoþàwÃæ§MA›*Û}¿ëw’ §Ÿ‘ mvØF}åËR ô# .À¿ &WfsÉ\ Wœˆ=)YÈ÷‰÷ßåd-­¶·í‘ÿ¹ï‰uÜÊ£Ó² ~p‘G ‘/1“— ßò)¯ä7ê¦Þ3b)¾Ô¼ þX< 'z¨ŽWtÓÝúT– .i …wfýäÔ»ä3ª»ÚÔøïä:èO×Kòx<=ê÷ïìÆ ã{ÐÀNÙ‚GXo«o°v*ÞÓ)ãïÈ—¶Êæ`ÄðWF‡Æ/ ûù(¶S0Zé§Cu¶N×{º2XÌÂJOæ«â¶’ï’“» b§rª?ˆl^ vç'd‡n%6Ëjoo‰í ICHˆ\ñÁ@ñâ¯hê½ß#Oyæ5wvPK{ëϰÃñ:ny]¿—®ÞÙ=\Xp+<™½0:Èï9„'òÓ /#Í{9àe¾(kñü]üÜÊ¿£<ŠA¬¿•’ ß-yÁ-ë[ŸËóHü_ˆ²~¨ÉˆƒÔ€½ùÄDøEE¼¢/±Ó$ÐÂ;ëžÌõ–¨ú Q+økrýSǺ;°™GXù=vß(«ð?í‡Ü Kd:Y>ÿÎw…÷ڎϳ~ð{pðW?$ØÔÏ R~ B®©/A.š6(Œ¾ÿOÝ%v?øéNÖ¡(ß5=±,èc;²n•ãÄùFY†lÖÕyµïp°„ûÐéB’+“`ã· Ã1|â>^𛄇/<ö2|©+ÿ3•À.°?NÐLxÐi­(Y~¦,9<´Ûè'¶X×çNh"&¬Å&íCÞ•¾“Çvj"ëò²?ØEþß(C}_Ì¢º]I²Ù>^smCwyå <â%þË÷ó:Õ©%³“)Á1[“ ÏHý€MD%’BòbÁ¬ ÙTyŠß—äÄA(¸ÐïrÄ÷qX‹t{ùͺšÞáçb€GL"Ò›H"Pp«Ì÷»÷aÿßÈ ÿ=Y L(>(hsp2€¹É…eÀ™¢>þëë2×(àò'u×Éû7¤蔚èlÏ7ÍI$X¾KÞ²‰&ÖÏ`5ÞžóÊï% ¤—ü"u%%f¢©Sha Òïå¹çb½Ôc£Õ\|n|µ=Äy”¨k¨3tsÀdÄþ¶·'œg'é±zhâ9‚Z­g=ÐÞƒéÖè°B2’»Zñ7È\™(ýÑM=©rü@Ì-¢¡»° ‡í´ÝqIà~Máûå°{qíè;ÅÖ§N®ß¡çèAáÁQ(}"—Ã5wÑðô·~ò‡uðûˆÝžö‰Ñˆõñˆê§áíÁºãñ“>xÈvô³øI†È×Ò]ô÷ý_Šë8]„~6ù:á.\ø z-ŸnBe5É·âñt)@­F5\]³t/lBªÐöî*Þj]R•™üÄR·l˜Í±¸ªî'ãÍ#AŠ`ñ¬°ž(“½›Làq4¿'`¤Žá}wñþˆh`Z OÔ§F³¶~ ºZ&vN ™æ LÐ*=Ã¥u3Üy2ý±~†qAòü|[½BÜ?Û»ý í\ä÷©HÓ [~›¯ªge–ÇÀÙ`â¤~ô‚é† <ä=Éu/Ö¯DDE"›ÄRS–Â÷“óØzíuCº´\ ;ÇJ¿”ØpµÐÔ=Æ^ã¥Öçá£Äå›ÚT˜äºCDüaɬÍà0ƒõ[­ƒT[¸­!?ÆGn›rÓLë¦Öóã¡X‡»ìHŸvìÀѰ a_)tؘJs§„I{Pú?õÿ_ 6ÕÚf”„%ú#Ù!`¦»Èñ7Èèo`1æ·@øe`|ØL-¤m š}ƒGÛ¼”Ô÷?ᇠá¶61é ïÉÎß?C{ùiG³ûiˆUø™úŸzètOdWÐMá·€JI@ÿçDxd´c—ï€ñ+þ†×G„çÌGþTuð€o¾-òÖC›a{!º ÑdÝöfù½ w=†Böþ(Šu€k©5yCß9ØzA––Ý+‘Ñ•tÕe98×”¸ ¿IeGú~ »ð‚#|–õÚíõ±›ÏXƒ†ÃÈn£•ƒ2Æý@ù›º©®Lõß5õÞ)(#`í¨è¬««Í@œãû™ZÌÎØÿ¾|ŽüÖû¡+^ß.ô%Zh‚Úè)FT÷%Ÿ.öçwà ‹|'ü|â$*¹ô=^‘zÛÁ³g¸f7Ò pB­@òQ­íÂj›°÷xjûAè`º°À‹ÑÂ|îÇû£`o¥ v74À³™všŸûÚhe#>Þ Y­çÙ<}3’/÷“!—àõIà}±ÁÙÈÔ„vvDµ‡rú“s•@Àìn4yn#yù²ãô§ý´Ÿ^ÒXZIW?án R¬ÜŸÓ.J<¾¬Ÿ}Ñ¹í ˆ/ÑB{˜þQ48 „Û‡7s?ýŠõ]Ã2j2j²âfIoð8ûÆVn¢/‡ûœ*o–µë».“£Ï·“¥“´—&Ò?˜ã»_®Àfù¹†Ý­‹2ÿ׿¾ (X,ЂÇ6'p,¾r¹ }M&f–ƒu±‰1›%”‰¼‘LXGiªÁå®Z@åwn°·ûMR€Gauˆ—X7áµ?ƒcC½·üˆ gûž¾}ý¿­T{EÀÿ 俯ÑAnª¾¶ a}ü¡£Ž”ŽH¼„(™Fµ4Û[ÏÛäšQãÁ°"âÿ6y¤NÑâAW\ÛKïÜ*Wþ9UjÀJÂkHØÚJ¤]é;@ÿЇ¡… øñâ¹;òl“8R‰ ñ_ù‹Q5Õ†ÿÖÆêSM—4¼~è· Låõo%šæ@z›†žÙøë¤—é|íêòZ|V3ß •*úQÊ‚°ý)²ÜKü<‚¾&ûMƆ |g·þd€ârÁE†ñwÔ^dþÚDücªšØ¿.ñ?‰ø~΃'í÷ø÷+•eZ´T¼‹¯ÙðùƼ/$¯Þ,5ƒE¸6®Œ›"%4ßÊæÜ>Æbáñ;g÷î»?^!ã¸$ýd‡›%ã`>m@€š ùeP1<¸Që·é× Ä~?o-Ü1ùÚK‡¥þ/«ãÈíµ¥d Ý :ÀsÂÔߊÍ?{áye€ ? ò¬&ê× 7’JTɤ_õïØNnéç^?AŒ • ‚˜M†?Ás‹`8yA“=øÒ y„_I9^‘SÈ×zX*¸\žÕÞwÏ]}'Ñ‘:V*¢¡a²»ü4vG[¯oë?ŽhÈÂk¢éza€ôëmÚÕ(ª…UøM>¡{ñû;<{Ý”´š‡[hÝã'BoB£!ˆ´êÒR#h òOàW;¬0ØÅã[&§"Ë£vÃ~l7×÷{_æ»ÞÏõ³?WaÓSÜ6ƒpÖù¿;lw"(1†Ì0ÔÏDßÞm3®ž·ˆ%›¢e?ó¢ÓÚÄLk"åw¥+ˆÙR" ³oÿeutÙ\gs_ãÀàbõþœ—u¯_„Ï@kÉ³ÐÆîw uW8Ñnyæb¸g=KÁÈ9¼Ë¢ÿö·.É[ùÄ'Ô–é‘=5ÂjýAWiŒ “Z^‚Ç®2.¯+ý¯á¥çýäW«Òï «õu_‚\VÕŒ„ÍžHT\FúEÒI­ÂõxýÇûÏ}çð„ãÜo†læUÁƒT‰©·jrù*ТÿyÅwéÜ2É©±`)vÎ2Yí3}êç^Å“×"Ù"ßû.zXçÏ{ âÑm^;O:€ωìÙøŠÍ|Û…ÅO‰ñÉžC\@ú#r•G±4œ^%JQ)”Óu0à±Ò¸Ú.‡ü„¦FÞ”pùtTíáÐ@8ðl5è¾ÏžâYðF$?†<+ÁƒPzL6¿ÞÏEøIlöÙy4pÉ÷¡…ËXÿš<À“ìJáš‹ü‹¬Y/ç‚‹ýíÚßî”–§ŽM?¶Jç"Þ»ÇÛ5¬Ðfl Æ—ûη¯áÉ6Å2™0H—¡›­þ*¡µþÚéCdÌCþèÙ ^ýˆGU©z.ŠõQ.»rµÁ§ÿyj2@WŒÚ<-ò¼ÆÃçû*v6µóÜ3ÐÃv?Ór¾Ÿbçö÷Áå#‘/žâÕïñþ×øŠõûÞŽ~¶øëƒ.ã%§‘§Ÿ¤[ÍNÖÅZ\ iüke0A?[‰]WØ•¯t—§Y†ì#¨Ð¦ëãež>×Ï>A,Ešøük"Ú8“ÍL ]Cè] ûYÌ+¬Kþ-"á²ï º›ŸAØüþwÖj°á\Á¨ÿ}b—ØçúkV|ú=v[»†OO&¦íÈÝ\¢~™ˆ_oáï©íúF»º5¼> '¼¿ÂÁ¦^­Aú£r¸Ìý5^\¼I6G.§7ô®VýÁRùžËdüÍÁOƒv6íw1°ÊOp¹ˆÿÛUOËðïeü&dˆÈä‹]°ÿ~ªG´Cûé¿[|Æ;è§?Øõ iÁ”ÌDW2^S7à}:÷þ¯Wz—øÙU¦N K¿ögûmÚë$ìyÅÏq8á'»¬ß¡‘ˆx|xªÚd Æl?åÇ®ý§÷ÀÈC^SëÅ®² éµ%•O-<"ÿúë#½êZZä¿Z‰]ÛéNW _þ@îºä±nø•Žz(ž^óGÿíß2œ]™é3R!3Dâq~»ò÷¯:ìç>eVëׄط#†ý´¯îÖ¥’6ØíÍêjÀGJº–R[Å‚Ñ|„µØŸ ’‘Ê®°ÞñsPV!ßN|û$%R€ÿíõX˜¬–<˜/VïÆ_"Á¢*…5;÷“t»ÐÃøþS)OÅü:äå!dwÝÝRìžïm;`écb=¢vÕæªºÅŸ=ì§z­——DõS¹/ý´$ÑÂ#ÇfÐa1•Ч ’WפäÈ.DUS}Ä:=¥÷ùŸbZØ¿¹¾p)ˆƒ_ÝS©DžŽýê€q7Àz;oŸˆêh«g4§á3‰D…M5ˆè³aý…x±k#xŽSCj'åç8ÆÔºÿßÖ^Ú;XN?øÓÊGEÞÅ•—&TkÕñëþÿ¦W™˜ÈFòÒ¥Ž‰ÊïÏá¿Uý^×XÔ Ï‰‹=ä9›™)­íý^¹MØ}(ÚXªË@¾ÂR$Øíýú?«¦Ë+/ëê‰M5.‡}£ëɬõ‘?7xguÍalüœ¬C&‹åÏf÷,ö‚G=ßÍ2¤Ák²ò×ï´ž°š¿¯v—jÔ›-æßY%`ÃÈNS%»ÞÂó‘ *!eqnIõ<È·ˆH<·CâBj3°¾$ÚÙ›yví\”gTQ©z+¶Ï¥£©wæë·p…~|~É@‹øï¬<.º+æ¹åT°iüµJ¶¯¹´ßÛ|ÿ>ÄâyëtÞk'Àö‘@Çsä‡#p¾Sþª‘ è«6ñ>ƒ÷çJt—ș튣]oÿÖ*áÁ;w7ÝZi -34hfx^€h¸ß?u«âë%¼$ùŠ‘ûÍ3V/å1Œ7¨hã‡é@àWª»å2Z >5Ïß[å`ƒYÝQ÷Ñ­‡»åÕ ~÷wi풹'éýµ/á4xÐO;€¿ÃúŠp€pÈrÚSè(ì_VïSI$“ Áâhßl¥tñ]7OÞÃHOòÿçT7…ýñûê~:Ð~Ë¢=$«^GuÕŽ§"ß5âÑïbÝÀ¿Ñz:Ûï÷]#=¤˜«h¡þS+ u¥ûàF»¦rQÏkNòwm…¬³}V¥¯üñ=²$lÖÇé쨬EmÚsc¢¦ŠÎ¢~l,ã\©`1ëú?»&¸ñnžLÔEz‰üu7[— ñëÜ’êaYägAÿ@Ȩc¸ÕóWx¶!^àÃòÁ•uàÞsEZ»°øïyò^|ôРɇ`ážzLÏÂl;Áè÷êB²[¿Ë÷ þˆ´Âïë 9B Ýù`þ¿½2ÁÓ»®£›ãîºfxÀbýFSV¯!uv=NéêÚRp‚#º…GMñŒÞäÊmn¸kà+þ;–õlùÂåð=ÿòÈ ­”0¨RÔýš(è3~>‚çì#6ÂqÓ’ûÉC^]Lúϳ’â ±\×v›;¨sÐ ¤Þ3>-ýAú‹Ø°ë€¾”›®©‹Œ§\ý×WäKý’M†ésª¢ïu»¼s·¨‹ŽÀ³‘å»ò0üJ®P ¿êÿÐÊíjP!ª[?¾çÞëLiåËvwÜ5¡®TÑ?ð´“ÿØJ"|ëªÀ>HW$³kæ» Áð¨ÎÿÌŠç’¸n¢›çr’j%Ó|'ç§õi}ZŸÖ§õi}ZŸÖÿÎÊåRÄ2ü?2÷ɺÅ$u‘`¶ªÃ{³Så–qaÁ¥xœÒ¥r‰ü ÿ§V%8n ¤Í‡Å3»în¯ûÂEAâ®,+Ê¿rT>‰aÄ©¹ýs­’Ô6¥ýQñ˜H[o膻ü.9¿v)¥¿|)‘d³k‡|épKðÎ6ÿ=+ ’ĤêÍçw©ÎpÝe®L¦òíêªò\6ZòI|âwyoª²ÞusE\ pÁöU¤ Îþ‘•Nã²`UçBÈm¨_h]½&sý$ëÝkÛ¬C}¨Fº’¿î–sn-úÉêòÚßá]±a$XâòKO)©õµ­vÐJZ[ßITiï~q•5³Ñ®ÚTãjK]¨ó5\PÈ Îh¨›Lwq\[W-w<þû«è–žŸ7Ýq ¥c4)–·‰¾m±re-¤ƒ]y§í´•VÓ^ÜWÕœÚS×ëc]ª?ð¯œæ–ðx·ÈcÅ@ö þ¯~o@?Ó=¯~…d5,šŽÐ!²_®jžë¢ùWY³k3ŽŽºk?­t‹Ž–ø²ÂUþƒ©F†K†ßær‰¤ŽÒ²:À&:ë+ùÜŸó!1¶–Z ‡Í£éa¢?™fÓ:ºX?òšÉxŦ½uŽ“=p„àvÅ׿½ê`û¸`w1Njèmêµ'²+êky& Á:Õó’+[?GëzqKGj(dª³ñû ZŸÈ©ßë4M¢ç¤•Ä’!ÈŸþ1'«(¶Jvgq›]R=„G×ROë— ^(ÍHü§ÐÇFûji-‰§k蠙褎¦×䀺¼#¡ÆA¥5Š&Ò«²XÞ’-›üf¡ärõ‰ûžn©+$±uvë"áï±hk½#iˆ…´Ø×®‰L¡ßK)äDtØ«Šâmu~__Ó ûÛ寻Úñúhz ­6Ä«‚ó*×ùÂ-wƒ$2öþ<ËE^{)±üµ›…õ¶DÇþ•´&¾Øwðk®‚šéOd€,ü%ÚÙ¤«µ:ð#qð“Ðsü[@,\Ñ¤ÒˆØ ¾W¿¥Ï%w-Ý/RL¿F–¬øvE䌨Ŵ#2ÇÒëò\rà ÙÐF-ä «¥Èw u"²‡ã·ðù6à …ýýb£7öÿTŒÔHÁš S>Ä7 *o$/ÒVĬ³se͇m' Õõw¹$‰øÛ`Ý믂Ɋ~Æ sý£ÐÁDpb|,¹@_Ëås÷å |8Ÿ–€ãVA– @>§ùýn°(d¿Z<YŸI -ƒÿ·@ÒÄ÷or…ØøŸ_ƒf’“êúÙðÉß‚ŠßÁ†Eù$e;ý[+µ‹úU“~ø¾íÐkŒLåùiÝ’ëS±½-ÏÄöz[·‹×rQ®‰ðšÄè )Y®ŽŸ`WÉ â]iÑOe¢d·Cðƒ:Žl1N8˜˜é¿ ^ua¢?½›ãÁ㓽³r+Oô×Ç’mð»Þùµñݯ¾ð]~ŽH&XAMàõ©è-)•›ðþ00¡*øÁ5½ _΀/4å“W=ôguäÐÁlÿG.¸þM©Cd—å—ób¨u±Í}XØÎ)loòÇÁÚï¬ µ@P/7Y®:ùÁž%ñÐV µ}ŽŠæóËÉ#q©:é 4P Ï8OnIU\ºÿ;˜^rWש ³##ןù“ÂÜîʱއO|÷wëƒþXÂÏ\ Atÿo ”À+‚ÀÀ„ ¤u´‚ùñ„T ©Í“HI&hkÈL4„ z+•`YÁ¥"H㪸‰nª4åßÉ-±Žö£ñ„„Øõƒ\–üS|þŽX'Øó²mÄDâ’DIZß1<­Ÿ’’»'AoñÀƒb=/c‚)à„éð“6Tùý„¼š>¨šdpa-øŸW2ðè» Éñh»žç:σ‰m‹éG¬þ¶Ä{B¼”=dº{0Ä|è('þÒTïŽÎªcsÛ¦DÏ;üDù¼ÔëûÿQ¢â!%¬aqò%¹e›ÎÑÃp¡ZGZZxg=`K¹0XÓb{‚D#f­û÷¤;ˆÏ_FÞ»²[výnòÜ.¬9Åw<Ï{Š‚$·žGfëðøP¬ßå]lÿ”W‡Á"ñyu´+x:,`»à¿/Ç‘7hË`0ÿ!¡ç}Yĺ³/—”Ò›¥§óQëÙNöÓÈ|MìÇúǹßË£ù²ˆxN¦ÕËHœ\ çÐÇIy†§[oÃßñëü>98GO`õ…p CTãõdÓ•R*Ðâãý9]C÷P Âú£é@äªGf‹‡]/bû#¾wÅ1þ­ñ]MîâùÖÑnþ2QñFóž‚—yÝ^a]D#ý"*ø­H^éAœDœ§n‹G Ônx”ïÏk‰§ÕˆúUXÐz½‘HjQ^áÕýd‡%Èÿ‹ŸG3ÐÁ?Û# ­{ªÍ>0 Ø {xËs½%b‘bòèƒï_ Hè£/¶™?SØ^E¡â¨uq¹@&¨L–²~µÑü®Ïå²NÖâ —Éx«ÑÃNž±n'Éñ3d¶Ø¬€=<»mÝâ]¡ôÑþÇ‚Cæñ±žF™ 66A¿ÒÎäš/àÀRÂûïË;*™…Ôf«e,òç âQí-‚Ï¿–ȵùÖù~ž'ñ€m² û¯ïH ©Š_Lä¯sA†Ãóߣ©›ð¿ßÅú~Ù4±\È]Ž8(¢¥ýDÌT u©&’Š‚•ïâbÁRraï°×|?ãðwɯ¾Ë{Èm×À½èãiA报ê‡9ØÏ¨ [‹ßLCOÏy_B=Ç3¶ì-L:/Ùô[j¤mTŵ‚¶B ©ŒûZï[~OP˜ìŸã¢ã©ï`ô5°Ï¬{A¢Ã|cé òÞ5Ýö÷íôûÛbëD0l¡Š®! tÃê_#ÿ:¼Áfâħ›‚¿Ÿ^!}dßë1Û×Ô=HG¿d‡I‡!# äq:ÍÐ`)]&7ôLÌ–õÌ,sŸö“‘}<úˆÖÙÄÐ}=žÞ™*n!¹yòý^GÈHß!ê‘üŒv¶c×þóùEð?Uâ2bX?/79¿ÅE—Ÿ¡Ûîø@=)iŠ9üuË‹ÈZù±ÒC¾÷±9Ž×ÈõÖéâ4¿Ý' nûNëàÝa¯vn/‡à÷ÅÜæÊLÙ„üt Ùí0ÙÓæ?ñýpNzqÖïŠ|%Éi¨sƒ®¥Õö˜¿”Àî…NÌ­¨«ƒ´Æbl¦[jµ˜dõ²P&áóÆjŸKxÝ‹„Û༙Á­6:„Ÿu2^¿ÑwxýIÒPÓLFþàÈ>"hhh“cÖ€“;ñ¥;ä’/ˆwë˜NÔN—€9çý5[é]:7Õõõsâ€\/¤$ß*¦^B²Ýrßwû€ýU·bçE Þ{éÀ·ïHoG¸;ò?–AÚ_géT¼ã®˜ü‡ÑÕV8â3˜ÀVÞy¨íÏ E{sÑß"â‘+Ðc¡9±þCw;[Õ“ØŒD¼’až¿Üõùù÷ˆ†ùXr–¤DöÖÄnäÅ«?ðÎ8Tv½y®ÖÏ Ãy-ñ²ÞÀ_béäßDì÷=‚{ø:ÈŽš&€]è¾Ðü®Œ{îl:EVìöÁÏ©[¿[Í­ÓXY –ÇÁûú.¾#á…­ñÿoÉå]a±ßÚ`ùþ<€M7ƒo+yï ßçÚªeEîÁC¬7žõ¿O¯|'Ÿ“aߣ›,ZUº¸¯&]âoŸ»‹ÔÉôªÏóg‰ç}Øj¦Lö}›ãçÀw³ýBù^WÙ¿Ïwƒ57ÐöX¾þ<Šê¶˜Ú¬ÄãäÊc²Å#è!¼h8±›rÄwEÝÇsÇñ«‚IÒ9€}àj+õú>‡ ^xÄ^Šü‹á8k=ë™àû>ÍFŠ‘|ûb~¿¯ÍÁ© “)ŒìˆAW4bS0¾Ð_ýÑo]pl&Öf;Ûðž=ü\Ãm?¸æ;häÔØòeχ•wõÜc—‚ú}1õ̬Ç÷» ®CöáDÄß~,¯Kå'ƒ×j÷5Ñ·ܾCþ6:OØ„¼°¯u‚žÇ»ÇâISð™èźçÜ‚S<ò½­KÈx"0pë b/…ØQß¹H~ijü2JJlÝŸ{ëyÛG~öÜ— ÍrIäÏŒ7Å×[Âb žÄBOŽüµðÿq>ã]D+yõ<‚ü«|áÙÜNâ÷¨‹mzb:Ý/}z>¼˜àÞº§`øJ8Ë[ìršï:IzË÷Hÿtoù9œ|° -@нp& x}tÐ «×„Éô¦žëDL‚߯ÑmøÌ><Àú mÀk~À{æ¡Í5»&Q¨íçƒ}ÖÓÙ|ÁÐ{*ѱKBþ[ÒPçc»®`X-ª¹g`ÇuXÞW: þ7šLZ©­ÿåf¤^“<&A[ƒøìbÓ KÀJÁ~“ií`pDr@*¬þÿ|‚ö ål_ïÚUG‘Æú_Oá~¤Ô…ѯóWCöÓŠ†Jw Çxñéå¯tɪ?òê£ Àf¢>š°þY6%;œgÊQeÔÈ]+¸˜ŸÕÐeq1°û!òqb*c/ëágoAÄËØn/ùp•Ïþ‹¤ ¹»~ÿ=‘ü„[DtñèxYb‘‘Ù[!ÿN¼~ÝKLEÔìÄHZ?Ið²dä-ɵužT èì»YÍ\uwÇåÐ(`’â6ç;1•Ý#<÷ŒŸ½ÁóŸä±<2n¦)t#1ÙÇá-‹Ñ—õ W,ûÄÜÓßå'#†Áê©‘<£?ö[Ö÷- ?S?|¯M¤¡ËháYU] ×ÝEä[ÆÃ>·ñךK_×·|lßCSÄæ® ³oƒ½Þá&‹Ö#غ¯ðb #ì,Ðh°î¸ïŸ¾ßŸ,ƒôé5¾¦ƒïçÀÒky­£K´»nî×_®ìà_ gKmöqt-®I`·©ˆnñÌïÈrˆÌ7ùg—ykà‚÷·ø9£|¥° ”\‹6=Go ¨Kj|+ù>.‘PÀ_3ÿ¯LúŸ·sI]N7—º.)¹9¯ÆÂ û¹7ð…øöa?ùg¶Ÿð; Éçc÷IpMÒŽt„L?ÔwÇ·éð«ñˆud¾+hï,ÙT4Ñ’Û×Àj‘?žM[Ó?l\4—ÄU‘òd¤xÁyP?.8ø?­gÁƒ»~Â|ßû|ªX‡çq°À¡xËjBoî 1?Å÷þ´óä{ИõÁ»Ç+ó)7%šÆ@ÙÔ®"o¨?étbàn°é“0QJéu|þŒ÷x§wÀ‹ˆ›Ôéç|¶i6smzùc"Ï¥Ô@:ë=t\M4ØyÒS^þ ßO ÷ùͺF_—ðßt:ÉuXçþëݵtÉe$ÕxBtûò£ŸWx†Œ‚*užG¹ÅXvƒ?¢{Ö_ ²„Zè$ú ¥K|Õ4íìö@MÞ_ù”PøzAÐ44ÕÞ ¢!4Ì÷¶¼”dJÓ›a1Ün¸ë‚÷§€Ô&C[»M-R­›§Õ~'Àµõ` :Ëó¯å3}%vÍWTôeó~læór"Äf?n÷“ïö¡ƒLZ[‡#ÞC‘.Se–&'TÓÏ´D°È~¶âÀÃò»\ÔrÅ©k“¨çŽâ¯á §ÖÅ~VÿS 0…(˜WD§VégEÜDü[^ÆB'ÐÎzâÃXï)XÀyb!9<ñ=I‰^_À­'t² +¿ÿ³R»x®”›*•ÕÎõYõ²Ö_Ïb޾ܛÎý|jéÜæsÛŒüÙýŒlëpžEmþQ ´pn°ŒwoÅ “Nùë…®‚!7A–ôÚÈ+j ƒª¦\ë@‹ý+>,赫?{Ê÷ŸŽ—ÛœÄô\~g=÷?øù¯3ý‘°ƒxs:ȃ÷gôg Âaã˜pâ•~Rêj øÿlêÉI"é$ïÈGv-­]t‘]¬:d¥u%]OWŽÜô$ŸŽMÑføÉgóü¤¹žñ à ÖÃõæùI¾v}‹uþ¿Kå ~Ž*ÚŽ“Úü´½>ÞAþÛü¼ š¾I3t¼Ž‘/‚ÕàY\l;%_ÁÖÎa݇¾—ïìognöáËËý<7›ÿ´íÌáì|Á[ «¿ñêDþœá#?Ææ¯ÇÆãCÆ„º'ŽÚÄÏÏ}6ì«ôƒû&Ð"ÿÕJìÚ¸²n,è ßú1ß:.ß{yð2~ðÓagâÙÓÑà ØßH±³ü©>+xF÷œªéWl¿×Ï~Þ(Ö þòdžõ”%âkQõuÓ¡ºŸùÞ5´Àÿ×Êéê»Õî±dW›ÙsÄ ¥VçÄį“âåûñ)Ø×Îl-ÁÖÁ²ÃÓSÓCÒÔèáȱoY‹¾ÎPž'+ÆÖ®Hý-µ±uÞOŒíñ]#‚Û*î*ƒI±%¯F„õžävÑOÏ/NDV¼íÐJ,»ËcÀz¼$-ˆ–¿žZØk^’ýw?6ûú„Ÿ’šWäóæi{í¬-´£¾w©‚i/ÜòþÖP:­/@®MHzCr‚ )‰[›r´œ¸é캆í°ã”È–ÜO| ȦxÇ9Qµ+žmÖs(?í°̧“öö3â÷J…`Ûÿ½†«àj¹ÆÎfÄ€áìç/ÂñJjꋆ¥`ú1ðÍ&ØÃÔjWAÖ×ÓkQt° ½ü.UÑÇ—°^EoåÑd=ÍS ]¬Ë´ˆ4Æ} ¿&²º ® VK@Í~4³#õëµþÿ3¹ñ°Ÿjvš¨Î‰ŽÒÀ_Àæ3cßljŒÏ®}nH•ŸØ_ó™OÛ¢µx: ÉGëuNÛDŸJ#íC|ÔÒ,d„±pü¯ÑÕxO;Pó•¼p™eq ÅøV*ÃÂnŽkçn¹üÈ¿KRÉä€áLÓ‰:_{‘'ÛRá T»¦c=õMWÄó©Üƒ-P4U·IB¥TiäÚr«ÐÿȲÖ²¯+-d„?³ÝSÇkgí¢Õõš´peÝB¢´þ¤­µ¦ÖÒszUhî³±¬qãÁ‰êä¿´ò¸4ÎºÓ ts%·~¦É4VÕÚ×÷óŽ­µ üæ6¡‰¾¾Gj7ßߢƒîÑEºSñ[<$d1ZÊhaþ“«"–OCá–¸§²X["ó8à¯qäJŠu;j9Ý$­´²–EßëpÍ¡yt¾Ó1:G'ks<%´v“ò“û?*h¡þ«¾ŸÚå'ö'Ëäh«ßèLü>‰^”{’O ñ¨4v®ë;$÷Ðú}dÐâºO'i}mB$TCgiõŽ ‘ ¥M‹ îW~üËÊ¿–w‡\#É(Uñ뼚ËöÒFÃ:öhv$n˳£5 z¡¿!iwbÞæ£ØüƒxD^"ažnñÝ€ãè<æûœ)ÃËKþþèvHAä*¦1ñ÷ߥò×Ò÷BK†âõ‰5²¶“ï5aÐ m¡ù‰÷ÄàÃD}ˆ§Ó"º¬Ò$A.h§.ÔSòì¡@0?3P嵞Ñ>VËy­TJ»ò—ωöl¼ãªîFu}“Îâ=g@ÄÅ â=iç¯/ ŽÝÏÿ´’ùÙ] àxñÁó&Èž‰[dͨ_imd(©!õ´T#ÿDzk¸õ<»H—˜yï{žV&êGé\пŠnÐóz“ω¥÷ô•ÞGƒí¤Ò—]?½²Áñ㣃~î…ôÖ‘$ªÞ@&ë ˜“X_ÿ[’̦':é—ø…õ„ËLfˆâ»‡¯§¶üˆî%ü¦Ûô Ù£¶~!_Ûë`ÌóSÂçwK{ýŽï:ÆD§å‰DÏúàÛ$ÞÈ ×¥!˜—.¸ _è 3ÈCÝwh34VüÛ¦‡~¢ ð³€f–ÜÁ`×÷ßZɸev½¥™¼.–ˆ›àñWa½$¶N£%<9íY!¶ž‘BÄûS1|p‰¦ÔR:Ë÷ÅOŠéà…#ðûû|ÎHü@ƒ¶ÂCêX<-øeÂô~Ä.W ™›býòÚ‰œßÿ¶n–wÅv/G$úíú¯çÄùQ°8Ü/)Ü(ÖþIã’&m¹OG,äýVêY½ ŽnÕºŽOGtä–*.V Åý¿VZ)¯Û+Ýý5My´·ö'ƒ—âöAl/Ük,Z7K2¤-¯áñöäÁ!xCNXo|Øq< õA03aà ü¿˜°A72i{ 4J·SQ¯s¥6ÿ »âz#S²YµÎ®Å‰ôò«\—7DÀy¼ÛÁyJ(•ÝëÂjpÿ¹ÚÞéðÂD¾Çá[IË_óÅ𓌰ˆ˜hd¥¦ j¬)\Ã`ÑûûO+qŸÅÍs™À½  ÜòY?!ˆw]>p{*/¨ü_qÿV.Jdd24§¹á|ÉŒ©ßÞQOˆÁã·¼òD÷{Ÿi4ýü˜ft€¬X-¨ŒdsáÚùô/W.WÙµwwd0ž aÓDN~‹‡‚ÔúHùÁ†xh"2(wÿÏ=Ð3ó÷ÐüþAîK}á–žFôgWßÅ ´à^ñ]|¿UìSI€­§II|!¿Ž1Y"€÷Ê_#âõψ…tøwzîgâ$¾ïXÖA91Öí¯†Ä;¢ñoð›(äË*xV2Á:ꃺWŠ›=@©w:×uý<ƒÇØm=^ÿŽ[€ YïŠó“ ¬?à9ËÏ$úQR!Y:*ƒ¸ðüY#ûä Þ`aÏË9¿›ïWráQ žG£¢)AeœŒ ‹Ÿ§D'Ÿñ3&ÿH¶ü Þ$ðƒ¨¼²yq$ñÕ t&GŒ†#Ï×*dÜÀ¯äî+WÛEÒ#2U&â³U>=ò½ur{ßÛáyB~áßE<Àv€ü '~Šu« kb[‘26š‰¬Qø ¼ÆoÂã©AÇ>p æä•q æ<ݯ'¨‹‹jp@€T.®«é"HK<¿\7•ïëXxŽDu{Cî ñe¼³ìâ‘õu=Wlò].¡©ãÄ{nµ!1ýÔ—ˆøB8øÑKð"¬ uµãId·]­ñý×TÈWmž`08’Â%u#œu¦JƒÜå`>©‰é˜øôgzÂïß¾Š¿— ²Ù/û]ñGe¥œòþÕ¶ú‘v’߉Ù<ôÌ{ŸàûïAþÏÑΤ¿Ü­;u;Ö_ ~Ão%¤Q Å'úóº Õ6)ÛÉ¢¶—/¶ß©Ü!Ûý~¿CȼSöòûy´°ÕwùP=%!‰”DÈ{„x?|†ÇG‚%Ù¼,ë ò9¾l¨ ¦ÖÓÕúX÷À*P/W»k€OÁŠns9Ét“%;\¥"L5‰^"â+zHBÅsÄw>·žXÛýžÎÝ<²ó]¡ˆõ·Ô€UÔú|?ÄSNS'=•ÏÔú&_…ÿ¼Äâ ¡ÄxT^„T´ÕÔOÁ¸g*ðq`þ«af¹ÅÅ6ʼnÚ5XïŽ ÷=¡·Ê~Y"sÀ<ëx»Ÿ‘mxÀBbâ­äënŠM¼:.}_ÛËøÀpâ6¾ò+~P Ü«²4Cˆ±r¾ûu+=EÅØ@ÃÉ•>Ü·˜‹ÎwËÎ·É ÷Í¥·°`9P`7±¬:koÅ Ÿõ5:@øÕw‰œ$kÉ u°Ô”ºˆ×ÌñýN¬Äß=ú‰ÏéÁ¼æè¶Yµ²—ç¾9ÿKðoŽ.EþÄ”?‰+䯹õRß-EÜ;rú&øOþ—#çvä߉íMêÈZ[Ï í$~û?ï!-ñòn¼b¿]ñ^–8¹ïõd4<ø˜^”þl{çíXò~šr²diøWàV:¸Ïr׋çÆóëõí¿!—°õt¾û|™Íýbßûmq°‹×Ö…6ñÜ÷ϳ½¥#î{àïï‡ý*‘²Èω¹„.Ãøî/ÅŽ¦YU˜¨«-y¦H@ ·en«Œù³’¹#©1ý7HqÔ÷rší;‚Nó½w‘õR#~ Ï©;°å ßÕw¯šÊý^ù”¬¿Wž@'ëùÝ:…$.Ž!÷˜Ó}±ÝÒð…rDC]+%(½±Ÿä®¹"±D Øû±ÚÅâþˆ·ÞÏX|š4ÔÛ„ß—Òï}¯Ï³~æÃßíe*ÿ¬ÔªÇS2ÎOŠ8Êë—úÎ)ÖùüqÝŸ3ˆK$ä"öÛé´¸2ÀçCl&wQ÷=1„îŒõíø–³·NvSe4ÿc5“rrÍ&# ‡ÏM+Fùù£ä´0ž×“äüí¨ !wœöúiQ»È—»ñ†+ü•ý~ê:ö¿VÂ1OºjÅ¿”°Ÿºn-5]˜_c0)‘¯ô7cÝ Ò¯¾äç<ÍöÝ/aÿœ°–¾ÔnáøãñïåàÀù†¿f„Û¯æSÆ€ÿ'ÀË5àÁJ^±Öw:#vÔÜöÇÐ:–û:Zo˜Ð.`)É=œÍ¼yCÞ~îŸ$·ÏÁëÆ{j¿ñìN2ÿbÐpÒ$Áú­A€o¨âéCþ÷ÒÊOÔŽC%p^:éÏbg¹Jƒÿ³%µî§~=ã­ô4F¹Ó?ºL½ÙÛ÷ÿî=²¸«én»ØpØ1«§~Âá:Pp€Ïßá6 d2˜&ŒÆW†âÃ#ñõšjþ·ã)Ñ]}äoN^ޤ[ñþ#~Rà??`"ö_K<ƒiœ!‚È!•àÛ«ìýÎÕsµa°Øj<ÿr__düÜ3ù‡¡—)D¾uÿ^Š -‘&·Ÿv3…Ÿ1t¸¸ ¼ëƒ ¥àö{‰“õÈ¿°©gò¾~"Pdr_ÞuO¢ðh”þ(µnÿÆTÀå]b £¿“YŠßä__dŸNüöÅÿ‡Árçy-tÀ :Áÿúê`Øûn4µÚóäé>?VÒë 4·ÒK¼Ô›îõfŒjµE=¬^š¼—M“âC݃ŵ0¹]uw×e„XÍcó-Lúéò ïKÖ鯃ýWJ?do FœÄîƒÐÀ8â{¯ˆŽ.óŽ&Ⱥ”Ø_Ì¿¹|Î2t±ÉwÕ<+v}”])öNÓ¹Ï-<«¬KÊ¿ëĦÍåyA¬ÿˆ÷>;¿qLØ'æåV㌒d¿‚šW¯#Íé‚dÝÈ‘ûx͸èã{Þ·å§áßR±‰+ÑÃt>g?²Œmƒ4¦ò©¥e%psŸþrå@úe®~”¤p›úyžzÌL-N/aÁÙÈ7iW‚þ¯‘f!¾0/1™{ÿì½Ü•å²þ?3‹înxé~éîîniéVTLR”’îîîn‘FºKZ@©ÿ÷¾Ýûœ½ÏÙûìrÿÖrÿ¹×ç]¬æ™™k®™yb†¨éö¸=bÛá!¼:ßw@\J$=áó‰¥ a8QÀÍ×~›±2$‘†FGœtÔ€5å&™ydËin¾ùEiË41½ççWoÃv_£—¹>ž¹èö­Ÿ 4˜ i Z˜Ž6¾ôña½Ÿxt-€í7«ëüOºNv½Ÿ÷ûs©ªR9 %óolÑýJ!Ù$£¬ ‚¹3Žécò’qp42”ÈæŽáoD6—ýŒö“>]t×x?í¯£‰ÞhÄu‰ž ëm…G·’¤&Lìç½¹£ƒÉÌíOLÅ+‘?œìq?µW(¬ÔÀ¹dVs{½ïi1Û¥ÍAª;ëÉù=‚%§ùÚpµº©Ÿ®+â2þ†U¿×&Øô >±„¬ÆÃ×ùyÛ`ÂÓd %Õu@Ëj,-_n©-›¥Âú‡Ì™ a’A®J\»Åv6ÆžÁIÉÏöá»wõ‚ºŠnvçú½á“Áÿ·<{ˆ¤‹@Èmî‡ó™Õ¾Ê9œöÞÂÉó_ñÇ»ñ}ŒÕ»‘ùtóÓÅû†Œü餴|!°uK`7ÐÂ=bõ.ð=yÜL°ÜÜD¼ø°›ïå¦@,Á÷¾øæØLæÔŸ8•Ï9{`‘S¼žÑuÇ€cZ}+o¨ù¾¶äÎY´UýüueÇïI ‹eßë øó{l¿›†¶™Øö©]禠,õ}6ø£;7ðˆèþœä6-ü: užG¿›ð¼—ƒ 9¶eB~WëŸ%z&ÿÕ­‡µÑ¢!s\ß•²õ¯Áî3äw»«=Î#É8¿wªßÓ»Ÿ8E|¸Šg\׌HŸœö[áŽ&±-ðâz?ùq“Ï#[i?ë·†•1 Ü™Qõðÿ~6I[Jê` þ_+—4’­z /…Æ#‡¾ÏQ¯oGúÉ~þÍ^›Žý7‚ï˜vÅOIvYR˜ã±{åŽßC¼î_Çýõ‚æ¤"Úí;àž¥º,OÞ[¡å ‘é/¿®‚ò¾TÖ¥öHËZsä_ï÷a^B®Ùxù4¤Ÿâ{ÏóÓÐV€þL–lì×0ðýÂÏ÷ø¸B–y¦Ü'â½gM¬¹…«®KXG8 -ü7*D¢ß¯+? ð¶d…ǿձäwzÜ÷†4Ó±çtrüH7Ù&Ãûn‚]˜ï~ï²ÂÈîò¹ÙĆ%þ˜Ç23K ýÝ94)AÃçvÌX³: <¿¤•L䯳•'5låfž|âÝ>A×÷w2­âo¥Ÿ9ÉOvsçt&-׉tiAƒÛ{6œw¿òsS××KÞuÉo2Ùsä‹>fZ ­)Ƀ-ôŸ¬¬þÊœhÚÁê`­»ê&âºó¿Öø ÞûXâ³ȽÐïû‚ûÕ|* ÞœÌò£…[ØwŸ0œç:ƒÁ©°-ëe-ZèÌg[„Ü5¡9©‚ÊÈ—ZÃ\ãÈ`Ú]÷ñØŽwÑܞѹH¾€ø7ÝO‚=H„Kg,…Ý!²ýà{ÞÏEzWí®‚;Ï?Ÿk€‘ŽÜ¯±µ$n÷ïÕbà-´VZ)L` ö'òÿ'0Ù}ê¿ldA·ñá‹þx°Û³=X N '5…¥ÝªÆ‡Hë¦û.Aö­`çžÖÆÎ{ñ‘JþŒª¦þÑbö‘½o‘µ¤ä ¶Àÿkå zM^§b½I^‰m®€ýw cqþÝèáÌó`-H8´KÔMŒ‹ b¢ßRØC)7£ŸsÄ…ØÜeÑ"àû-ˆ.À'Éãék ·ûè)=Œ?—¬¢Èïls´£„RäÿÓUCš“Eé×´œå³kxx1?ë·„%´£0¡Û“áê;Ëùýy®Y‘<î,^»çoÂï³û«?Êð‘úÀM•zôÏ´·ì¦~ʲ[пººIePP Î D²ع‹UBþRäw£}•ÿŒ˜‚Z!:pçÉç÷fS45q`-xo•-Ž)¯F7OÉ”bÀú¥m¸5³ÚĽ¶Áòÿ\¯P ÷“`ÞÆj,=ÿ6&&¦æñ(\ç(™MjGê;wÍ,›OŽ˜×ŠÚAjß4öŽÕûéÐ_$Þs{SóŽý·HM)lÿÆ*RɉDÎRË×°oÉ×Ãí'O‰Œ‘`…dÝÁEI²à&ÖÞÜ’\Ôz×ÁÆ í Ó} nŠÂõ­­-¶Ãpà›xPÛ Îºÿ{—ëøPVÞ”:Ôï¹¾“ ¶vÈÿ„¸˜^«¦§‚øÈÝ—¿áÖ-ÐŒ,览“çàÃ>ö!¼Ñ‚lÿªý=6ÊöëQi2ÿÿ½²bÿÜÒTÞÔ¸H°ôýù°v&xà=äÜO–^üÀYÜÀ3ËKÆü:Øp×|Ä ßs³/ðÙ66HhßèrIæ{ý>–;/®5áÛ``øwW7¥'‹/B{›o“ Ÿ†×+ÚÛ‚´îÌ׿Hi 󧳜|çu"^ûJ_Óý°jáßônå’pr´nrAFûû>X» Þ\.+Cä‹;ô!ª &·ËGLa ÁÆ+Ô÷ÍÐÈ+øÆ ¢~›¡“àÔì!t½ßß»ÊJ-bÁ«ÄÃÚøÁ`ü 69QïS,œV<‰g7µž°¼ø ¯¤¹ëcWØ)›nºÃIl¾T"èçyÿs+8(+dq¾¶ËÞEý?;1±+ÞŸ€û©ä ÑÄ4Þm‡Ÿ<·Öƒh¯8 îC7ßùÛ«’”’0é)uÕMƒé ŸoµeøxKd3ì¿Ö†ñ<¯¸NÄë¦ïòjc[­µ‚E¿÷~háä,5%½Ü1T³5üYŒ›üUÏÃì'¤ÝÖØxx°&L¸É:é&¢æºV¢êR'ì¶’XúH&íL|_j13ì+üü˜E lÇÊÛJì€Ú6¡›ñ®?Hwiâ™î?ºÒKUd Sô5%pÄÆÚ5ÛK®wÌn;Þñ±õÒö²¹ÛþYþO—ã‚ä’(xÏFºÂ,æ ¼¡}´µíÖ=ÒÌ¡FÈÏxúçWe0IÖIOHìOhÇõSIh›AGTí%1¤.ï¦ öFþ[WaPQÁ‡£ðˆ§Øúgi"E%T¡ÙÛå·^9³ˆT'«I. ©h+!yÂ`oÔËõr½\/×Ëõr½\/×Ëõrý?Xy©x~ïûxþùU^rqË/9%¥„{cþ­+«GÒÜHš‰úÏɉ¨UyV†š¸Š”ôû9£…ÿÌ•ÁŸ%&ɨû*ȇÒWêË©Eå×GÆÉrˆôÑ%³¤÷{Œ+I)(µ%4ÎpÿWWF?ÙÉ5EbhzMªûå0?EÚƒÿ"ú¦.Ôã:A£“ÈÒ•W[#{Ii.­BôL¿e”’ )zI?ÙŽÅÑÉö¶]× ÒP>Uä˜vó}ÚB›§±´ŸÌ‘µÒM:ÉûÒA^ ¶ÿÒÊ(I$-(~I¿“Wô²·zö¹M´KšE_•7e–~h_Xcëê»GËtœîÔ¦úL6ÈFiú» XŽË ¾‚êëÒ„ç´·¬°¥ô}kXm;.¯Ë6{ÍÆ£í3«cØP›g¯Û+VÕk PÒNJÿ.} 6 –dzÛ:9¢l„ ´•ÖÔX*‹gÍ-· °›zEöÛH=Ì:Û$Ëkl‰íµ1ö.Ï[Ø-«÷å-ôXJš[ h¥‡ÉóK5¹!Mµ½Åì³NÖÔçA¦Zßšø£“l£6·6ÜfZuǺÛ:Û |À§?å•h¶4ò1£æïf&n2™t`;žÖŠö1òUA¾ÁÖÊw{Èe…,ƒ5ÂÚãm&°om¶³´– ÿ¸fßã @Å<›l}mZÚ¡ƒ¥*\øû˜žÙ³ÈH) µ4rĪíØ­“Å·¨VÂ\ß»®–Ù&X=bß¡—r–D¤Æ?ÖX„À'Vüo´“xLGÛŽæŽê1âÁÛà ´W ²¹äyoHeݦi±¢;)ò5µ±ÖÎ÷º+m—‰x#ÌuÚ¬m¹oÆk®Óq64ñ‰­°Õæ®"øh1Ù~ÔaV Ð׊j!r‚úÁñÿX‰‰é…àüÔÒDZQ¼¼º1wS›f[­¡¹¾·l­VCÚ|"¯íÖŽ6¹ßÕþ]¤?`ßXE¼âcÛa¥x< P)0ÔÌ!G,F<ÕUéÝ>”Nä8#CR{ ßÅFÎá¶(÷H#€{´ÒÇÇò-l/º`£ñôèc± ±göÐf€˜îDÄOLle̶eÄ: g¶˜e僟Ýt³‡RŸb]ˆqEñw±ÓÉŠ#K=°ìúýþ¤ð~µQÈÔÕ_13Y[ÿw‰ï’½†T±E ¡‡Í% ð]:Zj­ƒü¡y|0¼—O&KZûŠÛ[Öä—‚ÉâÚ àïcó'zS ƒ‹¾+~2¡mÚÅjÿÀ ‘±7ZËh1Íu9[I Ø`¬èØaqÅ%ì_?†ÞÊFŽRÚ%;Ökî9ï}Ëßeâï| .6Îi®«ae?Ýá‚ ’¾†Gt&,ˆäÙˆ ã­'Q07؈céðü±üÍá×vÙ‹¸„.ºÚzØ5Ô®þpç»eógzEþZز%ߨÂw‰Í@|>²þb à¬ïàòL/hRráºv\]ü4–´T… ߣÊjá Ç]õØŸ)C>üÄžÛ1{•\ y ”å’àv½ûß+‡$—Üäºç5:^ü*’Ö"‚¶<>Š]Õ‡Äül°Á÷x@ž»k:ZúN>5ÀE#,žØ±Þ_ qç{7†#²€Œt0áòÂn0ÂGøIá@6í$ñƒ-òŸ­¬lOCÙ¨=ˆíI¡ [îúŠÝ†ñb˜›~ðwžè9ýQŸhb"^ôôîD¾üð}NrÀü›‚,1;¼ñ UPVslQ †HŒW-%#geaIøZ0ûÞýùÊJ÷Š<“QXªøía_ã³°fSª½'>‹ æSRùD2×'ÃñÔ YÛƒ„Äpc˜ÀqFÔ?x‚;z’§ r–7xu$8ÇnY¯@‡@s-2Ó\ÜÂÄ¾âø®›êÖÛ~§¾……ß"î™ïcízZ;=D §‰á–í¸3à+áÿeÑFzHfÉÑ@LÞ{•ד€ýbh ?þ1ÈOƒIcû-w`?z%õBæúߜ䥵[“¬& ²¥Äÿ» ßcmȶ lþf¸¬®7èý ïÏE½Ó,©‚ŸŒW—¼'1•ñMã™n^‚rŸÀ÷…ÏL° 8nkùÛL%ÝÕÚh³9/4;y_WyE[c­0P~QÕÎëUXÏï^¼G°‹Ä½õ^Ö[ºCÓ£Ÿ" ã׉Ű­ëêߨ_Ù|GãñÚ ¸"b¢À#ù-¼7OÍBúu~Îl¾¿& ßMƒvÜÔƒ(ö³FCþR|ª ŸO ÊòÙÏÉ—“/´Ó·BâˆAb©+e4ñn6Þ›•8•ôçñ§t¥ïä{NOêw¾«ç1´p×~ ×õê€øGnpÐéóã/‰øv~'%Hº…Ï$C•‰ÃÉ~«¦6Ôûm‹e LÑÙ /ØËe½Ed¦…£ªñÜöæÀ³ë"×5|ÝÉ}X·cûmH︡ûÁÆVôð„Ü?¹Q¼½ øOZÒ€Š0 ƒ ¢ò{q‘y™àûœr mÂöÛì"Ù6æ?¸§µe v+BF“Ð{mBЛÒîêQäÞ {‘wnÖ5H|O¸ê{»mà•-TÉÑÀII;¤±Àû]uÓOžk6‹á»è%@úÌøR7ò„†äÀg© ·ÙnüuÂy‹ª]ƒ-¾d”š²Crà¥e°â ,ü\;Ë=A>×õÿ0°-lÇð‰¼zÌË?OÝ,T—óœDW—ô6ubäw³‚žé#x"-ï&OÿEÈ?—,¡¼:–k-ÑVA¯“ûhwb_ ¶6-‘NÁu鉅 /êBßÏÂuöÙ†>Îécü~?ÚpÝ6 e^x¯òÒˆ !.Qð!z¸†擑Т˜"â.£Lí»ÿ·µ VVHgéƒ> -­“ZÞ/‚\å×Êwgi»´>¼Tçúî¥nþÅaäÿž›ëo²“úç±.?Q/ ¼w›øèº{?EæŸñƒûàá8zpóbŸÀ„×ø„›¦“ ,Lµ=dƒ]`ÁzAî‚Q€[SùÉÞ×YXúGMFŒ*CÖ… îðW|oñýܯúÎ>.¬Ô© < Œ—®È [\ôÓAò™Xðæc4q LìõÏkÀï;H³¤€š]<o î>á´ðgé¬y´ Ös3KNë.ä;‡õ • ºI—qÛ¥ËAÀr仿ya÷núÅbí¢•íœïìIïªë|–¿#KÐ×&~ë&¯þ¬àŽ9DFqRݾÙh-¸ýÏÝ5‰[¤´¡ªïþÉ`®ÓÃv,¼Iö'èú)÷K}O‡u`ø’/â™ë ßÚ£¹h6–ç È.ñþÏèè4:ØÊ§—Àœ[|?è3DΧ<ºÂ;÷t·ï„ØÛ~Ôàö@ÊIìÛ#s´.Q?’÷³þ~ñÖ:‡—OÖñ:RßÕn:†Ç³u:ò|Gõw¯p½p‡€ŠõMžO„#7 £ó‘Ûü{ OÙ"Üä”­|g‡.BD¥r(FŽØù Ú§lþ¯(sÅíá½CMó#Ü•‹Z6.ìwÜw{˜¡ƒõ+€|sÅõ2Þ¢µì²-“AÉH JFñl¶þøz’¿àe¾Îôqó€›çÔÕÕ`Lw%åhÛ­'‚Ü'ü×KNƒÙ,ä(Y‰xUýµ¬×°ÛjäûFiýÀ÷¿]D#aˆUd±«xÇõ@ 2fê×: =ÍDc‡ÑÌ~=¾âZžÁŸŽúÎ"…ɇò’+‚e—Û8dù3‘û¶Ã*õül¶hö¾Þæû7º~_SðýOÐÁ8ßÓv 2Ø,WÂÜÄ ×Êõs½ '{>Xï§cíð="vø¨¹Üg ›üL¼Ô€YA× Mf/Ô0ÉDùSPùwÇÈñ©s/â©kÀìl䚨nºë×GGóÚÏå£5¹õ··ˆÞém2˜Ÿç;[©ÃùÎXoEGë¸ÿuÀ^¾ç& l†=·ñÛ¬y“þm4ñ½Mt{ɃzÅLjðÿ†,µ]¿V7Ág6t“}†`ÍÈþ¾~ ºû` Àû)íA5ó:X®½ÐÒ*Þ›…/|á1²™ƒ®Öyìƒ1&r[Äoïö³p®“1º¹¹9É«7ß×¼’>ˆò»£>Ãe‡F¶Øg ÷åÉüÛGßùŸ"áP$seç —/´‘}I÷1™áHìîzû÷ó‚§ø.Ø»á‰Ý¾jtó?fÞ#ÐÌD0°ù—‚†­~.T<Ø¿¾ÑLAž™^>“Y ò Qy8Ñì}¤~œ¦ÛÝô‚ýÞGR‡õøx'ÍúÝѾ¥¾+ü$l?­ õ“.¶âk‘t>Ÿuݱ\–0•Ût2£ä>5:õòc"¬;¶<Æ’ÿwZ"é ¥´)òïÅJCÑÛÚ9 `0vÄ}Gì: _w}Ÿ¦ég°ØPÐßÑ6Àn¶Átþý†ï}Ë·Nƒ ‰|Îuž…ÏÏÃo¦û ÕNE«KmQÜÏ‘OOÜÓ6ýü°‚ÒPHsSÝÜ” ׳ð„Ÿy²ÈwÿÿL¸é';}üOæUs3¢[›ëg?’÷û¡H¿Y=õŒ·ÓO¿qlº€×7âaé­†Ÿ/Zös²…lóu vä2R]6ˆÛ«yœm>F.û‚ƒø?f’ñ ó>'ú}…t£¸ äßž¼ '°IÈãº!ºÜ×å‰C‘t­Ÿ˜»͸‘kýÜ'×Q~<<1 lcGÈ ¢áÜ6ÊöIWilñýqïóò®=§²ÙBÜr3€¾Â†ØþÍÈëf˜¹¹ 3`„ÑÈóˆ(¾ 6˜åk 7ÐÉXäŸÈ'×!Ý*¤ë翸úo›ïìr$7)í‚f²02ÌÛ°Aþ¿àæ>\U‰íå.Û´¹ú‘ÍE†[l¥›û¾¹†úÙ3=âçáÅKx>ˆ¨è^ïÄÍuütýÑ]Ï×ÍȼÆç .÷_è;;<¬æñQ­oTöýòÂ­Ö ‰c€u%­t‘ä«ÿ]ßçô• ÈgÅÐIð}ýq5”:²IÜo)숟úsA#Z|sgúíòûyÆcÛÙÈ·-ÌÃÎû¹ØKÑ×]^‹H-ü˜˜æ÷ý:%ý0®kd-rþr伃Èxzò?´à™›ý¹RS[ìÿZu%”'®`›4».•&ðÕR¤pû*΃ëÑ~ŽËþÖq›MŽ07ÙׯHœˆE-8ˆw7û®¸ëýþŸ}ä-±5BÚ4Èý SOëoß’÷œ²Bv.$Ž}ÿºŠH¢À8¤r×0‘TT}n/Î*l¹»þ*ù7÷«@þMr !h暦²ØÈÿý,Âo¢šCËRŸù¹}ß©¬XwG„Ý„GšÌ’•°ùR8ØbÿÉJ—ÑÛ¶Çn"ñ°Û.ÃäëɆzaÿ¹>‡›Ž¸ 0GÈ–ól>~ÑOˆ9„îÎ’1žöG Vðy7×uÊ®õ­ ŒWßÊâùW4?¶¯N0_‚ì÷¿W©F¸ÈÚ»le2{€„ðû‰àzˆ¯Çòèkàú¯ÂûK"ïugÇeòçÉE&^ÞÔ+heñb®ï‘¾ 0«CLiJDqgR½ÐND€ôäeCêÈ4DÀÌÒØ¦Ùðú“V&;ß £OðÕÏ$]–ùã3=Æ£[t†}Ë3ù³SòŠ« ¾¥fšèó¤epcL8°>ßø‘;7ššA¦Ù2¤ºA&“LR\&bÕ¼ö ±:§mcû§ùýW3á|·ÿ6²]E¢ETßðú lÿŽLM÷j 0îf&G?cõ-t¶Ä÷_ɧàíÍ`¿Ê–ŠH˜ÊšÛÏvKZJ­` ýg«º¼*×¥-Q:,u ]¿owp%2O§®‰•Ï€ìmäD³‘syÎuç9%$[tgŠÎ÷ûù‰Ønß¸Û ú½Þ+)È­Jú3„RÛ«è)IHuÿw+Ÿ”# z®MˆY'±÷ d»Dt?ægw'–E·‹Ôƒkà…)Dºsþl—˜ Ã_¦û\y¼Ÿ•·˜÷®ù8¸OÃw¾’5µ7ÜyÁJ³/þ¸ÜõÝ ä|˜œÝÍ¿y„tîH˜›g{&»KFpéÖÀkÈ~kFˆ÷ÿäç=/$NL'+ŒåÁ„YaÒ“äˆ iü5qølqû^†àùïîŠÇÊTÂñ‰|ˆU)ÙzÃ[/yßÅŠÇ©†ËS¹³N€é ÔÇ`µhÔ‰Ça…‰ÄÊY~_ÏL˜?">QÆ8®é@ÿ]¢DMkMþÓÆòj¥í—ð¾•w¤¸§J- §¥F²0?½i#Lp{Ÿ#^ª,#}KÓ+ÝD{·ÏØÍ»Ÿ Z&ƒŽ£š’¼¯*uÄíiïûë¦jØQ[ÉkR2Ø¢þ•U\JË>Y¢©ÏÓ°Õg‘#=¹KÀ¶à§¨Ýù;Èû ¯O[æD²TÄô$0àØq=¬—)ݹÿî,úŸµƒ-#®¶Àúµø•½ÒA>¶˜uµ„_•Ë’ÏÚÁÕwa¹T0W',½ÝOvsû÷wã ¨–óúÉÕ5øpÕó)¸qïå$Ã+Œ§÷Â_îñ¬§Ÿv?ÚÆéZ²ëPôýÿ^¥©„ºKíbsÈ[bb߯¬!2^…á.wú©¶÷µ y|ubZ;ø,–…s+ J‘ù'‚9ˆòm¢Ÿ}÷TK[+LY;Ê›R3Ø"þ•“zx5Õ@>û’mnbˆØ‰p[5yñ9¼û{òžVÅJÃÍñ’}ÄŠNhÉÍ´>'V&SÈa݈xåa€˜Äˆ\hâº>¤Î®lñþŽ•[RsÛ!íC?¹È]åðd»ë ´›Ѥ ¿3ò r>%&¦†/²-«ëùß ôg ×-Bä/lûm‚ý¢eu´4¢Êý•šl¸Š”D¸ìØ9žŸŒ·.ŒO¸ówž‘ fA/l¼­§¶‰ 2’×ɚ¢"óhjÜÄdÒÝl¤M·!v@ûhc|«a°Eû;WùizyOòêp]“lÀÈóÜ•oåÌÿ*„¥ŸýêØëö€Ûõeìc»flXàd`«Î–¥õd¥ÚÇû¯®¢ò©\’ݲ[ר^“Àad?½/ÙV¼} 97 Ö<Ò”,/´öný6«Œ –} öîÚwv„Êî¼ÞÂã*ã󪱩Âÿ¼þ/¯RLê¹3&È YªÀB۪儭±o´’ž„é³þÇvüã*.%‰ç§¤—¾J¦ÙÅ,§6Cö¼ÿ?Þ­´à µ”ÒQV€õ-È™|1¸grþ¿]9ÉŒKg2Û´RƒL94®e~¹^®—ëåz¹^®—ëåz¹^®—ëß»2Q ¦ ‘^Nÿî•PK\‰)Iÿð|5Pb? ×CðûùüûV>‰'‰$õ)(¯ÉÒ^?”’B*IêþÌ`ÀU…ey7´qÿ3+‡„ù©Øµe„¼#Ýä )'Ï¥§–!r\ŽòïVÞ­Æûe¥ˆÔ”Šâz›Ô öfÿ+èN'Ù¥h%ód„?·­¾–Õò²ô×s_×ÓÚZ—ËEùFÞ•|ÚÍI¬--ƒ½ùÿÒªì÷eô@ ä5Ý£4™}d1mŒ´ )%¾Í´VÖÚØ‡öTçëI©­áºW>GÅ~ÇsPkJy]C:ÉtY&‘ݵáÖÞÊYj{¨Å¬„Ò~¼÷Ž®´˜ÅÖÃÞ±¢à ¡ÝÒXVÜNiZ!á‹Ð¹ÎáY™‘½(žÜI®ÊVW¿‡ró[¡r¥Ïß¿Rúã^c$¦ÕúÈ÷ ’õ±W°o!»~Y}í k§Óí-fáÖßOØf?Úq›b+m¡-°ÖvB“èXôØBšHh\íö÷­Ì’Œ¨¶Ršj ûʆX5Ð=éÊÛsMcû4¯ï:É&hÆ@ŽÀdtPןåÿ±Ý³S|c­³ hbª¥±ÒMÖ'.ü^ŽŠdöQ~¥|¬fµ­#ì–Ý:Ûd®dQðíªàü˜µ´ƒðÝj°ÑŸè„?Tà6ͮ۞¯¶x̾ûñ!Ö—,¿‹£ÕˆÚq°þé­ñí]$vç÷ÕÛk¬-÷±ñ'`¡±EÅ#*ÙjíÎÛ*[j­¬&º˜ ò«Úx»dÑ©í–m ô¶óÒƒ8êÈ.yÉÝŠI_Y¡ðòÖ–Ó®ir«¦áÿé}—×ÁV…×ë ºEÏâÃmŽÍ³Z0á tqÈzYoÛD\\Ë}â@¹@¬Àx "º å³`òJ6x¯6Y]B;bûÀrGX-%À³ÛÀhîlÆçšÄW ¶´ÏÌu…Šgt°7É *Ú}|b·Ã:Ùëèl¬íç{¬\ÀË´/HB}Ÿÿç*OŽS@ÚÉb=n‹°ä[Øñ¤ÈkÉÁ~7Ëo÷õg-‹§»çåàƒi– ”Ô³Ó¶O¯kßÙF?§½•´Òðæ {jI»ìŒµ|ûi-Ñ‚-æ_Ya¨²ÒVúiìçú:7²÷ì}ä/å}ýtÆ£ò¼âú›·ÁÓ‡[.¼ ͇ë«Y3ð¾/ÉgEàâ â"¬qŒO å“Ùy1­ “9Ø¢þÅå&øå“Qº9ÇÚ«àû+X­-ØŽkf]¬ë™Z6$t½Þ[xà©V†Š`uwžó*>Õ“hÑÌ&“ÕÑÑäGý‰±Ùø0°@óQM„^}XùÛÈL™NT¯hYà¸OAü <¿Å°ˆ¼R©Þ´5òý¨îJƨöu@Sä‹a9,:Ïfa÷z|¶«m`‰|hç3‹ÈxlW¬B Ià'ª†´Á÷¬Ì0~i(wô+pÜÒ\–6þ:m×åùg‹Ý3’ó6µÛz]¯Â74Þ0Ôâó‰w‘=ž%ãó#©ŠùÎèËm;Yp;ß }ªIàña üxÒžh2Â`÷=ýó•VâQï\‘9øû«6ÞKu#Àü‰¸¤¿¨ðØ]¿ Ü×;z‘H‹øF¬oHN\T$#¬ŒÎJòúh4°O)þGƒ‹°é øa·e¶•°`º`‹üg+ Öï(`ð¾°Z}ä©Ã…!{dXÛ@y¶ÛÌ]ÉÙÎë)0à®þhŽFÊ€ZÈ_fHc¨ŽªÛç¶„ò9Ú¨kG§uñ¦ X·šÄW¡²ÒJ 2“ : Öµ+ ÿG`¹=¾ÿD]÷Þ¸X?)~ÎY}¬ñ`‰R~æSnïÁz¯#§›wáfcM$j€6²ðKUÐB"å›kWABšÀK¬µ¤DÈœ& $•¤û%,Vm‹»óÙšcË`?Ö¸—õ¡F¶Ôúݱj¤ c%V”†có—ÖÀ{5ˆ-øK†§ý/#çØC‹8jßøÉ‚¡°òI8¾?MÞ£-á°8È ;~Žuã¿ ¯ëè|E/Á{?h"+€¬nöG'tPÔÏwq¬ŸÍ=Ñ|£(±ïubèD²à†üZY¢Ávrã=dGì¦#O©Ÿ„D÷wío6i)?ëp|5œ­MÓßÅÎ57¿¢Èr]7Ï~ß×yMž²áõ4'™azçá9ÀÊCuWº¦æq=ü½¯¿& £†M £ÑÁdÕÐÅp2æê6[š¹÷߯+!H&n‚ÙhKˆ4Ã^EÉpöèQßËÕõ3>¦Ût±.âÙ9µSj< ¦=Ö¤Xý¢:­}r"Ú=M>²sˈäù`Ã(DƬþZºZö6^2ͦÛQÛÆãgR¿ öJ.‰¨{’ij× T°³ðýÖX§¢=÷}\wañt¿nÕµº¸†7DCú0"£›p”ÿȃ„®ox*ÐRÀ’€Žb¾—l s|™’Oº½#É>¡.^h¸¿k?iöÿ:޼•Œ¼?ªôÕdloØ¿yWbv»¬ÛÁ½›|°Lwøëÿ7è=bár¿û Saåø|«12)^Ç÷6p^Ò‚Ÿ¤ )’Ÿ ”žØe³áÀÛ¶’ìâ3þRu+ÜÌ¿¹RæúQ¿S7í.Š=Ó'H¾›¥¾_ª tò/á•Ûê®wUïSuòã‚ì0ø 5Èwsò,"zˆN´p׉=âÕGè¬ ð6|Ø ÍÖ%cê3l±Rü«ÁÁÂsôm;­gu#ÿB£ÃöBäo7°þnÛt3~°KÏ`÷»ÜŽ«»Îë(ÏR‘ ¤ù9Ñßuum#‚…DÜŸ÷:r½âë-Þ‰ ¢€˜Ö0Ì›d‚uˆšsµ•Ä ²üÐÀc­‚Åš€ý¬x¥š›ôsOŽnst£ï†¾Ïw´>νëí³›ûÜnPû]/ávTÜÃþ»Ffô¹Ý'¯òšëÍ]ןÐB5[`§‰‚îºÂ¯áÄ*A¿<Ÿ¤‘”p~ë n?Ózú¡NÕÞÚ‚XÏ÷y_î»Z@žÝžÆŽŸ€–|pa˜¿:ð¼â®^ë‰íŸ‘rœôc;žµ‡ç—ALrA&4Ï®“~aŸ}XVj1õ5«ëbâz¼MAÚ3¾“å.ƒ–ú>ž«x/òBšüÍFÒ«ÔÀÕÍsâ.)Nk {Šf®áMg×] ï:Cl&rlã•#|ÂMЭIvÔ,tÖÆA–?‡tVÄOzÊ›¥¢¾yÌÖîG [tšïå3F'ûÜÌ'Ív4qB'ù«áX[í¦5ù"qâ8ïþnq»ê{ßmÃ{Ö™ ÿ(‘3³ß·‡Ü¡ &¡ñA–ÿÙ)©÷ ’§<ñ a©ÈTü;‰vë±òá{¾­@棼vÔÇ…-¼¶ ´¶¨‰ûyDH‡ð% ÿvw±ÐOMÙêµõlxZÃÈ™[‘ ¼EÎ܆*á5§yƒ,y$ÕˆSñí¾YÞwªbÚ^$؆ý]—ÿ)``!–t¯¸þŽÛá„):]¿&F×çRÔzúþ–[ÿ4ÜwÅ3Äv¾±½m ûýܤÂö1±¯F;§µ}¡‡ƒÜÿ^¤Ž,"÷ý^ Qõæð“­ÃÀÿ¶xž®3õ[ßÕl²,A¢ýðÁQÐñ-¸èFJjc$î„V¦€’]xÎ}ì‚wöó¹¥hê;Xà¤:¯Ê‚åûÀkí$uã\Ë©ã‚~L,•,ò´:Ô²Ž»Ý<£‡~^Ã;]Ç!ç}WøNÖG½/Æÿ¿Ò/ñ7c ñb¡ï µŽ÷îâëûÐÄNø` Û¡±~"e$ÐUÚJ’4‚ýöS Õ`Ï…#ì Žcàÿ—át#cÁ6é,¢Á@ÏŸëá>Sçá ý,›ÔæÐ>B?çïc|c·)¼¿ÕsÂyäÞês¦u¾oÜZxäz¹Î;?Žñ ©ìS+o'È/‚}E|.I'µà=ÇíûÀnTôÁN!ýW:Dè'ú‘öÓ±<_Ƚëwý¾rÒ3Ãh탎vñÚßå{ x˜Èw”˜ÌgNËa̵¾gâ"ßCÕõŒ:CFÿÙís{MYþâ’Zr×Ý|ŽUlõføj.XžÏm™ŽÒÏú×ù³}Ÿßa`9¡íòòçU×p…Ÿþ3Ç÷I:†ü׉ôn„ëõ¼Œo¹ÎÚëðƒ3üún®/TEìÿºåÖNA–?·Ýrlº½š'@ô,|};v܃,#ðñad„=ÁÀX` œ¿žê`­ï8 õF¾õ¾ó¿cǵX×uÙþ·òï|´2 É/UG!ú¥ÍõI¼¡ÙȹŠÙ—AïFøL’“Ëa+×aK7Ù01[x{ Ãò½‘z Z™é»ÀÎåœý]/èÉhcß™ JÜýßõò{$_&Ý”>^Ò¸d>nßx2¬üÄ׸<ÊOÆ]7è]SI9yƒ x?[ê| OP Nãß]È7Ù&û΋ÀûXýŒ>G¾yD×ÚM‡¬=x†ïyìz¾¯GO|î·ÖØŠ^SøÙÏl·MdþÕì…¶DÁ?–\2Q|Ae¿Ûc{7ÂÒ#‘æ;l;V{ynŸî÷~¹LxïoñÑp¯ð“_ë{¼¾œÛ*ž-ó½]¿ûÕ¼â:®&þG€ó“[a2ÿpÿ—Ô‰­DtÀNëÈ— >ýHÎ>E» ãSjšûX}¤ïéïº ».î=/.á3k‘qž0žw?&&Œ V,ôÝý7óŽ›þ1ÕÛ};²¯ðSӦÖ.w<«|tÃû{Úç!q~h8 –)üˆTnN—ëz<ôô½Ý “aø›ƒ´È3À4ßq4š©ÉgfóéU~ZÚd<Ž~\`‡“Þæò 7dÜ¿†¼0‚‰å²{Z=èÕ¿[ÑÀzÉ ]ÖXäý«aûIlé¶t76÷‡. ³‘tÒ¸™G3ÀÁ4¸ax™”½ý|ƒõ°ƒ›wµ›¯G#«øÌ?I﯌Ǜ¦ ×%6’Û/ŠüÁ÷×× ­¼-ý‰Èn~™ëàvQ“Ú_'R-Àþßx¦_ƒ\¶ã: /Çúóñû±àÂe ³|w79ËÕ¼;}´_ZŠ?œÖ‚ø}»äyÁõ”¼®ÙaÿÚ<Ø¢ûîÏ`EÙ $˜¥ñ,ºmÇRs±Z[D8,Ï@â)Ø{¡Ïù‰+ôU˜Qì ²Î÷{EÜó‹¾ÿù¿×ØMSüY‹X>êŠÃèã8h¸¢e¨âi÷`‹þ‡•QÊH+-fnöÅruÓ<ú‰÷‘¨VƒýÑñN«½í×ù™Gß =Ñœïä±+Èú5ÖÄ{nÞÝš?LŒÝê§ Í ®é»å¹ÉnžtA«n»‚¾ïë+“”—´ü/aÛ2›O·¢äkˆ›üô£E°û8ÌÕÀŽÝ¦!¿ëv×:9òÛ1°àzž®öùþN¬¾ Ü¢2v}Ó6‚‹ûšÓ2Ú#¼å5PG*Î×Bæx\80³– «Ëfñ­•½ ;ß!ƒ;ÈßXã'úøæbØRl: ]÷÷5ØòuøIŽÜžò;ïë5´ó•Î ä5Ø>žå´˜0¿;>Ø_x%däw½ÞÎHm;ö컹üv†Ÿu2ÕÏ6ì‹æñR¬¿ÊÏvq{û£#STüÚqÛBt4Ϙì÷ôîÃâîø@f²ÜTÔ‰üy@qù\|Ëä§_´±‘A¯üþ{M¤ (#°~Sj²~ò÷J$úœ˜?”wˆïç=ŒOõSŸ`ý…šÎw½¬lGÀ¸›xV_xïßæ'ÿ¹I©¬¸µ ×)Äç2“ñtµú<¯g£yývuBläû¿GÓÇø@m{J¶žÒÜ>ž^xùÇè`€Ÿ‡8™ú)XÉ–·#­;bv <ĶÉp~*,ìæå®ã}7ùÖe>çÐi%«Kn•À²Øû6ĶÛnûѶ診."©45rÌ»#6ßQ®Æ›{i_Ÿß~ ë»HïØ¾Ÿgx‡Øp¯˜ê÷úIJ“êæEßó\œXý§û=FÛÐÀ=¢]]˜o³6¶ŠØ¿:(ë¬ýBª#\:r \â:Ú=G’ílýçØþd˜íó߯ý>®9¾ÿ¹‹ƒ‡Õu¼wçÆ¤„ÏâÂj±ÍuE=ã÷‚Nö¹ð"Ìx•º÷Ê#4nyüÑátV@ [ä?[¨ƒsHG}ÏÒÃgB&4;¯À#Îû¶n¾™›Š°ÞÏ@šúOj$q\áŽs?ÒäDÌ'~OÈ Ÿ .BgnŸñJ䮈\&—êd%`ÀÒ6IO„X/ÈTܪËAd aªlv@‚áŸ@vDsSmÜÑž(–ØÎ¢‰Í `1H¿®—ý™q§áº$–mlõ“±á÷ñ‰)>#\ÎoÔ„ÿ"rh%É”Š[Uý6dbßWÉK”ÇFX4¢–›ãx( ˜Œ|Ó‰ô75¢]àÑBdšïgýž$—ɧ"jÆ!ÎÏ3 Èû9h«ÐÆfŸñ»÷ojß0³5³rZ5Î|ùóUÍw©üRË[2켬§& f´‹`Øu¼ªã[èÀMø§‡ÔÍ»psÞŸbûŒdÌ»±»«çë3t² <#nÏ÷¥~Õ /Èf`ƒÁ!yU`)É''¤=³"[Íb{47•Ûý3¹L$û™Êý$6Èóœ|*%žŸŒûçxÂ:¤@”X¡nÿùa|'- ¹Ï5sgŽa‹ìòÊzö®æ'Þ†Þj/…‰É£ˆV­-+,uK—ò5Ûnü ¡å&w»Ã£`àg¤ËóÂö`ÁS`°¯·‰kXý…ºþÇ—Ð˲…ÌnííÝ¥ª˜-BæÌÏ?_5¤‰´‘÷5Ÿ•%RÝռĂ}Ä÷CêÎIzŸsÿ=ÜF+ —çå/;2}Ò'ûY!nnâ4tC‹’åýLœ„å: gÁ3Ú!sjSǾ°‡h`¾¾%3å•Ë|þçj"¹¥´T–nº‹åBŽö !Ý&V†í3ù YÛ¨ù:"aßò0`AX ¡¹³ÖRU%j„Y)íVÁ_ÔÌÎPg¿{¼ÿïUW’€‚dÒO›ÛXkŒ— w;‹•ë"INì|Þ)iˆ^^h²»äX¿—•ŠŠ¨\UZÙ+‚ŸÕyiѱœïë~Ÿ ßùj¡—Bø€Û|Æ(Mì¬nÞ¶Ö×V'ZèBßå÷³\Ïë0ù@Ì–Á]î:˜ÄÈ÷€ª¯>>ñþ| ¤WDþ`$¶®î¯ :OÜþÙ{FuU{h#éŒ6ëý.f?üéÊà3¡:Á&áëYñåœàº=~=Û:RÉ'°Þà{·Ý±éøüë¦æö‹tE;mŸ}cM`Í8Ú\ºó;e$Øgúüã+UZsP@[âă×ì]{ÓzY²£ÄVÆ;?ÙddÎGmëÎmhßM#ß¿DžPT»#yú` òO¯ÌdC¥$¹ì–ñš¿®î`óâäöIñíþ6ÿ ¾+kîü_wÝLòžWÐÅ7šF{ü®|þ/­4RÐ÷xj'aþ<ÞœvÛîÃl%‰xä4~:Л–œèŸ^øÄ6Ûb›¤e±ìNdºÁ>¿ó·X)%'uÁP¹BDLnß[ŒÀ~<¼-Ò¾°‘Ô8#ð†BxÂb»jqGõé ÍÈ£BmÏ¿²ÀÞ%¶¢Î­øÙãók‘·D <°|HèoÏ©^ó™%mHÛÿ-Wqò×|U6Ëu}ÓNÛQ³ÀCì= h ãMÄþëô5>“VBkïîo·ÊJr£p©®¥ñƒãd½™µ#UÁ[eí¼ô¡¹oã·Z)¸U”ªRJ7óÙ3©.3ô¡›J†NíøŸ¿Â±rwêƒ}rF¦J&É«éÔ1d–»ªýß·2Q#—“.2]Þü²MÞ"Î…Òñ¬—ëåz¹^®—ëåz¹^®—ëåz¹^®—ë·_E¨ù3K’ëé÷Û¯d’IËJuIþ‡WT›K6)(%% ¯e–ÚAݾïJ,©$Ò»=â¤5¯„ë\y—W[IiˆJHEW‘B<*ìÍý WvÉ-9Àw]I/Ådfß'ó°õz™.ۤ얘úª ”¹2Y^AÅ$Ÿ.Âç¹üý+5˜ÏàÏs×J•Êúª&¶4vS?‘/e¬Œ–´zN×h]®5®“ŽROÈ/áh+4:¼ý³+3X»UGþVXû5½¥e,ƒ•´Øö•e×6ò–D‘5n`¼õµ7yõªÖÓZÚP/I‰ŠÎrðÍ`w8ùçVaPŸ]ÂÀr*é ]­}l¬½náVÉ>@Ö·¬£¥Ó"òT\wì3¶ÜZZsëgíÛdyl¾ÆÐ’üB©/å‚-Ì?±2³åñøR²_zi%Ûl7íªõ¶ÂVÛòÛ{ÖÊZM›.½¬Y`³ºÎ°=m˜m³k¶ÇÖØv›klŽ’œÝ_c_/ØýC+›ŸþUzK­k3m¾±õ–1ðµåÆÊ÷t” °¯‘1®žµbÊ–ÝꂉWí]¶“ö‘MµöÈJÒXkéë§âæ ¡ë]þÖÊŠß×ÅvÊ(o{­›µ¶^àz–³¸VÔ>µgèdŒià…¾æ›Û:ëoÃÑIÛNf‚„Håö,äÒ/Á@'4ô÷1»<‘¾ì}Oꇠ¼+2—³×l¤­°L°_¤ûÖzXû}ÜÐ…üû™M°¨!ÖÖÞ¶Ý6w× 8ãxE k¯5‰ˆMÈ B…I&"w˜DÓÖHù¶-h‘»…ýb!q*xpªÕ²jvŒˆwO/z^|C´¶%¶ÑÎñ¨·°L_ì8Q%1°Jû¡ÑF!?+›Ä“âÄ»_¤„Mæö™½cm¹  õ]!Saÿ™hÃu-f¥- ¸ïf‰¨Ë'÷X¼À^;fƒ|ïø·àˆ£vÐbšjY%íé;ì‡îJ‡üé%¾L•b–ËØ pü¦ÇÖõðr×ÃÚõ“ÖF¡J–Ì ï 'æ„Ê‚ˆ£Ø»?ü÷*Újo슥 Ä|oO,Eà’Õ×´ü~¶`‹ùWW1‰ O-•+:þÒÎÚ$‡·».¯o‚ìöpA&K€Ü¹x-­ïçZç‡ÁÍì°±/¬¸ÙbC¬*ì±ÚØ4¾»™x0×úUjá_¡¸Š‚üò2X¹O!ÿl›‚úY}»£)Az%x¿¿¥ƒ êYKŽÔí`„|X:¶ïÆ_o[gCK'@Ä|ëÎ;­ð•ah ~1:°AÇËW!yNë‚‘›(}[ smü{VmŠœIí™f±hÈòž}h%Lyþ€<¸%1¡œ÷%h¸¥E, ýŒÇöó¬Ò_¶;¶ÐÞ…JÚ2[It8dííõDþ§ÐZ±}¾ÛVžHäÀçøm9¬ÖŽ ·ÑË]çÀžk2¼º3šq×=ÝÕ²x}k,^ w´§f ùÎÖÔ»+ÈG‘g|ˆ&×ýx¶Õ’šÚOò*6´Î“p=`rÈ)ie·ðéID´ŽØ3žý¬?iz[jÀ2#mR%ßOš9«Áï[eð]¤¤çýjü›ËJáÓí9¿5M´àßHX(Ød@ë$eÉCie¡¶M.Èw:ããgÙúW@r8:p]P#ãï±-&y»2øYi"$e¶/ogÅ©zŠ’ N΂õfÛç0EmXà˜¤Þ4D ±ö¶v ËU’*?6I‹$͉ê×°TE¬ZÁóç®ñLi)|gÐ(H/ö :¹¢Q-:(mƒÉuÞ O(‡ü¥Èšð+Ëmùr#}À}~µ'õC¬@Ú@êÀÐÀ>û@*…Ðù"%ÉÐÛËiÙ€Ìoâ˃a°ñåžÈô:ŒïúG"ò›E°¨°_U+6\ÕSvëŽe?ÆÎ±`€–XAÔD\ü LEþ†àáb²Ài`Ÿ‰©…á€ØÁܯŠH_]&ÈMýy“ØY<>’”Õ…y%.Ö¿ âoûë?æúÿ׃ù^CÒ‰X<"|YÑr‚ްC& õµÐ ªá¹±Ï!$#9Q |»–ïc÷1¾Þ–¨ VRùné°qr|g ^RÏdæS É OÙuj…`ä=E¾üY`i¾ˆ4“¤X§!¸ŽÍ¶¿ ‹]Fêïõ°îÐ;Øü¸>& ÜEþ+êº8&8­ñᵚæzU$ÿ+Îc%SÎÃù7%~R$äáQ<ò oɆ—¡‘õd”‘W·Ô®!pp"ìŸ\ÞÑNä8íðωjÙþ‹¾Õ!ßÍòz8âà)öHöóL‚û³š&,ì®styøï¦ïÉ‘9’%Ca¼™û|~>QÐM?œ'H`9C JK6^Sòc§Øv_c"EEðzGçû«Þ/è/xÁq¤w×»©W‚$ÓUÈu2‚öèDÀì<Žm{ÑPD¾ŸÄOL¼á{©>)ÏÔõ×ͦÜÄÀ®¾÷oøq´Qk[|¢pEÙ'®‡{!Ð{@gûΧK`¼³º œõ}ÍÏã?‘õ_Gþûú¯]ָȔ›ïU% ÖÅçOŠôàÀxí±â rîrçØüvLôZ‹[]?¥+H(¦¯ýÚ˜”RMh ¶¯þËŽûþ\ìX¡+Õõ„;©îÕsàÿ†Ÿ}q^ÜÊãô æ¯ö"7xŽgD󗨢››tÔ\!Sºëçü¢áäÂ3ð‚DÎÈÀöh£˜TVÖh[rڸĽØö=þ‰ïä?[gù¦[þ,Òÿ:è>Gð„3º‘ǯ þD-tÅÏ9xàçCÄÀ¢ÿ'`æ*ß9÷©Âå©FS]DE0ÇV¹~ÿu$5X+‘$•žZ‹Å†óöëB°¿Zgòï:4à:z¯F‚kz¸­/ø¾ßñ ×Õ(#^àº' عȽ€ÿ˜v<Âî7u;ß} N¿Qˆ-åÈߢK~ÙÄš}Ÿh!i-/´¼íÔHö˜íŒƒ¥Nê*¬îz]­Ä vÃ…û}Ç“±ê >纃?Eùfr¢›»ò÷6>±‡O°~t‹c/§¹}Ç{7ý¼˜xÀ¤n{v%jŽ´™Aß'ÞZæJc?ÕÌùm¸ŸóõÌwÃw×2»Nc@Ä2ppÀKsN;ijEèë±fÇÿ‡ib[Œ—EWK=GDF#Ñ`“s|öŸE\Ð’°^YkKF8ö{ßÏÙë`¥iå¯-‹©û\×÷XØÌùýNŒü)l#RNÑi:‚ûѾ·íQd9*œMç Ý }Ýzèe)kq ÖßÒŸã |§Ëk¾ßµZ?/.ŸÍ´¥dÆÇ,A ƒµÑìùe¤Çò±Àä êÝŒä%ßêZ-hkà9×ÍÌu-Ÿ¯ÀÿVìûƒŸ 亙φÝ:Z])õÍõš‰¤? û5Ð~ ìÿ®©›–”æk‡ý •±úê¡ää \=˜+·T–äkîWû’ì-™mÓjDÂKXÙu„^ä¹pOwSqÖð·]ìDƃÈ6xòkW¤‹fëø…D‰ëx¾Ë™ù 2+aÎsèâ0ž›l9½5ÿmÑAið0ØnJ« ËŸHÊË4‰N¿é;Õ½Àj«©}\÷WC®U:Ýwöq}þ7 ³ëð¼-lå/]ÕxDèDÌc¾OÐvŸ=ð3®á?»ùÖ}Í«\á»Ûð‡;Tqñ±Jà¿³í žÙ¤žÜ#»ˆÝcÙvX¯V×Õè’¹ž¸óõ[0°DÌ@þ­H¼…H0?Oiýuˆ¹&7‚îaoÇÑ×NpsÎ+ɯ)16¢ìÞ‰FíP¬5—êÁŸ t³/°Û.¶ù*[ïf—­Fn—ý}å;@/ô}Íñ7?XC¬ûf»D||›zï¾² ¸™_®sìdLçýô‡­üë2ŸôV€¬ ±•ñs«ø£%‰­zM&5¤Û{ OÝ‚m"$ÃJ«u8þíúŸ~‹Ì›|÷èg’ºY“ðu7 "µÝ¢"ÞÚwáó'ý7=é0Ï]Fx†h€*ñsn™¨„× Ÿ–T›}좄BìÔDÀ’Xì!Vn®ÓY|Ðz ùÇêýDƒýM^æu×ÇòïzbúN æël׎Ú.„ì3ðýµ~á~VÞa~k«&² °B?Smˆ¯¥Ý“||c‹´ ¶èXÅ¥¤L&ؤXÊ>‡ÛN²õ3Ùæ%h`.ºp}?wû~ŽÙ3Ñ‘ëiÛÏ®‰×¬à•«èå(Ñu覥íù*óÔ%÷IHmé¦"\¡^ìKÅ9)dÎÊ-™¨CÝÞʵH}¹ Q¥„¿'òMäÏu5ƒföaÁÃ`{3ò%±>›}‰ŒùmrÍóµá n×ýäC× ÜM̼L5™ ”'`ÉçnMÐÄAŸ}öÇåÎoþL¢ óa2šh¶H.”Ì®ò¿ÝÌÉXx-²»=bsýd›U ù¼žÏ–ƒ‘¯ð—ñìEæ-~Ÿ±ëvÁwKOBþ¿Ê:‚—•±¦ö‘–¶ØÿµJH!©-)½—–±¶ì<²ÿBF|Ã÷?^àk …°›j¶žKhçÁúr›AVÖæÁ—_È.êmnö•Ë…]®{‰Œ"6ñ¿ÜŸ]%Âú½­K̾ýã*+Ťª¤ö–©f[l9•IM²µ˜Ôk®³Å4tà: ÏñõœËža÷Øè+€¦j’ÇnÒ~_Áб‰(xÈ÷½BÞŸÃâïcùã`Bw4¬¢}`‹B"÷ùu½-i$‰,Иئ/6zDe«£øîÏó}Wë±^Küä£ÅyªéÉ”R‘)æ°Ý¼þ‚ÛV?ùè xÀw­Š×įÜL7'· f1ëÂÿ)„® ˜"E¤¦Ä‚¿k‚R·×ÊÕ­ ˆ}_p¿»º©°SAÀ ?çm*ž‹ª'9øxߥµCð|l¤Ü‰ŽÜÜÃÓ~Â.Í :^ÃîÕ¨yX9Ðß’ÿa¬ùQHõM Y‰Ãt5ïøî òž¾ä¾ß`õ9¾—õ ø~¹›0 œŸ×È ¥:qì"õÿmMc'ñˆÝþ˜Á¿wÌÍ 8N.PÞRéö ÞyŽ>ÖÛ1ªÅ%Ò ¤Î‚K$iÉ"€èg v+l>)×cí~ªã?Ín±Ÿ3 O%¾]$cÎG$$sLM}¤/ô±˜¿é|r²?†¸¿Šís%WÚu;eÙ¬ZL>ÿÓ• ä’Å’ù˜›à·\_ÂSØY?ÅòQì>1}X˜Be°Ž?ÊkÑ©bsónÙýÞç/®?ð3|ÀM¿;€NkߨrÚ û–ìÿº½CÖZ+¿Ÿ‚sR`+×Ï7VM£œv“h¿š\7ò=ôàb¢Á8Pð=p}בÕ N‘­¥’tgʹ£(ÛÑ› µÏÈ@Ì/nŸY}¢kq«߆ÖÊ+ÙÀ@Uý» Þ³€hµ0r 7ëÑÕ¹ÑÑGÛž]&°Â×;nšM|ø½žŸîþŸ÷«ðBbøþªËd.F·tD½&6îÓ¢h‹`‹ûV6òñR ‹§²sš“¬&2ìöpݽ¯ÀøÙy¶&˜ìs\7Ë;r§"ª=Æ?’'-CsŽÂü,¹Ã d#¾´®ldì=[m-àˆÐòý?®\RQÞ“DV¬Þ@Š|Tëíus=nñRê›pº›ìðHsaßëxy!ËbnþÉN¤_Äýu²b¼òD#IwðíDÓ8Ľ>6•ßJkhûùÇ•Ÿ<8½ôÐd-•ÀtVä7[¥·¨ âãAÆOXy)à¤Váà¿ôþœØ=T½Û}øƒf&ËËŠöbñÇ} ¹ŠŠ2¿9æëe È6Bs¹ë[;ÈMuçó—°é0^4Û¬n¯pl_ ùã`uWéoײ–Þ¿HnߎȉÄ×ñ’ÍdüYy–Á ÀrÕ‰&Ȫ"¡©ˆVÆ[‡@ËrÜÿß+/x(GµyÛ,8 ží'Ͻ¢©ý5¥,ºxŒô—´°eÂίp_ŠØžÎÒØ¢ÄZ"B9tu—š·ª½ kQ8?ŒÏÔµãÖÆªKow¶]ˆ®ö`3\ID›d]±º;òHýnQëºó“¡ƒÕ¼’‘¼ç…¶@nbzT²ß_g Õxøþ^pQÛZ‘÷&ƒñóZ-FÍ7ÖVËt º÷¯ÁR/—mò —ÅÿáãÙ--±ðQ¬ <–ÊNƒˆÂà9 ñDÃa†X¶ÛOú]ã¹ócŽÃ—¨ò PÿþŒ·úk‚bj_IlÿÆz…̼„d+rYó‚ëÈüÕ¶wÁ‚;;ª×âq ¤Ë‹>*ã—@þ6˜~£Ÿvœ ¼8‚œ8+ÙÀ`«8gYµ|ô;¸ ôU²áœÔÄoÂq5ÈZêÛ@œÞîkìß{ºã[gýL—4¾»:^sG v‘:ùÑ:è¥>ˆ/FÎ0ß>$V ЂÒQº[¸¿k…ƒÒòr@’Y;r¶dwî VA–¬ðØ#¢ß¸> ¾_ƆÀ”® ºáàöìÖ{^sÝ­¯ 1½È"Šk}éû;êŸE²KY™# ´8oíÏZ( £g±ÂvKù.ãç%ñŽíkäwç ¯E'îñZ"Fn¯°M·ñÖÌrXc] «ûL‡t•Ç$˜/g¹,ïõÞ…Øvšœ¯ –?¤î,†~Ôt=xß¾|ÿ9¾_ÍÞ§Òéi;l& zDïH©Róþþ¾•‚Šh¯<ÐÖ`¼„µµ†ÄðÔøüÈ×L(9ýjšQ°@G²žù‘».ðK¼¿/•nk먕õœZ9D¯yü[«˜—þ²OÝyþ…±y9ªøJHÿœž i_ýl™uÂ*ÁMxµ&¨pWR\Ö+²D¦‚û2!<ñèÿ^9¸•^2IËçÁ€ïØÇ¶Çà %ɺbåÛÖ4PÚ®„=Õº0CWrÇÚSí\˜ßw?è,’‘xÐJÒè =¥1°îHûÉF3"±»òªí´*ÜžjL4TÅ&ÛýIFQKVÙJçY9àÁrhá¹.‘‰h[-<ð™ îJ·Ïì°öÂßK“ ×Àûç‚‹XÚ@²I>¼ç?ge—ÆÒYŠh%[ŠœçÈ ¦Â}%ÀÃf¿_çCr(¾öDrK­ß­Çÿõ•†Öˆ n¡|ŒµƒvÃâ>4ܶ96ŒøÊâiZÉìMý7­l’Gºê‘2LÛ Ëh˜hËôkËFtìn?ê4I'…ƒ½™ÿÆ•Í×F`·ÞÚÐNÚi² ¶²Fgëu­¢oéÿ“|þ/¯d°z1™$õ¸ “ƒò†¼íš@‡Q7ÿl¶ÿ+1ìÖ˜Øþÿ±÷ðV]IÚwU]H @pw  A‚ îîîîîîÎÅÝÝÝÝ= !¼ÿµºg¾ž$ÝÓ=3÷cß¹Ùç°«ê©§ªöÙ»ª˜Tãߌ2ATúªñýz¿Þ¯÷ëýz¿Þ¯÷ëýz¿þß^Å¥ëŸ@î›@ ’‡”sšÿ7V I._PºŽv)‘¾ ÚÈ!YBع]ÿýõ…äõ=½+I÷¿éëƒJ0ßWR©]ETP*K~i&ƒ¤Fàvöxå’ôò-u}I'å$Ò6’Õ²I {zPŸMÚHGùmàÝ‹¼7C† ‘BÞñÿ‘•ùºÊ#‰¡ô±¤Ó+²S:ËUy%}|'øh²Evê[-¬14²^2VFHm)Œ6Ký@ïþs¥Ã³;È\I¡?hi-¡Cõ¥„ÑšT¿Ðg²ûw“)ÚÌúZ4 ekõ„ŽÓFšHïÁ£¤šêb®qù×Wu<ú;™/?I-¬su­¦Ö([Ãøë :i|­¢K5‡Å±׊ØR›aØjˆ~‹¾¦è#˜`0xh®qýWWF)-C¥ŽŒ–ÛÒJèhí¢ßh[­ª·t†ÖÒUZV³èrMâ¯}z¢aí”~kÍì «aã-Ÿ¥°‡º@ãèk‰®Ÿèº}ÎËïW6ÉŽåb»SNçè5=¤½±kNý^»êjicµ²6Ô&:]£Û!=ÆíŽ~lŸ›š;oö´TwET+´TVãj/ü¨äŸf&ì7ĸjrfÛ!O%³Žò×úLÖþÚS;h°C‰íŒ׊ \ìšF0w~øýÄ>¶ó`á L°UÓZ ?èÊwv 1W;ýãõ·"Xÿ¼÷L†èVï{^ÖYhbHÍ¿ÍuL Þ¯ç4ªÝÆj8˾ÓÓz’í6ëmTÑm²N:ÉH¢hÈ_Èv*Ë=9&G%¥Ž„÷.ëÏH´ûîÖGúËN×ïð…$š_;I ¹£_˜;ãkµÒÛzQ7éM¶;©áí%º ­ÑVŽ.‚¼ð32Ú¯ežì“K’¾[£Î²g|ÿ›;à`½¿~q§6†ÿ³j6íM†0D“ÛßjƒÞãï#tq@·ÃŽÏx4 vÖä:LÆK¾?dÏ‚ˆ O”²U2ÂÛóõEöNþŠ–ù°À‘VptíÆ~÷%s½PÂÝ3Ð@eü`´ŽË[üU`Ëýµ ÏÀ½cÈŸÕu¼sçÅ&ö÷àâ“ \ ;ˆ”;`ÐÈZ[ÊJOI)e¨CÞŠ&ŸJBiIÖ[+ÎðѬ Zø\?—»RÙ·¡“å¾ÏÉF½Bl¸ì»;=ÄOÎ"émÞ;D|Œ`ßÂ)-ª%°˜öDµ™®Á³ºP1Ç ]_»aÿBä=5%û>H— åy2ÜáÄ»è!²^“Ž ÞùĤwç¹®ó}à6êkü`œwCßpÿ‰×fÀ'A„ù®/ŸÙUâBl=GFQmÆÇ2HHºª¥¤–¤°óò¾ÆD¹‘:‘Û9p»9ùkýã’í^"ÂÍó¾ï®tÝ=oz‹»¾ AÃa}«Wu/øXëûßL!.²Êæúé4×’|obKûJCx Ðßþ¿ÕVšã•“ä•|ªÁø­ÀÀ*$r݃¬¿Ö£îiG| Á ‚Éò¦ûkCW…¨v™wê]Î?¾Ä«jmÑOsý²JÛO`à,¸(ct«\‡ C VÅî-儤ƒ¿o÷ÃÞƒ±èÈëºþ ÑT2ÃáµÉ¾Öi¤^€¼‡ÐÃPììûƒ^‚åNóùCXû°¿fº;Üç®–Šl‘l™Ám´RÜŽé×Ú€\0zˆ¹:qi˜—¼àø*{< À³÷í¦‘½~F†ÓׇƒŒCþ àH؇-΂óжŽO€^‚wuÐd}özktÝ,×Äi¡$|Ë'µrÖÄÖ âáq!c•’XðÑTðߟŸ‹Ô®—Ù|,? Ö z[Èvp°üïÆ»wòw[ûNOcð…Üo¢ƒkè`|x”êè,Z-$ÑÑDßSv»Î„ŠÙV 1×´&ê}!d|†wƺáô…0áAtáŽuå…ÿJ"w?8lïϦºL¾×žÇÓ኱¾ÏëÐÊvòw¸Y o¤(^ŸØjF;оÆE'·O,«#¨B¦ Ä''_!ÁRœ ÍØß3do õ1ÖÝŒ¯wï³ÈýÊÁà°·ë|ê|z,uÀ¢Ä>1 ‹ïfÛÜ.ø¾û4”.–dÇe°|‹f»‰+´þÉÆê:Š: $ÔB±¤4Þ?‡ wˆ ’Dìáì7ü¾…Á†`áÙHÓ“Š–ï ¼‹¯$&Ž&;X…>.`ëd7®sÒ´àfaÙ\¯•ô#Kn¡©‡bÀS4‘‰]ÒŠÅFè[|¿?q'ð++{Ñü.š¶&˜!9¨áÛrý >Ÿ‚ŒC°ú!X¡ì7 ©WqwWúöDËAÊrìÞ\ÏEcgá‚-d‰ó5‚f£f\Ž>ÂÚKôט‘ÌOÎìe?j8í&@[®@ /îŒÎò­¬‘Áxùj´Ã2G]7ØpýZ^›‰ÿ»ÉéWàóÓÈ Ç"áhrãúþù"ÁBßÿÅqÇ1БhÙH?µ+0ßA8qYtwV¼ö²qVU;Qe®—2Q"Z|8¸2õHq í»|$×ÐÔ¸»5º…µ1H6©Ç#Ã"HÔî ÓMõ}-–€A }Þ±”W†ûîPŽ/v‚„vþÈÉK|aìø„<`#L±SÚp{L5qRîKW-¦KÉ:½2úsz»Ëc¸Úuìë€íz€á°¶‹8Þ][À®·Ñn˜¿)ºÎmrŸ@âÚi»ún'£ùŒë|·™m\ ç0< 6›Ÿ…¶`$o ò[£…FÈX”w& “ `}2û?®˜>âïP02­ŒE;ý¨÷’ëm&¸¾àáÍU щÁX}•U;Ÿ9Ì=€Ha¤/!{$²–å°w+Ù¿5XíÒ4ÀʵÀ@,ÜJsçZ¼2 ¤4×âè©’tÅ3¶á+KÉò¶ê÷hé8^? Ĭ¡z>i*ûÔFñ|²ÏÑ7Ty->55é*ßÉyyNþ_;o@†"øý¼|$^_­ÔûK@{"Âd­‚T%»]ª÷µ ù^m²¹N‰“Ù²>–?§uÐ^GøÐuÔSKMÜœõïÍÐDúÚŸ-Ø5„ø7DzïÈ3‰Juž®î 6„»#Y1¬Ùö¢ãˆï5‰‹ùȆàƒ’`~!r_G΄<žK,E_“ÐÈŸã;’'¹_~EòYhv >²†|2¯…ysxþCâp°¬“nä÷¡¾’¦ÓÒÈÖ«·bïë›õÅ#vøÜ÷¸,ŸV$#ü—ñªûE¬8ÛñÜø ú[ ï¯ðµÓ4âE[t°8Ì»½¼Æjó ñ¨ IZ‰Pù§³÷å'Y+Q¨ò c÷šGKQï7ÂË{€Ü5  =hØDíõ2ê`ËÆØ°2 aÛ¬0äe˜¡#ù˜b÷e>?ÚÇ¿ý,É諚¬Ž³jÝ&ßKÁOÚ Ó‚Ù—ä}1±]!P]X °¥±þ,xj?:˜Š¼°x3bùÍ®ýñí¦°B^Mе ›õùÔf$¬Fô˜†ææúc…½ø†óäÇMøÄ`î@Qc0•-'Ô¹Ò ïû4 òǑأÂHS»ÇBòDe°ê\¬v’H6«õä>v9]=ìÛ‹;¬¤%gª„ÇtƒÕÇhu;#k0È™í»¿æµè 3z©ÇÑV }E´“ 0°þž†\$œF!g¿ ™ÁBqÍÁßüXj±ïxêòÀ±¾ÿm/Ø+¦Å#]@ÃX^™Þ«¢³:øJ-p²=ŒÀCg¸èwTב9MEæJè³%·>£(«‘õ9DíØ^@oä3¹(¥Ø·ÆšvÿÛdû_é›bÑÙÄû!¾ÏñDŸ ÿDìJLÔ‡8Ð ¨jÊ£ ×û²;h†¤µAù²À© Çýt’O÷À·*!};|`^’QSé‡ú£|!q*ÿgG¦Ê ,6”ýÊ]vš“½-ÂþöÁÞóAíré`Ð|CßÜxF3¤Yè»BvFz§·6Üb"[?Þ›Ìö}Æ‘ûøN´Ó-Õ šžêø Íðo!Ÿh&w†öÚ„}§²oÙ±M1ö¶1®ñz5(ß®§Àã—ˆvçc#±â[tœLAg]¬ Ÿ-®GòŽhr™ÏŸ6ñ|50‚¬°*ÈÌÿ1DläÓé5¥fplX`ƒÔ!ÊÏóݾ¿½YñÇ…¥±édbž›}²/ÞEM3(¸KKÙPä©<Áú‚mîKVÍ ÚõNù>ù3AÆjß%÷˜ï?m¶Å¿ZÀŒÝñ ×=°>Ì™;ÀWˆÿ,µ`áÆìÝ0ìÚ*áùŰk=Ÿ÷ÖòX^‰l§Ž[à;AŽ!·?ÄëåÀþ§öT"gIp ]Ý€3gcï|×"ç$>¹Ô¸_F»!;4пšÃwn& pØ«ä¾ë±K¬ã:ž†©ÚÀÎÅ® ±ªX>Š•]ww÷{Èò¸5þȧVÀÜLÈ>Ô3¿‚üoü¿Ý¨cÝþÈÿ*xb÷ÁäOåÈ•Ü1DÇþ=ÁÃR<¤V °ü‡e²t–¾¦ëˆ©º±‡°S-´â’wÄúÕÐÁx²Á¾þhÈ!0’KVT~‘#ÒTšƒÉÆxö·?ÎQ(é+ÿòüm:?~Œ‘ì ëh¬°= ºt=(^¨WA•ƒòÛZ|h>ÕÍâÄy⦉̈́ù*âI¸wM³àÿE¾¯ª«SÁ±4°ò?’FR +çZ-Gþ‰ÈëÎÜk NÛ“ÇL'6÷“mž“Í»Ù^g@÷v‰bt½µ±fA³ƒ^Ø}­fÕm2’¹îùý‰‹ˆ•ÉܱÀv|g\ÅýZ°ÒÏDÛ­ó¥l`…÷+§ì–îäÀnÚ‡Ë^Ç#y öv*Hmáó¼Ôïw@m'$¨¤å¤¯”AþëRA‡Èy!«@ùz‰¯ ,›mÖ;~þÇ*$u=t—𭈜«=ŽÁ[à™Zh$“¶ øô3·ÆI~IG¬ïˆ' …¡à´§Ÿ¸ ¼.€ùNòúÇpÜlbCT2—A’OÊc»¢2MÚËI®ó$:¼1Ù’X|‹b÷ô©Š¹³cVbe×븎åwŸûá’ÙðåÓs~| b`[b3ÏßbûvXÉMB\æPçý,ƒd‰F´+<»‡ÌE¥‰ä‘Í2IPŦŎy6OZJ<¸¤ ž“/ðœmê&Jç[:‘UôÙâOÛöÀ³Ÿè–@‹ý﫳ôÑTÂÉàªÂuÈO:úI.…uȾ) `ó²&–^·J)$ÐÙ;©!]e<úh(Uxe†Ä??ŸnÒg#É‹fPMÇÕ¤0œ¸Øšz²U¶´Øÿ¾ãèÅÂáíy`«öèà0û8 F?– ÃgwàþxpüÏ2J–H MŽŽœ'3¯¼“3`¹ŠÜPÄ¿ˆD†«ðI2pP¨N¯J$¼µ7Ï÷Žò¹Â?ö÷·+«d„?ïE…Ö‡,x²ŸñäŽïÞDˉŒO¡ƒç›äs-ÎCSnCs÷È¡6Ët F3å[4Õ&c¹mºU¶töÐÏ}m„‹¹9‹T~!©#Xo%“ÂÑçýy^3Éa¦h\[³Gº–¼·³Þ%ò7֤ػ v ®‘ úLÂñt>‘G²ÈrêsÙÂÚ2b@v«o=-Ÿ%´#Ä‚^xÔIfOà‰ÀO¾þÛõD’H Ù%ʼnSÛ}_ã`ŸÐÜY0™,® ƒ€„Fàú®tƒjj4X" ¼öPª33éij¹oe¿¼‘#´ÏçÕ­›Í¶ö‘}nlj…'õC;¡ ÑuŒ@‹ü›ÕJRÓÎËc-l§ÐÂ@bÖ|uØKä­·á„éÄðuøÇ"ajÄD±{ÖlOÎøJ^ʘa“¦µgúXÓÙcëeS,}`9,½&{22„Ýh»H þÍZ…üQ%‘œÑgê&õüS=Ö«þ¨ýzä^í§9N"’m$:®×˜Ä‡Ôäõw¤ üP×zQÏEÕëD¾¥ú³ÿ-(¦µ6× 1<^PHa—õc»D4É í-ðoV(íêg Ì‘OÁF¸+¦Å³d*£É×z!ñu}åÏò™Ìóüš‹—%»ÿLã9¨eº£©æÔŒÓà‹·pÈD¬=ÆÂþY-µíÓ¬Œ¥vºÞh·öKvI ƒå¤&=@LëJ´Þò;¯[€w¹Ý#BtÆîE°u#Þk‰"cû¯aÀâhd,ñÂ]'ÁÞòx!lºÎKo‘ÐÀ.>;B‡‘/§ ¡W6@þÏ%±<½,ǵ‘¦ »añMäokÉm¦PÓ´$GÌûÕ¥>ÌJ œL]›Êÿ¶Õ¹¨áì+{€/Þ’f·¾ÚC+Ksâ~,éhQÿpµ—ø’œ¼>·ä•Õ’R"ùÔn›¿d m‡üß‘åë}y­(±°:p\X„l§yó]ìÓÒ¢xöØOÎtE~”fò¥Ä%Jæ–­õ×l¤/©¸g“edò-°Oí ®—ù9~°t=ýž,ù{$nìñ^Mëûã¿…áÀªþŸ Ä w–ìgä9l¿¯ Ü=·ž—È´b±[õV<]+ñð€ìD§:òXʃê¡Ä:wEë1}¨×¨]ÝD ¡d~eñöV0À4|¡¶uÇ>KbÿÚl±Ô¿¡~„õåÓ£ý9b›‰1u ö.éÈ7BÞ …}b“—æ Ãß+EàéÆHÕ˜ç&ݯ",¤~ëOû%|WŸÛxðàÎÊ–½y^’(ГíÎè¯ä9×ñƒP¶ ß¹~îÀ‰ôØŠ"à–@KûÛ•Q#é>ÐYTîRË_²dxu°ô@=-/ {s,y]QÇ7 ßùŠ*q$·aÔ ³ý£žøKmð²üŸ_ùÊÛYPs…l 'ÛÕÆs†Ã¯“-쬬úš(»¬‘ÕpY8°ÜÄNEî‡ÜÌFû³^z€^°¼°/ößÂÝ/ÿ«ÑNeäkJÆè®–늢XDû…zðò?As§ðƒ%R,Dœ÷øÛŸÊwžl—0v›,ý€ŸðãfxÞ×Ô}oðë‘d„ÁhÁýÎÓd¸³¨«kfâîÈŸ;c`*ž>›gÍÐGL gíìòiweÄN?2HgS)Ï qøW"Ú £‡¬ #û{Šß>…Ç^iNòÖèÔ°bðôèa¾à¦ƒ5…ÿ6b7á%mµá«ô9ÈwóÏheòèüT™ù¶¯¨®P[Öb:Zº„8ù'IfÝ+ã%5Xÿ•úå; ‰,‹}Mæ–Ö’RÏÜ$n#Ë­Ì­•ÎÃúÝŒŸÝþÌà£äƒ‹xý}Ïm°5´²•Š'ùßBëc¥Ðm‹¡ë%gˆ“_$¶n—6,›5ƒåñ±,9Y\"4‘‡H¾ÎÏ‚^GlsWö/õoõjÚûXôU›øÞŸHèf@œÅg"[0™Ó-2¡R–Á²#ûr›a»5¶ÅÖåõ×s¹NU6]žh»€¯ÆË«€û¯°¡Ú 2Ÿjþz¨MäÄýõs°T¼ ²=ׄ`f¨¬óÑÏê†qäF]PGÕµ öÕ¶AV›ï<'-êßY‘´:±ÿ0{íæÚŸ•ZÏZ#¡»º}Q¯<¶ŽcEAÄNjä¨dwç©>+÷à©Ä©xÄ40vXBù ME³ºZÎöð¹p6Aß’e†Ô•A«HMI§±ˆÙ/¥L5_oIRò¼Säw5»–€ß"ÓJ­jõˆm`õôÖˆmô9ÑV¶_"ªü¶6ù3j2-B.9ü²£1œóû÷× ä_"+e—Ì‘XzY‡¸£BlÃÊ·¬u´’¶‡¨^{F²mØ{…Æ77íþþñœ D†rÚsi®—%‚õ’ݺ֪XJ é¡êKÙ,%†¶°ææ!Ý÷×sŽ„».ðï]Ýe­¥#ª¹3>›êx@e»‹§—°F<Šg3áA÷ûf)wõ,‘Ïî“S¦± Z/Ðâýk0Ð]6JD‹¢¥ež<'¾å#ŽEâáZ›Šn±a-ÍÍÛª ‰yÌ!þŠ¼â½¦ZEwÊâH›ˆžÊ£›Ïõ€ÒíŸ\k©~›’ ¤8-ŸÛ‡vXgË»볓w’lØÜMÈËi;|'ˆ¼pãi@ü\Ã},ud?ùÊÚX9«£¯õgýH·È¼êϲs›%µ¤Œ¸3AÚê§vËÒ´²½d äK8ñW9.It›\Úòµ—FR@òR=Æ÷ÝàJIQ-cღhV²¢Ïµ¶ô‘ë_\E¨†?"×ͬ]mªM%ÿë« ä¬ ‘›r@ÇÛKÉÄ-³d“ÔTvñ$—Ÿ}SªƒqÚÈ2‘íÖÓñ`bT Åù/¬o¨ÕvR­7!ÇûH¯ãy­#ÿûç­Å—,’JÒJY>9]ŸI~´ÕE†ý/îõÿäª%ùdŠd@‚š`¼€ÂÆ…þÓÙÐS9éMU9ëÿ‰. HŠÜÔÚ< ;ðWí¼_ï×ûõ~½_ï×ûõ~½_ïW`V"I/%¨ ªHyªÅÿ÷¦Þý£•žZ(•¤‘Òò½´¤Âë¿¥jˆü}ï¿·H‰ÍßsÖêçCsË+e² ’õ²L¦ƒ„urDÿIºýþ3+­¤ âKŠD©}çº,ÔÄG$7xO‹Vªcù½ò£¼”Çò±†WÓøšN;H´õç_)Àwn/{AjÿÒP’K i/áµ ÔDÆôH>Fóé<­«¥µ¶VÐËZLCkmБ9DöyüW–›çñ=ÌvDöËsÙ(¥õß­œN’OÆIX‹f-¦´DöÐ_÷3IËèh4–ÀwULh!þË+”ƒÑ:É×ú‹ºYÏîʶ‚:E Õ´êôÐ^ ZûÖÂZYc좵´ÚöEÔ‘`#Hö'e‚°zGY(9õ†¶­¾³‡;§‡¾ÓÖ:[ƒ4‡¶òöD_kLìÿ’¿C­zhg§­®u“\xL.|$ùŸ¬û½[Y$¿L”èšG;èFýQ7ëVPÝÎí•^Ò`Pñ¡] ÷õ#‹eÙ,§‰½ñçÎV°K:F?×ñ²Of#ò£‡?ÏJÇ7’U’@è=®g”.×uþ,˜C<£ûô¦|É£ˆöùß©;Ó#‹…²ÈÙwk1pPÓ>°ÚMˆFÿ,“ JI© Ó`öš:«ŸÕMzO× {°ÎѺWŸúníô#«ìýÔN¡¥ +nQàÀ§þÜÇLvQ÷ÃØA«Eñ…ÔìŸZiØÓò²HBiÍ¢õ˜Þо‹ÁAî{à÷Ѿ£ñ*lÿNÊh‹a)à?×8¢e°8ØÿÚxíϺ¡;µ­? r˜Tþ +ùLGùYNiK"únÇ‘k˜ƒä»¹ßõ=¾ŽêttRG·‰ø+ÚÂØï»B}#ÞÖXèà üpåßà¢5ÙSÉ@ øŸ,דñŒL„׆c³“pÝ<ؾ/è?ÏãYº»»¾V+xe"[4…ÙV£ØIß4š½Ó[H½_Ý,ù búz€¶kgMJDhÿá**­¥ ¸«W§é6¬ÞIqs}_fû^€°ò˜p1ÿ®ÖÇÔ~½`ݶSW¢¡ýÄŠÐvŒX˜ ù ^û>Ñ AÉ3}-u©ÊZÈ¿³’çVÄóËáïk}_Ã¥:Ü÷ÀëÛ¯DâMzJùÎ6Áõ(ͪ¥™<“>dsôzûÐfùk›ûŽW_YJ<Ã!u”-²à#´¤” ´ gŃûFÈ éNïzÚöñ'`ñíH¼D»‚ú…àÂâXp(~qJÁyµ‘ò6lÞŽóYwµß°ð¡…³Ï`¿§DÈ­½}j{uƒô‘a:äχô÷e4» /C}§è Ÿ—s™¿Nz’ïAa,ù_g°rœÜBn¡&¸©3`ÃpDwÐ/(1ÃÖj­"ë¢$’“È^?a¿ç"kGßö"w×ñò>Ófú¾á®bßî-ýËž‡Ÿé.=Ltü ¡%±sh. <'ø ¦ B´·TÇÓÉ®BÚÊN…_@H1L„sÌêÂ×Ç`Á X»;’ÜÂÁðû0Á.½ŠvŽèKxí·«xÍAßù}¾E+@Æ.¯#W>@Dp×€'£ˆª»$Ð]_~¿’Á~Á2œzî%6J,¯‹•wÀ+ˆct 6ÔÄB×ùy5lp[ß&3Ü€Ü ®Êß÷o¾~†’`íó !¢&:ƒrZ2é»çÖ24DÍŠô‰ä’DÃsŸõݵÿͨôÜ™ýÃt¬ö¿ßè iä»ý¹þþçÐÒ r£™Úf„ìî÷'D¿#àä®&€ù¡“hv }¹YÅ-~rNÓÙxm/7‘?c Åþ÷•ì'‘ÔZ\Ÿ'º-Eš¾KKGl=<\†ÕÂjì½<¯d+7âG‘+”=G¿ã1ÑɃޒ÷¸«Ý§á Ñ-,ùžˆNèf§u! „”+ÀSsK)y´-ètWn,WÇ^.Ï ÛÓ‰³ñí~úF\G³ñ¾Sð^0ÿ3ÑqØpÞð”ÏÜÿ÷ÐGw²Ô0á&þ½L uÇOzS#>­Ãj-N62ÎŒ‰óJ/¹Š-“Ç âîÎà^Æ¿ÓÀú4<`šïYZ.جK¸„Û—¢›5¾»ëI/ùYéOÁOÀÆMd¥É GÓ“`Ä趈jåð…'×_eVt©#-eˆt‚å¦!‘Ëûîùë:vø/s±à0ô0Ôõãyu³ïв“ígrßâ»\ï'ì#ó1b4Xr‘´|ðš\°‚E²iðIdrâ²ðâdÎíýù—• îï(­¸—Jä<û}Ï¢»à{/¼}+Oä•]Ü«û«€g íâÀ"¼dz¨=É’œõ¯‘9ÜÜ@öJšLÃ([ÐÎ=ðÿ«~?,á3éí;ûÄÞ¨››[<ÀÝÝrgs}‰÷7—…Q¿ôQ|<ˆ}ŠŒ‹AöZ|b:Œ·L ëg¼s_Œ\+ðŠÅèhÛº~`Û¼G<€!_‘9\“YMœÑOá»h ‚7·4еÆÔêáýIÜýЭò5‘ÿµ¬K%=Œåæ7ÎÃb§Aï^|¡›ïÜzÛuÐvh`>²/Ým|>¼Ÿ(8‰ÛE”gSÐCbå=™M,øÞ¿Ìg3û/%ŽìäkXt1‡ Òzáÿý•Q Kɬ5…š¦ÇzÉì6¶=¦j×|Ï»†~È lܘ¸ˆW¶àý£A…›“±ÑwM ³“ëºÞÙÃ5HŸSE¹ÙXÏüÕß1½Æ"ÿ8Ø3 ÕÂUòÌ`jí†þÅ4ªD“¸î|Fü¸ñ¯öþIß`ÍÕÈèlÝN¿÷½]ß²©Z†[„Ýçðw«Ÿ1‘:p¬¸Õ÷Íž…*éV©Î×ðxD,û’“|i>’ëo½O8ª©!Réºùgâþgæ¦)lMõ:·¨xŪ€à¤N€ '_’‡n—\Ä·nH² ›ιk^´6>±¯â#iý–Œð6] ¶w#õ1_á¹£$ýo$-ô|„´‹Øâ LqHM0Í?Ú®ŸØ þ‡ýþhb­àP¹ˆþ å™)Q´˜VÑVH¹Šû ¤Y„U¹o‚ÿøY7®«eRôäd=¥¥´šgˆ¼:Û׺ÛÑZi½.‡AûV?u.þ4…¼`¢¯þgÍÜ\Ý,è @%$…´‘Æ2Wkqj¾¦ÜÛâãý¸ äQ%»0?à›ý1ïüú!<ŒdI© CÙ[$›DF4]l#Òáu`×Mò 6Ÿãgèä½åðÉOxØ!*ǃ諞}y*ÿ×D¿±2HNJ)²–™øuKtÐÉw7î ê‡òÚdlèføîàÝÔ1%•6×¾Žö´©AŸ™ëæ®vH¬üŽÌ©/^±Mï!A+cýñ”Qh¢•à+аžH2KóèN?i;+ŸT”%²Z>¤fiç»×ÏÇÇKpo¬]°ý.ì5 ëÖÒzø¬»Æ}-ö¿£…¿4ˆŠo¯Bî*|:?¯Äaëñl历¸Jè1Vwø€guá{–€¢1^³ƒ5³î ìÑà路œ—w’Ê÷t¨AL.rËâÙeµ²#Ã.ìÿ’ÎAŠ­ÄÆdô—ÀC¶˜];¡«Ì~2Î/RFt&ó¹«d»çð€—°`G¶nˆÔ®zþ‡1 -ƒ“Nò}@å/%“å#bQdh„—6gë!{ -Šëý„«!X´/{ß•ü×u@¾¦©ÌMüø†Ï%Ö’š—­[ð ˆÍýÂÉþ˜Á*ªàëxÀ[<§ß^…ÐVhͳ6dNyô&ÚïPùý/ðõbìõ4ö¿)ûWo.‹E;]7ëÍMꙇñÙo ›‹ÀsitT _É–aë ÔN-ñ q0Ãu=QáíçÑÂßC§ŸoÅg»‘UŒf›ÒàeL€' M“½Ò;ŸõGrZj}ìT_¨‹\Íýì?×É{“?.0fŸ£qìŽ óÐ(­¨q‘"—ï[“ý‘¶%27„÷Ê`ù&øBi/W]_×¹,~'èw“œŽÓºyIÚÁõ¬®57×ÄUÁãø»Ï=<ÌÖÎ[;Žé<|¥:é‚~ówÄ?úŽ™š\;Tþk’QrÀFí°NGö©±ïðY}TEµÐÂhü×MõzJÜ»@sù£Ù)ähA̘¥®ÊŸZâýÅu <°=÷³ƒŠè !z…ÞZðÜÝ‚õO‚•²Ø°g¤˜<•‰X¦+l6Úg3å¨ñÜ­"Z( fî³dt·5¹E±ûú\¯ùßy£ØÑ>1×2;þ=¾»èû^­Á[ŽU¦êðÍåx7?ßìò§SøÆ|¶O~˜Æ†h¹€Êÿ@ºIüº^¹‚èæêý°J ýš››ÿ]ÛŽAÞmØlïéPÐÏFÚM[oÃl‹¶½–ÕÎñÉ û•ŒçÒß Ë?OeÜ´;•çÝhø˜¯|×é;´óL–@÷ÃØ-‘Øßá¾—Ñ@ߣýkÍÔgý|†þ0¿›ú¸›nĦaì9˜eL-·uË}aÄö³µTvéÏ#åAj£|ß\®5Ì×Í÷šDÔ»˸ßWæãçð¹odx€å*yd2Ÿê»¸¹ ¨X­H5ÿÌÿÒµ¼ÎÂö'4’e³´–‡µ±ºUP»6—MÒUzÉ*á­Z×Ü,ôGès x™”ãùÛ dÐ øÉHÞé®±øöšHcãû±äy€å©„ŒÀ⮬‡¸G=°Ot›âgnÀ¦¯©f¦hT<™ X"cÕZÄÄSè`.þóP~À¶û´Œ•µxÁ-xÿ5Ÿ\ƒüí°û X³”mexí¸ÈFíÐWÒKî@ Ïš+I䦌”°Äd7ãà¤;ú;€P7 {*œÕ\}¤ô‘b°üb¢Ölé‹ß¤$ë"Õ%–Ï’;¢³Iýít/ÿ†·ññuhïWp×6àc'È£>·_ðލZ\RZô¿®dRAŠR»N·“ÉhÜï[kÐEf §'d—‘mrInËJÍnùí5ˆ./5¥‘”yÒPâé,Y*_K5É?´‚×"}[4éŽø-Ó‡šÛ‚ɘ®£‹yþŒÊ•0ê8pW,ЂÿuµõÇA{ÊÇ`v.lÕï²— ·»^Çî}¥Š¦ƒÝYlKoí¨xOÉE‰­í¤®Ô’ÄZ‡,2•d9$Ng_Ûaê½_É fP~s³³CÛE°4‡ûC|ª¤–-ø_×I¤Ïˆ”qáv×Õ®r¼À†á¬L—”ÊÏu‚s,Ý„ëˆéõõ;}+ä¾,“V[÷ȲY‚¨š>´¦VÄÜüÓ«ú!ÛüJ¾ü)9bDKŒFç7ê'¶DÛHrboÈXá4±””éÒ ÏÝíÏlÍß[ü{†pN!çqS€Ü/œm‰‰ß“Í•Òàýµü$é@Ia=H-yg›4%øEh_ ²BzYÒêX›ŽôÅí:ßzR£òúOþ|ðYü¯+‘–L2MÆÃW·à¦PĪÛzHSØcjšƒØÝMòÛFôÚã'A'ªe ¦Ç¾Ù4YÀ¸"’ž”Ü ûˆfÁWÖh+lÛg0}lÛc‘ÐÀ¯Ø?Èî¡¿¾’ÿ)+ªöCþÊòF½ŸS¯÷öݾãÀÙ‘‰{.¸)@ûð„yTÄ[¨acj˜"%±<›Æ€ëº× ô3×k< CŒf)ȉbã ‰ÑÃM$j.ÿ½HV=@bË¢@‹ý7ë ä‡*Ê`-`‡üܲwÔ}ÑÙ÷)ú{ïâµsøîbƒë‹úƒ¦×\äII4-Ùbz±—º êm‘~ º.÷õkk”±ÉvÀNš;+<¥ä{[Q÷W"óÙh¡ÿféH¢`)i¯å©hòZj¿KkY_ûÐŽùîž3AÿA¸±+b9lïº!~K•ØÈO lH¬å§$ôî·ã`ìÿ½?ÿ7‹õ·Am?þôFï »b’2œùð×c)‡´ÅÚåì-8ÍeÙÍÍë秿σÔÜyïm‘ 4UQ5l^,)%^žGnRp´°ŠÏ\$Æ_$œÂ‹b£ÃXß.ó<”Õ±-ºo«h³>Öaäù% Q邸jÐUèëøw>6mÉßýÄíÓØÙõÍ‹´yµxhéçƒMÇöýÑíid¹¿èpÆ.ßýÿ•ïìú G%3Hm£4ŸÄãøwë0)©ä ›"Qà¨Ô+ áó1ķɺ ‹ž‚†Q!–ÁÒ¨“ÜÐñèÀ]'5$¸cb=ˆ×ü5ÛcÿK¡ûU4ž…"ú×·ÚG®“-¥ ´°°"b—4ìY%y%™µ„BúéÈ=‘ø6î[@ä[â§ÿVp}¼‰bCx¯¼×GSðéø~G±…(›Gµ;þ7ã“xý6ô²GCi#Ÿ6DžQk!}Aù6t³j«#gl?>›ªkù{€¸ß†wª`ý‰¼Ó”×ÝÑî…à~Û5öG€‡²í&j¾D‡hÌ]=ãzj»YhÑtŽ”e…-ì¬ðÚd6‘uâêó¦HS„$êoÑ d5'u3ѯ7ÌïæEN€¦ñŠ;êÙ ÏŸÃVSüñ“èãŸø¿¿w®ó×I\×°xýD³Êç2?ÐÂþn…¥"m åe¢ŒAª%þÌÆ¾ ÛÕrÎr®§éP$í&¾DÎå~ZæBoíq `9‘¡ÌÐoY‹¶î’E < žàßv—ïXÉöY%¯Ü´¸¿[‘5»ŸäñwG³OÕÚø³½º¢7Ë{þ¼‰Zf¨Ÿ¼<8ý8¬åçÜ=£ CÕóô»³ßñKˆ!Ou%µó¥@‹û»•VŸRÑ“Åàvþ|¼'[{Æsw¼â¥ïü?žzÀå=ÕÈs·úó[ú¡…Ù ÀU ð˜ÞøÈLuWƵdV€ ø+ò_w^ì ?Q1«EÒ\b!®ÿyb½&cÉÿËaµ¨¶¯ÝÏ›=AQàñGð\?²rïãÐHØ~'¿ÉúûkƒºúYàóØúµ¦±ÖÒ¦X {E=}‚ r1UÑ*%•BœüôŽ´–âÖÝÒ™»Já28æßKÎèí~Íœ†ýÝ™ 5aùyh`̶ÜOJXŒ.&Á–î¸á.âýc}ûE³$–ÕjÛ|[^KÎh1j fÔ‰–÷·+’þDT ‡¯'Ãg’­¸Zý,9ÿG–‘*î|ï®y›ç§¢Nƒù^jxâÛÇöO¸m—km­ëgåÞÄ÷Ó[Kc=r¿Òæ–×RZ!«¥¥a›@ËûÛµ™œ¯2ü×¹>2wí–Ú9MdÏ5Lj;\»ðõ5Hî¦tñ;ñ껺v?Rîã1î¬àÛúžÿ¼™Þ [1äN t¤ ú–Ú?eÓ¯å£'}`€4¡íÖü€Úí¡Åw?Å1í9îZä<ë+‚Ô„7‰pç5’ÀVøóÀ{룟h%–EáSÙù[jž(VÂFÚ râ [àsÿÞ:"§¨ÿɹ¥ñÁii+j¹±`XP™Lfžº3zoù_C\/„kX:½&6ƱnDÂr¶o æÕæfd«íKy­§}„·j6ÛX­/ßZÔ¿³Jsé Ý¥¤6µ Û§X¾œÅµœØï5hwg»!;ºJVóvÍbM¨k£[U[Ës7ßt¨¯V/_€Œ ྿ͳò°jAªéÄ–OÏ…ÐÙoY#d.à@É—»˜—Ϊ#{u˜<‘pUÌ[ßûÃ]ëVpg¶‡±¾Ô¶¹Á‰ÃL5¬þpg •¶Îv Ù?µ¼ÖÜòØ ].s-â?\Á²@†H Ö¯­Œ¹Yßðü"Ø1m"{¨lÇs+nm¬µ­¶1VßnlµxþNsZZë`™,ž•"ö… J”ì$c‹96S'†¸¹¿]¥-÷/µ™íáéáÿûØ<’}Žý“Ù3{jw¬!ÖÌl±ÌÐÑQ›€Ý“˜‹{ôWꈌdˆ ¬…-´a6Ö¶YMÞdGì¤Ï|Cþª.ue‡Ä ë{ë;¸|EÿN“[%l;l²µçõÜ6ŠXßJÃÍõ"szIFûTöK é$dªÜ–ÆÄ‘%`d˜²¾6ÿ¯FuÕ#ÐÂýS«¾|ÜÆ–£µ>9L 8 %Œ*èà Šgµ5›~ Çä¤dÕPZO¾’äŽ?ð¹bR•ú>™$‘ò1²¿æ“ù`ÐjZ½þyVÉW xzTl>ÖZ± ŒAït›—†È[Œ¿-¸e•Œ‡š¾˜Ä¤²ýKׯ*²]ÎIqp˜}d«aÎS>Ó÷¿²²I9©Ae÷“ö³µvÖ¾±›S ’'·”ÔRƒ{A)…žRbïRÂw½O$_Ji^+H-YÿHFÎßK/Á)Æ•]vKx¬WsPõ.‘3d™Á{î¹%Íßl™Š[l^K&‰ÑD ùË'§ù_ B:ëÿýU‘Œp(ÒÖB¦Âpc¤Ì•ÿQ_¿˜à %Z˜%¿þ¯íçÿÍ[Òá×9Áuq0ŸX’K®@ïÒûõ~½_ï×ûõ~½_ï×û•‘|0#u`9$G¤-9oFjƒÿ¬ÄäÄY¨¾–¾2EnÈwšI[ 9²W:…ÞNÿ3+•$äžY£J&‰O; É k*‚NòN6Èk M8ËMAÔ¨ú%¯‡´wÿµ¹ geiAmû•´£ Ê/ûø›„:0ÖÞ,e4¶6Ô<:U»êN§1´:õ_FtÏóùWV,ìK¾”&²\HŒZä/”RTjKoiíû¯+õG½ X}›«t´”/¨¿¤Vü³® ’‚{l‰,?Jß -”×ÖꦣfÔñ’™÷»iE‹oåíµ–µ¸–×’ØgÙæƒ€¹Ò ŒDþ?ë´Àtà=…ä…Íb[+l±-¬…¶§h"”®Ñ>šK‚l±µ·­­Å±èV›cZGK…öê3ùP'ƒ‘ŒxI‘@‹ò/¯HžUÒàéÛåŽA¾u©®Õ­þJØaZY{hD-”ÃÜUlQì±&´ûÚÒÊZ&+ií´…³íîªO8 £äû“qaI º‹bÿçòNSX {«mÓÇzÝ_µ_¯l}t¸mÐ_ÔuõÛ¢¡-–U³Ï- ÿ6±á6ÔÒÛ—6@óû3 sIÙ@ õO¯"x}iøí‘¤ÓûÜܯ'°þ]¢‡õÔ»ú‘]Ñe\œÒ{ºA÷è;-dYìgd‘ì»§l£³­ˆ¦ÕNè²^ýÕû÷+¥äaoÉ(½¥Çõœ—øGýçuݤ'u—ÞÑ·he¶^Ô$–ÙÆ{ëqAþ'°à¶§M-+¼XÔX%‹há´¨” ±¯ÿvå!®•ªb¾Óå;½¾g`ñÇê®épgvoõýÏF£w ëGÈü@£ÚOh'¶%ñì®>ÔÄü›Àn믚ԺÛ4‹§i¤J …ûOWØ*ì—ø:éê݇ÜuOgü4wýîßg*˜8íÏ cwTm9Åöa‘þ­f/Ýy#_ØE>ùLGƒ…9R‘ú d¯ô“L¯¤®F–MÜnƒõÍØ{(¸ÿÑuä:}´=ú9ª¯õšœ–`ÿ1ÈpýÀ£Ú/úBßÀÑ,7òb'ÉŽ¡‘…¶_¿…UC2’HRrürÝwyXʧø9îºÍ—à} ÿ®ó×Ã/Ö#ÈuCK]ÙC¸èà:ý<Ðpv¯Éfq3rþzïkšŸL!»–!íʇ[éÉÕrÂÒ¥ü™®ïëÎÛ6äí¥ýÀú2$9…ÝWÃ…îŒÇgú˜ØÖGñ·ëÿÿÈ÷Š#žÅæñ, ðm>P³*¶Å i#ihAÿp¹Ð å{ê™Çd8‡ÈsêP²zÛ×h0^Ð$¬''&Ö½†NPû‡Ò.°Ä[4ðìOw5­S±ÄäűÈÂÅ%Clg»-‚n ‘3±’“£¥—ÒÀ÷m?E ë‚‘qœ?ߟ«ãÔ]î´pŒ"çq½ Ã;@ù]ØÑõxuçL¤°0BB²À›°¨;ûÿ ‹jÙȉºéO! ëéoW|x?§Ô×—ó4qí7w÷päwñnž°< ÃvêYÞ‰œw|Œ8æ|~€†·Gä›aMwîë²¢}Ôƒqð…ì6˜Ïå´Ë`b;ÕaÓ@‹û»•P>%îuÙkt9Öt=kG"÷<|»²]?ô¡Xxµ¿.`ò½ëg4²ý®ÿß-u×Ý 1í!zšê;‡\¾$+üÐ;ìÕú~NÈZŸIIÙ"qmïw³Ë÷9šŒõ—Á‘ã*Ì7œÁ;#´<ì vãݬP¶S]…0 ûÞ÷×û›…·[>VîÕ +DÝ2P;E;mt–ÿ5=ä¬DĽÄdû½óYÎV쬡‚ss?NcÇ®¼³«ïC'‹ù»ÝÏB¹ˆg$´ç¼w ??‚Ä‚ù^Á ®ü2>{ˆ(‘Æêâ#ˆ5¥mÒ©2Pû3d¬”¾ezpÿ˜úåRÝB¢u  Ÿv@ #±ì¼ Fp½€–û«‚ñöv{_ÃÞÈøÞø®g{‰x÷Ðà¾c¯˜…¶|dCÏÐOJkÆè+ ¦"ŒhÁýJ‹í#Ë8)çåx…ÕNÃØ·‘dþÞ•ûtm\wÀNx€ë¼»Þ¥6r}\ö"çYl.æºÁnæîêE°h8ráËdÄ+`€ZÔ„g@B)«A­ÐM?ÖÎ!äØXrØ?#w¿Gžr ïf¯ wºè­uỞøÆ:Mª'¤¬p…Ç[Ø~¡ï„»Ë÷Âÿ«G#êÍÔ&|ú%Ñò†¦Fþ£<N¾Óâ·@@-KcÑè­rItxBrÛ;h¿’¹¯À¦o¨jö’á:/¯ËÍ] çrÞ4†ï‡³ÕOtWâÕõ æŸ8„ÖÖ «‰ÇÉR›ëýu“wjƒ ×ÿ!¼?¾€•µ•šE¿r‘÷”’¸ú‰ö÷ÇwûóûoaãEØÒ]õÚ‹ÖÔŽ`ö¨ï{³XMt['ÁŒnØyôð#8x V†‚Œýš›ÈÿˆÈ±”-¯¡<ÔÆá|6ÐŲÚ÷ *êHõ@‹/ÅñÿÒTeÉÊM5™JÞçú@\‡ãÇ€ëmÚV«iUmÇë3µ V›âç¿íD7³@Ç&_œÆo.p;¡E42¿Õ\ á¾±Ùg–ÙÔ’YtRƒÇel6ŒÒ9ÌÃsÓ}ãK&I@\?§MC³ÐÄî7‘o—"c©¥Í`‚ÚP+ˆèiÛ¹šß]ù½Ox÷¹ºé|$˜ `©ïûy]Gþh×ö)•æßZ¶Ð2Ú[­%=%A€c`$¬ÿ¥Ô”þ /`WÂü·@²«då÷âù­}ß¹øEC˜l²o O\Àv›ÐŰﺆ7¡§M’×_~™í#YìþŒHù˜Ïý¤9Èk‘ D·Sd)È9{%tòþdRD’j¹¿ª÷¦àµÝD³A¾ãK;t0‹¸?“ØÝOÀ›ÌÝax&þ~k»y`§Ù²—ö–òü7? m_Y,²Cwl`3ßÊÒZgËb9‰ “¨+xJLÉL&:Orã™~†Ábä8ëYl"ú rs§ðhRnÒrÚÂÏ>š?º«àv"×q2¦äÛÙª¶”ÅÉæRôLà¦Büˆw¸ÊðS5Ki1m¤–Ò«²$Àǃâƒ]ÓüXr¨ßŠîJî}xòqßÑÅÕº›t´ŸÝÌëý´,wÊ[s›Ÿ†3 ]mÆ÷ƒAüh¼¿¾ ×ç£Ïx}T{ƒ¹¾ù7©Ü•ð#4¯†Õó2ZÙÿ°4™ol™)W%3h¦ÛcA×íÙãZ¨C¨.!åFl7‹ñ:h>ô3ÁO>9Ãß`Û]z[Ÿ$VFÓUÒ=m†û‚ý¼“ `«÷/ùÂx¾½—ïŸñˆ* xå¯ÿfýG$…~µ]îÖܺÂU£ý´£ƒ¾òQ<û™ˆ+`áƒdDnNÂ2MdÍ`ÃùhÅÍ8݃þ–È]9Äg–¡¿­èÆõN^àûèm7ÉÜÕ’îhò "Ê)@ù{H<ª°™r‹è×x6©]'çÚä:ô;ä݉Lë‘t92Áääc†?D´}>_ºª«ë’3C“i'ÉŽ'uÒT¾ËïMr€mh¦'ÚÎ÷\ÃOÞéTaÈ•ûé²€òÿ0">Y#¥r;¥zÃpC5'ZXD$˜Í³óÈ6ÛOØ‹fŽËJ|£Ÿw+Ôõ/ˆŒƒüŒÀúº]NË,?‚X²É%E{­ÑHW|â<8z O¸«c§Â˱ÿ§“…|&mä”ÄðýÌj’å¹ý®{;ÍÜ‹ýô:7dÒF¦ðá©E’_T¿ùØÞ±E>( à¼y°è,ðr]_Ã/@Aw>ÝÌÿNxˆHxÉçV+ô[Ý)}$FÀäw•ùY‹ÿgaQ7ùÈóîŠý{ðïi¸ÎõítGB*pïƒå>ÕzHØ@!uü¼Øé 2âYJm%;ÐÉd,¾•Ožó“0•zwþT|¹^ÀÓü,Ý5äHÍ5¡Î hKFÀýÜYìóh*þÞxóTð\V+#÷"0ïæþŒÀ—ÇŠ-°_T¼½«ïtÕ•¼°r ‚)j’ æÑn2•ç[à·_ÐÝ2_78¼­Es-}ˆQp¤ë²ÛQ £“âS?  üud§4GºeøòH$‹]\âÉú5•Lg^s3¶ù‰vŽÉ]xWR!}¤¯€ ù4Léº -$3h)íü¤<7ð*òß&öõ'뛇¼Í@Q7tÕž Kýõy|/€Ò‹´ûrÆ÷ñEtS/aW7Óî,Zéwàó'Áïd¯ÃH—»ÍöìÝ6µàÉ|¶1+ª‰õ…Áˆ‡ðt÷[Éqýßx ºÜ|7 g=øšæ;èðG×nTþrŒh=ÞûÁ÷~¯ì{8Ôåù÷HS…ý>W§–›‚U—øîµýxw¬©…ÀHiMŽäÝ1È4„ öqÒýNæ8îG°u‚׫S_¬Å—Žã]ŽcPIí¶SÚÉ:²•ÚØÝM?ìFÖSŸnAž_\÷FžSpÙCßÑç"ü6XÄ{Áõß ±7šúÆ÷B›ÍçÏ‘µ¦~rõóC$¾Ç¿ÑÉ~®ÐH00–™ƒ©º- ò_‘Î2Ýw{â»úôÇ6M‘¿ –ð]»'`Ã=Ĭ‹xB;$ws »±÷ 5;ˆ¯\?¼þX·*–m‹µáKÛù̽ï9u]Å¿ãÛݤÉ0ÿtþ¯>Ø¿/ê€Ê,9¤>Ö¯‰¤­±aw¤³ÌTt‡ªøégü$ l9,ÌEðž £„ׯx– ,7‡1ö—nêÁ5?y?¨š«dA·½øì2ÿ[Ú$ŸÏm»ë¦Pù'Çõ¸uôÝÎZyVúŽËÃU4Ò­ÁóÏij÷KD¯0v™-¦j|=,É. »œÔ=åùü@ržH|Â×z'ÑD%ÐU’ïpõFu\»‰»›†ç~Eœ­í¼CRIRßÅ®Ȭ„OÖDua<1®7Èþ–gƒ±³ë`vO?77å÷È®C¼–ÁÄù DÂðÆn?øµHüßBÊþd–Ðf-ô9O:†wlEj×{»Ÿ)Øù?礪t'âÁ·wÑ䲓¾5ö;Îþu…ë;¹]?§Åþ¨`4~o,‹e§ÑK)ko)ÉðÿOÀ\ÄûÕOŠqÓoÆ£Ñ&øŒ;cf;^´†œh':˜ATÂ} ùO`ç?Ь–ðäQØsÈïÅ~Í&¦¹É-3üij®°ÖlX~öÄ>?'|jᬚ͠’mGl¶¥·ï‘¹.•acýПñ´ì¯&g샷OD³ãù†…xѶYÃÙýÄܼ¡{ÒP¾°ü7¤´|¬‘¨ÜL¶`ò“å ÖuŽÅbù`»»ífÏÚGæ&£¹™­5E·$VÛYM{Ëk©´ ú›ê»íà6¬á›ŽàƒáƒyäOÁ`蚦±ŸõgI-qåp€åi%­e‚L7×p±¯Zû 6‘ýïœ]ÙÛ]øòRŸ»]£víÌ‘µò¤%æ}FÌöã‹ÉM¤–t=7€ôMþø›¬}–üaß´›šp*•¦”ï-<ëª|.…ÈÞÊ öx üÔ‹íЧÒÒW>w°ý ¯‰Ð<¨%­¥Ñxš\Bi,]+¤‰†×°è'»î¡6Xôà'°´›ÿ|F÷‘?îÄîRM½…^’ ¼!÷ŽDõøõ¦—–‡=»„õ†#É[HÏËq‰âqŸöq­ƒ†µç×n|¦Ãe¶ôBî=ºYÊ‹!³Û'vØw?;‹Ôï÷>?£F²D†èÑ•xq@?vý•åK‰.Ã-ü·õRžøk=: ãYäþ ézÏ‚D§‘㠎‹[áúžØþ*Ñàͧ‰4&¥z!UÉ\ßó_ÐÚ30?ƒï cb)\ÿCø¯“¶ äÍnJú¸°„V%ó\hÑÿºÂë(‰E&ÐIµÝ\27¡)²mõ½“Ñ:D\ sïÁŸ+#u(rþÊd¶éÉ‘Ý\´`Ýý^ŒÇ?ÇÜuŸYU»B]4[k|‹Cæs„ÚH³j’O>ÿÛõ«ìÅå¤ÞßÖ"Íöó5ª›^4–œý-²u& EèÛ#Uàñz­®?I9rÜDÎ:hnœ±ÒŸ ×kDß9ò8)ª…ìs{^îàoˆ9!!öýÛ "Ä“wò+å°˜¶{·O­·?Ÿë0¼ØÛOòóÜÜoWa¾\Ô5nbRl¦¬›kÒÑOêYóøù_*C~Øùù¯=Ñ/ëWà`8ñfR …þ›•I—ÊJiöû"H^ê'¸Å³¿Ìû[ë'8·õnùÉ·Í}ÅÜ:~15L{?ÂMÿ›þÇ¢ƒ-~ÒÛu&hs+MÆÏØq*±§T©å yh¡ÿÃ:ïÏ~(¤,>L®>’H=Ìo„÷»ß&ƒöSD€Æ`þ+dnEÍÛÌÍ­Îvîˆ/Îähî‹üQ³EhãºÆ°´VÈÁ’’õÏD‹u5ŽT’Ä!ªj - f¥{+m©ÛÁôîú÷ëïxO"+ZOt†ßWÕ–à %(èèg¾OðÕ¢c‡¦H?ß÷‚uèß‹¥Oàù,›%‡ûÂX;ÛD…0]ÒxîíïWB#±á€bpÁ@äè€Å;áïã©T¦`ûmþü…£<ªêñïú¡ÀâÁÈ^‡Ç áþéþsc}¥ô&yBµ3ÜùZºC¸ù1·È)Ë‚þuø7+º.¦Ê Ý%{™_vÇ„Úsë Ÿû«@ó¨3ï<)˜põýòÅñpÛ>n3AÍh™ƒäiAû ´1.¹N$=èÏ#È©³¤ õVÊ…~‘hT1I%“„CŠ5xhìßiú!û¼~)¸^Éó.ð޷𛊲|lö3í®"ó8£1uÁXßþ–?ê,>´ÃçÏÏaÊydËô -!•%E“?œÎ$ÒMúk›ÄUÞõpê§ÞEÎÙ`ÙMHlÈ}²oÀžÓÀÄapïŽà•áD@7Iò¸¯ ~Q³{èhÏÕ¦£‹xÖÚk5r¢!LþØ:S2Ë5YLç®n‹=ÁZKñdwc¯ @'ÑLUؽ€~ÜÑÅXÿ$z Æ'Ü9Ò ý™ï¸jÈUÀKü•ƒ+ð‚ ºS JÉÂäO¬¥ŸLÄn¯ð€9ÈçΊg‘‘ãûI/ÑFk Ð_ +ÏE¢kXý÷- ~YÃqøÞ15žww¨»º˜eçoMsç Þ$‡ŒE&ÐA«KgI@®h‰ÿãJ å¤¾¶²d÷ÿ:é舆EòhÄÙýЏÞÿ¯Æ]5t]Ýñ¢l»ÖŸ ä®ësŒÐ‰d€—ÉÿsX!²¿Öö¡¹3d£X+iîWâõDÙŽ!LþôÚTšhGKbѩ٪Z("õ<|~!–{§iììJü¿¿º)‘{‘Û]¼VÝîîlЋ¾öqçIl#‘û¿¥ÞOMXØ¢ÙyMf™,«e¶ÐÜRË @‹û»•D[É=‰gnVQe‹ÝÝï3‘ÿ UQhûQ_ø+€&ús™–âÓ l?1á-ùÝY?çÉýºÝ‘˜9Ù³ ¼?3y_6ªˆ'dCxäî+­¼5•¹÷wë™ô–¯$Ž–·Ræ¢ùx{ž¯f/#id!¾¹k[ X^{Gœ‹c ò¿!»senãí¯ÈR!svûÈ ÀElŒD'Eµÿ[È[¥£T x©ýĆ4Äê¨×öi[ îJwe€Ënƒû£ä6áÅðØ·}‚D2wFäôm¼ö9`"ìÝ™o{‰”37ø°´ W=üñ/ÃÈgËYmlß[JXëëljØõXûÖ_If?ן×ʢ‘±­¸5³mvÄÏ ™ˆõ'é½vÂÂ$¡-Õg‹t|W›o¹­™O†@‹ùw×(™ õ¥ˆD†ë^’Á¸+®“µ¨]ös>\&ûŽ÷.ï _41žÆr‚–ÆØø,rÇ´–D¼¼–˜[r+ ÞÝŒøNVÇ&Ø·Z^ „«žþx”vܲÃU,²öIÐf,;ÄNÀdyÁÁxp 6@×È9É.uñí¼’XvÊqI… ²YäQñ‚ôÖ 9/ù¨°Cþ*$%¨Ð›KY²´ïµªŸ8À,èŠÂÛ#X£»±fv™# à:R‹è™JšJø}8)ß{ãûÏ451¯$ž-ТýÓ+rd–<üÍeõÈ\ ÙP»mï,qPÆ :`á”’Á’‰÷sKó¥¤fû$¾#â\) ñ4³öÓ|pÃD[BÆ,É%)øó¬2ðt"ö8- ø}nu‚ò]…Å&ããK±qZùyëSË–E_…/«Äñ×tµ—šTÒMÜ9!ÄÑÖºR†³M Ïtù×Wr¼9³œ¡°}K[gɨèÎil]K®œFJ“/§ãß¼øuZ4ïNÉ-“Ôð‡çÔÔs¹…Ñ:RûOÔÿë?®”ìy÷ÿÃÞ[€I}-ëÞ«jàÜÝ]„ AƒK$$¸[pwww‚»»»»»»ܾ_­½ï>ûì³íÜ{îדû°ú™a¦»§é²·Þú÷ZUî-Ìx Ì(‹ÉBäNçJcï˜xýÿú ;™ÿ 9%ñžcÑÐÐMq±%¤ìèûÿŸXÅ]c­7\,ⲸšèàuõËŽÄE/iÿ}ŸÖ§õi}ZŸÖ§õi}ZŸÖÿí•Ø÷Çþ .ÜÜ5pû]69àPVs½ýÖþ/¬*.7ÕNr—ùÏ¿gGÖø°ü|Ô¾#ÜYwÊu”†Ò”ŠñªûÈs¿¡øcYUS„ ¶;5Yj€ȶÆåGú¸®”«ã¸*’LÂ#ý[yæ–¸ÉVšPæùöýþ¯ëK«sÝstP“ªnõÏ~*Üïñ….´ª:-.+e¢”Õ†ZQïI%ÙO˜Þ ¶WúÿÝ•'¥þ) e¬„@ÒÎRVJ¹ù®ñŸÙ}/¿èßñï8Í¥™µŸî“gRKº#×â/ñòÇ[å|wˆrn¼ûÑŸ ? …µ‹^—²ÝÅ’LRÇÅ—Lº]JSìžWãiY ©5ª–ТºDÞ¹¸R ßÏ;þÙ*ì aù¢nªë._êI¤éô¶“1’]Ë×ÖïÒeÔ¯õ‘tߥˆ¦RërA j ýAù^è}d€—?~ …ùo¯š.«+á¾swÝ)¤o%§fUëdgý,Ë,Ù O¤«ü¤Çä…LÖ)CC«h]mô_hi¯ù5&Ó7®³Ë^þ±f@´q9]j>¹Ü—H’CêY$çå²¼–2$È¡så+})÷$›ÆÑ‹Ä$äϧÏåsÍ­ßkc-^béSb§y2× JºJdúòä¸:’PßÉ{d>ŒôüÞõë Ýky‰ý·øÝÝ/ä)Z:)o¤œ¶ÃBjD¦±µ©vÖ–Zd8¬1¥,¹0~ðGX™]ã62G`߃²Wn¡ëëq_ö£ëºÊŸë;(öçY¹+¯ÐM$­ ź=ßÑŸµº6»éwúJÒJs4o Eû7V^××øÅ ‰ìïå#~“TïKrµþ?¯DÁûô+?;*ø®AdýïÜ\·[’è "üš?¿7¹Ëj<à™o·ßçg;'‚å´».óü ¡r[GRÁ‚Ìþ¶?ò¾s¿(¦£u«³Z̰º`ß@7oç\§ÊtY*³ý¹·çÒÚïøžGæ_#½É/¥†•Ý|ôa';lúÁ™"6&¦ž“øÅ)î»H¾Ø)qm~RÐ|‰àÿÿh•¤fOUÛGRéA,½ ›N÷çÁ7‘ó6#Á€ýá§ðôˆð¡ÍE¹Â0À øzj}æ;'¾!+¤Ò b§nûi)ô®¤Õ+Ò\'ê(I,¿ZØ¿³âù%\!ùV­oÓRßÿz„ïq÷Bìôã(üØ:Ä-’¡¾7Ähbâ‚d”u®”,£â9%‰“Óþü¤jÝÏßBú—<–Q VVQ-µZíùõ÷Ö·þÓùCî{bö8‘¿›ïÛd˜Ì¤®ýÍŸ‰Ÿ'l Ö.ã¹gžÆ×ïS„× dëvc]P÷ã)= >ð'ÿïáéôño5B6]#ùˆ™à¶ ( Y/…ûR?Ó‡È`˜uUæƒó3a¯[‰üÁ|í;ØßX€,CK/¹g¯„ÓÈäÉCøºu‹ÚMdä%Û%€ ZŸÔh#›Ú©Ðä0‚lDÍOÒœ)h‘ÿj}…õ ¸¤’U“«/ûsÀ6ñj t; 1]*‘Ñž méˆäãñ‚eØ<õÞ ì˜êÇNŽž'^¶ã%O%¬&¡*8öîð—ÖG0Èë$/¯ÞKD2ºŒÁèúX2*Ýän1DÞ:Šôvbg ÐØ ß©EÄïH>ôä‘×mÄzORÃz÷ó7÷‰ú=òˆkÝ„ü¯á‡$ÕsnI©OJ ù}ç6QZXïdžj6Yì øûPÛNn´&îÏð~ÛSí%¶à»%›4Fª |EÀû0šHwã÷ýt°ûOm*È:˜Ó}bbï#ìø z…fÈ·²€#[°˜„RÆWÑÀãÏ’¥mÇß!¢_`ÿë¥ößLÔD®µàù`7Éúäù—Àòš¾7ÂS í^ËÏ‘ðý{øÇ>pb=Ùð3-€ü!ñ|ëöB²ƒ1'‰¨fTI-<~˜ƒ[v÷~Îú IæûŒ±u•Ô'â§€ôóxÇ˹wQ…{ì¬Ë.p3œà‚Ä!ºÃêuôqLrƒöÖ?f'Þ¿éÉwš\³“ÿøþ¯Ñ¨Khí+i\¼@‹ëÉBvw#ñû„~ÂårüMbØúÕÔ‘æD¼íé߉í®J=ùàÂâýó€ïþ”¸0Æ d¼mÜ? Ü\CŽ˜EYL ½áyáFexåZ„ M¬dä–Rû—À…\?²Ö-ßË4†Ÿty Ü Û÷DþöhÀ:Ï×cýçn˜?a]qm.”o¼;ºî¢6Š,i¸o¯!/¬!¢>P¤U €Ùtšx ZÆ!F è<òn WQPh«‹ÿF!jŸˆuoXˆ·ß ïÏA#áù-d¢<&Œß$”{î ïpµ°N 6 㲟ò´…¬I¢Âø¶óJoù~ÿ æÝ•D0€ZÚXjøQRCo¹*.Q€åχÿÛìÆK’Êw'Ø‹± [Èã³@ÿÅò‹?×o}AOã å±[€ÏŸDÖ¿ŸóÔ÷|¹A¥d‹ªÛшÝHýÎ#ïð‚SRHÑvZV§"û<8r ©à]b \MwÎ;»òœÈ|‰üóáükñÜ…ò+ž=–¿ßçøk€ç¤št‹É [`ñër´•çYg]S ‚‰Ôff.æKÄPï#9á4¯Y]3á÷m¨ÓI ä —írŃ÷ØäîdØq(öÄwü_ëgyUƒ©íûæqßP$¹–Žß·!¿}Ãã3ÀŠ?Í€yëÏÄF€LC «ð%¼fj-©át™Ÿ RœŸçhµ9YQu3µÀ÷•?¡«ë6¹PMê‚í½¸Í&»­D¢õ Ûdt1ÏOòYÎï7<¿#·È»ù÷(gg‚û¡‰-¾þ 쿊h_ä'à\@_ù×Î]G§ÛÉ0e´þ "XGÙKLj”‹~*Êvê¢ë~*Ú)rÀ <Â*CË+‡$&Ù?;Õ`D=L¼ô ˜üy\JªÞ.Yë;ùAjHK©-]ÉáÃ}Èž¾ÏùV¼û<|f!>°^I*d²³üóÑ òy<ÁzÝÚä»éX6…V1{ µ‡øÿ<È8älÙè_c+ScƒȦá%pÚPõFqQ$¿”‘Fäù_á{ÐCü ‚TFW‘Ìì9“¯H³ T+‹BªêVl<‡ìpÝŸ·Nùóü¼ ËáÏìo1baæÂ—óøTß;ì<5…uÔ›%i±~àÎÄ r±\=W‚ú¦"ÑßEšâñMÐE~.€ümñÿ£~X3´c=0·ñî+/ÁÁ™èé1Ò‡G6º ˜·ïžç?!x zã»ÝC³ð¬üõDbè0Qp^hù3®ô&j­tÑÜ×M~ô=íúÞT<¿-ÞÛ/hÎ÷…XÉ&¼t"&Føyh[ü< µ¾GþHßü.ÏØ¬Îó76'c+²>;9´Úà$±2 }mGÆ­žøIK'y•¢ò98Pë ìë±[c±ÞÞã°ðl~ãá»ÍÐ@cd髜ü»„Ûòœ.dÃÝx´Í9I5sYøùÖ ¡7ùãv?ë§iÅR«ÞóºýÐÀþb5öB\#;\!wàgÃ/À¿»nUîdÞ·Eù6?Áïï®9^ѹ'ðÛTdšJ>´þï{A¼¡ }k~¶‰˜Ö!ºô×C‡ƒ!“‰…­Èøšù¬ñ³AÚxLê;fœõן‚©uXàäÏên¹¼¯­H·›Ú¿ÝXq¼¦ öŸˆµ&ø@óøy4’ïೈ—á<ž²=´æ‘úüfýŸl>ò]þ€ïüm|ròO!¦&àa†›x}›)ûÖ_?šîÒLþ°RÌ­vs@æ9¼§¥~ÆÏ&j˜¾³‹õ>^Äû\ºæÞæ2I6ñhuЬ®5±%ÕQ¤nÉsK€—ÐæbÏz¯Ê þ½æ{L%OXäQù<á¾éðˆ‰¾kÄèÚßvõmv›°Ü¬ÖŸ(*avÛ‘´¶”Äf ‘ᨶ‹þ"yå~`s!øî?ÍÀ¡X½¤ïúúy¡4Õoâi ¶½#g<&\"oLA7ê)v]†öÓaãIK¥¥wp¿¹nÙ~0Ž÷i×·»IM,ÚU~‚´#†—áý'[áÑÈLïíû?µ&CÖA'?’;;;Ñá I ë©§Îûî™Oðþ~†Ê0t³„×iå§Šì ö#éE¢a¹ ¨üÃ\—Ë/@ÂKøö:ßÙx,L ­ïq—Íl¯vûþ—…ò’÷{ˇe°vitQ_âÁ'£¿ú~.R þêœØüã+È׎¬a=¡zñw§ýœ¨§žœ’Pj}qÇ~mMuE\zj?›ó>ƪ5ˆX €wÄšáÙVX'³<~&ò@îË"E¨˜j£‡<³!±Ñ ·Fk àRÛåÞ=]ÌçÞ6 ÂH<`qAœß)õùOàS3¤y@åßiì‹÷?ÞO;j ų!ÇRì6|«Äc…±¢†î*¹¸g °µDB;mÁ‡Ä}_¤«C ]“{&K ¬þÌw\†Fsû^y;ÉÿsÁÁ«býÿ>×~Zì´8ögk¿ûÑÅç}Ÿñl’óK¼Üfû†ŸÚôήظ2ïw‚ÊV±ü8lšBÒáå 4³&Öè%2÷÷!+Æ•P<¾ é碕&ÔUuxU|ýæû^XÇáGV-MÔîÿ¿Ís_Jtßçýïé¼ßã6+^ð}LÇ"{k?c‹U4mÐ@8É(7]I|6|”¿îÀ}%Ñc:¹ìú‘çvsoOÏ ª€x+@ý he‰ÜCÓ›|?ùh#µl èü7çîPýnvG\H¼Ý®jîâßD«íÚ©‚'¬G²1ÈÜY.âëAzVF’3€úÏ‘áäЛàÿ|Bå˜[æòûë€WÑÞP4Дl1ùëã]ö Šõ„I¯AÔ¿k$†îp“]ô€ÊïàÍÉ‚¹])l´¶·–èï r?¯Oy&0Ù§‰ôóTÿ‰\fðN´ƒ6Ò9-hž&Ò×~šMÂÚá3ÞCž;‘Ûpþ5Fù5¯ýˆWڋΡô°$×É.‹«`ù#Ii×Õv‰yÏvÅö"˜6ÁOnï{ÞLç÷‰|ý$@¸ì䫿.¶ˆò.Gƒe¶çq2–ÌR|×;Œ\Á—º²Äý i¦áa3w=ÃÄ+ ÂëWû‰‡Sy…mS“/ [&õ'å1ºŽ¦Ó¤P°è 0ÞEtÝs7¾v›õÃrÆÔ¹dÄqrâFâÜ:¹.Á»ßãé/`oñ4µm 9çú»·’MËjQ½JÄw%öø}¢kÐÃ5 ­/¯#: ߈>.JD­#?‹^8]j°Õ®‹…l¾íÞõ*™é.¹î°¶å~Èeòõ€?@ ¯%‹5û à1¿RÑÚ5Îh~ävØÁ žs==Áã·ð—mxêÔ>]y ôXxEbJ¹O?þÓºí2q›é?Ù@}j½Ýæ!ÏVÉêÍ€ìð3mŽr[àgb¿Áºƒü'yþ×=«&ÑK<×úÂÓÛã' Ç…å–A¥ô%¿¿z&$„tåÜà@ ï¬ïWCWœ*`7RÝ÷ìz÷ ‰ªݯ ÕePà ï·„Ì=ÚϽ¿L\Œï±ý·ÄÅ“LòÚ}$ºˆí´éŸ‹xî>lü;Z ¯íÐhy½ï¯D/Ö7°šœp-‚ÉNÈ·`p~÷ V½Œ¤—ÑÃRÞcD}âVøÈ·=*N÷×·á½;¨ÿ‹’®¸_\yp°01‹¨Yé'å,òŸ˜löýÏ’ë ¼à)™qŸDól¢]:Ͻ°å4,x¶;‚ç?%’§òþ—Ï4³ÿÔ÷ ¿^q©&á×ÝÀ7»<ë×€ÝÜ“ªþ“.Û1€øYå'n$ÞWãÿá4•æ€ÜÂâgùËÔ=kýÕï¥2ßå &]CKh8@JwVEOú=žtñmŒøšçyÓˆ ›Ú n4‘ï]¨ÛòûØ}]|¢¼kK&³îàʼn…àãžs†:تÜDË"ÏoÂpªÝ¢hµî©ëÑkt¯Ñ©~sê:éç*Z쿬/e—Ë麹¡pÓ8ªpSû<×fÿÎ%#,Ǫkø}’ôÆÎíýŒèöTÃà„±|ÝÜ®<Ûï}Y…—4Dw;ñø¤0ýxšMÏ“õZë)^å$ž•ÄÔ®×ýh±ÿj½q\z*º7¼o›}d½Ûï’ ¶âãë¸o+𰉝M¼jãíõ©’F‘÷Öù öiÐD<`°OOâE7‰¢ŒZZ€-Òåøƒhi^{4:ý î·%ÐBÿÕºâj¸Øn¸ë™çOç¶@Žøkûïý•ü!¼ïžTÿòŒ*h¡ÿŽ—ò0½‘~2È$Ÿî§§uæ“%ö’5ž"olýNifýFcè1©¡õtˆtqÝå@ ýW+%>‡|Kü¬Ã½xûlÜÛïÙäwÍìBc¹ òó¥×P=’LðÁ+.·›h‘ÿfÝ‘~t@ÿ%äµÖH¾Ï÷º]ÁûÞI68€6F »ÔØÚcríÁž È“}±²ËÛôƒUøÂ]êÝÓ àFÏm†P ØÅ]i¥©|WZà¿Y'àã±ü®µá~çC;äØ'öÙà! éw8Lßš C>Œ‡ïó;\f€û½A„T6ÊÎ}ÝáÑ‹|¿ƒ.,–£Ÿ%h#Ì?œ¾“/A¼Ó<ú‚{>H´ñ#þ!ÐÿÍ:þ=pNbñ¢ZÆ¢z_^ŒÕw!ç6Ð`*è6¼‚fÓ·à_M†?çB~ûì0¼®•)pÛ ¹-–äU¢ø³`µ’¦…æÕVZEIç@‹û_ÖZ—ݵtä–VÀnå5;^zÌ_ ˜)v.æMó³»wí'Äáõs‰‘ßaù6ë#‘~»™›]'š×É®•áþÔi#í¡%u3Ò¯Õýz=XÍ~ûÓjí*¹b®²ÔÖžÔè)õ®ÜÅ·zNsÕïn^†&ÆùOs>×5xIÍ\éµ:¾%ÇÑÅF2 U[‰ÿÅ|¿%ßéÏúèJëè@í£TƒªÊª`Ù ¸+é:¹xRœIÍ]o’å-þ×cóÍøþDä·óÏ$œÚ¾»¿Î ^Æâ÷-þÊØ>0ñšßég§ÆOID £Yˆ§®z\«ê=-!½©üçZØ¿³jãÿ¹\+×Îr„KªvlöœîOñ×½V“Ùvðo ˧“´³.Ó©ú=1ó½ õ{=OJr­HLlðó®vH,ͼýg+Õùxdiìú¹ w,¸ÉÃ]Æö;ñ‰ÎrÚ5uuñ•›.±­OëÓú´>­OëÓúk僥…ïåƒáÖu+\ù\JºÊ® )5õÞÿK+£‹C-ŸZ »Ãu°~›}Ö.lý»Ì¾ÛÇ dÏ/õüü¯~ÓÿC+3’äDæÌ&2¯rå©ùZ c~÷Èõ’»ÒQÎÈ:9,15¾N”g$õýžâŽÇÿlÅvy]gWÔ}…Ÿ—psð€üÒˆ—¸:h¤ƒtð³M£s˪‰õ¸¶ÔÈúVJÈlþΦA÷Ž¿ÿ|%ÆÏ¿v9¤¯4‘arO.IV9.}¨h'QOr‘t¶FÕHš\‹éךZËꯚ¯ou»D“Y®šû£"Á·DxZ7{×—zUj'ݨG¥Œ.—…®£Ìtûä{m£å´¯–Яô…|¦5•æÔŠÚG«sß©MüÇœ‚aSþùi厈îòçV_Ê É¬!5«,”ón¶Þ”vØ?¢¦Ñ‚ú»ØÞŽhúDRi>M¤µô¢$–ÞDMðéôøï®–ø}0n¯DФ[_"Óe‰J”'Ñ~wD$]õKnE43ψªïå+ÿ©ùJ ­¹4Hkè\¾·”|DÁkD=p;«îJN‚GÐtúXæÈmIêwóÇj1IŒnžóœ¯õ£\æ¾Äý3¿+$®fÑﵚöԉ襬 $™ã±Š“ßò!Wù('}gÅþÖÍá…ü.e¹\•"ØýR¾&:²àûª¯$µÖ÷óî ÿ BC0Ñ&ƒD Ú%_J~^ñq°¢ç.é‰õ‡²C¦Ë&ìþÈ÷kÙ%›å–ÞJŽÁ×&¹"§¸¥×ðº…{rBëòÄ-ùdì¦%ÁÁ¦WŸºRDý!ÐÂýËõ39/#ùý læ=¾~Pæûî6÷ñ„eþìòA™'ëAD;ÃùTŠƒyûø÷ÙÙ¸ß}× ëù–U»jU-¬et´ÖÓV²L îŸtÇóaÿ•î¼L“ÜúiÖÊlY û%V¶Î5çüîÇcØx7y±¾†ñýbcém¼ã…$!éM‹±“^!AÆôxE^žSS~…K” ´ˆÿtÕ÷WòKºœXÿ ƒÈÞäûaï–Óþ„ðP™$Ûå±a=.wKCMAfp†p ¤°ýáCo%—:P¢Š~aó¹熄”ì™ׯÔm‰\WÉŸ¼)Ѱà™åû:?†á¿Cþ%H~[È5|â–tç™iÉó×ùýƒŸ‡Ü_œ—L±Q^“ré7üö£VâCÊ»Àv|øÇ«€Ÿg¾Ýu’dÚ䛃¯Ÿ!ú—"Ç{P}¼\”‰È»Ûïz|ƒ'„Ð òÌ…UÛÛø V~žNà9ßâïÇñíü}:ØA½Ãk&ÔðÂr$XVEõyW%Ý<¾’êi¤ïHüOçkßÅ~,xT¦øF¶'ô(°LžHiêF’ nã1õ¬ïþF €‰g}w¸]bç©.ÊJyÎ_¤ÖÁð¡û®l0¬ bSá•qÅ$/Èý‰cߥܬçý=$ÜŠý‡Ê öÙN§axÆ9ž]ÙUÅ÷mFÀu¢b‹Ÿx@?ƒ/ÝAêù~úED¿—rñ2HïËe²@p»6P†ZÜ%•²j=ÖaÇ®2œ$3ü¶Ø“íx´õ2<àOxÞ$#|òÒÒ ‚%B¡mhá¾ü{‹N–;_h&âÿ=±ðÞô;\(º+ì"Zäÿ´RÃöK»Û£½‚Çn‘™Ò ;O¦ò@Üæ¾%Ü;Qâÿãxdò,‘ ò#ÏŒ º¿ÎÀæòÌÄø\l~ ûÛD”ï4™FÖ 0†äÂîR/MC*êgtÕýyõ›¾wÝü~ ¾Þ‹oÕ–SÝì»Ý^bÃ:ò¥~ŽVšj ,=•ªï3rÀ3Ÿƒ4%–¾‚ö^ƒzùáùñ‘$Z ]Ô‚)•uEÑ@ð¨ˆòã‹¥Üï.ŠZë[p¿£qfg_€ Ce„?çuž{öKgî© yþ~$¿"•`È‘õ¦ïÿÿ MŒÏô;%SbùœÔBõg´P\sSS†䀬ÁbB.Ïø€`Öµö1ÒĦ®ûBCb§®d€Äüy? g–[ç¶FÜ=Å–’ù6R ^'"¨uPŸMlœA‡Š>möO|-DPö“]£Ás Mˆ¥eÔ™íþl+‘ǾÚî1¸ÿ’Øþ‚ uOÉ‘`ð­A°­Ò<î§ΕÏtÈø³ïf¼Ùgо—cT=_\ þûùøˆŠö–㉈‘Ï4’VöÒ‡BCVU„Õù°Æ´Á`7d—Ê•p¯]ÙH€GDj«f‚\×¥>Ôß Þ[G¯‰þË:¥Ý@÷ñþÜ^à v}à‘Ÿv‘кcQ!?¼%¢ÁÎve쇡"jÁoÙu@0èÿ‘øoíâñ÷ÄΫÜ÷½«W‹M»< ~!ãÛé¿Ò\àŸ—ˆ€]¾æYïç=Î#–yîß©wúN©5‰‡ÓȾY—ýwðÅwzƒ…‚Ä!t¾ô@S›ÑDý.FQë ÏOèJ.h§­u‘ p=œÃÏzÜNT÷Öíz øm] fËòß\Ø]wl¹¸‰N¬‹}KɃěýi-hⱟö°Þ4y?רàÛx^c­ï—}«gÐк›¿MhÝÇëB£=µ¿äðµñ\î[·Ú½ùÀ`£|'Écc¤?lgœïX<®?ËwñµÎ€6£—Ô@úeÈvo8(!‰þk¾+Ð|þ ¥ ôšïúŒ(XBxWâ¨]=y"Iµƒ6ÔAp2Ú\GèOÚT[ ÆGþoxg'°Ó>²Õg ÿXâ¶_ ÐBoßnV^‹lòÓ–H6$³ÏwÈ Û|÷§Èþmm’(zŒû­:Þåû'ÌæñÓhò´œ ÒÀcR¥$–ÐEÚ@{PúÒðÞ±nQ;„žDeÛÜ5Пùo/•átãÌXý^$[Šõ­ãñR)C<›»ƒ¬q(Ø‚t§©.ÃwK>2þQ¥`'Þ³„¯:øÍ"`.5°hBì_$,A&P \&ä¾[nžÝ´k„Õí¼û´Ð‡¯ìün5þ^Þ¹ñœÜNòÈzà°ïñh^0‚ØYAæ9[à„¡á5{Ñç(br°ÿ ¸×ÛûÒfrÄùY‹j#-§ƒ5ºÖs+I›€Éß ÃO+êÄ;n@µo.NòópiMmßì_ÕSصq’M—ï¤-·©àÖ,vÎ3\~Àúa7› ²Û÷]F’”l_·úŽ·x™­n7ß›ï6+ç¨$ѼdR«ù+)gùÉ®ŽÇ¥8ONÜÇ=Éôt§an#þóÞ¦H$´Ó½ÉçñúåüV t‘n¾¡ßaü …ïåp ûÀg¦`ï‹DHICþœ„äC‰†øÉMb¡0yo/¨¿ŠW’LæµÏ’[­7Ä9¾ž“WÂKàúï¡ ÏŠ Ö—-Þ=Ú_¯; GæR—*w«ïºC¶¡~"äÞ> 0„ÛŠfl*Ü$l;„gÚÄ£¾{Ð;0õ9¾ôyÇH_ô8ÉOÉXè;Ì%Å®¡¤RÀä¿Dõ×V²™·PÇìý]ÃKWb«ƒ @-"ÙØívßÿîO'@mÀ!´4†X°óÏ aMãÑJ-2ÿH©î¯ü3xä‘þ!õz5ù· Ã£~FÖN:^É„oeh;àÞµ3 ’G·“µöa‹õhÀlzÐ×»}wwc†G‘ÙN¶Ú¤›«0¥“Dõøéç{¥Ú“m¾Gð:,þÚ÷½"áô¹1 ¾¿ÐwD²)A¨ÞùóÁ{Å>3{ˆ.rúÝdY‰ÿnn"ï⎟\²Æ[zŸŸs¿X¯Ã×Mô±†œ°Ùwuù26 /NÅÒƒñú޾ÛQ<`¢gKkñú[Ò”ì·AlªØMr‹uÓ…Æáï}GÅØþ4:zËs¾è§!vÞÕz¾Ø„æ HnVù†m¤ž”DÖÅxìN¾ßò}pU*ú¹'«ð†–Xµ±ïÒŸ~ESåg)Œ¶FKQ÷T‡PzçªÂ€Ã€Í›‘þ8Þ¿‹Ÿã{š˜| `úc±ß6±iðKåºÛçvJUî‰F*ÊþšÀ@˜âä‰ üd¿5Ä?JHqÉí»€ïàyÃ@‡ Ø;¤&Öâš<–`òòéó€Ê?ÐÅÖñso~óS¾Öû®í}õÓÉ݈„Exw×εŪÅ}„Lò•$ ¾—ôRŠx˜(Yñ˜QÈþ‘Èúì ‚t•rÈ_-Œ!\"‚D­J¶«e637°Pç’V»£®!ïnˆflmj¯uzt¤Ö¯M‰‚æRÇõwí‘ðg©>*K^¤ÚM•JŠù.aµxþXSZI$툠jè± Ï™D&µî˜ÆÎ;ÛÐß*¼£¾¼t•*¿#Øç~…À§ÂXؘËed±¹vÓá¾K‘©5?mñ3ï¸é®ò'ã¹e`6/Ä®‡4𳳲ɷØz±‘À_ûéA†l…gtóŸD¡Ú¿Sø æééÖüúÏ®©ËìZ!uPl,ïôxµ„÷ž LX‡döI°M?›V¾°½½D@ùàz“¦sŸMÅÞ aå)¹t$ì®,•”u]cD±Ú#Âç°£ÓpŒ‹ å^m!^ð€ $Ð×ÿZº ø@|2×Zxýplzšwxù+SÙ­€„cÈéGÈæ·@¿Rxs4Qi¶ùÏ>và-ÜcWF4/z"g}½8í5CK½ä…ûÒOC¾ {°«Ì7Ð÷ªŽ†ï? pwx÷‹ñáyÄÿ\Þï¼z¡¿Ê5ƒHªwò}_ÊI¿ª56¶®w!tæÖS<7©DäÞþDýYbܺ?Î÷14‡7VŽ»e~†ÒXpèºàÜ\ßÙû úè…îvøIˆû%Ž~bFÄV“%ŽðŠG¸ÿ¡„‘<.°ó/{æâb…î°g$÷ñ~ëåû¯]…ýâãüܯêxrd±IÇkÈæ 9«ŽÑ’Ag4)>ý˜ç,'n£±¾{Üy`h²ÎÓ™h‰¯ü4¹[èè)·7Uòºö–ßÁ?“ƒCã‰ÈËxô l=•wøšw7ÝOšëëÖd³`_4a3-î¿áô©”ЮZCßÀœ:!áóü¸}~ÏØX4pÆ?¯‰ ¯Éy»}Gµ·~ ­`Ñ»ª‹ç:¸–Öï[÷ƒÓþ$ž¿ã5æ’KGóݦ@¾æ&z]Òá!Çy]àà"âz­,ößréÝ!·À_÷±kõcÀæÖ|®ðügxìt°™l:ˆM¶/Jj%Ó¹ ^)qš^“è3þþ.Ø~{Á!Ž¢«¨ú™†×¸YOúÏX7`}Û¸…ÿ£A E÷ë )ïÎ;›oXÓ¿¿þzÿ8±]¬»¨Qoù^˜SðíU{ÐwÁkGì¶ÍÂ:s_5pa·Ÿo{dfùéAãÉòVéªÆÊjUxRn½L\}ÏkDE Y¥8Ü;x¬dÒÏÅpoÝüx9\õ[ìµÅÏó½D&XBt6ÛZ°/Yp èBŽœæû"[‡d›<=,à úùs!WÅÎC¾“úƒV׿šGkKtks·‘ÀÏ}þvÅ–ñ®°s’T-Ó=“Ø`ùLrT4~3RµýÙ®¯ ]?ÿyØ ¸^ô1?KUÔ™(H\Lõú¡—MÄ~"¦»Åº¾'Іäû]’C*j{}‹ß—ünP Åþ«µÙeq¨è?€ØÖå~!Þ#Ç¿’õþ3Ûé3—Ê  °€ï=ð„ñXÜjÀC AGOÐÁ®ûެïc\Mh†TÓ2ºG²ë*¡ÙºDHóŸh¡ÿj…Ûÿ;Tæz³…|nÛ¤æqÜÆÃj¡›D»]õý |ø KZd4ƒù÷Áòã¨p~ãñdÈ7 |Zâ>­ö×Êà`E-’i˜`+Éå4õÿO#=¨«¹ö¼û¡~Jãhô°ÌϨµ¹7Cüü³.x|[doÄ÷hÅ:žÆúSýU¿iÄÅ8â{žŸ‘òñòŠˆ²3‚NïÂ"¨] È©S´¯6–ÒîM …þ«SÀ‚g¹IØ|˜¿ö1Ø[¹3Ù®/1 ,†‡Û´ãÆÈÞŒ o±aŸh­FOý‘Ÿ=“çöð3@¦ðó"âaÚ»‡$£F~N$ÕÕVºÀUpé‚‘ýS€€ß¹×.!¨? Éæøë—m¤!ž\Çãÿ*? &^ÞÐOîëc8w ÌœæóàFbÄ® Ž ~&¡•õ¾Vì‹>-ë§J*EˆÿŸŒü‰ƒ‘ü¹¤1µXGøÜ$݃<¶ÿ§1Òñ6¶ù§ÖÛ¼–®_4çë/‚1ÝF‹yl9zZ鯈ŽôÐ_—áÓyü3N8?ù¥fÖ5®Ž‹Œä/-Å`@—¤ 5úBÿyUS©ˆ÷OÆKá@­¼}mþÕH©Ï¿6 fÖ]Fö»íwœ1/€†ãü¼‹¥ðŸbg>×%øÀjÄŸ´†Ò[b½Ö»–.F0’?»TsM©ÒÁúçâÁÓñ_;³©vSó×sø©=y|%(·‹ûî"ÿ81ž¥há8Ø9ˆÛvÎyri4ªd›{L~—ÌÚU£ o@À)n(ÿg ¥þBJÁGVøùo$†&¤b ÒùøÂb¿+þÞnó ÿ‡ŠöyA<@¤j;ÞQï—ðjûÆú˜9‰ÄÏ%ö·]¢6 ÉÎÆFú´èa”ëh‘ÿÓÚﺸ£®:²(Õj _9/wü¾·Yþ³±¡H5‹¯¾ÄÄ[8â+¼;ÖýBÃÁƒô%Ñþ o9ãçAÏAþ$HûÈãÃ;*‹Û—Ó.DÀKYé·ëçﯮ®·Æ;Ë F=Å`Íœ ÁtòØtâ}ˆ¯y‡ ý‰ªƒê¶„„ᆥ¶MŠ·Äâ§H}Ÿ™é'¾’lÜ{ƒØ¡ùa>E´®þB,„ÿ¯´¸ÿeÕpe\X)€¥c"wQ* ¯4¢’­~êGé#˜ƒmmJfz §ðý’X­'„í€ ƒ¤výà–Ÿ‰d{#OH$tyŸèˆ¬u ÒÏghì ð:7Ðâþ—UÝ•pñ€l¼Ïß‘æ.ÒLGÞu~ÄXØÀx~Z&ÑHxX]mFv áQ½)>`“N¢àñå°¿’¶ƒl¸•êwä¯Yà¾t—.×Ao¤§hqÿÎ*ê’¸9î8ùù²¿¾ù;ˆ¿8í¯Šw ¶‚bëül˗𹎚i“ã)‰@Œ"j“í¢ëA¿'ð<9bòÛyéR Li€×wщpàþdš]öï¬Ü.+ëjÁP>S;Ç;Çòó:—P''Ÿ‡×mhà”Gþ‚àä¬6$µ6AÊHÈM#è²ã"a-øþ<݆ý+à'W\1÷c Eý+µ++]îwf÷s›êG, VœDkaãZúvÞ&—$–D®ºIÃlc’’ò›íúΧ4·¾“Pú‚×é¥Cˆ‘Z_óiU;,f>ÿ£õ­;ájJtdJ£_`ùšM{€Ý‰õW­‰ yµ:R¼Ó‹is îOÔõZOëb=® ©ôRrïfÍ¥•°ö䯩?êB퉎ꡱ˜ºË«Þÿheuƒ]Õ$A]‚ëU} á‚N!wj=£7ùÛaÚçU!îÐ^ÚXé´÷P‚ÓUŸ¿¿ÊP þ(3$rw‡¯5é~БäÄê:mÔíBúÙ/³ô„VZT1¨žÆ+ÁÒèk­=¨>±A»¡ÚR'é]C„ •êï_®ô.ûèH$×ÒáDrjrÝ 8LQb!›~Ï÷qZ¼»’ÛJKh~éä'ÝÍ ×ÒdÄ<Ú¦³äLlT"†êêzYháþ­•­po]|* S2ÇgµjX¯­öÆ««÷£ÉäSÁþCR[§!gœ KÔü¿Â”vJNðn$¶_¡+u¾†ZÌß^„WÕ‘_$¸\ïþ׫ ¥—ûB"À—¨ -h<°@—bÓ™ ^lÿɤÉbJ) O‡Ĥ¾9¨!ƒâ„˜´¼ðƒts}Ü P%ÐRýwV÷;çæ¹‰.›äÕ„AYƒ2ÍéYÍt>W^&»un™kçÆºn©kJhi/¡É˜´pÐôÒÐ}ïJ¹ŸƒåÄ£µ~s­© z ‹Zîyñ{2'½M,8½Š~Úº .¼±4ܹƒ;îbJiQ¹@e_OÊJo·ÚÕt]&j½¢å{ýäRr+ƒ ƒÝT·Åe’ð2Ýr =;ru_»X. rNÀbíœh­“«Ë3ŠÀ)ƒ÷´Ÿw5FÎ﨑ªR!ô¡NŠé’¹\àd*ßé?¬¡˜kîZÁsÀ¢“¹ÂX½Ì?™ðG]5mFž+ïÿÍý1ð€àÞÛìÓú´>­OëÓú´>­ÿó•P¾— ˜ÐýêšS†õØ\¨¯þ “îþÝ•YS»8.­K»­ó­ÄOß¹5놺™n€$Ò½RM"JMÙè À úMÿ­ÜX:‹Ë«ÍÀ÷ Xú€³ø `ƒ‡$•`µOw­«MUM¯çåž”—<3/µÁ}Ù|‹üT2?»žîkæº)îšänºÊn¡-®mu€–Bîô[‡kC£14›®“¦î<$[ ø?Zi©c’¹—îwY-ý$ž®”ß%ª6‘L.² v?Ê/ú½ÆÓçrP¬«UÍ¡µø7±fךšI§¹vøÀ«÷ù¬œTwéÜ^·î¢Ñ4Šÿ|« ?¥Òß@»….—&ÕºšUséUß#Û:%á¾V³è-{‰‚o‚E—»ÿî*…ìÝjRmà!Y,§ÄéI¢95²V“ærÚuÓã2X3ëw]­Ø9.$¥FÕë’L;j~ ©'ÑbÞ?–Åf…]m7ÛŸ– ":-^VßInlœHçJc;ªN[  $M¢÷üy—]…ˆ°©ðÍ´‘&ÇcθndÈ?Òjõ]%¹.Wä¨<—øú…ÚDûÏðÿíC×Ë`¹áâj2¤O¥5…¦ô}Àð!yî+±{£j;í¡ßè^+í°ýC¬ ®¼K㊺Èþ\Û æ%' Nù¾îÏe ‘]ÇH¹/賂$ïóNñìKr^BèCôQšœØI+è¢kd.:ýcDA:lÕÄõp$¼¾”7rRnÁmìÌæ{<Àz\ß#"ìŒß y(õ™ïëw‡`S>G—ä±d Õ~Ç_M.q¥L1ðý.ÿÕJça©.ÑMoÉSßç톄ÒK²EÖË]Yã»ä¬µù²ŽßckKd7Þÿ œ“køIC¨­Éñõ£ü&G]ù%ö½þÛe}‰ËÃk»ËR,zÉíÔ×T9ú…æf} f¡‘WòAæJ6Ɇ§¿ÂGâ›ü½14ˆ a§#Á’k%"¨½¬Äoι¤ÁüšhV|´:ìî•›F¾;ïÏ¿­ò'È9y''|_<ësT.`ûŸ¥,È`gb£Áû®“ÿîIbî A>tM+k­O&èÀï¹å;—"ç‚Ú.>‘?ÀÅ–P2 ‰O‚w!Ôú œ–Ãr‡؇Í#ù-üý$øWycr¯#;>“'häQSˆ ø‚\pAÒ“óó[ä/„ï„’tè¸J ý»«<5]^wù»’ÝN ç{¿ d~}ï_*#‰ñ°œ ý+ÙŒ´Ýù9‘î ?FàvÞŸM®¹á¿ñ÷=袔–ÁÊÑškE2âj<¬>µcp[¹±K3wÕ¥“‚²{Ÿ•½`ßußl(I÷È1ý£•ŒÈÌ辑YXÿ%R\"îøsßljõ—¾#Â4¢(òÏ@òžxÂMXpo7J^'ïÑÁC¿WXàþªï¹ï0¿ß!‚"k(½MNÌ¡¿Â–»’.u0cCÁåDî¾ë$/]Ú™–å~ïó,2×bßü ‘½˜<°Ÿ¸@ì_‚ë^—.RÉÙéø«ò% 2ø‚ÄÒ/Áþ }ÌÏûÄöÞáñkDQ&­§uô®ûÉ}ë «¹h9¨Óû }>¸ŒÍü8‚§[׺aÒ l€ùÙyíu2Éw¢™Õ¾ÿñ i(Õ]i§éðø DÌ5PïŒ$…'Ãæ×á 65Á²‚~NMíTO¿—:D[€w~ù•‡¼œÚå•2à׿ÿͦ^æ';ѵ¬Ë÷{"~:?;|ͬ’jRAºaÝ×ø€Í²^ÖÿãY0!Þ`}@.!}hrÀGɬ´1È8ÆõÆúûbàV"r–ûA!w¤°Ý߉^»æ1Ä÷Ä{/ŸÃfà/{'Üø˜ÌóÝ ­oÄEj„ë €õ}€ô‘ôs|â=žsŠ "£æý ÁÊjLòA3)'áÂÁãÊH—Ös%1ïuw†xµ®¯—¦ö¿é'¾Íô§z¶ƒýÖ{±ï‘i5¿u29Œ/ó›íÿž€ôû%¬7®ÚÉÑ8p!›WP P+·×ÂäÉZÚZº9)ƒE | örõ%Š|Ç߈|Ïxÿâ¯ju%ØU#hf:Ø œÁªG‰ÙøÉYØþc,üÈ÷¹9CŽX‹†¢Ã‰“iµþ@ñ±x)-GÝ\EGépm€.Š’•æ n®@ ãËóyëNðÞ­OÃV¬ÿš:oZ¸€ý'‹íè>€.¬{Ín³°ÿAPñ1Ï¿†Ýo¢·èjç^žÉPã>Ñn=¿ßü&r#K2_3í¥¿øY¯¤º–fÁ LBÅWÓ •4T*6Ûn%¥v~ý6߉#‘áýZXá,dê¦Íõ}Îóüpëjÿ…ÖES·‘ÿ#~ ŸÙBEÓÄRO_“ùò«eÀÏAÁš:V;ê¯h>Ð+36èèlvG ãç]À¯åŽÏ“áxýYÍ&YlÄó»urZBØœˆ‹°Üúô‘–È{x@Îß #Ü/é4>å¹+@†þ\ÑךÙO‚é ƒ© ó¼üÖfS"ý70ÔÊšKcq{É{ßN–ÛNÁæçñ¡\òçó}!y_õzy:X§ó—ÄÂdÍïñük~ÔRtZÞ'÷Ṳ̂Çþ”T8""+Ù°$:È®9]ÜË_ܵuµ±Tä Âãj ¼`8>« òóNúS`Æ{&Jgßûµ>ÀÛ ÷]oí¾oô3<"$Ñ}ï·n’‡É÷$œîçµnûY?Q|O.(ÇWíà]CñAà±î°»å®ãË;|çúõÄz_i*í‘¶‘og€H ßÑ­>`œŸsËw…ß‹^n‚oÕó>r ÜO «KªCðö\0º šWécþD8Œg”DQÐÓT²æ-)BĬƒUÿfëT¯màÆÉ%_ÀäþmqËñäE ·Mo{L,œÀ†÷±Ú< ²?FÚmHµÉ;€¥1ÏHï~æ'Ý&7Òh[˜ÞA< ?ÚyÅ#¡àyke¤dÔÙøÿ"(…Z÷ÿÄ<’}åG{1ÑØ{|0Pk‚M`Ã2sýiý“0º»àô …w7Ù¾Èõ9ïÙºüìÁƒ-3ÌÂÓëÈ—Ô6vÊwµïtºŠÌV‘`<꬯ÿìt`D˜ïz~šŠG€«1‘?+•pzrMXôpÎýV^ðS±ßŒý"ûi`¢¿ÎsKÝã=oæ¾R›h°O|ΠGäúÔk‘¹˜wÁO‚X ©tïm'˃o—Á‹g’†Ϙ VZOÑDÕrþæÚµ¹bçä=ù3¼~¥¤{Àäßãr¸(`Øsä²I'Ö»¡ >åç^ÏÁ×áñ¿{d›á¯,#7ó'ÁûøÉ—‰Š“<Òo9.Mðò­2ŠÜ° )o‰®G mòoE»‘ñˆ×hçö9ÿë[¸Ãm \°“TàKÝS©(?H:øžÍ::äÖ¿÷9™¾5œg6Þ<†÷Þ{7†Ítå÷Ûü<ÉgòìÅ<=¾3¼lˆ•mÂÅ@?+p ÕR¾C‹&¿Müˆß¼Åòau¯R«h­Î8íâ¹]É#åÈîÖ•u7¶»‹}v¡‹žÄ¹uôÝå;~uCâždÄ»î¬móa†ú`ùêæg⎓¤’¯yŽÎñX‰-áy¬=ÏoƒO%÷µOdªƒÇøJ°/Œ3®²¤M_˜G$†ÃmÎÑi?»Ãæ6õ’Ž _Q¤èë¥ïîûyG–üR–ûú£ ëֈǚI'®uÊ&_¡àá0~‹ “ÜôS[ZH<ë…X—ˆhàdh݇>"i6m®g(½sõ@Àþn0q» ›XÇž­~ŠYzvlh­Íâ=ˆ“®øE~If¢‡R<ÚÙª ‡v~BeþmÁ_ÏÂó_¸$øAkÄc61Àº‹=óW×*io=XØÓÀé?ó¹ÂÈo]/oƒÐ7Áéþøì0_ÇÌÚòþßlŠÅxäJ†e«pË!Å%5øVErñý¼â3 ‡œ6)ïW?ñÈ:iUAV Ž@3ýäë)øDÊju¸ð´w@æâÀ€_»þšæ~xî"¤7k'LǺ€«üdëñÖ,L‰ªp¢£ ù¡””–" hK‰†ÍE~ãIKü\¥aDÇZ^)½î$kô›¤ò„ Y¯‘9kj·_Ûç’ã}/ûC`ô^¼~&ñ<÷¸›Çk;ù™(£aò3|ÿ§lòÆåÁªmy*ý†× Ãm#™ÐMGüg(÷5CöýhlñÞÐëÇÒØ õÁÌk· pÿû.·+즸|òR¬fCöê‚V“"¡ŸcûîØr9¨ðÖæ—“ :aùRÉwwXf"åþ*¹®1Ï‹ö˜AÅIüIG©-† Û)ùô[/6Q9“ lýo×ÿ¾uM°ç1,|\"ê*êüÞh"†ÞG#Ïav“}g'›l¼°Oª€Öçú˜¯”Tm6R Iö„Kwý6óìãÈ»û‡ÖÚ°‹²úÌw…·žhëAÛuÈßVb“»ZúêM‰ëå »U‚MýœªQpüwDÄT40ß÷@=Éû_Š]x¾T„x%™at_Qí%%#|_ÔÂó§=ÛÉ'ÇÈQÐOùšÜ·ÕsÆežg?Ä&Kž€Ï°¼)\YìeŸ]ÜáýöÅÊ@ƒ ¢øìjÿ¹‡õ?î÷µ¾Èµ‰÷jXú%lÿ[ßÏ,¶ZŸ_rJ^)(ê$>†ú×à ë±õt?qÑ_(¯‰j4m¥E´uì3•ï[rEwž9-ÚçàÁþMØù-;µ}‘s‘"ÿËçzl-©~ýÿ¤Kí@!?³oºïþoUnT*ŸûE«¹Ï®Š õP{°/;^ž‰÷þA²k-]¤½‘ÿ²u¸—x‹Œ8ìMä¥Ê^/Á#úK8"åÙb:˜6>§n(žþà\h)‚ ªð>gàñâ@âý®äQëõeÝ~Æú™Ÿ}Áø5 Sxoqt0²ÃççhM¡Wë½KE¨‰‡Øì—…DÀ ´j~¿Žœ¹T¾cÛu”µÄÅm¿/æ£+hñ]Xiå’¸~¾WÓBdìõ÷ñþâélx|8ÙO} ¦Ùt¸màà`b%±Ô|ZNWh~í¡Y5•n B:ÂmZÆZ^c—Ÿ»ü{åwMd'>àI«@–‡°‰+²Å´øÎ8`2× [Y'ß•¼ßáò=,§J5”£«‘¨/9a?v»ET_Ùciq'…¦%äÐtZL“ó|›úaŸ¯ÆSnˆèF´Q‚u©ø ›“z Ì'¿\æêðé'¶N¸/]'d·^_Óý¬çß±Þ ¾"³" ƒõ>^ì'œ_ƒÇmF¾ÐIoH< `Ÿþ…^=6ïážÏòvõÚ‡§áyv½ôªß)¿FìZO\} ÷ùê^A?¡Õz†ªV”Ÿ-º_¨ÁRÁXoóÞöøÏp®È}Ð*«^õs~Nâóù²yèOðð­ÄÁ? ÑiG´ñÈ-¥¢=€nBiX÷ÄÓÈ~¾Û9^Ó:ªÆ×“ün;%ûKlb&’–Ð/¤T E÷ë âº8ÛÅVòNvû.øÔ:þF¶§A»Ù¾»ý´³LØé; .»R–»Éȼˆlùܾe; #éb¿MÄD'‰4ÕDdXÒi?9<2ê¨`³ò5@!¿Ó/Ê!²^~­ k._¨]¼ä»ÛN†Ãàvá “ùm1q.</?EÜLG»ð£=|í@ÎûøA\MMžÏ:†#ú_ó?l‡!Ô ¨#Ñ]à&?ÿç$šìöztÚ B§ÖúÞÏr: ‡»ƒ$¡°Ý8Nkd ©ËáA½¨ƒ«}ÏÏ}èÃæ nåùKÑŠ}Ö—ÏO†&“kmòC*OVô0šèŸ ü'-øŸ×GW8„üVùåÒZ¶ºO¿c»„dÇñ‚ 0£ÆünØônÇ=÷ˆèxùð`…¿zrÁ‚ºÙŸzJžLŒ÷7Ãÿ¯I"tQ^7jWòAD]ë*»÷üÏ+št  –½É.!ÅA¿¯á–ZO<¬E+'‰üvÒ …Ó™ðž~âÃnžcuƒMO]à'€íGƒùé6h”8žÞñ;(ÃS%\G»µØrʵpE‚IG¬ürÓåvµ\Ø}u¬¼¤¶ýÏAz ~!ïð„©ðÙNhà,Á®…¶£ž»µ}²»ðÛ3Þw~>è'„ìBþHjW?#/¾‡O_@'¤öÓnZH‡º î»`"yãÒºNáöKý¬ç“~òÍ+âþ=¶Ûá;ÁŽ¥²ïŠu—PßX¿ÿ±¾ï÷a±¹ç6÷¤ROà¯vúýAÛü'aáEÖ6-±°¬È¬•µ¿nÓÂZÐýh±ÿ²²É+8@}wýs™¥>Ð)/û=OGà~½±vC*ÖØÜvÀôà6y6ÃÞW`÷‹±¾M9_†&fJNd5Ú°³ïAÔ|Ø<“†'&bk8Qzw<Ðbÿeå—뮞kçV»™äÁ>Øw$ÒŸ‡ÁÍÁ–­±fo*‚I~úûx?~8Èpˆ¬÷šèÈ÷YÉ_L'êmæÙ|¥7·Y¬‡öz"$´?9]¦˜H¯øNàC%…»h±ÿ²r‰Hf7Åå•äî÷ä1Ûÿ·‰wÙ—,ß ylþÙP/ySP -–Þ„]Ï#ã-xí¼dV"òŸ áÙýì¿õ¾“ögäœKã‘2huôPÌ ´ØY$¶dr“Ü.XLvxÿ:µ¿ÒÚ—M¿[ì'šuàÖ…/«÷Š]<ë(¶Ï?hÓoûYYÍü~"›¨|Y¾DæBZ„ü…ÌZ@ßÀŠºËû¯Ög’Ëe¡V¹ ¶)ˆc°`'dèLƇ´¶¦­Ÿðc'Æ Ö€nO$¦FƒÝG墑7§ñæÿ6k ¸±ÄODÚH.¼.oÑ×Kðt¨Ž€[î“îu …þ«uÛ}íÎHòÕ9dçw:OñûV쳌)H5Üë¾u!»-äþµDˆ]ÅŠ—¹|Ïɶëi=9/èGáNWxÕeDËarB>]¨qƒöKw/ÐBÿÕŠ.)]qé¨öíN¿Wñs"ö.•ì*n†—»+¶ÈÍ:àïÆÿí3³§TH‘ñ Y`Ÿïœ½í ç9ÃÉãð’Ã~?ès¾ß "itˆfàÖ±¼;èì„ïsÞ¥õ€¯¦§v‚k³ÄfMô¬>×ö2]D$¡æáo¬>EœÇ„çNõÓ’¦â¶/à$•À#ɨ?k%P ‹æ† _Ð\Á„ùüÇj ,_? ©ÂªýJ·ûë¢]©}ìêÿäZKNÏÄcqÕ&æ¦Õ\Z…ìžl³=T6;o š±)ßóüÙ©›Ä}= Kt·îÒÎ.(—^ ´¸ÿeUvß¹f.8nsjZb«œÈ³_N ¶ÏöÓá–û30ÑÕ®”Ô„ZB¿ÅOœ~=¯ñH<4f½lžö(?Cý: þw„÷Å*ôP~vÓ-îßYEÝ7n¤{ã¬Ö{D~·S`üU€mxw\¤>'< _ÃfâhS*¹ªZ‹z±¢öä·ãb§ÜÎbñàÀJn ýUàÛhõÈ—UK¡±&®½›haÿÎÊäâ¸n½þm…ûÛçW@ø°õoÈqù4$Ø·ëðøÜúµv×zøþ$|  õ½íi+¦{=ßM©9ø‹ƒhàOûÀïR)ì§²F”¼®l Eý+µËæ»­`ú+ÉK9‚ôÖÏ9£ÖÖbX9•¦àçKÈëgÔâÚA×sä';}9ò“3âk|½•6¡ò¹ƒÝ‰ Ãp`ÅgèëH°îŸÔý쾂їƒ§½ k?¢y¼ôßèOÄð×ZŠð±$Ö² Ä7Ú[7aSë@¿ã{&¬^› wßÇQçD IÐÑöúЮº$˜w†Kè*¸00<»Zn ›C®!¼÷|Äxn0Àºœ„Ö¤d³:Jïêp8ÀJ½®{üÔ„F>ÇU×£Z©ßó3i²·ä¯ è·üÁ{¥'>»¸“î£ÔÅËoŠÞkˆÆË Ò {8¸o(8ÀV}­ëƒŽÕÔÅúB¯ú~Gñ¾h+vÐqýQSûÙùy…Ýz6ÜæýוۥBåჹñé乺º–(ô©¨àá›eÔ@ËèçAI‚þ?öÞìª+É÷®ªCð ÁÝÝ5¸;<„àA‚†àîÁÝ=Hpw×àîîÜ-Àý­Õ=Ós¿Û·§§gžï¼¹Oöyxå¼çvÙ¿þµ÷ZU­›¿™=·å¼6—U³6øÌ4K8çÉm)‰ Uäÿ¨ Ê£ÿA)Áã.Hø‰ß±PÌÙ|²w/kŠ,9‘>=Wšj!··6(P<Ø]EÇ?Ò'%m&±…(NTÌäo¬²6¶`ÿôá:u‘Úð™ªöÞræ~ œ±X37Ö‡7wB'“íVhåWlµÐA³Àj[ * ¶øûœ@†À~ÛÉ+ ØÝl¡þKG©$We5\.»°ÕÚ¡^Êžá×Ë,z `àí¶ý¶ŸøBsÀ¾%RØvà#¥7±ðÊná;g`BÓa‚¥CãÿÏöòX¶I_i+¼¨—-bà»À7˜Å üej"úT6ø=4%üš—è ‘-×´dÇhÔ8ä™,Ç$šÆùJïŽrR_òûÊ`Z˜+ÍàÅ´„^—îRÁß5)))AÌÐdð¥|JOÉ-I£]¤9’, 9sžÿÕ£•Ô"+¦BâÖÒO:àõaËÉ%5(Q)«K6,ý7•züô-Ñ“OŠHm~ûåh€¿ÃšYñ‡R‘YëþÛ‘‘g³K¸]2%¥š4 Á}®þ<þ<þ<þ<þ<þ<þ<þÕ#¥d Ç—‚åç纒H«ëtRnù ®”4ا÷?zd’¸’G IqùNÜI¢K8Ov9+)´˜¾“Ô:CŸk'­¯#µŽ—D0¥ÔÁ>éÿ¡#“äÀÂä•Ì6dO!G®'Ï~Îá·ÖÓ:R¯Ò–Ý[Nk¤…`Å_H–`Ÿüû¨›­*Sä¨|­Ït¶ÑTzo&}¤«æµò¶ÁºQï7·––Õ\—§lVßfØZÅ«ªâ%䣊tF†õr@?ê%w£Ö¢mä=UÞKýÖ"X3ìï&Ô²&VŠÊ·›5@­ì±Æ×Ú’÷?T ´ãG¼ü¬TÓΞé1ìÿ›fµnºW3iýQ"}aspÜ ŸòÖØòYL«‹>¢¢©Ï­³¾5ꆀ.gÿõ#ØÞ_âê$¿ü¾Þк_Ÿh!Û¦…m½FSÑ‘ö«~oí¬¨¹=}Ï4³¹Yïõ-}Ês-²…µ´šUŠýá& ”!n;ÈsùÉw<­GtŸnÔ‡Ͼ¤il²ŽÕÙZÞ «—¶oÌííx¨¡ì„æ² DÂh ‘¥² ¼þG­E¿Óß?t”\ û~™¥4ƒ½ò{>^€}W5<þ}LÐbæzAÆAÊìDn¤¾ïït—±âV­ÄF¡Àà –Å¢hI>±P°Åú'JRŸ˜=+»´²¸ñ®ã½ën½^×Ol? Á.“ ÂÙb9ˆúzx}X;¯ïÐX}Ë^¼ÖÔè¡6xðƒÅמøTð:ÝüWŽtRAK.gu,ùžãÿÏý*žH6Asêm©·5&Ò—µ«šÍ’ã)à¶^ÔkxÎgä‚JVݾ¶îÖÙÚh4ÌnWÿÜá&xCþTHÃ!±ëÿsOOèM=§o±ýQ m°îK¯5ú¨íÈÿ׈·Ëñ.Qð€Wç±AÖÂúXe+éW½•ÓïCø½Ow–ŠÄÿ>I¬›‘Ö­à}¢[A¿CH}ƒßoà ûð¬Øý$‘ñ)þñE'JùÎ9·É“Oñ×õ¯þßÙÀŽýµ.9³D¿*ø•d•…2U>ÑR:ÎwAwk7¶êrÝ­§ÐÈ}] ³tßÙ|YwéT`X»ˆµßûÞw®3þAä ÜC[±A‚² `rtpÄu„D»!w"Tꛕò»Ü“ˆÚƒ³½ ¢ïÑ%¾;–[ã·—ßf óU¿–ÿrNÂׯóºÛ cT°ÒõϺOŒn®ÏC +Fþ«Œôn2Tx›£Ç¥«4 bÇ«tä”ôœ],M®Í|ƒ_ðàû°ž…¾{éy½Ë×ý¾Þ6|ý ÏŸæáº_žÔ7à_x»N^ùR“®£-%F¾FþŠ<2rÙXsù.æÂ’LËcI©åt²^Áÿ÷ƒnët&~îVz_ôÀfêDN$F+n&È9PÏíÿvû]W/Çù=%º8fžiMëÔFò‚ ä+íªáu˜T“!nŠ»¿C­§añéøò}ä_N~_ª£ñt—ý&öGûsu¨®ä§­ÈÛY[8ÛBô»éG›a‰®Ü[råA m,ü°ø÷^ Ÿ×ýTŽeBX&ȃïg‘Ÿ¥ ¼þ¤_H8ÿ-´6½l@knŸè=òÆabá z‰GXÑZûÙqíl <ñ†6“´Aïüð·#5z6™!ªùÁñID¸›òr‰æ{_­[ˆïËÚ“Ç:¿¢}9À­í¡%òž%RÞ~§É—É®?ön²Æ¿Û7.,¨©õ²Ö L¨HUrúÿ§¥:+"Qu„ĵ3ºLû"ía"`>ñàÀ4Ýî{?» Üíò{‡&èwšŒg®xÃ%u+¡ŸPGõû]ïâIWx¥‘ãÛ÷6ѦÊÙp X‹ w~ù·#=ÞŸN¾—Ò6Æï÷>ŒgïAâþX¸§ßÙ4ì—»õ|Ãý<¨×øö´tß®kòmÐhðÅDKzêB·+îÖŽ6R"÷hëIMɆØHS)ƒ-º?ÒK)Xé)+¿bÛ#xì2ü{Þ?Äw½ï;ÞÎÇÞ‡±¸Û:•Ü· Ü  ܯnýw¯ÅaA+x?>ÒÇ1×)!‚_)Zˆºù›gËm”•°Z6Ý2i-" øY0 ¶O-£äè÷oî;×Ï&Ï÷¡¾Œ÷/ý¶ã ñóã ÿXü¹±ñ ä»KîÛEHŠ­W‘"X0. ~àº]fBùì;ûŠªøGðÿlŸ[*ë+Ú(LÄK"ÈÅ%áûaì9¼ßïy§½a£uà¦!íÄ÷ÛãýÛɽ}/Ëæ<“‹8vu~êÄDúAÞÁv€„i°¹ërx˜8ÈÇoá-¹¯µÕ´Xä€Rd‚y~E]ë°"ÎÝÅøB\ÇÒ¤dñ(öožæÓúüëç3ž›ÖÚ÷Dž¢½ˆ‰5¼æ ´’öw‹'ÅÛsQÝÝÀÿw 0`_j0p3ˆÊ.øêéSª€Œ¾óë|Tƒ,Ѓj!=¬+¸GV˜ï|äGíž…Z.%ø´“ˆŸ†üý|ßÇmÈÛ—Šg£ï‚<Ì׺û¾±ÇÁ7!“-ÔÔz í$÷ŸÓçxA|ÛÆç¸ý0«þºò9¯HÆ¢ª®f@…6D_ ÊŸ6~VVÅw¨×^jvjµç¾ûÿ(m¥ÐÁ)m „±ÕpŸàD]ðŽÅhä#¼PM-•ý¦‘í;­ãg¥žFJÇ"!åe^¹/r»bû=pï¨~sÃ2À…Þw‚{§°° —Xé9Œå~}Žût$VnÂuÀâ´®6D çÆ1Þ¾ †¬îzØxìú?_§mÑÈu~rÓ?úÞ¾áȇ È‹MÑÜ|á2Üàk"ñ?…|ÔZ æs?ßJÞ› ÷]cÙaê¤õä€ú¸‘–ü öNd?‹o„3×AÎMK«>w¡¹+h&48S˜,8ÑÚ[+äIpyˆÿs¾ûËû×|U7Áïßž¡eÈí|•ß…hŸ„_¬EnšÉ¯Þ?–ñŽd6¶·ÜüˆüG@9·Ûéº>ÇWø=õÞ>e¯¾ªoñ—°‚8Ô­¼Í´ÌÉñþä}×±ª¾=Û_»ûˆ__à|¿Ñ¯‘sºY¹Ï'æG€ nŽë•w÷¸¢n?Àuä?é{ÅìÇænÇgü"¾¹]Òãùì³¼#[Š×'gë‘!;Û0}DùÓÈçROJø.§sðïç0õ ÚKhgA¾Bxþ\¤wPÇQ¹¾°C©{fåé¨éÖÀÚy­j_“5¦aq7-ϱžÇ¾{Ê9üÂõQ™‰ÇD #–ÁæYá…,?ø_¦‚سŠ|+ƒe$>>º- ,î:_ßã×ǰÚq-GÖŸ¦G}‡ëÓhÉ] h‰4uà€µÀýÏ~%v͈$µl”ï›áz¢Ç/æ¡©Shà)z}ª…ÉÅ-Ž~C ¼£—$”LRë´áŒ¡…î¾»Ó XNL[†?¨µ½æáÏ?ÛM¯2_ûi ͤy‘q Ù/Žf×d¾;R{42ÀWÍ®SÐ >qÈ?œØï;¨µ'\Oé øÚoàÌdH0¯–8’Yz ßLü»2Ôõÿx]Óæú.XýA…xú|£Þ^ÜWìsÝÃ+ñÛ8°¡qÑ³ŽŸ~Æo梻$0¿ÉTÊë@‰Füµ;Ÿ3œø_Kž\"Õ‚:á¬Ä‚5ô•ý"¤™D¤»Êv;ü¬‚T×¹x–Ï㓈šHÕA[iz-í=eqݦëzƒ;O£ áÀÐb[¢d½¿:vYSX[Þ™~´œ¿·5çšg}w‰CØ¿Nå¿'ŸQ=–ëÄùQl¹¯F6تiáô×ÕÝÁq«.ᯭ5§æÇ¿«iQ-@¼tæŸÚ‹o§ÐYS-«…ùë·`^u]Ôö’í·ƒ÷±á×ç´xu‰/3eï]{¦: kïâ,3#ÏußÅø$Ñïf]ÌÁ«+k-¯_!ÿ 0"<¦™­ƒÇ\'kö «"ynÍ>,ñw‡aùߨ{añœvÏ:Åç¹y¡ÐÞ%íôÕ@ý$Y  ht¬[ä']ïѬ–DÃè>_½/á¹õÈט¸®¢%ñ‚šøúPª$Å÷kØwöïäï]µ>µQ%ù¤½Äÿi>3¬ÅôóÏcàû‘ùHë{fÒtA–^dš¤—Q2oý„Ûï¯`}ÊÙM‚Ÿ®V›ñW 9ëW#Ï!º+€ÀD7Ñ÷¾ÞÄÊîÚàÞú5A‡ò¼rµ¯wñyKJ$ýÆÂOVó¾•~^l<Ë­Ÿ[|Ù*…e‡ïü7É[Ìõý¼Íùå²hã¿£³Ï3»é:R¿ ö K²åy£ÿÌ¢bW‡t…4Âü«@´¸jÔMD Pïî$6ææýÝD/®'Ö2ÃÑ _ýuÇM8ðmù ¤ê‚ü;9+סÝu{áû¼Ï!R÷óûô0É÷½­íãûŠfñëš¾´êdŠÇ2êGÉNn, #ÜFíçøô]0/<è—ŽšÏõO …¶øyê.׌‘|Á_"hw9Jþ;â{;»Þö+ü|‚;¾û}(Ûåg٬’«ˆémHõاѩá+Xhu-³*6Ïp“ÀÖÃ¥ÖøyZ7‰»šÒbƒáìkj¾é¼ï…Ÿ€åî·’äÁ_Ü”=rÄ_Ù™êg}Ÿ†±F77Åö è}ÕÛ¨Ÿf~ËO÷Fm‘-5öLd-91M¼Ç²n}ˆØR?Mã¼_庡Dz³ }<ߨ?| 21„Œ=d˜ìÇ#ïÁdÏù{Z'‰Ú;þ:ÿYPzÖÊ¿íÉß½…ï/æ“>’IkÚ7è¨ úq}b¯ŽõülñXüÕ9䆸IW·}'ç_ø>ù¶â«1àh—‰è) ºëc÷3¯¸é¯’î¥.˜IŒÿ^CT?áë]0¾uÓßeßÝÕŸ[~BÄdüæ ¿íB—»‘?‡å#RƒýneÄ?!ÇMI;+?[tÄÔµnø¿KS™ëcz—ïj;A»cDÀfs‘Õ­ šI»»[ü•­ÁÈ“LgHðrޝŽóžípÆ->Ï?B¡»×@0ïþóNþ Õ2"Ø¢û#5–(%“d´&¶tv“J=¾%¶«Äª›}į渌/¸5A3ñòè–ÌöùUPmÑX<= =ˆ€¾Þ ¶Ķ»ˆ•W°Ü æ>í+PòžÆ!OÄæ·T–ÑY:í*‡ƒ-ú_ôZ^úH2*¥ÏˆÜÅàøÐí-žü„ŒökÎ$Bæƒó,¡-ð³‘[¢ƒ²Ï9C|L%SƵâ`h?"àš@R³€…Aþ‚ë§çk6‹ë3Â3í/CHW¤:Q¾“,X6`î:øf¿v×­|<ï§"n Ž·ó›»œÊŠ’÷‡ûù°½Èš}4µ¶öwzÆðÎZ +÷å½O4uÿqØë{l!è!%:‰`u+ß+Iî"$.)¤*qéVûÄëÇî»´‡Ÿú¸$<Êó}ý<Çϱ\ ò—»*>ŸL1Qóë ÝNð°±R‡Øé‹vö r‚z¹‘>6hâîxä„)Æ6·v%Ц’2„ÈŸ\‡I|©ÂÙŸ·^«ë}üŒˆwý{£Úe?ÍÙÍÀêGŒ?ÒNdðhc4 Øhý»¿…ïL'x¼[Gl¬õ{…Ó ÐÈìúg°LV,¬k?Z'» ú…ù‹ëÉ …<*vŠknÔ$¾A¶vû>]7ëq¾æs+%ºƒmÐ…³y;AÅ»æ´Ë¯œéM5ÙGÁ Ü}õ{šÂ>‚Š™ÀÌ8æöC…&ÆR‚wdY°Åþ÷#«Ž”ò’—j/ŠÂ§×ûùuËýD“‘ê®Þväkt0R›÷m\×LVx Ö[–LXÀ:ZB]l±ÿý0'$Òœ#Ó€Mö½Þ[!§[=Zãíy¦.ß ‰…ê® GÆ»€‘noÄj†å~J¶»S4ů›^€^kìÎ2óï¼f¦ Nn½íûLCŽý'Éb)!ðÖuøît¬©¶âÓ§?\õ[4ð=’×õ÷¼úÃ÷ÃÂûÃÚ_Öö¿õûÀ~Ã'&FóžI~ø\"ä¬_W±Ó¯¨¹®m°e ÿ!gþƒ» VERÁw†ÁÜvÀf?Pÿ¼†¿®ãçò¬ãëm‘j¾?Æ¿–º8Öcn®åc"<?¹¹éC}ü¹%–¢§+~EåAbbï©nÏlýX(ñBú¹cˆÔ”r¿…ÞÿbaßdñS ß |¢&FçWÝ^“Ó£Ù"Àš_éÇÈ™Û<˜Ž~òë~÷áUá©.¦ÜÏšxÀ&ËBÆ‚ä©'«äžF :ã#yrõ'ÄkD˜Ÿ›ù6Í×ý#È{SñŠ_©t!é]Mb&¥®sW·cÚY¿3Èí˜ïçÁL‡ºuÏoù×!´¬U&d ·†æû·£œ”–¨Z™ºïhÂ÷¯ßCö:G,Çóçëjwd…__ÔJàÃo‰ŒV(K$\òÕð)$ž‚Ý· ÿ"êå•`Ãe¸O_rþWÖÝjÙ6+¡;ƒ-îß9²I%iF5¼Þ‚½åÁ¯Ýü‹}XõVt+$¶ðÛy‚›]ŸÌ*xk–²bö—« .Ë?Fwî*ú^ç`#Ø—”lËêÁùVÚ>;ç6 !•ßÿ~ä”üRQšÈVýÆïÙuóOW!Ë:8_Vâ!“¹K©l¢Z{[¬@ótö%œ°ÜÔö’ìúÏe›Èïö‡ïÃó³ÂùêðÞ~6Æ–Z k"Á[ñóެR\2JjØ »Âáú^Ä ¢ÝŒ¿ ÔïîÊ@^žß€Œ,—eÖ‚ú-Þß ¿NjKˆøÄMä|H‰äúßÂx.‘'ÀÇXUËwä¶+R9Äö(/±¤¨¼‘Gp–’DjjÙ%dðÜ^âXò4•á~-ƒ9¬µµ˜}o=íyo†¾ðÓâKñó;Mƒ¾ª`ézpž³ZÎVèj›ÇgäÆWêÉ÷ÁóÅ¥4 VÑ6Ä~K}w‹ŽôÍÝɾ ³všÜ÷Í&—} ZÚÙ2….\_äX`ýçhÆeºê°ýÂöT'Ú`å`LCxO°¬’YrÉ`9®›‘ï¼%:H°È†ƒ‡ÏAþ}Tòô3j¸Ã<»ÈvØC;‡u'XB<\#ƒT°ìÖÖúÛf4ð5vOBôG#…-»6eBö‘Y’€…O%­ÍÏkbº ù«%¨—Üï÷{H¥Ô ,¿`Ç‘1o fàg"âïõw¿ç¯š-°íü[n•,^0ÐÂú“¦þ!ú •ÜR¨aîêMw°o Í´¢6šø­aC‰„ T0sÐ@ÔÀSË8n“ÑO10¯Ü>5Çí×YS›Å÷äÉ}66PÄÚëÀ`‹öO‰$†ô“mZ?wÓMºÛkð`… ³Ý6Ž<¾œœ6ÕÚGû$°çrÀ¯%u@þP–¦ƒÃáI›l1žóL÷Êä`‹õO¥$ žZ‚H¾ay±lJàžà·Ùèâ–• „ ·AöÆ¢–Ùe´ôT›â9­—°wDÆtÛi¡£'¨õ3ýcõÁ«N-—ä¾=°I Mà¬E „ 4°iv¸„Ì…M­Œßí»–ÇëÈXL ÍÐuÁè_8RH#i‰×n‘õzÜ~ |¸dÈèØCì8Š.bYꜯA÷ÛÖ 90/¨fî¾èIømDýXQ7[”ñÈ"¥¬T“.ò³”Öá0œÞV"°/0ÄZôy4¶.ÀSI*¥µT6S`÷càÎk4²“ox÷÷¼ÿ}d—´ü«$ß!ks¢â¼œmøE;ôRžlQUæI]/}e “=2A¦À Zñêrü>ÿ3G&4J’Kl¸AFɇ]+Kcä«é×ï–§nJ#ñ$¯)Œ¦jIC ù“~þ<þ<þ<þ<þ<þ<þ<þ™#Y¾ì_Wí&‚” Û'ó“CJ½ã) Ù¤Ì9döxüW’RZêI]©rKI'™á@éàyÉ´³¶ÖŸôµÖ±Ú^ÓjVíçgfý¿ÂüJHüOÒZk3M£Õå¬o:Ò«º©¾cl˜¢ÊÍh7µ¸u£>.dçåŒgË!c…ãç¨)y¥Uàmßç0Ž…±Êºû>“²A»ZMÛ`ͬ‰}IåßÈ XZûÖšÛ'Ö^#éx˜pú` ðß:rQã ÅÖwäŽnÒÆ~%wUËn‡åÖãz{[1ëk‰¨øWXk«ayù—ŸGjK¢ùu„ÔâÁâ_>RP×l‘ôÚTok{­U‘ëž–µv¶@kò×)ø|r{ªOô{+må­½•²tö½•´ÃzE÷k;ªÿvT‡¹‰ ?Ú‘RRSÙŽ”Jz]ÛXfü>9¶Ý¥ñ€èTùåÔµCú»Ö¶ÏüNÁ§Zßr ‡!–Ër[O«eqm9˜1L þA:ŸÿíH+ %®´îúFÙ¿+&²÷ëâVh oWt‚¦6Câ¼à]B;£oAÃø`@u«F4dE 9,¬‰UÒ¯ÀÏÔíô?;RPÇg ~©™-‘|MøŽ×‡±r6â "2çG²«šÉSÛ§øGQ»®÷4‰ý€Ô™Ñ€»îŸ\ˆëviù?Ð ŒÜø~&¹&Û¤:8ÞÎél£Óün¸ã~E¬[å]‚\p@K!í}<¤ }cíŽßÁâÿ®›Z*Kb¦BGy´¶|lÁþÉ#£ý72_ŸéUÝ­Ût¸Nòk¶ë1dﻥ<Öxæ:\»Nw…¬°E³"xüm´ó»&Ãö‰,™=Ä?ÜÔ{wÿø *_†€ýNÿÙQ¬Î" $ƒлX;Ž]Ò©:R7ê 2 ë}óRcÙD¿²í:œØ8'^^ ŸOG>¸¨çÀŒg ¡™¹-5° 䆬¾¶øà` K#b¢ß¥øQCaÓ}Ø ¾˜ïwÅÅòë½Îë,|?—}ÚU&+¤ Þë!^÷‰½Òðé‚ÅøZ̺ëAiBz¾þߎ*D~¼¿ÞýToi <Ùõ°[Åã$;€/,ѹxÂsß×v˜¦²pàc\{áûüf0µ¼b»ïö -…Ç7 £BöDºLjIÅ` ù=²“ñªJsmäqÁ´÷~¯Ú¿£o‰.Õ-ºÚ÷ÅŸ£;ñüh`;qð¹ã[ätóqÄ6èb4t/P´ÇwÿOfu¬.¬éuâ—TQ!ñH-É¥·Ì’ξ·÷MIæ e®¯¹[︘KL¸þˆÃ‘p»ß ¸™¨¸¥×´$^rЯ 0äŸÇk÷éMj™°{A+k­¬©Õ¶SZC/QUú®ïÿó(GeŸL:J+™ç}}^ò;}îãýS}ˆ5xÀR]Žü}t„Ž#/ÌíoøÞF—|wü¥hî6:™È'¬äÝá°{ª£‘¾>rwÆ'haý +Ä®wÿpl·Ÿä¥¾Ý¡Ë°ø4äxoÇó'#ã&Ác±ßõ“õû{wûi®«çV$výA–ðî‰èe1󫆵l俉6Ü:áý¹Éˆ¨½zœz2aˆâá{é©è j/"{%¶œ©£u/^|Ô÷…Z§ aò}O¬ ؾ/¶~¤g©q:ã®'æ!bÄ­zžî÷ NGS³` Ñ‘¿ –od©‹ÛÛb+G¼ÑlÔÕ!é~xIǥњ޲nŸËX³ë/ûæáõÝô{þҎ蟌6æ€ ¯ùiÒ;?íá€ï|5ÝÌÆ~æ3öè´”ÄÊX=_Õ°}¶ÄzÙL+¯ÉCÄÞç¿i%Ö«à9§±ÿvb}™æâ×®¸ëóÖò="Û5po6Ò½ÒêRšLWÍWH«ðžÄÀß'yï~@tœ ¤¾´®¶Ñ&Û¶Œ:y`PûýïG?Ñ|ò=Ô¨€Ã­'ÓÂ’Sa²öÐþÈß^+ðµ2º.¨ÇÕuGê«ù$2ðžwÝ3:â3gÉûOˆœñ`ÆMòŸúFKÛ$[iC­>™p¡Ý¶Ú3ØbÿõÈ,‰¥¾Ü‡rià1õþ=Õ÷qšŒßw$Æ]gjø¾[ß’8 ¶ßëêdy(n¿ØDüÿ vÂú÷Ôíy o¿57ñÿwêfÄå%–ؘâXf³­›öbçËÿx–øà_i¬ÿ¾‘šý9Ï­õoL<4Ö&HÕë·ÁÚ­ø½;Èð ¶~ŒmÇã-ˆKDÍ/øÃñZŒçÛÄ3Ga™ì­f¤jaSl°•¶>䃶vAJ¢ ö>ýÛ‘Nb‘õÉWÚ–¨ÛÿzÒïwèå{žµ×zÚÜïæùQ[k]mЦ‚’ ð–%šžïºúCŽ'÷SbùΖ®Wèb?;±_Þ²€ÿÕl„•ÀºÚ£ÏÅU„Á? ¿_§,×|ÿןk°öæk#⺿ïǶ£ùù Ðo5QÑTLÄ ßO‡…‚{'ñ‹Ed‹3êVº=sáçÈŽ¬^ ~üŽ\‰Z¨XÐÙ.Y_ ;ÀSÂûê#S":. å•þeÏ2<à[P|(rþ"¸Î^=ȇA†Ñø{xŸëdz^ßû©®_¬›tNÓR F³øÂÏ ¶ ½«à`{ Ÿ|K|ô´Ÿñ‚Aš"ès¢óaùÞ’ÂÜ>ÅXTòï4–› ÆÏÓòÄû84p]L×èc¾ßÓ2Œˆ_ "Šm%×¹ÞYÎc–!ûB´qJ_ú+eQÍ­ÿÿË ×ïñšus‘BÛ'VTv8ÜÜkî>Ö qU~t‹an¾a\¬4Öw<¨¾Oõ;Ý×"YGžq]bF€ôë‘¶ÙÝ¡å-*¥SZ\\Ftü†ŒIAÿÅ\ÏàÕàcs>ay>zùM#X+bŸ‚?Yý*È÷ˆâ <øQzoÇ¿ùÈ2×÷ü ®ÓÓÏ6[éûœ óƒ«|gÈ xóGMN…{昄ܰØÏÃ3²hfäO .ì‡~üŽ " nk˜`x@N²`kG5¼#3ñ—@²øþ§ÑÌÍò˜… 'é³Á¾Ò Þxt±Nã¦uÛ~ÒähÏ3‰h·§u=©/¥(‘àº^¸ºOÁäàÃM´äz†/Eóü<¨ÈÖÜzØ~`ßS7÷>q&XèÒ˜ìå®f/ðUÜ òvâv”VÇwæ™Mð½Å0œnÞ‹ hl £¹ÈéÉ`2Oˆ’…ú¹­ÖÛÒ/š Ú„o<ç’˜ë¼OZÂgDS1-3~_—JèˆÍ²ªÖùƒ7'Žä–ì2KÜžÿճܮŸË|¿ï«à.~ð,ävW@;b¿Øz,¨–8ˆ`E­©U´dÈ9‹ª6¾=ý˜ãó6úÉÉ÷@·#ò,>ñ©E‡dAþøä̲T„SyoÕ î†J'ňþ—²›¿ÒÑÜŒ;×·z+Þ{\k#é8¬y¯^ŽýÏSOö³!» …¸ǺXwûF;Áç®råñ÷„°ˆ7x¿›”åêçdˆ…šFè:ÞÀö™ìs+ 6äg›iž ®h‚õsICÎ25ù|ö7 Ëù?çÄîÂú¿DÞsšÍb"ŸëŽpM\Pµ9>{õÒHVOˆb¨âÁr\Çß“àƒ‰œ¼/#RWGö~6«²ÖÆSvдxa°ŽŽUòÈÉu1r}CƒgOÑÃk?ë½?^Þô{Ìn·›ü¹ –ã&@\DödHúVÓåá¶wü5ßßxuB ‡m3ðY=Õe€›ÄJ,ü>#> M4³^d€Êü¯a5Uçö‘RJæyîþÄw÷r½N‚r³ð÷è¤:Ù`4ˆ¾Vs˜¿ŒEþ>0Ác2‘<–м¿Q]w»ìà`ªŸ€‰½ö³rÂðêݼû2¸ÆÁˆÊX"ËoîÊêe}3i}I4ùÇH<˜ÿxbÿ!çº ^3‹ °ÌŸD†sµoUr^Oü÷$œ×]×q“ÏêÏðåJȾ€gWƒ ®¯gFë£oÅÕÅÐᯠÄE¼f¿z”ÉgÏ4+xYŽJ UPZr@ xàí Î?˜ûì.ϱýN˜ëü½oßÉÏ$ë÷Áò?Rõ÷ò ¾Ñ2<÷3Þë»éÆ­¨[j%-j„ÏÕ,H{ióº>àÞrß¾#ßÏj>K¯.bMˆýøK<¾§‚'] âuÐyR@Fˆëúàæ›¼¢Ê9‹\ç‡q0 ×ã¹r») c¾4Þ1LüÖÏœ2¸NM¨gÁ’ÆóÛ:?v ~]—ÚÁõ@ïG¥8æ³ßÏdçñ ä¡6 ôlK%¸_[J¶ ÉAŠËd¸ÿ߯ë ÐÝór½\ÛàÙÃÉ_?#{déí¹Àß˾ß;óÕõ„éO¾pli•Ÿ!´ÖO6ù/êOæŒ÷|ËßÁ§§¡Õàý xôD°5"œù91·J3õ*Pi(OýÞeH3 v½nÖŸ»¿qÒO>­º!íø½ûé'ýÃMFšÂ£Œ]ç}s|”¸¹(? á| p£•~ÇswÕuÁç¾öuF>烿³žÛBYÜ ®ŒH)mÅÅü$â´¯—a¶‰\¿a§Ÿ¨qÏ!ët¤ïBO%Þ{ƒ°ñ~ZîU5×)oˆ±;»k&}øœþ°¡á~~ š›õ€Œ0A]G¹ýè"ü'/HX¶™— ¼£|'Íñý9Ä­ë_ßFÖŽ{QÝ<3³ÝÄÄr?íÍuF_ŽEÛa½æÄwcÐq Ö­ÓYç;þtóX0ŒçGòÛ0§t<È?ýœ_×¢ŸÈló¦p­dÐÏ¥Hå*]åKì³ß\€Åbýqœí)β¡¿‹ÿöàN/“ð‘¾|E|üÀ÷úN›[T[€m»ðL{¼¾-8ÐÎ÷ÁÙ~¸.âa]ñøÇèu™IT9n¼ TÖä às¤½ÔS7©2œÅ¾Ó;q“èN]sÜÚ„üKµ–òýkEê‚ÞÈ: ŸÙÃû®ú­ÈŒ´02 M|­@º#ÄÇmMdðŒd0ÅcüÇ@‚3x×{tð€ú²QP¯o– rZ6añ[Äíbl™ð"L#8Œë[{Æs«•Ô$Z”ØX«hAxq;l½]¹Ž·ðŠfÈRHó€Cù)ž~”Ñ~ÂÁê¾7Èû™Ÿ+¶.¸ŸŠO­õÝM×AÅÿÛ oAùËü¥Dì ¼ëíyRãã¿¡ÍÕ°§‘sGÔ„Tý?ÂÜDék¨òØ‹ÍÛ'M‘¼?^K£Ù“Õu½½ç{Å>ÖZøÒs¼a›>öÓãÜ,¤èw@¥wݯc¹½îøûu¬>ì:D†úû/ïc½{ü~™˜­«ŸiLM¥ù±ü(¤œˆ~vÁ˜\ð‹¾GÜ t×ýdÕÇ’A3òiñªw~DtjŸcÄR8› Û¼Æ3®Ëu“vªü"yá_E±ñz?¥Þ­ò» ^ïÐYÒ‡Ÿaÿsha"QK£ãÑÁïý]€õÈ‘/~CžX‰¬ AŒþH_SjN²‡ÓÏc4ë&%~M lÒ0àËèÙM›Ê Þ¨e‚¾>¼"5`*< 6tú)wâ ûéSŸ¡ò¼›1UScý¸Äu.Q/ÓI,ƒJæ³™ßçAËh M R¤ÑhÑ¡ã%ÓKC&ýHô=½¯¢™\TÿQƒ,½Ë€Å%7òR—§c•Än˜yjx7ÎÝ×Üâ˜6«Ÿh-€¦bWŧëYdÛJ}»‰sƒqÕøžÎ_íܯð7Ä[¦É-|/ƒü— dCÌ×L`xQêø‚~ºE˧±ÑÌïò^šÂÖènïçn i|3ò]y*àáxÓøFbÞÛMKKÑ`‹/Wå+Ðú©†‡Ç¸ÏîŒ[û„Zðþë®aÁ–cÑÁ,|£¿f"º3Œ-¿E³Ú @[c•¬9Y/ÞÑÀ÷þr×Ì]¯ Å^ƒ¿Ùì‘u \"SÓÚ!bXY9'Û@ºw0›øÁ#0û´Æðs ÜU¯ â ‚nîûÏÚ´„,b•á¾yýžŸá–ÊF™ßøžÈ'xÕFâÇu”hU‰Çøü{r¥ósØrÆL^Y=ˆ×þþv””n2ö7ÿNc7`¦‡ÑÁ' ßÅ÷¸_ýõÙ/ƒƒ|…ÿ\¼: è—ÃbYRßÝó:ÜÎM:~Öù{@¯4½5GÞ}ZÙÜz17õ(^sÏgÔœ!boPÉ"°>©K…>œ»K^?ýïÃú–Ã\OaÑp¡sÈ5ßO¯:Äo‘ÍÍL} ®#Ö)u3 v ´Ãö‡}ïðÛÄ’X|ªÜüÄSLßO­ª¿2|—wÞ‚)$‘AÁžãº¤“{^Ý\Êxä¨X|?ºþæ—|ø-xÆ~âc-ò2²ý}0ü¡_#9>»‘¯‡TÍYw/±ϹÍßoPU&³[&¿"âSˉ§¤%&vò®,šM‚9ýùߎ0ZRÈy)e?[hwÏD¢kXqþzÄ#öTÏfùÙ¯ðë»`e x8¾1’šg;Ò~äùP¶?ºÅk×óþÛ°œ¼°ßÈäI Ñø9‹ßEwKIÉz€FÕ>ÒFÉ;üÓ­sÞ¦E¨n ¾EwEl>?Çl¬öìzI ?$Q ׯ¨{f£M° 3HíVÀï%VÜúŸä’:ÖÂîù©Èi±.²À'Çöj(ýŽÌléEâÁÃúJËù¹ý nSzìszå¾?ݯø^@ìîçý=Öl¼no'0|q W¬?D«aý…:IïÊYYD®Ãïå°uÛ m`ÿ‰¬šŸÿ‘É #qFª„–6ÊV[{ëJµ°Hs‡ù?€ª€ÅÓ@ñ~ð÷öH7 üÚ‡Ïò}œ¦#òÏ +Æ7w 3òÎ S<âgõl1¯Š^zéïøþx4sŸHϦ~Ð pŠ·¼6½•²V°æ2ÖÙh?‰Bä(µ¥•L'JWÂ_»úN¶Õͳ_âgÏF+½ñéA¾ÇÿpôÓ‰xØŠi³4<\9‚¹Ùž}ýdàþ¼~ ï\ú§+BnMíZu“u †è¯?[ì?IoXph{ƒDn °[ó²ù–"ë ?ñÙ]ÛïŒ|=ÐÃh~^Šg¸ë#m¬l์é#Æk¦ª»§x¾ãv Þò=¡7QMG…ýd {T¥ 9]á¾…‰U!œã2ׯäý3pœó°8·ß¯»Ÿ Õ´¨ßx­ý:¾g~Šs~›~n·aIgÑØäw÷F&ó¾° |Ê+þ­6“J™›QÈVZl±ÿÃ1N¾–òKºÝ­±-½%§º;âWñ-€ õ+¢‡€kÍ@‰_ˆðÄd‡iýÇ»ÔIg‰øU°¥è`^2(ø•gÏÃ*Ž£›7:ÏvÙаx¸8Dõÿo"¹$£4¤ÞÙé'ÿæÆkS ‹œý4ðoõQW%$²W‚ËP%ÅÇš‰áò—à q,3ï9€ÌƒÜe‘ÅH¿ÂÏÕ;‡?M—±Evì«nˆ·Š!H~·ë=›ÖAVÁ¾°/‰çCÈ€³:FèööÍâë4<à$ÜÉ¿÷Ä~fjÿÈö¯ÿÉ Âç7·öqúšã+ÃHïææÝÀþçýì·ø0€á6QëHë` üÿ9ܾïQ"vÑfS±9ÜŽhnBïV$_L4ÏCæù`á<žÙ+¾@¶ÈŽ÷LJ×%²TvÞOŒØï¯Îç5‡ý Ð;š>ÞÜ‚æ°ãñ¼£ˆÝ ‘1óIùJÖ’­ û] Iìw¿Þmhæzù/÷×7!Ù=ðï‘¿R–\þ‘ÙOx¹ÄßÜ$Ù|=í+ç»È_îç:!|eßâ'cɇ_I³` ûwŽRR¾”aRUpž‰Ì­ˆ[¢Mó÷F.PûlÂóW"ã5òÄ;|ãŽf‚ËŸÖª¾ÛG"ó´_ñ¶ ɯ’AN¢™4ðáööñ1ÓZÃJZ§ ®øýGG.)-yȃÕ5§E1çÍ¡ìñ> ÌÛ .}·ÁbÜ]ŸÄ&_Ë&·ë:SRã)yÀí =‡ŽnâGÉí£¦Fúf¶¤h`½í²åÒZAxÿŽj.[çÂOÒð¨¬õõüKõâ!h¶OÓÁØwxs ëÏ«6k32úSþæ¦ÞÆ÷/à/—´"ö.:¶·zvÏÞ q* Ò4Øbþƒ£¸¤‡ ÉGÙbkk®×IÛ‡§„·…³õøõ5í æç_v»jç‰û¯© ?×ù›Cù#TÂo࣬!ٱپ‰… ä vêb=Cx'œ¤’V†Ji¸_É@Z˜M^ëk¡‘´*ÞœŠ|Õ^ku›f¥©ûh$‹kݱm€œ¹ÇßG?B¶»O6øÜf AD~qÐ!y`…¶vZ ¨ëþ™£œÂGßK;ªö—ZØ:àùÙí{¢¸½³º ùýÞÎÿƒ¨ ÖÙiÛOM'ÆÜdØßaÆ·ÈI­—mµ‘ÈŸ”Mwl«6A»~ÿïGI!5%£~Îí±MÈœ ®ûƒ-³ÁØtµµÁ«'Û]û€??"²oØʳ)ÐTëhÈ´¹9Ïhdyˆ®h'’Öç“ÿGI$õäž–Áúãënzm_˜[KP¾+Ò°íWk8mÏáô‡ìß ÎÔÌ( Þ ‚E~móí¤°Uö“ŤÔFpÌ?ÊQH.ð€Á#0·WzÎZ5Û†LÛAƒQ<öQÇݱuöÖ.á]­“]³¹6œ(mm³}ÈØcCl^0(ˆë¼ÿ•£–d’üREÎÄN†­wD´›ir_¨bë±l¤@±À°=Eà8ÏßÇnY‚À=›„vzÙ ë(ÊÏã5¤£Þß;PÌ–ó’ ¦?&P7Ô‰@¹@ô@œ@ž@À +Hˆø`ŸañUöÒžYÚÀy ¨hèÂ×#6üÜHÍGG[”ñ(,9¥"uA 9%ŸË1OUC½ l Ôµ Èß—|¸_¶km 8(ƒ$ Ä#âÛyù^¾!–BR§å¨!I$2_ÛK:]¯‰E-—]H}!ëa̽$¥VШ{SÎ×rÇ8É"e%dÌ8ÿïíá¹É‹}e‰LiÒ\ªË˜|Q²¨Ô‘ÚüÜLzÊ é$;Ä ö)ÿ-‘º¨@À÷µÁ>??????ÿ_Ž2p¹l’ÕïXKJÞwÿ?'ûg¦V(&ݤ¾d”ªò•t„õ”öÉþ`4eº4”ô0Ú¾ORÁRËh9 ɵ³6ÖCúT'ë÷šX?ÊV7ú.Ø'ý?tÄÃÞ)©¯Š›i_QwÈfxÐì£ïîWÓzZ7«d™í¦^Õ¶ÚWÊQ†ì™·ÿÈŠÂË?±(þ>wE¼Ûí‰Ëo…¬‚EÒ3ÒÅh$;®GôwcwÑBKûë׳f6Ü’˜ÛïÚM»H«Øïö?;òH=i!5%¾,v»;‚{4&r~j¡Ì­‹Jâ{†…áëZýÕ÷5ª‰ísÚ·ö˜˜Íäæ½Cµ-92k°ú/ ðíÆd¹¢>ê?êCÝ­;ï_“šÛÓú\]gü½h ˜,6ÞÆŽjrk`u-¥Æö9-´e±ŸÌøk[ýmþQŽ4äø¼RB"j+†ŸÇ¿Ïë*½¢/±yh0µ©eùVjVb"Ý@©,’­Ç3>CîÏÑÆ.͇d-âàYõ˰×çŸ;rísáócõyȾ^·è9øÍ6½¡ô¾FÄ¢qì>°C£˜ë XÌ Z";¥'ô¦ K–²oð„ìd‡Èî.Š^‡;þP0“Ä•Âò¥\“Þº]_ø,'ô$ÿ\o¿Éú Äû aíþðPoá IÉ new|¡ ¾pRCaÿÏ쑟‰òœ ‹>6j]©òÀÁ„X)¥l’>zŠ3…7ñûvêT«£ÐIRûÝïçÿÄ>±ÍšÑ÷ôJ7ˆšEäoÑëÝ£â3täöÏä&_³Zš¨ I]¯ÿÏ£,?%ŒgžÆ×Rƒq°âbßniÄBT‹i«ÕI÷ÍT&>5·²ñ*ïÙe_Ù%°â ùð|ñ XyC Ú4›„wÌ“ê°Éàõ;ûÏŽìTx™áí]t09¬ ¶Œnï‰x×Éx­ÓÙºønwU“‘cƒx®¿ih¿¾ùñàî_Ó•¼þ©ï™õ\_i.ð°½µ¾6‰L˜WЇP(ëQ¯Œ„ÖÏ@·˜Ø4-8ïÖ9¹ËuŽ®öý`ÜÚ®³ ÂâÜ­î‹Hôg°Û¼â Ï$¶çàæ8^å,ŸÖÊYCØ`MëcãÐAb (Ð*ØÂþ#7Lµ$Ñ?د=ÞŸ×ÄØú-²lÔéê&‚ÜÖKÄÀ"òÀVéû^]ó\à²nÐ ßc´qŒØ¦3ô2ù2!‘ß ÞÜ(oð©’:Mq“áòK6)O…B²ú,v]÷“ßÔ¯€ùé:è2€ÛºÀ”nÏ×CXÏ=~:EÔ_àïaÌeŒC:oˆgɬ–ï‹êX;›bÝm 9Œ¶ƒc…¬5€%xü"®kÕ{¼û>‹×áÓ;ðøeÚWÛiì¾Hûµ€ãu2»yX%¨ vù5anïøK°à†_÷¼U!$³j0Á„ÖÑS'·³ÔHwlºµ¦¶(l‘ÿÑTÊ$‘ÔÍ<º„ç>&¿÷çcí­Øº£vñ?Vê$¸UògAÁS°/íQð›ß5û¸†õwóÛ(tçv‹=Ð4ÖÕÆÛÏÔÇÐC[;c+4MZ ‘Æ›XNË~ÎÕÍð‰ö}Ð;äü)XrµßÕÑ L›ë½Á͘‰ý§Ã‚6ª¯üšÐÙøÿm7«xçN^3Ùw½‹—d§2îa+l>PÇ&[+›O¦ )Sñ>§ÒŸGÖûMóZÍ¡#à7ñô‹øùAmí;öö¸7˜Î³+°ýFÝþµ‘|È8Ÿßƒ>ŽáýJÀüþ‹nFöç†ô#¾¿(LfíK.覹BÌÕ±Ì`QB²ù¬_Ùk}"y)².GŠñ¾ÛÉ0¢£už? =LÀÞ—ÈÇA‹\rYB‘û—!óG]ƒµá%n݃Ë ý¾úäVìA”¶6Æ&ØTÇ"i3À:´±¸N÷nwÜ"­kFs¹"ó}£©|—_`À‡½dƒ‘ Àô³‡‡[~Yݬ¼Ú `N믩$I¥ÏIîöÏ¢¢ùŒý]£Øn°¯çÜBÛj'|}€ßÝÚ~;¤_B~_îà\ªÛGøz<{"7äWÍÏëݾñMx’ëþzšß¶€ ®î<Þ³ÏÏù­\Ò¬ÖØJÙ`b¯PPåO+Y啸Lï9ëß±þy¬ïÖü¯"ïw÷»™¶âÝ|_—aÚWº)×µ*ÉÍ2x¨©m¼î—žèl=ºÙé÷<ÀÖ®—ÌEJÎÜ 3¾Ç«kY xâ žOi™Éƒˆ€àÞø ’@#ÙKPkªÏm¿àíÃx¬×ïÈ„xîˆ?€HžƒÕ—¢›d·©š…ßë“ï"i}&}ùë:>e(zt¸ŒõžFY ›ŠE-™Ï>‚µ x˜ÜšØ-+±ƒ*T0¸&¸·‡(ÕGƒmݵþ>W›cíDöKòX_XмÀÍB˜÷ï‚ÌÅm!ñqW¾  Ȥʼnðáþ:ÑPá.Z{À;]ŸÇ<»&|–<ñ ¶˜ßo*F䬔¯‚(}2‰/¥6qõÜ|S8ßø@{?û§6ßÛaãÍh¡;þ=›rh¿uÍ*úzÇjë`¿Óq¯Ÿ 7—O8¥¯¼Ì³°ÿ4p6ü©¹Nð¥,ö/b],·m ê~€d¿¥Òˆ(]@ÿÎsÉïäÜëg¾ ZûO‰äó¾ËíØ\+äo¯axÍ6$Ù¤d,üþ"²¿$î7òŠ' å\Þq¤p^Ün)w54ŒÅùËúÝ‚%,’µ·ŸµAP× æ‘Ô= ¨óoª›btX]‡6ñ÷wáôG<";íó̶ œ<£µàË¥Éòsµ·,Ó*ä³+šÈž£½šÖœ‹Û5¢~ˆñTãX4¸_ÞQ™¿”¶ˆVÓÜs“l¢´šô¤”ôzÓ\Í¿=¦@‚·êúýoÂ÷Ûá÷ µØåÌEr˜Ëdñï€BGQüœ– †{ÛǼRA†ÁÂåÐÈn^¿Ž¨OhéÑ` x_"¿¦¥²¦|ßhg-s¯Ô ú«È6¼÷¥¿VUœØLhQýŸ÷Øn~þ#¹ ’oË·ú½¿ #A€1šÎ޹씦·L¾VBl{æ ŸIˆüWÞMÇçý¦y,¨W_©hݬ§=±(LÚ+hòw’2Ò¼ïçyë *ø·>oÝ@â™Úë÷óû½7ƒ’'í™–ÑBÚ—*¾¶’~ ÿ]ß8Œ½ ~á;æº.²Ç|öÛ‚/¹NPÏ5:IοtÿpS„Çèá îì(åd´´ ûÁç—û °›sžÇϧàçmÉtaDÓ‘p,`1±»V†Ýu´øv”îª4Õvòª+~è>j‡y~bªë™Ò®|É€Ï'Ar7µ¸Ÿ”(y¢?èÈ Ö€ã¥±ô’#Dì~]g ¹m<ÿ†’ëÛy.0ØÉ÷4o vçûòûh¸ÑþP[“jÓ ö@Ü#u¥›Ü"GOCê™~ªÙb¬ÛŽ\¿ÖsH8Ï«Nõ7_„/Œô•áft6hþU&¿mOƒ® ì/|Z/>¡3 Ÿxƒ÷o —®æób’ý™댹‡ÿçKbdFPù.™+òÎt¡z7ï®?y‚Õ¾Åno‘hñ80„Wuº#»ë1Ýw ^ЧŒÃò®ÐDü~´¿OÚŽ Þ`ÿg0~w}è4šp3àÚC/¨ãÛ1-Ôbye¥œÄzGýdŸáÈ4Ï ^â|]§æ×üu:1<ØÏ=m…Ü•`7}½ïopÐ_óÝê-FÓx]ô9–Oq]3O`ñØdÕ»øÿ¼cïéÅÿöŠŠËu€¨9ƒÚ9£lwMë&µ©ëõ°–Øî‡Eo`µÒvŸï¡ÌMÄÙúsþ}ˆëÞ¾WæÞåjœ™Hó¬ÛHTôò÷Ú¡›Ùd€“Ø{ÜÈõHvóB]w¼ýU¶ã=Ëxý þ¯Ÿƒ8ÿÆÝõš!+ÕÕän’ãm$ÚŒÝõk³ªÈÿ»­"#.ÞÕÀþþ>È8âa_&ê]'Ã3øùlì;Ïï…绉¹.ïF£ïyijôdÎôhøþrœ˜ k ÌuX;¢WƒÚ´+ÕgFðk-ñøxŒU—p^wˆþˆð9×}ú˜é{ÞŽõSºà ½ý„ïä"¾÷Ó$ŸAÄŒäo£a5±ï%~†O goüžðPö]ºù±É}©É‰ì¼fÖ`Ö¿?Ã>FËx"]á@nráô¿Þ¹þybÁå\ç–]øj^L>kw·…vÆs§àÇà´¡ÍM‚ B6ó\Ñõ «¥‰øûzôó˜ÏŽda©/j4l¾—XûMËÃ…B[x`A*ÀàÛ$³ ”ûxò^Îö.õòw÷waáÃøÅ,x)ÇjI}/©ô+|ßeÂx÷0žß­É첟†9ÙO„qì ŸÐxš…hÙî#Ä­ƒKOý´Ÿ×¾òà¸S2;§ŸÙP]DéENH©Eý¾ _vs>Ç‚ýîÎÕnΰ°Ÿþ±Ãÿ6¾_Ãk MOü¼'þ¿ùÝìSw­s;Ò;ÍŒƒóe…ÕeFˈª;þŽHlkóÝàçÅÆ6w‡ð…¦¦FžªËƒ>ÿ5#5€›ç<Tï‚í&!ËS,:_#››l \œªÄÿy$É`Ó‘s¥ï‰Á÷¼}ä{Æ®ò3„ jh4•‹øqú¹’ºº§„ùº®aI,ÚÞרÔ§5Ùï_ŽòØ™ŸßÓ™úÙ/áˆèêVtư‹¾«ó:|;!µ~(<àsªâU~Êû6øÌw`Ä9Þïf/ÕJš\ÃÂj?'OîñÝ/ª»¯TŽW}aõ‘¼&‘Ñ 'Pÿ DcÉ"nrõ.¼ÒÝÕ»íïë— «m%ú¯úLà®ç-Яýü×ß½0'^!£»âãzáÜîžØø@²ÃNüåìÕ¯þ¬ŽMÝÞ˜ðšÂõ5ÆŸvÂóN£Ã'|v€Š7ƒ}aÅì+rÁR­ Ù‰§ˆ:;¬ ß(É%+žàŒç’¦v ~Éâ™ë„~”¸ØàïýÌÇïãƒY<ûéf›©â³ }C›æ¯Ö÷ój9>i1¯?Š>ßEßîþÊMkùÔÔü†Ä×Î’/ØâËqÉ#×%2¨Þ ÖòÒs¿cž ‡7÷u—ßutß" ¦m ÃíJdL´%V O`Cl¾å‚áLä3ò“Îã3‰¥û°ŸO,ü/“…±äü"D~r|!¼mÔ²Ú,èw?Ý‘DúËb`gý¯½L¼È¹G2·¶ñq¼þz…¿þÊ·GÊ¥þ®×W¶{„:©…u¶×çwŸÆï‡ÿ]Gª•Xþ(?»{`Gó^RÜêÙD‹7—„ß8m½ðó¯[h7¢§ùí:ù!³¹½#‘‰¨,¾#ZXûÄͽÔwúuˆè´DbˆµÛ°d8/*çxÊGmCltxd8 —w•ï9<ã<çþA "Å(44 –T…ȾÎsÇ©Á£žðþÅ^~×#´hÕO‰ƒõSò/;~ðL³ÈÜ` Ïñ8Búƒÿ‰m.î1¾æçvô]þ.ú;A[ÈmÈ‚wyÆada2Ù>ý™<Ù@VWs}ÕvRîãq‰ .ÄG`ó°Å•_<´ßOMÌ&g‚-<Ç}ðS)NårŠšÅí_yÛ™„$gõÚp€ÇëTø½›iâîò|B&{È«»Qõu'&~""RcÑÍüõ%ïvkFá1i¬™M·¼æ&+Çç=¹á}-œ!¯]Ò*!¢v(í*i´^ÚÆûÎO¬Ió }„† ðëÿÇ ýbâú,ÒÇ´Êpž­øCm õtzpû"z`ëøþò©[ |—j'ôw<éGýÚšã7µ`A‘­œýDþK䫳¤µ\—Þcï÷Èw{¯ÀÖ® òmj– T<AþeDz4«`U‘¾!,¦±¿RhA^<"üËIb³á‹‡@@wýÐu„;©Éy‘ðù7šëw47 + mÑ{°¥I¨‡¥š Äê»9ç“ xt¼ô’ßã'7缟n÷òµöÖÈêà'mˆõ{#/¸Ã­C}4SÄßëØaý$x­Y-ºEÁ'Ž«ë”›Š(Èln•ÑWþþot(éB€üÉô¾“ƒÒ’ ŸÉ\­Z™s¾  цÀÓ/Í“`ôñêzäº _E­LÌ×@ú¶Tzøiµ_ ­dí¬´]æµ'a;nÎW sS"!w*¾—òþ‘œÿ¥‚—ù)È/òVrK[qû¶jr~¥á*ïÑÅPà×ø/×Y~²í`ªã¢~Ÿû$¤ïŠÅí h}ø ›…= þ»[Gƒ×µ3 (‰•'ÎOñ=1z(æïy¥Çïkðü9MiUea°ÿëñÿ¿#Íñ[wß;=YꜟñÚ‹m?¹øCðñùÈ’‡:ÇÝ i…>º¡¡šž8˜^¶çù–°æ¡HÚï‰é'%µP~MËGì´³ÆV×÷ŒoEe°ÿëq@ÚÈvùèw}œó!«ëä>;Ž ›»»?Á}ûøëdðùïÁ¼µÔ‰-‹æ‚×¼ Fz ¯ñø‚Ûáî¨Ý‚=»þ÷O‰#7Od3ùäœ_-_Ժ΢ÁûßÞ2K.JCû”óÝ„-×r¶‡|'gw=pºƒLí{ ‰>X,»¨†%gê²|t;IœŒö÷½úúJb;Ñr‰ŠAa?®söbã5¿½D÷µ(P6ØbÿûQEFKY™J®Žn®Î‰`¨^®øUŽËÈ}ËüÕ±‰H×Í϶„mŸÂÏh:[Ésˆ×!z=Úrzù‰a«þ{om嵤íVÕÂ=ÁÝÝÝIpKp·‚—àK°à.ÁÝÝÝÝÝÝ pŸ9súÞÓýwësÇÚùGæ{³—²ÊÞzëû¾YåÏ’î‡nñ;…¢€…­øÑÜÂfêö`‹ýW«Ô“!ÚŠ,u nçŽçÄ»Ìø£œ[t!òOöǽ»únБ<’}D=€!‡Û»#=בy°Ÿ±ˆw-Á#Vð{= ÒåýÚ6” ¨#¨·ò<ØBÿÕª&ŸKM™¡Mí"ìþ-v½‹ÅNóýç"Áý™xžì¯}Àcg4/œ.7ZŠ š}ŽT×ð†èT‡©˜f‚™óxÇ:°Ä!ÊUü( Ye¢-²;6ÏFÚQ/iåu°…þO+d•U †ò›V~Á£W Érüvݨs4zXë¯ HLN‹ýkù«¦ÞR纹N§ýÓ©‹Ü°—ð7óâò·„]mûm¥E ŒÓÑ!®/b~I,¹eŽÎÂó‹ð¯âÃ.ï¹ã¸ °æl?¹æø¾ök‘ïWÍG†bßÃjÚúš`#·ÅDˆ»êßí Ë[NžT!ã¥ÅWÚ“&J³`‹û¬¢’\²Ë>)Çwüfo‰üŸxý!ºTY).‹äža•Áí{ú­¹éoAûÔðãLøù3‹ÔSð€ê°¥…DG}jâr6«»küžk2ª·ç;£ßéTƆÙV>¯\ T ¡Ö ¶ˆw“ÅT?ÀjóáÁ5¨xkÂuRQ˵°ðùwx@YdêbÝB¢‚=ŶÕ@÷pö†Ü‘ÑšÀsWØ4Þ]ÊOPhcç,aà¤6 áÓþc¹NÆ·µš °ù0¶r0ÝìÞ«‘;—Eý¶³õvÜNXäÀ9äîBÆhMn ø ½U°NÖÆ÷œH‰ç™O){DñGY饥TÒ\|÷v6Ú¾²O}¿#Ü#eQŸñ«ãõ»í¡}èGÅ\Å^’CzA†D¼¦œ ´,½¼¯§M…ñ– ¶PÿĪ+y¤ŠÉ®Ù=«‡Ï€µ_Gú¼D@s8_-ËéýÍ^ã°ô Ð/=±Ò‰»{oX`5…m‹×Œ!ªßÁß_ͤ°4/ÉwÇì±ýÞÅ ä \ÂÿÛZ[fcñ‹öÞ¢"šæØôR $œgçytƒí V"6æóx 9G;þñÕTæÉ.,µí|Hà1\æ‘Ý´øÄq xnÕeioŸ’.Û."þŽÝµV_xÕ E܌ךJ›[”qÕ”Îh¡§LlÔñû-t Vàë@ý@µ@Æ@¤@í@ÚÀk§[¬N 4÷Êcõç–Œg—ÚZ]/•à”‰Bì¼§t}.Õ¥ž f «²øw Ø#=O”ŒÓÌpþÂÖR›ƒþ{´².’Úò‰Ô¶Áþòÿ¦ÕJæR‘ëSwË)‰¤«d¿Œ¦fÊÀ-:êŒÆÊC™ŠF’KØÔßäßµÆsûon(ý¥ƒ|#m¤ªÔ ö—úsý¹þ\®?ןëÿç•6WBŠú«ÖÒInIÍ_Y$,¯,±¯Œƒ%u’ù0€VÁþªÿæ•É‹Hò}¤îŠ¼Ù‘;T”;ò«”ÐZD»i3®u4‘n—‰pƒà_ÛúïZ)$‰T–…’]7ê$m¡áU¤úpWµ…¶K~"î< e…-”ÒÏôl“ú’×OŠøc¯ÌË“TÚY?µhÖØH½.›$…®¡2Œå{¾7§&.fµŸµDÓµº6ÖPš®RzÜýk+>ž_âIku»6ŠÙ¯ú\sØ-­©›å¥tÖéVÐjZEª¾"6ܺY^«bÝ-¯pSiE*§‚Áâ_^ðà DûšÇ’Xi+nç4¥ý¦m]—(Í(É­Œ¥µÆÚ7–ÞzYyËiK¬qÄ²ðŽŸ´+ÕPó·ÊJ#ªº¦Ò_kbÏLö¹EµÝúPïh+iKô†Ô²èævŽô}°^i^+€jól¢¢¼}mql¨ŽÁŠ[˜zÅ#³%—]wmKJsg½ÜÕñ4qð^7éÆ¿ñÌíqÛŒ›§°r#JY%ë`í,¿]pW‡Imräg¥%îSH99 å|O‹¡Èævú†³}Dõm}­Ôé¿®q,¹ï~ÅÏ…ŽËßî É#¼¥hÇÚ€÷µƒ ¡=Ÿÿûå¸M^i&Éu„>Ñ‘:yßç Ûy½¨çõWýE‹Xd[¤Å->,˜ÔêQ?ÁM~ì¹íz¨n‚ï$ÓÊR-Øbýƒ+…$“ä0¸›2Pw é l>ÉÜÕ¿è.Me©‘é©F¶×°(HÕ YUïƒîÇ_žƒ1,ƒµ°ÆVÙ~´/-`‹u-;Ø¢ý«¤¤”Tð½»²V×!ù1ü>²­Ð~GÏl Že´Wºo .fà^ŸÒ˜ã§ˆ—Oà‘°¿ÃC÷xXËŠ/L’œ!ÓIz¬”ܰ„dû06Î÷@×®;Ð|}ÎG êÝuðqí(ø—ÌÒÙgØû½F±Ì¾ïç& àç^<òWŒ6&;²íú9ù$ä\õ÷ß­œh ‘ŸŒ–ë½Ñ㺟_º­ä÷]pà•ïææú{F„éå´ˆàß°ðž ˆ_ÐbÚ|ÀÍ?ÈǧT±F6ÝfÚ|D´ Y%ä"a¸^q4°T;ZJr—›kðËo"®¯i'Åç%¬\G«jßïl¹ 4þˆÜÆSÆ:ÚG¶JgêozËÇÿ³ ¡Äü)`v — ±gÂrû v;¥›}KKÀí©º+[Öƒìcµ?2eBþPV]Ok s;÷ÃÒ[|pñ&7w]P[l¾Ig-/xÎí÷psP¾µa6Ç®X<;D•Yj[Ôÿfe¦ZûV.IAKí1ý"ÞžŒïþ)÷QáŽÓˆóÓ>:ìÿpŸøgáí 1’ÈܞφàÝ1äŸOœ¼ÖVß¾€ |ÿ7¶ƒv丌–ˆ¸Y0…A¾LÔó¹±Yx¿Så&rï'Ž/‘¦jW¢ßˆo#¿e2åï_t2~m<¢: X}Ì×xß0´wÆ#¾£>¬…üîlù »`iCI !ë*° Ô(Ye²tž@t5×¹h™®AÚú-ö߃üwÑÊ¥ßãëzÞ»[ˆ‰£D{s“Yh[G¦‡NÞi6r_Øðcûl‘õ¶Ool¨” Qצóg°r€[Óõ-qÍvâçGa~ãøw„vñœ¦kmÝŠäK°írâC=¥©]Lën¿×¯‰ÍAOéÁ­ºšW»ŽŠ§È ‰zº±eÔÈ}­«Å <ÒºüŸ!åQ*10)kI‡ÇÇÇÚ ¬»T§è,í®?ø)¸,Ø"®ó½ÃÃx>pÿ8‘|±Í%‡…±ýhišºÞÐñ¨*ÖÜã£á8œð3ÛÏ vï‹ÿXÙÜñêÜ |¿y`{ +Ñ}“ºn»~§=ø}Y¿ÇãW"Óx}êûÁŽê—xKd{盥}5:ŸñŠxå{®@gÐRkf}ÀÁ"°Â–¶”¬8HÛ‡6˜–¬ŸB ibþuì^8üF]…l©ê·“÷F ãfoý{Ø|>¾?…8p{£VëpI‡…¯Á .‘ðî’ð7è¸1žjà=:¨c­®}L >ÔÆr¿‹ ¶è~‰+È!"ù•Ÿs·w»WÖ"ç â¿ ?wô؇GÏ’Õoa×ëÈ<[;jvy(‰†A e^`§& r.iF»ŒÎf‚¡·aP™-,éŸóPcÃܕГƒØùõ¯Wn¥¤2œ¶·xŸä£~þ¾îÝ#‡MÄî×Èî»y>1 ¿½&•šâ:fgáý®wúB²„ë—Ãbù]dmù´+ßÜn™Ãhî²6°ù A+  ׂæ$5•Ãâ¦ØÅN»|Àž:O_¨t”NÀžO‘i°öC¿{ÉJl›ß†ëM¤O¤¸&µ8ÔÀ®ƒî´–ºH«k]|æ<¹sŸ² \jQ—´”:9DÏDÅ3HêI¾ß }I…7«·õó¾Új7˜Ìc¢x3ž=…<¸EÝÞÃÄúi$ƒ7lÓæZLÆâ÷‰`Â1aˆ?ðX,êÂSèmšÚŽFÖúXpû¦²3> ’ØwšD’YúÔ’”zošœ–ä½Ô|·sx¬ëOâúصýghv«§_Ô£ýþÿ·Äôbl|O^Û¿ð3BNÀÝîè·ÄÆ0^“ŒºÇÍŠœÉ+·ó®ƒ„ë’×wŒIhF–ít˜âº¬Ö"0¾çDé>¾ÿ°nÒ¶ÔÖà@:«aqÍíwÜEUs 9ÜL°oñùV6T+Á|j#eT*Âèhqrƒj¨ÌÀõXê{ÿG°(VÖªÚ-u»A#[f¤hiµfåÏ*åäš„÷œßÍ-»‚t÷q9ž; ìoФŽmGüLG䇠á·ÚJàGö«~n©®oîQ?ùgš˜K~®±òß7é ˜v”&Ǧ‚ ·@ÔDV¼ öu‘)¤º”$s%N'c™ëXÊñ·sØz Ñ_-Ä· ÄöBâ¿•ç@ƒñÿJÚNbXk+eãà5W5žs 8‡ŽFƒwQ©{ÓpÏU¤~L@…ÐÄJPQGôµuXVÓ ²àdDÿ8†?ŽD^×ùÐus{HLŸÖCرŸ6ÂêÑñÛôجh4þ<‰¯¤3dˆ´mšZ£’)¦ËK|ÇíszÖ¹cÀu© ½íH~}d%æ?ⱨH=!d°Aí•í_‘óxèxöY"u¿÷!ÉN8à40 )þRdts`Îâý{üŒ˜ý’ÞFi.ÝŠOHt6 v¸ÏÿB–%Ç!î§Q|ð½Å˜ÛIäúeF#¹}ô @ì ö«- e+üü>¾›€ enʯ›Üíºýo…ô÷½£XEð<’<Ç?^]ôºÌ“KòŒºq’¼Ä‡ÆëGÐÂu MMXž:h=>4E°ÄpßVŒˆ¯b¥±{ê 2¶ÚæÚz©Dù“J)¶¹ãØéÈën¦ë]rômê¹ûÄÁl,ÞÉ¢Q·¾&+f&Ò–X»gðÂà­v²Dø¬vÈ÷÷¯ßoágÝá6ÛOp]¾¾!zã®&ê §wS.j¤$¦¾£æ½ç§mÂwVøIÙ]© ‡ ;F¬|JýG»ö‘!³YenŸ›ëš[,¨3Ñ[È2L?„í\§ßMÈ×Ûwó¿¤eáôáññ¥ÄÅßÙ{:šhï»Þ¬õç8/óxTjüSàÅ6Þ³Ö÷@ŽÆ¦û9ZÓ±vâÇõFM·÷5d,j-wÝdOÛm³uBP¥w+°2È| œ÷]°—ƒ‡×‘ðÑ}“¬¸IfSÙ&ш[Ûøy?SxÕ|^É’Ù^l¾¿ÞÊíg-Îë²ü…#U×/"4uŸšë~›É\]˜Ãûó­—v¶ø’Q*ÊdÌæ‚ïöéf6º9°óðÛç0·¾£ÏB?ŸÆÇÒbY7ùw&¶>€ÿÇ·l%²&Û-@k_hhM¨ü| Uà¢ë{zSËØbüå%¾õÖwØŽGÍYÈâjðÏ$’â²ÂÏ(x‹Ô»NÕŽú™@§ð‚àÂl2Z§Éô½d‡ßïíßÂ~P7å:œý‚>"}k*¢øš›Ç]¨ø¾«¦#ò n"ŽYwÐÿ:ðXoû~_Y¥ ðŽŸN=¯ÞÅw.7o‚í.ú®øËüô#7Á¨Ž¦ÖTƒ]@ÁuÈ_ÞOwy§®¯Õmøþw<]3kM[}ïäß`91,-ÙU©ûÛ²ÀÏzrïVP}ý¾šI*©®_RᮃßM&ÒXËjðì;øÀQjøþذãGÙñ7Û£§F²€¹.†Ùí-üî;$<€~rhM þ_OÃtN¢¿èäÖGüÎb9¬¬}E–½ ˜e¥l–|lñeª$‘p:\Öâ£}ñƒv¿}‚U_c·PvÎ÷ßËmˆÖAcjI-Ú¹ys,¿-ѰV‘hnj[ôk¢¿¯Yà{]ÞõóΞú©¯ð„„TÉ-=ÚlnDNëöˆß£þŒ­säò­&3üT›0ÕPd+wÍï <ã9`'=AëÂ\ÀDÈžŸXn«îZ‘ÚݖõÍÈ“³}ï¬ý|Êuß-±Ÿz»m4 ^ûɪÏÉ5‘lF膓PcË>Eä/‘Îc»©X÷¸뇃·ì@3{‘h+Zhc›á¯ mµ­†M±³àE}b;¢Ý‡?,£FœÌ§l%ZN“Gi*ÃÖWÐF XHFM4"à_-%õe®Ÿó´ _¯ÍfòÝ#‚ê«Á¯û~þÁ.^1ïîä'bœ!ž[ÃÃÈ‘§õ;ü:9ìþ~³n°ÝWúûñEò¼öS¼ÞÕÁ/xÍ6˜eh´uIÛ„€Î…©¿ÒKkXJ(Û”ë°áC*>džnk ˜;7²Î÷³ïïkÛ'<÷í4´ ÖË¢Ú1íŠd9©hîøœá®úqõæóŽ7ZÖªYøžëx¯ kî Á{|⎎ óéF2ÀHY¬+áÙ}gì}}„µ›|çWÈ4OX§Ûå§þ}d.§±Ê Ÿ;®ÝØY3¼æR¹W/ò½ó6ú«ƒß"mïŠçÔõ"*úvl;ÁŸõN Ê:â4«M%s% ;áÛMÅë#RµÝÂVGñêéÔó«Ð‰›pŽçkZ9{G•[ˆ\8T«iùì82ÞÀKÜ1µ‹d‰«èÀM|ØNÍ—O¨HÆ,Š¿¤¶6–ä þЍßÉ3ÉI'3—¯WQ£|lÈa v@wFÇU= <—uÓq"ý#MhëiBÎ_¡|‡óc è=^½—ß±`nêï ¸Ä.˜t¼¤&y¿4?am¿f’‹ÁžY§ÂCÞª«ËŽy´ ïè¯Üä'ìDî¸è¸\4x{Ck޶2i&_ W$.ÊjbûkOL|‚¬³xïUrDjä|®yàzü‘{¼?¡×Jxªßâò4ØÂ³ëLùB"Úc$ˆlnf‘Ú@ðPí|™OÑÃ`½û´"V÷ç®Gû‘í»“š€Ÿã½¬›u´!v ¤<ÉíþŸTHNåë0€?=B/- Œ¹§¶ óRé`8àr­n‡ˆÞç|ÏþÈû)ìg?,vÑí:àÿë9¬Mà<•a~“´’üÅ´VÖÚHËà'åáÄ•AÂ>Äÿ]ò|vxÁ+¿Kì¶MµìêÅÒd¯¬„®–!@~‘•d€¨Xú;kLh„ßãtÂw¼þžŒ0ÇOuL5Tƒï]ÍÆkm?󢫶ÒJøEm‹&†ÁŽVÁ…¾†å!þCÁö]Ï· ,œ·žÿ.pŽOÉa쾬 ¶àYW¨oIZ,õDÝžæÓ`ÀF$ïéÏŽ€õ΢æ…„Å­ ýì'>4à™:ùSðx'*(7'üKü¥4¬q™2 qž 4x o©ðù7þˆù-Æ3ÙìÇý_ ¥•äô“ßrߟ›Ëvnâß $íÁÏ4t0Ê÷¿wW· Â׿Ò6 âj}‰'ÄÁ¦GÉx :ëPÞ·ŠŸ=~ÿÇ9òÇz$v=³Wñ™.¿œ§Òª2N–SÁü/ëk-/¨€“£wòÝÏúÊý÷é§îÌí ¤Cþïˆ|ÑBWfp¹0—@®ôðÙõ~>‚»Vdž³„çÝœ¬=ü>„ôÛЃ;ƶÀŸQLl…‰®Áûÿ]éeL¤ 9Éu°¾Cäº=}¡ì%8°Éwèbäž‚Ÿ·"&†R!=õs÷ÇGãZ4ËÅ+JP3L×fÜsÙâ<1Šaùb/úpÓÑÝ$´Ãè4 ø×äw×¾²Ÿlœl ¶ÐµJ€ʃ\Ÿ‚Qu­\8ŸRçö-Á®s±þ2á0ý‰xÞKNiÅÀÂväº5Úœ/D°‹È<ÕwMßMtäöÝôñç{¿ÅêÅÌ}ñý7°ËZr0ØBÿ§U諵à/%ÉZOý$˜ð¾~'×8$ŸBp³0ÜÄ ÄHVìŸÑâ‚dîZÎFÈZœˆqóræånÆoqâ##•ï Mc#øÜÖ>pÞ²[OÉ#;‚-òZ%­T“ªä?·»ÙÙ7,Þ¿ÓÅ^†¬†MÖŸAðÃàÚsôs[?&Nâ’ËSRÕÔ%2bíKþ|ÑêÄê®òþ’¨J…ßÏ!·œµ…ö‹Í²%RE*[àÿ²bHj‰+õd)Þü+<·*ö M²ˆ¤Ñì Ï‰gˆè¨ð¸löÏ.cu²G´‡ä¼ ø‡«‚Rÿµž6”z¡¤³.T̹Àý”š/ÄIïV*I*å`èÐ_ÏIáÂû°¥ÛÉ’ÎbÀ7ë{@úhp7½6’õƒ6C[™ñu×ýû.–?èÏŒîé×°¶Ä:››}ÜéK¢Ç^ÄZH\餒T—Ëâæ´_ ÂO#ËþME5œ¬F¦-xÿý›×3wÕËWüõ­9Vü½µÆÿŸ€™›`ÍñwÆg„ݳ=ÖÉkùl‘›%Bö=ýŸ«”´–¹2 ÜúØî"ï6?³½ÞžÛ6‚û›ýu+g¨ sá×Ýáô÷tŽ-£šïý+Qû<ñ3/Y-ÞÊîÀwŸko»h±¬…Dï ¹kœô”Ñx|dd9Ež €l Èònzû6ba/ŒÖÍLkåðçå z¤Àr›Ì߸׀êÎÕÍM¨ƒ[“Ecû™ïµ’mµË6Áfâ%¯¤°…ü«‹|&o‰€0¾b¢I¥=þÉ–#õk¬{ü»Int]@šÛ ‹g«%*ÁÒ€ /´mà]aùùÈ~nx1ëeiÝl‘ój¿lU•pÜ—ÈžŸDÅŸËnÀâ2ùI/Ïü~Æ;úš.9÷+ó;/vþÚúâßî˜yX~ ·'^ñÈ êcjÚáÒ)#Ù>¸ßÞ#Y;ãí Ò÷€8áç:ç·•vÀæiÛm×ávmílïÂû®ðH'¢¨Z›a¡±¤n°Åú‡W*ÿ;x@Gò^ ¤ÎGþ.7 ´„p™ü ]N¢b¸²O]õ'û%pÜÖ“#"òʰ’6ÉÆÛv»Ë+[‘ÏÚ :õæ¿_[¤3UÜI]€OO"6Ã]ÎqkÁm#Z)DF[BnÿÎ^[‹¨臜á}¦O3ªk?âÿkl~`X`,h˜~l‘þÉ5IîË2I šå@žž6)wØ ´1ûŸÙT{i/ì’í·#V?°„ˆÏa]m)?Sl/~R ̈*T(×?­cÐ÷9þ+«”4—!òAvè#Mèpó/ÖÙÐý‚e ¤ä äD ä ä 5)5°4¸‡N®Ûcn±ÑOˆœ:L„ˆ}¾ÿÊ*È7/)ÛeŽ$Ö­ØúgKèÈèhHØG\ ´ öþÁUxüA­À;òáq=MMK*q‡Ï¿gå‘hÒXÞK)=l°{…@‰@¤Ÿ»Ý¡ãd¼œ•¡zH¿‡7 Z¯)ÉóõÄM• ÉÓžþ™UNúÊ|ɪ³ô7j×®¯þ"±µµ“’‰ÊÁí¥™$‡d„T–x’#DÖxÿ»Õ]¦J{¤ì#³e´ ’fHš9ëñ\C~—ÂÚeƒý%ÿ\®?ןëÏõçú7¯<®?žñÛÒIqÉǽòäÿÒRFúË`©Ã¿`Œiþ^ÿ™•HR"}é‚”™ÈÿÕÄßÊ)¹-÷$§fVÕ'2 ~PA²H^4ôËJ"ŸP ¬”ʺLWig)»¥§L‘/$¡>¦6:¡ßèUKfbë´¶Þ—’ÝwwJì¯þ¿^9±eJ‰-ßÉ` ˜Ùmm—õ™ì—$šBZ Ëkií[Kg)í{ûÉê[q‹e×5½æ÷½„ó[€ÿÕªŠ É‰øò‹Æ°»Ø:³%¶¯-µåÕòFÚÛ§–ÀÊÙtkcÝøÂOQ«L%ü³-ÕÄB™Ûíõï¯L°ú/Á¹e²B?²Rö^/+’[k«e©4¯ÜÕŠHïvEE­·,–ÐØÛm íž^ëúk¼ÄL•ó@fkd‹âû5,¦î‹F”'´+:W¢[i{À#÷ôf±¨æ®k~©74®õ·ÕÖÝÚ[YË®_I-tøG[iðûŒ2œ w–þ¬‰‘Îõ8^¢›ýŒ—4‚ Uw^,†E3×û¨¾À;Ü.øÃúDk[V<¡¡å²Ÿ5¡Ö0È#1%¡Ô–ߤÒlÃûÃ[s×ïÐ3þ:NÅÖÂ-*~2¼ÖØv@ÏéE^íúÞ†#ÚÚW°µZQ+Ëéøg),¹¤¦œ «FÚ=¾ ~t0>,1í®á …Ì!¯ën]ݲ¡Ä~è>ݳ½Åêßú]®ã{8l‰¸7«ˆç‡ ß&ÿÖ½¾rt´ØÎÁƒêXW[fGù)¬Åñ±`öüøŸV~r^Gª¼ðvZ£ɯ5>ëºÂ„õ ƒáÄDÞ º›ûñ‘6<rŽL—ÞÜõBŸZô޼° ë_À_>%r’úRU!;Ú {ÌOK-&u$U°Åý/+“¤õsž_J:¼XíH~®ñýLVPû¸ù®Cð3͸ïQ!‰Å6×=0¯Åµ;©Ý¾ïõÄÎeÐ"5yÑí©GM²½vÓ">ÖæpË¥œ|£¶RYÂaû“ Ú n3˜ïz¬×ïu6Q¾·½(ùð,Þíú8¬E77?žò›Çäß`Ãz~žœÏý4¤Ôæze.²áT±ë­¸” {?ÿ¿•Z’ÁúJ=]ªuñë¤äø§¾›Õl=ỬÕN#û!ßÅî¹¾Cyd“º½-¡,‡ß9“ ,ƒîvùþ÷xÅqôw] Ùms¨œ·Ø§ °ù~§d®¤Ç¯i<ªà¤TCñ!6>x n@x¯›‚ñ¥’QQ4´aö¶ jïãÿXYá½Çå51íöîºéenÊÍ!üv4òÿ ½t‘ä;O‡µyxºÚf²ã|<#¾”× ò <à:\(‹§Nnn¬¤-ÔQHïzãíßiâ#ÌÉ)Oj]¨[xx;³ÑÞ2ƒhÝ€œ ýÜškäÿ¹ AOßñàñ_çèpu=ùþ´¨®’»rFzƒýø„ƒü\+âZoÛo¹m:ýÁwXÃï7þ(¢XFeb`µ¦ÔT=Èòçù‹JdMBE¥®9H®ï¯“ÁóYê42D¿Ã~5ì)VËn7A€Y`âC|z‚š&ÇKúòš÷ÚŽøÜèú'”°ÜÊ‚¦®ožëùz =E/¹¬º©Ž—Ô¤"ŠkMƒ>7¿Ÿÿ²K¢Ÿ.û»ý;ó‘|ªï»A[ùé7ʼnܳÄÄÏí ¸HΛ e‰—^pûãDÎ#ß;bÚ;¡5©÷'é7|Ç”¾–›‡QŽ×~eݨ‰ròSǪ™i° §¥æm#{e;µÊ^ìt I~ÅßÏû>;ôkíM–+NÞ*o»Nw.î]7«mäÅ©V2ðˆJi¡º¹W©fã!™Á·íÖ

    _ý½_lCÞ.ú¹¾9AÑì0ï?MÌQ×Ù¸8ø˜Ì1—È ¯Œè;Þ¶ þéÉÿP‘ÿçc< šu j¨Ä~J¼ý7°ù8 £SÅ»™ïñäÅä¯.Ø0’¥€×Ö±Û0#×Õ÷ºY«Çd…ì“©bú…þ¨ÑÊQ¢çŠþ¢®¿o$ª€yd€Øßõ>Ìmù­%Ñÿ…• àÑÅSéDùS‚¿ÍÉÚñùËþìÅ x}8Kà'z¹‰®öBd(ìg€,%öç“ÍÇkg _È—`G=MÝ8Lû)[} ØpüÒvLwr[ö…áóÝüç[éˆá @;ëΫÙ:iDùË@¹NuöAÓÉïˆú7êú`\€ãÞàg Ïu~8©ÉÉ]j3uŠºþ`Ï`>Måú+ÿ ïå¶Ôבd€æ C(ìZÏq»]ÿÏ´–‹çGö8ÏÏ;ìD,h –v ¢ü%d²ÄòØü‘¹y¾o@7Í4‘}bfKöHÌïö3°fSå= öÃÃÚÈJY"½ÉßHyž¹‹´nZ¬;û[_"S,WW¸8)ŸéÎ>µ¾Œ›½:¨;bZÂþ{ñ½Ý܇”`Þ[báUëÌ|Y‡ïõ-ˆo¯ó½1ܾÆA~Âdm |¬Ãe˜Ìõ²ÜGKËxÅknŽ=.ä¶mÍó“¯ÖàU—àXi-¯Õ²úhýcþ׋xPðVjß㲃ZÎËÌD† PÕì ‹ÍÃòUñýÎÄ{m-Œ¸®St:õàPôs”ˆ©©Ë‰žï`>ì(üÿLo®?fæbd,¹r/Ztõïp´5 ™ƒgð*·Ã̈„·ÐA”ÿs‰'3¤ûß}‡Ö“Ï'Éõa7=}÷ïMüÝ@ú½ÿ£ˆîqèf40{Mýî:ã%]Õwûº²nÚÕOèo¶ï€õˆˆYäß=Ûw ]À£Wõsrdalé4˜ýÿKò÷àÙ¾õ6/á÷ðù>°ú à luh¢µ@ïñ‚ü$‡¥ü¸ëž®Èy™¥E`7»Ñß#ÝBŒŒÇò®cÈp¸À]²©;Fö«Ÿ6v<íMÆc^“#3Ã5þ ÿ)ƒ7~Dµ6_îJ´ÄÆ“ùžÏ}¸×xÃPê€~ÞûcÃ] Ûi":9n)Œ¹~|Ÿ×Ãήà2¼`$šêá;=ç´m¼ÇMŸV— åżê6<á<Ó<¨g…Ë#ÿ-äl'°üJ¸žëóã&½¬BÂÅÔu÷‘a<ÒtÀFQ ¯Gû)°O‰îÐdr·#2Œíæó y÷(ß v$šp¥B“óÏW}w¡YÈþ=Ï®BGn¯ðº ^TFRËøïej»a:ùÇ ƒëtp™w²_‚Ï ~zpë„oôÅ‹7¢·¿;Ã^µ…ÛL¼ãGß%¢­Ÿ‰pÒ÷Æ CÖb®#ªë3gÇà+ûÑnT+¨Õ‚(n‰ {© ¹yµ[j£ïô8ƒûBFŒh/ÑÌl,¹ 'ruô“ñfñîh »æÁu„\í¸jÉÅý"ôÊNâ'aÍMƒŠFtAúù°f7o`—ï/™ŸŠ(UP'àå‘2‘8Ö­Cö3Ää/|»©þ¾ë}üwsP6ã³cˆéÞÚ¿˜…$ÐÑY¤8N¼»î +±¼›:éÇ‘Âz¶êoþz±06Xã™ë-wˆ¸‰Jm‘ÙBq‹kc‚z6¸õÿ Ø«˜›\¨Ô7‘Á´#xòKÍ +x º­%£/E-m8²ÿˆFòè4³ vœïo (9ŽWM" z×C'ô-Ùñ”V²{Ã"øéé§4“¥M»ù!?ê’5ˆòWÿ¶KB-gC5³>“QäëÇ ü\"FòW|.±æ€mô[¬?ØÏCvÝ"÷.^wÝÏvšÏŒ%GôCßi3d¶>âû£zˆ‰¯¿¢ÊNïÉeîRYø•h¼ J/ÔžÙe„WÕZï̈4{ÐÃ/d¾wdmø³›Ð@nðÞþèàBl¼û¿$SÎçï ý–‚ßÀù˜ëýÄàǰ€†Ö ¸¨¸LÖ8¯µm¼›CÜUB&É&驨óXw¾ùo û~*œHÙ÷3Yå-§fÇf‚lãó€—íš¿Ä1ü‰hn 11Ë©•ynñ± žx—š*ƒe±2ö•ï˜}ËÏ‹ ìÒ‚’,Èò甯Èÿ½õÈçf€ã[;?]Á·>Š|׸¿ÝO®¢aµ6u“æóè,üÚõ=ý@„lE?®÷¿ë“Õ[S);Á—#_ƒ ñ­•óǃ[Rýd‚-¿æk©)ƒ~@ni*#´4f#ø9¶†·°®ëÞ|8uýŸg»GÓik.–Þ@¬o GôÇ—/¢“+þX¹›󵦿¶˯„¸ùïÀÔ2¶üû„Ú:3¾ΰ›È«Á?œKjI)ê»"ÈxKöÒ¯1%u /#Á&l;Ý_ÿSN“jFp&Ò­×'žïŸå]‘ì þ¾ÖßÙ?H¼~ò_õ^Ñ~ÓTæ® JMÅû¹oÀŠf¢­Lìÿ}Õ“L²[FómRcÝØ¦Ͼ47Ñá±{Ñ÷ûróà7PåÁ~„ÿ-'.šÂkj››~4—ªÙÕŽíµ Y$¸C]¦;Ã'Ü@þèä»ðh! ñŸÖ’cÿªd–ÖWƒYûÿ¾ZÂË’ù–ÂköQý”&W¹+·\çÿôvÇ×®‡ý ¿mxBs<¥6Ò©ú[¤i¯ŸXi›Z\'ƒ4ÐÏ´’?pVÏù³åÆkk+ NDµ|T|…-«•€i ´Ï5ø¦Ákuâ1œE¢Ny«1m=œæ:÷CóÍOøÉß[°îâüG²v;ÍFÈO6ÏáÎóh={Óm‚'´ÁwªhMbcp=äÝÕR ,·¥ï“ñy¿¢§|z$¸_qû •ƒ-¾Ü‘ðÿHT)®kûiìó8oxøuSá–¡ÇeV‚ëõ¨ÞÚÁbÚ%<¸»}ním§uÃÊ'ˆƒY È·¾Gâ0Ô]?™¬û]­#»Æ&ÿ¯!k„¶„èâ‰v êìãßW(Í-»ÄÍix¤÷ˆòÉä·ËÈÿ1|õ#¾ùe¤]íYÍÕÚ,<†®îÃk_X ›l½-‘9®°”׺3¦§ˆƒÞû¿ÂÓ_h"$O ò»ëãŸjB‹Ïßt²³öû}} -”àÙYÏv\ܺct®Ë]:b6:|e·¿Þç0èð%ºy‚/(x^ÌŸå,iᬙUG"7ÑÅɽŒ8XEnØ öG ÞÃ`í”TÀ)¨%7âI‘¹÷øº_‡úÎÁ–¿«¬’Ä}l:¬å´È ÙHd>^ÅçÍöú©ž?i}XÞ $;@†x¤_Ûlëè¯}íbí`6tÓQ¯÷õàòB~Ðþc¢ë•À5Ï–]_}ÇZ3élñ%®.•ÅøÀ&ƒôÉ`3ý4‘ï~¾+G‚é?óG¶¦ðØæÛUô¡‘¨ýýð¤RÖÊjòÎC0½Sø÷HP` <¬yø¹Éß×`•±à€©ÌM„Km}¬«Œ ¶ø¬C0Àˆ–Í®Qº\GÀ€×dµ Ù7ÄÄîm&êÇÛoñ†Ðv•W5ö]à?±DH °­8]½!o¬õ» nQùLJCçÂÿoó™n^2=j<àeF«,óƒ-<ë4”¯þ2Ãâ6nñ×öÇ·à¼;æ:þ/…ó~‡ß¿ÀÆ'ÉõÉþÁ>W §³òîx§uE²´vÐ_¹Ì_ñS¶;ôkÇñ£'h©$Œ©:¿çØB´õ©œ ¶ð¬¤ZVJ¬ßÜÔ’¹X{¿¿òÍMkvÓ Ö€z`½KñõOá±]m–ü̺iO¥ÜÏš<÷3Ùp¤}cIÈ„ÓÈ›÷4'Ñ¿w¤£ÞuG„öùY‘¸ÿ­ #ÿe“›Áž•M+ËHÉëÓoçN÷+ð{ÙãúÐÛt4è7vྶ&à^ë§-¸u†7Òî:B3Ù\ëd߃†×u<ïyLmîªù, ãCuǘv C7_"=xñP«Èë` Ï «½$±¬Ðâäû4æ²óe<=9+,ßÞM¬¯™ ÎÓFdûÒÔ° àî½áÁ•©w§h5êžž^ýá¹,¢¹ à%‘ŸÚÜL=ã³òwˆŠådÅÄì¨eäC°…÷k£Ä’~|û8DkQ*–-xo s»XÜ1ÿ~DÄRÐïg´P ¿¯aϱwOС1™Þí ¨¡¨å;èPp½öCÝÿ±\ævÄ4w4Å]¾ V&XÏòé×Áü/k­$‘ä,×ë½66rø=Q;aa7ñv8Ñ< ÃcÏ@À}Ôyî|Xgä_ 'Ê ´FnnÎ$¸m <{. ñ„ŸýÊÞûž™Îò“ü•ç}ïÈšN§[ð¿¬þð°’ 6[Úìþ>™Çû™–±ïL< :è……$»7&/ºëž—ÃÒëk‰J\é§"t£jvS7Âþ\ÅàÎ$IÝ\Ñeäqx’›« ð¦Ü¶àY%åG9*YðÖR0•ÅØnqäwsÜyë…èd)uîõÅ3Ö#7ü„ w>0ln+~â¦Eüè€ýŸñ{ÇNùÝPkù{/ÍC 5-šnh=%~ˆ˜þA” 2YÌ\Í÷¿½ pÇïèCë?m¢?¾Ý<T4´Ÿk.ï&šóV^¨}x~:Z{|è_ªê›øüuÞ‘™ú÷Œºžè`ƒ-ö_­RV.ëgT‘ÌíòÊF}–fÿ19`¶¿.x%5Ñ"þc9(ŠgKòS ¼"c¼€Ý¸ü¹Eç`}wdë8äûØ—–×ë ±õPiL–ì¢úÿ畜Ò¦–ǰÚb–Üïÿy ÚägOǶËüµ_3`w·à|q­0ZjA…xPk€ø®~8²§Û'9 -\Â;’s?òV!¯>#w4…!õƒ-³>Z_[è¿Zé$™L“™ZË:[]/ÿCxïI?Áb“?3îæÃ/õçýöèQ}‚§%‹çF®Zù?…åç£ÆU[†ôîˆA|ð$§ÕAúâè5 ¼i"Q_æûm–ÎÒ#ØBÿ§•Z2SFÕºÈÞê®ÔnnZ÷F<ÞÕC¡©í¦ùã'Á77ÅîS«Œ?ƳK W^¤uGûŽ §sê&iÕ·éæ8pndïç]?ziµ_j©lÿËÊ-%$…ä î§‚£ `¾QñêDòMí¯ßû†B'F$ǧ]‡Æ¶I [k4QÝšá5í0î”GûÄy_< ¡ ±Ý6ÆžÙ=‹X«_…Èn%¤´“ û_ÁÊ)À«Œ {\°03œ·:°ÏïlMNÞ+jÕ5“µ§fLdcm„M¥¶- *n£ò‹„ïœ&'·h ¬ð°MòžoV_‚yÅ×ßZ­Àæ3·¯¨mûP˽÷û{ ƒ\å-ÛYd» ‘ñ÷æÄu5p½ Ú)än¦Saêš»ä€Oy¦%ºsGšØh>¯©§fn^ÐîÒ,Ø‚þ«ŽÔ¥J rµö]ïÃPÄÄwÇYA2áebÞMIw×o„EêêV‘ÜÖƒ 'µƒÕ÷!«G4×ýKäÿÂ’¢±ûàdc[kGmŸ9ì©]‚-æßXm$9L°)’f#–­sSÕö€¿÷û\¯R?…˼Ò$Äõ ²…˘Mðù¾¶¤{‹Å£òL+«mb…@…<~øRe‹@¿CšM[[È¿± I;¢à•|¡¿ÁÒ“á¿"k53·å3òÙSüÿ·_ý~ï¬+ø~—ZöŒN‚Ù¸™A1ÐG{F¼d"“äû¾ýÛz[l‹5ž ¶ˆwÕ”m’ž¬žŒ(Eô$’£âͱ-ÈÆÜ]¨m]'ô>èçuÖ½ÖŽÊw/œéÖà u ¢&õ`][bóAĹè¶^°Åû‡VRª¿ˆH[ÌVa¿ÔxB¤¨ ×/ŒogÂbÙH«}ÒÇÚψïØ??9³´´í¶ÏojÈüyˆü%Ö@;[¬xŦæs³Ë:؆g:8ŸIÓ#Çä.×›=d?#Wls B`ºè ÖU·°Üvÿ¨cm­7šH‚æ½ý#+>H5Š:g59}™?æ3 —ÉÇØl¼¾>ln¯ÆîÇô‚U |í§"\!Ç·ì<ßÝbºR¦“û+[7ÝlþÉUZÖ‹êN©£i@ï9öÞÃa¶á×Àæw,Z | Z ::ÊØ‹½7Û&x^[ô4’gOÙÉ@‚PeÉ÷¨®‚¥Ã?¿ŠK™.3%¶³Á—öûζŠÛvë¦ \·Ê¶;0(pÔ"RnÚmÛg'ÐØS‹è˜`we9Ò‡”#}ÿì*,ÕÑAeY*9`ùUðéN¨7ña™}hêx`  Ô t£ÖOkãy¹IsAÿ/,N—J!zÞÏ?¶òIAi(¿Hm­è8؈jIàZ`Ž ” Tך^?VÕ=RÄOb3µµšŽ”ìä»ÿ[úÿ7’^2LÈ÷+A3›¨O®‰5¶ÆC2J)é¯%"ßúÞ¯õÿ/ì„¿FÒJDé"3dª,“Åò9Ö­ J4‚56§v(Å#UCDOƒ?ןëÏõçúsý¹þ«4.Û_¦Ye÷ÝŠÃ K:ÉË­’‘Ô/è×´ÿûW~ßþsò|ydí§­&5%3Ì'Ÿt’AÒUVËh˜O-˜P¸bE)Â;þ3«vÍB%JûOgå $‹’CšI½¨ËuˆÆ°Öžhj]‰rH ä/ ɃýÕÿ×ë3ù.[M6HGßÿ߬«•´¢z[âk>Y¦YÍ]ßÔ Þ߉Jµý` ,=@WÞY)lþW+´‘e‘\‘”:A/èCn鬠…±*ÚœÂ2q«NÝ?ÃjXbK`“m‹=¤îa­B´” ÁýnÿÞJ‹ÿDý¾\2êêžHv_Ÿù³_•mµ¶ÆÚÕŠÛ÷VŸo,§ ¾PÚRãK¬Và’ýHýÛŽ)lAþ¥•|«$³ä”ÄÕ¾ësj¿Ëßí|ÎmWõÙŠü/´ :(`uxö¤ŸøO˜Ëm„5³ßôò"Ï÷ýí•^ÒHB#÷%‰¶Õ¹úDSâé·õŽ®Ñsh!µѳêöô$÷žú~À-·Å³çú…Á#jØgVÍÎéÇZ‡,ñG;þ•„,^[²jy€ÄõžþŠÄîèApà˜ïsM³X2ìÙÜNîØö‘¥±äh#·ÍÆ'bš»â!µÒp…?Fï÷ßW â>½Û#ó|ÛWX÷V‡Œ®ÇST{Ç£al«&² –ß>÷Wо'.² õ+ô’ØŸ+) N·óZS×À“þ8È„ µí5 þœ«?Bú9Ù\“úHݵOnOóI4Õbp«†Ä÷ÑÍ|å¥ßõM3“Gø.Á³u;¼(s°û‡Vv^i"ÉÁ¼”øp" m;ˆµèà•º=¡üõŒOu%òæ·TVÎâ÷°ý ߨõ åû§;’F[U['*láþÎÊ)eÀªâRP cÅÈV™bÙ)ýIèd¿‰u/ª» b»ŸºÞ×”üŸ‘È@ü¿W×1ö¼Ÿ‰wW²Þ6ÕvOˆ–†ð¨`÷ûûÛ«*õK*ßFuWÿ|j×ôˆï®þ\Áï¥Hî®<¤»üõ|Ѭ:Ï÷"·O6,ºz¥wu·^%CijÖ0ƒvÌ®Û][F„ü¤Íå댥‘äÂóÅ[y²Wd¤Y¬ ±½›l2Ç÷w M¬¿óÞ ¯o€fòÙ­ò§ R^"ù­Ø+Mþ Áþ=ðÿ6Év£ƒsZÈlAÿ‡•›-*½u^Ÿ‰"Ú¿ƒõ1½”Lp¬w]ß“ýNkB;£ÀÅ4°Þ§ZöÕ~Åï/èf"àzH ,ë¯þ*iü´ô-v Þ˜Uª„ÈÙ¸å¨ñzÉT 秀ׄç»''ß%æ7"Õ9p핟q´Ž(ˆˆE„¸=Íî¡b–ËÞjX‹dÃð73à>¥¨PMVçun.Ø[`e´šÔ q|¨ù>³´–3òBß`ÇÛØû7@Æ?ˆÌ#ñø)¾ðUÜs°ñ9>Ñ¢€û‘üÕ°îJÿTVÄ6j}ô³í<÷û½øë²û=ŸÛb›i¢e@DÁù?­佯¨×ã·O@ö³¾»ÉNßµÆu³Y‹¹Íï~ôA >ƒã„²>>ò™›óV³ƒEü$73(¦åsðڌĂ»Zn¡·3ˆl‘ÿjå’Oÿ´DÞŠ¦æ¸í[âøqXÇ‚è_ë8´qV·áaì¢ß Ã\Ïç›`À§v™œïú»¿áwu½ûa¢%Üá2¿_ò“ž<é—ðsX³ø‰ !c¥’dRLZÊkIk®_é]ßñùšç=#ù݇Ÿ—Xõ°Ÿë  ÝY°ð –þ¯îHœA/[V{¬uК›„Ž ’ÁÏ »ÎýhöZ¿²EðŸ@‹Kè<[°ÿËÊ%ŠJ'ìËnÒ3doų Y®!w®£Éjûü¸ÛÈýß‹›ÛÕ˜Ú ¢ƒfDI!¼ÿ±†-¼â=7Õͺ…Ö–s»É§Ö²96Ýjâ÷µ"ˆ“'Ø¢‹»ö;•¤”³i~Á¶g‘Óí\q@Þò3ÖïyY€D—¼ çã·È‚±‘õ&zªEð1Þ}CsÛ|ÄMÉÅ_›Á ×Mõ¸ŸºÒ_5ß“L8ÓÆ[g[eª¹BÄlÈ4,n׿FÖ šGÂîÏ=‹?€.\Ô¡DûQýÉ—ÀˆŽ~Õ­ä…åú)VÏ#J‡OWÆÏ?¶Y|Ju{È;)>6‚™çñ®FxI ŠÆrØe<`,ÿsðWn4ÐLj{@vK‹€DŸÀû§ƒ€SÉçsâk/•÷¹ßí¸êÑàGÉ 9ÐF.dJGuxNgðü*?×?{.>sé·j\ËfYàÈ×mß'ÐvT4DT9¨tgHr»ïïCÚäª×T9Ï}/÷ý¾×Ó&¢½ ø—º÷î®þ_‰Ei^ ÑÐVt~"bû™Ú(ßh#‰Šµ:¶tÇwéûþ4·þVÑê ¬O·†àfÝ•–´]Bâ…H»˜ßÁ÷ñv×ת‹ßréiC~G¶¥ÚÏÕÇ«»Ò#Ñîú†ÜáÝ_ŽÓl§ßß»m<ùßiFP²ÕõWC¶Å7:X ûF'Á7‚=/;y¨µt£–sG,Rå­÷Ì'”¹®/Gu‹×I~ÓÑD_pW:))'d*°øej»ÛþøÎv¾ù䜌üãÑMªùšT2®ÿ»ëÿ¿çVkmtÐKc¡·ä8·701辞sn¸ÿ¿A¦t³ò÷%ñþ DFþJCd³SA¯Ýdï«R”ïoØ0>ØÿÞ—ÌnÄî´%ò§·ò¶J“òwL›ƒ_Ð=d´Ïô…Œ•ñ2FÚPõÕ^0…6þŸ”cË@ÐóÔ@A¾ø~DÿW%ª€%dËÖxTgý2¨çsûc½»¤8ùÝÝ«ë¼Yc<6²Ÿk1Gà'ئÕÈhN}u" Ó<ºXZÉ<‰€Oü¨Í´¤ˆj‹Ôe·g¾›À˜8ûÒܤجX¼4UÓ×ðŸ¾ö­»N\Ûõ¨hnåd‹LÉ…‚Å}ƒÜÉ 11úÖ÷\‚lCñâŒhÀÍó+bµ7:Çí§%51Ðûí´#õ OÜåÕã±þ Ï–\×û1&¸—Ÿj Œ9¼¥´Bh£”5±ÞA=7Ÿÿ}¢ä'–ӓͳ1‘þ™ÏÚÑÀ÷£ þ`äÚˆûŽå‡‘zQÑNë‚ösÐÍBâ*|¤—Öƒ)žÁ“ŠÚV>mZŠ=ç³\?ù¬ø~:ôâfÅìÕüd‰®vÈ®J0÷Ã$‘ê²@\·×äëXvš\u„_‰ç> §cÁžÈ8“ —{e…#wBÎ.nöq0RÇ 3Áù¯ÉüU±þC˜`7ëg©@A·øpœOºLÍ”Èkµ©¬rÁêðyìbP¯Í*•e¡LóòÂåba›èØÿƒÇÿÝX÷'¼¿›6BÞi`þ3ØñeìÝk»¹àu¸ßW ÂëGxÅ÷ȸO]Í›Ònò³È·A×þ<¯zî{¢½EG%Èψ¸x&Ìp©{gJ_½BÕÿÖ÷*{ÃÛŒU‡ønç-©þF‘áÛ€nÃ}×Ë] ÿ@]£q5^S’|8YrkE°òÏÑSèò |`Ú[ GØéÙó¢â4±± ^}Ïz*œàÿ e•´^å¯ Ù@€îØÑMxOé9ßhò[O"ùGmA”/ÀÞ?bñ:¾ß«Ûÿ=WórÕnA¬ø±M¡z¨hn*¸ë¾Õ×…¯ùŒiDˆ›“0 Néθc‡'y…›žw[?ò}p£HDùkúɇ5°Ê}¬Ývûþo‹Ñ‚ë€Ñ“¿· Í$ß×x–œ‹g¬§J\é­xJËh& §™µ°¹ ;ÑÀ|l½9'û.¡¯ÀpvÞMpLè¡*¬ï:L:HPšzø­sþK²=ü÷"ßÕõsþ‘X]„\nnåtø¬ëñ¾m ô½-§ }‡à…Dòuª¡ìòFcøéOgˆ÷ý°(×zÈ?wo¡^¾Ú»É«øÔ0ö&ƒë&c~f]à‚í´EåÿBRJ{©¤îî°~6^p?=å{ý!—ÏòGüúh+ß»öÉ¿ àÿû6)š+J†Ì ×uÇF7S1ç÷,üe€G•ødühdü#øÿ^Ør%2 ;w°ƒû©µ´0Z+ˆòg•„2P*ó]Þ!Õ1ÿí×cO×Ãâ"Qü[ß&6¾CšŸÐHduóVøî6q¨fRXìÔÎyŸÙ„~¦q[BÖøÔOé F¶ÜXÞMV[‰¦Ràó—ðŸ#ä“ZV]ƒ9 :ñ?FË)<`:¶?Ém–\àûŽÑˆÄî1ìïz¹:°¾Ÿk1߇ »4¬èkß7}£Ÿð9vÔ]ñúY¼fÏD Ä‚7Ä0×%~ñRSžé/—Hˆ¦Áä¿i$'Õÿ9YÍ·YJ†:¨n’å ßñe;¿£š§7â3»Òuã÷0¡/òÁ¦b ¨zOãÏgáLý`ÀCr*¯xŠ_&ÓÅçJP ÷õó€oùyÉ×À‚˜¾#pÓ ÎANý›QÁü Û‹Mw`ÿxøH$û ŽK^;,ñ\7b™¯~1¿çóšXr¯t‘¿8gGQõMâOy×5ü<†ÅµÖ}º+d~E§n?­ÛC}ÎÜ0¨ÇóJFY‰d;ñÚ¨Äü%þ\GgçÙ®·ÿZbc>r» C°ÿL™å;<Å_6áëcÈ ®Kô0rå2ž=ï÷‰Ÿ„ ýʧÄÿ—G—-'UÄçdw½ÀOz%ÈGÀkÁ·Êm馟Ãò;øùÍÇøÎóñÛJD§ë€´é6€Š«õ[j¼>d¶yhj0­LGªxÀmt³—û¿¢… èuSË ?¶`Lj­ÜvTjYþ‚D`{)FŒš…¡jk¥¥ñá­Xó|ø*0ÝŸÇY€L©´6¿'“]'»Q¾ÓÛ\-†ÇG´F<î&^Íæßªèd?ºÙÎ-<蟟jh¢¦·`_*‹„?Dö½"JÙwR>Èò'¿–Šdª“ ·›îQG¿ Ü™]w~ï vžŸY Îg%úá÷n†Ñ´ÒÉ Ú@m­ È‘|ÿ¯ó¼ã,:Šˆ§—@òg>ž…ýº~ZÑÐDf­(ÁœþäÖOò9õO4Û‡—ÃÈÜ0w¦ÿ=þûŒX½ë‘~?¹}'~ÑB[bï¹xJW?¿²»•²ÎšÇB£­Ð¶éA–œé;_Æ ÞkÄ/„ÿG_Ooû«¿ª›vKŠJ÷ Ë¿RKjn³Ïjn^Ívìü¦êθë<Žb{7õr:ÑÝ®; Ïw¡¿Å‡{[Y›Ž?§RŽˆ·£§jþÈÇÞw™Ç$áLÉý)`V+ˆ°{¾îqWÍEÑ*27ÈòŸ‡½“û|ßMÈ6ÕçIð)Åwûq;Vàà5£É÷ð’šÉ6ÛbnßXwMd¥í÷YQÇÐ]*Õ0ÿÕh)8Ÿ¶04lb uÖe²`N>·–‘¦A–^@þ‚Ô¿oðþMàÝu׺Å\ûKþZ¿høí|¼*ø6ÜO½ùïÈnmm¬µ´þVÿÿaï, ­º–5]Uîîî.ÁÝ] 4„ $@—àîîîîîNp×þæLÞ{·o¿ÛWú¾±Ozdîq8ûlc—ýõ×ZkVƒ±sLrÛ+Þµ„p³dܤ·ŒÄH?O9ÜÂ#¸ óÏb]É»a?Áï‘\{ÊA‰lÇ4¬½Õ Ô)™ÉTuÉñ;@Äè°”·ØrÖìNpÒߢ”HÕÞ¾ñ­Ú!s_?ÝãÑ~žg¿'Rvzû'ÄûÝ5Ñï}5èÞ{Ü_=R˜i{ƒZûþ¶òé4é!UøîY±`(tØ6i~øŒ›]v…zð=h°¾3t¸£wÑI,šËº`ýv6ÄZƒÉhÑSaôõœœätœT7E8#uÌxO4dD¿A‹t䃒Ö7ØÂ³Ré2)&A¤læ®j*ç»ÇÒãõ­­¦5·H¶B'‚+ymGëîŸùÆ àÓWíL1>µËÏ] ЏÙW47¯2„Œ}â´‡,’"Øí߯ ØušHNêûŠÝ§0܉7ÿÌs;´Œ5ÅKJÛ§–Ê~Ñ~Ú‚l¸ÄOÝ ŽN>æ¹gàÿj¬È!kc0ଯÇ’6#NЯÏú•[{e¶ô’ðØú1»Â§žOårJzºï>ÖãºÿµÏÍu»½ ÏsÓžêû‰Ç-´+¬p€ÆµÎÖùŸ{x^ ÀŠ¢¯4p™°ãÉ|ú´xŒýœ¨ªlÑ_㤖ì xï{\nDš¡ºÆÏ³ÇÏx_û¦&šk çÀzá)Õù½…{M¨¾¢2è…ÆšÙ·Xû8Ä)bÈõQv3”.ò3ü$µ xÆIxBsxóÁü÷5B²ÈAêÔ”Xë&öï§cüÞž:؟Ϙ 3t×rÀÖ“ÑI'n xM7äé«y±ô`mFuÜ”Øæ»Já¸?ÓéæÈïôÕðPà(5Qh¬»:”Î ¶à¿¯æRV²QD' ^Åòü¬î9H5˜\0…¿æs›‹ì? ›YTøŽ »ú(’E¤Þ)dç°·Ÿý…º‹pSä¶sÏ9ŸnbÁû³ ­ºM–õÁü÷•N:È 9@ußÜNg³E ¸;Ÿ}iÿŸŽü+ðùÄ»úÉM… OÆÏųñÈ›Ç~?ö5Móóö–¢rïý™q÷È~2bQk@=\VP5DL¿q+¡4”Br û?£>‹—þŠlÍ]ðožƒ=WPÍ$7Ìñ×r'†:ébÛKü&)ȹÍωAT ñ¯wgRbPã|CpsÏ ×Cè šUâsk ¾ ¶Ø±JS®Ñp»ÄH”„¯cyÉ{×á±ë ,¾Ž,0ڟߊõ>‡¿º«¸Ž‘ϲÛ~øÝHÐa9Ìgè·ZÝõ ÙðópÄd…HdÒ~¦B4²_»/“‚-ô_,·ä¥ìÓQÈß„ž 6ÿBoðÏRý/Õß2ã||`µ?Û› nÔ;¾ðubn;ÀkÜ1¢]éÜ Yw•|Z뀮ÊÃu¾‡)FÄgºÂŸ>ô]À?‘öÁú/Ö‡’QJRÅÇ®î<€Ûµq‡Jfçûá6ñì1RMðûïiØ‘»ª»‚ŸÕÀî/Ñü‚¡m¯:‰'ÄÀËïQT¤Ò[cð©ö¶Ç꣉oÉ}}$˜×=ýŸ+£¤–22Oº_îê÷gØÙÍð½H gw×o^뎩›ñð+•]^3޹¤-©‘šRf6W?Ÿ‡ž#h%[Ä£…‘½»}fýìÿV²s°Äµ’¦ü¶*IaI.×%‘ŸÓû!~bâ×e6³|TG%ˆá•z ö–¨¾ _rûƒÃûþþ ²ZU䯮&jܱ ëÚ˶áû}‘¿£M±{6Ë¢nk •ï_¯jRCÒÊd9®n·b1~^Û “‰jåˆâ°–ŽØpG¹Üìwí–»žuŒ¯àu»År`á=x‰›ý‘Žjøµ²íÔDÝl‡•¤t t¶!òI°Eýës)nÖòYJPã'†é;Äjk­@í2Ht\üÈÏÉ‹g÷§ Šk{mÞà®kšÀ;·âý•¬8bNô“Jw‘M¶y¶À–Ù{ôÿ·ÕP²JTmНN°a–î’ĪŒœ•±r{‡ü»5¿Õõ»XªÙ4üþ»è¯íw{[Âáý4 úJeíÈû±@É6Û®ÚT;m m‰ÖÑ}QëKmì“QKÙA O»Ä·oˆ¬]ˆëÈ ÂjcÛí' ¿K‚]ë/¥ñˆGTP÷ÕõC&¸yZŸ’ýÛD;i‹õì¸ ¶ˆgµ§h&aà3y-µŸÜ=é?"‚ ÂvZ€oÉ刌Ä`c Û§_‚¬ÁÂTͯô‰f9ƒÅAû*øF5‚ýgê)!Eƒ-àß]=¥­ –2°ÕÜ|û66é>·_È_ŸY$«o ¶õòœ.•Öv¶Ø¾³¹ „›l[ÚíÌëÛD­€ŸÜÒ/m:¯ìÏÎláþÁ5DbPé„Ù¼²ÞØ=1ru$~Y)|!9>ž«´FVH»ØC°b@&Š|ˆ´Óì,ž’ÖžÛV Øaí`<ÁÞëö¯®’Z?Ò20@7ÛºXÖÌâÀ£µÄC Kió¹WÀ ûœåçU_¢©±xH Ëm#à}'4+81€WçÑ?Ší[«äœ,•òN[ÃW;"mûÄØncຠìk»ïæk ‹†µ£c{×᣻¹kIÛ…}ßøcÜýlYàüá#[nɬ“]Ý·Á~²Mv ýô'Z¡ÀÛ@ ˜cu?õ ¶8ÿª._I+Y"I5¥ 4 <°¤ ,‡ÂkNØ·%˜`DÞÀ={oC›¯@ÃsxÃQkȨó¨­BÂ.ÿuµ‡u’u’RãÛÇ¡¡Z^Z¬@¹ÀØ@„À@¶PY-v¨0r¶Úr~ ,EKÁ2TF¡´f›òö¯®*TÇÍä–d%š¯Zß@ÆPBU U7P×îØ+øN]Ý!Ïå¥ô¥2ÌkúNãh'*Ü:Áþâÿ¶5UòKx).•å”\Ñ:ÔýÏa:Qµ¿^ÒRrû½Tc±÷wÄz+Ð#$ßú÷¬aÒOæƒ Ý‰Œ2FvK]©*e¤Ïtâ¾ÛQR<Ø_ôÏõçúsý¹þ\®ëJ#¨bÿãšÝÂ’—¿SHÏÉý,’V²Q㇔¾fÿ¾•©]çRRPRI *£®RŒÇ*‡2Àïãó\ZI.`%¹eÿÿ óý­‚ÜJÈÇTƒ÷¥ –×Ër¹Wy{Ÿ•JšT‹è­ã5¢6àѼ° bh%$t÷ú]®GY)ì:H²èj?¹ªõ¶W’DÂû&É|-l“m„mµ½ü¬ öo®•u'+/Eñ„?^çó¿\©±p© ×]'ÙôµMz kµì´–ÔOÑÊQj­õÞTkgÛE˸mó¬™fB?M$dôøú×V1IH$7—«X»†ÖÕåšÂÚ[5Kg¹,¶}%{eºØjç­­ò“íûÙfÛÉßYñ’ÏÐAy*§?âúÛe÷ÇÂûi7­×t·žÓ8ÁÎkl+k¤²Nã¯Z¶Æ¦˜ë|^ÜfØ`Ëb5­’¦2NgStš¤£:úãùü•\Ïê½”ŽºHÏ"}"Ëf1,©¹+›BÙ$«¥õk+h,•ï–“ÙZØPb ˆõ²=xÁ0+jѬ?qR‰üÒÏ{üõŠôÅe†|©›5 ¨—Öâùþ5ɈýsÜRØ­®AÄ(–éÝtŒo­¶ @#Ÿ =l ¿ ÛGÖ^K¡ÇÒëó[)%®Ïa«ÔI÷F“Z&;Ëý¢ö@oè3ìÊò[m£ðòª–í¼Ò\Ö¬Ÿ¤³|xAëÆ-¯õÔÑRî¤ø~Fi#‘´%²g'¶ã[DsW0?ö{z÷é¯úZÛÚPýŒì÷Fãú«Ü£Û[}¤e­©•±pö ¯If­mƒ}mÑÖ\ù$è½Þþ±•W²ÊG’O6Ëy-š¹>¿eÁ¼ þŠþËz8¦W5£­Õ*h'9ú©g¤!3ÞÕ;šÌRÛcßçã–f! SLl2(Ò} ›”–8ÈžQjcëˆ zL» ÞÝgëÀ]ݯ®ûñ#MŒ”íô¦fð»ò`ÿçhå’†ã=n§ÛcôVÒ¾¾%3v%c~#õÈ!y5"ãU–q2 yRƒöqùÙ©[°üjÝ¡ë¸]Fâ Þ‚ƒñ­¾Ôè6€Èp³Îid¼å$¨xÍïñ+n¥ðŠ`B+tÒ)Ÿ‡àëòÀVsÉ@™§‘;¯½Ðxºëátü÷ÎEûô9’=â±Óz-Õ¶ZT“ƒy‰ÈÐÆ3"à¸ÞâU1É…),*±ï®íi÷À‚6\ì=ïkåÀú±¥ŒFµß8•©¹ýŸ‘ç’ïð]ý]7üü–©{tø’ÜÕ.h! ÇÔ÷Nê&ìÿÒ_+^‚ŒPÈÆX›eáÛaJmŒ?RòV¢¿•Ô—Ìæ¼Ùy¯lnÖƒówó)"ÿïh:’ŸÐöÞOÄrW>¹ý}™ññ̰À} ÀAžÏWJcÍ­ÕÁo?ˆæÂ ßh*ªädÁ÷¯V>øn9ù^>ТÈõ ¼öÝ_öëÝKž?¡Cñƒ£è!,£·a@QÀ´{ð£ÖúFK ½›‚’Âvã+›ñ€LxÈKu?Õì°¡uÒä?dÝBÀ¾ï¿^nÞS^<³9<÷šºˆ÷ñüºAÝì›Ù _Wu“¶èêjzÅïíð.©¹y(qÈöµÍáÆ6ßö&yàW°ñ>RÒNi<ë.³%v‰êp–d rçÿ}•$ë•–¥²SvÀã]ß"× ô=RÆ—Wâ½u<òÞÄû]W³[dÁÛêvÇÞÓ‚T~·ÀÄ0p ¢°Ÿu…Ÿ’ã¦a„±<ÔŠ‡È,1(¹ÀVØXmu4:Øbÿ¾RÃw+Âöûò­ßa3w—ÂeÜ „çz^g ƒnT¿õ‰žAî³ø€›êt]™,š‰ÝЉºX›èzpPl!`®ãIøPd{¢ Á¹Wh­$3?ž>K§ýLjÐ~?á-"å|è(þÐ>´ßÛkb¦:l0e°Eùé%…¬7Ù&¿ïU‘È\ÿþËdòpÄ÷¿²#–wXv[“øÞ÷‡aðôñhÍUHnö[^ð~1x±ˆ pG碅ÇÜs=ž7ûÀ€ñxÀâšíµýÒ,DIH­›QÒ«Û¡‡ÚÍYÞõ¨{Ï·v]Úvèp<`¢gôo‰ÃÆ·ùí^óRøëý®á¨uÃÙx¿Kh#’$3¾à)‡}·»fäÂU!ð½Õ¥*ꥵ@௄pžRÒïwÍgý¨]Ýõî‘`?nÖÕ*ë;½×ù¾—g¼#“¹ù8®kfmìšÍöâ9où„CàÄ"¿“ê9°&üHÝ -w=tSëdŸÙ9ûÁÆÙ8a­+i‚-¼¸iwY奤Á–;©ëi#xk ²ÿKPl9Ìoº›^¦Ý¡Xµï#U ä¿M-”Ð"iu­I4g7×í` š£mlŸv /8.€®ÿMQ¢8Ï|ˆüîšÊå2Ö‘.ÈÒç’LRDÎb¿MÈš¼;rY"ßeû›È?Äßäo«üì·GšÜKß/lûä¬42×ìWžŸ¨A‚+xyu¿/ü°º).7$AæVÖÈ`mñ|–B‡J¼/¸ËÃj)¥‰ú Äi\{è±j'Õí °ËÍ‚qû@÷ã¹l¾ï¹Ë_÷=LŽÂmÊJÉj¯ü.áïñ ú’. ö{ö”‘Xª‚¼nä1nGñ üe£Î‘ÄAŸRPÊÊS©d‘ú$Ë¢‘ÃßyžsûïûGý¥á°ì°~Ü…¼EúGÚW?'‹n ¿ÓI®´¶kp ð¦éh),•Dq0ã4Ú¸ j\Gf¢¹_õ–D–A–?Ìç#ýxm®+c2@8òÙ5b÷&öß ï‡ê“·&àÁã‰÷ÑDùzñ¦ÐÁÒ[òp¯·Ùèãk늇?ëãÚDüÈM-^V¢J4«È'TÀ7\]ÑY«hí ÏA‹÷]G­ºƒ|ŽzF±ÿuUÝßÁr³ö„Ïl×h&½ß9 ŒŸ‰W¸Žç#4¢¦Ô˜àä(íCÞë¯-”fÖûhÑu<¢ŽE»$Ñ@‹3ê¼+hÍrð÷y=*MáÁ\ñ@àÉê¦>Ŷ„T½ju`1‘`áù÷žÞY«3ƒï‰ô¥òiÁí²b/ýZKáŸêø~þꎽ³¹¼Õ/À›VÀcÁn ¹päÓ÷àJ)jâ·¼¦ ¨°›J0˜ò§Xx`n²ü2Me…a8‘ýô›7¾ÔM"}#Vþ(bUávÓ‰ˆ¶•džs KˆåÉÈ9^ÛÂ÷ª —†¼¤µ¤zØH„,ä3ž¢Ý_ñ&×a UP9x’PcöµŸÉƒ:ÿàC´ŸGb!Ç}­n®Ûç9é²À)Æ£kùùŠœÖÖSÆŸýpÚ9Î÷о×Ùî/ÃC*`ÿ âtjÛ¬…]óGMÖÃ%÷ªãÄ‹ù¤ÍÄÓcòc9ªÆBÖÃûC]ØwðV^j°tb~–Ѿï-"ÿ"h~©†ϳ¹uÓNÈï:=ƃ½Ô¦ÂݯÃðˆñü;pïÖh­ƒ„l° ƒÛBþãä¿sx’ë„6EGâ/Ëtïþå:ì'£Ê|C&]"ÁìQü+#[¥RF°Ìj¬>›÷çÄ»{cë–È6R¿Ä7RQÑ?ÑOMl²ƒï'§ýˆuÃ[Nj ö“þ 0ãƒäÔGpÀƒ~’Î^»Úåg¬-A¯5‰óáÊT ƒå´L€ó¥#öú^žnâYO|ÀMê…º¨›ù±Þw7mª¹5»^‘KrQIXOøÌDx2tã:›¹¾™›ÑÊZ¼~~‡ç»þ_‹ñ×5÷¹ß%ù†ÿ«Gå/%IeLÕ¨VØKÖŸ‡ã§_œõó¯†Ûc‘»1pŸh¤…4 ð‰ëûE5@ÂwޛØ›vÁžGðwwìl#¯Ìj„'ÿ?@GÑÌ~âì†&‡ª¢üÕ$’Tư’á×nºÕ¾]ÛçýÁ×í0 ×Ût›ß×¾$(…Ý ôŽhÓµšæÓXÜU ‡xÎÍJ?OÔìñ–¿Î»ç¡‹Ëh+'øÊ☛¬¶‘ÊܬÉ9A”¿“Ô×›â0ß}ž9„¾Ju7Iž€nk¨Ý±Ž¥`Àç<;{Q×érÑœÀ j6].›Ér›ðŽÃÈ<•˜^‡vš¡¿çH}ŸØGMA_1¬èðÙÝtp7i$œDùGÉJIik@#‡Ðóøþ÷ÔíY½SŸ‚ônšå&u=qÆbÑud;wÄÇ¡Ù12ÿí'd¾D5÷àý»ÐÚ‘Qlš®“!Çܬœ-èå0ϯû ¯­ ANøN\{íÏ ¾BC7ð™N°£<ä wÑlXP¯ê,íä2ö½ê/ã:{»0ƒªwÅ¢j Ml;†÷#^ð­ŸâzÙ¸9×µ…}KTÌVû™1ÇÑÐ\rÇRbd1Z‰†’Xvsý._û|‰ãûùäädœ~Aíø©d•ï°÷m0ÀõkràØŠÃ¬cZ¿øœZC ¬AÃÉŠ®ÿýHn®ÃÕ2-oMõ¶ìs/órPršï‘9“÷?Sçû·@ÿ”`Þ.-Í£9ðz‡‘ì–fƒwÖHÌÝ"õ$¡ÅWݤ‚KH\¯`sw&²Æä‚w`ù"XÌ6ßú{ê<×ÿvѱ†wE¶2p£¹ªdˆf<7F4œG¦Â'nñu„›’s”W¹3§IÉyÇð¸‚ÔA)©J0çŸ| ÿð½wbûîñ*:š?L‚õõ]ÓV¡±“øÔô§ÔMYì4ÏþJÞ¸ê]£ªü9m¯÷p©ûŸ@~rs_Vb­d0–uØò2, ¶½ð!×ûþ•ËÜu@šä§Ü¸‘/¿ÖG³}ߟÉÈ=‰÷ºãÿ¿"éa>å>rSã[%KmµÐCeªß/á=ñ-–%²¡A–¿•”“¦²Ž ·ˆXßÞÓtviÂÀéãPé=À¦Ë}¼«O+†ûN_»xt§6е®à}ÿw×)è>ÚL ¼ ûG#a%Çÿ¿´QR$ÈòçÂòPfúnÝB¦wå*œþ?zŸŠh›íY Y¢ÞM‡§ ÀžkB}+ÕÈŠ—aǧðƒÍxÈ"tuŸO;†ô;¼ü™°µë&úšª*¼à1|ö/eI• ËŸ\J#u}kÝ5çÁòðËùH T²ÿz¤pÑî<ÄU‚óðócÚ [Zþ¾„Œ¥mZúŠèŸÁókС답íE'îßñÙY©vî ]×')3(›Ðs‚ìàopWi&M‘ᩯô\¯§pÈ}ÆOÁžå{à.Fž=X|ÿ¶ÇînJs}±~°(Äqª˜VÂÜ”œ¯ñ…ïˆc`ÿy"æ<ò&"ç·°*ä”Ýèä¹f±ü `6{„Ϥ òñï|ZAŠËÙ‹û#~—ñÑ7Äó2â!Ð ·žíG'3‘®›6&2Y9Ëm­r×¶ÞÖÚ>£ò?I|´Ñ~pÃ]~.ÐI¼) È_Šº7UàN¢êØüφ~¿ÒÂÒ8¨òÇÔf’MVÉqü{ø6´;‚Ý–ècØýc ç;¯ /ûy¯_Àþ~&>ÒJÖÃêbÕêÄs&*º`š›Ž×ü×Ð×?#-?Ñ呂oI€®‰°0ܪZO­'=ƒ*ÿ;™)©å­Ü@&w¶·?Ùm~°‚øÍ#oˆ wÄÃMpó]ëx.¼„,Œ³O¨cv”ï5ñÊe䇨}ûà \Cƒ)`V1¨€Ž]®[R"+NM¤n"’Ö‰A•+È%ý5o™í5Lo¤ŸÎ]ܬÞçXnþ°H;k 탟$›]Ö¨V 4Áò®CþSÍ`¿ú¾ø[ˆþ/µ“?f²ÏÈ„Ÿö“?ð¹±-ïklÝù™h-µ¡ªü"‰´…T†ë¿ÓTæÎõ.T7 Äõú½O•–vØŸæwG®ÕÔs—5¢…û‘¿¿ñûr‚g¹°pÀ_õp- XAP¼=†¿*ò ŸêæCF#ï¥úØ;v…$Ò~rN2˜û–ý±êx|Û£DúJpÁ‹÷ïŠWÖWêf—ÅÅ;X+ë tZàÍn^¢;k~Ã÷vGº_{‘ßÕ'ø¬°Äˆ;ô+GìŒóRét™--üŒÊË ^?D‹bA×é5¬¹ÙËüÙ.w”ôÌ퉺³„ŸX[kˆôìž ²Á0ÛG~ŠÔvߟ…ãW×MÆ[„?e'c¤ â#xûÔ¶[xV,=&yä’–‡‘ÄŃ“‘Ïßåª!ÿ%¾¿»Úõøçz!¯Ç¢¡a³×µñ[‡®u±qd‚èb…·³¼ÃÛHîCä?‡A¸Š`±ºãëE‰ÿúö5PZt6=ØÂ³N€I¥·Î'*?±˜–ûÌ Ò¿Gæmxô+"ú¹nðÓ½Öñ×K¬X ;Ö³žÖ’8~­ŸÂ>17ÇuºugQ–‘K7¢½H0ÊkèÁu]á+#wÝdaëj ÑX]«láY?ÀþëK!­N­Ÿ ßBäö¿»‘Çæò}Ÿ€bý50?Âê’Ykj øî­ÉbÇÉý”ðcZ‘HhjÏsÛ`J;ˆ( Ê?Kv­nõGžƒYáJs¬Ÿ›žláý:'ä…䵫d¶‰Ú颒éã;€oÅÀkç!ã²zëEÆodyì þÐA›à)“´úrÇ÷+㵈‚k<¶GOûùÞ/a?ãýnbî5°5ø_Ó†ØFâ,dì…™!ƒd‰„·¶€S£°é(X\{n£ý$Ð¥~ºãxb (ñ yâ&õäùèi²ïýÞ†¿Ú¢§Ìö-˜àæÇº³&wü4Í]|ʼ*"|"&y#/\1¶·}Z;Ø¢ÿ¾¾“áÙ"Qõ»ó4KAúþŠŽþØØu;ŸÁ÷Ÿ…7tV7¿ÙÅGn]‘øj˜z0þÆÜÿ’œ9˜ Ûfã5;‰€-~¿À*>a3ï~Ž÷ä%nêaÿ—ÚÅòk»` þûúQ*IBêÓ‹XÜÙ{«?¼>C&w³£ƒèe4‘ð3zèýgbÙ˜–ùc’áæé7èË7vÜi\ú:XÇïixƒÛ=r<(beÉð¡º6YF[ðßW)-ßjZpû|]-4œçX¿»_äû/Û§{9~À&"ãJžY­75µEõ^›hŸîF¡ƒIÜÎñ¬;’|ÆwÄ=è§ŠG!kú+ RXlÁ_ ¥•,•ô ,K‰oîÇ¢/á‚¡Ì]Ë{ÙN7nÄ\dJfnßïꙓ¾ûÿEü{ÒOB?òоb¼…Å[íW4¸Aòa*øRP`¢– 1» ’ú^óà+²’Ûçëv´Þ#z+ÂÞÜì’ÕÈ/ÇÊ›`€'‘-Y ]ÉODÚÎ/å•SÁÅøýNxòYKNlJ¦L‡ì1©ãñ»y¢ŒeÖàV¾ÿûr×µÑawýŒæ•d¶¦Ô»;r\f7Ë“üÔߢ¶„˜x‡ÇAžT·ð‚¤ÝܵÿSÑÂ2xÿ<ÈåºÞTJu¨‘²â™áÙn§`[+cƒ-ô_¬’E¡YdÁMøx]mEÆ KUw kîÖ7àúr¢`¶?˜ Ø I;¨›ðJÝÞï,`@bü`/º›ç÷ >ÒÒVïhesí'òf;ôäŽ|–†ý–¶–Ò&ØBÿÅÊJ ”“r^'Àráùy½_oCâzÜ ?š†fÜuW4£-ÕÛA#Ç¡©fk »í¯n>ågî!‡\ÕR`ý0B˜¾MµÑD~K°µ­Õ°.Ú)ÄõFÌ ŸÉÒûÓf`ÔI"úҜӜ掆^ô¨¿ Û®ÂêÙL=/M5.˜áö¹ÅÝ^à3Çý¹ï}ܲóL!ꄯ@ÁÖÖû=¿ç%¤m°ÅýoV.*Áqä´dØz;Ù*´ŸÙùXkYuòÖk$r@.ps5QUۮ勞/Et'!þ3â×¥m³Ï÷×°dìý%öÿ  µµ¶Ô.ZÛÀ#ͬÁ¼æço¯žRL®Ka{FLG#G×A¢êæ77¡ÒOCÿz}/±å<Õðcý †ÚörÇõ½Åú®¿AN{ ³9£eñæ\>‹7Û–cãzT~U@L%úÏ’! éR»‰m±½§Û í+5‚-âßYõÈ„u$«¾²V”l-¸Ê> ˜}œ×0ä‰<’Ϻ“Ù/‚ìåÐDôóXÝ4 `d$0¾–wsîcXg´/Ð30:£^°ü»«²””Z2FwõngkC2øp–² ÙGä‡ @*ø_ÿ´ÅŒ² `Lwè‹Ö÷򪯯Iìe­«}j'-Ö ûÿþÊ%Q¤›¤ÒºÞÎ}g«‡š =4ÑSÃcÞÁ«Ú×d³8Ù¾C~|;Æ£)à©Èym?ü¦Q0Öæ'´¶©þz5€ õ—[ÒÒ*B†Ã~b‚Ù­$‘^Žè¦xçÕûX•ÀÑ ~l8a-,Ý_p{ü á‰í~aŸÙÖ¶ßUb[¬bå–šxë icç°aë‹­`ÕüD³›âîÎhv%ã½¶ DÂçÔxIm(Ø­t$&å±¶vXóâZéORB [¤jÕ‘² AR¹$w‰ƒ¶ÝVÙB»L®Ÿ |¦$Â×"m[<¼9Lá3[ióá8ÝÉ‚IAÄζ‰üÙ(Ý‚úŸ[ zÕ£*øPr’‹ØmKXK4Ï·'d¿1>pÙFñ÷|ÍgÇx¦ (0| 2î´mv¶ÓÞ2Y7ý–Ú2Ø»<ÿµU(--d-¬8-œ(²m±´]düõäý®V4PÄù&þ´)vØJR†Ú24Ó‚ÌWQ‘Œ!¸ßÏ?²*Ê×xÁçÒ]ÎÈ}™©[m·µ3øÃ¬@×À²@²@&»f}›ÍðŒgö<Ð4àÎñ¿Ò«ò±$aSÞþÕõ…¤Æ‡“ÉmÙKÜjÓ•Ý*/õï{- hn±àw¨yWÂkêA4Ræ»þ;Vc©†-'Â+iKÍo£´€6×QòN²èNI¡…ô$œ¡ôã5+ð—`ïkþŸYõäÌ•x²F:K‰%)å®ü‚oT“ip†¤D{F3T°¿æŸëÏõçúsý¹þ\ÿæ• ”õ?ÿ*Ì-Y0±ÿ7$‘¼’/ˆßîn%•,R„[ )$õ¥4—’ò Òç—ÔÊ)ù«8ÕBY*½è(¤tvû÷¬üØ<®”’šX¾…ì‘IrT~–)ðÛO‘»—t•FF#j8mÁ+ªðº%<è×õû¿[É%²d€Û–Ðï43•~»+É4‚–’tÒCÚŸZ§Ÿ<’ቖÁžhDs;ÙcÛN©./õËeý¬€E´†xFûÖâ[3›d©·èÚLŠþ缘?ÒJæ¥à›“KrD ›ëYŸêj]©¯‘»¬’hÖØŠZ:»«qísënã­¹µ–ØhËf®ÇIVuSµÿxù ?¨—_ ÊC9£i%ƒïóŸÙ\'ä+z@SØ6}$‰¬‘¥´Ò¦vŸÈŽçµü–ÏJÚ'èå+GLÔÒ DÐk&Pz²xrù\Âj.«ˆôU¬ˆÒ[¾òkßë/¾Õ—:«çÇ3b[n9l¤u°Úäš6}¸ÉÏ™iQiò‡9÷álï&פ‘ÙR9²Y ,šÎÖéa]ƒõc õ¨6´0vIS"y »©I-²‰…Eö aû€w³2ü=ÖÚ[g]-µþ ¹ ¿gqe·,V·[õ¾f³R`Þb¢]ÿJ[Z Çí¼†²AÄ0ÛGò»…ïi ²aU ELDä¹l¦í!/¬Ñ‰è4øû=þÞªH¤V•µò•VBŠŠXÕu<…„çu«n$öÕ˜–” ÚB#sD‹iMññLvUóœëwVÇjñü }£ÑÉÍìGâç[³“t j·«¿¿*Àô2Ë"ªù/,ˆßNëM½¯a-«¹ž@Qí¹†Ççû®ŠÜÕðþ  È¾ÛïdYð7#ú3p8pÏ®Áïé×øVH¾þ¡¸dƒµ¯wÁ¸ÇÄûZ¿sç ò?æv\wn_óYÝæ¯n<^^ëuÍé¯HNÆ‹nWÔí OœLDú[Ø>Ÿ–?°­LBj”†ëå”ZÌw)r½À– §ëbvX÷ëAÝ­ç±î%=FÔ.€}õ+î;¿Õ„d„¾Ïåô÷Rà }YÈ‘çù”<×¶Œ–öðÉ·JÂóKáŸÅ`sÑ‘)<þAgú¾-¾pÊëẖ"2¬P]/W2b,|=7:¸Ï+®ûoÕE@+KôÇ-›Ú*»moÑEŽxHzlŸ\&JTxLt¿ Ìà:n׬~Dq;ªW‘ê4øÑvë{ª7çãc0 #ì(šµ°ŽàÞ pò·®A/á È‚µ}×óîààp;h{-‹¶ qó’IBi>Ïâ›_ЇHçöÁ×Íøþi?b2¾¯v˜¿¯â¿îº×6˜,áf¥²OÉùáìYr’»I(nöOH?¨j5¬¿õá8qÑUçCú"Ò œâ›?å ¿˜³ái¬ŒØÿY]l¿A#ˆ…cꮉÈkŠ’ÊÁxBÃük¢3×ûdXùŒOJCvh 2¾ÐDh©:5Âf…íuE¡T%• Ä~;ív»«àÓåžâì%wÈO¾ùÑï|}îçßÌCwAˆ‡äºÁ‚BV9ëX46œl± œx«­2Ø÷ÛUÿÕ¬µRukióȆY¬µ4 jçÏ¿\I©rSIRxœ«\RÅ2`MÇy²óóPWáÑóµ/>àº\‡²w°<×%ÓÍ äãµ¹ì+«ï9¡“@…¾;pRê%—3¡Vä‰pãŸl½í¶‚kš_¢[p¿2Såg–Od&ã†ãgâæú½§Êq{õ§£©Ú]ç€ë¯4ö¼ HnIÀ=·Ï?‹¹Y(¥üÞn×=ó4,aŠÎëž’%kS!ä&«dÁ†Úð„¤h¶:ù6$ìÌì§Ú^”tp:·_s~PŒÙçy©cðçáÚOgõ·±ùo;˜ÝÕÑð$š cÔíòˆg#u»®ÇK. 0DÏ{u¬Èi&ÑŸØ:[¨@.Ûª¦$]ˆ˜€‘R’H™§‚aO±ñ ü:9²dÅòqm>Ò…xó m¬ß{nŸOG\äáù7hã©°“`žÛßs\ûûÞiŽý$O<%“<á5nwHAË û¹@ôײùàf]|.$ `6¤¿"QðJ‡uã´Ñ{\ð½£Ø]¬xï_«]´›öÒ‰zÃ÷q~Hd$µ;àá2²Cj»ì¹›0Uƒ«4¾íC'¡‘3~fxDSÙ>[N¶µ^øÇÿü Y`ý<§I†½›ëñrXŸãÁwt/·å~È$m¡Íµ½®Æ;Û®Ÿárª¤êÚJÛÙFq?úùO™,=yÎëªÁŒD~Et•Ð)KíTÁÀÔ"i® _'’ÿÿXäÓ”oý^XGmä{›¥‡íÜô==ö‚ÿwÉüÅá=u%˜wÚOA«aû%’ÖÆÖÉÍõsÓØfA,¸é8‚íK[;"? ? ˆ™šX¿ZHbﵪfXA–¿´–Å’ JW³üdóóXq#ßÞu÷9ÿ &LÔ¶HpÑ÷îâwÁÜCÞVQÊIZ0à¬Ôi Ä^wÜ~ñ‘³Ê#clëj ùìZX¿ žßÆÒÀ¿;hÌ Ï„¬Ì-;ÌÍñyßIV½£’w|n'ÞëúõóûŸÙHëm[´-ñ=ŒºÀM¹Ú¤}¥“ñ†÷?k3«Ûì;ëk1íŒÎà±ì–º]o`9ð76-y°&ÿÛiiô ˜VòËêw×›ð–?ráú5¹«¹/ûY'{ˆòÁ ÿHòÛT­Ç£­±usíª=5›Ô<úòÏ&2:jm-©ñ4­MIŽâE¿‚€O5€F#âU÷|OùSð¢6V†˜ÙKä{þAzx vîûä{g†Ë'¿¿V×Çú$ÒOãæj²ºæ·ºê¾;z-¾DƒýŒ$×ó#Üa–µ«èo_òÝÜÐèh1Ùb?µ@]ûÏ׸šZRQú”dàzÒô¾…Ï»ãWï<¿w}ïnõSüü×ù³Š6‡Ë÷Ðö ÄCmˆüýuœÎäÇMNfhMÖOä/ì2˜wœì¿Ù/ù9ÔõA8­+ÐÀ }¡%‰‡°T]5GP¥‘œ2\rú]­3Áõ”|«[ÈóÞÜ<[ ó«u)^îº7%°nd1×+„¶ó¨0—×.×oÐBsÞÓ»¶°Éèhòï€O\à™Çè2™à%’‹mC+§Ô_ˆLDj¸jT¾}%*•ìð›•Dü 2ü0pn¯ÿ,?«å[ícÀç°˜ì @vXò)m .~WèìwÅŸÇ¿'Øb˜Ýn»Dž[Ìûˆü‹p‰ßfëÜ!D¡RÝå™Ðèñ± êy‘† ßjé¿í¯GñÓKØ~0ÿ#‘¼ÿ?†mç ck´±Äïâûžæ±öøÉßl¡. \À¦MìG2ÝXÛŽ^ç§=ƒrÇbQÿ?¤vº¨ùû|ÑõÖr#ÛK)Dù+Ë—xÿYøÎu2öO~ÞÅv?ïõ¨°Ðdö¹:D“é.y Ûµ<õ‘ë˜SÎ3×× ¹ B3ía›ð­àßnP%9vN@­ðT9Åç)ïHÊ&çÝ9¬—6¢ü¥@Ÿ²ïÝîx¹.×˰û[ô1ƒï»ÏÏXÄýŸ~=¾PA³§ÀsµSZ 67 kß%3Åë3ùšñ=·ÆÛ~Úe ¯¤"㻳DoÁ‚}d§ÔÑì¬óXp É(±ai)ø&áàzß‚YçñçÄì^î „÷¹®nët~áúølö]ŒBaýõþ MõÓˆš˜¬¹“xŸOÜl=gòüT|ÞiÉM…Ÿ×²eÔÕàLÛ¨”aÑÀ P·‚~4éEZJ!é¤EÈÏnªçi¾ãM0̹廜Ž×ã`ƒë}> èëF\…l´Úz¤×e­<Âö‡`÷çÀ‹å ÆÞç:þ¹8±Íͨh®óå24ÅõXwý›P ¤Wå£ Êß ö¹[–aÙC0“\Ôé‹ü¤ª§Xt&¶=øñ}d_DFª»þ÷ãùw ~Y /&×Éó»yÅRªD×3i¯Y‡þ6‚ïüÜ¯Ì —ÔØüŒvÂînþÃBâc¢ï"½/¹êÏ–$‚ëg òˈßÇ&ë¹YŠÙ¹wU׿Áœá& &—›² Ÿ¿€T_‘玷cÙJª}7çÕ]ù±ûoÃÆnþ‡ãc±ò(_VÔýr)Oàó;xî´?"0<8ÆýõdÆ‹x@ du}ÿß nB˜«~[[Y*…!A? žQbH^u=Žgóý]×Ë]þ˜ß ìwÁ·:ž/%s#Ž¡ ú…Û^ájã£ÚUSÁ€ãÚ×Ú-MôóðV©ÓÉ5Ï#ÝÙĈ0Ÿ<0ÀƒðȽ¼çù¥4hÒúÊÇA–?›$úxê$jwd{Øt‰ÈÞ¢­´—¯fpb-:áçáçµÏ¨åÜ4S7/"±e·I¼þ!QàúE7î*©upà8öF³‚s‰ð‚#`Ãb¢+U`"` Ö’?Ùk²öGCʼnòép…àWb9ò'µFÖ•l÷½¶Å#zx÷^u3ÁcÃûàë/@ÅQxÎQ‹‚î"[-ä~8¿Ê×nO‹ºÎŸ®Cíl,¼ÿFî{ŒíãÁ Ïð÷FdY¨ƒ©ëÜí5aOêØŠ¾—›Ó@eâÙMC݉ý@þXÉ'º zñR€wü,$ÇŠ_ø¾êiÉ.Õ‚|%Ø)))å(¾ºÛ_Ù¸‡/äž;wëæÖ>ÂnsÑÀ0ƒoAÇvâÍ\ãh ºïzëfšº™ k‰€þd‡Óþ8Áø’cí_õ´ïŠ™_‰ŠÁï¼d—¬Ò?¨òïuYjñ½cÃP#Ûe?Ç«;7ØL®vÓkÝôyÄ| l{DtW碪Éam­<¾²dƒÏ¹ p±Ñ˜ƒì啱Á½rþ\Ò\ra~ü¥zkd…¬±­Ñ¢²:¨òO•‹RANHB‹`¹©ÔváÿÉ}.‹dŽ¿¿ÁFãûßik?ûï ¨øBóZsØÌgÈ_ÌX=0<·Ûþ¨çP>å{bÉõKÏöGãÓwã9/ÀÊú° †Ö×~²6DkãÁ]Ñ´ Ð1us<Ï`5‡`߀S#ˆú›äÇ÷øiÇ_Ãy÷ÁëÜ,ã8Øû*ØNö%ÿÖ²^TûÀ̸vw­ò\h ùï%:t³”ÏÁ6¢›«*þ¸G3ð¢¥] ýï#ëײH\uÿuñëºNã»Oå6L¼Cþ ßíLT¼@‚7ÈtFKñý¿±.xAy<¹+ÖÌI~K®»I2ãü ° êf,[¶‚[yç{Ní&˜‹÷^Ï‚-¾›}L“ÁÜÍ[þèüuØïb¸3‘П¸wÓcÏ/ÁÆ(þÜðiÍò5²¯‘¼ƒïøÝ=Œ´"v¼øÀÎúIiû‰&ðš©hâ¯~ú‰á/4·¥ó;&29]møYÁú[õÀ~~[…¤–јTi©ù¹¨©ÈÏ.ûîÃ^æÁFcÿ­ààL×_³‚8_Œ¤1±åuðÒí~T2ÿuxc ã Q>“W¸«‰ê½çwÆçÝâ:`¿›y\›J¡ºÛ*]ƒ-ö_¬„’C&K;uózÜÙÉ”äfT.+¨YÆ"»Ëàs°ý/Øw=5aj^á®v¸¡9}l§3ÏiV;,"×mæ÷<å¡6±nÖ´+hŸ%`5íÏ¢öÀ%“Âò‰t“'ê:]×ñ×l?òóìÝ\ÄeÄpt|þ2¹lºßÿtCãáÑéÑ‚Ûû\ ¿~¿HepÞãd_úåö Ô êõ¡JøÎÛtô‘ÙjH˜ýô—+PJbh#˪?€ Þ nÝäý?ÒDdĸH¹ù×ünÿw‹ŽgäïZT4gx´8sßCvW LE_IÀ¼»Ú–j†µAþd¾ëÃjèÏÁøÿX%ñ•ò!žïÎþ¾õW@ºs\74#Ò?ÖøTo×üî–H–ç¯jeÐmÖv}ޱ~ ªÚWÄýVuׯ¬¢ÊùÈïŸ/ÛÝo+í¡ °Çpß5Ò]‚yÕÓßZõ¤¹ תTèáÁw–ÂÏ*^T7é²ñ}ÓO vÓ]½š/±=†÷L#dEC9lÚY‚–îêkmOì÷¢æ+eËì…Eü¥iƒzÍÛß^}åCªá§ vT»å¯¯LtÀ·ZUØÙ2ä>Ž÷¿$¯?õ]ÍÜÌÎSßдàfb{¶º=P¯ÐG42’xÿ ßog}í¶m TÕÎ!¶'jªÁz2Y«ÁQã™ã)ÕAÁÂö¤%Ë]ñSpÏùÁþ DJl;ÐæX¤@M^Ûÿßç_@ܸÉ7ŸÂ"ÙXï<¼`¼w«¶{ÿku•4rUºkK¾}?¢·¼ÅþýˆÛ”T¼±ü4T7ÿÂõAwG=KSõ±áhª(Ñ!väß O:®I©ƒX^0s¬­¶#6ÎóT›‡¨©/ÿÝúVò #ÀßbÝæ`u^ûÞz[a|8+øþ¬pé:’ÉÚ·6&߆z.¥¥²]¼ë*Ñ¿If=ñýY|FK;çMœô“²ÁïXÍ%”‘²Q+yù™Êu€Ã>††ÁÊ/¨úcaùùv̞ۤÄ27áÔí;‹âØ×¶Ÿ¯ "αø¯lRˆØí÷¬†›šà´tF’’øyb¼=öuS"ÂzÝ­§ŽÜ6ÒØEûÄêÂÂÛ}¶èhFX Ôø‘÷5¶+hç,‘_:Ø‚ýëšÄ!CO–e2O×Ù82ëëô¾œ 9 ±(„÷“ÑÛáéaŒa©#[~mа z{l;í‚M ã¯ýƒu€/LÔ…£÷•Ì&TÔ«Ól)·¡–Y²¹ðÿ|H8ŸØvÇÁ£Ãsz‚əͬ¸Ïw‹l‡eÔ³ìZ•ë¶êI°  ^PöÞÕZÛ p<µ»›è°Ô/ˆgæÞ,îEöW‚·B­ÑQþ®ÂsïȪù¤H°…ù—–»2·¼D–©²þ;©ÇöÚl»gï° Ü;Aþ[íÛÁñúQç}J¬ '~£ÙYl·úu¾úëU d’xÒSÎJc;ŽÜ/m‹"›%œ·}0úºp€ü{ 4§Âéj߀¨ÛÛEªœ`ïoûw¬¼Q*Hz*ƒv>·¹óæYÜ@¡@rýÔvƒ+©&ÀòÓ[õ M®«ä2ïæYñ¤ªÄÖ“Tya‚]ÀÚ–&ð@GHjKg=ÈùÈ/$šª¾‘=2ˆz2$œßù÷­Jò%õqm¥‡t,7·îT²Ûe¯Œ×ØTö4©t‘Š2@¾òU}ÿS«¶4‘²OI@‹Ibɶe—ôòJ†i»/Cm;Ø_óÏõçúsý¹þ\®ÿá•IŠ“KK>É,yÈ…¼NÇÿøÊîk™âdøzþ¯ÎRŠÜ_ÙsóLyþÊN›‚Êùÿ·ÉRùéñ% üæ’ÌEúŸ`„i¤šÌ¥2P>‘úOH‡O’ÿÇúþ‘•ÉÓ#U.é-9µŠ®ÖI:Q²é=i'ŸÊIY¨sÅí¦Ïµ«.–Ê’XCÚâü iü4‹8’V:H1Ý«%l”͵SF¯Ë4¹()uºV¶ÖÞÚØ‹øÊ¶kK$dÒøÃ׿± Ö¬-4­]ö{öã»î÷º?Nݳ×ÚÇV†ª¿ƒ ¶Yè¡ÍÐìú©î!6 I†`‹ð/¯,|û$xó'ÒW6éWHî:Úe§Ò»O¼OŸaÙì#kké­)ÒSù[?îuÁ®ê7ZGwI-b!c°ù—–›ù‘ T”ôÈ<‚úþ¹¾W×ñ^Ô.–[·È÷ÖÚZY kŸZKÛŽü¬¦}f-¹‰]ÑJËJ± w¹úçWr²y>É/³ýáÒVÍ¢ÚaÝ¥—tŸ¾Ð;šÒ–Sñ² VÊJÚM5Ú6Æš[eif},?¿£ÚF$Ðû\ýs+ògÄ¿WJemM¬U±Gº^gjX…´ë¤«‡ÕËiì†ïöÕêYk„äMl%·Vö=~0]š ÍyÎû¿[9ðüš»×ë"ü>;2$ÄÆîjÎÐVÜŠÚ‡È\×vhdþúØ>ÿ#ڽǭ–ÿÿ/ŽÞ&‚mm‹%±­ÒTJ„ðÞïÿ±2cýò–IZËR[xKŒç'Ãê1ÑÁm¬œÅÊ[<¬üBhAËA>x¤)À€XÎÌúÛVÕ\ßçnVXd7­ºàs‚%!}e—„’XZKQ-j½¬v~HlßÓjh¢¬ïîìz%¦°}š‰ÃXF´’ÉUµœh*4ßÚº’^jÞSØjoÐIX­LÆ Ùs@ÊÃóҀס‘2¯]Òg¾»ë}ug·òšëq‹ÇRk1ì•>ÖÔ–Ù\ŸÜGúÄïïÏâ{FçÔ0E üÞ½¶ÑÞ¹s pæ"Aßñù[y±O2É¢`¿€íÖuzž\çz{FÓàý÷u?¹ð4²G@ÎG<~O3û>¿¡°{d0!§%²8|J'|¡:nm™eÖÌðzl8'L·¬Ü–äàyVÌNòÝz]®§õ‰žàÞ}êw6ïÀâ—4¡]ä_×'8›%ÅúƒÈ“±í.¯w;|cšÛýžœllÝáEï¬zà¶uÔî䕸ŠbyÇxÂñËàÉ® Ê]r½Ûû{Y݃x‚ëb¶Ÿèºß ø«¯ÂZ*+lEìkÞç®?„7ˆE€ÿÄäÑndÈavÝŽØHKøY›±ãÍßZyü䋾ò\ŠÂಂgÎÞ[õ°îáç1–wûwÎèf½Á3»|Ü{ø}LÏ ‚•á} ÑÅä¿ïw\Ñœä†h⢰!ÖÓ¾µÛvK¿‘‚ÔS!k¹ë?[óï š?ò3ß;«›ðýƒz]ÜÔ€ÝÆ'Öaõ›¬üz§ñˆí¾Öiˆ´q°³ë—ÆöèJ¤| JŒ#ÐÁ)òe>rä ßñð=L(/¾1¿(j¹È‰ßÚÏþØõÄCw¼-Øþr¥‘܆Éq;µ¶j"KÉ-‚Å…ÇD Ú[Aœ î¥Ó/#½“Û]_ÉBÌç¡>×)E$%JN‚|á…ãÐKJ«Ä…È ãl2œð²EÄ´b!èj(wÔ2—Ô—tZ[Ûcç {I°¬$¨æ®è¹¦s‘h4»‰n®WÔ5¢$ì§(™ð¸«‚ºá5;}wèÃoOÊkjp«lÉàE;l>0™ß;ì\ØûúÛr³Î’J\Y'qô¹TÕrp¼ˆtdö H•ÝŽë°p„ö@¦øDDF¤¹ éíŒ&‡»ax41RV†ÿÎ3_è+²¥›–ÙïoLt¸èoL§r* ³Bˆ¤AödD~kü;‡~¨¥ÍMµ¹ ®_kx{¢nÆÁp¡ãµ™.#ß»½?™ÑLF{OœÜ€÷f…åF&&ò¢9 ã ªÄC¾|¬åÁ»¢ÄBwâ¿(X1Ú,°\ÐAëk†Ðýý·èå%"ˆ^ÇšjIu=ýÓ#ã4±°ì9ž™¥‹Ñ@W|`™Ýun}Å«Î#¿›SÉcÅ=ßó=Ö?Ev<OJ‡ŒoQðŒÚ`a&'ÑI¶øžÕˆê¤dýÛ¾’ÉO€¹‰?ÏDƃXt¾6 ¿#A'ÑJ+¤µ0¾ÇÖèB¤ï«ayüpž\¬ï¯oí9µã75;±••G:inIdù‹R‘Ö‘·Èß"â©®[qüÛõ,vÌUɱö>,œuÕïÉ®ÑUXQ›(O¤¡9®èo•ÑŸôš¥ 2t3£B!T~¢Ã§úHº£nq<þŸ¶E=”—–rFŠ“×sáïoÉ㉱|vîVN [?£cá?kÉ#‰àÝ0„ït öAÖ+ä·¬ÒGØd®StžÂæ]lªŸ›pŽ(ˆN>Ô-pªûü}ùÏñžd¥žŽbÁß›]*ÉCÉlO±nbòXnsûœòÃccún‡±b/üÿ¶º]ÿý‰‹åÈﺡüÀ£ýõGY-óÔõCÁãʽÖ%ð·ÿç0¹1`®‹˜ë‰²^y–ϹŠÞòÌÇÖL§ý ÁÔäþXåßÈõªtGvݱ¼Õû¢ü†ï‰=“œÐSÛ†Âv~ÒÞú³:›×ЂZ˯BöÞ`c¡ó¬9µO?< ?œ°'zpÝ"\ŸƒÑú­¦²…vÌæ˜ëï±ÙwƒÎENÉg`@%ÐC&¿wÀÍ‘½¯yàL£$fP0•T”³2Ÿ<¬)Íõ{\‰$‘oˆõ~> ¬¡ƒù«RD¶bÖØˆh3µ²/õæ‚ñ…¨xÍDøý<[NDþ;ÄOvêÿJÖ’JÂíªŒÊÁŸh\âësK¬Iƒze|"i$e}¿ç»—°e?8ΰÌu=[ÇÙ Ót^Ðdñ¬TE½¬*6‚V"{Wô4 *ô³©ow—‘ÿ„ÞÃëO"©ëvËï•Íì÷—»9y¤˜MÒ¶°Ï`Ê_MæÉr}€ä·t/>?ßtý½^'ZÖõbZ+˜ûÇö ÿºŽ~n*Øhg9L¯uµñöµ±­Ö–8y€÷+X Û)š Ëïæú©î&׆ãýÙAÛÛê&o9ôÿJÂ[<òó=|¸¾¾V{Î÷ÿw]Õvàç?~A;´±}“é{ݤ!k¤¦êMé§ÿ ±_l3è· =‚îÜNÁ0–Ä"‘Wž¡»7T‘ÀÕú5œ¨¢5²ZøR;­DùóHIY)ÏñóHÈ2ž(_ 2» ½ÏÏ ¯Š¾× <Ö¬V„¼íjýÚøo:›kƒø»'¸ÿ±ÿ=\7"µß9Ÿí]ÏÌ÷H^tSS¡ç¯ý”­§üIˆ‡Ê6:¨ýÿëIFY%Ñáh¹m'8¿¤6oï.~%Œò°”›2ºúî6hñNÓbAwœô3¸B4GîAH¾ÁwÙDl¼Ôd`CIìQÓYÏ÷/ó7ñŽe¾_âcß+ï8yó"ìçÖ?·ÖQärdÑj ¥ë>V&hòWÀÿÇð-÷S³'3×ñ4·Äf·a‚§É`oÀ„GxÅA"(>1|Øé'@,DºIh"òïÕ,~Þ1<ßÍvÝŸÖ¡‰§ðáKdÍOl*Zˆ`ûÐro­BV£Z¬äýa(x°³H Y‚ÍÚÔu©Û½}æzG>tsMºãÏðûAhâxà"40}MÆúèq©Å»à/¿ ïvn›ð˜Y:¬XN¼Ü¢Ž¬à¯‘( o*C…•Þ&Á{û™ñ±¬”. êü§üÒ^\ß’‡|ûÚ”˜ž¦Í´ ¼þ;¤JŒÏ.ă]ÿÇѾêsÝ“'W×"ç<Ðsž¿‰ãî˜Èjt3ÏO uÝÿ> G$é#‚¬Ó˜Ñʾ‚/4Â'¶µtapü¯:‘ûß©9¸tÂÏ1l}³‘©Ü¯¥¾³½ë?kÿ¢Ã®Ðƒ²[JúnÉnRüfÏ×ø~a«¹çŽ€Æµ¤äÉÔÁàÉÈœQ@>w~49'³Íã;oÕ“ÒTÿ}5ŒÌ¿sÝÎÏý¯À¿Dÿ;b๺¾˜®óÑhrÀxt1ù&ñsPÏÊÙ#MÑÄ pažï”¿ˆ(ƽ}|V\x}¤Žà;€?!»&1×)z.ìçì.êõäªäÂÓ ØzrÚ?åü!·;܆S¼#*ÂÚùcµ¯ï;…Ûj0ÞuùN¬¯e ¼–¼úÍöp=#7ð÷Qð/ᵯž*Àb÷&xÃ=}¦E-z©Ô+B–Pÿmþ ýNÐ{«ïèöT~‹'l%O´SøÃ,|y1LÈu?}ÇóÜ/È:ìF>Ë‚·¬9]Ÿ°Õ¼z$Ï-õçÃÛc*àœ6¼ŸéòÞ— ê6bá±wÐq%IºÎˆ2Ûmf”™dɶÌÌÌÌÌÐfv›™™™™™™™™™™á}™½û–æÍîÌξªÞÓYG²Tª*ß ?þ¸7oDFêÅ RĤñ¢ük¨¾Z˜ª0”ín²ïD¬úÉuí?A¶ûâúßÛy ¶§ÐoZØ@ì/ÅÇ_ kä?µSÐæÉX´g;þMâ1‹Wì…+~{—|bËŸ:8•ÀeÞgókbxV*õ7ù¿11M2sÒÌ&3_ÂÓ—PéÚ¹n8ÊóHsF°Çqß•èÁÖùvBXì»´¯‰ÿ×Àǯâe¤0: :ôG‹x×)êÈËȉh·s´¯á ¨„_Hj¨™ÔÿщþB^•Þö¿OlƘHäç‡äý¹ØnVïÎç_qþ¶\Eœ ÿÍ#7ŽuYð€´’úî8oÇgt‘›lÚi´¾%íDØøí~²µï-x\_0¬±Vrj ¤šCD¿Äcv;v8N¸žß4uÞJá£äAcCµ‘SUÓƒ ¤ž9åUù›˜`X5H kr‡Ü"ÊGÁk:©»¨ï_= d\‚ÿïw;`?I,NýÒG;­Í÷]á¦^£š¶ç ¦¸IyG`øôéèâ„„‡ïÚî1¿êhÇûšJc/ËoL( 2eÌ6i ûy‡­­µçÓݤñDîHwæk4åç#®+bªú„ÚÜﯭðýv acØÜ1±gö>Ù©àÄË^¿‰Ÿw¸~ú `F‡ùì Äw Dwãt‘OôBkO0L²“§ý·8Þ®zï'ÍñùA|Í‚óÌsýïmO`{&;ˆ_l«M±¼õƒ|DCTøíÏ~4¶Ôu|ŸÏ,w×Fm_\ÛMÔvÖ³{fÔXdê{[xÖvÓ×D¤J ­!Ôîù¸âfùÍÃúvîoOâ`,ÖœG…3Ьm!:¨Wxi¤C?ë—_«Ù1ˆ;3n½ã9ÛÀÁ¹àá¾¶9–I(ü¿’ÛñAê^o‹Îaö˜æ!ÕXX2Ùmê’øDÂ,<¸t…Óu‡ÏutíPä·WnsÁ|²‘ûJ‚b™ÉgiøÊ©e‰ê&øC1}ެ«á‚çùZ‡ço$ßYË€ ¦‚ˆ˜á讃Îõ¶ð¬zf¡©lòK?MI6ÿ†÷ÞÁs§áõðøßÈÝܹ yDÁX<ºRVÐʰžàjçÀ.õÆâç$V­ŒÊé¼ÿ:òîÀ¶õûÐÅEt‰La3bDÞˆ¦êz[xc' 4•L)H\†Ô§0Á­xï)ü¶+ž?Dzû#s.²OP)dÑ:ðŒím?=õãmU›w£­³D€í|Ü;áöJY¯†›°ð‹¢ñ¼-¼[åá`‡Lv,„çÇ™î’ÇÂ|¦`ÙnD 䟅÷w³«î#­û; ¡anßÔ ~²ÓagãgðöuÕãN^{€<¸L8'ï$™ö7šk8÷x—ûþ˪o:š—òÃuÿNÿNƾï*ô}®ëû$×õ|¦ —> Úpé‚OLrÓà–Kv)êzCÏçù…h`1’¯; ÷ <Ñî{6OÂ$®“¿K4" <>4XC‹/ ¿]¶ÓÛ<2“\¥ò³»v,?Lìž@²n¦ŸÚ‹O#*æºÙ&ªÏ¤šˆD¿ž0‹L·ÛÏäû7Qðx’‡J*¦Ú^ºöúw C€^×õÚœÚË7VZó«i+ A¤ºK;£'6Ú¸ƒõläïÇl'ìÉn*ÐJ±ÎóNk7#m‘Ûÿc=`¯Ú…ÇÛ)Çà¿vß›ÝOÜϤunÔóTÅÞ»êóïWdSÛt7yˆÌ˜Tq¡9J;¡Ûοæö=ot³=w»¸ÞŽoK0ý*‘A°’øÊSª¼õ®²è®.!jìÞ™Çî.¢ä¹±x@²fwí|­£¤š·Åþ¿Ëßíÿ.@ °EjãŸ)À÷n¯er ÝÕ.ÛÏú–_Å#8¾Cm¿çJ:œL‚Ö¢¸Êv+ZXO•´•¯ÃdÆ‚êä‹uUÌ? 絛·`‹ë½zÞÿ߯”&ÈL5u$%Ç÷œLu›ï lï÷ .s]7óqn:ÖbWÇ'r“Ü’ÏöÙÂÃ2¸8xäæÿÚ}À¿RD›©½—n¦»Üê47üá‡.“&>Õ%$· 45Íd>ŠäO©âîºëÝÓ°¨ÿ·,3ž«±óìÌK«É¨{ƒ4è–]ÄÕ nR‚=û·„wïÀ‹ìnHÛ{Qï¯Ü=såõ„éäm‘ÿݲ=KÚš‘ÒX·¿Áú™à˜=²-l%…€!Ú뜻ÝnØX÷’|?In vÄÆ #»åþ¶fÞ讈…Eò]:]Kö>é R‹Ïæƒwƒ6%ŒG²ÂcíQdº¡`ß2ÇæÏ‚dùðùº X XþÛÙèÉt•Ô%«·Ôäš?¸†öºê^pü ¾óVÏP%§q³Á2{bJ“ÎÛâþ‡UÖ˜¡æ»Ô#cÇú§)fÈf ±~8j¶Œ YZjüÃØv8`c<’æ÷Š‹=§ ÿÏHuxR¸½Ï§]/ì·äʰ`ÿ äY©ÓDºFÓ{<žrò4ùá_¯”®«cE³Ú,‚'ƒ/Öu:CWê=íp"{¯ë?P«ûv2DJ^•]ã€ÝAü!Ô<¤¾ôG]iMSÊð®Ù)qÈæ°ý5˜\\Ïd›…ß?ÀÊkð‹ Èìô-õWmÄ«®’ï'iWêÜ?Þ䇻¢"A;®èj*ã|Dó6 ðDöÜÃúÃŽ£‰E œÍ€E]ŒôÖM `7 .}°Îû{Vr³Ê’BÒtK\¦‘=U=¹=ëô¶Äò=`G=a935¤g/^0Jö›!&±ÏNºúÛWÓÕ 4›Lti)Ã%ºvóT V'Xrâ~²Øiè#ð‹z€ŒpY¾À!ƒLoò?|•0#Í\GBKÙªã<•uŽÙaf›ÈpânZÙÎÉÂî#ð_œn÷XuL/³ÏD‘'&®Ä”úø÷¯¦ƒinžÂrkéNé½»9þ\®?ןëÏõçúÿ½2Àxryû þÇWfS”¯<ÿô[ãO}”ê¶Ïe7TÌÙ}º¿ç߿♸&•)d sBÓÍ\û,1™¨óš2TˆÙÐD\“Ûäãßb¦‘ñ…½Mÿ¸“0™É ÿ#Ť”Ì1!ä½ÙެeÍ0SAÊ`Ù%$šl4ëM[ÓÝ4Ä#þ¸sïþõJdâ˜ü&†‰m^›é2VN•æ±¹ˆ·O“"ò\ªkBí«ù´”Ó™rËl1§L}|Áú›ý÷V|“»ç6Í]ã¯wä¤DÔòMrÊsÉ4–VZ@Ûhn¾*k'®uõ“Ì–âGØ‚Z ­·øo­dÔ½qL=ÇÔ²úAjVÃÊGd)Z)«94™ÛÕÓN;èI]ÊOÅ4"5ñHi/a¥¦):úy[Œ¿sÅçÈÓ™àfŒ©-÷¥‰¾’HWZséI¯ïMK3Ñu¼LÆsu‹Ö×Ah ‹æWÕ/òLv‚‰‘ŒÈùŸéLN“Ò$¥Òý"14‰¦ÓŸâá{‰ý³êF©"CµˆÆÁÞ¡ÐBJž¯¨“µŽŽ%Šê¯Z^;ê„ü>Ðçîo[iˆÜô&…i*µ¡V»ýõ®Ü–ÐZP4H3èf©¢ö¾Îðjç¿Û'qµòЙÚHwëjíÎ{çHS‹¬éÍû<ÿ¶ߤÆcS‘×ß»w-³6ù²ãÓ_å®$á÷Üh¡/H÷Y j<Í£Qñ$èá‰jm®µ¥ŽÔ£:O‡è'ù@”ÙP~Dl¤b"‹~¾™ñåÔZXó‚¶«QfCêòNš~õ‘þ‹C+ÑôïiŠnÒ‚#u?mÓWR[˜ÊdRß?šˆ¸Om˜žæš4@Ê‹r›jFàæyØÎ¨!ðú0š©žHK¤µ{<2€Iˆ‘ïòI’kW­FÑYڀع¢é=eµˆéËçúú ˆdÔ1EÍ`sTê¨Ñ3rJNÈUr~#b %Ï<¢‚s%±p çñwL2“ k¸IaÀÿvè$6ÐdˆÌÏ-õ³þ¢M?Qqo‹øWV Jaf›;2ÏÏåº~” øtU˜ÍiÁÈm·ä¡$Óby½«;–&B ~Ú8 ï&c´ÓšÄKB2£½ó9:Zê¡ÏsilZû0#ÊuÒÁçC»ž ¡‘ Ðu·ºîBúÈÿÿÝCFŒ‚E_‘ã“hb!VîÌk£ò¾²Ú HÁoFoðŽø°Ã):US{ÎKYSÝGÙ@FÁ-hª›t¶öƒáSYt½ƒ ”.øZo‹üoVrSÕÌ2ò–жþ ‰lײ¤Hù\.ËQ™+A½BnªK,ÿI B†uSì>ð: †”›èØÌ§$EÚN:Êu‰ëBÄ€I”NדÙ3[Ïg¾´6*ìt Ö-G$6>[ôJBT'â+ ‘¼NŽË*Ù!)‰ódû„ÄE\¬(Í+^Kž/°ýo“'¢Â{FóŠÊ°Ãžøý¢£±4–Ü Ä7i(“|fl60? ˆJ®›ÙcþDu/ –&Í»®^“‰ÿÔh$6  ÿúãï$ ¯ ÐpxD~Þ‘Žˆù@¬Ø¾èÙáCåȆƒ©ƒÞVIzsSí¯Û¥”$ö‘z “C¾S¦9~{S* E¬ÿ^lÿ¢®kQj]&»d‹t$ÛÛŽPQÝý¯Qˆý¨®»{rý!nPVôqº KŒ ¶›`KmÆkóÀ‰Zã _dŽÞÐExŠè ãweÄþ‰Ly ‰À·õ²\²º¹_ˆ{?çÿ¡t­œ‘2Q†9 \xEž»‡ã {r}Œ¦~á6oœBoö.iåUaa‡¶·d;¸Q-b<úê2YT>Q 4yÍtÓEÊPÅ¥ÖûRƒ\ïÇQÛnåÓ²¹6ËäŸÉ_ã`ë®×cZLìBlÛ^n×ð’³ ¥íî–ìA‹ßÑV&-­Åáùñˆ4xK!4QŸ:`šy[x–þæ¦tåØ"Ùƒi¯$#™Ì¸î÷§Év{ß)}¤‡Œ’é®KØ>0.8q?‡ç«£«Pjû„Ì“¥hê.`™ï+| ÑSŠZ©8ì!ÿc ¼èW]©õ}àÐ Å$1Í$'Ç–F߸G¯‰ò|䲤øï+ž±ÝßoÂ×H/é'Sy\–µ0‚ÏøBV´¤û‘÷09Gìý!áÑÇs|á¦Äpù±5Þñ™Ã2âÒüÖ•ú¢(œ¨’x?¦1~æÓ„ 72ÏÍñ¸(÷Éàq@ïxÄþ< ^}…úg¹ô”Ñ2^¦`ëÏh&µ>0YÈ€Ïä;Ú9$+e¾ÄswEÒCò‚g#ƒ Qˆ’7nŠZ2¢ ¶î“üT3´ª”ñ¶øp¾ä¦±©gLVϤ‘4¼»OÏvo;} ’/Åþ‡`õå@øÍÈßG¦ GAúøºÁl1¥tƒëxº•¿%"ë'×ËÄÆ)"ÁrħDÐxÅ^>©ŸÐÉí£N‚G<”Þߤ7¥ÍMÃU3 ^ ®vZö`M›Oáï–ÿÔ‚ß΄Ï–¶®Ü øÀ9gÆ›÷àâ2б3¯o 7XIäØûŸ®IX}ŠÞ¢’Âáû9ÑnLäÎEü+šˆ¤õ½^؉õÉØOd=Þ² zp‰WðÛ&|þLB¾cR˜\^ÔŽ me¨ü†ü³A÷晹èî´]zJI=ˆ„ßÅž9²]¿à5…àEŨ¥›êùU«“Qýɘ‘ô’¼2Þö€ "`hµŸ^ ¾Mt]^‡ }?ä[ä:׌á™9’ùSk_2yxµòàõ£`²¿¹þ€#A¿Ã’JŸéi¸Þ{lú ®æÆ§R9k'T;E`¬¶‚ÿòKiÙbÒ™ø^•?½ó—£àúYŒ@¢Þ|-ÛÛc#Q½ì³Z%aృ`2]¨ç"i_‹WL W¹{E;Áêé~ªüÝ0ÿuxÑC2‰Àýž¢ƒ¦nXª¡1pÁxZÕ]7ú$`žÑ½(}Lþÿüf•Í4dÇ’Ïoò°Ÿ;|B&[N ì–6ðøFdîžÔ¯àÃe0ï ¶uՌБzi·»÷Ûé1±Èø%ݼŸÒÄE/Ý¥‹Ýœ°FøR=-'M¼:=™ñ7e‘ÿ‘ëù³Ž¸ ¼Lö Až O^KAÝ~ÝØÞxï¥9ÈÕùêâA°â•®ð*º~: Ïž‡ükðïc0ˆ—dÇpàjHwÝ$œ;3š«gBø@}tÑDëzu—@Jju& ¼'–n®ÁX‚ƒÿi4´Ú|˜+=—Õ Û ì½ŸÎzçÒØ¯'7ü*¯Å^óY@tØ»CÆ«íø}Ý1Ä(jû‰u{‚‘ÒÂý‹òŸÈG>ù$]¼: 3Ÿ)ož“ý’‘õlÏÎK0”Tt¶›õ„¸Øþ±ì'Vð˜êê÷rð¸førp.ª;ÃW‹·@înd‡ùjû¿Ûî¡/ÈŸ`]‘W5³2¹Þõ©‚‘Š“‹7÷‰×Çÿ7˜cdª# Ü5ä}…”gá,·°ßz,¸ZÈòýÇî^øe`š½&%HP•«¢Ûù©-Œ¶ìàWþjgæØ;¿ÃÁ">ò‰õµhŸE«iüݱÓ㫃ƒ‘ð²l^å€Í¨~bÀl¸žþþpÝw YX,xƒ/àÙwñˆbïkŸÃ]ãæB¤!›•Çúµ»\ÎvÁ³ÓÝ ‘ßvñN{þãñ‹OÛÍï15˶þÉÿ³LÊÂkQ}”)ø¿¿×äoi’š Ôyxkl½CЄXˆº¾ñvðŠM®§¯íob;"( ¦Мš6!.†47÷ ³Wp¥£ø½'üÕC Ù™/ሂxxA!tÖÏϨe` Ãÿ~©3"õZ²^ù1hþ üNE f?L\GtL#ËÙÎæ¶ä2D1*¹¦pýÄøv!l¹ò–›‹½9‚ŽàIÀÊÕüõÝÙÔ¬n nýH Ø^9©ä¡©âÅ;#³cÿÈg«ò\xÀ"9Éq‡rW¹Wñ•”Jf!âº> å±·=PwJtâ?ïKäÎù#®ðîüu¦›—¹<¹'шøk`Atdûæ¥!¯Ô€%¥¦NZE¥ýÔôšôö¬w““ȾϑÓcá£O±Ú~9ˆ%ãsìï+X,á†c¤/šXç:[®àQþ¢$F¦=h倛ŽrïXB¤Ì r€?ˆþ¬ Ýeü©QŸ[ ã/IÑZntQ—y5ÿ×6•LT¸mZ]ªYl·×tìÄ_Û~“$$†_QåíÃþÓÜ”¥Øwò¯uÝÝ€e‘`B'ùýõï6ø í•h»^î=߉‘› ´¸ÇoYˆ®HÔ‚7Èv"P <î“Wí? ĤB ïpÌöìÝ5$?K|¯†ùA’—<³öc÷´­Az;ín#ßg¸>CÀ÷«HcóÂ:¢blp1Zk8Šo”ÕÈ®·®)ô€šè*_Lj’ˆDC,Í«1Å›–™Âæ®ÙÆÛ3[‘b"6>èÎm<àˆ Çø˜(¶=†ÃóÇ"Ù,™K~?çºÛÓþRW~AÖiØz%Ï/@ sÄúÃ^ »×øj'?|˧¾¡Á“¼¶0Œ()Þ_¼yWüZS\CÒÇèàVD$?{þþ=ÇŸ‘c<'ÇñòÅ®.æòß~ õ¯ûµIÞ˜)f%z[BL@7ölÉtp¿‰©vŽpC>%®~G_ à6r‚¶)‰‹”*’Ñ‹òïÿz˜Áäó ßa×å|8v NIG€ãw±–í_jeïþ¯"¾‡£¥NDÆO¬x oYj–›kæ³iDŽXÎ_÷¸)°kùœpéšÍíI ²œwSSýÀƒl®kòYéÕ{Ù¬¦µiOîZ…„v¦ÁJ$XÇqžÅêbóûÈ·…èèAŒá5S‘Ëž(ARÛžBq´¦Ü3S‰™D‡–º¬"ÒÏ‚ÿaðýÈäÀWTOàHAÙS`À j‰·¦«¥7戩kê™Ìbg×öÕBêzl¾ ©_a»'Ä…Ís‹ˆåu®ûs_þºV¾È/šEÚH-‰C<‡Õz òø~ÍüƗ킸ÁÍQˆJÍ ìÆ‡¶:䋆ßw]ÂÊ,ªoï®ÆÔÀ¡A÷ŸØé"È?Dú «=om÷¸æ&~@–e®Ãi;,¼Œ×†ÐPðºº:@Óƒn9áÁù´¢ØùQÑPo4S2{uú‘]síükpù&²nq|l§ÓYXÙN)XÀÑŸ[ŒÂ®£±èmä°³Ábº9Nլݵuo=¬ù‚¨9‹.W“CF» 0÷ÐÈz÷¸Šß§‡ ¥ÕßgÀÃ/ÊH ÓÎËòŸ5A¦¶°= o#Ý<ÿ³ë×=í´°¿€VæcÇb¯^#Ö»he§ƒÚYílàÈø”W\rÓ¡Fáév6ø´1œw_ ,GTI£Q-Fuû†SûOö²üLC“¿/Y‘à“»êI¯:«/ ИßzÇÿ6ßOÝî‹áÜ“rüÔ =سúï@†õèð Ü`‚«;ýõDwø?ŠóÚ:Ôš´¾PHŸ™Š0ï®PÒÃ<7É9öm zmp9 ÕÜMP  hWIZ¢‡þnêW[2À¢Ûv5ŒÜA¿È“‹*¸9¾P]¯£»ŸÄöf¼g¡{Ï0òf§å®>úˆ—Å¢Z­Ct“5¿š3^–ÿ XÊ Àfía·«ÄÎ+¿)v^g$®ÁWs¤X{ƒ÷Üüò×ør}­EÔÇöþà`7¾ÚÀ¡ÎQ |$f%gà“áL=`CvZô2×Mq7Y"Úk­mµ‡O샜hJš±›*6+ö€°€è€çÿÞ㺛촄(¢#Ó u9l_[ûjyxb-< 8ØŸÞçðºìu¸¹ 8ÄqãQxƒí<É]c‹À»bkOŸè‘± 4”&§î·g¹n‚TGÜœ§®È;Xÿ£e0?”rHßIÛíµ*¸a¯ò—Âÿ{Æ Ûw=>pþs”¨²Ó0·¸ia ~:ÙGÝÊN’ö¶ènm$/“J0¹<|¥§.=&ÝðÙ>ë8ÇfÚ“ –8Ûå•$:Œ¬× O3X…LÑÌ)¹.ˆ€ž: lè‚—ït3Pm`;Et2ï g¸+j$¡†ÐT:ÌÛ¢»õ›id’ËrXŽ=º‡» B޵Ȱ#îë&¿ØÉŸ³Ñ‰ÝÇáO¶ÜÁ«zHk|:¸AGÝÑ òh йHj'g_vó4w!ùMòÊq>ï; ;2™?aFõþî»JÃÁ;›œdòh°Ú XlyîˆØù§'ÉåCf ñ°ÆMGŽKÞᮓö@æÞ®³}w°¡(߃¸±W Ö»kç¶‚zÂ×¼Àî>ÌkÃjØqMÚœßè • ´¬y)y©Í߈ÝyŽóˆc?íæ[ä^êfÀ &V¸9`/˜E[Ã.:ÌœJÌvsOf€~WÑã}7;뻄§ò½JmkªTÄš¬ˆî3À3šBT¯ᦶ‡o bó“ØÝöœÐ+×xRÛÉðSÈë@‡¡Ø|ž¼—xššº(õÀ!PoÚÙÀß—âóy¼‘gb÷HgÒj¯± }|xRFPr%ò÷ó¶àÿ´’‡Ó‘Ù>Kcjvª{½æ&ˆ·O°3¿ìÜÓ¹hÂNµZ:Øé>ët÷Aòðáåî ©í ¼šÇw-ñ¹>¹1’W$WTÖð`Gv¤¯«³ÈþÞ­ýÿeÅ$:›ÜºXRc›ØDg8jÞ÷`×{¢y!ö\ïØü7Ãg XþÎM¶þ&É©þìUîmî̇:ÕyÀ^¬‹8úE³¹»áá[d¼x~¸ß-SIo‹ýW“ˤ0¤(Ì×N¨·ó¯-ŽÙ3µ¶œ?ÛKrϽh€—Ä_râÛûäœÜÅÞSÑÂv7õÅNÏ>õKk\òâ*EÅ_Žøú,9ù}˜ç´Ìñ¶ØÿjÙXƒM-¢ÿV·gö»*¸¿‹é®—¹í{= ]ì¨ä°Ìij½Ãë>“RŸH8wWÄ^¿9 n^üyÍ øQG¬KàMAnVÞ@mâYfZ{[èµ™<ä´’ƒX^F4/¦‚±¬oˆ?¸âòÂ+Çk¶Ë±ûÿ£˱õ(1 îÝÅáíLpÛû¸›åÇŸòi;¤o¯ ³×W=åWÙýþÏ+³Ék†˜7’Y×cáån”=6ÎM»/¢qàψkÛÓý"Ùá•Ä%›×ÐzKüÝ>ŸzÚÍÈ;N¾ÿžÚsA`‹vo|Aão:^'“[ë SÇÛÿ»•Ñä6uM)‚oŸvüæ“áG» f©ûÞ#mr2ãN¤ß*ܦҋ‡\™t%ÑQ=¼Åß7’ö"ÿk±W½>5ç$)¸W…|’OWèVЯ·Æ“²&±·þ«¦ÉdšTçvbç¼x‰›s³zíxfÏã&×HtÄÁÿc‘-ÊaÿGbï½ flÅûð÷(àC*„Ûü&ü­¯Öã{7]¨Ë´$È_Åëçýþã*kJ˜Úf1•PEb4²ntSÛn“é¾PÁÜË+cÃøÿ5w|JäÏC6¯F~O‹ì×ÄÊ^¼?3ÈØ@ËhD=…—Ø©ç=ùÔ` x&H¯ŸõýË«® ÄJ¡…©h¿ƒ×Å Yp¬þWÑzÛ?;Ϧ¬.3cJ|:œ!¿–Å'v“õ¢«&Ù•J)¬»?¢‚v@K¶þUð°-ÙÆW&_ýÛUÕ”2ÕÌqÓTç€uoˆ ¾Š߯Œœ‰©ZìDÔ¸îú}mŽý3ºÝœéñ‡ÌDù.b?Ì ”f€é>7"¡™5|â=¢‡µ.Ö÷ÝNÐȃQL8YR'ÄŸsãÕ!°eUwßBK I†ßª¿p£;ÉÔîlòÓ,øÀ3þÆíøÌ × A´$ÄîÍt£.Ð=Ä~Víæ£w?ÿ¾j›z0¡‚f¤,%Sƒ¯Æ%ÊKaÙæ:•ší3Ìðº›ì˜Áíy+€øëWjÅZZßÕv7‘=¿—ÍÍ LDÌlÆòƒtÒ§Ó@ñõ. õ©ò› 敉†ú€l‰°sFøkg¾‡æ·DJÇ*ëh¤±ú1‰OEÓÐMG¸ Þ¥@_íÜÑrhènãU¹<©5¶Tô¶xÿ¥•ÑÄ ®˜Þ²Xâ³½a.M°sr¢ 2-«ñô,¸¸vѳº‚,?ßø,gñŒ$¼b+ïiä¦@LÖ ž6žrÙ”ö¶`ÿå•›(Èg™–R‡Zm–lML×Ã㛣`4‘ô¾ä'ÇÍ'·%Göj<ž‚|Ü$({·÷0<šv"÷·ôº><õä/­L0ÔøÄ³©àëU´;ž0ÕMi¤åaûYt8YCW“1sºþ@uy.­»¸-Ù.'´g±ªÇ_ÛS_ÿñ–í“ܤ‘Ò ~JòùNàù –wt÷°!ãmÖýütLד ~ÀùKq AÛc^׿žåºPúúÄœã¿g%ÄÒš1f¿ŸnGÞûÙÆséêëô¹¦ò¬%>rës)ƒ´$Ún`mAý0†ÐRýÛÿÌ®¤}q“Zè%ˆ—€|Lc{Þé=d®ÓÜ3ûg&>†‚z à:­ø[,¿ÂÄô‰k\ÿ½Î2×D“ìrLÒQLÒƒðø×äµÍzN?éK0¾½»XVgªA+Ë*3ÌáèÿŽÕ;Ž1Ì yG•;м˜Ë“Äœ؀¼@ÀÜT¼g`˱t¨Ü&{¤òi¦÷·¯Â& UëS_¾šÇòNx:y>R'&’·’ à¼0‰ÜÅOÆ™>ÓÝṊšVH6Ôô6±¥)ù0HûI89d*H;Ð¥¦ä£ÕÝ?jU6ÙÌ“JbId¹cBIs³Ø”þ2I>›b>x^çÏõçúsý¹þ\®?×?v˜R°$<ò˜J&ëÿÒÞÿ¿¯”&£IgjšjÔƒ•Ì[ê‘<— /’gãQŒ:¿š)hªûðî¿w%F¦@ÓÔ¬4‡MdYlÈ3 »W2}aÅѤª4’õf¹éEPöŸÝG¯ñü}+¡‰çjà$ÒC Ë8ya¶ ‡FMXYh®H §vŸ×5Y+~Ò”@þÄÿ+ü 9Vö7é©~ûÊiÙ…„—¥»6«ÍVóÐÔ×/Ò]Kk2M¨-4;5QTí))äœégÊ¢ƒ”Þ>üÿÖÊd‚À´Œ¦¤o†Ë} ¡a©t“éw%[¨ôŽJ«eµ &Õq®èošSC©½_Äžùʃ‚¼-Äß½Rbõ“Ó´47Í0I¬5¹ÖÖ,Úù¿ÊO“ÌäÓzê¯éu žÐ® µÔžmŠ/ü¢Ÿ‰‡Û¼?ÿt"\¼ÞÛEu›Fß‹•<¶fEÖùX¼ˆî’'¦’6ИÉËiMvfiíè:¼UÓ¼f³›ñÇ›h2˜BÔú-ÍS±×òªk'¾l?—Èç’ {—×Ìd·zS>Jªëõ}NÆkkp?9È_FÛ!ÿù …É„Õ\”ìÔµ:Lßè{$IMC4ëë3‘’šø&|§¥´'ÓeÅî!ô¶Xï.E¦×ԃǗÓzBöÈoÚ ÍÔÀèXž‹¤qÀ‰Mè"@ëët0p”Ð`ž:V2À -®øîJízÁ–5-°x~ä©‹u3èGb ˆ¯X7Q`ôždÕâX{šØ;@‚µñ€vš,ªCtï Âþãð„¾|¢ïT<·¤»)o¼y¿ÿ__ ¨e¥õÄ<{,IÁýš?Ï<zt «—$¦¾Æ#ñ‰üÛJ»Ê“ý j"¢¥_“ˆHïú^ØÙ!U´'ñÑÐGû°ü5M-“Â4é8âIx¾íVZ‘¨-±‰æ7²CžKF-É3o$ ¸¨ëÄ^óO…ôíÐF òß[)©S‰þxd?˜bzwU°¥ÎÑUøËSÉ#¶6òÅUü”‹œ7LK€7ï‘ú{7ø`Þk9ê:CÕ^H›ÀáBJ½*7%¿¾“¸Z‰Œ×ßWÞÓŒ¼ ¦ u! Ò'Ðd(½ˆ—¼'¾|oLQª÷êf¦)cÎá߯䤠ƒâ`™ícûÞ¤º †Ü5 ’ê7‰ªEÀý‡È_R{€õ¹9,Áîé¦"d$K¶ÑÆ<ZOË\ý¨ç¤­ÊŸ›èï`vKI‰B%›†ÛoN¦Áõ†ØÞ0ÏäøIæÏˆ\Yù*¦Ñ‰ï ¸ÐS‰J´ÂÊ•`ƒŠÇ<“ph¨ ú›® ÑMâbZjÄkRélø`o üïV µŽJ.dªæîèOìöõÙ€!°Øsl¿Wî!¿" ño»zˆû¨nN^$. V¾’Hüé‹ÁƒFyñ•íînú²|^>}@vÍëSýÿãÃN뙚n¶}×Å¿"Re! ÄSÛíÛÞÍ1_îÊ0! :Š®×ñ„©ÈýCLl"õ¨ìGæ§²Û%Å“!"îÊ y'[±ÿ=w·÷R™D.¸†f‚QäÔó¼¾>˜˜–˜¸-›ä4’GB?¶OJ/65DQ >•_xKŽ)Æ¿Íô¸6‘êÞÞÄ2‰‰€¤`ÖÍvï…Ô–åTrýÿßÈK×Ñâym» ‘ɲLV#ÿ6âã3)µ¼à>Ýn&Ä4õÍÝ9iÀɈ°âR A62Å7 §ŒÂöåµ*¹ñ¬xo\Wñu”ˆøîKl=<çH3" P-4üç,Ïž¦Öß#°þ8˜ÌD´ð–‡Ÿ.@KÑMX9qÄLF¸A$DD;ßÁ‹®sŠí†Ù O(®½ÑÀ=#Þîþþ»üþf€„q=oÊBwŸïbÀÞÅ ÿ¾áºœ;ã`‰tEþ2^F»½î鵡—jžEL  Fj+³É¶“N(b(8¨Q…ܘæÓ.uYæ€y´²þ&y¼-¾«wGšbûoÁ–ó‘m<8¤› êíGª5Äý!½·RzK_ƒ¤–ü¢/Íi]íÝñó°}_IJÄÄkâGáõ÷Þªön™âd [O¼–RúB’+iT)`âyYþx&¯™k6“Ó§ãß;°Î~¤ŠüÃÄÞË»Ÿ¸ž û‹››=ì:ÁöÁÆX4'Í7ä>Æ×>™B”Ì£ÞûÂ_ßaT¶ÓK3C,£¨/Ê&'T‘®^ߟô»eÎÈY»½ãîû·Ý‡cO[÷ÄŽ€Çà:í‘ÂÆot(‰ƒ‰dŒè’ Ü‚6Æ‚ye]/¸× ãað/ <*¶“ˆ ø+Ò·s3ñ¾KV7E!›6–^ß×Ä6?L=‰„7î^Û£ìRÙl®ÔrÛ\¿ÏR^‡\CtœÞ' lG—YÒEz¹ÞÀ3ù^ÿ§‹Õv½¸Dæü.6“dæQÒ]5«§s¥¢–ÖÁxÅ]òIyb☘^•?ƒIkúJh=†÷ït^{ð™þ„ßkJbà>° T Ô~ÚK»Â\êámW£¡®;†0Ì[ st‰#»Û»à^òÌk)¨vªHI]«ƒô.x¸N zÚÁrÀ*ÉM°×Ï‹Òg'ú‡šàöÌ þ<{OG¢(ZÅà·Ü’‰,°Ÿœ?|ÖIÛhSp ~Bm7Ÿ‘`Ű06¾1XgÁrWÀð6G¶÷ "I¤*94™ëúÕHOh*O$Ï^?TóJ¯ö¿Ïc š&©®rÝšm¯ÂCòï´³cçq¨çÏ’»×¹p¤Ç_‘š¨3òwã— Á‡ Dtp®7ÿŽVÛ=á5q”B]OIHF|GõôozEmU49IN¨êÅî߆º/¿ùn¾"ÇzXû[üü#–ôÎòáÎöçæÈÏ ÛýbÑ $ëAÜF[RßÙ~fEt8²7¥¾ˆU‹Áklmˆ¯¬Õ¨‹k5òU’wÖåï¶wvxêäŒ:R–zõŠˆ½ë=+|uºbÏ6öž']ˆïÛ»¾m´÷Èþ‚í„È@þ–šØÖœ”üT%u|¡Šå2%Íò–í_ñ„ãÍ/=ù9Ç~ Lü*£ÄÞïûÙÀã™´@þÜ?/>Ÿ‰gÚiçvʤÐ-d ïÝ/R›ì“™¦#ñuP.+õÚìÔ²ó¹R}rç~§ÉYŠÿOàµãaúߥ$L¾Ì¡ˆV@­ÞV“!–ƒ“+¨„w’í45Û5ãºýÄgÁëí”܉hÀNLŽƒüŸMy/î’nŠ›PÔm`ã‹]GêÄdlÛëæ(Ð æÎ€Ìÿ§XsÜ$kßÇÈS ´“@Æ×ñr¬ë·Ýõ~¶3#ãë^< „þ$§ û‚ùåÜLÁo(¥•¥¦)æ5ù—’Ç™Cd¾Û ó]¹½ïñ} ’ÿ$/„U;ãþ+ö´ý­ÆÊ$ä³òÄÓ‚í©p’ÏùÑß~bdŒëý¶œWlç{Ý¿þú\b¨‡šáŸúo²£òÿ¤ {Öò*þŸ"N0óA«KÓA±­æpÌàƒïð;Ãï.8°¹§À~F!ß4„ÎJiðï7 ‹Ot3^vÀ›ºnqv—äztZ_¡’š”G$"!üâ0ÿÓ/ð†\àKT°±€W{0ÉÍtä? æŸuß—Pù¯D7±–Ýù2”ßÊdþ]Œüã‰êIÔÆÛ°ä3ñƒ%#bFhP#‘Ääoˆ-p?߇í6Rí•§ŽÉ‡Œ[°{jòÙQ>e:¯[‰Þ–àEÁÀ„0Ÿ—n2²= ÖM+à¦!ªn&^”Þ˜U¦…©`s¼ß`­ö¬í5äžÆ±ïÃ?#R އÁ.ÆŸçßs‘ì >\[H6äM¶ó­Á€jê xþêžÍhh"¾²ÔMRµ½µmß´Õ|æ%2ŒÞÖMΩEÄ{³ìšjêš&¦ëá›DÔÇÈ9šš}­Ü&kÝÅž¸.X+ÜÑ…b'Û¥Ó²ò@*ÂéZPõÙî­©|‹#Ñ}¼å¨Ë“ñ—ò•O;Í¿Ëɡω²ÓØß^+jNÕo©ëõýá#M2óÊØ³Ü?ñòÓõ4~`ÏymÉ7àó“\¸IøÉG<ü>qîÓü+@m×TƒÚ.Üù91>Ó]/ZÅ{§òYKyïrHRNÜ?Å¿üɘMu©6”ÊÆÛ] §q*™ÕvêÇÁ±$ûåØÇJ‡ù}ÜÌ—a° }È~[¦Bò*î¬fzj£fT59ù„'òÈM’[B¬sg çòÞ¾|ÂF¸€|/.AHLraYÍ Þï‹qÄ47ÏÝÃ$ºŽ8}жkÕjÌ‘÷õ{Ãvfá #ñŠ+ ÂjÄlp¾öZ¿OŽ·ÕŒ0Àî_ÖI" ?Ùr#´„w á·EÄÍw)èv§!Z*»½%iõ¼©émñÍ}ÓÚ¬4¶K—¨E¶Ïÿ4½ðCFë-]]F[á&<’Wò^P Û·ùÚhI0³3ú¨BN·¡nS©”Wâókñ™>`á tw ˜žX“в£ ÀS²·×5ÓŠ£°]m¿®âQÛ¯Ø>®Ãý¤»ëjºÂ±ß °‚Ô‹•©åê»ù¥‰úNxh˜@'#ÿ]¬? ù÷‘Sñ ãAŽ À)b#Ú9õt9cö1½->«­Éb¶ÀrìUËè0ò8<¢è{âw¬ÃƒŽXÐö¿ŸID G'¯%VGÞüZ Ò›bg@¤²m_\®Ú ýA×z-Ø·Á1¡³üv“È Îëšè0]¤Ýµ¤ièmáY#L€É-™À¦ŒúÒ]X‹¥g¹O}öŸCϳUˆˆdºÊnŽmb´e'þÝ VÌ«¹Ý°ˆº”*`«ë}~™ 0 >p&tω öEÀËâƒiÉ5|¢ì`SÑTEþ÷Øf#Gi« àß2ا›ÅváÓ»¥6Ù<¬½ 8þ™†’3ŒÚy?—©v  •ò†ºù€›su‹Û©pùëy^†õS¾ˆ-kg€Wò¶ènýj*™àRØõ>…??ÄcO¹ÐOݵÐhb¦Ø p¾“hσ»éσx.ºö—žÒK?5£CÙ²ÀÓà…í–yÔõ¾¿Ë϶wÞU7]3*~ÓÛ¢»•ßT7kM¸\Züò V¿LÝÊùî '†'¹ ÐÃݵŽÛH3R~“Vä†ÄÅ1j¢nnÆËlwõÞ²„ºwr :Ž“_¢ÉKð©Í|ÂU²k0nøÆ>h2@ÓU+ùO°à#ê]›¹NîcÃqààdZä8àbd´WÇòót1P â)›Á½ DÈ "ßÎÃ^õ÷£Ç{È~IÞIN-C |]MB3÷% ù¿žøÆÝ0Lv“Øô“3‚üa±LH°à9xì#7Ïm!ÜÏòØ!àâfÐ},yq'òe¡‚I'¹¨cOº3ƒ;‘zÖ·]P7#ùcø°÷mGÐüäÇÔ¯A‚¨ eTØýôûJiê™§ò6Ó ϦUÝ=o@ƒëDïtäYÂmuóK"×DvÖÁ&¤ëÏWx=CÔŒwÓ!W¸ÉöZ²¤y<µû?ìuð|n@R/|YDE¼-÷?¯ôDÀf³£KÅ1*V²{9ïPÝw½À “igÏÙs»[$ uŒÝƒ,˜V-JØ*a’›¼ÅÍ:Yâ¦?åòW¡ød{åØ^;®~çá}î÷Ï+>d¢R•Àº‹@µ½Hl¯ÞÅŽS{•›1™×v®CDl˜Œlgw Û)˜›Ýäk;)Ïêg7>p‰WÙ½ Q´õSªëd­Ûu§¾£Rô{üL&“Ûx¤/¨· LÛŠ¬¶n?@äOuç¼7QB3›ñ‚Kb»ü†ÃSöó*;Û18¼é-Q ß¹{Øäú`ÛNÉv„½o8'œ!'~ÿI¨”×jsOñé?¿/{ON1ÓN é$ûÉqoÇæûö ÿ:—âñÛðô#’Ìõú¡G¨o©éâ¹½¢öšIXÄF7Ùjä Ñó‰ýÀÇûò½Ep0ËÇîÌj’™ñ殤&ĆÙއϽÁó× ç%9ÏPì°™ì]ÀMòË î­— w…;)RÆÔpzÐMy×õG+Où飨.á¯aÁQù·µãr >±÷ù_Vnx@%3ÛÆÁíÞío°ú—`Ù|8ˆy®‚ÿ'ÜñÇË×wØz‡Øî§Qô#Q²Òí”è&©§U{]åµu9ÏîhŒ×½RÏ‹×|þ_+3y "Ä#)˜ewl…ÂöÂiïH»Æ¥º{’Ìôÿ„·äs;§loà×`ßFW÷Ûs 9\oìLšçCÂ}:Sñ– B¬¥«õ2u¯ïõÈËeòšqÆÞ‘ oÏÊÑ&Õ„Øýò?•Txn!*·“øñïÓ«SáïyôH ÄøF–œï®~nÇþ/$¿6×fnG~âã+(PÙuLoÁ»Jß`þÿv¥7UM$sÀäÅRq9ÊØHCáÛvÖAR­MüžÁþÁÀòôx³Ý1cg[%†+u“¡¹+Cöº½/¶³ë0 àÓ"hYUÏ-(ù}Ðûí* d2á¨psÄáÝ5»Ì A."">Zhˆ½oR¿$#‡5Dš’úV’jiìM_È4c÷=‡•ƒï†ñäÅg:R16…ïüªWÔßsMúú¤õ_mí$(óÊøQ¯„‚fFÎ_±a27±ºñü˜¼î<öÊOEdl£ù°Úˆ¬v¿ðyI´Yx_[ô”^ëŽß/Ðý<N zuâõ__5Á€b&²)"•ÕÎ=°÷7UÅ–±‘®¥vá·w°šDZd": €è ½y=¬°× ÞHA´6œWÓúšÚg¹žFö©*ÚLºùèÝ¿ÿ¼Ê…Í`“€è ³ÿÇOˆ¬­‘¢—¦ÐWòD>“ÑSáÿ5t¶^tSJ«½ ð¶;Ï÷Zê }4’Íd úè½I,4•U>ß '§)Î1&1ÏÌ'©‹„ñ±Zy­‰ù76HþfÞM¿*R®rñSP;ÕkîÚÁsi˯üé'êËoa=õ„œúô¿°+5\ ±élÒÁØæ¸;ê8P.50;y×Oìîïm&’¼&-^ G!zh+<£!ø—ëGú úP^›ÞìoXþ&e³y-ÆHå6Víâd†Úp»·5QßO'ó™t)9"2ò7%?H 0oÕä\Ý€ô—t>4-¼ºÏùïY ñ‚Ôf’ùi¯_àƒt¨öÖäóŠäÁHZT_MML7ä‡ lo€ÂÔ8ï5¾g-ÿ.ÔrÒ‚ˆúã­ <™þ&PÖýt—ÞÇwóµFëÁå²i8ñhYD®K¤ÏáxKÈŒÕÁ‚G²Jc{ÆyÎã-E¥ŒOÝëý·¬x®ÿÿF3 N×O?i1OUÏ+¥ÈmuÈñ[ÑB€ž"×å·h¦ƒ›1[N£§Ód„Ǧ¤rý¿eÅ¡2®kf™80¿¯ÒUïë4bá¸>]_iÏ[=ƒÿ÷Ñ‘ºVQ7Ä ÓñÚqòÒ´6ùþôÿ/NdüL=3À“ÖÒ]WèOpm™~%*æèI=¨[´«NB3?e•–«f4¯Îh~õö¡ÿÃVêòp£žfˆ©&!=Û5Ðó”/NEØšˆ(¦iàm` Ie”ŠÆ|ãêÖ?r…Ç¢yMsÁœ‘‘úRO€{MÉë Ž‘…ÒH*R5íM¯ß×ø?³²Q%G6½Ít³YòêD9-×MK…ê?žü4Jl̆={sGßÿüJorà=M1)(·Ì8Â2SBv™µæˆ·íÏõçúsý¹þ\®?×ÿ—•¦›Ù¢ÎùcWyÿµ•Øõµ/»ýljÀkSÝ¥…í–0yø½_ùøû³ßõ¶’S§3åáÿ L “Rî˜ ¦•©ÏÏmLh¹gF˜0ÿ ¦_þ^½«ó¿’˜@×>2Î5cÐASsÖìÅÚ#ÌTÓD¶ÀþóH3é&L5*¿ÒTŠéÿç¼þ㪀ÏÝ%ÍSY&H©/Y¤>Þ‚:àªÑé²Z¢iY'{¥¯ì1Mcü »ÏŸíÿÏV6$©”™©þ‡šIéGé/%¼ô2;LÙ qµ²ærÓ@OÊy*÷$HË[*$Ûã1Õ J!Ådj¼&©Ü”¦šBjm¬5õÜæù-rJ k£Ç5½~•ð:GÓê+)ÅW=^ØëiÔY€EÈkÓAúZLJ ]†ŒÉ5ºöÓZAK#“Ìíc/«Ù´€ÆÐšUÇë.í¢yí0õ¨ŠXàïmAþ®åg û M9$é‘)©†ÔJECkmƒÄ¥´µÄÔŽšY3h8d¯è&`æÑn6ê"Ý¢u¿æ‘|îŠZAo‹ó7.²]ÓÕ\5“%´Æ×¹úLI#M­¢w%;~pNûj´Y£ºnðy]_¿ˆSë5í¯Ýt”†ð¤ót’žðƒ ??JJöÊæ­2ÈmßÅîî²ýßsjF,œ@wJHý$=À¼ð<— ëGí=àÏä¥Dw³À'ñVžsº@F‚%á¾²ã÷¯-?@^/c®»“ûÄ âãk ä ‰um/ìs’H¿I­­o¥21‘“ÈEÈ¡@Š¢ZU¯ho­…𚦠Â+½*ËÁ’Bà¡7»½üWV&8nb²÷ÓKº»žµ 4˜&Fú¼nGHh|á¹$Å2èc™.Õ5‰¶Äó§h]^“†lØDÇ!s4–N7ð\2Ý©¯ÑÕ"ª†©jÊz[Ä¿²ì¼ŸÔàU8"—d†NÔµxþKÉ #ðö¯òX"ù¶×El·ßeÌïFèdÝ®+5HÉ-A¿dû[3ì_Ç]=þ¡Ó5·$6E½Úïé?[)ÈøL?s”8Þ#±bU²ÛÉAL—×wð›ØÄ€Ýgw8õÐÓ a'­E Ø.8µ4ž&Äöñ®ÔøIL7 Âîú^Ž®ipÏ™åûJ›Ê ÞóBŽ#Ëo¢øL,úI¢Û¶ëÿ}"¿¼»C.h‘pJ2HÞ^øÈ©3µ¸†!þchv^ÓBÁÎà7u³‘Žfˆ·ý‹ËÞRÕŒ÷ŽÊJi+e2RVÛÅî¸BÏZn‹T¹‘«#2×#Þ߃~<“}”v;ÀKèp002y"¨©vÕùº^{¡‡™DÓAñ“ÎÞõ/®È¿Ùä’ZR[~“Š ün2x}ìø^žÉElX¾I (?^QQc!l ‚»—7òWB´0°œ¡ï.­+t*ÑRÍu è©¶cêAÓÜÛÂþ‡åO}›ÉÄ °òHV;–&z‹jAþ3x+G©{"÷ ‰íâ|†…“ ‰àARøAzrÂ)@=`YRJ¡  »›ŽÑFÔFÛƒ„G¤ƒ”ó;ÿíŠO¥RÂ,;ÉéƒÄ'æs"WF¤/‡·ÇómÞ $Ç× ºÞ?ÁÀF{WexÐ;)I¬¤ÕÃb'DƲ ó>ÌÃv<²÷†ÖѶÄÂ"ã+ÿ—/í 3IerK<,žïÍ@¦çöý…BÞRÔ¼7e«”ÐMùŒF^Hp7ã3Q`ïöK'ä$ 4‚÷Çzéq‰ü‡È)}„ `ý@cküh`Ýmª½h:M>H4,½KŽàõï主£ÓîñßèzC¼–(ÏŠÄ£ÎËÚ'âõo`JßøËGÞ=Ú;J€þ°zMÁc¤ë¸}j<Ÿ8C𒨝hÒ8¿îŒ¯>Ïpº2 tB}‚̶èÙ+w|#ùqãÙËîÈæd†Òä/‚>És÷ê¼ò®ür„À£r‘ÿã!öî)Û[/‹c‹9ôˆ&“–Þ Ä¥2?gb©í@Ž×v¸Iæ§å8£sÔ7ˆ‚T¯ð€•²”šo‘ØnÑï@?‹û!±ó+4f{Å#ž‹ítF>Iž³wz§vUó!¼ÈÞYÕ†ê¨üâ$hÙÎÛâƒÂ1L]Ó]’s„GÄîn€”ÉôUÉ…¹áü±åRþv— xéç¸9–žÇÓ#¸é—×À‰ûrt8ƒBÝ÷È߈¥ï ÂW01,Œ(>>RYÇhsX@k½bz*f,“ÈÔ73%…n“ù2ÇBYFÜŸÝl§V;÷ê89äzœqwÆÎwB»žŽáøžE¿`Ùèg—ëû†Šá~cgaÙsCÉá™ðøJð©Êð‡M²ª Œ§žz»û‘ÁúùM[³V~"÷jŽÿ 5þ]yŠ-ãõ¶‹Å!¤^÷?Æ_"ai›ÖJñ‰ÄЮÒ_J;ÇÄöÏ?·< ¾çó.Ht5<üÀªn"dp²´•´nÂ^K-“ÀËòÇ6ÙLY3ÑÝ»Zí öw<½îú7mñ÷áÑ+ÈŸ¨ýí]O?\/Ø^2SF#åC³Ê„ÕI²^–ðu‘WÂë_¡Ã/d€g „f÷ŽO!}i´Q ¨¯WM!üÏ»+><|±ù¢Û‰m!°U7ÓöŽëàûÞ%;ñÿír[r“µfë\þ¶H†ðÜPž‹!Í3‹öà3o%F’üEì;+3{—t½r[ë"] êN$¬—DVlÿEï®D¦Œi#þøuJŽ7Ñ6‘,𠕸ØÒv†\Cä‡Ð0˜亞2KæÊ`±óâJò{ü<˜Ñëy.§y¼!^‚Áê’õSÃbcùߨ€;Sás¢iQ¹ìu`àýqà÷±]ÍþnsM,~MÃÆse"Ñÿ¿¶wô¿‘QÚÛÿX%3dÐKºð}°LÅKêëF=Œ‡?vlÁÎMÊC5ñ‹Þ /ÜC—EàÖ!@¾nÆÖI$©$„IêEéSÁýê›9Ô.§År¶`î·h~Úu®.¬$;‘|ÙÝù~‘ ©>ùk .±Î1§SdŒëqUZ·é(ü{¡›¤ôù+èdprœ —–ÒZjÉoü™ÿÇÎPkL¥h{+U¼·2?sÐ\¹`£DË¦Õ X8*™ë 7ç‰ë= à,b¤Ù»'±<=-Ççm§ÇÉü›RÇ‚r£t±zûGÐCHrѬÀ/l«¹d·êDqS|¼.¨W€ ÁúÔwÕÐÚX²ÚjˆóÈûL²À †RGå¡,Oæ/ëfÀœejƒ¡KÀ”è2Ü«Sàââ}ÅðÔÒ@ K&}!Üôž¹ ¿Án™´8ÿß?€‡ÌƒØ~—]øjÈ÷”jÏ~V¥¶ëMÜûoÅ{>R'FÖ2 Dˆª¶ÿoÜø#Ö÷Ó€±åÐà$~>.âÍ€©L13Œ? Ž…R#yt<ÿðšø /¬ 'J£–ïáë´”Õzؾ—þÊ£ ïh¤}ñˆ¾ÔxݰöfõÀ™×‹ê8ôU&‘™ 8—ë亀‡æg"€ñä“WïÉ úm‹Ee€«×lØGÄú¼â¾$%/,à»â ³¨ýúó|YÍüí¾&rG‡ËŒÆóûcû¾øuHwÖ`Ÿð.å‡Üö{X˜t×%;•es]É;[ƒ†›d¶Wσ¥‚ý¶§b;$AHz’Ÿ^rô¶R{!–Ãí“NX2œ®vÝŸ¦ðuLr¸‰ï-´%þÒ ®T¨o?7 /Óµ’Xã%ÿê¼$dÀ°S>ðY!Ü5¡ÄxΩLlLñêýÐYá_i8ÖoÒiïñ¸rß&zm7›DÚTº‹íÛe» –~ŽÇÁþÞžÝï«vªÍHì?Tk€ý']ï“®TBá'ùܧ®‹Zxª¤¯’éíµ¢òpÂbz^Z÷Mu/N®eüÍQ“ÿž)9‘ù5GÜM¬¹)ÖZ#@-Ûíhl¿›ŒâûD~³Ó>[ï±zmŸíì&Cå×LÒ´ØF~³]ð¸¾êyÕV„àïÄNǵqõ.™,¥¤9 Ô[k’IgZ“ßI~M§›Áø[;êî ¿}Ç–÷@²ÙXø?d Ïkkb÷ @A¼¹#XÐO§“AN™±ä’;°EÛ.Œ^…?' Î‡¾À'Bþ‡hø‡Øiáä­iá5ùgãÿÛÌ ²| 2ÿ'Ét'8öåüû–£~$G@ƒUp¼‰ð¸e À¸R*˜vX½#\³ž×/äû "è"ŸLïËU±çÇ×ñìfÐæ¸ÿ)1<òWñžõíü‹ì&€Jw.}¥3Œ| q>–jæ!ÖŠ "\@+cá¸3ÐB<àŒ›wUõÿ°wàV^Iº^U‡wwwwww‡$A‚…'@€àw îppàîNЂݷV¦ï™›™îžî{÷¦Ö~Îále—}õÕÿ¯¿Š\׌Üß’,0^‡RÕ–ˬOÖT`!’®ò3$îãA—Áë‰d’GòÌúˆ×sš‹„ÿnuuµ\?xÎe„­þèyºïx\‘çøìI°lõÝPb¸~X¿·îM¸òs0Fͻ𖟩çãý3ýë—ü3ˆy}ÎB//$-ìç=½ë"9 ý]ßÊ?ìIK÷Å‚ã³As}Ç×-üX_;›}ö ^a~BAïÇO'Àzèà@>Ð=7;÷Ž£±y¼g%Ÿ±’(_Ë¿ËüÏn±©W)ÔΤ£rCeKgH—JïÜ0×ÎUq¿"÷ÿ<,~ÝFüEu:[ÎÀfúÉžóùw>kÇtFJ|¤oI ´ÂJÁÀ뺒Ñ/vþâsvá+ ˆ™àþjp`?·øDI|¤<ñL³µ|Pù{¹ž®¸+ ö»’¡!áJü˜ôÀ ì|O_ß;Ÿ~½Çóƒ’A"Sùd¦Ö©å§º?†Ù=!¾/¡¹È» ë[ïïYøþ~‰ä¬\ã})àÌÓt7ô‰,%»ÆÁ€¿vW°['<2ßn3–E´ó“^¿n¾¯çx¤í§·ü.ÍȈ|GÓª0ßÒpùêdÀ–jçîà3³a kÀx;.öŸ6 °O. qÁÓÇX>ò' i*¾pª«ãú»8dÿ£èÀòÕ(l~ô›å?Á—?C–XŠtÀ·ƒiÝä27ÃöPõ—CŸcÍÆhä(^‚Íç{þ³ ßï‡-#®lzR°/¿Zïÿ讑~æ;ýâÕ[FjöóàÕ<¬vJ’Áýïâ­g‰t뀾Ìó¡ R‘ q_ˆOÞê‰Ì½É5@ÿ©ªƒU‰ì3Tý#ˆûýDýNt6ËÏÕ¼(AˆÛè夤áuv>ä˜pI-<«‹+ëŽQãã¿ç'ŸE׃Dúû`õA$ù)£ƒÒ„&*Âwl?O|¾^ÐÁi„FšÀœÛá1‹Ùz¡-BŸ?í.‹QÏ ï]É'<’‚Ô·¥BPìHl‚‹]›"ûyÝQù7)kxxÊñ©ÿ“jz2D9ô4RÇê'ü?‰ƒb?|wÀ3—‹¿§Ö±zšŸû½ÇÏðÚˆl}ˆyDò |`&øe¬÷óšîDrOÐñ)c>?ÌwŽ¿†Ç/–b}cÐ{ý é|j³¥ŸSõf׌p…ìZ‰Ê7O E÷«¶Ëâ–º‚ú‹ÅñÓ®/ãÑç@ÿ`-’B²ÅX6^ðr‚gÅúþÏÁÆ#ðƒ ½iÉ&ÿ-ówÿ§ø”½hl3ø¸Žd'¬Ãl¸rpì„/é²¹\®üÕ§O0Tls‡Jý*?‰ïQăM€^Ž|ãÈçŸÃoûÃm–ú /åð™õ ãt3«ÛkW÷?"ù>ßz/¹õ*ža3…‹uŒF ÐBjZt¿lxI[w`•§dÀ¤d©ØüõëDÚqD(ñl3 '"÷fb¦Ø$ÔLÚW²IrÆzä·ÙK¦ÜCæß‚ƒ ÛàKg%+øXÏ¿ŽV¬sn:ªÆ7<î÷Wl×ѽ‘Ëä¾jø@Zß­öL5rŽ$÷MŲ6÷pª?¼™ßvc1þ\?“#Cwúã"CylƒØ>ãülæv ýFÓÆ—üËŽåc„3€¡A1ýÅVVWÁ…Ƚ/Mü$#Û¿p ëÍÄ»{"—Í=³IxÓñ…åDøVX’í{±næk%&U¼ÅÂjdµ£;›üH;_hG€÷±Ñ«õQ­JæH¢Eµ ºÈ¦ÁÓ+ŸKá ¸ôZ‘Ú<±¾Äëú)C‘¾7>°/ÞŽ4ãy,éßø‰6YÀ±ìè,•ÞCê[àF}ƒÜvì×úá_F ·<†F¥î©HÞ¨}ô+¦¶Ãò©Ïõp‰]r—ßµ•O±d¬oYk:™m8H7Ò×/ûÀµ­x÷0Ðõ‡­öÓ?ðý#Q£­&â¯Pó¤R;K¾ÍOt<S|-ˆ•dÄT°Æ[b{Zr ÝM?%þ0y4½f‚O8µ#_7ð™ª0ŒÅÚI×P+5qûù¯l¾«Ç g}&ø‚ˆÿûžÉ^Kfòw¿¯e%?{å®$¡~ÉI¤„òìc4TÅ[ÿ"±ùÏ£¡ úžŸóâÔŽ¤?’|ú…®ÐEz_ßû‚¯lEWØ­r½§4ß9,`%b“Sh~?bžq˜ø>ªý öÙ5~Yü|[›~°ÙÏ·3)©´þQƒš8¿ßEohÎm¯nâêZØ?Y¹l:öŸ/ñüÜ‚xXt~S¢ke;²f%ºw€„ßcÏsèÁæå'·ÛŽÿk`Ãç=·!Û%¾6FúBÚZ‹óixoR°¯‡®Ô ðþàìð©+âæ»Ñ xyøYl<ü}*·—Ø2+¶%ÉЂMx´½aÁ»DZG[ ¿e€Ãž®Å{©†KkO¼¨ •ns>­*‘ðE›5©z›ZÔ?]õ]Oòà7®¯ØÅ–Xï™4"dÆr"c*4ré“úDDêúTÈXŸç^bó¥žõœ£î;ˆôɵ®ßQ¾3_?ó6k”–ºÍÕ â+ ã™™\g7^ÊêgZûU‚¯¶ fëƒfYÕö$>ªùñV×áï¸jG:–’v‹íýz"õÀúÎpÞÙú©×ÚKëe2I»Z.güþÚ*å2ƒ#ÁAU·Nãw<¿:÷m>Ú!¼ŒvGö°ðžjd†÷È¿úiÇ–;w‘ë[¢Û÷<”˜ï©ót‰®GË¥¿kä0Šã\Y÷«[H+…äÕðõ  W!}H–‹'ˆ…TõtøVUëq`¾¶?~ƒŸyw˜j·.UdyxÞ,b¾ þ³D¿Õî2,›%ÐþÕõ1ß1µÛìFJ!ßÕ! (W4|%Í´­gy÷¥¡–ôׯwÖnà{]ž½íw¼”L<›”:ç#´3V¿DSµ•þj{Ÿ]ö 8Þý×Wøp{Q.’źë`$X„Œtœ?†_‰Ú­œŸbõä¿ZY]#ØJ2X@U=¨7ô¢Ö-ÚÇ#§Ð¥TuéñŠñz‰Ú±9~ ¼·/YÏæ‚ý–— ^0œçøŸ-ëü–Ìq)e¬h•¾ÁÛÛÀélÄ0Ý¥`ctöÏGF8©k‰õzð„‹ò»« +zì*½EþleséÉŠ)\_wØ…·k?õ±>×H½È’7$^ÈDt1ëß!ÏÙùÝ1²ÍýàvÚQµ@ýÊJèê!IiÛMv?HmR/d.Z8H¼£×©j¾GòÞú Zˆ­‹äC<¾4ÕÄ¿ÖÊé;Xõv3]xÍrFÛO7Êy¦aB*ÃÊçDÃé ‡Læýë­\p£\E7Ƚ ÇùSÊQhWùDÊI7YOU%h®ìÿç¯.¥ŸtÒE“êª;‘u´ûÉÅkî¸û,ëü¿XÉ\'WÁ-rOaI©]U7ÄMtƒý¥Þ­wëÝz·Þ­wëÝúÿ¶ŠÁ†ÞÞúö[ù¨‹ò¹ÂÈ_Ö×;E©—ÿuW&ÃÅ£LÞïÖ¹…®Õpy\#Ø`sW æ_œG´§Áÿ›U;§„ý'¦Jâ ÂxO¸áT„]ÜHwJ?¦¨„º¯]]Wž×¦ECÿ:+ ž]’š6¯ëè¶»Sn®ëëªñSÞ%u\"yáÊo²[ÚI5y鯻êxAr—Æe ho‡Îʄٱzi—Û}éæKýQÃhiù_¯‚õ³êé¨=µ¶>•£rK~‘oäÐ 3QQ½½Ý~POŽƒå äSýN èR-¯­t²ìví]&9¢yu‘ŽÐñjï2êD]©'eºœu ÑAU G …øV> +¯rMd—Ñ):M+kB­¡mµ^–VîšÔ i¡µ¦Ð8šJ j;= ÉB„ŒÓ»’MŠºêoñ,”tÄwf7Ú-”H>OÏŠu=-£ñ5­–ÖêMžÈ¯ú•VÑtZ_k Íó_j˜óº‘ß!!ªýÀŒ,oáQÐZÄ{&ü¿ûXòúi½´2VÔ¦úF"hþ½ Ñ´+þN›ù³å55šøL§ê!ý‚×nЊ!%ô[| :x;Îýý±ò¹\0™–d¸Ò ¿®á{[/› Z\÷‰õ ¨¢õ¼^^J6]¨Yµ¨ÓWb½!†h¨¶×ZÚE§kÜ z|ð Qð¶p£Ìdø,nƒ« š·Õ¡šÒ÷BþLãaù°šL/Émy&´^PCóiwí¡³´›–ÔRÉGƒ†ÕzH.ðýþ’é3°2þÔ Ð¢ý +=¶ÏçÚ¸W®ºÎÑþ:Ü{õÇĵuDº%űìoþ:îæú\ê#e{]«÷õ*|\¡cµµ~dÓ`Bt‘A§È ׿XÏg÷ï¿,›_•ÙUrÀ¼Óxpý©’"CwâàºX‡ÜŒD|\M 6ÇÞ#u2ï>Ö&*òï2"#Þ’Žw&BmÈ­t“Ôq½Afñ¿Yý¬–„®­|@®ÿ kZ——Ⱦw[$?+‰üÙmÛ‚Ýíº¯“䆞ø~>²Bͤct‘_càå@»6~¼à>Äšñ\ät®Œq<÷¾ÄÕ Ä{m¿s-¾>X´ŒÆÖsœ¯¡Ñù© ,†Ì]È4;ÚIa=myß<¿“>²^3C÷évÝ«¯ô1QšºþôOWf¸j!7ÂÅ“Ž2YR"G¬W)~•ߥ¼çšœ–èàÿ'H]‡ü6_¸-MðZD{&4à4¢ö†!VÃ÷ÓòÊfxþ(]Ã#kuß)²K6¹Àwýü³UÚŸ§¿I¾Ÿ)Ëe»\”SRIª ÙC ¯ïëE¹$ ñ‰aZ OÏ@dÛu¼µ¡vÄÿíêæ—ä‡®ðáš„Èo.|£óá `ƒ¸¿©$¹-꟬ôT+ÅÝP·E‰`ñÈøHVÁtrc×XzŒL~%2*ÀrÙ>7ÑÐÙ{‚@¼ðäʶàaQ¿st0Ѓh¤88R þÊ+ŸÈ*0&Øfd§‡ëÅs|>+®ïiX0®´ªÎ•÷‰€7è䬜'Ò"GFéç[„’òzÛšVïËxQQ¢Æð1¯›L™‡¤DOYÁÂäÒ%ZVsƒà—Á³’Rç¤s¥£¿²»1…%×GĪÙa¹Eö¾—ƒÏþ€ì÷ Ìß:<—EÎÑS.¬A®À—Êô5ˆù¡^÷?Fö‡dͦ:mÍ úè2éÈh¡ÿ÷Ê袒õºÚžû1ßµñ{“ø.åÑCNìk}¶KL¤³9»d3?—`¾Ñ@ƒ6 d^wVÎI Ð"2‘HûÁÿ?%¬Ï‰õ½Ý-—¥¿ßOWAÏ»ÂÔÕîýú—•ŠŒŸÍM”~§~I<7"h_PèõsJ¬G&îAº;DÃO2Kæ û+q~âSa0 91¯¾Éó™È áGUà§›\ {þee‹Ê¸ïAìèÚ ›%æ»^'ÏEAùAþ£ÈsZ¶þÖñÞ:Ûí”daÓ°^Ij$L®E6ñb3ÂnP?Ä—£×ü{—¨ùd,ƒØnÑÙ:ªêgb¬s …wÎÕ¿û]ÊûéÈÏaù 8:5Þ5PïW¼ þëÛ.÷…²=ìæ'*yâïûIîK},vÝð ~Ÿá¾jXßMäµX¬Èxþ‡¾¯pdÏž €o$jÁ¤.ë#!z”{#¶—+ ÙþQ¸?4wd5’[?ƒPY/+©¡§'xµeƼøýK²Û1tt=(\àŒÁ²›±þ^<{!µá ¤!}A¯xîCI.éÔ:ÇþGyÍbá5YòÜ! Ù$ž?P,Pæ—_«’c“-íʱ®f€åO?ƒü'¤«vï–Q¿¥ §%Vë]­Ÿu.=‚Ô'±g6Pn’Ì“‘ÔÈ_"qy) ’-2—×üŒ—ìGgÑáS05Ÿ” LÍìg!¥#KäPë…ÑY'áÓu5¾Ø•‡ì÷Œ¾a^¬cýš“ú)8Ñ©øvcÁÈj½ Îãç«©îR…×2ŸH‰œ5¤1~? F¸\Ö‰ÍA1l!žKFäîÿ)ƒÏòÇÃ[S=Õ†+¥Ö´£Fi.-a_[ñ©B¿pÔ°ú \ÿ}8¼ƒÁYï— |ç‹Dy|} ¬Ç÷³Ã[¦êâ{¥ï2 ÿïƒf†ËYŒo ×x÷V<á8&ä·Þð%u(Þo½DÃëIêÂ6èa$ؘ+ 3âӸ쮛;Â;ò_$ΦíÈÓÆj2èä°ûd†«Äób{‰$#F>UÛùFÇÊ*#ÓÑA/*¢`þä Ú[É»ðò¨Η°>™ßÉ·Ü:éx2FA^7FëôhX*äãÎ!¡]Ë]™£i|>?!?àñ5‚ïŠs•˜IÎkIïMoz/ó=ü磅EðåAÜ>ëG©ñ¿ßᆻÑI%üʦťÕ\TÎeÈ™ÀôxÖiŽ èÞ¡8®´+‰¥~Dzi=‚Þ#oýˆ¯¯Çºñ|·š8°»°›S2g¬Ûks<àK0ì*¯ÚŽüëÞìþY.”¿~óÓ¡bªõ@xBEœˆß/$.ÈW«à»&6Õõò›'Ý(½u>)åæá÷™õ ùÍŽëÄ„Ï8ý[C&´# ¿€Ž6×p™„Dm´2Uügpù¶ž×†àÝ}x¤ƒŽ%.ö"ÝQb%TÂjnر ¿dÓ¨TÖv¶0ƒVÄ ÊÂ~¿ÒËh f@Ï §ÿg’³Oøîl)°X\–ï6ßÿ(UËcäÿ•¬f4 ;Ïô×uÛüƒ® øPí¯ÈãCÀõ¯Á…‘ ß÷ å"ßAç>Z³¾¢Ñý\Á$0Œd¼¯ QÖûÛ, uZûòºÀ,ð¯Îp»Ò/·.Ý/üu¬{|—ì#Š¥ «Çñòù¾î±ëú?¢âïõÛíMü5°ƒ°æ41’w¤ø `Ýß6Á˜cSQØlÌd„ØÄ~" ^Ô€xH«\ÙÊ_ô9åö“ýšµ·¢‹Uøúmm…ï\ë]§æ›íû@m‡Û¤ÅÚ­ýÌ‹ÆH^G[!·aߢ ?˜¾ þàûŸýBÅoýÿ`ûjÒ±©šåàÁSЊabnéÀn½±ÿ%÷3ü&.9>Š?Ã{—ï=6sÌÿ<`Á9±Ùp_SûÌÁ¶o¤%Љ<ÙŒ˜oJ¼÷F=@ÄVºÃw}ÚŒôû°¼/~ úGÖsèô ^Ë÷¿©¬¥á¾/¥$Ÿ3\ú¹ÀõIüovGÀ¾|dþ„ÈON–O‘ôüæ¨Ø͇øñr$ŸJ®›ˆW‡ñ×>—C«h» >#ƒh }ýÇp¦­xÌy´ú;>t M šNÃ$žˆIzˆŽ­ºÈªÕu|À>h_¹¼n‹Û‚Tª)Áè+°÷qðºÓ¾Ê_Íïõ~Þ&¼ç;ª€ÈäôbZ‚:ÆfZwñÓpZ‚]Ñ„M² ¹íG —ˆ,ë uÄÏÖÛÊÿc¸ºž8cä£&XÐià%\¤¶ —ûA½í~Ƨå9›õ0Ïw1=LD›<“‘a?©÷:Áꡃä‚Dþ§H?ö·E:øúsø¤epÆc …;ïÝãûÏÅìL€è5öSÉ((I÷™+Nο ¾Ýó+ûÎßc|·ûm0€»Øî[rßXžÛÈ«Î!jЯÖ®´ÀëÃûlþÅ ßr Þ>Ÿ™ÅÏt.Ÿc“c­sÜVt²û‡ƒ ü,VG wƒ(k÷µ«Dv¬>J%3DòýÉx¼%ß&ßlåÞ\é‰l÷ÐVVämDÞû-ÔѰ¾Ï‰„ú#ï}(Ÿk±¾Mô)ßG«ð¥ÝäNë’ÿ´I§Öa*£Îp¼Ý7ŽÆJ{Aãg|ó¾²]€$6Õm·¯ñ‰õ|ÿÅH?–ˆ¾Ìß»RÁöBîüÕÚkd(þ¿I>Âûwóê pȾoªuij~xñ¨ÿ3ÂCÀÎ4°­7h´T@å¯çú¹\n$uJ(<'&lç.N ÿ7Ô'ݤ#Üx¿iežïxÖçƒö~ÏW$o |ŽÌïvÔ6GåK2Åf4°ÏwK›OΘ†ýûy(Y´ (Œx“ä5ïø @Q7ÜåvqñéTxá©S.À„¯!é4êúÏ¥“t•þDò ßíu$Ù|«Ïu6<¶µïü]†ÐÞ÷¿oŽ.ê Ç™¼ÎŽ-ƒ­G'Ê?9ý"Œ ¬Ÿÿ•JOñI›È"óÞ i:èí¬Î½%ÖÍú¦D£JŸ„¼C@Âø~g LÆžƒñëô”+6÷ZÃxz.Ûï¯l3½tz›J\@6`>ùã úMD]q ˜þS_Çé*-rÆõ °ôÎm²º©RNÏ‚Ê °Þ׳ñÝ“|ï™àÞXlõ2­ÙÖÂmÒJ^Ý–Œß ¯¯†­~1l_“ǦKq¤Ÿ‚Ô–G‘í¬ÿ«M”Ê ±¨­O^Js¾.Õ®ý÷—ÕÂ%uS¤èWlÞ‡ôûàn6çÃ΄Fšå`Ø\n£ð€ÜrÌ…ÀxÛ‘€S©ß('²)ïCõ dFúåäûèp#x×äÃæé5™£ xÙ@#žI¥ ØßÉUt ¤ZtµŸ7a½IðÓ§d…» Í¾ØFlö¬à;÷ çºbïÂHt™,¡Ô¥°~m""ž¶ðßz`nB{ à?—¤òf¤Þ)€íkQ÷ö5Æ()ƒbg|/»†‹ªÌQ݀ݼ¤NÏdÈ׈ãmH¸´ÁOƒˆnWæ–_ÃQÕX~H³¦”ÛvÂÂSyõyòÝV¼ÿßbà Ñtèq衪–ÕIÒÍUtÁ°ì#*ð'ÎfÆÒ÷5>1jûØÎ`¿0¸Ã²4œ òM÷p–HAµŠ.”¿‡ÃÆ€óüt¬T;v¾ÜúÆÿ1ïl=þ“\óRó½¯Ûà×—Ð×k0ð‰Ô¤†L¬íƒbGxjÀ.Ü$?ù55ÞlLu¹¯¾#öÇ"ÿBßÿúr O˜Kn°s@#yî!¨Ð‹1ž ¹Ƴ—|wé/ËE^ ®—G‹ú>j6-è9\cª®Ö‘º†ø†ë&;€Bá€1±ý¾ñ&/ÅþÝs›ƒÝbkëý>(XígÁö“±yw4p†{#ÐθÞ.ôµ÷ÚYÃóüàS¶àa5)2›~«s|©F 9¥%GþÿÏ*áò¹*î¹ØQ:›mt þwÝïï¹å9Ü|dZé}1’÷³!læñ$°}ÿ6Çâ?Â÷Œ!ÿ€ß¬A{Ûý9Ó‹¾wî ó ØyÅç’M+À¾sI°ôOổTãQ5—Úl¯ˆ¾Ï¡ÉGed5{(²¦Xä6 uzƒ?ÄÚù‰©¡~nÄJðÒ˜ï÷ž_@¶_ê(r,LD~=‰fkÀsèΠ鄘ÖÕwd„ZêÇ ij›…y[läH}.3VdÝŸ×ý¸mä±ðzy^"ë,b` ¯ÙæÏÛŸƒ¾öyâã*Ÿ”I³h ^¾PC‡ð¸×\y‰‰î(Hý‘ZvS=åc«C~Žç|} Ò/Ʋkøw·Ÿ›T#aÅüdõð`Ù|tsÔóÝuèÀº¥Äú{ðóRªçÞOmÒf^P6x:@gq…])WšªÌæRÙ•¬ëázÃ=¦öǽ÷óØ þZïyàC,¾B"'ýYÓ>ÿ[OÜëèÉfåî$Nú)àçAÛ7Xͮԅj=%³!ýJ žý¿Ñ]J—Ó‘æz˜ì´×Ïï ²ãf’Õæú xKˆî‘üžåçÞ#“_À¯­OrX¿ &Ò¿ôŒhQ²—˜±®ñ6U+ Œ¶t"ïm€#V×2ZAÚZìÿ½âºŒ0±î ˜JL¢ó¸Ïù#‰æùH¾™–“ó—øiH¦‡ÃòB¢àù‰áÈáˆè°Ú—~ŸWtØÏ ,n³/O‚œW±üE¼ãŠ?›zTbP+×ÑúX§9Á³ÒR¥pßÊ·äéWDûy,8 Œ'ÚmßÃA,ù¯kàÛ«ä…ÄÑšLw¡‰¢Ø> hžw mAú½àÀ^<å”<%ÿÛ¡¬~E"jÁ5ÖE3 sïÿóJê’¸ºn¬«Nuò’oüTÎaçiD²Í¾8MMô ÒØÎǹükò?÷sÒãaùð:¬;âw¾…3ñïý̼khò†ï ZÖ_ši,uó=­ç\àw¾ýǕև§©Í?ø™è^ì=ÿ´ŸÚ™PO{‹nÏw£“7äÉtÈŸÄ<ŠÌÖ:¡?¯¿ëoñSƒÃó²ùÉé—Ä}Gí£ÝôG].\pÌ~ú?«ö/ì Áè¨xA½†Uwá Y¨Øò½Vby;+ºù‚'…A¶ÒAïëm)@ÞLƒ>lÐv¢Å®J©åý¾4ZËoÒúOÁ+*Ã8ƒ¯CF!WÒ¡•~¦…ùMŠ=–$ÚFë„vø³;ýLܵøu|ý‰š®¿†1¼DÏ||›û‹LZ‚LWŸ°Ý^Õá;=ÑÁݦ¯ù_’ZØ?] ýuÏçÜK©K¾—&ºmv‡í\Lª·°íÏŠƒ©d §öð€𛊳Ñï «•ð|;"bñFqŽüj/½….¾r5-è¹J]]qù„®E4[­o»‚ܹ±å~Ïê¶‘÷cãݧ+¡Åa͉@ÿ«ò³N÷ÿýu¸”cZZÌÿf•‡ ÖvÝ"ɃEí\ß{ÈoS{ŠÃZ¯ú³—;`:ÝðäHjSóÒj3uþ:Ÿ  ¾ÍÅ8K¶ÌN]PQCõ3´3‡¿–è'ºCû=ãó×WI—ÀUrwÝ:2zNòvEb¹  4Ö¼â§Ù…Ï4%º£h'¢=…ÿ§ á¿c|¿òN»’ð˜Žó…$¹ jnÄóƒáˆç¿Ê¸Th`°ûÙm•fù"€eÅ´ ˆOü›-¬-xd“,Àæ[fW›Ž +zŠv®àÿ6{ Ž&ïÕƒ:^xÏUŠãÝ}U@Ýe<ωõ+cÉšÔ,UA„ˆjgísÁe:!yâ}4>^†,±Nl»|•<Nü¶ŸDÆ« ‚®’ÜRly[Vf—&Y~wedºïo‡x.2á6Á}xK‡‚7È€íÀ†×hÅÎÇ…9$BSÝÈxsð€Hº[JW.ÐBý]+ u‰{äú¹šò#2VCšd²N¾H¸LdìzѸ ~nÓ¿ãª]ûÛ­Dƒ+Ô告𞕠ÂÇ2…Ȇk½þÞ5ÕMrÃd¬nÕŸÈß§ÑÀdï¯õžïÿʪ'e‰Îƒåô&æå±ÉøHØÎþjϘUêȺ·¶xTü {ízûkŸbÍÝü.×°ú•žôýAúèFêÙdù„Tö“õ{$ÿ¦7^7h9ê²Ê*«·w¥s6©.­ëáfºŸ\+,=4/‹•/é\8Òa=·™ Ú—AGu­¿Êaú¹![Ü7 HðçûŸ®ðÚTˆÝWBöhëÌ!ƒõ¤Ý¬iC`ópÜßÇyN,¤×ߤ¿ÜqC©%‚éÇ?ºÒűð„!’[ˆt £røD&ëR=F €|¤ äg×À…{˧>üù*᲻䮴Ë)ƒõ1ܘ“¹ ó=! ´„ä”—øJÄÛÁtþþe󡺻(n«[!ÏÜ-ÍÝùÁqŸÊh÷1µmÙ·íÿÖ•ŽÜÞÕtù©ƒšú~F]+7ÆUs ýÕþ?­„à@*÷­[L~H‹Ü¹àËo焟wëÝz·Þ­wëÝz·Þ­¿wåt‰\&j£äþ"ÿŸV\¿[ìi»¹¢.=ÕNNWŒj¯²ï˜œ8ÈæÚÿóVuXnêŸì.¬·•ÛáÚ¹ÌÈ]Æ5ä¯ÚÜòRùdFiƒðìî?¶Js+Çχ}ëcm›‹9ÀÕ¥¨ïöº 2Y>“¤r=äBC)ñ<øÉ¿ÂÊF­“šº?'UN7Ç –M²\ιÆx{sü?‘䓺TßÈSùQjÈ^ªã h˺ÿg":’Z€pe÷‚²ø‰í"#õ#­­õõÌrm¨€‡¹è:FŽéM£ õC]®ut§üäN¸/‰‘¬è'oÐuúü{Vn|9««êÖ¸\ò…Ø™ ÚYkj}!‘¤›»åÚh^ýÇZizm¡ u‰¾;dˆ>”V²ÌÅv\-âäí\å\°¬(R^‘ßdšÆ×†ÚÛÏ8®¯4—qU$NHíŽÕ{ãU4~®kõ"zŒOT×’’Oè×ùü½«1\ëŸq)‘µ¼¶ÓšÃ_óŸ_+jtí¯_Xo8d®¤]‘¿ ògÅÆñcWŽÖeºOKY v¼]GCKáùÉùÎ…]Rɭô´~gÕ;’H³éMy! °n=M¬¹5ϼ¯{¥†fиDÆz}„¾úk_Þ÷¹×yRX’“Z¨¿yÕõ“Áér»0RI÷ûóY½tšZ/ØûYShT½^:ûEüÜÛë:VCüÕót•ö$*£ƒ¶HŸCɧ’BãI¹ƒªç﵊ù©NEAýÕ.ƒnÕò [[bÿCß-¥6Ç꿈C'µœ¶ÖÙ)dœ*¯LÁß˵ž‘JcpÏöy§Õ 2OÞA[¡ƒ,ﯬ¬®ž+àú¹®ŒÄÓú ±þJ®J¤ÿXŸJt-†·% "kýL êv탷×Ê!ítÑ–h¨¢~ýNÚÑÏÂHª¯üôàÀõúø[VNø}-·Äõ‘˜ ]G͈…ScóÄÈÑ©¯HT,[«×!ö[êEi¨‰B>ï*jaMÇëëë& ¦æÔQ:]G 3º‹Øé«74—´"—ïþŸ¬ø~b÷©;&E°\2,]äK®¯‰õVÄtD½.?Ivü<¾ÐtžÐP·j4äÌ„^ÞÇç3ëH=H&(¤ctNäÞgèÎz‡ 颿"¹ åi`«9ø¹IÔ¤%ðèOA±4 \&9ÈnÓ=NËÉÖµó€û‰ñø¾³i °Ázݤѡ à¾+n¨Næuyù1/ؤ3Ñà~xcpÎHN2»n—„Åòñý®½6È—K­‡S"ôPTJ8ݺ„—õûâÊirܼ¡©Z…Äú(=‚Ör“óÌ&]¬àÃu7xÐ_§Ký YÓóŠúÙt6ÖÏŠÊãCt#µÁ °Ïú]æÁRjFp\ûø—•Ý%"ö»F|×føyp¿4Y«,Ñû ÷íÊè_e—<–BÈ‘R÷È IKÆ/NœÔñ{¥ãû+G*Zñh4n%ñýsú fâ“êƒÖûÿ ˜dXià¢QÏJã«ênH-økcìVƒìþ5Þ=ò]dy¸'‡ä‘Øì³[²”š?7–øÞçÖëôÄ kðW$îg%+.Çâiù„2èe Èø!Yr+‘ÑÚu "&D®ïâŠÍ5IŒõ>×~|Ç„dÀrWü·«a­ÇµýD×UDB 0ø—^mXa¼"=RG-¤ä¯ˆøFl$ÏÍg¤&Šª¢ÍOáÅ5ñ¥þ1$ªVv…‚âêo[6—ë[7ôÊŠß÷Vœ@ˆ\‘°¶uíz_/¡…_ˆû“r _P¢ˆŸ“Eó‘û­³cjßëÖvÆÇ'bÞà#1È™8 ¿›åy}1ô›'¤ž¤tÑ-ø¿­´ðÒcî€$å[VÒ3rùr!Íûð¹¼ ÿyFÞ³é7Ö#åWâàœ\–hh«9°^(ͨ€¶: H•ˆ±îßyÑHl2h:0"·íë‡d„%:¦,Т;ë™ÔõrY‘lÖQûîkñû¤TúU`2oä"²Ü÷»ÚOðŠ;rŒGΈõy.‰¿Ä!Î+jÖ'±Zž|.¯ÑŽõ}L‹'üBæxl¼+y& ÈÚ|JEÕ2(vÊ$ë¸ÅÒ”Œ¾‰¬n»Š}ŸJj"9ÕþoԼǑú2¾Ú_Ïýƒ×Á xá}‰€–Â#k$^AÿèûYíjÈðd†¼ïþS›Œ:XCU]1$Z@{¿ýe%¦*u'±-|»?\íìxŽ(øQns»…Í®ËfÙÈ#'d¥œýWñÜ1â 'Y/þï¸)׉x‡¼°¿)xÍ;ù:±Yt*Ÿ_6±•y/¾5&ôI …gŤê‰M/a§©ømjÛ$hb3V¾Áí4ž{XvÊb¢þŒ,’ ²&ð= úMÒÃ;.ûÙ·7‘9ï¬È6## ø`¡l&bip y ;ɛݤG …ÇúÑà}%$.ùl¡$–Ø-¿VÕl~™ósLöûž6g$T¶s³+\ŸŠõM¿†¼±Ô®ú9Åýx÷ ê‡ç ÿ+þ O<´ÖÕº@géqøÐj¢ï©Ç¢£Âº+ÀÝÏl%CúÖή×ÉÒwÆÒ•ÁôØÄò5$·Þd²mÆâ?ùk\¶È2™O X—Œh-<˜þü`?òß%:b€ ÷ð…})vM°õ 2íá51‡Èß Ãú ¦ù…~.lWÂåÀâ1Àð÷tògáÛÆÆ¦6á vµžÛüµmÏÐÀE¢|6þ?›W¾–¼~VX¢à*Z:‹®¬Ï©¡â±90$¢¯›l²ÄS4SšY…¬`3æñH6ü/°+…Kéöó­£Q™¥Ñ2)šb©bÈSì ÷Øz%¿—ûÉ?ÖÓiŸ¬ 6#qx],S$¥ÞÅ/öóèY˜Ãä¼Ã+C¼³þÛ€\ü›Œßù4'×Dþ!äÍbŸ”ÖUÆûo‹­+›ŒÂ†9ÑDl¸\’ð{ƒ¿êõ¸Ÿ xLl²ÉN"à+Y-y_=©L¤ *Vû>)6ûã7PÓðð}´XÑ_ R ¹kh{ì_©Æící­+4Ô ò ÜÊâ ºa.)À÷ê¢au&6LÍýT ´Ëv÷×|]2¹¾„é¤Ô2NfÈ2â‡ò¬`÷Æ£¥'Ô‡±u‹XüÿkJƒ¬à«¾Å D 8ó‡TXÕÈ~CA„¹è#m@' ¤rEÝ$g3ÎÞ`ëÀªóøõYIHÆŽ žùî€t¯}7ßE’$_„,|/„q²BúJo°ákß+*!ÎPô¸ ÛGòGM³“ÿ˜8‹0®Ÿ ]Dwûðÿ.6%2 u`*¿¯œq§6íë%œö¡ÁÞ|>;Ç7}>Åÿ”½ðºÖàøLl¸Æ÷Zà;ãÍñïË8ý–×PÏ’ à5“ K=q‹O‰‰n“ú.ñÕ2f; ‰žÝ)Ÿ vkù†…À%«Y¬£ÇOø¹õëÜJþ{ˆOŸàÞzï{nv䳋ŽàÕÇ@†Å M@Ø#lM—ëZ©î€†›ÑŸÕR6?å6ñ`Su,2Pd£®Dd¼–ÀöŠOTr­ñí0|»ÄxT;&þ€ïy¹NlƱkÿWâç0$doAöîŽÖ¢ë´J†KL¦ë‰èušY÷7‡‘ÛfÅm󀇩°w]ä/¤ùÁÂκ L¼Eü²D—Ó-¡ò·n6Óó…Ø9œ(zÙ·ÉU¬wœ,hõÌFd]Gœ?Ûê—°—äõDÅAYï@ä/¢®o\Kôõðœ°zi•ŸÚLëhBªÿq ˆuO¡\¹€ ÍBö»í~FÖ¨ð¸8¾öû…ï=ï{—l·¶s\¬³Ï2¤_‡­SÃæºk?½fǹ’ÁpºãèmñÆM;@Ý|Î5r8ý±,ɉæz£¹6ÚŒ(I­6=îd@;ÀftÜc þ’‘è·¹§@²ÉØî&¸fo6ŠÍ|ßåûoñÅÏ~èM=×-t„ÉÕÕþXýS⢯îñmF€]%o=£~„¾$’ñ™1‘:Š¿9„0¿Ö‘Ï]›€É_ôÝî¬Çy4Pï„·ö¾ë1¢vö;ÏýÛÜŸ‹c°þh° ’wÁú`Í¡ü´Ev«š»¡!Z&¼ÜÛå™ÃN~¬r²êá ï wÔ÷<ÌÿtCòèG:Púpoć°ÿeîXÿÐ&¶=õ•íz²Ûõ²œé;8¯ô] gp?7²¶DæÚ ¯¯ç{?Û=c9­AõýÄÉ>ån–6ú¹[xt+÷¿'vã ×ä=2b.< Öܵr—]2ü?TŒïŸõS^æá3á´£¸M—‘ò|‹íÇó¨õÂM Žëé1Ìf™ôÄö]ðþ>:›Ø^ã3çn>iî&¡9ë#· Ý7¼ 7| ‘©^ÊWíRÝ}î¢I:XÚ&|ÒzÖ®ÃöS‘øsäï#ýáù½|ÿç9޾ůãÂáz`wÛ÷ÔA«µ:諃ñç\:¯ßå§Áí“ï`F£x×<ß?s2âÜ(¼/":Ï Vt·Jºî‘{"QÈd6åê!ß{…·¹Mè(]¥¥tC³ùö6rßÿy¬3o{œz"Ní8o˜‚>"ËùûÑ×ß'u¸9ý盚ÌÈ©ç$ ¢Šû €òsýÝTgœo-VqzÅÊ ù É{Hgøý\4bø?ž³ôêˆôðøfä¼xÂ@ª¼V0Úš:T;"cźÝî#ëmÄþ£}µù¸räNæwÈ%ÒïÚÞ5r³]Y õÎ6ÀR/Cñ€O¨ê;I[ì'XXÿç)þèHYò]Olß ´¦’‰¡•ÁÿÏáD©rëHø¯MJ[¢Î@î9¾ÿÿe=O P“š¿(ÑRz³¨4uå,,PÔ&"oR³ß—÷©û×á÷SÀ›üÑ ù§ò× ü`$z¹$u¼§5°V|á'"DDŸ¡•1z¯±y1ÖCô$¼gxðÿJ­ð/A_¥y¥uCM¥u‚`'L›ýíbR×ýL|Cv; Þ-Æf[ÈÑWÀëñDïl$²<^Y`¹ÎÚ ÜG]`Ý7ƒqw¥)üÏv7|…¦Öón;nfýÐ"À‰ããë)`˜¿K%|¿¢?"UËôØ×_V—ÛE8zHrÁÈ_á·;±ÜÐÚv4=ðý\g‚ {‘¿””ó{ÚhµãKÉlãݬò€íœñ~žˆuÔO³»ÐË>Êæ¥^ÈÚ|4}@“RÊ(²vª²Øü{ i~"‚C‘>¼îÂþËý9ßeD€u8?+7|v¯#ŽêɲÁ4|b ö?‡„ŠÍuZ†ˆÏGeuT¼¦¢©õRŽ "¤šà \×Ë}LMž¼®‹§&Rëù|‰ÞÇ¿ |d/AöžÛý:>AîǰFëNg.òØb^µôßÇÏI”«ˆßõðÜ'2Yà') úeâªõ ŽË¥†‰ä„×T 3'P›zm=ì^âvoˆ6 Xì;BO"“!~—×àÄEIê§?\ó»îÁ{Bñu;–b=‘N¡;$ä’Äd‚×’I ø&í‚ýmÙ5Ë ÝL©­7À²Ãþèe±éïÖû™Ÿä8—xŸí'aÍÇÖ!žÏ_ðs-ÒÂqq}™E—¡§©¼~ÏüäÏ ó8bÅëS5~ûÏ ƒ¾ë> ´Øÿn¥rÝ-WMëWÁlvâã ÉpSÑÅr¼~µŸñc@gòˆE€ùOJ&‹ÍïøD`ûH ¦;ü íõÇ;®¢ÅKäƒè"¢ß-YMè ²l… º&0¥+ë>s%©èÚ¤—EðÚ!Ø{"¶_ásÿBäéÏw®ðg;O€Öû?5ÖÿE2ðo2Þ»ÞË?Ýÿ\&‡@º‹äÀGþüßsbª¯®Lþ*M\Ì@ ýïV:—Þ•q9å#Ðiì²ïaÿ#˜Œ,¶Ó-ÔÿmPÖû£av>ç:ˆˆÏ<„'Ø4~VÄRÞ· šD.¸†ôêµô>¯‹ H¯Ý´Ÿ>wƒ-òZi\{WÇí¡>} ·üÙº H´¸²ÙÁþÈÍ„Xä+â=°„úH Âè£ûIçñõ¼?Æ}–l±?Åïø‰á5ˆýÊð¿NØ~¹¿?7ØVNi©{)ù‰ä“ømœm²ÚŽÎTDø1<÷[Y‰ÇøÊߪà|Ès€,™Û>Eþõä>;þwÚOºJeÝY‡iª_PÑvºÁe ¢ÝïYå\-y6© ¦Ån£;_•¶žï’û¿óxp|Ÿ‰Œ?K"C:¡óÉŠÉü•rë°ý!n?ã7¶2§Z'ìN:W»Ã}Ûh/}ß ôÔË?_5¸Õw­¤ Û&¸YUYÊøÙ}qˆ† ðàõhà7;›wOlß{fl[ÌïéHHµ`;¥b«qƒç`HDýPkÁ*âè 쯉Þ'¨·ƒsÕÅ.U] ÷@†ð_‹ã8D]TC?€Ç è¾ÜÛç‘ï•ç€iÔ¦[vDùÉ…Oüìƒ'R&U‹G^Kz-¯·¤µ?_ØQ—ë­&5]å@ ú_®अÝlW¼²Ìv ·ëÖ`»ûžÝ×":âaóXà_L¤¶#;Èé·ð};³WÓ_7QÅ׺u^²J¿ÓÅzÇÖñùÁÜ ¹œ+H.ØéÀVŠÛá­ùÀ¯æzÕçöþ¼†,©•@¼T ©±ÿ3p0>UŽùFYª[ÛO\¯ùRUoKc$Äk·»¬ßñø×VF—ßEuI¥<¾ÛÙcý¶7ö<ÎvF„l$÷µ- ÀÇ×òØHIJd&KžÁ?b!ílÞÛ_dG’ºib}.NЏ0íà^M]\¾e!÷‹›„íËáÃ%¨aOƒy7ˆõ0dGÛÇðHšj3‰§'T‹‘/ÐÔ=y†^bQ7ŤÊï©VÖRÛw˜)‘4û}¾çoYÅ\"¾gd7ÑM€Ùe"†Ó!å5xž]áû+üæ`må§@7Äò=5„Hýˆ˜o‰Ÿg&Z‚x­ÑKZPdžˆ”æsƒñÊ×?[)Ð@WÊ…'Ú/H 2w-"ú9Øöž|ìžÓA›hT]JŒg¡f~-5ü®ˆž~H<ß+¤†æÆs²Ë!7ÐUùÞž•ˆÅ·Î+¹¥Ùë#m¯95¥&R›ñjõïí &Ö•à\!t“ „õ›‘-í,_3jÝ’è§¡lw»É­Á÷¶ º .¬Ü•R~–Eê÷NÄ|~ê‚H?”Ñ  Û—Ø9ÏíÐáh©~P‰w|Dì4’Ç.²ϱ¾¿o¥wmÝJ÷Ô„×TÖYØwþ“µ«zæê ²â3ùIm?LÐ`¯é‹·Œ¡æé…W„×H’O–ZŒ`viÉ3]'wÝÖqºM×¢…‚Z\§éD] ƒ¥8øØœ«ŒÇ¯@?ƒÕŽñ9xÑQ¹êZ„x•t™ÝpW?8 ±ùdï ÓñüÇ:Jîé]}%Û±y‹'ÌÑÔ 1å”tSÞþ‘• ¬w]Í’&äuü!°¾ºìÓ[ºFVà À½è69Ý¥ë¥ gwÿ¹+£«äD–Ë-²K7Ám£KKªž¡0ž©úB K6Êkê¼Õ]ßþ»• /ˆ 7lªwà5Sà¡“Èò‰Œ¥z4Ä,úVOüøk«L&5âbùÎ’mpúõšSê»Mø{WÏe²ÞÿüU fTäwßykpõaŒ9þåº~þm+³ûÀ•}«¸í»õn½[ïÖ»õn½[ïÖ»õ?_vD?¹ŸŠö¯¿ »t°ü|.Ë¿Í8XI¥S€z°4•@>žMO=(ö4ÿóW.*ßò®+„Äe]IWÛusŸº¬T|Ü.ê6 ‡â<“Çwù×Z \*—›ª/kí.»›îœÛèÆºŽn„kê&ºrN–Éj©!ë]â 8¾PÍÕu5¼ÆÞö•Z75}[ìý“›$7ä¹<–ÁRKwFúÈï4ª¦ö×v/”#Ø?ûÄõÄcšø^Òo÷Êï{V7v¿¹LÒR~¡ÚP{êHÍ+ߺ;"ïÙ=M¡Í4LHØ:G~ue„ä–æøK'׌˜y;WIW”ê>“ëç*Éd%W$£öÐiع£6Ñ“ÒÔÕtË´ŸöÑ®ünçÏžÕú\ªj §%e³™Á|¾ÿ¿^@òÔ.™ëá&J!ßÛ3ƒÖÓœ:H;`ë„Ú]‹ÈonŸ6оú™ïZ[«hgݬSù¬Õ5¢¶“B²$xÛ¢ "–žŒVÊÍsd–¶!º­·M:dMªÉ|_³òº[>æ™2ú¡~©Ã4—æÖÙzB‡è7:I›ëp},]ä}æ|«Ž‰–uÀ¯2®œë/§užvAßâõv•ÜÉ¡…‘¿ Vn¨ÝðƒžÈ¼ÁŸ­¡»Ð@G¿ë©1~’MOË )%U\Cpäm9PÀŸý=îI&)HlÝ "_=¥§ÄzxõC¶2X9£¦%îãõ½‘=ú˜­#|ßÌ\DÅ|Ý®ŸòÎ÷u¼ôwÀ“àƒ¼ÜŠa÷n—×ÕúYÅÑ'ò‘ïu VëÙ#µ¤¦A+­xü7â½ ž_U ƒÙúO±`ó´^‘,äŽglGx;}¨Kün¸ºE§cýCºÆŸ½$­àCµƒ¢ç韯”® ¸—ÉqïiQm¡uÉë9}ç÷ŠX}5¾RúÑqu!VÿhO,DÒÏõ>¬è•Tâ9þ^Z@wê)"#;Üè¢jˆ†4ÕŽø@fØŽOÿõÊ>%…éõu¿H­¶ö:lï–Ø5‹}±f¦%3øÞ›\Pä««Õˆ‹²ä¾Äêx}O|f›~JjS€íí¼ð~_ÓÉè¦ œ¨VVHæùÉÜ7n1ݬ>‹ªüÕalÚ˜~[„¸B$¤ÓŸ¤‘¶Ä¾ƒ‘s0´ï úYOÛ i½âvéy}c¢kñ…/ðŠ"b3ó‚qåÀ7s»ARÛW×G2[Ö‡÷œ—‹rMûI¶ï5…Þ”`úarCýMZ#u™¦"Z&éxØ`C|#±2œ¼¯?!õ >×õ~JÎhþŸàcÄ\PkJÜÒW‡é¶çVB_É!< —VýJT}O—ú°ßˆ`¾Í‚±«ù²£³X Þtíïûå§&RÊ`÷ÕØÿL(”XÇ'N sIc)Ðâþ_+#6)èNHW<›–"¾‡¢‡òH(zC.I8Pî¥l#ú“#w|´Ò”øè'®†—$A+)ñ€¡D~GÍá»"gðý^$2*àýóxu^xóøÂ7(ÈΕfq ]wÖ}á»ùt½ Áß2«uñ¾"×å™<”7ò žð »çG#Ô:À7BíàEõÀ¾øä¿2D€]GüžFÖ§’DË!uIj¡jè,1üà]¤™Cêi|x@ð°Á\¾Êâbãï-`òóÈgùàøÑ‘ßzbüq­£õu~ê¯è½&qññL†ç³aÓ¶àZ<ì‹h¨'ŒÊ_ä²ü&iÀÉ¢<–׆õÕÁn½¬UB IaÑÅ ´àÿ¶²Ã{Ú»SÔ26Ý¥(Y­+^<t³¬Ä:†Q»Þ+6~ÿ?HO\ ÁÚ‰þ´ž'”ƒ#æù„øAZ{à¯úŠAÈÀ§ÞBsO¤šý$ …Œuõ‚Fþ¤®º»ä*Rž‘tøõ#yªÕEQÔ:ZÇÅ‚a‘ÐÀ¯’L!•"~L¤÷öõ]+c]>_“'ccq›Âû¢à¥` £t˜Ð ?øAòÍL¼4®¨ë* ðã Xó!¶Úâ½–lDz)*Þâ|/Ü7b~pû§@9yeRß5±ïk…üù¡±a…‘Õ¼Äzà'Õüm¹â+XB³ß;wKI† ð€¬`|7«‚åEE‰üõ²Þ_ÿüRî‚}aà}÷ùë²ïwN²“á ¨ÅwvnU@¶ª~ÊGj´•D­÷ù3>ïš|Ÿ|›Ï+Âg—€V&NºQ9\!W4 ë~%ÿ*¹úò‰œäûÆ­‹km©Ûd£ì•ãØü9²œð×½\€ ]“ŸÀ¿ ¾OD!¿ë5;Ñ\™ üKíu AgÅ®}ŒG„˜í[ƒ*@Ø1°¤M:EëEHäj‚E±t³ •¯®šÏï`y6ãàG¤½Ç£Gd÷®cû›ü{FtÖÏÉzWg‚$ôr ÷ÄüÝO@±ÈˆvÜæà÷£‘û°×h!Õ´V@{ÿý±ÒPõ5sÞÓˆ:f·¤ÅVõ¨Z‹’ÛNáïW‘ør•]r¿ã¡¶ëlÁÂÞ_ÌÅå6Jnrw~¸¬uhK‹IŠ_Gêã²›ã¯cä„£ Ä6Y ¨n'O&ç]Éõˆ¿ÎÛ&`¼"×…àÖñà7ÒŸ&kîä“BÁÉpèÕ:ʤ†/MxH3rLY˜Ã rEQ—6 ò—p›] ¤ÊB4vÝ&¯_á»ÏåÖãåSdÒÏ’¹Øv+ÞÐôN®{eœ,’!È3Pºácx…ÍÄ9å;½[Æ<ÎûçÊž;)$õC ê€óÄÄ}ê©ÒøA=mÂf (Hí ¹yØ2ÖHEÎŽ“yBåv—ï¿—xž‡œ}g§ÙàßJd™ FôÄš ‰‡)hfŠô“%`Å:^¿ÚׯÖûÖÞ»Ü÷>¶Ù1{¼V.¡×KøJª¤< BQ~æI‰JoÓÒ¹vn¸äP›ÛÖ#ÿS?·é ,$Âç#û4™€Vr³ð5¨¡u Â*™Ž'pû–gg#kŽÄßßÉb·®é[ýã‡$91ß'«¢-µ/ˆ¸1À×Å%w™\Yj?Å¢µðG%$ñ×}/Cž©Èm[Oúî·+±ì×°½ÁÚ.žŒ9Ó÷¼šî{cÎÁ?’Áq·KWÐÿ²ÙO XGæØàû E§Bª ~¨Ku³.VÔà ;a¤uÙ\S·OIeÖ^ ‘ÉÓÀc÷ Õpùɬ+ô+$X‹wŸÄ¯‹Âå?¡–m‹ÇŒÀú«}Ç䱨>~1OKê8ÂÙæû¥ÌAGßñ;”|hóÚ‚|Û@Ù¾svMjçií†`G¼¿D~;ÆgóºÎúî]ËøÖ3A¶®|÷Ëò3ÞlQ­/èJXâ08b'8̧šL­ÈQ`9s ~­«Èéóx$Ô³¦¥ ÃtïG+ÀÁû°…©TÖ3ÿ<¡ 9`œ>uŸPþÄß<·‹ØÜj¯BÞ‘`ùd*ÃÈoöý'ßÖ} ¾<tø/ïwíH$Dõ×Bo&ÛWC²þ°ûŽº ß?@&8EXæXìg#­DÇA¿LÄV%x@rÍE,ôÑh•ÿM÷;¸½ þf½Ÿ;Ji.ŸH¤­Ÿ|)=|~³~ð”îDÀH|½«É®€l{ÐApq:h«;ü,¬}°b¯¯6ú 0ÝÍ‚3oÅþ¯ÄæÅEYÙlѯõäð1Rî´»,ùÕfüìòµÝA,Ý[Ú~-¤ƒ´‘îHoýŸÇÊ:ßéó|M¦˜ä'8FV« ¿AÞØøòp0 (™c ²56ûž©“|žXÏkîñ*›R„Z(^Oõ tGˆšäÿù’•šç1ÌÏrÜo`þj¤']øý100 Vò»<(ø 5Íxmª=ˆþµøM2À鬣uÕMG^·­X¸ådÆq~:Ø?ä¾$¢îì3þ"™õ¾ËPéñ_ÁeÅ.ßóÝŽÂTßH?ñu6X`óÆò3ùgÃÐD9òØbmޝÛć{~2^|ü™ŒF?‰íˆüMþA(5Ÿ,9i“3ìˆÉ´üZÚ Áç’X ÿÀ®Ò®±»çî€lÛÐ@ˆÞôÇxVþ]dX0P¾Ã¾õylºèÇìƒÁÀººÙw¹›"ƒÉ-‰ˆVäF«ŒvÈa_5[dë gÚ\O|å¤m–÷©+kÞ¡¾kຸ(ºÛ>ÅN“ˆfã´=‘½rõëg¾Ìs‚Õ ÁpICýÞÏg»8j:±>ß`J)‰‰âä´]TM6õešÙÈ{£‰‰xÏv<+;¡Z‘pxÐ\©ð.ˆPsIu¾£fµXÿ’oû5RÍ¿ °x7䙯ßÖé»qð1ÜmÒg  Uyž7 Ô+J ™Uç ¹h`l&væâù6eÈÒ ÎSžZ0U@í°ò¸jî–KE&ÿo¼„ˆïÕçÈbú’ !~‡ãÁãa?-±ç P¾†>áæ£¥Ái ¯\‹“%[RûV‚cÛy¥ .I …w¶×Ѧ`Ù|û0TÿŽøŽÇ>Ç[“Å^ú)XÖÙx 2Žæñ‚ZAÏ#Ù|c)ì #ž=–˜ ÎÁêÍyí?ûcQ±ËOó5ðl¸Ã iLô4%VÓjAÒ¶€«ãÖ¹äòø°’XÜæœÇQÍ%Òkø²›ç»½ÛÜ®3È9ËZ´ N¦fúÒ[–߈ŸŸ§8F–KB–Ÿ‚ß‘‰øÄÃÏAÍOþÜ${A³ºTĀͶý…êæ±d‡ 6ôsŸU_Êm4s¾¯ –cÝé¾ÿ÷"ä&6óøäþšXÙæ§ä¬ÁlJú¿k,;ho{âí,hmMOÅ—KSƒ}%|ï°aAsuLb—É=pVË&òSJ&ìfs/mïß±ù…SAú…~òï2ßy˜wï8‹Ï«^÷ÇJCmðçŽûs! 5 R#bv„÷¥âi¥ŸhoÍÒö šÝÐ)]a7Ì!6Ãi½%õ‘<òÓf"×mä_å§,E>›ùi±> YÏëÿW{goeµ­ý1Æ¢nØt³éîîn”AÁDAEEéîîîîîF:$¿ÿœzn|÷œûyÎõܵ<sýöfåfzÆ3Þw¾cœ¢š;2ü=1 ®·Øã»¡»ëâ[RKNÄÁÊ¡ƒ~äý£TÎ)µEœýüu¥…¿%U-¦¹³#‰çŽ0×{0áÈs‡L6<_€ƒëxíy‡×âÚcßåt*è8ƒÈ˜ömømrì~øŽÛ+´Ë‚üî¼ùu T#´Ð"’.Ø‚ÿ¶2IÉ%õ±JjóùH6<'jãÙI´0†_†^Ü,¯ùHæÎò^ó;C2Ïîø ;zðVë¸ðŒßŽùº3§ª½Ö…è/Åû„HˆD…ÎúÚ\mÔÉÏÿy%•:²AO¥ÓìC,´ßG _Ös‰ìiؾ?Ï}‡ü›=3¸Ïï=H ÿ>ÚLJ9fðމÞ[ÖÁžÎhkoûñý”D|XO¸ÕÚX! ¥þï…¤³TÐ)Ä}UøYbÛíw;œE×ëz ^=ù¿!ò]änàv@¯ KF·G>¿C’A~â½?¡µÅü»üLÚ!­¯©ÅòY;{û±BªcL^4ð¡„S“ŸÆ«£Û3ŸÃ—“íúû©ëˆ¯øqî|·›eévýz.|X0´s²UÛ.骦éxÆ c&˜9¯8A9dˆm™É,•­ž¦þíIUUF[àÿk¥’b’CøøCøÏs¿Ÿ+›¥¶ƒ~*–Û´‚7 c&vwuÎLr^ ƒ á3ÎSV‚z®ú}¨%Éž»ù;ù,½ß%ø&¬¯Œ}Aމ£µƒzÖÿ¯¯LÒEÚIsÏjã˜YPÚñ;7]¼ÊÏ\üÛÀºm [*„,䂈ø@Î\ìú ‡ù$3·ƒ°¢M´OaÀõá~î6Y¿¦Áö¯®ÖGfÉ,Ь5Ýî²›LïöĹy@nª¯›þµš¨>MœÄåÕŒæv…ç>„뉭ƒïóÝŒ·ü Ý9¿‡ès›kðÿþÖÒfiÇ ÎûþïW©íö#aÙ»~ªÃ1d)`oÁZÜUûüQ€ þ<ÉSÍ “‰FÞKOfK…Fà7‰‹Í~ßt"˜^‹LÕ{ÐÏÓ«ê- ®ë(irØ÷ï«ØLê!ß(Ï\wkQøJAs<þ¢Ÿ=C7ŠíçwæÂêE3ž¿ÂÕM¸\‹í““íbÀ‰îø‰/¯ð®˜°äâ6ë7Ö&Ò"ØBþ·«™¤A’]›Z«KH^UåÊòûàNß ýU‘Íñ‘êüNjóÈw™ÑÓ!²@6>Y‰ûI,*Ü ±ÕõZX›„Çlò!ÅûþÚ* U%¹ü,(€Uíkì'B®…ÁG„/ƒç±÷À…0»T »àü¹°ôeP"vîl_"³Ã…àþdÛçù4üùC}¹þ6%Éeám‰Üw¬x˜.Ž*®‚U!;΄#7á•Oìj¹F&øþs²œc ×ÀŒvö.uþDý§¶ÆÛÛ¬gñ­àÏ»ý=+L¢Ò•<ØØæàáÙˆã4øBa¿—=…méù»ØL{5pßÊãÍÍŒt¼!5zª‚ß”ô;¿s‚‚Ót>üºxÈûþ_VvÉ&Õ¨ˆ>Í¿´‘V ?vWú•õ“|€ n>®».úkÛBfËAˆ æUóýß+Pf²×­)ºzdü@€¬Å¤~°Åú;V6tVÚÈIùT3Á«Á[;ãÏÍýUE©“¢ÿŸÛxh5ax‘ÈxUýÑ5ÀêDÿ`lÿ®³¥:‘˜úótø÷U@*È(¬VQk#{?\5?Áµhžœxhh‡}×ïO`÷à»Íñl<¿ÄnÛj›‡žê+³¤ T‘Y§ïÊ%館 ¥2®I促ÞBn†_Fr_[[ Çmm3ˆq!JFú뻲Û{Œ†ŠÁ ¢ÚY)‚W;ÿþURòJ²A Á›dµÏÀó%x@8Þû{¯$?¶ â›á ¹­‹~l_a÷uú¦ÖÓáØ=w°Eø®,TÆUÉWd4¼°èVä"ú{Û]¼¼³­°Ÿlþ±ŽÛCwÃöºëf‰­éðü•ÕŠ ùs ×w¨úæXÌÀ$ öí$û ËRát ¼kÉ© éiùÜhì/ý‡®”ò:µËùFßµ[5pÀzaÿ30œ‡¶Uçãoaý޲¹;…Ìlã?v†}"×å±~e÷¬Oàý@6Ë©iM´‡6³ºÚ6774Îlþ3V ©/X,½õ;›êí‡ÓǶ™dŠ(ÚSbQCgÁc;ä ×Áä¹%¤‘DÔúò‹çF+Åý™¤ÿVr¬œ/ÏGµœœ{eüUÔ/×Ëõr½\/×Ëõr½\/×Ëõ¯¿rHšœæþ¿µÊú ‘Y$u@ò`™ê —¬T¹y$Òº¾"µ•$¥®%u¤’âõ„ÿ²:È,Éü”‹dÔºäSù€Ú÷÷*Ëw2_¶È´ò ÚÉI5XAªKü¢yЯnúcVª\·G¼ªŒ—dšIãèiƒç¯’vX¿¤~¦st§ŽÑWµ®D’ŽÒ™WëáõÐ@Ã`ùÿáJAd§”rò¶|‚•OÈýÖ:Ù^Ý‹Ç-ý¤¢\Ò–Ç:Ø[csõ¹ô’Ù²@Þ—NÒýü¹åÏ!ang°¼#}å 4гšÍÊÙëkg5L;bçÅÚÇz[=û |eûíK[®ßêFm¨÷ä‘ñFôøúÇ–›rYDJ fòHºêAMmï[>‹aís«nMm·4‘ÖØZûÄ[Mki_ØDkÁ«µíšÖ×sÒZJã=¾UI²ƒeå[Y-'µ½ µa¶;¿f -‚•·”DÁU½/kýY±/ìM[`y­•Í" FYûÐÞ°‹ZJo eÐA¨v½þë+ YÎõ*7m¬M,f`­µÁ³G ¡ënÖÐjX~ì?ÇNj]}ec¬®U¶$Ö­·áÖú#õ,–mÕZ‡lP þYŽŠgâ–‚ —Rk.<û;ìËÞïãâÕY,·¥°Îó 5~1ŸGngo^´tƶÚG覭M³±|v:ñ°S¿!Ž:ýI| „d„ÅL‘ºA+ù‰-=’|‹TO4–•±õšŸHOb?Ù =l­‚µtVÐ2Y3gÏí3ËnMl­² hm©}m—õØ¿˜M¶~JÙv\Ç*ÙCx÷cani¥¨ôCнž×Ì~V×ëv­ÑžhTûEW‚‰),ªõvi¤ž 'è„ü?XG{bWÁ„êDÈ`›€–ásl…Y+D. «~þóÊâà÷cifÛ¼·§³œØû¹ž×§šÓºƒr—õQqA[bù: _è¤%±õhtP×^·åèÁõFx–ä&`$F~Boì"ù±‰¥ÕÆ~J\(®p0?§Œ“|߯ýîÏd¹àÜEò@ižIëçA”âÙfö (PÞ»_(;Xƒ§7ë>´,–ß÷üML#\ôC£±᪦š1$çd!.óÀÖòÕÚb©ÌØ0­%å–©Ÿ"e{${ ·µ¢ßõ@Ý$”ÆöH]ÏÈ„6mµ$Û}d…-›ïû =ްIpƒê`Á9{%p—Üð¡m¦*vדÿºòQç´õoÀ\ Y¢·±÷þxDýÏX½+ÖŽé÷¼gÎngïÏ¿Ñð’øHî&á°ä–>hÄß(+ÔÀÛ…M¶lê–>äfÀ$ûsPá]„ϱZüTD’pýø0>³gúBÃñ‡HpÞG`àuuû¿Yj¬^Í¿û™fFÞ†äû¼h#uBY<'ŒØÈLv8os‰·‡p‡• äÖw%n°EþO+ ß§©¬Ó†H¾ÓÂïàLcÑáúÁÿ°Þ‡ÁwG¼©4)yÎ!|s^éJ´¤'æs[b‹‚.2ñ©ì¼þT(Ã;kYþæLÛ‰‡Ô ¤ Œ—Ü!´8§Ä¦N7€ç·Âb͉Y7Õ¡†™šÛÅÝ^ÅbYDtÅ÷´n;hd‡4:ì83˜Ñ«»~×Yà Å|7°|¦þ_? çonB·íó@Û@ÍBW@…¡ª’yŸisìT™ ö=™Üuõ÷W¶EGîdXó9ü÷&øUå}å}WÛºdÀª–‘Ÿp¤Ï‚ß!Cóþ4,BôOû€¦«,}`=i˜T&êBcåýèW~šÍ«Dt*d.á§¿ÜÖÊÈpž¬wŸ¿­îº°#úìˈdeìc$kåùßç|*b!u\‹ >Ö0Àõ¿O6÷Û2ÛîºìP/|.Zi¹23œ§…T×w)³‰Ò;z@k\êšL ™c?‡õ4Rï'ú/ó;ú)mµá¿Å}í¦gÊåüŒ¤èà™º¾×Ñü®è<Ó›LØ&té7 ñ§Ùè=V*¬ŸZë°´Êøj)¾ÿ ||=²¾Ð³ä¾ÇzR«ëôwUoé°?ì·6ù£‹üȘSN Ö½F>Œb¾ÀSò‚ Å|Gõœààë0…A6ÅæY[í0RK}Ù!£±ß0$ ý±m bá¢.Åïo"õE4°]7û¾Ø'ÑÉ==§×®¼Åös¯Jƒ‡îÚöÇš ”tY3'¾/XÙ]˜Šx”½ôÕˆ©ÏaÅK-y`‚. ]’iýÔ·ñš»$RzÖ_ Ž Û?¥û¸Ð-Ô»ýռΎè݈6nhQßÏ6;Ÿ+CÅ›ŠÚ(1¹Âu„Ï <-¢mð¬`Àûö)ÿÎÁû7€•¬·û¯[à}Õe‰& NvˆYwõ^;£;‘xƒnR7Áuu¡Æƒ+xf-—OT Bpó^î‚ ðŒü×°¼›/xÃ3…uàßÏülýf€÷-¦¶ ¶øT=åe‹¤!G—@ê¨vô»©Îsocw'õ´°O÷âÿôXx„û›u ¾°–<èzœä£Bp½Îi‰_=Ž€Wõ‰FÆ ^qU"•ÐFj¡©ðá*ü_©Úb}KâYþD0±ÙÚÉܵ]®OKRò|Hæ;÷׹ȿ\gPóoÃþ×ðèú œ#V‘ò ]B»C|<3S5‘ÑœËÀJǯQ3'à/—à'-³3Ìú˜Vi4—>è»&Ý•^56tikÀú>ýj"Õi*{µ™¾ó½›ø±œ88‰?lÕuÜ»S8‡6òÇ»_<×ëž!Ç@þ‹È~NO ±xÏôð3zpÓ3!ûT;ÌOj‚ÚÜ`E©y›Ë0¤ûD§ÓnrUUê¸üØé.Þ}Egêí;šî Ï!ÍY4²ZaûÄä¼8xŽ;ö{G]ÿ DHD4wiO‚®óõ=ƒAFƒ_D#_ü¢UÉÈý-²¶ ªü %›¼!M4·æÇ{ó=ÏbY×£÷’Ÿö¶IÇêdäŸë§žlö×ù»+€g#ÛEðºö$ ^Õ…èi/Ÿv½ÓÎûIs|ÏÛ-þŠÙ S2W±m ¦0ÆŽip¯MMþ["t yû]â8%H~™g‘ùWòÛuoí«Ý|W³eH´O>,é b ±Öå~ÐyhÀõ¿q3P.â ûu Zí{€îÂNòŒ›-pÒw¼HܼC}qIƒ»_ ·“]²FËáÃqa¾7ˆÙ‡Øo,o¯ŽÖ¡ú•~ªù~Îþ³ˆ|57ÛÁuBêM$ôÖHôúX…^œü§ð‚‹¼oÒO÷] —sï0²Aò‡`d^‚»š*·õÑ$A•ßÍx_(n:ßMMCdÆÁGÝ1/×h“NÔqÈ?@¿÷}çøn÷ëµ¥ýŒŒáµsÔg¼eÄÉr?Ae!?Û¸ïꈸÖгäðÁþ¶—˜Þƒz`˜ä—Þ²æ2Ÿo:Î÷ïÛˆ”ýy„ï{û ÷†â ®³Í"¢ý„¶³ýu®Û´Q²È{ËP46¿q‚ÈŸæ½~9vñú4>ã&D¬åïoæÕgêfl¦Äߪù.ˆ9‚|]t.ëÉê³>ÇâŸcK'u'~æþ· ྽ë^?Ýw€k@ýþþ»•è˜î-ü±ï|: 4<ígû÷ºÞÏ|ï¸:œø˜@”¬ñ<ꀯ*ãQ5V!o¦òqÀ$ò½,À3¯Â`¿AÖŽÚYßÓîú.¾ÿ¹~ÿ÷‚Ló]Àfáí5»³!ÖÓ¡ÉûóŠËsñô±¾ëùb~Ö¡ 7EeŠ›c`L\˜q"Là©Æ'ûÿh©à?ÁÍ€‰ä-É£mí6ùK É]ì'¯õFîö£Ÿe3Ûÿ|shý¨bÖòÎÉ^úi¾Ã³óó³xÐ<^€ý·ø~`3y‡«’‘óËX9r_p6àw²UR/¨Ò»cŸ5e§Ô2ÇÕ§û[üŒÃDðdôÑW?Cþ1ȽÚ÷·íå;wÃûëÚ*Þ1=}Éoç!c±ÿðo ï—¾ÍC\EÌàùÃjƒºª¹5âö>µ–;F˜ÍÞ zØrR t×OøÛ ë‹ ºL–ÿ› ƒá~ã{Ý¹ŽŽK±ãhüÚU/ŸZ1Õ]ÇÛ!è¤?VþŽw>‚ýöòó€Öú©7«Ðšëˆ¶ÀwS<>^Q7³\c¼¹FÐÏ…”–ÒAöñí`g7çñ65Œ›÷:ÛöǺ?øé |Vü Šc¿n0…)¾ä~÷]Î'“ÿnÂ~>ŋ棯™øÿ¢‚トGî³Ðà­f-¬–zô»UGË,-asñÛøÀ&o³O±ãäú î맸ß!K\+EôºèvÝÍ'ûiãñÿ%¾"ÜÆç—xÌÆæküÜ—]?À]hù8uÅnþFaûÖQ{¶¶ø’O*Êeù¢Ø¾ï:l>ìs“Ûܧ)~ØxßÇ»¾øç±á\$²¿K¦‹„s}Ïó½ ÿ!òÂXÑtÏCr7;`¢ÇÕëZÀ2øý`>÷4“¤ ¶ð⎤ÃŽºª¶q<)Îú ·~«'#Ãè`¤¯ÑŸQ A;í´ þÒ÷ÌñÝw¢¥…DÀ¢­ïš<ŒgàS¨ÿ*Yq+kÈ€¬­Ö úÑ?·*H*i'ga$«°w{l¿@_ø£[[5™z¢Ÿ‚6ÂOã½`:¶t(ßçúÂ~Fƒc}wû™èb1°mÌñ½ÿgzïÙ‰_mKŸh¸Ÿ{—ÈòX¾8úëVv),¹ÅMm}HÕÖÌ~¦)±QTS»:ÉføŽ×nÎ<Ï‚†z4?íqá[ïK|wLwÄØõ_áçþ¹ã&ýýg¡Ù¹šÉInɬ¥}¨¡ÒÃx•µÌûúD|k9ȸÀã»cˆ[×Mx?NĸÉh_£)^ú#~ÊÑa8EQøþë ^ìÝÒ:Pÿ7„]6hÒ`‹ýo«±„Ki¹§µm…¦×ÙRËw7ÞŒÿ>$Âû‚vSñw`+²¡º½ˆÔav__³ÒvWš›€ºV0íìôõí"" Vnf5ýÌËwøé‚&Ûvx5„®,N˜IæÀÊëÏò¼‚,òÇ{6ýÆ&“¿fûùˆ®8ü}ï¸ïïév„M&2ÜôܾþÝè«üuèé¶æ²D»›€ˆnÙ°þTb`VH]“XjIY}`;¨{VÃGÔ͵ÞNT÷ëú¬÷£ŸñºŠX8¤‘l’?3t6èv^¡¾sýž¯+ü»çðÛÍ¿‰––·œV=¤ÃWrƒÍ¨×Sw‡ÎJtŸìŽõâÙ%¸ª›]7„Ч7Yk„Ÿÿ4”{ ½_ÜÕÒØ}z2Þt bÜ÷†{–4ާ¡ÉÓh§8¨ÿ¶µÁ Ôîhk01 Y¦Rçþý畜MÊÚOlÞÒ¼d« ~zëWH¾ÉyÜsG{—øY·ñÉ#ðò"ä·vHpç~WøY‡CÁLwî`µîEó[›nÝ©zo_Âyÿ$Û¯ÍBj|bä/+£ñÎôÖ„\•IFë³=«só;÷Á‰ƒên¦ÙX´1Ó{û}M=jßo·Ÿ‘3ýèg¦»3×àÕù¬“u¶Ê~ÂRZ«k—í>Gh] SBZÉ5i¯FÆOo`uwMç6nîèÅdäp ®rßÍBšÁm6:q¬)2¨–Ëûö|´¯—Ÿ—ý“Ÿ–³“,èΊg Ãûó±àYñBn|vðøuyª @ê3Øx:¾{šèÞç'Ù àÞª³•øÃ$tp€Xwy0²%Æó#åNdŸ þÀgFóùË ã6rái8`5k‡ô5ýY¿z®eƒ-î_Y餮L—'ê®Z ØxÛMl~ÚŸ ž¤Õ1؃H¶«>BO‘,•ld;D^˜ŽÕݤÔ±¼›¦›š¼ïf' Û¾²¯Á‡$0¢ƒú%|#ôVi©âv‚lÙàgamϨ/Ý?óãfþÄËÏù¹&n’ëm=¯a¾ókDž]N~ã’LñG¿£çŠ˜Û+•ÅRYå$î;Ø{Ë jmØF(®ÈII9<7;9» öKigawéñýM0ºS0}7f5X˜ÑÂì<Q)e3·wb²O&Qãá¹êVËßÑ­/¨“¬¿ÛVñþ參 ¶¨cÆ ¶Ê mJ%°,øo<ËJôþ–oÒ³xü9¢a%‘í^|n¯p*xM:3[‡ÿ»ãœÉÐM0Ï]AôB[Ùm¨*¥™|l1ÿæj#åM¹)¹­X}‡(Nh­A­_@7wËa Û÷÷Ð÷ÿ/Næ/o1|u—ƒ,pÏ_ÌŽ¤¿îŽ®j.Cv°‰¶Õ†Ù0] ߇xìZRHºËwúuJAäÊk_‚Û‰±ð*d¿MFßAtU]ÏÓV <ßC¬ç/ò÷à%i,·%õ×Ï Cþ[¾Ot-ûÌ:‚ûµäíï‚M*È )¯¬?Qð:^ü6xÇvÀúŸ€|‡‰n7¡<œ'ÕlvÛ ¼…–²˜‹ü¼ ÝU~7¶ŠÈ¿ÈllÇô>øª‘ÿ—»4³l³w‘¥~žË±ÉónWëSÐ :y ïx…ÊöQŸ”,mn×PJtÒÚ Y´S„ª?7UÕ"¨¸Ž“R!o}·HV©.¹$! ' Ò' v‚êî8N^7áßc |3}’-²ö–d¤rÚ‹–â[CòÜDä¯ƒç ²ùøþIíªM¤`Ч]ÿÞ•ÀïŒë"y´R´4ÇòS _¢¾8‘].üLã×Ýí±E üĽÎäƒ]~zjKk‹ç|l#a}_Á}"kP/[Ðg=ÿ=+\ÒÃRÖHGmh'ÒÝÊâãÁönÔ2n·k&¤þÊ6Ù2ûÂïêºE^ˆOÎ+NæojŸÛbä´ž‡ë·—ƺþ÷i%%^]NÉ ýÎ#OäǽwÁº¸~¢åd‰Uà\-|> ¶TÊJ¢‘>èª#™Á]3G;JIÉô}ÎÿØ*ˆßV ^Ï›cÏ#6ËöÛ·d…, Bw›a[l(r–7wF¯½ !î€éïBúÂøÃ\L> ý™'{å—Ø’DzHO¸O.ë«€´ð{8ZØN˜Ý@ëé‘¡­Õ'2Üþ¾1d‚×lª>ƒQswÛ³Ò¿éåi¿?OìkSasía½mm¦­ôWö3œˆèm[Á†üOûù¾/ÁÞßðǬœTk%‡ÔnÚÑ"žÚ•÷¤\ú_©vvùDöÉAY¯3ì ýî¯Aú×7ˆöFDþÛÈãï4'Ø×5üsVU<®ô•6Ú×ÖÙUêÙ-6Þ®èYP/~ ,9A5–tÆ[BíèÖµòK^l[Nrûé?)sl“®•ã¶ÖÆi]½"EaŽÿÿ·WrbR9*i-*Þ&µ€Öí2 {Â`½ÿ…• ;—–Ò@Þ’)R@VÃÓ#{(ìæùßZ¹¥’4Eþêx|Uü!,Ø_èåz¹^®—ëåz¹^®—ëåz¹^®ÿ…•Â)ÿóçû=+uN"Iüo×,N–<“œú'õ_Ú?Ý1þ¿geEÒØÔø¤¦ä—¶ÒMZéR]t’™[¿‡¨¿³ûËþá+U\lÜH¾’6ò¦ô•Ê¢ÚGË»²Y6q›-i¤>òW‘"RLŠJÝ?Ñù¾ÿneå–‹V&Æ[ËH颣u‚ÖÔ²X:Ê~騯Y'Û£‡´†N—íò½|(¥œ¸+›†Àõ]ÿ“UV²€nEðïHü “š:V/k<ëilˆ¼%ŸH,‰m­Žå³úö‘]Ô)º^jhF] _ú8 ~‡«t—Ò|ÿÂROFÉTy$“µ‡µ´r–Â"Y +f‰þÀ€--°ÌÞµÎVÐêY» fl»Æ×¡Rí…NŸË¿g¥ÇÞù$—4—³2\cÚ bºZ¸•ÅÖ=ìun#´–̱¦6ÉÙöƒU¶±ÖÕ–áƒìM»¥u4% 2þ ' $â{—!–cèqm`}­·õ²6ÖÊâY)î5Aí£½¡ßÙ'¼–ÄúX^4³ØnÚ6›`£í›g5m¹ÆÐ G5±N°Eú;–;÷]YH Ø×6É:Ø[o•,²e´Ë>³ù6ÎFj²@À{ÛêZn¼þ“À.ûñ·3ÃGl¢½ÐMÒD²“ÊI¡`‹õ;—ËôyÈgê/ZËÞ²j–ßšcÕ1V€Ø/m…°ïkaÑÆ:ì%ÐÀ0+N,L³‹¼³¬­ä•GvɪX#n9´ÑT%Ø‚ýŽUV*I2¸Ì»ò±ÆÆêõ,¥EÃî™l‘u±ZÓjØ=â¡ Àu¾þQ[ò{ª-E;5yw}¼b–5 N"¼À»l›ïØa²EvØRh/—ëÝÔöî2E+ßÍ-§]Ó8–‹ ÿ©]_óÔö1H—=Ôµ~ºP÷ñ¾A6_¯Fá;ˆþζÏ~²ÕÄAÂ@¡@ôÀZp =w~ÿe%Û'…·½-ì”íF–ÖVÒâ#s",?Ò*Ø]½£qí+îå³¶àà#ØÀPßÿ¶  ˜=ÿVÚiò@k{dž’¶‚ƒ‡­B J`¢öÒ…p>¬…üù@ê¹zoïmÍðð°v*‹…o×Åúô¼†c]w%cypn–¥'ãµÀ××’ë€ýûk‡†Jñú=‹ÈØf'ì¸Ý¶ËúQªg €y¾ö˲ÀtêbÕÏðúôàÜÇ~ÂAZs×3µ¬¾‹Õx,\€WrâéÛyµ½Íå^oKN.hƒzû[ìŒu#>>³°@tk.UCt>z)êØLò9|®–«CìÄ ÞÀ¾ ‰€ŽdøFVOcýñ‡¬¼«QñDË ™ð”"ÄÅ2òÀ‡ E3<ÿ-^“ìù:¯M¶W èøQ øIr¡¶ŠÁu_—Ñ2ü®†tƒìS?Í¥&¹ÌíðÎ…ô5‘éœ>S×'; òX»ñZuÞHˆ‡ŒåQ#¼¤5a'9¹²,¼ky×í¬•Ä \•® @h­ì0ÝTîwt8q[Œ/ˆï—²ìVÛˆú¨Hœ¨e÷õ"˜÷Xïkd¸þ÷H^ ÿŽôqÁ‡ï©ŠøÒ£ñüAøHarât{/šM.xœÐz’7úžüÇ•Bâ—×`ó®£y,–΢ƒüÑ‘Ê]éÑž«ëß_ét,pMÝ^èvÈ]lŸÍd°€¿æ%-©Oþ_Ï­(ÙÌðè}î÷!7,Ác&ãi¡µK$!þßAÂñجŸ5†Ï½ç‹ï{µÝÑšÐ^% D†ÍFççœžÄ ¢bÿ†‡÷V†ù½rÔâYï2ÿZp¢,·w`ŒõуÛ¹Ýfƒ5.:ÇÊÂA¤âRI'áëµáð5Aôž6… ŸÞ~ÑŸõ©†ááB zxô›ôeàMAŠöp£¶~âYeK æäÞÄ+0#-þPÆòðú q0Yp‘pÞâéëR>d®‚J*±$¤­ ZT{ K¾‡_Ãã¼ææ^Dä·yMDÆ#ž©›Q’÷4À[ªÂ‚æÙ—`}>- b Á‡Šóù·ÑB\rÉD¤>7CF|lým\8~°÷+¬´ÕNg«¾§ >“ò»*™«)±Žü‘í¼ÑÛzC#ÙSMœEA¶N |äÍ×mFü§Á{i:tÖ”ìß…BmHTT¦:Ø úíâßçh`•aWí †ÂJÿW—:$ËÓÍŒL7±u00¿¹îÿWý•¼{u—Þ÷²¡›B d¯¨šÏ•ð׋ÝÕÇþŠÀTü…Žèà=²Aú(Á;rówÚÛŽƒY°ÒX[xV<8ï×â˜ÊH²Y;¢¿¼Ÿdp@wê!nçô nõÏ—rÏ]Ñ_›§'RîjJËf'a@9@ÜàÿmM…¤"îsû>'È îº‰Ôüä§šü/X lÂGnJI‰lá©ô“qðêÆ ssrutPŸ½½wêl¿O7é6¦3ñ„«ú (>Q´KE|\×ìXùm<=©©ïl—ŽçÄ DCö4ÄÊPnîèØD²âi<à6Ù#s°€Ô’J¢KwüöoC´Ð‚\Ý€o}NêZ]‰ü‹ù™­?ér¿ëp÷\]ç’Ș )3¢ƒ»è/\81ëdž1&%"{ÇZû³ì¼³™DÁwøÚçäˆ!Ð!©T’ R ä>I^{ÖGáö oßå§,Ó-:OW#ýßÁø®ï þ”‰L‘†›<ÈŒ·\F7‘±uD?'êgu}„Í\×€×À€Êdƒ^T¯£‹¢TCímÐVÁ_H9¦ïÙqXÝPï5øEðésD¼ël²Í÷?ßÜõ½>ÎûyÿUHHŽ ·KêfDÅÄæ?kÀ\—ô;ü­;긣ú‰*ñøÉF†é|CDühÓaÁøYËc˦ tq?±'`®gQN¬7ßw«;}ïë â|à¸ïhœÇ®9…múxÂí9\ñyòžr‚w^Å+Îñš›p íÕŽbù.æ&hæ°êAG€¬’R’#y}²x2­íµ—ŽÓwõrýC¬îúoD–ó  ë zLØËýXù‚æ‡+¶éa=…\€™ÂKö ¡ó¾öi4åzîE{·4<ðøwÓ¦Qtú<Ðlî¨4xŸ‹¨¿ìûœÍBÂXë&?Ã÷uŸ¥‹È‹È®·ùì¹AרëäœY_PÞ×k>"®¡•Ëx}$;Æ;Ï"ûmtu˜¿w‘ßNƒ7ð„lT#¨ æYë #@né.O‘#;L>‡ÏÔqÉh7f;ÖCüÏÑ‘¾÷«ëã~ØË¾I† ­‰µÒ¦ZÀÇû:¼c½g‰w°óYßýã¿—z]AöhTÈUÀœ`ääš‘`E°'U’R›|^¨næE‹@µ»–ï;OÇssýïVû®Æ«°º› 0—W¿å¹«ÚÙ¢éS)kóñô…¾ïëâÓ^‚ü® Þ:>± ßß‚žºƒ}‚ïi°«ÀFrUªÁwÙ-Mêû²e%{Ç0w•ûnî»Nôýýðx+pÀ÷õM¬LæSq4¾æ³>H>í¸ž)n†Æ9þu=ðCŽAí1/iM·,M¾lãçë ÓuA?#ÐT–JE;A( _ÍEþJK\Ÿûí*÷I¾·ÿTb:؉ö£ƒxÀp ƒ±mQ}Ü—gæá!»Á¼ ¡ëæ:¸npûýÜ7¨¤} ê…ýÞ°F0Í|:,è“@‹ÿ_ÃÿkÂà£û>e±a?ÇÀò]ÄüTðo10û»‰'®·ûmä[€^>õ]o;££¥Úg~íï~ùeΛˆõø¿ë÷{KcÛ rjv|¾¹ÿuì¿ÛÚH­dù“ITHóñÃWú‘|&ØŠß÷×Q¾÷Ï0â{àÌÃÇw“ߢÛf42N{k_ô°Œéïuµ Ÿ¿NÆÛ‹_¬E«ÑÞB?eyáqq]󯛉ö>qpœø6þ»ó1­°öE¾ïnÏþRÀÝOãõ_h?äúLû€ÿ#|§ïõ+¤>Lß 2Lá=_¢‡e~NÂ8?!`9žãæÃìÀë· ƒ™p×y):Yê+(7#æ²La0ðckªÁÞ!”ZrH1øŠ›î·Œo¿´šŠÕfÑ«ìS~0öÿ‘Ûý¬Wµ¹x½ë…;“º`¾ïœ=ßw}_Àç ãNp`+÷–øªy‚g\M±V]WÙüþøPymdùèþ·É5½{q“;ûNÿ|ߪóú=Öÿû»ƒ÷kä_ Þ-'~ÐoÐEo2Á~Ðq•ïx» Owùa ¨ï&Lõ½ÓÜ䨈¾RxC¾‡—=&âªãƒ~mx<)%_J\¢òèµ).`™Á×»ë<¼¿ïk5 _ŒFþè¶{DW3ÐÉBn®/à"?;c‹ïú½AÝ~°­ž=.‚!ƤBr³_\ŒÔÃ1< zÓj½ ^,Ð]Áç—€c®ÇÍA,t/p3ïzxÿ–WÜüоóßaÐÜÍ;ÁmŸØN,|ÆÏ4ßóz:œw¬óÇÌæ{ü»à{¢ ±A¶Ö–Ù2_4P ~/ ’K*Êwd5WçG¢5`á§Dü.$vžGbóÑ’ì?Üw¿_ÖGýý¨ ¼cªü±HÖŽ×G˜èçlóÕÑ"<ò®á÷Lï9KùK ü„°…è ¢=¡| %%zç—,²JÒÁÉk;ì;8.ÆN7É_¼w;OŸJ|Ãï{,œÈÏ(ØÏXmDëÈ 3}vÛF×zïp12ßw½a7ã?øl¹qÇXR’ûCá —Nò¥æ6‡U£ùÞW4‹Ý&Ü‘¬Ù° ¯ùÞ®£å7¾÷¹;"4¹Æàù?/›|çÇé~FžÃý¾ê[¸)sÈ"@ýWà” ùä)}„^SiT òìÿ¬l’P J ­AVÛ#X\[‹DÓÈë m²Ÿ 4KÏäµ1Äõäs“à†#ï­OÜ"g,'>Ö£»Õ|ÊïqU’ë·}]Q7':‹]ôÂ^ ¥´_S[¼º¸]ÅËGa{—¢Í>6zô_C´\æ=¨­£ ð‹L Í >úÿºÒHM‰©1l ½«ñÀæùØKˆ#ÞÖó|Oçyø„;¼È#¹Ë ³aòõÈœym7væÙÓj?Ùu s“ðîð³=ÍB¨­/ðžSÔ‡M-²}$Á®ýþ²âH=I¢mŸ¦‡£Ö£6Ík×ùžGÁ¿ÓùþhßÑv‘Ÿ„´ÌO¸›ç;Œ¨e±l>ïë…”Ëý´äÝþ(Ñ~<)ª¹ â¸wK£Zf3Þ›’øúØŽh» s¿¿¬ºRVNIP:º%µ}'Çid87çãKäÿÚO¿å§_,BÆ-T0§Uì2•"®£Úx¤wóßæyÖw ÙW¢L–Í’ñj,‹ó˽ø° pî½ný‚^ùýûúÉOÞ¥¹°ý‡–+ŇGRû óó¯\vŸèûÚNFÂQX}ØÏ¢€ëm‘3ÔÞ³ol üÿYuLHuà “†²RNâÁà¾;a¿}çÿO©oÝñ¯ù~ÎÓÏ}Gù·Ôu\És?`k7/4…-òÇø‡óÞù~†¢›¼ ¹¥ùÈvÁ7óª£Õ·Fö¦~R׈¥dÔ1­&vOl›±÷Ÿ÷GáóýÑ„ó…ñè`¶ugH®kl,êvÅö;Fâ[r[I¶½ÔÏû<@$µ˜øt"²Z4bÆMu{ï™äQp:x9ÉO?Ý ‘ÉüeA””0l×K³¨Õ=!v]TznEå ü:¹ÞÅûÀ¾Ä‚»Öi±Ç¼µøqÛâ®ï¢r“~Ý9ðW|·ô=êp=:Ÿr’ÏS×w¶6ƒŽÑÓ üê4áf UÓi!·4)öÏ(%¨ÍÝ|gõð?·rh¿O8â]"Ö#áDFë·ä–HHl¯Ù1"cŸÛMÕpÆOK˜áç ]&¦ä/V·qVÿªe¥´TÈí/Aœ\jQdIfËÉf ìœø¾ïÎvF4wvó2mÇŽãÕ‘a½4 –O»ÙèçÀþ„ÔŠÎáj'ñ„³ÄŠø ø&y 'Ú2’׃e•œ²Gšò-3áÉÉáûaÛ¼Ötö ¼õ1Ìo ÈvhΊÜÑ,¹ßœ¼àr6˜ÛâØQb'ŒØqS ¥tÖÅ–Z[ßY¾›oBo5•2Ô“´ì,HuNOh!só|·Ã!oâ]äŸÂïdøt¿¬ ¨~ ðSƒ–éC´´ÿÈÄ«Ћúi¯©¬ƒÝµë`æB©B{_ÿãj$¥‰|A ä7gï< ánäÝߟG†dæÁb>?y-7zÉ ¯uÓ^Çÿùq3î7¡…\V8å÷MßÕHÜ`©#ôáýÿuµ”Bò¹ŒÅ»[ÃT YlÌU/?Ãl6ãÅ‘ÐËY"âþNÖwÓÝüwlc4ìp4~°Äïš{¬ÙA»èìk þç/Î"¢®Ê—!ý¿®á¾Óç|yªmýu®K‘Ã1–¬`Ú ";òžéÎPÏ—$òó#}{¤[ŽôÓüt˜%~6VB«ó/Š¿/° Öïïj«µþÊW€¹—µ%»((à&œD’jð–JðוÜ…<÷œüwF3RÍ$± àEøožw;>ÖÃ÷ö𾂠}{jŸäæ²{fÃÐ_&mƒ~Æÿ¿_M%3øÔ@Zêtê·¿µ#žÉÜ>ž’X3UïJÐ ò?%ÓÇ·ªÄw¿kb¯?ïuA ãçÉÐMCjÝ€¿¤5•å%©!=Cfæßß^•%‡¼.1¥»¾A¥Z9ª‚p.ãW³rxÅE¿ ø¬º+⌺¾²;ö÷ÔÝ߯.vùåÈøE‘=?zÌM…¼˜¿ìi׿oå<|׺’þ[Û*cÝËäþJäÅ\Ô<—ÕÍ|[ö°QÜJZ^žÏeqɘîo™['°"¿õ¶¡ö…ýˆÎºköŸe……Àé|:›ªÍ­;¦¥‘ð!þÝ #á_ÛWEÎX»´¿úý‘±ƒ*01R½Ôñ{ÛZ>×VWKxÐ÷ºü=+¹¤•øÒKbØëƒ/Gåc`á¨Ö \ÉïàéEñ¥ ]>â»!pDÏi6ë‹V–Ù|ØN<;M%YCÚH)*¾7ƒ-Ôß¹’KJ)&=t•K}"º,‘ЄlÐÕf"alø_Woßçxy[Oµ™½Ëí˜ ;.kÒqz†Ê1¹â_å¤BèL-³[.ÈtP.£¦Q7 Àÿ7ð3ÂgKÉ{2Z:6ó;sÈÑ~¹^®—ëåz¹^®—ëåz¹^®—ëåz¹þØ•Q’K~B³«ã¹’Ijªý\Ráß®Ûy Õ%-pyIÁ¿yƒÞÍ⟹Â$±Ä‘â’ i³I ž)¨s¥›d‘¦RJšK1)-5¤!:(Åý%Mdõ“ ³I]þÍ'£äUÝ-ˤžl×ïÿuY'÷åMé'?Êh5’*RBÒ¡ƒ…é¯$žU2I|€Ð&šÐ²Øí,ýe8'Ñ3ºZ+èBª)u«4“"’Còó‰4!q}×?¾ÒÕ©$»T$æÛË&é®Wµˆ¥² ÕX˜v‘Ž`Bw}%0Ô¾´w,®ÝB´¥ž•$*±’ L­¾¿wBò,’’Jky(õf-,­UµŽÖÍ>¶ö–M JB ³švÆ&YikŠVÊZ›oÙl”F×Òä„”R&¤vºÿÞ•™ož<Ë+§å­hÛì¤íµžþ gûÌÞö]°GJ?«XªoX5ë`#m§°}6Û@[k+õ'b&*ZÈ⻾þï•ëW—Üò‘ÔÐæH3ÊÙz‹a¹­Ž]Ô>ÖÏ&pS=kÙùˆ‰Bö‰}`Çí²¶®6Æ®Ù3+(d­åC° «t°…úÝ+ èíf=Ÿ”1ú£­³·¬†}ˆíg[K`ùì[»`ñð}S"a´5²…ö¹÷÷öØ9^™dÀz»‚/äԱ䌆 hú?IN,OÄ7ÁoïŠëïü¹½g¯Xv{×Û¬ŸÒR[_ûΚY~ð ˆ×)ÖǾ±Éï¨ @þm#Û–Ù>ÐZä–ŠóÁùˆú|àv4}Û†bõ&VÀbZ"knðëhd¾„ö#’W³Ê¶CGk»d#ÀŸ‰æØ}>ö_ŒW ³T‡vÔhˆØ©Ãñªú!^4?ù¬ŠT–èšÛ&âã=±;¬\ Mô³zDyuA¨íI#‰üŽòDb>'Î›ÂæòoFP.XË"Ãîk{µìg½¥´1Pl,m ÐÖcM`a†ß‚yÈoÙèqžÔ•w¬²Äc¶Õµì.™0iˆ]ÿ–¾—QÎÉ›°·OñáqH–ÝâÛ}ì¯s¾¯Ñ@ Ë úÝW³Hü[†˜€TÇOª‚îïºÈžÎÊãóS`@×áDï 7Ì1ð§õöÔZÛ{h;´Ž%—„Ôzƒô0® ¾;?n ®Å·çúD_èM ȃXˆì»ÁoÖ¨H: I«ÀR ;æ)³óÙñÔ ÁÄšxICâaø0 m "zhc2Mè¬ÒF^.%ÉðÞ&HqÁfò­G€ß5ÈiîºýW=ËwÇ}ì¯uw]ðáyg[²]Iü£ü¨<¸7ßï‹íßã~C^iAµ´DÈHè†/tƒ_§¶Øÿ¶œ76§Î[Lü~`¯"‘Ãýáܯ –»n˜q,:HðHÕ^øýíá®w/ˆßi»-]x_É ;®lól–} KœòÍÄ?cûûfWgáBŸñéDšÌ 3ÅñÅRd}µ±|×dvMSaÉpü P†è†ÅŸêißýüŽFÃÊÐM{^wL &âs1©†¢ùÏ Âöó×"ÿ0£ù?r`>ÏŽ´EäÊüv.˜(º¿»•ÉÏ-ý€Øoï§uÝ]¿Ò(dwµKzFOù+Á÷ñÜy-lO4q?”wsž2ûnÞõü¤˜Ç3ÈŒŸ ³à-,U$ :á1=É‹¿ ö¢£Ë°ÐÈaÜÒITbö‘f'‡m©ê®ëYݯ'ô‚ï\{HïºJGÏaÿôvX3¢£Zø@E¤Íïù˜<F,$âV’ìäW;‹¦v¡¯-hò´æÆûKÀÁ{~öÜ×ÎúóèÁ\µeÜ'žŸØ£æ¦›ìÅêÑAvù“‰‚Á:VG"Ûh?Ñá”ïç¿I‡"›À~Þ×}’Û–ã®÷Áj#–vaÎã3Ljþè! Ö.Á-ÜFÛbû ^#ÐʾÐR#Èò7”¾’šÈL>÷¶·ý<Ÿ)Ä}vÛÊ÷^Ãm¨.ÔIȶª`•ïf¾×g‚ÁÍB:[*ÚZ¼}6Þ±{«¹>X§}­° é ¶Û .\¤x¢%­9Y`·]9·ËûAŸ–zªyà%ïÀI†ÁeÂl¥Ö†å^ã\ïâ)¾ëëv4±¹]Wè›úÏ Õ>ËîÉieG°÷2ßùSÍõ·¼Âí&¾² y )­5õ[ž'¥RÌ`¹À¾ À/òzå'Ù¤©6÷•kT¹¨¹î/›5©¹.þÁø¹:Šßë=#ZIü»St-þð!±ŸEËj {ú»Ž§Çyí4òŸõ•Ó>¢ç÷¶Â>Ãò’-Âý|Ð`Àç¶Ü’jû Ë_JöËC¾çbµ¬•ÂþQì!¨µ)–êdE6˜ÅÍÍ3pøpÖgÇeHÚ] kW¼à)Þ±}ñ=±Ü„ÈC äŽßú¡ïçç*¸šLYÍZÂÿÒ“:Xªà`ËSJÈ<‰i§|_Ò0˜ËzbÝõîwqüŠ-DcðöH·ÀO€Yï»[:žœŒŒ“wÞ£.ÚÀ§vòÜÏž+ÅûïòÜ!4wK³x~¸Úwu¯À˜²VÉêØ–è› |ÙÜNl[#’ý¢®"p“*öü–§"³ÓÂJðïºX…yó]NÅx†g§"ÝZPï*q áò¯EO¿À¬ XD2Ìþ(ÄŠY¨”@©lñ%–$–6XÚM-ÛW»~vwøŽ[|7Ó ÄødŽä®#êp˜ÀB¼z3º„{ÉŽ­¨ynú?Gyìæ^á÷nr߬¿…¿—–:! >‘j¸<8ÒúÀK‡Àբɤ¬äÁb×ùÞKùí*œäÔ53ñüñÚW¿ÖqȾÜw¿tý½`ÕUüŒCÒA°ÃèÔ:Éa / ökåxÅwÂÝü÷ˆ«ºö¬'ìx 洞>·“pÏà¯TRAjó-Ÿc­;xhbß×ÒuòœŽô±ÿ,¿ž(ø =,Åþ›xe³v!#¸‰!nÊŸÙ*$Ýæ»ÝíçõØý×>Ð;ð”ehïªV²Á6ËöZ?¢&œ¹”U‰³ éá€éý„ë[ZÓ\ŲŸ§Ÿj?2ü |`žï\>´Â3‚-<:¢É;xoAssW{®s‚×ö¢—9 è¤v½ÓÜ„ˆeèv/ˆX†1ÓFÙûÑÆk°¹Ï¯+œ øŽ$§jKe™l™Ÿp0 ëvÇó‡ƒ|#Û±½ hÁM8pó=–ûéH{ÑÀB}ŸOÆ´mȼ›»9x›½W¡‹ÍDÁs|ê1Þ1ÛwÒ;HOìaéƒ>ûåוQÒHiŒmž’6 Çßó"vŸìûÚðÓŸ¦ù°Ùç#ÛJ^»†TMµ èöŒø™@Öw3þNzu€ÜñÓð¼~vöMt9 í¸IÊYa‰Ûñ»ÐX¹¥²ü(Q±ÒAß³ôè&í‚ûM@Þðû‘È?ÇOÁ]Æm¥ï{‹÷å3êøì>Ú3½3T=®â;:º£i‘,7œ§ñž-mV7c"†õD}$TzàæG5䱺™7nÂ¥ëXœ›ëú4œX˜ †Mòm7ù)?KAÿiðÿƒTµ@À‚æº@Ïô¯¸9¢.ž ñ~wÄ ù¿ù>¼ò„ºÝdM©˜{†Ì¾P·GµUP"Ð/>Üd¡¾j±ÌuoŒÃk]oÓá:_X‡Ý„—¥~*â/ e)Xýj^‰»¹'§‰¢­zÎOS:Îm…>&?~ö¿·vܧ1ñ‘†N7°B°ª’K°–ÿ|„ È[óü ÐéXÜM¸pžVÛb'ˆñ3döžVË&áÃ}¦˜íç{Âú[øüm¬íÎÅ„÷¼G œ—hˆ`ÑFÇ O>û÷UD²ÃCÝQ7÷y –úxM_} LœmÝ<7l‘ïî½–Zæ¢Æ³Wa³®X¸¹ÉKýñ2‡ ÀùÃè)öΫ~Â½Ôø}ËçwPýçIèÈßÊïôž—ÆFò0{<Æöîxç|2ßhŸ&ãÉ®¯÷¼?2|'’¥@¯ØMLÍ4Zá…Ÿ|â¦}%léK‘òùîÈa¼7³•ƒù°v mÚê†7AJK‰Œ´5¬?1—8ž‚Ì_àÕS~&ö‚ä3|W÷ÙDÅ+–IF5³MSØ!ß9®m$RvÀÎøÚg»ï~ßžZ¿–5¡â->ÚÚû¶ÈÆé{ìɧÿq¥ôSéçØðž~‹ÔßÃÿ:Áãý‹ð퉠Ÿ«„ÝD£ðŠ“`dZßÍù´&±[šÊÎ’×Vñú:´·Ÿ÷þèçd\×bÖ ‹âvCj[a§ì²ÎCß¡Áþ~]©©‚ŠÈsIŠgšmÀ›Ç Á\ßu4u ~½g¾Ë¸¿ÉÆbÛ³ª~ÚwôœzFø×9sçÏ–¡‡Yü¬ Gº8HŠå Ù)]gì0^S>„¼ß-ÇsÊ8äwG¯ù#™'ÁmµXm:6w³>î`ÏŇû9hý§(ÄuDËEΈn»xï*„ÐCXçì 3€oXÛcßÙvÃz¢ñÐZY$…””ýT¦n¿Ë1°ÏÍ®O W¿ê§Ýó¢Â × 3É…“°òfž{ÍnñiÈéñí Ÿ|qM%¦"ˆ*žÄN£ÄÈþ:Ð$X"Öó~ÿyeÀ¤Šö÷ó_«ÛÉáQ [âñï9<hï¸ítDx.1ðÉܾ¸ä¹H¶ù÷j4Þ ¦w‡êà~r‚ßiÉ‘eÑÀ,ë`o[”Êýÿ¾RÁƒ¯H1òuR"5µŸÙ®cë-àßm˜¡;¯=Ç<‹? Ê%Åç]§Û{Ôy;` Óñö¨dºpñ¢Ÿ¡½”H:¤q­5y “­´ò6WƒÌ믭lÔ#]% ˜–Ø.Ùù-)špS\„‘ñîcÏúØ—–p˜ù#/Ûñ’©þYrò\*sÓÎùiYSñ˜´äÀnÔýïƒå5Øç|ÿú —’Yºj=xZes³ÊóÚ]¾û9u3>ÜüšLÔy{Á´ÙÄG1XÝ#dLƒ–bÙNq Öwǃ\Gü  a$ðb?x° F|•J©²M¶sdÁ%ü©—}Õ&¼)§´ˆ…¥¹~çqm | ²ëSƒó÷ˆæ±ä‡L0ùìvXOpguîÁ Ök|?-ö/ÚU&^ŽêmŸ9žh›dm±-kHîÿu…Ý— ÚD›§nRë^î?5µpJâÜíb¹I8‰=“#c$u3-’·Ô7Œ‚Ü ñ›¸T­ÐZ"¾:¯fÿNÚ»VM> ]Okµò1°J"áíÈ/ÈònÀm¸ñ=´Pž¸ˆDµ{U3“'#øÞØÉÑÒkhf¾¯‘n`íÛ~o\)k †$%ò3 »Û!8Ä6ʤîÿþ¡–úØgÒçÀÚ»ô.ü>-˜~ |po/Œ¦È‚Õ`Ûh¶ÜsÃid‡¾ê¦5Aü¬DÌCt±ÅgþȰþŒÁñÿ±šKª¡,rHaoÇoÓR»·BÆËðØºævJ¹sÁ¯!]q¼¿>ÒNz¶ëήí. )çÿ}áî¸×7V9pÒ2“÷ÚK•` øÿ\Í$(ð¡tÒòV…¯íš`Éû‡;â‡áƒîÈÇ;øH9^OnÀ¾ñxÅ*äßÇû\ïÿºöþn ©öãÛך¿üV°…û]+v^M¶H|ì^Èmú¹k>² M {änù‹pëiMyö ,wÙ~»?ò}M £VdüOˆüÏð’ZKúKhïþ=+ä’b2Of©;K[…èOé˜ < ]Û P#£=×î eðý¨Ÿz9- ö³ã/á6ݾ'^2X+]$MChÞßï[…Áªƒ’ÚÚZir|VëMÂÊä¹îö¡mC7nîÝ}ùD*‡XÅû{VfI&Gå‰6B¢bä±:0øÄ`ÚGÈÖ Ö‘Šf€³~xÈÛ°E7Ý3 ºè~¾D[u­­–׃X>oÈ_ùû×W)#_É.uWw¥ÃÚ5ÑD-$ëa]ðïXdïm¹-F/}¬Q:°*¿_á]‡ôŠ,‘‰ROª‡Ô±ž¿ge Š“ Æk>¾\¿•õ¯'û±)‰‡!ø€C¹ÒöX«bý·m$^ÿž šÊ‰ô¡ÊößJ#ù¢™$ô3ác“×¾µGX½¹c›ÃÉí“l²×677Ú] 9Í6ê,Ý¥òç_©%蕆üuUîk[o½ˆù²Öû÷ÀÏ?²àá}­AXÌó¯ÁtÒJŽ éÿ²2“[H^m`ë´Ž]ÇÇçØ`+¸`³lÚxŸfq_Øs¢¦NÐ÷uÿñ+·Šò¾Ì¶ÌvÔN[ôÀû–<‡å#ZMòÿ]Yñ‚·¤” ¡øÁL+¨c;u–å&´ƒõZú×]iAÃÒ tÖ·ì¤l.Ët®Û ¥fìçúg/‡ldªdÓ32TNÈ›…j ±ö—äì/÷¿²â‘J9˜›YTÆÊ ™ Ù¨^®—ëåz¹^®—ëåz¹^®þú?GSÂ`pymvpa-0.4.8/mvpa/data/fslev3.txt000066400000000000000000000000241174541445200166610ustar00rootroot000000000000006 9 1 21 9 1 35 9 1 pymvpa-0.4.8/mvpa/data/glm.mat000066400000000000000000002115121174541445200162060ustar00rootroot00000000000000/NumWaves 6 /NumPoints 850 /PPheights 4.768891e-02 2.866777e-02 4.764881e-02 2.866767e-02 4.764880e-02 2.866777e-02 /Matrix 2.562171e-03 -1.721225e-04 -8.872181e-03 -2.923608e-04 -1.776259e-02 -1.727261e-05 2.377229e-03 -1.788187e-04 -9.176419e-03 -2.728257e-04 -1.774790e-02 1.400818e-03 2.178788e-03 -1.900224e-04 -9.441924e-03 -2.436636e-04 -1.489706e-02 1.172284e-02 1.971325e-03 -1.977632e-04 -9.688133e-03 -2.314902e-04 5.755679e-03 1.479416e-02 1.757284e-03 -2.036958e-04 -9.929564e-03 -2.266792e-04 1.470575e-02 1.088244e-02 1.537833e-03 -2.087608e-04 -1.016642e-02 -2.201175e-04 2.751623e-02 4.776432e-03 1.313536e-03 -2.123761e-04 -1.039499e-02 1.203611e-03 2.422735e-02 -8.689240e-03 1.086725e-03 -2.091418e-04 -7.784640e-03 1.152322e-02 1.011340e-02 -1.339682e-02 8.687668e-04 -2.056701e-04 1.262891e-02 1.314107e-02 -2.560964e-03 -1.023120e-02 6.487744e-04 -2.115689e-04 1.849760e-02 3.151186e-04 -1.031704e-02 -5.839726e-03 4.188923e-04 -2.212083e-04 1.326575e-02 2.899325e-03 -1.419214e-02 -2.807380e-03 1.794894e-04 -2.293916e-04 2.429705e-02 5.311016e-03 -1.587538e-02 -1.196692e-03 -6.689668e-05 -2.347673e-04 2.390082e-02 -5.877818e-03 -1.652557e-02 -4.517382e-04 -3.171924e-04 -2.351230e-04 1.255401e-02 -1.121339e-02 -1.671753e-02 1.285103e-03 -5.644334e-04 -2.347578e-04 1.474043e-03 -9.065560e-03 -1.389364e-02 1.172699e-02 -8.141406e-04 -2.390537e-04 -5.589393e-03 -5.363340e-03 6.792246e-03 1.342277e-02 -1.070116e-03 -2.449715e-04 -9.272751e-03 -2.694655e-03 1.296422e-02 6.174622e-04 -1.331806e-03 -2.498087e-04 -1.100290e-02 -1.231899e-03 8.026499e-03 3.184420e-03 -1.597606e-03 -2.532193e-04 -1.176267e-02 -5.253269e-04 1.934277e-02 5.604940e-03 -1.866270e-03 -2.556168e-04 -1.208051e-02 -2.254440e-04 1.922230e-02 -5.593469e-03 -2.137019e-03 -2.573692e-04 -1.224087e-02 1.305589e-03 8.141999e-03 -1.095625e-02 -2.409342e-03 -2.586667e-04 -9.496827e-03 1.167539e-02 -2.680736e-03 -8.835244e-03 -2.682843e-03 -2.595894e-04 1.108546e-02 1.330832e-02 -9.496270e-03 -5.153447e-03 -2.957169e-03 -2.601622e-04 1.711819e-02 -9.355751e-04 -1.294108e-02 -1.086217e-03 -3.231972e-03 -2.603893e-04 9.219386e-03 -8.662990e-03 -1.161492e-02 1.067455e-02 -3.506910e-03 -2.602686e-04 -2.114829e-04 -7.861194e-03 8.459010e-03 1.300679e-02 -3.781630e-03 -2.597940e-04 -6.517151e-03 -4.802104e-03 1.440747e-02 4.669441e-04 -4.055775e-03 -2.589600e-04 -9.836834e-03 -2.405872e-03 9.389192e-03 3.137649e-03 -4.328985e-03 -2.577613e-04 -1.135372e-02 3.575334e-04 2.068961e-02 5.608902e-03 -4.600890e-03 -2.561951e-04 -9.148274e-03 1.131144e-02 2.059008e-02 -5.572845e-03 -4.871122e-03 -2.542577e-04 1.124510e-02 1.319117e-02 9.527222e-03 -1.093891e-02 -5.139308e-03 -2.519438e-04 1.723262e-02 4.649490e-04 -1.281175e-03 -8.820785e-03 -5.405066e-03 -2.492524e-04 1.218020e-02 3.095896e-03 -8.085073e-03 -5.141599e-03 -5.668022e-03 -2.462825e-04 2.342400e-02 5.520547e-03 -1.152079e-02 -2.490803e-03 -5.927991e-03 1.170126e-03 2.323336e-02 -5.675401e-03 -1.301588e-02 -1.044868e-03 -3.358278e-03 1.148084e-02 1.208505e-02 -1.101830e-02 -1.355658e-02 -3.535603e-04 1.700466e-02 1.309377e-02 1.196245e-03 -8.878074e-03 -1.366791e-02 1.347423e-03 2.281190e-02 -1.154631e-03 -5.683680e-03 -5.183732e-03 -1.080642e-02 1.176569e-02 1.468137e-02 -8.888869e-03 -9.191437e-03 -2.523512e-03 9.912758e-03 1.345671e-02 5.015479e-03 -8.092161e-03 -1.075481e-02 -1.071492e-03 1.611275e-02 -7.689194e-04 -1.527183e-03 -5.036661e-03 -1.136026e-02 1.038071e-03 8.367628e-03 -8.521278e-03 -5.085828e-03 -2.643236e-03 -8.705184e-03 1.163629e-02 -9.208137e-04 -7.744680e-03 -6.843680e-03 -1.295961e-03 1.188874e-02 1.476420e-02 -7.093213e-03 -4.704843e-03 -7.708784e-03 -6.513394e-04 2.082249e-02 1.087462e-02 -1.028901e-02 -2.324608e-03 -8.177889e-03 1.036599e-03 3.364716e-02 4.764338e-03 -1.169422e-02 -9.890979e-04 -5.667384e-03 1.145685e-02 3.037457e-02 -8.694060e-03 -1.221603e-02 -3.540199e-04 1.470545e-02 1.312601e-02 1.627881e-02 -1.337882e-02 -1.234999e-02 -8.824738e-05 2.056596e-02 -1.099023e-03 3.621077e-03 -1.019657e-02 -1.233998e-02 1.430510e-03 1.249209e-02 -8.831693e-03 -4.124236e-03 -5.803779e-03 -9.436445e-03 1.179441e-02 2.882629e-03 -8.034951e-03 -8.004970e-03 -2.777335e-03 1.129526e-02 1.344989e-02 -3.603263e-03 -4.979686e-03 -9.701698e-03 -1.168668e-03 1.746617e-02 6.175978e-04 -7.105918e-03 -2.586062e-03 -1.036698e-02 -4.244148e-04 1.252032e-02 3.177260e-03 -8.806571e-03 -1.236799e-03 -1.057594e-02 -1.040688e-04 2.382095e-02 5.588856e-03 -9.611677e-03 -5.894512e-04 -1.060076e-02 2.096615e-05 2.367454e-02 -5.618911e-03 -1.001810e-02 1.100991e-03 -1.055968e-02 7.257775e-05 1.255994e-02 -1.098899e-02 -7.442551e-03 1.152452e-02 -1.048123e-02 8.823914e-05 1.696747e-03 -8.873888e-03 1.299956e-02 1.319690e-02 -1.040874e-02 8.308086e-05 -5.164823e-03 -5.197792e-03 1.893159e-02 -1.026794e-03 -1.034053e-02 7.972613e-05 -8.661397e-03 -2.550342e-03 1.092973e-02 -7.344080e-03 -1.027467e-02 7.721788e-05 -1.022072e-02 -1.107869e-03 4.222593e-03 3.763008e-03 -1.021140e-02 7.281163e-05 -1.082907e-02 -4.199992e-04 1.843106e-02 8.430558e-03 -1.015429e-02 6.736478e-05 -1.101137e-02 -1.362514e-04 2.106717e-02 -3.426017e-03 -1.010185e-02 1.477494e-03 -1.105184e-02 -3.340187e-05 1.156400e-02 -9.816516e-03 -7.224417e-03 1.178244e-02 -1.102835e-02 1.666440e-05 1.413662e-03 -8.381856e-03 1.344111e-02 1.338458e-02 -1.096874e-02 3.281450e-05 -5.226014e-03 -3.646378e-03 1.954573e-02 -8.717162e-04 -1.091308e-02 2.893944e-05 -5.909201e-03 9.160633e-03 1.170544e-02 -8.611943e-03 -1.086134e-02 2.510463e-05 1.306475e-02 1.217117e-02 2.320912e-03 -7.822255e-03 -1.081346e-02 2.132303e-05 1.841352e-02 -1.415036e-03 -3.950407e-03 -4.776801e-03 -1.076938e-02 1.431517e-03 1.021813e-02 -8.878554e-03 -7.250985e-03 -2.394799e-03 -7.901198e-03 1.174012e-02 6.351659e-04 -7.973994e-03 -8.761961e-03 -1.057258e-03 1.275406e-02 1.337469e-02 -5.756598e-03 -4.866539e-03 -9.389132e-03 -4.213184e-04 1.884795e-02 -8.719991e-04 -9.128323e-03 -1.042578e-03 -9.628926e-03 -1.559452e-04 1.099702e-02 -8.624558e-03 -7.874097e-03 1.061128e-02 -9.725616e-03 -5.183123e-05 1.602303e-03 -7.849134e-03 1.206261e-02 1.286503e-02 -9.757289e-03 -7.371460e-07 -4.678029e-03 -4.810920e-03 1.783577e-02 -1.115978e-03 -9.751827e-03 1.639011e-05 -7.983119e-03 -2.430707e-03 9.813774e-03 -8.747415e-03 -9.749238e-03 1.426513e-03 -9.496078e-03 -1.095063e-03 3.194597e-04 -7.900250e-03 -6.923529e-03 1.172889e-02 -1.012670e-02 -4.607328e-04 -6.013652e-03 -4.826994e-03 1.368694e-02 1.332911e-02 -1.036967e-02 1.218848e-03 -9.365085e-03 -2.436409e-03 1.973596e-02 -9.262151e-04 -7.640621e-03 1.163773e-02 -1.091895e-02 -1.092891e-03 1.184249e-02 -8.663561e-03 1.294843e-02 1.332991e-02 -1.158424e-02 -4.529236e-04 2.408061e-03 -7.870326e-03 1.901856e-02 -8.957175e-04 -1.185855e-02 1.229757e-03 -3.909408e-03 -4.819591e-03 1.114359e-02 -8.648833e-03 -9.158635e-03 1.164552e-02 -7.249371e-03 -2.431643e-03 1.724053e-03 -7.873809e-03 1.140012e-02 1.330983e-02 -8.794649e-03 -1.088736e-03 -4.581066e-03 -3.421173e-03 1.744045e-02 -9.239525e-04 -9.450512e-03 -4.486574e-04 -5.082080e-03 9.272661e-03 9.535111e-03 -8.666012e-03 -9.716359e-03 -1.813060e-04 1.400152e-02 1.224927e-02 8.678737e-05 -7.876277e-03 -9.837815e-03 -7.454870e-05 1.941360e-02 -1.356625e-03 -6.244501e-03 -3.413121e-03 -9.890282e-03 -2.191757e-05 1.127404e-02 -8.838241e-03 -6.770145e-03 9.282153e-03 -9.906533e-03 -5.395281e-06 1.739998e-03 -7.952520e-03 1.228881e-02 1.223259e-02 -9.925974e-03 -7.167052e-06 -4.608073e-03 -4.856433e-03 1.767498e-02 -1.382234e-03 -9.945790e-03 -6.808214e-06 -7.936598e-03 -2.450571e-03 9.507375e-03 -8.855412e-03 -9.964535e-03 1.408413e-03 -9.465948e-03 -1.108289e-03 -5.749778e-05 -7.959948e-03 -7.153930e-03 1.171771e-02 -1.010669e-02 -4.696125e-04 -6.439663e-03 -4.859053e-03 1.344904e-02 1.473831e-02 -1.035734e-02 -2.003287e-04 -9.806406e-03 -2.454405e-03 2.232369e-02 1.079477e-02 -1.045899e-02 -9.121991e-05 -1.138121e-02 -1.116129e-03 3.504943e-02 4.665002e-03 -1.049121e-02 -3.644334e-05 -1.207230e-02 -4.807075e-04 3.167865e-02 -8.792144e-03 -1.048324e-02 -1.602480e-05 -1.237665e-02 -2.159048e-04 1.748636e-02 -1.205968e-02 -1.047464e-02 -1.483402e-05 -1.253832e-02 -1.120681e-04 7.564765e-03 1.433789e-03 -1.046431e-02 -1.264410e-05 -1.263509e-02 -6.102344e-05 2.034841e-02 7.431190e-03 -1.045135e-02 1.404424e-03 -1.269472e-02 -4.384951e-05 2.243580e-02 -3.797084e-03 -7.606904e-03 1.172191e-02 -1.275718e-02 -4.658366e-05 1.276521e-02 -9.923875e-03 1.303505e-02 1.336565e-02 -1.282231e-02 -4.913822e-05 2.588292e-03 -8.382477e-03 1.912358e-02 5.396895e-04 -1.288992e-02 -5.147694e-05 -4.010785e-03 -5.006625e-03 1.410081e-02 3.104848e-03 -1.295977e-02 -5.356822e-05 -7.443321e-03 -1.074829e-03 2.533021e-02 5.523464e-03 -1.303160e-02 -5.538046e-05 -6.182613e-03 1.063240e-02 2.512107e-02 -5.677966e-03 -1.310511e-02 -5.688023e-05 1.380071e-02 1.289969e-02 1.394805e-02 -1.104333e-02 -1.317998e-02 -5.803875e-05 1.961817e-02 -1.084195e-03 3.031682e-03 -8.921797e-03 -1.325586e-02 1.355080e-03 1.164016e-02 -8.712679e-03 -3.875331e-03 -5.237482e-03 -1.050454e-02 1.166314e-02 2.191805e-03 -7.865354e-03 -7.408552e-03 -2.581202e-03 1.003729e-02 1.468782e-02 -4.102026e-03 -4.796878e-03 -8.995578e-03 -1.129875e-03 1.884975e-02 1.074694e-02 -7.420415e-03 -2.410009e-03 -9.622808e-03 -4.332631e-04 3.151488e-02 4.619436e-03 -8.944188e-03 -1.068080e-03 -9.815292e-03 -1.406681e-04 2.807959e-02 -8.842842e-03 -9.580408e-03 -4.285824e-04 -9.856927e-03 1.386427e-03 1.381819e-02 -1.353432e-02 -9.825893e-03 -1.598342e-04 -6.995132e-03 1.175901e-02 9.917749e-04 -1.035643e-02 -9.924889e-03 -5.232795e-05 1.370237e-02 1.342095e-02 -6.921213e-03 -5.962985e-03 -9.955471e-03 2.318062e-06 1.984454e-02 -8.198201e-04 -1.096527e-02 -2.932621e-03 -9.945208e-03 2.440381e-05 1.204760e-02 -7.152748e-03 -1.281985e-02 -1.318735e-03 -9.931607e-03 2.656904e-05 5.540300e-03 3.939116e-03 -1.363721e-02 8.452210e-04 -9.916999e-03 2.776235e-05 1.994077e-02 8.619214e-03 -1.116434e-02 1.148053e-02 -9.900996e-03 2.775301e-05 2.276339e-02 -3.238222e-03 9.290335e-03 1.322473e-02 -9.886389e-03 2.553255e-05 1.344305e-02 -9.646135e-03 1.526334e-02 4.484043e-04 -9.874810e-03 2.249933e-05 3.469441e-03 -8.228604e-03 1.016879e-02 3.043205e-03 -9.866256e-03 1.835998e-05 -2.994869e-03 -4.916772e-03 2.132848e-02 6.863051e-03 -9.862946e-03 1.429618e-05 -6.331224e-03 -2.421611e-03 2.388002e-02 5.974708e-03 -9.862517e-03 1.115040e-05 -7.798198e-03 -1.023537e-03 3.326448e-02 2.239933e-03 -9.865498e-03 9.089641e-06 -8.335321e-03 1.049811e-03 2.835185e-02 -9.872274e-03 -9.869194e-03 9.119164e-06 -5.654470e-03 1.163105e-02 1.350908e-02 -1.391562e-02 -9.872120e-03 8.283993e-06 1.496525e-02 1.337714e-02 5.012548e-04 -1.046169e-02 -9.877489e-03 1.420505e-03 2.109493e-02 -8.132074e-04 -7.441126e-03 -5.957906e-03 -7.055978e-03 1.172816e-02 1.332107e-02 -8.544582e-03 -1.144593e-02 -2.870689e-03 1.355709e-02 1.333406e-02 4.004345e-03 -7.767989e-03 -1.321618e-02 -1.231897e-03 1.961326e-02 -9.184809e-04 -2.196744e-03 -4.728391e-03 -1.394442e-02 -4.779801e-04 1.172797e-02 -7.243045e-03 -5.421237e-03 -2.346835e-03 -1.420724e-02 -1.484075e-04 5.126266e-03 3.855374e-03 -6.852435e-03 -1.009236e-03 -1.427649e-02 -1.226178e-05 1.943048e-02 8.508917e-03 -7.398721e-03 -3.735261e-04 -1.426706e-02 5.131598e-05 2.215174e-02 -3.357731e-03 -7.557350e-03 -1.082403e-04 -1.420915e-02 1.492596e-03 1.272568e-02 -9.752266e-03 -7.572731e-03 -4.109058e-06 -1.131713e-02 1.180730e-02 2.647403e-03 -8.316971e-03 -7.523065e-03 4.665330e-05 9.371855e-03 1.483827e-02 -3.919242e-03 -4.995024e-03 -7.437026e-03 6.129364e-05 1.833767e-02 1.090264e-02 -7.360906e-03 -2.500341e-03 -7.358261e-03 5.500916e-05 3.116055e-02 4.783637e-03 -8.942003e-03 3.052303e-04 -7.284955e-03 5.062850e-05 2.789571e-02 -8.667515e-03 -6.774278e-03 1.126711e-02 -7.215106e-03 4.730613e-05 1.381441e-02 -1.335199e-02 1.357080e-02 1.313828e-02 -7.148592e-03 4.394567e-05 1.172547e-03 -8.756733e-03 1.950342e-02 -1.007825e-03 -7.085603e-03 4.154621e-05 -3.725493e-03 5.947538e-03 1.156286e-02 -8.690452e-03 -7.024021e-03 3.864964e-05 1.303838e-02 1.059056e-02 2.121428e-03 -7.878932e-03 -6.966955e-03 3.291796e-05 1.743600e-02 -2.044845e-03 -4.206561e-03 -4.830712e-03 -6.916956e-03 2.578544e-05 8.931579e-03 -7.616443e-03 -7.558576e-03 -2.443716e-03 -6.874259e-03 1.881469e-05 2.181124e-03 3.812338e-03 -9.116290e-03 -1.104122e-03 -6.838292e-03 1.238312e-05 1.653040e-02 8.603380e-03 -9.790845e-03 9.456510e-04 -6.808534e-03 6.354811e-06 1.937026e-02 -3.206076e-03 -7.249761e-03 1.152040e-02 -6.784686e-03 5.502360e-07 1.010225e-02 -9.583813e-03 1.322800e-02 1.323389e-02 -6.766588e-03 -5.133549e-06 1.813157e-04 -8.152148e-03 1.921877e-02 -9.637861e-04 -6.754145e-03 -1.051192e-05 -6.229054e-03 -4.831321e-03 1.130783e-02 -8.682147e-03 -6.746830e-03 1.399453e-03 -9.512007e-03 -2.333895e-03 1.853100e-03 -7.891911e-03 -3.914473e-03 1.170604e-02 -1.092941e-02 -9.363654e-04 -4.487853e-03 -4.844072e-03 1.670007e-02 1.333562e-02 -1.141812e-02 -2.762016e-04 -7.853936e-03 -2.459038e-03 2.274823e-02 -9.149684e-04 -1.151547e-02 1.408123e-03 -9.428553e-03 -1.122314e-03 1.484889e-02 -8.669697e-03 -8.635582e-03 1.182546e-02 -1.012294e-02 -4.891132e-04 5.404207e-03 -7.895501e-03 1.210339e-02 1.348902e-02 -1.043192e-02 -2.244798e-04 -9.268910e-04 -4.856761e-03 1.832229e-02 -7.451770e-04 -1.059738e-02 1.294244e-03 -4.280784e-03 -2.475963e-03 1.059644e-02 -8.488760e-03 -7.869100e-03 1.165373e-02 -5.843235e-03 -1.141263e-03 1.323740e-03 -7.702554e-03 1.268744e-02 1.327599e-02 -6.524442e-03 -5.093478e-04 -4.835021e-03 -4.654017e-03 1.868303e-02 -9.802733e-04 -6.821631e-03 -2.487784e-04 -8.014176e-03 -2.266391e-03 1.073370e-02 -8.720460e-03 -6.981075e-03 -1.486036e-04 -9.399507e-03 -9.277302e-04 1.240104e-03 -7.930527e-03 -7.077579e-03 -9.819369e-05 -9.902136e-03 -2.937531e-04 -5.139889e-03 -4.883116e-03 -7.136001e-03 -7.977128e-05 -1.001980e-02 -3.072036e-05 -8.545743e-03 -2.499002e-03 -7.195537e-03 -8.093066e-05 -9.996433e-03 7.146789e-05 -1.016129e-02 -1.161949e-03 -7.256152e-03 -8.233838e-05 -9.909708e-03 1.208944e-04 -1.089483e-02 -5.266370e-04 -7.318377e-03 -8.556642e-05 -9.787436e-03 1.363109e-04 -1.124056e-02 -2.618267e-04 -7.385317e-03 -8.917196e-05 -9.669808e-03 1.315619e-04 -1.144486e-02 -1.604298e-04 -7.454612e-03 -9.030266e-05 -9.556968e-03 1.266671e-04 -1.158802e-02 1.299487e-03 -7.523668e-03 -8.977765e-05 -9.449065e-03 1.216349e-04 -8.872653e-03 1.162078e-02 -7.591767e-03 -8.917162e-05 -9.346226e-03 1.164925e-04 1.162978e-02 1.322238e-02 -7.659468e-03 -9.027629e-05 -9.248549e-03 1.112686e-04 1.757108e-02 -1.034526e-03 -7.729635e-03 -9.059892e-05 -9.156102e-03 1.059913e-04 9.566301e-03 -8.775782e-03 -7.797833e-03 1.323498e-03 -9.068927e-03 1.006950e-04 1.621491e-05 -7.986503e-03 -5.039662e-03 1.163468e-02 -8.987022e-03 9.541236e-05 -6.420600e-03 -4.939026e-03 1.550870e-02 1.468851e-02 -8.910365e-03 8.992258e-05 -9.882872e-03 -2.553743e-03 2.433134e-02 1.076086e-02 -8.839397e-03 8.264536e-05 -1.155296e-02 -1.213150e-03 3.700586e-02 4.651158e-03 -8.777253e-03 7.491712e-05 -1.233590e-02 -5.751924e-04 3.358245e-02 -8.813145e-03 -8.721705e-03 6.951815e-05 -1.273094e-02 1.103847e-03 1.933555e-02 -1.352047e-02 -8.670328e-03 6.582655e-05 -1.015624e-02 1.151460e-02 6.527447e-03 -1.035742e-02 -8.622134e-03 6.389514e-05 1.027307e-02 1.316862e-02 -1.366438e-03 -5.975037e-03 -8.574592e-03 1.475920e-03 1.617848e-02 -1.068825e-03 -5.393172e-03 -2.952118e-03 -5.702320e-03 1.178150e-02 8.139453e-03 -8.806816e-03 -7.232754e-03 -1.342955e-03 1.495802e-02 1.480171e-02 -1.440037e-03 -8.012439e-03 -8.037294e-03 -5.961398e-04 2.388257e-02 1.085073e-02 -7.900937e-03 -4.959841e-03 -8.381554e-03 -2.719380e-04 3.664607e-02 4.713625e-03 -1.138240e-02 -2.570059e-03 -8.536967e-03 -1.408650e-04 3.330373e-02 -8.752219e-03 -1.306759e-02 -1.226816e-03 -8.618754e-03 -8.259378e-05 1.913362e-02 -1.344469e-02 -1.386444e-02 -5.862992e-04 -8.657453e-03 1.353151e-03 6.398218e-03 -1.027042e-02 -1.426948e-02 -3.160720e-04 -5.867669e-03 1.166617e-02 -1.430664e-03 -5.884322e-03 -1.452632e-02 -2.063944e-04 1.471381e-02 1.330690e-02 -5.398355e-03 -2.860704e-03 -1.471230e-02 -1.490811e-04 2.074177e-02 4.807502e-04 -7.182278e-03 -1.250902e-03 -1.485471e-02 -1.252283e-04 1.565829e-02 3.044583e-03 -7.931387e-03 -5.047105e-04 -1.499314e-02 1.293017e-03 2.682460e-02 5.459236e-03 -8.223356e-03 -1.844428e-04 -1.229922e-02 1.160558e-02 2.654695e-02 -5.745102e-03 -8.332098e-03 -5.883484e-05 8.190471e-03 1.462989e-02 1.530517e-02 -1.111086e-02 -8.372914e-03 -5.785247e-06 1.695573e-02 1.069051e-02 4.319634e-03 -8.990959e-03 -8.375579e-03 1.131926e-05 2.957639e-02 4.565340e-03 -2.659244e-03 -5.309969e-03 -8.382188e-03 7.342541e-06 2.610529e-02 -7.473105e-03 -6.268131e-03 -2.657494e-03 -8.392811e-03 3.610984e-06 1.464522e-02 -1.843251e-03 -7.934471e-03 -1.208554e-03 -8.406888e-03 1.413037e-03 2.242112e-02 2.951734e-03 -8.641976e-03 -5.143444e-04 -5.598668e-03 1.171720e-02 2.055964e-02 -6.899705e-03 -8.918409e-03 -2.268980e-04 1.499719e-02 1.332442e-02 8.630597e-03 -1.159875e-02 -9.050440e-03 -1.216915e-04 2.103166e-02 -9.290913e-04 -2.642196e-03 -7.770835e-03 -9.116183e-03 -6.913470e-05 1.312396e-02 -8.667533e-03 -6.927917e-03 6.340429e-03 -9.142962e-03 -5.003662e-05 3.677013e-03 -7.875022e-03 1.001706e-02 1.207518e-02 -9.170452e-03 -5.067856e-05 -2.651086e-03 -4.824314e-03 1.721965e-02 9.608386e-03 -9.198457e-03 -5.145853e-05 -6.000245e-03 -2.436315e-03 2.923902e-02 4.181558e-03 -9.227449e-03 -5.410922e-05 -7.554266e-03 -1.094972e-03 2.560128e-02 -8.979454e-03 -9.260694e-03 -5.762568e-05 -8.221630e-03 -4.564528e-04 1.129459e-02 -1.354868e-02 -9.296648e-03 1.353038e-03 -8.498996e-03 -1.870748e-04 -1.497473e-03 -1.030320e-02 -6.508492e-03 1.166275e-02 -8.627763e-03 -7.850247e-05 -9.327390e-03 -4.466324e-03 1.406913e-02 1.330049e-02 -8.688058e-03 -2.396369e-05 -1.045438e-02 8.878719e-03 2.008950e-02 -9.422289e-04 -8.707782e-03 1.407479e-03 8.404539e-03 1.210405e-02 1.216902e-02 -8.691290e-03 -5.905203e-03 1.171067e-02 1.374914e-02 -1.391045e-03 2.707921e-03 -7.913088e-03 1.468306e-02 1.331756e-02 5.623785e-03 -8.793361e-03 -3.636270e-03 -4.872890e-03 2.071123e-02 -9.351686e-04 -3.845262e-03 -6.449045e-03 -7.003632e-03 -2.492892e-03 1.279750e-02 -8.672832e-03 -7.292485e-03 6.972463e-03 -8.580747e-03 -1.157315e-03 3.345795e-03 -7.880463e-03 1.007766e-02 1.099448e-02 -9.273639e-03 -5.213598e-04 -2.988618e-03 -4.832232e-03 1.469374e-02 -4.939239e-04 -9.577388e-03 -2.559262e-04 -6.347492e-03 -2.447260e-03 9.092197e-03 2.725033e-03 -9.738774e-03 -1.517293e-04 -7.913887e-03 3.068883e-04 2.013998e-02 5.400879e-03 -9.833790e-03 -9.836023e-05 -5.765363e-03 1.125145e-02 1.990238e-02 -5.684622e-03 -9.888238e-03 -7.775432e-05 1.455860e-02 1.312479e-02 8.778891e-03 -1.096822e-02 -9.941928e-03 -7.722391e-05 2.046545e-02 -1.023600e-03 -2.038247e-03 -8.802486e-03 -9.995203e-03 -7.700878e-05 1.249603e-02 -8.710793e-03 -8.842256e-03 -5.105018e-03 -1.004835e-02 1.336931e-03 3.023925e-03 -7.903360e-03 -1.227201e-02 -2.442735e-03 -7.273633e-03 1.164942e-02 -3.336061e-03 -4.858099e-03 -1.375525e-02 -9.882683e-04 1.329236e-02 1.328947e-02 -6.721295e-03 -2.472980e-03 -1.427771e-02 1.124431e-03 1.930395e-02 -9.518687e-04 -8.312985e-03 -1.132959e-03 -1.153614e-02 1.172628e-02 1.137462e-02 -8.703324e-03 -9.019090e-03 -4.956917e-04 9.148148e-03 1.344420e-02 1.899974e-03 -7.928439e-03 -9.336650e-03 -2.282253e-04 1.534849e-02 -7.490550e-04 -4.459669e-03 -4.888180e-03 -9.508004e-03 1.289897e-03 7.653146e-03 -8.460264e-03 -7.840429e-03 -2.503903e-03 -6.789418e-03 1.164642e-02 -1.577467e-03 -7.661375e-03 -9.424410e-03 -1.162809e-03 1.375383e-02 1.327192e-02 -7.685267e-03 -4.603652e-03 -1.011965e-02 8.905910e-04 1.973521e-02 -9.829305e-04 -1.080721e-02 -2.209486e-03 -7.595371e-03 1.147217e-02 1.177218e-02 -8.724519e-03 -1.213014e-02 -8.667671e-04 1.286723e-02 1.321880e-02 2.265814e-03 -7.936144e-03 -1.256811e-02 -2.292016e-04 1.884177e-02 -9.686443e-04 -4.125919e-03 -4.889367e-03 -1.261640e-02 1.453690e-03 1.091692e-02 -8.695923e-03 -7.542396e-03 -2.504780e-03 -9.688637e-03 1.187068e-02 1.453556e-03 -7.915317e-03 -9.166913e-03 -1.166418e-03 1.110030e-02 1.353030e-02 -4.890192e-03 -3.458085e-03 -9.907597e-03 -5.308085e-04 1.737037e-02 -7.031265e-04 -5.425751e-03 9.239379e-03 -1.026132e-02 -2.657178e-04 9.699396e-03 -8.438851e-03 1.362656e-02 1.221893e-02 -1.047203e-02 -1.614983e-04 4.895076e-04 -6.231387e-03 1.901004e-02 -1.384488e-03 -1.061743e-02 -1.099880e-04 -2.776750e-03 7.126510e-03 1.084420e-02 -8.863969e-03 -1.072520e-02 -9.227221e-05 1.472553e-02 1.112040e-02 1.285883e-03 -6.562745e-03 -1.083524e-02 -9.439573e-05 1.946647e-02 -1.788192e-03 -2.257414e-03 6.844804e-03 -1.094732e-02 -9.628211e-05 1.115682e-02 -8.883951e-03 1.500682e-02 1.229921e-02 -1.106119e-02 -9.790814e-05 1.697023e-03 -7.823414e-03 2.233605e-02 9.706996e-03 -1.117659e-02 -9.925061e-05 -4.502035e-03 -4.668141e-03 3.440044e-02 4.233978e-03 -1.129321e-02 -1.005359e-04 -7.658167e-03 -2.228903e-03 3.075827e-02 -8.958928e-03 -1.141124e-02 1.310554e-03 -8.982250e-03 -8.701440e-04 1.644450e-02 -1.355487e-02 -8.705755e-03 1.161574e-02 -9.422331e-03 -2.343640e-04 3.640541e-03 -1.033520e-02 1.178813e-02 1.322369e-02 -9.475342e-03 3.063550e-05 -4.206968e-03 -5.932471e-03 1.772128e-02 -1.029084e-03 -9.385483e-03 1.344160e-04 -8.188973e-03 -2.912270e-03 9.713014e-03 -8.766613e-03 -9.230834e-03 1.599212e-03 -9.987710e-03 -1.306872e-03 1.665142e-04 -7.972914e-03 -6.211212e-03 1.192516e-02 -1.075514e-02 -5.633521e-04 -6.259827e-03 -4.920695e-03 1.459868e-02 1.352815e-02 -1.106522e-02 -2.419769e-04 -9.705575e-03 -2.530609e-03 2.084736e-02 -7.295545e-04 -1.118925e-02 -1.148886e-04 -1.135372e-02 2.287077e-04 1.314878e-02 -8.472249e-03 -1.124489e-02 -6.045204e-05 -9.281780e-03 1.118018e-02 3.903534e-03 -7.684518e-03 -1.125993e-02 -3.992345e-05 1.097422e-02 1.306253e-02 -2.229845e-03 -4.638713e-03 -1.127449e-02 -3.949404e-05 1.682246e-02 -1.078790e-03 -5.390279e-03 -2.255581e-03 -1.128863e-02 -3.938714e-05 8.799177e-03 -7.348174e-03 -6.760899e-03 -9.191010e-04 -1.130294e-02 -4.121291e-05 2.104053e-03 3.772779e-03 -7.249894e-03 -2.857326e-04 -1.132071e-02 -4.343021e-05 1.631883e-02 8.435374e-03 -7.354319e-03 -2.320420e-05 -1.133942e-02 -4.214218e-05 1.895705e-02 -3.424817e-03 -7.318373e-03 7.815033e-05 -1.135458e-02 -4.136148e-05 9.452964e-03 -9.817666e-03 -7.220050e-03 1.264924e-04 -1.137169e-02 1.370267e-03 -6.999660e-04 -8.382804e-03 -7.087310e-03 1.407244e-04 -8.563553e-03 1.168061e-02 -7.340153e-03 -5.059658e-03 -6.960375e-03 1.350205e-04 1.203410e-02 1.331764e-02 -1.085060e-02 -2.559332e-03 -6.838903e-03 1.308227e-04 1.807301e-02 -9.267242e-04 -1.249215e-02 2.560733e-04 -6.720229e-03 1.268150e-04 1.016924e-02 -8.678752e-03 -1.037273e-02 1.122947e-02 -6.606640e-03 1.218868e-04 7.207136e-04 -7.903247e-03 9.933740e-03 1.311449e-02 -6.497697e-03 1.158094e-04 -5.612183e-03 -4.862697e-03 1.583483e-02 3.904564e-04 -6.396142e-03 1.077968e-04 -8.966300e-03 -2.478837e-03 1.069663e-02 3.019080e-03 -6.303112e-03 1.008734e-04 -1.052442e-02 -1.138719e-03 2.185202e-02 6.859428e-03 -6.215301e-03 9.480488e-05 -1.119503e-02 -5.008016e-04 2.440091e-02 5.974782e-03 -6.134309e-03 8.720950e-05 -1.147591e-02 -2.351059e-04 3.378847e-02 2.244195e-03 -6.061599e-03 1.493011e-03 -1.161453e-02 -1.308895e-04 2.888157e-02 -9.867007e-03 -3.168925e-03 1.179327e-02 -1.168669e-02 -7.725695e-05 1.404391e-02 -1.391140e-02 1.750752e-02 1.339144e-02 -1.171790e-02 -5.617108e-05 1.039707e-03 -1.045865e-02 2.361946e-02 -8.680329e-04 -1.174781e-02 1.358835e-03 -6.899902e-03 -5.954221e-03 1.578373e-02 -8.609369e-03 -8.948946e-03 1.167184e-02 -1.089980e-02 -2.867522e-03 6.404313e-03 -7.819892e-03 1.164126e-02 1.472436e-02 -1.266831e-02 -1.233365e-03 1.371357e-04 -4.774716e-03 2.050189e-02 1.079373e-02 -1.340090e-02 -4.836047e-04 -3.158881e-03 -2.393457e-03 3.321221e-02 4.683189e-03 -1.367031e-02 -1.551887e-04 -4.667196e-03 -1.060127e-03 2.982503e-02 -8.779245e-03 -1.374623e-02 1.393379e-03 -5.298224e-03 -4.292627e-04 1.561761e-02 -1.348518e-02 -1.091855e-02 1.176343e-02 -5.545512e-03 -1.646069e-04 2.848419e-03 -1.032571e-02 9.747260e-03 1.340122e-02 -5.647503e-03 -5.912117e-05 -5.013210e-03 -5.949094e-03 1.586238e-02 -8.418563e-04 -5.683932e-03 -8.626776e-06 -9.012647e-03 -1.516057e-03 8.045537e-03 -8.572624e-03 -5.684975e-03 6.617457e-06 -7.999793e-03 1.040152e-02 -1.305364e-03 -7.776252e-03 -5.690917e-03 2.299648e-06 1.183378e-02 1.278243e-02 -7.534824e-03 -4.722827e-03 -5.700601e-03 3.122212e-07 1.756678e-02 2.750644e-04 -1.078245e-02 -2.331729e-03 -5.710529e-03 -9.691286e-07 1.237357e-02 2.966390e-03 -1.223158e-02 -9.883416e-04 -5.722787e-03 -3.983075e-06 2.350013e-02 5.438408e-03 -1.279326e-02 1.065803e-03 -5.738756e-03 -6.152584e-06 2.322756e-02 -5.742769e-03 -1.013442e-02 1.164630e-02 -5.755372e-03 -7.610901e-06 1.199234e-02 -1.110884e-02 1.046641e-02 1.337063e-02 -5.774276e-03 -1.056109e-05 1.011243e-03 -8.993069e-03 1.658574e-02 -8.199825e-04 -5.796812e-03 -1.387551e-05 -5.969336e-03 -5.317036e-03 8.808853e-03 -7.121388e-03 -5.822370e-03 -1.629838e-05 -9.583696e-03 -2.667207e-03 2.320908e-03 3.977976e-03 -5.849781e-03 -1.765129e-05 -1.125702e-02 -1.220594e-03 1.673903e-02 8.637167e-03 -5.878075e-03 -1.818508e-05 -1.197464e-02 -5.269178e-04 1.957773e-02 -3.225467e-03 -5.906584e-03 -1.815181e-05 -1.225910e-02 1.176164e-03 1.027221e-02 -9.622072e-03 -5.934843e-03 -1.748421e-05 -9.569953e-03 1.159380e-02 3.123733e-04 -8.192203e-03 -5.962049e-03 -1.514431e-05 1.097520e-02 1.328305e-02 -6.139122e-03 -3.458966e-03 -5.985659e-03 -1.434285e-05 1.699967e-02 -9.428672e-04 -6.636189e-03 9.346404e-03 -6.011288e-03 -1.629490e-05 9.080308e-03 -8.694585e-03 1.252277e-02 1.235447e-02 -6.038830e-03 -1.695902e-05 -3.820096e-04 -7.919962e-03 1.805282e-02 -1.235350e-03 -6.065818e-03 -1.574847e-05 -6.732230e-03 -4.883096e-03 1.003532e-02 -8.703809e-03 -6.090968e-03 1.400205e-03 -1.010746e-02 -2.501930e-03 6.238485e-04 -7.806334e-03 -3.286076e-03 1.171019e-02 -1.168826e-02 -1.161937e-03 -5.604101e-03 -4.704799e-03 1.731185e-02 1.331754e-02 -1.238018e-02 -5.254266e-04 -8.816073e-03 -2.299647e-03 2.335428e-02 -9.330575e-04 -1.268650e-02 -2.624623e-04 -1.023556e-02 -9.622977e-04 1.545772e-02 -7.253067e-03 -1.285186e-02 -1.596120e-04 -1.077365e-02 -3.283756e-04 8.851379e-03 3.852694e-03 -1.295213e-02 -1.080737e-04 -1.092560e-02 -6.474724e-05 2.315901e-02 8.513488e-03 -1.301419e-02 -8.967430e-05 -1.093652e-02 3.851815e-05 2.589013e-02 -1.935174e-03 -1.307753e-02 -8.991504e-05 -1.088195e-02 9.090243e-05 1.930346e-02 1.978487e-03 -1.313995e-02 -9.201302e-05 -1.078806e-02 1.099984e-04 2.985460e-02 5.017264e-03 -1.320735e-02 -9.713444e-05 -1.069524e-02 1.084555e-04 2.935719e-02 -5.912815e-03 -1.327987e-02 1.312752e-03 -1.060439e-02 1.060686e-04 1.804761e-02 -1.115027e-02 -1.052735e-02 1.162295e-02 -1.051630e-02 1.030119e-04 7.062750e-03 -8.961144e-03 1.001475e-02 1.467531e-02 -1.043151e-02 9.949416e-05 1.192421e-04 -5.253349e-03 1.882879e-02 1.074513e-02 -1.035040e-02 9.565434e-05 -3.457729e-03 -2.598668e-03 3.149200e-02 4.634063e-03 -1.027325e-02 1.505478e-03 -5.095843e-03 -1.150432e-03 2.805730e-02 -8.831495e-03 -7.372448e-03 1.180965e-02 -5.778159e-03 -4.556066e-04 1.379661e-02 -1.354236e-02 1.331471e-02 1.482959e-02 -6.027379e-03 -1.644797e-04 9.701665e-04 -1.038381e-02 2.226725e-02 1.088177e-02 -6.127718e-03 -5.486369e-05 -6.946476e-03 -6.005420e-03 3.506391e-02 4.747793e-03 -6.157817e-03 1.109194e-06 -1.099949e-02 -2.985642e-03 3.175584e-02 -8.720403e-03 -6.146243e-03 2.246196e-05 -1.286805e-02 -1.378924e-03 1.761421e-02 -1.341794e-02 -6.133624e-03 2.353856e-05 -1.370370e-02 -6.340374e-04 4.902963e-03 -1.024528e-02 -6.119883e-03 2.563014e-05 -1.408074e-02 -3.115752e-04 -2.900637e-03 -5.858887e-03 -6.103065e-03 2.562873e-05 -1.427067e-02 -1.834702e-04 -6.843583e-03 -2.837403e-03 -6.089308e-03 2.237265e-05 -1.439109e-02 -1.278448e-04 -8.606478e-03 -1.233208e-03 -6.078987e-03 1.993966e-05 -1.446952e-02 -1.058077e-04 -9.342044e-03 -4.934533e-04 -6.070085e-03 1.894659e-05 -1.454571e-02 -1.034863e-04 -9.625852e-03 -1.779069e-04 -6.061741e-03 1.838108e-05 -1.461933e-02 1.313079e-03 -9.730488e-03 -5.770365e-05 -6.053961e-03 1.767408e-05 -1.186223e-02 1.162831e-02 -9.773949e-03 -1.005218e-05 -6.047021e-03 1.643320e-05 8.688812e-03 1.326975e-02 -9.783307e-03 5.534327e-06 -6.041715e-03 1.306213e-05 1.468557e-02 4.440539e-04 -9.795600e-03 1.376703e-06 -6.041512e-03 8.914606e-06 9.572629e-03 3.011032e-03 -9.813281e-03 -5.064842e-06 -6.044501e-03 6.782604e-06 2.071410e-02 6.845958e-03 -9.838467e-03 -1.253521e-05 -6.048565e-03 5.571111e-06 2.324758e-02 5.961030e-03 -9.871103e-03 -1.957410e-05 -6.053981e-03 2.340563e-06 3.261386e-02 2.239718e-03 -9.910386e-03 -2.585485e-05 -6.064512e-03 -1.981453e-06 2.768504e-02 -8.464699e-03 -9.955605e-03 -3.153878e-05 -6.078584e-03 -4.556906e-06 1.565285e-02 -2.217939e-03 -1.000628e-02 -3.660275e-05 -6.094282e-03 -6.350310e-06 2.324284e-02 2.853386e-03 -1.006166e-02 -3.978875e-05 -6.111958e-03 -1.020200e-05 2.133734e-02 -6.898084e-03 -1.011874e-02 1.371211e-03 -6.135379e-03 -1.513387e-05 9.428393e-03 -1.156723e-02 -7.352149e-03 1.167449e-02 -6.162945e-03 -1.828788e-05 -1.790359e-03 -9.155705e-03 1.319892e-02 1.327865e-02 -6.192704e-03 -2.037174e-05 -8.852670e-03 -3.949663e-03 1.918562e-02 -9.787828e-04 -6.224471e-03 -2.261142e-05 -9.644492e-03 9.073968e-03 1.122525e-02 -8.721305e-03 -6.258745e-03 -2.533888e-05 9.342125e-03 1.218510e-02 1.722340e-03 -7.933193e-03 -6.296004e-03 1.385681e-03 1.473266e-02 -1.359426e-03 -4.667260e-03 -4.890069e-03 -3.508280e-03 1.169187e-02 6.618884e-03 -8.813840e-03 -8.087585e-03 -2.510138e-03 1.706993e-02 1.329530e-02 -2.882355e-03 -7.921159e-03 -9.719282e-03 -1.173425e-03 2.308733e-02 -9.617642e-04 -9.190791e-03 -4.818301e-03 -1.046712e-02 8.767583e-04 1.515809e-02 -8.703582e-03 -1.247305e-02 -2.406116e-03 -7.998878e-03 1.145169e-02 5.683064e-03 -7.914735e-03 -1.395022e-02 -1.059360e-03 1.240457e-02 1.316788e-02 -6.789915e-04 -3.453663e-03 -1.453586e-02 -4.156178e-04 1.831689e-02 -1.030569e-03 -1.238929e-03 9.238772e-03 -1.472431e-02 -1.411116e-04 1.032683e-02 -8.750139e-03 1.778326e-02 1.218210e-02 -1.476055e-02 1.383831e-03 7.954251e-04 -7.959356e-03 2.313107e-02 -1.435444e-03 -1.189904e-02 1.175324e-02 -5.618535e-03 -4.908181e-03 1.492412e-02 -8.907193e-03 8.797525e-03 1.341714e-02 -9.051269e-03 -2.518763e-03 5.319325e-03 -8.009816e-03 1.494333e-02 5.953639e-04 -1.068836e-02 -1.177690e-03 -1.103531e-03 -4.909453e-03 9.983421e-03 3.166461e-03 -1.143989e-02 -5.402234e-04 -4.514719e-03 -2.506477e-03 2.128184e-02 5.592573e-03 -1.180248e-02 -2.726818e-04 -6.135406e-03 -1.167966e-03 2.115041e-02 -5.600356e-03 -1.201913e-02 1.248531e-03 -6.871371e-03 -5.310661e-04 1.006325e-02 -1.095997e-02 -9.339418e-03 1.161040e-02 -7.219073e-03 -2.647809e-04 -7.640958e-04 -8.835359e-03 1.116920e-02 1.324042e-02 -7.422853e-03 -1.598196e-04 -7.579278e-03 -5.149570e-03 1.712072e-02 -1.008601e-03 -7.560860e-03 -1.079504e-04 -1.102072e-02 -1.080141e-03 9.134714e-03 -8.741888e-03 -7.661054e-03 -9.012658e-05 -9.689809e-03 1.068208e-02 -3.849247e-04 -7.946743e-03 -7.763524e-03 -9.229655e-05 1.039040e-02 1.301614e-02 -6.786102e-03 -3.482310e-03 -7.868172e-03 -9.434517e-05 1.634721e-02 -9.346505e-04 -7.380545e-03 9.215765e-03 -7.974855e-03 -9.623573e-05 8.513319e-03 -8.572260e-03 1.161409e-02 1.217301e-02 -8.083402e-03 -9.794691e-05 -7.886217e-04 -7.736638e-03 1.694504e-02 -1.992143e-05 -8.193628e-03 -9.946066e-05 -6.931717e-03 -4.672997e-03 1.155685e-02 2.819688e-03 -8.305325e-03 -1.007594e-04 -1.009346e-02 -2.285377e-03 2.256393e-02 5.328695e-03 -8.418272e-03 1.312081e-03 -1.145467e-02 -9.391923e-04 2.220008e-02 -5.815926e-03 -5.704413e-03 1.161896e-02 -1.192118e-02 -2.967633e-04 1.091770e-02 -1.114167e-02 1.479940e-02 1.322340e-02 -1.199655e-02 1.385729e-03 -1.041067e-04 -9.001591e-03 2.074489e-02 -1.030126e-03 -9.097919e-03 1.180611e-02 -7.112646e-03 -5.305835e-03 1.274825e-02 -8.768828e-03 1.166138e-02 1.350069e-02 -1.074696e-02 -2.645419e-03 3.207454e-03 -7.977455e-03 1.790552e-02 -7.198542e-04 -1.243676e-02 -1.193459e-03 -3.217021e-03 -4.925703e-03 1.021061e-02 -7.053143e-03 -1.316812e-02 -4.968627e-04 -6.661434e-03 -2.533639e-03 3.804356e-03 4.037382e-03 -1.346514e-02 1.209709e-03 -8.305602e-03 -1.188179e-03 1.830396e-02 8.715362e-03 -1.078354e-02 1.163026e-02 -9.060918e-03 -5.501664e-04 2.122318e-02 -3.144461e-03 9.762085e-03 1.471418e-02 -9.429898e-03 -2.843542e-04 1.199700e-02 -9.553236e-03 1.862331e-02 1.079663e-02 -9.654000e-03 -1.753056e-04 2.118074e-03 -8.136250e-03 3.133891e-02 4.671912e-03 -9.805131e-03 -1.168666e-04 -4.253366e-03 -3.413673e-03 2.795800e-02 -8.785365e-03 -9.912522e-03 -9.414048e-05 -4.673748e-03 9.387463e-03 1.375711e-02 -1.346936e-02 -1.001832e-02 -9.271463e-05 1.455797e-02 1.241720e-02 1.000062e-03 -1.028434e-02 -1.012298e-02 -9.162329e-05 2.015663e-02 -1.170536e-03 -6.838096e-03 -5.887188e-03 -1.022671e-02 1.322074e-03 1.220110e-02 -8.654686e-03 -1.080534e-02 -2.855525e-03 -7.504084e-03 1.162990e-02 2.848192e-03 -7.770666e-03 -1.258245e-02 -1.241193e-03 1.301085e-02 1.465197e-02 -3.319633e-03 -4.677214e-03 -1.332206e-02 -4.910183e-04 2.180038e-02 1.071181e-02 -6.472674e-03 -2.279017e-03 -1.359924e-02 -1.645810e-04 3.444473e-02 4.585509e-03 -7.837477e-03 -9.468029e-04 -1.368613e-02 -3.311017e-05 3.099568e-02 -8.870416e-03 -8.323220e-03 -3.165723e-04 -1.370042e-02 1.440760e-03 1.672436e-02 -1.355295e-02 -8.426541e-03 -5.601994e-05 -1.083957e-02 1.177527e-02 3.894416e-03 -1.036615e-02 -8.390963e-03 4.412136e-05 9.816797e-03 1.480465e-02 -4.017535e-03 -5.968884e-03 -8.294075e-03 9.160538e-05 1.874825e-02 1.086539e-02 -8.061721e-03 -2.938076e-03 -8.163732e-03 1.050535e-04 3.153121e-02 4.738519e-03 -9.916543e-03 -1.322822e-03 -8.040223e-03 9.821900e-05 2.821626e-02 -8.721030e-03 -1.073228e-02 8.430616e-04 -7.923809e-03 9.111039e-05 1.407823e-02 -1.340884e-02 -8.256237e-03 1.147711e-02 -7.814761e-03 8.373066e-05 1.379542e-03 -1.022819e-02 1.219886e-02 1.321238e-02 -7.713336e-03 7.609973e-05 -6.404467e-03 -4.420999e-03 1.816814e-02 -9.814662e-04 -7.619763e-03 6.824652e-05 -7.493237e-03 8.915890e-03 1.024217e-02 -8.691841e-03 -7.534241e-03 5.995566e-05 1.139591e-02 1.213794e-02 7.819029e-04 -7.892149e-03 -7.457430e-03 4.965223e-05 1.676206e-02 -1.365847e-03 -5.555180e-03 -4.835400e-03 -7.392676e-03 3.890492e-05 8.646717e-03 -8.780601e-03 -8.908972e-03 -1.028202e-03 -7.337496e-03 3.188658e-05 -8.212885e-04 -7.860830e-03 -7.635379e-03 1.062567e-02 -7.286895e-03 2.621833e-05 -7.102523e-03 -4.757511e-03 1.231998e-02 1.287347e-02 -7.243157e-03 1.831067e-05 -1.036749e-02 -2.351008e-03 1.811131e-02 -1.107730e-03 -7.208463e-03 1.048151e-05 -1.183759e-02 -1.008718e-03 1.011069e-02 -7.319960e-03 -7.180457e-03 2.986300e-06 -1.241883e-02 -3.682748e-04 3.468693e-03 3.838734e-03 -7.160812e-03 -4.803587e-06 -1.260838e-02 -1.004214e-04 1.777809e-02 8.518052e-03 -7.148428e-03 -1.317046e-05 -1.265401e-02 5.381563e-06 2.051060e-02 -3.343955e-03 -7.145542e-03 -2.304728e-05 -1.263198e-02 6.010348e-05 1.109902e-02 -8.322985e-03 -7.152917e-03 -3.150926e-05 -1.256816e-02 8.191725e-05 3.863026e-03 3.416811e-03 -7.166941e-03 -3.883196e-05 -1.250246e-02 8.352077e-05 1.792301e-02 8.339894e-03 -7.188931e-03 -4.740947e-05 -1.243540e-02 1.498762e-03 2.054878e-02 -3.417184e-03 -7.220064e-03 -5.622519e-05 -9.539179e-03 1.180976e-02 1.109752e-02 -9.756533e-03 -7.259620e-03 -6.406363e-05 1.115154e-02 1.342264e-02 1.034105e-03 -8.303009e-03 -7.306346e-03 -7.052228e-05 1.728540e-02 -8.289287e-04 -5.521268e-03 -4.983429e-03 -7.358722e-03 -7.445370e-05 9.476491e-03 -7.155117e-03 -8.952791e-03 -2.488571e-03 -7.413201e-03 -7.763572e-05 2.953489e-03 3.943479e-03 -1.052225e-02 -1.093678e-03 -7.471826e-03 -8.270566e-05 1.733803e-02 8.603281e-03 -1.116573e-02 -4.346984e-04 -7.536321e-03 -8.841462e-05 2.014289e-02 -3.260446e-03 -1.141795e-02 -1.668494e-04 -7.606229e-03 -9.355054e-05 1.080159e-02 -9.657448e-03 -1.152601e-02 -6.285528e-05 -7.680849e-03 1.314512e-03 8.070760e-04 -8.226962e-03 -1.157036e-02 -1.321820e-05 -4.934474e-03 1.162108e-02 -5.678983e-03 -4.906916e-03 -1.157919e-02 2.466443e-06 1.559827e-02 1.325463e-02 -9.037122e-03 -2.410144e-03 -1.159218e-02 -1.283309e-06 2.156858e-02 4.221441e-04 -1.053156e-02 -1.016726e-03 -1.160853e-02 -3.182989e-06 1.642380e-02 2.984759e-03 -1.110372e-02 -3.617359e-04 -1.162534e-02 -5.216524e-06 2.753016e-02 5.402778e-03 -1.128851e-02 -9.481801e-05 -1.164577e-02 -1.160059e-05 2.719806e-02 -5.796161e-03 -1.132694e-02 1.314168e-05 -1.167537e-02 1.394167e-03 1.590724e-02 -1.115931e-02 -1.129583e-02 6.875786e-05 -8.884298e-03 1.169596e-02 4.872593e-03 -9.040628e-03 -1.122301e-02 9.029523e-05 1.169279e-02 1.329517e-02 -2.157676e-03 -5.360262e-03 -1.114879e-02 9.160015e-05 1.770510e-02 -9.636657e-04 -5.816812e-03 -2.707444e-03 -1.107332e-02 1.506701e-03 9.771182e-03 -8.703990e-03 -7.533751e-03 -1.260702e-03 -8.168848e-03 1.181652e-02 2.940471e-04 -7.913021e-03 -8.295794e-03 -5.686559e-04 1.252794e-02 1.343000e-02 -6.068447e-03 -4.866284e-03 -8.627040e-03 -2.796765e-04 1.867123e-02 -8.183674e-04 -9.459165e-03 -2.483337e-03 -8.810428e-03 -1.704340e-04 1.087480e-02 -7.142627e-03 -1.105953e-02 -1.145047e-03 -8.922803e-03 -1.128921e-04 4.365104e-03 3.956160e-03 -1.177544e-02 -5.084167e-04 -8.990871e-03 -8.709980e-05 1.876252e-02 8.613936e-03 -1.210333e-02 -2.423167e-04 -9.051519e-03 -8.090896e-05 2.157663e-02 -3.252029e-03 -1.228741e-02 -1.373691e-04 -9.107077e-03 1.337027e-03 1.224373e-02 -9.647582e-03 -1.240561e-02 -8.529014e-05 -6.331736e-03 1.165237e-02 2.261378e-03 -6.802410e-03 -1.248566e-02 -6.700301e-05 1.423756e-02 1.329411e-02 -1.386904e-03 6.822421e-03 -1.256738e-02 -6.868529e-05 2.025314e-02 -9.447112e-04 1.587832e-02 1.092838e-02 -1.265089e-02 -7.181806e-05 1.233215e-02 -7.275009e-03 2.045185e-02 -1.925629e-03 -1.273896e-02 -7.482023e-05 5.703775e-03 3.821232e-03 1.201168e-02 -9.007752e-03 -1.282857e-02 -7.353840e-05 1.998920e-02 8.506179e-03 2.416124e-03 -7.952498e-03 -1.291418e-02 1.343528e-03 2.270069e-02 -3.348086e-03 -3.919041e-03 -4.797770e-03 -1.016975e-02 1.165242e-02 1.327189e-02 -9.750538e-03 -7.208774e-03 -2.358197e-03 1.036547e-02 1.325757e-02 3.198298e-03 -8.326717e-03 -8.666677e-03 -9.994147e-04 1.634298e-02 -9.947767e-04 -3.361682e-03 -3.598926e-03 -9.239683e-03 -3.635315e-04 8.380132e-03 -8.729778e-03 -3.965905e-03 9.207242e-03 -9.426148e-03 -9.792628e-05 -1.121198e-03 -6.519930e-03 1.508772e-02 1.224452e-02 -9.468050e-03 8.719379e-06 -4.674885e-03 6.840174e-03 2.051799e-02 -1.334530e-03 -9.441249e-03 6.471026e-05 1.254005e-02 1.083439e-02 1.240211e-02 -8.811817e-03 -9.371154e-03 1.500274e-03 1.699390e-02 -2.075282e-03 2.894868e-03 -7.923095e-03 -6.473185e-03 1.180860e-02 8.394421e-03 -9.170413e-03 -3.423582e-03 -4.824213e-03 1.421523e-02 1.341720e-02 -1.351531e-03 -6.689457e-03 -6.719778e-03 -2.416669e-03 2.034225e-02 -8.389834e-04 -4.999905e-03 6.783152e-03 -8.216210e-03 -1.071106e-03 1.252183e-02 -8.585232e-03 1.219531e-02 1.225109e-02 -8.818134e-03 -4.270515e-04 3.151859e-03 -7.801625e-03 1.950189e-02 9.673780e-03 -9.025192e-03 -1.556347e-04 -3.106726e-03 -4.756707e-03 3.155059e-02 4.187067e-03 -9.083847e-03 -4.634006e-05 -6.390445e-03 -2.372266e-03 2.789711e-02 -8.996503e-03 -9.072193e-03 1.423967e-03 -7.882032e-03 -1.034015e-03 1.357461e-02 -1.356679e-02 -6.190257e-03 1.175726e-02 -8.490104e-03 -3.990873e-04 7.646628e-04 -8.909750e-03 1.448192e-02 1.339607e-02 -8.712185e-03 -1.352899e-04 -4.257957e-03 5.815065e-03 2.059801e-02 -8.442511e-04 -8.792789e-03 -3.288553e-05 1.237616e-02 1.044844e-02 1.277670e-02 -8.589321e-03 -8.810108e-03 1.658570e-05 1.663874e-02 -7.780438e-04 3.419093e-03 -7.806716e-03 -8.791780e-03 3.319990e-05 1.082461e-02 2.543612e-03 -2.817341e-03 -4.762067e-03 -8.775860e-03 2.797899e-05 2.172406e-02 5.270058e-03 -6.072536e-03 -2.376120e-03 -8.767964e-03 2.117901e-05 2.137490e-02 -5.798865e-03 -7.530232e-03 -1.034404e-03 -8.765640e-03 1.533429e-05 1.013612e-02 -9.673855e-03 -8.098930e-03 -3.946039e-04 -8.769432e-03 8.568389e-06 2.024522e-03 2.792619e-03 -8.275831e-03 -1.251237e-04 -8.780641e-03 1.187147e-06 1.570969e-02 8.091667e-03 -8.305197e-03 -1.663764e-05 -8.799203e-03 -5.888376e-06 1.821136e-02 -3.499267e-03 -8.265063e-03 3.890465e-05 -8.824574e-03 -1.224576e-05 8.717440e-03 -9.784889e-03 -8.183429e-03 1.474279e-03 -8.855864e-03 -1.665777e-05 -1.362659e-03 -8.298189e-03 -5.272719e-03 1.178780e-02 -8.890077e-03 -2.084357e-05 -7.894363e-03 -4.957064e-03 1.542983e-02 1.342706e-02 -8.929759e-03 -2.739988e-05 -1.129946e-02 -2.460582e-03 2.157554e-02 -8.151554e-04 -8.977107e-03 1.378858e-03 -1.284197e-02 -1.064162e-03 1.378075e-02 -8.563459e-03 -6.204301e-03 1.168004e-02 -1.345594e-02 -4.016396e-04 4.446238e-03 -7.784253e-03 1.435231e-02 1.328402e-02 -1.367409e-02 -1.291933e-04 -1.770524e-03 -4.744344e-03 2.034486e-02 -9.733241e-04 -1.374340e-02 -2.084163e-05 -5.012144e-03 -2.363473e-03 1.239023e-02 -7.303717e-03 -1.374493e-02 3.278477e-05 -6.460350e-03 -1.026163e-03 5.717425e-03 3.790617e-03 -1.370699e-02 5.355831e-05 -7.024306e-03 -3.897606e-04 1.994763e-02 8.445716e-03 -1.366693e-02 5.436171e-05 -7.198521e-03 -1.213148e-04 2.259319e-02 -3.422996e-03 -1.362734e-02 1.466345e-03 -7.225220e-03 -1.280258e-05 1.308749e-02 -9.825040e-03 -1.076327e-02 1.176917e-02 -7.182354e-03 4.253152e-05 2.923507e-03 -8.399723e-03 9.885151e-03 1.337043e-02 -7.098475e-03 6.302559e-05 -3.737390e-03 -5.086261e-03 1.597464e-02 -8.836870e-04 -7.014797e-03 6.110622e-05 -7.278267e-03 -2.595407e-03 8.121580e-03 -8.622347e-03 -6.934932e-03 5.832550e-05 -8.959487e-03 -1.201713e-03 -1.274956e-03 -7.831853e-03 -6.856984e-03 5.731091e-05 -9.713940e-03 -5.443962e-04 -7.557455e-03 -4.783927e-03 -6.779312e-03 5.563878e-05 -1.008096e-02 -2.798158e-04 -1.086511e-02 -2.398806e-03 -6.704872e-03 5.329600e-05 -1.030646e-02 -1.767478e-04 -1.238103e-02 -1.060546e-03 -6.632042e-03 5.264158e-05 -1.046748e-02 -1.241778e-04 -1.301384e-02 -4.271841e-04 -6.559063e-03 5.287013e-05 -1.058793e-02 -1.044346e-04 -1.326375e-02 -1.651353e-04 -6.485930e-03 1.466686e-03 -1.070953e-02 -1.062493e-04 -1.337274e-02 -6.197787e-05 -3.585473e-03 1.177795e-02 -1.083368e-02 -1.084619e-04 -1.341645e-02 -1.041564e-05 1.710409e-02 1.482683e-02 -1.095977e-02 -1.099699e-04 -1.342236e-02 7.129103e-06 2.605881e-02 1.089335e-02 -1.108702e-02 1.301793e-03 -1.343099e-02 4.225366e-06 3.886260e-02 4.781742e-03 -8.389653e-03 1.160858e-02 -1.344272e-02 1.018810e-06 3.556718e-02 -8.684505e-03 1.209823e-02 1.322046e-02 -1.345778e-02 1.411594e-03 2.144540e-02 -1.339386e-02 1.803109e-02 -1.027800e-03 -1.064838e-02 1.171596e-02 8.760948e-03 -1.023378e-02 1.002586e-02 -8.764660e-03 9.948429e-03 1.331773e-02 9.860074e-04 -5.857248e-03 4.804127e-04 -7.971993e-03 1.598420e-02 4.757727e-04 -2.929039e-03 -2.841609e-03 -5.944956e-03 -4.918430e-03 1.090379e-02 3.045780e-03 -4.664471e-03 -1.239898e-03 -9.386966e-03 -2.525326e-03 2.207394e-02 5.443663e-03 -5.372446e-03 -5.019966e-04 -1.102810e-02 -1.178026e-03 2.180168e-02 -5.761036e-03 -5.630587e-03 -1.872607e-04 -1.177645e-02 -5.332435e-04 1.056213e-02 -9.699272e-03 -5.708548e-03 -6.528715e-05 -1.212845e-02 -2.573267e-04 2.400938e-03 2.740484e-03 -5.722577e-03 -1.679606e-05 -1.232517e-02 -1.420778e-04 1.603185e-02 8.033065e-03 -5.703527e-03 -3.249794e-06 -1.244679e-02 -8.178260e-05 1.847093e-02 -3.565236e-03 -5.690504e-03 -1.006305e-05 -1.252298e-02 1.357671e-03 8.907948e-03 -9.854329e-03 -5.685107e-03 -1.668752e-05 -9.765735e-03 1.167209e-02 -1.241758e-03 -8.368593e-03 -5.685344e-03 -2.156662e-05 1.078849e-02 1.328910e-02 -7.844530e-03 -5.029552e-03 -5.689705e-03 -2.586606e-05 1.679154e-02 4.584504e-04 -1.132348e-02 -2.534189e-03 -5.698532e-03 -3.057671e-05 1.168791e-02 3.033909e-03 -1.293938e-02 -1.138077e-03 -5.712296e-03 -3.454633e-05 2.283896e-02 5.441732e-03 -1.362790e-02 9.352548e-04 -5.729033e-03 -3.913747e-05 2.255736e-02 -5.749536e-03 -1.109790e-02 1.151171e-02 -5.751944e-03 -4.663996e-05 1.132571e-02 -9.674662e-03 9.369292e-03 1.322291e-02 -5.783638e-03 -5.537980e-05 3.187426e-03 2.776168e-03 1.534439e-02 -9.769583e-04 -5.823961e-03 -6.241944e-05 1.685277e-02 8.083024e-03 7.418480e-03 -8.691860e-03 -5.869650e-03 -6.893411e-05 1.933603e-02 -2.092698e-03 -2.045013e-03 -7.894586e-03 -5.922907e-03 -7.757147e-05 1.265135e-02 1.931437e-03 -8.386874e-03 -4.837742e-03 -5.985759e-03 -8.721077e-05 2.317905e-02 6.448293e-03 -1.174371e-02 -2.443873e-03 -6.058162e-03 -9.647973e-05 2.553413e-02 5.853112e-03 -1.330156e-02 -1.099199e-03 -6.139399e-03 -1.051241e-04 3.487281e-02 2.229385e-03 -1.397078e-02 9.553021e-04 -6.228921e-03 -1.135536e-04 2.998579e-02 -9.826016e-03 -1.142036e-02 1.153363e-02 -6.326829e-03 -1.222050e-04 1.521087e-02 -1.384768e-02 9.069910e-03 1.466439e-02 -6.433447e-03 -1.309397e-04 2.272048e-03 -1.039275e-02 1.790456e-02 1.077699e-02 -6.548600e-03 -1.393605e-04 -5.600443e-03 -5.886833e-03 3.062983e-02 4.666811e-03 -6.671818e-03 -1.473265e-04 -9.531939e-03 -2.797592e-03 2.725824e-02 -8.789660e-03 -6.802644e-03 -1.548910e-04 -1.122820e-02 2.540502e-04 1.306683e-02 -1.346992e-02 -6.940716e-03 -1.621331e-04 -9.057387e-03 1.131155e-02 3.189716e-04 -1.028033e-02 -7.085736e-03 -1.690928e-04 1.136260e-02 1.324541e-02 -7.507386e-03 -5.879267e-03 -7.237423e-03 -1.757714e-04 1.741285e-02 -8.756194e-04 -1.146180e-02 -2.844961e-03 -7.395481e-03 -1.821485e-04 9.594242e-03 -8.555505e-03 -1.322393e-02 -1.229118e-03 -7.559590e-03 1.225465e-03 2.802324e-04 -7.739602e-03 -1.394862e-02 -4.794047e-04 -4.902076e-03 1.153014e-02 -5.911911e-03 -4.686062e-03 -1.421213e-02 1.260213e-03 1.553757e-02 1.316212e-02 -9.122392e-03 -2.295540e-03 -1.145787e-02 1.169971e-02 2.141608e-02 -1.084584e-03 -1.053533e-02 -9.523164e-04 9.160668e-03 1.336615e-02 1.334996e-02 -8.837938e-03 -1.106018e-02 -3.145173e-04 1.527068e-02 -8.586897e-04 3.738718e-03 -8.064116e-03 -1.119782e-02 1.365323e-03 7.446310e-03 -8.589085e-03 -2.759548e-03 -5.027221e-03 -8.363062e-03 1.177998e-02 -1.913143e-03 -7.788560e-03 -6.283340e-03 -2.647647e-03 1.233024e-02 1.344265e-02 -8.146846e-03 -4.729980e-03 -8.015049e-03 -1.311079e-03 1.850220e-02 -7.917655e-04 -1.139605e-02 -9.222554e-04 -8.862065e-03 -6.754056e-04 1.073021e-02 -8.532405e-03 -1.001791e-02 1.073204e-02 -9.320647e-03 -4.091624e-04 1.416432e-03 -7.742758e-03 1.004300e-02 1.298269e-02 -9.634212e-03 -3.033423e-04 -4.781598e-03 -4.695438e-03 1.594470e-02 4.192568e-04 -9.880495e-03 -2.515374e-04 -8.004294e-03 -2.311334e-03 1.088528e-02 3.102908e-03 -1.008993e-02 -2.335881e-04 -9.435966e-03 -9.743883e-04 2.214867e-02 5.560281e-03 -1.029988e-02 -2.326372e-04 -9.985592e-03 -3.409733e-04 2.201650e-02 -4.202489e-03 -1.050697e-02 -2.283784e-04 -1.015075e-02 -7.874185e-05 1.375420e-02 7.624499e-04 -1.070796e-02 -2.253191e-04 -1.017601e-02 2.202612e-05 2.354274e-02 4.508580e-03 -1.090851e-02 -2.250681e-04 -1.013964e-02 6.975994e-05 2.278356e-02 -6.048652e-03 -1.110858e-02 1.190405e-03 -1.006941e-02 8.452641e-05 1.145679e-02 -1.112328e-02 -8.477770e-03 1.150626e-02 -1.000347e-02 7.714353e-05 5.357991e-04 -8.875549e-03 1.194835e-02 1.456302e-02 -9.947970e-03 6.652078e-05 -6.307631e-03 -5.126375e-03 2.064973e-02 1.063732e-02 -9.903246e-03 5.699542e-05 -9.737861e-03 -2.445137e-03 3.320617e-02 4.531941e-03 -9.866768e-03 5.060075e-05 -1.122262e-02 -9.920094e-04 2.967039e-02 -8.926785e-03 -9.834813e-03 4.481366e-05 -1.174824e-02 1.118781e-03 1.531681e-02 -1.363028e-02 -9.809891e-03 3.660342e-05 -9.012003e-03 1.171855e-02 2.404203e-03 -1.046422e-02 -9.794341e-03 2.717584e-05 1.166495e-02 1.343580e-02 -5.590109e-03 -4.662821e-03 -9.788265e-03 1.806576e-05 1.785863e-02 -7.583583e-04 -6.883105e-03 8.678842e-03 -9.790933e-03 9.674380e-06 1.015413e-02 -8.474776e-03 1.180863e-02 1.193279e-02 -9.801641e-03 1.896251e-06 9.064250e-04 -7.682969e-03 1.698423e-02 -1.432368e-04 -9.819871e-03 -5.425236e-06 -5.224716e-03 -4.631339e-03 1.151303e-02 2.750154e-03 -9.845232e-03 -1.238053e-05 -8.375962e-03 -2.241019e-03 2.248692e-02 5.302332e-03 -9.877387e-03 -1.899488e-05 -9.729959e-03 5.166062e-04 2.209700e-02 -5.838786e-03 -9.915996e-03 -2.525626e-05 -7.367456e-03 1.146447e-02 1.078948e-02 -1.117841e-02 -9.960696e-03 -3.113499e-05 1.317690e-02 1.333835e-02 -2.559141e-04 -9.051760e-03 -1.001109e-02 -3.660044e-05 1.930995e-02 -8.075407e-04 -7.286923e-03 -3.948550e-03 -1.006675e-02 -4.162479e-05 1.156932e-02 -8.492189e-03 -8.111111e-03 9.026367e-03 -1.012722e-02 1.367732e-03 2.324484e-03 -7.681410e-03 1.080945e-02 1.212212e-02 -7.364200e-03 1.167214e-02 -3.804837e-03 -4.631165e-03 1.613699e-02 -1.420990e-03 1.318572e-02 1.327910e-02 -6.955980e-03 -2.242842e-03 7.960124e-03 -8.876054e-03 1.917446e-02 -9.755495e-04 -8.312150e-03 -9.015412e-04 -1.605265e-03 -7.984278e-03 1.121851e-02 -7.303579e-03 -8.782196e-03 -2.637553e-04 -7.978475e-03 -4.882008e-03 4.546623e-03 3.793156e-03 -8.863315e-03 4.051431e-06 -1.132592e-02 -2.471254e-03 1.878032e-02 8.451180e-03 -8.797838e-03 1.085528e-04 -1.287059e-02 -1.124140e-03 2.143265e-02 -3.413942e-03 -8.669881e-03 1.568012e-04 -1.352057e-02 9.352260e-04 1.193762e-02 -9.811835e-03 -8.507765e-03 1.715864e-04 -1.094513e-02 1.152263e-02 1.788714e-03 -8.381942e-03 -8.350059e-03 1.672484e-04 9.574285e-03 1.327480e-02 -4.852345e-03 -5.063585e-03 -8.196443e-03 1.630868e-04 1.561093e-02 5.064054e-04 -8.368348e-03 -2.567819e-03 -8.046890e-03 1.592027e-04 1.058086e-02 3.096054e-03 -1.001989e-02 -1.170626e-03 -7.900877e-03 1.569699e-04 2.180738e-02 6.932885e-03 -1.074246e-02 -5.097196e-04 -7.755627e-03 1.547701e-04 2.442737e-02 6.048921e-03 -1.107260e-02 1.174913e-03 -7.613853e-03 1.500316e-04 3.388045e-02 2.326261e-03 -8.426089e-03 1.159378e-02 -7.477922e-03 1.440256e-04 2.903525e-02 -9.794175e-03 1.208302e-02 1.326390e-02 -7.348010e-03 1.382170e-04 1.425764e-02 -1.386000e-02 1.808153e-02 4.525227e-04 -7.223552e-03 1.329238e-04 1.311850e-03 -1.042691e-02 1.297133e-02 3.026470e-03 -7.104088e-03 1.279788e-04 -6.572358e-03 -5.938106e-03 2.411480e-02 5.433213e-03 -6.989388e-03 1.231766e-04 -1.052396e-02 -2.863085e-03 2.382448e-02 -5.762742e-03 -6.879401e-03 1.532521e-03 -1.224982e-02 -1.235994e-03 1.257587e-02 -1.110968e-02 -3.945890e-03 1.183721e-02 -1.294361e-02 -4.910113e-04 1.585233e-03 -8.973106e-03 1.677673e-02 1.343893e-02 -1.317805e-02 -1.670972e-04 -5.396541e-03 -3.864529e-03 2.293666e-02 -8.217298e-04 -1.322352e-02 -3.737007e-05 -6.174030e-03 9.106870e-03 1.514479e-02 -8.567758e-03 -1.319841e-02 1.881345e-05 1.278655e-02 1.217157e-02 5.804028e-03 -7.780991e-03 -1.313157e-02 4.011065e-05 1.814934e-02 -1.380656e-03 -4.246663e-04 -4.734658e-03 -1.306400e-02 4.058121e-05 1.000854e-02 -8.825828e-03 -3.679673e-03 -2.350856e-03 -1.299636e-02 1.454405e-03 4.763177e-04 -7.922757e-03 -5.144374e-03 -1.013974e-03 -1.010128e-02 1.176615e-02 -5.863812e-03 -4.812673e-03 -5.727240e-03 -3.801886e-04 1.058377e-02 1.340345e-02 -9.179501e-03 -2.401080e-03 -5.925017e-03 1.298192e-03 1.670996e-02 -8.408753e-04 -1.069835e-02 -1.056718e-03 -3.151342e-03 1.170947e-02 8.893473e-03 -8.591413e-03 -1.132618e-02 -4.125596e-04 1.747652e-02 1.336425e-02 -4.649848e-04 -7.814289e-03 -1.155707e-02 -1.371702e-04 2.358263e-02 -8.743487e-04 -6.707545e-03 -4.774674e-03 -1.163426e-02 1.391428e-03 1.574007e-02 -8.620632e-03 -9.973648e-03 -2.393342e-03 -8.807996e-03 1.176161e-02 6.344910e-03 -7.837666e-03 -1.144668e-02 -1.055939e-03 1.185680e-02 1.340108e-02 5.785795e-05 -4.794068e-03 -1.203488e-02 -4.202253e-04 1.797385e-02 -8.416809e-04 -3.257075e-03 -2.411431e-03 -1.223525e-02 -1.546386e-04 1.015664e-02 -8.574521e-03 -4.782531e-03 -1.076795e-03 -1.229185e-02 1.364052e-03 8.035276e-04 -7.778858e-03 -5.429884e-03 -4.458613e-04 -9.454718e-03 1.172855e-02 -5.427727e-03 -4.724901e-03 -5.694190e-03 -1.836396e-04 1.121171e-02 1.338665e-02 -8.676497e-03 -2.334572e-03 -5.817392e-03 -8.102363e-05 1.732159e-02 -8.565379e-04 -1.012896e-02 4.230746e-04 -5.876604e-03 -2.974966e-05 9.488801e-03 -8.608066e-03 -7.863266e-03 1.137463e-02 -5.897324e-03 -1.282652e-05 1.120962e-04 -7.832767e-03 1.258868e-02 1.325853e-02 -5.922712e-03 -1.872098e-05 -6.150386e-03 -4.794349e-03 1.863390e-02 5.315258e-04 -5.955249e-03 -2.591114e-05 -9.437090e-03 -2.413274e-03 1.363531e-02 3.159198e-03 -5.995053e-03 -3.279576e-05 -1.093051e-02 -1.075374e-03 2.493301e-02 5.586440e-03 -6.041404e-03 -3.897732e-05 -1.153828e-02 -4.386400e-04 2.479538e-02 -5.611463e-03 -6.093622e-03 -4.461732e-05 -1.175695e-02 -1.716654e-04 1.369719e-02 -1.096048e-02 -6.151311e-03 -5.014253e-05 -1.183031e-02 1.348692e-03 2.855178e-03 -8.826571e-03 -6.214644e-03 -5.591025e-05 -9.008114e-03 1.171487e-02 -3.981421e-03 -5.138967e-03 -6.283938e-03 -6.149631e-05 1.164495e-02 1.337325e-02 -7.452149e-03 -2.484808e-03 -6.358520e-03 -6.509922e-05 1.774048e-02 -8.695282e-04 -8.982420e-03 -1.035932e-03 -6.435103e-03 -6.812965e-05 9.895182e-03 -7.204120e-03 -9.556273e-03 -3.417306e-04 -6.515831e-03 -7.318853e-05 3.338026e-03 3.887738e-03 -9.698471e-03 -5.251606e-05 -6.602621e-03 -7.929924e-05 1.769022e-02 8.568378e-03 -9.693976e-03 5.483248e-05 -6.695666e-03 -8.528261e-05 2.046417e-02 -3.290239e-03 -9.621475e-03 1.522476e-03 -6.794526e-03 -9.084087e-05 1.109331e-02 -9.698190e-03 -6.681651e-03 1.185008e-02 -6.898798e-03 -9.732792e-05 1.071057e-03 -8.278058e-03 1.404775e-02 1.345921e-02 -7.010748e-03 -1.035080e-04 -5.438476e-03 -4.964848e-03 2.021771e-02 -7.942522e-04 -7.127504e-03 -1.068356e-04 -8.820623e-03 -2.471217e-03 1.244373e-02 -8.537314e-03 -7.246238e-03 -1.083549e-04 -1.033578e-02 3.388460e-04 3.123109e-03 -7.751403e-03 -7.366165e-03 -1.095052e-04 -8.094619e-03 1.130978e-02 -3.084389e-03 -4.705186e-03 -7.487333e-03 -1.105043e-04 1.232738e-02 1.321615e-02 -6.316140e-03 -2.320386e-03 -7.609392e-03 -1.099277e-04 1.833834e-02 -9.186641e-04 -7.755892e-03 -9.840372e-04 -7.729542e-03 1.304719e-03 1.047808e-02 -8.610925e-03 -8.315772e-03 -3.517908e-04 -5.022440e-03 1.161092e-02 1.121045e-03 -7.807154e-03 -8.491352e-03 -8.861291e-05 1.547281e-02 1.321354e-02 -5.112003e-03 -4.762152e-03 -8.524976e-03 1.440380e-05 2.140789e-02 -1.041196e-03 -8.365928e-03 -2.378088e-03 -8.494543e-03 6.417054e-05 1.340024e-02 -8.778580e-03 -9.824008e-03 3.769966e-04 -8.428616e-03 7.924651e-05 3.851676e-03 -7.984858e-03 -7.564699e-03 1.133005e-02 -8.367993e-03 7.367378e-05 -2.579115e-03 -4.932710e-03 1.287857e-02 1.323907e-02 -8.313177e-03 6.767432e-05 -6.030519e-03 -2.541488e-03 1.891295e-02 -8.956488e-04 -8.264521e-03 6.137952e-05 -7.682694e-03 2.173087e-04 1.107409e-02 -8.589443e-03 -8.222267e-03 5.487422e-05 -5.618337e-03 1.116444e-02 1.737370e-03 -7.786741e-03 -8.186597e-03 4.821156e-05 1.462603e-02 1.303541e-02 -4.476458e-03 -3.324560e-03 -8.157648e-03 4.165047e-05 2.045479e-02 -1.112604e-03 -4.875756e-03 9.377801e-03 -8.135084e-03 1.450510e-03 1.240960e-02 -8.794007e-03 1.431598e-02 1.235899e-02 -5.288403e-03 1.175391e-02 2.866629e-03 -7.977039e-03 1.983872e-02 -1.246282e-03 1.534260e-02 1.335690e-02 -3.555217e-03 -4.922025e-03 1.180829e-02 -8.728218e-03 2.140709e-02 -9.029173e-04 -6.995278e-03 -1.116142e-03 2.384044e-03 -7.840779e-03 1.352193e-02 -8.648102e-03 -5.809174e-03 1.053669e-02 -3.851696e-03 -4.743760e-03 4.091532e-03 -7.862607e-03 1.405775e-02 1.419742e-02 -7.068796e-03 -2.339369e-03 -2.228044e-03 -4.820520e-03 2.258735e-02 1.052142e-02 -8.488991e-03 -9.969825e-04 -5.577894e-03 -2.441335e-03 3.511173e-02 4.497622e-03 -9.018332e-03 -3.538536e-04 -7.141022e-03 -1.107776e-03 3.160762e-02 -8.904429e-03 -9.151156e-03 -8.149943e-05 -7.824650e-03 -4.761365e-04 1.732402e-02 -1.356502e-02 -9.135509e-03 2.514076e-05 -8.124891e-03 -2.143935e-04 4.482883e-03 -1.037821e-02 -9.055086e-03 7.818099e-05 -8.285206e-03 -1.131267e-04 -3.441343e-03 -5.980826e-03 -8.933528e-03 9.952302e-05 -8.383006e-03 -6.431598e-05 -7.496500e-03 -2.949730e-03 -8.810677e-03 1.012022e-04 -8.445754e-03 -4.889670e-05 -9.363032e-03 -1.336236e-03 -8.686018e-03 9.993441e-05 -8.512752e-03 -5.156808e-05 -1.019327e-02 -5.869040e-04 -8.565965e-03 9.538836e-05 -8.580882e-03 -5.381724e-05 -1.056206e-02 -2.614523e-04 -8.450651e-03 1.505779e-03 -8.652417e-03 -5.790479e-05 -1.074180e-02 -1.329014e-04 -5.510058e-03 1.181603e-02 -8.728763e-03 -6.112669e-05 -1.085369e-02 -7.784336e-05 1.521957e-02 1.486615e-02 -8.806785e-03 -6.353879e-05 -1.092344e-02 -5.458168e-05 2.421684e-02 1.093106e-02 -8.888000e-03 -6.730226e-05 -1.098888e-02 -4.982871e-05 3.705735e-02 4.814741e-03 -8.973596e-03 -7.126657e-05 -1.104920e-02 1.370404e-03 3.379500e-02 -8.653455e-03 -9.062789e-03 -7.415789e-05 -8.274244e-03 1.168379e-02 1.970598e-02 -1.336421e-02 -9.154219e-03 -7.555566e-05 1.229528e-02 1.328978e-02 7.051742e-03 -1.020580e-02 -9.246260e-03 -7.431948e-05 1.830504e-02 -9.641399e-04 -6.938634e-04 -5.829509e-03 -9.335270e-03 1.341666e-03 1.037339e-02 -8.699263e-03 -4.579234e-03 -2.813853e-03 -6.595392e-03 1.165014e-02 9.041101e-04 -7.902155e-03 -6.285359e-03 -1.212822e-03 1.393412e-02 1.325825e-02 -5.443832e-03 -4.846998e-03 -6.965081e-03 -4.745786e-04 1.990199e-02 4.186970e-04 -8.809838e-03 -2.454982e-03 -7.193291e-03 -1.581134e-04 1.475582e-02 2.989746e-03 -1.037748e-02 -1.109951e-03 -7.239603e-03 -3.679545e-05 2.586283e-02 5.394851e-03 -1.105516e-02 -4.679358e-04 -7.225079e-03 8.801468e-06 2.553325e-02 -5.804566e-03 -1.133953e-02 -1.951581e-04 -7.180228e-03 1.891022e-05 1.424124e-02 -1.115381e-02 -1.147197e-02 1.330467e-03 -7.145581e-03 8.914288e-06 3.206681e-03 -9.016998e-03 -8.705231e-03 1.169450e-02 -7.120795e-03 -7.828112e-07 -3.818029e-03 -5.322690e-03 1.189345e-02 1.332040e-02 -7.105594e-03 -1.032238e-05 -7.467998e-03 -2.659209e-03 1.793485e-02 -9.333002e-04 -7.099919e-03 -1.988428e-05 -9.167839e-03 -1.202959e-03 1.003283e-02 -7.256618e-03 -7.103853e-03 -2.981860e-05 -9.906282e-03 -5.048250e-04 3.418823e-03 3.846836e-03 -7.118039e-03 -4.176675e-05 -1.021028e-02 -2.122932e-04 1.771638e-02 8.506803e-03 -7.145840e-03 -5.418453e-05 -1.036383e-02 1.313647e-03 2.043816e-02 -3.354075e-03 -7.184802e-03 -6.290168e-05 -7.616037e-03 1.168192e-02 1.101698e-02 -9.745658e-03 -7.229956e-03 -7.029419e-05 1.296852e-02 1.331713e-02 9.451518e-04 -8.310314e-03 -7.283608e-03 -8.016698e-05 1.899854e-02 -9.294651e-04 -5.616512e-03 -4.988267e-03 -7.348395e-03 -9.156575e-05 1.109338e-02 -7.245634e-03 -9.051525e-03 -2.490321e-03 -7.424709e-03 -1.028937e-04 4.486530e-03 3.862362e-03 -1.062111e-02 -1.092044e-03 -7.511990e-03 -1.136313e-04 1.879357e-02 8.528218e-03 -1.126131e-02 -4.308512e-04 -7.609596e-03 -1.237986e-04 2.152664e-02 -3.327651e-03 -1.150921e-02 -1.604686e-04 -7.717007e-03 -1.335028e-04 1.212351e-02 -9.715718e-03 -1.160892e-02 1.362500e-03 -7.833795e-03 -1.428031e-04 2.075047e-03 -8.278739e-03 -8.811004e-03 1.172448e-02 -7.959562e-03 -1.517076e-04 -4.459891e-03 -3.541258e-03 1.181636e-02 1.334920e-02 -8.093894e-03 -1.599635e-04 -5.037134e-03 9.267702e-03 1.788658e-02 -9.022138e-04 -8.235890e-03 -1.661476e-04 1.404551e-02 1.228001e-02 1.001785e-02 -8.637798e-03 -8.382293e-03 -1.717639e-04 1.950383e-02 -1.306153e-03 6.081819e-04 -7.843663e-03 -8.535213e-03 -1.792737e-04 1.141729e-02 -8.770591e-03 -5.682714e-03 -3.376237e-03 -8.696314e-03 -1.871012e-04 1.942091e-03 -7.868163e-03 -6.164509e-03 9.322970e-03 -8.864551e-03 -1.923470e-04 -4.345033e-03 -4.760960e-03 1.294247e-02 1.227249e-02 -9.035789e-03 -1.961967e-04 -7.609430e-03 -2.348024e-03 1.838091e-02 7.430043e-05 -9.211365e-03 -2.012958e-04 -9.072555e-03 -1.000206e-03 1.309755e-02 2.915121e-03 -9.392433e-03 -2.067731e-04 -9.642156e-03 -3.540358e-04 2.421176e-02 5.422233e-03 -9.578583e-03 -2.128717e-04 -9.813266e-03 1.334610e-03 2.395495e-02 -5.724075e-03 -9.771457e-03 -2.180075e-04 -7.005673e-03 1.175327e-02 1.277627e-02 -1.105105e-02 -9.967473e-03 -2.196080e-04 1.366215e-02 1.341743e-02 1.853113e-03 -8.914569e-03 -1.016314e-02 -2.185296e-04 1.980991e-02 -8.151273e-04 -5.064731e-03 -5.223598e-03 -1.035658e-02 -2.151246e-04 1.201615e-02 -7.138882e-03 -8.613614e-03 -2.566379e-03 -1.054503e-02 -2.130280e-04 5.511926e-03 3.963063e-03 -1.022096e-02 -1.117003e-03 -1.073389e-02 -2.134063e-04 1.991833e-02 8.624976e-03 -1.087287e-02 -4.234177e-04 -1.092269e-02 1.201840e-03 2.274619e-02 -3.239868e-03 -1.109377e-02 -1.330205e-04 -8.280662e-03 1.151783e-02 1.342453e-02 -9.639704e-03 -1.116513e-02 -2.374242e-05 1.215695e-02 1.457477e-02 3.447377e-03 -8.210991e-03 -1.116755e-02 3.012476e-05 2.086989e-02 1.064766e-02 -3.022581e-03 -4.893743e-03 -1.113118e-02 4.878832e-05 3.343497e-02 4.540772e-03 -6.368952e-03 -2.400503e-03 -1.109623e-02 4.767277e-05 2.990773e-02 -7.501264e-03 -7.854348e-03 -1.009205e-03 -1.106206e-02 4.715696e-05 1.839615e-02 -1.886279e-03 -8.418975e-03 -3.561402e-04 -1.102810e-02 4.707201e-05 2.612308e-02 2.922430e-03 -8.598566e-03 -9.226089e-05 -1.099406e-02 1.461342e-03 2.421268e-02 -6.932386e-03 -8.635537e-03 1.135469e-05 -8.131523e-03 1.177110e-02 1.223399e-02 -1.165270e-02 -8.607918e-03 6.157765e-05 1.252520e-02 1.337823e-02 9.081441e-04 -9.259788e-03 -8.544428e-03 7.694490e-05 1.862491e-02 -8.750761e-04 -6.260912e-03 -4.050900e-03 -8.486038e-03 7.171461e-05 1.078179e-02 -8.613123e-03 -7.153910e-03 8.978136e-03 -8.432975e-03 6.749354e-05 1.396711e-03 -7.820752e-03 1.173698e-02 1.209376e-02 -8.382996e-03 6.286823e-05 -4.872078e-03 -4.771935e-03 1.703553e-02 -3.338836e-05 -8.339155e-03 5.542835e-05 -8.166476e-03 -2.385882e-03 1.166097e-02 2.827895e-03 -8.304031e-03 4.654650e-05 -9.666814e-03 3.712099e-04 2.269338e-02 5.362469e-03 -8.277934e-03 3.775292e-05 -7.448692e-03 1.131894e-02 2.236479e-02 -5.774124e-03 -8.260382e-03 2.941907e-05 1.294890e-02 1.319169e-02 1.112470e-02 -1.110865e-02 -8.250942e-03 2.141817e-05 1.893513e-02 -9.557051e-04 1.506832e-04 -7.565312e-03 -8.249387e-03 1.358064e-05 1.104458e-02 -8.641211e-03 -3.979655e-03 6.437011e-03 -8.255621e-03 5.814266e-06 1.651043e-03 -7.828832e-03 1.305965e-02 1.073489e-02 -8.269602e-03 -1.903320e-06 -4.625170e-03 -4.777187e-03 1.748924e-02 -2.054314e-03 -8.291280e-03 -9.553506e-06 -7.922375e-03 -2.387925e-03 8.940840e-03 -7.689975e-03 -8.320574e-03 -1.735052e-05 -9.423721e-03 -1.045372e-03 2.117081e-03 3.696928e-03 -8.357862e-03 -2.686353e-05 -1.003748e-02 -4.059739e-04 1.635683e-02 8.493254e-03 -8.406203e-03 -3.698991e-05 -1.026072e-02 1.276543e-03 1.909578e-02 -3.302273e-03 -8.463772e-03 -4.654367e-05 -7.509693e-03 1.169179e-02 9.738721e-03 -9.682199e-03 -8.531254e-03 -5.504312e-05 1.310062e-02 1.335146e-02 -2.625046e-04 -6.841870e-03 -8.605860e-03 -6.103900e-05 1.919384e-02 -8.808305e-04 -3.917883e-03 6.786706e-03 -8.685376e-03 -6.601740e-05 1.134633e-02 -8.616751e-03 1.334573e-02 1.091989e-02 -8.769985e-03 -7.283370e-05 1.959010e-03 -7.822324e-03 1.792042e-02 -1.924586e-03 -8.863183e-03 -8.040657e-05 -4.310057e-03 -3.356351e-03 9.485463e-03 -9.012143e-03 -8.962991e-03 -8.578800e-05 -4.772387e-03 9.340228e-03 -9.722323e-05 -7.963244e-03 -9.067008e-03 -8.962502e-05 1.435119e-02 1.228690e-02 -6.414238e-03 -4.812853e-03 -9.174550e-03 -9.311644e-05 1.980342e-02 -1.327705e-03 -9.682862e-03 -2.373572e-03 -9.285612e-03 1.317550e-03 1.170383e-02 -8.796701e-03 -1.111444e-02 -1.012397e-03 -6.571885e-03 1.162450e-02 2.209087e-03 -7.897962e-03 -1.165771e-02 -3.734277e-04 1.393251e-02 1.323386e-02 -4.103558e-03 -4.794792e-03 -1.181021e-02 -1.051856e-04 1.987672e-02 -1.020483e-03 -7.398963e-03 -2.386244e-03 -1.181667e-02 1.579324e-06 1.187583e-02 -7.347325e-03 -8.898167e-03 -1.043112e-03 -1.175562e-02 5.489093e-05 5.161774e-03 3.751174e-03 -9.508970e-03 -4.030698e-04 -1.165559e-02 7.361671e-05 1.935403e-02 8.408918e-03 -9.728767e-03 -1.342152e-04 -1.155730e-02 7.165900e-05 2.196360e-02 -3.457531e-03 -9.802105e-03 -2.659235e-05 -1.146139e-02 6.910054e-05 1.242446e-02 -9.858257e-03 -9.806737e-03 1.442774e-03 -1.136843e-02 6.557367e-05 2.227105e-03 -8.430840e-03 -6.941348e-03 1.177169e-02 -1.127976e-02 6.142004e-05 -4.463052e-03 -5.112992e-03 1.371503e-02 1.337575e-02 -1.119529e-02 1.470977e-03 -8.028548e-03 -2.617565e-03 1.981144e-02 -8.792419e-04 -8.287689e-03 1.177838e-02 -9.729896e-03 -1.220678e-03 1.196460e-02 -8.616063e-03 1.240548e-02 1.341123e-02 -1.050259e-02 -5.601152e-04 2.578673e-03 -7.822031e-03 1.853526e-02 -8.376891e-04 -1.088326e-02 1.124326e-03 -3.690516e-03 -4.772495e-03 1.071772e-02 -8.592936e-03 -8.287292e-03 1.154427e-02 -6.984325e-03 -2.386951e-03 1.353443e-03 -7.820627e-03 1.217342e-02 1.321381e-02 -8.486077e-03 -1.047853e-03 -4.899794e-03 -4.785919e-03 1.812020e-02 3.993019e-04 -9.103357e-03 -4.112985e-04 -8.181511e-03 -2.409570e-03 1.295531e-02 2.971366e-03 -9.332685e-03 -1.451721e-04 -9.675151e-03 -1.077206e-03 2.404325e-02 5.377576e-03 -9.417966e-03 -4.002317e-05 -1.028900e-02 -4.465680e-04 2.369714e-02 -5.818698e-03 -9.437091e-03 1.215827e-05 -1.052007e-02 -1.860774e-04 1.239234e-02 -1.116614e-02 -9.418030e-03 1.444099e-03 -1.061246e-02 -8.639538e-05 1.344863e-03 -9.030541e-03 -6.573252e-03 1.174980e-02 -1.064397e-02 -3.944387e-05 -5.695078e-03 -5.338645e-03 1.406037e-02 1.335411e-02 -1.064238e-02 -2.632894e-05 -9.362804e-03 -2.678460e-03 2.013665e-02 5.141451e-04 -1.064767e-02 -3.313223e-05 -1.108448e-02 -1.223424e-03 1.509708e-02 3.081821e-03 -1.065968e-02 -3.976073e-05 -1.184312e-02 -5.237006e-04 2.630312e-02 5.475858e-03 -1.067820e-02 -4.617315e-05 -1.216578e-02 1.183225e-03 2.606405e-02 -5.730318e-03 -1.070300e-02 -5.232999e-05 -9.510755e-03 1.160271e-02 1.485748e-02 -1.108241e-02 -1.073378e-02 -5.819359e-05 1.100707e-02 1.327178e-02 3.901803e-03 -8.949211e-03 -1.077023e-02 -6.372811e-05 1.701202e-02 -9.543703e-04 -3.050531e-03 -5.261386e-03 -1.081201e-02 -6.889988e-05 9.080979e-03 -8.687475e-03 -6.638266e-03 -2.609326e-03 -1.085872e-02 1.340233e-03 -3.848353e-04 -7.890463e-03 -8.290459e-03 -1.164780e-03 -8.082134e-03 1.164812e-02 -6.727276e-03 -4.834921e-03 -8.990936e-03 -4.760049e-04 1.248110e-02 1.328233e-02 -1.008564e-02 -1.027456e-03 -9.266354e-03 -1.936227e-04 1.848288e-02 -9.643416e-04 -8.815082e-03 1.062953e-02 -9.402373e-03 -9.297378e-05 1.054014e-02 -8.716503e-03 1.114124e-02 1.288562e-02 -9.476644e-03 -4.477530e-05 1.054296e-03 -6.526382e-03 1.693545e-02 -1.092918e-03 -9.516348e-03 -3.000486e-05 -2.488259e-03 6.825257e-03 8.938013e-03 -8.720605e-03 -9.561123e-03 -3.494770e-05 1.473662e-02 1.084516e-02 -5.277449e-04 -6.455992e-03 -9.610762e-03 -3.975886e-05 1.919767e-02 -2.059556e-03 -4.001383e-03 6.927997e-03 -9.665214e-03 -4.455012e-05 1.060374e-02 -9.171151e-03 1.329885e-02 1.093027e-02 -9.724496e-03 -4.936851e-05 8.596604e-04 -6.709445e-03 1.783967e-02 -1.976272e-03 -9.788650e-03 -5.422191e-05 -2.790379e-03 6.753073e-03 9.329426e-03 -9.072684e-03 -9.857711e-03 -5.909913e-05 1.439825e-02 1.083037e-02 -3.274593e-04 -6.595506e-03 -9.931696e-03 -6.398433e-05 1.886667e-02 -2.051632e-03 -3.888882e-03 6.873887e-03 -1.001061e-02 -6.885889e-05 1.028191e-02 -9.161780e-03 1.339098e-02 1.093035e-02 -1.009443e-02 -7.370231e-05 5.480743e-04 -8.112877e-03 1.795240e-02 -1.955370e-03 -1.018312e-02 -7.849321e-05 -5.918411e-03 -4.961028e-03 9.463425e-03 -9.051427e-03 -1.027663e-02 -8.312359e-05 -9.334957e-03 -1.106275e-03 -1.721380e-04 -7.988338e-03 -1.037468e-02 -8.715306e-05 -8.084754e-03 1.056963e-02 -6.540458e-03 -4.827920e-03 -1.047635e-02 -9.130346e-05 1.184788e-02 1.285084e-02 -9.858839e-03 -2.382650e-03 -1.058282e-02 -9.629359e-05 1.761860e-02 -1.118299e-03 -1.133852e-02 -1.017725e-03 -1.069459e-02 1.312608e-03 9.600826e-03 -8.753178e-03 -1.192790e-02 -3.757777e-04 -7.983381e-03 1.161583e-02 1.186485e-04 -7.912596e-03 -1.212403e-02 -1.045491e-04 1.251430e-02 1.321689e-02 -6.198032e-03 -4.843255e-03 -1.217106e-02 5.595102e-06 1.845036e-02 3.742614e-04 -9.528248e-03 -2.451641e-03 -1.214693e-02 6.280957e-05 1.326937e-02 2.942092e-03 -1.105470e-02 -1.103365e-03 -1.207952e-02 8.599600e-05 2.433535e-02 6.751265e-03 -1.168516e-02 -4.559954e-04 -1.200897e-02 8.910409e-05 2.678498e-02 5.853678e-03 -1.191554e-02 -1.776815e-04 -1.193531e-02 9.220662e-05 3.605849e-02 2.107487e-03 -1.198889e-02 1.354522e-03 -1.185851e-02 9.532594e-05 3.102603e-02 -1.001211e-02 -9.154710e-03 1.173190e-02 -1.177856e-02 9.848441e-05 1.605477e-02 -1.406005e-02 1.152075e-02 1.481501e-02 -1.169541e-02 1.017090e-04 2.909822e-03 -1.061096e-02 2.047767e-02 1.089657e-02 -1.160896e-02 1.518935e-03 -5.177840e-03 -6.111736e-03 3.329742e-02 4.799375e-03 -8.691307e-03 1.183083e-02 -9.333306e-03 -3.031129e-03 3.003301e-02 -8.652500e-03 1.202060e-02 1.485885e-02 -1.126436e-02 -1.401656e-03 1.595586e-02 -1.334824e-02 2.100617e-02 1.091971e-02 -1.216303e-02 -6.563403e-04 3.329562e-03 -1.017169e-02 3.384495e-02 4.795504e-03 -1.260445e-02 -3.371674e-04 -4.367943e-03 -4.360182e-03 3.058948e-02 -8.660434e-03 -1.286525e-02 -2.137277e-04 -5.355037e-03 8.990126e-03 1.651452e-02 -1.193105e-02 -1.306009e-02 -1.591848e-04 1.365015e-02 1.224870e-02 6.709742e-03 1.560945e-03 -1.321202e-02 -1.354273e-04 1.914024e-02 -1.237900e-03 1.961315e-02 7.567585e-03 -1.335951e-02 1.282967e-03 1.116069e-02 -8.648633e-03 2.182905e-02 -3.652253e-03 -1.067482e-02 1.159420e-02 1.846095e-03 -7.722566e-03 1.229405e-02 -9.775880e-03 9.803143e-03 1.319686e-02 -4.261736e-03 -4.605979e-03 2.257235e-03 -8.232971e-03 1.571586e-02 -1.060309e-03 -7.330321e-03 -2.182013e-03 -4.197705e-03 -4.854600e-03 7.686040e-03 -7.379797e-03 -8.583769e-03 -8.225008e-04 -7.481482e-03 -2.333855e-03 9.508785e-04 3.730257e-03 -8.930694e-03 -1.648622e-04 -8.896814e-03 -9.398884e-04 1.513369e-02 8.396018e-03 -8.868136e-03 1.227236e-04 -9.393470e-03 -2.845718e-04 1.774579e-02 -3.460232e-03 -8.640021e-03 2.497272e-04 -9.498454e-03 -8.525584e-06 8.218998e-03 -9.847865e-03 -8.323935e-03 3.242719e-04 -9.443078e-03 1.131936e-04 -1.954743e-03 -8.408776e-03 -7.947395e-03 3.652411e-04 -9.304592e-03 1.714332e-04 -8.614636e-03 -5.082897e-03 -7.550162e-03 3.865422e-04 -9.132657e-03 1.908393e-04 -1.214401e-02 -2.580862e-03 -7.131855e-03 4.082540e-04 -8.955261e-03 1.935190e-04 -1.380374e-02 -1.645126e-03 -6.692078e-03 4.194510e-04 pymvpa-0.4.8/mvpa/data/mask.nii.gz000066400000000000000000000003051174541445200167730ustar00rootroot00000000000000‹@"Med_.nii‹ad 103h0ˆ00Â!*`aÓ ûÓÒÜ  Xˆìxƒ3„.†Ê®Øls ö1Ñ3 Æ]”„? n:s¦Ð‰¡ïHè0u`q0ù $ VÀ$Ö€nvž¶!ÕÝK @lqEšIÈ1Ž)B¾iØ µÍ#ÎDâL"ÞDêšGši„M$Ý<Üf’g.iØÌ|æ1ó¨aÖH4Trð“ÉÕ pymvpa-0.4.8/mvpa/data/sample_design.fsf000066400000000000000000000531631174541445200202440ustar00rootroot00000000000000# Automatically generated by mk_fsf.py # FEAT version number set fmri(version) 5.98 # Are we in MELODIC? set fmri(inmelodic) 0 # Analysis level # 1 : First-level analysis # 2 : Higher-level analysis set fmri(level) 1 # Which stages to run # 0 : No first-level analysis (registration and/or group stats only) # 7 : Full first-level analysis # 1 : Pre-Stats # 3 : Pre-Stats + Stats # 2 : Stats # 6 : Stats + Post-stats # 4 : Post-stats set fmri(analysis) 7 # Use relative filenames set fmri(relative_yn) 0 # Balloon help set fmri(help_yn) 0 # Run Featwatcher set fmri(featwatcher_yn) 0 # Cleanup first-level standard-space images set fmri(sscleanup_yn) 0 # Perfusion tag/control order set fmri(tagfirst) 1 # Number of first-level analyses set fmri(multiple) 1 # Higher-level input type # 1 : Inputs are lower-level FEAT directories # 2 : Inputs are cope images from FEAT directories set fmri(inputtype) 1 # Carry out pre-stats processing? set fmri(filtering_yn) 1 # Brain/background threshold, % set fmri(brain_thresh) 10 # Critical z for design efficiency calculation set fmri(critical_z) 5.3 # Noise level set fmri(noise) 0.66 # Noise AR(1) set fmri(noisear) 0.34 # Post-stats-only directory copying # 0 : Overwrite original post-stats results # 1 : Copy original FEAT directory for new Contrasts, Thresholding, Rendering set fmri(newdir_yn) 0 # Motion correction # 0 : None # 1 : MCFLIRT set fmri(mc) 0 # Spin-history (currently obsolete) set fmri(sh_yn) 0 # B0 fieldmap unwarping? set fmri(regunwarp_yn) 0 # EPI dwell time (ms) set fmri(dwell) 0.7 # EPI TE (ms) set fmri(te) 35 # % Signal loss threshold set fmri(signallossthresh) 10 # Unwarp direction set fmri(unwarp_dir) y- # Slice timing correction # 0 : None # 1 : Regular up (0, 1, 2, 3, ...) # 2 : Regular down # 3 : Use slice order file # 4 : Use slice timings file # 5 : Interleaved (0, 2, 4 ... 1, 3, 5 ... ) set fmri(st) 0 # Slice timings file set fmri(st_file) "" # BET brain extraction set fmri(bet_yn) 0 # Intensity normalization set fmri(norm_yn) 0 # Perfusion subtraction set fmri(perfsub_yn) 0 # Highpass temporal filtering set fmri(temphp_yn) 1 # Lowpass temporal filtering set fmri(templp_yn) 0 # MELODIC ICA data exploration set fmri(melodic_yn) 0 # Carry out main stats? set fmri(stats_yn) 1 # Carry out prewhitening? set fmri(prewhiten_yn) 1 # Add motion parameters to model # 0 : No # 1 : Yes set fmri(motionevs) 0 # Robust outlier detection in FLAME? set fmri(robust_yn) 0 # Higher-level modelling # 3 : Fixed effects # 0 : Mixed Effects: Simple OLS # 2 : Mixed Effects: FLAME 1 # 1 : Mixed Effects: FLAME 1+2 set fmri(mixed_yn) 2 # Number of EVs set fmri(evs_vox) 0 # Number of contrasts # Number of F-tests set fmri(nftests_orig) 0 set fmri(nftests_real) 0 # Add constant column to design matrix? (obsolete) set fmri(constcol) 0 # Carry out post-stats steps? set fmri(poststats_yn) 1 # Pre-threshold masking? set fmri(threshmask) "" # Thresholding # 0 : None # 1 : Uncorrected # 2 : Voxel # 3 : Cluster set fmri(thresh) 0 # P threshold set fmri(prob_thresh) 0.05 # Z threshold set fmri(z_thresh) 2.3 # Z min/max for colour rendering # 0 : Use actual Z min/max # 1 : Use preset Z min/max set fmri(zdisplay) 0 # Z min in colour rendering set fmri(zmin) 2 # Z max in colour rendering set fmri(zmax) 8 # Colour rendering type # 0 : Solid blobs # 1 : Transparent blobs set fmri(rendertype) 1 # Background image for higher-level stats overlays # 1 : Mean highres # 2 : First highres # 3 : Mean functional # 4 : First functional # 5 : Standard space template set fmri(bgimage) 1 # Create time series plots set fmri(tsplot_yn) 0 # Registration? set fmri(reg_yn) 1 # Registration to initial structural #set fmri(reginitial_highres_yn) 1 # Search space for registration to initial structural # 0 : No search # 90 : Normal search # 180 : Full search set fmri(reginitial_highres_search) 90 # Degrees of Freedom for registration to initial structural set fmri(reginitial_highres_dof) 7 # Registration to main structural set fmri(reghighres_yn) 1 # Search space for registration to main structural # 0 : No search # 90 : Normal search # 180 : Full search set fmri(reghighres_search) 90 # Degrees of Freedom for registration to main structural set fmri(reghighres_dof) 6 # Registration to standard image? set fmri(regstandard_yn) 1 # Standard image set fmri(regstandard) "/corral/utexas/poldracklab/software/fsl/data/standard/MNI152_T1_2mm_brain" # Search space for registration to standard space # 0 : No search # 90 : Normal search # 180 : Full search set fmri(regstandard_search) 90 # Degrees of Freedom for registration to standard space set fmri(regstandard_dof) 12 # Do nonlinear registration from structural to standard space? # Control nonlinear warp field resolution set fmri(regstandard_nonlinear_warpres) 10 # High pass filter cutoff set fmri(paradigm_hp) 100 # Number of lower-level copes feeding into higher-level analysis set fmri(ncopeinputs) 0 # Add confound EVs text file set fmri(confoundevs) 0 # Contrast & F-tests mode # real : control real EVs # orig : control original EVs set fmri(con_mode_old) orig set fmri(con_mode) orig # Contrast masking - use >0 instead of thresholding? set fmri(conmask_zerothresh_yn) 0 # Do contrast masking at all? set fmri(conmask1_1) 0 ########################################################## # Now options that don't appear in the GUI # Alternative example_func image (not derived from input 4D dataset) set fmri(alternative_example_func) "" # Alternative (to BETting) mask image set fmri(alternative_mask) "" # Initial structural space registration initialisation transform set fmri(init_initial_highres) "" # Structural space registration initialisation transform set fmri(init_highres) "" # Standard space registration initialisation transform set fmri(init_standard) "" # For full FEAT analysis: overwrite existing .feat output dir? set fmri(overwrite_yn) 0 ### AUTOMATICALLY GENERATED PART### set fmri(regstandard_nonlinear_yn) 1 set fmri(ndelete) 0 set fmri(outputdir) "/openfmri/staged//ds018/sub001/model/task002_run001.feat" set feat_files(1) "/openfmri/staged//ds018/sub001/BOLD/task002_run001/bold_mcf_brain" set fmri(reginitial_highres_yn) 0 set highres_files(1) "/openfmri/staged//ds018/sub001/anatomy/highres001_brain" set fmri(npts) 300 set fmri(tr) 2.00 set fmri(evs_orig) 13 set fmri(evs_real) 26 set fmri(smooth) 6 set fmri(ncon_orig) 8 set fmri(ncon_real) 8 set fmri(evtitle1) "task" set fmri(shape1) 3 set fmri(custom1) "/openfmri/staged//ds018/sub001/behav/task002_run001/cond001.txt" set fmri(convolve1) 3 set fmri(convolve_phase1) 0 set fmri(tempfilt_yn1) 1 set fmri(deriv_yn1) 1 set fmri(ortho1.0) 0 set fmri(ortho1.1) 0 set fmri(ortho1.2) 0 set fmri(ortho1.3) 0 set fmri(ortho1.4) 0 set fmri(ortho1.5) 0 set fmri(ortho1.6) 0 set fmri(ortho1.7) 0 set fmri(ortho1.8) 0 set fmri(ortho1.9) 0 set fmri(ortho1.10) 0 set fmri(ortho1.11) 0 set fmri(ortho1.12) 0 set fmri(ortho1.13) 0 set fmri(conpic_real.1) 1 set fmri(conname_real.1) "task" set fmri(conname_orig.1) "task" set fmri(con_real1.1) 1 set fmri(con_real1.2) 0 set fmri(con_real1.3) 0 set fmri(con_real1.4) 0 set fmri(con_real1.5) 0 set fmri(con_real1.6) 0 set fmri(con_real1.7) 0 set fmri(con_real1.8) 0 set fmri(con_real1.9) 0 set fmri(con_real1.10) 0 set fmri(con_real1.11) 0 set fmri(con_real1.12) 0 set fmri(con_real1.13) 0 set fmri(con_real1.14) 0 set fmri(con_real1.15) 0 set fmri(con_real1.16) 0 set fmri(con_real1.17) 0 set fmri(con_real1.18) 0 set fmri(con_real1.19) 0 set fmri(con_real1.20) 0 set fmri(con_real1.21) 0 set fmri(con_real1.22) 0 set fmri(con_real1.23) 0 set fmri(con_real1.24) 0 set fmri(con_real1.25) 0 set fmri(con_real1.26) 0 set fmri(con_orig1.1) 1 set fmri(con_orig1.2) 0 set fmri(con_orig1.3) 0 set fmri(con_orig1.4) 0 set fmri(con_orig1.5) 0 set fmri(con_orig1.6) 0 set fmri(con_orig1.7) 0 set fmri(con_orig1.8) 0 set fmri(con_orig1.9) 0 set fmri(con_orig1.10) 0 set fmri(con_orig1.11) 0 set fmri(con_orig1.12) 0 set fmri(con_orig1.13) 0 set fmri(evtitle2) "gains parametric" set fmri(shape2) 3 set fmri(custom2) "/openfmri/staged//ds018/sub001/behav/task002_run001/cond002.txt" set fmri(convolve2) 3 set fmri(convolve_phase2) 0 set fmri(tempfilt_yn2) 1 set fmri(deriv_yn2) 1 set fmri(ortho2.0) 0 set fmri(ortho2.1) 0 set fmri(ortho2.2) 0 set fmri(ortho2.3) 0 set fmri(ortho2.4) 0 set fmri(ortho2.5) 0 set fmri(ortho2.6) 0 set fmri(ortho2.7) 0 set fmri(ortho2.8) 0 set fmri(ortho2.9) 0 set fmri(ortho2.10) 0 set fmri(ortho2.11) 0 set fmri(ortho2.12) 0 set fmri(ortho2.13) 0 set fmri(conpic_real.2) 1 set fmri(conname_real.2) "gains parametric" set fmri(conname_orig.2) "gains parametric" set fmri(con_real2.1) 0 set fmri(con_real2.2) 0 set fmri(con_real2.3) 1 set fmri(con_real2.4) 0 set fmri(con_real2.5) 0 set fmri(con_real2.6) 0 set fmri(con_real2.7) 0 set fmri(con_real2.8) 0 set fmri(con_real2.9) 0 set fmri(con_real2.10) 0 set fmri(con_real2.11) 0 set fmri(con_real2.12) 0 set fmri(con_real2.13) 0 set fmri(con_real2.14) 0 set fmri(con_real2.15) 0 set fmri(con_real2.16) 0 set fmri(con_real2.17) 0 set fmri(con_real2.18) 0 set fmri(con_real2.19) 0 set fmri(con_real2.20) 0 set fmri(con_real2.21) 0 set fmri(con_real2.22) 0 set fmri(con_real2.23) 0 set fmri(con_real2.24) 0 set fmri(con_real2.25) 0 set fmri(con_real2.26) 0 set fmri(con_orig2.1) 0 set fmri(con_orig2.2) 1 set fmri(con_orig2.3) 0 set fmri(con_orig2.4) 0 set fmri(con_orig2.5) 0 set fmri(con_orig2.6) 0 set fmri(con_orig2.7) 0 set fmri(con_orig2.8) 0 set fmri(con_orig2.9) 0 set fmri(con_orig2.10) 0 set fmri(con_orig2.11) 0 set fmri(con_orig2.12) 0 set fmri(con_orig2.13) 0 set fmri(evtitle3) "loss parametric" set fmri(shape3) 3 set fmri(custom3) "/openfmri/staged//ds018/sub001/behav/task002_run001/cond003.txt" set fmri(convolve3) 3 set fmri(convolve_phase3) 0 set fmri(tempfilt_yn3) 1 set fmri(deriv_yn3) 1 set fmri(ortho3.0) 0 set fmri(ortho3.1) 0 set fmri(ortho3.2) 0 set fmri(ortho3.3) 0 set fmri(ortho3.4) 0 set fmri(ortho3.5) 0 set fmri(ortho3.6) 0 set fmri(ortho3.7) 0 set fmri(ortho3.8) 0 set fmri(ortho3.9) 0 set fmri(ortho3.10) 0 set fmri(ortho3.11) 0 set fmri(ortho3.12) 0 set fmri(ortho3.13) 0 set fmri(conpic_real.3) 1 set fmri(conname_real.3) "loss parametric" set fmri(conname_orig.3) "loss parametric" set fmri(con_real3.1) 0 set fmri(con_real3.2) 0 set fmri(con_real3.3) 0 set fmri(con_real3.4) 0 set fmri(con_real3.5) 1 set fmri(con_real3.6) 0 set fmri(con_real3.7) 0 set fmri(con_real3.8) 0 set fmri(con_real3.9) 0 set fmri(con_real3.10) 0 set fmri(con_real3.11) 0 set fmri(con_real3.12) 0 set fmri(con_real3.13) 0 set fmri(con_real3.14) 0 set fmri(con_real3.15) 0 set fmri(con_real3.16) 0 set fmri(con_real3.17) 0 set fmri(con_real3.18) 0 set fmri(con_real3.19) 0 set fmri(con_real3.20) 0 set fmri(con_real3.21) 0 set fmri(con_real3.22) 0 set fmri(con_real3.23) 0 set fmri(con_real3.24) 0 set fmri(con_real3.25) 0 set fmri(con_real3.26) 0 set fmri(con_orig3.1) 0 set fmri(con_orig3.2) 0 set fmri(con_orig3.3) 1 set fmri(con_orig3.4) 0 set fmri(con_orig3.5) 0 set fmri(con_orig3.6) 0 set fmri(con_orig3.7) 0 set fmri(con_orig3.8) 0 set fmri(con_orig3.9) 0 set fmri(con_orig3.10) 0 set fmri(con_orig3.11) 0 set fmri(con_orig3.12) 0 set fmri(con_orig3.13) 0 set fmri(evtitle4) "outcome gain trials" set fmri(shape4) 3 set fmri(custom4) "/openfmri/staged//ds018/sub001/behav/task002_run001/cond004.txt" set fmri(convolve4) 3 set fmri(convolve_phase4) 0 set fmri(tempfilt_yn4) 1 set fmri(deriv_yn4) 1 set fmri(ortho4.0) 0 set fmri(ortho4.1) 0 set fmri(ortho4.2) 0 set fmri(ortho4.3) 0 set fmri(ortho4.4) 0 set fmri(ortho4.5) 0 set fmri(ortho4.6) 0 set fmri(ortho4.7) 0 set fmri(ortho4.8) 0 set fmri(ortho4.9) 0 set fmri(ortho4.10) 0 set fmri(ortho4.11) 0 set fmri(ortho4.12) 0 set fmri(ortho4.13) 0 set fmri(conpic_real.4) 1 set fmri(conname_real.4) "outcome gain trials" set fmri(conname_orig.4) "outcome gain trials" set fmri(con_real4.1) 0 set fmri(con_real4.2) 0 set fmri(con_real4.3) 0 set fmri(con_real4.4) 0 set fmri(con_real4.5) 0 set fmri(con_real4.6) 0 set fmri(con_real4.7) 1 set fmri(con_real4.8) 0 set fmri(con_real4.9) 0 set fmri(con_real4.10) 0 set fmri(con_real4.11) 0 set fmri(con_real4.12) 0 set fmri(con_real4.13) 0 set fmri(con_real4.14) 0 set fmri(con_real4.15) 0 set fmri(con_real4.16) 0 set fmri(con_real4.17) 0 set fmri(con_real4.18) 0 set fmri(con_real4.19) 0 set fmri(con_real4.20) 0 set fmri(con_real4.21) 0 set fmri(con_real4.22) 0 set fmri(con_real4.23) 0 set fmri(con_real4.24) 0 set fmri(con_real4.25) 0 set fmri(con_real4.26) 0 set fmri(con_orig4.1) 0 set fmri(con_orig4.2) 0 set fmri(con_orig4.3) 0 set fmri(con_orig4.4) 1 set fmri(con_orig4.5) 0 set fmri(con_orig4.6) 0 set fmri(con_orig4.7) 0 set fmri(con_orig4.8) 0 set fmri(con_orig4.9) 0 set fmri(con_orig4.10) 0 set fmri(con_orig4.11) 0 set fmri(con_orig4.12) 0 set fmri(con_orig4.13) 0 set fmri(evtitle5) "outcome loss trials" set fmri(shape5) 3 set fmri(custom5) "/openfmri/staged//ds018/sub001/behav/task002_run001/cond005.txt" set fmri(convolve5) 3 set fmri(convolve_phase5) 0 set fmri(tempfilt_yn5) 1 set fmri(deriv_yn5) 1 set fmri(ortho5.0) 0 set fmri(ortho5.1) 0 set fmri(ortho5.2) 0 set fmri(ortho5.3) 0 set fmri(ortho5.4) 0 set fmri(ortho5.5) 0 set fmri(ortho5.6) 0 set fmri(ortho5.7) 0 set fmri(ortho5.8) 0 set fmri(ortho5.9) 0 set fmri(ortho5.10) 0 set fmri(ortho5.11) 0 set fmri(ortho5.12) 0 set fmri(ortho5.13) 0 set fmri(conpic_real.5) 1 set fmri(conname_real.5) "outcome loss trials" set fmri(conname_orig.5) "outcome loss trials" set fmri(con_real5.1) 0 set fmri(con_real5.2) 0 set fmri(con_real5.3) 0 set fmri(con_real5.4) 0 set fmri(con_real5.5) 0 set fmri(con_real5.6) 0 set fmri(con_real5.7) 0 set fmri(con_real5.8) 0 set fmri(con_real5.9) 1 set fmri(con_real5.10) 0 set fmri(con_real5.11) 0 set fmri(con_real5.12) 0 set fmri(con_real5.13) 0 set fmri(con_real5.14) 0 set fmri(con_real5.15) 0 set fmri(con_real5.16) 0 set fmri(con_real5.17) 0 set fmri(con_real5.18) 0 set fmri(con_real5.19) 0 set fmri(con_real5.20) 0 set fmri(con_real5.21) 0 set fmri(con_real5.22) 0 set fmri(con_real5.23) 0 set fmri(con_real5.24) 0 set fmri(con_real5.25) 0 set fmri(con_real5.26) 0 set fmri(con_orig5.1) 0 set fmri(con_orig5.2) 0 set fmri(con_orig5.3) 0 set fmri(con_orig5.4) 0 set fmri(con_orig5.5) 1 set fmri(con_orig5.6) 0 set fmri(con_orig5.7) 0 set fmri(con_orig5.8) 0 set fmri(con_orig5.9) 0 set fmri(con_orig5.10) 0 set fmri(con_orig5.11) 0 set fmri(con_orig5.12) 0 set fmri(con_orig5.13) 0 set fmri(evtitle6) "outcome gain parametric" set fmri(shape6) 3 set fmri(custom6) "/openfmri/staged//ds018/sub001/behav/task002_run001/cond006.txt" set fmri(convolve6) 3 set fmri(convolve_phase6) 0 set fmri(tempfilt_yn6) 1 set fmri(deriv_yn6) 1 set fmri(ortho6.0) 0 set fmri(ortho6.1) 0 set fmri(ortho6.2) 0 set fmri(ortho6.3) 0 set fmri(ortho6.4) 0 set fmri(ortho6.5) 0 set fmri(ortho6.6) 0 set fmri(ortho6.7) 0 set fmri(ortho6.8) 0 set fmri(ortho6.9) 0 set fmri(ortho6.10) 0 set fmri(ortho6.11) 0 set fmri(ortho6.12) 0 set fmri(ortho6.13) 0 set fmri(conpic_real.6) 1 set fmri(conname_real.6) "outcome gain parametric" set fmri(conname_orig.6) "outcome gain parametric" set fmri(con_real6.1) 0 set fmri(con_real6.2) 0 set fmri(con_real6.3) 0 set fmri(con_real6.4) 0 set fmri(con_real6.5) 0 set fmri(con_real6.6) 0 set fmri(con_real6.7) 0 set fmri(con_real6.8) 0 set fmri(con_real6.9) 0 set fmri(con_real6.10) 0 set fmri(con_real6.11) 1 set fmri(con_real6.12) 0 set fmri(con_real6.13) 0 set fmri(con_real6.14) 0 set fmri(con_real6.15) 0 set fmri(con_real6.16) 0 set fmri(con_real6.17) 0 set fmri(con_real6.18) 0 set fmri(con_real6.19) 0 set fmri(con_real6.20) 0 set fmri(con_real6.21) 0 set fmri(con_real6.22) 0 set fmri(con_real6.23) 0 set fmri(con_real6.24) 0 set fmri(con_real6.25) 0 set fmri(con_real6.26) 0 set fmri(con_orig6.1) 0 set fmri(con_orig6.2) 0 set fmri(con_orig6.3) 0 set fmri(con_orig6.4) 0 set fmri(con_orig6.5) 0 set fmri(con_orig6.6) 1 set fmri(con_orig6.7) 0 set fmri(con_orig6.8) 0 set fmri(con_orig6.9) 0 set fmri(con_orig6.10) 0 set fmri(con_orig6.11) 0 set fmri(con_orig6.12) 0 set fmri(con_orig6.13) 0 set fmri(evtitle7) "outcome loss parametric" set fmri(shape7) 3 set fmri(custom7) "/openfmri/staged//ds018/sub001/behav/task002_run001/cond007.txt" set fmri(convolve7) 3 set fmri(convolve_phase7) 0 set fmri(tempfilt_yn7) 1 set fmri(deriv_yn7) 1 set fmri(ortho7.0) 0 set fmri(ortho7.1) 0 set fmri(ortho7.2) 0 set fmri(ortho7.3) 0 set fmri(ortho7.4) 0 set fmri(ortho7.5) 0 set fmri(ortho7.6) 0 set fmri(ortho7.7) 0 set fmri(ortho7.8) 0 set fmri(ortho7.9) 0 set fmri(ortho7.10) 0 set fmri(ortho7.11) 0 set fmri(ortho7.12) 0 set fmri(ortho7.13) 0 set fmri(conpic_real.7) 1 set fmri(conname_real.7) "outcome loss parametric" set fmri(conname_orig.7) "outcome loss parametric" set fmri(con_real7.1) 0 set fmri(con_real7.2) 0 set fmri(con_real7.3) 0 set fmri(con_real7.4) 0 set fmri(con_real7.5) 0 set fmri(con_real7.6) 0 set fmri(con_real7.7) 0 set fmri(con_real7.8) 0 set fmri(con_real7.9) 0 set fmri(con_real7.10) 0 set fmri(con_real7.11) 0 set fmri(con_real7.12) 0 set fmri(con_real7.13) 1 set fmri(con_real7.14) 0 set fmri(con_real7.15) 0 set fmri(con_real7.16) 0 set fmri(con_real7.17) 0 set fmri(con_real7.18) 0 set fmri(con_real7.19) 0 set fmri(con_real7.20) 0 set fmri(con_real7.21) 0 set fmri(con_real7.22) 0 set fmri(con_real7.23) 0 set fmri(con_real7.24) 0 set fmri(con_real7.25) 0 set fmri(con_real7.26) 0 set fmri(con_orig7.1) 0 set fmri(con_orig7.2) 0 set fmri(con_orig7.3) 0 set fmri(con_orig7.4) 0 set fmri(con_orig7.5) 0 set fmri(con_orig7.6) 0 set fmri(con_orig7.7) 1 set fmri(con_orig7.8) 0 set fmri(con_orig7.9) 0 set fmri(con_orig7.10) 0 set fmri(con_orig7.11) 0 set fmri(con_orig7.12) 0 set fmri(con_orig7.13) 0 set fmri(conpic_real.8) 1 set fmri(conname_real.8) "all" set fmri(conname_orig.8) "all" set fmri(con_real8.1) 1 set fmri(con_real8.2) 0 set fmri(con_real8.3) 1 set fmri(con_real8.4) 0 set fmri(con_real8.5) 1 set fmri(con_real8.6) 0 set fmri(con_real8.7) 1 set fmri(con_real8.8) 0 set fmri(con_real8.9) 1 set fmri(con_real8.10) 0 set fmri(con_real8.11) 1 set fmri(con_real8.12) 0 set fmri(con_real8.13) 1 set fmri(con_real8.14) 0 set fmri(con_real8.15) 0 set fmri(con_real8.16) 0 set fmri(con_real8.17) 0 set fmri(con_real8.18) 0 set fmri(con_real8.19) 0 set fmri(con_real8.20) 0 set fmri(con_real8.21) 0 set fmri(con_real8.22) 0 set fmri(con_real8.23) 0 set fmri(con_real8.24) 0 set fmri(con_real8.25) 0 set fmri(con_real8.26) 0 set fmri(con_orig8.1) 1 set fmri(con_orig8.2) 1 set fmri(con_orig8.3) 1 set fmri(con_orig8.4) 1 set fmri(con_orig8.5) 1 set fmri(con_orig8.6) 1 set fmri(con_orig8.7) 1 set fmri(con_orig8.8) 0 set fmri(con_orig8.9) 0 set fmri(con_orig8.10) 0 set fmri(con_orig8.11) 0 set fmri(con_orig8.12) 0 set fmri(con_orig8.13) 0 set fmri(evtitle8) "motpar1" set fmri(shape8) 2 set fmri(convolve8) 0 set fmri(convolve_phase8) 0 set fmri(tempfilt_yn8) 1 set fmri(deriv_yn8) 1 set fmri(custom8) "/openfmri/staged//ds018/sub001/BOLD/task002_run001/bold_mcf.par.1" set fmri(ortho8.0) 0 set fmri(ortho8.1) 0 set fmri(ortho8.2) 0 set fmri(ortho8.3) 0 set fmri(ortho8.4) 0 set fmri(ortho8.5) 0 set fmri(ortho8.6) 0 set fmri(ortho8.7) 0 set fmri(ortho8.8) 0 set fmri(ortho8.9) 0 set fmri(ortho8.10) 0 set fmri(ortho8.11) 0 set fmri(ortho8.12) 0 set fmri(ortho8.13) 0 set fmri(evtitle9) "motpar2" set fmri(shape9) 2 set fmri(convolve9) 0 set fmri(convolve_phase9) 0 set fmri(tempfilt_yn9) 1 set fmri(deriv_yn9) 1 set fmri(custom9) "/openfmri/staged//ds018/sub001/BOLD/task002_run001/bold_mcf.par.2" set fmri(ortho9.0) 0 set fmri(ortho9.1) 0 set fmri(ortho9.2) 0 set fmri(ortho9.3) 0 set fmri(ortho9.4) 0 set fmri(ortho9.5) 0 set fmri(ortho9.6) 0 set fmri(ortho9.7) 0 set fmri(ortho9.8) 0 set fmri(ortho9.9) 0 set fmri(ortho9.10) 0 set fmri(ortho9.11) 0 set fmri(ortho9.12) 0 set fmri(ortho9.13) 0 set fmri(evtitle10) "motpar3" set fmri(shape10) 2 set fmri(convolve10) 0 set fmri(convolve_phase10) 0 set fmri(tempfilt_yn10) 1 set fmri(deriv_yn10) 1 set fmri(custom10) "/openfmri/staged//ds018/sub001/BOLD/task002_run001/bold_mcf.par.3" set fmri(ortho10.0) 0 set fmri(ortho10.1) 0 set fmri(ortho10.2) 0 set fmri(ortho10.3) 0 set fmri(ortho10.4) 0 set fmri(ortho10.5) 0 set fmri(ortho10.6) 0 set fmri(ortho10.7) 0 set fmri(ortho10.8) 0 set fmri(ortho10.9) 0 set fmri(ortho10.10) 0 set fmri(ortho10.11) 0 set fmri(ortho10.12) 0 set fmri(ortho10.13) 0 set fmri(evtitle11) "motpar4" set fmri(shape11) 2 set fmri(convolve11) 0 set fmri(convolve_phase11) 0 set fmri(tempfilt_yn11) 1 set fmri(deriv_yn11) 1 set fmri(custom11) "/openfmri/staged//ds018/sub001/BOLD/task002_run001/bold_mcf.par.4" set fmri(ortho11.0) 0 set fmri(ortho11.1) 0 set fmri(ortho11.2) 0 set fmri(ortho11.3) 0 set fmri(ortho11.4) 0 set fmri(ortho11.5) 0 set fmri(ortho11.6) 0 set fmri(ortho11.7) 0 set fmri(ortho11.8) 0 set fmri(ortho11.9) 0 set fmri(ortho11.10) 0 set fmri(ortho11.11) 0 set fmri(ortho11.12) 0 set fmri(ortho11.13) 0 set fmri(evtitle12) "motpar5" set fmri(shape12) 2 set fmri(convolve12) 0 set fmri(convolve_phase12) 0 set fmri(tempfilt_yn12) 1 set fmri(deriv_yn12) 1 set fmri(custom12) "/openfmri/staged//ds018/sub001/BOLD/task002_run001/bold_mcf.par.5" set fmri(ortho12.0) 0 set fmri(ortho12.1) 0 set fmri(ortho12.2) 0 set fmri(ortho12.3) 0 set fmri(ortho12.4) 0 set fmri(ortho12.5) 0 set fmri(ortho12.6) 0 set fmri(ortho12.7) 0 set fmri(ortho12.8) 0 set fmri(ortho12.9) 0 set fmri(ortho12.10) 0 set fmri(ortho12.11) 0 set fmri(ortho12.12) 0 set fmri(ortho12.13) 0 set fmri(evtitle13) "motpar6" set fmri(shape13) 2 set fmri(convolve13) 0 set fmri(convolve_phase13) 0 set fmri(tempfilt_yn13) 1 set fmri(deriv_yn13) 1 set fmri(custom13) "/openfmri/staged//ds018/sub001/BOLD/task002_run001/bold_mcf.par.6" set fmri(ortho13.0) 0 set fmri(ortho13.1) 0 set fmri(ortho13.2) 0 set fmri(ortho13.3) 0 set fmri(ortho13.4) 0 set fmri(ortho13.5) 0 set fmri(ortho13.6) 0 set fmri(ortho13.7) 0 set fmri(ortho13.8) 0 set fmri(ortho13.9) 0 set fmri(ortho13.10) 0 set fmri(ortho13.11) 0 set fmri(ortho13.12) 0 set fmri(ortho13.13) 0 pymvpa-0.4.8/mvpa/data/smpl_attr.txt000066400000000000000000000000571174541445200174720ustar00rootroot00000000000000# to be ignored 2 4 0.4 1 3 1 # also ignored pymvpa-0.4.8/mvpa/data/tueb_meg.dat.gz000066400000000000000000001405561174541445200176350ustar00rootroot00000000000000‹S1¬Hvp02cf-3ffasu.datíýÍŽ.»²5 µ‹«àj)ýoÓ!:@n¤Õ@ !qÿŒa;ÂéˆÜgÓA¢QŸ¾w¯Ss>ó©L‡ãĈÿÓÿåÿñÿü¿ÿû¿ü?þ¿ÿÿ×ÿ_ÿ«Ÿç'üÄŸô“ÊOýi?ýgüüaø ñ'¤ŸBù õ'´ŸÐÂø‰ÏOÄ¿‰?1ýÄüËO¬?±ýÄþÇOz~RøIøÊô“òO*?©þ¤ö“úO?ùùÉá'ÇŸŒß˜rùÉõ'·ŸÜòø)ÏO ?%þ”ôSð@å§ÔŸÒ~Jÿ)ã§>?5üÔøSÓOÍ?Ï[jû©ý§ŽŸöü´ðÓâOK?-ÿ´òÓð:í§õŸ6~úóÓÃO?=ýôüÓËO¯?oÛúøÏÏ?#þŒô3òÏ(?£þŒö3p< ǃóxp NäÁ‘<8“‡òàT˃ÏÍcÃçxp<9ÏŽ‡ÇÓãñáü0Dž/>‡3 8Ä€S 8Æ€s 8È€“ 8Ê€³ ‰‚Àçpœçp 'p¤gp¨§p¬!SbøN6àhÎ6àpN7àxÎ7à€N8ŠŸÃ!œrÀ1œsÀAœtÀQœuÀa‡Ê;€Ïá¼<àÄŽ<àÌ=àÔŽ=àÜCãeÁçpôgpø§püç € ˆ tÞ*|RC€ ‰QÈ"@Òƒ×÷òˆG„<"ä!yDÈ#BòˆŸƒ<"ä!yDÈ#Bòˆ¼Ï¼ÐóFãs¼Ó¼Ô¼Õ¼Ö¼×¼ØG„<"ä¯>>yDÈ#BòˆG„<"ä!yÄLÁç yDÈ#BòˆG„<"ä!X¨Løä!yDÈ#BòˆG„<"ä+µŸƒ<"ä!yDÈ#BòˆG„ydÈ#CòÈG†<2ä‘! yäA§F¯·yÈ£@ò(G< äQ y”@÷‡ÏAò(G< äQ yÈ£@%ÒOâsG< äQ yÈ£@ò(GIt¨øäQ yÈ£@ò(G< äQ2=/>yÈ£@ò(ôÎtÏôÏtÐôÐÓEãstÒôÒtÓG< äQ yÈ£Túr|ò(G< äQ yÈ£@ò(NŸƒ< äQ yÈ£@ò(GyTÈ£Bò¨G…<*äQ! yÔÈÈŸƒ<*äQ! yTÈ£Bò¨G…y4È£A òhGƒ<äÑ y´ÈXŸƒ<äÑ y4È£A òhGƒytÈã/“øË$þ2‰¿Lâ/“øË$þ2‰¿Lâ/“øË$þ2‰¿Lâ/“øË$þ2‰¿Lâ/“øË$þ2‰¿Lâ/“øË$þ2‰¿Lâ/“øË$þ2‰¿Lâ/“øË$þ2‰¿Lâ/“øË$þ2‰¿Lâÿ?3‰ÿÅÿùÿöÿø÷õóûüù?×òú/Þgþ·ì?ÇùÎÿîŸõ±Þ×Çz[ÞËúØþ–÷Ÿõ±¶ÿ9Ocþwÿ'¯QÈó¿a}Œ—nþwý1u`þ7ïŸÓþXØ›ÿ[öï.û_•ýe¿ü¸ß ï7Èû ò~ƒýHy¿AÞoö¤ýèûKÓþxÚoöÄýûã~ƒ¸ß î7ˆûÙ×OrzòÞòÈòËäcû žýÏ~ƒg¿üõ~ƒg½Á3ÖŸuZûìöQî“Ý=O}‹`Kd hËkIoËr‹vKz ~]ƒ})öÙWfß uŸöíÚ—mß½}×ÅÜ×tßÚ}‰÷ž|ßö}ù·.lÕXвÕfkÑVª­cKã¶þmuÜÚ¹•u©îVä­×[Í·Ö/°-Â6Û^ló1mÉ6,ÛÎl³³­Ð²IÛBmƒµí×6g˸mS·-ß6„Û..+¹mæ6¡Û¢n»Ìí6¾ÛoÓ¼-õ4ÛÛ†o“¾-ü6øËüog°}ÃvÛs,?²½Êv2Ûçl´ÒvOÛ[mçµ}ÙòlÛÏm··½àvŠtøKâºÑqÝʸ.ÖRЏÄ—„â:å¸jI#®Çë7ÆýÏ–.ÉÿÎçŒK—âÒ¥¸ti‰2.]ŠK—âÒ¥¸ti}ÅÒ¥¸t).]ŠK—âþa=èÒ¥¸t).]Ú¿éR\º—.Å¥KëÅ¥KqéR\º—.í‡_º—.Å¥KqéÒúK—âÒ¥¸t).]Ú/¾t).]ŠK—âÒ¥¸ÿj=èÒ¥´t)-]Z§––.¥¥KiéRZº´®~Z·=­ ›Ö¥KëÞÌGKKz)îŸæƒ¦uKmÒzš´¿pÿáÒ¥%¯´t)-]JK—ÒÒ¥ý¹¥KiéRZº”–.-a§¥K©ìŸÖƒ.]Z³t)-]JK—ÒÒ¥uQÒÒ¥´t)-]JK—ö¶ýŸõ K—ÒÒ¥uËÒÒ¥´t)-]JK—öë-]JK—ÒÒ¥´tiþ¿¥KyéR^º”—.­“ÉK—òÒ¥¼t)/]Z÷;/]ÊK—òÒ¥¼´(ïÿÏ™×uÌëJåu+–rä%›¼Ž7¯#Êë-ׯڿk|éR^º$?¬]º”—.å¥KK yéR^º”—.å¥Kû›–.å¥KyéR^º´nC^º”—.å¥KyéÒzŒ¥KyéRîû×ׯï[º”—.å¥KyéÒ~‡¥KyéRYºT–.­kX–.•¥KeéRYº´ ,]*K—ÊÒ¥²tiýÑÒ¥²t©,]*K—Öá•¥KeéRYºT–Ž,(릖uÙʺ1e }|YG_Öé•ue¿ÄzŽýUòÓzÐ¥Këß.]*K—ÊÒ¥²tizéRYºT–.•¥KKæ¥íÿ¬]ºT–.í_µt©,]*K—ÊÒ¥uaÊÒ¥²t©,]*K—øuéR]ºT—.Õ¥Kë®Õ¥KuéR]ºT—.­—¬K—êÒ¥ºt©.]ªûçsÖ¥KuéR]º´N¨.]ªK—êÒ¥ºti=ÌÒ¥ºt©.õ©yÿÝúa=èºJu]‡º$ºT¤®s­ëhê~¿ýˆë›ö—.Õ¥KuéÒþ³¥KuéR]ºT—.­ÿ{éR]ºT—.Õ¥Kûû–.Õ¥KuéR]ºT÷_­]ºÔ–.µ¥KëaÚÒ¥¶t©-]jK—ÖjK—ÚÒ¥¶t©-]ZÿhéR[ºÔ–.µ¥Kë6¶¥KméR[ºÔ–.­chK—ÚÒ¥¶t©-]ZW¹-]jK—ÚÒ¥¶tia[ºÔÊþi=èºàëÛ×5k릴%í¶¶Î¿­ckûÍ÷ÓïXß!ÿYºt©-]ZÂkK—ÚÒ¥¶t©-]ÚÿjéR[ºÔ–.µ¥Kü?ûÒ¥¾t©/]êK—Ö/ìK—úÒ¥¾t©/]Zצ/]êK—úÒ¥¾t©ïÿÏÙ—.õ¥K}éÒºs}éR_ºÔ—.õ¥KûÖïZºÔ—.õ¥K}ÿ°téR_ºÔ—.­sêK—úÒ¥¾t©/]Z—½/]êKoúºû}]ßuÈ}]¢¾îA_²ìKëÓûPö{ígÛ_¿?±téR_ºÔ—.É_­]º4–.¥KKºcéÒXº4–.¥Kë{ÇÒ¥±ti,]K—Ö×.]K—ÆÒ¥±ti=ÓXº4–.¥KcéÒºWcéÒXº4–.¥Kë…ÆÒ¥±ti,]K—Ö¥K—FÙ?­]º´~ÿÒ¥±ti,]K—Ö…K—ÆÒ¥±ti,]ZG9ÚþÏzÐuµÇºKƺ#c‰y,Q}Úë_íwÞ½5ÿuø «òVå!¬ÊCX•‡0+aUª<„Uy«òþÙÿxv¦Wå!¬ÊCX•‡0+aUª<„Uy«òþÙ¿™šVå!¬ÊCX•‡ðÏúX^¿+¯çõ y=èþa=hYZÖƒ–õ ë÷—õ e=h]Z×#®oªëƒu=h]ÚÖ¬?këAÛzж´­ÿw_Ú׃öõl}}ýú¾¾t¬ëAÇzÐýWëAÇ|P© þ•ÿÊ¿åß¿òï_ù÷¯üûWþý+ÿþ•ÿÊ¿åßõ?åß¿òïÏ_ù÷¯üûWþý+ÿþ•ÿÊ¿åß¿òï_ù÷¯üûWþý+ÿþ•þÊ¿åß¿òïúá¯üûWþýù+ÿþ•ÿÊ¿åߟ¿òï_ù÷¯ü;ÿæ¯üûWþýù+ÿþ•ÿÊ¿åß¿òï_ù÷¯üûWþý+ÿþü•ÿÊ¿åßù¿òï_ù÷ç¯üûWþý+ÿþ•þÊ¿åß¿òï_ù÷ç¯üûWþý+ÿþÿ¬üû¿ø_ÿïÂÿ ?$œZ@8þýeé)"Sƒ©G@²þ 1u!„”æÏÉ6ŒJÅóÊ?@ê/òÔõßÂø%"ocÿ äY°ƒ±VüœX®Âeú„Ö¿ÈðB¸ýµÍ¿L) pó¯#=&Ôörþœ™1"KA’1?Ÿè:Ôõu‰fªøŒõû2Åë€G~Ì]SŒòȈŠÚ8²õ ©z¡›hu?‚ùu A~GĽ|Ä _ Ú®L˜ÿ"3ÏF\¶ßb@‹j)m?%ÄB~$×ûµ ¾®A|ÊÌ×F€c)CþÁÓ‘õÃN„ý3âØ›> 0Œ`Ô?`ú†/ìë¤êL¨<ë…> ×/&ÔJ…\A„‹»ÑèËæÏö9dWò× ÷† d+‹<4Î-#Ø®M>QKŽðg¿EiÐDmÿ ¨1Ò1!àï;±ñäö}lˆs#Þ<¼ ’ø¦Opß6zZiöõÁq\ŠZ.|¬2ŽvUñy`ùÊ#o…ì v÷ñó"àpíì¸Þ…ׯÈKànÿ>&(m­ çC—cu·ÙþÊ -HYÎÝkù£‰$ > >_µü>jck¬èœÒZÙuD¡0•1ç¸ ¾‰%âÏ»åì35 Ç‚“{ô‘¾vgtýƒË„Ûë‘X£Jøƒ}°…Nÿ¤d1ù·ÙÀ3 ÊäÆÞÒ·?[ãWpÿpFù™Æ_Pb$xîùšS‹oÑð`ÌZiû%ðO24 òŽòVÌÊpËG’û„§lMnhýgºÈ&ÈuẢÃì)‰ìÊÃÐC_éÀȈÇUÀ×µ·5…mD¢ø/Ö3Cïq®ÙÆØ–&<¬}A÷ÿƒì2smè\—O@T! ¹È˜ „txÈg+~\u‚·‚«×áÙ†~Ãíüó1(bîz#ïsºýÐ|û:ž¼‡ÿ²0Ñp§51QÆ;•f“m ¬;ÍìX””úˆ, çélùúéÇ:lz"ÜINþ6q^3#ÎßQäïEsÜ:àg¸¯±h ­jûJ:oi+1™wÿûûÆz-ìÈ”Z5šcNT¶¨,Í[Á™õÂ-¨3»î‹µ‰e?ÑÜ$ ¹] µ&–>WÍð-kÏ1…‰†RˆÞY÷Z!4„pUNíuÿ®Š±˜eV¼@‹Ê iËŒõ‚óžÖ";)þZïy¿PòJë‚E<3YH"åÐðƈA‡ƽZ»ðkßÒjµ÷¿¸<‚Üý•Æ[¶~.[9ã…GÂ#§yL6*²/‰0 €<8·OGW™ ±†“Elw¸ËÆ+=xDIÞ¦.;õÂt<"Jû¶×8öþOBrWKH’XܶŒ‹•úÄ¡±ì7W¶ }¨ˆô½2­ß_à{÷ñR¸9paÉC ,1É,V–êc@&ñ­Ÿ&? fí1 Ô¿½ñö÷Uªl$Q›Žú]¡Î²ÜZ[6ɦsïàuš¨ÊÂCÞ?göij+¥Ë‘½S>~c 2òSö¿Ïˆ ð<'¨36/³¥Êº¦zÙ’"Û?áËŸ­DËøõ€³¨¬ÐîGâóÁFe¼Ó&„•Ñ<-ë¿;öxŸIþH1­‘srNì¸'ÖßõfÜñŠ ˜™&„c•äA+ó¸<™8û[v‘Å ¼gLjí]ºç¿.ªq7v°0ƒ~vÆõáönSq+òJp. töUp­ÛØjfÜb…÷‡ˆjzºÏSûHåY·j°Š×"ë*îN¦Oëzÿ{áXkæ-¶½° ¸e°]s‡ø­–ßN¢À;Á€7‰7îÏ›Cqr©¸@ j²^Û[±‹Z0&éQ‹lŸÐe7wPå=1q 0ã'yÇ+Þ•ÿZu‡:‡™ß?ù?DŠþ¤Ý—ÚŒ>°Ñ ƒ¶4mÂn-‚UÅÛÌÏ´ðN5¾‚ì+%ÀN ˆjw gãchþ Â½j*{Eõ1ÈýÈ8¼ 'Úýði<<Á§»M„™†íò‰ °”Ê>VDRX5Z6© T¦e¸ózÌÓm‡)8ŸR|Å(p½%4­cŒo\cÐ hÔ.²Pù ¤ŸZ¸o¤kfé¸E8Y­K¼Ë?¶Tˆ,€9«¥©;¹êG®vrçªVVóî(š œ<‚ÔFîG´¿Ò}£M$m-ЩD$†OPþƒ‘þ:Z$;ȂĢA6Tï" ôÖúd. ûx>kš¿Õ^{‰l…Æ–"œ[Ä)ŒÆ@óÛ ºؾ¦½®žmÍK  Æ?—ÿFZ]d% __b Q•šÑÛ44é/¼'BŽÖÔ¿2Íd½Oú±eVkw+Z0ÛE¯`FìM ™zÄ€8 ‡–޹2nëbm"è*„¸ƒ8Ø•–×ÉV7ð}#ˆ{¹øßÂè$ø$ÂTøluÙ]÷ž¶^Dl)â±îª¢-e¸)²•7fg¹/ð¡™ýUž$3)ÄJWª«;ºüt!z%Œ$ýc_løôë:,¶Öa3!ë}*u[,ó?D¬°ÿù³;Õ8!‘ÒüÔsãŽlÜŠ<<}Ò–Ü áUzÝMÍá£1«ƒZŠT{L‘˺\ŸÝf£²ÈÏzuþ)¯ ö”`mXêkTW̳µ ŸuÜÑ–õvÖ>[ׄ—„]Q_H+ŸŸqtê©nëyk°7T6ÿ°u:´qô®¡×[ÔS?ã3Mî*äÎ&U—b—ÁÆ}Vâ+…6a¼ïŽ36åþ¯.ÄGB6ô¶ eoF"ú•ò±k÷3˜|â#M¾cX6ÂþXÒÎNÆúj—²¹“‰©|{õ6@¦QéªV-lÃ¥4ÿß´¬ï»d“ÛбÕÚûWú€ê×>³ mÏNÍh¢ã„fo· ,Ê?ZbKâù®pÈónuøB̈¢UR_¨´ÝÉû5æAâ®!œ~Ä]š(ÌÕê3‡5kB¶ôŸ6&·ZôßdÚ_8¸Ìú˜± ÒЦp¥˜¥ôçólí9ý7¦Ç­Ý‘‘•ŒÃdØ(ÂÇ6~wµ}oGl ñ_?ðÑm¼3ŸÌÁЬuV›Åøt‰¾ñU€±H•èA”¶ui±«™:Î"ÔH˶¢î0Ù-\(òk-™B±ÏÛ¼ö-¦ê¶ ¥l¿Ã6 l×éÆua·).v%t;ÉÝÊg_Ù¤Ó¶Fgã{MmVá* þ ïfà+Eßµµ{H™ŒÎ¢m/È•<ã }.ýkSÛ_ß¡°ñ.¢§•¬5¼Ë}{wy£Ì¼¶÷ΉíV—¢ÂU@µr$•ËýH¿.‚µáš5ÒmNeàö÷Ï›ê‹Nw,Ƽ”­/ûÆ‘…Ïÿúÿ&Û ç‚(£¤Ðxw³ì,MøØâw.ƒÏ; "Ñ^÷àŠoX…þhêZÔä uñõ«™€»îíš=þ+¾³ÿ<»?`®èçÝ+øˆ¶î€*€D%!A~ÃåKì±|Lîv»È·9Õp‡%b¼C ¸+À¾ G>B’+"emÊ*¶/ëÝJê`6aºòjgMÄz[à5–ÏeÞî >àªöp;;—cc\vûo/†1",ç‘™uEÛ ¸-[áL2c„¦ßà & ü#5vÍü;²ÖÕ>x¨å×·Í^Û´±õĘÀº-™-Ü»›aõɹS´™´µ¶EúUÏ´5RS vù“Ó9«a}»këxX™Iðc7W=ÀÆñ…Ì><ûGõ­³6AsõñÂ]ÈäëôÛ9ÞZº<®ûêÙ¸Ï ÷£fn28û;í7ÚÇ—«­Vº©›»æî¦Lè:87‹˜.Ÿ¼5Ãö±Œ ìžæ3…_{î&›úuÀ¹ðJJÝeôã„¥bÊ6¾¡bŽÔ¾6îÅ @£8g®ß˜ñ àSrýþWJ¶Mwµ\ áS_‡ï±¡çöáNC\Ü‚<¢Ãž¾kg¹àï+JºÃ9ÃØñ=±bÍw,wñ½H·ÄTÒì~!ŒïÉFWû+ AQYë?w©ÚÖX]ÖÎL¹âùŒÐ@“œypèHƒJ°Þâ#u€.à¡o:ÖÃßÓN…øžgFœr%]jpç[•aS¶J2!ÖûônÑþì'DÍ(¤‹©=^À´ï\ÁÄ´Òì3;늃C×ϯm3órà¶“!I•ݸ`[7õPI[ôóé_Vèï»”ÚÂ3lo°ÿ}×=ƒuˆö+䲈.ŸLZmÿoSŶ]ëJ%NìnýYUöåc.âÂs›‚øØÂš$k=lIû×öW\¹ÄÞã¯äÑ oÙÙüóe‚×&‹›Âënc[UŽsáÊ}w¯iÔÙ½•5#.æW8÷î¡ ÿíäíÆF]ñ6ÕD{á½:T:|¾×Žï¶:öÑ€2¨÷Wåòk`ÀÀD¬Å°˜—‡zõ´S”)ðñ Ææ”IdÆÒÊyÊkrÜŸ€[«uçm— ç,®óÈÓ¬øì`‚ív–ÉÑXËÖï/üµeø_‹·ý3 G3†ëâC×øuÀއ01‡‰{?€·)ôãCÎåÜ0 ¶x¾äÔô¥<]¸Zº=7›cØâ¸‹ƒ>òƒÛ¹ôÀS,Û§1¶ºèðÜÞ!åþxˆ;=00£_G¨`óÅÿV²ÈÚ§Ùö:e’…áŸ-:$’ÁG'² AöÏ%´_y··>¦(ê19í™Ì‚¢)Mø•ÃV~¤]®{|Ä?ŸÁ™A®Ún&ì`…ÑÊEG `Ãw½Âj56#N€O8Þg2íˆÊú1ycÚÐ.k²`¯¯Üùèø§Áu#-Ò9ר(«Nt¿µÇŽÜöÂ*³5aŽðÈšQûоéÊ"kÚH¾(~¬UµL>'·]VËÕbæú]Cçù}ÃalÄãò0Ôü´›±šQ0¿½«uä®2PhED”á?„6éúðw˜æ¦ñ?î†sÈŽXð”çÚÇÖ™ÝØ®#ÄrU[³57Ð?´²}–ßÊøk+\yÝùa‡O²²E½7òwÂÏ?öÉïaQ—|d(™8¡Ñ©Ðrü X3ÊãÉM¬¾ }.{´`1"nÊÒL¢»òû½Êu=\àèf>f®M|뜻§¾±ãÌ·#väd{ßRÁ=ëò8÷+¾šP`ç’ä`‚v6ɨ¿gÔ3e4㸼ÛeÉÖ»9ë»f눰>°&Äy>BV׎pâ6)ÓÁ¦Hæ²â¯Æè=h}®¥Õqµcë ­[²#«.e¶ˆköliÐ~¡›ôôÊlR7Bu…õžÊí½m’~8YÓ°ϸ?¦aïb‰óÒ>o¸sDÓâwZœ¥•îèÐ9àN!À>YêUâólP¾ey×1lžñÁ¬âðÁ.ô5™¬Ë]|ëÊÎ…ÜÞìŠvÏ;[ø/àÒÕáwç‚eƒRµ—õcìÌ ßÌœNÃáˆ`¹ŽU½wÎâ1]Æyº$¦‘Ë=&üƒï¢öÇœ²±–~ÜôކíÐíTÂ"¸Þ³™!t(,GQbËÎF»†T&³w!ͽ_8¾éÒK‚zÛkOºf!?êj÷ÁØþ±õà^6ÙÑÅÜБ.>ŒV¾ˆžþgZ Ë·õ}™c»ë,® kOÁ<¿ê¶7—¦Õ3oQï´çƒÀäî&Úðß5 ,ƒ–Ëì˜ìcŽöŽÞ-dÃV§ï Õ½}¹òwCÚ>¿ú]qÂrò8ð°‹(? ë7}Iãöö]N)ÐVm “ªt]•Q­[1}ÌâÀ ð`ª®·0L2øtsVÆŒ *LÎâÊþ³ÛÚäþã­|± t=¬ 3Gö1kr÷é>‰L¤0¸¦Ÿ"¨ËÅÝ‹~Ìñ¸±»¸âJÿÖ&9¨’#2JiE_ÃÝUPÇ^n‹¹Î–;ð›ÓOçP,bõ¿…i>_û"°PxÇbǪÜÈÞ§Ùo¨\7‡âp“7É•#¡üÀ¡›˜Ú“‹Ý>Ç™7aÇ7ýÔ¯KØÇ?4[©v7˜|w”.ÂMÜx7—+ Ar³>ôLmdpÍ Œ]øÓÓ.“u GIeÓz?¬åý/,¢ò¤fªë•is;”‚1¶•Jë0[ìxÛ r!¨á0p3‡(œS vŒÕžÇÙÄÂü‘~+Á=•c…hCtGÑäàqóC~Ø";ï|‹Øàœí…øV¨±,Ío ?¨1Éφä*/üw¦¼Á~^V~CårHÄ"á?Ü|G[fo¾ÅºŠÊmÇÝ.ù˜x¹è l‰Ã\Ö}~ÄãF½Í˜Íöì0°£µð„½wTñ£²Ü­l€VÎÔ:˜¥3÷øíÔÝaV¼‘ºßÃ-[ûXëâHn­úX2qƒ7\ðú?³Í÷¾;ˆaúª.Ñø ÈµüøwâѸSˆe¹cÈWaqO¶¨äJ%nÒaÊ ×#víü—gÔ° ›TÀ¶7>x™- à p½ÕÓ3§¸©Pgù.ãüAýkúH n»íŠˆò™z³ÜYw¥Î“‡ß7Ö?Š1vpãN½œæºC±3=®ct?qã†Qüúvî·]pÍ*÷"1 m4Q¹ð´sç¦&Ú–â†D|˜·{ˆÎV’m¦þÁn|[/7éín¦…Ž#ÁKÀ.1:$Ú'ypô­ž>£þŸwX8ŽÁ;e´Õ=³9o¯à&Ø<À`ã]Ïň¡çlŠÉU?V\FÁbé]—«p<“›¤é°Lý¨ÊàLp‡šd}Î[Ö©5Ž•Ï‚ÓﺠUL‹Ør¬2®üä-Ž0ñ΄|·Ã\üê2Çôwß{W:² ‡ÚƒAãxíÛJ…`bšwꀷ€­Ñ´ŽÂ²4ºPÔº&{’–ÈÕýlÆÕGl¨ÃŸ÷Qj|á´n#çZ€•…|RͤÿŽû¬Ó¥öÞšã:ÊÖ®} ²\çà’ÎÆÇiå,L35k/>,³Ù}çʾæ ;dôÇ Êçv…áe9·ýø`u4vеð<#÷)!øº»Ÿe¹Áfn<Êf;ž(în×;dÛtð8À¢ mý`©âr¼¶ÕnÑm7NÄ×Ïmvd}ÐBvÜÜ¥Á%»=ÎyÛ¶ …XT­·;º +tw¶ñ±´­?Ÿ»wa›ñ_=æ+÷ë”ìe2…¼ÔÙÁŒn4 5càh‹<ÓÍýö±AÏ,±Ò´oåèyÝô¨§Ö·|’7â¶Grç ˆÁ áØN[ä®9f.‡?p͵,¾;K}ãt¬¤lÞVÙ>æ™Lvê%~NçŽvlÿÈmä1¾Ï™ËÚn»9ê.ŠYJ²zS;lÿ„¹ .¿@Ì&A¾ï§E½ÚXÈ‚5m ïbH[ðdÒ÷uúØSäð Ümb¿ב ¹¦¶cö¶…½{bÆ•y>lî•Çäùn$׳X^²qO[7)¢µ jôQ¿ë/~xO¦}ƒú¸»”`ﳫØ!ŸáÇ‘÷?òÖû…ºvIÃ]²q»ë~&ï ï»T·úX}GÕw×ý$ízC€à3¼ðfv2×c7]á4îªì¾T?‘vˆ]{—H­Ôü¶i³”Ç:r+ø°\""Ã’7ÙSÿ‡?ËÎ6:`÷ÖÌøö–©#8¨üÊÈ"ˆï0ËføAzn £0¸|Œ ?æî\£þN¨paq{à%ƒ¸ò;_²¾¿!\ÁóÃŒü«à[É÷…H|lb¾#,ûïmËÍv=‰ä•'øzÒÍk)úÜĹ©É{fî›Ñ¡’}ÄéÑK¶Þy¿¡)>ÂËÖkjfaŒI¶m/ò‘"#Z ²ÌŸ?[ŰÇd×`ûrªÇßfÖíËu¸v‡.ô¸ÛPÛ•êŽ÷Òzq[F±]{¬­èƒ­Û½ùÞ¯™¡srs#m7<ÙSƒÞup™w ”õ,¤°w{È%H‹”ï©43÷Á¥à@¢7Q•®Œ=\öú®…þ|¹s·Çzð¯4ñžû÷›~ìØÿˆÛR©u%VÔnÖõ#*¹w·`kM=À6 ¬íucL 3·þÄëmiñÃTÙ¶zWûûú5Ùï!Э˜žÿãný|mÞeêhÛÜXö»è wÑÞ¨µu޵ÃÞ¬‘Z7îiél¬S0›(}Ð`6CÚ<ýF)ÛBó‡ 0Þ×Úgß¿ëà{Ãêâ»ÅT¶zal™ó<³p{7ìã’SÛ°ÿ Î½´üƒCÿª7ø%†ŒÏ¯)¾ÑnFС½ÿ+?œ'Ô²jþ±Bún;ú¿,ã&SsÿàcÙØ7ë }Šm.åAßíP?˜8À•¼}À¿ï´ûƒ;pµhÇÅáë%vÞ€Ìs ÇLåŠD.а9ÅÃüm‘>(Fí öØ9T[‚#Áƒ;fÿþ íÿsÿØväí|™kú»1&öºy¶¶ÛWZÕG‹Ä&î`Ó,剙<4hX¥¿»¶üöiTÉ!Þ? ¤–Üàn?i¢x7<î®Í¸-¿˜w, @e˜Ù(û’/úÞØÕ’·×Öî‡ôdÛ]|»ÖE™†ÈÛx®]Û©0¿Ó/µ´3¶±eËlnƒ·ë­Ùö¹óŽÅm 5e‹^8Ë[{¥)e»ÜÆ%d÷õµ‘¦Ñf7`ÿÀfœÜ f–ÏgÚwdù¨^ù-=礋=Mšìæº\-ÝÙ~ð"Ü3vúÄ×oÑ[;è0»9wgÕ¢íRT—ÕZ¬Ýçö$ì†-4;:@ãcý^ºÛÒÙõœ®qäÚ•·$]¡ñ£öm·Ãß’öûîR”ë^»(ÑÅì¶>a‹¼®Kbº[.jp+›XÓfÁžÚÚhÌmŸ¿Äíç±³ªæ>ñc\–écCÙj|lxÍ,ìø: ¤XI×3…`IæüH蕸Jö‡·¿ÓR+¼|££a5¢#}ùž×ðð;ùú_ª€îÛ·í^[KLgI\ݘéÍÑå7Ý:ŽøÛ”X-²<¿ŽìŽ€lfõQè¼#ç´È fXø…•‹»6Ýs5b;0@rÇòÀz¦]Âà_…ÿˆ8ý ¸³w1¸mb|08Û©u»¤ì~Â’ÒÇõ½±$5®º`êŽõ# v¼ÆÀAãc”zàïv³ÖMµa]¾gJ4Q®Í”žÏò©ùÕ‹ÁLSî´è moÞ!žðýn32õÑ•¨¸ÐV²Z7c`ŽúèƒË^"CfæÆêœ*ÙZ6.<®Kä £‰4Mî9º»‹i©1lÂàð¶Ñôí©m™äcqŽéß¹ÈöÃù;Ü™)®9ÀkƒMx8Y©kÙM)öcÚ ×¡^îßl?¶ïôѹsRßúr˜ï;ötdI¥ìIYò±ÎÉ9= U¶9¬[(ã¾xÒk›µž÷ò%?%kjs®Üà·ÔÜžÐÊÎO"yr­»¼g«sŽrÄhÙtʨL^8Óù?²z»fúÜ­wí3pÚ5Þ³Ùe´—U³ßÇê¦{PóÓØß« Ø›½i±lz†õ¿2ÿÚº·›o²éµ5|¶%a¥mÝ¢Ë\OÃ<’Af|ì­Û­~×IÝŽX éD$?'­èõ›LΆZR{sæ d³[‚wÏøQˆq,=vWTeQ…Ñ‚<Ã÷u¼Î®ëç×͘ßÙ –ÿ¿ÜV¿ÚÞtJ]·Âm7uõNßÝ]ý但| Œ-tÇbn‡÷1žw»9Ÿjc$[!µ¸e›’zt·ÖÓmvÌó~NÅÕŒÏuÒ"‡qw܆hºŒ@! 4û3F¶!ój}Lû¸ïÇ,äÝEpA¯//GîÙ@¯ö·ƒþ} :MÑÆ0.ÒC"mõÙ€¹>ÖʛޠÛl,Ÿ-`Ô9o#áñ=&ÌrŒ9ÖÔY°ÖÇlG1ëlĪûrƒ-r1×Çú»Üî´ó×ÿ3½G븞§¬7à_ÌŽÁÆ––¨Â7Ÿwï¼›}ö;¤LùóÌýÎÛÿNeeÊÆ_•™÷½wð‡˜¸+²_|wõkï·Aܸ5z·¸¬ËiŒôTíÒÈô»ñì΄á™$dønïïøý\³™°a ­³a®Àå)›î’ÉG“Ó"uoé_ê®±}@询ž»Å~˜Ú¸m„°ÈHŠáR·Å×üÁ/ÿ•öØ2žÀï`‡þçœ Jä` ‘÷¸r› ˆ>2›”Ûó·ý—™ —ò8P´_Ýá’^ _²‹•™á˰Ó-–àËqà8þcGaã@÷ªi f-°Ùj·=—MÁF÷ÿëIþ7–Ö_—U5(JçF„“ß_ñ1Âh#{ÓùôëÛ rÚUÜì²PW7ñ|7~ÖÕØ>Ø«ì¶4³ˆÌ¹š…ƒõ5Ø–psëHÜ$‘Vsßù|ƒÚñÏ/fŒ¡¨:“_ƒm®ždµ…,#ô}®î5L¬ìŠ>Î=ºq@ë8Üs»ÉS;îúQ½wË-<ž€5è\¾ÿÉë—%S·  ·.Â,iú˜,q<𦯿•]?Ç@V¼%·xÝÒ‹0NÛ´ûÜ@à€`·ÓÚËWX8ß}í> ‡÷3yšMS9·*ç°Iüä×HY@–[3ìÈCm]ÛBÒ-’Ñ‘ÝÅ¿]ÍPÊß°É/Kãl‘C^½ƒDCw)ÜSdݳŦmM¥µ©ôAlvÇÁ.(u`Û×ñT4sMÁYH«”û5 nÞð.”~ì+¸"FÛœ¶” –ç\zö1`az—…OðÌZΧFºpϵ¦=Y¾á-ú k5ÍM‡®jйläéQÜm\[ÌqÕ"Woty­+ÖÚ âXõ?xÿMÆg‰ |¾ ש–õ5‡myÑlÿÑ”.Ü":ß57÷ðÃ[ßø{W2v…O³áÖMö{fÊÕ„ÆcÙ³øïWÆ' ¯9ÐÝ·çþØEk ÿŽ2ÜN­š¥.»ðÁkhCdËI;Ÿ.ÚU[ø¨»Þ¥ÿÅÿáÿ¿ áÅܘ“VcÙž¹7<º¹Ú÷-èpsøÚ¡M1n/ìë-´1]þäê¬0ù™A¢Ï¬PxØ!È«õXne© g¸³q(";øtÍ¥a^a«žy­Ï Ô®"íA@@Ä?S¤ó—"ˆÆi…¢O]) ýDŸöç)«ÍrMãB·þ=Upté“å™áçЇl­sÂ;¨'xà¬à”{¡v¬æßj÷³èËÍmòŒh!•Úä×¶ë‰*«›Ln,Aø!¬xp³§µ¶Ü§@cëƒH““t„%Y{e·çY¯ˆÇŽ£~šüB\æ'æÑ4áA^H _×’ê³öïJ*#ñ0¶2­lå¼FðÈ]–öñ7"°Jì­ŸÌ!´¿<ò€sÈÿDZfÐó:Uc;.<¢øg~}™õÂ÷¿ŸÈfdP¥'}£JÞrܘÃB{@œ»\ièÌþóè<&T÷G¾éS,¾cFëw¶0ºHñ'\M‹ŸD8vT!T¹×6N˜vÕ}à=‚èi?Ëø.îAdC8öºß®¿r zCÈwö‘P;N¤AòP°»øëQ¤÷ü@=¸{Q**pƒâj““ÎDºçgü+É9®—"˜ÑÁˆ$GAïA&/äÐ"‡ÜØåˆò„°Ú­nS¾î?ÂÂÔûÙ×E UV«|b âYâ]³Aˆ‰ ëß²Æó»oñ»‹¾ÂªBNâ?9æslÒ¥A„Œ_PO-Üñ“Va¾‚‡ˆ»ºc8T¢5˜•ìƒìL¶KT<Ì +y’ƒÐèØª ÿ#QHœbÒS@<àD‡Zö€Wª=n—ÍS€uƒåšÞaŪ·§=Umêý[ɳÌp©w T`ùf&&:6˜-¦u*ËìB>›ƒÛ;ê}ß7_‡+Ô£žÐh& a ø· fæQ»Y9êýQÑ=¡'­Æu†,JÐÀÓüânºE¤Ry_ÂÀ$¹—}TD!Á»ÄµŸ#-ˆlY ‚XÆ#X].M›¾¾-!keÈTÿˆAl‹ªR`ãæ „‚¾/»Ç¸+އ¥m ³^E˜Æ¿;Ÿ¢i‡rILü°@w`"ˆøZ¢¸0ª 2tÁ;< ôŽÁãõTÄÀj!±¬Z˜&fª£Rq|·õ7óNâß">êÂÛ0`Œè/$†¨ Ȫ~–‰ÂvpœÁ$uɳHÅ1ˆ³$œe òïŠ~K£Æ´]Ìêÿpž»äßP„­]çL¶‘÷ï/¬ÇA^riøxÏ y‡þÔôôóúÃ`“w1üOb-;cshÜyD0¿Še½3dáÈbÕ}°$—½¹bìëá„’^)<Cd9/.™€£êªÓxßÎñaù}ÓØgå°º­7¬ÖÄÇÔ©teõòv-q¥hÈÍq'³ø,›ÏgÔ@§5Âc£|ÈýŒsXw'K„û5x=äï#N£Ã¦‰xM$H0W9°öóâŸ"¤ëUìú]õ˜*õ°„tF2c™0¶Õ0#iz+QrkF`±Ù_Ú)¹Œš-Ä0Ý›&YŒîÓ2×Bd‚ Q.дÑj´ã"ÄEè ?¿­žÍêE>c—ìALgå@¢ˆA^Á°¦!êG ~§ÀŒñY éºP ™Pâ?8R8û'. ÚkÌê#ÇÁ@ñÚ.l\Ù¢Æ#öBe\–\‡Îý±Ä’Ú*J¥¿Ø§D=òl~ç!ÖêÍ,n4D¹h.ÎÜ^Xî/ hÜö H§»–M ÆOTJüQ›žæ˜¸z­§?9ó[÷yY¯†Ãkô*¢Ð ºÉÆŸÈ£ÍJì*ïÏÌp°¬å©“ç($+œeSMªá㇜å 6bß5绊…­ _Ô`ÔY艎rá8J§ºÕg0-Y¶„ƒJÚÒ.÷ðÏ«Hˆ”P›„0öº³.ʯ¿’‹òO‚5I!eŰӘ–.5J„a`8vrÜ»h@¯K èkŹ᠞…8˜µ¨Q‘–r¿$R¶ª’ $n¥±—ÂÝL$æ¥5j5ÿà]N˾$i³ "bé:Sß±DÌpâxǨ+ŽˆƒQÐÕçì£Â³ Qû»TàR †nŽ`º}$wèbsqj>¨R§*ÌžjÔZR\.•‹Àµãp&Y4÷¾ì!Áï!ÙŠûbtËÙTÚšPr ºXÖ»EXzÒ¬˜cÓ[¸úõPij™ž2ÎRwÔÔ˜uF“]¬0 #¡U ½‘‹Àt5Spì+ˆÖãÁ û¤úõŒcð²êß©¨«áôñ®DYh5ö²[ôrðú ž*« J-µ ÈA,¢†ÊéiÓ«l?6 A‡S¬U‹'‘«9ðµbØ!¾¢ ìXŸZªÏ¸;³Ù%o\æ0ƒ¾!“À–kTbŠ·!wÝ ÇKŠP¨j£°D Žˆ&|¡BE爵­ºKGËš’šHöakb“@1r±?YÞ/A<ˆkQ $3È-´TÔâw3a‡GyõÂLí»Z |UU?‡Ë…е´v¿N& ŒäQHb¦ò©Ýxxº ÄIåóiebk3içìê9™D4XPÙã0`Í¢^ÇÙ^|$Mu}|^ž½’§ILÏ |;kTˆI íœ 2š*m9Ï""LYË„È27zhLÞ¡NÏ£¡8'+›d·%H, #<êYChÒëäXÔƒ^aÙÛVIyÓñ—ééò8t&ôù2c«Œ¶JJ$S<­¯]–ÖWöS ™e‹Š2˜–¸71ΰL ƒ´­ýýÖéã穎I»&¨ÃùAœ)hTEŸÝšdÞ¶`þk£Ø™›#j#¶ó çJýÚ®ðu¦Yû 2ãjºDMîo òa߸ o!‘ˆ Ħ!i­û„½Œº«ÖCÙH„ ¿¡Y\sÒc Ђ¹6ÝB|!¨Iž]ÓA \‡ßû.®—ÀåMOR+7q#Ë]¿ko¾h»2$D#þ Ï€kC•…È&¡I`Ù O¥íSÖ±œÖ‰ük éRLK¾iKD þ:«Y* 3 {b—<ɲï ο°‹¤o/ü¯-æ²öñÓª©‡åŽuɫ鉂OØ@PŒ*gn÷A!¨DZ?އ½SÛªæKí!IŒt©åÑL‘©9‰RÑ>!‹ÕP“¨²=¥Ûä:&D™Cbp*ÚԣĿáÉ@ÈÚð¼.UÔÁ!hu®§ù.QGˆ‰îºþ>Am“6'^Éëjùez¥¼ï#ÂÜž§Úi=áÝ£^äC´#¯öÝË&W¾âÀO!%‰ƒmý6cïY™äFt«rÓ ©þRÙõ˜ „«ˆ-¨å¼kˆáÀ‚:áP°:+0hÓO+¯ñö)Zóa©zl÷5 Aí ?u¼þÈ5¨Ì_6¬r†š³+äV5¢ùp¯E$w¤jûöWM¶ø|ÊþlOó7öª"yßû©)%9ŽÌ¬ï´Ð‚‰÷‚µèÏIß}=›Œ°=1ÃM„t#Uîþë Ù=Yåxh‚ŒÕ„Ýf¾Ã ‚B*XËûëŠÙ‘º‹Ë)ݼÙ5H|øÌvÕ¹‡ÜYÐkŒ8jºdõ6ø&›'ˆ¥Œi 9üu7µ%½u·4…è Òô “|¿mÚæéÑíX”AˆÂÐ2Ë»h0“µgpEYæx‘ZK•×ÁÁl6$Y» ƒ˜Å"®ò#ı1Ÿ·ò—E ÿ'µŠp,û¦ªeΫª•ɇŒ­Å“À¿ó+ßCrÏfLV÷p§ãö Î+Æe©©]0nþ/LÌÎÒsÎBVÂ2ÅrqöÿFÛ#ð>ðélx)Â~-þ§Ì©X¢Ýݰ•²˜„ ˆ »Ù`_é#e¿ŠkTã9B¨è›‚³ŒýÔ¬‡ŽC–¤ØÖâÉÄJØuÔ✵å³TSZBz¦±¼ '¦ÞÈ.Ù\È-s‹¨µâ á"ù~‹-»Ã`‚Fà]àR¥ ËHE^ÜY¥,òþýˆ„ˆlÜ}[€¿õ#í Å×}'´ Ú’C(â.ïd‰Ç„/>úD…$e’ÔÚüŒcc2µöù³GšÞ*D+ƒ‚SîÿüÓÙ|©3…Ãw[BvÛð—¬kîG,Žšš ‰KCù;!¸½q®ÉÂxœAÜ™O'_ Û©šœLlæÈ”Ê–aõ>$>x¤¤s÷¢~mË©L_ÃKkX13H8{/˜ä§ÑÄ 0Ï<Þeê?„>qªº d Гªˆæw¶¸rÁD—þ|ª)ÝÍù^¼E9ƒ­‹kë 6¿4°ÎÎÐ5I™q#ôr¥.@‹ú1J¬wIÃÿˆ!¸ÎÈ{³å}É>‚–DD(ûÌ""¹bEIË“0yƒµV­ïÂ9ýÚHÎÃam$HA:¤‹ïÛœüqU{½Ú×»šóë`ìtBLµ$œ+¶Ý™±MŒ­$¯Bö6iÄËâW„&¢¸#z2åÁBÀûï.ƒ߈ˆt'Þ0Úȼ[ígU">0CEguŽCk”¯â„…D§°6…ÐM8îÚ^äo“b!N¶þèJH¶PçÒ6[‰OÌC“Os5x2nýqM7€gІF{ÿe(À¦Ç¿Ö¹üºƒ·ã6.·þ’|Ø2v‰–âÿ„o%ó¦ôÄïFº­_ð.ÞÉŸ×ÿ¤Aÿº‹Rw‡hšÊœ ã6$:¼--ÇΔ±\jÀ— fÜí½äò‹k²WßVg' Byz8 6˜¤Ù¡“ĹC W¯„»v<¿¯¦Žþhä‚’ÿ:¨ž…rÙž«QÓ\$ÄÏY’p5²œ ³åV‹ö¥=™E­›Aàñ¢zhrcþ¨u´«Æ;>ÂF±Êï‘Ûs±x}7áAÉ)^˜”m^Ü´ åFDkš°Ââ²€©ÊÛÿXõ¶èaè"×B Ü¿Á†Ú&J² ¸ÿµ•5éYdŽ;Ïÿµ6Ж»lmðö3Öž4¬¡Ë]¥-@p¨ Óî°uú_[Wÿý¨OÁ¢‰vÃÛhûï¾&gü|˜ÍüíAûÒ:ô=8.•i—âÜîï×NÜÃWŽ_ oüµ@ ¶ùÃųXÜ´Øœp”üÙN׆6ȶU_kºœCrEšEBS{:ƒl+˜e¶jx'I6.Øl^t•ÓïÒËaÅ!qÄ>ê-½{j³·Â¹Œƒh7\ g90{"Ñ{­ãx7•}ÅÑþDcBò£uZÜ–ÄvKØÁV,|Î^2Â9/“F«°¦,l†Ðd5EQà~Õ6sËú£qÝH‡G4èþõ®om†Åî”"{I]•üо `äÖ RéxàÝö›€¯/ŠË«ù?Ǥ g-gtìž#ð£ Dã@µÇÓ5“¹Uφ}.±™䑦ºý»tfÐ5Íçö¡Ä{–ÊÆ#\ Érùåïq…ãëûݱ¸Æ•kéX,§-Yà…E… ±.7Ô™]E»_;núkq&’C’kH©|¤ƒœ/Ç…ièÜe.ëé ãSÕ {¨„ó9•eê*¾a‰´àm¤CY”ú>[áÄàj _3kqI*~ž§sf=ïYN[¼¨0ŒrEôº½t•Ö¦ó±!\6Eΰù®¸‡pm&‹òûµÐ¤9çŠ++xõ_[f[䜼MÆÒmj’´Ø¢UØ»'û};øŽT-¸ŸgFÇPPŒ” ÝïˆÈÏI„ÌÝXOÓè•ÊÚ[Kz¸Ä®>‹žuD…ÿZïÎÀ­røüwÑIjIj ÖßœÙBbÅ*â6l…¤"0ö ¸mŒÃø¶F ŠœUÅï_[µü½†Ïüˆù‡“|Ãç‹Ã¶Øù ¶×ÎAB5Ãðƒd+ÏÙñ ›3Ë' u diè§µ;ÎÂû¡ÒÊä¯ €²c®‡Ä›…»O–K2yE˜róš€ ç]9€8Ø)Åpã rè]uä¥D+ ‚^ |gF÷ÔŒ³Y®ñeÚ‘D,‘—Qy$YbS>d^Yš .ù¢REvÜå¢X4õ/.Y³<q+gÏh ⳇº.…ïh‚rD¹œáäÉçíQ¾†Á°Qh,ÓiZCãUã™&?’€ lñˆq‡X¢v{mË;@èÂT³:«ÓÖ,݈sv‡;äöh7ô%Ó &œ‚&_¾ßDê¶ûl ðÖ¾|1/\0ER>â áë¶y°ùð\ÇÝÓM‹„°¡•`¿zH7I$øIË0ÆO×ÝÁmA›¦•Æ • ;`)êpÍkÚéÆá®–Σ×ûç‡4eJÅŒHO×5öeó¦æ8´ÚpU|~íPƒkW[@)daÃÞxý ¯uß]Œ¶Ó6T*2Jg-H@Á@Ð Ó âE6–ŽËI´]Mžg‚ràcäï è!#˜œÙ ²@#KH`‡(¿ÆÝ4JPp»ÝNz»gf[Go:W6´óqPBv¥GѲÚͰÀ¾)•ºq„L‘ªX[ª°ø¹»ómµÒÞP¶Òòö¬m½™yÐ÷ˆ„®æ½­œòÆ0M2)ãêl¶Om0ÊŒ ­Þ¥kÃ]q„Xr½!¼ö¼G m\ÊiǤ vBÈŸ¥óhû‚–ÅUÍìФmE ŽY?âzl*´ÚT„6EgÝÃ&Lºñݸקä‘9R*ãž2ÉN‘Ñ´¶ÐN;÷#¥4ÅÏ€ËͶEr¡âgÈ=–cÔv*‰³NE§H¢Ç ƒ¿W:i؈쥸»Å`^§(6iâ-iõ ßs.„ñÅWK«á‚öûâ–µ»ú‚jÛ·2HÌ |W'MÞ1²X¤wTP>:¶ëi±}žü"b‹ë{*¿ÿCZ¾S~u_´¾‹Î-¹š -S}€Ï3ÿuÓa–;°¡ \¸¤ƒ»5‚@ ¦Í}hϲØx ´Lfhdl›z–˜¹ *ŸÂÁÖ±è„SÍĦ…¶qμŲÐ$ö¬~Ž”ßÏs°8¡^Ô¦ß9. XîDLµ£<ï]¶¬ŸXQgŸ*JåmòûÎfÁºñEªpw™B‘{Rñ S'>V¾îB°:˱ Yc]¢cápqåm ç…1:7âÛ‚WmKŸUHÄC‡¯îñ'‡q÷©Gg"ÎHFÞˆ@C¢…÷ï¿Uœ]à€t2U­8à>&ÒiŠm»rOàÂñ,®Šù´Ä¶ i*6h…@ýBIÞQ«+ëi E¥­Q–`âéä¿ËzÓâ¼xBæðÓ뤆š“&vHîÓdºA²ŸúµAê¯= ß.˜e®¹Vý'ÆßXÀÊò BÁ<”E祤ùƒ`°§É-¾“z 8´¥nËTå%Á_ѪÖÒûãy¿Í¾A´àX^*¶_ä~¤ /CƤqÎåxèÌéLûÈ”ìðŒ½›þ^vgÃvöÜî î5¾Êá‰ZµOl+è%ƒ»ßN\þ¦æ±³>“´š*¢$w°ä‚Vçl.j9´lǼÁ pN>wýüe–©¶„äô¢øsæîý…òabƒ8³‰žÜL.rà'¨†cñã¬O3–QÜ¿R¿»˜õ:›”uÖ:·iºƒ*;µåÇhozf‘nÐ)^"G;r‹ã­ œGÓ(ï¦k±[Ç5ࣥujùüµ¾û›¶—mQ¡¿þÞßù–CµÞ,²ž»ÒDî F&Е«†ôûNð§–HŠ’}þ¡Î’ñ#prΑä´ùu3,9®l8"….Ædѳ¸ù¹ôûF™a-?ƒ0‹d½u­Ê½úž"ŠËÄਪÌJ³©…!Øeÿ{RÉàP¶‚@¦GxŸûÝ®ÜØ! ÓqnÆFC¶ÂabÙúw–2ÒÑXz ø}†²Ë¸™CìûÑu¶-â»Ynšl6Ú°Vçæi[J ’v §qûäSKhp»{Ø–bÔu\—Âí|ÂD ñ(2ÝfG Y«f¸Yuìfܳ7nàÐB·<Í[~ØÉ5=H‹Íí·Aû.7BÎ’ç·4‘WÊú†Bù xN> î!:КÝ~qÁuÅjÕ¯j¾íÚá9ß³¹óæ».êö×MÎq2iCžNf[!—JZÄb£ ä²%‡‰s#²ÂaM€új¹«Èö[#ÿkøk­l<%׿ 7mVåÛë6©˜]\4XªÿŒ@¹ª~}¨~¼mñ€Ô …;1†Ôö«¡idQæ‹1‘_i°u&óòV–<Ï‚ˆ †:ˆ[‹p#|•·üZû°™ïM³`i8ìP§u¶Rép§p|c¹]Dæ9O| =¸6 ®y3ÛìfiƒQwSZ!ºŽXû#è@CÓti=W#Ì1 ±DÓ~Ƶ$M²²¨n%xõˆ yLîu>'–žÇí83Jø±œ7ž_q,m'Ñ@ÐûÀ…èñ?¹ŽŠë÷®Èâ+§²S[Xá …®¡m'Ÿ]q…¶€¦öI„r˜´0‹-³ùµ£ý´ÓÓ_³¯/5žÿàæ¹ôÄšcL°ëÿ0æ#¾i–]ÿ°>˜Sü™j¯] CFe¹DÝX¢åõŸ°j[)µ°+?ÁtWݽ¶ßÍE–ðÄãül‰ ï^£m¢; ¬ë—Z2jÞgr1MVnvG{Õ¬ÅsE¥ö 'È®ˆB³d•:M‚ÉàÞ-?ž¦$N)3Þ–”˱žÛxèK´w‰øÎ¥‹ZðiÑ 3™Ut"ßž§t5´wÌå–o¸ Æܯ勲ÀÁc í¼e±=~=ùè¾Ý—î×s¶®“zâ .ß¼:¾QÂБeTZž‹Å„lý±Ïž­šäS{6V»¤Ã›CãÄdÇì¡{ŽoKÎq×"=Í×\†!–1s9Âù¡õ‚aÙÔÿOÄ ÷Œá¯¥÷us–n›ôžòVj¦Éà´Þn'U‘§<í‰6vcX¬ß`!+3˲þkˆ5<–µqy(ü:atOw[v*‹|ùš6I«E\9ç`hÒ“µlóø×™ÛØô;n´€ÿ-v3^u´9ó«©æÛ6zÖ`š]Ϧœ¹h™–Fý÷|ä¯e]üµ,¿n0†}Íȃé›ÿLƶآË-Äз0l‡Ë(Âh‹¿¾µj¸8îõù“Åç&~õXš»Çþ±²àmw ýcCòçDÆ›zÙæ6~¸Æ-K²3Pô•ÜÖ™”WÒ3üÚ‚æ¯%„¶}}ú)òiWÅÞ|´_=è›·ý‹ÏÎ"Úï†Ø¼uLˆ…îå×glÀèãæ‹±˜Z–Ù˜™t%xµà·»Bá\­#íst>Öµ$øÏ[ß#q_Ó.w×À‡O¾1fÁËW%“¸Aì†ɳ6Üefo¾Û©òƵØû”ì➤µ£¹v›+€oµm#…t*iEvð†@#´æbÎãngÙÔÁ‘ÈZ>®É÷AkŸÅ“‹Â‰—lcÝÞô¯ÉNgi³åÓú9 ¸c¥Ÿ7¤W™Ä¿ù_ÝøhÛâçΚmèý7ÐÀû|l…¬œ UtW-Œ4Ù‚ýu¿†zñ×öØI©³wNÃR„š’ˆ«³9µü˜‚7…“Þ¸ÌsÑ?¸øÏ-+¶-eØudvrin¶Eè:û;)0…*‡KžcIÚ¦åVhûAù]Iï$X²¼»¶îáÙB€5ç~ Îîi¹©’m9Öã -ÿ,M”±îiZÞK×½§#>" ;ÂÍ0±±á!¿ðN¶³È„rÉÙˆnໞ”Õ4ßåc¿Ñ?(IãüVÃß¹c}Hßó+ìc·YÔ0],¤v†M؈†íKåµlî"¨ú㺠™nŒ€ r‚÷³Bô”í|¶">g“üák#L!fH•Ó“²QR¶—]aVûÙó¯%÷¥[þŸ@i¸šO$wµ½LÑcÞ”ë–lÄÂ6-`ÏFS…äEÈ £`ï*{ù@EºN•]vcÏÍÎ,Ùʾ¥Éµ®„ÂçÞôræ{pwÙ&b„ìú}ßìÆÔ_W•ÿ`¹¸GtÜdGÁÙŒÏlöÍûÛ²»ÙÅ_[÷$ïv(+8öF‰âpö%´CquC-‰…ûü0‘÷î- Dqk¸mîk·_Ù%ÔÁÀ]µ³5–wÈU =ê9XúË3ök'.l‹Å©m–ÒV0.õüÁ½mÆ­Ç´[Òìòƒò¬\¶ðÌlì!qØ87Ì‘¬¾G¨Ú+8Š ÒÓÂ4Ù„÷k•“yf ÙîÓôèà(2ìÙPÛM¨LÈÑ-·…èîfø©ØˆG$Z§ØoÄé¯;y/hÇN¡®dm,Büt9ÁeÚoÄ»e·v3ã¿÷Žðå¬çPFP¨ T¹£àY!­ôbÏ7EC²Ë'WÌI2f¾î¹ªo*’_;fýk±jŽ«àcfé=V®šå,®Å%ÿZsøëÈݹq6ÓÛNÉî"¤§–³¢ *,ä‹ìÏB ¡“xÐ µ{ß/iýÛá¥C€+7ô@^ÈbÔ¸HÌ`¶”¹‘t3zõk× Nå9`’›Š‚ð mÑÚ«ëBXöfK^ñk1M¿–MÀ¯Ww¶ãŸQ{x4$»™¹íˆÒ¯gö1I™—ÍÉ\õÑÕ“LÂeÇ:ýUwåKwj ³yÛ[ÓëùÒ»yi¹X|šwo0{¶|7Î…¢ÎÖ¸Þ¦­hÿÚmU¿†¸õ×~펨_»æ×n®ù`æ0Xc‡!~Ž» Z{=ø›ÝÅŽÐ)=¤((!pƒ=o­ýuàÏúÓ›ÑÂèÇ{FFaC®J{Gñ÷BLW÷¼ êW›ÐÖ?ìq“ª¿†»š,™«Ó‡ù.<™¯&þ:fé’±ÝÁ­­y•Û¢t{WW8`€¹%8ªå´ÌV%¹Èj'm“;3dž®Cfou aYdH–± ƒ]«Ýaz`ÎìôÍþæW¶\=ŸÉÞüÙÃóî¾!£ðï›ì¶ø0T—„~Ý@«e¯¿9ë4Ö1m8¢+ëæ­3ó+cêä‘ zˆ¦“mOÁ…´~=×]/»ù÷=B Èîh¢4ߤ¡nRÔp¬2!âhÆ££©¶ÉŽÜÓaÇn}Oû%rU [Ò¶’.êêYÝŒqºó7Hv";l{_­Åúò^á #ž]á^S`‚oâÇ:AÏJþ{Wœ[r‰¤;éóïÇ!cI¨®®gúˆ©n¾bîØVé‡c»üªý 7‘kZÔöÐ ¤€H¿Uq"6ÿó¤–¸;tކ ×frª|`lo¾j[­³xyÂû ä©|w[ìýý€7šåë÷¢JG°ûE”v9(‘­Ë´O é Ay¸ Ð-×¼œïïÍ̘ýP‚Å›öÝÝ®uòë¾Z"d»y$ÓŸ³KšMû§¦ãÓw–c³LÖÝL^ná³M£<ï”méÝ,Ì߉®JŠ å@RSt®±r…¤; ^eõ¯¼až@ãá}Å­Í¢¬ÆY~pÙßTcn÷­-y¤·­ÖÜC‚ÄßLJì$ á¼¼%·‘–áÍ«²+bZËzhé½lwÃÓ0›ôËÑÚ{ïhó>6Yš5>¸ÀÛ KGЄ̭Ã{gyÙuulRné©íÞ[îó˜ü Q`JÁ®‚úkÙJ\-‰-PQø›Ìò«°£^ÏÞT¤O‘3\û7ú½f,:q¦QMwÖlzµCÙü ÎoNGÈð$Ü{8BôKíáœA]Á«³ýŠ /$Ÿˆµœf6?ñøö»2JüråµÓUu÷Γ¾#èpÆÂu´ÁÕ3ÿ®0­rëKs`®ej]£ÈÌ8ÖFÚŽäº~8&?S °Hbïð—¸}Šçˆ|á‚beJ¸9ËX—bD“»|¾vFÕ]^„kU·žÕ@ û}ìû‘À– µìuºÇüH òÈJPH‡CŒ, nw‡›Tdùlö%,ÏätíÛ4DR~m0÷h?¡Ÿ‰ù+>µ=Ÿÿ¿o¿]¯—‡"vqå6Ûd2÷t%ë…I±–¤ñF ù¥X÷Þú 8HTÍuoïnGS-ÈÙ‚ læáDzkªÅk?/\é¬ÕWÏŽfpØSyw·ÄE\m)S(·D¿€ì§.nŒ-G2Oy¸1+‹•¾i´üÊmdž̓„fáã÷àÊa®…ìØ­–àÝo¿ÁÄ–;Öšwßñ5i¾ÛFkãÃ_Ë`íå󳤑”`9F#朙ØÈ¿¿¢ýTñ íùˆ(ïĮİŽšÀ€®cÎo7Cj&{I€#°ð8¢üTÝÃy/Gåt%\Þ÷›…).ÌA³XȦÌlœ«¬ÛÕºÓz7‘ÜÞjÇØÅ%CˆÐs-šõ¸nàÃAœ‘º§‡wKn^ä_»ý×.¡ó»¡m•Ê‚|~Ñ¢; SZ3Ù…›Ÿ²3â¶€aãE“ýºÖ¯]¶lÛ–àƒ“ƒMQaWk°¡¾ßíó&Cšcá/R?’欶?þEÑwÛã_K å %vŽÆíɶ[Év öJ~p‘85¢{<ÃݦCÝ ŒÐ$¶œ³–ÂÈ/2² m·XRX»gÏb*ì¢àBË9š-Û â+cà†˜4ÈÐàÝ;µIºiŠòÌW÷ý²BwINiW ›Ûµ&–Ðm«³< ¾©mÕ†b}ì™JŸ’:R8·×ù»Ìò±kîÚ8ëò6Ú•>üÇÞvÄ¢ü³cQ'<çÑmÆ7,ÖsªO^‚b6/mW7ÙÙW­ø"ƒ«”Úû÷cñ÷ÍïòQ¤ª4å°0áëù·æÞg÷B»uá×@0çü,÷‹”ƒ44ðF;$hK V{,dÆdÄžC­Î2ì£|˜±@¤é&¹k¼t#F0‚Ð"bôÛsŒÞµÝý×Ѥ}¬Í6’ÿª#©õ«’ÌrXÛÛùZr´üÞ~q÷sî±H·Ðr<Þ£{ÞÜ+œ}‹ìε|MwŸïË›Üýr;ì`Ñ=~9ÒmÖÌ‘CIÔ«›),ÂÕ:Ô{?æW:zš~ížgN±‰–…Úõ,v"Ÿ -’¤ÖtåÍ´ùkIíC;Ú}»oÕî†þµäÕ¿–©æ×Œ¾9š=·JÁF;¸·‘üÎü-¸Óo 5 ­­üÿÚ5²6 ÷ì‘wçͬê²+¬øÄܤ‹`@•š™M"jEþ æÚyÇë—ìÒÇàãu˜¶xÄüÞ zç<'c‡p€Üd'àS­ÍMiýk‰Ÿ~­'µ„Ò4ñ¹Ëñ&üüØÚbRË×õk«³{ðµ·ð²·uã¡îvNþÜ{WØ'êQ4ëX*£‹búײÝš:îhç&DŠìïз\Y/÷¯WHqèx‹©\UHbPè0´ëto÷³^Ãèí—¿Ãì'b•VÙR'Õäþ<'"Z~ô·“íQÓyš«æšIWËÅŽg7Ík7ä+dA¶+ùkZ”ë9ê"WÝb݈3C*n™}JèˆÌ/yB'ïí tñc¬ãî72L׸w½@;~øëö:.õO=œ~IgSŸ])r+-ÚÇ¢Ç=™ùV2¹j)W ù×r!Oä+ÒLR`Êk$Ú³ 4f™54ˆo(÷;¬M^Ï-÷žmSñ) \²²(ðñêk;4ôȱhŽô¸Äçh1‚‹FrJ}Õ›Ë~®ãC:4ü§i(Œàߤ-WÉÛ–ýÞé«+%d¿òý rS*ü"aÏýäf¿6ÏG2ƒw 9»³×,3ÁÄ,d…¿Ý ¶\M³þà”[×^ÁµÓ²³Ø´›Q¬qp?ÛV»ÀÑÌ–TÊÎÄZt"±D0>£)ýAd$6í5Þ…éÛºùÞˆ…tÚ]Án:É"îÚIöÕ(ËÆdó>øæ¸bù³’½Ýkoų¥ÛZ·ãxVooSà<öN•׈ôÛs„Yj<; ®…»,bÂÅG‡Òo2pK¨ÆN¾Bé#.Ô±ÝSù5qA1Æ`7ký¾1ä[Çé=ÒläÏlGUzqo—»Ææ_P÷^Ü õºá ŽGÀ5!L,~¯' ¾×Ю'œ¿aX‘r <‚ÇGw×Üè#[G°ŒŒ¶¨Œ@yÂÃñ-®1;Ån[óvÉo³’œªg¬*,•1á?3*`Ѿ¤v­Óà\IŠEl[*' Î"~£CÖQɬîaE¦Ó¬Öó6×hƒ-ÝZ~KÛ ²x·ÙÞn†6ÇãÆ¥=ÕüÝüf·G—'±ÙŽûU†B‚Íòs¹¹±¬ÿÊXj»In@Û‚|øq+ø b7eebÅð阥§r^¬ð­S–s™©cÇÑ‹•Ô]»MMŠ?ºÀ¡«îñW-·fÑ—aïU¸ëééoL°=/»´â÷cõ d ¶]å=ùo=“ñ¤õ«élÚý–ñk(÷Á¯¤ìœÛÖɯeñéû=¯þ.4j‰ž!XÁ)pÙ%t]×ëxÙÕ§ Çd‘Sùî=DVwÜ~Á¿öoÛŒ›|Jx:¶‹åæšUÓ8šÈÊ´4îïù<»t˜%Âñ’:x8»ªñ™q»Ú-#„mNY¬]»eK@=É-YÔ=r, /‘Ž?/ò ]-zn@Ò&ò7›,…†™ísÃþxSÜÛ»%@ûµøµÆé×r"ÿ~Tnˆå>® ­A•º¹½Öôx„<ûH䪺ÌNfÝUy7Ðjã:j„Eã0¹ÝÃZ®×í6ïüZÒq“¿û!:+ÙDùâµã9žÉî2´ôãÌ»È2‘Nùâ°ÈOw+ªÝ1I6¦BT…êɽÇ®|ñ Õ,¡ë=dÉŸ9/º¢®_+i>Úâ¶Ðä@.6³²|E Ù®¯f ö>fÈï>½¥Ä°Ôin4Æœ–Ç1’8 ´K¿ŒÏM…±†,Þc5ž›ížÑ¢½‡ˆRîÒ­¼i]ݳÝáôAlHÉNp_cwŽ‚Ï@ ÐÒÞÕ†c£‚'mâ]¥P·ÍC²›ŠsTà¤=2UM_ïä9Ä]ùOå›4Æ#•o/YÈeDG©2bä jdÙØmIÊ[¶ØgõÝæÿZö¥›]©ÚÝüòÕGvŒX|Ôò WwïwÙè>é‚üûk‰ê¯>²ÃYþnAGÆàÖh¹³BʧJÈçKåÀÕ¿;!¿ î–ï÷ëâ¿£Ìé­Ìq ðùývlïסÕnB>¿}_‡ˆ5该¼ñAÜЬñ¿\l|~æ]Aµ#ížœÓ #,mAÙM/7,ò‹=¾#ð¯õ &#œåJv ç÷Ø>¶·”fdÑ.Žáü,[ØUù’nV@Ëåöè¤ïGóÿ¸¯#Œ<܉Ô'ï}Ìw8¯öhùï}_–|ßH|Æ ¡¡öXàMù9pö‚É|…·EÛÕv€é׳°Ä¸¿¬©+„û…-j`€·T‹é ëƒ<éÚ¸‰— ÍÔ8]ÝÄWàîS>»«î¹³ÿ‘7z‚g®¸Ð®øØÙhÊ7ï4«&Pˆq²îûq-¡÷XÆiÏwúèWuÝÀf[U° |‡43ñ o¬7ÀÂ/¸ÑuŒïl–Mn¡kîËÓtߨU;ðs›´ÿÅÿöû¿{âÿŠ/…ïäl'þü™«{C«¸ÐŒ¸žºÐË¥ýxnD¹¼Ãû¸—:Î🇹¯8ñÅ×wÆÖ¥tý¤AhО6~`½ÏO„9ŽRWÿl(Ñ,1ÇõE*™gYeþQ¥…ÜÂy=ò(n¥\^}ÃÃ̾N@ÌzÌÄÚ!LW–!è6Íä{ý<8H™gx}Å ¼Hm¾'9ØkKû©ÉŒAPu™?ÓÏL£¸~CföÊ,Ó¬£ìD€=½ËÏ{&Ô§ïw€æêÆQöï£FÓü÷­5Hpñðä}óLó[­âíëÜ÷&jS™ª¤jõ¿¹É£;™Q¢G3ÈÊÄ£†}Çâ„©ä*ÉÁ¥ÎÚ‘ŸÀ½vi«×yNTFT[CKÑϹ°6YFWÝOäïŸþÿ!qp¦Ö^åó3+¤[Ócaát¦ÚÛ±zF9öŽ|éAΉ¹)Ð'’­söÅÁ™u^ý¸-2ã ¾uØ—mH®o{VçTá&uŸ|cßZ=§4j`Œñ¬Ü÷a g¨½eÁ$õ¡š>qN ®?€9õŸ5Øu½H8ÿľµ‚ÀßÅÑq޹ÆYÄ?Gü úÑ"X ¸=«—€ñœÓÛçÏ>aê*i¨-®è´s!ñ¤ºIò ò¬HóVÈ:SƒÚ7äîeËKA‰ÉàÓ‡Þ_®Õ›PÓeÏG¯CÇÆ:}^û—ãd=®=E­²MÜ×ѫȅ%˜Ér ÿ¢sÅIÜ—ó¬!§ëž5‹p**<Ô÷²LšbIU~ÃäF>ד\ýéч[RÇ6óö%'„OÄ(·ÙèÇö–ÿR;öª‘«h=YÏktÑ@J gŸ²Hfæéa䪗 ÏD~.u–¤xŒW!´³K€@S98†:‚—âÿîõË“¬}‡0ƒ´¼8¤„zô @ sü¾žu2=à`»(ÌÃz6nßrž´¦,á‹‘˜`ƒµFAhË„\ëK!ŽbVC»¹¿¶Ïɯeª`‹¹*N~'cDmY$w«ûÎ×Lìa–ÙH; !Âa~©ÛV2À§Ç .çL ôžÃîêáùíüyˆÆ‰@1èKáC‚Ë(ïü_òˆy%q çíÅR‘9 QÂþ|a/¬õnÙC!Øê‡ÞËßÏÖÈ“šZc~‰¹%ìáÚ£´È—`f/(ŒepîHÉ¢Æ*ßa•Q V]ï¸(MÕ”ù*éÕA“M|æÇû-†šyè[9bßADáïœìáEÞš«2Ë“U g(¦ãÑ31¡qBNÑ3•ݾC€ÊøµÏZÑúøvžlaî,é1_Ä/TÙÀEpl.l¥IDk=ê46bû©rÂ<³à´U‚a ÃìöŽnQ_aXÅI²hÃHW³®uÖ²§xØÊËCÒ½ÁVcçI-+ÎvrKâ?mNIÈkÀ¹Q\}‹׃ֻ腠UÆ%mœt9­´õuúÄòÈɲÁ¾‹í%ñTgçù…I5­ñv•€À…œ4ÉxФù“ÐzT\|ñ²d¦Âqš‰KXÊV8í¼–;ï1±ôÕ^åH¢â‘4ÒŒ¤!KÕ³ÛÅYÁGHùH8E}xº¼¹Äž¾ïÚ¤ZÀùTýýl`#cÉ*eÞ´\Do3m.’¹gØ !•M¢ŽÀRM_®f+i€–M¢Â­$„,¥i] –ÎH¢ª­ …áÖöCfR\õ´ÞÃJ {}߬Á¥/«>7¯bc× ëOžÔdÖñÉÐ ˆý`^÷ÏêàÞ‰r,39q,¤Ñù•ÁF1)Z^wp{CgÙR«Dÿ³ŒÙöå"õnÑH˜V˜ÍÄ A"‹=½í°¿`®.ׂ^áðÎ.>XÀER-al‹\÷X+x¢´ˆ>–Æ!caáôÑ£ÇíeÇìhù˜kts?%ï”`ß÷‹*_ž9b7/«V•9ý#ÏRt—“#®¶fa梢÷À¾"Ž¥L4Ê4™;rÉ sÏÖõ Uyk}4&#QZCÞzxˆVfIy•EÝÅ'ëÒ3yÂÄ8õ¤.Òïœe=`½A Xô³°A*bSÀ¬eJd6,¸£§h5'Óe¸¯L? ¹«R,ß#—çDóó/r=ǰ^к¾÷órö5F}ÕΚq'‰“{ û¥!x[VØË!KM  d©3²ÎaÔ’Õ ²?È>_ݺU-™ÕJ9–ÀލT€ã-Rטš.q¯½;‚3*ê1êüFÑ…ß h"ì]ìîS·%5µôæ. Iøá§„óÜ0ÆZÐ6føEòJFŸ„Å%y-Þ:¤CR.l›å± -oD˜Öš:öFì~¥ø©î$BÐxÕÕ/øp²cÊÉÑ6Ócªí榺E ‡!çxµš1‚aˆÞ=¡ »“­msݙٶ½òký†Á4³4}FD/œÊË88yÇôødP‰‰§>YdƒsÄ b‡ ,N±«¸Í/—[ÅÖ’u›ñ²ó±@jÛfð—N–ÓÞµ%å[ÑÚvåcûµ*Ûa ´“ªæC§뉈¸uuüxF&M!_I:]Ž.¨p Y/«$0ý¼³®Ä nåHU*„P§Ò¢¤yðò“»QSx‚ ¹ ¦êo t–,?Û>sr–*;%¬P‰+åýÁ/ÄB–øÈ#—Gœï `ûal º> e+Ä|¨·ÀýÏ=Ka[ ‹¹ˆBˆœ$Ú’!p4cV¹.3¶oôñÐEÃ<Ÿ™ Hâm¥¡3k?åxDϵuÍZç˜HÄ­ZàÈ¥F±H±†lÈkÂò °YRhá¤Îef÷Uí9?˦ò–¤ynQÿI¡o ìKÓuR%ã$ÀÕ¾Üäú±çÀÑu—ðˆ“ {ž‡z9AïÍî’X>£‰1+ÿO 󩴇ˤ/­ƒ©¢ñQ›»Áö ÎqRôV©ÑggÒIÅø²òhŒÈ©—Fà‹X ÒçK¬Ë¶AÂåH-m¸7‚#ÒÉÄ“ÎÍ’«'À½Á¤3ÑëÙ(JUüôÏ„ä(ï쥌ӜfâAjÏ”ÅUâ^Ž9,cFòrs ­xr7Xµ}άøëMLRç ="h_.]¢vÏ¥$MÚ‰äÿ éðpª¯¯zçj]_1.kh0+Ì´ØÄô0h*6¹GØlNA¤B6|fôÂîÀ‰) G?sÔÂá¸kÐr}ak|á!}¾^9%ºÊŸS*Xκõ¥Î(‹Ù‡Z2ú įYõ…8êg¨qºœ$Ú‘šscs\”šu˜‰*ÅÊ M[TàëÙÊ.ã‘c&Ä( 1ø¸yÔ½˜‡0Pà™RЍ,´­I,w:mЇe7ĤZ@`O§‡tMSf_E[©e._ßÀ3|ã(Ú›÷|(`‡ö ¡zÚym£´²X SÖ“ô•Xæ{²ÄW7dµç8˜õ<Ò=#ΘA-ýq ŽfJcJڲ᜜æa…"VJ'ª­>êÕódÀ(I2l“¤9»i‰KÚEáÙf¨Y¢ŠÌù~á4ÕV˜¬f-˜‡K‹yHÓ|†¶öS0/¤¾^ãëÛƒÆòOÕ¬™›Íú±s‰×E-(1È ¥qR+V™i8Æê°¦s§d*) JÖ—å žî8`Èãiâ¨=!©K“›‹ØÑ?˜0¶W¤ãLdwÖp /'^Æ©¢±ÂvZVËP$ˆ ¸†¥¥Ýc^߈kKBôÆÖJ;Mõ‡ÄÿUãvÉZ§%H߬–¡i¯49…˜ÈÔvŒR$Í< í û®µÅ:‹ÈÜ]ïXNW”oz@k¤u†pLb‡f(@¬N¨rŽâ¹×„Ë´ÚAØ`ÏAO)²]€3Å9³VŠë_ú,ÓŒ• ¶µ­lâæ’¾TæärÒ¢/~g¯¹­½ë-q1ÎÓ£Ÿ¶O‹>7À±M¿Éáͨ ´Y#` K\ ¡ÁZm%áâóHa’é&!+éžÓmy¦,Aµ¦sÖ;Ä :Áe7YaÖ™-L¥9ÏqÊ­ä¾Öò-=m$ÎûQh #ãœ4çaHȲ˜l\EÂOÃáIhåÔü 7²Vµž¨ô²bÀÕo?8ñ ñCø}Móá1 §#jtÀ8uä^O±-¢8´2šÉÂRbgMŒª!Þˆs¢e¶ÐS5ebG0‚ÖSȸ‰ð¾…c.'”¾k"‡¸±qÓêJš• Åm6Žô¢Äg†2Ðü»«ý‘ù§å™É|SB úÌ,ÅuÿaÖ ²D¥ìÀõѵxÜØ·ìs… V¸i›AJ…h,U–>¸®RC0Ûðhó†ÃZì£ò5ÄÊrñI°¡³ë!~/ºº>ý³‹ÈñÉ@ÊìtÍŽóžg8ÀƒD6€t"ü0i*%Îd茼²Jo“‘7á<ÂÆGaÑ…Ó&ì¶6}í‡S†M£žÉ{Z'c•aH’¸¬Ýz—æ8~!›IR’gNñ¸ìŽC'(‰ìó¨Á'{øƒÎ—ââëz3Œ” •X¤l8zm•CUÌñ[ [!)ž†eÜƒÚØwÎEiˆÛ4‹“Á úm[³sι×r°_$ß©K–ÉÌô>éɱ·îû¤!o?ñ/;0!¿Å$¥hi™ç˜âžÄ 6…؈(J.¦'QïÛœYÉU4*1,ß(Ì:æh—¤1y°Ú'5itŽÀDé[A*´Œ]Z´„‡ðŒ$,caš°Ô­1³w6Hö¡·­s4y-#]ç̪ϫ]ÂJ!U3ïËÀ@“j}À…Ïlˆ?ZšàŒ)©T¤^ŽçáHVÑÐ .‚—^LÑÜnÀÔEŠþ„ðÅ 8gÖ3!Ë39@'(-Ü…!0ç´cÇYSúw—üÙ”žÓÆò øn·?>‚œˆNœ„ŒšÂ=8ûD2‚G”„Ž‘ƒX5¨ë$Оkδ Åe¸IZ¡¼ò´€ã Šp,³Æަ³Ô㻚\˜„îZî,öΉü¾èÌ€ò̶Åƹ;´m5™ÿb¢À¥\‡®L÷,îa¨“ÖQáÚHe,ïIkB$‚¨ˆlÒ„gÊ*ÊÏ;Š(Šèˆ®7*Ì¡šç‚€vu2Y/ §^ÀÉ$’¨ˆ1¨$ŽHã” ‘ PߥŒMl5‰ˆÇPgIé‘%ÓäŒ/§ƒjlåƒ'9,tM›kWÖÇrÃä;ÒRqäò»^Ž e“ÌÒÔé<U". ¨çŠ“  ¢e¥Ù’ì t2Cj…´=ÃýDÄ£ç| Š¥K}Õè8›¹AT¬½²þö4+§ïHª,Ò'œŽEˆ*†½6î‹Ñ?ÈÌr9­Î“bDCΖ¹ˆúÄÍŒâagЉg‹[òê.p|¥ç¨ ŸìÄæDR¤ªeîAv™Ò4¢'Å04ºPŽøUM‘Èúð¤srŒI¬ìy¦_j°Ý˲› –Êb¼LIá\ìcÖVtš(²“¿¨Ùw9”¼^ÐpcaŽl<‚omÜEÆþ¦èÞR?ÉÄôL ëS6‰^AŠ}Ì@r§æu\kýäG @œÜ$möÛ‡›ød¶>[.:ÚÇ mÎL«õàÝyª¨:Ã1\—§>[µ™SAÇJ<Àcf¦$vUÐDš^UíA‚4ÒÊe ¨3Wúº½]f•)LÄþ¾äðmi‚;Ä,]jTäñ•Hò Sk†vôl° I`l&:IL&Žt=õdáÚ)þ³qôl`<¹RIü7IøV(”¹fæQ¼6K¤ ßžþºäY€·õO*yû±W}q&~“Ð-ä“`“ÿƒmáàY˜âVÄŒœE QSvX¢¸«&„丵Vp·ˆóyê»ð;k'•H ¦×‡]F˜EÓÎÁÚ$U%ú| Aêù,+вÇ,ÊNFŠª™Û¤M-[gå-¡”m³.>{F6Õ":ÀúIêA¯!ÔÂå4ÀœC¤–åG#6OœyÝH‚ Ci~3±b2'9s› M¥Õ¨3/sxÒð\¦b…mdéŸÞÏg=;ÍGzXž‘ Ã~ÂÔ·&iý¨§˜ŒûžÃ£-³™pìÔXáìO –*6÷©#!V6t™@%†€Öª‚j€L c•ÝL&wP|©ÕÙ*mRãð’¹tk9­Êr_tÑŸ®‰/QÃNF¿´ eaY8è?‰¯—€BuÂiå–…·:$8‚)c-pHë”7m6C÷Ç™hâ‰KÐ(úhë•AJ/ÕæÐn Ïkv@9Xd­Ž#”$OOÕÚÊŒÒrª1b%=Ö ´LG÷ÈàÇå9pš“ÂØ&ìµëÏóýJ®ar$?COÕ.kõæÎ’æöó‡ü[R¨›Cq}õF'G§ºâ#H ¥íá…œbÁªæ=¿0]çLnwYvNrRt-I5Ö˜Hÿ ùæÇ¢ 8.¢c–L(' ôÂCç -9£Ei°´¾°r(lj”–¤Iôߓ̃“vah$Î ŠÆÑ‘Õ;Cš'Md'£y¹- äZ;3`•9¢‚?g)2 ʈcêspnèe @ƒCÍÄd°¿C›VAá -`Ê Q®(豨!~, ļ¶ts=p«‡³óÐLqU–øh±ƒú²WWñ¹MB؃|šüê"&T«ë½œ=“#zl9dÞ¤ À)NE´EuO…6”ç¤èÜT3A”Gé©R|™ÀîUì ò+çz˜«–²IŒ’šÎâ=\¸_àîIðoY‚#Ö™ 'ô1§¨©ÆÝDïœÝGžÛ‚´¼ 7ã¦G|g}‡ÉFóÈpCe™³ßZUnÌ*uþŒ¨¾ÉïÜm€0ƒ~Xœ,Ù@°¨yÆûU>³¶¡)¤ÿ—5¨ò\0sæ‹&¯fB€™‡0Xˆ]íÐ1µj•‹½oüA³@”Xø!Ž3eÖãSÓñÕHÊÕ gªCÞ¨æ˜ÆiÓL¢C|80y_ìf[í9ò¸Ä«ÈPòÈ»š¸6±¢5# ”õç*UvÃÉnžOõÅ4'ã—½ÓáF3–KI®RJœñœhÓ~â SNz4pì%œA»D åÒÎ<ÍÈåR©×DJLÌê5s*-*MÚ'èLTaoà3‡×ˉ™S—Gg-&¡`?V™¦h¤®pVb™8¯³®R âCžƒ·­LÆ[÷=`M.Ñ,R½áPŸç5M:)hKÑ\—\\®£5Í@2¸§¿ü/Ig$QI“Yó@’Î’ÛB3tîSãÔ²”húÄ—Ó€è¤õ[Û|—Õb«sÞ¯OÀy°”^5m$‰&ͱ<Á7{‡ú2¤(ç®â3{Ç%Q@sÆŠäYU'Å‚-jîéÃfͥɃv®Œ"Úö‘â.êâþ[ yÍ|©À²æ¦Ñ Sì.Óåô@„ø'}³ CD°ƒ,‡ß×Zó¤M¦£¥¬ žžY8O2¶xj„À’ Eýô5cÏp‰ôpáà–øy²†î^Pˆ3' \ÚÛW*‡¯–SõžÜôa‡®³dÃÑYÞ5° 3'½Ì)÷Å¥ñŠÐhósfPñ¤ðRp‘¹i,ÓÅ|3N0W8hH†„I±á•ã8…÷V?À2R- YÖ‰,êó#è¡£ùÆ!ؾOe††ûl[!Sœ`>ÐI*Å8N8ð~À>íŒ3cØe¡I&Iºà{H#‡sãp;©¿µ‰,ˆ÷-Ï"–ZÜ9•ñmÛ5‰¥f0›Ôèã¥IBYå¸,y^u\¥,hü FÏÄvù%dHœ°(¹Ä/¥”O­y*B,g ƒ@bæÎHCž„qw…¬-$•(+-ƒSà‡¡‚ONiÃoÃ*,}›± Ñ¥©)ò€°ÇØú.Rñ ›´3ÇbPs´n û®$ÄÎæÞ8=òwíyêJžd:©èáR‰#NrTø%W¹ž‡Kf!Vî!*ÈH¨¥9V'Ûbà_ï™æ’9±¥úöªÆÉ³‡âÚsœ0wÖ¤¤s …¬OãøÉ€2'å+YœndLùsÊnd>·€ãÐQ„>G숥$·€¼˜¤>ÂgR> Fø–¥N}øîUsÅ1Iě־Hq“÷H ‘Lÿì ‹ˆÈÝžv "‘sœQ<$8¤ëlR¹šsâœ`KC_¬=“kûõbÜ`JRš+ƒ‚&D+åÉ¿r ´SçÒaÒ!õ‰DN*}ÕÜ&ÅAc„ 8›;YD }þgƒ‘d=S-ÒH Ü%ì„!î ç{=Ã7¦ûw²¶“sW@uîÞ&¥ÉéDpà»ÊHû,Óq®È‘3Uc;-†½‡U¯šòãàÿdQõüV§|ž³$_š<Á»¤Îre~%¤ (É0¿eR‰âÔ@PÏÆ,ìÃèƒr áÉÁM’(N·jZAo"RºkjòðÕºr:Íø·1Û×¼€U™§%©œÞŒ3Î…§V (}•qw_ôëÅæPÞ³«â³¦g™ð8K|¾(iÜG˜L8nH9¶$óesUIcz^´Ì78®ódípvÍÚÐZúè¤æõ塹†÷àdû”„Tç6–Éà!Ž…Ëë8¾ú#Ò8·M×TÏ”%7IqûàÝX *2£ÀÂÊxpج«å¹:~WŸ,/O¨’Ãs]yÌÅ)sÊ“”iš*”m¦¬ò¦†“"#C3kFKÐö¦¬FžDbÄ>ifÇMÈù€½’°GR ª¹ÊÔû,}Óe ¹Ò¤Jb¹‰tXÜÁ+©ïÌ(µ€ã^ ÙLgÞ*s}nÖ.Ç$ò’ ¥»Þdz|I8’,VlÃï¤tO}äãpÉóÆ>“ºä4w©u ¹ÙKãT‹ÇœÆgýLƒrR-Ì­¹û¢Mn£pê ¸d5¼ðÚÆíÜlFu+Ld7Bß,Of{ `˜LÈ-(ã×]žãïDÂÃqý3ËmŒe2àݸZuÓ<¹8“¨(4‡X”*h$Ì;½,5¨¿¯-ÜÉ,ˆÚÖ œ¨Ó™i)Ü ³+§êšüNîeä à!ì"µoé¯úlD|¤ú:ç%3› Çæ—õdb˜×õ8‚Áª‰|! ï9?Çe±.ªBúXQh¬ÆCþФpÂÏLüu+ç$螸Í\±ë rÃ:ÜYSær Þ†LfÝÄ/ì>0ˇï#L\ðkŽé™¶N&?æùšÄ>#̘í XrÚÑ¡Màô--U“xŸkØšÜ9nYk±Ÿ©ev™SOa¢§ù+ ùPEyÀ8ºÈ)m=Â`Lš­ePáa™%«tX»)ra[I‰á‚ês£K ØÖ‚ÎÙ¥‚x?k_y¢ 2Ù#O{©rCVîg&dnå®ù°ëqyÒŠÚðLòl!! Ÿ£ör"²™õÖ*‡In/Äl]ìL#E—— &dÚ®þl Ë 4fsýtÜŸm³hÇ`á5•S9eèÙS,›SŠØ-t«)núX?‹Évc&êç°XÎm{¶²ù Åb÷-UÏÌ0·ª7‹”„¾šîq ’j1ž@@wˆ-ɯÃ˳#¼öZšy¯H…2¹ÓöC]öFF”áŽÅà\cÊq°Óƒaà>â3rÉFß#s=Q¸ó÷2í|ú´ÈϪOŸ†ƒžˆÜ­Ìy)X‚ì‰Ä®ú¹«÷ɇœ &÷±(Ú‡d€|õcÎíåz§¯’ìÁC<\æ{À›&‡£§õÅ&Ê4¥&%‰.y6u°³0’ò627`¡ó¯œZäi40›0pYÝëµ'¯}Z;dÊ•6M ¡\yáÛܬ÷P ý”Jóäv.6§Ø#g‰ÄÉ`–í™’J¯æ³ß9‰?åH† Õ>0iß}Q (玛VÌe¡ÃQGÇ ù‘k9‚`ý´¡‘f,toE8nFüya¸à¨å[€ñ"<¡¥©Ü‰Ð¼U"l4hD\ÓÏv¹©«ãÄIË-€‰Ù>›k%^•aòÔ áu›lÌ­(Ù\3”ûE³jKiÄc¼ “Ë*œsÞšÿ_>c3êI*3“°Œ…ݤhK¸tD/]-*‡âG¨‡'“%ñ\vàÈ1W¾œjê5qÈ*)RžçðÍ ¢6‚΂V¢ 8•±{õà €’VU ?„ Ö›þVÎ[sÿL£p µ¶ X‘@>MTìè,õÎYÂd1q²ZqX«º|s2%žÎ1!ºÚÁa>“Ú_i½_T{³‚G¨s ŠWaö„PNû›È]žäøÒ×DÏAÂÃB@Ǝɯ°åÉrTewÛîçá0‘ÜêÌM¤é”MHóFvÂ8vþ{éš9ÔÊ•¸âlhEç3;LÒR¼è±Ìíñgæ“Q›3ŠÑf2ÛNåeZ¼÷kí³ž°ß‚T×äOŠz¬Äé<ºå¦3ÕÍg²A;9]_óÍ´35epsÄ çZr§Í½¶<Ø g˜F;ä^áB=u0L[ƒNÎZŠJèBæ>¨ÙcZWû ² ƒÆÜ¤i,A#Ê'B*“@°†¯q¸·=ÊÞÓÉ`7ž–¿ Y¨OÑ&¨;ogà€‹5ŠŸçÜ+îWŽMZÕD¨“‰\; Ì÷¸©U‹\ óhhÊ…¤h8Æ>‘½'Kæ ÃYGšËÌå¸Gž«?¶aÅMé9ÊŒ?1 \™Ñ‹„p„D*WÏ lYöeÐ%rÉïÐÝ9Ü„EN…8&-߉cB¶~ð®sb«Ýx ;UÌ~ºLE‘MÅ}²`b9¿7“…ýR7W™ppRŒ —ûÀ/xI®Ãy¹+®Ø=°÷Ǭ) ©%/ð©És|ïŇK^Iò×ê/ Õ&¡±–³+1{ùˆq¸˜Ø%4_GɹJq¡ º9F›4KŸ¢Ê**Þ ®\ŸAä›}s† •fbºø 4û£´#yV?5Á \m^½ÒJ*©»¼‘3),B“ÎPùG]zA.,d¸±\"Òvž5; R>-Mòø‡®5‚}‘ î4ô( =-;Èð89ìrR4[A+h3"§¾ðb²üH~Ùªù WX2§RÄc ²Ônç^ÈH‰Üé‰Ý%B¾H˜ݵ2Ú Õµ©Áì—œ`}K&ÐÔëLö¯ÝÒ3 1Hÿõº[ľ 9Õ ë4ubÿËZ}xªŸôHy4­vqÉ.ÙÛä)]½²×ã«;× ÓÈ 2yéÅ*§‰og•¬–D“uñcµsoI>Á÷Ã¥ý5·F *²d(¯ )Ç“tBÉ3ÉE©ã\ÒF²Í”÷Ÿ‹i£–c¹Ò†wL;òá±·'²˜°íÑÍR‰Xš§+17^˜ ±Žõ%¼Žý#…3 =Á•k7Øç’ˆò"û¾ø7w(C¯»2È5âŸ[Óì±sZ›IÅ~çgŽ[ÇÓ‡¿á‹å“"3%¯gmS«úþ“:7‹qGÖ rò`åH˜Ù9³À‰BÝb8ùÑp‰ê;8a@Žò ãî“0­ëüÉDÿ ‚š|'d:(šÌ©¸ØuïÍĉæ|–e KÐC­¿ÎX$¡häm#õjÕŒˆÔ«Ïk”ô¦¤`4Ùö.ÇcÏ:ûÍedø9ópšæ…<|1ÚÉ1gÌGÕ Ì…Š#(ïÝ›CqEr÷æ¶FÈÑ´ªôÐcy÷߯cñ­½Æ¸¼•Ç¤ŽŠClýžü é†O#7Ï5‹;ï¿«:}r–à•ÜÞÙ:æŠÀ¼þžhƒ4Hé£ Q™læé¸o†Ø3IÚçtï¹äÚaB J.ó=‰Àª¾@ûg2òæWT†{ø¤M8­Yd ØS*ÊÐ78è¡‚z¸i½. ß suŠ»GêLÄ{iݪ®pä'díC"†'ös7‘P°Éã‘ðâ^sF˜ä\£!uRZKò8¡°× ³ò –¹¹1æ(Íä xé29Hž)’h8̺_|”b.wèúc =c¬§úËbÒhIFfîîÔR ¢Gáéœ~©\( u®ä”§¦EcÎ6Öƒ3ZÔÚ-3Õ…ëòBIZa1»‹c£__ÈP—4êô÷M-Å5֑Ϙ|dšMº³}HOŸ€VIj¸,DÅ]Ì››¸KYK œ$#€þÌrsŠª¾0:Å\~nÞ²I‹ù•lœ%ƒwª;šÇóâÞAï±È=šC«†v ÉH8 $8Y&–ýh\\Í&¿•…S‹- çjäü2[i‡}Αä€ÍÉaä ;é£ëÜ vìÞ–3ËxÓsMÞíD‚ö*–!(tCZ˜´Y,’ŒtzJ7…{Fìr Ê|ªW›½E.d C:ZµìBð)Né§NK´ŒKiýLI0,kU‚.ó7ÂfjÇ`ÏÇ石í¶r³\mÖ_ é uÁî\?‚V± ýáA’±fÌEYùX1nïˆ-žyKî„OÏ8œ»4I?ž:ϨŸŸóœ¶bÙ8aƒG^w…`֦׉,)+_áS“(U³ æiÊÁqBßú©52Ø<ÚXc휛·Úé‚r›‹-µ–Ém’Œ6¢Ø±‹àŠÐ@¨+GöÁ^³]¶kÅéHx§0Ü¥2·f¶ÇÕ¦D^N™‰¢3$³aR(· #R9œ«s:¢„x²°4×xIOŸœ$ŒçŠ’90kË%ëˆw`ïÍâ-_‹–oán£GSJòà"ok‰ùûήײ"²8 ÑW ±áp LŒ(FÛÃ9ÂðžY"&óÜUzædVÝËÉΙv°¶,JÍ õ“$Lî;‡LêHB–YÆä¶ÒJ+ÉŽ¬œ1)Qç]k7ƒˆ}FîÂ+š4rsM¸êÛ ©îr$Öe’Ùõ¸ƒ;RB8W¸MœàbùÌÃb,ÚÉÎa#CÛü™ýˆ°­3«îƒãáE¸Ùgg‡(»2ÄOÁpèªMÅš”a„‚öë\æ0-ׄÅ!ú„3ý¨ í‘‘hfw#[–k¦3¯êòTÄD±À\u¹n|&ì¡¢âpp]}œé»©Icg»‰Å‘gÆÚ«4EÎm16ÐÏä¿J° íP Ñ)P“]Á@|¢rU]\ÀvM¥]ÙE$6—êÊÌvôœB×=GÊz`æz¶“ieî¦mIªè,UN!¿¦ÌÖžpZbLPáÓÿZÔãvènùfZäèÊ›œÀá3V uOH+ôdOvĦƒ®æÖôGÀf/ýÀ£k1žI?$yʤ,aQ]j “4gJC»á!Ój*Q 笚çG'¬ßÕåÛtá\"À¸FÔõ aN“=ãïü·zUÈWÅ„ uQ 7;&]‰Ç!c7—ÇôjcC6Î2‚Î.‹´2©ƒ†´“ÈHs”κö¸Ô5 €¾Î…‡sp}!Óûnûwp YgIν¿š±6éÂáAà¸þ´³S÷‘CVCò&ަî,oQ9mýÔƒM SçTÌñË%—§¨ÁH“?4œðºÌòRW[ÏMœ,YKù®5´ßÕ™g¦¾4‰ Xü¾( Ð$"Ä"JEŠ_|éÓÏä‹Ö׃äf2š0'ËrÎÂ"î›éº} ¾¯¼†„Ÿ›d³¤ß›dlãEEa…Ⱥãñj§Ž­š×ŠM飵•ÂZW(žmœ÷R°FªŽºmáÈrŸõ‚>†Ã“¨l¼îøl½¼WIï¯lf®ÄÄ¡œ6›Ërh"Ó¨ºz(ÜËVÄ:·Ÿ“9AbÇ{ÿ4m`ç9e Áu%È.X’¸Ê:r`ô©€ÖÔ¸ZO(ùù³àþÚ¤H§ÿÄÓç$hRä]#ižŒhû"grë³áHË\Á.ï4›ÐEË/s枀y¤?Èòý¤ÑÜ£¾ÐÒ¹dœ]²†¤wê ¢§“¸»±ç¤£3còb—³&~pKÅs–^Töde+…-ÒƒxV%L!a!ÜzpÊD!ü»2N¶Äȧrá ÌŽðM`ÐWJÊç*~…ÛŠágr=  Äv)¾†–dGÔ™ìÚÆª ŠFXˆi§…”)bò@äúœõ(LÞ‚ÐáNúCܹƒæ‘Z<ɰZjA™‹—0®/x59XÊ#Ä`«<ÛÖ…‰)h”&³Ç>d\©:ÇãEî¸7d"P®›ëµyV¡Ên¿þZ¦PÞ¤‡Í¡"ÂP™*XGàØm<ˆ_–êËóâf&ö…ˆ #p?UR¸’þ¢)^†\±ï=‰x®ÝÕáûB âgŒuÜ*z¦|&UMQu!1Ëïü…Ƚ97»v`e)$ƒÃ‰‰³ÉI#mެV#j,"³«ti.û:-e–V8: bxÓS¬vY¥ ;ë=Ù†(uû#x6/txq<ÁçKyG,(WAC©wå3¾ŠC[$äƒíI‘ ÷ú<òЯ”³ã”€BžNRVµüH¡·Ž‹7œ<•äe:-bî Áe•v\à6àuáSâ Â@Ä%–·r9u^.†ÎõŃK¤ çÈO5“¬GmR5c¯«Ua rlB„Ó=äzV¦•™½!£"Y? êÒ«[±Q”9gÒ d¿OþÏZ+‹æøíåd++UAߊc°©×ÐZ+øQE:Äu³X±/Ü,2°ÏFÔé‰Ê-έ"¬:hšˆ9¨QúÇe¦ÏÜ炃͕lm²2omaç,>gˆ+‚[E3B2©p*è5áÈ5Y½‹3˜ÎÚ3!X§ÊÒË'6$ãЋÑ&ZGC«ÀYÃç”ó9žLR ÷°ØJ`¥¼pšã\A—ÌÝiù$Â&4±ìðÏ!êf¤CîX-/‘(Ì­5:‡0C€\$8{ˆ(Që‚„ãrSΖ i‡S*ÚÄÄüjX“¹ç®O(Žh<Ñ}#[+—Pp"æ0qÖ<¡Ñf™<³9ÿšTN$È?ÀQÎúͧÖÿ„ƒ!ŸE~„€Óepný)RÊd§ú‰M—Lqÿ ¹ÜNʼ–ni$ƺwðHg™·€g&¡Þ½nÒÏÀ÷È4 ‘;Üã(0&4¼¸Q†æ,Í!lj[àý¸t"_Y!ŒOSU¸j³tIüí8vï¦qŸÃKì-mßBZ®½hÊNO:Áf1u²bsk: Ž$ æ¹ïæÌ>Ï$ ‘${Wx*%’‡‡fØr(¬.sI¶µ÷ ÏBÍ3ǯípi4.Ü’óÂúSÃ$E"#5K¨ÅÁZÄ5#y•<ùU¥Oúk©<'0Ä( sïëc¦^ŸÂ4.²Ý¡}y8 ˜¶™¶ Që$öÒ=‹¼³ú ø!ï )Vä î/§ñèLáP²{¤Y0{ÎŒ+r..b?#ÈÜ [ÏÂ?ȶ7Ù©c«Œ®ŒDãYydÀœu¡‡mu5ljí"ü»s‘@@Gô­°-j‰Ûû¾ZÉ„1Í ªAd“ÈI]ÎA2S‹ôF1ÊßÀí¦¼ÔBÿÉ©l•ˆ}›ö‘“ÙÏkØ»³7•p”(8$œmëM$ E¬§N¸F¹”Ã:ÁEßýµmÞLÄ ªîSRîæ}O=Û®»n¥žÂö œËLönNG€tù5üÈUjiuûÛŒó"DuSà¶Þ!ƒû\ÞŒÏÝÜÉ ¢•0Q3S¶šOE†p„”eÊn ǽ¥C (\ƒ(Ë ìê.“‹šbs+q8T¨nZ’EÄN$ˆäȱ†ðÂ’>\†ùªè2–ö}æÎœ~T ÎÈДL‚®¡‘·´ktF¼×svÑqº]*圕 ]©¸f¾—9¨ÃŽäº˜P;±.œ”Uwå˜q|VFa–MUwã·o^—Òd2 MJjÒf*IÍ…SÇiî6Ùo1§<²4NÉ}HÊ%ù0R~6þ^ó眥Kgro8q [ðx™Pt6ÛÖØ[Êä”âÆäj%¿x;© c'‚4Õš±ÝIƒ¥•Ö<§JîÅzôa¦á ®)Ë~#‹VôLlÓ'/ûäõëH-M2ìé(^ÈxDÒ ¡$ŸÛÖžYÇ<í”R=ÛOHR•²ŒÆ1Ó¥!(Ê>· Qô>²ž g\¤Yº Œ‹ žÒÁMDôÃ{ÕÛ I•’Ýu¶µ Ø˜/=gÍ"‘ÕíXy&¦m®o:]3òZä~æÊTîµ8eN‰1¹Z“ä.v×`2(ÅÍï1ɹ‰*è²çŒþdlùW2*.M|jÔSzO;0y`Ñòµóú=`Ø|‘}Fäk ‡:‡KrÚÓ†’ʼّf=“°ïpÆkÝíð+WQ5¡Ÿä.Öi_d°w)ÊïÚ˜ƒ˜ñÙ5ÌÉÖMQžgÚ «ôrEè Ó:u3•)I)¯IL‚siþ]É÷$‚L–ÇivP1oßp‹8wÎlËQeVgÿ»èø^ŸºÂ9¼üµV޼\Dp–…#KÛŸµUËrpÔtRœÈ‘’#7No«ÙUšë6ƒ¾‡åcngw*DöhÓvƒÙñkb”k=n s"GXF©HÀH}ï÷%ŽÃÍp ×~8‘^C¹uO`ϵM¯F6âU¼*iü¸úYšnŸÒè÷ö j;xÛ’yÿl`'mMB^Ö“–AGÐBÑÒM&£#l‘Î5q1SíQºˆC=hÙá©s•OQs*Gô…ô“u¢eÞ‡*Ä ÂC—&¿c8=}ì‡wmr1„p†oâÄîTÁz•cUÖ1Žªà,:'»ÒäÆýwÕÐovÝ0‡.fþ!¶ÍL~ òGfÈ2†‡¿g‰y‡áu’a§ û‡g¿—Ã"²_xbß8ÿB¬ ²âyÐ`/°-… ›y¤™a‰ó/7Gi/v8Îö6·Àûžh0Î9JÑØþ™±à&g0¾LÊç;×Íô®³%÷ C–¤˜ NË"X'ÕcCÙñÅÖ>ä9¡âÍOJ—ÁIçWìÉ´”ðÓ3ëÅ}7:[ÏmZ„-J[îâ`»ôo8žËŽ 4ÖˆJ±ê"÷{}Ù„ûL—å÷5ªÀ¶9õJv®¡ ä°cƒ˜_™`ó”?(*KÔõŒg2úéé5…ÊÕn¡½b<öG7&c¦Ff«ÚTÕÝHÐŽ¸zXe¶ª»$ç$X¹éœ=çÁñ´ð!Áu–Î2M×k& º˜Ï!ÍØèn’¾´ÆMñ‹FÛû2cD-åÓ !¶®ëe–á å\+uâišß¦Óœ„rüWõ ¹Ž­¹š‘>/¶3mB"²³!"aâÔ¾shD.óÌÞ•>›#H¸)uÕÚâdÆeÍJãÌÔ˜¸ʦ»%1­1¥g‚ˆQ^*UóˆÛñÅIãÌm“ŠÊ¥ÛMå›$ íÏkœû›BŠ÷œË¸ŠhLá|éT¸sf?$ƒÍ¶úÚ#Áé~xŒC(‰Ü'1¹9ó…EŽž) HÚÑ#Ì%“µg¿iõH½«,}þûçÐ'q ¤’ØyˆcÑI›[erZ’ãBOjNjø¤Šx!®É´YˆÜÍš¶N ã“FBëËK+!wœ¹´âp9¿\•-›L}HŸvnxäô„ø`n£WݤʂG|N¯Š›ê¸_aÝîC!èöÅÑGp½šíeZƧœ™¨I9Æ z8w‹P¯ Pa"Ús‹Z[äš!ÝwGGZÙµH’ U ­êšåì9ä9=#E¦jEBbdÉ”Ÿ•GfƒäNâaˆbáêTéÿ´Ù,/g+Vbn£ÔËʮޛ¹‚Š#”2>ÄÑ\"HZ×€z®­(¯£¸X‡8}ˆ-M:=ù ‡×LlaªQYHáÎP'Cé–_t*†Ioñ¸yë@»:…¹ÞwÿNrbÑÀ-é3‚!ª-é|ü3¥²•€µB*…MÙ¢ÀgÚä`Mõƒ‚8’¹ZÛôÉkËÏiµTãªÏ´Iå@ =¸xú€W'›#Kª"ˆˆ  ¯¤ƒ§c.|ŠPžEŽq™\%iÍÃóÐsÄMâò±×‚oÎëŽ-ZR]Œr:ÔÄ÷p_‘+hšß=Ü›™Æëz=Ü—¥ë^gM7.ëóçymOšà¥> ,Ö?ÂÇAFú1UE¥8A“³Žäq<ˆëMSIÃþýßæNÉýs Ø$<{Q,a¢sÔ½Ö—¡#Çu;xÈ÷>š/“j÷Œ9sƒN•1 Fäù$%Ô­‰ ÉóYy§¡)çPí•IS°ßxfå›ly«±Š®u*»:vfÝ$#êz/üÀ/÷×Djd0=’&ݫ똔c Dµ†»¸ó{±m:û}ÓîÆMÿ‡ñ àÊ@bû¡È{òïr<@ÂØ9@%¬d3ª°Òÿœÿf-œŒž­MH±ªÏ<3Ù<–þ™[ŒËe°„©BÖf/§4ˆ*;Åe®²mâŒ̰ÆõBZ0Î1½œ49ƒâ¸=—\ÓbÊó NGË™sBƒÕ4Ï¥Œœ>”\ËEzŸzí žkÛÉ>¡ôìÜï†êÕ‚aÇ®”=ç8ÒœÑ?#°nfšsPømn};ݰÁy™'ËÝÍs½}ÓÈãN^©íÆ~˜­:a;¡Ð !7TI£®}–•í[.£Œ‚Âyï\Û¡f¡@ë‰\ü—D;ÉãÆ¡)¥æìs%/ή‰ru+DZô lQ†× b³!€3E¥y~bLä;8z™ñ˜]ƒ”¯úd#»ø–©‡.±9Uþ•þaeƒ°kŠôf¨^=€Âµñ‘XœNöW´R}C58•E êó¢_Oìi¤Ñ!Ý\íø›¿ná]c‚`‡:Ñ_‘Â%Þg@•ã$=²æ3L°OœKz.áÔÍæåIû¸œ•cïBÜFLobPzúb¬E’þÔhz¸ÀüHçÂ^2)cT4×®†AžåHînm´’*“)„D‰Ä*E'Jç^íÙðÓ1Îͳ,+ù(ok?N! „ÛÇ ‰ÏNC4†­Z¢&_ˆD¶î¢F…¿–ŸÖ”ãqTÒ1)È"™g‚zöB1¢ Q©CX@à²+½\°ãØc.¬ŒpÌ=¾œhdiy³“i‡Í¾«-™Aâó⫦Æ+¿õ¾h6Ÿ6B˜ÌpIÓ.Hï¡´ Ðy‹ðžËÌ9ºœcŸÏXOÅ‘ †∭ºŸšØ”NÖ¿ª) 7r¬õÜÐ9™NÛ€­æ>†º~Ç}JŽB³$Ë Î£î¹Ö¥ûܯÇŒ-‹›±yÎÊ$îƒVlÉ3™uE«0’ˆñ!dI]'"ã¤k|í’$¤;œ’œSæ,ÐéãðÞýìì$XuÏAçmy¹m{ÂÍC;”7šewÚÆê0‹±!ñ8ñš§î©G4SRÏ‹ª|N8é 2çhÞò UaÆ+Ä ²%ÌoZ5Ò4ðJäQd–q¶Gp%GxY¬o£É{佸˃\`§#S9¨Ð´½Ë-rpM®C†'à.‚ã\âÜ£sÖ—²œA„ýùJ÷èåT4HJö>š9´~ÁVI'Gï¥á$Šr%pÛ#¹rÃãÚ‘ŽÃÃ.’Ž´ÄjÅŒœ:Iœ[[ù°#²+ý°†²€Ñhâ‘ rŒG‡T&n§#¤‹:¶ÀL á¡J>žþéÅÂG֬܊NB¼Iúg‹¤MdH;6wÙ¸/öe^”šÌéFì‚&âN¹¾»SLošpiφ*!·²ö”ÅÄâQ¦9+o%y§5=Iä‘"!ñìÿ;Lﳩìe ú7= ‘!“£©KL‡ªšeÖZÙ¢˜' ës :wònýO%c3—Ÿg|EÙkØ­MrNE-e޾–Á‡]¾ÿ\9‹uâmÓvšÜ0в+ 8£rÚAEärAÍsú©dfÁO` dÕä.à3õp–ÛfLê åC!ä­)"¤Ãó©‡ú¿Ði§73µ]—V‰ÆõÄžD²)®ã7Ü¢@¬¨IàÀr+§PE,“Å$ü ZÂ!³ExÅToV˜•Ù]´K…}C®¥:ƒÆ…yÛ2M­§ŽL–<± ‘«´àVÏ€:ǃ›ÐÏýƒÈÊÐbo›ít޲ƒ†kÏD',9){+»O’ðΈ ›¬"œ è&¦ ‹çͧˆªk:·Z’JêÔzÙ ‚_=+TIM0yä ñúC’$òˆp–\qD×:½‰wlAM™&´÷bÈ› … ŸŠQòM·¼Y†¦¬ãdß<ž2OhýkÆž[:ë.™¯ýG„Ãbèpð©@`ÑàœBèÚŠóÎBvòÄúå¤4Û7ÃìÓ˜Ý{8d›5é(0üãËéšEî="XÜôäV Ë %Xë®§³4‘|‰Þ^G‰3‡â´GQ§x¢”Þ|Òm–¶Ùí]i,X!þµÓläñá=ëŠçìZÝ…š‰#Ä àȆ¾¿Øöä´à¶æÓ+#47>kÐd¾T‹$ü:5‡¹cUŠöÌ)²úÊ7ÐrsïX€n{‰³L—U +fõÑUˆô€Dù‰æž˜Îúâ1S³á”þ’(¼ôqM—”ñËB(vïþZ,ô•ý>í¤çν š‚ô ô9’7Òãs[¢'¸z%þ…sap1«„á̘QKæMÊ0 d‘!tg†(²(Ý닞×9·0!ó©áZ<ã6/Fí\u­uhjLÌsV´Î~x>‹4lXßäè|¬•%Ü@à¶À32»Ïã9|“dÂIO>‹ÝHB<ØV—ßÁ]Jõ”žú¤íŽg7Ü•’“ Ÿ+u^¬A†Î™#äÈøN‚[eÖ&^–ûI'•Ñþ>.'¥¬ˆ2M}Ú c0ÍÀzî¦;œ ¹Ó_• Qà­JúB¦ˆI‚¯³¼ä "ñ”âßX̧L9°•Ù¥aVYðÅe=×—CŸU7Kq8€?Ù™2hÈ9Ó­Í>+Ï ^öþZ†Ò¬³7£¼©ìQ¾º¨8ÓŒ™¢ÔæIå-…Ê:žBÊÌ«„ßYN35’¨ä¬È¤ó!‘¿LPÖÉ“Ûu$Š[ ‰ý‘™(®@'œW£€›{.z䜟’ïrBçÊ‹ª0sþ8H›„ „Þ£îZcõ(>í¹rÖ:Ë\· ÷I”‹÷,Úo"ºŒP­úH×#N§.µØ9P‚ð¹tç«'ŒN$CR[.*T§Í1ªÇ+z~Øø—ÍÈ,tr»ó£”¨„Šã™tΛ»gbF¡6©Oxé%]ný™­uù…ÜÊNü¤´ qQ8óHdq­R"±>i $£X,Èi'¨Û dÎíeÇ+µ¹ôߎâX¸Òd?÷”ôœ9ÏέìºÍ\BqT­x²¼À¹pù*7®ª’5Å&˜´ýqª·¹LJÆC8s¯…ùuKèTë9oßÙ…Ó¢yž‹Ÿ%Þº±ä+Ä›Tåmì® âáFŸÃL‹¿R7­?É=Õýs4r\–Ùl¢1“xŽ:ÆZR8½Ì4ËìùdÇ\Š˜b–B?Áh<è`óµÈqÖRØžö‡æe2§™UaŸº-O×µ\ç¼½86 Bí&åºú[%(q2gÑΤ*ÇmS>eºòúڼǭÂDužP™›ì«ÎàQgÈ&$N„Œ‹UÚó„Ì>Ïá>çÎc¡E y^}Fòu“LZÑBáy8hVöŒÉ(!(GäÌet ûâÑùò°·™_4;™x…°¡cs¥Ë§gQÉ]¾áP-UÖl‚ÁÂÊì-y{¤6N° kXZÉæ±—¹¤@¦8-tFžè2)èå$ I(g›=½0aMÃÀc{mqäTÀ\Ä÷ïÎ.ñV± ¥Ù sL=Õ¼ÓÃ4]‘\÷ÄxV1Ê\w^Äd…ž´ÇcÉðòD¥'”Ëé¤ÉÌ ¤ø:ZΤ0ž‚qœübŦ]¥Â†eë!) 7!§’óÍrxÐÔ$¼fõô‰áELÎx©mÕ„´r°Vê $ `Yã:®¸/º•0qºspšøTŒ"·@öC¶¸:ä“I’ª€û_víïç œ˜Æ¼ž’.ÛQðkÿ‹ÿÅÿ¤au ùpymvpa-0.4.8/mvpa/data/tueb_meg_coord.xyz000066400000000000000000000210521174541445200204530ustar00rootroot00000000000000MLC11 6.43309 0.670899 13.4402 8.20804 0.69133 18.1158 MLC12 6.02874 3.34062 13.2801 7.75956 4.48484 17.8306 MLC13 5.39823 6.78026 11.8691 7.15929 9.73255 15.5017 MLC14 3.21363 8.61391 10.6813 4.06879 12.7677 13.3322 MLC15 0.95648 9.74185 8.79292 1.07282 14.5277 10.2404 MLC21 3.72035 2.14294 14.2558 5.11451 2.71475 19.0247 MLC22 3.85707 4.97217 13.5194 5.24876 6.75771 17.9789 MLC23 2.01625 6.9622 12.8764 2.86362 9.90188 16.8328 MLC24 0.150434 8.55218 11.4194 0.366156 12.6471 14.2826 MLC31 1.36801 3.98749 14.5124 2.27763 5.21968 19.2734 MLC32 -0.627059 5.97007 13.8514 -0.537318 8.6004 18.1042 MLC33 -3.24143 4.63291 14.2881 -4.4373 6.42974 18.7997 MLC41 1.3048 0.94737 14.9523 2.31824 1.11305 19.847 MLC42 -1.15389 2.67507 15.0747 -1.22037 3.46685 20.0125 MLC43 -4.00963 1.35956 14.7879 -5.5742 1.82642 19.5151 MLF11 13.2971 2.31383 3.15653 18.1465 3.5344 3.22999 MLF12 12.0735 5.18245 2.75578 16.321 7.81514 2.95661 MLF21 13.389 0.547957 5.8523 18.3004 1.05079 6.65094 MLF22 12.5779 3.7323 5.79963 17.1043 5.71197 6.57773 MLF23 10.9342 6.41337 5.20067 14.3995 10.0088 5.47705 MLF31 12.2649 2.2702 8.5339 16.6119 3.43185 10.7172 MLF32 11.0349 5.27666 8.18054 14.8047 8.00571 10.0118 MLF33 9.0207 7.49213 7.24406 11.5437 11.677 8.30899 MLF34 6.70453 8.82803 6.43962 8.85636 13.3163 6.92759 MLF41 10.9874 0.472447 10.7135 14.603 0.53096 14.1684 MLF42 10.2774 3.7256 10.5787 13.6676 5.3659 13.8694 MLF43 8.5787 6.63851 9.85316 10.9998 10.1559 12.4568 MLF44 6.1882 8.28856 9.40097 8.27662 12.3434 11.4527 MLF45 3.93468 9.67336 7.86596 4.86126 14.456 8.99736 MLF51 8.6925 2.04293 12.3176 11.2202 2.62519 16.5936 MLF52 7.74505 4.94581 11.9293 9.83169 7.12761 15.9166 MLO11 -10.6637 2.25014 6.732 -15.3931 3.16358 8.07787 MLO12 -9.2542 5.66291 7.07295 -13.4733 7.97569 8.43785 MLO21 -10.5418 4.25006 4.40446 -15.1684 6.0996 4.83642 MLO22 -8.71712 7.0638 4.47767 -12.4433 10.3657 4.95283 MLO31 -11.3332 2.50767 1.43071 -16.2279 3.46638 1.79954 MLO32 -10.0558 5.70851 1.76321 -14.3255 8.2826 2.15824 MLO33 -7.98397 8.33461 1.75274 -11.1541 12.178 2.18978 MLO41 -10.9907 4.31508 -1.06132 -15.6057 6.20352 -0.676544 MLO42 -9.2975 7.15523 -1.04352 -13.0713 10.4091 -0.614928 MLO43 -6.8026 9.26602 -1.07131 -9.30956 13.571 -0.629918 MLP11 -5.86214 3.17431 13.5085 -8.62626 4.27807 17.5277 MLP12 -5.12474 6.2357 12.502 -7.48496 8.94491 15.9808 MLP13 -2.55228 7.69497 12.3121 -3.43919 11.2986 15.6648 MLP21 -8.26949 1.84841 11.5154 -12.143 2.49476 14.6124 MLP22 -7.39821 4.57366 11.5478 -10.9638 6.24941 14.6286 MLP31 -9.25909 3.66496 9.27152 -13.4634 5.12296 11.5542 MLP32 -7.44854 6.64877 9.62921 -10.9382 9.51258 11.7818 MLP33 -4.88893 8.3254 10.1346 -7.0294 12.2863 12.3123 MLP34 -2.02824 9.40274 9.60955 -2.64128 14.0937 11.2319 MLT11 8.6119 8.10479 4.18194 10.8829 12.5483 4.51446 MLT12 4.68265 9.79876 4.84144 6.10382 14.5807 5.19647 MLT13 1.74361 10.2468 5.86873 1.79731 15.2272 6.32163 MLT14 -1.23692 10.4511 6.66823 -1.56995 15.4262 7.05632 MLT15 -4.25098 9.65316 7.19067 -5.87866 14.3207 7.9504 MLT16 -7.02166 8.12138 7.14954 -10.0117 12.0122 8.11575 MLT21 10.1314 7.4154 1.60863 13.0674 11.4552 1.87678 MLT22 6.53594 9.2105 2.4837 8.56757 13.7704 2.78775 MLT23 2.71556 10.983 2.99684 3.13757 15.9502 3.39922 MLT24 -0.307514 11.253 3.69686 -0.38345 16.2335 4.14546 MLT25 -3.37249 11.0274 4.28335 -4.57388 15.8464 4.87185 MLT26 -6.15779 9.01815 4.43457 -8.55371 13.384 4.89429 MLT31 7.92398 8.757 -0.177182 10.1259 13.24 0.0820664 MLT32 4.4619 10.1523 0.553291 5.77901 14.9667 0.868532 MLT33 1.06829 11.3852 0.736023 1.15405 16.371 1.12042 MLT34 -2.12556 11.5306 1.32146 -2.66397 16.4888 1.69418 MLT35 -5.27191 10.4136 1.66851 -7.09323 15.0522 2.09199 MLT41 5.79559 9.91298 -2.12984 7.83593 14.4674 -1.80332 MLT42 2.6779 11.383 -1.90355 3.31433 16.3307 -1.5454 MLT43 -0.584949 11.7246 -1.62847 -0.574255 16.7111 -1.24482 MLT44 -3.92685 11.4394 -1.23133 -4.97304 16.3117 -0.808614 MRC11 6.21769 -2.19372 13.3144 7.95556 -2.87797 17.9539 MRC12 5.44419 -4.7393 12.9214 6.96079 -6.54262 17.3328 MRC13 4.29595 -7.93743 11.1834 5.65095 -11.3622 14.5669 MRC14 1.8635 -9.31441 9.88533 2.20135 -13.7488 12.1732 MRC15 -0.509474 -9.8942 7.92446 -0.986795 -14.771 8.92541 MRC21 3.31778 -3.35588 14.0095 4.59469 -4.48621 18.711 MRC22 3.04587 -6.04371 13.0407 4.1599 -8.44387 17.2846 MRC23 0.940487 -7.68634 12.2308 1.34229 -11.1007 15.8631 MRC24 -1.13384 -8.86902 10.679 -1.47794 -13.2229 13.1158 MRC31 0.726879 -4.81547 14.1332 1.42428 -6.62335 18.7438 MRC32 -1.54256 -6.50936 13.3101 -1.8362 -9.40981 17.3738 MRC33 -3.91024 -4.79024 13.8456 -5.38908 -6.75822 18.1991 MRC41 1.12218 -1.89037 14.8375 2.03148 -2.6034 19.7034 MRC42 -1.60708 -3.2178 14.8056 -1.76942 -4.44994 19.65 MRC43 -4.20643 -1.50156 14.662 -5.86477 -2.14258 19.3366 MRF11 12.8344 -3.89177 2.89762 17.4602 -5.79025 2.79548 MRF12 11.1932 -6.47897 2.22351 15.0168 -9.70273 2.20064 MRF21 13.1615 -2.41637 5.72507 17.9518 -3.66274 6.44057 MRF22 11.968 -5.50113 5.42215 16.2076 -8.09881 5.96082 MRF23 9.86615 -7.73751 4.57047 12.8038 -11.7849 4.52853 MRF31 11.7709 -4.16883 8.2679 15.908 -6.13432 10.2763 MRF32 10.1103 -6.94094 7.61327 13.4821 -10.2662 9.22145 MRF33 7.82553 -8.68062 6.53342 9.71209 -13.2633 7.20594 MRF34 5.32681 -9.64965 5.64713 6.88249 -14.4026 5.68813 MRF41 10.7996 -2.39653 10.5441 14.28 -3.30234 14.0196 MRF42 9.58512 -5.52483 10.1649 12.7289 -7.86256 13.2736 MRF43 7.45092 -8.04023 9.21968 9.42407 -12.072 11.4252 MRF44 4.8546 -9.30636 8.61867 6.43061 -13.7475 10.2935 MRF45 2.4373 -10.1768 7.01155 2.78194 -15.1236 7.66208 MRF51 8.27346 -3.73547 12.0659 10.6485 -5.10803 16.2478 MRF52 6.88668 -6.48305 11.3884 8.65736 -9.20069 15.1952 MRO11 -10.8754 -0.675293 6.58978 -15.6837 -1.10274 7.89778 MRO12 -9.97506 -4.24173 6.64643 -14.4451 -6.16784 7.79597 MRO21 -11.0467 -2.43461 4.08018 -15.8504 -3.78167 4.43088 MRO22 -9.66475 -5.52537 3.94068 -13.7849 -8.3551 4.1137 MRO31 -11.5425 -0.372808 1.28347 -16.5168 -0.752355 1.63668 MRO32 -10.7389 -3.79488 1.34943 -15.342 -5.74082 1.54341 MRO33 -8.99111 -6.54759 1.10855 -12.626 -9.98162 1.19738 MRO41 -11.436 -2.08939 -1.36915 -16.2994 -3.21649 -1.06866 MRO42 -10.1452 -5.16246 -1.59278 -14.4425 -7.71387 -1.40293 MRO43 -7.99941 -7.50194 -1.79859 -11.0985 -11.4269 -1.74295 MRP11 -6.29115 -2.90911 13.2375 -9.21765 -3.94225 17.1593 MRP12 -6.01772 -5.93669 11.9547 -8.73637 -8.58155 15.2145 MRP13 -3.69834 -7.72773 11.6083 -5.04758 -11.4434 14.672 MRP21 -8.47255 -1.059 11.3807 -12.4114 -1.45617 14.4369 MRP22 -7.98497 -3.86918 11.1891 -11.794 -5.34002 14.0771 MRP31 -9.68174 -2.51387 9.00168 -14.0754 -3.57787 11.1409 MRP32 -8.35637 -5.72725 9.07802 -12.1879 -8.30593 10.9971 MRP33 -6.11621 -7.82427 9.45043 -8.73285 -11.6841 11.2581 MRP34 -3.47443 -9.27031 8.76319 -4.57786 -13.9783 10.04 MRT11 7.35783 -8.95613 3.42973 8.96071 -13.6931 3.36371 MRT12 3.18528 -10.2006 3.97731 4.01894 -15.131 3.88416 MRT13 0.163654 -10.3113 4.95292 -0.291589 -15.2916 5.00034 MRT14 -2.80721 -10.2037 5.73537 -3.67394 -15.1293 5.75371 MRT15 -5.69846 -8.93087 6.40139 -7.77051 -13.4726 6.70471 MRT16 -8.14655 -7.07335 6.48481 -11.6537 -10.5794 7.13316 MRT21 8.9223 -8.21674 0.92677 11.2664 -12.6331 0.810166 MRT22 5.08976 -9.67627 1.68012 6.60893 -14.4385 1.51832 MRT23 1.05293 -10.8959 2.0395 0.997696 -15.8966 1.98687 MRT24 -1.96853 -10.8517 2.74041 -2.54508 -15.8195 2.70371 MRT25 -5.02706 -10.2577 3.38722 -6.59675 -15.0061 3.41225 MRT26 -7.41965 -7.86832 3.6667 -10.3938 -11.8867 3.80759 MRT31 6.59421 -9.10791 -0.964231 8.17209 -13.8518 -1.10127 MRT32 2.92409 -10.1208 -0.340806 3.70329 -15.06 -0.439392 MRT33 -0.581357 -10.9589 -0.245669 -1.09681 -15.9333 -0.296408 MRT34 -3.79206 -10.6467 0.34972 -4.7993 -15.5451 0.288299 MRT35 -6.71049 -8.9923 0.812736 -8.97932 -13.4493 0.829584 MRT41 4.39355 -9.74924 -2.96818 5.67052 -14.5828 -3.10546 MRT42 1.1087 -10.8346 -2.87428 0.939914 -15.8321 -2.96821 MRT43 -2.19632 -10.7572 -2.61693 -2.92289 -15.7052 -2.6713 MRT44 -5.4643 -10.0776 -2.17081 -7.26274 -14.7443 -2.19027 MZC01 3.80106 -0.609105 14.278 5.1994 -0.942972 19.0682 MZC02 -1.44037 -0.281826 15.2444 -1.44856 -0.505828 20.2406 MZF01 13.5483 -0.843879 3.22514 18.5374 -1.18422 3.15103 MZF02 12.5461 -0.970928 8.48035 16.9593 -1.43099 10.7878 MZF03 8.8011 -0.885649 12.2682 11.2482 -1.26282 16.6135 MZO01 -11.3049 0.892652 4.24027 -16.2624 1.26524 4.78533 MZO02 -11.6667 1.16014 -0.982373 -16.644 1.51473 -0.645077 MZP01 -6.47856 0.137594 13.504 -9.59148 0.23432 17.4172 MZP02 -9.84413 0.586053 9.37474 -14.2462 0.789525 11.7397 pymvpa-0.4.8/mvpa/data/xavr1010.dat000066400000000000000000000030041174541445200166730ustar00rootroot00000000000000 Fp1 69 -0.307 0.946 0.099 Fp2 69 0.307 0.946 0.099 Fz 69 -0.000 0.672 0.741 F3 69 -0.516 0.637 0.574 F4 69 0.516 0.637 0.574 F7 69 -0.805 0.585 0.099 F8 69 0.805 0.585 0.099 FC1 69 -0.313 0.343 0.835 FC2 69 0.313 0.343 0.835 FC6 69 0.853 0.327 0.407 FC5 69 -0.853 0.327 0.407 FT9 69 -0.883 0.321 -0.342 FT10 69 0.883 0.321 -0.342 Cz 69 0.000 0.000 1.000 C3 69 -0.672 -0.000 0.741 C4 69 0.672 0.000 0.741 T7 69 -0.995 -0.000 0.099 T8 69 0.995 0.000 0.099 CP1 69 -0.313 -0.345 0.835 CP2 69 0.313 -0.345 0.835 CP5 69 -0.853 -0.327 0.407 CP6 69 0.853 -0.327 0.407 TP9 69 -0.883 -0.321 -0.342 TP10 69 0.883 -0.321 -0.342 Pz 69 -0.000 -0.672 0.741 P3 69 -0.516 -0.637 0.574 P4 69 0.516 -0.637 0.574 P7 69 -0.805 -0.585 0.099 P8 69 0.805 -0.585 0.099 O1 69 -0.307 -0.946 0.099 O2 69 0.307 -0.946 0.099 pymvpa-0.4.8/mvpa/datasets/000077500000000000000000000000001174541445200156215ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/datasets/__init__.py000066400000000000000000000022371174541445200177360ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """PyMVPA datasets and helper classes such as splitters Module Description ================== `Dataset` and derived classes are dedicated to contain the data and associated information (such as labels, chunk(session) identifiers. Module Organization =================== The mvpa.datasets module contains the following modules: .. packagetree:: :style: UML :group Generic Datasets: base mapped masked meta :group Specialized Datasets: nifti channel eep event :group Splitters: splitter :group Miscellaneous: miscfx miscfx_sp """ __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.datasets') # nothing in here that works without the base class from mvpa.datasets.base import Dataset if __debug__: debug('INIT', 'mvpa.datasets end') pymvpa-0.4.8/mvpa/datasets/base.py000066400000000000000000002126251174541445200171150ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Dataset container""" __docformat__ = 'restructuredtext' import operator import random import mvpa.support.copy as copy import numpy as N # Sooner or later Dataset would become ClassWithCollections as well, but for # now just an object -- thus commenting out tentative changes # #XXX from mvpa.misc.state import ClassWithCollections, SampleAttribute from mvpa.misc.exceptions import DatasetError from mvpa.misc.support import idhash as idhash_ from mvpa.base.dochelpers import enhancedDocString, table2string from mvpa.base import warning if __debug__: from mvpa.base import debug def _validate_indexes_uniq_sorted(seq, fname, item): """Helper function to validate that seq contains unique sorted values """ if operator.isSequenceType(seq): seq_unique = N.unique(seq) if len(seq) != len(seq_unique): warning("%s() operates only with indexes for %s without" " repetitions. Repetitions were removed." % (fname, item)) if N.any(N.sort(seq) != seq_unique): warning("%s() does not guarantee the original order" " of selected %ss. Use selectSamples() and " " selectFeatures(sort=False) instead" % (fname, item)) #XXX class Dataset(ClassWithCollections): class Dataset(object): """*The* Dataset. This class provides a container to store all necessary data to perform MVPA analyses. These are the data samples, as well as the labels associated with the samples. Additionally, samples can be grouped into chunks. :Groups: - `Creators`: `__init__`, `selectFeatures`, `selectSamples`, `applyMapper` - `Mutators`: `permuteLabels` Important: labels assumed to be immutable, i.e. no one should modify them externally by accessing indexed items, ie something like ``dataset.labels[1] += 100`` should not be used. If a label has to be modified, full copy of labels should be obtained, operated on, and assigned back to the dataset, otherwise dataset.uniquelabels would not work. The same applies to any other attribute which has corresponding unique* access property. """ # XXX Notes about migration to use Collections to store data and # attributes for samples, features, and dataset itself: # changes: # _data -> s_attr collection (samples attributes) # _dsattr -> ds_attr collection # f_attr collection (features attributes) # static definition to track which unique attributes # have to be reset/recomputed whenever anything relevant # changes # unique{labels,chunks} become a part of dsattr _uniqueattributes = [] """Unique attributes associated with the data""" _registeredattributes = [] """Registered attributes (stored in _data)""" _requiredattributes = ['samples', 'labels'] """Attributes which have to be provided to __init__, or otherwise no default values would be assumed and construction of the instance would fail""" #XXX _ATTRIBUTE_COLLECTIONS = [ 's_attr', 'f_attr', 'ds_attr' ] #XXX """Assure those 3 collections to be present in all datasets""" #XXX #XXX samples__ = SampleAttribute(doc="Samples data. 0th index is time", hasunique=False) # XXX #XXX labels__ = SampleAttribute(doc="Labels for the samples", hasunique=True) #XXX chunks__ = SampleAttribute(doc="Chunk identities for the samples", hasunique=True) #XXX # samples ids (already unique by definition) #XXX origids__ = SampleAttribute(doc="Chunk identities for the samples", hasunique=False) def __init__(self, # for copy constructor data=None, dsattr=None, # automatic dtype conversion dtype=None, # new instances samples=None, labels=None, labels_map=None, chunks=None, origids=None, # flags check_data=True, copy_samples=False, copy_data=True, copy_dsattr=True): """Initialize dataset instance There are basically two different way to create a dataset: 1. Create a new dataset from samples and sample attributes. In this mode a two-dimensional `ndarray` has to be passed to the `samples` keyword argument and the corresponding samples attributes are provided via the `labels` and `chunks` arguments. 2. Copy contructor mode The second way is used internally to perform quick coyping of datasets, e.g. when performing feature selection. In this mode and the two dictionaries (`data` and `dsattr`) are required. For performance reasons this mode bypasses most of the sanity check performed by the previous mode, as for internal operations data integrity is assumed. :Parameters: data : dict Dictionary with an arbitrary number of entries. The value for each key in the dict has to be an ndarray with the same length as the number of rows in the samples array. A special entry in this dictionary is 'samples', a 2d array (samples x features). A shallow copy is stored in the object. dsattr : dict Dictionary of dataset attributes. An arbitrary number of arbitrarily named and typed objects can be stored here. A shallow copy of the dictionary is stored in the object. dtype: type | None If None -- do not change data type if samples is an ndarray. Otherwise convert samples to dtype. :Keywords: samples : ndarray 2d array (samples x features) labels An array or scalar value defining labels for each samples. Generally `labels` should be numeric, unless `labels_map` is used labels_map : None or bool or dict Map original labels into numeric labels. If True, the mapping is computed if labels are literal. If is False, no mapping is computed. If dict instance -- provided mapping is verified and applied. If you want to have labels_map just be present given already numeric labels, just assign labels_map dictionary to existing dataset instance chunks An array or scalar value defining chunks for each sample Each of the Keywords arguments overwrites what is/might be already in the `data` container. """ #XXX ClassWithCollections.__init__(self) # see if data and dsattr are none, if so, make them empty dicts if data is None: data = {} if dsattr is None: dsattr = {} # initialize containers; default values are empty dicts # always make a shallow copy of what comes in, otherwise total chaos # is likely to happen soon if copy_data: # deep copy (cannot use copy.deepcopy, because samples is an # exception # but shallow copy first to get a shared version of the data in # any case lcl_data = data.copy() for k, v in data.iteritems(): # skip copying samples if requested if k == 'samples' and not copy_samples: continue lcl_data[k] = v.copy() else: # shallow copy # XXX? yoh: it might be better speed wise just assign dictionary # without any shallow .copy lcl_data = data.copy() if copy_dsattr and len(dsattr)>0: # deep copy if __debug__: debug('DS', "Deep copying dsattr %s" % `dsattr`) lcl_dsattr = copy.deepcopy(dsattr) else: # shallow copy lcl_dsattr = copy.copy(dsattr) # has to be not private since otherwise derived methods # would have problem accessing it and _registerAttribute # would fail on lambda getters self._data = lcl_data """What makes a dataset.""" self._dsattr = lcl_dsattr """Dataset attriibutes.""" # store samples (and possibly transform/reshape/retype them) if not samples is None: if __debug__: if lcl_data.has_key('samples'): debug('DS', "`Data` dict has `samples` (%s) but there is also" \ " __init__ parameter `samples` which overrides " \ " stored in `data`" % (`lcl_data['samples'].shape`)) lcl_data['samples'] = self._shapeSamples(samples, dtype, copy_samples) # TODO? we might want to have the same logic for chunks and labels # ie if no labels present -- assign arange # MH: don't think this is necessary -- or is there a use case? # labels if not labels is None: if __debug__: if lcl_data.has_key('labels'): debug('DS', "`Data` dict has `labels` (%s) but there is also" + " __init__ parameter `labels` which overrides " + " stored in `data`" % (`lcl_data['labels']`)) if lcl_data.has_key('samples'): lcl_data['labels'] = \ self._expandSampleAttribute(labels, 'labels') # check if we got all required attributes for attr in self._requiredattributes: if not lcl_data.has_key(attr): raise DatasetError, \ "Attribute %s is required to initialize dataset" % \ attr nsamples = self.nsamples # chunks if not chunks == None: lcl_data['chunks'] = \ self._expandSampleAttribute(chunks, 'chunks') elif not lcl_data.has_key('chunks'): # if no chunk information is given assume that every pattern # is its own chunk lcl_data['chunks'] = N.arange(nsamples) # samples origids if not origids is None: # simply assign if provided lcl_data['origids'] = origids elif not lcl_data.has_key('origids'): # otherwise contruct unqiue ones lcl_data['origids'] = N.arange(len(lcl_data['labels'])) else: # assume origids have been specified already (copy constructor # mode) leave them as they are, e.g. to make origids survive # selectSamples() pass # Initialize attributes which are registered but were not setup for attr in self._registeredattributes: if not lcl_data.has_key(attr): if __debug__: debug("DS", "Initializing attribute %s" % attr) lcl_data[attr] = N.zeros(nsamples) # labels_map labels_ = N.asarray(lcl_data['labels']) labels_map_known = lcl_dsattr.has_key('labels_map') if labels_map is True: # need to compose labels_map if labels_.dtype.char == 'S': # or not labels_map_known: # Create mapping ulabels = list(set(labels_)) ulabels.sort() labels_map = dict([ (x[1], x[0]) for x in enumerate(ulabels) ]) if __debug__: debug('DS', 'Mapping for the labels computed to be %s' % labels_map) else: if __debug__: debug('DS', 'Mapping of labels was requested but labels ' 'are not strings. Skipped') labels_map = None pass elif labels_map is False: labels_map = None if isinstance(labels_map, dict): if labels_map_known: if __debug__: debug('DS', "`dsattr` dict has `labels_map` (%s) but there is also" \ " __init__ parameter `labels_map` (%s) which overrides " \ " stored in `dsattr`" % (lcl_dsattr['labels_map'], labels_map)) lcl_dsattr['labels_map'] = labels_map # map labels if needed (if strings or was explicitely requested) if labels_.dtype.char == 'S' or not labels_map_known: if __debug__: debug('DS_', "Remapping labels using mapping %s" % labels_map) # need to remap # !!! N.array is important here try: lcl_data['labels'] = N.array( [labels_map[x] for x in lcl_data['labels']]) except KeyError, e: raise ValueError, "Provided labels_map %s is insufficient " \ "to map all the labels. Mapping for label %s is " \ "missing" % (labels_map, e) elif not lcl_dsattr.has_key('labels_map'): lcl_dsattr['labels_map'] = labels_map elif __debug__: debug('DS_', 'Not overriding labels_map in dsattr since it has one') if check_data: self._checkData() # lazy computation of unique members #self._resetallunique('_dsattr', self._dsattr) # Michael: we cannot do this conditional here. When selectSamples() # removes a whole data chunk the uniquechunks values will be invalid. # Same applies to labels of course. if not labels is None or not chunks is None: # for a speed up to don't go through all uniqueattributes # when no need lcl_dsattr['__uniquereseted'] = False self._resetallunique(force=True) __doc__ = enhancedDocString('Dataset', locals()) @property def idhash(self): """To verify if dataset is in the same state as when smth else was done Like if classifier was trained on the same dataset as in question""" _data = self._data res = idhash_(_data) # we cannot count on the order the values in the dict will show up # with `self._data.value()` and since idhash will be order-dependent # we have to make it deterministic keys = _data.keys() keys.sort() for k in keys: res += idhash_(_data[k]) return res def _resetallunique(self, force=False): """Set to None all unique* attributes of corresponding dictionary """ _dsattr = self._dsattr if not force and _dsattr['__uniquereseted']: return _uniqueattributes = self._uniqueattributes if __debug__ and "DS_" in debug.active: debug("DS_", "Reseting all attributes %s for dataset %s" % (_uniqueattributes, self.summary(uniq=False, idhash=False, stats=False, lstats=False))) # I guess we better checked if dictname is known but... for k in _uniqueattributes: _dsattr[k] = None _dsattr['__uniquereseted'] = True def _getuniqueattr(self, attrib, dict_): """Provide common facility to return unique attributes XXX `dict_` can be simply replaced now with self._dsattr """ # local bindings _dsattr = self._dsattr if not _dsattr.has_key(attrib) or _dsattr[attrib] is None: if __debug__ and 'DS_' in debug.active: debug("DS_", "Recomputing unique set for attrib %s within %s" % (attrib, self.summary(uniq=False, stats=False, lstats=False))) # uff... might come up with better strategy to keep relevant # attribute name _dsattr[attrib] = N.unique( N.asanyarray(dict_[attrib[6:]]) ) assert(not _dsattr[attrib] is None) _dsattr['__uniquereseted'] = False return _dsattr[attrib] def _setdataattr(self, attrib, value): """Provide common facility to set attributes """ if len(value) != self.nsamples: raise ValueError, \ "Provided %s have %d entries while there is %d samples" % \ (attrib, len(value), self.nsamples) self._data[attrib] = N.asarray(value) uniqueattr = "unique" + attrib _dsattr = self._dsattr if _dsattr.has_key(uniqueattr): _dsattr[uniqueattr] = None def _getNSamplesPerAttr( self, attrib='labels' ): """Returns the number of samples per unique label. """ # local bindings _data = self._data # XXX hardcoded dict_=self._data.... might be in self._dsattr uniqueattr = self._getuniqueattr(attrib="unique" + attrib, dict_=_data) # use dictionary to cope with arbitrary labels result = dict(zip(uniqueattr, [ 0 ] * len(uniqueattr))) for l in _data[attrib]: result[l] += 1 # XXX only return values to mimic the old interface but we might want # to return the full dict instead # return result return result def _getSampleIdsByAttr(self, values, attrib="labels", sort=True): """Return indecies of samples given a list of attributes """ if not operator.isSequenceType(values) \ or isinstance(values, basestring): values = [ values ] # TODO: compare to plain for loop through the labels # on a real data example sel = N.array([], dtype=N.int16) _data = self._data for value in values: sel = N.concatenate(( sel, N.where(_data[attrib]==value)[0])) if sort: # place samples in the right order sel.sort() return sel def idsonboundaries(self, prior=0, post=0, attributes_to_track=['labels', 'chunks'], affected_labels=None, revert=False): """Find samples which are on the boundaries of the blocks Such samples might need to be removed. By default (with prior=0, post=0) ids of the first samples in a 'block' are reported :Parameters: prior : int how many samples prior to transition sample to include post : int how many samples post the transition sample to include attributes_to_track : list of basestring which attributes to track to decide on the boundary condition affected_labels : list of basestring for which labels to perform selection. If None - for all revert : bool either to revert the meaning and provide ids of samples which are found to not to be boundary samples """ # local bindings _data = self._data labels = self.labels nsamples = self.nsamples lastseen = none = [None for attr in attributes_to_track] transitions = [] for i in xrange(nsamples+1): if i < nsamples: current = [_data[attr][i] for attr in attributes_to_track] else: current = none if lastseen != current: # transition point new_transitions = range(max(0, i-prior), min(nsamples-1, i+post)+1) if affected_labels is not None: new_transitions = [labels[i] for i in new_transitions if i in affected_labels] transitions += new_transitions lastseen = current transitions = set(transitions) if revert: transitions = set(range(nsamples)).difference(transitions) # postprocess transitions = N.array(list(transitions)) transitions.sort() return list(transitions) def _shapeSamples(self, samples, dtype, copy): """Adapt different kinds of samples Handle all possible input value for 'samples' and tranform them into a 2d (samples x feature) representation. """ # put samples array into correct shape # 1d arrays or simple sequences are assumed to be a single pattern if (not isinstance(samples, N.ndarray)): # it is safe to provide dtype which defaults to None, # when N would choose appropriate dtype automagically samples = N.array(samples, ndmin=2, dtype=dtype, copy=copy) else: if samples.ndim < 2 \ or (not dtype is None and dtype != samples.dtype): if dtype is None: dtype = samples.dtype samples = N.array(samples, ndmin=2, dtype=dtype, copy=copy) elif copy: samples = samples.copy() # only samples x features matrices are supported if len(samples.shape) > 2: raise DatasetError, "Only (samples x features) -> 2d sample " \ + "are supported (got %s shape of samples)." \ % (`samples.shape`) \ +" Consider MappedDataset if applicable." return samples def _checkData(self): """Checks `_data` members to have the same # of samples. """ # # XXX: Maybe just run this under __debug__ and remove the `check_data` # from the constructor, which is too complicated anyway? # # local bindings nsamples = self.nsamples _data = self._data for k, v in _data.iteritems(): if not len(v) == nsamples: raise DatasetError, \ "Length of sample attribute '%s' [%i] does not " \ "match the number of samples in the dataset [%i]." \ % (k, len(v), nsamples) # check for unique origids uniques = N.unique(_data['origids']) uniques.sort() # need to copy to prevent sorting the original array sorted_ids = _data['origids'].copy() sorted_ids.sort() if not (uniques == sorted_ids).all(): raise DatasetError, "Samples IDs are not unique." # Check if labels as not literal if N.asanyarray(_data['labels'].dtype.char == 'S'): warning('Labels for dataset %s are literal, should be numeric. ' 'You might like to use labels_map argument.' % self) def _expandSampleAttribute(self, attr, attr_name): """If a sample attribute is given as a scalar expand/repeat it to a length matching the number of samples in the dataset. """ try: # if we are initializing with a single string -- we should # treat it as a single label if isinstance(attr, basestring): raise TypeError if len(attr) != self.nsamples: raise DatasetError, \ "Length of sample attribute '%s' [%d]" \ % (attr_name, len(attr)) \ + " has to match the number of samples" \ + " [%d]." % self.nsamples # store the sequence as array return N.array(attr) except TypeError: # make sequence of identical value matching the number of # samples return N.repeat(attr, self.nsamples) @classmethod def _registerAttribute(cls, key, dictname="_data", abbr=None, hasunique=False): """Register an attribute for any Dataset class. Creates property assigning getters/setters depending on the availability of corresponding _get, _set functions. """ classdict = cls.__dict__ if not classdict.has_key(key): if __debug__: debug("DS", "Registering new attribute %s" % key) # define get function and use corresponding # _getATTR if such defined getter = '_get%s' % key if classdict.has_key(getter): getter = '%s.%s' % (cls.__name__, getter) else: getter = "lambda x: x.%s['%s']" % (dictname, key) # define set function and use corresponding # _setATTR if such defined setter = '_set%s' % key if classdict.has_key(setter): setter = '%s.%s' % (cls.__name__, setter) elif dictname=="_data": setter = "lambda self,x: self._setdataattr" + \ "(attrib='%s', value=x)" % (key) else: setter = None if __debug__: debug("DS", "Registering new property %s.%s" % (cls.__name__, key)) exec "%s.%s = property(fget=%s, fset=%s)" % \ (cls.__name__, key, getter, setter) if abbr is not None: exec "%s.%s = property(fget=%s, fset=%s)" % \ (cls.__name__, abbr, getter, setter) if hasunique: uniquekey = "unique%s" % key getter = '_get%s' % uniquekey if classdict.has_key(getter): getter = '%s.%s' % (cls.__name__, getter) else: getter = "lambda x: x._getuniqueattr" + \ "(attrib='%s', dict_=x.%s)" % (uniquekey, dictname) if __debug__: debug("DS", "Registering new property %s.%s" % (cls.__name__, uniquekey)) exec "%s.%s = property(fget=%s)" % \ (cls.__name__, uniquekey, getter) if abbr is not None: exec "%s.U%s = property(fget=%s)" % \ (cls.__name__, abbr, getter) # create samplesper properties sampleskey = "samplesper%s" % key[:-1] # remove ending 's' XXX if __debug__: debug("DS", "Registering new property %s.%s" % (cls.__name__, sampleskey)) exec "%s.%s = property(fget=%s)" % \ (cls.__name__, sampleskey, "lambda x: x._getNSamplesPerAttr(attrib='%s')" % key) cls._uniqueattributes.append(uniquekey) # create idsby properties sampleskey = "idsby%s" % key # remove ending 's' XXX if __debug__: debug("DS", "Registering new property %s.%s" % (cls.__name__, sampleskey)) exec "%s.%s = %s" % (cls.__name__, sampleskey, "lambda self, x: " + "self._getSampleIdsByAttr(x,attrib='%s')" % key) cls._uniqueattributes.append(uniquekey) cls._registeredattributes.append(key) elif __debug__: warning('Trying to reregister attribute `%s`. For now ' % key + 'such capability is not present') def __str__(self): """String summary over the object """ try: ssummary = self.summary(uniq=True, idhash=__debug__ and ('DS_ID' in debug.active), stats=__debug__ and ('DS_STATS' in debug.active), lstats=__debug__ and ('DS_STATS' in debug.active), ) except (AttributeError, KeyError), e: # __str__ or __repr__ could have been requested before actual # instance is populated, e.g. by tracebacks of pdb/pydb. # ??? this case might be generic enough to allow for common # decorator around plentiful of __str__ and __repr__s ssummary = str(e) return ssummary def __repr__(self): return "<%s>" % str(self) def summary(self, uniq=True, stats=True, idhash=False, lstats=True, maxc=30, maxl=20): """String summary over the object :Parameters: uniq : bool Include summary over data attributes which have unique idhash : bool Include idhash value for dataset and samples stats : bool Include some basic statistics (mean, std, var) over dataset samples lstats : bool Include statistics on chunks/labels maxc : int Maximal number of chunks when provide details on labels/chunks maxl : int Maximal number of labels when provide details on labels/chunks """ # local bindings samples = self.samples _data = self._data _dsattr = self._dsattr if idhash: idhash_ds = "{%s}" % self.idhash idhash_samples = "{%s}" % idhash_(samples) else: idhash_ds = "" idhash_samples = "" s = """Dataset %s/ %s %d%s x %d""" % \ (idhash_ds, samples.dtype, self.nsamples, idhash_samples, self.nfeatures) ssep = (' ', '\n')[lstats] if uniq: s += "%suniq:" % ssep for uattr in _dsattr.keys(): if not uattr.startswith("unique"): continue attr = uattr[6:] try: value = self._getuniqueattr(attrib=uattr, dict_=_data) s += " %d %s" % (len(value), attr) except: pass if isinstance(self.labels_map, dict): s += ' labels_mapped' if stats: # TODO -- avg per chunk? # XXX We might like to use scipy.stats.describe to get # quick summary statistics (mean/range/skewness/kurtosis) if self.nfeatures: s += "%sstats: mean=%g std=%g var=%g min=%g max=%g\n" % \ (ssep, N.mean(samples), N.std(samples), N.var(samples), N.min(samples), N.max(samples)) else: s += "%sstats: dataset has no features\n" % ssep if lstats: s += self.summary_labels(maxc=maxc, maxl=maxl) return s def summary_labels(self, maxc=30, maxl=20): """Provide summary statistics over the labels and chunks :Parameters: maxc : int Maximal number of chunks when provide details maxl : int Maximal number of labels when provide details """ # We better avoid bound function since if people only # imported Dataset without miscfx it would fail from mvpa.datasets.miscfx import getSamplesPerChunkLabel spcl = getSamplesPerChunkLabel(self) # XXX couldn't they be unordered? ul = self.uniquelabels.tolist() uc = self.uniquechunks.tolist() s = "" if len(ul) < maxl and len(uc) < maxc: s += "\nCounts of labels in each chunk:" # only in a resonable case do printing table = [[' chunks\labels'] + ul] table += [[''] + ['---'] * len(ul)] for c, counts in zip(uc, spcl): table.append([ str(c) ] + counts.tolist()) s += '\n' + table2string(table) else: s += "No details due to large number of labels or chunks. " \ "Increase maxc and maxl if desired" labels_map = self.labels_map if isinstance(labels_map, dict): s += "\nOriginal labels were mapped using following mapping:" s += '\n\t'+'\n\t'.join([':\t'.join(map(str, x)) for x in labels_map.items()]) + '\n' def cl_stats(axis, u, name1, name2): """ Compute statistics per label """ stats = {'min': N.min(spcl, axis=axis), 'max': N.max(spcl, axis=axis), 'mean': N.mean(spcl, axis=axis), 'std': N.std(spcl, axis=axis), '#%ss' % name2: N.sum(spcl>0, axis=axis)} entries = [' ' + name1, 'mean', 'std', 'min', 'max', '#%ss' % name2] table = [ entries ] for i, l in enumerate(u): d = {' ' + name1 : l} d.update(dict([ (k, stats[k][i]) for k in stats.keys()])) table.append( [ ('%.3g', '%s')[isinstance(d[e], basestring)] % d[e] for e in entries] ) return '\nSummary per %s across %ss\n' % (name1, name2) \ + table2string(table) if len(ul) < maxl: s += cl_stats(0, ul, 'label', 'chunk') if len(uc) < maxc: s += cl_stats(1, uc, 'chunk', 'label') return s def __iadd__(self, other): """Merge the samples of one Dataset object to another (in-place). No dataset attributes, besides labels_map, will be merged! Additionally, a new set of unique `origids` will be generated. """ # local bindings _data = self._data other_data = other._data if not self.nfeatures == other.nfeatures: raise DatasetError, "Cannot add Dataset, because the number of " \ "feature do not match." # take care about labels_map and labels slm = self.labels_map olm = other.labels_map if N.logical_xor(slm is None, olm is None): raise ValueError, "Cannot add datasets where only one of them " \ "has labels map assigned. If needed -- implement it" # concatenate all sample attributes for k,v in _data.iteritems(): if k == 'origids': # special case samples origids: for now just regenerate unique # ones could also check if concatenation is unique, but it # would be costly performance-wise _data[k] = N.arange(len(v) + len(other_data[k])) elif k == 'labels' and slm is not None: # special care about labels if mapping was in effect, # we need to append 2nd map to the first one and # relabel 2nd dataset nlm = slm.copy() # figure out maximal numerical label used now nextid = N.sort(nlm.values())[-1] + 1 olabels = other.labels olabels_remap = {} for ol, olnum in olm.iteritems(): if not nlm.has_key(ol): # check if we can preserve old numberic label # if not -- assign some new one not yet present # in any dataset if olnum in nlm.values(): nextid = N.sort(nlm.values() + olm.values())[-1] + 1 else: nextid = olnum olabels_remap[olnum] = nextid nlm[ol] = nextid nextid += 1 else: olabels_remap[olnum] = nlm[ol] olabels = [olabels_remap[x] for x in olabels] # finally compose new labels _data['labels'] = N.concatenate((v, olabels), axis=0) # and reassign new mapping self._dsattr['labels_map'] = nlm if __debug__: # check if we are not dealing with colliding # mapping, since it is problematic and might lead # to various complications if (len(set(slm.keys())) != len(set(slm.values()))) or \ (len(set(olm.keys())) != len(set(olm.values()))): warning("Adding datasets where multiple labels " "mapped to the same ID is not recommended. " "Please check the outcome. Original mappings " "were %s and %s. Resultant is %s" % (slm, olm, nlm)) else: _data[k] = N.concatenate((v, other_data[k]), axis=0) # might be more sophisticated but for now just reset -- it is safer ;) self._resetallunique() return self def __add__( self, other ): """Merge the samples two Dataset objects. All data of both datasets is copied, concatenated and a new Dataset is returned. NOTE: This can be a costly operation (both memory and time). If performance is important consider the '+=' operator. """ # create a new object of the same type it is now and NOT only Dataset out = super(Dataset, self).__new__(self.__class__) # now init it: to make it work all Dataset contructors have to accept # Class(data=Dict, dsattr=Dict) out.__init__(data=self._data, dsattr=self._dsattr, copy_samples=True, copy_data=True, copy_dsattr=True) out += other return out def copy(self, deep=True): """Create a copy (clone) of the dataset, by fully copying current one :Keywords: deep : bool deep flag is provided to __init__ for copy_{samples,data,dsattr}. By default full copy is done. """ # create a new object of the same type it is now and NOT only Dataset out = super(Dataset, self).__new__(self.__class__) # now init it: to make it work all Dataset contructors have to accept # Class(data=Dict, dsattr=Dict) out.__init__(data=self._data, dsattr=self._dsattr, copy_samples=True, copy_data=True, copy_dsattr=True) return out def selectFeatures(self, ids=None, sort=True, groups=None): """Select a number of features from the current set. :Parameters: ids iterable container to select ids sort : bool if to sort Ids. Order matters and `selectFeatures` assumes incremental order. If not such, in non-optimized code selectFeatures would verify the order and sort Returns a new Dataset object with a copy of corresponding features from the original samples array. WARNING: The order of ids determines the order of features in the returned dataset. This might be useful sometimes, but can also cause major headaches! Order would is verified when running in non-optimized code (if __debug__) """ if ids is None and groups is None: raise ValueError, "No feature selection specified." # start with empty list if no ids where specified (so just groups) if ids is None: ids = [] if not groups is None: if not self._dsattr.has_key('featuregroups'): raise RuntimeError, \ "Dataset has no feature grouping information." for g in groups: ids += (self._dsattr['featuregroups'] == g).nonzero()[0].tolist() # XXX set sort default to True, now sorting has to be explicitely # disabled and warning is not necessary anymore if sort: ids = copy.deepcopy(ids) ids.sort() elif __debug__ and 'CHECK_DS_SORTED' in debug.active: from mvpa.misc.support import isSorted if not isSorted(ids): warning("IDs for selectFeatures must be provided " + "in sorted order, otherwise major headache might occur") # shallow-copy all stuff from current data dict new_data = self._data.copy() # assign the selected features -- data is still shared with # current dataset new_data['samples'] = self._data['samples'][:, ids] # apply selection to feature groups as well if self._dsattr.has_key('featuregroups'): new_dsattr = self._dsattr.copy() new_dsattr['featuregroups'] = self._dsattr['featuregroups'][ids] else: new_dsattr = self._dsattr # create a new object of the same type it is now and NOT only Dataset dataset = super(Dataset, self).__new__(self.__class__) # now init it: to make it work all Dataset contructors have to accept # Class(data=Dict, dsattr=Dict) dataset.__init__(data=new_data, dsattr=new_dsattr, check_data=False, copy_samples=False, copy_data=False, copy_dsattr=False ) return dataset def applyMapper(self, featuresmapper=None, samplesmapper=None, train=True): """Obtain new dataset by applying mappers over features and/or samples. While featuresmappers leave the sample attributes information unchanged, as the number of samples in the dataset is invariant, samplesmappers are also applied to the samples attributes themselves! Applying a featuresmapper will destroy any feature grouping information. :Parameters: featuresmapper : Mapper `Mapper` to somehow transform each sample's features samplesmapper : Mapper `Mapper` to transform each feature across samples train : bool Flag whether to train the mapper with this dataset before applying it. TODO: selectFeatures is pretty much applyMapper(featuresmapper=MaskMapper(...)) """ # shallow-copy all stuff from current data dict new_data = self._data.copy() # apply mappers if samplesmapper: if __debug__: debug("DS", "Training samplesmapper %s" % `samplesmapper`) samplesmapper.train(self) if __debug__: debug("DS", "Applying samplesmapper %s" % `samplesmapper` + " to samples of dataset `%s`" % `self`) # get rid of existing 'origids' as they are not valid anymore and # applying a mapper to them is not really meaningful if new_data.has_key('origids'): del(new_data['origids']) # apply mapper to all sample-wise data in dataset for k in new_data.keys(): new_data[k] = samplesmapper.forward(self._data[k]) # feature mapping might affect dataset attributes # XXX: might be obsolete when proper feature attributes are implemented new_dsattr = self._dsattr if featuresmapper: if __debug__: debug("DS", "Training featuresmapper %s" % `featuresmapper`) featuresmapper.train(self) if __debug__: debug("DS", "Applying featuresmapper %s" % `featuresmapper` + " to samples of dataset `%s`" % `self`) new_data['samples'] = featuresmapper.forward(self._data['samples']) # remove feature grouping, who knows what the mapper did to the # features if self._dsattr.has_key('featuregroups'): new_dsattr = self._dsattr.copy() del(new_dsattr['featuregroups']) else: new_dsattr = self._dsattr # create a new object of the same type it is now and NOT only Dataset dataset = super(Dataset, self).__new__(self.__class__) # now init it: to make it work all Dataset contructors have to accept # Class(data=Dict, dsattr=Dict) dataset.__init__(data=new_data, dsattr=new_dsattr, check_data=False, copy_samples=False, copy_data=False, copy_dsattr=False ) # samples attributes might have changed after applying samplesmapper if samplesmapper: dataset._resetallunique(force=True) return dataset def selectSamples(self, ids): """Choose a subset of samples defined by samples IDs. Returns a new dataset object containing the selected sample subset. TODO: yoh, we might need to sort the mask if the mask is a list of ids and is not ordered. Clarify with Michael what is our intent here! """ # without having a sequence a index the masked sample array would # loose its 2d layout if not operator.isSequenceType( ids ): ids = [ids] # TODO: Reconsider crafting a slice if it can be done to don't copy # the data #try: # minmask = min(mask) # maxmask = max(mask) #except: # minmask = min(map(int,mask)) # maxmask = max(map(int,mask)) # lets see if we could get it done with cheap view/slice #(minmask, maxmask) != (0, 1) and \ #if len(mask) > 2 and \ # N.array([N.arange(minmask, maxmask+1) == N.array(mask)]).all(): # slice_ = slice(minmask, maxmask+1) # if __debug__: # debug("DS", "We can and do convert mask %s into splice %s" % # (mask, slice_)) # mask = slice_ # mask all sample attributes data = {} for k, v in self._data.iteritems(): data[k] = v[ids, ] # create a new object of the same type it is now and NOT onyl Dataset dataset = super(Dataset, self).__new__(self.__class__) # now init it: to make it work all Dataset contructors have to accept # Class(data=Dict, dsattr=Dict) dataset.__init__(data=data, dsattr=self._dsattr, check_data=False, copy_samples=False, copy_data=False, copy_dsattr=False) dataset._resetallunique(force=True) return dataset def index(self, *args, **kwargs): """Universal indexer to obtain indexes of interesting samples/features. See .select() for more information :Return: tuple of (samples indexes, features indexes). Each item could be also None, if no selection on samples or features was requested (to discriminate between no selected items, and no selections) """ s_indx = [] # selections for samples f_indx = [] # selections for features return_dataset = kwargs.pop('return_dataset', False) largs = len(args) args = list(args) # so we could override # Figure out number of positional largs_nonstring = 0 # need to go with index since we might need to override internally for i in xrange(largs): l = args[i] if isinstance(l, basestring): if l.lower() == 'all': # override with a slice args[i] = slice(None) else: break largs_nonstring += 1 if largs_nonstring >= 1: s_indx.append(args[0]) if __debug__ and 'CHECK_DS_SELECT' in debug.active: _validate_indexes_uniq_sorted(args[0], 'select', 'samples') if largs_nonstring == 2: f_indx.append(args[1]) if __debug__ and 'CHECK_DS_SELECT' in debug.active: _validate_indexes_uniq_sorted(args[1], 'select', 'features') elif largs_nonstring > 2: raise ValueError, "Only two positional arguments are allowed" \ ". 1st for samples, 2nd for features" # process left positional arguments which must encode selections like # ('labels', [1,2,3]) if (largs - largs_nonstring) % 2 != 0: raise ValueError, "Positional selections must come in pairs:" \ " e.g. ('labels', [1,2,3])" for i in xrange(largs_nonstring, largs, 2): k, v = args[i:i+2] kwargs[k] = v # process keyword parameters data_ = self._data for k, v in kwargs.iteritems(): if k == 'samples': s_indx.append(v) elif k == 'features': f_indx.append(v) elif data_.has_key(k): # so it is an attribute for samples # XXX may be do it not only if __debug__ if __debug__: # and 'CHECK_DS_SELECT' in debug.active: if not N.any([isinstance(v, cls) for cls in [list, tuple, slice, int]]): raise ValueError, "Trying to specify selection for %s " \ "based on unsupported '%s'" % (k, v) s_indx.append(self._getSampleIdsByAttr(v, attrib=k, sort=False)) else: raise ValueError, 'Keyword "%s" is not known, thus' \ 'select() failed' % k def combine_indexes(indx, nelements): """Helper function: intersect selections given in indx :Parameters: indxs : list of lists or slices selections of elements nelements : int number of elements total for deriving indexes from slices """ indx_sel = None # pure list of ids for selection for s in indx: if isinstance(s, slice) or \ isinstance(s, N.ndarray) and s.dtype==bool: # XXX there might be a better way than reconstructing the full # index list. Also we are loosing ability to do simlpe slicing, # ie w.o making a copy of the selected data all_indexes = N.arange(nelements) s = all_indexes[s] elif not operator.isSequenceType(s): s = [ s ] if indx_sel is None: indx_sel = set(s) else: # To be consistent #if not isinstance(indx_sel, set): # indx_sel = set(indx_sel) indx_sel = indx_sel.intersection(s) # if we got set -- convert if isinstance(indx_sel, set): indx_sel = list(indx_sel) # sort for the sake of sanity indx_sel.sort() return indx_sel # Select samples if len(s_indx) == 1 and isinstance(s_indx[0], slice) \ and s_indx[0] == slice(None): # so no actual selection -- full slice s_indx = s_indx[0] else: # else - get indexes if len(s_indx) == 0: s_indx = None else: s_indx = combine_indexes(s_indx, self.nsamples) # Select features if len(f_indx): f_indx = combine_indexes(f_indx, self.nfeatures) else: f_indx = None return s_indx, f_indx def select(self, *args, **kwargs): """Universal selector WARNING: if you need to select duplicate samples (e.g. samples=[5,5]) or order of selected samples of features is important and has to be not ordered (e.g. samples=[3,2,1]), please use selectFeatures or selectSamples functions directly Examples: Mimique plain selectSamples:: dataset.select([1,2,3]) dataset[[1,2,3]] Mimique plain selectFeatures:: dataset.select(slice(None), [1,2,3]) dataset.select('all', [1,2,3]) dataset[:, [1,2,3]] Mixed (select features and samples):: dataset.select([1,2,3], [1, 2]) dataset[[1,2,3], [1, 2]] Select samples matching some attributes:: dataset.select(labels=[1,2], chunks=[2,4]) dataset.select('labels', [1,2], 'chunks', [2,4]) dataset['labels', [1,2], 'chunks', [2,4]] Mixed -- out of first 100 samples, select only those with labels 1 or 2 and belonging to chunks 2 or 4, and select features 2 and 3:: dataset.select(slice(0,100), [2,3], labels=[1,2], chunks=[2,4]) dataset[:100, [2,3], 'labels', [1,2], 'chunks', [2,4]] """ s_indx, f_indx = self.index(*args, **kwargs) # Select samples if s_indx == slice(None): # so no actual selection was requested among samples. # thus proceed with original dataset if __debug__: debug('DS', 'in select() not selecting samples') ds = self else: # else do selection if __debug__: debug('DS', 'in select() selecting samples given selections' + str(s_indx)) ds = self.selectSamples(s_indx) # Select features if f_indx is not None: if __debug__: debug('DS', 'in select() selecting features given selections' + str(f_indx)) ds = ds.selectFeatures(f_indx) return ds def where(self, *args, **kwargs): """Obtain indexes of interesting samples/features. See select() for more information XXX somewhat obsoletes idsby... """ s_indx, f_indx = self.index(*args, **kwargs) if s_indx is not None and f_indx is not None: return s_indx, f_indx elif s_indx is not None: return s_indx else: return f_indx def __getitem__(self, *args): """Convinience dataset parts selection See select for more information """ # for cases like ['labels', 1] if len(args) == 1 and isinstance(args[0], tuple): args = args[0] args_, args = args, () for a in args_: if isinstance(a, slice) and \ isinstance(a.start, basestring): # for the constructs like ['labels':[1,2]] if a.stop is None or a.step is not None: raise ValueError, \ "Selection must look like ['chunks':[2,3]]" args += (a.start, a.stop) else: args += (a,) return self.select(*args) def permuteLabels(self, status, perchunk=True, assure_permute=False): """Permute the labels. TODO: rename status into something closer in semantics. :Parameters: status : bool Calling this method with set to True, the labels are permuted among all samples. If 'status' is False the original labels are restored. perchunk : bool If True permutation is limited to samples sharing the same chunk value. Therefore only the association of a certain sample with a label is permuted while keeping the absolute number of occurences of each label value within a certain chunk constant. assure_permute : bool If True, assures that labels are permutted, ie any one is different from the original one """ # local bindings _data = self._data if len(self.uniquelabels)<2: raise RuntimeError, \ "Call to permuteLabels is bogus since there is insuficient" \ " number of labels: %s" % self.uniquelabels if not status: # restore originals if _data.get('origlabels', None) is None: raise RuntimeError, 'Cannot restore labels. ' \ 'permuteLabels() has never been ' \ 'called with status == True.' self.labels = _data['origlabels'] _data.pop('origlabels') else: # store orig labels, but only if not yet done, otherwise multiple # calls with status == True will destroy the original labels if not _data.has_key('origlabels') \ or _data['origlabels'] == None: # bind old labels to origlabels _data['origlabels'] = _data['labels'] # copy labels _data['labels'] = copy.copy(_data['labels']) labels = _data['labels'] # now scramble if perchunk: for o in self.uniquechunks: labels[self.chunks == o] = \ N.random.permutation(labels[self.chunks == o]) else: labels = N.random.permutation(labels) self.labels = labels if assure_permute: if not (_data['labels'] != _data['origlabels']).any(): if not (assure_permute is True): if assure_permute == 1: raise RuntimeError, \ "Cannot assure permutation of labels %s for " \ "some reason with chunks %s and while " \ "perchunk=%s . Should not happen" % \ (self.labels, self.chunks, perchunk) else: assure_permute = 11 # make 10 attempts if __debug__: debug("DS", "Recalling permute to assure different labels") self.permuteLabels(status, perchunk=perchunk, assure_permute=assure_permute-1) def getRandomSamples(self, nperlabel): """Select a random set of samples. If 'nperlabel' is an integer value, the specified number of samples is randomly choosen from the group of samples sharing a unique label value ( total number of selected samples: nperlabel x len(uniquelabels). If 'nperlabel' is a list which's length has to match the number of unique label values. In this case 'nperlabel' specifies the number of samples that shall be selected from the samples with the corresponding label. The method returns a Dataset object containing the selected samples. """ # if interger is given take this value for all classes if isinstance(nperlabel, int): nperlabel = [ nperlabel for i in self.uniquelabels ] sample = [] # for each available class labels = self.labels for i, r in enumerate(self.uniquelabels): # get the list of pattern ids for this class sample += random.sample( (labels == r).nonzero()[0], nperlabel[i] ) return self.selectSamples( sample ) # def _setchunks(self, chunks): # """Sets chunks and recomputes uniquechunks # """ # self._data['chunks'] = N.array(chunks) # self._dsattr['uniquechunks'] = None # None!since we might not need them def getNSamples( self ): """Currently available number of patterns. """ return self._data['samples'].shape[0] def getNFeatures( self ): """Number of features per pattern. """ return self._data['samples'].shape[1] def getLabelsMap(self): """Stored labels map (if any) """ return self._dsattr.get('labels_map', None) def setLabelsMap(self, lm): """Set labels map. Checks for the validity of the mapping -- values should cover all existing labels in the dataset """ values = set(lm.values()) labels = set(self.uniquelabels) if not values.issuperset(labels): raise ValueError, \ "Provided mapping %s has some existing labels (out of %s) " \ "missing from mapping" % (list(values), list(labels)) self._dsattr['labels_map'] = lm def setSamplesDType(self, dtype): """Set the data type of the samples array. """ # local bindings _data = self._data if _data['samples'].dtype != dtype: _data['samples'] = _data['samples'].astype(dtype) def defineFeatureGroups(self, definition): """Assign `definition` to featuregroups XXX Feature-groups was not finished to be useful """ if not len(definition) == self.nfeatures: raise ValueError, \ "Length of feature group definition %i " \ "does not match the number of features %i " \ % (len(definition), self.nfeatures) self._dsattr['featuregroups'] = N.array(definition) def convertFeatureIds2FeatureMask(self, ids): """Returns a boolean mask with all features in `ids` selected. :Parameters: ids: list or 1d array To be selected features ids. :Returns: ndarray: dtype='bool' All selected features are set to True; False otherwise. """ fmask = N.repeat(False, self.nfeatures) fmask[ids] = True return fmask def convertFeatureMask2FeatureIds(self, mask): """Returns feature ids corresponding to non-zero elements in the mask. :Parameters: mask: 1d ndarray Feature mask. :Returns: ndarray: integer Ids of non-zero (non-False) mask elements. """ return mask.nonzero()[0] @staticmethod def _checkCopyConstructorArgs(**kwargs): """Common sanity check for Dataset copy constructor calls.""" # check if we have samples (somwhere) samples = None if kwargs.has_key('samples'): samples = kwargs['samples'] if samples is None and kwargs.has_key('data') \ and kwargs['data'].has_key('samples'): samples = kwargs['data']['samples'] if samples is None: raise DatasetError, \ "`samples` must be provided to copy constructor call." if not len(samples.shape) == 2: raise DatasetError, \ "samples must be in 2D shape in copy constructor call." # read-only class properties nsamples = property( fget=getNSamples ) nfeatures = property( fget=getNFeatures ) labels_map = property( fget=getLabelsMap, fset=setLabelsMap ) def datasetmethod(func): """Decorator to easily bind functions to a Dataset class """ if __debug__: debug("DS_", "Binding function %s to Dataset class" % func.func_name) # Bind the function setattr(Dataset, func.func_name, func) # return the original one return func # Following attributes adherent to the basic dataset Dataset._registerAttribute("samples", "_data", abbr='S', hasunique=False) Dataset._registerAttribute("labels", "_data", abbr='L', hasunique=True) Dataset._registerAttribute("chunks", "_data", abbr='C', hasunique=True) # samples ids (already unique by definition) Dataset._registerAttribute("origids", "_data", abbr='I', hasunique=False) # XXX This is the place to redo the Dataset base class in a more powerful, yet # simpler way. The basic goal is to allow for all kinds of attributes: # # 1) Samples attributes (per-sample full) # 2) Features attributes (per-feature stuff) # # 3) Dataset attributes (per-dataset stuff) # # Use cases: # # 1) labels and chunks -- goal: it should be possible to have multivariate # labels, e.g. to specify targets for a neural network output layer # # 2) feature binding/grouping -- goal: easily define ROIs in datasets, or # group/mark various types of feature so they could be selected or # discarded all together # # 3) Mappers, or chains of them (this should be possible already, but could # be better integrated to make applyMapper() obsolete). # # # Perform distortion correction on __init__(). The copy contructor # implementation should move into a separate classmethod. # # Think about implementing the current 'clever' attributes in terms of one-time # properties as suggested by Fernando on nipy-devel. # ... from mvpa.misc.state import ClassWithCollections, Collection from mvpa.misc.attributes import SampleAttribute, FeatureAttribute, \ DatasetAttribute # Remaining public interface of Dataset class _Dataset(ClassWithCollections): """The successor of Dataset. """ # placeholder for all three basic collections of a Dataset # put here to be able to check whether the AttributesCollector already # instanciated a particular collection # XXX maybe it should not do this at all for Dataset sa = None fa = None dsa = None # storage of samples in a plain NumPy array for fast access samples = None def __init__(self, samples, sa=None, fa=None, dsa=None): """ This is the generic internal constructor. Its main task is to allow for a maximum level of customization during dataset construction, including fast copy construction. Parameters ---------- samples : ndarray Data samples. sa : Collection Samples attributes collection. fa : Collection Features attributes collection. dsa : Collection Dataset attributes collection. """ # init base class ClassWithCollections.__init__(self) # Internal constructor -- users focus on init* Methods # Every dataset needs data (aka samples), completely data-driven # analyses might not even need labels, so this is the only mandatory # argument # XXX add checks self.samples = samples # Everything else in a dataset (except for samples) is organized in # collections # copy attributes from source collections (scol) into target # collections (tcol) for scol, tcol in ((sa, self.sa), (fa, self.fa), (dsa, self.dsa)): # make sure we have the target collection if tcol is None: # XXX maybe use different classes for the collections # but currently no reason to do so tcol = Collection(owner=self) # transfer the attributes if not scol is None: for name, attr in scol.items.iteritems(): # this will also update the owner of the attribute # XXX discuss the implications of always copying tcol.add(copy.copy(attr)) @classmethod def initSimple(klass, samples, labels, chunks): # use Numpy convention """ One line summary. Long description. Parameters ---------- samples : ndarray The two-dimensional samples matrix. labels : ndarray chunks : ndarray Returns ------- blah blah Notes ----- blah blah See Also -------- blah blah Examples -------- blah blah """ # Demo user contructor # compile the necessary samples attributes collection labels_ = SampleAttribute(name='labels') labels_.value = labels chunks_ = SampleAttribute(name='chunks') chunks_.value = chunks # feels strange that one has to give the name again # XXX why does items have to be a dict when each samples # attr already knows its name sa = Collection(items={'labels': labels_, 'chunks': chunks_}) # common checks should go into __init__ return klass(samples, sa=sa) def getNSamples( self ): """Currently available number of patterns. """ return self.samples.shape[0] def getNFeatures( self ): """Number of features per pattern. """ return self.samples.shape[1] # # @property # def idhash(self): # pass # # # def idsonboundaries(self, prior=0, post=0, # attributes_to_track=['labels', 'chunks'], # affected_labels=None, # revert=False): # pass # # # def summary(self, uniq=True, stats=True, idhash=False, lstats=True, # maxc=30, maxl=20): # pass # # # def summary_labels(self, maxc=30, maxl=20): # pass # # # def __iadd__(self, other): # pass # # # def __add__( self, other ): # pass # # # def copy(self): # pass # # # def selectFeatures(self, ids=None, sort=True, groups=None): # pass # # # def applyMapper(self, featuresmapper=None, samplesmapper=None, # train=True): # pass # # # def selectSamples(self, ids): # pass # # # def index(self, *args, **kwargs): # pass # # # def select(self, *args, **kwargs): # pass # # # def where(self, *args, **kwargs): # pass # # # def __getitem__(self, *args): # pass # # # def permuteLabels(self, status, perchunk=True, assure_permute=False): # pass # # # def getRandomSamples(self, nperlabel): # pass # # # def getLabelsMap(self): # pass # # # def setLabelsMap(self, lm): # pass # # # def setSamplesDType(self, dtype): # pass # # # def defineFeatureGroups(self, definition): # pass # # # def convertFeatureIds2FeatureMask(self, ids): # pass # # # def convertFeatureMask2FeatureIds(self, mask): # pass pymvpa-0.4.8/mvpa/datasets/channel.py000066400000000000000000000207321174541445200176070ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Dataset handling data structured in channels.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.datasets.mapped import MappedDataset from mvpa.mappers.mask import MaskMapper from mvpa.base.dochelpers import enhancedDocString import mvpa.support.copy as copy from mvpa.base import externals if externals.exists('scipy'): from scipy import signal class ChannelDataset(MappedDataset): """Dataset handling data structured into channels. Channels are assumes to contain several timepoints, thus this Dataset stores some additional properties (reference time `t0`, temporal distance of two timepoints `dt` and `channelids` (names)). """ def __init__(self, samples=None, dsattr=None, t0=None, dt=None, channelids=None, **kwargs): """Initialize ChannelDataset. :Parameters: samples: ndarray Three-dimensional array: (samples x channels x timepoints). t0: float Reference time of the first timepoint. Can be used to preserve information about the onset of some stimulation. Preferably in seconds. dt: float Temporal distance between two timepoints. Has to be given in seconds. Otherwise `samplingrate` property will not return `Hz`. channelids: list List of channel names. """ # if dsattr is none, set it to an empty dict if dsattr is None: dsattr = {} # check samples if not samples is None and len(samples.shape) != 3: raise ValueError, \ "ChannelDataset takes 3D array as samples." # charge dataset properties # but only if some value if (not dt is None) or not dsattr.has_key('ch_dt'): dsattr['ch_dt'] = dt if (not channelids is None) or not dsattr.has_key('ch_ids'): dsattr['ch_ids'] = channelids if (not t0 is None) or not dsattr.has_key('ch_t0'): dsattr['ch_t0'] = t0 # come up with mapper if fresh samples were provided if not samples is None: mapper = MaskMapper(N.ones(samples.shape[1:], dtype='bool')) else: # Doesn't make difference at the moment, but might come 'handy'? mapper = dsattr.get('mapper', None) # init dataset MappedDataset.__init__(self, samples=samples, mapper=mapper, dsattr=dsattr, **(kwargs)) __doc__ = enhancedDocString('ChannelDataset', locals(), MappedDataset) def substractBaseline(self, t=None): """Substract mean baseline signal from the each timepoint. The baseline is determined by computing the mean over all timepoints specified by `t`. The samples of the dataset are modified in-place and nothing is returned. :Parameter: t: int | float | None If an integer, `t` denotes the number of timepoints in the from the start of each sample to be used to compute the baseline signal. If a floating point value, `t` is the duration of the baseline window from the start of each sample in whatever unit corresponding to the datasets `samplingrate`. Finally, if `None` the `t0` property of the dataset is used to determine `t` as it would have been specified as duration. """ # if no baseline length is given, use t0 if t is None: t = N.abs(self.t0) # determine length of baseline in samples if isinstance(t, float): t = N.round(t * self.samplingrate) # get original data data = self.O # compute baseline # XXX: shouldn't this be done per chunk? baseline = N.mean(data[:, :, :t], axis=2) # remove baseline data -= baseline[..., N.newaxis] # put data back into dataset self.samples[:] = self.mapForward(data) if externals.exists('scipy'): def resample(self, nt=None, sr=None, dt=None, window='ham', inplace=True, **kwargs): """Convenience method to resample data sample channel-wise. Resampling target can be specified by number of timepoint or temporal distance or sampling rate. Please note that this method only operates on `ChannelDataset` and always returns such. :Parameters: nt: int Number of timepoints to resample to. dt: float Temporal distance of samples after resampling. sr: float Target sampling rate. inplace : bool If inplace=False, it would create and return a new dataset with new samples **kwargs: All additional arguments are passed to resample() from scipy.signal :Return: ChannelDataset """ if nt is None and sr is None and dt is None: raise ValueError, \ "Required argument missing. Either needs ntimepoints, sr or dt." # get data in original shape orig_data = self.O if len(orig_data.shape) != 3: raise ValueError, "resample() only works with data from ChannelDataset." orig_nt = orig_data.shape[2] orig_length = self.dt * orig_nt if nt is None: # translate dt or sr into nt if not dt is None: nt = orig_nt * float(self.dt) / dt elif not sr is None: nt = orig_nt * float(sr) / self.samplingrate else: raise RuntimeError, 'This should not happen!' else: raise RuntimeError, 'This should not happen!' nt = N.round(nt) # downsample data data = signal.resample(orig_data, nt, axis=2, window=window, **kwargs) new_dt = float(orig_length) / nt dsattr = self._dsattr # would be needed for not inplace generation if inplace: dsattr['ch_dt'] = new_dt # XXX We could have resampled range(nsamples) and # rounded it. and adjust then mapper's mask # accordingly instead of creating a new one. # It would give us opportunity to assess what # resampling did... mapper = MaskMapper(N.ones(data.shape[1:], dtype='bool')) # reassign a new mapper. dsattr['mapper'] = mapper self.samples = mapper.forward(data) return self else: # we have to pass dsattr inside to don't loose # some additional attributes such as # labels_map dsattr = copy.deepcopy(dsattr) return ChannelDataset(data=self._data, dsattr=dsattr, samples=data, t0=self.t0, dt=new_dt, channelids=self.channelids, copy_data=True, copy_dsattr=False) channelids = property(fget=lambda self: self._dsattr['ch_ids'], doc='List of channel IDs') t0 = property(fget=lambda self: self._dsattr['ch_t0'], doc='Temporal position of first sample in the ' \ 'timeseries (in seconds) -- possibly relative ' \ 'to stimulus onset.') dt = property(fget=lambda self: self._dsattr['ch_dt'], doc='Time difference between two samples ' \ '(in seconds).') samplingrate = property(fget=lambda self: 1.0 / self._dsattr['ch_dt'], doc='Yeah, sampling rate.') pymvpa-0.4.8/mvpa/datasets/eep.py000066400000000000000000000046351174541445200167540ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Dataset that gets its samples from an EEP binary file""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.datasets.channel import ChannelDataset from mvpa.misc.io.eepbin import EEPBin from mvpa.base.dochelpers import enhancedDocString from mvpa.base import warning class EEPDataset(ChannelDataset): """Dataset using a EEP binary file as source. EEP files are used by *eeprobe* a software for analysing even-related potentials (ERP), which was developed at the Max-Planck Institute for Cognitive Neuroscience in Leipzig, Germany. http://www.ant-neuro.com/products/eeprobe """ def __init__(self, samples=None, **kwargs): """Initialize EEPDataset. :Parameters: samples: Filename (string) of a EEP binary file or an `EEPBin` object """ # dataset props defaults dt = t0 = channelids = None # default way to use the constructor: with filename if not samples is None: if isinstance(samples, str): # open the eep file try: eb = EEPBin(samples) except RuntimeError, e: warning("ERROR: EEPDatasets: Cannot open samples file %s" \ % samples) # should we make also error? raise e elif isinstance(samples, EEPBin): # nothing special eb = samples else: raise ValueError, \ "EEPDataset constructor takes the filename of an " \ "EEP file or a EEPBin object as 'samples' argument." samples = eb.data dt = eb.dt channelids = eb.channels t0 = eb.t0 # init dataset ChannelDataset.__init__(self, samples=samples, dt=dt, t0=t0, channelids=channelids, **(kwargs)) __doc__ = enhancedDocString('EEPDataset', locals(), ChannelDataset) pymvpa-0.4.8/mvpa/datasets/event.py000066400000000000000000000174131174541445200173220ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Event-based dataset type""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.mappers.array import DenseArrayMapper from mvpa.mappers.boxcar import BoxcarMapper from mvpa.mappers.mask import MaskMapper from mvpa.datasets.base import Dataset from mvpa.datasets.mapped import MappedDataset from mvpa.mappers.base import ChainMapper, CombinedMapper from mvpa.base import warning class EventDataset(MappedDataset): """Event-based dataset This dataset type can be used to segment 'raw' data input into meaningful boxcar-shaped samples, by simply defining a list of events (see :class:`~mvpa.misc.support.Event`). Additionally, it can be used to add arbitrary information (as features) to each event-sample (extracted from the event list itself). An appropriate mapper is automatically constructed, that merges original samples and additional features into a common feature space and also separates them again during reverse-mapping. Otherwise, this dataset type is a regular dataset (in contrast to `MetaDataset`). The properties of an :class:`~mvpa.misc.support.Event` supported/required by this class are: `onset` An integer indicating the startpoint of an event as the sample index in the input data. `duration` How many input data samples following the onset sample should be considered for an event. The embedded :class:`~mvpa.mappers.boxcar.BoxcarMapper` will use the maximum boxlength (i.e., `duration`) of all defined events to create a regular-shaped data array. `label` The corresponding label of that event (numeric or literal). `chunk` An optional chunk id. `features` A list with an arbitrary number of features values (floats), that will be added to the feature vector of the corresponding sample. """ def __init__(self, samples=None, events=None, mask=None, bcshape=None, dametric=None, **kwargs): """ :Parameters: samples: ndarray 'Raw' input data from which boxcar-shaped samples will be extracted. events: sequence of `Event` instances Both an events `onset` and `duration` are assumed to be provided as #samples. The boxlength will be determined by the maximum duration of all events. mask: boolean array Only features corresponding to non-zero mask elements will be considered for the final dataset. The mask shape either has to match the shape of the generated boxcar-samples, or the shape of the 'raw' input samples. In the latter case, the mask is automatically expanded to cover the whole boxcar. If no mask is provided, a full mask will be constructed automatically. bcshape: tuple Shape of the boxcar samples generated by the embedded boxcar mapper. If not provided this is determined automatically. However, this required an extra mapping step. dametric: Metric Custom metric to be used by the embedded DenseArrayMapper. **kwargs All additional arguments are passed to the base class. """ # check if we are in copy constructor mode if events is None: MappedDataset.__init__(self, samples=samples, **kwargs) return # # otherwise we really want to freshly prepare a dataset # # loop over events and extract all meaningful information to charge # a boxcar mapper startpoints = [e['onset'] for e in events] try: durations = [e['duration'] for e in events] except KeyError: raise ValueError, "Each event must have a `duration`!" # we need a regular array, so all events must have a common # boxlength boxlength = max(durations) if __debug__: if not max(durations) == min(durations): warning('Boxcar mapper will use maximum boxlength (%i) of all ' 'provided Events.'% boxlength) # now look for stuff we need for the dataset itself try: labels = [e['label'] for e in events] except KeyError: raise ValueError, "Each event must have a `label`!" # chunks are optional chunks = [e['chunk'] for e in events if e.has_key('chunk')] if not len(chunks): chunks = None # optional stuff # extract additional features for each event extrafeatures = [e['features'] for e in events if e.has_key('features')] # sanity check for extra features if len(extrafeatures): if len(extrafeatures) == len(startpoints): try: # will fail if varying number of features per event extrafeatures = N.asanyarray(extrafeatures) except ValueError: raise ValueError, \ 'Unequal number of extra features per event' else: raise ValueError, \ 'Each event has to provide to same number of extra ' \ 'features.' else: extrafeatures = None # now build the mapper # we know the properties of the boxcar mapper, so now use it # to determine its output size unless it is already provided bcmapper = BoxcarMapper(startpoints, boxlength) # determine array mapper input shape, as a fail-safe procedure # in case no mask provided, and to check the mask sanity if we have one if bcshape is None: # map the data and look at the shape of the first sample # to determine the properties of the array mapper bcshape = bcmapper(samples)[0].shape # expand the mask if necessary (ie. if provided in raw sample space and # not in boxcar space if not mask is None: if len(mask.shape) < len(bcshape)-1: # complement needed dimensions mshape = mask.shape missing_dims = len(bcshape) - 1 - len(mshape) mask = mask.reshape((1,)*missing_dims + mshape) if len(mask.shape) == len(bcshape) - 1: # replicate per each boxcar elemenet mask = N.array([mask] * bcshape[0]) # now we can build the array mapper, using the optionally provided # custom metric amapper = DenseArrayMapper(mask=mask, shape=bcshape, metric=dametric) # now compose the full mapper for the main samples mapper = ChainMapper([bcmapper, amapper]) # if we have extra features, we need to combine them with the rest if not extrafeatures is None: # first half for main samples, second half simple mask mapper # for unstructured additional features mapper = CombinedMapper( (mapper, MaskMapper(mask=N.ones(extrafeatures.shape[1])))) # add extra features to the samples samples = (samples, extrafeatures) # finally init baseclass MappedDataset.__init__(self, samples=samples, labels=labels, chunks=chunks, mapper=mapper, **kwargs) pymvpa-0.4.8/mvpa/datasets/mapped.py000066400000000000000000000132651174541445200174500ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Mapped dataset""" __docformat__ = 'restructuredtext' import mvpa.support.copy as copy from mvpa.datasets import Dataset from mvpa.base.dochelpers import enhancedDocString from mvpa.misc.exceptions import DatasetError class MappedDataset(Dataset): """A `Dataset` which is created by applying a `Mapper` to the data. Upon contruction `MappedDataset` uses a `Mapper` to transform the samples from their original into the two-dimensional matrix representation that is required by the `Dataset` class. This class enhanced the `Dataset` interface with two additional methods: `mapForward()` and `mapReverse()`. Both take arbitrary data arrays (with matching shape) and transform them using the embedded mapper from the original dataspace into a one- or two-dimensional representation (for arrays corresponding to the shape of a single or multiple samples respectively) or vice versa. Most likely, this class will not be used directly, but rather indirectly through one of its subclasses (e.g. `MaskedDataset`). """ def __init__(self, samples=None, mapper=None, dsattr=None, **kwargs): """ If `samples` and `mapper` arguments are not `None` the mapper is used to forward-map the samples array and the result is passed to the `Dataset` constructor. :Parameters: mapper: Instance of `Mapper` This mapper will be embedded in the dataset and is used and updated, by all subsequent mapping or feature selection procedures. **kwargs: All other arguments are simply passed to and handled by the constructor of `Dataset`. """ # there are basically two mode for the constructor: # 1. internal mode - only data and dsattr dict # 2. user mode - samples != None # and mapper != None # see if dsattr is none, if so, set to empty dict if dsattr is None: dsattr = {} # if a mapper was passed, store it in dsattr dict that gets passed # to base Dataset if not mapper is None: # TODO: check mapper for compliance with dimensionality within _data # may be only within __debug__ dsattr['mapper'] = mapper # if the samples are passed to the special arg, use the mapper to # transform them. if not samples is None: if not dsattr.has_key('mapper') or dsattr['mapper'] is None: raise DatasetError, \ "Constructor of MappedDataset requires a mapper " \ "if unmapped samples are provided." Dataset.__init__(self, samples=mapper.forward(samples), dsattr=dsattr, **(kwargs)) else: Dataset._checkCopyConstructorArgs(samples=samples, dsattr=dsattr, **kwargs) Dataset.__init__(self, dsattr=dsattr, **(kwargs)) __doc__ = enhancedDocString('MappedDataset', locals(), Dataset) def mapForward(self, data): """Map data from the original dataspace into featurespace. """ return self.mapper.forward(data) def mapReverse(self, data): """Reverse map data from featurespace into the original dataspace. """ return self.mapper.reverse(data) def mapSelfReverse(self): """Reverse samples from featurespace into the original dataspace. """ return self.mapper.reverse(self.samples) def selectFeatures(self, ids, plain=False, sort=False): """Select features given their ids. The methods behaves similar to Dataset.selectFeatures(), but additionally takes care of adjusting the embedded mapper appropriately. :Parameters: ids: sequence Iterable container to select ids plain: boolean Flag whether to return MappedDataset (or just Dataset) sort: boolean Flag whether to sort Ids. Order matters and selectFeatures assumes incremental order. If not such, in non-optimized code selectFeatures would verify the order and sort """ # call base method to get selected feature subset if plain: sdata = Dataset(self._data, self._dsattr, check_data=False, copy_samples=False, copy_data=False, copy_dsattr=False) return sdata.selectFeatures(ids=ids, sort=sort) else: sdata = Dataset.selectFeatures(self, ids=ids, sort=sort) # since we have new DataSet we better have a new mapper sdata._dsattr['mapper'] = copy.deepcopy(sdata._dsattr['mapper']) if sort: sdata._dsattr['mapper'].selectOut(sorted(ids)) else: sdata._dsattr['mapper'].selectOut(ids) return sdata # read-only class properties mapper = property(fget=lambda self: self._dsattr['mapper']) samples_original = property(fget=mapSelfReverse, doc="Return samples in the original shape") # syntactic sugarings O = property(fget=mapSelfReverse, doc="Return samples in the original shape") pymvpa-0.4.8/mvpa/datasets/masked.py000066400000000000000000000061411174541445200174410ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Dataset with applied mask""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.datasets.mapped import MappedDataset from mvpa.mappers.array import DenseArrayMapper if __debug__: from mvpa.base import debug class MaskedDataset(MappedDataset): """Helper class which is `MappedDataset` with using `MaskMapper`. TODO: since what it does is simply some checkes/data_mangling in the constructor, it might be absorbed inside generic `MappedDataset` """ def __init__(self, samples=None, mask=None, **kwargs): """ :Parameters: mask: ndarray the chosen features equal the non-zero mask elements. """ # might contain the default mapper mapper = None # need if clause here as N.array(None) != None if not samples is None: # XXX should be asanyarray? but then smth segfaults on unittests samples = N.asarray(samples) mapper = DenseArrayMapper(mask=mask, shape=samples.shape[1:]) if not mapper is None: if samples is None: raise ValueError, \ "Constructor of MaskedDataset requires both a samples " \ "array and a mask if one of both is provided." # init base class -- MappedDataset takes care of all the forward # mapping stuff MappedDataset.__init__( self, samples=samples, mapper=mapper, **(kwargs)) else: MappedDataset.__init__(self, **(kwargs)) def selectFeaturesByMask(self, mask, plain=False): """Use a mask array to select features from the current set. :Parameters: mask : ndarray input mask plain : bool `True` directs to return a simple `Dataset`, `False` -- a new `MaskedDataset` object Returns a new MaskedDataset object with a view of the original pattern array (no copying is performed). The final selection mask only contains features that are present in the current feature mask AND the selection mask passed to this method. """ # AND new and old mask to get the common features comb_mask = N.logical_and(mask != 0, self.mapper.getMask(copy=False) != 0) if __debug__: debug('DS', "VERY SUBOPTIMAL - do not rely on performance") # transform mask into feature space fmask = self.mapper.forward( comb_mask != 0 ) #TODO all this will be gone soon anyway -- need proper selectIn within # a mapper return self.selectFeatures(fmask.nonzero()[0], plain=plain) pymvpa-0.4.8/mvpa/datasets/meta.py000066400000000000000000000154751174541445200171350ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Dataset container""" __docformat__ = 'restructuredtext' import numpy as N import random from mvpa.datasets.mapped import MappedDataset if __debug__: from mvpa.base import debug, warning class MetaDataset(object): """Dataset container The class is useful to combine several Datasets with different origin and type and bind them together. Such a combined dataset can then by used to e.g. pass it to a classifier. MetaDataset does not permanently duplicate data stored in the dataset it contains. The combined samples matrix is build on demand and samples attribute access is redirected to the first dataset in the container. Currently operations other than samples or feature selection are not fully supported, e.g. passing a MetaDataset to detrend() will initially result in a detrended MetaDataset, but the combined and detrended samples matrix will be lost after the next call to selectSamples() or selectFeatures(), which freshly pulls samples from all datasets in the container. """ # This class is intentionally _not_ implemented as a subclass of Dataset. # IMHO Dataset contains to much logic unecessary logic. # XXX implement MappedMetaDataset along with a MetaMapper that simply calls # the mappers in the datasets in the container; or maybe just add flag to # MetaDataset to behave like a MappedDataset def __init__(self, datasets): """Initialize dataset instance :Parameters: datasets : list """ # XXX Maybe add checks that all datasets have identical samples # attributes self.__datasets = datasets # contains the combine samples matrix for caching self.__samples = None def rebuildSamples(self): """Update the combined samples matrix from all underlying datasets. """ # note, that hstack will do a copy of _all_ data self.__samples = N.hstack([ds.samples for ds in self.__datasets]) def __getattr__(self, name): """Implemented to redirect access to underlying datasets. """ if name == 'samples': # do something to combine (and cache) samples arrays if self.__samples is None: self.rebuildSamples() return self.__samples else: # redirect all other to first dataset # ??? maybe limit to some specific supported ones return self.__datasets[0].__getattribute__(name) def selectFeatures(self, ids, sort=True): """Do feature selection on all underlying datasets at once. """ # determine which features belong to what dataset # and call its selectFeatures() accordingly ids = N.asanyarray(ids) result = [] fsum = 0 for ds in self.__datasets: # bool which meta feature ids belongs to this dataset selector = N.logical_and(ids < fsum + ds.nfeatures, ids >= fsum) # make feature ids relative to this dataset selected = ids[selector] - fsum # do feature selection on underlying dataset # XXX not sure if we should keep empty datasets? (probably) result.append(ds.selectFeatures(selected)) fsum += ds.nfeatures return MetaDataset(result) def applyMapper(self, *args, **kwargs): """Apply a mapper on all underlying datasets. """ return MetaDataset([ds.applyMapper(*args, **kwargs) \ for ds in self.__datasets]) def selectSamples(self, *args, **kwargs): """Select samples from all underlying datasets at once. """ return MetaDataset([ds.selectSamples(*args, **kwargs) \ for ds in self.__datasets]) def permuteLabels(self, *args, **kwargs): """Toggle label permutation. """ # permute on first self.__datasets[0].permuteLabels(*args, **kwargs) # and apply to all others for ds in self.__datasets[1:]: ds.samples[:] = self.__datasets[0].samples def getRandomSamples(self, nperlabel): """Return a MetaDataset with a random subset of samples. """ # if interger is given take this value for all classes if isinstance(nperlabel, int): nperlabel = [ nperlabel for i in self.__datasets[0].uniquelabels ] sample = [] # for each available class for i, r in enumerate(self.__datasets[0].uniquelabels): # get the list of pattern ids for this class sample += \ random.sample((self.__datasets[0].labels == r).nonzero()[0], nperlabel[i] ) return MetaDataset([ds.selectSamples(sample) \ for ds in self.__datasets]) def getNSamples( self ): """Currently available number of samples. """ return self.__datasets[0].nsamples def getNFeatures( self ): """Number of features per sample. """ return N.sum([ds.nfeatures for ds in self.__datasets]) def setSamplesDType(self, dtype): """Set the data type of the samples array. """ # reset samples self.__samples = None for ds in self.__datasets: if ds.samples.dtype != dtype: ds.samples = ds.samples.astype(dtype) def mapReverse(self, val): """Perform reverse mapping :Return: List of results per each used mapper and the corresponding part of the provided `val`. """ # assure array and transpose for easy slicing # i.e. transpose of 1D does nothing, but of 2D puts features # along first dimension val = N.asanyarray(val).T # do we have multiple or just one mflag = len(val.shape) > 1 result = [] fsum = 0 for ds in self.__datasets: # calculate upper border fsum_new = fsum + ds.nfeatures # now map back if mapper is present, otherwise just store # need to pass transposed!! if isinstance(ds, MappedDataset): result.append(ds.mapReverse(val[fsum:fsum_new].T)) else: result.append(val[fsum:fsum_new].T) fsum = fsum_new return result # read-only class properties nsamples = property(fget=getNSamples) nfeatures = property(fget=getNFeatures) datasets = property(fget=lambda self: self.__datasets) pymvpa-0.4.8/mvpa/datasets/miscfx.py000066400000000000000000000310061174541445200174640ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Misc function performing operations on datasets. All the functions defined in this module must accept dataset as the first argument since they are bound to Dataset class in the trailer. """ __docformat__ = 'restructuredtext' from operator import isSequenceType import numpy as N from mvpa.datasets.base import Dataset, datasetmethod from mvpa.base.dochelpers import table2string from mvpa.misc.support import getBreakPoints from mvpa.base import externals, warning if __debug__: from mvpa.base import debug if externals.exists('scipy'): from mvpa.datasets.miscfx_sp import detrend @datasetmethod def zscore(dataset, mean=None, std=None, perchunk=True, baselinelabels=None, pervoxel=True, targetdtype='float64'): """Z-Score the samples of a `Dataset` (in-place). `mean` and `std` can be used to pass custom values to the z-scoring. Both may be scalars or arrays. All computations are done *in place*. Data upcasting is done automatically if necessary into `targetdtype` If `baselinelabels` provided, and `mean` or `std` aren't provided, it would compute the corresponding measure based only on labels in `baselinelabels` If `perchunk` is True samples within the same chunk are z-scored independent of samples from other chunks, e.i. mean and standard deviation are calculated individually. """ if __debug__ and perchunk \ and N.array(dataset.samplesperchunk.values()).min() <= 2: warning("Z-scoring chunk-wise and one chunk with less than three " "samples will set features in these samples to either zero " "(with 1 sample in a chunk) " "or -1/+1 (with 2 samples in a chunk).") # cast to floating point datatype if necessary if str(dataset.samples.dtype).startswith('uint') \ or str(dataset.samples.dtype).startswith('int'): dataset.setSamplesDType(targetdtype) def doit(samples, mean, std, statsamples=None): """Internal method.""" if statsamples is None: # if nothing provided -- mean/std on all samples statsamples = samples if pervoxel: axisarg = {'axis':0} else: axisarg = {} # calculate mean if necessary if mean is None: mean = statsamples.mean(**axisarg) # de-mean samples -= mean # calculate std-deviation if necessary # XXX YOH: would that be actually what we want? # may be we want actually estimate of deviation from the mean, # which per se might be not statsamples.mean (see above)? # if logic to be changed -- adjust ZScoreMapper as well if std is None: std = statsamples.std(**axisarg) # do the z-scoring if pervoxel: # Assure std being an array if N.isscalar(std): std = N.ones(samples.shape[1]) else: # and so we don't perform list comparison to 0 std = N.asanyarray(std) samples[:, std != 0] /= std[std != 0] else: samples /= std return samples if baselinelabels is None: statids = None else: statids = set(dataset.idsbylabels(baselinelabels)) # for the sake of speed yoh didn't simply create a list # [True]*dataset.nsamples to provide easy selection of everything if perchunk: for c in dataset.uniquechunks: slicer = N.where(dataset.chunks == c)[0] if not statids is None: statslicer = list(statids.intersection(set(slicer))) dataset.samples[slicer] = doit(dataset.samples[slicer], mean, std, dataset.samples[statslicer]) else: slicedsamples = dataset.samples[slicer] dataset.samples[slicer] = doit(slicedsamples, mean, std, slicedsamples) elif statids is None: doit(dataset.samples, mean, std, dataset.samples) else: doit(dataset.samples, mean, std, dataset.samples[list(statids)]) @datasetmethod def aggregateFeatures(dataset, fx=N.mean): """Apply a function to each row of the samples matrix of a dataset. The functor given as `fx` has to honour an `axis` keyword argument in the way that NumPy used it (e.g. NumPy.mean, var). :Returns: a new `Dataset` object with the aggregated feature(s). """ agg = fx(dataset.samples, axis=1) return Dataset(samples=N.array(agg, ndmin=2).T, labels=dataset.labels, chunks=dataset.chunks) @datasetmethod def removeInvariantFeatures(dataset): """Returns a new dataset with all invariant features removed. """ return dataset.selectFeatures(dataset.samples.std(axis=0).nonzero()[0]) @datasetmethod def coarsenChunks(source, nchunks=4): """Change chunking of the dataset Group chunks into groups to match desired number of chunks. Makes sense if originally there were no strong groupping into chunks or each sample was independent, thus belonged to its own chunk :Parameters: source : Dataset or list of chunk ids dataset or list of chunk ids to operate on. If Dataset, then its chunks get modified nchunks : int desired number of chunks """ if isinstance(source, Dataset): chunks = source.chunks else: chunks = source chunks_unique = N.unique(chunks) nchunks_orig = len(chunks_unique) if nchunks_orig < nchunks: raise ValueError, \ "Original number of chunks is %d. Cannot coarse them " \ "to get %d chunks" % (nchunks_orig, nchunks) # figure out number of samples per each chunk counts = dict(zip(chunks_unique, [ 0 ] * len(chunks_unique))) for c in chunks: counts[c] += 1 # now we need to group chunks to get more or less equalized number # of samples per chunk. No sophistication is done -- just # consecutively group to get close to desired number of samples # per chunk avg_chunk_size = N.sum(counts.values())*1.0/nchunks chunks_groups = [] cur_chunk = [] nchunks = 0 cur_chunk_nsamples = 0 samples_counted = 0 for i, c in enumerate(chunks_unique): cc = counts[c] cur_chunk += [c] cur_chunk_nsamples += cc # time to get a new chunk? if (samples_counted + cur_chunk_nsamples >= (nchunks+1)*avg_chunk_size) or i==nchunks_orig-1: chunks_groups.append(cur_chunk) samples_counted += cur_chunk_nsamples cur_chunk_nsamples = 0 cur_chunk = [] nchunks += 1 if len(chunks_groups) != nchunks: warning("Apparently logic in coarseChunks is wrong. " "It was desired to get %d chunks, got %d" % (nchunks, len(chunks_groups))) # remap using groups # create dictionary chunks_map = {} for i, group in enumerate(chunks_groups): for c in group: chunks_map[c] = i chunks_new = [chunks_map[x] for x in chunks] if __debug__: debug("DS_", "Using dictionary %s to remap old chunks %s into new %s" % (chunks_map, chunks, chunks_new)) if isinstance(source, Dataset): if __debug__: debug("DS", "Coarsing %d chunks into %d chunks for %s" %(nchunks_orig, len(chunks_new), source)) source.chunks = chunks_new return else: return chunks_new @datasetmethod def getSamplesPerChunkLabel(dataset): """Returns an array with the number of samples per label in each chunk. Array shape is (chunks x labels). :Parameters: dataset: Dataset Source dataset. """ ul = dataset.uniquelabels uc = dataset.uniquechunks count = N.zeros((len(uc), len(ul)), dtype='uint') for cc, c in enumerate(uc): for lc, l in enumerate(ul): count[cc, lc] = N.sum(N.logical_and(dataset.labels == l, dataset.chunks == c)) return count class SequenceStats(dict): """Simple helper to provide representation of sequence statistics Matlab analog: http://cfn.upenn.edu/aguirre/code/matlablib/mseq/mtest.m WARNING: Experimental -- API might change without warning! Current implementation is ugly! """ def __init__(self, seq, order=2):#, chunks=None, perchunk=False): """Initialize SequenceStats :Parameters: seq : list or ndarray Actual sequence of labels :Keywords: order : int Maximal order of counter-balancing check. For perfect counterbalancing all matrices should be identical """ """ chunks : None or list or ndarray Chunks to use if `perchunk`=True perchunk .... TODO """ dict.__init__(self) self.order = order self._seq = seq self.stats = None self._str_stats = None self.__compute() def __repr__(self): """Representation of SequenceStats """ return "SequenceStats(%s, order=%d)" % (repr(self._seq), self.order) def __str__(self): return self._str_stats def __compute(self): """Compute stats and string representation """ # Do actual computation order = self.order seq = list(self._seq) # assure list nsamples = len(seq) # # of samples/labels ulabels = sorted(list(set(seq))) # unique labels nlabels = len(ulabels) # # of labels # mapping for labels labels_map = dict([(l, i) for i,l in enumerate(ulabels)]) # map sequence first seqm = [labels_map[i] for i in seq] nperlabel = N.bincount(seqm) res = dict(ulabels=ulabels) # Estimate counter-balance cbcounts = N.zeros((order, nlabels, nlabels), dtype=int) for cb in xrange(order): for i,j in zip(seqm[:-(cb+1)], seqm[cb+1:]): cbcounts[cb, i, j] += 1 res['cbcounts'] = cbcounts """ Lets compute relative counter-balancing Ideally, nperlabel[i]/nlabels should precede each label """ # Autocorrelation corr = [] # for all possible shifts: for shift in xrange(1, nsamples): shifted = seqm[shift:] + seqm[:shift] # ??? User pearsonsr with p may be? corr += [N.corrcoef(seqm, shifted)[0, 1]] # ??? report high (anti)correlations? res['corrcoef'] = corr = N.array(corr) res['sumabscorr'] = sumabscorr = N.sum(N.abs(corr)) self.update(res) # Assign textual summary # XXX move into a helper function and do on demand t = [ [""] * (1 + self.order*(nlabels+1)) for i in xrange(nlabels+1) ] t[0][0] = "Labels/Order" for i, l in enumerate(ulabels): t[i+1][0] = '%s:' % l for cb in xrange(order): t[0][1+cb*(nlabels+1)] = "O%d" % (cb+1) for i in xrange(nlabels+1): t[i][(cb+1)*(nlabels+1)] = " | " m = cbcounts[cb] # ??? there should be better way to get indexes ind = N.where(~N.isnan(m)) for i, j in zip(*ind): t[1+i][1+cb*(nlabels+1)+j] = '%d' % m[i, j] sout = "Original sequence had %d entries from set %s\n" \ % (len(seq), ulabels) + \ "Counter-balance table for orders up to %d:\n" % order \ + table2string(t) sout += "Correlations: min=%.2g max=%.2g mean=%.2g sum(abs)=%.2g" \ % (min(corr), max(corr), N.mean(corr), sumabscorr) self._str_stats = sout def plot(self): """Plot correlation coefficients """ externals.exists('pylab', raiseException=True) import pylab as P P.plot(self['corrcoef']) P.title('Auto-correlation of the sequence') P.xlabel('Offset') P.ylabel('Correlation Coefficient') P.show() pymvpa-0.4.8/mvpa/datasets/miscfx_sp.py000066400000000000000000000167271174541445200202030ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Misc function performing operations on datasets which are based on scipy """ __docformat__ = 'restructuredtext' from mvpa.base import externals import numpy as N np = N # just for easy merging of changes into >=0.5 from operator import isSequenceType from mvpa.datasets.base import Dataset, datasetmethod from mvpa.misc.support import getBreakPoints if externals.exists('scipy', raiseException=True): from scipy import signal from scipy.linalg import lstsq from scipy.special import legendre def legendre_(n, x): # Scipy 0.8.0 (and possibly later) has regression of reporting # 'inf's for negative boundary. Lets guard against it for now leg = legendre(n) r = leg(x) infs = np.isinf(r) if np.any(infs): r[infs] = leg(x[infs] + 1e-10) # offset to try to overcome problems return r @datasetmethod def detrend(dataset, perchunk=False, model='linear', polyord=None, opt_reg=None): """ Given a dataset, detrend the data inplace either entirely or per each chunk :Parameters: dataset : Dataset dataset to operate on perchunk : bool either to operate on whole dataset at once or on each chunk separately model Type of detrending model to run. If 'linear' or 'constant', scipy.signal.detrend is used to perform a linear or demeaning detrend. Polynomial detrending is activated when 'regress' is used or when polyord or opt_reg are specified. polyord : int or list Order of the Legendre polynomial to remove from the data. This will remove every polynomial up to and including the provided value. For example, 3 will remove 0th, 1st, 2nd, and 3rd order polynomials from the data. N.B.: The 0th polynomial is the baseline shift, the 1st is the linear trend. If you specify a single int and perchunk is True, then this value is used for each chunk. You can also specify a different polyord value for each chunk by providing a list or ndarray of polyord values the length of the number of chunks. opt_reg : ndarray Optional ndarray of additional information to regress out from the dataset. One example would be to regress out motion parameters. As with the data, time is on the first axis. """ if polyord is not None or opt_reg is not None: model='regress' if model in ['linear', 'constant']: # perform scipy detrend bp = 0 # no break points by default if perchunk: try: bp = getBreakPoints(dataset.chunks) except ValueError, e: raise ValueError, \ "Failed to assess break points between chunks. Often " \ "that is due to discontinuities within a chunk, which " \ "ruins idea of per-chunk detrending. Original " \ "exception was: %s" % str(e) dataset.samples[:] = signal.detrend(dataset.samples, axis=0, type=model, bp=bp) elif model in ['regress']: # perform regression-based detrend return __detrend_regress(dataset, perchunk=perchunk, polyord=polyord, opt_reg=opt_reg) else: # raise exception because not found raise ValueError('Specified model type (%s) is unknown.' % (model)) def __detrend_regress(dataset, perchunk=True, polyord=None, opt_reg=None): """ Given a dataset, perform a detrend inplace, regressing out polynomial terms as well as optional regressors, such as motion parameters. :Parameters: dataset : Dataset Dataset to operate on perchunk : bool Either to operate on whole dataset at once or on each chunk separately. If perchunk is True, all the samples within a chunk should be contiguous and the chunks should be sorted in order from low to high. polyord : int Order of the Legendre polynomial to remove from the data. This will remove every polynomial up to and including the provided value. For example, 3 will remove 0th, 1st, 2nd, and 3rd order polynomials from the data. N.B.: The 0th polynomial is the baseline shift, the 1st is the linear trend. If you specify a single int and perchunk is True, then this value is used for each chunk. You can also specify a different polyord value for each chunk by providing a list or ndarray of polyord values the length of the number of chunks. opt_reg : ndarray Optional ndarray of additional information to regress out from the dataset. One example would be to regress out motion parameters. As with the data, time is on the first axis. """ # Process the polyord to be a list with length of the number of chunks if not polyord is None: if not isSequenceType(polyord): # repeat to be proper length polyord = [polyord]*len(dataset.uniquechunks) elif perchunk and len(polyord) != len(dataset.uniquechunks): raise ValueError("If you specify a sequence of polyord values " + \ "they sequence length must match the " + \ "number of unique chunks in the dataset.") # loop over chunks if necessary if perchunk: # get the unique chunks uchunks = dataset.uniquechunks # loop over each chunk reg = [] for n, chunk in enumerate(uchunks): # get the indices for that chunk cinds = dataset.chunks == chunk # see if add in polyord values if not polyord is None: # create the timespan x = N.linspace(-1, 1, cinds.sum()) # create each polyord with the value for that chunk for n in range(polyord[n] + 1): newreg = N.zeros((dataset.nsamples, 1)) newreg[cinds, 0] = legendre_(n, x) reg.append(newreg) else: # take out mean over entire dataset reg = [] # see if add in polyord values if not polyord is None: # create the timespan x = N.linspace(-1, 1, dataset.nsamples) for n in range(polyord[0] + 1): reg.append(legendre_(n, x)[:, N.newaxis]) # see if add in optional regs if not opt_reg is None: # add in the optional regressors, too reg.append(opt_reg) # combine the regs if len(reg) > 0: if len(reg) > 1: regs = N.hstack(reg) else: regs = reg[0] else: # no regs to remove raise ValueError("You must specify at least one " + \ "regressor to regress out.") # perform the regression res = lstsq(regs, dataset.samples) # remove all but the residuals yhat = N.dot(regs, res[0]) dataset.samples -= yhat # return the results return res, regs pymvpa-0.4.8/mvpa/datasets/nifti.py000066400000000000000000000471601174541445200173140ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Dataset that gets its samples from a NIfTI file""" __docformat__ = 'restructuredtext' from mvpa.base import externals import sys import numpy as N from mvpa.support.copy import deepcopy if __debug__: from mvpa.base import debug if externals.exists('nifti', raiseException=True): if sys.version_info[:2] >= (2, 5): # enforce absolute import NiftiImage = __import__('nifti', globals(), locals(), [], 0).NiftiImage else: # little trick to be able to import 'nifti' package (which has same # name) oldname = __name__ # crazy name with close to zero possibility to cause whatever __name__ = 'iaugf9zrkjsbdv89' from nifti import NiftiImage # restore old settings __name__ = oldname from mvpa.datasets.base import Dataset from mvpa.datasets.mapped import MappedDataset from mvpa.datasets.event import EventDataset from mvpa.mappers.base import CombinedMapper from mvpa.mappers.metric import DescreteMetric, cartesianDistance from mvpa.mappers.array import DenseArrayMapper from mvpa.base import warning def getNiftiFromAnySource(src, ensure=False, enforce_dim=None, scale_data=True): """Load/access NIfTI data from files or instances. :Parameters: src: str | NiftiImage Filename of a NIfTI image or a `NiftiImage` instance. ensure : bool If True, through ValueError exception if cannot be loaded. enforce_dim : int or None If not None, it is the dimensionality of the data to be enforced, commonly 4D for the data, and 3D for the mask in case of fMRI. scale_data : bool NIfTI header specifies scl_slope and scl_inter for scaling and offsetting the data. By default those will get applied to the data (change in behavior post 0.4.6). :Returns: NiftiImage | None If the source is not supported None is returned. """ nifti = None # figure out what type if isinstance(src, str): # open the nifti file try: nifti = NiftiImage(src) except RuntimeError, e: warning("ERROR: NiftiDatasets: Cannot open NIfTI file %s" \ % src) raise e elif isinstance(src, NiftiImage): # nothing special nifti = src elif (isinstance(src, list) or isinstance(src, tuple)) \ and len(src)>0 \ and (isinstance(src[0], str) or isinstance(src[0], NiftiImage)): # load from a list of given entries if enforce_dim is not None: enforce_dim_ = enforce_dim - 1 else: enforce_dim_ = None if __debug__: debug('DS_NIFTI', 'Loading from a sequence of sources: %s' % (src,)) srcs = [getNiftiFromAnySource(s, ensure=ensure, enforce_dim=enforce_dim_) for s in src] if __debug__: # lets check if they all have the same dimensionality shapes = [s.data.shape for s in srcs] if not N.all([s == shapes[0] for s in shapes]): raise ValueError, \ "Input volumes contain variable number of dimensions:" \ " %s" % (shapes,) # Combine them all into a single beast # And since they all could have varying scl_* - reset those hdr = srcs[0].header hdr['scl_slope'] = 1. hdr['scl_inter'] = 0. nifti = NiftiImage(N.array([s.asarray() for s in srcs]), hdr) elif ensure: raise ValueError, "Cannot load NIfTI from %s" % (src,) if nifti is not None and enforce_dim is not None: shape, new_shape = nifti.data.shape, None lshape = len(shape) # check if we need to tune up shape if lshape < enforce_dim: # if we are missing required dimension(s) new_shape = (1,)*(enforce_dim-lshape) + shape elif lshape > enforce_dim: # if there are bogus dimensions at the beginning bogus_dims = lshape - enforce_dim if shape[:bogus_dims] != (1,)*bogus_dims: raise ValueError, \ "Cannot enforce %dD on data with shape %s" \ % (enforce_dim, shape) new_shape = shape[bogus_dims:] # tune up shape if needed if new_shape is not None: if __debug__: debug('DS_NIFTI', 'Enforcing shape %s for %s data from %s' % (new_shape, shape, src)) nifti.data.shape = new_shape if nifti is not None and scale_data: if nifti.slope and not (nifti.slope == 1.0 and nifti.intercept == 0.0): if __debug__: debug('DS_NIFTI', 'Scaling the data from %s' % (src,)) nifti.data = nifti.getScaledData() else: # Do nothing -- just debug message if __debug__: debug('DS_NIFTI', 'Although scaling was requested, data from %s' ' has no scaling parameters set -- thus no scaling' % (src,)) return nifti def getNiftiData(nim): """Convenience function to extract the data array from a NiftiImage This function will make use of advanced features of PyNIfTI to prevent unnecessary copying if a sufficent version is available. """ if externals.exists('nifti ge 0.20090205.1'): return nim.data else: return nim.asarray() def _get_safe_header(nids): """Given *NiftiDataset, returns a copy of NIfTI header with reset scl_ fields """ hdr = nids.niftihdr.copy() hdr['scl_slope'] = 1. hdr['scl_inter'] = 0. return hdr class NiftiDataset(MappedDataset): """Dataset loading its samples from a NIfTI image or file. Samples can be loaded from a NiftiImage instance or directly from a NIfTI file. This class stores all relevant information from the NIfTI file header and provides information about the metrics and neighborhood information of all voxels. Most importantly it allows to map data back into the original data space and format via :meth:`~mvpa.datasets.nifti.NiftiDataset.map2Nifti`. This class allows for convenient pre-selection of features by providing a mask to the constructor. Only non-zero elements from this mask will be considered as features. NIfTI files are accessed via PyNIfTI. See http://niftilib.sourceforge.net/pynifti/ for more information about pynifti. """ # XXX: Every dataset should really have an example of howto instantiate # it (necessary parameters). def __init__(self, samples=None, mask=None, dsattr=None, enforce_dim=4, scale_data=True, **kwargs): """ :Parameters: samples: str | NiftiImage Filename of a NIfTI image or a `NiftiImage` instance. mask: str | NiftiImage | ndarray Filename of a NIfTI image or a `NiftiImage` instance or an ndarray of appropriate shape. enforce_dim : int or None If not None, it is the dimensionality of the data to be enforced, commonly 4D for the data, and 3D for the mask in case of fMRI. scale_data : bool NIfTI header specifies scl_slope and scl_inter for scaling and offsetting the data. By default those will get applied to the data (change in behavior post 0.4.6). """ # if in copy constructor mode if not dsattr is None and dsattr.has_key('mapper'): MappedDataset.__init__(self, samples=samples, dsattr=dsattr, **kwargs) return # # the following code only deals with contructing fresh datasets from # scratch # # load the samples niftisamples = getNiftiFromAnySource(samples, ensure=True, enforce_dim=enforce_dim, scale_data=scale_data) samples = niftisamples.data # do not put the whole NiftiImage in the dict as this will most # likely be deepcopy'ed at some point and ensuring data integrity # of the complex Python-C-Swig hybrid might be a tricky task. # Only storing the header dict should achieve the same and is more # memory efficient and even simpler dsattr = {'niftihdr': niftisamples.header} # figure out what the mask is, but onyl handle known cases, the rest # goes directly into the mapper which maybe knows more niftimask = getNiftiFromAnySource(mask, scale_data=scale_data) if niftimask is None: pass elif isinstance(niftimask, N.ndarray): mask = niftimask else: mask = getNiftiData(niftimask) # build an appropriate mapper that knows about the metrics of the NIfTI # data # NiftiDataset uses a DescreteMetric with cartesian # distance and element size from the NIfTI header # 'voxdim' is (x,y,z) while 'samples' are (t,z,y,x) elementsize = [i for i in reversed(niftisamples.voxdim)] mapper = DenseArrayMapper(mask=mask, shape=samples.shape[1:], metric=DescreteMetric(elementsize=elementsize, distance_function=cartesianDistance)) MappedDataset.__init__(self, samples=samples, mapper=mapper, dsattr=dsattr, **kwargs) def map2Nifti(self, data=None): """Maps a data vector into the dataspace and wraps it with a NiftiImage. The header data of this object is used to initialize the new NiftiImage (scl_slope and scl_inter are reset to 1.0 and 0.0 accordingly). :Parameters: data : ndarray or Dataset The data to be wrapped into NiftiImage. If None (default), it would wrap samples of the current dataset. If it is a Dataset instance -- takes its samples for mapping """ if data is None: data = self.samples elif isinstance(data, Dataset): # ease users life data = data.samples dsarray = self.mapper.reverse(data) return NiftiImage(dsarray, _get_safe_header(self)) def getDt(self): """Return the temporal distance of two samples/volumes. This method tries to be clever and always returns `dt` in seconds, by using unit information from the NIfTI header. If such information is not present the assumed unit will also be `seconds`. """ # plain value hdr = self.niftihdr TR = hdr['pixdim'][4] # by default assume seconds as unit and do not scale scale = 1.0 # figure out units, if available if hdr.has_key('time_unit'): unit_code = hdr['time_unit'] / 8 elif hdr.has_key('xyzt_unit'): unit_code = int(hdr['xyzt_unit']) / 8 else: warning("No information on time units is available. Assuming " "seconds") unit_code = 0 # handle known units # XXX should be refactored to use actual unit labels from pynifti # when version 0.20090205 or later is assumed to be available on all # machines if unit_code in [0, 1, 2, 3]: if unit_code == 0: warning("Time units were not specified in NiftiImage. " "Assuming seconds.") scale = [ 1.0, 1.0, 1e-3, 1e-6 ][unit_code] else: warning("Time units are incorrectly coded: value %d whenever " "allowed are 8 (sec), 16 (millisec), 24 (microsec). " "Assuming seconds." % (unit_code * 8,) ) return TR * scale niftihdr = property(fget=lambda self: self._dsattr['niftihdr'], doc='Access to the NIfTI header dictionary.') dt = property(fget=getDt, doc='Time difference between two samples (in seconds). ' 'AKA TR in fMRI world.') samplingrate = property(fget=lambda self: 1.0 / self.dt, doc='Sampling rate (based on .dt).') class ERNiftiDataset(EventDataset): """Dataset with event-defined samples from a NIfTI timeseries image. This is a convenience dataset to facilitate the analysis of event-related fMRI datasets. Boxcar-shaped samples are automatically extracted from the full timeseries using :class:`~mvpa.misc.support.Event` definition lists. For each event all volumes covering that particular event in time (including partial coverage) are used to form the corresponding sample. The class supports the conversion of events defined in 'realtime' into the descrete temporal space defined by the NIfTI image. Moreover, potentially varying offsets between true event onset and timepoint of the first selected volume can be stored as an additional feature in the dataset. Additionally, the dataset supports masking. This is done similar to the masking capabilities of :class:`~mvpa.datasets.nifti.NiftiDataset`. However, the mask can either be of the same shape as a single NIfTI volume, or can be of the same shape as the generated boxcar samples, i.e. a samples consisting of three volumes with 24 slices and 64x64 inplane resolution needs a mask with shape (3, 24, 64, 64). In the former case the mask volume is automatically expanded to be identical in a volumes of the boxcar. """ def __init__(self, samples=None, events=None, mask=None, evconv=False, storeoffset=False, tr=None, enforce_dim=4, scale_data=True, **kwargs): """ :Parameters: mask: str | NiftiImage | ndarray Filename of a NIfTI image or a `NiftiImage` instance or an ndarray of appropriate shape. evconv: bool Convert event definitions using `onset` and `duration` in some temporal unit into #sample notation. storeoffset: bool Whether to store temproal offset information when converting Events into descrete time. Only considered when evconv == True. tr: float Temporal distance of two adjacent NIfTI volumes. This can be used to override the corresponding value in the NIfTI header. enforce_dim : int or None If not None, it is the dimensionality of the data to be enforced, commonly 4D for the data, and 3D for the mask in case of fMRI. scale_data : bool NIfTI header specifies scl_slope and scl_inter for scaling and offsetting the data. By default those will get applied to the data (change in behavior post 0.4.6). """ # check if we are in copy constructor mode if events is None: EventDataset.__init__(self, samples=samples, events=events, mask=mask, **kwargs) return nifti = getNiftiFromAnySource(samples, ensure=True, enforce_dim=enforce_dim, scale_data=scale_data) # no copying samples = nifti.data # do not put the whole NiftiImage in the dict as this will most # likely be deepcopy'ed at some point and ensuring data integrity # of the complex Python-C-Swig hybrid might be a tricky task. # Only storing the header dict should achieve the same and is more # memory efficient and even simpler dsattr = {'niftihdr': nifti.header} # determine TR, take from NIfTI header by default dt = nifti.rtime # override if necessary if not tr is None: dt = tr # NiftiDataset uses a DescreteMetric with cartesian # distance and element size from the NIfTI header # 'voxdim' is (x,y,z) while 'samples' are (t,z,y,x) elementsize = [dt] + [i for i in reversed(nifti.voxdim)] # XXX metric might be inappropriate if boxcar has length 1 # might move metric setup after baseclass init and check what has # really happened metric = DescreteMetric(elementsize=elementsize, distance_function=cartesianDistance) # convert EVs if necessary -- not altering original if evconv: if dt == 0: raise ValueError, "'dt' cannot be zero when converting Events" events = [ev.asDescreteTime(dt, storeoffset) for ev in events] else: # do not touch the original events = deepcopy(events) # forcefully convert onset and duration into integers, as expected # by the baseclass for ev in events: oldonset = ev['onset'] oldduration = ev['duration'] ev['onset'] = int(ev['onset']) ev['duration'] = int(ev['duration']) if not oldonset == ev['onset'] \ or not oldduration == ev['duration']: warning("Loosing information during automatic integer " "conversion of EVs. Consider an explicit conversion" " by setting `evconv` in ERNiftiDataset().") # pull mask array from NIfTI (if present) if mask is None: pass elif isinstance(mask, N.ndarray): # plain array can be passed on to base class pass else: mask_nim = getNiftiFromAnySource(mask, scale_data=scale_data) if not mask_nim is None: mask = getNiftiData(mask_nim) else: raise ValueError, "Cannot load mask from '%s'" % mask # finally init baseclass EventDataset.__init__(self, samples=samples, events=events, mask=mask, dametric=metric, dsattr=dsattr, **kwargs) def map2Nifti(self, data=None): """Maps a data vector into the dataspace and wraps it with a NiftiImage. The header data of this object is used to initialize the new NiftiImage (scl_slope and scl_inter are reset to 1.0 and 0.0 accordingly). .. note:: Only the features corresponding to voxels are mapped back -- not any additional features passed via the Event definitions. :Parameters: data : ndarray or Dataset The data to be wrapped into NiftiImage. If None (default), it would wrap samples of the current dataset. If it is a Dataset instance -- takes its samples for mapping """ if data is None: data = self.samples elif isinstance(data, Dataset): # ease users life data = data.samples mr = self.mapper.reverse(data) # trying to determine which part should go into NiftiImage if isinstance(self.mapper, CombinedMapper): # we have additional feature in the dataset -- ignore them mr = mr[0] else: pass return NiftiImage(mr, _get_safe_header(self)) niftihdr = property(fget=lambda self: self._dsattr['niftihdr'], doc='Access to the NIfTI header dictionary.') pymvpa-0.4.8/mvpa/datasets/splitters.py000066400000000000000000000572121174541445200202330ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Collection of dataset splitters. Module Description ================== Splitters are destined to split the provided dataset varous ways to simplify cross-validation analysis, implement boosting of the estimates, or sample null-space via permutation testing. Most of the splitters at the moment split 2-ways -- conventionally first part is used for training, and 2nd part for testing by `CrossValidatedTransferError` and `SplitClassifier`. Brief Description of Available Splitters ======================================== * `NoneSplitter` - just return full dataset as the desired part (training/testing) * `OddEvenSplitter` - 2 splits: (odd samples,even samples) and (even, odd) * `HalfSplitter` - 2 splits: (first half, second half) and (second, first) * `NFoldSplitter` - splits for N-Fold cross validation. Module Organization =================== .. packagetree:: :style: UML """ __docformat__ = 'restructuredtext' import operator import numpy as N import mvpa.misc.support as support from mvpa.base.dochelpers import enhancedDocString from mvpa.datasets.miscfx import coarsenChunks if __debug__: from mvpa.base import debug class Splitter(object): """Base class of dataset splitters. Each splitter should be initialized with all its necessary parameters. The final splitting is done running the splitter object on a certain Dataset via __call__(). This method has to be implemented like a generator, i.e. it has to return every possible split with a yield() call. Each split has to be returned as a sequence of Datasets. The properties of the splitted dataset may vary between implementations. It is possible to declare a sequence element as 'None'. Please note, that even if there is only one Dataset returned it has to be an element in a sequence and not just the Dataset object! """ _STRATEGIES = ('first', 'random', 'equidistant') _NPERLABEL_STR = ['equal', 'all'] def __init__(self, nperlabel='all', nrunspersplit=1, permute=False, count=None, strategy='equidistant', discard_boundary=None, attr='chunks', reverse=False): """Initialize splitter base. :Parameters: nperlabel : int or str (or list of them) or float Number of dataset samples per label to be included in each split. If given as a float, it must be in [0,1] range and would mean the ratio of selected samples per each label. Two special strings are recognized: 'all' uses all available samples (default) and 'equal' uses the maximum number of samples the can be provided by all of the classes. This value might be provided as a sequence whos length matches the number of datasets per split and indicates the configuration for the respective dataset in each split. nrunspersplit: int Number of times samples for each split are chosen. This is mostly useful if a subset of the available samples is used in each split and the subset is randomly selected for each run (see the `nperlabel` argument). permute : bool If set to `True`, the labels of each generated dataset will be permuted on a per-chunk basis. count : None or int Desired number of splits to be output. It is limited by the number of splits possible for a given splitter (e.g. `OddEvenSplitter` can have only up to 2 splits). If None, all splits are output (default). strategy : str If `count` is not None, possible strategies are possible: first First `count` splits are chosen random Random (without replacement) `count` splits are chosen equidistant Splits which are equidistant from each other discard_boundary : None or int or sequence of int If not `None`, how many samples on the boundaries between parts of the split to discard in the training part. If int, then discarded in all parts. If a sequence, numbers to discard are given per part of the split. E.g. if splitter splits only into (training, testing) parts, then `discard_boundary`=(2,0) would instruct to discard 2 samples from training which are on the boundary with testing. attr : str Sample attribute used to determine splits. reverse : bool If True, the order of datasets in the split is reversed, e.g. instead of (training, testing), (training, testing) will be spit out """ # pylint happyness block self.__nperlabel = None self.__runspersplit = nrunspersplit self.__permute = permute self.__splitattr = attr self._reverse = reverse self.discard_boundary = discard_boundary # we don't check it, thus no reason to make it private. # someone might find it useful to change post creation # TODO utilize such (or similar) policy through out the code self.count = count """Number (max) of splits to output on call""" self._setStrategy(strategy) # pattern sampling status vars self.setNPerLabel(nperlabel) __doc__ = enhancedDocString('Splitter', locals()) def _setStrategy(self, strategy): """Set strategy to select splits out from available """ strategy = strategy.lower() if not strategy in self._STRATEGIES: raise ValueError, "strategy is not known. Known are %s" \ % str(self._STRATEGIES) self.__strategy = strategy def setNPerLabel(self, value): """Set the number of samples per label in the split datasets. 'equal' sets sample size to highest possible number of samples that can be provided by each class. 'all' uses all available samples (default). """ if isinstance(value, basestring): if not value in self._NPERLABEL_STR: raise ValueError, "Unsupported value '%s' for nperlabel." \ " Supported ones are %s or float or int" % (value, self._NPERLABEL_STR) self.__nperlabel = value def _getSplitConfig(self, uniqueattr): """Each subclass has to implement this method. It gets a sequence with the unique attribte ids of a dataset and has to return a list of lists containing attribute ids to split into the second dataset. """ raise NotImplementedError def __call__(self, dataset): """Splits the dataset. This method behaves like a generator. """ # local bindings to methods to gain some speedup ds_class = dataset.__class__ DS_permuteLabels = ds_class.permuteLabels try: DS_getNSamplesPerLabel = ds_class._getNSamplesPerAttr except AttributeError: # Some "not-real" datasets e.g. MetaDataset, might not # have it pass DS_getRandomSamples = ds_class.getRandomSamples # for each split cfgs = self.splitcfg(dataset) # Select just some splits if desired count, Ncfgs = self.count, len(cfgs) # further makes sense only iff count < Ncfgs, # otherwise all strategies are equivalent if count is not None and count < Ncfgs: if count < 1: # we can only wish a good luck return strategy = self.strategy if strategy == 'first': cfgs = cfgs[:count] elif strategy in ['equidistant', 'random']: if strategy == 'equidistant': # figure out what step is needed to # acommodate the `count` number step = float(Ncfgs) / count assert(step >= 1.0) indexes = [int(round(step * i)) for i in xrange(count)] elif strategy == 'random': indexes = N.random.permutation(range(Ncfgs))[:count] # doesn't matter much but lets keep them in the original # order at least indexes.sort() else: # who said that I am paranoid? raise RuntimeError, "Really should not happen" if __debug__: debug("SPL", "For %s strategy selected %s splits " "from %d total" % (strategy, indexes, Ncfgs)) cfgs = [cfgs[i] for i in indexes] # update Ncfgs Ncfgs = len(cfgs) # Finally split the data for isplit, split in enumerate(cfgs): # determine sample sizes if not operator.isSequenceType(self.__nperlabel) \ or isinstance(self.__nperlabel, str): nperlabelsplit = [self.__nperlabel] * len(split) else: nperlabelsplit = self.__nperlabel # get splitted datasets split_ds = self.splitDataset(dataset, split) # do multiple post-processing runs for this split for run in xrange(self.__runspersplit): # post-process all datasets finalized_datasets = [] for ds, nperlabel in zip(split_ds, nperlabelsplit): # Set flag of dataset either this was the last split # ??? per our discussion this might be the best # solution which would scale if we care about # thread-safety etc if ds is not None: ds._dsattr['lastsplit'] = (isplit == Ncfgs-1) # permute the labels if self.__permute: DS_permuteLabels(ds, True, perchunk=True) # select subset of samples if requested if nperlabel == 'all' or ds is None: finalized_datasets.append(ds) else: # We need to select a subset of samples # TODO: move all this logic within getRandomSamples # go for maximum possible number of samples provided # by each label in this dataset if nperlabel == 'equal': # determine the min number of samples per class npl = N.array(DS_getNSamplesPerLabel( ds, attrib='labels').values()).min() elif isinstance(nperlabel, float) or ( operator.isSequenceType(nperlabel) and len(nperlabel) > 0 and isinstance(nperlabel[0], float)): # determine number of samples per class and take # a ratio counts = N.array(DS_getNSamplesPerLabel( ds, attrib='labels').values()) npl = (counts * nperlabel).round().astype(int) else: npl = nperlabel # finally select the patterns finalized_datasets.append( DS_getRandomSamples(ds, npl)) if self._reverse: yield finalized_datasets[::-1] else: yield finalized_datasets def splitDataset(self, dataset, specs): """Split a dataset by separating the samples where the configured sample attribute matches an element of `specs`. :Parameters: dataset : Dataset This is this source dataset. specs : sequence of sequences Contains ids of a sample attribute that shall be split into the another dataset. :Returns: Tuple of splitted datasets. """ # collect the sample ids for each resulting dataset filters = [] none_specs = 0 cum_filter = None # Prepare discard_boundary discard_boundary = self.discard_boundary if isinstance(discard_boundary, int): if discard_boundary != 0: discard_boundary = (discard_boundary,) * len(specs) else: discard_boundary = None splitattr_data = eval('dataset.' + self.__splitattr) for spec in specs: if spec is None: filters.append(None) none_specs += 1 else: filter_ = N.array([ i in spec \ for i in splitattr_data]) filters.append(filter_) if cum_filter is None: cum_filter = filter_ else: cum_filter = N.logical_and(cum_filter, filter_) # need to turn possible Nones into proper ids sequences if none_specs > 1: raise ValueError, "Splitter cannot handle more than one `None` " \ "split definition." for i, filter_ in enumerate(filters): if filter_ is None: filters[i] = N.logical_not(cum_filter) # If it was told to discard samples on the boundary to the # other parts of the split if discard_boundary is not None: ndiscard = discard_boundary[i] if ndiscard != 0: # XXX sloppy implementation for now. It still # should not be the main reason for a slow-down of # the whole analysis ;) f, lenf = filters[i], len(filters[i]) f_pad = N.concatenate(([True]*ndiscard, f, [True]*ndiscard)) for d in xrange(2*ndiscard+1): f = N.logical_and(f, f_pad[d:d+lenf]) filters[i] = f[:] # split data: return None if no samples are left # XXX: Maybe it should simply return an empty dataset instead, but # keeping it this way for now, to maintain current behavior split_datasets = [] # local bindings dataset_selectSamples = dataset.selectSamples for filter_ in filters: if (filter_ == False).all(): split_datasets.append(None) else: split_datasets.append(dataset_selectSamples(filter_)) return split_datasets def __str__(self): """String summary over the object """ return \ "SplitterConfig: nperlabel:%s runs-per-split:%d permute:%s" \ % (self.__nperlabel, self.__runspersplit, self.__permute) def splitcfg(self, dataset): """Return splitcfg for a given dataset""" return self._getSplitConfig(eval('dataset.unique' + self.__splitattr)) strategy = property(fget=lambda self:self.__strategy, fset=_setStrategy) class NoneSplitter(Splitter): """This is a dataset splitter that does **not** split. It simply returns the full dataset that it is called with. The passed dataset is returned as the second element of the 2-tuple. The first element of that tuple will always be 'None'. """ _known_modes = ['first', 'second'] def __init__(self, mode='second', **kwargs): """Cheap init -- nothing special :Parameters: mode Either 'first' or 'second' (default) -- which output dataset would actually contain the samples """ Splitter.__init__(self, **(kwargs)) if not mode in NoneSplitter._known_modes: raise ValueError, "Unknown mode %s for NoneSplitter" % mode self.__mode = mode __doc__ = enhancedDocString('NoneSplitter', locals(), Splitter) def _getSplitConfig(self, uniqueattrs): """Return just one full split: no first or second dataset. """ if self.__mode == 'second': return [([], None)] else: return [(None, [])] def __str__(self): """String summary over the object """ return \ "NoneSplitter / " + Splitter.__str__(self) class OddEvenSplitter(Splitter): """Split a dataset into odd and even values of the sample attribute. The splitter yields to splits: first (odd, even) and second (even, odd). """ def __init__(self, usevalues=False, **kwargs): """Cheap init. :Parameters: usevalues: bool If True the values of the attribute used for splitting will be used to determine odd and even samples. If False odd and even chunks are defined by the order of attribute values, i.e. first unique attribute is odd, second is even, despite the corresponding values might indicate the opposite (e.g. in case of [2,3]. """ Splitter.__init__(self, **(kwargs)) self.__usevalues = usevalues __doc__ = enhancedDocString('OddEvenSplitter', locals(), Splitter) def _getSplitConfig(self, uniqueattrs): """Huka chaka! YOH: LOL XXX """ if self.__usevalues: return [(None, uniqueattrs[(uniqueattrs % 2) == True]), (None, uniqueattrs[(uniqueattrs % 2) == False])] else: return [(None, uniqueattrs[N.arange(len(uniqueattrs)) %2 == True]), (None, uniqueattrs[N.arange(len(uniqueattrs)) %2 == False])] def __str__(self): """String summary over the object """ return \ "OddEvenSplitter / " + Splitter.__str__(self) class HalfSplitter(Splitter): """Split a dataset into two halves of the sample attribute. The splitter yields to splits: first (1st half, 2nd half) and second (2nd half, 1st half). """ def __init__(self, **kwargs): """Cheap init. """ Splitter.__init__(self, **(kwargs)) __doc__ = enhancedDocString('HalfSplitter', locals(), Splitter) def _getSplitConfig(self, uniqueattrs): """Huka chaka! """ return [(None, uniqueattrs[:len(uniqueattrs)/2]), (None, uniqueattrs[len(uniqueattrs)/2:])] def __str__(self): """String summary over the object """ return \ "HalfSplitter / " + Splitter.__str__(self) class NGroupSplitter(Splitter): """Split a dataset into N-groups of the sample attribute. For example, NGroupSplitter(2) is the same as the HalfSplitter and yields to splits: first (1st half, 2nd half) and second (2nd half, 1st half). """ def __init__(self, ngroups=4, **kwargs): """Initialize the N-group splitter. :Parameters: ngroups: int Number of groups to split the attribute into. kwargs Additional parameters are passed to the `Splitter` base class. """ Splitter.__init__(self, **(kwargs)) self.__ngroups = ngroups __doc__ = enhancedDocString('NGroupSplitter', locals(), Splitter) def _getSplitConfig(self, uniqueattrs): """Huka chaka, wuka waka! """ # make sure there are more of attributes than desired groups if len(uniqueattrs) < self.__ngroups: raise ValueError, "Number of groups (%d) " % (self.__ngroups) + \ "must be less than " + \ "or equal to the number of unique attributes (%d)" % \ (len(uniqueattrs)) # use coarsenChunks to get the split indices split_ind = coarsenChunks(uniqueattrs, nchunks=self.__ngroups) split_ind = N.asarray(split_ind) # loop and create splits split_list = [(None, uniqueattrs[split_ind==i]) for i in range(self.__ngroups)] return split_list def __str__(self): """String summary over the object """ return \ "N-%d-GroupSplitter / " % self.__ngroup + Splitter.__str__(self) class NFoldSplitter(Splitter): """Generic N-fold data splitter. Provide folding splitting. Given a dataset with N chunks, with cvtype=1 (which is default), it would generate N splits, where each chunk sequentially is taken out (with replacement) for cross-validation. Example, if there is 4 chunks, splits for cvtype=1 are: [[1, 2, 3], [0]] [[0, 2, 3], [1]] [[0, 1, 3], [2]] [[0, 1, 2], [3]] If cvtype>1, then all possible combinations of cvtype number of chunks are taken out for testing, so for cvtype=2 in previous example: [[2, 3], [0, 1]] [[1, 3], [0, 2]] [[1, 2], [0, 3]] [[0, 3], [1, 2]] [[0, 2], [1, 3]] [[0, 1], [2, 3]] """ def __init__(self, cvtype = 1, **kwargs): """Initialize the N-fold splitter. :Parameters: cvtype: int Type of cross-validation: N-(cvtype) kwargs Additional parameters are passed to the `Splitter` base class. """ Splitter.__init__(self, **(kwargs)) # pylint happiness block self.__cvtype = cvtype __doc__ = enhancedDocString('NFoldSplitter', locals(), Splitter) def __str__(self): """String summary over the object """ return \ "N-%d-FoldSplitter / " % self.__cvtype + Splitter.__str__(self) def _getSplitConfig(self, uniqueattrs): """Returns proper split configuration for N-M fold split. """ return [(None, i) for i in \ support.getUniqueLengthNCombinations(uniqueattrs, self.__cvtype)] class CustomSplitter(Splitter): """Split a dataset using an arbitrary custom rule. The splitter is configured by passing a custom spitting rule (`splitrule`) to its constructor. Such a rule is basically a sequence of split definitions. Every single element in this sequence results in excatly one split generated by the Splitter. Each element is another sequence for sequences of sample ids for each dataset that shall be generated in the split. Example: * Generate two splits. In the first split the *second* dataset contains all samples with sample attributes corresponding to either 0, 1 or 2. The *first* dataset of the first split contains all samples which are not split into the second dataset. The second split yields three datasets. The first with all samples corresponding to sample attributes 1 and 2, the second dataset contains only samples with attrbiute 3 and the last dataset contains the samples with attribute 5 and 6. CustomSplitter([(None, [0, 1, 2]), ([1,2], [3], [5, 6])]) """ def __init__(self, splitrule, **kwargs): """Cheap init. """ Splitter.__init__(self, **(kwargs)) self.__splitrule = splitrule __doc__ = enhancedDocString('CustomSplitter', locals(), Splitter) def _getSplitConfig(self, uniqueattrs): """Huka chaka! """ return self.__splitrule def __str__(self): """String summary over the object """ return "CustomSplitter / " + Splitter.__str__(self) pymvpa-0.4.8/mvpa/featsel/000077500000000000000000000000001174541445200154345ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/featsel/__init__.py000066400000000000000000000015421174541445200175470ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Feature selection methods. Brief Description of Available Methods ====================================== * `SensitivityBasedFeatureSelection` - generic class to provide feature selection given some sensitivity measure * `RFE` - recursive feature elimination (RFE) * `IFS` - incremental feature selection """ __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.featsel') if __debug__: debug('INIT', 'mvpa.featsel end') pymvpa-0.4.8/mvpa/featsel/base.py000066400000000000000000000243671174541445200167340ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Feature selection base class and related stuff base classes and helpers.""" __docformat__ = 'restructuredtext' from mvpa.featsel.helpers import FractionTailSelector from mvpa.misc.state import StateVariable, ClassWithCollections if __debug__: from mvpa.base import debug class FeatureSelection(ClassWithCollections): """Base class for any feature selection Base class for Functors which implement feature selection on the datasets. """ selected_ids = StateVariable(enabled=False) def __init__(self, **kwargs): # base init first ClassWithCollections.__init__(self, **kwargs) def __call__(self, dataset, testdataset=None): """Invocation of the feature selection :Parameters: dataset : Dataset dataset used to select features testdataset : Dataset dataset the might be used to compute a stopping criterion Returns a tuple with the dataset containing the selected features. If present the tuple also contains the selected features of the test dataset. Derived classes must provide interface to access other relevant to the feature selection process information (e.g. mask, elimination step (in RFE), etc) """ raise NotImplementedError def untrain(self): """ 'Untrain' feature selection Necessary for full 'untraining' of the classifiers. By default does nothing, needs to be overridden in corresponding feature selections to pass to the sensitivities """ pass class SensitivityBasedFeatureSelection(FeatureSelection): """Feature elimination. A `FeaturewiseDatasetMeasure` is used to compute sensitivity maps given a certain dataset. These sensitivity maps are in turn used to discard unimportant features. """ sensitivity = StateVariable(enabled=False) def __init__(self, sensitivity_analyzer, feature_selector=FractionTailSelector(0.05), **kwargs ): """Initialize feature selection :Parameters: sensitivity_analyzer : FeaturewiseDatasetMeasure sensitivity analyzer to come up with sensitivity feature_selector : Functor Given a sensitivity map it has to return the ids of those features that should be kept. """ # base init first FeatureSelection.__init__(self, **kwargs) self.__sensitivity_analyzer = sensitivity_analyzer """Sensitivity analyzer to use once""" self.__feature_selector = feature_selector """Functor which takes care about removing some features.""" def untrain(self): if __debug__: debug("FS_", "Untraining sensitivity-based FS: %s" % self) self.__sensitivity_analyzer.untrain() def __call__(self, dataset, testdataset=None): """Select the most important features :Parameters: dataset : Dataset used to compute sensitivity maps testdataset: Dataset optional dataset to select features on Returns a tuple of two new datasets with selected feature subset of `dataset`. """ sensitivity = self.__sensitivity_analyzer(dataset) """Compute the sensitivity map.""" self.sensitivity = sensitivity # Select features to preserve selected_ids = self.__feature_selector(sensitivity) if __debug__: debug("FS_", "Sensitivity: %s Selected ids: %s" % (sensitivity, selected_ids)) # Create a dataset only with selected features wdataset = dataset.selectFeatures(selected_ids) if not testdataset is None: wtestdataset = testdataset.selectFeatures(selected_ids) else: wtestdataset = None # Differ from the order in RFE when actually error reported is for results = (wdataset, wtestdataset) # WARNING: THIS MUST BE THE LAST THING TO DO ON selected_ids selected_ids.sort() self.selected_ids = selected_ids # dataset with selected features is returned return results # make it accessible from outside sensitivity_analyzer = property(fget=lambda self:self.__sensitivity_analyzer, doc="Measure which was used to do selection") class FeatureSelectionPipeline(FeatureSelection): """Feature elimination through the list of FeatureSelection's. Given as list of FeatureSelections it applies them in turn. """ nfeatures = StateVariable( doc="Number of features before each step in pipeline") # TODO: may be we should also append resultant number of features? def __init__(self, feature_selections, **kwargs ): """Initialize feature selection pipeline :Parameters: feature_selections : lisf of FeatureSelection selections which to use. Order matters """ # base init first FeatureSelection.__init__(self, **kwargs) self.__feature_selections = feature_selections """Selectors to use in turn""" def untrain(self): if __debug__: debug("FS_", "Untraining FS pipeline: %s" % self) for fs in self.__feature_selections: fs.untrain() def __call__(self, dataset, testdataset=None, **kwargs): """Invocation of the feature selection """ wdataset = dataset wtestdataset = testdataset self.selected_ids = None self.nfeatures = [] """Number of features at each step (before running selection)""" for fs in self.__feature_selections: # enable selected_ids state if it was requested from this class fs.states._changeTemporarily( enable_states=["selected_ids"], other=self) if self.states.isEnabled("nfeatures"): self.nfeatures.append(wdataset.nfeatures) if __debug__: debug('FSPL', 'Invoking %s on (%s, %s)' % (fs, wdataset, wtestdataset)) wdataset, wtestdataset = fs(wdataset, wtestdataset, **kwargs) if self.states.isEnabled("selected_ids"): if self.selected_ids == None: self.selected_ids = fs.selected_ids else: self.selected_ids = self.selected_ids[fs.selected_ids] fs.states._resetEnabledTemporarily() return (wdataset, wtestdataset) feature_selections = property(fget=lambda self:self.__feature_selections, doc="List of `FeatureSelections`") class CombinedFeatureSelection(FeatureSelection): """Meta feature selection utilizing several embedded selection methods. Each embedded feature selection method is computed individually. Afterwards all feature sets are combined by either taking the union or intersection of all sets. The individual feature sets of all embedded methods are optionally avialable from the `selections_ids` state variable. """ selections_ids = StateVariable( doc="List of feature id sets for each performed method.") def __init__(self, feature_selections, combiner, **kwargs): """ :Parameters: feature_selections: list FeatureSelection instances to run. Order is not important. combiner: 'union', 'intersection' which method to be used to combine the feature selection set of all computed methods. """ FeatureSelection.__init__(self, **kwargs) self.__feature_selections = feature_selections self.__combiner = combiner def untrain(self): if __debug__: debug("FS_", "Untraining combined FS: %s" % self) for fs in self.__feature_selections: fs.untrain() def __call__(self, dataset, testdataset=None): """Really run it. """ # to hold the union selected_ids = None # to hold the individuals self.selections_ids = [] for fs in self.__feature_selections: # we need the feature ids that were selection by each method, # so enable them temporarily fs.states._changeTemporarily( enable_states=["selected_ids"], other=self) # compute feature selection, but ignore return datasets fs(dataset, testdataset) # retrieve feature ids and determined union of all selections if selected_ids == None: selected_ids = set(fs.selected_ids) else: if self.__combiner == 'union': selected_ids.update(fs.selected_ids) elif self.__combiner == 'intersection': selected_ids.intersection_update(fs.selected_ids) else: raise ValueError, "Unknown combiner '%s'" % self.__combiner # store individual set in state self.selections_ids.append(fs.selected_ids) # restore states to previous settings fs.states._resetEnabledTemporarily() # finally apply feature set union selection to original datasets selected_ids = sorted(list(selected_ids)) # take care of optional second dataset td_sel = None if not testdataset is None: td_sel = testdataset.selectFeatures(self.selected_ids) # and main dataset d_sel = dataset.selectFeatures(selected_ids) # finally store ids in state self.selected_ids = selected_ids return (d_sel, td_sel) feature_selections = property(fget=lambda self:self.__feature_selections, doc="List of `FeatureSelections`") combiner = property(fget=lambda self:self.__combiner, doc="Selection set combination method.") pymvpa-0.4.8/mvpa/featsel/helpers.py000066400000000000000000000354041174541445200174560ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """""" __docformat__ = 'restructuredtext' from math import floor import numpy as N from mvpa.misc.state import ClassWithCollections, StateVariable if __debug__: from mvpa.base import debug # # Functors to be used for FeatureSelection # class BestDetector(object): """Determine whether the last value in a sequence is the best one given some criterion. """ def __init__(self, func=min, lastminimum=False): """Initialize with number of steps :Parameters: fun : functor Functor to select the best results. Defaults to min lastminimum : bool Toggle whether the latest or the earliest minimum is used as optimal value to determine the stopping criterion. """ self.__func = func self.__lastminimum = lastminimum self.__bestindex = None """Stores the index of the last detected best value.""" def __call__(self, errors): """Returns True if the last value in `errors` is the best or False otherwise. """ isbest = False # just to prevent ValueError if len(errors)==0: return isbest minerror = self.__func(errors) if self.__lastminimum: # make sure it is an array errors = N.array(errors) # to find out the location of the minimum but starting from the # end! minindex = N.array((errors == minerror).nonzero()).max() else: minindex = errors.index(minerror) self.__bestindex = minindex # if minimal is the last one reported -- it is the best if minindex == len(errors)-1: isbest = True return isbest bestindex = property(fget=lambda self:self.__bestindex) class StoppingCriterion(object): """Base class for all functors to decide when to stop RFE (or may be general optimization... so it probably will be moved out into some other module """ def __call__(self, errors): """Instruct when to stop. Every implementation should return `False` when an empty list is passed as argument. Returns tuple `stop`. """ raise NotImplementedError class MultiStopCrit(StoppingCriterion): """Stop computation if the latest error drops below a certain threshold. """ def __init__(self, crits, mode='or'): """ :Parameters: crits : list of StoppingCriterion instances For each call to MultiStopCrit all of these criterions will be evaluated. mode : any of ('and', 'or') Logical function to determine the multi criterion from the set of base criteria. """ if not mode in ('and', 'or'): raise ValueError, \ "A mode '%s' is not supported." % `mode` self.__mode = mode self.__crits = crits def __call__(self, errors): """Evaluate all criteria to determine the value of the multi criterion. """ # evaluate all crits crits = [ c(errors) for c in self.__crits ] if self.__mode == 'and': return N.all(crits) else: return N.any(crits) class FixedErrorThresholdStopCrit(StoppingCriterion): """Stop computation if the latest error drops below a certain threshold. """ def __init__(self, threshold): """Initialize with threshold. :Parameters: threshold : float [0,1] Error threshold. """ StoppingCriterion.__init__(self) if threshold > 1.0 or threshold < 0.0: raise ValueError, \ "Threshold %f is out of a reasonable range [0,1]." \ % `threshold` self.__threshold = threshold def __call__(self, errors): """Nothing special.""" if len(errors)==0: return False if errors[-1] < self.__threshold: return True else: return False threshold = property(fget=lambda x:x.__threshold) class NStepsStopCrit(StoppingCriterion): """Stop computation after a certain number of steps. """ def __init__(self, steps): """Initialize with number of steps. :Parameters: steps : int Number of steps after which to stop. """ StoppingCriterion.__init__(self) if steps < 0: raise ValueError, \ "Number of steps %i is out of a reasonable range." \ % `steps` self.__steps = steps def __call__(self, errors): """Nothing special.""" if len(errors) >= self.__steps: return True else: return False steps = property(fget=lambda x:x.__steps) class NBackHistoryStopCrit(StoppingCriterion): """Stop computation if for a number of steps error was increasing """ def __init__(self, bestdetector=BestDetector(), steps=10): """Initialize with number of steps :Parameters: bestdetector : BestDetector instance used to determine where the best error is located. steps : int How many steps to check after optimal value. """ StoppingCriterion.__init__(self) if steps < 0: raise ValueError, \ "Number of steps (got %d) should be non-negative" % steps self.__bestdetector = bestdetector self.__steps = steps def __call__(self, errors): stop = False # just to prevent ValueError if len(errors)==0: return stop # charge best detector self.__bestdetector(errors) # if number of elements after the min >= len -- stop if len(errors) - self.__bestdetector.bestindex > self.__steps: stop = True return stop steps = property(fget=lambda x:x.__steps) class ElementSelector(ClassWithCollections): """Base class to implement functors to select some elements based on a sequence of values. """ ndiscarded = StateVariable(True, doc="Store number of discarded elements.") def __init__(self, mode='discard', **kwargs): """Cheap initialization. :Parameters: mode : ['discard', 'select'] Decides whether to `select` or to `discard` features. """ ClassWithCollections.__init__(self, **kwargs) self._setMode(mode) """Flag whether to select or to discard elements.""" def _setMode(self, mode): """Choose `select` or `discard` mode.""" if not mode in ['discard', 'select']: raise ValueError, "Unkown selection mode [%s]. Can only be one " \ "of 'select' or 'discard'." % mode self.__mode = mode def __call__(self, seq): """Implementations in derived classed have to return a list of selected element IDs based on the given sequence. """ raise NotImplementedError mode = property(fget=lambda self:self.__mode, fset=_setMode) class RangeElementSelector(ElementSelector): """Select elements based on specified range of values""" def __init__(self, lower=None, upper=None, inclusive=False, mode='select', **kwargs): """Initialization `RangeElementSelector` :Parameters: lower If not None -- select elements which are above of specified value upper If not None -- select elements which are lower of specified value inclusive Either to include end points mode overrides parent's default to be 'select' since it is more native for RangeElementSelector XXX TODO -- unify?? `upper` could be lower than `lower` -- then selection is done on values <= lower or >=upper (ie tails). This would produce the same result if called with flipped values for mode and inclusive. If no upper no lower is set, assuming upper,lower=0, thus outputing non-0 elements """ if lower is None and upper is None: lower, upper = 0, 0 """Lets better return non-0 values if none of bounds is set""" # init State before registering anything ElementSelector.__init__(self, mode=mode, **kwargs) self.__range = (lower, upper) """Values on which to base selection""" self.__inclusive = inclusive def __call__(self, seq): """Returns selected IDs. """ lower, upper = self.__range len_seq = len(seq) if not lower is None: if self.__inclusive: selected = seq >= lower else: selected = seq > lower else: selected = N.ones( (len_seq), dtype=N.bool ) if not upper is None: if self.__inclusive: selected_upper = seq <= upper else: selected_upper = seq < upper if not lower is None: if lower < upper: # regular range selected = N.logical_and(selected, selected_upper) else: # outside, though that would be similar to exclude selected = N.logical_or(selected, selected_upper) else: selected = selected_upper if self.mode == 'discard': selected = N.logical_not(selected) result = N.where(selected)[0] if __debug__: debug("ES", "Selected %d out of %d elements" % (len(result), len_seq)) return result class TailSelector(ElementSelector): """Select elements from a tail of a distribution. The default behaviour is to discard the lower tail of a given distribution. """ # TODO: 'both' to select from both tails def __init__(self, tail='lower', sort=True, **kwargs): """Initialize TailSelector :Parameters: tail : ['lower', 'upper'] Choose the tail to be processed. sort : bool Flag whether selected IDs will be sorted. Disable if not necessary to save some CPU cycles. """ # init State before registering anything ElementSelector.__init__(self, **kwargs) self._setTail(tail) """Know which tail to select.""" self.__sort = sort def _setTail(self, tail): """Set the tail to be processed.""" if not tail in ['lower', 'upper']: raise ValueError, "Unkown tail argument [%s]. Can only be one " \ "of 'lower' or 'upper'." % tail self.__tail = tail def _getNElements(self, seq): """In derived classes has to return the number of elements to be processed given a sequence values forming the distribution. """ raise NotImplementedError def __call__(self, seq): """Returns selected IDs. """ # TODO: Think about selecting features which have equal values but # some are selected and some are not len_seq = len(seq) # how many to select (cannot select more than available) nelements = min(self._getNElements(seq), len_seq) # make sure that data is ndarray and compute a sequence rank matrix # lowest value is first seqrank = N.array(seq).argsort() if self.mode == 'discard' and self.__tail == 'upper': good_ids = seqrank[:-1*nelements] self.ndiscarded = nelements elif self.mode == 'discard' and self.__tail == 'lower': good_ids = seqrank[nelements:] self.ndiscarded = nelements elif self.mode == 'select' and self.__tail == 'upper': good_ids = seqrank[-1*nelements:] self.ndiscarded = len_seq - nelements else: # select lower tail good_ids = seqrank[:nelements] self.ndiscarded = len_seq - nelements # sort ids to keep order # XXX should we do here are leave to other place if self.__sort: good_ids.sort() return good_ids class FixedNElementTailSelector(TailSelector): """Given a sequence, provide set of IDs for a fixed number of to be selected elements. """ def __init__(self, nelements, **kwargs): """Cheap initialization. :Parameters: nelements : int Number of elements to select/discard. """ TailSelector.__init__(self, **kwargs) self.__nelements = None self._setNElements(nelements) def __repr__(self): return "%s number=%f" % ( TailSelector.__repr__(self), self.nelements) def _getNElements(self, seq): return self.__nelements def _setNElements(self, nelements): if __debug__: if nelements <= 0: raise ValueError, "Number of elements less or equal to zero " \ "does not make sense." self.__nelements = nelements nelements = property(fget=lambda x:x.__nelements, fset=_setNElements) class FractionTailSelector(TailSelector): """Given a sequence, provide Ids for a fraction of elements """ def __init__(self, felements, **kwargs): """Cheap initialization. :Parameters: felements : float (0,1.0] Fraction of elements to select/discard. Note: Even when 0.0 is specified at least one element will be selected. """ TailSelector.__init__(self, **kwargs) self._setFElements(felements) def __repr__(self): return "%s fraction=%f" % ( TailSelector.__repr__(self), self.__felements) def _getNElements(self, seq): num = int(floor(self.__felements * len(seq))) num = max(1, num) # remove at least 1 # no need for checks as base class will do anyway #return min(num, nselect) return num def _setFElements(self, felements): """What fraction to discard""" if felements > 1.0 or felements < 0.0: raise ValueError, \ "Fraction (%f) cannot be outside of [0.0,1.0]" \ % felements self.__felements = felements felements = property(fget=lambda x:x.__felements, fset=_setFElements) pymvpa-0.4.8/mvpa/featsel/ifs.py000066400000000000000000000155721174541445200166010ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Incremental feature search (IFS). Very similar to Recursive feature elimination (RFE), but instead of begining with all features and stripping some sequentially, start with an empty feature set and include important features successively. """ __docformat__ = 'restructuredtext' import numpy as N from mvpa.support.copy import copy from mvpa.featsel.base import FeatureSelection from mvpa.featsel.helpers import NBackHistoryStopCrit, \ FixedNElementTailSelector, \ BestDetector from mvpa.misc.state import StateVariable if __debug__: from mvpa.base import debug class IFS(FeatureSelection): """Incremental feature search. A scalar `DatasetMeasure` is computed multiple times on variations of a certain dataset. These measures are in turn used to incrementally select important features. Starting with an empty feature set the dataset measure is first computed for each single feature. A number of features is selected based on the resulting data measure map (using an `ElementSelector`). Next the dataset measure is computed again using each feature in addition to the already selected feature set. Again the `ElementSelector` is used to select more features. For each feature selection the transfer error on some testdatset is computed. This procedure is repeated until a given `StoppingCriterion` is reached. """ errors = StateVariable() def __init__(self, data_measure, transfer_error, bestdetector=BestDetector(), stopping_criterion=NBackHistoryStopCrit(BestDetector()), feature_selector=FixedNElementTailSelector(1, tail='upper', mode='select'), **kwargs ): """Initialize incremental feature search :Parameters: data_measure : DatasetMeasure Computed for each candidate feature selection. transfer_error : TransferError Compute against a test dataset for each incremental feature set. bestdetector : Functor Given a list of error values it has to return a boolean that signals whether the latest error value is the total minimum. stopping_criterion : Functor Given a list of error values it has to return whether the criterion is fulfilled. """ # bases init first FeatureSelection.__init__(self, **kwargs) self.__data_measure = data_measure self.__transfer_error = transfer_error self.__feature_selector = feature_selector self.__bestdetector = bestdetector self.__stopping_criterion = stopping_criterion def __call__(self, dataset, testdataset): """Proceed and select the features recursively eliminating less important ones. :Parameters: `dataset`: `Dataset` used to select features and train classifiers to determine the transfer error. `testdataset`: `Dataset` used to test the trained classifer on a certain feature set to determine the transfer error. Returns a tuple with the dataset containing the feature subset of `dataset` that had the lowest transfer error of all tested sets until the stopping criterion was reached. The tuple also contains a dataset with the corrsponding features from the `testdataset`. """ errors = [] """Computed error for each tested features set.""" # feature candidate are all features in the pattern object candidates = range( dataset.nfeatures ) # initially empty list of selected features selected = [] # results in here please results = None # as long as there are candidates left # the loop will most likely get broken earlier if the stopping # criterion is reached while len( candidates ): # measures for all candidates measures = [] # for all possible candidates for i, candidate in enumerate(candidates): if __debug__: debug('IFSC', "Tested %i" % i, cr=True) # take the new candidate and all already selected features # select a new temporay feature subset from the dataset # XXX assume MappedDataset and issue plain=True ?? tmp_dataset = \ dataset.selectFeatures(selected + [candidate]) # compute data measure on this feature set measures.append(self.__data_measure(tmp_dataset)) measures = [N.asscalar(m) for m in measures] # Select promissing feature candidates (staging) # IDs are only applicable to the current set of feature candidates tmp_staging_ids = self.__feature_selector(measures) # translate into real candidate ids staging_ids = [ candidates[i] for i in tmp_staging_ids ] # mark them as selected and remove from candidates selected += staging_ids for i in staging_ids: candidates.remove(i) # compute transfer error for the new set # XXX assume MappedDataset and issue plain=True ?? error = self.__transfer_error(testdataset.selectFeatures(selected), dataset.selectFeatures(selected)) errors.append(error) # Check if it is time to stop and if we got # the best result stop = self.__stopping_criterion(errors) isthebest = self.__bestdetector(errors) if __debug__: debug('IFSC', "nselected %i; error: %.4f " \ "best/stop=%d/%d\n" \ % (len(selected), errors[-1], isthebest, stop), cr=True, lf=True) if isthebest: # do copy to survive later selections results = copy(selected) # leave the loop when the criterion is reached if stop: break # charge state self.errors = errors # best dataset ever is returned return dataset.selectFeatures(results), \ testdataset.selectFeatures(results) pymvpa-0.4.8/mvpa/featsel/rfe.py000066400000000000000000000273241174541445200165720ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Recursive feature elimination.""" __docformat__ = 'restructuredtext' from mvpa.clfs.transerror import ClassifierError from mvpa.measures.base import Sensitivity from mvpa.featsel.base import FeatureSelection from mvpa.featsel.helpers import BestDetector, \ NBackHistoryStopCrit, \ FractionTailSelector from numpy import arange from mvpa.misc.state import StateVariable if __debug__: from mvpa.base import debug # TODO: Abs value of sensitivity should be able to rule RFE # Often it is what abs value of the sensitivity is what matters. # So we should either provide a simple decorator around arbitrary # FeatureSelector to convert sensitivities to abs values before calling # actual selector, or a decorator around SensitivityEstimators class RFE(FeatureSelection): """Recursive feature elimination. A `FeaturewiseDatasetMeasure` is used to compute sensitivity maps given a certain dataset. These sensitivity maps are in turn used to discard unimportant features. For each feature selection the transfer error on some testdatset is computed. This procedure is repeated until a given `StoppingCriterion` is reached. Such strategy after Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Mach. Learn., 46(1-3), 389--422. was applied to SVM-based analysis of fMRI data in Hanson, S. J. & Halchenko, Y. O. (2008). Brain reading using full brain support vector machines for object recognition: there is no "face identification area". Neural Computation, 20, 486--503. """ # TODO: remove # doesn't work nicely -- if FeatureSelection defines its states via # _register_states, they would simply be ignored #_register_states = {'errors':True, # 'nfeatures':True, # 'history':True} errors = StateVariable() nfeatures = StateVariable() history = StateVariable() sensitivities = StateVariable(enabled=False) def __init__(self, sensitivity_analyzer, transfer_error, feature_selector=FractionTailSelector(0.05), bestdetector=BestDetector(), stopping_criterion=NBackHistoryStopCrit(BestDetector()), train_clf=None, update_sensitivity=True, **kargs ): # XXX Allow for multiple stopping criterions, e.g. error not decreasing # anymore OR number of features less than threshold """Initialize recursive feature elimination :Parameters: sensitivity_analyzer : FeaturewiseDatasetMeasure object transfer_error : TransferError object used to compute the transfer error of a classifier based on a certain feature set on the test dataset. NOTE: If sensitivity analyzer is based on the same classifier as transfer_error is using, make sure you initialize transfer_error with train=False, otherwise it would train classifier twice without any necessity. feature_selector : Functor Given a sensitivity map it has to return the ids of those features that should be kept. bestdetector : Functor Given a list of error values it has to return a boolean that signals whether the latest error value is the total minimum. stopping_criterion : Functor Given a list of error values it has to return whether the criterion is fulfilled. train_clf : bool Flag whether the classifier in `transfer_error` should be trained before computing the error. In general this is required, but if the `sensitivity_analyzer` and `transfer_error` share and make use of the same classifier it can be switched off to save CPU cycles. Default `None` checks if sensitivity_analyzer is based on a classifier and doesn't train if so. update_sensitivity : bool If False the sensitivity map is only computed once and reused for each iteration. Otherwise the senstitivities are recomputed at each selection step. """ # base init first FeatureSelection.__init__(self, **kargs) self.__sensitivity_analyzer = sensitivity_analyzer """Sensitivity analyzer used to call at each step.""" self.__transfer_error = transfer_error """Compute transfer error for each feature set.""" self.__feature_selector = feature_selector """Functor which takes care about removing some features.""" self.__stopping_criterion = stopping_criterion self.__bestdetector = bestdetector if train_clf is None: self.__train_clf = isinstance(sensitivity_analyzer, Sensitivity) else: self.__train_clf = train_clf """Flag whether training classifier is required.""" self.__update_sensitivity = update_sensitivity """Flag whether sensitivity map is recomputed for each step.""" # force clf training when sensitivities are not updated as otherwise # shared classifiers are not retrained if not self.__update_sensitivity \ and isinstance(self.__transfer_error, ClassifierError) \ and not self.__train_clf: if __debug__: debug("RFEC", "Forcing training of classifier since " + "sensitivities aren't updated at each step") self.__train_clf = True def __call__(self, dataset, testdataset): """Proceed and select the features recursively eliminating less important ones. :Parameters: dataset : Dataset used to compute sensitivity maps and train a classifier to determine the transfer error testdataset : Dataset used to test the trained classifer to determine the transfer error Returns a tuple of two new datasets with the feature subset of `dataset` that had the lowest transfer error of all tested sets until the stopping criterion was reached. The first dataset is the feature subset of the training data and the second the selection of the test dataset. """ errors = [] """Computed error for each tested features set.""" self.nfeatures = [] """Number of features at each step. Since it is not used by the algorithm it is stored directly in the state variable""" self.history = arange(dataset.nfeatures) """Store the last step # when the feature was still present """ self.sensitivities = [] stop = False """Flag when RFE should be stopped.""" results = None """Will hold the best feature set ever.""" wdataset = dataset """Operate on working dataset initially identical.""" wtestdataset = testdataset """Same feature selection has to be performs on test dataset as well. This will hold the current testdataset.""" step = 0 """Counter how many selection step where done.""" orig_feature_ids = arange(dataset.nfeatures) """List of feature Ids as per original dataset remaining at any given step""" sensitivity = None """Contains the latest sensitivity map.""" result_selected_ids = orig_feature_ids """Resultant ids of selected features. Since the best is not necessarily is the last - we better keep this one around. By default -- all features are there""" selected_ids = result_selected_ids while wdataset.nfeatures > 0: if __debug__: debug('RFEC', "Step %d: nfeatures=%d" % (step, wdataset.nfeatures)) # mark the features which are present at this step # if it brings anyb mentionable computational burden in the future, # only mark on removed features at each step self.history[orig_feature_ids] = step # Compute sensitivity map if self.__update_sensitivity or sensitivity == None: sensitivity = self.__sensitivity_analyzer(wdataset) if self.states.isEnabled("sensitivities"): self.sensitivities.append(sensitivity) # do not retrain clf if not necessary if self.__train_clf: error = self.__transfer_error(wtestdataset, wdataset) else: error = self.__transfer_error(wtestdataset, None) # Record the error errors.append(error) # Check if it is time to stop and if we got # the best result stop = self.__stopping_criterion(errors) isthebest = self.__bestdetector(errors) nfeatures = wdataset.nfeatures if self.states.isEnabled("nfeatures"): self.nfeatures.append(wdataset.nfeatures) # store result if isthebest: results = (wdataset, wtestdataset) result_selected_ids = orig_feature_ids if __debug__: debug('RFEC', "Step %d: nfeatures=%d error=%.4f best/stop=%d/%d " % (step, nfeatures, error, isthebest, stop)) # stop if it is time to finish if nfeatures == 1 or stop: break # Select features to preserve selected_ids = self.__feature_selector(sensitivity) if __debug__: debug('RFEC_', "Sensitivity: %s, nfeatures_selected=%d, selected_ids: %s" % (sensitivity, len(selected_ids), selected_ids)) # Create a dataset only with selected features wdataset = wdataset.selectFeatures(selected_ids) # select corresponding sensitivity values if they are not # recomputed if not self.__update_sensitivity: sensitivity = sensitivity[selected_ids] # need to update the test dataset as well # XXX why should it ever become None? # yoh: because we can have __transfer_error computed # using wdataset. See xia-generalization estimate # in lightsvm. Or for god's sake leave-one-out # on a wdataset # TODO: document these cases in this class if not testdataset is None: wtestdataset = wtestdataset.selectFeatures(selected_ids) step += 1 # WARNING: THIS MUST BE THE LAST THING TO DO ON selected_ids selected_ids.sort() if self.states.isEnabled("history") or self.states.isEnabled('selected_ids'): orig_feature_ids = orig_feature_ids[selected_ids] if hasattr(self.__transfer_error, "clf"): self.__transfer_error.clf.untrain() # charge state variables self.errors = errors self.selected_ids = result_selected_ids # best dataset ever is returned return results pymvpa-0.4.8/mvpa/mappers/000077500000000000000000000000001174541445200154605ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/mappers/__init__.py000066400000000000000000000026301174541445200175720ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """PyMVPA mappers. Module Description ================== Various space transformations which are intended to map between two spaces, most of the time both ways, and optionally requiring training. Classifiers from the mvpa.clfs module could be considered mappers as well, but they all are supervised, and only provide ND->1D mapping, most of the time without reverse transformation. Module Organization =================== The mvpa.mappers module contains the following modules: .. packagetree:: :style: UML :group Base: base mask metric :group Specialized: wavelet boxcar svd ica pca samplegroup """ __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.mappers') # do not pull them all -- we have mvpa.suite for that #from mvpa.mappers.mask import MaskMapper #from mvpa.mappers.pca import PCAMapper #from mvpa.mappers.svd import SVDMapper #from mvpa.mappers.boxcar import BoxcarMapper #from mvpa.mappers.array import DenseArrayMapper if __debug__: debug('INIT', 'mvpa.mappers end') pymvpa-0.4.8/mvpa/mappers/array.py000066400000000000000000000120711174541445200171510ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Data mapper""" __docformat__ = 'restructuredtext' import numpy as N from operator import isSequenceType from mvpa.mappers.mask import MaskMapper from mvpa.mappers.metric import DescreteMetric, cartesianDistance from mvpa.base.dochelpers import enhancedDocString if __debug__: from mvpa.base import warning from mvpa.misc.support import isSorted class DenseArrayMapper(MaskMapper): """Mapper for equally spaced dense arrays.""" """TODO: yoh thinks we should move that 'metric' assignment into MaskMapper, based on the fact if distance_function is given either as an argument or may be class variable. That would pretty much remove the need for a separate class of DenseArrayMapper and it could become just a sugaring helper function which would initiate MaskMapper (or some other mapper may be with appropriate distance_function and/or mapper Otherwise it is again -- orthogonality -- will we need to device NonmaskedArrayMapper which has no mask assigned but might be a good cartesian cube on its own or smth like that? """ def __init__(self, mask=None, metric=None, distance_function=cartesianDistance, elementsize=None, shape=None, **kwargs): """Initialize DenseArrayMapper :Parameters: mask : array an array in the original dataspace and its nonzero elements are used to define the features included in the dataset. alternatively, the `shape` argument can be used to define the array dimensions. metric : Metric Corresponding metric for the space. No attempt is made to determine whether a certain metric is reasonable for this mapper. If `metric` is None -- `DescreteMetric` is constructed that assumes an equal (1) spacing of all mask elements with a `distance_function` given as a parameter listed below. distance_function : functor Distance function to use as the parameter to `DescreteMetric` if `metric` is not specified, elementsize : list or scalar Determines spacing within `DescreteMetric`. If it is given as a scalar, corresponding value is assigned to all dimensions, which are found within `mask` shape: tuple The shape of the array to be mapped. If `shape` is provided instead of `mask`, a full mask (all True) of the desired shape is constructed. If `shape` is specified in addition to `mask`, the provided mask is extended to have the same number of dimensions. :Note: parameters `elementsize` and `distance_function` are relevant only if `metric` is None """ if mask is None: if shape is None: raise ValueError, \ "Either `shape` or `mask` have to be specified." else: # make full dataspace mask if nothing else is provided mask = N.ones(shape, dtype='bool') else: if not shape is None: # expand mask to span all dimensions but first one # necessary e.g. if only one slice from timeseries of volumes is # requested. mask = N.array(mask, ndmin=len(shape)) # check for compatibility if not shape == mask.shape: raise ValueError, \ "The mask dataspace shape %s is not " \ "compatible with the provided shape %s." \ % (mask.shape, shape) # configure the baseclass with the processed mask MaskMapper.__init__(self, mask, metric=metric, **kwargs) # We must have metric assigned if self.metric == None: if elementsize is None: elementsize = [1]*len(mask.shape) else: if isSequenceType(elementsize): if len(elementsize) != len(mask.shape): raise ValueError, \ "Number of elements in elementsize [%d]" % \ len(elementsize) + " doesn't match shape " + \ "of the mask [%s]" % (`mask.shape`) else: elementsize = [ elementsize ] * len(mask.shape) self.metric = DescreteMetric(elementsize=[1]*len(mask.shape), distance_function=distance_function) __doc__ = enhancedDocString('DenseArrayMapper', locals(), MaskMapper) def __str__(self): return "DenseArrayMapper: %d -> %d" \ % (self.getInSize(), self.getOutSize()) pymvpa-0.4.8/mvpa/mappers/base.py000066400000000000000000000565201174541445200167540ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Data mapper""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.mappers.metric import Metric from mvpa.datasets import Dataset from mvpa.misc.vproperty import VProperty from mvpa.base.dochelpers import enhancedDocString if __debug__: from mvpa.base import warning from mvpa.base import debug class Mapper(object): """Interface to provide mapping between two spaces: IN and OUT. Methods are prefixed correspondingly. forward/reverse operate on the entire dataset. get(In|Out)Id[s] operate per element:: forward ---------> IN OUT <--------/ reverse """ def __init__(self, metric=None): """ :Parameters: metric : Metric Optional metric """ self.__metric = None """Pylint happiness""" self.setMetric(metric) """Actually assign the metric""" # # The following methods are abstract and merely define the intended # interface of a mapper and have to be implemented in derived classes. See # the docstrings of the respective methods for details about what they # should do. # def forward(self, data): """Map data from the IN dataspace into OUT space. """ raise NotImplementedError def reverse(self, data): """Reverse map data from OUT space into the IN space. """ raise NotImplementedError def getInSize(self): """Returns the size of the entity in input space""" raise NotImplementedError def getOutSize(self): """Returns the size of the entity in output space""" raise NotImplementedError def selectOut(self, outIds): """Limit the OUT space to a certain set of features. :Parameters: outIds: sequence Subset of ids of the current feature in OUT space to keep. """ raise NotImplementedError def getInId(self, outId): """Translate a feature id into a coordinate/index in input space. Such a translation might not be meaningful or even possible for a particular mapping algorithm and therefore cannot be relied upon. """ raise NotImplementedError # # The following methods are candidates for reimplementation in derived # classes, in cases where the provided default behavior is not appropriate. # def isValidOutId(self, outId): """Validate feature id in OUT space. Override if OUT space is not simly a 1D vector """ return(outId >= 0 and outId < self.getOutSize()) def isValidInId(self, inId): """Validate id in IN space. Override if IN space is not simly a 1D vector """ return(inId >= 0 and inId < self.getInSize()) def train(self, dataset): """Perform training of the mapper. This method is called to put the mapper in a state that allows it to perform to intended mapping. :Parameter: dataset: Dataset or subclass .. note:: The default behavior of this method is to do nothing. """ pass def getNeighbor(self, outId, *args, **kwargs): """Get feature neighbors in input space, given an id in output space. This method has to be reimplemented whenever a derived class does not provide an implementation for :meth:`~mvpa.mappers.base.Mapper.getInId`. """ if self.metric is None: raise RuntimeError, "No metric was assigned to %s, thus no " \ "neighboring information is present" % self if self.isValidOutId(outId): inId = self.getInId(outId) for inId in self.getNeighborIn(inId, *args, **kwargs): yield self.getOutId(inId) # # The following methods provide common functionality for all mappers # and there should be no immediate need to reimplement them # def getNeighborIn(self, inId, *args, **kwargs): """Return the list of coordinates for the neighbors. :Parameters: inId id (index) of an element in input dataspace. *args, **kwargs Any additional arguments are passed to the embedded metric of the mapper. XXX See TODO below: what to return -- list of arrays or list of tuples? """ if self.metric is None: raise RuntimeError, "No metric was assigned to %s, thus no " \ "neighboring information is present" % self isValidInId = self.isValidInId if isValidInId(inId): for neighbor in self.metric.getNeighbor(inId, *args, **kwargs): if isValidInId(neighbor): yield neighbor def getNeighbors(self, outId, *args, **kwargs): """Return the list of coordinates for the neighbors. By default it simply constructs the list based on the generator returned by getNeighbor() """ return [ x for x in self.getNeighbor(outId, *args, **kwargs) ] def __repr__(self): if self.__metric is not None: s = "metric=%s" % repr(self.__metric) else: s = '' return "%s(%s)" % (self.__class__.__name__, s) def __call__(self, data): """Calls the mappers forward() method. """ return self.forward(data) def getMetric(self): """To make pylint happy""" return self.__metric def setMetric(self, metric): """To make pylint happy""" if metric is not None and not isinstance(metric, Metric): raise ValueError, "metric for Mapper must be an " \ "instance of a Metric class . Got %s" \ % `type(metric)` self.__metric = metric metric = property(fget=getMetric, fset=setMetric) nfeatures = VProperty(fget=getOutSize) class ProjectionMapper(Mapper): """Linear mapping between multidimensional spaces. This class cannot be used directly. Sub-classes have to implement the `_train()` method, which has to compute the projection matrix `_proj` and optionally offset vectors `_offset_in` and `_offset_out` (if initialized with demean=True, which is default) given a dataset (see `_train()` docstring for more information). Once the projection matrix is available, this class provides functionality to perform forward and backwards linear mapping of data, the latter by default using pseudo-inverse (but could be altered in subclasses, like hermitian (conjugate) transpose in case of SVD). Additionally, `ProjectionMapper` supports optional selection of arbitrary component (i.e. columns of the projection matrix) of the projection. Forward and back-projection matrices (a.k.a. *projection* and *reconstruction*) are available via the `proj` and `recon` properties. """ _DEV__doc__ = """Think about renaming `demean`, may be `translation`?""" def __init__(self, selector=None, demean=True): """Initialize the ProjectionMapper :Parameters: selector: None | list Which components (i.e. columns of the projection matrix) should be used for mapping. If `selector` is `None` all components are used. If a list is provided, all list elements are treated as component ids and the respective components are selected (all others are discarded). demean: bool Either data should be demeaned while computing projections and applied back while doing reverse() """ Mapper.__init__(self) self._selector = selector self._proj = None """Forward projection matrix.""" self._recon = None """Reverse projection (reconstruction) matrix.""" self._demean = demean """Flag whether to demean the to be projected data, prior to projection. """ self._offset_in = None """Offset (most often just mean) in the input space""" self._offset_out = None """Offset (most often just mean) in the output space""" __doc__ = enhancedDocString('ProjectionMapper', locals(), Mapper) def train(self, dataset, *args, **kwargs): """Determine the projection matrix. :Parameters: dataset : Dataset Dataset to operate on *args Optional positional arguments to pass to _train of subclass **kwargs Optional keyword arguments to pass to _train of subclass """ # store the feature wise mean if isinstance(dataset, Dataset): samples = dataset.samples else: samples = dataset self._offset_in = samples.mean(axis=0) # ??? Setting of _offset_out is to be done in a child # class # compute projection matrix with subclass logic self._train(dataset, *args, **kwargs) # perform component selection if self._selector is not None: self.selectOut(self._selector) def _demeanData(self, data): """Helper which optionally demeans """ if self._demean: # demean the training data data = data - self._offset_in if __debug__ and "MAP_" in debug.active: debug("MAP_", "%s: Mean of data in input space %s was subtracted" % (self.__class__.__name__, self._offset_in)) return data def _train(self, dataset): """Worker method. Needs to be implemented by subclass. This method has to train the mapper and store the resulting transformation matrix in `self._proj`. """ raise NotImplementedError def forward(self, data, demean=None): """Perform forward projection. :Parameters: data: ndarray Data array to map demean: boolean | None Override demean setting for this method call. :Returns: NumPy array """ # let arg overwrite instance flag if demean is None: demean = self._demean if self._proj is None: raise RuntimeError, "Mapper needs to be train before used." d = N.asmatrix(data) # Remove input offset if present if demean and self._offset_in is not None: d = d - self._offset_in # Do forward projection res = (d * self._proj).A # Add output offset if present if demean and self._offset_out is not None: res += self._offset_out return res def reverse(self, data): """Reproject (reconstruct) data into the original feature space. :Returns: NumPy array """ if self._proj is None: raise RuntimeError, "Mapper needs to be trained before used." d = N.asmatrix(data) # Remove offset if present in output space if self._demean and self._offset_out is not None: d = d - self._offset_out # Do reverse projection res = (d * self.recon).A # Add offset in input space if self._demean and self._offset_in is not None: res += self._offset_in return res def _computeRecon(self): """Given that a projection is present -- compute reconstruction matrix. By default -- pseudoinverse of projection matrix. Might be overridden in derived classes for efficiency. """ return N.linalg.pinv(self._proj) def _getRecon(self): """Compute (if necessary) and return reconstruction matrix """ # (re)build reconstruction matrix recon = self._recon if recon is None: self._recon = recon = self._computeRecon() return recon def getInSize(self): """Returns the number of original features.""" return self._proj.shape[0] def getOutSize(self): """Returns the number of components to project on.""" return self._proj.shape[1] def selectOut(self, outIds): """Choose a subset of components (and remove all others).""" self._proj = self._proj[:, outIds] if self._offset_out is not None: self._offset_out = self._offset_out[outIds] # invalidate reconstruction matrix self._recon = None proj = property(fget=lambda self: self._proj, doc="Projection matrix") recon = property(fget=_getRecon, doc="Backprojection matrix") class CombinedMapper(Mapper): """Meta mapper that combines several embedded mappers. This mapper can be used the map from several input dataspaces into a common output dataspace. When :meth:`~mvpa.mappers.base.CombinedMapper.forward` is called with a sequence of data, each element in that sequence is passed to the corresponding mapper, which in turned forward-maps the data. The output of all mappers is finally stacked (horizontally or column or feature-wise) into a single large 2D matrix (nsamples x nfeatures). .. note:: This mapper can only embbed mappers that transform data into a 2D (nsamples x nfeatures) representation. For mappers not supporting this transformation, consider wrapping them in a :class:`~mvpa.mappers.base.ChainMapper` with an appropriate post-processing mapper. CombinedMapper fully supports forward and backward mapping, training, runtime selection of a feature subset (in output dataspace) and retrieval of neighborhood information. """ def __init__(self, mappers, **kwargs): """ :Parameters: mappers: list of Mapper instances The order of the mappers in the list is important, as it will define the order in which data snippets have to be passed to :meth:`~mvpa.mappers.base.CombinedMapper.forward`. **kwargs All additional arguments are passed to the base-class constructor. """ Mapper.__init__(self, **kwargs) if not len(mappers): raise ValueError, \ 'CombinedMapper needs at least one embedded mapper.' self._mappers = mappers def forward(self, data): """Map data from the IN spaces into to common OUT space. :Parameter: data: sequence Each element in the `data` sequence is passed to the corresponding embedded mapper and is mapped individually by it. The number of elements in `data` has to match the number of embedded mappers. Each element is `data` has to provide the same number of samples (first dimension). :Returns: array: nsamples x nfeatures Horizontally stacked array of all embedded mapper outputs. """ if not len(data) == len(self._mappers): raise ValueError, \ "CombinedMapper needs a sequence with data for each " \ "Mapper" # return a big array for the result of the forward mapped data # of each embedded mapper try: return N.hstack( [self._mappers[i].forward(d) for i, d in enumerate(data)]) except ValueError: raise ValueError, \ "Embedded mappers do not generate same number of samples. " \ "Check input data." def reverse(self, data): """Reverse map data from OUT space into the IN spaces. :Parameter: data: array Single data array to be reverse mapped into a sequence of data snippets in their individual IN spaces. :Returns: list """ # assure array and transpose # i.e. transpose of 1D does nothing, but of 2D puts features # along first dimension data = N.asanyarray(data).T if not len(data) == self.getOutSize(): raise ValueError, \ "Data shape does match mapper reverse mapping properties." result = [] fsum = 0 for m in self._mappers: # calculate upper border fsum_new = fsum + m.getOutSize() result.append(m.reverse(data[fsum:fsum_new].T)) fsum = fsum_new return result def train(self, dataset): """Trains all embedded mappers. The provided training dataset is splitted appropriately and the corresponding pieces are passed to the :meth:`~mvpa.mappers.base.Mapper.train` method of each embedded mapper. :Parameter: dataset: :class:`~mvpa.datasets.base.Dataset` or subclass A dataset with the number of features matching the `outSize` of the `CombinedMapper`. """ if dataset.nfeatures != self.getOutSize(): raise ValueError, "Training dataset does not match the mapper " \ "properties." fsum = 0 for m in self._mappers: # need to split the dataset fsum_new = fsum + m.getOutSize() m.train(dataset.selectFeatures(range(fsum, fsum_new))) fsum = fsum_new def getInSize(self): """Returns the size of the entity in input space""" return N.sum(m.getInSize() for m in self._mappers) def getOutSize(self): """Returns the size of the entity in output space""" return N.sum(m.getOutSize() for m in self._mappers) def selectOut(self, outIds): """Remove some elements and leave only ids in 'out'/feature space. .. note:: The subset selection is done inplace :Parameter: outIds: sequence All output feature ids to be selected/kept. """ # determine which features belong to what mapper # and call its selectOut() accordingly ids = N.asanyarray(outIds) fsum = 0 for m in self._mappers: # bool which meta feature ids belongs to this mapper selector = N.logical_and(ids < fsum + m.getOutSize(), ids >= fsum) # make feature ids relative to this dataset selected = ids[selector] - fsum fsum += m.getOutSize() # finally apply to mapper m.selectOut(selected) def getNeighbor(self, outId, *args, **kwargs): """Get the ids of the neighbors of a single feature in output dataspace. :Parameters: outId: int Single id of a feature in output space, whos neighbors should be determined. *args, **kwargs Additional arguments are passed to the metric of the embedded mapper, that is responsible for the corresponding feature. Returns a list of outIds """ fsum = 0 for m in self._mappers: fsum_new = fsum + m.getOutSize() if outId >= fsum and outId < fsum_new: return m.getNeighbor(outId - fsum, *args, **kwargs) fsum = fsum_new raise ValueError, "Invalid outId passed to CombinedMapper.getNeighbor()" def __repr__(self): s = Mapper.__repr__(self).rstrip(' )') # beautify if not s[-1] == '(': s += ' ' s += 'mappers=[%s])' % ', '.join([m.__repr__() for m in self._mappers]) return s class ChainMapper(Mapper): """Meta mapper that embedded a chain of other mappers. Each mapper in the chain is called successively to perform forward or reverse mapping. .. note:: In its current implementation the `ChainMapper` treats all but the last mapper as simple pre-processing (in forward()) or post-processing (in reverse()) steps. All other capabilities, e.g. training and neighbor metrics are provided by or affect *only the last mapper in the chain*. With respect to neighbor metrics this means that they are determined based on the input space of the *last mapper* in the chain and *not* on the input dataspace of the `ChainMapper` as a whole """ def __init__(self, mappers, **kwargs): """ :Parameters: mappers: list of Mapper instances **kwargs All additional arguments are passed to the base-class constructor. """ Mapper.__init__(self, **kwargs) if not len(mappers): raise ValueError, 'ChainMapper needs at least one embedded mapper.' self._mappers = mappers def forward(self, data): """Calls all mappers in the chain successively. :Parameter: data data to be chain-mapped. """ mp = data for m in self._mappers: mp = m.forward(mp) return mp def reverse(self, data): """Calls all mappers in the chain successively, in reversed order. :Parameter: data: array data array to be reverse mapped into the orginal dataspace. """ mp = data for m in reversed(self._mappers): mp = m.reverse(mp) return mp def train(self, dataset): """Trains the *last* mapper in the chain. :Parameter: dataset: :class:`~mvpa.datasets.base.Dataset` or subclass A dataset with the number of features matching the `outSize` of the last mapper in the chain (which is identical to the one of the `ChainMapper` itself). """ if dataset.nfeatures != self.getOutSize(): raise ValueError, "Training dataset does not match the mapper " \ "properties." self._mappers[-1].train(dataset) def getInSize(self): """Returns the size of the entity in input space""" return self._mappers[0].getInSize() def getOutSize(self): """Returns the size of the entity in output space""" return self._mappers[-1].getOutSize() def selectOut(self, outIds): """Remove some elements from the *last* mapper in the chain. :Parameter: outIds: sequence All output feature ids to be selected/kept. """ self._mappers[-1].selectOut(outIds) def getNeighbor(self, outId, *args, **kwargs): """Get the ids of the neighbors of a single feature in output dataspace. .. note:: The neighbors are determined based on the input space of the *last mapper* in the chain and *not* on the input dataspace of the `ChainMapper` as a whole! :Parameters: outId: int Single id of a feature in output space, whos neighbors should be determined. *args, **kwargs Additional arguments are passed to the metric of the embedded mapper, that is responsible for the corresponding feature. Returns a list of outIds """ return self._mappers[-1].getNeighbor(outId, *args, **kwargs) def __repr__(self): s = Mapper.__repr__(self).rstrip(' )') # beautify if not s[-1] == '(': s += ' ' s += 'mappers=[%s])' % ', '.join([m.__repr__() for m in self._mappers]) return s pymvpa-0.4.8/mvpa/mappers/boxcar.py000066400000000000000000000163541174541445200173210ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Data mapper""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base.dochelpers import enhancedDocString from mvpa.mappers.base import Mapper from mvpa.misc.support import isInVolume if __debug__: from mvpa.base import debug class BoxcarMapper(Mapper): """Mapper to combine multiple samples into a single sample. .. note:: This mapper is somewhat unconventional since it doesn't preserve number of samples (ie the size of 0-th dimension). """ _COLLISION_RESOLUTIONS = ['mean'] def __init__(self, startpoints, boxlength, offset=0, collision_resolution='mean'): """ :Parameters: startpoints: sequence Index values along the first axis of 'data'. boxlength: int The number of elements after 'startpoint' along the first axis of 'data' to be considered for the boxcar. offset: int The offset between the provided starting point and the actual start of the boxcar. collision_resolution : 'mean' if a sample belonged to multiple output samples, then on reverse, how to resolve the value """ Mapper.__init__(self) startpoints = N.asanyarray(startpoints) if N.issubdtype(startpoints.dtype, 'i'): self.startpoints = startpoints else: if __debug__: debug('MAP', "Boxcar: obtained startpoints are not of int type." " Rounding and changing dtype") self.startpoints = N.asanyarray(N.round(startpoints), dtype='i') # Sanity checks if boxlength < 1: raise ValueError, "Boxlength lower than 1 makes no sense." if boxlength - int(boxlength) != 0: raise ValueError, "boxlength must be an integer value." self.boxlength = int(boxlength) self.offset = offset self.__selectors = None if not collision_resolution in self._COLLISION_RESOLUTIONS: raise ValueError, "Unknown method to resolve the collision." \ " Valid are %s" % self._COLLISION_RESOLUTIONS self.__collision_resolution = collision_resolution __doc__ = enhancedDocString('BoxcarMapper', locals(), Mapper) def __repr__(self): s = super(BoxcarMapper, self).__repr__() return s.replace("(", "(boxlength=%d, offset=%d, startpoints=%s, " "collision_resolution='%s'" % (self.boxlength, self.offset, str(self.startpoints), str(self.__collision_resolution)), 1) def forward(self, data): """Project an ND matrix into N+1D matrix This method also handles the special of forward mapping a single 'raw' sample. Such a sample is extended (by concatenating clones of itself) to cover a full boxcar. This functionality is only availably after a full data array has been forward mapped once. :Returns: array: (#startpoint, ...) """ # in case the mapper is already charged if not self.__selectors is None: # if we have a single 'raw' sample (not a boxcar) # extend it to cover the full box -- useful if one # wants to forward map a mask in raw dataspace (e.g. # fMRI ROI or channel map) into an appropriate mask vector if data.shape == self._outshape[2:]: return N.asarray([data] * self.boxlength) self._inshape = data.shape startpoints = self.startpoints offset = self.offset boxlength = self.boxlength # check for illegal boxes for sp in self.startpoints: if ( sp + offset + boxlength - 1 > len(data)-1 ) \ or ( sp + offset < 0 ): raise ValueError, \ 'Illegal box: start: %i, offset: %i, length: %i' \ % (sp, offset, boxlength) # build a list of list where each sublist contains the indexes of to be # averaged data elements self.__selectors = [ N.arange(i + offset, i + offset + boxlength) \ for i in startpoints ] selected = N.asarray([ data[ box ] for box in self.__selectors ]) self._outshape = selected.shape return selected def reverse(self, data): """Uncombine features back into original space. Samples which were not touched by forward will get value 0 assigned """ if data.shape == self._outshape: # reconstruct to full input space from the provided data # done below pass elif data.shape == self._outshape[1:]: # single sample was given, simple return it again. # this is done because other mappers also work with 'single' # samples return data else: raise ValueError, "BoxcarMapper operates either on single samples" \ " %s or on the full dataset in 'reverse()' which must have " \ "shape %s. Got data of shape %s" \ % (self._outshape[1:], self._outshape, data.shape) # the rest of this method deals with reconstructing the full input # space from the boxcar samples assert(data.shape[0] == len(self.__selectors)) # am I right? :) output = N.zeros(self._inshape, dtype=data.dtype) output_counts = N.zeros((self._inshape[0],), dtype=int) for i, selector in enumerate(self.__selectors): output[selector, ...] += data[i, ...] output_counts[selector] += 1 # scale output if self.__collision_resolution == 'mean': # which samples how multiple sources? g1 = output_counts > 1 # average them # doing complicated transposing to be able to process array with # nd > 2 output_ = output[g1].T output_ /= output_counts[g1] output[g1] = output_.T return output def getInSize(self): """Returns the number of original samples which were combined. """ return self._inshape[0] def isValidOutId(self, outId): """Validate if OutId is valid """ try: return isInVolume(outId, self._outshape[1:]) except: return False def isValidInId(self, inId): """Validate if InId is valid """ try: return isInVolume(inId, self._inshape[1:]) except: return False def getOutSize(self): """Returns the number of output samples. """ return N.prod(self._outshape[1:]) def selectOut(self, outIds): """Just complain for now""" raise NotImplementedError, \ "For feature selection use MaskMapper on output of the %s mapper" \ % self.__class__.__name__ pymvpa-0.4.8/mvpa/mappers/ica.py000066400000000000000000000044421174541445200165720ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Data mapper""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base.dochelpers import enhancedDocString from mvpa.mappers.base import ProjectionMapper import mvpa.base.externals as externals if externals.exists('mdp', raiseException=True): from mdp.nodes import FastICANode, CuBICANode class ICAMapper(ProjectionMapper): """Mapper to project data onto ICA components estimated from some dataset. After the mapper has been instantiated, it has to be train first. The ICA mapper only handles 2D data matrices. """ def __init__(self, algorithm='cubica', transpose=False, **kwargs): ProjectionMapper.__init__(self, **kwargs) self._algorithm = algorithm self._transpose = transpose __doc__ = enhancedDocString('ICAMapper', locals(), ProjectionMapper) def _train(self, dataset): """Determine the projection matrix onto the components from a 2D samples x feature data matrix. """ white_param = {} # more features than samples? -> rank deficiancy # if not tranposing the data, MDP has to do SVD prior to ICA if dataset.samples.shape[1] > dataset.samples.shape[0] \ and not self._transpose: white_param['svd'] = True if self._algorithm == 'fastica': node = FastICANode(white_parm=white_param, dtype=dataset.samples.dtype) elif self._algorithm == 'cubica': node = CuBICANode(white_parm=white_param, dtype=dataset.samples.dtype) else: raise NotImplementedError # node.train(dataset.samples.T) # self._proj = dataset.samples.T * N.asmatrix(node.get_projmatrix()) # print self._proj.shape # else: node.train(dataset.samples) self._proj = N.asmatrix(node.get_projmatrix()) self._recon = N.asmatrix(node.get_recmatrix()) pymvpa-0.4.8/mvpa/mappers/lle.py000066400000000000000000000100371174541445200166070ustar00rootroot00000000000000#emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- #ex: set sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Local Linear Embedding Data mapper. This is a wrapper class around the corresponding MDP nodes LLE and HLLE (since MDP 2.4). """ __docformat__ = 'restructuredtext' from mvpa.base import externals import numpy as N from mvpa.mappers.base import Mapper if externals.exists('mdp ge 2.4', raiseException=True): from mdp.nodes import LLENode, HLLENode class LLEMapper(Mapper): """Locally linear embbeding Mapper. This mapper performs dimensionality reduction. It wraps two algorithms provided by the Modular Data Processing (MDP) framework. Locally linear embedding (LLE) approximates the input data with a low-dimensional surface and reduces its dimensionality by learning a mapping to the surface. This wrapper class provides access to two different LLE algorithms (i.e. the corresponding MDP processing nodes). 1) An algorithm outlined in *An Introduction to Locally Linear Embedding* by L. Saul and S. Roweis, using improvements suggested in *Locally Linear Embedding for Classification* by D. deRidder and R.P.W. Duin (aka `LLENode`) and 2) Hessian Locally Linear Embedding analysis based on algorithm outlined in *Hessian Eigenmaps: new locally linear embedding techniques for high-dimensional data* by C. Grimes and D. Donoho, 2003. .. note:: This mapper only provides forward-mapping functionality -- no reverse mapping is available. .. seealso:: http://mdp-toolkit.sourceforge.net """ def __init__(self, k, algorithm='lle', **kwargs): """ :Parameters: k: int Number of nearest neighbor to be used by the algorithm. algorithm: 'lle' | 'hlle' Either use the standard LLE algorithm or Hessian Linear Local Embedding (HLLE). **kwargs: Additional arguments are passed to the underlying MDP node. Most importantly this is the `output_dim` argument, that determines the number of dimensions to mapper is using as output space. """ # no meaningful metric Mapper.__init__(self, metric=None) self._algorithm = algorithm self._node_kwargs = kwargs self._k = k self._node = None def train(self, ds): """Train the mapper. """ if self._algorithm == 'lle': self._node = LLENode(self._k, dtype=ds.samples.dtype, **self._node_kwargs) elif self._algorithm == 'hlle': self._node = HLLENode(self._k, dtype=ds.samples.dtype, **self._node_kwargs) else: raise NotImplementedError self._node.train(ds.samples) self._node.stop_training() def forward(self, data): """Map data from the IN dataspace into OUT space. """ # experience the beauty of MDP -- just call the beast and be done ;-) return self.node(data) def reverse(self, data): """Reverse map data from OUT space into the IN space. """ raise NotImplementedError def getInSize(self): """Returns the size of the entity in input space""" return self.node.input_dim def getOutSize(self): """Returns the size of the entity in output space""" return self.node.output_dim def _accessNode(self): """Provide access to the underlying MDP processing node. With some care. """ if self._node is None: raise RuntimeError, \ 'The LLEMapper needs to be trained before access to the ' \ 'processing node is possible.' return self._node node = property(fget=_accessNode) pymvpa-0.4.8/mvpa/mappers/mask.py000066400000000000000000000331501174541445200167670ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Data mapper which applies mask to the data""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.mappers.base import Mapper from mvpa.base.dochelpers import enhancedDocString from mvpa.misc.support import isInVolume if __debug__: from mvpa.base import debug, warning from mvpa.misc.support import isSorted class MaskMapper(Mapper): """Mapper which uses a binary mask to select "Features" """ def __init__(self, mask, **kwargs): """Initialize MaskMapper :Parameters: mask : array an array in the original dataspace and its nonzero elements are used to define the features included in the dataset """ Mapper.__init__(self, **kwargs) self.__mask = self.__maskdim = self.__masksize = \ self.__masknonzerosize = self.__forwardmap = \ self.__masknonzero = None # to make pylint happy self._initMask(mask) __doc__ = enhancedDocString('MaskMapper', locals(), Mapper) def __str__(self): return "MaskMapper: %d -> %d" \ % (self.__masksize, self.__masknonzerosize) def __repr__(self): s = super(MaskMapper, self).__repr__() return s.replace("(", "(mask=%s," % self.__mask, 1) # XXX # XXX HAS TO TAKE CARE OF SUBCLASSES!!! # XXX # # def __deepcopy__(self, memo=None): # # XXX memo does not seem to be used # if memo is None: # memo = {} # from mvpa.support.copy import deepcopy # out = MaskMapper.__new__(MaskMapper) # Mapper.__init__(out) # out.__mask = self.__mask.copy() # out.__maskdim = self.__maskdim # out.__masksize = self.__masksize # out.__masknonzero = deepcopy(self.__masknonzero) # out.__masknonzerosize = self.__masknonzerosize # out.__forwardmap = self.__forwardmap.copy() # # return out def _initMask(self, mask): """Initialize internal state with mask-derived information It is needed to initialize structures for the fast and reverse lookup to don't impose performance hit on any future operation """ # NOTE: If any new class member are added here __deepcopy__() has to # be adjusted accordingly! self.__mask = (mask != 0) self.__maskdim = len(mask.shape) self.__masksize = N.prod(mask.shape) # Following introduces space penalty but are needed # for efficient processing. # Store all coordinates for backward mapping self.__masknonzero = mask.nonzero() self.__masknonzerosize = len(self.__masknonzero[0]) #from IPython.Shell import IPShellEmbed #ipshell = IPShellEmbed() #ipshell() #import pydb; pydb.debugger() # Store forward mapping (ie from coord into outId) # TODO to save space might take appropriate int type # depending on masknonzerosize # it could be done with a dictionary, but since mask # might be relatively big, it is better to simply use # a chunk of RAM ;-) self.__forwardmap = N.zeros(mask.shape, dtype=N.int64) # under assumption that we +1 values in forwardmap so that # 0 can be used to signal outside of mask self.__forwardmap[self.__masknonzero] = \ N.arange(self.__masknonzerosize) def forward(self, data): """Map data from the original dataspace into featurespace. """ data = N.asanyarray(data) # assure it is an array datadim = len(data.shape) datashape = data.shape[(-1)*self.__maskdim:] if not datashape == self.__mask.shape: raise ValueError, \ "The shape of data to be mapped %s " % `datashape` \ + " does not match the mapper's mask shape %s" \ % `self.__mask.shape` if self.__maskdim == datadim: # we had to select by __masknonzero if we didn't sort # Ids and wanted to preserve the order #return data[ self.__masknonzero ] return data[ self.__mask ] elif self.__maskdim+1 == datadim: # XXX XXX XXX below line should be accomodated also # to make use of self.__masknonzero instead of # plain mask if we want to preserve the (re)order return data[ :, self.__mask ] else: raise ValueError, \ "Shape of the to be mapped data, does not match the " \ "mapper mask. Only one (optional) additional dimension " \ "exceeding the mask shape is supported." def reverse(self, data): """Reverse map data from featurespace into the original dataspace. """ data = N.asanyarray(data) datadim = len(data.shape) if not datadim in [1, 2]: raise ValueError, \ "Only 2d or 1d data can be reverse mapped. "\ "Got data of shape %s" % (data.shape,) if datadim == 1: # Verify that we are trying to reverse data of proper dimension. # In 1D case numpy would not complain and will broadcast # the values if __debug__ and self.nfeatures != len(data): raise ValueError, \ "Cannot reverse map data with %d elements, whenever " \ "mask knows only %d" % (len(data), self.nfeatures) mapped = N.zeros(self.__mask.shape, dtype=data.dtype) mapped[self.__mask] = data elif datadim == 2: # Verify that we are trying to reverse data of proper dimension. # In 2D case numpy we should have matching # of features if __debug__ and self.nfeatures != data.shape[1]: raise ValueError, \ "Cannot reverse map data of shape %s, whenever " \ "mask knows only %d features" \ % (data.shape, self.nfeatures) mapped = N.zeros(data.shape[:1] + self.__mask.shape, dtype=data.dtype) mapped[:, self.__mask] = data return mapped def getInSize(self): """InShape is a shape of original mask""" return self.__masksize def getOutSize(self): """OutSize is a number of non-0 elements in the mask""" return self.__masknonzerosize def getMask(self, copy = True): """By default returns a copy of the current mask. If 'copy' is set to False a reference to the mask is returned instead. This shared mask must not be modified! """ if copy: return self.__mask.copy() else: return self.__mask def getInId(self, outId): """Returns a features coordinate in the original data space for a given feature id. If this method is called with a list of feature ids it returns a 2d-array where the first axis corresponds the dimensions in 'In' dataspace and along the second axis are the coordinates of the features on this dimension (like the output of NumPy.array.nonzero()). XXX it might become __get_item__ access method """ # XXX Might be improved by storing also transpose of # __masknonzero return N.array([self.__masknonzero[i][outId] for i in xrange(self.__maskdim)]) def getInIds(self): """Returns a 2d array where each row contains the coordinate of the feature with the corresponding id. """ return N.transpose(self.__masknonzero) def isValidInId(self, inId): mask = self.mask return (isInVolume(inId, mask.shape) and mask[tuple(inId)] != 0) def getOutId(self, coord): """Translate a feature mask coordinate into a feature ID. """ # FIXME Since lists/arrays accept negative indexes to go from # the end -- we need to check coordinates explicitely. Otherwise # we would get warping effect try: tcoord = tuple(coord) if self.__mask[tcoord] == 0: raise ValueError, \ "The point %s didn't belong to the mask" % (`coord`) return self.__forwardmap[tcoord] except TypeError: raise ValueError, \ "Coordinates %s are of incorrect dimension. " % `coord` + \ "The mask has %d dimensions." % self.__maskdim except IndexError: raise ValueError, \ "Coordinates %s are out of mask boundary. " % `coord` + \ "The mask is of %s shape." % `self.__mask.shape` def selectOut(self, outIds): """Only listed outIds would remain. *Function assumes that outIds are sorted*. In __debug__ mode selectOut would check if obtained IDs are sorted and would warn the user if they are not. .. note:: If you feel strongly that you need to remap features internally (ie to allow Ids with mixed order) please contact developers of mvpa to discuss your use case. The function used to accept a matrix-mask as the input but now it really has to be a list of IDs Feature/Bug: * Negative outIds would not raise exception - just would be treated 'from the tail' """ if __debug__ and 'CHECK_SORTEDIDS' in debug.active: # per short conversation with Michael -- we should not # allow reordering since we saw no viable use case for # it. Thus -- warn user is outIds are not in sorted order # and no sorting was requested may be due to performance # considerations if not isSorted(outIds): warning("IDs for selectOut must be provided " + "in sorted order, otherwise .forward() would fail"+ " on the data with multiple samples") # adjust mask and forwardmap discarded = N.array([ True ] * self.nfeatures) discarded[outIds] = False # create a map of discarded Ids discardedin = tuple(self.getInId(discarded)) self.__mask[discardedin] = False self.__masknonzerosize = len(outIds) self.__masknonzero = [ x[outIds] for x in self.__masknonzero ] # adjust/remap not discarded in forwardmap # since we merged _tent/maskmapper-init-noloop it is not necessary # to zero-out discarded entries since we anyway would check with mask # in getOutId(s) self.__forwardmap[self.__masknonzero] = \ N.arange(self.__masknonzerosize) def discardOut(self, outIds): """Listed outIds would be discarded """ # adjust mask and forwardmap discardedin = tuple(self.getInId(outIds)) self.__mask[discardedin] = False # since we merged _tent/maskmapper-init-noloop it is not necessary # to zero-out discarded entries since we anyway would check with mask # in getOutId(s) # self.__forwardmap[discardedin] = 0 self.__masknonzerosize -= len(outIds) self.__masknonzero = [ N.delete(x, outIds) for x in self.__masknonzero ] # adjust/remap not discarded in forwardmap self.__forwardmap[self.__masknonzero] = \ N.arange(self.__masknonzerosize) # OPT: we can adjust __forwardmap only for ids which are higher than # the smallest outId among discarded. Similar strategy could be done # for selectOut but such index has to be figured out first there # .... # comment out for now... introduce when needed # def getInEmpty(self): # """Returns empty instance of input object""" # raise NotImplementedError # # # def getOutEmpty(self): # """Returns empty instance of output object""" # raise NotImplementedError def convertOutIds2OutMask(self, outIds): """Returns a boolean mask with all features in `outIds` selected. :Parameters: outIds: list or 1d array To be selected features ids in out-space. :Returns: ndarray: dtype='bool' All selected features are set to True; False otherwise. """ fmask = N.repeat(False, self.nfeatures) fmask[outIds] = True return fmask def convertOutIds2InMask(self, outIds): """Returns a boolean mask with all features in `ouIds` selected. This method works exactly like Mapper.convertOutIds2OutMask(), but the feature mask is finally (reverse) mapped into in-space. :Parameters: outIds: list or 1d array To be selected features ids in out-space. :Returns: ndarray: dtype='bool' All selected features are set to True; False otherwise. """ return self.reverse(self.convertOutIds2OutMask(outIds)) # Read-only props mask = property(fget=lambda self:self.getMask(False)) # TODO Unify tuple/array conversion of coordinates. tuples are needed # for easy reference, arrays are needed when doing computation on # coordinates: for some reason numpy doesn't handle casting into # array from tuples while performing arithm operations... pymvpa-0.4.8/mvpa/mappers/metric.py000066400000000000000000000225171174541445200173240ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Classes and functions to provide sense of distances between sample points""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.clfs.distance import cartesianDistance class Metric(object): """Abstract class for any metric. Subclasses abstract a metric of a dataspace with certain properties and can be queried for structural information. Currently, this is limited to neighborhood information, i.e. identifying the surround a some coordinate in the respective dataspace. At least one of the methods (getNeighbors, getNeighbor) has to be overriden in every derived class. NOTE: derived #2 from derived class #1 has to override all methods which were overrident in class #1 """ def getNeighbors(self, *args, **kwargs): """Return the list of coordinates for the neighbors. By default it simply constracts the list based on the generator getNeighbor """ return [ x for x in self.getNeighbor(*args, **kwargs) ] def getNeighbor(self, *args, **kwargs): """Generator to return coordinate of the neighbor. Base class contains the simplest implementation, assuming that getNeighbors returns iterative structure to spit out neighbors 1-by-1 """ for neighbor in self.getNeighbors(*args, **kwargs): yield neighbor class DescreteMetric(Metric): """Find neighboring points in descretized space If input space is descretized and all points fill in N-dimensional cube, this finder returns list of neighboring points for a given distance. For all `origin` coordinates this class exclusively operates on discretized values, not absolute coordinates (which are e.g. in mm). Additionally, this metric has the notion of compatible and incompatible dataspace metrics, i.e. the descrete space might contain dimensions for which computing an overall distance is not meaningful. This could, for example, be a combined spatio-temporal space (three spatial dimension, plus the temporal one). This metric allows to define a boolean mask (`compatmask`) which dimensions share the same dataspace metrics and for which the distance function should be evaluated. If a `compatmask` is provided, all cordinates are projected into the subspace of the non-zero dimensions and distances are computed within that space. However, by using a per dimension radius argument for the getNeighbor methods, it is nevertheless possible to define a neighborhood along all dimension. For all non-compatible axes the respective radius is treated as a one-dimensional distance along the respective axis. """ def __init__(self, elementsize=1, distance_function=cartesianDistance, compatmask=None): """ :Parameters: elementsize: float | sequence The extent of a dataspace element along all dimensions. distance_function: functor The distance measure used to determine distances between dataspace elements. compatmask: 1D bool array | None A mask where all non-zero elements indicate dimensions with compatible spacemetrics. If None (default) all dimensions are assumed to have compatible spacemetrics. """ Metric.__init__(self) self.__filter_radius = None self.__filter_coord = None self.__distance_function = distance_function self.__elementsize = N.array(elementsize, ndmin=1) self.__Ndims = len(self.__elementsize) self.compatmask = compatmask def _expandRadius(self, radius): # expand radius to be equal along all dimensions if just scalar # is provided if N.isscalar(radius): radius = N.array([radius] * len(self.__elementsize), dtype='float') else: radius = N.array(radius, dtype='float') return radius def _computeFilter(self, radius): """ (Re)compute filter_coord based on given radius """ if not N.all(radius[self.__compatmask][0] == radius[self.__compatmask]): raise ValueError, \ "Currently only neighborhood spheres are supported, " \ "not ellipsoids." # store radius in compatible space compat_radius = radius[self.__compatmask][0] # compute radius in units of elementsize per axis elementradius_per_axis = radius / self.__elementsize # build prototype search space filter_radiuses = N.ceil(N.abs(elementradius_per_axis)).astype('int') filter_center = filter_radiuses comp_center = filter_center[self.__compatmask] \ * self.__elementsize[self.__compatmask] filter_mask = N.ones((filter_radiuses * 2) + 1, dtype='bool') # get coordinates of all elements f_coords = N.transpose(filter_mask.nonzero()) # but start with empty mask filter_mask[:] = False # check all filter element for coord in f_coords: dist = self.__distance_function( coord[self.__compatmask] * self.__elementsize[self.__compatmask], comp_center) # compare with radius if dist <= compat_radius: # zero too distant filter_mask[N.array(coord, ndmin=2).T.tolist()] = True self.__filter_coord = N.array( filter_mask.nonzero() ).T \ - filter_center self.__filter_radius = radius def getNeighbors(self, origin, radius=0): """Returns coordinates of the neighbors which are within distance from coord. :Parameters: origin: 1D array The center coordinate of the neighborhood. radius: scalar | sequence If a scalar, the radius is treated as identical along all dimensions of the dataspace. If a sequence, it defines a per dimension radius, thus has to have the same number of elements as dimensions. Currently, only spherical neighborhoods are supported. Therefore, the radius has to be equal along all dimensions flagged as having compatible dataspace metrics. It is, however, possible to define variant radii for all other dimensions. """ if len(origin) != self.__Ndims: raise ValueError("Obtained coordinates [%r] which have different " "number of dimensions (%d) from known " "elementsize" % (origin, self.__Ndims)) # take care of postprocessing the radius the ensure validity of the next # conditional radius = self._expandRadius(radius) if N.any(radius != self.__filter_radius): self._computeFilter(radius) # for the ease of future references, it is better to transform # coordinates into tuples return origin + self.__filter_coord def _setFilter(self, filter_coord): """Lets allow to specify some custom filter to use """ self.__filter_coord = filter_coord def _getFilter(self): """Lets allow to specify some custom filter to use """ return self.__filter_coord def _setElementSize(self, v): # reset filter radius _elementsize = N.array(v, ndmin=1) # assure that it is read-only and it gets reassigned # only as a whole to trigger this house-keeping _elementsize.flags.writeable = False self.__elementsize = _elementsize self.__Ndims = len(_elementsize) self.__filter_radius = None def _getCompatMask(self): """Return compatmask .. note:: Don't modify in place since it would need to require to reset __filter_radius whenever changed """ return self.__compatmask def _setCompatMask(self, compatmask): """Set new value of compatmask """ if compatmask is None: self.__compatmask = N.ones(self.__elementsize.shape, dtype='bool') else: self.__compatmask = N.array(compatmask, dtype='bool') if not self.__elementsize.shape == self.__compatmask.shape: raise ValueError, '`compatmask` is of incompatible shape ' \ '(need %s, got %s)' % (`self.__elementsize.shape`, `self.__compatmask.shape`) self.__filter_radius = None # reset so filter gets recomputed filter_coord = property(fget=_getFilter, fset=_setFilter) elementsize = property(fget=lambda self: self.__elementsize, fset=_setElementSize) compatmask = property(_getCompatMask, _setCompatMask) # Template for future classes # # class MeshMetric(Metric): # """Return list of neighboring points on a mesh # """ # def getNeighbors(self, origin, distance=0): # """Return neighbors""" # raise NotImplementedError pymvpa-0.4.8/mvpa/mappers/pca.py000066400000000000000000000040231174541445200165740ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Data mapper""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import warning from mvpa.base.dochelpers import enhancedDocString from mvpa.mappers.base import ProjectionMapper import mvpa.base.externals as externals if externals.exists('mdp', raiseException=True): from mdp.nodes import NIPALSNode class PCAMapper(ProjectionMapper): """Mapper to project data onto PCA components estimated from some dataset. After the mapper has been instantiated, it has to be train first. The PCA mapper only handles 2D data matrices. """ def __init__(self, transpose=False, **kwargs): ProjectionMapper.__init__(self, **kwargs) self._var = None __doc__ = enhancedDocString('PCAMapper', locals(), ProjectionMapper) def _train(self, dataset): """Determine the projection matrix onto the components from a 2D samples x feature data matrix. """ samples = dataset.samples dtype = samples.dtype if str(dtype).startswith('uint') \ or str(dtype).startswith('int'): warning("PCA: input data is in integers. " + \ "MDP's NIPALSNode operates only on floats, thus "+\ "coercing to double") dtype = N.double samples = samples.astype(N.double) node = NIPALSNode(dtype=dtype) node.train(samples) self._proj = N.asmatrix(node.get_projmatrix()) self._recon = N.asmatrix(node.get_recmatrix()) # store variance per PCA component self._var = node.d var = property(fget=lambda self: self._var, doc='Variances per component') pymvpa-0.4.8/mvpa/mappers/procrustean.py000066400000000000000000000173101174541445200204010ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Procrustean rotation mapper""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base.dochelpers import enhancedDocString from mvpa.mappers.base import ProjectionMapper from mvpa.datasets import Dataset from mvpa.featsel.helpers import ElementSelector if __debug__: from mvpa.base import debug class ProcrusteanMapper(ProjectionMapper): """Mapper to project from one space to another using Procrustean transformation (shift + scaling + rotation) """ _DEV__doc__ = """Possibly revert back to inherit from ProjectionMapper""" def __init__(self, scaling=True, reflection=True, reduction=True, oblique=False, oblique_rcond=-1, **kwargs): """Initialize the ProcrusteanMapper :Parameters: scaling: bool Scale data for the transformation (no longer rigid body transformation) reflection: bool Allow for the data to be reflected (so it might not be a rotation). Effective only for non-oblique transformations reduction: bool If true, it is allowed to map into lower-dimensional space. Forward transformation might be suboptimal then and reverse transformation might not recover all original variance oblique: bool Either to allow non-orthogonal transformation -- might heavily overfit the data if there is less samples than dimensions. Use `oblique_rcond`. oblique_rcond: float Cutoff for 'small' singular values to regularize the inverse. See :class:`~numpy.linalg.lstsq` for more information. """ ProjectionMapper.__init__(self, **kwargs) self._scaling = scaling """Either to determine the scaling factor""" self._reduction = reduction self._reflection = reflection self._oblique = oblique self._oblique_rcond = oblique_rcond self._scale = None """Estimated scale""" __doc__ = enhancedDocString('ProcrusteanMapper', locals(), ProjectionMapper) # XXX we should just use beautiful ClassWithCollections everywhere... makes # life so easier... for now -- manual def __repr__(self): s = ProjectionMapper.__repr__(self).rstrip(' )') if not s[-1] == '(': s += ', ' s += "scaling=%d, reflection=%d, reduction=%d, " \ "oblique=%s, oblique_rcond=%g)" % \ (self._scaling, self._reflection, self._reduction, self._oblique, self._oblique_rcond) return s # XXX we have to override train since now we have multiple datasets # alternative way is to assign target to the labels of the source # dataset def _train(self, source, target=None): """Train Procrustean transformation :Parameters: source : dataset or ndarray Source space for determining the transformation. If target is None, then labels of 'source' dataset are taken as the target target : dataset or ndarray or Null Target space for determining the transformation """ # Since it is unsupervised, we don't care about labels datas = () odatas = () means = () shapes = () assess_residuals = __debug__ and 'MAP_' in debug.active if target is None: target = source.labels for i, ds in enumerate((source, target)): if isinstance(ds, Dataset): data = N.asarray(ds.samples) else: data = ds if assess_residuals: odatas += (data,) if i == 0: mean = self._offset_in else: mean = data.mean(axis=0) data = data - mean means += (mean,) datas += (data,) shapes += (data.shape,) # shortcuts for sizes sn, sm = shapes[0] tn, tm = shapes[1] # Check the sizes if sn != tn: raise ValueError, "Data for both spaces should have the same " \ "number of samples. Got %d in source and %d in target space" \ % (sn, tn) # Sums of squares ssqs = [N.sum(d**2, axis=0) for d in datas] # XXX check for being invariant? # needs to be tuned up properly and not raise but handle for i in xrange(2): if N.all(ssqs[i] <= N.abs((N.finfo(datas[i].dtype).eps * sn * means[i] )**2)): raise ValueError, "For now do not handle invariant in time datasets" norms = [ N.sqrt(N.sum(ssq)) for ssq in ssqs ] normed = [ data/norm for (data, norm) in zip(datas, norms) ] # add new blank dimensions to source space if needed if sm < tm: normed[0] = N.hstack( (normed[0], N.zeros((sn, tm-sm))) ) if sm > tm: if self._reduction: normed[1] = N.hstack( (normed[1], N.zeros((sn, sm-tm))) ) else: raise ValueError, "reduction=False, so mapping from " \ "higher dimensionality " \ "source space is not supported. Source space had %d " \ "while target %d dimensions (features)" % (sm, tm) source, target = normed if self._oblique: # Just do silly linear system of equations ;) or naive # inverse problem if sn == sm and tm == 1: T = N.linalg.solve(source, target) else: T = N.linalg.lstsq(source, target, rcond=self._oblique_rcond)[0] ss = 1.0 else: # Orthogonal transformation # figure out optimal rotation U, s, Vh = N.linalg.svd(N.dot(target.T, source), full_matrices=False) T = N.dot(Vh.T, U.T) if not self._reflection: # then we need to assure that it is only rotation # "recipe" from # http://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem # for more and info and original references, see # http://dx.doi.org/10.1007%2FBF02289451 nsv = len(s) s[:-1] = 1 s[-1] = N.linalg.det(T) T = N.dot(U[:, :nsv] * s, Vh) # figure out scale and final translation # XXX with reflection False -- not sure if here or there or anywhere... ss = sum(s) # if we were to collect standardized distance # std_d = 1 - sD**2 # select out only relevant dimensions if sm != tm: T = T[:sm, :tm] self._scale = scale = ss * norms[1] / norms[0] # Assign projection if self._scaling: proj = scale * T else: proj = T self._proj = proj if self._demean: self._offset_out = means[1] if __debug__ and 'MAP_' in debug.active: # compute the residuals res_f = self.forward(odatas[0]) d_f = N.linalg.norm(odatas[1] - res_f)/N.linalg.norm(odatas[1]) res_r = self.reverse(odatas[1]) d_r = N.linalg.norm(odatas[0] - res_r)/N.linalg.norm(odatas[0]) debug('MAP_', "%s, residuals are forward: %g," " reverse: %g" % (repr(self), d_f, d_r)) pymvpa-0.4.8/mvpa/mappers/samplegroup.py000066400000000000000000000066111174541445200203740ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Data mapper""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base.dochelpers import enhancedDocString from mvpa.mappers.base import Mapper from mvpa.misc.transformers import FirstAxisMean if __debug__: from mvpa.base import debug class SampleGroupMapper(Mapper): # name is ugly, please help! """Mapper to apply a mapping function to samples of the same type. A customimzable function is applied individually to all samples with the same unique label from the same chunk. This mapper is somewhat unconventional since it doesn't preserve number of samples (ie the size of 0-th dimension...) """ def __init__(self, fx=FirstAxisMean): """Initialize the PCAMapper Parameters: startpoints: A sequence of index value along the first axis of 'data'. boxlength: The number of elements after 'startpoint' along the first axis of 'data' to be considered for averaging. offset: The offset between the starting point and the averaging window (boxcar). collision_resolution : string if a sample belonged to multiple output samples, then on reverse, how to resolve the value (choices: 'mean') """ Mapper.__init__(self) self.__fx = fx self.__uniquechunks = None self.__uniquelabels = None self.__chunks = None self.__labels = None self.__datashape = None __doc__ = enhancedDocString('SampleGroupMapper', locals(), Mapper) def train(self, dataset): """ """ # just store the relevant information self.__uniquechunks = dataset.uniquechunks self.__uniquelabels = dataset.uniquelabels self.__chunks = dataset.chunks self.__labels = dataset.labels self.__datashape = (dataset.nfeatures, ) def forward(self, data): """ """ if self.__datashape is None: raise RuntimeError, \ "SampleGroupMapper needs to be trained before it can be used" mdata = [] # for each label in each chunk for c in self.__uniquechunks: for l in self.__uniquelabels: mdata.append(self.__fx(data[N.logical_and(self.__labels == l, self.__chunks == c)])) return N.array(mdata) def reverse(self, data): """This is not implemented.""" raise NotImplementedError def getInSize(self): """Returns the number of original samples which were combined. """ return self.__datashape[0] def getOutSize(self): """Returns the number of output samples. """ return self.__datashape[0] def selectOut(self, outIds): """Just complain for now""" raise NotImplementedError, \ "For feature selection use MaskMapper on output of the %s mapper" \ % self.__class__.__name__ pymvpa-0.4.8/mvpa/mappers/som.py000066400000000000000000000210671174541445200166360ustar00rootroot00000000000000#emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- #ex: set sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Self-organizing map (SOM) mapper.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.mappers.base import Mapper if __debug__: from mvpa.base import debug class SimpleSOMMapper(Mapper): """Mapper using a self-organizing map (SOM) for dimensionality reduction. This mapper provides a simple, but pretty fast implementation of a self-organizing map using an unsupervised training algorithm. It performs a ND -> 2D mapping, which can for, example, be used for visualization of high-dimensional data. This SOM implementation uses squared Euclidean distance to determine the best matching Kohonen unit and a Gaussian neighborhood influence kernel. """ def __init__(self, kshape, niter, learning_rate=0.005, iradius=None): """ :Parameters: kshape: (int, int) Shape of the internal Kohonen layer. Currently, only 2D Kohonen layers are supported, although the length of an axis might be set to 1. niter: int Number of iteration during network training. learning_rate: float Initial learning rate, which will continuously decreased during network training. iradius: float | None Initial radius of the Gaussian neighborhood kernel radius, which will continuously decreased during network training. If `None` (default) the radius is set equal to the longest edge of the Kohonen layer. """ # init base class Mapper.__init__(self) self.kshape = N.array(kshape, dtype='int') if iradius is None: self.radius = self.kshape.max() else: self.radius = iradius # learning rate self.lrate = learning_rate # number of training iterations self.niter = niter # precompute whatever can be done # scalar for decay of learning rate and radius across all iterations self.iter_scale = self.niter / N.log(self.radius) # the internal kohonen layer self._K = None def train(self, ds): """Perform network training. :Parameter: ds: Dataset All samples in the dataset will be used for unsupervised training of the SOM. """ # XXX initialize with clever default, e.g. plain of first two PCA # components self._K = N.random.standard_normal(tuple(self.kshape) + (ds.nfeatures,)) # units weight vector deltas for batch training # (height x width x #features) unit_deltas = N.zeros(self._K.shape, dtype='float') # precompute distance kernel between elements in the Kohonen layer # that will remain constant throughout the training # (just compute one quadrant, as the distances are symmetric) # XXX maybe do other than squared Euclidean? dqd = N.fromfunction(lambda x, y: (x**2 + y**2)**0.5, self.kshape, dtype='float') # for all iterations for it in xrange(1, self.niter + 1): # compute the neighborhood impact kernel for this iteration # has to be recomputed since kernel shrinks over time k = self._computeInfluenceKernel(it, dqd) # for all training vectors for s in ds.samples: # determine closest unit (as element coordinate) b = self._getBMU(s) # train all units at once by unfolding the kernel (from the # single quadrant that is precomputed), cutting it to the # right shape and simply multiply it to the difference of target # and all unit weights.... infl = N.vstack(( N.hstack(( # upper left k[b[0]:0:-1, b[1]:0:-1], # upper right k[b[0]:0:-1, :self.kshape[1] - b[1]])), N.hstack(( # lower left k[:self.kshape[0] - b[0], b[1]:0:-1], # lower right k[:self.kshape[0] - b[0], :self.kshape[1] - b[1]])) )) unit_deltas += infl[:,:,N.newaxis] * (s - self._K) # apply cumulative unit deltas self._K += unit_deltas if __debug__: debug("SOM", "Iteration %d/%d done: ||unit_deltas||=%g" % (it, self.niter, N.sqrt(N.sum(unit_deltas **2)))) # reset unit deltas unit_deltas.fill(0.) def _computeInfluenceKernel(self, iter, dqd): """Compute the neighborhood kernel for some iteration. :Parameters: iter: int The iteration for which to compute the kernel. dqd: array (nrows x ncolumns) This is one quadrant of Euclidean distances between Kohonen unit locations. """ # compute radius decay for this iteration curr_max_radius = self.radius * N.exp(-1.0 * iter / self.iter_scale) # same for learning rate curr_lrate = self.lrate * N.exp(-1.0 * iter / self.iter_scale) # compute Gaussian influence kernel infl = N.exp((-1.0 * dqd) / (2 * curr_max_radius * iter)) infl *= curr_lrate # hard-limit kernel to max radius # XXX is this really necessary? infl[dqd > curr_max_radius] = 0. return infl def _getBMU(self, sample): """Returns the ID of the best matching unit. 'best' is determined as minimal squared Euclidean distance between any units weight vector and some given target `sample` :Parameters: sample: array Target sample. :Returns: tuple: (row, column) """ # TODO expose distance function as parameter loc = N.argmin(((self.K - sample) ** 2).sum(axis=2)) # assumes 2D Kohonen layer return (N.divide(loc, self.kshape[1]), loc % self.kshape[1]) def forward(self, data): """Map data from the IN dataspace into OUT space. Mapping is performs by simple determining the best matching Kohonen unit for each data sample. """ return N.array([self._getBMU(d) for d in data]) def reverse(self, data): """Reverse map data from OUT space into the IN space. """ # simple transform into appropriate array slicing and # return the associated Kohonen unit weights return self.K[tuple(N.transpose(data))] def getInSize(self): """Returns the size of the entity in input space""" return self.K.shape[-1] def getOutSize(self): """Returns the size of the entity in output space""" return self.K.shape[:-1] def selectOut(self, outIds): """Limit the OUT space to a certain set of features. This is currently not implemented. Moreover, although it is technically possible to implement this functionality, it is unsure whether it is meaningful in the context of SOMs. """ raise NotImplementedError def getInId(self, outId): """Translate a feature id into a coordinate/index in input space. This is not meaningful in the context of SOMs. """ raise NotImplementedError def isValidOutId(self, outId): """Validate feature id in OUT space. """ return (outId >= 0).all() and (outId < self.kshape).all() def __repr__(self): s = Mapper.__repr__(self).rstrip(' )') # beautify if not s[-1] == '(': s += ' ' s += 'kshape=%s, niter=%i, learning_rate=%f, iradius=%f)' \ % (str(tuple(self.kshape)), self.niter, self.lrate, self.radius) return s def _accessKohonen(self): """Provide access to the Kohonen layer. With some care. """ if self._K is None: raise RuntimeError, \ 'The SOM needs to be trained before access to the Kohonen ' \ 'layer is possible.' return self._K K = property(fget=_accessKohonen) pymvpa-0.4.8/mvpa/mappers/svd.py000066400000000000000000000065601174541445200166350ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Singular-value decomposition mapper""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base.dochelpers import enhancedDocString from mvpa.mappers.base import ProjectionMapper from mvpa.featsel.helpers import ElementSelector if __debug__: from mvpa.base import debug class SVDMapper(ProjectionMapper): """Mapper to project data onto SVD components estimated from some dataset. """ def __init__(self, **kwargs): """Initialize the SVDMapper :Parameters: **kwargs: All keyword arguments are passed to the ProjectionMapper constructor. Note, that for the 'selector' argument this class also supports passing a `ElementSelector` instance, which will be used to determine the to be selected features, based on the singular values of each component. """ ProjectionMapper.__init__(self, **kwargs) self._sv = None """Singular values of the training matrix.""" __doc__ = enhancedDocString('SVDMapper', locals(), ProjectionMapper) def _train(self, dataset): """Determine the projection matrix onto the SVD components from a 2D samples x feature data matrix. """ X = N.asmatrix(dataset.samples) X = self._demeanData(X) # singular value decomposition U, SV, Vh = N.linalg.svd(X, full_matrices=0) # store the final matrix with the new basis vectors to project the # features onto the SVD components. And store its .H right away to # avoid computing it in forward() self._proj = Vh.H # also store singular values of all components self._sv = SV if __debug__: debug("MAP", "SVD was done on %s and obtained %d SVs " % (dataset, len(SV)) + " (%d non-0, max=%f)" % (len(SV.nonzero()), SV[0])) # .norm might be somewhat expensive to compute if "MAP_" in debug.active: debug("MAP_", "Mixing matrix has %s shape and norm=%f" % (self._proj.shape, N.linalg.norm(self._proj))) def selectOut(self, outIds): """Choose a subset of SVD components (and remove all others).""" # handle ElementSelector operating on SV (base class has no idea about) # XXX think about more generic interface, where some 'measure' is assigned # per each projection dimension, like in _sv in case of SVD. # May be selector could be parametrized with an instance + attribute as literal # so later on it could extract necessary values? if isinstance(self._selector, ElementSelector): ProjectionMapper.selectOut(self, self._selector(self._sv)) else: ProjectionMapper.selectOut(self, outIds) def _computeRecon(self): """Since singular vectors are orthonormal, sufficient to take hermitian """ return self._proj.H sv = property(fget=lambda self: self._sv, doc="Singular values") pymvpa-0.4.8/mvpa/mappers/wavelet.py000066400000000000000000000323651174541445200175120ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Wavelet mappers""" from mvpa.base import externals if externals.exists('pywt', raiseException=True): # import conditional to be able to import the whole module while building # the docs even if pywt is not installed import pywt import numpy as N from mvpa.base import warning from mvpa.mappers.base import Mapper from mvpa.base.dochelpers import enhancedDocString if __debug__: from mvpa.base import debug # WaveletPacket and WaveletTransformation mappers share lots of common # functionality at the moment class _WaveletMapper(Mapper): """Generic class for Wavelet mappers (decomposition and packet) """ def __init__(self, dim=1, wavelet='sym4', mode='per', maxlevel=None): """Initialize _WaveletMapper mapper :Parameters: dim : int or tuple of int dimensions to work across (for now just scalar value, ie 1D transformation) is supported wavelet : basestring one from the families available withing pywt package mode : basestring periodization mode maxlevel : int or None number of levels to use. If None - automatically selected by pywt """ Mapper.__init__(self) self._dim = dim """Dimension to work along""" self._maxlevel = maxlevel """Maximal level of decomposition. None for automatic""" if not wavelet in pywt.wavelist(): raise ValueError, \ "Unknown family of wavelets '%s'. Please use one " \ "available from the list %s" % (wavelet, pywt.wavelist()) self._wavelet = wavelet """Wavelet family to use""" if not mode in pywt.MODES.modes: raise ValueError, \ "Unknown periodization mode '%s'. Please use one " \ "available from the list %s" % (mode, pywt.MODES.modes) self._mode = mode """Periodization mode""" def forward(self, data): data = N.asanyarray(data) self._inshape = data.shape self._intimepoints = data.shape[self._dim] res = self._forward(data) self._outshape = res.shape return res def reverse(self, data): data = N.asanyarray(data) return self._reverse(data) def _forward(self, *args): raise NotImplementedError def _reverse(self, *args): raise NotImplementedError def getInSize(self): """Returns the number of original features.""" return self._inshape[1:] def getOutSize(self): """Returns the number of wavelet components.""" return self._outshape[1:] def selectOut(self, outIds): """Choose a subset of components... just use MaskMapper on top?""" raise NotImplementedError, "Please use in conjunction with MaskMapper" __doc__ = enhancedDocString('_WaveletMapper', locals(), Mapper) def _getIndexes(shape, dim): """Generator for coordinate tuples providing slice for all in `dim` XXX Somewhat sloppy implementation... but works... """ if len(shape) < dim: raise ValueError, "Dimension %d is incorrect for a shape %s" % \ (dim, shape) n = len(shape) curindexes = [0] * n curindexes[dim] = Ellipsis#slice(None) # all elements for dimension dim while True: yield tuple(curindexes) for i in xrange(n): if i == dim and dim == n-1: return # we reached it -- thus time to go if curindexes[i] == shape[i] - 1: if i == n-1: return curindexes[i] = 0 else: if i != dim: curindexes[i] += 1 break class WaveletPacketMapper(_WaveletMapper): """Convert signal into an overcomplete representaion using Wavelet packet """ def __init__(self, level=None, **kwargs): """Initialize WaveletPacketMapper mapper :Parameters: level : int or None What level to decompose at. If 'None' data for all levels is provided, but due to different sizes, they are placed in 1D row. """ _WaveletMapper.__init__(self,**kwargs) self.__level = level # XXX too much of duplications between such methods -- it begs # refactoring def __forwardSingleLevel(self, data): if __debug__: debug('MAP', "Converting signal using DWP (single level)") wp = None level = self.__level wavelet = self._wavelet mode = self._mode dim = self._dim level_paths = None for indexes in _getIndexes(data.shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) WP = pywt.WaveletPacket( data[indexes], wavelet=wavelet, mode=mode, maxlevel=level) level_nodes = WP.get_level(level) if level_paths is None: # Needed for reconstruction self.__level_paths = N.array([node.path for node in level_nodes]) level_datas = N.array([node.data for node in level_nodes]) if wp is None: newdim = data.shape newdim = newdim[:dim] + level_datas.shape + newdim[dim+1:] if __debug__: debug('MAP_', "Initializing storage of size %s for single " "level (%d) mapping of data of size %s" % (newdim, level, data.shape)) wp = N.empty( tuple(newdim) ) wp[indexes] = level_datas return wp def __forwardMultipleLevels(self, data): wp = None levels_length = None # total length at each level levels_lengths = None # list of lengths per each level for indexes in _getIndexes(data.shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) WP = pywt.WaveletPacket( data[indexes], wavelet=self._wavelet, mode=self._mode, maxlevel=self._maxlevel) if levels_length is None: levels_length = [None] * WP.maxlevel levels_lengths = [None] * WP.maxlevel levels_datas = [] for level in xrange(WP.maxlevel): level_nodes = WP.get_level(level+1) level_datas = [node.data for node in level_nodes] level_lengths = [len(x) for x in level_datas] level_length = N.sum(level_lengths) if levels_lengths[level] is None: levels_lengths[level] = level_lengths elif levels_lengths[level] != level_lengths: raise RuntimeError, \ "ADs of same level of different samples should have same number of elements." \ " Got %s, was %s" % (level_lengths, levels_lengths[level]) if levels_length[level] is None: levels_length[level] = level_length elif levels_length[level] != level_length: raise RuntimeError, \ "Levels of different samples should have same number of elements." \ " Got %d, was %d" % (level_length, levels_length[level]) level_data = N.hstack(level_datas) levels_datas.append(level_data) # assert(len(data) == levels_length) # assert(len(data) >= Ntimepoints) if wp is None: newdim = list(data.shape) newdim[self._dim] = N.sum(levels_length) wp = N.empty( tuple(newdim) ) wp[indexes] = N.hstack(levels_datas) self.levels_lengths, self.levels_length = levels_lengths, levels_length if __debug__: debug('MAP_', "") debug('MAP', "Done convertion into wp. Total size %s" % str(wp.shape)) return wp def _forward(self, data): if __debug__: debug('MAP', "Converting signal using DWP") if self.__level is None: return self.__forwardMultipleLevels(data) else: return self.__forwardSingleLevel(data) # # Reverse mapping # def __reverseSingleLevel(self, wp): # local bindings level_paths = self.__level_paths # define wavelet packet to use WP = pywt.WaveletPacket( data=None, wavelet=self._wavelet, mode=self._mode, maxlevel=self.__level) # prepare storage signal_shape = wp.shape[:1] + self.getInSize() signal = N.zeros(signal_shape) Ntime_points = self._intimepoints for indexes in _getIndexes(signal_shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) for path, level_data in zip(level_paths, wp[indexes]): WP[path] = level_data signal[indexes] = WP.reconstruct(True)[:Ntime_points] return signal def _reverse(self, data): if __debug__: debug('MAP', "Converting signal back using DWP") if self.__level is None: raise NotImplementedError else: if not externals.exists('pywt wp reconstruct'): raise NotImplementedError, \ "Reconstruction for a single level for versions of " \ "pywt < 0.1.7 (revision 103) is not supported" if not externals.exists('pywt wp reconstruct fixed'): warning("Reconstruction using available version of pywt might " "result in incorrect data in the tails of the signal") return self.__reverseSingleLevel(data) class WaveletTransformationMapper(_WaveletMapper): """Convert signal into wavelet representaion """ def _forward(self, data): """Decompose signal into wavelets's coefficients via dwt """ if __debug__: debug('MAP', "Converting signal using DWT") wd = None coeff_lengths = None for indexes in _getIndexes(data.shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) coeffs = pywt.wavedec( data[indexes], wavelet=self._wavelet, mode=self._mode, level=self._maxlevel) # Silly Yarik embedds extraction of statistics right in place #stats = [] #for coeff in coeffs: # stats_ = [N.std(coeff), # N.sqrt(N.dot(coeff, coeff)), # ]# + list(N.histogram(coeff, normed=True)[0])) # stats__ = list(coeff) + stats_[:] # stats__ += list(N.log(stats_)) # stats__ += list(N.sqrt(stats_)) # stats__ += list(N.array(stats_)**2) # stats__ += [ N.median(coeff), N.mean(coeff), scipy.stats.kurtosis(coeff) ] # stats.append(stats__) #coeffs = stats coeff_lengths_ = N.array([len(x) for x in coeffs]) if coeff_lengths is None: coeff_lengths = coeff_lengths_ assert((coeff_lengths == coeff_lengths_).all()) if wd is None: newdim = list(data.shape) newdim[self._dim] = N.sum(coeff_lengths) wd = N.empty( tuple(newdim) ) coeff = N.hstack(coeffs) wd[indexes] = coeff if __debug__: debug('MAP_', "") debug('MAP', "Done DWT. Total size %s" % str(wd.shape)) self.lengths = coeff_lengths return wd def _reverse(self, wd): if __debug__: debug('MAP', "Performing iDWT") signal = None wd_offsets = [0] + list(N.cumsum(self.lengths)) Nlevels = len(self.lengths) Ntime_points = self._intimepoints #len(time_points) # unfortunately sometimes due to padding iDWT would return longer # sequences, thus we just limit to the right ones for indexes in _getIndexes(wd.shape, self._dim): if __debug__: debug('MAP_', " %s" % (indexes,), lf=False, cr=True) wd_sample = wd[indexes] wd_coeffs = [wd_sample[wd_offsets[i]:wd_offsets[i+1]] for i in xrange(Nlevels)] # need to compose original list time_points = pywt.waverec( wd_coeffs, wavelet=self._wavelet, mode=self._mode) if signal is None: newdim = list(wd.shape) newdim[self._dim] = Ntime_points signal = N.empty(newdim) signal[indexes] = time_points[:Ntime_points] if __debug__: debug('MAP_', "") debug('MAP', "Done iDWT. Total size %s" % (signal.shape, )) return signal pymvpa-0.4.8/mvpa/mappers/zscore.py000066400000000000000000000064621174541445200173470ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Simple mapper to perform zscoring""" __docformat__ = 'restructuredtext' from mvpa.base import warning, externals import numpy as N from mvpa.base.dochelpers import enhancedDocString from mvpa.mappers.base import ProjectionMapper if externals.exists('scipy', raiseException=True): import scipy.sparse if externals.versions['scipy'] >= (0, 7, 0): _identity = scipy.sparse.identity else: _identity = scipy.sparse.spidentity __all__ = [ 'ZScoreMapper' ] # just to don't leak all the evil ;) class ZScoreMapper(ProjectionMapper): """Mapper to project data into standardized values (z-scores). After the mapper has been instantiated, it has to be train first. Since it tries to reuse ProjectionMapper, invariant features will simply be assigned a std == 1, which would be equivalent to not standardizing them at all. This is similar to not touching them at all, so similar to what zscore function currently does """ def __init__(self, baselinelabels=None, **kwargs): """Initialize ZScoreMapper :Parameters: baselinelabels : None or list of int or string Used to compute mean and variance TODO: not in effect now and need to be adherent to all `ProjectionMapper`s """ ProjectionMapper.__init__(self, **kwargs) if baselinelabels is not None: raise NotImplementedError, "Support for baseline labels " \ "is not yet implemented in ZScoreMapper" self.baselinelabels = baselinelabels #self._var = None __doc__ = enhancedDocString('ZScoreMapper', locals(), ProjectionMapper) def _train(self, dataset): """Determine the diagonal matrix with coefficients for standartization """ samples = dataset.samples X = self._demeanData(samples) std = X.std(axis=0) # ??? equivalent to not touching values at all, but we don't # have such ability in ProjectionMapper atm afaik std[std == 0] = 1.0 n = len(std) # scipy or numpy manages to screw up: # or YOH is too tired?: # (Pydb) zsm._proj # <1x1 sparse matrix of type '' # with 1 stored elements (space for 1) # in Compressed Sparse Column format> # *(Pydb) (N.asmatrix(ds1.samples) - zsm._mean).shape # (120, 1) # *(Pydb) (N.asmatrix(ds1.samples) - zsm._mean) * zsm._proj # matrix([[-0.13047326]]) # # so we will handle case with n = 1 with regular non-sparse # matrices if n > 1: proj = _identity(n) proj.setdiag(1.0/std) recon = _identity(n) recon.setdiag(std) self._proj = proj self._recon = recon else: self._proj = N.matrix([[1.0/std[0]]]) self._recon = N.matrix([std]) pymvpa-0.4.8/mvpa/measures/000077500000000000000000000000001174541445200156355ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/measures/__init__.py000066400000000000000000000016401174541445200177470ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """PyMVPA measures. Module Description ================== Provide some measures given a dataset. Most of the time, derivatives of `FeaturewiseDatasetMeasure` are used, such as * `OneWayAnova` * `CorrCoef` * `IterativeRelief` * `NoisePerturbationSensitivity` Also many classifiers natively provide sensitivity estimators via the call to `getSensitivityAnalyzer` method """ __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.measures') if __debug__: debug('INIT', 'mvpa.measures end') pymvpa-0.4.8/mvpa/measures/anova.py000066400000000000000000000071551174541445200173230ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """FeaturewiseDatasetMeasure performing a univariate ANOVA.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.measures.base import FeaturewiseDatasetMeasure # TODO: Extend with access to functionality from scipy.stats? # For binary: # 2-sample kolmogorov-smirnof might be interesting # (scipy.stats.ks_2samp) to judge if two conditions are derived # from different distributions (take it as 'activity' vs 'rest'), # # For binary+multiclass: # kruskal-wallis H-test (scipy.stats.kruskal) # # and may be some others class OneWayAnova(FeaturewiseDatasetMeasure): """`FeaturewiseDatasetMeasure` that performs a univariate ANOVA. F-scores are computed for each feature as the standard fraction of between and within group variances. Groups are defined by samples with unique labels. No statistical testing is performed, but raw F-scores are returned as a sensitivity map. As usual F-scores have a range of [0,inf] with greater values indicating higher sensitivity. """ def _call(self, dataset, labels=None): # This code is based on SciPy's stats.f_oneway() # Copyright (c) Gary Strangman. All rights reserved # License: BSD # # However, it got tweaked and optimized to better fit into PyMVPA. # number of groups if labels is None: labels = dataset.labels ul = N.unique(labels) na = len(ul) bign = float(dataset.nsamples) alldata = dataset.samples # total squares of sums sostot = N.sum(alldata, axis=0) sostot *= sostot sostot /= bign # total sum of squares sstot = N.sum(alldata * alldata, axis=0) - sostot # between group sum of squares ssbn = 0 for l in ul: # all samples for the respective label d = alldata[labels == l] sos = N.sum(d, axis=0) sos *= sos ssbn += sos / float(len(d)) ssbn -= sostot # within sswn = sstot - ssbn # degrees of freedom dfbn = na-1 dfwn = bign - na # mean sums of squares msb = ssbn / float(dfbn) msw = sswn / float(dfwn) f = msb / msw # assure no NaNs -- otherwise it leads instead of # sane unittest failure (check of NaNs) to crazy # File "mtrand.pyx", line 1661, in mtrand.shuffle # TypeError: object of type 'numpy.int64' has no len() # without any sane backtrace f[N.isnan(f)] = 0 return f # XXX maybe also compute p-values? #prob = scipy.stats.fprob(dfbn, dfwn, f) #return prob class CompoundOneWayAnova(OneWayAnova): """Compound comparisons via univariate ANOVA. Provides F-scores per each label if compared to the other labels. """ def _call(self, dataset): """Computes featurewise f-scores using compound comparisons.""" orig_labels = dataset.labels labels = orig_labels.copy() results = [] for ul in dataset.uniquelabels: labels[orig_labels == ul] = 1 labels[orig_labels != ul] = 2 results.append(OneWayAnova._call(self, dataset, labels)) # features x labels return N.array(results).T pymvpa-0.4.8/mvpa/measures/base.py000066400000000000000000000725321174541445200171320ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Base class for data measures: algorithms that quantify properties of datasets. Besides the `DatasetMeasure` base class this module also provides the (abstract) `FeaturewiseDatasetMeasure` class. The difference between a general measure and the output of the `FeaturewiseDatasetMeasure` is that the latter returns a 1d map (one value per feature in the dataset). In contrast there are no restrictions on the returned value of `DatasetMeasure` except for that it has to be in some iterable container. """ __docformat__ = 'restructuredtext' import numpy as N import mvpa.support.copy as copy from mvpa.misc.state import StateVariable, ClassWithCollections from mvpa.misc.args import group_kwargs from mvpa.misc.transformers import FirstAxisMean, SecondAxisSumOfAbs from mvpa.base.dochelpers import enhancedDocString from mvpa.base import externals, warning from mvpa.clfs.stats import autoNullDist if __debug__: from mvpa.base import debug class DatasetMeasure(ClassWithCollections): """A measure computed from a `Dataset` All dataset measures support arbitrary transformation of the measure after it has been computed. Transformation are done by processing the measure with a functor that is specified via the `transformer` keyword argument of the constructor. Upon request, the raw measure (before transformations are applied) is stored in the `raw_results` state variable. Additionally all dataset measures support the estimation of the probabilit(y,ies) of a measure under some distribution. Typically this will be the NULL distribution (no signal), that can be estimated with permutation tests. If a distribution estimator instance is passed to the `null_dist` keyword argument of the constructor the respective probabilities are automatically computed and stored in the `null_prob` state variable. .. note:: For developers: All subclasses shall get all necessary parameters via their constructor, so it is possible to get the same type of measure for multiple datasets by passing them to the __call__() method successively. """ raw_results = StateVariable(enabled=False, doc="Computed results before applying any " + "transformation algorithm") null_prob = StateVariable(enabled=True) """Stores the probability of a measure under the NULL hypothesis""" null_t = StateVariable(enabled=False) """Stores the t-score corresponding to null_prob under assumption of Normal distribution""" def __init__(self, transformer=None, null_dist=None, **kwargs): """Does nothing special. :Parameters: transformer: Functor This functor is called in `__call__()` to perform a final processing step on the to be returned dataset measure. If None, nothing is called null_dist: instance of distribution estimator The estimated distribution is used to assign a probability for a certain value of the computed measure. """ ClassWithCollections.__init__(self, **kwargs) self.__transformer = transformer """Functor to be called in return statement of all subclass __call__() methods.""" null_dist_ = autoNullDist(null_dist) if __debug__: debug('SA', 'Assigning null_dist %s whenever original given was %s' % (null_dist_, null_dist)) self.__null_dist = null_dist_ __doc__ = enhancedDocString('DatasetMeasure', locals(), ClassWithCollections) def __call__(self, dataset): """Compute measure on a given `Dataset`. Each implementation has to handle a single arguments: the source dataset. Returns the computed measure in some iterable (list-like) container applying transformer if such is defined """ result = self._call(dataset) result = self._postcall(dataset, result) return result def _call(self, dataset): """Actually compute measure on a given `Dataset`. Each implementation has to handle a single arguments: the source dataset. Returns the computed measure in some iterable (list-like) container. """ raise NotImplemented def _postcall(self, dataset, result): """Some postprocessing on the result """ self.states.raw_results = result if not self.__transformer is None: if __debug__: debug("SA_", "Applying transformer %s" % self.__transformer) result = self.__transformer(result) # estimate the NULL distribution when functor is given if not self.__null_dist is None: if __debug__: debug("SA_", "Estimating NULL distribution using %s" % self.__null_dist) # we need a matching datameasure instance, but we have to disable # the estimation of the null distribution in that child to prevent # infinite looping. measure = copy.copy(self) measure.__null_dist = None self.__null_dist.fit(measure, dataset) if self.states.isEnabled('null_t'): # get probability under NULL hyp, but also request # either it belong to the right tail null_prob, null_right_tail = \ self.__null_dist.p(result, return_tails=True) self.states.null_prob = null_prob externals.exists('scipy', raiseException=True) from scipy.stats import norm # TODO: following logic should appear in NullDist, # not here tail = self.null_dist.tail if tail == 'left': acdf = N.abs(null_prob) elif tail == 'right': acdf = 1.0 - N.abs(null_prob) elif tail in ['any', 'both']: acdf = 1.0 - N.clip(N.abs(null_prob), 0, 0.5) else: raise RuntimeError, 'Unhandled tail %s' % tail # We need to clip to avoid non-informative inf's ;-) # that happens due to lack of precision in mantissa # which is 11 bits in double. We could clip values # around 0 at as low as 1e-100 (correspond to z~=21), # but for consistency lets clip at 1e-16 which leads # to distinguishable value around p=1 and max z=8.2. # Should be sufficient range of z-values ;-) clip = 1e-16 null_t = norm.ppf(N.clip(acdf, clip, 1.0 - clip)) # assure that we deal with arrays: null_t = N.array(null_t, ndmin=1, copy=False) null_t[~null_right_tail] *= -1.0 # revert sign for negatives self.states.null_t = null_t # store else: # get probability of result under NULL hypothesis if available # and don't request tail information self.null_prob = self.__null_dist.p(result) return result def __repr__(self, prefixes=[]): """String representation of DatasetMeasure Includes only arguments which differ from default ones """ prefixes = prefixes[:] if self.__transformer is not None: prefixes.append("transformer=%s" % self.__transformer) if self.__null_dist is not None: prefixes.append("null_dist=%s" % self.__null_dist) return super(DatasetMeasure, self).__repr__(prefixes=prefixes) def untrain(self): """'Untraining' Measure Some derived classes might used classifiers, so we need to untrain those """ pass @property def null_dist(self): """Return Null Distribution estimator""" return self.__null_dist @property def transformer(self): """Return transformer""" return self.__transformer class FeaturewiseDatasetMeasure(DatasetMeasure): """A per-feature-measure computed from a `Dataset` (base class). Should behave like a DatasetMeasure. """ base_sensitivities = StateVariable(enabled=False, doc="Stores basic sensitivities if the sensitivity " + "relies on combining multiple ones") # XXX should we may be default to combiner=None to avoid # unexpected results? Also rethink if we need combiner here at # all... May be combiners should be 'adjoint' with transformer # YYY in comparison to CombinedSensitivityAnalyzer here default # value for combiner is worse than anywhere. From now on, # default combiners should be provided "in place", ie # in SMLR it makes sense to have SecondAxisMaxOfAbs, # in SVM (pair-wise) only for not-binary should be # SecondAxisSumOfAbs, though could be Max as well... uff # YOH: started to do so, but still have issues... thus # reverting back for now # MH: Full ack -- voting for no default combiners! def __init__(self, combiner=SecondAxisSumOfAbs, **kwargs): # SecondAxisSumOfAbs """Initialize :Parameters: combiner : Functor The combiner is only applied if the computed featurewise dataset measure is more than one-dimensional. This is different from a `transformer`, which is always applied. By default, the sum of absolute values along the second axis is computed. """ DatasetMeasure.__init__(self, **kwargs) self.__combiner = combiner def __repr__(self, prefixes=None): if prefixes is None: prefixes = [] if self.__combiner != SecondAxisSumOfAbs: prefixes.append("combiner=%s" % self.__combiner) return \ super(FeaturewiseDatasetMeasure, self).__repr__(prefixes=prefixes) def _call(self, dataset): """Computes a per-feature-measure on a given `Dataset`. Behaves like a `DatasetMeasure`, but computes and returns a 1d ndarray with one value per feature. """ raise NotImplementedError def _postcall(self, dataset, result): """Adjusts per-feature-measure for computed `result` TODO: overlaps in what it does heavily with CombinedSensitivityAnalyzer, thus this one might make use of CombinedSensitivityAnalyzer yoh thinks, and here base_sensitivities doesn't sound appropriate. MH: There is indeed some overlap, but also significant differences. This one operates on a single sensana and combines over second axis, CombinedFeaturewiseDatasetMeasure uses first axis. Additionally, 'Sensitivity' base class is FeaturewiseDatasetMeasures which would have to be changed to CombinedFeaturewiseDatasetMeasure to deal with stuff like SMLRWeights that return multiple sensitivity values by default. Not sure if unification of both (and/or removal of functionality here does not lead to an overall more complicated situation, without any real gain -- after all this one works ;-) """ # !!! This is not stupid -- it is intended -- some times we might get # scalars as input. result = N.atleast_1d(result) result_sq = result.squeeze() # Assure that we have some iterable (could be a scalar if it # was just a single value in 1D array) result_sq = N.atleast_1d(result_sq) if len(result_sq.shape)>1: n_base = result.shape[1] """Number of base sensitivities""" if self.states.isEnabled('base_sensitivities'): b_sensitivities = [] if not self.states.isKnown('biases'): biases = None else: biases = self.states.biases if len(self.states.biases) != n_base: warning("Number of biases %d differs from number " "of base sensitivities %d which could happen " "when measure is collided across labels." % (len(self.states.biases), n_base)) for i in xrange(n_base): if not biases is None: if n_base > 1 and len(biases) == 1: # The same bias for all bases bias = biases[0] else: bias = biases[i] else: bias = None b_sensitivities = StaticDatasetMeasure( measure = result[:,i], bias = bias) self.states.base_sensitivities = b_sensitivities # After we stored each sensitivity separately, # we can apply combiner if self.__combiner is not None: result = self.__combiner(result) else: # remove bogus dimensions # XXX we might need to come up with smth better. May be some naive # combiner? :-) result = result_sq # call base class postcall result = DatasetMeasure._postcall(self, dataset, result) return result @property def combiner(self): """Return combiner""" return self.__combiner class StaticDatasetMeasure(DatasetMeasure): """A static (assigned) sensitivity measure. Since implementation is generic it might be per feature or per whole dataset """ def __init__(self, measure=None, bias=None, *args, **kwargs): """Initialize. :Parameters: measure actual sensitivity to be returned bias optionally available bias """ DatasetMeasure.__init__(self, *args, **kwargs) if measure is None: raise ValueError, "Sensitivity measure has to be provided" self.__measure = measure self.__bias = bias def _call(self, dataset): """Returns assigned sensitivity """ return self.__measure #XXX Might need to move into StateVariable? bias = property(fget=lambda self:self.__bias) # # Flavored implementations of FeaturewiseDatasetMeasures class Sensitivity(FeaturewiseDatasetMeasure): _LEGAL_CLFS = [] """If Sensitivity is classifier specific, classes of classifiers should be listed in the list """ def __init__(self, clf, force_training=True, **kwargs): """Initialize the analyzer with the classifier it shall use. :Parameters: clf : :class:`Classifier` classifier to use. force_training : Bool if classifier was already trained -- do not retrain """ """Does nothing special.""" FeaturewiseDatasetMeasure.__init__(self, **kwargs) _LEGAL_CLFS = self._LEGAL_CLFS if len(_LEGAL_CLFS) > 0: found = False for clf_class in _LEGAL_CLFS: if isinstance(clf, clf_class): found = True break if not found: raise ValueError, \ "Classifier %s has to be of allowed class (%s), but is %s" \ % (clf, _LEGAL_CLFS, `type(clf)`) self.__clf = clf """Classifier used to computed sensitivity""" self._force_training = force_training """Either to force it to train""" def __repr__(self, prefixes=None): if prefixes is None: prefixes = [] prefixes.append("clf=%s" % repr(self.clf)) if not self._force_training: prefixes.append("force_training=%s" % self._force_training) return super(Sensitivity, self).__repr__(prefixes=prefixes) def __call__(self, dataset=None): """Train classifier on `dataset` and then compute actual sensitivity. If the classifier is already trained it is possible to extract the sensitivities without passing a dataset. """ # local bindings clf = self.__clf if not clf.trained or self._force_training: if dataset is None: raise ValueError, \ "Training classifier to compute sensitivities requires " \ "a dataset." if __debug__: debug("SA", "Training classifier %s %s" % (`clf`, {False: "since it wasn't yet trained", True: "although it was trained previousely"} [clf.trained])) clf.train(dataset) return FeaturewiseDatasetMeasure.__call__(self, dataset) def _setClassifier(self, clf): self.__clf = clf def untrain(self): """Untrain corresponding classifier for Sensitivity """ if self.__clf is not None: self.__clf.untrain() @property def feature_ids(self): """Return feature_ids used by the underlying classifier """ return self.__clf._getFeatureIds() clf = property(fget=lambda self:self.__clf, fset=_setClassifier) class CombinedFeaturewiseDatasetMeasure(FeaturewiseDatasetMeasure): """Set sensitivity analyzers to be merged into a single output""" sensitivities = StateVariable(enabled=False, doc="Sensitivities produced by each analyzer") # XXX think again about combiners... now we have it in here and as # well as in the parent -- FeaturewiseDatasetMeasure # YYY because we don't use parent's _call. Needs RF def __init__(self, analyzers=None, # XXX should become actually 'measures' combiner=None, #FirstAxisMean, **kwargs): """Initialize CombinedFeaturewiseDatasetMeasure :Parameters: analyzers : list or None List of analyzers to be used. There is no logic to populate such a list in __call__, so it must be either provided to the constructor or assigned to .analyzers prior calling """ if analyzers is None: analyzers = [] FeaturewiseDatasetMeasure.__init__(self, **kwargs) self.__analyzers = analyzers """List of analyzers to use""" self.__combiner = combiner """Which functor to use to combine all sensitivities""" def _call(self, dataset): sensitivities = [] for ind,analyzer in enumerate(self.__analyzers): if __debug__: debug("SA", "Computing sensitivity for SA#%d:%s" % (ind, analyzer)) sensitivity = analyzer(dataset) sensitivities.append(sensitivity) self.states.sensitivities = sensitivities if __debug__: debug("SA", "Returning combined using %s sensitivity across %d items" % (self.__combiner, len(sensitivities))) if self.__combiner is not None: sensitivities = self.__combiner(sensitivities) else: # assure that we have an ndarray on output sensitivities = N.asarray(sensitivities) return sensitivities def untrain(self): """Untrain CombinedFDM """ if self.__analyzers is not None: for anal in self.__analyzers: anal.untrain() def _setAnalyzers(self, analyzers): """Set the analyzers """ self.__analyzers = analyzers """Analyzers to use""" analyzers = property(fget=lambda x:x.__analyzers, fset=_setAnalyzers, doc="Used analyzers") # XXX Why did we come to name everything analyzer? inputs of regular # things like CombinedFeaturewiseDatasetMeasure can be simple # measures.... class SplitFeaturewiseDatasetMeasure(FeaturewiseDatasetMeasure): """Compute measures across splits for a specific analyzer""" # XXX This beast is created based on code of # CombinedFeaturewiseDatasetMeasure, thus another reason to refactor sensitivities = StateVariable(enabled=False, doc="Sensitivities produced for each split") splits = StateVariable(enabled=False, doc= """Store the actual splits of the data. Can be memory expensive""") def __init__(self, splitter, analyzer, insplit_index=0, combiner=None, **kwargs): """Initialize SplitFeaturewiseDatasetMeasure :Parameters: splitter : Splitter Splitter to use to split the dataset analyzer : DatasetMeasure Measure to be used. Could be analyzer as well (XXX) insplit_index : int splitter generates tuples of dataset on each iteration (usually 0th for training, 1st for testing). On what split index in that tuple to operate. """ # XXX might want to extend insplit_index to handle 'all', so we store # sensitivities for all parts of the splits... not sure if it is needed # XXX We really think through whole transformer/combiners pipelining # Here we provide combiner None since if needs to be combined # within each sensitivity, it better be done within analyzer FeaturewiseDatasetMeasure.__init__(self, combiner=None, **kwargs) self.__analyzer = analyzer """Analyzer to use per split""" self.__combiner = combiner """Which functor to use to combine all sensitivities""" self.__splitter = splitter """Splitter to be used on the dataset""" self.__insplit_index = insplit_index def untrain(self): """Untrain SplitFeaturewiseDatasetMeasure """ if self.__analyzer is not None: self.__analyzer.untrain() def _call(self, dataset): # local bindings analyzer = self.__analyzer insplit_index = self.__insplit_index sensitivities = [] self.states.splits = splits = [] store_splits = self.states.isEnabled("splits") for ind,split in enumerate(self.__splitter(dataset)): ds = split[insplit_index] if __debug__ and "SA" in debug.active: debug("SA", "Computing sensitivity for split %d on " "dataset %s using %s" % (ind, ds, analyzer)) sensitivity = analyzer(ds) sensitivities.append(sensitivity) if store_splits: splits.append(split) self.states.sensitivities = sensitivities if __debug__: debug("SA", "Returning sensitivities combined using %s across %d items " "generated by splitter %s" % (self.__combiner, len(sensitivities), self.__splitter)) if self.__combiner is not None: sensitivities = self.__combiner(sensitivities) else: # assure that we have an ndarray on output sensitivities = N.asarray(sensitivities) return sensitivities class BoostedClassifierSensitivityAnalyzer(Sensitivity): """Set sensitivity analyzers to be merged into a single output""" # XXX we might like to pass parameters also for combined_analyzer @group_kwargs(prefixes=['slave_'], assign=True) def __init__(self, clf, analyzer=None, combined_analyzer=None, slave_kwargs={}, **kwargs): """Initialize Sensitivity Analyzer for `BoostedClassifier` :Parameters: clf : `BoostedClassifier` Classifier to be used analyzer : analyzer Is used to populate combined_analyzer slave_* Arguments to pass to created analyzer if analyzer is None """ Sensitivity.__init__(self, clf, **kwargs) if combined_analyzer is None: # sanitarize kwargs kwargs.pop('force_training', None) combined_analyzer = CombinedFeaturewiseDatasetMeasure(**kwargs) self.__combined_analyzer = combined_analyzer """Combined analyzer to use""" if analyzer is not None and len(self._slave_kwargs): raise ValueError, \ "Provide either analyzer of slave_* arguments, not both" self.__analyzer = analyzer """Analyzer to use for basic classifiers within boosted classifier""" def untrain(self): """Untrain BoostedClassifierSensitivityAnalyzer """ if self.__analyzer is not None: self.__analyzer.untrain() self.__combined_analyzer.untrain() def _call(self, dataset): analyzers = [] # create analyzers for clf in self.clf.clfs: if self.__analyzer is None: analyzer = clf.getSensitivityAnalyzer(**(self._slave_kwargs)) if analyzer is None: raise ValueError, \ "Wasn't able to figure basic analyzer for clf %s" % \ `clf` if __debug__: debug("SA", "Selected analyzer %s for clf %s" % \ (`analyzer`, `clf`)) else: # XXX shallow copy should be enough... analyzer = copy.copy(self.__analyzer) # assign corresponding classifier analyzer.clf = clf # if clf was trained already - don't train again if clf.trained: analyzer._force_training = False analyzers.append(analyzer) self.__combined_analyzer.analyzers = analyzers # XXX not sure if we don't want to call directly ._call(dataset) to avoid # double application of transformers/combiners, after all we are just # 'proxying' here to combined_analyzer... # YOH: decided -- lets call ._call return self.__combined_analyzer._call(dataset) combined_analyzer = property(fget=lambda x:x.__combined_analyzer) class ProxyClassifierSensitivityAnalyzer(Sensitivity): """Set sensitivity analyzer output just to pass through""" clf_sensitivities = StateVariable(enabled=False, doc="Stores sensitivities of the proxied classifier") @group_kwargs(prefixes=['slave_'], assign=True) def __init__(self, clf, analyzer=None, **kwargs): """Initialize Sensitivity Analyzer for `BoostedClassifier` """ Sensitivity.__init__(self, clf, **kwargs) if analyzer is not None and len(self._slave_kwargs): raise ValueError, \ "Provide either analyzer of slave_* arguments, not both" self.__analyzer = analyzer """Analyzer to use for basic classifiers within boosted classifier""" def untrain(self): super(ProxyClassifierSensitivityAnalyzer, self).untrain() if self.__analyzer is not None: self.__analyzer.untrain() def _call(self, dataset): # OPT: local bindings clfclf = self.clf.clf analyzer = self.__analyzer if analyzer is None: analyzer = clfclf.getSensitivityAnalyzer( **(self._slave_kwargs)) if analyzer is None: raise ValueError, \ "Wasn't able to figure basic analyzer for clf %s" % \ `clfclf` if __debug__: debug("SA", "Selected analyzer %s for clf %s" % \ (analyzer, clfclf)) # bind to the instance finally self.__analyzer = analyzer # TODO "remove" unnecessary things below on each call... # assign corresponding classifier analyzer.clf = clfclf # if clf was trained already - don't train again if clfclf.trained: analyzer._force_training = False result = analyzer._call(dataset) self.states.clf_sensitivities = result return result analyzer = property(fget=lambda x:x.__analyzer) class MappedClassifierSensitivityAnalyzer(ProxyClassifierSensitivityAnalyzer): """Set sensitivity analyzer output be reverse mapped using mapper of the slave classifier""" def _call(self, dataset): sens = super(MappedClassifierSensitivityAnalyzer, self)._call(dataset) # So we have here the case that some sensitivities are given # as nfeatures x nclasses, thus we need to take .T for the # mapper and revert back afterwards # devguide's TODO lists this point to 'disguss' sens_mapped = self.clf.mapper.reverse(sens.T) return sens_mapped.T class FeatureSelectionClassifierSensitivityAnalyzer(ProxyClassifierSensitivityAnalyzer): """Set sensitivity analyzer output be reverse mapped using mapper of the slave classifier""" def _call(self, dataset): sens = super(FeatureSelectionClassifierSensitivityAnalyzer, self)._call(dataset) # So we have here the case that some sensitivities are given # as nfeatures x nclasses, thus we need to take .T for the # mapper and revert back afterwards # devguide's TODO lists this point to 'disguss' sens_mapped = self.clf.maskclf.mapper.reverse(sens.T) return sens_mapped.T pymvpa-0.4.8/mvpa/measures/corrcoef.py000066400000000000000000000045321174541445200200150ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """FeaturewiseDatasetMeasure of correlation with the labels.""" __docformat__ = 'restructuredtext' from mvpa.base import externals import numpy as N if externals.exists('scipy', raiseException=True): # TODO: implement corrcoef optionally without scipy, e.g. N.corrcoef from scipy.stats import pearsonr from mvpa.measures.base import FeaturewiseDatasetMeasure class CorrCoef(FeaturewiseDatasetMeasure): """`FeaturewiseDatasetMeasure` that performs correlation with labels XXX: Explain me! """ def __init__(self, pvalue=False, attr='labels', **kwargs): """Initialize :Parameters: pvalue : bool Either to report p-value of pearsons correlation coefficient instead of pure correlation coefficient attr : basestring What attribut to correlate with """ # init base classes first FeaturewiseDatasetMeasure.__init__(self, **kwargs) self.__pvalue = int(pvalue) self.__attr = attr def _call(self, dataset): """Computes featurewise scores.""" attrdata = eval('dataset.' + self.__attr) samples = dataset.samples pvalue_index = self.__pvalue result = N.empty((dataset.nfeatures,), dtype=float) for ifeature in xrange(dataset.nfeatures): samples_ = samples[:, ifeature] corr = pearsonr(samples_, attrdata) corrv = corr[pvalue_index] # Should be safe to assume 0 corr_coef (or 1 pvalue) if value # is actually NaN, although it might not be the case (covar of # 2 constants would be NaN although should be 1) if N.isnan(corrv): if N.var(samples_) == 0.0 and N.var(attrdata) == 0.0 \ and len(samples_): # constant terms corrv = 1.0 - pvalue_index else: corrv = pvalue_index result[ifeature] = corrv return result pymvpa-0.4.8/mvpa/measures/corrstability.py000066400000000000000000000063161174541445200211070ustar00rootroot00000000000000#emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- #ex: set sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """FeaturewiseDatasetMeasure of stability of labels across chunks based on correlation.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.measures.base import FeaturewiseDatasetMeasure class CorrStability(FeaturewiseDatasetMeasure): """`FeaturewiseDatasetMeasure` that assesses feature stability across runs for each unique label by correlating label activity for pairwise combinations of the chunks. If there are multiple samples with the same label in a single chunk (as is typically the case) this algorithm will take the featurewise average of the sample activations to get a single value per label, per chunk. """ def __init__(self, attr='labels', **kwargs): """Initialize :Parameters: attr : basestring Attribute to correlate across chunks. """ # init base classes first FeaturewiseDatasetMeasure.__init__(self, **kwargs) self.__attr = attr def _call(self, dataset): """Computes featurewise scores.""" # get the attributes (usally the labels) and the samples attrdata = eval('dataset.' + self.__attr) samples = dataset.samples # take mean within chunks dat = [] labels = [] chunks = [] for c in dataset.uniquechunks: for l in N.unique(attrdata): ind = (dataset.chunks==c)&(attrdata==l) if ind.sum() == 0: # no instances, so skip continue # append the mean, and the label/chunk info dat.append(samples[ind,:].mean(0)) labels.append(l) chunks.append(c) # convert to arrays dat = N.asarray(dat) labels = N.asarray(labels) chunks = N.asarray(chunks) # get indices for correlation (all pairwise values across # chunks) ind1 = [] ind2 = [] for i,c1 in enumerate(N.unique(chunks)[:-1]): for c2 in N.unique(chunks)[i+1:]: for l in N.unique(labels): v1 = N.where((chunks==c1)&(labels==l))[0] v2 = N.where((chunks==c2)&(labels==l))[0] if labels[v1] == labels[v2]: # the labels match, so add them ind1.extend(v1) ind2.extend(v2) # convert the indices to arrays ind1 = N.asarray(ind1) ind2 = N.asarray(ind2) # remove the mean from the datasets dat1 = dat[ind1,:] - dat[ind1,:].mean(0)[N.newaxis,:].repeat(dat[ind1,:].shape[0],0) dat2 = dat[ind2,:] - dat[ind2,:].mean(0)[N.newaxis,:].repeat(dat[ind2,:].shape[0],0) # calculate the correlation from the covariance and std covar = (dat1*dat2).mean(0) / dat1.std(0) * dat2.std(0) return covar pymvpa-0.4.8/mvpa/measures/ds.py000066400000000000000000000030211174541445200166110ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Dissimilarity measure. """ __docformat__ = 'restructuredtext' import numpy as N from mvpa.measures.base import DatasetMeasure from mvpa.misc.stats import DSMatrix class DSMDatasetMeasure(DatasetMeasure): """DSMDatasetMeasure creates a DatasetMeasure object where metric can be one of 'euclidean', 'spearman', 'pearson' or 'confusion'""" def __init__(self, dsmatrix, dset_metric, output_metric='spearman'): DatasetMeasure.__init__(self) self.dsmatrix = dsmatrix self.dset_metric = dset_metric self.output_metric = output_metric self.dset_dsm = [] def __call__(self, dataset): # create the dissimilarity matrix for the data in the input dataset self.dset_dsm = DSMatrix(dataset.samples, self.dset_metric) in_vec = self.dsmatrix.getVectorForm() dset_vec = self.dset_dsm.getVectorForm() # concatenate the two vectors, send to dissimlarity function test_mat = N.asarray([in_vec, dset_vec]) test_dsmatrix = DSMatrix(test_mat, self.output_metric) # return correct dissimilarity value return test_dsmatrix.getFullMatrix()[0, 1] pymvpa-0.4.8/mvpa/measures/glm.py000066400000000000000000000100471174541445200167700ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """The general linear model (GLM).""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.measures.base import FeaturewiseDatasetMeasure from mvpa.misc.state import StateVariable class GLM(FeaturewiseDatasetMeasure): """General linear model (GLM). Regressors can be defined in a design matrix and a linear fit of the data is computed univariately (i.e. indepently for each feature). This measure can report 'raw' parameter estimates (i.e. beta weights) of the linear model, as well as standardized parameters (z-stat) using an ordinary least squares (aka fixed-effects) approach to estimate the parameter estimate. The measure is reported in a (nfeatures x nregressors)-shaped array. """ pe = StateVariable(enabled=False, doc="Parameter estimates (nfeatures x nparameters).") zstat = StateVariable(enabled=False, doc="Standardized parameter estimates (nfeatures x nparameters).") def __init__(self, design, voi='pe', **kwargs): """ :Parameters: design: array(nsamples x nregressors) GLM design matrix. voi: 'pe' | 'zstat' Variable of interest that should be reported as feature-wise measure. 'beta' are the parameter estimates and 'zstat' returns standardized parameter estimates. """ FeaturewiseDatasetMeasure.__init__(self, **kwargs) # store the design matrix as a such (no copying if already array) self._design = N.asmatrix(design) # what should be computed ('variable of interest') if not voi in ['pe', 'zstat']: raise ValueError, \ "Unknown variable of interest '%s'" % str(voi) self._voi = voi # will store the precomputed Moore-Penrose pseudo-inverse of the # design matrix (lazy calculation) self._inv_design = None # also store the inverse of the inner product for beta variance # estimation self._inv_ip = None def _call(self, dataset): # just for the beauty of it X = self._design # precompute transformation is not yet done if self._inv_design is None: self._inv_ip = (X.T * X).I self._inv_design = self._inv_ip * X.T # get parameter estimations for all features at once # (betas x features) betas = self._inv_design * dataset.samples # charge state self.states.pe = pe = betas.T.A # if betas and no z-stats are desired return them right away if self._voi == 'pe' and not self.states.isEnabled('zstat'): # return as (feature x beta) return pe # compute residuals residuals = X * betas residuals -= dataset.samples # estimates of the parameter variance and compute zstats # assumption of mean(E) == 0 and equal variance # XXX next lines ignore off-diagonal elements and hence covariance # between regressors. The humble being writing these lines asks the # god of statistics for forgives, because it knows not what it does diag_ip = N.diag(self._inv_ip) # (features x betas) beta_vars = N.array([ r.var() * diag_ip for r in residuals.T ]) # (parameter x feature) zstat = pe / N.sqrt(beta_vars) # charge state self.states.zstat = zstat if self._voi == 'pe': # return as (feature x beta) return pe elif self._voi == 'zstat': # return as (feature x zstat) return zstat # we shall never get to this point raise ValueError, \ "Unknown variable of interest '%s'" % str(self._voi) pymvpa-0.4.8/mvpa/measures/irelief.py000066400000000000000000000410131174541445200176250ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Copyright (c) 2008 Emanuele Olivetti # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """FeaturewiseDatasetMeasure performing multivariate Iterative RELIEF (I-RELIEF) algorithm. See : Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June 2007.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.measures.base import FeaturewiseDatasetMeasure from mvpa.clfs.kernel import KernelSquaredExponential, KernelExponential, \ KernelMatern_3_2, KernelMatern_5_2 from mvpa.clfs.distance import pnorm_w if __debug__: from mvpa.base import debug class IterativeRelief_Devel(FeaturewiseDatasetMeasure): """`FeaturewiseDatasetMeasure` that performs multivariate I-RELIEF algorithm. Batch version allowing various kernels. UNDER DEVELOPEMNT. Batch I-RELIEF-2 feature weighting algorithm. Works for binary or multiclass class-labels. Batch version with complexity O(T*N^2*I), where T is the number of iterations, N the number of instances, I the number of features. See: Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June 2007. http://plaza.ufl.edu/sunyijun/Paper/PAMI_1.pdf Note that current implementation allows to use only exponential-like kernels. Support for linear kernel will be added later. """ def __init__(self, threshold = 1.0e-2, kernel = None, kernel_width = 1.0, w_guess = None, **kwargs): """Constructor of the IRELIEF class. """ # init base classes first FeaturewiseDatasetMeasure.__init__(self, **kwargs) # Threshold in W changes (stopping criterion for irelief) self.threshold = threshold if kernel == None: self.kernel = KernelExponential else: self.kernel = kernel self.w_guess = w_guess self.w = None self.kernel_width = kernel_width def compute_M_H(self, label): """Compute hit/miss dictionaries. For each instance compute the set of indices having the same class label and different class label. Note that this computation is independent of the number of features. """ M = {} H = {} for i in range(label.size): M[i] = N.where(label != label[i])[0] tmp = (N.where(label == label[i])[0]).tolist() tmp.remove(i) # There must be at least two exampls for class label[i] assert(tmp != []) H[i] = N.array(tmp) return M, H def _call(self, dataset): """Computes featurewise I-RELIEF weights.""" samples = dataset.samples NS, NF = samples.shape[:2] if self.w_guess == None: self.w = N.ones(NF, 'd') # do normalization in all cases to be safe :) self.w = self.w/(self.w**2).sum() M, H = self.compute_M_H(dataset.labels) while True: self.k = self.kernel(length_scale = self.kernel_width/self.w) d_w_k = self.k.compute(samples) # set d_w_k to zero where distance=0 (i.e. kernel == # 1.0), otherwise I-RELIEF could not converge. # XXX Note that kernel==1 for distance=0 only for # exponential kernels!! IMPROVE d_w_k[N.abs(d_w_k-1.0) < 1.0e-15] = 0.0 ni = N.zeros(NF, 'd') for n in range(NS): # d_w_k[n,n] could be omitted since == 0.0 gamma_n = 1.0 - N.nan_to_num(d_w_k[n, M[n]].sum() \ / (d_w_k[n, :].sum()-d_w_k[n, n])) alpha_n = N.nan_to_num(d_w_k[n, M[n]]/(d_w_k[n, M[n]].sum())) beta_n = N.nan_to_num(d_w_k[n, H[n]]/(d_w_k[n, H[n]].sum())) m_n = (N.abs(samples[n, :] - samples[M[n], :]) \ * alpha_n[:, None]).sum(0) h_n = (N.abs(samples[n, :] - samples[H[n], :]) \ * beta_n[:, None]).sum(0) ni += gamma_n*(m_n-h_n) ni = ni/NS ni_plus = N.clip(ni, 0.0, N.inf) # set all negative elements to zero w_new = N.nan_to_num(ni_plus/(N.sqrt((ni_plus**2).sum()))) change = N.abs(w_new-self.w).sum() if __debug__ and 'IRELIEF' in debug.active: debug('IRELIEF', "change=%.4f max=%f min=%.4f mean=%.4f std=%.4f #nan=%d" % (change, w_new.max(), w_new.min(), w_new.mean(), w_new.std(), N.isnan(w_new).sum())) # update weights: self.w = w_new if change < self.threshold: break return self.w class IterativeReliefOnline_Devel(IterativeRelief_Devel): """`FeaturewiseDatasetMeasure` that performs multivariate I-RELIEF algorithm. Online version. UNDER DEVELOPMENT Online version with complexity O(T*N*I), where N is the number of instances and I the number of features. See: Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June 2007. http://plaza.ufl.edu/sunyijun/Paper/PAMI_1.pdf Note that this implementation is not fully online, since hit and miss dictionaries (H,M) are computed once at the beginning using full access to all labels. This can be easily corrected to a full online implementation. But this is not mandatory now since the major goal of this current online implementation is reduction of computational complexity. """ def __init__(self, a=5.0, permute=True, max_iter=3, **kwargs): """Constructor of the IRELIEF class. """ # init base classes first IterativeRelief_Devel.__init__(self, **kwargs) self.a = a # parameter of the learning rate self.permute = permute # shuffle data when running I-RELIEF self.max_iter = max_iter # maximum number of iterations def _call(self, dataset): """Computes featurewise I-RELIEF-2 weights. Online version.""" NS = dataset.samples.shape[0] NF = dataset.samples.shape[1] if self.w_guess == None: self.w = N.ones(NF, 'd') # do normalization in all cases to be safe :) self.w = self.w/(self.w**2).sum() M, H = self.compute_M_H(dataset.labels) ni = N.zeros(NF, 'd') pi = N.zeros(NF, 'd') if self.permute: # indices to go through samples in random order random_sequence = N.random.permutation(NS) else: random_sequence = N.arange(NS) change = self.threshold + 1.0 iteration = 0 counter = 0.0 while change > self.threshold and iteration < self.max_iter: if __debug__: debug('IRELIEF', "Iteration %d" % iteration) for t in range(NS): counter += 1.0 n = random_sequence[t] self.k = self.kernel(length_scale = self.kernel_width/self.w) d_w_k_xn_Mn = self.k.compute(dataset.samples[None, n, :], dataset.samples[M[n], :]).squeeze() d_w_k_xn_Mn_sum = d_w_k_xn_Mn.sum() d_w_k_xn_x = self.k.compute(dataset.samples[None, n, :], dataset.samples).squeeze() gamma_n = 1.0 - d_w_k_xn_Mn_sum / d_w_k_xn_x.sum() alpha_n = d_w_k_xn_Mn / d_w_k_xn_Mn_sum d_w_k_xn_Hn = self.k.compute(dataset.samples[None, n, :], dataset.samples[H[n], :]).squeeze() beta_n = d_w_k_xn_Hn / d_w_k_xn_Hn.sum() m_n = (N.abs(dataset.samples[n, :] - dataset.samples[M[n], :]) \ * alpha_n[:, N.newaxis]).sum(0) h_n = (N.abs(dataset.samples[n, :] - dataset.samples[H[n], :]) \ * beta_n[:, N.newaxis]).sum(0) pi = gamma_n * (m_n-h_n) learning_rate = 1.0 / (counter * self.a + 1.0) ni_new = ni + learning_rate * (pi - ni) ni = ni_new # set all negative elements to zero ni_plus = N.clip(ni, 0.0, N.inf) w_new = N.nan_to_num(ni_plus / (N.sqrt((ni_plus ** 2).sum()))) change = N.abs(w_new - self.w).sum() if t % 10 == 0 and __debug__ and 'IRELIEF' in debug.active: debug('IRELIEF', "t=%d change=%.4f max=%f min=%.4f mean=%.4f std=%.4f" " #nan=%d" % (t, change, w_new.max(), w_new.min(), w_new.mean(), w_new.std(), N.isnan(w_new).sum())) self.w = w_new if change < self.threshold and iteration > 0: break iteration += 1 return self.w class IterativeRelief(FeaturewiseDatasetMeasure): """`FeaturewiseDatasetMeasure` that performs multivariate I-RELIEF algorithm. Batch version. Batch I-RELIEF-2 feature weighting algorithm. Works for binary or multiclass class-labels. Batch version with complexity O(T*N^2*I), where T is the number of iterations, N the number of instances, I the number of features. See: Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June 2007. http://plaza.ufl.edu/sunyijun/Paper/PAMI_1.pdf Note that current implementation allows to use only exponential-like kernels. Support for linear kernel will be added later. """ def __init__(self, threshold=1.0e-2, kernel_width=1.0, w_guess=None, **kwargs): """Constructor of the IRELIEF class. """ # init base classes first FeaturewiseDatasetMeasure.__init__(self, **kwargs) # Threshold in W changes (stopping criterion for irelief). self.threshold = threshold self.w_guess = w_guess self.w = None self.kernel_width = kernel_width def compute_M_H(self, label): """Compute hit/miss dictionaries. For each instance compute the set of indices having the same class label and different class label. Note that this computation is independent of the number of features. XXX should it be some generic function since it doesn't use self """ M = {} H = {} for i in range(label.size): M[i] = N.where(label != label[i])[0] tmp = (N.where(label == label[i])[0]).tolist() tmp.remove(i) # There must be least two exampls for class label[i] assert(tmp != []) H[i] = N.array(tmp) return M, H def k(self, distances): """Exponential kernel.""" kd = N.exp(-distances/self.kernel_width) # set kd to zero where distance=0 otherwise I-RELIEF could not converge. kd[N.abs(distances) < 1.0e-15] = 0.0 return kd def _call(self, dataset): """Computes featurewise I-RELIEF weights.""" samples = dataset.samples NS, NF = samples.shape[:2] if self.w_guess == None: w = N.ones(NF, 'd') w /= (w ** 2).sum() # do normalization in all cases to be safe :) M, H = self.compute_M_H(dataset.labels) while True: d_w_k = self.k(pnorm_w(data1=samples, weight=w, p=1)) ni = N.zeros(NF, 'd') for n in range(NS): # d_w_k[n, n] could be omitted since == 0.0 gamma_n = 1.0 - N.nan_to_num(d_w_k[n, M[n]].sum() \ / (d_w_k[n, :].sum() - d_w_k[n, n])) alpha_n = N.nan_to_num(d_w_k[n, M[n]] / (d_w_k[n, M[n]].sum())) beta_n = N.nan_to_num(d_w_k[n, H[n]] / (d_w_k[n, H[n]].sum())) m_n = (N.abs(samples[n, :] - samples[M[n], :]) \ * alpha_n[:, None]).sum(0) h_n = (N.abs(samples[n, :] - samples[H[n], :]) \ * beta_n[:, None]).sum(0) ni += gamma_n*(m_n - h_n) ni = ni / NS ni_plus = N.clip(ni, 0.0, N.inf) # set all negative elements to zero w_new = N.nan_to_num(ni_plus / (N.sqrt((ni_plus**2).sum()))) change = N.abs(w_new - w).sum() if __debug__ and 'IRELIEF' in debug.active: debug('IRELIEF', "change=%.4f max=%f min=%.4f mean=%.4f std=%.4f #nan=%d" \ % (change, w_new.max(), w_new.min(), w_new.mean(), w_new.std(), N.isnan(w_new).sum())) # update weights: w = w_new if change < self.threshold: break self.w = w return w class IterativeReliefOnline(IterativeRelief): """`FeaturewiseDatasetMeasure` that performs multivariate I-RELIEF algorithm. Online version. This algorithm is exactly the one in the referenced paper (I-RELIEF-2 online), using weighted 1-norm and Exponential Kernel. """ def __init__(self, a=10.0, permute=True, max_iter=3, **kwargs): """Constructor of the IRELIEF class. """ # init base classes first IterativeRelief.__init__(self, **kwargs) self.a = a # parameter of the learning rate self.permute = permute # shuffle data when running I-RELIEF self.max_iter = max_iter # maximum number of iterations def _call(self, dataset): """Computes featurewise I-RELIEF-2 weights. Online version.""" # local bindings samples = dataset.samples NS, NF = samples.shape[:2] threshold = self.threshold a = self.a if self.w_guess == None: w = N.ones(NF, 'd') # do normalization in all cases to be safe :) w /= (w ** 2).sum() M, H = self.compute_M_H(dataset.labels) ni = N.zeros(NF, 'd') pi = N.zeros(NF, 'd') if self.permute: # indices to go through x in random order random_sequence = N.random.permutation(NS) else: random_sequence = N.arange(NS) change = threshold + 1.0 iteration = 0 counter = 0.0 while change > threshold and iteration < self.max_iter: if __debug__: debug('IRELIEF', "Iteration %d" % iteration) for t in range(NS): counter += 1.0 n = random_sequence[t] d_xn_x = N.abs(samples[n, :] - samples) d_w_k_xn_x = self.k((d_xn_x * w).sum(1)) d_w_k_xn_Mn = d_w_k_xn_x[M[n]] d_w_k_xn_Mn_sum = d_w_k_xn_Mn.sum() gamma_n = 1.0 - d_w_k_xn_Mn_sum / d_w_k_xn_x.sum() alpha_n = d_w_k_xn_Mn / d_w_k_xn_Mn_sum d_w_k_xn_Hn = d_w_k_xn_x[H[n]] beta_n = d_w_k_xn_Hn / d_w_k_xn_Hn.sum() m_n = (d_xn_x[M[n], :] * alpha_n[:, None]).sum(0) h_n = (d_xn_x[H[n], :] * beta_n[:, None]).sum(0) pi = gamma_n * (m_n - h_n) learning_rate = 1.0 / (counter * a + 1.0) ni_new = ni + learning_rate * (pi - ni) ni = ni_new # set all negative elements to zero ni_plus = N.clip(ni, 0.0, N.inf) w_new = N.nan_to_num(ni_plus / (N.sqrt((ni_plus ** 2).sum()))) change = N.abs(w_new - w).sum() if t % 10 == 0 and __debug__ and 'IRELIEF' in debug.active: debug('IRELIEF', "t=%d change=%.4f max=%f min=%.4f mean=%.4f std=%.4f" " #nan=%d" % (t, change, w_new.max(), w_new.min(), w_new.mean(), w_new.std(), N.isnan(w_new).sum())) w = w_new if change < threshold and iteration > 0: break iteration += 1 self.w = w return w pymvpa-0.4.8/mvpa/measures/noiseperturbation.py000066400000000000000000000073121174541445200217660ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """This is a `FeaturewiseDatasetMeasure` that uses a scalar `DatasetMeasure` and selective noise perturbation to compute a sensitivity map. """ __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug from mvpa.support.copy import deepcopy import numpy as N from mvpa.measures.base import FeaturewiseDatasetMeasure class NoisePerturbationSensitivity(FeaturewiseDatasetMeasure): """This is a `FeaturewiseDatasetMeasure` that uses a scalar `DatasetMeasure` and selective noise perturbation to compute a sensitivity map. First the scalar `DatasetMeasure` computed using the original dataset. Next the data measure is computed multiple times each with a single feature in the dataset perturbed by noise. The resulting difference in the scalar `DatasetMeasure` is used as the sensitivity for the respective perturbed feature. Large differences are treated as an indicator of a feature having great impact on the scalar `DatasetMeasure`. The computed sensitivity map might have positive and negative values! """ def __init__(self, datameasure, noise=N.random.normal): """Cheap initialization. :Parameters: datameasure: `Datameasure` that is used to quantify the effect of noise perturbation. noise: Functor to generate noise. The noise generator has to return an 1d array of n values when called the `size=n` keyword argument. This is the default interface of the random number generators in NumPy's `random` module. """ # init base classes first FeaturewiseDatasetMeasure.__init__(self) self.__datameasure = datameasure self.__noise = noise def _call(self, dataset): """Compute the sensitivity map. Returns a 1d array of sensitivities for all features in `dataset`. """ # first cast to floating point dtype, because noise is most likely # floating point as well and '+=' on int would not do the right thing # XXX should we already deepcopy here to keep orig dtype? if not N.issubdtype(dataset.samples.dtype, N.float): dataset.setSamplesDType('float32') if __debug__: nfeatures = dataset.nfeatures sens_map = [] # compute the datameasure on the original dataset # this is used as a baseline orig_measure = self.__datameasure(dataset) # do for every _single_ feature in the dataset for feature in xrange(dataset.nfeatures): if __debug__: debug('PSA', "Analyzing %i features: %i [%i%%]" \ % (nfeatures, feature+1, float(feature+1)/nfeatures*100,), cr=True) # make a copy of the dataset to preserve data integrity wdata = deepcopy(dataset) # add noise to current feature wdata.samples[:, feature] += self.__noise(size=wdata.nsamples) # compute the datameasure on the perturbed dataset perturbed_measure = self.__datameasure(wdata) # difference from original datameasure is sensitivity sens_map.append(perturbed_measure - orig_measure) if __debug__: debug('PSA', '') return N.array(sens_map) pymvpa-0.4.8/mvpa/measures/pls.py000066400000000000000000000030651174541445200170110ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## __docformat__ = 'restructuredtext' import numpy as N from mvpa.measures.base import FeaturewiseDatasetMeasure if __debug__: from mvpa.base import debug class PLS(FeaturewiseDatasetMeasure): def __init__(self, num_permutations=200, num_bootstraps=100, **kwargs): # init base classes first FeaturewiseDatasetMeasure.__init__(self, **kwargs) # save the args for the analysis self.num_permutations = num_permutations self.num_bootstraps = num_bootstraps def _calc_pls(self,mat,labels): # take mean within condition(label) and concat to make a # condition by features matrix X = [] for ul in N.unique(labels): X.append(mat[labels==ul].mean(axis=0)) X = N.asarray(X) # center each condition by subtracting the grand mean X -= X.mean(axis=1)[:,N.newaxis].repeat(X.shape[1],axis=1) # run SVD (checking to transpose if necessary) U,s,Vh = N.linalg.svd(X, full_matrices=0) # run procrust to reorder if necessary def _procrust(): pass def _call(self,dataset): # pass class TaskPLS(PLS): pass pymvpa-0.4.8/mvpa/measures/searchlight.py000066400000000000000000000167571174541445200205240ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Implementation of the Searchlight algorithm""" __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug from mvpa.datasets.mapped import MappedDataset from mvpa.measures.base import DatasetMeasure from mvpa.misc.state import StateVariable from mvpa.base.dochelpers import enhancedDocString class Searchlight(DatasetMeasure): """Runs a scalar `DatasetMeasure` on all possible spheres of a certain size within a dataset. The idea for a searchlight algorithm stems from a paper by :ref:`Kriegeskorte et al. (2006) `. """ spheresizes = StateVariable(enabled=False, doc="Number of features in each sphere.") def __init__(self, datameasure, radius=1.0, center_ids=None, **kwargs): """ :Parameters: datameasure: callable Any object that takes a :class:`~mvpa.datasets.base.Dataset` and returns some measure when called. radius: float All features within the radius around the center will be part of a sphere. Provided dataset should have a metric assigned (for NiftiDataset, voxel size is used to provide such a metric, hence radius should be specified in mm). center_ids: list(int) List of feature ids (not coordinates) the shall serve as sphere centers. By default all features will be used. **kwargs In additions this class supports all keyword arguments of its base-class :class:`~mvpa.measures.base.DatasetMeasure`. .. note:: If `Searchlight` is used as `SensitivityAnalyzer` one has to make sure that the specified scalar `DatasetMeasure` returns large (absolute) values for high sensitivities and small (absolute) values for low sensitivities. Especially when using error functions usually low values imply high performance and therefore high sensitivity. This would in turn result in sensitivity maps that have low (absolute) values indicating high sensitivites and this conflicts with the intended behavior of a `SensitivityAnalyzer`. """ DatasetMeasure.__init__(self, **(kwargs)) self.__datameasure = datameasure self.__radius = radius self.__center_ids = center_ids __doc__ = enhancedDocString('Searchlight', locals(), DatasetMeasure) def _call(self, dataset): """Perform the spheresearch. """ if not isinstance(dataset, MappedDataset) \ or dataset.mapper.metric is None: raise ValueError, "Searchlight only works with MappedDatasets " \ "that has metric assigned." if self.states.isEnabled('spheresizes'): self.spheresizes = [] if __debug__: if not self.__center_ids == None: nspheres = len(self.__center_ids) else: nspheres = dataset.nfeatures sphere_count = 0 # collect the results in a list -- you never know what you get results = [] # decide whether to run on all possible center coords or just a provided # subset if not self.__center_ids == None: generator = self.__center_ids else: generator = xrange(dataset.nfeatures) # put spheres around all features in the dataset and compute the # measure within them for f in generator: sphere = dataset.selectFeatures( dataset.mapper.getNeighbors(f, self.__radius), plain=True) # compute the datameasure and store in results measure = self.__datameasure(sphere) results.append(measure) # store the size of the sphere dataset if self.states.isEnabled('spheresizes'): self.spheresizes.append(sphere.nfeatures) if __debug__: sphere_count += 1 debug('SLC', "Doing %i spheres: %i (%i features) [%i%%]" \ % (nspheres, sphere_count, sphere.nfeatures, float(sphere_count)/nspheres*100,), cr=True) if __debug__: debug('SLC', '') # charge state self.raw_results = results # return raw results, base-class will take care of transformations return results #class OptimalSearchlight( object ): # def __init__( self, # searchlight, # test_radii, # verbose=False, # **kwargs ): # """ # """ # # results will end up here # self.__perfmeans = [] # self.__perfvars = [] # self.__chisquares = [] # self.__chanceprobs = [] # self.__spheresizes = [] # # # run searchligh for all radii in the list # for radius in test_radii: # if verbose: # print 'Using searchlight with radius:', radius # # compute the results # searchlight( radius, **(kwargs) ) # # self.__perfmeans.append( searchlight.perfmean ) # self.__perfvars.append( searchlight.perfvar ) # self.__chisquares.append( searchlight.chisquare ) # self.__chanceprobs.append( searchlight.chanceprob ) # self.__spheresizes.append( searchlight.spheresize ) # # # # now determine the best classification accuracy # best = N.array(self.__perfmeans).argmax( axis=0 ) # # # select the corresponding values of the best classification # # in all data tables # self.perfmean = best.choose(*(self.__perfmeans)) # self.perfvar = best.choose(*(self.__perfvars)) # self.chisquare = best.choose(*(self.__chisquares)) # self.chanceprob = best.choose(*(self.__chanceprobs)) # self.spheresize = best.choose(*(self.__spheresizes)) # # # store the best performing radius # self.bestradius = N.zeros( self.perfmean.shape, dtype='uint' ) # self.bestradius[searchlight.mask==True] = \ # best.choose( test_radii )[searchlight.mask==True] # # # #def makeSphericalROIMask( mask, radius, elementsize=None ): # """ # """ # # use default elementsize if none is supplied # if not elementsize: # elementsize = [ 1 for i in range( len(mask.shape) ) ] # else: # if len( elementsize ) != len( mask.shape ): # raise ValueError, 'elementsize does not match mask dimensions.' # # # rois will be drawn into this mask # roi_mask = N.zeros( mask.shape, dtype='int32' ) # # # while increase with every ROI # roi_id_counter = 1 # # # build spheres around every non-zero value in the mask # for center, spheremask in \ # algorithms.SpheresInMask( mask, # radius, # elementsize, # forcesphere = True ): # # # set all elements that match the current spheremask to the # # current ROI index value # roi_mask[spheremask] = roi_id_counter # # # increase ROI counter # roi_id_counter += 1 # # return roi_mask pymvpa-0.4.8/mvpa/measures/splitmeasure.py000066400000000000000000000133301174541445200207240ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """This is a `FeaturewiseDatasetMeasure` that uses another `FeaturewiseDatasetMeasure` and runs it multiple times on differents splits of a `Dataset`. """ __docformat__ = 'restructuredtext' import numpy as N from mvpa.measures.base import FeaturewiseDatasetMeasure from mvpa.datasets.splitters import NoneSplitter from mvpa.misc.state import StateVariable from mvpa.misc.transformers import FirstAxisMean if __debug__: from mvpa.base import debug class SplitFeaturewiseMeasure(FeaturewiseDatasetMeasure): """This is a `FeaturewiseDatasetMeasure` that uses another `FeaturewiseDatasetMeasure` and runs it multiple times on differents splits of a `Dataset`. When called with a `Dataset` it returns the mean sensitivity maps of all data splits. Additonally this class supports the `State` interface. Several postprocessing functions can be specififed to the constructor. The results of the functions specified in the `postproc` dictionary will be available via their respective keywords. """ maps = StateVariable(enabled=False, doc="To store maps per each split") def __init__(self, sensana, splitter=NoneSplitter, combiner=FirstAxisMean, **kwargs): """Cheap initialization. :Parameters: sensana : FeaturewiseDatasetMeasure that shall be run on the `Dataset` splits. splitter : Splitter used to split the `Dataset`. By convention the first dataset in the tuple returned by the splitter on each iteration is used to compute the sensitivity map. combiner This functor will be called on an array of sensitivity maps and the result will be returned by __call__(). The result of a combiner must be an 1d ndarray. """ # init base classes first FeaturewiseDatasetMeasure.__init__(self, **kwargs) self.__sensana = sensana """Sensitivity analyzer used to compute the sensitivity maps. """ self.__splitter = splitter """Splitter instance used to split the datasets.""" self.__combiner = combiner """Function to combine sensitivities to serve a result of __call__()""" def _call(self, dataset): """Compute sensitivity maps for all dataset splits and run the postprocessing functions afterward (if any). Returns a list of all computed sensitivity maps. Postprocessing results are available via the objects `State` interface. """ maps = [] # splitter for split in self.__splitter(dataset): # compute sensitivity using first dataset in split sensitivity = self.__sensana(split[0]) maps.append(sensitivity) self.maps = maps """Store the maps across splits""" # return all maps return self.__combiner(maps) class TScoredFeaturewiseMeasure(SplitFeaturewiseMeasure): """`SplitFeaturewiseMeasure` computing featurewise t-score of sensitivities across splits. """ def __init__(self, sensana, splitter, noise_level=0.0, **kwargs): """Cheap initialization. :Parameters: sensana : SensitivityAnalyzer that shall be run on the `Dataset` splits. splitter : Splitter used to split the `Dataset`. By convention the first dataset in the tuple returned by the splitter on each iteration is used to compute the sensitivity map. noise_level: float Theoretical output of the respective `SensitivityAnalyzer` for a pure noise pattern. For most algorithms this is probably zero, hence the default. """ # init base classes first # - get full sensitivity maps from SplittingSensitivityAnalyzer # - no postprocessing # - leave States handling to base class SplitFeaturewiseMeasure.__init__(self, sensana, splitter, combiner=N.array, **kwargs) self.__noise_level = noise_level """Output of the sensitivity analyzer when there is no signal.""" def _call(self, dataset, callables=[]): """Compute sensitivity maps for all dataset splits and return the featurewise t-score of them. """ # let base class compute the sensitivity maps maps = SplitFeaturewiseMeasure._call(self, dataset) # feature wise mean m = N.mean(maps, axis=0) #m = N.min(maps, axis=0) # featurewise variance v = N.var(maps, axis=0) # degrees of freedom (n-1 for one-sample t-test) df = maps.shape[0] - 1 # compute t-score t = (m - self.__noise_level) / N.sqrt(v * (1.0 / maps.shape[0])) if __debug__: debug('SA', 'T-score sensitivities computed for %d maps ' % maps.shape[0] + 'min=%f max=%f. mean(m)=%f mean(v)=%f Result min=%f max=%f mean(abs)=%f' % (N.min(maps), N.max(maps), N.mean(m), N.mean(v), N.min(t), N.max(t), N.mean(N.abs(t)))) return t pymvpa-0.4.8/mvpa/misc/000077500000000000000000000000001174541445200147445ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/misc/__init__.py000066400000000000000000000011041174541445200170510ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for PyMVPA misc modules""" __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.misc start') debug('INIT', 'mvpa.misc end') pymvpa-0.4.8/mvpa/misc/args.py000066400000000000000000000054721174541445200162620ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Helpers for arguments handling.""" __docformat__ = 'restructuredtext' def split_kwargs(kwargs, prefixes=[]): """Helper to separate kwargs into multiple groups :Parameters: prefixes : list of basestrings Each entry sets a prefix which puts entry with key starting with it into a separate group. Group '' corresponds to 'leftovers' :Output: dictionary with keys == `prefixes` """ if not ('' in prefixes): prefixes = prefixes + [''] result = [ [] for i in prefixes ] for k,v in kwargs.iteritems(): for i,p in enumerate(prefixes): if k.startswith(p): result[i].append((k.replace(p,'',1), v)) break resultd = dict((p,dict(x)) for p,x in zip(prefixes, result)) return resultd def group_kwargs(prefixes, assign=False, passthrough=False): """Decorator function to join parts of kwargs together :Parameters: prefixes : list of basestrings Prefixes to split based on. See `split_kwargs` assign : bool Flag to assign the obtained arguments to self.__kwargs passthrough : bool Flag to pass joined arguments as _kwargs argument. Usually it is sufficient to have either assign or passthrough. If none of those is True, decorator simply filters out mentioned groups from being passed to the method Example: if needed to join all args which start with 'slave' together under slave_kwargs parameter """ def decorated_method(method): def do_group_kwargs(self, *args_, **kwargs_): if '' in prefixes: raise ValueError, \ "Please don't put empty string ('') into prefixes" # group as needed splits = split_kwargs(kwargs_, prefixes) # adjust resultant kwargs__ kwargs__ = splits[''] for prefix in prefixes: skwargs = splits[prefix] k = '%skwargs' % prefix if k in kwargs__: # is unprobable but can happen raise ValueError, '%s is already given in the arguments' % k if passthrough: kwargs__[k] = skwargs if assign: setattr(self, '_%s' % k, skwargs) return method(self, *args_, **kwargs__) do_group_kwargs.func_name = method.func_name return do_group_kwargs return decorated_method pymvpa-0.4.8/mvpa/misc/attributes.py000066400000000000000000000200121174541445200174770ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Module with some special objects to be used as magic attributes with dedicated containers aka. `Collections`. """ __docformat__ = 'restructuredtext' from mvpa.misc.exceptions import UnknownStateError if __debug__: from mvpa.base import debug ################################################################## # Various attributes which will be collected into collections # class CollectableAttribute(object): """Base class for any custom behaving attribute intended to become part of a collection. Derived classes will have specific semantics: * StateVariable: conditional storage * AttributeWithUnique: easy access to a set of unique values within a container * Parameter: attribute with validity ranges. - ClassifierParameter: specialization to become a part of Classifier's params collection - KernelParameter: --//-- to become a part of Kernel Classifier's kernel_params collection Those CollectableAttributes are to be groupped into corresponding collections for each class by statecollector metaclass, ie it would be done on a class creation (ie not per each object) """ _instance_index = 0 def __init__(self, name=None, doc=None, index=None): if index is None: CollectableAttribute._instance_index += 1 index = CollectableAttribute._instance_index self._instance_index = index self.__doc__ = doc self.__name = name self._value = None self._isset = False self.reset() if __debug__: debug("COL", "Initialized new collectable #%d:%s" % (index,name) + `self`) # Instead of going for VProperty lets make use of virtual method def _getVirtual(self): return self._get() def _setVirtual(self, value): return self._set(value) def _get(self): return self._value def _set(self, val): if __debug__: # Since this call is quite often, don't convert # values to strings here, rely on passing them # withing msgargs debug("COL", "Setting %(self)s to %(val)s ", msgargs={'self':self, 'val':val}) self._value = val self._isset = True @property def isSet(self): return self._isset def reset(self): """Simply reset the flag""" if __debug__ and self._isset: debug("COL", "Reset %s to being non-modified" % self.name) self._isset = False # TODO XXX unify all bloody __str__ def __str__(self): res = "%s" % (self.name) if self.isSet: res += '*' # so we have the value already return res def _getName(self): return self.__name def _setName(self, name): """Set the name of parameter .. note:: Should not be called for an attribute which is already assigned to a collection """ if name is not None: if isinstance(name, basestring): if name[0] == '_': raise ValueError, \ "Collectable attribute name must not start " \ "with _. Got %s" % name else: raise ValueError, \ "Collectable attribute name must be a string. " \ "Got %s" % `name` self.__name = name # XXX should become vproperty? # YYY yoh: not sure... someone has to do performance testing # to see which is more effective. My wild guess is that # _[gs]etVirtual would be faster value = property(_getVirtual, _setVirtual) name = property(_getName) #, _setName) # XXX think that may be discard hasunique and just devise top # class DatasetAttribute class AttributeWithUnique(CollectableAttribute): """Container which also takes care about recomputing unique values XXX may be we could better link original attribute to additional attribute which actually stores the values (and do reverse there as well). Pros: * don't need to mess with getattr since it would become just another attribute Cons: * might be worse design in terms of comprehension * take care about _set, since we shouldn't allow change it externally For now lets do it within a single class and tune up getattr """ def __init__(self, name=None, hasunique=True, doc="Attribute with unique"): CollectableAttribute.__init__(self, name, doc) self._hasunique = hasunique self._resetUnique() if __debug__: debug("UATTR", "Initialized new AttributeWithUnique %s " % name + `self`) def reset(self): super(AttributeWithUnique, self).reset() self._resetUnique() def _resetUnique(self): self._uniqueValues = None def _set(self, *args, **kwargs): self._resetUnique() CollectableAttribute._set(self, *args, **kwargs) def _getUniqueValues(self): if self.value is None: return None if self._uniqueValues is None: # XXX we might better use Set, but yoh recalls that # N.unique was more efficient. May be we should check # on the the class and use Set only if we are not # dealing with ndarray (or lists/tuples) self._uniqueValues = N.unique(N.asanyarray(self.value)) return self._uniqueValues uniqueValues = property(fget=_getUniqueValues) hasunique = property(fget=lambda self:self._hasunique) # Hooks for comprehendable semantics and automatic collection generation class SampleAttribute(AttributeWithUnique): pass class FeatureAttribute(AttributeWithUnique): pass class DatasetAttribute(AttributeWithUnique): pass class StateVariable(CollectableAttribute): """Simple container intended to conditionally store the value """ def __init__(self, name=None, enabled=True, doc="State variable"): # Force enabled state regardless of the input # to facilitate testing if __debug__ and 'ENFORCE_STATES_ENABLED' in debug.active: enabled = True CollectableAttribute.__init__(self, name, doc) self._isenabled = enabled self._defaultenabled = enabled if __debug__: debug("STV", "Initialized new state variable %s " % name + `self`) def _get(self): if not self.isSet: raise UnknownStateError("Unknown yet value of %s" % (self.name)) return CollectableAttribute._get(self) def _set(self, val): if self.isEnabled: # XXX may be should have left simple assignment # self._value = val CollectableAttribute._set(self, val) elif __debug__: debug("COL", "Not setting disabled %(self)s to %(val)s ", msgargs={'self':self, 'val':val}) def reset(self): """Simply detach the value, and reset the flag""" CollectableAttribute.reset(self) self._value = None @property def isEnabled(self): return self._isenabled def enable(self, value=False): if self._isenabled == value: # Do nothing since it is already in proper state return if __debug__: debug("STV", "%s %s" % ({True: 'Enabling', False: 'Disabling'}[value], str(self))) self._isenabled = value def __str__(self): res = CollectableAttribute.__str__(self) if self.isEnabled: res += '+' # it is enabled but no value is assigned yet return res pymvpa-0.4.8/mvpa/misc/bv/000077500000000000000000000000001174541445200153535ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/misc/bv/__init__.py000066400000000000000000000011111174541445200174560ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for Brain Voyager""" if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.misc.bv') from mvpa.misc.bv.base import * if __debug__: debug('INIT', 'mvpa.misc.bv end') pymvpa-0.4.8/mvpa/misc/bv/base.py000066400000000000000000000032471174541445200166450ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Tiny snippets to interface with FSL easily.""" __docformat__ = 'restructuredtext' from mvpa.misc.io import ColumnData if __debug__: from mvpa.base import debug class BrainVoyagerRTC(ColumnData): """IO helper to read BrainVoyager RTC files. This is a textfile format that is used to specify stimulation protocols for data analysis in BrainVoyager. It looks like FileVersion: 2 Type: DesignMatrix NrOfPredictors: 4 NrOfDataPoints: 147 "fm_l_60dB" "fm_r_60dB" "fm_l_80dB" "fm_r_80dB" 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Data is always read as `float` and header is actually ignored """ def __init__(self, source): """Read and write BrainVoyager RTC files. :Parameter: source: filename of an RTC file """ # init data from known format ColumnData.__init__(self, source, header=True, sep=None, headersep='"', dtype=float, skiplines=5) def toarray(self): """Returns the data as an array """ import numpy as N # return as array with time axis first return N.array([self[i] for i in self._header_order], dtype='float').T pymvpa-0.4.8/mvpa/misc/cmdline.py000066400000000000000000000254151174541445200167400ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Common functions and options definitions for command line __docformat__ = 'restructuredtext' Conventions: Every option (instance of optparse.Option) has prefix "opt". Lists of options has prefix opts (e.g. `opts.common`). Option name should be camelbacked version of .dest for the option. """ import mvpa # TODO? all options (opt*) might migrate to respective module? discuss from optparse import OptionParser, Option, OptionGroup, OptionConflictError # needed for verboseCallback from mvpa.base import verbose, externals # we need to make copies of the options if we place them into the # groups, since otherwise it is impossible to use them without using # the whole group. May be we should make some late creation of the # groups -- ie only if user requests a group, options are added to it. from mvpa.support import copy class Options(object): """Just a convinience placeholder for all available options """ pass class OptionGroups(object): """Group creation is delayed until instance is requested. This allows to overcome the problem of poluting handled cmdline options """ def __init__(self, parser): self._d = {} self._parser = parser def add(self, name, l, doc): self._d[name] = (doc, l) def _getGroup(self, name): try: doc, l = self._d[name] except KeyError: raise ValueError, "No group with name %s" % name opts = OptionGroup(self._parser, doc) #opts.add_options(copy.deepcopy(l)) # may be copy? try: opts.add_options(l) except OptionConflictError: print "Problem addition options to the group '%s'. Most probably" \ " the option was independently added already." % name raise return opts def __getattribute__(self, index): if index[0] == '_': return object.__getattribute__(self, index) if self._d.has_key(index): return self._getGroup(index) return object.__getattribute__(self, index) # TODO: try to make groups definition somewhat lazy, since now # whenever a group is created, those parameters are already known by # parser, although might not be listed in the list of used and not by # --help. But their specification on cmdline doesn't lead to # error/help msg. # # Conflict hanlder to resolve situation that we have the same option added # to some group and also available 'freely' # # set default version string, otherwise '--version' option is not enabled # can be overwritten later on by assigning to `parser.version` parser = OptionParser(version="%prog", add_help_option=False, conflict_handler="error") opt = Options() opts = OptionGroups(parser) # # Verbosity options # def _verboseCallback(option, optstr, value, parser): """Callback for -v|--verbose cmdline option """ if __debug__: debug("CMDLINE", "Setting verbose.level to %s" % str(value)) verbose.level = value optstr = optstr # pylint shut up setattr(parser.values, option.dest, value) opt.help = \ Option("-h", "--help", "--sos", action="help", help="Show this help message and exit") opt.verbose = \ Option("-v", "--verbose", "--verbosity", action="callback", callback=_verboseCallback, nargs=1, type="int", dest="verbose", default=0, help="Verbosity level of output") """Pre-cooked `optparse`'s option to specify verbose level""" commonopts_list = [opt.verbose, opt.help] if __debug__: from mvpa.base import debug def _debugCallback(option, optstr, value, parser): """Callback for -d|--debug cmdline option """ if value == "list": print "Registered debug IDs:" keys = debug.registered.keys() keys.sort() for k in keys: print "%-7s: %s" % (k, debug.registered[k]) print "Use ALL: to enable all of the debug IDs listed above." print "Use python regular expressions to select group. CLF.* will" \ " enable all debug entries starting with CLF (e.g. CLFBIN, CLFMC)" raise SystemExit, 0 optstr = optstr # pylint shut up debug.setActiveFromString(value) setattr(parser.values, option.dest, value) optDebug = Option("-d", "--debug", action="callback", callback=_debugCallback, nargs=1, type="string", dest="debug", default="", help="Debug entries to report. " + "Run with '-d list' to get a list of " + "registered entries") commonopts_list.append(optDebug) opts.add("common", commonopts_list, "Common generic options") # # Classifiers options # opt.clf = \ Option("--clf", type="choice", dest="clf", choices=['knn', 'svm', 'ridge', 'gpr', 'smlr'], default='svm', help="Type of classifier to be used. Default: svm") opt.radius = \ Option("-r", "--radius", action="store", type="float", dest="radius", default=5.0, help="Radius to be used (eg for the searchlight). Default: 5.0") opt.knearestdegree = \ Option("-k", "--k-nearest", action="store", type="int", dest="knearestdegree", default=3, help="Degree of k-nearest classifier. Default: 3") opts.add('KNN', [opt.radius, opt.knearestdegree], "Specification of kNN") opt.svm_C = \ Option("-C", "--svm-C", action="store", type="float", dest="svm_C", default=1.0, help="C parameter for soft-margin C-SVM classification. " \ "Default: 1.0") opt.svm_nu = \ Option("--nu", "--svm-nu", action="store", type="float", dest="svm_nu", default=0.1, help="nu parameter for soft-margin nu-SVM classification. " \ "Default: 0.1") opt.svm_gamma = \ Option("--gamma", "--svm-gamma", action="store", type="float", dest="svm_gamma", default=1.0, help="gamma parameter for Gaussian kernel of RBF SVM. " \ "Default: 1.0") opts.add('SVM', [opt.svm_nu, opt.svm_C, opt.svm_gamma], "SVM specification") opt.do_sweep = \ Option("--sweep", action="store_true", dest="do_sweep", default=False, help="Sweep through various classifiers") # Crossvalidation options opt.crossfolddegree = \ Option("-c", "--crossfold", action="store", type="int", dest="crossfolddegree", default=1, help="Degree of N-fold crossfold. Default: 1") opts.add('general', [opt.crossfolddegree], "Generalization estimates") # preprocess options opt.zscore = \ Option("--zscore", action="store_true", dest="zscore", default=0, help="Enable zscoring of dataset samples. Default: Off") opt.tr = \ Option("--tr", action="store", dest="tr", default=2.0, type='float', help="fMRI volume repetition time. Default: 2.0") opt.detrend = \ Option("--detrend", action="store_true", dest="detrend", default=0, help="Do linear detrending. Default: Off") opts.add('preproc', [opt.zscore, opt.tr, opt.detrend], "Preprocessing options") # Wavelets options if externals.exists('pywt'): import pywt def _waveletFamilyCallback(option, optstr, value, parser): """Callback for -w|--wavelet-family cmdline option """ wl_list = pywt.wavelist() wl_list_str = ", ".join( ['-1: None'] + ['%d:%s' % w for w in enumerate(wl_list)]) if value == "list": print "Available wavelet families: " + wl_list_str raise SystemExit, 0 wl_family = value try: # may be int? ;-) wl_family_index = int(value) if wl_family_index >= 0: try: wl_family = wl_list[wl_family_index] except IndexError: print "Index is out of range. " + \ "Following indexes with names are known: " + \ wl_list_str raise SystemExit, -1 else: wl_family = 'None' except ValueError: pass # Check the value wl_family = wl_family.lower() if wl_family == 'none': wl_family = None elif not wl_family in wl_list: print "Uknown family '%s'. Known are %s" % (wl_family, ', '.join(wl_list)) raise SystemExit, -1 # Store it in the parser setattr(parser.values, option.dest, wl_family) opt.wavelet_family = \ Option("-w", "--wavelet-family", callback=_waveletFamilyCallback, action="callback", type="string", dest="wavelet_family", default='-1', help="Wavelet family: string or index among the available. " + "Run with '-w list' to see available families") opt.wavelet_decomposition = \ Option("-W", "--wavelet-decomposition", action="store", type="choice", dest="wavelet_decomposition", default='dwt', choices=['dwt', 'dwp'], help="Wavelet decomposition: discrete wavelet transform "+ "(dwt) or packet (dwp)") opts.add('wavelet', [opt.wavelet_family, opt.wavelet_decomposition], "Wavelets mappers") # Box options opt.boxlength = \ Option("--boxlength", action="store", dest="boxlength", default=1, type='int', help="Length of the box in volumes (integer). Default: 1") opt.boxoffset = \ Option("--boxoffset", action="store", dest="boxoffset", default=0, type='int', help="Offset of the box from the event onset in volumes. Default: 0") opts.add('box', [opt.boxlength, opt.boxoffset], "Box options") # sample attributes opt.chunk = \ Option("--chunk", action="store", dest="chunk", default='0', help="Id of the data chunk. Default: 0") opt.chunkLimits = \ Option("--chunklimits", action="store", dest="chunklimits", default=None, help="Limit processing to a certain chunk of data given by start " \ "and end volume number (including lower, excluding upper " \ "limit). Numbering starts with zero.") opts.add('chunk', [opt.chunk, opt.chunkLimits], "Chunk options AKA Sample attributes XXX") pymvpa-0.4.8/mvpa/misc/data_generators.py000066400000000000000000000305001174541445200204560ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Miscelaneous data generators for unittests and demos""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.datasets import Dataset if __debug__: from mvpa.base import debug def multipleChunks(func, n_chunks, *args, **kwargs): """Replicate datasets multiple times raising different chunks Given some randomized (noisy) generator of a dataset with a single chunk call generator multiple times and place results into a distinct chunks """ for chunk in xrange(n_chunks): dataset_ = func(*args, **kwargs) dataset_.chunks[:] = chunk + 1 if chunk == 0: dataset = dataset_ else: dataset += dataset_ return dataset def dumbFeatureDataset(): """Create a very simple dataset with 2 features and 3 labels """ data = [[1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1]] regs = ([1] * 8) + ([2] * 8) + ([3] * 8) return Dataset(samples=data, labels=regs) def dumbFeatureBinaryDataset(): """Very simple binary (2 labels) dataset """ data = [[1, 0], [1, 1], [2, 0], [2, 1], [3, 0], [3, 1], [4, 0], [4, 1], [5, 0], [5, 1], [6, 0], [6, 1], [7, 0], [7, 1], [8, 0], [8, 1], [9, 0], [9, 1], [10, 0], [10, 1], [11, 0], [11, 1], [12, 0], [12, 1]] regs = ([0] * 12) + ([1] * 12) return Dataset(samples=data, labels=regs) def normalFeatureDataset(perlabel=50, nlabels=2, nfeatures=4, nchunks=5, means=None, nonbogus_features=None, snr=3.0): """Generate a univariate dataset with normal noise and specified means. :Keywords: perlabel : int Number of samples per each label nlabels : int Number of labels in the dataset nfeatures : int Total number of features (including bogus features which carry no label-related signal) nchunks : int Number of chunks (perlabel should be multiple of nchunks) means : None or list of float or ndarray Specified means for each of features among nfeatures. nonbogus_features : None or list of int Indexes of non-bogus features (1 per label) snr : float Signal-to-noise ration assuming that signal has std 1.0 so we just divide random normal noise by snr Probably it is a generalization of pureMultivariateSignal where means=[ [0,1], [1,0] ] Specify either means or nonbogus_features so means get assigned accordingly """ data = N.random.standard_normal((perlabel*nlabels, nfeatures))/N.sqrt(snr) if (means is None) and (not nonbogus_features is None): if len(nonbogus_features) > nlabels: raise ValueError, "Can't assign simply a feature to a " + \ "class: more nonbogus_features than labels" means = N.zeros((len(nonbogus_features), nfeatures)) # pure multivariate -- single bit per feature for i in xrange(len(nonbogus_features)): means[i, nonbogus_features[i]] = 1.0 if not means is None: # add mean data += N.repeat(N.array(means, ndmin=2), perlabel, axis=0) # bring it 'under 1', since otherwise some classifiers have difficulties # during optimization data = 1.0/(N.max(N.abs(data))) * data labels = N.concatenate([N.repeat('L%d' % i, perlabel) for i in range(nlabels)]) chunks = N.concatenate([N.repeat(range(nchunks), perlabel/nchunks) for i in range(nlabels)]) ds = Dataset(samples=data, labels=labels, chunks=chunks, labels_map=True) ds.nonbogus_features = nonbogus_features return ds def pureMultivariateSignal(patterns, signal2noise = 1.5, chunks=None): """ Create a 2d dataset with a clear multivariate signal, but no univariate information. :: %%%%%%%%% % O % X % %%%%%%%%% % X % O % %%%%%%%%% """ # start with noise data = N.random.normal(size=(4*patterns, 2)) # add signal data[:2*patterns, 1] += signal2noise data[2*patterns:4*patterns, 1] -= signal2noise data[:patterns, 0] -= signal2noise data[2*patterns:3*patterns, 0] -= signal2noise data[patterns:2*patterns, 0] += signal2noise data[3*patterns:4*patterns, 0] += signal2noise # two conditions regs = N.array(([0] * patterns) + ([1] * 2 * patterns) + ([0] * patterns)) return Dataset(samples=data, labels=regs, chunks=chunks) def normalFeatureDataset__(dataset=None, labels=None, nchunks=None, perlabel=50, activation_probability_steps=1, randomseed=None, randomvoxels=False): """ NOT FINISHED """ raise NotImplementedError if dataset is None and labels is None: raise ValueError, \ "Provide at least labels or a background dataset" if dataset is None: nlabels = len(labels) else: nchunks = len(dataset.uniquechunks) N.random.seed(randomseed) # Create a sequence of indexes from which to select voxels to be used # for features if randomvoxels: indexes = N.random.permutation(dataset.nfeatures) else: indexes = N.arange(dataset.nfeatures) allind, maps = [], [] if __debug__: debug('DG', "Ugly creation of the copy of background") dtype = dataset.samples.dtype if not N.issubdtype(dtype, N.float): dtype = N.float totalsignal = N.zeros(dataset.samples.shape, dtype=dtype) for l in xrange(len(labels)): label = labels[l] if __debug__: debug('DG', "Simulating independent labels for %s" % label) # What sample ids belong to this label labelids = dataset.idsbylabels(label) # What features belong here and what is left over nfeatures = perlabel * activation_probability_steps ind, indexes = indexes[0:nfeatures], \ indexes[nfeatures+1:] allind += list(ind) # store what indexes we used # Create a dataset only for 'selected' features NB there is # sideeffect that selectFeatures will sort those ind provided ds = dataset.selectFeatures(ind) ds.samples[:] = 0.0 # zero them out # assign data prob = [1.0 - x*1.0/activation_probability_steps for x in xrange(activation_probability_steps)] # repeat so each feature gets itw own probabilities = N.repeat(prob, perlabel) if __debug__: debug('DG', 'For prob=%s probabilities=%s' % (prob, probabilities)) for chunk in ds.uniquechunks: chunkids = ds.idsbychunks(chunk) # samples in this chunk ids = list(set(chunkids).intersection(set(labelids))) chunkvalue = N.random.uniform() # random number to decide either # to 'activate' the voxel for id_ in ids: ds.samples[id_, :] = \ (chunkvalue <= probabilities).astype('float') maps.append(N.array(probabilities, copy=True)) signal = ds.map2Nifti(ds.samples) totalsignal[:, ind] += ds.samples # figure out average variance across all 'working' features wfeatures = dataset.samples[:, allind] meanstd = N.mean(N.std(wfeatures, 1)) if __debug__: debug('DG', "Mean deviation is %f" % meanstd) totalsignal *= meanstd * options.snr # add signal on top of background dataset.samples += totalsignal return dataset def getMVPattern(s2n): """Simple multivariate dataset""" return multipleChunks(pureMultivariateSignal, 6, 5, s2n, 1) def wr1996(size=200): """Generate '6d robot arm' dataset (Williams and Rasmussen 1996) Was originally created in order to test the correctness of the implementation of kernel ARD. For full details see: http://www.gaussianprocess.org/gpml/code/matlab/doc/regression.html#ard x_1 picked randomly in [-1.932, -0.453] x_2 picked randomly in [0.534, 3.142] r_1 = 2.0 r_2 = 1.3 f(x_1,x_2) = r_1 cos (x_1) + r_2 cos(x_1 + x_2) + N(0,0.0025) etc. Expected relevances: ell_1 1.804377 ell_2 1.963956 ell_3 8.884361 ell_4 34.417657 ell_5 1081.610451 ell_6 375.445823 sigma_f 2.379139 sigma_n 0.050835 """ intervals = N.array([[-1.932, -0.453], [0.534, 3.142]]) r = N.array([2.0, 1.3]) x = N.random.rand(size, 2) x *= N.array(intervals[:, 1]-intervals[:, 0]) x += N.array(intervals[:, 0]) if __debug__: for i in xrange(2): debug('DG', '%d columnt Min: %g Max: %g' % (i, x[:, i].min(), x[:, i].max())) y = r[0]*N.cos(x[:, 0] + r[1]*N.cos(x.sum(1))) + \ N.random.randn(size)*N.sqrt(0.0025) y -= y.mean() x34 = x + N.random.randn(size, 2)*0.02 x56 = N.random.randn(size, 2) x = N.hstack([x, x34, x56]) return Dataset(samples=x, labels=y) def sinModulated(n_instances, n_features, flat=False, noise=0.4): """ Generate a (quite) complex multidimensional non-linear dataset Used for regression testing. In the data label is a sin of a x^2 + uniform noise """ if flat: data = (N.arange(0.0, 1.0, 1.0/n_instances)*N.pi) data.resize(n_instances, n_features) else: data = N.random.rand(n_instances, n_features)*N.pi label = N.sin((data**2).sum(1)).round() label += N.random.rand(label.size)*noise return Dataset(samples=data, labels=label) def chirpLinear(n_instances, n_features=4, n_nonbogus_features=2, data_noise=0.4, noise=0.1): """ Generates simple dataset for linear regressions Generates chirp signal, populates n_nonbogus_features out of n_features with it with different noise level and then provides signal itself with additional noise as labels """ x = N.linspace(0, 1, n_instances) y = N.sin((10 * N.pi * x **2)) data = N.random.normal(size=(n_instances, n_features ))*data_noise for i in xrange(n_nonbogus_features): data[:, i] += y[:] labels = y + N.random.normal(size=(n_instances,))*noise return Dataset(samples=data, labels=labels) def linear_awgn(size=10, intercept=0.0, slope=0.4, noise_std=0.01, flat=False): """Generate a dataset from a linear function with AWGN (Added White Gaussian Noise). It can be multidimensional if 'slope' is a vector. If flat is True (in 1 dimesion) generate equally spaces samples instead of random ones. This is useful for the test phase. """ dimensions = 1 if isinstance(slope, N.ndarray): dimensions = slope.size if flat and dimensions == 1: x = N.linspace(0, 1, size)[:, N.newaxis] else: x = N.random.rand(size, dimensions) y = N.dot(x, slope)[:, N.newaxis] \ + (N.random.randn(*(x.shape[0], 1)) * noise_std) + intercept return Dataset(samples=x, labels=y) def noisy_2d_fx(size_per_fx, dfx, sfx, center, noise_std=1): """ """ x = [] y = [] labels = [] for fx in sfx: nx = N.random.normal(size=size_per_fx) ny = fx(nx) + N.random.normal(size=nx.shape, scale=noise_std) x.append(nx) y.append(ny) # whenever larger than first function value labels.append(N.array(ny < dfx(nx), dtype='int')) samples = N.array((N.hstack(x), N.hstack(y))).squeeze().T labels = N.hstack(labels).squeeze().T samples += N.array(center) return Dataset(samples=samples, labels=labels) def linear1d_gaussian_noise(size=100, slope=0.5, intercept=1.0, x_min=-2.0, x_max=3.0, sigma=0.2): """A straight line with some Gaussian noise. """ x = N.linspace(start=x_min, stop=x_max, num=size) noise = N.random.randn(size)*sigma y = x * slope + intercept + noise return Dataset(samples=x.reshape((-1, 1)), labels=y) pymvpa-0.4.8/mvpa/misc/errorfx.py000066400000000000000000000137001174541445200170060ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Error functions helpers. PyMVPA can use arbitrary function which takes 2 arguments: predictions and targets and spits out a scalar value. Functions below are for the convinience, and they confirm the agreement that 'smaller' is 'better'""" __docformat__ = 'restructuredtext' import numpy as N from numpy import trapz from mvpa.base import externals # Various helper functions def meanPowerFx(data): """Returns mean power Similar to var but without demeaning """ return N.mean(N.asanyarray(data)**2) def rootMeanPowerFx(data): """Returns root mean power to be comparable against RMSE """ return N.sqrt(meanPowerFx(data)) class _ErrorFx(object): """Common error function interface, computing the difference between some target and some predicted values. """ """XXX there is no reason to keep this class around imho -- it is just the skeleton for all the _ErrorFxs -- interface they must conform... and there is no reason to have all those ErrorFx as classes... may be they should be just functions?""" def __str__(self): """Print class name when asked for string """ return self.__class__.__name__ def __repr__(self): """Proper repr for _ErrorFx """ return self.__class__.__name__ + "()" def __call__(self, predicted, target): """Compute some error value from the given target and predicted values (both sequences). """ raise NotImplemented class RMSErrorFx(_ErrorFx): """Computes the root mean squared error of some target and some predicted values. """ def __call__(self, predicted, target): """Both 'predicted' and 'target' can be either scalars or sequences, but have to be of the same length. """ return N.sqrt(N.mean(N.subtract(predicted, target)**2)) class MeanMismatchErrorFx(_ErrorFx): """Computes the percentage of mismatches between some target and some predicted values. """ def __call__(self, predicted, target): """Both 'predicted' and 'target' can be either scalars or sequences, but have to be of the same length. """ return 1 - N.mean( predicted == target ) class AUCErrorFx(_ErrorFx): """Computes the area under the ROC for the given the target and predicted to make the prediction.""" def __call__(self, predicted, target): """Requires all arguments.""" # sort the target in descending order based on the predicted and # set to boolean self.t = t = N.asanyarray(target)[N.argsort(predicted)[::-1]] > 0 # calculate the true positives self.tp = tp = N.concatenate( ([0], N.cumsum(t)/t.sum(dtype=N.float), [1])) # calculate the false positives self.fp = fp = N.concatenate( ([0], N.cumsum(~t)/(~t).sum(dtype=N.float), [1])) return trapz(tp, fp) if externals.exists('scipy'): from scipy.stats import pearsonr class CorrErrorFx(_ErrorFx): """Computes the correlation between the target and the predicted values. Resultant value is the 1 - correlation coefficient, so minimization leads to the best value (at 0) """ def __call__(self, predicted, target): """Requires all arguments.""" return 1.0-pearsonr(predicted, target)[0] class CorrErrorPFx(_ErrorFx): """Computes p-value of correlation between the target and the predicted values. """ def __call__(self, predicted, target): """Requires all arguments.""" return pearsonr(predicted, target)[1] else: # slower(?) and bogus(p-value) implementations for non-scipy users # TODO: implement them more or less correcly with numpy # functionality class CorrErrorFx(_ErrorFx): """Computes the correlation between the target and the predicted values. Return 1-CC """ def __call__(self, predicted, target): """Requires all arguments.""" l = len(predicted) return 1.0 - N.corrcoef(N.reshape(predicted, l), N.reshape(target, l))[0,1] class CorrErrorPFx(_ErrorFx): """Computes p-value of correlation between the target and the predicted values. """ def __call__(self, predicted, target): """Requires all arguments.""" from mvpa.base import warning warning("p-value for correlation is implemented only when scipy is " "available. Bogus value -1.0 is returned otherwise") return -1.0 class RelativeRMSErrorFx(_ErrorFx): """Ratio between RMSE and root mean power of target output. So it can be considered as a scaled RMSE -- perfect reconstruction has values near 0, while no reconstruction has values around 1.0. Word of caution -- it is not commutative, ie exchange of predicted and target might lead to completely different answers """ def __call__(self, predicted, target): return RMSErrorFx()(predicted, target) / rootMeanPowerFx(target) class Variance1SVFx(_ErrorFx): """Ratio of variance described by the first singular value component. Of limited use -- left for the sake of not wasting it """ def __call__(self, predicted, target): data = N.vstack( (predicted, target) ).T # demean data_demeaned = data - N.mean(data, axis=0) u, s, vh = N.linalg.svd(data_demeaned, full_matrices=0) # assure sorting s.sort() s=s[::-1] cvar = s[0]**2 / N.sum(s**2) return cvar pymvpa-0.4.8/mvpa/misc/exceptions.py000066400000000000000000000031151174541445200174770ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Exception classes which might get thrown""" __docformat__ = 'restructuredtext' class UnknownStateError(Exception): """Thrown if the internal state of the class is not yet defined. Classifiers and Algorithms classes might have properties, which are not defined prior to training or invocation has happened. """ def __init__(self, msg=""): Exception.__init__(self) self.__msg = msg def __str__(self): return "Exception: " + self.__msg class DatasetError(Exception): """Thrown if there is an internal problem with a Dataset. ValueError exception is too generic to be used for any needed case, thus this one is created """ def __init__(self, msg=""): Exception.__init__(self) self.__msg = msg def __str__(self): return "Dataset handling exception: " + self.__msg class ConvergenceError(Exception): """Thrown if some algorithm does not converge to a solution. """ def __init__(self): Exception.__init__(self) class InvalidHyperparameterError(Exception): """Generic exception to be raised when setting improper values as hyperparameters.""" def __init__(self): Exception.__init__(self) pymvpa-0.4.8/mvpa/misc/fsl/000077500000000000000000000000001174541445200155305ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/misc/fsl/__init__.py000066400000000000000000000011441174541445200176410ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for FSL""" if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.misc.fsl') from mvpa.misc.fsl.base import * from mvpa.misc.fsl.flobs import * if __debug__: debug('INIT', 'mvpa.misc.fsl end') pymvpa-0.4.8/mvpa/misc/fsl/base.py000066400000000000000000000215531174541445200170220ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Tiny snippets to interface with FSL easily.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.misc.io import ColumnData from mvpa.misc.support import Event if __debug__: from mvpa.base import debug class FslEV3(ColumnData): """IO helper to read FSL's EV3 files. This is a three-column textfile format that is used to specify stimulation protocols for fMRI data analysis in FSL's FEAT module. Data is always read as `float`. """ def __init__(self, source): """Read and write FSL EV3 files. :Parameter: source: filename of an EV3 file """ # init data from known format ColumnData.__init__(self, source, header=['onsets', 'durations', 'intensities'], sep=None, dtype=float) def getNEVs(self): """Returns the number of EVs in the file. """ return self.nrows def getEV(self, evid): """Returns a tuple of (onset time, simulus duration, intensity) for a certain EV. """ return (self['onsets'][evid], self['durations'][evid], self['intensities'][evid]) def tofile(self, filename): """Write data to a FSL EV3 file. """ ColumnData.tofile(self, filename, header=False, header_order=['onsets', 'durations', 'intensities'], sep=' ') def toEvents(self, **kwargs): """Convert into a list of `Event` instances. :Parameters: kwargs Any keyword arugment provided would be replicated, through all the entries. Useful to specify label or even a chunk """ return \ [Event(onset=self['onsets'][i], duration=self['durations'][i], features=[self['intensities'][i]], **kwargs) for i in xrange(self.nevs)] onsets = property(fget=lambda self: self['onsets']) durations = property(fget=lambda self: self['durations']) intensities = property(fget=lambda self: self['intensities']) nevs = property(fget=getNEVs) class McFlirtParams(ColumnData): """Read and write McFlirt's motion estimation parameters from and to text files. """ header_def = ['rot1', 'rot2', 'rot3', 'x', 'y', 'z'] def __init__(self, source): """Initialize McFlirtParams :Parameter: source: str Filename of a parameter file. """ ColumnData.__init__(self, source, header=McFlirtParams.header_def, sep=None, dtype=float) def tofile(self, filename): """Write motion parameters to file. """ ColumnData.tofile(self, filename, header=False, header_order=McFlirtParams.header_def, sep=' ') def plot(self): """Produce a simple plot of the estimated translation and rotation parameters using. You still need to can pylab.show() or pylab.savefig() if you want to see/get anything. """ # import internally as it takes some time and might not be needed most # of the time import pylab as P # translations subplot P.subplot(211) P.plot(self.x) P.plot(self.y) P.plot(self.z) P.ylabel('Translations in mm') P.legend(('x', 'y', 'z'), loc=0) # rotations subplot P.subplot(212) P.plot(self.rot1) P.plot(self.rot2) P.plot(self.rot3) P.ylabel('Rotations in rad') P.legend(('rot1', 'rot2', 'rot3'), loc=0) def toarray(self): """Returns the data as an array with six columns (same order as in file). """ import numpy as N # return as array with time axis first return N.array([self[i] for i in McFlirtParams.header_def], dtype='float').T class FslGLMDesign(object): """Load FSL GLM design matrices from file. Be aware that such a desig matrix has its regressors in columns and the samples in its rows. """ def __init__(self, source): """ :Parameter: source: filename Compressed files will be read as well, if their filename ends with '.gz'. """ # XXX maybe load from array as well self._loadFile(source) def _loadFile(self, fname): """Helper function to load GLM definition from a file. """ # header info nwaves = 0 ntimepoints = 0 matrix_offset = 0 # open the file compressed or not if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'r') else: fh = open(fname, 'r') # read header for i, line in enumerate(fh): if line.startswith('/NumWaves'): nwaves = int(line.split()[1]) if line.startswith('/NumPoints'): ntimepoints = int(line.split()[1]) if line.startswith('/PPheights'): self.ppheights = [float(i) for i in line.split()[1:]] if line.startswith('/Matrix'): matrix_offset = i + 1 # done with the header, now revert to NumPy's loadtxt for convenience fh.close() self.mat = N.loadtxt(fname, skiprows=matrix_offset) # checks if not self.mat.shape == (ntimepoints, nwaves): raise IOError, "Design matrix file '%s' did not contain expected " \ "matrix size (expected %s, got %s)" \ % (fname, str((ntimepoints, nwaves)), self.mat.shape) def plot(self, style='lines', **kwargs): """Visualize the design matrix. :Parameters: style: 'lines', 'matrix' **kwargs: Additional arguments will be passed to the corresponding matplotlib plotting functions 'plot()' and 'pcolor()' for 'lines' and 'matrix' plots respectively. """ # import internally as it takes some time and might not be needed most # of the time import pylab as P if style == 'lines': # common y-axis yax = N.arange(0, self.mat.shape[0]) axcenters = [] col_offset = max(self.ppheights) # for all columns for i in xrange(self.mat.shape[1]): axcenter = i * col_offset P.plot(self.mat[:, i] + axcenter, yax, **kwargs) axcenters.append(axcenter) P.xticks(N.array(axcenters), range(self.mat.shape[1])) elif style == 'matrix': P.pcolor(self.mat, **kwargs) ticks = N.arange(1, self.mat.shape[1]+1) P.xticks(ticks - 0.5, ticks) else: raise ValueError, "Unknown plotting style '%s'" % style # labels and turn y-axis upside down P.ylabel('Samples (top to bottom)') P.xlabel('Regressors') P.ylim(self.mat.shape[0],0) def read_fsl_design(fsf_file): """Reads an FSL FEAT design.fsf file and return the content as a dictionary. :Parameters: fsf_file : filename, file-like """ # This function was originally contributed by Russell Poldrack if isinstance(fsf_file, basestring): infile = open(fsf_file, 'r') else: infile = fsf_file # target dict fsl = {} # loop over all lines for line in infile: line = line.strip() # if there is nothing on the line, do nothing if not line or line[0] == '#': continue # strip leading TCL 'set' key, value = line.split(None, 2)[1:] # fixup the 'y-' thing if value == 'y-': value = "y" # special case of variable keyword if line.count('_files('): # e.g. feat_files(1) -> feat_files key = key.split('(')[0] # decide which type we have for the value # int? if value.isdigit(): fsl[key] = int(value) else: # float? try: fsl[key] = float(value) except ValueError: # must be string then, but... # sometimes there are quotes, sometimes not, but if the value # should be a string we remove them, since the value is already # of this type fsl[key] = value.strip('"') return fsl pymvpa-0.4.8/mvpa/misc/fsl/flobs.py000066400000000000000000000105271174541445200172140ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Wrapper around FSLs halfcosbasis to generate HRF kernels""" __docformat__ = 'restructuredtext' import os import tempfile import shutil import numpy as N import math def makeFlobs(pre=0, rise=5, fall=5, undershoot=5, undershootamp=0.3, nsamples=1, resolution=0.05, nsecs=-1, nbasisfns=2): """Wrapper around the FSL tool halfcosbasis. This function uses halfcosbasis to generate samples of HRF kernels. Kernel parameters can be modified analogous to the Make_flobs GUI which is part of FSL. :: ^ /-\\ | / \\ 1 / \\ | / \\ | / \\ | / \\ -----/ \\ /----- | \\--/ | undershootamp | | | | | | | | | | pre rise fall undershoot Parameters 'pre', 'rise', 'fall', 'undershoot' and 'undershootamp' can be specified as 2-tuples (min-max range for sampling) and single value (setting exact values -- no sampling). If 'nsec' is negative, the length of the samples is determined automatically to include the whole kernel function (until it returns to baseline). 'nsec' has to be an integer value and is set to the next greater integer value if it is not. All parameters except for 'nsamples' and 'nbasisfns' are in seconds. """ # create tempdir and temporary parameter file pfile, pfilename = tempfile.mkstemp('pyflobs') wdir = tempfile.mkdtemp('pyflobs') # halfcosbasis can only handle >1 samples # so we simply compute two and later ignore the other if nsamples < 2: rnsamples = 2 else: rnsamples = nsamples # make range tuples if not supplied if not isinstance(pre, tuple): pre = (pre, pre) if not isinstance(rise, tuple): rise = (rise, rise) if not isinstance(fall, tuple): fall = (fall, fall) if not isinstance(undershoot, tuple): undershoot = (undershoot, undershoot) if not isinstance(undershootamp, tuple): undershootamp = (undershootamp, undershootamp) # calc minimum length of hrf if not specified # looks like it has to be an integer if nsecs < 0: nsecs = int( math.ceil( pre[1] \ + rise[1] \ + fall[1] \ + undershoot[1] \ + resolution ) ) else: nsecs = math.ceil(nsecs) # write parameter file pfile = os.fdopen( pfile, 'w' ) pfile.write(str(pre[0]) + ' ' + str(pre[1]) + '\n') pfile.write(str(rise[0]) + ' ' + str(rise[1]) + '\n') pfile.write(str(fall[0]) + ' ' + str(fall[1]) + '\n') pfile.write(str(undershoot[0]) + ' ' + str(undershoot[1]) + '\n') pfile.write('0 0\n0 0\n') pfile.write(str(undershootamp[0]) + ' ' + str(undershootamp[1]) + '\n') pfile.write('0 0\n') pfile.close() # call halfcosbasis to generate the hrf samples tochild, fromchild, childerror = os.popen3('halfcosbasis' + ' --hf=' + pfilename + ' --nbfs=' + str(nbasisfns) + ' --ns=' + str(nsecs) + ' --logdir=' + os.path.join(wdir, 'out') + ' --nhs=' + str(rnsamples) + ' --res=' + str(resolution) ) err = childerror.readlines() if len(err) > 0: print err raise RuntimeError, "Problem while running halfcosbasis." # read samples from file into an array hrfs = N.fromfile( os.path.join( wdir, 'out', 'hrfsamps.txt' ), sep = ' ' ) # reshape array to get one sample per row and 1d array only # for one sample hrf hrfs = \ hrfs.reshape( len(hrfs)/rnsamples, rnsamples).T[:nsamples].squeeze() # cleanup working dir (ignore errors) shutil.rmtree( wdir, True ) # remove paramter file os.remove( pfilename ) # and return an array return( hrfs ) pymvpa-0.4.8/mvpa/misc/fsl/melodic.py000066400000000000000000000047621174541445200175270ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Wrapper around the output of MELODIC (part of FSL)""" __docformat__ = 'restructuredtext' import os import numpy as N from mvpa.base import externals if externals.exists('nifti', raiseException=True): import nifti class MelodicResults( object ): """Easy access to MELODIC output. Only important information is available (important as judged by the author). """ def __init__( self, path ): """Reads all information from the given MELODIC output path. """ self.__outputpath = path self.__icapath = os.path.join( path, 'filtered_func_data.ica' ) self.__ic = \ nifti.NiftiImage( os.path.join( self.__icapath, 'melodic_IC' ) ) self.__funcdata = \ nifti.NiftiImage( os.path.join( self.__outputpath, 'filtered_func_data' ) ) self.__tmodes = N.fromfile( os.path.join( self.__icapath, 'melodic_Tmodes' ), sep = ' ' ).reshape( self.tr, self.nic ) self.__smodes = N.fromfile( os.path.join( self.__icapath, 'melodic_Smodes' ), sep = ' ' ) self.__icstats = N.fromfile( os.path.join( self.__icapath, 'melodic_ICstats' ), sep = ' ' ).reshape( self.nic, 4 ) # properties path = property( fget=lambda self: self.__respath ) ic = property( fget=lambda self: self.__ic ) nic = property( fget=lambda self: self.ic.extent[3] ) funcdata = property( fget=lambda self: self.__funcdata ) tr = property( fget=lambda self: self.funcdata.extent[3] ) tmodes = property( fget=lambda self: self.__tmodes ) smodes = property( fget=lambda self: self.__smodes ) icastats = property( fget=lambda self: self.__icstats ) relvar_per_ic = property( fget=lambda self: self.__icstats[:, 0] ) truevar_per_ic = property( fget=lambda self: self.__icstats[:, 1] ) pymvpa-0.4.8/mvpa/misc/fx.py000066400000000000000000000077341174541445200157460ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Misc. functions (in the mathematical sense)""" __docformat__ = 'restructuredtext' import numpy as N def singleGammaHRF(t, A=5.4, W=5.2, K=1.0): """Hemodynamic response function model. The version consists of a single gamma function (also see doubleGammaHRF()). :Parameters: t: float Time. A: float Time to peak. W: float Full-width at half-maximum. K: float Scaling factor. """ A = float(A) W = float(W) K = float(K) return K * (t / A) ** ((A ** 2) / (W ** 2) * 8.0 * N.log(2.0)) \ * N.e ** ((t - A) / -((W ** 2) / A / 8.0 / N.log(2.0))) def doubleGammaHRF(t, A1=5.4, W1=5.2, K1=1.0, A2=10.8, W2=7.35, K2=0.35): """Hemodynamic response function model. The version is using two gamma functions (also see singleGammaHRF()). :Parameters: t: float Time. A: float Time to peak. W: float Full-width at half-maximum. K: float Scaling factor. Parameters A, W and K exists individually for each of both gamma functions. """ A1 = float(A1) W1 = float(W1) K1 = float(K1) A2 = float(A2) W2 = float(W2) K2 = float(K2) return singleGammaHRF(t, A1, W1, K1) - singleGammaHRF(t, A2, W2, K2) def leastSqFit(fx, params, y, x=None, **kwargs): """Simple convenience wrapper around SciPy's optimize.leastsq. The advantage of using this wrapper instead of optimize.leastsq directly is, that it automatically constructs an appropriate error function and easily deals with 2d data arrays, i.e. each column with multiple values for the same function argument (`x`-value). :Parameters: fx: functor Function to be fitted to the data. It has to take a vector with function arguments (`x`-values) as the first argument, followed by an arbitrary number of (to be fitted) parameters. params: sequence Sequence of start values for all to be fitted parameters. During fitting all parameters in this sequences are passed to the function in the order in which they appear in this sequence. y: 1d or 2d array The data the function is fitted to. In the case of a 2d array, each column in the array is considered to be multiple observations or measurements of function values for the same `x`-value. x: Corresponding function arguments (`x`-values) for each datapoint, i.e. element in `y` or columns in `y', in the case of `y` being a 2d array. If `x` is not provided it will be generated by `N.arange(m)`, where `m` is either the length of `y` or the number of columns in `y`, if `y` is a 2d array. **kwargs: All additonal keyword arguments are passed to `fx`. :Returns: tuple: as returned by scipy.optimize.leastsq i.e. 2-tuple with list of final (fitted) parameters of `fx` and an integer value indicating success or failure of the fitting procedure (see leastsq docs for more information). """ # import here to not let the whole module depend on SciPy from scipy.optimize import leastsq y = N.asanyarray(y) if len(y.shape) > 1: nsamp, ylen = y.shape else: nsamp, ylen = (1, len(y)) # contruct matching x-values if necessary if x is None: x = N.arange(ylen) # transform x and y into 1d arrays if nsamp > 1: x = N.array([x] * nsamp).ravel() y = y.ravel() # define error function def efx(p): err = y - fx(x, *p, **kwargs) return err # do fit return leastsq(efx, params) pymvpa-0.4.8/mvpa/misc/io/000077500000000000000000000000001174541445200153535ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/misc/io/__init__.py000066400000000000000000000011061174541445200174620ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for IO helpers""" if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.misc.io') from mvpa.misc.io.base import * if __debug__: debug('INIT', 'mvpa.misc.io end') pymvpa-0.4.8/mvpa/misc/io/base.py000066400000000000000000000525201174541445200166430ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Some little helper for reading (and writing) common formats from and to disk.""" __docformat__ = 'restructuredtext' import numpy as N import mvpa.support.copy as copy from mvpa.base.dochelpers import enhancedDocString from re import sub as re_sub from mvpa.base import warning from mvpa.misc.support import Event if __debug__: from mvpa.base import debug class DataReader(object): """Base class for data readers. Every subclass has to put all information into to variable: `self._data`: ndarray The data array has to have the samples separating dimension along the first axis. `self._props`: dict All other meaningful information has to be stored in a dictionary. This class provides two methods (and associated properties) to retrieve this information. """ def __init__(self): """Cheap init. """ self._props = {} self._data = None def getPropsAsDict(self): """Return the dictionary with the data properties. """ return self._props def getData(self): """Return the data array. """ return self._data data = property(fget=getData, doc="Data array") props = property(fget=getPropsAsDict, doc="Property dict") class ColumnData(dict): """Read data that is stored in columns of text files. All read data is available via a dictionary-like interface. If column headers are available, the column names serve as dictionary keys. If no header exists an articfical key is generated: str(number_of_column). Splitting of text file lines is performed by the standard split() function (which gets passed the `sep` argument as separator string) and each element is converted into the desired datatype. Because data is read into a dictionary no two columns can have the same name in the header! Each column is stored as a list in the dictionary. """ def __init__(self, source, header=True, sep=None, headersep=None, dtype=float, skiplines=0): """Read data from file into a dictionary. :Parameters: source : basestring or dict If values is given as a string all data is read from the file and additonal keyword arguments can be sued to customize the read procedure. If a dictionary is passed a deepcopy is performed. header : bool or list of basestring Indicates whether the column names should be read from the first line (`header=True`). If `header=False` unique column names will be generated (see class docs). If `header` is a python list, it's content is used as column header names and its length has to match the number of columns in the file. sep : basestring or None Separator string. The actual meaning depends on the output format (see class docs). headersep : basestring or None Separator string used in the header. The actual meaning depends on the output format (see class docs). dtype : type or list(types) Desired datatype(s). Datatype per column get be specified by passing a list of types. skiplines : int Number of lines to skip at the beginning of the file. """ # init base class dict.__init__(self) # intialize with default self._header_order = None if isinstance(source, str): self._fromFile(source, header=header, sep=sep, headersep=headersep, dtype=dtype, skiplines=skiplines) elif isinstance(source, dict): for k, v in source.iteritems(): self[k] = v # check data integrity self._check() else: raise ValueError, 'Unkown source for ColumnData [%s]' \ % `type(source)` # generate missing properties for each item in the header classdict = self.__class__.__dict__ for k in self.keys(): if not classdict.has_key(k): getter = "lambda self: self._getAttrib('%s')" % (k) # Sanitarize the key, substitute ' []' with '_' k_ = re_sub('[[\] ]', '_', k) # replace multipe _s k_ = re_sub('__+', '_', k_) # remove quotes k_ = re_sub('["\']', '', k_) if __debug__: debug("IOH", "Registering property %s for ColumnData key %s" % (k_, k)) # make sure to import class directly into local namespace # otherwise following does not work for classes defined # elsewhere exec 'from %s import %s' % (self.__module__, self.__class__.__name__) exec "%s.%s = property(fget=%s)" % \ (self.__class__.__name__, k_, getter) # TODO!!! Check if it is safe actually here to rely on value of # k in lambda. May be it is treated as continuation and # some local space would override it???? #setattr(self.__class__, # k, # property(fget=lambda x: x._getAttrib("%s" % k))) # it seems to be error-prone due to continuation... __doc__ = enhancedDocString('ColumnData', locals()) def _getAttrib(self, key): """Return corresponding value if given key is known to current instance Is used for automatically added properties to the class. :Raises: ValueError: If `key` is not known to given instance :Returns: Value if `key` is known """ if self.has_key(key): return self[key] else: raise ValueError, "Instance %s has no data about %s" \ % (`self`, `key`) def __str__(self): s = self.__class__.__name__ if len(self.keys())>0: s += " %d rows, %d columns [" % \ (self.getNRows(), self.getNColumns()) s += reduce(lambda x, y: x+" %s" % y, self.keys()) s += "]" return s def _check(self): """Performs some checks for data integrity. """ length = None for k in self.keys(): if length == None: length = len(self[k]) else: if not len(self[k]) == length: raise ValueError, "Data integrity lost. Columns do not " \ "have equal length." def _fromFile(self, filename, header, sep, headersep, dtype, skiplines): """Loads column data from file -- clears object first. """ # make a clean table self.clear() file_ = open(filename, 'r') self._header_order = None [ file_.readline() for x in range(skiplines) ] """Simply skip some lines""" # make column names, either take header or generate if header == True: # read first line and split by 'sep' hdr = file_.readline().split(headersep) # remove bogus empty header titles hdr = filter(lambda x:len(x.strip()), hdr) self._header_order = hdr elif isinstance(header, list): hdr = header else: hdr = [ str(i) for i in xrange(len(file_.readline().split(sep))) ] # reset file to not miss the first line file_.seek(0) [ file_.readline() for x in range(skiplines) ] # string in lists: one per column tbl = [ [] for i in xrange(len(hdr)) ] # do per column dtypes if not isinstance(dtype, list): dtype = [dtype] * len(hdr) # parse line by line and feed into the lists for line in file_: # get rid of leading and trailing whitespace line = line.strip() # ignore empty lines and comment lines if not line or line.startswith('#'): continue l = line.split(sep) if not len(l) == len(hdr): raise RuntimeError, \ "Number of entries in line [%i] does not match number " \ "of columns in header [%i]." % (len(l), len(hdr)) for i, v in enumerate(l): if not dtype[i] is None: try: v = dtype[i](v) except ValueError: warning("Can't convert %s to desired datatype %s." % (`v`, `dtype`) + " Leaving original type") tbl[i].append(v) # check if not len(tbl) == len(hdr): raise RuntimeError, "Number of columns read from file does not " \ "match the number of header entries." # fill dict for i, v in enumerate(hdr): self[v] = tbl[i] def __iadd__(self, other): """Merge column data. """ # for all columns in the other object for k, v in other.iteritems(): if not self.has_key(k): raise ValueError, 'Unknown key [%s].' % `k` if not isinstance(v, list): raise ValueError, 'Can only merge list data, but got [%s].' \ % `type(v)` # now it seems to be ok # XXX check for datatype? self[k] += v # look for problems, like columns present in self, but not in other self._check() return self def selectSamples(self, selection): """Return new ColumnData with selected samples""" data = copy.deepcopy(self) for k, v in data.iteritems(): data[k] = [v[x] for x in selection] data._check() return data def getNColumns(self): """Returns the number of columns. """ return len(self.keys()) def tofile(self, filename, header=True, header_order=None, sep=' '): """Write column data to a text file. :Parameters: filename : basestring Target filename header : bool If `True` a column header is written, using the column keys. If `False` no header is written. header_order : None or list of basestring If it is a list of strings, they will be used instead of simply asking for the dictionary keys. However these strings must match the dictionary keys in number and identity. This argument type can be used to determine the order of the columns in the output file. The default value is `None`. In this case the columns will be in an arbitrary order. sep : basestring String that is written as a separator between to data columns. """ # XXX do the try: except: dance file_ = open(filename, 'w') # write header if header_order == None: if self._header_order is None: col_hdr = self.keys() else: # use stored order + newly added keys at the last columns col_hdr = self._header_order + \ list(set(self.keys()).difference( set(self._header_order))) else: if not len(header_order) == self.getNColumns(): raise ValueError, 'Header list does not match number of ' \ 'columns.' for k in header_order: if not self.has_key(k): raise ValueError, 'Unknown key [%s]' % `k` col_hdr = header_order if header == True: file_.write(sep.join(col_hdr) + '\n') # for all rows for r in xrange(self.getNRows()): # get attributes for all keys l = [str(self[k][r]) for k in col_hdr] # write to file with proper separator file_.write(sep.join(l) + '\n') file_.close() def getNRows(self): """Returns the number of rows. """ # no data no rows (after Bob Marley) if not len(self.keys()): return 0 # otherwise first key is as good as any other else: return len(self[self.keys()[0]]) ncolumns = property(fget=getNColumns) nrows = property(fget=getNRows) class SampleAttributes(ColumnData): """Read and write PyMVPA sample attribute definitions from and to text files. """ def __init__(self, source, literallabels=False, header=None): """Read PyMVPA sample attributes from disk. :Parameters: source: basestring Filename of an atrribute file literallabels: bool Either labels are given as literal strings header: None or bool or list of str If None, ['labels', 'chunks'] is assumed. Otherwise the same behavior as of `ColumnData` """ if literallabels: dtypes = [str, float] else: dtypes = float if header is None: header = ['labels', 'chunks'] ColumnData.__init__(self, source, header=header, sep=None, dtype=dtypes) def tofile(self, filename): """Write sample attributes to a text file. """ ColumnData.tofile(self, filename, header=False, header_order=['labels', 'chunks'], sep=' ') def getNSamples(self): """Returns the number of samples in the file. """ return self.getNRows() def toEvents(self, **kwargs): """Convert into a list of `Event` instances. Each change in the label or chunks value is taken as a new event onset. The length of an event is determined by the number of identical consecutive label-chunk combinations. Since the attributes list has no sense of absolute timing, both `onset` and `duration` are determined and stored in #samples units. :Parameters: kwargs Any keyword arugment provided would be replicated, through all the entries. """ events = [] prev_onset = 0 old_comb = None duration = 1 # over all samples for r in xrange(self.nrows): # the label-chunk combination comb = (self.labels[r], self.chunks[r]) # check if things changed if not comb == old_comb: # did we ever had an event if not old_comb is None: events.append( Event(onset=prev_onset, duration=duration, label=old_comb[0], chunk=old_comb[1], **kwargs)) # reset duration for next event duration = 1 # store the current samples as onset for the next event prev_onset = r # update the reference combination old_comb = comb else: # current event is lasting duration += 1 # push the last event in the pipeline if not old_comb is None: events.append( Event(onset=prev_onset, duration=duration, label=old_comb[0], chunk=old_comb[1], **kwargs)) return events nsamples = property(fget=getNSamples) class SensorLocations(ColumnData): """Base class for sensor location readers. Each subclass should provide x, y, z coordinates via the `pos_x`, `pos_y`, and `pos_z` attrbibutes. Axes should follow the following convention: x-axis: left -> right y-axis: anterior -> posterior z-axis: superior -> inferior """ def __init__(self, *args, **kwargs): """Pass arguments to ColumnData. """ ColumnData.__init__(self, *args, **kwargs) def locations(self): """Get the sensor locations as an array. :Returns: (nchannels x 3) array with coordinates in (x, y, z) """ return N.array((self.pos_x, self.pos_y, self.pos_z)).T class XAVRSensorLocations(SensorLocations): """Read sensor location definitions from a specific text file format. File layout is assumed to be 5 columns: 1. sensor name 2. some useless integer 3. position on x-axis 4. position on y-axis 5. position on z-axis """ def __init__(self, source): """Read sensor locations from file. :Parameter: source : filename of an attribute file """ SensorLocations.__init__( self, source, header=['names', 'some_number', 'pos_x', 'pos_y', 'pos_z'], sep=None, dtype=[str, int, float, float, float]) class TuebingenMEGSensorLocations(SensorLocations): """Read sensor location definitions from a specific text file format. File layout is assumed to be 7 columns: 1: sensor name 2: position on y-axis 3: position on x-axis 4: position on z-axis 5-7: same as 2-4, but for some outer surface thingie. Note that x and y seem to be swapped, ie. y as defined by SensorLocations conventions seems to be first axis and followed by x. Only inner surface coordinates are reported by `locations()`. """ def __init__(self, source): """Read sensor locations from file. :Parameter: source : filename of an attribute file """ SensorLocations.__init__( self, source, header=['names', 'pos_y', 'pos_x', 'pos_z', 'pos_y2', 'pos_x2', 'pos_z2'], sep=None, dtype=[str, float, float, float, float, float, float]) def design2labels(columndata, baseline_label=0, func=lambda x: x > 0.0): """Helper to convert design matrix into a list of labels Given a design, assign a single label to any given sample TODO: fix description/naming :Parameters: columndata : ColumnData Attributes where each known will be considered as a separate explanatory variable (EV) in the design. baseline_label What label to assign for samples where none of EVs was given a value func : functor Function which decides either a value should be considered :Output: list of labels which are taken from column names in ColumnData and baseline_label """ # doing it simple naive way but it should be of better control if # we decide to process columndata with non-numeric entries etc keys = columndata.keys() labels = [] for row in xrange(columndata.nrows): entries = [ columndata[key][row] for key in keys ] # which entries get selected selected = filter(lambda x: func(x[1]), zip(keys, entries)) nselected = len(selected) if nselected > 1: # if there is more than a single one -- we are in problem raise ValueError, "Row #%i with items %s has multiple entries " \ "meeting the criterion. Cannot decide on the label" % \ (row, entries) elif nselected == 1: label = selected[0][0] else: label = baseline_label labels.append(label) return labels __known_chunking_methods = { 'alllabels': 'Each chunk must contain instances of all labels' } def labels2chunks(labels, method="alllabels", ignore_labels=None): """Automagically decide on chunks based on labels :Parameters: labels labels to base chunking on method : basestring codename for method to use. Known are %s ignore_labels : list of basestring depends on the method. If method ``alllabels``, then don't seek for such labels in chunks. E.g. some 'reject' samples :rtype: list """ % __known_chunking_methods.keys() chunks = [] if ignore_labels is None: ignore_labels = [] alllabels = set(labels).difference(set(ignore_labels)) if method == 'alllabels': seenlabels = set() lastlabel = None chunk = 0 for label in labels: if label != lastlabel: if seenlabels == alllabels: chunk += 1 seenlabels = set() lastlabel = label if not label in ignore_labels: seenlabels.update([label]) chunks.append(chunk) chunks = N.array(chunks) # fix up a bit the trailer if seenlabels != alllabels: chunks[chunks == chunk] = chunk-1 chunks = list(chunks) else: errmsg = "Unknown method to derive chunks is requested. Known are:\n" for method, descr in __known_chunking_methods.iteritems(): errmsg += " %s : %s\n" % (method, descr) raise ValueError, errmsg return chunks pymvpa-0.4.8/mvpa/misc/io/eepbin.py000066400000000000000000000101741174541445200171720ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # # Derived from the EEP binary reader of the pybsig toolbox # (C) by Ingo Fruend # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Reader for binary EEP files.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.misc.io import DataReader class EEPBin(DataReader): """Read-access to binary EEP files. EEP files are used by *eeprobe* a software for analysing even-related potentials (ERP), which was developed at the Max-Planck Institute for Cognitive Neuroscience in Leipzig, Germany. http://www.ant-neuro.com/products/eeprobe EEP files consist of a plain text header and a binary data block in a single file. The header starts with a line of the form ';%d %d %d %g %g' % (Nchannels, Nsamples, Ntrials, t0, dt) where Nchannels, Nsamples, Ntrials are the numbers of channels, samples per trial and trials respectively. t0 is the time of the first sample of a trial relative to the stimulus onset and dt is the sampling interval. The binary data block consists of single precision floats arranged in the following way:: ,,... ,,... . ,,... ,,... """ def __init__(self, source): """Read EEP file and store header and data. :Parameter: source : str Filename. """ # init base class DataReader.__init__(self) # temp storage of number of samples nsamples = None # non-critical header components stored in temp dict hdr = {} infile = open(source, "r") # read file the end of header of EOF while True: # one line at a time line = infile.readline() # stop if EOH or EOF if not line or line.startswith(';EOH;'): break # no crap! line = line.strip() # all but first line as colon if not line.count(':'): # top header l = line.split() # extract critical information self._props['nchannels'] = int(l[0][1:]) self._props['ntimepoints'] = int(l[1]) self._props['t0'] = float(l[3]) self._props['dt'] = float(l[4]) nsamples = int(l[2]) else: # simply store non-critical extras l = line.split(':') key = l[0].lstrip(';') value = ':'.join(l[1:]) hdr[key] = value # post process channel name info -> list if hdr.has_key('channels'): self._props['channels'] = hdr['channels'].split() self._data = \ N.reshape(N.fromfile(infile, dtype='f'), \ (nsamples, self._props['nchannels'], self._props['ntimepoints'])) # cleanup infile.close() nchannels = property(fget=lambda self: self._props['nchannels'], doc="Number of channels") ntimepoints = property(fget=lambda self: self._props['ntimepoints'], doc="Number of data timepoints") nsamples = property(fget=lambda self: self._data.shape[0], doc="Number of trials/samples") t0 = property(fget=lambda self: self._props['t0'], doc="Relative start time of sampling interval") dt = property(fget=lambda self: self._props['dt'], doc="Time difference between two adjacent samples") channels = property(fget=lambda self: self._props['channels'], doc="List of channel names") pymvpa-0.4.8/mvpa/misc/io/hamster.py000066400000000000000000000140131174541445200173670ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Helper for simple storage facility via cPickle and optionally zlib""" __docformat__ = 'restructuredtext' import os from mvpa.base import externals _d_geti_ = dict.__getitem__ _d_seti_ = dict.__setitem__ _o_geta_ = dict.__getattribute__ _o_seta_ = dict.__setattr__ if externals.exists('cPickle', raiseException=True) and \ externals.exists('gzip', raiseException=True): import cPickle, gzip if __debug__: from mvpa.base import debug class Hamster(object): """Simple container class with basic IO capabilities. It is capable of storing itself in a file, or loading from a file using cPickle (optionally via zlib from compressed files). Any serializable object can be bound to a hamster to be stored. To undig burried hamster use Hamster(filename). Here is an example: >>> h = Hamster(bla='blai') >>> h.boo = N.arange(5) >>> h.dump(filename) ... >>> h = Hamster(filename) Since Hamster introduces methods `dump`, `asdict` and property 'registered', those names cannot be used to assign an attribute, nor provided in among constructor arguments. """ __ro_attr = set(object.__dict__.keys() + ['dump', 'registered', 'asdict']) """Attributes which come with being an object""" def __new__(cls, *args, **kwargs): if len(args) > 0: if len(kwargs) > 0: raise ValueError, \ "Do not mix positional and keyword arguments. " \ "Use a single positional argument -- filename, " \ "or any number of keyword arguments, without having " \ "filename specified" if len(args) == 1 and isinstance(args[0], basestring): filename = args[0] args = args[1:] if __debug__: debug('IOH', 'Undigging hamster from %s' % filename) # compressed or not -- that is the question if filename.endswith('.gz'): f = gzip.open(filename) else: f = open(filename) result = cPickle.load(f) if not isinstance(result, Hamster): warning("Loaded other than Hamster class from %s" % filename) return result else: raise ValueError, "Hamster accepts only a single positional " \ "argument and it must be a filename. Got %d " \ "arguments" % (len(args),) else: return object.__new__(cls) def __init__(self, *args, **kwargs): """Initialize Hamster. Providing a single parameter string would treat it as a filename from which to undig the data. Otherwise all keyword parameters are assigned into the attributes of the object. """ if len(args) > 0: if len(args) == 1 and isinstance(args[0], basestring): # it was a filename args = args[1:] else: raise RuntimeError, "Should not get here" # assign provided attributes for k,v in kwargs.iteritems(): setattr(self, k, v) object.__init__(self) def dump(self, filename, compresslevel='auto'): """Bury the hamster into the file :Parameter: filename: str Name of the target file. When writing to a compressed file the filename gets a '.gz' extension if not already specified. This is necessary as the constructor uses the extension to decide whether it loads from a compressed or uncompressed file. compresslevel: 'auto' or int Compression level setting passed to gzip. When set to 'auto', if filename ends with '.gz' `compresslevel` is set to 5, 0 otherwise. However, when `compresslevel` is set to 0 gzip is bypassed completely and everything is written to an uncompressed file. """ if compresslevel == 'auto': compresslevel = (0, 5)[int(filename.endswith('.gz'))] if compresslevel > 0 and not filename.endswith('.gz'): filename += '.gz' if __debug__: debug('IOH', 'Burying hamster into %s' % filename) if compresslevel == 0: f = open(filename, 'w') else: f = gzip.open(filename, 'w', compresslevel) cPickle.dump(self, f) f.close() def __repr__(self): reg_attr = ["%s=%s" % (k, repr(getattr(self, k))) for k in self.registered] return "%s(%s)" % (self.__class__.__name__, ", ".join(reg_attr)) # ??? actually seems to be ugly #def __str__(self): # registered = self.registered # return "%s with %d elements: %s" \ # % (self.__class__.__name__, # len(registered), # ", ".join(self.registered)) @property def registered(self): """List registered attributes. """ reg_attr = [k for k in self.__dict__.iterkeys() if not k in self.__ro_attr] reg_attr.sort() return reg_attr def __setattr__(self, k, v): """Just to prevent resetting read-only attributes, such as methods """ if k in self.__ro_attr: raise ValueError, "'%s' object attribute '%s' is read-only" \ % (self.__class__.__name__, k) object.__setattr__(self, k, v) def asdict(self): """Return registered data as dictionary """ return dict([(k, getattr(self, k)) for k in self.registered]) pymvpa-0.4.8/mvpa/misc/io/meg.py000066400000000000000000000104161174541445200164770ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """IO helper for MEG datasets.""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import externals class TuebingenMEG(object): """Reader for MEG data from line-based textfile format. This class reads segmented MEG data from a textfile, which is created by converting the proprietary binary output files of a MEG device in Tuebingen (Germany) with an unkown tool. The file format is line-based, i.e. all timepoints for all samples/trials are written in a single line. Each line is prefixed with an identifier (using a colon as the delimiter between identifier and data). Two lines have a special purpose. The first 'Sample Number' is a list of timepoint ids, similar to `range(ntimepoints)` for each sample/trial (all concatenated into one line. The second 'Time' contains the timing information for each timepoint (relative to stimulus onset), again for all trials concatenated into a single line. All other lines contain various information (channels) recorded during the experiment. The meaning of some channels is unknown. Known ones are: M*: MEG channels EEG*: EEG channels ADC*: Analog to digital converter output Dataset properties are available from various class attributes. The `data` member provides all data from all channels (except for 'Sample Number' and 'Time') in a NumPy array (nsamples x nchannels x ntimepoints). The reader supports uncompressed as well as gzipped input files (or other file-like objects). """ def __init__(self, source): """Reader MEG data from texfiles or file-like objects. :Parameters: source: str | file-like Strings are assumed to be filenames (with `.gz` suffix compressed), while all other object types are treated as file-like objects. """ self.ntimepoints = None self.timepoints = None self.nsamples = None self.channelids = [] self.data = [] self.samplingrate = None # open textfiles if isinstance(source, str): if source.endswith('.gz'): externals.exists('gzip', raiseException=True) import gzip source = gzip.open(source, 'r') else: source = open(source, 'r') # read file for line in source: # split ID colon = line.find(':') # ignore lines without id if colon == -1: continue id = line[:colon] data = line[colon+1:].strip() if id == 'Sample Number': timepoints = N.fromstring(data, dtype=int, sep='\t') # one more as it starts with zero self.ntimepoints = int(timepoints.max()) + 1 self.nsamples = int(len(timepoints) / self.ntimepoints) elif id == 'Time': self.timepoints = N.fromstring(data, dtype=float, count=self.ntimepoints, sep='\t') self.samplingrate = self.ntimepoints \ / (self.timepoints[-1] - self.timepoints[0]) else: # load data self.data.append( N.fromstring(data, dtype=float, sep='\t').reshape( self.nsamples, self.ntimepoints)) # store id self.channelids.append(id) # reshape data from (channels x samples x timepoints) to # (samples x chanels x timepoints) self.data = N.swapaxes(N.array(self.data), 0, 1) def __str__(self): """Give a short summary. """ return '' \ % (self.nsamples, self.ntimepoints, len(self.channelids)) pymvpa-0.4.8/mvpa/misc/param.py000066400000000000000000000125451174541445200164250ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##g """Parameter representation""" __docformat__ = 'restructuredtext' import re import textwrap from mvpa.misc.state import CollectableAttribute if __debug__: from mvpa.base import debug _whitespace_re = re.compile('\n\s+|^\s+') __all__ = [ 'Parameter', 'KernelParameter' ] class Parameter(CollectableAttribute): """This class shall serve as a representation of a parameter. It might be useful if a little more information than the pure parameter value is required (or even only useful). Each parameter must have a value. However additional property can be passed to the constructor and will be stored in the object. BIG ASSUMPTION: stored values are not mutable, ie nobody should do cls.parameter1[:] = ... or we wouldn't know that it was changed Here is a list of possible property names: min - minimum value max - maximum value step - increment/decrement stepsize """ def __init__(self, default, name=None, doc=None, index=None, **kwargs): """Specify a parameter by its default value and optionally an arbitrary number of additional parameters. TODO: :Parameters: for Parameter """ self.__default = default CollectableAttribute.__init__(self, name=name, doc=doc, index=index) self.resetvalue() self._isset = False if __debug__: if kwargs.has_key('val'): raise ValueError, "'val' property name is illegal." # XXX probably is too generic... for k, v in kwargs.iteritems(): self.__setattr__(k, v) def __str__(self): res = CollectableAttribute.__str__(self) # it is enabled but no value is assigned yet res += '=%s' % (self.value,) return res def doc(self, indent=" ", width=70): """Docstring for the parameter to be used in lists of parameters :Returns: string or list of strings (if indent is None) """ paramsdoc = " %s" % self.name if hasattr(paramsdoc, 'allowedtype'): paramsdoc += " : %s" % self.allowedtype paramsdoc = [paramsdoc] try: doc = self.__doc__ if not doc.endswith('.'): doc += '.' try: doc += " (Default: %s)" % self.default except: pass # Explicitly deal with multiple spaces, for some reason # replace_whitespace is non-effective doc = _whitespace_re.sub(' ', doc) paramsdoc += [' ' + x for x in textwrap.wrap(doc, width=width-len(indent), replace_whitespace=True)] except Exception, e: pass if indent is None: return paramsdoc else: return ('\n' + indent).join(paramsdoc) # XXX should be named reset2default? correspondingly in # ParameterCollection as well def resetvalue(self): """Reset value to the default""" #CollectableAttribute.reset(self) if not self.isDefault: self._isset = True self.value = self.__default def _set(self, val): if self._value != val: if __debug__: debug("COL", "Parameter: setting %s to %s " % (str(self), val)) if hasattr(self, 'min') and val < self.min: raise ValueError, \ "Minimal value for parameter %s is %s. Got %s" % \ (self.name, self.min, val) if hasattr(self, 'max') and val > self.max: raise ValueError, \ "Maximal value for parameter %s is %s. Got %s" % \ (self.name, self.max, val) if hasattr(self, 'choices') and (not val in self.choices): raise ValueError, \ "Valid choices for parameter %s are %s. Got %s" % \ (self.name, self.choices, val) self._value = val self._isset = True elif __debug__: debug("COL", "Parameter: not setting %s since value is the same" \ % (str(self))) @property def isDefault(self): """Returns True if current value is bound to default one""" return self._value is self.default @property def equalDefault(self): """Returns True if current value is equal to default one""" return self._value == self.__default def setDefault(self, value): wasdefault = self.isDefault self.__default = value if wasdefault: self.resetvalue() self._isset = False # incorrect behavior #def reset(self): # """Override reset so we don't clean the flag""" # pass default = property(fget=lambda x:x.__default, fset=setDefault) value = property(fget=lambda x:x._value, fset=_set) class KernelParameter(Parameter): """Just that it is different beast""" pass pymvpa-0.4.8/mvpa/misc/plot/000077500000000000000000000000001174541445200157225ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/misc/plot/__init__.py000066400000000000000000000012451174541445200200350ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for miscalaneouse PyMVPA plotting functions (mvpa.misc.plot)""" __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.misc.plot start') from mvpa.misc.plot.base import * if __debug__: debug('INIT', 'mvpa.misc.plot end') pymvpa-0.4.8/mvpa/misc/plot/base.py000066400000000000000000000251341174541445200172130ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Misc. plotting helpers.""" __docformat__ = 'restructuredtext' import pylab as P import numpy as N from mvpa.datasets.splitters import NFoldSplitter from mvpa.clfs.distance import squared_euclidean_distance def plotErrLine(data, x=None, errtype='ste', curves=None, linestyle='--', fmt='o', perc_sigchg=False, baseline=None): """Make a line plot with errorbars on the data points. :Parameters: data: sequence of sequences First axis separates samples and second axis will appear as x-axis in the plot. x: sequence Value to be used as 'x-values' corresponding to the elements of the 2nd axis id `data`. If `None`, a sequence of ascending integers will be generated. errtype: 'ste' | 'std' Type of error value to be computed per datapoint. 'ste': standard error of the mean 'std': standard deviation curves: None | list of tuple(x, y) Each tuple represents an additional curve, with x and y coordinates of each point on the curve. linestyle: str matplotlib linestyle argument. Applied to either the additional curve or a the line connecting the datapoints. Set to 'None' to disable the line completely. fmt: str matplotlib plot style argument to be applied to the data points and errorbars. perc_sigchg: bool If `True` the plot will show percent signal changes relative to a baseline. baseline: float | None Baseline used for converting values into percent signal changes. If `None` and `perc_sigchg` is `True`, the absolute of the mean of the first feature (i.e. [:,0]) will be used as a baseline. :Example: Make dataset with 20 samples from a full sinus wave period, computed 100 times with individual noise pattern. >>> x = N.linspace(0, N.pi * 2, 20) >>> data = N.vstack([N.sin(x)] * 30) >>> data += N.random.normal(size=data.shape) Now, plot mean data points with error bars, plus a high-res version of the original sinus wave. >>> x = N.linspace(0, N.pi * 2, 200) >>> plotErrLine(data, curves=[(x, N.sin(x))]) >>> #P.show() """ data = N.asanyarray(data) if len(data.shape) < 2: data = N.atleast_2d(data) # compute mean signal course md = data.mean(axis=0) if baseline is None: baseline = N.abs(md[0]) if perc_sigchg: md /= baseline md -= 1.0 md *= 100.0 # not in-place to keep original data intact data = data / baseline data *= 100.0 # compute matching datapoint locations on x-axis if x is None: x = N.arange(len(md)) else: if not len(md) == len(x): raise ValueError, "The length of `x` (%i) has to match the 2nd " \ "axis of the data array (%i)" % (len(x), len(md)) # plot highres line if present if curves is not None: for c in curves: xc, yc = c # scales line array to same range as datapoints P.plot(xc, yc, linestyle=linestyle) # no line between data points linestyle = 'None' # compute error per datapoint if errtype == 'ste': err = data.std(axis=0) / N.sqrt(len(data)) elif errtype == 'std': err = data.std(axis=0) else: raise ValueError, "Unknown error type '%s'" % errtype # plot datapoints with error bars P.errorbar(x, md, err, fmt=fmt, linestyle=linestyle) def plotFeatureHist(dataset, xlim=None, noticks=True, perchunk=False, **kwargs): """Plot histograms of feature values for each labels. :Parameters: dataset: Dataset xlim: None | 2-tuple Common x-axis limits for all histograms. noticks: boolean If True, no axis ticks will be plotted. This is useful to save space in large plots. perchunk: boolean If True, one histogramm will be plotted per each label and each chunk, resulting is a histogram grid (labels x chunks). **kwargs: Any additional arguments are passed to matplotlib's hist(). """ lsplit = NFoldSplitter(1, attr='labels') csplit = NFoldSplitter(1, attr='chunks') nrows = len(dataset.uniquelabels) ncols = len(dataset.uniquechunks) def doplot(data): P.hist(data, **kwargs) if xlim is not None: P.xlim(xlim) if noticks: P.yticks([]) P.xticks([]) fig = 1 # for all labels for row, (ignore, ds) in enumerate(lsplit(dataset)): if perchunk: for col, (alsoignore, d) in enumerate(csplit(ds)): P.subplot(nrows, ncols, fig) doplot(d.samples.ravel()) if row == 0: P.title('C:' + str(d.uniquechunks[0])) if col == 0: P.ylabel('L:' + str(d.uniquelabels[0])) fig += 1 else: P.subplot(1, nrows, fig) doplot(ds.samples) P.title('L:' + str(ds.uniquelabels[0])) fig += 1 def plotSamplesDistance(dataset, sortbyattr=None): """Plot the euclidean distances between all samples of a dataset. :Parameters: dataset: Dataset Providing the samples. sortbyattr: None | str If None, the samples distances will be in the same order as their appearance in the dataset. Alternatively, the name of a samples attribute can be given, which wil then be used to sort/group the samples, e.g. to investigate the similarity samples by label or by chunks. """ if sortbyattr is not None: slicer = [] for attr in dataset.__getattribute__('unique' + sortbyattr): slicer += \ dataset.__getattribute__('idsby' + sortbyattr)(attr).tolist() samples = dataset.samples[slicer] else: samples = dataset.samples ed = N.sqrt(squared_euclidean_distance(samples)) P.imshow(ed) P.colorbar() def plotBars(data, labels=None, title=None, ylim=None, ylabel=None, width=0.2, offset=0.2, color='0.6', distance=1.0, yerr='ste', **kwargs): """Make bar plots with automatically computed error bars. Candlestick plot (multiple interleaved barplots) can be done, by calling this function multiple time with appropriatly modified `offset` argument. :Parameters: data: array (nbars x nobservations) | other sequence type Source data for the barplot. Error measure is computed along the second axis. labels: list | None If not None, a label from this list is placed on each bar. title: str An optional title of the barplot. ylim: 2-tuple Y-axis range. ylabel: str An optional label for the y-axis. width: float Width of a bar. The value should be in a reasonable relation to `distance`. offset: float Constant offset of all bar along the x-axis. Can be used to create candlestick plots. color: matplotlib color spec Color of the bars. distance: float Distance of two adjacent bars. yerr: 'ste' | 'std' | None Type of error for the errorbars. If `None` no errorbars are plotted. **kwargs: Any additional arguments are passed to matplotlib's `bar()` function. """ # determine location of bars xlocations = (N.arange(len(data)) * distance) + offset if yerr == 'ste': yerr = [N.std(d) / N.sqrt(len(d)) for d in data] elif yerr == 'std': yerr = [N.std(d) for d in data] else: # if something that we do not know just pass on pass # plot bars plot = P.bar(xlocations, [N.mean(d) for d in data], yerr=yerr, width=width, color=color, ecolor='black', **kwargs) if ylim: P.ylim(*(ylim)) if title: P.title(title) if labels: P.xticks(xlocations + width / 2, labels) if ylabel: P.ylabel(ylabel) # leave some space after last bar P.xlim(0, xlocations[-1] + width + offset) return plot def inverseCmap(cmap_name): """Create a new colormap from the named colormap, where it got reversed """ import matplotlib._cm as _cm import matplotlib as mpl try: cmap_data = eval('_cm._%s_data' % cmap_name) except: raise ValueError, "Cannot obtain data for the colormap %s" % cmap_name new_data = dict( [(k, [(v[i][0], v[-(i+1)][1], v[-(i+1)][2]) for i in xrange(len(v))]) for k,v in cmap_data.iteritems()] ) return mpl.colors.LinearSegmentedColormap('%s_rev' % cmap_name, new_data, _cm.LUTSIZE) def plotDatasetChunks(ds, clf_labels=None): """Quick plot to see chunk sctructure in dataset with 2 features if clf_labels is provided for the predicted labels, then incorrectly labeled samples will have 'x' in them """ if ds.nfeatures != 2: raise ValueError, "Can plot only in 2D, ie for datasets with 2 features" if P.matplotlib.get_backend() == 'TkAgg': P.ioff() if clf_labels is not None and len(clf_labels) != ds.nsamples: clf_labels = None colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w') labels = ds.uniquelabels labels_map = dict(zip(labels, colors[:len(labels)])) for chunk in ds.uniquechunks: chunk_text = str(chunk) ids = ds.where(chunks=chunk) ds_chunk = ds[ids] for i in xrange(ds_chunk.nsamples): s = ds_chunk.samples[i] l = ds_chunk.labels[i] format = '' if clf_labels != None: if clf_labels[i] != ds_chunk.labels[i]: P.plot([s[0]], [s[1]], 'x' + labels_map[l]) P.text(s[0], s[1], chunk_text, color=labels_map[l], horizontalalignment='center', verticalalignment='center', ) dss = ds.samples P.axis((1.1 * N.min(dss[:, 0]), 1.1 * N.max(dss[:, 1]), 1.1 * N.max(dss[:, 0]), 1.1 * N.min(dss[:, 1]))) P.draw() P.ion() pymvpa-0.4.8/mvpa/misc/plot/erp.py000066400000000000000000000371571174541445200170770ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Basic ERP (here ERP = Event Related Plot ;-)) plotting Can be used for plotting not only ERP but any event-locked data """ import pylab as P import numpy as N import matplotlib as mpl from mvpa.base import warning from mvpa.mappers.boxcar import BoxcarMapper # # Few helper functions # import matplotlib.transforms as mlt def _offset(ax, x, y): """Provide offset in pixels :Parameters: x : int Offset in pixels for x y : int Offset in pixels for y Idea borrowed from http://www.scipy.org/Cookbook/Matplotlib/Transformations but then heavily extended to be compatible with many reincarnations of matplotlib """ d = dir(mlt) if 'offset_copy' in d: # tested with python-matplotlib 0.98.3-5 # ??? if pukes, might need to replace 2nd parameter from # ax to ax.get_figure() return mlt.offset_copy(ax.transData, ax, x=x, y=y, units='dots') elif 'BlendedAffine2D' in d: # some newer versions of matplotlib return ax.transData + \ mlt.Affine2D().translate(x,y) elif 'blend_xy_sep_transform' in d: trans = mlt.blend_xy_sep_transform(ax.transData, ax.transData) # Now we set the offset in pixels trans.set_offset((x, y), mlt.identity_transform()) return trans else: raise RuntimeError, \ "Lacking needed functions in matplotlib.transform " \ "for _offset. Please upgrade" def _make_centeredaxis(ax, loc, offset=5, ai=0, mult=1.0, format='%4g', label=None, **props): """Plot an axis which is centered at loc (e.g. 0) :Parameters: ax Axes from the figure loc Value to center at offset Relative offset (in pixels) for the labels ai : int Axis index: 0 for x, 1 for y mult Multiplier for the axis labels. ERPs for instance need to be inverted, thus labels too manually here since there is no easy way in matplotlib to invert an axis label : basestring or None If not -- put a label outside of the axis **props Given to underlying plotting functions Idea borrowed from http://www.mail-archive.com/matplotlib-users@lists.sourceforge.net \ /msg05669.html It sustained heavy refactoring/extension """ xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() xlocs = [l for l in ax.xaxis.get_ticklocs() if l>=xmin and l<=xmax] ylocs = [l for l in ax.yaxis.get_ticklocs() if l>=ymin and l<=ymax] if ai == 0: hlocs = ylocs locs = xlocs vrange = [xmin, xmax] tdir = mpl.lines.TICKDOWN halignment = 'center' valignment = 'top' lhalignment = 'left' lvalignment = 'center' lx, ly = xmax, 0 ticklength = ax.xaxis.get_ticklines()[0]._markersize elif ai == 1: hlocs = xlocs locs = ylocs vrange = [ymin, ymax] tdir = mpl.lines.TICKLEFT halignment = 'right' valignment = 'center' lhalignment = 'center' lvalignment = 'bottom' lx, ly = 0, ymax ticklength = ax.yaxis.get_ticklines()[0]._markersize else: raise ValueError, "Illegal ai=%s" % ai args = [ (locs, [loc]*len(locs)), (vrange, [loc, loc]), [locs, (loc,)*len(locs)] ] offset_abs = offset + ticklength if ai == 1: # invert args = [ [x[1], x[0]] for x in args ] # shift the tick labels labels trans = _offset(ax, -offset_abs, 0) transl = _offset(ax, 0, offset) else: trans = _offset(ax, 0, -offset_abs) transl = _offset(ax, offset, 0) tickline, = ax.plot(linestyle='', marker=tdir, *args[0], **props) axline, = ax.plot(*args[1], **props) tickline.set_clip_on(False) axline.set_clip_on(False) for i, l in enumerate(locs): if l == 0: # no origin label continue coor = [args[2][0][i], args[2][1][i], format % (mult * l)] ax.text(horizontalalignment=halignment, verticalalignment=valignment, transform=trans, *coor) if label is not None: ax.text( #max(args[2][0]), max(args[2][1]), lx, ly, label, horizontalalignment=lhalignment, verticalalignment=lvalignment, fontsize=14, # fontweight='bold', transform=transl) def plotERP(data, SR=500, onsets=None, pre=0.2, pre_onset=None, post=None, pre_mean=None, color='r', errcolor=None, errtype=None, ax=P, ymult=1.0, *args, **kwargs): """Plot single ERP on existing canvas :Parameters: data: 1D or 2D ndarray The data array can either be 1D (samples over time) or 2D (trials x samples). In the first case a boxcar mapper is used to extract the respective trial timecourses given a list of trial onsets. In the latter case, each row of the data array is taken as the EEG signal timecourse of a particular trial. onsets: list(int) List of onsets (in samples not in seconds). SR: int Sampling rate (1/s) of the signal. pre: float Duration (in seconds) to be plotted prior to onset. pre_onset : float or None If data is already in epochs (2D) then pre_onset provides information on how many seconds pre-stimulus were used to generate them. If None, then pre_onset = pre post: float Duration (in seconds) to be plotted after the onset. pre_mean: float Duration (in seconds) at the beginning of the window which is used for deriving the mean of the signal. If None, pre_mean = pre errtype: None | 'ste' | 'std' | 'ci95' | list of previous three Type of error value to be computed per datapoint. 'ste': standard error of the mean 'std': standard deviation 'ci95': 95% confidence interval (1.96 * ste) None: no error margin is plotted (default) Optionally, multiple error types can be specified in a list. In that case all of them will be plotted. color: matplotlib color code Color to be used for plotting the mean signal timecourse. errcolor: matplotlib color code Color to be used for plotting the error margin. If None, use main color but with weak alpha level ax: Target where to draw. ymult: float Multiplier for the values. E.g. if negative-up ERP plot is needed: provide ymult=-1.0 *args, **kwargs Additional arguments to plot(). :Returns: array Mean ERP timeseries. """ if pre_mean is None: pre_mean = pre # set default pre_discard = 0 if onsets is not None: # if we need to extract ERPs if post is None: raise ValueError, \ "Duration post onsets must be provided if onsets are given" # trial timecourse duration duration = pre + post # We are working with a full timeline bcm = BoxcarMapper(onsets, boxlength = int(SR * duration), offset = -int(SR * pre)) erp_data = bcm(data) # override values since we are using Boxcar pre_onset = pre else: if pre_onset is None: pre_onset = pre if pre_onset < pre: warning("Pre-stimulus interval to plot %g is smaller than provided " "pre-stimulus captured interval %g, thus plot interval was " "adjusted" % (pre, pre_onset)) pre = pre_onset if post is None: # figure out post duration = float(data.shape[1]) / SR - pre_discard post = duration - pre else: duration = pre + post erp_data = data pre_discard = pre_onset - pre # Scale the data appropriately erp_data *= ymult # validity check -- we should have 2D matrix (trials x samples) if len(erp_data.shape) != 2: raise RuntimeError, \ "plotERP() supports either 1D data with onsets, or 2D data " \ "(trials x sample_points). Shape of the data at the point " \ "is %s" % erp_data.shape if not (pre_mean == 0 or pre_mean is None): # mean of pre-onset signal accross trials erp_baseline = N.mean( erp_data[:, int((pre_onset-pre_mean)*SR):int(pre_onset*SR)]) # center data on pre-onset mean # NOTE: make sure that we make a copy of the data to don't # alter the original. Better be safe than sorry erp_data = erp_data - erp_baseline # generate timepoints and error ranges to plot filled error area # top -> # bottom <- time_points = N.arange(erp_data.shape[1]) * 1.0 / SR - pre_onset # if pre != pre_onset if pre_discard > 0: npoints = int(pre_discard * SR) time_points = time_points[npoints:] erp_data = erp_data[:, npoints:] # select only time points of interest (if post is provided) if post is not None: npoints = int(duration * SR) time_points = time_points[:npoints] erp_data = erp_data[:, :npoints] # compute mean signal timecourse accross trials erp_mean = N.mean(erp_data, axis=0) # give sane default if errtype is None: errtype = [] if not isinstance(errtype, list): errtype = [errtype] for et in errtype: # compute error per datapoint if et in ['ste', 'ci95']: erp_stderr = erp_data.std(axis=0) / N.sqrt(len(erp_data)) if et == 'ci95': erp_stderr *= 1.96 elif et == 'std': erp_stderr = erp_data.std(axis=0) else: raise ValueError, "Unknown error type '%s'" % errtype time_points2w = N.hstack((time_points, time_points[::-1])) error_top = erp_mean + erp_stderr error_bottom = erp_mean - erp_stderr error2w = N.hstack((error_top, error_bottom[::-1])) if errcolor is None: errcolor = color # plot error margin pfill = ax.fill(time_points2w, error2w, edgecolor=errcolor, facecolor=errcolor, alpha=0.2, zorder=3) # plot mean signal timecourse ax.plot(time_points, erp_mean, lw=2, color=color, zorder=4, *args, **kwargs) # ax.xaxis.set_major_locator(P.MaxNLocator(4)) return erp_mean def plotERPs(erps, data=None, ax=None, pre=0.2, post=None, pre_onset=None, xlabel='time (s)', ylabel='$\mu V$', ylim=None, ymult=1.0, legend=None, xlformat='%4g', ylformat='%4g', loffset=10, alinewidth=2, **kwargs): """Plot multiple ERPs on a new figure. :Parameters: erps : list of tuples List of definitions of ERPs. Each tuple should consist of (label, color, onsets) or a dictionary which defines, label, color, onsets, data. Data provided in dictionary overrides 'common' data provided in the next argument ``data`` data Data for ERPs to be derived from 1D (samples) ax Where to draw (e.g. subplot instance). If None, new figure is created pre : float Duration (seconds) to be plotted prior to onset pre_onset : float or None If data is already in epochs (2D) then pre_onset provides information on how many seconds pre-stimulus were used to generate them. If None, then pre_onset = pre post : float or None Duration (seconds) to be plotted after the onset. If any data is provided with onsets, it can't be None. If None -- plots all time points after onsets ymult : float Multiplier for the values. E.g. if negative-up ERP plot is needed: provide ymult=-1.0 xlformat : basestring Format of the x ticks ylformat : basestring Format of the y ticks legend : basestring or None If not None, legend will be plotted with position argument provided in this argument loffset : int Offset in voxels for axes and tick labels. Different matplotlib frontends might have different opinions, thus offset value might need to be tuned specifically per frontend alinewidth : int Axis and ticks line width **kwargs Additional arguments provided to plotERP() :Examples: kwargs = {'SR' : eeg.SR, 'pre_mean' : 0.2} fig = plotERPs((('60db', 'b', eeg.erp_onsets['60db']), ('80db', 'r', eeg.erp_onsets['80db'])), data[:, eeg.sensor_mapping['Cz']], ax=fig.add_subplot(1,1,1,frame_on=False), pre=0.2, post=0.6, **kwargs) or fig = plotERPs((('60db', 'b', eeg.erp_onsets['60db']), {'color': 'r', 'onsets': eeg.erp_onsets['80db'], 'data' : data[:, eeg.sensor_mapping['Cz']]} ), data[:, eeg.sensor_mapping['Cz']], ax=fig.add_subplot(1,1,1,frame_on=False), pre=0.2, post=0.6, **kwargs) :Returns: current fig handler """ if ax is None: fig = P.figure(facecolor='white') fig.clf() ax = fig.add_subplot(111, frame_on=False) else: fig = P.gcf() # We don't want original axis being on ax.axison = True labels = [] for erp_def in erps: plot_data = data params = {'ymult' : ymult} # provide custom parameters per ERP if isinstance(erp_def, tuple) and len(erp_def) == 3: params.update( {'label': erp_def[0], 'color': erp_def[1], 'onsets': erp_def[2]}) elif isinstance(erp_def, dict): plot_data = erp_def.pop('data', None) params.update(erp_def) labels.append(params.get('label', '')) # absorb common parameters params.update(kwargs) if plot_data is None: raise ValueError, "Channel %s got no data provided" \ % params.get('label', 'UNKNOWN') plotERP(plot_data, pre=pre, pre_onset=pre_onset, post=post, ax=ax, **params) # plot_kwargs={'label':label}) if isinstance(erp_def, dict): erp_def['data'] = plot_data # return it back props = dict(color='black', linewidth=alinewidth, markeredgewidth=alinewidth, zorder=1, offset=loffset) def set_limits(): """Helper to set x and y limits""" ax.set_xlim( (-pre, post) ) if ylim != None: ax.set_ylim(*ylim) set_limits() _make_centeredaxis(ax, 0, ai=0, label=xlabel, **props) set_limits() _make_centeredaxis(ax, 0, ai=1, mult=N.sign(ymult), label=ylabel, **props) ax.yaxis.set_major_locator(P.NullLocator()) ax.xaxis.set_major_locator(P.NullLocator()) # legend obscures plotting a bit... seems to be plotting # everything twice. Thus disabled by default if legend is not None and N.any(N.array(labels) != ''): P.legend(labels, loc=legend) fig.canvas.draw() return fig pymvpa-0.4.8/mvpa/misc/plot/mri.py000066400000000000000000000421371174541445200170720ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Basic (f)MRI plotting with ability to interactively perform thresholding """ import pylab as P import numpy as N import matplotlib as mpl from mvpa.base import warning, externals if externals.exists('nifti', raiseException=True): from nifti import NiftiImage _interactive_backends = ['GTKAgg', 'TkAgg'] def plotMRI(background=None, background_mask=None, cmap_bg='gray', overlay=None, overlay_mask=None, cmap_overlay='autumn', vlim=(0.0, None), vlim_type=None, do_stretch_colors=False, add_info=True, add_hist=True, add_colorbar=True, fig=None, interactive=None, nrows=None, ncolumns=None ): """Very basic plotting of 3D data with interactive thresholding. Background/overlay could be nifti files names or NiftiImage objects, or 3D ndarrays. if no mask provided, only non-0 elements are plotted :Parameters: do_stretch_colors : bool Stratch color range to the data (not just to visible data) vlim 2 element tuple of low/upper bounds of values to plot vlim_type : None or 'symneg_z' If not None, then vlim would be treated accordingly: symneg_z z-score values of symmetric normal around 0, estimated by symmetrizing negative part of the distribution, which often could be assumed when total distribution is a mixture of by-chance performance normal around 0, and some other in the positive tail ncolumns : int or None Explicit starting number of columns into which position the slice renderings. If None, square arrangement would be used nrows : int or None Explicit starting number of rows into which position the slice renderings. If None, square arrangement would be used add_hist : bool or tuple (int, int) If True, add histogram and position automagically. If a tuple -- use as (row, column) add_info : bool or tuple (int, int) If True, add information and position automagically. If a tuple -- use as (row, column). Available colormaps are presented nicely on http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps TODO: * Make interface more attractive/usable * allow multiple overlays... or just unify for them all to be just a list of entries * handle cases properly when there is only one - background/overlay """ # if False: # for easy debugging impath = '/research/fusion/herrman/be37/fMRI' background = NiftiImage('%s/anat_slices_brain_inbold.nii.gz' % impath) background_mask = None overlay = NiftiImage('/research/fusion/herrman/code/CCe-1.nii.gz') overlay_mask = NiftiImage('%s/masks/example_func_brain_mask.nii.gz' % impath) do_stretch_colors = False add_info = True add_hist = True add_colorbar = True cmap_bg = 'gray' cmap_overlay = 'hot' # YlOrRd_r # P.cm.autumn fig = None # vlim describes value limits # clim color limits (same by default) vlim = [2.3, None] vlim_type = 'symneg_z' interactive = False # # process data arguments def handle_arg(arg): """Helper which would read in NiftiImage if necessary """ if isinstance(arg, basestring): arg = NiftiImage(arg) argshape = arg.data.shape # Assure that we have 3D (at least) if len(argshape)<3: arg.data = arg.data.reshape((1,)*(3-len(argshape)) + argshape) if isinstance(arg, N.ndarray): if len(arg.shape) != 3: raise ValueError, "For now just handling 3D volumes" return arg bg = handle_arg(background) if isinstance(bg, NiftiImage): # figure out aspect fov = (N.array(bg.header['pixdim']) * bg.header['dim'])[3:0:-1] # XXX might be vise-verse ;-) aspect = fov[2]/fov[1] bg = bg.data[...,::-1,::-1] # XXX custom for now else: aspect = 1.0 if bg is not None: bg_mask = handle_arg(background_mask) if isinstance(bg_mask, NiftiImage): bg_mask = bg_mask.data[...,::-1,::-1] # XXX if bg_mask is not None: bg_mask = bg_mask != 0 else: bg_mask = bg != 0 func = handle_arg(overlay) if func is not None: if isinstance(func, NiftiImage): func = func.data[..., ::-1, :] # XXX func_mask = handle_arg(overlay_mask) if isinstance(func_mask, NiftiImage): func_mask = func_mask.data[..., ::-1, :] # XXX if func_mask is not None: func_mask = func_mask != 0 else: func_mask = func != 0 # process vlim vlim = list(vlim) vlim_orig = vlim[:] add_dist2hist = [] if isinstance(vlim_type, basestring): if vlim_type == 'symneg_z': func_masked = func[func_mask] fnonpos = func_masked[func_masked<=0] fneg = func_masked[func_masked<0] # take together with sign-reverted negative values fsym = N.hstack((-fneg, fnonpos)) nfsym = len(fsym) # Estimate normal std under assumption of mean=0 std = N.sqrt(N.mean(abs(fsym)**2)) # convert vlim assuming it is z-scores for i,v in enumerate(vlim): if v is not None: vlim[i] = std * v # add a plot to histogram add_dist2hist = [(lambda x: nfsym/(N.sqrt(2*N.pi)*std)*N.exp(-(x**2)/(2*std**2)), {})] else: raise ValueError, 'Unknown specification of vlim=%s' % vlim + \ ' Known is: symneg' class Plotter(object): """ TODO """ #_store_attribs = ('vlim', 'fig', 'bg', 'bg_mask') def __init__(self, _locals): """TODO""" self._locals = _locals self.fig = _locals['fig'] def do_plot(self): """TODO""" # silly yarik didn't find proper way vlim = self._locals['vlim'] bg = self._locals['bg'] bg_mask = self._locals['bg_mask'] ncolumns = self._locals['ncolumns'] nrows = self._locals['nrows'] add_info = self._locals['add_info'] add_hist = self._locals['add_hist'] #print locals() if N.isscalar(vlim): vlim = (vlim, None) if vlim[0] is None: vlim = (N.min(func), vlim[1]) if vlim[1] is None: vlim = (vlim[0], N.max(func)) invert = vlim[1] < vlim[0] if invert: vlim = (vlim[1], vlim[0]) print "Not yet fully supported" # adjust lower bound if it is too low if vlim[0] < N.min(func[func_mask]): vlim = list(vlim) vlim[0] = N.min(func[func_mask]) vlim = tuple(vlim) bound_above = (max(vlim) < N.max(func)) bound_below = (min(vlim) > N.min(func)) # # reverse the map if needed cmap_ = cmap_overlay if not bound_below and bound_above: if cmap_.endswith('_r'): cmap_ = cmap_[:-2] else: cmap_ += '_r' func_cmap = eval("P.cm.%s" % cmap_) bg_cmap = eval("P.cm.%s" % cmap_bg) if do_stretch_colors: clim = (N.min(func), N.max(func))#vlim else: clim = vlim # # figure out 'extend' for colorbar and threshold string extend, thresh_str = { (True, True) : ('both', 'x in [%.3g, %.3g]' % tuple(vlim)), (True, False): ('min', 'x in [%.3g, +inf]' % vlim[0]), (False, True): ('max', 'x in (-inf, %.3g]' % vlim[1]), (False, False): ('neither', 'none') }[(bound_below, bound_above)] # # Figure out subplots dshape = func.shape nslices = func.shape[0] # Check if additional column/row information was provided and extend nrows/ncolumns for v in (add_hist, add_info): if v and not isinstance(v, bool): ncolumns = max(ncolumns, v[1]+1) nrows = max(nrows, v[0]+1) # more or less square alignment ;-) if ncolumns is None: ncolumns = int(N.sqrt(nslices)) ndcolumns = ncolumns nrows = max(nrows, int(N.ceil(nslices*1.0/ncolumns))) # Decide either we need more cells where to add hist and/or info nadd = bool(add_info) + bool(add_hist) while ncolumns*nrows - (nslices + nadd) < 0: ncolumns += 1 locs = ['' for i in xrange(ncolumns*nrows)] # Fill in predefined locations for v,vl in ((add_hist, 'hist'), (add_info, 'info')): if v and not isinstance(v, bool): locs[ncolumns*v[0] + v[1]] = vl # Fill in slices for islice in xrange(nslices): locs[locs.index('')] = islice # Fill the last available if necessary if add_hist and isinstance(add_hist, bool): locs[locs.index('')] = 'hist' if add_info and isinstance(add_info, bool): locs[locs.index('')] = 'info' print ncolumns, nrows print locs # should compare by backend? if P.matplotlib.get_backend() in _interactive_backends: P.ioff() if self.fig is None: self.fig = P.figure(facecolor='white', figsize=(4*ncolumns, 4*nrows)) else: self.fig.clf() fig = self.fig # fig.clf() # # how to threshold images thresholder = lambda x: N.logical_and(x>=vlim[0], x<=vlim[1]) ^ invert # # Draw all slices self.slices = [] for si in range(nslices)[::-1]: ax = fig.add_subplot(nrows, ncolumns, locs.index(si) + 1, frame_on=False) self.slices.append(ax) ax.axison = False slice_bg = bg[si] slice_bg_ = N.ma.masked_array(slice_bg, mask=N.logical_not(bg_mask[si]))#slice_bg<=0) slice_sl = func[si] in_thresh = thresholder(slice_sl) out_thresh = N.logical_not(in_thresh) slice_sl_ = N.ma.masked_array(slice_sl, mask=N.logical_or(out_thresh, N.logical_not(func_mask[si]))) kwargs = dict(aspect=aspect, origin='lower') # paste a blank white background first, since otherwise # recent matplotlib screws up those masked imshows im = ax.imshow(N.ones(slice_sl_.shape), cmap=bg_cmap, extent=(0, slice_bg.shape[0], 0, slice_bg.shape[1]), **kwargs) im.set_clim((0,1)) # ax.clim((0,1)) ax.imshow(slice_bg_, interpolation='bilinear', cmap=bg_cmap, **kwargs) im = ax.imshow(slice_sl_, interpolation='nearest', cmap=func_cmap, alpha=0.8, extent=(0, slice_bg.shape[0], 0, slice_bg.shape[1]), **kwargs) im.set_clim(*clim) if si == 0: im0 = im func_masked = func[func_mask] # # Add summary information func_thr = func[N.logical_and(func_mask, thresholder(func))] if add_info and len(func_thr): self.info = ax = fig.add_subplot(nrows, ncolumns, locs.index('info')+1, frame_on=False) # cb = P.colorbar(shrink=0.8) # #cb.set_clim(clim[0], clim[1]) ax.axison = False #if add_colorbar: # cb = P.colorbar(im, shrink=0.8, pad=0.0, drawedges=False, # extend=extend, cmap=func_cmap) stats = {'v':len(func_masked), 'vt': len(func_thr), 'm': N.mean(func_masked), 'mt': N.mean(func_thr), 'min': N.min(func_masked), 'mint': N.min(func_thr), 'max': N.max(func_masked), 'maxt': N.max(func_thr), 'mm': N.median(func_masked), 'mmt': N.median(func_thr), 'std': N.std(func_masked), 'stdt': N.std(func_thr), 'sthr': thresh_str} P.text(0, 0.5, """ Original: voxels = %(v)d range = [%(min).3g, %(max).3g] mean = %(m).3g median = %(mm).3g std = %(std).3g Thresholded: %(sthr)s: voxels = %(vt)d range = [%(mint).3g, %(maxt).3g] median = %(mt).3g mean = %(mmt).3g std = %(stdt).3g """ % stats, horizontalalignment='left', verticalalignment='center', transform = ax.transAxes, fontsize=14) if add_colorbar: kwargs_cb = {} #if add_hist: # kwargs_cb['cax'] = self.hist self.cb = cb = P.colorbar( im0, #self.hist, shrink=0.8, pad=0.0, drawedges=False, extend=extend, cmap=func_cmap, **kwargs_cb) cb.set_clim(*clim) # Add histogram if add_hist: self.hist = fig.add_subplot(nrows, ncolumns, locs.index('hist') + 1, frame_on=True) minv, maxv = N.min(func_masked), N.max(func_masked) if minv<0 and maxv>0: # then make it centered on 0 maxx = max(-minv, maxv) range_ = (-maxx, maxx) else: range_ = (minv, maxv) H = N.histogram(func_masked, range=range_, bins=31) H2 = P.hist(func_masked, bins=H[1], align='center', facecolor='#FFFFFF', hold=True) for a, kwparams in add_dist2hist: dbin = (H[1][1] - H[1][0]) P.plot(H2[1], [a(x) * dbin for x in H2[1]], **kwparams) if add_colorbar: cbrgba = cb.to_rgba(H2[1]) for face, facecolor, value in zip(H2[2], cbrgba, H2[1]): if not thresholder(value): color = '#FFFFFF' else: color = facecolor face.set_facecolor(color) fig.subplots_adjust(left=0.01, right=0.95, hspace=0.01) # , bottom=0.01 if ncolumns - int(bool(add_info) or bool(add_hist)) < 2: fig.subplots_adjust(wspace=0.4) else: fig.subplots_adjust(wspace=0.1) if P.matplotlib.get_backend() in _interactive_backends: P.draw() P.ion() def on_click(self, event): """Actions to perform on click """ if id(event.inaxes) != id(plotter.hist): return xdata, ydata, button = event.xdata, event.ydata, event.button print xdata, ydata, button vlim = self._locals['vlim'] if button == 1: vlim[0] = xdata elif button == 3: vlim[1] = xdata elif button == 2: vlim[0], vlim[1] = vlim[1], vlim[0] self.do_plot() plotter = Plotter(locals()) plotter.do_plot() if interactive is None: interactive = P.matplotlib.get_backend() in _interactive_backends # Global adjustments if interactive: # if P.matplotlib.is_interactive(): P.connect('button_press_event', plotter.on_click) P.show() plotter.fig.plotter = plotter return plotter.fig pymvpa-0.4.8/mvpa/misc/plot/topo.py000066400000000000000000000164621174541445200172660ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil; encoding: utf-8 -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # # The initial version of the code was contributed by Ingo Fründ and is # Coypright (c) 2008 by Ingo Fründ ingo.fruend@googlemail.com # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Plot parameter distributions on a head surface (topography plots).""" __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import externals if externals.exists("pylab", raiseException=True): import pylab as P import numpy.ma as M if externals.exists("griddata", raiseException=True): from mvpa.support.griddata import griddata if externals.exists("scipy", raiseException=True): from scipy.optimize import leastsq # TODO : add optional plotting labels for the sensors def plotHeadTopography(topography, sensorlocations, plotsensors=False, resolution=51, masked=True, plothead=True, plothead_kwargs=None, **kwargs): """Plot distribution to a head surface, derived from some sensor locations. The sensor locations are first projected onto the best fitting sphere and finally projected onto a circle (by simply ignoring the z-axis). :Parameters: topography: array A vector of some values corresponding to each sensor. sensorlocations: (nsensors x 3) array 3D coordinates of each sensor. The order of the sensors has to match with the `topography` vector. plotsensors: bool If True, sensor will be plotted on their projected coordinates. No sensor are shown otherwise. plothead: bool If True, a head outline is plotted. plothead_kwargs: dict Additional keyword arguments passed to `plotHeadOutline()`. resolution: int Number of surface samples along both x and y-axis. masked: bool If True, all surface sample extending to head outline will be masked. **kwargs: All additional arguments will be passed to `pylab.imshow()`. :Returns: (map, head, sensors) The corresponding matplotlib objects are returned if plotted, ie. if plothead is set to `False`, `head` will be `None`. map The colormap that makes the actual plot, a matplotlib.image.AxesImage instance. head What is returned by `plotHeadOutline()`. sensors The dots marking the electrodes, a matplotlib.lines.Line2d instance. """ # give sane defaults if plothead_kwargs is None: plothead_kwargs = {} # error function to fit the sensor locations to a sphere def err(params): r, cx, cy, cz = params return (sensorlocations[:, 0] - cx) ** 2 \ + (sensorlocations[:, 1] - cy) ** 2 \ + (sensorlocations[:, 2] - cz) ** 2 \ - r ** 2 # initial guess of sphere parameters (radius and center) params = (1, 0, 0, 0) # do fit (r, cx, cy, cz), stuff = leastsq(err, params) # size of each square ssh = float(r) / resolution # half-size ss = ssh * 2.0 # full-size # Generate a grid and interpolate using the griddata module x = N.arange(cx - r, cx + r, ss) + ssh y = N.arange(cy - r, cy + r, ss) + ssh x, y = P.meshgrid(x, y) # project the sensor locations onto the sphere sphere_center = N.array((cx, cy, cz)) sproj = sensorlocations - sphere_center sproj = r * sproj / N.c_[N.sqrt(N.sum(sproj ** 2, axis=1))] sproj += sphere_center # fit topology onto xy projection of sphere topo = griddata(sproj[:, 0], sproj[:, 1], N.ravel(N.array(topography)), x, y) # mask values outside the head if masked: notinhead = N.greater_equal((x - cx) ** 2 + (y - cy) ** 2, (1.0 * r) ** 2) topo = M.masked_where(notinhead, topo) # show surface map = P.imshow(topo, origin="lower", extent=(-r, r, -r, r), **kwargs) P.axis('off') if plothead: # plot scaled head outline head = plotHeadOutline(scale=r, shift=(cx/2.0, cy/2.0), **plothead_kwargs) else: head = None if plotsensors: # plot projected sensor locations # reorder sensors so the ones below plotted first # TODO: please fix with more elegant solution zenum = [x[::-1] for x in enumerate(sproj[:, 2].tolist())] zenum.sort() indx = [ x[1] for x in zenum ] sensors = P.plot(sproj[indx, 0] - cx/2.0, sproj[indx, 1] - cy/2.0, 'wo') else: sensors = None return map, head, sensors def plotHeadOutline(scale=1, shift=(0, 0), color='k', linewidth='5', **kwargs): """Plots a simple outline of a head viewed from the top. The plot contains schematic representations of the nose and ears. The size of the head is basically a unit circle for nose and ears attached to it. :Parameters: scale: float Factor to scale the size of the head. shift: 2-tuple of floats Shift the center of the head circle by these values. color: matplotlib color spec The color the outline should be plotted in. linewidth: int Linewidth of the head outline. **kwargs: All additional arguments are passed to `pylab.plot()`. :Returns: Matplotlib lines2D object can be used to tweak the look of the head outline. """ rmax = 0.5 # factor used all the time fac = 2 * N.pi * 0.01 # Koordinates for the ears EarX1 = -1 * N.array( [.497, .510, .518, .5299, .5419, .54, .547, .532, .510, rmax * N.cos(fac * (54 + 42))]) EarY1 = N.array( [.0655, .0775, .0783, .0746, .0555, -.0055, -.0932, -.1313, -.1384, rmax * N.sin(fac * (54 + 42))]) EarX2 = N.array( [rmax * N.cos(fac * (54 + 42)), .510, .532, .547, .54, .5419, .5299, .518, .510, .497] ) EarY2 = N.array( [rmax * N.sin(fac * (54 + 42)), -.1384, -.1313, -.0932, -.0055, .0555, .0746, .0783, .0775, .0655] ) # Coordinates for the Head HeadX1 = N.fromfunction( lambda x: rmax * N.cos(fac * (x + 2)), (21,)) HeadY1 = N.fromfunction( lambda y: rmax * N.sin(fac * (y + 2)), (21,)) HeadX2 = N.fromfunction( lambda x: rmax * N.cos(fac * (x + 28)), (21,)) HeadY2 = N.fromfunction( lambda y: rmax * N.sin(fac * (y + 28)), (21,)) HeadX3 = N.fromfunction( lambda x: rmax * N.cos(fac * (x + 54)), (43,)) HeadY3 = N.fromfunction( lambda y: rmax * N.sin(fac * (y + 54)), (43,)) # Coordinates for the Nose NoseX = N.array([.18 * rmax, 0, -.18 * rmax]) NoseY = N.array([rmax - 0.004, rmax * 1.15, rmax - 0.004]) # Combine to one X = N.concatenate((EarX2, HeadX1, NoseX, HeadX2, EarX1, HeadX3)) Y = N.concatenate((EarY2, HeadY1, NoseY, HeadY2, EarY1, HeadY3)) X *= 2 * scale Y *= 2 * scale X += shift[0] Y += shift[1] return P.plot(X, Y, color=color, linewidth=linewidth) pymvpa-0.4.8/mvpa/misc/state.py000066400000000000000000001317671174541445200164550ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Classes to control and store state information. It was devised to provide conditional storage """ # XXX: MH: The use of `index` as variable name confuses me. IMHO `index` refers # to a position in a container (i.e. list access). However, in this # file it is mostly used in the context of a `key` for dictionary # access. Can we refactor that? __docformat__ = 'restructuredtext' import operator, copy from textwrap import TextWrapper import numpy as N from mvpa.misc.vproperty import VProperty from mvpa.misc.exceptions import UnknownStateError from mvpa.misc.attributes import CollectableAttribute, StateVariable from mvpa.base.dochelpers import enhancedDocString from mvpa.base import externals if __debug__: from mvpa.base import debug _in_ipython = externals.exists('running ipython env') # Separators around definitions, needed for ReST, but bogus for # interactive sessions _def_sep = ('`', '')[int(_in_ipython)] _object_getattribute = object.__getattribute__ _object_setattr = object.__setattr__ ################################################################### # Collections # # TODO: refactor into collections.py. state.py now has # little in common with the main part of this file # class Collection(object): """Container of some CollectableAttributes. :Groups: - `Public Access Functions`: `isKnown` - `Access Implementors`: `_getListing`, `_getNames` - `Mutators`: `__init__` - `R/O Properties`: `listing`, `names`, `items` XXX Seems to be not used and duplicating functionality: `_getListing` (thus `listing` property) """ def __init__(self, items=None, owner=None, name=None): """Initialize the Collection :Parameters: items : dict of CollectableAttribute's items to initialize with owner : object an object to which collection belongs name : basestring name of the collection (as seen in the owner, e.g. 'states') """ self.__owner = owner if items == None: items = {} self._items = items """Dictionary to contain registered states as keys and values signal either they are enabled """ self.__name = name def _setName(self, name): self.__name = name def __str__(self): num = len(self._items) if __debug__ and "ST" in debug.active: maxnumber = 1000 # I guess all else: maxnumber = 4 if self.__name is not None: res = self.__name else: res = "" res += "{" for i in xrange(min(num, maxnumber)): if i > 0: res += " " res += "%s" % str(self._items.values()[i]) if len(self._items) > maxnumber: res += "..." res += "}" if __debug__: if "ST" in debug.active: res += " owner:%s#%s" % (self.owner.__class__.__name__, id(self.owner)) return res def _cls_repr(self): """Collection specific part of __repr__ for a class containing it, ie a part of __repr__ for the owner object :Return: list of items to be appended within __repr__ after a .join() """ # XXX For now we do not expect any pure non-specialized # collection , thus just override in derived classes raise NotImplementedError, "Class %s should override _cls_repr" \ % self.__class__.__name__ def _is_initializable(self, index): """Checks if index could be assigned within collection via _initialize :Return: bool value for a given `index` It is to facilitate dynamic assignment of collections' items within derived classes' __init__ depending on the present collections in the class. """ # XXX Each collection has to provide what indexes it allows # to be set within constructor. Custom handling of some # arguments (like (dis|en)able_states) is to be performed # in _initialize # raise NotImplementedError, \ # "Class %s should override _is_initializable" \ # % self.__class__.__name__ # YYY lets just check if it is in the keys return index in self._items.keys() def _initialize(self, index, value): """Initialize `index` (no check performed) with `value` """ # by default we just set corresponding value self[index].value = value def __repr__(self): s = "%s(" % self.__class__.__name__ items_s = "" sep = "" for item in self._items: try: itemvalue = "%s" % `self._items[item].value` if len(itemvalue)>50: itemvalue = itemvalue[:10] + '...' + itemvalue[-10:] items_s += "%s'%s':%s" % (sep, item, itemvalue) sep = ', ' except: pass if items_s != "": s += "items={%s}" % items_s if self.owner is not None: s += "%sowner=%s" % (sep, `self.owner`) s += ")" return s # # XXX TODO: figure out if there is a way to define proper # __copy__'s for a hierarchy of classes. Probably we had # to define __getinitargs__, etc... read more... # #def __copy__(self): # TODO Remove or refactor? # def _copy_states_(self, fromstate, deep=False): # """Copy known here states from `fromstate` object into current object # # Crafted to overcome a problem mentioned above in the comment # and is to be called from __copy__ of derived classes # # Probably sooner than later will get proper __getstate__, # __setstate__ # """ # # Bad check... doesn't generalize well... # # if not issubclass(fromstate.__class__, self.__class__): # # raise ValueError, \ # # "Class %s is not subclass of %s, " % \ # # (fromstate.__class__, self.__class__) + \ # # "thus not eligible for _copy_states_" # # TODO: FOR NOW NO TEST! But this beast needs to be fixed... # operation = { True: copy.deepcopy, # False: copy.copy }[deep] # # if isinstance(fromstate, ClassWithCollections): # fromstate = fromstate.states # # self.enabled = fromstate.enabled # for name in self.names: # if fromstate.isKnown(name): # self._items[name] = operation(fromstate._items[name]) def isKnown(self, index): """Returns `True` if state `index` is known at all""" return self._items.has_key(index) def isSet(self, index=None): """If item (or any in the present or listed) was set :Parameters: index : None or basestring or list of basestring What items to check if they were set in the collection """ _items = self._items if not (index is None): if isinstance(index, basestring): self._checkIndex(index) # process just that single index return _items[index].isSet else: items = index # assume that we got some list else: items = self._items # go through all the items for index in items: self._checkIndex(index) if _items[index].isSet: return True return False def whichSet(self): """Return list of indexes which were set""" result = [] # go through all members and if any isSet -- return True for index,v in self._items.iteritems(): if v.isSet: result.append(index) return result def _checkIndex(self, index): """Verify that given `index` is a known/registered state. :Raise `KeyError`: if given `index` is not known """ # OPT: lets not reuse isKnown, to don't incure 1 more function # call if not self._items.has_key(index): raise KeyError, \ "%s of %s has no key '%s' registered" \ % (self.__class__.__name__, self.__owner.__class__.__name__, index) def add(self, item): """Add a new CollectableAttribute to the collection :Parameters: item : CollectableAttribute or of derived class. Must have 'name' assigned TODO: we should make it stricter to don't add smth of wrong type into Collection since it might lead to problems Also we might convert to __setitem__ """ # local binding name = item.name if not isinstance(item, CollectableAttribute): raise ValueError, \ "Collection can add only instances of " + \ "CollectableAttribute-derived classes. Got %s" % `item` if name is None: raise ValueError, \ "CollectableAttribute to be added %s must have 'name' set" % \ item self._items[name] = item if not self.owner is None: self._updateOwner(name) def remove(self, index): """Remove item from the collection """ self._checkIndex(index) self._updateOwner(index, register=False) discard = self._items.pop(index) def __getattribute__(self, index): """ """ #return all private and protected ones first since we will not have # collectable's with _ (we should not have!) if index[0] == '_': return _object_getattribute(self, index) _items = _object_getattribute(self, '_items') if index in _items: return _items[index].value return _object_getattribute(self, index) def __setattr__(self, index, value): if index[0] == '_': return _object_setattr(self, index, value) _items = _object_getattribute(self, '_items') if index in _items: _items[index].value = value else: _object_setattr(self, index, value) def __getitem__(self, index): _items = _object_getattribute(self, '_items') if index in _items: self._checkIndex(index) return _items[index] else: raise AttributeError("State collection %s has no %s attribute" % (self, index)) # Probably not needed -- enable if need arises # #def __setattr__(self, index, value): # if self._items.has_key(index): # self._updateOwner(index, register=False) # self._items[index] = value # self._updateOwner(index, register=True) # # _object_setattr(self, index, value) def get(self, index, default): """Access the value by a given index. Mimiquing regular dictionary behavior, if value cannot be obtained (i.e. if any exception is caught) return default value. """ try: return self[index].value except Exception, e: #if default is not None: return default #else: # raise e def _action(self, index, func, missingok=False, **kwargs): """Run specific func either on a single item or on all of them :Parameters: index : basestr Name of the state variable func Function (not bound) to call given an item, and **kwargs missingok : bool If True - do not complain about wrong index """ if isinstance(index, basestring): if index.upper() == 'ALL': for index_ in self._items: self._action(index_, func, missingok=missingok, **kwargs) else: try: self._checkIndex(index) func(self._items[index], **kwargs) except: if missingok: return raise elif operator.isSequenceType(index): for item in index: self._action(item, func, missingok=missingok, **kwargs) else: raise ValueError, \ "Don't know how to handle variable given by %s" % index def reset(self, index=None): """Reset the state variable defined by `index`""" if not index is None: indexes = [ index ] else: indexes = self.names if len(self.items): for index in indexes: # XXX Check if that works as desired self._action(index, self._items.values()[0].__class__.reset, missingok=False) def _getListing(self): """Return a list of registered states along with the documentation""" # lets assure consistent litsting order items = self._items.items() items.sort() return [ "%s%s%s: %s" % (_def_sep, str(x[1]), _def_sep, x[1].__doc__) for x in items ] def _getNames(self): """Return ids for all registered state variables""" return self._items.keys() def _getOwner(self): return self.__owner def _setOwner(self, owner): if not isinstance(owner, ClassWithCollections): raise ValueError, \ "Owner of the StateCollection must be ClassWithCollections object" if __debug__: try: strowner = str(owner) except: strowner = "UNDEF: <%s#%s>" % (owner.__class__, id(owner)) debug("ST", "Setting owner for %s to be %s" % (self, strowner)) if not self.__owner is None: # Remove attributes which were registered to that owner previousely self._updateOwner(register=False) self.__owner = owner if not self.__owner is None: self._updateOwner(register=True) def _updateOwner(self, index=None, register=True): """Define an entry within owner's __dict__ so ipython could easily complete it :Parameters: index : basestring or list of basestring Name of the attribute. If None -- all known get registered register : bool Register if True or unregister if False XXX Needs refactoring since we duplicate the logic of expansion of index value """ if not index is None: if not index in self._items: raise ValueError, \ "Attribute %s is not known to %s" % (index, self) indexes = [ index ] else: indexes = self.names ownerdict = self.owner.__dict__ selfdict = self.__dict__ owner_known = ownerdict['_known_attribs'] for index_ in indexes: if register: if index_ in ownerdict: raise RuntimeError, \ "Cannot register attribute %s within %s " % \ (index_, self.owner) + "since it has one already" ownerdict[index_] = self._items[index_] if index_ in selfdict: raise RuntimeError, \ "Cannot register attribute %s within %s " % \ (index_, self) + "since it has one already" selfdict[index_] = self._items[index_] owner_known[index_] = self.__name else: if index_ in ownerdict: # yoh doesn't think that we need to complain if False ownerdict.pop(index_) owner_known.pop(index_) if index_ in selfdict: selfdict.pop(index_) # Properties names = property(fget=_getNames) items = property(fget=lambda x:x._items) owner = property(fget=_getOwner, fset=_setOwner) name = property(fget=lambda x:x.__name, fset=_setName) # Virtual properties listing = VProperty(fget=_getListing) class ParameterCollection(Collection): """Container of Parameters for a stateful object. """ # def __init__(self, items=None, owner=None, name=None): # """Initialize the state variables of a derived class # # :Parameters: # items : dict # dictionary of states # """ # Collection.__init__(self, items, owner, name) # def _cls_repr(self): """Part of __repr__ for the owner object """ prefixes = [] for k in self.names: # list only params with not default values if self[k].isDefault: continue prefixes.append("%s=%s" % (k, self[k].value)) return prefixes def resetvalue(self, index, missingok=False): """Reset all parameters to default values""" from param import Parameter self._action(index, Parameter.resetvalue, missingok=False) class SampleAttributesCollection(Collection): """Container for data and attributes of samples (ie data/labels/chunks/...) """ # def __init__(self, items=None, owner=None, name=None): # """Initialize the state variables of a derived class # # :Parameters: # items : dict # dictionary of states # """ # Collection.__init__(self, items, owner, name) # def _cls_repr(self): """Part of __repr__ for the owner object """ return [] # TODO: return I guess samples/labels/chunks class StateCollection(Collection): """Container of StateVariables for a stateful object. :Groups: - `Public Access Functions`: `isKnown`, `isEnabled`, `isActive` - `Access Implementors`: `_getListing`, `_getNames`, `_getEnabled` - `Mutators`: `__init__`, `enable`, `disable`, `_setEnabled` - `R/O Properties`: `listing`, `names`, `items` - `R/W Properties`: `enabled` """ def __init__(self, items=None, owner=None): """Initialize the state variables of a derived class :Parameters: items : dict dictionary of states owner : ClassWithCollections object which owns the collection name : basestring literal description. Usually just attribute name for the collection, e.g. 'states' """ Collection.__init__(self, items=items, owner=owner) self.__storedTemporarily = [] """List to contain sets of enabled states which were enabled temporarily. """ # # XXX TODO: figure out if there is a way to define proper # __copy__'s for a hierarchy of classes. Probably we had # to define __getinitargs__, etc... read more... # #def __copy__(self): def _cls_repr(self): """Part of __repr__ for the owner object """ prefixes = [] for name, invert in ( ('enable', False), ('disable', True) ): states = self._getEnabled(nondefault=False, invert=invert) if len(states): prefixes.append("%s_states=%s" % (name, str(states))) return prefixes def _is_initializable(self, index): """Checks if index could be assigned within collection via setvalue """ return index in ['enable_states', 'disable_states'] def _initialize(self, index, value): if value is None: value = [] if index == 'enable_states': self.enable(value, missingok=True) elif index == 'disable_states': self.disable(value) else: raise ValueError, "StateCollection can accept only enable_states " \ "and disable_states arguments for the initialization. " \ "Got %s" % index def _copy_states_(self, fromstate, index=None, deep=False): """Copy known here states from `fromstate` object into current object :Parameters: fromstate : Collection or ClassWithCollections Source states to copy from index : None or list of basestring If not to copy all set state variables, index provides selection of what to copy deep : bool Optional control over the way to copy Crafted to overcome a problem mentioned above in the comment and is to be called from __copy__ of derived classes Probably sooner than later will get proper __getstate__, __setstate__ """ # Bad check... doesn't generalize well... # if not issubclass(fromstate.__class__, self.__class__): # raise ValueError, \ # "Class %s is not subclass of %s, " % \ # (fromstate.__class__, self.__class__) + \ # "thus not eligible for _copy_states_" # TODO: FOR NOW NO TEST! But this beast needs to be fixed... operation = { True: copy.deepcopy, False: copy.copy }[deep] if isinstance(fromstate, ClassWithCollections): fromstate = fromstate.states #self.enabled = fromstate.enabled _items, from_items = self._items, fromstate._items if index is None: # copy all set ones for name in fromstate.whichSet():#self.names: #if fromstate.isKnown(name): _items[name] = operation(from_items[name]) else: isKnown = fromstate.isKnown for name in index: if isKnown(name): _items[name] = operation(from_items[name]) def isEnabled(self, index): """Returns `True` if state `index` is enabled""" self._checkIndex(index) return self._items[index].isEnabled def isActive(self, index): """Returns `True` if state `index` is known and is enabled""" return self.isKnown(index) and self.isEnabled(index) def enable(self, index, value=True, missingok=False): """Enable state variable given in `index`""" self._action(index, StateVariable.enable, missingok=missingok, value=value) def disable(self, index): """Disable state variable defined by `index` id""" self._action(index, StateVariable.enable, missingok=False, value=False) # TODO XXX think about some more generic way to grab temporary # snapshot of CollectableAttributes to be restored later on... def _changeTemporarily(self, enable_states=None, disable_states=None, other=None): """Temporarily enable/disable needed states for computation Enable or disable states which are enabled in `other` and listed in `enable _states`. Use `resetEnabledTemporarily` to reset to previous state of enabled. `other` can be a ClassWithCollections object or StateCollection """ if enable_states == None: enable_states = [] if disable_states == None: disable_states = [] self.__storedTemporarily.append(self.enabled) other_ = other if isinstance(other, ClassWithCollections): other = other.states if not other is None: # lets take states which are enabled in other but not in # self add_enable_states = list(set(other.enabled).difference( set(enable_states)).intersection(self.names)) if len(add_enable_states)>0: if __debug__: debug("ST", "Adding states %s from %s to be enabled temporarily" % (add_enable_states, other_) + " since they are not enabled in %s" % (self)) enable_states += add_enable_states # Lets go one by one enabling only disabled once... but could be as # simple as self.enable(enable_states) self.disable(disable_states) def _resetEnabledTemporarily(self): """Reset to previousely stored set of enabled states""" if __debug__: debug("ST", "Resetting to previous set of enabled states") if len(self.enabled)>0: self.enabled = self.__storedTemporarily.pop() else: raise ValueError("Trying to restore not-stored list of enabled " \ "states") def _getEnabled(self, nondefault=True, invert=False): """Return list of enabled states :Parameters: nondefault : bool Either to return also states which are enabled simply by default invert : bool Would invert the meaning, ie would return disabled states """ if invert: fmatch = lambda y: not self.isEnabled(y) else: fmatch = lambda y: self.isEnabled(y) if nondefault: ffunc = fmatch else: ffunc = lambda y: fmatch(y) and \ self._items[y]._defaultenabled != self.isEnabled(y) return filter(ffunc, self.names) def _setEnabled(self, indexlist): """Given `indexlist` make only those in the list enabled It might be handy to store set of enabled states and then to restore it later on. It can be easily accomplished now:: >>> from mvpa.misc.state import ClassWithCollections, StateVariable >>> class Blah(ClassWithCollections): ... bleh = StateVariable(enabled=False, doc='Example') ... >>> blah = Blah() >>> states_enabled = blah.states.enabled >>> blah.states.enabled = ['bleh'] >>> blah.states.enabled = states_enabled """ for index in self._items.keys(): self.enable(index, index in indexlist) # Properties enabled = property(fget=_getEnabled, fset=_setEnabled) ################################################################## # Base classes (and metaclass) which use collections # # # Helper dictionaries for AttributesCollector # _known_collections = { # Quite a generic one but mostly in classifiers 'StateVariable': ("states", StateCollection), # For classifiers only 'Parameter': ("params", ParameterCollection), 'KernelParameter': ("kernel_params", ParameterCollection), # For datasets # XXX custom collections needed? 'SampleAttribute': ("sa", SampleAttributesCollection), 'FeatureAttribute': ("fa", SampleAttributesCollection), 'DatasetAttribute': ("dsa", SampleAttributesCollection), } _col2class = dict(_known_collections.values()) """Mapping from collection name into Collection class""" _COLLECTIONS_ORDER = ['sa', 'fa', 'dsa', 'params', 'kernel_params', 'states'] class AttributesCollector(type): """Intended to collect and compose StateCollection for any child class of this metaclass """ def __init__(cls, name, bases, dict): if __debug__: debug( "COLR", "AttributesCollector call for %s.%s, where bases=%s, dict=%s " \ % (cls, name, bases, dict)) super(AttributesCollector, cls).__init__(name, bases, dict) collections = {} for name, value in dict.iteritems(): if isinstance(value, CollectableAttribute): baseclassname = value.__class__.__name__ col = _known_collections[baseclassname][0] # XXX should we allow to throw exceptions here? if not collections.has_key(col): collections[col] = {} collections[col][name] = value # and assign name if not yet was set if value.name is None: value._setName(name) # !!! We do not keep copy of this attribute static in the class. # Due to below traversal of base classes, we should be # able to construct proper collections even in derived classes delattr(cls, name) # XXX can we first collect parent's states and then populate with ours? # TODO for base in bases: if hasattr(base, "__metaclass__") and \ base.__metaclass__ == AttributesCollector: # TODO take care about overriding one from super class # for state in base.states: # if state[0] = newcollections = base._collections_template if len(newcollections) == 0: continue if __debug__: debug("COLR", "Collect collections %s for %s from %s" % (newcollections, cls, base)) for col, collection in newcollections.iteritems(): newitems = collection.items if collections.has_key(col): collections[col].update(newitems) else: collections[col] = newitems if __debug__: debug("COLR", "Creating StateCollection template %s with collections %s" % (cls, collections.keys())) # if there is an explicit if hasattr(cls, "_ATTRIBUTE_COLLECTIONS"): for col in cls._ATTRIBUTE_COLLECTIONS: if not col in _col2class: raise ValueError, \ "Requested collection %s is unknown to collector" % \ col if not col in collections: collections[col] = None # TODO: check on conflict in names of Collections' items! since # otherwise even order is not definite since we use dict for # collections. # XXX should we switch to tuple? for col, colitems in collections.iteritems(): collections[col] = _col2class[col](colitems) setattr(cls, "_collections_template", collections) # # Expand documentation for the class based on the listed # parameters an if it is stateful # # TODO -- figure nice way on how to alter __init__ doc directly... textwrapper = TextWrapper(subsequent_indent=" ", initial_indent=" ", width=70) # Parameters paramsdoc = "" paramscols = [] for col in ('params', 'kernel_params'): if collections.has_key(col): paramscols.append(col) # lets at least sort the parameters for consistent output col_items = collections[col].items params = [(v._instance_index, k) for k,v in col_items.iteritems()] params.sort() paramsdoc += '\n'.join( [col_items[param].doc(indent=' ') for index,param in params]) + '\n' # Parameters collection could be taked hash of to decide if # any were changed? XXX may be not needed at all? setattr(cls, "_paramscols", paramscols) # States doc statesdoc = "" if collections.has_key('states'): paramsdoc += """ enable_states : None or list of basestring Names of the state variables which should be enabled additionally to default ones disable_states : None or list of basestring Names of the state variables which should be disabled """ statesdoc = " * " statesdoc += '\n * '.join(collections['states'].listing) statesdoc += "\n\n(States enabled by default are listed with `+`)" if __debug__: debug("COLR", "Assigning __statesdoc to be %s" % statesdoc) setattr(cls, "_statesdoc", statesdoc) if paramsdoc != "": if __debug__ and 'COLR' in debug.active: debug("COLR", "Assigning __paramsdoc to be %s" % paramsdoc) setattr(cls, "_paramsdoc", paramsdoc) if paramsdoc + statesdoc != "": cls.__doc__ = enhancedDocString(cls, *bases) class ClassWithCollections(object): """Base class for objects which contain any known collection Classes inherited from this class gain ability to access collections and their items as simple attributes. Access to collection items "internals" is done via attribute and interface of a corresponding `Collection`. """ _DEV__doc__ = """ TODO: rename 'descr'? -- it should simply be 'doc' -- no need to drag classes docstring imho. """ __metaclass__ = AttributesCollector def __new__(cls, *args, **kwargs): """Initialize ClassWithCollections object :Parameters: descr : basestring Description of the instance """ self = super(ClassWithCollections, cls).__new__(cls) s__dict__ = self.__dict__ # init variable # XXX: Added as pylint complained (rightfully) -- not sure if false # is the proper default self.__params_set = False # need to check to avoid override of enabled states in the case # of multiple inheritance, like both ClassWithCollectionsl and Harvestable if not s__dict__.has_key('_collections'): s__class__ = self.__class__ collections = copy.deepcopy(s__class__._collections_template) s__dict__['_collections'] = collections s__dict__['_known_attribs'] = {} """Dictionary to contain 'links' to the collections from each known attribute. Is used to gain some speed up in lookup within __getattribute__ and __setattr__ """ # Assign owner to all collections for col, collection in collections.iteritems(): if col in s__dict__: raise ValueError, \ "Object %s has already attribute %s" % \ (self, col) s__dict__[col] = collection collection.name = col collection.owner = self self.__params_set = False if __debug__: descr = kwargs.get('descr', None) debug("COL", "ClassWithCollections.__new__ was done " "for %s#%s with descr=%s" \ % (s__class__.__name__, id(self), descr)) return self def __init__(self, descr=None, **kwargs): if not self.__params_set: self.__descr = descr """Set humane description for the object""" # To avoid double initialization in case of multiple inheritance self.__params_set = True collections = self._collections # Assign attributes values if they are given among # **kwargs for arg, argument in kwargs.items(): set = False for collection in collections.itervalues(): if collection._is_initializable(arg): collection._initialize(arg, argument) set = True break if set: trash = kwargs.pop(arg) else: known_params = reduce( lambda x,y:x+y, [x.items.keys() for x in collections.itervalues()], []) raise TypeError, \ "Unexpected keyword argument %s=%s for %s." \ % (arg, argument, self) \ + " Valid parameters are %s" % known_params ## Initialize other base classes ## commented out since it seems to be of no use for now #if init_classes is not None: # # return back stateful arguments since they might be # # processed by underlying classes # kwargs.update(kwargs_stateful) # for cls in init_classes: # cls.__init__(self, **kwargs) #else: # if len(kwargs)>0: # known_params = reduce(lambda x, y: x + y, \ # [x.items.keys() for x in collections], # []) # raise TypeError, \ # "Unknown parameters %s for %s." % (kwargs.keys(), # self) \ # + " Valid parameters are %s" % known_params if __debug__: debug("COL", "ClassWithCollections.__init__ was done " "for %s#%s with descr=%s" \ % (self.__class__.__name__, id(self), descr)) #__doc__ = enhancedDocString('ClassWithCollections', locals()) def __getattribute__(self, index): # return all private ones first since smth like __dict__ might be # queried by copy before instance is __init__ed if index[0] == '_': return _object_getattribute(self, index) s_dict = _object_getattribute(self, '__dict__') # check if it is a known collection collections = s_dict['_collections'] if index in collections: return collections[index] # check if it is a part of any collection known_attribs = s_dict['_known_attribs'] if index in known_attribs: return collections[known_attribs[index]]._items[index].value # just a generic return return _object_getattribute(self, index) def __setattr__(self, index, value): if index[0] == '_': return _object_setattr(self, index, value) # Check if a part of a collection, and set appropriately s_dict = _object_getattribute(self, '__dict__') known_attribs = s_dict['_known_attribs'] if index in known_attribs: collections = s_dict['_collections'] collections[known_attribs[index]][index].value = value return value # Generic setattr return _object_setattr(self, index, value) # XXX not sure if we shouldn't implement anything else... def reset(self): for collection in self._collections.values(): collection.reset() def __str__(self): s = "%s:" % (self.__class__.__name__) if self.__descr is not None: s += "/%s " % self.__descr if hasattr(self, "_collections"): for col, collection in self._collections.iteritems(): s += " %d %s:%s" % (len(collection.items), col, str(collection)) return s def __repr__(self, prefixes=None, fullname=False): """String definition of the object of ClassWithCollections object :Parameters: fullname : bool Either to include full name of the module prefixes : list of strings What other prefixes to prepend to list of arguments """ if prefixes is None: prefixes = [] prefixes = prefixes[:] # copy list id_str = "" module_str = "" if __debug__: if 'MODULE_IN_REPR' in debug.active: fullname = True if 'ID_IN_REPR' in debug.active: id_str = '#%s' % id(self) if fullname: modulename = '%s' % self.__class__.__module__ if modulename != "__main__": module_str = "%s." % modulename # Collections' attributes collections = self._collections # we want them in this particular order for col in _COLLECTIONS_ORDER: collection = collections.get(col, None) if collection is None: continue prefixes += collection._cls_repr() # Description if present descr = self.__descr if descr is not None: prefixes.append("descr=%s" % repr(descr)) return "%s%s(%s)%s" % (module_str, self.__class__.__name__, ', '.join(prefixes), id_str) descr = property(lambda self: self.__descr, doc="Description of the object if any") class Harvestable(ClassWithCollections): """Classes inherited from this class intend to collect attributes within internal processing. Subclassing Harvestable we gain ability to collect any internal data from the processing which is especially important if an object performs something in loop and discards some intermidiate possibly interesting results (like in case of CrossValidatedTransferError and states of the trained classifier or TransferError). """ harvested = StateVariable(enabled=False, doc= """Store specified attributes of classifiers at each split""") _KNOWN_COPY_METHODS = [ None, 'copy', 'deepcopy' ] def __init__(self, harvest_attribs=None, copy_attribs='copy', **kwargs): """Initialize state of harvestable :Parameters: harvest_attribs : list of basestr or dicts What attributes of call to store and return within harvested state variable. If an item is a dictionary, following keys are used ['name', 'copy'] copy_attribs : None or basestr Default copying. If None -- no copying, 'copy' - shallow copying, 'deepcopy' -- deepcopying """ ClassWithCollections.__init__(self, **kwargs) self.__atribs = harvest_attribs self.__copy_attribs = copy_attribs self._setAttribs(harvest_attribs) def _setAttribs(self, attribs): """Set attributes to harvest Each attribute in self.__attribs must have following fields - name : functional (or arbitrary if 'obj' or 'attr' is set) description of the thing to harvest, e.g. 'transerror.clf.training_time' - obj : name of the object to harvest from (if empty, 'self' is assumed), e.g 'transerror' - attr : attribute of 'obj' to harvest, e.g. 'clf.training_time' - copy : None, 'copy' or 'deepcopy' - way to copy attribute """ if attribs: # force the state self.states.enable('harvested') self.__attribs = [] for i, attrib in enumerate(attribs): if isinstance(attrib, dict): if not 'name' in attrib: raise ValueError, \ "Harvestable: attribute must be a string or " + \ "a dictionary with 'name'" else: attrib = {'name': attrib} # assign default method to copy if not 'copy' in attrib: attrib['copy'] = self.__copy_attribs # check copy method if not attrib['copy'] in self._KNOWN_COPY_METHODS: raise ValueError, "Unknown method %s. Known are %s" % \ (attrib['copy'], self._KNOWN_COPY_METHODS) if not ('obj' in attrib or 'attr' in attrib): # Process the item to harvest # split into obj, attr. If obj is empty, then assume self split = attrib['name'].split('.', 1) if len(split)==1: obj, attr = split[0], None else: obj, attr = split attrib.update({'obj':obj, 'attr':attr}) if attrib['obj'] == '': attrib['obj'] = 'self' # TODO: may be enabling of the states?? self.__attribs.append(attrib) # place value back else: # just to make sure it is not None or 0 self.__attribs = [] def _harvest(self, vars): """The harvesting function: must obtain dictionary of variables from the caller. :Parameters: vars : dict Dictionary of available data. Most often locals() could be passed as `vars`. Mention that desired to be harvested private attributes better be bound locally to some variable :Returns: nothing """ if not self.states.isEnabled('harvested') or len(self.__attribs)==0: return if not self.states.isSet('harvested'): self.harvested = dict([(a['name'], []) for a in self.__attribs]) for attrib in self.__attribs: attrv = vars[attrib['obj']] # access particular attribute if needed if not attrib['attr'] is None: attrv = eval('attrv.%s' % attrib['attr']) # copy the value if needed attrv = {'copy':copy.copy, 'deepcopy':copy.deepcopy, None:lambda x:x}[attrib['copy']](attrv) self.harvested[attrib['name']].append(attrv) harvest_attribs = property(fget=lambda self:self.__attribs, fset=_setAttribs) pymvpa-0.4.8/mvpa/misc/stats.py000066400000000000000000000146301174541445200164600ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Little statistics helper""" __docformat__ = 'restructuredtext' from mvpa.base import externals if externals.exists('scipy', raiseException=True): import scipy.stats as stats import numpy as N import copy def chisquare(obs, exp=None): """Compute the chisquare value of a contingency table with arbitrary dimensions. If no expected frequencies are supplied, the total N is assumed to be equally distributed across all cells. Returns: chisquare-stats, associated p-value (upper tail) """ obs = N.array(obs) # get total number of observations nobs = N.sum(obs) # if no expected value are supplied assume equal distribution if exp == None: exp = N.ones(obs.shape) * nobs / N.prod(obs.shape) # make sure to have floating point data exp = exp.astype(float) # compute chisquare value chisq = N.sum((obs - exp )**2 / exp) # return chisq and probability (upper tail) return chisq, stats.chisqprob(chisq, N.prod(obs.shape) - 1) class DSMatrix(object): """DSMatrix allows for the creation of dissilimarity matrices using arbitrary distance metrics. """ # metric is a string def __init__(self, data_vectors, metric='spearman'): """Initialize DSMatrix :Parameters: data_vectors : ndarray m x n collection of vectors, where m is the number of exemplars and n is the number of features per exemplar metric : string Distance metric to use (e.g., 'euclidean', 'spearman', 'pearson', 'confusion') """ # init members self.full_matrix = [] self.u_triangle = None self.vector_form = None # this one we know straight away, so set it self.metric = metric # size of dataset (checking if we're dealing with a column vector only) num_exem = N.shape(data_vectors)[0] flag_1d = False # changed 4/26/09 to new way of figuring out if array is 1-D #if (isinstance(data_vectors, N.ndarray)): if (not(num_exem == N.size(data_vectors))): num_features = N.shape(data_vectors)[1] else: flag_1d = True num_features = 1 # generate output (dissimilarity) matrix dsmatrix = N.mat(N.zeros((num_exem, num_exem))) if (metric == 'euclidean'): #print 'Using Euclidean distance metric...' # down rows for i in range(num_exem): # across columns for j in range(num_exem): if (not(flag_1d)): dsmatrix[i, j] = N.linalg.norm( data_vectors[i, :] - data_vectors[j, :]) else: dsmatrix[i, j] = N.linalg.norm( data_vectors[i] - data_vectors[j]) elif (metric == 'spearman'): #print 'Using Spearman rank-correlation metric...' # down rows for i in range(num_exem): # across columns for j in range(num_exem): dsmatrix[i, j] = 1 - stats.spearmanr( data_vectors[i,:], data_vectors[j,:])[0] elif (metric == 'pearson'): #print 'Using Pearson correlation metric...' # down rows for i in range(num_exem): # across columns for j in range(num_exem): dsmatrix[i, j] = 1 - stats.pearsonr( data_vectors[i,:], data_vectors[j,:])[0] elif (metric == 'confusion'): #print 'Using confusion correlation metric...' # down rows for i in range(num_exem): # across columns for j in range(num_exem): if (not(flag_1d)): dsmatrix[i, j] = 1 - int( N.floor(N.sum(( data_vectors[i, :] == data_vectors[j, :] ).astype(N.int32)) / num_features)) else: dsmatrix[i, j] = 1 - int( data_vectors[i] == data_vectors[j]) self.full_matrix = dsmatrix def getTriangle(self): # if we need to create the u_triangle representation, do so if (self.u_triangle is None): self.u_triangle = N.triu(self.full_matrix) return self.u_triangle # create the dissimilarity matrix on the (upper) triangle of the two # two dissimilarity matrices; we can just reuse the same dissimilarity # matrix code, but since it will return a matrix, we need to pick out # either dsm[0,1] or dsm[1,0] # note: this is a bit of a kludge right now, but it's the only way to solve # certain problems: # 1. Set all 0-valued elements in the original matrix to -1 (an impossible # value for a dissimilarity matrix) # 2. Find the upper triangle of the matrix # 3. Create a vector from the upper triangle, but only with the # elements whose absolute value is greater than 0 -- this # will keep everything from the original matrix that wasn't # part of the zero'ed-out portion when we took the upper # triangle # 4. Set all the -1-valued elements in the vector to 0 (their # original value) # 5. Cast to numpy array def getVectorForm(self): if (self.vector_form is not None): return self.vector_form orig_dsmatrix = copy.deepcopy(self.getFullMatrix()) orig_dsmatrix[orig_dsmatrix == 0] = -1 orig_tri = N.triu(orig_dsmatrix) vector_form = orig_tri[abs(orig_tri) > 0] vector_form[vector_form == -1] = 0 vector_form = N.asarray(vector_form) self.vector_form = vector_form[0] return self.vector_form # XXX is there any reason to have these get* methods # instead of plain access to full_matrix and method? def getFullMatrix(self): return self.full_matrix def getMetric(self): return self.metric pymvpa-0.4.8/mvpa/misc/support.py000066400000000000000000000556171174541445200170500ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Support function -- little helpers in everyday life""" __docformat__ = 'restructuredtext' import numpy as N import re, os # for SmartVersion from distutils.version import Version from types import StringType, TupleType, ListType from mvpa.base import warning from mvpa.support.copy import copy, deepcopy from operator import isSequenceType if __debug__: from mvpa.base import debug def reuseAbsolutePath(file1, file2, force=False): """Use path to file1 as the path to file2 is no absolute path is given for file2 :Parameters: force : bool if True, force it even if the file2 starts with / """ if not file2.startswith(os.path.sep) or force: # lets reuse path to file1 return os.path.join(os.path.dirname(file1), file2.lstrip(os.path.sep)) else: return file2 def transformWithBoxcar(data, startpoints, boxlength, offset=0, fx=N.mean): """This function extracts boxcar windows from an array. Such a boxcar is defined by a starting point and the size of the window along the first axis of the array (`boxlength`). Afterwards a customizable function is applied to each boxcar individually (Default: averaging). :param data: An array with an arbitrary number of dimensions. :type data: array :param startpoints: Boxcar startpoints as index along the first array axis :type startpoints: sequence :param boxlength: Length of the boxcar window in #array elements :type boxlength: int :param offset: Optional offset between the configured starting point and the actual begining of the boxcar window. :type offset: int :rtype: array (len(startpoints) x data.shape[1:]) """ if boxlength < 1: raise ValueError, "Boxlength lower than 1 makes no sense." # check for illegal boxes for sp in startpoints: if ( sp + offset + boxlength - 1 > len(data)-1 ) \ or ( sp + offset < 0 ): raise ValueError, \ 'Illegal box: start: %i, offset: %i, length: %i' \ % (sp, offset, boxlength) # build a list of list where each sublist contains the indexes of to be # averaged data elements selector = [ range( i + offset, i + offset + boxlength ) \ for i in startpoints ] # average each box selected = [ fx( data[ N.array(box) ], axis=0 ) for box in selector ] return N.array( selected ) def _getUniqueLengthNCombinations_lt3(data, n): """Generates a list of lists containing all combinations of elements of data of length 'n' without repetitions. data: list n: integer This function is adapted from a Java version posted in some forum on the web as an answer to the question 'How can I generate all possible combinations of length n?'. Unfortunately I cannot remember which forum it was. NOTE: implementation is broken for n>2 """ if n > 2: raise ValueError, "_getUniqueLengthNCombinations_lt3 " \ "is broken for n>2, hence should not be used directly." # to be returned combos = [] # local function that will be called recursively to collect the # combination elements def take(data, occupied, depth, taken): for i, d in enumerate(data): # only do something if this element hasn't been touch yet if occupied[i] == False: # see whether will reached the desired length if depth < n-1: # flag the current element as touched occupied[i] = True # next level take(data, occupied, depth+1, taken + [d]) # if the current element would be set 'free', it would # results in ALL combinations of elements (obeying order # of elements) and not just in the unique sets of # combinations (without order) #occupied[i] = False else: # store the final combination combos.append(taken + [d]) # some kind of bitset that stores the status of each element # (contained in combination or not) occupied = [False] * len(data) # get the combinations take(data, occupied, 0, []) # return the result return combos def xuniqueCombinations(L, n): """Generator of unique combinations form a list L of objects in groups of size n. # XXX EO: I guess they are already sorted. # XXX EO: It seems to work well for n>20 :) :Parameters: L : list list of unique ids n : int grouping size Adopted from Li Daobing http://code.activestate.com/recipes/190465/ (MIT license, according to activestate.com's policy) """ if n==0: yield [] else: for i in xrange(len(L)-n+1): for cc in xuniqueCombinations(L[i+1:],n-1): yield [L[i]]+cc def _getUniqueLengthNCombinations_binary(L, n=None, sort=True): """Find all subsets of data :Parameters: L : list list of unique ids n : None or int If None, all possible subsets are returned. If n is specified (int), then only the ones of the length n are returned sort : bool Either to sort the resultant sequence Adopted from Alex Martelli: http://mail.python.org/pipermail/python-list/2001-January/067815.html """ N = len(L) if N > 20 and n == 1: warning("getUniqueLengthNCombinations_binary should not be used for " "large N") result = [] for X in range(2**N): x = [ L[i] for i in range(N) if X & (1L< 10000? No one would run it... return list(xuniqueCombinations(L, n)) def indentDoc(v): """Given a `value` returns a string where each line is indented Needed for a cleaner __repr__ output `v` - arbitrary """ return re.sub('\n', '\n ', str(v)) def idhash(val): """Craft unique id+hash for an object """ res = "%s" % id(val) if isinstance(val, list): val = tuple(val) try: res += ":%s" % hash(buffer(val)) except: try: res += ":%s" % hash(val) except: pass pass return res def isSorted(items): """Check if listed items are in sorted order. :Parameters: `items`: iterable container :return: `True` if were sorted. Otherwise `False` + Warning """ items_sorted = deepcopy(items) items_sorted.sort() equality = items_sorted == items # XXX yarik forgotten analog to isiterable if hasattr(equality, '__iter__'): equality = N.all(equality) return equality def isInVolume(coord, shape): """For given coord check if it is within a specified volume size. Returns True/False. Assumes that volume coordinates start at 0. No more generalization (arbitrary minimal coord) is done to save on performance """ for i in xrange(len(coord)): if coord[i] < 0 or coord[i] >= shape[i]: return False return True def version_to_tuple(v): """Convert literal string into a tuple, if possible of ints Tuple of integers constructed by splitting at '.' or interleaves of numerics and alpha numbers """ if isinstance(v, basestring): v = v.split('.') elif isinstance(v, tuple) or isinstance(v, list): # assure tuple pass else: raise ValueError, "Do not know how to treat version '%s'" % str(v) # Try to convert items into ints vres = [] regex = re.compile('(?P[0-9]*)' '(?P[~+-]*[A-Za-z]*)(?P.*)') for x in v: try: vres += [int(x)] except ValueError: # try to split into sequences of literals and numerics suffix = x while suffix != '': res = regex.search(suffix) if res: resd = res.groupdict() if resd['numeric'] != '': vres += [int(resd['numeric'])] if resd['alpha'] != '': vres += [resd['alpha']] suffix = resd['suffix'] else: # We can't detech anything meaningful -- let it go as is resd += [suffix] break v = tuple(vres) return v class SmartVersion(Version): """A bit evolved comparison of versions The reason for not using python's distutil.version is that it seems to have no clue about somewhat common conventions of using '-dev' or 'dev' or 'rc' suffixes for upcoming releases (so major version does contain upcoming release already). So here is an ad-hoc and not as nice implementation """ def parse(self, vstring): self.vstring = vstring self.version = version_to_tuple(vstring) def __str__(self): return self.vstring def __cmp__(self, other): if isinstance(other, (StringType, TupleType, ListType)): other = SmartVersion(other) elif isinstance(other, SmartVersion): pass elif isinstance(other, Version): other = SmartVersion(other.vstring) else: raise ValueError("Do not know how to treat version %s" % str(other)) # Do ad-hoc comparison of strings i = 0 s, o = self.version, other.version regex_prerelease = re.compile('~|-?dev|-?rc|-?svn|-?pre', re.I) for i in xrange(max(len(s), len(o))): if i < len(s): si = s[i] else: si = None if i < len(o): oi = o[i] else: oi = None if si == oi: continue for x,y,mult in ((si, oi, 1), (oi, si, -1)): if x is None: if isinstance(y, int): return -mult # we got '.1' suffix if isinstance(y, StringType): if (regex_prerelease.match(y)): return mult # so we got something to signal # pre-release, so first one won else: # otherwise the other one wins return -mult else: raise RuntimeError, "Should not have got here with %s" \ % y elif isinstance(x, int): if not isinstance(y, int): return mult return mult*cmp(x, y) # both are ints elif isinstance(x, StringType): if isinstance(y, StringType): return mult*cmp(x,y) return 0 def getBreakPoints(items, contiguous=True): """Return a list of break points. :Parameters: items : iterable list of items, such as chunks contiguous : bool if `True` (default) then raise Value Error if items are not contiguous, i.e. a label occur in multiple contiguous sets :raises: ValueError :return: list of indexes for every new set of items """ prev = None # pylint happiness event! known = [] """List of items which was already seen""" result = [] """Resultant list""" for index in xrange(len(items)): item = items[index] if item in known: if index > 0: if prev != item: # breakpoint if contiguous: raise ValueError, \ "Item %s was already seen before" % str(item) else: result.append(index) else: known.append(item) result.append(index) prev = item return result def RFEHistory2maps(history): """Convert history generated by RFE into the array of binary maps Example: history2maps(N.array( [ 3,2,1,0 ] )) results in array([[ 1., 1., 1., 1.], [ 1., 1., 1., 0.], [ 1., 1., 0., 0.], [ 1., 0., 0., 0.]]) """ # assure that it is an array history = N.array(history) nfeatures, steps = len(history), max(history) - min(history) + 1 history_maps = N.zeros((steps, nfeatures)) for step in xrange(steps): history_maps[step, history >= step] = 1 return history_maps class MapOverlap(object): """Compute some overlap stats from a sequence of binary maps. When called with a sequence of binary maps (e.g. lists or arrays) the fraction of mask elements that are non-zero in a customizable proportion of the maps is returned. By default this threshold is set to 1.0, i.e. such an element has to be non-zero in *all* maps. Three additional maps (same size as original) are computed: * overlap_map: binary map which is non-zero for each overlapping element. * spread_map: binary map which is non-zero for each element that is non-zero in any map, but does not exceed the overlap threshold. * ovstats_map: map of float with the raw elementwise fraction of overlap. All maps are available via class members. """ def __init__(self, overlap_threshold=1.0): """Nothing to be seen here. """ self.__overlap_threshold = overlap_threshold # pylint happiness block self.overlap_map = None self.spread_map = None self.ovstats_map = None def __call__(self, maps): """Returns fraction of overlapping elements. """ ovstats = N.mean(maps, axis=0) self.overlap_map = (ovstats >= self.__overlap_threshold ) self.spread_map = N.logical_and(ovstats > 0.0, ovstats < self.__overlap_threshold) self.ovstats_map = ovstats return N.mean(ovstats >= self.__overlap_threshold) class Event(dict): """Simple class to define properties of an event. The class is basically a dictionary. Any properties can be passed as keyword arguments to the constructor, e.g.: >>> ev = Event(onset=12, duration=2.45) Conventions for keys: `onset` The onset of the event in some unit. `duration` The duration of the event in the same unit as `onset`. `label` E.g. the condition this event is part of. `chunk` Group this event is part of (if any), e.g. experimental run. `features` Any amount of additional features of the event. This might include things like physiological measures, stimulus intensity. Must be a mutable sequence (e.g. list), if present. """ _MUSTHAVE = ['onset'] def __init__(self, **kwargs): # store everything dict.__init__(self, **kwargs) # basic checks for k in Event._MUSTHAVE: if not self.has_key(k): raise ValueError, "Event must have '%s' defined." % k def asDescreteTime(self, dt, storeoffset=False): """Convert `onset` and `duration` information into descrete timepoints. :Parameters: dt: float Temporal distance between two timepoints in the same unit as `onset` and `duration`. storeoffset: bool If True, the temporal offset between original `onset` and descretized `onset` is stored as an additional item in `features`. :Return: A copy of the original `Event` with `onset` and optionally `duration` replaced by their corresponding descrete timepoint. The new onset will correspond to the timepoint just before or exactly at the original onset. The new duration will be the number of timepoints covering the event from the computed onset timepoint till the timepoint exactly at the end, or just after the event. Note again, that the new values are expressed as #timepoint and not in their original unit! """ dt = float(dt) onset = self['onset'] out = deepcopy(self) # get the timepoint just prior the onset out['onset'] = int(N.floor(onset / dt)) if storeoffset: # compute offset offset = onset - (out['onset'] * dt) if out.has_key('features'): out['features'].append(offset) else: out['features'] = [offset] if out.has_key('duration'): # how many timepoint cover the event (from computed onset # to the one timepoint just after the end of the event out['duration'] = int(N.ceil((onset + out['duration']) / dt) \ - out['onset']) return out class HarvesterCall(object): def __init__(self, call, attribs=None, argfilter=None, expand_args=True, copy_attribs=True): """Initialize :Parameters: expand_args : bool Either to expand the output of looper into a list of arguments for call attribs : list of basestr What attributes of call to store and return later on? copy_attribs : bool Force copying values of attributes """ self.call = call """Call which gets called in the harvester.""" if attribs is None: attribs = [] if not isSequenceType(attribs): raise ValueError, "'attribs' have to specified as a sequence." if not (argfilter is None or isSequenceType(argfilter)): raise ValueError, "'argfilter' have to be a sequence or None." # now give it to me... self.argfilter = argfilter self.expand_args = expand_args self.copy_attribs = copy_attribs self.attribs = attribs class Harvester(object): """World domination helper: do whatever it is asked and accumulate results XXX Thinks about: - Might we need to deepcopy attributes values? - Might we need to specify what attribs to copy and which just to bind? """ def __init__(self, source, calls, simplify_results=True): """Initialize :Parameters: source Generator which produce food for the calls. calls : sequence of HarvesterCall instances Calls which are processed in the loop. All calls are processed in order of apperance in the sequence. simplify_results: bool Remove unecessary overhead in results if possible (nested lists and dictionaries). """ if not isSequenceType(calls): raise ValueError, "'calls' have to specified as a sequence." self.__source = source """Generator which feeds the harvester""" self.__calls = calls """Calls which gets called with each generated source""" self.__simplify_results = simplify_results def __call__(self, *args, **kwargs): """ """ # prepare complex result structure for all calls and their respective # attributes: calls x dict(attributes x loop iterations) results = [dict([('result', [])] + [(a, []) for a in c.attribs]) \ for c in self.__calls] # Lets do it! for (i, X) in enumerate(self.__source(*args, **kwargs)): for (c, call) in enumerate(self.__calls): # sanity check if i == 0 and call.expand_args and not isSequenceType(X): raise RuntimeError, \ "Cannot expand non-sequence result from %s" % \ `self.__source` # apply argument filter (and reorder) if requested if call.argfilter: filtered_args = [X[f] for f in call.argfilter] else: filtered_args = X if call.expand_args: result = call.call(*filtered_args) else: result = call.call(filtered_args) # # XXX pylint doesn't like `` for some reason # if __debug__: # debug("LOOP", "Iteration %i on call %s. Got result %s" % # (i, `self.__call`, `result`)) results[c]['result'].append(result) for attrib in call.attribs: attrv = call.call.__getattribute__(attrib) if call.copy_attribs: attrv = copy(attrv) results[c][attrib].append(attrv) # reduce results structure if self.__simplify_results: # get rid of dictionary if just the results are requested for (c, call) in enumerate(self.__calls): if not len(call.attribs): results[c] = results[c]['result'] if len(self.__calls) == 1: results = results[0] return results # XXX MH: this doesn't work in all cases, as you cannot have *args after a # kwarg. #def loop(looper, call, # unroll=True, attribs=None, copy_attribs=True, *args, **kwargs): # """XXX Loop twin brother # # Helper for those who just wants to do smth like # loop(blah, bleh, grgr) # instead of # Loop(blah, bleh)(grgr) # """ # print looper, call, unroll, attribs, copy_attribs # print args, kwargs # return Loop(looper=looper, call=call, unroll=unroll, # attribs=attribs, copy_attribs=copy_attribs)(*args, **kwargs) pymvpa-0.4.8/mvpa/misc/transformers.py000066400000000000000000000316501174541445200200500ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Simply functors that transform something.""" _DEV_DOC = """ Follow the convetion that functions start with lower case, and classes with uppercase letter. """ __docformat__ = 'restructuredtext' import numpy as N from mvpa.base import externals, warning from mvpa.misc.state import StateVariable, ClassWithCollections if __debug__: from mvpa.base import debug def Absolute(x): """ Returns the elementwise absolute of any argument. :Parameter: x: scalar | sequence """ return N.absolute(x) def OneMinus(x): """Returns elementwise '1 - x' of any argument.""" return 1 - x def Identity(x): """Return whatever it was called with.""" return x def FirstAxisMean(x): """Mean computed along the first axis.""" return N.mean(x, axis=0) def FirstAxisSumNotZero(x): """Sum computed over first axis of whether the values are not equal to zero.""" return (N.asarray(x)!=0).sum(axis=0) def SecondAxisMean(x): """Mean across 2nd axis Use cases: - to combine multiple sensitivities to get sense about mean sensitivity across splits """ return N.mean(x, axis=1) def SecondAxisSumOfAbs(x): """Sum of absolute values along the 2nd axis Use cases: - to combine multiple sensitivities to get sense about what features are most influential """ return N.abs(x).sum(axis=1) def SecondAxisMaxOfAbs(x): """Max of absolute values along the 2nd axis """ return N.abs(x).max(axis=1) def GrandMean(x): """Just what the name suggests.""" return N.mean(x) def L2Normed(x, norm=1.0, reverse=False): """Norm the values so that regular vector norm becomes `norm` More verbose: Norm that the sum of the squared elements of the returned vector becomes `norm`. """ xnorm = N.linalg.norm(x) return x * (norm/xnorm) def L1Normed(x, norm=1.0, reverse=False): """Norm the values so that L_1 norm (sum|x|) becomes `norm`""" xnorm = N.sum(N.abs(x)) return x * (norm/xnorm) def RankOrder(x, reverse=False): """Rank-order by value. Highest gets 0""" # XXX was Yarik on drugs? please simplify this beast nelements = len(x) indexes = N.arange(nelements) t_indexes = indexes if not reverse: t_indexes = indexes[::-1] tosort = zip(x, indexes) tosort.sort() ztosort = zip(tosort, t_indexes) rankorder = N.empty(nelements, dtype=int) rankorder[ [x[0][1] for x in ztosort] ] = \ [x[1] for x in ztosort] return rankorder def ReverseRankOrder(x): """Convinience functor""" return RankOrder(x, reverse=True) class OverAxis(object): """Helper to apply transformer over specific axis """ def __init__(self, transformer, axis=None): """Initialize transformer wrapper with an axis. :Parameters: transformer A callable to be used axis : None or int If None -- apply transformer across all the data. If some int -- over that axis """ self.transformer = transformer # sanity check if not (axis is None or isinstance(axis, int)): raise ValueError, "axis must be specified by integer" self.axis = axis def __call__(self, x, *args, **kwargs): transformer = self.transformer axis = self.axis if axis is None: return transformer(x, *args, **kwargs) x = N.asanyarray(x) shape = x.shape if axis >= len(shape): raise ValueError, "Axis given in constructor %d is higher " \ "than dimensionality of the data of shape %s" % (axis, shape) # WRONG! ;-) #for ind in xrange(shape[axis]): # results.append(transformer(x.take([ind], axis=axis), # *args, **kwargs)) # TODO: more elegant/speedy solution? shape_sweep = shape[:axis] + shape[axis+1:] shrinker = None """Either transformer reduces the dimensionality of the data""" #results = N.empty(shape_out, dtype=x.dtype) for index_sweep in N.ndindex(shape_sweep): if axis > 0: index = index_sweep[:axis] else: index = () index = index + (slice(None),) + index_sweep[axis:] x_sel = x[index] x_t = transformer(x_sel, *args, **kwargs) if shrinker is None: if N.isscalar(x_t) or x_t.shape == shape_sweep: results = N.empty(shape_sweep, dtype=x.dtype) shrinker = True elif x_t.shape == x_sel.shape: results = N.empty(x.shape, dtype=x.dtype) shrinker = False else: raise RuntimeError, 'Not handled by OverAxis kind of transformer' if shrinker: results[index_sweep] = x_t else: results[index] = x_t return results class DistPValue(ClassWithCollections): """Converts values into p-values under vague and non-scientific assumptions """ nulldist_number = StateVariable(enabled=True, doc="Number of features within the estimated null-distribution") positives_recovered = StateVariable(enabled=True, doc="Number of features considered to be positives and which were recovered") def __init__(self, sd=0, distribution='rdist', fpp=None, nbins=400, **kwargs): """L2-Norm the values, convert them to p-values of a given distribution. :Parameters: sd : int Samples dimension (if len(x.shape)>1) on which to operate distribution : string Which distribution to use. Known are: 'rdist' (later normal should be there as well) fpp : float At what p-value (both tails) if not None, to control for false positives. It would iteratively prune the tails (tentative real positives) until empirical p-value becomes less or equal to numerical. nbins : int Number of bins for the iterative pruning of positives WARNING: Highly experimental/slow/etc: no theoretical grounds have been presented in any paper, nor proven """ externals.exists('scipy', raiseException=True) ClassWithCollections.__init__(self, **kwargs) self.sd = sd if not (distribution in ['rdist']): raise ValueError, "Actually only rdist supported at the moment" \ " got %s" % distribution self.distribution = distribution self.fpp = fpp self.nbins = nbins def __call__(self, x): from mvpa.support.stats import scipy import scipy.stats as stats # some local bindings distribution = self.distribution sd = self.sd fpp = self.fpp nbins = self.nbins x = N.asanyarray(x) shape_orig = x.shape ndims = len(shape_orig) # (very) old numpy had different format of returned bins -- # there were not edges but center points. We care here about # center points, so we will transform edge points into center # points for newer versions of numpy numpy_center_points = externals.versions['numpy'] < (1, 1) # XXX May be just utilize OverAxis transformer? if ndims > 2: raise NotImplementedError, \ "TODO: add support for more than 2 dimensions" elif ndims == 1: x, sd = x[:, N.newaxis], 0 # lets transpose for convenience if sd == 0: x = x.T # Output p-values of x in null-distribution pvalues = N.zeros(x.shape) nulldist_number, positives_recovered = [], [] # finally go through all data nd = x.shape[1] if __debug__: if nd < x.shape[0]: warning("Number of features in DistPValue lower than number of" " items -- may be incorrect sd=%d was provided" % sd) for i, xx in enumerate(x): dist = stats.rdist(nd-1, 0, 1) xx /= N.linalg.norm(xx) if fpp is not None: if __debug__: debug('TRAN_', "starting adaptive adjustment i=%d" % i) # Adaptive adjustment for false negatives: Nxx, xxx, pN_emp_prev = len(xx), xx, 1.0 Nxxx = Nxx indexes = N.arange(Nxx) """What features belong to Null-distribution""" while True: hist, bins = N.histogram(xxx, bins=nbins, normed=False) pdf = hist.astype(float)/Nxxx if not numpy_center_points: # if we obtain edge points for bins -- take centers bins = 0.5 * (bins[0:-1] + bins[1:]) bins_halfstep = (bins[1] - bins[2])/2.0 # theoretical CDF # was really unstable -- now got better ;) dist_cdf = dist.cdf(bins) # otherwise just recompute manually # dist_pdf = dist.pdf(bins) # dist_pdf /= N.sum(dist_pdf) # XXX can't recall the function... silly # probably could use N.integrate cdf = N.zeros(nbins, dtype=float) #dist_cdf = cdf.copy() dist_prevv = cdf_prevv = 0.0 for j in range(nbins): cdf_prevv = cdf[j] = cdf_prevv + pdf[j] #dist_prevv = dist_cdf[j] = dist_prevv + dist_pdf[j] # what bins fall into theoretical 'positives' in both tails p = (0.5 - N.abs(dist_cdf - 0.5) < fpp/2.0) # amount in empirical tails -- if we match theoretical, we # should have total >= p pN_emp = N.sum(pdf[p]) # / (1.0 * nbins) if __debug__: debug('TRAN_', "empirical p=%.3f for theoretical p=%.3f" % (pN_emp, fpp)) if pN_emp <= fpp: # we are done break if pN_emp > pN_emp_prev: if __debug__: debug('TRAN_', "Diverging -- thus keeping last result " "with p=%.3f" % pN_emp_prev) # we better restore previous result indexes, xxx, dist = indexes_prev, xxx_prev, dist_prev break pN_emp_prev = pN_emp # very silly way for now -- just proceed by 1 bin keep = N.logical_and(xxx > bins[0], # + bins_halfstep, xxx < bins[-1]) # - bins_halfstep) if __debug__: debug('TRAN_', "Keeping %d out of %d elements" % (N.sum(keep), Nxxx)) # Preserve them if we need to "roll back" indexes_prev, xxx_prev, dist_prev = indexes, xxx, dist # we should remove those which we assume to be positives and # which should not belong to Null-dist xxx, indexes = xxx[keep], indexes[keep] # L2 renorm it xxx = xxx / N.linalg.norm(xxx) Nxxx = len(xxx) dist = stats.rdist(Nxxx-1, 0, 1) Nindexes = len(indexes) Nrecovered = Nxx - Nindexes nulldist_number += [Nindexes] positives_recovered += [Nrecovered] if __debug__: if distribution == 'rdist': assert(dist.args[0] == Nindexes-1) debug('TRAN', "Positives recovery finished with %d out of %d " "entries in Null-distribution, thus %d positives " "were recovered" % (Nindexes, Nxx, Nrecovered)) # And now we need to perform our duty -- assign p-values #dist = stats.rdist(Nindexes-1, 0, 1) pvalues[i, :] = dist.cdf(xx) # XXX we might add an option to transform it to z-scores? result = pvalues # charge state variables # XXX might want to populate them for non-adaptive handling as well self.nulldist_number = nulldist_number self.positives_recovered = positives_recovered # transpose if needed if sd == 0: result = result.T return result pymvpa-0.4.8/mvpa/misc/vproperty.py000066400000000000000000000020621174541445200173700ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """C++-like virtual properties""" __docformat__ = 'restructuredtext' class VProperty(object): """Provides "virtual" property: uses derived class's method """ def __init__(self, fget=None, fset=None, fdel=None, doc=''): for attr in ('fget', 'fset'): func = locals()[attr] if callable(func): setattr(self, attr, func.func_name) setattr(self, '__doc__', doc) def __get__(self, obj=None, type=None): if not obj: return 'property' if self.fget: return getattr(obj, self.fget)() def __set__(self, obj, arg): if self.fset: return getattr(obj, self.fset)(arg) pymvpa-0.4.8/mvpa/suite.py000066400000000000000000000110561174541445200155170ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """MultiVariate Pattern Analysis -- load helper If you don't like to specify exact location of any particular functionality within PyMVPA, please simply:: from mvpa.suite import * or import mvpa.suite """ __docformat__ = 'restructuredtext' from mvpa import * from mvpa.base import * from mvpa.base.config import * from mvpa.base.verbosity import * from mvpa.base.info import * if externals.exists('reportlab'): from mvpa.base.report import * else: from mvpa.base.report_dummy import Report from mvpa.algorithms.cvtranserror import * from mvpa.algorithms.hyperalignment import * from mvpa import clfs from mvpa.clfs.distance import * from mvpa.clfs.kernel import * from mvpa.clfs.base import * from mvpa.clfs.meta import * from mvpa.clfs.knn import * if externals.exists('lars'): from mvpa.clfs.lars import * if externals.exists('elasticnet'): from mvpa.clfs.enet import * if externals.exists('glmnet'): from mvpa.clfs.glmnet import * from mvpa.clfs.smlr import * from mvpa.clfs.blr import * from mvpa.clfs.gnb import * from mvpa.clfs.stats import * if externals.exists('libsvm') or externals.exists('shogun'): from mvpa.clfs.svm import * from mvpa.clfs.transerror import * from mvpa.clfs.warehouse import * from mvpa import datasets from mvpa.datasets import * # just to make testsuite happy from mvpa.datasets.base import * from mvpa.datasets.meta import * from mvpa.datasets.masked import * from mvpa.datasets.miscfx import * from mvpa.datasets.channel import * from mvpa.datasets.event import * from mvpa.datasets.eep import * if externals.exists('nifti'): from mvpa.datasets.nifti import * from mvpa.datasets import splitters from mvpa.datasets.splitters import * from mvpa import featsel from mvpa.featsel.base import * from mvpa.featsel.helpers import * from mvpa.featsel.ifs import * from mvpa.featsel.rfe import * from mvpa import mappers #from mvpa.mappers import * from mvpa.mappers.base import * from mvpa.mappers.metric import * from mvpa.mappers.mask import * from mvpa.mappers.svd import * from mvpa.mappers.procrustean import * from mvpa.mappers.boxcar import * from mvpa.mappers.samplegroup import * from mvpa.mappers.som import * from mvpa.mappers.array import * if externals.exists('scipy'): from mvpa.mappers.zscore import ZScoreMapper if externals.exists('mdp'): from mvpa.mappers.pca import * from mvpa.mappers.ica import * if externals.exists('mdp ge 2.4'): from mvpa.mappers.lle import * from mvpa import measures from mvpa.measures.anova import * from mvpa.measures.glm import * from mvpa.measures.irelief import * from mvpa.measures.base import * from mvpa.measures.noiseperturbation import * from mvpa.measures.searchlight import * from mvpa.measures.splitmeasure import * from mvpa.measures.corrstability import * from mvpa.support.copy import * from mvpa.misc.fx import * from mvpa.misc.errorfx import * from mvpa.misc.cmdline import * from mvpa.misc.data_generators import * from mvpa.misc.exceptions import * from mvpa.misc import * from mvpa.misc.io import * from mvpa.misc.io.eepbin import * from mvpa.misc.io.meg import * if externals.exists('cPickle') and externals.exists('gzip'): from mvpa.misc.io.hamster import * from mvpa.misc.fsl import * from mvpa.misc.bv import * from mvpa.misc.bv.base import * from mvpa.misc.param import * from mvpa.misc.state import * from mvpa.misc.support import * from mvpa.misc.transformers import * if externals.exists("nifti"): from mvpa.misc.fsl.melodic import * if externals.exists("pylab"): from mvpa.misc.plot import * from mvpa.misc.plot.erp import * if externals.exists(['griddata', 'scipy']): from mvpa.misc.plot.topo import * if externals.exists('nifti'): from mvpa.misc.plot.mri import plotMRI if externals.exists("scipy"): from mvpa.support.stats import scipy from mvpa.measures.corrcoef import * from mvpa.measures.ds import * from mvpa.clfs.ridge import * from mvpa.clfs.plr import * from mvpa.misc.stats import * from mvpa.clfs.gpr import * if externals.exists("pywt"): from mvpa.mappers.wavelet import * if externals.exists("pylab"): import pylab as P if externals.exists("lxml") and externals.exists("nifti"): from mvpa.atlases import * pymvpa-0.4.8/mvpa/support/000077500000000000000000000000001174541445200155255ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/support/__init__.py000066400000000000000000000014521174541445200176400ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import helper for PyMVPA support modules mvpa.support is destined to contain temporary "fixes" to external modules (Python, scipy), which are known to be fixed in the recent releases but are not present in comodity distributions. Example could be copy module.""" __docformat__ = 'restructuredtext' if __debug__: from mvpa.base import debug debug('INIT', 'mvpa.support start') debug('INIT', 'mvpa.support end') pymvpa-0.4.8/mvpa/support/_copy.py000066400000000000000000000253641174541445200172220ustar00rootroot00000000000000"""Generic (shallow and deep) copying operations. Interface summary: import copy x = copy.copy(y) # make a shallow copy of y x = copy.deepcopy(y) # make a deep copy of y For module specific errors, copy.Error is raised. The difference between shallow and deep copying is only relevant for compound objects (objects that contain other objects, like lists or class instances). - A shallow copy constructs a new compound object and then (to the extent possible) inserts *the same objects* into it that the original contains. - A deep copy constructs a new compound object and then, recursively, inserts *copies* into it of the objects found in the original. Two problems often exist with deep copy operations that don't exist with shallow copy operations: a) recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a recursive loop b) because deep copy copies *everything* it may copy too much, e.g. administrative data structures that should be shared even between copies Python's deep copy operation avoids these problems by: a) keeping a table of objects already copied during the current copying pass b) letting user-defined classes override the copying operation or the set of components copied This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor file, socket, window, nor array, nor any similar types. Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called __getinitargs__(), __getstate__() and __setstate__(). See the documentation for module "pickle" for information on these methods. """ import types from copy_reg import dispatch_table class Error(Exception): pass error = Error # backward compatibility try: from org.python.core import PyStringMap except ImportError: PyStringMap = None __all__ = ["Error", "copy", "deepcopy"] def copy(x): """Shallow copy operation on arbitrary Python objects. See the module's __doc__ string for more info. """ cls = type(x) copier = _copy_dispatch.get(cls) if copier: return copier(x) copier = getattr(cls, "__copy__", None) if copier: return copier(x) reductor = dispatch_table.get(cls) if reductor: rv = reductor(x) else: reductor = getattr(x, "__reduce_ex__", None) if reductor: rv = reductor(2) else: reductor = getattr(x, "__reduce__", None) if reductor: rv = reductor() else: raise Error("un(shallow)copyable object of type %s" % cls) return _reconstruct(x, rv, 0) _copy_dispatch = d = {} def _copy_immutable(x): return x for t in (type(None), int, long, float, bool, str, tuple, frozenset, type, xrange, types.ClassType, types.BuiltinFunctionType, type(Ellipsis), types.FunctionType): d[t] = _copy_immutable for name in ("ComplexType", "UnicodeType", "CodeType"): t = getattr(types, name, None) if t is not None: d[t] = _copy_immutable def _copy_with_constructor(x): return type(x)(x) for t in (list, dict, set): d[t] = _copy_with_constructor def _copy_with_copy_method(x): return x.copy() if PyStringMap is not None: d[PyStringMap] = _copy_with_copy_method def _copy_inst(x): if hasattr(x, '__copy__'): return x.__copy__() if hasattr(x, '__getinitargs__'): args = x.__getinitargs__() y = x.__class__(*args) else: y = _EmptyClass() y.__class__ = x.__class__ if hasattr(x, '__getstate__'): state = x.__getstate__() else: state = x.__dict__ if hasattr(y, '__setstate__'): y.__setstate__(state) else: y.__dict__.update(state) return y d[types.InstanceType] = _copy_inst del d def deepcopy(x, memo=None, _nil=[]): """Deep copy operation on arbitrary Python objects. See the module's __doc__ string for more info. """ if memo is None: memo = {} d = id(x) y = memo.get(d, _nil) if y is not _nil: return y cls = type(x) copier = _deepcopy_dispatch.get(cls) if copier: y = copier(x, memo) else: try: issc = issubclass(cls, type) except TypeError: # cls is not a class (old Boost; see SF #502085) issc = 0 if issc: y = _deepcopy_atomic(x, memo) else: copier = getattr(x, "__deepcopy__", None) if copier: y = copier(memo) else: reductor = dispatch_table.get(cls) if reductor: rv = reductor(x) else: reductor = getattr(x, "__reduce_ex__", None) if reductor: rv = reductor(2) else: reductor = getattr(x, "__reduce__", None) if reductor: rv = reductor() else: raise Error( "un(deep)copyable object of type %s" % cls) y = _reconstruct(x, rv, 1, memo) memo[d] = y _keep_alive(x, memo) # Make sure x lives at least as long as d return y _deepcopy_dispatch = d = {} def _deepcopy_atomic(x, memo): return x d[type(None)] = _deepcopy_atomic d[type(Ellipsis)] = _deepcopy_atomic d[int] = _deepcopy_atomic d[long] = _deepcopy_atomic d[float] = _deepcopy_atomic d[bool] = _deepcopy_atomic try: d[complex] = _deepcopy_atomic except NameError: pass d[str] = _deepcopy_atomic try: d[unicode] = _deepcopy_atomic except NameError: pass try: d[types.CodeType] = _deepcopy_atomic except AttributeError: pass d[type] = _deepcopy_atomic d[xrange] = _deepcopy_atomic d[types.ClassType] = _deepcopy_atomic d[types.BuiltinFunctionType] = _deepcopy_atomic d[types.FunctionType] = _deepcopy_atomic def _deepcopy_list(x, memo): y = [] memo[id(x)] = y for a in x: y.append(deepcopy(a, memo)) return y d[list] = _deepcopy_list def _deepcopy_tuple(x, memo): y = [] for a in x: y.append(deepcopy(a, memo)) d = id(x) try: return memo[d] except KeyError: pass for i in range(len(x)): if x[i] is not y[i]: y = tuple(y) break else: y = x memo[d] = y return y d[tuple] = _deepcopy_tuple def _deepcopy_dict(x, memo): y = {} memo[id(x)] = y for key, value in x.iteritems(): y[deepcopy(key, memo)] = deepcopy(value, memo) return y d[dict] = _deepcopy_dict if PyStringMap is not None: d[PyStringMap] = _deepcopy_dict def _keep_alive(x, memo): """Keeps a reference to the object x in the memo. Because we remember objects by their id, we have to assure that possibly temporary objects are kept alive by referencing them. We store a reference at the id of the memo, which should normally not be used unless someone tries to deepcopy the memo itself... """ try: memo[id(memo)].append(x) except KeyError: # aha, this is the first one :-) memo[id(memo)]=[x] def _deepcopy_inst(x, memo): if hasattr(x, '__deepcopy__'): return x.__deepcopy__(memo) if hasattr(x, '__getinitargs__'): args = x.__getinitargs__() args = deepcopy(args, memo) y = x.__class__(*args) else: y = _EmptyClass() y.__class__ = x.__class__ memo[id(x)] = y if hasattr(x, '__getstate__'): state = x.__getstate__() else: state = x.__dict__ state = deepcopy(state, memo) if hasattr(y, '__setstate__'): y.__setstate__(state) else: y.__dict__.update(state) return y d[types.InstanceType] = _deepcopy_inst def _reconstruct(x, info, deep, memo=None): if isinstance(info, str): return x assert isinstance(info, tuple) if memo is None: memo = {} n = len(info) assert n in (2, 3, 4, 5) callable, args = info[:2] if n > 2: state = info[2] else: state = {} if n > 3: listiter = info[3] else: listiter = None if n > 4: dictiter = info[4] else: dictiter = None if deep: args = deepcopy(args, memo) y = callable(*args) memo[id(x)] = y if listiter is not None: for item in listiter: if deep: item = deepcopy(item, memo) y.append(item) if dictiter is not None: for key, value in dictiter: if deep: key = deepcopy(key, memo) value = deepcopy(value, memo) y[key] = value if state: if deep: state = deepcopy(state, memo) if hasattr(y, '__setstate__'): y.__setstate__(state) else: if isinstance(state, tuple) and len(state) == 2: state, slotstate = state else: slotstate = None if state is not None: y.__dict__.update(state) if slotstate is not None: for key, value in slotstate.iteritems(): setattr(y, key, value) return y del d del types # Helper for instance creation without calling __init__ class _EmptyClass: pass def _test(): l = [None, 1, 2L, 3.14, 'xyzzy', (1, 2L), [3.14, 'abc'], {'abc': 'ABC'}, (), [], {}] l1 = copy(l) print l1==l l1 = map(copy, l) print l1==l l1 = deepcopy(l) print l1==l class C: def __init__(self, arg=None): self.a = 1 self.arg = arg if __name__ == '__main__': import sys file = sys.argv[0] else: file = __file__ self.fp = open(file) self.fp.close() def __getstate__(self): return {'a': self.a, 'arg': self.arg} def __setstate__(self, state): for key, value in state.iteritems(): setattr(self, key, value) def __deepcopy__(self, memo=None): new = self.__class__(deepcopy(self.arg, memo)) new.a = self.a return new c = C('argument sketch') l.append(c) l2 = copy(l) print l == l2 print l print l2 l2 = deepcopy(l) print l == l2 print l print l2 l.append({l[1]: l, 'xyz': l[2]}) l3 = copy(l) import repr print map(repr.repr, l) print map(repr.repr, l1) print map(repr.repr, l2) print map(repr.repr, l3) l3 = deepcopy(l) import repr print map(repr.repr, l) print map(repr.repr, l1) print map(repr.repr, l2) print map(repr.repr, l3) if __name__ == '__main__': _test() pymvpa-0.4.8/mvpa/support/copy.py000066400000000000000000000015431174541445200170540ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Support for python's copy module. """ __docformat__ = 'restructuredtext' import sys # We have to use deepcopy from python 2.5, since otherwise it fails to # copy sensitivity analyzers with assigned combiners which are just # functions not functors if sys.version_info[:2] >= (2, 6): # enforce absolute import _copy = __import__('copy', globals(), locals(), [], 0) copy = _copy.copy deepcopy = _copy.deepcopy else: from mvpa.support._copy import copy, deepcopy pymvpa-0.4.8/mvpa/support/griddata.py000066400000000000000000000031061174541445200176560ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Import griddata with preference to the version from matplotlib """ __docformat__ = 'restructuredtext' import sys from mvpa.base import externals if externals.exists('griddata', raiseException=True): if __debug__: from mvpa.base import debug try: if sys.version_info[:2] >= (2, 5): # enforce absolute import griddata = __import__('griddata', globals(), locals(), [], 0).griddata else: # little trick to be able to import 'griddata' package (which # has same name) oldname = __name__ # crazy name with close to zero possibility to cause whatever __name__ = 'iaugf9zrkjsbdv91' try: from griddata import griddata # restore old settings __name__ = oldname except ImportError: # restore old settings __name__ = oldname raise if __debug__: debug('EXT', 'Using python-griddata') except ImportError: from matplotlib.mlab import griddata if __debug__: debug('EXT', 'Using matplotlib.mlab.griddata') pymvpa-0.4.8/mvpa/support/stats.py000066400000000000000000000113001174541445200172300ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Fixer for rdist in scipy """ __docformat__ = 'restructuredtext' from mvpa.base import externals, warning, cfg if __debug__: from mvpa.base import debug if externals.exists('scipy', raiseException=True): import scipy import scipy.stats import scipy.stats as stats if not externals.exists('good scipy.stats.rdist'): if __debug__: debug("EXT", "Fixing up scipy.stats.rdist") # Lets fix it up, future imports of scipy.stats should carry fixed # version, isn't python is \emph{evil} ;-) import numpy as N from scipy.stats.distributions import rv_continuous from scipy import special import scipy.integrate # NB: Following function is copied from scipy SVN rev.5236 # and fixed with pow -> N.power (thanks Josef!) # FIXME: PPF does not work. class rdist_gen(rv_continuous): def _pdf(self, x, c): return N.power((1.0-x*x),c/2.0-1) / special.beta(0.5,c/2.0) def _cdf_skip(self, x, c): #error inspecial.hyp2f1 for some values see tickets 758, 759 return 0.5 + x/special.beta(0.5,c/2.0)* \ special.hyp2f1(0.5,1.0-c/2.0,1.5,x*x) def _munp(self, n, c): return (1-(n % 2))*special.beta((n+1.0)/2,c/2.0) # Lets try to avoid at least some of the numerical problems by removing points # around edges rdist = rdist_gen(a=-1.0, b=1.0, name="rdist", longname="An R-distributed", shapes="c", extradoc=""" R-distribution rdist.pdf(x,c) = (1-x**2)**(c/2-1) / B(1/2, c/2) for -1 <= x <= 1, c > 0. """ ) # Fix up number of arguments for veccdf's vectorize if rdist.veccdf.nin == 1: if __debug__: debug("EXT", "Fixing up veccdf.nin to make 2 for rdist") rdist.veccdf.nin = 2 scipy.stats.distributions.rdist_gen = scipy.stats.rdist_gen = rdist_gen scipy.stats.distributions.rdist = scipy.stats.rdist = rdist try: # Retest externals.exists('good scipy.stats.rdist', force=True, raiseException=True) except RuntimeError: warning("scipy.stats.rdist was not fixed with a monkey-patch. " "It remains broken") # Revert so if configuration stored, we know the true flow of things ;) cfg.set('externals', 'have good scipy.stats.rdist', 'no') if not externals.exists('good scipy.stats.rv_discrete.ppf'): # Local rebindings for ppf7 (7 is for the scipy version from # which code was borrowed) arr = N.asarray from scipy.stats.distributions import valarray, argsreduce from numpy import shape, place, any def ppf7(self,q,*args,**kwds): """ Percent point function (inverse of cdf) at q of the given RV :Parameters: q : array-like lower tail probability arg1, arg2, arg3,... : array-like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array-like, optional location parameter (default=0) :Returns: k : array-like quantile corresponding to the lower tail probability, q. """ loc = kwds.get('loc') args, loc = self._rv_discrete__fix_loc(args, loc) q,loc = map(arr,(q,loc)) args = tuple(map(arr,args)) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q==1) & cond0 cond = cond0 & cond1 output = valarray(shape(cond),value=self.badvalue,typecode='d') #output type 'd' to handle nin and inf place(output,(q==0)*(cond==cond), self.a-1) place(output,cond2,self.b) if any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] place(output,cond,self._ppf(*goodargs) + loc) if output.ndim == 0: return output[()] return output scipy.stats.distributions.rv_discrete.ppf = ppf7 try: externals.exists('good scipy.stats.rv_discrete.ppf', force=True, raiseException=True) except RuntimeError: warning("rv_discrete.ppf was not fixed with a monkey-patch. " "It remains broken") cfg.set('externals', 'have good scipy.stats.rv_discrete.ppf', 'no') pymvpa-0.4.8/mvpa/tests/000077500000000000000000000000001174541445200151535ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/tests/__init__.py000066400000000000000000000140671174541445200172740ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit test interface for PyMVPA""" import unittest import numpy as np from mvpa import _random_seed, cfg from mvpa.base import externals, warning def collectTestSuites(): """Runs over all tests it knows and composes a dictionary with test suite instances as values and IDs as keys. IDs are the filenames of the unittest without '.py' extension and 'test_' prefix. During collection this function will run a full and verbose test for all known externals. """ # list all test modules (without .py extension) tests = [ # Basic data structures/manipulators 'test_externals', 'test_base', 'test_dochelpers', 'test_dataset', 'test_arraymapper', 'test_boxcarmapper', 'test_som', 'test_neighbor', 'test_maskeddataset', 'test_metadataset', 'test_splitter', 'test_state', 'test_params', 'test_eepdataset', # Misc supporting utilities 'test_config', 'test_stats', 'test_support', 'test_verbosity', 'test_report', 'test_datasetfx', 'test_cmdline', 'test_args', 'test_eepdataset', 'test_meg', # Classifiers (longer tests) 'test_kernel', 'test_clf', 'test_regr', 'test_knn', 'test_gnb', 'test_svm', 'test_plr', 'test_smlr', # Various algorithms 'test_svdmapper', 'test_procrust', 'test_hyperalignment', 'test_samplegroupmapper', 'test_transformers', 'test_transerror', 'test_clfcrossval', 'test_searchlight', 'test_rfe', 'test_ifs', 'test_datameasure', 'test_perturbsensana', 'test_splitsensana', # And the suite (all-in-1) 'test_suite', ] # provide people with a hint about the warnings that might show up in a # second warning('Testing for availability of external software packages. Test ' 'cases depending on missing packages will not be part of the test ' 'suite.') # So we could see all warnings about missing dependencies warning.maxcount = 1000 # fully test of externals externals.testAllDependencies() __optional_tests = [ ('scipy', 'ridge'), ('scipy', 'stats_sp'), ('scipy', 'datasetfx_sp'), (['lars','scipy'], 'lars'), ('nifti', 'niftidataset'), ('mdp', 'icamapper'), ('scipy', 'zscoremapper'), ('pywt', 'waveletmapper'), (['cPickle', 'gzip'], 'hamster'), ('nose', 'iohelpers'), # ('mdp', 'pcamapper'), ] if not cfg.getboolean('tests', 'lowmem', default='no'): __optional_tests += [(['nifti', 'lxml'], 'atlases')] # and now for the optional tests optional_tests = [] for external, testname in __optional_tests: if externals.exists(external): optional_tests.append('test_%s' % testname) # finally merge all of them tests += optional_tests # import all test modules for t in tests: # TODO: exclude tests which fail to import: e.g. on Windows # could get WindowsError due to missing msvcr90.dll exec 'import ' + t # instanciate all tests suites and return dict of them (with ID as key) return dict([(t[5:], eval(t + '.suite()')) for t in tests ]) def run(limit=None, verbosity=None): """Runs the full or a subset of the PyMVPA unittest suite. :Parameters: limit: None | list If None, the full test suite is run. Alternatively, a list with test IDs can be provides. IDs are the base filenames of the test implementation, e.g. the ID for the suite in 'mvpa/tests/test_niftidataset.py' is 'niftidataset'. verbosity: None | int Verbosity of unittests execution. If None, controlled by PyMVPA configuration tests/verbosity. Values higher than 2 enable all Python, NumPy and PyMVPA warnings """ if __debug__: from mvpa.base import debug # Lets add some targets which provide additional testing debug.active += ['CHECK_.*'] # collect all tests suites = collectTestSuites() if limit is None: # make global test suite (use them all) ts = unittest.TestSuite(suites.values()) else: ts = unittest.TestSuite([suites[s] for s in limit]) class TextTestRunnerPyMVPA(unittest.TextTestRunner): """Extend TextTestRunner to print out random seed which was used in the case of failure""" def run(self, test): """Run the bloody test and puke the seed value if failed""" result = super(TextTestRunnerPyMVPA, self).run(test) if not result.wasSuccessful(): print "MVPA_SEED=%s" % _random_seed if verbosity is None: verbosity = int(cfg.get('tests', 'verbosity', default=1)) if verbosity < 3: # no MVPA warnings during whole testsuite (but restore handlers later on) handler_backup = warning.handlers warning.handlers = [] # No python warnings (like ctypes version for slmr) import warnings warnings.simplefilter('ignore') # No numpy np_errsettings = np.geterr() np.seterr(**dict([(x, 'ignore') for x in np_errsettings])) # finally run it TextTestRunnerPyMVPA(verbosity=verbosity).run(ts) if verbosity < 3: # restore warning handlers warning.handlers = handler_backup np.seterr(**np_errsettings) pymvpa-0.4.8/mvpa/tests/badexternals/000077500000000000000000000000001174541445200176275ustar00rootroot00000000000000pymvpa-0.4.8/mvpa/tests/badexternals/cPickle_disabled.py000066400000000000000000000000221174541445200233740ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/ctypes.py000066400000000000000000000000221174541445200215020ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/griddata.py000066400000000000000000000000221174541445200217520ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/gzip.py000066400000000000000000000000221174541445200211440ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/hcluster.py000066400000000000000000000000221174541445200220240ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/libsvm.py000066400000000000000000000000221174541445200214670ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/mdp.py000066400000000000000000000000221174541445200207530ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/nifti.py000066400000000000000000000000221174541445200213040ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/pylab.py000066400000000000000000000000221174541445200213020ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/pywt.py000066400000000000000000000000221174541445200211760ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/rpy.py000066400000000000000000000000221174541445200210050ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/scikits.py000066400000000000000000000000221174541445200216440ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/scipy.py000066400000000000000000000000221174541445200213220ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/shogun.py000066400000000000000000000000221174541445200214760ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/badexternals/weave.py000066400000000000000000000000221174541445200213020ustar00rootroot00000000000000raise ImportError pymvpa-0.4.8/mvpa/tests/main.py000066400000000000000000000046471174541445200164640ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit test console interface for PyMVPA""" import unittest import sys import numpy as np from mvpa import _random_seed, cfg from mvpa.base import externals, warning from mvpa.tests import collectTestSuites def main(): if __debug__: from mvpa.base import debug # Lets add some targets which provide additional testing debug.active += ['CHECK_.*'] # NOTE: it had to be done here instead of test_clf.py for # instance, since for CHECK_RETRAIN it has to be set before object # gets created, ie while importing clfs.warehouse suites = collectTestSuites() # and make global test suite ts = unittest.TestSuite(suites.values()) class TextTestRunnerPyMVPA(unittest.TextTestRunner): """Extend TextTestRunner to print out random seed which was used in the case of failure""" def run(self, test): result = super(TextTestRunnerPyMVPA, self).run(test) if not result.wasSuccessful(): print "MVPA_SEED=%s" % _random_seed sys.exit(1) return result verbosity = int(cfg.get('tests', 'verbosity', default=1)) if verbosity < 3: # no MVPA warnings during whole testsuite (but restore handlers later on) handler_backup = warning.handlers warning.handlers = [] # No python warnings (like ctypes version for slmr) import warnings warnings.simplefilter('ignore') # No numpy np_errsettings = np.geterr() np.seterr(**dict([(x, 'ignore') for x in np_errsettings])) # finally run it TextTestRunnerPyMVPA(verbosity=verbosity).run(ts) if verbosity < 3: # restore warning handlers warning.handlers = handler_backup np.seterr(**np_errsettings) if __name__ == '__main__': main() pymvpa-0.4.8/mvpa/tests/runner.py000066400000000000000000000054061174541445200170430ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Helper module to enable profiling of the testcase If environment variable PROFILELEVEL is set it uses hotshot profiler for unittest.main() call. Value of PROFILELEVEL defines number of top busy functions to report. Environment variable PROFILELINES=1 makes hotshot store information per each line, so it could be easily inspected later on. Output: Profiler stores its Stats into a file named after original script (sys.argv[0]) with suffix".prof" appended Usage: Replace unittest.main() with import runner Visualization: kcachegrind provides nice interactive GUI to inspect profiler results. If PROFILELINES was set to 1, it provides information per each line. To convert .prof file into a file suitable for kcachegrind, use utility hotshot2calltree which comes in package kcachegrind-converters. Example: # profile and output 3 most expensive function calls PROFILELEVEL=3 PROFILELINES=1 PYTHONPATH=../ python test_searchlight.py # convert to kcachegrind format hotshot2calltree -o test_searchlight.py.kcache test_searchlight.py.prof # inspect kcachegrind test_searchlight.py.kcache """ import unittest import sys from os import environ from mvpa import _random_seed profilelevel = None if environ.has_key('PROFILELEVEL'): profilelevel = int(environ['PROFILELEVEL']) # Extend TestProgram to print out the seed which was used class TestProgramPyMVPA(unittest.TestProgram): def runTests(self): if self.verbosity: print "MVPA_SEED=%s:" % _random_seed, sys.stdout.flush() super(TestProgramPyMVPA, self).runTests() if profilelevel is None: TestProgramPyMVPA() else: profilelines = environ.has_key('PROFILELINES') import hotshot, hotshot.stats pname = "%s.prof" % sys.argv[0] prof = hotshot.Profile(pname, lineevents=profilelines) try: # actually return values are never setup # since unittest.main sys.exit's benchtime, stones = prof.runcall( unittest.main ) except SystemExit: pass print "Saving profile data into %s" % pname prof.close() if profilelevel > 0: # we wanted to see the summary right here # instead of just storing it into a file print "Loading profile data from %s" % pname stats = hotshot.stats.load(pname) stats.strip_dirs() stats.sort_stats('time', 'calls') stats.print_stats(profilelevel) pymvpa-0.4.8/mvpa/tests/test_args.py000066400000000000000000000054501174541445200175240ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA args helpers""" import unittest from mvpa.misc.args import * if __debug__: from mvpa.base import debug class ArgsHelpersTest(unittest.TestCase): def testBasic(self): """Test if we are not missing basic parts""" kwargs = {'a':1, 'slave_a':3, 'slave_z':4, 'slave_slave_z':5, 'c':3} res = split_kwargs(kwargs, ['slave_']) self.failUnless(res.has_key('slave_') and res.has_key('')) self.failUnless(res['slave_'] == {'a':3, 'z':4, 'slave_z':5}) self.failUnless(res[''] == {'a':1, 'c':3}) res = split_kwargs(kwargs) self.failUnless(res.keys() == ['']) self.failUnless(res[''] == kwargs) def testDecorator(self): """Test the group_kwargs decorator""" selftop = self class C1(object): @group_kwargs(prefixes=['slave_'], assign=True) def __init__(self, **kwargs): selftop.failUnless(hasattr(self, '_slave_kwargs')) self.method_passedempty() self.method_passed(1, custom_p1=144, bugax=1) self.method_filtered(1, custom_p1=123) @group_kwargs(prefixes=['custom_'], passthrough=True) def method_passedempty(self, **kwargs): # we must have it even though it is empty selftop.failUnless('custom_kwargs' in kwargs) @group_kwargs(prefixes=['custom_', 'buga'], passthrough=True) def method_passed(self, a, custom_kwargs, bugakwargs, **kwargs): # we must have it even though it is empty selftop.failUnless(custom_kwargs == {'p1':144}) selftop.failUnless(bugakwargs == {'x':1}) selftop.failUnless(not hasattr(self, '_custom_kwargs')) @group_kwargs(prefixes=['custom_']) def method_filtered(self, a, **kwargs): # we must have it even though it is empty selftop.failUnlessEqual(a, 1) selftop.failUnless(not 'custom_kwargs' in kwargs) def method(self): return 123 @group_kwargs(prefixes=['xxx']) def method_decorated(self): return 124 c1 = C1(slave_p1=1, p1=2) self.failUnless(c1.method() == 123) self.failUnless(c1.method_decorated() == 124) def suite(): return unittest.makeSuite(ArgsHelpersTest) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_arraymapper.py000066400000000000000000000176461174541445200211250ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA dense array mapper""" from mvpa.mappers.array import DenseArrayMapper from mvpa.mappers.metric import * import unittest import numpy as N class DenseArrayMapperTests(unittest.TestCase): def testForwardDenseArrayMapper(self): mask = N.ones((3,2)) map_ = DenseArrayMapper(mask) # test shape reports self.failUnless( map_.nfeatures == 6 ) # test 1sample mapping self.failUnless( ( map_.forward( N.arange(6).reshape(3,2) ) \ == [0,1,2,3,4,5]).all() ) # test 4sample mapping foursample = map_.forward( N.arange(24).reshape(4,3,2)) self.failUnless( ( foursample \ == [[0,1,2,3,4,5], [6,7,8,9,10,11], [12,13,14,15,16,17], [18,19,20,21,22,23]]).all() ) # check incomplete masks mask[1,1] = 0 map_ = DenseArrayMapper(mask) self.failUnless( map_.nfeatures == 5 ) self.failUnless( ( map_.forward( N.arange(6).reshape(3,2) ) \ == [0,1,2,4,5]).all() ) # check that it doesn't accept wrong dataspace self.failUnlessRaises( ValueError, map_.forward, N.arange(4).reshape(2,2) ) # check fail if neither mask nor shape self.failUnlessRaises(ValueError, DenseArrayMapper) # check that a full mask is automatically created when providing shape m = DenseArrayMapper(shape=(2, 3, 4)) mp = m.forward(N.arange(24).reshape(2, 3, 4)) self.failUnless((mp == N.arange(24)).all()) def testReverseDenseArrayMapper(self): mask = N.ones((3,2)) mask[1,1] = 0 map_ = DenseArrayMapper(mask) rmapped = map_.reverse(N.arange(1,6)) self.failUnless( rmapped.shape == (3,2) ) self.failUnless( rmapped[1,1] == 0 ) self.failUnless( rmapped[2,1] == 5 ) # check that it doesn't accept wrong dataspace self.failUnlessRaises( ValueError, map_, N.arange(6)) rmapped2 = map_.reverse(N.arange(1,11).reshape(2,5)) self.failUnless( rmapped2.shape == (2,3,2) ) self.failUnless( rmapped2[0,1,1] == 0 ) self.failUnless( rmapped2[1,1,1] == 0 ) self.failUnless( rmapped2[0,2,1] == 5 ) self.failUnless( rmapped2[1,2,1] == 10 ) def testDenseArrayMapperMetrics(self): """ Test DenseArrayMapperMetric """ mask = N.ones((3,2)) mask[1,1] = 0 # take space with non-square elements neighborFinder = DescreteMetric([0.5, 2]) map_ = DenseArrayMapper(mask, neighborFinder) # test getNeighbors # now it returns list of arrays #target = [N.array([0, 0]), N.array([0, 1]), # N.array([1, 0]), N.array([2, 0])] #result = map_.getNeighborIn([0, 0], 2) #self.failUnless(N.array(map(lambda x,y:(x==y).all(), result, target)).all()) # check by providing outId target = [0,1,2,3] result = map_.getNeighbors(0, 2.1) self.failUnless( result == target ) map__ = DenseArrayMapper(mask, elementsize=[0.5, 2]) self.failUnless( map__.getNeighbors(0, 2.1) == target, msg="DenseArrayMapper must accept elementsize parameter and set" + " DescreteMetric accordingly") self.failUnlessRaises(ValueError, DenseArrayMapper, mask, elementsize=[0.5]*3) """DenseArrayMapper must raise exception when not appropriatly sized elementsize was provided""" def testMapperAliases(self): mm=DenseArrayMapper(N.ones((3,4,2))) # We decided to don't have alias for reverse #self.failUnless((mm(N.arange(24)) == mm.reverse(N.arange(24))).all()) self.failUnless((mm(N.ones((3,4,2))) \ == mm.forward(N.ones((3,4,2)))).all()) def testGetInOutIdBehaviour(self): mask=N.zeros((3,4,2)) mask[0,0,1]=1 mask[2,1,0]=1 mask[0,3,1]=1 mm=DenseArrayMapper(mask) self.failUnless(mm.nfeatures==3) # 'In' self.failUnless((mm.getInIds() \ == N.array([[0, 0, 1],[0, 3, 1],[2, 1, 0]])).all()) self.failUnless((mm.getInId(1) == [0,3,1]).all()) # called with list gives nonzero() like output self.failUnless((mm.getInId(range(mm.nfeatures)) \ == mm.getInIds().T).all()) # 'Out' self.failUnlessRaises( ValueError, mm.getOutId, (0,0,0)) self.failUnless(mm.getOutId((0,0,1)) == 0 and mm.getOutId((0,3,1)) == 1 and mm.getOutId((2,1,0)) == 2) def testSelects(self): mask = N.ones((3,2)) mask[1,1] = 0 mask0 = mask.copy() data = N.arange(6).reshape(mask.shape) map_ = DenseArrayMapper(mask) # check if any exception is thrown if we get # out of the outIds self.failUnlessRaises(IndexError, map_.selectOut, [0,1,2,6]) # remove 1,2 map_.selectOut([0,3,4]) self.failUnless((map_.forward(data)==[0, 4, 5]).all()) # remove 1 more map_.selectOut([0,2]) self.failUnless((map_.forward(data)==[0, 5]).all()) # check if original mask wasn't perturbed self.failUnless((mask == mask0).all()) # do the same but using discardOut map_ = DenseArrayMapper(mask) map_.discardOut([1,2]) self.failUnless((map_.forward(data)==[0, 4, 5]).all()) map_.discardOut([1]) self.failUnless((map_.forward(data)==[0, 5]).all()) # check if original mask wasn't perturbed self.failUnless((mask == mask0).all()) def _testSelectReOrder(self): """ Test is desabled for now since if order is incorrect in __debug__ we just spit out a warning - no exception """ mask = N.ones((3,3)) mask[1,1] = 0 data = N.arange(9).reshape(mask.shape) map_ = DenseArrayMapper(mask) oldneighbors = map_.forward(data)[map_.getNeighbors(0, radius=2)] # just do place changes # by default - we don't sort/check order so it would screw things # up map_.selectOut([7, 1, 2, 3, 4, 5, 6, 0]) # we check if an item new outId==7 still has proper neighbors newneighbors = map_.forward(data)[map_.getNeighbors(7, radius=2)] self.failUnless( (oldneighbors != newneighbors ).any()) # disable since selectOut does not have 'sort' anymore # def testSelectOrder(self): # """ # Test if changing the order by doing selectOut preserves # neighborhood information -- but also apply sort in difference # to testSelectReOrder # """ # mask = N.ones((3,3)) # mask[1,1] = 0 # # data = N.arange(9).reshape(mask.shape) # map_ = DenseArrayMapper(mask) # oldneighbors = map_.forward(data)[map_.getNeighbors(0, radius=2)] # # map_ = DenseArrayMapper(mask) # map_.selectOut([7, 1, 2, 3, 4, 5, 6, 0], sort=True) # # we check if an item new outId==0 still has proper neighbors # newneighbors = map_.forward(data)[map_.getNeighbors(0, radius=2)] # self.failUnless( (oldneighbors == newneighbors ).all()) def suite(): return unittest.makeSuite(DenseArrayMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_atlases.py000066400000000000000000000110221174541445200202140ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA atlases""" import unittest, re import numpy as N from mvpa.base import externals, warning if externals.exists('nifti', raiseException=True): from mvpa.atlases import * else: raise RuntimeError, "Don't run me if no nifti is present" import os from mvpa import pymvpa_dataroot class AtlasesTests(unittest.TestCase): """Basic tests for support of atlases such as the ones shipped with FSL """ def testTransformations(self): """TODO""" pass def testAtlases(self): """Basic testing of atlases""" tested = 0 for name in KNOWN_ATLASES.keys(): #filename = KNOWN_ATLASES[name] % {'name': name} try: atlas = Atlas(name=name) tested += 1 except IOError: # so we just don't have it continue #print isinstance(atlas.atlas, objectify.ObjectifiedElement) #print atlas.header.images.imagefile.get('offset') #print atlas.labelVoxel( (0, -7, 20) ) #print atlas[ 0, 0, 0 ] coord = (-63, -12, 22) # Atlas must have at least 1 level and that one must # have some labels self.failUnless(len(atlas.levels_dict[0].labels) > 0) for res in [ atlas[coord], atlas.labelPoint(coord) ]: self.failUnless(res.get('coord_queried', None) == coord, '%s: Comparison failed. Got %s and %s' % (name, res.get('coord_queried', None), coord)) self.failUnless('labels' in res) # all atlases so far are based on voxels self.failUnless('voxel_queried' in res) # test explicit level specification via slice, although bogus here # XXX levels in queries should be deprecated -- too much of # performance hit res0 = atlas[coord, range(atlas.Nlevels)] self.failUnless(res0 == res) #print atlas[ 0, -7, 20, [1,2,3] ] #print atlas[ (0, -7, 20), 1:2 ] #print atlas[ (0, -7, 20) ] #print atlas[ (0, -7, 20), : ] # print atlas.getLabels(0) if not tested: warning("No atlases were found -- thus no testing was done") def testFind(self): if not externals.exists('atlas_fsl'): return tshape = (182, 218, 182) # target shape of fsl atlas chosen by default atl = Atlas(name='HarvardOxford-Cortical') atl.levels_dict[0].find('Frontal Pole') self.failUnlessEqual( len(atl.find(re.compile('Fusiform'), unique=False)), 4) m = atl.getMap(1) self.failUnlessEqual(m.shape, tshape) self.failUnless(N.max(m)==100) self.failUnless(N.min(m)==0) ms = atl.getMaps('Fusiform') self.failUnlessEqual(len(ms), 4) self.failUnlessEqual(ms[0].shape, tshape) ms = atl.getMaps('ZaZaZa') self.failUnless(not len(ms)) self.failUnlessRaises(ValueError, atl.getMap, 'Fusiform') self.failUnless(len(atl.find('Fusiform', unique=False)) == 4) self.failUnlessEqual(atl.getMap('Fusiform', strategy='max').shape, tshape) # Test loading of custom atlas # for now just on the original file atl2 = Atlas(name='HarvardOxford-Cortical', image_file=atl._image_file) # we should get exactly the same maps from both in this dummy case self.failUnless((atl.getMap('Frontal Pole') == atl2.getMap('Frontal Pole')).all()) # Lets falsify and feed some crammy file as the atlas atl2 = Atlas(name='HarvardOxford-Cortical', image_file=os.path.join(pymvpa_dataroot, 'example4d.nii.gz')) # we should get not even comparable maps now ;) self.failUnless(atl.getMap('Frontal Pole').shape != atl2.getMap('Frontal Pole').shape) def suite(): return unittest.makeSuite(AtlasesTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_base.py000066400000000000000000000022031174541445200174730ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test some base functionality which did not make it into a separate unittests""" import unittest from tempfile import mktemp from mvpa.base.info import wtf class TestBases(unittest.TestCase): def testWtf(self): """Very basic testing -- just to see if it doesn't crash""" try: wtf() except Exception, e: self.fail('Testing of systemInfo failed with "%s"' % str(e)) filename = mktemp('mvpa', 'test') wtf(filename) try: syslines = open(filename, 'r').readlines() except Exception, e: self.fail('Testing of dumping systemInfo into a file failed: %s' % str(e)) def suite(): return unittest.makeSuite(TestBases) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_boxcarmapper.py000066400000000000000000000075161174541445200212600ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA Boxcar mapper""" import unittest from mvpa.support.copy import deepcopy import numpy as N from mvpa.mappers.boxcar import BoxcarMapper from mvpa.datasets import Dataset class BoxcarMapperTests(unittest.TestCase): def testSimple(self): """Just the same tests as for transformWithBoxcar. Mention that BoxcarMapper doesn't apply function with each boxcar """ data = N.arange(10) sp = N.arange(10) # check if stupid thing don't work self.failUnlessRaises(ValueError, BoxcarMapper, sp, 0 ) # now do an identity transformation bcm = BoxcarMapper(sp, 1) trans = bcm(data) # ,0 is a feature below, so we get explicit 2D out of 1D self.failUnless( (trans[:,0] == data).all() ) # now check for illegal boxes self.failUnlessRaises(ValueError, BoxcarMapper(sp, 2), data) # now something that should work sp = N.arange(9) bcm = BoxcarMapper(sp,2) trans = bcm(data) self.failUnless( (trans == N.vstack((N.arange(9), N.arange(9)+1)).T ).all() ) # now test for proper data shape data = N.ones((10,3,4,2)) sp = [ 2, 4, 3, 5 ] trans = BoxcarMapper(sp, 4)(data) self.failUnless( trans.shape == (4,4,3,4,2) ) # test reverse data = N.arange(240).reshape(10, 3, 4, 2) sp = [ 2, 4, 3, 5 ] m = BoxcarMapper(sp, 2) mp = m.forward(data) self.failUnless(mp.shape == (4, 2, 3, 4, 2)) # try full reconstruct mr = m.reverse(mp) # shape has to match self.failUnless(mr.shape == data.shape) # first two samples where not in any of the boxcars and cannot be # reconstructed self.failUnless(N.sum(mr[:2]) == 0) # same for the last ones self.failUnless(N.sum(mr[7:]) == 0) # check proper reconstruction of non-conflicting sample self.failUnless((mr[2].ravel() == N.arange(48, 72)).all()) # check proper reconstruction of samples being part of multiple # mapped samples self.failUnless((mr[3].ravel() == N.arange(72, 96)).all()) # test reverse of a single sample singlesample = N.arange(48).reshape(2, 3, 4, 2) self.failUnless((singlesample == m.reverse(singlesample)).all()) # should not work for shape mismatch self.failUnlessRaises(ValueError, m.reverse, singlesample[0]) # check broadcasting of 'raw' samples into proper boxcars on forward() bc = m.forward(N.arange(24).reshape(3, 4, 2)) self.failUnless((bc == N.array(2 * [N.arange(24).reshape(3, 4, 2)])).all()) def testIds(self): data = N.arange(20).reshape( (10,2) ) bcm = BoxcarMapper([1, 4, 6], 3) trans = bcm(data) self.failUnlessEqual(bcm.isValidInId( [1] ), True) self.failUnlessEqual(bcm.isValidInId( [0,1] ), False) self.failUnlessEqual(bcm.isValidOutId( [1] ), True) self.failUnlessEqual(bcm.isValidOutId( [3] ), False) self.failUnlessEqual(bcm.isValidOutId( [0,1] ), True) self.failUnlessEqual(bcm.isValidOutId( [0,1,0] ), False) def suite(): return unittest.makeSuite(BoxcarMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_clf.py000066400000000000000000001010451174541445200173310ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA basic Classifiers""" from mvpa.support.copy import deepcopy from mvpa.base import externals from mvpa.datasets import Dataset from mvpa.mappers.mask import MaskMapper from mvpa.datasets.splitters import NFoldSplitter, OddEvenSplitter from mvpa.misc.exceptions import UnknownStateError from mvpa.clfs.base import DegenerateInputError, FailedToTrainError from mvpa.clfs.meta import CombinedClassifier, \ BinaryClassifier, MulticlassClassifier, \ SplitClassifier, MappedClassifier, FeatureSelectionClassifier, \ TreeClassifier from mvpa.clfs.transerror import TransferError from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from tests_warehouse import * from tests_warehouse_clfs import * # What exceptions to allow while testing degenerate cases. # If it pukes -- it is ok -- user will notice that something # is wrong _degenerate_allowed_exceptions = [DegenerateInputError, FailedToTrainError] if externals.exists('rpy'): import rpy _degenerate_allowed_exceptions += [rpy.RPyRException] class ClassifiersTests(unittest.TestCase): def setUp(self): self.clf_sign = SameSignClassifier() self.clf_less1 = Less1Classifier() # simple binary dataset self.data_bin_1 = Dataset( samples=[[0,0],[-10,-1],[1,0.1],[1,-1],[-1,1]], labels=[1, 1, 1, -1, -1], # labels chunks=[0, 1, 2, 2, 3]) # chunks def testDummy(self): clf = SameSignClassifier(enable_states=['training_confusion']) clf.train(self.data_bin_1) self.failUnlessRaises(UnknownStateError, clf.states.__getattribute__, "predictions") """Should have no predictions after training. Predictions state should be explicitely disabled""" if not _all_states_enabled: self.failUnlessRaises(UnknownStateError, clf.states.__getattribute__, "trained_dataset") self.failUnlessEqual(clf.training_confusion.percentCorrect, 100, msg="Dummy clf should train perfectly") self.failUnlessEqual(clf.predict(self.data_bin_1.samples), list(self.data_bin_1.labels)) self.failUnlessEqual(len(clf.predictions), self.data_bin_1.nsamples, msg="Trained classifier stores predictions by default") clf = SameSignClassifier(enable_states=['trained_dataset']) clf.train(self.data_bin_1) self.failUnless((clf.trained_dataset.samples == self.data_bin_1.samples).all()) self.failUnless((clf.trained_dataset.labels == self.data_bin_1.labels).all()) def testBoosted(self): # XXXXXXX # silly test if we get the same result with boosted as with a single one bclf = CombinedClassifier(clfs=[self.clf_sign.clone(), self.clf_sign.clone()]) self.failUnlessEqual(list(bclf.predict(self.data_bin_1.samples)), list(self.data_bin_1.labels), msg="Boosted classifier should work") self.failUnlessEqual(bclf.predict(self.data_bin_1.samples), self.clf_sign.predict(self.data_bin_1.samples), msg="Boosted classifier should have the same as regular") def testBoostedStatePropagation(self): bclf = CombinedClassifier(clfs=[self.clf_sign.clone(), self.clf_sign.clone()], enable_states=['feature_ids']) # check states enabling propagation self.failUnlessEqual(self.clf_sign.states.isEnabled('feature_ids'), _all_states_enabled) self.failUnlessEqual(bclf.clfs[0].states.isEnabled('feature_ids'), True) bclf2 = CombinedClassifier(clfs=[self.clf_sign.clone(), self.clf_sign.clone()], propagate_states=False, enable_states=['feature_ids']) self.failUnlessEqual(self.clf_sign.states.isEnabled('feature_ids'), _all_states_enabled) self.failUnlessEqual(bclf2.clfs[0].states.isEnabled('feature_ids'), _all_states_enabled) def testBinaryDecorator(self): ds = Dataset(samples=[ [0,0], [0,1], [1,100], [-1,0], [-1,-3], [ 0,-10] ], labels=[ 'sp', 'sp', 'sp', 'dn', 'sn', 'dp']) testdata = [ [0,0], [10,10], [-10, -1], [0.1, -0.1], [-0.2, 0.2] ] # labels [s]ame/[d]ifferent (sign), and [p]ositive/[n]egative first element clf = SameSignClassifier() # lets create classifier to descriminate only between same/different, # which is a primary task of SameSignClassifier bclf1 = BinaryClassifier(clf=clf, poslabels=['sp', 'sn'], neglabels=['dp', 'dn']) orig_labels = ds.labels[:] bclf1.train(ds) self.failUnless(bclf1.predict(testdata) == [['sp', 'sn'], ['sp', 'sn'], ['sp', 'sn'], ['dn', 'dp'], ['dn', 'dp']]) self.failUnless((ds.labels == orig_labels).all(), msg="BinaryClassifier should not alter labels") @sweepargs(clf=clfswh['binary']) def testClassifierGeneralization(self, clf): """Simple test if classifiers can generalize ok on simple data """ te = CrossValidatedTransferError(TransferError(clf), NFoldSplitter()) cve = te(datasets['uni2medium']) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(cve < 0.25, msg="Got transfer error %g" % (cve)) @sweepargs(clf=clfswh[:] + regrswh[:]) def testSummary(self, clf): """Basic testing of the clf summary """ summary1 = clf.summary() self.failUnless('not yet trained' in summary1) clf.train(datasets['uni2small']) summary = clf.summary() # It should get bigger ;) self.failUnless(len(summary) > len(summary1)) self.failUnless(not 'not yet trained' in summary) @sweepargs(clf=clfswh[:] + regrswh[:]) def testDegenerateUsage(self, clf): """Test how clf handles degenerate cases """ # Whenever we have only 1 feature with only 0s in it ds1 = datasets['uni2small'][:, [0]] # XXX this very line breaks LARS in many other unittests -- # very interesting effect. but screw it -- for now it will be # this way ds1.samples[:] = 0.0 # all 0s #ds2 = datasets['uni2small'][[0], :] #ds2.samples[:] = 0.0 # all 0s clf.states._changeTemporarily( enable_states=['values', 'training_confusion']) # Good pukes are good ;-) # TODO XXX add # - ", ds2):" to test degenerate ds with 1 sample # - ds1 but without 0s -- just 1 feature... feature selections # might lead to 'surprises' due to magic in combiners etc for ds in (ds1, ): try: clf.train(ds) # should not crash or stall # could we still get those? summary = clf.summary() cm = clf.states.training_confusion # If succeeded to train/predict (due to # training_confusion) without error -- results better be # at "chance" continue if 'ACC' in cm.stats: self.failUnlessEqual(cm.stats['ACC'], 0.5) else: self.failUnless(N.isnan(cm.stats['CCe'])) except tuple(_degenerate_allowed_exceptions): pass clf.states._resetEnabledTemporarily() # TODO: sg - remove our limitations, meta -- also @sweepargs(clf=clfswh['!sg', '!plr', '!meta']) def test_single_class(self, clf): """Test if binary and multiclass can handle single class training/testing """ ds = datasets['uni2small']['labels', (0,)] try: err = TransferError(clf)( datasets['uni2small_test']['labels', (0,)], datasets['uni2small_train']['labels', (0,)]) except Exception, e: self.fail(str(e)) self.failUnless(err == 0.) # TODO: validate for regressions as well!!! def testSplitClassifier(self): ds = self.data_bin_1 clf = SplitClassifier(clf=SameSignClassifier(), splitter=NFoldSplitter(1), enable_states=['confusion', 'training_confusion', 'feature_ids']) clf.train(ds) # train the beast error = clf.confusion.error tr_error = clf.training_confusion.error clf2 = clf.clone() cv = CrossValidatedTransferError( TransferError(clf2), NFoldSplitter(), enable_states=['confusion', 'training_confusion']) cverror = cv(ds) tr_cverror = cv.training_confusion.error self.failUnlessEqual(error, cverror, msg="We should get the same error using split classifier as" " using CrossValidatedTransferError. Got %s and %s" % (error, cverror)) self.failUnlessEqual(tr_error, tr_cverror, msg="We should get the same training error using split classifier as" " using CrossValidatedTransferError. Got %s and %s" % (tr_error, tr_cverror)) self.failUnlessEqual(clf.confusion.percentCorrect, 100, msg="Dummy clf should train perfectly") self.failUnlessEqual(len(clf.confusion.sets), len(ds.uniquechunks), msg="Should have 1 confusion per each split") self.failUnlessEqual(len(clf.clfs), len(ds.uniquechunks), msg="Should have number of classifiers equal # of epochs") self.failUnlessEqual(clf.predict(ds.samples), list(ds.labels), msg="Should classify correctly") # feature_ids must be list of lists, and since it is not # feature-selecting classifier used - we expect all features # to be utilized # NOT ANYMORE -- for BoostedClassifier we have now union of all # used features across slave classifiers. That makes # semantics clear. If you need to get deeper -- use upcoming # harvesting facility ;-) # self.failUnlessEqual(len(clf.feature_ids), len(ds.uniquechunks)) # self.failUnless(N.array([len(ids)==ds.nfeatures # for ids in clf.feature_ids]).all()) # Just check if we get it at all ;-) summary = clf.summary() @sweepargs(clf_=clfswh['binary', '!meta']) def testSplitClassifierExtended(self, clf_): clf2 = clf_.clone() ds = datasets['uni2medium']#self.data_bin_1 clf = SplitClassifier(clf=clf_, #SameSignClassifier(), splitter=NFoldSplitter(1), enable_states=['confusion', 'feature_ids']) clf.train(ds) # train the beast error = clf.confusion.error cv = CrossValidatedTransferError( TransferError(clf2), NFoldSplitter(), enable_states=['confusion', 'training_confusion']) cverror = cv(ds) self.failUnless(abs(error-cverror)<0.01, msg="We should get the same error using split classifier as" " using CrossValidatedTransferError. Got %s and %s" % (error, cverror)) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(error < 0.25, msg="clf should generalize more or less fine. " "Got error %s" % error) self.failUnlessEqual(len(clf.confusion.sets), len(ds.uniquechunks), msg="Should have 1 confusion per each split") self.failUnlessEqual(len(clf.clfs), len(ds.uniquechunks), msg="Should have number of classifiers equal # of epochs") #self.failUnlessEqual(clf.predict(ds.samples), list(ds.labels), # msg="Should classify correctly") def testHarvesting(self): """Basic testing of harvesting based on SplitClassifier """ ds = self.data_bin_1 clf = SplitClassifier(clf=SameSignClassifier(), splitter=NFoldSplitter(1), enable_states=['confusion', 'training_confusion', 'feature_ids'], harvest_attribs=['clf.feature_ids', 'clf.training_time'], descr="DESCR") clf.train(ds) # train the beast # Number of harvested items should be equal to number of chunks self.failUnlessEqual(len(clf.harvested['clf.feature_ids']), len(ds.uniquechunks)) # if we can blame multiple inheritance and ClassWithCollections.__init__ self.failUnlessEqual(clf.descr, "DESCR") def testMappedClassifier(self): samples = N.array([ [0,0,-1], [1,0,1], [-1,-1, 1], [-1,0,1], [1, -1, 1] ]) testdata3 = Dataset(samples=samples, labels=1) res110 = [1, 1, 1, -1, -1] res101 = [-1, 1, -1, -1, 1] res011 = [-1, 1, -1, 1, -1] clf110 = MappedClassifier(clf=self.clf_sign, mapper=MaskMapper(N.array([1,1,0]))) clf101 = MappedClassifier(clf=self.clf_sign, mapper=MaskMapper(N.array([1,0,1]))) clf011 = MappedClassifier(clf=self.clf_sign, mapper=MaskMapper(N.array([0,1,1]))) self.failUnlessEqual(clf110.predict(samples), res110) self.failUnlessEqual(clf101.predict(samples), res101) self.failUnlessEqual(clf011.predict(samples), res011) def testFeatureSelectionClassifier(self): from test_rfe import SillySensitivityAnalyzer from mvpa.featsel.base import \ SensitivityBasedFeatureSelection from mvpa.featsel.helpers import \ FixedNElementTailSelector # should give lowest weight to the feature with lowest index sens_ana = SillySensitivityAnalyzer() # should give lowest weight to the feature with highest index sens_ana_rev = SillySensitivityAnalyzer(mult=-1) # corresponding feature selections feat_sel = SensitivityBasedFeatureSelection(sens_ana, FixedNElementTailSelector(1, mode='discard')) feat_sel_rev = SensitivityBasedFeatureSelection(sens_ana_rev, FixedNElementTailSelector(1)) samples = N.array([ [0,0,-1], [1,0,1], [-1,-1, 1], [-1,0,1], [1, -1, 1] ]) testdata3 = Dataset(samples=samples, labels=1) # dummy train data so proper mapper gets created traindata = Dataset(samples=N.array([ [0, 0,-1], [1,0,1] ]), labels=[1,2]) # targets res110 = [1, 1, 1, -1, -1] res011 = [-1, 1, -1, 1, -1] # first classifier -- 0th feature should be discarded clf011 = FeatureSelectionClassifier(self.clf_sign, feat_sel, enable_states=['feature_ids']) self.clf_sign.states._changeTemporarily(enable_states=['values']) clf011.train(traindata) self.failUnlessEqual(clf011.predict(testdata3.samples), res011) # just silly test if we get values assigned in the 'ProxyClassifier' self.failUnless(len(clf011.values) == len(res110), msg="We need to pass values into ProxyClassifier") self.clf_sign.states._resetEnabledTemporarily() self.failUnlessEqual(len(clf011.feature_ids), 2) "Feature selection classifier had to be trained on 2 features" # first classifier -- last feature should be discarded clf011 = FeatureSelectionClassifier(self.clf_sign, feat_sel_rev) clf011.train(traindata) self.failUnlessEqual(clf011.predict(testdata3.samples), res110) def testFeatureSelectionClassifierWithRegression(self): from test_rfe import SillySensitivityAnalyzer from mvpa.featsel.base import \ SensitivityBasedFeatureSelection from mvpa.featsel.helpers import \ FixedNElementTailSelector if sample_clf_reg is None: # none regression was found, so nothing to test return # should give lowest weight to the feature with lowest index sens_ana = SillySensitivityAnalyzer() # corresponding feature selections feat_sel = SensitivityBasedFeatureSelection(sens_ana, FixedNElementTailSelector(1, mode='discard')) # now test with regression-based classifier. The problem is # that it is determining predictions twice from values and # then setting the values from the results, which the second # time is set to predictions. The final outcome is that the # values are actually predictions... dat = Dataset(samples=N.random.randn(4,10),labels=[-1,-1,1,1]) clf_reg = FeatureSelectionClassifier(sample_clf_reg, feat_sel) clf_reg.train(dat) res = clf_reg.predict(dat.samples) self.failIf((N.array(clf_reg.values)-clf_reg.predictions).sum()==0, msg="Values were set to the predictions in %s." % sample_clf_reg) def testTreeClassifier(self): """Basic tests for TreeClassifier """ ds = datasets['uni4medium'] # excluding PLR since that one can deal only with 0,1 labels ATM clfs = clfswh['binary', '!plr'] # pool of classifiers # Lets permute so each time we try some different combination # of the classifiers clfs = [clfs[i] for i in N.random.permutation(len(clfs))] # Test conflicting definition tclf = TreeClassifier(clfs[0], { 'L0+2' : (('L0', 'L2'), clfs[1]), 'L2+3' : ((2, 3), clfs[2])}) self.failUnlessRaises(ValueError, tclf.train, ds) """Should raise exception since label 2 is in both""" # Test insufficient definition tclf = TreeClassifier(clfs[0], { 'L0+5' : (('L0', 'L5'), clfs[1]), 'L2+3' : ((2, 3), clfs[2])}) self.failUnlessRaises(ValueError, tclf.train, ds) """Should raise exception since no group for L1""" # proper definition now tclf = TreeClassifier(clfs[0], { 'L0+1' : (('L0', 1), clfs[1]), 'L2+3' : ((2, 3), clfs[2])}) # Lets test train/test cycle using CVTE cv = CrossValidatedTransferError( TransferError(tclf), OddEvenSplitter(), enable_states=['confusion', 'training_confusion']) cverror = cv(ds) try: rtclf = repr(tclf) except: self.fail(msg="Could not obtain repr for TreeClassifier") # Test accessibility of .clfs self.failUnless(tclf.clfs['L0+1'] is clfs[1]) self.failUnless(tclf.clfs['L2+3'] is clfs[2]) cvtrc = cv.training_confusion cvtc = cv.confusion if cfg.getboolean('tests', 'labile', default='yes'): # just a dummy check to make sure everything is working self.failUnless(cvtrc != cvtc) self.failUnless(cverror < 0.3, msg="Got too high error = %s using %s" % (cverror, tclf)) # Test trailing nodes with no classifier tclf = TreeClassifier(clfs[0], { 'L0' : ((0,), None), 'L1+2+3' : ((1, 2, 3), clfswh['multiclass'][0])}) cv = CrossValidatedTransferError( TransferError(tclf), OddEvenSplitter(), enable_states=['confusion', 'training_confusion']) cverror = cv(ds) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(cverror < 0.3, msg="Got too high error = %s using %s" % (cverror, tclf)) @sweepargs(clf=clfswh[:]) def testValues(self, clf): if isinstance(clf, MulticlassClassifier): # TODO: handle those values correctly return ds = datasets['uni2small'] clf.states._changeTemporarily(enable_states = ['values']) cv = CrossValidatedTransferError( TransferError(clf), OddEvenSplitter(), enable_states=['confusion', 'training_confusion']) cverror = cv(ds) #print clf.descr, clf.values[0] # basic test either we get 1 set of values per each sample self.failUnlessEqual(len(clf.values), ds.nsamples/2) clf.states._resetEnabledTemporarily() @sweepargs(clf=clfswh['linear', 'svm', 'libsvm', '!meta']) def testMulticlassClassifier(self, clf): oldC = None # XXX somewhat ugly way to force non-dataspecific C value. # Otherwise multiclass libsvm builtin and our MultiClass would differ # in results if clf.params.isKnown('C') and clf.C<0: oldC = clf.C clf.C = 1.0 # reset C to be 1 svm, svm2 = clf, clf.clone() svm2.states.enable(['training_confusion']) mclf = MulticlassClassifier(clf=svm, enable_states=['training_confusion']) svm2.train(datasets['uni2small_train']) mclf.train(datasets['uni2small_train']) s1 = str(mclf.training_confusion) s2 = str(svm2.training_confusion) self.failUnlessEqual(s1, s2, msg="Multiclass clf should provide same results as built-in " "libsvm's %s. Got %s and %s" % (svm2, s1, s2)) svm2.untrain() self.failUnless(svm2.trained == False, msg="Un-Trained SVM should be untrained") self.failUnless(N.array([x.trained for x in mclf.clfs]).all(), msg="Trained Boosted classifier should have all primary classifiers trained") self.failUnless(mclf.trained, msg="Trained Boosted classifier should be marked as trained") mclf.untrain() self.failUnless(not mclf.trained, msg="UnTrained Boosted classifier should not be trained") self.failUnless(not N.array([x.trained for x in mclf.clfs]).any(), msg="UnTrained Boosted classifier should have no primary classifiers trained") if oldC is not None: clf.C = oldC # XXX meta should also work but TODO @sweepargs(clf=clfswh['svm', '!meta']) def testSVMs(self, clf): knows_probabilities = 'probabilities' in clf.states.names and clf.params.probability enable_states = ['values'] if knows_probabilities: enable_states += ['probabilities'] clf.states._changeTemporarily(enable_states = enable_states) for traindata, testdata in [ (datasets['uni2small_train'], datasets['uni2small_test']) ]: clf.train(traindata) predicts = clf.predict(testdata.samples) # values should be different from predictions for SVMs we have self.failUnless( (predicts != clf.values).any() ) if knows_probabilities and clf.states.isSet('probabilities'): # XXX test more thoroughly what we are getting here ;-) self.failUnlessEqual( len(clf.probabilities), len(testdata.samples) ) clf.states._resetEnabledTemporarily() @sweepargs(clf=clfswh['retrainable']) def testRetrainables(self, clf): # we need a copy since will tune its internals later on clf = clf.clone() clf.states._changeTemporarily(enable_states = ['values'], # ensure that it does do predictions # while training disable_states=['training_confusion']) clf_re = clf.clone() # TODO: .retrainable must have a callback to call smth like # _setRetrainable clf_re._setRetrainable(True) # need to have high snr so we don't 'cope' with problematic # datasets since otherwise unittests would fail. dsargs = {'perlabel':50, 'nlabels':2, 'nfeatures':5, 'nchunks':1, 'nonbogus_features':[2,4], 'snr': 5.0} ## !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # NB datasets will be changed by the end of testing, so if # are to change to use generic datasets - make sure to copy # them here dstrain = deepcopy(datasets['uni2large_train']) dstest = deepcopy(datasets['uni2large_test']) clf.untrain() clf_re.untrain() trerr, trerr_re = TransferError(clf), \ TransferError(clf_re, disable_states=['training_confusion']) # Just check for correctness of retraining err_1 = trerr(dstest, dstrain) self.failUnless(err_1<0.3, msg="We should test here on easy dataset. Got error of %s" % err_1) values_1 = clf.values[:] # some times retraining gets into deeper optimization ;-) eps = 0.05 corrcoef_eps = 0.85 # just to get no failures... usually > 0.95 def batch_test(retrain=True, retest=True, closer=True): err = trerr(dstest, dstrain) err_re = trerr_re(dstest, dstrain) corr = N.corrcoef(clf.values, clf_re.values)[0,1] corr_old = N.corrcoef(values_1, clf_re.values)[0,1] if __debug__: debug('TEST', "Retraining stats: errors %g %g corr %g " "with old error %g corr %g" % (err, err_re, corr, err_1, corr_old)) self.failUnless(clf_re.states.retrained == retrain, ("Must fully train", "Must retrain instead of full training")[retrain]) self.failUnless(clf_re.states.repredicted == retest, ("Must fully test", "Must retest instead of full testing")[retest]) self.failUnless(corr > corrcoef_eps, msg="Result must be close to the one without retraining." " Got corrcoef=%s" % (corr)) if closer: self.failUnless(corr >= corr_old, msg="Result must be closer to current without retraining" " than to old one. Got corrcoef=%s" % (corr_old)) # Check sequential retraining/retesting for i in xrange(3): flag = bool(i!=0) # ok - on 1st call we should train/test, then retrain/retest # and we can't compare for closinest to old result since # we are working on the same data/classifier batch_test(retrain=flag, retest=flag, closer=False) # should retrain nicely if we change a parameter if 'C' in clf.params.names: clf.params.C *= 0.1 clf_re.params.C *= 0.1 batch_test() elif 'sigma_noise' in clf.params.names: clf.params.sigma_noise *= 100 clf_re.params.sigma_noise *= 100 batch_test() else: raise RuntimeError, \ 'Please implement testing while changing some of the ' \ 'params for clf %s' % clf # should retrain nicely if we change kernel parameter if hasattr(clf, 'kernel_params') and len(clf.kernel_params.names): clf.kernel_params.gamma = 0.1 clf_re.kernel_params.gamma = 0.1 # retest is false since kernel got recomputed thus # can't expect to use the same kernel batch_test(retest=not('gamma' in clf.kernel_params.names)) # should retrain nicely if we change labels oldlabels = dstrain.labels[:] dstrain.permuteLabels(status=True, assure_permute=True) self.failUnless((oldlabels != dstrain.labels).any(), msg="We should succeed at permutting -- now got the same labels") batch_test() # Change labels in testing oldlabels = dstest.labels[:] dstest.permuteLabels(status=True, assure_permute=True) self.failUnless((oldlabels != dstest.labels).any(), msg="We should succeed at permutting -- now got the same labels") batch_test() # should re-train if we change data # reuse trained SVM and its 'final' optimization point if not clf.__class__.__name__ in ['GPR']: # on GPR everything depends on the data ;-) oldsamples = dstrain.samples.copy() dstrain.samples[:] += dstrain.samples*0.05 self.failUnless((oldsamples != dstrain.samples).any()) batch_test(retest=False) clf.states._resetEnabledTemporarily() # test retrain() # TODO XXX -- check validity clf_re.retrain(dstrain); self.failUnless(clf_re.states.retrained) clf_re.retrain(dstrain, labels=True); self.failUnless(clf_re.states.retrained) clf_re.retrain(dstrain, traindataset=True); self.failUnless(clf_re.states.retrained) # test repredict() clf_re.repredict(dstest.samples); self.failUnless(clf_re.states.repredicted) self.failUnlessRaises(RuntimeError, clf_re.repredict, dstest.samples, labels=True, msg="for now retesting with anything changed makes no sense") clf_re._setRetrainable(False) def testGenericTests(self): """Test all classifiers for conformant behavior """ for clf_, traindata in \ [(clfswh['binary'], datasets['dumb2']), (clfswh['multiclass'], datasets['dumb'])]: traindata_copy = deepcopy(traindata) # full copy of dataset for clf in clf_: clf.train(traindata) self.failUnless( (traindata.samples == traindata_copy.samples).all(), "Training of a classifier shouldn't change original dataset") # TODO: enforce uniform return from predict?? #predicted = clf.predict(traindata.samples) #self.failUnless(isinstance(predicted, N.ndarray)) # Just simple test that all of them are syntaxed correctly self.failUnless(str(clf) != "") self.failUnless(repr(clf) != "") # TODO: unify str and repr for all classifiers # XXX TODO: should work on smlr, knn, ridgereg, lars as well! but now # they fail to train # GNB -- cannot train since 1 sample isn't sufficient to assess variance @sweepargs(clf=clfswh['!smlr', '!knn', '!gnb', '!lars', '!meta', '!ridge']) def testCorrectDimensionsOrder(self, clf): """To check if known/present Classifiers are working properly with samples being first dimension. Started to worry about possible problems while looking at sg where samples are 2nd dimension """ # specially crafted dataset -- if dimensions are flipped over # the same storage, problem becomes unseparable. Like in this case # incorrect order of dimensions lead to equal samples [0, 1, 0] traindatas = [ Dataset(samples=N.array([ [0, 0, 1.0], [1, 0, 0] ]), labels=[0, 1]), Dataset(samples=N.array([ [0, 0.0], [1, 1] ]), labels=[0, 1])] clf.states._changeTemporarily(enable_states = ['training_confusion']) for traindata in traindatas: clf.train(traindata) self.failUnlessEqual(clf.training_confusion.percentCorrect, 100.0, "Classifier %s must have 100%% correct learning on %s. Has %f" % (`clf`, traindata.samples, clf.training_confusion.percentCorrect)) # and we must be able to predict every original sample thus for i in xrange(traindata.nsamples): sample = traindata.samples[i,:] predicted = clf.predict([sample]) self.failUnlessEqual([predicted], traindata.labels[i], "We must be able to predict sample %s using " % sample + "classifier %s" % `clf`) clf.states._resetEnabledTemporarily() def suite(): return unittest.makeSuite(ClassifiersTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_clfcrossval.py000066400000000000000000000111221174541445200211020ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA classifier cross-validation""" from mvpa.datasets.splitters import NFoldSplitter from mvpa.datasets.meta import MetaDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.clfs.transerror import TransferError from tests_warehouse import * from tests_warehouse import pureMultivariateSignal, getMVPattern from tests_warehouse_clfs import * class CrossValidationTests(unittest.TestCase): def testSimpleNMinusOneCV(self): data = getMVPattern(3) self.failUnless( data.nsamples == 120 ) self.failUnless( data.nfeatures == 2 ) self.failUnless( (data.labels == \ [0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0] * 6).all()) self.failUnless( (data.chunks == \ [k for k in range(1, 7) for i in range(20)]).all()) transerror = TransferError(sample_clf_nl) cv = CrossValidatedTransferError( transerror, NFoldSplitter(cvtype=1), enable_states=['confusion', 'training_confusion', 'samples_error']) results = cv(data) self.failUnless( results < 0.2 and results >= 0.0 ) # TODO: test accessibility of {training_,}confusion{,s} of # CrossValidatedTransferError self.failUnless(isinstance(cv.samples_error, dict)) self.failUnless(len(cv.samples_error) == data.nsamples) # one value for each origid self.failUnless(sorted(cv.samples_error.keys()) == sorted(data.origids)) for k, v in cv.samples_error.iteritems(): self.failUnless(len(v) == 1) def testNoiseClassification(self): # get a dataset with a very high SNR data = getMVPattern(10) # do crossval with default errorfx and 'mean' combiner transerror = TransferError(sample_clf_nl) cv = CrossValidatedTransferError(transerror, NFoldSplitter(cvtype=1)) # must return a scalar value result = cv(data) # must be perfect self.failUnless( result < 0.05 ) # do crossval with permuted regressors cv = CrossValidatedTransferError(transerror, NFoldSplitter(cvtype=1, permute=True, nrunspersplit=10) ) results = cv(data) # must be at chance level pmean = N.array(results).mean() self.failUnless( pmean < 0.58 and pmean > 0.42 ) def testHarvesting(self): # get a dataset with a very high SNR data = getMVPattern(10) # do crossval with default errorfx and 'mean' combiner transerror = TransferError(clfswh['linear'][0]) cv = CrossValidatedTransferError( transerror, NFoldSplitter(cvtype=1), harvest_attribs=['transerror.clf.training_time']) result = cv(data) self.failUnless(cv.harvested.has_key('transerror.clf.training_time')) self.failUnless(len(cv.harvested['transerror.clf.training_time'])>1) def testNMinusOneCVWithMetaDataset(self): # simple datasets with decreasing SNR data = MetaDataset([getMVPattern(3), getMVPattern(2), getMVPattern(1)]) self.failUnless( data.nsamples == 120 ) self.failUnless( data.nfeatures == 6 ) self.failUnless( (data.labels == \ [0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0] * 6).all()) self.failUnless( (data.chunks == \ [ k for k in range(1,7) for i in range(20) ] ).all() ) transerror = TransferError(sample_clf_nl) cv = CrossValidatedTransferError(transerror, NFoldSplitter(cvtype=1), enable_states=['confusion', 'training_confusion']) results = cv(data) self.failUnless(results < 0.2 and results >= 0.0, msg="We should generalize while working with " "metadataset. Got %s error" % results) # TODO: test accessibility of {training_,}confusion{,s} of # CrossValidatedTransferError def suite(): return unittest.makeSuite(CrossValidationTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_cmdline.py000066400000000000000000000017701174541445200202040ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA cmdline helpers""" import unittest from mvpa.misc.cmdline import * if __debug__: from mvpa.base import debug class CmdlineHelpersTest(unittest.TestCase): def testBasic(self): """Test if we are not missing basic parts""" globals_ = globals() for member in [#'_verboseCallback', 'parser', 'opt', 'opts']: self.failUnless(globals_.has_key(member), msg="We must have imported %s from mvpa.misc.cmdline!" % member) def suite(): return unittest.makeSuite(CmdlineHelpersTest) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_config.py000066400000000000000000000017711174541445200200370ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA dense array mapper""" import unittest from mvpa.base.config import ConfigManager class ConfigTests(unittest.TestCase): def testConfig(self): cfg = ConfigManager() # does nothing so far, but will be used to test the default # configuration from doc/examples/pymvpa.cfg # query for some non-existing option and check if default is returned query = cfg.get('dasgibtsdochnicht', 'neegarnicht', default='required') self.failUnless(query == 'required') def suite(): return unittest.makeSuite(ConfigTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_datameasure.py000066400000000000000000000356751174541445200210770ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA SplittingSensitivityAnalyzer""" from mvpa.base import externals from mvpa.featsel.base import FeatureSelectionPipeline, \ SensitivityBasedFeatureSelection, CombinedFeatureSelection from mvpa.clfs.transerror import TransferError from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.featsel.helpers import FixedNElementTailSelector, \ FractionTailSelector, RangeElementSelector from mvpa.featsel.rfe import RFE from mvpa.clfs.meta import SplitClassifier, MulticlassClassifier, \ FeatureSelectionClassifier from mvpa.clfs.smlr import SMLR, SMLRWeights from mvpa.misc.transformers import Absolute from mvpa.datasets.splitters import NFoldSplitter, NoneSplitter from mvpa.misc.transformers import Absolute, FirstAxisMean, \ SecondAxisSumOfAbs, DistPValue from mvpa.measures.base import SplitFeaturewiseDatasetMeasure from mvpa.measures.anova import OneWayAnova, CompoundOneWayAnova from mvpa.measures.irelief import IterativeRelief, IterativeReliefOnline, \ IterativeRelief_Devel, IterativeReliefOnline_Devel from tests_warehouse import * from tests_warehouse_clfs import * _MEASURES_2_SWEEP = [ OneWayAnova(), CompoundOneWayAnova(combiner=SecondAxisSumOfAbs), IterativeRelief(), IterativeReliefOnline(), IterativeRelief_Devel(), IterativeReliefOnline_Devel() ] if externals.exists('scipy'): from mvpa.measures.corrcoef import CorrCoef _MEASURES_2_SWEEP += [ CorrCoef(), # that one is good when small... handle later #CorrCoef(pvalue=True) ] class SensitivityAnalysersTests(unittest.TestCase): def setUp(self): self.dataset = datasets['uni2large'] @sweepargs(dsm=_MEASURES_2_SWEEP) def testBasic(self, dsm): data = datasets['dumbinv'] datass = data.samples.copy() # compute scores f = dsm(data) # check if nothing evil is done to dataset self.failUnless(N.all(data.samples == datass)) self.failUnless(f.shape == (4,)) self.failUnless(abs(f[1]) <= 1e-12, # some small value msg="Failed test with value %g instead of != 0.0" % f[1]) self.failUnless(f[0] > 0.1) # some reasonably large value # we should not have NaNs self.failUnless(not N.any(N.isnan(f))) # XXX meta should work too but doesn't # XXX also look below -- lars with stepwise segfaults if all states are enabled, # disabled for now -- do not have enough juice to debug lars code @sweepargs(clf=clfswh['has_sensitivity']) def testAnalyzerWithSplitClassifier(self, clf): """Test analyzers in split classifier """ # We need to skip some LARSes here _sclf = str(clf) if 'LARS(' in _sclf and "type='stepwise'" in _sclf: return # assumming many defaults it is as simple as mclf = SplitClassifier(clf=clf, enable_states=['training_confusion', 'confusion']) sana = mclf.getSensitivityAnalyzer(transformer=Absolute, enable_states=["sensitivities"]) # Test access to transformers and combiners self.failUnless(sana.transformer is Absolute) self.failUnless(sana.combiner is FirstAxisMean) # and lets look at all sensitivities # and we get sensitivity analyzer which works on splits map_ = sana(self.dataset) self.failUnlessEqual(len(map_), self.dataset.nfeatures) if cfg.getboolean('tests', 'labile', default='yes'): for conf_matrix in [sana.clf.training_confusion] \ + sana.clf.confusion.matrices: self.failUnless( conf_matrix.percentCorrect>75, msg="We must have trained on each one more or " \ "less correctly. Got %f%% correct on %d labels" % (conf_matrix.percentCorrect, len(self.dataset.uniquelabels))) errors = [x.percentCorrect for x in sana.clf.confusion.matrices] # XXX # That is too much to ask if the dataset is easy - thus # disabled for now #self.failUnless(N.min(errors) != N.max(errors), # msg="Splits should have slightly but different " \ # "generalization") # lets go through all sensitivities and see if we selected the right # features # XXX yoh: disabled checking of each map separately since in # BoostedClassifierSensitivityAnalyzer and # ProxyClassifierSensitivityAnalyzer # we don't have yet way to provide transformers thus internal call # to getSensitivityAnalyzer in _call of them is not parametrized if 'meta' in clf._clf_internals and len(map_.nonzero()[0])<2: # Some meta classifiers (5% of ANOVA) are too harsh ;-) return for map__ in [map_]: # + sana.combined_analyzer.sensitivities: selected = FixedNElementTailSelector( self.dataset.nfeatures - len(self.dataset.nonbogus_features))(map__) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnlessEqual( list(selected), list(self.dataset.nonbogus_features), msg="At the end we should have selected the right features") @sweepargs(clf=clfswh['has_sensitivity']) def testMappedClassifierSensitivityAnalyzer(self, clf): """Test sensitivity of the mapped classifier """ # Assuming many defaults it is as simple as mclf = FeatureSelectionClassifier( clf, SensitivityBasedFeatureSelection( OneWayAnova(), FractionTailSelector(0.5, mode='select', tail='upper')), enable_states=['training_confusion']) sana = mclf.getSensitivityAnalyzer(transformer=Absolute, enable_states=["sensitivities"]) # and lets look at all sensitivities dataset = datasets['uni2medium'] # and we get sensitivity analyzer which works on splits map_ = sana(dataset) self.failUnlessEqual(len(map_), dataset.nfeatures) @sweepargs(svm=clfswh['linear', 'svm']) def testLinearSVMWeights(self, svm): # assumming many defaults it is as simple as sana = svm.getSensitivityAnalyzer(enable_states=["sensitivities"] ) # and lets look at all sensitivities map_ = sana(self.dataset) # for now we can do only linear SVM, so lets check if we raise # a concern svmnl = clfswh['non-linear', 'svm'][0] self.failUnlessRaises(NotImplementedError, svmnl.getSensitivityAnalyzer) @sweepargs(svm=clfswh['linear', 'svm']) def testLinearSVMWeights(self, svm): # assumming many defaults it is as simple as sana = svm.getSensitivityAnalyzer(enable_states=["sensitivities"] ) # and lets look at all sensitivities map_ = sana(self.dataset) # for now we can do only linear SVM, so lets check if we raise # a concern svmnl = clfswh['non-linear', 'svm'][0] self.failUnlessRaises(NotImplementedError, svmnl.getSensitivityAnalyzer) # XXX doesn't work easily with meta since it would need # to be explicitely passed to the slave classifier's # getSengetSensitivityAnalyzer @sweepargs(svm=clfswh['linear', 'svm', 'libsvm', '!sg', '!meta']) def testLinearSVMWeightsPerClass(self, svm): # assumming many defaults it is as simple as kwargs = dict(combiner=None, transformer=None, enable_states=["sensitivities"]) sana_split = svm.getSensitivityAnalyzer( split_weights=True, **kwargs) sana_full = svm.getSensitivityAnalyzer( force_training=False, **kwargs) # and lets look at all sensitivities ds2 = datasets['uni4large'].copy() ds2.zscore(baselinelabels = [2, 3]) ds2 = ds2['labels', [0,1]] map_split = sana_split(ds2) map_full = sana_full(ds2) self.failUnlessEqual(map_split.shape, (ds2.nfeatures, 2)) self.failUnlessEqual(map_full.shape, (ds2.nfeatures, )) # just to verify that we split properly and if we reconstruct # manually we obtain the same dmap = (-1*map_split[:, 1] + map_split[:, 0]) - map_full self.failUnless((N.abs(dmap) <= 1e-10).all()) #print "____" #print map_split #print SMLR().getSensitivityAnalyzer(combiner=None)(ds2) # for now we can do split weights for binary tasks only, so # lets check if we raise a concern self.failUnlessRaises(NotImplementedError, sana_split, datasets['uni3medium']) def testSplitFeaturewiseDatasetMeasure(self): ds = datasets['uni3small'] sana = SplitFeaturewiseDatasetMeasure( analyzer=SMLR( fit_all_weights=True).getSensitivityAnalyzer(combiner=None), splitter=NFoldSplitter(), combiner=None) sens = sana(ds) self.failUnless(sens.shape == ( len(ds.uniquechunks), ds.nfeatures, len(ds.uniquelabels))) # Lets try more complex example with 'boosting' ds = datasets['uni3medium'] sana = SplitFeaturewiseDatasetMeasure( analyzer=SMLR( fit_all_weights=True).getSensitivityAnalyzer(combiner=None), splitter=NoneSplitter(nperlabel=0.25, mode='first', nrunspersplit=2), combiner=None, enable_states=['splits', 'sensitivities']) sens = sana(ds) self.failUnless(sens.shape == (2, ds.nfeatures, 3)) splits = sana.splits self.failUnlessEqual(len(splits), 2) self.failUnless(N.all([s[0].nsamples == ds.nsamples/4 for s in splits])) # should have used different samples self.failUnless(N.any([splits[0][0].origids != splits[1][0].origids])) # and should have got different sensitivities self.failUnless(N.any(sens[0] != sens[1])) if not externals.exists('scipy'): return # Most evil example ds = datasets['uni2medium'] plain_sana = SVM().getSensitivityAnalyzer( combiner=None, transformer=DistPValue()) boosted_sana = SplitFeaturewiseDatasetMeasure( analyzer=SVM().getSensitivityAnalyzer( combiner=None, transformer=DistPValue(fpp=0.05)), splitter=NoneSplitter(nperlabel=0.8, mode='first', nrunspersplit=2), combiner=FirstAxisMean, enable_states=['splits', 'sensitivities']) # lets create feature selector fsel = RangeElementSelector(upper=0.1, lower=0.9, inclusive=True) sanas = dict(plain=plain_sana, boosted=boosted_sana) for k,sana in sanas.iteritems(): clf = FeatureSelectionClassifier(SVM(), SensitivityBasedFeatureSelection(sana, fsel), descr='SVM on p=0.2(both tails) using %s' % k) ce = CrossValidatedTransferError(TransferError(clf), NFoldSplitter()) error = ce(ds) sens = boosted_sana(ds) sens_plain = plain_sana(ds) # TODO: make a really unittest out of it -- not just runtime # bugs catcher # TODO -- unittests for sensitivity analyzers which use combiners # (linsvmweights for multi-class SVMs and smlrweights for SMLR) @sweepargs(basic_clf=clfswh['has_sensitivity']) def __testFSPipelineWithAnalyzerWithSplitClassifier(self, basic_clf): #basic_clf = LinearNuSVMC() multi_clf = MulticlassClassifier(clf=basic_clf) #svm_weigths = LinearSVMWeights(svm) # Proper RFE: aggregate sensitivities across multiple splits, # but also due to multi class those need to be aggregated # somehow. Transfer error here should be 'leave-1-out' error # of split classifier itself sclf = SplitClassifier(clf=basic_clf) rfe = RFE(sensitivity_analyzer= sclf.getSensitivityAnalyzer( enable_states=["sensitivities"]), transfer_error=trans_error, feature_selector=FeatureSelectionPipeline( [FractionTailSelector(0.5), FixedNElementTailSelector(1)]), train_clf=True) # and we get sensitivity analyzer which works on splits and uses # sensitivity selected_features = rfe(self.dataset) def testUnionFeatureSelection(self): # two methods: 5% highes F-scores, non-zero SMLR weights fss = [SensitivityBasedFeatureSelection( OneWayAnova(), FractionTailSelector(0.05, mode='select', tail='upper')), SensitivityBasedFeatureSelection( SMLRWeights(SMLR(lm=1, implementation="C")), RangeElementSelector(mode='select'))] fs = CombinedFeatureSelection(fss, combiner='union', enable_states=['selected_ids', 'selections_ids']) od, otd = fs(self.dataset) self.failUnless(fs.combiner == 'union') self.failUnless(len(fs.selections_ids)) self.failUnless(len(fs.selections_ids) <= self.dataset.nfeatures) # should store one set per methods self.failUnless(len(fs.selections_ids) == len(fss)) # no individual can be larger than union for s in fs.selections_ids: self.failUnless(len(s) <= len(fs.selected_ids)) # check output dataset self.failUnless(od.nfeatures == len(fs.selected_ids)) for i, id in enumerate(fs.selected_ids): self.failUnless((od.samples[:,i] == self.dataset.samples[:,id]).all()) # again for intersection fs = CombinedFeatureSelection(fss, combiner='intersection', enable_states=['selected_ids', 'selections_ids']) # simply run it for now -- can't think of additional tests od, otd = fs(self.dataset) def suite(): return unittest.makeSuite(SensitivityAnalysersTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_dataset.py000066400000000000000000000650741174541445200202250ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA dataset handling""" import unittest import random import numpy as N from mvpa.datasets import Dataset from mvpa.datasets.miscfx import zscore, aggregateFeatures from mvpa.mappers.mask import MaskMapper from mvpa.misc.exceptions import DatasetError from mvpa.support import copy from tests_warehouse import datasets class DatasetTests(unittest.TestCase): def testAddPatterns(self): """Test composition of new datasets by addition of existing ones """ data = Dataset(samples=range(5), labels=1, chunks=1) self.failUnlessEqual( data.uniquelabels, [1], msg="uniquelabels must be correctly recomputed") # simple sequence has to be a single pattern self.failUnlessEqual( data.nsamples, 1) # check correct pattern layout (1x5) self.failUnless( (data.samples == N.array([[0, 1, 2, 3, 4]])).all() ) # check for single labels and origin self.failUnless( (data.labels == N.array([1])).all() ) self.failUnless( (data.chunks == N.array([1])).all() ) # now try adding pattern with wrong shape self.failUnlessRaises( DatasetError, data.__iadd__, Dataset(samples=N.ones((2,3)), labels=1, chunks=1)) # now add two real patterns dss = datasets['uni2large'].samples data += Dataset(samples=dss[:2, :5], labels=2, chunks=2 ) self.failUnlessEqual( data.nfeatures, 5 ) self.failUnless((data.labels == N.array([1, 2, 2])).all() ) self.failUnless((data.chunks == N.array([1, 2, 2])).all() ) # test automatic origins data += Dataset(samples=dss[3:5, :5], labels=3) self.failUnless((data.chunks == N.array([1, 2, 2, 0, 1]) ).all()) # test unique class labels self.failUnless((data.uniquelabels == N.array([1, 2, 3]) ).all()) # test wrong label length self.failUnlessRaises(DatasetError, Dataset, samples=dss[:4, :5], labels=[ 1, 2, 3 ], chunks=2) # test wrong origin length self.failUnlessRaises(DatasetError, Dataset, samples=dss[:4, :5], labels=[ 1, 2, 3, 4 ], chunks=[ 2, 2, 2 ]) def testFeatureSelection(self): """Testing feature selection: sorted/not sorted, feature groups """ origdata = datasets['uni2large'].samples[:10, :20] data = Dataset(samples=origdata, labels=2, chunks=2 ) # define some feature groups data.defineFeatureGroups(N.repeat(range(4), 5)) unmasked = data.samples.copy() # default must be no mask self.failUnless( data.nfeatures == 20 ) features_to_select = [3, 0, 17] features_to_select_copy = copy.deepcopy(features_to_select) features_to_select_sorted = copy.deepcopy(features_to_select) features_to_select_sorted.sort() bsel = N.array([False]*20) bsel[ features_to_select ] = True # check selection with feature list for sel, issorted in \ [(data.selectFeatures( features_to_select, sort=False), False), (data.selectFeatures( features_to_select, sort=True), True), (data.select(slice(None), features_to_select), True), (data.select(slice(None), N.array(features_to_select)), True), (data.select(slice(None), bsel), True) ]: self.failUnless(sel.nfeatures == 3) # check size of the masked patterns self.failUnless(sel.samples.shape == (10, 3)) # check that the right features are selected fts = (features_to_select, features_to_select_sorted)[int(issorted)] self.failUnless((unmasked[:, fts] == sel.samples).all()) # check grouping information self.failUnless((sel._dsattr['featuregroups'] == [0, 0, 3]).all()) # check side effect on features_to_select parameter: self.failUnless(features_to_select==features_to_select_copy) # check selection by feature group id gsel = data.selectFeatures(groups=[2, 3]) self.failUnless(gsel.nfeatures == 10) self.failUnless(set(gsel._dsattr['featuregroups']) == set([2, 3])) def testSampleSelection(self): origdata = datasets['uni2large'].samples[:100, :10].T data = Dataset(samples=origdata, labels=2, chunks=2 ) self.failUnless( data.nsamples == 10 ) # set single pattern to enabled for sel in [ data.selectSamples(5), data.select(5), data.select(slice(5, 6)), ]: self.failUnless( sel.nsamples == 1 ) self.failUnless( data.nfeatures == 100 ) self.failUnless( sel.origids == [5] ) # check duplicate selections for sel in [ data.selectSamples([5, 5]), # Following ones would fail since select removes # repetitions (XXX) #data.select([5,5]), #data.select([5,5], 'all'), #data.select([5,5], slice(None)), ]: self.failUnless( sel.nsamples == 2 ) self.failUnless( (sel.samples[0] == data.samples[5]).all() ) self.failUnless( (sel.samples[0] == sel.samples[1]).all() ) self.failUnless( len(sel.labels) == 2 ) self.failUnless( len(sel.chunks) == 2 ) self.failUnless((sel.origids == [5, 5]).all()) self.failUnless( sel.samples.shape == (2, 100) ) # check selection by labels for sel in [ data.selectSamples(data.idsbylabels(2)), data.select(labels=2), data.select('labels', 2), data.select('labels', [2]), data['labels', [2]], data['labels': [2], 'labels':2], data['labels': [2]], ]: self.failUnless( sel.nsamples == data.nsamples ) self.failUnless( N.all(sel.samples == data.samples) ) # not present label for sel in [ data.selectSamples(data.idsbylabels(3)), data.select(labels=3), data.select('labels', 3), data.select('labels', [3]), ]: self.failUnless( sel.nsamples == 0 ) data = Dataset(samples=origdata, labels=[8, 9, 4, 3, 3, 3, 4, 2, 8, 9], chunks=2) for sel in [ data.selectSamples(data.idsbylabels([2, 3])), data.select('labels', [2, 3]), data.select('labels', [2, 3], labels=[1, 2, 3, 4]), data.select('labels', [2, 3], chunks=[1, 2, 3, 4]), data['labels':[2, 3], 'chunks':[1, 2, 3, 4]], data['chunks':[1, 2, 3, 4], 'labels':[2, 3]], ]: self.failUnless(N.all(sel.origids == [ 3., 4., 5., 7.])) # lets cause it to compute unique labels self.failUnless( (data.uniquelabels == [2, 3, 4, 8, 9]).all() ); # select some samples removing some labels completely sel = data.selectSamples(data.idsbylabels([3, 4, 8, 9])) self.failUnlessEqual(set(sel.uniquelabels), set([3, 4, 8, 9])) self.failUnless((sel.origids == [0, 1, 2, 3, 4, 5, 6, 8, 9]).all()) def testEvilSelects(self): """Test some obscure selections of samples via select() or __getitem__ """ origdata = datasets['uni2large'].samples[:100, :10].T data = Dataset(samples=origdata, # 0 1 2 3 4 5 6 7 8 9 labels=[8, 9, 4, 3, 3, 3, 3, 2, 8, 9], chunks=[1, 2, 3, 2, 3, 1, 5, 6, 3, 6]) # malformed getitem if __debug__: # check is enforced only in __debug__ self.failUnlessRaises(ValueError, data.__getitem__, 'labels', 'featu') # too many indicies self.failUnlessRaises(ValueError, data.__getitem__, 1, 1, 1) # various getitems which should carry the same result for sel in [ data.select('chunks', [2, 6], labels=[3, 2], features=slice(None)), data.select('all', 'all', labels=[2,3], chunks=[2, 6]), data['chunks', [2, 6], 'labels', [3, 2]], data[:, :, 'chunks', [2, 6], 'labels', [3, 2]], # get warnings but should work as the rest for now data[3:8, 'chunks', [2, 6, 2, 6], 'labels', [3, 2]], ]: self.failUnless(N.all(sel.origids == [3, 7])) self.failUnless(sel.nfeatures == 100) self.failUnless(N.all(sel.samples == origdata[ [3, 7] ])) target = origdata[ [3, 7] ] target = target[:, [1, 3] ] # various getitems which should carry the same result for sel in [ data.select('all', [1, 3], 'chunks', [2, 6], labels=[3, 2]), data[:, [1,3], 'chunks', [2, 6], 'labels', [3, 2]], data[:, [1,3], 'chunks', [2, 6], 'labels', [3, 2]], # get warnings but should work as the rest for now data[3:8, [1, 1, 3, 1], 'chunks', [2, 6, 2, 6], 'labels', [3, 2]], ]: self.failUnless(N.all(sel.origids == [3, 7])) self.failUnless(sel.nfeatures == 2) self.failUnless(N.all(sel.samples == target)) # Check if we get empty selection if requesting impossible self.failUnless(data.select(chunks=[23]).nsamples == 0) # Check .where() self.failUnless(N.all(data.where(chunks=[2, 6])==[1, 3, 7, 9])) self.failUnless(N.all(data.where(chunks=[2, 6], labels=[22, 3])==[3])) # both samples and features idx = data.where('all', [1, 3, 10], labels=[2, 3, 4]) self.failUnless(N.all(idx[1] == [1, 3, 10])) self.failUnless(N.all(idx[0] == range(2, 8))) # empty query self.failUnless(data.where() is None) # empty result self.failUnless(data.where(labels=[123]) == []) def testCombinedPatternAndFeatureMasking(self): data = Dataset(samples=N.arange( 20 ).reshape( (4, 5) ), labels=1, chunks=1) self.failUnless( data.nsamples == 4 ) self.failUnless( data.nfeatures == 5 ) fsel = data.selectFeatures([1, 2]) fpsel = fsel.selectSamples([0, 3]) self.failUnless( fpsel.nsamples == 2 ) self.failUnless( fpsel.nfeatures == 2 ) self.failUnless( (fpsel.samples == [[1, 2], [16, 17]]).all() ) def testPatternMerge(self): data1 = Dataset(samples=N.ones((5, 5)), labels=1, chunks=1 ) data2 = Dataset(samples=N.ones((3, 5)), labels=2, chunks=1 ) merged = data1 + data2 self.failUnless( merged.nfeatures == 5 ) l12 = [1]*5 + [2]*3 l1 = [1]*8 self.failUnless( (merged.labels == l12).all() ) self.failUnless( (merged.chunks == l1).all() ) data1 += data2 self.failUnless( data1.nfeatures == 5 ) self.failUnless( (data1.labels == l12).all() ) self.failUnless( (data1.chunks == l1).all() ) def testLabelRandomizationAndSampling(self): """ """ data = Dataset(samples=N.ones((5, 1)), labels=range(5), chunks=1 ) data += Dataset(samples=N.ones((5, 1))+1, labels=range(5), chunks=2 ) data += Dataset(samples=N.ones((5, 1))+2, labels=range(5), chunks=3 ) data += Dataset(samples=N.ones((5, 1))+3, labels=range(5), chunks=4 ) data += Dataset(samples=N.ones((5, 1))+4, labels=range(5), chunks=5 ) self.failUnless( data.samplesperlabel == {0:5, 1:5, 2:5, 3:5, 4:5} ) sample = data.getRandomSamples( 2 ) self.failUnless( sample.samplesperlabel.values() == [ 2, 2, 2, 2, 2 ] ) self.failUnless( (data.uniquechunks == range(1, 6)).all() ) # store the old labels origlabels = data.labels.copy() data.permuteLabels(True) self.failIf( (data.labels == origlabels).all() ) data.permuteLabels(False) self.failUnless( (data.labels == origlabels).all() ) # now try another object with the same data data2 = Dataset(samples=data.samples, labels=data.labels, chunks=data.chunks ) # labels are the same as the originals self.failUnless( (data2.labels == origlabels).all() ) # now permute in the new object data2.permuteLabels( True ) # must not affect the old one self.failUnless( (data.labels == origlabels).all() ) # but only the new one self.failIf( (data2.labels == origlabels).all() ) def testAttributes(self): """Test adding custom attributes to a dataset """ #class BlobbyDataset(Dataset): # pass # TODO: we can't assign attributes to those for now... ds = Dataset(samples=range(5), labels=1, chunks=1) self.failUnlessRaises(AttributeError, lambda x:x.blobs, ds) """Dataset.blobs should fail since .blobs wasn't yet registered""" #register new attribute but it would alter only new instances Dataset._registerAttribute("blobs", "_data", hasunique=True) ds = Dataset(samples=range(5), labels=1, chunks=1) self.failUnless(not ds.blobs != [ 0 ], msg="By default new attributes supposed to get 0 as the value") try: ds.blobs = [1, 2] self.fail(msg="Dataset.blobs=[1,2] should fail since " "there is 5 samples") except ValueError, e: pass try: ds.blobs = [1] except e: self.fail(msg="We must be able to assign the attribute") # Dataset still shouldn't have blobs... just BlobbyDataset #self.failUnlessRaises(AttributeError, lambda x:x.blobs, # Dataset(samples=range(5), labels=1, chunks=1)) def testRequiredAtrributes(self): """Verify that we have required attributes """ self.failUnlessRaises(DatasetError, Dataset) self.failUnlessRaises(DatasetError, Dataset, samples=[1]) self.failUnlessRaises(DatasetError, Dataset, labels=[1]) try: ds = Dataset(samples=[1], labels=[1]) except: self.fail(msg="samples and labels are 2 required parameters") assert(ds is not None) # silence pylint def testZScoring(self): """Test z-scoring transformation """ # dataset: mean=2, std=1 samples = N.array( (0,1,3,4,2,2,3,1,1,3,3,1,2,2,2,2) ).\ reshape((16, 1)) data = Dataset(samples=samples, labels=range(16), chunks=[0]*16) self.failUnlessEqual( data.samples.mean(), 2.0 ) self.failUnlessEqual( data.samples.std(), 1.0 ) zscore(data, perchunk=True) # check z-scoring check = N.array([-2,-1,1,2,0,0,1,-1,-1,1,1,-1,0,0,0,0], dtype='float64').reshape(16,1) self.failUnless( (data.samples == check).all() ) data = Dataset(samples=samples, labels=range(16), chunks=[0]*16) zscore(data, perchunk=False) self.failUnless( (data.samples == check).all() ) # check z-scoring taking set of labels as a baseline data = Dataset(samples=samples, labels=[0, 2, 2, 2, 1] + [2]*11, chunks=[0]*16) zscore(data, baselinelabels=[0, 1]) self.failUnless((samples == data.samples+1.0).all()) def test_zscore_reportedfailure(self): dataset = Dataset(samples=N.arange( 20 ).reshape( (4, 5) ), labels=1, chunks=1) zscore(dataset, mean=0, std=1, #N.ones(dataset.nfeatures), perchunk=True, pervoxel=True, targetdtype="float32") def testAggregation(self): data = Dataset(samples=N.arange( 20 ).reshape( (4, 5) ), labels=1, chunks=1) ag_data = aggregateFeatures(data, N.mean) self.failUnless(ag_data.nsamples == 4) self.failUnless(ag_data.nfeatures == 1) self.failUnless((ag_data.samples[:, 0] == [2, 7, 12, 17]).all()) def testApplyMapper(self): """Test creation of new dataset by applying a mapper""" mapper = MaskMapper(N.array([1, 0, 1])) dataset = Dataset(samples=N.arange(12).reshape( (4, 3) ), labels=1, chunks=1) seldataset = dataset.applyMapper(featuresmapper=mapper) self.failUnless( (dataset.selectFeatures([0, 2]).samples == seldataset.samples).all() ) # Lets do simple test on maskmapper reverse since it seems to # do evil things. Those checks are done only in __debug__ if __debug__: # should fail since in mask we have just 2 features now self.failUnlessRaises(ValueError, mapper.reverse, [10, 20, 30]) self.failUnlessRaises(ValueError, mapper.forward, [10, 20]) # XXX: the intended test is added as SampleGroupMapper test # self.failUnlessRaises(NotImplementedError, # dataset.applyMapper, None, [1]) # """We don't yet have implementation for samplesmapper -- # if we get one -- remove this check and place a test""" def testId(self): """Test Dataset.idhash() if it gets changed if any of the labels/chunks changes """ dataset = Dataset(samples=N.arange(12).reshape( (4, 3) ), labels=1, chunks=1) origid = dataset.idhash dataset.labels = [3, 1, 2, 3] # change all labels self.failUnless(origid != dataset.idhash, msg="Changing all labels should alter dataset's idhash") origid = dataset.idhash z = dataset.labels[1] self.failUnlessEqual(origid, dataset.idhash, msg="Accessing shouldn't change idhash") z = dataset.chunks self.failUnlessEqual(origid, dataset.idhash, msg="Accessing shouldn't change idhash") z[2] = 333 self.failUnless(origid != dataset.idhash, msg="Changing value in attribute should change idhash") origid = dataset.idhash dataset.samples[1, 1] = 1000 self.failUnless(origid != dataset.idhash, msg="Changing value in data should change idhash") origid = dataset.idhash dataset.permuteLabels(True) self.failUnless(origid != dataset.idhash, msg="Permutation also changes idhash") dataset.permuteLabels(False) self.failUnless(origid == dataset.idhash, msg="idhash should be restored after " "permuteLabels(False)") def testFeatureMaskConversion(self): dataset = Dataset(samples=N.arange(12).reshape((4, 3)), labels=1, chunks=1) mask = dataset.convertFeatureIds2FeatureMask(range(dataset.nfeatures)) self.failUnless(len(mask) == dataset.nfeatures) self.failUnless((mask == True).all()) self.failUnless( (dataset.convertFeatureMask2FeatureIds(mask) == range(3)).all()) mask[1] = False self.failUnless( (dataset.convertFeatureMask2FeatureIds(mask) == [0, 2]).all()) def testSummary(self): """Dummy test""" ds = datasets['uni2large'] ds = ds[N.random.permutation(range(ds.nsamples))[:20]] summary = ds.summary() self.failUnless(len(summary)>40) def testLabelsMapping(self): """Test mapping of the labels from strings to numericals """ od = {'apple':0, 'orange':1} samples = [[3], [2], [3]] labels_l = ['apple', 'orange', 'apple'] # test broadcasting of the label ds = Dataset(samples=samples, labels='orange') self.failUnless(N.all(ds.labels == ['orange']*3)) # Test basic mapping of litteral labels for ds in [Dataset(samples=samples, labels=labels_l, labels_map=od), # Figure out mapping Dataset(samples=samples, labels=labels_l, labels_map=True)]: self.failUnless(N.all(ds.labels == [0, 1, 0])) self.failUnless(ds.labels_map == od) ds_ = ds[1] self.failUnless(ds_.labels_map == od, msg='selectSamples should provide full mapping preserved') # We should complaint about insufficient mapping self.failUnlessRaises(ValueError, Dataset, samples=samples, labels=labels_l, labels_map = {'apple':0}) # Conformance to older behavior -- if labels are given in # strings, no mapping occur by default ds2 = Dataset(samples=samples, labels=labels_l) self.failUnlessEqual(ds2.labels_map, None) # We should label numerical labels if it was requested: od3 = {1:100, 2:101, 3:100} ds3 = Dataset(samples=samples, labels=[1, 2, 3], labels_map=od3) self.failUnlessEqual(ds3.labels_map, od3) self.failUnless(N.all(ds3.labels == [100, 101, 100])) ds3_ = ds3[1] self.failUnlessEqual(ds3.labels_map, od3) ds4 = Dataset(samples=samples, labels=labels_l) # Lets check setting the labels map ds = Dataset(samples=samples, labels=labels_l, labels_map=od) self.failUnlessRaises(ValueError, ds.setLabelsMap, {'orange': 1, 'nonorange': 3}) new_map = {'tasty':0, 'crappy':1} ds.labels_map = new_map.copy() self.failUnlessEqual(ds.labels_map, new_map) def testLabelsMappingAddDataset(self): """Adding datasets needs special care whenever labels mapping is used.""" samples = [[3], [2], [3]] l1 = ['a', 'b', 'a'] l2 = ['b', 'a', 'c'] ds1 = Dataset(samples=samples, labels=l1, labels_map={'a':1, 'b':2}) ds2 = Dataset(samples=samples, labels=l2, labels_map={'c':1, 'a':4, 'b':2}) # some dataset without mapping ds0 = Dataset(samples=samples, labels=l2) # original mappings lm1 = ds1.labels_map.copy() lm2 = ds2.labels_map.copy() ds3 = ds1 + ds2 self.failUnless(N.all(ds3.labels == N.hstack((ds1.labels, [2, 1, 5])))) self.failUnless(ds1.labels_map == lm1) self.failUnless(ds2.labels_map == lm2) # check iadd ds1 += ds2 self.failUnless(N.all(ds1.labels == ds3.labels)) # it should be deterministic self.failUnless(N.all(ds1.labels_map == ds3.labels_map)) # don't allow to add datasets where one of them doesn't have a labels_map # whenever the other one does self.failUnlessRaises(ValueError, ds1.__add__, ds0) self.failUnlessRaises(ValueError, ds1.__iadd__, ds0) def testCopy(self): # lets use some instance of somewhat evolved dataset ds = datasets['uni2small'] # Clone the beast ds_ = ds.copy() # verify that we have the same data self.failUnless(N.all(ds.samples == ds_.samples)) self.failUnless(N.all(ds.labels == ds_.labels)) self.failUnless(N.all(ds.chunks == ds_.chunks)) # modify and see if we don't change data in the original one ds_.samples[0, 0] = 1234 self.failUnless(N.any(ds.samples != ds_.samples)) self.failUnless(N.all(ds.labels == ds_.labels)) self.failUnless(N.all(ds.chunks == ds_.chunks)) ds_.labels = N.hstack(([123], ds_.labels[1:])) self.failUnless(N.any(ds.samples != ds_.samples)) self.failUnless(N.any(ds.labels != ds_.labels)) self.failUnless(N.all(ds.chunks == ds_.chunks)) ds_.chunks = N.hstack(([1234], ds_.chunks[1:])) self.failUnless(N.any(ds.samples != ds_.samples)) self.failUnless(N.any(ds.labels != ds_.labels)) self.failUnless(N.any(ds.chunks != ds_.chunks)) self.failUnless(N.any(ds.uniquelabels != ds_.uniquelabels)) self.failUnless(N.any(ds.uniquechunks != ds_.uniquechunks)) def testIdsonboundaries(self): """Test detection of transition points Shame on Yarik -- he didn't create unittests right away... damn me """ ds = Dataset(samples=N.array(range(10), ndmin=2).T, labels=[0,0,1,1,0,0,1,1,0,0], chunks=[0,0,0,0,0,1,1,1,1,1]) self.failUnless(ds.idsonboundaries() == [0,2,4,5,6,8], "We should have got ids whenever either chunk or " "label changes") self.failUnless(ds.idsonboundaries(attributes_to_track=['chunks']) == [0, 5]) # Preceding samples self.failUnless(ds.idsonboundaries(prior=1, post=-1, attributes_to_track=['chunks']) == [4, 9]) self.failUnless(ds.idsonboundaries(prior=2, post=-1, attributes_to_track=['chunks']) == [3, 4, 8, 9]) self.failUnless(ds.idsonboundaries(prior=2, post=-1, attributes_to_track=['chunks'], revert=True) == [0, 1, 2, 5, 6, 7]) self.failUnless(ds.idsonboundaries(prior=1, post=1, attributes_to_track=['chunks']) == [0, 1, 4, 5, 6, 9]) # all should be there self.failUnless(ds.idsonboundaries(prior=2) == range(10)) def suite(): return unittest.makeSuite(DatasetTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_datasetfx.py000066400000000000000000000104621174541445200205520ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA miscelaneouse functions operating on datasets""" import unittest import numpy as N from mvpa.base import externals from mvpa.datasets import Dataset from mvpa.datasets.miscfx import removeInvariantFeatures, coarsenChunks, \ SequenceStats from mvpa.misc.data_generators import normalFeatureDataset class MiscDatasetFxTests(unittest.TestCase): def testInvarFeaturesRemoval(self): r = N.random.normal(size=(3,1)) ds = Dataset(samples=N.hstack((N.zeros((3,2)), r)), labels=1) self.failUnless(ds.nfeatures == 3) dsc = removeInvariantFeatures(ds) self.failUnless(dsc.nfeatures == 1) self.failUnless((dsc.samples == r).all()) def testCoarsenChunks(self): """Just basic testing for now""" chunks = [1,1,2,2,3,3,4,4] ds = Dataset(samples=N.arange(len(chunks)).reshape( (len(chunks),1)), labels=[1]*8, chunks=chunks) coarsenChunks(ds, nchunks=2) chunks1 = coarsenChunks(chunks, nchunks=2) self.failUnless((chunks1 == ds.chunks).all()) self.failUnless((chunks1 == N.asarray([0,0,0,0,1,1,1,1])).all()) ds2 = Dataset(samples=N.arange(len(chunks)).reshape( (len(chunks),1)), labels=[1]*8) coarsenChunks(ds2, nchunks=2) self.failUnless((chunks1 == ds.chunks).all()) def testBinds(self): ds = normalFeatureDataset() ds_data = ds.samples.copy() ds_chunks = ds.chunks.copy() self.failUnless(N.all(ds.samples == ds_data)) # sanity check funcs = ['zscore', 'coarsenChunks'] if externals.exists('scipy'): funcs.append('detrend') for f in funcs: eval('ds.%s()' % f) self.failUnless(N.any(ds.samples != ds_data) or N.any(ds.chunks != ds_chunks), msg="We should have modified original dataset with %s" % f) ds.samples = ds_data.copy() ds.chunks = ds_chunks.copy() # and some which should just return results for f in ['aggregateFeatures', 'removeInvariantFeatures', 'getSamplesPerChunkLabel']: res = eval('ds.%s()' % f) self.failUnless(res is not None, msg='We should have got result from function %s' % f) self.failUnless(N.all(ds.samples == ds_data), msg="Function %s should have not modified original dataset" % f) def testSequenceStat(self): """Test sequence statistics """ order = 3 # Close to perfectly balanced one sp = N.array([-1, 1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1], dtype=int) rp = SequenceStats(sp, order=order) self.failUnlessAlmostEqual(rp['sumabscorr'], 1.0) self.failUnlessAlmostEqual(N.max(rp['corrcoef'] * (len(sp)-1) + 1.0), 0.0) # Now some random but loong one still binary (boolean) sb = (N.random.random_sample((1000,)) >= 0.5) rb = SequenceStats(sb, order=order) # Now lets do multiclass with literal labels s5 = N.random.permutation(['f', 'bu', 'd', 0, 'zz']*200) r5 = SequenceStats(s5, order=order) # Degenerate one but still should be valid s1 = ['aaa']*100 r1 = SequenceStats(s1, order=order) # Generic conformance tests for r in (rp, rb, r5, r1): ulabels = r['ulabels'] nlabels = len(r['ulabels']) cbcounts = r['cbcounts'] self.failUnlessEqual(len(cbcounts), order) for cb in cbcounts: self.failUnlessEqual(N.asarray(cb).shape, (nlabels, nlabels)) # Check if str works fine sr = str(r) # TODO: check the content def suite(): return unittest.makeSuite(MiscDatasetFxTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_datasetfx_sp.py000066400000000000000000000126221174541445200212540ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA miscelaneouse functions operating on datasets and requiring SciPy""" import unittest import numpy as N from mvpa.base import externals from mvpa.datasets import Dataset from mvpa.datasets.miscfx import removeInvariantFeatures if externals.exists('scipy', raiseException=True): from scipy import linalg from mvpa.datasets.miscfx import detrend class MiscDatasetFxSpTests(unittest.TestCase): def testDetrend(self): thr = 1e-9; # threshold for comparison samples = N.array( [[1.0, 2, 3, 3, 2, 1], [-2.0, -4, -6, -6, -4, -2]], ndmin=2 ).T chunks = [0, 0, 0, 1, 1, 1] chunks_bad = [ 0, 0, 1, 1, 1, 0] target_all = N.array( [[-1.0, 0, 1, 1, 0, -1], [2, 0, -2, -2, 0, 2]], ndmin=2 ).T ds = Dataset(samples=samples, labels=chunks, chunks=chunks, copy_samples=True) detrend(ds, perchunk=False) self.failUnless(linalg.norm(ds.samples - target_all) < thr, msg="Detrend should have detrended all the samples at once") ds_bad = Dataset(samples=samples, labels=chunks, chunks=chunks_bad, copy_samples=True) self.failUnlessRaises(ValueError, detrend, ds_bad, perchunk=True) ds = Dataset(samples=samples, labels=chunks, chunks=chunks, copy_samples=True) detrend(ds, perchunk=True) self.failUnless(linalg.norm(ds.samples) < thr, msg="Detrend should have detrended each chunk separately") self.failUnless(ds.samples.shape == samples.shape, msg="Detrend must preserve the size of dataset") # small additional test for break points ds = Dataset(samples=N.array([[1.0, 2, 3, 1, 2, 3]], ndmin=2).T, labels=chunks, chunks=chunks, copy_samples=True) detrend(ds, perchunk=True) self.failUnless(linalg.norm(ds.samples) < thr, msg="Detrend should have removed all the signal") # tests of the regress version of detrend ds = Dataset(samples=samples, labels=chunks, chunks=chunks, copy_samples=True) detrend(ds, perchunk=False, model='regress', polyord=1) self.failUnless(linalg.norm(ds.samples - target_all) < thr, msg="Detrend should have detrended all the samples at once") ds = Dataset(samples=samples, labels=chunks, chunks=chunks, copy_samples=True) (res, reg) = detrend(ds, perchunk=True, model='regress', polyord=2) psamps = ds.samples.copy() self.failUnless(linalg.norm(ds.samples) < thr, msg="Detrend should have detrended each chunk separately") self.failUnless(ds.samples.shape == samples.shape, msg="Detrend must preserve the size of dataset") ods = Dataset(samples=samples, labels=chunks, chunks=chunks, copy_samples=True) opt_reg = reg.copy() (ores, oreg) = detrend(ods, perchunk=True, model='regress', opt_reg=opt_reg) dsamples = (ods.samples - psamps).sum() self.failUnless(abs(dsamples) <= 1e-10, msg="Detrend for polyord reg should be same as opt_reg " + \ "when popt_reg is the same as the polyord reg. But got %g" \ % dsamples) self.failUnless(linalg.norm(ds.samples) < thr, msg="Detrend should have detrended each chunk separately") # test of different polyord on each chunk target_mixed = N.array( [[-1.0, 0, 1, 0, 0, 0], [2.0, 0, -2, 0, 0, 0]], ndmin=2 ).T ds = Dataset(samples=samples, labels=chunks, chunks=chunks, copy_samples=True) (res, reg) = detrend(ds, perchunk=True, model='regress', polyord=[0,1]) self.failUnless(linalg.norm(ds.samples - target_mixed) < thr, msg="Detrend should have baseline corrected the first chunk, " + \ "but baseline and linear detrended the second.") # test applying detrend in sequence ds = Dataset(samples=samples, labels=chunks, chunks=chunks, copy_samples=True) (res, reg) = detrend(ds, perchunk=True, model='regress', polyord=1) opt_reg = reg[N.ix_(range(reg.shape[0]),[1,3])] final_samps = ds.samples.copy() ds = Dataset(samples=samples, labels=chunks, chunks=chunks, copy_samples=True) (res, reg) = detrend(ds, perchunk=True, model='regress', polyord=0) (res, reg) = detrend(ds, perchunk=True, model='regress', opt_reg=opt_reg) self.failUnless(linalg.norm(ds.samples - final_samps) < thr, msg="Detrend of polyord 1 should be same as detrend with " + \ "0 followed by opt_reg the same as a 1st order.") def suite(): return unittest.makeSuite(MiscDatasetFxSpTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_datasetng.py000066400000000000000000000013341174541445200205370ustar00rootroot00000000000000'''Tests for the dataset implementation''' import numpy as N from numpy.testing import assert_array_equal from nose.tools import ok_ from mvpa.datasets.base import _Dataset as Dataset def test_initSimple(): samples = N.arange(12).reshape((4,3)) labels = range(4) chunks = [1, 1, 2, 2] ds = Dataset.initSimple(samples, labels, chunks) assert_array_equal(ds.samples, samples) ok_(ds.sa.labels == labels) ok_(ds.sa.chunks == chunks) # XXX but why is this puking, or rather do we want to keep cluttering the # interface like this -- I'd prefer having it all inside the collection. ok_(ds.labels == labels) ok_(ds.chunks == chunks) ok_(sorted(ds.sa.names) == ['chunks', 'labels']) pymvpa-0.4.8/mvpa/tests/test_dochelpers.py000066400000000000000000000016031174541445200207140ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA dochelpers""" from mvpa.base.dochelpers import singleOrPlural import unittest import numpy as N class DochelpersTests(unittest.TestCase): def testBasic(self): self.failUnlessEqual(singleOrPlural('a', 'b', 1), 'a') self.failUnlessEqual(singleOrPlural('a', 'b', 0), 'b') self.failUnlessEqual(singleOrPlural('a', 'b', 123), 'b') # TODO: more unittests def suite(): return unittest.makeSuite(DochelpersTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_eepdataset.py000066400000000000000000000056251174541445200207130ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA EEP dataset""" import unittest import os.path import numpy as N from mvpa import pymvpa_dataroot from mvpa.base import externals from mvpa.datasets.eep import EEPDataset from mvpa.misc.io.eepbin import EEPBin class EEPDatasetTests(unittest.TestCase): def testLoad(self): eb = EEPBin(os.path.join(pymvpa_dataroot, 'eep.bin')) ds = [ EEPDataset(source, labels=[1, 2]) for source in (eb, os.path.join(pymvpa_dataroot, 'eep.bin')) ] for d in ds: self.failUnless(d.nsamples == 2) self.failUnless(d.nfeatures == 128) self.failUnless(d.channelids[23] == 'Pz') self.failUnless(N.round(d.t0 + 0.002, decimals=3) == 0) self.failUnless(N.round(d.dt - 0.002, decimals=3) == 0) self.failUnless(N.round(d.samplingrate) == 500) def testEEPBin(self): eb = EEPBin(os.path.join(pymvpa_dataroot, 'eep.bin')) self.failUnless(eb.nchannels == 32) self.failUnless(eb.nsamples == 2) self.failUnless(eb.ntimepoints == 4) self.failUnless(eb.t0 - eb.dt < 0.00000001) self.failUnless(len(eb.channels) == 32) self.failUnless(eb.data.shape == (2, 32, 4)) def testResampling(self): ds = EEPDataset(os.path.join(pymvpa_dataroot, 'eep.bin'), labels=[1, 2], labels_map={1:100, 2:101}) channelids = N.array(ds.channelids).copy() self.failUnless(N.round(ds.samplingrate) == 500.0) if not externals.exists('scipy'): return # should puke when called with nothing self.failUnlessRaises(ValueError, ds.resample) # now for real -- should divide nsamples into half rds = ds.resample(sr=250, inplace=False) # We should have not changed anything self.failUnless(N.round(ds.samplingrate) == 500.0) # by default do 'inplace' resampling ds.resample(sr=250) for d in [rds, ds]: self.failUnless(N.round(d.samplingrate) == 250) self.failUnless(d.nsamples == 2) self.failUnless(N.abs((d.dt - 1.0/250)/d.dt)<1e-5) self.failUnless(N.all(d.channelids == channelids)) # lets now see if we still have a mapper self.failUnless(d.O.shape == (2, len(channelids), 2)) # and labels_map self.failUnlessEqual(d.labels_map, {1:100, 2:101}) #self.failUnless(d.labels_map) def suite(): return unittest.makeSuite(EEPDatasetTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_enet.py000066400000000000000000000040461174541445200175230ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA least angle regression (ENET) classifier""" from mvpa import cfg from mvpa.clfs.enet import ENET from scipy.stats import pearsonr from tests_warehouse import * from mvpa.misc.data_generators import normalFeatureDataset class ENETTests(unittest.TestCase): def testENET(self): # not the perfect dataset with which to test, but # it will do for now. #data = datasets['dumb2'] # for some reason the R code fails with the dumb data data = datasets['chirp_linear'] clf = ENET() clf.train(data) # prediction has to be almost perfect # test with a correlation pre = clf.predict(data.samples) cor = pearsonr(pre, data.labels) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(cor[0] > .8) def testENETState(self): #data = datasets['dumb2'] # for some reason the R code fails with the dumb data data = datasets['chirp_linear'] clf = ENET() clf.train(data) clf.states.enable('predictions') p = clf.predict(data.samples) self.failUnless((p == clf.predictions).all()) def testENETSensitivities(self): data = normalFeatureDataset(perlabel=10, nlabels=2, nfeatures=4) # use ENET on binary problem clf = ENET() clf.train(data) # now ask for the sensitivities WITHOUT having to pass the dataset # again sens = clf.getSensitivityAnalyzer(force_training=False)() self.failUnless(sens.shape == (data.nfeatures,)) def suite(): return unittest.makeSuite(ENETTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_externals.py000066400000000000000000000056361174541445200206030ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test externals checking""" import unittest from mvpa import cfg from mvpa.base import externals from mvpa.support import copy class TestExternals(unittest.TestCase): def setUp(self): self.backup = [] # paranoid check self.cfgstr = str(cfg) # clean up externals cfg for proper testing if cfg.has_section('externals'): self.backup = copy.deepcopy(cfg.items('externals')) cfg.remove_section('externals') def tearDown(self): if len(self.backup): # wipe existing one completely if cfg.has_section('externals'): cfg.remove_section('externals') cfg.add_section('externals') for o,v in self.backup: cfg.set('externals', o,v) # paranoid check # since order can't be guaranteed, lets check # each item after sorting self.failUnlessEqual(sorted(self.cfgstr.split('\n')), sorted(str(cfg).split('\n'))) def testExternals(self): self.failUnlessRaises(ValueError, externals.exists, 'BoGuS') def testExternalsNoDoubleInvocation(self): # no external should be checking twice (unless specified # explicitely) class Checker(object): """Helper class to increment count of actual checks""" def __init__(self): self.checked = 0 def check(self): self.checked += 1 checker = Checker() externals._KNOWN['checker'] = 'checker.check()' externals.__dict__['checker'] = checker externals.exists('checker') self.failUnlessEqual(checker.checked, 1) externals.exists('checker') self.failUnlessEqual(checker.checked, 1) externals.exists('checker', force=True) self.failUnlessEqual(checker.checked, 2) externals.exists('checker') self.failUnlessEqual(checker.checked, 2) # restore original externals externals.__dict__.pop('checker') externals._KNOWN.pop('checker') def testExternalsCorrect2ndInvocation(self): # always fails externals._KNOWN['checker2'] = 'raise ImportError' self.failUnless(not externals.exists('checker2'), msg="Should be False on 1st invocation") self.failUnless(not externals.exists('checker2'), msg="Should be False on 2nd invocation as well") externals._KNOWN.pop('checker2') def suite(): return unittest.makeSuite(TestExternals) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_gnb.py000066400000000000000000000046321174541445200173370ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA GNB classifier""" from mvpa.clfs.gnb import GNB from tests_warehouse import * class GNBTests(unittest.TestCase): def testGNB(self): gnb = GNB() gnb_nc = GNB(common_variance=False) gnb_n = GNB(normalize=True) gnb_n_nc = GNB(normalize=True, common_variance=False) ds_tr = datasets['uni2medium_train'] ds_te = datasets['uni2medium_test'] # Generic silly coverage just to assure that it works in all # possible scenarios: bools = (True, False) # There should be better way... heh for cv in bools: # common_variance? for prior in ('uniform', 'laplacian_smoothing', 'ratio'): tp = None # predictions -- all above should # result in the same predictions for n in bools: # normalized? for ls in bools: # logspace? for es in ((), ('values')): gnb_ = GNB(common_variance=cv, prior=prior, normalize=n, logprob=ls, enable_states=es) gnb_.train(ds_tr) predictions = gnb_.predict(ds_te.samples) if tp is None: tp = predictions self.failUnless((predictions == tp), msg="%s failed to reproduce predictions" % gnb_) # if normalized -- check if values are such if n and 'values' in es: v = gnb_.values if ls: # in log space -- take exp ;) v = N.exp(v) d1 = N.sum(v, axis=1) - 1.0 self.failUnless(N.max(N.abs(d1)) < 1e-5) def suite(): return unittest.makeSuite(GNBTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_gpr.py000066400000000000000000000037741174541445200173670ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA GPR.""" import unittest from mvpa.base import externals from mvpa.misc import data_generators from mvpa.clfs.kernel import KernelLinear as GeneralizedLinearKernel from mvpa.clfs.gpr import GPR from tests_warehouse import * from numpy.testing import assert_array_equal, assert_array_almost_equal if __debug__: from mvpa.base import debug class GPRTests(unittest.TestCase): def test_basic(self): dataset = data_generators.linear1d_gaussian_noise() k = GeneralizedLinearKernel() clf = GPR(k) clf.train(dataset) y = clf.predict(dataset.samples) assert_array_equal(y.shape, dataset.labels.shape) def test_linear(self): pass def test_gpr_model_selection(self): """Smoke test for running model selection while getting GPRWeights """ if not externals.exists('openopt'): return dataset = datasets['uni2small'] #data_generators.linear1d_gaussian_noise() k = GeneralizedLinearKernel() clf = GPR(k, enable_states=['log_marginal_likelihood']) sa = clf.getSensitivityAnalyzer() # should be regular weights sa_ms = clf.getSensitivityAnalyzer(flavor='model_select') # with model selection def prints(): print clf.states.log_marginal_likelihood, clf.kernel.Sigma_p, clf.kernel.sigma_0 sa(dataset) lml = clf.states.log_marginal_likelihood sa_ms(dataset) lml_ms = clf.states.log_marginal_likelihood self.failUnless(lml_ms > lml) def suite(): return unittest.makeSuite(GPRTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_hamster.py000066400000000000000000000073541174541445200202400ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA Hamster""" import os import unittest from tempfile import mktemp import numpy as N from mvpa.misc.io.hamster import * class HamsterHelperTests(unittest.TestCase): def testSpecification(self): # more than 1 positional self.failUnlessRaises(ValueError, Hamster, "1", 2) # do not mix positional self.failUnlessRaises(ValueError, Hamster, "1", bu=123) # need to be a string self.failUnlessRaises(ValueError, Hamster, 1) # dump cannot be assigned self.failUnlessRaises(ValueError, Hamster, dump=123) # need to be an existing file self.failUnlessRaises(IOError, Hamster, "/dev/ZUMBARGAN123") hh=Hamster(budda=1, z=[123], fuga="123"); hh.h1=123; delattr(hh, 'budda') self.failUnless(`hh` == "Hamster(fuga='123', h1=123, z=[123])") def testSimpleStorage(self): ex1 = """eins zwei drei 0 1 2 3 4 5 """ ex2 = {'d1': N.random.normal(size=(4,4))} hamster = Hamster(ex1=ex1) hamster.d = ex2 hamster.boo = HamsterHelperTests total_dict = {'ex1' : ex1, 'd' : ex2, 'boo' : HamsterHelperTests} self.failUnless(hamster.asdict() == total_dict) self.failUnless(set(hamster.registered) == set(['ex1', 'd', 'boo'])) filename = mktemp('mvpa', 'test') filename_gz = filename + '.gz' filename_bogusgz = filename + '_bogus.gz' # dump hamster.dump(filename) hamster.dump(filename_gz) # allow to shoot yourself in the head hamster.dump(filename_bogusgz, compresslevel=0) self.failUnless(hamster.asdict() == total_dict) # We should have stored plain and gzipped versions gzplain = gzip.open(filename) self.failUnlessRaises(IOError, gzplain.readlines) gzipped = gzip.open(filename_gz) discard = gzipped.readlines() gzbogus = gzip.open(filename_bogusgz) self.failUnlessRaises(IOError, gzbogus.readlines) # load plain hamster2 = Hamster(filename) # check if we re-stored all the keys k = hamster.__dict__.keys(); k2 = hamster2.__dict__.keys(); self.failUnless(set(k) == set(k2)) # identity should be lost self.failUnless(hamster.ex1 is hamster.ex1) self.failUnless(not (hamster.ex1 is hamster2.ex1)) # lets compare self.failUnless(hamster.ex1 == hamster2.ex1) self.failUnless(hamster.d.keys() == hamster2.d.keys()) self.failUnless((hamster.d['d1'] == hamster2.d['d1']).all()) self.failUnless(hamster.boo == hamster2.boo) # not sure if that is a feature or a bug self.failUnless(hamster.boo is hamster2.boo) # cleanup os.remove(filename) os.remove(filename_gz) os.remove(filename_bogusgz) def testAssignment(self): ex1 = """eins zwei drei 0 1 2 3 4 5 """ ex2 = {'d1': N.random.normal(size=(4,4))} h = Hamster(ex1=ex1) h.ex2 = ex2 self.failUnless(hasattr(h, 'ex2')) h.ex2 = None self.failUnless(h.ex2 is None) h.ex2 = 123 self.failUnless(h.ex2 == 123) h.has_key = 123 def suite(): return unittest.makeSuite(HamsterHelperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_hyperalignment.py000066400000000000000000000017601174541445200216160ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA ...""" # See other tests and test_procrust.py for some example on what to do ;) from mvpa.algorithms.hyperalignment import Hyperalignment # Somewhat slow but provides all needed ;) from tests_warehouse import * # if you need some classifiers #from tests_warehouse_clfs import * class HyperAlignmentTests(unittest.TestCase): def testBasicFunctioning(self): # TODO pass def testPossibleInputs(self): # get a dataset with a very high SNR pass def suite(): return unittest.makeSuite(HyperAlignmentTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_icamapper.py000066400000000000000000000046621174541445200205350ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA ICA mapper""" import unittest from mvpa.support.copy import deepcopy import numpy as N from mvpa.mappers.ica import ICAMapper from mvpa.datasets import Dataset class ICAMapperTests(unittest.TestCase): def setUp(self): # data: 40 sample feature line in 2d space (40x2; samples x features) samples = N.vstack([N.arange(40.) for i in range(2)]).T samples -= samples.mean() samples += N.random.normal(size=samples.shape, scale=0.1) self.ndlin = Dataset(samples=samples, labels=1, chunks=1) # data: 40 sample feature line in 50d space (40x50; samples x features) samples = N.vstack([N.arange(40.) for i in range(50)]).T samples -= samples.mean() samples += N.random.normal(size=samples.shape, scale=0.1) self.largefeat = Dataset(samples=samples, labels=1, chunks=1) self.pm = ICAMapper() def testSimpleICA(self): # train self.pm.train(self.ndlin) self.failUnlessEqual(self.pm.proj.shape, (2, 2)) # now project data into ICA space p = self.pm.forward(self.ndlin.samples) self.failUnlessEqual(p.shape, (40, 2)) # check that the mapped data can be fully recovered by 'reverse()' self.failUnless(N.abs(self.pm.reverse(p) - self.ndlin.samples).mean() \ < 0.0001) # def testAutoOptimzeICA(self): # # train # self.pm.train(self.largefeat) # # self.failUnlessEqual(self.pm.proj.shape, (50, 40)) # # # now project data into ICA space ## p = self.pm.forward(self.largefeat.samples) # # self.failUnless(p.shape[1] == 40) # print self.pm.proj # print self.pm.recon # print p # P.scatter(p[:20,0], p[:20,1],color='green') # P.scatter(p[20:,0], p[20:,1], color='red') # P.show() # self.failUnless(N.abs(self.pm.reverse(p) - self.largefeat.samples).mean() \ # < 0.0001) def suite(): return unittest.makeSuite(ICAMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_ifs.py000066400000000000000000000055431174541445200173540ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA incremental feature search.""" from mvpa.datasets.masked import MaskedDataset from mvpa.featsel.ifs import IFS from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.clfs.transerror import TransferError from mvpa.datasets.splitters import NFoldSplitter from mvpa.featsel.helpers import FixedNElementTailSelector from tests_warehouse import * from tests_warehouse_clfs import * class IFSTests(unittest.TestCase): def getData(self): data = N.random.standard_normal(( 100, 2, 2, 2 )) labels = N.concatenate( ( N.repeat( 0, 50 ), N.repeat( 1, 50 ) ) ) chunks = N.repeat( range(5), 10 ) chunks = N.concatenate( (chunks, chunks) ) return MaskedDataset(samples=data, labels=labels, chunks=chunks) # XXX just testing based on a single classifier. Not sure if # should test for every known classifier since we are simply # testing IFS algorithm - not sensitivities @sweepargs(svm=clfswh['has_sensitivity', '!meta'][:1]) def testIFS(self, svm): # data measure and transfer error quantifier use the SAME clf! trans_error = TransferError(svm) data_measure = CrossValidatedTransferError(trans_error, NFoldSplitter(1)) ifs = IFS(data_measure, trans_error, feature_selector=\ # go for lower tail selection as data_measure will return # errors -> low is good FixedNElementTailSelector(1, tail='lower', mode='select'), ) wdata = self.getData() wdata_nfeatures = wdata.nfeatures tdata = self.getData() tdata_nfeatures = tdata.nfeatures sdata, stdata = ifs(wdata, tdata) # fail if orig datasets are changed self.failUnless(wdata.nfeatures == wdata_nfeatures) self.failUnless(tdata.nfeatures == tdata_nfeatures) # check that the features set with the least error is selected self.failUnless(len(ifs.errors)) e = N.array(ifs.errors) self.failUnless(sdata.nfeatures == e.argmin() + 1) # repeat with dataset where selection order is known signal = datasets['dumb2'] sdata, stdata = ifs(signal, signal) self.failUnless((sdata.samples[:,0] == signal.samples[:,0]).all()) def suite(): return unittest.makeSuite(IFSTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_iohelpers.py000066400000000000000000000225531174541445200205650ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA IO helpers""" import re import os import unittest from tempfile import mkstemp import numpy as N from nose.tools import ok_, assert_equal from mvpa import pymvpa_dataroot from mvpa.misc.io import * from mvpa.misc.fsl import * from mvpa.misc.bv import BrainVoyagerRTC class IOHelperTests(unittest.TestCase): def testColumnDataFromFile(self): ex1 = """eins zwei drei 0 1 2 3 4 5 """ file, fpath = mkstemp('mvpa', 'test') file = open(fpath, 'w') file.write(ex1) file.close() # intentionally rely on defaults d = ColumnData(fpath, header=True) # check header (sort because order in dict is unpredictable) self.failUnless(sorted(d.keys()) == ['drei','eins','zwei']) self.failUnless(d['eins'] == [0, 3]) self.failUnless(d['zwei'] == [1, 4]) self.failUnless(d['drei'] == [2, 5]) # make a copy d2 = ColumnData(d) # check if identical self.failUnless(sorted(d2.keys()) == ['drei','eins','zwei']) self.failUnless(d2['eins'] == [0, 3]) self.failUnless(d2['zwei'] == [1, 4]) self.failUnless(d2['drei'] == [2, 5]) # now merge back d += d2 # same columns? self.failUnless(sorted(d.keys()) == ['drei','eins','zwei']) # but more data self.failUnlessEqual(d['eins'], [0, 3, 0, 3]) self.failUnlessEqual(d['zwei'], [1, 4, 1, 4]) self.failUnlessEqual(d['drei'], [2, 5, 2, 5]) # test file write # TODO: check if correct header_order = ['drei', 'zwei', 'eins'] d.tofile(fpath, header_order=header_order) # test sample selection dsel = d.selectSamples([0, 2]) self.failUnlessEqual(dsel['eins'], [0, 0]) self.failUnlessEqual(dsel['zwei'], [1, 1]) self.failUnlessEqual(dsel['drei'], [2, 2]) # test if order is read from file when available d3 = ColumnData(fpath) self.failUnlessEqual(d3._header_order, header_order) # add another column -- should be appended as the last column # while storing d3['four'] = [0.1] * len(d3['eins']) d3.tofile(fpath) d4 = ColumnData(fpath) self.failUnlessEqual(d4._header_order, header_order + ['four']) # cleanup and ignore stupidity try: os.remove(fpath) except WindowsError: pass def testSamplesAttributes(self): sa = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes_literal.txt'), literallabels=True) ok_(sa.nrows == 1452, msg='There should be 1452 samples') # convert to event list, with some custom attr ev = sa.toEvents(funky='yeah') ok_(len(ev) == 17 * (max(sa.chunks) + 1), msg='Not all events got detected.') ok_(len([e for e in ev if e.has_key('funky')]) == len(ev), msg='All events need to have to custom arg "funky".') ok_(ev[0]['label'] == ev[-1]['label'] == 'rest', msg='First and last event are rest condition.') ok_(ev[-1]['onset'] + ev[-1]['duration'] == sa.nrows, msg='Something is wrong with the timiing of the events') def testFslEV(self): ex1 = """0.0 2.0 1 13.89 2 1 16 2.0 0.5 """ file, fpath = mkstemp('mvpa', 'test') file = open(fpath, 'w') file.write(ex1) file.close() # intentionally rely on defaults d = FslEV3(fpath) # check header (sort because order in dict is unpredictable) self.failUnless(sorted(d.keys()) == \ ['durations','intensities','onsets']) self.failUnless(d['onsets'] == [0.0, 13.89, 16.0]) self.failUnless(d['durations'] == [2.0, 2.0, 2.0]) self.failUnless(d['intensities'] == [1.0, 1.0, 0.5]) self.failUnless(d.getNEVs() == 3) self.failUnless(d.getEV(1) == (13.89, 2.0, 1.0)) # cleanup and ignore stupidity try: os.remove(fpath) except WindowsError: pass d = FslEV3(os.path.join(pymvpa_dataroot, 'fslev3.txt')) ev = d.toEvents() self.failUnless(len(ev) == 3) self.failUnless([e['duration'] for e in ev] == [9] * 3) self.failUnless([e['onset'] for e in ev] == [6, 21, 35]) self.failUnless([e['features'] for e in ev] == [[1],[1],[1]]) ev = d.toEvents(label='face', chunk=0, crap=True) ev[0]['label'] = 'house' self.failUnless(len(ev) == 3) self.failUnless([e['duration'] for e in ev] == [9] * 3) self.failUnless([e['onset'] for e in ev] == [6, 21, 35]) self.failUnless([e['features'] for e in ev] == [[1],[1],[1]]) self.failUnless([e['label'] for e in ev] == ['house', 'face', 'face']) self.failUnless([e['chunk'] for e in ev] == [0]*3) self.failUnless([e['crap'] for e in ev] == [True]*3) def testFslEV2(self): attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'smpl_attr.txt')) # check header (sort because order in dict is unpredictable) self.failUnless(sorted(attr.keys()) == \ ['chunks','labels']) self.failUnless(attr.nsamples == 3) def testBVRTC(self): """Simple testing of reading RTC files from BrainVoyager""" attr = BrainVoyagerRTC(os.path.join(pymvpa_dataroot, 'bv', 'smpl_model.rtc')) self.failUnlessEqual(attr.ncolumns, 4, "We must have 4 colums") self.failUnlessEqual(attr.nrows, 147, "We must have 147 rows") self.failUnlessEqual(attr._header_order, ['l_60 B', 'r_60 B', 'l_80 B', 'r_80 B'], "We must got column names correctly") self.failUnless(len(attr.r_60_B) == attr.nrows, "We must have got access to column by property") self.failUnless(attr.toarray() != None, "We must have got access to column by property") def testdesign2labels(self): """Simple testing of helper Design2Labels""" attr = BrainVoyagerRTC(os.path.join(pymvpa_dataroot, 'bv', 'smpl_model.rtc')) labels0 = design2labels(attr, baseline_label='silence') labels = design2labels(attr, baseline_label='silence', func=lambda x:x>0.5) Nsilence = lambda x:len(N.where(N.array(x) == 'silence')[0]) nsilence0 = Nsilence(labels0) nsilence = Nsilence(labels) self.failUnless(nsilence0 < nsilence, "We must have more silence if thr is higher") self.failUnlessEqual(len(labels), attr.nrows, "We must have the same number of labels as rows") self.failUnlessRaises(ValueError, design2labels, attr, baseline_label='silence', func=lambda x:x>-1.0) def testlabels2chunks(self): attr = BrainVoyagerRTC(os.path.join(pymvpa_dataroot, 'bv', 'smpl_model.rtc')) labels = design2labels(attr, baseline_label='silence') self.failUnlessRaises(ValueError, labels2chunks, labels, 'bugga') chunks = labels2chunks(labels) self.failUnlessEqual(len(labels), len(chunks)) # we must got them in sorted order chunks_sorted = N.sort(chunks) self.failUnless((chunks == chunks_sorted).all()) # for this specific one we must have just 4 chunks self.failUnless((N.unique(chunks) == range(4)).all()) def testSensorLocations(self): sl = XAVRSensorLocations(os.path.join(pymvpa_dataroot, 'xavr1010.dat')) for var in ['names', 'pos_x', 'pos_y', 'pos_z']: self.failUnless(len(eval('sl.' + var)) == 31) def testFslGLMDesign(self): glm = FslGLMDesign(os.path.join(pymvpa_dataroot, 'glm.mat')) self.failUnless(glm.mat.shape == (850, 6)) self.failUnless(len(glm.ppheights) == 6) def test_read_fsl_design(self): fname = os.path.join(pymvpa_dataroot, 'sample_design.fsf') # use our function design = read_fsl_design(fname) # and just load manually to see either we match fine set_lines = [x for x in open(fname).readlines() if x.startswith('set ')] assert_equal(len(set_lines), len(design)) # figure out which one is missing """TODO: would require the same special treatment for _files fields re_set = re.compile("set ([^)]*\)).*") for line in set_lines: key = re_set.search(line).groups()[0] if not key in design: raise AssertionError( "Key %s was not found in read FSL design" % key) key_list = [' '.join(l.split(None,2)[1:2]) for l in set_lines] for k in set(key_list): if len([key for key in key_list if key == k]) == 2: raise AssertionError( "Got the non-unique beast %s" % k) """ def suite(): return unittest.makeSuite(IOHelperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_kernel.py000066400000000000000000000105151174541445200200460ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA kernels""" import unittest import numpy as N from mvpa.clfs.distance import squared_euclidean_distance, \ pnorm_w, pnorm_w_python # from mvpa.clfs.kernel import Kernel from tests_warehouse import datasets class KernelTests(unittest.TestCase): def testEuclidDist(self): # select some block of data from already generated data = datasets['uni4large'].samples[:5, :8] ed = squared_euclidean_distance(data) # XXX not sure if that is right: 'weight' seems to be given by # feature (i.e. column), but distance is between samples (i.e. rows) # current behavior is: true_size = (5, 5) self.failUnless(ed.shape == true_size) # slow version to compute distance matrix ed_manual = N.zeros(true_size, 'd') for i in range(true_size[0]): for j in range(true_size[1]): #ed_manual[i,j] = N.sqrt(((data[i,:] - data[j,:] )** 2).sum()) ed_manual[i,j] = ((data[i,:] - data[j,:] )** 2).sum() ed_manual[ed_manual < 0] = 0 self.failUnless(N.diag(ed_manual).sum() < 0.0000000001) self.failUnless(N.diag(ed).sum() < 0.0000000001) # let see whether Kernel does the same self.failUnless((ed - ed_manual).sum() < 0.0000001) def testPNorm_w(self): data0 = datasets['uni4large'].samples.T weight = N.abs(data0[11, :60]) self.failUnlessRaises(ValueError, pnorm_w_python, data0[:10,:2], p=1.2, heuristic='buga') self.failUnlessRaises(ValueError, pnorm_w_python, data0[:10,:2], weight=weight) self.failUnlessRaises(ValueError, pnorm_w_python, data0[:10,:2], data0[:10, :3], weight=weight) self.failUnlessRaises(ValueError, pnorm_w, data0[:10,:2], data0[:10, :3], weight=weight) self.failUnlessRaises(ValueError, pnorm_w, data0[:10,:2], weight=weight) # some sanity checks for did, (data1, data2, w) in enumerate( [ (data0[:2, :60], None, None), (data0[:2, :60], data0[3:4, 1:61], None), (data0[:2, :60], None, weight), (data0[:2, :60], data0[3:4, 1:61], weight), ]): # test different norms for p in [1, 2, 1.2]: kwargs = {'data1': data1, 'data2': data2, 'weight' : w, 'p' : p} d = pnorm_w(**kwargs) # default one # to assess how far we are kwargs0 = kwargs.copy() kwargs0['data2'] = N.zeros(data1.shape) d0 = pnorm_w(**kwargs0) d0norm = N.linalg.norm(d - d0, 'fro') # test different implementations for iid, d2 in enumerate( [pnorm_w_python(**kwargs), pnorm_w_python(use_sq_euclidean=True, **kwargs), pnorm_w_python(heuristic='auto', **kwargs), pnorm_w_python(use_sq_euclidean=False, **kwargs), pnorm_w_python(heuristic='auto', use_sq_euclidean=False, **kwargs), pnorm_w_python(heuristic='samples', use_sq_euclidean=False, **kwargs), pnorm_w_python(heuristic='features', use_sq_euclidean=False, **kwargs), ]): dnorm = N.linalg.norm(d2 - d, 'fro') self.failUnless(dnorm/d0norm < 1e-7, msg="Failed comparison of different implementations on " "data #%d, implementation #%d, p=%s. " "Norm of the difference is %g" % (did, iid, p, dnorm)) def suite(): return unittest.makeSuite(KernelTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_knn.py000066400000000000000000000034641174541445200173610ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA kNN classifier""" from mvpa.clfs.knn import kNN from tests_warehouse import * from tests_warehouse import pureMultivariateSignal from mvpa.clfs.distance import oneMinusCorrelation class KNNTests(unittest.TestCase): def testMultivariate(self): mv_perf = [] uv_perf = [] clf = kNN(k=10) for i in xrange(20): train = pureMultivariateSignal( 20, 3 ) test = pureMultivariateSignal( 20, 3 ) clf.train(train) p_mv = clf.predict( test.samples ) mv_perf.append( N.mean(p_mv==test.labels) ) clf.train(train.selectFeatures([0])) p_uv = clf.predict( test.selectFeatures([0]).samples ) uv_perf.append( N.mean(p_uv==test.labels) ) mean_mv_perf = N.mean(mv_perf) mean_uv_perf = N.mean(uv_perf) self.failUnless( mean_mv_perf > 0.9 ) self.failUnless( mean_uv_perf < mean_mv_perf ) def testKNNState(self): train = pureMultivariateSignal( 20, 3 ) test = pureMultivariateSignal( 20, 3 ) clf = kNN(k=10) clf.train(train) clf.states.enable('values') clf.states.enable('predictions') p = clf.predict(test.samples) self.failUnless(p == clf.predictions) self.failUnless(N.array(clf.values).shape == (80,2)) def suite(): return unittest.makeSuite(KNNTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_lars.py000066400000000000000000000040261174541445200175270ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA least angle regression (LARS) classifier""" from mvpa import cfg from mvpa.clfs.lars import LARS from scipy.stats import pearsonr from tests_warehouse import * from mvpa.misc.data_generators import normalFeatureDataset class LARSTests(unittest.TestCase): def testLARS(self): # not the perfect dataset with which to test, but # it will do for now. #data = datasets['dumb2'] # for some reason the R code fails with the dumb data data = datasets['chirp_linear'] clf = LARS(regression=True) clf.train(data) # prediction has to be almost perfect # test with a correlation pre = clf.predict(data.samples) cor = pearsonr(pre, data.labels) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(cor[0] > .8) def testLARSState(self): #data = datasets['dumb2'] # for some reason the R code fails with the dumb data data = datasets['chirp_linear'] clf = LARS() clf.train(data) clf.states.enable('predictions') p = clf.predict(data.samples) self.failUnless((p == clf.predictions).all()) def testLARSSensitivities(self): data = datasets['chirp_linear'] # use LARS on binary problem clf = LARS() clf.train(data) # now ask for the sensitivities WITHOUT having to pass the dataset # again sens = clf.getSensitivityAnalyzer(force_training=False)() self.failUnless(sens.shape == (data.nfeatures,)) def suite(): return unittest.makeSuite(LARSTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_maskeddataset.py000066400000000000000000000310071174541445200213770ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA pattern handling""" from mvpa.datasets.masked import * from mvpa.misc.exceptions import DatasetError import unittest import numpy as N import random class MaskedDatasetTests(unittest.TestCase): def testCreateMaskedDataset(self): data = MaskedDataset(samples=[range(5)], labels=1, chunks=1) # simple sequence has to be a single pattern self.failUnlessEqual( data.nsamples, 1) # check correct pattern layout (1x5) self.failUnless( (data.samples == N.array([[0, 1, 2, 3, 4]])).all() ) # check for single label and origin self.failUnless( (data.labels == N.array([1])).all() ) self.failUnless( (data.chunks == N.array([1])).all() ) # now try adding pattern with wrong shape self.failUnlessRaises(DatasetError, data.__iadd__, MaskedDataset(samples=N.ones((2,3)), labels=1, chunks=1)) # now add two real patterns data += MaskedDataset(samples=N.random.standard_normal((2,5)), labels=2, chunks=2) self.failUnlessEqual( data.nsamples, 3 ) self.failUnless( (data.labels == N.array([1,2,2]) ).all() ) self.failUnless( (data.chunks == N.array([1,2,2]) ).all() ) # test unique class labels data += MaskedDataset(samples=N.random.standard_normal((2,5)), labels=3) self.failUnless( (data.uniquelabels == N.array([1,2,3]) ).all() ) # test wrong label length self.failUnlessRaises(DatasetError, MaskedDataset, samples=N.random.standard_normal((4,2,3,4)), labels=[1, 2, 3], chunks=2) # test wrong origin length self.failUnlessRaises( DatasetError, MaskedDataset, samples=N.random.standard_normal((4,2,3,4)), labels=[1, 2, 3, 4], chunks=[2, 2, 2]) def testShapeConversion(self): data = MaskedDataset(samples=N.arange(24).reshape((2,3,4)), labels=1, chunks=1) self.failUnlessEqual(data.nsamples, 2) self.failUnlessEqual(data.samples.shape, (2,12)) self.failUnless((data.samples == N.array([range(12),range(12,24)])).all()) def testPatternShape(self): data = MaskedDataset(samples=N.ones((10,2,3,4)), labels=1, chunks=1) self.failUnless(data.samples.shape == (10,24)) def testFeature2Coord(self): origdata = N.random.standard_normal((10,2,4,3,5)) data = MaskedDataset( samples=origdata, labels=2, chunks=2 ) def randomCoord(shape): return [ random.sample(range(size),1)[0] for size in shape ] # check 100 random coord2feature transformations for i in xrange(100): # choose random coord c = randomCoord((2,4,3,5)) # tranform to feature_id id = data.mapper.getOutId(c) # compare data from orig array (selected by coord) # and data from pattern array (selected by feature id) orig = origdata[:,c[0],c[1],c[2],c[3]] pat = data.samples[:, id] self.failUnless((orig == pat).all()) def testCoord2Feature(self): origdata = N.random.standard_normal((10,2,4,3,5)) data = MaskedDataset(samples=origdata, labels=2, chunks=2) def randomCoord(shape): return [ random.sample(range(size),1)[0] for size in shape ] for id in xrange(data.nfeatures): # transform to coordinate c = data.mapper.getInId(id) self.failUnlessEqual(len(c), 4) # compare data from orig array (selected by coord) # and data from pattern array (selected by feature id) orig = origdata[:,c[0],c[1],c[2],c[3]] pat = data.samples[:, id] self.failUnless((orig == pat).all()) def testFeatureSelection(self): origdata = N.random.standard_normal((10,2,4,3,5)) data = MaskedDataset(samples=origdata, labels=2, chunks=2) unmasked = data.samples.copy() # default must be no mask self.failUnless( data.nfeatures == 120 ) self.failUnless(data.mapper.getOutSize() == 120) # check that full mask uses all features sel = data.selectFeaturesByMask( N.ones((2,4,3,5)) ) self.failUnless( sel.nfeatures == data.samples.shape[1] ) self.failUnless( data.nfeatures == 120 ) # check partial array mask partial_mask = N.zeros((2,4,3,5), dtype='uint') partial_mask[0,0,2,2] = 1 partial_mask[1,2,2,0] = 1 sel = data.selectFeaturesByMask( partial_mask ) self.failUnless( sel.nfeatures == 2 ) self.failUnless( sel.mapper.getMask().shape == (2,4,3,5)) # check that feature selection does not change source data self.failUnless(data.nfeatures == 120) self.failUnlessEqual(data.mapper.getOutSize(), 120) # check selection with feature list sel = data.selectFeatures([0,37,119]) self.failUnless(sel.nfeatures == 3) # check size of the masked patterns self.failUnless( sel.samples.shape == (10,3) ) # check that the right features are selected self.failUnless( (unmasked[:,[0,37,119]]==sel.samples).all() ) def testPatternSelection(self): origdata = N.random.standard_normal((10,2,4,3,5)) data = MaskedDataset(samples=origdata, labels=2, chunks=2) self.failUnless( data.nsamples == 10 ) # set single pattern to enabled sel=data.selectSamples(5) self.failUnless( sel.nsamples == 1 ) self.failUnless( data.nsamples == 10 ) # check duplicate selections sel = data.selectSamples([5,5]) self.failUnless( sel.nsamples == 2 ) self.failUnless( (sel.samples[0] == sel.samples[1]).all() ) self.failUnless( len(sel.labels) == 2 ) self.failUnless( len(sel.chunks) == 2 ) self.failUnless( sel.samples.shape == (2,120) ) def testCombinedPatternAndFeatureMasking(self): data = MaskedDataset( samples=N.arange( 20 ).reshape( (4,5) ), labels=1, chunks=1 ) self.failUnless( data.nsamples == 4 ) self.failUnless( data.nfeatures == 5 ) fsel = data.selectFeatures([1,2]) fpsel = fsel.selectSamples([0,3]) self.failUnless( fpsel.nsamples == 2 ) self.failUnless( fpsel.nfeatures == 2 ) self.failUnless( (fpsel.samples == [[1,2],[16,17]]).all() ) def testOrigMaskExtraction(self): origdata = N.random.standard_normal((10,2,4,3)) data = MaskedDataset(samples=origdata, labels=2, chunks=2) # check with custom mask sel = data.selectFeatures([5]) self.failUnless( sel.samples.shape[1] == 1 ) origmask = sel.mapper.getMask() self.failUnless( origmask[0,1,2] == True ) self.failUnless( origmask.shape == (2,4,3) ) def testPatternMerge(self): data1 = MaskedDataset(samples=N.ones((5,5,1)), labels=1, chunks=1) data2 = MaskedDataset(samples=N.ones((3,5,1)), labels=2, chunks=1) merged = data1 + data2 self.failUnless(merged.nsamples == 8 ) self.failUnless((merged.labels == [ 1,1,1,1,1,2,2,2]).all()) self.failUnless((merged.chunks == [ 1,1,1,1,1,1,1,1]).all()) data1 += data2 self.failUnless(data1.nsamples == 8 ) self.failUnless((data1.labels == [ 1,1,1,1,1,2,2,2]).all()) self.failUnless((data1.chunks == [ 1,1,1,1,1,1,1,1]).all()) def testLabelRandomizationAndSampling(self): data = MaskedDataset(samples=N.ones((5,1)), labels=range(5), chunks=1) data += MaskedDataset(samples=N.ones((5,1))+1, labels=range(5), chunks=2) data += MaskedDataset(samples=N.ones((5,1))+2, labels=range(5), chunks=3) data += MaskedDataset(samples=N.ones((5,1))+3, labels=range(5), chunks=4) data += MaskedDataset(samples=N.ones((5,1))+4, labels=range(5), chunks=5) self.failUnless( data.samplesperlabel == {0:5, 1:5, 2:5, 3:5, 4:5} ) sample = data.getRandomSamples( 2 ) self.failUnless( sample.samplesperlabel.values() == [ 2,2,2,2,2 ] ) self.failUnless( (data.uniquechunks == range(1,6)).all() ) # store the old labels origlabels = data.labels.copy() data.permuteLabels(True) self.failIf( (data.labels == origlabels).all() ) data.permuteLabels(False) self.failUnless( (data.labels == origlabels).all() ) # now try another object with the same data data2 = MaskedDataset(samples=data.samples, labels=data.labels, chunks=data.chunks ) # labels are the same as the originals self.failUnless( (data2.labels == origlabels).all() ) # now permute in the new object data2.permuteLabels( True ) # must not affect the old one self.failUnless( (data.labels == origlabels).all() ) # but only the new one self.failIf( (data2.labels == origlabels).all() ) def testFeatureMasking(self): mask = N.zeros((5,3),dtype='bool') mask[2,1] = True; mask[4,0] = True data = MaskedDataset( samples=N.arange( 60 ).reshape( (4,5,3) ), labels=1, chunks=1, mask=mask) # check simple masking self.failUnless( data.nfeatures == 2 ) self.failUnless( data.mapper.getOutId( (2,1) ) == 0 and data.mapper.getOutId( (4,0) ) == 1 ) self.failUnlessRaises( ValueError, data.mapper.getOutId, (2,3) ) self.failUnless( data.mapper.getMask().shape == (5,3) ) self.failUnless( tuple(data.mapper.getInId( 1 )) == (4,0) ) # selection should be idempotent self.failUnless(data.selectFeaturesByMask( mask ).nfeatures == data.nfeatures ) # check that correct feature get selected self.failUnless( (data.selectFeatures([1]).samples[:,0] \ == N.array([12, 27, 42, 57]) ).all() ) self.failUnless(tuple( data.selectFeatures([1]).mapper.getInId(0) ) == (4,0) ) self.failUnless( data.selectFeatures([1]).mapper.getMask().sum() == 1 ) # check sugarings # Access to simple attributes and samples self.failUnless(N.all(data.I == data.origids)) self.failUnless(N.all(data.C == data.chunks)) self.failUnless(N.all(data.L == data.labels)) self.failUnless(N.all(data.S == data.samples)) self.failUnless(N.all(data.O == data.mapper.reverse(data.samples))) # Access to unique attributes self.failUnless(N.all(data.UC == data.uniquechunks)) self.failUnless(N.all(data.UL == data.uniquelabels)) # def testROIMasking(self): # mask=N.array([i/6 for i in range(60)], dtype='int').reshape(6,10) # data = MaskedDataset( # N.arange( 180 ).reshape( (3,6,10) ), 1, 1, mask=mask ) # # self.failIf( data.mapper.getMask().dtype == 'bool' ) # # check that the 0 masked features get cut # self.failUnless( data.nfeatures == 54 ) # self.failUnless( (data.samples[:,0] == [6,66,126]).all() ) # self.failUnless( data.mapper.getMask().shape == (6,10) ) # # featsel = data.selectFeatures([19]) # self.failUnless( (data.samples[:,19] == featsel.samples[:,0]).all() ) # # # check single ROI selection works # roisel = data.selectFeaturesByGroup([4]) # self.failUnless( (data.samples[:,19] == roisel.samples[:,1]).all() ) # # # check dual ROI selection works (plus keep feature order) # roisel = data.selectFeaturesByGroup([6,4]) # self.failUnless( (data.samples[:,19] == roisel.samples[:,1]).all() ) # self.failUnless( (data.samples[:,32] == roisel.samples[:,8]).all() ) # # # check if feature coords can be recovered # self.failUnless( (roisel.getCoordinate(8) == (3,8)).all() ) def suite(): return unittest.makeSuite(MaskedDatasetTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_meg.py000066400000000000000000000024621174541445200173400ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA MEG stuff""" import unittest import os.path from mvpa import pymvpa_dataroot from mvpa.base import externals from mvpa.misc.io.meg import TuebingenMEG class MEGTests(unittest.TestCase): def testTuebingenMEG(self): if not externals.exists('gzip'): return meg = TuebingenMEG(os.path.join(pymvpa_dataroot, 'tueb_meg.dat.gz')) # check basics self.failUnless(meg.channelids == ['BG1', 'MLC11', 'EEG02']) self.failUnless(meg.ntimepoints == 814) self.failUnless(meg.nsamples == 4) # check correct axis order (samples x channels x timepoints) self.failUnless(meg.data.shape == (4, 3, 814)) # check few values self.failUnless(meg.data[0, 1, 4] == -2.318207982e-14) self.failUnless(meg.data[3, 0, 808] == -4.30692876e-12) def suite(): return unittest.makeSuite(MEGTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_metadataset.py000066400000000000000000000233311174541445200210620ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA meta dataset handling""" import unittest import numpy as N import os.path from mvpa import pymvpa_dataroot from mvpa.support.copy import deepcopy from mvpa.base import externals from mvpa.datasets import Dataset from mvpa.datasets.meta import MetaDataset from mvpa.datasets.eep import EEPDataset from mvpa.mappers.base import CombinedMapper, ChainMapper from mvpa.mappers.array import DenseArrayMapper from mvpa.mappers.mask import MaskMapper from mvpa.mappers.boxcar import BoxcarMapper from mvpa.datasets.event import EventDataset from mvpa.misc.support import Event from mvpa.misc.exceptions import DatasetError class MetaDatasetTests(unittest.TestCase): def testSimple(self): # bunch of datasets datasets = [ Dataset(samples=N.arange(12).reshape((4,3)), labels=1), Dataset(samples=N.zeros((4,4)), labels=1), Dataset(samples=N.ones((4,2), dtype='float'), labels=1), ] mds = MetaDataset(datasets) # all together self.failUnless(mds.samples.shape == (4, 9)) # should do upcasting self.failUnless(mds.samples.dtype == 'float') # simple samples attrs self.failUnless((mds.labels == [1] * 4).all()) self.failUnless((mds.chunks == range(4)).all()) # do sample selection across all datasets mds1 = mds.selectSamples([0,3]) self.failUnless(mds1.samples.shape == (2, 9)) self.failUnless(\ (mds1.samples[0] == [0, 1, 2, 0, 0, 0, 0, 1, 1]).all()) self.failUnless(\ (mds1.samples[1] == [9, 10, 11, 0, 0, 0, 0, 1, 1]).all()) # more tricky feature selection on all datasets mds2 = mds.selectFeatures([1,4,8]) self.failUnless(\ (mds2.samples == [[ 1, 0, 1], [ 4, 0, 1], [ 7, 0, 1], [10, 0, 1]] ).all()) def testMapping(self): if not externals.exists('nifti'): return from mvpa.datasets.nifti import NiftiDataset eeds = EEPDataset(os.path.join(pymvpa_dataroot, 'eep.bin'), labels=[1,2]) nids = NiftiDataset(os.path.join(pymvpa_dataroot, 'example4d.nii.gz'), labels=[1,2]) plainds = Dataset(samples=N.arange(8).reshape((2,4)), labels=[1,2]) datasets = (eeds, plainds, nids) mds = MetaDataset(datasets) self.failUnless(mds.nfeatures == N.sum([d.nfeatures for d in datasets])) self.failUnless(mds.nsamples == 2) # try reverse mapping mr = mds.mapReverse(N.arange(mds.nfeatures)) self.failUnless(len(mr) == 3) self.failUnless(mr[1].shape == (plainds.nfeatures,)) def testCombinedMapper(self): # simple case: two array of different shape combined m = CombinedMapper([DenseArrayMapper(mask=N.ones((2,3,4))), MaskMapper(mask=N.array((1,1)))]) self.failUnless(m.getInSize() == 26) self.failUnless(m.getOutSize() == 26) d1 = N.ones((5,2,3,4)) d2_broken = N.ones((6,2)) + 1 d2 = N.ones((5,2)) + 1 # should not work for sample mismatch self.failUnlessRaises(ValueError, m.forward, (d1, d2_broken)) # check forward mapping (size and identity) mf = m.forward((d1, d2)) self.failUnless(mf.shape == (5, 26)) self.failUnless((mf[:,:24] == 1).all()) self.failUnless((mf[:,-2:] == 2).all()) # check reverse mapping self.failUnlessRaises(ValueError, m.reverse, N.arange(12)) mr = m.reverse(N.arange(26) + 1) self.failUnless(len(mr) == 2) self.failUnless((mr[0] == N.arange(24).reshape((2,3,4)) + 1).all()) self.failUnless((mr[1] == N.array((25,26))).all()) # check reverse mapping of multiple samples mr = m.reverse(N.array([N.arange(26) + 1 for i in range(4)])) self.failUnless(len(mr) == 2) self.failUnless( (mr[0] == N.array([N.arange(24).reshape((2,3,4)) + 1 for i in range(4)])).all()) self.failUnless( (mr[1] == N.array([N.array((25,26)) for i in range(4)])).all()) # check dummy train m.train(Dataset(samples=N.random.rand(10,26), labels=range(10))) self.failUnlessRaises(ValueError, m.train, Dataset(samples=N.random.rand(10,25), labels=range(10))) # check neighbor information # fail if invalid id self.failUnlessRaises(ValueError, m.getNeighbor, 26) # neighbors for last feature of first mapper, ie. # close in out space but infinite/undefined distance in in-space self.failUnless([n for n in m.getNeighbor(23, radius=2)] == [6, 7, 10, 11, 15, 18, 19, 21, 22, 23]) # check feature selection m.selectOut((23,25)) self.failUnless(m.getInSize() == 26) self.failUnless(m.getOutSize() == 2) # check reverse mapping of truncated mapper mr = m.reverse(N.array((99,88))) target1 = N.zeros((2,3,4)) target1[1,2,3] = 99 target2 = N.array((0, 88)) self.failUnless(len(mr) == 2) self.failUnless((mr[0] == target1).all()) self.failUnless((mr[1] == target2).all()) # check forward mapping self.failUnless((m.forward((d1, d2))[0] == (1, 2)).all()) # check copying mc = deepcopy(m) mc.selectOut([1]) self.failUnless(m.getOutSize() == 2) self.failUnless(mc.getOutSize() == 1) def testChainMapper(self): data = N.array([N.arange(24).reshape(3,4,2) + (i * 100) for i in range(10)]) startpoints = [ 2, 4, 3, 5 ] m = ChainMapper([BoxcarMapper(startpoints, 2), DenseArrayMapper(mask=N.ones((2, 3, 4, 2)))]) mp = m.forward(data) # 4 startpoint, with each two samples of shape (3,4,2) self.failUnless(mp.shape == (4, 48)) self.failUnless(m.reverse(N.arange(48)).shape == (2, 3, 4, 2)) # should behave a DenseArrayMapper alone self.failUnless((N.array([n for n in m.getNeighbor(24, radius=1.1)]) == N.array((0, 24, 25, 26, 32))).all()) def testEventDataset(self): # baisc checks self.failUnlessRaises(DatasetError, EventDataset) # simple data samples = N.arange(240).reshape(10, 2, 3, 4) # copy constructor does not work on non-2D data self.failUnlessRaises(DatasetError, EventDataset, samples=samples) # try case without extra features evs = [Event(onset=2, duration=2, label=1, chunk=2), Event(onset=5, duration=1, label=2, chunk=2), Event(onset=7, duration=2, label=3, chunk=4)] ds = EventDataset(samples=samples, events=evs) self.failUnless(ds.nfeatures == 48) self.failUnless(ds.nsamples == 3) self.failUnless((ds.labels == [1,2,3]).all()) self.failUnless((ds.chunks == [2,2,4]).all()) mr = ds.mapReverse(N.arange(48)) self.failUnless((mr == N.arange(48).reshape(2,2,3,4)).all()) # try case with extra features evs = [Event(onset=2, duration=2, label=1, features=[2,3]), Event(onset=5, duration=2, label=1, features=[4,5]), Event(onset=7, duration=2, label=1, features=[6,7]),] ds = EventDataset(samples=samples, events=evs) # we have 2 additional features self.failUnless(ds.nfeatures == 50) self.failUnless(ds.nsamples == 3) self.failUnless((ds.labels == [1,1,1]).all()) self.failUnless((ds.chunks == [0,1,2]).all()) # now for the long awaited -- map back into two distinct # feature spaces mr = ds.mapReverse(N.arange(50)) # we get two sets of feature spaces (samples and extra features) self.failUnless(len(mr) == 2) msamples, mxfeat = mr # the sample side should be identical to the case without extra features self.failUnless((msamples == N.arange(48).reshape(2,2,3,4)).all()) # the extra features should be flat self.failUnless((mxfeat == (48,49)).all()) # now take a look at orig = ds.O self.failUnless(len(mr) == 2) osamples, oextra = orig self.failUnless((oextra == [[2,3],[4,5],[6,7]]).all()) self.failUnless(osamples.shape == samples.shape) # check that all samples not covered by an event are zero filt = N.array([True,True,False,False,True,False,False,False,False,True]) self.failUnless(N.sum(osamples[filt]) == 0) self.failUnless((osamples[N.negative(filt)] > 0).all()) def testEventDatasetExtended(self): if not externals.exists('nifti'): return from mvpa.datasets.nifti import ERNiftiDataset try: ds = ERNiftiDataset( samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'), mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz'), events=[Event(onset=1,duration=5,label=1,chunk=1)], evconv=True, tr=2.0) except ValueError, e: self.fail("Failed to create a simple ERNiftiDataset from a volume" " with only 1 slice. Exception was:\n %s" % e) def suite(): return unittest.makeSuite(MetaDatasetTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_neighbor.py000066400000000000000000000117411174541445200203650ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA metrics""" from mvpa.mappers.metric import * from mvpa.clfs.distance import * import unittest import numpy as N class MetricTests(unittest.TestCase): """Basic tests for metrics: neighbors etc """ def testDistances(self): a = N.array([3,8]) b = N.array([6,4]) # test distances or yarik recalls unit testing ;) self.failUnless( cartesianDistance(a, b) == 5.0 ) self.failUnless( manhattenDistance(a, b) == 7 ) self.failUnless( absminDistance(a, b) == 4 ) def testDescreteMetric(self): """Descrete metrics tests -- elementsizes etc""" # who said that we will not use FSL's data # with negative dimensions? :-) elsize = [-2.5, 1.5] distance = 3 # use default function metric = DescreteMetric(elsize) # simple check target = N.array([ [1, 2], [2, 1], [2, 2], [2, 3], [3, 2] ]) self.failUnless( (metric.getNeighbors([2, 2], 2.6) == target).all()) # a bit longer one... not sure what for for point in metric.getNeighbor([2, 2], distance): self.failUnless( cartesianDistance(point, [2,2]) <= distance) # use manhattenDistance function metric = DescreteMetric(elsize, manhattenDistance) for point in metric.getNeighbor([2, 2], distance): self.failUnless( manhattenDistance(point, [2, 2]) <= distance) metric.elementsize = [10, 1.5] """We can reassign element size as a whole""" self.failUnless((metric.elementsize == [10, 1.5]).all()) try: metric.elementsize[1] = 1 self.fail( msg="We should not be able to reassign parts of elementsize") except RuntimeError: pass self.failUnless((metric.getNeighbors([2, 2], 2.6) == [t for t in target if t[0]==2]).all()) """Check if new elementsize is in effect for getNeighbors""" def testDescreteMetricCompatMask(self): """Test ability to provide compatmask """ # let's play fMRI: 3x3x3.3 mm and 2s TR, but in NIfTI we have it # reversed esize = [2, 3.3, 3, 3] # only the last three axis are spatial ones and compatible in terms # of a meaningful distance among them. metric = DescreteMetric(esize, compatmask=[0, 1, 1, 1]) # neighbors in compat space will be simply propagated along remaining # dimensions (somewhat like a backprojection from the subspace into the # original space) self.failUnless((metric.getNeighbors([0]*4, 1) == [[-1, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0]]).all()) # test different radius in compat and in remaining space # in this case usual spatial neighborhood, but no temporal self.failUnless((metric.getNeighbors([0]*4, [0, 4, 4, 4]) == [[0,-1,0,0],[0,0,-1,0],[0,0,0,-1],[0,0,0,0], [0,0,0,1],[0,0,1,0],[0,1,0,0]]).all()) # no spatial but temporal neighborhood self.failUnless((metric.getNeighbors([0]*4, [2, 0, 0, 0]) == [[-1,0,0,0],[0,0,0,0],[1,0,0,0]]).all()) # check axis scaling in non-compat space self.failUnless(len(metric.getNeighbors([0]*4, [7.9, 0, 0, 0])) == 9) # check if we can modify compatmask and still perform fine old_filter = metric.filter_coord.copy() cm = metric.compatmask cm[0] = 1 metric.compatmask = cm self.failUnless((metric.compatmask == [True]*4).all()) self.failUnless((metric.getNeighbors([0]*4, 3) == [[-1, 0, 0, 0], [ 0, 0, -1, 0], [ 0, 0, 0, -1], [ 0, 0, 0, 0], [ 0, 0, 0, 1], [ 0, 0, 1, 0], [ 1, 0, 0, 0]]).all()) self.failUnless(N.any(old_filter != metric.filter_coord)) def testGetNeighbors(self): """Test if generator getNeighbor and method getNeighbors return the right thing""" class BM(Metric): """ Class which overrides only getNeighbor """ def getNeighbor(self): for n in [4, 5, 6]: yield n class CM(Metric): """ Class which overrides only getNeighbor """ def getNeighbors(self): return [1, 2, 3] b = BM() self.failUnless(b.getNeighbors() == [4, 5, 6]) c = CM() self.failUnless([ x for x in c.getNeighbor()] == [1, 2, 3]) def suite(): """Create the suite -- pylint shut up""" return unittest.makeSuite(MetricTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_niftidataset.py000066400000000000000000000341241174541445200212470ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA nifti dataset""" import unittest import os import numpy as N from tempfile import mktemp from mvpa import pymvpa_dataroot from mvpa.datasets.nifti import * from mvpa.misc.exceptions import * from mvpa.misc.fsl import FslEV3 from mvpa.misc.support import Event class NiftiDatasetTests(unittest.TestCase): """Tests of various Nifti-based datasets """ def testNiftiDataset(self): """Basic testing of NiftiDataset """ data = NiftiDataset(samples=os.path.join(pymvpa_dataroot,'example4d'), labels=[1,2]) self.failUnless(data.nfeatures == 294912) self.failUnless(data.nsamples == 2) self.failUnless((data.mapper.metric.elementsize \ == data.niftihdr['pixdim'][3:0:-1]).all()) #check that mapper honours elementsize nb22 = N.array([i for i in data.mapper.getNeighborIn((1, 1, 1), 2.2)]) nb20 = N.array([i for i in data.mapper.getNeighborIn((1, 1, 1), 2.0)]) self.failUnless(nb22.shape[0] == 7) self.failUnless(nb20.shape[0] == 5) # Can't rely on released pynifties, so doing really vague testing # XXX self.failUnless(data.dt in [2.0, 2000.0]) self.failUnless(data.samplingrate in [5e-4, 5e-1]) merged = data + data self.failUnless(merged.nfeatures == 294912) self.failUnless(merged.nsamples == 4) # check that the header survives #self.failUnless(merged.niftihdr == data.niftihdr) for k in merged.niftihdr.keys(): self.failUnless(N.mean(merged.niftihdr[k] == data.niftihdr[k]) == 1) # throw away old dataset and see if new one survives del data self.failUnless(merged.samples[3, 120000] == merged.samples[1, 120000]) # check whether we can use a plain ndarray as mask mask = N.zeros((24, 96, 128), dtype='bool') mask[12, 20, 40] = True nddata = NiftiDataset(samples=os.path.join(pymvpa_dataroot,'example4d'), labels=[1,2], mask=mask) self.failUnless(nddata.nfeatures == 1) rmap = nddata.mapReverse([44]) self.failUnless(rmap.shape == (24, 96, 128)) self.failUnless(N.sum(rmap) == 44) self.failUnless(rmap[12, 20, 40] == 44) def testNiftiMapper(self): """Basic testing of map2Nifti """ data = NiftiDataset(samples=os.path.join(pymvpa_dataroot,'example4d'), labels=[1,2]) # test mapping of ndarray vol = data.map2Nifti(N.ones((294912,), dtype='int16')) self.failUnless(vol.data.shape == (24, 96, 128)) self.failUnless((vol.data == 1).all()) # test mapping of the dataset vol = data.map2Nifti(data) self.failUnless(vol.data.shape == (2, 24, 96, 128)) def testNiftiSelfMapper(self): """Test map2Nifti facility ran without arguments """ example_path = os.path.join(pymvpa_dataroot, 'example4d') example = NiftiImage(example_path) data = NiftiDataset(samples=example_path, labels=[1,2]) # Map read data to itself vol = data.map2Nifti() self.failUnless(vol.data.shape == example.data.shape) self.failUnless((vol.data == example.data).all()) data.samples[:] = 1 vol = data.map2Nifti() self.failUnless((vol.data == 1).all()) def testMultipleCalls(self): """Test if doing exactly the same operation twice yields the same result """ data = NiftiDataset(samples=os.path.join(pymvpa_dataroot,'example4d'), labels=1) data2 = NiftiDataset(samples=os.path.join(pymvpa_dataroot,'example4d'), labels=1) # Currently this test fails and I don't know why! # The problem occurs, because in the second call to # NiftiDataset.__init__() there is already a dsattr that has a 'mapper' # key, although dsattr is set to be an empty dict. Therefore the # constructor does not set the proper elementsize, because it thinks # there is already a mapper present. Actually this test is just looking # for a symptom of a buggy dsattr handling. # The tricky part is: I have no clue, what is going on... :( self.failUnless((data.mapper.metric.elementsize \ == data2.mapper.metric.elementsize).all()) def testERNiftiDataset(self): """Basic testing of ERNiftiDataset """ self.failUnlessRaises(DatasetError, ERNiftiDataset) # setup data sources tssrc = os.path.join(pymvpa_dataroot, 'bold') evsrc = os.path.join(pymvpa_dataroot, 'fslev3.txt') # masrc = os.path.join(pymvpa_dataroot, 'mask') evs = FslEV3(evsrc).toEvents() # more failure ;-) # no label! self.failUnlessRaises(ValueError, ERNiftiDataset, samples=tssrc, events=evs) # set some label for each ev for ev in evs: ev['label'] = 1 # for real! # using TR from nifti header ds = ERNiftiDataset(samples=tssrc, events=evs) # 40x20 volume, 9 volumes per sample + 1 intensity score = 7201 features self.failUnless(ds.nfeatures == 7201) self.failUnless(ds.nsamples == len(evs)) # check samples origsamples = getNiftiFromAnySource(tssrc).data for i, ev in enumerate(evs): self.failUnless((ds.samples[i][:-1] \ == origsamples[ev['onset']:ev['onset'] + ev['duration']].ravel() ).all()) # do again -- with conversion ds = ERNiftiDataset(samples=tssrc, events=evs, evconv=True, storeoffset=True) self.failUnless(ds.nsamples == len(evs)) # TR=2.5, 40x20 volume, 9 second per sample (4volumes), 1 intensity # score + 1 offset = 3202 features self.failUnless(ds.nfeatures == 3202) # map back into voxel space, should ignore addtional features nim = ds.map2Nifti() self.failUnless(nim.data.shape == origsamples.shape) # check shape of a single sample nim = ds.map2Nifti(ds.samples[0]) self.failUnless(nim.data.shape == (4, 1, 20, 40)) def testERNiftiDatasetMapping(self): """Some mapping testing -- more tests is better """ sample_size = (4, 3, 2) samples = N.arange(120).reshape((5,) + sample_size) dsmask = N.arange(24).reshape(sample_size)%2 ds = ERNiftiDataset(samples=NiftiImage(samples), events=[Event(onset=0, duration=2, label=1, chunk=1, features=[1000, 1001]), Event(onset=1, duration=2, label=2, chunk=1, features=[2000, 2001])], mask=dsmask) nfeatures = ds.mapper._mappers[1].getInSize() mask = N.zeros(sample_size) mask[0, 0, 0] = mask[1, 0, 1] = mask[0, 0, 1] = 1 # select only 3 # but since 0th is masked out in the dataset, we should end up # selecting only 2 from the dataset #sel_orig_features = [1, 7] # select using mask in volume and all features in the other part ds_sel = ds.selectFeatures( ds.mapper.forward([mask, [1]*nfeatures]).nonzero()[0]) # now tests self.failUnless((mask.reshape(24).nonzero()[0] == [0, 1, 7]).all()) self.failUnless(ds_sel.samples.shape == (2, 6), msg="We should have selected all samples, and 6 " "features (2 voxels at 2 timepoints + 2 features). " "Got %s" % (ds_sel.samples.shape,)) self.failUnless((ds_sel.samples[:, -2:] == [[1000, 1001], [2000, 2001]]).all(), msg="We should have selected additional features " "correctly. Got %s" % ds_sel.samples[:, -2:]) self.failUnless((ds_sel.samples[:, :-2] == [[ 1, 7, 25, 31], [ 25, 31, 49, 55]]).all(), msg="We should have selected original features " "correctly. Got %s" % ds_sel.samples[:, :-2]) def testNiftiDatasetFrom3D(self): """Test NiftiDataset based on 3D volume(s) """ tssrc = os.path.join(pymvpa_dataroot, 'bold') masrc = os.path.join(pymvpa_dataroot, 'mask') # Test loading of 3D volumes # it should puke if we are not enforcing 4D: self.failUnlessRaises(Exception, NiftiDataset, masrc, mask=masrc, labels=1, enforce4D=False) # by default we are enforcing it ds = NiftiDataset(masrc, mask=masrc, labels=1) plain_data = NiftiImage(masrc).data # Lets check if mapping back works as well self.failUnless(N.all(plain_data == \ ds.map2Nifti().data.reshape(plain_data.shape))) # test loading from a list of filenames # for now we should fail if trying to load a mix of 4D and 3D volumes self.failUnlessRaises(ValueError, NiftiDataset, (masrc, tssrc), mask=masrc, labels=1) # Lets prepare some custom NiftiImage dsfull = NiftiDataset(tssrc, mask=masrc, labels=1) ds_selected = dsfull['samples', [3]] nifti_selected = ds_selected.map2Nifti() # Load dataset from a mix of 3D volumes # (given by filenames and NiftiImages) labels = [123, 2, 123] ds2 = NiftiDataset((masrc, masrc, nifti_selected), mask=masrc, labels=labels) self.failUnless(ds2.nsamples == 3) self.failUnless((ds2.samples[0] == ds2.samples[1]).all()) self.failUnless((ds2.samples[2] == dsfull.samples[3]).all()) self.failUnless((ds2.labels == labels).all()) def testNiftiDatasetROIMaskNeighbors(self): """Test if we could request neighbors within spherical ROI whenever center is outside of the mask """ # check whether we can use a plain ndarray as mask mask_roi = N.zeros((24, 96, 128), dtype='bool') mask_roi[12, 20, 38:42] = True mask_roi[23, 20, 38:42] = True # far away ds_full = NiftiDataset(samples=os.path.join(pymvpa_dataroot,'example4d'), labels=[1,2]) ds_roi = NiftiDataset(samples=os.path.join(pymvpa_dataroot,'example4d'), labels=[1,2], mask=mask_roi) # Should just work since we are in the mask ids_roi = ds_roi.mapper.getNeighbors(ds_roi.mapper.getOutId((12, 20, 40)), radius=20) self.failUnless(len(ids_roi) == 4) # Trying to request feature outside of the mask self.failUnlessRaises(ValueError, ds_roi.mapper.getOutId, (12, 20, 37)) # Lets work around using full (non-masked) volume ids_out = [] for id_in in ds_full.mapper.getNeighborIn( (12, 20, 37), radius=20): try: ids_out.append(ds_roi.mapper.getOutId(id_in)) except ValueError: pass self.failUnless(ids_out == ids_roi) def testNiftiScalingData(self): """Test if loading scaled data works correctly Is relevant only for pynifti interface -- nibabel always does scaling """ # We first need to construct such one orig_filename = os.path.join(pymvpa_dataroot,'mask.nii.gz') filename = mktemp('mvpa', 'test_scl_nifti') + '.nii.gz' ni = NiftiImage(orig_filename) orig_value = ni.data[0, 3, 4] ni.data[0, 3, 4] = 5 # magic number # Modify the header hdr = ni.header hdr['scl_slope'] = 15 hdr['scl_inter'] = 100 ni.header = hdr ni.save(filename) # Load generated file with slope and intercept defined ds_scaled = NiftiDataset(filename, labels=1) # by default should scale ds_scaled_multi = NiftiDataset([orig_filename, filename], labels=1) ds_raw = NiftiDataset(filename, labels=1, scale_data=False) # by default should scale fid = ds_scaled.mapper.getOutId([0,3,4]) # Feature ID for that coordinate above self.failUnlessEqual(ds_scaled.samples[0, fid], 175) self.failUnlessEqual(ds_scaled_multi.samples[0, fid], orig_value) self.failUnlessEqual(ds_scaled_multi.samples[1, fid], 175) self.failUnlessEqual(ds_raw.samples[0, fid], 5) # In a ds obtained from a single volume -- scl_ are maintained self.failUnlessEqual(ds_scaled.niftihdr['scl_slope'], 15.0) self.failUnlessEqual(ds_scaled.niftihdr['scl_inter'], 100) # And reset in a group self.failUnlessEqual(ds_scaled_multi.niftihdr['scl_slope'], 1.0) self.failUnlessEqual(ds_scaled_multi.niftihdr['scl_inter'], 0) self.failUnlessEqual(ds_raw.niftihdr['scl_slope'], 15.0) self.failUnlessEqual(ds_raw.niftihdr['scl_inter'], 100) # Verify that map2nifti resets the scl_ fields: ni0 = ds_scaled.map2Nifti(ds_raw.samples) self.failUnlessEqual(ni0.header['scl_slope'], 1.0) self.failUnlessEqual(ni0.header['scl_inter'], 0.) # but original remains untouched self.failUnlessEqual(ds_scaled.niftihdr['scl_slope'], 15.0) self.failUnlessEqual(ds_scaled.niftihdr['scl_inter'], 100) # and data remains the same # (check just in case of evil "pynifti got brains") self.failUnlessEqual(ni0.data[0, 0, 3, 4], 5) os.remove(filename) def suite(): return unittest.makeSuite(NiftiDatasetTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_params.py000066400000000000000000000111201174541445200200420ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA Parameter class.""" import unittest, copy import numpy as N from mvpa.datasets import Dataset from mvpa.misc.state import ClassWithCollections, StateVariable from mvpa.misc.param import Parameter, KernelParameter from tests_warehouse_clfs import SameSignClassifier class ParametrizedClassifier(SameSignClassifier): p1 = Parameter(1.0) kp1 = KernelParameter(100.0) class ParametrizedClassifierExtended(ParametrizedClassifier): def __init__(self): ParametrizedClassifier.__init__(self) self.kernel_params.add(KernelParameter(200.0, doc="Very useful param", name="kp2")) class BlankClass(ClassWithCollections): pass class SimpleClass(ClassWithCollections): C = Parameter(1.0, min=0, doc="C parameter") class MixedClass(ClassWithCollections): C = Parameter(1.0, min=0, doc="C parameter") D = Parameter(3.0, min=0, doc="D parameter") state1 = StateVariable(doc="bogus") class ParamsTests(unittest.TestCase): def testBlank(self): blank = BlankClass() self.failUnlessRaises(AttributeError, blank.__getattribute__, 'states') self.failUnlessRaises(IndexError, blank.__getattribute__, '') def testSimple(self): simple = SimpleClass() self.failUnlessEqual(len(simple.params.items), 1) self.failUnlessRaises(AttributeError, simple.__getattribute__, 'dummy') self.failUnlessRaises(IndexError, simple.__getattribute__, '') self.failUnlessEqual(simple.C, 1.0) self.failUnlessEqual(simple.params.isSet("C"), False) self.failUnlessEqual(simple.params.isSet(), False) self.failUnlessEqual(simple.params["C"].isDefault, True) self.failUnlessEqual(simple.params["C"].equalDefault, True) simple.C = 1.0 # we are not actually setting the value if == default self.failUnlessEqual(simple.params["C"].isDefault, True) self.failUnlessEqual(simple.params["C"].equalDefault, True) simple.C = 10.0 self.failUnlessEqual(simple.params.isSet("C"), True) self.failUnlessEqual(simple.params.isSet(), True) self.failUnlessEqual(simple.params["C"].isDefault, False) self.failUnlessEqual(simple.params["C"].equalDefault, False) self.failUnlessEqual(simple.C, 10.0) simple.params["C"].resetvalue() self.failUnlessEqual(simple.params.isSet("C"), True) # TODO: Test if we 'train' a classifier f we get isSet to false self.failUnlessEqual(simple.C, 1.0) self.failUnlessRaises(AttributeError, simple.params.__getattribute__, 'B') def testMixed(self): mixed = MixedClass() self.failUnlessEqual(len(mixed.params.items), 2) self.failUnlessEqual(len(mixed.states.items), 1) self.failUnlessRaises(AttributeError, mixed.__getattribute__, 'kernel_params') self.failUnlessEqual(mixed.C, 1.0) self.failUnlessEqual(mixed.params.isSet("C"), False) self.failUnlessEqual(mixed.params.isSet(), False) mixed.C = 10.0 self.failUnlessEqual(mixed.params.isSet("C"), True) self.failUnlessEqual(mixed.params.isSet("D"), False) self.failUnlessEqual(mixed.params.isSet(), True) self.failUnlessEqual(mixed.D, 3.0) def testClassifier(self): clf = ParametrizedClassifier() self.failUnlessEqual(len(clf.params.items), 3) # + regression/retrainable self.failUnlessEqual(len(clf.kernel_params.items), 1) clfe = ParametrizedClassifierExtended() self.failUnlessEqual(len(clfe.params.items), 3) self.failUnlessEqual(len(clfe.kernel_params.items), 2) self.failUnlessEqual(len(clfe.kernel_params.listing), 2) # check assignment once again self.failUnlessEqual(clfe.kp2, 200.0) clfe.kp2 = 201.0 self.failUnlessEqual(clfe.kp2, 201.0) self.failUnlessEqual(clfe.kernel_params.isSet("kp2"), True) clfe.train(Dataset(samples=[[0,0]], labels=[1], chunks=[1])) self.failUnlessEqual(clfe.kernel_params.isSet("kp2"), False) self.failUnlessEqual(clfe.kernel_params.isSet(), False) self.failUnlessEqual(clfe.params.isSet(), False) def suite(): return unittest.makeSuite(ParamsTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_pcamapper.py000066400000000000000000000073661174541445200205500ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA PCA mapper""" import unittest from mvpa.support.copy import deepcopy import numpy as N from mvpa.mappers.pca import PCAMapper from mvpa.datasets import Dataset class PCAMapperTests(unittest.TestCase): def setUp(self): # data: 40 sample feature line in 20d space (40x20; samples x features) self.ndlin = Dataset(samples=N.concatenate( [N.arange(40) for i in range(20)]).reshape(20,-1).T, labels=1, chunks=1) # data: 10 sample feature line in 40d space # (10x40; samples x features) self.largefeat = Dataset(samples=N.concatenate( [N.arange(10) for i in range(40)]).reshape(40,-1).T, labels=1, chunks=1) self.pm = PCAMapper() def testSimplePCA(self): # train PCA self.pm.train(self.ndlin) self.failUnlessEqual(self.pm.mix.shape, (20, 20)) # now project data into PCA space p = self.pm.forward(self.ndlin.samples) # only first eigenvalue significant self.failUnless(self.pm.sv[:1] > 1.0) self.failUnless((self.pm.sv[1:] < 0.0001).all()) # only variance of first component significant var = p.var(axis=0) # test that only one component has variance self.failUnless(var[:1] > 1.0) self.failUnless((var[1:] < 0.0001).all()) # check that the mapped data can be fully recovered by 'reverse()' self.failUnless((N.round(self.pm.reverse(p)) == self.ndlin.samples).all()) def testAutoOptimizePCA(self): # train PCA self.pm.train(self.largefeat) # mixing matrix cannot be square # self.failUnlessEqual(self.pm.mix.shape, (10, 40)) # only first eigenvalue significant self.failUnless(self.pm.sv[:1] > 10) self.failUnless((self.pm.sv[1:] < 10).all()) # now project data into PCA space p = self.pm.forward(self.largefeat.samples) # only variance of first component significant var = p.var(axis=0) # test that only one component has variance self.failUnless(var[:1] > 1.0) self.failUnless((var[1:] < 0.0001).all()) # check that the mapped data can be fully recovered by 'reverse()' rp = self.pm.reverse(p) self.failUnlessEqual(rp.shape, self.largefeat.samples.shape) self.failUnless((N.round(rp) == self.largefeat.samples).all()) self.failUnlessEqual(self.pm.getInSize(), 40) # self.failUnlessEqual(self.pm.getOutSize(), 10) self.failUnlessEqual(self.pm.getOutSize(), 40) # copy mapper pm2 = deepcopy(self.pm) # now remove all but the first 2 components from the mapper pm2.selectOut([0,1]) # sanity check self.failUnlessEqual(pm2.getInSize(), 40) self.failUnlessEqual(pm2.getOutSize(), 2) # but orginal mapper must be left intact self.failUnlessEqual(self.pm.getInSize(), 40) # self.failUnlessEqual(self.pm.getOutSize(), 10) self.failUnlessEqual(self.pm.getOutSize(), 40) # data should still be fully recoverable by 'reverse()' rp2 = pm2.reverse(p[:,[0,1]]) self.failUnlessEqual(rp2.shape, self.largefeat.samples.shape) self.failUnless((N.round(rp2) == self.largefeat.samples).all()) def suite(): return unittest.makeSuite(PCAMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_perturbsensana.py000066400000000000000000000040571174541445200216260ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA perturbation sensitivity analyzer.""" from mvpa.datasets.masked import MaskedDataset from mvpa.measures.noiseperturbation import NoisePerturbationSensitivity from mvpa.datasets.splitters import NFoldSplitter from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.clfs.transerror import TransferError from tests_warehouse import * from tests_warehouse_clfs import * class PerturbationSensitivityAnalyzerTests(unittest.TestCase): def setUp(self): data = N.random.standard_normal(( 100, 3, 4, 2 )) labels = N.concatenate( ( N.repeat( 0, 50 ), N.repeat( 1, 50 ) ) ) chunks = N.repeat( range(5), 10 ) chunks = N.concatenate( (chunks, chunks) ) mask = N.ones( (3, 4, 2) ) mask[0,0,0] = 0 mask[1,3,1] = 0 self.dataset = MaskedDataset(samples=data, labels=labels, chunks=chunks, mask=mask) def testPerturbationSensitivityAnalyzer(self): # compute N-1 cross-validation as datameasure cv = CrossValidatedTransferError( TransferError(sample_clf_lin), NFoldSplitter(cvtype=1)) # do perturbation analysis using gaussian noise pa = NoisePerturbationSensitivity(cv, noise=N.random.normal) # run analysis map = pa(self.dataset) # check for correct size of map self.failUnless(len(map) == 22) # dataset is noise -> mean sensitivity should be zero self.failUnless(-0.2 < map.mean() < 0.2) def suite(): return unittest.makeSuite(PerturbationSensitivityAnalyzerTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_plr.py000066400000000000000000000022701174541445200173620ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA logistic regression classifier""" from mvpa.clfs.plr import PLR from tests_warehouse import * class PLRTests(unittest.TestCase): def testPLR(self): data = datasets['dumb2'] clf = PLR() clf.train(data) # prediction has to be perfect self.failUnless((clf.predict(data.samples) == data.labels).all()) def testPLRState(self): data = datasets['dumb2'] clf = PLR() clf.train(data) clf.states.enable('values') clf.states.enable('predictions') p = clf.predict(data.samples) self.failUnless((p == clf.predictions).all()) self.failUnless(N.array(clf.values).shape == N.array(p).shape) def suite(): return unittest.makeSuite(PLRTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_pls.py000066400000000000000000000006631174541445200173670ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for Partial Least Squares measures.""" pymvpa-0.4.8/mvpa/tests/test_procrust.py000066400000000000000000000105351174541445200204510ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA Procrustean mapper""" import unittest import numpy as N from numpy.linalg import norm from mvpa.datasets import Dataset from tests_warehouse import datasets, sweepargs from mvpa.mappers.procrustean import ProcrusteanMapper class ProcrusteanMapperTests(unittest.TestCase): @sweepargs(oblique=(False,True)) def testSimple(self, oblique): d_orig = datasets['uni2large'].samples d_orig2 = datasets['uni4large'].samples for sdim, nf_s, nf_t, full_test \ in (('Same 2D', 2, 2, True), ('Same 10D', 10, 10, True), ('2D -> 3D', 2, 3, True), ('3D -> 2D', 3, 2, False)): # figure out some "random" rotation d = max(nf_s, nf_t) _u, _s, _vh = N.linalg.svd(d_orig[:, :d]) R = _vh[:nf_s, :nf_t] if nf_s == nf_t: # Test if it is indeed a rotation matrix ;) # Lets flip first axis if necessary if N.linalg.det(R) < 0: R[:, 0] *= -1.0 adR = N.abs(1.0 - N.linalg.det(R)) self.failUnless(adR < 1e-10, "Determinant of rotation matrix should " "be 1. Got it 1+%g" % adR) self.failUnless(norm(N.dot(R, R.T) - N.eye(R.shape[0])) < 1e-10) for s, scaling in ((0.3, True), (1.0, False)): pm = ProcrusteanMapper(scaling=scaling, oblique=oblique) pm2 = ProcrusteanMapper(scaling=scaling, oblique=oblique) t1, t2 = d_orig[23, 1], d_orig[22, 1] # Create source/target data d = d_orig[:, :nf_s] d_s = d + t1 d_t = N.dot(s * d, R) + t2 # train bloody mapper(s) pm.train(d_s, d_t) ds2 = Dataset(samples=d_s, labels=d_t) pm2.train(ds2) # verify that both created the same transformation npm2proj = norm(pm.proj - pm2.proj) self.failUnless(npm2proj <= 1e-10, msg="Got transformation different by norm %g." " Had to be less than 1e-10" % npm2proj) self.failUnless(norm(pm._offset_in - pm2._offset_in) <= 1e-10) self.failUnless(norm(pm._offset_out - pm2._offset_out) <= 1e-10) # do forward transformation on the same source data d_s_f = pm.forward(d_s) self.failUnlessEqual(d_s_f.shape, d_t.shape, msg="Mapped shape should be identical to the d_t") dsf = d_s_f - d_t ndsf = norm(dsf)/norm(d_t) if full_test: dsR = norm(s*R - pm.proj) if not oblique: self.failUnless(dsR <= 1e-12, msg="We should have got reconstructed rotation+scaling " "perfectly. Now got d scale*R=%g" % dsR) self.failUnless(N.abs(s - pm._scale) < 1e-12, msg="We should have got reconstructed scale " "perfectly. Now got %g for %g" % (pm._scale, s)) self.failUnless(ndsf <= 1e-12, msg="%s: Failed to get to the target space correctly." " normed error=%g" % (sdim, ndsf)) # Test if we get back d_s_f_r = pm.reverse(d_s_f) dsfr = d_s_f_r - d_s ndsfr = norm(dsfr)/norm(d_s) if full_test: self.failUnless(ndsfr <= 1e-12, msg="%s: Failed to reconstruct into source space correctly." " normed error=%g" % (sdim, ndsfr)) def suite(): return unittest.makeSuite(ProcrusteanMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_regr.py000066400000000000000000000126351174541445200175320ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA Regressions""" from mvpa.base import externals from mvpa.support.copy import deepcopy from mvpa.datasets import Dataset from mvpa.mappers.mask import MaskMapper from mvpa.datasets.splitters import NFoldSplitter, OddEvenSplitter from mvpa.misc.errorfx import RMSErrorFx, RelativeRMSErrorFx, \ CorrErrorFx, CorrErrorPFx from mvpa.clfs.meta import SplitClassifier from mvpa.clfs.transerror import TransferError from mvpa.misc.exceptions import UnknownStateError from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from tests_warehouse import * from tests_warehouse_clfs import * class RegressionsTests(unittest.TestCase): @sweepargs(ml=clfswh['regression']+regrswh[:]) def testNonRegressions(self, ml): """Test If binary regression-based classifiers have proper tag """ self.failUnless(('binary' in ml._clf_internals) != ml.regression, msg="Inconsistent markin with binary and regression features" " detected in %s having %s" % (ml, `ml._clf_internals`)) @sweepargs(regr=regrswh['regression']) def testRegressions(self, regr): """Simple tests on regressions """ ds = datasets['chirp_linear'] cve = CrossValidatedTransferError( TransferError(regr, CorrErrorFx()), splitter=NFoldSplitter(), enable_states=['training_confusion', 'confusion']) corr = cve(ds) self.failUnless(corr == cve.confusion.stats['CCe']) splitregr = SplitClassifier(regr, splitter=OddEvenSplitter(), enable_states=['training_confusion', 'confusion']) splitregr.train(ds) split_corr = splitregr.confusion.stats['CCe'] split_corr_tr = splitregr.training_confusion.stats['CCe'] for confusion, error in ((cve.confusion, corr), (splitregr.confusion, split_corr), (splitregr.training_confusion, split_corr_tr), ): #TODO: test confusion statistics # Part of it for now -- CCe for conf in confusion.summaries: stats = conf.stats self.failUnless(stats['CCe'] < 0.5) self.failUnlessEqual(stats['CCe'], stats['Summary CCe']) s0 = confusion.asstring(short=True) s1 = confusion.asstring(short=False) for s in [s0, s1]: self.failUnless(len(s) > 10, msg="We should get some string representation " "of regression summary. Got %s" % s) self.failUnless(error < 0.2, msg="Regressions should perform well on a simple " "dataset. Got correlation error of %s " % error) # Test access to summary statistics # YOH: lets start making testing more reliable. # p-value for such accident to have is verrrry tiny, # so if regression works -- it better has at least 0.5 ;) # otherwise fix it! ;) #if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(confusion.stats['CCe'] < 0.5) split_predictions = splitregr.predict(ds.samples) # just to check if it works fine # To test basic plotting #import pylab as P #cve.confusion.plot() #P.show() @sweepargs(clf=clfswh['regression']) def testRegressionsClassifiers(self, clf): """Simple tests on regressions being used as classifiers """ # check if we get values set correctly clf.states._changeTemporarily(enable_states=['values']) self.failUnlessRaises(UnknownStateError, clf.states['values']._get) cv = CrossValidatedTransferError( TransferError(clf), NFoldSplitter(), enable_states=['confusion', 'training_confusion']) ds = datasets['uni2small'] cverror = cv(ds) self.failUnless(len(clf.values) == ds['chunks', 1].nsamples) clf.states._resetEnabledTemporarily() @sweepargs(regr=regrswh['regression', 'has_sensitivity']) def testSensitivities(self, regr): """Inspired by a snippet leading to segfault from Daniel Kimberg lead to segfaults due to inappropriate access of SVs thinking that it is a classification problem (libsvm keeps SVs at None for those, although reports nr_class to be 2. """ myds = Dataset(samples=N.random.normal(size=(10,5)), labels=N.random.normal(size=10)) sa = regr.getSensitivityAnalyzer() try: res = sa(myds) except Exception, e: self.fail('Failed to obtain a sensitivity due to %r' % (e,)) self.failUnless(res.shape == (myds.nfeatures,)) # TODO: extend the test -- checking for validity of sensitivities etc def suite(): return unittest.makeSuite(RegressionsTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_report.py000066400000000000000000000074041174541445200201040ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA simple report facility""" import unittest, os from tempfile import mktemp from mvpa.base import verbose, externals from mvpa.base.report_dummy import Report as DummyReport _test_classes = [ DummyReport ] from tests_warehouse import sweepargs if externals.exists('reportlab', raiseException=False): from mvpa.base.report import Report _test_classes += [ Report ] if __debug__: from mvpa.base import debug class ReportTest(unittest.TestCase): """Just basic testing of reports -- pretty much that nothing fails """ @sweepargs(rc=_test_classes) def testBasic(self, rc): """Test all available reports, real or dummy for just working """ dirname = mktemp('mvpa', 'test_report') report = rc('UnitTest report', title="Sample report for testing", path=dirname) isdummy = isinstance(report, DummyReport) ohandlers = verbose.handlers verbose.handlers = [report] verbose.level = 3 verbose(1, "Starting") verbose(2, "Level 2") if not isdummy: self.failUnless(len(report._story) == 2, msg="We should have got some lines from verbose") if __debug__: odhandlers = debug.handlers debug.handlers = [report] oactive = debug.active debug.active = ['TEST'] + debug.active debug('TEST', "Testing report as handler for debug") if not isdummy: self.failUnless(len(report._story) == 4, msg="We should have got some lines from debug") debug.active = oactive debug.handlers = odhandlers os.makedirs(dirname) if externals.exists('pylab plottable'): if not isdummy: clen = len(report._story) import pylab as P P.ioff() P.close('all') P.figure() P.plot([1, 2], [3, 2]) P.figure() P.plot([2, 10], [3, 2]) P.title("Figure 2 must be it") report.figures() if not isdummy: self.failUnless( len(report._story) == clen+2, msg="We should have got some lines from figures") report.text("Dugi bugi") # make sure we don't puke on xml like text with crap report.text("$lkj&*()^$%#%") report.text("locals:\n%s globals:\n%s" % (`locals()`, `globals()`)) # bloody XML - just to check that there is no puke report.xml("Dugi bugi") report.save() if externals.exists('pylab'): import pylab as P P.close('all') P.ion() # cleanup if os.path.exists(dirname): # poor man recursive remove for f in os.listdir(dirname): try: os.remove(os.path.join(dirname, f)) except: # could be a directory... but no deeper ones expected for f2 in os.listdir(os.path.join(dirname, f)): os.remove(os.path.join(dirname, f, f2)) os.rmdir(os.path.join(dirname, f)) os.rmdir(dirname) verbose.handlers = ohandlers def suite(): return unittest.makeSuite(ReportTest) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_rfe.py000066400000000000000000000410541174541445200173440ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA recursive feature elimination""" from mvpa.datasets.splitters import NFoldSplitter from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.masked import MaskedDataset from mvpa.measures.base import FeaturewiseDatasetMeasure from mvpa.featsel.rfe import RFE from mvpa.featsel.base import \ SensitivityBasedFeatureSelection, \ FeatureSelectionPipeline from mvpa.featsel.helpers import \ NBackHistoryStopCrit, FractionTailSelector, FixedErrorThresholdStopCrit, \ MultiStopCrit, NStepsStopCrit, \ FixedNElementTailSelector, BestDetector, RangeElementSelector from mvpa.clfs.meta import FeatureSelectionClassifier, SplitClassifier from mvpa.clfs.transerror import TransferError, ConfusionBasedError from mvpa.clfs.stats import MCNullDist from mvpa.misc.transformers import Absolute, FirstAxisMean from mvpa.misc.state import UnknownStateError from tests_warehouse import * from tests_warehouse_clfs import * class SillySensitivityAnalyzer(FeaturewiseDatasetMeasure): """Simple one which just returns xrange[-N/2, N/2], where N is the number of features """ def __init__(self, mult=1, **kwargs): FeaturewiseDatasetMeasure.__init__(self, **kwargs) self.__mult = mult def __call__(self, dataset): """Train linear SVM on `dataset` and extract weights from classifier. """ return( self.__mult *( N.arange(dataset.nfeatures) - int(dataset.nfeatures/2) )) class RFETests(unittest.TestCase): def getData(self): return datasets['uni2medium_train'] def getDataT(self): return datasets['uni2medium_test'] def testBestDetector(self): bd = BestDetector() # for empty history -- no best self.failUnless(bd([]) == False) # we got the best if we have just 1 self.failUnless(bd([1]) == True) # we got the best if we have the last minimal self.failUnless(bd([1, 0.9, 0.8]) == True) # test for alternative func bd = BestDetector(func=max) self.failUnless(bd([0.8, 0.9, 1.0]) == True) self.failUnless(bd([0.8, 0.9, 1.0]+[0.9]*9) == False) self.failUnless(bd([0.8, 0.9, 1.0]+[0.9]*10) == False) # test to detect earliest and latest minimum bd = BestDetector(lastminimum=True) self.failUnless(bd([3, 2, 1, 1, 1, 2, 1]) == True) bd = BestDetector() self.failUnless(bd([3, 2, 1, 1, 1, 2, 1]) == False) def testNBackHistoryStopCrit(self): """Test stopping criterion""" stopcrit = NBackHistoryStopCrit() # for empty history -- no best but just go self.failUnless(stopcrit([]) == False) # should not stop if we got 10 more after minimal self.failUnless(stopcrit( [1, 0.9, 0.8]+[0.9]*(stopcrit.steps-1)) == False) # should stop if we got 10 more after minimal self.failUnless(stopcrit( [1, 0.9, 0.8]+[0.9]*stopcrit.steps) == True) # test for alternative func stopcrit = NBackHistoryStopCrit(BestDetector(func=max)) self.failUnless(stopcrit([0.8, 0.9, 1.0]+[0.9]*9) == False) self.failUnless(stopcrit([0.8, 0.9, 1.0]+[0.9]*10) == True) # test to detect earliest and latest minimum stopcrit = NBackHistoryStopCrit(BestDetector(lastminimum=True)) self.failUnless(stopcrit([3, 2, 1, 1, 1, 2, 1]) == False) stopcrit = NBackHistoryStopCrit(steps=4) self.failUnless(stopcrit([3, 2, 1, 1, 1, 2, 1]) == True) def testFixedErrorThresholdStopCrit(self): """Test stopping criterion""" stopcrit = FixedErrorThresholdStopCrit(0.5) self.failUnless(stopcrit([]) == False) self.failUnless(stopcrit([0.8, 0.9, 0.5]) == False) self.failUnless(stopcrit([0.8, 0.9, 0.4]) == True) # only last error has to be below to stop self.failUnless(stopcrit([0.8, 0.4, 0.6]) == False) def testNStepsStopCrit(self): """Test stopping criterion""" stopcrit = NStepsStopCrit(2) self.failUnless(stopcrit([]) == False) self.failUnless(stopcrit([0.8, 0.9]) == True) self.failUnless(stopcrit([0.8]) == False) def testMultiStopCrit(self): """Test multiple stop criteria""" stopcrit = MultiStopCrit([FixedErrorThresholdStopCrit(0.5), NBackHistoryStopCrit(steps=4)]) # default 'or' mode # nback triggers self.failUnless(stopcrit([1, 0.9, 0.8]+[0.9]*4) == True) # threshold triggers self.failUnless(stopcrit([1, 0.9, 0.2]) == True) # alternative 'and' mode stopcrit = MultiStopCrit([FixedErrorThresholdStopCrit(0.5), NBackHistoryStopCrit(steps=4)], mode = 'and') # nback triggers not self.failUnless(stopcrit([1, 0.9, 0.8]+[0.9]*4) == False) # threshold triggers not self.failUnless(stopcrit([1, 0.9, 0.2]) == False) # only both satisfy self.failUnless(stopcrit([1, 0.9, 0.4]+[0.4]*4) == True) def testFeatureSelector(self): """Test feature selector""" # remove 10% weekest selector = FractionTailSelector(0.1) data = N.array([3.5, 10, 7, 5, -0.4, 0, 0, 2, 10, 9]) # == rank [4, 5, 6, 7, 0, 3, 2, 9, 1, 8] target10 = N.array([0, 1, 2, 3, 5, 6, 7, 8, 9]) target30 = N.array([0, 1, 2, 3, 7, 8, 9]) self.failUnlessRaises(UnknownStateError, selector.__getattribute__, 'ndiscarded') self.failUnless((selector(data) == target10).all()) selector.felements = 0.30 # discard 30% self.failUnless(selector.felements == 0.3) self.failUnless((selector(data) == target30).all()) self.failUnless(selector.ndiscarded == 3) # se 3 were discarded selector = FixedNElementTailSelector(1) # 0 1 2 3 4 5 6 7 8 9 data = N.array([3.5, 10, 7, 5, -0.4, 0, 0, 2, 10, 9]) self.failUnless((selector(data) == target10).all()) selector.nelements = 3 self.failUnless(selector.nelements == 3) self.failUnless((selector(data) == target30).all()) self.failUnless(selector.ndiscarded == 3) # test range selector # simple range 'above' self.failUnless((RangeElementSelector(lower=0)(data) == \ N.array([0,1,2,3,7,8,9])).all()) self.failUnless((RangeElementSelector(lower=0, inclusive=True)(data) == \ N.array([0,1,2,3,5,6,7,8,9])).all()) self.failUnless((RangeElementSelector(lower=0, mode='discard', inclusive=True)(data) == \ N.array([4])).all()) # simple range 'below' self.failUnless((RangeElementSelector(upper=2)(data) == \ N.array([4,5,6])).all()) self.failUnless((RangeElementSelector(upper=2, inclusive=True)(data) == \ N.array([4,5,6,7])).all()) self.failUnless((RangeElementSelector(upper=2, mode='discard', inclusive=True)(data) == \ N.array([0,1,2,3,8,9])).all()) # ranges self.failUnless((RangeElementSelector(lower=2, upper=9)(data) == \ N.array([0,2,3])).all()) self.failUnless((RangeElementSelector(lower=2, upper=9, inclusive=True)(data) == \ N.array([0,2,3,7,9])).all()) self.failUnless((RangeElementSelector(upper=2, lower=9, mode='discard', inclusive=True)(data) == RangeElementSelector(lower=2, upper=9, inclusive=False)(data)).all()) # non-0 elements -- should be equivalent to N.nonzero()[0] self.failUnless((RangeElementSelector()(data) == \ N.nonzero(data)[0]).all()) @sweepargs(clf=clfswh['has_sensitivity', '!meta']) def testSensitivityBasedFeatureSelection(self, clf): # sensitivity analyser and transfer error quantifier use the SAME clf! sens_ana = clf.getSensitivityAnalyzer() # of features to remove Nremove = 2 # because the clf is already trained when computing the sensitivity # map, prevent retraining for transfer error calculation # Use absolute of the svm weights as sensitivity fe = SensitivityBasedFeatureSelection(sens_ana, feature_selector=FixedNElementTailSelector(2), enable_states=["sensitivity", "selected_ids"]) wdata = self.getData() wdata_nfeatures = wdata.nfeatures tdata = self.getDataT() tdata_nfeatures = tdata.nfeatures sdata, stdata = fe(wdata, tdata) # fail if orig datasets are changed self.failUnless(wdata.nfeatures == wdata_nfeatures) self.failUnless(tdata.nfeatures == tdata_nfeatures) # silly check if nfeatures got a single one removed self.failUnlessEqual(wdata.nfeatures, sdata.nfeatures+Nremove, msg="We had to remove just a single feature") self.failUnlessEqual(tdata.nfeatures, stdata.nfeatures+Nremove, msg="We had to remove just a single feature in testing as well") self.failUnlessEqual(len(fe.sensitivity), wdata_nfeatures, msg="Sensitivity have to have # of features equal to original") self.failUnlessEqual(len(fe.selected_ids), sdata.nfeatures, msg="# of selected features must be equal the one in the result dataset") def testFeatureSelectionPipeline(self): sens_ana = SillySensitivityAnalyzer() wdata = self.getData() wdata_nfeatures = wdata.nfeatures tdata = self.getDataT() tdata_nfeatures = tdata.nfeatures # test silly one first ;-) self.failUnlessEqual(sens_ana(wdata)[0], -int(wdata_nfeatures/2)) # OLD: first remove 25% == 6, and then 4, total removing 10 # NOW: test should be independent of the numerical number of features feature_selections = [SensitivityBasedFeatureSelection( sens_ana, FractionTailSelector(0.25)), SensitivityBasedFeatureSelection( sens_ana, FixedNElementTailSelector(4)) ] # create a FeatureSelection pipeline feat_sel_pipeline = FeatureSelectionPipeline( feature_selections=feature_selections, enable_states=['nfeatures', 'selected_ids']) sdata, stdata = feat_sel_pipeline(wdata, tdata) self.failUnlessEqual(len(feat_sel_pipeline.feature_selections), len(feature_selections), msg="Test the property feature_selections") desired_nfeatures = int(N.ceil(wdata_nfeatures*0.75)) self.failUnlessEqual(feat_sel_pipeline.nfeatures, [wdata_nfeatures, desired_nfeatures], msg="Test if nfeatures get assigned properly." " Got %s!=%s" % (feat_sel_pipeline.nfeatures, [wdata_nfeatures, desired_nfeatures])) self.failUnlessEqual(list(feat_sel_pipeline.selected_ids), range(int(wdata_nfeatures*0.25)+4, wdata_nfeatures)) # TODO: should later on work for any clfs_with_sens @sweepargs(clf=clfswh['has_sensitivity', '!meta'][:1]) def testRFE(self, clf): # sensitivity analyser and transfer error quantifier use the SAME clf! sens_ana = clf.getSensitivityAnalyzer() trans_error = TransferError(clf) # because the clf is already trained when computing the sensitivity # map, prevent retraining for transfer error calculation # Use absolute of the svm weights as sensitivity rfe = RFE(sens_ana, trans_error, feature_selector=FixedNElementTailSelector(1), train_clf=False) wdata = self.getData() wdata_nfeatures = wdata.nfeatures tdata = self.getDataT() tdata_nfeatures = tdata.nfeatures sdata, stdata = rfe(wdata, tdata) # fail if orig datasets are changed self.failUnless(wdata.nfeatures == wdata_nfeatures) self.failUnless(tdata.nfeatures == tdata_nfeatures) # check that the features set with the least error is selected if len(rfe.errors): e = N.array(rfe.errors) self.failUnless(sdata.nfeatures == wdata_nfeatures - e.argmin()) else: self.failUnless(sdata.nfeatures == wdata_nfeatures) # silly check if nfeatures is in decreasing order nfeatures = N.array(rfe.nfeatures).copy() nfeatures.sort() self.failUnless( (nfeatures[::-1] == rfe.nfeatures).all() ) # check if history has elements for every step self.failUnless(set(rfe.history) == set(range(len(N.array(rfe.errors))))) # Last (the largest number) can be present multiple times even # if we remove 1 feature at a time -- just need to stop well # in advance when we have more than 1 feature left ;) self.failUnless(rfe.nfeatures[-1] == len(N.where(rfe.history ==max(rfe.history))[0])) # XXX add a test where sensitivity analyser and transfer error do not # use the same classifier def testJamesProblem(self): percent = 80 dataset = datasets['uni2small'] rfesvm_split = LinearCSVMC() fs = \ RFE(sensitivity_analyzer=rfesvm_split.getSensitivityAnalyzer(), transfer_error=TransferError(rfesvm_split), feature_selector=FractionTailSelector( percent / 100.0, mode='select', tail='upper'), update_sensitivity=True) clf = FeatureSelectionClassifier( clf = LinearCSVMC(), # on features selected via RFE feature_selection = fs) # update sensitivity at each step (since we're not using the # same CLF as sensitivity analyzer) clf.states.enable('feature_ids') cv = CrossValidatedTransferError( TransferError(clf), NFoldSplitter(cvtype=1), enable_states=['confusion'], expose_testdataset=True) #cv = SplitClassifier(clf) try: error = cv(dataset) except Exception, e: self.fail('CrossValidation cannot handle classifier with RFE ' 'feature selection. Got exception: %s' % e) self.failUnless(error < 0.2) def __testMatthiasQuestion(self): rfe_clf = LinearCSVMC(C=1) rfesvm_split = SplitClassifier(rfe_clf) clf = \ FeatureSelectionClassifier( clf = LinearCSVMC(C=1), feature_selection = RFE( sensitivity_analyzer = rfesvm_split.getSensitivityAnalyzer( combiner=FirstAxisMean, transformer=N.abs), transfer_error=ConfusionBasedError( rfesvm_split, confusion_state="confusion"), stopping_criterion=FixedErrorThresholdStopCrit(0.20), feature_selector=FractionTailSelector( 0.2, mode='discard', tail='lower'), update_sensitivity=True)) splitter = NFoldSplitter(cvtype=1) no_permutations = 1000 cv = CrossValidatedTransferError( TransferError(clf), splitter, null_dist=MCNullDist(permutations=no_permutations, tail='left'), enable_states=['confusion']) error = cv(datasets['uni2small']) self.failUnless(error < 0.4) self.failUnless(cv.states.null_prob < 0.05) def suite(): return unittest.makeSuite(RFETests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_ridge.py000066400000000000000000000031461174541445200176620ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA ridge regression classifier""" from mvpa.clfs.ridge import RidgeReg from scipy.stats import pearsonr from tests_warehouse import * class RidgeRegTests(unittest.TestCase): def testRidgeReg(self): # not the perfect dataset with which to test, but # it will do for now. data = datasets['dumb'] clf = RidgeReg() clf.train(data) # prediction has to be almost perfect # test with a correlation pre = clf.predict(data.samples) cor = pearsonr(pre,data.labels) self.failUnless(cor[0] > .8) # do again for fortran implementation # DISABLE for now, at it is known to be broken # clf = RidgeReg(implementation='gradient') # clf.train(data) # cor = pearsonr(clf.predict(data.samples), data.labels) # print cor # self.failUnless(cor[0] > .8) def testRidgeRegState(self): data = datasets['dumb'] clf = RidgeReg() clf.train(data) clf.states.enable('predictions') p = clf.predict(data.samples) self.failUnless((p == clf.predictions).all()) def suite(): return unittest.makeSuite(RidgeRegTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_samplegroupmapper.py000066400000000000000000000037571174541445200223430ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA SampleGroup mapper""" import unittest from mvpa.support.copy import deepcopy import numpy as N from mvpa.mappers.samplegroup import SampleGroupMapper from mvpa.datasets import Dataset class SampleGroupMapperTests(unittest.TestCase): def testSimple(self): data = N.arange(24).reshape(8,3) labels = [0, 1] * 4 chunks = N.repeat(N.array((0,1)),4) # correct results csamples = [[3, 4, 5], [6, 7, 8], [15, 16, 17], [18, 19, 20]] clabels = [0, 1, 0, 1] cchunks = [0, 0, 1, 1] ds = Dataset(samples=data, labels=labels, chunks=chunks) # default behavior m = SampleGroupMapper() # error if not trained self.failUnlessRaises(RuntimeError, m, data) # train mapper first m.train(ds) self.failUnless((m.forward(ds.samples) == csamples).all()) self.failUnless((m.forward(ds.labels) == clabels).all()) self.failUnless((m.forward(ds.chunks) == cchunks).all()) # directly apply to dataset # using untrained mapper! mapped = ds.applyMapper(samplesmapper=SampleGroupMapper()) self.failUnless(mapped.nsamples == 4) self.failUnless(mapped.nfeatures == 3) self.failUnless((mapped.samples == csamples).all()) self.failUnless((mapped.labels == clabels).all()) self.failUnless((mapped.chunks == cchunks).all()) # make sure origids get regenerated self.failUnless((mapped.origids == range(4)).all()) def suite(): return unittest.makeSuite(SampleGroupMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_searchlight.py000066400000000000000000000066451174541445200210740ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA searchlight algorithm""" from mvpa.base import externals from mvpa.datasets.masked import MaskedDataset from mvpa.measures.searchlight import Searchlight from mvpa.datasets.splitters import NFoldSplitter from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.clfs.transerror import TransferError from tests_warehouse import * from tests_warehouse_clfs import * class SearchlightTests(unittest.TestCase): def setUp(self): self.dataset = datasets['3dlarge'] def testSearchlight(self): # compute N-1 cross-validation for each sphere transerror = TransferError(sample_clf_lin) cv = CrossValidatedTransferError( transerror, NFoldSplitter(cvtype=1)) # contruct radius 1 searchlight sl = Searchlight(cv, radius=1.0, transformer=N.array, enable_states=['spheresizes', 'raw_results']) # run searchlight results = sl(self.dataset) # check for correct number of spheres self.failUnless(len(results) == 106) # verify if we can map correctly back results_ospace = self.dataset.mapper.reverse(results) # check for chance-level performance across all spheres self.failUnless(0.4 < results.mean() < 0.6) # check resonable sphere sizes self.failUnless(len(sl.spheresizes) == 106) self.failUnless(max(sl.spheresizes) == 7) self.failUnless(min(sl.spheresizes) == 4) # check base-class state self.failUnlessEqual(len(sl.raw_results), 106) def testPartialSearchlightWithFullReport(self): # compute N-1 cross-validation for each sphere transerror = TransferError(sample_clf_lin) cv = CrossValidatedTransferError( transerror, NFoldSplitter(cvtype=1), combiner=N.array) # contruct radius 1 searchlight sl = Searchlight(cv, radius=1.0, transformer=N.array, center_ids=[3,50]) # run searchlight results = sl(self.dataset) # only two spheres but error for all CV-folds self.failUnlessEqual(results.shape, (2, len(self.dataset.uniquechunks))) def testChiSquareSearchlight(self): # only do partial to save time if not externals.exists('scipy'): return from mvpa.misc.stats import chisquare transerror = TransferError(sample_clf_lin) cv = CrossValidatedTransferError( transerror, NFoldSplitter(cvtype=1), enable_states=['confusion']) def getconfusion(data): cv(data) return chisquare(cv.confusion.matrix)[0] # contruct radius 1 searchlight sl = Searchlight(getconfusion, radius=1.0, center_ids=[3,50]) # run searchlight results = sl(self.dataset) self.failUnless(len(results) == 2) def suite(): return unittest.makeSuite(SearchlightTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_smlr.py000066400000000000000000000041431174541445200175430ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA sparse multinomial logistic regression classifier""" from mvpa.clfs.smlr import SMLR from tests_warehouse import * from mvpa.misc.data_generators import normalFeatureDataset class SMLRTests(unittest.TestCase): def testSMLR(self): data = datasets['dumb'] clf = SMLR() clf.train(data) # prediction has to be perfect # # XXX yoh: whos said that?? ;-) # # There is always a tradeoff between learning and # generalization errors so... but in this case the problem is # more interesting: absent bias disallows to learn data you # have here -- there is no solution which would pass through # (0,0) predictions = clf.predict(data.samples) self.failUnless((predictions == data.labels).all()) def testSMLRState(self): data = datasets['dumb'] clf = SMLR() clf.train(data) clf.states.enable('values') clf.states.enable('predictions') p = N.asarray(clf.predict(data.samples)) self.failUnless((p == clf.predictions).all()) self.failUnless(N.array(clf.values).shape[0] == N.array(p).shape[0]) def testSMLRSensitivities(self): data = normalFeatureDataset(perlabel=10, nlabels=2, nfeatures=4) # use SMLR on binary problem, but not fitting all weights clf = SMLR(fit_all_weights=False) clf.train(data) # now ask for the sensitivities WITHOUT having to pass the dataset # again sens = clf.getSensitivityAnalyzer(force_training=False)() self.failUnless(sens.shape == (data.nfeatures,)) def suite(): return unittest.makeSuite(SMLRTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_som.py000066400000000000000000000035011174541445200173610ustar00rootroot00000000000000#emacs: -*- mode: python-mode; py-indent-offset: 4; indent-tabs-mode: nil -*- #ex: set sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA SOM mapper""" import unittest import numpy as N from mvpa import cfg from mvpa.mappers.som import SimpleSOMMapper from mvpa.datasets import Dataset class SOMMapperTests(unittest.TestCase): def testSimpleSOM(self): colors = [[0., 0., 0.], [0., 0., 1.], [0., 1., 0.], [1., 0., 0.], [0., 1., 1.], [1., 0., 1.], [1., 1., 0.], [1., 1., 1.]] ds = Dataset(samples=colors, labels=1) # only small SOM for speed reasons som = SimpleSOMMapper((10, 5), 200, learning_rate=0.05) # no acces when nothing is there self.failUnlessRaises(RuntimeError, som._accessKohonen) self.failUnlessRaises(RuntimeError, som.getInSize) self.failUnlessRaises(RuntimeError, som.getOutSize) som.train(ds) self.failUnless(som.getInSize() == 3) self.failUnless(som.getOutSize() == (10,5)) fmapped = som(colors) self.failUnless(fmapped.shape == (8, 2)) for fm in fmapped: self.failUnless(som.isValidOutId(fm)) # reverse mapping rmapped = som.reverse(fmapped) if cfg.getboolean('tests', 'labile', default='yes'): # should approximately restore the input, but could fail # with bas initialisation self.failUnless((N.round(rmapped) == ds.samples).all()) def suite(): return unittest.makeSuite(SOMMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_splitsensana.py000066400000000000000000000054731174541445200213010ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA SplittingSensitivityAnalyzer""" from mvpa.datasets.splitters import NFoldSplitter from mvpa.measures.splitmeasure import SplitFeaturewiseMeasure, \ TScoredFeaturewiseMeasure from mvpa.misc.data_generators import normalFeatureDataset from mvpa.misc.transformers import Absolute from tests_warehouse import * from tests_warehouse_clfs import * class SplitSensitivityAnalyserTests(unittest.TestCase): # XXX meta should work TODO @sweepargs(svm=clfswh['linear', 'svm', '!meta']) def testAnalyzer(self, svm): dataset = datasets['uni2small'] svm_weigths = svm.getSensitivityAnalyzer() sana = SplitFeaturewiseMeasure( svm_weigths, NFoldSplitter(cvtype=1), enable_states=['maps']) maps = sana(dataset) nchunks = len(dataset.uniquechunks) nfeatures = dataset.nfeatures self.failUnless(len(maps) == nfeatures, msg='Lengths of the map %d is different from number of features %d' % (len(maps), nfeatures)) self.failUnless(sana.states.isKnown('maps')) allmaps = N.array(sana.maps) self.failUnless(allmaps[:,0].mean() == maps[0]) self.failUnless(allmaps.shape == (nchunks, nfeatures)) @sweepargs(svm=clfswh['linear', 'svm', '!meta']) def testTScoredAnalyzer(self, svm): self.dataset = normalFeatureDataset(perlabel=100, nlabels=2, nchunks=20, nonbogus_features=[0,1], nfeatures=4, snr=10) svm_weigths = svm.getSensitivityAnalyzer() sana = TScoredFeaturewiseMeasure( svm_weigths, NFoldSplitter(cvtype=1), enable_states=['maps']) t = sana(self.dataset) # correct size? self.failUnlessEqual(t.shape, (4,)) # check reasonable sensitivities t = Absolute(t) self.failUnless(N.mean(t[:2]) > N.mean(t[2:])) # check whether SplitSensitivityAnalyzer 'maps' state is accessible self.failUnless(sana.states.isKnown('maps')) self.failUnless(N.array(sana.maps).shape == (20,4)) def suite(): return unittest.makeSuite(SplitSensitivityAnalyserTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_splitter.py000066400000000000000000000351341174541445200204400ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA pattern handling""" from mvpa.datasets.masked import MaskedDataset from mvpa.datasets.splitters import NFoldSplitter, OddEvenSplitter, \ NoneSplitter, HalfSplitter, \ CustomSplitter, NGroupSplitter import unittest import numpy as N class SplitterTests(unittest.TestCase): def setUp(self): self.data = \ MaskedDataset(samples=N.random.normal(size=(100,10)), labels=[ i%4 for i in range(100) ], chunks=[ i/10 for i in range(100)]) def testSimplestCVPatGen(self): # create the generator nfs = NFoldSplitter(cvtype=1) # now get the xval pattern sets One-Fold CV) xvpat = [ (train, test) for (train,test) in nfs(self.data) ] self.failUnless( len(xvpat) == 10 ) for i,p in enumerate(xvpat): self.failUnless( len(p) == 2 ) self.failUnless( p[0].nsamples == 90 ) self.failUnless( p[1].nsamples == 10 ) self.failUnless( p[1].chunks[0] == i ) def testOddEvenSplit(self): oes = OddEvenSplitter() splits = [ (train, test) for (train, test) in oes(self.data) ] self.failUnless(len(splits) == 2) for i,p in enumerate(splits): self.failUnless( len(p) == 2 ) self.failUnless( p[0].nsamples == 50 ) self.failUnless( p[1].nsamples == 50 ) self.failUnless((splits[0][1].uniquechunks == [1, 3, 5, 7, 9]).all()) self.failUnless((splits[0][0].uniquechunks == [0, 2, 4, 6, 8]).all()) self.failUnless((splits[1][0].uniquechunks == [1, 3, 5, 7, 9]).all()) self.failUnless((splits[1][1].uniquechunks == [0, 2, 4, 6, 8]).all()) # check if it works on pure odd and even chunk ids moresplits = [ (train, test) for (train, test) in oes(splits[0][0])] for split in moresplits: self.failUnless(split[0] != None) self.failUnless(split[1] != None) def testHalfSplit(self): hs = HalfSplitter() splits = [ (train, test) for (train, test) in hs(self.data) ] self.failUnless(len(splits) == 2) for i,p in enumerate(splits): self.failUnless( len(p) == 2 ) self.failUnless( p[0].nsamples == 50 ) self.failUnless( p[1].nsamples == 50 ) self.failUnless((splits[0][1].uniquechunks == [0, 1, 2, 3, 4]).all()) self.failUnless((splits[0][0].uniquechunks == [5, 6, 7, 8, 9]).all()) self.failUnless((splits[1][1].uniquechunks == [5, 6, 7, 8, 9]).all()) self.failUnless((splits[1][0].uniquechunks == [0, 1, 2, 3, 4]).all()) # check if it works on pure odd and even chunk ids moresplits = [ (train, test) for (train, test) in hs(splits[0][0])] for split in moresplits: self.failUnless(split[0] != None) self.failUnless(split[1] != None) def testNGroupSplit(self): """Test NGroupSplitter alongside with the reversal of the order of spit out datasets """ # Test 2 groups like HalfSplitter first hs = NGroupSplitter(2) hs_reversed = NGroupSplitter(2, reverse=True) for isreversed, splitter in enumerate((hs, hs_reversed)): splits = list(splitter(self.data)) self.failUnless(len(splits) == 2) for i, p in enumerate(splits): self.failUnless( len(p) == 2 ) self.failUnless( p[0].nsamples == 50 ) self.failUnless( p[1].nsamples == 50 ) self.failUnless((splits[0][1-isreversed].uniquechunks == [0, 1, 2, 3, 4]).all()) self.failUnless((splits[0][isreversed].uniquechunks == [5, 6, 7, 8, 9]).all()) self.failUnless((splits[1][1-isreversed].uniquechunks == [5, 6, 7, 8, 9]).all()) self.failUnless((splits[1][isreversed].uniquechunks == [0, 1, 2, 3, 4]).all()) # check if it works on pure odd and even chunk ids moresplits = list(hs(splits[0][0])) for split in moresplits: self.failUnless(split[0] != None) self.failUnless(split[1] != None) # now test more groups s5 = NGroupSplitter(5) s5_reversed = NGroupSplitter(5, reverse=True) # get the splits for isreversed, s5splitter in enumerate((s5, s5_reversed)): splits = list(s5splitter(self.data)) # must have 10 splits self.failUnless(len(splits) == 5) # check split content self.failUnless((splits[0][1-isreversed].uniquechunks == [0, 1]).all()) self.failUnless((splits[0][isreversed].uniquechunks == [2, 3, 4, 5, 6, 7, 8, 9]).all()) self.failUnless((splits[1][1-isreversed].uniquechunks == [2, 3]).all()) self.failUnless((splits[1][isreversed].uniquechunks == [0, 1, 4, 5, 6, 7, 8, 9]).all()) # ... self.failUnless((splits[4][1-isreversed].uniquechunks == [8, 9]).all()) self.failUnless((splits[4][isreversed].uniquechunks == [0, 1, 2, 3, 4, 5, 6, 7]).all()) # Test for too many groups def splitcall(spl, dat): return [ (train, test) for (train, test) in spl(dat) ] s20 = NGroupSplitter(20) self.assertRaises(ValueError,splitcall,s20,self.data) def testCustomSplit(self): #simulate half splitter hs = CustomSplitter([(None,[0,1,2,3,4]),(None,[5,6,7,8,9])]) splits = list(hs(self.data)) self.failUnless(len(splits) == 2) for i,p in enumerate(splits): self.failUnless( len(p) == 2 ) self.failUnless( p[0].nsamples == 50 ) self.failUnless( p[1].nsamples == 50 ) self.failUnless((splits[0][1].uniquechunks == [0, 1, 2, 3, 4]).all()) self.failUnless((splits[0][0].uniquechunks == [5, 6, 7, 8, 9]).all()) self.failUnless((splits[1][1].uniquechunks == [5, 6, 7, 8, 9]).all()) self.failUnless((splits[1][0].uniquechunks == [0, 1, 2, 3, 4]).all()) # check fully customized split with working and validation set specified cs = CustomSplitter([([0,3,4],[5,9])]) splits = list(cs(self.data)) self.failUnless(len(splits) == 1) for i,p in enumerate(splits): self.failUnless( len(p) == 2 ) self.failUnless( p[0].nsamples == 30 ) self.failUnless( p[1].nsamples == 20 ) self.failUnless((splits[0][1].uniquechunks == [5, 9]).all()) self.failUnless((splits[0][0].uniquechunks == [0, 3, 4]).all()) # full test with additional sampling and 3 datasets per split cs = CustomSplitter([([0,3,4],[5,9],[2])], nperlabel=[3,4,1], nrunspersplit=3) splits = list(cs(self.data)) self.failUnless(len(splits) == 3) for i,p in enumerate(splits): self.failUnless( len(p) == 3 ) self.failUnless( p[0].nsamples == 12 ) self.failUnless( p[1].nsamples == 16 ) self.failUnless( p[2].nsamples == 4 ) # lets test selection of samples by ratio and combined with # other ways cs = CustomSplitter([([0,3,4],[5,9],[2])], nperlabel=[[0.3, 0.6, 1.0, 0.5], 0.5, 'all'], nrunspersplit=3) csall = CustomSplitter([([0,3,4],[5,9],[2])], nrunspersplit=3) # lets craft simpler dataset #ds = Dataset(samples=N.arange(12), labels=[1]*6+[2]*6, chunks=1) splits = list(cs(self.data)) splitsall = list(csall(self.data)) self.failUnless(len(splits) == 3) ul = self.data.uniquelabels self.failUnless(((N.array(splitsall[0][0].samplesperlabel.values()) *[0.3, 0.6, 1.0, 0.5]).round().astype(int) == N.array(splits[0][0].samplesperlabel.values())).all()) self.failUnless(((N.array(splitsall[0][1].samplesperlabel.values())*0.5 ).round().astype(int) == N.array(splits[0][1].samplesperlabel.values())).all()) self.failUnless((N.array(splitsall[0][2].samplesperlabel.values()) == N.array(splits[0][2].samplesperlabel.values())).all()) def testNoneSplitter(self): nos = NoneSplitter() splits = [ (train, test) for (train, test) in nos(self.data) ] self.failUnless(len(splits) == 1) self.failUnless(splits[0][0] == None) self.failUnless(splits[0][1].nsamples == 100) nos = NoneSplitter(mode='first') splits = [ (train, test) for (train, test) in nos(self.data) ] self.failUnless(len(splits) == 1) self.failUnless(splits[0][1] == None) self.failUnless(splits[0][0].nsamples == 100) # test sampling tools # specified value nos = NoneSplitter(nrunspersplit=3, nperlabel=10) splits = [ (train, test) for (train, test) in nos(self.data) ] self.failUnless(len(splits) == 3) for split in splits: self.failUnless(split[0] == None) self.failUnless(split[1].nsamples == 40) self.failUnless(split[1].samplesperlabel.values() == [10,10,10,10]) # auto-determined nos = NoneSplitter(nrunspersplit=3, nperlabel='equal') splits = [ (train, test) for (train, test) in nos(self.data) ] self.failUnless(len(splits) == 3) for split in splits: self.failUnless(split[0] == None) self.failUnless(split[1].nsamples == 100) self.failUnless(split[1].samplesperlabel.values() == [25,25,25,25]) def testLabelSplitter(self): oes = OddEvenSplitter(attr='labels') splits = [ (first, second) for (first, second) in oes(self.data) ] self.failUnless((splits[0][0].uniquelabels == [0,2]).all()) self.failUnless((splits[0][1].uniquelabels == [1,3]).all()) self.failUnless((splits[1][0].uniquelabels == [1,3]).all()) self.failUnless((splits[1][1].uniquelabels == [0,2]).all()) def testCountedSplitting(self): # count > #chunks, should result in 10 splits nchunks = len(self.data.uniquechunks) for strategy in NFoldSplitter._STRATEGIES: for count, target in [ (nchunks*2, nchunks), (nchunks, nchunks), (nchunks-1, nchunks-1), (3, 3), (0, 0), (1, 1) ]: nfs = NFoldSplitter(cvtype=1, count=count, strategy=strategy) splits = [ (train, test) for (train,test) in nfs(self.data) ] self.failUnless(len(splits) == target) chosenchunks = [int(s[1].uniquechunks) for s in splits] # Check if "lastsplit" dsattr was assigned appropriately nsplits = len(splits) if nsplits > 0: # dummy-proof testing of last split for ds_ in splits[-1]: self.failUnless(ds_._dsattr['lastsplit']) # test all now for isplit,split in enumerate(splits): for ds_ in split: ds_._dsattr['lastsplit'] == isplit==nsplits-1 # Check results of different strategies if strategy == 'first': self.failUnlessEqual(chosenchunks, range(target)) elif strategy == 'equidistant': if target == 3: self.failUnlessEqual(chosenchunks, [0, 3, 7]) elif strategy == 'random': # none is selected twice self.failUnless(len(set(chosenchunks)) == len(chosenchunks)) self.failUnless(target == len(chosenchunks)) else: raise RuntimeError, "Add unittest for strategy %s" \ % strategy def testDiscardedBoundaries(self): splitters = [NFoldSplitter(), NFoldSplitter(discard_boundary=(0,1)), # discard testing NFoldSplitter(discard_boundary=(1,0)), # discard training NFoldSplitter(discard_boundary=(2,0)), # discard 2 from training NFoldSplitter(discard_boundary=1), # discard from both OddEvenSplitter(discard_boundary=(1,0)), OddEvenSplitter(discard_boundary=(0,1)), HalfSplitter(discard_boundary=(1,0)), ] split_sets = [list(s(self.data)) for s in splitters] counts = [[(len(s[0].chunks), len(s[1].chunks)) for s in split_set] for split_set in split_sets] nodiscard_tr = [c[0] for c in counts[0]] nodiscard_te = [c[1] for c in counts[0]] # Discarding in testing: self.failUnless(nodiscard_tr == [c[0] for c in counts[1]]) self.failUnless(nodiscard_te[1:-1] == [c[1] + 2 for c in counts[1][1:-1]]) # at the beginning/end chunks, just a single element self.failUnless(nodiscard_te[0] == counts[1][0][1] + 1) self.failUnless(nodiscard_te[-1] == counts[1][-1][1] + 1) # Discarding in training for d in [1,2]: self.failUnless(nodiscard_te == [c[1] for c in counts[1+d]]) self.failUnless(nodiscard_tr[0] == counts[1+d][0][0] + d) self.failUnless(nodiscard_tr[-1] == counts[1+d][-1][0] + d) self.failUnless(nodiscard_tr[1:-1] == [c[0] + d*2 for c in counts[1+d][1:-1]]) # Discarding in both -- should be eq min from counts[1] and [2] counts_min = [(min(c1[0], c2[0]), min(c1[1], c2[1])) for c1,c2 in zip(counts[1], counts[2])] self.failUnless(counts_min == counts[4]) # TODO: test all those odd/even etc splitters... YOH: did # visually... looks ok;) #for count in counts[5:]: # print count def suite(): return unittest.makeSuite(SplitterTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_state.py000066400000000000000000000253541174541445200177150ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA State parent class""" import unittest, copy import numpy as N from mvpa.base import externals from mvpa.misc.state import StateVariable, ClassWithCollections, \ ParameterCollection, _def_sep from mvpa.misc.param import * from mvpa.misc.exceptions import UnknownStateError if __debug__: from mvpa.base import debug class TestClassEmpty(ClassWithCollections): pass class TestClassBlank(ClassWithCollections): # We can force to have 'states' present even though we don't have # any StateVariable defined here -- it might be added later on at run time _ATTRIBUTE_COLLECTIONS = ['states'] pass class TestClassBlankNoExplicitStates(ClassWithCollections): pass class TestClassProper(ClassWithCollections): state1 = StateVariable(enabled=False, doc="state1 doc") state2 = StateVariable(enabled=True, doc="state2 doc") class TestClassProperChild(TestClassProper): state4 = StateVariable(enabled=False, doc="state4 doc") class TestClassParametrized(TestClassProper, ClassWithCollections): p1 = Parameter(0) state0 = StateVariable(enabled=False) def __init__(self, **kwargs): # XXX make such example when we actually need to invoke # constructor # TestClassProper.__init__(self, **kwargs) ClassWithCollections.__init__(self, **kwargs) class StateTests(unittest.TestCase): def testBlankState(self): empty = TestClassEmpty() blank = TestClassBlank() blank2 = TestClassBlank() self.failUnlessRaises(AttributeError, empty.__getattribute__, 'states') self.failUnlessEqual(blank.states.items, {}) self.failUnless(blank.states.enabled == []) self.failUnlessRaises(AttributeError, blank.__getattribute__, 'dummy') self.failUnlessRaises(AttributeError, blank.__getattribute__, '_') # we shouldn't use _registerState now since metaclass statecollector wouldn't # update the states... may be will be implemented in the future if necessity comes return # add some state variable blank._registerState('state1', False) self.failUnless(blank.states == ['state1']) self.failUnless(blank.states.isEnabled('state1') == False) self.failUnless(blank.states.enabled == []) self.failUnlessRaises(UnknownStateError, blank.__getattribute__, 'state1') # assign value now blank.state1 = 123 # should have no effect since the state variable wasn't enabled self.failUnlessRaises(UnknownStateError, blank.__getattribute__, 'state1') # lets enable and assign blank.states.enable('state1') blank.state1 = 123 self.failUnless(blank.state1 == 123) # we should not share states across instances at the moment, so an arbitrary # object could carry some custom states self.failUnless(blank2.states == []) self.failUnlessRaises(AttributeError, blank2.__getattribute__, 'state1') def testProperState(self): proper = TestClassProper() proper2 = TestClassProper(enable_states=['state1'], disable_states=['state2']) # disable_states should override anything in enable_states proper3 = TestClassProper(enable_states=['all'], disable_states='all') self.failUnlessEqual(len(proper3.states.enabled), 0, msg="disable_states should override anything in enable_states") proper.state2 = 1000 value = proper.state2 self.failUnlessEqual(proper.state2, 1000, msg="Simple assignment/retrieval") proper.states.disable('state2') proper.state2 = 10000 self.failUnlessEqual(proper.state2, 1000, msg="Simple assignment after being disabled") proper4 = copy.deepcopy(proper) proper.states.reset('state2') self.failUnlessRaises(UnknownStateError, proper.__getattribute__, 'state2') """Must be blank after being reset""" self.failUnlessEqual(proper4.state2, 1000, msg="Simple assignment after being reset in original instance") proper.states.enable(['state2']) self.failUnlessEqual(set(proper.states.names), set(['state1', 'state2'])) if __debug__ and 'ENFORCE_STATES_ENABLED' in debug.active: # skip testing since all states are on now return self.failUnless(proper.states.enabled == ['state2']) self.failUnless(set(proper2.states.enabled) == set(['state1'])) self.failUnlessRaises(AttributeError, proper.__getattribute__, 'state12') # if documentary on the state is appropriate self.failUnlessEqual(proper2.states.listing, ['%sstate1+%s: state1 doc' % (_def_sep, _def_sep), '%sstate2%s: state2 doc' % (_def_sep, _def_sep)]) # if __str__ lists correct number of states str_ = str(proper2) self.failUnless(str_.find('2 states:') != -1) # check if disable works self.failUnless(set(proper2.states.enabled), set(['state1'])) proper2.states.disable("all") self.failUnlessEqual(set(proper2.states.enabled), set()) proper2.states.enable("all") self.failUnlessEqual(len(proper2.states.enabled), 2) proper2.state1, proper2.state2 = 1,2 self.failUnlessEqual(proper2.state1, 1) self.failUnlessEqual(proper2.state2, 2) # now reset them proper2.states.reset('all') self.failUnlessRaises(UnknownStateError, proper2.__getattribute__, 'state1') self.failUnlessRaises(UnknownStateError, proper2.__getattribute__, 'state2') def testGetSaveEnabled(self): """Check if we can store/restore set of enabled states""" if __debug__ and 'ENFORCE_STATES_ENABLED' in debug.active: # skip testing since all states are on now return proper = TestClassProper() enabled_states = proper.states.enabled proper.states.enable('state1') self.failUnless(enabled_states != proper.states.enabled, msg="New enabled states should differ from previous") self.failUnless(set(proper.states.enabled) == set(['state1', 'state2']), msg="Making sure that we enabled all states of interest") proper.states.enabled = enabled_states self.failUnless(enabled_states == proper.states.enabled, msg="List of enabled states should return to original one") # TODO: make test for _copy_states_ or whatever comes as an alternative def testStoredTemporarily(self): proper = TestClassProper() properch = TestClassProperChild(enable_states=["state1"]) if __debug__ and 'ENFORCE_STATES_ENABLED' in debug.active: # skip testing since all states are on now return self.failUnlessEqual(proper.states.enabled, ["state2"]) proper.states._changeTemporarily( enable_states=["state1"], other=properch) self.failUnlessEqual(set(proper.states.enabled), set(["state1", "state2"])) proper.states._resetEnabledTemporarily() self.failUnlessEqual(proper.states.enabled, ["state2"]) # allow to enable disable without other instance proper.states._changeTemporarily( enable_states=["state1", "state2"]) self.failUnlessEqual(set(proper.states.enabled), set(["state1", "state2"])) proper.states._resetEnabledTemporarily() self.failUnlessEqual(proper.states.enabled, ["state2"]) def testProperStateChild(self): """ Simple test if child gets state variables from the parent as well """ proper = TestClassProperChild() self.failUnlessEqual(set(proper.states.names), set(['state1', 'state2', 'state4'])) def testStateVariables(self): """To test new states""" class S1(ClassWithCollections): v1 = StateVariable(enabled=True, doc="values1 is ...") v1XXX = StateVariable(enabled=False, doc="values1 is ...") class S2(ClassWithCollections): v2 = StateVariable(enabled=True, doc="values12 is ...") class S1_(S1): pass class S1__(S1_): v1__ = StateVariable(enabled=False) class S12(S1__, S2): v12 = StateVariable() s1, s2, s1_, s1__, s12 = S1(), S2(), S1_(), S1__(), S12() self.failUnlessEqual(s1.states.isEnabled("v1"), True) s1.v1 = 12 s12.v1 = 120 s2.v2 = 100 self.failUnlessEqual(len(s2.states.listing), 1) self.failUnlessEqual(s1.v1, 12) try: tempvalue = s1__.v1__ self.fail("Should have puked since values were not enabled yet") except: pass def testParametrized(self): self.failUnlessRaises(TypeError, TestClassParametrized, p2=34, enable_states=['state1'], msg="Should raise an exception if argument doesn't correspond to" "any parameter") a = TestClassParametrized(p1=123, enable_states=['state1']) self.failUnlessEqual(a.p1, 123, msg="We must have assigned value to instance") self.failUnless('state1' in a.states.enabled, msg="state1 must have been enabled") if (__debug__ and 'ID_IN_REPR' in debug.active): # next tests would fail due to ID in the tails return # validate that string representation of the object is valid and consistent a_str = `a` try: import test_state exec "a2=%s" % a_str except Exception, e: self.fail(msg="Failed to generate an instance out of " "representation %s. Got exception: %s" % (a_str, e)) a2_str = `a2` self.failUnless(a2_str == a_str, msg="Generated object must have the same repr. Got %s and %s" % (a_str, a2_str)) # Test at least that repr of collection is of correct syntax aparams_str = `a.params` try: import test_state exec "aparams2=%s" % aparams_str except Exception, e: self.fail(msg="Failed to generate an instance out of " "representation %s of params. Got exception: %s" % (aparams_str, e)) def suite(): return unittest.makeSuite(StateTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_stats.py000066400000000000000000000113621174541445200177250ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA stats helpers""" from mvpa.base import externals from mvpa.clfs.stats import MCNullDist, FixedNullDist, NullDist from mvpa.datasets import Dataset from mvpa.measures.glm import GLM from mvpa.measures.anova import OneWayAnova, CompoundOneWayAnova from mvpa.misc.fx import doubleGammaHRF, singleGammaHRF from tests_warehouse import * from mvpa import cfg from numpy.testing import assert_array_almost_equal # Prepare few distributions to test #kwargs = {'permutations':10, 'tail':'any'} nulldist_sweep = [ MCNullDist(permutations=30, tail='any'), MCNullDist(permutations=30, tail='right')] if externals.exists('scipy'): from mvpa.support.stats import scipy from scipy.stats import f_oneway from mvpa.clfs.stats import rv_semifrozen nulldist_sweep += [ MCNullDist(scipy.stats.norm, permutations=30, tail='any'), MCNullDist(scipy.stats.norm, permutations=30, tail='right'), MCNullDist(rv_semifrozen(scipy.stats.norm, loc=0), permutations=30, tail='right'), MCNullDist(scipy.stats.expon, permutations=30, tail='right'), FixedNullDist(scipy.stats.norm(0, 10.0), tail='any'), FixedNullDist(scipy.stats.norm(0, 10.0), tail='right'), scipy.stats.norm(0, 0.1) ] class StatsTests(unittest.TestCase): """Unittests for various statistics""" @sweepargs(null=nulldist_sweep[1:]) def testNullDistProb(self, null): """Testing null dist probability""" if not isinstance(null, NullDist): return ds = datasets['uni2small'] null.fit(OneWayAnova(), ds) # check reasonable output. # p-values for non-bogus features should significantly different, # while bogus (0) not prob = null.p([20, 0, 0, 0, 0, N.nan]) # XXX this is labile! it also needs checking since the F-scores # of the MCNullDists using normal distribution are apparently not # distributed that way, hence the test often (if not always) fails. if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(N.abs(prob[0]) < 0.05, msg="Expected small p, got %g" % prob[0]) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless((N.abs(prob[1:]) > 0.05).all(), msg="Bogus features should have insignificant p." " Got %s" % (N.abs(prob[1:]),)) # has to have matching shape if not isinstance(null, FixedNullDist): # Fixed dist is univariate ATM so it doesn't care # about dimensionality and gives 1 output value self.failUnlessRaises(ValueError, null.p, [5, 3, 4]) def testAnova(self): """Do some extended testing of OneWayAnova in particular -- compound estimation """ m = OneWayAnova() # default must be not compound ? mc = CompoundOneWayAnova(combiner=None) ds = datasets['uni2medium'] # For 2 labels it must be identical for both and equal to # simple OneWayAnova a, ac = m(ds), mc(ds) self.failUnless(a.shape == (ds.nfeatures,)) self.failUnless(ac.shape == (ds.nfeatures, len(ds.uniquelabels))) self.failUnless((ac[:, 0] == ac[:, 1]).all()) self.failUnless((a == ac[:, 1]).all()) ds = datasets['uni4large'] ac = mc(ds) if cfg.getboolean('tests', 'labile', default='yes'): # All non-bogus features must be high for a corresponding feature self.failUnless((ac[(N.array(ds.nonbogus_features), N.arange(4))] >= 1).all()) # All features should have slightly but different CompoundAnova # values. I really doubt that there will be a case when this # test would fail just to being 'labile' self.failUnless(N.max(N.std(ac, axis=1))>0, msg='In compound anova, we should get different' ' results for different labels. Got %s' % ac) def suite(): """Create the suite""" return unittest.makeSuite(StatsTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_stats_sp.py000066400000000000000000000277441174541445200204420ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA stats helpers -- those requiring scipy""" from test_stats import * externals.exists('scipy', raiseException=True) from scipy import signal from mvpa.misc.stats import chisquare class StatsTestsScipy(unittest.TestCase): """Unittests for various statistics which use scipy""" def testChiSquare(self): """Test chi-square distribution""" # test equal distribution tbl = N.array([[5, 5], [5, 5]]) chi, p = chisquare(tbl) self.failUnless( chi == 0.0 ) self.failUnless( p == 1.0 ) # test non-equal distribution tbl = N.array([[4, 0], [0, 4]]) chi, p = chisquare(tbl) self.failUnless(chi == 8.0) self.failUnless(p < 0.05) def testNullDistProbAny(self): """Test 'any' tail statistics estimation""" if not externals.exists('scipy'): return # test 'any' mode from mvpa.measures.corrcoef import CorrCoef ds = datasets['uni2medium'] null = MCNullDist(permutations=20, tail='any') null.fit(CorrCoef(), ds) # 100 and -100 should both have zero probability on their respective # tails pm100 = null.p([-100] + [0]*(ds.nfeatures-1)) p100 = null.p([100] + [0]*(ds.nfeatures-1)) assert_array_almost_equal(pm100, p100) # With 20 samples isn't that easy to get reliable sampling for # non-parametric, so we can allow somewhat low significance # ;-) self.failUnless(pm100[0] <= 0.1) self.failUnless(p100[0] <= 0.1) self.failUnless(N.all(pm100[1:] >= 0.1)) self.failUnless(N.all(pm100[1:] >= 0.1)) # same test with just scalar measure/feature null.fit(CorrCoef(), ds.selectFeatures([0])) self.failUnlessAlmostEqual(null.p(-100), null.p(100)) self.failUnless(null.p(100) <= 0.1) @sweepargs(nd=nulldist_sweep) def testDatasetMeasureProb(self, nd): """Test estimation of measures statistics""" if not externals.exists('scipy'): # due to null_t requirement return ds = datasets['uni2medium'] m = OneWayAnova(null_dist=nd, enable_states=['null_t']) score = m(ds) score_nonbogus = N.mean(score[ds.nonbogus_features]) score_bogus = N.mean(score[ds.bogus_features]) # plausability check self.failUnless(score_bogus < score_nonbogus) null_prob_nonbogus = m.null_prob[ds.nonbogus_features] null_prob_bogus = m.null_prob[ds.bogus_features] self.failUnless((null_prob_nonbogus < 0.05).all(), msg="Nonbogus features should have a very unlikely value. Got %s" % null_prob_nonbogus) # the others should be a lot larger self.failUnless(N.mean(N.abs(null_prob_bogus)) > N.mean(N.abs(null_prob_nonbogus))) if isinstance(nd, MCNullDist): # MCs are not stable with just 10 samples... so lets skip them return if cfg.getboolean('tests', 'labile', default='yes'): # Failed on c94ec26eb593687f25d8c27e5cfdc5917e352a69 # with MVPA_SEED=833393575 self.failUnless((N.abs(m.null_t[ds.nonbogus_features]) >= 5).all(), msg="Nonbogus features should have high t-score. Got %s" % (m.null_t[ds.nonbogus_features])) bogus_min = min(N.abs(m.null_t[ds.bogus_features])) self.failUnless(bogus_min < 4, msg="Some bogus features should have low t-score of %g." "Got (t,p,sens):%s" % (bogus_min, zip(m.null_t[ds.bogus_features], m.null_prob[ds.bogus_features], score[ds.bogus_features]))) def testNegativeT(self): """Basic testing of the sign in p and t scores """ from mvpa.measures.base import FeaturewiseDatasetMeasure class BogusMeasure(FeaturewiseDatasetMeasure): """Just put high positive into first 2 features, and high negative into 2nd two """ def _call(self, dataset): """just a little helper... pylint shut up!""" res = N.random.normal(size=(dataset.nfeatures,)) res[0] = res[1] = 100 res[2] = res[3] = -100 return res nd = FixedNullDist(scipy.stats.norm(0, 0.1), tail='any') m = BogusMeasure(null_dist=nd, enable_states=['null_t']) ds = datasets['uni2small'] score = m(ds) t, p = m.null_t, m.null_prob self.failUnless((p>=0).all()) self.failUnless((t[:2] > 0).all()) self.failUnless((t[2:4] < 0).all()) def testMatchDistribution(self): """Some really basic testing for matchDistribution """ from mvpa.clfs.stats import matchDistribution, rv_semifrozen ds = datasets['uni2medium'] # large to get stable stats data = ds.samples[:, ds.bogus_features[0]] # choose bogus feature, which # should have close to normal distribution # Lets test ad-hoc rv_semifrozen floc = rv_semifrozen(scipy.stats.norm, loc=0).fit(data) self.failUnless(floc[0] == 0) fscale = rv_semifrozen(scipy.stats.norm, scale=1.0).fit(data) self.failUnless(fscale[1] == 1) flocscale = rv_semifrozen(scipy.stats.norm, loc=0, scale=1.0).fit(data) self.failUnless(flocscale[1] == 1 and flocscale[0] == 0) full = scipy.stats.norm.fit(data) for res in [floc, fscale, flocscale, full]: self.failUnless(len(res) == 2) data_mean = N.mean(data) for loc in [None, data_mean]: for test in ['p-roc', 'kstest']: # some really basic testing matched = matchDistribution( data=data, distributions = ['scipy', ('norm', {'name': 'norm_fixed', 'loc': 0.2, 'scale': 0.3})], test=test, loc=loc, p=0.05) # at least norm should be in there names = [m[2] for m in matched] if test == 'p-roc': if cfg.getboolean('tests', 'labile', default='yes'): # we can guarantee that only for norm_fixed self.failUnless('norm' in names) self.failUnless('norm_fixed' in names) inorm = names.index('norm_fixed') # and it should be at least in the first # 30 best matching ;-) self.failUnless(inorm <= 30) def testRDistStability(self): """Test either rdist distribution performs nicely """ try: # actually I haven't managed to cause this error scipy.stats.rdist(1.32, 0, 1).pdf(-1.0+N.finfo(float).eps) except Exception, e: self.fail('Failed to compute rdist.pdf due to numeric' ' loss of precision. Exception was %s' % e) try: # this one should fail with recent scipy with error # ZeroDivisionError: 0.0 cannot be raised to a negative power # XXX: There is 1 more bug in etch's scipy.stats or numpy # (vectorize), so I have to put 2 elements in the # queried x's, otherwise it # would puke. But for now that fix is not here # # value = scipy.stats.rdist(1.32, 0, 1).cdf( # [-1.0+N.finfo(float).eps, 0]) # # to cause it now just run this unittest only with # nosetests -s test_stats:StatsTests.testRDistStability # NB: very cool way to store the trace of the execution #import pydb #pydb.debugger(dbg_cmds=['bt', 'l', 's']*300 + ['c']) scipy.stats.rdist(1.32, 0, 1).cdf(-1.0+N.finfo(float).eps) except IndexError, e: self.fail('Failed due to bug which leads to InvalidIndex if only' ' scalar is provided to cdf') except Exception, e: self.fail('Failed to compute rdist.cdf due to numeric' ' loss of precision. Exception was %s' % e) v = scipy.stats.rdist(10000, 0, 1).cdf([-0.1]) self.failUnless(v>=0, v<=1) def testAnovaCompliance(self): ds = datasets['uni2large'] fwm = OneWayAnova() f = fwm(ds) f_sp = f_oneway(ds['labels', [1]].samples, ds['labels', [0]].samples) # SciPy needs to compute the same F-scores assert_array_almost_equal(f, f_sp[0]) def testGLM(self): """Test GLM """ # play fmri # full-blown HRF with initial dip and undershoot ;-) hrf_x = N.linspace(0, 25, 250) hrf = doubleGammaHRF(hrf_x) - singleGammaHRF(hrf_x, 0.8, 1, 0.05) # come up with an experimental design samples = 1800 fast_er_onsets = N.array([10, 200, 250, 500, 600, 900, 920, 1400]) fast_er = N.zeros(samples) fast_er[fast_er_onsets] = 1 # high resolution model of the convolved regressor model_hr = N.convolve(fast_er, hrf)[:samples] # downsample the regressor to fMRI resolution tr = 2.0 model_lr = signal.resample(model_hr, int(samples / tr / 10), window='ham') # generate artifical fMRI data: two voxels one is noise, one has # something baseline = 800.0 wsignal = baseline + 2 * model_lr + \ N.random.randn(int(samples / tr / 10)) * 0.2 nsignal = baseline + N.random.randn(int(samples / tr / 10)) * 0.5 # build design matrix: bold-regressor and constant X = N.array([model_lr, N.repeat(1, len(model_lr))]).T # two 'voxel' dataset data = Dataset(samples=N.array((wsignal, nsignal, nsignal)).T, labels=1) # check GLM betas glm = GLM(X, combiner=None) betas = glm(data) # betas for each feature and each regressor self.failUnless(betas.shape == (data.nfeatures, X.shape[1])) self.failUnless(N.absolute(betas[:, 1] - baseline < 10).all(), msg="baseline betas should be huge and around 800") self.failUnless(betas[0][0] > betas[1, 0], msg="feature (with signal) beta should be larger than for noise") if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(N.absolute(betas[1, 0]) < 0.5) self.failUnless(N.absolute(betas[0, 0]) > 1.0) # check GLM zscores glm = GLM(X, voi='zstat', combiner=None) zstats = glm(data) self.failUnless(zstats.shape == betas.shape) self.failUnless((zstats[:, 1] > 1000).all(), msg='constant zstats should be huge') if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(N.absolute(betas[0, 0]) > betas[1][0], msg='with signal should have higher zstats') def testBinomdistPPF(self): """Test if binomial distribution works ok after possibly a monkey patch """ bdist = scipy.stats.binom(100, 0.5) self.failUnless(bdist.ppf(1.0) == 100) self.failUnless(bdist.ppf(0.9) <= 60) self.failUnless(bdist.ppf(0.5) == 50) self.failUnless(bdist.ppf(0) == -1) def suite(): """Create the suite""" return unittest.makeSuite(StatsTestsScipy) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_suite.py000066400000000000000000000015351174541445200177210ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit test for PyMVPA mvpa.suite() of being loading ok""" import unittest class SuiteTest(unittest.TestCase): def testBasic(self): """Test if we are loading fine""" try: exec "from mvpa.suite import *" except Exception, e: self.fail(msg="Cannot import everything from mvpa.suite." "Getting %s" % e) def suite(): return unittest.makeSuite(SuiteTest) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_support.py000066400000000000000000000223351174541445200203050ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA serial feature inclusion algorithm""" from mvpa.misc.support import * from mvpa.datasets.splitters import NFoldSplitter from mvpa.clfs.transerror import TransferError from tests_warehouse import * from tests_warehouse import getMVPattern from tests_warehouse_clfs import * from mvpa.clfs.distance import oneMinusCorrelation from mvpa.support.copy import deepcopy class SupportFxTests(unittest.TestCase): def testTransformWithBoxcar(self): data = N.arange(10) sp = N.arange(10) # check if stupid thing don't work self.failUnlessRaises(ValueError, transformWithBoxcar, data, sp, 0 ) # now do an identity transformation trans = transformWithBoxcar(data, sp, 1) self.failUnless( (trans == data).all() ) # now check for illegal boxes self.failUnlessRaises(ValueError, transformWithBoxcar, data, sp, 2) # now something that should work sp = N.arange(9) trans = transformWithBoxcar( data, sp, 2) self.failUnless( ( trans == \ [0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5] ).all() ) # now test for proper data shape data = N.ones((10,3,4,2)) sp = [ 2, 4, 3, 5 ] trans = transformWithBoxcar( data, sp, 4) self.failUnless( trans.shape == (4,3,4,2) ) def testEvent(self): self.failUnlessRaises(ValueError, Event) ev = Event(onset=2.5) # all there? self.failUnless(ev.items() == [('onset', 2.5)]) # conversion self.failUnless(ev.asDescreteTime(dt=2).items() == [('onset', 1)]) evc = ev.asDescreteTime(dt=2, storeoffset=True) self.failUnless(evc.has_key('features')) self.failUnless(evc['features'] == [0.5]) # same with duration included evc = Event(onset=2.5, duration=3.55).asDescreteTime(dt=2) self.failUnless(evc['duration'] == 3) def testMofNCombinations(self): self.failUnlessEqual( getUniqueLengthNCombinations( range(3), 1 ), [[0],[1],[2]] ) self.failUnlessEqual( getUniqueLengthNCombinations( range(4), 2 ), [[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]] ) self.failUnlessEqual( getUniqueLengthNCombinations( range(4), 3 ), [[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]] ) def testBreakPoints(self): items_cont = [0, 0, 0, 1, 1, 1, 3, 3, 2] items_noncont = [0, 0, 1, 1, 0, 3, 2] self.failUnlessRaises(ValueError, getBreakPoints, items_noncont) self.failUnlessEqual(getBreakPoints(items_noncont, contiguous=False), [0, 2, 4, 5, 6]) self.failUnlessEqual(getBreakPoints(items_cont), [0, 3, 6, 8]) self.failUnlessEqual(getBreakPoints(items_cont, contiguous=False), [0, 3, 6, 8]) def testMapOverlap(self): mo = MapOverlap() maps = [[1,0,1,0], [1,0,0,1], [1,0,1,0]] overlap = mo(maps) self.failUnlessEqual(overlap, 1./len(maps[0])) self.failUnless((mo.overlap_map == [1,0,0,0]).all()) self.failUnless((mo.spread_map == [0,0,1,1]).all()) self.failUnless((mo.ovstats_map == [1,0,2./3,1./3]).all()) mo = MapOverlap(overlap_threshold=0.5) overlap = mo(maps) self.failUnlessEqual(overlap, 2./len(maps[0])) self.failUnless((mo.overlap_map == [1,0,1,0]).all()) self.failUnless((mo.spread_map == [0,0,0,1]).all()) self.failUnless((mo.ovstats_map == [1,0,2./3,1./3]).all()) def testHarvester(self): # do very simple list comprehension self.failUnlessEqual( [(-1)*i for i in range(5)], Harvester(xrange, [HarvesterCall(lambda x: (-1)*x, expand_args=False)]) (5)) # do clf cross-validation on a dataset with a very high SNR cv = Harvester(NFoldSplitter(cvtype=1), [HarvesterCall(TransferError(sample_clf_nl), argfilter=[1,0])]) data = getMVPattern(10) err = N.array(cv(data)) # has to be perfect self.failUnless((err < 0.1).all()) self.failUnlessEqual(err.shape, (len(data.uniquechunks),)) # now same stuff but two classifiers at once cv = Harvester(NFoldSplitter(cvtype=1), [HarvesterCall(TransferError(sample_clf_nl), argfilter=[1,0]), HarvesterCall(TransferError(sample_clf_nl), argfilter=[1,0])]) err = N.array(cv(data)) self.failUnlessEqual(err.shape, (2,len(data.uniquechunks))) # only one again, but this time remember confusion matrix cv = Harvester(NFoldSplitter(cvtype=1), [HarvesterCall(TransferError(sample_clf_nl, enable_states=['confusion']), argfilter=[1,0], attribs=['confusion'])]) res = cv(data) self.failUnless(isinstance(res, dict)) self.failUnless(res.has_key('confusion') and res.has_key('result')) self.failUnless(len(res['result']) == len(data.uniquechunks)) @sweepargs(pair=[(N.random.normal(size=(10,20)), N.random.normal(size=(10,20))), ([1,2,3,0], [1,3,2,0]), ((1,2,3,1), (1,3,2,1))]) def testIdHash(self, pair): a, b = pair a1 = deepcopy(a) a_1 = idhash(a) self.failUnless(a_1 == idhash(a), msg="Must be of the same idhash") self.failUnless(a_1 != idhash(b), msg="Must be of different idhash") if isinstance(a, N.ndarray): self.failUnless(a_1 != idhash(a.T), msg=".T must be of different idhash") if not isinstance(a, tuple): self.failUnless(a_1 != idhash(a1), msg="Must be of different idhash") a[2] += 1; a_2 = idhash(a) self.failUnless(a_1 != a_2, msg="Idhash must change") else: a_2 = a_1 a = a[2:]; a_3 = idhash(a) self.failUnless(a_2 != a_3, msg="Idhash must change after slicing") def testCorrelation(self): # data: 20 samples, 80 features X = N.random.rand(20,80) C = 1 - oneMinusCorrelation(X, X) # get nsample x nssample correlation matrix self.failUnless(C.shape == (20, 20)) # diagonal is 1 self.failUnless((N.abs(N.diag(C) - 1).mean() < 0.00001).all()) # now two different Y = N.random.rand(5,80) C2 = 1 - oneMinusCorrelation(X, Y) # get nsample x nssample correlation matrix self.failUnless(C2.shape == (20, 5)) # external validity check -- we are dealing with correlations self.failUnless(C2[10,2] - N.corrcoef(X[10], Y[2])[0,1] < 0.000001) def test_version_to_tuple(self): """Test conversion of versions from strings """ self.failUnless(version_to_tuple('0.0.01') == (0, 0, 1)) self.failUnless(version_to_tuple('0.7.1rc3') == (0, 7, 1, 'rc', 3)) def testSmartVersion(self): """Test our ad-hoc SmartVersion """ SV = SmartVersion for v1, v2 in ( ('0.0.1', '0.0.2'), ('0.0.1', '0.1'), ('0.0.1', '0.1.0'), ('0.0.1', '0.0.1a'), # this might be a bit unconventional? ('0.0.1', '0.0.1+svn234'), ('0.0.1+svn234', '0.0.1+svn235'), ('0.0.1dev1', '0.0.1'), ('0.0.1dev1', '0.0.1rc3'), ('0.7.1rc3', '0.7.1'), ('0.0.1-dev1', '0.0.1'), ('0.0.1-svn1', '0.0.1'), ('0.0.1~p', '0.0.1'), ('0.0.1~prior.1.2', '0.0.1'), ): self.failUnless(SV(v1) < SV(v2), msg="Failed to compare %s to %s" % (v1, v2)) self.failUnless(SV(v2) > SV(v1), msg="Failed to reverse compare %s to %s" % (v2, v1)) # comparison to strings self.failUnless(SV(v1) < v2, msg="Failed to compare %s to string %s" % (v1, v2)) self.failUnless(v1 < SV(v2), msg="Failed to compare string %s to %s" % (v1, v2)) # to tuples self.failUnless(SV(v1) < version_to_tuple(v2), msg="Failed to compare %s to tuple of %s" % (v1, v2)) self.failUnless(version_to_tuple(v1) < SV(v2), msg="Failed to compare tuple of %s to %s" % (v1, v2)) def suite(): return unittest.makeSuite(SupportFxTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_svdmapper.py000066400000000000000000000076351174541445200206000ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA SVD mapper""" import unittest from mvpa.support.copy import deepcopy import numpy as N from mvpa.datasets import Dataset from mvpa.mappers.svd import SVDMapper class SVDMapperTests(unittest.TestCase): def setUp(self): # data: 40 sample feature line in 20d space (40x20; samples x features) self.ndlin = Dataset(samples=N.concatenate( [N.arange(40) for i in range(20)]).reshape(20,-1).T, labels=1, chunks=1) # data: 10 sample feature line in 40d space # (10x40; samples x features) self.largefeat = Dataset(samples=N.concatenate( [N.arange(10) for i in range(40)]).reshape(40,-1).T, labels=1, chunks=1) def testSimpleSVD(self): pm = SVDMapper() # train SVD pm.train(self.ndlin) self.failUnlessEqual(pm.proj.shape, (20, 20)) # now project data into PCA space p = pm.forward(self.ndlin.samples) # only first eigenvalue significant self.failUnless(pm.sv[:1] > 1.0) self.failUnless((pm.sv[1:] < 0.0001).all()) # only variance of first component significant var = p.var(axis=0) # test that only one component has variance self.failUnless(var[:1] > 1.0) self.failUnless((var[1:] < 0.0001).all()) # check that the mapped data can be fully recovered by 'reverse()' pr = pm.reverse(p) self.failUnlessEqual(pr.shape, (40,20)) self.failUnless(N.abs(pm.reverse(p) - self.ndlin.samples).sum() < 0.0001) def testMoreSVD(self): pm = SVDMapper() # train SVD pm.train(self.largefeat) # mixing matrix cannot be square self.failUnlessEqual(pm.proj.shape, (40, 10)) # only first singular value significant self.failUnless(pm.sv[:1] > 10) self.failUnless((pm.sv[1:] < 10).all()) # now project data into SVD space p = pm.forward(self.largefeat.samples) # only variance of first component significant var = p.var(axis=0) # test that only one component has variance self.failUnless(var[:1] > 1.0) self.failUnless((var[1:] < 0.0001).all()) # check that the mapped data can be fully recovered by 'reverse()' rp = pm.reverse(p) self.failUnlessEqual(rp.shape, self.largefeat.samples.shape) self.failUnless((N.round(rp) == self.largefeat.samples).all()) self.failUnlessEqual(pm.getInSize(), 40) self.failUnlessEqual(pm.getOutSize(), 10) # copy mapper pm2 = deepcopy(pm) # now remove all but the first 2 components from the mapper pm2.selectOut([0,1]) # sanity check self.failUnlessEqual(pm2.getInSize(), 40) self.failUnlessEqual(pm2.getOutSize(), 2) # but orginal mapper must be left intact self.failUnlessEqual(pm.getInSize(), 40) self.failUnlessEqual(pm.getOutSize(), 10) # data should still be fully recoverable by 'reverse()' rp2 = pm2.reverse(p[:,[0,1]]) self.failUnlessEqual(rp2.shape, self.largefeat.samples.shape) self.failUnless(N.abs(rp2 - self.largefeat.samples).sum() < 0.0001) # now make new random data and do forward->reverse check data = N.random.normal(size=(98,40)) data_f = pm.forward(data) self.failUnlessEqual(data_f.shape, (98,10)) data_r = pm.reverse(data_f) self.failUnlessEqual(data_r.shape, (98,40)) def suite(): return unittest.makeSuite(SVDMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_svm.py000066400000000000000000000156011174541445200173740ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for SVM classifier""" from mvpa.datasets.splitters import NFoldSplitter from mvpa.clfs.meta import ProxyClassifier from mvpa.clfs.transerror import TransferError from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from tests_warehouse import pureMultivariateSignal from tests_warehouse import * from tests_warehouse_clfs import * class SVMTests(unittest.TestCase): # @sweepargs(nl_clf=clfswh['non-linear', 'svm'] ) # @sweepargs(nl_clf=clfswh['non-linear', 'svm'] ) def testMultivariate(self): mv_perf = [] mv_lin_perf = [] uv_perf = [] l_clf = clfswh['linear', 'svm'][0] nl_clf = clfswh['non-linear', 'svm'][0] #orig_keys = nl_clf.param._params.keys() #nl_param_orig = nl_clf.param._params.copy() # l_clf = LinearNuSVMC() # XXX ??? not sure what below meant and it is obsolete if # using SG... commenting out for now # for some reason order is not preserved thus dictionaries are not # the same any longer -- lets compare values #self.failUnlessEqual([nl_clf.param._params[k] for k in orig_keys], # [nl_param_orig[k] for k in orig_keys], # msg="New instance mustn't override values in previously created") ## and keys separately #self.failUnlessEqual(set(nl_clf.param._params.keys()), # set(orig_keys), # msg="New instance doesn't change set of parameters in original") # We must be able to deepcopy not yet trained SVMs now import mvpa.support.copy as copy try: nl_clf.untrain() nl_clf_copy = copy.deepcopy(nl_clf) except: self.fail(msg="Failed to deepcopy not-yet trained SVM %s" % nl_clf) for i in xrange(20): train = pureMultivariateSignal( 20, 3 ) test = pureMultivariateSignal( 20, 3 ) # use non-linear CLF on 2d data nl_clf.train(train) p_mv = nl_clf.predict(test.samples) mv_perf.append(N.mean(p_mv==test.labels)) # use linear CLF on 2d data l_clf.train(train) p_lin_mv = l_clf.predict(test.samples) mv_lin_perf.append(N.mean(p_lin_mv==test.labels)) # use non-linear CLF on 1d data nl_clf.train(train.selectFeatures([0])) p_uv = nl_clf.predict(test.selectFeatures([0]).samples) uv_perf.append(N.mean(p_uv==test.labels)) mean_mv_perf = N.mean(mv_perf) mean_mv_lin_perf = N.mean(mv_lin_perf) mean_uv_perf = N.mean(uv_perf) # non-linear CLF has to be close to perfect self.failUnless( mean_mv_perf > 0.9 ) # linear CLF cannot learn this problem! self.failUnless( mean_mv_perf > mean_mv_lin_perf ) # univariate has insufficient information self.failUnless( mean_uv_perf < mean_mv_perf ) # XXX for now works only with linear... think it through -- should # work non-linear, shouldn't it? # now all non-linear have C>0 thus skipped anyways # TODO: For some reason libsvm's weight assignment has no effect # as well -- need to be fixed :-/ @sweepargs(clf=clfswh['svm', 'sg', '!regression', '!gnpp', '!meta']) def testCperClass(self, clf): try: if clf.C > 0: # skip those with fixed C return except: # classifier has no C return if clf.C < -5: # too soft margin helps to fight disbalance, thus skip # it in testing return #print clf ds = datasets['uni2small'].copy() ds__ = datasets['uni2small'].copy() # # ballanced set # Lets add a bit of noise to drive classifier nuts. same # should be done for disballanced set ds__.samples = ds__.samples + 0.5 * N.random.normal(size=(ds__.samples.shape)) # # disballanced set # lets overpopulate label 0 times = 10 ds_ = ds.selectSamples(range(ds.nsamples) + range(ds.nsamples/2) * times) ds_.samples = ds_.samples + 0.7 * N.random.normal(size=(ds_.samples.shape)) spl = ds_.samplesperlabel #print ds_.labels, ds_.chunks cve = CrossValidatedTransferError(TransferError(clf), NFoldSplitter(), enable_states='confusion') e = cve(ds__) if cfg.getboolean('tests', 'labile', default='yes'): # without disballance we should already have some hits self.failUnless(cve.confusion.stats["P'"][1] > 0) e = cve(ds_) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(cve.confusion.stats["P'"][1] < 5, msg="With disballance we should have almost no " "hits. Got %f" % cve.confusion.stats["P'"][1]) #print "D:", cve.confusion.stats["P'"][1], cve.confusion.stats['MCC'][1] # Set '1 C per label' # recreate cvte since previous might have operated on copies cve = CrossValidatedTransferError(TransferError(clf), NFoldSplitter(), enable_states='confusion') oldC = clf.C ratio = N.sqrt(float(spl[0])/spl[1]) clf.C = (-1/ratio, -1*ratio) try: e_ = cve(ds_) # reassign C clf.C = oldC except: clf.C = oldC raise #print "B:", cve.confusion.stats["P'"][1], cve.confusion.stats['MCC'][1] if cfg.getboolean('tests', 'labile', default='yes'): # Finally test if we get any 'hit' for minor category. In the # classifier, which has way to 'ballance' should be non-0 self.failUnless(cve.confusion.stats["P'"][1] > 0) def testSillyness(self): """Test if we raise exceptions on incorrect specifications """ if externals.exists('libsvm') or externals.exists('shogun'): self.failUnlessRaises(TypeError, SVM, C=1.0, nu=2.3) if externals.exists('libsvm'): self.failUnlessRaises(TypeError, libsvm.SVM, C=1.0, nu=2.3) self.failUnlessRaises(TypeError, LinearNuSVMC, C=2.3) self.failUnlessRaises(TypeError, LinearCSVMC, nu=2.3) if externals.exists('shogun'): self.failUnlessRaises(TypeError, sg.SVM, C=10, kernel_type='RBF', coef0=3) def suite(): return unittest.makeSuite(SVMTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_transerror.py000066400000000000000000000761711174541445200210010ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA classifier cross-validation""" import unittest from mvpa.support.copy import copy from mvpa.base import externals from mvpa.datasets import Dataset from mvpa.datasets.splitters import OddEvenSplitter from mvpa.clfs.meta import MulticlassClassifier from mvpa.clfs.transerror import \ TransferError, ConfusionMatrix, ConfusionBasedError from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.clfs.stats import MCNullDist from mvpa.misc.exceptions import UnknownStateError from tests_warehouse import datasets, sweepargs from tests_warehouse_clfs import * class ErrorsTests(unittest.TestCase): def testConfusionMatrix(self): data = N.array([1,2,1,2,2,2,3,2,1], ndmin=2).T reg = [1,1,1,2,2,2,3,3,3] regl = [1,2,1,2,2,2,3,2,1] correct_cm = [[2,0,1],[1,3,1],[0,0,1]] # Check if we are ok with any input type - either list, or N.array, or tuple for t in [reg, tuple(reg), list(reg), N.array(reg)]: for p in [regl, tuple(regl), list(regl), N.array(regl)]: cm = ConfusionMatrix(targets=t, predictions=p) # check table content self.failUnless((cm.matrix == correct_cm).all()) # Do a bit more thorough checking cm = ConfusionMatrix() self.failUnlessRaises(ZeroDivisionError, lambda x:x.percentCorrect, cm) """No samples -- raise exception""" cm.add(reg, regl) self.failUnlessEqual(len(cm.sets), 1, msg="Should have a single set so far") self.failUnlessEqual(cm.matrix.shape, (3,3), msg="should be square matrix (len(reglabels) x len(reglabels)") self.failUnlessRaises(ValueError, cm.add, reg, N.array([1])) """ConfusionMatrix must complaint if number of samples different""" # check table content self.failUnless((cm.matrix == correct_cm).all()) # lets add with new labels (not yet known) cm.add(reg, N.array([1,4,1,2,2,2,4,2,1])) self.failUnlessEqual(cm.labels, [1,2,3,4], msg="We should have gotten 4th label") matrices = cm.matrices # separate CM per each given set self.failUnlessEqual(len(matrices), 2, msg="Have gotten two splits") self.failUnless((matrices[0].matrix + matrices[1].matrix == cm.matrix).all(), msg="Total votes should match the sum across split CMs") # check pretty print # just a silly test to make sure that printing works self.failUnless(len(cm.asstring( header=True, summary=True, description=True))>100) self.failUnless(len(str(cm))>100) # and that it knows some parameters for printing self.failUnless(len(cm.asstring(summary=True, header=False))>100) # lets check iadd -- just itself to itself cm += cm self.failUnlessEqual(len(cm.matrices), 4, msg="Must be 4 sets now") # lets check add -- just itself to itself cm2 = cm + cm self.failUnlessEqual(len(cm2.matrices), 8, msg="Must be 8 sets now") self.failUnlessEqual(cm2.percentCorrect, cm.percentCorrect, msg="Percent of corrrect should remain the same ;-)") self.failUnlessEqual(cm2.error, 1.0-cm.percentCorrect/100.0, msg="Test if we get proper error value") def testDegenerateConfusion(self): # We must not just puke -- some testing splits might # have just a single target label for orig in ([1], [1, 1], [0], [0, 0]): cm = ConfusionMatrix(targets=orig, predictions=orig, values=orig) scm = str(cm) self.failUnless(cm.stats['ACC%'] == 100) def testConfusionMatrixACC(self): reg = [0,0,1,1] regl = [1,0,1,0] cm = ConfusionMatrix(targets=reg, predictions=regl) self.failUnless('ACC% 50' in str(cm)) def testConfusionMatrixWithMappings(self): data = N.array([1,2,1,2,2,2,3,2,1], ndmin=2).T reg = [1,1,1,2,2,2,3,3,3] regl = [1,2,1,2,2,2,3,2,1] correct_cm = [[2,0,1], [1,3,1], [0,0,1]] lm = {'apple':1, 'orange':2, 'shitty apple':1, 'candy':3} cm = ConfusionMatrix(targets=reg, predictions=regl, labels_map=lm) # check table content self.failUnless((cm.matrix == correct_cm).all()) # assure that all labels are somewhere listed ;-) s = str(cm) for l in lm.keys(): self.failUnless(l in s) @sweepargs(l_clf=clfswh['linear', 'svm']) def testConfusionBasedError(self, l_clf): train = datasets['uni2medium_train'] # to check if we fail to classify for 3 labels test3 = datasets['uni3medium_train'] err = ConfusionBasedError(clf=l_clf) terr = TransferError(clf=l_clf) self.failUnlessRaises(UnknownStateError, err, None) """Shouldn't be able to access the state yet""" l_clf.train(train) e, te = err(None), terr(train) self.failUnless(abs(e-te) < 1e-10, msg="ConfusionBasedError (%.2g) should be equal to TransferError " "(%.2g) on traindataset" % (e, te)) # this will print nasty WARNING but it is ok -- it is just checking code # NB warnings are not printed while doing whole testing self.failIf(terr(test3) is None) # try copying the beast terr_copy = copy(terr) @sweepargs(l_clf=clfswh['linear', 'svm']) def testNullDistProb(self, l_clf): train = datasets['uni2medium'] num_perm = 10 # define class to estimate NULL distribution of errors # use left tail of the distribution since we use MeanMatchFx as error # function and lower is better terr = TransferError( clf=l_clf, null_dist=MCNullDist(permutations=num_perm, tail='left')) # check reasonable error range err = terr(train, train) self.failUnless(err < 0.4) # Lets do the same for CVTE cvte = CrossValidatedTransferError( TransferError(clf=l_clf), OddEvenSplitter(), null_dist=MCNullDist(permutations=num_perm, tail='left', enable_states=['dist_samples'])) cv_err = cvte(train) # check that the result is highly significant since we know that the # data has signal null_prob = terr.states.null_prob if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(null_prob <= 0.1, msg="Failed to check that the result is highly significant " "(got %f) since we know that the data has signal" % null_prob) self.failUnless(cvte.states.null_prob <= 0.1, msg="Failed to check that the result is highly significant " "(got p(cvte)=%f) since we know that the data has signal" % cvte.states.null_prob) # and we should be able to access the actual samples of the distribution self.failUnlessEqual(len(cvte.null_dist.states.dist_samples), num_perm) @sweepargs(l_clf=clfswh['linear', 'svm']) def testPerSampleError(self, l_clf): train = datasets['uni2medium'] terr = TransferError(clf=l_clf, enable_states=['samples_error']) err = terr(train, train) se = terr.samples_error # one error per sample self.failUnless(len(se) == train.nsamples) # for this simple test it can only be correct or misclassified # (boolean) self.failUnless( N.sum(N.array(se.values(), dtype='float') \ - N.array(se.values(), dtype='b')) == 0) @sweepargs(clf=clfswh['multiclass']) def testAUC(self, clf): """Test AUC computation """ if isinstance(clf, MulticlassClassifier): # TODO: handle those values correctly return clf.states._changeTemporarily(enable_states = ['values']) # uni2 dataset with reordered labels ds2 = datasets['uni2small'].copy() ds2.labels = 1 - ds2.labels # revert labels # same with uni3 ds3 = datasets['uni3small'].copy() ul = ds3.uniquelabels nl = ds3.labels.copy() for l in xrange(3): nl[ds3.labels == ul[l]] = ul[(l+1)%3] ds3.labels = nl for ds in [datasets['uni2small'], ds2, datasets['uni3small'], ds3]: cv = CrossValidatedTransferError( TransferError(clf), OddEvenSplitter(), enable_states=['confusion', 'training_confusion']) cverror = cv(ds) stats = cv.confusion.stats Nlabels = len(ds.uniquelabels) # so we at least do slightly above chance self.failUnless(stats['ACC'] > 1.2 / Nlabels) auc = stats['AUC'] if (Nlabels == 2) or (Nlabels > 2 and auc[0] is not N.nan): mauc = N.min(stats['AUC']) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(mauc > 0.55, msg='All AUCs must be above chance. Got minimal ' 'AUC=%.2g among %s' % (mauc, stats['AUC'])) clf.states._resetEnabledTemporarily() def testConfusionPlot(self): """Based on existing cell dataset results. Let in for possible future testing, but is not a part of the unittests suite """ #from matplotlib import rc as rcmpl #rcmpl('font',**{'family':'sans-serif','sans-serif':['DejaVu Sans']}) ##rcmpl('text', usetex=True) ##rcmpl('font', family='sans', style='normal', variant='normal', ## weight='bold', stretch='normal', size='large') #import numpy as N #from mvpa.clfs.transerror import \ # TransferError, ConfusionMatrix, ConfusionBasedError array = N.array uint8 = N.uint8 sets = [ (array([47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44], dtype=uint8), array([40, 39, 47, 43, 45, 41, 44, 41, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 38, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 46, 45, 38, 44, 39, 46, 38, 39, 39, 38, 43, 45, 41, 44, 40, 46, 42, 38, 40, 47, 43, 45, 41, 44, 40, 46, 42, 38, 39, 40, 43, 45, 41, 44, 39, 46, 42, 47, 38, 38, 43, 45, 41, 44, 38, 46, 42, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 47, 38, 38, 43, 45, 41, 44, 40, 46, 42, 47, 38, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 47, 43, 45, 41, 44, 40, 46, 42, 47, 38, 38, 43, 45, 41, 44, 40, 46, 42, 39, 39, 38, 43, 45, 41, 44, 47, 46, 42, 47, 38, 39, 43, 45, 40, 44, 40, 46, 42, 47, 39, 40, 43, 45, 41, 44, 38, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 41, 47, 39, 38, 46, 45, 41, 44, 40, 46, 42, 40, 38, 38, 43, 45, 41, 44, 40, 45, 42, 47, 39, 39, 43, 45, 41, 44, 38, 46, 42, 47, 38, 42, 43, 45, 41, 44, 39, 46, 42, 39, 39, 39, 47, 45, 41, 44], dtype=uint8)), (array([40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43], dtype=uint8), array([40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 47, 46, 42, 47, 39, 40, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 39, 46, 42, 47, 47, 47, 43, 45, 41, 44, 40, 46, 42, 43, 39, 38, 43, 45, 41, 44, 38, 38, 42, 38, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 40, 38, 43, 45, 41, 44, 40, 40, 42, 47, 40, 40, 43, 45, 41, 44, 38, 38, 42, 47, 38, 38, 47, 45, 41, 44, 40, 46, 42, 47, 39, 40, 43, 45, 41, 44, 40, 46, 42, 47, 47, 39, 43, 45, 41, 44, 40, 46, 42, 39, 39, 42, 43, 45, 41, 44, 40, 46, 42, 47, 39, 39, 43, 45, 41, 44, 47, 46, 42, 40, 39, 39, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 40, 44, 40, 46, 42, 47, 39, 39, 43, 45, 41, 44, 38, 46, 42, 47, 39, 39, 43, 45, 41, 44, 40, 46, 46, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 39, 39, 38, 47, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43], dtype=uint8)), (array([45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47], dtype=uint8), array([45, 41, 44, 40, 46, 42, 47, 39, 46, 43, 45, 41, 44, 40, 46, 42, 47, 39, 39, 43, 45, 41, 44, 38, 46, 42, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 47, 39, 43, 43, 45, 40, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 47, 40, 43, 45, 41, 44, 40, 47, 42, 38, 47, 38, 43, 45, 41, 44, 40, 40, 42, 47, 39, 39, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 38, 46, 42, 47, 39, 39, 43, 45, 41, 44, 40, 46, 42, 47, 40, 38, 43, 45, 41, 44, 40, 46, 38, 38, 39, 38, 43, 45, 41, 44, 39, 46, 42, 47, 40, 39, 43, 45, 38, 44, 38, 46, 42, 47, 47, 40, 43, 45, 41, 44, 40, 40, 42, 47, 40, 38, 43, 39, 41, 44, 41, 46, 42, 39, 39, 38, 38, 45, 41, 44, 38, 46, 40, 46, 46, 46, 43, 45, 38, 44, 40, 46, 42, 39, 39, 45, 43, 45, 41, 44, 38, 46, 42, 38, 39, 39, 43, 45, 41, 38, 40, 46, 42, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 40], dtype=uint8)), (array([39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40], dtype=uint8), array([39, 38, 43, 45, 41, 44, 40, 46, 38, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 41, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 38, 43, 47, 38, 38, 43, 45, 41, 44, 39, 46, 42, 39, 39, 38, 43, 45, 41, 44, 43, 46, 42, 47, 39, 39, 43, 45, 41, 44, 40, 46, 42, 47, 39, 40, 43, 45, 41, 44, 40, 46, 42, 39, 38, 38, 43, 45, 40, 44, 47, 46, 38, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 38, 39, 38, 43, 45, 41, 44, 40, 46, 42, 38, 39, 38, 43, 45, 47, 44, 45, 46, 42, 38, 39, 41, 43, 45, 41, 44, 38, 38, 42, 39, 40, 40, 43, 45, 41, 39, 40, 46, 42, 47, 39, 40, 43, 45, 41, 44, 40, 47, 42, 47, 38, 38, 43, 45, 41, 44, 47, 46, 42, 47, 40, 47, 43, 45, 41, 44, 40, 46, 42, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 39, 38, 43, 45, 46, 44, 38, 46, 42, 47, 38, 44, 43, 45, 42, 44, 41, 46, 42, 47, 47, 38, 43, 45, 41, 44, 38, 46, 42, 39, 39, 38, 43, 45, 41, 44, 40], dtype=uint8)), (array([46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45], dtype=uint8), array([46, 42, 39, 38, 38, 43, 45, 41, 44, 40, 46, 42, 47, 47, 42, 43, 45, 42, 44, 40, 46, 42, 38, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 47, 40, 43, 45, 41, 44, 41, 46, 42, 38, 39, 38, 43, 45, 41, 44, 38, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 46, 38, 38, 43, 45, 41, 44, 39, 46, 42, 47, 39, 40, 43, 45, 41, 44, 40, 46, 42, 47, 39, 39, 43, 45, 41, 44, 40, 47, 42, 47, 38, 39, 43, 45, 41, 44, 39, 46, 42, 47, 39, 46, 43, 45, 41, 44, 39, 46, 42, 39, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 38, 38, 43, 45, 41, 44, 40, 46, 42, 39, 39, 38, 43, 45, 41, 44, 40, 38, 42, 46, 39, 38, 43, 45, 41, 44, 38, 46, 42, 46, 46, 38, 43, 45, 41, 44, 40, 46, 42, 47, 47, 38, 38, 45, 41, 44, 38, 38, 42, 43, 39, 40, 43, 45, 41, 44, 38, 46, 42, 47, 38, 39, 47, 45, 46, 44, 40, 46, 42, 47, 40, 38, 43, 45, 41, 44, 40, 46, 42, 47, 40, 38, 43, 45, 41, 44, 38, 46, 42, 38, 39, 38, 47, 45], dtype=uint8)), (array([41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39], dtype=uint8), array([41, 44, 38, 46, 42, 47, 39, 47, 40, 45, 41, 44, 40, 46, 42, 38, 40, 38, 43, 45, 41, 44, 40, 46, 42, 38, 38, 38, 43, 45, 41, 44, 46, 38, 42, 40, 38, 39, 43, 45, 41, 44, 41, 46, 42, 47, 47, 38, 43, 45, 41, 44, 40, 46, 42, 38, 39, 39, 43, 45, 41, 44, 38, 46, 42, 47, 43, 39, 43, 45, 41, 44, 40, 46, 42, 38, 39, 38, 43, 45, 41, 44, 40, 46, 42, 40, 39, 38, 43, 45, 41, 44, 38, 46, 42, 39, 39, 39, 43, 45, 41, 44, 40, 46, 42, 39, 38, 47, 43, 45, 38, 44, 40, 38, 42, 47, 38, 38, 43, 45, 41, 44, 40, 38, 46, 47, 38, 38, 43, 45, 41, 44, 41, 46, 42, 40, 38, 38, 40, 45, 41, 44, 40, 40, 42, 43, 38, 40, 43, 39, 41, 44, 40, 40, 42, 47, 38, 46, 43, 45, 41, 44, 47, 41, 42, 43, 40, 47, 43, 45, 41, 44, 41, 38, 42, 40, 39, 40, 43, 45, 41, 44, 39, 43, 42, 47, 39, 40, 43, 45, 41, 44, 42, 46, 42, 47, 40, 46, 43, 45, 41, 44, 38, 46, 42, 47, 47, 38, 43, 45, 41, 44, 40, 38, 39, 47, 38], dtype=uint8)), (array([38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46], dtype=uint8), array([39, 43, 45, 41, 44, 40, 46, 42, 47, 38, 38, 43, 45, 41, 44, 41, 46, 42, 47, 47, 39, 43, 45, 41, 44, 40, 46, 42, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 47, 39, 40, 43, 45, 41, 44, 40, 46, 42, 47, 45, 38, 43, 45, 41, 44, 38, 46, 42, 47, 38, 39, 43, 45, 41, 44, 40, 46, 42, 39, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 40, 39, 43, 45, 41, 44, 40, 39, 42, 40, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 38, 46, 42, 39, 39, 47, 43, 45, 41, 44, 40, 46, 42, 47, 39, 39, 43, 45, 41, 44, 40, 46, 42, 46, 47, 39, 47, 45, 41, 44, 40, 46, 42, 47, 39, 39, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 38, 46, 42, 47, 39, 38, 43, 45, 42, 44, 39, 47, 42, 39, 39, 47, 43, 47, 40, 44, 40, 46, 42, 39, 39, 38, 39, 45, 41, 44, 40, 46, 42, 47, 38, 38, 43, 45, 41, 44, 46, 38, 42, 47, 39, 43, 43, 45, 41, 44, 40, 46], dtype=uint8)), (array([42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45, 41, 44, 40, 46, 42, 47, 39, 38, 43, 45], dtype=uint8), array([42, 38, 38, 40, 43, 45, 41, 44, 39, 46, 42, 47, 39, 38, 43, 45, 41, 44, 39, 38, 42, 47, 41, 40, 43, 45, 41, 44, 40, 41, 42, 47, 38, 46, 43, 45, 41, 44, 41, 41, 42, 40, 39, 39, 43, 45, 41, 44, 46, 45, 42, 39, 39, 40, 43, 45, 41, 44, 40, 46, 42, 40, 44, 38, 43, 41, 41, 44, 39, 46, 42, 39, 39, 39, 43, 45, 41, 44, 40, 43, 42, 47, 39, 39, 43, 45, 41, 44, 40, 47, 42, 38, 46, 39, 47, 45, 41, 44, 39, 46, 42, 47, 41, 38, 43, 45, 41, 44, 42, 46, 42, 46, 39, 38, 43, 45, 41, 44, 41, 46, 42, 46, 39, 38, 43, 45, 41, 44, 40, 46, 42, 38, 38, 38, 43, 45, 41, 44, 38, 46, 42, 39, 40, 43, 43, 45, 41, 44, 39, 38, 40, 40, 38, 38, 43, 45, 41, 44, 41, 40, 42, 39, 39, 39, 43, 45, 41, 44, 40, 46, 42, 47, 40, 40, 43, 45, 41, 44, 40, 46, 42, 41, 39, 39, 43, 45, 41, 44, 40, 38, 42, 40, 39, 46, 43, 45, 41, 44, 47, 46, 42, 47, 39, 38, 43, 45, 41, 44, 41, 46, 42, 43, 39, 39, 43, 45], dtype=uint8))] labels_map = {'12kHz': 40, '20kHz': 41, '30kHz': 42, '3kHz': 38, '7kHz': 39, 'song1': 43, 'song2': 44, 'song3': 45, 'song4': 46, 'song5': 47} try: cm = ConfusionMatrix(sets=sets, labels_map=labels_map) except: self.fail() self.failUnless('3kHz / 38' in cm.asstring()) if externals.exists("pylab plottable"): import pylab as P P.figure() labels_order = ("3kHz", "7kHz", "12kHz", "20kHz","30kHz", None, "song1","song2","song3","song4","song5") #print cm #fig, im, cb = cm.plot(origin='lower', labels=labels_order) fig, im, cb = cm.plot(labels=labels_order[1:2] + labels_order[:1] + labels_order[2:], numbers=True) self.failUnless(cm._plotted_confusionmatrix[0,0] == cm.matrix[1,1]) self.failUnless(cm._plotted_confusionmatrix[0,1] == cm.matrix[1,0]) self.failUnless(cm._plotted_confusionmatrix[1,1] == cm.matrix[0,0]) self.failUnless(cm._plotted_confusionmatrix[1,0] == cm.matrix[0,1]) P.close(fig) fig, im, cb = cm.plot(labels=labels_order, numbers=True) P.close(fig) # P.show() def testConfusionPlot2(self): """Based on a sample confusion which plots incorrectly """ array = N.array uint8 = N.uint8 sets = [(array([1, 2]), array([1, 1]), array([[ 0.54343765, 0.45656235], [ 0.92395853, 0.07604147]])), (array([1, 2]), array([1, 1]), array([[ 0.98030832, 0.01969168], [ 0.78998763, 0.21001237]])), (array([1, 2]), array([1, 1]), array([[ 0.86125263, 0.13874737], [ 0.83674113, 0.16325887]])), (array([1, 2]), array([1, 1]), array([[ 0.57870383, 0.42129617], [ 0.59702509, 0.40297491]])), (array([1, 2]), array([1, 1]), array([[ 0.89530255, 0.10469745], [ 0.69373919, 0.30626081]])), (array([1, 2]), array([1, 1]), array([[ 0.75015218, 0.24984782], [ 0.9339767 , 0.0660233 ]])), (array([1, 2]), array([1, 2]), array([[ 0.97826616, 0.02173384], [ 0.38620638, 0.61379362]])), (array([2]), array([2]), array([[ 0.46893776, 0.53106224]]))] try: cm = ConfusionMatrix(sets=sets) except: self.fail() if externals.exists("pylab plottable"): import pylab as P #P.figure() #print cm fig, im, cb = cm.plot(origin='lower', numbers=True) #P.plot() self.failUnless((cm._plotted_confusionmatrix == cm.matrix).all()) P.close(fig) #fig, im, cb = cm.plot(labels=labels_order, numbers=True) #P.close(fig) #P.show() def suite(): return unittest.makeSuite(ErrorsTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_transformers.py000066400000000000000000000112171174541445200213130ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA transformers.""" import unittest import numpy as N from mvpa.base import externals from mvpa.misc.transformers import Absolute, OneMinus, RankOrder, \ ReverseRankOrder, L1Normed, L2Normed, OverAxis, \ DistPValue, FirstAxisSumNotZero from tests_warehouse import sweepargs, datasets from mvpa.base import cfg class TransformerTests(unittest.TestCase): def setUp(self): self.d1 = N.array([ 1, 0, -1, -2, -3]) self.d2 = N.array([ 2.3, 0, -1, 2, -30, 1]) def testAbsolute(self): # generate 100 values (gaussian noise mean -1000 -> all negative) out = Absolute(N.random.normal(-1000, size=100)) self.failUnless(out.min() >= 0) self.failUnless(len(out) == 100) def testAbsolute2(self): target = self.d1 out = OneMinus(N.arange(5)) self.failUnless((out == target).all()) def testFirstAxisSumNotZero(self): src = [[ 1, -22.9, 6.8, 0], [ -.8, 7, 0, 0.0], [88, 0, 0.0, 0], [0, 0, 0, 0.0]] target = N.array([ 3, 2, 1, 0]) out = FirstAxisSumNotZero(src) self.failUnless((out == target).all()) def testRankOrder(self): nelements = len(self.d2) out = RankOrder(self.d2) outr = ReverseRankOrder(self.d2) uout = N.unique(out) uoutr = N.unique(outr) self.failUnless((uout == N.arange(nelements)).all(), msg="We should get all indexes. Got just %s" % uout) self.failUnless((uoutr == N.arange(nelements)).all(), msg="We should get all indexes. Got just %s" % uoutr) self.failUnless((out+outr+1 == nelements).all()) self.failUnless((out == [ 0, 3, 4, 1, 5, 2]).all()) def testL2Norm(self): out = L2Normed(self.d2) self.failUnless(N.abs(N.sum(out*out)-1.0) < 1e-10) def testL1Norm(self): out = L1Normed(self.d2) self.failUnless(N.abs(N.sum(N.abs(out))-1.0) < 1e-10) def testOverAxis(self): data = datasets['uni4large'].samples[:120,0].reshape((2,3,4,5)) # Simple transformer/combiner which collapses across given # dimension, e.g. sum for axis in [None, 0, 1, 2]: oversum = OverAxis(N.sum, axis=axis)(data) sum_ = N.sum(data, axis=axis) self.failUnless(N.all(sum_ == oversum)) # Transformer which doesn't modify dimensionality of the data data = data.reshape((6, -1)) overnorm = OverAxis(L2Normed, axis=1)(data) self.failUnless(N.linalg.norm(overnorm)!=1.0) for d in overnorm: self.failUnless(N.abs(N.linalg.norm(d) - 1.0)<0.00001) overnorm = OverAxis(L2Normed, axis=0)(data) self.failUnless(N.linalg.norm(overnorm)!=1.0) for d in overnorm.T: self.failUnless(N.abs(N.linalg.norm(d) - 1.0)<0.00001) def testDistPValue(self): """Basic testing of DistPValue""" if not externals.exists('scipy'): return ndb = 200 ndu = 20 nperd = 2 pthr = 0.05 Nbins = 400 # Lets generate already normed data (on sphere) and add some nonbogus features datau = (N.random.normal(size=(nperd, ndb))) dist = N.sqrt((datau * datau).sum(axis=1)) datas = (datau.T / dist.T).T tn = datax = datas[0, :] dataxmax = N.max(N.abs(datax)) # now lets add true positive features tp = [-dataxmax * 1.1] * (ndu/2) + [dataxmax * 1.1] * (ndu/2) x = N.hstack((datax, tp)) # lets add just pure normal to it x = N.vstack((x, N.random.normal(size=x.shape))).T for distPValue in (DistPValue(), DistPValue(fpp=0.05)): result = distPValue(x) self.failUnless((result>=0).all) self.failUnless((result<=1).all) if cfg.getboolean('tests', 'labile', default='yes'): self.failUnless(distPValue.positives_recovered[0] > 10) self.failUnless((N.array(distPValue.positives_recovered) + N.array(distPValue.nulldist_number) == ndb + ndu).all()) self.failUnless(distPValue.positives_recovered[1] == 0) def suite(): return unittest.makeSuite(TransformerTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_verbosity.py000066400000000000000000000133531174541445200206170ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA verbose and debug output""" import unittest, re from StringIO import StringIO from mvpa.base.verbosity import OnceLogger from mvpa.base import verbose, error if __debug__: from mvpa.base import debug debug.register('1', 'id 1') # needed for testing debug.register('2', 'id 2') ## XXX There must be smth analogous in python... don't know it yet # And it is StringIO #class StringStream(object): # def __init__(self): # self.__str = "" # # def __repr__(self): # return self.__str # # def write(self, s): # self.__str += s # # def clean(self): # self.__str = "" # class VerboseOutputTest(unittest.TestCase): def setUp(self): self.msg = "Test level 2" # output stream self.sout = StringIO() self.once = OnceLogger(handlers=[self.sout]) # set verbose to 4th level self.__oldverbosehandlers = verbose.handlers verbose.handlers = [] # so debug doesn't spoil it verbose.level = 4 if __debug__: self.__olddebughandlers = debug.handlers self.__olddebugactive = debug.active debug.active = ['1', '2', 'SLC'] debug.handlers = [self.sout] debug.offsetbydepth = False verbose.handlers = [self.sout] def tearDown(self): if __debug__: debug.active = self.__olddebugactive debug.handlers = self.__olddebughandlers debug.offsetbydepth = True verbose.handlers = self.__oldverbosehandlers self.sout.close() def testVerboseAbove(self): """Test if it doesn't output at higher levels""" verbose(5, self.msg) self.failUnlessEqual(self.sout.getvalue(), "") def testVerboseBelow(self): """Test if outputs at lower levels and indents by default with spaces """ verbose(2, self.msg) self.failUnlessEqual(self.sout.getvalue(), " %s\n" % self.msg) def testVerboseIndent(self): """Test indent symbol """ verbose.indent = "." verbose(2, self.msg) self.failUnlessEqual(self.sout.getvalue(), "..%s\n" % self.msg) verbose.indent = " " # restore def testVerboseNegative(self): """Test if chokes on negative level""" self.failUnlessRaises( ValueError, verbose._setLevel, -10 ) def testNoLF(self): """Test if it works fine with no newline (LF) symbol""" verbose(2, self.msg, lf=False) verbose(2, " continue ", lf=False) verbose(2, "end") verbose(0, "new %s" % self.msg) self.failUnlessEqual(self.sout.getvalue(), " %s continue end\nnew %s\n" % \ (self.msg, self.msg)) def testCR(self): """Test if works fine with carriage return (cr) symbol""" verbose(2, self.msg, cr=True) verbose(2, "rewrite", cr=True) verbose(1, "rewrite 2", cr=True) verbose(1, " add", cr=False, lf=False) verbose(1, " finish") target = '\r %s\r \rrewrite' % self.msg + \ '\r \rrewrite 2 add finish\n' self.failUnlessEqual(self.sout.getvalue(), target) def testOnceLogger(self): """Test once logger""" self.once("X", self.msg) self.once("X", self.msg) self.failUnlessEqual(self.sout.getvalue(), self.msg+"\n") self.once("Y", "XXX", 2) self.once("Y", "XXX", 2) self.once("Y", "XXX", 2) self.failUnlessEqual(self.sout.getvalue(), self.msg+"\nXXX\nXXX\n") def testError(self): """Test error message""" error(self.msg, critical=False) # should not exit self.failUnless(self.sout.getvalue().startswith("ERROR")) if __debug__: def testDebug(self): verbose.handlers = [] # so debug doesn't spoil it debug.active = ['1', '2', 'SLC'] # do not offset for this test debug('SLC', self.msg, lf=False) self.failUnlessRaises(ValueError, debug, 3, 'bugga') #Should complain about unknown debug id svalue = self.sout.getvalue() regexp = "\[SLC\] DBG(?:{.*})?: %s" % self.msg rematch = re.match(regexp, svalue) self.failUnless(rematch, msg="Cannot match %s with regexp %s" % (svalue, regexp)) def testDebugRgexp(self): verbose.handlers = [] # so debug doesn't spoil it debug.active = ['.*'] # we should have enabled all of them self.failUnlessEqual(set(debug.active), set(debug.registered.keys())) debug.active = ['S.*', 'CLF'] self.failUnlessEqual(set(debug.active), set(filter(lambda x:x.startswith('S'), debug.registered.keys())+['CLF'])) debug.active = ['SG', 'CLF'] self.failUnlessEqual(set(debug.active), set(['SG', 'CLF']), msg="debug should do full line matching") debug.offsetbydepth = True # TODO: More tests needed for debug output testing def suite(): return unittest.makeSuite(VerboseOutputTest) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_waveletmapper.py000066400000000000000000000127611174541445200214470ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA Wavelet mappers""" from mvpa.base import externals externals.exists('pywt', raiseException=True) import unittest from mvpa.support.copy import deepcopy import numpy as N from mvpa.mappers.boxcar import BoxcarMapper from mvpa.mappers.wavelet import * from mvpa.datasets import Dataset from tests_warehouse import datasets class WaveletMappersTests(unittest.TestCase): def testSimpleWDM(self): """ """ ds = datasets['uni2medium'] d2d = ds.samples ws = 15 # size of timeline for wavelet sp = N.arange(ds.nsamples-ws*2) + ws # create 3D instance (samples x timepoints x channels) bcm = BoxcarMapper(sp, ws) d3d = bcm(d2d) # use wavelet mapper wdm = WaveletTransformationMapper() d3d_wd = wdm(d3d) d3d_swap = d3d.swapaxes(1,2) self.failUnlessRaises(ValueError, WaveletTransformationMapper, wavelet='bogus') self.failUnlessRaises(ValueError, WaveletTransformationMapper, mode='bogus') # use wavelet mapper for wdm, wdm_swap in ((WaveletTransformationMapper(), WaveletTransformationMapper(dim=2)), (WaveletPacketMapper(), WaveletPacketMapper(dim=2))): for dd, dd_swap in ((d3d, d3d_swap), (d2d, None)): dd_wd = wdm(dd) if dd_swap is not None: dd_wd_swap = wdm_swap(dd_swap) self.failUnless((dd_wd == dd_wd_swap.swapaxes(1,2)).all(), msg="We should have got same result with swapped " "dimensions and explicit mentioining of it. " "Got %s and %s" % (dd_wd, dd_wd_swap)) # some sanity checks self.failUnless(dd_wd.shape[0] == dd.shape[0]) if not isinstance(wdm, WaveletPacketMapper): # we can do reverse only for DWT dd_rev = wdm.reverse(dd_wd) # inverse transform might be not exactly as the # input... but should be very close ;-) self.failUnlessEqual(dd_rev.shape, dd.shape, msg="Shape should be the same after iDWT") diff = N.linalg.norm(dd - dd_rev) ornorm = N.linalg.norm(dd) self.failUnless(diff/ornorm < 1e-10) def testSimpleWP1Level(self): """ """ ds = datasets['uni2large'] d2d = ds.samples ws = 50 # size of timeline for wavelet sp = (N.arange(ds.nsamples - ws*2) + ws)[:4] # create 3D instance (samples x timepoints x channels) bcm = BoxcarMapper(sp, ws) d3d = bcm(d2d) # use wavelet mapper wdm = WaveletPacketMapper(level=2, wavelet='sym2') d3d_wd = wdm(d3d) # Check dimensionality d3d_wds, d3ds = d3d_wd.shape, d3d.shape self.failUnless(len(d3d_wds) == len(d3ds)+1) self.failUnless(d3d_wds[1] * d3d_wds[2] >= d3ds[1]) self.failUnless(d3d_wds[0] == d3ds[0]) self.failUnless(d3d_wds[-1] == d3ds[-1]) #print d2d.shape, d3d.shape, d3d_wd.shape if externals.exists('pywt wp reconstruct'): # Test reverse -- should be identical # we can do reverse only for DWT d3d_rev = wdm.reverse(d3d_wd) # inverse transform might be not exactly as the # input... but should be very close ;-) self.failUnlessEqual(d3d_rev.shape, d3d.shape, msg="Shape should be the same after iDWT") diff = N.linalg.norm(d3d - d3d_rev) ornorm = N.linalg.norm(d3d) if externals.exists('pywt wp reconstruct fixed'): self.failUnless(diff/ornorm < 1e-10) else: self.failUnlessRaises(NotImplementedError, wdm.reverse, d3d_wd) def _testCompareToOld(self): """Good just to compare if I didn't screw up anything... treat it as a regression test """ import mvpa.mappers.wavelet_ as wavelet_ ds = datasets['uni2medium'] d2d = ds.samples ws = 16 # size of timeline for wavelet sp = N.arange(ds.nsamples-ws*2) + ws # create 3D instance (samples x timepoints x channels) bcm = BoxcarMapper(sp, ws) d3d = bcm(d2d) # use wavelet mapper for wdm, wdm_ in ((WaveletTransformationMapper(), wavelet_.WaveletTransformationMapper()), (WaveletPacketMapper(), wavelet_.WaveletPacketMapper()),): d3d_wd = wdm(d3d) d3d_wd_ = wdm_(d3d) self.failUnless((d3d_wd == d3d_wd_).all(), msg="We should have got same result with old and new code. Got %s and %s" % (d3d_wd, d3d_wd_)) def suite(): return unittest.makeSuite(WaveletMappersTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/test_zscoremapper.py000066400000000000000000000037461174541445200213100ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Unit tests for PyMVPA ZScore mapper""" import unittest from mvpa.base import externals externals.exists('scipy', raiseException=True) from mvpa.support.copy import deepcopy import numpy as N from mvpa.datasets import Dataset from mvpa.mappers.zscore import ZScoreMapper from mvpa.datasets.miscfx import zscore from tests_warehouse import datasets class ZScoreMapperTests(unittest.TestCase): """Test simple ZScoreMapper """ def setUp(self): """Setup sample datasets """ # data: 40 sample feature line in 20d space (40x20; samples x features) self.dss = [ Dataset(samples=N.concatenate( [N.arange(40) for i in range(20)]).reshape(20,-1).T, labels=1, chunks=1), ] + datasets.values() def testCompareToZscore(self): """Test by comparing to results of elderly z-score function """ for ds in self.dss: ds1 = deepcopy(ds) ds2 = deepcopy(ds) zsm = ZScoreMapper() zsm.train(ds1) ds1z = zsm.forward(ds1.samples) zscore(ds2, perchunk=False) self.failUnless(N.linalg.norm(ds1z - ds2.samples) < 1e-12) self.failUnless((ds1.samples == ds.samples).all(), msg="It seems we modified original dataset!") ds0 = zsm.reverse(ds1z) self.failUnless(N.linalg.norm(ds0 - ds.samples) < 1e-12, msg="Can't reconstruct from z-scores") def suite(): return unittest.makeSuite(ZScoreMapperTests) if __name__ == '__main__': import runner pymvpa-0.4.8/mvpa/tests/tests_warehouse.py000066400000000000000000000203131174541445200207500ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Miscelaneous functions/datasets to be used in the unit tests""" __docformat__ = 'restructuredtext' from os import environ import unittest, traceback, sys import numpy as N from mvpa import cfg from mvpa.datasets import Dataset from mvpa.datasets.splitters import OddEvenSplitter from mvpa.datasets.masked import MaskedDataset from mvpa.clfs.base import Classifier from mvpa.misc.state import ClassWithCollections from mvpa.misc.data_generators import * __all__ = [ 'datasets', 'sweepargs', 'N', 'unittest', '_all_states_enabled' ] if __debug__: from mvpa.base import debug __all__.append('debug') _all_states_enabled = 'ENFORCE_STATES_ENABLED' in debug.active else: _all_states_enabled = False def sweepargs(**kwargs): """Decorator function to sweep over a given set of classifiers :Parameters: clfs : list of `Classifier` List of classifiers to run method on Often some unittest method can be ran on multiple classifiers. So this decorator aims to do that """ def unittest_method(method): def do_sweep(*args_, **kwargs_): def untrain_clf(argvalue): """Little helper""" if isinstance(argvalue, Classifier): # clear classifier after its use -- just to be sure ;-) argvalue.retrainable = False argvalue.untrain() failed_tests = {} for argname in kwargs.keys(): for argvalue in kwargs[argname]: if isinstance(argvalue, Classifier): # clear classifier before its use argvalue.untrain() if isinstance(argvalue, ClassWithCollections): argvalue.states.reset() # update kwargs_ kwargs_[argname] = argvalue # do actual call try: if __debug__: debug('TEST', 'Running %s on args=%s and kwargs=%s' % (method.__name__, `args_`, `kwargs_`)) method(*args_, **kwargs_) except AssertionError, e: estr = str(e) etype, value, tb = sys.exc_info() # literal representation of exception tb, so # we could group them later on eidstr = ' '.join( [l for l in traceback.format_exception(etype, value, tb) if not ('do_sweep' in l or 'unittest.py' in l or 'AssertionError' in l or 'Traceback (most' in l)]) # Store exception information for later on groupping if not eidstr in failed_tests: failed_tests[eidstr] = [] failed_tests[eidstr].append( # skip top-most tb in sweep_args (argname, `argvalue`, tb.tb_next, estr)) if __debug__: msg = "%s on %s=%s" % (estr, argname, `argvalue`) debug('TEST', 'Failed unittest: %s\n%s' % (eidstr, msg)) untrain_clf(argvalue) # TODO: handle different levels of unittests properly if cfg.getboolean('tests', 'quick', False): # on TESTQUICK just run test for 1st entry in the list, # the rest are omitted # TODO: proper partitioning of unittests break if len(failed_tests): # Lets now create a single AssertionError exception which would nicely # incorporate all failed exceptions multiple = len(failed_tests) != 1 # is it unique? # if so, we don't need to reinclude traceback since it # would be spitted out anyways below estr = "" cestr = "lead to failures of unittest %s" % method.__name__ if multiple: estr += "\n Different scenarios %s (specific tracebacks are below):" % cestr else: estr += "\n Single scenario %s:" % cestr for ek, els in failed_tests.iteritems(): estr += '\n' if multiple: estr += ek estr += " on\n %s" % (" ".join( ["%s=%s%s\n" % (ea, eav, # Why didn't I just do regular for loop? ;) ":\n ".join([x for x in [' ', es] if x != ''])) for ea, eav, etb, es in els])) etb = els[0][2] # take first one... they all should be identical raise AssertionError(estr), None, etb do_sweep.func_name = method.func_name return do_sweep if len(kwargs) > 1: raise NotImplementedError return unittest_method # Define datasets to be used all over. Split-half later on is used to # split into training/testing # snr_scale = cfg.getAsDType('tests', 'snr scale', float, default=1.0) specs = {'large' : { 'perlabel': 99, 'nchunks': 11, 'nfeatures': 20, 'snr': 8 * snr_scale}, 'medium' :{ 'perlabel': 24, 'nchunks': 6, 'nfeatures': 14, 'snr': 8 * snr_scale}, 'small' : { 'perlabel': 12, 'nchunks': 4, 'nfeatures': 6, 'snr' : 14 * snr_scale} } nonbogus_pool = [0, 1, 3, 5] datasets = {} for kind, spec in specs.iteritems(): # set of univariate datasets for nlabels in [ 2, 3, 4 ]: basename = 'uni%d%s' % (nlabels, kind) nonbogus_features=nonbogus_pool[:nlabels] bogus_features = filter(lambda x:not x in nonbogus_features, range(spec['nfeatures'])) dataset = normalFeatureDataset( nlabels=nlabels, nonbogus_features=nonbogus_features, **spec) dataset.nonbogus_features = nonbogus_features dataset.bogus_features = bogus_features oes = OddEvenSplitter() splits = [(train, test) for (train, test) in oes(dataset)] for i, replication in enumerate( ['test', 'train'] ): dataset_ = splits[0][i] dataset_.nonbogus_features = nonbogus_features dataset_.bogus_features = bogus_features datasets["%s_%s" % (basename, replication)] = dataset_ # full dataset datasets[basename] = dataset # sample 3D total = 2*spec['perlabel'] nchunks = spec['nchunks'] data = N.random.standard_normal(( total, 3, 6, 6 )) labels = N.concatenate( ( N.repeat( 0, spec['perlabel'] ), N.repeat( 1, spec['perlabel'] ) ) ) chunks = N.asarray(range(nchunks)*(total/nchunks)) mask = N.ones( (3, 6, 6) ) mask[0,0,0] = 0 mask[1,3,2] = 0 datasets['3d%s' % kind] = MaskedDataset(samples=data, labels=labels, chunks=chunks, mask=mask) # some additional datasets datasets['dumb2'] = dumbFeatureBinaryDataset() datasets['dumb'] = dumbFeatureDataset() # dataset with few invariant features _dsinv = dumbFeatureDataset() _dsinv.samples = N.hstack((_dsinv.samples, N.zeros((_dsinv.nsamples, 1)), N.ones((_dsinv.nsamples, 1)))) datasets['dumbinv'] = _dsinv # Datasets for regressions testing datasets['sin_modulated'] = multipleChunks(sinModulated, 4, 30, 1) datasets['sin_modulated_test'] = sinModulated(30, 1, flat=True) # simple signal for linear regressors datasets['chirp_linear'] = multipleChunks(chirpLinear, 6, 50, 10, 2, 0.3, 0.1) datasets['chirp_linear_test'] = chirpLinear(20, 5, 2, 0.4, 0.1) datasets['wr1996'] = multipleChunks(wr1996, 4, 50) datasets['wr1996_test'] = wr1996(50) pymvpa-0.4.8/mvpa/tests/tests_warehouse_clfs.py000066400000000000000000000051401174541445200217600ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Provides `clfs` dictionary with instances of all available classifiers.""" __docformat__ = 'restructuredtext' # Some global imports useful through out unittests from mvpa.base import cfg # # first deal with classifiers which do not have external deps # from mvpa.clfs.smlr import SMLR from mvpa.clfs.knn import * from mvpa.clfs.warehouse import clfswh, regrswh from mvpa.base import externals # if have ANY svm implementation if externals.exists('libsvm') or externals.exists('shogun'): from mvpa.clfs.svm import * # # Few silly classifiers # class SameSignClassifier(Classifier): """Dummy classifier which reports +1 class if both features have the same sign, -1 otherwise""" _clf_internals = ['notrain2predict'] def __init__(self, **kwargs): Classifier.__init__(self, **kwargs) def _train(self, data): # we don't need that ;-) pass def _predict(self, data): datalen = len(data) values = [] for d in data: values.append(2*int( (d[0]>=0) == (d[1]>=0) )-1) self.predictions = values self.values = values # just for the sake of having values return values class Less1Classifier(SameSignClassifier): """Dummy classifier which reports +1 class if abs value of max less than 1""" def _predict(self, data): datalen = len(data) values = [] for d in data: values.append(2*int(max(d)<=1)-1) self.predictions = values return values # Sample universal classifiers (linear and non-linear) which should be # used whenever it doesn't matter what classifier it is for testing # some higher level creations -- chosen so it is the fastest universal # one. Also it should not punch state.py in the face how it is # happening with kNN... sample_clf_lin = SMLR(lm=0.1)#sg.svm.LinearCSVMC(svm_impl='libsvm') #if externals.exists('shogun'): # sample_clf_nl = sg.SVM(kernel_type='RBF', svm_impl='libsvm') #else: #classical one which was used for a while #and surprisingly it is not bad at all for the unittests sample_clf_nl = kNN(k=5) # and also a regression-based classifier r = clfswh['linear', 'regression', 'has_sensitivity'] if len(r) > 0: sample_clf_reg = r[0] else: sample_clf_reg = None pymvpa-0.4.8/setup.cfg.win000066400000000000000000000002441174541445200154630ustar00rootroot00000000000000[build_ext] # configure paths for libsvm include-dirs = 3rd/libsvm library-dirs = 3rd/libsvm [build] # configure python to use a free compiler compiler = mingw32 pymvpa-0.4.8/setup.py000077500000000000000000000130731174541445200145670ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Python distutils setup for PyMVPA""" from numpy.distutils.core import setup, Extension import os import sys from glob import glob # some config settings bind_libsvm = 'local' # choices: 'local', 'system', None libsvmc_extra_sources = [] libsvmc_include_dirs = [] libsvmc_libraries = [] extra_link_args = [] libsvmc_library_dirs = [] # platform-specific settings if sys.platform == "darwin": extra_link_args.append("-bundle") if sys.platform.startswith('linux'): # need to look for numpy (header location changes with v1.3) libsvmc_include_dirs += ['/usr/include/numpy'] # when libsvm is forced -- before it was used only in cases # when libsvm was available at system level, hence we switch # from local to system at this point # TODO: Deprecate --with-libsvm for 0.5 for arg in ('--with-libsvm', '--with-system-libsvm'): if not sys.argv.count(arg): continue # clean argv if necessary (or distutils will complain) sys.argv.remove(arg) # assure since default is 'auto' wouldn't fail if it is N/A bind_libsvm = 'system' # when no libsvm bindings are requested explicitly if sys.argv.count('--no-libsvm'): # clean argv if necessary (or distutils will complain) sys.argv.remove('--no-libsvm') bind_libsvm = None # if requested: if bind_libsvm == 'local': # we will provide libsvm sources later on # if libsvm.a is available locally -- use it #if os.path.exists(os.path.join('build', 'libsvm', 'libsvm.a')): libsvm_3rd_path = os.path.join('3rd', 'libsvm') libsvmc_include_dirs += [libsvm_3rd_path] libsvmc_extra_sources = [os.path.join(libsvm_3rd_path, 'svm.cpp')] elif bind_libsvm == 'system': # look for libsvm in some places, when local one is not used libsvmc_libraries += ['svm'] if not sys.platform.startswith('win'): libsvmc_include_dirs += [ '/usr/include/libsvm-3.0/libsvm', '/usr/include/libsvm-2.0/libsvm', '/usr/include/libsvm', '/usr/local/include/libsvm', '/usr/local/include/libsvm-2.0/libsvm', '/usr/local/include'] else: # no clue on windows pass elif bind_libsvm is None: pass else: raise ValueError("Shouldn't happen that we get bind_libsvm=%r" % (bind_libsvm,)) # define the extension modules libsvmc_ext = Extension( 'mvpa.clfs.libsvmc._svmc', sources = libsvmc_extra_sources + ['mvpa/clfs/libsvmc/svmc.i'], include_dirs = libsvmc_include_dirs, library_dirs = libsvmc_library_dirs, libraries = libsvmc_libraries, language = 'c++', extra_link_args = extra_link_args, swig_opts = ['-I' + d for d in libsvmc_include_dirs]) smlrc_ext = Extension( 'mvpa.clfs.libsmlrc.smlrc', sources = [ 'mvpa/clfs/libsmlrc/smlr.c' ], #library_dirs = library_dirs, libraries = ['m'], # extra_compile_args = ['-O0'], extra_link_args = extra_link_args, language = 'c') ext_modules = [smlrc_ext] if bind_libsvm: ext_modules.append(libsvmc_ext) # Notes on the setup # Version scheme is: major.minor.patch # define the setup setup(name = 'pymvpa', version = '0.4.8', author = 'Michael Hanke, Yaroslav Halchenko, Per B. Sederberg', author_email = 'pkg-exppsy-pymvpa@lists.alioth.debian.org', license = 'MIT License', url = 'http://v04.pymvpa.org', description = 'Multivariate pattern analysis', long_description = \ "PyMVPA is a Python module intended to ease pattern classification " \ "analyses of large datasets. It provides high-level abstraction of " \ "typical processing steps and a number of implementations of some " \ "popular algorithms. While it is not limited to neuroimaging data " \ "it is eminently suited for such datasets.\n" \ "PyMVPA is truly free software (in every respect) and " \ "additionally requires nothing but free-software to run.", # please maintain alphanumeric order packages = [ 'mvpa', 'mvpa.algorithms', 'mvpa.atlases', 'mvpa.base', 'mvpa.clfs', 'mvpa.clfs.libsmlrc', 'mvpa.clfs.libsvmc', 'mvpa.clfs.sg', 'mvpa.datasets', 'mvpa.featsel', 'mvpa.mappers', 'mvpa.measures', 'mvpa.misc', 'mvpa.misc.bv', 'mvpa.misc.fsl', 'mvpa.misc.io', 'mvpa.misc.plot', 'mvpa.support', 'mvpa.tests', 'mvpa.tests.badexternals', ], data_files = [('mvpa/data', [f for f in glob(os.path.join('mvpa', 'data', '*')) if os.path.isfile(f)]), ('mvpa/data/bv', [f for f in glob(os.path.join('mvpa', 'data', 'bv', '*')) if os.path.isfile(f)])], scripts = glob(os.path.join('bin', '*')), ext_modules = ext_modules ) pymvpa-0.4.8/tools/000077500000000000000000000000001174541445200142065ustar00rootroot00000000000000pymvpa-0.4.8/tools/Makefile000066400000000000000000000002231174541445200156430ustar00rootroot00000000000000TARGETS=pdfbook TDIR=../build/tools all: $(TARGETS) pdfbook: mkdir -p $(TDIR) gcc pdfbook.c -o $(TDIR)/pdfbook clean:: rm -f $(TDIR)/pdfbook pymvpa-0.4.8/tools/apigen.py000066400000000000000000000362331174541445200160320ustar00rootroot00000000000000"""Attempt to generate templates for module reference with Sphinx XXX - we exclude extension modules To include extension modules, first identify them as valid in the ``_uri2path`` method, then handle them in the ``_parse_module`` script. We get functions and classes by parsing the text of .py files. Alternatively we could import the modules for discovery, and we'd have to do that for extension modules. This would involve changing the ``_parse_module`` method to work via import and introspection, and might involve changing ``discover_modules`` (which determines which files are modules, and therefore which module URIs will be passed to ``_parse_module``). NOTE: this is a modified version of a script originally shipped with the PyMVPA project, which we've adapted for NIPY use. PyMVPA and NIPY are both BSD-licensed projects. """ # Stdlib imports import os import re # Functions and classes class ApiDocWriter(object): ''' Class for automatic detection and parsing of API docs to Sphinx-parsable reST format''' # only separating first two levels rst_section_levels = ['*', '=', '-', '~', '^'] def __init__(self, package_name, rst_extension='.rst', package_skip_patterns=None, module_skip_patterns=None, ): ''' Initialize package for parsing Parameters ---------- package_name : string Name of the top-level package. *package_name* must be the name of an importable package rst_extension : string, optional Extension for reST files, default '.rst' package_skip_patterns : None or sequence of {strings, regexps} Sequence of strings giving URIs of packages to be excluded Operates on the package path, starting at (including) the first dot in the package path, after *package_name* - so, if *package_name* is ``sphinx``, then ``sphinx.util`` will result in ``.util`` being passed for earching by these regexps. If is None, gives default. Default is: ['\.tests$'] module_skip_patterns : None or sequence Sequence of strings giving URIs of modules to be excluded Operates on the module name including preceding URI path, back to the first dot after *package_name*. For example ``sphinx.util.console`` results in the string to search of ``.util.console`` If is None, gives default. Default is: ['\.setup$', '\._'] ''' if package_skip_patterns is None: package_skip_patterns = ['\\.tests$'] if module_skip_patterns is None: module_skip_patterns = ['\\.setup$', '\\._'] self.package_name = package_name self.rst_extension = rst_extension self.package_skip_patterns = package_skip_patterns self.module_skip_patterns = module_skip_patterns def get_package_name(self): return self._package_name def set_package_name(self, package_name): ''' Set package_name >>> docwriter = ApiDocWriter('sphinx') >>> import sphinx >>> docwriter.root_path == sphinx.__path__[0] True >>> docwriter.package_name = 'docutils' >>> import docutils >>> docwriter.root_path == docutils.__path__[0] True ''' # It's also possible to imagine caching the module parsing here self._package_name = package_name self.root_module = __import__(package_name) self.root_path = self.root_module.__path__[0] self.written_modules = None package_name = property(get_package_name, set_package_name, None, 'get/set package_name') def _get_object_name(self, line): ''' Get second token in line >>> docwriter = ApiDocWriter('sphinx') >>> docwriter._get_object_name(" def func(): ") 'func' >>> docwriter._get_object_name(" class Klass(object): ") 'Klass' >>> docwriter._get_object_name(" class Klass: ") 'Klass' ''' name = line.split()[1].split('(')[0].strip() # in case we have classes which are not derived from object # ie. old style classes return name.rstrip(':') def _uri2path(self, uri): ''' Convert uri to absolute filepath Parameters ---------- uri : string URI of python module to return path for Returns ------- path : None or string Returns None if there is no valid path for this URI Otherwise returns absolute file system path for URI Examples -------- >>> docwriter = ApiDocWriter('sphinx') >>> import sphinx >>> modpath = sphinx.__path__[0] >>> res = docwriter._uri2path('sphinx.builder') >>> res == os.path.join(modpath, 'builder.py') True >>> res = docwriter._uri2path('sphinx') >>> res == os.path.join(modpath, '__init__.py') True >>> docwriter._uri2path('sphinx.does_not_exist') ''' if uri == self.package_name: return os.path.join(self.root_path, '__init__.py') path = uri.replace('.', os.path.sep) path = path.replace(self.package_name + os.path.sep, '') path = os.path.join(self.root_path, path) # XXX maybe check for extensions as well? if os.path.exists(path + '.py'): # file path += '.py' elif os.path.exists(os.path.join(path, '__init__.py')): path = os.path.join(path, '__init__.py') else: return None return path def _path2uri(self, dirpath): ''' Convert directory path to uri ''' relpath = dirpath.replace(self.root_path, self.package_name) if relpath.startswith(os.path.sep): relpath = relpath[1:] return relpath.replace(os.path.sep, '.') def _parse_module(self, uri): ''' Parse module defined in *uri* ''' filename = self._uri2path(uri) if filename is None: # nothing that we could handle here. return ([],[]) f = open(filename, 'rt') functions, classes = self._parse_lines(f) f.close() return functions, classes def _parse_lines(self, linesource): ''' Parse lines of text for functions and classes ''' functions = [] classes = [] for line in linesource: if line.startswith('def ') and line.count('('): # exclude private stuff name = self._get_object_name(line) if not name.startswith('_'): functions.append(name) elif line.startswith('class '): # exclude private stuff name = self._get_object_name(line) if not name.startswith('_'): classes.append(name) else: pass functions.sort() classes.sort() return functions, classes def generate_api_doc(self, uri): '''Make autodoc documentation template string for a module Parameters ---------- uri : string python location of module - e.g 'sphinx.builder' Returns ------- S : string Contents of API doc ''' # get the names of all classes and functions functions, classes = self._parse_module(uri) if not len(functions) and not len(classes): print 'WARNING: Empty -',uri # dbg return '' # Make a shorter version of the uri that omits the package name for # titles uri_short = re.sub(r'^%s\.' % self.package_name,'',uri) ad = '.. AUTO-GENERATED FILE -- DO NOT EDIT!\n\n' chap_title = uri_short ad += (chap_title+'\n'+ self.rst_section_levels[1] * len(chap_title) + '\n\n') # Set the chapter title to read 'module' for all modules except for the # main packages if '.' in uri: title = 'Module: :mod:`' + uri_short + '`' else: title = ':mod:`' + uri_short + '`' ad += title + '\n' + self.rst_section_levels[2] * len(title) if len(classes): ad += '\nInheritance diagram for ``%s``:\n\n' % uri ad += '.. inheritance-diagram:: %s \n' % uri ad += ' :parts: 3\n' ad += '\n.. automodule:: ' + uri + '\n' ad += '\n.. currentmodule:: ' + uri + '\n' multi_class = len(classes) > 1 multi_fx = len(functions) > 1 if multi_class: ad += '\n' + 'Classes' + '\n' + \ self.rst_section_levels[2] * 7 + '\n' elif len(classes) and multi_fx: ad += '\n' + 'Class' + '\n' + \ self.rst_section_levels[2] * 5 + '\n' for c in classes: ad += '\n:class:`' + c + '`\n' \ + self.rst_section_levels[multi_class + 2 ] * \ (len(c)+9) + '\n\n' ad += '\n.. autoclass:: ' + c + '\n' # must NOT exclude from index to keep cross-refs working ad += ' :members:\n' \ ' :undoc-members:\n' \ ' :show-inheritance:\n' if multi_fx: ad += '\n' + 'Functions' + '\n' + \ self.rst_section_levels[2] * 9 + '\n\n' elif len(functions) and multi_class: ad += '\n' + 'Function' + '\n' + \ self.rst_section_levels[2] * 8 + '\n\n' for f in functions: # must NOT exclude from index to keep cross-refs working ad += '\n.. autofunction:: ' + uri + '.' + f + '\n\n' return ad def _survives_exclude(self, matchstr, match_type): ''' Returns True if *matchstr* does not match patterns ``self.package_name`` removed from front of string if present Examples -------- >>> dw = ApiDocWriter('sphinx') >>> dw._survives_exclude('sphinx.okpkg', 'package') True >>> dw.package_skip_patterns.append('^\\.badpkg$') >>> dw._survives_exclude('sphinx.badpkg', 'package') False >>> dw._survives_exclude('sphinx.badpkg', 'module') True >>> dw._survives_exclude('sphinx.badmod', 'module') True >>> dw.module_skip_patterns.append('^\\.badmod$') >>> dw._survives_exclude('sphinx.badmod', 'module') False ''' if match_type == 'module': patterns = self.module_skip_patterns elif match_type == 'package': patterns = self.package_skip_patterns else: raise ValueError('Cannot interpret match type "%s"' % match_type) # Match to URI without package name L = len(self.package_name) if matchstr[:L] == self.package_name: matchstr = matchstr[L:] for pat in patterns: try: pat.search except AttributeError: pat = re.compile(pat) if pat.search(matchstr): return False return True def discover_modules(self): ''' Return module sequence discovered from ``self.package_name`` Parameters ---------- None Returns ------- mods : sequence Sequence of module names within ``self.package_name`` Examples -------- >>> dw = ApiDocWriter('sphinx') >>> mods = dw.discover_modules() >>> 'sphinx.util' in mods True >>> dw.package_skip_patterns.append('\.util$') >>> 'sphinx.util' in dw.discover_modules() False >>> ''' modules = [self.package_name] # raw directory parsing for dirpath, dirnames, filenames in os.walk(self.root_path): # Check directory names for packages root_uri = self._path2uri(os.path.join(self.root_path, dirpath)) for dirname in dirnames[:]: # copy list - we modify inplace package_uri = '.'.join((root_uri, dirname)) if (self._uri2path(package_uri) and self._survives_exclude(package_uri, 'package')): modules.append(package_uri) else: dirnames.remove(dirname) # Check filenames for modules for filename in filenames: module_name = filename[:-3] module_uri = '.'.join((root_uri, module_name)) if (self._uri2path(module_uri) and self._survives_exclude(module_uri, 'module')): modules.append(module_uri) return sorted(modules) def write_modules_api(self, modules,outdir): # write the list written_modules = [] for m in modules: api_str = self.generate_api_doc(m) if not api_str: continue # write out to file outfile = os.path.join(outdir, m + self.rst_extension) fileobj = open(outfile, 'wt') fileobj.write(api_str) fileobj.close() written_modules.append(m) self.written_modules = written_modules def write_api_docs(self, outdir): """Generate API reST files. Parameters ---------- outdir : string Directory name in which to store files We create automatic filenames for each module Returns ------- None Notes ----- Sets self.written_modules to list of written modules """ if not os.path.exists(outdir): os.mkdir(outdir) # compose list of modules modules = self.discover_modules() self.write_modules_api(modules,outdir) def write_index(self, outdir, froot='gen', relative_to=None): """Make a reST API index file from written files Parameters ---------- path : string Filename to write index to outdir : string Directory to which to write generated index file froot : string, optional root (filename without extension) of filename to write to Defaults to 'gen'. We add ``self.rst_extension``. relative_to : string path to which written filenames are relative. This component of the written file path will be removed from outdir, in the generated index. Default is None, meaning, leave path as it is. """ if self.written_modules is None: raise ValueError('No modules written') # Get full filename path path = os.path.join(outdir, froot+self.rst_extension) # Path written into index is relative to rootpath if relative_to is not None: relpath = outdir.replace(relative_to + os.path.sep, '') else: relpath = outdir idx = open(path,'wt') w = idx.write w('.. AUTO-GENERATED FILE -- DO NOT EDIT!\n\n') w('.. toctree::\n\n') for f in self.written_modules: w(' %s\n' % os.path.join(relpath,f)) idx.close() pymvpa-0.4.8/tools/bib2rst_ref.py000077500000000000000000000255311174541445200167740ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import _bibtex import re def compareBibByDate(a, b): """Sorting helper.""" x = a[1][1] y = b[1][1] if x.has_key('year'): if y.has_key('year'): if x['year'].isdigit(): if y['year'].isdigit(): # x and y have dates xyear = int( x['year'] ) yyear = int( y['year'] ) comp = cmp(xyear, yyear) if comp == 0: return compareBibByAuthor(a,b) else: return (-1)*comp else: # x has date, y not -> y is first return 1 else: if y['year'][0].isdigit(): return -1 else: return compareBibByAuthor(a,b) else: # only x has date return 1 else: if y.has_key('year'): return -1 else: # neither nor y have dates return compareBibByAuthor(a, b) def compareBibByAuthor(a,b): """Sorting helper.""" x = a[1][1] y = b[1][1] if x.has_key('author'): if y.has_key('author'): return cmp(joinAuthorList(x['author']), joinAuthorList(y['author'])) else: # only x has author return 1 else: if y.has_key('author'): return -1 else: # neither nor y have authors return 0 def formatSurname(s, keep_full = False): """Recieves a string with surname(s) and returns a string with nicely concatenated surnames or initals (with dots). """ # clean spaces s = s.strip() # go home if empty if not len(s): return '' if not keep_full: # only keep initial s = s[0] if len(s) == 1: # add final dot s += '.' return s def formatAuthor(s, full_surname = False): """ Takes a string as argument an tries to determine the lastname and surname(s) of a single author. Returns a string with 'lastname, surname(s)'. The function takes care of 'von's and other funny prefixes. """ s = s.strip() # nothing? take ball, go home if not len(s): return s if s.count(','): # assume we have 'lastname, surname(s)' slist = s.split(',') # take lastname verbatim lastname = slist[0].strip() # remerge possible surnames with spaces if any surnames = u' '.join(slist[1:]) # get nicely formated surnames concat with spaces surname = u' '.join( [ formatSurname(i, full_surname) for i in surnames.split() ] ) else: # assume last entity is lastname the rest is surnames # check for lastname prefixes slist = s.split() if len(slist) < 2: # only lastname -> finished return slist[0] # check for order if len(slist[-1]) == 1 or slist[-1].endswith('.'): # seems like we have lastname->surname order if slist[0] in ('von', 'van'): lastname = slist[0] + ' ' + slist[1] surnames = u' '.join(slist[2:]) else: lastname = slist[0] surnames = u' '.join(slist[1:]) else: # the lastname is last lastname = slist[-1] if slist[-2] in ('von', 'van'): lastname = slist[-2] + u' ' + lastname surnames = u' '.join(slist[:-2]) else: surnames = u' '.join(slist[:-1]) surname = u' '.join( [ formatSurname(i, full_surname) for i in surnames.split() ] ) return lastname + u', ' + surname def joinAuthorList(alist): """ Nicely concatenate a list of author with ', ' and a final ' & '. Each author is passed to formatAuthor() internally. """ if not len(alist) > 1: return formatAuthor(alist[0]) ret = u', '.join( [ formatAuthor(a) for a in alist[:-1] ] ) ret += u' & ' + formatAuthor( alist[-1] ) return ret def formatProperty(string, indent, max_length = 80): """ Helper function to place linebreaks and indentation for pretty printing. """ length = len(string) lines = [] pos = 0 while pos < length: if not pos == 0: justify = ''.ljust(indent) line_length = max_length - indent else: justify = '' line_length = max_length if length - pos > line_length: lastspace = string.rfind(' ', pos + 1, pos + line_length) else: lastspace = length if lastspace == -1 or lastspace < indent + 1: lastspace = string.find(' ', pos + line_length) # if no space in the whole string if lastspace == -1: lastspace = length lines.append(justify + string[pos:lastspace]) pos = lastspace + 1 return '\n'.join(lines) class BibTeX(dict): """Read bibtex file as dictionary. Each entry is accessible by its bibtex ID. An entry is a two-tuple `(item_type, dict)`, where `item_type` is eg. article, book, ... and `dict` is a dictionary with all bibtex properties for the respective item. In this dictionary all properties are store as plain strings, except for the list of authors (which is a list of strings) and the pages which is a two-tuple with first and last page. """ def __init__(self, filename = None): if not filename == None: self.open(filename) # spaces to be used for indentation self.indent = 17 # maximum line length self.line_length = 80 def open(self, filename): """Read and parse bibtex file using python-bibtex.""" # figure out what the second argument means file = _bibtex.open_file(filename, 1) while 1: entry = _bibtex.next(file) if entry == None: break eprops = {} for k,v in entry[4].iteritems(): # figure out what the last argument really does # leaving in -1 seems to be save value = _bibtex.expand(file, v, 0)[2] try: value = unicode(value, 'utf-8') except UnicodeDecodeError, e: print "ERROR: Failed to decode string '%s'" % value raise if k.lower() == 'author': value = value.split(' and ') if k.lower() == 'pages': value = tuple(value.replace('-', ' ').split()) eprops[k] = value # bibtex key is dict key self[entry[0]] = (entry[1],eprops) def __str__(self): """Pretty print in bibtex format.""" bibstring = '' for k, v in self.iteritems(): bibstring += '@' + v[0] + ' { ' + k for ek, ev in v[1].iteritems(): if ek.lower() == 'author': ev = ' and '.join(ev) if ek.lower() == 'pages': ev = '--'.join(ev) keyname = ' ' + ek bibstring += ',\n' bibstring += formatProperty( keyname.ljust(15) + '= {' + ev + '}', self.indent, self.line_length ) bibstring += "\n}\n\n" return bibstring.encode(self.enc) def bib2rst_references(bib): """Compose the reference page.""" # do it in unicode rst = u'' intro = open('doc/misc/references.in').readlines() rst += intro[0] rst += " #\n # THIS IS A GENERATED FILE -- DO NOT EDIT!\n #\n" rst += ''.join(intro[1:]) rst += '\n\n' biblist = bib.items() biblist.sort(compareBibByAuthor) for id, (cat, prop) in biblist: # put reference target for citations rst += '.. _' + id + ':\n\n' # compose the citation as the list item label cit = u'' # initial details equal for all item types if prop.has_key('author'): cit += u'**' + joinAuthorList(prop['author']) + u'**' if prop.has_key('year'): cit += ' (' + prop['year'] + ').' if prop.has_key('title'): cit += ' ' + smoothRsT(prop['title']) if not prop['title'].endswith('.'): cit += '.' # appendix for journal articles if cat.lower() == 'article': # needs to have journal, volume, pages cit += ' *' + prop['journal'] + '*' if prop.has_key('volume'): cit += ', *' + prop['volume'] + '*' if prop.has_key('pages'): cit += ', ' + '-'.join(prop['pages']) elif cat.lower() == 'book': # needs to have publisher, address cit += ' ' + prop['publisher'] cit += ': ' + prop['address'] elif cat.lower() == 'manual': cit += ' ' + prop['address'] else: print "WARNING: Cannot handle bibtex item type:", cat cit += '.' # beautify citation with linebreaks and proper indentation # damn, no. list label has to be a single line... :( #rst += formatProperty(cit, 0) rst += cit # place optional paper summary if prop.has_key('pymvpa-summary'): rst += '\n *' + formatProperty(prop['pymvpa-summary'], 2) + '*\n' # make keywords visible if prop.has_key('pymvpa-keywords'): rst += '\n Keywords: ' \ + ', '.join([':keyword:`' + kw.strip() + '`' for kw in prop['pymvpa-keywords'].split(',')]) \ + '\n' # place DOI link if prop.has_key('doi'): rst += '\n DOI: ' if not prop['doi'].startswith('http://dx.doi.org/'): rst += 'http://dx.doi.org/' rst += prop['doi'] rst += '\n' # use URL if no DOI available elif prop.has_key('url'): rst += '\n URL: ' + prop['url'] + '\n' rst += '\n\n' # end list with blank line rst += '\n\n' return rst.encode('utf-8') def smoothRsT(s): """Replace problematic stuff with less problematic stuff.""" s = re.sub("``", '"', s) # assuming that empty strings to not occur in a bib file s = re.sub("''", '"', s) return s # do it bib = BibTeX('doc/misc/references.bib') refpage = open('doc/references.rst', 'w') refpage.write(bib2rst_references(bib)) refpage.close() pymvpa-0.4.8/tools/bisect_mtrand.sh000077500000000000000000000010051174541445200173570ustar00rootroot00000000000000#!/bin/bash # This is the script to be used with git bisect to figure out first # commit when testBasic starts to fail # to use it just do # git bisect start yoh/master maint/0.4 -- # git bisect run tools/bisect_mtrand.sh # where yoh/master is known place where that test fails # and maint/0.4 where it doesn't # # it would stop at the first bad commit make clean make || exit 125 # skip commits where build is broken PYTHONPATH=$PWD nosetests mvpa/tests/test_datameasure.py:SensitivityAnalysersTests.testBasic pymvpa-0.4.8/tools/build_modref_templates.py000077500000000000000000000010371174541445200212750ustar00rootroot00000000000000#!/usr/bin/env python """Script to auto-generate our API docs.""" import os from apigen import ApiDocWriter if __name__ == '__main__': package = 'mvpa' outdir = os.path.join('build', 'doc', 'modref') docwriter = ApiDocWriter(package, rst_extension='.rst') #docwriter.package_skip_patterns += ['\\.fixes$', # '\\.externals$'] docwriter.write_api_docs(outdir) #docwriter.write_index(outdir, 'gen', relative_to='api') print '%d files written' % len(docwriter.written_modules) pymvpa-0.4.8/tools/daily_tests.sh000077500000000000000000000067471174541445200171070ustar00rootroot00000000000000#!/bin/bash # emacs: -*- mode: shell-script; indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=sh sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # Helper to run all the tests daily at night # set -e # what branches to test BRANCHES='master yoh/master mh/master' # maint/0.4' # where to send reports EMAILS='yoh@onerussian.com,michael.hanke@gmail.com' precmd= #precmd="echo C: " # XXX repo="git://git.debian.org/git/pkg-exppsy/pymvpa.git" ds=`date +"20%y%m%d_%H%M%S"` topdir=$HOME/proj/pymvpa logdir="$topdir/logs/daily/pymvpa_tests-$ds" tmpfile="$logdir/tmp.log" logfile="$logdir/all.log" # Remove trap "rm -fr $logdir/pymvpa $logdir/tmp.log;" EXIT mkdir -p "$logdir" indent() { sed -e 's/^/ /g' } do_checkout() { $precmd git clean -df | indent $precmd git reset --hard #if [ ! $branch = 'master' ]; then $precmd git checkout -b $branch origin/$branch || : #fi $precmd git checkout $branch } do_build() { $precmd make clean $precmd make } do_clean() { # verify that cleaning works as desired $precmd make clean $precmd git clean -n | grep -q . \ && { git clean -n; return 1; } \ || return 0 } # Not yet can do fine scale unittest separation since maint/0.4, nor # master have it that way... leaving it for future. #MAKE_TESTS="unittest unittest-optimization unittest-debug unittest-badexternals MAKE_TESTS="unittests testmanual testsuite testapiref testsphinx testexamples testcfg" for c in $MAKE_TESTS; do eval "do_$c() { $precmd make $c; }" done # What actions/tests to run per each branch ACTIONS="checkout build $MAKE_TESTS clean" # Counters failed=0 succeeded=0 # skip the tests we can't fully trust to sleep well export MVPA_TESTS_LABILE=no # Lets use backend allowing to draw without DISPLAY export MVPA_MATPLOTLIB_BACKEND=agg # need to be a function to share global failed/succeded sweep() { cd $logdir echo "I:" $(date) # checkout the repository echo "I: Cloning repository" $precmd git clone -q $repo 2>&1 | indent $precmd cd pymvpa # no need to check here since checkout would fail below otherwise # # Sweep through the branches and actionsto test # branches_with_problems= for branch in $BRANCHES; do branch_has_problems= echo echo "I: ---------------{ Branch $branch }--------------" for action in $ACTIONS; do echo -n "I: $action " cmd="do_$action" if $cmd >| $tmpfile 2>&1 ; then echo " ok" succeeded=$(($succeeded+1)) else branch_has_problems+=" $action" failed=$(($failed+1)) echo " ! FAILED ! Output was:" cat $tmpfile | indent fi done if [ "x$branch_has_problems" != x ]; then branches_with_problems+="\n $branch: $branch_has_problems" fi done echo "I: Succeeded $succeeded actions, failed $failed actions." if [ "x$branches_with_problems" != x ]; then echo -e "I: Branches which experienced problems: $branches_with_problems" fi echo echo "I:" $(date) echo "I: Exiting. Logfile $logfile" } sweep >| $logfile 2>&1 # Email only if any test has failed #[ ! $failed = 0 ] && \ # Email always since it is better to see that indeed everything is smooth # and to confirm that it is tested daily cat $logfile | mail -s "PyMVPA: daily testing: +$succeeded/-$failed" $EMAILS pymvpa-0.4.8/tools/epydoc000077500000000000000000000022541174541445200154220ustar00rootroot00000000000000#!/usr/bin/python # # Call the command line interface for Epydoc. # # Make sure that we don't get confused between an epydoc.py script and # the real epydoc package. import sys, os.path from docutils.nodes import NodeVisitor NodeVisitor.optional = ('note') if os.path.exists(os.path.join(sys.path[0], 'epydoc.py')): del sys.path[0] from epydoc.cli import cli # suppress multitude of warnings about profile data missing # import warnings # defaul is supposed to print it only once # warnings.simplefilter('default', Warning) # epydoc uses its own # lets override it completely import epydoc.log import os epydoc_warnings = os.environ.get('MVPA_EPYDOC_WARNINGS', 'all').lower() _logged_warnings = set() if epydoc_warnings == 'all': pass elif epydoc_warnings == 'once': warning_orig = epydoc.log.warning def once_warning(*messages): smsg = str(messages) if not (smsg in _logged_warnings): warning_orig(*messages) _logged_warnings.add(smsg) epydoc.log.warning = once_warning elif epydoc_warnings == 'none': epydoc.log.warning = lambda *x:None else: print "ERROR: Unknown control for epydoc warnings %s. " \ "Known are all, once, none" % epydoc_warnings cli() pymvpa-0.4.8/tools/ex2rst000077500000000000000000000177301174541445200153730ustar00rootroot00000000000000#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Helper to automagically generate ReST versions of examples""" __docformat__ = 'restructuredtext' import os import sys import re import glob from optparse import OptionParser def exfile2rst(filename): """Open a Python script and convert it into an ReST string. """ # output string s = '' # open source file xfile = open(filename) # parser status vars inheader = True indocs = False doc2code = False code2doc = False # an empty line found in the example enables the check for a potentially # indented docstring starting on the next line (as an attempt to exclude # function or class docstrings) last_line_empty = False # indentation of indented docstring, which is removed from the RsT output # since we typically do not want an indentation there. indent_level = 0 for line in xfile: # skip header if inheader and \ not (line.startswith('"""') or line.startswith("'''")): continue # determine end of header if inheader and (line.startswith('"""') or line.startswith("'''")): inheader = False # strip comments and remove trailing whitespace if not indocs and last_line_empty: # first remove leading whitespace and store indent level cleanline = line[:line.find('#')].lstrip() indent_level = len(line) - len(cleanline) - 1 cleanline = cleanline.rstrip() else: cleanline = line[:line.find('#')].rstrip() if not indocs and line == '\n': last_line_empty = True else: last_line_empty = False # if we have something that should go into the text if indocs \ or (cleanline.startswith('"""') or cleanline.startswith("'''")): proc_line = None # handle doc start if not indocs: # guarenteed to start with """ if len(cleanline) > 3 \ and (cleanline.endswith('"""') \ or cleanline.endswith("'''")): # single line doc code2doc = True doc2code = True proc_line = cleanline[3:-3] else: # must be start of multiline block indocs = True code2doc = True # rescue what is left on the line proc_line = cleanline[3:] # strip """ else: # we are already in the docs # handle doc end if cleanline.endswith('"""') or cleanline.endswith("'''"): indocs = False doc2code = True # rescue what is left on the line proc_line = cleanline[:-3] # reset the indentation indent_level = 0 else: # has to be documentation # if the indentation is whitespace remove it, other wise # keep it (accounts for some variation in docstring # styles real_indent = \ indent_level - len(line[:indent_level].lstrip()) proc_line = line[real_indent:] if code2doc: code2doc = False s += '\n' if proc_line: s += proc_line.rstrip() + '\n' else: if doc2code: doc2code = False s += '\n::\n' # has to be code s += ' %s' % line xfile.close() return s def exfile2rstfile(filename, opts): """ """ # doc filename dfilename = os.path.basename(filename[:-3]) + '.rst' # open dest file dfile = open(os.path.join(opts.outdir, os.path.basename(dfilename)), 'w') # place header dfile.write('.. AUTO-GENERATED FILE -- DO NOT EDIT!\n\n') # place cross-ref target dfile.write('.. _example_' + dfilename[:-4] + ':\n\n') # write converted ReST dfile.write(exfile2rst(filename)) if opts.sourceref: # write post example see also box dfile.write("\n.. seealso::\n The full source code of this example is " "included in the %s source distribution (`%s`).\n" % (opts.project, filename)) dfile.close() def main(): parser = OptionParser( \ usage="%prog [options] [...]", \ version="%prog 0.1", description="""\ %prog converts Python scripts into restructered text (ReST) format suitable for integration into the Sphinx documentation framework. Its key feature is that it extracts stand-alone (unassigned) single, or multiline triple-quote docstrings and moves them out of the code listing so that they are rendered as regular ReST, while at the same time maintaining their position relative to the listing. The detection of such docstrings is exclusively done by parsing the raw code so it is never actually imported into a running Python session. Docstrings have to be written using triple quotes (both forms " and ' are possible). It is recommend that such docstrings are preceded and followed by an empty line. Intended docstring can make use of the full linewidth from the second docstring line on. If the indentation of multiline docstring is maintained for all lines, the respective indentation is removed in the ReST output. The parser algorithm automatically excludes file headers and starts with the first (module-level) docstring instead. """ ) # define options parser.add_option('--verbose', action='store_true', dest='verbose', default=False, help='print status messages') parser.add_option('-x', '--exclude', action='append', dest='excluded', help="""\ Use this option to exclude single files from the to be parsed files. This is especially useful to exclude files when parsing complete directories. This option can be specified multiple times. """) parser.add_option('-o', '--outdir', action='store', dest='outdir', type='string', default=None, help="""\ Target directory to write the ReST output to. This is a required option. """) parser.add_option('--no-sourceref', action='store_false', default=True, dest='sourceref', help="""\ If specified, the source reference section will be suppressed. """) parser.add_option('--project', type='string', action='store', default='', dest='project', help="""\ Name of the project that contains the examples. This name is used in the 'seealso' source references. Default: '' """) # parse options (opts, args) = parser.parse_args() # read sys.argv[1:] by default # check for required options if opts.outdir is None: print('Required option -o, --outdir not specified.') sys.exit(1) # build up list of things to parse toparse = [] for t in args: # expand dirs if os.path.isdir(t): # add all python files in that dir toparse += glob.glob(os.path.join(t, '*.py')) else: toparse.append(t) # filter parse list if not opts.excluded is None: toparse = [t for t in toparse if not t in opts.excluded] toparse_list = toparse toparse = set(toparse) if len(toparse) != len(toparse_list): print('Ignoring duplicate parse targets.') if not os.path.exists(opts.outdir): os.mkdir(outdir) # finally process all examples for t in toparse: exfile2rstfile(t, opts) if __name__ == '__main__': main() pymvpa-0.4.8/tools/fillin_states000077500000000000000000000055301174541445200167770ustar00rootroot00000000000000#!/usr/bin/python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """""" __docformat__ = 'restructuredtext' if not __name__ == "__main__": raise ValueError, "Go away -- nothing to look here for as a module" import sys, os, re from optparse import OptionParser from os import environ, path from textwrap import wrap from mvpa.base import verbose from mvpa.misc.cmdline import parser, opts parser.usage = """Usage: %s [options] infile outfile...""" % sys.argv[0] parser.option_groups = [opts.common] (options, files) = parser.parse_args() if len(files)!=2: print "Need input and output files" sys.exit(1) if files[0] == files[1]: print "For now provide two different names" sys.exit(1) infile = open(files[0], 'r') inlines = infile.readlines() infile.close() outlines = [] reg = re.compile('^.. IncludeStates: +(?P\S*) +(?P\S*)') i = 0 while i < len(inlines): line = inlines[i] i += 1 outlines.append(line) reg_res = reg.search(line) if not reg_res: continue else: verbose(2, "Line: %s" % line) d = reg_res.groupdict() # import asked module exec "from mvpa.%s import %s as Victim" % (d['path'], d['cls']) states = Victim._collections_template['states'].items keys = states.keys() keys.sort() isthere = inlines[i+1].startswith("Supported st") suffix = ['', 's'][len(keys)>1] outlines.append(""" Supported state%s: ================== ============================================== ========= State Name Description Default ------------------ ---------------------------------------------- --------- """%suffix) for k in keys: verbose(3, " " + k) v = states[k] doc = v.__doc__ if not doc.endswith('.'): doc += '.' doc = wrap(doc, 46) k, e = k[:], ['Disabled', 'Enabled'][v.isEnabled] for d in doc: new_line = "%-19s %-46s %s" % \ (k, d, e) k, e = "", "" outlines.append(new_line.rstrip()+"\n") outlines.append("""================== ============================================== =========\n""") if isthere: count = 0 # aborb "older" lines until we hit good one while count < 2: count += inlines[i].startswith('======') i += 1 outfile = open(files[1], 'w') [outfile.write(x) for x in outlines] outfile.close() pymvpa-0.4.8/tools/mpkg_wrapper.py000066400000000000000000000015531174541445200172620ustar00rootroot00000000000000# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Simple wrapper to use setuptools extension bdist_mpkg with PyMVPA distutils setup.py. This script is a minimal version of a wrapper script shipped with the bdist_mpkg packge. """ __docformat__ = 'restructuredtext' import sys import setuptools import bdist_mpkg def main(): del sys.argv[0] sys.argv.insert(1, 'bdist_mpkg') g = dict(globals()) g['__file__'] = sys.argv[0] g['__name__'] = '__main__' execfile(sys.argv[0], g, g) if __name__ == '__main__': main() pymvpa-0.4.8/tools/pdfbook.c000066400000000000000000000223721174541445200160040ustar00rootroot00000000000000/* * pdfbook.c Rearrange pages in a PDF file into signatures. * * Authors: Tigran Aivazian * Jaap Eldering * Roman Buchert * Pierre Francois * * Based on the algorithm from psutils/psbook.c, which was * written by Angus J. C. Duggan 1991-1995. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * */ #include #include #include #include #include #include #define TMP_INFILE_BASE "input" #define TMP_OUTFILE_BASE "output" #define DEF_PAPERSIZE "a4" char *program; static void usage(void) { fprintf(stderr, "Usage: %s [OPTION]... infile outfile\n" " or: %s [-q] [-p ] -o infile outfile\n" "Rearrange pages for printing as booklet.\n\n" "Options:\n" " -q suppress verbose output\n" " -d debug mode: do not cleanup temporary files\n" " -2 place 2 pages on 1 page of output\n" " -s group pages together in groups of size \n" " must be positive and divisible by 4\n" " -r reduce the last book to minimum required number of pages\n" " -p set the paper size to: a3, a4, a5, b3, b4, b5, letter, legal\n" " or executive (default is determined from infile, %s if unknown)\n" " -o pass directly to LaTeX pdfpages `includepdf' command\n" " see the pdfpages package documentation for possible options\n", program, program, DEF_PAPERSIZE); fflush(stderr); exit(1); } char *alloc_and_copy (char *str) { char *new_str; if ( (new_str = strdup(str)) == NULL ) { fprintf(stderr, "%s: error allocating memory\n", program); exit(1); } return (new_str); } int check_papersize (char *p) { if ((strlen(p) == 2) && ((*p == 'a') || (*p == 'b')) && ((p[1] >= '3') && (p[1] <= '5'))) { return (1); /* a3, a4, a5, b3, b4 or b5 */ } if ((strcmp(p, "letter") == 0) || (strcmp(p, "legal") == 0) || (strcmp(p, "executive") == 0)) { return (1); /* letter, legal or executive */ } return (0); /* invalid paper size */ } char *make_tempdir() { static char dirtemplate[L_tmpnam+10]; char *dirname; if ( (dirname = tempnam(NULL, "pdfbk")) == NULL ) { fprintf(stderr, "%s: error generating temporary directory\n", program); exit(1); } strcpy(dirtemplate, dirname); strcat(dirtemplate, "XXXXXX"); if ( (dirname = mkdtemp(dirtemplate)) == NULL ) { fprintf(stderr, "%s: error generating temporary directory\n", program); exit(1); } return dirname; } char *allocstr(char *format, ...) { va_list ap; char *str; char tmp[2]; int len, n; va_start(ap,format); len = vsnprintf(tmp,1,format,ap); va_end(ap); if ( (str = (char *) malloc(len+1))==NULL ) return NULL; va_start(ap,format); n = vsnprintf(str,len+1,format,ap); va_end(ap); if ( n==-1 || n>len ) { fprintf(stderr, "%s: error allocating memory\n", program); exit(1); } return str; } int main(int argc, char *argv[]) { char *infile = NULL; char *outfile = NULL; char *tmpdir; char *tmptexfile; char *tmpinfile; char *tmpoutfile; FILE *fp, *fout; int *actualpg; static char cmdline[1024]; int quiet = 0; int debug = 0; int nup = 0; int pdfcustom = 0; int signature = 0; int reducelastbook = 0; int npages = 0; int maxpage; int completebooks = 0; int restpages = 0; int restsignature = 0; char *pdfcustom_str = NULL; char *papersize_str = NULL; char origpapersize[32]; int i, c; program = argv[0]; tmpdir = make_tempdir(); while ( (c = getopt(argc, argv, "2qds:o:p:r")) != -1 ) { switch (c) { case 's': signature = atoi(optarg); if (signature < 1 || signature % 4) usage(); break; case 'r': reducelastbook = 1; break; case '2': nup = 1; break; case 'o': pdfcustom = 1; pdfcustom_str = alloc_and_copy(optarg); break; case 'p': papersize_str = alloc_and_copy(optarg); if (check_papersize(papersize_str) == 0) { fprintf(stderr, "%s: bad paper size `%s'\n", program, papersize_str); usage (); } break; case 'q': quiet = 1; break; case 'd': debug = 1; break; default: usage(); } } if ( optind /dev/null 2>&1 < /dev/null", tmpdir, tmptexfile); if (system(cmdline)) { fprintf(stderr, "%s: Failed to generate output, see \"%s/%s.log\" for details\n", program, tmpdir, TMP_OUTFILE_BASE); exit(1); } sprintf(cmdline, "cp %s %s", tmpoutfile, outfile); if (system(cmdline)) { fprintf(stderr, "%s: Failed to write \"%s\" file\n", program, outfile); exit(1); } if (!debug) { sprintf(cmdline, "rm -rf %s", tmpdir); system(cmdline); } return 0; } pymvpa-0.4.8/tools/profile000077500000000000000000000121711174541445200155760ustar00rootroot00000000000000#!/usr/bin/python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """""" __docformat__ = 'restructuredtext' import sys, os from optparse import OptionParser from os import environ, path from mvpa.base.verbosity import LevelLogger from mvpa.misc.cmdline import opt if __name__ == "__main__": usage = """Usage: %s [options] ... """ % sys.argv[0] # default options convert2kcache = True displaykcachegrinder = True printstats = False pfilename = None pstatsfilename = None profilelines = True profilelevel = 10 # how many most hungry to list in stats run = True # either to run profiling at all verbose = LevelLogger(handlers=[sys.stderr]) verbose.level = 1 # do we need to know lots by default? :-) verbose.indent = '> ' # to discriminate easily with program output verbose(2, "Initial cmdline params: %s" % `sys.argv`) removed = sys.argv.pop(0) verbose(3, "Removed %s" % removed) verbose(3, "Remained ", sys.argv) if not len(sys.argv): verbose(0, "No python module to profile specified.") print usage sys.exit(1) while sys.argv[0].startswith('-'): if sys.argv[0] in ["-v", "--verbose"]: verbose.level = int(sys.argv[1]) sys.argv.pop(0) elif sys.argv[0] in ["-l", "--level"]: profilelevel = int(sys.argv[1]) sys.argv.pop(0) elif sys.argv[0] in ["-o", "--output-file"]: pfilename = sys.argv[1] sys.argv.pop(0) elif sys.argv[0] in ["-O", "--output-statsfile"]: pstatsfilename = sys.argv[1] sys.argv.pop(0) elif sys.argv[0] in ["-s", "--stats"]: printstats = True verbose(2, "Enabling printing stats") convert2kcache = False displaykcachegrinder = False verbose(2, "Disabling conversion to kcache") elif sys.argv[0] in ["-n", "--no-run"]: run = False verbose(2, "Disabling running main. Just do conversions and stats") elif sys.argv[0] in ["-P", "--no-profilelines"]: profilelines = False verbose(2, "Disabling profiling lines") elif sys.argv[0] in ["-K", "--no-kcache"]: convert2kcache = False displaykcachegrinder = False verbose(2, "Disabling conversion to kcache") else: verbose(0, "UNKNOWN parameter %s. Exiting" % sys.argv[0]) print usage sys.exit(1) sys.argv.pop(0) cmdname = sys.argv[0] dirname = path.dirname(cmdname) (root, ext) = path.splitext(path.basename(cmdname)) verbose(2, "Adding '%s' to sys.path " % dirname) sys.path.append(dirname) verbose(3, "sys.path is %s " % `sys.path`) # now do profiling import hotshot if pfilename is None: pfilename = cmdname + ".prof" if run: verbose(1, "Importing %s " % root) try: exec "import %s as runnable" % root except SystemExit: pass if not runnable.__dict__.has_key('main'): verbose(0, "OOPS: file/module %s has no function main defined" \ % cmdname) sys.exit(1) verbose(2, "Creating profiler instance") prof = hotshot.Profile(pfilename, lineevents=profilelines) try: # actually return values are never setup # since unittest.main sys.exit's verbose(1, "Calling main() with a profiler") results = prof.runcall( runnable.main ) verbose(4, "Results of profiler call are %s" % `results`) except SystemExit: pass verbose(1, "Saving profile data into %s" % pfilename) prof.close() verbose(2, "Closed profiler") if printstats or pstatsfilename: import hotshot.stats verbose(1, "Loading profile file to print statistics") stats = hotshot.stats.load(pfilename) if printstats: stats.strip_dirs() stats.sort_stats('time', 'calls') stats.print_stats(profilelevel) if pstatsfilename: stats.dump_stats(pstatsfilename) kfilename = pfilename + ".kcache" if convert2kcache: cmd = "hotshot2calltree -o %s %s" % (kfilename, pfilename) verbose(1, "Converting to kcache") verbose(3, "Calling '%s'" % cmd) if os.system(cmd): verbose(0, "!!! Make sure to install kcachegrind-converters ;-)") sys.exit(1) if displaykcachegrinder: verbose(1, "Running kcachegrind") if os.system('kcachegrind %s' % kfilename): verbose(0, "!!! Make sure to install kcachegrind ;-)") sys.exit(1) else: print "Go away -- nothing to look here for as a module" pymvpa-0.4.8/tools/refactor.sh000077500000000000000000000025271174541445200163600ustar00rootroot00000000000000#!/bin/bash # emacs: -*- mode: shell-script; c-basic-offset: 4; tab-width: 4; indent-tabs-mode: t -*- # vi: set ft=sh sts=4 ts=4 sw=4 noet: ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the PyMVPA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## git grep -l mvpa | grep -v refactor | \ xargs sed -i \ -e 's,optHelp,opt.help,g' \ -e "s,optVerbose,opt.verbose,g" \ -e "s,optClf,opt.clf,g" \ -e "s,optRadius,opt.radius,g" \ -e "s,optKNearestDegree,opt.knearestdegree,g" \ -e "s,optSVMC,opt.svm_C,g" \ -e "s,optSVMNu,opt.svm_nu,g" \ -e "s,optSVMGamma,opt.svm_gamma,g" \ -e "s,optCrossfoldDegree,opt.crossfolddegree,g" \ -e "s,optZScore,opt.zscore,g" \ -e "s,optTr,opt.tr,g" \ -e "s,optDetrend,opt.detrend,g" \ -e "s,optBoxLength,opt.boxlength,g" \ -e "s,optBoxOffset,opt.boxoffset,g" \ -e "s,optChunk,opt.chunk,g" \ -e "s,optChunkLimits,opt.chunklimits,g" \ -e "s,optsCommon,opts.common,g" \ -e "s,optsKNN,opts.KNN,g" \ -e "s,optsSVM,opts.SVM,g" \ -e "s,optsGener,opts.general,g" \ -e "s,optsPreproc,opts.preproc,g" \ -e "s,optsBox,opts.box,g" \ -e "s,optsChunk,opts.chunk,g" ## Uncomment and move up any additional refactorings which needed # -e 's,training_confusions,confusion,g' pymvpa-0.4.8/tools/sitemap.sh000077500000000000000000000011621174541445200162070ustar00rootroot00000000000000#!/bin/bash # # Generate a XML sitemap to make the search engines love the website. # baseurl="http://v04.pymvpa.org" siteroot="build/website" cat << EOT $baseurl/ $(stat -c '%y' $siteroot/index.html | cut -d ' ' -f 1,1) 1.0 EOT for file in $(find $siteroot/ -maxdepth 1 -name '*.html' -o -name '*.pdf'); do cat << EOT $baseurl/$(basename $file) $(stat -c '%y' $file | cut -d ' ' -f 1,1) EOT done echo "" pymvpa-0.4.8/tools/state_refactor.sh000077500000000000000000000034221174541445200175530ustar00rootroot00000000000000#!/bin/bash known_states="\(all_label_counts\|confusion\|confusions\|emp_error\|errors\|history\|ndiscarded\|nfeatures\|null_errors\|predictions\|raw_predictions\|raw_values\|results\|selected_ids\|sensitivities\|sensitivity\|splits\|state[123]\|trained_confusion\|trained_confusions\|transerrors\|values\)" sed -i \ -e 's/\(\W\)State\.)/\1Stateful\./g' \ -e 's/State\.__init/Stateful\.__init/g' \ -e 's/State\.__str/Stateful\.__str/g' \ -e 's/\.enableState/\.states\.enable/g' \ -e 's/\.enableStates/\.states\.enable/g' \ -e 's/\.enabledStates/\.states\.enabled/g' \ -e 's/\.disableState/\.states\.disable/g' \ -e 's/\.disableStates/\.states\.disable/g' \ -e 's/\.listStates/\.states\.listing/g' \ -e 's/\.hasState/\.states\.isKnown/g' \ -e 's/\.isStateEnabled/\.states\.isEnabled/g' \ -e 's/\._enableStatesTemporarily/\.states\._enableTemporarily/g' \ -e 's/\.isStateActive/\.states\.isActive/g' \ -e "s/\(\w\)[[]\([\"']\)$known_states\2[]]/\1\.\3/g" \ -e "s/self\._registerState(\([\"']\)$known_states\1\,* */\2 = StateVariable(/g" \ $@ exit 0 sed -i \ -e 's/(State)/(Stateful)/g' \ -e 's/import State/import StateVariable, Stateful/g' \ -e "s/self\._registerState(\([\"']\)$known_states\1\,* */\2 = StateVariable(/g" \ $@ exit 0 obtained list of all state variables ever known by grep '_registerState(' *py `find ../mvpa -iname \*.py` 2>/dev/null| \ grep -v 'def _reg' | sed -e "s/.*(\([\"']\)\([^ ,]*\)\1.*/\2/g" | \ grep -v mvpa | sort | uniq | tr '\n' '\|'; echo (State) Stateful enableState enable enabledStates enabled listStates listing states items _enableStatesTemporarily _enableTemporarily _getRegisteredStates _getNames hasState isKnown isStateEnabled isEnabled isStateActive isActive listStates _getListing GONE: enableStates disableStates __enabledisableall pymvpa-0.4.8/tools/valgrind-python000077500000000000000000000002541174541445200172620ustar00rootroot00000000000000#!/bin/bash path=$(dirname $0) valgrind --tool=memcheck --leak-check=full --show-reachable=yes --leak-resolution=med --suppressions=$path/valgrind-python.supp python $* pymvpa-0.4.8/tools/valgrind-python.supp000066400000000000000000000171121174541445200202460ustar00rootroot00000000000000# # This is a valgrind suppression file that should be used when using valgrind. # # Here's an example of running valgrind: # # cd python/dist/src # valgrind --tool=memcheck --suppressions=Misc/valgrind-python.supp \ # ./python -E -tt ./Lib/test/regrtest.py -u bsddb,network # # You must edit Objects/obmalloc.c and uncomment Py_USING_MEMORY_DEBUGGER # to use the preferred suppressions with Py_ADDRESS_IN_RANGE. # # If you do not want to recompile Python, you can uncomment # suppressions for PyObject_Free and PyObject_Realloc. # # See Misc/README.valgrind for more information. # all tool names: Addrcheck,Memcheck,cachegrind,helgrind,massif { ADDRESS_IN_RANGE/Invalid read of size 4 Memcheck:Addr4 fun:Py_ADDRESS_IN_RANGE } { ADDRESS_IN_RANGE/Invalid read of size 4 Memcheck:Value4 fun:Py_ADDRESS_IN_RANGE } { ADDRESS_IN_RANGE/Invalid read of size 8 (x86_64 aka amd64) Memcheck:Value8 fun:Py_ADDRESS_IN_RANGE } { ADDRESS_IN_RANGE/Conditional jump or move depends on uninitialised value Memcheck:Cond fun:Py_ADDRESS_IN_RANGE } # # Leaks (including possible leaks) # Hmmm, I wonder if this masks some real leaks. I think it does. # Will need to fix that. # { Handle PyMalloc confusing valgrind (possibly leaked) Memcheck:Leak fun:realloc fun:_PyObject_GC_Resize fun:COMMENT_THIS_LINE_TO_DISABLE_LEAK_WARNING } { Handle PyMalloc confusing valgrind (possibly leaked) Memcheck:Leak fun:malloc fun:_PyObject_GC_New fun:COMMENT_THIS_LINE_TO_DISABLE_LEAK_WARNING } { Handle PyMalloc confusing valgrind (possibly leaked) Memcheck:Leak fun:malloc fun:_PyObject_GC_NewVar fun:COMMENT_THIS_LINE_TO_DISABLE_LEAK_WARNING } # # Non-python specific leaks # { Handle pthread issue (possibly leaked) Memcheck:Leak fun:calloc fun:allocate_dtv fun:_dl_allocate_tls_storage fun:_dl_allocate_tls } { Handle pthread issue (possibly leaked) Memcheck:Leak fun:memalign fun:_dl_allocate_tls_storage fun:_dl_allocate_tls } { ADDRESS_IN_RANGE/Invalid read of size 4 Memcheck:Addr4 fun:PyObject_Free } { ADDRESS_IN_RANGE/Invalid read of size 4 Memcheck:Value4 fun:PyObject_Free } { ADDRESS_IN_RANGE/Conditional jump or move depends on uninitialised value Memcheck:Cond fun:PyObject_Free } { ADDRESS_IN_RANGE/Invalid read of size 4 Memcheck:Addr4 fun:PyObject_Realloc } { ADDRESS_IN_RANGE/Invalid read of size 4 Memcheck:Value4 fun:PyObject_Realloc } { ADDRESS_IN_RANGE/Conditional jump or move depends on uninitialised value Memcheck:Cond fun:PyObject_Realloc } ### ### All the suppressions below are for errors that occur within libraries ### that Python uses. The problems to not appear to be related to Python's ### use of the libraries. ### { Generic ubuntu ld problems Memcheck:Addr8 obj:/lib/ld-2.4.so obj:/lib/ld-2.4.so obj:/lib/ld-2.4.so obj:/lib/ld-2.4.so } { Generic gentoo ld problems Memcheck:Cond obj:/lib/ld-2.3.4.so obj:/lib/ld-2.3.4.so obj:/lib/ld-2.3.4.so obj:/lib/ld-2.3.4.so } { DBM problems, see test_dbm Memcheck:Param write(buf) fun:write obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 fun:dbm_close } { DBM problems, see test_dbm Memcheck:Value8 fun:memmove obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 fun:dbm_store fun:dbm_ass_sub } { DBM problems, see test_dbm Memcheck:Cond obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 fun:dbm_store fun:dbm_ass_sub } { DBM problems, see test_dbm Memcheck:Cond fun:memmove obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 obj:/usr/lib/libdb1.so.2 fun:dbm_store fun:dbm_ass_sub } { GDBM problems, see test_gdbm Memcheck:Param write(buf) fun:write fun:gdbm_open } { ZLIB problems, see test_gzip Memcheck:Cond obj:/lib/libz.so.1.2.3 obj:/lib/libz.so.1.2.3 fun:deflate } { Avoid problems w/readline doing a putenv and leaking on exit Memcheck:Leak fun:malloc fun:xmalloc fun:sh_set_lines_and_columns fun:_rl_get_screen_size fun:_rl_init_terminal_io obj:/lib/libreadline.so.4.3 fun:rl_initialize } ### ### These occur from somewhere within the SSL, when running ### test_socket_sll. They are too general to leave on by default. ### ###{ ### somewhere in SSL stuff ### Memcheck:Cond ### fun:memset ###} ###{ ### somewhere in SSL stuff ### Memcheck:Value4 ### fun:memset ###} ### ###{ ### somewhere in SSL stuff ### Memcheck:Cond ### fun:MD5_Update ###} ### ###{ ### somewhere in SSL stuff ### Memcheck:Value4 ### fun:MD5_Update ###} # # All of these problems come from using test_socket_ssl # { from test_socket_ssl Memcheck:Cond fun:BN_bin2bn } { from test_socket_ssl Memcheck:Cond fun:BN_num_bits_word } { from test_socket_ssl Memcheck:Value4 fun:BN_num_bits_word } { from test_socket_ssl Memcheck:Cond fun:BN_mod_exp_mont_word } { from test_socket_ssl Memcheck:Cond fun:BN_mod_exp_mont } { from test_socket_ssl Memcheck:Param write(buf) fun:write obj:/usr/lib/libcrypto.so.0.9.7 } { from test_socket_ssl Memcheck:Cond fun:RSA_verify } { from test_socket_ssl Memcheck:Value4 fun:RSA_verify } { from test_socket_ssl Memcheck:Value4 fun:DES_set_key_unchecked } { from test_socket_ssl Memcheck:Value4 fun:DES_encrypt2 } { from test_socket_ssl Memcheck:Cond obj:/usr/lib/libssl.so.0.9.7 } { from test_socket_ssl Memcheck:Value4 obj:/usr/lib/libssl.so.0.9.7 } { from test_socket_ssl Memcheck:Cond fun:BUF_MEM_grow_clean } { from test_socket_ssl Memcheck:Cond fun:memcpy fun:ssl3_read_bytes } { from test_socket_ssl Memcheck:Cond fun:SHA1_Update } { from test_socket_ssl Memcheck:Value4 fun:SHA1_Update } # custom suppressions for yoh { Memcheck:Cond obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so } { Memcheck:Addr4 obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/i686/cmov/libdl-2.7.so obj:/lib/ld-2.7.so obj:/lib/i686/cmov/libdl-2.7.so fun:dlopen fun:_PyImport_GetDynLoadFunc fun:_PyImport_LoadDynamicModule } { Memcheck:Cond obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/i686/cmov/libdl-2.7.so obj:/lib/ld-2.7.so obj:/lib/i686/cmov/libdl-2.7.so fun:dlopen fun:_PyImport_GetDynLoadFunc fun:_PyImport_LoadDynamicModule obj:/usr/bin/python2.4 obj:/usr/bin/python2.4 } { Memcheck:Cond obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/i686/cmov/libdl-2.7.so obj:/lib/ld-2.7.so obj:/lib/i686/cmov/libdl-2.7.so fun:dlopen fun:_PyImport_GetDynLoadFunc fun:_PyImport_LoadDynamicModule obj:/usr/bin/python2.4 obj:/usr/bin/python2.4 obj:/usr/bin/python2.4 } { Memcheck:Addr4 obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/ld-2.7.so obj:/lib/i686/cmov/libdl-2.7.so obj:/lib/ld-2.7.so obj:/lib/i686/cmov/libdl-2.7.so }