pax_global_header00006660000000000000000000000064147042226700014516gustar00rootroot0000000000000052 comment=04d78d11da8ac3851876895fdc341344d47d1430 pyobjcryst-2024.2.1/000077500000000000000000000000001470422267000141565ustar00rootroot00000000000000pyobjcryst-2024.2.1/.coveragerc000066400000000000000000000011071470422267000162760ustar00rootroot00000000000000# Configuration of the coverage.py tool for reporting test coverage. [report] # RE patterns for lines to be excluded from consideration. exclude_lines = ## Have to re-enable the standard pragma pragma: no cover ## Don't complain if tests don't hit defensive assertion code: raise AssertionError raise NotImplementedError ^[ ]*assert False ## Don't complain if non-runnable code isn't run: ^[ ]*@unittest.skip\b ^[ ]{4}unittest.main() if __name__ == .__main__.: [run] omit = ## exclude debug.py from codecov report */tests/debug.py pyobjcryst-2024.2.1/.gitarchive.cfg000066400000000000000000000002161470422267000170410ustar00rootroot00000000000000[DEFAULT] commit = 04d78d11da8ac3851876895fdc341344d47d1430 date = 2024-10-17 16:56:56 +0200 timestamp = 1729177016 refnames = tag: v2024.2.1 pyobjcryst-2024.2.1/.readthedocs.yaml000066400000000000000000000010361470422267000174050ustar00rootroot00000000000000# .readthedocs.yaml # Read the Docs configuration file # See https://docs.readthedocs.io/en/stable/config-file/v2.html for details # Required version: 2 # Set the OS, Python version and other tools you might need build: os: "ubuntu-22.04" tools: python: "mambaforge-latest" # Build documentation in the docs/ directory with Sphinx sphinx: configuration: doc/manual/source/conf.py # If using Sphinx, optionally build your docs in additional formats such as PDF # formats: # - pdf conda: environment: doc/environment.yml pyobjcryst-2024.2.1/AUTHORS.txt000066400000000000000000000002371470422267000160460ustar00rootroot00000000000000Authors: Christopher L. Farrow Pavol Juhas Simon J.L. Billinge Vincent Favre-Nicolin Contributors: https://github.com/diffpy/pyobjcryst/graphs/contributors pyobjcryst-2024.2.1/CHANGELOG.md000066400000000000000000000110211470422267000157620ustar00rootroot00000000000000# Release notes ## Version 2024.2.1 ### Changes - PowderPattern: - fix re-using a matplotlib figure when plotting - add 'figure' property ## Version 2024.2 ### Changes - DiffractionDataSingleCrystal: add SetHklIobs, SetIobs, SetSigma, GetSigma, GetChi2, FitScaleFactorForRw and FitScaleFactorForR (https://github.com/diffpy/pyobjcryst/issues/42) - Add a single crystal data notebook example - Online documentation notebooks now include the plots (https://pyobjcryst.readthedocs.io/en/latest/examples) ### Fixes - From libobjcryst: update the ScatteringComponentList when a Scatterer is removed from a Crystal (https://github.com/diffpy/pyobjcryst/issues/41) ## Version 2024.1 ### Changes - Add python access to MolZAtom, for Molecule.AsZMatrix() ## Version 2.2.6 ### Changes - Support for windows and python>=3.8 - Added a zoom limit for 3D crystal views ### Fixes - Correct error preventing pyobjcryst import for windows and python>=3.8 (https://github.com/diffpy/pyobjcryst/issues/33) - Fix for matplotlib >=3.7.0 when removing hkl labels ## Version 2.2.5 ### Changes - Raise an exception if alpha, beta or gamma are not within ]0;pi[ when changing lattice angles - Add UnitCell.ChangeSpaceGroup() ### Fixes - Avoid duplication of plots when using ipympl (aka %matplotlib widget) - Correct powder pattern tests to avoid warnings ### Deprecated - loadCrystal - use create_crystal_from_cif() instead ## Version 2.2.4 ### Changes - the list of HKL reflections will now be automatically be re-generated for a PowderPatternDiffraction when the Crystal's spacegroup changes, or the lattice parameters are modified by more than 0.5% ### Fixes - Fixed the powder pattern indexing test ## Version 2.2.3 ### Added - Support for windows install (works with python 3.7, and also -only with pypy- 3.8 and 3.9) - Native support for Apple arm64 (M1, M2) processors - Fourier maps calculation - Add gDiffractionDataSingleCrystalRegistry to globals ## Version 2.2.2 ### Changes - Add correct wrapping for C++-instantiated objects available through global registries, e.g. when loading an XML file. The objects are decorated with the python functions when accessed through the global registries GetObj() - Moved global object registries to pyobjcryst.globals - Update documentation ### Fixed - Fix access to PRISM_TETRAGONAL_DICAP, PRISM_TRIGONAL, ICOSAHEDRON and TRIANGLE_PLANE. - Fix powder pattern plot issues (NaN and update of hkl text with recent matplotlib versions) ## Version 2.2.1 -- 2021-11-28 - Add quantitative phase analysis with PowderPattern.qpa(), including an example notebook using the QPA Round-Robin data. - Correct import of urllib.request.urllopen() when loading CIF or z-matrix files from http urls. - Fix blank line javascript output when updating the Crystal 3D view - Add RefinableObj.xml() to directly get the XMLOutput() as a string - Add example notebooks to the sphinx-generated html documentation - Fix issue when using Crystal.XMLInput() for a non-empty structure. Existing scattering power will be re-used when possible, and otherwise not deleted anymore (which could lead to crashes). ## Version 2.2.0 -- 2021-06-08 Notable differences from version 2.1.0. - Add access to Radiation class & functions to change RadiationType, wavelength in PowderPattern and ScatteringData (and hence DiffractionDataSingleCrystal) classes. - Fix the custodian_ward when creating a PowderPatternDiffraction: PowderPatternDiffraction must persist while PowderPattern exists, and Crystal must persist while PowderPatternDiffraction exists. - Add 3D Crystal viewer `pyobjcryst.crystal.Crystal.widget_3d`. ## Version 2.1.0 -- 2019-03-11 Notable differences from version 2.0.1. ### Added - Support for Python 3.7. - Validation of compiler options from `python-config`. - Make scons scripts compatible with Python 3 and Python 2. - Support np.array arguments for `SetPowderPatternX`, `SetPowderPatternObs`. - Declare compatible version requirements for client Anaconda packages. - Facility for silencing spurious console output from libobjcryst. ### Changed - Build Anaconda package with Anaconda C++ compiler. - Update to libobjcryst 2017.2.x. ### Deprecated - Variable `__gitsha__` in the `version` module which was renamed to `__git_commit__`. ### Removed - Support for Python 3.4. ### Fixed - Ambiguous use of boost::python classes and functions. - Name suffix resolution of `boost_python` shared library. - `SetPowderPatternX` crash for zero-length argument. - Incorrectly doubled return value from `GetInversionCenter`. pyobjcryst-2024.2.1/LICENSE.txt000066400000000000000000000130471470422267000160060ustar00rootroot00000000000000OPEN SOURCE LICENSE AGREEMENT ============================= Copyright (c) 2009-2011, University of Tennessee Copyright (c) 1989, 1991 Free Software Foundation, Inc. Copyright (c) 2006, The Regents of the University of California through Lawrence Berkeley National Laboratory Copyright (c) 2014, Australian Synchrotron Research Program Inc., ("ASRP") Copyright (c) 2006-2007, Board of Trustees of Michigan State University Copyright (c) 2008-2012, The Trustees of Columbia University in the City of New York Copyright (c) 2014-2019, Brookhaven Science Associates, Brookhaven National Laboratory The "DiffPy-CMI" is distributed subject to the following license conditions: SOFTWARE LICENSE AGREEMENT Software: DiffPy-CMI (1) The "Software", below, refers to the aforementioned DiffPy-CMI (in either source code, or binary form and accompanying documentation). Part of the software was derived from the DANSE, ObjCryst++ (with permission), PyCifRW, Python periodictable, CCTBX, and SasView open source projects, of which the original Copyrights are contained in each individual file. Each licensee is addressed as "you" or "Licensee." (2) The copyright holders shown above and their third-party Licensors hereby grant licensee a royalty-free nonexclusive license, subject to the limitations stated herein and U.S. Government license rights. (3) You may modify and make a copy or copies of the software for use within your organization, if you meet the following conditions: (a) Copies in source code must include the copyright notice and this software license agreement. (b) Copies in binary form must include the copyright notice and this Software License Agreement in the documentation and/or other materials provided with the copy. (4) You may modify a copy or copies of the Software or any portion of it, thus forming a work based on the Software, and distribute copies of such work outside your organization, if you meet all of the following conditions: (a) Copies in source code must include the copyright notice and this Software License Agreement; (b) Copies in binary form must include the copyright notice and this Software License Agreement in the documentation and/or other materials provided with the copy; (c) Modified copies and works based on the Software must carry prominent notices stating that you changed specified portions of the Software. (d) Neither the name of Brookhaven Science Associates or Brookhaven National Laboratory nor the names of its contributors may be used to endorse or promote products derived from this software without specific written permission. (5) Portions of the Software resulted from work developed under a U.S. Government contract and are subject to the following license: The Government is granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license in this computer software to reproduce, prepare derivative works, and perform publicly and display publicly. (6) WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDERS, THEIR THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL BE CORRECTED. (7) LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT HOLDERS, THEIR THIRD PARTY LICENSORS, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGES. Brookhaven National Laboratory Notice ===================================== Acknowledgment of sponsorship ----------------------------- This software was produced by the Brookhaven National Laboratory, under Contract DE-AC02-98CH10886 with the Department of Energy. Government disclaimer of liability ---------------------------------- Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any data, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Brookhaven disclaimer of liability ---------------------------------- Brookhaven National Laboratory makes no representations or warranties, express or implied, nor assumes any liability for the use of this software. Maintenance of notice --------------------- In the interest of clarity regarding the origin and status of this software, Brookhaven National Laboratory requests that any recipient of it maintain this notice affixed to any distribution by the recipient that contains a copy or derivative of this software. END OF LICENSE pyobjcryst-2024.2.1/LICENSE_DANSE.txt000066400000000000000000000035261470422267000167210ustar00rootroot00000000000000This program is part of the DiffPy and DANSE open-source projects at Columbia University and is available subject to the conditions and terms laid out below. Copyright (c) 2009-2012, The Trustees of Columbia University in the City of New York. All rights reserved. For more information please visit the diffpy web-page at http://diffpy.org or email Prof. Simon Billinge at sb2896@columbia.edu. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the names of COLUMBIA UNIVERSITY, MICHIGAN STATE UNIVERSITY nor the names of their contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. pyobjcryst-2024.2.1/MANIFEST.in000066400000000000000000000006631470422267000157210ustar00rootroot00000000000000recursive-include src * include SConstruct include AUTHORS.txt LICENSE*.txt README.rst recursive-exclude src *.pyc *.so global-exclude .gitattributes .gitignore .gitarchive.cfg global-exclude .DS_Store # Avoid user content in setup.cfg to make distribution reproducible. exclude setup.cfg # Exclude git-tracked files spuriously added by setuptools_scm exclude .coveragerc exclude .travis* prune conda-recipe prune devutils prune doc pyobjcryst-2024.2.1/README.rst000066400000000000000000000172001470422267000156450ustar00rootroot00000000000000.. image:: https://travis-ci.org/diffpy/pyobjcryst.svg?branch=master :target: https://travis-ci.org/diffpy/pyobjcryst .. image:: https://codecov.io/gh/diffpy/pyobjcryst/branch/master/graph/badge.svg :target: https://codecov.io/gh/diffpy/pyobjcryst pyobjcryst ========== Python bindings to ObjCryst++, the Object-Oriented Crystallographic Library. The documentation for this release of pyobjcryst can be found on-line at https://pyobjcryst.readthedocs.io/ INSTALLATION ------------ pyobjcryst is available for Python 3.7 (deprecated), and 3.8 to 3.11. Using conda (recommended) ^^^^^^^^^^^^^^^^^^^^^^^^^ We recommend to use **conda** as it allows to install all software dependencies together with pyobjcryst, without too much compiling hastle. Two distributions can be used: * `Anaconda Python `_, the historical main conda-based distribution * `Mamba-forge `_ , which has the advantage off providing **mamba** in addition to conda, and is *much faster* when resolving dependencies during installation. It also uses by default the conda-forge repository, which is what almost all users would want. Using conda, we you can install pyobjcryst using the "conda-forge" channel :: conda install -c conda-forge pyobjcryst Alternatively using mamba :: mamba install pyobjcryst You can also install from the "diffpy" channel - especially if you use pyobjcryst allong with the other diffpy tools for PDF calculations, but it is not updated as often as conda-forge. pyobjcryst is also included in the "diffpy-cmi" collection of packages for structure analysis :: conda install -c diffpy diffpy-cmi Complete new conda environment with optional GUI and jupyter dependencies ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Assuming you have installed `Mamba-forge `_, you can directly create a new conda environment named `pyobjcryst` with all useful dependencies (including jupyter-lab, python 3.11..) using :: mamba create -n pyobjcryst python=3.11 pyobjcryst matplotlib py3dmol jupyterlab ipympl multiprocess Then you can activate the environment and launch jupyter-lab using :: conda activate pyobjcryst jupyter-lab From source ^^^^^^^^^^^ The requirements are: * ``libobjcryst`` - Object-Oriented Crystallographic Library for C++, https://github.com/diffpy/libobjcryst * ``setuptools`` - tools for installing Python packages * ``NumPy`` - library for scientific computing with Python * ``python-dev`` - header files for interfacing Python with C * ``libboost-all-dev`` - Boost C++ libraries and development files * ``scons`` - software construction tool (optional) The above requirements are easily installed through conda using e.g.:: conda install numpy compilers boost scons libobjcryst Alternatively, on Ubuntu Linux the required software can be installed using:: sudo apt-get install \ python-setuptools python-numpy scons \ build-essential python-dev libboost-all-dev The libobjcryst library can also be installed as per the instructions at https://github.com/diffpy/libobjcryst. Make sure other required software are also in place and then run from the pyobjcryst directory:: pip install . You may need to use ``sudo`` with system Python so the process is allowed to copy files to system directories, unless you are installing into a conda environment. If administrator (root) access is not available, see the usage information from ``python setup.py install --help`` for options to install to a user-writable location. The installation integrity can be verified by executing the included tests with :: python -m pyobjcryst.tests.run An alternative way of installing pyobjcryst is to use the SCons tool, which can speed up the process by compiling C++ files in several parallel jobs (-j4):: scons -j4 install See ``scons -h`` for description of build targets and options. Optional graphical dependencies for jupyter notebooks ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Some of the classes can produce graphical outputs, which can be displayed in a jupyter notebook: * a Crystal structure can be displayed in 3D: this requires the ``py3dmol`` and ``ipywidgets`` modules. See the notebook ``examples/cystal_3d_widget.ipynb`` * a PowderPattern can be displayed (and live-updated) if ``matplotlib`` and ``ipympl`` are installed. See the notebook ``examples/cimetidine-structure-solution-powder.ipynb`` In short, ``conda install jupyter matplotlib ipympl py3dmol`` will give you all the required dependencies. You can also use this in jupyterlab. These packages can also be installed using ``pip`` if you do not use conda. DEVELOPMENT ----------- pyobjcryst is an open-source software originally developed as a part of the DiffPy-CMI complex modeling initiative at the Brookhaven National Laboratory, and is also further developed at ESRF. The pyobjcryst sources are hosted at https://github.com/diffpy/pyobjcryst. Feel free to fork the project and contribute. To install pyobjcryst in a development mode, where its sources are directly used by Python rather than copied to a system directory, use :: python setup.py develop --user When developing it is preferable to compile the C++ files with SCons using the ``build=develop`` option, which compiles the extension module with debug information and C-assertions checks :: scons -j4 build=debug develop The build script checks for a presence of ``sconsvars.py`` file, which can be used to permanently set the ``build`` variable. The SCons construction environment can be further customized in a ``sconscript.local`` script. The package integrity can be verified by executing unit tests with ``scons -j4 test``. When developing with Anaconda Python it is essential to specify header path, library path and runtime library path for the active Anaconda environment. This can be achieved by setting the ``CPATH``, ``LIBRARY_PATH`` and ``LDFLAGS`` environment variables as follows:: # resolve the prefix directory P of the active Anaconda environment P=$CONDA_PREFIX export CPATH=$P/include export LIBRARY_PATH=$P/lib export LDFLAGS=-Wl,-rpath,$P/lib # compile and re-install pyobjcryst scons -j4 build=debug develop Note the Anaconda package for the required libobjcryst library is built with a C++ compiler provided by Anaconda. This may cause incompatibility with system C++. In such case please use Anaconda C++ to build pyobjcryst. Quick conda environment from libobjcryst and pyobjcryst sources ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If ``conda`` is available, you can create a pyobjcryst environment from the git repositories (downloaded in the current directory) using:: conda create --yes --name pyobjcryst numpy matplotlib ipywidgets jupyter conda install --yes -n pyobjcryst -c conda-forge boost scons py3dmol conda activate pyobjcryst git clone https://github.com/diffpy/libobjcryst.git cd libobjcryst scons -j4 install prefix=$CONDA_PREFIX cd .. git clone https://github.com/diffpy/pyobjcryst.git cd pyobjcryst export CPATH=$CONDA_PREFIX/include export LIBRARY_PATH=$CONDA_PREFIX/lib export LDFLAGS=-Wl,-rpath,$CONDA_PREFIX/lib scons -j4 install prefix=$CONDA_PREFIX CONTACTS -------- For more information on pyobjcryst please visit the project web-page http://www.diffpy.org or email Prof. Simon Billinge at sb2896@columbia.edu. You can also contact Vincent Favre-Nicolin (favre@esrf.fr) if you are using pyobjcryst outside diffpy, e.g. to display structures in a notebook, refine powder patterns or solve structures using the global optimisation algorithms, etc.. pyobjcryst-2024.2.1/SConstruct000066400000000000000000000220531470422267000162120ustar00rootroot00000000000000# This SConstruct is for faster parallel builds. # Use "setup.py" for normal installation. MY_SCONS_HELP = """\ SCons rules for compiling and installing pyobjcryst. SCons build is much faster when run with parallel jobs (-j4). Usage: scons [target] [var=value] Targets: module build Python extension module _pyobjcryst.so [default] install install to default Python package location develop copy extension module to src/pyobjcryst/ directory test execute unit tests Build configuration variables: %s Variables can be also assigned in a user script sconsvars.py. SCons construction environment can be customized in sconscript.local script. """ import os from os.path import join as pjoin import re import subprocess import platform def subdictionary(d, keyset): return dict(kv for kv in d.items() if kv[0] in keyset) def getsyspaths(*names): pall = sum((os.environ.get(n, '').split(os.pathsep) for n in names), []) rv = [p for p in pall if os.path.exists(p)] return rv def pyoutput(cmd): proc = subprocess.Popen([env['python'], '-c', cmd], stdout=subprocess.PIPE, universal_newlines=True) out = proc.communicate()[0] return out.rstrip() def pyconfigvar(name): cmd = ('from distutils.sysconfig import get_config_var\n' 'print(get_config_var(%r))\n') % name return pyoutput(cmd) # copy system environment variables related to compilation DefaultEnvironment(ENV=subdictionary(os.environ, ''' PATH PYTHONPATH GIT_DIR HOMEPATH HOMEDRIVE CPATH CPLUS_INCLUDE_PATH LIBRARY_PATH LD_RUN_PATH LD_LIBRARY_PATH DYLD_LIBRARY_PATH DYLD_FALLBACK_LIBRARY_PATH MACOSX_DEPLOYMENT_TARGET LANG _PYTHON_SYSCONFIGDATA_NAME _CONDA_PYTHON_SYSCONFIGDATA_NAME '''.split()) ) # Create construction environment env = DefaultEnvironment().Clone() # Variables definitions below work only with 0.98 or later. env.EnsureSConsVersion(0, 98) # Customizable compile variables vars = Variables('sconsvars.py') # Set PREFIX for installation and linking # TODO: also amend paths when VIRTUAL_ENV variable exists ? if 'PREFIX' in os.environ: # building with a set prefix vars.Add(PathVariable( 'prefix', 'installation prefix directory', os.environ['PREFIX'])) elif 'CONDA_PREFIX' in os.environ: # building for a conda environment vars.Add(PathVariable( 'prefix', 'installation prefix directory', os.environ['CONDA_PREFIX'])) else: vars.Add(PathVariable('prefix', 'installation prefix directory', None)) vars.Update(env) vars.Add(EnumVariable('build', 'compiler settings', 'fast', allowed_values=('debug', 'fast'))) vars.Add(EnumVariable('tool', 'C++ compiler toolkit to be used', 'default', allowed_values=('default', 'intelc', 'clang', 'clangxx'))) vars.Add(BoolVariable('profile', 'build with profiling information', False)) vars.Add('python', 'Python executable to use for installation.', 'python') vars.Update(env) env.Help(MY_SCONS_HELP % vars.GenerateHelpText(env)) # Use Intel C++ compiler if requested by the user. icpc = None if env['tool'] == 'intelc': icpc = env.WhereIs('icpc') if not icpc: print("Cannot find the Intel C/C++ compiler 'icpc'.") Exit(1) env.Tool('intelc', topdir=icpc[:icpc.rfind('/bin')]) # Figure out compilation switches, filter away C-related items. good_python_flag = lambda n: ( not isinstance(n, str) or not re.match(r'(-g|-Wstrict-prototypes|-O\d|-fPIC)$', n)) # Determine python-config script name. if 'PY_VER' in os.environ: pyversion = os.environ['PY_VER'] else: pyversion = pyoutput('import sys; print("%i.%i" % sys.version_info[:2])') if 'CONDA_BUILD' in os.environ and 'PY_VER' in os.environ: # Messy: if CONDA_BUILD and PY_VER are in the path, we are building a conda package # using several environment. Make sure python3.X-config points to the destination # (host) environment pythonconfig = pjoin(os.environ['PREFIX'], 'bin', 'python%s-config' % os.environ['PY_VER']) print("Using $PREFIX and $PY_VER to determine python-config pth: %s" % pythonconfig) xpython = pjoin(os.environ['PREFIX'], 'bin', 'python') pyversion = os.environ['PY_VER'] else: pycfgname = 'python%s-config' % (pyversion if pyversion[0] == '3' else '') # realpath gets the real path if exec is a link (e.g. in a python environment) xpython = os.path.realpath(env.WhereIs(env['python'])) pybindir = os.path.dirname(xpython) pythonconfig = pjoin(pybindir, pycfgname) # for k in sorted(os.environ.keys()): # print(" ", k, os.environ[k]) if platform.system().lower() == "windows": # See https://scons.org/faq.html#Linking_on_Windows_gives_me_an_error env['ENV']['TMP'] = os.environ['TMP'] # the CPPPATH directories are checked by scons dependency scanner cpppath = getsyspaths('CPLUS_INCLUDE_PATH', 'CPATH') env.AppendUnique(CPPPATH=cpppath) # Insert LIBRARY_PATH explicitly because some compilers # ignore it in the system environment. env.PrependUnique(LIBPATH=getsyspaths('LIBRARY_PATH')) if env['prefix'] is not None: env.Append(CPPPATH=[pjoin(env['prefix'], 'include')]) env.Append(CPPPATH=[pjoin(env['prefix'], 'Library', 'include')]) # Windows conda library paths are a MESS ('lib', 'libs', 'Library\lib'...) env.Append(LIBPATH=[pjoin(env['prefix'], 'Library', 'lib')]) env.Append(LIBPATH=[pjoin(env['prefix'], 'libs')]) # This disable automated versioned named e.g. libboost_date_time-vc142-mt-s-x64-1_73.lib # so we can use conda-installed libraries env.AppendUnique(CPPDEFINES='BOOST_ALL_NO_LIB') # Prevent the generation of an import lib (.lib) in addition to the dll # env.AppendUnique(no_import_lib=1) env.PrependUnique(CCFLAGS=['/Ox', '/EHsc', '/MD', '/DREAL=double']) env.AppendUnique(CPPDEFINES={'NDEBUG': None}) else: if 'CONDA_BUILD' not in os.environ: # Verify python-config comes from the same path as the target python. xpythonconfig = env.WhereIs(pythonconfig) if os.path.dirname(xpython) != os.path.dirname(xpythonconfig): print("Inconsistent paths of %r and %r" % (xpython, xpythonconfig)) Exit(1) # Process the python-config flags here. env.ParseConfig(pythonconfig + " --cflags") env.Replace(CCFLAGS=[f for f in env['CCFLAGS'] if good_python_flag(f)]) env.Replace(CPPDEFINES='BOOST_ERROR_CODE_HEADER_ONLY') # the CPPPATH directories are checked by scons dependency scanner cpppath = getsyspaths('CPLUS_INCLUDE_PATH', 'CPATH') env.AppendUnique(CPPPATH=cpppath) # Insert LIBRARY_PATH explicitly because some compilers # ignore it in the system environment. env.PrependUnique(LIBPATH=getsyspaths('LIBRARY_PATH')) # Add shared libraries. # Note: ObjCryst and boost_python are added from SConscript.configure. fast_linkflags = ['-s'] fast_shlinkflags = pyconfigvar('LDSHARED').split()[1:] # Specify minimum C++ standard. Allow later standard from sconscript.local. # In case of multiple `-std` options the last option holds. env.PrependUnique(CXXFLAGS='-std=c++11', delete_existing=1) # Need this to avoid missing symbol with boost<1.66 env.PrependUnique(CXXFLAGS=['-DBOOST_ERROR_CODE_HEADER_ONLY']) # Use double precision for objcryst's REAL env.PrependUnique(CCFLAGS=['-DREAL=double']) # Platform specific intricacies. if env['PLATFORM'] == 'darwin': darwin_shlinkflags = [n for n in env['SHLINKFLAGS'] if n != '-dynamiclib'] env.Replace(SHLINKFLAGS=darwin_shlinkflags) env.AppendUnique(SHLINKFLAGS=['-bundle']) env.AppendUnique(SHLINKFLAGS=['-undefined', 'dynamic_lookup']) fast_linkflags[:] = [] # Compiler specific options if icpc: # options for Intel C++ compiler on hpc dev-intel07 env.AppendUnique(CCFLAGS=['-w1', '-fp-model', 'precise']) env.PrependUnique(LIBS=['imf']) fast_optimflags = ['-fast', '-no-ipo'] else: # g++ options env.AppendUnique(CCFLAGS=['-Wall', '-fno-strict-aliasing']) fast_optimflags = ['-ffast-math'] # Configure build variants if env['build'] == 'debug': env.AppendUnique(CCFLAGS='-g') elif env['build'] == 'fast': env.AppendUnique(CCFLAGS=['-O3'] + fast_optimflags) env.AppendUnique(CPPDEFINES='NDEBUG') env.AppendUnique(LINKFLAGS=fast_linkflags) env.AppendUnique(SHLINKFLAGS=fast_shlinkflags) if env['profile']: env.AppendUnique(CCFLAGS='-pg') env.AppendUnique(LINKFLAGS='-pg') env.Append(CPPPATH=[pjoin(env['prefix'], 'include')]) env.Append(LIBPATH=[pjoin(env['prefix'], 'lib')]) builddir = env.Dir('build/%s-%s' % (env['build'], platform.machine())) Export('env', 'pyconfigvar', 'pyoutput', 'pyversion') if os.path.isfile('sconscript.local'): env.SConscript('sconscript.local') env.SConscript('src/extensions/SConscript', variant_dir=builddir) # vim: ft=python pyobjcryst-2024.2.1/examples/000077500000000000000000000000001470422267000157745ustar00rootroot00000000000000pyobjcryst-2024.2.1/examples/QPA-Quantitative phase analysis.ipynb000066400000000000000000005732251470422267000250370ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "id": "5536331c", "metadata": {}, "source": [ "## Quantitative phase analysis (QPA)\n", "Fox/ObjCryst++ was not designed with QPA in mind, but it\n", "is still possible to do it when the phases are known\n", "and the profiles not too complicated.\n", "\n", "Here we just try the 'simple' cases of the QPA Round Robin of\n", "1999 (https://www.iucr.org/__data/iucr/powder/QARR/index.html)" ] }, { "cell_type": "code", "execution_count": 1, "id": "6738497f", "metadata": {}, "outputs": [], "source": [ "# 'widget' allows live update and works in both classical notebooks and jupyter-lab.\n", "# Otherwise 'notebook', 'ipympl', 'inline' can be used\n", "%matplotlib widget\n", "\n", "import os\n", "import pyobjcryst\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pyobjcryst.crystal import *\n", "from pyobjcryst.powderpattern import *\n", "from pyobjcryst.indexing import *\n", "from pyobjcryst.molecule import *\n", "from pyobjcryst.globaloptim import MonteCarlo\n", "from pyobjcryst.io import xml_cryst_file_save_global\n", "from pyobjcryst.lsq import LSQ\n", "from pyobjcryst.refinableobj import refpartype_scattdata_scale" ] }, { "cell_type": "markdown", "id": "c3a87c32", "metadata": {}, "source": [ "### Data and CIF sources" ] }, { "cell_type": "code", "execution_count": 2, "id": "bc37d7f1", "metadata": {}, "outputs": [], "source": [ "# Data from QPA round-robin\n", "# https://www.iucr.org/__data/iucr/powder/QARR/samples.htm\n", "# & Crystal structures from the Crystallography Open Database\n", "# Try samples 1a to 1h\n", "data_file = \"cpd-1h.prn\"\n", "cod_phases = [1000032, 9008877, 5000222] # Al2O3, ZnO, CaF2 - needs checking" ] }, { "cell_type": "markdown", "id": "284ffc63", "metadata": {}, "source": [ "### Create Powder pattern" ] }, { "cell_type": "code", "execution_count": 3, "id": "ab29d515", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.5418366591135662\n", "Imported powder pattern: 7251 points, 2theta= 5.000 -> 150.000, step= 0.020\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "eb5a16017cbd44b8861a27bff409366b", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfPElEQVR4nO3deXxU5d3//3fIngAjIYYQCYtCAUUUQSFolQoiVOT2py1VbNS7VMUFjIBYSlW0FRS/ClZaF2rFCjTVKt7WJQLaYhFZBKOAFFGRPQQ1ZCEh6/X7g57DTDJZZjKT2V7Px2Meysw1Z65zZTI57/lc5zpRxhgjAAAAAEDEaRfoDgAAAAAAAoNACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAEYpACAAAAAARikAIAAAAABGKQAgAAAAAESom0B1A69TV1engwYPq0KGDoqKiAt0dAAAAoNWMMSotLVVGRobataOG5U8EwhB38OBBZWZmBrobAAAAgM/t27dP3bp1C3Q3whqBMMR16NBB0olflo4dOwa4NwAAAEDrlZSUKDMz0z7Whf8QCEOcNU20Y8eOBEIAAACEFU6J8j8m5AIAAABAhCIQAgAAAECEIhACAAAAQITiHEIAAADAR2pra1VdXR3obgS92NhYRUdHB7obEIEQAAAAaDVjjAoKCnT06NFAdyVknHLKKUpPT2fhmAAjEAIAAACtZIXBtLQ0JSUlEXKaYIxReXm5CgsLJUldu3YNcI8iG4EQAAAAaIXa2lo7DHbu3DnQ3QkJiYmJkqTCwkKlpaUxfTSAWFQGAAAAaAXrnMGkpKQA9yS0WOPFOZeBRSAEAAAAfIBpop5hvIIDgRAAAAAAIhSBEIDfvPbaa1qxYkWguwEAALzwr3/9S1FRUaycGuZYVAaA31xzzTWSTqwmBgAAgOBDhRAAAAAAIhSBEAAAAIhQlZWVmjp1qtLS0pSQkKCLLrpImzZtcmnz4Ycf6pxzzlFCQoKGDh2qrVu32o/t2bNHV155pTp16qTk5GSdddZZevvtt9t6N9AKBEIAAAAgQs2cOVOvvvqqXnzxRW3ZskW9e/fW5Zdfru+//95uc8899+j//b//p02bNiktLU3jx4+3LxVxxx13qLKyUh988IG2bt2qRx99VO3btw/U7sALnEMIAAAA+EF5ebn+85//tPnr9uvXr0XXRDx27JiefvppLVmyRGPHjpUkLV68WKtWrdLzzz+v888/X5L0wAMP6LLLLpMkvfjii+rWrZtWrFihCRMmaO/evbrmmmt09tlnS5JOP/10P+0V/IVACAAAAPjBf/7zHw0ePLjNX3fz5s0677zzmm331Vdfqbq6WhdeeKF9X2xsrC644ALt2LHDDoRZWVn24ykpKerbt6927NghSZo6dapuu+02rVy5UqNGjdI111yjgQMH+niP4E8EQgAAAMAP+vXrp82bNwfkdVvCWgW8/gXijTHNXjTeevyXv/ylLr/8cr311ltauXKl5s2bp8cff1xTpkzxoucIBAIhAAAA4AdJSUktqtQFSu/evRUXF6e1a9dq4sSJkqTq6mp9/PHHysnJsdutX79e3bt3lyQVFRXpiy++cAmdmZmZmjx5siZPnqxZs2Zp8eLFBMIQQiAEAAAAIlBycrJuu+023XPPPUpJSVH37t01f/58lZeXa9KkSfr0008lSQ899JA6d+6sLl26aPbs2UpNTdVVV10lScrJydHYsWP1gx/8QEVFRXr//ffVv3//AO4VPEUgBAAAACLUI488orq6OmVnZ6u0tFRDhgzRu+++q06dOrm0ueuuu7Rr1y6dc845euONNxQXFydJqq2t1R133KH9+/erY8eOGjNmjBYsWBCo3YEXoow1eRghqaSkRA6HQ8XFxerYsWOguwO4sM4v4GMGABDOjh8/rt27d6tXr15KSEgIdHdCRlPjxjFu2+E6hAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAPDZnzhyde+65ge4GWolA6MaBAwf085//XJ07d1ZSUpLOPfdcbd682X7cGKM5c+YoIyNDiYmJGjFihLZv3+6yjcrKSk2ZMkWpqalKTk7W+PHjtX//fpc2RUVFys7OlsPhkMPhUHZ2to4ePdoWuwgAAAAABML6ioqKdOGFFyo2NlbvvPOOPv/8cz3++OM65ZRT7Dbz58/XE088oUWLFmnTpk1KT0/XZZddptLSUrtNTk6OVqxYodzcXK1du1ZlZWUaN26camtr7TYTJ05Ufn6+8vLylJeXp/z8fGVnZ7fl7gIAAACIYATCeh599FFlZmbqhRde0AUXXKCePXtq5MiROuOMMySdqA4uXLhQs2fP1tVXX60BAwboxRdfVHl5uZYvXy5JKi4u1vPPP6/HH39co0aN0qBBg7R06VJt3bpVq1evliTt2LFDeXl5+tOf/qSsrCxlZWVp8eLFevPNN7Vz586A7T8AAAAiR11dnR599FH17t1b8fHx6t69ux5++GFJ0r333qsf/OAHSkpK0umnn6777rtP1dXVTW7vz3/+s8466yzFx8era9euuvPOO9tiN9AKBMJ63njjDQ0ZMkQ//elPlZaWpkGDBmnx4sX247t371ZBQYFGjx5t3xcfH69LLrlE69atkyRt3rxZ1dXVLm0yMjI0YMAAu81HH30kh8OhoUOH2m2GDRsmh8NhtwEAAAD8adasWXr00Ud133336fPPP9fy5cvVpUsXSVKHDh20ZMkSff7553ryySe1ePFiLViwoNFtPf3007rjjjt0yy23aOvWrXrjjTfUu3fvttoVeCkm0B0INl9//bWefvppTZs2Tb/+9a+1ceNGTZ06VfHx8brhhhtUUFAgSfYviqVLly7as2ePJKmgoEBxcXHq1KlTgzbW8wsKCpSWltbg9dPS0uw27lRWVqqystL+d0lJiXc7CgAAgIhWWlqqJ598UosWLdKNN94oSTrjjDN00UUXSZJ+85vf2G179uyp6dOn629/+5tmzpzpdnu/+93vNH36dN111132feeff74f9wC+QCCsp66uTkOGDNHcuXMlSYMGDdL27dv19NNP64YbbrDbRUVFuTzPGNPgvvrqt3HXvrntzJs3Tw8++GCL9gUAAAABVF4u/ec/bf+6/fpJSUnNNtuxY4cqKys1cuRIt4///e9/18KFC/Xll1+qrKxMNTU16tixo9u2hYWFOnjwYKPbQvAiENbTtWtXnXnmmS739e/fX6+++qokKT09XdKJCl/Xrl3tNoWFhXbVMD09XVVVVSoqKnKpEhYWFmr48OF2m8OHDzd4/SNHjjSoPjqbNWuWpk2bZv+7pKREmZmZnu4mAAAA/O0//5EGD2771928WTrvvGabJSYmNvrY+vXrde211+rBBx/U5ZdfLofDodzcXD3++OMebwvBjUBYz4UXXthgUZcvvvhCPXr0kCT16tVL6enpWrVqlQYNGiRJqqqq0po1a/Too49KkgYPHqzY2FitWrVKEyZMkCQdOnRI27Zt0/z58yVJWVlZKi4u1saNG3XBBRdIkjZs2KDi4mI7NLoTHx+v+Ph43+40AAAAfK9fvxPhLBCv2wJ9+vRRYmKi3nvvPf3yl790eezDDz9Ujx49NHv2bPs+6/Qodzp06KCePXvqvffe049+9CPv+o2AIBDWc/fdd2v48OGaO3euJkyYoI0bN+q5557Tc889J+nENM+cnBzNnTtXffr0UZ8+fTR37lwlJSVp4sSJkiSHw6FJkyZp+vTp6ty5s1JSUjRjxgydffbZGjVqlKQTVccxY8bo5ptv1rPPPitJuuWWWzRu3Dj17ds3MDsPAAAA30lKalGlLlASEhJ07733aubMmYqLi9OFF16oI0eOaPv27erdu7f27t2r3NxcnX/++Xrrrbe0YsWKJrc3Z84cTZ48WWlpaRo7dqxKS0v14YcfasqUKW20R/AGgbCe888/XytWrNCsWbP00EMPqVevXlq4cKGuv/56u83MmTNVUVGh22+/XUVFRRo6dKhWrlypDh062G0WLFigmJgYTZgwQRUVFRo5cqSWLFmi6Ohou82yZcs0depUezXS8ePHa9GiRW23swAAAIho9913n2JiYnT//ffr4MGD6tq1qyZPnqxJkybp7rvv1p133qnKykpdccUVuu+++zRnzpxGt3XjjTfq+PHjWrBggWbMmKHU1FT95Cc/abudgVeijDEm0J2A90pKSuRwOFRcXNzoSb5AoFgLJPExAwAIZ8ePH9fu3bvVq1cvJSQkBLo7IaOpceMYt+1wHUIAAAAAiFAEQiDMHDt2TN9//32guwEAAIAQQCAEwsygQYPUuXPnQHcDAAAAIYBACISZXbt2BboLAAAACBEEQgAAAACIUARCAAAAwAdYVdszjFdwIBACAAAArRAbGytJKi8vD3BPQos1Xtb4ITC4MD0AAADQCtHR0TrllFNUWFgoSUpKSrKvxYuGjDEqLy9XYWGhTjnlFEVHRwe6SxGNQAgAAAC0Unp6uiTZoRDNO+WUU+xxQ+AQCAEAAIBWioqKUteuXZWWlqbq6upAdyfoxcbGUhkMEgRCAAAAwEeio6MJOggpLCoDAAAAABGKQAgAAAAAEYpACABuvP3228rNzQ10NwAAAPwqynBFyJBWUlIih8Oh4uJidezYMdDdQRCwlrkOhl/tYOqLp0K57wAAhDqOcdsOFUIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUARCAAAAAIhQBEIAAAAAiFAEQgAAAACIUATCeubMmaOoqCiXW3p6uv24MUZz5sxRRkaGEhMTNWLECG3fvt1lG5WVlZoyZYpSU1OVnJys8ePHa//+/S5tioqKlJ2dLYfDIYfDoezsbB09erQtdhEAAAAAJBEI3TrrrLN06NAh+7Z161b7sfnz5+uJJ57QokWLtGnTJqWnp+uyyy5TaWmp3SYnJ0crVqxQbm6u1q5dq7KyMo0bN061tbV2m4kTJyo/P195eXnKy8tTfn6+srOz23Q/AQAAAES2mEB3IBjFxMS4VAUtxhgtXLhQs2fP1tVXXy1JevHFF9WlSxctX75ct956q4qLi/X888/rpZde0qhRoyRJS5cuVWZmplavXq3LL79cO3bsUF5entavX6+hQ4dKkhYvXqysrCzt3LlTffv2bbudBQAAABCxqBC6sWvXLmVkZKhXr1669tpr9fXXX0uSdu/erYKCAo0ePdpuGx8fr0suuUTr1q2TJG3evFnV1dUubTIyMjRgwAC7zUcffSSHw2GHQUkaNmyYHA6H3aYxlZWVKikpcbkBAAAAgDcIhPUMHTpUf/nLX/Tuu+9q8eLFKigo0PDhw/Xdd9+poKBAktSlSxeX53Tp0sV+rKCgQHFxcerUqVOTbdLS0hq8dlpamt2mMfPmzbPPO3Q4HMrMzPR6XwEAAABENgJhPWPHjtU111yjs88+W6NGjdJbb70l6cTUUEtUVJTLc4wxDe6rr34bd+1bsp1Zs2apuLjYvu3bt6/ZfQIAAAAAdwiEzUhOTtbZZ5+tXbt22ecV1q/iFRYW2lXD9PR0VVVVqaioqMk2hw8fbvBaR44caVB9rC8+Pl4dO3Z0uQEAAACANwiEzaisrNSOHTvUtWtX9erVS+np6Vq1apX9eFVVldasWaPhw4dLkgYPHqzY2FiXNocOHdK2bdvsNllZWSouLtbGjRvtNhs2bFBxcbHdBgAAAAD8jVVG65kxY4auvPJKde/eXYWFhfrd736nkpIS3XjjjYqKilJOTo7mzp2rPn36qE+fPpo7d66SkpI0ceJESZLD4dCkSZM0ffp0de7cWSkpKZoxY4Y9BVWS+vfvrzFjxujmm2/Ws88+K0m65ZZbNG7cOFYYBQAAANBmCIT17N+/X9ddd52+/fZbnXrqqRo2bJjWr1+vHj16SJJmzpypiooK3X777SoqKtLQoUO1cuVKdejQwd7GggULFBMTowkTJqiiokIjR47UkiVLFB0dbbdZtmyZpk6daq9GOn78eC1atKhtdxYAAABARIsyxphAdwLeKykpkcPhUHFxMecTQtLJBYuC4Vc7mPriqVDuOwAAoY5j3LbDOYQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIRAmOJyCQAAAGgOgRAIU8EUCIOpLwAAADiJQAgAAAAAEYpACISpYKrKBVNfAAAAcBKBEAhTwRTCgqkvAAAAOIlACISpYAphwdQXAAAAnEQgBAAAAIAIRSAEwlQwVeWCqS8AAAA4iUAIhKlgCmHB1BcAAACcRCAEwlQwhbBg6gsAAABOIhACAAAAQIQiEAJhKpiqcsHUFwAAAJxEIATCVDCFsGDqCwAAAE4iEAJhihAGAACA5hAIAfgd4RQAACA4EQiBMBVMISyY+gIAAICTCIRAmAqmEBZMfQEAAMBJBEIgTBHCAAAA0BwCIQC/I5wCAAAEJwIhEKaCKYQFU18AAABwEoEQgN8RCAEAAIITgRAIU4QwAAAANIdACISpYAqEwdQXAAAAnEQgBOB3BEIAAIDgRCAEwlQwhbBg6gsAAABOIhA2Y968eYqKilJOTo59nzFGc+bMUUZGhhITEzVixAht377d5XmVlZWaMmWKUlNTlZycrPHjx2v//v0ubYqKipSdnS2HwyGHw6Hs7GwdPXq0DfYKAAAAAAiETdq0aZOee+45DRw40OX++fPn64knntCiRYu0adMmpaen67LLLlNpaandJicnRytWrFBubq7Wrl2rsrIyjRs3TrW1tXabiRMnKj8/X3l5ecrLy1N+fr6ys7PbbP8Q3oKpKhdMfQEAAMBJBMJGlJWV6frrr9fixYvVqVMn+35jjBYuXKjZs2fr6quv1oABA/Tiiy+qvLxcy5cvlyQVFxfr+eef1+OPP65Ro0Zp0KBBWrp0qbZu3arVq1dLknbs2KG8vDz96U9/UlZWlrKysrR48WK9+eab2rlzZ0D2GeElmEJYMPUFAAAAJxEIG3HHHXfoiiuu0KhRo1zu3717twoKCjR69Gj7vvj4eF1yySVat26dJGnz5s2qrq52aZORkaEBAwbYbT766CM5HA4NHTrUbjNs2DA5HA67DRAuCIQAAADBiUDoRm5urrZs2aJ58+Y1eKygoECS1KVLF5f7u3TpYj9WUFCguLg4l8qiuzZpaWkNtp+Wlma3caeyslIlJSUuN8Adb0LYoUOHNGnSJNXU1PihRwAAAAg2BMJ69u3bp7vuuktLly5VQkJCo+2ioqJc/m2MaXBfffXbuGvf3HbmzZtnL0LjcDiUmZnZ5GsicnkTCB966CH9+c9/1meffRbwvgAAAMD/CIT1bN68WYWFhRo8eLBiYmIUExOjNWvW6Pe//71iYmLsymD9Kl5hYaH9WHp6uqqqqlRUVNRkm8OHDzd4/SNHjjSoPjqbNWuWiouL7du+fftatb+As3btTnwk+DrAEQgBAACCE4GwnpEjR2rr1q3Kz8+3b0OGDNH111+v/Px8nX766UpPT9eqVavs51RVVWnNmjUaPny4JGnw4MGKjY11aXPo0CFt27bNbpOVlaXi4mJt3LjRbrNhwwYVFxfbbdyJj49Xx44dXW6AO96EMCsQ1tXVBbwvAAAA8L+YQHcg2HTo0EEDBgxwuS85OVmdO3e278/JydHcuXPVp08f9enTR3PnzlVSUpImTpwoSXI4HJo0aZKmT5+uzp07KyUlRTNmzNDZZ59tL1LTv39/jRkzRjfffLOeffZZSdItt9yicePGqW/fvm24x8BJ1nRlAhwAAEBkIBB6YebMmaqoqNDtt9+uoqIiDR06VCtXrlSHDh3sNgsWLFBMTIwmTJigiooKjRw5UkuWLFF0dLTdZtmyZZo6daq9Gun48eO1aNGiNt8fhCdvQp0VCKkQAgAARIYow5FaSCspKZHD4VBxcTHTRyHpZKg7ePCgunbt6tFz7777bi1cuFDr1q1TVlaWz/py4MABZWRktHp7bYlqKQAAgcMxbtvhHEIANn+FIEIVAABAcCIQAmEqmKaMAgAAIDgRCAHYuOxEQ6HcdwAAgOYQCIEw1ZoKIYHwpFDuOwAAQHMIhECYIhACAACgOQRCADZ/XZg+lBFmAQBAOCMQAmGKCqFvhHLfAQAAmkMgBGAjEDYUyn0HAABoDoEQCFNUCH0jlPsOAADQHAIhEKa8CTKcQ9gQgRAAAIQzAiEAGxXChkK57wAAAM0hEAJhiimjvhHKfQcAAGgOgRAIU8E0ZTSUQ1Uo9x0AAKA5BEIANn9VCEMZYwEAAMIZgRAIU60JMlYw9BVCFQAAQHAiEAJogHMITwrlvgMAADSHQAiEqdYsKuNroRyqQrnvAAAAzSEQAmGKIOMbjCMAAAhnBEIAfhfKoSqU+w4AANAcAiEQploTZDiH8KRQ7jsAAEBzCIQAGiAQnhTKfQcAAGgOgRAIU8FUIQxljAUAAAhnBEIgTLVmldG6urqA9yVYhHLfAQAAmkMgBNAAU0ZPCuW+AwAANIdACIQppoz6BmMBAADCGYEQCFPBFAgJVQAAAMGJQAigAQLhSaHcdwAAgOYQCIEwRYXQN2prawPdBQAAAL8hEAKw+WuV0VBWXV0d6C4AAAD4DYEQCFNUCH2DQAgAAMIZgRAIU625DiGB8KSqqqpAdwEAAMBvCIQAGiAQnkSFEAAAhDMCYT1PP/20Bg4cqI4dO6pjx47KysrSO++8Yz9ujNGcOXOUkZGhxMREjRgxQtu3b3fZRmVlpaZMmaLU1FQlJydr/Pjx2r9/v0uboqIiZWdny+FwyOFwKDs7W0ePHm2LXUSECKYpo6GMsQAAAOGMQFhPt27d9Mgjj+jjjz/Wxx9/rEsvvVT/8z//Y4e++fPn64knntCiRYu0adMmpaen67LLLlNpaam9jZycHK1YsUK5ublau3atysrKNG7cOJfVCidOnKj8/Hzl5eUpLy9P+fn5ys7ObvP9BdyhQngSC+wAAIBwFhPoDgSbK6+80uXfDz/8sJ5++mmtX79eZ555phYuXKjZs2fr6quvliS9+OKL6tKli5YvX65bb71VxcXFev755/XSSy9p1KhRkqSlS5cqMzNTq1ev1uWXX64dO3YoLy9P69ev19ChQyVJixcvVlZWlnbu3Km+ffu27U4jLLXmHEJfh6BQDoSh3HcAAIDmUCFsQm1trXJzc3Xs2DFlZWVp9+7dKigo0OjRo+028fHxuuSSS7Ru3TpJ0ubNm1VdXe3SJiMjQwMGDLDbfPTRR3I4HHYYlKRhw4bJ4XDYbRpTWVmpkpISlxvgTjBNGQ3lUEWFEAAAhDMCoRtbt25V+/btFR8fr8mTJ2vFihU688wzVVBQIEnq0qWLS/suXbrYjxUUFCguLk6dOnVqsk1aWlqD101LS7PbNGbevHn2eYcOh0OZmZle7yfQmFAOcL7GWAAAgHBGIHSjb9++ys/P1/r163Xbbbfpxhtv1Oeff24/bk2rsxhjGtxXX/027tq3ZDuzZs1ScXGxfdu3b19LdgkRiAqhb4Ry3wEAAJpDIHQjLi5OvXv31pAhQzRv3jydc845evLJJ5Weni5JDap4hYWFdtUwPT1dVVVVKioqarLN4cOHG7zukSNHGlQf64uPj7dXQLVugK8RCE9iyigAAAhnBMIWMMaosrJSvXr1Unp6ulatWmU/VlVVpTVr1mj48OGSpMGDBys2NtalzaFDh7Rt2za7TVZWloqLi7Vx40a7zYYNG1RcXGy3AVor0BVC522EciAM5b4DAAA0h1VG6/n1r3+tsWPHKjMzU6WlpcrNzdW//vUv5eXlKSoqSjk5OZo7d6769OmjPn36aO7cuUpKStLEiRMlSQ6HQ5MmTdL06dPVuXNnpaSkaMaMGTr77LPtVUf79++vMWPG6Oabb9azzz4rSbrllls0btw4VhiFz3gTZKznUBU7ibEAAADhjEBYz+HDh5Wdna1Dhw7J4XBo4MCBysvL02WXXSZJmjlzpioqKnT77berqKhIQ4cO1cqVK9WhQwd7GwsWLFBMTIwmTJigiooKjRw5UkuWLFF0dLTdZtmyZZo6daq9Gun48eO1aNGitt1ZoB4rEFIhPCmU+w4AANAcAmE9zz//fJOPR0VFac6cOZozZ06jbRISEvTUU0/pqaeearRNSkqKli5d6m03gWa1pkLY0uceP35cxhglJib6vC/BggohAAAIZ5xDCISptjiHsHfv3kpKSmp2G6EcCEO57wAAAM0hEAKweVohPHDggD+7ExSoEAIAgHBGIATCVFtMGW3p64dylS2U+w4AANAcAiEAm79WGQ3lUBXKfQcAAGgOgRAIU1yH0DeYMgoAAMIZgRAIU4GeMhouGAsAABDOCIQAbJxD2BAVQgAAEM4IhECYCqYKYSgHwlDuOwAAQHMIhABsVAgbokIIAADCGYEQCFOtCWGRHoLCJcwCAAA0h0AIhKlATxkNl1AV6eEYAACENwIhABvnEJ4QLmEWAACgOQRCIExRIfSNUO47AABAcwiEABqI9BDkvP9MGQUAAOGMQAiEKSqE3gvlvgMAAHiCQAiEqUAHwtb2JVhQIQQAAOGMQAjAZgU3X4SgUK6yhXLfAQAAPEEgBMJUa4IMIegkKoQAACCcEQiBMBXoKaOhXGUL5b4DAAB4gkAIwMY5hA1RIQQAAOGMQAiEKSqE3gvlvgMAAHiCQAjA5q8KYShjLAAAQDgjEAJhqjVBhlVGQ7fvAAAAniAQAmGKKaPeC+W+AwAAeIJACMBGIGwolPsOAADQHAIhEKaCqUIYapz7ziqjAAAgnBEIATRAhfCkUO47AABAcwiEQJgKpgphqIWqUO47AACAJwiEQJhqTSD09TTJUA5Vodx3AACA5hAIAdioEJ4Qyn0HAADwBIEQCFNMGfVeKPX9wIED2rNnT6C7AQAAQhSBsJ558+bp/PPPV4cOHZSWlqarrrpKO3fudGljjNGcOXOUkZGhxMREjRgxQtu3b3dpU1lZqSlTpig1NVXJyckaP3689u/f79KmqKhI2dnZcjgccjgcys7O1tGjR/29i4gQrQkykR4InQV737t166aePXsGuhsAACBEEQjrWbNmje644w6tX79eq1atUk1NjUaPHq1jx47ZbebPn68nnnhCixYt0qZNm5Senq7LLrtMpaWldpucnBytWLFCubm5Wrt2rcrKyjRu3DjV1tbabSZOnKj8/Hzl5eUpLy9P+fn5ys7ObtP9BZxRITyBy04AAIBIERPoDgSbvLw8l3+/8MILSktL0+bNm3XxxRfLGKOFCxdq9uzZuvrqqyVJL774orp06aLly5fr1ltvVXFxsZ5//nm99NJLGjVqlCRp6dKlyszM1OrVq3X55Zdrx44dysvL0/r16zV06FBJ0uLFi5WVlaWdO3eqb9++bbvjCDtMGfWNUO47AABAc6gQNqO4uFiSlJKSIknavXu3CgoKNHr0aLtNfHy8LrnkEq1bt06StHnzZlVXV7u0ycjI0IABA+w2H330kRwOhx0GJWnYsGFyOBx2G6CtebvKqLvQFMqBMJT7DgAA4AkqhE0wxmjatGm66KKLNGDAAElSQUGBJKlLly4ubbt06WIv7FBQUKC4uDh16tSpQRvr+QUFBUpLS2vwmmlpaXYbdyorK1VZWWn/u6SkxIs9QyRoy3MI6+rqFB0d3eg2QjlUhXLfAQAAmkOFsAl33nmnPvvsM/31r39t8FhUVJTLv40xDe6rr34bd+2b2868efPsRWgcDocyMzOb2w1EqLacMkqFEAAAIDQRCBsxZcoUvfHGG/rnP/+pbt262fenp6dLUoMqXmFhoV01TE9PV1VVlYqKippsc/jw4Qave+TIkQbVR2ezZs1ScXGxfdu3b593O4iw1Nrw4m0gdDfFNFxCVSj3HQAAoDkEwnqMMbrzzjv12muv6f3331evXr1cHu/Vq5fS09O1atUq+76qqiqtWbNGw4cPlyQNHjxYsbGxLm0OHTqkbdu22W2ysrJUXFysjRs32m02bNig4uJiu4078fHx6tixo8sNsLQ2hBEITwjlvgMAAHiCcwjrueOOO7R8+XL93//9nzp06GBXAh0OhxITExUVFaWcnBzNnTtXffr0UZ8+fTR37lwlJSVp4sSJdttJkyZp+vTp6ty5s1JSUjRjxgydffbZ9qqj/fv315gxY3TzzTfr2WeflSTdcsstGjduHCuMwmu+Ci9MGQ3dvgMAAHiCQFjP008/LUkaMWKEy/0vvPCCbrrpJknSzJkzVVFRodtvv11FRUUaOnSoVq5cqQ4dOtjtFyxYoJiYGE2YMEEVFRUaOXKklixZ4rLwxrJlyzR16lR7NdLx48dr0aJF/t1BhDVfVQg9XWU03CqEzrgOIQAACGcEwnpacuAaFRWlOXPmaM6cOY22SUhI0FNPPaWnnnqq0TYpKSlaunSpN90E3ArUlNHm2odaIAyXMAsAANAcziEEwkiwLioTysJlPwAAANwhEAJhJJgqhKFcZQvlvgMAAHiCQAiggUhfZdRZKPfdH44fPx7oLgAAAB8iEAJhhAqhb4Ry3/3p73//uxITE3Xo0KFAdwUAAPgIgRAII6wy6huh3Hd/+uc//ylJBEIAAMIIgRAII4FaVCbcKoTOuOwEAAAIZwRCIIz4KoRF+jmEodx3f4qKigp0FwAAgI8RCIEwEqhzCAmEbeeNN97QwIEDA90NAAAQJrgwPRBGmDLqG8Hc9xkzZmjXrl2B7gYAAAgTVAiBMEKF0DeCue/t2vGxDQAAfIcjCyCM+KpC6OlCKsYYvfbaa7rpppvc9iUQoaq2tlbV1dVePTfQfW+KFQgDudhNsI0JAADwHoEQCCOBXFTmmmuu0YsvvujzvnjriiuuUFxcnFfPdQ5bwRZ+rEBYW1vb5q/tz0Vl3nzzTVVWVvpt+wAAwD0CIRBGuDD9Se+++67Xzw1035tiBcKampoA98R39u3bpyuvvFL33XdfoLsCAEDEIRACYaS14cWqjPniHEJnwRaqmuPc32C7DqEVCL2dDhuMrDHeu3dvgHsCAEDkIRACYSSQFcLo6Gif9iWQgrnvwVAh9PWYxMbGShJTRgEACAACIRBGAnXZibq6ugarXwZzqGpOKJxDGIhAaJ1D6OuqqbeLGQEAgNYjEAJhpLUhrDVTRpuqEIYa575/9dVXuvDCC1VRURHAHp0UDBVCXy9oQxAEACBwuDA9EEZ8NWXUm8tOWIHQGKOoqKiQrhA69/fll1+WJG3btk3nn39+oLpkC4ZA6OsARyAEACBwqBACYSSQU0atQGgFlXAJhJZgCS3NLSqTl5enzz//3K99oEIIAED4oEIIhJFATRl1rhBWV1crNjaWQOgn1nl8jYWysWPHSvLPmPvrHEJrX0LtfQIAQDigQgiEkUCtMuq8qEw4VAjdBZ5gCYSWQFyY3l+vHWxjCwBAJCEQAmEkUFNGrfMGJffVnlALhKFcIWwL/jqH8B//+AfXIgQAoI0RCIEwEshVRgmEbSMYAqE/K4S33HKLT7cNAACaRiAEwoivKoTerDJqTRklEPpXIAOhv84hdN5e/etZAgAA/+IvLxBG2vIcQuc2wVwh9Ca8BHMgtITTlFHnfSEQAgDQtvjLC4SRtpwyGiqB0JvgFMyLyoT7lFECIQAAbYu/vEAYactFZeoHvqaCSqgFwmCuEAZDIPTnlFFr/wAAQNsgEAJhigrhCdZlMDzhrr+BDGDOGguEbTnGVAgBAAgf/OUFwkhrKzeeVAidXyuYLzvhq0BYXV3ti+74TP1Q1haBtS0WlaFCCABA2yIQAmGkfkjzlCerjIZKhdBX5xAGWyCs38e2nNLq6/DpvD0CIQAAbYtACIQR5wNrf08Zba5C2Npw6iutqRA6T1/0Zjv+0NiU0bYMhFQIAQAIHwRCIIy05ZTR5iqEwRIIW7OoTHR0tH1fsFQIGwuEbXmOoz/PISQQAgDQtgiEbnzwwQe68sorlZGRoaioKL3++usujxtjNGfOHGVkZCgxMVEjRozQ9u3bXdpUVlZqypQpSk1NVXJyssaPH6/9+/e7tCkqKlJ2drYcDoccDoeys7N19OhRP+8dwpmvpoz6ukIYSOFWIbTUD2UffPCB31+TcwgBAAg/BEI3jh07pnPOOUeLFi1y+/j8+fP1xBNPaNGiRdq0aZPS09N12WWXqbS01G6Tk5OjFStWKDc3V2vXrlVZWZnGjRvnchA3ceJE5efnKy8vT3l5ecrPz1d2drbf9w/hq7WVm9asMmqFp2CrEPoqEAZ7hfCtt97y+2tb40KFEACA8BET6A4Eo7Fjx2rs2LFuHzPGaOHChZo9e7auvvpqSdKLL76oLl26aPny5br11ltVXFys559/Xi+99JJGjRolSVq6dKkyMzO1evVqXX755dqxY4fy8vK0fv16DR06VJK0ePFiZWVlaefOnerbt2/b7CyC3s6dO3X77bcrLy9PsbGxTbZtywphOE8ZtfoeSoGwrKzM76/tyaJDnmBRGQAAAocKoYd2796tgoICjR492r4vPj5el1xyidatWydJ2rx5s6qrq13aZGRkaMCAAXabjz76SA6Hww6DkjRs2DA5HA67jTuVlZUqKSlxuSG8/e53v9P777+vPXv2NNu2tYvKeHLA39iUUasiFyyBsDUVQudzCIN9ymhbTDe3fqZUCAEACB8EQg8VFBRIkrp06eJyf5cuXezHCgoKFBcXp06dOjXZJi0trcH209LS7DbuzJs3zz7n0OFwKDMzs1X7g+BnHSB7el6fN3x5YfpgCYStWVQm2CuEzuPaFhVC62fKOYQAAIQPAqGX6h+0OFdIGlO/jbv2zW1n1qxZKi4utm/79u3zsOcIVd4s9OLta/hyUZmoqCgqhD7kPM7OP4OzzjrL769tvd5rr73ml+1KriEcAAD4H395PZSeni5JDap4hYWFdtUwPT1dVVVVKioqarLN4cOHG2z/yJEjDaqPzuLj49WxY0eXG8KbJxUTX00Z9WWFMDo6OmQDYTBWCC31A2G3bt3a5DUl6b333vPpdqkQAgAQOARCD/Xq1Uvp6elatWqVfV9VVZXWrFmj4cOHS5IGDx6s2NhYlzaHDh3Stm3b7DZZWVkqLi7Wxo0b7TYbNmxQcXGx3QaQPFvqvy2njLa0QhjoQNiaRWWCuUJYXFzsMq5t0T9/XUokWC5RAgBAJGKVUTfKysr05Zdf2v/evXu38vPzlZKSou7duysnJ0dz585Vnz591KdPH82dO1dJSUmaOHGiJMnhcGjSpEmaPn26OnfurJSUFM2YMUNnn322vepo//79NWbMGN1888169tlnJUm33HKLxo0bxwqjcGEFgJZUqKgQNhSuFcKpU6fq5ptvtv8dyoGQVUYBAAgcAqEbH3/8sX70ox/Z/542bZok6cYbb9SSJUs0c+ZMVVRU6Pbbb1dRUZGGDh2qlStXqkOHDvZzFixYoJiYGE2YMEEVFRUaOXKklixZ4lJxWLZsmaZOnWqvRjp+/PhGr30ItCSQ+KpC2JLtOIe8cKsQBnMgdP7ZOP9/KAdCpowCABA4BEI3RowY0eQBbFRUlObMmaM5c+Y02iYhIUFPPfWUnnrqqUbbpKSkaOnSpa3pKiKIp4HQm4N3bxeVCeYKoTdBzl0gDJYpo439jH19KQh3/PUaBEIAAAKHcwiBIOftlFF/B8L6r2WFp3AIhNY+xMSc/M4sWCqEVt+6d+/eoELo73FuiwphWwTbSLBv3z5FRUUpPz8/0F0BAAQ5AiEQIlpSoWrtgbUni8rUP18xWCuElZWVHj/H2ofY2Fj7vmCrEPbp06fBojL+XpylLc4hJBD6xpYtWyRJ77zzToB7AgAIdgRCIES05EC5LaeM1q8QhmMgDMYKoTWuVVVVDSqEzqH1m2++8dtr+3O7zu+rJUuWqLCw0C+vGe48+V0GAEQ2AiEQ5KwDupZUqFpbabFew5sKYf37Ax0IrQWcwm3KqDWu9a9DWFtb6/Ieee6553z+2v6q3rl731ZXV+t///d/9Ytf/MIvrwkAAE4gEAJBzgpTbVEhtEKPp9c8dFfhCXQgrF+x9IQVrIIxEFr7U3+KaE1Njd+nXrZFhdAae6uyW1ZW5pfXDHfW+59FegAAzSEQAiGiJQf4VAhPsg6EvTn3z905hMESCK1xdRcInfd10KBBfnttf27XGvvjx49LksuletByTBUFALQUgRAIcp5MGbUOrGNiYlpVIfTmHELnqYzOfQn0Ab03wbgtpoyWlZXplVde8fh5zuNcf1EZfy/I4vye8mXgcPdFRkFBgSTJ4XD47HUAAEBDBEIgRHgyZTQ2NrbNK4TWc+sHwqioqIBUK5wraZ5qi0A4efJkTZgwQcXFxV71rbkKoT8qmq2tQJeVlWnhwoUN3g/uKoTWlNHExERvuoogsnbtWmVnZwe6GwCARhAIgSDnSbBxnuroTYXQ20BYV1dn/9v5v+3atWs0EH7xxRf2tEB/qN8fb57rzymjBw8elCSPx8D5/VA/oPk7EDq/p7zZ/ty5c3X33Xfbl0SwOO9HTU2NHnjgAW3cuNH7jiJoLpMiSRMnTtTSpUsD3Q0AQCMIhECQqz8VsyVtY2JivApC3k4ZdVchrK6uVmxsrNtAWFtbq759+2ratGke97El6k+l9JT1HH8GQuscR08vi+H8frDGul27dg0CYjAGQmtfKyoqGmw3MTFR119/vWpra/XQQw/p9ttvb11nI1xVVVWgu2Cz3ivBFFIBACcRCIEg50mlyxcVwpaef9hchbC6ulpxcXFuA2FJSYkk6ZNPPvG4jy3R2HXtWso5aFl8HbCsbXsaCJ2njFoH2PHx8W02ZdSaRuvLg/va2lpFR0crOjpax44dc3mMxVG8E0yB0OLPGQEAAO8RCIEg5xwAmuOLcwhjY2O9mjJav0JYVVWl2NhYtWvXrkHAtA5W/XWw7+4yBp6wAorzkv3BEgjdTRm1AqG/K4S1tbVKSEjwevuN/bzr6urUrl07RUdHq7y8vFV9xAmeXEKmrdSvDMM/ysvLG3yxAgBNIRACQa5+0GqKcyD0dpXRuLg4r6aMuqsQxsbGKjY2tkF4sAJhW17o3NPnx8TEtEkg9PYcQucpo/Hx8W1yDqFzIPQmaFt9r9+3uro6RUdHKyYmhkDoI9bvWDBUCq3PEwJh2zjttNOUmpoa6G4ACCEEQiDIeXL+jfPqmJ4Gobq6OhljWlwhrH9h+samjDYVCNvyQueeqKmpsQNKa7bTFF9MGa1fIfR3IKypqWlVhdD6udQPKdYCRNHR0frmm29a3c/WmDlzpk499dSA9sEXrDEOlutnSkwZbStHjx5lrAF4JKb5JgACyZNqWnV1tR1kPA1b1oGjN1NGm1pUpqlA2BZTRlszdTYuLs7lPl9qzZTR6OjoBhXCtp4y2poKYf1AaE0Z/fDDD1vfyVZ67LHHAt0Fn7B+/sFQIbRQIQSA4ESFEAhyngZC67w9T4OQdYDvzZRRdxVC6xxCd4HQ+re/poy2tkJo9d05EAbTKqNxcXEuAdD6t/O++iMI1NTU2NcFbM05hPX32Tpn8/vvv299JyHp5M+/uffXJ598ooyMDHuhJ3+iagUAwYlACAQ568CuJcGmqqpKcXFxio6O9rhC2JpA2FiFMFBTRlt7DqE1jsFYIaytrW0QCK1zCIO9Quj8ZYEzq0LofM4mWsca40WLFunjjz9utN2f/vQnHTp0SDt37vR7n6gQAkBwIhACQa6tKoRWgIiLi/PZZSeamzIarOcQOodZ5/t8qTVTRuPi4txOGbX2NSYmJijPIdy1a5ck94EwOjra7XO47IR3nMd4+vTpjbazzpNti3MNCYQAEJwIhECQ86RCaIWw1lQIfXUOYVNTRoP9HMK2qBBaAeh3v/udR89zN2W0/jmEiYmJQXnZiffff19S04vK1Ld27Vovegrnn09Tv2eNTeP1B6aM+p+/puH7y6ZNm/Tb3/420N0AIh6BEAhybX0OoTeB0DmMeDJltC0uOxGs5xBatm3b5lF7a8poUxXChIQEv1cIWxOQ6wfCqqoqxcfHa9++fQ3a7t+/Xy+//LLXr+ULDzzwQJtMqfQl5zFuye+zrwJhdXW11q9f7/YxKoT+V1ZWZv9/KITDyy+/XPfffz8zAYAAIxACQc6bQOhNhdAKENb5aM2x2kRHR7scTLZkyqi/L5rtfDDszUGRFWb9WSG0xuCUU07x6HlWhVA6uZ/1F5XxZ4UwPj5ekucB2fmAz10gjIuL0/333+/2uYFYKdN63xhj9NBDD+m8885r8z60hvPvZFsGwt/+9rfKyspSQUFBg8eC8RqTN954o+bMmRPobviM8+JAbVH1ba3S0lJJwfneACIJgRAIcp4uKtPaCmGHDh1adCDhPD3R+Y95MJxD6C6geqJ+hTAuLs7nAcva3qWXXurR89wFwvqLyiQkJPhtlVFvK4TO/an//rIC4QMPPOD2udbKpm2p/oXdQ+2A1bka15ZTRr/88ktJrpUq671+8803a9myZT55HV/5y1/+ogcffDDQ3XDrzDPP1PLlyz16jnMgDIWKrPU50har3AJoHIEQCHKeVgitVUa9XVSmffv2LTqQcA6Ex44da7Ad6yA/EOcQOh/celPZO378uBISEuzg1aFDB59XCK0x8PS8KmvKqPNzExIS2qxC6O05hM4/k8YqhI0JxLlnhw4dkhQaVRZ3nANsWwZC6zxQ588E58+TlStXerS9devW6dtvv/VJ30LJ999/rx07duj666/36HlWxU3yz+9Nbm6urrnmGp9v17nfANoegRAIct6eQ+jtojLt27dv0YFEeXm52rVrpw4dOqioqKhBf50rhPXDlL/PIbQObhMTE716jYqKCiUmJtohpX379qqpqfFpgLUClaff4jtXCK1v1Tt27OhyHqe/ziGsrq72ukLo/J6qP0WvuUAYiErHGWec0eC1Q+GcLItzIGxsBVfpZJXeV+HBWj23uLhY0onA6bztpKQkj7Z34YUXauzYsT7pWygpLCyUdOLLKE84V9q6devm80u5XHfddXrttdd8uk0p8BXCgwcPasOGDU22qampUU5Ojv2zAcIJgRAIct6uMtqaKaO1tbXNvl5ZWZnat2+v+Ph4lwuKuwuE7ipCzv/1NSsQJicne1XZq6ioUEJCgn3wak1Z9GUg8CYQWgfX7du3lyQdPXpU0slA6O8KYXl5uX3OY2sqhNa2LMFYIbQ4H6ha50+GAufxtUKaO9bv4C233NLk9Qpbynota9yqqqpcvkhxvpRLc6znbd++vdX98sYrr7yiv/3tbwF5bevnl5qa6tHzdu/e7Y/u+F2gA+GkSZM0bNiwJtu8+uqrevLJJ/X444+3Ua+AtkMgBIKct4vKeDtl1PpGurmDcHeBsH379i5TIePj4+VwOOxqQf3Xcp5W5kvOgbA1FUJrLP7zn/9I8u1Ko9a+exIIKysrVVtbq44dO0o6UYWJi4tTUlKSamtr7f1OSkryeSA0xujYsWN2IPQ0aFt9+8UvfiHJdYqYdc6mOw6HI2gCYShVCCsqKpSVlSWp6SmjzmPr6SVQ3LGqkda41f/ZNVWtrM/6HfHX1PLmfkcmTJiga6+91mevV1dX1+LPPKudp+eu/uY3v/G4X97w9Zd5JSUl2r59e8BWG83Ly5PU9N+krVu3SpL+7//+r036BLQlAiEQxJwXCmnJAbgVwjp06ODxORnOU0al5oOKFQjj4uLsQJiSkmIfKHz33XdKSUlRampqg3OArDalpaV+WVjGOghtbYXQqlqlp6dL8u1Ko9aiG56EHetgpVOnTpJOnGfUvn17xcTEqKamRqWlpYqOjlbHjh19HggrKipkjPG6Qmi9n3r06CHJtWJYXFwsh8MhSTrnnHNcnpeQkNBmU0bdHYzWr1yEyvL45eXluuCCC3TLLbc0OX7O7z9PwlpjrN/nzz//XJWVlQ1e25NzFZ2nnbaWMUY333yzy+VD2vq8tdmzZ6t9+/Yt2h9vA+FPfvKTBvf54z3ri7Fz/jx9//33NWDAAE2YMKHV2/WG9YXUwYMHG21jfe42V0n0B67hCX8jEKJVrINE+IfzQXdLDsC/++47de7cWZ06dXI5r68lnKeMSt5VCFNSUux+Wn1JTU1VeXl5gymCFn+s3uhcKfOmqmMFlB//+Me6/vrr9fDDD7ts1xesQOhJ2LEOEtPS0iSdOM+offv2io6OVk1Njb7//nt17tzZ7TRdX/XX20BoHUCeeuqpklzH8ttvv7Wnxv3jH//Q9u3btXz5cj355JNKTExss0DovDKmxQqEkydPdvl3sCsvL1dSUlKDVYDrcx5bTwJhdXW1XTFxZr1HH374YU2ePLnB54gnswI8CYSHDx9W586d7VVO6/v222/1pz/9SXfeead9n3OoGTRoUKOL1/hqJsMLL7wgSQ1mTLhjfaaWlpYqKiqqxdN5jx49aleGLf6YibFy5UqdccYZrfrddB7/Xbt2STpZqZOkBQsW6KWXXvK+kx6wAuHhw4cbbWP9TNr6nObNmzcrMTFRb7/9dpu+LiILgRBee+mll5SUlKThw4drzZo1mj9/fsDO9QhXngan7777TqmpqUpJSXE5r68lrIMUqxrW3DfAViA8evSo/a2qVSGsq6vTkSNH1LlzZzsAHDlyxO1++eObT+cpo95Uyr799ludeuqpSk5O1tKlS9W9e3dJvq0olJWV6dRTT/Xo4MIKLFYgLCgoUHJysh0ACwsLdeqpp7bqMhlHjhxRVFSUNm7c6HK/dVBpVfI8rZZaQcoKfo0FwszMTJ155pm67rrrNHXqVCUnJ3t1QPvCCy/o008/9eg53333ncu/6+rq7N+LcePGSZLHX7QESnl5uRITE5WUlNTke8w54DZ1rmF9Dz/8sAYOHNggRDn/jqxZs6bBa3vyBZA19nV1dfaqr4354IMP9P333+vVV191+7j1/KioKPuzyLmv+fn56tevn9vn+moRkZiYGJe+NMX581KSLr744ha9Rm5urj766COX+/yxCMpdd92lr7/+utEA3hLO7739+/dLksaMGWPfN23aNN1www3ed9ID1uI7zuP+3XffKSoqSrm5uTLGaO7cuZJO/Pzq6ur0hz/8oU3CofXzvOKKK/z+WohcBEJ47c9//rMkaf369RoxYoTuvfdeDRgwQHfccYfmzp2rPXv2BLiHoc/5oNld9aI+68A6KSlJu3bt8qh6u2fPHkVHR+v888+XJH399ddNtrcCoXOVoGvXrioqKtK0adMknTi4t8KL8x9a5z+i/giExcXFateunU499VSPw0RFRUWDgzGrauqrQGidS3Tqqad6tP/W6n7WSp9r1qzR4cOHlZycrPLych0+fFhpaWlKTk5u0fvFnc8++0ySGhxYW2Gpffv2io2N9bhaah381a8QGmN05MiRRhfP8DYQ/uIXv/D4YvLWPt50002STrzHS0pKFB8fry5dukg6uZCPtyoqKvTb3/7WbwsqOb9OUlKSkpOTm3zfOu+PJ4HQCttWZcfifJAfHR1tv79feuklnXPOOR69L61t1dTUKCMjo8nnWq/TWJXT+tJq1apVSktLkzGmwbg4ny/o/IXHGWec4ZPqjNW3N998Uy+//HKTbet/Bo0ePbrFr3PNNddo3rx5uu+++yQ1XfXyhPP0fqt/rVnExgqB0okpxpL04YcfSmr7y71Y+3bkyBHNnz9f0dHRdhi97rrr9M0339htDxw4oHXr1unOO+9sMMXdUltb2+ALJm9Z78VBgwY12a68vFz//ve/ffKaiDwEQnjt73//u9v7//jHP2r27Nnq2bOnoqKi7NvPfvYzHT58WNu2bdOTTz7Zom9JI917771n/39zB1LGGDsQvvXWW5JOHty3xI4dO3TmmWeqW7duSkxMbPabXysQOhswYIC2b9+uL774QpJ0wQUXKDMzU5K0ZcsWu53zwY4/AuGBAweUnp6uzp07t2h6lrP169dLkvr06WPfZ1XFfFUdsgJOamqqR98wp6SkSHI9OPz++++VmJgoY4xefvllJScnKy0trcEBZUtZAcGqZliys7MlnajuujsvtDnWwXfnzp0lnfy5l5SUqLq6utFA2L59e48DofVFiKfnp1oHcNY5QqWlpSopKVHHjh3tqbLeBMKdO3fqkksukTFGzzzzjO6//36XqXH+YE0ZTU1N1ffff+8yFuXl5Ro9erT+85//uOxP/c+YZ555ptGQaP1e/eMf/3AJt86BsLKy0g4jw4YN0+DBgz36HTpw4IDLv5uqdFltN27cqH379jV4vP7fm3379jUIhNbPWHINUcYYnyy4Y43lzJkz9bOf/azJtvV/v1ryvrNC1MUXX6xf/epXuuOOOyS5jtvWrVs9+rvgzN3foNYEwq+++krSib8T1vvTeg3n7b799tvq2bOnR19wVlVVtXgWw/Hjx+3P4SNHjujee+9VXV2dy5cAVrjOysrS119/rR/+8IeSGn4hYnnssceUmprqkzBuhVFrvAoLC3XllVc2+FJp9OjRuvjii1tVtZWkTZs2uRx7cFpQZCAQwmvWwfaRI0f0yCOPNNv+5ZdfVnp6us4++2zl5OQoIyNDUVFRuvXWWxUVFaXJkyfb3xLiBOugfOTIkc0GwgceeECVlZX2uTKStHfv3ha9zmeffaann35aW7duVbt27XTGGWc0+ofOsnHjRiUnJ+svf/mLfV9ycrKOHz+ud955R4mJiUpLS7MP9G+99Va73Zdffqlu3bpJ8k8gfOihh3Tw4EEVFBRoy5YtHp1H+Ne//lWSdNVVV9n39erVS5JrqG0N62eZnp6umpqaFofCTz75RB07drQDqnRiWtUHH3xg//vNN99UWlqavv32W6/On7QWpZg7d67L862VVvv06aP09HQVFBR4tN19+/YpNTXV/rlb781bbrlF0smgWF/Hjh09DuLuzk1qCSsQWj/vwsJCOxBaY26dS+iJfv366YMPPtC2bds0Y8YMSScW0Wjpgdb+/fubrShJJ8a4srJS+/btU01NjYqLi5WWlqa6ujqXKeQbNmzQqlWr1L9/f+3fv9+ejlh/Vsdtt90mY4zuuuuuBq9ljdW8efM0a9Ys+37nGQPt2rXTjh07lJSUpDPOOMPjqeyTJk1y+5ruWO+nV155xZ7i7az+YiFff/11g+05v2/qf3bW/3LBWnXXE/UDqPVZ486zzz7r8m/nCpU7X3zxhV555RVJslchtn6nNm3aZLcbOHBgo1Wt5rgLpZ5+sTt16lTNnz9fknTjjTdKcv3yrbS0VMeOHbN/T6QTUyX37Nljf9Hp7LPPPlNUVJR27Njhcn98fLw9zbs5zj/rNWvWuG2zbNkySdL999/fom0uX75c0skvzlszs+DJJ5+UdOLLls2bN6tLly568803NX78eJd2VnXV+vLCk1VtLcYYXXDBBRo1apTKyso0d+5c9e7d2+u+I4QYBNwf/vAH07NnTxMfH2/OO+8888EHH7T4ucXFxUaSKS4u9mMPW662ttY8//zz5sEHHzSS/HIbOHCgGT9+vLnnnntMdHS0y2MffPCBKSsrM5s3bzYrV640n376qTlw4ID56quvzFdffWXWrVtn93XDhg2mrq4ugKPVvOuuu85IMrfddpvp27dvk22tMfjiiy9MXV2dkWSGDRvW7D5abSWZc8891xhjzA9/+EMjybz++uvmmmuuMc8995zLdn77298aSWbChAn28y+++GKzYMECe1tjx45t0LcxY8aY48ePG0lm9OjRRpJ58803WzFCDVm/E863nTt3Nrn/xhhz8803uzynPuv+ysrKVvfxhRdeMJLMww8/bCS5vC8bY42bJFNdXe2yb/v27bP/PX78eLNy5Uojydx+++2msLDQLFu2zFRVVdnbqqqqMsOGDTNr1651+bk6vxckmU8//dR+rH379va4NDZGTZFkhg4daowxJjMz05xxxhkmNzfX3tbx48fdPm/atGkmIyPDo9fatWuXvd3Bgwe3+HljxowxksyRI0eMJPPyyy+b6667zgwePNhUVlba2ywqKjKzZs0ykkxtbW2z283IyDCSTO/evU3fvn3t7axevbpF/Tr//PONJJOXl9dom0svvdTeblJSkv37++GHHxpJZu7cuXbbZ5991uXnPH36dPPAAw+Yrl27GmOMqampMevXr3dp8/rrr9vPr62tdXns6quvNsYYs3nzZvu+SZMmNfh9+p//+R8jyaxfv77Zfa6pqWnwe9zUZ8XFF1/s0vbYsWMuj/fo0cPl8auuusrMnj3bxMbG2vddccUVdvsbbrihwes7++lPf2okmU2bNjW7L8YYU1RU5Pbvmbv3z8GDBxu0i46ONqtWrXK7b6tXr3Zp++9//9t+zLrv7bffNv/4xz/sfw8ZMsT079+/RX2vv8/Ot0GDBplPP/202b8ztbW1Lp8v5513nv3/zzzzjMs2rfdv/Zv198Zy7Ngxc8oppxhJJiEhwbzzzjvm1VdfdXnvVlRUmDvuuMO8++67jfbt17/+tf1Z4e51nW/1PyOd/7ZZvvrqK5fHXnnlFY8/M8vLy016enqL+lNcXGw++OADl/vnzJlj//+9997botdsbN8k3/zd80awHeOGMwJhgOXm5prY2FizePFi8/nnn5u77rrLJCcnmz179rTo+aHyy/LKK6+YBx54wLz22mvNfsCFwu1HP/qR6devn/1vK0D97ne/M7/4xS9MVlaWuf32240kc/rpp5vbbrvNPhi69NJLzZIlS8zVV19tNmzYYP7yl7+YRx55xEyfPt189dVXZtWqVWb27Nnm1ltvtbdvBUNJ5vrrrzfz5s0zP/vZzxr0y10Is24jR4403bp1M7fddptZvHix2/06ePCgMcaYs846q0XjYLX//PPPTUlJiTl06JD92NGjR+2+rFixosFz7777bvv/f/nLX5rt27ebJUuWmD/96U9m2bJl5rHHHjNvvfWW+eijj8z9999vNm7caLZs2WIee+wx8+Mf/9js3LnTXHvttebcc881ycnJDbY/bdo0c/3119v/7tatm+nRo4eZMmWKkdTgANL59uMf/7jBe7ixtv379zeSzN///nfzxhtvmEmTJpmVK1ea3Nxc85Of/MSsXLnSPPPMM+ayyy4ziYmJLj/XTz75xP7/U0891fzv//6vSUtLMz//+c/NPffcY7p3725OO+00l9fr2bOn29+xGTNmmISEBGPMiYMJd33NyckxHTp0aHB/79697dAhyVxzzTVun//YY48ZY4zLQbR1e+GFF8yf//xn+8D7nnvuMdOmTWvQzhhjevbs6fZ+dx5//PFGx/6ee+4xZWVl5tNPPzWHDx82N954o/n222/N5Zdf7tJu1apVZsuWLWbPnj3m6NGjZtiwYUaSufzyy81dd91lnnvuOTNhwgS7ff0DowkTJri8B37+8583GL+ysjJTV1dnqqurjTEnDq4OHDhg3n333Ub7P27cOPPFF1+YkpISU1NTY44ePWoOHz5sHn30UfP888+bRYsWuRzESzL33XefKSkpMQ8++KB5+eWXzWuvvWZ+8pOfuN1+ZWWl+e677+x/jxo1yu1B75tvvmmWL19uJNfPmvq3JUuWmPvvv9/cdNNNDR5zDlwzZswwo0aNavDzfeihh+x/T5061ezatctUVFSYoqIi89e//tVs2rTJfPPNN2bmzJmN9iE/P98cP37cPPLII+bAgQPm1Vdfdfkiyvkz5dixY+bJJ59s8PNyvp155pnm+uuvN6effnqjbZxvN910k1myZEmD+5988knz6KOPmq1bt5rKykpz/PhxU1NT4/I5583t73//e5PvIXc355Dp7u9E/Vtubq656aabzPr1682iRYvMQw89ZH7/+9+7fHnhfHMXDM844wyzbt06c+2115qHH37YLFu2zPTs2dNcffXVTb72yJEjTV1dnfnggw/M7t27W7R/Y8aMsf+eenLr1KlTk4//9a9/tf//nnvuMZJMaWmpfd8jjzxijDFm2bJl5qmnnjLvvPOOVz/TzMxMM3nyZDNw4ECX+xsbb+u1W/M+sm69evUyQ4YMMXfeeafp3r17i54zYsSIRj+f/S1UjnHDAYEwwC644AIzefJkl/v69etnfvWrX7Xo+eHwy7J//35TWFhoDh48aJ555hmzfPly895775m9e/eaefPmmenTp5uFCxeaU0891ScfiKF2GzFihPnss89a1LawsNAeV+vb5JbefvjDH9rPLSkpadFzGuPu2+L6BwY1NTXmoosu8tu4ffvtt01+49nYbdiwYW6/DS0oKPB5H41pPGg2dqupqWnR79XQoUO97teXX37p9v6ysjJjzIlv5r3ZrlVNqf9+/sMf/tDofhQWFvrtPeLuZlUxne977rnn7P60ZV88vf3mN7+xD3pfeumlJvs8fPhwU1paarepqKhw2+7jjz9u9PWsymf9W21trcv2rMqmc5W1pbfvv/++xeO+fv16t18+Wbfp06cbY4xJSUmx73v77beNMcaliuN8KysrM/v37/fZz+jAgQOmoqLCbN26tdm21ue5J59jy5Yta/A75Mv32FVXXWVvt34V2NPbNddc02Rf33nnHVNQUGAuvvhiM2/ePJ/uR/1bx44djTEnZiQsX77cHnfr866xWSZNbdPdFxXe3Lp27Wrq6upc3gd79+512/brr792+Xf96mtLbg8//LDJysoy0okvtAMpHI5xQ0WUMZwtGihVVVVKSkrSK6+8ov/v//v/7Pvvuusu5efnu53LXllZ6bL6VklJiTIzM1VcXGyfN9Bm/vY36b/z6oNNVXW1yo8dk+OUU3S0qEidOnVSaVmZykpLlZCQoOPHjys2Lk6lJSVq36GDYmJiTqx4ZowOHTqklM6dXc45iYmOVrvoaJ0zcKB27typkja6oPG5556r7v9dlKWkpERr1qxR/V/YhPh4tWvXTpeOHKl2/10622Ik7du7V9u3b1d1vRPso3RiEYU+P/iB0tLSGjzXeRvfHjmirdu2KS0tTac4HEpPT2+w6EhLGEnHysqUkJiomP+uuHfg4EFt3rzZ421JUruoKNXV+wj7QZ8+LsvHH6+s1MqVK+1/JyUlKSkpSZ1OOUXfFxWppKRE5w0apLS0NHvp8ab6v2PHDn355ZdK6dRJ33u5yExMdLQuvvhitW/fXrV1ddq0aVOTC2Z06tRJR48e1dixY+1xa47RifOmampqFB8f3+AyEhdeeKEOFxToy/8uVOB8f+eUFNXV1Wn16tU6XlmpXj176syzzlK00wIjtXV12r9vn/bs3dvk+THtoqLUoWNHnT9kiJKSkhr0UcY0O+51xmjb1q365r/nuLVr167ZBWMGnXuuMk47ze15R9KJ97+7P35XXnmloiRVHD+uwwUFioqKUvcePWT18Kuvv7YvrzNgwABt27atyX5IUof27XXB0KEnzo8qK9Ppp5+uwsJCbaj3M2nKyEsv1d59+5o8J9Lqe33l5eVa7bRIRLt27XTFFVc0aHv48GG7T7169lS3zEx1OuUUHT9+XCtXrXJpm5qaqqysLBlj9Oabb0qSuqan67zBg13eJ/VVV1frnRYsqBMdHa0Lzj/fXpXWep3GDlh69uihgQMHSjqxIMnWej+X3r17q3+/fvZ77Vh5uWJjYxX33+vPGZ04L9p5EZCxY8a4XJ/u8x07XM4DvOiii/TN7t3aX2/xm8ZcdOGF9sJQ0onfoWPHjulf//pXg7bDhg61V2iWpOqaGn333XdqFxWl9Rs26Kwzz9T2/55z369fP51x+ulNXkdyz969qq6q0hm9e6uoqEgOh0P79+3Tpy1cYCZK0nmDB+u0jAz7PqMT56lVVlbq0/x8HXGz0FR8fLzi4uLUt29f7d+/X2eddZaMMUpISHD7WVZVXa3SkhIlJiUpKTHR5bFPP/1Ue+qd22mNkzFGdcaoprpa3xcVnbivrk5FRUXqnJqqPd98o//s3ClTV6cap3OjU1NTlZ6erl7/XQTPW+UVFVq9erXaJycrvWtX9endWzGxsSoqKtLx48d1amqqotq1065du3TgwIEGl185/fTTVVpaqvbJyaozRj/o00cJCQlN9qm2tlYfffSRvi8q0g/69FHffv3s3+k6Y3T06FGldOrk8plVX0J8vKJjYtT3Bz9QdHS0oqKi7EtP2dq1k15/3euxaY2SkhI5HI7AHONGGAJhAB08eFCnnXaaPvzwQw0fPty+f+7cuXrxxRe1c+fOBs+ZM2eOHnzwwQb3EwiB4GQktwfpaHvV1dWqratTQny8z7dtjFFpWZni4+MVHxfX8uep8fdHnTGqqamxQws8w+8e4AMEwojg+Vf88Ln63wCZJr4xnzVrln2NN+lkhTAgfvazEzcAjeKANHjE/vfmD1GSvDlcaer90U5Sy6Ml6uN3DwBahkAYQKmpqYqOjm6wfHthYaF9EeT64uPjFe+Hb7cBAAAARB6uQxhAcXFxGjx4sFbVOzdj1apVLlNIAQAAAMAfqBAG2LRp05Sdna0hQ4YoKytLzz33nPbu3evVxY8BAAAAwBMEwgD72c9+pu+++04PPfSQDh06pAEDBujtt99Wjx49At01AAAAAGGOVUZDHCswAQAAINxwjNt2OIcQAAAAACIUgRAAAAAAIhSBEAAAAAAiFIEQAAAAACIUgRAAAAAAIhSBEAAAAAAiFNchDHHWVUNKSkoC3BMAAADAN6xjW66Q538EwhBXWloqScrMzAxwTwAAAADfKi0tlcPhCHQ3whoXpg9xdXV1OnjwoDp06KCoqCi3bUpKSpSZmal9+/ZxYU8/YHz9h7H1L8bXfxhb/2J8/Yex9S/Gt+WMMSotLVVGRobateMsN3+iQhji2rVrp27durWobceOHfnw8SPG138YW/9ifP2HsfUvxtd/GFv/Ynxbhspg2yBuAwAAAECEIhACAAAAQIQiEEaA+Ph4PfDAA4qPjw90V8IS4+s/jK1/Mb7+w9j6F+PrP4ytfzG+CEYsKgMAAAAAEYoKIQAAAABEKAIhAAAAAEQoAiEAAAAARCgCIQAAAABEKAJhBPjjH/+oXr16KSEhQYMHD9a///3vQHcp5MybN0/nn3++OnTooLS0NF111VXauXOnSxtjjObMmaOMjAwlJiZqxIgR2r59e4B6HLrmzZunqKgo5eTk2Pcxtq1z4MAB/fznP1fnzp2VlJSkc889V5s3b7YfZ3y9U1NTo9/85jfq1auXEhMTdfrpp+uhhx5SXV2d3YaxbbkPPvhAV155pTIyMhQVFaXXX3/d5fGWjGVlZaWmTJmi1NRUJScna/z48dq/f38b7kVwampsq6urde+99+rss89WcnKyMjIydMMNN+jgwYMu22BsG9fce9fZrbfeqqioKC1cuNDlfsYXgUQgDHN/+9vflJOTo9mzZ+uTTz7RD3/4Q40dO1Z79+4NdNdCypo1a3THHXdo/fr1WrVqlWpqajR69GgdO3bMbjN//nw98cQTWrRokTZt2qT09HRddtllKi0tDWDPQ8umTZv03HPPaeDAgS73M7beKyoq0oUXXqjY2Fi98847+vzzz/X444/rlFNOsdswvt559NFH9cwzz2jRokXasWOH5s+fr8cee0xPPfWU3Yaxbbljx47pnHPO0aJFi9w+3pKxzMnJ0YoVK5Sbm6u1a9eqrKxM48aNU21tbVvtRlBqamzLy8u1ZcsW3XfffdqyZYtee+01ffHFFxo/frxLO8a2cc29dy2vv/66NmzYoIyMjAaPMb4IKIOwdsEFF5jJkye73NevXz/zq1/9KkA9Cg+FhYVGklmzZo0xxpi6ujqTnp5uHnnkEbvN8ePHjcPhMM8880yguhlSSktLTZ8+fcyqVavMJZdcYu666y5jDGPbWvfee6+56KKLGn2c8fXeFVdcYX7xi1+43Hf11Vebn//858YYxrY1JJkVK1bY/27JWB49etTExsaa3Nxcu82BAwdMu3btTF5eXpv1PdjVH1t3Nm7caCSZPXv2GGMYW080Nr779+83p512mtm2bZvp0aOHWbBggf0Y44tAo0IYxqqqqrR582aNHj3a5f7Ro0dr3bp1AepVeCguLpYkpaSkSJJ2796tgoICl7GOj4/XJZdcwli30B133KErrrhCo0aNcrmfsW2dN954Q0OGDNFPf/pTpaWladCgQVq8eLH9OOPrvYsuukjvvfeevvjiC0nSp59+qrVr1+rHP/6xJMbWl1oylps3b1Z1dbVLm4yMDA0YMIDx9lBxcbGioqLsmQSMbevU1dUpOztb99xzj84666wGjzO+CLSYQHcA/vPtt9+qtrZWXbp0cbm/S5cuKigoCFCvQp8xRtOmTdNFF12kAQMGSJI9nu7Ges+ePW3ex1CTm5urLVu2aNOmTQ0eY2xb5+uvv9bTTz+tadOm6de//rU2btyoqVOnKj4+XjfccAPj2wr33nuviouL1a9fP0VHR6u2tlYPP/ywrrvuOkm8d32pJWNZUFCguLg4derUqUEb/ua13PHjx/WrX/1KEydOVMeOHSUxtq316KOPKiYmRlOnTnX7OOOLQCMQRoCoqCiXfxtjGtyHlrvzzjv12Wefae3atQ0eY6w9t2/fPt11111auXKlEhISGm3H2Hqnrq5OQ4YM0dy5cyVJgwYN0vbt2/X000/rhhtusNsxvp7729/+pqVLl2r58uU666yzlJ+fr5ycHGVkZOjGG2+02zG2vuPNWDLeLVddXa1rr71WdXV1+uMf/9hse8a2eZs3b9aTTz6pLVu2eDxWjC/aClNGw1hqaqqio6MbfLtUWFjY4FtWtMyUKVP0xhtv6J///Ke6detm35+eni5JjLUXNm/erMLCQg0ePFgxMTGKiYnRmjVr9Pvf/14xMTH2+DG23unatavOPPNMl/v69+9vLyzFe9d799xzj371q1/p2muv1dlnn63s7GzdfffdmjdvniTG1pdaMpbp6emqqqpSUVFRo23QuOrqak2YMEG7d+/WqlWr7OqgxNi2xr///W8VFhaqe/fu9t+4PXv2aPr06erZs6ckxheBRyAMY3FxcRo8eLBWrVrlcv+qVas0fPjwAPUqNBljdOedd+q1117T+++/r169erk83qtXL6Wnp7uMdVVVldasWcNYN2PkyJHaunWr8vPz7duQIUN0/fXXKz8/X6effjpj2woXXnhhg0ukfPHFF+rRo4ck3rutUV5ernbtXP+MRkdH25edYGx9pyVjOXjwYMXGxrq0OXTokLZt28Z4N8MKg7t27dLq1avVuXNnl8cZW+9lZ2frs88+c/kbl5GRoXvuuUfvvvuuJMYXQSBAi9mgjeTm5prY2Fjz/PPPm88//9zk5OSY5ORk88033wS6ayHltttuMw6Hw/zrX/8yhw4dsm/l5eV2m0ceecQ4HA7z2muvma1bt5rrrrvOdO3a1ZSUlASw56HJeZVRYxjb1ti4caOJiYkxDz/8sNm1a5dZtmyZSUpKMkuXLrXbML7eufHGG81pp51m3nzzTbN7927z2muvmdTUVDNz5ky7DWPbcqWlpeaTTz4xn3zyiZFknnjiCfPJJ5/YK122ZCwnT55sunXrZlavXm22bNliLr30UnPOOeeYmpqaQO1WUGhqbKurq8348eNNt27dTH5+vsvfuMrKSnsbjG3jmnvv1ld/lVFjGF8EFoEwAvzhD38wPXr0MHFxcea8886zL5WAlpPk9vbCCy/Yberq6swDDzxg0tPTTXx8vLn44ovN1q1bA9fpEFY/EDK2rfOPf/zDDBgwwMTHx5t+/fqZ5557zuVxxtc7JSUl5q677jLdu3c3CQkJ5vTTTzezZ892OYhmbFvun//8p9vP2RtvvNEY07KxrKioMHfeeadJSUkxiYmJZty4cWbv3r0B2Jvg0tTY7t69u9G/cf/85z/tbTC2jWvuvVufu0DI+CKQoowxpi0qkQAAAACA4MI5hAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQoQiEAAAAABChCIQAAAAAEKEIhAAAAAAQof5/Zv7XiPGxUUQAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p = PowderPattern()\n", "if not os.path.exists(data_file):\n", " os.system(\"curl -O https://www.iucr.org/__data/iucr/powder/QARR/col/%s\" % data_file)\n", "\n", "p.ImportPowderPattern2ThetaObs(data_file)\n", "# Copper K-alpha1+alpha2. Use \"Cua1\" for Cu-alpha1 only\n", "p.SetWavelength(\"Cu\")\n", "print(p.GetWavelength())\n", "\n", "p.plot(hkl=True)" ] }, { "cell_type": "markdown", "id": "324669c6", "metadata": {}, "source": [ "### Add crystalline phases\n", "We assume all structures are known.\n", "\n", "This will update the above plot, though the scales will be incorrect." ] }, { "cell_type": "code", "execution_count": 4, "id": "13e6ea08", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "========================== WARNING =========================\n", " In ScatteringPowerAtom::GetTemperatureFactor():\n", " Anisotropic Displacement Parameters are not currently properly handled\n", " for Debye-Waller calculations (no symmetry handling for ADPs).\n", " =>The Debye-Waller calculations will instead use only isotropic DPs\n", "\n" ] } ], "source": [ "for cod_id in cod_phases:\n", " c = CreateCrystalFromCIF(\"http://crystallography.net/cod/%d.cif\" % cod_id)\n", " #print(c,\"\\n\")\n", " p.AddPowderPatternDiffraction(c)\n", "\n", "p.FitScaleFactorForRw()\n", "p.UpdateDisplay()" ] }, { "cell_type": "markdown", "id": "69693f9b", "metadata": {}, "source": [ "### Add an automatic background\n", "This uses a Bayesian estimation of the background, which should be\n", "good enough if there is a good separation of the peaks" ] }, { "cell_type": "code", "execution_count": 5, "id": "e5f73733", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "No background, adding one automatically\n" ] } ], "source": [ "# Add background if necessary\n", "need_background = True\n", "for i in range(p.GetNbPowderPatternComponent()):\n", " if isinstance(p.GetPowderPatternComponent(i), PowderPatternBackground):\n", " need_background = False\n", " break\n", "if need_background:\n", " print(\"No background, adding one automatically\")\n", " x = p.GetPowderPatternX()\n", " bx = np.linspace(x.min(), x.max(), 30) # Number of interpolation points\n", " by = np.zeros(bx.shape)\n", " b = p.AddPowderPatternBackground()\n", " b.SetInterpPoints(bx, by)\n", " # b.Print()\n", " b.UnFixAllPar()\n", " b.OptimizeBayesianBackground()\n", "p.UpdateDisplay()" ] }, { "cell_type": "markdown", "id": "e7533c3b", "metadata": {}, "source": [ "### Fit profile, step 1\n", "Conservative fit, starting with a fixed width (W=1e-5) \n", "\n", "Note that as we know the crystalline structures, we don't need to perform a Le Bail fit" ] }, { "cell_type": "code", "execution_count": 6, "id": "4e9ef3ab", "metadata": {}, "outputs": [], "source": [ "# Multiple phases, so can't use quick_fit_profile\n", "#\n", "# NOTE: we don't use this function as the phases are known, but that's the way\n", "# to do it with multiple crystalline phases\n", "def do_lebail(init=False):\n", " \"\"\"\n", " This performs a Le Bail fit by looping over all phases,\n", " one at a time. Le Bail is disabled on output\n", " \"\"\"\n", " for i in range(20):\n", " for i in range(p.GetNbPowderPatternComponent()):\n", " pdiff = p.GetPowderPatternComponent(i)\n", " if not isinstance(pdiff, PowderPatternDiffraction):\n", " continue\n", " if i==0 or init:\n", " pdiff.SetExtractionMode(True, True)\n", " else:\n", " pdiff.SetExtractionMode(True, False)\n", " pdiff.ExtractLeBail(1)\n", " pdiff.SetExtractionMode(False, False)\n" ] }, { "cell_type": "code", "execution_count": 7, "id": "d8d8d7ef", "metadata": {}, "outputs": [], "source": [ "for i in range(p.GetNbPowderPatternComponent()):\n", " pdiff = p.GetPowderPatternComponent(i)\n", " if not isinstance(pdiff, PowderPatternDiffraction):\n", " continue\n", " pdiff.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 0.00001)\n", "\n", "p.UpdateDisplay()\n" ] }, { "cell_type": "markdown", "id": "651ee954", "metadata": {}, "source": [ "### Fit profile, step 2\n", "Refine only constant width, zero, Eta Gaussian/Voigt mix, and a, b, c parameters " ] }, { "cell_type": "code", "execution_count": 8, "id": "d6155988", "metadata": {}, "outputs": [], "source": [ "lsq = LSQ()\n", "lsq.SetRefinedObj(p, 0, True, True)\n", "lsq.PrepareRefParList(True)\n", "# lsq.GetCompiledRefinedObj().Print()\n", "lsqr = lsq.GetCompiledRefinedObj()\n", "\n", "lsqr.FixAllPar()\n", "# lsqr.Print()\n", "# print(lsq.ChiSquare())\n", "lsq.SetParIsFixed(refpartype_scattdata_scale, False)\n", "for par in [\"W\", \"Zero\", \"Eta0\", \"a\", \"b\", \"c\"]:\n", " for i in range(p.GetNbPowderPatternComponent()):\n", " # This is a KLUDGE - we need this because parameter names are\n", " # unique, and thus \"U\" gets renamed to \"U~\", \"U~~\" in case of 2,3 phases.. \n", " lsq.SetParIsFixed(par + \"~\"*i, False)\n", "lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True)\n", "\n", "p.UpdateDisplay()\n" ] }, { "cell_type": "markdown", "id": "2312897c", "metadata": {}, "source": [ "### Fit profile, final\n", "Refine more parameters, and fit the scale factor" ] }, { "cell_type": "code", "execution_count": 9, "id": "001df7f2", "metadata": {}, "outputs": [], "source": [ "lsqr.FixAllPar()\n", "# lsqr.Print()\n", "# print(lsq.ChiSquare())\n", "lsq.SetParIsFixed(refpartype_scattdata_scale, False)\n", "for par in [\"U\", \"V\", \"W\", \"Zero\", \"Eta0\", \"Eta1\", \"a\", \"b\", \"c\", \"2ThetaDispl\", \"2ThetaTransp\"]:\n", " for i in range(p.GetNbPowderPatternComponent()):\n", " # This is a KLUDGE - we need this because parameter names are\n", " # unique, and thus \"U\" gets renamed to \"U~\", \"U~~\" in case of 2,3 phases.. \n", " lsq.SetParIsFixed(par + \"~\"*i, False)\n", "lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True)\n", "\n", "p.FitScaleFactorForRw()\n", "p.UpdateDisplay()\n" ] }, { "cell_type": "markdown", "id": "ab8f9a18", "metadata": {}, "source": [ "### Compute weight percentages\n", "This uses the formula: \n", "$w_i = \\frac{S_iZ_iM_iV_i}{\\Sigma_iS_iZ_iM_iV_i}$\n", "\n", "where:\n", "* $w_i$ is the weight fraction of crystalline phase i\n", "* $S_i$ its scale factor in the Rietveld refinement\n", "* $Z_i$ the multiplicity of the formula in the unit cell\n", "* $M_i$ the crystal formula's molecular weight\n", "* $V_i$ the unit cell volume for the phase\n", "\n", "This assumes that the structure is known (and thus that the\n", "CIF files are correct), and that we know all present phases.\n", "\n", "The obtained numbers can be compared to:\n", "https://www.iucr.org/__data/iucr/powder/QARR/results.htm" ] }, { "cell_type": "code", "execution_count": 10, "id": "288ab0c8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Weight percentages:\n", "Aluminium oxide - $-alpha: 37.42%\n", " Zincite: 28.35%\n", " Calcium fluoride: 34.23%\n" ] } ], "source": [ "# TODO: check if the method is correctly applied, notably\n", "# is there a shortcut in ObjCryst++ so that the calculated\n", "# structure factor sometimes skips a factor 2 (centrosymmetry\n", "# or other centering factors which allow to avoid a direct sum)\n", "\n", "w = p.qpa(verbose=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "9a5cb5f8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "6f5d27a997294cae96dbaaf9c8551bba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a569e911321f439aa32b738cb4738001": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "e5c2ee7c228b408582fbacd5d1eeda80": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_a569e911321f439aa32b738cb4738001", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "eb5a16017cbd44b8861a27bff409366b": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 1", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_6f5d27a997294cae96dbaaf9c8551bba", "toolbar": "IPY_MODEL_e5c2ee7c228b408582fbacd5d1eeda80", "toolbar_position": "left" } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 } pyobjcryst-2024.2.1/examples/crystal_3d_widget.ipynb000066400000000000000000053054621470422267000224700ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "id": "0eba2823", "metadata": {}, "source": [ "## Creating a crystal from a CIF & display it in 3D\n", "In this short example you can open a CIF file directly from a filename or an URL, and display it in 3D.\n", "\n", "You can also play with the spacegroup and see how that changes the crystal structure.\n", "\n", "*Note: this requires installing `ipywidgets` and `py3Dmol`*" ] }, { "cell_type": "code", "execution_count": 1, "id": "f42880b5", "metadata": { "tags": [] }, "outputs": [], "source": [ "from pyobjcryst.crystal import *\n", "from pyobjcryst.atom import Atom\n", "from pyobjcryst.scatteringpower import ScatteringPowerAtom\n", "from math import pi" ] }, { "cell_type": "markdown", "id": "9c9f9528", "metadata": {}, "source": [ "### From IUCr journals" ] }, { "cell_type": "code", "execution_count": 2, "id": "1bb9a6fd", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C15 Cl H14 N O S\n" ] }, { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "495d94566f4341749dda289bdb120e05", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c = create_crystal_from_cif(\"http://scripts.iucr.org/cgi-bin/sendcif?dt3034sup1\",\n", " oneScatteringPowerPerElement=True,\n", " connectAtoms=True)\n", "print(c.GetFormula())\n", "c.widget_3d()" ] }, { "cell_type": "markdown", "id": "a3ce9a83", "metadata": {}, "source": [ "### From the Crystallography Open Database" ] }, { "cell_type": "code", "execution_count": 3, "id": "88943599", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C29 H32 N4 O5\n" ] }, { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5067998b22c8498d98bb6b5129e7f3d0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c1 = create_crystal_from_cif(\"http://crystallography.net/cod/4506702.cif\",\n", " oneScatteringPowerPerElement=True,\n", " connectAtoms=True)\n", "print(c1.GetFormula())\n", "c1.widget_3d()" ] }, { "cell_type": "markdown", "id": "e13439ec", "metadata": {}, "source": [ "### Create a Crystal structure and change the spacegroup" ] }, { "cell_type": "code", "execution_count": 4, "id": "c3826ab4", "metadata": {}, "outputs": [ { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4516edbf801540df842bd8149d4ab321", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c = Crystal(5, 5, 5, pi/2, pi/2, pi/2, \"P1\")\n", "cu = ScatteringPowerAtom(\"Cu\", \"Cu\")\n", "c.AddScatteringPower(cu)\n", "c.AddScatterer(Atom(0,0,0, \"Cu\", cu))\n", "c.widget_3d(extra_opacity=0.1, extra_dist=2)" ] }, { "cell_type": "code", "execution_count": 5, "id": "f77c7597", "metadata": {}, "outputs": [], "source": [ "# Change the spacegroup and update the display\n", "c.ChangeSpaceGroup(\"Fm-3m\")\n", "c.UpdateDisplay()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0921e449007545b2b81dda95ac2ecf54": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_6f57ecaab35f4723bcc96373be76feee", "outputs": [ { "data": { "application/3dmoljs_load.v0": "", "text/html": "" }, "metadata": {}, "output_type": "display_data" } ] } }, "0996b2b4073143ebb5b16d7489742b46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "0c32ae6902f74739996c3852feae170b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "0fcae9423c724342b19093dfd44c82cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "fullMol opac", "layout": "IPY_MODEL_7db99a4120ba4ae0a317143da0aea915", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_761773dafaaf4cf8b5475d261a532407", "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", "value": 0.5 } }, "10100ea5595c4b0da85ad3afee38b370": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Xrange", "layout": "IPY_MODEL_35422ae44de44937b9e5c53335c1dfff", "max": 1.5, "min": -0.5, "step": 0.05263157894736842, "style": "IPY_MODEL_dea9ad9825f24ae0b1671409af0cb939", "value": [ 0.02631578947368418, 1.026315789473684 ] } }, "14070e12d15748b7b31ab796fa8253b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra dist", "layout": "IPY_MODEL_9044d195564e43d8bd246fe976fafd5b", "max": 10, "readout_format": ".1f", "step": 0.5, "style": "IPY_MODEL_9f73d955e78d408f9c85e8b17242331a", "tooltip": "Extra distance (A) with semi-transparent display", "value": 2 } }, "14714c2ef5d64defa7d7bb33b67fce70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "14ad80730dcb4abaa818d491d62b5011": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "16853aa07399419988e9a6a2ab28f24e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "178bc599d6484c4cbfc8cfc7f6f78a31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "17fd2f77126040fe8b16ce322910427c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Zrange", "layout": "IPY_MODEL_14ad80730dcb4abaa818d491d62b5011", "max": 1.5, "min": -0.5, "step": 0.045454545454545456, "style": "IPY_MODEL_3061fd45f58a458fa9a352c9b4de6c05", "value": [ 1.1102230246251565e-16, 1 ] } }, "1d1afc02139344ed9e5148dfaa7fbcf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "1d4fc1381fb44dd3832481d92b693535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "210be537b08c442d94eb15a2e1024c82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "21ec5323df2f403caebc6eb8409293b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Zrange", "layout": "IPY_MODEL_939bd79955a34756ac39b880169158c3", "max": 1.5, "min": -0.5, "step": 0.1, "style": "IPY_MODEL_963737802eef4d2ab0869d7fa59ecd68", "value": [ 0, 1 ] } }, "2403588c42004841ba40868ae459ee64": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_10100ea5595c4b0da85ad3afee38b370", "IPY_MODEL_a0ea3331d1534110a1387b896e1f078f", "IPY_MODEL_510998bf9bfc417a8ac402ef5ee87bf1" ], "layout": "IPY_MODEL_1d1afc02139344ed9e5148dfaa7fbcf0" } }, "24d32f5ecd234d07b9f1bd5f6f8d96ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "29b6ec09b2824961a1e5dfc0232e3f63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3061fd45f58a458fa9a352c9b4de6c05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "35422ae44de44937b9e5c53335c1dfff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3727818b1b904f3b904b61c9ed6e7cd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra opac.", "layout": "IPY_MODEL_4a76ab79eebc4f148f1910b6d479b91a", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_61e0531754254ffeb4cad570d6419944", "tooltip": "Opacity for extra distance display", "value": 0.1 } }, "3ab29658d38f4c24b3b0ac5237dbb835": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "3b45c857b7e74909b47f3fedc5da4ddc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3bd40a1d13eb47cbaacb913212bf5388": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "40f8eee4198543c992f233329c799556": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra dist", "layout": "IPY_MODEL_4abf9de7d4cd4ebaa4837db4338af3bf", "max": 10, "readout_format": ".1f", "step": 0.5, "style": "IPY_MODEL_f8a67573c53442eca21df95904ff7a5f", "tooltip": "Extra distance (A) with semi-transparent display", "value": 2 } }, "4516edbf801540df842bd8149d4ab321": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_6d5aa6a7ac724254a162954fb8f23743" ], "layout": "IPY_MODEL_e6ef85cd7ae44c07bb9872dd1c5c6307" } }, "49494b595c504b408268f8566a618da0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "495d94566f4341749dda289bdb120e05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_a27698a7cf014b6380ed28ddb0379265" ], "layout": "IPY_MODEL_14714c2ef5d64defa7d7bb33b67fce70" } }, "4a76ab79eebc4f148f1910b6d479b91a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4abf9de7d4cd4ebaa4837db4338af3bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4e7ea6f148eb43258a753657cd405cf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4f245a0ee86a47fcaf06a49dd41a0d77": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "5067998b22c8498d98bb6b5129e7f3d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_987bc0d34a424be29a3829ddb7c8d45f" ], "layout": "IPY_MODEL_0c32ae6902f74739996c3852feae170b" } }, "510998bf9bfc417a8ac402ef5ee87bf1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Zrange", "layout": "IPY_MODEL_fd74b6035f094e3f9e931635a9740ccc", "max": 1.5, "min": -0.5, "step": 0.034482758620689655, "style": "IPY_MODEL_dae07a806e54464dac1cf105d691f759", "value": [ 0.01724137931034475, 1.0172413793103448 ] } }, "52859705a56a4508a3fe2f6bcb47dc88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_fd65c6a4ca3b43248e929e7f47c7857c", "IPY_MODEL_b66372fa3d84415bb6145a6a8ed8708e", "IPY_MODEL_21ec5323df2f403caebc6eb8409293b4" ], "layout": "IPY_MODEL_f3ac3e8c4e7b43a1ad1e481e6f9de83e" } }, "61e0531754254ffeb4cad570d6419944": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "6253ddcc8aba4de5a8e8964bd75aeaf1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra dist", "layout": "IPY_MODEL_fc79d024adb1496ea29fcb76579feb58", "max": 10, "readout_format": ".1f", "step": 0.5, "style": "IPY_MODEL_3ab29658d38f4c24b3b0ac5237dbb835", "tooltip": "Extra distance (A) with semi-transparent display", "value": 2 } }, "62b95578393d4072bb039068c05fb231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "6411c614d81d4cfd970cd917afdac37b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_6253ddcc8aba4de5a8e8964bd75aeaf1", "IPY_MODEL_3727818b1b904f3b904b61c9ed6e7cd9", "IPY_MODEL_7e6bcc83da5c427f93d9f465875812e6" ], "layout": "IPY_MODEL_8e3e21a86f924c97b660d1857de586e7" } }, "69cfa453144143d5837ba9ab8182d9c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "6d5aa6a7ac724254a162954fb8f23743": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_ef835f70ed374772bf7927218c6d914b", "IPY_MODEL_0921e449007545b2b81dda95ac2ecf54" ], "layout": "IPY_MODEL_a2a19745dad64ec5b97073e69f111a67" } }, "6e2b9fc849214d66a98cd6722e599897": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "6f57ecaab35f4723bcc96373be76feee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "6fa1b9f83e0e44008283d59bf430d7aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "761773dafaaf4cf8b5475d261a532407": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "7db99a4120ba4ae0a317143da0aea915": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "7df078a47e15423396cecb2887e12340": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_bd377757e2334a75a2e273ecc2025fb4", "IPY_MODEL_edaf85216c2d488c8dd44543bee9f6be", "IPY_MODEL_17fd2f77126040fe8b16ce322910427c" ], "layout": "IPY_MODEL_df3dd82b133147a38622ed0955220a5f" } }, "7e6bcc83da5c427f93d9f465875812e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "fullMol opac", "layout": "IPY_MODEL_890a7e1c724d474a9b5b900cbb183dcc", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_210be537b08c442d94eb15a2e1024c82", "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", "value": 0.5 } }, "81ef18f49e5140fba36f9761bcab52ea": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_178bc599d6484c4cbfc8cfc7f6f78a31", "outputs": [ { "data": { "application/3dmoljs_load.v0": "", "text/html": "" }, "metadata": {}, "output_type": "display_data" } ] } }, "826995a7222c47309862149d9f9ea575": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_40f8eee4198543c992f233329c799556", "IPY_MODEL_abe719db6cf84175a482329974e5688b", "IPY_MODEL_d422de768be5451eb58c3cb2c883979f" ], "layout": "IPY_MODEL_985208e5749349fd8227ec644aeb1d9c" } }, "890a7e1c724d474a9b5b900cbb183dcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8c2288c939be4b0ba86569b8e69d9cb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra opac.", "layout": "IPY_MODEL_8f8bfff060b74d178b744446a2fa6a74", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_f5efd6cdf7724c75a8cfab2fe71c4437", "tooltip": "Opacity for extra distance display", "value": 0.5 } }, "8e3e21a86f924c97b660d1857de586e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8f3aa573c4e449799d140b7f5cc367bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "8f8bfff060b74d178b744446a2fa6a74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "9044d195564e43d8bd246fe976fafd5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "91548cc738aa4a758a1a92fa25d72991": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "939bd79955a34756ac39b880169158c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "963737802eef4d2ab0869d7fa59ecd68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "985208e5749349fd8227ec644aeb1d9c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "987bc0d34a424be29a3829ddb7c8d45f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_cda5ee20257342d9af7a0f04a01b9361", "IPY_MODEL_aa1e934c102b442da86ae5fa8e37df68" ], "layout": "IPY_MODEL_49494b595c504b408268f8566a618da0" } }, "9c2be96f42a34fdca56d08fed2ed1cfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_7df078a47e15423396cecb2887e12340", "IPY_MODEL_826995a7222c47309862149d9f9ea575" ], "layout": "IPY_MODEL_24d32f5ecd234d07b9f1bd5f6f8d96ae" } }, "9f73d955e78d408f9c85e8b17242331a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "a0ea3331d1534110a1387b896e1f078f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Yrange", "layout": "IPY_MODEL_f465a109647e458a8b770a2ce7eda5f0", "max": 1.5, "min": -0.5, "step": 0.045454545454545456, "style": "IPY_MODEL_0996b2b4073143ebb5b16d7489742b46", "value": [ 1.1102230246251565e-16, 1 ] } }, "a27698a7cf014b6380ed28ddb0379265": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_9c2be96f42a34fdca56d08fed2ed1cfb", "IPY_MODEL_81ef18f49e5140fba36f9761bcab52ea" ], "layout": "IPY_MODEL_6fa1b9f83e0e44008283d59bf430d7aa" } }, "a2a19745dad64ec5b97073e69f111a67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "aa1e934c102b442da86ae5fa8e37df68": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_3b45c857b7e74909b47f3fedc5da4ddc", "outputs": [ { "data": { "application/3dmoljs_load.v0": "", "text/html": "" }, "metadata": {}, "output_type": "display_data" } ] } }, "abe719db6cf84175a482329974e5688b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra opac.", "layout": "IPY_MODEL_4e7ea6f148eb43258a753657cd405cf7", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_c623c65608784c7a8b660d334458525a", "tooltip": "Opacity for extra distance display", "value": 0.5 } }, "b66372fa3d84415bb6145a6a8ed8708e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Yrange", "layout": "IPY_MODEL_69cfa453144143d5837ba9ab8182d9c6", "max": 1.5, "min": -0.5, "step": 0.1, "style": "IPY_MODEL_62b95578393d4072bb039068c05fb231", "value": [ 0, 1 ] } }, "bd377757e2334a75a2e273ecc2025fb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Xrange", "layout": "IPY_MODEL_91548cc738aa4a758a1a92fa25d72991", "max": 1.5, "min": -0.5, "step": 0.06666666666666667, "style": "IPY_MODEL_f523abc4f4754d9582ac6b87b5345be8", "value": [ 0.033333333333333326, 1.0333333333333334 ] } }, "c623c65608784c7a8b660d334458525a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "cda5ee20257342d9af7a0f04a01b9361": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_2403588c42004841ba40868ae459ee64", "IPY_MODEL_dfdfc9ba850f410d8c23c6f473919846" ], "layout": "IPY_MODEL_4f245a0ee86a47fcaf06a49dd41a0d77" } }, "d422de768be5451eb58c3cb2c883979f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "fullMol opac", "layout": "IPY_MODEL_1d4fc1381fb44dd3832481d92b693535", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_3bd40a1d13eb47cbaacb913212bf5388", "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", "value": 0.5 } }, "dae07a806e54464dac1cf105d691f759": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "dea9ad9825f24ae0b1671409af0cb939": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "df3dd82b133147a38622ed0955220a5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "dfdfc9ba850f410d8c23c6f473919846": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_14070e12d15748b7b31ab796fa8253b9", "IPY_MODEL_8c2288c939be4b0ba86569b8e69d9cb9", "IPY_MODEL_0fcae9423c724342b19093dfd44c82cd" ], "layout": "IPY_MODEL_6e2b9fc849214d66a98cd6722e599897" } }, "e6ef85cd7ae44c07bb9872dd1c5c6307": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "edaf85216c2d488c8dd44543bee9f6be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Yrange", "layout": "IPY_MODEL_16853aa07399419988e9a6a2ab28f24e", "max": 1.5, "min": -0.5, "step": 0.02857142857142857, "style": "IPY_MODEL_f7eecb350c914446bf867b35d6bc4ee0", "value": [ 0.014285714285714346, 1.0142857142857145 ] } }, "ef835f70ed374772bf7927218c6d914b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_52859705a56a4508a3fe2f6bcb47dc88", "IPY_MODEL_6411c614d81d4cfd970cd917afdac37b" ], "layout": "IPY_MODEL_29b6ec09b2824961a1e5dfc0232e3f63" } }, "f3ac3e8c4e7b43a1ad1e481e6f9de83e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f465a109647e458a8b770a2ce7eda5f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f523abc4f4754d9582ac6b87b5345be8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "f5efd6cdf7724c75a8cfab2fe71c4437": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "f7eecb350c914446bf867b35d6bc4ee0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "f8a67573c53442eca21df95904ff7a5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "f9874ad38f914564835d989492660370": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "fc79d024adb1496ea29fcb76579feb58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "fd65c6a4ca3b43248e929e7f47c7857c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Xrange", "layout": "IPY_MODEL_f9874ad38f914564835d989492660370", "max": 1.5, "min": -0.5, "step": 0.1, "style": "IPY_MODEL_8f3aa573c4e449799d140b7f5cc367bd", "value": [ 0, 1 ] } }, "fd74b6035f094e3f9e931635a9740ccc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 } pyobjcryst-2024.2.1/examples/single-crystal-data.ipynb000066400000000000000000003714161470422267000227220ustar00rootroot00000000000000{ "cells": [ { "cell_type": "code", "execution_count": 5, "id": "99020362-2694-4b9b-9b87-8c19649b8cd8", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pyobjcryst.crystal import *\n", "from pyobjcryst.diffractiondatasinglecrystal import *\n", "\n", "# Example structure and data from http://crystallography.net/cod/1550649.html\n", "c = create_crystal_from_cif(\"http://crystallography.net/cod/2016712.cif\")\n", "d = create_singlecrystaldata_from_cif(\"http://crystallography.net/cod/2016712.hkl\", c)" ] }, { "cell_type": "code", "execution_count": 9, "id": "0b30a339-5511-4de5-86d6-83a5342b7681", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAJOCAYAAACN2Q8zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5wkdX3v/3f1Za67O+wu7i6roBgRiaB40CDIT/EoF+OKxiSYYFBPCGhQCJGLQY6ReCIIUdFAYpQQQRHJOVHUeEEwKkoEQRQFQRBE7ssusDuzc+1b/f6Y77fm2zVVfe/q6p7X8/HgsTM91d3V1Rem3vP5fL6e7/u+AAAAAAAAgIRler0DAAAAAAAAWJkIpgAAAAAAANATBFMAAAAAAADoCYIpAAAAAAAA9ATBFAAAAAAAAHqCYAoAAAAAAAA9QTAFAAAAAACAniCYAgAAAAAAQE/ker0DaVGpVPTYY49p9erV8jyv17sDAAAAAADQl3zf165du7R582ZlMrVrogimjMcee0x77rlnr3cDAAAAAABgIDz88MN61rOeVXMbgilj9erVkhYP2po1a3q8NwAAAAAAAP1pampKe+65Z5C11EIwZdj2vTVr1hBMAQAAAAAAtKmRUUkMPwcAAAAAAEBPEEwBAAAAAACgJwimAAAAAAAA0BPMmAIAAAAAACtSuVxWsVjs9W70nXw+r2w225HbIpgCAAAAAAAriu/72rp1q3bu3NnrXelbu+22mzZt2tTQgPNaCKYAAAAAAMCKYkOpDRs2aGxsrO1wZSXxfV+zs7Patm2bJGmPPfZo6/YIpgAAAAAAwIpRLpeDUGr9+vW93p2+NDo6Kknatm2bNmzY0FZbH8PPAQAAAADAimFnSo2NjfV4T/qbPX7tzugimAIAAAAAACsO7Xvt6dTxI5gCAAAAAABATxBMAQAAAAAADJjvf//78jwv9SsPEkwBAAAAAAD0gXe84x1605ve1Ovd6CiCKQAAAAAAAPQEwRQAAAAAAECfWVhY0KmnnqoNGzZoZGREhx12mG699dZl2/33f/+3XvziF2tkZEQHH3yw7rjjjuBnDz74oN7whjdo7dq1Gh8f1wtf+EJ985vfTPJhKJfovQEAAAAAAKSM7/uanZ3tyX2PjY21tMLdWWedpS996Uu64oor9OxnP1sXXnihjjrqKN13331at25dsN2ZZ56pT37yk9q0aZPe//7365hjjtG9996rfD6vd7/73SoUCvrBD36g8fFx3XXXXVq1alUnH15dBFMAAAAAAGBFm52dTTyQsaanpzU+Pt7UdWZmZvSpT31Kl19+uV73utdJki699FJdf/31uuyyy3TmmWcG237wgx/UEUccIUm64oor9KxnPUvXXHONjj32WD300EP6wz/8Qx1wwAGSpOc+97kdelSNo5UPAAAAAACgj9x///0qFot6xSteEVyWz+f1e7/3e7r77rurtj3kkEOCr9etW6d999032ObUU0/V3//93+sVr3iFPvjBD+oXv/hFMg/AQcUUAAAAAABY0cbGxjQ9Pd2z+26W7/uStKwF0Pf9htoC7TZ/8Rd/oaOOOkrf+MY3dN111+n888/Xxz72MZ1yyilN71OrqJgCAAAAAAArmud5Gh8f78l/rcyXet7znqehoSHdeOONwWXFYlE/+clPtN9++1Vte/PNNwdf79ixQ/fee69e8IIXBJftueeeete73qUvf/nLOv3003XppZe2cARbR8UUAAAAAABAHxkfH9df/uVf6swzz9S6deu011576cILL9Ts7KxOOOGEqm0/9KEPaf369dq4caPOOecc7b777nrTm94kSTrttNP0ute9Ts9//vO1Y8cOffe7310WbHUbwRQA9LNyWXriCWnz5l7vCQAAAIAEfeQjH1GlUtHxxx+vXbt26aUvfam+/e1va+3atcu2+6u/+iv9+te/1otf/GJ97Wtf09DQkCSpXC7r3e9+tx555BGtWbNGRx99tC666KJEH4fn28bEFW5qakoTExOanJzUmjVrer07ANCYo4+Wvv1t6bvflV796l7vDQAAAJB68/PzeuCBB7T33ntrZGSk17vTt2odx2YyFmZMAUA/+/a3F//9p3/q7X4AAAAAQAsIpgBgEGSzvd4DAAAAAGgawRQADIIcIwMBAAAA9B+CKQAYBFRMAQAAAOhDBFMAMABm5ud7vQsAAAAA0LSWg6kf/OAHesMb3qDNmzfL8zx95Stfqfq57/s699xztXnzZo2Ojurwww/XL3/5y6ptFhYWdMopp2j33XfX+Pi4jjnmGD3yyCNV2+zYsUPHH3+8JiYmNDExoeOPP147d+6s2uahhx7SG97wBo2Pj2v33XfXqaeeqkKh0OpDA4C+c+tPf9rrXQAAAACAprUcTM3MzOjFL36xLrnkksifX3jhhfr4xz+uSy65RLfeeqs2bdqkI444Qrt27Qq2Oe2003TNNdfo6quv1o033qjp6Wlt2bJF5XI52Oa4447T7bffrmuvvVbXXnutbr/9dh1//PHBz8vlsl7/+tdrZmZGN954o66++mp96Utf0umnn97qQwOAvlPy/V7vAgAAAAA0zfP99s9mPM/TNddcoze96U2SFqulNm/erNNOO03ve9/7JC1WR23cuFEXXHCB3vnOd2pyclLPeMYz9PnPf15vectbJEmPPfaY9txzT33zm9/UUUcdpbvvvlu/+7u/q5tvvlkHH3ywJOnmm2/WIYccol/96lfad9999a1vfUtbtmzRww8/rM2bN0uSrr76ar3jHe/Qtm3btGbNmoYew9TUlCYmJjQ5OdnwdQCg5zxPknT9856nI3796x7vDAAAAJB+8/PzeuCBB7T33ntrZGSk17vTt2odx2Yylq7MmHrggQe0detWHXnkkcFlw8PDetWrXqUf/ehHkqTbbrtNxWKxapvNmzdr//33D7a56aabNDExEYRSkvTyl79cExMTVdvsv//+QSglSUcddZQWFhZ02223dePhAUDq+Aw/BwAAANCEc889VwceeGCvd0NdWV9869atkqSNGzdWXb5x40Y9+OCDwTZDQ0Nau3btsm3s9bdu3aoNGzYsu/0NGzZUbRO+n7Vr12poaCjYJsrCwoIWFhaC76emphp9eACQOn6GtSwAAACAQfeOd7xDO3fuXDbnu5919UzGMy0mlu/7yy4LC28TtX0r24Sdf/75wUD1iYkJ7bnnnjX3CwDSzKNiCgAAAEAf6kowtWnTJklaVrG0bdu2oLpp06ZNKhQK2rFjR81tnnjiiWW3v3379qptwvezY8cOFYvFZZVUrrPPPluTk5PBfw8//HCTjxIA0oOKKQAAAGBlqVQquuCCC/S85z1Pw8PD2muvvfThD384+Pn73vc+Pf/5z9fY2Jie+9zn6gMf+ICKxWLN2/y3f/s3vfCFL9Tw8LD22GMPvec97+n2w+hOMLX33ntr06ZNuv7664PLCoWCbrjhBh166KGSpIMOOkj5fL5qm8cff1x33nlnsM0hhxyiyclJ3XLLLcE2P/7xjzU5OVm1zZ133qnHH3882Oa6667T8PCwDjrooNh9HB4e1po1a6r+A4C+RcUUAAAAsKKcffbZuuCCC/SBD3xAd911l6666qqqAp3Vq1fr8ssv11133aVPfvKTuvTSS3XRRRfF3t6nPvUpvfvd79ZJJ52kO+64Q1/72tf0vOc9r+uPo+UZU9PT07rvvvuC7x944AHdfvvtWrdunfbaay+ddtppOu+887TPPvton3320XnnnaexsTEdd9xxkqSJiQmdcMIJOv3007V+/XqtW7dOZ5xxhg444AC99rWvlSTtt99+Ovroo3XiiSfq05/+tCTppJNO0pYtW7TvvvtKko488kj97u/+ro4//nj9wz/8g55++mmdccYZOvHEEwmbAKwcVEwBAAAArfN9aXa2N/c9Nhastt2oXbt26ZOf/KQuueQSvf3tb5ck/c7v/I4OO+ywYJv//b//d/D1c57zHJ1++un693//d5111lmRt/n3f//3Ov300/VXf/VXwWUve9nLmtqvVrQcTP3kJz/Rq1/96uD79773vZKkt7/97br88st11llnaW5uTieffLJ27Nihgw8+WNddd51Wr14dXOeiiy5SLpfTscceq7m5Ob3mNa/R5Zdfrqzzl/8vfOELOvXUU4PV+4455hhdcsklwc+z2ay+8Y1v6OSTT9YrXvEKjY6O6rjjjtNHP/rRVh8aAPQfKqYAAACA1s3OSqtW9ea+p6el8fGmrnL33XdrYWFBr3nNa2K3+Y//+A994hOf0H333afp6WmVSqXYAp5t27bpscceq3l73dJyMHX44YfL9/3Yn3uep3PPPVfnnntu7DYjIyO6+OKLdfHFF8dus27dOl155ZU192WvvfbS17/+9br7DACDiuHnAAAAwMoxOjpa8+c333yz/uRP/kR/93d/p6OOOkoTExO6+uqr9bGPfayl2+umloMpAECKEEwBAAAArRsbW6xc6tV9N2mfffbR6Oio/uu//kt/8Rd/sezn//3f/61nP/vZOuecc4LLHnzwwdjbW716tZ7znOfov/7rv6q645JAMAUAg4AZUwAAAEDrPK/pdrpeGhkZ0fve9z6dddZZGhoa0ite8Qpt375dv/zlL3XCCSfoec97nh566CFdffXVetnLXqZvfOMbuuaaa2re5rnnnqt3vetd2rBhg173utdp165d+u///m+dcsopXX0sBFMAMAiomAIAAABWlA984APK5XL627/9Wz322GPaY4899K53vUuS9MY3vlF//dd/rfe85z1aWFjQ61//en3gAx+oOW7p7W9/u+bn53XRRRfpjDPO0O67764/+qM/6vrj8Pxag6JWkKmpKU1MTGhycpLV/AD0D7N6x/VHHKEjrruuxzsDAAAApN/8/LweeOAB7b333hoZGen17vStWsexmYyF3g8A6Ffu3xWomAIAAADQhwimAKBflcvBl6zKBwAAAKAfEUwBQL9ygikqpgAAAAD0I4IpAOhXVEwBAAAA6HMEUwDQr0ql4EsvxyKrAAAAAPoPwRQA9CnfCaZo5QMAAADQjwimAKBPlQuF4Gta+QAAAAD0I4IpAOhTbjCVIZgCAAAA0IcIpgCgT1UFUxk+zgEAAAD0H85kAKBPlRcWgq8zntfDPQEAAADQS4cffrhOO+00SdJznvMcfeITnwh+tnXrVh1xxBEaHx/XbrvtFntZr7CMEwD0qUqxGHydpWIKAAAAgKRbb71V4+PjwfcXXXSRHn/8cd1+++2amJiIvaxXCKYAoE9VDT8nmAIAAAAg6RnPeEbV9/fff78OOugg7bPPPjUv6xXOZACgT7kVU3yYAwAAACvDzMyM3va2t2nVqlXaY4899LGPfazq524r33Oe8xx96Utf0uc+9zl5nqd3vOMdkZf1EhVTANCn3Iop+X7vdgQAAABAYs4880x973vf0zXXXKNNmzbp/e9/v2677TYdeOCBy7a99dZb9ba3vU1r1qzRJz/5SY2OjqpQKCy7rJcIpgCgT1XcYAoAAABAy3zf12xxtif3PZYfk9fgYkbT09O67LLL9LnPfU5HHHGEJOmKK67Qs571rMjtn/GMZ2h4eFijo6PatGlTcHnUZb1CMAUAfcpt5WNNPgAAAKB1s8VZrTp/VU/ue/rsaY0PjdffUIuzoQqFgg455JDgsnXr1mnfffft1u51HWNJAKBPucEUAAAAgMHnD+AIDyqmAKBPMWMKAAAA6Iyx/Jimz57u2X036nnPe57y+bxuvvlm7bXXXpKkHTt26N5779WrXvWqbu1iVxFMAU2oVCr69a9/rec///kN9wAD3ULFFAAAANAZnuc13E7XS6tWrdIJJ5ygM888U+vXr9fGjRt1zjnnKJPp34a4/t1zoAdOPvlkveAFL1i2HCfQC5VSaekbKqYAAACAFeEf/uEf9MpXvlLHHHOMXvva1+qwww7TQQcd1OvdapnnD2KDYgumpqY0MTGhyclJrVmzpte7g5SyVVLDw8Oan5/v8d5gpfv1Zz6jfd75TknSbX/+5zrosst6vEcAAABA+s3Pz+uBBx7Q3nvvrZGRkV7vTt+qdRybyViomAJaUC6Xe70LAK18AAAAAPoewRTQAoIppEFVMEXxKwAAAIA+RDAFtIAOWKSB786YAgAAAIA+RDAFAH2KiikAAAAA/Y5gCgD6lM+MKQAAAAB9jmAKAPqUWzHl9XA/AAAAgH7EiJb2dOr4EUwBQJ9ixhQAAADQvHw+L0manZ3t8Z70N3v87PFsVa4TOwMASF5VMMVfewAAAICGZLNZ7bbbbtq2bZskaWxsTJ5HD0KjfN/X7Oystm3bpt12203ZbLat2yOYAoA+RTAFAAAAtGbTpk2SFIRTaN5uu+0WHMd2EEwBQJ9i+DkAAADQGs/ztMcee2jDhg0q8nt10/L5fNuVUhbBFAD0KbdiisJjAAAAoHnZbLZjAQtaw/BzAOhTDD8HAAAA0O8IpgCgTzFjCgAAAEC/I5gCgH5VLvd6DwAAAACgLQRTQBOGJR0miQ5kpEGFVj4AAAAAfY5gCmjCFyT9UNKHer0jgCS5w89p5QMAAADQhwimgCb8ofn3vT3dC8CgYgoAAABAnyOYAlqQ6/UOAFL1jCkqpgAAAAD0IYIpoAUEU0gDn4opAAAAAH2OYAoA+hWr8gEAAADocwRTANCvqJgCAAAA0OcIpgCgXzkVU6zKBwAAAKAfEUwBLSj2egcAST7DzwEAAAD0OYIpoAU0UCENPGZMAQAAAOhzBFNAC6iYQioQTAEAAADocwRTQAuomEIaUDEFAAAAoN8RTAEtIJhCKjD8HAAAAECfI5gCWkAwhVSgYgoAAABAnyOYAlpAMIVUqFSWvqZiCgAAAEAfIpgCWkAwhTRgxhQAAACAfkcwBbSAYApp4LkVUwAAAADQhwimgBYQTCEVGH4OAAAAoM8RTAEtIJhCGlAxBQAAAKDfEUwBLSCYQhp4DD8HAAAA0OcIpoBGOSf+BFNIA4afAwAAAOh3BFNAowqF4EuCKaQBrXwAAAAA+h3BFNCohYXgS4IppIEbTDH8HAAAAEA/IpgCGuUEUzRQIQ0yVEwBAAAA6HMEU0CjnGCKNw7SgOHnAAAAAPod59dAo5xgKtvD3QAs2vcAAAAA9DuCKaBRBFNIGYafAwAAAOh3BFNAowimkDLMmAIAAADQ7wimgEYRTCFlMk4rH219AAAAAPoRwRTQIH9+PviaYAppkGH4OQAAAIA+RzAFNKg4PR18nZXkEwSgx6iSAgAAANDvCKaABhV37Qq+zkqqMN8HPcaMKQAAAAD9jmAKaFBpZib4OiupXC73bmcAVc+YAgAAAIB+RDAFNIhgCmnD8HMAAAAA/Y5gCmjQSg2mJicnNTU11evdQAQqpgAAAAD0u64GU6VSSf/7f/9v7b333hodHdVzn/tcfehDH6qazeP7vs4991xt3rxZo6OjOvzww/XLX/6y6nYWFhZ0yimnaPfdd9f4+LiOOeYYPfLII1Xb7NixQ8cff7wmJiY0MTGh448/Xjt37uzmw8MKU56dDb5eKTOmCoWCdtttN01MTKhUKvV6dxBSFUwRUgEAAADoQ10Npi644AL9y7/8iy655BLdfffduvDCC/UP//APuvjii4NtLrzwQn384x/XJZdcoltvvVWbNm3SEUccoV3OoOnTTjtN11xzja6++mrdeOONmp6e1pYtW6oqVo477jjdfvvtuvbaa3Xttdfq9ttv1/HHH9/Nh4cVJhxMrYSKqe3btwdfu+9JpAMVUwAAAAD6Xa6bN37TTTfpjW98o17/+tdLkp7znOfoi1/8on7yk59IWqyW+sQnPqFzzjlHb37zmyVJV1xxhTZu3KirrrpK73znOzU5OanLLrtMn//85/Xa175WknTllVdqzz331He+8x0dddRRuvvuu3Xttdfq5ptv1sEHHyxJuvTSS3XIIYfonnvu0b777tvNh4kVYiUGU26VVC7X1Y8LtCBLMAUAAACgz3W1Yuqwww7Tf/3Xf+nee++VJP385z/XjTfeqN///d+XJD3wwAPaunWrjjzyyOA6w8PDetWrXqUf/ehHkqTbbrtNxWKxapvNmzdr//33D7a56aabNDExEYRSkvTyl79cExMTwTZhCwsLmpqaqvoPqKUyPx98vRKDKc/zergniJJl+DkAAACAPtfVEoj3ve99mpyc1Ate8AJls1mVy2V9+MMf1p/+6Z9KkrZu3SpJ2rhxY9X1Nm7cqAcffDDYZmhoSGvXrl22jb3+1q1btWHDhmX3v2HDhmCbsPPPP19/93d/194DxIriz80FX2clFVdAMJXJLGXXzJhKH1avAAAAANDvunpe8+///u+68sorddVVV+mnP/2prrjiCn30ox/VFVdcUbVduBLD9/261RnhbaK2r3U7Z599tiYnJ4P/Hn744UYfFlYov48qpv7jP/5D55xzjvw2q2jc90+xWGx3t9BhDD8HAAAA0O+6WjF15pln6m/+5m/0J3/yJ5KkAw44QA8++KDOP/98vf3tb9emTZskLVY87bHHHsH1tm3bFlRRbdq0SYVCQTt27Kiqmtq2bZsOPfTQYJsnnnhi2f1v3759WTWWNTw8rOHh4c48UKwIbitfTukOps4880z99re/1XHHHacXvvCFLd+Ou/IgwVT6ZHu9AwAAAADQpq5WTM3Ozla1AklSNpsNTnb33ntvbdq0Sddff33w80KhoBtuuCEInQ466CDl8/mqbR5//HHdeeedwTaHHHKIJicndcsttwTb/PjHP9bk5GSwDdC2PqqYmpmZkSTNOe2HrXDb9wim0odV+QAAAAD0u65WTL3hDW/Qhz/8Ye2111564QtfqJ/97Gf6+Mc/rj//8z+XtNgmdNppp+m8887TPvvso3322UfnnXeexsbGdNxxx0mSJiYmdMIJJ+j000/X+vXrtW7dOp1xxhk64IADglX69ttvPx199NE68cQT9elPf1qSdNJJJ2nLli2syIeO8RYWgq/THkzZQKndfXSDqUKh0NZtofNYJxEAAABAv+vqec3FF1+sD3zgAzr55JO1bds2bd68We985zv1t3/7t8E2Z511lubm5nTyySdrx44dOvjgg3Xddddp9erVwTYXXXSRcrmcjj32WM3Nzek1r3mNLr/8cmWzS40sX/jCF3TqqacGq/cdc8wxuuSSS7r58LDS9GEw5bbitcJ9jFRMpY/byseqfAAAAAD6kee3Ox15QExNTWliYkKTk5Nas2ZNr3cHKfTrF75Q+9x1V/D9nb/4hfY/4IAe7lG80dFRzc/P64c//KEOO+ywlm/nZz/9qXYddJAqktb+7Gd68YEHdmwf0Sbfl5xW6V+9/vV6wde/3sMdAgAAAIBFzWQsdIIADcqEWtkqKa4g6lQrn/f443ql+fpnTz3V5l6ho0LVcIP4F4aFhQXl8/llswoBAAAADA5+2wca5IWCqLQGU77vdyyYKjthXLHNtkB0WPi5HbDnZ35+Xr/zO78TzBIEAAAAMJiomAIalOmTYMoNozo5Y4rh5ynjDKYfRI899pgeffRR7dixo9e7AgAAAKCLqJgCGpQNBVHllAY17kp6bVdMOcFWeX6+rdtCZ/nhYGrAxgXa8YeMQQQAAAAGG8EU0KBMKAhIa8VUJ4OpqtsimEqVtL7+OsUGUu1W/QEAAABIN4IpoEHZPgmmis5+tXtSX1lYCL4uz821dVvorGUVewNWWUTFFAAAALAyEEwBDcqFqo/SGkx1smKq4oQfVEylS8kJDSUNbDBFxRQAAAAw2AimgAYRTBFMpUn49TdYsRQVUwAAAMBKQTAFNCjfJ8GU28rXyWCqQjCVKmUqpgAAAAAMAIIpoEH50AlyWoMpt2Kq3ZN6351XFQ5C0FNpff11ChVTAAAAwMpAMAU0wvc1FAp5/DarkbqlW618BFPpsiyYGrAAxw2kCKcAAACAwUUwBTQiojrFT2nFSkdb+dyKKVr5UmWlDD8Pfw0AAABgsBBMAY1wQoBZ829aW6lo5VsZVlLFFHOmAAAAgMFFMAU0wgll5sy/vhMApUlHW/mc8MN32vrQe5UV9HxQMQUAAAAMLoIpoBEmmCpKKnmepJXRyueGUT4VU6lCxRQAAACAQUAwBTTChDILkiommOqHVr62gykqplKrHH4+BjiYomIKAAAAGFwEU0AjnGDKtxVTfdDK18kZUyKYSpVwMDpo0Q0VUwAAAMDKQDAFNMIJpsqZxbdNWoOpTrbyyXmMVEylS/j15w1YVREVUwAAAMDKQDAFNMCfn5dkKqZMMLXSWvmU0se7UoWHnw9adEPFFAAAALAyEEwBDShNT0taDKaU8oopWvlWhpU0/JyKKQAAAGBwEUwBDSg6wZSfzUpKbzDV0VX53MdIxVSqhIOpQW7lo2IKAAAAGFwEU0ADihEVU2p3flOXdLSVz7ktL6VB3Eq1koafUzEFAAAADC6CKaABpZkZSdKC56nSJ618GbUfTFWFUbTypcqy19+AhTdUTAEAAAArA8EU0AAbTBUzmWD4eVqDqWKxqM9LelBSbna2vRujYiq1Bj2YclExBQAAAAyuXK93AOgHZRPwlDIZ+Z4nSfJT3Mp3lKRNknbbvr2t23LDjwzBVKqEV+UbNLTyAQAAACsDFVNAA2zFVCmbDSqmlNKgplQqKW++bruqi4qp1Br0iila+QAAAICVgWAKaEB5bk7SYjCV9hlTxWJxqRSygzOmCKbSpbKCgikqpgAAAIDBRTAFNKBigqlyLrdUMZXiVr6gYqrdfXSun0np412p/NCqfIMcTFExBQAAAAwugimgARUzY8oNptJaMdXJVj6PGVOpldbXX6dQMQUAAACsDARTQAP8+XlJUjmfT33FVLFQCIKptvfRDaZS+nhXKiqmAAAAAAwCgimgATaYquRyUsorpqpWa2t3xpRz/SzBVKqk9fXXKVRMAQAAACtDrv4mAIJgamhIFXuSnNKgxneCqbbDC6dSJUPVSqosmx82YOENFVMAAADAykDFFNAIE0z5+XxQMaWUniyXzb4uftO5VflyKQ3iVqplrXwDhoopAAAAYGWgYgpoxMKCJMkfHg5Okr2UtlL5XWrlo2IqZaiYAgAAADAAqJgCGuCZsMcfGkr98POqSpp2gyknEMgSDtR06aWX6mMf+1hi9xdu0xysWKoaFVMAAADA4KJiCmiErUIaHpZmZxe/TmkwVTHVXZLa3kd3Jb4cwVQs3/d10kknSZL++I//WHvttVf37zQUTHkDFt5QMQUAAACsDFRMAQ3ImGDKGxmRn80uXpjSYEqdrJgimGqIG6JMT08nc58rqJWPiikAAABgcFExBTTAs2HP8LCU8mCqkzOm3LlSWcKBWJVKRQdJGpXkeV4yd5rSGWedQsUUAAAAsDIQTAENyJhgqh8qpjo6/NwJBPKEA7H8SkU/MV/fNzmZzH1SMQUAAABgANDKBzQga6pTvJERyQw/99Ia1LitfG3uY9WMKREQxKm4x+nppxO5z7SuCtkpVEwBAAAAKwPBFNCArAl7smNjqW/lc4Mpr4OtfEOSyml9zD3mVi95mYQ+VqmYAgAAADAACKaABmRNCJAZHV0KplJaxeF3cvi5EwjkJRXd20bArZjy7Oujy/xQxdSgRTdUTAEAAAArA8EU0ICcCQEyo6PBjKl2q5G6xXMrptpt5XNnTIlgKk4vK6aCZ2jAqoqomAIAAABWBoIpoAE5EwK4rXypnTHlVtJ0uJWv4A5WR6DSw2DK3rM3YOENFVMAAADAykAwBTTArkiXGx9PfSufOlgxlaViqiG+c5wyCbXy2dffYI9AX0TFFAAAADC4cr3eAaAfuMGUl/ZWPrdiqt1WvtCMqSmCqUgV95h7XiL3aZ/n4J4HLLzxKxV9UdKvRcUUAAAAMMgIpoB6fH8pmFq1KvWtfG4w1W54lg218lExFa0nFVPmubXP9mDFUtLIE0/odZJ2Sbp7wEI3AAAAAEto5QPqKZWCN0q+D4Ipt5Wv0xVTRWZMRerF8HMv1Mo3aDOmbPCWFRVTAAAAwCAjmALqWVgIvsyvWiUvt1homNZgyq2SyrQ7YyoUdhRnZ9u6vUHVy4qpdDaUts8e04yYMQUAAAAMMoIpoJ5QMJX2iqlMB2dMhYOp0txcW7c3qHoyYyo8/HzQwhvzeDxRMQUAAAAMMoIpoB4TTJUkDY+Npb9iqpMzpgimGuJWTCUVTIVnTA0aKqYAAACAlYFgCqjHBFMLkkZGRtJfMeW28rV5Qh++fplgKhIVU13gBFNUTAEAAACDi2AKqMcJpoaHh4Ngqt35Td1SVSXV5j7mqJhqjHOckoqHvPCMqQELpmzFVFZUTAEAAACDjGAKqMOfn5e0FEylvZXPrZhqdx/DY7zL5ligWioqpgaNE0ZV2mxJBQAAAJBeBFNAHeWZGUnLg6l22+S6JdOhVfkqlYpyocto5Yvmzpjykwoszf0MamTTk2MKAAAAIHEEU0AdhV27JC3NmAoqptIaTDkn8e1UTJXL5eXBFBVTkfweVPRkBnzGlFt31ovjCwAAACAZBFNAHaW4iqmUVnFUtfK1EVaUSqVlwVSFYCpSL6p7Bn34ORVTAAAAwMpAMAXUUZyelrQYTGWzWSnlFVNZ5yS+nfAsMpgyg+BRrWrGVEK8AW/lq5ox1YPjCwAAACAZBFNAHbZiqpBZfLt4+byk9FZMZbtYMUUrXwz3OCcUWNrXXzmhYetJq6qSSul7DQAAAED7CKaAOmwwVTLBVGaFVEy5M6YWzGP3qZiK1MuKqYp5bgatlc99PMyYAgAAAAYXwRRQR3l2VpJUzGYlKdWr8vm+r6yzX52qmLKPnVa+aD2ZMWWe24qtmErh67EdzJgCAAAAVgaCKaAOG0yVwsFUCk+WwyvptTtjKmu+LpjH7BcKre/cAOvlqnyD2spHxRQAAACwMhBMAXXYYKpsgyk7YyqFFSqlUkl55/t29rFULC5VTNlgioqpSL2o7gmCqcxgfoxXHVOCKQAAAGBgDeYZDdBBlbk5SVLZzpYyAVU/BFPttPKVneooG0zRyhetF8HJoLfyUTEFAAAArAwEU0Ad4WAqk+KKqWKx2LGKqbITQhXNYxatfJF6UjFlnlvfrhaZwtdjO6qO44A9NgAAAABLCKaAOnwbTJlwJpgx1bM9itfRiiknmCqZx+4Xiy3f3iDrxXDuQW/lcydn9WLVQwAAAADJGMwzGqCD/Pn5xX9tpVSKK6Y6OmPKPG5JKg0NLX5BxVSkqlazhF4X9rmt2GAqha/HdlSFfSlcaAAAAABAZxBMAXXYgd+VPgimOtrK54RQZRtMUTEVqScVU6FWvoHjzpgimAIAAAAG1oCe0QAdZIIp34QztpUvm8JgqpMVU74JpipaCuWomIrmVkz1asbUwFVMMfwcAAAAWBEIpoB6bMWUCaaCiqme7VC8TgZTdsZUSUttjFRMRetlxVRlUCum3IHyBFMAAADAwBrQMxqgczw7BHx4WNJSMJXGiqlisaic8307+2iDqbLnSaZKzCOYitTTVfmy2UTuL3Hua5dWPgAAAGBgEUwBdQRhTDiY6tUO1bCsYkrVLVHNqNhWPs8LKqY8VkeL1IuKnuygt/L1IOwDAAAAkDyCKaCOjJ2rFBFMtRr6dEs4mGpnH+3w87LnSXa+FsFUtB6EKNlBr5hiVT4AAABgReh6MPXoo4/qz/7sz7R+/XqNjY3pwAMP1G233Rb83Pd9nXvuudq8ebNGR0d1+OGH65e//GXVbSwsLOiUU07R7rvvrvHxcR1zzDF65JFHqrbZsWOHjj/+eE1MTGhiYkLHH3+8du7c2e2HhxXAVkx5IyOSqoOpSspOmMOr8mUllVus5vHN4y57njxbMUUrX6RKDyqm7Id3xQRTXspC0rYx/BwAAABYEboaTO3YsUOveMUrlM/n9a1vfUt33XWXPvaxj2m33XYLtrnwwgv18Y9/XJdccoluvfVWbdq0SUcccYR27doVbHPaaafpmmuu0dVXX60bb7xR09PT2rJlS9UJ93HHHafbb79d1157ra699lrdfvvtOv7447v58LBCZEwYkxkdXfzXCaZaDX26JapiqtV9rERVTKXs8aaGG1AmFBCFZ0wNWCxFMAUAAACsELn6m7Tuggsu0J577qnPfvazwWXPec5zgq9939cnPvEJnXPOOXrzm98sSbriiiu0ceNGXXXVVXrnO9+pyclJXXbZZfr85z+v1772tZKkK6+8Unvuuae+853v6KijjtLdd9+ta6+9VjfffLMOPvhgSdKll16qQw45RPfcc4/23Xffbj5MDLisaV/rh4qprgVTdiVCWvki9WIGUtDAtxIqplL2PgMAAADQOV2tmPra176ml770pfrjP/5jbdiwQS95yUt06aWXBj9/4IEHtHXrVh155JHBZcPDw3rVq16lH/3oR5Kk2267TcVisWqbzZs3a//99w+2uemmmzQxMRGEUpL08pe/XBMTE8E2YQsLC5qamqr6D4hig6l+qJiKauVrNTxzh597dr4WwVQkt6In8VX5zPDzAYulWJUPAAAAWCG6Gkz95je/0ac+9Snts88++va3v613vetdOvXUU/W5z31OkrR161ZJ0saNG6uut3HjxuBnW7du1dDQkNauXVtzmw0bNiy7/w0bNgTbhJ1//vnBPKqJiQntueee7T1YDKycCWOyY2OL/5qQJo3BVCcrpoIZU5mMPNPKl0nZ402LXlT02HJXP7f41aBVTFWtysfrDgAAABhYXQ2mKpWK/sf/+B8677zz9JKXvETvfOc7deKJJ+pTn/pU1Xae51V97/v+ssvCwttEbV/rds4++2xNTk4G/z388MONPiysMDlzUtwPFVPdaOWrOMFUNmWPNzV6sSqf/SLX1Y7s3nGDtgEL3QAAAAAs6Wowtccee+h3f/d3qy7bb7/99NBDD0mSNm3aJEnLqpq2bdsWVFFt2rRJhUJBO3bsqLnNE088sez+t2/fvqwayxoeHtaaNWuq/gOi2GAqqJiyIY3SF0wVi8WqwXHttPLZiqmK5y3N10rZ402LquqehEKUoGLKzJgauPCG4ecAAADAitDVYOoVr3iF7rnnnqrL7r33Xj372c+WJO29997atGmTrr/++uDnhUJBN9xwgw499FBJ0kEHHaR8Pl+1zeOPP64777wz2OaQQw7R5OSkbrnllmCbH//4x5qcnAy2AVqVN6FDbnxc0sqsmMrYVj5m/URyg5PatZ4d4jwPXjZbY8P+VVV5xusOAAAAGFhd7QH567/+ax166KE677zzdOyxx+qWW27RZz7zGX3mM5+RtNh+d9ppp+m8887TPvvso3322UfnnXeexsbGdNxxx0mSJiYmdMIJJ+j000/X+vXrtW7dOp1xxhk64IADglX69ttvPx199NE68cQT9elPf1qSdNJJJ2nLli2syIe2BcHUqlWLF5ggYNCDqaBiKpNRxszVyqXs8aZF4hVT7rD1FdDKR8UUAAAAMLi6ekbzspe9TNdcc43OPvtsfehDH9Lee++tT3ziE3rrW98abHPWWWdpbm5OJ598snbs2KGDDz5Y1113nVavXh1sc9FFFymXy+nYY4/V3NycXvOa1+jyyy9X1qkU+MIXvqBTTz01WL3vmGOO0SWXXNLNh4cVIlwxlepgamGhqgyyrWDKDH2vZDLKmFa+LJUr0dzjkkQw5ayO6NlgaoBb+QbusQEAAAAIdP1P7Vu2bNGWLVtif+55ns4991yde+65sduMjIzo4osv1sUXXxy7zbp163TllVe2s6vAcqVSMGQ6H6qYykgqOwFBGlQWFqq+78iMqUxGeRNM5QimIiVdMVUpFoMAclArpliVDwAAAFgZujpjCuh7TtATDqYkqWzmMKVFVDDVbiufn8koS8VUTX7CFVPu687OmPIGrarIfTy87gAAAICBRTAF1OIEPUO2vdQJpiomvEmL8vx81fcdaeXLZoMZU9kehB+7du3S9u3bE7/fZrgVPUlUTJXcADKfj9+wn/VgxlSpVNKll16qe++9N5H7AwAAAEAwBdRmAoCypOHQjCkpfcGUH6rgaqeVz84xcium8j0Ipg499FDts88+mp6eTvy+G+YclyRW5XMrpjLMmOqY733vezrppJP013/914ncHwAAAACCKaA2E0wtSBo2VUNpDqY62conO2Mqm1VubEySlOtB+PHrX/9ak5OTeuyxxxK/70YlXTFVMcFURUutfAOnBxVTO3bskCRNTk4mcn8AAAAACKaA2kxrXFwwlboZUxEVU+228vnZbFAx1YtgygY9/VIxleSMqZJUtTrpQOlBxVTaVtkEAAAAVgKCKaCG8uyspMVgasSEM2mumIpq5Wu3YsrPZpUbHZUkDbVzey2ywdTMzEyi99uMpCumbDBVluRlFj/GB234ud+Diqnc00/rR5Jev3VrIvcHAAAAQBrMdcaBDilOTyurxWBqla2YyizlueEKpV7ryoypbFZZE0zlJRWLxUSrdPohmEq6uscGom4wNVixlKpW4ksqdNv97rt1iKTRbdsSuT8AAAAAVEwBNRV27ZIUauXzPNn6jbRVTHV0xpS5Xrhiqtijx5zmVr7EZ0y5wZS3OG590CqmejFjyoaxSQywBwAAALCIYAqooWjCkAVJudxSgWFagynbflc2VTRtBVPmJF3ZrPJmRUJbMZWkfqiY8nu0Kt9AT0Ryg7ZWq/6avUsbTA1ayAcAAACkGMEUUEPJhCEFzwsqUySpYr5OWzBlW/lKJkTLSirbgKlZTjBlh5/3MphKc8WUerQqX1mSvAGt73ErppIKphh+DgAAACSOYAqowQZTxUz1W8WeJqc9mJKkSqvBlG3ly+XkDQ1JWmzlKyQ8Vyvn+xpV/1RMJbIqn62M87ylYGrQqnx6MGNKrb5XAAAAALSMYAqoIQimQsO+y7ZiKm0nsiawqAqmWgzPPKdiSiaYykoqhuZYddsNvq/fSJrfsSPR+21KwhVTvnlOk6kj6pEezJiilQ8AAABIHqvyATWUZ2clSaVwxZQJpvyUVUwFM6by+eCiloMpp2JKzu2V5uba2MHmHShpRFL+iScSvd9mJF0xVYmomBq4MKUHM6ZEKx8AAACQOCqmgBqCYCqmYspPWcWUHxFMtbyP9iQ9HEyZY5IUO0GpPDmZ6P02JeFAwwZTFWf22YDFUtUVUwmFbml7PwMAAAArAcEUUEPFVAe5rXFSeoef2/a7cidb+XK5oJVPSr5iygZT/q5did5vU5KeMRUx/HyQK6a8pCqmaOUDAAAAEkcwBdRQNiFMORxMmX9TV2FhK2mcIKndVj4vl1ucM2UkWTFVVSmT4lX5/F7NmBrUFflUfRyTWpXPVr4N7lEFAAAA0odgCqjBNyFMpU8qpoJgqgMzpjI2DMjlJM+TXYsvyYop3/eXQoIUB1NJV0y5rXwa1HDKDaMSDqaolwIAAACSQzAF1ODPz0uqDnokqWKGoaetYsq237n72+qKZp47Y0pSyQQgZXNMkmJjl0zCs62akXjFlH2enRlTA9d+1sPh5wMa9QEAAACpRDAF1BAbTKV0+Lk7F8ruWctVXSYM8GwwZcK4co8qptIcTCVRJeWKqpgasFgq8So0SUvB1KCFfAAAAECKEUwBNfgLC4v/OjObpPS28tlgys/n297HjD1JN6Fc0d6eOSZJcKuPcglXajXFrehJspUvk1kaft71e02YexyTWvUw4dUVAQAAABBMATV5JoSphIIpvw8qpoLB2O228plgqmwqpno1YyqXYCDWLD/h6h47/LzszpgatCqfHlZMAQAAAEgOwRRQS1zFVFpnTDlhUtsVU6FWvrK9vYQrl+yH1FChUHO7nnIqppKcMeU7M6YGTi9nTA1ayAcAAACkGMEUUIsNQ4aHqy5O/YwpJ5hqdR+DYMpUTJWyWUm9a+UbLpVUSSqgaFbCrXzB8PPM4H6EJ12FJonh5wAAAEAPDO5ZDdABmZhgKq2tfJluVEyFWvn8HgVTqyTNJdhG2Aw/4cDMPqe+08o3aFU+HjOmAAAAgBWBYAqowTMBgDcyUnV5UKmS0mDKc4KpVk+2lwVTPaiYUiiYmpmZSe6+m9HDiqkV0cqXUOjmpbUiDwAAABhgBFNADRlbbRRXMZWyCougYmpoKNjHSputfBkzX8uGcYm28jlBwSpJ09PTid13U5zgJMkZUxV3+Pmg6eWMqWTuDQAAAIAIpoCabDDljY5WXe73UcWU32ornw0GQhVTvWzlo2LKsMPPM5kVsSpfYm2Ktkpw0I4lAAAAkGIEU0ANORPqZEPBVFpX5Qva75yKqXZb+TImmKrYYCrB1fH6pWLKT3hVPjtjapCHn1dVoSVUMeWlrAISAAAAWAkG+KwGaF/WnKhmYiqm0tbKZ/fXGxpqOzyzFVNBMJXLLd5egsFU38yYcqt7krg/8zz7mYw88zwPXPtZDyqmmDEFAAAAJI9gCqghZ0KduGAqda18ERVTrQZT2dCMKd9UTCnJiiknkBhXeiumlHDFlO+28i3dcdfvN0l+L2ZM2fdPMvcGAAAAQARTQE22Aik7NlZ1eVorpoL2u+HhjlVMeT2smAq38s30QTCV5IypijtjatD0IJiyrXzMmAIAAACSQzAF1JA3J8S58fGqy9NaMZV1KqYqbc6YytpWPlsxZYKpJCum3HAiL2l2587k7rsJftKr8rmtfOZ5HrgwxX08CbfyDdiRBAAAAFKNYAqoIW8rpkLBVDB0OmUVU277nd9mxZQNprLDw5KkiqmcUour/LUiPPS6uGNHYvfdDC/hiqngOU15xdTPfvYzvehFL9I3v/nNpq+b9DF177PtI/qLX0jnny/Nz7e9TwAAAMCgI5gCasibE+JwxZRS2sqXc1r52p4xFaqYkq2YSjKYCgUSpT6omEqEO2MqxcHUt771Ld1xxx360pe+1NbtJDWUvGPB1ItfLL3//dJHPtL2PgEAAACDjmAKqMG28uVXraq6PLWtfDZMGh5e2sdOtfKZiimvhxVTaQ2m3OAkvM9dYVv57ED6lCq00/bZgxlTweIBnQoab7utM7cDAAAADDCCKSBOuSxTI7Q8mDKBQJqWl/d9XzknmGq33dA+9qBiqgetfOEWrvLkZHL33YREwiiX28pnnuc0zpjqWDDVpzOmyil8TgAAAIC0IZgC4iwsBF+GgymlcMZUpVKRiY6UHRnp+IypoGIqwSqxcOBT2bUrsftuhpd0iGJed5VsNmg7S2MEUmwnxOxhMNWp5sj77ruvQ7cEAAAADC6CKSBOjWAqaKFKUTBVLBaDYKrdVj7f94OKKRtMqRfBVDiQmJ5O7L6bkXjFlH1Os9lgxlQaJ011KphKbMaUuc9OHcsdKW09BQAAANKEYAqIY4KpiqSRPqiYKpVKkRVTrexjpVKRnV5kgynPtPRlkpyr1SfBlFsxleSMKWUy8lI8/LxvK6Y6dH9+ip8bAAAAIC0IpoA4Zqn3BUnDIyNVP0pjxVSpVFqqcmozmKq6LTtjqgfBVDjkyczOJnbfzehVxZTvVEwlFd40ozI3pzdIGmll1pRbMZXQY8ukaGYcAAAAsFIQTAExKnNzkkwwZdvZrBRWTFW18g0NLc2YamEfy87gdzv83FZM9bKVL2Oek7RJfMaUO/w8xa18L/vVr/Q1Sa//+c+bv3IPVuXreABGxRQAAABQF8EUEKNgBm1HBlO2YipFFRZuK587Y8prs2IqZ6rFgla+JMO4UFCQN1VsaZN4xZS9v1xu6bIUVkytMa2Xq1t53npYMUWcBAAAACSHYAqIUTQn1QuSRkKtfDaYaiX06RY3mFI+31ZVV1UrX3jGVC+DKWcgfaokPGPKc4afe5kUf4x3aMbUsiH4XdLp4efMmAIAAADqS/EZDdBbbjCVz+erftZONVK3uK18yufbmoMVGUyZf7MJPuZwyJNvZVZREpKuVnJX5UuxtuaR9WBVvkwKq84AAACAQUcwBcQIginPW77yWUqHn1cFU21UTJWLxeDDwTOhXMYEU0lWTIUrZUaKxcSqZ5qS8IypIKhxKqbSWJvTzjwyrxetfLZiilX5AAAAgMQQTAExSjMzkqRi1MmlbeVL6Yyptlv53JlAZo6RDaayST7mUEAw5vsqpLBqKvHXwQqrmEqqIo1V+QAAAIDkEUwBMYJgKurkP4XBVLiVr50B7WV3lpMJprweBFPhVr5VkmbM85IqvZoxlcstrfyWwkqytlpde7AqH618AAAAQPIIpoAYpdlZSVIxari0DWtSFEwta+VrY0B7VDDVi4qpcNveuKRp02KZKgm/Dqpa+UwwlcamsWynZkwl3crXqRuklQ8AAACoi2AKiFE2lTmliIopr41qpG5xB5ZXtfK1sI+liGAqOzq6+C0VU8v1asZULpfqOUadmkfWr8FUmp8bAAAAIC0IpoAYZVMxVe7HVr5crq2KqYo7x8ncTnZkZPGmezhjKrXBVNKvA3N/nlsxlcI2tLaCqQEYfg4AAACgPoIpIEZlbk6SVMrllv/QtvKlaVW+YrG6YqqNlQNtK19ZCtqRgmAqyZP2iGAqla18jkRmTNlgKpcLgqk0RilttX26c7uSCqYSuRcAAAAALn4PB2L4JpgqRwRTXgorpsruSnpOK18r+2iDKXdCUKYHFVPhQCKtFVNJvw4y7qp8aZ4x1UZw6/WwYqpjaOUDAAAA6iKYAmLYiqlKrYqpFLX8LAum2gjPbCtf2TmxztkZU23sY7PC1UfjkmamphLcgwb1asZUPl97wx7rVMVUUsFfttPDzwEAAADURTAFxPBN0FOJOPn3UrgqX1ww1cr8o1rBVL6HrXySNP/008ndf6OSXpXPBihuxVSKQlKrreq6HjweO02OVfkAAACA5BBMATFqBVNpHH5ecVfS61Qw5VxmV+XLK7mZP+79VMxJfiGNwZQj0RlT+XwwYyqN2gmmvB5UTHW6lY9V+QAAAID6CKaAOCbo8YeGlv/MVExlUhRM2YqpYGB5G+FZMPw8qmJKiysAJsENeebNMS/t3JnIfTcj6YDSc1fly6T3YzzbTtDTgxlTHa+YAgAAAFBXes9ogF4z4UwlIpgKhp+nqH3KVkyVbFDRiRlTTuiRGxuTJA1JKpifd505vhVJRfM8lCYnk7nvZiQ8YyrrrMpn7y1Nr0Ur36HALunh52k8lgAAAMCgIpgC4tjwZXh42Y+8FFZMLZsLZedgtbAyWs0ZU0quYsoNeWwwVU57MJWAYMZU2lv5OlQxldTxzdbfpCm08gEAAAD1EUwBMbwGgqk0VVbYiqlyByqmfBM8ucFU3lRMDUsqJlQxZWdM+ZJKIyOLX+/alch9N8N9HSQxf8tzKqaU0lY+3/fVzpqBXg9b+TqGYAoAAACoK51nNEAKNBJMpaliyg+137XTblgxwVTFObH2nONQdFcA7CI7Y8qXVDYVW/70dCL33RT3dZBAiGJbzjL5fGrnIZVKpbaCKWZMAQAAACsDwRQQI9NvFVPhuVB2H9uYMVVxq3Gc1QlLc3Mt7mWTnIqpiqnY8mZmkrnvFMu4FVMmPExbmFIsFhWxbEDjEg6mfN/veDCVtucEAAAASCOCKSBGplRa/NdU6riCiqkUBVN+qJXPVky1UtUVVEzFBFPFhMIhty3OHx+XJGVSGEx5PaqY8nK5pRlTKXotSovBVKcqppJQLpc7HkwxYwoAAACoj2AKiJE14YxnZhu5PBPSZFPYylcJz5hq4QQ/uC33xLoHFVNuK59WrZIkZZOq1mpGwjOmMs7w87TOMSoUCu1VTDlaqfprVrlcVq7r9wIAAAAgjGAKiJGtUTGVSWErXzBjygZSnRh+7lZMZbOy6/v1opXPW7NGkpRLaL5VUxJeQc6dMZXmVr6OzZhqe2/qKzsrTXbs/lIaGgIAAABpQjAFxAiCKTPbqEoaW/lslZMNpNoY0G6DKT+04lvRnGiXEw6mJClrgqm8aVlMk6QDyqrh5ykNP9qdMeUlHPaVnZUm03lEAQAAgMFEMAXEyJUX64OyNSqmUhlMdaKVL2rGlKSS+bec1Kp8TsVUEEw5AUJq9Khiqmr4eYpei5JUmJ/vWGtcEu+zcjdeVykNDQEAAIA0IZgCYgTBVETFVBqHn8tUePkdrJiy1VfBXZgT7dLsbMu72dR+ODOm8mvXSpKGnZartPB6NGPKrZhK0StRUvvtnklXTFXcVr4O3R/DzwEAAID6CKaAGLWCqYwdfp6iYCqula+lk2wbcoVb+cz3SVVMuTOmbDA1WqmoXC7XuFIPJDwPyb7uMkNDqZ0x1fYcMueYJhEAV1IYeAIAAAArAcEUECNvqnVyZjU4lw2mUlUxZaucbCDVRlVXXCtf2YQglYTmPLnVR8Pr10uSVkmamZlJ5P4b1cuKqWAfun6vzWm7qo4ZUwAAAMCKQDAFxBgyJ8O58fFlPwtCn0T3qA47sLwTrXymYmpZK18KKqbSGEwp4WDKPiuZfF5eJlWvwkAnV25MIijqRsUUrXwAAABAfek8owFSwFZM5VdgxZRt5VO4Ysp8X+lBMOWtXi1pMZianp5O5v4blIpV+dL0WlQHVm502yP7tGKKWAoAAACoj2AKiFKpyDZJ1Qqm0jRjyrNzoTrYyueHKqZsMFVOqpXPrfYyz0PaK6bUQoVas9yKqfS8Aqu1W1XnJT1jqhutfFRMAQAAAHURTAFRnOBlyFTquDJDQ4v/JrZDDbBVTqFgqqVqEzNcPBxMlcz3fkIVU1VtcU4wlbqKqYTvzwai2aGhoJUvbRFIv82YqlqVr+v3BgAAAMBK7Lz6/PPPl+d5Ou2004LLfN/Xueeeq82bN2t0dFSHH364fvnLX1Zdb2FhQaeccop23313jY+P65hjjtEjjzxStc2OHTt0/PHHa2JiQhMTEzr++OO1c+fOBB4VBpYTvPRNxZStcgoFUy3tY0zFlJ055VaXdJVt5fO8/qmYSnLG1NDQUitfynRyDhkzpgAAAIDBlUgwdeutt+ozn/mMXvSiF1VdfuGFF+rjH/+4LrnkEt16663atGmTjjjiCO3atSvY5rTTTtM111yjq6++WjfeeKOmp6e1ZcuWquXijzvuON1+++269tprde211+r222/X8ccfn8RDw6ByKqaGa82YSmyH6gu38rU1B8veVjiYMtU5fkKtfO6MKZkh9HlJMzt2JHP/DUp6xlRUK1/aIpC2V25MuJWvK6vyEUwBAAAAdXX9vHp6elpvfetbdemll2qtWVVLWqyW+sQnPqFzzjlHb37zm7X//vvriiuu0OzsrK666ipJ0uTkpC677DJ97GMf02tf+1q95CUv0ZVXXqk77rhD3/nOdyRJd999t6699lr967/+qw455BAdcsghuvTSS/X1r39d99xzT7cfHgaUbVWblzQyOrrs50E1UpI7VY8Na00g1dbwc9vKZ24juNh8n1QwVTVjylkdsfD004ncf8PcVfkSnjFlK6aSDsfqaXf4edILC9DKBwAAAPRG14Opd7/73Xr961+v1772tVWXP/DAA9q6dauOPPLI4LLh4WG96lWv0o9+9CNJ0m233aZisVi1zebNm7X//vsH29x0002amJjQwQcfHGzz8pe/XBMTE8E2QLOKZobRghZfl2FBK59Cc5B6yLbyhWdMtXKCb6uvFNPK5yfUyue7FVP5vAqmYquYsoqpREOUSiX44M4NDwczptLxKlzSdsWUI4nQrSvBFBVTAAAAQF25+pu07uqrr9ZPf/pT3Xrrrct+tnXrVknSxo0bqy7fuHGjHnzwwWCboaGhqkoru429/tatW7Vhw4Zlt79hw4ZgmygLCwtacE6cpqamGnxUWAkKu3ZpSIvB1JqIYCprhp9nJVUqFWWzva+dyoQqptpqN4wZfp50MFXVyidpIZ/X0MJC6oKpRGdMOW3MVRVT3b3XprVdVZf0qnw2jAUAAACQqK5VTD388MP6q7/6K1155ZUaGRmJ3S48uNf3/brDfMPbRG1f73bOP//8YFj6xMSE9txzz5r3iZWlYOacLUgaMiGUy62YqiTQutUIL9zK18aMKS+0wp8VtPYlHExZBfNclCcnk7n/BiXZRuc7AUp2eDh1lVJWuxVT7jFNInTzqZgCAAAAeqJrwdRtt92mbdu26aCDDlIul1Mul9MNN9ygf/zHf1QulwsqpcJVTdu2bQt+tmnTJhUKBe0IVUeEt3niiSeW3f/27duXVWO5zj77bE1OTgb/Pfzww209XgwWt5Uvk1n+NnGDKXcQfy9lbGBhA6l2VuWzjykmmPK7sIJZFD9UMVVMaTBVpcshlTukO5PPB618aYtAOjn8nFY+AAAAYHB1LZh6zWteozvuuEO333578N9LX/pSvfWtb9Xtt9+u5z73udq0aZOuv/764DqFQkE33HCDDj30UEnSQQcdpHw+X7XN448/rjvvvDPY5pBDDtHk5KRuueWWYJsf//jHmpycDLaJMjw8rDVr1lT9B1ilmRlJCmYahbmtfKkJpuKGn7dwW15MMFWx86uSmjFlqtFsLFEy1Ze+s3JnGiRZMVVyAp/s0FDdCtNe6eSA/KSDqSjlcllnnHGGvvrVr3Z9XwAAAICVpGszplavXq3999+/6rLx8XGtX78+uPy0007Teeedp3322Uf77LOPzjvvPI2Njem4446TJE1MTOiEE07Q6aefrvXr12vdunU644wzdMABBwTD1Pfbbz8dffTROvHEE/XpT39aknTSSSdpy5Yt2nfffbv18DDgbMVUMeak31ZM5SQVUhZMeSY0c6u6mhUXTCVdMRWuPiqbFRLTHEx1e1U+t2IqNzwcVOWkbVW+dts9E2/lc1oko+7vtttu08c+9jF985vf1Bvf+MYE9ggAAABYGbo6/Lyes846S3Nzczr55JO1Y8cOHXzwwbruuuu0evXqYJuLLrpIuVxOxx57rObm5vSa17xGl19+edWw6S984Qs69dRTg9X7jjnmGF1yySWJPx4MjtLsrCSpGDPU3FZM5ZS+iqmoYKpSqUS2JMYJgqnQ4/dtNVbSM6ZM+FIZG1v83lS0rURuZU/WmX+Wsliqo618iQw/r9PKNz8/L0na1UQo6qe0mg0AAABIk0SDqe9///tV33uep3PPPVfnnntu7HVGRkZ08cUX6+KLL47dZt26dbryyis7tJeAVDbBR6lOK58klZOqHqojYyp1vNCqfLbdsKVgytxGwAZTCa1gFp4xpfFxSVLGBIdp4SW4Kl/ZbeVL8YypTg7IT0PFlA2gbUDVEIIpAAAAoK6uzZgC+lnFBB+lmIqpjBPYlJOqHqojCKZiKqaaYYMpL9TKFwRVCQVTCgdTq1ZJkrJzc8ncf4OSbKOzr7eipGw2G8yYSl0E0mZg6/Vw+Hnkz817aKGZSjCCKQAAAKAugikgQtkGU+FgxnICq7QEU9karXzNtht6oeory7e3nfCqfMF+mTbfXDNVKwmomjGV0Kp8ZZkVI9MafnTwfZHE/6gaqZjy1FzFVEqfGQAAACBVejpjCkiriqnIKcdUTLnBVL1Ki6RkbZg0PLz4rwnVWgmmMjHDz70eV0xlJyYkSfkOrvjWb+zrLXhGV0DFVBIqdYKp7OSkHpH01WJR5XK5as5hnLTN/QIAAADSiIopIEIQTIVnLFlprJgywVTGBFN2DlYrrXzheVUBO78qqRlTZj/CwdRQSo65VRWidHlVvnAw5aW0YsrrYGCbxPBzd6XJqP8xjj3wgDZLOkpNtPOl9LkBAAAA0oRgCojgm3adSgOtfGmrmMp0sZXPVmMlFUyFB4nndttNkjSckmNuJRk/VJxWvsU7N/eecIVRXZ2cMdXuvjTAD72mwy2ZvnkPjYpgCgAAAOgkgikgQsUGUw1UTKUmmDIn0lEVUx0Lpmzo1eTttcyGA+YEf2jdOknSSLnc9VlOzUh0VT4bTKU89Gi7Yso5jknPmFq8ez/y5yNqYs5Uyp8jAAAAIA0IpoAoNpgyQcwymaW3TlqCqVwomGprxlRKgik/NGNqeP16SdIqSXMpWpkvyXlIy1r5zGsxbRGI18mquiRa+cL7G1Mx1VQwBQAAAKAugikgimnViQ2mPC8IBlITTIVa+WxVV0ZtzJgKtzLaVr6EK6ZsRDC0dq0kaVzSzMxMMvvQADcU6nYll329VezQ85QOP2+33dNLuGIqPNDfD71nbHA1Kmk+RaEoAAAA0O8IpoAodrh2XDAlyZ7GpiWYsq182ZERc8FiMNXJiqlMjyqmLDv8fJWk6enpRPahEb2smEptu1gHK6ZS0crnvOYLu3Y1dqNpfW76TKFQ0De+8Q3tavS4AwAAoK8QTAFRTMWUXyOYshUraQmmch0MpsKD1K2Mue1cjyqmtGrV4j9KWcVUgqvy2RlTlVDokbYIJNvJiqketPKFK6bkBlOTk43dKMFUR5xzzjnasmWL3vjGN/Z6VwAAANAFBFNAhIytmLIhT4Q0tfL5vi/bdGdnTLnBVNOtfCYI8MLBlG3l63L4Yi0LB1IaTCXJtxVTtoUvk86Pca/d8DLh4fb1ZkxVnJ8XqdxJ1KWXXipJ+t73vtfjPQEAAEA3pPOMBugxzwRTng15ItjIJA3BVKVSkW26C1dM5dRGxVS4lc+u+JdQMBVUTNnKEyeYmp6airzKTTfdpK1btyaxd4FMgqvyLZsxZYefp2iVQqn9iilXIv+jCr1Hls0Kc37eaDDlUzEFAAAA1EUwBUTI2LCpRjBVTlErX6lUig2mJKnc5D7aoCW2lS/hYCpggilJmn/66WWb33333Tr00EP1p3/6p93es56xlT3h4efpiqXan0PmRjo9mTEVHn7uPJ4SM6YS9bJSSY9JekuvdwQAAABdQTAFRLDBlDc6GrtNmmZMFYvF2sGUbU2MMT8/X1Uhko0LphKumPLDM6ZGR4NKtYWnnlq2/eOPPy5Juv/++7u/c44kK6aCGVP27sy/aYtA2n2NuBVgnrq/2mG4Yir8PLrBVLnRNlKCqY64anZWe0i6utc7AgAAgK4gmAIi2DakTK1gyv6bgmCqqmLK7rMTTC2bn+P4zW9+o/Xr1+vUU08NLosLpnLmtvNJtY2FgynP03xucZpWcceOZZvbWVo7d+5MYOd6w86YqtgWPls51bM9ipZtt2LKHX6u7gdTzQw/LzW4ImTanpN+NZSyNlUAAAB0FsEUECEIpmoNP7ctVB2cpdMqN5jKRVRM1QrPbrvtNs3Ozurmm28OLkttK5+kBTP3KiqYsuHFrl27mp6r1Q73g3RZoNFhy1r5Ujr8vJMD8pMIpurNmHIrpioNVkwxYwoAAACoL51nNECPBcHU2FjsNjYY8FNQMeW28gVhkhNY1GrlmzJDxEtOwFavYiqXUAVDEA44J/gFE0yVJieXbe+uPjgVMxy9G5IcPF4JBVPBPiS2B41pN7wMV0w1u7Jk08LBVI2KKVr5ksVRBAAAGGwEU0CEnDkJzTYwYyotFVM5+41dSa/BVr6awVRoVb5swq18Nhxw761o5lxVIoKnSqUi+6gnI4Krbqk6ce52y1loVT6ltGKqk3PIkpgx5TcxY8qfnW3oNglUAAAAgPpy9TcBVp68OQnNjY/HbpOm4eelYlFBbVNEMFVrH22A4wZT9oMhG1qV0A5WT+qDw57YuxFByexDVDCVe/ppbZX0H0p2zlSSAURQMZXyGVN9VzHVxIwpf26usdukYqojOIoAAACDLZ1/agd6zJ5UZxsIptJQMVWcn1/6xgZTTiVNrWCqVsVUOJjKm9bGvBKY+aPoeU1lW8UWMYB61W9/q90lHaWEB6A3sirfW98qHXmk1GbAYl9vdn6Rl9Lwo5PtnqmYMeU8bw0HUwAAAADqomIKiJA3J6G1KqZsMFBJQTBVjgqmPE9lSVnVDqZmd+zQJyTdumtXcFlcxVTOBFNDMgPXQ61+nRYVRlTMPngRc35seLBW0i8SbOWrm/AXCtJVVy1+/cQT0h57tH5noVX5bFVOknOuGpHvt4qpJmZMiYqpRHEUAQAABhvBFBDBnlTnV62K3SZNw88jgylJFS0GU7Wqup593336K0m3mlXufN8PPhjihp/nZQaudzmYstVHVaubmbAwEzHnx84B2k3S5NNPd3ffHG6IElnZ44Zkbb5e/JhWvrTpZMVUEjOmwsHUsso35+fewkJDN5muqLB/pfMVDgAAgE6hlQ+IMGROSmvOmDLBQBpa+UpuBYcTFpUbmIOVNy1vwyaMK5fL8RVTbjBVY6W/jokKI0xYmImqWnGqXOa2bu3WXi1Td/i5Ow+rzeNWCbXypbUqp93IMvGKqdDthyum3O89NwiuJaXPTb/hKAIAAAw2gikgrFIJBok3VDGVgmCqYio4KlL10PMGgqmMmdVk50q5K/wtmzHlBHWFiFa6TrNVMm7Uk1mzZnFfIsIBd+W0whNPdHXfXE0FU+1W2NlgKsXDz8vlcvvBlPN1EjOmvDozptzh6I1WTKW1mg0AAABIE4IpIMw56RxavTp2Mz9FwZRt5QvviT3VrrWPOdMSl4sIpnJmBTwr4wRVpSQGQNcIpnIR4YBb1VLavr2ru+aq90FaMm2SkrSjzcDMDwVTaazKKbqrRHaAp+RnTC0LGJ37zzRY9UYrX2ek7xUOAACATiKYAsIaDKbS1MoXBFOhkKKRqq4hEzDZiqlyjYopOTOnShEznjrOhgPO48pNTCzuSlQ44IQHlaee6uquVamzKp/bVliIWE2wKeGKKftve7faUYVCoeOtfIlXTNUYfp6tFUy5+5nC0LAfcRQBAAAGG8EUEOI7LWLDDVRMLau06IGKOVGOC6ZqtfKNmMdrGwBLzkn3smAqt7ReQpIVU1W7sNtukqThiLDNbeWTmZ2VBPeDNCpAmXOqpNoN9Pph+HmnK6Z6MmOqxs8zNd5PVYFWCp8bAAAAIG0IpoCQoqloWZA0HGplc6WpYsrOmCpnqt/S9YIp3/c1Yn4WzJhygrlMeNU9z5O9pSSCqagZU0Pr1kmSRqKOuxseJBhMeTFfWwtOW2Gxzdlcca18aYpAisViqiqm3ve+9+njH/947fsLB8w1KqZyDQZTaQwN+xFHEQAAYLARTAEhhV27JJlgKlwx5EhTMFWvlS+uqmtmZkYT5mtbC1V2Whm9cDAlLQVTCbTy2ZN8N5IYXr9ekjTu+yqEWqrciqlcuy1zTahXMVV88sng63KjK7rFMY/Rd4bcS+k6eS/MzSlbf7OGtTNj6u6779aFF16o008/vfaG4duvMWOqVjAVOfwebUnTaxsAAACdRzAFhFRVTNUIpmzFip+GVj5bMdVkK9/U1FRVMFWpVKoqptzWPatobjOJiikv9K+0FEyt0mKwVsUJBYYSWDXQ8uqEEe7w83K7x82+3kIzptKkE6+NTlVMTTcYUDYzYypX4z1PK1/ncRQBAAAGW/rOaIAec4OpbDa+7iNopUpBxZRvKofiWvniqrqmpqa0xnyd0+KKfBW3CikimLJVWW1X/jQgaOVzTvDza9dKig6m3JBwNIH9s6pOnCMCFL+TwVR4+HkKW/k6XU2XxIwpLzxjqkbF1FCN9zzBFAAAANAcgikgxK6atlDnpNJvYMW7pNiKqVJMMBXXyjc5OVlVMVUqlapa+RRRjWPvo+2ApQFRrXxatWrxH0VUwzihwNjCQtdXcrPqBVOamgq+bPe4xc2YSpNiB4Ip91G1UzHV8JynJlr58lRMJYqjCAAAMNgIpoCQkgk7inVapIJgIAWtfLZiqhLaZ7+JVr68qoOpohR5Ym0rpipugNUlkSekTjC1rJXPCQUmfF/zCVVN1fsg9czcMqmDM6ZMNVsqK6Y63MrXzoyphu8vXDEVvj+3YqrGviy7Xgfcd999+uAHP6inn36647cNAAAA9NryPh1ghSuZsKNuMGXa/NIwYyoumKo3oH1qx46qVr45J5gqSZErq/WiYqrK+LgkaUjSjNMiF95+raSdO3dqdHS0i3u4qF7FVNYJ0CodCqaU4oqpTr82Mmo98Gm0YqpeMOX+fLhWMOU8/52q1zvwwAM1MzOje+65R1dffXWHbrV/pO8VDgAAgE6iYgoIaTiYsie8KWrlK4dmYtWbMTW3fXvwdV5SqVgMZkyFB6lbdo5VIjOm7L/uvphgSpLmn3qqensnJFyrxVbFJFStyhfx85wT1LRdaRZalc8OP0/Th3kngqnwq6/SRgD8Z5J+v9791Zsx5dz/UI22wm608tnKwJtuuqkjtwcAAACkCRVTQEjZnASG5zWF2WAgDcGUb1r14lr54toNC04wJUmlQkFlG0zF3JcNppJo5VPUjKmhIRU8T0O+r0K4tckJDNZKunfnzm7voaTqECVqhb5hJ8TzO10xlUKdaOXLhI5jqxVTQ489ps83sF04mKo1Y2pUUrlcjlwcoWo/O/wc1VoldJBRMQUAADDY0ntmA/RIxZxUlyJWpHOlccbUsoqpOq18xSefrPq+ND8fVEyV6lRM+UkEUyYcCO/JvHlulgVTznOxm6TJUKtft1RVTEUEUyPOSoftBnqefYyhiqk0abtdMeo2WwyA8w2Gk/WCKffnI5IWYp5HN5jqdKAyMjLS4VvsD+l7hQMAAKCT+H0PCLFtSOGQZxkTCCw7oe2BYMZUaJ/rrRxYCgU7FbdiKi6YMveRSMWUCQf80L4s5BenX5XCoYPzXGQkzTz+eDf3LuDFfG2NusPnFxa0yxmG3rSY4eeLFyazCmE9nWjzDFeedXuWW6aJ4ecjUuxgffd64ddtOzZp5VZMAQAAYLARTAEhFbPUfblexVSKhp/LtvLFVEzFVXVVQhVF5YWFIHCqxJxUVxJs5bPVR+G4pTA0JGl5MBUOE+YTCKZ8369dMbWwoGHnsvt/9SsdMDGhj330o63doX2MNhhNYcVUNwbjt/o+a3n4eY2KqbykhfCKkPZ6XaiY+kdJj0vaktDMNAAAACBJ6TujAXrMtiHVC6aCYCAFwZSdMeWHK6bqtPIpdKJbXlgIbiu2Ysocl0Ra+WIUTeVIZWqq+gehcKG4bVvX98X3/doBRGgfD/zNb/Rb39den/tcS/cXbuUL7UxLt9lpnQgtw8e01RlTDd9f+NjV+X4hJiTqxvDzU8y/f/nggx25PQAAACBNCKaAEN9Ue1RMu1jsdjYYSEEw5dmKqVCYVm/4uRcKTcoLC8GMqdiKKVsp5sxN6pqYMKJkZu3UC6ZKoeHu3VCpVKpDlHCgEdrH/UxIuEer86/CwVQH28U6pSPBVOg4tjpjqtHj00wrnyQV4qqXnP1utFqrUeUUVscBAAAA7eK3XCDMtrLVCaaUouHniqmYqjf8PBtqRyo7w8/jToKTDKb8mBlT5dHRxS9C+x8OE/zwcPQuCLfyhYOpSszw7UyrrWnmep6dMeU+T2mpmOrC8PO4kLJTls20qtHKJ0mFcChqr9eFiikrvOomAAAAMAj4LRcI8c1JdcXMMYrdLkUVU0EwFa6YqhOe5cw8Lauhiil7H0lUTMXMmPJNMOVNT1f/IBxeJLAq37KKqZC5J56IvLzlYMo8xvBzvXhhOoKpToSWy1r5Wn2fOa/jqBUTrXDF1LJjGa7GC7/2Iu6j088GFVMAAAAYRPyWC4TZiqk6wVTQSpWCVflkKqLiZkzFBVPDoSHVlUJhacZUzEmwn2QrnznJXxZSrFq1eHl4yHboucjEVLV0Ur2KqdmtWyOv124w5ZnnIY3Dzzsxf2xZK1+L77OGh5/XmSkVDq6Kca8t93qdrphKYdsmAAAA0K70ndEAvWYDl3rBVIqGn3s2mIqpmIqrNhkJBQju8PO4tiHftjgmWTEVOiH3TDCVqxNM5WKqWjqpEjq24SqZhZgB7NlWXzehGVNVwcsAV0y1XJnYYMVUtt6MqdB1Yyum3Ot1ODSklQ8AAACDiN9ygRDPhjVm5bdYKWzlU2guVq1gyvd9jYQChEqhULeVLwi/7H12kR/TyuetXi1JyoZnGYXChOFQq2I3hI9tuPKm8OSTkddru2IqasZUSnRjxcZWh583WjGVaXLGVGnXrsjb6ebqgQRTAAAAGET8lguEeDasqRNM2Za28AlrL9SrmIqq6pqbm9Oa0GXlQiEYlB5bMZVgMBUXKWQmJiRJQ+EAJPRcjIYrqrpgWcVUKNAoPvVU5PVyLb5ugpayUNumufOWbrPTulIx1eJjc69Vq2KqXitf+H1eiQk9Ox1MuftcjnrOAQAAgD5HMAWEZEzg4o2M1N4wRRVTNnjywysJ1pgxNTU1pYnQZZWFBVUabOXzkqiYsif5oaqXnA2mQgGIPYm30cB4EisHhiumQj8vmwHsk6HLw61jjeqHiqlOtHkumzGVdMVU6PkJ7085tCJk5PU6MBOq6LzP/DQ+1wAAAECb+C0XCLHBlBoMppZVWvSArZhqppVvampqWcVUpVBYWuEv7iTY3keLQUEz/NC/wS6sXStJGg6HY+Zxzph9XF0uq9zl4LBexZS/c6ckKVw31WrFVFAVZivXBnTG1DKtHq9GV+VrtmKqgWCq0VCslgWnKrBCxRQAAAAGEMEUEGKDqUy9YMpWrKSgYipjQ6JwK58NzxqsmPKLxbrDz+1Q+EwCFVNxYYQNpkZi5jvNjo5KktZq8XF2U72KKZlZROFJU61WTGXCFVMpXKmtE9V04UfVkYqpZoKpsHAFV0KtfG4wRcUUAAAABhG/5QIhWXMCXK+Vz0vTjCkTjnjNtPJNTgbB1LR5LBV3Vb646gzbypdAxVSc4fXrJUljlUp1RZR5LtxgaqepWOqWehVTGRNMTYZCw3yHWvnSWDHVifljnZox1Wg7XbZOK18m9L0fN7+sw8+BG0yVCKZqVr0BAACgP/FbLhBig6ns2FidDdMTTGXiWvlqzMGaefJJ2a2nzPX8YjFo0fPrBFOFmRlVuv3Yze37oXBhxART45JmncoVGybMmlBxN0mTXQ6motokXVmzf9MmLAsub/EE21aFRVZMpeWkPUUzply1qpnqzZhadmyTCqac++l9bWbvdf0zBwAAAIkjmAJCcuYEOBMKEpZvaCpWUnCilLHhiGmzs/waFVNzTzwhaXFQuJ3JVCkUgoqp2LYhcx/bHn1Ub3jDG9rc89riTvFtxdQqSTPOrJ+glc8EUzlJux57rIt7WD/AGDLBwsKqVVWX51sMMJa18qWwiqYr1XQdmDFVS/goxlVMBe+k+fnI26maMdXQPddWmJ4Ovi6lsG0zaQRTAAAAgyd9ZzRAj+VMiFOvYipNrXxBWBHTyhe1j4Xt2yVJc/l8ME/KL5XqVkx5JpjKS/rmN7/Z9r7XYoOmcMWUt3q1pOXBlA0vivm8CuY6c90OpsKhXyhwGjYBRnGieqJXu8FU0FKZwoqpTgRT4QimXmVaI5qpmFq2P+bnc+Z4e3HBVIefg4IzI613zbPpUU5ith0AAAASRTAFhNjV0rLj43U2XKxYCc+e6QVbMeWFKqZUo5Wv+OTiOO75oaGlYKpQCIKpuBlT3vCwJCkf+dPOij3JN9VH45Km3eHmtvUvk9G0CW7mH3+8m7u4bMZU2IitQDNVXlarx88GJJmoGVMpYYOpdoKUZcFUqzO5GqwoW/ZqD6/KZ76ft4G0M/up6mrOfnYipCo6FVO9/6TpvU60dAIAACBdCKaAEDuUOlcvmEpjxVQ4mLIn5RH7WN6xQ5K0MDoahFCNzJiy9/FHkl7Y7o7XUyeYykiae/rp5dtnMpozAVrJVIZ1S72KqTHbGrpxY9XlrQZTNVflS0nFlF2xsZ3Ws65UTDWxKl84CFsWTMXM0er0qnxFMzxfSsdnTa8RTAEAAAwegikgpNFgyrbypaFiKhtTMeXXCM8qJpgqjo0tVUwVi4vtfNJStVWIrZiSpDvb2+26/JhWPo2OBtUj86byS1LVsPR504rZ9WCq1vO/sKBh8xiGNm+u+tGwpHILJ9k2QMnYVr40zpgyr8diO8FUOERqtWKqweAu/GqPmzG1YALBbEzFVKfDwZI7Qy0FnzWJCx3PcgcG6wMAACBd0ndGA/RYw8GUrVhJwclibMWUDaaiqk1MC1x5fLypiqmME0xJUqGLJ4rLwolgJzKaN4FMwa2Yss9FJqOCef589+eOn/70p7r00kvbbreqWTHltBmOhIIpSSrGzCmqxQZT9vVXtfdpqZiyrXwdrJiq1zIZf0MNDj+vN2PK/Fs0gWAmoYqpktPKF/k+HnSh40nFFAAAwODJ9XoHgLSxFS750CpqYUEwlYIwIGtO3sKhUVD1FHGynDGhib96tXwboBSLSye/DQZT09PTWrduXYt7Xlut0Ggul9NYoRAdTHmeymvWLH69c2fk9Q866CBJ0saNG3XMMce0vI/hwMTdY39yUp6kaUkTmzYtu25xZkYjdV5nYUHFlAkhU9nKZ8KDtiqmwhd0IPCpFRo1OmOqYI57NmYId9V9dOD5KM/OBl+noTozaX6pVPVaqDD8HAAAYOBQMQW4KhXZmqMhs/JbrBQNP7fBVOyqfBGVFhnbIjQxsVQx1cCqfOFgapczA6fj4lr5JBXMYy05wVOwil8mo4pZBS/rDkePcM8997S3jzGziCRpwbQRTklaG5oxJUmlubmm7y5cMZXGVj7bWrpg/t22bVvTt9GxGVMNhmONtvKVTTCVaySY6oCy28qXkuAxSeVQyyQVUwAAAIMnfWc0QC857Tl1K6Zsm1wKThZzdSqmotoNh0wlhrd27VIIVSwureCXiy6ozIyMVH0/7bQadVyNY2srV4pOMBVUWGUy8kwVV77O/o2Ojra1i7UqpmbMioCTknbbsGHZdQstHLtlM6bSWDFlXm/zZn92Tk42fRvh91VHhp83UzEV3h/zb8m8/nNxAUmHn4OKE16mIQRPWnimFBVTSEInVtQEAACNI5gCXM5f5+tVTHlpqpiyYUU4mKoxB2vIzDfKucFUqSTPnnA3GEwlUTEVpWgea8WpiLKP0/M8ZdevlyQNO61QUUZCj6fpXQwfW+f7uSeekCTNZLMajgg6O1Ex5VYEpeVkylZMdTJCaLUSqdGKskYrpiomyMzHBFOdrpiqOK/fNMyza8S2bdv0i1/8oiO3FQ6iqJhCt/2///f/tG7dOl1//fW93hUAAFYMZkwBjtLMTPCmGLEzimLYtrk0VEzFBVNejRlToyaEy+++exBM+aVS0PbnxwRT2XArX51WuXbErsqnpcoV3w3GnO3zpkJpNGb1tGdKep6kfLj9sdl9rFHJs2Ba2OZyOeUjhumX6oRmUbI1Kqb8SmX5bKYesMFUbnRUmpvT2t12a/o2kpwxVSmXl//PMDxjyl5sgqlczPPe8WCqDyumDtm4UXtJuuTOO/XCF76wrduiYgpJO/bYYyVJRx55ZGrCfgAABh0VU4CjYEKOgqThOi1eGVsxlYJfXONa+WzgFHVCO2pO8Iae8Yzqiqk6w8+zoeMy+9RTLe93XTWObdnuh7tqmbMq35CZ6TQesXpapVLRI5K+L2njr3/d3i6Gj62zz0VzbOaHhzUUVTHVQjC1rJUvjTOm7OvRhIdrzbyvZnRqxlQjx6fshB322VxWMWVDz7ExSdJwI/vTgc+GqoqpFHzWNOJ+Sd+TdNfnPtf2bVExBQAAMPjSd0YD9NCCqf5ZkDQcbosL8VIUTNkqmmyoLc2LmTG1sLCg1eY6Ixs2LFVHlUp1Z0yFg6mFJ59sa99rssc2omLKBgSeMxzanTE1uscekqQ1pdKyv3rPmzZGSdpw//1t7WKtE+WiWTGwMDKiIbO/rnZa+YJV+ZzgpdPVOq2yQenzduyQJL36wQebvo1uVEzFBUVuVU7csxmEQqbyLR+zP51+DnzntZqGz5pm7P6b37R9G1RMAQAADD6CKcBRNNU3C5JyMcGMlaYZU/kmZ0xNTU3J1rCMbNy4NCTdqZhatsKfvclQMFVIoGIq6nTcNwFBJmIGj5fJaPxZz5Ik7SZpLhQAucFUpU4A2eg+Rn1fMcFMcWxM+aEhhZsKyy0EU7aOLRPx/KQlmMp2YD/CwVR4yHyj3Gcnri0nKpiKq5jyzOtuOC4kci/vRJDkBlMpeX4b1oHqJiqmAAAABh/BFOAIgqkGlphPU8WUjdDCFVMy1TRRwZSdoJVdt66qYsqrVzEVuo9iF4OpWkfWM8Pps26448yYGnvmMyVJayVNOiv3SdXBVLHNGVO1TpR9sxpdZXxcnuctGwZedvajUbVa+dIyDyXXgf3oVMVUI6sWusFUOWZbe5Qz5nU3nFDFlLsgQxo+a5rSgZUUK6GKKZ9gCl22VtLbJNVe/gQAAHQSwRTgsMFUoZFgygQDaThZtEFALtzKZyumQvvoVkxpYqK6YsqeWDdYMVUOhT4dZfYlavi5DaZyTrjjzpjy1q2TJOUlTT72WNV1550wa6HdGU01KqY8M7PMN/sannbVSsVUEELaVr4Ggpek5TpRMRV6LK3OmGpk1UJ3xlTZbh8efm7bZc2iCHFrOXY6mPL6OJjqRIhExRSSdo2kKyR9utc7AgDACkIwBThKZl5Rsc+CKRshLVuVL6aVb9fTTytYI27NmqXqqHJZGdvK1+CMqUoXgykv9G/VfpiAIO+uuufMmNL4eFChNPvoo1XXnXdW8mu+ZqlarRPlrB3MbvY1/LqqxKwYWEu4YqqR4CVpnaiYWqbF22wkuKtEVEyFj2Uwx82EjKOSylHPfYcfez8HU7TyoR+9yvz7pz3dCwAAVhaCKcBRMkFCsYEqmrSsyuf7fhBMLWvli1mVb3br1qVvnGDKK5eX5jTFBFP50BBv3wyM7wbfac0Ly5qV3vLOiavnBlOep13mMcyGKqYWTIudJBXabDdaFgY53+fM/KvM2rWSpFLocbQ1YyqiYiotM6bszLOfH3qoJOkm8/ib0alV+RqqmHKDKbN9+FjaW8nvtltw2ULEa7/jFVPOvmX7LZhq4TkrFAo6+uijdcEFF0haHkzRygcAADB4CKYAR9kECcVsts6WSxUrvX4TVSqVIJgKt9kpppVvfts2SdJcJrPYsucEU5k6w8/DwVTGVgV1Q40T8bwJO4bdE1enlU+Sps1jKLhBnKSiE0yV2jzRrXWiPGTaDHOmrbAUCjxbqZgKDz/3GghRd+3apYceeqjp+2pV8Moxr5VWwpokZ0zZ8KNi/ova1gbQQ07I5gacwdXc/exAkJRxgqleh+BNa+G99cUvflGj3/62Pv83fyOJiikAAICVoNfn1ECq2Fa+UgPBVFqGn5cKheCNHA6m4lYOLGzfLkmaN1U3VcGUrZiKmzEVCqY8c8y6osaxHTJhz6h7ompXTjNhzZypICuaIM5yg6lKC1VLNffR+X7YBE9Du+8uaXnFVKWF4ee1gqm4AOgZz3iGnv3sZ+vBBx9s+v6a5QaldgW7VlaTs0fKXrObFVM2/Ki6h5jh59nx8WCfFqLaWDvdyucEM73+rGlaC8/ZxJ136hpJd5rvqZgCAAAYfARTgMOGFI0EUzYY6HV7TdFUeUnLW/k8O9Q8tI/FJ5+UJM3bmVQ25GggmApXTGUTCKaiWvmCYKpSCQKHqlY+SQtmX8uhlQOLbgtWC1VLrloVHKPmpDoIptqtmPL9IJjKheaJSfHB1IK5nx/84AfN3V8LisWiTNwZBFPZNoKpuFXyWlKnla9ctWl0xVQmn5eNMovOrLLgeh1u5cs6wUyvP2ua1kIwtfGJJ6q+X1Yx1YGV/gAAAJAuXQ2mzj//fL3sZS/T6tWrtWHDBr3pTW/SPffcU7WN7/s699xztXnzZo2Ojurwww/XL3/5y6ptFhYWdMopp2j33XfX+Pi4jjnmGD3yyCNV2+zYsUPHH3+8JiYmNDExoeOPP147u7laGAaSnflTbiaY6uoe1VdyKn7CoVFcxVR5xw5JUsEEWV5EMKUGh5/nW6j6aVStYd4jJuxZpaXgJQiyTABUNMGI//TTVdctO4GC3+7+16iYGjcn0aObNklaHnj6TQZTbrVIZMVUneDCa2Cof7uKxeLSMP4OBFMVO/OpAxVTcdyKKXsElwVT9uayWS2Y2yxEtfK1GB7FXS/bxxVTXgvPWT4UuC6rmAp9DwAAgP7X1WDqhhtu0Lvf/W7dfPPNuv7661UqlXTkkUdqxqmwuPDCC/Xxj39cl1xyiW699VZt2rRJRxxxhHY5J46nnXaarrnmGl199dW68cYbNT09rS1btqjs/NJ73HHH6fbbb9e1116ra6+9VrfffruOP/74bj48DCDfBlMx1UKuTEpW5Ss7wUpsK19oH30T2trgxoZQGSeYssO1lwmFK0NtVhzVZPc7IlwYfcYzJC0GU9NmzlUwuN1sXzar4XmhAKHszsXqVsXUwoKGzf6P77HH4v22WTHlnqRnzQl8IzOUrESCqUJBNlqwK9i18h4Jt/K1OmPKFVfNVBVM2WMU2ta+6r1cLgim6lZMNfi477//fm3YsEHnnXfesp9lnddXr0PwprXQdmdfM9JiWBcOoloOKAEAAJBa0SURHXLttddWff/Zz35WGzZs0G233aZXvvKV8n1fn/jEJ3TOOefozW9+syTpiiuu0MaNG3XVVVfpne98pyYnJ3XZZZfp85//vF772tdKkq688krtueee+s53vqOjjjpKd999t6699lrdfPPNOvjggyVJl156qQ455BDdc8892nfffbv5MDFAbCtfJaZayJXGiqlwmOTFDD+XaWWrmGDKVkxlGmjlCxvpZjBVg12Vb5WkrTMz2n333ZcepwnPKmYFtWxo9TQ3mPLa3f+4iinnPlfZYKrNiqnSwkLtGVMpCKYKzuvRhgxtV0z5fsuBRCPD4YPh5zWOj31tZfN5FTIZqVJRMWLwfytH+IwzztCTTz6pc845R+9///urfpZzq+RWQMVUzgmm5ufnl7fyUTEFAAAwcBKdMTVpqhbWmdkwDzzwgLZu3aojjzwy2GZ4eFivetWr9KMf/UiSdNttt6lYLFZts3nzZu2///7BNjfddJMmJiaCUEqSXv7yl2tiYiLYBmiEbetqpGIqLcPPbcVUSVpWWRS3j1lT6VExFUXB8PNKZWmWTlzFVMhIN4cR29a8qJ+tWiVJGpY0Y1oTvVCFVcZ81gyFAoSK+72z6llLuxhz8l00c62mJU2Y/aiEg6km77vsbB81YyoNFVMlZ+ZZMGOqExVTHXifNVQxFbNt0MqXy6lgnsdyh2ZM1QoUc87rq6t/SeqGFoIpt2JqdteuZcPO01oxdfvtt+v8889faisGAABAwxL7Pdf3fb33ve/VYYcdpv3331+StNUs4b5x48aqbTdu3BisHrV161YNDQ1prbNEt93GXn/r1q3asGHDsvvcsGFDsE3YwsJC1S+QU6GKCqxMNpjym2jl63XFlA2milr+ho4Npmw7rak6qqqYajKYWlWpqFQqKddAlVnTarTyybYhSpozw9wVqpjKrl8vSRoOrbznO+FJpt1gKhxEmH2YfuwxrZU0JekZ5mR72eyyNoKprHl+vAZWnUtSscPBVLnNGVPNVkwFexp+z9jby2aXgqmIwf+tDj9/lqTHIy53g6leh+BNa+VYOHPy5p5+elmrbOoqpu67TzrvPL3ls5/Vveais88+u/3bLRSkBj+DAQAA+l1iFVPvec979Itf/EJf/OIXl/0s/Fd83/fr/mU/vE3U9rVu5/zzzw8GpU9MTGjPPfds5GFg0JmwstLACYENBnodTNlWvqjTtbjh53kTHmRM4BsEU5VK0618q7U046njap2IDw0Fj3nBDje3q/OZMCJvAuux0IBzN5jyulQxNWdWF5vyPOXNsQy3iDY7yLkSE0w1WlWUaSCkaVdVxZQJGXItBCp2T+NmPrUiLrhzK6acjSP3Jzs0pGJEMHXppZfqf/7P/6lpt4qqwcf9oief1MOSvh3xsyHn9dXrz5pmtdLK5372zj/9dPpnTF12mfTZz+pHkn4i6Tc33dT+bX7mM9LwsPS1r7V/WwAAAH0gkWDqlFNO0de+9jV973vf07Oe9azg8k1mpapwVdO2bduCKqpNmzapUChoh2nVidvmidAS05K0ffv2ZdVY1tlnn63Jycngv4cffrj1B4jBYYIpv4FgKjUVU2afSxEhbFzF1LAJanImmLLVUZlKJahuyTQRTO2KaGnqCNvKFxMwz5qAYMG0zYVb+YbNbKfxcADkhidtVmDEVUzZYGrWCaOWzS5rYcaUlY14fupV6yTSyucEpRmz6mNbrXy2YqrFYKqZiqlyjeozt2KqZJ5Hd1bZSSedpO9973v67L/9W9P7+PsPPCBJek3Ez/LO4+63Vr5WginXQkTFVCvtgd1UMqH4ekkHSTruF79o/0bf+c7Ff//oj9q/LQAAgD7Q1WDK93295z3v0Ze//GV997vf1d57713187333lubNm3S9ddfH1xWKBR0ww036NBDD5UkHXTQQcrn81XbPP7447rzzjuDbQ455BBNTk7qlltuCbb58Y9/rMnJyWCbsOHhYa1Zs6bqP8C2VjUbTPWyharSQDAV/smoeZz53Xdf/HlUMNVgG8kada9iqt5xnTePr2BODu2qfLaVb9QEU2vCJ7PugO6YYMr3fX31q1/VQw89VHsfYwKTwvbti/voBEh+OJhqtmLKbF+SlDGP0XPaz9LQylc2x7bkecHKgc0GU77vd2VVvmWLANibdlv57PvI2db3/eB/lplcTiXznPqhFlFJmjQrXjbDrxGeDTn70esQvFlem89ZYefOZRVTsatg9siP/uu/qr4f7mRwRisfAABYIbr6B9h3v/vduuqqq/TVr35Vq1evDiqjJiYmNDo6Ks/zdNppp+m8887TPvvso3322UfnnXeexsbGdNxxxwXbnnDCCTr99NO1fv16rVu3TmeccYYOOOCAYJW+/fbbT0cffbROPPFEffrTn5a0+NfrLVu2sCIfmpKxFSmm0qMWt5WvkfbTbgmGn0fcvw3PwhVTo+bkbti0urmtfA0FUz/7mXTdddL73qfVku7r1oy2WjOmJC3k89LCgkomDPBCrXyrTIvubr6vUrGonH2cTmtfJiYcuvXWW/WmN71JGzZs0C233KJnP/vZ0fsYUzFVMHOvFpwh5ZVwlVOTwZSdMVWWlDPHpGrGVEQQUHEuS+I1amdMFaUgmGq2la8qmGqzlc+957jgzg7Yrnhe8Bpyj2WlUqlaDbFsAsaKU3m3TtLzJZWd4KThR13jeRly9qPXnzXNaqViyn2OipOTVasSSlo2DL3XHrv//u7deNQCBwAAAAOoqxVTn/rUpzQ5OanDDz9ce+yxR/Dfv//7vwfbnHXWWTrttNN08skn66UvfakeffRRXXfddVrtrMxz0UUX6U1vepOOPfZYveIVr9DY2Jj+8z//U1lnkPAXvvAFHXDAATryyCN15JFH6kUvepE+//nPd/PhYQDZeUNeAycENvTJSSr3sL2kkYopN5gqFotabU52R0wwFbTy+X5jwdSBB0rvepckKS9pxrTSJa1g9rFsVvwMmGBq9V57SVpcuW/Kaff1nGAqG/PcbTcVT9u2bdMb3vCG2HbFSkxgUjbtxwujo8Fl4YqpZtsIo2YhuRVT9fYviUCjYoPSTEZZE/A2+xeQTgZTVY85rmLKvO8rUuTw80qlUlUxVTavO7di6nJJN0l6vlM9GFehFRZXMeX7vtxPoozSVzFUS3i2XUNCwVR42HnaZkyNhb7vaM0iFVMAAGCF6GrFVCNtJZ7n6dxzz9W5554bu83IyIguvvhiXXzxxbHbrFu3TldeeWUruwkEguqZBoKprHPSUC4WgwHXSasVTEVVTO3atUsT5usx0+pmQ6hsM618q1YFX85t29bSvtdlTmzjZkwVzfNkg6mgdcgOP1+3TiUtftBNP/yw1pkZdxl3VlPMib77+XXHHXfouOOO01e+8pWqQHzxzsvhKy7uuqniKjurjIVbRL0mQwY7Tyzu1DyqYsoNTZMIpoJVIp1Wvpyaq/SJCqZanTGlGnOjgsudiin7+ne3LJdKsu/u7NDQ0oBup2LK1tNtbGVmWcxxKZVKCn8SlRYWIueLpVILz5l73EtTU/JD77e0B1ONhpEN6ZfnGQAAoE2JrcoH9AMbTHkNtPK5w8HLba7s1g4bBFRqVEy5p3ZTU1OyE9Vy69cvbmfnZTkVU9l64VwmEwwfL/SoYqpsniffVDOFW/nkeZoyx2XmkUeC62Wd5yvcKmTZSqMNGzZoZGREX//61/U3f/M3y7aLDUxMe2PFCfDU5YqpqOClXC5rtRaDk0SCKVNFVPa8oGIqr/jKsihVwZR9LrtZMRU1Y8pt5XNeI142G7xf3Goe+4kx1MIxjquYmp+fV/iTqJefNc3KtBkilaemlrfupSyYGq2/Scv8nTul73+/4dUdAQAA+hXBFODImJOgzGj9042qiqkeniwGFVMRJ7dRFVNTk5NBMKWJxdqpoGLK94MyyrrBlKQ5c/vFbgVTdWZMle3zZNqn7FaeU2Wxy4RB848/HlyWc4OpmBNdG/I897nP1eWXXy5J+uhHP6rLLrusesOYGVOebf1zF1Zos2IqavW4esFLpVLRk5J+K2nctCd2U9lt5XMqpkpNPlb7qIJHlFDFVBDyxQRTmXxeWfOaKkYEU3n3/hrcxbiKwIX5+WUVU/0UTLVSPeRep7xr17JgKm2tjN2smPJ27ZJe/WrpS1/qzA3u2KHy//2/Ta8GCgAA0G0EU4DDrtDWT8GUbwdi1wim3FXRprduXaqgMqFJxq6eVqkEIVYjq/ItmG3skukdF9FWVfVj0ybnzcws/htq5ZOkGbOPC2bxBal6Jb56wZTneXrLW96iD37wg5Kkv/zLv9QNN9ywtF1MYJK1+zQxsXRhp4Ip9zbcGVMxFVP2XtffdVdT99cKO2OqnMkob95HOVWHOPUkXTEVBFOZTHAs3ajIfX9n83nlawRTLU0FiqmYWohYVKCvgqlWWvnc1RBnZpZXSKWsYiocTHXF17/ekZvZ9pKXKPuWt+jhP/uzjtxeq6anp3X++efr3nvv7el+AACA9CCYAhx2EHYjwZQb3IQH9CbJVkyVa7TyuW/0ORPQlDxPMo8zG1Ex1UgwVTCtWmUzT6nTglPUmIoSf3x88cfOEGpJVSf6c2Yfi2aVPEnKO89XPubk2bae2WDjgx/8oN7ylreoWCzqzW9+s+43q3Etm3ljTqzzZp8ya9cu/SxUhRY33yqO23JWdZfBXUcHU4GYAKSTgtdjaPh5qdVgqoMzpuJUnIopdx/CP5cWw95cgxVT7Q4/LziD1K1yH1W7tDv83J+ZWV4xlfJgqhtNdy2+8pfZ8OCDkqThL3+5Q7fYmrPPPlvvf//7WTUZAAAECKYAR66ZYColM6aCKprwUG5FV0zNm0HlM7lccNIeVEw5wVSugTlbJXOcKuFV8TrFhkNxPzerd2bNEOplM6YkLZiqqoobTDknu7mYk2cbTGTMbXmep89+9rN62ctepqefflpbtmzRzp07YwOTYVM5lFu3LrjMCw0zzjQ7/NxZPS64TTdMidiXqtlOSa7Kl81WvYZKzkqI9bjBVNTMp1bFPVe+eQ/5McfSDZ4zuVzwfvGdkCgIplrZr5hgqrgCK6aqrj87u3zG1Apq5bPu6XBlUa8nVt37gx/oC5L+vx7vR5x0RZ8YaL4vnXOO5KxWDgArFcEU4LDBVNZU4tTiOYOse1kx1Ugrn/sTWzk054Qkrc6YClacs/OUOmxZOBGSMcFUzgQEQTDlhHRFs4127AguG3ZObofqBFNu8DM6OqqvfvWretaznqVf/epXestb3qJy+Lk31xsxz8vQM56x9HhCx7TZ4dB+zIypWieaVRVTSQRT5rmoZLNVVXelcFVbDb7vB6/ZtoOpBh5zVSuf2d69VlXFVC4nmc+HrAnb/FIpaOEbaiWYiFt10lRMzWspjOzlZ02zso0+Z+9+t3T22ZJCVX+zs8Fr3krbqnzdHH5ube/wbLhOVWC16n0PP6zjJP2gx/sRp9fHByvIdddJ550n/cmf9HpPAKDnCKYAhw2mcg0EU25bVE9nTNkgoNaMKecyO6h8wQlJshEVU9kGWvnsinNel4KpeqtRZcz8pnwomHKfm4oJpjyn3dANo/JxK7WFWvmsPfbYQ1/72tc0Njam6667Tp/653+OvP6oOaEecYKpTKgKLdvkSXbU8POyX9aDZoxVVEWQG0wlUSkRBKXZbNVy9820oFW10dnnsgOVKLEVU/Va+dxwJJuVZ173WfOY3FlQbsVUw3scUzFVMsFUwfNko7FKP1VMNfKc/eY30j//s/SRj0iVSlUgmJmfT/eMqUolkRlTccF8v9oj5eEqwRSS8vjPf97rXQCA1CCYAhx23lB2rLHTDXuyGP6rfpJsEFCJaOWzlUPuTypmUHnBaVe0wVTe2baRiimZE/ScaaXrNBsOxJ2Y5UwwNWyOQXAi7BwL38x4yjnh2bBzcjusULtb6L4zEaHBS17yEl155ZWSpCfD1QzmeuPmPsb22CP4UbsVU1Ezpo78/JF6wV9L1/1O9Iwp97HFrUrXrvvvv19XXHaZSqVSVcWUnKrCplr53H22M6ZaDSSaqJjyG1iVT5mMMuZ1bwPRBaeVdekRNzFjKuK9Ky1VTBUymaC9qJkQ/POf/7y+3MN5Qg3NmHI/O0LHKyqYSlXFVMRruhutfJ2udOx10BX1R5Q0SdErDAPu/vvu6/UuAEBq5OpvAqwctpImb0486ylr8U20rJ0rSTVmTAVDzWXm9niefHMSXXKqwmwI5dbzNBRMmWAo26Vgyoo7jcqb0GnYHAO7nTtjyjMznobMKnmSNOKcPA5rcYj1cOjx+pWK3iRpbcxj+4M/+AOdf/75+r5pQaqysBAcy7FNm4KLl1VMNdmeFhVMfe+335Mk/fPLpEvrDD+vdCmY+tLznqe/lPTlxx7ThBuUOq/JcovBlD2J7cQJf72KqapZT3EVU5mMsmY1SztEv+BUTOU62MpXNq/ZQiajEfM8NhpM7dq1S796+9s1k8no9TMzy17fScg0cizCwZNznezCwvIZUykKpvyZmfj5d53UYJC0sLDQ0PPc6xlTaQ+mqJhCYjowOxEABkW6fzsAEmbnwzQTTEm9ba+xFVNRA5TdVj4bUHjmJLrsPMaoYKqR4edZE0wNNRE6NMVWTMX8eMiETvakPWr4eW733Re3cWYchYOphYg2s3X33qtrJF16yy3SySdLpgXS9b73vU/777ffsn2uOG2DqzdvDr7OhFfla3bGVETLmVWJOXctOyf23aqUOEvSaknPuvJKya2Y8jzZSKepVr6Ige0tr8rXyP2Z58GdMVW1OpwNhcz3tlJvKCKYarYKTlJVgOcqmWCq5FRMNTpjauGJJ/Rh39fHymU90uHh2Y1qKHh1gyffrzruuUJBL/7a16o2T1PF1IIzty7Qo4qpyy+/XCMjI7rqqqvqbtvrYCrqjyhpQlSAxHTpj0UA0I8IptB3fN/XTTfdpB1RJwVtssFUQzOmpKZPFrvCVtHklhdARgVTGdPS5puqD2lp+Lk7H6eRiqmsqVga6lYwZ39pizkxGzbB1FgomHJn9uQ3bJAkjZpgpFwuVw0sHlF0MJU3xykrSZ/6lLTPPouzcJwTac/zdP555y277szjj0uSpiVNOKvyZUOrPTZdMWWrkSKOR9mLWZXPeW12q2IquP21a5dej+a1Z49Wq8FUUF3RiWAq7vE7rXxLmy5taysiw8HUiLlewWnlc9vX2p0xZSumitlsMFes0RDcro6YlbTt1lsb3ZOOaqRiapt5r0iLbafucc8XChoOVyymKJiaM23RHRV1zBoIpv7X//pfkqS3vvWtdbeN+vxIEhVTwKJutdcDQD9K928HQITvfe97OvTQQ3XQQQd19oZ9XzaKGbIrudVhf8FPRTAV8VdoN5iys4bsPCjPnFxL0SFUpoHh53lbsdTtYCrGiKmGGpdUKpWCE2F3Vb4RM+NplTlOC7Ozch/tiKTCwoLuuece/dwdRGqO1/bhYemAAxZX9Xv3u6WDDpJuuCHYLB8+7r6v6ccekyRNSRpxKs/CrXy5JsOWehVTdYOppu6tMW6roLf77sEwfjs3qWT2tdVWvrZX5Wvk/pxWvuAV51ZM2eNuvs/vtpukpUq9ojO/zK2Ca3jGVFwwZd6rpWy26VX53GM4dccdDV2n0xoJpnY51YXy/arWuHy4jU99UDHVrojH3PEZUx29tRbuP+UVU70+PlhBCKYAIEAwhb7zgx8sLjL9wAMPaFcnV4NzwpVGg6k0VEwFrXx1ZkzZACFvWtoyptpJknKjEYueN3DyMGSCodGok6lOqFMxZVe8G5c048yQcitQRk0r3Rrz+KOqHBamp/WCF7xABx54oJ62Pzf3/eTIiPTTn0r/9E/S2rXSL34hHX649Ja3SA89FPmL5dwTT0iSpkPHMFwx1ew8olrBVDkT/ddXdyZRN/46+/QjjwRfZ9atC4JS34SizVb6LF7ZCYU6uCpf3G3YsCN2xpQ57vb9PmTeO6Mm/HGDqYYGfofFBFMVG0zlckvHsdFgyglwCj1q5WskmKrUeH0OlUr6/rIrpKeepeCGakbbEVLE+6TjLbi9rphKeTDV64oyAABWIoIp9J3nPve5wdff+c53Ona7ZadlpK8qpmy1R41WvpyWgqkRU7mSc1vMQhVTZSn2ZNk1bCuWKpWqypmOqbMqnw0IVkma3rUrqFDJOCc+q/bcU5I0Ksmfm4s8mVxwZgQ9+uiji/dpwwrPW1xd7uSTpV//WvrLv1w8Nv/3/0oveIH0L/+ybJ8Xtm2TJM2GnpNsp4afRzw3FU+RwYs7PLobrXw7f/3r4OtyPi/PBlPmsQerybXYyhc89x14fcUGc27FVMSMKXvc7SUj69dLksa0+L4qmdXzpOafU0mx7zXfvFfLbjDVaCuf87xnHnqo+X3qgIaCKeez0w+18g2Xy7oxfIUUVUxFfZa0HaBGvU863PrW6xqNXgZTP/rRj/Ttb3+75jbpiT4x6LwUBe0A0GsEU+g727dvD77+z//8z47drhtODDvzl2pJQ8WUZ6toagRT0tKJ6qg5sR0y1UbS8kHnjdY/jZr5TWsUqljqkHonUJ4JEDOSZp96KnLG1JpnPSs40Zh77LFgHpB7ej/rtOQEjyPqBHP9+sU5U7fdJv1//580Nyd961vL9nnBvEbnQ+2Q4YqpfIsVU1FBXdmrDl4u/djH9M/nn19dMdXUvTVm6je/Wbr9QkF+qGKqZJ6Lllv5EqyYcgM/91gGPzfH3Q2mZmdnq4Iptz2z4Qq1uIopU91YyufbauUbMUFp0rJNVkyFh5+PVirLfknp5hD8ZhWd2WId00SAGyXbQOjT62Aq6o8oXfflL0tXX61XvOIVOvroo4M/QETp9fHBysGMKQBYQjCFvjP7wAO6VtKfSvrGN74RzE5qV8G04xQlDUe1tkUIKqa61crWCBsE1Gjlk5Zaumzb3bAJlaTlFVONPpphE26tljrbVmkEQVNca8XYWPDl3PbtwQeaO2Nq1Zo12mm+nn744SCYmvG84HG6wdSUDSjN6yqyrePAAxfnTH3xi9Izn7lsn4umHbAQCvzyoaH6TbfyNVgxtTA3pxPPOEMnv//9eurhh5e2Cd1fpVLRiSeeqE9/+tNN7Ydr9sEHl25vYSGomFIbrXyRwVQH3ucNVUxF7UOolS8Yui9pdmYmGFIuNf+cSqpbMVXJ55v+rHG3W9uNAKUBDQVTbsVUaPuRiGAqcgZTjxSdP2Z0TNT7pImKqXw+X3ebbq3O2ajEK6bm56U//EPpT/9Uu5mLHnFakMN62sr3i19IF10U/H8dgy1NQTsA9BrBFPrO82+5RUdJukrStm3b9JOf/KQjt1s0VQ8LauyXe2npF1g/Ba18ithnt2KqXCioXC5rtflFaHTjxuBnXui6jf5i7pnKsjWSdnXjJK2eTEYzZl8XnnoqCGbcYMrzPE2aE7vZRx8NqhzmMxkVzHXnnJacSfPz4BfGuGPhedKf/Il0zz3SZZfpzr33XryepLIJuorhVficIE3qcMWU82ledIIS/4EHlr4O3d/Xv/51/eu//qve9a53NbUfroJbeVAsLrXy2YopG6g008rntmuZ567RQeK1bzjmNmzbpvu6cX9sH5N5LN6qVYu7psWZZRWnDdht5Wv49DYueDAVU1XBVKMBn7MfeywsdKfVto5G4ge/RivfmCJ+SUnRiVy5C2F8ObwKodTQTKgjJP1G0msa2LbXNRqJV0w5FY32TzVF87r7/ve/r4MPPlg//elPg216+gp78Yul9753sTIXA49pZgCwhGAKfedx58TsIC2eXHeCrZia12KY0Yhm22u6wbbyRa505FxWKRa1a9cu2bX4xsxqdZIWZyg5Gq5JMMFUXtJMN5ZON2qdSM2Zx7jw1FORq/JJ0rR5fHOPPx5UOSxkMiqaQGDeqSjZYaunzAlw3eqC8XHpz/9cT5mV2jzfl2+CrnKoQiofDqZq3/IywfDzmIopG6a5J/dZJxAK/3X26aee0pmSXt/kfrhKW7cu3X6hsFQxZar1WpnD5u6nfayd+MtyMzOmalVMuZV68089VRVMtVQx5b5P3QDJPHeVoaGg8qzRENytmNpD0uNOQJmUZoefS9UnaqNanI9XJUUzpqKCqXYD1IIToizdaP3/H10naW9JXzdhZi2jvr84I68LwVpDkq6Yco6JfbXZYOrVr361brnlFm3ZsiXYJhXDz3/2s17vARJAKx8ALCGYQt950vnF/c3qXDBlK6YKTfxSGlRM9bC9JNw6VSUUTE1NTclOz3JnTIUrNsqNHgNTOSJJc12YY9PISd68CZ2KO3YEJ7Ve6PHMmFbFwrZtKtvnOZtV0VZbOdVeTz311OIXjQZTIb4kz9xexTk+0vLVD6snUDVw2zWCqbITTGWcffad0MQPndRvvOsuXSipnXeQ9+STS98Ui/LsfZhgqmz2tZmKqapV+exrOIGKqdhZTza4shdks5q3r51wxVSbwVTZCZ48J5hqNuALB3lP3Hpr8/vVpkbqYqpW5YsIH1eFL0hRxVQlKkRqUzHiNjvdere5WFxcVfRtb+vo7TYq8YopJ5iy785i6H2006maTcUrLEUBLLqIYAoAAgRT6DtTTojwh5J+9rOf1Rxk2qiSaX8qNjHPo5yGYMr+AttAMLXryScVTD2amFjazvPk/precDCVyWjGVh3VC6aeeKLqBKEhdVblk6SCedzFHTuWKjRCz+G8mfVU2rZNJVsxlc2qaKutdu3SH0h6u6QnTdDS7F8ygzYv31fGnlyGhuiHZ0xl1dxrx3cqe8IqzvDzqjY0tyoidFI/5oZKLco687lULCpj9tG2h9pgyk/BjKlYtpUvbsaU+bn7vpgz+7Xw9NPynde1WzHVyvBzN5gKBmEPDS1VjjX4egmHkJM//3lj+9JBDc2YCj2ecDj1gtAMtzSdsPsRCz60WzEVFUw1UjHVkq98pTu3W0+DrfId43z22P8jhoOpYWfOYq9ncElK1escXUQwBQABgin0HTeY2lfSflocgt4uu7JWsYlfSv0W2pQ6zQYBkX+FdisxCgXNPv740s9C1TwtBVOS5sz9FmylUZTf/lbatEn6vd9r+HYlqWhOKHI1/sJeMJU5Jed1EW7lK5jWq8rTTweDqku5XBBCFnft0pWS/k1SwQzF9dqomMqaChpv7dqqnw2tWlb/oWLUTJm427YBStyMKRvkua1w7slzONzpQNgz7M4Wc4Mpc6JnA5WWh5/bwK8TwVS9iin3deMGTBGzvebNtsWdO4Mh5VJ1MNXoK8cLvU+Dy83X/vBw00Pkw8HUwj33NLg3ndPQjKk6FVPD4cebooopPyJob/c0sxi1umkagpIOSrpiyj2mNhILB1NDzkIhqYgKUjTkH91DKx8ALCGYQl+Zm5tb1hLUqXa+YgsVU6lo5asx/NytxPBLJc2ZeUDTmcyyOR9uGNVMMLVgh1zXmjH1H/+x+O+ddza12tCcOfHLD8U3vRVtADI1FTtjqrh69eIXTz8t3waQ+bxKZrvy5GQwaNl77DFJzrymRo+FUzGVN/udCwVT4YopSSpEnYjGsUO441blM6qCHacCIxxWhL9vxZgbrDnBVDBjylb6tDhjyr6Gu/oLvFsxFfF8V8IzprRYcSdJpcnJqkrAlmpB3IopJ4jJ2K+Hh5dmXzW6Kl/4uXVWT0xKQ8GU83jCw88lKR8OplJUSeJFhMrtRkiRFVNN/D+pmVb0nnGCqSROzOec/zfZ92cp9D5yFzxJxYypFL3O0UUpCtoBoNcIptBXtm/frg2hy94s6Tvf+U4QYrTKVtIUmxjMmopgyv5iExXeeF5wMl0uFLSwfbskaTYixHJ/DW4qmDLBUMlt6Qpzh37/5382fNvz5jkdctoswkqmTc+fmgpOCjOh57BiWuoyU1PBPKBSPq+y2c53qn6y5hi1M2NqxISn+fXrq34WHn4uSaVmKqbsjKmI16g7Y6oq2HFvP/RLcCeCqTVuUFwqKWNuMxOaMdVMK59brWSDrU5UTMUOUI+omIoafu6+FmwLaWlqaqnlTo0HU7+9915V7H04wYNbfWmDKW90tOlWvvBzPeIMqU9KI5+k4Va+8LstqmIqLVUGXpv/z4nS6qp8Vl/U2Tj//yklUG1cdD7f4yqm3KpcWvmQmJR8lgFAGhBMDZinn35aH/zgB5cGOA+Y7du3K1hL7h3vkJ/J6H9I2jg3p+9973tt3XbZnGSUmgimgsHOPQymwjN9wuyvt5ViUQUTusxHbFtqsWKqaIKhijM8dhm3hfDSSxu+7SCYqlExVbEDxaenY2dMyVQu5XbtCubClIeGVDInI55TpTAcWpWv2TYaz/c1Yk6mh3bfvepnmZGRZduXmjm5rTGk250xVRXAuIN/O9zK5/u+1ronUKWSsuZ728rnt9nKp1ZmTPm+dNddVbNlarIVU857333WbYDnVlLYFtLK1JQyTjDlvlLjApRv/83f6Dn77qt/P+SQxQtCs+Cs4L09MtJ0CB7+TJqo9f7skkZCOreSLio4HAk9jqm779ZHVq3Sdz73uXZ3r20Zp4Uz0OaJZmRQ3Uww1UR1Vc84//8pRhzDr3zlK/rMZz7TsbtrJJhyK6ZSERXQyrcipCACBYDU6IPfYNCMP/iDP9CHPvQhffzjH+/1rnTFtm3btMl+s//+8l75SknSm9R+O5/9S3W5lYqpXs6YqjX8XNXBVNm0NMxHBCRuGBW16lucoqkCcquOlnnooaWvv/3thtuK5sxJS62KqYq5f29mZmlVvtBzmDGVS8MzM0EFUWl4WGUTTGWcYGrMPo4GBq/HGTMnFaMbN1b/IOI5ipwpE8N3Ws7C4mZMuRVTXviv8G0GUzuffFJus6LnVkyZ5yyoSmuxlc8dKt+w735XeuELpdNOi73dKk7gF7TM1amYKtlgateuYPU8qTqMiXvl7P/Rj0qS/vSWW4L7DXbFHdRsjplbMdXwqnzhFRjn51NTaeQKvy7C+zgWehxv2rlTZ8/Oat3b3971fasn28xKk3V86Utf0s9//vP2K6bSUO1Th/tHlFJEMPXVP/gDPfjOd+ree+/tyP0VJieDr+Na+dyKqX5v5fubv/kbvfKVr1ShmSpV9EQaP5MBoFcIpgbMe9/7XknSP/7jPwariw2SqoqpPfaQ3vxmSUtzptr5n3zFVJaUmxjM2uzcl26wQYAXU1XkVlpUTDVQ0VYZOaqCqSZ+Ma/YuUnu6m9hbjDl+9K//VtDt91IK58d4p6ZnY0NprKmcmlkbk6eORGqDA2pbE6Qss7J4G7z8yqXy8238tntfF+rzHVHN22q3iYiUGqqYqreqnw2THEHcLsnz+FWPne+Twvvnafvu6/qfyJeqaSsuY9wxVQzs8WqBo+3MmPq/vsX//31rxvaPGgTdFv53N2xFVPOZUEL6fT00iyoBg2HAzL3veccp6xTMRUcx0ZX5TP3YZ/9PXxfT7uViymxrGIqHEzFhIn/o6t71Zio572VVfluvvlm/dEf/ZEOPPDAlVcxFfF4Pyvpw5Kmf/zjjtydO7frTkmvV52KqT4Ppi644AL98Ic/1DXXXNPBHUJXMGMKAAJ98BsMmnHMEUfoo898pvzpaX3U/FV+kFRVTG3aJL3pTZKkV0gqPPyw7rjjjpZv228hmGp67ksXZGwQ0EDFlG/+clyKGMLdajDl22AoamivZSuk3vMeSdLW887TSX/+53Vve8E8J8M1WvlsMJWdmwtOCsPB1JCpXBorFCQTTPkjI6qY5zrnhEMbJe3YsWMpCGnyJCVbLsvWo63avLnu9s3MmAqCqZgZU5Zb7ZN1KhJqtfJVWvgFedIGQEbGaeWzFVOVdiumWpgx9bgJQh8L7d/4V74iffnLy6/gzJgKYoWIiin3fVG2VYczM00HU0M1wouyc5xy5n4zY2NNh+A2TNuRyWjW85SRtPXWW5vaz1ilklTr/d4M5wQ8Kny061g2/Al7223SRRclMqNn2WB2tdaac9dddwVfV6KC6gGrmHJX5SuHKqbcz6Gc+8eO229f/INGC8FfKVTN+3U1Pvy8V236880sihGj3bmbSBjVUwBWOIKpAeO9/vU6/dFH9V5Jl1xyibZt29brXeqo7du3VwdTe+4p/d7vKSPpjWqvnc8u+V6OCXgir2N/ge1hMJVtsGKqUizKM7+gV1atit1Oaq6VT2bFu2xcwFIuS488svj1X/2VZkZHtalU0mOf/Wzdm97N/GKdrRHwZMxg89zCQvCB5oX2f2SPxTq7VcWiMuY2/dFRVcwxyztVRZskPfnkk0EQ0mzFVN45oVjzzGfWvVpHZ0xFDD+vajcKn6w735dbeA3P/Pa3Vd+7FVNZU5UXDGpvc1W+Zv6y/FvTAjQbqhrd7cILpT/8w+XHIaJiqqpqy7ZQOq8F3zw+b3Y2aLlrVLhe0Q1k3OApZ+43OzbW9OqG7lysJ0xIuONnP2tqP2O98pWL73u7UEAbqh6P7y87ObPPSMOvzpe+VHrve1VusCqzHfkOtXBn3RljEZ8H4c+zWsp9UDHlBuvhVr6qmVPuZ+9LXiKdcIL8f/3Xpu+vHBGirjbh9bCkV0kadlewda/bo3a4h0KhejP+TtJ1kvwOtpqiSyL+PwMAK1X6f4NBc971LknS+zIZjc3M6B/+4R96vEOdtePxx7XOfmPChnA7X6vsCUGliWAqVRVTMcGUWzGVNb+g+xMTy7ZzW0CaCaY8c1v5uIDliScWQ4lsVnrOc3SNCcVOrHO78/Pzeo75RW3oBS+I3c4GU0NuMBWqKBozAdGY72vIBlMjI/LNcz0SCqaeeuqplttCbUA3LWnc7Fst5RaCqciKKecpc4OdnHtiFX5MznatnIAt2MDR8Mpl5cxt2oopdahiqhn2vvIx78twdZjnVkw5LZnB7UUMP7ezzTJzc7HBVNxrKPwJ40afbitf3lafjY0tHYcGT17sMaxI2rnbbpKkuV/9qqHr1nXTTYv/fvWrbd9UVTtpjfCx2U/YX/6//9fiHjVuKOL11cqnRtV8o6iB6k1UQfVDMOU+nnAw77b2Rb1/vJNOCv6I1KhKRPWRrcb6vKTvS3rPY48t3a9bGdmjYKqVllDrbyUdIWnP227r2P6gO9zXeIVgCsAK1we/waApf/zH0ktfqvFKRX8r6Z/+6Z/0xBNP9HqvOqZoToRLuZxkTrb0B38gSfqfkn51002tV4mZcKKZYCpor+nhLxTZOsGUO2Mqa35B9yKCqVYrprLmecjHnSzY+VLPfKYqmYwuNlUWB9e53Z07d+p3zNcj++8fu13OBmOFQhAmhIOpVU7l0mr71/OxMfnmmI06YYANpoIQqNFjYY6fDb6mPE9eAyeU4VaW2hvHB1NxFVM5NzSpMfy80aHaVbsT+mzJlErKmefArkDYTitfRQqOazOtfL5dFTEmmFp2wutUTHkR29hj456weqYdNjM/H7TchTUaJ7j35Z4IBxVT4+NLqxs22conSXNm1pn/wAMN7lGDOjDHMBzqx4V5zbaoPeUMvO6WfMTnfiuBQjaT0fsl/b6kUkSIUq9qs+xWPjaxeEcahD//ooahhz1x991N3UdUMGX/f//H5tu3OMFUJQXBVKaF1mqp+v2TpZUv/dw/gDBvCsAKRzA1aDIZ6cILJUnv8jxtnpvTBRdc0OOd6pyMOREurF279FfX5z9f2n9/5bU41PRb3/pWazduflH1a80zCml2IHE3hIdNh9lfdSrFYhCaZNetW7ZducWKqdzaxXXZRuJ+gbfB1LOfrZ/97Geypwieqk+ownY++aSeY77O7LNP7HZ5c//DpVJsxdRu69drp/l6wgRT3thY0MrnLkk/IWnHo48GJ5jNDsIdNidWsw2eIDZTMeXXaOUre0snJbHBVI0ZU62cgOXNsbS3kqlUgoqpnGl1s/NkvGbeI/ZxSFVD5RvlmccyEvP6Cq9W5Q4/t/dS9axHtXXa2WY1gqmG99e9K+f5GrLH0gmmGh5+7lZ5PfvZi7fX4eHnux59tP0bCVdMxTzPzcamcUF9J8W9vpq1+Ze/1IclfUPVg7oDdT6D3NdzX1RMOcJBVCOtzZkm/ngkSZWoNvPQKpVF97ilIJhqJoh3VQ117+HvJWgQwRQABPrrNxg05tWvll73OuV8Xx+W9KlPfUqPp3A1plbkzF/oy894RvUPOtHOZ4OpWivAhaSplS8bF0w5FVO2ZS2/fv3y7VoMpuxtjcRVxNhgaq+9loWGj9Y4sZ275x7lZVYVqzGryQZTo04wlQkNsJ+YmNAO8/Vac+KTGR+XzDFbFToZXnjooeZb+cxxttVXcw2ePDUTTNlwJ65iShHB1LD72uxwMGX3x572ZcplZc0+2BlTwb428R4JKr+kIIRrpWJqJOY5nArNRopq5atqJ4wYfp4xwVR+YSGycqYZUdVZkpR3gqlKsyG4E6YN77uvJGnNjh21rtEY5/63NfD/lbrvowZXhmy2YiqRYKpDw4rHdu4Mvo5apa7ejKmqYKrPKqYqoTlI5VqLNRjZJoMpP+ozdmGhagB6VSt7zCqZSWq1Yopgqrump6f13//93y0tFhKJGVMAECCYGlQf+Yh8z9NbJO0/Pz8wVVOj5hd4LzwM27TzHS3ph9deu6wiohGe/QW5hYqpXv5CYVunYmdMOcGUDU3y4WBPoWCqiZOb4d13lySNxh0DuyJfRDB1f40Br0UzD+eRkZHICiFrxN5/paKMPRah7fP5vKbMcRi2FWZOMLU6dJulRx5pvpXPGDcnA/MNBpzhE7Oa7KD7uBlT9pdc55fdYfd5qbUqXysnYOa2F8yxzZbLyttgyrTyBStwtRlMNbVikXksoxHDtCVpxmnbkZzQyw006ww/z5qh//liMQiQwlqZU+a26g2b6+dXrw4CvkY/a+y8koqkiRe9SJK0oZkVIGPMb90afN1IPFC39bDBVr5y2oIp39dY1AykFp7zotvKGdV21kTFVDOf3WlQq5UvLixvtmLKixooXyho3rkvN5hKasZUoVDQqaeeGlnl3WrFVMF9rARTHffqV79ahx12mD7zmc905PbczwtmTAFY6QimBtWLXiTvbW+TJF0o6V8+9ama1Sn9YG5uTmvNL4n5vfaq/uGLXyx/7701KunQ6Wn98Ic/bPr2bfuPmqiYaqWVb9vDD+v/vuc9eqpDs79sK1+mTsVUpVTSmNnPkQ0blm/n/mLeRBhjb2tVpRL9V0RTMTWzfr1uvvnmoFUqp9rBlGd+9oSZ5RNn2FRsjft+0BIVFdzsCp3MZFetCp7r8Ihy//HHm1+62RznVeYYFEwwU0/ksOO4u7CBTdyMqYiKKbfdKHyy44YcLZ2AmesXzOslU6kEwVTODAdXC8FUVStfC6vyeU7I5kUEf7NOuCJVt/LZ59GvF0zZofvFooZiTigajlIiqrMkacgGU6tWLR2HFmZMbfy935Mk7VGpaMapzmnFlK2AlFR5+um625fqBa+h4DTumDXdotbtYCrmfdtcfLbIfed5UeFhExVTpWaP0/btUpOVdJVKRXfccUdHqkaWBVNOsBIX2jcyu69q+4jnKlMjmHI1Fdh/+cvSX/xFUH1dzz/90z/p4osv1u///u8v379WK6bc4fE9qvYaZD/5yU8kSVdccUVHbq+qMpdWPgArHMHUIPvQh+QPD+vVkv5noaCPfOQjvd6jtmzfvl2bzNdDe+5Z/UPPk9dmO19wMttgoCC1VjF1y/7769h/+ifd8IY3NLV/cWzFVL1WvkqxqNXmF5/RjRuXb+cGU0381X3UBFOrJc1GnVSZE9k/PuMMVSoVrTYr7K2X9GiNIbZ5c70n7ZD7GGM2GJNqBlOzoeOTW706mMsVrpjKPvnkUjjS5ImeffUUbTBTRzMVU77TchZWjhl+Pur+shsOptw2qhb+uu6HgqlspRJU0dgZU8G+tjD83J0x1VQlinNffkQFylwoFLbBlJfLRa+qFhFM5c3rcrhUCgKkTggGrft+8FrKr169VAnTwoyp1c97nuYkZSU9dsstbe3f9MMPL+1rAwtN1B1m7Xx2tt3K516/yaqaZpWjZkGptVX53HfGUCszppwwJ66y7K677oq+8oYN0rp1TQXx55xzjl70ohfp9NNPb/g6cco1WvkqCwuqVCraZVbQs5o9gY8Kp72FBS04l8cFU00F9n/4h9Jll0n//M8Nbf7b3/429mctB1PO512lR/OxVoJMF2a5EUwBWOkIpgbZXnvJO+UUSdIFkv7105/Ww85JRb/Ztm2b9jBfL2vlk4I5U2+QdO3XvtZ0G03GnBDGDRGPEpyoNnFSv2VqSpL0mg4t5ZxrsGJqdtcu2bX4xiOOn99iK58NptZIy04gJAXBlK2zOOz1r9eMaYOa+8Uv4m/XtFtNRbQdumwr34gkewTCM6YkaT4UOGZXr5ZnLhsNbTu8Y8dSiNPoX+dD21XqVHpZfhPBlFcjmKo4d+/+guvuxbJffJ0Ap6UZU2Z/imZ/3GAqGx5+3kybQlTFVDPDz53HtRBRDTL10EP66Ec/qvvuu29xe7diynL/km1DHuc9YoOpkXI5aA9tVkXS5OSkfuG8D2wwVSoWg2BqaPXqpfdno8fRHd7vedpqPh+e/ulPW9pXa85pg8w0UjFVL5hyPzt9P76VL+JEcM58llpu9WGz7V7Nmm/gsTeq5LxeR6PmIdX5DHIHpscFLLfffnvtnWji/Wn/yPWJT3yi4evEqTVjqlIo6KijjtKaNeGa1uZkIj5jl1VMuStuuvvXQtXRAzffHPuzUqkU/AEnVyzqSknHRmzXSkuoVF0xFQ790L5nSnq7ln7XaJvbykfrJYAVjmBq0J19trTbbjpA0luKRZ1//vm93qOWuRVT2rRp+QYvf7kqGzdqQtKzf/Mb3XvvvU3dfhBMtVAx1egv9Tuck7rHzfDkdtmKqbrB1ORkUBk0HNHK5w7NbaZKyJtYjLuGJE0/9VT1D6enJXMCZ4Op173udZo3FW+ZGq18a8yA6tmoENKRcU5agmcu4kSuEAqKcqtXKzMajqQWjU9NRa/E1gR/dbgOK1ozJw+1gil3xlRVK5+7UThAcX4RbmfGlA2mMuWybANVUDHVwqp8bsVUcPybCaac+1qYnFz28ysuvlhnnnmm9t9//8Xt3Yop28rn7o+9Pee1MGSH7pfLLZ+kLEh685vfXNXSap+HBSfkHVqzZimga/CzJmg/NN/vMO+T2bjKmQa5M6aGooLokLpVG+GKqZjnuRLxPpy08+uMghNUdXvGVFww1Uqg4DvHaDzq86BeMOVUycRVltVtu+tRtcayYMr53i8U9J3vfGfZdZqtLMlEvAbDwVTVqnwxixE06sEHHoj92b777qvx8XFNT0/rVT/7md4q6d8jtsu2+HyUnGAqqoUR7fmFpMslva1TozFYlQ8AAgRTg27dOun975ck/R9JV156qR4M/TLfL7Zv3x5UTGmPPZZvkMko00Y7X9YGUzFhRZRmBxL/6sorg6/nI6p6WmFvJRsTqNkTuqKzEpkNk1xVYVQzA3SdgC3cImWrpaayWdlT2MMOO0wZs0rYqrhVvXxf602lSzE8TyxsaGjZUvJRFVOlUFCUn5iIDaYmZmeXTjBbrJiKOsaRmgmmoip7DHfGVGyIE/rF160sKrfw11oblJXM8c45FVN5GwSaypVmKqbaXZXPDdyKEcHUM2dndYWkl5pjH7TNuK+bOhVTNpha5fvxQ8DrhBQFSd/97nerKjRsCFZwQp/hNWuC57zRlsvwXKxZE0aXf/Obhq4fp+i0762KWVHSfaabaeWrdbyiKoF2hf5ftuAGU12umIqqxGuZc4xWRwQh9VblKzkVU3GtfFM12qYl9S6YCoVG4Va+KM2ewOcijmmmWKyumHJ+5h7BdmbvRfmNef/94Ac/0OoaixG0WjFFMNVd68y/L+vU+59gCgACBFMrwSmnSHvuqT0lvatU0nnnndfrPWrJtq1bFUxGiqqYkoJ2vjdJ+uZ//mdTt581J3zZJoKpZqsYpr75zeDrsZiTumYFM6Zigil7Ylp58klJi1UaUQPe3blSzcyYUjarGXMfc+GZMyaY2m6O6VFHHaXh4WGNH3igJGnP+XntiPoF7/HHNVQuqyTJe85z6u7CbOjELWrGVCUUFA1NTCyrjps311tXKCz9kthixZRngot6mlqVLypAMeJmTFXtU+jyjDtjqpWKKXN7NphyVwDM2xlbNphqJviKCqaaOFHL1Amm3mb+O9N8H1RMxb3uI2ZMjZih++3UPRbt/CznsiCYckKW7NhY8J5sNOCrCvckVUzAmw+tSNgs+zkiSWvK5cjZYe4zVbcisNGKqYhwZvaRR6q+d8O8TIvv20bFBVM535fClaN1uBVTu0W9d+s8lqowIub4bfj+92vvRBPB8UZJH5BU9eehb3xDOu44KeL9Vkv488/9vlIo6N2Svt3ULS4XFUxli8WqGVNFt5WvzYqpWiHfJyV9XdL2rVuDVWSjZFsMpsrO7xXZFARTlUpFVx11lL79d3/X613pqFYrqZfdjvs1wRSAFY5gaiUYGZH+z/+RJJ0t6ZrLLqs5dDOtZh5+OGgTUsTwbknSq16l8sSENkiq/PCH2tnEClRZ84t5XBVNlGZX5Vt9xx3B1xOdGEzq+0HFVGwrnz2xN8diOqZSq9JqMCVpztzmvHPSKikIph4wx+cDH/iAJGnItFA9XzEr8910k6TFarA1JgCoef+h/Y2qmFIoKBqamFA2NKB8pwmvNkpaML/gN/wLaGi7/Lp1MRuGNPE6qDdjyu5B7C+44YqpNlv5goopEz6NOidTtmLKa2HGlN3/itTSjCk3mCqH5hBJClqCbUOrPRF1W/mqjlVEW+dIA6/Legqep9+VdJFzWSVUMbUgSZ639J5s9DjaY2j2eWiffSRJq5sMTcL8UAvbfJ2gq17Fifu6qHViFhVMhe/bnbXUTNDSikJMAHPA1JS0++6av+eexm/MCUgil0yoUzFVditvYt4nw6EQL6zUxOfQlyV9SNK33Au3bJG++EXp3HMbvh2pdivfwvS0LpF0ZOg6TVdMRfz/OVMsat4JcQpxLZCtfC5G7V+lIj3yiE6Q9HpJ5V/+suZnWq3QqhY3pHzmU09JH/mI1EDLbbfceN55Ou6663RUk6+LtOtUMBVVmQsAKxXB1ErxZ38mHXCA1ko6q1zW3//93/d6j5pWMr9Yz46NxS8Fns8r+8Y3SpLeWKno299u/G+tOfNLQTisqCWoYmjgF+WFuTnt55zUrS2XmzrZjuT8wp2LCdTsiWnOnEjNxgRTLVdMObdZCp/0mmDqHvOX2xeYFflkTpKfL+l+M4C6ivO8rW2g8mg+tL9RlS+ZUJAwvNtuy0LIaXNfmyTN2pPcFn8BzTcYXPjNBFPOLKSwSmaplS+pYCoIP0ww5b5zghk/bbTyLV6x+RlTGee+yhEnZfYVZcfqZyKOa9SMKbfdddQM3W9HyfN0a+gye19FN5iSWp4xZY/fmgMOkCQ9I2KVwmZkQoHMtoiZVVWtUHUqprxQK599DYfrSaMWZCiGKjTdKjP3JO/aa6/Vm9/8Zj300ENNL4oRJ6oSz3X73/5t9QWlknTssVLUwPB6nwH1Kqac5zSuYmpNnUCymff/oebfF0f9sMnZO7Va+WZjjnGzwdRQxHsmWyqp4ASZXa+Y+l//S9pzz2AxitLDD9esAu1ExdS+Tz0lnX22Sqed1tJtdYJfY4GTKJVKRVu2bNG73vWuLu1RZ0QF5S2hlQ8AAgRTK0U2K11wgSTpFEnf/exnoytVUqxi5hHNm9WwYpl2vj+Q9PUm2vlsMJVpIphq5mTxri99SWu1NH9lSNJs3IylRjm/NNdr5cuZX8LnY0K9qmCqyflXC+Y2i+GBwM6KfM94xjO03oY1z3uepMWA4DGniixgqm0+I2m3es+3c/9W1EyWvDPwvSBpdPVq5UID0XeZYGpIUtZUmDU8CD508jgSMWD+/2fvrOOsqP43/r537/Yuy8LS0iUtoRKCooIgCjaKjYEt+LVbf3YHFiaKpIGEktLd3bWwwLLdceP8/rgzw5m5Mzd2FzHu83rxYu/kmZkzZ855zvN5PqaoADFlFsoHUsfWalBjWC4TOJVRBriV+6+j+dQyKv/bQ5kNljLK2SrgMaUjpvwQMSl4s2TJiikVukGjqpiS6oI9JsbH28wIMxLEJYcP2e0+Chn1Oajqn3L1nGrZgr0PhlC+WmefDUA9t5tyP942geAwEH3bFy3yu70VMTV16lS6d+9OoUQ+yKF8xYb3yW1m+C/55oHeBFxukwcOHMivv/5K48aNueOOO/yWN1i4TJR4MnwGmT/9BFOmwKhRvhsHePcCeUzJZITVu187wDOvqoxgnhBVH0ZiXv5dUkVKHzNiyl5ezrxp07TfVk+gyoip77/XbxJAaVhRxZTbxCIg95dfKnSsqkAoWWfBmz1y5syZfPHFF6eoRFWDKlNMhYmpMMIIIwwNYWLqv4QBA6BvX6KBFz2ef5xqKlIZhLhq1fK/Yf/+uGNiaAykTZ+OO8iOcqTSKYgMIVteKOE1J379FYDtKSmaEXjOnj1Bn8sUQRBT6sxejDJoK7MisOSBX4iKKacSRug2+q4oxNQhJLUUQGwseUrYXKnZjKpi1LuG4BRT5QZiyiyUL0oK/ywBYmJiiDA8a3dcHHnKtcerA88KdkBjrcJNjQhh4BPICymQYspI7ujCqCphfu4x3P9y0O6bakIdCrGky8pXEY8p+brk8C4DqgM56ek6xZRpFkCD+kiFkTwxQgutFIIJEyawY8cOSqXwYjNDb/U5qIbWZeo5VHVmkM9JzcKmKiZT2renDG947PF164I6hhmiDARH2uef+2wTjGLqyiuvZNWqVWTJCROke15iuDdmCgVhUAHJJuCyYup+4Ahehea3335rWp5QYabEk+Ew1A2PP7PkSiqmPEEQjU0CvD8VMvk2wb4Qv2lGYkqXlc/qnoVI2kSbtD2ZaWlMkOqC/AWX73aVhfIZ4MjIOCWhfB4TXymXnzbwlCNEYsoltW+uKiJLTwWqipjSqfPCoXxhhBHGfxxhYuq/BJsN3noLgJuATd9/z57KEiN/IaLVTqqV8bmK2FhsgwYBcFF+PitXrgzq+FGVCOULhpiKXL0agKLOnclW9suvrGpN6jRHWoTyqR2oOKWD6LS6PpnsCFEx5VTO7TGGXihZs1KBNm3a6FYVn3EGADaTUD6xcycAOwlOMeU0+GuZETcxUiZHJxAdHY3DcC9EZCS5CnFXXR3sVdBjKjZQPVVREY+pAM8naPPzyiqmVFNww/2Xj6SG9FVIMYWkFglhoBYhnyvAoD133z5TxZR8D40Z7lTI5Im/ALkJEyYwbNgwunXrRpn0jrj9EVMKkaylsVfrdLAEn4FMs0VEcEwhCbMqQUzFGhQZFwVQBhpDtVQMBOYAzaVlssKszPAOm4UX2wztjRzSJhNTo4EGwC5A3wpVHIGIKeNz2uInpMkeoA0IpNqUVTJmBG5hYSGBnBOrSjGVbVTNqigthXfeAYP3lj/FVGRVhPIJQYzJPYlGH3psl44p38OKEPbBvKOxubn4lEo6r6MKFVNRp1OJE+J3xQ78CnwMlFcRWXoqcEoUU2FiKowwwviPI0xM/dfQrRsMHYodeM3j4f8UU/R/AhKUgYCjYcOA29qvvhqAq4AZM2YEdfxIpYPgCEExFWwon8fjoaki3a8+aBAFykC+WFEUVRhKp88DOAKYnycqnTyXIXxNhS58L0RiyqUSPHJ4i9sNii9YKgbFFGBr1QqAeKMnSVERNoXQ2kFwxJTLoAIzU0zF1a+v/R0FOBwOH3WcLTqaQuX+pCj3NuhQPgMSGzQIbsNQFFMmBIoOIXpMVVUonzDcf51fi0KG2P9CxVQoxFTB/v16jymzAYdJKB9AqUxM+RmoqCqd4uJiyiTFlNkVqQNhNQTRqRIyIWblMzNsz05MBKBw27bgjmGCWKUdUd/01HPO8dlGvktWxNT9QD9At7cUyucMgphyGMLp3BahfDI+MV0aOjyBvLoM9T3PT+ifLVAoXyDFVABi6rCJD5gRVaWYMhLI+/fv57XXXqP4scfgsccQiteZtrnh2mUz9JiqCOVzuTDTl7YHlki/I2QiWi5PRdrFINqqagUFvmS7VGcr2jk3U0yZKcb8oVI+bIWF0LYtPPqo93eI9Sp+zx6uAB4AXdbEvxsq2i/wgfxsqsj/Lowwwgjjn4owMfVfxKuv4nE4GAAcGzeOXaFkDzpNKCkpoaYyYItt0iTwDoMG4XY4aANs++mnoM4RpXQKIi2IG1MEOVjcu3QpTT0ePECzYcMoUhRG5QEyJQWCahTrxEu0mEI1P1YHqsrg1IjKmJ971AxscsjA8ePgcuECjuFLTMWfdRYAdQoK9B3Q3bsByAQKoqKIDSJLojBsY+bJUl0yq1ZpFJ+wzagoSpQQw7qhdhINg8dEiQjzu1tFQvkq6jFlGKBEVBExhYEUdcnEVGUVUxUwP5cHmQRImV5y+LAWNmNzOE4OSk1C+XyIKek5GDNDeg/hPcamTZu0ZbJBtxndoBFTCqHmMnhMBUtMyeSeikIlDNpllnAgSCQq5UtXCMdA6hWrUL5Ab4fHZtMZoJuZn0cZQpTk7HRW6oMgA2wDQgQgpnzO7+c+BWwDAhBTQq7jJu/JiVWr/B+f0BRTfmug4fx9O3dm5TPPsG30aMD3Wv0ppuJN1D8QomLK4hitgXrSb5lM0oXyVYSwC6J81UtLfQksab/QpoakQ5i0d+bB++YoLy+nY8eOXH/99d4FhYXw9ddgSDRgie++84biv/suALZQ75/03pRVMlHDqUSVmZ/LhGjYYyqMMML4jyNMTP0X0bw59nvvBeANIXjl5ZdPc4ECIyMjQ+tExjRtGniHatVw9+0LQIe9ezlw4EDAXVRiKsqCuDGDCDK8JnXCBAD2x8cTVasWpdWqAeA6fjzoc5nBpXS6nUCkMlA0Qu1A1VDLrBAvRlRGMYVyz+xyR1JRgx3Bq+gyhvIldOkCeH1fDh48eHKF4i+lqqUCqQUAPIaQPLNQviTpulVHJKP5OdHRlNfw3imVsqrIzGghEGGVOdKIEAaEZtnjdAikmDKan1cyVbVGTBmIQVcVKqaoiGJKOpfdYmCqojwtTTu2XX6HzEIsDHWhXNremBkSvANct9tNhmTSXS6FJ5ldk+ozoimm1GcdYiifWfihRwmfjQwxc9rJA3ioppRZVX0GVItaDEzrmSwTHo/uvsseXh6TOh9jeLYuWR1nUa4Q9LB+IQL5OhnPb+ZZpsAeqA0I0AbJZIRpKJ9ZggnjMUIgpv09cWNrPTk/n2nA2VY7GBVTUn1Jsqg7oQzgXUGqruQ2Q76HHe+/HySVYzAIxmPKdOIjmOy+ZWWk+lFamxFToUwzLViwgK5bt5I1aZJ3wX33wZ13wiWXBLW/UQEXysQLgEu6B+UBEgycVlRVKJ90vWGPqTDCCOO/jjAx9V/Fc8/hjo+nK+AaP54dChnwd8WJEydQHXts9cyGNL6IGjoU8IbzzZw50//GQliraPxBHTQH6FC4lcxVWYpqyK2GpxmySoWKYBRTKrGiUjB2q9A4aWBtSXxYQSHaHPJgTcrIFxsbS6NGjXS7qKF8LYF9soJD8ZfaQXDG5wDCQDCZhfKZhQQaSUhbdDTCaFpeAY+pwhDILHsIHfeAxJSCYD2mZMWUcUARDNTj2Y3ElHT9mmKqAsSUd8fQiSmHtH9EgHAQd3q6XjGlPEddOItFKJ+OmLJ4JjIpZbfbcUoDZTODY1UxpYZnuYyhfKFm5ZPqpUPJhhmXmRncMQwoO3FC6zSUqGRwgPKYElMuF6bOVDIZaLPpQiXNEjLEG56tbAJu9Q5UFTFlC0RMGa9bftaGdYEM7QOR8yKAKtClqFD9oaoUU8b39FyzjeTn7EdBVaMKFCSl/kznJfgzGxdffRXSOYN5R+sBLmMdCWK/Tp060bhxY9avX2+6PtQseEbE7d/Pd8Bc9XiTJ3v/2LgxqP13Kt9vFaESU06pHpZXUVbGU4Eq85iq5OTQvw1CCK688koGDRpUuZDSMMII4x+JMDH1X0WtWkQ8+SQArwCvvvDC6S1PAGRkZGjEVEDzcxWDB+Ox2egKrJkyxe+msq9FKIqpYFUMdffvByDmoosAEEpYWUSQnWYryIqpQMSUiogaNUy3oxKKKbuiRnLIAyTJ+Lx169bYjWRN06a4bTbigeNyJ1shSYM1PgewGZ6ZGTEVbxKiaeYxZTeG4FWgA1oUwv0LNssaSAOeAKF8wSqmZJVARcyPNaLMj2LKrhBTEaEMMlXll81WMcWUtG1EoFCSjAwdMWX6tC3Mz12SKq4sMhKzKxQeD98Ce4D7PB79QNnsmlRiSiE+3OqzDjWUz6TMCe3bA5BSwQFfvvJOFwEovmKBBlNmSpyi/ftNOx/GgUiZ1GYIkzpfzVBnhaygsihXvMl5KgJbADJI9jb77LPPmKQO8PE1qA6omApETEnfL7P3xBFEyHgoHlNuP+UJ5s5GyffOWD+k3ymYIxTFVEWIKePV7Q3Co0uHIOpXAoDxPQwi/HPQrl2sAn774QfzU1eSmIoxTJaF6j12wrB/yIopqfynNZtgAISspD5yBGbO9K0b/1CPqT/++IO33367ysmjvLw8pk6dyu+//85RxZf1VOPuu+9m5MiRf8m5wggjDP8IE1P/ZYwahbNWLZoDNadMYVslDHFPNbKOHEHTzgSpmKJWLUq6dfP+uWwZhX46OfLMXLSi/gkKQXhMpe/fT1uls9X05psBsCvkWrRF1qFgofq3+AvlMw6mHTVrmh9MGvjZLI5lhQhF2RQtDzgUxdQhfP2lAIiMJFshtEokDx45lK+FovAIhGCIKTPVgY9iKiaGSKO5frAdUOn4pSHcv4CDUvkUZiFnErROokVn0UcxJc/WVoCY0gbBBmJKzjZXEWJKDuWrSFa+SGlbR4CBlT07WxuU2iMjTw6s5fJahPK5JG8tl8OB2R20nTjBbUAL4D6gKCvr5EqTeyJcLnC5NBWMkZgKVnkmTBRTKUp7WM/lqpCnWOHhwwDkSYShkSQw/jZTTGVt3WpZZnn/MjlLosk7nWQI/fMEQUxFA2VVMOC1K8/HKlDUJpXlvvvu05Ed5YbzRwR49wKqMwKE8iUGocwNhZj2u2UQ72msHKLlJ5TPUt0WQltQFuQ3ViazjfcwU6n3wSJYVWOiwUPJ5xmYvKPv4k0Y0GftWtNjWhFTPbp35/vvvz+54PBhWLLEZzvj++tPSRYMQvm+gT4U0fl3JqZCnbBq2BAuuwymTtUv/4d6TF166aU8/vjjLFy4sEqP+1erpNLS0vjyyy/58MMPKQkQ9h9GGGGceoSJqf8y4uOJfOUVAJ4F3nr22dNbHj8oVjyiyu12sPBIMkPcjTcCMNjtZt68eZbblUkd5ZCIKVXF4KdDseuHH4gEjkdGUk1RLEQrGdtiA4WDBIBHIqZ8FEkKjDN70YoBsg9ksiNExZRDJabkjrQUymdKTAHFaua6PXu8/7tc2t87gYEDBwZ1/ghDnTAzPzeDzZjNLzqauGbNdMsqItkviwnebjYUxZSs7DFFAI8pYz11VJaYUhVTUVE6tZBLCruyK+RNSAMcyfy8sqF8kQEImKj8fNNQPt3g1yKUzy09Z3dkpO+AXQgKJdI7AT0xZdZu1Ni3D5KS6Pz779px1bLJZQkIdTup/tbt3NlLYgMZMhkcJIoVb6oChyPoMGazENF8Q7iP6X5AeQAVZyRQnp19ch+ZGPdzn4orGUINYFfaXqsWXFVUeZRyyI5zTgMhEYiYCkjEBFBM1QpigB/K++/x0yYG85465FDSIMiYyqAsSH+oCD/lDhQqaYTxHuxSPD2NqGE4rtt47X5IdYdF/Taayav4edUqNt9668kFjRpBnz6wZo3hAAYfQssSWMBQN0L5vjFuHN3VbH7AqsWLQz37X4YKZ+WbM0f/+x/uMXXs2LHTXYRKwSXVT/c/8P6fDjidTq666iree++9012UMP6FCBNT/3UMH05p06bUAlpOncqWIExSTwecCslRkJAQUmiV7aqrADgPWOwnnE9VTLmAqCCywGkIwvelcPZsANIaN9aWxSqqnGohdniNUEP5/HX9fIip2qbuLnqyI0TFVJQSmhhnQUwZjc81KD5TcWqoyZYtWmc8FRgwYEBQ53cYQv7MFFPmOzp0hIo9NpYEo0qrAoopZwjEVCjZ6irrMeUTyid7vVQmlM/hQB5SVaViqiLElFx7owLc39jCwpOKqago7TnqZm4tFFMeqa3wREaaeu/kS6FECehDi8zSuLedOxeKi0lUlB4elZiqCo+p6GiOKnUnc9264I4joVRJ1lAUHX3yuBVQTBUroc1GCI9HFwrmlNohYdEm5UmJLXRqEbfbS3Kb3K+SKiCmHMq5Siy+R6qias2aNdwPyF14H8VUgDraZ8IEsAjd8h7QmsDIy82lURB1psqy8gWBSIlMrAgxFYqypDxIxZS/UD5CDI8zvqOtP//cdLu6xnfFeC/8qT2t+kEW+9QH3jFZnqaanKuorGLFUK6QFFOKolzFJ++9R1EFM/O5XC6dv19Vo4ecsCUEGL+zurryD1JMqbDMBl1ByN/dYBLfVBbyhG6YmAoOv/zyC7/++iv/+9//TndRwvgXIkxM/dfhcBCjsN6PAB8+8cTpLY8FPEqseUkIaikAGjYkr3Vr7EDEjBna7LUR6kChjNA+hrYgPKaqqyGS552nLUtQMgtWrwAZIENVTLn8eX4YTIPjrDy6pIFfqObnMYoKK0420w5CMRXXqRMAKbm53mczY4a27twePahpFXZoLLrBJN2KmPpBMWD/XclOhs2GPOSwx8SQ3KKFnuirQOfIZeJnZYWQiKkAiiltwFYBxVRFQrtsUnkCElMhDHgqbX4ubRsd4B1LKC3VyiaHSOqeuloeAzElpGyQ7qgo0/ewSPLJSECv4AjGiNujhgtWNJTPsDxTqZsFFZiEcKanA1AaE2MZymeEGTHl8pNVTKtTgFPObGlR5wvlMCspFKPn4sXQqhUHLr/cZ5+SCpq/y3Ao70uZBXGtmu5P//lnRhvWuQxK2UDEFAC33GK9TrrHxvckbcMGgmmNQsrKZ6jnW6XQzGDe0zg5M6XR/LwixJTLhdOC7Aw6K59ZFk61jKESU0G2Vcbn4uPn5O9eWE2YhFjWQ0Zj/CoOpQqoBvSDGCBfUrNnZ2fTvXt3Pv7444D79urVi9q1a7Nr82Z47jlYsaLC5ahKHDZmiP6HhvI9CPwIOP4C8uhUQiamXJXsj/9XEA55DONUIkxMhQFDhlB81lnEAef88Qcbg8y+8lci4sQJAFwpVnao1oi/6SYALsrPt8xko2bKKgv1IxtAxVCYl0c7pWPV4LrrtOXJilIoAXBWIiVyUMSUoQMbbzT3VlEJj6lYRYWVIIR3xqugAJuiDDkCtGzZ0nS/5HO9OZtaeDwcP34czjoLgAy8HgbBwkhM2UwyeAFM7dyZbsDXnTtry8qlexcRG0tCUhIndAcLPSufO4TMjqF03FVSIpDHlGUon2HQ4agqxVRkpK4OekxC+UIhpmTzc1tlFVOGe2EMvUpyOrUPoUz46e6hWh4/xJSIijI1hS6ViKlIwC2pRYIhDIRCztiksOGysjKmTJlCph+CRTM/N5S5UCF7nWr4rNm+FvfarZyvPD7eUjHlcyyTwbVNUV6ZnPjkn3jJPg0WxFSxbOwtDezV+tZUCYmUUSb7fAHTpk1jqtH7JQDUENEyi7ZGNd3PGT/eZ53TSExVckBq80NMZRpDtSzgE0bmB8ZQvpUrV2p/d8vI4Ou2bXH6UfskSgMbm8vFvn37Tg4KK0CQ72rThsjmzTk4ZozPOmeIxFRZWRlOQxlsIRqAB61qlJCfn++jmPJrZG5FTIVY1ihDfalqciSUiRcjVqAvz+uvv86qVat46KGHAu67evVqAA488gi88gr07FnhcqioCv+jY0o4tHRQ7c+/UyhfcXExy5cvN53MFULwETAMOGPDhio/99fA2Co/qn/EAJ5du/7is/4zUdUquTDCkBEmpsIAm424Tz4B4A7gq7+hPDNaITlEnToh7+tQCKGLgHk//WS6jdp5LQ+VmArgMbVt8mSSgEKbjbr9+mnLkxs3Ru0+5u7dG9o5JcQqfgX5fsLNjAPTOAvzeJmMCpmYUp5LIspsiqKIyAFSmjUj1iI80qGE+DUH9u3aRYEyaN8FDBo0KOjzRxsyDVp5TCVWr846IFIiFJxyBrmYGGw2G1nyh7ciXhIhZHYMVgEDkmIqwPOxHFwYFVOVJaYkxZRMTLmlwXpEqMTUnj0kL1jgLROcvP/B7u/xIHebYgzXnGXoVNXweLT7YI+MNPeYsgjls0kEpCcqyifESQihqYxUOKRQvmACPjViSnnmdo+HF198keuuu44+ffpY72hRB5yKr5vdwtB5Yb9+pEVGkrZ8uW9ZlLK7EhO1e1FaVMT8+fO1MAifUD4ToiHKQAxpxzeYn7slc3lkkkpCmUT8BatskX2piouL+XDIED658kqdOiMQIpX3pdyCmIp0Otm5cyd9jQNRfBVTjkoOSO1+yIhiRc2UY1FOFSGF8hm+k4cMA7o7duxgh8W3FiBJOteeHTto0aIFV199tXdBBRRTrZVvaIaJT2bQiinl/9SDB2lvWOfv/poXMHQC4+1Ro3zIwXJ/YWwWfZVQs+BVz8iAiRNPLqjiUL7KKKYAUNtPIei8Zg3nmm0jBBiyL14APAeUh0qcfP013Habb4gpWCruQ4HxO2gzToBs3Iho3lz/TIJAVZuGDx48mF69evH+++/7rJOJ26gqVhnZCgoYDtyCNIHx1VcwblyVnkeF+kzXALV69YJFi07Jef5NCBNTYZxKhImpMLzo2ZOCiy4iArj4zz9ZVwH/kVOJOGXAEKGaZYeCVq3IqV+fSKDI6KegwKV0AEMlpgL5vmT+9hsAB+rU0c34RzgcZCvnyqsoMTVlCjUmTADgE38KHTmGHv1gWkZliKk4hZiKBgoyMwNn5FPRsCHldjtRQPqaNUz/+WcAyoGzFPVUMIgxKuksnmN1xYsqRvKAKpfuT4RCoOXKHlEVUEzZDJ5X/hDKoFTOHmcKNXwrWMWU9LcxfCWo8kgeU5aKKYVQcATTcV69Glq1ov4333jLBCGH8nkM5EScYX2+wf8rCiW7G/r7Kp9Ne78Ng3v5XRLR0T4DdhvgMvicRAc5UD65g5eckduaSRMn0hXYp2SwNIWJxxSAQwlnjZJ9fiRcMG8eZ7jdrLznHp91diUESyQlac9lxbJlXHzxxXz55ZemxzMzY44PggASNhse6VlZha/apfsbrLLFKYVTlubmMh+YCxQbSER/iFbel3KLdzHS6eSPCRPwDST0tpHjxo0jT7mfRiPrUN9EmYwwvidulbQJoOK0Iqbz8/OZNH68zuvHqJiqtmyZz37FxhAxC8Q5nTwF7Jw2zbsgmIGuRVtgRoK4g8zsphIGYt8+n3X2EMmeUNSdKi6aOdOHHDSa5OsLZdF9D7GsLVatghtugHff9S6o6lC+SpI5moro998ZtmgRK802euwxqFEDpk/XFi0AXgb6W7RzlrjzThg71jd7HuCuAhLGmCxC/lYLt5viq6/Gtn+/95n4gcfjIVu5tgULFlCrVi1+8kMGh4KSkhLmz58PwBdffOGzvkz+xobYVwwEXa12u+HQIbjrLq//2CkIdXS7XMyCk2T0t99W+Tn+bQgTU2GcSoSJqTA0JI4ejdtm4wpgUhBS6b8SSYr0P0bxZgoVkUOHAtD54EGOSjPsKlRiyhmqOiYAMRWjEHylXbv6rMtVBuxFFTHR3LsX7rgDgDeARX48jWTFVKHNZj3TWgliyi5lMiw6fjyojHzeHe1kKL5hxRs30lwxiHcSmtdXrJRp0F/XpY5CoCVLoX/yM49QlFSFMuFQAQ+FCENooT9USDFl5TGlDiqsBhdVHcpnpZiSSViFXPCrmHK78bz6Kh5DuIXgpPpNZGdzaffuAWetjWFSxppcZKJmU7U4Oo+pILLyRcgZPGNiTEP5MAyM4kI08xUqMSUppm7Nz2ctMNXfflZlVpVHZvdRyrCUYWLgH6GQarYaNbTjXgL8CsxXzLmNpKhZKF+y0p4fMdwvH7WVpGy0GgDFSCRTsMoWl7SPR3oethCejUpMOS3KFeVyUfb990SbrPvju+9YfvPNfPTCC4AvMRVqrla7H2IqSlFsFQbw67NSTH3QsyeDb7yRCcOGndxWftfdbuKMvjlAqR8fMRk3Aq/hVclCkFncrIgpE3Ldo7QHgehgtS00qtkgdGIqlDZdRaLL5aMuNJrk609i3lcJVTGlQc2GV0liyvjdDso/zR+Ue5mvqGjBxMRdJdUee8xn9+DTkOhRakKeu0L07zKFoW7IfUfh8XA8yPfmqw4dOFqzJhtnzaJfv35kZWVx7bXXVrp4He12voqLow4mSQAUlMtZQE3aP/exY6Q9/zwiyMQDOsj1RwhylJBMMPcrBKCgAGbNqlAYsC0tjUvkBVXxjP/lCBNTYZxKhImpME7izDMpUMLerli+nDXSB+F0ori4mFpK5ya+efMKHSNByfYyAJj9668+691KZ9QVKjHlJ5TP5XLRQpmBrzl4sM/6QmXgV2IRUmOJ0lK49looKCC/Uyeexf+HQjY/L/SzndzBsFTkWMHhoFjpUJRmZASXkU9BkeJ5JXbv1jqxiYbQvECIkzIN+nuCd955Jy+99BKjRo3SlsnP3KEMhGWTfauwQB9IHarIIE3bwTrttxkCKqYswqlUGAetuqNUgJiySeWRSRkh1TNNMWV1kMOHyenaFfuzz5r7kSj3/1xg+qpVLPrjD79l8juYA8r8qNkChvIZFFPBEFN2Q7r6xFA7vko7oXlMCcHtCkE00N9+VunklWswq9VCavOjTMjVKIW4iUhJ0YipXsAVQF+TAT34KvGEy0WKsizVkMxCCKG/71IIsM0QyqceNUJWTJkMTApNnolbGnTKg01XCAObWKWcbosQwzPKyjjPYtLh4m3b+BRooyhqjW1AqNay/oiTagox6lQTPljAiph+fts2YoE7VUUT+lA+p9NJionXmdskjXygHLRDhw5l49q1AbayDlsyU58Kpc4WBJhgUN8Hl4mxb4TTidvt5uGHHmKSheraUMDA2xh3sdtDV0wJAS+8AJMna4uDIqb8la+KFVOhfN/MoLYfOyQfMyuzifKKhN3LkJ79csnQX4WrAlmUMzMzKZc94Ix1VJ4c8ngI9utw9/bttAdyRo6sWDY5t9vnWRcXF7NZCB4EjgPZwJkm5FKZ9I01y5aa1qEDDf7v/9jRq1fo5ZIgPB6OSp63lp5rAwd6/730UsjnME50uS2+Y2GcRLTTyQHgq9NdkDD+lQgTU2HoUP399ylzOOgJzL733tNdHAAyMjJQXZHiKkhMcdZZ5FSvThxwfKyvraKmmArgw2GEGl5jNkO6Y948GguBC2gsGZ+rKFVUOS6TDrxfPPIIbNwIKSnsevFF3ECkPyJJ6qwV+9lOp5iyGGz5Q5HqOXPiRPCKKUC0aAFA3JEjWhiWO8TnEBlktsZatWrx/PPP00gJZwL9M1dD+colYqkiiqlQiKnqLlfQgwHz7HEny+dSBoiWxJQ8OysE8lMOxWNGhex5JRN8HomYcij31CyU78Dbb1PQrBnJmzZRCIyIjtaZngqbTVd/I4B96uy4BcwGljI8UtinsTtvj4zUCEZd2mr1vhnD4mQCMzbWlNiOMMy8Vw9xVjdCVUqp/wthOZOtg0UonzqQMFMy5Myerf3drEkTn/Uxyr2NrF3bR7FRTTmuT90zXG/hgQNE4L33BQ0b6rc1+q/ISlBD26XZp0vhd2YETbEJGS8TU/LgP2hFhBABiSmA8/Be5w5DJtQUZYBbV/FQiTRcd6hJOOzSuyuTz0II6irX52jWzO8xzN5/K3WiXKfSDh+mucm+thMnfJbtCHBdxZMnc5ffLZTzW5TLjJhSFVNFAb4pai0pMxDJAA6Xi6nff89DH39M5vXXByxfRUL5PGbElL+2zGbz+uG8/DIoinDQ1wUzpG/b5jfzYaXNz41tZGVD+dT9gwj/PWiihg8FQlK32hVlrXj6acTw4SBEUMTUvn37mDBhAh6Ph9TUVGrVqqWbnDMSU7pvsttNqJofh8dDLeAFoFGgjVWUlUGrVl4yR0KWwfuvOvCeCenslIgps8mYRspx2qoZqUOAPBEohKBIUmPab78dVpoEc6qhxEryAyEEH730EtM++ogDjRqx/403LM9nrJ1+w+PDAKDB8uU0wetJXBW+a2GEISNMTIWhR716FN19NwDXrF/PyqVLT3OBICM9HdXy3GZh3B0QNhvOyy4DoMn69ZQaOhiaYipUYsqPYuqIMrN6oFo1IkxUGk5lmTDpwFti0iT47DPv3+PGUayoGvxKa6VrKos2CyzxQkdMVUCqqw4AyzIzcSudiWCIqdhOnQBIyc7WiCkR4nMwKllCgfzMVcWUkBRYQZufSx20GHl/CxzHq4xIcbkQJrOzZlBLIhNTEfaT5S9XSU6LgZE8YHI5nXoVUwVmXWWizC13KOVQPqXOyec6sGULC1q0oOnjj5PocrHGZuO9m2/m/1JTqdeunbadB98Mi02WLPGb1tmvygCwSc8mwyrMzQgLj6lI6b22xcb6eO8ghKYyUlGL0GBXPILUd9Lu8ZiHDBpgFcqnZkk0G8SXSMavkSbvVLwy8x9dt67PADTB4t4ZB8GZmzcDkGGzgYGwMUImpoxkuUpMRUqDyQiTAXdtk2VCGljpiKkgQ/lEWZn2LrpNQh5lpLZsSa4h1DpOuffNSkspLi72JaaCbHPU75jsrSQ/ldzMTBoox44NoFz1OJ2sW7eOfv36adlrD0iDwlKpzZHr+a5NmzBr4R0m3j7pAUKcpxNcpkqr9s2UBFHInZIAKmC1fXKZKEQcLhdJc+bQHLg/iOLZq0gx5bc+2u0gZ7dU/g4UClmtfXufcGd9QapWMRVZWcWUcj12gxLWbEBcWEkPqIJDh7S/E1Sl6uuvY/v2W5zr11uHkklo0aIFw4YN48cff2TmzJkA7N+/Xy64fgf5fgsRcHI0LS2N3xSlJXjrzXjgReDPgKVTsHo17N8P0kQE+BJTAOUm9cElE1PBnjNIyKGgwuPBJYU22n79FXr0sN5ZaQ+X//orD734IoMffpimhw/T7KmnLHcxZkIssyJAMzK8ysR/QKjfzJkz+fHHH0/Z8eX+pzGDaRhhVBZhYioMH9R4/XUKoqM5E1g9YsTpLg65+/efDDmqQFY+FbWUaxnodrNQyWanwqN0XkNV6sjhNT5QSL1caaAtw62Eq9ktMlT5YPdurzEnwNNPwyWXaB8Fv6F80iCnzM8gSh742SugmFIHLs7sbNxKRyw/KYkUozG5ATWVjkZjp5MSZVDg+Qtj2F3SuSIVFZtdCS8EKmR+HhdgwA3esIPFyrNJ+/rroE6hhfLJz8p28vm6FPVIMIopo7Kosh5TOmJKJs4UIiQSOHHiBG/fcAOujh3pu28fHmBqu3bU3LGD57//ntq1a+MxDl4N97+vy8VSE2NaFarKwKr7GCGFiWYb3gddiKR0r7T7ZiAMZGLKHhenuwcqYgz32f/b4IVc9hqdO3vLICmmzM7jAwuVl131/DISUx4P1aVEDGZ1KFFpb+IaNPAh6eKsfM8MHdd8JYNbVnS0jiT0bqwP5bNLXm/G8NU85TriJTP5YDOA2eSBlfR83EGG6jgl8kIEIKZi7rzThxxMUO5tfWD/unU+xJTfkCSPh4zOncFmY3tsLGsmT8ZhoZhKW7kSB94QOluANkm43dx59tk8NG8ejw8YAMA2ydR8tzQpJBOjx1eswMxWPcZkgGerV48gv3b+y1oBYqoswDctAi/Z4TRTTLndOGRyMQB5E4xiykjbCZvNx2PKzO9Kg93ONnmQrKhC1HfA6j7H4j/bnzAo7kKFT7KFKgrlizDci9LSUq+3kKSgcVey35Avhd4ae4K7N24MKZRv8eLFpiF2fhVTHk/AydFGjRpx3RVXSAewcbHyZ8B4grQ0GD1an0VTajuyTchkY9sEUC61uWbfiUBPPDMzk06dOvHtE0+AkewzKKYiQogo8BQXk5WVxb7Ro31XvvAConVrH89H4ztnqTg87zyvMvGVV4Iuz+mAEIKvL7uMhTfdxOFQbULWr6ds2DBvPfEDmzTB7W+SUMWWLVt48MEHSQ8huchfjdLSUs477zxeUHwfwzh9CBNTYfiiWjXKHn8cgGu3b2elkp3jdKFIGSzlRkZWKgOIrWdP8uLiqA7sNWSQ0oipEI8vqxhkCCFooMy+xffrZ7qvXSHZIoMxiCwp8fpKFRbC+edrsfS7lcxHwSqmXLKZsLE8lSSm1I6/OysLh/IBim7VKuB+8Ur2vcZAniLFFxXoYFa0+yt3ZlXFVJQU6he0YkpCvExsWSDCZuNwe28uGKcfokW3j0koX4RN6siqJGcQiimfWfOKZOULRjGlDNyjgI8aNuThiRNpCWRER7NvzBiu2LqVZq1bnzymIYzSqJiKAI68955lmVSioRhMwyKipOPnG4zQLT2mLBRTMdKx7HFxvoopIF4ZPIaS8TML2D55MvuHD6eN0snWKaZCIKaMA0U1XNUn/HjvXk0RBfjWB4+Haso9SWjY0IdsUQegPgMVQ8e1RCGtC+LjiTCQJcLjYb3iISZsNi2cBk4qvVQUK2GU1UtLtWflCJZclVVS0nvgDhAGql2D8p450XfSzVDvvvt87lWs9Hf6ggVEGRVTVoPT224j54MPqKX4rnQBIocP13mzye94jqJ8Oh4TE5BkEC4XK4XgcuArxberUPKVkjOV6jymLDyhEkxIlai6dTlRgdBo38KaX0uUySDZprx/zgAEogPvIMttkjXT4fHgkEhoV4DMmsGYn2cYvrEiIgJ3KMRURASZOTnaz7IjR7znVt6BbD/18qiiWjSFwfPIZ10AosD4dM2IjVCgElPRhndz8qRJiIsv1iloQp1YNKJYuYegEOpS2T1OJ26jWsbPAN7j8Zi+c0Z1vfzb43b7ElNr1sCHH2rt+WtGH6pA34Ly8pPkz3nnwYMPUvOdk/bxcvKHbBP1vlmP8eWnnz65v0mb6xv8Bzk5OSxZsgQhBB+/+SYrNm/m9rfeotiPD5UNSJDqeCDY3W4aNmzIWsko/2ShX8a2ezfFr72mW2yckLP8hqhZRoPsq50ulJaU8AvwJfDwFVeERi537Ur0hAmkX3KJ383kSWy/xNT778OMGXTq1InRo0dzh5Kw6e+I8ePHs2zZMl5++eXTXZT/PMLEVBimSHn2WU4kJlIP2KmE9p0ulCtS3gI/pEpQsNvJOf98AJIXLtQ12BoxFSohYqGYOrR1K+2UTmbTm24y3TVSmYGODSad9cMPw+bNUKsWjB8PDgezZs3icYVAbGehygL0xJSflOGVJabUjn9saip2jwcnULtjx8A71qlDkd1OBBCnPOuKEFOlFTQ+ldVZkcqseJzkxxIZ7GBXGnAlBEFM2YAaN94IwBmHDgXloWEWyicrpmxKJy4Y8/OqVEzZIyPxWCimHNKA8JXycqKA9N69qXX0KC3v8nWUcUiqSAGmHe9Wq1frDGVlqIM5l81marYcKSn4Sg0m+7pQPjNiylCWaEndFREbq7sHKqop7UCWn8yZRmQCTQYNotnXX2vkjEZMCRFSKJ+VYsqoZMgymMobTcvLs7I0FUG1xo19n4vF8zDWKzU0ozQ5megGDXzKfO+mTd5iFxcTIRFTPubnCikYyUlvmGAzgNmlui8P/v0SARJKlfOVABEmz/xjYGutWqTdcw8kJPgQUzKK167F2Npabj92LO7vvtMtctaqZRqWCVCieLzkVq/u8zyN8LhcWgZB1SY9ec0abb0uREx6N2IllZ2M6uXlPgSSPSWFnAAEUTCwat9UEmT79u2sWLHCe06FTHDFxpruo8KBN8Ogx4R0ivR4cEjfzoIAmdOCUUzlGfozwm73eUZ+FTo2G3WltnLqzz8DaCRlgZ/2prry3fGB06lXTBnuc+add0L9+hR8/rnfcskw8xY0ory8nBsuvNB0nUp8RBval6uGD8dmSNBTWcVUiUQ0eZxOXdvlKS/3UVS6f/kF8KotCgz1RghhSgr4JPgwfGd8ruGcc2DkSM3g/gnjAf19C5xOb7h0s2beb5iiCEuQFFMlkoKo2CRZg7HXnZaWxmaJjDbzK8sxIQg7d+5Mnz59mDRpEr1WrtSOG2cgto31L9lE3ffwww9TZhFSd3VJCR+ZrvFirdIuqDAqpgKpbj0BJiJkjBo1iu7du/v2VTIyvKSNiX9XZVEgqZJ2r1/P0gB2LHl5eT7KPsf27X73sUttuGUo35IlXj/cyy/XnunaIBJbnC5Y1acw/nqEiakwzBEVhe3VVwG4ev9+Vkozp381PEpnoThIg2t/qHvPPQBcXFjIVmUABCCUDkeoIWTyYFHG3h9/JAI4FhVFbMuWpvvGKMa/CYHk4T/+CF9+6e2A/Pgj1K/PmDFjuOyyyygqKqJv3758/PHHlrvLgxzhh5jSZeWrCDGldLSTFPnwEaB127aBd7TZOKE823oqsVIBZVx5BWdL3SbEVJI0YA6amJIQHSB8EbyDlz7Dh7MHJcxtwoSA+zgkIkiF7DEVqZBblga2VayYUs9si4zUz1ZL9zRRIm9c0dF4xoyhzqJFYJF5McqgopEVUwfi4nAD57jdLPv+e9P9VcLNabNRYjLAj6p10uXJbQgN1imm5DKo982PYira4fAhpjweD0nKvoUB/HVk5EZEEGcYuKrvpF0IUwLMqsw+oTWqGb3Hg8fjYcqUKaSmppL5++/6AxjqUJ4yaCkBkurU8SGmbErnO5D5uU3xwnHVrk2sIVOcXVKP1nK7dUkNjMRUXI0aqHPp+Xv2ABAZZB12yOF70t+eIEN1VIPsEpvNdGDY4YILaH/iBA1UP0A/zyti5058hjp+BpvHt2zR/Xbl5+uIKflbJBR1Wkn9+gGJKXkQnhcRAULQThqo2yxUWfUsPBJTPB7KDGHqkfXqUeTnG1RZRClkQLt27ejZsycnTpzQiCl3gPNGAG6Xy5SYivJ4dMqWwgAhMsEQU0XGjJQ2m4/6xF+GMJvdrnvX1C+COrA2ku4yaluoUEpffln33hvf5ZRvvvEuf+ghy2MbIasBN44ezeJmzThh8FT888knmWCmcuEkcRBraEeqmW1bCUU9gFMa1P86ZQrlUlhnmdvt4zG1S4kmqFu3LtWqVaOoqIhHge1AYlERuN18Dtwq7WOsG8ZQPl0fVOp3lxnee20ff9+C1FTIyfEquyzatlKpLjhN6rWRmCorK9OH7pq0K3lyW/3OO4g+fbAdOsT7wLF339VCmU0ht18uFylmEx4ffcToDz803f0H6yMDvt5kxncuIoDa8WAI4WhRH3zAo6tWMc2YCXzIEC9pY5IUqbIokdpjJ95Mi1Y4fvAgC6tX5yPDGCVQT1qeOLZMGCLVpXigL1Qo8/Nph7/v5tGj3verghBCMGLECL/jt/8iwsRUGJaodf/9HEpJIRE4et99p60cNuVDUO6noxUsYgYMoNDhoA6w8dNPteUaMRUiIWMVylcybx4Ax/xkEYxXsl4l+TPU3LkTVJ+vZ5/Fc9FFPPXUU4wYMQK3280tt9zCrFmzSPY36JUH037IvcoqptzKQLqmMvAMxvhcRYGiHmupfAQqRExVcLZU7syqM0E1JfIimLAMQBtMFtlsQZuxp6SksFkhwdJNskUaoTbYERYeUzGq+i4Y83Nj2FIlzc898jVL5bMlJcHgwdC3L45Nm7DfdZffgXecRFYIw8D/aEoKu5Uwy2yLj7k6q+222UxDoiKld8VuyAoXERV1MhTFLCufYRAQJxFTUSbEVHlJCerZykLwxysyUZXYQ/SYslJMqeGqDo+H77//nlHXXUfr5s2JlNJy6/ZXoA7Gc2027Ha7LzFlMXNq9FSJUsgKe4MGJBoI3BKFYAJIQJ9t09gmRUZGkqE83wxloBus0XKE1JmWyahAGR1VqANWK5Wm0XfK3+AxxSwcyM/7YUz/UTM/X3fd7YqLWXy/16I7Rg27atIkcCif9JwKIiPJWr+eRtIyWUkgk19tLQYbUcDhJUt0y2Lq1aMsBILWsqwWzzkKdMqVzMxMIlTCNAhCzF1ergvzVBEtBG0VUgagOED2t2CCFcsNdV9ERPioNzylpeweM4aVPXv6hg/a7ToSSSOmlGfmCSIBhxEZ773HRx+d1JtY3md/hseGuiu/tWc9+CB9Dhwgp18/Hely4SefWB5OJUzjg/g+VURpLcMtKViidu1i2sSJ2u+SsjKfUL62v/1GUXY2eQqhvmPHDt4G2gBDNm6k+aZNjAC+k/Yx9idsBoWQjpgaMkT7c7USlusDP22FRz62ha+YTEx5TOq1kTR3l5ezSvptprQuktSJhc8/j23JEg4AI4FRa9f6hC5bQaSn+6hJAT4EainG8iFDPfeiRTBsGBEGYkEj+YXwKpsMOG7iQcfmzaB8gxYuXMiwYcM4ceIEbwLXAHXWrdNvr6q2FiwIOjRwweTJfHD11ZQG+EYVS8RZDfRm8kZsevtthgCjDhzQtSURgb4VMjFlQXzJhNiveI35HwpSkXw6sH7VKn4CZMpdZGVRXK0aR/v399leZGVBgwaWE6zB4M8//+TomDF8GwLR/19AmJgKwxp2OzFKJ+WytDRWnsIsD/4QpUiNPZUwPj95sCjSunYFIHLGDG2xRkyF6jElDRZl1Ny5E4CIPn0s901SSKvqQpinby4u9vpKFRVB376UPvEEw4YN4w3F5PTFF1/ku+++IyoQiSQNzu1+BgWVJaaEojaqqXzoU0GXJtkfPC1aAKAN5ypCTFVwtlQlIz2gKX1kw3ZbEJl4ZBQGGVKodhfsl14KQJ316wOa6qpPUn4+ssdUnFKPgwnlM4YlaB3MzEzNMDgQ1HofERWlJ6bkZ2GzwW+/wZ9/guQlZYWExo1Plgm9YspZowaOW73zz522bKHEpKOjdpScdrspMRUrdSQiDKFksmJKHcgXFxdzYN8+ZQODV5CkaoqKiPAhpuwFBdpHtjwIQ3wVZSaDaLWtiRAiOC8VleQ1Zh5UBg2RHg8Hx43jCPCHy8UZSid8s2F/FcUKgVKgdkotiKlAHlPxiqovumlT4g3XWaS0m+AlpqJkc3mTEIp85VrylP2CJaaipAFmRRRTgYgpm5FY9NMmtAqxs17T8PsMl8sn/KSPMumSpLTFsW3bBg7lk75BxTExnDD4ENksVFn6N0iPTEMYSULjxvqMpxWEVfsWgzfBwkfAb0B0ZCRnK/W6WhCDYdvy5bQ1yZCaKASJEoFYFsBnKZjJDI8hw7DNJCufMy+P+BEj6L5iBasUtffJk+hD/xoo3yxV8eEwkO7BoKC4mInSb/k+y1fkNxjT6Glnsknr48dhyBCEkgV0m5KZ1wxqvTRTSPlsW0nFlGyM/QKQKz3z6vHxpln5Vjz4oPa3TAIklJaa2jT4ZHCW66XLZXkNloFGftqWY1KWwSILlV+ZRLTYgsgQ7ZEydYJvyDfow2YTTPoShX7sK2QCvXDHDsvtzgglm7X+BBw/dgwuuAAmTKC2YVyjfUOefRZq19aSCqjw8aHNz4dOnaBDB3C5uLlvX2ImTOB/Ur2wm5FZKq680qSIvm1V16FDGfnLL8yUjmuGMolcXQFEKd+XV155hcsvv1znCZUktRHFkiIvUO9C7utZEVMf3Huv9rfqsntbCMkDKoudO3cyZswYXC4XJ06c4Pvvv6fET7+2fOxYrsZLeqr3f9uTTxJXXEz9uXN9tt+thPFWCtu2MR2woJz/swgTU2H4RZ0bbmBbo0ZEAUWjRlUoS0tlEafMRtkb+OsCB4+aSma77seOkal0WlWDVBEiIWM3UUxlnzhBB2V2quH111vuW0ORz9rRZ4PR8OCD3lmYOnXIHj2afgMGMGnSJBwOB9999x0vvPCC39kQDbIRtR92X0d2hBBHr6Gat+uozrYcjYigkWwi7gcxHTroF1Sgg+mqYKdUVWeVg9aprlbtZDfYE2zsubJvcZDlUJ/cWSNHUgLULisjb/lyv/toxJSFx1Si2nGuqGLq2DGvj1ndukGRU3J5zpZTl1eA2FRRXfL3ivZ49B3vOnVo/uijFNtstBCClSaqKfV5ue124kzuQ/1u3QCvB1V1xXhfhaxEU+/Vyy+/THV1mWFGPkImzdq21ZNzQKTSDhTbbIgQlCJOiZBRobY1EUL4nMcU6rVbKKYihKCfYuh6Ad6QmywgVyVlDQOoSIWoOKoOOozElMvFb7/95mMeahy4VFfqVWKrVj6kulNOqw5EyySisU2y2ShVFFWqN0rQxJREwuiIqSDfdTUrn5VK02biH2SF6ibLzMJJjXDhJQvigHomqgVneTn1lWtL7tIlIDFVKCkHSuPiKDNkr7JbEFP+UGpQ4SU2bkxsiKF8vpoF/zhx+DAPAoMBu+SlExvEN63a4ME0MFFJGFEeIJxHfdr+UqkbiSNPRIRP6nrP5Mka8RdpHBzZ7brt1eejKj6iFUV2KDAG3svEVOh62sDYNn48GYcOUebn/di0fj1ulyuowYraHuv8Q+UNZs3yv7+BQGgokznl5b7m53gzwT0FjAaKJVVSjME8XUVJQYFOTSITVWfecguJFu+pGTHvPYB1W2GT2raY7t1Nt3FK3pZRJln5QO+/U2YkF0zanqgA75rTn9+idM9K5OyBRkj3KZS66SwrY8Xll5seB6RviGqS/tRTMH36yc2NfRvZb+7rrzkMfANcKPXlXMFm3gaOHTtGw4YNefbZZ3XL1R5pLUObakSZwbcqWSH3ljz3HM1mzOC3337T1sVIz+GE5CsVSHcoK6asJnOeNqkXoSYoWv711/xy220VGnd+06YN/UaMYPybb9K7d29uvfVWnn32WYQQpu2y7N1WqlzTCT/9gQKZpA5x8lpFtb9xlsLTiTAxFUZApHz1FR7goowM1qqeGX8hEpWPeLSkpKgMUoYNo8RupwmwSjXxrCAxpaqR5I761gkTSAQK7HZq9O5tuWtsYqKW0jlXCmEB4Pvv4ZtvwG7n6Dvv0P2KK1i6dClJSUnMnj2bW2+91ed4lpA6fZE1jfPt0maVVEzZqunnNMvq1tUN3P2hxrnn6hdUhJiqCJnGyWfulDp4unKH+NEpDfLeqWdr2rYt65TBmmmaYwlqqWQCRfaYqu52gxAVUkzhdntDR8E7C3jHHQEVXLL5ue48lSCmkiUyM9Ht1immIhs0wF6tGjuVENHSr77y2V8lGtw2G/VNOhb26Gg8eXnYsrOpZvBWkK9D7Qzt++MPBmsb+H4yO1evzrmArVUrH8VUrNJ25Tsc2EPxyDMhkNWBiS1IjyktK58xe55CLJmFU+xISCBSOY+RyIhRwg+2qmGuRiWW08ndV1zB3Pff1x9U6qAKt5taynGT27YlWSIhAWyGUBLZXN5sYOZWyuJSsmkFGyISLZsaS++BJ0iloEsZzFkRU3aj0XYQ7WConfZyIF2pr4km63f9+SeqNqlOjx4+RKPP8SR1SElUFC7DIF02ljcOhYst6qPDQDRWb96cNMnbMRgcM0t64uc550sqC5fDgUoVlMiD0UrCFcC02CYE319xBTNiY9m3YYPpwDnGUPeFiWKqu6Qs6ZiRQak0wLUZFFPq5JiW1KAKrA8qQkzp6kYANeCRefNIatKE7qtWWW7z7ttv867idxoIqgejW7qPOm3OwIGQl0dOTg4f/e9/7Nu7V6cgiTIoeVpIRtnukhK2m/hgiaQkXgPuByKUZAMA0U6n6TvXBXjvlVe8P3JzfXzxzrXI9KfaDBgD8s7fsMF0e9CH6TksSNJyydcvxiJDdL5EXjmNJu8mBIQ9wPcpIsiQS7ek+PJd6SZ39myONmkSUOEjo9+mTTSXQuuKDGF2Zt8QIY17jHYfBfKEnKRq7C29qx6J8Msx8yRyubx9rgce4Je77yYtLY1Xreq8ROyPGzeO6RJpBuAyHl95FrPxqoESZGJLDt8bM0b7O+DTkfrKwYa/G/cDID3dtC0v27GDwxdcQM877+SqsWNZ9uabwZ9DwVtAU6DR999r2cunT5/O8OHDSUpK4phB9SqT8nmZmYi0NKLkemqo5+Wyd28QiYvMYKuswvNfijAxFUZA1OnXjzXKQND+9NPWxsqnCDWVwWW8H7+mkBAXx75WrQAoUwyntXCtEMkNu0koX64S+36wfv2AA5JcpeErlBVT27eDIoM9PHw4nUaNYs+ePTRq1Ihly5ZxoUX2GktIZZCNn42QB34RFSAW7AaVR2QIzytFSvkMFSM2QsmWooOyn9XcdrChfKp6rTzIcsgkUV7PngBEKmaqphBC6zBYeUxFA+78fMuBm6zsc5sopjLkjuCECT4ydiNkxdRK5RqgcsRUpLRvNSF0nZkSpXOeqHQAu+7dq1N6wEnCzSfttgR7tWpEVK9OctOmuuURUVEnz6fcww5SeJnZ+3zVI49Qd/Bg2rZtizCsj1farsKoKCJCIKYcJmHLRcrzsnk8uvPozFyFgG+/hU2bLIkI1eA/Et+wkvwzzzxJZMnrnE5qKfchWk0lbbwX5eXMBtbol+qyueXu3UskXhKmdocOOBITKZEyv8UZBvwx8uDapE7ZleyXdmXmMTpIYipGLZPLhU0aaJmF6pjBpQxgXVbElEERYKWYypWW684cTNZFINtPnUpT/HFybTZi6tYNqJhC6qgLIXAaiCl/iqk0E4UfQLIh3CY2JYXIAQP8l8OAHJPJFH99kHIpS2BZRgbqk6h19tkhndcfhIWyRIVNCG757TeudLvZcfPNpqRjNaP/ot1uHtIPZNpsxABbZMNnu13XzqvEoUpM+ZCjFUCFFFNy3VUGhFY4Y/9+Uw8hGRHAZ0ay2+rUyj1wS/fR2GK7v/2WSRdfzEPvvcfcli3p2LGjRk7FGoi05dJzdpeWcpXZxKxE5jildyjaQjEFcOaMGZCVBcnJdA1CoQcnn+fxANvJKPcXQqbAJQ2qEyxC7FyS15bLMAgXbrf3WyF9hwOZ/8vthzFPm87Q30/IrHC7qTZgAPX9kVcWkL7oNDI8czNi6rBMMinfIVVFli73DyTESt89W14ezJ0LTz3FIMVKREbpoUOktWsHn3zC/TNmsBSwcvU9qJTlyOHDOG++mW2DB5/sAxQX09ZouWJUccvfWOleN1y4UPs7EDGQKt1zn36kH2jRBBs2eFVXdesibr/dZ7uj559PQyXMF2D600/rCGTwZvLcPXUq4sEHvd+uwkKYPdsn2YpMkiYkJPDdd99RUlLC534yi+Zv3IjtjDM479tvtWUiN5fMzEyaN2/Oc889p4tW6da6NStXrgzuJkiQiSm3hVfjfxFhYiqMoNDk++8pBbrm5bHh9df/svMWFxdTW/lQVAvCnyZYRCshdm137cLpdFaYmFJDe+QPcZwyg+UMoiNcoAy0i9WGvqjI6ytVXEx6x46c+cMPZGZm0rVrV1atWkW7du1CKp9cRoAYPz5dcqhMRRRTDkOoUrX27YPe156SQraFeXaw8FSwI64qpsqt/GL8Gb1KSFQUY/58vKzQSCFaOmRkkGfR0ZJn03VZ+Wz6jkfe/v0V85hyu8k0dLLEM8/oTGqN0HleSQNIW0VJQhPIiqmayrNoce+95Nts1AbmXHONbns5lG9NAD+batWr6wZcEVFRJ8OohODEiRNcKJEV5Sadh+eee47ffvsNh8PhE2KXqGbIionBYTF4N0OUQrjIKFHuaU3QhfCUSx3Dom++geHD4ayztEGRkRRRiSmzNyzhwgtPDiylOlS2fDmxbjdZQLfhw70LDcetlpnJWWYXI5U1S/HvybTZiFZmfmO7dSNXWZ9kGBjF1qihDeqdRrLGZiNGCVeKys0FIXyz21kgVr22Vq3oIXVQRZChfEIlpizaKYdR5WPRtqRKXna6MwdJTJX48S2zKf5O6UpZAhFTDmmAbHe7vQS3BJnUNhJT+RYh2/KgL6dBA7DZaNOxo99yGOEM0SvJLU3y5CnhpwVAskV2XCv4qwm2AAN++f7UKiw0NUOvYSiPiIiwfEZbley2pVOmnCyDQTGleUsp5/apgxWAkZiSv4TZAcg5gDw/SiiAYKauVgK3BzkZqpLgcsid8c07uGsX/RU/nXuAe3bsIDU1lfnz5xNlMAiPkL79ViFLNom0KJH+jvJDTNUrKPAaX4cAtX8WyvSs00IBJcP9zjva39UsrrHeQw9p7biRmMLlovjSS6FGDYRF5kDfk56st6XA9599xnXNm3PAoLDsIofJGVBeUlLhAay/XHjR4KP026cocgE8MTFMnz6dmJgYPv30Ux0ZKSNWJvILCqB/f3jjDZYbPLoAMlaupIF0jl6AnA5ADmVbqXxD3Xv2cDvwJJCjqrY++ohko5eY4dtT6ifrZjDI3L2bQ5Kaa52kKgy4rxC88847eLp21Uhkm5T056Obb+alc84h2UDWvikE8yIjOfTaa3DZZbBpE4MGDaLulVdiGz0abrgB52WXwYABuJ5+Wrev7AmWJE0YlZaUaO/nkbV6evSASSKi8vR03nv9dZ7ev58dr7zCHin00ZmdTY8ePcg5eJAjyclsueoq74r9++Hmm2HzZg4ePMgVV1zBsmXLtP1kYsr5F/pv/d0RJqbCCAp1zj6b5V26AFDttddM5bunApmHD2seHAmKQXZVoNmDD1IOnOnxsP7HH7ErHRAf09oAsEuGxOCNTW6tzEjUNjE1NKJYaSi1MIr774ft2ylMTKTT5s0Ul5Vx+eWXs2jRIuqGYJ6sgzRYjvNzDJmYqojHlDFMsI7i5RMs0qVQwIoobkRFO+LKM/cZ+KplCbKunzVoEABnBhkyIp+t/RVXaH9vlyTVMuS0vDoS0aZvxvMPHAjKY8oslK9E6Rz9CHyqbO+6/nqQQhRkyAquCIn0rEpiSu5YJSsffFtkJOnKu3PVn39yaPVqbRt1AOGx2wN6MdlsNuThlRxicP7PP7PrySeRnTnKTVLJyzCSQNWVjl9ZfLwPcesPcSaD8T433UQOXkKphjQAKpMGCnukGX2t3hrqtUpM2dGHZwG0uvFGHTGn4pDSUVsVE8NZynfA2OHtYPGeyO9PvuIZkm3iFwVQ26BYik1I4CXgYwATUl0NxUwsKsJTXh50hyZOCK803zBICDaUr5pihl9iQYZHGD1ULOphoTTZIrc/wXhMCQBDOJiM/koZ8xTVWaBBSKw0iLV5PAilrqu1SyU+ynNyqG8k6y0mIdQQw6Vt25KsEO4RIX5jHYq6WYa/a7HLJuVKfTsRFUWUP18bE/hLYmEPELohZ7WKEMK0XtY0qpdNQvkAdsXEEKeklW8tK5AMnlTq81E9cuwh3mczyMd3AyXSPXFavStS3c0wZGU0ItippOcDtLvaqVXFlPytNGzj2bOHnMSTwa8PAZHHj/PE449jNIs4Q2qzrYgph0RSuqQBdZRFKB943+9QfXNsQgQMxzXCGUSIUbeCAhZ368a+6dO1iR9TKISv2ySUL272bAC2KBmkIwNN5knXkRgXR4v77mPy/v38MnQo2UH6Mbn9GKhXFi5DuLFDIhBsMTE8fM01jAZG338/P1pkB46TrrF2gNDfzD/+MC+Hy8UrZ5/NJzfdpC27ERAFBboJ52yFJMkxIYLdQui+5eXSN9bfZIV7zhzfZdddR0rr1jo11xv/93+WxzAiq7ycxx57zNej8I034NAhHho3jhfWrDH1XRwANH7mGZg5E9fFFzNv3ryTCRGWLSNSUViVGuww1GQCtYHJS5fyNd6+z33ffw+XXgouF9lGyxWTulV6/Dhnr17NHcBPwKfSc1flAq83bcoZubl0+PVXAMouuwzGjcPdvTs33HADv/32G3edd57XqkUInQDAaZE187+IMDEVRtBoN24cOUCL4mK2PPFEwO2rArmKgqMUJe18FSGiRg12KmbqWV99pRFTFVVMqQ3tlpkzaYh3ZrFBEMRUuULGeNLTvSE4Y8fisdkYVFBAOvDAAw/w66+/Eh9ip1oHaVCU4MdAvrLm51ESMZUNtFQHsEGiQCLNKhQKVkFiSiVRXFaKqSCJKfuwYbBiBZGqf0Sg88p/22wsVtQTLgsSyC11KKw8pgCKDx+2VkzJxzN0tBMKCnApHj/VmzVj9sCBLAAcJSWU9OvnDT0wQA7li5ZUPpZGrUFCnq+0S/VXDu1KksIeMy68kGJlYC2U++R2OEyNWY2QM6sZkwn0/vZbnd+CMbW0EcZQvurK/87ERKIt/N0yTepdNTPCwWbjsHKMVtJ1lUuDD5s0cE1SFQ1GYkp6T+zScQ47HNTt2FEj13RqCeVe5511lnaPbEH6x8nZ3EoUsiTfYICtdlONjgt2u51aH39Mzksv0dDEY7CmoiBNcTopCkLBoSIWcJoMFrJ+/jnwzseO0VIxtt3cuTPxJnXCYbw+C6IpRgphDnXuWgBxbY121b4oU9r8QMRUgtQxtrvdeJQBaIHynFXiY+dnn/ko0xIModhGOGvW1L5DoRJTxroC+PWYGiKR1ChkWG5Cgq7eB4MiP/U7MsCgOEl6r6yIKR+fHQtiymOz0eHBBykEasvP0GbTe8ScYsWUDSiV6rHboG5BCNwLF+qy55X48T86FYjJyeG3888nTfINMt77qJUrKZCIKYDVy5Zx63rf3Fhy9k4rYkr3/kvElL9QPoA9/oy9TSCcTorU7LB+kC359AWjmALos24d9QcPxl/e69/few8Aj7HuS+17gaKeiQ1w3nqSqsdut6OaAPTcsYMuJqFuZq5bdULMZhoKdiuZklXI/QJbTAxjnU7ux5v1LtqCNJVbuTMDKCzLLZRmf37xBc+uXcsD48dry3oBOf366cjXfOW7v9DoVQu4PR42ScmF1G9+fn4+zz3zjGWZIpSQ/bkvvcTEdu0ozMggQlJsqrjY8NtVWgoWdiOxeBOt+OCppygyee5WcBi/3VK7WWxQPR9OT+duIB2oBQwHjgCN09Nh1ixctWvT0fBuL1WIVhllx49rWW5B31eZALyJPlFHSXo60YrfYURJCXuVEPPtALfeyqFWrXTEoFV2w/8iwsRUGEGjTps2LFWY5dqjRyNCMb2rIAqVhjZT9n6pIjgvuwyARmvXkqwMuiMNnjOBoHlMgVfSrJj0HUxOxhZE9iGXMtCus3s34v77AXhOCJbYbLz//vt89NFHQRuIW0LqAMcbUlTLqKxiKkaaAU4FWoYYOuGWBuMVITbsFSWmlIGSFTFlD1YdaLdD9+6aprwyEwAAb5NJREFUAivgeQ2/yxXVQaRJunKwJqaMiqnStLSgFFPGDGTd1q7lHCW8ILJWLSb/+itf9uvHfiD22DFISQGpQyk8Hp0Ze6yk8qmMxxRAnvQs5Fn7GIncqX3OORxfsIACm41uRUUsPecchBDadXnsdmKDkEc7jSbefgYTEQE63EZiSruGpCRLYuq4CemcbKEOLTRZrhJTRXPn0knqJFdTlSOG64uWBmURUt1OVcuntrPKfRdlZTRWnnsdKcuoO9jwGrnzpRynLAT12AMPPMDzzz/vY7CPzUYNxaenLrC1c+egjwmQaUIAX2mYtSz95BPyH3hA5/1z4OGHiRSCZTYbl7/5JueYeIwYiSmfFPEK6ivfIIB4qd4Jm43lkpGuGQRQI4jOvF1tVwM8r5pSe2DzeLRwliLl+9GmpIStb71FweTJPvvW6dvXfxmkuh/qt6WdiWJKxcpXX2WVnwmrWMV7rLhGDSJCNJot8bN9nMGk34jq8rYWM+E2w3spHA5LJXpscjJbDWpnm92uI45EeTlHjx7VPHIiYmLAhGxJD9J4GvTEVHX03w+jJmbXHXcQ0bcvTSQ/ovohki+VRceiIoYsXsyZ0ntlvNrGRUVcYAiXn/3ppzxocjxZ+SOkUCsZ50rLbdKAORGsiSmbDXcQ/k8yxIkTxPt5F1SUNmjACy+8QFlZWUiqoljAn13+ok8/5fjx4z7ElOzB2Qs4MmYMSQHUH62l8De5TtmLivBNZyJlgpVQdfETvpjl59lEOBx0V8qcBKRYbhk8qpll5QbsFv5jNVatIuXuu7XfuxR/KKeJh6woL6eT9K1buXgxAF98/DEzA/RtRXEx/V58keu3b2fjHXdoy3+U+hAfSNsfWrfOm1zFIkz1YsAqgDU+hMyF/mB84/LT0vjCsEweBTlMJpbMZADOzMyTAgbAqAV9HK/huoqDBguMFpmZyL3Rxnv30vnRR7XfLsPEWkUyEf5b8K8ipj799FOaNm1KTEwMXbt2ZUkAGXEYoeOcH37gsM1G3fJydipEyqlEmdKByK8CI08jWj32GB6gfVkZLZROeD3DTEkgqDHCdVwunPHxnK8Y+ZYEmRLbpqhkWqWmYispYTbwfnQ0P/30EyNHjvRRcFQEqrKhEP+DgsoSU3KYYEZsLHEhEkVR0qxORULB7CGmIdfOFYCYijhFYavGs0Ur6ZzrWGTl0YUnyIopg8dU+bFjIXlMHQW+BOQ5KEeNGkRHR/Pt9Om8I8ucGzXCOW+ed3/ZYDYqigRJ0VLZMJICaVDokjrCMYZMU3UvuIBDikKt/+7dzLvpppPElMNBXBCeQf9zudgOqJqPxn5S+MYHOJ4VMUWNGkSnmHdhcw3LXUAtC2Iq8pxzfJapxFSaoT2upXR0fDympPdSrg9CIZKN5ueHf/mFOCHIAM6RjEpFAPWYdg45m5viheE2eH8F0wWzmwyo7VKb0yPI1Mvq25xrMmiW9QhZ//d/xDzwANU++QRbVBTHdu3ClZlJLUVVtePyyy3Jd4dBkWGl3KshKZ50nWG7nZ5BZMCtZVIfjIhXCO9AHlO15QGix4NNGVwWS21x+yeeoJdJVr3qRiNvAyKkAVOoiilMwlrV9q37s89yrp9wpWRlgOmuQBh8mR9yvbXHA9nZFE6YQGb//gg/KtVkC3LASExh8IxS0UaZACzv31+3/I/Zs9khDTibA3+0bavN5EfGx0Pnzmy+9lrdfjkhEHTyNeUAUdJvl0SCH/r5Z5oqRsGyWqxmIMP9vxCb/YRm3mVBDERL3ziHlO3RComGSSUrQlrYbLpMbcGgu5JUJxDqA9Vffpmxn3xCT0lpU1m8CYxt3Njrgyoh5qefdL/PGDGCxiH0meSwrnOBa0y2KTDJMBm6k2fwMI425DLa0atl7q2C8zW2aMOS/PShE6U6O2zKFC4bNIgFiq+gDOME5GuKb5dLIaj8YbQUGZOgqLLSgAYWIeT777or4DGrCnstlttBRwg/VIFjP2myLGb2bC4IkMxBpgXbSMQhKOo6f/t268b0Rx/F5XTy07BhtLTbGXqdPze0fy/+NcTUpEmTGDlyJM888wwbNmygd+/eDBw4kFQ/5nlhhI46jRuzXMmq0+D77xFVxHJbwa0M0gurVQuwZehIbN6crYohsQPIAxqff35IxxDKzL8DiJRmjmoFSXBFSB3mNGBkzZosWLSIq1TzvKqASkwFSOHrkAYMFSGmYiUPmJIAptNmqCENsiqkmKpgHbEiptQ5vWVVGEKqO69hRqTuwIEANCot9ZXLE7xiquamTSdNHQ3EpnzOImV2tyAiguQpU/j2tdcYPWQIP597Lm3efReA6Oho3pszh2c6dTp5jH79OPq//+kNZqOiSJKyMDormblTHgy7pI5wtMmzaP/006xQZOe9x48HxVzSExFBvKGDfMwkU+QZDzxAO2CEMrCqa/DHkMNXWt54o99yeyyuOyIlhViLjJhGc+csIMFIbChQ64gMV2Ehx95+m1Z79uAGpij1OFEti6EORERGamqHaKlO9Zg0Sb+9sn/qDz8AsKN2bRKkdyxQWKMKmZiKUr4XtjPO0G0TDDFlmik0MpK0EIiOJc2aaenjC03CYtzKObK++47qzz+vW5f16KOsvfNOEjwedkREcPU33wBgFvxXx5j4wmKgFlmtGlkVnHyIASIM99EMqqoqEDElD7ZsHg92hRApNZkU8qFnA1xDtPRtCJWYsjkcGIfw0z79lOWSiawV6iptVIRJGKh1vi8vygOUM/+ll3DceCMpc+eS3q0bwkJlkWKR6dFITNU8dIhIP/3V1qNG6X6/cuQIbb7+Wrfsjrw81KGsGsoXbQipLwnh27ri2We1v5PxKkRUuAoKcLvdzB44kMbXXBMwu97pRo4fEtcqTU209M7UUg2m/aCP4XdtC5WVsNko9pNxzgzB69xgFHD3//5nui64VC7meKK8nGOGdjMwNe4fbYMIYQom+sCI9EpEGhjJpp6ywu4UTFRa0U+uEMZXT/z+O3eblM1pMmFzeNkyOvpJhKTiQcmvSfU4zY6OBiO5rSi7Iv/C0F2rJAC1hMDz0UdVfr6aFj5gVYnL332XH4cM4ZoJE9gL3DllCoWn0EvtbwvxL8E555wj7rnnHt2yM888Uzz55JNB7Z+XlycAkZeXdyqK96/CiWPHxBabTQgQaZ07i/IPPxSemTOF2L5diOLiKj3X3B49hACxpGPHKj2uioVXXqlaA4p1iYkh779+/XoxGMTtIDpFRopJN9wgCm67TYiysqD2X/bSS0KAcIIY1rCh2LdvX8hlCIQld94pBIi9UVF+t8vatUu7F4Xp6SGfx1Vaqu0/rXfvkPcvycjQ9l/+yCMh758+f74QILKjo0Pab/3bbwsBYmW9errlIwYPFjeAmDp5cshl8QvlGnMNza/T6RTHlHVpX33ls9uJrVu1fT1ut7a8/aftBS8ieBHhUdYfrVNHCBC7o6O1fQSIrXFxYteUKWJOhw665cFg8nffiUnS8Xa0aKH9XXDsmPCUlWm/Fxra4lCxQim/ALFkxIiA5fS4XGLNGWformlpkyaiQPpd8PDDQhw75ruvxyOOHj2q/f6lUyfdcbY0aCDEvn1CfPGFEKWlfsu9KT5ef1+Vfxueflp4XC7TdQvvuEP/jPxcp1u6x9r2TZtqf/+UkiJmDh2qP36nTj7HKVLWHXI4vO/bQw9p6xa1bi0EiAX9+gkhhFibnCwEiPlXX607xrL69U2vx/hvacOGYu+uXeJL6TmufOIJ3bEyle+Jzz8JeampunVq+dYZnru/f6uWLBHbIiOFALG5eXOf9SUgTkyfLoqU8kxKTBRzGjTwXkfLliJdWT7nppu0cs2dOtVvuYUQYvmZZ1pe34bERN9ypqQIIYRwBromIQJec5nSp1n13HNB36eN1aqJ9XXrCgFikcl9WlO9ekjl2Pzpp9q9SF240Gf9Lj/77p85U+xX6qn8LzXIaxEg1rz4ok8Zt951l/a32X1eIb1Xwfw7EOL2zpKS4LdX753dHvQ+J7ZtE0IIcWzDBt3ypY0bh1ROq3/HIiPFF8GUQ/rb+D0SIIqroCzB/Fv9v//5XZ8WHy9WGZYdMql3Zv9+CfGepv9F1xzoefxT/s1v3z7kffZFRZ32cv9d/30CYkOI+6jbL0lOFgu6d9etK2nQQBTs33/ar+vf+O+rN97w6U/8ExEKx/KvUEyVl5ezbt06+hukzv3792e5YlIaRtWhVt26rFFStNffsIHIhx/GNmgQtG0LcXFkREayJTGRVTVqsKJWLZbVq8eShg1Z3KQJi1q0YEGbNizo0IE/u3Thz3PP5c/zzuPPCy/kzwEDWHD55Sy85hoW3Xgji2+/nWRFPm0M/agqNJFmIXNNZlUDoXXr1uxr147Uiy5i0pYtXDd+PAnffgtBeuw0ve02voqO5vWOHfl440aa+cmyVFGoBu3+PDMAohQ1hBtCNooFr8pKnfuKCxDaYYaYlBSOKbNcFQkFq33hheSsXk1CAP8PIzqNHMnqJ56gsSEm/NNff+XN1FSGGEIhqgpGjYHD4WCP8gzq33knu+vXZ2m/fiy9/npWPPQQu5W09m70s+2yYsqt/FnPIqypTXExra69ln6S2eaexx4LqrzX3norFxw6xJiOHXECZ+49KaaOiIrS+UqJIE1XreCUZkg9wcyoRkTQZvVq9ktqAE9kJPI8a8IHH4BJSI/NZqOe5L120aJFTJBC1kr69PFmP7v77oDJERIsfPfaXXEFtogI7f1YK3nyxEtqNPAqpqxgN2lX2imZ5cY1bkyP9eupaTTENlFKqiqwM5QZVoekhGqshAhcMHcuG2JiaK8oo5pLHhMAMSbPZbvJzHavw4ep2bo1d35x0ukh3hACV1MIn/2M8PGYUlAWRGKIScCZQJfu3dnVrx8AHZSZ/7WAR7nGGKDW5ZcTJwQLY2I4d/16HIMHe69jzx5qC8FRh4MLpGu5eMgQphn6HkYkWYTnAuSa+f4pz2fDmDH8LiUVOFEBdZXargdSTMnolJ9PZ0UhkmcSQlnQq5f29y7lWR41PHtZmREvKbvqdelCpuGYRZIyxwd2O3aT6/YN8LNGUrt2PsvaffIJ4qOPYPt2ck2usYaFAspodZwKFAFNTNLA+4NPKF8QSPWTvARgm/QM1OybtTt21G3jqlGDHJP7uSvEBCt1nU7kYJU1TZqYblcmtZluk2tODfCt31wFJu45NhtnPvyw321qzJxJvCEUr1GQ6phq15gFoFnj1PRmg4Pbbtd53ZxOLJe+s/5gC9GPC6Cokj6X/2bcB5wV4j7q9q6cHB/FVExaGgmnYOwSBjR88km+eNDMAe9fjL+AKDvlSEtLE4BYtmyZbvmrr74qWrVqZbpPaWmpyMvL0/4dPnw4aDYvDCEyMzPFqAYNxPsgpoLYCCLvFLLGi2+77ZRdy6aYGCFAzL311lN2Dn9wuVyn9Phr3nnHew8bNw647bLLLhPLrryywuc6pszobvjsswrtv6RFC1EK4sCcORUuw98eSp1Oi4nxWTXm4YfFdBAuP+9CmaHZ7vx5Z00x9dIrL4lnr7pK/BYTI9wgFtetK9ZPmiSmSjO6ZSBWNmggtr7+ulflFCI8Ho/447nnvIov5V95YaHu2vInTqzIndGw5auvhACxKTFRLA1CMaXi0Jw5Wju0qE0bMS0lRQgQ80JUQx5dt047Z+qsWUHvt+ipp0Q6iElNm4pNINY2by7Kly/X1q975x2x+O67RWlRkXCr9WD3bnE0NlY736QA17n9iSfEoaQkUaJsXwDilxtv1NqRDIOy6M+uXX2OsWboUG89Uv6te+stbd3sRo186lxaVJQQHo/uGPMuu0y3TTmIBb17B2zLC0Hk7t+vL5Dc1vfpIxbcdJPYN3u2bhNXcbEolLZbcPfdQgghlp11lm7/bSA2n3OOOCKpM0aMGCEOHDjgvT9Hjui2X1i3rk8ZNjscYu+GDUIIITb98otu3e7HHvO5nwu+/VZ/nQb83K6dECC2SNvsffVVIYQQM4cP97lHC5s3N70/Sw3XKkSQqiohxJZZs7RlcyMidM8/PyLCZ798EK8mJootS5aIbLtdHFO+kwLE7qlTxbTXXhNfJCSIDfPmCSGEyNu4UVufDmJX7dra75zt23WX4ykqEkVpadp6j9stlnbsKHbFxooNILKkchxcskTsrFVLV7bV7doJ95w5QfUd3CDyDh4UQggxa9AgIUCs7dZNV560X34RxxMSxL7XXz/5TtSrZ3q82QYF2eJOncQXl15quu3G5s1F+o03ar+nKWo9AcLtdAZV/rfr19fKuXPsWG35zNtv1233yYUXiv3Ll4t9eFWXhfn52n4rpO0WPf+8WCI9m3dr1hSvNmsmDr7/fsCyjO3WTawYN068cfPNYp5BvbXttddM99kttScba9TwWf+npLw1+ze/VSufZb8ZFBuB/i0fPlwIIcSq++4TJyIiRLGZslWBO4TjavXx889D3kf+5+97X9l/ThA3Ku2PALE/MVEs7d/fcvuKXL/Zv/SLLhICRJqiODX+m2jS7pr9W5yYKFacf37I5987caLf9b+8+WaV3eOsKjrOP+HfksREMX/AgJD3ywtSfRj+5/tv6113+fQp/mkIRTHFX1CeUw6VmFouDQCEEOKVV14RrVu3Nt3nhRdeEIDPvzAxFRqcTqfIzc0Vhw8fFtu3bRPr5swRqz/7TKx6/HGx8r77xIo77hDLb7pJLL32WrFkyBCxeOBAsfiii8Ti3r3F4u7dxeKuXcXijh3FkrZtxdKWLcWypk3FioYNxap69cTq2rXF2po1xfJGjUT23r2n7BqWff21GH/22SI/O/uUneN0wu1yiRUffywyjIPBU4A/hw0Tf7ZqJZwBQp6s4HG5vCE7/2Ic/Pprsa9OHZGuDOiMSE1NFTM//1zMvOACMb9VK7G0fn2xPilJ7IqJEcciIsRSQ2hW1y+6asRUcbk3lNbtdostf/4p8jIzhRBCFOXkiGlduoiZAweKo1u2VMl1pK1fL1Y0aiQWy+VZuFC433zTh8SoCFKXLBGl+fmivLBQrK5fXyy59tqg9tvw5ptid2ysWP/mm+Lonj1i4tVXiyM7doR0bo/bLRY3ayYWWUxs+EOxEs5cGuAd+O7tt8WXr7wihBAiZ80asb1VK7EqJUWs//bboM7z59ChYk316mLz+PE+644cOCBmd+0q1kdFiRUffWS6/+E//xTL6tYVW6OjRbYycBdCiMK8PDF75Eix6o03xI433xQHX31VlCphQTKcpaVi+SuviKObNol1CQliTufOYudvv4mtUVHiYGSkmH/hhWJV795i68UXi5LFi4VwOkXu3r0iY/Vqn2MtevddkVqtmtibnCyO+SGl08eNE5tuv10sf+894XQ6hRBCZG/fLnYkJYnV99wj3n/pJTH799+992D1arElOlrMv+EG3/P98IOY0LmzWPX008KVm+td9tBDosRmEyuSksTO+fO1bT0ej/jxrrvEbwMHigKFrDKirKxMfJWU5O24v/SSz/qs48fFd0OHit1r14pVX34p/pBCXUtLSsTXHTqIKffcIxaPHClWJieLdMM7emDiRLG2Xz/hLCgQ0+66S7hBrDj3XG+5hw4Vu+LixIL33xeH2rYVBx54QBxbu1asOeMMsfXjj3XHmfDaa2LBzz8LIYTIPHhQTK9fX8x68EEhyspE+R9/iJxvvxUbExPFwkaNxOzvvhPl5eXee1BYKDxOp1jSuLFY1Ly5LpRYhtvtFj/ddptYOW6ccB05Inb36SN2XXihZXtwdMsWkWn4Lu3cvFksnj9fTD3nHPFb27bC4/GItI0bxXaFPNtQvbooVvpp22fOFD8PGCDW1q0r8u12sbR2bbFm/Hjhyc8XnnXrxOYHHhBbHn3U9NxW8GzaJNxr1oh9s2aJxcnJYsVbb4nFbdoIAWJFzZqiICNDjFEIpm3R0SJ92zbh8XjExGeeEdNffllsj48XC+LjxXt9+4q0tDQhhBCpGzaIA6tWiaKcHCFArKxTx1v+Tz8VG+rUEUcSEoQAcah+fbGuRg2x+K67hDhxQixdskRkG/olqb//LnJ27hS5OTniBRC/g1goPeeZv/wiZkydqtsn68AB8cN554kpt9zivZ+bNok5deuKpa+9dnKjsjIxp29fMS4qSszp00esvegise7994UTb4jrmAsvFOUlJbrjOsvLxcZnnxVHRo8WQgix9OabdQOq49Wri9KsLDG/fn0xq3VrseHjj8WO6GgtfO84iMLMTLG4SROxqGtXsVkhsWZVqyYW3HOPWFqjhsjYs0esfPxxsSIlRaRv3y6WzZghiouKxBqF5JrdsKFYHRMjfnjiCZGzebP4XSFvs0CsiI8Xi+68U19fPR4hnE4h1q4V28aPF1ujo8WK//s/bfX6zz8Xa6KixGEQ80DMAjGzZUuxLTJSrGrcWPz59ddCgFgHYlFKilj0zDPC7XKJ6e3bi+mXXCLmgngjJkYcWbpUeI4fF6nVqok19eqJBSNHil+ef14sALHk/vtF+q+/ir2tW4tfQEwYNkzkbN0qdjzxhBAgpnToIGZcfrkQeAniA8r9mmu3ixnt24t9CxaIVLtdbI+LE9sXLxZrqlcX6VFRYvV554nfk5PFDmX7P9u2FUuXLhUej0fsffNNcaR6dZGxYIFwl5eLtY88Ipb07CnWV68uDikhylnx8aJkzx6xVCHu0kDs7dRJFB4/riNfjjkcYtI114h8Zb+d3buLcdLk14L69YWrvFyIwkKRtmqV+AzEiMaNxdzERJED4s127URmRoa3Du3bJwSIP+rWFb/36SMOKMc8arOJ76++WqQdOCDcubniaNeu2vF/uflmsTkuzmcAfzgpSaxOTha/vfyyEEKIT5Rw83FdumgTaStB/KSEFh9Yvlwseu898QeIt0DsWb5c7JS2yzQhU4pB7AWxzWYTm0GMuf12cWTXLjHlvvvEl23batsZw0LXg/jhuefEmmHDxE4pFHpT48bieHS02PTqq2KyRPbujYgQf9SsKVIvuURk/fmnyI6IEJl2u5j3wgtigvKtMft31PB7rfT3QhDTO3YUy+++W1uWA2Jtjx7i0OTJYvbVV2vLFyn/yxOQOTabSJ0/X+RIk1/f2O1iVUSEmJSUJKZef71W99R/60AsuOACUV5QoL33nw4dKl7q21fbRiVDXXgnbNOXLBHr775bzLn/fvFuvXripxo1xOQbbxRHmjQRBXFxYpNhokKAyDb8ni79LYd9b0hKEoVffilW9OghlkgTMgebNhU5O3aIH2+/XVwrkan7Le7zzJEjxb65c8WaqCgfYnLBeecFJJvmWiz/GsRCiXhf26SJENOmhfQN+zsiFGLKJoQQf71Oq2pRXl5OXFwcU6ZM4corr9SWP/zww2zcuJFFixb57FNWVkaZZN6bn59Pw4YNycvLo9opMNoOI4wwwjgVOPerc1mdthqAwqcKiY8KLSQjjDDCCCOMMP4tcLlcOEzCM/8JEEL4ZGN2uVzYbDYiKmHoHeicgO68xnJ4PB6EEH7LYFb2QOfxtzxYFBYWEhcXh90kVDQ/Pz+kMZ3L5cLj8RBlEgrodDqJiIgwPU+o8Hg8psdxuVzY7fagz2FVX9T6H+jemu1fUFBAYmJipd8j47FdLhcbNmygc+fOAKSnp9MgQHhyqOdzu9243W6ilRDiQHXSCvLzEUKQnZ3Nrl27qFGjBq1atarw8wmlPB6PB5vNViXZ2U838vPzSUpKCopj+We23AZERUXRtWtX5s6dqyOm5s6dy5AhQ0z3iY6O1ipuGGGEEcY/FTqPKfH3Sc8dRhhhhBFGGH81/qmkFJgTCKf6eszOaVwWzEA80ADaan1lB94JfrL2hSo08HevIwP4tIYCq/sZ6rMOVF8q8kwSlazAla13xmM7HA7OljLWViUppZ7P4XCEdP1WkJ+PzWajZs2a9OzZs0Jl8vc72DL8l/DPbb0NeOSRR7j55pvp1q0bPXr0YMyYMaSmpnLPPfec7qKFEUYYYZwyRNhOzmB6hOc0liSMMMIII4wwwggjjDDCCCN0/GuIqaFDh5KVlcXLL7/MsWPHaN++Pb///juNK5BpLYwwwqhaON1OhkwcQs+GPXm2j58MTGGEDJ1iyhNWTIURRhhhhBFGGGGEEUYY/yz8q3Ri9913HwcPHqSsrIx169bRp0+f012kMMIIA1h0aBF/7P2D5xY8F1b1VDEi7GHF1N8N2SXZLDiwIPw8wggjjDDCCCOMMMIIIwj8q4ipMMII4++JSPvJ2PxDuYdOY0n+fbBxMmY97DH190DnLzpz4fcXMmHLhNNdlDDCCCOMMMIII4wwwvjbI0xMhRFGGKccYzeN1f7elrHtNJbk342wQufvgdS8VACm7Z52mksSRhhhhBFGGGGEEUYYf3+EiakwwgjjlOJw3mHGbR6n/d6esf00lubfjbDH1N8LCZHW2YLCCMMKe7L2MHLWSNLy0053UcL4i1HuLudAzoHTXYwwwggjjDDC+MsRJqbCCCOMU4r3V76P0+PUfoeJqVOHsGLq74XE6MTTXYQw/oG4+IeL+XDVh1w56crTXZQw/mJcMfEKmn3UjEUHF53uooQRRhhhhBHGX4owMRVGGCGi3F1+uovwj0F2STZj1o0B4M7OdwLhUL5TibDH1N8LCVH/TcVUmauME0UnTncx/rFQQ0HXHF1zmksSxl+NP/b+AcB7K987zSUJI4wwwggjjL8WYWIqjDCChMvj4t4Z91Lt9WrM2TfndBfnH4FPVn9CkbOITnU6MarHKAB2ZOwIqOxJzUul0+ed+Hzt539FMf81CCum/l5IjPpvKqZajW5FnXfqaARLGGFUFosPLeb1Ja//Z9q4nJKc012EMMIII4wwwvhLESamwggjCJQ4S7h2yrV8vu5zytxlrEn7e8xkO91O5uybw/HC46e7KD4odhbz0eqPAHjyvCdpWaMlkfZIipxFHM477HffayZfw+b0zdw7896/oqj/GoQ9pk4/ZEXlf1UxpRJSs/fOPs0lCePfgvO/O5+n/3yaiVsnnu6i/CXIKQ0TU2GEEUYYYfy3ECamwggjAHJLc7lk3CVM3Tn1dBdFQ25pLm8ve5vkN5O5ZNwl3Pzrzae7SD74ZsM3ZBZn0rR6U65pew2REZG0qtkK8B/OJ4T4R4awbEnfctoJy/+KmuDvjKLyIu3v/yoxpSIyIrJKjnMo9xBCiCo51j8BSdFJp/T4e7L2cPtvt7Mrc9cpPc+pwM7Mnae7CH8JwoqpMMIII4ww/msIE1NhhOEHRwuO0ufbPixJXUK16Gp0rdf1tJbnYO5BRs0aRcP3G/L4vMcpcnoHwaebEDHC6XbyzvJ3AHis52M47A4A2tZqC/g3QN+cvln32+VxnaJSVi06ft6Rc746h4yijNNWhrDH1OlHQXmB9ndVETP/VKjvfSBM3jaZabumma77dsO3NPmwCSNnjazCkv29YbPZTunxLxh7Ad9t/I6BPw48pec5Ffg3q0Jl8jW7JPs0liSMMP45cHvc7M7a/Z+avAgjjH8rwsRUGGFYYHfWbnp904stJ7ZQN6Eui29bTJd6XU5LWVanrWboT0Np/lFzPlj1AYXlhbSr1Y6PBnhD5fLK8v5WHdnJ2yZzKO8QteNrc9tZt2nL29VqB/gnpqZsn6L7fbTgaJWVy+VxMW//PIqdxVV2TCN2ZZmrEDzCU+WDqlJXKccKj+nOEcbpRWF5YaX2F0Kw6OAicktzq6ZApwD5Zfmk5acF3C7SHpiYO5h7kKE/DWXIxCGm9feZP58B0MKCAyG7JJuVR1YGte3fES6P65Q/e7VNPZB7gNS8VI4VHAuwx98HFZmo8AgPA38cSN+xff/Wg9cSV4nu77+iPf9o1Uf0/6H/Kf0mhoK/8/OpDBYdXMQz85/B6XYG3vgUwe1xcyDnwGk7f0Uxf/98lqUus1x/69RbaT26daU8SafunMpNv9xU6e93GGGEUTmEiakwwjDB2qNr6fVNLw7mHqRFjRYsH76cTnU7/aVlcHvcTN05ld7f9ubcr85l8rbJeISHfs36MevGWWy5dwsPnvsg9RPrA14i7e8AIQRvLnsTgIfPfZjYyFhtnaqYsgrlE0Iwedtk3bJDuYeqrGyjV4+m3w/9uHbKtQG3dXlcFSKSzAjCpalLaT26NW0+aUOJs8Rkr9BR4ixh8ITButCWf7OaoDJ4dM6j9Pi6B2WuslN+roKygsAb+cELC1/ggrEX8OS8J6umQKcAF3x3AWe8fwb7c/b73S4YxdTqtNV+1zeo1iCksnUd05UeX/dg1t5ZIe1XUTjdTpamLq2ybK2LDi7S/q4ZW7NKjukPjT9oTP336lcJIfBXDLorogpdfGgxs/bOYuHBheSV5Z2CUnkxe+9sHp3zqOl9yCzOZPK2yX7riXFQHKz6ttRVGlpBgRNFJ9h0fBMPz3qYufvn8t3G70I+RlXjmw3fUO/deqw9ujak/fZk7eHlRS+TX5Z/ikpWeVww9gJeW/oa7654N+C2p4qQvP/3+2n2UTN+2v7TKTl+KPAID9sztge81oKyAi7+4WLO+/Y8bvj5BpamLvXZ5sctPwLw2tLXKlyeKyddyY9bfuTjVR+brs8vy2f23tn/GAX/6Ybb4+bOaXda3s8wwrBCmJgKIwwD5u6bS9+xfckszqRrva4sG76MpslN/7LzF5UX8cnqTzjzkzO5ctKVLE1dSqQ9kls73cqmezYx5+Y5XNLiEi3co3XN1sDfh5j6Y+8fbDmxhYSoBO7tpjcvl0P5zAZC2zK2sSd7D9ER0VrYZFVl9nJ73Iya7c0M+Pue3/1uK4Sg+1fdaftp25AHWzIxVe4u56l5T9Hn2z7szd7Lnuw9zN0/N/TCG1DsLOayCZcxd/9c4iPjteVyJ8/tcVdosFlYXlhlg+zTiWMFxzSi7t0V77LyyErLcLGqRGVmXN0eN/+3+P8A+GLdF1VVpCrHhuMbAPhy3Zd+twsmlFFut8zeNZV4N2L9sfW8vextH7LxYO5BgL9soP3wrIfp/W1v7p3hbetKXaV0/qIzt029rULHkweNWSVZ3DfzvipVs1i925U12356/tMkv5l8yj2gKjIwnLR1UlDbCSEqNfAc8OMA3l3xLmM3jfVZN2j8IIb+NJQXF75oub+x7Tic7z9JCMC0XdNIfD2RD1d+qFvudDv9KuGumXwNZ31xlvZbfW+qAhO2TGDj8Y0h73fHtDtIL0rnvpn3hbTf+d+dzwsLX2DEjBE+6/LL8rluynX8vP3noI93Kid4FhxcoP29P2c/J4pO6NYvP7yc5DeTeXTOo7yx9I0qVfCo35TXlrzGhWMv5K5pdwXc53jh8VNC+D2/4HnafdqOZ/981u92cns1cetEen/b23LbYBS6Kj5Z/QkN32/o0xdV+29ZxVlcPuFyhkwcQmZxJgN/HMiAHwfw+pLXgz6HFTzCw56sPbrzuj1u3l3+LhuObaj08UPB8cLjp+ScCw4u4OsNX/PQrId83ichhM/1VwTLUpcxaPwg9mTtqdRxAp3jzaVvmhKo32z4hpm7Z/rd/9+qAD2VCBNTYYQhYeLWiQwaP4jC8kIuanoRC25dQO342n732XZiW5U0jMcKjvHM/Gdo9EEjHvjjAfZm7yU5JpmnznuKgyMP8t0V39GxTkef/VRD8b8LMfXG0jcAuKfrPSTHJuvWtazZEofdQWF5IUfyj/jsq86U9mzYk3a1vWF/VUVMGQcE/tQeRwuOsu7YOnZn7fZr1G6GrOIswEu+df+qO28sewOBoGG1hgD8vCP4DrIZCssLGTR+EH8e+JOEqARm3TSLRkmNgJNqAiEEPb7uQcP3G/LT9p+C/jgeKzhGylspxL4ay7YT2/6xoYETtkyg/nv1eXjWw7rluaW5ptdUEcWBih0ZO1h4cKH2W/aYChW/7fpN+zsxKlFnpB4sVhxeQWZxpuV6IQRLDi0hr9RXOZJXmsf/Zv+Pi76/KCi1xtLDvrPXcl0LRjElD4hVAkY+Rv2Ek8SU/Oxu/vVmHp/3OLf9dpvpceUQV3+oTMexxFnCZ2s/A+Cbjd8AcO5X57Lx+EbGbhqrU3tmFWfR+YvODP1pqCXR5Pa4+WXnL7pln639jPrv1mdN2hp+3v5zpcL8Pl/7OTGvxJiuSy9Mr/BxAV5f+jpFziJLpd+OjB00eK8B1025LmBWVhkrj6zUDaCtSAN/y3/acZLsE0IwcetEnwGmEIJhvwyj9tu1tXsxY/cMXljwAgVlBZz95dmMmjUqqPpiJBvgpDLw9aWva+FURiLMSEIE+vaVukoZMnEILo+LR+Y8olt3+YTLqf9efebsm2O675LUJbrfdRPqmm43a+8sbC/ZWH54ud+yqJi/fz7DfhlG5y86A/D1+q95edHLQe2rwqr92npiKxlFGeSW5jJr7ywmbZ3Exd9frL3rZkqgN5a+wZTtU7hmyjVcOenKgJYHH636CMf/OXhszmMIIWj2YTMuG3+ZbpuZu2fy/or3g74eub6rzz4tP43mHzXn7C/PJqckh5+2/8Q1k6/hwT8eJL8sn3dXvMtT85+i0+edeGXxK7r6PXbjWGwv2Wj2YTM2p2+2VJi5PW4u/fFSrph4he5bUuwsZsHBBXy14SuffX7d8SudPu/E5vTNpOWnUe/devT6plfQ16riszWf0eKjFpZ941eXvAp43wd/CMVvL5Rv7wN/PMCR/CO0+7Qdtd852cc/kHuAUlcpKW+nMGP3DKbtmsbby97W6v+ErRN0x3F73Fw9+Wpu/OVG5uybY0nwLj+8nDeXvonb4+bZP5+l1ehWtPu0ndYP/XDVhzw691G6jDG3Cyl3lwdsD4QQ/Hngz5BU220+aUOXMV0Ys24MeaV5TN81nS3pW0xJbZfHpX2D3R63aR9aCMHd0+/miXlPaMv25ezTbfPqkldpNboVLy16KehygrctqvduPW1i+bxvz+P3Pb/TanQrftnxCxd8dwE7MnYAsDd7r9/wzy/WfsGELRMs16s479vzeHL+kz5ty+G8w9wx7Q4um3CZ5eT13H1zqfFWDRq+35APV37Inqw9PD73cdIL09mcvpl1R9cFe+n/KQTnTBpGGBIKywvZn7Of/Tn7sWEjJS5F+5ccm4zd9s/jO90eN5+s+UQbyA5tN5SxV4wl2hHtd7992fvoMqYL5e5y+jfvz8PnPsyAFgMC3oOs4izyyvIoc5WRXZLN1xu+5sctP2qzQ82SmzGq+yhuP+t24qPi/R5LJaasvI3+Siw/vJwlqUuIiohiVI9RPuujIqJoWaMlOzJ3sC1jGw2TGurWqx+VtrXaUiO2BgCH8iofyjd913ReWfKKbtncfXMZ0c13hhXQzXgfLzwe0rkyizP5aNVHPDHvCUpdpdSMrcmYy8dQK64Wfb7rw7Rd03C6nezP2c8d0+4gNjKW/s360795f+on1mfD8Q00TmpMixotiLBH6I5dUFbApeMvZWnqUhKjEpl902x6NOyh1bdXl7zKgOYDuKjZRVpmw2unXMtzfZ7j5b7mg4ODuQd5b8V7NE5qzLwD8yhzexUo7T9rT2JUImc3OJsmSU1omtyUrvW60qBaAxokNqBGbI1KmzQLIUgvSmdL+hY2p29mywnv/xH2CD4c8CE9G/YkqziLW6bewqCWg7i27bXUiq8V8JjDfhkGwCdrPuGRHicHbHfPuJtvN37LsuHLsNlslLpKGf7bcCZsnUC7Wu3Ycu8WbDYbB3IOsOboGi5rdRlxkXF+z3fJuEs4nH+Y6TdM57JWl+kGl1aD5e0Z2/l41cfc0OEG+jTuoy1XEwaAt5N90fcXseKOFdp9Ti9Mp1p0NV14rBCC/LJ80ovSGbd5HP+3+P+w2+zsf2g/jas39jn39N3TGTJxCG1rtWXbfdu0kNUp26fw6JxHSS/yDsqXpC7hqjZXAbDu6DrGbhrLj1t+1Cn0zMIq5IG22Qy2EII92XtYcXgF+WX5rDiyQltX7CzG5XHR4uMW3H/2/YzoOoLP1530DTlRdIKdmTu5d+a9mjJn4taJfD7oc8rd5aQVnPS9WnxoMS0/bsnxwuMUlhfisDvIejyLWEcs6UXppMSlkPh6Ii6Pixk3zKB3495Ui66Gy+PiRNEJjhUc43jhcRolNaJJ9SYkRCVgs9nIKs5i4taJTNo2iVVpq3TXti97ny55w6JDi7il+i0AvL38bTYe38jG4xuZvG0yR0YdoUG1BniEh3tm3EPjpMY8t+A5BIKk6CRdyFleWR7nfHUOAHabnUW3LaJp9aZamOPqtNXUjK1J8xrNOZBzwHtt0Yk+9/7emff6LFORXpROm1ptAC/htil9E0/Me4L7ut3H0PZDfZ6hQJBRlEGdhDq6dUZPwHGbx/H8guc5r9F5HC04ypTtU/h9z++81e8t+jXrxyNzHuHWTrdyTdtrtGO7PC5Nbdfj6x6645l9k19Y8ALvrXyPWTfOIjIikrPrn629M3/s/UNHdNw7814mbZukrRt/9XjOqHYGM/fMZOLWiQD0+6EfLo+LHZne79HLi71t59qja/l07adc3OxiYhwxDGwxkPqJ9UmKTtLdh2MFxxizbgxfb/iai5pexCsX6r89z/z5DKMvHc2lP17K0YKjTLpmEp3rdfZRpkzbNY3LWl1GVESUzzWDl0RR0f2M7oC3PRdCMHvfbMDbPp1d/2ze7vc25zc5n/XH1gNeIkr+tv1vzv+4pPkl1IyrSXphOs1rNCchKkEzyO/1TS/2P7Sf3/f8ToNqDbi05aUUlReREJXAtoxtdKjdgZzSHO344CVC1Tr3wcoP2P/wfpKikxizbgwbjm9g9KWjcdgdCCF0SiKnx4kQghEzRvDl+i/5deiv3vutlKV1zdam/Z0IWwRCCDzCg81mw26z6/zmpu6cyvHC46y4w9vmON1O0ovSOaPaGbg8Ll5c+KJGmLyz4h0GthzIgdwDHMg9QFp+GjabjRcXvsiX671K0eVHlpOWn0aH2h14q99bxDhi2JG5gx83/0iT6k3IK8vj6d5P68iKPdleombMujGAl3ys8VYN0+cL3gm05xY8h8Pu4JEej/DByg+0Qf+B3AN0+txrMXF2/bNZfddqyt3lWn1ZfGgxf+z9A4CE109miJVVSPL2AFdN9rb5D/7xIEPbed/7rSe2kl2SrfXJwPttc3qcPD3/aeIj4ykoL2BYh2E0rd6U15e+zvsrvcTdgB8H0Cy5GZ9c+gnbM7azO2s3647pB+RF5UXERcaxPWM703ZN48KmF/LJmk+IiojSndMIIQTjNo/TfmcWZ/LT9p+4dsq1PNHrCV6/yEuWJ0Ql8NX6r7hr+l3c0ukWH7JWbh9+3vEzueNzdevfWv6W9ndWSRZr0tbw2tLXuLfbvUzbNY1fdngnE8ZvGQ/AnZ3vpNhVzA9X/kCpqxSXx6WRe0/OP0nc78jcQfOPmuN53qMppcFL5p5R7QxvH7maV9X14qIXAe+Eb0JUArGRsXSu25kG1RpwKPcQ17a7lleXvMpzC54jPjKe/KfysWEjvSidSHskv+z4hSWpS+h+RnfuO/s+SpwlfLHuC22iY8SMETw1/ykdcTv+qvFc1eYq1h1bR6OkRlw35ToO5h5k3i3zuGLiFVpdfqT7I7x+8es47A7GbR6nvR8qtp7YSquarcgqzmJv9l6eW/AcAC8tegmP8HC04Cg3tL+Bi5pdxKbjm2iY1JCckhzqJ9bn/xb/H1tPbOX585/X3v9B4wdR9qxeKX315KsBaPtpWz645ANGzh558j7fv4NWNVtxvPA4v+74lQf+eEBb99naz3jxghe5bsp1dK7XmT1Ze7in2z3c3PFm3eTW0J+Gkl2STc+GPflmwzd8uOqkQvWHzT9wY4cb+XrD1yRFJzGswzBeWvSSRrzlluYycvZIrUxvL39b27dtrbbkleax5q411IqvxdYTW6mfWJ/a8bXJLc0lMSrRZxzwb4dNhHVmAOTn55OUlEReXh7VqlU73cU5rRBCcLzwOPty9rEvex/7c/Z7/87ZZyo9lmG32akRW4OasTW1DqRaxQRC99tsmfpbXpYcm8wPV/5Aixotquz6dmftZknqEu+/Q0s4kHvSEPKBsx/gw4EfmpJLd0+/my/Xf8krfV/hmT7P6DpeMt68+E1iHbGUuEoodZVS6iqlxOn9e+ymsTqTUxk9G/bkfz3+x5DWQ4JujGbunsllEy6jY52ObLpnk8/61LxUBk8YTP/m/Xn1wlctw2uEEDw651HsNjtv9XsrZNJBNZids28Od3S+g68G+87GgZco+Wn7T7zb/10daZBRlMGl4y9l7dG1jB44mmhHNHdNv4uBLQby+43+Q+/AK9m/Y9od9G/Wn7u6npxh35u9l25jupFXlscDZz9AnYQ6PLfgOa4880p+GfoLJ4pOcMe0O7ipw00MbT8Ut8dN0w+bamEUYy4bozueFWwv+d6vAS0G8M3gb6iXWA+3x0399+r7fX9kxDhiSIlLwWF3aP/ySvM4VniMpOgkZt80m3PPOBeAlh+3ZG/2Xr/Hqx1fGyEECVEJxEfFkxCVQFJ0EltPbNUN6FXER8ZrWR+tytcgsQEXN7uYgvICNqdv5sMBH9KwWkNa1mzps32xs5jtGds1Emrzic1sSd9CRrG1MueNi95gy4ktmocEwLTrp7E3ey97s/eyM2sn205so2XNljjdTlweF6Wu0oAqt7u63EWsI5a1x9bqlADjrhxHTmkOD/7xIAB9Gvdh0jWTSIxKZMPxDfRq2MvnvVCfe4saLRhz2Rgu/P5C3fp5N8/jomYXAfD43Md1nRKAjwd+zODWg+k2ppt2L+SO1Q3tb2D81eP5fc/vDBo/CIDr2l1HWn4aB3IPkFGUgdNjPmMXFRHFZ4M+o058HTYc38D6Y+v5deev2vqm1Zvq2j4jepzRgz3Ze/wqsF664CWWpi6lxFVCckwy03dP161vWK0hPRr2QAjhk9jAiOox1XWKoIbVGgYVzhQsutbrypH8Ixr5ZgYbNt13SMZFTS9i8aHFlvfbiJs73sz3V37P/P3zufiHi3XrLmhyAQ+e8yAjZozwub+3nXVbUKGI3c/oTpPqTZi4dSJNqzflijOv0AaEANe2vZZzG5xLt/rdaFGjBWe8f4blseom1OWWjrfoBmEq2qS00UiaxKhESlwlGgH54DkP8t4l7xH5f/rvyp2d76TEVaJ7dwPh0paXauSj0+2kVnwtU2Xtde2uo2WNlqw8spL5B+b7rI9xxJAQleC33qp46JyHeKbPM9R5p07AbasSZ9c/W5s8CITkmGRiHDHERcb5qA9kdKvfLWR/pv8izkw5kxJniTbp9USvJ4hxxISs4Pg3IdIeSbf63XQTBX9XXNzsYubtnxf09v7a9DD+GpxR7QzTtjwM/7i81eVMvX7qP1LwISMUjiVMTCn4rxFTZa4yDuYePEk6Ze9jf+5+jYiyIk5U1IytSbPkZthtdjKLM8kszjylpqI9G/Zk8W2LK8QcuzwuNh3fpBFRS1OXmpIDEbYIXrzgRZ7p/YwlKWMkpm785UbGbxnP3V3uJiEqgfdWvhdS2VQCr1fDXjzS4xFt1jMU7MnaQ6vRrYh1xFL4dKFPAyaTZ32b9GXytZNJiUvxOc7qtNWc+5WX6Jh14ywuaXGJ5Tkf+uMhVh5ZyeybZpMcm4wQgpGzRvLR6o+ItEey9b6tmpLLiBcWvMDLi1/WyKtSVykfr/qYV5a8Qn5ZPg67gw0jNnCs4Bj9x/XXlB3+kJafRptP2mhSbvGCt1krdhbT/avubDmxhR5n9GDhbQvZeHwj5351LtWiq5H1eBbPzH+Gt5a/pRF703ZNY8jEIdqxPxzwIQ+d+5Df84OemIp1xPJO/3e4t9u9uro0YvoIxqwfo/0+p8E53ND+Bubtn8fMPf5j1VUkxyQz5+Y5dKvfTVv2zvJ3eH/l+9iwUT+xftADHhnnNjiXg7kHySnNYcYNM+jbtC/bM7az6sgqVqWt4sctP9IoqRHZJdkBB3yr7lzFOQ28Cg+P8DBk4hB+3/O7aRidDRsta7akQ+0OdKzTkTrxdRg1e5TWBhnVI8GiV8NeLDtsLeVWkRSdRJPqTdiUvom6CXWpn1hfN+tfI7aGNov4+7DfGdhyoLZuxu4ZXD7hcu23VedrVPdRPN37aWq97V/tBd5O9+ybZhPx8sm2bvWdqzXFjBUCEYnB4PWLXmfN0TXaDLCM5snNKSgvoEu9LtSKq8UPm3+o8HmiI6Jx2B2VLu/5jc9n0aFFgTcMERG2COok1LHMCHpW3bO4tdOtXNbqMlp+7EvCyuhxRo+QB3t/3PiHNjtc2WP9Fbi05aUBffsARp47kvvOvo9Wo82/DacSk66ZxNCfhpquC/W+ym3CPxmDWw8+5b57f6cBaa24Wn4nQsL4e6JBYgPTybMwwvgvINgxyN8ZoXAs4VC+fzGyS7K9xFP2SbWTSkIdyT/idwbBbrPTKKkRzZOb0zy5Oc2Sm9G8xsm/k2KSfPZxup1klWRpRJU6o2rj5MBcHaSry+RBu3GZDRtFziKum3Idyw8v5+PVHzOy+8iA113qKmV12mqWHPISUcsPL/eJPY+OiObcM86lT6M+9G7cmw61OxDjiPHxRPIHIQSLDy0GYGj7oVzY9EJ6NuzJVxu+IioiihhHDLGOWGIcMbq/YyNjSYlLYWi7oQHD9IJBk+pNcNgdlLhKSMtP8wmPk31OFhxcQLcx3Zh6/VTOqnuWbjtVhgxeiW3/5v1NCbrpu6bz8Wpvpo0p26dwd9e7eX3p61o69++u+M6SlIKTBuhbT2xl0tZJPDn/SU3q3rluZ9675D3a126vhQGl5qUihLAkC1cdWcUVk67QPWOXx0WELYIRM0aw5cQWasfXZsq1U4iKiKJrva7awGJp6lK+3fgtALsyd+H2uPl0zae641fEf2jDiA20Tmnts/yqNlfpiKk/b/mT+Kh4RnYfSWF5IemF6TRLboZHeDiQe4D8snxcHpfuX+e6nX3q6aM9H+XRno9qvwvLC0l8PZFacbVoU6uNVk+71e/G6IGjKSwvJLc0lzum3aGRPr8M/YV6CfV0YTQd63SkY52O3NX1Lp0CrsxVxtGCo/yw+QdeXvQy0Y5onW/OG0vf4JehXnJj3v55zNg9A4CUuBTvMWt3pEMdLxHVtlZbn3C5VjVbceH3F9I8uTmXtbpMk03HOmJpndKaFjVa0Dy5OZH2SDrU6aBTlTnsDuIj4zn3jHM575vzfMKt4iLjdGVdcccKmiU3o8NnHdiTvUcLbxl7xVjeX/m+zsT383WfM7DlQFYcXsENP9/gE2ZqNQB7f+X7fLLmE+13l3pddOSXjJ+v+xm7zc6x/x2j3rv1AHSk1MsXvMzzC5/Xfh8aeYhacbWIjYzlaMFRvl7/NbeddRvHC49zzlfnYLfZOTPlTLrU60KXul3oUq8LybHJmgeDSqavu3sdXep1oaCsgHu63kNcZBzpRemcKDpBh9od6NVI7zPSrX43nYdXixotfFR79RPr82iPR3HYHeSU5rDh+Abu6XoPfZv2pckHTTRiKiEqgaW3L2XLiS18tvYzTcV2Vt2zGHnuSJ2P1Fl1zyK/LJ/3+r/H5a0v554Z91BQXsADZz/Ax6s/ZmnqUt0g5pHuj+gmDOol1GP/w/vZnrGd1LxUSl2l3PDzDQDMvXkuHet0pGZsTW0SZNuJbWzP2E6N2BpsPbGVvk376rz+NozYQJcvuui+pxtHbOTbjd/y2drPdITH9e2v55vB3xD32sn6/njPx31USv2b92fZ8GX0+qYXTao3Yd3d69iesZ1eDXshEMzcPZN1x9ZZKjziIuOIsEXwwDkPsCtrF2uPrtX5k1zS/BJ6nNGDfTn7uKzVZczbP4/4yHg+WPUB4A2VGnvFWLp/rZ8ouavLXXSu25lvNn6jKXMibBE6UuriZhfTqU4nkmOSsdlsPPPnM1pdeH+AV811d5e7de1gKLigyQVaO1hYXkhWSRZDWg9hddpqOtbpyMhZIzVF2+DWgxnVfRR14uvQplYbbpt6m+mk29YTWwGvOnbEjBG6Z7ls+DIuHHshbWu11Uz/Mx7LoKCsgCP5R2id0hqH3UFuaS5z983FZrNxYdMLWX9sPY/NfYyWNVqy+NBiWtRowcPnPsx1P12nHbtTnU5sSveqnFvWaMmQ1kOIjYxlRNcRXDr+UvZk7eGxno9xxZlXYLPZyC/L5/zvztf2H9F1BNe1u45q0dV4fenrxEXGcTD3oGmIrYr3+r9Hal4qB3IP8PN1P7PyyErO+/Y8023HXjGWW6feqv2eOnQqV0y6AvASfb/t+o3FhxbTrX43nun9DA0SGzBu8zgen/c4deLr8MbFb3Brp1sZNXsUH676kP7N+3N9u+spdZVy3+/3ccWZVzCo5SDmH5ivhVFa4anznuL9le/rvsdfXv4lSdFJLDy4kNYprRk1e5RfX8TN926m79i+pMSlsOn4JlNPokEtB+kmiZ7s9STXtruWvdl7mblnJt9v+h7wtlnfDfmOrvW70vTDwMlxvh78NR+t+ohN6Zu4t9u9lLhKyCnJ4VDeITYd36Src/UT69MmpQ2lrlKWHV7GJc0v4e1+bzNj9wye/vNp3XG7n9FdF66oYliHYVze6nJWHVmlvddGDG03lCP5R1h2eFlQ72RiVKLpPVOVeh9c8gHnNTqPV5a8wvz98ylxlfBoj0f5cv2XZJVkmR6zZ8Oefv3LXM+5KHeXM3zacJ86cl+3+2ia3JQSZ4numxgsutTrwmM9H9Pa/wfOfoB5B+ZpYeJjrxhLckwyzZKbsS1jGz0b9iQ6IlrnSSXjzJQztX2N9+rd/u9yffvruXzC5dq3PyUuhXu63sMrS17hkuaXkFeWp3uW464cxx97/whJdfp8n+e10GP1mno16qVdoz+YKagvanoRkRGRrD+2nhNFJ9hx/w7afNJGt83T5z3NBU0uYMSMEX4V2DIW3rqQj1d/zB2d72DhwYV8uOpDzUbCDPUT63O04CiJUYn0bdo3IKE+sMVALYw1EGrH1/YbyXBJ80sochaRU5ITlOfsz9f9zIGcAzw691HT9Q+d8xBTtk8x9cHs26SvLqwZoE78X6vmPd0IK6YU/FsUU28sfYOftv/Evpx9AU1S4yPjdWRT8+TmNK/h/btxUuOgMir9FRizzttZjHXEsvnezT4hfXmleSw7vEwjotYcXeOTeSgpOolejXrRu1FvejfqTbf63QL6R5lBVkzd2PFGmn7Y1Bti9WReQC+aU4kzR5/JrqxdzL15Lhc304eM3PDzDUzcOpE7O9/JwkML2Zu9l1hHLN8M+Ybr218PeP0CGrzXQBfiYnasovIi2n7aVhvkXN7qcga3Hsxd072hbh9c8gEPd9cbThux/th6uo7pqltWP7E+r134Gjd3ullTfBU7i4l/zUvcZT+ebUoa/rDpB+6afhdl7jLa1mrL9oztABwZdYRfd/7Kg388SIQtgvm3zOf8Jic79EN/GsrkbZN1HQnwKsUG/DgAGzYubnYxc/fP5aULXuL58wN3elTF1MGHD5p6+4DXzyH6FW+9mzlsJpe2vDTgcSuKEqc33Gb4tOGaceOgloOYMWyGts3urN20Hu0l0FSVWahwup1ERkSyOm01j819jMWHFmPDxo77d9A6pTXXTbmOKduncF+3+xh96eigQkSXH15Or2960Ty5OXd0voOn/3ya4WcN56vBX4UUYup0O1lxZIU2mEsdmUrt+No88PsDfLXhK4afNZyvh3wNeI01VZVKhC2CwqcLibBF8MriV7SOXkpcChtGbKDh+yfJ3wEtBvBoj0e1UK2WNVpq3gtd63Xl2T7PcvXkq7UB021n3caerD2Wai75OYzfMp4bf7lR+/12v7d5tOejvLL4FZ5b8ByXNL+EWTfN8nv9To/Tsm0SQjB151S61u+qGeiHArfHzY2/3MjPO35mye1LKHGWsC1jG3d3vZsyV5mpz5GKR+c8yrsr3uXZ3s/y4gUvakRQXmkebT9ty5kpZ/LTtT+RHJtMtzHdNF8S53POoEzVjxUc47ddv3FN22v4cfOPOs8JY11XlVFWGQCDgfr+92/en9k3ef19jhce57M1n2n1p0PtDmy+d7O2bWJUIvlP5WvhzaAPHc4oyiDGEeP3Ph4vPM6wn4dpndmeDXuybLhv3ZKVs57nPabvUUZRBr/u/JVr216rKWETXk+g2Fms1T2ADp910Mic5cOXc9XkqzheeJxWNVux6wG9909eaR5LUpfQv3l/zctmw7ENXPj9hYzoOoK7u97NDT/fwKM9HsXpcTJv/zw+HvgxTo+Ti76/SBvE/XnLn/Rt2tf/Q8DrydP8o+bevx/ar8uoW+PNGn6zDxY8VUB2STaNP/C2361rtmbnA97vQ7m7nNum3kafxn24p9s9ActhBfXZj7tyHBuPb+SdFV5fOatnYsS6o+tYcWQF9599v+n28vd1aLuhHMo7ROe6nXm81+M0TmpseY49WXv4cv2XNEtuxqbjm+jRsAe3dLqF3Vm7eeiPh3im9zP0btybt5a9RUFZAf934f+ZHqeimLBlAi1rtmR/zn4fZVvvRr1ZfPti/jf7fxrJnPFYho/y2+1xs+boGjrX7UzMq16T/7u63MWX6780rZtLDi2hxFVCxzodeXvZ2/y26zc+HfQpl4zzqsUnXTOJ69qdJBKFENhf9vZPrm17LZOvnUxBWQHV3vCOGWRl65O9niQxOlEjZsULghJnCRnFGbq2VghBiauEMlcZM3bP4Mo2V5IQlaCtW5K6hHa12lEzribg9Tk7+8uzAXil7ys8ed6TOP7Ptz2cc9Mc+jXvB3i9+WzY2Jy+WftOqSHiMtp/2t5y4P1e//cY1WMU205so/1n7bXls2+aTf/m/U33KXGWaH6Ig8YP4vc9v7Ns+DJqxNZg4I8DuavLXTzd+2k8wkN2STaxjlj6ju2rKb5PPHrCx1Pyt52/cef0O/lwwIcM6zBMW17sLKawvFALyVXLdSj3EPfMvIcVh1folNf3dL2Hdy95l7VH12r9A/V7c9H33tB7qz7Rnqw9PDLnEW3CDaDkmRIcdgfrj61n3OZxvHTBSxSUFzB4wmAePOdB7uhyB+D9Jh8vPO4zgQze5937294sO7yMhtUakjrq5GRCUXmR5hMmRwTYbXZiHDEsOriI2vG1aVOrDfuy99HiY+84adFti+jTuI/W7qi+UdszttNlTBc61+1Mq5qtOLfBuYzqMUrbbuf9O00nVwHm7JujvSPG+5RZnMmcfXP4YfMPXNjkQh6f97jP/nK/S8aHKz8kLjKOu7reRWpeKvP3z6df837sydrj0/ar5ex+Rnc61+2sJSExPrPRq0dr1gzDzxquJSkZ1mEYP151kvC7fMLluuf50DkP8f3m79lx/w4tMYSaOOOhWQ+ZRg0YbUdcHhc5JTm8tuQ1HTksl/GHTT/QuHpj2tduT05JDs1reL9dBWUFREVEkVOaY5mY4p+EsGLqP4wj+Ud0xoL1EuppZJNR/VQrrlalzYv/CtzV5S6mbJ/CvP3zGP7bcBbetpA/9vzBrL2zWJK6hM3pm33UX3UT6tKncR+NiGpfu32VG8jJKpTTSUqBV2GyK2sXu7N2+5BJqhppQIsBvNXvLYb9MoxZe2dxw883sOHYBl676DUWHFxAelE6NWNrcl276/hs7We8tOglLmp6ka6OvLzoZd3M+6JDi7TZxafOeyogKQVe/w8VcZFxPNHrCf7X438+6rG4yDhNen8o75COmHJ73Dw1/ynNr2dI6yH8cOUPtP20LUfyjzBl+xQem/sYAG/1e0tHSgH0b9afydsm+6Q2VxUgA1sOpGWNlszdPzcoxZScncSf6i4qIoq5N89lc/pmBrbwDdWpSqgdwuSYk+Ux3uNWNVux4o4VlfrwqQT2OQ3OYdFtixg8YTDTd0/n3RXv8uqFrzJ151QARnQbEXR7ow5gy93lmropLjIu5PYqMiKSJtWbaL/jo+KJdkTzxeVfMKjVIHo27KmtG9BiAFeceQVTd06lVc1WWj19qe9LjOw+kkYfNCKzOJO+Y/UdpCnXTtEZgp/X6DyNmIqNjOWKM6+gY52OmvKqd6PeNEhswLLDy6iXUI+c0hzLOja03VBeXfKqRriqeOq8p+h+RveAob+REZF+JxhsNhtXtrnS7zH8IcIewcRrJlJUXqTVLbUDaWXYrOLVC19leOfhmoJSRVJMEqkjU3Xt9bkNzmXdsXUkxyQHRUoB1EuspxEID3d/mGOFx3hz2Zs0re6rbqgMIWVE25ST11M3oS4v9X2JbzZ+w5H8I9pEwFsXv8Xj8x7nzYvfBLwEiAp5kBfI6F89x80db9aIKXVQa0SnOp20v63eo1rxtbi769267Y6M8ranqhEy6JWBPRr2YNWdq3hq/lMMbjXY55hJMUlc1kqf1axzvc5kPZ6lTUKsuvOkqlEebE6+ZrI2wKoeU920zEaoRstZxVk6UgrQkVIJUQm6RAUxjhjiI+N1909WV0VFRPkM5CuCCVdP4HDeYW7seKPm2wXBZx/rWr8rXet3tVzfuW5nOtftzO6s3bzb/13NID8QWtZsyVv9fP3FWtVspSO/H+/lO9CsCtzQwavoaJbcjJqxNckqyaJRUiMi7ZG8f4lXaSebw5vZEUTYI7Q28ZvB3zBzz0w+HPAhL13wkqmJdu/GvbW/373kXd695F3Aqx5dlrqMq9tcrdtefkZq3ZHri/y+lrhKfCILYiNjfSYAbDYbcZFxxEXGcXOnm33WyckxwNvfnHj1RH7e8TMPd3+YCHuEqYeSfB41s3S9RK8CN8IWwUsX+Kotr29/vWZMXS+hHscKj1E9pjrZj2dr196mVhvtOwn4VajJSTqmXT+N9KJ0ra098PBJZY3dZtee54xhMzRyySyqY8iZQxhy5hCf5eo93PfQPrae2Eq/Zl5SrnH1xvxx4x8IIcgozqB2fG2d4bvcd0+OTeb8xudzactLaVa9meV1tazZkuk3TKfuO3VJL0rnlb6vaP2Fcxqco9kYJMcms/Gejbp9IyMiTUkp8D7vpcOXsuTQEs5MOVO3Lj4qnqzHs4iOODmhLpdd7uM2Sz5ZdvV7+eqFr7LyyEqubXctDruDzvU6c2TUEWrH19b1EXbcv4OCsgJLUgq8Eyoqlt6uV2emxKUwrMMwrR1ff3y9j9Kt3KMXDqiQxw+Nkhpxe+fbAW84sBXcHjfv9H+HwvJC7b7LeOCcBzRiSp54N6qQLm1xqUZMuZ5zeRPwDPxQt43NZuOGDjcwsOVA7v/9fm7ueDNH8o/wwO8PcE+3e3wSDDnsDmrF1+L9Ae9zSYtLGPjjQN7t/65uG/mdl9sodTLq30BKhYowMfUvw/DOw+nfvD/Nk5vTNLnpaSdMqgI2m40vL/+SDp91YEnqEq6ZfI3OwBe8YSQqCdW7cW+aJzc/5aTbkkPedMu9G/UOsOWphxo6tztrt886NZSvSfUmJMcmM+OGGTzz5zO8uexN3lr+FpvSN2mdq2vbXsszvZ/h6w1fszR1KQsPLtQGmlvSt2izlfd2u5fP1n6mdRSHnzWcVy98Naiytq7Zmhva30D1mOo82+dZv4PCRkmNyCjOIDUvVQs9zCvN44afb9Bkus/0foaX+76M3WanQWIDjuQfYdTsUdr1jOrumx3QOMOnysnVTD/3dbtPS6cdDDH1yWpvmNaAFgOoFu1/NuDiZhf7kIenEvKALiHSd9BaEV8zf3i81+NM3z2dsZvG0iCxAU6Pk271u+nCnwJB7XyVuct0xFRFIGfGUztpdtv/t3fn0VHV9//HXzcZshjMBgECYQkBwg42KA1LEdlB3FCgCBoFagqIVLEG4cjyVdCC8rW48m3ArwWUI0ilX+EnHKsILlVotGwSG0UCCaAoIVgJQu7vj3TGmewzmZk7mTwf5+QcMtwk7wufzNx53c/78wnRTZ1vqnDsqlGrdOHSBd3e43aXx+Mi4zSyw0htOrTJ0a428+qZWnztYsfvzqbbNukvR/6iP476o6M91H6xmpaY5gimBrQZoIndJ6ptTFuN6TRGn5z4xNEeU15oSKiWXLtEt75WtmOZ/S5daEioX8dQTTxpSQ63hVcIpezK30RYOmSp4iPjXUITdy0dslTJsclKb51e88Ee2DZpmzYc2KDFgyu+4fto6kd69+i7jt3t5vabq0k9JjlCA+c3t1W9aamO8wV5Vb8n6a3Ttfr61ZVuTFCduMi4Cv/uV4Zd6TIju01MG5e7z7VRm8VcU+JT9M/Mf+ofhf+o0HpenRlXz6jxmKtaXFW2w+F/1iir7EadJ23cNbGHk1LZHfbHdj9WacjiKcMw9Lc7/6bzF8/XOpQKJPGR8To085BsIbYKYdJv0n6jP+X8Sf1b96/iq39211V3Od7YOgcktfGLxLKW58o8dt1j+q/3/ssR7BiGoc3jN+v0D6ddboI0j2pe6a6k3jCh+wSXnTJ3ZezS7a/frmdGP6PmUc11ovhEpcFCl6Zd9Nh1jyk5NrnS54EJ3SY4gqnVY1frfz/7Xy0fttzl9yLECNGWCVs0+fXJ2n1stwa0qbwNtLzQkNBa3QBwXvrDk4ae9nHtXYIZx/c1DEdA53zTxPn5MjYiVqEhoXpzUu3W+zwy64gOf3tYfVv1dbvO6jgHps6q26HQmWEYWjRokQ58c8BxfffwwIcrHFfZ80P5QKwyzs+LvVr0qubIsiB+2ZBl2nxos6LDo7X6H6srDUU9ZZ8Y8PLNL9d4rPMupOWvn5yDvZomMcRGxLq83k29amqN7zdHdhipC/MveNSp09AQTAWZ6l5Q67N2se30h6F/0IxtMxyhVHJssh4f+rgGthnouBPkT+8dK5sxVf6OlhXswVT5LZQvXLrg6GO2t5eFhoTq8aGPq3eL3rr7jbsd20pLcrxZmv6L6Xr2k2e1eNdiDU4eXLal+ZuZulR6Sbd0uUVjOo5xTJ29IfUGvTj2xVoHgaEhobW+89w2tq32Fe5zhGtfnPlCY18ZqyNnjijSFqm1N651uUBzvrvQpWkXZd+QXWldzm/+osOjNbz9cMc6B+1i22lkh5GO6eTVvTkpNUu18sOVjsDu3mvurdV5+VN1M6Z8oX/r/o7FhO3/Lj2b1T6Ukn7eEr7kUoljHSJPa7evdSepxtk2SdFJ2n575esSjO4w2tFute7mdbq9p2t4Na7rOI3rWnaHvXuz7jpw+oAyemVIcr3Y6xjfUYZhONq1bux8o/Jm52nAmgGVrqHnPKOptrNGgk1MREydW4dCjBDd0+ceL1VU0aiOo1wWxnfWKrqVy3gxDMPlTcHojqM17+15atG4hUe77ziPr/yiqncxrM3uorWxYdwGzXhzhv575H975ftVp0fzHurRvIdXvpfzGklxkXFq2bjlz8FUJbPTfvyp+k1g6qp/m/7KuSfHJdDwhtiI2Hr9XGEPEMq7utXVOnH/CSVcUfNMQl95eODDmttvrku4cUuXWxx/3jpxqzYf3qzZfWdrR94Ov9Q0sO1Al7avqhiGUWlAYdexSUc9MfQJFZcU6/pO11eY6ehs3S3rVGqWen23MOfvV91sLG9xmTHldK1UGzERMV6/sectC69d6LPv7dwS6TxbvCrtYtvpgX4PSPLea9CB3x7QxoMbXdZWrUnXhK7aMG6DDpw+UGEZja4JXbX/t/s9mqFU2/c+hFK1QzCFeuOePvfotUOvOVoW2sW2c+n/96dTP5xS7plcGTJqdffO1+ytIOVnTNnfpEQ1ilKTyCYufzex+0R1btpZN716k74u+lqto1s7FjjOGpCl//nH/2jX17u06+guffHdF/og/wM1Dmusp0c+XbZWUmi4+rfpr1fHvVrr9hp3tYkum45+rOiYdubt1PhN43X2wlklRSfpLxP+UqGlwfmOyOsTXq92bZaUuBTlfZ+nJ4c/6TLLKTMtU6EhoYq0ld1lrSqYyinMUeabmfr4xMeOx0Z2GOn+SfqYc2thbS4i6sowDP2+/+9188abXVov3FFVK58n3AmmqjOu6zhtOLBB/ZL6VQilyvvg7g904PTPdyt/2+e32luwVyNSRlR6EdM+rr1O3H+i0r8LMUL0xb1fKPsf2XWaMYTA1bN5T48viiXXO7zO7WG+MqDNAP3zt//0+c/xNuc3I7ERseqS8PMivpWFHTXtTuwN7swEg3fbbj1VXZvy2NSxGptatlPrTZ1v0sMDHnbZQTfQudOq6Yst7J1fA/0RTDnP0KrPYa4//XDx5910rVoOpluzblrSbEnNB0o6OOOg1uas1e/7/14JUQlVbs7UvVn3Sh+HfxFMod4IMUL0pxv+pB7P93DZVcsK9javHs17uLWTn6/Yn2iPnj2qkksljmTevr5Uu9h2lb6A9G7RW3t/s1fLdi/T6I6jHRcaSdFJurv33Xph3wu6d/u9jjVFlly7xNHv/c2D36hxWGOfvjDZ72Kv+HCFnvroKZWapUpPStfrE16v9E2c8/9FTVOS35z0pnLP5Gps6ljtP7Xf8bg97LS3YZV/c3Ku5JweeecRrfp4lUrNUkU1ilJSdJK2TNjikwu1unJp5ati/RlvuyH1BqU2Sa0wg6+2vNnK5xxMhRqerzMXHR6tnVN21urYK8OvdGkZiwqL0qu3Vr/rVHW/Rx3iO2jZ0GW1KxT1Ul0viu/odYde/uxlzek7xzsFBSHn5+e4iDh1aeoUTDnNmLKvoTOjT80tgUBVDMPQY0Nqt8QByjjfJPRmi2tVkqKT1DG+o8JCwyrdbRwV3dj5RiXHJuu65OusLqVWuiZ01fLhy60uA7VEMIV6pX1cey0ftlwzt82sdkE8X/vsZNkWz4GwvpRU1sJmX8w17/s8x9ot9mCqql3ipLIXf/uin87mDZyn7Jxs7T9dFtr0btFb9/b9uVWtutlI3uJ8N6vULFVG7wy9MOaFKqfEtmxc+7upqU1THeswON9BsZ+XPZiyz5gyTVObDm3SnLfmOHbxGt9tvFaOWBkQd3Gr4u9WPqnsDeCD/R7UtL9O8+jr7f+/pWapY9aVx2tMmT+vMRWIwSHgDS+MeUG397hdg9oOqvngBso5/I2LiHOZMRUbHuv48/pb1mv317trtQsgAO+xhdh05vdnZJqmX1qfQkNCdXDGQYUYIVwf1FLjsMbKm51XLzbPQv3DbyHqnRlXz9Dfp/1dq0atsqwG+24hgbC+lFR2wV1ZO9/XRf9Z+Dymndvfs01MG8dOOZL0zKhnfNayVxXntTeeGv6U1tywptqLlaq2La5JuC1c//fr/9O6m9c57tI5B1N53+Vp1PpRGr9pvAqKC5QSl6K3Jr+ljbduDOhQSnKdReavGVOSNLnnZI9bk5xbJeyLLHsaTDnvIMOFFIJVZKNIDU8ZzjoW1XC+0REXGadWV/68zpfzjk1XNLpCIzqMqHFnSQDeFx8ZryZXNKn5QC9pFNrI67t2BzuupeArzJhCvVTZtqBWCJQZU1LZrJ99hftcginnVj5PLBi4QC9/9rIibBGW/JtP7D5RHeI7KD4yXinxKTUeP77beBVfLFZaYtXbaVdlTKcxLp/bg6mPT3ysbs91U8nlEoWFhmnegHnKGpDl+PtA59zK5481puzCbeGaN2Ce7vt/91W6S061X+u0JbJ9i3dPg6mU+BQ9OfxJv7QFAAhc5WdMOX/uj7W5AABA1QimAA91iO9gyW6AVbG3o1UWTFXXyledjk066tN7PpVhGGoU6putj6tjGIaubnW1W8dP+4Vn7WPl2YOn7378TlLZ9rLPjn62yoUTA5VzK5+/w7TZfWdrcLvBlW5dXR1biE2GDJky9f2PdQumJOn+9Ps9/loAwaf81uvlNwcBAAD+RTAFeCiQZktJP+/M57zgtKOVrw7bUfdq0atOddVXHeI7yJCh5o2ba+WIlZrQbUK9nL7sPGPKeSFwf/Fkq3fDMBQWGqaSyyV1buUDgPLsrUL7frNPS3cv1dIhSy2uCACAho1gCvBQoKwvZVd+xtTFyxd14twJSVLbGM9mTDVk3Zp101f3faWEqIR6HYo4z3T7qfQnCytxT7gtXCWXSxyLl/uzDRFAcLq7990qPF/oaE3/ReIvtGn8JourAgAABFOAhwJtxlTHJh0lSad/OK2zF87qux+/kylTEbYINYtqZnF19ZOnLZCBpnV0a+Wfy9e17a61upRac15nSmLGFIC6y74x2+oSAABAJQimAA+0vLKl2ws6+1p0eLQSGyeq8Hyhcs/k6vzF85LK2vjqYwsavOfzWZ/rXMk5j3fJs0L53cUIpgAAAIDgRDAFeGBgm4EBGfZ0atLJEUxdvHxREm18KAt16luwU36r9vpWPwAAAIDaCbG6AKA+6dm8pyTptq63WVxJ5ZzXmfr6bN0XPgesQisfAAAA0DAwYwpww6xrZmlKzymKiYixupRKOe/MF2GLkMSMKdRPzq18thCbyyLuAAAAAIIHwRTgpkANpSTXGVPR4dGSmDGF+sm5lY/ZUgAAAEDwIpgCgohzMNX0iqaSCKZQPzm38kU1irKwEgAAAAC+xBpTQBBJjktWqBGqf//0bx0rOiZJahtLKx/qH+dWPmZMAQAAAMGLYAoIImGhYWof197l8xaNW1hYEeAZWvkAAACAhoFgCggy9nY+SWoT00YhBr/mqH+cW/kIpgAAAIDgxTtWIMg4B1OsL4X6ilY+AAAAoGEgmAKCTGqTVMef28W0s64QoA5o5QMAAAAaBoIpIMg4z5hi4XPUV7TyAQAAAA0DwRQQZGjlQzAgmAIAAAAaBoIpIMi0vLKlohpFSZLaxjBjCvWTcyuffTwDAAAACD42qwsA4F2GYWjBrxbow+Mfqm9SX6vLATzC4ucAAABAw0AwBQShrAFZVpcA1AmtfAAAAEDDQCsfACDgsCsfAAAA0DAQTAEAAg6tfAAAAEDDQDAFAAg4tPIBAAAADQPBFAAg4DBjCgAAAGgYCKYAAAGHNaYAAACAhoFgCgAQcJxb+aLCoiysBAAAAIAvEUwBAAIOrXwAAABAw0AwBQAIOLTyAQAAAA0DwRQAIOCwKx8AAADQMBBMAQACDq18AAAAQMNAMAUACDi08gEAAAANA8EUACDg0MoHAAAANAwEUwCAgGNv5TNkuIRUAAAAAIILwRQAIODER8bLkKEWjVvIMAyrywEAAADgIzarCwAAoLxmUc30xsQ31CyqmdWlAAAAAPAhgikAQEAamzrW6hIAAAAA+BitfAAAAAAAALAEwRQAAAAAAAAsQTAFAAAAAAAASxBMAQAAAAAAwBIEUwAAAAAAALAEwRQAAAAAAAAsQTAFAAAAAAAASxBMAQAAAAAAwBIEUwAAAAAAALAEwRQAAAAAAAAsQTAFAAAAAAAASxBMAQAAAAAAwBI+C6aOHj2qqVOnKjk5WZGRkUpJSdHChQt18eJFl+OOHTumsWPHKioqSk2bNtXs2bMrHLN//34NGjRIkZGRatWqlZYsWSLTNF2O2bVrl9LS0hQREaH27dvrhRde8NWpAQAAAAAAwAtsvvrGn3/+uUpLS/Xiiy+qQ4cOOnDggKZPn64ffvhBK1askCRdvnxZY8aMUUJCgvbs2aMzZ87ozjvvlGmaWrVqlSTp3LlzGjZsmAYPHqxPPvlEubm5ysjIUFRUlB544AFJ0ldffaXRo0dr+vTpWrdund5//33NmDFDCQkJGjdunK9OEQAAAAAAAHVgmOWnHvnQ8uXL9fzzz+vLL7+UJG3fvl3XX3+98vPz1bJlS0nSq6++qoyMDJ0+fVrR0dF6/vnnNW/ePJ06dUrh4eGSpMcff1yrVq3S8ePHZRiGHnroIW3dulWHDx92/KzMzEx99tln+vDDD2tV27lz5xQTE6OioiJFR0d7+cwBAAAAAAAaBncyFr+uMVVUVKT4+HjH5x9++KG6d+/uCKUkacSIESopKdG+ffscxwwaNMgRStmPKSgo0NGjRx3HDB8+3OVnjRgxQnv37tVPP/1UaS0lJSU6d+6cywcAAAAAAAD8x2/BVF5enlatWqXMzEzHYydPnlTz5s1djouLi1NYWJhOnjxZ5TH2z2s65tKlS/r2228rrWfZsmWKiYlxfLRu3bpuJwgAAAAAAAC3uB1MLVq0SIZhVPuxd+9el68pKCjQyJEjddttt2natGkuf2cYRoWfYZqmy+Plj7F3H7p7jLN58+apqKjI8ZGfn1/TqQMAAAAAAMCL3F78fNasWZo4cWK1x7Rr187x54KCAg0ePFjp6elavXq1y3EtWrTQ3//+d5fHvv/+e/3000+OGVAtWrRwzIyyO336tCTVeIzNZlOTJk0qrTE8PNylPRAAAAAAAAD+5XYw1bRpUzVt2rRWx544cUKDBw9WWlqa1q5dq5AQ1wla6enpeuyxx1RYWKjExERJ0o4dOxQeHq60tDTHMQ8//LAuXryosLAwxzEtW7Z0BGDp6en661//6vK9d+zYoT59+qhRo0buniIAAAAAAAD8wGdrTBUUFOjaa69V69attWLFCn3zzTc6efKky8ym4cOHq2vXrpoyZYpycnL09ttva+7cuZo+fbpj1fZJkyYpPDxcGRkZOnDggLZs2aKlS5fq/vvvd7TpZWZm6uuvv9b999+vw4cPa82aNcrOztbcuXN9dXoAAAAAAACoI8O0L8bkZS+99JLuuuuuSv/O+UceO3ZMM2bM0N/+9jdFRkZq0qRJWrFihUub3f79+zVz5kx9/PHHiouLU2Zmph555BGX9aN27dql3/3udzp48KBatmyphx56yGWh9ZoUFRUpNjZW+fn5NW5lCAAAAAAAgMqdO3dOrVu31tmzZxUTE1PtsT4Lpuqb48ePszMfAAAAAACAl+Tn5yspKanaYwim/qO0tFQFBQW68sorq9zJD4HBnrwyuw12jAmUx5iAM8YDymNMoDzGBMpjTKA8xoR7TNNUcXGxWrZsWWG98fLcXvw8WIWEhNSY4iGwREdH84QAF4wJlMeYgDPGA8pjTKA8xgTKY0ygPMZE7dXUwmfns8XPAQAAAAAAgOoQTAEAAAAAAMASBFOod8LDw7Vw4UKXnRvRsDEmUB5jAs4YDyiPMYHyGBMojzGB8hgTvsPi5wAAAAAAALAEM6YAAAAAAABgCYIpAAAAAAAAWIJgCgAAAAAAAJYgmAIAAAAAAIAlCKYQcJ577jklJycrIiJCaWlp2r17d5XHFhYWatKkSUpNTVVISIjmzJnjv0LhN+6Middff13Dhg1TQkKCoqOjlZ6errfeesuP1cIf3BkTe/bsUf/+/dWkSRNFRkaqc+fOWrlypR+rhT+4Myacvf/++7LZbOrdu7dvC4TfuTMm3n33XRmGUeHj888/92PF8DV3nydKSko0f/58tW3bVuHh4UpJSdGaNWv8VC38wZ0xkZGRUenzRLdu3fxYMXzN3eeJ9evXq1evXrriiiuUmJiou+66S2fOnPFTtcGDYAoBZePGjZozZ47mz5+vnJwcDRw4UKNGjdKxY8cqPb6kpEQJCQmaP3++evXq5edq4Q/ujon33ntPw4YN07Zt27Rv3z4NHjxYY8eOVU5Ojp8rh6+4OyaioqI0a9Ysvffeezp8+LAWLFigBQsWaPXq1X6uHL7i7piwKyoq0h133KEhQ4b4qVL4i6dj4siRIyosLHR8dOzY0U8Vw9c8GRPjx4/X22+/rezsbB05ckSvvPKKOnfu7Meq4Uvujomnn37a5fkhPz9f8fHxuu222/xcOXzF3TGxZ88e3XHHHZo6daoOHjyo1157TZ988ommTZvm58qDgAkEkGuuucbMzMx0eaxz585mVlZWjV87aNAg87777vNRZbBKXcaEXdeuXc3Fixd7uzRYxBtj4uabbzYnT57s7dJgEU/HxIQJE8wFCxaYCxcuNHv16uXDCuFv7o6Jd955x5Rkfv/9936oDlZwd0xs377djImJMc+cOeOP8mCBul5PbNmyxTQMwzx69KgvyoMF3B0Ty5cvN9u3b+/y2B//+EczKSnJZzUGK2ZMIWBcvHhR+/bt0/Dhw10eHz58uD744AOLqoKVvDEmSktLVVxcrPj4eF+UCD/zxpjIycnRBx98oEGDBvmiRPiZp2Ni7dq1ysvL08KFC31dIvysLs8TV111lRITEzVkyBC98847viwTfuTJmNi6dav69OmjP/zhD2rVqpU6deqkuXPn6scff/RHyfAxb1xPZGdna+jQoWrbtq0vSoSfeTIm+vXrp+PHj2vbtm0yTVOnTp3Spk2bNGbMGH+UHFRsVhcA2H377be6fPmymjdv7vJ48+bNdfLkSYuqgpW8MSaefPJJ/fDDDxo/frwvSoSf1WVMJCUl6ZtvvtGlS5e0aNEiplkHCU/GxBdffKGsrCzt3r1bNhuXQsHGkzGRmJio1atXKy0tTSUlJfrzn/+sIUOG6N1339WvfvUrf5QNH/JkTHz55Zfas2ePIiIitGXLFn377beaMWOGvvvuO9aZCgJ1vcYsLCzU9u3btWHDBl+VCD/zZEz069dP69ev14QJE3ThwgVdunRJN9xwg1atWuWPkoMKV2MIOIZhuHxummaFx9CweDomXnnlFS1atEhvvPGGmjVr5qvyYAFPxsTu3bt1/vx5ffTRR8rKylKHDh3061//2pdlwo9qOyYuX76sSZMmafHixerUqZO/yoMF3HmeSE1NVWpqquPz9PR05efna8WKFQRTQcSdMVFaWirDMLR+/XrFxMRIkp566indeuutevbZZxUZGenzeuF7nl5jvvTSS4qNjdVNN93ko8pgFXfGxKFDhzR79mw98sgjGjFihAoLC/Xggw8qMzNT2dnZ/ig3aBBMIWA0bdpUoaGhFRLp06dPV0iu0TDUZUxs3LhRU6dO1WuvvaahQ4f6skz4UV3GRHJysiSpR48eOnXqlBYtWkQwFQTcHRPFxcXau3evcnJyNGvWLEllb0BN05TNZtOOHTt03XXX+aV2+Ia3rid++ctfat26dd4uDxbwZEwkJiaqVatWjlBKkrp06SLTNHX8+HEWxq/n6vI8YZqm1qxZoylTpigsLMyXZcKPPBkTy5YtU//+/fXggw9Kknr27KmoqCgNHDhQjz76qBITE31ed7BgjSkEjLCwMKWlpWnnzp0uj+/cuVP9+vWzqCpYydMx8corrygjI0MbNmygxzvIeOt5wjRNlZSUeLs8WMDdMREdHa39+/fr008/dXxkZmYqNTVVn376qfr27euv0uEj3nqeyMnJ4U1FkPBkTPTv318FBQU6f/6847Hc3FyFhIQoKSnJp/XC9+ryPLFr1y7961//0tSpU31ZIvzMkzHx73//WyEhrpFKaGiopLJrTbjBihXXgaq8+uqrZqNGjczs7Gzz0KFD5pw5c8yoqCjHbhdZWVnmlClTXL4mJyfHzMnJMdPS0sxJkyaZOTk55sGDB60oHz7g7pjYsGGDabPZzGeffdYsLCx0fJw9e9aqU4CXuTsmnnnmGXPr1q1mbm6umZuba65Zs8aMjo4258+fb9UpwMs8ee1wxq58wcfdMbFy5Upzy5YtZm5urnngwAEzKyvLlGRu3rzZqlOAl7k7JoqLi82kpCTz1ltvNQ8ePGju2rXL7Nixozlt2jSrTgFe5ulrx+TJk82+ffv6u1z4gbtjYu3atabNZjOfe+45My8vz9yzZ4/Zp08f85prrrHqFOotWvkQUCZMmKAzZ85oyZIlKiwsVPfu3bVt2zbHbheFhYU6duyYy9dcddVVjj/v27dPGzZsUNu2bXX06FF/lg4fcXdMvPjii7p06ZJmzpypmTNnOh6/88479dJLL/m7fPiAu2OitLRU8+bN01dffSWbzaaUlBQ9/vjjuueee6w6BXiZJ68dCG7ujomLFy9q7ty5OnHihCIjI9WtWze9+eabGj16tFWnAC9zd0w0btxYO3fu1L333qs+ffqoSZMmGj9+vB599FGrTgFe5slrR1FRkTZv3qynn37aipLhY+6OiYyMDBUXF+uZZ57RAw88oNjYWF133XV64oknrDqFesswTeaYAQAAAAAAwP9YYwoAAAAAAACWIJgCAAAAAACAJQimAAAAAAAAYAmCKQAAAAAAAFiCYAoAAAAAAACWIJgCAAAAAACAJQimAAAAAAAAYAmCKQAAAAAAAFiCYAoAAAAAAACWIJgCAAAAAACAJQimAAAAAAAAYAmCKQAAAAAAAFji/wP8CsM0IzxXmAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "s = d.GetSinThetaOverLambda()\n", "obs = d.GetIobs()\n", "calc = d.GetIcalc()\n", "\n", "plt.figure(figsize=(12,6))\n", "plt.plot(s, obs, 'k', label='Iobs')\n", "plt.plot(s, calc, 'r', label='Icalc')\n", "plt.plot(s, calc - obs - 0.05 * obs.max(), 'g', label='diff')\n", "plt.legend()\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": null, "id": "3c985455-b457-4543-bfb7-b4fce860f056", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 } pyobjcryst-2024.2.1/examples/structure-solution-multiprocessing.ipynb000066400000000000000000023246731470422267000262170ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Advanced structure solution: parallel process & testing multiple configurations\n", "You should first try the cimetidine structure solution notebook before this one.\n", "\n", "In this notebook, you can try solving a structure while:\n", "* testing different spacegroups and adapting the crystal contents (number of independent molecules)\n", "* using multiple parallel process to go faster\n", "\n", "This is an example of meta-structure solution, 'meta' meaning that instead if having a single description for the contents of you crystal (spacegroup, number of molecules, atoms or polyhedra), you can try any different combinations using python. It requires a little programming but can be very powerful when several choices for the configuration of your structure are possible.\n", "\n", "For this to work you need to install the following packages:\n", "* `multiprocess`\n", "* `ipywidgets` and `py3dmol` (optional)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of processors or cores available: 8\n" ] } ], "source": [ "%matplotlib widget\n", "\n", "import os\n", "import sys\n", "import io\n", "import timeit\n", "\n", "# Note: we need 'multiprocess' instead of standard multiprocessing because of the\n", "# following issue (specific to ipython or notebooks):\n", "# https://bugs.python.org/issue25053\n", "# https://stackoverflow.com/questions/41385708/multiprocessing-example-giving-attributeerror\n", "#\n", "# In a python script (not in ipython or a notebook) multiprocessing could be used instead\n", "try:\n", " from multiprocess import Pool, current_process\n", "except ImportError:\n", " print(\"Please install `multiprocess` using 'pip', 'conda' or 'mamba' to run this notebook\")\n", " print()\n", " sys.exit()\n", "\n", "import pyobjcryst\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pyobjcryst.crystal import *\n", "from pyobjcryst.powderpattern import *\n", "from pyobjcryst.indexing import *\n", "from pyobjcryst.molecule import *\n", "from pyobjcryst.globaloptim import MonteCarlo\n", "from pyobjcryst.io import xml_cryst_file_save_global\n", "try:\n", " import ipywidgets as widgets\n", "except ImportError:\n", " widgets = None\n", "\n", "try:\n", " # Get the real number of processor cores available - requires psutil\n", " # os.sched_getaffinity is only available on some *nix platforms\n", " import psutil\n", " nproc = len(os.sched_getaffinity(0)) * psutil.cpu_count(logical=False) // psutil.cpu_count(logical=True)\n", "except:\n", " nproc = os.cpu_count()\n", "\n", "print(\"Number of processors or cores available: \", nproc)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create powder pattern object, index & fit profile\n", "Same as the cimetidine structure solution notebook, so read that for details" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Imported powder pattern: 7699 points, 2theta= 8.010 -> 84.990, step= 0.010\n", "Indexed unit cell:\n", "( 6.83 18.82 10.39 90.0 106.4 90.0 V=1281 MONOCLINIC P, 130.0296630859375)\n", "No background, adding one automatically\n", "Selected PowderPatternDiffraction: with Crystal: \n", "Profile fitting finished.\n", "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", "to disable profile fitting and optimise the structure.\n", "Fit result: Rw= 5.51% Chi2= 34095.69 GoF= 4.43 LLK= 6397.991\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a662bb9be73e421f941df676d5562d10", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYFklEQVR4nOzdeVyVZfrH8Q/7ooIoIZKm/jIVRdPctUJcUBMtrdRU1MlsIWPKdSwtrUmtXGosnaZptBSzdKxMyz01F3JvcKGsXEtcks2N9fn9geeJww4Ch+X7fr14xXnOfZ7nPocjnYvrvq/LzjAMAxEREREREal07G09AREREREREbENBYQiIiIiIiKVlAJCERERERGRSkoBoYiIiIiISCWlgFBEpJgNHTrU1lMQERERKRBHW09ARKS8mjhxYrZjhmGwa9cuG8xGREREpPAUEIqIFFFERATLli3Ldvzbb7+1wWxERERECk8BoYhIET3++OP4+/vj4+NjdXz48OE2mpGIiIhI4dipMb2IiIiIiEjlpKIyIiIiIiIilZQCQhERERERkUpKAaGISDE6ePCgracgIiIiUmAqKiMiUkQLFiywum0YBgsXLiQsLIywsDAbzUpERESk4JQhFBEpovfee481a9bg7u5OlSpVqFq1Kvb29lStWtXWUxMREREpEAWEIiJFdPjwYYYNG8aXX36Js7MzoaGh1KlTR20nREREpNxQ2wkRkVuUnp5OREQEn376KRcuXGDPnj22npKIiIhIgSggFBEpJunp6cTExODn52frqYiIiIgUiAJCERERERGRSkp7CEVERERERCopBYQiIsUsJibG1lMQERERKRAFhCIixUxVRkVERKS8UGN6EZEiateuXbZjhmFw/PhxG8xGREREpPAUEIqIFFFiYiJRUVE4Olr/Ku3Ro4eNZiQiIiJSOFoyKiJSRDNmzCAxMTHb8SlTpthgNiIiIiKFp7YTIiLFJDo6miZNmth6GiIiIiIFpgyhiEgxCQsLs/UURERERApFAaGISDFxcnKy9RRERERECkVLRkVERERERCopZQhFREREREQqKQWEIiIiIiIilZQCQhERERERkUpKAaGIiIiIiEglpYBQRERERESkklJAKCJSzIYOHWrrKYiIiIgUiKOtJyAiUl5NnDgx2zHDMNi1a5cNZiMiIiJSeAoIRUSKKCIigmXLlmU7/u2339pgNiIiIiKFp4BQRKSIHn/8cfz9/fHx8bE6Pnz4cBvNSERERKRw7AzDMGw9CRERERERESl9KiojIiIiIiJSSSkgFBERERERqaQUEIqIFKODBw/aegoiIiIiBaaiMiIiRbRgwQKr24ZhsHDhQsLCwggLC7PRrEREREQKThlCEZEieu+991izZg3u7u5UqVKFqlWrYm9vT9WqVW09NREREZECUUAoIlJEhw8fZtiwYXz55Zc4OzsTGhpKnTp11HZCREREyg21nRARuUXp6elERETw6aefcuHCBfbs2WPrKYmIiIgUiAJCEZFicvnyZW7cuIGfn5+tpyIiIiJSIAoIy7n09HR+//13qlWrhp2dna2nI1KphYSEsGbNGltPQ0REpNwzDIPExET8/Pywt9cut5KkgLCcO3v2LHXr1rX1NEREREREit2ZM2eoU6eOradRoantRDlXrVo1IOMfi4eHh41nI1K5xcbG4uXlZetpiIiIlHsJCQnUrVvX/KwrJUcBYTlnWSbq4eGBh4cHW7duJTQ0lGnTpjFq1Ci6dOlCWloa169f58knn+TJJ580H5uYmEj37t05cuQIkZGRBAQEABAcHMzly5fZt2+f+fitW7fy3XffsWbNGmbPnl3g+d11113cfvvtJCUl0alTJ+bMmZPjuJiYGBYuXMj06dPp0qULa9asKdbS/f/85z9xdXVl5MiROd4/fPhwtmzZwtmzZ4vtmlL56I8yIiIixUtbokqeFuRWQIMGDWLUqFHm7W+++YbvvvuOGTNmkJKSYh53c3NjzZo1PPLII1aP37Bhg9Xtb775BgcHhyLNxdPTk61bt7J7924OHTrEb7/9luM4X19fpk+fXqRrFIePP/4YX19fm11fRERERMQWFBBWEm5ubtSuXZvLly+bxxwdHbnttttu6bzr1q3jvvvuo1OnTnzyySe5jktLSyMlJQVXV1fOnz9Pt27duP/++3nkkUdIS0vj5MmT2QLTzLp06cJf//pX2rdvz+uvv054eDgdOnTgrbfeAuB///sfnTt3plOnTvz9738H4PTp09x777088MADbN++3TzXjBkzCAwM5P777ycqKuqWnr9ITmJiYmw9BREREZECUUBYSVy6dInz58/fcgCYWXp6Oq+++iqbN29mx44d/POf/yQtLc1qTHx8PF26dKFp06bUq1ePmjVr4uXlxfr169m+fTt33HEHW7ZsKdD1Bg4cSGRkJB988AGPP/44O3fuZOnSpQC8+OKL/Pvf/2bnzp1s376dkydP8uabb/Lyyy/z9ddfm8sNoqKi+PHHH9m2bRufffYZL7/8crG9HiIWakwvIiIi5YX2EFYCvXv3xt7ennfeeadYy/ZeunSJ48ePExwcbN6+ePGi1dJLy5JRwzAYOHAg3333HXfddRdPP/00sbGxnDt3jrvvvpu77ror3+u1aNECOzs7fH19ufvuu7Gzs8PJyQmA8+fP4+/vD8A999zDL7/8ws8//0zr1q0BaNeuHQDHjh1j165ddOnSBaDIS2FF4M/3VWaGYXD8+HEbzEZERDJLT08nOTnZ1tOQXDg5OelzWBmhgLAS+Oabb4q1QIuFt7c3/v7+bNy4EScnJ1JSUswALSs7Ozs8PT25fPkyERERBAcHExYWxtixYylo55PMm4qzbjCuVasWx44do0mTJhw4cICnn36ahg0bcvDgQbp3786+ffvo1q0bTZo0ITAwkH//+98AVnsqRQorMTGRqKgoHB2tf5X26NHDRjMSERGA5ORkTpw4QXp6uq2nInmoXr06vr6+KhxjYxUqINy+fTtvvfUW+/fv59y5c3z++ec89NBD5v25vdnefPNNJkyYAGTsVdu2bZvV/YMGDWL58uXm7djYWMLDw1m9ejUA/fr1Y/78+VSvXt0cc/r0aZ599lm2bNmCm5sbQ4YMYfbs2Tg7O5tjoqKiGDNmDHv27KFGjRo89dRTTJ06tVT/UTzwwAMcOnSIH3/8kaeeeirXKpwWK1as4NChQ0DGsriXXnqJ7t27Y29vz2233cZnn31mNd6yZDQtLY1atWrRu3dvjh49SmhoKOvXr8fd3Z0WLVrc8vN4/fXXeeKJJzAMgz59+lC/fn0mTpxovu6Wn02LFi246667CAwMxN7enh49evDiiy/e8vWlcpoxYwaJiYnZWk1MmTLFRjMSERHDMDh37hwODg7UrVtXTc3LIMMwuHbtGhcuXACgdu3aNp5R5VahGtN/88037Ny5k3vuuYeHH344W0CYtdDDN998w6hRo/j555/5v//7PyAjIGzUqBGvvvqqOc7NzQ1PT0/zdu/evTl79iz/+te/AHjyySepX78+X331FZBRQKVly5bcdtttzJkzhz/++IMRI0YwYMAA5s+fD2T0VmnUqBFBQUG89NJL/PTTT4wcOZJXXnmFcePGFfg5JyQk4OnpSXx8PB4eHkRGRvLUU08RHh5uVWm0MIKDg3F1dWX16tUMHjyYc+fOsWXLlgqd1h8+fDjR0dHs2bPH1lORciw6OpomTZrYehoiIpVaSkoKP//8M35+flaf36Ts+eOPP7hw4QKNGjXK9jkz62dcKTkVKiDMzM7OLltAmNVDDz1EYmIimzdvNo916dKFli1b8vbbb+f4mGPHjtG0aVMiIyNp3749AJGRkXTs2JHo6GgaN27MN998Q0hICGfOnMHPzw+A5cuXM3LkSC5cuICHhwcLFy5k8uTJnD9/HhcXFwBmzZrF/PnzOXv2bIGzhPrHIlJ2dO3atcBFkkREpGTcuHGDEydOUL9+fdzc3Gw9HcnD9evXOXnyJA0aNMDV1dXqPn3GLT2VNod+/vx51q5dm2MWLSIiAm9vb5o1a8b48eNJTEw079u9ezeenp5mMAjQoUMHPD092bVrlzkmICDADAYBevbsSVJSEvv37zfHBAYGmsGgZczvv//OyZMni/vpikgpyG0PrYiIlD7tSyv79DMqGyrUHsLC+Oijj6hWrRoDBgywOj506FAaNGiAr68vhw8fZvLkyfzwww9s3LgRyFh26uPjk+18Pj4+5pLUmJgYatWqZXW/l5cXzs7OVmPq169vNcbymJiYGBo0aJDjvJOSkkhKSjJvJyQkFOJZi0hJWr9+va2nICIiIlIolTZD+J///IehQ4dmS0+PHj2a7t27ExAQwODBg1m5ciWbNm3iwIED5pic/pphGEaeVTALMsayejevv5bMnDkTT09P86tu3br5PFMRKVXz58PevbaehYiIVDBbt27Fzs6OuLg4W09FKphKGRB+9913/PjjjzzxxBP5jr3nnntwcnIy+4r5+vpy/vz5bOMuXrxoZvh8fX2zFbCJjY0lJSUlzzGWSktZs4uZTZ48mfj4ePPrzJkz+T4HESlF4eGQQ39CERERkbKoUgaEH374Ia1bt+buu+/Od+yRI0dISUkxy+F27NiR+Ph4q2qU33//PfHx8XTq1Mkcc/jwYc6dO2eO2bBhAy4uLmaj9I4dO7J9+3arhqkbNmzAz88v21LSzFxcXPDw8LD6EhERERERKYoKFRBeuXKFQ4cOmX3yTpw4waFDhzh9+rQ5JiEhgRUrVuSYHfzll1949dVX2bdvHydPnuTrr7/m0UcfpVWrVnTu3BkAf39/evXqxejRo4mMjCQyMpLRo0cTEhJC48aNgYy2DU2bNiU0NJSDBw+yefNmxo8fz+jRo80AbsiQIbi4uDBy5EgOHz7M559/zowZMxg7dqw22IqIiIhUQklJSYSHh+Pj44Orqyv33nsve7NsQ9i5cyd33303rq6utG/fnqioKPO+U6dO0bdvX7y8vKhSpQrNmjXj66+/Lu2nIeVMhQoI9+3bR6tWrWjVqhUAY8eOpVWrVrz88svmmOXLl2MYBo899li2xzs7O7N582Z69uxJ48aNCQ8PJzg4mE2bNln1RomIiKB58+YEBwcTHBxMixYtWLJkiXm/g4MDa9euxdXVlc6dOzNw4EAeeughZs+ebY7x9PRk48aNnD17ljZt2hAWFsbYsWMZO3ZsSbw0IiIiIlLGTZw4kf/+97989NFHHDhwgIYNG9KzZ08uX75sjpkwYQKzZ89m7969+Pj40K9fP1JSUgB49tlnSUpKYvv27URFRfHGG29QtWpVWz0dKScqbB/CykI9WkTKGEuGX79aRURswtKHMHNvu2vXrhEdHV3qc2nSpAnu7u4FGnv16lW8vLxYvHgxQ4YMASAlJYX69evz/PPP07ZtW4KCgli+fDmDBg0C4PLly9SpU4fFixczcOBAWrRowcMPP8wrr7xSYs+pOOX0s7LQZ9zSU2nbToiIiIhI5RAdHW3WcShN+/fv55577inQ2F9++YWUlBRzmxJk9Ldt164dx44do23btkBGHQqLGjVq0LhxY44dOwZAeHg4zzzzDBs2bKB79+48/PDDtGjRohifkVRECghFREREpEJr0qQJ+/fvt8l1Cyq39mNZ25blxHL/E088Qc+ePVm7di0bNmxg5syZzJkzh+eee66QM5fKRAGhiIiIiFRo7u7uBc7U2UrDhg1xdnZmx44dVktG9+3bx/PPP2+Oi4yM5I477gAy2pr99NNPVoFn3bp1efrpp3n66aeZPHkyH3zwgQJCyZMCQhERERERG6tSpQrPPPMMEyZMoEaNGtxxxx28+eabXLt2jVGjRvHDDz8A8Oqrr1KzZk1q1arFSy+9hLe3Nw899BAAzz//PL1796ZRo0bExsayZcsW/P39bfispDxQQCgiIiIiUgbMmjWL9PR0QkNDSUxMpE2bNqxfvx4vLy+rMX/96185fvw4d999N6tXr8bZ2RmAtLQ0nn32Wc6ePYuHhwe9evVi3rx5tno6Uk6oymg5pwpMImWMqoyKiNhUXpUrpWxRldGyoUL1IRQREREREZGCU0AoIiIiIiJSSSkgFBERERERqaQUEIqIiIiIiFRSCghFREREREQqKQWEIiIiIiIilZQCQhERERERkUpKAaGIiIiIiEglpYBQRERERKScmzZtGi1btrT1NKQcUkAoIiIiIiJSSSkgFBERERERqaQUEIqIiIiIlAHp6em88cYbNGzYEBcXF+644w5ef/11ACZNmkSjRo1wd3fn//7v/5g6dSopKSl5nu8///kPzZo1w8XFhdq1azNmzJjSeBpSzjjaegIiIiIiIgKTJ0/mgw8+YN68edx7772cO3eO6OhoAKpVq8bixYvx8/MjKiqK0aNHU61aNSZOnJjjuRYuXMjYsWOZNWsWvXv3Jj4+np07d5bm05Fyws4wDMPWk5CiS0hIwNPTk/j4eDw8PGw9HRGxs8v4r361iojYxI0bNzhx4gQNGjTA1dXV1tMpsMTERG677TbeffddnnjiiXzHv/XWW3z66afs27cPyCgq88UXX3Do0CEAbr/9dv7yl7/w97//vSSnfUvy+lnpM27pUYZQRERERCq2a9fgZqatVDVpAu7uBRp67NgxkpKS6NatW473r1y5krfffpuff/6ZK1eukJqammugdOHCBX7//fdczyWSmQJCEREREanYoqOhdevSv+7+/XDPPQUa6ubmlut9kZGRDB48mOnTp9OzZ088PT1Zvnw5c+bMKfS5RLJSQCgiIiIiFVuTJhnBmS2uW0B33XUXbm5ubN68OduS0Z07d1KvXj1eeukl89ipU6dyPVe1atWoX78+mzdvJigoqPDzlkpFAaGIiIiIVGzu7gXO1NmKq6srkyZNYuLEiTg7O9O5c2cuXrzIkSNHaNiwIadPn2b58uW0bduWtWvX8vnnn+d5vmnTpvH000/j4+ND7969SUxMZOfOnTz33HOl9IykvFBAKCIiIiJSBkydOhVHR0defvllfv/9d2rXrs3TTz/NqFGjeOGFFxgzZgxJSUn06dOHqVOnMm3atFzPNWLECG7cuMG8efMYP3483t7ePPLII6X3ZKTcUJXRck4VmETKGFUZFRGxqfJaZbQyUpXRsqFCNabfvn07ffv2xc/PDzs7O7744gur+0eOHImdnZ3VV4cOHazGJCUl8dxzz+Ht7U2VKlXo168fZ8+etRoTGxtLaGgonp6eeHp6EhoaSlxcnNWY06dP07dvX6pUqYK3tzfh4eEkJydbjYmKiiIwMBA3Nzduv/12Xn31VRSfi4iIiIhIaalQAeHVq1e5++67effdd3Md06tXL86dO2d+ff3111b3P//883z++ecsX76cHTt2cOXKFUJCQkhLSzPHDBkyhEOHDrFu3TrWrVvHoUOHCA0NNe9PS0ujT58+XL16lR07drB8+XL++9//Mm7cOHNMQkICPXr0wM/Pj7179zJ//nxmz57N3Llzi/EVERERERERyV2F2kPYu3dvevfunecYFxcXfH19c7wvPj6eDz/8kCVLltC9e3cAli5dSt26ddm0aRM9e/bk2LFjrFu3jsjISNq3bw/ABx98QMeOHfnxxx9p3LgxGzZs4OjRo5w5cwY/Pz8A5syZw8iRI3n99dfx8PAgIiKCGzdusHjxYlxcXAgICOCnn35i7ty5jB07FjvLsjMREREREZESUqEyhAWxdetWfHx8aNSoEaNHj+bChQvmffv37yclJYXg4GDzmJ+fHwEBAezatQuA3bt34+npaQaDAB06dMDT09NqTEBAgBkMAvTs2ZOkpCT23yx5vHv3bgIDA3FxcbEa8/vvv3Py5MkSee4iIiIiIiKZVaqAsHfv3kRERLBlyxbmzJnD3r176dq1K0lJSQDExMTg7OyMl5eX1eNq1apFTEyMOcbHxyfbuX18fKzG1KpVy+p+Ly8vnJ2d8xxjuW0Zk5OkpCQSEhKsvkRERERERIqiQi0Zzc+gQYPM7wMCAmjTpg316tVj7dq1DBgwINfHGYZhtYQzp+WcxTHGUlAmr+WiM2fOZPr06bneLyIiIiIiUlCVKkOYVe3atalXrx7Hjx8HwNfXl+TkZGJjY63GXbhwwcze+fr6cv78+WznunjxotWYrFm+2NhYUlJS8hxjWb6aNXOY2eTJk4mPjze/zpw5U5inLCIiIiIiYqrUAeEff/zBmTNnqF27NgCtW7fGycmJjRs3mmPOnTvH4cOH6dSpEwAdO3YkPj6ePXv2mGO+//574uPjrcYcPnyYc+fOmWM2bNiAi4sLrVu3Nsds377dqhXFhg0b8PPzo379+rnO2cXFBQ8PD6svESlb0m09AREREZECqlAB4ZUrVzh06BCHDh0C4MSJExw6dIjTp09z5coVxo8fz+7duzl58iRbt26lb9++eHt7079/fwA8PT0ZNWoU48aNY/PmzRw8eJBhw4bRvHlzs+qov78/vXr1YvTo0URGRhIZGcno0aMJCQmhcePGAAQHB9O0aVNCQ0M5ePAgmzdvZvz48YwePdoM4IYMGYKLiwsjR47k8OHDfP7558yYMUMVRkVEREREpNRUqIBw3759tGrVilatWgEwduxYWrVqxcsvv4yDgwNRUVE8+OCDNGrUiBEjRtCoUSN2795NtWrVzHPMmzePhx56iIEDB9K5c2fc3d356quvcHBwMMdERETQvHlzgoODCQ4OpkWLFixZssS838HBgbVr1+Lq6krnzp0ZOHAgDz30ELNnzzbHeHp6snHjRs6ePUubNm0ICwtj7NixjB07thReKRERERGpSKZNm0bLli1L9BqLFy+mevXqJXoNKX0VqqhMly5dzMIsOVm/fn2+53B1dWX+/PnMnz8/1zE1atRg6dKleZ7njjvuYM2aNXmOad68Odu3b893TiIiIiIiIiWhQmUIRUTKgtz/LCUiIiJStiggFBEpLnmsUBAREclPeno6b7zxBg0bNsTFxYU77riD119/HYBJkybRqFEj3N3d+b//+z+mTp1KSkpKnuf7z3/+Q7NmzXBxcaF27dqMGTMmz/GxsbEMHz4cLy8v3N3d6d27t1mNP7MvvviCRo0a4erqSo8ePayq3v/www8EBQVRrVo1PDw8aN26Nfv27SvCqyGlRQGhiEhxUUAoIiK3YPLkybzxxhtMnTqVo0ePsmzZMrMdWbVq1Vi8eDFHjx7lnXfe4YMPPmDevHm5nmvhwoU8++yzPPnkk0RFRbF69WoaNmyY5/VHjhzJvn37WL16Nbt378YwDB544AGrwPPatWu8/vrrfPTRR+zcuZOEhAQGDx5s3j906FDq1KnD3r172b9/P3/7299wcnK6xVdGSpKdkdemOynzEhIS8PT0JD4+Xi0oRGzMSEvDztGRNMBBv1pFRGzixo0bnDhxggYNGuDq6mrr6RRYYmIit912G++++y5PPPFEvuPfeustPv30UzP7Nm3aNL744guz2v7tt9/OX/7yF/7+978X6PrHjx+nUaNG7Ny502yl9scff1C3bl0++ugjHn30URYvXsxf/vIXIiMjad++PQDR0dH4+/vz/fff065dOzw8PJg/fz4jRozI95p5/az0Gbf0KEMoIlJMjHR1IBQRkaI5duwYSUlJdOvWLcf7V65cyb333ouvry9Vq1Zl6tSpnD59OsexFy5c4Pfff8/1XE8//TRVq1Y1vyzXd3R0NAM9gJo1a9K4cWOOHTtmHnN0dKRNmzbm7SZNmlC9enVzzNixY3niiSfo3r07s2bN4pdffincCyGlrkJVGRURsSUFhCIiZdcza57ht8TfSu16t1e7nYUhCws83s3NLdf7IiMjGTx4MNOnT6dnz554enqyfPly5syZU+hzAbz66quMHz/e6lhuiwYNw8jWIzunntmWY9OmTWPIkCGsXbuWb775hldeeYXly5ebfb+l7FFAKCIiIiIVXmGCM1u46667cHNzY/PmzdmWjO7cuZN69erx0ksvmcdOnTqV67mqVatG/fr12bx5M0FBQdnu9/HxwcfHx+pY06ZNSU1N5fvvv7daMvrTTz/h7+9vjktNTWXfvn20a9cOgB9//JG4uDiaNGlijmnUqBGNGjXihRde4LHHHmPRokUKCMswBYQiIsXEkiHU7kERESksV1dXJk2axMSJE3F2dqZz585cvHiRI0eO0LBhQ06fPs3y5ctp27Yta9eu5fPPP8/zfNOmTePpp5/Gx8eH3r17k5iYyM6dO3nuuedyHH/XXXfx4IMPMnr0aN5//32qVavG3/72N26//XYefPBBc5yTkxPPPfcc//jHP3BycmLMmDF06NCBdu3acf36dSZMmMAjjzxCgwYNOHv2LHv37uXhhx8u1tdKipf2EIqIFBMtGRURkVsxdepUxo0bx8svv4y/vz+DBg3iwoULPPjgg7zwwguMGTOGli1bsmvXLqZOnZrnuUaMGMHbb7/NggULaNasGSEhITm2kMhs0aJFtG7dmpCQEDp27IhhGHz99ddWVULd3d2ZNGkSQ4YMoWPHjri5ubF8+XIAHBwc+OOPPxg+fDiNGjVi4MCB9O7dm+nTp9/6iyMlRlVGyzlVYBIpO5ITE3H28CAVcNSvVhERmyivVUYrI1UZLRuUIRQRKSb6+5qIiIiUNwoIRUSKifYQioiISHmjgFBEpJhoD6GIiIiUNwoIRUSKiZaMioiISHmjgFBEpLgoIBQREZFyRgGhiEgx0ZJREZGyQ6s2yj79jMoGBYQiIsVEAaGIiO05ODgAkJycbOOZSH6uXbsGYNXnUEqfo60nICJSUegvnSIitufo6Ii7uzsXL17EyckJe3vlP8oawzC4du0aFy5coHr16mYQL7ahgFBEpJio7YSIiO3Z2dlRu3ZtTpw4walTp2w9HclD9erV8fX1tfU0Kj0FhCIixURLRkVEygZnZ2fuuusuLRstw5ycnJQZLCMUEIqIFBMtGRURKTvs7e1xdXW19TREyjwtqhYRKS4KCEVERKScUUAoIlJcFBCKiIhIOaOAUESkmGgPoYiIiJQ3CghFRIqJZQ+h8oQiIiJSXiggFBEpJsoQioiISHlToQLC7du307dvX/z8/LCzs+OLL74w70tJSWHSpEk0b96cKlWq4Ofnx/Dhw/n999+tztGlSxfs7OysvgYPHmw1JjY2ltDQUDw9PfH09CQ0NJS4uDirMadPn6Zv375UqVIFb29vwsPDs5U+joqKIjAwEDc3N26//XZeffVVVSkUKccUEIqIiEh5U6ECwqtXr3L33Xfz7rvvZrvv2rVrHDhwgKlTp3LgwAFWrVrFTz/9RL9+/bKNHT16NOfOnTO/3n//fav7hwwZwqFDh1i3bh3r1q3j0KFDhIaGmvenpaXRp08frl69yo4dO1i+fDn//e9/GTdunDkmISGBHj164Ofnx969e5k/fz6zZ89m7ty5xfiKiEhp0h90REREpLypUH0Ie/fuTe/evXO8z9PTk40bN1odmz9/Pu3ateP06dPccccd5nF3d3d8fX1zPM+xY8dYt24dkZGRtG/fHoAPPviAjh078uOPP9K4cWM2bNjA0aNHOXPmDH5+fgDMmTOHkSNH8vrrr+Ph4UFERAQ3btxg8eLFuLi4EBAQwE8//cTcuXMZO3YsdnZ2xfGSiEgpUoZQREREypsKlSEsrPj4eOzs7KhevbrV8YiICLy9vWnWrBnjx48nMTHRvG/37t14enqawSBAhw4d8PT0ZNeuXeaYgIAAMxgE6NmzJ0lJSezfv98cExgYiIuLi9WY33//nZMnT5bAsxWREqeiMiIiIlLOVKgMYWHcuHGDv/3tbwwZMgQPDw/z+NChQ2nQoAG+vr4cPnyYyZMn88MPP5jZxZiYGHx8fLKdz8fHh5iYGHNMrVq1rO738vLC2dnZakz9+vWtxlgeExMTQ4MGDXKcd1JSEklJSebthISEQj5zESkxWjIqIiIi5UylDAhTUlIYPHgw6enpLFiwwOq+0aNHm98HBARw11130aZNGw4cOMA999wDkONyTsMwrI4XZYxl/1Fey0VnzpzJ9OnT83p6ImIj2kMoIiIi5U2lWzKakpLCwIEDOXHiBBs3brTKDubknnvuwcnJiePHjwPg6+vL+fPns427ePGimeHz9fU1M4EWsbGxpKSk5DnmwoULANmyi5lNnjyZ+Ph48+vMmTP5PGMRKS3aQygiIiLlTaUKCC3B4PHjx9m0aRM1a9bM9zFHjhwhJSWF2rVrA9CxY0fi4+PZs2ePOeb7778nPj6eTp06mWMOHz7MuXPnzDEbNmzAxcWF1q1bm2O2b99u1Ypiw4YN+Pn5ZVtKmpmLiwseHh5WXyJSNiggFBERkfKmQgWEV65c4dChQxw6dAiAEydOcOjQIU6fPk1qaiqPPPII+/btIyIigrS0NGJiYoiJiTGDsl9++YVXX32Vffv2cfLkSb7++mseffRRWrVqRefOnQHw9/enV69ejB49msjISCIjIxk9ejQhISE0btwYgODgYJo2bUpoaCgHDx5k8+bNjB8/ntGjR5sB3JAhQ3BxcWHkyJEcPnyYzz//nBkzZqjCqEg5piWjIiIiUt7YGRXoE8zWrVsJCgrKdnzEiBFMmzYt10It3377LV26dOHMmTMMGzaMw4cPc+XKFerWrUufPn145ZVXqFGjhjn+8uXLhIeHs3r1agD69evHu+++a1Wt9PTp04SFhbFlyxbc3NwYMmQIs2fPtqoqGhUVxbPPPsuePXvw8vLi6aef5uWXXy5UQJiQkICnpyfx8fHKForY2G/79nF727ZcB9wqzq9WERGRUqfPuKWnQgWElZH+sYiUHb/t3cvt7dopIBQREblF+oxbeirUklEREZtSECgiIiLljAJCEZFiogUXIiIiUt4oIBQRKSaqMioiIiLljQJCEZFiooBQREREyhsFhCIixURLRkVERKS8UUAoIlJcbgaECgtFRESkvFBAKCJSTLRkVERERMobBYQiIsVEAaGIiIiUNwoIRUREREREKikFhCIixcSSIdQeQhERESkvFBCKiBQXVRkVERGRckYBoYhIMVHbCRERESlvFBCKiBQTFZURERGR8kYBoYhIMVFAKCIiIuWNAkIRkeKiJaMiIiJSziggFBEpJtpDKCIiIuWNAkIRkeJyMyBUWCgiIiLlhQJCEZFioj2EIiIiUt4oIBQREREREamkFBCKiBQTZQhFRESkvFFAKCJSXLSHUERERMoZBYQiIsVEGUIREREpbxQQioiIiIiIVFIKCEVEiov6EIqIiEg5o4BQRKSYaMmoiIiIlDcKCEVERERERCopBYQiIsXE0JJRERERKWcqVEC4fft2+vbti5+fH3Z2dnzxxRdW9xuGwbRp0/Dz88PNzY0uXbpw5MgRqzFJSUk899xzeHt7U6VKFfr168fZs2etxsTGxhIaGoqnpyeenp6EhoYSFxdnNeb06dP07duXKlWq4O3tTXh4OMnJyVZjoqKiCAwMxM3Njdtvv51XX31VHyhFyjMtGRUREZFypkIFhFevXuXuu+/m3XffzfH+N998k7lz5/Luu++yd+9efH196dGjB4mJieaY559/ns8//5zly5ezY8cOrly5QkhICGlpaeaYIUOGcOjQIdatW8e6des4dOgQoaGh5v1paWn06dOHq1evsmPHDpYvX85///tfxo0bZ45JSEigR48e+Pn5sXfvXubPn8/s2bOZO3duCbwyIlIq1IdQREREyhujggKMzz//3Lydnp5u+Pr6GrNmzTKP3bhxw/D09DT++c9/GoZhGHFxcYaTk5OxfPlyc8xvv/1m2NvbG+vWrTMMwzCOHj1qAEZkZKQ5Zvfu3QZgREdHG4ZhGF9//bVhb29v/Pbbb+aYTz75xHBxcTHi4+MNwzCMBQsWGJ6ensaNGzfMMTNnzjT8/PyM9PT0Aj/P+Ph4AzDPK5XXkCFDbD2FSi9q6VLDACO+4v5qFRERKRX6jFt6HG0ajZaiEydOEBMTQ3BwsHnMxcWFwMBAdu3axVNPPcX+/ftJSUmxGuPn50dAQAC7du2iZ8+e7N69G09PT9q3b2+O6dChA56enuzatYvGjRuze/duAgIC8PPzM8f07NmTpKQk9u/fT1BQELt37yYwMBAXFxerMZMnT+bkyZM0aNAgx+eRlJREUlKSeTshIaFYXh8pPyZOnJjtmGEY7Nq1ywazESta8i0iIiLlTKUJCGNiYgCoVauW1fFatWpx6tQpc4yzszNeXl7ZxlgeHxMTg4+PT7bz+/j4WI3Jeh0vLy+cnZ2txtSvXz/bdSz35RYQzpw5k+nTp+f7fKXiioiIYNmyZdmOf/vttzaYjVjRklEREREpZypNQGhhZ2dnddswjGzHsso6JqfxxTHGuPlhMq/5TJ48mbFjx5q3ExISqFu3bp7zl4rl8ccfx9/fP9sfJoYPH26jGYmFoQyhiIiIlDMVqqhMXnx9fYE/M4UWFy5cMDNzvr6+JCcnExsbm+eY8+fPZzv/xYsXrcZkvU5sbCwpKSl5jrlw4QKQPYuZmYuLCx4eHlZfUrm89tprOWapw8PDbTAbsaKAUERERMqZShMQNmjQAF9fXzZu3GgeS05OZtu2bXTq1AmA1q1b4+TkZDXm3LlzHD582BzTsWNH4uPj2bNnjznm+++/Jz4+3mrM4cOHOXfunDlmw4YNuLi40Lp1a3PM9u3brVpRbNiwAT8/v2xLSUWknFBAKCIiIuVMhQoIr1y5wqFDhzh06BCQUUjm0KFDnD59Gjs7O55//nlmzJjB559/zuHDhxk5ciTu7u4MGTIEAE9PT0aNGsW4cePYvHkzBw8eZNiwYTRv3pzu3bsD4O/vT69evRg9ejSRkZFERkYyevRoQkJCaNy4MQDBwcE0bdqU0NBQDh48yObNmxk/fjyjR482M3pDhgzBxcWFkSNHcvjwYT7//HNmzJjB2LFj813CKlJRDB061NZTKFZaMioiIiLlTYXaQ7hv3z6CgoLM25a9diNGjGDx4sVMnDiR69evExYWRmxsLO3bt2fDhg1Uq1bNfMy8efNwdHRk4MCBXL9+nW7durF48WIcHBzMMREREYSHh5vVSPv162fV+9DBwYG1a9cSFhZG586dcXNzY8iQIcyePdsc4+npycaNG3n22Wdp06YNXl5ejB071mp/oEhFUWkqoyogFBERkXLGztCftMu1hIQEPD09iY+P137CCi41NRVHR0c2btzIlClTcHBwIDw8nMGDBwPQp08f1q5da+NZ5uz222/PsTLquHHj2Ldvnw1mVDL+9+GHtHjiCeIBT/1qFRERKTJ9xi09FSpDKFLRREVFMWnSJOLi4nB0dCQlJYUff/yRr776ilatWjFlyhR27tzJO++8w7Vr12w93VxVlsqoRnq6racgIiIiUijKEJZz+utJxXbfffexbNkyq9Yi7dq1w8XFhe+++w6AxYsX89///peYmBj27t1rq6kK8MMHH3D3k08qQygiInKL9Bm39FSoojIiFU1aWhqenp5Wx1q2bMnVq1fN2yNHjmTs2LEkJiaW9vQkC0uGUKGgiIiIlBdaMipShs2aNYuQkBCcnZ3x8PAgPj6e1NRU3nnnHatxQUFBREdH22iWYlJWUERERMoZBYQiZdj999/P9u3buX79OnFxcXh5eeHq6mrraUkZd/DgQaZOnYqTkxMTJkwwe6SOGjWKDz/80MazExERkbJES0ZFygE3Nzdq165dboPBzz77jFatWjFs2DA++ugjGjduTNu2bVm9erWtp1asykpRmfDwcN5++23mzZvHvHnzmDt3LgC//vqrjWcmIiIiZY0yhCIVRExMDL6+vraeRo7mzJnDzp07SUxMpGXLlkRHR+Pq6kr37t3p16+fradXbOxu/tfWC0ft7Oxo2LAhACtWrGDatGmMHj2a1NRUG89MREREyhplCEUqiLLcwsHNzQ13d3dq1apFt27d8PT0xMXFBUfHivU3KUvRZrt8xpU0Hx8fTp48ad6eNm0agYGBqkIrIiIi2SggFCnDNm7cSPv27enUqRPLly8HMtpOVK9enXbt2plfbdu2Zc+ePTaebe5atmxJWloaAEuXLgUgOTmZmjVr2nJaxa6sLBlduXIl9evXtzo2bNgwbty4YZsJiYiISJlVsf48L1LBvPLKK6xfvx5nZ2ezCX1iYiJ3330327Ztsxrbo0cPG80yf2+//bbV7bi4OKpXr87KlSttM6ESUlaWjIqIiIgUlDKEImWYg4MD1atXx93dnblz59K6dWuqVKlCQkJCtrFTpkyxwQyLZsCAAbaeQokoKxnCsubgwYOEhITQv39/du3aZR4fNWqUDWclIiIioIBQpExr2bKl1V6wkSNH8tZbb3H9+nXzmKX/YGBgYGlPr8iMCtqvryw/r4MHD9rs2qp6KiIiUnZpyahIGTZ//nyr23Fxcdma0IeFhbFly5bSntotWbVqla2nUCJsXUzGYsGCBVa3DcNg4cKFhIWFERYWVurzUdVTERGRsksZQpFyJKellk5OTjaYya3x8vKy9RRKRFlZMvree++xZs0a3N3dqVKlClWrVsXe3p6qVavaZD6qeioiIlJ2KSAUKUdyWpK4fv16G8xEclJWlowePnyYYcOG8eWXX+Ls7ExoaCh16tSxWWsSVT0VEREpuxQQihSToUOHlvg1KtpSy5iYGFtPoViVlSqjdnZ2DBkyhP/+97+kpqbSr18/Ll26ZONZiYiISFmkPYQihTRx4sRsxwzDsKqeWFIq2lLL4cOHs2HDBltPo9iUlSWjFvb29oSGhtKnTx9l40RERCRHCghFCikiIoJly5ZlO/7tt9/aYDblQ7t27bIdMwyD48eP22A2lc8jjzxS7goPiYiISOlQQChSSI8//jj+/v74+PhYHS/N/VkxMTH4+vqW2vVuVWJiIlFRUTg6Wv/K6dGjh41mVELKyB7CrMrK3sasgoODK1SGWEREpDxSQChSSK+99lqOx8PDw0ttDuVtqeWMGTNITEzMtuR1ypQpNppRyShrS0YtbL33dODAgdmOGYZBVFSUDWYjIiIimSkgFCnDCrPUcujQoURERJTGtAqtf//+Vrejo6Np0qQJgYGBNppRCSmjmThb7z3du3cvW7Zswd7+zzpmhmEQGhpqw1mJiIgIKCAUKdNyWmo5ceJELl68aFXcprSK2hSXsLCwCrGnLTU1NdsyWMluwoQJVKtWDW9vb6vjY8aMsdGMRERExEKfZETKsJyWWkZERDBx4kRatmxpNbY8FbVxcnKy9RSKLCoqikmTJhEXF4ejoyMpKSl4e3szY8aMMrVkNCkpiSNHjnD58mVq1KhBQEAAzs7ONplLWFiY1e24uDiqV6/OoEGDbDIfERER+ZMCQpFiUhIFMrIutYSMojaPPfaYTYva3Kr169fbegpFFhYWxrJly6hbt6557PTp0wwdOpS5vXrZcGZ/WrJkCQsXLqRt27Z4eHgQFxfHgQMHeOaZZxg2bJitp8eAAQMqRIZYRESkIlBAKFJIti6QUZJFbQ4ePMjUqVNxcnJiwoQJdOrUCYBRo0bx4Ycf3vL5K4K0tDQ8PT2tjnl4eJCWllZmqnm+//777Nixw2rPXmpqKl26dCkTAWFZeZ1EREREAaFIoVXkAhnh4eEsWrQIR0dHJkyYQGRkJGPHjuXXX3+19dTKjFmzZhESEoKzszMeHh7Ex8eTmprKG2+8gXFz2a6twx03Nze2bdtGUFBQxnwMg23btuHq6mrjmWWwddVTERER+ZN9/kMqlvr162NnZ5ft69lnnwVg5MiR2e7r0KGD1TmSkpJ47rnn8Pb2pkqVKvTr14+zZ89ajYmNjSU0NBRPT088PT0JDQ0lLi7Oaszp06fp27cvVapUwdvbm/DwcJKTk0v0+cutsxTIqFevnvlVv379ClEgw87OjoYNG1K/fn1WrFhBQkICo0ePJjU11dZTKzPuv/9+tm/fzldffcV7773H2rVr2bZtG/fddx92N8fY5XmGkrdkyRK+/PJLOnfuTIcOHbj//vtZs2YNS5cutfHMMti66qmIiIj8qdJlCPfu3UtaWpp5+/Dhw/To0YNHH33UPNarVy8WLVpk3s5aiOH555/nq6++Yvny5dSsWZNx48YREhLC/v37cXBwAGDIkCGcPXuWdevWAfDkk08SGhrKV199BWQsO+vTpw+33XYbO3bs4I8//mDEiBEYhsH8+fNL7PnLrctaIMOiIhTI8PHx4eTJk9SvXx+AadOmsXTpUpYsWWLbiZVBbm5uuLm5WR0rK0shfX19efvtt209jRypMquIiEjZUukyhLfddhu+vr7m15o1a7jzzjut+qG5uLhYjalRo4Z5X3x8PB9++CFz5syhe/futGrViqVLlxIVFcWmTZsAOHbsGOvWrePf//43HTt2pGPHjnzwwQesWbOGH3/8EYANGzZw9OhRli5dSqtWrejevTtz5szhgw8+ICEhoXRfFClXNm7cSPv27enUqRPLly83j/fp0+eWz71y5UozGLQYNmwYN27cuOVzVwqGwUHgMTIKAmVuBTJq1CibTcvWoqKieOCBB+jUqRNdu3alY8eO9O3bl8jISFtPTUREpNKrdAFhZsnJySxdupTHH38cO7s/F3lt3boVHx8fGjVqxOjRo7lw4YJ53/79+0lJSSE4ONg85ufnR0BAgPnhb/fu3Xh6etK+fXtzTIcOHfD09LQaExAQgJ+fnzmmZ8+eJCUlsX///lznnJSUREJCgtWXVC6vvPIK69evZ9OmTezZs4fnnnuO9PR0rl27ZuupVVoHDx7M+MYwCAdmAPPmzWPevHnMnTsXoFLvw3z44Yf59ddfuXHjBg888AC7d+/mvffeo1cZqcoqIiJSmVXqdTtffPEFcXFxjBw50jzWu3dvHn30UerVq8eJEyeYOnUqXbt2Zf/+/bi4uBATE4Ozs3O2PTC1atUiJiYGgJiYmGwtASBjOV7mMbVq1bK638vLC2dnZ3NMTmbOnMn06dOL+pSlBMXExODr61vi13FwcKB69eoAzJ07l8WLF/Pggw9y5cqVEr+2wIIFC6xuG4bBwoULCQsL4x7DwA74P8Dr5j7MadOmVfp9mOfOnePkyZPUrFmTf/zjHzzyyCP84x//KDNLbEVERCqzSp0h/PDDD+ndu7dVlm7QoEH06dOHgIAA+vbtyzfffMNPP/3E2rVr8zyXYRhWWcbM39/KmKwmT55MfHy8+XXmzJk85yWlp7T6ALZs2ZKTJ0+at0eOHMnYsWNJTEwsletXdu+99x5r1qzB3d2dKlWqULVqVezt7alatSoAPsCpTOOnTZtGYGAge/futcl8y4L69evTv39/unfvztatW/nll19o2rQpNWvWtPXUREREKr1KGxCeOnWKTZs28cQTT+Q5rnbt2tSrV4/jx48DGcUakpOTiY2NtRp34cIFM+Pn6+vL+fPns53r4sWLVmOyZgJjY2NJSUnJljnMzMXFBQ8PD6svKV3t2rXL9tW2bVv27NlTKtefP3++1T6/uLg4goKCiI6OLrFrZl4iXVAHDx4kJCSkwu2lO3z4MMOGDePLL7/E2dmZ0NBQ6tSpk/EHgfR0VgJ3ZHlMZd+H+dhjj/Hxxx+blVl3797Nzp07adSoka2nJiIiUulV2iWjixYtwsfHJ99CHH/88Qdnzpyhdu3aALRu3RonJyc2btxoNig/d+4chw8f5s033wSgY8eOxMfHs2fPHtq1awfA999/T3x8vNnou2PHjrz++uucO3fOPPeGDRtwcXGhdevWJfKcpXgkJiYSFRWVrVJijx49bDKfAQMGsGXLlmI5l+U9nZlhGERFRRX6XBW1p6GdnR1Dhgxh8ODBRERE0K9fPy5dupRx580lkLZuO1HWvPjii+b3bm5uREdH06xZM7MKs4iIiNhOpQwI09PTWbRoESNGjLD6UH/lyhWmTZvGww8/TO3atTl58iQvvvgi3t7e9O/fHwBPT09GjRrFuHHjqFmzJjVq1GD8+PE0b96c7t27A+Dv70+vXr0YPXo077//PpDRdiIkJITGjRsDGRmXpk2bEhoayltvvcXly5cZP348o0ePVtavmA0dOpSIiIhiO9+MGTNITEzMto90ypQpxXaNnORWrr8492Ht3buXLVu2YG//5+IBwzAIDQ0t9LksPQ2BCrmXzt7entDQUIYOHZrnvl/JLiwsrNj+iCEiIiK3plIGhJs2beL06dM8/vjjVscdHByIiori448/Ji4ujtq1axMUFMSnn35KtWrVzHHz5s3D0dGRgQMHcv36dbp168bixYvNHoQAERERhIeHm0vt+vXrx7vvvmt1rbVr1xIWFkbnzp1xc3NjyJAhzJ49u4SffcU1ceLEbMcMw7BarlgcLH8csIiOjqZJkyZWrUuKS1RUFJMmTSIuLg5HR0dSUlLw9vZmxowZNG/eHIBVq1YV2/UmTJhAtWrV8Pb2tjo+ZsyYQp+rID0NiztYtwV7e3tzH7KRnm7j2ZR9v//+O4mJiVbvDREREbEdO0Nl3sq1hIQEPD09iY+Pr/SZxdtvv51ly5ZlOz5u3Dj27dtXYtft2rVriWU77rvvPpYtW0bdunXNY6dPn2bo0KF89913JXLNzOLi4syKprcit2B95cqVnDhx4pbPX1ZETp7M6Vmz+DvQYuhQevTowYwZM/Dw8GDq1Kn069fP1lO0iQEDBrBq1Sr+9a9/sWzZMjp16sQPP/xAp06deOmll2w9PRERKYP0Gbf0VMoMoVRMjz/+OP7+/tlafpR09U8nJ6cSO3daWhqenp5Wxzw8PEhLSyuxa2ZWXPsTIyIicgzWv/3221s+d1kRExODYRjMAb4BHOfMoWXLlkRHR+Pq6kr37t0rbUBo6Zf6ySefWC1Jvu+++xQQioiI2JgCQqkwXnvttRyPh4eHl+h1169fX2LnnjVrFiEhITg7O+Ph4UF8fDypqam88cYb2caWRB/E4lpAYKtgvTQNHz6c6a1a4Qa4A161atGtWzczoM9p/2dl0bBhQ9asWUPbtm356quv6Nq1KwcPHrRaii8iIiK2oSWj5ZzS6ZXD9evXiYuLw8vLC1dX1xzHBAcHs2HDhmK9bmxsbLbiOZWdpXJwZoZhcPz4cb558kk+festpgI1M/1qTU5OZsiQIaxcubJU5njw4EGmTp2Kk5MTEyZMMKsbjxo1ig8//LBU5pBZcnIy8+fPZ926dZw5cwYvLy86d+7MxIkTs/2RQEREBPQZtzQpICzn9I+l8skrIImLiyv9CRVSSQSupcnf3z/XtiPTW7ak0+zZxAHVb/5qLa59mIVx3333WbX86NixI2PHjiUoKKhCLdMVEZGKS59xS0/lXcMkUk6VtT6IuSnOnoZlSZ5tR776Ktv44uwTWVAVveWHiIiIFB8FhFJhbNy4kSlTpuDg4EB4eDiDBw8GoE+fPqxdu9bGsys+Jd0HMSkpiSNHjnD58mVq1KhBQEAAzs7OhT5PcfY0LEuyth2xCAwMZNfq1dmO22IRRkFafoiIiIgA2Oc/RKR8eOWVV1i/fj2bNm1iz549PPfcc6Snp3Pt2jVbT63INm7cSPv27enUqRPLly8HMgKSYcOGmWOio6MBiqUP4pIlSwgKCuKjjz5i27ZtLFq0iKCgIJYuXVroc1l6GtarV4/vv/+ehx56iClTptC8eXMaN25M27ZtWZ1DAFWu5RD8FWefyIJauXJlth5/w4YN48aNG6U+F4ukpCQOHDjApk2bOHDgAMnJyTabi4iIiPxJGUKpMBwcHMy9WnPnzmXx4sU8+OCDXLlypVSuXxJN1i1BrrOzM1OmTGHnzp288847VkFuWFhYsS1JfP/999mxY4dVVi81NZUuXbpYBaEFERYWZn4/Z84cdu7cSWJiYoVuxZBTNlBFeTL+0LBw4ULatm2Lh4cHcXFxHDhwgGeeeabQ7ysREREpXgoIpcJo2bKl1TK5kSNHUq9ePZ555plivU5uTdZ37dpVrNeBggW5xdkH0c3NjW3bthEUFARkPK9t27blWtm0MOd1d3fH3d1drRgqoeL8Q4OIiIgUL30akwpj/vz5Vrfj4uIICgoyl1QWl9Jssl6QILc4+yAuWbKEWbNmMWXKFNLS0nBycqJNmzZFWjKaWcuWLUlLS8PBwcE8V3JyMjVr1iyOaZcd6ekA2OVwV0n0iSyMgwcP0qpVK5tcu6T+0CAiIiK3Tm0nyjmV5M1d165dS6S649SpU3nuueey9U/7xz/+QXh4eLFfL18//QS9esGhQ1AO3gO2DoyKU2pqqlWWc+df/0rnf/yDeMAzy6/W0my3sWDBAqvbhmGwcOFCwsLCrJbylpaYmBhmzZrF3r17rf7QMGnSpArzXhARkeKlz7ilRxlCqbBK6m8dr732Wo7HbRIMAr+9+iq3nzhB7Lff4vXggzaZQ2EMHz68XPchjIqKYtKkScTFxeHo6EhKSgre3t7MmDEDDIN2QBrgkKlfpKVPZGl57733qFevHgMHDsTOLiNfaW9vT9WqVUttDpn9+OOPHD58mPbt29OrVy8mTZrEwYMHOXHihAJCERERG1NAKBWWLao72sKPP//M7cDpEycoS+VL2mUKiCxKOzAqCWFhYSxbtoy6deuax06fPs3QoUOZ1bIlicAOoOaePVaPK80+kYcPH+aTTz5hxYoVDBw4kEGDBvHpp58yfPjwEr3uwYMHmTp1Kk5OTkyYMIFOnToBGZVxW7VqxaFDh/j44485dOgQ7u7uNGvWjHPnzpXonERERCRvCgilwqrI1R2tll3eLNRhlLGm44mJiURFRWUrHJM5MCqPy0fT0tLMojgWHh4epKWlgWEwA7gCZN0dWVx9IgvCzs6OIUOGMHjwYCIiIujXrx+XLl0q8euGh4ezaNEiHB0dmTBhApGRkYwdO5aEhATef/99HB0dadeuHZ999hljx461aRsMERERyaA+hCLlkFWmxxIQpqXl+ZiDBw8SEhJC//79rSqijho1qkTmOGPGDBITE7MdzxwYlXTGqiTMmjWLkJAQunfvzoABA+jWrRsPPvggb7zxBoZh0B+onml8cfaJLCx7e3tCQ0NZvXo1X3zxRYlfz87OjoYNG1K/fn1WrFhBQkICo0ePxs7OjgYNGlC/fn0uXLhAQkICo0aNKrFl3SIiIlJwyhBKhZKUlMSRI0e4fPkyNWrUICAgAGdn51K5dkkUDSnIskvDUso/n4Awt+zNr7/+Wqxztujfv7/5fbt27bhx44ZVVcnyunz0/vvvZ/v27Vy/fp24uDi8vLzM57Xjk0+yjS/OPpFFZW9vj5+fX4lfx8fHx6oq7rRp01i6dCn/+c9/OHPmTLbjt1q9VkRERG6dAkKpMEqr+fXAgQOzHTMMg6ioqGK7hkVBll3i4JAxh3yWjFqyNwArVqxg2rRpjB49mtRSWGqamJhIrVq12Lp1q9Xx0txXV9zc3Nxwc3OzPphDxqs4+0SWtm3btvHaa6/RokULsxiMp6cnM2fOpGPHjtnGr1y5MtuxYcOG5fjvL7fjIiIiUroUEEqFUVrNr/fu3cuWLVusrmMYBqGhocV2DQvLssus+yGt9qNZloze7IGXm9yyN0uWLCnWOedkxowZ2fpEQunuq7OV4uwTWRjFkS2fNGkSK1asIC4ujuDgYPbu3Yu7uzsDBgzIFtyLiIhI+aQ9hFJhWJpfW5RU8+sJEyZQrVo16tWrZ37Vr1+fMWPGFOt1IGPZZU7FcTLvRyvoktGVK1eawaDFsGHDSrywR2pqKv3797daNmnLfXUl4eDBg8CfQXlOjelL05IlSwgKCuKjjz5i27ZtLFq0iKCgoEIv0XR1daVu3bo0b94cf39/6tSpQ40aNXC4mZUWERGR8k8ZQqkwlixZwqxZs5gyZYpV8+vi3qeUtbF3XFwc1atXZ9CgQcV6nRz99hu0aAEHD8Idd2QcK+CS0dKUV6++5s2bl4l9dUWVV9P3FjaaU1bFlS339fUlLS0NBwcH8+eVmppKej7Z6MuXL5uZyRo1arBx40amTJmCg4MD4eHhDB48GIA+ffqwdu3aIjxDERERKS4KCKXC8PX15e233y716w4YMKD0gpvdu+HyZfjkE5g0CcBsPF6W5NWr77vvvivX++ryavpeVqpmWrLlQUFBQNGz5cuXL892zNHRkY0bN+Y4fvPmzbz88st4e3ub+3hjY2OJjY1l586dODs7M2XKFHbu3Mk777zD7t27C//kREREpFgpIBS5RaUaBFSrlvHf69fNQzN/+IFukG/WxiJr9qYk5NmrD9vtqysOeTV9/27HDltPDyj5bHnWIkcWL7/8MuvWraOa5X0KJCQkULNmTZ588knz2MmTJ6lTp06ObUlERESkdCkgFLlFq1atKpXrTJw4kdTjx3EE0tevx/7aNQzD4EhcHADp+QSmuWVvpk+fTrdu3YCMvXBTp07FycmJCRMm0KlTJyCjV+GHH35Y4LlaevU5Ozvj4eFBfHw8qampvPHGG+aYL774gnvuuYc7LEtfy4k8m74XMCgvaSWRLU9NTc01ELSwt7fn4sWLVgHhxYsXSU9P57nnnrP6We/atavEemCKiIhIwSkgFLlFORV9KQkRERE816EDHYHjDg7c1acPAKv/9S+4fj3fpaO5ZW969+5tBoTF1aswr159Fv3796dBgwYl1gexpFmavvfp0+fPwjxlZMloNv/5D0ybBqdPF+phWfeCJicnc9ttt5l7QbP617/+xbhx44iJicEwDOzs7KhduzYvvfQS/v7+eHt7Axn7bh977DGrPY4iIiJiG/q/sUg58fjjj/N/t91GINDKy4vAwEACAwMJvv32jAH5BISW7E1mFy9etPpQbulVWL9+fVasWEFCQkKRexUePHiQRx99lLCwMA4cOGAet2SFQgCn8+cLfd6y5pFHHimVpu+3wpg0Cc6cKfTjwsLCeOGFF6hevTqpqak4Ozvz22+/cc899+TYd9Pf35/PP/+c3bt3ExkZye7du1m1ahWvvvqqGQxCxr5boHQKMYmIiEieFBCKFJOYmJgSPf9rr72Gt4cHAKmZWkw8XK9egR5vyd507NiRDh060LFjRyZMmMC//vUvc4ylV6HFtGnTCAwMZO/evYWeb3h4OG+//Tbz5s1j3rx5zJ07F8DMCH4FrMu0F7K8stpDevP7slbmJyEhoUiPO3bsmJnJq1OnDr6+vuayz6zVdgujrBTfERERkUoWEE6bNg07OzurL19fX/N+wzCYNm0afn5+uLm50aVLF44cOWJ1jqSkJJ577jm8vb2pUqUK/fr14+zZs1ZjYmNjCQ0NxdPTE09PT0JDQ4m7uc/L4vTp0/Tt25cqVarg7e1NeHg4ycnJJfbcpeQNHz68xK/heLM6Z1pOGbt8MoS5ZW/8/f3NMcXZq7Ag2UbvChAYZN5DWlYDnZSUlCI9zsnJiRs3bnDx4kUSEhI4e/Ys586do3HjxmaBoKIorX23IiIikr9KFRACNGvWjHPnzplfmZc9vfnmm8ydO5d3332XvXv34uvrS48ePawq4T3//PN8/vnnLF++nB07dnDlyhVCQkKsPhwNGTKEQ4cOsW7dOtatW8ehQ4cIDQ01709LS6NPnz5cvXqVHTt2sHz5cv773/8ybty40nkR5Ja0a9cu21fbtm3Zs2dPiV/b6WZRj1v5MF4aPvvsM/73v//x0EMP8dFHH9G4cWPWrl1LtWrVrLKNZTN8KpzS2kN6K4r6Ok+dOpVly5bh5OTE1atXue2226hatSrp6elWBYLyk7WaqOU1U5VRERGRMsCoRF555RXj7rvvzvG+9PR0w9fX15g1a5Z57MaNG4anp6fxz3/+0zAMw4iLizOcnJyM5cuXm2N+++03w97e3li3bp1hGIZx9OhRAzAiIyPNMbt37zYAIzo62jAMw/j6668Ne3t747fffjPHfPLJJ4aLi4sRHx9fqOcUHx9vAIV+nBRdkyZNjJSUlGzHu3fvXuLX3vXKK4YBxvZu3cxj3/bsaRhgRP7tbyV+/YJq166dcfXqVSMmJsbw9fU14uLijBs3bhj33nvvn4PAiK9gv4K2DR9uGGAklLHndcHOzjBucU7Xrl0zjh07Zly/fj3XMR999JEREBBgtGrVypg5c6Z53N/fP8fjQUFBtzQnERGpuPQZt/RUugzh8ePH8fPzo0GDBgwePNjcz3TixAliYmIIDg42x7q4uBAYGMiuXbsA2L9/PykpKVZj/Pz8CAgIMMfs3r0bT09P2rdvb47p0KEDnp6eVmMCAgKsClH07NmTpKQk9u/fn+f8k5KSSEhIsPqS0jVjxowcMxtTpkwp0et+9tlnjHj/fYYB39xctte2bVt2XriQMaAAyxWTkpI4cOAAmzZt4sCBAyW2TNnNzQ13d3dq1apFt27d8PT0xMXFJVvbgoqQIbSIiYkpu1VGi4GbmxthYWF5NrdfuHAhBw4cwN/fH3d3dx555BGuXbvGb7/9xu7du/n3v//NmTNn6NatG3FxcWV2ia2IiEhlUqnaTrRv356PP/6YRo0acf78ef7+97/TqVMnjhw5YhYEqVWrltVjatWqxalTp4CMD3zOzs7ZlojVqlXLfHxMTAw+Pj7Zru3j42M1Jut1vLy8cHZ2zrcwycyZM5k+fXohnrUUt/79+1vdjo6OpkmTJgQGBpbodefMmcP7I0bQ9I03aPrzz/x64QKurq609fXlJcDIpwfekiVLWLhwIW3btjX7EB44cIBnnnmGYcOG5fnY4OBgNmzYUOC5tmzZkrS0NBwcHMxm6MnJydSsWbPA5yhvhg8fzhRfXw4CkwG3/v1vqZdjiTCMHPeabtu2jddee40WLVrQq1cvJk2ahKenJzNnzqRjx45cvnyZy5cvZ9uLOHHiRKvbp0+f5sUXX2TXrl1ERETg7+9P7969uXHjBsHBwbRt25YaNWpQrVo16tWrh8fNIkkiIiJiO5UqIOzdu7f5ffPmzenYsSN33nknH330ER06dADI1svNuNlLKy9Zx+Q0vihjcjJ58mTGjh1r3k5ISKBu3bp5PkZKVlhYGFu2bCnx67i5ueHm5EQtoHWNGnh6egLgcPM9k1+25f3332fHjh1WbSZSU1Pp0qWLGRAOHDgw2+MMw8ixxUBecmqK7uzszMqVK60P5vN+L4vatWuX7ZhhGBw/fhz69iUceA/wmDfvlno5FsbBgweZOnUqTk5OOQah5jsjl4Bw0qRJrFixgri4OIKDg9m7dy/u7u4EBQVRtWpVvL298fDwwN3dnc6dO/Pqq6/SrVs3IiIiWLZsmXme2NhYWrduzbfffgtAjx498PPzo02bNixdupT/+7//M8f+8MMPdOnSpaReEhERESmgShUQZlWlShWaN2/O8ePHeeihh4CM7F3t2rXNMRcuXDCzeb6+viQnJxMbG2uVJbxw4YL5AczX15fzOfRWu3jxotV5vv/+e6v7Y2NjSUlJyZY5zMrFxQUXF5fCP9lKbOjQoURERJTY+Z1uVv4saZasG8DUZs2AjKybh+X6+RSacXNzY9u2bQQFBQEZQcy2bduslgDu3buXLVu2WAWNhmFYFUW6VcHBwaxfvx47yueS0cTERKKiorItf+3RowcYBnbAnUCVm9VVp02bVuRejgUVHh7OokWLcHR0zDMITU9JwT6H3x+urq7UrVuXunXr4u/vT506dQA4deoUEydO5MUXX+R///sfTz31FGlpaTz44IOsWbOGxx9/HH9/f3NVhCVLfuHmMubo6GiaNWvGvffey6lTp8yA8NixY1y6dInWrVuX2GsiIiIiBVOpA8KkpCSOHTvGfffdR4MGDfD19WXjxo20atUKyPiwvW3bNrOaXuvWrXFycmLjxo1mJuXcuXMcPnyYN998E4COHTsSHx/Pnj17zEzC999/T3x8vBk0duzYkddff51z586ZweeGDRtwcXHRB6RbkHX5GmQEM5a9myVl/fr1JXp+i7fffpvvX3oJyAik4uLiqF69Oq/efTds3JhvhnDJkiXMmjWLKVOmkJaWhpOTk5m5sZgwYQLVqlWzaiIOMGbMmELPN69sY3p6Og6Uz4DQsoc069LxKVOmwL/+hQ9wGrA085g2bRpLly5lyZIlJTYnS4sPIM8gND01NceA0NfX11zia8l2Wx771Vdf8eKLLzJhwgQWL16Mo6MjQ4YM4aWXXmLnzp05zic8PBz4M3ue9b0XHR3NX/7yF6v3noiIiNiITUrZ2Mi4ceOMrVu3Gr/++qsRGRlphISEGNWqVTNOnjxpGIZhzJo1y/D09DRWrVplREVFGY899phRu3ZtIyEhwTzH008/bdSpU8fYtGmTceDAAaNr167G3XffbaSmpppjevXqZbRo0cLYvXu3sXv3bqN58+ZGSEiIeX9qaqoREBBgdOvWzThw4ICxadMmo06dOsaYMWMK/ZxUgelPfn5+xtatW7N9tW7duuQv/vXXhrF+fYlfJvJvfzMMMLZ162ZWaNwaHGwYYOwIDy/x6xdG/fr1jV9//dU4efKk+bVnzx7j3nvvNZKTkgwDjMt2draeZrHaOmSIYYBxrZR/tT788MPGiRMnrI4tWbLEcHFxMQzDMM7frDJ64/LlQp33f//7n1G9enXjrrvuMtzc3IzmzZsbDz74oHH06FHrirG5CA4OLtRxERERC33GLT2VKkN49uxZHnvsMS5dusRtt91Ghw4diIyMpF69ekBGhun69euEhYURGxtL+/bt2bBhA9WqVTPPMW/ePBwdHRk4cCDXr1+nW7duLF68GAcHB3NMREQE4eHhZjXSfv368e6775r3Ozg4sHbtWsLCwujcuTNubm4MGTKE2bNnl9IrUTFlXb5mURoN43nggYz/lnDVRDvL+e3s/swIWorJ5FNUJkfOzvDyy1ACFVJzyjaOHj2aMWPGkJaSghPlM0OYzYIFGa/hpUvmz6e0d0Zm25sJDBs2zNwbanmd0wvZoP7QoUM4OTnh6OhIo0aNaNu2LUePHmXHjh3UqFEj2/isxWkuXLhAly5dzOI0FqWVVRcREZH82RmG6n6XZwkJCXh6ehIfH6+KfbZkKdRRwv+c9kycSLu33uK77t0J+OwzvLy82NajB4GbNrEzLIzO771XuBPa2YGjIxQyUMiviElOhVdSUlI4ceIEcXFxXIuPx716dS7b2VGjKIFsGTF06FAiNm6EixfBMNj+2GPcv3w5SYBLGfrVet7enlqGwZWzZ6l6++0Ffty9997L9u3brfaUXrp0iYceeogdO3ZkG9+hQ4cci9MMGDCArVu3/jlw8WJYuxZWrDAP5feeEhGRykWfcUtPpcoQipR3mf9+k3UPW35tJ3I9Z3q6VUYrKSmJI0eOcPnyZWrUqEFAQADOzs5Wj8mviElOhVe6du1qZgstmaqyEzLlLa/9qelubtgDpKebP5+yVjvVMp/CZghzKkTUo0cPs33Ixo0bmTJlCg4ODoSHh5vFaZ5++mmr4jSZV1AA8Je/ZLtWQQvjiIiISPGqdI3pJWclWQFRitHNSqKZAynLh/2iBoR2mR63ZMkSgoKC+Oijj9i2bRuLFi0iKCgoW/EPSxGT+jcraSYkJFgVMbEUXsnMMIyMwitAWjkLCCMiIujTp4/VV0hICDVr1uTMpUsZg65eBeAzoB0ZSzY/+ugjGjduTNu2bVm9erXN5l/UJaPJycl8+eWXdO7cmQ4dOnD//fdz6dIl/vnPfwLwyiuvsH79ejZt2sSePXv4/fffSUlJ4dq1a1bFadIL8N7M7z0lIiIiJUMZwkosKiqKSZMmERcXh6OjIykpKXh7ezNjxgyaN29u6+lJDpKSkjgA7PvjD6oeOEBAQIC5TLU4Vn8XpFchgI+PDydPnqR+/fpA9kqa/fv3z3buVatWmVnN9HL2IT+v/alXLX1BU1IgPZ05wDbgxpw5tGzZkujoaFxdXenevTv9+vUr1XkHBwezYcMG83ZaLq97bhVhf/jhBy5fvoyTkxMDBw7kb3/7G7GxsTz88MNs2bIFBwcHqlevDsDcuXNp0aIFAwYM4MqVK+Z5HB0d2bhxY75zze89pSWlIiIiJUMBYSUWFhbGsmXLrBrbnz59mqFDh/Ldd9/ZcGZFk3X52uDBgwHo06cPa9eutfHsbt2SJUt4c9UqupLRcuLEokUcOHCAoLg47od8+xAWREF6FUL+RUxyknmJq3EzMCno0sqS7iWZn9deey3H4+Hh4RwbNy7jxs0smBtQBfDw8aFbt254enoCZOtbWJzyavEBmbLIubxHcus/2aJFCw4cOICTkxP/+Mc/eOSRR/j444/NPz60bNnSKogbOXIk9erV45lnnrE6f0Gee37vKS0pFRERKRkKCCuxtLQ088OqhYeHh9n8vLyxLF9zdnZmypQp7Ny5k3feeYdr167ZemrF4v333+efDz1E53/+k+133sn98+eTmprKPd7e/B2KpaBNQXoVFofclozaqpfkrbC7WVAoJSkJDIOWQDrgAObrlpycbO67Kwm5BXShoaFW43JbVpxb/8natWvj5OQEZARkTZs2pXfv3ly+fBmA+fPnW42Pi4sjKCiI6OjoW35OWRW016KIiIgUjgLCSmzWrFmEhITg7OyMh4cH8fHxpKam8sYbb+T7WFtnbHKSdfna4sWLefDBB62Wr5Vnbm5uHPztNzrfvG3J3jnfDAKKuocwM19fX95+++0Cjy/K+yAmJga7mx/iDTvrHGFERATLli3L9phvv/22UNcoTZaA8Ma1a2AYvE1GQGgYhnmfs7Nzjhmw4pJbQDdmzJiMOd68ndNS3W3btrFq1Sp+/vlnevXqxaRJk/D09GTmzJmMGDHCKgPYvXt3ateuzbhx44iJicHX19fqXAMGDDD3Dha3/JaUioiISNEoIKzE7r//frZv387169eJi4vDy8sr29LA8pSxKejytfJqyZIlhPfowSdA3N691Lj/ftq0acOLTZrA7t0l1vLi09tuI8LOjiYjR1odNwyD7777jp9//pkaNWrk2JcuJ8OHD2fCqFG8A6SnpzNl1y5zP9htt91mu16SRWQJ+lKTk81j9kBaKbadCAsLy/H4oEGDgNyXjA4dOpRffvmFFStWsHv3bvr168c999zD9evX6du3L6tXr+a1117jww8/NPfqNWvWjHXr1mXbnwjwxx9/0L59+xJZtl2UZcoiIiKSPwWEgpubG25ubjneV54yNlmXrwEltnzNFnx9fXm+fXs6HT7M9nbtuP/mh/FtXboAue8Pu1WDLl1iLDCuTx/z2P79+1m0aBEJCQlMnz6duLg4YmNjmT59Ot26dQMwexFmzpQZhsHx48eZcvEiEUCcnR1vzJtn7gfz8vLKFgxCxnLF0pJT8ZLPPvuMZ555ht69e9OjRw9mzJiBh4cHU6dOpcnNxxmpqSXeh7KophsGbsCVd96hqp8f8OcfdurVq0fdunUZMmQILVu2NItLnT9/nnnz5vHVV18RFRVFdHS0uSfR8nOEjKJDlj2CLi4uRV62/cknn/Dmm2/SrFmzbK9xaRfjERERqUwUEEqe8qquWBmUtaWxOQZ9liCksMFIIcY/DlbvgxdffJFdu3axaNEiM1hLSEigd+/edOvWjaioKI4ePUrz5s1xcnKyqmA7duxYEi5doiFwwc7ulvaDlUTlyZyKl3z66ac0a9aMOTlUDrVcJT1LQJi16mtOSyyLQ0HeoyuB5cDFDh24LVMF4W+//RZfX1/S0tKws7Pjzjvv5MyZM3z11Vc0bNgQZ2dn0tLSaN68OS4uLmaxqaioKIKCgujUqROOjo4cPXqUjh07kpqaWqhl25krHR8+fJgmTZpw4cIFxo8fz88//2yz6qwiIiKViQJCyVNe1RUrknKzNPbmPkG7zIHHzWOF3UNopKUVuMrnawCZ/ihgb2/PxYsXrd4HFy9eNIuahIWFMW/ePB555BGzuqilgu3f//533pg2jZNkVOSEou8HK4nKkzkVLzl9+jQNGzakVq1auVYOzRYQZvl5DB8+PNsSy8IoynvUEoQOBWKBdxYvpu3993P27Fm2bdtGcnIyTZo0YfLkycTExPDrr7/SoUMHzp49y88//0yrVq2AjGxvRESEOYdly5bRqVMnmjRpgmEYnDlzhvfee48OHTrkuGx7xIgRdO/enRYtWmTsUwQ8gbjQUL766ivq1q1Lly5d2Lp1K6dPn6ZNmzalUp1VREREFBBWahWxTUNSUhJHjhzh8uXL1KhRg4CAAJydnfN9XHlZGmvkEBBagsTC9iFMT03FoYjz+Ne//mUWFrEsCa1duzb/+te/gIwKtoMGDcLDw8N8TExMDGlpaQQGBlJv2jTqd+lCTKZzFmU/WElUnsypeElkZKT5XshaOTRrwZZ2N28bnTtnWyp7K4ryHrUEoZOBPsA7Eyfi7u9Py5YtWb58Oa6urkydOpX9+/fj4OBAbGwsp0+fZuDAgWagl3KzIuxTTz3F7bffzrJly/j66695+umnqVKlijkHDw8P6tevT/369UlMTKRatWpm1VE/Pz8WLVpEXFwcwcHB7AXcgQYnTpiBX8uWLUlLS8PDw8P8mWauzloRf1+JiIiUBQoIK7GK1qZhyZIlLFy4kLZt2+Lh4UFcXBwHDhzgmWeeyTfQKC9LY82sU+bg7+b3doXMEKYlJxc5IPT39+fzzz/P9f6cKtju37+fr776CvgzeMqaoSzsh/6SqDyZU/GSdevWWd2Oi4ujevXqrFy5kuMuLkBGxtUwDBKBKCB9+3acM+3N7dGjR5HnBHm/Ry37NTPLHITaAa5A7Zo1uaN5c+rWrUtgYCA+Pj68/fbb/P7770RFRbFgwQKrrG/WOVvmsGDBAqZMmcIff/zB2bNnSUpKolWrVnz88ccAPPjgg2zZssWsOurq6krdunWpW7cu/v7+1InJ+FPAnXfeafU+CQ4Otqp0nLk6a0X7fSUiIlJmGFKuxcfHG4ARHx9f6Mfee++9VrcXLVpkhISEGG3atCmu6ZWqzp07G2lpaVbHUlJSjM6dO5f8xTPCshK/zPZBgwwDjO+6dDGPfduhg2GAsfnhhwt1rmuXLhVs3rfw3K5du2b8/vvvxvXr143g4GDz+M/r1hkGGDH29lbjO3bsaMTGxhpXr141XnjhBWPMmDFGWlqa0SXT8y0LgoKCzO9/cnY2DDDObt5sbO3Xz1gFxmUwkq5ds3rM1q1bS2w+TZo0MVJSUrId7969u2EYhnEZjEFg/Lx2rdX9KSkpRpcuXYxVq1YZv/zyi3H8+HHjjz/+KPCc27VrZ5w6dcq4fv268c477xgPP/ywcfXqVfPnZfnvoEGDjNTU1D8fCEYKGF0CAw3DsH6f5Kai/b4SEZG83cpnXCkc+/wCRqm4LG0aLEaOHMnYsWNJTEzM97HBwcElOLOicXNzY9u2beZt42afvqytNIqqTDTAtmQBM2cDc8oaFkBapjYJRZXf+8DNzY3atWvj6urK+vXrzePpufQhtPSSdHd3Z+7cubRu3bpM9pI0cnit01NTMYD+gBd/ZnMtVW4DAwNLbD4zZszI8d/tlClTzO+XA/aZXu+DBw/i6OjI5MmTmT17Ni+88ALTp09nxIgR3HPPPWzevNlqyW9OHB0dueOOO3B1dSU8PJynnnqK3r17c+nSJQBWrVqVce3ly3FwsM5HOwIbv/4asH6f5OZWfl+JiIhI7rRktBIrSJuGgQMHZhtjGIZZfr4sWbJkCbNmzWLKlCmkpaXh5OREmzZtzD1fRZG5CqKjo6NVtczmmao1lpocCsjYFbGoTGECwoEAWd4LOb0P8qykmZwM8+bB88+zY/9+hpGx13D88uXm0tAzZ86Ui16SlkAHrHv85VTsJywsrMSatVv0798/x+OWIPRDMvbsXVq9Gu8TJzAMg4ULFxIWFkZERATr1q0zl9keO3aMjRs30qdPHzw8PKhRowYPPPAAO3bsICUlxWxa37FjR/r06WP18+rRowd+fn6MGzcOwCwolBtHu/zLGlneU1l/X1n2J1aUtjIiIiK2ooBQ8rR37162bNliVo+EjEAgNDTUhrPKma+vL2+//fYtnePy5ctmQZoaNWoQFhbGsmXLqFu3rjnGUi3TUoK/NOVVVKawGcL0QmQ89wJb3ngj3/dBnpU0N2+Gv/0NnJ35R0QE3wJ/2Nvz3p495n6wBg0amMGFRW4f+kuqJchnn33GzJkz8+yHl1Ogk56SkuPeTicnp2KfY8bp/+zvmJ8PgQZAFycnsxCMvb09VatWNSvGvvfee9SrV4+ffvqJ22+/HTs7O06dOkXjxo0ZMWIE7733Hr/88gvu7u4MGDCArVu3MnnyZKs5REdHm43rC6QAvTOzvqcsrUa+//57vvzyy2JpNSIiIlKZKSCUPE2YMIFq1arh7e1tdXzMmDE2mlEhjRgBjz4KISF5Dtu8eTMvv/wy3t7eZkGa2NhYYmNjzSqIFh4eHqSVUBP4fOWUDbQEISWYIZwAVu8DSxGTy5cvWzWgtxQxySmoqmYYvAz0+eMP7O3sqA5cs7PLt19dXu0WSqLy5Jw5c9i5cyeJiYnZeg7m1A/PEgLm1nYi81LZWzFnzhzGjRvH//73P5566ikgowrnnDlz6NKlS56P3Q18DSz+/nsebd7cLCgzfPhw2rZty7hx46hWrRpbt24lJSWFli1bsnjxYu6//35GjRrFlClTcHFx4dNPP2XcuHFcv36djh07ZptDp06duHz5crbr55Y53rBxI1NnzcLBwYELFy5Qo0YNAH766ScaNWqUY3VWS6uRYcOGMW/evGJpNSIiIlKZKSCs5PJr0xAWFmY13lJdcdCgQaU91aL5+GOMTz7BLp/g5+WXX2bdunVUq1bNPJaQkECnTp2yVcvMXAWx1OVRZbSwS0YLkyEMA8j0R4H4+HiOHDmSrUecpSplTkHVobfeYsrrr1P7wAGa3HEHJ3/8Ecs7La+loXm1WyiJypNubm64u7vj7u6ea89Bi5iYPxtnGFn+SGD+PL7+GrZtg1t8z6xdu5Zx48YxYcIEFi9eTOPGjblw4QL9+/dn586deT7WDqgFXIqLY+HChfz1r38lNTUVb29vmjVrRq1atahbty6nTp3i4Ycf5v/+7/+YNGkSAKGhodSrV4/jx4+zdu1a/vrXv3Lw4EG6detGtWrVSEpK4pFHHiEoKIirV6/meP0+ffrg6Oj4Z+B+8/igv/yFEydP4uzsTN26denZsyfz58+nW7duZjuNrJVOLa1GvvnmG7y8vIql1YiIiEhlpoCwEitKmwZLGfnyIDExkWpAWnp6vm90y7K5zAHhxYsX8fLyYvv27Vy/fp24uDi8vLyKrUhNkZSRojLOzs4kJiZmWzppKWKSU1BV1d0dR+Dq1atMHjWK+hs38tvNx+W1H+zxxx+nZs2aBAQEWB0fPnw4K1asoHr16gD5ZhoLytIPz8HBIVvPwayGDx/Oeze/N9LScv4Z9OmT8d9bDAivXr3K0aNHSUxMpHHjxkBG243My3hzYwe8DPx78mTuGTmSBg0a8Mknn1C1alVGjBjBxx9/bC4BfvfddwF4/vnniYmJwcHBwfzZtG/fnp9++gl7e3sWLFhgXvuRRx7hrbfeYt26ddlaYBiGwQ8//MClS5f+DNyBd4D09HTz5/fvf/+b33//PdvPL3NhHMtzLu5WIyIiIpWZAsJK7P3332fHjh1WHyhTU1Pp0qVLrgFhTtUVyypLxiC9AHPOr9G6m5sbbpl6ytlKTnsI/37qFIFQ6CWj6TcbjheFt7e3VTAYHR1NkyZNzCImOQVVKamp1CRjiaUlm2Z5Fnn9oeG1114jODg4297E8PBwjh8/XuxFaLLuQ7U0Uwesgp2syxnTU1Ot/n0UNmObn6ZNm/LWW2/RpEkTYmNj8fLyIjEx0VxmmRc7wB64HBcHZCwFb9iwIfHx8bi7u1OvXj3Aeim4vb09fn5+Oc6hVatWpKWl0aBBAxITE/Hz86N+/fp4eHiwa9eubNlULy8v68B93jweBFycnc2fn6UwTtOmTa1+flmrs+bUJ3LYsGH59hoVERGRnCkgrMQsbRqCgoKAgrVpyFxdsaxLv/mBvCABYX6N1suCiRMncubYMdYCZ0+fZvXEiRiGwWHL8sgSLCqTVdb3QdZKmjkFVU4ODqwEvgWMLI3pLYFUfg3WsypIpdxbNWDAABITE4mKispxiazd9u0ApGfdV3rzOV0jo8InhgEFLAKTk0WLFlndtizf/vLLL81CK05OTkyYMCHHQiv/Ap5bupSpn36KYRgsWbLE/KOHZel4zZo1OXDgQLal47nNATL2ln700UcAvPvuuzlmjoOCgqwDd6Ae8LSHh1URoaJUDk1MTLTK7IuIiEjhqA9hJbZkyRK+/PJLOnfuTIcOHbj//vtZs2ZNnm0a8isjX5ak5tLrrryKiIigQ82a9AE6enjQp08fQkJC8LzZ362obSeKksfK+j7Ir5LmgAEDrLKaWfsQWgLMxMREdu3axZ49e8yvvXv30rZt2yLMsngYhlGgPn9GLkVlTMWcMRwwYID5fXh4OG+//Tbz5s1j3rx5zJ07F8AstGIH+APzn3uO3bt3ExkZye7du1mwYAH79u0jKCiIjz76iG3btrFo0SKCgoLM3wOWfZIxMTG57tOzzKV///7ZMseQ8fPNVj0W2P/VV7k+p6w+/vhjmjdvzj333MOsWbPM4w8++GCujxEREZH8KSCsxCxtGnbu3ElkZCTfffcd8+bNy72PXDmTlmVZYnHKryF7SXj88cep5+5OINCqShUCAwMJDAykl6V5eBEzhMXx+uRXSdMwDLPFQOYloxaWIKIggRdktB4oLatWrcoW6FhkXs6YdQ9h1oDwVpbo5iTz8lRLoZX69euzYsUKEhISrAqtmJnYLHMaPnw477//Pq+//jpHjhzh6tWr9O3bl6tXr/Lss8+ye/du+vfvzwMPPECTJk3o2rUrHTt25LbbbrPqQZnbUvKsRamyyvqa5LUkfeHChRw4cIADBw7g7u7OI488wrVr18yVACIiIlI0WjIq+cqvEmlZlXbzw+atBDz9+vXLtoQ2p4bspeG1115jW9eulkmYxx+pXh0uXCjVPYQWeTaiz2TVqlX8ejNrZfDnktGsP5ucGqwvWLAAgCNHjmQ8JlNT9dwCjoLOqyAKmhU3smbPsgQ3acnJ2BdjQaLMy3bzK7QSSMZf/66/+ipuCxfenF7GUty2bdvy7LPP4uzszLp163j77bdxdnYmJSXFXHrq6enJtWvX8PX1xTAMfvnlF8LCwsxenAtvnjOr/DLHWQsb5bUk3d7eHicnJ7P9houLC76+vqSmptK6desCtd8QERGR7JQhlDwtWbIkz+VkZZnlw+atBIQbN27kjTfe4K233rL6atiw4Z+DSrPQTg5VRs2lmEXMEN5KfmX48OEFGufl5WUVMBlpaSQB/zMMNm3axIEDB0jOperpe++9x5o1a3B3d6dKlSpmM/WqVave8ryKU7YMYQ4BYXHKHKiuXLky25LMYcOGcePGDQCuALuAT/72N/bs2cOYMWO4ceMG6enpNG3alISEBH766SfOnj2LnZ0dTz31FL/99huurq5Uq1aNHTt20K5dO/P9f+edd1r14gwPD89xjpkzx0lJSRw4cCDj5w0kY/1HiYMHDxIaGkr//v3ZtWuXeXzUqFFARuuKkydPmv0lV61axbJly7j//vv55ptveOmll4rwKoqIiIgyhJKnolQiLSvSk5KAgu0hzK2YCVg3ZLfIXI2xuPeG5SmH4M+uiG0n0guRQW0HkEM7gdyKveR4vUwB4dq9e3kOaJKezu3btuXZ8uTw4cN88sknrFixgoEDBzJo0CA+/fRThg8fXugiNAVVlKy4kZZmtU/SrAh783ZxB4SFMQ1I5M85WZZf7tq1i6eeego7Ozv+/e9/s2DBAsaNG0eXLl2oVq0adevWZeTIkYSFhXH9+nVatWpFamoqKSkp1K9fn3bt2hXo9c7W4gY4AAz7+mue6dwZ+LPhvKOjIxMmTMjWcP7FF18E/my/ceHCBUJCQggJCQEoUPsNERERya5SBYQzZ85k1apVREdH4+bmRqdOnXjjjTfMnl6QUbbeUjHPon379kRGRpq3k5KSGD9+PJ988gnXr1+nW7duLFiwgDp16phjYmNjCQ8PZ/Xq1UDG0sP58+ebpdcBTp8+zbPPPsuWLVtwc3NjyJAhzJ49u0wtxyxKJdKyIs0SEBZgbF5VJLMGgwCDBg0yvzdSUym1sjU59SEsamP6QiwZTQSicmgnkLVpeF6M1FRiyPh5rIqM5ABw1sGBO157Dcj9Dw12dnYMGTKEwYMHExERQb9+/bh06VLGvPL4uRVVUfpzQg59CEsgQ1jU5dsPkrFs9NqsWbgvWsSxY8fo3LkzhmEQExPDihUr+Pvf/058fLy5bDc6OpqjR4/i6OjIiy++yPXr12nRogUHDx7Mlp21vN65VfzM9oelv/+dVKDzl1/yzOuvA3/ugwT4z3/+w5w5c3JsOG9pfRETE1Po9hsiIiKSA6MS6dmzp7Fo0SLj8OHDxqFDh4w+ffoYd9xxh3HlyhVzzIgRI4xevXoZ586dM7/++OMPq/M8/fTTxu23325s3LjROHDggBEUFGTcfffdRmpqqjmmV69eRkBAgLFr1y5j165dRkBAgBESEmLen5qaagQEBBhBQUHGgQMHjI0bNxp+fn7GmDFjCvWc4uPjDcCIj48v4quSt3Pnzhl//etfjU6dOhnt27c37r33XuP55583zp07VyLXK07Hdu40DDBiHRzyHbtq1Srj8uXL2Y5v3bo138emJCQYRsbH/yLNs6A+/fRTo2GVKsZQMF6qXdto1KiR0aZNG+MNHx/DAGP9ffcV6nyHlywxDDBu5DdvMFZBkV8fi91jxhg9wNh4//1GuzvvNLaAccrR0TAMw0hPTzc2bdpkdOvWLd/zpKWlGb/99pthGLf2c8tN586djbS0NKtjKSkpRufOnXMc/7Ozs2GAcXDWLGNr167meyHu5EnDMAzj2s3bsT/9VOQ5GYZhfPzxx0bHjh2N8PBwY8qUKcaYMWOMTp06GUuWLMn3sdfBaALGvjlzDMMwjNdff904ceKEYRiG0b17d8MwDOPw4cNGz549zccEBQVlO4/l9f7oo4+MgIAAo1WrVsbMmTPN1zunx1iusWXLFvN2OhibwLirbl3zPAEBAeacLOdZsmSJ4eLikuM5g4OD833eIiJSfpX0Z1z5U6UKCLO6cOGCARjbtm0zj40YMcJ48MEHc31MXFyc4eTkZCxfvtw89ttvvxn29vbGunXrDMMwjKNHjxqAERkZaY7ZvXu3ARjR0dGGYRjG119/bdjb25sfbA3DMD755BPDxcWlUG98/WPJ3ZFvvzUMMC7fDDoK49ixYwUee+PSpVIJCNu1a2esa9vWiAGjpoODERcXZ9y4ccO428UlIyDMJWDJzf/+8x/DAON6AQLCwj63tm3bZvvyv+02w/NmQPj1uHHGX8FobWdXoD80DBkypEDXLczPLTfZgpd8glVLQHjg9deNbUFB5usV++uvhmH8GRBeOnz4luZV2EDVMAyjR48ehmEYxo2bQf3211/PNmbr1q05vm55BVwdOnQwkpOTjWPHjhnvvPOO8fDDDxtXr141unTpkuP4bH9YAuN5MJrfeaeRnJxsGIZRoPOIiEjloc+4padSLRnNKj4+HiDbUqOtW7fi4+ND9erVCQwM5PXXX8fHxweA/fv3k5KSYtV2wM/Pj4CAAHbt2kXPnj3ZvXs3np6etG/f3hzToUMHPD092bVrF40bN2b37t0EBATg5+dnjunZsydJSUns37/fXKKZVVJSEkk3l0ICJCQk3PoLUUGl30JRmayN1rPKXMUyrZjbCeTGzc0N1+vXqQW0dnfH09MTAAfLgELuIcyt0mdxyGkp5+7Ro3n53//GAGq4u/M2cMrRkXqZlmNPnDgx+zwNw6rISF7y+7kVxJIlS5g1axZTpkwhLS0NJycn2rRpk28hJSMtLcf9pJblxLda1TWv5dsDBw7MPp8s1XD7A4dcXMzb0dHRNGnShMDAQLp27ZrtdbMUhMm6TLVZs2ZmxU/L6920aVN69+7N5cuXc5y7pcWN6ea+3raOjmYl0vDw8HzPIyIiIsWv0gaEhmEwduxY7r33XgICAszjvXv35tFHH6VevXqcOHGCqVOn0rVrV/bv34+LiwsxMTE4OztnK0Vfq1YtqwbOlgAyMx8fH6sxtWrVsrrfy8sLZ2dnc0xOZs6cyfTp04v8vCuTwhRNySq/cvnDhw9nw4YNQOkVC2nZsiVpO3cC8MrNYDQ5ORlPy76sEuhDmJ6aWqRSxJZ+gpn/naSnpjIFSM7UkzCriIgIli1blu345s2bOXDgQL575/L7uRVEtuClgLIGhMXdhzCvQLVjx45s2bLFqrCKYRiEhoYCmfoQZnrdMwfPub1uAQEBXLlyhQcffJDr16+zevVqrl69iqOjI8uXLzcf1717d2rXrs24ceMAGDp0KBEREfk+p6C777Zql5H1PLkpr61wREREyqJKGxCOGTOG//3vf+zYscPqeOZiIQEBAbRp04Z69eqxdu1aBgwYkOv5DMPALlM1S7scKlsWZUxWkydPZuzYsebthIQE6tatm+v4yqwwVUazsmRHClLFsrgbjufm7bffZlubNpZJAODs7MysGjXgt98KXVSmIBnCogaEOfUTdImLozOwyTDMwCTrtR9//HH8/f2t/qCyZMkSYmNj+eijj/It8pK5zUFpsVQWzZYhLOaiMnkFqhMmTMi/Gi7WQaqTk5MZuHl6eppZxtjYWI4cOYKdnR0XLlzgvvvu45133qFOnTps27aNO++8k06dOjF//nw6d+5sldVt0aIFEyZM+DOjO2MG/PvfcLNSaFZhISHZ2mU0a9aMdevW5fo6FLXoj4iIiOSsUgaEzz33HKtXr2b79u1WlUFzUrt2berVq2cGAL6+viQnJ5vV7SwuXLhgNnH29fXl/Pnz2c518eJFMyvo6+vL999/b3V/bGwsKSkp2TKHmbm4uOCSadmX5O5WloxaFKSKZam2E8ip7cTN7+1KYMloWnJy8fyS+O032nzxBZDRJsPIJUP42s2Ko5m9//77/PLLL2W+9YmRmlqiGcK8hIWFWd2Oi4ujevXq5h+4JpOxtDhm7Vp8by7HbNGiBStXrgRg7969Zobx0Ucf5ZNPPsHBwYGuXbty5MgRjh49SmJiIo0aNWLLli14eHiQlJSUa0b322+/zfgmn96ARqbX5LPPPmPmzJk0a9aMHj16MGPGDDw8PJg6dSr9+vUzx5XnVjgiIiJlUaVq3GQYBmPGjGHVqlVs2bKFBg0a5PuYP/74gzNnzlC7dm0AWrdujZOTExs3bjTHnDt3jsOHD5sBYceOHYmPj2fPnj3mmO+//574+HirMYcPH+bcuXPmmA0bNuDi4kLr1q2L5flWdsYtLBm1sCx9zGrKlCnm95k/6Bsl3KTe0nPQLlOwYX/z+8JeuyABSnEFMbGnT/95Iy3NDEYLEsRa9s5ZZN47V5YY6enWjelLMSDMKutqhuVAH6DzXXfRp08f+vTpQ0hICDVr1gT+zDDWq1cPV1dXAgMDuffee5k/fz7p6em0bt2aa9eu0alTJ9asWcM///lPatSoYWZ0AwMDrb6GDx9eoHlmfk3mzJnDzp07mTNnDn/729/Ys2cPO3bs4K233rJ6THl5P4iIiJQXlSpD+Oyzz7Js2TK+/PJLqlWrZu7V8/T0xM3NjStXrjBt2jQefvhhateuzcmTJ3nxxRfx9vY2l8B5enoyatQoxo0bR82aNalRowbjx4+nefPmdO/eHQB/f3969erF6NGjef/99wF48sknCQkJMXseBgcH07RpU0JDQ3nrrbe4fPky48ePZ/To0Xh4eNjg1al4iiNDmNPSR4DAwEDz+8wZwrS0tGzZxOKUnJrKAWDvtWu4HDiQsf81h6xhQViydOl5LKm1KphjGGYxkMI6d+ECZj49LS1b0/a8FLXIS2kYOnQoZk4zlyWjxVVUpjCy/nFgJOAPVKlXjzaZ3ruWwC1zhtHHx4f//e9/tGjRgqeeeoqnnnqKpUuX8sQTT7B7925zWfuXX36Z6/XDw8MLNM/Mr4mbmxvu7u64u7vTrVs3s2hS1n9PZfn9ICIiUh5VqoBw4cKFAHTp0sXq+KJFixg5ciQODg5ERUXx8ccfExcXR+3atQkKCuLTTz+1arY8b948HB0dGThwoNmYfvHixTg4mPUeiYiIIDw83KxG2q9fP959913zfgcHB9auXUtYWBidO3e2akwvxcPMEBYxiCnwdTItf0wv5D6+wliyZAlv/Por3YCEGzc4vmgRBw4coPf167TOuHihzlegPYSZg5j0dMj0Hi8M50w/AyM93SwqU5AQtqhFXopTQaqfpmctKpMlKCvNgHDVqlVWt18lY8noqSxLdTMHbgcPHmTq1Kk4OTnxl7/8hf379wMwatQoPvzwQ4YNG8ZzYWFsWruWY6dOFW5CufwxIfOS0ZYtW5KWloaDg4MZ3CUnJ5tZTIuy8H4QERGpSCpVQJjfkjo3N7cCFaVwdXVl/vz5zJ8/P9cxNWrUyPcv1nfccQdr1qzJ93pSNMWRISyIzFm0tFz2xhWH999/n3fr16fL0aNEenrSYf58UlNTaevmxhQodIYwt0qfmVkqkVq+t78ZEKamphYqE2qX6TykpeV67Y0bNzJlyhQcHBwIDw9n8ODBAPTp04e1a9cW+HrFLc+9cr/9lnEjLa3MLBnNWgU5pyqjWYWHh+Pl5cW8efNo164dc+fOZezYsfyaqSBM+4ULyf23Hmzbto3XXnuNFi1a0KtXLyYBnsDMHTvoeN992cYbmd4XWYM8yz5Iyz5HERERKRmVKiCUysUMCEs4Q5ieacloSWYI3dzcOHT2LF0ADMPcO2Vm34q4h7CgGcIfDh3ipenTiYuLw9HRkZSUFLy9vZkxYwbNmzfP81ppN26Y39ulpZmBSdafzCuvvML69etxdnZmypQp7Ny5k3feeYdr167leN7MWa0JEyaYe3QtWa3iklP1U7i55HL8eCB7ldGsz600A8Jc3XyP5JTxPHnyJGfPnqV+/fr8+OOPvPPOO4wePZrUTEFb5pItmXtxWqqVTpo0iRUrVhAXF0dwcDB7AXdgwEsvsXX79uzTyfyHgiwGDBhwyz0lRUREJH8KCKXCKo6iMpnllhVLL6UM4ZIlS3iuaVNWAPExMXjdfz9t2rRhRtWqEBtb6CWjlvF5PSpz9nPM88+z/LPPrNqcnD59mqFDh/Ldd9/leam0my1A4GbmLJe5Ojg4UL16dQDmzp3L4sWLefDBB7ly5UqO48PDw1m0aBGOjo5MmDCByMjIbFmt4pBT9VPL9X+9GRCSnm5V7CfrPklbBISZgzb4M0MYERHB9OnTueuuu8z7vv/+e7MhvJeXF9OmTWPp0qUsWbLEHGOGkRMn8tlnn9GuXTu+++47YmNj6du3L66urtStW5enn34af39/6tzcp+1gn3P9srwCwpIu0CQiIiIZKlWVUalciiMgjIqK4oEHHqBTp0507dqVjh070rdvX6KioswxmT/op5dgQOjr60v4bbexE/jQx4fvvvuOefPm4ZPvI3OWnseHcYvMH9jTUlPNQh8WHh4eBQqCc8sQZtWyZUtOnjxp3h45ciRjx47NsdIrZPTybNiwIfXr12fFihUkJCRky2qVlqx7CG1ZVMbCUjTmn8ACYOX+/SxYsIAWLVowe/Zsjhw5YlYG3bZtG6NHj2bjxo20b9+eTp064ejoSIsWLWjXrh3Vq1fnbWA1sHr1ai5dusTRo0f54IMPaNq0KXv27OH3338nJSWFa9eumdm9VDLeOznJ6zXJug9SRERESoYyhFIkliViZVlxBIRhYWEsW7Ysz6yYVYawlD7026Wnc2jXLtZ37swDzs7msUIpQNCU+flMnzyZkJAQnJ2d8fDwID4+nsOHDxdoj1d6pgxh5j2E9lmyQFn35cbFxREUFER0dHS2cw4dOhQfHx9OnjxpNjfPKatValJTwTBIJeMXa9Y9hHllw25Vu3btsh0zDMPsn/oeUA9o7ejIkiVLePrpp5kzZw5Vq1a1ekx4eDidOnUyl+2+8MIL/Pzzz8TExNCzZ0/u3bqV5wCf6Gh69OjBjRs3CAkJ4ddffyU8PJwWLVowYMAAq4yuI7D644//vEjmLGoer0nWfZCltTxYRESkslFAWAkVJpgrSHXFssqsopnLHsKCFEZJS0vLNytmlSEs4cyU2YfQMIj56CMmAVj2MBaxMX1ebScsYyYCSRs20KFDB1JSUkhKSqJevXr8+uuv3JdDsZCsrALC9HR+unSJN8h4fafu2pXrh/sBAwbQpk2b7PO6+R48ceJEtvuGDRtWqg3K7YEoYPyGDVy5fBkvIAWo9te/Mue992hyc9ytvjfyCogSExOJioqyej9PnDiRixcvMnHiRB4AjgGLv/+eG46OhIaG8umnn+bYLzDzst0TJ04wdOhQ+vbty5UrV8wWG4ZhMGXKFFauXMnJkyfNaqUjR46kXr16PPPMM9YnzfTcjdTUP4vcFOI1sSwP/vHHH3n44Yfx9vbm/fffN5cHKzAUEREpGgWEFVhxBHN5Vlcs44ybQUjmMCkqKopJkyYVuDDK66+/ni0rlpqayhtvvGGOyfxBv8QzhJl6Djq6uWW5q5C5UEtD+7yG3HxuEcC/AgOp6udndX9+ewctMu8htEtP5529e1kFxNrZ8ea8ebnu/TMMo9TfgzkFXp999hnPPPMMvXv3pkePHsyYMQMPDw+mTp1KS8MgDBjfrh21oqO599gxAPZPmEBYWBiWsii3umQ0r/2SM2bMIDEx0SqrFhERwcSJE2nZsiW89RYhQFRQEHMOHqRfv35cunTJHJs5w3jq1CnuvvtunJ2diY6OZsOGDXz77bdWQV7KjRvmUtOsy3NzyuimZvr5pyUnm//jyRwQ5vYHGss+SMvy4L/85S989913vPvuu1aBf3HvGy3rjHPnwM4Ou0x7REVERIpCAWEFVhwfpPOsrljW5dBnryBLQHMKGqtWrcqYMWPo1KkTrq6uVpexVYbQKeuH5yJmCHN71NChQ5n5xBMAPA7cVb8+jTp2tBpT0PdB1gyhHdAQuGBnx4oVK5g2bVqOe/9WrVrF3LlzS/U9mFPg9emnn9KsWTPmzJlDy5YtiY6OxtXVle7du7MMSAOqODpaLdut5uxMWlpakbJhObEERIDVa3bkyBH69+9vPdgweHzECB577DGr18359tt5oUsXhg0bxo1M+zoTExMJCwuz6qVqGAaTJk1i9uzZjB8/PiPIu5lNfqldOw7XqUN8fHyB/rCScv26+X3mgPCnc+f42wMP5PkHmuHDh7NhwwZzebDldXj77bdp06YNI0eOtNm+UVuys/xxRsV3RETkFikgrMCKI5jLq7piWWfZQ5h5SWRBloAWJGi0uk6WXn0lKlOGMGulzsLuIbTMe3p6OlWyZJMtmeT0ESMAeA24VK1atnMUZLkoWLfmsEtLw8vFhZNA1ZvPJ7e9f15eXqX+Hswp8Dp9+jQNGzakVq1adOvWzXwPOTo6Ym8YzAKe27oVp6tXuQOIB65NmsSb8+fD/fcDt54hPH/+PE899ZTV+/f333/n4sWL2cZemz+f12bOhClTrI4baWmEh4fTtWtXq5YOM2bMYPLkyVy6dInZs2djd/PfTK1atfjPf/7DeEsl1ZsiDx9m7tSptHn0UXPs6dOneeCBB6hSpcqffSRvjh/y17+yefduICNb6GK57tatfLlnD3Xr1jWzlGfOnKFTp074+/tb7YO07FXNvG/UsjzYZvtGbcHOjpSZM3Gy9TxERKTCUEBYgZXnYK5Y5JABmzVrVr5LQAsSNGZWmhlCs3KlYeBwiwGhpbDLKmB5nz7Z7v7222+tqoF+uGwZ1erUyTQVg4ULFxIWFkZYWFje086cITQMprdrR/3ffiM205ii7P0riUb2ORWqiYyMNDPrS5cuBSA5OZmaNWtiD9wPvNulC6n793Pnr7/iA8TPnk2t++7D8o641QzhlStXGDJkiNWxPn36cP78+Wxjj82eTWvg8okT1GjWzDxuKXRz+PBhBg4caPWYgIAANm3axJdffsm9997LCy+8wKeffsr1TNm9OcA4IBEYPWUKbvPmkZycbGZOT506xZkzZ0hKSuKNN95gJ/AOcC1LhtD8Pj3d/Ldm2Qd55coVHnjgAXNpe48ePazmmVMRo9LeN2pr1195RQGhiIgUGwWEUmGZRVMyHbv//vvZvn07169fJy4uDi8vr2xLQAsSNGZmVWW0FJeMWgVZkC1AzI8l2BsMuWaSMz+3/yxfzp1NmjBw4EAzK2Rvb5+tUmVOrDKEmfoQZq0ympus/fQsCtvIviByCjjWrVuX7ZizszMrV64k5uYySyMtDVfAE3AF4jI9Z7j1gLAwGf8bN3+2KXFx1nfcfN3d3Nx44403sM/UH9AwDEJDQ/nvf/9LQEAA3377LZcuXWL9+vXmmLVkBIROwI30dBISEjh9+jTdunXjjjvu4P/+7/+oXr26mYFcPG8eDwJXr179cwqZ3lPPtW5t/lvz9PSka9eu2NnZWf1bm5Ily1mZWQryOGZ5b4mIiNwKBYRSceXRdsLNzQ23LEVZLAoSNAYHB7Nhw4aM82epoFiS7DOX7M+0ByzrfQVyM2iYbG+fLciAjEzy8Uy94L6NiGDriROsWLGCgQMHMmjQoFwrVWZl3PwA+wc3A0JL24kCTtWyj8zi4MGDtGrVqtCN7EuC+RzS03FIS+M6GUGhpfdice0hLEzGP/1mkJp06RJ/XLpELFADzNd90qRJVKtWDW9vb6vHjRkzBnt7e+rWrcvHH3/MjRs3rArVXAWOkhEQfvzqq4x85x2OHDnCY489xqBBg/jHP/7BsWPHzAJHI8lodzEqU4CeOUN4j7c3T3z9dZ7/1gIDAwvw6lQOKVeu4Myf7ykREZHioICwErh8+TKXL1+mRo0a1KhRo1jOmTkgKqssH8Dtilh0wc3NjRE399BZndcwrBvTl2KVUbubH+hzyhAWNiC0vD55ZekyZ3OMtDSGDBnC4MGDiYiIoF+/fuzcubNg10pOJg04UqVKRpbq5lwdsozLqZ/e+fPnuXDhAgsWLMg4V6alqpZG9pblnbm2PShBltfPSE/HPj2da2T8ESI10zJJKL4/FhTk37M9sBmYMGECdRo3xhOIA06tWcO8zZuzLfGNi4ujevXqDBo0CID169dn22cI0BR4C2gC/HH+PI6Ojnh5eeHt7U14eDj+/v48/fTTXL582XxMEPDVm2+at7O+pyD3P9DMCwuj/t130/+pp3JdHvzAAw/w9ddfF+CVK/9uxMfjjPWqBxERkVulgLAC27x5My+//DLe3t54eHgQFxdHbGws06dPp1u3bgU6R9Z9RpA9ICqz8gh4Chok7927ly1btuS4tM68nTlDmMs+w+Ji7hM0jGwZwsIuGc1alCYnluczELg2ZQrumTKJrq6uuLi45PLILOdJSiIZ8KhencTr19lz4QITyQhc/rp8ufnh/ujRo2bFSYtmzZpx9epV3N3dsy1VLUwj+5IQExODCxl769qmpfHz9evMAtyAxBdf5N3bb8dSdudWi8oU5t+znWHwMvD+mDG0HDUKp5vLejcEBvLyyy+b4y1LcQcMGGAV/KW88AJGlmrEMTExLMp0+yDQtWtX/vjjD7788ksgY7+fn58f48aNs3psWqb3auYMIfn8e3lh4UL+AHjqKXN58MKFC9mzZw9ffvklJ0+e5Oj/t3ff4XEU5wPHv7tXpZN0kiVZsiVZ7rgbGxtjm2ZaIA41tEBCTQETSij5JUCAADE9IYEAoRlw6MbGYIhx773hhnuTbKuXO52u7/z+uMLJkoxche338zx67Nvb25vdm92dd2Z2Zv16TjnlFF544QXOPvvs/W6vtSml2Lp1a3zQogPlr60FwHE4EyWEEOKEJwHhceyRRx5h8uTJpCaMDulyubjoootaHBC2JCD60WqihfBAg+QHHnig2a51MT+WZwgPtsto7JdtKkiO7dtSYOytt1IQHTETDjAfBAIEAHQdzTAYs2UL84h0ffvrkiXxZ/86duzYaD69tWvX8sgjjzBx4sQf7Kq6b2BzMD755BOeeuopevfu3WjOwUsuuaTBujfccAOfKcVXwKBwmH+6XDxmNnNZKMTC227j/oceYk503UNtIdz3fFZK4Xa7mzyfNaXQgfKysgYt2DVud4NzOdYVt9Eclv/8J+MbLomsm/A6VFfH/PnzG3Rl3bBhA7179270zGXiPJQNAuMWHJPM6L+x7sFTp05lxowZ9OnTh+zsbLp3785XX33F5Zdf/sMt1m43NDFa7pFU98UXaIaB47LLmPrYY1zw+ONsmj6d7uecc8DbCrhcjRcaBugt7XwtjieGYTQ4n4UQ4mBJQHgc03Wd8vLyBgFheXn5Ad1AWhIQ/Vhp0cKmKaGw25Iged+AYPjw4fGA4Mwzz2zQtQ6ObguhKSEgZJ+BJQ64hTCa1nlK8czw4U0GybnRdR4Akq1WCgsLG2yixfkgECCgaShdh2iwkk6k61vis39JSUkNgkGITAPxxBNPYBhGvKtq4qTqiRoFNgfhhRdeYP78+bjd7vicg+eddx7XX389PXv2bPBdmzdvxkLk2bodLhf1hkF7iwVCIdItFnRdP2zPEO7du5fy8nK2b9/O7373OyAyMmdT57NuGLwO3DFhAn/95hvWxZZPn07HHj049dRTG0zpMD7hWdHYe1rkRYN9TWTU1zc63sOGDWvQXTSmJOH3SgwIF+3Zw6ghQ1o0Smyse7DH42H9+vWkpaXxyCOPcPvtt9O2bdsfvK5Vfv01mSNHUvG//5F14YX7XfdwSrn00sh/lMI8J1I94J47Fw4iIPQ3FRCaTCz9zW8Y/Prrh5JMcYxZsXgx8047jfPmzqXX6ae3dnKEEMc4CQiPY6+//jr33XcfJSUlkQKeptGuXTteb6bgUPHvf5Py7LPYd+6ML2tuOoHEgOhHq4kuoy0JkpsKCGKTkL/44ouNWqBUK7UQcphaCEcDU5sJkv8TbYUbBWxzOPD7/axbty7ekthoQvTmBAIEAXQd3TDompbGjtpaOgIo1eyzf+u+/ZYlM2dy8z33oOs6v/rVrxg5cmSDSdUTJQY2ByspKYnk5GSSk5Pjcw7W1dUxcOBAZs+e3WDd888/H/O0afQCPtq+nc66TmV0QBdXbW2D7siHGhBmZ2dz3333MXPmTDp27EhSUhKFhYXs2bOn0bqaUvQEnrvySnqMGsWg3FzWAAvPOYczElrvYlM6JAbhbrebNURuDmrOHLToIC/nn38+TJsGRLoQV44bh7N373i3cqVUg9FEEz323/9y0SOPAA27j76+YQOzt21r0Sixse7BvXr14rnnnqNHjx7x89Ptdv/g89Hr3n+fM4H1n3zCmUcxIEykos9JGgc56FHQ7W5yueP990ECwhNK8Ycfchfw7dNPw6RJrZ0cIcQxTgLC41jPnj2ZMGFCi9cP3n039nA4MteddhyMYxfrMpqwqCVBclMBAUQmIW+qBSqx6+bRGmW0qRZC80EGhGZoNkgOJwyMMn7aNMaPHs3gwYPjLYkrVqzg9ttv/8E54LRgkKCuo0wmNKW4p0sXOu7eDUSH0rdYmnz279shQ7jZ74d77okvu/LKK5vtFrpv6+LBOPnkkwmHw5hMpvicg48//niTE58//NBDmKdNYwwwq0cPspYvp9Jigbo67EoxceJEjOi5dDjyxt/+9jd+/etfx+foAzjjjDMarRfrJh32egkHAowmMnfgvnmmqSkdRo8ejfuKK8gAAjU1VAO5ubmRdaMB4VLgmYEDGZIwWIxSismTJzcaGEgBG4qK4q9DCcGeDs2OEhvw+7E2cQzGjBnT4HVsQJzYc4zNiuZ39SPoYnewLdlNdhllP6OOhsMwfz4MHw6mfYdwEsey2K956H0ihBBCAkKRwBwrMPl8aM1MyXAs0ZpoIWxJkNxUQBCbhPyNN95otL6R+HzUEQ4IG3QL3WeQkgMeZTT6e78B3HfvvZSUljYKkr0JhewPJ09m6fr1DVpTQ6EQZ599dosCwoCmxZ8h1BKOkxEKYbI0Pc32RdFjawQC6NZIeHA4uoXuz4svvtho2VVXXcVVV13VaPnpQ4Z8/8IwsIbDBKIDuIR9Poxg8PtpKQ6xO3Fiy1h1dTUZGRnNtozFAkLD5yPs9RJrx1X7BIT7TungdrsbtPp6Kyq44d57mTJlCmcmPD/6AGAPhRp1IU5LS2PBCy9gzs9HdeyIFs0rg9u1i6+T2ELYPSWl2VFi6yoqaMmYyC19bjQ2Qu+GzZtZ/dJL3HnnnS3Y+mEWPUdDzbSk/pBQMy2LzZ0RpW++Sc5tt1H+1ltk33LLQX2n+HGK5ecj+5CCEOJE0fpVpeJHI1Yb76usbLDc7/ezYsUKpk2bxooVKwgcI5Mixwq/pgMMIF588UVM+9SmxyYhb6oFKjEgPNLPEMaCPrNhoB+mZwh7Ah+/+y4LFy5k0aJFLFy4kPHjx9OzZ88G+2a3Wht0mVRKMWHChPi8cb7PPiPQzFQkWiBASNcjXUaVQk+cqmM/+SkUbV2ri7YmQsu6hZaUlPzgOodEKXj5ZUI7dny/zDCwhUIEHZExIA2/n0BCAf5QWwjHjBnDmDFjePvtt+P5MDU1tcmWsVgliOH3E0wMIoJB3G43777zDt0LCxk4cCBPP/00EHl2MC8vj1NPPZVTgVOBs6+6iiVLlrDollvwFRfHNzMKcCbkt9jxfvnll3GfeSaqe3eCCYHfLxMC58TpOB7o1i0eDMbEWorry8padFxCLTyusQL0qXPmcHITczcecUrF03DQXUYTWggTO9U2d4XbFD1fNyS0KIvjg4qOOOs/wlMd7TcNSjFl3LgjXkknhDjyJCA8zh1IMBcLCBMLYmPHjmXEiBG8++67zJ49mzFjxjBixIh4y9mPmRbd1yPd+TWxy6hxhIPlWEHfGg43aiE80MBXTwheY8PZ78tIKNQ//bvfMXHiRIYPH85pp53GmWeeyf333x/PC/Yrr8T6k580uR0tFIoEd9Euo1oggB9YAfvNm7F98iYMVNKSbqFNjUB6WG3bBnfeiZ4wwmbI72dTMMhKTWMF4K+vJ5DwzNeRqixoKvg1GQbvAb/65BPOvfZano4u14JBLr30Up6+/37W7drFpGefJTk5mSuvvBKXy8WAAQNYsmQJS4AlwBdPP81JHTty2pgxbP/pTxt+SULeiB3vyy+/nAwiv3fQ4yHWAbhfTk583cRuyPtrNfXvMzjNe++9R9++fRsEsdDyFmM92lV1AHAGkXkjj6bFTzwB0ZZB4yBbCMMJ+ak6YXlze6ISpqkRx5noNTuwz7PkR9OCV17hgquuYsZf/9pqaRAtp5Q6alMyiWOPdBk9jo0dO5ZXX321xc98xQJCb8KIgP/5z3+YN2/eQXUTbG2xgHB/E6/HxOZja6nE9Rt0w9tnMvLDzRotQNvCYfRD7DKa+DxZoJnBKmIB7qmA74UXsCeMNuvz+aitrW3RcdMCAUImE8pkQleKyWVl3A8MBuxz51I/a1aTeTPWkdRfU9PkdpuayL6pETEP1L6D5/Tp0wer9fsn2vasWkV7oGTtWgqAscAza9ZwpmFQEwyyB5j75Zfc3r078WFyjlB34tjUEYksoRCvAm+cfz6db7mFLy66iCuB2/z+SLfg+nosQO2mTfEJ5e+55x7Ky8sbbCdQXc0vzz8fvv0WvaaGxKPtnj+f1H1GK00M8AIeD6OAGYBKOC9iXUa97L/VNFBd3eD1q6++yooVK7BYLPzrX//iyiuv5L333mswZyXAu9ddx8lXX03/yy5rsFztk8e9VVUk7zN68pE05NFHqY09T9rEoDktEU5oWXSbzfE8ZTTxzLfy+xk8blzkc82c38erB/Pz6fvrX/OLxx5r7aQcMXqstfggW5sPVcnKlViig9mYf2i6F/GjMOvNN2n329+y9MMPGRwd0VmIGAkIj2MHGszFOkkmBoRJSUnMnj2bESNGAJHC9uzZs+PdBH/MYgFhS4ZS2LdQ/UMBQeL6iQGhdpAFvZayhsMYgD0cbtDtsh4wHWALlJbQwtNUQFhSUhJv/XQDH//xj/S77bb4+0opBrZty941a2jXt+/+vywYJGw2g9mM1TCYWFXFSiJdFFx/+ANphYVN5s3YBcpdVsaKFSsa/R5ut5s1a9Y0Cgpio2cejJZUpFRu20Z7oHbPHgqA/wBvOJ0M9XqZfs459HrrLXadeip3fvjh9wHhIbYQxqaD8Hq9hEIhzGYzdrudLVu2NFrXEgqhA+ZgkKDHw11Ad+CB7dsJ6TqnOp3s8HrxlJYCkeP1ySefNJhQfgMQrq6mT+K8hxAfgXR2nz6cFe2KGDvetTt24Ix+PhQNOqHheRFrIfQSaVVtitvtJrBPJYCu61iiz5rGgtiLLrqowTQXSilu/PBDdn34YeNWsX1a5ep27z7iAaEKhRr0UHDG0nSwLYQJhf96m+37gLCJdVe//Tb9Y8+ZNdMDgI0boXv3ZgcR2/HBB9i3byf3oYcOKr2tQSnF6N27Kf3rX+E4DAhLr72WnI8/xjRoEAD6QealQ2UMHsypsXEHjodB6E4AasoUegALZs4ECQjFPiQgPI4dbDDnT3iGcOzYsTz99NM8/PDDhMNhLBYLgwYNOia6jMZa0MwJBcOWtCglBgTjxo0jFApRX19P27ZtyczMbNwClVDY1Y7wzdluGFRoGsmGgSmhMO3i+2ekWkpL+HywiVrmG264gb926ABEpqZw7/NMV9maNbxYUcHmn/2MnK1b99v/XAsEMMxmQnY7GYaBzWRiNjACUB5Ps3nTQqT17e9/+QtnjhzZKEAbPXp0o4nsoenRM1uqJRUpvr17ATBHKwMswIaSEoYC+YMGUf7226zctg1bwuBM2iF2Jy4uLqawsJBzzz23wXHIz89vtK41FGIksKe6mrbRPHkacF9WFv/Ny+MXuk7HkhLKot1Nm5pQfhTwQnU1oVirYTgcH630S+CxlStJHziQq6++On68L77mGubEjpnXyzfR/+sJ50gwGpx4dJ2vSkr4bd++WCwWrr76av70pz8BcOmll/LcyJEN9mnkyJHxAWj8fj+ZmZn86le/4u233yYQCGC1WvGUl5MCdGji+O1bWePZuxf692/+gB8G3qoqkptKy0H2JFAJ1xdvcnI8sGyqMiiUOPdjE6OTqpIStB498D32GPZHH23y+zpef33kP8dQQFhdVEQbIOcH1zw25Xz8MQDm6G9vbkFemvnww+h1dZzVxIBZB6t9Qp7b33PgzalcvJjMgQOhmQHFRMuVl5by6R//yG/efDNeadYUI5pXAs1VEIkTmgSEx7EDCeYCgUC8y2hiV63c3NzGoy4eI9NSxAImB0RaZ0ymFrUoJQYEU6ZMYc2aNQCcffbZzJs3r9H6uN3UAk6OQkCoFCVWK1mBANaEFr5qszkyZcgB0AMBfMCZgP/227ElBFWxoDeclgbA5cDyffatcuVKzgLmB4O4d++Otww1RQsGUWYzweRk0gyDv6Wl8YHPx8OA/6qrSGrTpsm8aSbS+vbWbbcx8P7748tjAVrs94jZsGEDPXr0aDR65oFoSUWKP9qyZo8WhJ62WPgwGGQ4EH7tNbyaRt/du3nu+efht7+NHINDvAk7nU4mTZpEZmZmfFkoFGLAgAGN1rWEwzwIzNZ1AtHAYJmu00XXmTx5MrO7d4+kKRrsjRo1Kj5SpwqH0YgEucGaGlSsIiA6WuntwGLgrc6daffBB0yZMoWXXnqJwYMHNxhIJnESdT2h0BqKXl+8VisTKipYtW1bo26gSql44BhL04MPPgh8X2HTtWtXCgsLOeWUUxgxYgS33HILP+nVi5Rmjp9pn4KzL/obHkneysomA0K9mXk0f0hiV9OwwwHR38/WRNdbf8JATFoTFT7FixdTAGx86y36NxMQNisQgClT4Gc/O7DPHQVV69a1aHTaAxVcvRpL//4E167F0rs3n1xzDXVr13LLunXseeoprOXlZP397z+4nepPPwVNI+PKKw8pPanR82jYzp1MGzGC82bObHbdEX/7W+Q/BxgQ1u/axeZbb6XvpEnoNluz66lmuvQ3p2T5cnJPO41Fl13GafsZ9btu4kQwm0nZp3Ko0feHw6z529/o+9BDaMf49Cqu4mK+/ctfOP2tt+KjNO/LMIwGFZYL772XUR98wKLevTntj39sfuPRa7k6Ctc+ceyRQWWOY7Fgbv78+SxatIi5c+fyj3/8o8lnvioT5gkL7vPsTgN+P7XZ2VSNHn0kknxYWevrCRLJ5N7o5N2xFqV9JbYoxQKC2Poul6tRQJC4vlZXR1n04qwfwWcIg243KUB1Sgo6kJLwXVVOJ8kHGBBavV4qNA038MHDD0cGE4n+LV26lMGDB2O4XJQT6ZIWTGhxAOhy000ABMxm6nftii/3NXEMLD4foaQkAg4HaUqR7/fzG7OZ+cC4P/1pv3kzCVgSDcph/y3do0aNOqBj0JSxY8c2Gjxn0qRJDYLVcLQg3i5a6dCxZ09eBOalprJoxQoeLyjg2VAIR7TgXw1o+zuvWiA/P5/Vq1fHX8eOQ05O47YQa2y+yurqePD6IJEupAC2aICgR3sDJNYqxwYY+oZIa54WXSctGoxc889/Yug61mCQUaNGcdddd3Hbbbdx0UUXUZnQu8ATbUWFhgFJuLaWAOCz29ENo0E30Nh2KioqCCcElE0911xcXMwTTzzBSy+9xCMjR/KfX/+aPd98Q3PM+wRhvhaOYgqwY/Nmxl96KeFgkLkvvsjEfZ5PbM6+IzbHaAcZECb2RtCj8zcC2Jp4fjiUePybqKiqWr8+ksYWjFJp7NO6uuOWW+Dii/GuWvWDnz3a6hK6UDc34NDkO+6gOCHtUzt0YPJJJ+13u2v+8Q8AlrzwAgBXf/IJt0SPYfsHHyQr+v4Pybj6ajKamMLmQGUndJU+b9as+P939upF0VNPNfmZAx1IafXNN9N/2jRWv/rqftczHWBlV0m0q7ll0aL9rpdy2WWktKDSYcFDD9Hv0UfZNmIEqpWeqTxcllx+OWe88w67vv66yfe/uOoqptvthBMqgRzRa1lo48amN6oUyjAwR69H+j7Pih8QpQgfjoGMKioO+TEKcXhJQHicWPjcc6z+z39Y/MorfPP883z42GOs/+orSlesoG7HDnxlZfj37CEwcWJ8LqxERQkPhYf3U3DdNX48zspK6p588ojsx+Hk8HrZFW0JrN2+HYiOgtjEKJWJLUqJAcEzzzzDpZde2iggSFzfVlNDZXIyYcC3T9B0OJUuXw6AO9pFsHsgwFpgLlB08snkGMYBPZuUVFdHhd3OaKC2iRvEww8/DFVVuCwWXEA4oQBSu307sfpiLRSiPqFCoToafCdK9noJO52kFRRgA7LdbsqzswGo27kTgBVjxrAzcT65aD4dC8xcs2a/AVrM/rrLtFRLKlJU9FjYiATLmdddB4B28cWg6wQGDqR9fT0To6PvFdntmA9xYI+mAtWH7rqLe5oIgpOix85UU0Nw5058gGG1kh4NsuzRAr4leq5/kxBIJY4yPPy99+geLbTlRQOH/F69GG61UlpfHz/e5513Hq+88gqZia2o0d/VD4QSWhD8RUVUmEzUOhyMMJnYkTB1R2w7eXl5GAnHKzFNsQqb2Hcrpfh2zBjSAN9+Jqe37NOtbd8Kjv1ZcdttXPHFF6x8/nmG/eEPXDpxIqFAgA/PPpuVTcxNGuNtJug0/UCBKlhby6aCAkrnzGn4RkJli56QH+1NXNO10lK2m82syc7G5PXiff75eAuBe9MmPIsXR9ZrJg2JBc7qfZ5T3RlN185p05rdB+Moj+Ia403IT7uamG6jdudOLnzlFXacd1582flFRVy4aVP8dWVZGV8//HCDgDIQrVgx9vlNvQnBUGLXybn//S+BfQP/hGOy8f33W7hH30ucYqVjE900S7dto/C77yh48EFKV62iaPp0gokVh008b7w/4eh5W/fddw2W+/a5z5gPsGeMK7o9UxMt2zuWLGHiFVc0HHCqmcD+/TvvZNITTxCI/nZd5s5lZeLcsEeJMgzm33wzlStWHPK2LNF7S0nCFE+Jzhg3jvODQUqWLo0v06LXstDWrU1+ZlJhIVudTuzRvGo9wBbdRNMGDsRktx/SKM3hujrIzmbN6acf9DbEEaBEq/v3v/+tOnbsqGw2mxo4cKCaM2dOiz9bW1urAFUbuWS26M8NqlTT1C5QO00mtdVkUjWg6kEVmUyqWtfVFJtNzcrLU7M6dlQzunVTU3v1UlNPPlmtcjiUAlUF6tOzzlLTr7tOzbr1VjXv7rvVN3fcoSbcdpua98QTasbjj6uZzzyj/jd6tJrzyitq3YQJat7Ysap0+XIVKC5WdUVFylNaqlwVFcrv8ynDMA7b8ayqqlJvPPGEqgc1vVMnpUBtfOmlJtcNh0Jq09dfK9XC7/cWF6sdzz6rlGEowzDUtC+/VMWapqb06qWKdV3NHzTosO1HouXLl6vn27ZVAVBFM2bEf8tVd92lZsyYoSY//rhSoCrHjWvR9jZ++62q1TT1eb9+KgBq1a9/3Wgdv9+vlqWnq8WZmWqnrqsFw4Z9n57nn4+nYaXDoVaNHh1/vXHGjAbbWbF0qaoFNf/SS1XJuHHx9SZef73yglpx/fUqHAwqBWqdyRT/nLe0NL7unKuuOsgjd3iEJk1SxooV8dezCgvjaSvKzlbK51PqzTeVqqhQSim1a+VKVQsqCKoY1Nz8fLXG6Tysadr13XdKgfogLa3Bcn9FRTxtM61WNSUrS32XlKQmn3uuqtM0Zfh8arPNphSoDYWFSimlgj6f8uzerZRSasv48fu9frjKytSirCy1LDe3YYIMQ825/vr4etMuuUQpUFscDjU3L08ppdSMGTPUeE1Tm/Py1Nd9+qgiq7XZ/ZsV/bwCtWvatPjyvXv3qrvvvlsNGzZMDRkyRJ1++unqyjZt1F5Qq1NTv0/rPud0bJ9jf/NuvbXFx/rLHj0aHYf1b72lFKg1ZnOzn/v2H/9o8hgubdt2v9+3+tlnlQI1v3fvBstnd+yo1miaeg/UzPHj1ZKRI9Xqdu1UAJTf42mw7sIuXdSylBS1okMHtVPXlQK17bTTlFJKlUZfK1CrmsmXZZs2xdfZvM91ZU5urlKgFl93XbP7MC49XU0YPny/+3kwyjdsUCscDrXytdfiyyo3bVLzCgtV6erVas611yoFKgxqQRO/8bcvvBD5/ex2tf3rr1XF5s3x/TTC4Ujahw9XCtTqsWPjn1sQzQMLe/dWRvR6pUCtT7imbZs5Uyml1Mavv1YK1AxQm2fPjm+jav36+LoL8vMPeN93rF7d7Hnpr62NHBNQIVDLkpOVAlU8f358nXXvvNP4eDz5pFqWl6cC9fWN3luUnx/Zj7POarB8W8I2FaglKSmR/SsuVp937Kh2JVwrmzL1vPOUAvVdcvL3+/b116p85Ur1eV6eUqDWPvdcfPvly5Y1vaHo+7P79fs+r9psjY/b4sXqu6++UgvGjGk2TVO6dVMzzz57v+lONO/DD9Xid99VSim1c/r0+PfPf/DBFm8jkREMqvW//33kfAQ17dxzG63jqar6/rx96ik1e/BgNctuVwtycpQCNbdbtwbrV23ZojZ89FH8M/Wxe3YT5/z4005TExPu8YlWvfmm2jp1auRFdBs75849qP1USqnv3nknkmf54RAkXsatrT3o7xMtIwFhK/voo4+UxWJRb7zxhlq/fr26++67lcPhUDt37mzR52Mny6b//U9tmThRrR07Vs165hn11k03qfdvvll9fOON6pmhQ9WT/fqpv/XurR7v0UN9NGCAmnTaaerTnj3V5z17qukDB6qP+vRR377xhlr69ttqYrt2aorNppanp6vlSUlqtdWq1ppMarPJpDZZrWpOr15qCyjffgqNB/oXBOUBVQOqHNRuUEW6rrZomtpksag1uq7WJSerRbquVqWlqW+dTrUyLU0tT0lRc3RdrUhNVYuTktRCq1Wti26rXNPUplmz1Hcmk6oFtTAlRS0oLFTzTzpJLerTRy3o10/Nb9NGKVDTs7PV3DPOUF+dcooa17u3mj5smHqvQwc1a/hw9XHnzmraoEHq67591Xd2e2R9p1N9ZrOprdGL7ObPP1cTe/dWQVDz27dXc4cPVwtHjlSLrr5aLfnlL9Wym25S31x2mZp08cVq0a23qqW/+52aeNllau6vf60W3XGHWvaHP6hVDzyglv7+92rODTeoD886S00eOVJ9OGCAegHUlGgBZ/vPfqaUUmrrI4+oLeedpwy3WymlVFVFhVqpaarCZFJTevVS0y+9VM2//Xb17V/+otY/+qhadt99au5tt6nPLrtM/btLFzUDVCBa0J5lt6sSXVefDx2qJl5xhZr0i1+orzp2VJ/GbnC33qom5eaqKl1Xn5x1lpp6111qSl6eqgM1+4wzlAvUtC5d4r/ljAsuUIv/8Q/1xZ13qhdOPlmNi6a9euZMpcJhVXrJJWr1wIHK7/Go/6WkqHJdV1/37h3//Navv1ZbvvlGzR41Kr5sUdeuKlhaqpTXq2p27FATbrlFlXz7bcOTwTDU737yE3XHiBGHVMEQDoeVt75e1VRXq9KSErVz2rR4Oj56+GH1r2HD1A5Qe7OzVTA5WfkSCo2JfJ98okq7dVO7X35Z/e/nP1dhUNNGjFCLnnlGbZo4Ue1duVIFXC7ldbuVCgaVCoWUCocjfz+U/lBIfXnVVZEATdeVUVurajZuVAvee099MWKEUqCWp6fH0/3d7beref/5T6TQkJ8fuRGD2m23K//OnWpVdnakkDFhgvr41FObPU83RgtbX/btqypATb38cvWd3a6WDBigdttsakHbtt8XGEAVmc1q+sknqxJQ/7rsMnW72awCmqZCTz+tpt5+u1KgVjzwgApE8/GWDz9Uy/v3V1U7d6pvCgpUIJb+559v8jBsmjhR7Vm9Wi2PnseJf3U7dsTXC3g8yr3P+3MvuqjFeWJ+E9tfkVAIbc7sG25QYVBfgSqKrusDtaOJQmuiudEC84KuXZVSShmGoRYvWqRWmc1qcdeuanc0eFdKqfmPPRY53tOmKSMcVrunT1fKMNSKtDQ1Lz9fzRo48Pvfz+lUFWvXNtiPrRZLk2lY9/LL8XWWFRSoRSefHM+Xa6PBxtwBA+Lrb12wQM245hoVCgRU+ZYtjYKspjR3nq6YMkXNeuqppo/pbbfFg4k5v/mNCvp8anY0CJz1k5+o2aefrnbrulpls6nl3burbz/8UPlcru8/f9llSoHyRtNXkRAcl0WvKXNjgdDAgWrODTeokM8XP5/WtWmjdicERJPPPz/+/zl//atSSqk5N9zwfYDicMS/e2W0Im1O166qHlRVwn1+xccfq637KWR79u5VU888s8FvN+fqq9X6pCSlQO2YPFlNvvzyeEAYW+eb6HVCgZr5m98ot8ulZgwbFg/y9lqtSoGad/HFjb5zffR+N6djR6WUUv6aGrXqz39Wix96KJKfQO3WNLUrWpE346abIt8zZEiz+6GUUrMT7hdrx4xRfrc7HiCsiu7Pwnbtvr+n/PSnauoFF6hlzz2n1jocqnjxYlWSkI/XRT8TPy6XX648NTVKKaVCwaDamvDezliwahhq7UMPqdJVq9TGRYvi71cXFzeZ5rJdu1RZ9JoSCgZVMJa/QyE1O7rfCtSKaLC159tv1er332+0nZ0rVqig368Mw1DfvfeeWv/aa+rbP/1JLf7jHxvsw4yCgkafnfeHP8TfX3Dppd9f66L/rkpPj6+7fdq0eBoT/3ygduxzzq9MqOCNVQyU7dihZvTvr+YMGhQ5N0B5Xa74egv/9Kcmj9Pe9euVq7Ky0fL6mhr18TnnqG1z5qiZ0XNQgVrw73+ruvLy+HqGYajxV1yhlkcr8Wd8+qmSgPDo0JRSqhUbKE94Q4YMYeDAgbya0Ee/Z8+eXHbZZTzVzHMAiVwuF06nk9raWtKiA4AcDUoplFLoQNDjoWL3bmpLS2mTnExddTVaKMSOzZupr6nBZBjYTSZKi4pItlgI+3zYdR3dMPC5XKRYrXhdLmwmE+6KCuwmE5UlJeRlZ+OuqiLZYsFbW4tN19FDIUyahtlkQtd1jHCYmtpaUpKTSUlJwWazQVYWzn796PDAA2h5eWxftIjVt99Odnk59rq6SDeVcBjdMDCZzXj9ftI1DbNS8ZE6VfQPXSdsGN+/Tk5G6ToohUpNJWXwYHIfeQTToEGU7d7NnEsvpeOGDWR4PCQTGdDGRKRvduwv9np/QkAQCOg6FWYzRqdOdPz977HcdhuYmx4Lasnnn+N54AE67thBTijU5GAWAPWaRllODrn//jf2K65gxRdfUPPLXzLY7SY1uo5L06i02bDffDPt/v1v1s2ZQ9XPfsawurr4NB7fdOtG+z//mU633EIKMKtrV7L37KH3Ps8bVbVpQ+pzz2G55ZZGaVk2aRK+a65haH09Bt/POxizyWRiV5cunJfQnaspBpHfJ5a2MN8PxZ/YJU5rYtnB9JuvzMwk+auvSGph96R6l4uZffpwflFRfPCmAxHbl1g+/KHRwJZ26kT/efPw3H8/qSefjPn++zGAL3/2M4ZMnoxH01jerx9XN/MM2KL8fDIeeQTXxx9jW7kSHngAvvmGtv/3f+ReeCErPviA/Ouvp21Tnx08mNyiIjJKSyl+7DGShgwh9eKLyY52OfX99KfYP/uM+kCAZR07cmZ1NWGgRtPI3Od29NXJJ9Nj9WraGwZFdjtBq5WwpkV+53CYnnV1hKDBMV1rMtEjHMYHbEtOhnCYHL+fLGDybbfhXreO/PXrGVRZyeasLIzkZEJmc+TYhsPYLBbCgQDhYBBTdFmfsrL4d4SaOP7L8/MJJiWhDAMjHCbk9WKtraW3z8eOtDQKduygaskSym6+mbrTTuP8CRNY43Ti03VCSUm0q6iguKAAn8mE7vPRbdcuCgAfsCk5mbTo+dEZ2PnyyxTecUf8u2u2bMHUrRt1mkaF2UzfYJANQA9g4bXXQn4+Q59/Pr7+OpOJ3vs8u7Oge3c80RFx/T4f5nCYAVu2ENY0UpQidmeZlZdHKCmJs7ZswQJUaRore/QgpbycIdFua/PatsViGPHXC/v3x8jIIFRdTVDTCCUlYTKZwOslZ+VKqk86CWunTgSDQWy6Tl1VFb2XLiUX+DAjg3adO6Nv3YrRvTuhYJCC1as5KSH9izMyyHO5yA+HKdM0lFJsy82lPDOTS9atA2BDUhIhsxm/1UqWy0VhM89NrnY4CJpM9Ha5SHxCuVbXcRoG9UAy8J3dzkk+HzXQYACbTVYrLoeD9rW1tE/oUjezc2d0wyCnqIgcw8C/YAFthw5lVVoa9fn51BcXc4HLRS2wrEcPksxmTKEQejAYGRnS5yOvupp8pZibm4vlgguoqK1l5PjxVGzaRHLPnoSgyYG9goAHUJpGhlK4NI206Hm2JDubU8vLcQOpQLnJxNbMTHx2O9bycoZ5vbiJXFcXtGlDB4+H7tHuzuutVk6qq2PWAw9w7j//yUqHgzyPh7ZEuokv6dQJLSkJc/ScDVVW4qiqwme3M6Cigt1WK90DAeqBTSkpnNzEs38VJhNhpSKPQyTYaLMRMJnom3CvWXD11Qx49VWWDBnCWVu2UKrr7MzLQwsEGJwwiMqylBQ8+fkk19UxuLiYaiDxIZIlSUlUJieT1qkTIcPApOuEg0E6r1mDGdjcsSMWj4eh0W2uyMqiXVUVHrud2s6d6bN2LSu7d6fHpk2kAxscDsrz8gjpOuk7dzLA62Wd2Ux2KNTg+lkH8QGxNjkcFHo8LMnLwzCb0YJBTGYzvXbtYmtmJlooxCn7PLf5ncVC92CQpbm5WA2DrIoKOkSP2+wuXbB4PHQrLWXlhRdywf/+x0KLBYvTiT0YpE/Cthalp+N3OulQVESnfY77arOZftGuvFtsNra2a4c5NRWTrmNWimBdHads20a12czOPn0igxl6vaQWF5Pq89EZKNe0SFnKbKZt9DzcYTKx3ekkKTWVoNvNGdFus0uysuhRUYETjnoZ90QkAWErCgQCJCcn8+mnn3L55ZfHl999992sWrUqPrBJIr/fjz9xugGXi4KCAjlZDrPY8y+JI3kppdBaOLqqUopwOIymaQSDQYLBIIZhUFpaSl5eHqFgkMqKCjAMjFAIi8mESdfxhkLoFgttc3JISUlp8ffty+PxULN3L2GPh1qPB1tSEhmZmWS1bYtmtUITo5cZhhGZ1ywQQHc4mhxJ1udyUbV5M7a0NDK7dQOgZMcOrIZBRqdOhPx+ts+YQZLJRHaHDtg7doSEqReaE6qvR7fZ2LN0KRXz56ObTGR26kT2eeeB2cySl18muH07Rl0dfk2jfZ8+VKxahb+uDiMcxmw2Y9Y00rt2xedy4dq9GwyD+OVN0wiHw5hMJhSwd+9ekh0OMjIySEpKwohWcJgtlsi2zOb4/3E6Sf/Zz3D6fKT4/VhPPRXaHNw4hn63mx3Tp1O3cyeh8nIqNm+moqyMgoICQoEAgUAAT10doXAYTSl0XSccCmG32dA0DZvViqZp1AeDpHfowOl/+QsrX38d165d2Nq0Ib9HDwrOPhtb9LdpSixfAsx+9VUC69eT0qkTzq5dqZgxg5yBA+l+/fWYfuB5zG1r11K5cCFdBg9m9/TpFJxzDq7Nmyn4+c8jI/0p9X0e8vthx47IcYs+OwqgDIM177zD3v/9D1ttbaSSZcAA6hcvprZdOy566SW2LljAhocfxlZWhtnrxQiFMNtsaLpOvcNBOCkJZ9eudPvzn1n57LMM+NOf+O6LLwhPmEBqXR26xUIwI4M2N95I72ilxNoZM/j217+mfX09ut+PNRxGhcMoXSesFLrZDLqOoWloJhPh9u3p/+67uL1e0rp2ZfmLL6J//DFpt93Gnpdeom1lJVaIz8cW0jTMubmEu3Sh6z/+QUbCgCXhUIgZ112HfcECrIC1ro6QzYajrg6TUoRsNgKpqVjuugvv228TcrkIOp3kd+lCwV13YUl49i1m47hxlD/zDEluN7rJhNlkQg0eTN/XXgOTiSVPPkn7YcMouesuzG43SXfdhSk3l/ZnnMHKSy4hY8sWHOFw/PcKaRrlOTmkvvEGJVOm4P/qK1Lq6mhfXk4YqGzfnqzHHqPij3+kXW0tHl2nxukk2eEgfccOQrrO9gEDsG3aRMfqanSlCFqtJAGW6HlpAHt1nexwGLNhRCoXgaCmUZ+URDAQID0UwtB1qsxm2obDGCYT9XY7JRdfjG/dOuxt2pA5bx5+qxX/1Vdj/fpr6mw2Or71FgGTieJf/pKUQIAUvx+/xYIpHCag64TuuYfa8eNpf911kcrNtDQqJ03COX8+Xk2DpCSMq66Czz/H36cPybt3Y7bbKXzuObb99reYamtxnX8+vX/7W8offJDca65h6+bNmMeOJaAUJqVIfe458s84g3Xnnkvy3r1YHA5UejrW++6j1513MveWW7B9/DFJhoFP06jIzyetuJg2wSAhs5mgrhPUdfyaBnY7prQ0Mv7yF3recEOj+8Ky117D/d57BJKTGfjMM2x8+21MDge6xYLns89I++1v0cNhat9/H620FFPXrtRXVZG9Zw/uLl3o//nnrB45Ep/LRdvaWkyhEKWaBn37MmjMGFZdcQW2bdvQnU7cvXqRpml0eOYZcgcOJBQMMuPaazHNno2haTjuvpvgp5/SZts2tHCYsN+PxWzGoxTutDTsXi+ek05i4IcfYmgaa3/6U1Lr6qgfORJj2zYC9fVk3XorJX//O30efZRat5uq118nkJ2Ndd06vH36kLF0KRoQuuIKtIICVGUlpz37LHr0mrX+nXfY8swz5O7ahabrhIYOpf3DD7P9lVdwfvllZEoqkwlvhw7objeulBScv/gF7l27SB8/HsJhHD4fuq6jAE3XqbLZsGga5lCIkKZR1a8fWiBA+saN1Kel0e6f/yS9Xz9Wn3ceGZWV+JOT0ZKTCYVCtKmsRNd1ahwOygoLabNuHaqwkHCXLljr68HvJ1RcTPt//xs0jfxhw5g3YgRpmzZh0jSwWtENg/r8fLqPGweGwYbHH0fPzcXUvj2VK1Yw9IUXWH7ZZTh37CBoMoHDQfa991K8eTMD7ruP1Lw8jHAYwzCYeNFFpC1bhq7rWNPS0Hr1os+bb7L0hhtot3IlKIUvLw/L9dfjr6nhtCefZM5552HauJHA8OEkDRoEzz5LUl0dybqO0nWUphECSpOTsRkGberq0HWdgMWCKy+PsMuF9cwzCSxciNVmo+t777Epev+xFhfjrajAbrOhA7W5uWQQGQyrZ1mZBIRHiQSErWjPnj3k5eUxf/58hg0bFl8+evRo3n33XTY2MWLUY489xl+jA1UkkpNFCCHEsSpWFEkMdg6kEk4Icfxx/fznOMePlzLuUSCjjP4I7HvD299N8M9//jO1tbXxv6KE0R2FEEKIY5GmaY3uexIMCnGCe+ml1k7BCUMCwlaUlZWFyWSipKSkwfKysrIm5xYDsNlspKWlNfgTQvx4jJ47mu3V21s7GUIIIcSxLSXlh9cRh4UEhK3IarVyyimnMHXq1AbLp06d2qALqRDi2PHQjIdYvnd5aydDCCGEEKJFfmiwOnGE3XvvvfzqV79i0KBBDB06lNdff51du3Zx2223tXbShBAHSR7NFkIIIcSxQgLCVnbNNddQWVnJ448/zt69e+nTpw9ff/01hYWFrZ008SM1a8cszu54dmsnQ+yHQgJCIYQQQhwbJCD8ERg1ahSjRo1q7WSIY8SId0dgPGLIgAs/YtJCKIQQQohjhTxDKMQxKGSEDst2yjxluPyuw7It8T1pIRRCCCHEsUICQnFce2P5G5R5ylo7GYdd0Agelu1c+N8LeXTmo4dlWycqpRRXfHxFg2W/+OwXrZQaIYQQQogDIwGhOK79dtJvWbF3xRH/nmpvNTW+miP+PTGBcKDB64NtMXQH3Jj1/fccV0odli6Qx2s3yhpfDRM2TACO3308WBX1FVz96dWNlr/37XvcM/meo58gIYQQQjQiAaE47mkc+Wftrh53Nfd9c98R/56YWEBY7CoGwPKE5aC24w/5sZlt+13nxUUvcvnHlx/U9hNlPJNB5rOZAISNMBX1FYet62tr2F69HaUUe+v2xpe9vfLt+P9jwaGhDPa49xz19CVSSlHtrT7q37ulagufrv+00fLFxYuZuWPmUU+PEEIIIRqTgFDEufwunpv/3A+uVxeoO6ZaQhIL7EfKtG3TSLYkH/HviVm2ZxkABf8o4OTXTgbgtWWvHdA2QkaIPe49rC5dvd/1VpasZOLGiT/4m++vJVEpRa2/lipvFcFwkA/Xfkj2c9kHHcgebYYyGu1b5391ZlPlJubtmgdEgtwZO2bE35+9czYAi4oXkff3vKN6zoSNMEPfGhp/vb58PW2ebcPOmp0t+nwwHGRb9bZGy7/e/DWzd8ymqLaoUSt1zOOzH48fk+ZazbdUb6HQKSMpH4wXF73I2G/H8sXGL/jdl7/b77reoLfZ3wlgbdna/ebLYDhIaV1pk++1RgVDa9vf9e1oVW4ppfAGvUflu4QQJw4ZZfQ48ddZf8WwGvhCPrwhL6WeUpw2JynWFPa49+Dyu/CH/VR7qxmcNxi72U4gHEBDIys5i/L6cjKTMnlpyUuM3zAei25hYLuBuP1uki3J1PhrSDYno2ka/1n+HwqdhQwtGEqOIwcNLb79VGsqCkWqNZVSTynekBelFAVpBSzfu5wOzg6k2dLQ0NA0Lf5vja+GNFsavpCPoBGk1ldLobOQ3e7dZCVnUe2rxmFxUBeow2lzoms6Zt2MxWShxleDw+IgNyWXzORMUq2pAPGuojdPvJl3Vr0T3x+Fwh1wk2ZNw1AGFpOFYDiIzWxDQ8MdcMeDpZ5ZPdlZu5NUW2SbbZPbEjSC5KflU+gsJCclh683fw3Ay0tfZmPlRrpkdKHUU4pCNQgSPQEP7oCbTumdCBkhNlVuItWWitVkJcmchK7p+EI+PEEPVpOVzumdyUrOIqzCnFl4Jn3a9uGGCTcAMPKDkbxz6TvA962F/zft/5i0aRLZjmzCRhhDGeiajsvvIsWaQro9nY7pHcmwZ9CnbR9eWvISYRXmy01fcs6759A9szs2kw2n3cn07dO5utfVVHmrGLt6LADD3x5On7Z9CBkhdE2n1l/LpspN9G3bl8ykTP615F+clHkSZ3c8mwx7BnaznaEFQ+mS0SW+jUJnITO2z+CtlW8BkOPI4fS3T+eUdqdQ7C4mZIRon9Iem9lGfbCeLVVbmLljJj/v+XPSbGmEjBDekJdcRy6V3kq8IS8W3UKKNYW6QB39cvpRH6xnR80OwipyDEyaCYUiEA5g0S0oFHvcezBpJgqcBThtToLhICEVQkNrlDc1NFaXrSbNlsYtJ99C0AiioWHRLczbNY/fTYoUypfuWcrWqq3fn5Oz/0qGPYPhbw+P7PuLhYzsNjI+4ExWchYldSVU+6ppY29DWIXxhry4/C6sJiu+kC+efovJgoZGkiUpnpfapbTjvM7n8cWmL7DqVqwmK3lpeVh0C3+a/icAPlv/Ge1S28XTcNWnV9GnbR/KPGUs3bOUzhmd6eDsEDlvlSLFmoKu6by4+EUArux1JWEjzIQNE/hZ958xadOk+P7lOHI4u+PZJFmSMGtmHFYHWclZPDrrUZbuWcqKvSvYWLERgNsn3c6FXS/k1LxTSbOlYdJMfLnpS0a8O4JubbqhazoWPVI54Aq4yHXksqduD22T2/LN1m/olNGpyetG2AgTNIJkJWWxtXordrMdgG3V2zg171ScNic2sw2TZqLUU8obK97grMKz2OPeg8VkYUDuAHRNx1AGnqAHh8WBJ+jBbrZjKAOnzQmArumsLVtL54zO1Ppr8QQ8pNvTyU/LZ0PFBjKSMuLnsFKR875rm664A27+MvMv8WN2fufzsZgi+5lhz8BmsmE323EFXKRYUuK/s6EMit3FZCZFWtT9YT9X9rySkBHiD9/8gRxHDnWBOjxBD6+veB2nzckN/W/AYXGwsHghV/S8gqLaIp5f+DwA1/e9nrm75nLpSZfitDlZV76O7TXbWVWyimv7XEuKJQWb2UaGPYOgEYy04HsrWLl3Jd+WfsslJ12Cw+Igx5GDQqGh8eLiF7l1wK3xfTbrZvxhP8mWZAxl4A/5cQVcmDQTZt2Mw+LApJsIhAPx3zvJkoQv5Gv0u5o0E7vduylyFdEjsweptlTcfjcm3YTVZCVkhCivL6c+WE+OIydyHdctWE1WqnxVhI0wOY4c9tTtIS81D0MZBMPB+HdU+6rxBD10b9OdukAdZt3Mnro95DhysJqs1Ppr8Yf8eENeMuwZpFpTSbYk8/zC5/n94N8TMkL4wj7MmplsRza73bsZt34c1/S+Bg2NCm8FHdI6UOwujp+/6bZ0Um2p7HbvpsxTRu/s3vHKVYWiTVIbNlZuxGFx0CapTfwY1Qfraetoiy/kY0/dHjwBDxM3TiTFmkJ2cjbdMyP70LdtXwAmbZ7ET7v+FE3T8IV8mDRTJM8GI9eMJHMS3lAkoDRpJqp91fH7QyAciN876kP1pFpTmbtrLt0zu5NsSSYzKZO6QB0W3cLqstUsKl5Emi2NLhldKEwvxKybyU/NJ2gECRkhQkaIKm8V6fZ0QkYoPjK23WRn9s7ZDGo/iCRzEr6wj02VmxheMJz6YD11gTocFgdbq7eiaRptHW1JMicRNILx4xLr+bOzdiddMrowfft0Um2pnNvpXNaUraEgrQBvyItZM5NmS6MuUIcvHMlrCoWu6fEyAHz/2EXs+lwfrCfFmhJ/f988ajPZ8AQ9AFhNVrxBb/x9X9iHw+Ig2ZKMJ+CJlzFi2/KFfSSbkwmrMJlJmbj8LpIsSeyq3UWXjC5M3TaVU9qdgjsQKX8lW5JxWByRikkUU7dNZUjeEMy6mfpgPWEVJt2WTnl9OanWVMy6OV4+Mutm9tbtRUPDaXOSlZzF+2vepzC9kC4ZXeLXXYBSTylptjQsugWTboqXy2LljGRLMnaznXXl60i3p2PRLYSMUPy+ETbCKBT+sD9eXkuzpaFrOt6gF5NuQilFmi2Ncd+N47KTLqPKV4VSiqARJM2ahqZp+MN+LLol8m/w2Kg0Ph5o6lhq6hGNuFwunE4nczfNJTczF2/QS0V9BZ6gh65tuhIMB7GarPELWGZyZiToCHjwh/0kmZPwBD3srNlJpbeSMwvPpK2jLaV1pfjD/vgFJ1bQMpRBjiOHGl9N5EauaSilsJvt8Yt/rHBuNVnjFzCLbsEX8pFmS8NutqNQ8RuhUip+w48FaEC8AA+RAplJN1Hrq8Vpd6KhxW86br8bm9lGra+Wal811d5qdrt30yOrB56Ah8t7Xk6xq5hAOEC6PR0NLV7grg/WY9bNhIwQNrONkBHCE/DgsDoaBA+FzkJCRoigEcSsm9levZ1t1dvYWr2VIXlDcFgdjHh3BK4/uSj1lNImqQ1J5qQGtcaJ3xUr+FlNVky6CV/IFz9euqZT5inDG/RSH6xn8pbJBMIBluxZwgWdL+DeKfcy56Y5rCtfx7vfvsujZz3KRe9fxIwbZtAzuyfeoDdSmLU7MWkmHFYHlfWV1Ppr2ePew67aXSwoWsAlJ13CxR9ezIs/eZEbT76RbdXbCBthAFKsKSzevZi81Dyu+OSKSOHzQQ/bqreRYk3BbraTbk9ndelqOqV3osZXQ12gjkpvJZ3SO1EfrKfUU8qa0jVsqNhA54zO3DXkLgr+UUBOSg4vX/Qy57x3DmMuHcOFXS9kZ81O2qW2i9xMQz4UCofFQZGriAnfTeCRsx6hPlgfKXwS6f6YlZxFijWFoBHEE/CgaRrj1o/DrJu5uvfV8bzjDXmxmWxYTdb4YDyxPO0P+fEEPdhMtvjNat+8qYgESlurtrJszzLSbGlUeavol9OP08eczt1D7qatoy1ZyVmMXT2WebvmYdbNvDryVf5v2v+Rn5bP6tLV1P25jiJXUTxArQ/Wk5WcFb/RGsogzRYpoNQHI4Uxk27CpJnQNC2S/8JBvCEvTpuTOTvn8PmGz7n7tLtJt6fjD/nZVbsLf9hPXmoevpCPrzZ/xaqSVWyq3ES6PZ2ZN85kS9UWLCYLP//k5yy4ZQGBcCBSiVRXijvgxm62xwP3U9qfQro9nU2Vm6jx1eAJeLjy0ysB8D/sp8ZXg6EMNLR4C7DNZGNX7S5WlqykxlfDTSffhKEMluxewvjvxlPmKePBMx7kmnHXYDxiUOwqxlAGYRWOBxexoPjC9y9kwjUT6JfTD2/Q2+A3iQUdhjJw+V14gh56ZvXkv6v/y897/ZxgOIg74CYQDlDrq8UdcPP47Me5ts+1LChawAc//4BaX228EGfWzfhCPpx2J76QL3490rRIhdeu2l20SWpDsiWZotoizig8g5V7V3JS1klYTVY8AQ/ekBdd06n2VlPprYwHm33b9qXIVUS1t5r15eu5ffDteAIe6oP18QJVta+asBGOXxvSbGnsrdtLm6Q27HXvZX7RfJLMSfTP7c/g9oPRH9f5+rqv8YV8DGg3AF/Ihy/kI8OewerS1eSm5JKbksuOmh3kpOSQbElmW/U2LLqF7pnd2Vm7E4fFQbWvmo7pHfGFfFR7qwmEA9jMNlKsKQCYdTNJ5iQ0TaO0rjR+nXLanSilGgR5seuyrukUu4px2pwUphfiCXgIGSEMZcQ/HzSCuP3u+Pck/ra+kI+SuhJ6ZPWInw+xoCJ23XbanFT7quNBf7W3miRLEsmWZBYVL6JNUhtOzj2Z0rpSLKZIsKhUJN/sqt1FYXoh3qAXu9nO+vL19MzuiUkzxYPa7dXbyXZk4w164/enHTU76ODsQEZSBhAZpbkuUEe5p5xzO58bv3/YzDaKaosw6SYK0goIGpFgoNpbjTvgxqSZSLYk09bRFoDy+nK8QS9ZyVnxgBeI33OqvFVYTVby0/KZsnUKA3IH4Al6+PP0P/PYWY/RN6cv9cF6an217HbvJseRg91sj1cgzdk5hwG5A0i1pRIMB1GoeBqCRpDK+kqsJivJlmQsJku8IlGpyHXKYXWglMJisuCwONhRs4Py+nLaJLXh7wv/zss/fTlewRwrzMeCEavJSiAcwBPwYNJNhI0wgXCAkroSOqZ3xG62YzPbqPJWUReoI8OeEbn+2VKpD9ZTWV9JTkoOJs1EkiWJck95PMjYWLmRDs4OBMIBqr3VpNpS48FFZlImZt2MSTdR7Comw55BlbeKAmdB5H5vsuEOuPGFfJh1M96gl0pvJSdlnkSNr4ZsRzb+kB+LydLkfcEdcKOUwmF1xO9Nu1276Z7ZHbNujl9XE49FyAhR66sl3Z4eL0vEKmyrvFU4LA521u7EZrLROaNz/NwKhoPx8wrA7XdT4CygxleD2+8m3Z7O2rK1nNPpHPxhf6SCM5p3QkaIGl8NWclZQKRXwND8SO+R2BgChjKo8laRmZQZbyyI3Tu9QS9Oe6TS1GKy4PK7WF++npHdRrK3bi9OmzNeVvSH/FTUV5CXlkfICGHSIulXRILAMk8Z6fZ0SupKyE7OpqSuBKfdGQ+uYxXonoCHNkltIr9deTGDOw+mtraWtLS0w1JuFk2TgPAYFwsI5WRpXQuKFjD87eGoR4/s6VRaV8r7a97n3qH3xpct27OMwW8MZvGvF3Nq3qkHtL2rPr2KT69q/IxXohpfDZ+u+5TfnPKbg0pzoh4v9+DvP/k7P+32U7S/aiz7zTJOaX/KIW+3tVXUV1D4YiE39b+JV5a9gs1kw/ewL/5+yAj94OA9R9IFYy8g3Z7OJ1d9ckjbUUqxfO9yanw1nNf5vIP6/Lxd8zi9w+m8vORl7hxy5w+uL/NtNi1WOSaEEMcrKeMePdJlVIjDIMeRc3S+JyWnQTAIxGvVYjXtB+KHgkGAdHv6YQkGAdaNWodJN8VfF6YfH8+RZSVnMeGaCfTI6sEry15pFPy1ZjAIxLs3HypN0xjUftAhff6MwjMAfjAYjK0vmibBoBBCiMNFAkIhDoMubboQ+kvrjJh5UuZJvH3J25yUeVKrfP+BSAwGHxj2QPwZqePBBV0uiP8/cT9/DP5z8X/i3Y2EEEIIIRJJQCjEYdJaQYBJN3HzgJtb5bsPxbPnP9vaSThiTNqPKyCUYFAIIYQQzZFSghBCHGZTfzW1tZMghBBCCNEiEhAKIcRhdjwMlCOEEEKIE4MEhEIIIYQQQghxgpKAUAghhBBCCCFOUBIQCiHEYbR+1PrWToIQQgghRItJQCiEEIdRz+yerZ0EIYQQQogWk4BQCCGEEEIIIU5QEhAKIYQQQgghxAlKAkIhhBBCCCGEOEFJQCiEEEIIIYQQJygJCIUQQgghhBDiBCUBoRBCCCGEEEKcoCQgFEIIIYQQQogTlASEQgghhBBCCHGCkoBQCCGEEEIIIU5QEhAKIYQQQgghxAlKAkIhhBBCCCGEOEGZWzsB4tAopQBwuVytnBIhhBBCCCEOj1jZNlbWFUeOBITHOLfbDUBBQUErp0QIIYQQQojDy+1243Q6WzsZxzVNSdh9TDMMgz179pCamoqmaUflO10uFwUFBRQVFZGWlnZUvlMc/yRfiSNB8pU43CRPiSNB8lVjSincbjft27dH1+UptyNJWgiPcbquk5+f3yrfnZaWJhctcdhJvhJHguQrcbhJnhJHguSrhqRl8OiQcFsIIYQQQgghTlASEAohhBBCCCHECUoCQnHAbDYbjz76KDabrbWTIo4jkq/EkSD5ShxukqfEkSD5SrQmGVRGCCGEEEIIIU5Q0kIohBBCCCGEECcoCQiFEEIIIYQQ4gQlAaEQQgghhBBCnKAkIBRCCCGEEEKIE5QEhKJZc+bM4eKLL6Z9+/Zomsbnn3/e4H2lFI899hjt27cnKSmJs88+m3Xr1rVOYsUx4amnnmLw4MGkpqbStm1bLrvsMjZu3NhgHclX4kC9+uqr9OvXLz6h89ChQ/nf//4Xf1/ylDhUTz31FJqmcc8998SXSb4SB+qxxx5D07QGf7m5ufH3JU+J1iIBoWiWx+Ohf//+vPzyy02+/+yzz/L3v/+dl19+maVLl5Kbm8v555+P2+0+yikVx4rZs2dzxx13sGjRIqZOnUooFOKCCy7A4/HE15F8JQ5Ufn4+Tz/9NMuWLWPZsmWcc845XHrppfGClOQpcSiWLl3K66+/Tr9+/Rosl3wlDkbv3r3Zu3dv/G/NmjXx9yRPiVajhGgBQE2YMCH+2jAMlZubq55++un4Mp/Pp5xOp3rttddaIYXiWFRWVqYANXv2bKWU5Ctx+GRkZKg333xT8pQ4JG63W3Xr1k1NnTpVnXXWWeruu+9WSsm1ShycRx99VPXv37/J9yRPidYkLYTioGzfvp2SkhIuuOCC+DKbzcZZZ53FggULWjFl4lhSW1sLQJs2bQDJV+LQhcNhPvroIzweD0OHDpU8JQ7JHXfcwciRIznvvPMaLJd8JQ7W5s2bad++PZ06deLaa69l27ZtgOQp0brMrZ0AcWwqKSkBICcnp8HynJwcdu7c2RpJEscYpRT33nsvp59+On369AEkX4mDt2bNGoYOHYrP5yMlJYUJEybQq1eveEFK8pQ4UB999BErVqxg6dKljd6Ta5U4GEOGDOG9996je/fulJaW8uSTTzJs2DDWrVsneUq0KgkIxSHRNK3Ba6VUo2VCNOX3v/89q1evZt68eY3ek3wlDtRJJ53EqlWrqKmp4bPPPuPGG29k9uzZ8fclT4kDUVRUxN13382UKVOw2+3Nrif5ShyIiy66KP7/vn37MnToULp06cK7777LaaedBkieEq1DuoyKgxIbFStWoxVTVlbWqHZLiH3deeedfPHFF8ycOZP8/Pz4cslX4mBZrVa6du3KoEGDeOqpp+jfvz///Oc/JU+Jg7J8+XLKyso45ZRTMJvNmM1mZs+ezb/+9S/MZnM870i+EofC4XDQt29fNm/eLNcq0aokIBQHpVOnTuTm5jJ16tT4skAgwOzZsxk2bFgrpkz8mCml+P3vf8/48eOZMWMGnTp1avC+5CtxuCil8Pv9kqfEQTn33HNZs2YNq1ativ8NGjSI66+/nlWrVtG5c2fJV+KQ+f1+vvvuO9q1ayfXKtGqpMuoaFZdXR1btmyJv96+fTurVq2iTZs2dOjQgXvuuYfRo0fTrVs3unXrxujRo0lOTua6665rxVSLH7M77riDDz74gIkTJ5KamhqvCXU6nSQlJcXn+ZJ8JQ7Egw8+yEUXXURBQQFut5uPPvqIWbNmMXnyZMlT4qCkpqbGn22OcTgcZGZmxpdLvhIH6v777+fiiy+mQ4cOlJWV8eSTT+JyubjxxhvlWiValQSEolnLli1jxIgR8df33nsvADfeeCPvvPMOf/zjH/F6vYwaNYrq6mqGDBnClClTSE1Nba0kix+5V199FYCzzz67wfIxY8Zw0003AUi+EgestLSUX/3qV+zduxen00m/fv2YPHky559/PiB5ShwZkq/EgSouLuYXv/gFFRUVZGdnc9ppp7Fo0SIKCwsByVOi9WhKKdXaiRBCCCGEEEIIcfTJM4RCCCGEEEIIcYKSgFAIIYQQQgghTlASEAohhBBCCCHECUoCQiGEEEIIIYQ4QUlAKIQQQgghhBAnKAkIhRBCCCGEEOIEJQGhEEIIIYQQQpygJCAUQgghhBBCiBOUBIRCCCGEEEIIcYKSgFAIIYQQQgghTlASEAohhBBCCCHECUoCQiGEEEIIIYQ4QUlAKIQQQgghhBAnKAkIhRBCCCGEEOIEJQGhEEIIIYQQQpygJCAUQgghhBBCiBOUBIRCCCGEEEIIcYKSgFAIIYQQQgghTlASEAohhBBCCCHECUoCQiGEEEIIIYQ4QUlAKIQQQgghhBAnKAkIhRBCCCGEEOIE9f/s3WBVx6Y0lQAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p = PowderPattern()\n", "if not os.path.exists(\"cime.dat\"):\n", " os.system(\"curl -O https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-cimetidine/cime.dat\")\n", "p.ImportPowderPatternFullprof(\"cime.dat\")\n", "p.SetWavelength(1.52904)\n", "\n", "# Index\n", "pl = p.FindPeaks(1.5, -1, 1000, verbose=False)\n", "if len(pl) > 20:\n", " pl.resize(20) # Only keep 20 peaks\n", "\n", "ex = quick_index(pl, verbose=False)\n", "\n", "print(\"Indexed unit cell:\")\n", "for s in ex.GetSolutions():\n", " print(s)\n", "\n", "# Use solution to create a crystal\n", "uc = ex.GetSolutions()[0][0].DirectUnitCell()\n", "c = Crystal(uc[0], uc[1], uc[2], uc[3], uc[4], uc[5], \"P1\")\n", "pdiff = p.AddPowderPatternDiffraction(c)\n", "\n", "# Fit profile\n", "p.SetMaxSinThetaOvLambda(0.3)\n", "p.quick_fit_profile(auto_background=True,plot=False, init_profile=True,verbose=True)\n", "p.quick_fit_profile(plot=False, init_profile=False, asym=True, displ_transl=True, verbose=False)\n", "\n", "# Plot\n", "p.plot(diff=True, fig=None, hkl=True)\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", " (p.rw * 100, p.chi2, p.chi2/p.GetNbPointUsed(), p.llk))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find the spacegroup\n", "We'll use part of the list of possible spacegroups as options to test" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Beginning spacegroup exploration... 37 to go...\n", " (# 1) P 1 : Rwp= 6.80% GoF= 14.98 nGoF= 3.24 (186 reflections, 0 extinct)\n", " (# 2) P -1 : Rwp= 6.80% GoF= 14.98 nGoF= 3.24 (186 reflections, 0 extinct) [same extinctions as:P 1]\n", " (# 3) P 1 2 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct)\n", " (# 4) P 1 21 1 : Rwp= 6.61% GoF= 14.11 nGoF= 1.65 (101 reflections, 2 extinct)\n", " (# 5) C 1 2 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct)\n", " (# 5) A 1 2 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct)\n", " (# 5) I 1 2 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct)\n", " (# 6) P 1 m 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 7) P 1 c 1 : Rwp= 6.58% GoF= 13.92 nGoF= 1.66 ( 96 reflections, 15 extinP 1 21/c 1 nGoF= 1.4866 GoF= 13.575 Rw= 6.50 [ 92 reflections, extinct446= 17]\n", "P 1 21 1 nGoF= 1.6488 GoF= 14.108 Rw= 6.61 [101 reflections, extinct446= 2]\n", "P 1 21/m 1 nGoF= 1.6488 GoF= 14.108 Rw= 6.61 [101 reflections, extinct446= 2]\n", "P 1 c 1 nGoF= 1.6649 GoF= 13.922 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", "P 1 2/c 1 nGoF= 1.6649 GoF= 13.922 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", "P 1 2 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 m 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 2/m 1 nGoF= 1.8392 GoF= 14.458 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 nGoF= 3.2428 GoF= 14.982 Rw= 6.80 [186 reflections, extinct446= 0]\n", "P -1 nGoF= 3.2428 GoF= 14.982 Rw= 6.80 [186 reflections, extinct446= 0]\n", "P 1 21/n 1 nGoF= 5.4155 GoF= 26.697 Rw= 9.11 [ 92 reflections, extinct446= 19]\n", "P 1 2/n 1 nGoF= 5.7672 GoF= 27.063 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", "P 1 n 1 nGoF= 5.7672 GoF= 27.063 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", "Chosen spacegroup (smallest nGoF): P 1 21/c 1\n", "ct)\n", " (# 7) P 1 n 1 : Rwp= 9.17% GoF= 27.06 nGoF= 5.77 ( 96 reflections, 17 extinct)\n", " (# 7) P 1 a 1 : Rwp= 9.26% GoF= 27.58 nGoF= 5.97 ( 97 reflections, 14 extinct)\n", " (# 8) C 1 m 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 8) A 1 m 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 8) I 1 m 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 9) C 1 c 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct)\n", " (# 9) A 1 n 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct)\n", " (# 9) I 1 a 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct)\n", " (# 9) A 1 a 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 9) C 1 n 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 9) I 1 c 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 10) P 1 2/m 1 : Rwp= 6.69% GoF= 14.46 nGoF= 1.84 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 11) P 1 21/m 1 : Rwp= 6.61% GoF= 14.11 nGoF= 1.65 (101 reflections, 2 extinct) [same extinctions as:P 1 21 1]\n", " (# 12) C 1 2/m 1 : Rwp= 62.70% GoF= 1246.13 nGoF= 311.68 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 12) A 1 2/m 1 : Rwp= 62.83% GoF= 1253.74 nGoF= 313.87 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 12) I 1 2/m 1 : Rwp= 60.91% GoF= 1196.43 nGoF= 246.94 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 13) P 1 2/c 1 : Rwp= 6.58% GoF= 13.92 nGoF= 1.66 ( 96 reflections, 15 extinct) [same extinctions as:P 1 c 1]\n", " (# 13) P 1 2/n 1 : Rwp= 9.17% GoF= 27.06 nGoF= 5.77 ( 96 reflections, 17 extinct) [same extinctions as:P 1 n 1]\n", " (# 13) P 1 2/a 1 : Rwp= 9.26% GoF= 27.58 nGoF= 5.97 ( 97 reflections, 14 extinct) [same extinctions as:P 1 a 1]\n", " (# 14) P 1 21/c 1 : Rwp= 6.50% GoF= 13.58 nGoF= 1.49 ( 92 reflections, 17 extinct)\n", " (# 14) P 1 21/n 1 : Rwp= 9.11% GoF= 26.70 nGoF= 5.42 ( 92 reflections, 19 extinct)\n", " (# 14) P 1 21/a 1 : Rwp= 9.20% GoF= 27.22 nGoF= 5.61 ( 93 reflections, 16 extinct)\n", " (# 15) C 1 2/c 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) A 1 2/n 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) I 1 2/a 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 15) A 1 2/a 1 : Rwp= 62.99% GoF= 1258.62 nGoF= 291.60 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) C 1 2/n 1 : Rwp= 62.51% GoF= 1236.15 nGoF= 280.76 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) I 1 2/c 1 : Rwp= 59.00% GoF= 1120.91 nGoF= 221.05 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", "Restoring best spacegroup: P 1 21/c 1\n" ] } ], "source": [ "p.SetMaxSinThetaOvLambda(0.2) # Important for stability of profile fit. And faster !\n", "spgex = SpaceGroupExplorer(pdiff)\n", "\n", "# NB:verbose C++ output does not appear in a notebook\n", "spgex.RunAll(keep_best=True, update_display=False, fitprofile_p1=False)\n", "\n", "for sol in spgex.GetScores():\n", " #if sol.nGoF > 4 * spgex.GetScores()[0].nGoF:\n", " if sol.GoF <= 2 * spgex.GetScores()[0].GoF:\n", " print(sol)\n", "\n", "print(\"Chosen spacegroup (smallest nGoF): \", c.GetSpaceGroup())\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Setup the 'meta'-structure solution\n", "In the spacegroup search above the first solution `P 1 21/c 1` actually is the correct one, and with its multiplicity (4) only requires a single independent cimetidine molecule in the asymmetric unit cell. But let's proceed as if we did not actually know that.\n", "\n", "What we do is:\n", "* download the cimetidine z-matrix\n", "* create a list of the possible spacegroups that we want to test\n", "* create a function which, given a spacegroup, will :\n", " * apply the spacegroup to the crystal\n", " * determine the appropriate number of independent molecules (as a function of the multiplicity)\n", " * optimise for 5 runs and 2 million trials\n", " * return the solutions using the XML string of the Crystal\n", "* use `multiprocessing` or `multiprocess` to test the different spacegroups in parallel with multiple processor cores\n", "\n", "Note: *this is a generic approach - it would be possible also to completely change the contents of the crystal, e.g. if the number of independent units (atoms, molecule, polyhedra) was unknown, as is often the case for inorganic or metallic structures due to special positions*" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Get the cimetidine z-matrix\n", "if not os.path.exists(\"cime.fhz\"):\n", " os.system(\"curl -O https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-cimetidine/cime.fhz\")\n", "\n", "# Disable dynamical occupancy correction (no special position expected, usual in organic structures)\n", "c.GetOption(1).SetChoice(0)\n", "\n", "# Create the Monte-Carlo object with the crystal and the powder pattern\n", "mc = MonteCarlo()\n", "mc.AddRefinableObj(c)\n", "mc.AddRefinableObj(p)\n", "mc.GetOption(\"Automatic Least Squares Refinement\").SetChoice(2)\n", "\n", "nb_step = 1e6 # Increase this for more complex problems - it's ok if the spacegroup is correct (1 independent molecule)\n", "\n", "# Disable profile fitting for the powder pattern (or nothing gets optimised !)\n", "pdiff.SetExtractionMode(False)\n", "\n", "\n", "def solve_for_spacegroup(spgname):\n", " # Set spacegroup\n", " spg = c.GetSpaceGroup()\n", " spg.ChangeSpaceGroup(spgname)\n", " \n", " # Multiplicity\n", " mult = spg.GetNbSymmetrics()\n", " \n", " # Empty Crystal of existing scatterers (should not be necessary here)\n", " for i in range(c.GetNbScatterer()):\n", " c.RemoveScatterer(c.GetScatterer(0))\n", " \n", " # Add 4/mult independent cimetidine molecules\n", " nb_mol = 4//mult\n", " for i in range(nb_mol):\n", " m = ImportFenskeHallZMatrix(c,\"cime.fhz\")\n", " \n", " # Disable all display update if not in the Main process-or strange things happen !\n", " if current_process().name != 'MainProcess':\n", " # we must do that for the crystal, monte-carlo and powder pattern object\n", " for o in (c, mc, p):\n", " o.disable_display_update()\n", " \n", " # Run the parallel tempering optimisation\n", " # We could run multiple times the optimisation (using nb_run), but it is more \n", " # efficient to distribute that using the multiprocessing pool\n", " nb_run = 1\n", " t0 = timeit.default_timer()\n", " for i in range(nb_run):\n", " mc.MultiRunOptimize(nb_run=1, nb_step=nb_step)\n", " dt = timeit.default_timer() - t0\n", " print(\"Spacegroup: %12s LLK: %12.2f dt=%3.0fs\" % # /run (%3.0fs remaining)\n", " (spgname,mc.GetLogLikelihood(), dt,)) # dt/(i+1) * (nb_run-i-1)\n", " \n", " # Extract all solutions as the XML output of the crystal\n", " vsol = []\n", " for i in range(mc.GetNbParamSet()-nb_run, mc.GetNbParamSet()):\n", " mc.RestoreParamSet(i, update_display=False)\n", " s = c.xml()\n", " llk = mc.GetLogLikelihood()\n", " vsol.append({'xml': s, 'llk': llk, 'spg': spgname, 'nb_mol': nb_mol})\n", "\n", " return vsol\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the tests: **this will take a little while (5 to 20 minutes for each spacegroup, in parallel processes), and is longer for spacegroups with lower multiplicity and not centrosymmetric (more independant atoms)**." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Solving structures in // - this will take a little while, be patient !\n", "Spacegroup: P 1 21/c 1 LLK: 18500.13 dt= 26s\n", "Spacegroup: P 1 21/c 1 LLK: 49206.74 dt= 27s\n", "Spacegroup: P 1 21/m 1 LLK: 260046.12 dt= 28s\n", "Spacegroup: P 1 21/m 1 LLK: 267669.81 dt= 28s\n", "Spacegroup: P 1 2/c 1 LLK: 461123.68 dt= 27s\n", "Spacegroup: P 1 2/c 1 LLK: 306248.10 dt= 27s\n", "Spacegroup: P 1 c 1 LLK: 87454.66 dt= 75s\n", "Spacegroup: P 1 c 1 LLK: 91092.14 dt= 76s\n", "Spacegroup: P 1 21/c 1 LLK: 56249.86 dt= 27s\n", "Spacegroup: P 1 2 1 LLK: 232080.59 dt= 81s\n", "Spacegroup: P 1 2 1 LLK: 239530.07 dt= 82s\n", "Spacegroup: P -1 LLK: 101645.03 dt= 61s\n", "Spacegroup: P -1 LLK: 115241.95 dt= 64s\n", "Spacegroup: P 1 2/c 1 LLK: 670519.05 dt= 27s\n", "Spacegroup: P 1 21/m 1 LLK: 259924.47 dt= 28s\n", "Spacegroup: P 1 c 1 LLK: 86015.56 dt= 74s\n", "Spacegroup: P 1 21/c 1 LLK: 18596.19 dt= 27s\n", "Spacegroup: P 1 21 1 LLK: 82685.43 dt= 72s\n", "Spacegroup: P 1 21 1 LLK: 62145.94 dt= 74s\n", "Spacegroup: P 1 m 1 LLK: 260089.71 dt= 78s\n", "Spacegroup: P 1 2/c 1 LLK: 262462.19 dt= 27s\n", "Spacegroup: P 1 m 1 LLK: 261603.69 dt= 80s\n", "Spacegroup: P 1 2 1 LLK: 188882.56 dt= 82s\n", "Spacegroup: P -1 LLK: 123163.25 dt= 62s\n", "Spacegroup: P 1 21/m 1 LLK: 275339.56 dt= 28s\n", "Spacegroup: P 1 21/c 1 LLK: 49213.79 dt= 27s\n", "Spacegroup: P 1 21 1 LLK: 69958.12 dt= 73s\n", "Spacegroup: P 1 2/c 1 LLK: 372234.25 dt= 30s\n", "Spacegroup: P 1 c 1 LLK: 100616.81 dt= 72s\n", "Spacegroup: P 1 21/m 1 LLK: 242776.10 dt= 31s\n", "Spacegroup: P 1 2 1 LLK: 217691.94 dt= 84s\n", "Spacegroup: P 1 c 1 LLK: 109668.98 dt= 75s\n", "Spacegroup: P -1 LLK: 127211.68 dt= 63s\n", "Spacegroup: P 1 m 1 LLK: 343660.20 dt= 79s\n", "Spacegroup: P 1 2 1 LLK: 211306.76 dt= 80s\n", "Spacegroup: P -1 LLK: 155139.61 dt= 55s\n", "Spacegroup: P 1 21 1 LLK: 87547.20 dt= 68s\n", "Spacegroup: P 1 21 1 LLK: 101361.24 dt= 66s\n", "Spacegroup: P 1 m 1 LLK: 215645.85 dt= 71s\n", "Spacegroup: P 1 m 1 LLK: 274219.33 dt= 64s\n" ] } ], "source": [ "# List of spacegroups to test (this can be larger than the number \n", "# of availabe processor cores, process will loop over possible spacegroups)\n", "v_spacegroup = [\"P 1 21/c 1\", \"P 1 2/c 1\", \"P 1 c 1\", \"P 1 21 1\",\n", " \"P 1 2 1\", \"P 1 m 1\", \"P 1 21/m 1\", \"P -1\"] * 5\n", "\n", "# Use a multiprocess pool to solve in parallel - this should use all available processor cores\n", "print(\"Solving structures in // - this will take a little while, be patient !\")\n", "with Pool(nproc) as pool:\n", " res = pool.map(solve_for_spacegroup, v_spacegroup)\n", "\n", "# Merge all the results\n", "vsol = []\n", "for v in res:\n", " vsol += v\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Look at solutions\n", "If you have ipywidgets, just use the dropdown menu to select available solutions" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "XML: Loading Crystal:\n", "XML: Loading Crystal:(spg:P 1 21/c 1)\n", "Input ScatteringPowerAtom:C(C)\n", "Input ScatteringPowerAtom:N(N)\n", "Input ScatteringPowerAtom:S(S)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "80b4c4a7d1b4400b8c56129aa2a6d244", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(Dropdown(description='solution', options=('# 0 P 1 21/c 1 : 1 mol LLK= 18500.13', …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "63b312a80e604e2ea00d166acd3bc97a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ed737ff1ac4e477baadcef40072a155e", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQbElEQVR4nOzdeVxU5f4H8M+wg8KIIiIuaJmKYmGuYIkrSqLmEhqIcituSco1Ec2baxZqbpmm1/p1NRW19GppmuKSmAuKigkpaqWpKa4s48b6/P6AOc2BmWEGB4bl8369eOWceeacZw7DdL7neZ7vVyGEECAiIiIiIqIax8LcHSAiIiIiIiLzYEBIRERERERUQzEgJCIiIiIiqqEYEBIREREREdVQDAiJiIiIiIhqKAaERERERERENRQDQiIiIiIiohqKASEREREREVENxYCQiIiIiIiohmJASEREREREVEMxICQiIiIiIqqhGBASERERERHVUAwIiYiIiIiIaigGhERERERERDUUA0IiIiIiIqIaigEhERERERFRDcWAkIiIiIiIqIZiQEhERERERFRDMSAkIiIiIiKqoRgQEhERERER1VAMCImIiIiIiGooBoREREREREQ1FANCIiIiIiKiGooBIRERERERUQ3FgJCIiIiIiKiGYkBIRERERERUQzEgJCIiIiIiqqEYEBIREREREdVQDAiJiIiIiIhqKAaERERERERENRQDQiIiIiIiohqKASEREREREVENxYCQiIiIiIiohmJASEREREREVEMxICQiIiIiIqqhGBASERERERHVUAwIiYhMLCQkxNxdICIiIjKIlbk7QERUVU2ePLnENiEEjh49aobeEBERERmPASERURnFxsZiw4YNJbb/9NNPZugNERERkfEYEBIRldEbb7wBT09PuLq6yraPHj3aTD0iIiIiMo5CCCHM3QkiIiIiIiKqeEwqQ0REREREVEMxICQiIiIiIqqhGBASEZlQUlKSubtAREREZDAmlSEiKqMVK1bIHgshsHLlSkRERCAiIsJMvSIiIiIyHEcIiYjK6PPPP8cPP/wABwcH1KpVC7Vr14aFhQVq165t7q4RERERGYRZRqu4goIC3LhxA46OjlAoFObuDlGNIoTAli1b8N1332HIkCEYOnQogoKCsGXLFnN3jYiIqEoTQkClUsHd3R0WFhzDKk8MCKu469evo0mTJubuBhERERGRyV27dg2NGzc2dzeqNa4hrOIcHR0BFP6xODk5mbk3RDVbQUEBbt26hYYNG5q7K0RERFVaVlYWmjRpIl3rUjkSVKVlZmYKACIzM1PatmzZMlGnTh3h5OQk6tSpI7Zu3Sr2798v7O3tBQBx8+ZNqe3gwYOFo6OjcHV1FX/++ads3z///LMAIP7v//5PCCHEnDlzhJ+fnxBCiCtXroimTZuKOnXqCE9PzxL96tChg3B0dBS1a9cW3bt3F0IIoVQqhZOTk8jOzhZLliwRlpaWQqlUCmdnZ5Gamip7/WuvvSYsLS1Fo0aNtL5vd3d34eTkJBwdHcW6deuEEEJER0cLGxsb4eDgIGu7Y8cO0bFjR73nUdv5+e2330StWrV09oGIiIiIyoe2a1wqH5yQW81cunQJU6dOxcmTJ5GZmYmjR4+ioKAAzz//PFJTU6FUKqW258+fR3x8PDIyMjBs2DC89dZbJfZna2uLGTNmlNg+ePBgzJs3D+np6Th37pzsue+//x5paWnIysqCSqXCmjVrpOcuXLgAGxsbAIC3tzcyMjLQrVs3jBs3TraPmTNnIi4uTuf7jI2NRWZmJjZv3oyJEycCAMLDw3Hv3r0Sbf/v//4PI0eO1LkvAFrPz7PPPovdu3frfR0RERERUVXGgLCaWbBgAfr164dnn30WAODp6Ylhw4bBxcUFTZs2lbX99ttv0b59e1hYWOC9997DL7/8UmJ/Li4uKCgowK5du2TbL1++jNmzZ6NOnTqYOnWq7DlHR0fcv38fP/74IwCgefPmevvctWtX3LhxQ7atbdu2UuCoTY8ePQAA9vb2sLS0BAA899xzWrM7JiYm4u2338b+/ftRt25d1KlTB506dSrxPoufH6KySktLM3cXiIiIiAzCgLCauXbtWqkBmNrt27elEbEmTZrg0aNHWttNnz4dEyZMkG3LysrC9OnTkZqaiqVLlyIrK0t6rlevXnj77bcRHBwMGxsbTJ8+XW8/fvzxR7Rs2dKgPhcXHBysd//379+HpaUlateujdDQUHz++efIyMjAsWPHynQ8IkOMHj3a3F0gIiIiMgiTylQzHh4e+OOPPwxq26BBA5w/fx4A8Oeff8LBwUFru4iICHzwwQf47bffpG02NjYICQkBANSvXx+nT5+WRu0AYMmSJViyZAlSUlLQqVMnzJkzp8R+z5w5gzp16qBevXrYunWroW9R4ufnhxdeeEFvAfDly5ejW7duAIDMzEy8/vrrAAArK3706el17ty5xDYhBC5dumSG3hARkaaCggLk5OSYuxukg7W1tTTLi8yLV8XVTHR0NLy9vfH777/j2WefxYULF5CSkoJhw4aVaPvaa69hyZIlAIClS5fC29tb534jIiKwaNEidO3aFUBhEHjo0CF07doV9+7dg5eXl9T2999/R0FBAZ577jk0bdpUZ31Eb29vnDx5skzvc+zYsbh58yYuXryot922bduwdOlSAIBSqcS3336LoKAg5OXlMSikp6ZSqZCcnFzis9S3b18z9YiIiAAgJycHly9fRkFBgbm7QnrUqVMHbm5urKVtbubOamNK8fHxIjAwUDRs2FAAENu2bZM9D0DrzyeffCK18fPzK/H8iBEjZPu5f/++GDVqlHBychJOTk5i1KhRIj09Xdbmzz//FIGBgcLBwUHUq1dPjB8/XmRnZ8vanD17VnTv3l3Y2dkJd3d3MXv2bFFQUGDUe9aXZVSdwfP7778Xf/zxh3B2dhYKhULUqVNHzJ49WwhRepZRdYbN/Px8YWNjI2UZ3bVrl6hTp46oVauWCAsLk70uPj5eOje1a9cW7733nhCiMMuoOoPnkiVLRIcOHXS+r/HjxwtHR0ehUCiEs7OzyM3NlT0PQDg6OgqlUilatGgh7dPZ2VkAEM7OzuLUqVPCzc1Nes2+ffuk89K5c2fZ/nSdH81zQFTc1q1bxf3790tsP3jwoBl6Q0REQghRUFAgrly5Ii5duiQePnwoHj9+zJ9K9vPo0SNx9+5dce7cOXHjxg2tv0dmGa041aow/Y8//ogjR47gxRdfxLBhw7Bt2za8+uqr0vPFEz38+OOPePPNN/Hbb7/hmWeeAVCYrKRly5b48MMPpXb29vay7JMBAQG4fv06vvjiCwDAP//5TzRr1gw7duwAAOTn58Pb2xv169fHokWLcO/ePYwZMwZDhw7FsmXLABSuwWvZsiV69uyJDz74ABcvXkRYWBhmzpyJqKgog99zVlYWlEolMjMzK30dwqZNmyIrKwu3b9/WmzDGVLKysjB37lzMnTu3TK///fff0b59ezRt2hQpKSkm7h1VR6mpqWjdurW5u0FEVKPl5ubit99+g7u7u+z6jSqfe/fu4fbt22jZsmWJ6aNV6Rq3qqtWc+YCAgIQEBCg83k3NzfZ4++//x49e/aUgkE1BweHEm3Vzp8/j927dyMhIQFdunQBAHz55Zfw8fHBhQsX0KpVK8TFxeHcuXO4du0a3N3dAQCLFi1CWFgYPv74Yzg5OSE2NhZPnjzBmjVrYGtrCy8vL1y8eBGLFy/GxIkTq+XQ+dWrVyv0eE5OTmUOBoHCshOayXKIShMREYEDBw6YuxtERDVafn4+AFTIzWd6Our8Fbm5uVxPaEY1NsvorVu3sHPnTrz55pslnouNjYWLiwvatm2LSZMmQaVSSc8dO3YMSqVSCgaBwrIJSqUSR48eldp4eXlJwSAA9OvXD9nZ2Th16pTUxs/PD7a2trI2N27cwJUrV0z9domoAlhbW5u7C0REVKQ63lyvbvg7qhyq1QihMb7++ms4Ojpi6NChsu0hISFo3rw53NzckJKSgqlTp+KXX37B3r17ARROO3V1dS2xP1dXV2lKalpaGho0aCB73tnZGTY2NrI2zZo1k7VRvyYtLU1n6Yjs7GxkZ2dLjzmCRVR57Nmzx9xdICIiIjJKjR0h/O9//4uQkBDY2dnJtoeHh6NPnz7w8vLCyJEjsWXLFuzbtw+nT5+W2mi7myGEkG0vSxv1ck59d0vmzp0LpVIp/TRp0qSUd0pEFWrZMiAx0dy9ICKiaubgwYNQKBTIyMgwd1eomqmRAeHPP/+MCxcu4K233iq17Ysvvghra2uprpibmxtu3bpVot2dO3ekET43N7cSCWzS09ORm5urt83t27cBoMTooqapU6ciMzNT+rl27Vqp74GIKlBkJKClPiERERFRZVQjA8KvvvoKHTp0wAsvvFBq219//RW5ublo2LAhAMDHxweZmZk4ceKE1Ob48ePIzMyEr6+v1CYlJQU3b96U2sTFxcHW1hYdOnSQ2hw6dEhWMDUuLg7u7u4lppJqsrW1hZOTk+yHiIiIiIioLKpVQPjgwQOcOXMGZ86cAQBcvnwZZ86ckWW3zMrKwubNm7WODv7+++/48MMPcfLkSVy5cgW7du3Ca6+9hvbt26Nbt24AAE9PT/Tv3x/h4eFISEhAQkICwsPDERgYiFatWgEA/P390aZNG4SGhiIpKQn79+/HpEmTEB4eLgVwwcHBsLW1RVhYGFJSUrBt2zbExMRU2wyjRERERKRfdnY2IiMj4erqCjs7O7z00ktILLYM4ciRI3jhhRdgZ2eHLl26IDk5WXruzz//xMCBA+Hs7IxatWqhbdu22LVrV0W/DapiqlVAePLkSbRv3x7t27cHAEycOBHt27fHjBkzpDabNm2CEAKvv/56idfb2Nhg//796NevH1q1aoXIyEj4+/tj3759slS4sbGxaNeuHfz9/eHv74/nn38e69atk563tLTEzp07YWdnh27duiEoKAivvvoqFi5cKLVRKpXYu3cvrl+/jo4dOyIiIgITJ07ExIkTy+PUEBEREVElN3nyZPzvf//D119/jdOnT6NFixbo168f7t+/L7WJjo7GwoULkZiYCFdXVwwaNAi5ubkAgHfffRfZ2dk4dOgQkpOTMX/+fNSuXdtcb4eqiGpVmL4mYtFOokpGPcLPr1YiIrN48uQJLl++jObNm0vJAx89eoTU1NQK70vr1q2lWnulefjwIZydnbFmzRoEBwcDKKzP16xZM0yYMAGdOnVCz549sWnTJowYMQIAcP/+fTRu3Bhr1qxBUFAQnn/+eQwbNgwzZ84st/dkStp+V2q8xq04NbbsBBERERHVDKmpqVIeh4p06tQpvPjiiwa1/f3335GbmystUwIK69t27twZ58+fR6dOnQAU5qFQq1u3Llq1aoXz588DACIjIzF27FjExcWhT58+GDZsGJ5//nkTviOqjhgQEhEREVG11rp1a5w6dcosxzWUrvJjxcuWaaN+/q233kK/fv2wc+dOxMXFYe7cuVi0aBHGjx9vZM+pJmFASERERETVmoODg8EjdebSokUL2NjY4PDhw7IpoydPnsSECROkdgkJCWjatCmAwrJmFy9elAWeTZo0wTvvvIN33nkHU6dOxZdffsmAkPRiQEhEREREZGa1atXC2LFjER0djbp166Jp06b45JNP8OjRI7z55pv45ZdfAAAffvgh6tWrhwYNGuCDDz6Ai4sLXn31VQDAhAkTEBAQgJYtWyI9PR0HDhyAp6enGd8VVQUMCImIiIiIKoF58+ahoKAAoaGhUKlU6NixI/bs2QNnZ2dZm3/961+4dOkSXnjhBWzfvh02NjYAgPz8fLz77ru4fv06nJyc0L9/fyxZssRcb4eqCGYZreKYgYmokmGWUSIis9KXuZIqF2YZrRyqVR1CIiIiIiIiMhwDQiIiIiIiohqKASEREREREVENxYCQiIiIiIiohmJASEREREREVEMxICQiIiIiIqqhGBASERERERHVUAwIiYiIiIiIaigGhEREREREVdysWbPg7e1t7m5QFcSAkIiIiIiIqIZiQEhERERERFRDMSAkIiIiIqoECgoKMH/+fLRo0QK2trZo2rQpPv74YwDAlClT0LJlSzg4OOCZZ57B9OnTkZubq3d///3vf9G2bVvY2tqiYcOGGDduXEW8DapirMzdASIiIiIiAqZOnYovv/wSS5YswUsvvYSbN28iNTUVAODo6Ig1a9bA3d0dycnJCA8Ph6OjIyZPnqx1XytXrsTEiRMxb948BAQEIDMzE0eOHKnIt0NVhEIIIczdCSq7rKwsKJVKZGZmwsnJydzdISKFovC//GolIjKLJ0+e4PLly2jevDns7OzM3R2DqVQq1K9fH8uXL8dbb71VavsFCxbgm2++wcmTJwEUJpX57rvvcObMGQBAo0aN8I9//AMfffRReXb7qej7XfEat+JwhJCIiIiIqrdHj4CikbYK1bo14OBgUNPz588jOzsbvXv31vr8li1b8Omnn+K3337DgwcPkJeXpzNQun37Nm7cuKFzX0SaGBASERERUfWWmgp06FDxxz11CnjxRYOa2tvb63wuISEBI0eOxOzZs9GvXz8olUps2rQJixYtMnpfRMUxICQiIiKi6q1168LgzBzHNdBzzz0He3t77N+/v8SU0SNHjsDDwwMffPCBtO3PP//UuS9HR0c0a9YM+/fvR8+ePY3vN9UoDAiJiIiIqHpzcDB4pM5c7OzsMGXKFEyePBk2Njbo1q0b7ty5g19//RUtWrTA1atXsWnTJnTq1Ak7d+7Etm3b9O5v1qxZeOedd+Dq6oqAgACoVCocOXIE48ePr6B3RFUFA0IiIiIiokpg+vTpsLKywowZM3Djxg00bNgQ77zzDt5880289957GDduHLKzszFgwABMnz4ds2bN0rmvMWPG4MmTJ1iyZAkmTZoEFxcXDB8+vOLeDFUZzDJaxTEDE1ElwyyjRERmVVWzjNZEzDJaObAwPRERERERUQ1VrQLCQ4cOYeDAgXB3d4dCocB3330nez4sLAwKhUL207VrV1mb7OxsjB8/Hi4uLqhVqxYGDRqE69evy9qkp6cjNDQUSqUSSqUSoaGhyMjIkLW5evUqBg4ciFq1asHFxQWRkZHIycmRtUlOToafnx/s7e3RqFEjfPjhh+CALRERERERVZRqFRA+fPgQL7zwApYvX66zTf/+/XHz5k3pZ9euXbLnJ0yYgG3btmHTpk04fPgwHjx4gMDAQOTn50ttgoODcebMGezevRu7d+/GmTNnEBoaKj2fn5+PAQMG4OHDhzh8+DA2bdqE//3vf4iKipLaZGVloW/fvnB3d0diYiKWLVuGhQsXYvHixSY8I0RERERERLpVq6QyAQEBCAgI0NvG1tYWbm5uWp/LzMzEV199hXXr1qFPnz4AgPXr16NJkybYt28f+vXrh/Pnz2P37t1ISEhAly5dAABffvklfHx8cOHCBbRq1QpxcXE4d+4crl27Bnd3dwDAokWLEBYWho8//hhOTk6IjY3FkydPsGbNGtja2sLLywsXL17E4sWLMXHiRCjU65CIiIiIiIjKSbUaITTEwYMH4erqipYtWyI8PBy3b9+Wnjt16hRyc3Ph7+8vbXN3d4eXlxeOHj0KADh27BiUSqUUDAJA165doVQqZW28vLykYBAA+vXrh+zsbJwqqoFz7Ngx+Pn5wdbWVtbmxo0buHLlis7+Z2dnIysrS/ZDRJVLgbk7QERERGSgGhUQBgQEIDY2FgcOHMCiRYuQmJiIXr16ITs7GwCQlpYGGxsbODs7y17XoEEDpKWlSW1cXV1L7NvV1VXWpkGDBrLnnZ2dYWNjo7eN+rG6jTZz586V1i4qlUo0adLEmFNARBWgRn2xEhERUZVWraaMlmbEiBHSv728vNCxY0d4eHhg586dGDp0qM7XCSFkUzi1Tec0RRt1Qhl900WnTp2KiRMnSo+zsrIYFBIRERERUZnU6BvZDRs2hIeHBy5dugQAcHNzQ05ODtLT02Xtbt++LY3eubm54datWyX2defOHVmb4qN86enpyM3N1dtGPX21+MihJltbWzg5Ocl+iKhy4ZRRIiIiqipqdEB47949XLt2DQ0bNgQAdOjQAdbW1ti7d6/U5ubNm0hJSYGvry8AwMfHB5mZmThx4oTU5vjx48jMzJS1SUlJwc2bN6U2cXFxsLW1RYcOHaQ2hw4dkpWiiIuLg7u7O5o1a1Zu75mIiIiIiEitWgWEDx48wJkzZ3DmzBkAwOXLl3HmzBlcvXoVDx48wKRJk3Ds2DFcuXIFBw8exMCBA+Hi4oIhQ4YAAJRKJd58801ERUVh//79SEpKwqhRo9CuXTsp66inpyf69++P8PBwJCQkICEhAeHh4QgMDESrVq0AAP7+/mjTpg1CQ0ORlJSE/fv3Y9KkSQgPD5dG9IKDg2Fra4uwsDCkpKRg27ZtiImJYYZRIiIiIjLarFmz4O3tXa7HWLNmDerUqVOux6CKV63WEJ48eRI9e/aUHqvX2o0ZMwYrV65EcnIy1q5di4yMDDRs2BA9e/bEN998A0dHR+k1S5YsgZWVFYKCgvD48WP07t0ba9asgaWlpdQmNjYWkZGRUjbSQYMGyWofWlpaYufOnYiIiEC3bt1gb2+P4OBgLFy4UGqjVCqxd+9evPvuu+jYsSOcnZ0xceJE2fpAIiIiIiKi8lStAsIePXpIiVm02bNnT6n7sLOzw7Jly7Bs2TKdberWrYv169fr3U/Tpk3xww8/6G3Trl07HDp0qNQ+EVHVovtbiIiIiKhyqVZTRomIzErPDSkiIqLSFBQUYP78+WjRogVsbW3RtGlTfPzxxwCAKVOmoGXLlnBwcMAzzzyD6dOnIzc3V+/+/vvf/6Jt27awtbVFw4YNMW7cOL3t09PTMXr0aDg7O8PBwQEBAQFS8kVN3333HVq2bAk7Ozv07dsX165dk5775Zdf0LNnTzg6OsLJyQkdOnTAyZMny3A2qKIwICQiMhUGhERE9BSmTp2K+fPnY/r06Th37hw2bNggZZ93dHTEmjVrcO7cOSxduhRffvkllixZonNfK1euxLvvvot//vOfSE5Oxvbt29GiRQu9xw8LC8PJkyexfft2HDt2DEIIvPLKK7LA89GjR/j444/x9ddf48iRI8jKysLIkSOl50NCQtC4cWMkJibi1KlTeP/992Ftbf2UZ4bKk0Lom2NJlV5WVhaUSiUyMzNZgoLIzER+PhRWVsgHYMmvViIis3jy5AkuX76M5s2bw87OztzdMZhKpUL9+vWxfPlyvPXWW6W2X7BgAb755htp9G3WrFn47rvvpOSKjRo1wj/+8Q989NFHBh3/0qVLaNmyJY4cOSJlzr937x6aNGmCr7/+Gq+99hrWrFmDf/zjH0hISECXLl0AAKmpqfD09MTx48fRuXNnODk5YdmyZRgzZkypx9T3u+I1bsXhCCERkYmIgsIKhAwFiYjIWOfPn0d2djZ69+6t9fktW7bgpZdegpubG2rXro3p06fj6tWrWtvevn0bN27c0Lmvd955B7Vr15Z+1Me3srKSAj0AqFevHlq1aoXz589L26ysrNCxY0fpcevWrVGnTh2pzcSJE/HWW2+hT58+mDdvHn7//XfjTgRVuGqVVIaIyKyKRgVZOIaIqPIZ+8NY/KX6q8KO18ixEVYGrjS4vb29vc7nEhISMHLkSMyePRv9+vWDUqnEpk2bsGjRIqP3BQAffvghJk2aJNuma9KgEKJESTRtJdLU22bNmoXg4GDs3LkTP/74I2bOnIlNmzZJZd6o8mFASERkIuoRQiIiqnyMCc7M4bnnnoO9vT32799fYsrokSNH4OHhgQ8++EDa9ueff+rcl6OjI5o1a4b9+/fLSrKpubq6wtXVVbatTZs2yMvLw/Hjx2VTRi9evAhPT0+pXV5eHk6ePInOnTsDAC5cuICMjAy0bt1aatOyZUu0bNkS7733Hl5//XWsXr2aAWElxoCQiMhE1HdXOWWUiIiMZWdnhylTpmDy5MmwsbFBt27dcOfOHfz6669o0aIFrl69ik2bNqFTp07YuXMntm3bpnd/s2bNwjvvvANXV1cEBARApVLhyJEjGD9+vNb2zz33HAYPHozw8HCsWrUKjo6OeP/999GoUSMMHjxYamdtbY3x48fjs88+g7W1NcaNG4euXbuic+fOePz4MaKjozF8+HA0b94c169fR2JiIoYNG2bSc0WmxTWEREQmwhFCIiJ6GtOnT0dUVBRmzJgBT09PjBgxArdv38bgwYPx3nvvYdy4cfD29sbRo0cxffp0vfsaM2YMPv30U6xYsQJt27ZFYGCg1hISmlavXo0OHTogMDAQPj4+EEJg165dsiyhDg4OmDJlCoKDg+Hj4wN7e3ts2rQJAGBpaYl79+5h9OjRaNmyJYKCghAQEIDZs2c//cmhcsMso1UcMzARVR45KhVsnJyQB8CKX61ERGZRVbOM1kTMMlo5cISQiMhEeH+NiIiIqhoGhEREJsKyE0RERFTVMCAkIjIVjhASERFRFcOAkIjIRJhUhoiIiKoaBoRERCbCNYRERERU1TAgJCIyEa4hJCKqPHiTrvLj76hyYEBIRGQinDJKRGR+lpaWAICcnBwz94RK8+jRIwCQ1Tmkimdl7g4QEVUXvNNJRGR+VlZWcHBwwJ07d2BtbQ0LC45/VDZCCDx69Ai3b99GnTp1pCCezIMBIRGRiXCEkIjI/BQKBRo2bIjLly/jzz//NHd3SI86derAzc3N3N2o8RgQEhGZCANCIqLKwcbGBs899xynjVZi1tbWHBmsJBgQEhGZCqeMEhFVGhYWFrCzszN3N4gqPU6qJiIyEa4hJCIioqqGASERkakUBYQMC4mIiKiqYEBIRGQiXENIREREVQ0DQiIiE+GUUSIiIqpqGBASEZkIRwiJiIioqmFASERkIgwIiYiIqKqpVgHhoUOHMHDgQLi7u0OhUOC7776TnsvNzcWUKVPQrl071KpVC+7u7hg9ejRu3Lgh20ePHj2gUChkPyNHjpS1SU9PR2hoKJRKJZRKJUJDQ5GRkSFrc/XqVQwcOBC1atWCi4sLIiMjS9TCSU5Ohp+fH+zt7dGoUSN8+OGHnHJGVIUxICQiIqKqploFhA8fPsQLL7yA5cuXl3ju0aNHOH36NKZPn47Tp09j69atuHjxIgYNGlSibXh4OG7evCn9rFq1SvZ8cHAwzpw5g927d2P37t04c+YMQkNDpefz8/MxYMAAPHz4EIcPH8amTZvwv//9D1FRUVKbrKws9O3bF+7u7khMTMSyZcuwcOFCLF682IRnhIjMgbd1iIiIqKqoVoXpAwICEBAQoPU5pVKJvXv3yrYtW7YMnTt3xtWrV9G0aVNpu4ODA9zc3LTu5/z589i9ezcSEhLQpUsXAMCXX34JHx8fXLhwAa1atUJcXBzOnTuHa9euwd3dHQCwaNEihIWF4eOPP4aTkxNiY2Px5MkTrFmzBra2tvDy8sLFixexePFiTJw4EQqFwhSnhIgqEEcIiYiIqKqpViOExsrMzIRCoUCdOnVk22NjY+Hi4oK2bdti0qRJUKlU0nPHjh2DUqmUgkEA6Nq1K5RKJY4ePSq18fLykoJBAOjXrx+ys7Nx6tQpqY2fnx9sbW1lbW7cuIErV67o7HN2djaysrJkP0RUSXDKNxEREVUx1WqE0BhPnjzB+++/j+DgYDg5OUnbQ0JC0Lx5c7i5uSElJQVTp07FL7/8Io0upqWlwdXVtcT+XF1dkZaWJrVp0KCB7HlnZ2fY2NjI2jRr1kzWRv2atLQ0NG/eXGu/586di9mzZ5ftTRNRueIaYCIiIqpqamRAmJubi5EjR6KgoAArVqyQPRceHi7928vLC8899xw6duyI06dP48UXXwQArdM5hRCy7WVpo76Y1DdddOrUqZg4caL0OCsrC02aNNHZnogqDqeMEhERUVVT46aM5ubmIigoCJcvX8bevXtlo4PavPjii7C2tsalS5cAAG5ubrh161aJdnfu3JFG+Nzc3KSRQLX09HTk5ubqbXP79m0AKDG6qMnW1hZOTk6yHyKqHNQBIccJiYiIqKqoUQGhOhi8dOkS9u3bh3r16pX6ml9//RW5ublo2LAhAMDHxweZmZk4ceKE1Ob48ePIzMyEr6+v1CYlJQU3b96U2sTFxcHW1hYdOnSQ2hw6dEhWiiIuLg7u7u4lppISUdXAEUIiIiKqaqpVQPjgwQOcOXMGZ86cAQBcvnwZZ86cwdWrV5GXl4fhw4fj5MmTiI2NRX5+PtLS0pCWliYFZb///js+/PBDnDx5EleuXMGuXbvw2muvoX379ujWrRsAwNPTE/3790d4eDgSEhKQkJCA8PBwBAYGolWrVgAAf39/tGnTBqGhoUhKSsL+/fsxadIkhIeHSyN6wcHBsLW1RVhYGFJSUrBt2zbExMQwwyhRFcY1hERERFTVKEQ1uoI5ePAgevbsWWL7mDFjMGvWLJ2JWn766Sf06NED165dw6hRo5CSkoIHDx6gSZMmGDBgAGbOnIm6detK7e/fv4/IyEhs374dADBo0CAsX75clq306tWriIiIwIEDB2Bvb4/g4GAsXLhQllU0OTkZ7777Lk6cOAFnZ2e88847mDFjhlEBYVZWFpRKJTIzMzl9lMjM/kpMRKPOnfEYgH31+WolIiKqcLzGrTjVKiCsifjHQlR5/HXiBBp16cKAkIiI6CnxGrfiVKspo0RE5sT7a0RERFTVMCAkIjIRZhklIiKiqoYBIRGRiTDLKBEREVU1DAiJiEyEU0aJiIioqmFASERkKgwIiYiIqIphQEhEZCoMCImIiKiKYUBIRGQiTCpDREREVQ0DQiIiE+EaQiIiIqpqGBASEZkIs4wSERFRVcOAkIjIVDhCSERERFUMA0IiIhPhCCERERFVNQwIiYhMhGsIiYiIqKphQEhEZCLMMkpERERVDQNCIiITUZi7A0RERERGYkBIRGQinDJKREREVQ0DQiIiE2FSGSIiIqpqGBASEZkIA0IiIiKqahgQEhGZCqeMEhERURXDgJCIiIiIiKiGYkBIRGQiLDtBREREVQ0DQiIiE+EaQiIiIqpqGBASERERERHVUAwIiYhMhUlliIiIqIphQEhEZCJcQ0hERERVDQNCIiJT4QghERERVTEMCImITIThIBEREVU11SogPHToEAYOHAh3d3coFAp89913sueFEJg1axbc3d1hb2+PHj164Ndff5W1yc7Oxvjx4+Hi4oJatWph0KBBuH79uqxNeno6QkNDoVQqoVQqERoaioyMDFmbq1evYuDAgahVqxZcXFwQGRmJnJwcWZvk5GT4+fnB3t4ejRo1wocffgjBEQaiqotZRomIiKiKqVYB4cOHD/HCCy9g+fLlWp//5JNPsHjxYixfvhyJiYlwc3ND3759oVKppDYTJkzAtm3bsGnTJhw+fBgPHjxAYGAg8vPzpTbBwcE4c+YMdu/ejd27d+PMmTMIDQ2Vns/Pz8eAAQPw8OFDHD58GJs2bcL//vc/REVFSW2ysrLQt29fuLu7IzExEcuWLcPChQuxePHicjgzRFQhim7o8LYOERERVRmimgIgtm3bJj0uKCgQbm5uYt68edK2J0+eCKVSKf7zn/8IIYTIyMgQ1tbWYtOmTVKbv/76S1hYWIjdu3cLIYQ4d+6cACASEhKkNseOHRMARGpqqhBCiF27dgkLCwvx119/SW02btwobG1tRWZmphBCiBUrVgilUimePHkitZk7d65wd3cXBQUFBr/PzMxMAUDaLxGZT/L69UIAIrP6frUSERFVCF7jVpxqNUKoz+XLl5GWlgZ/f39pm62tLfz8/HD06FEAwKlTp5Cbmytr4+7uDi8vL6nNsWPHoFQq0aVLF6lN165doVQqZW28vLzg7u4utenXrx+ys7Nx6tQpqY2fnx9sbW1lbW7cuIErV67ofB/Z2dnIysqS/RAREREREZVFjQkI09LSAAANGjSQbW/QoIH0XFpaGmxsbODs7Ky3jaura4n9u7q6ytoUP46zszNsbGz0tlE/VrfRZu7cudLaRaVSiSZNmuh/40RUcVh2goiIiKqYGhMQqikUCtljIUSJbcUVb6OtvSnaiKL1R/r6M3XqVGRmZko/165d09t3Iqo4gkmhiIiIqIqpMQGhm5sbgJKjb7dv35ZG5tzc3JCTk4P09HS9bW7dulVi/3fu3JG1KX6c9PR05Obm6m1z+/ZtACVHMTXZ2trCyclJ9kNElQQDQiIiIqpiakxA2Lx5c7i5uWHv3r3StpycHMTHx8PX1xcA0KFDB1hbW8va3Lx5EykpKVIbHx8fZGZm4sSJE1Kb48ePIzMzU9YmJSUFN2/elNrExcXB1tYWHTp0kNocOnRIVooiLi4O7u7uaNasmelPABGVPwaEREREVMVUq4DwwYMHOHPmDM6cOQOgMJHMmTNncPXqVSgUCkyYMAExMTHYtm0bUlJSEBYWBgcHBwQHBwMAlEol3nzzTURFRWH//v1ISkrCqFGj0K5dO/Tp0wcA4Onpif79+yM8PBwJCQlISEhAeHg4AgMD0apVKwCAv78/2rRpg9DQUCQlJWH//v2YNGkSwsPDpRG94OBg2NraIiwsDCkpKdi2bRtiYmIwceLEUqewElHlJFiHkIiIiKoYK3N3wJROnjyJnj17So8nTpwIABgzZgzWrFmDyZMn4/Hjx4iIiEB6ejq6dOmCuLg4ODo6Sq9ZsmQJrKysEBQUhMePH6N3795Ys2YNLC0tpTaxsbGIjIyUspEOGjRIVvvQ0tISO3fuREREBLp16wZ7e3sEBwdj4cKFUhulUom9e/fi3XffRceOHeHs7IyJEydKfSYiIiIiIipvCsEsCFVaVlYWlEolMjMzuZ6QyMzOfvUVnn/rLWQAqMOvViIiojLjNW7FqVZTRomIzIpBIBEREVUxDAiJiEyEEy6IiIioqmFASERkIkwqQ0RERFUNA0IiIhNhfmAiIiKqahgQEpHZhISEmLsLJsUpo0RERFTVVKuyE0RUOU2ePLnENiEEjh49aobelB9OGSUiIqKqhgEhEZW72NhYbNiwocT2n376yQy9KT/qKaMcJyQiIqKqggEhEZW7N954A56ennB1dZVtHz16tJl6VD44QkhERERVDQNCIip3c+bM0bo9MjKygntSvriGkIiIiKoaJpUhIjIRZhklIiKiqoYBIRGRiXDKKBEREVU1DAiJiIiIiIhqKAaERFTuvv32W7Rv3x6jRo3C119/jVatWqFTp07Yvn27ubtmWkVrCLmSkIiIiKoKJpUhonK3aNEiHDlyBCqVCt7e3khNTYWdnR369OmDQYMGmbt7JsMpo0RERFTVMCAkonJnb28PBwcHODg4oHfv3lAqlQAAKyt+BRERERGZE6eMElG58/b2Rn5+PgBg/fr1AICcnBzUq1fPnN0yPZadICIioiqGt+eJqNx9+umnJbbZ2Nhgy5YtFd+ZcsQpo0RERFTVcISQiMhUOEKoVVJSEgIDAzFkyBAcPXpU2v7mm2+asVdEREQEcISQiIjKWWRkJFavXg0rKytER0cjISEBEydOxB9//GHurhEREdV4HCEkIrNJS0szdxdMSj1llOOEcgqFAi1atECzZs2wefNmZGVlITw8HHl5eebuGhERUY3HgJCIzGb06NHm7oJpccqoVq6urrhy5Yr0eNasWfDz80NiYqL5OkVEREQAOGWUqNoICQlBbGysubuhVefOnUtsE0Lg0qVLZugNVTRtyYNGjRqFUaNGmaE3REREpIkBIVEVM3ny5BLbhBCyZB2VjUqlQnJycom6g3379jVTj8oJRwiJiIioimFASFTFxMbGYsOGDSW2//TTT2bojWFiYmKgUqng7Ows2z5t2jQz9aicMCAkIiKiKoYBIVEV88Ybb8DT0xOurq6y7ZV5Pd6QIUNkj1NTU9G6dWv4+fmZqUflQzAgJCIioiqGSWWIqpg5c+aUCAaBwtT+VUVERIS5u1A+GBAaxd/f39xdICIiqvFqXEDYrFkzKBSKEj/vvvsuACAsLKzEc127dpXtIzs7G+PHj4eLiwtq1aqFQYMG4fr167I26enpCA0NhVKphFKpRGhoKDIyMmRtrl69ioEDB6JWrVpwcXFBZGQkcnJyyvX9E1UG1tbW5u5C+SgKCBVm7kZlExQUVOLntddeQ3Jysrm7RkREVOPVuCmjiYmJyM/Plx6npKSgb9++eO2116Rt/fv3x+rVq6XHNjY2sn1MmDABO3bswKZNm1CvXj1ERUUhMDAQp06dgqWlJQAgODgY169fx+7duwEA//znPxEaGoodO3YAAPLz8zFgwADUr18fhw8fxr179zBmzBgIIbBs2bJye/9ElcGePXvM3YVywSmj2iUmJuLAgQOwsPj7HqQQAqGhoWbsFREREQE1MCCsX7++7PG8efPw7LPPytYy2draws3NTevrMzMz8dVXX2HdunXo06cPAGD9+vVo0qQJ9u3bh379+uH8+fPYvXs3EhIS0KVLFwDAl19+CR8fH1y4cAGtWrVCXFwczp07h2vXrsHd3R0AsGjRIoSFheHjjz+Gk5NTebx9IipPRQEhw0K56OhoODo6wsXFRbZ93LhxZuoRERERqdW4KaOacnJysH79erzxxhtQKP6e5HXw4EG4urqiZcuWCA8Px+3bt6XnTp06hdzcXNnaF3d3d3h5eUlp/48dOwalUikFgwDQtWtXKJVKWRsvLy8pGASAfv36ITs7G6dOndLZ5+zsbGRlZcl+qGbZu3cvunTpAl9fX2zatEnaPmDAADP2igBwDaEOERERJYJBABgxYoQZekNERESaanRA+N133yEjIwNhYWHStoCAAMTGxuLAgQNYtGgREhMT0atXL2RnZwMA0tLSYGNjUyJ9foMGDZCWlia10Zb0w9XVVdamQYMGsuednZ1hY2MjtdFm7ty50rpEpVKJJk2alOm9U9U1c+ZM7NmzB/v27cOJEycwfvx4FBQU4NGjR+buGnENIREREVUxNTog/OqrrxAQECAbpRsxYgQGDBgALy8vDBw4ED/++CMuXryInTt36t2XEEI2yqj576dpU9zUqVORmZkp/Vy7dk1vv6j6sbS0RJ06deDg4IDFixejQ4cOGDx4MB48eGDurtV4HB8kIiKiqqbGBoR//vkn9u3bh7feektvu4YNG8LDwwOXLl0CALi5uSEnJwfp6emydrdv35ZG/Nzc3HDr1q0S+7pz546sTfGRwPT0dOTm5pYYOdRka2sLJycn2Q/VLN7e3rhy5Yr0OCwsDBMnToRKpTJfp6hQQYG5e1Cl8DNLRERkfjU2IFy9ejVcXV1LXXd17949XLt2DQ0bNgQAdOjQAdbW1ti7d6/U5ubNm0hJSYGvry8AwMfHB5mZmThx4oTU5vjx48jMzJS1SUlJwc2bN6U2cXFxsLW1RYcOHUz2Pqn6WbZsGZo1aybb1rNnT6SmppqnQzokJSUhMDAQQ4YMkdbOAsCbb75pxl6VM64h1Grt2rVo164dXnzxRcybN0/aPnjwYDP2ioiIiIAaGhAWFBRg9erVGDNmDKys/k60+uDBA0yaNAnHjh3DlStXcPDgQQwcOBAuLi4YMmQIAECpVOLNN99EVFQU9u/fj6SkJIwaNQrt2rWTso56enqif//+CA8PR0JCAhISEhAeHo7AwEC0atUKQGFB5jZt2iA0NBRJSUnYv38/Jk2ahPDwcI76UbUQGRmJTz/9FEuWLMGSJUuwePFiAMAff/xh5p5RRVu5ciVOnz6N06dPw8HBAcOHD8ejR49YpoOIiKgSqJEB4b59+3D16lW88cYbsu2WlpZITk7G4MGD0bJlS4wZMwYtW7bEsWPH4OjoKLVbsmQJXn31VQQFBaFbt25wcHDAjh07pBqEABAbG4t27drB398f/v7+eP7557Fu3TrZsXbu3Ak7Ozt069YNQUFBePXVV7Fw4cLyPwFEFUChUKBFixZo1qwZNm/ejKysLISHhyMvL8/cXSs3glNGtbKwsIC1tTWAwhsFb7/9NgICAnD37l0z94yIiIgUgrdoq7SsrCwolUpkZmZyZLGay8vLk41oF5eWlqazfqY5DB8+HAsXLpRNb12/fj3eeustPHnyxHwdK0cJU6ei67x5SAfgzK9WSUxMDIKDg2WfhV9//RVRUVHYvXu3+TpGRESVFq9xKw4DwiqOfyzVW3JyMqZMmYKMjAxYWVkhNzcXLi4uiImJQbt27WRt/f39ERcXZ6aeEgAce/99+Myfz4CwFKmpqWjdurW5u0FERJUYr3Erju7hBiIyu4iICGzYsEFWb9Lb2xu+vr7w9PSUtgkhpEy4ZEYMAg0SERGBAwcOmLsbREREBAaERJVafn4+lEqlbNvjx4/h5eWFY8eOybb37du3IrtG2jAgNIh6PSERERGZX41MKkNUVcybNw+BgYHo06cPhg4dit69e8PKygrTp08v0XbatGlm6CFpqiwz8Ct7yY89e/aYuwtERERUhCOERJVY9+7dcejQITx+/BgZGRlwdnaGnZ2drI16PZafn5+ZemkcrnUsf5GRkVi9ejWsrKwQHR2NhIQETJw4kSU/iIiIqAQGhERVgL29Pezt7bU+V1nXYwUFBZXYJoRAcnKyGXpTQYrKTijM3A11yQ8A2Lx5M2bNmlXtS34QERFR2TAgJKriKut6rMTERBw4cAAWFn/PTBdCIDQ01Iy9KmeVZMqoq6srrly5IpV5mDVrFtavXy+rhUpEREQEMCAkqvL27NkD5OUBemoUmkN0dDQcHR3h4uIi2z5u3Dgz9ajm2LJlS4lto0aNwqhRo8zQGyIiIqrMmFSGqBLbu3cvunTpAl9fX2zatEnaPmDAgL8b7doFWFsDV6+aoYe6RURElAgGAWDEiBFm6E3FUCeVqRzjhERERESlY0BIVInNnDkTe/bswb59+3DixAmMHz8eBQUFePTo0d+N4uML/3v5snk6SX+rJGsIiYiIiAzFgJDIREJCQky+T0tLS9SpUwcODg5YvHgxOnTogMGDB+PBgwd/N1Kv0cvPN/nxqfpISkoydxeIiIioEqpci46IqoDJkyeX2CaEkNV7MxVvb29ZcpCwsDB4eHhg7NixUpsnubmwA5CfkwNLk/fA9NLS0uDm5mbubpSPSpJUZsWKFbLHQgisXLkSERERiIiIMFOviIiIqDLiCCGRkWJjYzFgwADZT2BgIOrVq2fyYy1btkwKBtV69uyJ1NRU6fHhY8cAAOdSUkx+/PIwevRoc3eh/BQFhOaeMvr555/jhx9+gIODA2rVqoXatWvDwsICtWvXLtfjJiUlITAwEEOGDJHdIHnzzTfL9bhERERUdhwhJDLSG2+8AU9PT7i6usq2myvQEYrC8EOUMmU0KSkJ06dPh7W1NaKjo+Hr6wug8GL9q6++Mnm/OnfuXLKvQuDSpUsmP5a55OXlwUozu2slGSFMSUnBxo0bsXnzZgQFBWHEiBH45ptvyv0zGhkZidWrV8PKygrR0dFISEjAxIkT8ccff5TrcYmIiKjsGBASGWnOnDlat0dGRlZwTwqJojWEopSi4xV9sa5SqZCcnCwPmAD07du3XI5XUZKTkzFlyhRkZGTAysoKubm5cHFxQUxMTKXJMqpQKBAcHIyRI0ciNjYWgwYNwt27dyvkuC1atAAAbN68GbNmzUJ4eDjySvlsEhERkfkwICSqgjTX4QnLwpWDpY0QVvTFekxMDFQqFZydnWXbp02bVi7HqygRERHYsGEDmjRpIm27evUqQkJCMO/55wGYf8qomoWFBUJDQxESEoK0tLRyP56rq6tszeusWbOwfv16rFu3rtyPTURERGXDNYREVZDm1D+FeoSwqOSBLuqLdbVZs2bBz88PiYmJ5dLHIUOGyIJB9bpHPz+/cjleRcnPz4dSqZRtc3JyQn5+fqm/A3OxsLCAu7t7uR9ny5YtJda8jho1Ck+ePCn3YxMREVHZcISQqBIzaB1eUUCoKGWEcMuWLSW2jRo1CqNGjXq6ThooIiICBw4cqJBjlad58+YhMDAQNjY2cHJyQmZmJvLy8jB//nxgwwZzd4+IiIjIKAwIiUzE398fcXFxJt2nQevwipLKFFTS0Sk1a2trc3fBJLp3745Dhw7h8ePHyMjIgLOzM+zs7AAAh2Njzdy7v2VnZ+PXX3/F/fv3UbduXXh5ecHGxsbc3SIiIqJKhgEhkZGCgoJKbBNCIDk52eTHMmQdnoU6y2glyXBZnDoT5549e8zdFZOyt7eHvb29fGMl+R2sW7cOK1euRKdOneDk5ISMjAycPn0aY8eOrZAR4fv370uBaN26dWXPlcjMSkRERGbF/ysTGSkxMREHDhyAhcXfS3CFEAgNDTX5sYYMGVJyoxCydXjqNYQFBgYj+i7WTUVfJs527dqVyzErg8oSlK9atQqHDx+WfUbz8vLQo0ePcg0I9+/fjxkzZsDFxUUKRNPT0zFmzBhs27atxn0eiIiIqgIGhERGio6OhqOjI1xcXGTbx40bV/4HP3MGaN++8L8vvADg74yWpQUjui7WZ8+ejd69e5u0m/oycf78888mPVZlkJSUhPbt20uPzZ1l1N7eHvHx8ejZsyeAws9GfHy8NLW1vMyYMQO7d++Go6OjtC0rKwuNGzfGr7/+WmM+D0RERFUJA0IiI0VERGjdPmLEiHI/tkhJKQw24uP/DggNnDKq62I9ICBACghNVbxeXyZOtXv37sHJyanKrS1csWKF7LEQAitXrkRERATaVZJ1nOvWrcO8efMwbdo05Ofnw9raGh07dsT69evLvE9DpnpaWFjgzp07ss/YnTt3AKDUzwPpFx8fjzlz5uD5559H//79MWXKFCiVSsydOxc+Pj7m7h4REVVhDAiJqpDjFy6gK4DfTp5Ei2LPlTZZUdfFuua0QlMVr9ebibOIi4sLXn/9dWyoYpk5P//8c3h4eCAoKEgKxi0sLFC7dm0z9+xvbm5u+PTTT596P8ZO/f3iiy8QFRWFtLQ0CCGgUCjQsGFDfP7556V+Hki/KVOmYPPmzcjIyIC/vz8SExPh4OCAoUOH4uDBg+buHhERVWEMCImqkIysLABAZtF/AUChHhlU6J+oqOti/Ysvvvh7XyYqXq8vE6emH374waj9VgYpKSnYuHEjNm/ejKCgIIwYMQLffPMNRo8ejZ/j483dPe1+/rmwJMbKlUa9zNipv56enti2bZvWfYWGhpb6eSDd7Ozs0KRJEzRp0gSenp5o3LgxAMDS0tLMPSMioqqOASGRiaSlpcHNza1cj6Gesqdtqp2ilIBQ38W6mrp4vbq4+KxZs7B+/XqsW7euTP3VmomzyDcANhsZaFYGCoUCwcHBGDlyJGJjYzFo0CDcvXu38MlKklSmuMevvAL7Bw+MDggNmfprDH2fB9LPzc0N+fn5sLS0lOp55uXlVfpyM0REVPlZlN6k+pg1axYUCoXsR/MCXgiBWbNmwd3dHfb29ujRowd+/fVX2T6ys7Mxfvx4uLi4oFatWhg0aBCuX78ua5Oeno7Q0FAolUoolUqEhoYiIyND1ubq1asYOHAgatWqBRcXF0RGRiInJ6fc3juVv9GjR5f7MdTr7fI1AykTBiFbtmyRgkG1UaNG4cmTJyY7hloQgP8+fmzy/VYUCwsLhIaGYvv27fjuu+8KN1bSgPDhw4dlep166m+fPn0wdOhQ9O7dG4MHD+ZUTzPYtGlTidFAKysr7N2710w9IiKi6qLGjRC2bdsW+/btkx5r/g/2k08+weLFi7FmzRq0bNkSH330Efr27YsLFy5I664mTJiAHTt2YNOmTahXrx6ioqIQGBiIU6dOSfsKDg7G9evXsXv3bgDAP//5T4SGhmLHjh0ACu+6DxgwAPXr18fhw4dx7949jBkzBkIILFu2rKJOBZVR586dS2wTQuDSpUvlfmx1QKh1CmclDUaqOwsLC7i7uwMoXMeZBGAqAPshQ54qMU9lYOjU39KoVCrpO/TGjRu4ePEimjVrVuLmAxmPNR2JiOhp1bj/k1hZWWmd1ieEwKeffooPPvgAQ4cOBQB8/fXXaNCgATZs2IC3334bmZmZ+Oqrr7Bu3Tr06dMHALB+/Xo0adIE+/btQ79+/XD+/Hns3r0bCQkJ6NKlCwDgyy+/hI+PDy5cuIBWrVohLi4O586dw7Vr16QLyUWLFiEsLAwff/wxnJycKuhsUFmoVCokJyeXuBDr27dvuR9bnQBGM6OoNFHUgIAwOzsbv/76q1SH0MvLCzY2Nibv57fffou5c+eibdu26Nu3L2JiYuDk5ITp06dj0KBBUrtqF8IWFCASwDIAdZYsearEPJWJoVM9165diwULFsDa2hpBQUF4//33AQDPPPMM7ty5gy+++AIbNmyAr68vfvnlF/j6+uKDDz4o7+4TERGRHjVqyigAXLp0Ce7u7mjevDlGjhwpXaRdvnwZaWlp8Pf3l9ra2trCz88PR48eBQCcOnUKubm5sjbu7u7w8vKS2hw7dgxKpVIKBgGga9euUCqVsjZeXl5SMAgA/fr1Q3Z2Nk6dOlV+b55MIiYmBiqVqsT2adOmlf/BtQV9RdtKq323bt069OzZE19//TXi4+OxevVq9OzZ86lKEeiyaNEiHDlyBIsWLcL777+PEydO4PDhw1iwYIG86yY/svmkpaVBgcLfw7MAmjVrhs2bNyMrK6tMiXmqopUrV+L06dM4ffo0HBwcMHz4cDx69Eh67xs3bsSBAwcQExODnTt3SrMoiIiIyHxqVEDYpUsXrF27Fnv27MGXX36JtLQ0+Pr64t69e0hLSwMANGjQQPaaBg0aSM+lpaXBxsYGzs7Oetu4urqWOLarq6usTfHjODs7w8bGRmqjS3Z2NrKysmQ/VLGGDBki+wykpqYCAPz8/CquE1oSyIhSkkusWrUKhw8fxtKlSzFnzhwsW7YM8fHx+M9//lPq4TRvghjC3t4eDg4OaNCgAXr37g2lUglbW9sSo6rmLuBuSqNHj4YQAq4A/tTYPmvWLPj5+SExMbHcjp2UlITAwEAMGTJEuvEEFE5TBUoPvOPj49GnTx9MnDgRcXFxaN++PXr06IFjx44BAO7fv4/ffvsNt2/f1rsfCwsLaVpzZGQk3n77bQQEBEChUOCHH35Ap06dsGPHDqhUKhw6dEhWAoX027t3L7p06QJfX19s2rRJ2j5gwAAz9oqIiKqDGjVlNCAgQPp3u3bt4OPjg2effRZff/01unbtCqBkpkZ1en59irfR1r4sbbSZO3cuZs+erbcNVayIiAgp6585lRYQ2tvbIz4+Hj179ixsLwTi4+Nla8KCgoJK7lcIJCcnG9UXb29vKSOiegQyJycH9erVk++7lM97ZaR3DenAgdgC4EGx50eNGoVRo0aVW58Mrh8phNabCbpq3PXs2RMKhQI3b95EQUEBCgoKkJubi7Zt2+KLL74oUYtwwIABsiy1ffv2hbu7O9577z1cuHABSUlJ2L59O5ydndGtWzesWbOmnM5I5WDKYvIzZ87Enj17YGNjg2nTpuHIkSNYunQpHj16VE69JyKimqJGBYTF1apVC+3atcOlS5fw6quvAigcvWvYsKHU5vbt29JonpubG3JycpCeni4bIbp9+7aUOMLNzQ23bt0qcaw7d+7I9nP8+HHZ8+np6cjNzS0xcljc1KlTMXHiROlxVlaWrEYYVTz1iEhFEPrWCZYSEK5btw7z5s3DtGnTkJ+fD2tra3Ts2FE2ZTQxMREHDhyQFasXQiA0NNSofmorim5jY4MtW7ZI+1Sgak4Z1buG1MDpu6ZmaP1IUVAAhZa6dbpq3P35559o06YNTp48KX3PZGVloVevXoiIiChRi/Df//637HFqairatm2LuLg4AEBUVJRp3nAV8bTF5JOSkjB9+nRYW1vj4cOHuHz5MqZPn47k5GSMGjUKgwcPxoMHD6pkwiIiIqo8atSU0eKys7Nx/vx5NGzYEM2bN4ebm5sshXdOTg7i4+OlYK9Dhw6wtraWtbl58yZSUlKkNj4+PsjMzMSJEyekNsePH0dmZqasTUpKCm7evCm1iYuLg62tLTp06KC3z7a2tnBycpL9kHnt2bOnwo6lNdAoCkJKGyF0c3PDp59+iiNHjiAhIQE///wzlixZIkuyFB0dDUdHR3h4eEg/zZo1w7hx40z4LkoJbCs5Q9aQVnRAqK4fqaZrmmpBbq7W16tr3AGQ1bgDgCdPnshqEd65cwfW1tYG1SKMiIgw6n1UN+pAu127dlKgXbduXYOLyUdGRuLTTz/FkiVL8PDhQwwePBiffvopGjZsiIsXL6JJkyZQqVRVOmERERGZX40KCCdNmoT4+HhcvnwZx48fx/Dhw5GVlYUxY8ZAoVBgwoQJiImJwbZt25CSkoKwsDA4ODggODgYAKBUKvHmm28iKioK+/fvR1JSEkaNGoV27dpJWUc9PT3Rv39/hIeHIyEhAQkJCQgPD0dgYCBatWoFoHA9Vps2bRAaGoqkpCTs378fkyZNQnh4OAO8chASElL+BwkMBIYMKf/jaAv6DAwItYqIAIpGbwofRsDFxaVEsxEjRhi/bz3UxbSrYlhYfA2pmp+fn9lGCA2tH5mvIyDUVePu559/Rq1atdC4cWMolUrUrVsXPj4+yMvLM6gWYUWOnldGugJtQ4vJq0d+mzVrht9++w0KhQLz58+HtbU1Nm/eDFdXV7z88ss1ImERERGVnxo1ZfT69et4/fXXcffuXdSvXx9du3ZFQkICPDw8AACTJ0/G48ePERERgfT0dHTp0gVxcXGyxAdLliyBlZUVgoKC8PjxY/Tu3Rtr1qyRXUzFxsYiMjJSSsQxaNAgLF++XHre0tISO3fuREREBLp16wZ7e3sEBwdj4cKFFXQmqqfJkyeX2CaEkCXZKDc7d5b/MQAotIysGVN2ooSVK4H/+z8gJ8eol2lOZTOm1l5aWlrhRXJeXvX58jl4ENi4EVi1ChAC3wKIAeA1apTekhvmkG/k77ldu3bStFBjahGGhIQgNjZWNnpeUSVPKhPN5C9qxhSTV4/8qoP9Tp06oU2bNli3bh2AwpHg9evXS4+JiIjKQiGq8twtQlZWFpRKJTIzM2v86GKjRo2wYcOGEtujoqJw8uTJ8j24OlFHOf85nZg6FZ3nzUN8nz7wK7qoPNS3L7rv24cjY8ei24oVxu1QoQAsLQEjRxhefvllWRITHx8fTJw4ET179sRPP/2k83X+/v6Ii4vDY5UK9k5OuK9QoG5ZRjYrk7p1gfR0QAgcev11RG/ahB8B5KalwdvbG6mpqbCzs0OfPn1KrLmrKHcsLFBfCDy8eRO1tNRhLStdN2G2bNmCy5cvS9vWrVuHlStXolOnTnByckJGSgpOJyVh7EcfScl2ynqTgYiIqide41acanOTnuiNN96Ap6dnibIfo0ePNlOPykFR8KQ1G21ZA6tirzNkJKe0JCZ6M3ECKChqVy3uRhUbLbMHUAuArUbJDQAlktCYg64po2UVGxur9SZM8ZsC6pInUrIihQJ5AHr85z9SQGhwplSSUalULN9BRERPpUatIaTqbc6cOVprQEZGRpqhN+VDaEvk8TRrCDVeDxhevL60JCYqlQpHjx7FiRMnpJ/ExER06tQJgOkDE3PKUK/Ty8+HEALeANS/CX0lNypC8fqRwsiRYG31J4UQUlId9U0YPz8/2U/xmzDqkifSPgDEA7Kpp5rr5TZv3oysrCytmVKruqSkpDK9bu3atWjXrh1efPFFzJs3T9o+ePBgU3WNiIhqKPPfsiYig2kNCKUnn368rcRIDgqTYPTo0UNWR09dPkKTZq09dSbO4slX1Jk4dWW7rIruZmaiDgA8egQUFOBTAMXfnWbJjfJgaP1IXYG4rtefOHECDRs2RMOGDfHyyy9L2ZNTUlKwY8cOzJkzR+v+it+EKVHyBEBHQHajofh6uaddH2fKGoBltaLYFG4hBFauXImIiAijM7AuXboUS5YsQYsWLbB9+3YMHz4ca9euRVZWFoCyTbm9ceMG3N3dpceV4ZwREVHFY0BIVIVoGwVU6HnOWIYUrzfEEB0ZV/38/AAYP2VUnaSkMsq3sCicdqsRbClQVGtR29TecmBo/UhdSWV0vf75559H69at8dNPP8HT0xNNmzbFtm3b0LdvX3zwwQc4cuSIQf1TlzyRqM+LxnrG0m4yGOtpawCawueffw4PDw8EBQVJnwULCwvUrl3boNcPHToUW7duxRdffIHffvsNCxYswF9//YVnnnkGHh4eeOGFF3Dt2jWsWLECGzdu1DvldteuXbJ9CyEwa9YszJ49G6+88gqAynHOiIio4jEgJKpK1EGfZqDxtFNGNRhSvN4UdI0QmjVTbBmpL/Tzc3PLPamQLur6kcVLhqjrR0q90vEZ0fX6hg0b4tGjRzh37hycnZ0RHR2NgIAAZGVloU6dOiZ+F09P88aBugZgkyZNpBqAAAyuAWgKKSkp2LhxIzZv3oygoCCMGDEC33zzjcHrmtWjfxs3bsTkyZPx9ddfo0WLFkhNTcWwYcPQsGFDzJ07F7Vr1y51XW9YWBg6duyIrl27SnVAMzIycPLkSSkgNOacFR9dJCKiqosBIVUbe/fuxbRp02BpaYnIyEiMHDkSADBgwADsrKCyEOVN25RRKVGwCQLCEiM5pbh//76UfKZu3boGv04aISw2gmZokpLKIiQkBLOK3kP248eyOoTFRwjVJTfKg67ph8XrR+oKxHW9fsyYMUhKSsKCBQvQunVrdOjQAStWrMC//vUv1KpV6+k6/RQMuXGgrgFoaWlZphqApqBQKBAcHIyRI0ciNjYWgwYNwt27dw1+fYsWLfDDDz+gU6dO8PLywsmTJ7FgwQKcPn0ad+/exfvvv4/Dhw9j9OjR2L59u94pt0ePHsXmzZuRnJyM8ePHw8fHB8ePH8eMGTOk4+k6Z3fu3JGNMGobXSQioqqLASFVGzNnzsSePXtgY2ODadOm4ciRI1i6dCkePXpk7q6ZjNBT0L28Kshs3boV9evXx8svvyxt279/P2bMmAEXF5fCMgIZGUhPT8fs2bPRu3fvUvdZoCNRSGXNFKsvAFGHfDkaReC1TRQdPXo04uLiyqeDhtK3BrVI8bVo//73vwEUrkVzdnaGs7Mz9u3bB8B8N2EMuXHwtDUADWXIdGYLCwuEhoYiJCQEaWlpBu/7s88+w7Jly5CUlITt27fD2dkZ3bp1w5kzZ9CrVy/89NNPUoCpOeVWHbzVrVsXW7duxc6dO6UAbty4cdJ6xIyMDNnxdJ2ztLQ0LF++XO/oIhERVV0MCKnasLS0lKaxLV68GGvWrMHgwYPx4MED83bMlLSNbqi3ldPIx/Zhw3ALwI8aAeeMGTOwe/duWbr7rKwsBAQEGBYQ6hipMjRJSUXTG4DcuAGgKMgVAuqCG6JLF2mEULPkhjnpCsQ1GVP+wZQ3Yb799lvMnTsXbdu2Rd++fRETEwMnJydMnz4dgwYNkrV9mhsHhpb/KB4Yf/fddwCA3bt3o3///gCMn84cGhpq1FpYGxsbREVFISoqqsRzTZo0wfbt27UGmKVND502bRqysrKQmppqUD8uX76Mzz77TO/oIhERVV0MCKna8Pb2lk2ZCgsLg4eHB8aOHWvejplS0QiPbARKPWpo7AihgQHkGi3bFAoF7ty5IwsI79y5I0tKovfQJqpDWFHFzPUGINHRAP4OCFUAkgHg2DFZ8NG3b1+T9cdQxaepllZ2IiQkRLYWbdmyZfjPf/6js/yDKW/CLFq0CEeOHIFKpYK3tzdSU1NhZ2eHPn36lAgIS7txYIokRMUD47i4OGzfvh179+7FgAEDpHbapjNXxFrYPXv2AIDWdXyGBHBOTk5a64VqU6tWLUydOhUqlUrn6CIREVVdDAip2li2bFmJbT179jT4LnhVoC1xjHqbwtgRQiPbJycnY8qUKcjIyEBOTg46duwIIQSaNGmCWrVqoWHDhvjiiy8M2pd6LeTTBoQVVcxcXwDye7GAMAaACoBjsQBdXXKjIhWfpqo+7/oClg4dOkg3VtSv11b+IS0tzaQ3Yezt7eHg4AAHBwf07t0bSqUSgP4RvfIMvIonaenevTu+/PJL1K5dW8qWC2gflSxtSmt5ricFgMzMTPj4+GDgwIH47rvvTBbAOTo66h1dNEUgztIXREQVjwEhUVWiDuI0gg1FGbOMirw8rWvddImIiMCGDRvQpEkTadvVq1cREhKCn3/+2ahjm6oOYWmZFSuC+jehHn1TF9zILfq9pKamonXr1rIgwtS0jfRom6aq7mPxgOWdd94BANy+fRtXr15FUFCQ7PXayj/oWhOp7SZMiYt8AEoAc48dky7yvb29pYQm6qy2OTk5qFevns73rS/wMmYKqjbF6yIeOnQI69evx1tvvSVrp206c2lTWo1ZT5qdnY1ff/1VSt7k5eUFGxsbWRuVSoUxY8ZIJSo2bNgAX19f/PLLL/D19cX//d//GXRjzNBz9tFHHwGQr1vUFoiXZQSfpS+IiCoeA0KiKkTKMqoZ/KmnjBoZEObn5hr1BZCfny+N2qg5OTkh34BEJcXpmjJqbJISUxczfxrqEUI19e8jIiJCythYXlQqFZKTk0uMpqmnqap7pT7v2gKW5ORkrFixQhbg9O3b1+BgU58SF/kAHAAMnTpVusjXlt3WxsZGa31CNX2BlzFTULV5mrqI6hFlbedu3bp1Bp+7devWYeXKlejUqROcnJyQkJCAo0ePon79+njnnXfw/vvvAwAGDx4sTdfeuHGjrKbkyy+/jA8++EDn9FB/f38pODX0nBmaDbgsI/iVoVwIEVFNw4CQqhVD7qZXaerpoZqBh/rfRq4hzM/JMeoLYN68eQgMDISNjQ2cnJyQmZmJvLw8zJ8/36jjAn8HtsVHKI1NUmLqYuZPo3hAqP63tbV1uR87JiYGKpUKzs7Osu3SNFV1v4rOe/EpsOrXFx/tmjZtGt555x29waYhSlzkFyVCKetFvuZI1o8//lhiJCsyMhJbt241egqqqZUWqJdm1apVOHz4sBTc+fj44O7du+jbty8cHBwwfPhwrF27FkIIWYmKHTt2oFevXkhKSpLW+QYFBZXYvxACycnJ0mNDp+0amtSnLCP4laFcCBFRjSOoSsvMzBQARGZmprm7YnZr164VPj4+IjIyUkybNk2MGzdO+Pr6inXr1pX/wQsvucv9MPEjRggBiPgePf7e1qmTEIDYP2SIUft6cOOGYf0u1ubRo0fixo0b4vHjxyWa3rx506BjX9q1SwhA3LSwkG1/6aWXZI9Xr14tAgMDRceOHQ3ab3n55ptvhLe3twgJCRFr1qwRLVu2FB07dhTff/+9uGRjIwQgru3bJ34aNEg6X08ePDBpH06fPi0GDBggXn31VXHkyBFp+xtvvFHqa9OK+nRl2zaDjnX+/Hnp31u3bhX3798v0ebgwYNCCCFyc3NLPJeVlSV7PGLECJGXl/f3BkDkAqKHxufYGJ07dxYPHz4UaWlpws3NTWRkZIgnT57IPj//+te/5McUQmRnZ4thw4aV6Zia/vrrL/HTTz+Jy5cv621X2rkrTZ8+fcSBAwekx76+vmLfvn2id+/eQggh4uLiRPfu3YWXl5fIzs4WCxcuFH369BGtWrUSXbt2FREREeLrr78W/v7+wsHBQWzevFlcuXJFXLlyRQQFBYnLly8bdM5eeukl0blzZ+Hj4yM2btwoPffKK6/o7f+wYcNKnKN169YJW1tbg96/Jm2fMyKq3niNW3EYEFZx/GP5W7du3UR+fr5sW25urujWrVv5H7yiAsLhwwsDwu7d/97WoYMQgDjw6qtG7SvzypUyBYT69O3b16B2F7ZvFwIQNywtZdvHjRtX4gLywIEDolWrVgbtt7zoC0B+KwoI/9y9WxwcOPDvgFClKnzxnDlCmKD/L730krh06ZK4fPmyGD58uFi0aJEQQhgUVN0s6tPlLVtKbRsXFyccHR2Fj4+PmD59uujdu7d47733RKdOnYS3t7fw8/MT69atEwEBAaJFixbCwcFBODg4iNatW4uzZ88KIYTo2bOn/oMU9ceQi3xtNxn8/Pykf4eEhEj/LmuAaYghRTdcVq1aJfz8/MTUqVPFK6+8Ij766COD96EZaBvi5s2b4l//+pfw9fUVXbp0ER4eHuIf//iH7JykpKSIfv36yV63b98+4evrKwYNGiTq168vevbsKZo0aSJ8fHxKfG42bdpUaj/atGkj/Pz8xLhx48TQoUOFi4uL8PPzE+3btxdC6A7WgoODjXq/RESaeI1bcThllKoNe3t7xMfHo2fPngAKp0PFx8fDzs7OzD0zHaGe+qc5faqMSWUMqUmnS5nWlT15AsTEAFOn6ix/UFkzxRoylU7k52tdQ4jp003SB1Mk0Cmt7ARQOG23Y8eO+OGHH/Dss8+iX79+GDNmDD7//HP8/vvvcHBwQPPmzZGSkoKgoCCcO3cO1tbWmD17Nnr27ImrV68aXALFkOmb2hKw6EpAU7duXYOOCxROQ9R3/OIJVnbt2oU6deqgoKAAu3btwksvvQSgcIrjBx98IHutrrWwL730klRI3hBubm5a11aqpaamom3btti9e7dsu2ad0O7du+PAgQNSndCsrCzZ52bEiBGl9uPatWvYvXu3tAZ06tSp2LJlC86ePQtfX19cu3YN+fn5sLe3R/fu3VG/fn2jsr3euHFDa/kMIiKqGIYVDSOqAtatW4fvv/8e3bp1Q9euXdG9e3f88MMP0gVjdaDQkmVUW+ZRQ+Tn5JS5HyqVCkePHsWqVatw4sQJnDhxAomJiejUqZPuF+3bB8yZA6xYYbI6hHv37kWXLl3g6+uLTZs2Sds168SZgjoAAaAzA2ZBXp4sEDI0KDKUOoGO2qxZs+Dn54fExESD9yFKSQDk7+8vrd1ycHBAq1at0KNHD0ybNg22trZo3LixFHQplUpYWFhIayT/9a9/wdXVFQEBAYYHPRrnqHPnziV+OnXqhBMnTshekpSUhN9++w3Dhw/H+PHjAQBnz55F48aNcePGDXTo0EFnNsrk5GS88sor8PX1Ra9evaTSDJrr6NTUCVYWLVqE999/H3Xq1EFMTAwcHBwwZcoUxMTE4NChQ8jVkjFXvRZ23759OHHiBMaPH4+CggIUFBQgPj4effr0wcSJExEXF4f27dujR48eOHbsmGHnTENERITW7RYWFrhz5w6Avz836jqhZfncODo6Ij8/H+3atYOnpyfeeOMNPHjwANbW1jh69CgKCgqwceNGzJ07F6dOncKAAQMQGBioNUPsrl27ZD87d+7E4MGDsWvXLp3HT0pKMrivRERkPI4QUrVR2t306kBoC/7KOkJoZOmHFStWSP9++eWXsWTJEnz99deIiIiQLkz11dpL/eMPtAZw5exZiEaNjDq2LsYmoSkrfRkw/7C1BVB4PmVJctS/Ixsb4CmCbzWTJNApCgj1JRgZPny4lLnVzc0NoaGh8PDwkEZ/8/Ly8MwzzyAwMBC3bt1Cv379kJeXh7y8PKxatQp169ZFVFSUQd0RBQVQFCWWMTQBi2bmys6dO6N58+bYs2cPmjdvjmPHjuH27dsYMmQIjhw5UiLJVGRkJDZu3GhQ6ZTio8JXrlzB48ePkZOTg3v37mHlypXYtGmTNGqrydLSEnXq1AEALF68GGvWrMHgwYPx7LPPmrSsgq6ERV988QWioqKQlpaGnJwcvP7667I6ocZ+brp27SqdM/XNAmtra7i7u+P27dtSkpkXXngBn376qVRipXiSGSEEwsLC0LFjR3Tt2lW6aZKRkYGTJ0/ilVdekX3PqF+zcuVK2fcMERGZFgNCqrZyc3PR9bnnsGz9evgWTe+q8rSUnZhz5Qr2wvgRqXwjA8LPP/8cHh4eCAoKQrdu3QAUjkTUrl3boFp7WZmZAIArV66gvpEjhLoKeeu68H7w4IHhb8xEdE4ZVWfSLCgALMw7KaOg6POTmJgoK00AFH5+QkNDZdN21aOumtN2rayskJiYCCsrKzx+/BgZGRlwdnaGnZ2d9DkoPoWxxBTKou0DAgOx68cfARiQKbWI5tTZ5s2b4/fff8eZM2fQsmVLAIUjYhYWFiVKNmRkZODs2bPYvXs3wsPDpf3pKp1SfFrq8OHDMXDgQBw7dkwKzrXVJVS/VrMcSlhYGDw8PDB27Fi4ubmZrKzCnj17tG739PTEtm3bAMjLSmij+be1du1aLFiwANbW1ggKCpLKWqSnp8v616VLF7z77ruYPHkyWrVqBWtra2zevBl169aVZR1Wj56ePXsWb7/9NgDA3d0djRo1QmpqKsaPHw8fHx8cP34cM2bMACD/nlEoCm+xqL9niIionJhl5SKZDBfc6navKIvm5mbNyv9gFZBUJjo6Wox85hkRDYiRbm4iOjpaTJo0SbhZWwsBiH39+xu1v7+OHTMqqUxBQYGIjY0Vr776qtiwYYPIz88XAQEBQggDkogIIU5+9JEQgPipe3dxdvVqIQBxvVhSGV10JaupDElo1EllLsTGioMBAdL5enDnjhBCiNyi50VOToX1qbgbRX269OWXQgghPv/8c3GnqH+aDEkwoo+uz4GPj49IT08XDx8+FO+9954YB4h8QHR/+WWjj6GZuTIsLEyEhYWJ7t27CxsbG5GVlSWysrLEoEGDtCaZOnDggHBychK9e/cWQ4YMEb169RLdu3cXhw4dMrofZVUi46ooTMrytAlxOnXqVOKnY8eOQqlU6n2d5t9W165dRU7R53Tp0qVi2LBh4uHDhyX6pvl7fvTokTh16pRYsGCB6K6R7Eqznb+/v0hNTRVCCHHr1i3h6+srsrKyxJw5c8Rrr70mfHx8pNfo+54hopqF17gVhyOEVG0pnjwBAHS4dcvMPTGN2NhYTG7cGN5//IGzSiWeL1ont2P5ciA31+gRQvU6vgIYtphYoVAgODgYI0eORGxsLAYNGiStFTOm1p6A7rVsxiarMXcSmrSienpA4XuS/QaKfh856nqP+fmACWoS3r9/X5oCaUwSFeDvpDK6pt4ZkmBEH12fgxIjuUuWYDCAByqV0cfYsmUL1q5di4EDB0ojWatXrwYA9OrVCwcOHMD333+Pvn37lkgyVVBQINXp0xzZrEiaa13VrKyssHfv3qfab2lTbg3529JcExoZGQlPT08EBATg/v37std5enoC+Ht08cUXX8SLL76ISZMmydo9fPgQ586dg0qlQqtWrQD8PYLr6OiIadOmISsrS/b3qu97hoiIygcDQqq21ElTCkyc3MNc3njjDXj8/DP8AChq10b3oumZ/ZXKwgyeRq4hLGtSGQsLC4SGhiIkJEQKiHRNXdNGQHe2y6ct5F3RRo8ejf8U/bvElNGif0vrCp+ysPb+/fsxY8YMuLi4SFMg09PTMXv2bPTu3dugfZSWVEYfXdN2Nen6HJSYQgnAA8DbZZzau3LlSpw+fRrW1tb47LPPZAXa1datW4d58+Zh2rRpyM/Ph7W1NTp27Ij169fD3t4e9vb2ZTp2cYacF0MYknFVH11Tbp977jkAwN27d+Hs7AwbGxvk5ORg0aJF6NGjh+xva8CAAbLfU9++feHu7l5iTejy5csBaM8Aq5aUlIQ2bdpgwYIFaN26NdLT0+Hs7AyVSiW7keHk5KQ1WNX2PUNEROWDASFVW/nZ2QCePpNlZTFnzhwcVF+8aVz4vlanDnDrltFZRp8206eFhYVRqeIVmsFSUWBSoJClYTF4HVlFM2R0ReTny95j8d+HyMuTJ50xkmYpATV1KYGKCAg1L/51rUvTtV3rSC6AxJ9+KlNfDBnJKq8kUyqVSvodJCUlYcqUKXrX6Ol6rakNGTJE9li9nlM9+ubk5AQrK6sSiXc0/7b+/e9/l9hH27Ztce7cOXTu3BmPHj2SMt0KIaQ1fitWrJA9FnoSwTg6OuL77783+H0Z+z1DRETGY0BI1dbTlFWotIpGmRQao01aS1EYsquihA8VFTBrjgrqCkyKX9Sq6UtWo42pRm3U9I5cHjoEoKjshMZzxbO+FuTmwvi0IX9TlxLQDCjUpQRKI/WrlIBQpVLJgsvffvtN+veDBw8QFBQEIQR+/vnnEplKRVGWUmOUtRam5kiWEKLESJYpfv/FE6z85z//KbHvW7duSUGQvteqk7MMHjwYBw4cKNE+KSkJ7du3f6r+aurcubMUEJ47dw7t2rXD5cuXpc+vq6srnhRNqdf3txUREYEDBw7g3r17+OOPPzBgwAD873//Q6tWrTB79mwsWbIEZ8+exaRJk2BrawulUomRI0fC09OTiWCIiKoQBoRUbRlbVqHMKnJKqp6yE8ZOSSzLCGHxNP5eXl6wsbEx7HgaAaghBdKfhr6pbGWhb+RSUTRqqzPLaJH8nJynCgg1SwmoR2M0Swnoo+6V+rzrC1g0g9/mzZtL2UhDQkKwYMECCCGwY8cOzJ8/X2uWUmMYm+kWKKwP+O9//xtnz56Fj48PgMKR0s8//1zKbqrr91+82HxMTAycnJwwffp0DBo0SNa2+LTUa9euoVevXrCzs8PUqVOlvhRo+bvTN6W1IsoqqFQqdOnSBXv37sU//vEPAECnTp3wxx9/SM9fvXq11P2oR2EbNWqExMRE2VrA+Ph4NG3aFNHR0Th9+jROnz6Nr776Clu3bkVqaiq++eabEmUnAC0ZZ0cW5pwdMGAAdu7cqfc9ldfoKhFRTceAkKqtCgsIn3JtmDEUWoI/9bay1iE0NCDUlsb/9OnTGDt2rEE1zbSNED5tKG1sEpqy0jdyeVl93Lw8rVNG1eNHZQl+NGmWEigr9WdEX8CiGfxGR0fD0dERLi4u+Pjjj+Hh4QEACAkJkbZrGjdunM5jy24mAPBC2f5Gd+7ciaioKERHR+Phw4ews7PD1atXMXDgQHh6eur9/auLzatUKnh7eyM1NRV2dnbo06dPiYCw+LTUe/fuYePGjUhLS4ONjQ1GjBiBb775BlOmTClxnOKvbdOmDZo3bw5XV9cKKasQExODHj16AICUcAcoDOKAwmmbL774Yqn7Ua8J7datG7744gtpLeCtW7eQlZUFFxcXqFQqtG7dGq1bt8bq1auhUCj0JoKZOXMmtmzZgnr16mmtHWrs6CoRET29GhUQzp07V7p7aW9vD19fX8yfP1+64wkU1ov6+uuvZa/r0qULEhISpMfZ2dmYNGkSNm7ciMePH6N3795YsWKFVE8KKKzbFBkZie3btwMABg0ahGXLlkmZ9oDCgsjvvvsuDhw4AHt7ewQHB2PhwoUGj7iQflLAo2VKlyk97dowQ3377bf44ORJdAHQ9P59vNWqFZycnBCkUsEHKPc1hKtWrcLhw4dlo0J5eXno0aNHmQPCp1UZktBIo2+ljBBW2A0KfYrOu741eJrBr+aIlebUwq+++krr7nVlKS1xMwHAaQCvf/cdxrVpY9Rb0MxcmZubi9OnT2PAgAF49OiRVFxe1++/eLF5pVIJQHtCl+IJVmbPno2goCBMnDgReXl56NWrFx49elRiyuXkyZNhaWmJt99+W9q/EAJWVlZo1KgRfvzxR2zcuBGbN29GUFCQFFhqG00rK13rCTX7akwiKM2gEgA8PDxga2srPX7xxRdhaWmJixcvokePHti2bRvS0tK0BneWlpYYM2YMDhw4oLV2qCEJg4iIyLRqVEAYHx+Pd999F506dUJeXh4++OAD+Pv749y5c6hVq5bUrn///rL/ARYP0CZMmIAdO3Zg06ZNqFevHqKiohAYGIhTp05JxXuDg4Nx/fp1aQrTP//5T4SGhmLHjh0AgPz8fAwYMAD169fH4cOHce/ePYwZMwZCCK0JGMpbXl7eU2e5q2wqKqnM064NM9SiRYuwvF07eCckoM2tW/jj7l3Y2dmhi1KJaMDogNDYaZv29vYl0vjHx8cbnLZfFhCaaMpoZUhCo74ZUFBshLD4BWxe0efRrIrOu6HZJE2lxM2Ejz5CHgDfb7/FuGKJTEqjmbmyZ8+eUKlU2LJli+ymhK7ff/Fi80BhWZB69eqVaKsrwYo6kFq9ejW+++67Eq+LjY3Fhg0bSmz/6aefpP8fVHRZBfVaQFMpKCjAzZs3td6IUSeMcXd31xrceXl5ISkpSXpNWFgYPDw8MHbsWACGl74gIiITqqiCh5XR7du3BQARHx8vbRszZowYPHiwztdkZGQIa2trWQHnv/76S1hYWIjdu3cLIYQ4d+6cACASEhKkNseOHRMApOK8u3btEhYWFuKvv/6S2mzcuFHY2toaVYDzaYp2nj17VgQEBAgfHx/x8ssvi65du4rAwEBx9uxZo/dVGV387rvCguH29uV6nOz79yukML2fn5/4yddXCED0dXKStr9oaysEIOJeesmo/SX/979CAOKxgYXpb968Kf71r38JX19f0aVLF/HSSy+JCRMmiJs3bxp0vKMREUIAYm/37uL47NlCAOKKtbVRfS7N+fPnTbo/Q/xhbS0EIE7PnSvie/aUzlfGlStCCFF4fgFx/8yZcjm+Ief/WlEffp0xQ+vz5X3e+vTpIw4cOCA9LgDEPkC81KlTuR7XlDSLsQtRWGxdm2nTpolbt26V2L506VKt7fPz82X/H9Dm4MGDonfv3uK9994Te/bsEd7e3sLPz08cPXrUoL5r66uhf7fabN26Vdy/f19rPzX5+vrKHsfFxYnu3bsLLy8vnfv++OOPxeXLl2XbUlJSRL9+/crcXyKqmliYvuJUryEhI2VmZgJAieLOBw8ehKurK+rUqQM/Pz98/PHHcHV1BQCcOnUKubm58Pf3l9q7u7vDy8sLR48eRb9+/XDs2DEolUp06dJFatO1a1colUocPXoUrVq1wrFjx+Dl5SVLp92vXz9kZ2fj1KlT0ihMeYqIiMCGDRvQpEkTadvVq1cREhIiTb2qyipqil5FZTP19vZGftHU5RlFn5ucnBwo1aMuRq4hlEo/GNj+adP4y0YFy2ndpalHQowh8vNl70s9ZVRaQ1hOnxOjEujomKqr77wZk0hIV+KPEjUBAXQEsPiDDwzrdyWgHrVS0zXlcs6cOVq3R0ZGat1uSFmFKVOmYPPmzcjIyIC/vz8SExPh4OCAoUOH4uDBg6X2XVtfjU28pPk58PDwkM2q0TYlFQD69Olj9Ei0rpFZ9egqERGZXo0NCIUQmDhxIl566SV4eXlJ2wMCAvDaa6/Bw8MDly9fxvTp09GrVy+cOnUKtra2UkKB4lPUGjRoIBXPTUtLkwJITa6urrI2DRo0kD2vLhqsrwhvdnY2sjWmnmVlZRn/5ovk5+dLa1zUnJyckG+i9V3mVt0Cwk8//RQH1TcZioINGxsbzKtXD7h+vcxJZfQRBQWmWx+pTiQjRLn9bopftFckXQGhWllLLKiZIoGOrrWbus6brkRC7dq1w5EjRwxO/FHiZkLRut7Lxb5/ykNSUhKmT58Oa2trREdHw9fXFwDw5ptv6lwLqY2uANDUJU60sbOzQ5MmTdCkSRN4enpK69XVSxT0McXnprSEUkOHDoWlpSWsra0xePBgzJw5EwDw888/Y/bs2dJ+yhLcmfMmDxFRTVFjA8Jx48bh7NmzOHz4sGy7ZlIELy8vdOzYER4eHti5cyeGDh2qc39CoygvAK21qcrSpri5c+fK/gf7NObNm4fAwEDY2NjAyckJmZmZyMvLw/z5802yf3MrqKBArSKThahrDmquVZP+XcY1hPpeVZCXZ7L1kdpGCE29vtOYRBmmVjypTPHfx9N+Tp4mgU5pdQh1nTddiYTq1q2Le/fulZ74Y+FCYM0aICVF6/7LGiQbM2oZGRmJ1atXw8rKCtHR0UhISMDEiROlEgzA05U0KEuJE2PLt7i5uUlrH9XBUV5entaSF8WZIvGSts/B6tWr8fbbb2Px4sW4fPkysrKyYG1tjZYtWyI5OVnr50Ed3Bnz/s15k4eIqKaokQHh+PHjsX37dhw6dEiWGVSbhg0bwsPDQ7qb6ubmhpycHKSnp8tGCW/fvi3deXZzc8OtW7dK7OvOnTvSqKCbmxuOHz8uez49PR25ubklRg41TZ06FRMnTpQeZ2VlyaZ8GqN79+44dOgQHj9+jIyMDDg7OxucIKQqMCTgMYUKzR6ppQ6hRRkL0xtS+iHfhAlzPE6cAFAY1Joqy2hlIvLy9E8ZfcrPiUkS6Bg5iqwrkZC2sgpaE39ER+vdf1nOibHlTxQKBVq0aAEAGDhwIKKjoxETEyMr82BISYOnGWnTLDxflvItmzZtKrHNysoKe/fuLfXYpvjcaPscLFiwAF26dMGBAwfwzDPP4PXXX8fatWvRqFEjvPPOO1o/D9bW1ka/f3Pe5CEiqilqVEAohMD48eOxbds2HDx4EM2bNy/1Nffu3cO1a9fQsGFDAECHDh1gbW2NvXv3IigoCABw8+ZNpKSk4JNPPgEA+Pj4IDMzEydOnJAuIo4fP47MzEwpaPTx8cHHH3+MmzdvSvuOi4uDra0tOnTooLM/tra2snTfpmBvbw97e3uT7rMykKZylnPZCc2AsLQR3qeVk5eH0wASHz6E/enT8PLyKvMIoSFlOUwV7BacO4fG588XPaieASEKCrQGXFIW0qccsdZXC9FQxmZ3LbH2z9oaHTt2xNixY2Vrw/r06YOGDRsanaW0LCOExpY/cXV1lfq6cuVKXL9+Hd988w3CwsKMKmlg6EhbaYXnn7Z8iyZDMkMPGTIEISEhiI2NlW035nOj7XOQkZEhBdFvvfUWmjZtKgWBuj4Pe/bswUsvvWSy909ERKZRowLCd999Fxs2bMD3338PR0dHaa2eUqmEvb09Hjx4gFmzZmHYsGFo2LAhrly5gn//+99wcXGRLsaUSiXefPNNREVFoV69eqhbty4mTZqEdu3aoU+fPgAKC0j3798f4eHhWLVqFYDCshOBgYFSzUN/f3+0adMGoaGhWLBgAe7fv49JkyYhPDwcTk5OZjg71Y+pShuURnOUo6CgwKB1PWWxbt06zP/tN/QGkPn4MX5fvRqnT59GwKNHeLHw4Ebtz5Dz87SjWmqpFy5AqjaXny9NXVQYGcRWZgU6Rghlz5uJdOltZCBuTCKhsiT+KMsNB2PLn2zZskX6t3pkc9SoURg1ahT27dtncEkDQ0faSis8/7TlW/SZPHlyiW1CCBw9evSp9qvtcxATE4MnT54A+DsRTPv27aUgUNfnoTzfPxERlU2NCghXrlwJAOjRo4ds++rVqxEWFgZLS0tp7UNGRgYaNmyInj174ptvvpGtL1myZAmsrKwQFBQkFaZfs2aNLBCIjY1FZGSklI100KBBWL58ufS8paUldu7ciYiICHTr1k1WmJ5Mo6KmchZUUEC4atUqLHv2WfRMTsbROnXgu2wZ8vLy0MnBAdOAMq8h1BdGys6hEGUebZWNZOTnV8sRQlFQIK9DWIkK00sBYbE+aRs50ufkyZNISEjAuHHjjOuAjs9OWW7a6Bq1VNcV1Kd4/UVjRjYNHaFNSUnRW3j+afpfGn01EE2teDZQwLCbAuX5/omIqGxqVEBY2rQge3t7g9Yr2NnZYdmyZXoLyNetW7fU/8E1bdoUP/zwQ6nHKy979+7FtGnTYGlpicjISIwcORJA4UXTzp07zdYvUxHqKZHlfBzNLKPqC5zyYG9vj1/++gs9UTiypr6zLqViKIc1hLLpsPn5UBgwRU0bK82+FcvGWW0Uf18mTirzND4CUAvA3SNH4FI0ilSWkaNOnToBgMEBYT5QuAY1Lw/Q8ndRlnPyNOVPyhrEGEOhUOgtPP+05Vs0+fv7yxLavPHGG/D09CyR5VodjFYGpnz/RERkGjUqICS5mTNnYs+ePbCxscG0adNw5MgRLF26FI8ePTJ310yioqaMFh8hLC/r1q3D+LZtsRlA5s2bcO7eHR07dkSMoyNw/75B66A0GXJ+NKc5FuTlwbKMAWF+0dSywgfVa4RQPe5VvOyEOiCU1hCaMSDcCmATgD8aN8YzAwZI240dObIFUEfP8/Hx8ZgzZw6ef/559O/fH1MAKAHMPXIEPsVmZgDmOSflvc5XzcLCAqGhoQgJCdFbSsgQ6vXqmoQQSE5Olm0ztgYiERERwICwRrO0tESdOnUAAIsXL8aaNWswePBgPHjwwLwdMxFzTBktzxqObm5uGN+gAbrfv49jDRrA5+efAQBn164F8HdJCoMZUJheNvqZkwPLYut8DJ1yKAsICwqMXstWFRQvO1E8QDfnGsIQAJ4A6jZogHYaUxw1R44Mqde3FcAreo5TooA6AAcAQ6dPx8Giz6umirhps2jRIkRFReHs2bN4++23AQA5OTlYtGhRieUD5cGQwvOlSUxMxIEDB2SJWIQQCA0NfdruERERMSCsyby9vWXracLCwuDh4YGxY8eat2MmUlpAmJeXZ1CWvlKPozmKVs6BjlSHUB38Xb9e9iyjBlyMq0fyJgPImzYNVhoBoTFTDnWNEJb/OE0FKmXKaEWNWGszDYUje7eKfT41R44MqdenLxgEtBRQLxoZs9QckdM4LxVRK3Tnzp2IiopCdHQ01qxZg1atWuH27dsYMmQIjhw5YtS+Xn/9dWzcuLGceqpbdHQ0HB0d4eLiIttu9FpOE7px48ZTB7pERFQ5MCCswbStgezZsydSU1PN0JtyoK5DqHExmpycjClTpiAjIwNWVlbIzc2Fi4sLYmJi0K5duzIdRjZCWN6jkuppiEIge+9e2Pr7o12x5wxmSB3Cogv2WAD/7dULdsUyLBo65bAgO1v6t0JjhLA6BYQlRggrY1IZPTcsNOv1bd68GbNmzUJ4eDjyDAhk1SPFJQqoKxTIA+T70OiDMUGyISOY2jx8+BDnzp2DSqWSsjy7urrKRtuK08zWeefOHcTHxyM7Oxv37t2Dj49Pmb4zVCqVLDmZLtpuVEVERGhtO2LECNnjjIwMadbH0yg+9Xfs2LFwcHBAWFgYPD09IYTArFmzMHv2bLzySmm3CcqGAScRUcVhQEhlYmx2QnPQNgIWERGBDRs2oEmTJtK2q1evIiQkBD9rmdKmSdeIomwNYXmPAmmMBh7cvBn9tD1n6K60BMy62rwB4LlmzfCMt7fseUOTVWgGhKKgABfv3sV8FJ7TGUePGnxxXxlJZ6+gQD5tt/gawspQdkLPtGLNen0AMGvWLKxfvx7r1q2T2qjDJBEdLa3D0xwp1lpAHcD3q1dLj0V+fpnWVeobwSyxdnHKFCiVSsydOxdt2rTBggUL0Lp1a6Snp8PZ2RkqlQp169bVeSzNbJ3jx4/H/Pnz4erqiqioKBw7dkzvd8batWuxYMECWFtbIygoCO+//z4AoHv37qhXr57WPtauXdv4G1XDhgEZGcD+/dL3sbu7O3x9fTF8+HAMHTq0RHIZQ6mn/r7zzjvYuHEjcnNz8cwzz2DZsmX4xz/+AaAw+Dx58qRJAsJdu3bJHldEwElERH9jQEh6lVddq4qgbfQhPz8fSqVSts3JyUnn2j9DRhRlI4TlfNEvTRkVAhbFszaWQ5ZR9YjnHACZxUYHAcOTVeRrjhDm52NpYiK2ArivUGDBkiVapydWFeopu6WNEJpzyqhUCEXjc56UlIT27dtLjzXr9amp6/WpxQLYACA/IEBWXqW0kWKhedMkN1fqj+Y5KW0Kt74RzBJrFxMT4eDggKFDh+LgwYMl9uXo6Ijvv/9e57E0s3XWrl0b/fr1g5OTk3QDRN93xsqVK3H69GlYW1vjs88+w/Dhw7F27Vr8/vvv2L59u9Y+5ufnG3SjSvZ9vHVr4TmMjpa+j7t06YI1a9Zgy5YtGD58OKytrTF8+HAMGzZMb3BY/Hv+xo0b+Oyzz3Du3Dl4enpix44d+Oyzz5CcnAx/f3/4+Pjg+PHjmDFjhs59GiMsLAwdO3ZE165dpbW3pgw4iYhIPwaENVx2djZ+/fVX3L9/H3Xr1oWXlxdsbKRCBhVa18rUtJWdmDdvHgIDA2FjYwMnJydkZmYiLy8P8+fP17oPQ0YUK3KEUHO9oE0FBISaF+xPM+VRc4QQRfX6WgC4pVAYPT2xvBk7NVEzy6iFZhBY7L2U15RRraP1hw8DISHAb78B1tb4EoVf9n9dvIifV6yAEAIrV65ERESEzumI2ryBwuQ0v+TloVevXtL20kaK8zR+//kaAeHF69cx65VXDBoZ0zeC2bVrVzRp0gTvv/9+4drFxo0BoMw1QTWzdRb/zvj+++/1fmdYWFhIpWciIyPh6emJgIAA5Ofny9dXavQxJyfHoBtVsu/jBQtwD0C9wEDp+1ihUKBx48aYMGECJkyYgL/++gtbtmzBa6+9hvj4eJ3vt/j3/MmTJxEQEICffvqpcOovCtcx7tq1C/v378eiRYuQkZFRYj9lneZ5+fJlKeAcP368yQNOIiLSjwFhDbZu3TqsXLkSnTp1gpOTEzIyMnD69GmMHTtWGhWoCnWtdNE2ItO9e3ccOnQIjx8/RkZGBpydnWFXLHOmJkNGFCt0yqjmCKGO5wymnjKq73DlEBAqCgrgbGuLKwBqFQWx2qYnlqa8pi0bklxFk6U6EC8okP8Oip2vpx0hNGa0XnzyCRRXrxZOKaxfH/8B0AyAr4UFatWqBaAwcKldu7ZRfVCHSZ/064fn09LQoEEDAKWPFOc+fiz9WzNz7cLt27Hj8GGDpnBrjmBqnovIyEjs2LEDUVFROHr0KC5fvgygcMTRFGVgjP3OGDBggCxw7du3L9zd3dGnTx/5+kqNPhp6o6r497E/gDg/P+n72NPTE8DffxuNGjWCt7c3duzYgYkTJ5aYqurj46N1v+r+aX7Pnz9/HrVr18auXbugUChw48YNdO7cGWFhYWjWrFmp0zxLu9EydepUqFQqLF26FEuWLNEacBIRUflgQFiDrVq1CocPH5YlV8jLy0OPHj2kgLBK17XScwFub28Pe3v7UndhyIVa8Vp95UmhkVRGUWz0wKICCtOXlSybZEEBZnfujGbbtuGeRpvi0xPVKnrasrHJVaQRwqKRT6kYu4kDQmNG6//88080A/A4Kwv29evjLIBvAXz11194y8YGI0aMwDfffFPqjZ3i00rV9gK49scfQFFAKG3fuxfTpk2DpaUlIiMjMbJoe2hUFPYfPw6gWCkTI6dwqxU/FwOKaitqjoJZWVlh7969OveRlpYGNzc3vcfRZOh3xr///W/Z49TUVLRt2xY3b94s0VbdRysrK71BZ+fOnaV/f7pgARo0agRnAGfx99/H5MmTUatWLURrTCEFtJQC0TKd1pDv+eKzJVxdXVGrVi3Mnj0btWrVQoMGDXDjxg28+eabcHd3h52dHVxdXaXgLzIyEm5ubliwYIHOGy2Ojo6YNm0asrKykJqaWuZEQkREZBwGhDWYvb094uPj0bNnTwCFF9nx8fF6735XJaZYs2XI6IDmcSoqyyiEgEWx92dhZMBmSIBXUMp78/f3R1xcXOnHKp5ltGjkxpAJfRU9bdmQ5CqapEA8Px+KggI8AVALkAJCUyWVMWa0Pu32bTQD8PDOHdg/8wysAAQDaNuxI87m5WHQoEG4e/eu7DUrVqyQPS5tWmnuo0clts2cORN79uyBjY0Npk2bhiMAlgJ4pDlCqPE5esfPz6gp3MaeC31rEkePHm3QZ/dpRURESCNu2mj2UVfQqVKpkJycXNhWocCGmzcRDMAOfwfDmjT/NkqUAinjdNriwfvly5cxf/58HD58GKtWrcKzzz6LTp064bfffsNrr72GvLw8LFmyRAr+FAoF7t69i2bNmpV6o8XJyQmdO3fGyy+/bNRoPRERlQ0Dwhps3bp1mDdvHqZNm4b8/HxYW1ujY8eOWL9+vbm7ZhJSrTstI2f379+X1k3qyzaopm90wFSjaIbQTCqjGWQBgGUZC9PrTr7/d7AbBOBJdDTsNM6VEALJyckGHUpojApplp0wZFSzoqctG5JcRZNmSQeL/Hw8QmFAKKu9iKe/QWHUaH1RBtDs9PTCkcuizZZFxcxDQkKQVlQjUO3zzz+Hh4cHgoKCpAyi+qaV5mRlQQghtQUKgwx12YPFixdjzZIlGAzggUbwqDlC+IK7O96NjTV4OqaaMedCc3RNTQiBS5culXqc4rp3744PP/wQzZo1k24YlMa6+FrfMoiJiYFKpYKToyMsAfQp+mwFAaX+bZQoBQLjp9MKITBv3jz0798fCoUCzs7OePz4MfLy8uDp6YmUlBRs2LABtra2aNy4MaytrWFtbS0L/q5duyaro2jINPGnKYVCRESGY0BYg7m5ueHTTz81dzfKT9FFg2ZAuH//fsyYMQMuLi7Susn09HTMnj0bvXv3LtNhKnKEUDMgLCgWcFiUcQ2hvlqA6mA3EcDGsWPRsGNH6TlRFFwYQj1l9ALkI4T6glG1yj5tWR3UioICWBQUQD0WlqcxKgZUbJZRi6Ig7UlmpqzMgxSIW1iUSP6RkpKCjRs3YvPmzQgKCtI6rXQRgCgUTlUMjY6GwyefICcnB4sWLUKPHj3g7e0tG10NA+AB4E2NgFA2Ulr0+dJ1w+XP1avh8OyzqN+9e8npqCMLJ6QOGDAAO3fu1HkuZKNrGvr27avzNUFBQdK/jxaVRfn999+RnJyMuLg4/PLLL/D19cUHH3ygcx9qe/bsKbWNNprTdYcMGQIAeJiejloAbIXADRQm+XlUbKQ2OzsbL730Evbt24e6deti7dq1JUYDS5tOu3DhQkyaNAlnz57F22+/jczMTFy9ehUvvPACmjZtirt37+Lx48eYM2cOvvzyS0ydOhUPHz6UatjWr18ff/31l7S/WbNmoUWLFnjrrbdkx9F3owUwfrSeiIjKSFCVlpmZKQCIzMzMp99Zbq4Qt28b1LRv375Pf7xy9tOQIUIA4oKdnbTN19dXZGVlydplZmYKX1/fMh/nVEyMEIWTOcXFo0fLvB9DHG/QQAhAnHZ2FvFDh0rHFYA40qSJUfuKHz5cCEDcUSh0tknduFEIQHwOiF+2by/x/KZNmww61qERI8RjQJxxdxfx9eqJhR07is6A6AKIjRs3Su1eeeUVo95DZZCuUAgBiIOBgeJko0Yitejx76tXCyGEKCpGIY6/916F9emEu7sQgDj/f/8nch8+lD4jZw34u83Pzxdr335bDKhbV3Tq1En2XM+i/fgDYuuMGUIIIW7duqX776eofXLRuRBCiLRTp6Tth959V39n1J9vIYSPj49IT08XDx8+FO+9954YN26cyM/PFz169BDffPON8Pb2FiEhIWLNmjWiZcuWomPHjuL7778XW7duFffv3y+x64MHD+o8bLNmzcQff/whrly5Irp16yauXLkiunbtKrp16ya1eemll/T3Xe3UKSGSknQ+3bdvX/H555/LfpYvXy7atm0rPv/8c1nbAf36CQGITwHhB4ipgHglIEB89NFHQggh1q5dK3x8fERkZKSYNm2aGDdunPD19RXr1q3T28WFCxcKIYT45ZdfRNeuXYWTk5N48cUXRceOHUVqaqrw9fUVv//+u+z3XNr3Zm5ubmlnRqLv90dENZdJr3FJL44Q0t/GjQNWrZKVL9C8U64mjJgqaFZapiVaWFjgzp07cHR0lLbduXNHlljHEJpr5zSniVbUCCG0TBk1doRQPWKl752rRwgjAFwtyk6pacSIEYYdLDsbOQCEhQUUBQVYfekSDhc99eGJEzhy5AiWLl1aYrSjKtDMMqrIy0O2pSWQlydNGVWf3wITTycWxaZralKPiuc9fiwfkSvWB22JVSwsLBD81VcIyctDWrG/84cAzgFQAWhc9HlwdXUt9e9Hsw6lZn+MGTUtMR11zRoMHjwY9+/fx8yZM7F161bUrVsX3t7eSE1NhZ2dHfr06VMiW2lqaipat24NPz8/nceKjo6Go6MjXFxc4OXlheTkZLz88ssQQkClUiEpKUn2HaJXhw4AgKDXXsODBw/w888/o0+fPrC2tpa+S//66y+DputmpqcDALYAiEfRZ2vbNrzcpw8++OADgxKFabNz505ERUUhOjoaa9aswejRo7Fw4UIMGDAArVq1kvanud/Svjf1rd8sbtGiRThy5AhUKlWJ39+gQYMM3g8REZUNA0L62/bthf8VQlqDlJiYiAMHDsj+xy+MmCpoVloCwi+++AJRUVFIS0uTLqgbNmyIL774QusuDAmINS9qy3sNoYWeNYRGTxk1YNqm5vt5qveWk4NcACgKCC0A1AGQD/nF/YMHDwzana7sl6bw7bffYu7cuWjbti369u2LmJgYODk5Yfr06VovTtUrxERBASzy85GjDgiLTRnVl/XWEIsWLUJUVJQ0jQ+AbLqmJnVAmP/4sWzNXvHENroSqxTk5cEaKDGttA2ABQBaA8i4V5gjVqVSlboOV1aHUKM/iX/+ieguXQyaBqo5HXXo0KHYunUrkpOTsX//ftSvXx+TJk2Cr68vevfuLSU/0QxKhBDYvn07li5dqjfJCwBZEp3PPvsMy5YtQ1JSEq5du4bDhw+jW7duWLNmjd59FJeYmIgBAwbg3I8/YtiwYVKAGRoaikOHDpU6XRcAmjZogB8AeAPYAaAXgJmRkVLt2LImCnv48CHOnTsHlUqFVq1aoU2bNvjvf/8Le3t7pKen44svvkBERAR+/fVXdO3atdTvTWPZ29vDwcEBDg4OOn9/JHfv3j0sWLAAM2bMgIODg7m7Q0RVHL9t6W/q0a2cHMDWFoD8TrmmcePGVXTvjKYtqYynpye2bdtm8D4MCYiFxqhgeY8QWmi8J4VmKQeUPamMpcb5Kc5UNRYVOTnIUSgKRwiFQAtHR1zJzESzoufDwsLg4eGBsWPHyl6XffUqln38MRxeeEHaJspYVN1Qxo5WSF+iRQFhrpUVkJ2NPBMnlSk+itOqVSvcvn0bQ4YMwZEjR2RtNQPCgrw8qNOqPDp9Gg5FSVaEnsQq0qc9NxfQSIqyWqPNkaLPm6OjI77//nu9fb+tkdFU83O0+tQpHL548e+spHpGipctWyb9OysrCwBw+vRpPHjwABMnTpQCY/WIYE5ODurVqye9ZveKFeg+bhw+bNNGb1+Ls7GxQVRUFKKioox6XXHR0dGotWcPlgP4KSMDHh4eAAq/SxUKBYKDgzFy5EjExsZqzQILAFPHjMGeHTuQjMLSHwUAMr74Au6Ojvj666/xxx9/YOTIkahbty6USiWsra1Rv3593L9/Xyr9oC3obtOmDRYsWIDWrVsjPT0dq1evhkqlwv379+Hs7AxnZ2ccOnQIvr6+GD58OIYOHVoikY2a5uwJQ5J3+fv7w9vbW0p8o05qlpOTY/gobA20a9cuzJ8/H15eXnpHf4mIDMGAkCSPVSrYA8Djx1JAqOuC2+CpgmakKLrw1BfwlMaQgFgzg2a5ZxnVfC8mCght9DTRTFyjrTC9obXcFLm5yFEoAEtLKAoKMKFFCzQrSjoh8vOhsLREz549paQUajeffx6rMzPhERBgcPbLp2XUaIUQf3+J5ufDoqAAeUUBVMGTJ7Lp108bEBYfxQF0T9eUBYS5uVABSAZwtk0bvFhUDxDQnVhFnYIkX6XCnZwcrb9jYcT03pkbNiDgww8ByJPtWABap4E+ePAA+Tk5OsuStGjRAj/88AM6deqEHTt2YM6cOThy5IgsgLCxsZFljHXZvRvOAOb36mVwv00pIiIC8UU3oxw0ahJqfpdaWFjozAILAIrHjxEFYDwK/267ADgD4HRuLl57/32tU2V9fX1x4MABvUH36tWrSxyreKDfpUsXrFmzBlu2bMHw4cNx4cIFNG7cGAqFAr///jucnJzg6uqKpKQkaZppy5YtpeRdx44dQ9u2bdFAo3aleraFtlFqGxsb7Nu3D3369Ck1CK2J1L+/nGL/HyAiKgsGhCSR1vk8fgwUXaRVZdIauacICA0JiAt0rI8qD5pTRosXPjf6fRYFhLZA4fRRLYGFZukEbe9NNuWwY0egcWPgu+9KHisnB3lFI4QWQsjWsom8PCh01ERzzsxECoANI0diy7ZteqfTmYqu0QrN0SYAQHY2BCDL4GmZn4/corV1+U+eQOTk/F24/ilvFhQfxXF2dtY5XVP9OSl48gQFT54gBoXr/or3Ydq0aXqP+eT+fYyOiNB6wZ6vJSDs3Lkz8OQJYGkpjSwKAKnXr0tt8jRe92ydOvKspBojxY/u3oWu8SHNaZzbt2+Hs7Nz6dM4i87Jw5wcXL16FU2bNtX73rVRqVRPNWqVX/Q3Vnz0uDhtWWABILdoZFR9E8cegAOAegqF1psXuadOwfLYMdS+dg1W7dqVaXq2mkKhQOPGjTFhwgRMmDABTZs2xYABA7B48WKcPHkSDx48wCuvvIJOnTpJr9EMKD08PPDgwQOsXbtW2lba8oPiQai1tTWGDx+OYcOG1fjgUH1zzJjyIUREujAgJIl6YlieSgWrhg3N2heTMCBpipqhI13aFJQSNJmSehTQQsuUUaPXEGomw3n8GJZaksaog93OAJ5Mngy7efOk50pMOTx1qvBHC0VuLnItLArXEAoBC81SHTk5sCgakS5xfBQGXEN69cLro0bpnU5nKtpKsRQfbUJuLmBnh4KYmL9HsQoKYJeXh+yi9VoF2dnIe/To7zWGT/nZMGQUR1J0c6DgyRPkPnyIIertxfqgmVhFW72+3EGDcPnGDemiU/NvSXOEUP33o1KpkJyaCis3N+T9+Sesin6vHTX+tjSDoUhv7xL1/NQjxWlJSToDQs1pnIYGaQVFF9Drv/gCr37xBYSeGyhr167FggULYG1tjaCgILz//vsAgMGDB0vrD43+zigokJJC5ZQSEOqiDgjVvFG4DlcoFFpvXpxdvhzeAHYuWoTBRcGyrunZpWnZsiXi4uJgYWGBunXrYtKkSQgODsahQ4fQunVrAIXTPwcOHIjly5cjt9gNqzfeeAM//vijNFVWTd/yg+JB6F9//YUtW7bgtddeQ3x8vFH9r27UI4NVMREXEVU+xqVWpGpNfeH6qChZhFp2djZOnz6Nffv24fTp01VnikpRMGPIyNnTjDZpThnVNq3SlNTvxbKgAIpix7J6ioAwu9iFppo62FUB2DhrFk6cOCH9JCYmykYD9FHk5iLPwgLC0rJw/WNuLrIBnAawV8/nSh1sPb5/X5pOt337dnynbRSyIt2/X/hfjfWoioIC2Obno8DJCUBhQJijMQpToXUI1QFhdjZyHz6UtqsznSYlJaFr166yUSKVSoWjR48W/n4BnADww6JF8PLygqWlJfYXr1unMfVT/fcTExMDFQCkpSFX40J1lEawKRtZ1HNOstXnuMjatWvx/+3dd3wVVf74/9fcnh4SQg9VUEJTQYoiYENZRbGjrmL7rgqKrm752VZEBVwe6gcVcUVXEZWyC4oF6UV6XUIVgVBCSUJIu7m5fc7vj3vveNOA0KLk/Xw8eJDMnTtzZubM5LzPOXNOp06duPTSSxkTVTFxyy23VLuN6G6XevicDCY0MM7xTJgwgY0bN7Jx40ZiY2O54447KCsrKxdE1vSZocLddwH0qGvidDqr/U7FzwIVfv8/QvdIXlS6oisvylwu3gPq2cp3DK+qe/bx9j958mQ2b97Mo48+ytKlS/n000+ZNm0ac+bMMVrUAb744gvuvvtu3n//fbKzs+nVqxc9e/akV69eZGZmVlmpcbzXDyoGj02bNuXpp5+u88EghLqQAzVu6T2T9uzZg6Zp7Nixo9bSIIQ4M6SFUBgitQPuggISwz9PnjyZCRMmcNlllxnvgmzcuJEnnnjiN/8ieyRgiq71qKoV5HiDa1QnunUgustoxff6zjRr5L2/YLBSQFjTLqOmqO/7nE5iq2gVjhzbKMBZRcHjRF0OI7RAgIDJhGYyYdJ15ubm8lfgMiBm2TJcixZVma8iDyhPeLh9qL473bnkPniQGMDn9RKZTl253TiCQbRwd+uKwVjFKR/OJkt4X9Fp0MEIwP71+us8tGYNe3bsoEs4qB81ahROp5N69eoZ2/EVFXHH9dczcsUKNnzyCdHTsJcsXUpi9+7l7p9bo4Izf1kZ+wmNSNo5Lc1YHj366vGCZF9RUbnfI0Ga1Wrl3Xff5Y477uDzzz+v1NK3a9UqmnXqREx8fLkuzZFA9PZI+nw+rLaq36A1mUxYw11ev/jiC0pKSmjUqBGBQIDuFY75ZCXEx1PPZiMNuGTDBq4JL7/lllt48MEHT9giCaF3OqvyvNfLqqo+CJ9fdYIWyYotojNnzgR+naJjx44dXHjhhZSUlPDaa6+FNx2azmL58uWVttelS5dyE9OfqlPdxrfffkuXLl0qBZTnk0hAeLwKhbNtQ7hHyHfffUf79u1rLR3i5Ozdu5eHHnqI6dOn1/ku16IyCQhFJe6omvlTndfqtyDSpTI6UHI6nWzZsqXSACHVDa5RneiCZnQLIdEBwFlgCxf0HYGAMWgOgBcw1zTgiApkq20hDB/brcD2Koaub926NbquY6pmPjyDz0fQbAazGZNSzDp2jP8RCtZLn32W+GbNqsxXkVZrb4Xg4Gzzer1s27bNGCGxY8eOxtD+AFnr1tEByMnOplV4mam4mGRdx9SgAcWAVlp6xlsIT5SuCGskEAh3WwXw8Os7hIN27eIGYP2KFRAOCG+99dZy2/gZoKCAbppGb8C6dSv/JjQ4jQVY0qUL/X76CYi6f6Kuk9/lYiiwCCCqVTC6i3WgwtQpEU6ns1JAGB2kDR8+nDZt2tC7d28KCwvp2LEjMTExofeq1q2jxGIh4eKLywdtFSo0nEePktK0aZX7v/HGG413G51OJ1u3bmXnzp0899xzzJkzp/wxH09UpUss8KzPx5+BJ4LBcgHtyQa7/2/KFKMbbeT9VQX8XEXvgMObN3NluAU7eIL7p+L+f/75Zw4ePMgtAwaw+MMPue7ZZ3nhhRcYNWpUaN8nOZ3FyTpTFXURt9xyCy1btmTv3r2nm7TfHF3XCQQCtR4Qjho1yuheHzyHlV3i1P3www8sXbqUefPm/ebLb+Lck4BQVOKNao051XmtfgtM4WAmeriSqlpBoPqWrpMqqEQVak1n+X0Ou67jAmJ0HUtUIFoKaDX8o6xFpdtfTbej6JYFvcKxla1dS/sePXhp9Gj+Pnw4xwsJNZ8P3WJB2e3E6zp2s5mlwFWEWrGqy1eRgLD06FE2btx4wkDoTDiZVnFPpOUiXOD3Abb9+zEB9TIyyJsxA+uxYwSiKggqtuiejXRFRFqSlcdjBIRufg0IIxUL7uMUJocC7xQW4j96FABTIGAMTlMPQoPHhEXuH8/hw0SuYMDtNq6fKeo8RJ+T+Xv38lynTlW2jL19003l0hMdpEXORUZGBqtWreLw4cNcdNFF/OmRR3hw3bpQy9i6deWCNq1CZY3r0KFqA8IXXnjB+DnyzOjQoYMRDEYf8/H4S0qMc9AW+HP451saNsT82GMMGDCAgoICEhMTywW7GRkZxmfRyrxeIyDPtdtpGL6He1YYEMrpdHLwhx+ItKPrVVT45GRl0fCyy9BmzaoUbB87dowbbriBotWroXNnJh85wpgxY8jJyaFnz55YrVa6devGJ598Uu69wlO5L51O5xmrqAPwhPPlvn37avzd34MHH3yQVatWcc01oTbmk+kyWlhYiN/vP6OtQi+++Gt/gcA57A4vKlNKkZ2dfcKBsiKvZXirqYgTdZsEhAIITaodKdD7iouN5ZMnT2bMmDG89NJLBINBoyAQGcDgtyzSJdIaVctesRUkInpwjWgnVVBxOvETDl7OckDoUIpCs5n6wSCWqIf6MZPJCAJOlsnrJUgoYK4uIIxu8fRHD+SiFLE9elAK/GnuXDx33WV0naxKJCD0xcTQRNd5NTmZGW43LwG+QYNwJCdXm68mA2+98QZ9b775nHRbPplWcV942oDI4Dj5Fgttwvkt45pr2PHPf2LNzcUfVaA3n2brcU1a64284PUSCFfwOE2mX+eeDLcoBXNzq92fFfAXFREMB4RaWRm3ApEj0nw+o0th5P4p2r+fyDArfpeLueGfzVHdRP3h9ORaLPxw6BCZRUVVtowFooMYv79ckPavf/2Ljz/+mIzwnIJfv/02vSdO5KZx43gw6hiigzZTVBoAyqKmfjieW2+9NVTp8+67MGxYaARVqn9mlNtHfj5J4Z9vBPZBaO7NsjKuu+46mjRpwnPPPUefPn3KjbZ67bXX0rhx40pzHz7Srh3ODRuoBxTFxjLX62UsUKLrjBkzplxA/UbXrsb3VBUB4b2DB7OooIDs4cO58Y47yu3/1Vdf5a677uK5jh0BKCoqqjTY0uTJk7nnnns4ePAgQ4YMqXRfVhx05/PPP+fNN9/EbrdXCv6PV1F3sq3iEbnHydOny+12ExMTetJt3bqV/Px8+vXrd9b2V5XJkycD0LNnTyDUXXPLli106tSp2u80aNCA1q1bs3Pnzhrvz+fznTDIL4yqRD4ZHo+Hhx9+mNdee402bdrUOE3nO7/fb1TQnIwZM2Zw5513snnz5uPmg0gF09HwM12IaBIQCgCKDh0i8qc4OiBs1KhRpYJAUVGRMbz5b5klHJzFEx5FM6aKkKW0FF5/HV55Bar4/GRaFLXSUnI0jXSlyrWEnGkqGCROKbLtdpqVlRET1ULjjImhQQ1HLrR4vRQAaZRvtYkWLCqijFB3N1/0H5GogYce2rkT16FDRkCoBwKYKgTQZp8Pn92OPy6ORKVI9/l4HOgIHHn9dRofZ2CQfwEfP/ww3V5+2Vh2Nrstn0yreCBc6EwOB+VlyclckJ+PMplI6NqV4sREWuTl4c7LA0ItuJxmt9eatNbbItOTOJ14wtet1Gr99T3GSF6pomAQmf9vLrCquBgVvtZx4efCO9dey80LF2Lyehk6dGi5d9yc2dlGQFgWte3olvNA+DwUOhyYAoFqW8aiA0JfURG2qPcQY2JiuO+++/jf//4HwFW7d7Ph55+xhWvIfyb07mJ00GapEBB6qpjnrzr6hAmY/vxnaNeOop49ycnJMUbWPB5PYaEREL4QtVzzePj5558rtTpGq+qzKxMTjee0s149JhQWshHYZzbzY3jwm0hA7T98GAiNEFyyfTuJUb0dlFLs3LYNgEOHD5cLtoFf0xb+fegTT1Aa3cobCLB9+3Y6duxY5XuFuq4zbNgw2rZtawR/EyZMIC0tjSVLllQK/it1Vw5XNBw4cIDnn3++Ru+wVzV/Y0UlJSXEx8cblStff/019evX58orr6z2Oxs3bqRr166sWbOG7t27GwVvpRRPPPEEgUCAiRMnnnDfb731Fi6Xi3/84x8nXPd4Dhw4AIQK+Z07dza6FxcVFREXF1cuoAgEAvzyyy813sf8+fPp378/WVlZtGrVqtr1jlUYiO5Etm3bxpQpUwgGg0ybNq3a9SZMmABwwhFxd+3aRfv27dmzZ8/v/r3R6dOnc/fdd1NQUFCp3AGwdu1aFi5cyPPPP28s2xa+l3/++efjBoSRyhIJCEVVZJRRAUBh1ChhFYc2j+Z0Orm4Xj1GjRhxDlJ1ehweD8fC77YV79lT9UqffAJvvgk//FDlx7feemuVD+XogqbZ6eRoOADSz+KIb8VZWViA4vCQ8ilRBdw9LVrQMBis0cAljtJSjoYLDdV2GS0uptBkwgMEoloIA7t3Gz97LBbKwoVPgOIqWl4cbjeBxERMKSkkKkWsy8XR8GicJZGuXZMmQfTUDuECTgywNvwHL7T47HZbnjx5MrNmzeKKK66gZ8+e9OnTh++//75c66UKn4ukcBrTb7gBAO3iiyE+nmOtWtEiPx9vuNB20GzGHFXRcqbS9emnn/Lhhx9WWtcRmSaisBB/+HoUx8VhCwewjvD1NlVRkHNFXedOX37JBZs2AVA/nN/++MQTWBMSMPl8lWqxS6MGAXFHzT0YjDr2QH4+TsAVE8MVVmu5rn3XXnstH3zwAU2bNiUYlSfLKkwzMnnyZAoKCn49F5Mn8z3wSnhAn6pmD7VU6CblrUFL0ubwCKv52dn8X0YGO9q3RylFZmam8S5XVTzVTI9i9niqneMUgJISAvXqoa9ZU355dFDbqBEmQi25Dl1n+PDhPP744wwYMID8/HxUTg4lhHoPvJ+aytqrr2bt9OnGCMEXRQLsKuYfHTp0aLn3F03BYLlRaPv27YvX62X48OEopejevTvdu3enY8eObNmyhaFDh2IymcqN0gq/zp1XMa1V7R9+bRUfN24cr732Gu+99x5Lly6tMs9HRG+vqmsTCARISkpi5MiRxrLbbruNPn36lFuv4ntxGzduBGDlypWV1vvwww/5+OOPq01TtL/85S+88sorp9RtL/qaVDVKrNvtpl69esa7nhW/46lhpeHixYuBX489ouLchzUNCCPBbMWpSSB0Pg+Gnx1Dhw497n2ya9cuDh06xOzZswkGg7Rs2ZJVq6ocXumsq+pYTsXX4fd+t2zZUuXnDz/8MC+88ALFUc/UyHXNzs6u8jtz5sxhypQpZyQgXL58+XHvv5P12WefkZmZedrbEWeOBIS/AR988AGtWrXC4XDQtWtXli1bVuNt7ExNZXtsLOttNpZoGvM0jZ8SE1mWlsbXDgczEhL4IjaWz+LiWNmzJyt692Zu9+4sv+EGFv/hDyy//nogNKdV0uzZLPzrX9nw7rtkfvop22bMYPfChWQtWcJ3f/sb+4Cmb75J4CxPsXA6AoEAKaWl7A8HHcVRAUw5kQJs+A/UCa1dC7fdZnQNVUqRlJNDSYMGlAKlWVmnmfKqKaWY/cYbAJjD71Y1UorvevZkWP/+2Pv0wQYEajAIQ73SUg6EJzXXqzl+y5EjHIuJoUTT0KO6BR1escL42efxlAsIS6ICAQj9gU/yeKB+fRqHu/i19ngoaNcOgLL9+0PB34MPwp13Gt+LBNeTgSVbtx43QDuTIq3iK1asYPXq1Sxbtox33nmnXPc3U1RX0GNWK/bnn4dOnSBcyGx0zz3YlcISnobhaEoKttOsLKiYrnnz5pH35ZeMefbZcuspt5v4cCHQVlxMWWYmh0wmXC1a0CDcOhcXDiwsVbRalkQVKuLdblqFWzmbhgvIiS1bErBYMPn9zJ0799cvKoUnKsgqCwfxRy0WY1CTkpISctasIT8mBp/DweNmc6V5CCMtYyoqbRUDwkaNGrF//37jXExs1ox3gObhtFfV2cpeYQRgfw0KsUfDrSvTX36ZEUeOcCuQm53NHy6+mEcHD672e+5qRsmMKy09bpeww7NmYSkqYsdf/1r+g+hKhaQkulitZALxShEMBssF1Ja8PA46HDyZlET9Y8fgzTcpCbe07LrkEsaG73lrFc9xq9VKadT5+fTll43eEoDR9fC///0vXq8XTdOw2+0MGDCAnTt30qVLFxo3bsyaNWuM4C8nJ4fDUc+J6LRWtX/4tVU8QinF4sWLKSgooCgqfyilWLVqFUqpcoXdqv6WRlrKIi1TVb3/9sUXX5CQkFCutTFScVHxvc4jURVgkcCooKCAiy66iBkzZpQLnqKDhtGjR1fa74lEd83MC9+XEUopdof/zo0ZM4axY8fywAMPlAsc9u/fX2mbJSUllYLciMg5rvi9igFF5LiVUsyZM+eEg8xEtlfVgDgjRowgPT293D6qC57btWtHy5Yty52X4cOHH3ff1Vm4cKHR4+BkBINB4zhLS0ux2Ww0bdq0XB4/FZH8UlVAqJQyWgP37NnDmjVr+Pe//20E2Aeq+DteUFDAgAEDuPfee41Au6qAcPny5ayI+rtecb8Rffv25Yknnjit6U5ycnJ46KGHeOSRR055G+IsUKJWTZ06VVmtVjVx4kS1fft29fTTT6u4uDi1f//+k/p+cXGxAtSciy9WSzMy1Lz0dPXf2Fg1DdSPdrtaYLer+aCWgloNaiOoraB+AbUP1GFQx0AdBLXgssvUf/r0Ud5Q8fyE/wKgnOHv52qa2g9qF6hfLBa1xWJRG61WtQzUEotFLY2LU9+AWpiSola2bq0WNm+uFrRpo2Y2a6bmdOigll5+uVp0xRVqQe/e6sfevdXMyy5TC2+4QX1/9dVq0aBB6rsbblArhwxRMwYMUKsff1yte/pptWr4cLVk2DA1adAgtfS559Tsxx5TswYPVh/37KkmhtO44IEHlA/U/Pr11dwnn1TbJk5Ue6ZNU4e//14d+v57ld+2rVKgci+7TBVt3aqObtmi9q9bp4p271bFe/cq58GDas+mTar08GFVkJmpjqanKwVq1X33qU8feUT9X/36SoFa+NBDakVSktofE6M2vPOOKty6VanCQqV8PqV0vcb5Qtd15S4rU/9bsUI9fv316s9t26pMUNkJCUoPBNSehg2V22RSRatWKaWU2rhkiSoFtbVDB7X7xx9V0Outcrv5+fnq66++UiPatFEK1E9/+Yvaq2lqY/Pm6uCOHSoYDCqfz6dWrlypXh48WOVpmlrQubNa73CorQ0aqKDbrXRdV+vvuksVgVrYooXabLOpdUOHGvni548+Ukop5fV61by5c9WzF18cWj5ypArm5akyq1W5NE3tXLBA7dA0ldmsmcpZvPjXvBU+X0fXrDGWLe3Tp9xxlJWVVXl83333nfrmm29qfL5P5KOPPlJz585VgUBArVq5Um1wOIy05d56a5Xf2dShg1Kg1nfvrn649FJVCKpg69YzlqZV48YpBWp+XFy55ftmz1YK1AFNU0dAHQK1un17Nf/RR5UC9csXX6iDZrNSoNa0aaOUUmrGjBlq5MiRSimlNowfX+09Xwoq6PerxU2bqh2Jiapo+XK1v3NnVfKPf6iAxaJW9e1rrPsJKDeolenpKjMmRu3Zs0fd0Lev2m0yqcKbb1YLr7pKlYDy5ucbaQ+uWaPct92mlMulll1xhbGtrP/+t+qTMH68UuvXq8wGDZQC5Yt+Pnk85VY9YjKVO5af7r33pM/1xrS0SufixxdfVArUN8f5M7rhb3+r8jxuTUo67v7W33tvKI0ZGeWWL0tNVVuTk9W6Ll1U6b59yufzqRVPPqkUqOIKfzPWNWqkVqWmqjXt2hn7XdeiRei8RKVlR0xMlWnYO3++sc7KF19Uu5csMT7r27evAtTo0aPVzJkzVUFBgdJ1XZWWliqllBo5cqQCVHQRY+vWrer6668/7nFH+P1+5ff71ZEjR9TTTz+tLr/8ctWjRw/Vu3dvdccddyhAPffcc0oPPyvmzp2rAPXVV1+psWPHqoSEBJWYmKhGjRpVadtfffWVAlTz5s3VgAED1Pjx4420ulwupZRSd955pwLUpEmTlM/nU0opdfvttytA3X///crlchnfmTZtmvHz0qVLlVKh51Bk2csvv1zuHACqZcuWqmXLlioYDJ7U+YhYv369sd3IMUR+zsvLU1OmTCn3OWCcG0D9+OOPSimlNm3apHbs2KGUUuqBBx5QgNq8eXOl/UWu87Bhw8otX7t2bbl9tG3bViml1IIFCxSgPvjgg+Mex1NPPaUAlZ6ergKBgFJKqUceeUSNHDlSdenSRQHqjTfeMLa/du1alZOTowoLC9Xnn3+uAoGAcrvdxueRPAGopk2bqsLCwnL7Gzp0qGrcuLHKyMhQbre7Unr8fr8ClN1uN/LUiVx11VWqf//+Siml5syZY+x/8ODBJ/X9aLquq/3796uLLrrI2M6f/vSnSutlZmYan0+fPl2ZzWYFqM6dOytADRo0yFjX7Xarhx9+2DjX0f+6du1aaf8V71ellNq5c6fKyclRjRs3Vo899li59SJ5vSZ2796tdF0vd894qyirZGdnK0/4+Z2Tk6MAVVxcXOP9iZrRlKrh5GXijOrRoweXXnqp0VceoH379gwaNOikahBLSkpISkqiuLiYxMTEE64fTSmFUgpN04yuPAA7t27l4Nq1NE9NpeDQIXSXC09hIRazmbi4ODLuvJNl//wnZdnZpMbFoXs8lBUV4XO50Hw+7IQGrXAXFaF7PGh+P/E2Gx6nkzirFUswiN1kCr0/pBQxmoYpGMSiaWjBIGZCL7dW9//JOBoby+FbbqHLl18ye9Agen77LSnVrJsHnOrYa35N4+d+/eg0fz6LJ0yg9VNP0aKadYOE5oKL/B/5pzQNFT7/FqUwK4WFyq0cJc2akfDDD2idO4dGt/R6IT4eCF3Lf/Xpw/3LlxMXXr9Y0/CZTJg1DXQdTSlMSpFAqGvA/q5dab56NV/ccgv3zJ6NidAIkl4ggVBXzcLYWLSVK1kybhwDP/0UH5CvaTRQio0xMahBg7h8yhTKgP0mE+m6jkfTyLXZsPh8pClFClCUkUHyxo1gt4daZXUd0tOZfMst3Pftt+W6KmQmJ+M1m6lXUkJLv5/dNhv1AwH2tmlD0G7H63aTm5VFQvPmpDZqhGY24/F40IENGzeigG5du4amIVCKgM+H1WLBbDKFJmZXipwjR7BaLCQnJxMMBDCbTGiEJm7Xg0H0QMD42e/3k3/oEFagnqbRRSnqA1kvvEDriy+Gm26q8v1TdB327IE2bdg6dy71//AHUoG9NhulsbF44uJwWa0ok4nY+HiUUthjYigrK8MfDBIfH4+u69jsdjSzGV3X0Qm1yDoCAZpv3UqjcA312owMKC3Fd+wYF7pcaJrGoZEjaT9iBN769YlZsYIih4MjLVvSKdwikhe+xlvatmXTrl1YgJT4eDqWltJE09jRsyc9wt2vdjRoQPu8PDb37UvnJUuYc++93DBlCqWE3tGNts/hoKnHgxVY26ED3j59uHLCBLYCDQlNkm5Zs4Zf8vJocv315FutZLdvTzA5mQvWraOZ2836+vVpkp/PnthYupeVsTM9naJ+/YitXx9d07AohSknh4unTAndG5pGYoU/ZdubNyevf3/8Hg9FW7ZwZ2YmK+PiaO1yYQX2xcdj/dvfSGjYEC0mBmUyEfD7iY+NpczlwlVaitlkwu90kv7CC6RW2H6e2UyD8Pnf9emnmOPjCXq9+MvKKMnPJ2/3bupNncoFHg8bHn2UtDVr6JGZyY6EBJo4nfz8/PO4k5OJTUtj34EDdOjQAV3X8bhcBJ59ll5FRey32djx3HNsWbcO/eefGXbwILtuvJFLvv/eSMfP06Zx0eDBzO3cmZKLLyZ77VrqXXABA374gV1duhBo0oSrZs8G4KCmsbZfP24LdwUkfM/nTpuGCndFLy4uxuT1Yn36aTpVaElY99FHaM2b0+/223G5XPTt25dx48aRnZ3N+PHjWbJkCdOnT6esrIzB4ZbTo0ePkpiYyIEDBwgGg9hsNux2Ox6Ph4kTJ/LHP/6RDh064PP5MJvNuFwuHn74YRYtWsSGDRtwOBwsXryYfv364XK5eOmll5g+fToACQkJTJw40egxEBmJ1mq1kpKSwoEDB0hJSeHxxx8nISGBuLg4vvrqq2p7F7z33nukpaXxyiuvGK2g8fHxjBgxgtdff52ioiJatWrFY489ZgyK07BhQ6Mr3vDhw7n66qv54osv+G+4+7vNZmPZsmX4/X4++eQTJk2axKxZsxg4cCATJkzg6quvZsmSJXzwwQe0bNmSsWPHYg7f7z6fD6fTyZEjR1i8eDETJ07EYrHQqFEj8vPzOXDgAFu2bOHyyy/n7rvvZuXKlZW6DbZp04Y94Vcmmjdvzr333ss///lPdF1n9uzZ3HPPPRQXF9OuXTueeeYZWrVqRWxsLJmZmUZrW8uWLRkzZgz5+fm8++67NGnShBUrVjBz5kxWrFjB22+/zUcffcS7777Lxo0b6d69O++99x7JycmkpqbidrvJyspi//79JCYm8tJLL7F161YABg4cyKBBg4zWIpvNZoyGaTaby7U2tm7dmqysLF566SVSU1P585//bHx29913c9NNN/HUU08Z12LgwIEUFhbSv39/Y72xY8dy4403UlRUxKOPPkqXLl3YuXOn0S329ddfp2XLllx11VXG4C5ut5tx48YZoyEXFhYyYMAAAObOncsHH3zArFmzAEhPT2fu3Ll8+OGHbNy4kSeffJL27duj6zpr1qzhP//5D/369cPpdDJv3jxjrs3U1NRy3YBbt27NJ598Yuw/NjaW1157jXXr1qHrOlartVIrcfPmzfn3v/+NpmlMmzaNjz76CIBLL72UrKwsioqKuOKKK1ixYgXjx4+nVatW+P1+XnnlFTaFXw2YMmUKzZo1Y+rUqYwfP77c9l988UXeCPdUeu6557j11ltp2rQpfr8fs9lMXl4e48aNo3PnzgwZMgSn04nb7WbFihVkZmYyceJEHnjgAQ4fPsyCBQuM++vZZ5+lW7duNG/enF9++YW77rqL9u3bM3bsWN566y0WL158SmVcUTMSENYin89HbGws//nPf8q9VP/000+zadOmcl1lqnM6AeFvWSRblpSUEBcXR1m4i2YwECDg82HSdayahtVk4lhuLg6rlcTERGzJyaHCeYX3YnxuNyW7d5O/cycepxOP203A5yOmSRNSL72U7K+/hsJCDh04gNVsRuk6fo+HZk2asGHtWlq3bo2WnEyrK6+k1VVXcXjuXNI7dMBx0UUQF2fspyA3l70//sih1asxeTzY/H6CPh8qEKC4sBCfx0OD+vXRlCL38GFQioTYWCwmExazGU8wiCcQ4FhJCZ0uuYSUJk1I796d5K5d0Vq1ghPM91eQlcWOzz/n0KpVxHm9mH0+XD4fFqsVe0wMDRo3Jq5ZM9refjumyy4DTUMpxeqvvqLo22+xlpSQaLNhT0uj5ZVXknT77UbQuebTTymYNg2toAAVF0fj556jfd++LLzrLmxeL82ff57CrVsp+fRTYgFHvXqkdexIsz/8AVP//lBFFzmlFKs++YTSWbOwd++Oe/586u3eDZqGlpSE86abSL3kEvKfe456Tif2QICAUng0jWRdB11HKYVJ00LvU1ksBINBdF1HAbpSoWpITUNXyjjeQPhzs8WCyWyOVI2CyYRmMoUqSCI/m0xY4+Iw22yYHA5Ujx60uPdezNdeW6M8vXvNGva++SZs346jtJRYtxuz00nQ7yfGbg9V0Og6elQXNi38z6RpaIA5nK+dSuGMi8P0979jf+cdrC4XfpsNS7160LYtzUaMoOEVV4QqDSwWY2TM0txcNvzjH+h2Oy3vvptf7rqL+kVFJJnNKIuFMp8PV1oaqS+/zIUPPwxKceCbb2g6YADm0lJITQVNw+f1MvOmm0j75RdMaWk4cnJwNmxIYlkZTd9/n8RAAM/WrTQYNgzNbmfnq69iXrWKJh06EPvooxDuOpz52Wc4R4wg9fBhkoJBPGYzeZpGI10ny2Yj7auv2P3hh3SdM4eqBlQvBlyAy2Zj88030+j77ykeMoSDc+Zwc9SIpy5gS8uWdN6wAY9SrHrySfpMnWrM6Xcix4D1gwZhP3CAQMOGJKxezWWFhcxp2pSrogZUqvQ9s5mfn3qKK955BxUIkPfdd/gaNCDYrx8tTzBU//qUFC4pKDCmzQloGrmdO9N44UJM4eANQOk6Ky69lB6ZmeUqkfLsdtTcuZhSUvjl2mtRjRsb6+xIS+NovXrE9OlD+48/rhTUQ6hiaNptt9FszRqujur6GgQ62u1c96c/8d5771WbfpPJVOldszMlISEBp9NJTEwM7nD358gygPHjx6OU4sknn6zy+1deeSXLly+na9euNG3aFIfDwYYNG4wulxAqREeCBJPJRFJSEi+++CLPP/88fr+fjIwMHnroISZMmMAjjzzCihUrmB0OvAGGDBlCy5YtGTlyZLkud8888wxvv/02V1xxRY3fd7vtttt46aWX6NSpEx6Ph/hwRdI999zD999/j9Vq5a233uLDDz8kJiYGk8nEkiVLjAF4qgqEk5OTef/993n88ccrdQNs2LAho0ePZujQoeXeP2zVqhV//etfeeKJJ8jKyuKqq64yuit27NiRXbt2HfcdSYfDwWeffcacOXOYNGkSSinS09Nxu9243W769evHDz/8YEx1Mm7cuEpzcgJ07dqVlJQU3G43n3/+Oa1atWLv3r384x//KHesDRs2ZODAgSxYsKDa6Uj+8Ic/cOzYMdZUfG+3Gna7HZvNZuS5sWPH0rVrV6655poq01pRQkICDoeDQCBgdHl9+OGHcTgcDB48mJtvvrlct2gIdaGeMmUKpaWlvPHGGySH35nOzs5m1KhRPPHEE+Xemx04cCCHDh0y1t29ezc9e/akS5cuRpkKQkHZY489xpdffml0k3Y4HCQmJnLRRRfx2muvMWTIEPbt28cFF1xAp06djHcdT4XdbmfSpEm8+eabJ+ymGynfnm9l3N8iCQhr0eHDh2natCkrVqzg8ssvN5aPGjWKSZMmVTlEtNfrLfegLSkpIT09XW4WIWog0jL+e/F7S++Z5vf7KS4sxHX0KGVlZSQkJ2Ox26nfJDTTXsVpYQB8Xi9mrxezwwFVDJufe+QIxbt2UZqfj/J48LpcWGw2fH4/CYmJWGw2FOBISKBRt27ER42sHPD7Kc7LI7VpU7LWr6dw+3asuo5mtYLVim6x0L5r19Cop1VcNz0YJGfjRmwlJRQePEhaWlqoZUfTSE5OJqVLF+IuvBDP4cO49+8ntn597M2aVd0SHaa8XoK5uVhSU0OjJ6elVaoY8+bkEMjLI65jR+Ozgqws9s+di1ZSgsVqxWQ2E9A0WgwYQFLbtvh8PgJuNyV793Js1iw6jBiBnpiIyW4PVb6EixAmkwmTyYTP50PTNCzhyplAIABKYTKbjTwcKXaYzWYCgYDRWwUwvqt0HZ/fj8ViMYLLyD7MZnPongB8fj+apmG1WtF1HU3TMGlaqEIoGMRkMhEIBo1lkf1S4Z5SShEIBkM9ZgBTuJXOXOEc6uG0msK9CozvE3qvTAuvY7FY0ICgruP3+7GYzZijzwHl3ym0Wq34fT70cAVXdL6JHLfpOM8ABZXmgo1UdEV/Lxg+j0rX0ZUK9Y6IVJgRfoctck3NZkzhzwKBAGazudL5MI49EEDx670Yua7B8DVQ4XOi6zpWi8U4D5HKu+jpdLQKxxO5bpE8EGk1NJvN1c5/q+s6gfB6VqvVuC6BQCA0zVYkz0Rdy+jjCIbzAoTypNlkCp3PcCWH2WIBpYzzGTkvQV0nGAxiNpmMPBTZVvQ9YrVajetS1XXSlQqN0xD+nlIKS1T+qXj+tfA2gpEBxY6TX5RS+AOBcmmKnB89XMkayb/R6dF1PXTvhK9vIBAw8qoWrmy1Wq3G+5WR3mdWqzV0L4bPR+QejaQ98pyIrG8xm0OVt7pOqaaRfOyYlHHPAQkIa1EkIFy5ciW9evUylr/xxhtMnjy5ylHERowYwauvvlppudwsQgghzrp//xtqMGWHEEKcqhKPh6TXXpMy7jkg8xDWovr162M2myvNm5SXl0fDhg2r/M7zzz/Ps1GjCkZaCIUQvw17CvbQLLEZdou9tpMixJn38MO1nQIhRF1RUgLheU7F2SXTTtQim81G165dmR+e4ypi/vz55bqQRrPb7SQmJpb7J4T47bjgvQv47pfvajsZQgghhBAnRVoIa9mzzz7L/fffT7du3ejVqxcfffQRBw4c4PHHH6/tpAkhhBBCCCHOcxIQ1rK7776bY8eOMXLkSI4cOULHjh2ZPXs2LVpUN3mBEOK3Tl7NFkIIIcTvhQSEvwFDhw5l6NChtZ0MIcQZopCAUAghhBC/D/IOoRB12JjlY5ixfUZtJ+O8E91CGNSD5Jfl12JqhBBCCCGqJwGhEL8zf5v/t0rLksckn9K2JmVOYkX2itNMkahoV8Eu4+eFexeSNjatFlMjhBBCCFE9CQiF4UDxAXp90uvEK4pK1h1ax6acTedkX2NXjq30jlqxt/iUtuUJeHBYHGciWXWWUop5e+aVW/by4peNnz0Bz7lO0m9GkaeI4T8Or7T8QPEBpmyZUgspOn9kFWbxeebntZ0MIYQQ5wEJCIVhT8EeVh9cXdvJOKeUUtw7497T3s4zc5/h/1b/3+kn6CT5dT8AX+/4+rS2czoBYcVAJ7s4u051jRyxZARuv5t9Rfu4/ovrAfjfkf9VWq/QXXiuk/absTN/J++tfa/S8u9/+Z4HvnmgFlJ0/liQtYAh3wyp7WQIIYQ4D0hAKAzR3dzOF7dPv50dR3dU+/nOYzuZsnVKjQKZgB6otCy3NJf6sfVPKY2nwh8MBYS3Tb/NKBRuP7q9xts5mYCwxFvCEeeRSsvv+s9dbDyy0fj9w/Uf8tGGj6rdTq9PetHhgw4AbMndwpOzn+Tf//t3jdP8W6CUYsL6Cewu2M3UrVON5dHHc9R1FIBlB5YRY4k5p+nLL8un4wcdjd9zSnNqvA1f0HdK+560aRLb8rYB1bdcl3hLSLSf2TlUv/n5mzO6vWjegJe/z//7KY0eO3PHTMatHnfG02Q1WWu0flAPnvE0CCGEOD/IKKPniWNlxyihBLNmJqiClPnLcPlcxNviKXAX4Av6iLfFo1AopbBb7AT0ALrSqeeohzfoZdmBZVzS6BKmb5tOakwqF6RcQJm/DIfFgdPnJMYSQ4I9gUbxjThWdgyX34WGBoQKeLrSSXYk4w16jf3qSkcpRbIjmfyyfGxmG3aLHQ0NTdOM/4s8RSTaE/EFfehKp8RbQuP4xhR7i3FYHJT5y7CYLCilsJqtaGhYTBasZisBPYCGRlpcGvG2eOOclHhLmLljJkE9yN+v+DvNk5rj9DkJ6kGcPicOi4NJmyZxXevrGLd6HLdcdAsBPUCMJYagCuLyuWgY3xBPwINZM+ML+tiRv4NHv32UvU/vpWF8QwA2525mT+Ee3lr1Fr2b9yYjLcMIBqKDLb/uxxPw0CCuAQE9QJ4rDwCb2YbNbMOkmfAFfXgDXhwWB80Sm5ESk0KsNRazyQyEuqYCzNszj2taXwNgdBvr8EEH5v5xLo3jG6NQRgEwcm7rxdQjPTEdqzlUkJz18yyKPEX8fcHfaVOvDV2bdMVispBoTzQK67mluTR6qxEA0++YzsWNLsYX9JHnymNr3lYWZi0kzhqHX/ezPHs5Js3EHRl3kOxIJsGWQIw1FAgtP7DcaH32B/18sfkLxq8bD0CiPZFuTbrx4qIXaZ3cmocueQib2UaJt4S3V73N5M2TWfTAIpIcSQT0AEopOjTowN7CvQT0AH7dj1kzo2kaTRKa4A/6OeQ8hD/oR1c6FpMFXen4gj6sZitKKUp9pQCkxKSQ5Egy1rVb7NjN9nL/R65NtN0FuwnqQXYe28kLi14AQgHUtqPbjHVGLx/NqGtGsWTfEtwBNy8teol7O91rbCstNo08Vx5l/jJirbEEVRC3302Zv4wYawylvlJMmomgHsSkmbCYLDgsDkyaiVJfKb6gj7apbXH5XDh9TpLsSTRLbIbZZCb9nXQ8AQ8HSw6SGpNK47caA/DuDe9ywwU3UOwtJiMtg8ycTGKtsbRIbkG8LR6n10lAD5CZm0n/yf15/erXuTz9cq5sfiWaprEqexXPzH2G53s/T7GnmA4NOrAldwsN4hqwaO8iXr3qVR6c9SCjrxlN+7T2HCs7BsCuY7tom9q23PPKYXHw3c7vyEjLwBPwYDPb2Fu0l0mZk3jxyhcp8hSxdN9SkhxJtE1pS6I9kaAKhq550E9AD/Dy4pe5v/P9xNviGT5nOB8P/JgL61/IrmO7cFgcdG7YGbPJjFkz4w64aRDXgJzSHCwmC5k5mbRIboGGhq503AE3DouDUl8pDosDpRSJ9kR0pbNk3xI+WP8B/dv0p01KG6wmK7sKdpFoTyTeFk+prxS72Y6mhZ6H8bZ40hPTKfIU8fpPr1PoKWR4j+EEVZCgHmR3wW4UigRbAkmOJBLtiWQVZqErHQ0NX9DH3xf8nZf7vEzHBh2xmW3GfQuhSqlCT6jleeORjWhoNIhrQLwtniRHEgDFnmLWHV7HzB0zGXrZUDpP6MwP9/5A7+a92ZK3BaUUt067lR/v+5FYayx2i516jnoE9AABPcCB4gMs3reYL7d8yeeDPqdxQmN0pRNviz/jwbwQQojapSmZMOt3raSkhKSkJO7+4m5SklPIKc0h15VLTmkOfVr0IaAHCOpBfEEfJd4SfEEfXRt3JaAHKPOXkWBPwO13k1WURbuUdvyp65+Ys3sOO4/txGa2GQUpi8mCSTNR5Cli3eF1NEloQruUdlhMoToFu8WOJ+DhaNlRUhwplPpDhVm3341CkeJI4ZeCX2iX0o5Ee6IRmEb+T7AnGIVRs8lsfOYNhIJLv+4n1hrLkdIjNI5vjIaGXw8VCnNKc0iJSaHYW4zb78av+znsPExQDxoF9Ls63EWiLZGUmBRMmgmr2UpQD1I/tj63Z9zOjO0zcPqcFLoLKfYWE2eNw+V3kexIZlPOJi5IuQCHxUHj+MZcWP9Cvtj8BU6fk1JfKY3iG3FH+zv449d/ZMw1Y9hfvJ/UmFRsZhu60o1rVewtDgUdZjtWs5ViTzGpsamYNTN+3Y/NbDOC9JzSHKOQOm3rNHo3702ThCYs2ruIXFcuAD2a9uClPi/h8rkYPGMwX972JVvzthrnMdmRjNVsJcGWQJ4rj2JvMXmuPArcBbgDbponNWfmjpm80PsFYq2xZOZmGmnddnQbAT1ARlqG0fLy5rVvsu3oNpLsScTb4rm/8/0M+HIAnRp2ok29NtzV4S7yy/JZkLUAl89Fdkk2FpOFOFscOaU5OL1OMnMzuaTRJbRLbcfcPXMZdtkwAnqAvUV7ebDLg+wp3MOuY7vwBDwk2hNpltiMqdumcmPbG3H5XGiaRqmvlIV7F9KneR+SHclYTBY8AQ+aprFo7yJKfaXcmXGnUfEQqdSwW+xGq9cR5xHibHFYTVZcfpdRmPcGvHiD3l//D/9c5i/DG/RiN9uJscbg8rkY2G4gI5aO4I+d/si8rHm8P+B9Xl36KqsOrsKkmejfpj/LDyxn0qBJdEjrwPe/fE9WYRYAutJx+V2kxqTi9DlJiUlBV7pRKeL0Okl2JKNpGg6LA4vJgi/oI6AHcPlcJNoTMWkmXlj0Are1v4329dvjCXg4UHwAb9DL4A6D6dywM8NmD8MdcJOZk4k36OXjgR+zInsFBe4C9hXto01KG9qltGPRvkVGhU6SPYldBbs46jrKXy//K5m5mazMXsnugt3EWmNx+V1YTBYeuvghkuxJtE1ty6GSQzRLbMaCvQvo0rALP+3/iXWH15FgS+DOjDs5XHqYAncBabFp/LHzH3lj2Rv8tP8nBl00iOaJzbGZbfiCPhonNObC1AuZs3sOFpOFY+5jJDuSuTD1QmO/FpMFq8mKxWShc8POZOZm4vQ6ubvj3fy460embptKu5R2dG7YORS4h4Owo2VH+frnr0myJxFni+OBzg8Yzy+TZkLTNPxBP0mOJLwBL06fE13pmDUz8bZ4HrrkIXp90guLyUJOaQ7/3xX/Hx+s/4CmCU25qd1NlPnLcPvdmDQTx9zHjPQO7TaUldkr0TSNd1a/w+Xpl4eC8KQWlHhLjPuyQ1oHbGYbSik0TaNH0x78uPtHnD4newv3Ui+mHlaTlR93/wjAU92fokFcA15e/DL1Y+szsN1APAEP6w+v54KUC7CarfzvyP/ILsnmvk73cVO7m5i1cxbegJeODTqSW5qLpmnklObQLrUdnoCHQk8hvqAPu9lOSkwKQT1IoaeQBFsCft2PX/ezt3AvPz3001n8qyaEECGRMm5xcTGJiVIRdVYp8btWXFysAFVcXHzO9jl391xV7Dl3+ztVuq4rRqBeWfzKWd/XigMrFCPO3u3kC/jU9rztatORTYoRqHdXv2t8dqDogGIEasPhDSe9PY/fo5RS6svNX55w3T/P+XO1x3bTVzepg8UHj/v9grIC5Qv4lFJK2V+zq7dXvm1cm/9s+89Jp/lk/LTvJ7Vs/7Izuk2llNqcs1kdKjlUbllQD6oZ22coj9+j1hxco+6cfqe6bdptihEo60ir8vg9asfRHWc8LdGW7V+mXD5XtZ/7Aj6V48xRT81+qtw1PFRySDEC47qsPLBSfbzh4yq3EdSDqt9n/VSRu0iNXjZaMQKV/nb6KaV3w+EN6tJ/XWrk2d3Hdp/Sdk5Fma9M3T/zfvXJxk9U30/7ntI2fAGfCupB4/6ZuGGi2lOw54TfKygrUA3GNlDL9i9TjED5g/5T2r9SSv13239VxvgMdcmHl6i80jyVVZClgnrwlLdXU0/Nfkrpun7O9ieEqLtqo4xbV0kL4e+c1J78Nuw4uoOMDzJQr5zd20lXOoOmDmLMtWPISMswlr+96m0e6/oYcba4M77PtYfW0uPjHlUemwq3ZpysLh924f0B73NliyvRXtXY/PhmOjXsdCaTWyuUUlz56ZU81f0pBs8YjMPiwP2iu7aTZfAGvMSOiiX4j1/fI6vptQMYv3Y849eNZ/MTm43WtVOlvarhe8lXrivkuXIqx366Il2DS32l5bq2n4p/rf8Xw2YPw/uS1+hOLoQQ5xsp4547EhD+zsnN8tuglOKQM9Rt7nwT6cLaJKHJaW8ruiCuvarhfN552oXj3xrtVS30Pt7zztpOyhnnD/oJquAZmapk3p559G/T/wykqu75bud33Dz15rNeASWEELVJyrjnjgwqI8QZoGnaeRkMQuj9qjMRDALlWmV+efKX8y4YjDBr52erjdVsxcqZadGTYPDUna/PGiGEELVDpp0QQtSK6FEnzzepsam1nQRxHmub2pZuTbrVdjKEEEKcJyQgFEKIM2zDnzbUdhLEeSzeFs+6/7eutpMhhBDiPCEBoRBCnGHJjuTaToIQQgghxEmRgFAIIYQQQggh6igJCIUQ4gzaPnR7bSdBCCGEEOKkSUAohBBnUPu09rWdBCGEEEKIkyYBoRBCCCGEEELUURIQCiGEEEIIIUQdJQGhEEIIIYQQQtRREhAKIYQQQgghRB0lAaEQQgghhBBC1FESEAohhBBCCCFEHSUBoRBCCCGEEELUURIQCiGEEEIIIUQdJQGhEEIIIYQQQtRREhAKIYQQQgghRB0lAaEQQgghhBBC1FGW2k6AOD1KKQBKSkpqOSVCCCGEEEKcGZGybaSsK84eCQh/55xOJwDp6em1nBIhhBBCCCHOLKfTSVJSUm0n47ymKQm7f9d0Xefw4cMkJCSgado52WdJSQnp6elkZ2eTmJh4TvYpzn+Sr8TZIPlKnGmSp8TZIPmqMqUUTqeTJk2aYDLJW25nk7QQ/s6ZTCaaNWtWK/tOTEyUh5Y44yRfibNB8pU40yRPibNB8lV50jJ4bki4LYQQQgghhBB1lASEQgghhBBCCFFHSUAoasxut/PKK69gt9trOyniPCL5SpwNkq/EmSZ5SpwNkq9EbZJBZYQQQgghhBCijpIWQiGEEEIIIYSooyQgFEIIIYQQQog6SgJCIYQQQgghhKijJCAUQgghhBBCiDpKAkJRrZ9++omBAwfSpEkTNE3jm2++Kfe5UooRI0bQpEkTYmJi6NevH9u2baudxIrfhdGjR3PZZZeRkJBAgwYNGDRoEDt37iy3juQrUVMTJkygc+fOxoTOvXr14scffzQ+lzwlTtfo0aPRNI1nnnnGWCb5StTUiBEj0DSt3L9GjRoZn0ueErVFAkJRLZfLRZcuXXj//fer/Pyf//wnb7/9Nu+//z7r1q2jUaNGXHfddTidznOcUvF7sXTpUoYNG8bq1auZP38+gUCA/v3743K5jHUkX4maatasGWPGjGH9+vWsX7+eq6++mltuucUoSEmeEqdj3bp1fPTRR3Tu3LnccslX4lR06NCBI0eOGP+2bNlifCZ5StQaJcRJANTXX39t/K7rumrUqJEaM2aMsczj8aikpCT14Ycf1kIKxe9RXl6eAtTSpUuVUpKvxJlTr1499fHHH0ueEqfF6XSqtm3bqvnz56u+ffuqp59+Wiklzypxal555RXVpUuXKj+TPCVqk7QQilOyd+9ecnJy6N+/v7HMbrfTt29fVq5cWYspE78nxcXFAKSkpACSr8TpCwaDTJ06FZfLRa9evSRPidMybNgwbrzxRq699tpyyyVfiVO1a9cumjRpQqtWrRg8eDBZWVmA5ClRuyy1nQDx+5STkwNAw4YNyy1v2LAh+/fvr40kid8ZpRTPPvssvXv3pmPHjoDkK3HqtmzZQq9evfB4PMTHx/P111+TkZFhFKQkT4mamjp1Khs3bmTdunWVPpNnlTgVPXr04PPPP6ddu3bk5uby+uuvc/nll7Nt2zbJU6JWSUAoToumaeV+V0pVWiZEVZ588kk2b97M8uXLK30m+UrU1IUXXsimTZsoKipixowZDBkyhKVLlxqfS54SNZGdnc3TTz/NvHnzcDgc1a4n+UrUxIABA4yfO3XqRK9evWjTpg2TJk2iZ8+egOQpUTuky6g4JZFRsSI1WhF5eXmVareEqOipp57i22+/ZfHixTRr1sxYLvlKnCqbzcYFF1xAt27dGD16NF26dGHcuHGSp8Qp2bBhA3l5eXTt2hWLxYLFYmHp0qW8++67WCwWI+9IvhKnIy4ujk6dOrFr1y55VolaJQGhOCWtWrWiUaNGzJ8/31jm8/lYunQpl19+eS2mTPyWKaV48sknmTlzJosWLaJVq1blPpd8Jc4UpRRer1fylDgl11xzDVu2bGHTpk3Gv27dunHfffexadMmWrduLflKnDav18uOHTto3LixPKtErZIuo6JapaWl7N692/h97969bNq0iZSUFJo3b84zzzzDqFGjaNu2LW3btmXUqFHExsZy77331mKqxW/ZsGHD+Oqrr5g1axYJCQlGTWhSUhIxMTHGPF+Sr0RNvPDCCwwYMID09HScTidTp05lyZIlzJkzR/KUOCUJCQnGu80RcXFxpKamGsslX4ma+stf/sLAgQNp3rw5eXl5vP7665SUlDBkyBB5VolaJQGhqNb69eu56qqrjN+fffZZAIYMGcJnn33G3/72N9xuN0OHDqWwsJAePXowb948EhISaivJ4jduwoQJAPTr16/c8k8//ZQHH3wQQPKVqLHc3Fzuv/9+jhw5QlJSEp07d2bOnDlcd911gOQpcXZIvhI1dfDgQe655x7y8/NJS0ujZ8+erF69mhYtWgCSp0Tt0ZRSqrYTIYQQQgghhBDi3JN3CIUQQgghhBCijpKAUAghhBBCCCHqKAkIhRBCCCGEEKKOkoBQCCGEEEIIIeooCQiFEEIIIYQQoo6SgFAIIYQQQggh6igJCIUQQgghhBCijpKAUAghhBBCCCHqKAkIhRBCCCGEEKKOkoBQCCGEEEIIIeooCQiFEEIIIYQQoo6SgFAIIYQQQggh6igJCIUQQgghhBCijpKAUAghhBBCCCHqKAkIhRBCCCGEEKKOkoBQCCGEEEIIIeooCQiFEEIIIYQQoo6SgFAIIYQQQggh6igJCIUQQgghhBCijpKAUAghhBBCCCHqKAkIhRBCCCGEEKKOkoBQCCGEEEIIIeqo/x8UdQGBoy8sRQAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# restore the best solution (first in list)\n", "c.XMLInput(vsol[0]['xml'])\n", "\n", "# sort solutions as a function of the log-likelihood\n", "vsol = sorted(vsol, key=lambda sol: sol['llk'])\n", "\n", "if widgets is not None:\n", " v = []\n", " for i in range(len(vsol)):\n", " sol = vsol[i]\n", " v.append(\"#%2d %12s : %d mol LLK=%12.2f\"%(i, sol['spg'], sol['nb_mol'], sol['llk']))\n", " w = widgets.Dropdown(options=v, description='Solutions:', disabled=False,)\n", " def show_solution(solution):\n", " i = v.index(solution)\n", " # Crystal display is automatically updated when loaded\n", " c.XMLInput(vsol[i]['xml'])\n", " # Update powder pattern display manually\n", " p.FitScaleFactorForIntegratedRw()\n", " p.UpdateDisplay()\n", " widgets.interact(show_solution, solution=v)\n", "else:\n", " # print solutions\n", " for i in range(len(vsol)):\n", " sol = vsol[i]\n", " print(\"#%2d %12s : %d mol LLK=%12.2f\"%(i, sol['spg'], sol['nb_mol'], sol['llk']))\n", "\n", "# displays - requires ipywidgets for crystal 3D display\n", "display(c.widget_3d())\n", "p.plot(fig=None,diff=True,hkl=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Try some other solutions\n", "If ipywidgets is not shown in the previous cell, load solutions manually" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "XML: Loading Crystal:\n", "XML: Loading Crystal:(spg:P 1 21/c 1)\n", "Input ScatteringPowerAtom:C(C)\n", "Input ScatteringPowerAtom:N(N)\n", "Input ScatteringPowerAtom:S(S)\n" ] } ], "source": [ "# Crystal display is automatically updated when loaded\n", "c.XMLInput(vsol[2]['xml'])\n", "# Update powder pattern display manually\n", "p.UpdateDisplay()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save the selected result to CIF and Fox (.xmlgz) formats\n", "All the solutions (or just the best ones) could be saved automatically that way by looping over the results" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Save result so it can be opened by Fox\n", "xml_cryst_file_save_global('result.xmlgz')\n", "# Also export to the CIF format\n", "c.CIFOutput(\"result.cif\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00b5443bf8f44a05b031982d370c43fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "fullMol opac", "layout": "IPY_MODEL_4c15e7db02eb4a66bd13831ecaa4567d", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_63c400754e654442bc150a3bf95c0518", "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", "value": 0.5 } }, "0447ac470bb345b599d6f258ae1b48de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "04e61f021c074f559434b63b34d75522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Yrange", "layout": "IPY_MODEL_443a6abb5c054a36b5862439e3d0def3", "max": 1.5, "min": -0.5, "step": 0.02631578947368421, "style": "IPY_MODEL_ff8827d44d654c298db2de63a4940c5f", "value": [ -5.551115123125783e-17, 0.9999999999999998 ] } }, "057ee3da241449c68e0976a26ae40c2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "135874284cbf450e9ab0830d972a356a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_options_labels": [ "# 0 P 1 21/c 1 : 1 mol LLK= 18500.13", "# 1 P 1 21/c 1 : 1 mol LLK= 18596.19", "# 2 P 1 21/c 1 : 1 mol LLK= 49206.74", "# 3 P 1 21/c 1 : 1 mol LLK= 49213.79", "# 4 P 1 21/c 1 : 1 mol LLK= 56249.86", "# 5 P 1 21 1 : 2 mol LLK= 62145.94", "# 6 P 1 21 1 : 2 mol LLK= 69958.12", "# 7 P 1 21 1 : 2 mol LLK= 82685.43", "# 8 P 1 c 1 : 2 mol LLK= 86015.56", "# 9 P 1 c 1 : 2 mol LLK= 87454.66", "#10 P 1 21 1 : 2 mol LLK= 87547.20", "#11 P 1 c 1 : 2 mol LLK= 91092.14", "#12 P 1 c 1 : 2 mol LLK= 100616.81", "#13 P 1 21 1 : 2 mol LLK= 101361.24", "#14 P -1 : 2 mol LLK= 101645.03", "#15 P 1 c 1 : 2 mol LLK= 109668.98", "#16 P -1 : 2 mol LLK= 115241.95", "#17 P -1 : 2 mol LLK= 123163.25", "#18 P -1 : 2 mol LLK= 127211.68", "#19 P -1 : 2 mol LLK= 155139.61", "#20 P 1 2 1 : 2 mol LLK= 188882.56", "#21 P 1 2 1 : 2 mol LLK= 211306.76", "#22 P 1 m 1 : 2 mol LLK= 215645.85", "#23 P 1 2 1 : 2 mol LLK= 217691.94", "#24 P 1 2 1 : 2 mol LLK= 232080.59", "#25 P 1 2 1 : 2 mol LLK= 239530.07", "#26 P 1 21/m 1 : 1 mol LLK= 242776.10", "#27 P 1 21/m 1 : 1 mol LLK= 259924.47", "#28 P 1 21/m 1 : 1 mol LLK= 260046.12", "#29 P 1 m 1 : 2 mol LLK= 260089.71", "#30 P 1 m 1 : 2 mol LLK= 261603.69", "#31 P 1 2/c 1 : 1 mol LLK= 262462.19", "#32 P 1 21/m 1 : 1 mol LLK= 267669.81", "#33 P 1 m 1 : 2 mol LLK= 274219.33", "#34 P 1 21/m 1 : 1 mol LLK= 275339.56", "#35 P 1 2/c 1 : 1 mol LLK= 306248.10", "#36 P 1 m 1 : 2 mol LLK= 343660.20", "#37 P 1 2/c 1 : 1 mol LLK= 372234.25", "#38 P 1 2/c 1 : 1 mol LLK= 461123.68", "#39 P 1 2/c 1 : 1 mol LLK= 670519.05" ], "description": "Solutions:", "index": 0, "layout": "IPY_MODEL_8dd929d319574430988c9a3c5b38dbaa", "style": "IPY_MODEL_6686e236ced74289ba9f38771df23bde" } }, "15ebdb6b1ce94d499186cee7343cf828": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_2ccba0fa274643bea4615033c6bdddf7", "outputs": [ { "data": { "application/3dmoljs_load.v0": "", "text/html": "" }, "metadata": {}, "output_type": "display_data" } ] } }, "1b240d7dab9e4b5385cb091ec20f2ab9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_cb6eada368fd458faec9a1849e8654a2", "outputs": [ { "name": "stdout", "output_type": "stream", "text": "XML: Loading Crystal:\nXML: Loading Crystal:(spg:P 1 21/c 1)\nInput ScatteringPowerAtom:C(C)\nInput ScatteringPowerAtom:N(N)\nInput ScatteringPowerAtom:S(S)\n" } ] } }, "1e59b464625a48d595ec1f60f5b69222": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra dist", "layout": "IPY_MODEL_3aa42e4d60ec4e2ea45541dccf675ff4", "max": 10, "readout_format": ".1f", "step": 0.5, "style": "IPY_MODEL_3b721c73a0b44186aafb0f3f4e1709d3", "tooltip": "Extra distance (A) with semi-transparent display", "value": 2 } }, "28089224bf4a426c9e36d0497c89e66c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "2ccba0fa274643bea4615033c6bdddf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "2ef668dcdd7e4885968d2100cd2105ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_7fd1607d62214374ba19a30315055b9a", "IPY_MODEL_04e61f021c074f559434b63b34d75522", "IPY_MODEL_8e6094d6f13f444f808fb64d99f75738" ], "layout": "IPY_MODEL_ffe42167326340e8bbd49511adf9ac1f" } }, "31b4b5e9d32e4653ba578d4caae14831": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "35652a678f864aedb06c8d16a1374191": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3aa42e4d60ec4e2ea45541dccf675ff4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3b721c73a0b44186aafb0f3f4e1709d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "3c1116b547234f2b97e22db310a953c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, "430ff3580cf946aea74a7c7d82a31cb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "443a6abb5c054a36b5862439e3d0def3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4c15e7db02eb4a66bd13831ecaa4567d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4da865c6de3348f1b9e574778800d005": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_1e59b464625a48d595ec1f60f5b69222", "IPY_MODEL_8ab052e209784f5e9e9655d92f39b2b9", "IPY_MODEL_00b5443bf8f44a05b031982d370c43fd" ], "layout": "IPY_MODEL_feabaa8d66914513a3ef4538b18a03cd" } }, "558e8d323a3e4263bb3f1754319dee94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "63b312a80e604e2ea00d166acd3bc97a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_fedaff6bdc6c4459b41e654d04c13d91" ], "layout": "IPY_MODEL_9a73b1a1f18443a3ab2be158d16b01db" } }, "63c400754e654442bc150a3bf95c0518": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "6686e236ced74289ba9f38771df23bde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": { "description_width": "" } }, "6875cd83f2a64d9bb4c859f97afb563b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "745d2005f8264321843115d31627eb66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "7d0e4c75c10245b5b743cf7238af0177": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_2ef668dcdd7e4885968d2100cd2105ad", "IPY_MODEL_4da865c6de3348f1b9e574778800d005" ], "layout": "IPY_MODEL_35652a678f864aedb06c8d16a1374191" } }, "7fd1607d62214374ba19a30315055b9a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Xrange", "layout": "IPY_MODEL_c09b14582f4048efb50a75392d700ba1", "max": 1.5, "min": -0.5, "step": 0.07142857142857142, "style": "IPY_MODEL_0447ac470bb345b599d6f258ae1b48de", "value": [ 0, 1 ] } }, "80b4c4a7d1b4400b8c56129aa2a6d244": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "_dom_classes": [ "widget-interact" ], "children": [ "IPY_MODEL_bd033c36be3d4db3803d2c759d8d4e6f", "IPY_MODEL_1b240d7dab9e4b5385cb091ec20f2ab9" ], "layout": "IPY_MODEL_430ff3580cf946aea74a7c7d82a31cb2" } }, "810ebc4df77a43a9b5b2c1e4e71c2d7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "8ab052e209784f5e9e9655d92f39b2b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra opac.", "layout": "IPY_MODEL_ffdec305128247aba21dc5789a9aff1d", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_810ebc4df77a43a9b5b2c1e4e71c2d7f", "tooltip": "Opacity for extra distance display", "value": 0.5 } }, "8dd929d319574430988c9a3c5b38dbaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8e6094d6f13f444f808fb64d99f75738": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Zrange", "layout": "IPY_MODEL_6875cd83f2a64d9bb4c859f97afb563b", "max": 1.5, "min": -0.5, "step": 0.047619047619047616, "style": "IPY_MODEL_28089224bf4a426c9e36d0497c89e66c", "value": [ 0.023809523809523836, 1.0238095238095237 ] } }, "9a73b1a1f18443a3ab2be158d16b01db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "b77e4f516b1644cf98b2bb54b4d2ffb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "bd033c36be3d4db3803d2c759d8d4e6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "DropdownModel", "state": { "_options_labels": [ "# 0 P 1 21/c 1 : 1 mol LLK= 18500.13", "# 1 P 1 21/c 1 : 1 mol LLK= 18596.19", "# 2 P 1 21/c 1 : 1 mol LLK= 49206.74", "# 3 P 1 21/c 1 : 1 mol LLK= 49213.79", "# 4 P 1 21/c 1 : 1 mol LLK= 56249.86", "# 5 P 1 21 1 : 2 mol LLK= 62145.94", "# 6 P 1 21 1 : 2 mol LLK= 69958.12", "# 7 P 1 21 1 : 2 mol LLK= 82685.43", "# 8 P 1 c 1 : 2 mol LLK= 86015.56", "# 9 P 1 c 1 : 2 mol LLK= 87454.66", "#10 P 1 21 1 : 2 mol LLK= 87547.20", "#11 P 1 c 1 : 2 mol LLK= 91092.14", "#12 P 1 c 1 : 2 mol LLK= 100616.81", "#13 P 1 21 1 : 2 mol LLK= 101361.24", "#14 P -1 : 2 mol LLK= 101645.03", "#15 P 1 c 1 : 2 mol LLK= 109668.98", "#16 P -1 : 2 mol LLK= 115241.95", "#17 P -1 : 2 mol LLK= 123163.25", "#18 P -1 : 2 mol LLK= 127211.68", "#19 P -1 : 2 mol LLK= 155139.61", "#20 P 1 2 1 : 2 mol LLK= 188882.56", "#21 P 1 2 1 : 2 mol LLK= 211306.76", "#22 P 1 m 1 : 2 mol LLK= 215645.85", "#23 P 1 2 1 : 2 mol LLK= 217691.94", "#24 P 1 2 1 : 2 mol LLK= 232080.59", "#25 P 1 2 1 : 2 mol LLK= 239530.07", "#26 P 1 21/m 1 : 1 mol LLK= 242776.10", "#27 P 1 21/m 1 : 1 mol LLK= 259924.47", "#28 P 1 21/m 1 : 1 mol LLK= 260046.12", "#29 P 1 m 1 : 2 mol LLK= 260089.71", "#30 P 1 m 1 : 2 mol LLK= 261603.69", "#31 P 1 2/c 1 : 1 mol LLK= 262462.19", "#32 P 1 21/m 1 : 1 mol LLK= 267669.81", "#33 P 1 m 1 : 2 mol LLK= 274219.33", "#34 P 1 21/m 1 : 1 mol LLK= 275339.56", "#35 P 1 2/c 1 : 1 mol LLK= 306248.10", "#36 P 1 m 1 : 2 mol LLK= 343660.20", "#37 P 1 2/c 1 : 1 mol LLK= 372234.25", "#38 P 1 2/c 1 : 1 mol LLK= 461123.68", "#39 P 1 2/c 1 : 1 mol LLK= 670519.05" ], "description": "solution", "index": 0, "layout": "IPY_MODEL_31b4b5e9d32e4653ba578d4caae14831", "style": "IPY_MODEL_3c1116b547234f2b97e22db310a953c2" } }, "bf0bbda1a483459a8ae709f67037d7e4": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_057ee3da241449c68e0976a26ae40c2a", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "c09b14582f4048efb50a75392d700ba1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "cb6eada368fd458faec9a1849e8654a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "e394c6a5c23c4d56868f65d07be70d28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f172c22d8dde4f0989fab8518c4a1fb2": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_b77e4f516b1644cf98b2bb54b4d2ffb1", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "feabaa8d66914513a3ef4538b18a03cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "fedaff6bdc6c4459b41e654d04c13d91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_7d0e4c75c10245b5b743cf7238af0177", "IPY_MODEL_15ebdb6b1ce94d499186cee7343cf828" ], "layout": "IPY_MODEL_e394c6a5c23c4d56868f65d07be70d28" } }, "ff8827d44d654c298db2de63a4940c5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "ffdec305128247aba21dc5789a9aff1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "ffe42167326340e8bbd49511adf9ac1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 } pyobjcryst-2024.2.1/examples/structure-solution-powder-cimetidine.ipynb000066400000000000000000071550131470422267000263730ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Cimetidine tutorial: indexing, spacegroup determination & structure solution\n", "In this notebook, you can:\n", "* Load the powder diffraction data and create the PowderPattern object\n", "* Find the diffraction peaks and index them (determine the unit cell)\n", "* Perform a profile fit to optimise the background and reflection profiles\n", "* Determine the spacegroup\n", "* Add a molecule to describe the contents of the Crystal structure\n", "* Solve the Crystal structure using a Monte-Carlo/Parallel tempering algorithm\n", "* Save the best result to a CIF file and to Fox .xmlgz format\n", "\n", "Notes:\n", "* This is an *ideal* case for structure solution from powder diffraction - a clean powder diffraction data easily indexed, an unambiguous spacegroup, and a relatively simple structure.\n", "* It is important to follow the steps relatively linearly and avoid going back to previous cells until you know better. For example to avoid adding multiple times Scatterer/Molecule objects in the crystal structure, or multiple crystalline phases to the powder pattern with the same crystal, etc..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# 'widget' allows live update and works in both classical notebooks and jupyter-lab.\n", "# Otherwise 'notebook', 'ipympl', 'inline' can be used\n", "%matplotlib widget\n", "\n", "import os\n", "import pyobjcryst\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pyobjcryst.crystal import *\n", "from pyobjcryst.powderpattern import *\n", "from pyobjcryst.indexing import *\n", "from pyobjcryst.molecule import *\n", "from pyobjcryst.globaloptim import MonteCarlo\n", "from pyobjcryst.io import xml_cryst_file_save_global" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create powder pattern object, download data if necessary" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Imported powder pattern: 7699 points, 2theta= 8.010 -> 84.990, step= 0.010\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bd48c8151b264b11a214f6b3f326fbfc", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfv0lEQVR4nO3deVyU5f7/8feIMCzCiBEiZWqLpmFWWm511FMu/Fwq+2ZmcvRUtFnmQVtsOZm/0haXSk+bp7LSjp1O2aYZapm54JaUW+o3F1BBzHAQkGG7fn945v45LAoIDDCv5+NxPx7MfV9z39d9zQDzns+92IwxRgAAAAAAn9PI2x0AAAAAAHgHgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfFSDCoQrV67U4MGDFR0dLZvNps8//9xjuc1mK3N6+eWXrTa9e/cutXz48OEe68nMzFRcXJwcDoccDofi4uJ07NgxjzYpKSkaPHiwQkJCFBERobFjxyo/P9+jzZYtW9SrVy8FBQXpvPPO0+TJk2WMqdYxAQAAAIDyNPZ2B6pTTk6OOnXqpL/+9a+65ZZbSi1PS0vzePzNN9/orrvuKtU2Pj5ekydPth4HBQV5LB8xYoQOHDigJUuWSJLuuecexcXF6auvvpIkFRUVaeDAgTr33HO1atUqHT16VKNGjZIxRrNmzZIkZWVlqW/fvurTp482bNigXbt2afTo0QoJCdH48ePPfjAAAAAA4AwaVCCMjY1VbGxsucujoqI8Hn/xxRfq06ePLrzwQo/5wcHBpdq67dixQ0uWLFFSUpK6du0qSZozZ466d++unTt3ql27dkpMTNT27duVmpqq6OhoSdL06dM1evRoPf/88woLC9P8+fOVl5enuXPnym63KyYmRrt27dKMGTOUkJAgm81WoX0uLi7WoUOHFBoaWuHnAAAAAHWZMUbHjx9XdHS0GjVqUAc11jkNKhBWxuHDh7Vo0SK9//77pZbNnz9f8+bNU/PmzRUbG6tnnnlGoaGhkqS1a9fK4XBYYVCSunXrJofDoTVr1qhdu3Zau3atYmJirDAoSf3795fL5dKmTZvUp08frV27Vr169ZLdbvdoM3HiRO3bt09t2rQps98ul0sul8t6fPDgQXXo0OGsxwMAAACoa1JTU3X++ed7uxsNms8Gwvfff1+hoaEaOnSox/w77rhDbdq0UVRUlLZu3aqJEyfq559/1tKlSyVJ6enpioyMLLW+yMhIpaenW22aN2/usTw8PFwBAQEebVq3bu3Rxv2c9PT0cgPh1KlT9eyzz5aan5qaqrCwsArsOQAAAFC3ZWVlqWXLllZRBjXHZwPhu+++qzvuuEOBgYEe8+Pj462fY2JidMkll6hLly766aefdNVVV0lSmYdmGmM85leljfuCMqc79HPixIlKSEiwHrt/WcLCwgiEAAAAaFA4Jarm+eQBuT/++KN27typu++++4xtr7rqKvn7+2v37t2STp6HePjw4VLtjhw5YlX4oqKirEqgW2ZmpgoKCk7bJiMjQ5JKVRdPZbfbrfBHCAQAAABwNnwyEL7zzjvq3LmzOnXqdMa227ZtU0FBgVq0aCFJ6t69u5xOp9avX2+1WbdunZxOp3r06GG12bp1q8dVTRMTE2W329W5c2erzcqVKz1uRZGYmKjo6OhSh5ICAAAAQE1oUIEwOztbycnJSk5OliTt3btXycnJSklJsdpkZWXpk08+KbM6+Ntvv2ny5MnauHGj9u3bp8WLF+vWW2/VlVdeqZ49e0qS2rdvrwEDBig+Pl5JSUlKSkpSfHy8Bg0apHbt2kmS+vXrpw4dOiguLk6bN2/W8uXLNWHCBMXHx1sVvREjRshut2v06NHaunWrFi5cqClTplTqCqMAAAAAcDZspgHdCX3FihXq06dPqfmjRo3S3LlzJUlvv/22xo0bp7S0NDkcDo92qampGjlypLZu3ars7Gy1bNlSAwcO1DPPPKNmzZpZ7f744w+NHTtWX375pSRpyJAhmj17tpo2bWq1SUlJ0QMPPKDvvvtOQUFBGjFihKZNm+ZxVdEtW7ZozJgxWr9+vcLDw3Xffffp73//e6UCYVZWlhwOh5xOJ4ePAgAAeFlRUZEKCgq83Y06z9/fX35+fuUu5zNu7WlQgdAX8csCAADgfcYYpaen69ixY97uSr3RtGlTRUVFlVkM4TNu7fHZq4wCAAAA1cUdBiMjIxUcHMwpQKdhjFFubq51QUX3tTrgHQRCAAAA4CwUFRVZYfCcc87xdnfqhaCgIEknr7IfGRl52sNHUbMa1EVlAAAAgNrmPmcwODjYyz2pX9zjxTmX3kUgBAAAAKoBh4lWDuNVNxAIAQAAAMBHEQgBVMrvv/+uRx55RMXFxd7uCgAAqEErVqyQzWbjyqkNHIEQQKU8+eSTmjZtmrZu3ertrgAAAOAsEQgBVAnH/QMAANR/BEIAAADAR7lcLo0dO1aRkZEKDAzUtddeqw0bNni0Wb16tTp16qTAwEB17dpVW7ZssZbt379fgwcPVnh4uEJCQnTZZZdp8eLFtb0bOAsEQgAAAMBHPfroo/r000/1/vvv66efftLFF1+s/v37648//rDaPPLII5o2bZo2bNigyMhIDRkyxLpVxJgxY+RyubRy5Upt2bJFL774opo0aeKt3UEVcGN6AFVijPF2FwAAqNNyc3P166+/1vp2L7300grdEzEnJ0dvvPGG5s6dq9jYWEnSnDlztHTpUr3zzju6+uqrJUnPPPOM+vbtK0l6//33df7552vhwoUaNmyYUlJSdMstt6hjx46SpAsvvLCG9go1hUAIAAAA1IBff/1VnTt3rvXtbtq0SVddddUZ2/32228qKChQz549rXn+/v665pprtGPHDisQdu/e3VrerFkztWvXTjt27JAkjR07Vvfff78SExN1ww036JZbbtHll19ezXuEmkQgBAAAAGrApZdeqk2bNnlluxXhPtqn5IXijDFnvHice/ndd9+t/v37a9GiRUpMTNTUqVM1ffp0PfTQQ1XoObyBQAigUri6KAAAFRMcHFyhSp23XHzxxQoICNCqVas0YsQISVJBQYE2btyocePGWe2SkpJ0wQUXSJIyMzO1a9cuj9DZsmVL3Xfffbrvvvs0ceJEzZkzh0BYjxAIAQAAAB8UEhKi+++/X4888oiaNWumCy64QC+99JJyc3N111136eeff5YkTZ48Weecc46aN2+uJ598UhEREbrpppskSePGjVNsbKzatm2rzMxMfffdd2rfvr0X9wqVRSAEAAAAfNQLL7yg4uJixcXF6fjx4+rSpYu+/fZbhYeHe7R5+OGHtXv3bnXq1ElffvmlAgICJElFRUUaM2aMDhw4oLCwMA0YMEAzZ8701u6gCgiEAKqEq4wCAFD/BQYG6rXXXtNrr71Walnv3r2t//eDBg0q8/mzZs2q0f6h5nEfQgAAAADwUQRCAAAAAPBRBEIAlcJVRgEAABoOAiGASuHcQQAAgIaDQAgAAAAAPopACKBSOGQUAACg4SAQAgAAAICPIhACAAAAgI8iEAKoEi4uAwCAb5s0aZKuuOIKb3cDZ4lACAAAAAA+ikAIAAAAAD6KQAigUrjKKAAADUdxcbFefPFFXXzxxbLb7brgggv0/PPPS5Iee+wxtW3bVsHBwbrwwgv19NNPq6Cg4LTre/fdd3XZZZfJbrerRYsWevDBB2tjN3AWGnu7AwAAAAC8Y+LEiZozZ45mzpypa6+9Vmlpafr1118lSaGhoZo7d66io6O1ZcsWxcfHKzQ0VI8++miZ63rjjTeUkJCgF154QbGxsXI6nVq9enVt7g6qgEAIAAAA+KDjx4/r1Vdf1ezZszVq1ChJ0kUXXaRrr71WkvTUU09ZbVu3bq3x48fr448/LjcQPvfccxo/frwefvhha97VV19dg3uA6tCgDhlduXKlBg8erOjoaNlsNn3++ecey0ePHi2bzeYxdevWzaONy+XSQw89pIiICIWEhGjIkCE6cOCAR5vMzEzFxcXJ4XDI4XAoLi5Ox44d82iTkpKiwYMHKyQkRBERERo7dqzy8/M92mzZskW9evVSUFCQzjvvPE2ePJkrN6Le4L0KAMAZ5OZKP/1U+1NuboW6t2PHDrlcLl1//fVlLv/Pf/6ja6+9VlFRUWrSpImefvpppaSklNk2IyNDhw4dKnddqLsaVIUwJydHnTp10l//+lfdcsstZbYZMGCA3nvvPetxQECAx/Jx48bpq6++0oIFC3TOOedo/PjxGjRokDZt2iQ/Pz9J0ogRI3TgwAEtWbJEknTPPfcoLi5OX331lSSpqKhIAwcO1LnnnqtVq1bp6NGjGjVqlIwxmjVrliQpKytLffv2VZ8+fbRhwwbt2rVLo0ePVkhIiMaPH1/tYwMAAIBa9uuvUufOtb/dTZukq646Y7OgoKBylyUlJWn48OF69tln1b9/fzkcDi1YsEDTp0+v9LpQtzWoQBgbG6vY2NjTtrHb7YqKiipzmdPp1DvvvKMPP/xQN9xwgyRp3rx5atmypZYtW6b+/ftrx44dWrJkiZKSktS1a1dJ0pw5c9S9e3ft3LlT7dq1U2JiorZv367U1FRFR0dLkqZPn67Ro0fr+eefV1hYmObPn6+8vDzNnTtXdrtdMTEx2rVrl2bMmKGEhAQu3AEAAFDfXXrpyXDmje1WwCWXXKKgoCAtX75cd999t8ey1atXq1WrVnryySetefv37y93XaGhoWrdurWWL1+uPn36VK3f8IoGFQgrYsWKFYqMjFTTpk3Vq1cvPf/884qMjJQkbdq0SQUFBerXr5/VPjo6WjExMVqzZo369++vtWvXyuFwWGFQkrp16yaHw6E1a9aoXbt2Wrt2rWJiYqwwKEn9+/eXy+XSpk2b1KdPH61du1a9evWS3W73aDNx4kTt27dPbdq0KbP/LpdLLpfLepyVlVVtYwMAAIBqFBxcoUqdtwQGBuqxxx7To48+qoCAAPXs2VNHjhzRtm3bdPHFFyslJUULFizQ1VdfrUWLFmnhwoWnXd+kSZN03333KTIyUrGxsTp+/LhWr16thx56qJb2CFXRoM4hPJPY2FjNnz9f3333naZPn64NGzboz3/+sxWw0tPTFRAQoPDwcI/nNW/eXOnp6VYbd4A8VWRkpEeb5s2beywPDw9XQEDAadu4H7vblGXq1KnWuYsOh0MtW7aszBAAAAAAlqefflrjx4/X3//+d7Vv31633XabMjIydOONN+pvf/ubHnzwQV1xxRVas2aNnn766dOua9SoUXrllVf0+uuv67LLLtOgQYO0e/fuWtoTVJVPVQhvu+026+eYmBh16dJFrVq10qJFizR06NByn2eM8TiEs6zDOaujjfsiHac7XHTixIlKSEiwHmdlZREKAQAAUCWNGjXSk08+6XFoqNtLL72kl156yWPeuHHjrJ8nTZqkSZMmeSy/9957de+999ZEV1FDfKpCWFKLFi3UqlUr65uLqKgo5efnKzMz06NdRkaGVb2LiorS4cOHS63ryJEjHm1KVvkyMzNVUFBw2jYZGRmSVKpyeCq73a6wsDCPCQAAAACqwqcD4dGjR5WamqoWLVpIkjp37ix/f38tXbrUapOWlqatW7eqR48ekqTu3bvL6XRq/fr1Vpt169bJ6XR6tNm6davS0tKsNomJibLb7er83ytNde/eXStXrvS4FUViYqKio6PVunXrGttnAAAAAHBrUIEwOztbycnJSk5OliTt3btXycnJSklJUXZ2tiZMmKC1a9dq3759WrFihQYPHqyIiAjdfPPNkiSHw6G77rpL48eP1/Lly7V582aNHDlSHTt2tK462r59ew0YMEDx8fFKSkpSUlKS4uPjNWjQILVr106S1K9fP3Xo0EFxcXHavHmzli9frgkTJig+Pt6q6I0YMUJ2u12jR4/W1q1btXDhQk2ZMoUrjKLO4/0JAADQcDSocwg3btzocZlb97l2o0aN0htvvKEtW7bogw8+0LFjx9SiRQv16dNHH3/8sUJDQ63nzJw5U40bN9awYcN04sQJXX/99Zo7d651D0JJmj9/vsaOHWtdjXTIkCGaPXu2tdzPz0+LFi3SAw88oJ49eyooKEgjRozQtGnTrDYOh0NLly7VmDFj1KVLF4WHhyshIcHj/EAAAAAAqEk2476SCeqlrKwsORwOOZ1OzidErRgzZoxef/11/fTTT7ryyiu93R0AALwuLy9Pe/fuVZs2bRQYGOjt7tQbpxs3PuPWngZ1yCiA2sN3SQAAeOJ/Y+UwXnUDgRAAAAA4C/7+/pKk3NxcL/ekfnGPl3v84B0N6hxCAAAAoLb5+fmpadOm1i3EgoODuQjbaRhjlJubq4yMDDVt2tTjWh2ofQRCAJXCPzgAAEqLioqS9P/vK40za9q0qTVu8B4CIQAAAHCWbDabWrRoocjISBUUFHi7O3Wev78/lcE6gkAIAAAAVBM/Pz+CDuoVLioDoEq4MhgAAED9RyAEAAAAAB9FIAQAAAAAH0UgBAAAAAAfRSAEAAAAAB9FIAQAAAAAH0UgBFAp3JgeAACg4SAQAgAAAICPIhACAAAAgI8iEAKoEm5MDwAAUP8RCAEAAADARxEIAQAAAMBHEQgBVApXGQUAAGg4CIQAAAAA4KMIhAAAAADgowiEAAAAAOCjCIQAAAAA4KMIhACqhPsQAgAA1H8EQgAAAADwUQRCAAAAAPBRBEIAAAAA8FEEQgAAAADwUQRCAAAAAPBRBEIAlWKz2bzdBQAAAFSTBhUIV65cqcGDBys6Olo2m02ff/65taygoECPPfaYOnbsqJCQEEVHR+svf/mLDh065LGO3r17y2azeUzDhw/3aJOZmam4uDg5HA45HA7FxcXp2LFjHm1SUlI0ePBghYSEKCIiQmPHjlV+fr5Hmy1btqhXr14KCgrSeeedp8mTJ3Mpf9QbvFcBAADqvwYVCHNyctSpUyfNnj271LLc3Fz99NNPevrpp/XTTz/ps88+065duzRkyJBSbePj45WWlmZNb731lsfyESNGKDk5WUuWLNGSJUuUnJysuLg4a3lRUZEGDhyonJwcrVq1SgsWLNCnn36q8ePHW22ysrLUt29fRUdHa8OGDZo1a5amTZumGTNmVOOIAAAAAED5Gnu7A9UpNjZWsbGxZS5zOBxaunSpx7xZs2bpmmuuUUpKii644AJrfnBwsKKiospcz44dO7RkyRIlJSWpa9eukqQ5c+aoe/fu2rlzp9q1a6fExERt375dqampio6OliRNnz5do0eP1vPPP6+wsDDNnz9feXl5mjt3rux2u2JiYrRr1y7NmDFDCQkJHJaHOo8KIQAAQP3XoCqEleV0OmWz2dS0aVOP+fPnz1dERIQuu+wyTZgwQcePH7eWrV27Vg6HwwqDktStWzc5HA6tWbPGahMTE2OFQUnq37+/XC6XNm3aZLXp1auX7Ha7R5tDhw5p3759NbC3AAAAAOCpQVUIKyMvL0+PP/64RowYobCwMGv+HXfcoTZt2igqKkpbt27VxIkT9fPPP1vVxfT0dEVGRpZaX2RkpNLT0602zZs391geHh6ugIAAjzatW7f2aON+Tnp6utq0aVNmv10ul1wul/U4KyurknsOVA8qhAAAAPWfTwbCgoICDR8+XMXFxXr99dc9lsXHx1s/x8TE6JJLLlGXLl30008/6aqrrpJU9lUWjTEe86vSxv0B+3SHi06dOlXPPvvs6XYPqFEczgwAANBw+NwhowUFBRo2bJj27t2rpUuXelQHy3LVVVfJ399fu3fvliRFRUXp8OHDpdodOXLEqvBFRUVZlUC3zMxMFRQUnLZNRkaGJJWqLp5q4sSJcjqd1pSamnqGPQaql/uLCyqEAAAA9Z9PBUJ3GNy9e7eWLVumc84554zP2bZtmwoKCtSiRQtJUvfu3eV0OrV+/Xqrzbp16+R0OtWjRw+rzdatW5WWlma1SUxMlN1uV+fOna02K1eu9LgVRWJioqKjo0sdSnoqu92usLAwjwkAAAAAqqJBBcLs7GwlJycrOTlZkrR3714lJycrJSVFhYWF+p//+R9t3LhR8+fPV1FRkdLT05Wenm6Fst9++02TJ0/Wxo0btW/fPi1evFi33nqrrrzySvXs2VOS1L59ew0YMEDx8fFKSkpSUlKS4uPjNWjQILVr106S1K9fP3Xo0EFxcXHavHmzli9frgkTJig+Pt4KcCNGjJDdbtfo0aO1detWLVy4UFOmTOEKo6jz3O9PKoQAAAD1X4MKhBs3btSVV16pK6+8UpKUkJCgK6+8Un//+9914MABffnllzpw4ICuuOIKtWjRwprcVwcNCAjQ8uXL1b9/f7Vr105jx45Vv379tGzZMvn5+VnbmT9/vjp27Kh+/fqpX79+uvzyy/Xhhx9ay/38/LRo0SIFBgaqZ8+eGjZsmG666SZNmzbNauO+DcaBAwfUpUsXPfDAA0pISFBCQkItjRYAAAAAX2czfM1fr2VlZcnhcMjpdHL4KGrFuHHj9Oqrr2rVqlVW5RwAAKA68Rm39jSoCiEAAAAAoOIIhACqhIMLAAAA6j8CIQAAAAD4KAIhgErhKqMAAAANB4EQAAAAAHwUgRAAAAAAfBSBEECVcMgoAABA/UcgBAAAAAAfRSAEUCVUCAEAAOo/AiEAAAAA+CgCIYAqoUIIAABQ/xEIAQAAAMBHEQgBVAkVQgAAgPqPQAgAAAAAPopACKBSbDabJCqEAAAADQGBEAAAAAB8FIEQQJVQIQQAAKj/CIQAAAAA4KMIhACqhAohAABA/UcgBAAAAAAfRSAEUCnuq4wCAACg/iMQAqgSDhkFAACo/wiEAAAAAOCjCIQAqoQKIQAAQP1HIAQAAAAAH0UgBFAlVAgBAADqPwIhAAAAAPgoAiGAKqFCCAAAUP8RCAEAAADARxEIAVSK+8b0VAgBAADqPwIhAAAAAPioBhUIV65cqcGDBys6Olo2m02ff/65x3JjjCZNmqTo6GgFBQWpd+/e2rZtm0cbl8ulhx56SBEREQoJCdGQIUN04MABjzaZmZmKi4uTw+GQw+FQXFycjh075tEmJSVFgwcPVkhIiCIiIjR27Fjl5+d7tNmyZYt69eqloKAgnXfeeZo8eTJVF9QbvFcBAADqvwYVCHNyctSpUyfNnj27zOUvvfSSZsyYodmzZ2vDhg2KiopS3759dfz4cavNuHHjtHDhQi1YsECrVq1Sdna2Bg0apKKiIqvNiBEjlJycrCVLlmjJkiVKTk5WXFyctbyoqEgDBw5UTk6OVq1apQULFujTTz/V+PHjrTZZWVnq27evoqOjtWHDBs2aNUvTpk3TjBkzamBkAAAAAKAMpoGSZBYuXGg9Li4uNlFRUeaFF16w5uXl5RmHw2HefPNNY4wxx44dM/7+/mbBggVWm4MHD5pGjRqZJUuWGGOM2b59u5FkkpKSrDZr1641ksyvv/5qjDFm8eLFplGjRubgwYNWm3/961/Gbrcbp9NpjDHm9ddfNw6Hw+Tl5Vltpk6daqKjo01xcXGF99PpdBpJ1nqBmjZ+/HgjyXz99dfe7goAAGig+IxbexpUhfB09u7dq/T0dPXr18+aZ7fb1atXL61Zs0aStGnTJhUUFHi0iY6OVkxMjNVm7dq1cjgc6tq1q9WmW7ducjgcHm1iYmIUHR1ttenfv79cLpc2bdpktenVq5fsdrtHm0OHDmnfvn3VPwAAAAAAUILPBML09HRJUvPmzT3mN2/e3FqWnp6ugIAAhYeHn7ZNZGRkqfVHRkZ6tCm5nfDwcAUEBJy2jfuxu01ZXC6XsrKyPCagNnGVUQAAgIbDZwKhm/vDrJsxptS8kkq2Kat9dbRxf8A+XX+mTp1qXczG4XCoZcuWp+07AAAAAJTHZwJhVFSUpNLVt4yMDKsyFxUVpfz8fGVmZp62zeHDh0ut/8iRIx5tSm4nMzNTBQUFp22TkZEhqXQV81QTJ06U0+m0ptTU1NPvOAAAAACUw2cCYZs2bRQVFaWlS5da8/Lz8/XDDz+oR48ekqTOnTvL39/fo01aWpq2bt1qtenevbucTqfWr19vtVm3bp2cTqdHm61btyotLc1qk5iYKLvdrs6dO1ttVq5c6XErisTEREVHR6t169bl7ofdbldYWJjHBHgDh4wCAADUfw0qEGZnZys5OVnJycmSTl5IJjk5WSkpKbLZbBo3bpymTJmihQsXauvWrRo9erSCg4M1YsQISZLD4dBdd92l8ePHa/ny5dq8ebNGjhypjh076oYbbpAktW/fXgMGDFB8fLySkpKUlJSk+Ph4DRo0SO3atZMk9evXTx06dFBcXJw2b96s5cuXa8KECYqPj7cC3IgRI2S32zV69Ght3bpVCxcu1JQpU5SQkHDGQ1gBAAAAoDo09nYHqtPGjRvVp08f63FCQoIkadSoUZo7d64effRRnThxQg888IAyMzPVtWtXJSYmKjQ01HrOzJkz1bhxYw0bNkwnTpzQ9ddfr7lz58rPz89qM3/+fI0dO9a6GumQIUM87n3o5+enRYsW6YEHHlDPnj0VFBSkESNGaNq0aVYbh8OhpUuXasyYMerSpYvCw8OVkJBg9Rmo66gQAgAA1H82w6e6ei0rK0sOh0NOp5PDR1ErHnnkEU2bNk1ffPGFhgwZ4u3uAACABojPuLWnQR0yCqD28F0SAABA/UcgBAAAAAAfRSAEUCVUCAEAAOo/AiEAAAAA+CgCIYBKcd8WhQohAABA/UcgBAAAAAAfRSAEUCVUCAEAAOo/AiEAAAAA+CgCIYAqoUIIAABQ/xEIAQAAAMBHEQgBVApXGQUAAGg4CIQAKoUgCAAA0HAQCAEAAADARxEIAVQKh4wCAAA0HARCAAAAAPBRBEIAVUKFEAAAoP4jEAIAAACAjyIQAqgSKoQAAAD1H4EQAAAAAHwUgRBApXCVUQAAgIaDQAgAAAAAPopACKBKqBACAADUfwRCAAAAAPBRBEIAVUKFEAAAoP4jEAIAAACAjyIQAqgSKoQAAAD1H4EQAAAAAHwUgRAAAAAAfBSBEECVcMgoAABA/UcgBAAAAAAfRSAEUCk2m00SFUIAAICGwOcCYevWrWWz2UpNY8aMkSSNHj261LJu3bp5rMPlcumhhx5SRESEQkJCNGTIEB04cMCjTWZmpuLi4uRwOORwOBQXF6djx455tElJSdHgwYMVEhKiiIgIjR07Vvn5+TW6/wAAAADg5nOBcMOGDUpLS7OmpUuXSpJuvfVWq82AAQM82ixevNhjHePGjdPChQu1YMECrVq1StnZ2Ro0aJCKioqsNiNGjFBycrKWLFmiJUuWKDk5WXFxcdbyoqIiDRw4UDk5OVq1apUWLFigTz/9VOPHj6/hEQCqBxVCAACA+q+xtztQ284991yPxy+88IIuuugi9erVy5pnt9sVFRVV5vOdTqfeeecdffjhh7rhhhskSfPmzVPLli21bNky9e/fXzt27NCSJUuUlJSkrl27SpLmzJmj7t27a+fOnWrXrp0SExO1fft2paamKjo6WpI0ffp0jR49Ws8//7zCwsJqYvcBAAAAwOJzFcJT5efna968ebrzzjut86IkacWKFYqMjFTbtm0VHx+vjIwMa9mmTZtUUFCgfv36WfOio6MVExOjNWvWSJLWrl0rh8NhhUFJ6tatmxwOh0ebmJgYKwxKUv/+/eVyubRp06Ya22egulAhBAAAqP98rkJ4qs8//1zHjh3T6NGjrXmxsbG69dZb1apVK+3du1dPP/20/vznP2vTpk2y2+1KT09XQECAwsPDPdbVvHlzpaenS5LS09MVGRlZanuRkZEebZo3b+6xPDw8XAEBAVabsrhcLrlcLutxVlZWpfcbAAAAACQfD4TvvPOOYmNjPap0t912m/VzTEyMunTpolatWmnRokUaOnRouesyxnhUGU/9+WzalDR16lQ9++yz5e8UUMO4yigAAEDD4bOHjO7fv1/Lli3T3Xfffdp2LVq0UKtWrbR7925JUlRUlPLz85WZmenRLiMjw6r4RUVF6fDhw6XWdeTIEY82JSuBmZmZKigoKFU5PNXEiRPldDqtKTU19cw7CwAAAABl8NlA+N577ykyMlIDBw48bbujR48qNTVVLVq0kCR17txZ/v7+1tVJJSktLU1bt25Vjx49JEndu3eX0+nU+vXrrTbr1q2T0+n0aLN161alpaVZbRITE2W329W5c+dy+2O32xUWFuYxAd5AhRAAAKD+88lAWFxcrPfee0+jRo1S48b//6jZ7OxsTZgwQWvXrtW+ffu0YsUKDR48WBEREbr55pslSQ6HQ3fddZfGjx+v5cuXa/PmzRo5cqQ6duxoXXW0ffv2GjBggOLj45WUlKSkpCTFx8dr0KBBateunSSpX79+6tChg+Li4rR582YtX75cEyZMUHx8PCEPAAAAQK3wyUC4bNkypaSk6M477/SY7+fnpy1btujGG29U27ZtNWrUKLVt21Zr165VaGio1W7mzJm66aabNGzYMPXs2VPBwcH66quv5OfnZ7WZP3++OnbsqH79+qlfv366/PLL9eGHH3psa9GiRQoMDFTPnj01bNgw3XTTTZo2bVrNDwBQDagQAgAA1H82w6e6ei0rK0sOh0NOp5PKImrFE088oalTp+qdd94p9aUKAABAdeAzbu3xyQohgLPHd0kAAAD1H4EQAAAAAHwUgRAAAAAAfBSBEEClcGN6AACAhoNACKBSCIIAAAANB4EQQJUQDAEAAOo/AiEAAAAA+CgCIYBKcVcGqRACAADUfwRCAAAAAPBRBEIAVUKFEAAAoP4jEAKoFIIgAABAw0EgBFAlBEMAAID6j0AIoFIIggAAAA0HgRCoIZmZmSouLvZ2N2oMwRAAAKD+IxACNaRZs2Z6+umnvd0NAAAAoFwEQqAGffvtt97uQrXjPoQAAAANB4EQqAGEJgAAANQHBEKgBvhCIGzI+wYAAOArCIRADWjIYakh7xsAAICvIRACNcAXKoQAAACo/wiEQA1qyIGwIe8bAACAryAQAjWgIVcIG+I+AQAA+CoCIVADGnIgdGvI+wYAAOArCIRADWjIgbAh7hMAAICvIhACNaAhB0K3hrxvAAAAvoJACNSAhhwIG+I+AQAA+CoCIVCNtm3bpl9//bXWAuGePXtUVFRUo9soqSGHXQAAAF9DIASqUUxMjNq3b2+FJZvNVmPbysnJ0UUXXaRnn322xrYBAACAho1ACNSA2qie5eXlSZI2bdpU49s6FRVCAACAhoNACNSA2qgQltxWffavf/1Ln3zyibe7AQAA4HMae7sDQEPUEEJaeWqiQjhixIhqXycAAADOzKcqhJMmTZLNZvOYoqKirOXGGE2aNEnR0dEKCgpS7969tW3bNo91uFwuPfTQQ4qIiFBISIiGDBmiAwcOeLTJzMxUXFycHA6HHA6H4uLidOzYMY82KSkpGjx4sEJCQhQREaGxY8cqPz+/xvYdDVdtVCEBAADQMPlUIJSkyy67TGlpada0ZcsWa9lLL72kGTNmaPbs2dqwYYOioqLUt29fHT9+3Gozbtw4LVy4UAsWLNCqVauUnZ2tQYMGeVzpccSIEUpOTtaSJUu0ZMkSJScnKy4uzlpeVFSkgQMHKicnR6tWrdKCBQv06aefavz48bUzCKhxDbnSxTmEAAAADYfPHTLauHFjj6qgmzFGr7zyip588kkNHTpUkvT++++refPm+uijj3TvvffK6XTqnXfe0YcffqgbbrhBkjRv3jy1bNlSy5YtU//+/bVjxw4tWbJESUlJ6tq1qyRpzpw56t69u3bu3Kl27dopMTFR27dvV2pqqqKjoyVJ06dP1+jRo/X8888rLCyslkYDNaUhh6WGvG8AAAC+xucqhLt371Z0dLTatGmj4cOHa8+ePZKkvXv3Kj09Xf369bPa2u129erVS2vWrJF08mqOBQUFHm2io6MVExNjtVm7dq0cDocVBiWpW7ducjgcHm1iYmKsMChJ/fv3l8vlOuMVI10ul7Kysjwm1D21cVEZ97oJaAAAAKgqnwqEXbt21QcffKBvv/1Wc+bMUXp6unr06KGjR48qPT1dktS8eXOP5zRv3txalp6eroCAAIWHh5+2TWRkZKltR0ZGerQpuZ3w8HAFBARYbcozdepU69xEh8Ohli1bVmIEUFtqI6R5KwhyyCgAAEDD4VOBMDY2Vrfccos6duyoG264QYsWLZJ08tBQt5IVHWPMGas8JduU1b4qbcoyceJEOZ1Oa0pNTT1te3hHQw6EAAAAaDh8KhCWFBISoo4dO2r37t3WeYUlK3QZGRlWNS8qKkr5+fnKzMw8bZvDhw+X2taRI0c82pTcTmZmpgoKCkpVDkuy2+0KCwvzmFD3NORASIUQAACg4fDpQOhyubRjxw61aNFCbdq0UVRUlJYuXWotz8/P1w8//KAePXpIkjp37ix/f3+PNmlpadq6davVpnv37nI6nVq/fr3VZt26dXI6nR5ttm7dqrS0NKtNYmKi7Ha7OnfuXKP7jNrRkAMhAAAAGg6fusrohAkTNHjwYF1wwQXKyMjQc889p6ysLI0aNUo2m03jxo3TlClTdMkll+iSSy7RlClTFBwcbN002+Fw6K677tL48eN1zjnnqFmzZpowYYJ1CKoktW/fXgMGDFB8fLzeeustSdI999yjQYMGqV27dpKkfv36qUOHDoqLi9PLL7+sP/74QxMmTFB8fDwVvwaiNsJacXFxjW+jLFQIAQAAGg6fCoQHDhzQ7bffrt9//13nnnuuunXrpqSkJLVq1UqS9Oijj+rEiRN64IEHlJmZqa5duyoxMVGhoaHWOmbOnKnGjRtr2LBhOnHihK6//nrNnTtXfn5+Vpv58+dr7Nix1tVIhwwZotmzZ1vL/fz8tGjRIj3wwAPq2bOngoKCNGLECE2bNq2WRgI1rSFXCAmCAAAADYdPBcIFCxacdrnNZtOkSZM0adKkctsEBgZq1qxZmjVrVrltmjVrpnnz5p12WxdccIG+/vrr07ZB/dWQA2Fd2T4AAADOnk+fQwjUlNq4DyEVQgAAAJwtAiFQwp49e3T99dfL5XJ5uyun5Y1z+XJyckptHwAAAPUXgRAoYfr06fruu++0ffv2Kq/jTGHp999/l81m02effVZj26hun3/+uZo0aaKUlJRa3S4AAABqDoEQKKE6gtaZ1uG+5cg333xTY9uobqtXr5Yk7d+/3yvbr4zff/9dBQUF3u4GAABAnUcgBMpxNuf/nSks1UborG7uK+kWFRXV6nar4txzz9U999zj7W4AAADUeQRCoBxnE7hq46Iy7vsQ1uQ2TlUyENblCqF0dtVXAAAAX0EgBGpAbd52oraCWaNGJ/9c1IcKoVT3AysAAEBdQCAEylGTh4yWt2531a86tlHd3BVC97l5BC4AAID6j0AIlFAb5/eVtfz48ePy8/PTvHnzqmUb1c1dIawvQbC+9BMAAMCbCIRAOaqjQnimdZy63Ol0SpK+/PLLSm2jthG0AAAAGg4CIVADqnJ+X+PGjSVJhYWFldpGbXGH19o+d7Gq6nr/AAAA6gICIVADqhJGKntbh9oOPPUtYNW3/gIAAHgDgRAowdtBoqKBsDIXoKlOVAgBAAAaDgIhUAOqch9C93PqaoWw5CGjAAAAqP8IhEAJtXGV0ep4jrcvKlPXg2Fd7x8AAEBdQCAEasDZBMKKPtdbwayuB6263j8AAIC6hEAIlOA+NLImb0xf1vK6XiGsL1cZdZ9bWVf7BwAAUJcQCIESqvOQ0crch7CuB8L6gnEBAACoOAIhUAOqUkWr7FVDOYewbFQIAQAAKo5ACJRQHYHnTBXCsuZXZnu7d+/WH3/8UbXOnaW6HrTqemAFAACoSxp7uwNAXVUdgbAyyysTZNq2bVu1jlWDuh64qBACAABUHBVCNFj33HOPZs6cWeXn12QgrO7t1Yb6ch/Cut4/AACAuoRAiAZrzpw5SkhIqPLza/KQ0bOtEJ5pXTXp1H6+9tpr2rJlS61u/0yoEAIAAFQch4wCJVTnOYSVWV7V7Z3N7THO1sMPP6zg4GDl5OR4rQ8lVfbiPAAAAL6MCiFQjrMJFlUJhPUlyJQMzCdOnPBmd0qhMggAAFBxBEKgHDVZIXSHv7O5D+HZPq+qSm6vrgUwDhkFAACoOAIhUI76cg5hbfHmoamVUVfHDwAAoC4iEALlqC/nENa2ul6Bq+v9AwAAqEsIhEAJ7iBRHef0lRdKGkIgrKvqeqUVAACgLiEQAuWojXMIzzSvLqrrFbi63j8AAIC6hEAIlMNb5xBWdVu1pa4HV4IgAABAxflUIJw6daquvvpqhYaGKjIyUjfddJN27tzp0Wb06NGy2WweU7du3TzauFwuPfTQQ4qIiFBISIiGDBmiAwcOeLTJzMxUXFycHA6HHA6H4uLidOzYMY82KSkpGjx4sEJCQhQREaGxY8cqPz+/RvYdleetcwjraqBxh9u6XoGr6/0DAACoS3wqEP7www8aM2aMkpKStHTpUhUWFqpfv36lbqo9YMAApaWlWdPixYs9lo8bN04LFy7UggULtGrVKmVnZ2vQoEEqKiqy2owYMULJyclasmSJlixZouTkZMXFxVnLi4qKNHDgQOXk5GjVqlVasGCBPv30U40fP75mBwFnVN9uTF/bqBACAAA0HI293YHatGTJEo/H7733niIjI7Vp0yb96U9/subb7XZFRUWVuQ6n06l33nlHH374oW644QZJ0rx589SyZUstW7ZM/fv3144dO7RkyRIlJSWpa9eukqQ5c+aoe/fu2rlzp9q1a6fExERt375dqampio6OliRNnz5do0eP1vPPP6+wsLCaGAJUQk3emP509yGs64GmrveTCiEAAEDF+VSFsCSn0ylJatasmcf8FStWKDIyUm3btlV8fLwyMjKsZZs2bVJBQYH69etnzYuOjlZMTIzWrFkjSVq7dq0cDocVBiWpW7ducjgcHm1iYmKsMChJ/fv3l8vl0qZNm8rts8vlUlZWlseEmlFfKoS1FXzq230ICYQAAABn5rOB0BijhIQEXXvttYqJibHmx8bGav78+fruu+80ffp0bdiwQX/+85/lcrkkSenp6QoICFB4eLjH+po3b6709HSrTWRkZKltRkZGerRp3ry5x/Lw8HAFBARYbcoydepU67xEh8Ohli1bVm0AcEa1cVGZU7dR1w/FLKmuBi4qhAAAABXnU4eMnurBBx/UL7/8olWrVnnMv+2226yfY2Ji1KVLF7Vq1UqLFi3S0KFDy12fMcbjw39ZQaAqbUqaOHGiEhISrMdZWVmEwmrGOYQVU1f7W1f7BQAAUBf5ZIXwoYce0pdffqnvv/9e559//mnbtmjRQq1atdLu3bslSVFRUcrPz1dmZqZHu4yMDKviFxUVpcOHD5da15EjRzzalKwEZmZmqqCgoFTl8FR2u11hYWEeE2qGt84hrC/qakWTCiEAAEDF+VQgNMbowQcf1GeffabvvvtObdq0OeNzjh49qtTUVLVo0UKS1LlzZ/n7+2vp0qVWm7S0NG3dulU9evSQJHXv3l1Op1Pr16+32qxbt05Op9OjzdatW5WWlma1SUxMlN1uV+fOnatlf3F26uptJ059z3hTXQ2EBEEAAICK86lAOGbMGM2bN08fffSRQkNDlZ6ervT0dJ04cUKSlJ2drQkTJmjt2rXat2+fVqxYocGDBysiIkI333yzJMnhcOiuu+7S+PHjtXz5cm3evFkjR45Ux44drauOtm/fXgMGDFB8fLySkpKUlJSk+Ph4DRo0SO3atZMk9evXTx06dFBcXJw2b96s5cuXa8KECYqPj6fqV0fU9jmEFd3eww8/XOa6altdCoQul0vTp09XcXExFUIAAIBK8KlA+MYbb8jpdKp3795q0aKFNX388ceSJD8/P23ZskU33nij2rZtq1GjRqlt27Zau3atQkNDrfXMnDlTN910k4YNG6aePXsqODhYX331lfz8/Kw28+fPV8eOHdWvXz/169dPl19+uT788ENruZ+fnxYtWqTAwED17NlTw4YN00033aRp06bV3oDgtGqjQsgho5WzceNGpaamlpr/5ptvasKECVqyZEm9G0cAAABv8qmLypzpg2JQUJC+/fbbM64nMDBQs2bN0qxZs8pt06xZM82bN++067ngggv09ddfn3F7qF3u90ltnEN4pnllady4bvzaeiMQXn311bLb7crLy/OY767yFxQUUCEEAACoBJ+qEAKVURsVwrIOGT3Tc0+tRHuTtw4Zdd8CpjzchxAAAKDiCIRAOWrjHMKqbM9bQafkdmsiEFbHvtWlcxsBAADqOgIhUI6arBCe7rYTlb1CaW0FxNoIhNWxTiqDAAAAFUcgBEqozRvTn9qurJBYlXXXlJJhjQohAABA/UcgBMpxNsHCfQuS8pQVfCq6vbpyyGhRUVG1b+Nsw5zNZqNCCAAAUAkEQqAc1REsqnIOIRXCs3s+FUIAAICKIxAC5aiO4FXeOs7mthN1pULIOYQAAAD1H4EQKEdNBovqPGS0tgJQfagQSvXzHMLDhw8rMTHR290AAAA+iEAIlFAdN6av6DbKuqhMRZ9b2+rSOYSrVq3yeHzq4bb1sUI4aNAg9e/f39vdAAAAPohACJSjtiuEVT2H8Eztq0tNVAhnzJihH374wXpc0TFft25ducvqW4Vw27Zt2rhxoyQOdwUAALWvsbc7ANQ11XHbCbfywlpDOIewOiqE48eP93jsi+cQxsTEWD8XFhbK39/fi70BAAC+hgohUI6aDBZl3XOwovchLBmaOIfQU32rEJ6qsLDQ210AAAA+hkAIlMNbgfBMausQ0ZLq0jmE5THG1LsK4akIhAAAoLYRCNEg1fVK09kEwo4dO9ZIn87E2xXCiiwrLi4ut1+7d+8udTGauqagoMDbXQAAAD6GcwjRIJ1NWKnqOYRltS+vmueurp26vKIXlfHWIZElt1vbFcLTLXOPWWFhYbmvW9u2bSXV7XMMqRACAIDaRoUQDZI3Lk5SmfZnUyGsiSBWEbVxyGjJbeTm5qpbt27as2fPabfnHseioqI6dQ7hW2+9pRkzZlS4PYEQAADUNgIhGqSzCQXucFFfAmFDuqhMyXUmJydr3bp1+sc//lGhQHi6CmFl5OTkyOVyVfn5P/30kz7++GPdd999pa6kejo7duyo8jYbql9++UX79+/3djcAAGiwOGQUDVJ1HDJa2XVUJoi4w01VbkzvSxXCRo0aWfMrGgirI6g2adJEV155pX766acqPf/aa6/ViRMnKv28G264oU4f0uoNnTp1klS3D/UFAKA+o0KIWvHjjz/W6gU9zias1MY5hO7QcupzKrq9M+3b3Xffrfnz51doXZXhjQqhe/yKi4sr9JpWVyCUpM2bN1f5uVUJgwAAAN5AIESt+NOf/qTrrruu1rZ3NqGgrOpddW/TvY1Tn1NdFcJ33nlHI0eOrHBfKsobFcKKBkL384qKijgPDwAAoBIIhGiQziYQllW9q4iy2pe3jrK2UdEb03vrkNHqrhCW9fzyrmRqjDlt0HO3KywsrNZAuGXLlmpbV0W53xP79u3Ttddeq4yMjFrvAwAA8B0EQjRI1VEhrI5zCN3nwJVUnYGwts6tqu4KYVnBreQ23Bd2KSws1K5du8pt515XRQJhZcarS5cuFW5bXfLz8yVJn3/+uVavXq3Vq1fXeh8aovz8fGVnZ3u7GwAA1DkEQjRIZxNWqnrIaFnt/fz8TruNihwyOnPmTPXp08d6XDLwlBc6q1t1VwjLCm7/+Mc/ZLPZrLF0h6MPPvjA45Bj93Pz8vJks9n0ySefWPPPFAjd66yIyrStLu4Q7I1tN2R9+/ZVaGiot7sBAECdQyBEg3Q2YcUdKCobCMsKoeUFwspcVCYhIUErVqwodzu1EQjfeustffzxxx7zzrZCWNbz//nPf0oqHYpyc3M92hUUFEiSnE6nJGnr1q2SKhYIy7qdRE5OjlJSUirT/RpTsn/evrpmSkqKFi1a5NU+VIeVK1d6uwu15siRI2rTpo1+++03b3cFAFAPEAjRIHkjEJYVRM50yGh1XFSmKlcqraz77rvPCl9uNVEhdI+X+9C+8qpkp1YIT3XqRWXKO/S2rHWOHDlSrVq1qmDPa5Y7ED722GOSauZqrpVx3XXXadCgQV7tw9natGmTt7tQq1atWqV9+/bp3//+t7e7AgCoBwiEaJDOpnpV1UDorlpVpB+nuw+hO8h88MEHZYaa0wXC2rzC5tluq6znu/e3ooGwZOXw1ApheWG8rAqhuwJrjPF6ACvZv9PdwuKNN97QK6+8UqP9OXjwYI2uvzy5ubnVdg7no48+Wi3rqS/cRyZ4u7oMAKgfCIRokKqjQljZdZQVcMoLNGUdMloyJC5YsKDM554uEJYVdmpKyYphZZUVoN2B8Pjx45LKHz/3c08XCMtT1hi5t3vixAmvn7tXXiDcu3evbr31Vo/lDzzwgP72t7/VaH/8/f0lVf6cxqKiorMay0OHDnlU9sq6R+Wrr75aoXU1btzY+rm8kLRx40YdOnSoCj31rvvuu09//etfPea599EbX26sW7dO//u//1vr2wUAVB2BELWqtj6glDyUsDKqs0JYXkBzh7pTw537g/+ZblVRMhCeOqa1FQj79u2rw4cPn9U6ThfM3BXC8l5H92uUk5NTav6ZAn3JkHL06FFrOzk5OWf13qkO5QXCadOm6T//+U+t3wojICBAknTs2LFSy4qLi0uN86pVq/Tmm2/qxhtvlN1u1/vvv6+0tLRSz92wYYMyMzPL3a77SwG3SZMmWT+7f0emTJlS5nONMXrmmWes80JPPZe3vNf36quv1iWXXOIx7/Dhw0pNTS3VNjExUfv37y+379Xt9ddf18aNG63HhYWF1n689dZbmjt3rkd793vGG4GwW7dupcYRAFC3EQhR48qrYO3bt09vv/12jWyzZOWoMqoaCMvaZnkBraxDHkt+iPvmm288nuMOPyW3c2o/a7q6FRwcrLlz5yo6OtraN3cFqbLKOhTSfZinOwyU1cZms1WoQmiMKfM1LPmaREREWNupaCD89ttv9e6772rYsGHau3fvGduXp6wP7OUFQndYLu813r17t2w2m3799dcq96cs7tfXHQiLioo0depU5eTkqFmzZvqf//kfj/bXXXed7r//futCNKNHj9Zf/vKXUuu95pprFBsbW+52SwbCTz75RG+//bZWrVplfWFQ3u/osWPHNHnyZN19992SPCuEpzsEt+T7qUWLFrrgggtKtevfv78uuuiictdT3caMGaOrr77aejxhwgRdfPHF5bZ3/63w9uHPAID6gUCIKjtw4IBeffVV/e///q9+/fVXpaenl/kB7dQqzqkftkeMGKF77723VJWnOpy6zsoGu1OrRZVR1j3OyguE7g+ep27DPa+8/ro/IGdlZXnMN8Zo165dOnLkSI1XCOPi4jRq1Cide+651jx3BakiNm/erBdffFFS2ZWailQIAwMDrdBXMjQUFhZ6zKtIIDxVbm5uhQLhgAEDdNddd+mTTz7RtddeW+7hvW6nVnWNMXrxxRd19OjRMg9vdfcvJCREUunKcXmH6n7//feSqv9qmna7XdLJSqok/fjjj3riiSc0c+ZMOZ1OLVy4UHl5efrhhx/KXcfevXuVn59vnY/o3sd169aV+5yS73O73a57771X/fv31+7du0/bZ3df3WN3aoXwdIHQrbi4WLNmzSr1/jly5IjGjBkj6eRrejb3iDTG6Ntvvz1jaCtr+auvvlruuZ2vvfaaFYRP9zfMGCObzabXXnvttNvfvn27goODK3REQMnxeumllyp8QZ/jx49br1tZ7r//ft1///0VWhcAoHIIhKiyWbNmady4cbrkkkvUvn17tWjRQo0aNZLNZvOYTr33V7NmzdS9e3clJCRo7dq1kk4eCnf48GEdPHhQhw4dqpYq16k3Ma9otdBdUXIfklfZQyLfffddj8cDBgwo9wPZgQMHJHmGSHeQOX78eJlBwb38jz/+UMeOHT3mX3rppbriiitqpEJ46jo7deokSbr++uuteeVV4srSp08fPf744zLGlBm83Pt9ukB47rnnWhXCkiHc5XJp2bJl1uOyLupzukBYlUNGDx06pNtvv/20bU59Pffs2aPHH39cjz76qMdhmO5KlMvlkjHGet9OnjxZzz33nF5//XVJZQdCY4wVzE99zy1YsEDDhw+v8L4UFxfrrrvu0pYtW5SVlaU333xTkZGRkmSFMPf4nDqOTzzxhHr37q0//vij3P2fNm2azj//fP322286cuSIx7KylAyE7i8LcnNz1blzZ2u/3WbMmKE9e/ZIkn7//XeP557abu/evXr55ZfLPXLBGKPVq1dr7Nixpfo0Y8YM63WQ/v/tTowxys7O9ljnyy+/rMWLF5dahzFG27dv15o1azRgwAC1adOmzP13O91Fff70pz9ZP7uD48MPP2zNc/9+fPPNN3rhhRes+X/88Yf1N2jmzJmn3f7HH3+sEydOnDa8l9yedPJ1feyxxzwqm6+++qrWrFmjzZs3W/OMMVq0aJHat2+viIiIctf95ptv6s033zxjH05VWxeJSktLK/OUgerw/fffewTlnJwcTZs2rVbPFwfgAwy87h//+Idp3bq1sdvt5qqrrjIrV66s8HOdTqeRZJxOZw32sGwul8s8+eSTZv78+ebWW281kmp06tixo2nUqJGRZKKjo83ll19umjRpYnr27Gn++c9/mpiYGNOrVy9z9913ezzvwgsvND/88INZt26diYiIMI8//rhZu3atWbVqlUlKSjJfffWV+fvf/24kmbZt21rPO+ecc8zOnTtNcXFxuWNQVFRk0tLSTEBAgJFk+vbta1566SXz2Wefmfnz5xtJ5vPPPzeFhYXGGGOKi4vNG2+84dG/rVu3mjfffNNju/v27Su1/+vWrTNPPfWUkWTeffddc88995irrrrKo81PP/1k/WyMMVlZWaaoqMgYY8yePXvMgw8+aAoKCir0+u7evdvcfvvt5tNPPzWSzLBhw8zx48et5YMGDTLdunUzksxvv/1WoXW6+5aRkWG+/vpr6/Ell1zisR/33nuvGTx4sHnggQdKjUPXrl1NTEyMSUhIMJdeemmZ75UhQ4YYSebIkSPG5XKZPXv2WMuWLVtm9Sc/P9/jed9//73HGJb3J7KsbbrHuazlmZmZ1rKVK1caSWbw4MFm+/btRpKZMmWKSU9PN5LMl19+aTIzM8v9PXjzzTet99Kp+/TKK68YSeaJJ54wRUVF1t8GSSYvL6/c1+T333+3fj5w4ICRZK666irz9NNPG0nGZrNZfTTGWO/rU6dBgwYZSWbp0qVl9jk6Otp06NDBerxp0ybr519++aXMfpX8PSnrtY6MjDQbN240K1asMJLM5Zdfbowx5ssvvzSSzHXXXWeMMVb/Tv0dP3jwoLWttLQ0a/n//b//t9R21qxZY1555RUzceJEj/kPPfSQMcaY5s2bG0nmjTfeKPXalPTdd98ZSeavf/2r1aa8vzFFRUWl3ouFhYVljvEff/xh7rnnHo95I0eO9Hg/FhcXm1WrVnm0ad26dbnvje3bt5vx48cbSebtt982xhiTl5dnduzYYXJycsyhQ4c82p/6e7Z582br5/Xr15ucnByP7f7yyy/mxIkTZt26daf9fXP/zXEvDwkJMdOnTy/VLjk52RrHDRs2mJkzZ5rw8HDTp0+fcvfv1L+Pxhjzyy+/eDx2K/n6rF+/3rRu3dokJCSYY8eOGUnm0UcfNTk5OWW+lvn5+eW+xj/++KPJysrymLd582aTnZ1tcnNzrf3ev3+/McaYDz/80Egy8+bNK7WN3NzccvfVbd26dda6Kmv16tVm27ZtZsmSJUaSx98Ot+LiYrNs2bLT/s0x5uTYn+5/a11RWFhoFi9ebIqLi01BQYE5ceKEefTRR01GRkaptrm5uR5/640p/d7xphMnTnj0p6zXYM+ePWbx4sW13bVyefMzrq8hEHrZggULjL+/v5kzZ47Zvn27efjhh01ISEiF/2DXp1+WwsJCk5eXZ/bv32+2b99u9uzZY3755Rczb948s2DBAnPHHXeY/v37l/tBuFmzZuUuO3Vq1aqV6d69u/n++++tAFnRqVmzZmbatGnWP133BxD3B74zTaf+E/zjjz/MFVdcUW7bTz75pNS8uXPnnnEbo0ePtj60lAwvMTEx1s+33XabkWS6dOlinnnmGWt+7969zQMPPGBefPFF88ILL5hGjRqZjh07mqeeeso89dRT5uabbzaxsbGmcePG1nOuvPJKk52dXeo1dQcISSY2NtZqe/vttxtJ5qKLLjJjx441s2fPNtdff73VtmfPniYoKMg0bdrUzJw50xw8eNAKl6ebpkyZYoYNG1bmsvbt2xtJ5oILLjC7d+82fn5+5rrrrjMXXXSRR7tBgwaZb775xuM1dk99+/Yttf6NGzea1NRUk5aWZlJTU60P9CWn1atXmx9++MG89tprRpIJDQ21lr355pvm3XffNZ9++ql57rnnjHQymFx44YVGkjl8+LDJysoykkz//v09xr7kdP/995v9+/ebr776ymP+LbfcYu1Dx44dPZZt3brVHDlyxOTn55uvv/7afPPNN6a4uNjs3LnTSDL//Oc/zeLFi82iRYtOO/733nuv6dOnT6n5wcHBlfo9+9vf/mb9PHHiRHP99debQYMGmdzcXLNr1y7zwQcfWMsDAgLMvffeW+F1L1iwwFxzzTXWa/CnP/3JSDItW7b0aPfyyy+bnJwcs3r1avPYY49Vqv/SyfApef4eX3bZZSYhIcGj3bvvvmvy8vLM0qVLzU033VTmvlx//fUmKirKJCcnm+uuu67c34Xly5eX+b6V5PE7fup0avsZM2aUWt68eXPjdDpNenq6SUhIMNOnTze///679eXTqdNHH31k/Z63adPGSCdD8WOPPWauv/76cr+gKWu66aabTOPGjc2VV17pMf/nn38269evN1OnTrX+ZrRr167U8//+97+boqIik52dbebNm+fRx5JtFy9ebP72t7+ZESNGmOHDh5vHH3/c+qJLkvUljXvq0KGDWb16tRk6dKg174477jCxsbGlvhCZMGFCqe399ttvJjs727z99tsmLi7ONG3a1LRu3dqkpKSY3r17m+eee85kZ2ebmTNnWs+5+uqrzTfffGM+/vhjI538IjMsLMxa3qVLF7NmzRozYMAAI8kMHz7cHDlyxKSnp5sDBw6Yiy66yFx22WVm/fr1JiIiwtxyyy3m3//+t9m9e7cZM2aMufHGG611hYWFmZSUFOv3bPHixaawsNDs27fPfPXVVyYpKcns3LnT9O7d2/To0cPs2rXL/Pjjj9bz3V+qPPHEE+bGG280X3zxhVm2bJm57bbbrN+zDh06mB49epinnnrKfPnll+bVV181n376qWnfvn2pLy6efvpp895775n33nvPTJ482Tz11FOmd+/eJikpyaxevdrs27fP7Nq1y8yePdu88sor5rbbbjO5ubnWlyoDBw40b775pvnf//1f8+6775p7773X3HrrrebDDz80K1euNDNmzDCjRo0yX375pbnrrrvMzTffbJo2bWqeeuopc+TIETN79mzTtWtXM3HiRJOcnGwSExPNiBEjzDXXXFPqC+ZTpyFDhpiRI0eajz/+2Dz00ENGOvl54dVXXzXvvPOO+fbbb43D4TDPPPOMSU1NNT///LP5z3/+Y4YPH24eeOABM2/ePDN58mQzceJE8/zzz5sXXnjBdOvWzbRr1858++23JjY21tx7773mo48+MqtXrza///67WbdunfnLX/5ipk+fbg4fPmzWrVtnHn30UfOPf/zDfPHFF2bJkiXmz3/+s/Ue+eWXX8wXX3xhPvvsM6vfn3/+uRkxYoSRTv4/Wbx4sVm7dq158sknrTYjR440M2bMMJ06dTKJiYllflFSG+rTZ9z6jkDoZddcc4257777POZdeuml5vHHH6/Q8331l6W4uNgUFhaaoqIik5+fb3Jyckx+fr5ViTvV8ePHzY4dO8yPP/5odu3aZT799FMzdOhQ06FDBzN8+HBz1VVXmaeeespkZGR4BLp9+/aZBQsWmOnTp5vnnnvO9O/f3/rwMmTIEBMXF2ekk9WUVatWlflNYF5ennnkkUfM0KFDzfDhw62Km7ufS5cuNY0bNzbz58+3vln87rvvzO23327mzZtn/vWvf5mpU6eat956yzzwwAPmhRdeKLWdr7/+2jz22GMmNjbWjBw50rzyyitm4MCBxm63G0mmUaNGxt/f3+PDhXs6NXhERkaac845x3rcu3dvM3ToUDN//vzTftu7adMmM3LkSNO3b1/ruX5+fh7bcQfz8PBwc8UVV5grrrjC3HnnnSYlJcVaT2Zmphk/fry55557PELctm3bTGZmpjlx4oQx5uS3/5deeqlp06aNueGGG8zKlSuNy+Uy+fn55j//+Y/1u/Dxxx+biy++2FpPaGio9SG+5FQy0AwdOtSsWbPmtB9o/f39y1128cUXm0OHDpljx45ZH5zLW8e///1vawxGjRplLYuNjbXCZVmvV21ODoejys8t70uZHj16eHyBUda0evVq43K5zBdffHHW+7BmzRqP90NF+1nWNGTIEJORkXHWfbryyisrtN2ePXt6PG7VqpVH1fPUqW3btuajjz4yDz74YLnrK/mFwZmmoKCgSrV3HzHRo0cPc9999531OLmn2267rcJHozRr1swEBgZW27a9NcXExJiuXbt6vR+nTiX/vjM1vKnkl+Alq9i1xVc/43qDzRjuXOst+fn5Cg4O1ieffKKbb77Zmv/www8rOTm5zIs0uFwuj3MHsrKy1LJlSzmdToWFhdVKvy0ffyzNn1+720SNMJJs1b1OY6T/nvel//5c3duoLGOMjmdnq7ioSI0aNVJIkyYnz3vVyTEoKiqS33/Pg5VO/n7luVzKy8uz+u7MytIFLVsqLCxMRcXFcv13ucvlkoxRYFCQwps2tbZZWFioE3l5stlsOnDggCIjI+UIC1Oey6VAu93jgifmv+0bN25sbc8YoxN5eQoKClJhYaEOpKYqJCRE/v7+ahIaqoKCAjmPHVNxcbHOjYxUltMp23/3wX3+Z05OjuwBASo2RkVFRSouLj65bydOKDAoSAcOHNAlF1+soKAgOZo2VYC/vw4ePKioFi1UkJ+vsLAw5eTkqLi4WDabTcEhIWrs56dGjRrJ6XSqqKhIgYGB1gVojDEqKCxUUGCgjKTjWVlyuVwKb9ZMhw4eVFFxsVpdcIHyXC6lp6erWbNmOnz4sMx/+xVx7rk6//zzFVDOFWwL/3tuqE0nz2l05ecrtEkTGUnZx48rv6BAEREROvr77woOCVGTJk1kk1RUXKyMjAydc845ch47ppzcXBUWFMhms6lly5aSzaaC/HwF2O3W+8Jms8mVn6+ioiK58vLUtGlT62q4xcXFOnr0qOyBgQoMDNTvv/8uv0aNFBwSopDgYGUeO6bs7GwVFRUp+/hxNY+Kkn/jxgoMCtKJ3Fw1DQ9XTk6OCgsK5Ofnp5zcXIWFhirjyBHrnFJTXCx/f38dPXpUx5xOhYWGKjw83LpyqpHkystT7okTCg4OVuApr8Hhw4fl7++v8PBwufLzVVhYqJDgYDVq1EiZx44ptEkTZR47JuexY/L391dAQMDJc+5sNjVp0kQB/v4qKipSSEiITuTlaceOHWoWHq6Ic89VYz8/FRcXy+l0KjAoSIGBgbLp5AV8Tr3QlJFUVFgop9Mph8MhV36+7AEBOpGXpwB/f+WeOHHyAkrGqKCgQMezs9XIZtPhw4fVunVrBQYGKjc3V8EhIfL/7z4XFhUpIyND+S6XTuTlyRQX66KLL9bx48dP/v42aqSmDoekkxcYcmZl6ZxmzWR08krGhw8fVuYff+jiiy9Wdk6OXC6Xzo2IkL+/v4qKiyVjlJObq6YOhwIDA3XM6ZSfn5+ynE5lZ2cr+rzzFBIScvLvgs2mQLtdNptNRUVFysvL0969exUUFHRyXOx2+fv7q6CgQAcPHtR555+vE7m52r17t6JatNCl7dqpUaNGOvrHHzqRm6v9KSm6tF07GWPUJDRUgXa7iouLdfDQIfk3bqwTeXmKiopSamqqfv31V7W95BJlZmbq0vbt5efnp+zjx9XIz09hYWHav2+fsrOzlZ+fr27du8t57JgaNWqkPJdLxUVFsjVqpJDgYO3bt08ul0vNzjlHjWw2/ZGZqXMjItSkSRM1+u86s7Ky1KpVK+m/r3Fjf39lZmbKHhCg348ePfk7X1Cg5s2bKzQ0VOnp6Qr979+nxn5+stvtyvvv+dGuvDyFh4eruLhY9sBAHTp4UGFhYcr/798yW6NGOjciQr///ruKiotliot14sQJXXjRRcrJyZF/48bW6xMUFKTc3FylHz6skOBg5eTkKLJ5cxUWFCgnN1f2gAA19veXzWZT3okTatasmYKDg2UkpaSkKO/ECZ0TEXHymgeSXPn5amSzKaRJExUUFFjXQMjPz1dwUJD1ni4uLlZRYaFcLpdycnIU9N/fvZzcXOt39sSJE3I4HNZtdwICAhQUFGT9fTx+/LjOO++8k7/LxignJ0cHDx1Ss/Bw2Ww2NW/eXNk5OTp48KByc3IUGRmpoOBghYaG6lhmpk6cOKFiY1SQn6/zzjtPzqwsBQUFKTg4WAH+/jqRl6ec7GwVFBYqLCxMIcHBcrlc+iMzU6FNmigsLEwul0vZ2dkqKCiQMUZRUVGy2WzWedHBISHKzctT6Cnn5temrKwsORwO73zG9TEEQi86dOiQzjvvPK1evVo9evSw5k+ZMkXvv/++du7cWeo5kyZN0rPPPltqPoEQAAAA1apRI+nzz72yaQJh7Wl85iaoae5qhJv57+XAyzJx4kQlJCRYj90VQq+47baTEwAAAIB6iUDoRREREfLz81N6errH/IyMDDVv3rzM59jtduuwLAAAAAA4G9yH0IsCAgLUuXNnLV261GP+0qVLPQ4hBQAAAICaQIXQyxISEhQXF6cuXbqoe/fuevvtt5WSkqL77rvP210DAAAA0MARCL3stttu09GjRzV58mSlpaUpJiZGixcvtq7mBQAAAAA1hauM1nNcgQkAAAANDZ9xaw/nEAIAAACAjyIQAgAAAICPIhACAAAAgI8iEAIAAACAjyIQAgAAAICPIhACAAAAgI/iPoT1nPuuIVlZWV7uCQAAAFA93J9tuUNezSMQ1nPHjx+XJLVs2dLLPQEAAACq1/Hjx+VwOLzdjQaNG9PXc8XFxTp06JBCQ0Nls9m83Z1Ky8rKUsuWLZWamspNR88C41g9GMfqw1hWD8axejCO1YexrB6M45kZY3T8+HFFR0erUSPOcqtJVAjruUaNGun888/3djfOWlhYGH8QqwHjWD0Yx+rDWFYPxrF6MI7Vh7GsHozj6VEZrB3EbQAAAADwUQRCAAAAAPBRBEJ4ld1u1zPPPCO73e7trtRrjGP1YByrD2NZPRjH6sE4Vh/GsnowjqhLuKgMAAAAAPgoKoQAAAAA4KMIhAAAAADgowiEAAAAAOCjCIQAAAAA4KMIhKhxK1eu1ODBgxUdHS2bzabPP//cY7kxRpMmTVJ0dLSCgoLUu3dvbdu2zTudrcOmTp2qq6++WqGhoYqMjNRNN92knTt3erRhLCvmjTfe0OWXX27dELh79+765ptvrOWMY9VMnTpVNptN48aNs+Yxlmc2adIk2Ww2jykqKspazhhWzsGDBzVy5Eidc845Cg4O1hVXXKFNmzZZyxnPM2vdunWp96TNZtOYMWMkMYYVVVhYqKeeekpt2rRRUFCQLrzwQk2ePFnFxcVWG8YSdQGBEDUuJydHnTp10uzZs8tc/tJLL2nGjBmaPXu2NmzYoKioKPXt21fHjx+v5Z7WbT/88IPGjBmjpKQkLV26VIWFherXr59ycnKsNoxlxZx//vl64YUXtHHjRm3cuFF//vOfdeONN1r/hBnHytuwYYPefvttXX755R7zGcuKueyyy5SWlmZNW7ZssZYxhhWXmZmpnj17yt/fX9988422b9+u6dOnq2nTplYbxvPMNmzY4PF+XLp0qSTp1ltvlcQYVtSLL76oN998U7Nnz9aOHTv00ksv6eWXX9asWbOsNowl6gQD1CJJZuHChdbj4uJiExUVZV544QVrXl5ennE4HObNN9/0Qg/rj4yMDCPJ/PDDD8YYxvJshYeHm3/+85+MYxUcP37cXHLJJWbp0qWmV69e5uGHHzbG8J6sqGeeecZ06tSpzGWMYeU89thj5tprry13OeNZNQ8//LC56KKLTHFxMWNYCQMHDjR33nmnx7yhQ4eakSNHGmN4P6LuoEIIr9q7d6/S09PVr18/a57dblevXr20Zs0aL/as7nM6nZKkZs2aSWIsq6qoqEgLFixQTk6OunfvzjhWwZgxYzRw4EDdcMMNHvMZy4rbvXu3oqOj1aZNGw0fPlx79uyRxBhW1pdffqkuXbro1ltvVWRkpK688krNmTPHWs54Vl5+fr7mzZunO++8UzabjTGshGuvvVbLly/Xrl27JEk///yzVq1apf/zf/6PJN6PqDsae7sD8G3p6emSpObNm3vMb968ufbv3++NLtULxhglJCTo2muvVUxMjCTGsrK2bNmi7t27Ky8vT02aNNHChQvVoUMH658w41gxCxYs0E8//aQNGzaUWsZ7smK6du2qDz74QG3bttXhw4f13HPPqUePHtq2bRtjWEl79uzRG2+8oYSEBD3xxBNav369xo4dK7vdrr/85S+MZxV8/vnnOnbsmEaPHi2J3+vKeOyxx+R0OnXppZfKz89PRUVFev7553X77bdLYixRdxAIUSfYbDaPx8aYUvPw/z344IP65ZdftGrVqlLLGMuKadeunZKTk3Xs2DF9+umnGjVqlH744QdrOeN4ZqmpqXr44YeVmJiowMDActsxlqcXGxtr/dyxY0d1795dF110kd5//31169ZNEmNYUcXFxerSpYumTJkiSbryyiu1bds2vfHGG/rLX/5itWM8K+6dd95RbGysoqOjPeYzhmf28ccfa968efroo4902WWXKTk5WePGjVN0dLRGjRpltWMs4W0cMgqvcl9Jz/0tmVtGRkapb8xw0kMPPaQvv/xS33//vc4//3xrPmNZOQEBAbr44ovVpUsXTZ06VZ06ddKrr77KOFbCpk2blJGRoc6dO6tx48Zq3LixfvjhB7322mtq3LixNV6MZeWEhISoY8eO2r17N+/HSmrRooU6dOjgMa99+/ZKSUmRxN/Jytq/f7+WLVumu+++25rHGFbcI488oscff1zDhw9Xx44dFRcXp7/97W+aOnWqJMYSdQeBEF7Vpk0bRUVFWVcwk06er/DDDz+oR48eXuxZ3WOM0YMPPqjPPvtM3333ndq0aeOxnLE8O8YYuVwuxrESrr/+em3ZskXJycnW1KVLF91xxx1KTk7WhRdeyFhWgcvl0o4dO9SiRQvej5XUs2fPUrfj2bVrl1q1aiWJv5OV9d577ykyMlIDBw605jGGFZebm6tGjTw/avv5+Vm3nWAsUWd46WI28CHHjx83mzdvNps3bzaSzIwZM8zmzZvN/v37jTHGvPDCC8bhcJjPPvvMbNmyxdx+++2mRYsWJisry8s9r1vuv/9+43A4zIoVK0xaWpo15ebmWm0Yy4qZOHGiWblypdm7d6/55ZdfzBNPPGEaNWpkEhMTjTGM49k49SqjxjCWFTF+/HizYsUKs2fPHpOUlGQGDRpkQkNDzb59+4wxjGFlrF+/3jRu3Ng8//zzZvfu3Wb+/PkmODjYzJs3z2rDeFZMUVGRueCCC8xjjz1WahljWDGjRo0y5513nvn666/N3r17zWeffWYiIiLMo48+arVhLFEXEAhR477//nsjqdQ0atQoY8zJyy4/88wzJioqytjtdvOnP/3JbNmyxbudroPKGkNJ5r333rPaMJYVc+edd5pWrVqZgIAAc+6555rrr7/eCoPGMI5no2QgZCzP7LbbbjMtWrQw/v7+Jjo62gwdOtRs27bNWs4YVs5XX31lYmJijN1uN5deeql5++23PZYznhXz7bffGklm586dpZYxhhWTlZVlHn74YXPBBReYwMBAc+GFF5onn3zSuFwuqw1jibrAZowxXilNAgAAAAC8inMIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBH/T9DgK6922KnzAAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p = PowderPattern()\n", "if not os.path.exists(\"cime.dat\"):\n", " os.system(\"curl -O https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-cimetidine/cime.dat\")\n", "p.ImportPowderPatternFullprof(\"cime.dat\")\n", "p.SetWavelength(1.52904)\n", "\n", "p.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find peaks & index the reflections\n", "In this case the peaks are automatically found without any parasitic phase.\n", "\n", "And the unit cell is also indexed without any ambiguity. This uses the dichotomy in volume approach (Louër & Boultif).\n", "\n", "... It is not always that easy !" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Peak dobs=0.10632+/-0.00011 iobs=2.146855e+04 (? ? ?))\n", "Peak dobs=0.11354+/-0.00011 iobs=4.111350e+03 (? ? ?))\n", "Peak dobs=0.14620+/-0.00011 iobs=9.429778e+04 (? ? ?))\n", "Peak dobs=0.15277+/-0.00011 iobs=1.388049e+03 (? ? ?))\n", "Peak dobs=0.16177+/-0.00011 iobs=1.420839e+03 (? ? ?))\n", "Peak dobs=0.16602+/-0.00014 iobs=1.141690e+05 (? ? ?))\n", "Peak dobs=0.18616+/-0.00011 iobs=1.609675e+05 (? ? ?))\n", "Peak dobs=0.18839+/-0.00011 iobs=4.474511e+04 (? ? ?))\n", "Peak dobs=0.18984+/-0.00011 iobs=1.839251e+05 (? ? ?))\n", "Peak dobs=0.20064+/-0.00011 iobs=1.290410e+05 (? ? ?))\n", "Peak dobs=0.20760+/-0.00011 iobs=1.182234e+05 (? ? ?))\n", "Peak dobs=0.21186+/-0.00006 iobs=2.198665e+03 (? ? ?))\n", "Peak dobs=0.21262+/-0.00011 iobs=8.717511e+03 (? ? ?))\n", "Peak dobs=0.21507+/-0.00011 iobs=1.818877e+04 (? ? ?))\n", "Peak dobs=0.22072+/-0.00008 iobs=2.098754e+04 (? ? ?))\n", "Peak dobs=0.22153+/-0.00011 iobs=6.288388e+04 (? ? ?))\n", "Peak dobs=0.22394+/-0.00011 iobs=1.562582e+05 (? ? ?))\n", "Peak dobs=0.22705+/-0.00014 iobs=3.681909e+03 (? ? ?))\n", "Peak dobs=0.23104+/-0.00011 iobs=2.493547e+04 (? ? ?))\n", "Peak dobs=0.23505+/-0.00011 iobs=1.279133e+03 (? ? ?))\n", "Predicting volumes from 20 peaks between d=94.058 and d= 4.254\n", "\n", "Starting indexing using 20 peaks\n", " CUBIC P : V= 4699 -> 52534 A^3, max length=112.36A\n", " -> 0 sols in 0.00s, best score= 0.0\n", "\n", " TETRAGONAL P : V= 1744 -> 12585 A^3, max length= 69.78A\n", " -> 0 sols in 0.01s, best score= 0.0\n", "\n", "RHOMBOEDRAL P : V= 1932 -> 13204 A^3, max length= 70.91A\n", " -> 0 sols in 0.00s, best score= 0.0\n", "\n", " HEXAGONAL P : V= 2382 -> 17415 A^3, max length= 77.76A\n", " -> 0 sols in 0.02s, best score= 0.0\n", "\n", "ORTHOROMBIC P : V= 1014 -> 6526 A^3, max length= 56.06A\n", " -> 1 sols in 0.03s, best score= 7.3\n", "\n", " MONOCLINIC P : V= 756 -> 4210 A^3, max length= 48.44A\n", " -> 1 sols in 0.01s, best score= 130.0\n", "\n", "Solutions:\n", "( 6.83 18.82 10.39 90.0 106.4 90.0 V=1281 MONOCLINIC P, 130.0296630859375)\n" ] } ], "source": [ "# Index\n", "pl = p.FindPeaks(1.5, -1, 1000)\n", "if len(pl) > 20:\n", " pl.resize(20) # Only keep 20 peaks\n", "for peak in pl:\n", " print(peak)\n", "\n", "ex = quick_index(pl)\n", "\n", "print(\"Solutions:\")\n", "for s in ex.GetSolutions():\n", " print(s)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a crystal phase using the indexed unit cell" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "bb14d41c8eb247b58211bd24e5aa93e1", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACoNklEQVR4nOzde1yP9/8/8EdnRb1FUo3FZiMyGYWY5BAmjG2xFGHNhOZTZLZsjc9ic57TzNfHIVnGmONSThlKUbZCtA05hemcju+u3x/93te6er9Lh3eletxvt26frut6Xdf1uq6yz/vZ6/V6PjUEQRBARERERERETY5mfXeAiIiIiIiI6gcDQiIiIiIioiaKASEREREREVETxYCQiIiIiIioiWJASERERERE1EQxICQiIiIiImqiGBASERERERE1UQwIiYiIiIiImigGhERERERERE0UA0IiIiIiIqImigEhERERERFRE8WAkIiIiIiIqIliQEhERERERNREMSAkIiIiIiJqohgQEhERERERNVEMCImIiIiIiJooBoRERERERERNFANCIiIiIiKiJooBIRERERERURPFgJCIiIiIiKiJYkBIRNUyadKk+u4CEREREdWQdn13gIhebH5+fkr7BEHAhQsX6qE3RERERKRODAiJqELBwcHYvXu30v7Tp0/XQ2+IiIiISJ0YEBJRhaZNmwYrKyuYmppK9k+ePLmeekRERERE6qIhCIJQ350gIiIiIiKiusekMkRERERERE0UA0IiIiIiIqImigEhEVVZXFxcfXeBiIiIiNSASWWIqEIbN26UbAuCgE2bNsHLywteXl711CsiIiIiUgeOEBJRhTZs2IAjR47AwMAAzZs3R4sWLaCpqYkWLVrUd9eIiIiIqIYYEBJRhRISEuDm5oaDBw9CV1cX7u7uaNeuHctOEBERETUCLDtBRJVSXFyM4OBg7NmzB48fP0Z0dHR9d4mIiIiIaogBIRFVSWpqKvLy8mBhYVHfXSEiIiKiGuKUUSKqkvfee4/BIBEREVEjwYCQiKqEkwqIiIiIGg9OGSWiKklLS4OxsXF9d4OIiIiI1IABIRERERERURPFKaNERERERERNFANCIqqWlJSU+u4CEREREdUQA0IiqhYWpiciIiJq+LTruwNE9GKzs7NT2icIApKSkuqhN0RERESkTgwIiahCWVlZiI+Ph7a29D8Xw4YNq6ceEREREZG6cMooEVUoMDAQWVlZSvv9/f3roTdEREREpE4sO0FEVZKYmIguXbrUdzeIiIiISA0a1Qjh2bNnMXr0aFhYWEBDQwO//PKL5LiGhobKr+XLl4ttBg0apHR84sSJkuukpaXB3d0dMpkMMpkM7u7uSE9Pl7RJTk7G6NGj0bx5c5iYmMDb2xsFBQWSNvHx8XBwcIC+vj5eeuklLF68GIzP6UXn5eVV310gIiIiIjVpVGsIc3Jy0KNHD0ydOhXvvvuu0vGHDx9Ktn/99VdMnz5dqa2npycWL14sbuvr60uOu7q64t69ewgNDQUAfPTRR3B3d8fhw4cBAHK5HKNGjUKbNm1w7tw5PH36FFOmTIEgCFi3bh0AIDMzE8OGDYOjoyNiYmJw8+ZNeHh4oHnz5vD19a35yyCqJTo6OvXdBSIiIiJSk0Y7ZVRDQwMHDhzAO++8U26bd955B1lZWTh58qS4b9CgQbCxscGaNWtUnnP9+nV07doVUVFR6NOnDwAgKioK/fr1Q2JiIjp37oxff/0Vzs7OuHv3LiwsLAAAISEh8PDwwOPHj2FkZIRNmzZh4cKFePToEfT09AAAy5Ytw7p163Dv3j1oaGhU6jmLi4vx4MEDGBoaVvocIiIiIqIXmSAIyMrKgoWFBTQ1G9WkxhdOoxohrIpHjx7h6NGj2LFjh9Kx4OBg7Nq1C23btsXIkSPx5ZdfwtDQEAAQGRkJmUwmBoMA0LdvX8hkMly4cAGdO3dGZGQkrK2txWAQAIYPH478/HxcvnwZjo6OiIyMhIODgxgMKtosXLgQt2/fRseOHVX2Oz8/H/n5+eL2/fv30bVr1xq/DyIiIiKiF83du3fRrl27+u5Go9ZkA8IdO3bA0NAQ48ePl+yfNGkSOnbsCDMzMyQkJGDhwoX4/fffER4eDgBISUmBqamp0vVMTU2RkpIitmnbtq3kuLGxMXR1dSVtOnToIGmjOCclJaXcgHDp0qX46quvlPbfvXsXRkZGlXhyIiIiIqIXW2ZmJtq3by8OylDtabIB4f/+9z9MmjQJzZo1k+z39PQUv7e2tsZrr72G3r17IzY2Fm+++SYAqJyaKQiCZH912ihm71Y09XPhwoXw8fERtxX/WIyMjGBkZIQzZ87A3d0dAQEBmD59OgYNGgS5XI7c3Fx89NFH+Oijj8Rzs7KyMHToUFy9ehVRUVGwtrYGADg5OSE1NRWXLl0qtx9ERERERLWNS6JqX5OckPvbb7/hxo0b+PDDD5/b9s0334SOjg6SkpIAAGZmZnj06JFSuydPnogjfGZmZuJIoEJaWhoKCwsrbPP48WMAUBpdLE1PT08M/hRfZU2YMAHTp08Xt3/99Vf89ttvCAwMRGFhobhfX18fR44cwXvvvSc5PywsrNz7ExERERFR49EkA8KtW7eiV69e6NGjx3PbXr16FYWFhTA3NwcA9OvXDxkZGYiOjhbbXLx4ERkZGbC3txfbJCQkSLKahoWFQU9PD7169RLbnD17VlKKIiwsDBYWFkpTSdVBX18f5ubmSE1NFfdpa2ujTZs2ar8XERERERE1DI0qIMzOzsaVK1dw5coVAMCtW7dw5coVJCcni20yMzOxd+9elaODf/31FxYvXoxLly7h9u3bOHbsGN5//3307NkT/fv3BwBYWVlhxIgR8PT0RFRUFKKiouDp6QlnZ2d07twZQMmUy65du8Ld3R1xcXE4efIk5s2bB09PT3FEz9XVFXp6evDw8EBCQgIOHDiAwMBA+Pj41MrQ+D///INHjx4xACQiIiIiIlGjWkN46dIlODo6ituKtXZTpkzB9u3bAZSUfxAEAR988IHS+bq6ujh58iTWrl2L7OxstG/fHqNGjcKXX34JLS0tsV1wcDC8vb3h5OQEABgzZgzWr18vHtfS0sLRo0fh5eWF/v37Q19fH66urlixYoXYRiaTITw8HLNmzULv3r1hbGwMHx8fyfpAdRk5ciQ0NTWxdu1apu0lIiIiqkVyuVyyRIdU09HRkXy+pvrTqALCQYMG4XllFcsmVimtffv2iIiIeO59WrVqhV27dlXY5uWXX8aRI0cqbNO9e3ecPXv2uferqV9//RUtWrSo9fsQERERNVWCICAlJQXp6en13ZUGo2XLljAzM2PimHrWqAJCqrq3334bV65cwY0bNzBjxgx4eHjUd5eIiIiIGhxFMGhqagoDAwMGORUQBAHPnj0TEyoqcnVQ/WBA2Mg0a9YM4eHh2Lp1K6ZPn44zZ85U2P7YsWNK+5ycnGBhYVFLPSQiIiJqXORyuRgMtm7dur670yDo6+sDKMmyb2pqyumj9YgBYSPTt29f/P777zW6BstOEBEREVWeYs2ggYFBPfekYVG8r8LCQgaE9YgZRoiIiIiI1IDTRKuG7+vFwICQiKpl0qRJ9d0FIiIiIqohThklogr5+flJtnNzcxEVFYV//vmnnnpEREREdeHMmTNwdHREWloaWrZsWd/doVrCgJCIKhQcHIzdu3eL2ytWrMClS5fQtWvXeuwVEREREakDA0IiqtC0adNgZWUFU1NTABCDw9GjR9dnt4iIiIhIDbiGkIgqtGTJEjEYLI1rCImIiBq+/Px8eHt7w9TUFM2aNcOAAQMQExMjaXP+/Hn06NEDzZo1Q58+fRAfHy8eu3PnDkaPHg1jY2M0b94c3bp1U1nWjF5cDAiJiIiIiJooPz8//Pzzz9ixYwdiY2PRqVMnDB8+HKmpqWKb+fPnY8WKFYiJiYGpqSnGjBkjltqYNWsW8vPzcfbsWcTHx+Obb75BixYt6utxqBo4ZZSIqkUQhPruAhER0Qvt2bNnSExMrPP7dunSpVI1EXNycrBp0yZs374dI0eOBABs2bIF4eHh2Lp1K2xtbQEAX375JYYNGwYA2LFjB9q1a4cDBw7AxcUFycnJePfdd9G9e3cAwCuvvFJLT0W1hQEhEREREVEtSExMRK9ever8vpcvX8abb7753HZ//fUXCgsL0b9/f3Gfjo4O7OzscP36dTEg7Nevn3i8VatW6Ny5M65fvw4A8Pb2xsyZMxEWFoahQ4fi3XffxRtvvKHmJ6LaxICQiCq0ceNGyfbVq1cBAHv27OF/8ImIiCrQpUsXXL58uV7uWxmK2T5lC8QLgvDcovGK4x9++CGGDx+Oo0ePIiwsDEuXLsXKlSsxZ86cavSc6gMDQiKq0IYNG2BpaQkXFxdoaGhAR0cHACo1FYWIiKgpMzAwqNRIXX3p1KkTdHV1ce7cObi6ugIACgsLcenSJcydO1dsFxUVhZdffhkAkJaWhps3b0qCzvbt2+Pjjz/Gxx9/jIULF2LLli0MCBsQJpUhogolJCTAzc0NBw8ehK6uLl5//XUALDtBRETU0DVv3hwzZ87E/PnzERoaimvXrsHT0xPPnj3D9OnTxXaLFy/GyZMnkZCQAA8PD5iYmOCdd94BAMydOxfHjx/HrVu3EBsbi1OnTsHKyqqenoiqgyOERFQhDQ0NuLq6YuLEiQgODkZoaGh9d4mIiIjUZNmyZSguLoa7uzuysrLQu3dvHD9+HMbGxpI2n3zyCZKSktCjRw8cOnQIurq6AAC5XI5Zs2bh3r17MDIywogRI7B69er6ehyqBg2BqQIbtMzMTMhkMmRkZMDIyKi+u0NNwIwZM/DDDz/gypUr6NGjR313h4iIqN7l5eXh1q1b6NixI5o1a1bf3WkwKnpv/IxbdzhllIiq5HmLzImIiIio4WBASERERERE1EQxICSiKlGMEP7zzz/13BMiIiIiqikGhERUJYplx/7+/vXcEyIiIiKqKWYZJaIK2dnZSbZv374NoKQcBRERERE1bBwhJKIKZWVl4cKFC4iOjkZ0dDTeffddAEC3bt3quWdEREREVFMMCImoQoGBgcjKylLa7+npWQ+9ISIiIiJ14pRRIqrQuHHjJNtpaWkAgN69e9dHd4iIiIhIjThCSERV8ttvvwH4N7kMERERNU0BAQGwsbGp725QDTEgJKIq0dTkfzaIiIiIGgt+siOiKnF2dq7vLhARERGRmjAgJKIqURSmJyIiooavuLgY33zzDTp16gQ9PT28/PLL+PrrrwEACxYswOuvvw4DAwO88sorWLRoEQoLCyu83v/+9z9069YNenp6MDc3x+zZs+viMagGmFSGiIiIiKiJWrhwIbZs2YLVq1djwIABePjwIRITEwEAhoaG2L59OywsLBAfHw9PT08YGhrCz89P5bU2bdoEHx8fLFu2DCNHjkRGRgbOnz9fl49D1cCAkIiIiIioCcrKysLatWuxfv16TJkyBQDw6quvYsCAAQAAf39/sW2HDh3g6+uLPXv2lBsQ/ve//4Wvry8++eQTcZ+trW0tPgGpQ6OaMnr27FmMHj0aFhYW0NDQwC+//CI57uHhAQ0NDclX3759JW3y8/MxZ84cmJiYoHnz5hgzZgzu3bsnaZOWlgZ3d3fIZDLIZDK4u7sjPT1d0iY5ORmjR49G8+bNYWJiAm9vbxQUFEjaxMfHw8HBAfr6+njppZewePFiZm6kBoO/q0RERM/x7BkQG1v3X8+eVap7169fR35+PoYMGaLy+L59+zBgwACYmZmhRYsWWLRoEZKTk1W2ffz4MR48eFDutejF1ahGCHNyctCjRw9MnToV7777rso2I0aMwLZt28RtXV1dyfG5c+fi8OHDCAkJQevWreHr6wtnZ2dcvnwZWlpaAABXV1fcu3cPoaGhAICPPvoI7u7uOHz4MABALpdj1KhRaNOmDc6dO4enT59iypQpEAQB69atAwBkZmZi2LBhcHR0RExMDG7evAkPDw80b94cvr6+an83RERERFTHEhOBXr3q/r6XLwNvvvncZvr6+uUei4qKwsSJE/HVV19h+PDhkMlkCAkJwcqVK6t8LXqxNaqAcOTIkRg5cmSFbfT09GBmZqbyWEZGBrZu3YqgoCAMHToUALBr1y60b98eJ06cwPDhw3H9+nWEhoYiKioKffr0AQBs2bIF/fr1w40bN9C5c2eEhYXh2rVruHv3LiwsLAAAK1euhIeHB77++msYGRkhODgYeXl52L59O/T09GBtbY2bN29i1apV8PHxYeIOIiIiooauS5eS4Kw+7lsJr732GvT19XHy5El8+OGHkmPnz5+HpaUlPv/8c3HfnTt3yr2WoaEhOnTogJMnT8LR0bF6/aZ60agCwso4c+YMTE1N0bJlSzg4OODrr7+GqakpAODy5csoLCyEk5OT2N7CwgLW1ta4cOEChg8fjsjISMhkMjEYBIC+fftCJpPhwoUL6Ny5MyIjI2FtbS0GgwAwfPhw5Ofn4/Lly3B0dERkZCQcHBygp6cnabNw4ULcvn0bHTt2VNn//Px85Ofni9uZmZlqezdEREREpEYGBpUaqasvzZo1w4IFC+Dn5wddXV30798fT548wdWrV9GpUyckJycjJCQEtra2OHr0KA4cOFDh9QICAvDxxx/D1NQUI0eORFZWFs6fP485c+bU0RNRdTSqNYTPM3LkSAQHB+PUqVNYuXIlYmJiMHjwYDHASklJga6uLoyNjSXntW3bFikpKWIbRQBZmqmpqaRN27ZtJceNjY2hq6tbYRvFtqKNKkuXLhXXLspkMrRv374qr4CIiIiISLRo0SL4+vriiy++gJWVFSZMmIDHjx9j7Nix+M9//oPZs2fDxsYGFy5cwKJFiyq81pQpU7BmzRps3LgR3bp1g7OzM5KSkuroSai6mtQI4YQJE8Tvra2t0bt3b1haWuLo0aMYP358uecJgiCZwqlqOqc62iiSdFQ0XXThwoXw8fERtzMzMxkUEhEREVG1aGpq4vPPP5dMDVX49ttv8e2330r2zZ07V/w+ICAAAQEBkuMzZszAjBkzaqOrVEua1AhhWebm5rC0tBT/cmFmZoaCggKkpaVJ2j1+/FgcvTMzM8OjR4+UrvXkyRNJm7KjfGlpaSgsLKywzePHjwFAaeSwND09PRgZGUm+iIiIiIiIqqNJB4RPnz7F3bt3YW5uDgDo1asXdHR0EB4eLrZ5+PAhEhISYG9vDwDo168fMjIyEB0dLba5ePEiMjIyJG0SEhLw8OFDsU1YWBj09PTQ6/9nmurXrx/Onj0rKUURFhYGCwsLdOjQodaemYiIiIiISKFRBYTZ2dm4cuUKrly5AgC4desWrly5guTkZGRnZ2PevHmIjIzE7du3cebMGYwePRomJiYYN24cAEAmk2H69Onw9fXFyZMnERcXBzc3N3Tv3l3MOmplZYURI0bA09MTUVFRiIqKgqenJ5ydndG5c2cAgJOTE7p27Qp3d3fExcXh5MmTmDdvHjw9PcURPVdXV+jp6cHDwwMJCQk4cOAAAgMDmWGUXnj8/SQiIiJqPBrVGsJLly5J0twq1tpNmTIFmzZtQnx8PHbu3In09HSYm5vD0dERe/bsgaGhoXjO6tWroa2tDRcXF+Tm5mLIkCHYvn27WIMQAIKDg+Ht7S1mIx0zZgzWr18vHtfS0sLRo0fh5eWF/v37Q19fH66urlixYoXYRiaTITw8HLNmzULv3r1hbGwMHx8fyfpAIiIiIiKi2qQhKDKZUIOUmZkJmUyGjIwMriekOjFr1ixs3LgRsbGx6NmzZ313h4iIqN7l5eXh1q1b6NixI5o1a1bf3WkwKnpv/IxbdxrVlFEiqjv8WxIREZEU/7+xavi+XgwMCImIiIiIakBHRwcA8OzZs3ruScOieF+K90f1o1GtISQiIiIiqmtaWlpo2bKlWELMwMCASdgqIAgCnj17hsePH6Nly5aSXB1U9xgQElGV8P/giIiIlJmZmQH4t640PV/Lli3F90b1hwEhEREREVENaWhowNzcHKampigsLKzv7rzwdHR0ODL4gmBASERERESkJlpaWgx0qEFhUhkiqhZmBiMiIiJq+BgQEhERERERNVEMCImIiIiIiJooBoRERERERERNFANCIiIiIiKiJooBIRERERERURPFgJCIqoSF6YmIiIgaDwaERERERERETRQDQiIiIiIioiaKASERVQsL0xMRERE1fAwIiYiIiIiImigGhERERERERE0UA0IiqhJmGSUiIiJqPBgQEhERERERNVEMCImIiIiIiJooBoRERERERERNFANCIiIiIiKiJooBIRFVC+sQEhERETV8DAiJiIiIiIiaKAaERERERERETRQDQiIiIiIioiaKASEREREREVETxYCQiIiIiIioiWJASERVoqGhUd9dICIiIiI1aVQB4dmzZzF69GhYWFhAQ0MDv/zyi3issLAQCxYsQPfu3dG8eXNYWFhg8uTJePDggeQagwYNgoaGhuRr4sSJkjZpaWlwd3eHTCaDTCaDu7s70tPTJW2Sk5MxevRoNG/eHCYmJvD29kZBQYGkTXx8PBwcHKCvr4+XXnoJixcvZip/ajD4u0pERETU8DWqgDAnJwc9evTA+vXrlY49e/YMsbGxWLRoEWJjY7F//37cvHkTY8aMUWrr6emJhw8fil+bN2+WHHd1dcWVK1cQGhqK0NBQXLlyBe7u7uJxuVyOUaNGIScnB+fOnUNISAh+/vln+Pr6im0yMzMxbNgwWFhYICYmBuvWrcOKFSuwatUqNb4RIiIiIiKi8mnXdwfUaeTIkRg5cqTKYzKZDOHh4ZJ969atg52dHZKTk/Hyyy+L+w0MDGBmZqbyOtevX0doaCiioqLQp08fAMCWLVvQr18/3LhxA507d0ZYWBiuXbuGu3fvwsLCAgCwcuVKeHh44Ouvv4aRkRGCg4ORl5eH7du3Q09PD9bW1rh58yZWrVoFHx8fTsujFx5HCImIiIgavkY1QlhVGRkZ0NDQQMuWLSX7g4ODYWJigm7dumHevHnIysoSj0VGRkImk4nBIAD07dsXMpkMFy5cENtYW1uLwSAADB8+HPn5+bh8+bLYxsHBAXp6epI2Dx48wO3bt2vhaYmIiIiIiKQa1QhhVeTl5eHTTz+Fq6srjIyMxP2TJk1Cx44dYWZmhoSEBCxcuBC///67OLqYkpICU1NTpeuZmpoiJSVFbNO2bVvJcWNjY+jq6kradOjQQdJGcU5KSgo6duyost/5+fnIz88XtzMzM6v45ETqwRFCIiIiooavSQaEhYWFmDhxIoqLi7Fx40bJMU9PT/F7a2trvPbaa+jduzdiY2Px5ptvAlCdZVEQBMn+6rRRfMCuaLro0qVL8dVXX1X0eES1itOZiYiIiBqPJjdltLCwEC4uLrh16xbCw8Mlo4OqvPnmm9DR0UFSUhIAwMzMDI8ePVJq9+TJE3GEz8zMTBwJVEhLS0NhYWGFbR4/fgwASqOLpS1cuBAZGRni1927d5/zxETqpfjDBUcIiYiIiBq+JhUQKoLBpKQknDhxAq1bt37uOVevXkVhYSHMzc0BAP369UNGRgaio6PFNhcvXkRGRgbs7e3FNgkJCXj48KHYJiwsDHp6eujVq5fY5uzZs5JSFGFhYbCwsFCaSlqanp4ejIyMJF9ERERERETV0agCwuzsbFy5cgVXrlwBANy6dQtXrlxBcnIyioqK8N577+HSpUsIDg6GXC5HSkoKUlJSxKDsr7/+wuLFi3Hp0iXcvn0bx44dw/vvv4+ePXuif//+AAArKyuMGDECnp6eiIqKQlRUFDw9PeHs7IzOnTsDAJycnNC1a1e4u7sjLi4OJ0+exLx58+Dp6SkGcK6urtDT04OHhwcSEhJw4MABBAYGMsMovfAUv58cISQiIiJq+BpVQHjp0iX07NkTPXv2BAD4+PigZ8+e+OKLL3Dv3j0cOnQI9+7dg42NDczNzcUvRXZQXV1dnDx5EsOHD0fnzp3h7e0NJycnnDhxAlpaWuJ9goOD0b17dzg5OcHJyQlvvPEGgoKCxONaWlo4evQomjVrhv79+8PFxQXvvPMOVqxYIbZRlMG4d+8eevfuDS8vL/j4+MDHx6eO3hYRERERETV1GgL/zN+gZWZmQiaTISMjg9NHqU7MnTsXa9euxblz58SRcyIiIiJ14mfcutOoRgiJiIiIiIio8hgQElG1cHIBERERUcPHgJCIiIiIiKiJYkBIRFXCLKNEREREjQcDQiIiIiIioiaKASEREREREVETxYCQiKqFU0aJiIiIGj4GhERERERERE0UA0IiqhaOEBIRERE1fAwIiYiIiIiImigGhERULRwhJCIiImr4GBASERERERE1UQwIiahaOEJIRERE1PAxICQiIiIiImqiGBASUZVoaGgA4AghERERUWPAgJCIiIiIiKiJYkBIRNXCEUIiIiKiho8BIRERERERURPFgJCIqoUjhEREREQNHwNCIiIiIiKiJooBIRFViSLLKBERERE1fAwIiahaOGWUiIiIqOFjQEhERERERNREMSAkomrhCCERERFRw8eAkIiIiIiIqIliQEhE1cIRQiIiIqKGjwEhERERERFRE8WAkIiqhSOERERERA0fA0IiIiIiIqImigEhEVWJojA9RwiJiIiIGj4GhERERERERE1UowoIz549i9GjR8PCwgIaGhr45ZdfJMcFQUBAQAAsLCygr6+PQYMG4erVq5I2+fn5mDNnDkxMTNC8eXOMGTMG9+7dk7RJS0uDu7s7ZDIZZDIZ3N3dkZ6eLmmTnJyM0aNHo3nz5jAxMYG3tzcKCgokbeLj4+Hg4AB9fX289NJLWLx4MUddqMHg7yoRERFRw9eoAsKcnBz06NED69evV3n822+/xapVq7B+/XrExMTAzMwMw4YNQ1ZWlthm7ty5OHDgAEJCQnDu3DlkZ2fD2dkZcrlcbOPq6oorV64gNDQUoaGhuHLlCtzd3cXjcrkco0aNQk5ODs6dO4eQkBD8/PPP8PX1FdtkZmZi2LBhsLCwQExMDNatW4cVK1Zg1apVtfBmiIiIiIiIVBAaKQDCgQMHxO3i4mLBzMxMWLZsmbgvLy9PkMlkwvfffy8IgiCkp6cLOjo6QkhIiNjm/v37gqamphAaGioIgiBcu3ZNACBERUWJbSIjIwUAQmJioiAIgnDs2DFBU1NTuH//vtjmxx9/FPT09ISMjAxBEARh48aNgkwmE/Ly8sQ2S5cuFSwsLITi4uJKP2dGRoYAQLwuUW3z9fUVAAhHjhyp764QERFRI8XPuHWnUY0QVuTWrVtISUmBk5OTuE9PTw8ODg64cOECAODy5csoLCyUtLGwsIC1tbXYJjIyEjKZDH369BHb9O3bFzKZTNLG2toaFhYWYpvhw4cjPz8fly9fFts4ODhAT09P0ubBgwe4ffu2+l8AERERERFRGU0mIExJSQEAtG3bVrK/bdu24rGUlBTo6urC2Ni4wjampqZK1zc1NZW0KXsfY2Nj6OrqVthGsa1oo0p+fj4yMzMlX0R1iVlGiYiIiBqPJhMQKig+zCoIgqC0r6yybVS1V0cbxQfsivqzdOlSMZmNTCZD+/btK+w7ERERERFReZpMQGhmZgZAefTt8ePH4sicmZkZCgoKkJaWVmGbR48eKV3/yZMnkjZl75OWlobCwsIK2zx+/BiA8ihmaQsXLkRGRob4dffu3YofnIiIiIiIqBxNJiDs2LEjzMzMEB4eLu4rKChAREQE7O3tAQC9evWCjo6OpM3Dhw+RkJAgtunXrx8yMjIQHR0ttrl48SIyMjIkbRISEvDw4UOxTVhYGPT09NCrVy+xzdmzZyWlKMLCwmBhYYEOHTqU+xx6enowMjKSfBHVB04ZJSIiImr4GlVAmJ2djStXruDKlSsAShLJXLlyBcnJydDQ0MDcuXMRGBiIAwcOICEhAR4eHjAwMICrqysAQCaTYfr06fD19cXJkycRFxcHNzc3dO/eHUOHDgUAWFlZYcSIEfD09ERUVBSioqLg6ekJZ2dndO7cGQDg5OSErl27wt3dHXFxcTh58iTmzZsHT09PMYBzdXWFnp4ePDw8kJCQgAMHDiAwMBA+Pj7PncJKRERERESkDtr13QF1unTpEhwdHcVtHx8fAMCUKVOwfft2+Pn5ITc3F15eXkhLS0OfPn0QFhYGQ0ND8ZzVq1dDW1sbLi4uyM3NxZAhQ7B9+3ZoaWmJbYKDg+Ht7S1mIx0zZoyk9qGWlhaOHj0KLy8v9O/fH/r6+nB1dcWKFSvENjKZDOHh4Zg1axZ69+4NY2Nj+Pj4iH0metFxhJCIiIio4dMQ+KmuQcvMzIRMJkNGRganj1KdmD9/PlasWIGDBw9izJgx9d0dIiIiaoT4GbfuNKopo0RUd/i3JCIiIqKGjwEhERERERFRE8WAkIiqhSOERERERA0fA0IiIiIiIqImigEhEVWJoiwKRwiJiIiIGj4GhERERERERE0UA0IiqhaOEBIRERE1fAwIiWrRpEmT6rsLRERERETl0q7vDhA1Bn5+fkr7BEHAhQsX6qE3dYMjhEREREQNHwNCIjUIDg7G7t27lfafPn26HnpDRERERFQ5DAiJ1GDatGmwsrKCqampZP/kyZPrqUe1h1lGiYiIiBoPBoREarBkyRKV+729veu4J7WPgSARERFR48GkMkRERERERE0UA0IiqhJOGSUiIiJqPBgQEhERERERNVEMCInUIDw8HH369IG9vT1CQkLE/aNGjarHXtUujhASERERNXwMCInU4Msvv8Tx48dx4sQJREdHY86cOSguLsazZ8/qu2tEREREROViQEikBlpaWmjZsiUMDAywatUq9OrVC2PHjkV2dnZ9d63WcISQiIiIqOFjQEikBjY2Nrh9+7a47eHhAR8fH2RlZdVfp4iIiIiInoN1CInUYN26dZLt9PR0ODo6IjExsZ56VHuYZZSIiIio8eAIIVEtGD9+fH13gYiIiIjouRgQEtWCpjB61hSekYiIiKixY0BIVAv2799fZ/eaNGlSnd2LiIiIiBoXriEkKsekSZMQHBxcrXONjY3V3BvAz89PaZ8gCLhw4YLa71UZHCEkIiIiavgYEFKT96IFWuUJDg7G7t27lfafPn26HnpDRERERI0BA0Jq8moz0EpJSYGZmVmNrwMA06ZNg5WVFUxNTSX7J0+erJbrVxVHCImIiIgaPgaE1OTVZqA1efJkhIWF1fg6ALBkyRKV+729vdVyfSIiIiJqehgQUpOnjkDLzs5OaZ8gCEhKSqp2v4iIiIiIahsDQiI1yMrKQnx8PLS1pf+khg0bVk89qn2cMkpERETU8LHsBJEaBAYGIisrS2m/v79/PfTmxRYXFwdnZ2eMGzdOkrhn+vTp9dgrIiIioqaJASGRGowbN05SaiIxMREA4ODgoLZ7/PTTT+jZsyfc3NywY8cOdO7cGba2tjh06JDa7lEZGhoaAKo/Qujt7Y01a9Zg9erVWL16NVatWgUA+Pvvv9XWRyIiIiKqnCYXEHbo0AEaGhpKX7NmzQIAeHh4KB3r27ev5Br5+fmYM2cOTExM0Lx5c4wZMwb37t2TtElLS4O7uztkMhlkMhnc3d2Rnp4uaZOcnIzRo0ejefPmMDExgbe3NwoKCmr1+anynJycqn2ul5eXGntSYuXKlTh//jxWrlyJTz/9FNHR0Th37hyWL1+u9nvVJg0NDXTq1AkdOnTA3r17kZmZCU9PTxQVFdV314iIiIianCa3hjAmJgZyuVzcTkhIwLBhw/D++++L+0aMGIFt27aJ27q6upJrzJ07F4cPH0ZISAhat24NX19fODs74/Lly9DS0gIAuLq64t69ewgNDQUAfPTRR3B3d8fhw4cBAHK5HKNGjUKbNm1w7tw5PH36FFOmTIEgCFi3bl2tPT8pc3FxUdonCALi4+OrfU0dHZ2adEklfX19GBgYwMDAAEOGDIFMJgMApXWLdaW6I4Smpqa4ffs2OnToAAAICAjArl27EBQUpMbeEREREVFlNLmAsE2bNpLtZcuW4dVXX5VM7dPT0yu3dlxGRga2bt2KoKAgDB06FACwa9cutG/fHidOnMDw4cNx/fp1hIaGIioqCn369AEAbNmyBf369cONGzfQuXNnhIWF4dq1a7h79y4sLCwAlIwAeXh44Ouvv4aRkVFtPD6pEBMTg1OnTkFT898Bc0EQ4O7uXu1rHj9+XB1dk7CxsYFcLoeWlhZ27doFACgoKEDr1q3Vfq/atG/fPqV9bm5ucHNzq4feEBERETVtTW7KaGkFBQXYtWsXpk2bJq6LAoAzZ87A1NQUr7/+Ojw9PfH48WPx2OXLl1FYWCiZTmhhYQFra2sxQUZkZCRkMpkYDAJA3759IZPJJG2sra3FYBAAhg8fjvz8fFy+fLnWnpmUzZ8/H4aGhrC0tBS/OnTogNmzZ9d31yTWrFkjjkAr6Orqqgyw6gKzjBIRERE1fE1uhLC0X375Benp6fDw8BD3jRw5Eu+//z4sLS1x69YtLFq0CIMHD8bly5ehp6eHlJQU6OrqShKIAEDbtm2RkpICAEhJSVEqcg6UTJUr3aZt27aS48bGxtDV1RXbqJKfn4/8/HxxOzMzs8rPTVJl1/ulp6ejZcuWmDBhQj31iIiIiIiobjTpEcKtW7di5MiRklG6CRMmYNSoUbC2tsbo0aPx66+/4ubNmzh69GiF1xIEQTLKWPr7mrQpa+nSpWKiGplMhvbt21fYL6q68ePHV/mcppQQpaZZRlWJi4ur0bksY0FERERUPU12hPDOnTs4ceIE9u/fX2E7c3NzWFpaIikpCQBgZmaGgoICpKWlSUYJHz9+DHt7e7HNo0ePlK715MkTcVTQzMwMFy9elBxPS0tDYWGh0shhaQsXLoSPj4+4nZmZyaBQzSob6MTHx2PBggVIT0+HtrY2CgsLYWJigsDAQHTv3r2We/mvlJSUcte8vog2btwo2RYEAZs2bYKXl1e1srN6e3tj27Zt0NbWxvz58xEVFQUfHx+WsSAiIiKqhCY7Qrht2zaYmppi1KhRFbZ7+vQp7t69C3NzcwBAr169oKOjg/DwcLHNw4cPkZCQIAaE/fr1Q0ZGBqKjo8U2Fy9eREZGhqRNQkICHj58KLYJCwuDnp4eevXqVW5/9PT0YGRkJPki9XreHwkUvLy8sHnzZly4cAFnz55FZGQkNmzYUCslJyoyefLkOr2fQnVHCDds2IAjR47AwMAAzZs3R4sWLaCpqYkWLVpU63osY0FERERUfU1yhLC4uBjbtm3DlClTJCn7s7OzERAQgHfffRfm5ua4ffs2PvvsM5iYmGDcuHEAAJlMhunTp8PX1xetW7dGq1atMG/ePHTv3l3MOmplZYURI0bA09MTmzdvBlBSdsLZ2RmdO3cGUFLjrmvXrnB3d8fy5cuRmpqKefPmwdPTk0FePSu7PrQ8crlcLP2gYGRkJClrok52dnZK+wRBEEevG4qEhAT8+OOP2Lt3L1xcXDBhwgTs2bOn2oEty1gQERERVV+TDAhPnDiB5ORkTJs2TbJfS0sL8fHx2LlzJ9LT02Fubg5HR0fs2bMHhoaGYrvVq1dDW1sbLi4uyM3NxZAhQ7B9+3ZJBsjg4GB4e3uL2UjHjBmD9evXS+519OhReHl5oX///tDX14erqytWrFhRy09P6rJs2TI4OztDV1cXRkZGyMjIQFFREb755ptauV9WVhbi4+OV6g4OGzasVu73PNUdIdTQ0ICrqysmTpyI4OBgjBkzBv/880+1+8EyFkRERETVpyEwd3yDlpmZCZlMhoyMDI4sqlll1+bl5uYiPT0dxsbGaNasWa3158CBAxg0aJDSCGZERISkjmZt++yzz7B06VJs3bpV6Y8q1VFcXIyUlBRJciciIiJq2vgZt+402TWERM9T2SmM+vr6MDc3r3IwWNXsmOPGjZMEg4mJiQBQp8Fgaer6W5KmpiaDQSIiIqJ60iSnjBKVVl9r82qaHdPLywunTp2q1T42BBEREViyZAneeOMNjBgxAgsWLIBMJsPSpUvRr1+/+u4eERER0QuNASE1efW1Nk+RHRMA9u7di4CAgCplx9TR0anN7tWq/Px8XL16FampqWjVqhWsra2hq6tbrWstWLAAe/fuRXp6OpycnBATEwMDAwN06tQJqampau45ERERUePCKaPU5AUGBiIrK0tpv7+/f4XnhYeHo0+fPrC3t0dISIi4/3mlTBQU2TEVAgIC4ODggJiYmEqdf/z48Uq1U7eaFqYPCgqCo6MjduzYgYiICGzbtg2Ojo7YtWtXta73999/w9fXF0uWLIFcLoePjw9mzJiBnJycal2PiIiIqCnhCCE1eYqSIgqJiYno0qXLc9fmffnllzh+/Dh0dXXh7++P8+fPY+3atXj27JnYZtKkSQgODlZ5fkPNjlnTtYObN2/GuXPnoKn579+jioqKMGjQoGo9e05ODgIDAyUjpoWFhZJaoURERESkGkcIicqobGF5LS0ttGzZEgYGBtDW1sZff/2F1157DdevX4efnx/mz58vSRZTXVVNPlNXqhsY6uvrIyIiQnKdiIiIamdoXb58OVq2bAlLS0vxq1OnTti4cWO1rkdERETUlHCEkKiMyq7Ns7GxEQuiBwcHY/fu3YiLi8OqVavEaaOnT5+ucX9qmnzmRRMUFIRly5bB398fcrkcOjo66N27d7WnjJYXwLu6utakm0RERERNAgNCojIquzZv3bp14vfTpk2DlZUVHBwcMHfuXHF/ZUtXVKSmyWfUTTEyWN0RQjMzM6xZs0aNPSIiIiKi6uKUUSI1WLJkCUxNTZX2e3t7V/laTk5Oku2aJp9Rh6KiInHq6s8//yw5Vt9TV4mIiIio+hgQEtUTFxcXpa/3338f8fHxknb79u1Dhw4dJPvc3NyQl5cHoCRxTW2Ij4/H22+/DXt7ewwePBgODg549uwZbGxsAEBM2lLfU1fLy/Y6fPjweuwVERERUcPAKaNEapaSkgIzM7PntouJicGpU6ck2TYFQYC7u7vK9n5+fkr7BEFQS+IaVby8vLB79260b98eADBw4EBs374d/fv3BwDk5ubW69RVBS8vL+jo6EBXVxfr168Xs71GR0fXa7+IiIiIGgIGhERqNnnyZISFhT233fz582FoaAgTExPJ/tmzZ6tsr0hcU5Y6EteoIpfLIZPJxG1TU1Okp6ejuLgYAODs7IwWLVogKCioVu5fWY8ePcLTp0+ho6OD7777Djt37oSzszPkcnm99ouIiIioIWBASFRNdnZ24vcZGRm4f/8+AIgBE1BSpP7o0aMqzy8vO+aECRNU7lckrim7VlEdiWtUWbZsGZydnaGrqwsjIyNkZGRgzpw5cHBwwI8//gigenUT4+LisGjRIujo6GD+/Pmwt7cHULIWcevWrVXuZ/PmzXH//n106NAB3t7esLKywrx585Cfn1/laxERERE1NVxDSI1aba2vA4CsrCxcuHAB0dHRaN26Ne7du4fHjx+jTZs2mDNnDp4+fSopUl9TZRPXKJLPVCdxTWUMHDgQZ8+exeHDh7FhwwYcPXoUERER4hTS6mYZ9fb2xpo1a7B69WqsXr0aq1atAlD9tYhz5syRbNva2mL37t1wdHSs1vWIiIiImhKOEFKjUNfr6wAgMDAQWVlZMDY2FovUA8DOnTtx69YtmJiYwNzcvMb3cXFxUdonCIJS8pnaoq+vD319fbVdT91lND777DPJ9ogRIxAVFYXQ0NAa95WIiIiosWNASI1CXa+vA4Bx48aJ35cuUu/g4AAHBwdMnToVqampFV4jPz8fV69eRWpqKlq1agVra2vo6upK2lQ1+Uxtq2kdQkUZDUXm1ICAAOzatUttaxFv3LihlusQERERNQUMCKlRqOv1dWWVLlIP/BssdevWrdxzgoKCsGnTJtja2sLIyAjp6emIjY3FzJkzJevyqpp8prb89NNP+OKLL8TA9KuvvsK2bduwaNEijBkzptLX2bdvn9K+6qxFLE/Pnj3Vch0iIiKipkBDqO6f+emFkJmZCZlMhoyMDBgZGdV3d+j/Ky4uhpaWFnr27InY2FiVbQYMGICzZ89KRv6KioowaNAgnDt3Tqn9Tz/9hKVLl6Jbt24YNmwYAgMDYWRkVOWArLI2btwo2f72229hYGAAExMT/Pbbb1i+fDnmzJmDoUOH4rffflP7/aujqKgI2tr8OxcREVFDx8+4dYefnIhqQWX+zqKvr4+IiAgx+YkgCIiIiECzZs1Utl+5ciXOnz+PrKws2NjYIDExEc2aNcPQoUNrJSDcsGEDLC0t4eLiAg0NDTRr1gza2tpo0aKF2H89Pb16D8Di4+OxYMECpKenQ1tbG4WFhTAxMUFgYCC6d+9er30jIiIietExICRSg7IjU4qAsKCgoNxzgoKCsGzZMvj7+0Mul0NHRwe9e/fGrl27VLbX19eHgYEBDAwMMGTIELFGYG0FZAkJCfjxxx+xd+9euLi4YPjw4bh58ya6deuGX3/9FUDJ87Vu3brG94qLi6v2VE8vLy9s27YNmZmZ4lpMIyMjTJ069YUZuSQiIiJ6UTEgJCrHpEmTEBwcXO7xikamrKysAAB37twp93wzMzOsWbOm0v2xsbGBXC6HlpYWdu3ahZSUFLRq1UotAZkqGhoacHV1xcSJExEcHIy//voLT58+FY8LggBdXV2VawIrUnYqqiAI2LRpE7y8vMqtzViRlJQUTJo0CX379hXXYkZHRz83oQ8RERERMSCkRiI8PBz+/v7Q0tKCt7c3Jk6cCKDiwvAK1S1Z4eXlhd27d6N9+/Zikfq7d+/C3t4eXbp0AQC11iEsGzx+8MEHOH36dJUDsqrS1NSEu7s7Jk2ahJSUFLFuYHWVnYqquIdiKmpV6evrQ1dXF1evXoWRkREyMjKgp6en1lIZRERERI0VA0JqFL788kscP34curq68Pf3x/nz57F27dpKBWTVLVkhl8vFaZtZWVmIj49HdnY23n77bZw5cwZ6enowMDCo3gOVogg2SxMEAXFxcTW+dlVoamrCwsJC0ofqKDsVdcKECdizZ0+1M8K2bdsWn332Gfr27Yv09HS0bNkSFy5cwNKlS6t1PSIiIqKmhAEhNQqlC8OvWrUK27dvx9ixY5Gdnf3cc6tbsmLZsmVwdnaGrq4uZDIZBg8eDA0NDXzzzTdisNSmTZvqPVApimCz7FrBVq1a1fja1VE2EExJSYGZmVmlzy87FXXMmDH4559/qt0fPz8/TJs2DZmZmTAzM0OrVq3Qu3dvtbx7IiIiosaOASE1CqULwwOAh4cHLC0tMXPmzOeeu2TJEpX7vb29Kzxv4MCBOHv2LHJzc5Geng5jY2MxQ+jvv/8OAGoZIQwMDERWVhaMjY0l+3fu3Fnja1dHTk4OgH8Dw8mTJyMsLKzK11FMRR01ahTy8vKq3Z/FixcjPDwc2tramD9/Pvr16wcfHx8xeysRERERlY91CBs41mh5MQ0aNAgRERHo2rUrrl69qtZrJyYmimsU65Ji6urvv/+OgoICvPzyyzA1NUVSUhLS09Orfd3Bgwfj1KlT1T5fEZgDwIMHD/DZZ58hLy8P9+/fZ5ZRIiKiBoqfceuO5vObEFFlXb16FYmJieL0zor+3hIXFwdnZ2eMGzdOksBm+vTpFd6jdCbOv//+G3K5vIa9Vs3Ozk7yFR8fj+LiYvG4j48PYmJiYGtrW6P71PRvUn/99Rdu376NH374Aa6urrCwsEBiYiKioqJqdF0iIiKipoBTRonUyNraGgCQnZ2NFi1aiFk0VfH29sa2bdvEqY5RUVHw8fHB33//XeE9dHR0AJRM3Xz11Vfxn//8p8aZP1Upu3bxwIEDGDRoEGxsbJCcnCy28/f3r9F99u/fr3J/REQElixZgjfeeAMjRozAggULIJPJsHTpUvTr109sZ2VlhQ4dOuDHH3/EqVOnoKmpicDAQLz11ls16hcRERFRU8ARQmo08vPzERsbixMnTiA2NrbCovCV4eTkVOHx8PBw9OnTB/b29ggJCZEcq8yol4aGBjp16oQOHTpg7969yMzMhKenJ4qKiio87/jx4wAgrrsLCgp67r2qQ7F2UWHcuHEwNjYWRwRTUlIAAA4ODjW6T9m1kQoLFizAtm3bMHXqVEyZMgWHDx/G/v37sXDhQsnoaosWLXDkyBHY2trCyckJWVlZOHv2LAwNDWvULyIiIqKmgCOE1CgEBQVh06ZNsLW1FYuTx8bGYubMmXBzc6vwXBcXF6V9giAgPj6+wvNUlboofT6ACkcITU1NJYlwAgICsGvXrnIDPDs7OwiCIF5TETjWZP1eRcaNG6dyf7t27QAA+/btU1tphx9//BHa2tp4//33xX3NmjVD+/bt0b59e1hZWYn3VdSaVIyu+vr64ocffkBubi4uXLgAJycn9O/fH9u3b1dL34iIiIgaMwaE1Chs3rwZ586dg6bmv4PeRUVFGDRo0HMDwpiYGHGqoYIgCHB3d6/wPFWlLkqfX1pcXBwWLVoEHR0dzJ8/H/b29ti3bx+mT5+OrVu3iu3c3NyU+hsfH48FCxYgISEBvXr1QlFREUxMTODn54eBAweKtRDriuLZtLS0qn2N/Px8XL16FampqWjVqhVcXV0l1wYAMzMzyOVyaGlpiUlnioqKUFxcLI6uAsDPP/+MgIAA3L9/H3l5eUwkQ0RERFQFTWrKaEBAADQ0NCRfpeunCYKAgIAAWFhYQF9fH4MGDVLKEJmfn485c+bAxMQEzZs3x5gxY3Dv3j1Jm7S0NLi7u0Mmk0Emk8Hd3V1pFCc5ORmjR49G8+bNYWJiAm9v7xpPcWzK9PX1ERERIW4LgoCIiAixDERF5s+fD0NDQ1haWopfHTp0wOzZsys8T1HqQsHDw6Pctt7e3lizZg1Wr16N1atXi2v+nrdeEChJIrN582YEBwfj0KFDiIyMxIYNG+Dn5wcAYmBU12bMmFGt84KCguDo6IgdO3YgIiIC27ZtU9kuJCREKejU1tZGeHi4OLqqEBAQAAcHB8TExIj7njfll4iIiIia4Ahht27dcOLECXG79AfOb7/9Vhzpef311/Hf//4Xw4YNw40bN8T1SHPnzsXhw4cREhKC1q1bw9fXF87Ozrh8+bJ4LVdXV9y7dw+hoaEAgI8++gju7u44fPgwAEAul2PUqFFo06YNzp07h6dPn2LKlCkQBAHr1q2rq1fRqAQFBWHZsmXw9/eHXC6Hjo4OevfujV27dj333NJZO0ubMGFCheeV/VmVDvrLjhCWHtHau3cvAgICKrVeECj5fZHJZJIpnEZGRsjOzgYAtG7d+rnXUCfFs1U3O6iq0dz169dX+nxtbW3s27dP3C495XfMmDFwcXGp1JRfIiIiImqCAaG2trZkVFBBEASsWbMGn3/+OcaPHw8A2LFjB9q2bYvdu3djxowZyMjIwNatWxEUFIShQ4cCAHbt2oX27dvjxIkTGD58OK5fv47Q0FBERUWhT58+AIAtW7agX79+uHHjBjp37oywsDBcu3YNd+/ehYWFBQBg5cqV8PDwwNdff81aK9VgZmaGNWvW1GsfFL83gHKwVNX1gqUtW7YMzs7O0NXVhZGRETIyMlBUVCQJqOpSTctEKEZzFYXja3q9mJgY/Prrr/jrr7+Qnp6Oli1b4rXXXntu+Q4iIiIiamJTRgEgKSkJFhYW6NixIyZOnChO2bt16xZSUlIk08z09PTg4OAg1oi7fPkyCgsLJW0sLCxgbW0ttomMjIRMJhODQQDo27cvZDKZpI21tbUYDALA8OHDkZ+fj8uXL1fY//z8fGRmZkq+6MVQOrApm1Rm3759YjCo4ObmJmYKLa3sVEdDQ0MYGRnBwMAAHh4eOHr0KCIiIvDkyROl+9aWyoxkVlZQUBAOHjyI/v37o2/fvhg4cGCNrjdw4EC4u7sjLCwMiYmJCA0NxdSpU9GjRw819ZiIiIio8WpSI4R9+vTBzp078frrr+PRo0f473//C3t7e1y9elVMod+2bVvJOW3btsWdO3cAlKTZ19XVVUqT37ZtW/H8lJQUmJqaKt3b1NRU0qbsfYyNjaGrqyu2Kc/SpUvx1VdfVeGpqbpSUlJUjiaXZ//+/WjVqhWAygVplc1uWrZe4Z9//gkfHx+88sorePjwYaX7V1WKZDbp6enQ1tZGYWEhTExM0KJFC7Gv1aFqNLeibKwKRUVF0NbWhpOTE8LCwgAAqampuHr1KkJDQ2FiYgKgZOpuixYtMGjQoGr1j4iIiKgpaVIB4ciRI8Xvu3fvjn79+uHVV1/Fjh070LdvXwDKH0xLp/kvT9k2qtpXp40qCxcuhI+Pj7idmZmJ9u3bV3gOVc/kyZPFwKMySv+hoDLBUmWzm9Zk/WFNeHl5Yffu3ZLfr+TkZPHfSm1zcXFBRkYG/vjjDxQWFkJDQwPFxcXIycnBli1bsH37dpiYmODWrVt49dVX0aJFC3h7e+O///0vXnnlFejq6tZJP4mIiIgasiYVEJbVvHlzdO/eHUlJSXjnnXcAlIwKmZubi20eP34sjuaZmZmhoKAAaWlpkg//jx8/hr29vdjm0aNHSvd68uSJ5DoXL16UHE9LS0NhYaHSyGFZenp60NPTq/rDUrns7OyU9gmCgKSkpGpfs7yAMDU1VSy1oMhuqhjZUiib3bQm6w9rQpHMRiEuLg6ffvopUlNTAfz7jGVLZ9REREQElixZgjfeeANnz55FZmYmOnfujEWLFqFXr14QBAHvv/8+fH19cf/+fRgaGqJXr16wsbFBTEwMFi5ciBYtWsDe3h6///67WvpERERE1Jg1uTWEpeXn5+P69eswNzdHx44dYWZmhvDwcPF4QUEBIiIixGCvV69e0NHRkbR5+PAhEhISxDb9+vVDRkYGoqOjxTYXL15ERkaGpE1CQoJkul9YWBj09PTQq1evWn1mUpaVlYULFy4gOjpa/IqJiYGtrW21r1k2IDx58iT69++PqVOn4quvvsKUKVOwe/duSdCiyFJaNrupi4sLxo0bBzc3N+zYsQOdO3fG2rVr8cMPP1S7f5WhSGYzdOhQjB8/Ho6OjkhLSxPX/CnKfFSmdEZlLViwANu2bcPUqVORm5uL119/HQcOHMB3330nlgOZOXMmAIhrKA0NDbF161YcOHAARkZGuHPnDjZt2gR9fX219YuIiIio0RKaEF9fX+HMmTPC33//LURFRQnOzs6CoaGhcPv2bUEQBGHZsmWCTCYT9u/fL8THxwsffPCBYG5uLmRmZorX+Pjjj4V27doJJ06cEGJjY4XBgwcLPXr0EIqKisQ2I0aMEN544w0hMjJSiIyMFLp37y44OzuLx4uKigRra2thyJAhQmxsrHDixAmhXbt2wuzZs6v8TBkZGQIAISMjowZvpvFydXV9bpv9+/cLqampSvvPnDlT5fsBEAAIjx49EgAI1tbWgiAIgr29veT3SBBKfnb29vbitqOjo8pr2tnZCTk5OUJKSopgZmYmpKenC3l5eYKdnZ0AQBg5cmSV+1kVz549Ex48eCD0799fEARBmDlzpgBAGDp0qPDhhx8KAwYMqPE9FO/NwcFB3Ofo6ChEREQIb731lmBsbCw4OzsLgwcPFgYOHCjs3LlTeOedd4S+ffsKrVq1Evr06SOMGzdOuHbtmiAIglBYWCgMGjSoxv0iIiKi+sHPuHWnSU0ZvXfvHj744AP8888/aNOmDfr27YuoqChYWloCAPz8/JCbmwsvLy+kpaWhT58+CAsLE2sQAsDq1auhra0NFxcX5ObmYsiQIdi+fbuknmFwcDC8vb3FbJFjxoyR1FnT0tLC0aNH4eXlhf79+0NfXx+urq5YsWJFHb2JxkdRpL00QRDEzK4VKV3fDwASExPRpUsXODg4VHieYqrp3bt3lY4FBARItjU1NfHkyRPJ79KTJ0+U1g+qoq+vDwMDAxgYGGDIkCHiNE5t7br556uvrw99fX2YmZnh9u3bYj+dnJxgbm5e6amrcXFxWLRoEXR0dDB//nxxxLx0eQgzMzPI5XJoaWnh1KlTAIBTp05h8ODBSE1NxcmTJ9GsWTMAUFprWZqigD0RERERVUxDKO9TKDUImZmZkMlkyMjIaNL1C1966SXs3r1bab+vry8uXbpUpWsNHjxYDEYqYmVlhfj4eFhaWor3VmS2/Pnnn/Huu+/C2toa8fHxuH79Oj777DOkpKSIyYPMzc3x9ddfw8rKCgCU1qYqzJ07FytXrpT80aGgoADjxo3DsWPHMHLkSBw7dqxKz1gTM2fOxPfff49vvvlGZSBenrfeekuSLbVfv37w8fGBo6Mjzpw5A6D8oDgvLw8jR47E6dOnK32/rKwsSQBOREREDQc/49adJjVCSI3XtGnTYGVlpVTyY/LkyVW+lo6OTqXaBQYGIisrS+W9+/XrB+DfbLJWVlY4cOBAhddTFQwCUCrRoCi+np2dXal+qlNcXFy1y01UNVtq2bIXubm5GD16NAIDA9G9e3ex3c6dO7F8+XLo6OjAxcUFn376KQBg7NixlQrsiYiIiJoyBoTUKCxZskTlfm9v7ypfa9OmTRgyZAiOHTtWYUZXxVTT8u6tLmXrFZ45cwYODg5ITEwEUHuF6Tdu3CjZFgQBGzZsQOvWrat136pmS1VV9uLOnTtwc3PDb7/9Ju7btGkTYmNjoaOjg2+//Rbvvfcedu7ciczMTDg7O6ucoqqurKhEREREDR0DQqIyVq5ciVOnTuHatWvo2bNnta7xvGBJsY41JCQEr732mliKwtraWql+Xtl6hRMnTsTy5cvh4uKCx48fV6t/lbFhwwZYWlrCxcUFGhoauHz5Mq5fv4433nijWtfbt2+f0j43Nze4ubmprL8pl8uxc+dOfP755/jjjz8wY8YMyOVyXLt2DQsXLsSRI0ego6OD+/fvY8CAAdDS0kJGRgbWrFmDkSNHIi4uDjdu3BCnqEZFRcHHx0etWVGJiIiIGromXXaCSBV1jLipukZ+fj5iY2Nx4sQJnDx5EkDJCOaOHTsQERGBbdu2wdHREbt27ZKcp6hXaGlpCUtLSxw7dgwdOnTAlClTatzPiiQkJMDNzQ0HDx6Erq4ubt26BaBklA4AVqxYAVtbWxw6dKhW7r9s2TIsX74cdnZ26NWrF7Kzs6Gnp4fdu3dj/fr1iI2NRWxsLAoKCmBoaIhDhw4hMzMThw4dwpIlS6CpqYlOnTqhQ4cO2Lt3LzIzMyucokpERETUFHGEkKgcqkatKqtsQBgUFIRNmzbB1tYWRkZG+PPPPwEAXbp0wdq1a8V2RUVFGDRoENzc3MR9Xl5eKvvl7OysVMRenTQ0NODq6oqJEyciODhYzNppYmKCjIwMzJo1CwsXLsTQoUMxZswYtdyz9PTYO3fuICcnBykpKSguLsaAAQPwxx9/IDMzExoaGuJaT2trayxYsADvvvsuWrZsCQsLCzg4OEBXV7dKU1SJiIiImiKOEFKjEB4ejj59+sDe3h4hISHi/lGjRlX7mpUdKfzpp5/Qs2dPSRCnuK8ieNu8eTPOnTuHtWvXYsmSJVi4cCGAksQppe8XEREhllUoz/jx4wEAxcXFknvUFk1NTbi7u6NNmzaS++np6UFPT0+t5S9iYmLwzTffYPny5SguLsbYsWPRp08fmJiYIDAwEBEREVi/fj1eeukl3L59GwBgY2OD1157DRs3bsRLL70kBq5yuVwMBhXc3NyQl5entv4SERERNXQMCKlR+PLLL3H8+HGcOHEC0dHRmDNnDoqLi/Hs2bNav/fKlStx/vx5rFy5UtxXdr2cvr4+IiIixG1FsFlQUID+/fujb9++GDhwII4cOaI0ZbQsxbmK9YOqAtdJkyZV72EqkJGRAaAk0FIoKCgQk8xUl6JeJyCdHtuyZUvMmjULe/fuxXfffYeWLVvi6NGjaNGiBa5fvy4Ge+vWrUNeXh66deuG0NBQceSwpv0iIiIiago4ZZQaBS0tLbRs2RIAsGrVKmzfvh1jx46tUWmGyo68lS4cr1A2MUxQUBCWLVsGf39/yOVyFBQUACgpjRAcHCy2Ky4ulhSrV2X//v0ASmosAsCNGzck9QAFQcCFCxcq1feqaN26NbKyslBYWAgAePbsGXR1dVUmi1GlbLZUoKSvpUdJFdNjFeUtpk2bBgMDA+jo6GDNmjWIj48Xp9uW5uXlJZaYOH78eK2PmhIRERE1FgwIqVGwsbGRrBfz8PCApaUlZs6cWeVrVTWpjI2NDeRyuaRwfH5+vqSNmZmZpJ7gH3/8gR49ekiCyKysLBgZGSEoKEgy/dTOzk5lH2/cuAEAaNOmjdLU2KoUcK+siRMnYtmyZeL72b17d5VKbpTNlgqUPIe7uztSUlIkbYcPH44VK1Zg1qxZMDQ0hIWFBUxMTJCXl4erV6/ixo0bWLJkCd544w2MGDECly5dwqBBg7B06VKxBmRtleMgIiIiakwYEFKjsG7dOsl2eno6HB0dxVp91VHZUaayheOBf4vbP+8apY8rpmTu2LEDISEhYv28rKwsxMfHY8aMGZL6ef3798eFCxfQvHlzODg4SK47efLkSvW9Ko4ePQrg30CrqgGXYjqoiYmJuM/Pzw/GxsaS7ZSUFDx9+hT/+c9/8Morr+D3339HQEAAfvzxR/Ts2RNffPEF5HI59u7di/T0dDg5OSEuLg7Jycn4+OOPsW3bNgBAXl4eevbsiW7dumHYsGEIDAyEkZERFi1apLYkOEREREQNHQNCqlVFRUVqTTpSWePHjxenENaH6gRNivcUFxeHqKgosX5e3759kZWVpVQ/74MPPsCFCxegp6endC1vb+9q97309FMFQRBw9+5d8XsAcHV1rdJ1y2ZLTU9PR3BwMHbv3o3Dhw8DKEnGM2fOHLRo0QLt2rVDmzZtsGrVKgQEBGDPnj34448/YGdnBx0dHbRv3x7t27eHsbEx+vbtC1dXV2RmZooBYU5ODs6fP4+srCzY2NggMTERzZo1U2tWVCIiIqKGjkllSO3i4+Px9ttvw97eHoMHD0a/fv0wevRoyVqx2lbf0wWrc3/FlFNBECT18ywtLeHn56dUP+/HH3+s8HpxcXFwdnbGuHHjJGsKp0+fXuF5wcHBGDVqlOTL2dlZnN6qSCqjr69f5Wcsbfz48Zg2bRqsrKzEfQ4ODmjZsiWWLFmCkJAQ3LhxA6tXr4apqSnu378PS0tLvP7663j06BHmzZsHPz8/ZGZmonnz5li5ciU6dOggjhYXFxfDwMAAbdu2xZAhQyCTydSeFZWIiIiooeMnI1I7Ly8v7N69G+3btxf3JScnY9KkSfjtt9/qpA+KxCvVUZ1gLj8/H1evXhW3FUljqqNs/bxjx47h6dOnuHXrlriesPQawvJ4e3tj27Zt4khjVFQUfHx8lEYay1IEaaamppL9PXr0wIMHD5Ceni72oSYEQVBag+jn54dHjx7h6tWruHv3LrS1tXHr1i3s2rULH374IXJycjB58mSMGjVKzCJ66tQpZGVlQVtbG+Hh4WK/NDQ0xLWdisyt6siKSkRERNSYMCAktZPL5ZDJZJJ9RkZGknIFta30urTaVrrovIIiKUxVsl0qAhkbGxtJ/bysrCzcuHFDaWTL3t4ekZGR5V5PQ0MDnTp1AgDs3bsXAQEB8PT0VBppLEsRpJVNZvPgwQMAELOMKqSkpMDMzKzCa6qiKmhXjEgqKJLjDB06FHl5eVi0aBGsrKzg5uaGsLAwAMCRI0cwceJE9O/fH3K5XFy/KZPJJIl+0tPT0bJly0pnRSUiIiJqChgQktotW7YMzs7O0NXVhZGRETIyMlBUVIRvvvmmvrtWKVUd+VIUndfU1MR3330HANi1axe6du2qlvsGBgYiKytLKcj96KOPEBkZicjISNjb28Pb2xsTJ04EUBJYmZqaSkYaAwICsGvXLgQFBVWqP4pkNopAdMmSJfjiiy+gra2NwsJCsb+TJ08Wg7OqUBW0l02O8+TJE9jZ2eHGjRvo3LkzACA0NBRJSUliGzMzM5w5c0ZynoaGhlIwXt/rSomIiIheRAwISe0GDhyIs2fPIjc3F+np6TA2NkazZs1q/b6KaZupqalo1aoVrK2tleoB1gZF0XlHR0dxX3R0dJWvU14imnHjxkm2ExMT0aVLF/Tu3RsA0KtXLxw+fBj+/v44f/481q5di2fPnolZQUtzc3OTlLSoSNlAdPPmzQBK1uYptg8dOiQJzmrKzs4Oz549Q2FhIe7fv49nz55BS0sLGhoaiI6OxqhRoxASEoLx48eXe43yAuv6XldKRERE9CJiUhmqNfr6+jA3N6+TYDAoKAiOjo7YsWMHIiIisG3bNjg6OoprxypSdgqlYmSpstM9g4KCcPDgQfTv31/c97w6gKqCk7L7UlNT8eeffyI1NVWyX5GtU9FeR0cHBgYGWLVqFXr16oWxY8ciOzu7Un2vyLhx4ySjeIraiop9H330EWJiYiRTZatq48aNWLZsmbidnJwMQRBQWFiIFStW4KWXXkJWVhaKiopQXFyMZ8+eYezYsRg2bBj69OkDe3t7hISEiOePGjVKDFjLvs+arCslIiIiaqw4QkiNQulpmwpFRUUYNGiQyhGx+Ph4LFiwAOnp6eIUSBMTEwQGBlZ5JKl00XlFEPnpp59ix44dVapDqLjv06dP0b9/f5iYmMDIyAjp6elIS0vDV199hSFDhohr5BTtc3NzxWt4eHjA0tISM2fOrNIzlPbTTz9h6dKlSvX7rKysVCYF8vf3r/a9NmzYgEePHonbLi4u2Lt3L4qLi/Htt9/Cz88Pmpqa8PPzg5GRkbgm8NKlS+jcuTOSk5Nx7NgxychoeT+/ulxXSkRERNRQMCCkRqHstE1BEBAREVHu6KQiE+qnn36K4OBgAP9mQq3q2j9VqlOHUDGy9eeffyI5ORmGhobisczMTIwcORJDhgzB8ePHJdcuXf4hPT0djo6OSExMFPdNmjRJfMbKWLlypcr6fYo1fIr7Pn78GIDyur/ylE1So+h7VlaWuP32229jw4YN0NHRgaamJnJycmBubg4DAwPk5OQgNzcXmpqa0NTUhJmZGVJSUnDr1i1kZmaKI6PljRDGxcXB29sbSUlJ6Ny5M5YuXQp7e3uxDMfWrVsr/Y6IiIiIGgsGhKR24eHh8Pf3h5aWllKiE1Xr2tQhKCgIy5Ytg7+/v5hpsnfv3uKU0bLF1v/++28sX75cUp9PkQm1OsFcWaVLH6iian/p+z158kQSED558kQy+pmUlKQ0ldTPzw8hISHi+759+zZ+++03pKWlYfTo0ZX+Oejr68PAwAAGBgZi/T4A4v0V/Tx69CjWr19f7nXKKpukRkEmk4llOt555x1YW1tj1qxZmDt3LhYvXozs7GzMmDEDnTp1wrNnz9CyZUu0b98eRUVFyM3NRVFREVq1agUfHx/MnDmz3J+ft7c38vLysHHjRvzf//0fZs6ciSlTpjy3DAcRERFRY8aAkNTuyy+/xPHjx6Grq6uU6KS2lJ62qUpwcDB2794tbrdr1w5bt27F06dPMX78eEkmVEUWTnUEhFU5rtjXtWtX+Pr6IiUlBYIgQENDA+bm5vjhhx/Etq+//rrS+cHBwTA1NRXLNsyaNQtbtmzBF198gejo6Er/HGxsbFTW71OMRCr6WbqkQ2WUly21Y8eO+P333wEAhoaGePnll3HixAno6uoiIyMDnTp1glwuR05ODu7evYvWrVtDS0sL2dnZ4mhhdna2ODKqmEJb9h1raGhAX18f33//PcLCwsSsqw8ePMBrr71WpWchIiIiaiwYEJLaaWlpoWXLlgCAVatWYfv27RUmOqnqlMbK+uijj2BlZYX//Oc/SsXWHRwc4O3tjRUrVmDSpEmSTKh1ERBWdE6LFi1w4MABAFV7N9OmTYO7u7sYLBobG8PZ2Rl///03vL29n/tzUCgbWCvq97m6usLf31/sZ2WzlSqUzZaq0KVLFzEgfO2117B+/XoUFRXh2LFjsLW1xapVqzB48GD89ttv+Oqrr3DlyhVs2LBB/JmdPn1asmZS0b+cnBzJNNU///xTMgIcEBCATp06YerUqUhPT6/SsxARERE1FgwISe1sbGwk9e8UiU7effddpambgiBIpm2q05YtWwAA//nPf8Ri62XNmzev3PNrc8po2Wv7+fkhIyMDAHDjxg34+fmpfDdFRUWIj49Xea0HDx5IRg4VPwdvb28A1U84U7Z+X+kpmd999x0cHR3RvXv3Kl2ztJCQEOzZswcAoKenB0tLSwAl5TS8vLzwxRdfoG/fvmjXrh22bNmCIUOGwNzcXDy/7JrJ0msIL1y4oDRFddiwYeL3VSnDQURERNQYMSAktVu3bp3SPkdHR+jr64vTGUt7XomGulbVNYRlg1ygJDFLZe6hEBwcjJUrV+KHH36AiYmJ+J5Onz6tlBH1ypUrknPv3LkDAEpr4cr+HFQlnKmMit7DJ598IiZ8UQdFaYj09HSYm5vjvffew/fff4+zZ88CgFh+ojwpKSkwMDAAUBJcpqWloU2bNpI2NcmKSkRERNTYsA4h1RnFtE0HBwfJ1+TJk+u7aypVFHiUFhwcjFGjRkmC3bfeeqvCc8oGWdOmTcMrr7wCAGjVqpXk3Xh5eWHz5s3Yv38/zp49CxsbG8m5RUVF8PT0lNRTTElJUbpnRcXcgZIsnM7Ozhg3bpxkZPKll15S2XdVZS8qY9KkSeUeU6wvHD9+PEJCQqClpSWpH6itrY3w8PByg9TJkycjISEBQMm6x3fffRf9+vXD6NGjxZHVymZFJSIiImoKOEJIdaa8aZuKKY11ITU1FampqWjVqhVatWqldNzJyUmcsljZEcKy6xOBkumOFVEEm4oppUuWLMGff/6p1M7b2xshISGQyWR47733EBYWJrkPALz66qtwcHAQ1z4CJYFRWFgY4uLi0LNnz0o9j7e3N7Zt2wZtbW3Mnz8fUVFR8PHxwf379yXtyl6nvOuqGjl93hThP//8E61atZJc09jYGCtXroSvry9OnTqFzz//HPHx8RAEAS+//DIePHiATp06QVNTE0lJSfD19QVQki1VMbKoKClSto6iImkPERERUVPFgJBqRX5+Pq5evSoGX9bW1tDV1a23/pw8eRJffPGFWOz95MmTKCgoQLdu3dC2bVsAJcFBfHx8lQNCVYFuVdcQlt538eJFSTKUrKwsvPTSS8jNzRUzopYWFRWFtLQ0mJmZoUOHDhAEAY8fP8aGDRuwadMmeHl5wcvLSzLSpoqGhgY6deoEANi7dy8CAgIkI49VDZzKZnZVKDtF+OTJk+L3X331FdLT05GRkYGTJ09iyJAhAEpKXFy8eBH79++Hvr4+cnNz8frrr+PJkycwMDCATCbDqVOnMGzYMKX3A5SUFHn69ClefvlltGvXDmPHjsUvv/wCALh27RoOHjyIQYMGVen5iIiIiBoDBoSkdkFBQdi0aRNsbW1hZGSE9PR0xMbGYubMmfWWwOOLL75AaGioWNuvY8eOCA0NxdSpU7Fz504AJQGZu7u7eE59lZ0oKipSmQxl8ODBYnbN0sXo7ezsEB4ejm7dusHS0hIuLi5Yvnw5WrRoAU1NTbRo0QIAlMo9lGVqaipJBqQoy6AYeVQUkC+v8HtZqkZOAShNEf7iiy/E7xX3MjIywjvvvAMrKysAJUFbQUEB5HI54uLicPLkSfz999/YsmULOnbsKPbF398fGRkZGDt2rCSALioqgqamJjp06IDQ0FB07doVAwYMwM6dO/HWW2/h888/x/nz5yt8HiIiIqLGiAEhqd3mzZtx7tw5SSH1oqIiDBo0qN4CQk1NTUmx9/nz5yM/Px8GBgbiiCAAzJ49G+Hh4QAqv4awIuUFTRUFhJ06dVJZr+/LL7+UZNdUkMvlAICEhAT8+OOP2Lt3L9599124u7tjz549lV6juW/fPqV9pbNwKo5X9r1UZoqwnZ0drl+/LtkWBAHZ2dmwt7fHuXPnAABTp04VRzg9PT1x+vRpZGVl4ezZs0hPTxdHMR0cHPDkyRMAgK6urqQ8xVtvvYX8/Hzcvn0bFhYWGDp0KMaOHYuCggKx5AgRERFRU8OAkNROX18fERERcHR0BFAS6ERERJT7odvJyQlhYWG12qcffvhBqdj7iRMnxGLvilp7EyZMEAPC2hwhVBVUKfaZmpqKwaCTkxO+++47dOnSpdxkKDo6OgBKpnS6urpi4sSJCA4OxpgxY/DPP/8otU9JSYGZmVm5fSs9XbX089y7d0/Sz5q8H4WsrCxcuHABb7zxBoCSwD0hIQEaGhqIj4+HkZERcnNzIQgCiouLoaOjgwsXLiA+Ph7t27dHZGQkrl69ioEDB4rXLP1uSwfQNjY2SElJwfLly9GlSxeMHTsWlpaWmDFjBiwsLGr8LEREREQNEQNCUrugoCAsW7YM/v7+kMvl0NHRQe/evWFgYAAXFxdJW8W6vdpmZWUlFntXpWytPaDyAc9PP/2EpUuXolu3buI+xdTTyq4hdHFxQWZmJgDgjz/+gIuLi/huvLy8JH1TBKxlrzVq1CgcPXoUmpqacHd3x6hRo5CXl6d0b0XCmfJkZWUhPj5eacpqp06d8Ndff6ll5FQhMDAQ7dq1E7cLCgpgYGCAgwcP4sMPP8TTp09x9uxZWFhYYNKkSdi1axfef/99eHl5QUdHBxs3bkS3bt3Qu3dv8Rrl/dxUlUPp2bMnbt68qbbnISIiImpomlTZiaVLl8LW1haGhoYwNTXFO++8gxs3bkjaeHh4QENDQ/LVt29fSZv8/HzMmTMHJiYmaN68OcaMGSOOniikpaXB3d0dMpkMMpkM7u7uSE9Pl7RJTk7G6NGj0bx5c5iYmMDb2xsFBQW18ux1yczMDGvWrMH58+cRFRWF3377DatXr0Z8fDy++eYbLF++XPKlSGRSnyqawvk8K1euxPnz5yW1B7ds2VKl+8XExOA///kPgJLAq/S7efr0KXr27Ak3Nzfs2LEDY8aMkZybmJiI4uJiPHv2TLK/Q4cOeOedd2BnZyd+2draIjo6usK+BQYGiusFS1OM+FZ3hFBV+3HjxkmmxsbGxmL06NFYu3YtPvnkEwAQ10Z+/fXX6NChA2bOnAm5XA5BEODl5QUAOH78uHiNqvTveaU4iIiIiBq7JhUQRkREYNasWYiKikJ4eDiKiorg5OSkVFR7xIgRePjwofh17NgxyfG5c+fiwIEDCAkJwblz55CdnQ1nZ2dxLRcAuLq64sqVKwgNDUVoaCiuXLkiSVgil8sxatQo5OTk4Ny5cwgJCcHPP/8spsxvjObPnw9DQ0NYWlqKXx06dMDs2bPru2uSDJxVLUyvr68PAwMDMVsp8O80zvKUvfb8+fPFgur6+vqSd9OsWTMx4Pz000/FMhIKRkZGGDt2LLKzsyX75XI5Lly4gOjoaPErJiYGtra2Kvv0008/oWfPnvj5559x6NAhdO7cGba2tjh06BAAiHUSKztCqAiQ//jjD/Tr1w/29vbo1asXzpw5U+F5W7duxZw5c3DgwAGYmJhg8ODBGDp0KNauXYshQ4Zgx44d+Oabb7B//36VfYmIiABQMtoYEhIi7i9dJ1JBHdNeiYiIiBo0oQl7/PixAECIiIgQ902ZMkUYO3Zsueekp6cLOjo6QkhIiLjv/v37gqamphAaGioIgiBcu3ZNACBERUWJbSIjIwUAQmJioiAIgnDs2DFBU1NTuH//vtjmxx9/FPT09ISMjIxKP0NGRoYAoErnNBUAhOf9ij98+FBp37Rp0wQAwunTpyt1n08++UQoKiqS3PO3334TAAhvvvmmynMiIiIEAMLHH38s7vvjjz8EAMLgwYMlbR0cHMTvJ02aJMyePVu8DwBh2LBhwqlTp4TOnTtLztu5c6eQmpqqdO8zZ86o7JOdnZ2Qk5MjpKSkCGZmZkJ6erqQl5cnDBgwQBAEQQgMDJTcd+HChRW+Y0dHR0EQBMHJyUlITEwUYmNjhaFDhwqtWrUSzp8/L7ZTvO+y1zlz5owwfPhwwdHRUXj27Jnw4MEDITc3V9Jm2LBhSvft1auXAEDQ0dER/vOf/wizZ88W5HK5MGjQIKW2qampQmZmpsr+ExERUf3hZ9y606RGCMtS1CsrW6D8zJkzMDU1xeuvvw5PT088fvxYPHb58mUUFhbCyclJ3GdhYQFra2ux4HZkZCRkMhn69Okjtunbty9kMpmkjbW1tSSZxfDhw5Gfn4/Lly+X2+f8/HxkZmZKvqj6KsrAKVRy9GjNmjXQ0tKS7Cu7/q4y1y7vfjY2NuLo865du5TWwgmCAEdHRyQmJkr2u7u7S6ZjKo6Xl5ym9EjnkCFDIJPJoKenJz5LVesQ5uTk4Nq1a8jKykLnzp3h7e2NTZs24ZVXXsHq1auxatUqAMDff/8tnhMREYGhQ4fCw8MDPj4+ePToEa5cuYJevXph7NixGDhw4HOnv5bObrtq1Srx3Nu3b6N79+548803sWzZMgAlpTjGjh1bpeciIiIiakyabFIZQRDg4+ODAQMGwNraWtw/cuRIvP/++7C0tMStW7ewaNEiDB48GJcvX4aenh5SUlKgq6urVBKgbdu2SElJAVCSxbFs7TWgJHtk6TalpxgCJR9OdXV1xTaqLF26FF999VW1n7upKi9zZlJSkmRf6Xdf2YBQFcW5z0sqU/oe5U3FXLNmTbX7UVrZ5DRlKQJPLS0t7Nq1C0DJtMvWrVurbP+899O1a1cxo2daWho0NDTQtm1bWFhYSArfX7p0STxn1KhRePXVVxEZGYnc3FwkJSUhOTkZI0eOxNmzZ2FjYwNdXV2x/bBhw5CVlSWWEwFKEgjFxMSI/fPw8IClpSXefvttZGZmQkdHB9999x3ee+897Ny5k9NGiYiIqElrsgHh7Nmz8ccff4h1zhQmTJggfm9tbY3evXvD0tISR48erTABhfD/SxkoqAoEqtOmrIULF8LHx0fczszMRPv27ctt/6LJz8/H1atXkZqailatWsHa2lryAb+2lJc5c9iwYZLtyZMni1kv1REQVuW4qn3PKxFRVkXv93nrGlUFnrq6uirrE5bX39K2bdsm2TY1NcXTp09x8OBBAP8Wvt+6davYpnfv3jhz5gyGDx+Oc+fOwd3dHba2tjAyMoKfnx+io6NhamqKjz/+GJ9++in8/f0xduxYSaAbEBAgBnrOzs7Q0dHB/Pnz8eabb0JHRwceHh7w9vZGbm4uBgwYgPz8/Aqfg4iIiKgxa5IB4Zw5c3Do0CGcPXtWkvJeFXNzc1haWoojSWZmZigoKEBaWppklPDx48ewt7cX2zx69EjpWk+ePBFHBc3MzHDx4kXJ8bS0NBQWFiqNHJamp6cHPT29yj3oCyYoKAibNm0SP+Cnp6cjNjYWM2fOrPWC9YrMmYqfmWLEMCsrS/xeMWKo+J2oSXmF5wVLimuXDv5VnfO8EhFAyR8FCgoKsGfPngrfb+lMnOpQ1fdTXuH75s2bi39sMTMzg1wux/Hjx9G9e3eMHz8ec+fOxYULF3D58mVYW1vj2rVrOHnyJFatWoUJEyaIWVhlMhmWLl0qjs7L5XKsWbMG2tramD9/PmQyGVatWoUDBw5AJpPByMgIVlZWOHbsGHbt2lXrv4NEREREL6Q6W634AiguLhZmzZolWFhYCDdv3qzUOf/884+gp6cn7NixQxCEf5PK7NmzR2zz4MEDlUllLl68KLaJiopSmVTmwYMHYpuQkJBGnVSmf//+glwul+wrLCwU+vfvXyv3QwUJT1555RWhsLBQaf/QoUOFqVOnCgCE48ePV/ueiqQyvXr1UtkuPDxcklTG1tZW6Nq1qwBAMDQ0FGxtbYXevXsLMplM6dzvvvtOktylXbt2gr29vfD666/X6vtdunSp5L6+vr6VStxTGaWvc/36dUEQSn4WNjY2giCUJI/p2bOncOLECeGtt94StLS0hODgYKFXr16Ctra2cPfuXeHp06eCg4ODkJSUpLJfX375pdC2bVvxfSjuU5u/g0RERFQ9DekzbkPXpJLKzJo1C7t27cLu3bthaGiIlJQUpKSkIDc3FwCQnZ2NefPmITIyErdv38aZM2cwevRomJiYYNy4cQAAmUyG6dOnw9fXFydPnkRcXBzc3NzQvXt3DB06FEDJGqYRI0bA09MTUVFRiIqKgqenJ5ydndG5c2cAgJOTE7p27Qp3d3fExcXh5MmTmDdvHjw9PWFkZFQ/L6iW6evriyUBgJIRsYiICDRr1qzO+2JgYKCy1p6/v7/4vVCHawizsrLEqZO9e/eusERE2TWknTt3RkREBB49elTj95ufn4/Y2FicOHECsbGxFdbFrMwIYVWup6CoLRgUFISHDx+iZ8+eiIyMRGpqKoKDg/HTTz8BKCntsmPHDhgZGWHevHnYtm0btLS0JP26ffu2+L2vry9MTEzERDReXl71+jtIRERE9CJoUlNGN23aBAAYNGiQZP+2bdvg4eEBLS0txMfHY+fOnUhPT4e5uTkcHR2xZ88eSdKK1atXQ1tbGy4uLsjNzcWQIUOwfft2SabJ4OBgeHt7i9lIx4wZg/Xr14vHtbS0cPToUXh5eaF///7Q19eHq6srVqxYUYtvoH4FBQVh2bJl8Pf3h1wuh46ODnr37i0mMKlLFhYWSomBgJIMnDt27ABQtYBQsXZP4XmBT9mAMTAwUKkeJlASoJZNiKPIjlv6WhEREejevTsOHjxY7fdb1Sm9zwsIqztFWLHW0czMDCNHjgQA9OzZEytXrsQnn3yCzz//HPr6+pg3bx40NTUxbdo0/O9//8OePXvQvXt3HDhwQLxWSEgIPv30UwDA2LFjceLECSxbtgz9+/fH1atXMXDgwHr7HSQiIiJ6IdTX0CSpB4fTy4dqTmf08PAQAAhHjx6tVPudO3cK/fr1E7y9vcV7WltbCwCE3r17qzzn119/VapDqJhWrKjfp9ClSxfJ9NZ33nlHMnVTJpMJc+fOldRUdHV1rcojC4Lw/Cm9ZaeMzpkzp8J3XNkpwsOGDav0zwr/v77gmTNnJF8vvfSSAED4+eefhR49eggABA0NDWHt2rXCu+++K+Tk5KisQ0hEREQvJn7GrTtNaoSQqCqESo4Qbt68GefOnYOmpia+++47ACUZOxVTiCu6dul7qNoHKCfEadGiheS4TCaDjo6OWNdPEASx3mVVKKb0Ojo6itepaDrl80YIy17PxcUFjx49QlJSElxcXMR7xMfHK50bFxeHRYsWiRlCAwICxOQ6hYWFSrUUe/bsifv370NLS0scdRUEAd7e3ujatStGjhyJ1NTUKrwNIiIioqaBASFROSobEJYNfADgypUrAJ6/hrAy91OsXy2vnYmJCUaNGiXZd/r06ef2u6znTekte9/KTBktfb0rV66I06IVmUAFQYC7u7tY/1ERKB46dAiDBw9GQUEBXFxckJmZWeG9+vfvjyNHjgAABg4cKL5/ABg6dCjMzc3h6+tb+ZdBRERE1EQwICQqR2UDwtKBj0JkZGSF51RUduJ59y173MDAQGnEbPLkyc/veBlmZmYqaxEq7NmzR7L9vICw7PU2btwIFxcXmJiYiPv8/PwkazmPHz8OFxcXCIIgrvkVBAEDBw6Ep6en2K6i+owffvihOFLbs2dPdOvWDcOGDcOtW7dga2uLRYsWYcyYMRX2nYiIiKipYEBIVEZlAzOF0oGPIsCbOXMmfv755yrdo3SQWFRUBG1t1f88y/ZLUXi+NG9v70r1XRU/Pz+V97xz545kX1XrECqyh5YWHByM3bt34/DhwwAADw8PDB48GPv27YMgCOjQoQMAYPny5SgsLMT//d//AQBGjRoFbW1taGlpSZ51yZIlkkL358+fR1ZWFmxsbJCYmIhmzZph6NChDAiJiIiI/j8GhFTvJk2ahODg4PruhpKaFKavaP0goDrYTEpKAgDExsZi8ODBKCwsRHJyMkJDQ9G9e/cKz1UnRZBW1u7du5Geni5uy+XyGt9r2rRpsLKyErdHjx6NZcuWwcbGBjdv3kS3bt2gpaWFdu3aSdZO/v777/jnn38wY8YMREdHIyoqCkBJttfS78fAwAAGBgYYMmQIZDIZAJQbaBMRERE1RfxkRHWmvJGn6iRAqQvqCLwqu4bQz88P27ZtA1CSJKZv374QBAEhISHw8vLCb7/9JrYtLznK9OnTJaNj1aUI0hTr/BTeeOMNPHjwQNyuScCssGTJEsn2559/joCAACxbtgxjxoyBiYkJYmNj0atXL0kgV1xcDHd3dyQkJODWrVswNzcHAOTl5Un6JZfLoaWlhV27diEuLg6ff/45bt68iQsXLsDe3h6A+t4bERERUUPEgJDqTHkjT9VJgFIX1BEQlneNssFUcHAwWrRogX/++QetW7cWk8SEh4crjcTFxsZKtpOTkwEAf//9d437CygHaQp9+vRBaGiouK2OgBCAmFAGAPT09BAYGIht27bB3d0dGhoa+OGHH/D48WPJ2sN+/fqhuLgYOTk5KC4uhoGBAQAgNzdX8s5L1wb19vbGtm3boK2tjfnz5yMqKgo+Pj5qe29EREREDZFmfXeAmg7FyJODg4PkqzoJUOpCbU7NLHvtadOmYerUqQCAO3fuYO3atVi8eDGys7PxzTffVHit5ORktG3bFg8fPhT3jRo1CnFxcXB2dsa4ceMko7DTp09XeZ3ntS8bAFY3IJw0aZJku/TP//bt2wCATp06ITIyEh07dkRBQQG0tbUlayXPnz+Po0ePYtiwYRg7dixyc3MBABs2bJD0q6ioSPxeQ0MDnTp1QocOHbB3715kZmbC09NT0qa+PHr0SCyrQURERFSXOEJIdaa8kaeaJECpDYpgTV0jYBXdQ/G/S5YsQXh4OACge/fu2LBhA4yNjVXWANTT05Ns29nZwcPDAzNmzMCcOXOwdu1aPHv2rMojYhW1j4+PVxrdPXXqVIXP6Ofnh0ePHok1GlNTU6Grq4vU1FQcOHAAMpkMgiAgLS1NPCcjIwPJyckYNWoUYmNjkZaWhu3bt6Njx474/fffxXbnzp3DgAEDEBwcjNOnT2P48OEASoI+xVpMAOJaTBMTE+jp6eH27dtiopqAgADs2rULQUFBFT5HXXB2dsalS5dqfX0oERERUVkcIaRaU3YkqD5VNApU3rG6HCEsvU9bWxvm5ublFoTv27evZFtXVxfTp09HUVERevXqhbFjxyI7O7vKI2IVtffy8sLIkSMl7d98880KnzE4OBhxcXFYvHgxlixZgry8PLzzzjvo3r075HI5QkJC0LlzZ7Rs2VI859mzZ0hJSUF4eDgMDQ2hqamJuXPnIikpCc+ePRPbKUYw09PT4ejoiHbt2onHvv32W/H7s2fPIjIyEhs2bEBeXh46dOggmaLq5uaGvLy8Cp+jtl29ehWXLl0CUPsJg4iIiIjK4ggh1diLnizG3t4e2tra4khRYGAggJJ+Z2RkKB2ratmJipSXVEbV6OPSpUsrdc2y/VJMlwRKyjZYWlpi5syZsLS0rNKImKmpKW7fvo3o6GgsXboU3bp1Q/PmzXH+/HkYGBigdevWkvaamhX/PWnatGk4ceKE+IcBPT09REVFQVdXF23btoWVlRXOnj0rOUdfXx+WlpYoKCjAjRs38N1338Hb2xvdunWDo6Oj2O7777/HgQMHkJSUhNOnT8PNzU0cgVaV/dTIyEjcP3ny5Bdqeqa1tbX4fVFREXR0dOqxN0RERNTUMCCkGnvRk8WUDkzDwsLg4OCAoqIiWFlZQVNTEzKZDIGBgZDJZJg0aRI6duwIoPZGa/z8/HD9+nUAwMWLF+Hn5wdBEMR9pYPIuLg49OzZU3J+2WCy7Eiio6MjEhMTxe3SZT3c3Nzg5uamsl/79u0DAEyYMEFSvy8tLQ0xMTFiohuF5wX8S5YswfXr18WgdNy4cRg3bhx27dqFDz/8UCmLKQCsX78eQUFB6NChA86cOSP2dePGjZgzZ47YzsvLC/PmzUO/fv3g5eWFt99+Wzz28ccfY/bs2QCAVq1aiSOiL730Erp164abN29i3LhxmD9//guXaZQBIREREdU1BoRUY+WVKahsshgnJ6c6G7H58ssv0bFjR+jp6SE0NBRGRkZITk7GpEmTcPjwYcnoUm0FhMHBwZg2bRqOHDkCS0tLMdDasWMHAODevXvYuHEjBEHAggUL8O2330qKupc36qiukVp9fX2l+n1Dhw5F27ZtcffuXbFd//79cfDgwQqvpQgyS6soKP3uu+9w48YNGBgYYOvWrbh37x4KCwthZmYmqUO4fv16/Pjjj5g/fz6+++47yfP26NFD3P7999/Rpk0bMWh+6623YGdnh9WrV7+QmUZfhAQ3RERE1LQwIKQaq2yyGBcXF6U2giAgPj5e7X0qHcwNHToURkZGyMjIwLVr17Bnzx4YGBjA2dkZurq60NfXxx9//IGxY8fim2++wZYtWwDUXlKZadOmwczMDEDJqJWDgwNcXFzEou8PHjzA9u3bIQgC8vPzJYEQALHEQlnfffcdjh8/rrS/qiO1NjY2kvp9AFBQUKA0Elkb70dTUxM+Pj5o27YtAGDt2rX46KOP4OfnB29vb0RGRgIADA0NYWBggBkzZuDIkSNincanT5/C2NhYvF6LFi3Efm/fvh2XL1/GK6+8gqioKOzduxcBAQF4+eWXYWlpqfZnqY7CwsL67gIRERE1MQwIqc7ExMTg1KlTkrVngiDA3d1d7fcqHawcPnwY6enpMDY2RnR0NPz9/aGrqwsTExOkpqbiyZMn+PnnnzF06FAAwA8//CD2rSpUtVc1mrdkyRJxNFBxPCYmBuvWrcPHH38MHR0duLm5wdnZGb1791YaaY2IiJBs37x5E8XFxTAzMxNHalNSUsSgs6plPdasWaO0T1dXF6NHj8aqVavEfarW6lVEEIRyRzcVNDU18eOPP6JTp05wcXGBjo6O+LMsXYdw/PjxWLhwIYYNG4a33noL586dA1ASQJYeMSwdHCrKeuzduxdbtmzB+fPnsXbtWuzZswcxMTFVepbawhFCIiIiqmsMCKnOzJ8/H4aGhpIP9gDE9V7qVDog1NfXh76+PgBg4MCBOHv2LHJzc8UgsbxsnuoICJ/XP0WANH/+fLEfPXv2hLGxMby9vdGqVavnXsvQ0BBjx45FmzZtxGm7kydPxvz58+Hv7w8tLS2Ymppi4sSJAEpqFB49elTpOj/99JOYTGbYsGEIDAyEkZERFi1ahDFjxig93/MCwpUrV8LX1xd//PGHmAW1uLgYa9euhVwuxxdffKF0zsSJE3HmzBlcvXoVPj4+yMvLQ2BgIFq1aoWbN2+K7bZt24YjR47g77//hp2dHe7fvw8A+PPPP587cmllZYVVq1Zh+/btGDt2LFq0aFFrmUY3b96MnJwc+Pj4VKo9A0IiIiKqawwISW1SU1ORmpqKVq1aqQxkSq+DA0pKBrRs2RITJkxQe1+eFxSUDhLLUgRpdRkQenl54eeffxb3jR49GpMmTZKUSFAwNTXFvXv3xO379+9DEATcuXMHdnZ2EAQBSUlJ+PLLL3H8+HHo6urC399fHBErXb6htJUrV0qSySQmJqJZs2YYOnQokpKSlN7p89YmHj16FDY2Nnjvvffw5ptvwsLCAo8ePcKYMWPw8ssvIzIyEkZGRpJzFi9ejKFDh8LKygq6uro4fvw40tPT0bZtW3z//ffYuXMngJJptTNmzMDnn38OAHj11VcBAB07dpSM9oWEhIiBcFmlM7KWlZOTA21tbaWaj5UVGxuLpKQkfPzxxwBQ6YDw+vXrsLCwqNY9G6s//vgDMpnshZnWS0RE1NiwDiHV2MmTJ9G/f39MnToVX331FaZMmYIBAwbg5MmTFZ43fvz4WutT6eAlNTUVf/75J1JTUyt1bnUL01clIFSMrqWlpYn9Kn2/8ePHQ1NTU2VwULr8AlBSyD4xMRG5ubmIjo5GTEwMbG1toaWlhZYtW8LAwACrVq2S1ChURZFMpm3btmIyGT09PWhra+Po0aNK55VO3qJKTk4O5s2bh9dffx0nT55EUFAQwsLC0K1bNyQnJ+PJkydK57z88stYvnw5Tp8+jaSkJPE9FRcXY8CAAWI7ExMTaGlp4b333pMEuM7OzuJ0XACIjo7GnDlzVP4sFTUMS2dkVWjRogX69etX4fNVZMCAAeUGohVRTFumf/Xo0UMsnUJERETqx4CQauyLL75AaGgoDh48iKCgIBw+fBjHjh2TTAn87bffxHVeCrVZhLv0dMaqBKpOTk7VrkNY2TWEJ0+exDfffAOgZO2gol9//PFHhddSKDtVMyEhQbL94Ycfok+fPrCxsZFMDfXw8ICPjw+ysrJUXleRTAaAJJlM69atkZOTozTNVFu74gkGXbt2xYMHD/Dyyy8jLS0NAJCVlYXmzZvjtddeg6+vr9I5+fn5YpB3+fJlfPbZZwAAV1dXnDp1SmzXokULfPrpp5gxYwZeeuklZGZmAgA6deokeeelA+Gyxo8fX+F7jouLq/D5KlK6NiQRERHRi4xTRqnGNDU18eTJExgaGor7njx5IkkeM3DgQADSQGf//v211qfSI0KlSyMo1o21bt0abdu2xfXr16Gjo4OuXbvC3Nwc8fHxGDRokFJfq3rPinzxxRdiHb3Bgwdj06ZNyMzMhK2tLQAgMzMTn376KWJjY2FtbQ1dXV3J+WUDQsV73rhxIwCI9fTWr1+PBQsW4M6dO+J03fJGxIB/k8nY2dmJ99HS0gIA/P3332JQp5Cfn1/hc27btg3Xr1/HZ599hrfffhtFRUXQ1taGubk51q1bBysrK6WAOTw8HG3atIG1tTUOHz6Ml19+GUDJu50yZYrYrlmzZnBxcYEgCNDS0kJOTo7Y544dO+Lq1atiW8XU0CNHjoj7/vjjD1y+fBn29vYoKCjAypUrxZ87ERERUVPCgJBq7IcffoCvry9SUlLETJLm5uZits7ylM4AqW7lBWdr1qzBG2+8gXv37uHWrVu4cOEC9PT0MGnSJCxfvhzu7u7iueoYIVS1T1NTUxzRUhx/8uSJuO/hw4eIjY3FqVOnEBsbi5kzZ0rq9pUNCLt16wYA2LBhg2SdVYsWLaCpqalUtuJ5srKyEB8fDycnJ8moXPv27SVrF0sH/OWxsrLCgQMHAACDBw+WXE/Vz2jfvn346aef0KNHD8TGxorBa2JiIq5duya2Gzt2LD766CP8+eefSElJQUpKCv78808UFRXB09NTEvwppoaWNn/+fISHh8POzg6PHz/GuHHjcP78eaX+xMfHo3v37s99TnVS/Bu6ffs23NzcsH//fqUan0RERETqwoCQaqz0h/4XRelgo1+/fuKH7Pv37+Ps2bM4ffo0Tp06JX7Yb9GiBTp06IDZs2dj7969SteojPKCv7J++OEHMZHOgQMH8Pvvv8Pc3FxMYGJlZSXWdiwqKsKgQYMqDAgVUzcTEhLw448/4tdffwUAuLu7Y8+ePVUuOxEYGIisrCyl53nzzTclAWF1yk6UpiqjZnBwMC5evCi+tzNnzmDfvn2Ij4+XJHgxNjaGpaUlpk6ditmzZ+PGjRv48ssvUVRUpHTd8ePHSwLRq1evIisrSxwJNTU1LTe47d2793NHQtWtoKAAenp6+OWXX3D+/HmcP38e48aNq9M+NEYFBQUoKCio8h9IiIiIGjuuIaQ6lZ+fj9jYWJw4cQKxsbEoKCiolfuUDlYiIyMRFRWFyMhITJo0Ca+//jq8vLywb98+AP+ukwOACRMmiOeqY4RQMeWyNCsrK3h4eAAAxowZg8jISOzfv1/pg6ogCDhw4AAeP34sGeEqG/AoghkNDQ24urqK+8eMGYN//vlH6f6qMpeWNm7cOBgbGytN6VXUNVSoasBc9nqqAsJHjx5BS0sLdnZ2sLOzg6enp9jnO3fuKJ1bVFSEiRMnikG8qoCw7M/lm2++QZcuXSTrGssr71Fbv58VUQSg9XHvxmzYsGGSae1ERERUgiOEVKccHR1ha2sLIyMjpKenq5wSqQ4VTRktS1dXVwwOgX+DjaoGhKpGzFQFhKX7V/oenp6emDt3LqKjo9G3b1/o6OggOTkZycnJSEpKKvc+2dnZKCgoUFpreOjQIZXB3+TJkxEWFvbc5yk9pXfz5s0ICQmRHC8sLHzuNcq73nfffYfNmzcrtbl79y6Af4PcBw8eqLyW4t6KdorEOqoCwrKB6Pr165XKXezevRvJycnimsX6VHZEsjaTL1VGcnIy4uPjMWrUqHrtR02dPXu2vrtQZ548eQI7OzucOHFCLMlCRERUHgaEpBb5+fm4evWqWIdQVTIUADh37pxkep6qKZHqUNXRq9KqGxCqGvEqbyqion+K/7WzsxNH84qLi1FcXIy8vDxkZGQonVs6OARK1hw6Ojpi5syZmDRpkri/b9++SucqahRWlaKeXmmlC8VX1RdffIGbN2+ibdu2kv3a2tooKiqCTCbDgQMHYGdnJ0kQo/D999/j0KFDuHHjhmS/XC4Xfw6KhDVl16oOGDAArq6u+PTTTwGUrEeUyWT45Zdf6j34Av4NCBcsWACgZr/L6vDWW28hOTn5hXg31XX58uX67kKdOnfuHG7fvo2ffvoJCxcurO/uEBHRC45TRqnGgoKC4OjoiB07diAiIgLbtm2Do6OjWLqgtIiICPF7QRAQERGBZs2aqb1PFa1vq2jKZEpKSrUDQlUjZuX1o+y01KysLLFAer9+/cT6eaoCwrKB2GuvvYaIiAh8//33kqA0KysLFy5cQHR0tPilqFFYnqpM6e3YsWO5xxRsbW1hbW2NLl26wNraGra2trC1tUV2drbKkhyK9+Hm5oaRI0eKiXbK8vDwQExMDKytrSX7S48QlheM//rrrzAwMBDLWwiCgDNnzoj3r+8ArOwIYUUlLDZt2qRy1Fud7t+/X6vXL8+zZ8/Qu3dvtVzLz89PLddpKBQzExpyEE9ERHWHI4RUY5s3b670yN/Bgwfh7+8PuVwOHR0d9O7dW2XgWFMVfah3c3PDt99+q3I0c/LkyWJAUdXAQNUIYXkBVdkpo4GBgeKIlWJf2SmaCmUDneLiYjGwLh1ATZ8+HU+fPlUahfP391d53aCgIGzatEnllF5VHj9+rHJ/6etdvXoV06dPR8uWLSXXCwgIwN9//63y2eRyOWxsbLBx40Z88MEH4jTS0hQ1LT08PBAZGSnuVzVltKzMzEwMGDAAubm5GDBgAPLz88XgNDc3t1LZU2tTeQHhrVu34Ofnh127dokJdhTlRObOnVtr/dHR0YFcLlc5Lbkicrkccrm8SueU9uDBA8nIXnFxseRno6GhgTVr1uCTTz557rVK18xUJJgq69KlS7CwsICFhUW1+ltfPv74Y+Tn52Pbtm3iPsV/Q+rjjxsXL15E69at0alTpzq/NxERVQ8DQqoxfX19REREiIlPKhr5W7VqVZ184M7LyxO/V2STBIB//vkHycnJePvtt6GlpYWioiI8e/YMpqamaNWqFZKSksTMo+oYIVSVodLOzk5cG3fkyBHY2dlBEAQkJydXeF/FB2JbW1tJWYW4uDgcOXIEY8eOxciRI8X9d+7cwfjx48U1momJiejSpQscHBxUXr+iwL6sli1b4unTpyqvU/p6QUFBGDx4sDhtU3G9rVu3qiylYGxsjMePHyMhIQEffPABZs+ejRkzZii1y8vLw3vvvYePPvpIsr+oqEgsHyGXy7Fs2TIx0FZwdXXFwIEDYWRkBCsrKxw9ehTPnj0DAOTk5EBHR6fC56pt5QWEK1aswL59+7BgwQK1jZxVhq6uLvLy8pCenq70M1MEHKV/Z86dO4eEhAQcOXIER48exfbt2+Hk5ARzc3PJuTExMejUqVO55WeysrIk2wEBAVi8eDEA6R9SVAWEgiAgICAA06dPx8svvyxZy5uXlwd9fX2lc2xtbWFgYCDWtARKkhwVFBSgffv2krZhYWHo3LmzpMxLbdq4cSPs7OzEn7viDx/NmjUT1+KWDggVvzP1ERAqpqpzdJKIqOHglFGqsaCgIBw8eBD9+/dH3759MXDgQBw5ckQc+Sv9waD0h93bt28/t1ZhdSk+4AOQTJm0sLDAoEGDYGxsjDt37uDRo0dIS0uDubm5OJ2yulNGS99TQVVAmJWVJWYZdXBwEKdytmvXDsC/H+IU5SMUFB9Uy37I69GjB1avXo09e/ZIyn+sW7dOnEoK/DuaVB5FYK+gKrA3MDDA9u3bMXbsWHHaa3kBlL6+Plq1aiV+4C99PQcHB5VTIRWBxTfffANA9XRJRfmQjz/+GL6+vpJjRUVFkuQh+vr64tRQhf/9739Yu3YtJk2ahODgYGRkZIjBfE5OjuSPCeU5fvw4/ve//8HFxQW3bt16bvvyqPrAXl5AqBjVKm/UOSkpCRoaGmLtRnVR/HzT09MBlATaS5cuRU5ODlq1aoX33ntP0v6tt97CzJkzcfToUQAlo7iqSp/Y2dlJ/oBRVtmAcO/evfjhhx9w7tw5ZGdnAyj/32h6ejoWL16MDz/8EIB0hLCiKbhl/w2bm5urTDQ0fPjwOk3WMmvWLMlU73nz5lU4AlfefyuIiIhUYUBI1Xbv3j2sXbsW2dnZ+Pjjj/Hzzz8jMjISv/32G1avXi2WKSj9F/fSH7ZdXV0xY8YMyXF1KX3N0h8a9fX14ezsLKm1Vzro8ff3F/tY1X4pPqSWpiogDAwMFD9cl76Hvb29Un9LU3xALruuThAE3Lx5E1paWpJgqOyzPW/k63mB/f9r776joyjXP4B/d1M2vRGSEHpRkA6iQEBFETEXRMWLAaUoegQpgvFKMwqXC4J4qeKFiwpXDQgqSDMIQZASpEoMAgJKSQgplGRrdje78/39EXZ+WZJAIpGAeT7nvOdk552deeeZknlmZt8Bit5tOGTIENSsWVMdVtYjgaVNb+nSpeodhNISr2sf5SttHB8fH2g0Gjz66KN48cUX3eocDofbSfDo0aMxfPhwt8TD9YjpiBEjSsTaYrGUKyF8/PHH8dJLL+Grr75C165dy3y816X4b0lJ4r333sPly5dLfbzVtc34+/sD+P8ExtXW0n5XCgDbt28HUPm9aboeT3XdEd61axcmTZqEuXPnQq/X45tvvoHVanW7mHCtM2fOwG63q79HdC3jvn37yvzOtdu5TqfDsGHD0LNnzxt2jORqqyt2xe8QXi8hdFEUBR988EGJ7ePixYsYOXIkgKJ16rob/UeQxObNm2+YtJVWP3/+/DJ/27lgwQI1Eb7eMcz16OyCBQuuO/9jx47Bz88POTk51x3PNc3iZs2aVe4OfYxG43WfOnj11VfLfHxdCCHETaK4o+n1egKgXq+/5fMeN24cAVS4dOrUia+//rr6ecqUKczOzub58+eZmZlJm812021bunSpOn2TyaQOz8rK4pgxYxgTE8OOHTuya9euHDt2LLOysqgoChVFoYeHBwFw7NixFZrn8OHD3Zbz8ccfZ1RUVKnjxsXFEQC7dOmiDhs7diwB8L777mNhYWGJuP36668kyebNm7NVq1bq8DZt2lCj0TAyMpKDBw9Whxdftpths9nUaf7nP/8hSW7atEkd5ufnR0VRyjWt4OBgAqCiKExJSSmxjDVr1iQAfvrppyTJKVOmlBinXr16fOmll0i6r2cAHDFiBBs2bKh+ttvtJMlffvlFHfb3v/+dMTExDA4OZteuXd2+v3//fh4/ftxtWGlK266vV2+1WtW63377jQA4dOhQ5uTkuC0XAG7evJmKolCj0ah1//rXv9S/v/jiixLzURSFy5YtIwDOmTNHrf/iiy8YFxdXrnVDkk6nk0OHDmVaWhr1ej0XLVrEtm3buq0T17pPSEhQ5+/any9fvlxqbOrXr8/p06cTAH/77TdmZGSodYWFhaW2Zfny5W7TcLWjeAkPD1fHnz17Nn///XeS5I8//qjuAyT55JNPqt/ZtWsXZ82a5bbNWq1Wt1ju3Lmz1HU7YcIEt+GLFy8mSSqKQqPR6DbNWbNm8dtvvy2xXIqi8OjRo9y9e7e63q8nPT29RDtcnx944AH1b6fT6VYHgMOHDydJJiUlccaMGer3L1++rE63QYMG153/O++8QwBct27ddccjSYPB4LZeAVCj0aj18+bNY0pKCn/66Se3eGzcuJG1a9cuc38rvlwVoSiKGpc/04ULF9RjTWXbtm0bL126pH42mUx8//333Y4pQvxVVeU5bnUjCeFt4MMPP2SDBg2o0+nYvn177ty5s9zfrcqdxWaz8a233uLy5cvZr1+/CieGFS2tWrWiVqslAEZHR7N169YMCAhgly5d+PHHH7Nly5Z86KGH+PLLL7t9r1GjRtyxYwf37dvH8PBwTpgwgT/++CN3797NvXv3csOGDepJz913361+r0aNGjxx4sR1kx2n08msrCx6e3sTAHv06MFZs2ZxzZo16gnt2rVr6XA4SBadoCxatMitfb/88gsXL17sNt+zZ8+WWP59+/apJ+FLly7lK6+8wvbt27uN89NPP7mdOBkMBvWE6PTp0xw1alSZJ+DXOnXqFAcMGMDVq1cTAJ999lkajUa1vnfv3uzUqRMBqCfiN+JqW25uLjdu3Kh+vuuuu9yWY9iwYXziiSc4YsSIEnHo2LEjW7Zsyfj4eDZr1qzUbaVPnz4EwIsXL9Jms/H06dNq3datW9X22O12t+9t377dLYZlnYCWNs/iJ57X1uXl5al1rmTjiSee4LFjxwiA7777LrOzswmA69evZ15eXpn7QfEkpPgyzZs3jwA4adIkOp1O9dgA4Lonj8VPNs+fP08AbN++Pd9++231hN7VRrJkogaAvXv3JgAmJyeX2ubo6Gg2b95c/Xzo0CH177S0tFLbde1+Utq6joiI4MGDB/nDDz8QAFu3bk2SXL9+PYGihImk2r7i+3hmZqY6r6ysLLW+ePLtKnv27OG8efM4ceJEt+GjR48mSUZGRhIAFy1aVGLdXGvbtm0EwBdffFEdp6xjjNPpLLEtOhyOUmN85coVvvLKK27DBg4c6LY9KoqiJqKucr2E8NixY3zjjTcIgEuWLCFZlDwfP36cZrOZFy5ccBu/+H52+PBh9e/9+/fTbDa7zTctLY0FBQXct2/fdfc31zHHVe/v78/Zs2eXGC81NVWN44EDBzh37lyGhoby4YcfLnP5ih8fSTItLa3UBPLa9bN//342aNCA8fHxzM/PJwCOGzeOZrO51HVpt9vLXMe7du2iwWBwG3b48GGaTCZaLBZ1uc+dO0eS/PzzzwmAiYmJJeZhsVjKXFaXffv2qdOqqJSUFB49epTfffcdAbgdO1wUReHWrVtvmLAaDIZyX0isSg6Hg0lJSVQUhYWFhSwoKOC4ceOYm5tbYlyLxeJ2rCdLbjtVqaCgwK09pa2D06dPMykp6VY3rUySEN46khBWsZUrV9LLy4sfffQRjx07xjFjxtDf37/cB+w7aWdxOBy0Wq08d+4cjx07xtOnTzMtLY2JiYlcuXIln3/+efbs2bPME+GwsLAy64qX+vXrs3Pnzty+fbuaQJa3hIWF8d///rf6T9d1AuI64btRKf5P8MqVK6Xe1XCVr776qsSw//3vfzecxwsvvKCetFybvLRs2VL923UXskOHDpw8ebI6vFu3bhwxYgTfe+89zpw5k1qtlq1atWJCQgITEhL49NNPMzY2lp6enup32rVr53an1cWVQABgbGysOu6AAQMIgI0bN+Zrr73GhQsXsnv37uq4Xbp0oa+vL0NCQjh37lxmZmaqyeX1yrvvvstnn3221Lp77rmHQNEdl1OnTtHDw4MPPPAAGzdu7DZe7969uWnTJrd17Co9evQoMf2DBw8yIyODWVlZzMjIUE/ory0pKSncsWMHFyxYQAAMDAxU6xYvXsylS5dy9erVnDZtGoGixKRRo0YEwJycHPXuSs+ePd1if2159dVXee7cOW7YsMFt+DPPPKMuQ/E7yEDRRYeLFy/Sbrdz48aN3LRpExVF4YkTJwiAH3/8MZOSkvjtt99eN/7Dhg3jww8/XGK4n59fhfaz4k8ITJw4kd27d2fv3r1psVh48uRJfvbZZ2q9t7c3hw0bVu5pr1y5kvfff7+6Dh588EECYN26dd3Ge//992k2m5mSksLx48dXqP1AUfIJuO/HLVq0YHx8vNt4S5cupdVqZXJyMp966qlSl6V79+6MiopiamoqH3jggTL3he+//77U7RaA2z5evBQff86cOSXqIyMjqdfrmZ2dzfj4eM6ePZuXLl1yuwPsKitWrFD3c9ed+NGjR3P8+PHs3r17mRdoSitPPfUUPT092a5dO7fhP//8M/fv388ZM2aox4ymTZuW+P4777xDp9NJk8nExMREtzZeO25SUhJff/11Pvfcc+zfvz8nTJigXugCUOKOcPPmzZmSksK+ffuqw55//nnGxsaWuCDyj3/8o8T8fv/9d5pMJi5ZsoSDBg1iSEgIGzRowPT0dHbr1o3Tpk2jyWTi3Llz1e/cd9993LRpE1etWkWg6EJmUFCQWt+hQwfu2bOHjz/+OAGwf//+vHjxovp0TePGjdmiRQvu37+f4eHhfOaZZ/jll1/y1KlTHDlypNtd8qCgIKanp6v7WVJSEh0OB8+ePcsNGzZw7969PHHiBLt168aYmBiePHmSu3btUr/vuqgyadIkPvnkk1y3bh23bt3KuLg4dT9r3rw5Y2JimJCQwPXr13P+/PlcvXo177nnnhIXLt5++20uW7aMy5Yt49SpU5mQkMBu3bpx7969TElJ4dmzZ3ny5EkuXLiQ8+bNY1xcHC0Wi3pRpVevXly8eDF/++03Ll26lMOGDWO/fv34+eefc+fOnZwzZw6HDBnC9evX86WXXuLTTz/NkJAQJiQk8OLFi1y4cCE7duzIiRMnMjU1lVu2bOFzzz3H+++/v8QF5uKlT58+HDhwIFetWsXRo0cTKDpfmD9/Pj/55BNu3ryZwcHBnDx5MjMyMvjzzz/z66+/Zv/+/TlixAgmJiZy6tSpnDhxIqdPn86ZM2eyU6dObNq0KTdv3szY2FgOGzaMK1asYEpKCi9dusR9+/Zx8ODBnD17NnNycrhv3z6OGzeOH374IdetW8fvvvuOjzzyiLqNpKWlcd26dVyzZo3a7rVr1/K5554jUPT/JCkpiT/++CPfeustdZyBAwdyzpw5bNOmDbds2XJL7rSX5k46x73TSUJYxe6//371sR6XZs2accKECeX6fnXdWRRFocPhoNPppN1up9lspt1uV+/EFWc0Gnn8+HHu2rWLJ0+e5OrVq9m3b182b96c/fv3Z/v27ZmQkMDc3Fy3hO7s2bNcuXIlZ8+ezWnTprFnz57qyUufPn04aNAgAkV3U3bv3l3qlUCr1co333yTffv2Zf/+/dU7bq52Jicn09PTk8uXL1evLG7bto0DBgxgYmIiv/jiC86YMYP//e9/OWLECM6cObPEfDZu3Mjx48czNjaWAwcO5Lx589irVy/qdDoCoFarpZeXl9vJhasUTzwiIiJYo0YN9XO3bt3Yt29fLl++/LpXew8dOsSBAweyR48e6nddj926iisxDw0NZdu2bdm2bVsOHTqU6enp6nTy8vL4xhtv8JVXXnFL4o4ePcq8vDwWFBSQLLr636xZMzZs2JCPPvood+7cSZvNRrvdzq+//lrdF1atWsUmTZqo0wkMDFRP4q8t1yY0ffv25Z49e657Quvl5VVmXZMmTXjhwgXm5+e7PcJa2jS+/PJLNQZDhgxR62JjY9XksrT1dSuL61HfP1LKuigTExPjdgGjtJKSkkKbzcZ169bd9DLs2bPHbXsobztLK3369GFubu5Nt6ldu3blmm+XLl3cPtevX9/trmfxcvfdd3PFihUcNWpUmdO79oLBjYqvr2+Fxnc9MRETE1PiUfqbKXFxceV+GiUsLIw+Pj6VNu+qKi1btmTHjh2rvB3Fy7XHdyl/vXLtRfBr72LfKtX1HLcqaEjpG7qq2O12+Pn54auvvsLTTz+tDh8zZgxSU1NL7aTBZrO5dVRiMBhQt25d6PV6BAUF3ZJ2q1atApYvv7XzFH8KAij5ZrabnCYJuDqJufp3Zc+jokjCaDJBcTqh1WrhHxAArVYLDYpi4HQ64aHVqp3bGAwGWG02WK1Wte16gwH16tZFUFAQnIoC29V6m80GkPDx9UVoSIg6T4fDgQKrFRqNBufPn0dERASCg4Jgtdngo9O5dXjCq+N7enqq8yOJgquvSnA4HDifkQF/f394eXkhIDAQhYWF0OfnQ1EU1IyIgEGvh+bqMrh6JDWbzdB5e0Mh4XQ6oShK0bIVFMDH1xfnz5/HXU2awNfXF8EhIfD28kJmZiaiatVCod2OoKAgmM1mKIoCjUYDP39/eHp4QKvVQq/Xw+l0wsfHR+2AhiQKHQ74+viAAIwGA2w2G0LDwnAhMxNORUH9evVgtdmQnZ2NsLAw5OTkgFfbFV6zJurUqQPvMjpCclztpEeDoo6HbHY7AgMCQAAmoxH2wkKEh4fj8qVL8PP3R0BAADQAnIqC3Nxc1KhRA/r8fJgtFjgKC6HRaIpeLaHRoNBuh7dOp24XGo0GNrsdTqcTNqsVISEham+4iqLg8uXL0Pn4wMfHB5cuXYKHVgs/f3/4+/khLz8fJpMJTqcTJqMRkVFR8PL0hI+vLwosFoSEhsJsNsNRWAgPDw+YLRYEBQYi9+JFtXdTKgq8vLxw+fJl5Ov1CAoMRGhoqNpzKgHYrFZYCgrg5+cHn2LrICcnB15eXggNDYXNbofD4YC/nx+0Wi3y8vMRGBCAvPx86PPz4eXlBW9v76JObDQaBAQEwPvqOyj9/f1RYLXi+PHjCAsNRXjNmvD08ICiKNDr9fDx9S3q7AlFHfgU72iKAJwOB/R6PYKDg2Gz26Hz9kaB1QpvLy9YCgqKOlAiUVhYCKPJBK1Gg5ycHDRo0AA+Pj6wWCzw8/eH19VldjidyM3Nhd1mQ4HVCioKGjdpAqPRWLT/arUICQ4GUNTBkN5gQI2wMBBFPRnn5OQg78oVNGnSBCazGTabDTXDw4veuakoAAmzxYKQ4GD4+PggX6+Hh4cHDHo9TCYTomvXhr+/f9FxQaOBj04HjUYDp9MJq9WKM2fOwNfXtyguOh28vLxQWFiIzMxM1K5TBwUWC06dOoWoWrXQrGlTaLVaXL5yBQUWC86lp6NZ06YgiYDAQPjodFAUBZkXLsDL0xMFViuioqKQkZGBX3/9FXffdRfy8vLQ7J574OHhAZPRCK2HB4KCgnDu7FmYTCbY7XZ06twZ+vx8aLVaWG02KE4nNFot/P38cPbsWdhsNoTVqAGtRoMreXmoGR6OgIAAaK9O02AwqK9Z8fDwgKeXF/Ly8qDz9saly5eL9vnCQkRGRiIwMBDZ2dkIvHp88vTwgE6ng9VmA0nYrFaEhoZCURTofHxwITMTQUFBsF89lmm0WtQMD8elS5fgVBRQUVBQUIBGjRsXvRrI01NdP76+vrBYLMjOyYH/1dfGRERGwlFYCLPFAp23Nzy9vKDRaGAtKEBYWBj8/PxAAOnp6bAWFKBGeDg0V/8/2ex2aDUa+AcEoLCwEIGBgQCunq9dfV0Nr+77TocDNpsNZrMZvlf3PbPFou6zBQUFCA4ORlZWFoCiDth8fX3V46PRaETt2rWL9mUSZrMZmRcuICw0FBqNBpGRkTCZzcjMzITFbEZERAR8/fwQGBiI/Lw8FBQUQCFRaLejdu3a0BsM8PX1hZ+fH7y9vFBgtcJsMqHQ4UBQUBD8/fxgs9lwJS8PgQEBCAoKgs1mg8lkQmFhIUgiKioKGo0GJGEymeDn7w+L1YrArVtL/6f6JzMYDAgODq6ac9xqRhLCKnThwgXUrl0bKSkpag+TQFEvlJ9++ilOnDhR4jtTpkzBP//5zxLDJSEUQgghhBCVSqsF1q6tkllLQnjryIvpbwPXdrXPq92Bl2bixImIj49XP7vuEFaJuLiiIoQQQgghhLgjSUJYhcLDw+Hh4YHs7Gy34bm5uYiMjCz1OzqdTn0sSwghhBBCCCFuhryYvgp5e3vj3nvvRXJystvw5ORkt0dIhRBCCCGEEOLPIHcIq1h8fDwGDRqEDh06oHPnzliyZAnS09MxfPjwqm6aEEIIIYQQ4i9OEsIqFhcXh8uXL2Pq1KnIyspCy5YtkZSUpPbmJYQQQgghhBB/Full9A4nPTAJIYQQQoi/GjnHvXXkN4RCCCGEEEIIUU1JQiiEEEIIIYQQ1ZQkhEIIIYQQQghRTUlCKIQQQgghhBDVlCSEQgghhBBCCFFNSUIohBBCCCGEENWUvIfwDud6a4jBYKjilgghhBBCCFE5XOe28oa8P58khHc4o9EIAKhbt24Vt0QIIYQQQojKZTQaERwcXNXN+EuTF9Pf4RRFwYULFxAYGAiNRlPVzakwg8GAunXrIiMjQ146ehMkjpVD4lh5JJaVQ+JYOSSOlUdiWTkkjjdGEkajEdHR0dBq5Vdufya5Q3iH02q1qFOnTlU346YFBQXJAbESSBwrh8Sx8kgsK4fEsXJIHCuPxLJySByvT+4M3hqSbgshhBBCCCFENSUJoRBCCCGEEEJUU5IQiiql0+kwefJk6HS6qm7KHU3iWDkkjpVHYlk5JI6VQ+JYeSSWlUPiKG4n0qmMEEIIIYQQQlRTcodQCCGEEEIIIaopSQiFEEIIIYQQopqShFAIIYQQQgghqilJCIUQQgghhBCimpKEUPzpdu7ciSeeeALR0dHQaDRYu3atWz1JTJkyBdHR0fD19UW3bt1w9OjRqmnsbWzGjBm47777EBgYiIiICDz11FM4ceKE2zgSy/JZtGgRWrdurb4QuHPnzti0aZNaL3H8Y2bMmAGNRoOxY8eqwySWNzZlyhRoNBq3EhUVpdZLDCsmMzMTAwcORI0aNeDn54e2bdvi0KFDar3E88YaNGhQYpvUaDQYOXIkAIlheTkcDiQkJKBhw4bw9fVFo0aNMHXqVCiKoo4jsRS3A0kIxZ/ObDajTZs2WLhwYan1s2bNwpw5c7Bw4UIcOHAAUVFR6NGjB4xG4y1u6e1tx44dGDlyJPbu3Yvk5GQ4HA489thjMJvN6jgSy/KpU6cOZs6ciYMHD+LgwYN45JFH8OSTT6r/hCWOFXfgwAEsWbIErVu3dhsusSyfFi1aICsrSy1HjhxR6ySG5ZeXl4cuXbrAy8sLmzZtwrFjxzB79myEhISo40g8b+zAgQNu22NycjIAoF+/fgAkhuX13nvvYfHixVi4cCGOHz+OWbNm4f3338cHH3ygjiOxFLcFCnELAeA333yjflYUhVFRUZw5c6Y6zGq1Mjg4mIsXL66CFt45cnNzCYA7duwgKbG8WaGhofz4448ljn+A0WjkXXfdxeTkZD700EMcM2YMSdkmy2vy5Mls06ZNqXUSw4oZP348u3btWma9xPOPGTNmDBs3bkxFUSSGFdCrVy8OHTrUbVjfvn05cOBAkrI9ituH3CEUVerMmTPIzs7GY489pg7T6XR46KGHsGfPnips2e1Pr9cDAMLCwgBILP8op9OJlStXwmw2o3PnzhLHP2DkyJHo1asXHn30UbfhEsvyO3XqFKKjo9GwYUP0798fp0+fBiAxrKj169ejQ4cO6NevHyIiItCuXTt89NFHar3Es+LsdjsSExMxdOhQaDQaiWEFdO3aFd9//z1OnjwJAPj555+xe/du/O1vfwMg26O4fXhWdQNE9ZadnQ0AiIyMdBseGRmJc+fOVUWT7ggkER8fj65du6Jly5YAJJYVdeTIEXTu3BlWqxUBAQH45ptv0Lx5c/WfsMSxfFauXImffvoJBw4cKFEn22T5dOzYEZ999hnuvvtu5OTkYNq0aYiJicHRo0clhhV0+vRpLFq0CPHx8Zg0aRL279+P1157DTqdDoMHD5Z4/gFr165Ffn4+XnjhBQCyX1fE+PHjodfr0axZM3h4eMDpdGL69OkYMGAAAImluH1IQihuCxqNxu0zyRLDxP8bNWoU0tLSsHv37hJ1Esvyadq0KVJTU5Gfn4/Vq1djyJAh2LFjh1ovcbyxjIwMjBkzBlu2bIGPj0+Z40ksry82Nlb9u1WrVujcuTMaN26MTz/9FJ06dQIgMSwvRVHQoUMHvPvuuwCAdu3a4ejRo1i0aBEGDx6sjifxLL9PPvkEsbGxiI6OdhsuMbyxVatWITExEStWrECLFi2QmpqKsWPHIjo6GkOGDFHHk1iKqiaPjIoq5epJz3WVzCU3N7fEFTNRZPTo0Vi/fj22b9+OOnXqqMMllhXj7e2NJk2aoEOHDpgxYwbatGmD+fPnSxwr4NChQ8jNzcW9994LT09PeHp6YseOHViwYAE8PT3VeEksK8bf3x+tWrXCqVOnZHusoFq1aqF58+Zuw+655x6kp6cDkONkRZ07dw5bt27Fyy+/rA6TGJbfm2++iQkTJqB///5o1aoVBg0ahNdffx0zZswAILEUtw9JCEWVatiwIaKiotQezICi3yvs2LEDMTExVdiy2w9JjBo1CmvWrMG2bdvQsGFDt3qJ5c0hCZvNJnGsgO7du+PIkSNITU1VS4cOHfD8888jNTUVjRo1klj+ATabDcePH0etWrVke6ygLl26lHgdz8mTJ1G/fn0AcpysqGXLliEiIgK9evVSh0kMy89isUCrdT/V9vDwUF87IbEUt40q6sxGVCNGo5GHDx/m4cOHCYBz5szh4cOHee7cOZLkzJkzGRwczDVr1vDIkSMcMGAAa9WqRYPBUMUtv728+uqrDA4O5g8//MCsrCy1WCwWdRyJZflMnDiRO3fu5JkzZ5iWlsZJkyZRq9Vyy5YtJCWON6N4L6OkxLI83njjDf7www88ffo09+7dy969ezMwMJBnz54lKTGsiP3799PT05PTp0/nqVOnuHz5cvr5+TExMVEdR+JZPk6nk/Xq1eP48eNL1EkMy2fIkCGsXbs2N27cyDNnznDNmjUMDw/nuHHj1HEkluJ2IAmh+NNt376dAEqUIUOGkCzqdnny5MmMioqiTqfjgw8+yCNHjlRto29DpcUQAJctW6aOI7Esn6FDh7J+/fr09vZmzZo12b17dzUZJCWON+PahFBieWNxcXGsVasWvby8GB0dzb59+/Lo0aNqvcSwYjZs2MCWLVtSp9OxWbNmXLJkiVu9xLN8Nm/eTAA8ceJEiTqJYfkYDAaOGTOG9erVo4+PDxs1asS33nqLNptNHUdiKW4HGpKskluTQgghhBBCCCGqlPyGUAghhBBCCCGqKUkIhRBCCCGEEKKakoRQCCGEEEIIIaopSQiFEEIIIYQQopqShFAIIYQQQgghqilJCIUQQgghhBCimpKEUAghhBBCCCGqKUkIhRBCCCGEEKKakoRQCCGEEEIIIaopSQiFEEIIIYQQopqShFAIIYQQQgghqilJCIUQQgghhBCimpKEUAghhBBCCCGqKUkIhRBCCCGEEKKakoRQCCGEEEIIIaopSQiFEEIIIYQQopqShFAIIYQQQgghqilJCIUQQgghhBCimpKEUAghhBBCCCGqKUkIhRBCCCGEEKKakoRQCCGEEEIIIaopSQiFEEIIIYQQopr6P8g1Vy6KrQ4QAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "uc = ex.GetSolutions()[0][0].DirectUnitCell()\n", "c = pyobjcryst.crystal.Crystal(uc[0], uc[1], uc[2], uc[3], uc[4], uc[5], \"P1\")\n", "pdiff = p.AddPowderPatternDiffraction(c)\n", "\n", "# Plot with indexing in new figure\n", "p.plot(diff=False,fig=None,hkl=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fit the profile and background\n", "We use a maximum sin(theta)/lambda because we don't really need high angle/high resolution data.\n", "\n", "This will go faster and is more reliable for spacegroup indexing and structure solution." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "No background, adding one automatically\n", "Selected PowderPatternDiffraction: with Crystal: \n", "Profile fitting finished.\n", "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", "to disable profile fitting and optimise the structure.\n", "Fit result: Rw= 5.45% Chi2= 33309.27 GoF= 4.33 LLK= 6248.657\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ea1a1633984a452693bb538cd640b799", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADFI0lEQVR4nOzde3zPdf/H8cfOB7avsWYWmXI+Rc5UzGHIENUShotUFru6CB2QcoVyLJWruvpRTCtKJ8UcQg5ry6FGJsXClaHs5LDZ4fP7Y9unfXeyzRjb8367fW+X7+f7/rw/789ndH1fe7/fr5eNYRgGIiIiIiIiUunYlvcAREREREREpHwoIBQREREREamkFBCKiIiIiIhUUgoIRUREREREKikFhCJSKsOGDSvvIYiIiIjIVbIv7wGIyI1typQp+Y4ZhsGuXbvKYTQiIiIiUpYUEIpIkUJDQ1m1alW+499++205jEZEREREypICQhEp0ujRo2nSpAleXl5Wx0eMGFFOIxIRERGRsmKjwvQiIiIiIiKVk5LKiIiIiIiIVFIKCEVERERERCopBYQiUmL79u0r7yGIiIiISBlQUhkRKdJbb71l9d4wDJYuXUpwcDDBwcHlNCoRERERKQuaIRSRIr355pt89dVXuLq6UqVKFapWrYqtrS1Vq1Yt76GJiIiIyFVSQCgiRTpw4ADDhw/n888/x9HRkaCgIGrXrq2yEyIiIiIVgMpOiEixZGZmEhoaykcffcSZM2eIjIws7yGJiIiIyFVSQCgiJZKZmUlcXBw+Pj7lPRQRERERuUoKCEVERERERCop7SEUERERERGppBQQikipxMXFlfcQREREROQqKSAUkVJRllERERGRm58K04tIkdq3b5/vmGEYHDlypBxGIyIiIiJlSQGhiBQpOTmZ6Oho7O2t/3PRq1evchqRiIiIiJQVLRkVkSLNnj2b5OTkfMenTZtWDqMRERERkbKkshMiUiIxMTE0bty4vIchIiIiImVAM4QiUiLBwcHlPQQRERERKSMKCEWkRBwcHMp7CCIiIiJSRrRkVEREREREpJLSDKGIiIiIiEglpYBQRERERESkklJAKCIiIiIiUkkpIBQREREREamkFBCKiIiIiIhUUgoIRaRUhg0bVt5DEBEREZGrZF/eAxCRG9uUKVPyHTMMg127dpXDaERERESkLCkgFJEihYaGsmrVqnzHv/3223IYjYiIiIiUJQWEIlKk0aNH06RJE7y8vKyOjxgxopxGJCIiIiJlxcYwDKO8ByEiIiIiIiLXn5LKiIiIiIiIVFIKCEVERERERCopBYQiUmL79u0r7yGIiIiISBlQUhkRKdJbb71l9d4wDJYuXUpwcDDBwcHlNCoRERERKQuaIRSRIr355pt89dVXuLq6UqVKFapWrYqtrS1Vq1Yt76GJiIiIyFVSQCgiRTpw4ADDhw/n888/x9HRkaCgIGrXrq2yEyIiIiIVgMpOiEixZGZmEhoaykcffcSZM2eIjIws7yGJiIiIyFVSQCgiJXLu3DlSUlLw8fEp76GIiIiIyFVSQHiTy8zM5I8//sDNzQ0bG5vyHo5UAgEBAXz11VflPQwRERGpwAzDIDk5GR8fH2xttcvtWlJAeJM7efIkderUKe9hiIiIiIiUuRMnTlC7du3yHkaFprITNzk3Nzcg6x+Lu7t7OY9GKoP4+Hg8PDzKexgiIiJSgSUlJVGnTh3zu65cOwoIb3I5y0Td3d1xd3dn8eLFPP300wwfPpzly5dTrVo1DMMgPT2dQYMGsXLlSvPcP/74g4YNG3LhwgU+/fRTBg0aBECNGjVISUnhwoULdOvWjYyMDLZu3cp3333HV199xfz584s9vgYNGnDrrbeSmppK586dWbBgQYHt4uLiWLp0KS+++CLdunXjq6++KtOyBv/5z39wdnZm1KhRBX4+YsQItmzZwsmTJ8vsmhWVfvEgIiIi14u2RF17WpBbAbVq1Yrly5eb7w8fPsyJEycICwvj4sWL5vHq1asTFRXFHXfcYXX+X3/9ZfX+m2++wc7OrlRjsVgsbN26ld27d7N//37+97//FdjO29ubF198sVTXKAsffPAB3t7e5XZ9EREREZHyoICwkqhevTouLi4cPXrUPObs7EyTJk2uqt/169dzzz330LlzZz788MNC22VkZJCWloazszOnT5+mR48e3HvvvTz44INkZGQQGxvLgw8+WOj53bp145///CcdOnTg5ZdfJiQkhI4dOzJv3jwAfvrpJ7p06ULnzp3597//DcDx48e5++67ue+++9i+fbvZ1+zZs+natSv33nsv0dHRV3X/lVlcXFx5D0FERERErpICwkri8OHDpKSk0Lhx4zLrMzMzk5deeonNmzezY8cO/vOf/5CRkWHVJjExkW7dutG0aVPq1q1LjRo18PDwYMOGDWzfvp3bbruNLVu2FOt6gYGBRERE8O677zJ69Gh27txpLoF97rnn+O9//8vOnTvZvn07sbGxvPrqq8yYMYOvv/7aXG4QHR3N4cOH2bZtGx9//DEzZswos+dR2agwvYiIiMjNT3sIK4FGjRphY2PDM888g7192f3I//zzT44cOYK/v7/5/uzZs1ZLL3OWjBqGQWBgIN999x0NGjTgiSeeID4+nlOnTnHnnXfSoEGDK16vZcuW2NjY4O3tzZ133omNjQ0ODg4AnD592pztvOuuu/jtt9/49ddfadOmDQDt27cH4NChQ+zatYtu3boBlHopbGWS8+xyMwyDI0eOlMNoREREiiczM5PLly+X9zCkEA4ODvoedoNQQFgJHD58+Jrsj/P09KRJkyZs3LgRBwcH0tLSzAAtLxsbGywWC+fOnSM0NBR/f3+Cg4OZOHEixa18kntTcd4NxjVr1uTQoUM0btyYvXv38sQTT1C/fn327dtHz549+eGHH+jRoweNGzema9eu/Pe//wUgLS2tlHdfeSQnJxMdHZ3vlwm9evUqpxGJiIgU7fLlyxw7dozMzMzyHooUoVq1anh7eytxTDmrUAHh9u3bmTdvHnv27OHUqVOsXbuW+++/3/y8sL9sr776KpMnTway9qpt27bN6vOHH36YsLAw8318fDwhISF88cUXAAwYMIAlS5ZQrVo1s83x48d58skn2bJlCy4uLgwdOpT58+fj6OhotomOjmb8+PFERkZSvXp1Hn/8caZPn35d/1F4eXnx119/MWLECB5++GEzUCrM6tWr2b9/P5C1ZPD555+nZ8+e2Nracsstt/Dxxx9btc9ZMpqRkUHNmjXp27cvP//8M0FBQWzYsAFXV1datmx51ffx8ssv8+ijj2IYBv369cPX15cpU6aYzz3nZ9OyZUsaNGhA165dsbW1pVevXjz33HNXff2KbPbs2SQnJ+crNTFt2rRyGpGIiEjhDMPg1KlT2NnZUadOHRU1vwEZhsHFixc5c+YMALVq1SrnEVVuFaow/TfffMPOnTu56667eOCBB/IFhHmTYHzzzTeMGTOGX3/9ldtvvx3ICggbNmzISy+9ZLZzcXHBYrGY7/v27cvJkyd55513AHjsscfw9fXlyy+/BLISqLRq1YpbbrmFBQsW8NdffzFy5EgGDx7MkiVLgKzaKg0bNsTPz4/nn3+eX375hVGjRvHCCy8wadKkYt9zUlISFouFxMRE3N3d+e9//8uECRN4+OGHrTKNlkSNGjVwcHAgLi6OIUOGcOrUKbZs2VKhp/VHjBhBTEwMkZGR5T2UG15MTEyZ7kUVEREpS2lpafz666/4+PhYfX+TG89ff/3FmTNnaNiwYb7vmXm/48q1U6ECwtxsbGzyBYR53X///SQnJ7N582bzWLdu3WjVqhWLFy8u8JxDhw7RtGlTIiIi6NChAwARERF06tSJmJgYGjVqxDfffENAQAAnTpzAx8cHgLCwMEaNGsWZM2dwd3dn6dKlPPvss5w+fRonJycA5s6dy5IlSzh58mSxZwn1j0Wut+7duxc7EZCIiMj1lpKSwrFjx/D19cXFxaW8hyNFuHTpErGxsdSrVw9nZ2erz/Qd9/qptHPop0+fZt26dYwZMybfZ6GhoXh6etKsWTOefvppkpOTzc92796NxWIxg0GAjh07YrFY2LVrl9mmefPmZjAI0Lt3b1JTU9mzZ4/ZpmvXrmYwmNPmjz/+IDY2ttBxp6amkpSUZPUSuZ4K2ycqIiJyI9G+tBuffkY3hgq1h7Ak3n//fdzc3Bg8eLDV8WHDhlGvXj28vb05cOAAzz77LD/++CMbN24Espadenl55evPy8vLXJIaFxdHzZo1rT738PDA0dHRqo2vr69Vm5xz4uLiqFevXoHjnjNnTrkWcBfZsGFDeQ9BRERERMpIpZ0h/L//+z+GDRuWb3p67Nix9OzZk+bNmzNkyBDWrFnDpk2b2Lt3r9mmoN9mGIZRZBbM4rTJWb1b1G9Lnn32WRITE83XiRMnrnCnImXszz9h8mRQ5jYREZHrZuvWrdjY2JCQkFDeQ5EKplIGhN999x2HDx/m0UcfvWLbu+66CwcHB7Pmmre3N6dPn87X7uzZs+YMn7e3d74ENvHx8aSlpRXZJifTUt7ZxdycnJxwd3e3eolcV88/D/Pnw4ED5T0SEREREblKlTIgfO+992jTpg133nnnFdsePHiQtLQ0Mx1up06dSExMtMpG+f3335OYmEjnzp3NNgcOHODUqVNmm/DwcJycnMxC6Z06dWL79u1WBVPDw8Px8fHJt5RURERERETkWqhQAeH58+fZv3+/WSfv2LFj7N+/n+PHj5ttkpKSWL16dYGzg7/99hsvvfQSP/zwA7GxsXz99dc89NBDtG7dmi5dugDQpEkT+vTpw9ixY4mIiCAiIoKxY8cSEBBAo0aNAPD396dp06YEBQWxb98+Nm/ezNNPP83YsWPNGb2hQ4fi5OTEqFGjOHDgAGvXrmX27NlMnDhRG2xFREREKqHU1FRCQkLw8vLC2dmZu+++m6ioKKs2O3fu5M4778TZ2ZkOHToQHR1tfvb777/Tv39/PDw8qFKlCs2aNePrr7++3rchN5kKFRD+8MMPtG7dmtatWwMwceJEWrduzYwZM8w2YWFhGIbBI488ku98R0dHNm/eTO/evWnUqBEhISH4+/uzadMmq9oooaGhtGjRAn9/f/z9/WnZsiUrVqwwP7ezs2PdunU4OzvTpUsXAgMDuf/++5k/f77ZxmKxsHHjRk6ePEnbtm0JDg5m4sSJTJw48Vo8GhERERG5wU2ZMoVPPvmE999/n71791K/fn169+7NuXPnzDaTJ09m/vz5REVF4eXlxYABA0hLSwPgySefJDU1le3btxMdHc0rr7xC1apVy+t25CZRYesQVhaq0SLX3RNPwNtvw48/QsuW5T0aERERKzl1CHPXtrt48SIxMTHXfSyNGzfG1dW1WG0vXLiAh4cHy5cvZ+jQoQCkpaXh6+vLU089Rbt27fDz8yMsLIyHH34YgHPnzlG7dm2WL19OYGAgLVu25IEHHuCFF164ZvdUlgr6WeXQd9zrp9KWnRARERGRyiEmJsbM43A97dmzh7vuuqtYbX/77TfS0tLMbUqQVfu3ffv2HDp0iHbt2gFZeShyVK9enUaNGnHo0CEAQkJCGDduHOHh4fTs2ZMHHniAlvrlrVyBAkIRERERqdAaN27Mnj17yuW6xVVY+bG8ZcsKkvP5o48+Su/evVm3bh3h4eHMmTOHBQsWMGHChBKOXCoTBYQiUjpabS4iIjcJV1fXYs/UlZf69evj6OjIjh07rJaM/vDDDzz11FNmu4iICG677TYgq6zZL7/8YhV41qlThyeeeIInnniCZ599lnfffVcBoRRJAaGIlIhhGCgProiISNmqUqUK48aNY/LkyVSvXp3bbruNV199lYsXLzJmzBh+/PFHAF566SVq1KhBzZo1ef755/H09OT+++8H4KmnnqJv3740bNiQ+Ph4tmzZQpMmTcrxruRmoIBQRErk50OHaAacPn2amuU9GBERkQpk7ty5ZGZmEhQURHJyMm3btmXDhg14eHhYtfnnP//JkSNHuPPOO/niiy9wdHQEICMjgyeffJKTJ0/i7u5Onz59WLRoUXndjtwklGX0JqcMTHK9bWvalK6HDnFk9WoaPPhgeQ9HRETESlGZK+XGoiyjN4YKVYdQRK4f/S5JRERE5OangFBERERERKSSUkAoIiIiIiJSSSkgFBERERERqaQUEIpI6WgPoYiIiMhNTwGhiJSMjaoQioiIiFQUCghFREREREQqKQWEIlIqKjshIiIicvNTQCgiIiIicpObOXMmrVq1Ku9hyE1IAaGIiIiIiEglpYBQREpFqWVEREREbn4KCEVEREREbgCZmZm88sor1K9fHycnJ2677TZefvllAKZOnUrDhg1xdXXl9ttvZ/r06aSlpRXZ3//93//RrFkznJycqFWrFuPHj78etyE3GfvyHoCIiIiIiMCzzz7Lu+++y6JFi7j77rs5deoUMTExALi5ubF8+XJ8fHyIjo5m7NixuLm5MWXKlAL7Wrp0KRMnTmTu3Ln07duXxMREdu7ceT1vR24SCghFRERERMpZcnIyr732Gm+88QYjR44E4I477uDuu+8GYNq0aWZbX19fJk2axEcffVRoQPjvf/+bSZMm8c9//tM81q5du2t4B3KzUkAoIiIiIhXbxYuQPdN2XTVuDK6uxWp66NAhUlNT6dGjR4Gfr1mzhsWLF/Prr79y/vx50tPTcXd3L7DtmTNn+OOPPwrtSyQ3BYQiUjI2WelkVIdQRERuGjEx0KbN9b/unj1w113Fauri4lLoZxEREQwZMoQXX3yR3r17Y7FYCAsLY8GCBSXuSyQvBYQiIiIiUrE1bpwVnJXHdYupQYMGuLi4sHnzZh599FGrz3bu3EndunV5/vnnzWO///57oX25ubnh6+vL5s2b8fPzK/m4pVJRQCgiIiIiFZura7Fn6sqLs7MzU6dOZcqUKTg6OtKlSxfOnj3LwYMHqV+/PsePHycsLIx27dqxbt061q5dW2R/M2fO5IknnsDLy4u+ffuSnJzMzp07mTBhwnW6I7lZKCAUkdLRklEREZEyNX36dOzt7ZkxYwZ//PEHtWrV4oknnmDMmDH861//Yvz48aSmptKvXz+mT5/OzJkzC+1r5MiRpKSksGjRIp5++mk8PT158MEHr9/NyE3DxtBGoJtaUlISFouFxMTEQjcWi5Slbc2b0/XgQQ6vWkWjRx4p7+GIiIhYSUlJ4dixY9SrVw9nZ+fyHo4Uoaiflb7jXj8VqjD99u3b6d+/Pz4+PtjY2PDZZ59ZfT5q1ChsbGysXh07drRqk5qayoQJE/D09KRKlSoMGDCAkydPWrWJj48nKCgIi8WCxWIhKCiIhIQEqzbHjx+nf//+VKlSBU9PT0JCQrh8+bJVm+joaLp27YqLiwu33norL730khJ1iIiIiIjIdVOhAsILFy5w55138sYbbxTapk+fPpw6dcp8ff3111afP/XUU6xdu5awsDB27NjB+fPnCQgIICMjw2wzdOhQ9u/fz/r161m/fj379+8nKCjI/DwjI4N+/fpx4cIFduzYQVhYGJ988gmTJk0y2yQlJdGrVy98fHyIiopiyZIlzJ8/n4ULF5bhExEpe0Z2llERERERuflVqD2Effv2pW/fvkW2cXJywtvbu8DPEhMTee+991ixYgU9e/YEYOXKldSpU4dNmzbRu3dvDh06xPr164mIiKBDhw4AvPvuu3Tq1InDhw/TqFEjwsPD+fnnnzlx4gQ+Pj4ALFiwgFGjRvHyyy/j7u5OaGgoKSkpLF++HCcnJ5o3b84vv/zCwoULmThxIjb60i0iIiIiItdYhZohLI6tW7fi5eVFw4YNGTt2LGfOnDE/27NnD2lpafj7+5vHfHx8aN68Obt27QJg9+7dWCwWMxgE6NixIxaLxapN8+bNzWAQoHfv3qSmprInO+Xx7t276dq1K05OTlZt/vjjD2JjYwsdf2pqKklJSVYvkfKg5c0iIiIiN79KFRD27duX0NBQtmzZwoIFC4iKiqJ79+6kpqYCEBcXh6OjIx4eHlbn1axZk7i4OLONl5dXvr69vLys2tSsWdPqcw8PDxwdHYtsk/M+p01B5syZY+5dtFgs1KlTpySPQERERERExFShloxeycMPP2z+uXnz5rRt25a6deuybt06Bg8eXOh5hmFYLeEsaDlnWbTJmXEparnos88+y8SJE833SUlJCgpFRERERKRUKtUMYV61atWibt26HDlyBABvb28uX75MfHy8VbszZ86Ys3fe3t6cPn06X19nz561apN3li8+Pp60tLQi2+QsX807c5ibk5MT7u7uVi+RcqEloyIiIiI3vUodEP7111+cOHGCWrVqAdCmTRscHBzYuHGj2ebUqVMcOHCAzp07A9CpUycSExOJjIw023z//fckJiZatTlw4ACnTp0y24SHh+Pk5ESbNm3MNtu3b7cqRREeHo6Pjw++vr7X7J5FRERERERyVKiA8Pz58+zfv5/9+/cDcOzYMfbv38/x48c5f/48Tz/9NLt37yY2NpatW7fSv39/PD09GTRoEAAWi4UxY8YwadIkNm/ezL59+xg+fDgtWrQws442adKEPn36MHbsWCIiIoiIiGDs2LEEBATQqFEjAPz9/WnatClBQUHs27ePzZs38/TTTzN27FhzRm/o0KE4OTkxatQoDhw4wNq1a5k9e7YyjMoNL+dvp+YHRURERG5+FSog/OGHH2jdujWtW7cGYOLEibRu3ZoZM2ZgZ2dHdHQ0AwcOpGHDhowcOZKGDRuye/du3NzczD4WLVrE/fffT2BgIF26dMHV1ZUvv/wSOzs7s01oaCgtWrTA398ff39/WrZsyYoVK8zP7ezsWLduHc7OznTp0oXAwEDuv/9+5s+fb7axWCxs3LiRkydP0rZtW4KDg5k4caLV/kCRG5HqEIqIiNx4Zs6cSatWra7pNZYvX061atWu6TXk+qtQSWW6detWZCr8DRs2XLEPZ2dnlixZwpIlSwptU716dVauXFlkP7fddhtfffVVkW1atGjB9u3brzgmERERERGRa6FCzRCKiIiIiIhI8SkgFJESyVkwaqMsoyIiImUqMzOTV155hfr16+Pk5MRtt93Gyy+/DMDUqVNp2LAhrq6u3H777UyfPp20tLQi+/u///s/mjVrhpOTE7Vq1WL8+PFFto+Pj2fEiBF4eHjg6upK3759zWz8uX322Wc0bNgQZ2dnevXqxYkTJ8zPfvzxR/z8/HBzc8Pd3Z02bdrwww8/lOJpyPWigFBERERE5Abw7LPP8sorrzB9+nR+/vlnVq1aZZYjc3NzY/ny5fz888+89tprvPvuuyxatKjQvpYuXcqTTz7JY489RnR0NF988QX169cv8vqjRo3ihx9+4IsvvmD37t0YhsF9991nFXhevHiRl19+mffff5+dO3eSlJTEkCFDzM+HDRtG7dq1iYqKYs+ePTzzzDM4ODhc5ZORa6lC7SEUEREREbkZJScn89prr/HGG28wcuRIAO644w7uvvtuAKZNm2a29fX1ZdKkSXz00UdMmTKlwP7+/e9/M2nSJP75z3+ax9q1a1fo9Y8cOcIXX3zBzp07zVJqoaGh1KlTh88++4yHHnoIgLS0NN544w06dOgAwPvvv0+TJk2IjIykffv2HD9+nMmTJ9O4cWMAGjRoUNpHIteJZghFRERERMrZoUOHSE1NpUePHgV+vmbNGu6++268vb2pWrUq06dP5/jx4wW2PXPmDH/88UehfT3xxBNUrVrVfOVc397e3gz0AGrUqEGjRo04dOiQecze3p62bdua7xs3bky1atXMNhMnTuTRRx+lZ8+ezJ07l99++61kD0KuO80QikipFJXRV0RE5EYz7qtx/C/5f9ftere63crSgKXFbu/i4lLoZxEREQwZMoQXX3yR3r17Y7FYCAsLY8GCBSXuC+Cll17i6aeftjpW2P+vG4aRr0Z2QTWzc47NnDmToUOHsm7dOr755hteeOEFwsLCzLrfcuNRQCgiJaIwUEREbkYlCc7KQ4MGDXBxcWHz5s08+uijVp/t3LmTunXr8vzzz5vHfv/990L7cnNzw9fXl82bN+Pn55fvcy8vL7y8vKyONW3alPT0dL7//ntzyehff/3FL7/8QpMmTcx26enp/PDDD7Rv3x6Aw4cPk5CQYC4RBWjYsCENGzbkX//6F4888gjLli1TQHgDU0AoIiIiIlLOnJ2dmTp1KlOmTMHR0ZEuXbpw9uxZDh48SP369Tl+/DhhYWG0a9eOdevWsXbt2iL7mzlzJk888QReXl707duX5ORkdu7cyYQJEwps36BBAwYOHMjYsWN5++23cXNz45lnnuHWW29l4MCBZjsHBwcmTJjA66+/joODA+PHj6djx460b9+eS5cuMXnyZB588EHq1avHyZMniYqK4oEHHijTZyVlS3sIRURERERuANOnT2fSpEnMmDGDJk2a8PDDD3PmzBkGDhzIv/71L8aPH0+rVq3YtWsX06dPL7KvkSNHsnjxYt566y2aNWtGQEBAgSUkclu2bBlt2rQhICCATp06YRgGX3/9tVWWUFdXV6ZOncrQoUPp1KkTLi4uhIWFAWBnZ8dff/3FiBEjaNiwIYGBgfTt25cXX3zx6h+OXDM2hjYC3dSSkpKwWCwkJibi7u5e3sORSmBry5Z0i47m0Pvv02TEiPIejoiIiJWUlBSOHTtGvXr1cHZ2Lu/hSBGK+lnpO+71oxlCESmZAjaSi4iIiMjNSQGhiIiIiIhIJaWAUEREREREpJJSQCgipaLtxyIiIiI3PwWEIiIiIiIilZQCQhERERGpcLSS5cann9GNQQGhiJSKco2KiMiNyM7ODoDLly+X80jkSi5evAhgVedQrj/78h6AiIiIiEhZsbe3x9XVlbNnz+Lg4ICtreY/bjSGYXDx4kXOnDlDtWrVzCBeyocCQhEpmew6hFrmISIiNyIbGxtq1arFsWPH+P3338t7OFKEatWq4e3tXd7DqPQUEIqIiIhIheLo6EiDBg20bPQG5uDgoJnBG4QCQhEpHc0QiojIDczW1hZnZ+fyHobIDU+LqkVERERERCopBYQiUjqaIRQRERG56SkgFBERERERqaQUEIpIyWRnGdUMoYiIiMjNTwGhiIiIiIhIJVWhAsLt27fTv39/fHx8sLGx4bPPPjM/S0tLY+rUqbRo0YIqVarg4+PDiBEj+OOPP6z66NatGzY2NlavIUOGWLWJj48nKCgIi8WCxWIhKCiIhIQEqzbHjx+nf//+VKlSBU9PT0JCQvKlPo6OjqZr1664uLhw66238tJLL6m2m9w89HdVRERE5KZXoQLCCxcucOedd/LGG2/k++zixYvs3buX6dOns3fvXj799FN++eUXBgwYkK/t2LFjOXXqlPl6++23rT4fOnQo+/fvZ/369axfv579+/cTFBRkfp6RkUG/fv24cOECO3bsICwsjE8++YRJkyaZbZKSkujVqxc+Pj5ERUWxZMkS5s+fz8KFC8vwiYiIiIiIiBSuQtUh7Nu3L3379i3wM4vFwsaNG62OLVmyhPbt23P8+HFuu+0287irqyve3t4F9nPo0CHWr19PREQEHTp0AODdd9+lU6dOHD58mEaNGhEeHs7PP//MiRMn8PHxAWDBggWMGjWKl19+GXd3d0JDQ0lJSWH58uU4OTnRvHlzfvnlFxYuXMjEiROxydmnJXKDMjIzy3sIIiIiInKVKtQMYUklJiZiY2NDtWrVrI6Hhobi6elJs2bNePrpp0lOTjY/2717NxaLxQwGATp27IjFYmHXrl1mm+bNm5vBIEDv3r1JTU1lz549ZpuuXbvi5ORk1eaPP/4gNjb2GtytiIiIiIiItQo1Q1gSKSkpPPPMMwwdOhR3d3fz+LBhw6hXrx7e3t4cOHCAZ599lh9//NGcXYyLi8PLyytff15eXsTFxZltatasafW5h4cHjo6OVm18fX2t2uScExcXR7169Qocd2pqKqmpqeb7pKSkEt65SBnRHkIRERGRm16lDAjT0tIYMmQImZmZvPXWW1afjR071vxz8+bNadCgAW3btmXv3r3cddddAAUu5zQMw+p4adrkJJQparnonDlzePHFF4u6PRERERERkWKpdEtG09LSCAwM5NixY2zcuNFqdrAgd911Fw4ODhw5cgQAb29vTp8+na/d2bNnzRk+b29vcyYwR3x8PGlpaUW2OXPmDEC+2cXcnn32WRITE83XiRMnrnDHIteG9hCKiIiI3PwqVUCYEwweOXKETZs2UaNGjSuec/DgQdLS0qhVqxYAnTp1IjExkcjISLPN999/T2JiIp07dzbbHDhwgFOnTpltwsPDcXJyok2bNmab7du3W5WiCA8Px8fHJ99S0tycnJxwd3e3eomIiIiIiJRGhQoIz58/z/79+9m/fz8Ax44dY//+/Rw/fpz09HQefPBBfvjhB0JDQ8nIyCAuLo64uDgzKPvtt9946aWX+OGHH4iNjeXrr7/moYceonXr1nTp0gWAJk2a0KdPH8aOHUtERAQRERGMHTuWgIAAGjVqBIC/vz9NmzYlKCiIffv2sXnzZp5++mnGjh1rBnBDhw7FycmJUaNGceDAAdauXcvs2bOVYVRufDl/P7WHUEREROSmV6ECwh9++IHWrVvTunVrACZOnEjr1q2ZMWMGJ0+e5IsvvuDkyZO0atWKWrVqma+c7KCOjo5s3ryZ3r1706hRI0JCQvD392fTpk3Y2dmZ1wkNDaVFixb4+/vj7+9Py5YtWbFihfm5nZ0d69atw9nZmS5duhAYGMj999/P/PnzzTY5ZTBOnjxJ27ZtCQ4OZuLEiUycOPE6PS2Rq2MoIBQRERG56dkY+lZ3U0tKSsJisZCYmKjlo3JdbL3rLrrt20f0kiW0GD++vIcjIiIiFZC+414/FWqGUESuH/0uSUREROTmp4BQREpFO11FREREbn4KCEWkVDRDKCIiInLzU0AoIqWjgFBERETkpqeAUERKRTOEIiIiIjc/BYQiUiJGdh1C7SEUERERufkpIBSRUtEMoYiIiMjNTwGhiJSOAkIRERGRm54CQhEpFc0QioiIiNz8FBCKSKloD6GIiIjIzU8BoYiUSE4gqBlCERERkZufAkIRKR0FhCIiIiI3PQWEIlIqmiEUERERufkpIBSRElEdQhEREZGKQwGhiJSKZghFREREbn4KCEWkdBQQioiIiNz0FBCKSKlohlBERETk5qeAUERKxNw7qIBQRERE5KangFBERERERKSSUkAoIiVizgtqhlBERETkpqeAUEREREREpJJSQCgipWJkZpb3EERERETkKikgFBERERERqaQUEIpI6WgPoYiIiMhNTwGhiIiIiIhIJaWAUERKxMYmqxKh9hCKiIiI3PwUEIqIiIiIiFRSFSog3L59O/3798fHxwcbGxs+++wzq88Nw2DmzJn4+Pjg4uJCt27dOHjwoFWb1NRUJkyYgKenJ1WqVGHAgAGcPHnSqk18fDxBQUFYLBYsFgtBQUEkJCRYtTl+/Dj9+/enSpUqeHp6EhISwuXLl63aREdH07VrV1xcXLj11lt56aWXMLQvS25wqkMoIiIiUnFUqIDwwoUL3HnnnbzxxhsFfv7qq6+ycOFC3njjDaKiovD29qZXr14kJyebbZ566inWrl1LWFgYO3bs4Pz58wQEBJCRkWG2GTp0KPv372f9+vWsX7+e/fv3ExQUZH6ekZFBv379uHDhAjt27CAsLIxPPvmESZMmmW2SkpLo1asXPj4+REVFsWTJEubPn8/ChQuvwZMREREREREpgFFBAcbatWvN95mZmYa3t7cxd+5c81hKSophsViM//znP4ZhGEZCQoLh4OBghIWFmW3+97//Gba2tsb69esNwzCMn3/+2QCMiIgIs83u3bsNwIiJiTEMwzC+/vprw9bW1vjf//5ntvnwww8NJycnIzEx0TAMw3jrrbcMi8VipKSkmG3mzJlj+Pj4GJmZmcW+z8TERAMw+5Uby9ChQ8t7CGVuS9u2hgFG5PTp5T0UERERqaD0Hff6sS/XaPQ6OnbsGHFxcfj7+5vHnJyc6Nq1K7t27eLxxx9nz549pKWlWbXx8fGhefPm7Nq1i969e7N7924sFgsdOnQw23Ts2BGLxcKuXbto1KgRu3fvpnnz5vj4+JhtevfuTWpqKnv27MHPz4/du3fTtWtXnJycrNo8++yzxMbGUq9evQLvIzU1ldTUVPN9UlJSmTwfuTpTpkzJd8wwDHbt2lUOo7nGspPKiIiIiMjNr9IEhHFxcQDUrFnT6njNmjX5/fffzTaOjo54eHjka5NzflxcHF5eXvn69/LysmqT9zoeHh44OjpatfH19c13nZzPCgsI58yZw4svvnjF+5XrKzQ0lFWrVuU7/u2335bDaK4TZRkVERERuelVmoAwh02e2Q3DMPIdyytvm4Lal0UbIztJR1HjefbZZ5k4caL5PikpiTp16hQ5frn2Ro8eTZMmTfL9smDEiBHlNCIRERERkSurUElliuLt7Q38PVOY48yZM+bMnLe3N5cvXyY+Pr7INqdPn87X/9mzZ63a5L1OfHw8aWlpRbY5c+YMkH8WMzcnJyfc3d2tXlL+Zs2aVeDMcUhISDmM5jpRllERERGRm16lCQjr1auHt7c3GzduNI9dvnyZbdu20blzZwDatGmDg4ODVZtTp05x4MABs02nTp1ITEwkMjLSbPP999+TmJho1ebAgQOcOnXKbBMeHo6TkxNt2rQx22zfvt2qFEV4eDg+Pj75lpKKiIiIiIhcCxUqIDx//jz79+9n//79QFYimf3793P8+HFsbGx46qmnmD17NmvXruXAgQOMGjUKV1dXhg4dCoDFYmHMmDFMmjSJzZs3s2/fPoYPH06LFi3o2bMnAE2aNKFPnz6MHTuWiIgIIiIiGDt2LAEBATRq1AgAf39/mjZtSlBQEPv27WPz5s08/fTTjB071pzRGzp0KE5OTowaNYoDBw6wdu1aZs+ezcSJE6+4hFXkRmBoD6GIiIjITa9C7SH84Ycf8PPzM9/n7LUbOXIky5cvZ8qUKVy6dIng4GDi4+Pp0KED4eHhuLm5mecsWrQIe3t7AgMDuXTpEj169GD58uXY2dmZbUJDQwkJCTGzkQ4YMMCq9qGdnR3r1q0jODiYLl264OLiwtChQ5k/f77ZxmKxsHHjRp588knatm2Lh4cHEydOtNofKHJD05JRERERkZuejWHoW93NLCkpCYvFQmJiovYTlqONGzcybdo07OzsCAkJYciQIQD069ePdevWlfPoyta37dvjFxVF5NSptJ87t7yHIyIiIhWQvuNePxVqyahIeXnhhRfYsGEDmzZtIjIykgkTJpCZmcnFixfLe2hlL2dJs36XJCIiInLTU0AoUgbs7OyoVq0arq6uLFy4kDZt2jBw4EDOnz9f3kMTERERESmUAkKRMtCqVStiY2PN96NGjWLixIkkJyeX36CuMSWVEREREbn5VaikMiLlZcmSJfmO+fn5ERMTUw6jEREREREpHs0Qitzkhg0bVj4X1h5CERERkZueZghFbhJTpkzJd8wwDHbt2lUOoxERERGRikABoUgZSU9Px97e+p9UXFwc3t7eZdJ/aGgoq1atynf822+/LZP+S0oVa0RERERufgoIRa5CdHQ0U6dOJSEhAXt7e9LS0vD09GT27Nm0aNGCESNGEB4eXibXGj16NE2aNMHLy8vq+IgRI8qkfxERERGpfLSHUOQqBAcH8/bbb5Oenk5KSgoZGRmcOHGCzp07065dOyIjI8vsWrNmzcoXDAKEhISU2TWKw8ipQ6gsoyIiIiI3Pc0QilyFjIwMLBYLycnJREdHY29vT0JCAvfddx+7du2iV69e5T1EEREREZFCKSAUuQpz584lICAABwcH7r//fi5dukR6ejqvvPIKANOmTSvnEZY9m5w/aA+hiIiIyE1PS0ZFrsK9997L9u3b+f7773n33XdZt24d27Zt45ZbbgGga9eu5TzCG8++ffsICAhg0KBBVhlSx4wZc0P0JyIiIlKZKCAUKQMuLi7UqlULZ2dnIGtvYVn7+OOPad26NcOHD+f999+nUaNGtGvXji+++KLMr1Ucpc0yGhISwuLFi1m0aBGLFi1i4cKFABw9evSG6E9ERESkMtGSUZFrwMHBocz7XLBgATt37iQ5OZlWrVoRExODs7MzPXv2ZMCAAWV+vWvFxsaG+vXrA7B69WpmzpzJ2LFjSU9PvyH6ExEREalMNEMocg1s2LChzPt0cXHB1dWVmjVr0qNHDywWC05OTvlqH15rV5tl1MvLi9jYWPP9zJkz6dq1K1FRUTdEfyIiIiKViQJCkauwceNGOnToQOfOnQkLCzOP9+vXr8yv1apVKzIyMgBYuXIlAJcvX6ZGjRplfq1rac2aNfj6+lodGz58OCkpKTdEfyIiIiKViQJCkUIMGzbsim1eeOEFNmzYwKZNm4iMjGTChAlkZmZy8eLFMh/P4sWLsbOzszrm6OjImjVryvxaxaIsoyIiIiI3Pe0hlEpvypQp+Y4ZhmGVsbIwdnZ2VKtWDYCFCxeyfPlyBg4cyPnz58t6mDec0iaVEREREZEbhwJCqfRCQ0NZtWpVvuPffvvtFc9t1aoVsbGx5pLFUaNGUbduXcaNG1fWw7xh2OT537Kwb98+WrduXYY9ioiIiEhxKCCUSm/06NE0adIELy8vq+MjRoy44rlLlizJd8zPz4+YmJgyG9+VxMXF4e3tfd2ul6O0M4RvvfVWvn6WLl1KcHBwmZbr8Pf3Jzw8vMz6ExEREamIFBBKpTdr1qwCj4eEhFx138OGDSM0NPSq+ynKiBEjyifwKWVA+Oabb1K3bl0CAwOxyc5YamtrS9WqVUvVX2BgYAFDM4iOji5VfyIiIiKViQJCkTJwNfsQi6t9+/YFXuPIkSNldo3r4cCBA3z44YesXr2awMBAHn74YT766KNizcgWJCoqii1btmBr+3eOLMMwCAoKKqshi4iIiFRYCghFykDefYh//fUXNWrUKNY+xOJKTk4mOjo6X93BXr16ldk1CpOenm5e16xDWMoZQhsbG4YOHcqQIUMIDQ1lwIAB/Pnnn6Ue2+TJk3Fzc8PT09Pq+Pjx40vdp4iIiEhloYBQpAzk3YeYs3+ttLNeBZk9ezbJycl4eHhYHZ82bVqZXSO36Ohopk6dSkJCAvb29qSlpeHp6cn9Fy4AcLU5Rm1tbQkKCmLYsGHExcWVup+8+w4TEhKoVq0aDz/88FWOUERERKTiszGUO/6mlpSUhMViITExEXd39/IeToVSnKQkRS3jTEhIuEYjyxITE0Pjxo2vWf/33HMPq1atok6dOuax48ePE9C8OT8lJ7Prscfo/Pbb1+z6pdW9e3e2bNlS3sMQERGRq6DvuNePZgil0ruapCTluYwzODj4mgY+GRkZWCwWq2Pu7u5kZP8O6Ub9XdKNOi4RERGRG5HtlZtULL6+vtjY2OR7Pfnkk0BWHbm8n3Xs2NGqj9TUVCZMmICnpydVqlRhwIABnDx50qpNfHw8QUFBWCwWLBYLQUFB+WaMjh8/Tv/+/alSpQqenp6EhIRw+fLla3r/kl9UVBSvvPIK8+bNs3rVr1//iufmLOPMqyyXce7bt4+AgAAGDRpklaTml19+KbNrFGTu3LkEBATQs2dPBg8eTI8ePRg4cCCP1a171X2npqayd+9eNm3axN69e8v07/2nn35aZn2JiIiIVHSVboYwKiqKjIwM8/2BAwfo1asXDz30kHmsT58+LFu2zHzv6Oho1cdTTz3Fl19+SVhYGDVq1GDSpEkEBASwZ88e7OzsABg6dCgnT55k/fr1ADz22GMEBQXx5ZdfAlmzL/369eOWW25hx44d/PXXX4wcORLDMAqsbSfXztUkJRk0aFCBx7t27VomY4Os8hfLli3D3t6eyZMnExERwcSJE2nQoEGZXaMg9957L9u3b+fSpUskJCTg4eGBs7Mz33bunNWglDNxK1asYOnSpbRr1w53d3cSEhLYu3cv48aNY/jw4Vc15vT09Hx7LEVERESkCEYl989//tO44447jMzMTMMwDGPkyJHGwIEDC22fkJBgODg4GGFhYeax//3vf4atra2xfv16wzAM4+effzYAIyIiwmyze/duAzBiYmIMwzCMr7/+2rC1tTX+97//mW0+/PBDw8nJyUhMTCz2+BMTEw2gROdI2QsPDzfat29vdOrUyfjwww/N4/fdd99V933PPfdYvX/hhReMRx991Lj77ruvuu/S2Ny5s2GAsWPMmFKd36VLFyMjI8PqWFpamtGlS5dS9ffTTz8Zffv2NTp16mTcc889RseOHY2AgADjp59+KlV/IiIiUv70Hff6qXRLRnO7fPkyK1euZPTo0WaBbICtW7fi5eVFw4YNGTt2LGfOnDE/27NnD2lpafj7+5vHfHx8aN68ubmcb/fu3VgsFjp06GC26dixIxaLxapN8+bN8fHxMdv07t2b1NRU9uzZU+iYU1NTSUpKsnpJ+XvhhRfYsGEDmzZtIjIykgkTJpCZmcnFixevum8vLy9iY2PN9zNnzqRr165ERUVddd/lwcXFhW3btpnvDcNg27ZtODs7l6q/4OBg3n77bXbt2sX27dvZvXs3b775Jo899lhZDVlERESkwqrUAeFnn31GQkICo0aNMo/17duX0NBQtmzZwoIFC4iKiqJ79+6kpqYCEBcXh6OjY75laTVr1jRT58fFxZnlB3Lz8vKyalOzZk2rzz08PHB0dCwyBf+cOXPMfYkWi8UqA6SUHzs7O6pVq4arqysLFy6kTZs2DBw4kPPnz19132vWrMHX19fq2PDhw0lJSbnqvktq3759f7+5iiWjn3/+OV26dKFjx47ce++9fPXVV6xcubJU/cXFxdGnTx/uuusu5s6dC2Qlv/n5559L1Z+IiIhIZVLp9hDm9t5779G3b1+rWbrctcuaN29O27ZtqVu3LuvWrWPw4MGF9mUYhtUsY+4/X02bvJ599lkmTpxovk9KSlJQeI3ExcXh7e1drLatWrXi119/NRPRjBo1irp16zJu3LhCz9m3bx/Tp0/HwcGByZMn0zl7b96YMWN47733rv4GrtJbb71l9d4wDJYuXUrPixfpTumzeXp7e7N48eKrH2C2nF/QODs78+GHH7Jw4UIaNmzIHXfcUWbXEBEREamoKm1A+Pvvv7Np06YrZiSsVasWdevW5ciRI0DWl9nLly8THx9vNUt45swZ8wu9t7c3p0+fztfX2bNnzVlBb29vvv/+e6vP4+PjSUtLyzdzmJuTkxNOTk7Fu0m5KiNGjLhiHcLcxdtHjx5tFm9/5pln8PPzIyYmptBzC0sWc/To0bK+lVJ58803qVu3LoGBgeYvKWxtbXHJTpxU+K8trq9q1aqxY8cOM/nN3r17efXVV0lLSyvvoYmIiIjc8CrtktFly5bh5eVFv379imz3119/ceLECWrVqgVAmzZtcHBwYOPGjWabU6dOceDAATMg7NSpE4mJiURGRpptvv/+exITE63aHDhwgFOnTpltwsPDcXJyok2bNmV2n3Jl7du3z/dq166d1c+vMIXtX7vS3yvImiGuX78+vr6+rF69mqSkJMaOHUt6enqJxj9s2LAStS+uAwcOMHz4cD7//HMcHR0JCgqidu3a+Gcvhy7tDGFZ69evH7Gxsbi4uFCrVi369evHW2+9xa233lreQxMRERG54VXKGcLMzEyWLVvGyJEjrQqKnz9/npkzZ/LAAw9Qq1YtYmNjee655/D09DTLC1gsFsaMGcOkSZOoUaMG1atX5+mnn6ZFixb07NkTgCZNmtCnTx/Gjh3L22+/DWSVnQgICKBRo0YA+Pv707RpU4KCgpg3bx7nzp3j6aefZuzYsbi7u1/nJ1K5XU1x+cKKtxcnWMpJFpOzP3DmzJmsXLmSFStWFNh+ypQpVu8//vhjHnroIavahGXJxsaGoUOHMmTIEEJDQxkwYAB//vknODhck+uV1nPPPWf1PiYmhmbNmpklX0RERESkcJUyINy0aRPHjx9n9OjRVsft7OyIjo7mgw8+ICEhgVq1auHn58dHH32Em5ub2W7RokXY29sTGBjIpUuX6NGjB8uXLzdrEAKEhoYSEhJiZiMdMGAAb7zxhtW11q1bR3BwMF26dMHFxYWhQ4cyf/78a3z3kldOcfm8iYKKU1w+p3i7o6Mj7u7uJCYmkp6ezocffnjFc9esWZPv2PDhw/PV4gsMDATgyy+/pGPHjkDW7FxycjIBAQF8++23V7zW1bC1tSUoKIhhw4YRFxfH4ZyanTfIDGFuf/zxB0OHDuXTTz/Nl4hHRERERPKzMW6UdV9SKklJSVgsFhITEzWzWEZiYmJo3Lhxic7JW7y9LNWrV48tW7awaNEiRo4ciaenJ4ZhEBQUxHfffcfrr79OSEhImV6zIDlJcBJ27+bVc+fIHDGCu99/v9yT4AwePJhPP/2Ud955h1WrVnH8+HGaNGlC586def7558ttXCIiIlJ6+o57/VTaPYQihQkODi7xOTn718o6GASYPHkybm5uvP7667Rp04a6devi6+vL+PHjAa5LMJhzncWLF/Okry+LgLDssg4lTYKzb98+AgICGDRokNVy1zFjxpRqXDm1OD/88EO2bNnC0aNHWbdunZaMioiIiBSDAkKRPBzKcI9cUTUliys4OBhPT0/zfUJCAmBdIuV6yEmC42hry2rgwuXLpUqCkxNYLlq0iEWLFrFw4UKg5IFljvr16/PVV1/Rrl07vvzyS5KTk9m+fbvVMm8RERERKZgCQpE8NmzYUGZ9jRgxosTn5Ow7LUxR9TCvpZwkOHOyS7CMvvNOunbtSlRUVIn6Kavsqjlef/11Dh8+zL59+5g6dSr+/v588cUXLF++vFT9iYiIiFQmlTKpjEhZ2bhxI9OmTePgwYN4e3tTvXp1AH755RcaNGhg1q8sSE6ymNwMwyA6OrrIa16vbb/t27fPd+yhhx4i5vz5rDeZmQUmwbmSkmZXvRJHR0cmTZrEpEmTSnW+iIiISGWmgFDkKrzwwgts2LCBjh070qdPHzIyMnjttdfo0aMH3377bZGlK6KiotiyZQu2tn9P1OckiynIxx9/zJw5c2jQoAHvv/8+s2fPxt3dnenTpzNgwIAyv7fCynG0rVYNEhNL3W9xs6uKiIiIyLWngFAqtGHDhhEaGnrN+rezs6NatWrMmTOHbt268fnnnzNw4EDOZ8+iFVW6IidZTO79gYCZLCavBQsWsHPnTpKTk2nVqhUxMTE4OzvTs2fPaxIQFlaOY/itt2YFhEpQLCIiInLTU0AoFULeou2QNdt2rYq252jVqhWxsbEMGjQIgFGjRlG3bl2zxmXXrl0LPbewbKaFJYtxcXHB1dUVV1dXevTogcViAcg3g1dWcu4pr1Y3YOrn1NRUDh48yLlz56hevTrNmzfH0dGxvIclIiIicsNTQCgVQmhoKKtWrcp3/FoXbV+yZInV+4SEBPz8/KhXr16ZX6tVq1ZkZGRgZ2fHypUriYuLo3r16tSoUaPMr1WQnCWrnidP8jsw/csvqdmuXZksWd23bx+tW7cu1bkrVqxg6dKltGvXDnd3dxISEti7dy/jxo3TMlQRERGRK1BAKBXC6NGjadKkCV5eXlbHS5PlM0dplpsOHjyYLVu2lGnpihyLFy+2ev/II4/w7bffFrgn71rIWbK6/p57ePLPP/k/f3+6h4aWeMnqW2+9ZfXeMAyWLl1KcHBwqWpAvv322+zYscNqL2Z6ejrdunVTQCgiIiJyBQoIpUKYNWtWgceLU7S9LJeb5mQALW7piuIsdSwo26dhGOzbt6/E47saOUtWqzs40AOo6uCAk5NTiZesvvnmm9StW5fAwEBsbGwAsLW1pWrVqqUe17Zt2/Dz8wOyns22bdtwdnYuVX8iIiIilYkCQqn0ynK56aeffvr3m927oWVLqFKlwLbFXepYWLbPnBIX10N6erq5ZNUAVgLfAZcvXy7xktUDBw7w4Ycfsnr1agIDA3n44Yf56KOPSj2bu2LFCubOncu0adPIyMjAwcGBtm3bsnLlylL1JyIiIlKZKCCUSq8sl5taZeTs3JmU++/Hee3aAtsWd6ljYdk+P/jggxKPrySio6OZOnUqCQkJ2Nvbk5aWxv3338+gCxfwI2smztHRscRLVm1sbBg6dChDhgwhNDSUAQMG8Oeff5Z6nN7e3vmW04qIiIhI8dgY16vKtVwTSUlJWCwWEhMTcb8Bsz9WajY2/FK1Kg2Tkwv8uFevXjz33HNWSx23bNnCnDlz2LRpU4HnpKen8+uvv9K4ceNrNuwc99xzD6tWraJOnTrmsePHjxPQrBk/nT/P9ocf5t6wsKu+zrlz50hJScHHx+eq+xIREZGKQd9xrx/bKzcRufFt3LiRDh060LlzZ8JyBSn9+vUrl/HEnToFQGZGRqFtVqxYweeff06XLl3o2LEj9957L1999VW+pY7R0dHcd999dO7cme7du9OhQwf69+9PdHT0Nb2HjIwMs7RFDnd3d8w7yswsk+s8+OCDJQ4G9+3bR0BAAIMGDWL58uXmnwMCAsw2Y8aMKZPxiYiIiFRkWjIqFcILL7zAhg0bcHR0ZNq0aezcuZPXXnuNixcvlst4RowYQThgk/1+3759TJ8+HQcHByZPnkznzp3x9vYmOTmZnTt3FtlXcHCw1Uxd7969efPNNxk2bBjfffcdcXFxeHt7l/k9zJ07l4CAABwdHXF3dycxMZH09HQer10bYmLMdld7/dIsUggJCWHZsmXY29vTtm1bHnvsMR577DHat2/PwoULmThxIkePHi31mEREREQqCwWEUiHY2dlRrVo1ABYuXMjy5csZOHAg58+fv6bXLSwD6JEjRwCwyQ52cgcwkydPJiIiothBS96Zug0bNpCQkEBG9uzjiBEjCA8PL4vbsXLvvfeyfft2Ll26REJCAh4eHjg7O7M1556z7+1qr2+ViKeYbGxsqF+/PgBNmzbF0dGRl19+mUaNGpGUlMTYsWNJT08v9ZhEREREKgsFhFIhtGrVitjYWHx9fQEYNWoUdevWZdy4caXu09/f/4qBTmEZQHv26AFbtpjvcwcwq1evZubMmcUOWnJm6n788Ufs7OzMc2699VbatWtnBp/XiouLCy4uLmbwm3zwIG5A8ubNVC2D6+dNllMcXl5e5s/by8uLUaNGsWPHDlasWMF3333HypUrWbFixVWNS0RERKQyUFKZm5w23F69wMDAfMcMw2DHjh2cyt4LWJi1a9fSrVu3fEHNlvBwuvfuza/OztS/dIkHH3yQ+fPnmwErwMqVK3n00UdJSUkp1jgbN27Mxo0bueWWW6xq7PXq1YuNGzcWq4+r0aRJE6Kjo9nRqRPdfviB7Q88wL1r1ly364uIiEjloe+4149mCKXSi4qKYsuWLVblHwzDICgo6IrnDho0qMDjd3fuDPy9ZLSg0gzDhw+3Ki9xJXPmzKFq1ar5Cq5Pmzat2H1cjdmzZxe437E0109NTeXgwYOcO3eO6tWr07x5cxwdHctimCIiIiJSAgoIpdKbPHkybm5ueHp6Wh0fP358yTv7/nuwt8do0OCKTQtKNANZ2THfe++9fO3zBp8xMTE0btyYrl27lnycxfDWW29ZvTcMg+nTp9MzKYluwO9JSQAlvv6KFStYunQp7dq1w93dnYSEBPbu3cu4ceNKFCDn2LZtG7NmzaJly5b06dOHqVOnYrFYmDNnDp06dSpxfyIiIiKViZaM3uQ0nf63spp1SkhIMBPUlJhNVl7RlPh4nD08OOboSL3U1AKb3nPPPVaJZjp16sTEiRPx8/Pj22+/veKlunfvzpZc+xTLWrNmzahbty6BgYHYZN/XggUL6JeczJzYWO7y9GTv2bMl7vfuu+9m+/btVjOy6enpdOvWjR07dpSor3PnztG9e3dzv6C/vz9RUVG4uroyePBgtm7dWuLxiYiISPnTd9zrR3UIpUJYsWIFfn5+vP/++2zbto1ly5bh5+eXr6ZfcQwePPiqx2Nk1+jL+9uWc+fO8euvv3Lu3Dkz0Yyvry+rV68uNDvmxx9/TOvWrRk+fDjvv/8+jRo1ol27dsTHx1/1OIty4MABhg8fzueff46joyNBQUHUrl2b3tWrA2BvW7r/fLi4uLBt2zbzvWEYbNu2Ld9S2KJs3ryZLl268I9//INTp07x3HPPMW7cOLy9valduzbVq1e/5nUaRURERCoCLRmVCuHtt99mx44dBc46lXQZYllMmucNCDdv3syMGTPw9PQ0l0n+/PPPhIaGMmzYMABmzpxZYHbMBQsWsHPnTpKTk2nVqhUxMTE4OzvTs2fPqx5nUWxsbBg6dChDhgwhNDSUAQMG8Oeff5qfz89e4lpSK1asYO7cuUybNo2MjAwcHBxo27ZtkcF7enq6VSbXGTNmsH79etzc3LjttttwdnbmlltuISYmhsDAQDIyMq55yRERERGRikABoVQIObNOfn5+QOlmnXKUpi5eXnmDytwBTI6kpCT69u1rBoRQcKIZFxcXXF1dcXV1pUePHmZNQltbW2xsbFi1ahWPPPLIVY+5MLa2tgQFBdGvXz9SUlL4JSDgqvrz9vZm8eLF1gdTUszltjmWLVvG5MmTcXR0pEaNGhw9ehRnZ2dee+01bG1tOXv2LG5ubtjZ2fHqq69y4sQJTp48ybx58zAMg9OnT1/VOEVEREQqAwWEUiGUZtapMKWpi5dXzgxhjtwBTI6zZ89azWgWplWrVmRkZGBnZ2fez+XLl83AcOXKldc0IMzx4IMPsmXLFn7JDnbLdPtxjRrg7My2Tz81E8T85z//oXbt2ri7uxMbG8vhw4c5d+4c99xzDxEREUyaNIm4uDgAHnroIW677TY++OAD6tatC8CECRPKbnwiIiIiFZQCQqkQCpx1KkdmQJg96/XOO++YAYxhGNjY2FCrVi3eeeedK/aV975ykt4se/ddznp78+65c2U9/ALlBIA2V2hXKhcvwsWLTJ06ldWrV5OQkMDixYv5/PPPqVmzJnfccQe1a9ematWqQFZNxLVr1xbZ5cMPP3wtRioiIiJSoVSqpDIzZ87ExsbG6uXt7W1+bhgGM2fOxMfHBxcXF7p168bBgwet+khNTWXChAl4enpSpUoVBgwYwMmTJ63axMfHExQUhMViwWKxEBQUREJCglWb48eP079/f6pUqYKnpychISFcvnz5mt27lFzO7FNp5J0hzAlgdu/eTUREBLt37+bTTz+lSZMmJe47J+mNTVISjYGHf/ut1OMsCXMpbc7MYAlnCPft20dAQACDBg1i165d5vExY8aYf3Z2dqZOnTq0aNECi8XCY489RmBgIA4ODvTo0YMBAwZwxx13XPW9iIiIiEiWShUQQlYq/VOnTpmv3JkIX331VRYuXMgbb7xBVFQU3t7e9OrVi+TkZLPNU089xdq1awkLC2PHjh2cP3+egIAAMjIyzDZDhw5l//79rF+/nvXr17N//36rIucZGRn069ePCxcusGPHDsLCwvjkk0+YNGnS9XkIUiwjRowo9bl5A8KS8Pf3L7rvPIHYNZmxK0DOUtrSLhQNCQlh8eLFLFq0iEWLFrFw4UIAjh49arbx9vY2/y3Fx8fz3XffsXbtWurXr8+6devYvn07kZGRVv1u3LiRDh060LlzZ8LCwszj/fr1K+VIRURERCqPSrdk1N7e3mpWMIdhGCxevJjnn3/enIF5//33qVmzJqtWreLxxx8nMTGR9957jxUrVpgZHleuXEmdOnXYtGkTvXv35tChQ6xfv56IiAg6dOgAwLvvvkunTp04fPgwjRo1Ijw8nJ9//pkTJ07g4+MDZGWSHDVqFC+//LJqrVxn7du3z3fMMAyOHDlS6j6NzEyGAbOKmEULDAws8Lp5yyXkLWCfM1MX8txzrARsrlMp0ZxxJB47xisA2UHvmDFjeO+99654fk6ZDYDVq1czc+bMfGU2cgd0Odzc3Ni+fbuZZTR3tlGAF154gQ0bNuDo6MiUKVPYuXMnr732mtUvckRERESkYJUuIDxy5Ag+Pj44OTnRoUMHZs+eze23386xY8eIi4uzmp1xcnKia9eu7Nq1i8cff5w9e/aQlpZm1cbHx4fmzZuza9cuevfuze7du7FYLGYwCNCxY0csFgu7du2iUaNG7N69m+bNm5vBIEDv3r1JTU1lz549ZqZMuT6Sk5OJjo7OF2j06tWrWOdPmTIl37FLL7/MrjzHUlNTOXjwIOfOnaN69epERkby7bffWiWWMQzDajYZsmbWCipg//uJE8W7wTKSM45NvXuzKCkJr6NH6Yr1DF9RvLy8iI2NxdfXFyi8zEZB8v5sPvjgA+bNm4eDgwMnTpzgnnvuwcHBgcTERKZPn87AgQPZv39/Ce9QREREpPKpVEtGO3TowAcffMCGDRt49913iYuLo3Pnzvz111/mfrGaNWtanVOzZk3zs7i4OBwdHfNloczbxsvLK9+1vby8rNrkvY6HhweOjo5X3LeWmppKUlKS1UsKl7ukQ2Fmz55d4GzStGnTinWN0NBQ+vXrl/UC+gG9/fyokavNihUr8PPz4/3332fbtm0sW7YMW1tb1q9fT926dc2Xr68v48ePt+q/0AL2OcuUba7PotGccbx35gyrgQtpaflm+IqyZs0aMxjMMXz4cFJSUoo879y5c/z666+cOXPGPLZ06VL27t3L3r17SU1NxcfHx6xD+dVXXxEcHMzly5evuGdRREREpLKrVDOEffv2Nf/cokULOnXqxB133MH7779Px44dgawvvbnlZIQsSt42BbUvTZuCzJkzhxdffLHINpVRQbN0hmFYBQKFGTRokNX7mJgYGjduTNeuXYt17dGjR9OkSROrXwSca9eO3DsQ3377bTNgybFo0SK6devGuHHjgL+zh+bNjlnYzNoHH3yQc6PFGmdJ5V1K++uvv9KyZUuOXrwIwD8aNuRE167FmuErjc2bNzNp0iROnTpFZmYmmZmZpKWlYWtrS7169XBwcACy/i0//fTT9O3bF2dnZx5//HH+/e9/Y2dnx+LFi82Z1YiICCZOnFjsGU0RERGRyqBSzRDmVaVKFVq0aMGRI0fMfYV5Z+jOnDljzuZ5e3tz+fJl4uPji2xTUEHss2fPWrXJe534+HjS0tLyzRzm9eyzz5KYmGi+TlznZYM3KqtZuuxXQEAANWrUuPLJeQQHB5eo/axZs/LNChuZmYQARnaA7+LiwrZt2/7+3DDYtm0bzs7O5rGcvat5FTaz1rlduxKNs6SSk5PZtWsXkZGRREZGcu7cOX766Scau7hkNTCMYs3wldbDDz/MyZMnadeuHXZ2dvTo0YPu3btz4cIF4uPjiY2NBbKSxzRo0IC33nqLW2+9lV69evHWW2/h5ORU8MxqMWc0RURERCqDSjVDmFdqaiqHDh3innvuoV69enh7e7Nx40Zat24NZBX/3rZtG6+88goAbdq0wcHBgY0bN5oJQU6dOsWBAwd49dVXAejUqROJiYlERkaaMyzff/89iYmJdO7c2Wzz8ssvc+rUKWrVqgVAeHg4Tk5OtGnTpsgxOzk54eTkVPYP4yZX0CwdlC5TaM7M09XIm2V0xYoVzJ07l2nTppGRkYGDgwNt27Y1C81D4YXeC0t688vhw8C1yzKas5Q27xLpIC8vOHbsmlwzd6Kd+Ph4qlatSmpqKpmZmcybN4/Y2Fi2bNmCj4+PGSQ/99xzxMTE0KxZM9avX2/+uXv37qXesygiIiJSaRiVyKRJk4ytW7caR48eNSIiIoyAgADDzc3NiI2NNQzDMObOnWtYLBbj008/NaKjo41HHnnEqFWrlpGUlGT28cQTTxi1a9c2Nm3aZOzdu9fo3r27ceeddxrp6elmmz59+hgtW7Y0du/ebezevdto0aKFERAQYH6enp5uNG/e3OjRo4exd+9eY9OmTUbt2rWN8ePHl/ieEhMTDcBITEy8iicj+SQnl+68rAWcxpmDBw0DjF+dnIp96rlz5wo83rhxYyMtLS3f8Xs7djQMMPbUqJHvs6FDhxZ/zCW0rVkzwwBja9++ZdJfr169zOfm6+trHD161IiNjTUmTJhgtGrVyqhSpYphZ2dneHh4GLfccotx++23G9u3b7fqo2vXrsaePXuMjRs3Gm3btjVSU1PLZGwiIiJSPvQd9/qpVDOEJ0+e5JFHHuHPP//klltuoWPHjkRERFC3bl0gax/apUuXCA4OJj4+ng4dOhAeHo6bm5vZx6JFi7C3tycwMJBLly7Ro0cPli9fjp2dndkmNDSUkJAQMxvpgAEDeOONN8zP7ezsWLduHcHBwXTp0gUXFxeGDh3K/Pnzr9OTkCKFhcEjj8Aff0D2DG5JFasO4fffQ9u2kP13J+9MXI7CZuqeeuwxpkREcPrCBWrm2kNpFHPvZIllZmaNuZR7FotTZmPy5Mm4ubnh6enJ66+/bh7PKfXi4eFhtcw257P9+/fz/vvv4+7uzunTp/Hz82PcuHEMHz68VGMVERERqSxsDOM6FTGTayIpKQmLxUJiYqLqF5aV4GBYuhT27oXs5cNF+fjjj5kzZw7NmjWjV2goswHXZs148eBBmjk5cUdBe+x+/x18fWH2bHj22VINs2unTvwaEcFMd3cafvGF1WeTJk3ihx9+KFW/hfl4zBjm/N//cZuzM4NTUpju6krNpk2ZPn06AwYMuOL59erVY8uWLQWW2fhux46cA1bn5CTaKcrdd9/NbbfdxqpVq8xj6Rcv0s3fnx05/YqIiMhNRd9xr59KNUMoUhyGYZRoX96CBQvYuXMnycnJtAoNJQZIXLaMYe3bs7ywk7LLXKQePszBvXvN2oTNmzfn4MGDVoXoFy9eDEBUVBTtshPJGIZBzK+/8hhQz84uX0bU0uydvJLgVas4Dvzq6EjvlBT+26kTPdeto2fPnsUKCHPP/uU2fvx4yBW47du3j969e2Nra0tKSgpff/01nTt3ZsyYMURFRdGnTx+r80+ePMmvv/5qvjcMg21VquBcp87V3bCIiIhIJaCAUCqEjRs3Mm3aNOzs7AgJCWHIkCFAVgbKdevWlaiv6OhoWpIVaNQuxgyhi4sLrq6uuLq60gOwAJfs7bEHCpt+zzQMQoE3162jg8WCu7s7CQkJ7N27lz///JN169aZ5RK2bNnCDz/8wNChQ5k3bx6QFfQ8PGgQs/78k322+ZMFh4SElOiecyushMf5tDRcgZqGQQ+gqr09Tk5O+YrGFyZv9taEhARmz54NwJ6/L86qVatITExkw4YNDB48mJEjR9KjRw9+/PFHDh8+zCuvvIKrq6vZT8eOHRk3bhxdunT5O2EPEJiQQOvWrbNmbnv1Yvbs2bi7uxd7RlNERESkMlBAKNdcenp6sYOG0nrhhRfYsGEDjo6OTJs2jZ07d/Laa69xMbtmXkkkJCQAcP7ChWK1b9WqFRkZGdjZ2ZGTMzQ1NZUaFJ4B9NfffuNtYF61atzz2mvm8fT0dGrUqEH9+vUBWL16Nf369WPGjBnY29ub+10BRj30EOzfX+i49u3bZzXTmJPldsyYMbz33nuFnhcaGmq1/DLHfxcvJgPITElhJbCVrEy8pSntAVllNg4fPpx1rexAl3792LBhA4mJiXz44YckJCSQmprKBx98QEpKCoZhMGjQINavX0+3bt3Mvk6ePGkdBNvY0OHSpb9nblu1IiYmBmdn52LPaIqIiIhUBpW6DqFcO9HR0dx333107tyZ7t2706lTJ/r372+VQKQs2dnZUa1aNVxdXVm4cCFt2rRh4MCBnD9//ppcL7fFixdbJRUCcLCzY01RJ9nY4ALsv3TJPGRk1yZ0cnIya+wBrFu3jt69exMVFWXVRf8ePbK6KmQbcEhICIsXL2bRokUsWrSIhQsXAlyxMHtOCY+uXbtavR657Tbscl3v/OXLODo6smZNkXdaKMMwzGutg6zXunWkpKTg6OjIsmXLcHR05MKFC1SrVg3DMHBwcMDBwYHnn38+373m5ZiZiaurKzVr1qRHjx4cPXqUBx54gJiYGKukO2PGjCnV+EVEREQqAs0QyjURHBzMqlWrqJNrH9fx48cZNmwY3333XZlfr1WrVlY150aNGkXdunUZN25cyTvLDnhsbK5Vhb+spaQrgJALFwjLvdSxbVt++uknvL29rdoPHz48X8bMK2UytbGxsZppnDlzZrEKs8+aNavA44Nr14ajR83nM2P/fgKK7Klon376qZk5NRRYBdCvH/369SPrj/3IyMjg559/xtfXl/fff59JkyZx9OhRq8Q0hWmSmfn3zO3Kldxzzz28/fbbTJo0iUWLFhEREcHEiROvGCCLiIiIVGQKCOWayMjIwGKxWB1zd3cnIyPjmlxvyZIlVu8TEhLw8/MjJiam1H1eTfrdKwVrho0N3sC/PD3ptHNnqa6RmZHBRmBiYiJunTvn2zvp5eVVpoXZcwLknOdytemJc5fRGA00AbxyJceZMGEC//3vf+nWrRuZmZnMmDGDVq1aYbFYyMzMpGfPnrRs2ZI+ffowdepULBYLc+bMoVOnTgC8bGNjNXObkZFB06ZN+eabbwCKHSCLiIiIVGQKCOWamDt3LgEBATg6OuLu7k5iYiLp6em88sor1+X6gwcPZsuWLdflWpC1Z/DgwYOcA6oD1VJTiz6hkNnHfTt20KJjx2LtuTxz9iwvAG+5udFm06Z8eycLSqZT0ExjceXMyuUsGX2pZctS9VOQguYk58yZw5w5cwDw9/cnPDzc/Kxjx44sW7aMhIQE/P39iYqKwtXVlcGDB7N169YCr/Hrr7+WaYAsIiIiUhEoIJRr4t5772X79u1cunSJhISEAguKX0slKa95tUlvVqxYwdKlS2nXrh3uQAKwe/x4ngI6FnZSdkBom2ucf8XG0vqee/j8vvsYuG4d586dM8tRVK9ePV8XE2fPxg5ws7U1904uX778uu2ddHdwKJN+4uLiyFkg2759ey5evGiVRdQwDHOmNyebbExMDDt37mTIkCF4e3vTqlUrRowYQUJ2ZlELMMUwuC/XdZo1a2YGgzmuJkAWERERqQgUEMo15eLigouLy3W/7qefflrk59HR0UydOpWEhATs7e1JS0vD09PTLINQEm+//TY7duzImkF7/XUAjr3+OkF+flcMCHO7nF2b8I/du+nSpQuenp64u7vz5ZdfkpGRwa233moWZjUMg8OHDjES+CMjg1bZfVzV3slsH3/8MXPmzMlXrmFgaip+/J05tSRBd2HeeustlixZwoTs98ePH8fGxgZPT09iY2OxtbWla9euHDp0iLfeeovnn3+eY8eOMXbsWCIiIti5cydOTk40aNCAoKAg3nzzTX777Tdc69ShP1gFhFf6OyEiIiJSGSkglAop9/60guROejNs2DBCQ0PNpDcvlzCpjIuLC9u2bcPPzw/I2lu3e98+nLM6KfikAoIpu+xZyreTk/lu/Xrc3NwAaNKkCTt37qR///7szLXf8O42bViydy8/5tonV9DeyZz7K64FCxYUWK6hXc2aTMvVLufO4uLi8iXBKUj79u3zHYuOjiY9PR3X7P4CAwN55513iIqKYt68edjb2/Ppp59iZ2eHq6srhmFQrVo1lixZgre3N506deLIkSPcfvvttG7dms6dO1O7dm0A7PJc60p/J0REREQqIwWEUmnkLrh+9OhR5s+fj6Ojo1mCoLRJb1asWMHcuXOZNm0aGYAD0HDXLlYChS7czE46Y+QKGO1y9ugBZ8+eNQPC2bNnm7NluZe3Bg8ZAnv3msHllClTCAsLMxPLxMbG8t133xEfH0///v2tEs4UtL8wh4uLC66urri6utKjRw8zOZBd9ljzzhCOGDHCan9fYZKTk4mOjrZanmsYBnfccQdTjh2jLRBy330sW7aMjIwMPvroI06dOkVMTAw1a9Zk1qxZXL58mccff5wNGzbw0EMPERcXx5133sn//vc/AL799lswDNKBgtL6lLY2o4iIiEhFpYBQromcvV52dnb5sl8WFYxcDTOxS/a+u+bNm+Po6Gh+nrvgeu3atXnvvfewt7cnISGBHj16mElvjMcfzzqhmDOE3t7eLF682Oqc2HHj8F6zhl8LOaegnnMyk06rUoVJkyYRFxeHYRhcunSJ06dPU6tWLbp3705SUhJ16tThib59rfoKDQ3Fy8vLLNvw5JNP8u677zJjxgwiIyOtEs4UpVWrVlblGiCrAP1v58/THkjLzMQBSI6Komq7dhw5cqRYz2n27NkkJydbzdTZ2Njg7OxMU+B3sv5+uLm5ccstt/DTTz+RkJBA9erVSUpKwsXFhYyMDLZt28aff/5JQEAA3377bf7kQZmZ2EO+OpAbN25k8ODB+Pr68thjj5mlJzZv3nzFZyIiIiJSUakwvVwTL7zwAhs2bGDTpk1ERkYyYcIEMjMzC/ziPWzYsKu+3ooVK/Dz8+P9999n27ZtLFu2DD8/PzOgAeuC6yEhIfz444/s2LGDiRMnsm7dOrZt28Y999xz1WMBClwSeqXPjezZyXr29qxdu5bdu3dzxx134O7uTlRUFPv27WP79u1Ur16dN998kxfefBP4OyAcPXo0H330kVlI3sPDg4CAAEaNGsXChQtp06ZNsRLOLF682KpcQ0JCAo6Ojng4OrILCLexIRJY2rYtUVFRtGvXrliPZNCgQQUu2/Ty8uIg8AVw1113ER4ezrfffouPjw8AQ4YM4b777sPd3Z1OnTqxbNkyOnXqRNeuXRkxYkT+C2U/W/s8Af0LL7xAixYt8PLy4tixY3h7e5OYmMi+fftUekJEREQqLc0QyjVhZ2dHtWrVAMzslw0aNODChQtWSzcNwzCXbF4Nq8Qu2dLT0+nWrZuZRbKggusuLi5Mnz79qq+f15XqEJLn8ylTpnDx7FlcgbgLF/CeMsV8NrVq1bKq6ejg4IC7uzuZOctOs4/nvb9WrVoRGxtLSEgIUPqEMzklPB69/XaSDxwwj+eEW9OmTSv4xGLy9vbmQcANcHNzo3379qSnp3PixAnGjh1LZGQkBw8ezEoWk11aon///nTo0AE7Ozu8vLysZqC/+vRTbAB/w8A+177FQ4cO4eDgQHp6Ops3b2b58uV88sknODs7ExUVdVX3ICIiInKz0gyhXBM5wUiOUaNGkZiYiKOjI/369TNfAQEB1KhR46qvl5PYJYdhGGzbtq10pS5KmFSmwC7yBGuFXSNHaGgoPbp0oR9wd/Yzynk2OTUde/bsyeDBg4mPj+eOO+7AztaW3KH0mDFjrPpcsmSJVZmFghLOFOtessd6zy23kHt+7/fsmcauuYrJl0ZYWBjjAc9c1zp//jytW7fmnXfewWKx4OrqSu3atalevTp2dnasWbPGagb68ccfN2egM7NnWs8Du3btIjIyksjISEaNGsXevXvp0KEDkPV3cuLEiTg6OpKSknJV9yAiIiJys9IMoVwTS5YsyXds3LhxTJgwAS8vL6vjBS77KyGrxC4ZGTg4ONC2bVurJaPFZYaBV1FWIScgLDSkzAk6s9+OHj2a+rfdRgugqoMDbbKDrBEjRpg1HY8dO4azszMPPvgg3w8bRnxiIq/+/DO+KSnMIytRTo6CMn/mzPQVprCEK7feeqtVu5wxLz5yhKv/yVnLKQ0xePBgatWqRUZGhnksOjqaYcOGcfDgQQBatmzJnXfeSf/+/fnnP//J6tWr8fDwIDM9HTvABYiPj+eWW24B/v47mTOjWdoAWURERKQiUUAo101BSzYBc0nj1bBK7JKjkIyhRRV89/f3x1xAeqVln0W5UjBZwHLPU9nLFnOfmfvZPP7444SHh2NnZ0f97OBmNTDOMBg7dqzVPriczJ/79u2jdevW2UMqekwhISEsW7YMe3t7Jk+eTEREBBMnTjQzeOadMbUr5QxqUWUwcvYYGoZBWFiY1bEBAwbg4ODA+fPnmTx5MjVq1CAqKopJkybRpk0bnn/+eYYNG8bw0aNJAo4BDzzwgFWNyRYtWpgzmlcKkEVEREQqAwWEUnHVrg3OznDsGACbN29mxowZeHp6sn//ftLS0rh8+TLNmjWjZs2aGIZBdHQ0Rvbex6udIRwGvFhog8KTyoxMSKBKnpp9hmGY2Ty9vLyIBXyB9sCltDQubtnC0aNH8fX1xTAMzpw5w5tvvsnSpUsJDg4mODj4ioXZbWxsqF+/PgCrV69m5syZ+QLN3Oa3bFlkf7n3iua+j8L2jJ4Dzv36K9WrV8831gULFpCRkUFaWhrdu3cHsjKf3n///YSHh5OYmEjfvn05d+4cDe64g7rAHcD27dsBzBqT3333ndVYDMO4qqXBIiIiIjc7BYRyzVypDMQ1Fxdn9XbGjBmszy74Xq9ePXbu3MmFCxcYOXIkH3zwAYZhEBQUhM3Zs0AxEsNkKyjwOffeexSZKqeAgDBn79tF4Mddu6zq9QH06tULgDVr1pjlLZKBsKpVufO332jWrBl169YlMDCQefPmUbVqVWxtbalatSpw5cLsXl5exMbGmvsOZ86cycqVK1mxYgUAf2Xvs7OqQ+jpCc8/D//6V77+cpf5yO3bb7+1er9582ZmkLWH0P3FF0lISOD06dPMmTOHHj16ALBu3TomT57MI488QtOmTfH19eXs2bPMnz8fPz8/Ll++bPZXo3p1njp6lNwjyqkxuWDBAiZNmsRPP/3E+fPn6dy5M5cvX2bBggV069atyOcjIiIiUhEpqYxcE8UpA3G92dracjY72Js8eTJubm5mEfa6devi6+vL+PHjzfZGMYvUh4aG/p0oB+gHdGvThqJS5dgUNPuYHYAGu7iQnJxsHv7444/NZZ/vv/8+jRo1oh1ZZRpmA+ez+zpw4ADDhw/n888/54EHHiAoKIjatWsXe4/mmjVrrJLQAAwfPtxMuDLn0CHg7/9o2AD89RfG1KkF9pe7zEfuV97xzJgxg/XA52T9vfnyyy+pWrUqM2bMMNtcuHCBV155BWdnZ3bu3Mmbb77Jxo0bqV+/Phs3brRKKDR5wgReBW4la1lojx49GDhwIK+88opZA3Py5MmsXLmS3bt388033/D8888X6xmJiIiIVDSaIZRrojhlIHL4+/sTHh5+zcf0zjvvWBV8X7FiBbVq1eKdd94hISGBatWq8fDDD/PdCy8AxZ8hzAl8cifLOdy0KSMoPMtoZgHBZs71/JyczNk8f39/Tp8+ze7du0lOTqZVq1bExMTgXK0aPYHvgIPZz9jGxoahQ4cyZMgQQkNDGTBgAH/++We+6xSUcCa39nmWq0LWbGBMTpCaHYDm7Em0SUsrsJ/i7Blt3749hw4dogvgnHWAgwcPcvHiRWxtbXFxcSEtLY2M7OdlY2ND7dq12bp1K1WrVuX48eP57u31//yH7cD/ANs338TDw8PMNnvhwgV+/vlnkpOTadSoEZA1M5r776mIiIhIZaKAUK6JnDIQfn5+QFbw0KNHD44cOUJgYKDZLmff3vXQpEkT1q5dW+Bn3bt3z5dgpLgBYYGBj2EQAhwp7KQ8M4SBgYFcPHMGVyA+ORmPwEDz2aSkpODq6oqrqys9evQwaxIW9o/X1taWoKAg+vXrV2A5hZyEM4VJTk4mOjo635LVttWrQ3x8ofdQGsnJyezatYtRLVtyALA5eJDLly9jZ2dHjx492LJlC3369MHV1dWcBTQMg+DgYL777jvuuuuufPeWE6i6Ah61all93rRpU+bNm0fjxo2Jj4/Hw8ODP/74I19yIREREZHKQgGhXBMFlYH46aef2LhxIzVr1jTb5ezbK2+5M3Caf7qKLKNXyuhpLkfN3gsYFRXFipdeos62bfzo6sqd8+aZz+b48eNkZGRgZ2fHypUr2bhxI88DvwFhQIvsPvv162cuiQTw9fWlcePG+caVk5ymMLNnzyY5OTnfnsMRvr7WAWEZmD17NrVr18YRSAQcLlxgzJgx7Nixg0OHDuHs7MzcuXNxc3MjIiICwzB47bXX2LdvnzmTmfO/Ofe2f/NmaNs237U++OADfvjhBxwcHAgMDMTDw4OEhASGDx+ubKMiIiJSaSkglGuioDIQb731Frfffjuenp5Wx3Pv2ysvBWXgLO4MYUGuVIfQ7Ds7cJw8eTKuzs7UBc7a2lK3bl0g69k8/PDDVue+8MILhAOOwDTgy4sXWZFdlD23jIwMdhWRnCavjz/+mDlz5tCsWTOSkpKYPXs27u7uTJ8+nQEDBtAqO0A0F1eWcIawoIyegwYNMvt0yD723nvvsXHjRoKDg6levTqjRo2iWrVquLu7k5iYSGJiIjVq1DDvLfeS4169emHJTqKT19KlS9m7dy8ODg68/vrrPPjgg5w9e1bLRUVERKRS0zchuW6Cg4PzBYNAvoDneouLi7OaDctJ+HI1AeGVgqW8fQcHB+NRQCBT0LOxs7OjGllLIhcCTe3sGDhwIOfPn7dq95///McqOU2OnMLseS1YsICdO3eyYMECnnnmGSIjI9mxYwfz5s2zalfc/2gsWLAAgJ9++olOnTpx5513YrFYuOeee6xKT4wZM4Z+QGyuc3v16sVnn31GkyZNcHd358svv+TSpUtUq1aN5s2bU7t2bR588EH69+9vteR42rRpbNm+nQ5AbzBrGQIcPnwYB4essDMkJITHH3+cH3/8scB9liIiIiKVhQJCqfQKy8JZ3CyjOVlAhw8fzvtAI+Ch557jiyLOybtkFP4OEo0r1MVr1aqVVfA0yNGRiRMn5gv+goKCrALdmJgYALMwe145GVdr1qxp7lV0cnIyZxhzRlXcGcLcGT2XL1+OxWIhPDycixcvsmjRIhYuXAjA0aNHeY6suoq5x1qjRg3Wr1+Pg4MDLi4ubN26lfnz5zNv3jxWrVrFa6+9RkJCAvXr1+enn35i7969pKWlMWPePL4EPgMiIyOZMGECmZmZVKtWjdjYv59cr169+Prrr7n11luLvA8RERGRikxLRqXSKCx7Zu49dXG5axcWc0lkzsxacnIyrUJDiQGOTp9OyD/+wf8VdlIRhemvdN0lS5bAG28QB+TkCvXz8zMDvsIEBwcXuVeuVatWVnsVIav4e40a1gU0ivtbpLwZPW1sbOjQoQOurq6FFr7ftm0bs2bN4vDhw3h5eZGZmYnFYqFp06YYhsHgwYPNWb6cn92wYcO45557GDVqFO7u7vwVH88gYASwcOFCli9fzsCBA6lRo4ZVWY2YmBg6d+7M+vXri3lHIiIiIhVPpZohnDNnDu3atcPNzQ0vLy/uv/9+Dh8+bNVm1KhR2NjYWL06duxo1SY1NZUJEybg6elJlSpVGDBgACdPnrRqEx8fT1BQEBaLBYvFQlBQEAkJCVZtjh8/Tv/+/alSpQqenp6EhIRYFdiuiFJTU9m7dy+bNm1i79691/V+czJaRkZGmq+oqCjatWtntsk9W1jcJaNWM2uABXC0ty/yty0FlZ0oKBC0ClDzyBlp7vnEop5vTiBVmMWLF2NnZ2d1zNHRkTVr1lgdK+5/NPJm9PTy8uLAgQNmRs+ZM2fStWtXdu7cSXugPVmJcc6ePUt8fDz79u3jyy+/5NNPP+X333/nxIkT7N27N9/P7scff6RDhw689tprzJo1i37du/M+sDx7HKNGjSpwBjU4OLiYdyIiIiJScVWqGcJt27bx5JNP0q5dO9LT03n++efx9/fn559/pkqVKma7Pn36sGzZMvO9o6OjVT9PPfUUX375JWFhYdSoUYNJkyYREBDAnj17zC/UQ4cO5eTJk+bsw2OPPUZQUBBffvklkJXwo1+/ftxyyy3s2LGDv/76i5EjR2IYRtYMUAW0YsUKli5dSrt27XB3dychIYG9e/cybty4fLUJr4Xc2TNzzxYmJyfTvn37v2cLs7OgFnfJqNXMWvaxy5cvF1mYvqAMpgUFiSNGjMj3iwTIyoSaN1folZ7vhg0binU/hcpeylr0gta/5f43BJiB5eeff24eGz58OC+//DK7YmKwB7q1bcvWrVsBqF69Oh999BGTJk3Cx8eH++67D3t7ey5fvsyCBQvo1q0b06ZN49///jeZuZ7nvydO5OePP+YyEBAQgIODA5MnTzZnUEeNGkVISAhJSUns3buX5s2b5/s3LiIiIlJZVKqAMO/SsGXLluHl5cWePXu49957zeNOTk6FFu5OTEzkvffeY8WKFfTs2ROAlStXUqdOHTZt2kTv3r05dOgQ69evJyIigg4dOgDw7rvv0qlTJw4fPkyjRo0IDw/n559/5sSJE/j4+ABZSw9HjRrFyy+/jLu7+7V4BOWqJMXqr4WcjJaQFQSuXr2a5s2bW7Xp1asX/P47UPwZwrzZVBMAezs71lB4HcK8fbdv356Uc+dwBi4kJlIlV4Baq1atfHUBU21suBfYBCSmp3PH5cvX/vlmz2CWNstoYWbPnk3y4MF4kJWdNie4Xrt2LS+++CL//Oc/+euvv/jqq6947733uHjxIg8//DAjR44EoEGDBqxcuZIuXbqQkZGBkZJCZ7IC18WLF2Nvb8/kyZOJiIjglltuYe3atVgsFvr27cuyZcuu6y8lRERERG40lWrJaF6JiYkA+YpSb926FS8vLxo2bMjYsWM5c+aM+dmePXtIS0vD39/fPObj40Pz5s3NzIm7d+/GYrGYwSBAx44dsVgsVm2aN29uBoMAvXv3JjU1lT179hQ65tTUVJKSkqxeN4ucYvU5DMNg27ZtODs7X/exzJ49m3HjxuU7bpWBs5QBz2D4ewawkAQxeQPC5ORkwmbNIhJYZrFYLYnMmdnMsWLFCvyAOsA2YO3ly/j5+ZGQkHDVz7c4S3rL+j8agwYNIif1TVhYmLmns2vXrpw/f57PPvsMb29vLly4QGhoKA899BAXLlygX79+9OvXj/79+9OwYUN27txJREQEn77xBosAJ6B+/fr4+vqyevVqkpKSmDx5Mi1atDCXly5ZsoRt27bxn//8p4zvSkREROTmUKlmCHMzDIOJEydy9913W80S9e3bl4ceeoi6dety7Ngxpk+fTvfu3dmzZw9OTk7ExcXh6OiYr2h3zZo1zf1ecXFxeHl55buml5eXVZvcBdoBPDw8cHR0LHLf2Jw5c3jxxRdLfd/lqaBi9W3btjUTmFxPgwYNKjAI6Nq1Kzuy/1zcJaN5GRRjdjFPRtHZs2dzvoDyB9OmTcuXFfTtt99mB38HZjEuLtTfto3OnTvz+eefl/r5FndJb0lmCFNTUzl48CDnzp2jevXqxVqemZP8ZsWKFcTGxjJjxgwcszOpnjlzhqFDhwJ/Z0vt3r279d7P7J+bJxAbG2smkpk0aRJr1qwhMjLy77bl+EsJERERkRtBpQ0Ix48fz08//cSOHTusjueu+9a8eXPatm1L3bp1WbduHYMHDy60v7xFt/MW4C5tm7yeffZZJk6caL5PSkqiTp06hba/kRRUrL48FbanLifMKW0dwk+BE8WsQ5jzkx40aBAxoaH52hVUIsLF2ZltgF9OX9lBjbu7u/l8hw0bRmgB/RXlSktO8/69tLnC8ylugOnv7094rvNykt+8/fbbxMXFmePp1KkTx48f56GHHiIwMJAHH3yQDz74AMMwCGnXLms29sgRVn/zDf8H2JE14/jMM88AMHDgQDZt2sTcuXPN5aXl+UsJERERkRtBpQwIJ0yYwBdffMH27dupXbt2kW1r1apF3bp1zWVs3t7eXL58mfj4eKtZwjNnztC5c2ezzenTp/P1dfbsWXNW0Nvbm++//97q8/j4eNLS0vLNHObm5OSEk5NT8W5Urk4pl4x6AMdzZgAL67qgYKqY1/ugZUte2byZacAxIPP8eWpPnUqHDh2YMmUKhmFYFX4vrpwlvX5+ftnDKXr27EoBYd4AMzAwEB8fH5566im++OIL8xq5C8vD34F63vHY2tpy3333UaNGDUJCQmjatCl9+/bl3Llz8N13WSdHR7Piiy/YC6QAy1xdrQLHG+2XEiIiIiLlrVIFhIZhMGHCBNauXcvWrVupV6/eFc/566+/OHHiBLVq1QKgTZs2ODg4sHHjRgIDAwE4deoUBw4c4NVXXwWyZjISExOJjIw0s1l+//33JCYmmkFjp06dePnllzl16pTZd3h4OE5OTrRp06bM712KzyYnMCvlDCFwxeCuoOWoOceuFBYmbd/O4uw/3wrMc3HhtgULrNp8++23xRtnLiVe0nuF55M3oIuKimLWrFn88ccfzJs3D8j6NxkUFATZy6Rz6hC2bNmSMWPGEBgYyOXLl8nIyMDT05PU1FS++eYbtm3bxty5c/H19eXChQu0fu01LMCcQ4ewtbHBgayAMF/gKCIiIiJWKlVA+OSTT7Jq1So+//xz3NzczL16FosFFxcXzp8/z8yZM3nggQeoVasWsbGxPPfcc3h6epoZKi0WC2PGjGHSpEnUqFGD6tWr8/TTT9OiRQsz62iTJk3o06cPY8eO5e233wayyk4EBATQqFEjIGuZXNOmTQkKCmLevHmcO3eOp59+mrFjx1bIDKM3owJrBRbC3CsHVAfSU1OLPqGgwvTFDED/+PNPGmX/eTRQ38aGTnmWlubeU1dcV5o9e+nAAaulnVcKCPMGmHZ2duzYsYNPPvnEKovv+PHjIXvp9uDBg+nUqRMffPABr732GrfccgstW7YkMjKS2NhYHn74YTw8PJg6dSqrV68mISEBf39/Vvn5ceeHH3Lfe+/R7e67if35Zzyz++/Zsye1atVi0qRJJX4mIiIiIhVdpQoIly5dCkC3bt2sji9btoxRo0ZhZ2dHdHQ0H3zwAQkJCdSqVQs/Pz8++ugj3NzczPaLFi3C3t6ewMBALl26RI8ePVi+fLlVUe/Q0FBCQkLMbKQDBgzgjTfeMD+3s7Nj3bp1BAcH06VLF1xcXBg6dCjz58+/hk9ASqSYSzit9sqRVXbiu9de42myiq0Xu+9iBoQ2ufb4zQIO2+bP+xkSElKsvgoyZcqUfMcMw+BAdlZe0xXGW5zlmTnXysmrm5iYSK1atUhOTqZly5YsWbKE2bNnm8tO13z8Md+sW4eNnR07d+5kyJAhNGnShGc2b+Z7ICM9neAHH8T3gw/4AFjUujXNmjWjV69eHDt2jHbt2jF9+nQGDBhQjCchIiIiUvFVqoDQuMIXfBcXl2IV73Z2dmbJkiVFFpCvXr36FRNV3HbbbXz11VdXvJ5cXyVNKmO1V+711wGInDCBif/6Fx0KOaegJaO5ZyTT09Ot6g7mZldE0qGyEBoayqpVq/Id//LttyEl5e8DV7OkNu+1speQfn7HHdx3332EhYWxb98+AL744gtq1arF2LFjqQJ8ceECbz74IBEREezcuZNNmzZxl5cX6WT9zHKe7RJg586dJCcn06pVK2JiYnB2dqZnz54KCEVERESyVaqAUG5MpcmIeS2VdA9hvmQswN4jRyiqkIFRQNKZX06eZApwMimJat27k5aWxvHjx1m/fj0tWrTIdbL1LzbKOjwcPXo0TZo0yVc6pY+3N+Sqh3ilpDIlulb2+5iDB7Gxt+eOO+4wS0bY29tz6tQpwsLCeO+//6Ub0HjJEry9venUqRMDBw7kUno69sAbDz5oBoTOgKurK66urvTo0QOLxQJQaKAtIiIiUhnpm5FcN4UtRSxNRszrobgzhFZ75QAHoM7Bg6wEkgs5J2/fU6ZM4f1332UQUN3ODp+OHTEMg7CwMIKDg/kuJ4sm8EtKCq9kX2cycEv28TFjxvDee++V5BYLNGvWrAKPP1C7NmRn2wXKZIZw1qxZVnU3MzMy+Ck6mtq1a/Ovf/2LyZMn07lzZ5577jnWr19PK+BxYEPHjjz00EPExcUxe/ZsRmYn0bG3tTWfbUsw9y7mzNZfvnyZGjVqXPW4RURERCoKBYRy3RS2FLE0GTGvh+IGhFZ75bKXc27r2RPvbdsKDQjzzvKFhobi5uzMACDW0ZFm/foBsHHjRjLyLC99/dw5PiHrH+8I4Nfz5/Ht3JmEhASzTb9+/Vi3bl2xxp9j3759TJ8+HQcHBzMQg78DzbxLrstihhCyEuDkJKvJTE8nJCSEZcuWYW9vz1133UXVqlWJi4vD3t6e24BtZJVwCQgIYOPGjfj5+fF/fn7w1VfY2NiYM4Svkn+ZuKOjI2vWrCmTcYuIiIhUBAoI5bopbCliaTJiXktlUXai6/TpRTfI0/fo0aOpceoUc997j0uXLlHntddITEzk/Pnz+faq2gD1s/+cDgTY2ZHWqBHh4eFMmDCB1157jYsXL14xwMsrdyA2efJkIiIimDhxIkePHgX+Dq7Syf4PRwnrNOaUYPntt9+44447zD6P5Jp1HPGPf2BjY0P16tU5d+4c6enpjBo1ik8//RQbGxvqHDhAAnDa0ZFnnnmGX3/9NauOYfZYDCAmNpangHOAY/bSW09PT4KCgvjggw+K/TxEREREKgMFhHLN5N0bWNhSxKvJiFlcRSVpKfSzUhamzy2zkAQweWcfZ82axf5Fi3gK2ObmRsM338TDw6PAovAetrbEAr6AHTDZ2Znve/Tgww8/pE2bNgwcOJDz589fMcDLy8bGhvr1s0LN1atXM3PmTMaOHUt6ejrR0dFMjY7Glqz/aKQBtv/7H/8BWhTYW9Yy2NOnT5sJd86cOcOjjz7K2bNnSUlJoU+fPkDWbF/77AymB7/6ivSMDO666y6qVKlCamoq4eHhXLhwgd9//52vgTrAgmnT+Pjjj7GxseGhhx7ijexxP/Xpp6Q4OLCWrPIfVbZvB+D48eO0aNGCPXv2FPt5iIiIiFQGCgjlqt2oewOjgalAQufO2NvbmzNFs2fPBrLGnZiYWOBnUPwlo0UpLKQsqO+cY842NtSqVavQPv/t6YnviRMAtAJOZmYyfPhwhg8fDkDdunUZN24cLi4uhQZ4BfHy8iI2NpbIyEjmzJlDs2bNqFKlCjt37qRz58484ePDvFzF3T+pUYPgixf5rsDespbB1qhRg5deegk7Ozv+/e9/k5CQQI0aNYiOjmbJkiV89tlntGvXjm9+/52+QNSlSzg6OpKYmMjp06dJT0/n9OnTnDhxgo4dOzJm927CgU8++YQNGzZw6tQpevTowRsHDtAdSElPJ8PWFkueZ+/u7o5hGNSvX5+4uLhiPY/rKf3PP7n400+4d+9e3kMRERGRSiZ/ATOREgoNDaVfv35Wr4CAgHJP3hEMvA3s2rWL7du3s3v3biZMmEDXrl3p0qUL586dwzAMLBYL77zzDm+++SbBwcFlsmQ0R0kCwudyypRcoayETa6ZyyXArXnqEPr5+RETE2MGeMOGDQNg5syZdO3alaioqAL7XbNmDb6+vixYsICdO3eyYMECvvjiC+Lj42nevDlfnzpl1b4KkL94xt9Gjx5NlSpVGDZsGEOGDOHAgQPUqVMHR0dHatasSZMmTQhfv54L58/THbiXrPqcvr6+eHp6curUKV555RX8/Pyws7Nj9uzZRAI9gUOHDvHAAw/wxBNP8NFHH9HAYmEgcPHyZf41aBABQH+yCt336NGDgQMHctdddxEbG2suUb7S87huMjI4dNdduPfoUSaz0iIiIiIloRlCuWo36t7ADMCS59gLL7xAvXr1cHJyYv369bi7u3P8+HGGDRvGl19+aZXApUxmCAsI7qZMmcIfW7eyFvjf2bOsnTIFwzD46fff87Xdt28frVu3tjpmU0jQkHem9vbbb+fNN9+0mqnNPZNYGBcXl3zlGl555RXu696dnoA7kAicO3OG14voZ9asWRw6dMgsHwFZQVj9+vV59NFH8fLy4kBMDP+XkcFXgCcwe8YM5r/xhrmk1CZ7tnTEiBEsWLCABsCXwP0WC6+/9RaNGjUCILVOHe776Sf+kZZGmzvuYARwF5Bw7Bh2dnZmYft+/frxyy+/MGjQICZPnmw+j/LcR5jm60uLkyez36SBo2O5jENEREQqJwWEctWudm+gv78/4eHhV25YQnOBAMCxZ0/c3d1JTEzk559/5qOPPsLV1ZWAgAAcHR1xcXHhp59+YuDAgbzyyiswciSQP0NlaRQUUoaGhvJ8ly40++EHDlSpQvPsjKIr3n2Xt4BjKSnseestDMNg6tSpvPrqqwQHB//dQZ5x5QSdZZXFtVWrVvnKNXTs2JG7LBa+PHeOBMAD2HvLLXTOCWQKUVBGz9xBqQ0w5sgR/gGEAlu2bcPX15cOHTowadIkUlJSaNy4MRMnTmTo0KH846uv6A4kJSYydOhQFixYQLdu3Thz6RJDgTWjR5szuxeAg1FRVvtD77nnHtq3b8+iRYtumH2EDrmeYdqlSzgoIBQREZHrSAGhXDeBgYH5jhmGkZUl8hq4F9gOXPrySxISEvDw8CAyMpJp06bh6OiIp6cn586d4+zZs3zyySf07NkTgN3ZAVdZlVXIa/To0dQ9dYqugH2VKnTp2pXAwEDiL1xgFuCRkkLV5csxDIPU1FSqVq1qdf7u1FSeIiuhTAhZ+wghqwh7zkxtXFwc3t7eQMlnas0SGrk4Ojoys1EjXHbvxiX7WFk+H1sgCAh4912WhoVRrVo1vv76a1577TVCQkJ45513qF+/Pm7AX2TN3g7q25fnn3+enTt38vj27QwFMAyz7MQLQHJyMh4eHuZ1bGxsmD17Nr6+vjfcPkKAtIsXcbDkndcWERERuXYUEMp1ExUVxZYtW8zle5AVEAYFBV3T67q4uODikhXG3HvvvWzfvp1Lly6ZQWJBmTzh2iWVmTVrFruefDLrTfbsXlRUFGHjxnFiyRJW2doydPhwAgICaNu2bb6A7p1Ll4gAHIFpwFcpKXyQmUnt2rXNZbsjRowwZ12LO1P78ccfm8lkevXqxezZs3F3d2f69OkMGDAg357KkgaEhmFgk2cJ7bnsV/XsF5mZhIaGUrduXQIDA3FwcKBq1apkZmaSmJhIbHb7HV27Eu3lxeHDh7l48eLfzzkz0wwIBwBVcwWDkJU4p27duub7mTNnsnLlSlasWFGie7lW0lNSynsIIiIiUskoqYyUmXPnzvHrr79yLlcmytwmT56Mm5sbdevWNV++vr6MHz++zMdypeWeLi4u1KpVq9BgEK7dHkKAzOygJefzyZMn4+LoSAiwyM0NDw8PQkJCqF69er5zHe3tqQa4AjuAbenpVK9encjISNq3b0+7du2IjIxk48aNdOjQgc6dOxMWFmae3y97iWpeuZPJPPPMM0RGRrJjxw7mzZuXfTN/P1Mjz/vC+gP46aefaNeuHXfddRd33nknW7duZfPmzXTp0oV/AC8CI4G7ga3ffceePXvo0qUL//3vf0lJSeHhwYOpXr06vxw+jCtwPvu5/eMf/6BBgwbceuutVHdyMp/rrkOH6AD0AKv7rlenDru2bGHo0KFWxz/88ENSbpBALP3SpfIegoiIiFQyCgjlqplf7v/xD1588UVGjhzJ3XffzebNm63aBQcH4+npab5PSEj4//buOzyqKn3g+HcmM5n0SW+U0AkdlN5RcAVcFewVxbqKgm3VVbGsIj/su3bWtljWBoKiSJPQDUiVjgECCelt0qe8vz9mMiYkgUQDQXk/zzNPZs49995z37kzue+ce88F4IorrmjyNlUfHOZEieqxvIO2NPIawrqS0HqXUHWKoichvOOOO7B6khqjwcBf//pXFixYwErPffSq6xAQwEHPcxvwbWAg8+bNo1WrViQnJ7Nhwwb69evH448/zvfff8/SpUtJTk7mrrvuwuVyUVpaWmeTqgaTiYmJ8Q4mY7FYMJlMvPDCC+RXVLANGAQMBm7IzWXFceKxcOFCli1bxogRIwgJCaF79+7ExMRw4YUXMnXqVBYtWsR8YA7gD0QB106ZQsuWLXnnnXfIycnhcGoq8SEh+DocFNtshAPXAo8lJ3PTTTfRsmVLfHx8iPH0AIvDweuLFvE97sFnqm937pEj7MzPb3A8mkJmZibp6ekNrq89hEoppZQ61TQhVL/b9OnT3Qf38+czZ84cvv76a7799lumT59+3PkmTpx40trkcjpZBgyBEyaq1Z133nne543tIRRn7Zsw1NdDKE4necCRyspfE9Vq65s4cSJGo5H4+Pha896dkEAbz/MZQIaI91YTVR599FF8fHw4cOAAAQEBvPjiizVuWl+XqsFkAO9gMpWVlURERLBw4UJmpqTwAPA+sA54OSSER+oPByUlJdx///106tSJZcuWMWfOHBYvXky3bt1ITU0lOzvbW3cDMBX3IDMbNmygRYsWLFq0iJ5t25IBBJSWsmHjRiKB14GCigqee+45br/9drp06cLMAQPccXU48DEYCMWdZFbfbgF3z2pD4lFZ+WvS/huUrFhB/r//TWpsLBUtWjR4Pu0hrM3pdOI6SdfzKqWUUkqvIVRNwGg0kp2dTXBwsLcsOzu7xrWCdWmKUTzr47TbmQ4sAoLnz/eWv//++1x00UVEREQQExPDrl27MJvNdO3albi4OPcAN56eusbeh9Blt9f6haWuLVy2bBnTFi6kHVCenc1HkyaRn5/PZS1bMqhqvuPFplq7JgADyssZA7z++us1qhmNRq644gqmTZvGHXfcwQ033OC9aX1dqgaT6d+/P4B3pFGAnTt34iotpTfQ2VM/guP/otS1a1e+/fZbhg8fTn5+PmFhYdhsNgIDA+nYsSP33XcfSzx17cDFnu0+//zz+eWXX7j88svJzMujJ3C4pIQIq5WtQAJg9vEhISGBG2+8kSlTpmDwXAOYXVhIp7g4Dh46RNXJtlXbvfqbbzgI3mT6hhtuoHXr1jVHcK1isXA4IYFWBw8eZwvrZzz3XMJcLvo1cr74oUP1XoTHeKldO8wWC1P37m3upiillFJ/StpDqH63t99+m/vuu49BgwYxcOBABg0axAMPPMDbb7/trVN4/vlUtGtXY765c+eetDa5HA6MQPYx5S+//DI9e/ZERDhw4ABr165l/fr1VHh6nDp06PCbb0wvdfQo1XVoP336dJ4bMYL5wGMtWnh7VN9ZtYoKYJfTyd13382mTZuorKysvYBjeiKr1vHaa6/xzTffsGXlSjJTU5k8eTJ+fn41Rik9tiexLjabjbVr12K1WklOTiY5OZnLLruMAB8fEoF8T71Sl4vaVzj+6r333mPFihU4HA7GjRtHv379OO+88wgJCeHDDz90n+YKFAAVnr/r5s1j7Nix3gFookJDGQv8t2tXfl67lgGeZT/Rrx8FBQWYzWauuOIK73v2z5UreXDsWG/SB+5Tk0eNGkU+8KWnbNu2bQwaNIhHHnmEwMBAVqxYUav9req4L2RD+WuPVpO5PzWVqfv2NXczlFJKqT8t7SFUv1uXLl2YN2/ecetYv/++VlnYMSNANiWn3c7bwH1AxqBB3gQjLS2NlStX8sMPP7B8+XJ69OgBQFBQ0K8D3DzwAND4Hsw6E8I6Thk1Go0UVF235llHdnY2BaWljAJaVlTQedMmli9fzqZNm/jb3/5W42byx57K+orn+rmff/6ZTz75hM+vuYZWwHVOJ59++mmjbzsxY8YMbDZbje1/7733+PeKFdxVrccsCJhfe/Yaqu8b55xzDsuXL/91oggzcF8HWbUnRIWF8fLLLxMZGcmdd97J0S+/pOstt/CDyUT6kSM86qn30Lp1pLduTWJiIv3796do716Cgd05OTjt9hptmDhxone9C3HvEw888ADvv/8+nTt3JisriwkTJrBmzZpGxemkczhg1SoYOdJ7ralSSimlVFPThFD9KbnsdroA8wDWrfOWT5s2jU6dOtGlSxfvqYJV18mBe4Cb9fff71lI408ZPVZdKeXbb7/NraNH8wpQdOAAIYMGERcXh7/JxGpgbXAwQ//5TwAcDgcjR46skRAajukhDPUkCwaDgauvvporr7mGj4ALL7yQnJycRm0DwIQJE4DaPbh9/P1rvPbxxMeJ+56IJ3Jsgu2qrGTCMXVcnqT60Ufdqd8RTw+piHD7ffd5B7Epczjoc9ZZJCUlwYIFrH7pJYauWEHfsDDvMupabwnu019tNhudO7tPfo2Ojq739Oa1a9cyePDgBmxd0xGXC4PRSPpbbxE/ZQrZn31G1GWXndI2KKWUUurMoQmhOqUqKirYsWMHeXl5hIeH0717d3x9fZt8Pa6KijrL67vp+hdffFFtZlfNvw3U0B7CLl268HS/foyYP5/VrVsz1JOw9mvZkiR+Ta5EhHnz5mGprKT8nXfwu+km94RjEkLDMYlW1U3er1mwgIyMjFrrr37T+uOp0YO7bh2d0tJqTG9sQnhsgukoL+fYdz4vK4txiYlYQkIAKE5PJwgo3LOH9GrxvblzZ659/30ydu0i9qKLGOopv7ZzZ5zHvA/V19sVmDVrFomJid7rGtPT0+u8vQfAZ0OGMPgUX9NXUVKCX3Aw+xctIh74ZeNGTQibQNqePeSlpdHjnHOauylKKaXUaUUTQtUkGpLozQHeGDWKfv36ERISQkFBQZ2nRDYF1+8Zvr8qETxJp4wCtZI6gOnDhzP/k09Ymp9P0MCBmM1mUlNT+TE1Fb8NG6AqIXS5qAB24L5Ju83ppF1lZa141zdKafWb1jfY4MFYgU38eiN5H8821N6SulVPMP/1r3/x1htvYAEuB+KB54BfJkwgCDhSXo6vxUK/du1IBkrKy7m42rKGRkTQtm1bzhk6lOXAbiAR6FlHD2HVev8LbAR8Nm/myquu8pZfe+21NU9lreblBm5bUyovLMQvONh7r0odZKZpZHftSm+X64yJ557Nm+ncp09zN0MppdQfgCaE6nebM2cOb7zxxgkTvbeA1atX1zg9r65TIptCfT2EcPwesoyMDAyehLCx1xA66lhnvR+wY5LO/v37U5ySQhDuBMvlclFeXk5hYSHHtnRJXh7/APoBIcBBh4PnR42qFe+q0UKrExH2HWeAjvoS+znAG9XWWQCsLS/nHuCiepdWv+nTp7N/40YiO3bkX8A9QApwAdAJuPjCC/li3jxvUjQK97WGVVtkW7eOoH792OsZIOcOYDmAw1Hnqbt42r8JKFmwgP/On8+ll17Kf//7X0SEzXPn8svcuVzqud1Gc6qw2QBotWGDu6CZrx+c89hjbJo9m5fq6G3+oyi32dzJ4Bli+xdf0OOyy1j15JMMO8Htf5RSSilNCNXv9tZbbzUo0fMHkpKSGDVqFOBOTpKSkvDz82vyNh0vIbz22muZNWtWnb2Z119/Pf+sOnCsoxfveOx1rNNcz0GoHNP7Y7PZeHbYMC7+6itWhoczPDmZjF27OH/kyFrzfl1YyBZ+HSL4F19fEpKSGDlyJJdMnMgu3L142dnZ7Nixg4CAgBrzjxkzps42HS+xfwtYTc1hidN8fLjC4eCCeuIB0K9fP8rKynA4HJhMJvw91yEWFxdj9PTk3Y37x4ILPe1+B/h04kTGjh1LQUkJu3Eng9v59QtrRc+ejFy9mmF9+mDbsgWzp9zldCL1JIQCmIFKm427776bLl26MHbsWPLy8qi84goudTjgww/d1/AdZ5tOtkrPfRHbe67/dFSNNOtywcGDUG203iNz5mDKyyN26tST1p5zn36a607a0usndjuGJjqdfM3553Nukyzpj6F00yYAnKfbQElKKaVOS5oQqt/N39+/QYneHGDm/Pk8+uijOJ1OzGYzffv29d4EvSlJZaW3N4lqPWU5OTmkpqYybtw4fHx8cDgclJaWEh0dTXh4OPv27cPgufdeY08tq7OHsJ6EsGpgmKreyBkzZvDUbbdxMb8mkbvOP59XsrKqbZSAwYAfkIS718xd7I53fn4+o0aNYgDuXrwuXbowatQo7rrrrhqJedWALcc6XmLvf+w6gW0OB37UPXAOuBPMHTt2cNNNNxEaGlojwXziiSdI2b/fe9uKa4C+wCzP677t2vH6668z+fzzuQOYAczGfVN6M9D30CFGAreOH89FW7ZQdcKn2O0s2rGDO3Hf5P7qmTN56KGHAMgCDgLOnByObNqEwWBgypQpzJ49m/Y7dgC/JmNNf1Vrw1V6egirOD1tqnjtNSx3340cPIghIQGAllUjyJ7EhLDq7qKuigqMVffoPAXSdu6k5XGmf3fJJbSbPJnO48efcFmGlBTv86pBe45lO3QIv+BgzPVcT3q6WvHmmxiMRkbceuuvhVXb18gftZpCQUEBvr6+tX6IUkopdfrShFD9bnPmzGHmzJknTPRigZdeegnDKTgFzl5a+muvUnKyt3zo0KG0a9eOtLQ0tm/fjslk8iY9q1evZsyYMZg8p+ode3uHE6krITTXcV1h//79se3eTTBQfOQIQf37u0/lzHff4a8qIfQvL2dgtfmkrAxDQABPhoYyPzOTR3GfXuosL2foN98QGBjIws8+I6JNG/cM335bo6d29+7dJCYmMmLEiDrbf7zEfg4wE7zrNOE+ffRD6v8Seeutt5gzZw7nnHOO93q9qva88847xFZLuCfivgZwgMEAIuzYsoULx4zh+VGjeHrOHCYAg3Cf8mkGrrXbufTSS/n7kCE1ElJxOlmwezebgULg44AA76mhCcAq4KU77mDYmDFUVlZiMpkoLi7mMxHuAEoyM/Hx82vehNCTAFZxlpQAsHXOHPoDv6xdSwdPQljLDz80+W0qyg0GgkUoTEkhrEuXE9bPu/lm/Bcs4Jvx4ylau5ZxnTtjvf12AsaNq1Ev9623CBo5EotntNdjFR8ziNH6++5j4AsvAO59c+zcuaTMn+++PcexRNgxcSKtnnqKkB498KkWD3tJCb7BwbVmCW7ThmxfX6KqfY7LV6/GVVRUq+0pH39M+NlnE1pP25va5iefJGrECFrWccbAyL/9zf2kWkJYtc80x/WSYWFhdO/ene3bt5/ydSullPqNRP2hFRYWCiCFhYXN3ZR6uVwuEfehiZSVlXnLc19/3V1utzf5Ond/9pnMBckDEafTWz569Gh56aWXZO7cuZKXlycul0uWLl0q5557roiIrFixQrYFBYmAJE2c2Kh1psyf793OqscBX99a9RITE2XZ4MEiIBtjY73lZ0dEiIBsDQ11FxyzrOLDh0VEZGNUVM11+Pt7t+2Ld9/1lh+7baNGjTpu+48ePSpTp06VwYMHy4ABA2To0KEybdo0OXr0aK22/OJpq4CU1fM1Mnr0aFm+fLn39bHt+eWrr7zLGOX5W2gwiICc3bGjiIismDDBW2ew528pSJ/AQFmyZImc1aaNdK/WrsVDhkj3sDARkFxPDJYsWSLDhw+X7iBDQHZ9+mmNeHxkMMgQz/xH1q6VzB07am5vHdZ/9pksffppmTtsmKTv2FG7wjHxEperzuW4Kitr1d360Uc1lrH4ootERCSpe3cRkO1vvll7PSJy9NNPRUCyX3qpznX9VqlGowjIoa+/FhERp8Mh39xyi5QWFUmy1SqL+/atOcOx2w5iq+NzICBHAwLqXe9Ps2fXWEa6ySQHBg6UQ/fdJyXZ2SIgWQZDnfMWHjjgjmVMjIiIrIyP9y4nPyWl7hXW9X7Xtw+c4H1tciAF1bb1m/HjZUVERL1tXHXjjSIgy0eMOP5yKytPvA1Op8jBg41oKqKHFkqppvBHOMb9s6j75ltKNUDKsmXMGj+eNa+8wjfPP89HM2eStn07zrIynJs3g+fUt+LsbO88ZdV6Pwo8N4AvOc4gJ79VeUEBE3Df8FzKyrzlc+bM4eDBgzz//POMHTuW4cOH880333h7M0eMGEGg5xo0Q1FR49Z59GitMksdp2zNmDGDck9sTNV6I671jAhqruc0L1vV6aNV15RVs2fRImbdcw/ffvcdQ4CBUGvbzGZzrfmqi42N5eWXX2bNmjWsX7+eVatW8dJLLxEbE1OrbkrHjt7n9fVFzZkzh/nz5zNkyBAGDhzI8OHD+c9bbzGgfXv3ZhQWeutWtaxqWUZPDKq/d+Nxn/JZhLtXcvTo0dw7fDgtqq3TUlrKwLAwDuK+3tHlcjF69Ghef/11WuC+jnXdxo3eeIgIMSJUndxclp1NRQPe98TLL+fcRx9lwqpVpPfqxZIpU45b31ntPXOVl7OnfXuyV66kso512T29O6We1z3WrEHy8gjLzfW2sS47V64EICUp6YTtb4wKz+mHtl9+AWDrf/7D+NmzWX311fQrLGTMxo0UFxSwtI5bulRxOBwUFxby89q17mV6esNjS0vrnaciM7PGa7vRSJv162n9wgvs+eST47Y5f/9+AEyeWFa/LUpZA+7N6bDbWTDh2LtkwtGUFN4eNsz7+udXXjnhsurjqqxkw3XXYS8oOH49z/eRtVpv3/iFCxmRm1tnD+DSsWMZ+t577hfVPj/HEpcLfH1Zd4JTblNnzYI2bciudqZFvcs8pj3Tp09nrec9P5HMzEwOHjxY7/RbbrmFyZMnN2hZSimlGqmZE1IlIq+99pq0adNGLBaLnHXWWbJy5coGz9ucv54sHTaszt6A6o/dIAervZ4P8klkpHzapo237HmQJXfdJa9fcol88Le/ycJnn5VFr70mP86fL8VHj4qjokIcDkej2vbO+PHe5Rfu3u0tP/Lzz1JRXl6rvqOgQI5+/LHk5+R4e6mSevRo1DrfHDSoxra/2rOn2EFcpaW16q5t2dIdn8BAb9nKrl1FQPb7+Ym9uLhWLPd9/704HA7ZaTbLUV9fb/lRk+nX3sLqvZS/V2GhyH/+I6U5Od5lHurTR2ThQtn60kvesnIQZwN7ef/raavDbpdtr75a736z/M47xZGVJT/UsY8dMJlklacHceUNN9SYtq5jR/nI04NqB6ksLv515SBHQa4eMaJmL6inXEB+fvdd2ffNNyfsIayz3ceZXpab6510YOFCEZAfW7eWjO3bvXUOWizubXjxRXEe03OY7+fnfb5y2rRa63E5HLLi1lvd08eO9U7+YvJkWeDpQW4Ie1mZJFutkvzcc5KenCxJ3brJHs+6V954o4iI/PjkkyIgP3n2YQFZeNZZIiCZu3fXGZsCg0Hmjxrl3u5335Ujq1f/uv8UFdXZlqS7766xjP2e+FR/ZHt6zVxOpyS3bSu7Zs8WEZGtb70lAvKLpwdyXWysd561Tz8t83r1EkdlpXddpTabd3rJ0aOy6ppraq7Ls39/cf75NcqXXnutiIikbd4s6154QcqrfdbXdOggqy6/vHaMKyvl+4cfluTnn2/QZ/Xnhx6qXc/z2l6tLfbKSqnIyxNHtbIVXbuKiMiyW2+VrxMTvbPv/OQT2faf/4iAZBmNx13/ur59RUBWP/74ceuJiOTn53t7CCsqKrzPq9x5553y8ccfy+zZs8XpOXOjsrJSnn766Vp1j1U13W63N/j/QV5enmRnZzeobmOlpaV5/+8uXrxYcnJyTsp6Xn31Vdld7X9Ybm6u3HHHHZKfn39S1tcQLpdL9u3b12zrV2cO7SE8dTQhbGb/+9//xGw2y+zZs2Xnzp0ydepUCQwMlEOHDjVo/ub8sLjy82XtBx/Ijg8/lHn33SdXhofLpQaDXAfyBMhLAQEyC+S98HCZ2bKlPA+SBLIZZA9Iej3JQF2PMpAckEO4k8xtIBtBtgYEyFofH9kSESHf4U44vwPJACkGcYKsBFnVu7ck9e/vPiC0WOTfrVvLDKtVXo6KkukgP3vWk+T5u89kkiyDQZLOP1823nqrJN14o7zcr5+snTZNPrnsMtn2xBOy8/HH5X8XXCAv9uwpfwdJAUmJi5M911wjhx9+WJa/8ooIyOcRETJ7/HhZ8/jjsuSuu+S1/v0lz9O+SpDb/Pzkq2oH13aQ5RdfXCsGX155pTzSrZuUg+yZNElS27eXpNata9T5odpBtMvplPVPPy2H160TEZEfFi6Uy6KjpaieA/DqHA6H7Ln0UhGQz7p18y7TuX59VQU50L+/HGzXTgTk0wkTJPfwYe9BXn0KPcvZ++23Mn/sWO9y0wMCpLTaduwJCBAB+c5srhWHTSEh9e4nG0C2gBR5kphfPvlEDn7wgfxY7dTTjc8+623PwWOSv03PPy87PMmEgPvgui51rLui2unQtRKXLVu8k36aMcOdGEVFSfIHH7gTi8cek5wff/QeeB9atKjebVx63XUi4j51s6rsx759ZZnnR5ClAwZI5qZNsuH++92n84IUZWTUuRlOp1O+/sc/pNhzcHlg6VLvMle3b19jvUmdOklFcbGsmjy5VpuqTmP+tnfvOtucZzBISrUfMbZ7khEB2fLuu3Jo+3Y5kJxco23Le/assYzddewLBSBrL7pIlo8e7U7mPO/X2vvvFwE57OcnR77/XvZ59icB+dnHRwQk1XMKrIhI2qZN3unrqyWPVY81iYmyKTxckjw/2nhjFB4uLqfT+3rByJGSt3Gj7P7ww1/rebhcLsnPyJBVDz/snjcmxlsnbcMGObp1q4iIlObliS0/Xw4vWiRbp02r2RYRKSsoqDPGWQcPSla1H4cEZHVCgvuU0Kp9NC9PlvXrV6OOrdqpqCX5+VJWUuLdNz655RZZ4fmOmTd4sIiI/LJqlSy/+GLZuW6dfPH+++JyucTlcklmZqZs3LhRqhK3e++91/v8rbfekszMTO9rQH744QeZP3++fPfddzXKXdVOYXW5XLJo0SLJy8urUWf48OE1ksKysjLp1auXLFu2TERE3nnnHenZs6cAEhsb621jZWWllJeXe7+n3njjDVm8eLG4XC75+eef5ZlnnpH09HRvAlZRUSHffvut7Nq1Syo9PyC4XC558sknBZAhQ4bI4cOHBZBLL71U5syZUyNRcrlcUl5eLhs3bpQ9e/aIiEhKSoqUeGJcXFwst9xyi8yaNcu7PS6XS2bMmCHbt2+X5ORk7zavWbNGRETefvttAeT111+v8XlZs2aNrFq1yr0/p6XV+i6uqKgQu90uM2fOlG+++cZbnpGRUSPm1WVmZtY4FnnhhRfk3Xffleeff14A2b9/f436TqdTioqKZOrUqZKamlrnMqt8++23kpqaKpmZmbXa6nK53Jcq1KOqvS6Xq872FxUVSW61H+Hqmre4+o+Fx5GZmSl33HGH7Ny5U2bNmiWvv/66nHXWWTJ79mzv+1hl+fLlsnjx4hrrWrx4ca11He8HDYfD4Y1HRkZGnXVP9H82IyND0tLSJOOY7/3Vq1dLWlqaiIiUlJTIzJkza8TZ6XTKa6+9JtOmTTvhOk4VTQhPHU0Im1n//v3l9ttvr1GWmJgoDz30UIPm/6N+WKq+lCsrK6U0L08ytm6V1f/9r/z0wQcy56675J5eveSRnj3l4Xbt5LWzz5ZHQ0Pl87PPlucDAuR5kE+iouTzyEhZEB0t30ZGSlKLFvKVySTzQVZFRcmGIUOkeMsWeb5fP1nh6yu7fH1lv+daqEqQfNwJZgbIEZBsz8HR/vBwyX3ySdm+cKGst1olt56D8mMfhSCbYmPF5fmnL+L+Yv9u+HDJr6N+alycHF66VNZWKysyGuXAhx/KHs9BXS7IL57eyuqPnLZtRQoKREQk4+BBWV9Pm5zVnhdXW04RSK7BIPlGo+QbjZLniUehwSBFBoMUeupUX1Z2aKg46/hFuqK4WH4KDvbWK/cclBfivn4zG3fvUKnRKBV1tHG/1Sq5l1wizmXLZOHQod4Epvpjl8UiTpC9Vqvsuv9++Xzo0Fp1SkF+6tVLBMRuMEjpvHlywMdHyutY3l6Q5Oho+blau6se6SD7PLE65Clbl5Ag63r0kB979JDkxERJPiZRqnosT0iQZZ07y1KrVQTk67/8RQ553sutwcHyc3CwfBMeXiOhzfbErPTwYSkvKZG8Y963uh6bgoLkqwEDZPGx15J61nWgjn1mSefOkjRkiKy57DL5oWVLWRkbK0suvFAWeZKu9SALW7eWNcf8wFDXo7iBn4njPVZUe/5jcLDYQSpAvu/VSxa3by/rql2jumDoUPnh7LMbvOyNVqtsq6N8cceONWK7NTBQVgwYIJ9FR9doT0Mfy4YPd8cuNNRbloYnKa32+NxqlaRzz5XVkZFSCrLDk5DW9VjauXONMyqOfXwUFSXLw8PrnPZjYGCtsiyQDdX2t5Q6elkFZOnAgZJ01llyxGCQbRaLJA0cKJuq9UpXPVb7+9f4HC8B8fPzk/DwcKmesDXkUd881113nUyaNKlBy3j66afl4YcflpEjR3rLBg8eXKvemDFjpGXLljXK2rVr533evn37WvNccsklDWpD586da5Vddtllcu+990r37t1rlFe1oUOHDjJ27Nha85177rnHXdex00NDQ2XcuHESGBjoLRsxYoT3uclkkn79+tW5rHvuucc7LSAgQO6880558MEH5YorrpC+ffvKDTfc4K1722231Yifv7+/ANK7d2+Jjo6WESNGyJAhQ+pcT4sWLeSSSy6Rtm3b1vneANKqVSsZPHiwDB06tEZ5nz595LbbbpO///3v0rdvXxk2bJjEx8dLt27d5LHHHqu1nDvuuEOuvvpqsVqtAkjXrl3lhhtukP79+wsg3bp1k6ioKG99q9Uqo0eP9sYsKChIJk2aVOO9j4uLO+574uvr611+1aNTp04yePBgGT9+vHf7Jk2aJDfffLP85S9/8dYLCAiQfv36SXx8vLRt21Y6duxYIyYmk8m7LUFBQTJlyhS56KKLvPvvLbfcIjfffLP39aBBg+T888/3vj/h4eFy0003yYQJEyQmJsa77B49etT4HEyePFmuvPLKGusHJCEhQQCZOHFig35IPhn+qMe4f0QGERFUs6isrCQgIIDPP/+cCdWuV5k6dSpbtmwhqY5rgSoqKqiodt1ZUVERrVq1orCwkJCQkFPS7j8DEaGiogKz2YzRaEREatxuoYrD4aDYZqO4sJDtmzYR6OtLZWkpkRER+AUHczQnh7MGDMAaHl7vyI4VpaX8smEDhRkZmIOC6DNkCD6hod52pO/cSWyLFr+WORzkbtqEMTISh9FIRV4e/gEB5K5ZQ5shQ9yjMlZfl8tF0dGj/PK//2HPy6Pt1Vez47PP2L1gAWaDgbiICOwOB0fz8mjt74/LbMbpdFI1huq6deuIjY+nS9UIkgYDlZWVxLRpQ8zIkcRGROA/bhyY6h5P1OVwsOvjjyles4avPv6YmIgIWsXHs3XTJnzNZuJatCA4PJzM/Hxad+pEZJs2+FRWEt2jB20nT8ZQ7fYkxTYbv6xcSc7cuRzIzycqJITxb7yByXP/QoDKigqW/d//EVZRQVRICNGXX05wQoJ7qP3du8Fqhbg4cnfvZtP99+OTnY0UF5PTuzfWiAgcH33kvh7LZMKal0fWiBGUBgZSHBBAZHIygSYTwbfeSqsrr2TZgAG0LCjAz+HA4XKB2YzTYMAZGopMmoStrAzLxx/jX1hIGGAHHL6+OEeNos+XX2Lw8WHpuHHErFtHe5uNApeLMn9/Sn19MRkMSFAQ8bNmEXbVVQBseuYZTK+9RtvcXA5OnEjAddeR/thjhKWkkN+vH75OJ7ErVxLkclFpMLCudWsshYWMycsjw2wmKzSU4IIC4u12goEMo5FYl4tCwGUw4CtCoCeO5bivUwwHCnDfaqPUaKTY5aLMaASXC3/cI7v6XXUVoz/5hGKjkQKzmfSAAAyRkRQEBxO+ezeUluJvMhFqMHAkIcF9v8rSUpyJiVjLyijfuRNjZSWHJ04k/qOP8DcYKP3rX6koKSF+xQp8RQh2ucgFSoxGysxmClq0YOTWrfgHBZG2bRs7J0+mPCwMP4cD4+HDVFittN+2DZPLhdNsJrttW4JycggvKuJQZSW2vn0J+flnWtvtZLZrR+fly1k7ZQp+332HPSCAhNJSDHY7DhFsQO7QoRhCQohZt45Ko5FMESQ0lNCYGFpu3IjL4aDE35/UuDgir7qKgU89xSfjxtE1KQnx9ycnIoKElBTCnE4igA1BQZRXVpJQWYnFYMAIxIiwx9eXQIeDfIuFnIsvxrh8OR2yszG5XFSYTJQ7HBQCfn5+hNrtbA8NpcX06RQ88QQx+fkYLRbS+/cnpG9f7OvWkRsYiCk1lcj0dEoCAzH+5S/0eeUVDi5fzqGrriIASB80iNa//EJMYSGpsbGE/fWvlL73HvaAACLz8ggqL8dpNCIuFy2BHKORzOBgokpKyA0OxtW9O4mrVrHZs9/0AqKACpOJSw0G/P39MZvNhISE0H/AACrKy/H39yc2Lo7IiAj+8cgjAIwfP57MjAzKy8sxmUzk5+fj6+tLaGgoJpOJbdu2ERwcjMvlIis7my6JiZjNZo4cOUJiYiIPPPAAZWVl3HjjjVRUVmLx9aWishI/i4W4uDgyMjKIjY0lNDSUocOGERcby4cffsiBAwdo0aIFdoeDrMxMysrLAYiOiiKr2jW5IcHBdOjQgU2bNxMVGUlsbCylpaXk5OTgYzKRl5cHQGREBL1796a0tBSDwUD79u1JT0+nvLycI0eOcPDQoRrfkZ0811zv9VwvHx8XR7rnmvO77roLH6ORDz74AKfTSZHn+vJWLVsiIlx11VWEhYUxc+ZMrFYreXl5tGjRgvT0dIqrRpMF2rdrR1BQEAcPHqSwqIjOnTqxZ+9e7/S2bdqQm5tLkc1GVGQkRqMRh8NBrmebAAL8/fHx8cFWXExgQABGo5GQkBBcLheZmZm0bNmSsLAwgoODiY6O5qdNm0g7cgSH00lIcLC37ePGjmXLli3ebezerZv32CX18GEA4mJjadGiBcXFxWRkZODv7095eTn51a6p9fH8b3Z5DlO7dunCvn37sFgsmEwmwsPDyczMxGAwUFxSQkhwMEFBQeTk5FBpt2Py8cFisRAVFeV9Tzp36kRcXBybNm1CRLAVFxMXG8vRjAwAYqKjsdlslJWVIcCY0aPJz8/HZDLRrVs3bDYbdrudDRs20MYT0wMHDuBwOBg2bBgpKSmkHz1KmGefttvt5OfnYzAa8bNYCA4O9sYFoHevXoSEhJCdnc2RI0ewecZZiI6Kon2HDqSnpXEoNRWA4KAgbMXF+BiNOF0u/CwWAgICyMvPJyI8nNy8PNq2aYO/vz9RUVFkZ2eTn59PVlYWVquVLl26sH//fioqKoiJiSEyMhIRIScnh+LiYnx8fOjQoQNt27YlOTmZzMxM/Pz8iIyM5FnPrZpOtaKiIqxWqx7jngKaEDaj9PR0WrRowZo1axg8eLC3fMaMGXzwwQfs2bOn1jxPPPEETz75ZK1y/bAopeojIhgMBqp/3ds9g5WYPT8QmOpJ+JWq0xNPQB3/i5RSfzJGY7Pc0xQ0ITyV9AjgNHDsry5VB291efjhh7n33nu9r6t6CJVSqj5V3yfVv1d8fX+926Img6rRpk+Hm25q7lYopZRqAnoU0IwiIyPx8fEhw3OqQpWsrCxi6hjqH8BisWCxWE5F85RSSqm6GY2gP0YqpdSfgt6HsBn5+vpy9tlns2TJkhrlS5YsqXEKqVKnm5YvtmzuJiillFJKqSagPYTN7N577+W6666jb9++DBo0iLfffpvU1FRuv/325m6aUvVKs6U1dxOUUkoppVQT0ISwmV1xxRXk5uby1FNPcfToUbp37863335LQkJCczdN/QYOlwOny4nFpKf1KqWUUkqp05+OMvoHpyMwnV6eSnqK1amrWXzd4uZuyklleNKAPK5fHUoppZQ6OfQY99TRawiVakK5pbmk29IbVPfj7R/jcDlOcouUUkoppZSqnyaE6k9rW+Y2dmTtaO5m1Ouauddgq7A1dzMaJa0ozXsvO7vT3sytUUoppZRSv5cmhOpP6+9L/s4TSU/8pnmPFB1p2sb8SbR8qSUF5QUA7Mnd07yNOcaFn1zofX7FF1dQXFncjK1RSimllPpj0IRQqTq0eun33V/L4XIw4v0R7M7Zfdx6TnHWeN351c7kleWdcPmGJw2sP7KejOKME9ZtCk6X03t667TvpwGcdgnX13u/9j7/bMdnZJdkN2NrlFJKKaX+GDQhVKfE3ty9LE1ZWqv8ZI5pJAgGDI2er7C88Het1+FyYP6nmZWHVrLy0MpGrWtv7l5vD1x1TteviWNVYrY6dTVxL8Tx1sa3fld7G+KBJQ8w8v2RABwsOAhAVkkWF3x8AYv2L/rNy/1i5xdsSNvADV/dwNMrn66zTvXEc9PRTezK3lVj+j+T/olLXEDN/anMUfab23UqFZYX8uORH7l+3vUnrFtUUVTjtYjUuA5VxwhTSimlVGPpbSfUb1ZYXsj0H6bTJaoL2SXZLNy3kG5R3ViZupL9efu5uc/NlDvL6R7VnRfWvUB2aTaTe0+mlbUVWSVZhFhC+L81/8fDQx8mKiCKnNIcjAYjBoOBzRmbMRqMxAfFE2AOwO6yEx0YTWZxJgUVBXQI60BuWS7xwfGU2csI8w/D4XKQV5ZHYmQiHcM7svgX90if931/H9GB0VQ6KymuLMZismDAwO7c3bSxtmFf3j7ahbUjyDeI89qfx7OrnwXg0s8uJTEykfyyfALMAeSV5WExWUizpdElsgv+Jn82ZWyiXWg72oe3Z2yHsfwr+V81YnTbN7eRWpiK3WnHx+iD1WLlrLiz8DH6ANDh3x247ezbcLqctA9vD0D7f7XniRFPUO4oZ2fOTtJt6WxM38ib49+kY0RHtmduB+D7X74H4PaFt7MlYwv+Zn9aW1tzz/f30DOmJyMSRhDuH44BA05xUmYvo7W1NTmlOVQ6KzH7mPEx+JCcnkzrkNa0srp7RU1GE0aDEbPRzKy1s/jy8i/ZnrWdNYfXALD56GYAPt3xKQv3LWThvoW8Mf4N/Ex+/JT+ExaThQj/CNJsaRRWFBJkDsLf7E9xZTE9Y3riEhcOl4P44Hiu+vIqLk68mK92fwXA4cLDfLHrC+7ufzdZJVmE+oUyY/UMpvSbwqsbXvXGtWtUV67ufjWRAZFMXzGdhFD3bVo+3v4xFyVeBMB5c87j70P+jktcuMRFXlke83bP4/Kul2P2MQPuayIDzAGUO8rZkL6Bq3tcjcXHwrtb3iU5LRk/kx8PDXkIQbA77fj6+GL2MVPuKGfFwRUIwkWdL2JPzh4SIxMpc5QRFxRH0qEk5mybA8A1Pa6hQ3gH/E3+OFwOQv1C2Z2zG6uflU4RnZi9aTarU1cDMGfbHF7+y8sUlBfw5S533LtEduHms25m3u55rE5dzQvnvYDVYsXhcvDwsofJL8/nmXOeITYolpsW3MSs0bMwGozehHhP7h46R3TGz+SHS1zYnXZMRhOl9lJ8jD4ctR0lsyST/i36Yzaasbvs7vZZrBgMBnx9fLFV2IgPjsfqZ8XpcrIzeye2ShtWi9X72at0VlJqL8VsNPP5zs+ZNnAaKfkprDi4ggmJE3C4HJTaS2llbUWoXyhf7f6K+OB4esf2RkTYlLGJ/vH9MRgM+Jn8KK4s5oElDwDQKaITl3e9nM92fsaIhBHEBcWxP38/nSM6U1JZQqhfKAcLDtImtA0Wk4UD+Qf4Oftnwv3DGdZ6GHtz9/LGxjeIDYrl8q6XExEQgUtciAjljnLig+OZv2c+Qb5BtA1ti8lowuxjJrMkEwMGukZ1paSyBKufla2ZW/E1+rLuyDp6xvSkX3w/XOIizZZGuH84PgYfwvzDKLOXkVWSRbAlGJPRhI/BB4vJgq+PLwXlBbjExdbMrSRGJGI0GL3fS34mP44UHSHQNxADBvLL83G6nPiZ/LCYLIT6hZJVksWe3D0kWBOwVdiICowizC8Ms4+Z3NJcAn0D2ZC+gbyyPMa0G0OQb5C3l7+gvACzjxkDBlIKUogLisOAgciASPLK8tyffR8zfiY/KhwV+Pr4svrwavrH98dWaSMmMIbs0mzC/cO5tOultAtr93v+jSillDoNaEKofjOzj5lw/3CiAqJwupzEB8fTIbwDAP8c9U8iAyL5OetnogOjGdV2FINbDibMPwyz0UxiZCKVzko+mvgRTpeTMP8w/M3+7oQQA3annSDfINqEtsFoMOISF1Y/K/ll+WQUZxAfHE9Xn64EW4IpLC8kKjCKw4WHiQqI4kD+AQ4WHOT6XtcT7BtM9+jutAtrR4WzgoziDKwWK0aDkZigGIJ8g4gJiiEmMAaXuHjrp7eID4oH4K7+d2EymggwB+Bv9sdWYcNoMHK0+CixQbEA9InrQ3ZJNp/v/JzpP0yvFaPrel7HWXFnUWYvo21YW7JKslh7eC0L9i4AYP6V89meuZ1gSzA7s3cC8MiwR2gR0oIEawJmHzOj245mYIuBhFhC+GzHZ+zN3cutZ93K25veBmD2X2dT7ijH4mOhXVg7BrYcyIiEEZzT9hwqHBVEBUZhNBhJyU9h1ppZzP7rbHx9fHGK+wAxMTKRiIAIAswBOF1OKpwV5Jfl43A5eG7Mc8zZOoee0T1ZmrKUy7pexuc7Pwdg3eF17hjE9qFVSCtK7CV0i+5GdGA0sUGxHLUdJdgSTExgDH4mP3JKc5izbQ65Zbn8re/f2J+3nxnnzKhxqmeb0DbkleVxfofzWX9kPbllubxw3guE+oVyY+8beW/LewA8OORBEqwJHC0+yjPnPMOnOz5lRMIIfjr6E9fOuxaAs+LOonNEZ1ziIrs0m+1Z20mwJnBBpwsosZdgNBjZn7cfAwYMBgMmo4mO4R3JLMlkQ9oGAG7sfSPjOo7z9jbbXXbKHeXsztlNu7B25Jfn0z6sPaF+obQPa0+aLY1Seym9YnoRMyiG9WnrGdp6qLcdBeUF+Jv96RjRkbyyPHZk7eDCThcSHxzPZzs+467+d9Ha2hofow+3nHULSYeSmJA4Aac4ObftuYzrMI5uUd3ILcvFgIHXx79OcWUxbULbYKuw8dmln7l/BDAYcLqclDvKyS/LZ0y7MZQ7yr0H+w6XA4fLgcloYtWhVXSM6EjniM5YTBYyijOw+FiICIggtzQXq5+VDWkbGNFmBBWOClziwmAwUFheSExQDIHmQPzN/uSW5uJwOYgOjMZoMNIvvh9Gg5EO4R3o36I/hwsPk1qYSp/YPviZ/LC1tVHmKKNXTC8ySzLpLb3pGdOTMkcZaUVptAtrxx197+Cdze/QOaIzwxKGkVOaw7CEYThdTuwuO92iulFQXkCwJRirn5XIgEgiAyLx9fElzD+MAHMAHcPdse4e3Z39efvpE9eHYN9gBPEmNyajifM7nE9kQCQWHwsVzgqcLicR/hHEBMUQGxRLflk+EQER7vfQ5E+oXygRARF0iuiEU5z4m/1JsCZ4f/zIK8sjIiCCuKA4jAb3yTiVzkoqnBVYfCxY/axYfCy0DWtLmF+YO0Hl1wTVYDBQai8lzhHHz1k/0zu2tzehjAmMIcI/ghYhLcgoziAyIJJg32DsLjthfmE4xUl8UDyDWw4mITQBH4MPRoMRf7M/6bZ0ogOjERF25ewiwt+9DX4mPw4WHKS1tTURARGU2kvJK8ujzF7GxMSJFFcW0ymiE1GBUd6RlK0Wa5P8L1FKKdW89D6Ef3B6j5aTw/CkAdd094FvY/yU/hOtrK2IDozG8KSBf476J48Of7TedRx7L7+rvryKx4Y/Rteorsddz0NLH2Jn9k6+3vs1mfdnEh0Y3ah2/hYVjgoW7FnA5V9cDoBruosDBQfwN/kTFxz3u5Yd8EwADwx+gCdHPXncevty97Fo/yLuGnBXvXUW/7KYJb8sYUSbEVzQ6QJvedVXXUPfUxFp9Pv/W+WX5eMSFxEBEadkfUoppdTpTo9xTx1NCP/g9MNycjTFjdcNTxp4fszz3Df4vjqnl1SWEOgb+JuWXXXLB9+nfXE85vCegnqyldpL6fNWH/bm7m3SG9MfKTpCVEAUFpOlyZaplFJKqT8uPcY9dXRQGaXqsP6m9b97GdGB0Zwdf3a9039rMgju03XNPmYu6HTBKUsGAQLMAbw+7vUmX27LkJaaDCqllFJKNQO9hlCpOgxoOeB3LyPz/swmaMnxfX3V1yeu1MSqrodSSimllFJ/fHpkp5RqlFN1XZ1SSimllDr5NCFUSjWK9hAqpZRSSv156JGdUqpRDGgPoVJKKaXUn4UmhEqpRhncajB7puxp7mYopZRSSqkmoAmhUqpRfIw+dIro1NzNUEoppZRSTUATQqWUUkoppZQ6Q2lCqJRSSimllFJnKE0IlVJKKaWUUuoMpQmhUkoppZRSSp2hNCFUSimllFJKqTOUJoRKKaWUUkopdYbShFAppZRSSimlzlCaECqllFJKKaXUGUoTQqWUUkoppZQ6Q2lCqJRSSimllFJnKE0IlVJKKaWUUuoMZWruBqjfR0QAKCoqauaWKKWUUkop1TSqjm2rjnXVyaMJ4R+czWYDoFWrVs3cEqWUUkoppZqWzWbDarU2dzP+1AyiafcfmsvlIj09neDgYAwGQ3M3p9GKiopo1aoVhw8fJiQkpLmb84elcWwaGsemo7FsGhrHpqFxbDoay6ahcTwxEcFmsxEfH4/RqFe5nUzaQ/gHZzQaadmyZXM343cLCQnRL8QmoHFsGhrHpqOxbBoax6ahcWw6GsumoXE8Pu0ZPDU03VZKKaWUUkqpM5QmhEoppZRSSil1htKEUDUri8XC448/jsViae6m/KFpHJuGxrHpaCybhsaxaWgcm47GsmloHNXpRAeVUUoppZRSSqkzlPYQKqWUUkoppdQZShNCpZRSSimllDpDaUKolFJKKaWUUmcoTQiVUkoppZRS6gylCaE66VauXMlf//pX4uPjMRgMfPXVVzWmiwhPPPEE8fHx+Pv7M3LkSHbs2NE8jT2NPfvss/Tr14/g4GCio6O5+OKL2bNnT406GsuGeeONN+jZs6f3hsCDBg3iu+++807XOP42zz77LAaDgWnTpnnLNJYn9sQTT2AwGGo8YmNjvdM1ho2TlpbGtddeS0REBAEBAfTu3ZuffvrJO13jeWJt2rSptU8aDAbuvPNOQGPYUA6Hg0cffZS2bdvi7+9Pu3bteOqpp3C5XN46Gkt1OtCEUJ10JSUl9OrVi1dffbXO6bNmzeLFF1/k1VdfZcOGDcTGxjJmzBhsNtspbunpLSkpiTvvvJP169ezZMkSHA4H5513HiUlJd46GsuGadmyJTNnzmTjxo1s3LiRc845h4suusj7T1jj2HgbNmzg7bffpmfPnjXKNZYN061bN44ePep9bN++3TtNY9hw+fn5DBkyBLPZzHfffcfOnTt54YUXCA0N9dbReJ7Yhg0bauyPS5YsAeCyyy4DNIYN9X//93+8+eabvPrqq+zatYtZs2bx3HPP8e9//9tbR2OpTgui1CkEyLx587yvXS6XxMbGysyZM71l5eXlYrVa5c0332yGFv5xZGVlCSBJSUkiorH8vcLCwuQ///mPxvE3sNls0rFjR1myZImMGDFCpk6dKiK6TzbU448/Lr169apzmsawcR588EEZOnRovdM1nr/N1KlTpX379uJyuTSGjTB+/HiZPHlyjbKJEyfKtddeKyK6P6rTh/YQqmZ14MABMjIyOO+887xlFouFESNGsHbt2mZs2emvsLAQgPDwcEBj+Vs5nU7+97//UVJSwqBBgzSOv8Gdd97J+PHjGT16dI1yjWXD7du3j/j4eNq2bcuVV15JSkoKoDFsrAULFtC3b18uu+wyoqOj6dOnD7Nnz/ZO13g2XmVlJR9++CGTJ0/GYDBoDBth6NChLFu2jL179wKwdetWVq9ezbhx4wDdH9Xpw9TcDVBntoyMDABiYmJqlMfExHDo0KHmaNIfgohw7733MnToULp37w5oLBtr+/btDBo0iPLycoKCgpg3bx5du3b1/hPWODbM//73PzZt2sSGDRtqTdN9smEGDBjAf//7Xzp16kRmZiZPP/00gwcPZseOHRrDRkpJSeGNN97g3nvv5R//+AfJycncfffdWCwWrr/+eo3nb/DVV19RUFDADTfcAOjnujEefPBBCgsLSUxMxMfHB6fTyTPPPMNVV10FaCzV6UMTQnVaMBgMNV6LSK0y9aspU6awbds2Vq9eXWuaxrJhOnfuzJYtWygoKODLL79k0qRJJCUleadrHE/s8OHDTJ06lcWLF+Pn51dvPY3l8Y0dO9b7vEePHgwaNIj27dvzwQcfMHDgQEBj2FAul4u+ffsyY8YMAPr06cOOHTt44403uP766731NJ4N98477zB27Fji4+NrlGsMT+zTTz/lww8/5OOPP6Zbt25s2bKFadOmER8fz6RJk7z1NJaquekpo6pZVY2kV/UrWZWsrKxav5gpt7vuuosFCxbwww8/0LJlS2+5xrJxfH196dChA3379uXZZ5+lV69evPLKKxrHRvjpp5/Iysri7LPPxmQyYTKZSEpK4l//+hcmk8kbL41l4wQGBtKjRw/27dun+2MjxcXF0bVr1xplXbp0ITU1FdDvycY6dOgQS5cu5eabb/aWaQwb7oEHHuChhx7iyiuvpEePHlx33XXcc889PPvss4DGUp0+NCFUzapt27bExsZ6RzAD9/UKSUlJDB48uBlbdvoREaZMmcLcuXNZvnw5bdu2rTFdY/n7iAgVFRUax0Y499xz2b59O1u2bPE++vbtyzXXXMOWLVto166dxvI3qKioYNeuXcTFxen+2EhDhgypdTuevXv3kpCQAOj3ZGO99957REdHM378eG+ZxrDhSktLMRprHmr7+Ph4bzuhsVSnjWYazEadQWw2m2zevFk2b94sgLz44ouyefNmOXTokIiIzJw5U6xWq8ydO1e2b98uV111lcTFxUlRUVEzt/z08re//U2sVqusWLFCjh496n2UlpZ662gsG+bhhx+WlStXyoEDB2Tbtm3yj3/8Q4xGoyxevFhENI6/R/VRRkU0lg1x3333yYoVKyQlJUXWr18vF1xwgQQHB8vBgwdFRGPYGMnJyWIymeSZZ56Rffv2yUcffSQBAQHy4YcfeutoPBvG6XRK69at5cEHH6w1TWPYMJMmTZIWLVrIN998IwcOHJC5c+dKZGSk/P3vf/fW0Viq04EmhOqk++GHHwSo9Zg0aZKIuIddfvzxxyU2NlYsFosMHz5ctm/f3ryNPg3VFUNA3nvvPW8djWXDTJ48WRISEsTX11eioqLk3HPP9SaDIhrH3+PYhFBjeWJXXHGFxMXFidlslvj4eJk4caLs2LHDO11j2Dhff/21dO/eXSwWiyQmJsrbb79dY7rGs2G+//57AWTPnj21pmkMG6aoqEimTp0qrVu3Fj8/P2nXrp088sgjUlFR4a2jsVSnA4OISLN0TSqllFJKKaWUalZ6DaFSSimllFJKnaE0IVRKKaWUUkqpM5QmhEoppZRSSil1htKEUCmllFJKKaXOUJoQKqWUUkoppdQZShNCpZRSSimllDpDaUKolFJKKaWUUmcoTQiVUkoppZRS6gylCaFSSimllFJKnaE0IVRKKaWUUkqpM5QmhEoppZRSSil1htKEUCmllFJKKaXOUJoQKqWUUkoppdQZShNCpZRSSimllDpDaUKolFJKKaWUUmcoTQiVUkoppZRS6gylCaFSSimllFJKnaE0IVRKKaWUUkqpM5QmhEoppZRSSil1htKEUCmllFJKKaXOUJoQKqWUUkoppdQZShNCpZRSSimllDpD/T+IbZI38OadegAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p.SetMaxSinThetaOvLambda(0.3)\n", "p.quick_fit_profile(auto_background=True,plot=False, init_profile=True,verbose=True)\n", "p.quick_fit_profile(plot=False, init_profile=False, asym=True, displ_transl=True, verbose=False)\n", "\n", "# Plot in new figure\n", "p.plot(diff=True, fig=None, hkl=True)\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", " (p.rw * 100, p.chi2, p.chi2/p.GetNbPointUsed(), p.llk))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find the spacegroup\n", "The SpaceGroupExplorer can be used to find the optimal spacegroup. \n", "\n", "What `RunAll()` does is try all spacegroups and settings which are compatible with the unit cell (in this case all monoclinic and triclinic), and perform a profile fit (Le Bail only, we don't refine profile parameters or background since these parameters should be OK).\n", "\n", "From this several values are extracted for each spacegroup setting:\n", "* **Rw** - the standard full-profile weighted R factor $R_{wp}$\n", "* **GoF**: the chi2 (full profile $\\chi^2=\\Sigma\\frac{(obs-calc)^2}{\\sigma^2}$) divided by the number of points used\n", "* **nGoF**: this is the Goodness-of-Fit, but computed on integration intervals defined by P1 reflections, and then multipled by the number of reflections used divided by the number of reflections for the P1 spacegroup. This is more discriminating and allows to put forward spacegroups which yield a good fit with more extinctions.\n", "* **reflections** is the number of reflections actually taken into account for this spacegroup up to the maximum sin(theta)/lambda\n", "* **extinct446** gives the number of extinct reflections for 0<=H<=4 0<=K<=4 0<=L<=6 (which is used internally as a unique fingerprint for the extinctions)\n", "\n", "Some C++ verbose output does not appear here but will be in the jupyter server log if you see it.\n", "\n", "The results are sorting by ascending **nGOF**\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Beginning spacegroup exploration... 37 to go...\n", " (# 1) P 1 : Rwp= 6.72% GoF= 14.60 nGoF= 3.32 (186 reflections, 0 extinct)\n", " (# 2) P -1 : Rwp= 6.72% GoF= 14.60 nGoF= 3.32 (186 reflections, 0 extinct) [same extinctions as:P 1]\n", " (# 3) P 1 2 1 : Rwp= 6.69% GoF= 14.47 nGoF= 1.90 (105 reflections, 0 extinct)\n", " (# 4) P 1 21 1 : Rwp= 6.62% GoF= 14.12 nGoF= 1.70 (101 reflections, 2 extinct)\n", " (# 5) C 1 2 1 : Rwp= 62.70% GoF= 1245.88 nGoF= 311.62 ( 52 reflections, 84 extinct)\n", " (# 5) A 1 2 1 : Rwp= 62.84% GoF= 1254.25 nGoF= 314.24 ( 53 reflections, 85 extinct)\n", " (# 5) I 1 2 1 : Rwp= 60.90% GoF= 1196.31 nGoF= 246.95 ( 52 reflections, 87 extinct)\n", " (# 6) P 1 m 1 : Rwp= 6.69% GoF= 14.47 nGoF= 1.90 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 7) P 1 c 1 : Rwp= 6.58% GoF= 13.94 nGoF= 1.66 ( 96 reflections, 15 extinP 1 21/c 1 nGoF= 1.4785 GoF= 13.598 Rw= 6.50 [ 92 reflections, extinct446= 17]\n", "P 1 c 1 nGoF= 1.6645 GoF= 13.940 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", "P 1 2/c 1 nGoF= 1.6645 GoF= 13.940 Rw= 6.58 [ 96 reflections, extinct446= 15]\n", "P 1 21 1 nGoF= 1.6973 GoF= 14.123 Rw= 6.62 [101 reflections, extinct446= 2]\n", "P 1 21/m 1 nGoF= 1.6973 GoF= 14.123 Rw= 6.62 [101 reflections, extinct446= 2]\n", "P 1 2 1 nGoF= 1.8984 GoF= 14.468 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 m 1 nGoF= 1.8984 GoF= 14.468 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 2/m 1 nGoF= 1.8984 GoF= 14.468 Rw= 6.69 [105 reflections, extinct446= 0]\n", "P 1 nGoF= 3.3186 GoF= 14.598 Rw= 6.72 [186 reflections, extinct446= 0]\n", "P -1 nGoF= 3.3186 GoF= 14.598 Rw= 6.72 [186 reflections, extinct446= 0]\n", "P 1 21/n 1 nGoF= 5.4006 GoF= 26.711 Rw= 9.12 [ 92 reflections, extinct446= 19]\n", "P 1 2/n 1 nGoF= 5.7594 GoF= 27.072 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", "P 1 n 1 nGoF= 5.7594 GoF= 27.072 Rw= 9.17 [ 96 reflections, extinct446= 17]\n", "Chosen spacegroup (smallest nGoF): P 1 21/c 1\n", "ct)\n", " (# 7) P 1 n 1 : Rwp= 9.17% GoF= 27.07 nGoF= 5.76 ( 96 reflections, 17 extinct)\n", " (# 7) P 1 a 1 : Rwp= 9.26% GoF= 27.59 nGoF= 6.02 ( 97 reflections, 14 extinct)\n", " (# 8) C 1 m 1 : Rwp= 62.70% GoF= 1245.88 nGoF= 311.62 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 8) A 1 m 1 : Rwp= 62.84% GoF= 1254.25 nGoF= 314.24 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 8) I 1 m 1 : Rwp= 60.90% GoF= 1196.31 nGoF= 246.95 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 9) C 1 c 1 : Rwp= 62.50% GoF= 1235.90 nGoF= 280.65 ( 47 reflections, 93 extinct)\n", " (# 9) A 1 n 1 : Rwp= 63.01% GoF= 1259.14 nGoF= 291.94 ( 49 reflections, 93 extinct)\n", " (# 9) I 1 a 1 : Rwp= 59.00% GoF= 1121.25 nGoF= 221.14 ( 48 reflections, 93 extinct)\n", " (# 9) A 1 a 1 : Rwp= 63.01% GoF= 1259.14 nGoF= 291.94 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 9) C 1 n 1 : Rwp= 62.50% GoF= 1235.90 nGoF= 280.65 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 9) I 1 c 1 : Rwp= 59.00% GoF= 1121.25 nGoF= 221.14 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 10) P 1 2/m 1 : Rwp= 6.69% GoF= 14.47 nGoF= 1.90 (105 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 11) P 1 21/m 1 : Rwp= 6.62% GoF= 14.12 nGoF= 1.70 (101 reflections, 2 extinct) [same extinctions as:P 1 21 1]\n", " (# 12) C 1 2/m 1 : Rwp= 62.70% GoF= 1245.88 nGoF= 311.62 ( 52 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 12) A 1 2/m 1 : Rwp= 62.84% GoF= 1254.25 nGoF= 314.24 ( 53 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 12) I 1 2/m 1 : Rwp= 60.90% GoF= 1196.31 nGoF= 246.95 ( 52 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 13) P 1 2/c 1 : Rwp= 6.58% GoF= 13.94 nGoF= 1.66 ( 96 reflections, 15 extinct) [same extinctions as:P 1 c 1]\n", " (# 13) P 1 2/n 1 : Rwp= 9.17% GoF= 27.07 nGoF= 5.76 ( 96 reflections, 17 extinct) [same extinctions as:P 1 n 1]\n", " (# 13) P 1 2/a 1 : Rwp= 9.26% GoF= 27.59 nGoF= 6.02 ( 97 reflections, 14 extinct) [same extinctions as:P 1 a 1]\n", " (# 14) P 1 21/c 1 : Rwp= 6.50% GoF= 13.60 nGoF= 1.48 ( 92 reflections, 17 extinct)\n", " (# 14) P 1 21/n 1 : Rwp= 9.12% GoF= 26.71 nGoF= 5.40 ( 92 reflections, 19 extinct)\n", " (# 14) P 1 21/a 1 : Rwp= 9.20% GoF= 27.23 nGoF= 5.65 ( 93 reflections, 16 extinct)\n", " (# 15) C 1 2/c 1 : Rwp= 62.50% GoF= 1235.90 nGoF= 280.65 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) A 1 2/n 1 : Rwp= 63.01% GoF= 1259.14 nGoF= 291.94 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) I 1 2/a 1 : Rwp= 59.00% GoF= 1121.25 nGoF= 221.14 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 15) A 1 2/a 1 : Rwp= 63.01% GoF= 1259.14 nGoF= 291.94 ( 49 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) C 1 2/n 1 : Rwp= 62.50% GoF= 1235.90 nGoF= 280.65 ( 47 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) I 1 2/c 1 : Rwp= 59.00% GoF= 1121.25 nGoF= 221.14 ( 48 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", "Restoring best spacegroup: P 1 21/c 1\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4b7730f297f840d39edcc3fbd3208be7", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADR60lEQVR4nOzdeVxU5f4H8M8MOwojaoikaTcLcSlNUdFyFzVJ0wq9IMrNuJUpecElU0vrqpVbaWnZz6tpmKU3t/SaW2JuiYoGqWmlqSlpyiowzHJ+fzDnNDPMwKwMw3zerxcvnTMPZ54Z5syc7/k+z/eRCYIggIiIiIiIiDyO3NUdICIiIiIiItdgQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERERERkYdiQEhEREREROShGBASERERERF5KAaEREREREREHooBIRERUR2QkJDg6i4QEZEb8nZ1B4iIiMhyU6dOrbRNEAQcOXLEBb0hIiJ3x4CQiIjIjaSnp2P9+vWVtn/77bcu6A0REbk7BoRERERu5LnnnkNkZCRCQ0MNto8ZM8ZFPSIiIncmEwRBcHUniIiIiIiIqOaxqAwREREREZGHYkBIRERERETkoRgQEhERubmsrCxXd4GIiNwUi8oQERG5keXLlxvcFgQBK1aswPjx4zF+/HgX9YqIiNwVM4RERERu5MMPP8TXX3+NwMBA1KtXD/Xr14dcLkf9+vVd3TUiInJDrDLqxgRBQGFhIYqKihAUFASZTObqLhERkZMJgoBNmzZhy5YtGD58OEaMGIG4uDhs2rTJ1V0jInIYQRBQVFSE8PBwyOXMYTkTA0I3VlhYCIVC4epuEBERERE5xdWrV9GsWTNXd6NO4xxCNxYUFISrV6+iefPmuHr1KoKDg13dJSIiqmFarRZ//PEHmjZt6uquEBE5TGFhIZo3b46goCBXd6XuE8itFRQUCACEgoICQRAEYcmSJYKXl5cwduxYQRAEQaFQCMHBwUJgYKCQkJBg8Lu///67UK9ePQGA8NVXX0nbBwwYIHTq1EnYsWOHEBwcLAQHBwvjx48Xvv32WyEtLU3o37+/oFAohO3btxvsLyEhQcjPzzfY1qpVK6FXr15Ct27dhNTUVGHGjBlC06ZNhbS0NKnNokWLhHvuuUd48cUXhdWrVwsBAQHCxo0bBUEQhE6dOln1erzxxhtCu3bthF69egk9e/YUfv/9d0EQBGHFihXC6tWrDdq+8sorQklJibB69WohKipKuPfee616rKqUlpYKvXr1Mnt/enq60KJFi0qvIRERERFVPscl5+GA3DqoQ4cOWLNmjXT7p59+wtWrV7FhwwaUlJRI2xs2bIjMzEw88MADBr+/e/duAEC7du3QoUMH/P7778jLy8P58+cBAGvXrsWkSZMMfker1aK4uLjSEFaFQoEDBw7g6NGjOH36NJ5++mmkp6cbtElNTcUTTzyBl19+GQBw7733YtCgQTY///nz5+PAgQN4/vnnsXr1arPt3nvvPQQEBAAAxowZg7CwMJsf01rx8fFISkqqsccjIiIiIjKFQ0Y9RMOGDREQEIBff/0V7dq1AwD4+/sjMjLS7O/cd999UqEaHx8feHl5AYDBsKRdu3Zh7ty5yM/PR5s2bQAAc+fOxY4dO+Dj44PS0lIAgEajgUqlwn333YdLly7hyy+/xPHjxxEaGoovvvgCxcXF+Ne//oWEhASTfenduzceeeQRfPfddygrK0NRURFKS0sxZcoUTJs2DT/88ANeeuklXLlyBb/88gtiY2Px22+/4T//+Q8OHz6MX3/9FUBFufYuXbogOzsbZ86cwTfffGPy8dasWYMtW7ZApVIhPz8fL774IjZs2IDi4mLs3r0bXl5eGDNmDH7//XfUq1cPn332GRo2bIiXX34ZOTk56Natm7SvEydOYMqUKVCr1Rg2bBgmT55s0d+MiMgaubm5NXphi4iI6gZmCD3ETz/9hLKyMrRu3drq383KysKff/6JBx980GC7VqvFm2++iX379mH48OH4+eefcerUKZw4cQKHDx9GRkYGlEolevfujTZt2qBFixZo1KgRgoKC8Mwzz+DgwYO47777sH//fov6ERcXhz59+uD27dvYvn07pk2bJq3H9dprr+H//u//8Nxzz2HLli3o1KkT3n77bcydOxc7d+7EI488gldffRXTpk3Dzp07kZGRgTZt2uDf//632ce75557sGPHDvTt2xenTp3Cjh078OijjyIjIwObN2/Gfffdh4yMDPz973/HsmXLcOLECeTl5SEjIwP9+/eX9jNt2jR89dVX+O6773D48GH88ccfVv8NiIiqM2bMGFd3gYiI3BAzhB4gIiICMpkMr776Kry9rfuTK5VKTJ06Fdu2bcOPP/5ocF9hYSEuXryImJgY5OTkIDQ0FJmZmejRo4eUWWzQoAEOHDgAQRAQFxeH7777DkVFRdi2bRtOnjyJGzdu4JFHHrGoLw8//DDmzp2L0tJSTJo0CaWlpRB0RXL/+OMPREZGQiaTYeDAgXjppZcwZcoU7NixA3//+99RVFSEefPmwcvLC7m5uejduzfOnj1b5WM//PDDACqGsPr5+Un/z8vLw6VLlxAVFQUAiIqKwu7du/Hzzz+jU6dOAIAuXbpI+8nOzsbw4cMBAHl5ebh69SqaNGli0XMmIjKm//kiEgQBFy9edEFviGovrVaL8vJyV3eDzNAffUauVacCwoMHD2LBggVSoLF582Y89dRT0v3m1ul79913MWXKFAAVQxMzMjIM7h85ciQ2bNgg3c7Ly0NKSgq2bdsGABg6dCiWLVuGBg0aSG2uXLmCl19+Gfv370dAQADi4+OxcOFC+Pr6Sm2ys7MxYcIEHD9+HA0bNsQLL7yAWbNmOXw9wZ9++smmYUTFxcU4d+4cdu/ejXvuuafS/cHBwYiMjMSGDRswY8YMfPTRRzh79izmzJkjtREDNplMBoVCgTt37mDPnj1o2bIl9u7di9TUVKlNdWQyGVq3bo3Lly/jwIEDACAFYE2aNMG5c+cgCAJ++eUXPPDAA2jZsiUuX76M27dv4/jx41iwYAGCgoIwceJEHDhwAL1798bmzZuxdetWs49n6v+CIKBVq1bIzMzE008/jczMTDz44INo1aoVvv76awAVw0RFjzzyCDZt2gSFQgGNRsO1dIjILkVFRcjOzq50gW/AgAEu6hFR7VNeXo5Lly5Bq9W6uitUhQYNGiAsLIxrabtYnQoI7969i0ceeQT/+Mc/8PTTT1e6/8aNGwa3//e//2HcuHGV2iYnJ+PNN9+UbouFR0Tx8fG4du0adu3aBQD45z//icTERGzfvh1AxXy5IUOG4J577sGhQ4dw+/ZtjB07FoIgYNmyZQAqsmsDBgxAnz59kJmZiQsXLiApKQn16tVDWlqa/S+GhUJDQ3H79m2MGTMGI0eOxP/93/9J9y1btgylpaVIS0uDl5cXnnrqKWzcuBHr169HXl4eQkND0a9fP/Tp0wcymQwJCQn48ssv0bFjR0RHRyMgIAB//vknevfuDY1GgyZNmuDnn39GRkYGfv75ZzRr1gyPP/64lIkzpbCwEP3798eZM2fw/PPP48MPP8SaNWvQt29fAJCK5MydOxfPP/88rly5ApVKhaSkJBQWFkKj0SA+Ph5+fn5455138NRTTyEgIAC9evXCmTNn8N577+H++++3+nV76qmn8NVXX6Fnz56oV68e0tPT0bBhQwQHB6Nnz57o2rWr1Pbtt9/GiBEjoNVq4evriy1btlR6TxERWWrevHkoKipCSEiIwfaZM2e6qEdEtYsgCLhx4wa8vLzQvHlzXoithQRBQElJCW7evAkAXDbH1VxV3tTZAAibN2+uss2wYcOEvn37Gmzr1auX8Morr5j9nbNnzwoAhGPHjknbjh49KgAQzp8/LwiCIOzcuVOQy+XSkgeCIAiff/654OfnJ5XOXb58uaBQKISysjKpzfz584Xw8HBBq9Va+jQrleT95JNPBH9/f2nZCVsMGDBAePLJJwVBEISRI0cKPXv2FNRqtdn2u3btEu7cuWPz4y1atEho27at8NNPPwkbN24UHn30UeHrr7+2eX+2SExMFKKiomrs8dLT04VHHnlE2LdvX409JhHVTefOnXN1F4hqlfLycuHs2bOVlsKi2ufPP/8Uzp49a/I8k8tO1ByZIFg4Xs/NyGSySkNG9f3xxx9o1qwZPv30U8THx0vbe/fujR9//BGCIKBJkyYYPHgw3njjDWlRzP/85z9ITU1Ffn6+wf4aNGiAJUuW4B//+Adef/11bN26FWfOnJHuz8vLQ8OGDbF//3706dMHY8aMQUFBgcFwxaysLDz66KP49ddfzWatlEollEqldFtctLOgoIAL0xMReaC+fftaXJyLyBOUlZXh0qVLaNmyJUfk1HKlpaW4fPky7r//fvj7+xvcV1hYCIVCwXPcGlCnhoxa49NPP0VQUBBGjBhhsD0hIQH3338/wsLCkJOTg+nTp+PMmTPYs2cPgIqy3qGhoZX2FxoaitzcXKmNcdGQkJAQ+Pr6GrRp2bKlQRvxd3Jzc80GhPPnzzeYo0dERJ7Nx8fH1V0gqpU4L63249+odvDYgPA///kPEhISKl2NSE5Olv7frl07PPjgg+jcuTNOnTqFRx99FIDpN68gCGaLkFjaRtArwGLO9OnTkZqaKt0WM4REROSZzK2nSkREZAmPnGX73Xff4aeffsLzzz9fbdtHH30UPj4+UjnvsLAwk+vI3bp1S8rwhYWFSZlAUV5eHlQqVZVtxIm1VS1J4Ofnh+DgYIMfIiLyYFotMHUqoPsOIaK66cCBA5DJZJWmLRHZyyMDwlWrVqFTp04WrX/3448/QqVSSdWPoqOjUVBQgOPHj0ttvv/+exQUFKB79+5Sm5ycHIOqprt374afn5+0TEJ0dDQOHjxosD7O7t27ER4eXmkoKRERkVlnzwILFgDTp7u6J0RE5IbqVEBYXFyM06dP4/Tp0wCAS5cu4fTp07hy5YrUprCwEBs3bjSZHfzll1/w5ptv4sSJE7h8+TJ27tyJZ599Fh07dkSPHj0AAJGRkRg0aBCSk5Nx7NgxHDt2DMnJyYiNjUVERAQAICYmBm3atEFiYiKysrKwb98+TJ48GcnJyVJGT1wKISkpCTk5Odi8eTPmzZuH1NRUjqcmIiLLibXh+N1BREQ2qFMB4YkTJ9CxY0d07NgRAJCamoqOHTvi9ddfl9ps2LABgiDg73//e6Xf9/X1xb59+zBw4EBEREQgJSUFMTEx2Lt3L7y8vKR26enpaN++PWJiYhATE4OHH34Y69atk+738vLCjh074O/vjx49eiAuLg5PPfUUFi5cKLVRKBTYs2cPrl27hs6dO2P8+PFITU01mB9IRERULQaERHWGUqlESkoKQkND4e/vj8ceewyZmZkGbQ4fPoxHHnkE/v7+6Nq1K7Kzs6X7fvvtNzz55JMICQlBvXr10LZtW+zcubOmnwa5mTq77ISnYEleIiIPd+YM0KEDkJwMrFzp6t4QuZy47ISppQxqu1deeQWbNm3C//3f/6FFixZ49913sW3bNvz888/44Ycf0KdPH0RGRuL9999HWFgYXnvtNeTk5ODChQvw8fFBbGwsysvLsWjRItSrVw9nz55FcHAwevbs6eqnZlJVfyue49Ycj60ySkREVKcwQ0hkVklJCc6fP1/jj9u6dWsEBgZa1Pbu3btYsWIF1qxZg8GDBwMAPvnkE+zZswerVq1CVFQUAOCNN97AgAEDAFQso9asWTNs3rwZcXFxuHLlCp5++mm0b98eAPC3v/3NCc+K6hoGhERERO6MA32IqnX+/HmpsF9NOnnypLRsWXV++eUXqFQqqW4FULHOaJcuXXDu3DkpIIyOjpbub9iwISIiInDu3DkAQEpKCl566SXs3r0b/fv3x9NPP42HH37Ygc+I6iIGhERERO6McwiJqtW6dWucPHnSJY9rKXPrURuvY22KeP/zzz+PgQMHYseOHdi9ezfmz5+PRYsWYeLEiVb2nDwJA0IiIiJ3xoCQqFqBgYEWZ+pcpVWrVvD19cWhQ4cQHx8PAFCpVDhx4gQmTZoktTt27Bjuu+8+ABXrXF+4cMEg8GzevDlefPFFvPjii5g+fTo++eQTBoRUJQaEREREbqyoqAhBAK7+/juau7ozRGSzevXq4aWXXsKUKVPQsGFD3HfffXj33XdRUlKCcePG4cyZMwCAN998E40aNUKTJk0wY8YMNG7cGE899RQAYNKkSRg8eDAeeugh5OXlYf/+/YiMjHThsyJ3wICQiIjIjeXm5iIIwMWff2ZASOTm3n77bWi1WiQmJqKoqAidO3fGN998g5CQEIM2r7zyCi5evIhHHnkE27Ztg6+vLwBAo9Hg5ZdfxrVr1xAcHIxBgwZhyZIlrno65CYYEBIREbkxQaMBUHneERG5H39/fyxduhRLly6tdF/v3r2leYaxsbEmf3/ZsmVO7R/VTXVqYXoiIiJPY64QBRERkSUYEBIREbkxQaut+JcBIRER2YABIRERkRsTA0JmCImIyBYMCImIiNyYlnMIiYjIDgwIiYiI3BnXISQiIjswICQiInJjYoaQASEREdmCASEREZEbE+cQMiAkIiJbMCAkIiJyY1JAKOdXOhERWY/fHkRERG5MXJhezgwhkUebPXs2OnTo4OpukBtiQEhEROTGBM4hJCIiOzAgJCIicmMMCImIyB4MCImIiNyZLiAUOIeQyO1ptVq88847aNWqFfz8/HDfffdh7ty5AIBp06bhoYceQmBgIP72t79h1qxZUKlUVe7vP//5D9q2bQs/Pz80bdoUEyZMqImnQW7G29UdICIiItsJXJieqM6YPn06PvnkEyxZsgSPPfYYbty4gfPnzwMAgoKCsGbNGoSHhyM7OxvJyckICgrC1KlTTe5rxYoVSE1Nxdtvv43BgwejoKAAhw8frsmnQ26CASEREZEb06rVABgQErm7oqIivP/++/jggw8wduxYAMADDzyAxx57DAAwc+ZMqW3Lli2RlpaGL774wmxA+O9//xtpaWl45ZVXpG1RUVFOfAbkrhgQEhERuTHOISSyQEkJoMu01ajWrYHAQIuanjt3DkqlEv369TN5/6ZNm/Dee+/h559/RnFxMdRqNYKDg022vXnzJq5fv252X0T6GBASERG5MSlDyDmEROadPw906lTzj3vyJPDooxY1DQgIMHvfsWPHMGrUKMyZMwcDBw6EQqHAhg0bsGjRIqv3RWSMASEREZEbY4aQyAKtW1cEZ654XAs9+OCDCAgIwL59+/D8888b3Hf48GG0aNECM2bMkLb99ttvZvcVFBSEli1bYt++fejTp4/1/SaPwoCQiIjIjWl0GUIGhERVCAy0OFPnKv7+/pg2bRqmTp0KX19f9OjRA7du3cKPP/6IVq1a4cqVK9iwYQOioqKwY8cObN68ucr9zZ49Gy+++CJCQ0MxePBgFBUV4fDhw5g4cWINPSNyFwwIiYiI3JlWW/EvA0Iitzdr1ix4e3vj9ddfx/Xr19G0aVO8+OKLGDduHP71r39hwoQJUCqVGDJkCGbNmoXZs2eb3dfYsWNRVlaGJUuWYPLkyWjcuDGeeeaZmnsy5Dbq1ISDgwcP4sknn0R4eDhkMhm2bNlicH9SUhJkMpnBT7du3QzaKJVKTJw4EY0bN0a9evUwdOhQXLt2zaBNXl4eEhMToVAooFAokJiYiPz8fIM2V65cwZNPPol69eqhcePGSElJQXl5uUGb7Oxs9OrVCwEBAbj33nvx5ptvQhAEh70eRETkAcSAkIjcnlwux4wZM3D58mWUl5fjt99+w/Tp0wEA7777Lv78808UFRVhw4YNmDRpksH55+zZs3H69GmD/b3wwgs4f/48ysvLcf36dSxdurQGnw25izoVEN69exePPPIIPvjgA7NtBg0ahBs3bkg/O3fuNLh/0qRJ2Lx5MzZs2IBDhw6huLgYsbGx0IhzNADEx8fj9OnT2LVrF3bt2oXTp08jMTFRul+j0WDIkCG4e/cuDh06hA0bNuC///0v0tLSpDaFhYUYMGAAwsPDkZmZiWXLlmHhwoVYvHixA18RIiKq83QBIS8nEhGRLerUkNHBgwdj8ODBVbbx8/NDWFiYyfsKCgqwatUqrFu3Dv379wcAfPbZZ2jevDn27t2LgQMH4ty5c9i1axeOHTuGrl27AgA++eQTREdH46effkJERAR2796Ns2fP4urVqwgPDwcALFq0CElJSZg7dy6Cg4ORnp6OsrIyrFmzBn5+fmjXrh0uXLiAxYsXIzU1letJERGRRWTMEBIRkR3qVIbQEgcOHEBoaCgeeughJCcn4+bNm9J9J0+ehEqlQkxMjLQtPDwc7dq1w5EjRwAAR48ehUKhkIJBAOjWrRsUCoVBm3bt2knBIAAMHDgQSqUSJ3UVro4ePYpevXrBz8/PoM3169dx+fJlpzx3IiKqewQGhEREZAePCggHDx6M9PR07N+/H4sWLUJmZib69u0LpVIJAMjNzYWvry9CQkIMfq9JkybIzc2V2oSGhlbad2hoqEGbJk2aGNwfEhICX1/fKtuIt8U2piiVShQWFhr8EBERgXPQiYjIBnVqyGh1Ro4cKf2/Xbt26Ny5M1q0aIEdO3ZgxIgRZn9PEASDIZymhnM6oo1YUKaq4aLz58/HnDlzzN5PRESehRlCIiKyh0dlCI01bdoULVq0wMWLFwEAYWFhKC8vR15enkG7mzdvStm7sLAw/PHHH5X2devWLYM2xlm+vLw8qFSqKtuIw1eNM4f6pk+fjoKCAunn6tWr1jxlIiKqa3QXE1mlmoiIbOHRAeHt27dx9epVNG3aFADQqVMn+Pj4YM+ePVKbGzduICcnB927dwcAREdHo6CgAMePH5fafP/99ygoKDBok5OTgxs3bkhtdu/eDT8/P3Tq1Elqc/DgQYOlKHbv3o3w8HC0bNnSbJ/9/PwQHBxs8ENERB5MHF3i4m4QEZF7qlMBYXFxMU6fPi2twXLp0iWcPn0aV65cQXFxMSZPnoyjR4/i8uXLOHDgAJ588kk0btwYw4cPBwAoFAqMGzcOaWlp2LdvH7KysjB69Gi0b99eqjoaGRmJQYMGITk5GceOHcOxY8eQnJyM2NhYREREAABiYmLQpk0bJCYmIisrC/v27cPkyZORnJwsBXDx8fHw8/NDUlIScnJysHnzZsybN48VRomIyCrMDBIRkT3q1BzCEydOoE+fPtLt1NRUAMDYsWOxYsUKZGdnY+3atcjPz0fTpk3Rp08ffPHFFwgKCpJ+Z8mSJfD29kZcXBxKS0vRr18/rFmzBl5eXlKb9PR0pKSkSNVIhw4darD2oZeXF3bs2IHx48ejR48eCAgIQHx8PBYuXCi1USgU2LNnD15++WV07twZISEhSE1NlfpMRERkEXEdQgaGRERkA5nAbxC3VlhYCIVCgYKCAg4fJSLyQN89/zweX7UK3z3+OB4/eNDV3SFyubKyMly6dAn3338//P39Xd2dGjN79mxs2bJFGinnDGvWrMGkSZOQn5/vkP1V9bfiOW7NqVNDRomIiDyNVGWU13eJiMgGDAiJiIjcGQNBIiKyAwNCIiIid8aAkKjO0Gq1eOedd9CqVSv4+fnhvvvuw9y5cwEA06ZNw0MPPYTAwED87W9/w6xZs6BSqarc33/+8x+0bdsWfn5+aNq0KSZMmFBl+7y8PIwZMwYhISEIDAzE4MGDpeXZ9G3ZsgUPPfQQ/P39MWDAAINl0M6cOYM+ffogKCgIwcHB6NSpE06cOGHDq0E1hQEhERGRO+M6hER1xvTp0/HOO+9g1qxZOHv2LNavXy+tTx0UFIQ1a9bg7NmzeP/99/HJJ59gyZIlZve1YsUKvPzyy/jnP/+J7OxsbNu2Da1atary8ZOSknDixAls27YNR48ehSAIeOKJJwwCz5KSEsydOxeffvopDh8+jMLCQowaNUq6PyEhAc2aNUNmZiZOnjyJV199FT4+Pna+MuRMdarKKBERkaeRAkEGhERuraioCO+//z4++OADjB07FgDwwAMP4LHHHgMAzJw5U2rbsmVLpKWl4YsvvsDUqVNN7u/f//430tLS8Morr0jboqKizD7+xYsXsW3bNhw+fFhaWzs9PR3NmzfHli1b8OyzzwIAVCoVPvjgA3Tt2hUA8OmnnyIyMhLHjx9Hly5dcOXKFUyZMgWtW7cGADz44IO2viRUQ5ghJCIicmcMCInqhHPnzkGpVKJfv34m79+0aRMee+wxhIWFoX79+pg1axauXLlisu3Nmzdx/fp1s/t68cUXUb9+felHfHxvb28p0AOARo0aISIiAufOnZO2eXt7o3PnztLt1q1bo0GDBlKb1NRUPP/88+jfvz/efvtt/PLLL9a9EFTjmCEkIiJyZxwySmSRl75+Cb8X/V5jj3dv0L1YEbvC4vYBAQFm7zt27BhGjRqFOXPmYODAgVAoFNiwYQMWLVpk9b4A4M0338TkyZMNtpn7DBEEATKZzGCb8W39bbNnz0Z8fDx27NiB//3vf3jjjTewYcMGDB8+vMo+keswICQiInJjHDJKZBlrgjNXePDBBxEQEIB9+/bh+eefN7jv8OHDaNGiBWbMmCFt++2338zuKygoCC1btsS+ffvQp0+fSveHhoYiNDTUYFubNm2gVqvx/fffS0NGb9++jQsXLiAyMlJqp1arceLECXTp0gUA8NNPPyE/P18aIgoADz30EB566CH861//wt///nesXr2aAWEtxoCQiIjInXEdQqI6wd/fH9OmTcPUqVPh6+uLHj164NatW/jxxx/RqlUrXLlyBRs2bEBUVBR27NiBzZs3V7m/2bNn48UXX0RoaCgGDx6MoqIiHD58GBMnTjTZ/sEHH8SwYcOQnJyMjz/+GEFBQXj11Vdx7733YtiwYVI7Hx8fTJw4EUuXLoWPjw8mTJiAbt26oUuXLigtLcWUKVPwzDPP4P7778e1a9eQmZmJp59+2qGvFTkW5xASERG5MWnglhgYEpHbmjVrFtLS0vD6668jMjISI0eOxM2bNzFs2DD861//woQJE9ChQwccOXIEs2bNqnJfY8eOxXvvvYfly5ejbdu2iI2NNbmEhL7Vq1ejU6dOiI2NRXR0NARBwM6dOw2qhAYGBmLatGmIj49HdHQ0AgICsGHDBgCAl5cXbt++jTFjxuChhx5CXFwcBg8ejDlz5tj/4pDTyAROOnBrhYWFUCgUKCgoQHBwsKu7Q0RENezAqFHo/cUXyOjUCb241hcRysrKcOnSJdx///3w9/d3dXeoClX9rXiOW3OYISQiInJnHDJKRER2YEBIRETkzsRAkENGiYjIBgwIiYiI3JkuIKxcBJ6IiKh6DAiJiIjcmbgOoYu7QURE7okBIRERkRvjOoRERGQPBoRERETujAEhkUkspF/78W9UOzAgJCIicmfiHEKeWBEBqFgLDwDKy8td3BOqTklJCQAYrHNINc/b1R0gIiIiOzBDSGTA29sbgYGBuHXrFnx8fCCXM/9R2wiCgJKSEty8eRMNGjSQgnhyDQaERERE7owBIZEBmUyGpk2b4tKlS/jtt99c3R2qQoMGDRAWFubqbng8BoRERETujAEhUSW+vr548MEHOWy0FvPx8WFmsJZgQEhEROTOGAgSmSSXy+Hv7+/qbhDVehxUTURE5M4YEBIRkR0YEBIREbkzDhklIiI7MCAkIiJyZ1x2goiI7MCAkIiIyJ0xQ0hERHaoUwHhwYMH8eSTTyI8PBwymQxbtmyR7lOpVJg2bRrat2+PevXqITw8HGPGjMH169cN9tG7d2/IZDKDn1GjRhm0ycvLQ2JiIhQKBRQKBRITE5Gfn2/Q5sqVK3jyySdRr149NG7cGCkpKZUqXWVnZ6NXr14ICAjAvffeizfffBMCv9CJiMgaDAiJiMgOdSogvHv3Lh555BF88MEHle4rKSnBqVOnMGvWLJw6dQpfffUVLly4gKFDh1Zqm5ycjBs3bkg/H3/8scH98fHxOH36NHbt2oVdu3bh9OnTSExMlO7XaDQYMmQI7t69i0OHDmHDhg3473//i7S0NKlNYWEhBgwYgPDwcGRmZmLZsmVYuHAhFi9e7MBXhIiI6jpeSCQiInvUqWUnBg8ejMGDB5u8T6FQYM+ePQbbli1bhi5duuDKlSu47777pO2BgYFmF8k8d+4cdu3ahWPHjqFr164AgE8++QTR0dH46aefEBERgd27d+Ps2bO4evUqwsPDAQCLFi1CUlIS5s6di+DgYKSnp6OsrAxr1qyBn58f2rVrhwsXLmDx4sVITU2FTCZzxEtCRER1HTOERERkhzqVIbRWQUEBZDIZGjRoYLA9PT0djRs3Rtu2bTF58mQUFRVJ9x09ehQKhUIKBgGgW7duUCgUOHLkiNSmXbt2UjAIAAMHDoRSqcTJkyelNr169YKfn59Bm+vXr+Py5ctOeLZERFQniUVlXNwNIiJyT3UqQ2iNsrIyvPrqq4iPj0dwcLC0PSEhAffffz/CwsKQk5OD6dOn48yZM1J2MTc3F6GhoZX2FxoaitzcXKlNkyZNDO4PCQmBr6+vQZuWLVsatBF/Jzc3F/fff7/JfiuVSiiVSul2YWGhlc+ciIjqEikQZIaQiIhs4JEBoUqlwqhRo6DVarF8+XKD+5KTk6X/t2vXDg8++CA6d+6MU6dO4dFHHwUAk8M5BUEw2G5LG3EeSFXDRefPn485c+ZU9fSIiMiTcMgoERHZweOGjKpUKsTFxeHSpUvYs2ePQXbQlEcffRQ+Pj64ePEiACAsLAx//PFHpXa3bt2SMnxhYWFSJlCUl5cHlUpVZZubN28CQKXsor7p06ejoKBA+rl69Wo1z5iIiOo0BoJERGQHjwoIxWDw4sWL2Lt3Lxo1alTt7/z4449QqVRo2rQpACA6OhoFBQU4fvy41Ob7779HQUEBunfvLrXJycnBjRs3pDa7d++Gn58fOnXqJLU5ePCgwVIUu3fvRnh4eKWhpPr8/PwQHBxs8ENERB6MC9MTEZEd6lRAWFxcjNOnT+P06dMAgEuXLuH06dO4cuUK1Go1nnnmGZw4cQLp6enQaDTIzc1Fbm6uFJT98ssvePPNN3HixAlcvnwZO3fuxLPPPouOHTuiR48eAIDIyEgMGjQIycnJOHbsGI4dO4bk5GTExsYiIiICABATE4M2bdogMTERWVlZ2LdvHyZPnozk5GQpgIuPj4efnx+SkpKQk5ODzZs3Y968eawwSkRE1uGQUSIiskOdCghPnDiBjh07omPHjgCA1NRUdOzYEa+//jquXbuGbdu24dq1a+jQoQOaNm0q/YjVQX19fbFv3z4MHDgQERERSElJQUxMDPbu3QsvLy/pcdLT09G+fXvExMQgJiYGDz/8MNatWyfd7+XlhR07dsDf3x89evRAXFwcnnrqKSxcuFBqIy6Dce3aNXTu3Bnjx49HamoqUlNTa+jVIiKiOoEBIRER2UEmcEVbt1ZYWAiFQoGCggIOHyUi8kDf9uyJPt99h8MtW6LHpUuu7g4RkUPwHLfm1KkMIRERkcfhdV0iIrIDA0IiIiI3JrCoDBER2YEBIRERkTvjHEIiIrIDA0IiIiIiIiIPxYCQiIjIjck4ZJSIiOzAgJCIiMidccgoERHZgQEhERGRO2MgSEREdmBASERE5M6YISQiIjswICQiInJn4hxCF3eDiIjcEwNCIiIid8YMIRER2YEBIRERkTtjIEhERHZgQEhERFQHcNkJIiKyBQNCIiIid8Yho0REZAcGhERERO6MgSAREdmBASEREZEbY3VRIiKyBwNCIiIid8Yho0REZAcGhERERO6M6xASEZEdGBASERG5MzEgZIaQiIhswICQiIjInXHIKBER2YEBIRERERERkYdiQEhEROTOOGSUiIjswICQiIjIjYmBIMNBIiKyBQNCIiIid8YMIRER2YEBIRERkRtjGEhERPZgQEhEROTOuA4hERHZgQEhERGRG5NxyCgREdmBASEREREREZGHqlMB4cGDB/Hkk08iPDwcMpkMW7ZsMbhfEATMnj0b4eHhCAgIQO/evfHjjz8atFEqlZg4cSIaN26MevXqYejQobh27ZpBm7y8PCQmJkKhUEChUCAxMRH5+fkGba5cuYInn3wS9erVQ+PGjZGSkoLy8nKDNtnZ2ejVqxcCAgJw77334s0334TAK7xERGQNLkxPRER2qFMB4d27d/HII4/ggw8+MHn/u+++i8WLF+ODDz5AZmYmwsLCMGDAABQVFUltJk2ahM2bN2PDhg04dOgQiouLERsbC41GI7WJj4/H6dOnsWvXLuzatQunT59GYmKidL9Go8GQIUNw9+5dHDp0CBs2bMB///tfpKWlSW0KCwsxYMAAhIeHIzMzE8uWLcPChQuxePFiJ7wyRERUV3HIKBER2UWoowAImzdvlm5rtVohLCxMePvtt6VtZWVlgkKhED766CNBEAQhPz9f8PHxETZs2CC1+f333wW5XC7s2rVLEARBOHv2rABAOHbsmNTm6NGjAgDh/PnzgiAIws6dOwW5XC78/vvvUpvPP/9c8PPzEwoKCgRBEITly5cLCoVCKCsrk9rMnz9fCA8PF7RarcXPs6CgQAAg7ZeIiDxLxoMPCgIgnGrQwNVdISJyGJ7j1pw6lSGsyqVLl5Cbm4uYmBhpm5+fH3r16oUjR44AAE6ePAmVSmXQJjw8HO3atZPaHD16FAqFAl27dpXadOvWDQqFwqBNu3btEB4eLrUZOHAglEolTp48KbXp1asX/Pz8DNpcv34dly9fNvs8lEolCgsLDX6IiIiIiIhs4TEBYW5uLgCgSZMmBtubNGki3ZebmwtfX1+EhIRU2SY0NLTS/kNDQw3aGD9OSEgIfH19q2wj3hbbmDJ//nxp7qJCoUDz5s2rfuJERFS3ccgoERHZwWMCQpFMZrhSkyAIlbYZM25jqr0j2gjil3oV/Zk+fToKCgqkn6tXr1bZdyIiqtsYCBIRkT08JiAMCwsDUDn7dvPmTSkzFxYWhvLycuTl5VXZ5o8//qi0/1u3bhm0MX6cvLw8qFSqKtvcvHkTQOUspj4/Pz8EBwcb/BARkQdjhpCIiOzgMQHh/fffj7CwMOzZs0faVl5ejoyMDHTv3h0A0KlTJ/j4+Bi0uXHjBnJycqQ20dHRKCgowPHjx6U233//PQoKCgza5OTk4MaNG1Kb3bt3w8/PD506dZLaHDx40GApit27dyM8PBwtW7Z0/AtARERERERkpE4FhMXFxTh9+jROnz4NoKKQzOnTp3HlyhXIZDJMmjQJ8+bNw+bNm5GTk4OkpCQEBgYiPj4eAKBQKDBu3DikpaVh3759yMrKwujRo9G+fXv0798fABAZGYlBgwYhOTkZx44dw7Fjx5CcnIzY2FhEREQAAGJiYtCmTRskJiYiKysL+/btw+TJk5GcnCxl9OLj4+Hn54ekpCTk5ORg8+bNmDdvHlJTU6sdwkpERGSM3xxERGQLb1d3wJFOnDiBPn36SLdTU1MBAGPHjsWaNWswdepUlJaWYvz48cjLy0PXrl2xe/duBAUFSb+zZMkSeHt7Iy4uDqWlpejXrx/WrFkDLy8vqU16ejpSUlKkaqRDhw41WPvQy8sLO3bswPjx49GjRw8EBAQgPj4eCxculNooFArs2bMHL7/8Mjp37oyQkBCkpqZKfSYiIrIIF6YnIiI7yASB3yDurLCwEAqFAgUFBZxPSETkgQ7dfz8eu3wZPwQF4WEuRUREdQTPcWtOnRoySkRE5HFYVIaIiOzAgJCIiIiIiMhDMSAkIiJyYzJmCImIyA4MCImIiNyZGBC6uBtEROSeGBASEZHTJCQkuLoLREREVIU6tewEERG5xtSpUyttEwQBR44ccUFvPAuHihIRkT0YEBIRkd3S09Oxfv36Stu//fZbF/TGw3AOIRER2YEBIRER2e25555DZGQkQkNDDbaPGTPGRT0iIiIiS3BhejfHRTuJiDzbkWbN0P3333EuIACRJSWu7g4RkUPwHLfmsKgMERGRG+NQUSIisgcDQiIiInfGZSeIiMgODAiJiIjqAGYKiYjIFgwIiYjIbl9++SU6duyI0aNH49NPP0VERASioqKwbds2V3etzmMgSERE9mCVUSIistuiRYtw+PBhFBUVoUOHDjh//jz8/f3Rv39/DB061NXdq9sYEBIRkR0YEBIRkd0CAgIQGBiIwMBA9OvXDwqFAgDg7c2vmZrCOYRERGQLDhklIiK7dejQARqNBgDw2WefAQDKy8vRqFEjV3bLI8i4MD0REdmBl26JiMhu7733XqVtvr6+2LRpU813hoiIiCzGDCEREZEbk3HZCSIisgMDQiIiojqAQ0aJiMgWDAiJiMhpcnNzXd0FIiIiqgIDQiIicpoxY8a4ugt1HzODRERkBxaVISIiu3Xp0qXSNkEQcPHiRRf0xrNwDmHdlpWVhVmzZsHHxwdTpkxB9+7dAQDjxo3DqlWrXNw7IqoLGBASEZHdioqKkJ2dXWndwQEDBrioR56HcwjrppSUFKxevRre3t6YMmUKjh07htTUVPz666+u7hoR1REcMkpERHabN28eioqKKm2fOXOmC3rjWRgI1m0ymQytWrVCy5YtsXHjRhQWFiI5ORlqtdrVXSOiOoIBIRGRhRISElzdhVpr+PDhCAkJkW6fP38eANCrVy9XdcnjcMho3RQaGorLly9Lt2fPno1evXohMzPTdZ0iojpFJgi8tOjOCgsLoVAoUFBQgODgYFd3h6hOmDp1aqVtgiBg06ZNuHTpkgt65H769u2L/fv3u7obHuFkw4bolJeH37y90UKlcnV3iIgcgue4NcfjMoQtW7aETCar9PPyyy8DAJKSkird161bN4N9KJVKTJw4EY0bN0a9evUwdOhQXLt2zaBNXl4eEhMToVAooFAokJiYiPz8fIM2V65cwZNPPol69eqhcePGSElJQXl5uVOfPxFVLz09HUOGDDH4iY2NRaNGjVzdNbfh4+Pj6i4QERGRBTyuqExmZiY0Go10OycnBwMGDMCzzz4rbRs0aBBWr14t3fb19TXYx6RJk7B9+3Zs2LABjRo1QlpaGmJjY3Hy5El4eXkBAOLj43Ht2jXs2rULAPDPf/4TiYmJ2L59OwBAo9FgyJAhuOeee3Do0CHcvn0bY8eOhSAIWLZsmdOePxFV77nnnkNkZCRCQ0MNtnMJBct98803ru6Cx2CVUSIisofHDxmdNGkSvv76a1y8eBEymQxJSUnIz8/Hli1bTLYvKCjAPffcg3Xr1mHkyJEAgOvXr6N58+bYuXMnBg4ciHPnzqFNmzY4duwYunbtCgA4duwYoqOjcf78eUREROB///sfYmNjcfXqVYSHhwMANmzYgKSkJNy8edPi1DjT6UREnu1USAgezc/HFW9v3Mcho0RUR/Act+Z43JBRfeXl5fjss8/w3HPPQSb769rqgQMHEBoaioceegjJycm4efOmdN/JkyehUqkQExMjbQsPD0e7du1w5MgRAMDRo0ehUCikYBAAunXrBoVCYdCmXbt2UjAIAAMHDoRSqcTJkyfN9lmpVKKwsNDgh4iIPBczhJ5J/zyEiMgeHjdkVN+WLVuQn5+PpKQkadvgwYPx7LPPokWLFrh06RJmzZqFvn374uTJk/Dz80Nubi58fX0NqukBQJMmTZCbmwsAyM3NrTTUDKioFKbfpkmTJgb3h4SEwNfXV2pjyvz58zFnzhxbnzIREdVRXH6iboqLi6u0TRAEZGdnu6A3RFQXeXRAuGrVKgwePNggSycOAwWAdu3aoXPnzmjRogV27NiBESNGmN2XIAgGWUb9/9vTxtj06dORmpoq3S4sLETz5s3NticiIiL3lZmZif3790Mu/2tQlyAISExMdGGviKgu8dgho7/99hv27t2L559/vsp2TZs2RYsWLXDx4kUAQFhYGMrLy5GXl2fQ7ubNm1LGLywsDH/88Uelfd26dcugjXEmMC8vDyqVqlLmUJ+fnx+Cg4MNfojIsfbs2YOuXbuie/fu2LBhg7R9yJAhLuwVkWkcMlq3TZkyBUFBQWjRooX007JlS0yYMMHVXSOiOsJjA8LVq1cjNDS02hO827dv4+rVq2jatCkAoFOnTvDx8cGePXukNjdu3EBOTg66d+8OAIiOjkZBQQGOHz8utfn+++9RUFBg0CYnJwc3btyQ2uzevRt+fn7o1KmTw54nEVnvjTfewDfffIO9e/fi+PHjmDhxIrRaLUpKSlzdNZfLyspCbGwshg8fLs2JBoBx48a5sFcEMCCsq8aPH4/GjRtX2q4/oomIyB4eOWRUq9Vi9erVGDt2LLy9/3oJiouLMXv2bDz99NNo2rQpLl++jNdeew2NGzfG8OHDAQAKhQLjxo1DWloaGjVqhIYNG2Ly5Mlo3749+vfvDwCIjIzEoEGDkJycjI8//hhAxbITsbGxiIiIAFAxGbxNmzZITEzEggULcOfOHUyePBnJycnM+hG5mJeXFxo0aAAAWLx4MdasWYNhw4ahuLjYtR2rBVJSUrB69Wp4e3tjypQpOHbsGFJTU/Hrr7+6umseS8oQcg4hERHZwCMzhHv37sWVK1fw3HPPGWz38vJCdnY2hg0bhoceeghjx47FQw89hKNHjyIoKEhqt2TJEjz11FOIi4tDjx49EBgYiO3bt0trEAIVC1u3b98eMTExiImJwcMPP4x169YZPNaOHTvg7++PHj16IC4uDk899RQWLlzo/BeAiCRqtbrStg4dOuDy5cvS7aSkJKSmpqKoqKgGe1Y7yWQytGrVCi1btsTGjRtRWFiI5ORkk68jERER1X4evw6hu+MaLUTWy87OxrRp05Cfnw9vb2+oVCo0btwY8+bNQ/v27V3dvVrtmWeewcKFC9GyZUtp22effYbnn38eZWVlruuYB/shKAgPFxfjhlyOphqNq7tDNaSoqMjgYjVRXcNz3JrDgNDN8WAhst7jjz+O9evXG1TovXLlChISEvDdd9+5sGdE1hMDwly5HGEMCOuctWvXYsGCBfDx8UFcXBxeffVVAEDfvn2xf/9+F/eOyHl4jltzPHLIKBF5No1GA4VCYbAtODgYGp5MkxtildG6bcWKFTh16hROnTqFwMBAPPPMMygpKQGv5xORo3hkURki8mxvv/02YmNj4evri+DgYBQUFECtVuOdd96p8vdyc3MRFhZWQ70ksozM6F+qW+RyOXx8fABUFHWKjIzE4MGDcefOHRf3jIjqCgaERORxevbsiYMHD6K0tBT5+fkICQmBv79/tb83ZswY7N69uwZ6SGQ9T6gympWVhVmzZsHHxwdTpkyRlnIaN24cVq1a5eLeOceQIUNw+fJlad7ugAEDEB4ejrS0NNd2jIjqDAaEROSxAgICEBAQUGl7ly5dKm0TBAEXL16siW65pZiYGAbLLuIJgaDIE5c9ee211wxunz9/Hm3btsWuXbtc1CMiqmsYEBIRGSkqKkJ2drbBOqVAxZV5TxcXF1dpmyAIyM7OdkFvSJ8nDBkVlz0BgI0bN2L27Nket+zJ+PHjWUyGiByKASERkZF58+ahqKgIISEhBttnzpzpoh7VHpmZmdi/fz/k8r9qkgmCgMTERBf2ijxFaGiowfDJ2bNn47PPPjNY57euE+cTEhE5CpedcHMsyUtkvT179mDmzJnw8vJCSkoKRo0aBaBirs6OHTsqtT9//jxat25d092slZYvX464uDg0btzYYPsXX3yBkSNHuqhXnu1sYCDalJbitkyGRlqtq7tDROQQPMetOVx2gog8zhtvvIFvvvkGe/fuxfHjxzFx4kRotVqUlJSYbD9+/Pga7mHtNX78+ErBIAAGg7WAJwwZJSIix2NASEQex8vLCw0aNEBgYCAWL16MTp06YdiwYSguLjbZnkO0qDbjshNERGQPBoRE5HE6dOiAy5cvS7eTkpKQmpqKoqIik+2/+eabGuoZkfU8fWH6rKwsV3eBiMitcQ6hm+P4aqqtEhISkJ6e7upuOI5MhoIxY6D49FNX96RWys3NRVhYmKu74ZHOBwSgdVkZCgAo6vhX+vLlyw1uC4KAFStWYPz48RzaTVTH8By35rDKKBHZZerUqZW2CYKAI0eOuKA3zqVYuxZgQGjSmDFjuA6hi3hSZvDDDz9EixYtEBcXB5ms4pnL5XLUr1/fxT0jInJfDAiJyC7p6elYv359pe3ffvutC3pDztalS5dK2wRBwMWLF13QGwI8a2H6nJwcfP7559i4cSPi4uIwcuRIfPHFFxgzZoyru0ZE5LYYEBKRXZ577jlERkYiNDTUYLs7nqBx2GP1ioqKkJ2dDW9vw6+PAQMGuKhHnkGtVld6zY15QqZQJpMhPj4eo0aNQnp6OoYOHYo///zT1d0iInJrLCpDRHZ56623KgWDAJCSkuKC3tinJoPYrKwsxMbGYvjw4QbDa8eNG1djfbDFvHnzTBbfmTlzpgt6U7dlZ2fjiSeeQPfu3dG3b19ER0fjySefRHZ2tkE7T6wyKpfLkZiYiG3btmHLli2u7o5N3PUzgIjqHmYIicjj1IZhjykpKVi9ejW8vb0xZcoUHDt2DKmpqfj1119rrA+2GD58uMHt8+fPo3Xr1ujVq5eLelR3jR8/HuvXr0fz5s2lbVeuXEFCQgK+++67Su09KSAUyeVyhIeHu7obNnHXzwAiqnuYISQij1NUVIQjR47g+PHj0k9mZiaioqJqrA8ymQytWrVCy5YtsXHjRhQWFiI5ORlqtbrG+uAIrOzoPBqNBgqFwmBbcHAwNBqNwTZPX3bCXdWVzwAicn/MEBKRxxGHPYaEhBhsr8lhj6Ghobh8+TJatmwJAJg9ezY+++wzrFu3rsb64Ag+Pj6u7kKd9fbbbyM2Nha+vr4IDg5GQUEB1Go13nnnnUptNfCcgFCpVOLHH3/EnTt30LBhQ7Rr1w6+vr6u7pbV6spnABG5P65D6Oa4RgvVVjExMe61DMGtW8A995i/X1fiHvzIpBpWWlqK/Px8hISEwN/fv9L9v/j54b7ycqgBBNTx9+e6deuwYsUKREVFITg4GPn5+Th16hReeukljB492tXdIyIH4jluzWGGkIjsEhcXV2mbIAiVCl/UasePA127AgcOAJwLR7VMQEAAAgICzDcQBAjwjAzhxx9/jEOHDkEu/2vGi1qtRu/evRkQEhHZiAEhEdklMzMT+/fvNzhBEwQBiYmJLuyVle7cqfh3zx4GhOR2ZPCcIaMBAQHIyMhAnz59AFR81mRkZJjMnBIRkWVYVIaI7DJlyhQEBQWhRYsW0k/Lli0xYcIEV3fNckFBFf/evFnjD33nzh38/PPPuCMGpRZguXrPlZWVVWmbXBA8JiBct24dtm7dih49eqBbt27o2bMnvv76a3z22Wc11gdHF32x5jOABWeIyBmYISQiu5irMjly5Mga7ontfvzhB7QFcPPWLVReURFOmTe4b98+vP7662jcuLE0FyovLw9z5sxBv379qvxddyhXv3fvXgwYMAB5eXlo0KCBq7vjlpYvX25wWxAErFixAuPHjzc47mQAtPCMgDAsLAzvvfdejT9udnY2pk2bhvz8fHh7e0OlUqFx48aYN28e2rdvb9M+Lf0McMZjExHpY0BIRB7v2m+/oS2AW2YCQq1a7fDhFK+//jp27dqFIDE7iYoJ9IMHD642IBTL1QPAxo0bMXv27FpXrn79+vUAgOvXrzMgtNGHH36IFi1aIC4uDjJdUSO5XI769esbtJMBEGQyafkJj7NiBdCzJ9C2rdMewto1IS1h6WeAMx6biEgfh4wSkccL0JWsV5kJqDTl5Q5/TLlcjlu3bhlsu3XrlsFcTHPEcvWi2bNno1evXsjMzHR0N23mVVqK8QC8LHg+ZFpOTg5Gjx6NrVu3wtfXF4mJiWjWrBnGjBlj0E7mQUNGTRo/HqoePZz6EJauCWkNSz8DnPHYVHdkZGSgf//+SE1Nxe7du9GxY0f07t0bR48edXXXyI14VIZw9uzZmDNnjsG2Jk2aIDc3F0DFcJw5c+Zg5cqVyMvLQ9euXfHhhx+ird5VR6VSicmTJ+Pzzz9HaWkp+vXrh+XLl6NZs2ZSm7y8PKSkpGDbtm0AgKFDh2LZsmUGV8mvXLmCl19+Gfv370dAQADi4+OxcOFCt1xLiciU3NxchIWFubobFrEkIHT0ansrV65EWloacnNzIQgCZDIZmjZtipUrV1b7u5s2baq0bfTo0bWqyuLwrCw8AeC3S5eA1q1d3R23JJPJEB8fj1GjRiE9PR1Dhw7Fn3/+WbkdPGfIqDl3CwrQwIn7t2ZNSEtZ+hngjMemumPatGnYuHEj8vPzERMTg8zMTAQGBmLEiBE4cOCAq7tHbsKjAkIAaNu2Lfbu3Svd9vLykv7/7rvvYvHixVizZg0eeugh/Pvf/8aAAQPw008/SUM6Jk2ahO3bt2PDhg1o1KgR0tLSEBsbi5MnT0r7io+Px7Vr17Br1y4AwD//+U8kJiZi+/btACqu9g0ZMgT33HMPDh06hNu3b2Ps2LEQBAHLli2rqZeCyKnGjBnjNusQ+uiuyKvMXHF3RoYwMjISmzdvdvh+aws/8TWrRcNY3ZVcLkdiYiISEhKkC5gG9wPQevKQUVQ8f2fq2bMnDh48WO2akNaw9DPAGY9NdYe/vz+aN2+O5s2bIzIyUkpQ6J/fElXH4wJCb29vk1kLQRDw3nvvYcaMGRgxYgQA4NNPP0WTJk2wfv16vPDCCygoKMCqVauwbt069O/fHwDw2WefoXnz5ti7dy8GDhyIc+fOYdeuXTh27Bi6du0KAPjkk08QHR2Nn376CREREdi9ezfOnj2Lq1evIjw8HACwaNEiJCUlYe7cuVx8k9xKly5dKm0TBAEXL150QW9sI+iCFm0NBoR1nVYXnHBYm+PI5XLpO8OAIEBb892pFdRKJbzh/IBQVO2akHX0san2CgsLg0ajgZeXF/bv3w+gohqtVuupnwpkC4+b3HHx4kWEh4fj/vvvx6hRo6SqfJcuXUJubi5iYmKktn5+fujVq5dU1v3kyZNQqVQGbcLDw9GuXTupzdGjR6FQKKRgEAC6desGhUJh0KZdu3YGX+wDBw6EUqnEyZMnnffkiZygqKgIR44cwfHjx6WfzMxMREVFubprFhMDQsHMSaVWparJ7tQJAgPCGiNHxXvX477QAZTm5wOAxwbERBs2bKiUDfT29saePXtc1CNyRx71/dG1a1esXbsW33zzDT755BPk5uaie/fuuH37tjQMp0mTJga/oz/HMDc3F76+vggJCamyTWho5TqFoaGhBm2MHyckJAS+vr4mhwPpUyqVKCwsNPghcqV58+ahqKio0vaZM2e6oDe2EaoZ1uisDKFSqcSpU6ewd+9enDp1CuV2Po7+xSpXkzKEHDLqcMbfE+IcQuCvQNxTSAGhjRlCawtyGK8Z6IzKvqY+T0XXr1/HgQMHDIpKEZni7e1xgwDJDh71bhk8eLD0//bt2yM6OhoPPPAAPv30U3Tr1g0ApNLeInGid1WM25hqb0sbU+bPn1+pMA6RKw0fPtzg9vnz59G6dWv06tXLRT2ynqDLAJrLEFYXMNpi3bp1WLFiBaKioqQ1yE6dOoWXXnqp2uIwcXFxlfsoCMjOznZ4P20lDldihtDxjOfnygUBWrEypSAg6/RpzJo1Cz4+PpgyZQq6d+8OABg3bhxWrVrlii47TVlBAQDbA0JLC3Lorxmo0Whw/PhxlJWVoWXLlqhXr55N6wKuXbsWCxYsgI+PD+Li4vDqq68CAIYNGyYN/QOAESNG4KuvvsLKlSuxfv16dO/eHWfOnEH37t0xY8YMm543OVZGRgbeeustPPzwwxg0aBCmTZsGhUKB+fPnIzo62tXdI6qWRwWExurVq4f27dvj4sWLeOqppwBUXHlt2rSp1ObmzZtSNi8sLAzl5eXIy8szyBLevHlT+sINCwvDH3/8Uemxbt26ZbCf77//3uD+vLw8qFSqSplDY9OnT0dqaqp0u7Cw0GBtIiJXGz9+vMHJjDtwRYbw448/xqFDhwxKzKvVavTu3bvagDAzMxP79+83+F1BEJCYmOjwftpKyhByuK3NrJmfK+YFBa0WKSkpWL16Nby9vTFlyhQcO3YMqamp0hSJukSpGyVja0BoaUEO/TUDH3/8cZw8eRIKhQKDBw/G4cOHbVoXcMWKFTh16hR8fHywdOlSPPPMM1i7dm2lLK84Eujzzz83OO4ff/xxBoS1BCt9krvzqCGjxpRKJc6dO4emTZvi/vvvR1hYmMGY6/LycmRkZEjBXqdOneDj42PQ5saNG8jJyZHaREdHo6CgAMePH5fafP/99ygoKDBok5OTgxs3bkhtdu/eDT8/P3Tq1KnKPvv5+SE4ONjghzxDQkKCq7tgER8fRy/Q4HxaF8whDAgIQEZGhnRbEARkZGRYVD1wypQpCAoKQosWLaSfli1bYsKECQ7vp704/9J2ls7PlQPQ6N67glYLmUyGVq1aoWXLlti4cSMKCwuRnJzslOGNrqYpKan418aAUCzIAaDKghz6awaK6wLqrxloy7qAcrlc+rxMSUnBCy+8gMGDB1daWqRVq1b4+uuvERUVhe3bt6OoqAgHDx40WNCeXEu8sNC+fXvpwkLDhg1rpNLnnj170LVrV3Tv3h3z589HbGwshg8fLp1zAhWjA4iq4lEZwsmTJ+PJJ5/Efffdh5s3b+Lf//43CgsLMXbsWMhkMkyaNAnz5s3Dgw8+iAcffBDz5s1DYGAg4uPjAQAKhQLjxo1DWloaGjVqhIYNG2Ly5Mlo3769VHU0MjISgwYNQnJyMj7++GMAFctOxMbGIiIiAkDFPJ82bdogMTERCxYswJ07dzB58mQkJyczwCNMnTq10jZBEKSiRLXdN9984+ouWK+aE2VnBDXr1q3D22+/jZkzZ0Kj0cDHxwedO3fGZ599Vu3vjh8/3uT2kSNHOrqbttOdKGtZodVm4vxc43nrxvNzZfjrYoag1SI0NBSXL19Gy5YtAVSswfvZZ59h3bp1NdHtGiUolQBsLyqzYcOGSttMFeTQXzOwoKAAzZo1g7+/Px555BH069fPpnUBhwwZYvB3GjBgAMLDw5GWlmbQbunSpVi2bBmysrKwbds2hISEoEePHlizZo1Vj0fO48pKn2+88Qa++eYb+Pr64sEHH0Tfvn0xZ84cdOvWDYsXL66zowPIwQQPMnLkSKFp06aCj4+PEB4eLowYMUL48ccfpfu1Wq3wxhtvCGFhYYKfn5/Qs2dPITs722AfpaWlwoQJE4SGDRsKAQEBQmxsrHDlyhWDNrdv3xYSEhKEoKAgISgoSEhISBDy8vIM2vz222/CkCFDhICAAKFhw4bChAkThLKyMqufU0FBgQBAKCgosPp3qXYKDw8XDhw4UOmnU6dOru6a5RYuFIScHFf3wmJHn39eEADhQIcOJu//bd8+QQAqfsgiXzdvLgiAkLlkiau7UrfcvVtpU55MJlz08xMEQCgvKXFBp1znx/XrBQEQfvX1rfHHLikpEa5fvy6UlpY6ZH/nzp1zyH6o9lCpVE5/jMcee0z6/+OPPy6sXr1aiI2NFTp37iy88cYbwvPPP2/Qxp3wHLfm8OzGzfFgqXtmzpwp/PHHH5W2v//++y7ojQ00morAKSLC1T2x2JGkpCoDwkvffOP8gDA1VRB693be/muYGBAef+cdV3el7rh4seI9uGuXweY8QLigCwiVxcUu6pxrZH/6qSAAwiUfH1d3xWrx8fEGt/v06eOUxzl16pQwZMgQ4amnnhIOHz4sbX/uueec8nju1h93N2HCBOHSpUuCIAjC008/LVy6dEnYv3+/EKH7Dl63bp3g5+fnwh7ajue4NcejhowSuYO33nrL5PaUlJQa7omNdPNfNPXrw/mzJxxD0M39MTcLqUbmwS1ebFVzpVKJH3/8EXfu3EHDhg3Rrl07+Pr6Wvz7WVlZzq1EqRvCyCGjDnTtWsW/334LDBwobZbjr6IqgoctRu0Oc1QtnQbgrPnXta3IUG3rjzvLyMjAuXPnsHTpUgwaNAi//PILkpKSMH/+fJw/fx4AMHr06GoLlRExICQihyq5dAmBAM7duoV2ru6MpXRzCOVmTqZr20mnPUtWiJx9UiZjQOhwSh8f+AEovXULAXrbjecQehKxQrBtJWXMi4mJMVjaw5yioiLUr1+/yiWj0tPTsX79+krbv/32W4PbVc2/tucCkFhkCAA2btyI2bNnu7TIUG3rj7NkZWWhY8eOTn0MVjclR2FASEQOdfWXXxABoERX7MEdSMtOmFnUu7YFhPYsWSGqqZMyoZa9du7s5OnT6A7gpxMn0EFvu36GEIKAL7/8EvPnz0fbtm0xYMAAzJs3D8HBwZg1axaGDh1a8x13IvHYlJk5dqtj6Zqe+msGNm3aFDt27MAPP/yAxx9/HG3atEF5eTkWLVqE3r17V9rfc889h8jISISGhhpsHzNmjEV9NHkB6Pvv8VJKikXHe20rMlTb+uMIy5cvN7gtCAJWrFiB8ePHmy0C5giWLptijtNHipDbYEBIRA4lBU82loF3BSkgNFM2vrYFhOKSFX369AFg3ZIVImeflAnMEDpcgG5Ioby01GC78ZDRRYsW4fDhwygqKkKHDh1w/vx5+Pv7o3///nUuIKxuDdHqWLqmp/6agQ899BCeeeYZ5Ofno3Xr1jh69Chu3ryJ4cOH4/Dhw5Uew95pAMYXgM69+SYezMzEYwsWWBQQbtq0qdI2Vw4jrG39cYQPP/wQLVq0QFxcnJQtlsvlqF+/vlMft6rqpkVFRQgKCqoyU+mokSLXr19HeHh4te0yMjLw1ltv4eGHH8agQYMwbdo0KBQKzJ8/H9HR0VY9JjmWR69DSFQb6a8ppF8SfciQIS7sleU0bpQZlIiBoBsNGd26dSt69OiBbt26oWfPnvj6668tWrJCtGnTJikYFI0ePRplZWWO7aydJ+zusv5mTfD3rriGqzF6nxoPGQ0ICEBgYCCaNGmCfv36QaFQwM/PD97ede8asL1DRi1d01N/zcCQkBAMHjwYmZmZKNGtgxgaGmoQVDqS8Zql17ZuRQYAmTt+1tZROTk5GD16NLZu3QpfX18kJiaiWbNmFmeBbbVhwwakp6ejffv2ePTRRzFs2DCsXLkSI0aMQOfOnfHhhx8iMTGxUgZTZMuapTt37jT42bFjB4YNG4adO3dW299p06Zh9erV+Mc//oGxY8di+/bt+OqrrzB9+nSbXwNyjLr37UDk5vTXFJo5cyYOHz6M999/XzrxqO1qW/BkEbGojJmA0N4shKOFhYXhvffec3U3qiSeoFv62rn7+ps1QaZ7n6qNMtnGGcIOHTpIWQPxIkF5eTkaNWpUo/2tCeLnjW0DRi1f01N/zcA2bdrg0KFD6Nu3LwoLCwFUzCVs2LChjb2o2ksvvYSxY8dCrVYjODgYv124gEYAXtcrLESuJZPJEB8fj1GjRiE9PR1Dhw7Fn7oCa86mn71u2rQpvv/+e8yZM0fKUFaVqbRlpEhSUhI6d+6Mbt26QdAN1c7Pz8eJEyfwxBNPVNlXe4e4kvMwICSqZby8vNCgQQMAwOLFi7FmzRoMGzYMxcXFru2YhdxxzphQTYawtgWEpmRt3YqOw4a5uhuVWPraWVp4w5OJw2+NA0KDDKEgmLxY4Ovra3KonrurqWPztddek/6/evXqSvcHBQVh69atTnnsd999F4cPH5YKhyx/8EEMu3ABg3ftwj+d8ojWSUhIQHp6us2/LwhClUV53IlcLkdiYiISEhKQm5tbY48pZq+vX7+O1157DTNmzEBAQAASExPxxRdfmM1UWjp8V39I6KVLl7B06VJkZ2dj4sSJiI6Oxvfff4/XX3+92r5WNcSVXItDRolqmQ4dOuDy5cvS7aSkJKSmpqKoqMh1nbKCeNJq6xV7lxBPKmvDkFEz8xir8v2yZej41FM4NmeO1b97584d/Pzzz7hz547Vv1sVqciHhc9HLLzRq1cvgx9nD7lyB+KwWXPHlhyQ5ux6apVRR8vKykJsbCyGDx9ukKUeN26c1fuydxqAmFVp3749IiMj0QBAQ1g+TPbLL79Ex44dMXr0aHz66aeIiIhAVFQUtm3bZtXzmDp1aqWfKVOmWJ3FX7RoEQDghx9+QHR0NLp3745OnTq5vCqmI4eny+Vyi+bUOYKYvQYqMpXz58/Ht99+i5CQEJsyldUNCa1Xrx6mT5+Ojz/+GPv27UNcXBzy8/Mt2veGDRsqZQO9vb2xZ88eq/pIjscMIVEts2zZskrb+vTpI60pVNvZO4TLJWrTkFGlEggMtOpXSm7dAgB4f/st8MYbFv3Ovn378Prrr6Nx48ZS5cK8vDzMmTMH/fr1s7rbxsS/v2BhQOj26286QHXDZsWA0DgQ4LITjvfiiy8iPT3dIcuy2DsNwDir8t+HHoIagNbC5+6oIkOOyuLv2LEDaWlpmDJlCtasWYOIiIgqi/LYoqrqmaaGTjtyeLq9GVNr6WevAeD8+fNIS0vDDz/8AK1Wa3Wm0tIhoUFBQZg5cyYKCwvtPj+pi/Ob3Q3/AkTkUG5ZVbI2FZWx4YTeLzgYAOClm89kjlqtlr54X3/9dezatQtBQUHS/YWFhRg8eLBDAkIpuHaD4ba1RXUn3NLFFqPhdXIAWl1Bk6oCwtzcXISFhTmot7WDvQGhuZP3CxcuWL0si7nX195pAPpZRQCQyeXwBvDx3/9u0e+LRYYCAwOlIkOA9Sfhli6fUV1AdPfuXZw9exZFRUWIiIgA4PiiPFVVz9y1a5dDAltL5j07+5gztWzKgQMHpCycNZnK69ev48KFCzhw4AC2bt1q8ZDQ4OBgdOnSxfYnQbUCA0Iicii3DgjNrUNYk0GNDUNGA3QndioT/czOzsa0adOQn58Pb29vqFQqNG7cGKWlpbh165ZBQHjr1i2HnZRJAaENz8dTVXfCbfLY0r1nBb11CM0ZM2aMRYutuxMxIKxuRIK5k/dNmzbh4sWLlbYXFxdbXWzD3OsrTgMQ95WUlIQWLVrgpZdeqqbXpknLGlhYEdhRRYaMs/j6r6n4f0sybW3atMGCBQvQunVr5OXlISQkxOFFeapaZ9XedSFFlmRMnX3MmVo2JTExUcrsVWfEiBH46quvsHLlSqxfvx7du3fHmTNn0L17d3z88cd4//33sWTJEouHhJL7YkBIVAsplUr8+OOPuHPnDho2bIh27drB19fX1d2ySI0GT45izZBRQXDqGouCWm11CX2xkI9xsRGgoori+vXr0bx5c2nblStXMHz4cKSlpSE3N1cq6tC0aVOsXLnSosfUzzaaIte9lpYOGaXqh80KJjKEgkYDGQwXpjd1tV4QhEqBT11gb9GiDz74AEeOHKn0Xh4wYIDJZVlGjx5t9evr6GkA4l9fa2FA6KwiQ7YOIa2JojxVVc/87rvvTP6OtcPT9QNL/ffErVu30KVLlxo55sRlUxo3bixtO3jwIL744guDduKahMbEKrmff/65QWD5+OOPY8aMGQ4bEir68ssvMX/+fLRt2xYDBgzAvHnzEBwcjFmzZtW5NVLdDQNColpm3bp1WLFiBaKioqS5XadOncJLL73kFgv3Cm6cIbQkIBQ0GsicON9BVVYGa0P/qgr5aDQaaYiYKDg4GH5+fti8ebNVj2Mu2zhv3jy0b9/eoK3MyoBwz549mDlzJry8vJCSkoJRo0YBqCiYsGPHDqv6WVeZyhBqNRp4AdJFCq1Gg6KiImRnZ5sMcuoaSwNCc1mh+Ph4FBUVISQkxGD7zJkzze7L1a+vWJJD6+J1CB2VaXMGS6tn2kP/Ao6r3hPGy6asXbsWCxYsgI+PDy5duoRXX30VADBs2DCpqqe+Vq1a4euvv0ZUVBS2b9+Ovn37IisryyB4tHRIaExMTLXZUEfNZyXHY0BIVMt8/PHHOHTokMEQELVajd69e7tFQAgLh3DVKmIgaEFAqFWr4eXEgFCtVFofEOpODI3nlgHA22+/jdjYWPj6+iI4OBgFBQVQq9V45513rO6buWxjQkJCpavuYoZQZmFA6O7rb9YEaUkXowwhAAi6OUOCVot58+ZZHeS4K0sDQnPZ11WrVhncPn/+PFq3bo1evXqZ3VdNv77GF0vEyzsp//sfHFOCxTYsBPWX2nLM6a9JuHTpUjzzzDNYu3at2SGkS5cuxbJly5CVlYVt27YhJCQEPXr0wJo1a8w+hql5i4IgIDs7u9r+OWo+Kzkel50gqmUCAgKQkZEh3RYEARkZGfD393dhryzn1lVGzXxp6p90apxcYEZjQ4bVVKAg6tmzJw4ePIjt27fjww8/xI4dO5CRkYHHH3/c+r6ZyTZqTAR9cnFum4Un7GLhjcDAQCxevBidOnVyq/U3a4Jg4tjS6l57saiMVq3G8OHDDU5MxeFeVQU5NcGRSzlIHDwk2dxC9QCQkZGB/v3747vvvkNmZiY6duyI3r174+jRowBMv75VFaGxdCkh8WLJ3r17cfz4cXyUmwstgDI7P4usrT7pqOUrHNUfR7h+/ToOHDhgsNSTLWrLMae/JmFKSgpeeOEFDB482OzSE76+vkhLS8OePXtw/vx5HD16FAsXLkRoaGilJYnE43fHjh2Ii4vDggULsGDBAshkMixYsECas1kVcT4rALvms5LjMSQnqmXWrVuHt99+GzNnzoRGo4GPjw86d+4sfXjWdu64ML3MiqIyzp4jaUvAaUkhn4CAAAQEBFTbrqqqeGazjV27AocOAY89JrWVW1lUxtGFN9xRdfNrTB1bUoZQLyA0Nn78eJPDxWpaVZUfbeXoZSfEk2lTQ5inTZuGwMBA/OMf/0BMTAwyMzMRGBiIESNGGKyhZzy0+vr167h58ybuvfdejB07ttphfMaMq5ROSU/HMACldn7WWlvwxNnD/Wqq6FFVhVRmzJjhkMdw1TEnrkno7++PsLAwDBgwAOHh4UhLS7N4H+aWJCooKMDmzZvx+eefY+3atbhy5QpSU1Nx8+ZNtGzZEhMmTKh2386az0r2Y0BIVMuEhYWZ/NB0F+JJq7lsW20ks2IOobMDQluqtJoqNmKrqk7KxGxjaWkp8vPzERISUpG5lsmA994zCKjl1QzDNebu6286QnUn3OLfWX9oj7jMhBgQmnq9xSDH1aqq/Ggz8dh1RAcBfPPNNwBMD2H29/eHIAjSAvHNmjUDgEoLbRsPrY6OjsY333yDpKQkBAYGVjuMz5jxxZJB9erhCQBJFgaE9hYZEtf0++WXX3D69Gl0794d/fr1Q2pqKlatWiUN9xOLUzm7P5Ywd3ElISEBBw8exPDhw/Hbb7/hxIkTkMvlGDduHHbt2mVVQFjVvGfjYy4jIwNvvfUWHn74YQwaNAjTpk2DQqHA/PnzER0d7bDnLa5JKM7nO3/+PNq2bYtdu3ZZvA9zSxI1b94crVq1wqxZswCg0vE7cuRIhz0PqnkMCIlqu+Ji4KOPgIkTAT8/V/emWmLwZOncsVpBnO9mLnipyYDQjgyhpSF4VlYWXnjhhUrbLT0psyTbaG2GkKqfXyMGhF56gYT4fqwqQygGOa5WVeVHW0mfNzZegDJXCMPU2oFfffUVmjZtCgBS9ketVkNr9LlhPLRaLpejUaNG0Gg0SElJQWRkJAYPHiwNxauO8cUSmUaDPgC+sHDYt70FT8TM7rx587B48WIcO3YMn332GVq1aoXy8nJ4e3tLQU15eTkWLVqE3r17O60/ljB3cSU0NBRPPPEE+vfvj3fffRfPP/883n//fZw6dUr621qqqnnPxpVWp02bho0bNyI/P7/K7LK1qguubclUyuVynD17Fl27dpW23bp1Cz4+Pg4/fqn2YEBIVMvdnT0b9RYtAqKiABfPAbKEdIJmwwLrriKzYg6h04eM2pIhFANCE1fnly9fbthWELBixQr8+eefuHbtmtNOysQ5hAwILVfdenFS9l3v2BIzhFqxqIyp13vzZiAkBKjiJL0mOKXyo+75elUTEFpbCMPSIcze3t7Ys2ePwTbjodW5ubkYOHAgFi5cCAA2DePTJ11ss/DYsrfgiZjZ/c9//gPgr8zQn3/+CV9fX8jlcqxZswYRERG4efMmhg8fjsOHzZe7qYkCLOYurshkMnz66adYtmwZ7rvvPmzbtg07duyAj4+P1RdOTF00MDfv2d/fH82bN0fz5s2rzC5bq7rg2pbRAStXrkSvXr3wwAMPGCxJ9N1335ldisVe5pbFoJrDgJColtu3ZQuGAigvKbG6+qRLiMPa3CkgFDOEJk4qExISMF4vG+aMgFAQBGnImy1zCKvKknz44Ydo0aIF4uLi/lrQWi5HXFycU0/KHBUQVjWnsa6pdn6N+N7TDwiNqoyazDCPGKFr7D7DuC0lvverq5BnagFvQRCQmJhosr01Q5iNT8bNDq3WsWUYnz7pApaFnxXDhw83ud3SgifmMrurVq3C2bNnUVRUhIiICKmt/mtsSX8sqexqLXMXV+rXr4/r168jLS1NCsg/++wzPP/885WWz7DkMSyd9xwWFib1p6rssrWqC66rC3LNZRjLy8ulYkmWsuSzWn9ZjLi4OKvn05LzMCAkqu10X/53bt6EW5wWVzMfr1bSaDAVwB+lpWgydaq0WRAEHDlyBC/pnag4IyDUaDTSh7EtQ0YhZhVNBF85OTn4/PPPsXHjRsTFxWHkyJH44osvsHTpUoN2lpyUmS16AsC4pISXg4aM1lShCXdgKvtuPGTU0nUf6wzd85VXE+yaWsAbgEWFMGxlbmi1LcP4lEolfvzxR9y5cweXlUp0BwyGsjuTuczuvn37sGDBArRu3Rp5eXkICQlBUVERGjZsaNX+nVGAxdzFlWvXrlXabmuWy5qLBhs2bKi0zVR22Vr2BvuOHL5ryWe1tctiUM1hQEhUy4knFHdu3XKLgNDeOT2uINNqkQ5gjpcXHhwyxOC+b7/91ulDRtVqtV0BodQ/E8GATCZDfHw8Ro0ahfT0dAwdOtRkCXJLTsrMFj3x968UEEon6BZeGKiJQhPuzuRwbHF5D90JnbOHNDvCnTt3cOfOHTRs2NDq4KEScchoNc3MLSfhikIY1g7jW7duHVasWIGoqCgEBwfjbGkpVgMYcOMGulb7286zevVqAIbD/YKCgrB161ar9lNbih65gqvX37Nl+K49n9XGy2JYO5+WnIcBIVEt56Ub5qcuK3NxTyzkpkNGnwPwN5ms0pXVMWPGQNAbOuOMDIz+On42BYTi3LIq+iaXy5GYmIiEhAST631ZclJmtuiJqcezMiCsiUIT7koaimXi2JICwCqqjNYW5srZz5kzB/369bNtpxbOIXQUU8PizBWmMcfauWoff/wxDh06JA3FPPzhh+haVoZOubmYbdWe7OOs4X61peiRJw1PF1kzfHf27NmYPXs2/vzzT4SGhkImkxkUEbLks1pcFkMcZmvvfFpyHC5MT1TLiZk2jVLp4p5YRgxK3C0gfAtAYxP3paSkGGTenJUhlPZvy5BR8XcseM3lcjnCw8MrbbfkpMzkosKlpTC1pLB4gm5ptVnxSrUxRxaacFdjxoyp+I+JDKFxUZnanCEUy9lv3boV69atw/bt27Fz5068/vrrtu9U/LxxUB+rEhcXhw4dOiAuLk76efbZZ80WpjEWExNj0+MGBAQgIyNDui3TaJABoKZrTovD/U6ePCktn1FSUuJWw/1MfcZkZWUB0DvOnPAYpoiPW5uYy6QDkKYZBAcHY+nSpTh69Cj+97//SUt1WPJZ/dprrxkUprF3Pi05DjOERLWcGBDasj6dS7jpkFHAwiqjdi4GbYp+IRl7AkJnL/Vhal6ODwBTSwpbmyG0dy5MXVDdUCxT1XDFjLWsqiqjtYRcLsetW7cMqgneunXLZBESce07Hx8fTJkyBd27dwcAjBs3DqtWrfqroZ0Bobnqhqb+FmfOnIGfnx8WLFggbTNVmMbaiqbVWbduHd5++23MnDkTGo0GZXfvog+AObp1Dp1t0aJFSEtLQ1lZGXr27AmgokDL3//+d5PD/WpDps1cNrNz585QGl1cvXnzJu655x4UFBQ45DFMZUzNVXseP358lUGYORYfH1by8fEx+zlUWFiIs2fPIjAwUGoTGhqKMt3oJVs+q50xf5Rsw4CQqJaTAkInBCJOIVb9c6eAUMxmmeuzkzOE+tlfm/7O1az9qF+QomHDhmjXrh18fR1Ts1ZdWgpTg02tzRCSBcNmTRWVMa4yWoszhCtXrkRaWhpyc3MNytmvXLmyUltx7Ttvb29MmTIFx44dQ2pqKn799VfDhhbOIbR2uKOpv8Xy5cvxxRdfoEWLFgZtjQvTWFvRtDphYWEGF2My69dH1N27OGHBIvCOsGPHDqSlpaG4uBgLFy5Ev379pOUlxL+pvtpQCMpc8ZJr165BJpPh/fffl/62ixYtwuTJk61eT8+aAinmqj3Xr1/fpudn8fFhpW+++QaRkZEmP4fCw8NNFhG6cuWKzY/nyfNHaxsGhES1nLtmCL3cbMgoYFlA6IwMjP78ULsCQhOvuXFBivz8fJw6dQovvfSSQ9aPUpWUmAwIrc0QkgUFHsSLLfqvqRgQiovX1+IAPDIyEps3b7aorbj2HQBs3LhRWvtObRzwWhgQWlvd0NTfYvz48Wjbtm2ltsaFaZxd0VT8+9fUxZa7d+/i7NmzuOeee6S5nqGhoTh9+jT+8Y9/APgro1pbCkGZK15y//33Y8CAAfjqq68wevRoqerymDFjKgX61j5GmzZtzBZIMVft2dZhqhYfHzYw9zn0+eefV8oCBgUF4dFHH7X5sWrL/FHysDmE8+fPR1RUFIKCghAaGoqnnnoKP/30k0GbpKQkyGQyg59u3boZtFEqlZg4cSIaN26MevXqYejQoZVKGefl5SExMREKhQIKhQKJiYnIz883aHPlyhU8+eSTqFevHho3boyUlBSUu8tJP9UcNwsIxaDErTKEWi2+BPBMeTlGjx6NTz/9FBEREYiKisK2bdsMTrKdkYHR/9sKtuzfxPp0IrEgxfvvv4+33noLy5YtQ0ZGBj766CNbu2v40KWlqFyiRi9DyIDQYsOHD690EgboDcUyMWRUvIAgBoR1JQAX174TzZ49G7169UJmZqZBO3EOZXUBofHJ+wsvvIDBgwebrLgLWPC3qML48eMrBYOA4yqayms4+96mTRuDzBBQkUFVKpU4cuQIjh8/Lv1kZmYiKiqqRvpVFbF4iWjAgAFYvnw5mjVrhiVLlmD79u1Qq9UYOnQorl69CsD6IY/6j5GQkID+/ftj+fLluPfeeyu1Fas9//e//5Ue19x7zxKWHh+2MH7vi8tomHt9GNTVDR6VIczIyMDLL7+MqKgoqNVqzJgxAzExMTh79izq1asntRs0aJBUThlApaFVkyZNwvbt27FhwwY0atQIaWlpiI2NxcmTJ+GlG7YTHx+Pa9euSRNl//nPfyIxMRHbt28HUFFVcMiQIbjnnntw6NAh3L59G2PHjoUgCCbXtiHPJXfTIaPuNIdQrtViEYD1Xl4IX7TIcEmF/v3xlt6i0k6pMqo3ZNSWhellVWQIxYIUffr0AVBxBT8jI8NgoWx7qEtKMAaA8QAx6culFmes3I3M1HBs4wxhFRcUBK0WsmoWDa8tzK19Z5zVlullCKt6fnWpuqF4sUVeQ8eW/vmQKCgoCO3atbN6yYKa8tprrxncNi5eol91+fHHH7d4v1P11qkFKoYRi+vVAqi2QEp11Z4tZenx4Qic5+cZPCogND5IV69ejdDQUJw8eVKaKA0Afn5+ZidEFxQUYNWqVVi3bh369+8PoKLaXvPmzbF3714MHDgQ586dw65du3Ds2DF07VqxStAnn3yC6Oho/PTTT4iIiMDu3btx9uxZXL16Var4t2jRIiQlJWHu3LkIDg52xktAbkgceim4SUAonqB5u1FAKBMEBAAIlMnQpEkTwyUVvL0NghpbArbqOCpDaOoE0bgghY+PDzp37ixVCbWGqWIDquJiXDLRVs4MocOZquCrEd87uguXVWWwVWVl8A0MdF4HbWRXERKjY9Pbz3TtzeoCBEs5cz6upbxqeMioOadPnza5vTYWgjIX1Fg7jy89PR3r16+vtP3bb7+1qj/mqj3XRtXN86sNRYTIfh4VEBoTK0oZL4x74MABhIaGokGDBujVqxfmzp2L0NBQAMDJkyehUqkMykeHh4ejXbt2OHLkCAYOHIijR49CoVBIwSAAdOvWDQqFAkeOHEFERASOHj2Kdu3aGXwgDBw4EEqlEidPnpSu5htTKpUGFbIKCwvtfyGoVhOzAu4yZFSq+udGAaFcq0UH/DX8TFpSobwcjRo1Am7dktrWxjmEUvVJE8GXcUEKe5gqtPH7/v1I0s0rEguFABwy6hRVDBkVA8JK70+9tqrS0loZENpVhES/wI5KBZgJCI3ZkvWwdz6uuYqm1pLXcIawLqgqqLFmyONzzz2HyMhI6ZxQ5KglK2qj6l6f2lBEiOznsQGhIAhITU3FY489hnbt2knbBw8ejGeffRYtWrTApUuXMGvWLPTt2xcnT56En58fcnNz4evrW2mIRJMmTaT0f25ubqUPC6BizLd+myZNmhjcHxISAl9f3yqHEcyfPx9z5syx+Xk7klqtrlSFihxP+tKvxdUD9Yn9dY+BaRVkgoD3APxstN3X1xebNm3Cgccek7Y5IyB0VIbQ2cN0TRUb0JSVQRwgplIq4asbiip+MjAgdByZiYst4nBjme6E1/j9qVUqpWNRVVrq/E5WobplNWyhnyXTWHHRzJbqhsYLxAMV34O9e/c2CAidtYC7qKaHjAL2Z0YzMjLw1ltv4eGHH8agQYMwbdo0KBQKzJ8/H9HR0U7seYXqghpLs1xvvfWWye0pKSnV/q6zssvXr1/HhQsX0LJlS4M1/hzNGccv1R4eezY/YcIE/PDDDzh06JDBdv1J3+3atUPnzp3RokUL7NixAyNGjDC7P/0r4wAM/m9PG2PTp09HamqqdLuwsBDNa2gtIgDIzs7GtGnTkJ+fD29vb6hUKjRu3Bjz5s1D+/bta6wfnkSuO9l3tyGjXm6WIQTMB7EGZf6dEJgLeieytuy/qgyhI5laK1BTWgpxgJiqtFQKCKW/PwNChzEVEEoZQl1mzDggVN29Ky1grnZxQFjtshoWiImJMcxG6A+fteIz0pZCGJbOx7W2oqm1ajogdESl4mnTpmHjxo3Iz89HTEwMMjMzERgYiBEjRuDAgQPOfQIWcHaWy9HVnkeMGIGvvvoKK1euxPr169G9e3ecOXMG3bt3lxaKdzRHHL9Ue3lkQDhx4kRs27YNBw8eRLNmzaps27RpU7Ro0UK6AhIWFoby8nJpDRbRzZs3pYVBw8LC8Mcff1Ta161bt6SsYFhYGL7//nuD+/Py8qBSqSplDvX5+fnBz8IhMc4wfvx4rF+/3iAIvXLlChISEvDdd9+5rF91mfilX5vXFzNgYdW/2sSadQidXVTGlsDf1NyymqBduRL3v/CCdFut9zzEvz8zhI5TVUAoNzNktFw/INQbmuwK1S6rocfSxd1tzRDawtL5uNYsR2ALKSCsoWPL0sxoVfz9/dG8eXM0b94ckZGR0rmXWIivprgqy+WI11CfOF3o888/N1jz8vHHH3dYQJiQkID09HTptjXHL7kfjwoIBUHAxIkTsXnzZhw4cAD3339/tb9z+/ZtXL16FU2bNgUAdOrUCT4+PtizZ4/0hXXjxg3k5OTg3XffBQBER0ejoKAAx48flz58vv/+exQUFEhBY3R0NObOnYsbN25I+969ezf8/PzQqVMnhz93R9FoNFKxDVFwcDA0nMvgNNJVYDfJEIr99QKg1WoNvgBrK/EEW63V4tSpU5WH9OideDl7yKg9GcKanrd54b330Frvtn7AwSGjjmdqSRfx/SIzExCqS0r++r+LA0JTGWbAdBESSxd3lxnPIXQiS+fjGlc07d+/P5o2bVptRVNNZibKp0xBwP79QBWfm941HBA6olJxWFgYNBoNvLy8pGGzarUa2hr+fHBGlisrKwsdO3asso2jqz23atUKX3/9NaKiorB9+3b07dsXWVlZNs1RNa6cKvZPrJwqsub4JffjUQHhyy+/jPXr12Pr1q0ICgqS5uopFAoEBASguLgYs2fPxtNPP42mTZvi8uXLeO2119C4cWPpQFAoFBg3bhzS0tLQqFEjNGzYEJMnT0b79u2lqqORkZEYNGgQkpOT8fHHHwOoWHYiNjYWERERACqGvbRp0waJiYlYsGAB7ty5g8mTJyM5OblWVxh9++23ERsbC19fXwQHB6OgoABqtRrvvPOOq7tWZ8ndrcqorr/eqLiA4C4B4ToA7wPo8emnlYb0NK/l6xDKa2jIqLFf7t41CAj156gxQ+h4chOBv/i5INedWFYaMlqLAkJrWLy4uwUBoXGmw1Hu3r2L4uLiSqN6jCuaAuaXI9CfW9d+/Xos/eMPBD/+ON5euNDs3Drx2KqpgNARlYo3bNhQaZu3tzf27NnjyK5Wy94s1/Llyw1uC4KAFStWYPz48Rg/frzZ33NktWcAWLp0KZYtW4asrCxs27YNISEh6NGjB9asWWP1vhxVOZXcm0cFhCtWrAAA9O7d22D76tWrkZSUBC8vL2RnZ2Pt2rXIz89H06ZN0adPH3zxxRcGV12WLFkCb29vxMXFobS0FP369cOaNWsMhj6kp6cjJSVFqkY6dOhQfPDBB9L9Xl5e2LFjB8aPH48ePXogICAA8fHxWLhwoRNfAfv17NkTBw8eRGlpKfLz8xESEuKw9czINC83LSrjhYorwLYUb6hpckHAxwA2A2j+/vvSdnFIz9wazBDaEhC6KkPoZVQQwWSG0I3mktZ2JjOEuiDIXIbQXQNCcyfXxou76w8ZfeOddxBoFECaynQ4SlhoKBQhIbh27ZrN+9CfW9f7vfdwBoBq7lz8Y/p0k3PrBEGQji2vGhqZ48hKxcZqujCdvVmuDz/8EC1atEBcXJxU78GSpSsc/Rr6+voiLS3NIetoemLlVKrMowLC6iZ0BwQEWDTR3N/fH8uWLatyAfmGDRtWe+Xnvvvuw9dff13t49VGAQEBCAgIcHU3PIK0DqGbBIQyvTmEajfps5duHcJjAMTZsfpDemQFBVCj4gPTKUVl9DMbdmQIazog9DUK9sWAQxAEiPcwQ+g4+hdbRNIcQjNFZTR6WVtXF5VxBv3313+//hobNm6s1MZZmY4dJSUo1Au4baE/t66ZXI5mGg1uFBebnVun0WikEzd3WtqnrsjJycHnn3+OjRs3Ii4uDiNHjsQXX3zh1sGTPZVTqe7wqICQyB2JAaHbZAj1AkKlmwxzFYeMvg7gvR49Kg3pudCvH1So+MCsjXMI5SYyRzVBblQRWQwItWo1h4w6gakMoXihSAwIUcUcQv3iRXWF/vtrZGxsjWY6ejpgH/pz62YHBADFxSi+ds3s3Dq1Wg1vAErUfBEpqqgOHx8fj1GjRiE9PR1Dhw7Fn3/+6epuEdmt9k/uIfJw7hYQ6s8hdJcMoVwQEApgLoDDhw/j2LFj+O6777BkyRKEhYVBptFADNmckanVzxDaM4fQq4ZPEI2Hg4oBh37gwSGjjmMq8Bcra5qbQ6jRGyZaFwJC43V69QPCtOeeM7kGsKWZjqysLMTGxmL48OEGw0zHjRtnY2+rt2HDBikbKM63VhcXm51bp1Kp4A2gDIC3GwWEX375JTp27IjRo0fj008/RUREBKKiorBt2zZXd80mcrkciYmJ2LZtG7Zs2eKSPiiVSpw6dQp79+7FqVOnUO7kKrtUtzEgJKvs2bMHXbt2Rffu3Q0miQ8ZMsSFvarbxIpyxlf+ayu5mwaEKlR8IOoPLb9+/TqAipNOtS4bVivnELoqQ2hBQMgshuPoZ99FlYrKGL3etanKqCMYZ/tkWq3DLtakpKTgvffew5IlS7BkyRIsXrwYAPDrr7/atV9LiQGhsqDA7Nw6MUNYJpO51ZDRRYsW4fDhw1i0aBFeffVVHD9+HIcOHcKCBQtqrA/O+D6Sy+UIDw93+H6rs27dOvTp0weffvopMjIysHr1avTp08fkVKWEhIQq95Wfn++kXpI7YUBIVnnjjTfwzTffYO/evTh+/DgmTpwIrVaLEjvnUVT3geXJpKvAbhYQAoDaTa5YegkCVDIZvABpCZVzmZk4fe+92LNyJWQajVMDQv2F6W35O0uZIwvbO+p48zY6wRLXIRSzVlq4LkPoimyPs0kBoYkho15icS/jIaN68wbdKUPYpUuXSj9RUVE4fvy4QTu5RgMxzLV32QmZTIZWrVqhZcuW2LhxIwoLC5GcnGxXIGHNsSYev9oqvk/VajV8AChlMqdnCB15DAUEBCAwMBBNmjRBv379oFAo4Ofn5/SiMtnZ2XjiiSdwzz33oG/fvoiOjsaTTz5ZaT3L2qa695y4ruH777+Pt956C8uWLUN0dDReffVVTJ06VfqZMmVKtUWVwsPD0b9/f3z00Ue4efOmI59GlTIyMhAWFobU1FTs3r0bHTt2RO/evXH06NEa6wP9hXMIySpeXl5o0KABAGDx4sVYs2YNhg0bhuLiYot+39L1bugv4smfzMqTErVa7dAvW0v356XVQgnAD+6TkZADUMtk8BKEiqIN3t64e/IkngBw+r33UKLRQOXMgNDOIaNeZjKEzj7e5EYBvxhwaHX/KlEREGZlZWHWrFnw8fHBlClTpPVYx40bh1WrVjmkL8ZSUlKwevVqeHt7Y8qUKTh27BhSU1NrLNvjDOLfVz/wF4MgLzNDRrX6Q0bd5HgELF8vTq7RQCmTAYJgMiC0ZI04UWhoqMH6gbNnz8Znn32GdevWVWqrVamkv4MgCJg2bVqlNtYea+LFE20VxX9U4rEllyPYyRdbLD2G9JfOGDRoEKZNmwaFQoH58+dLS2d06NBBmispZrHKy8vRqFEjh/bZ+DNv/fr1GDJkCM6dO4eDBw8CAK5cuYKEhAR89913DnvcoqKiSmsAWvK66MvOzsa0adOQn58Pb29vqFQqNG7cGPPmzUP79u0N2ppa13DNmjVo0aJFpRFb1RVV6tq1K9asWYNNmzbhmWeegY+PD5555hk8/fTTJodg28LUd9Fnn30GHx8f/OMf/0BMTAwyMzMRGBiIESNGmKywS87FgJCs0qFDB4MvzKSkJLRo0QIvvfSSRb/P9W6sZ82QUWu+UCxhy/7kggCVXA4/rVbKGNV2ckFAuZcXgrRaKUMovu6y0lLINRqo5HJAo3GrgNDZx5uX0Qm4NGRUF3iUoSKr9bILgjMx2wMAGzduxOzZs+3O9tjL3sDY5JBRMUMoVn02en76QaDWTTL2gOXrxcm1WpTrAsJ1W7finsuXpfssXSNOtGnTpkrbRo8ejdGjR1farszPh1hnW61W23ys7dmzBzNnzoSXlxd6l5fjCQCakhIMGTIEO3bsqNRezPiq5PJKGXqDdg64IGjpMaS/dIa5E3tTSy74+vqafM3tYfx32LlzJ4YNG4aTJ09K24KDg6XPeWutXbsWCxYsgI+PD+Li4vDqq68CAIYNG4b9+/cbtLXkddE3fvx4rF+/Hs2bN5e2mQteTa1r+MADD2DVqlVo164dbt26hcDAQNSrV6/aokoymQzNmjXDpEmTMGnSJPz+++/YtGkTnn32WWRkZNj0OhkzdXzs3r0b3t7eaN++PSIjI9GsWTMAMFthl5yLASFZxdRSG3369MH58+ct+n2ud2M9HysyhNZ8oVjClv15abVSNk3jJiegXgDK5PKKuTm6EwVVQUHFv4JQERB6eQEqlfOXnbBlyKjuPeJtFBA6+3gzFxCKJ61KmQwyQXB6cGZq4XFrsj01xd6spZcgQAnTAaG8Xr2KDcZ/k1pcVKaqBeMtXS/OS6NBuVwOaLX4bOdOPHj1qtVrxNlCPyB8Z+JEPFCvnk3HmjgNw9fXF0kNGmAigL+XlpqdhiFdbPH2rnT8OfqCoKXHkL+/P1599VWkp6c79MTelqDW+DNv+fLlmDlzJoqKijBixAgUFBRArVbjnXfesalPK1aswKlTp+Dj44OlS5fimWeewdq1a00ua6a/pIglr4tGo4FCoTDYZi54rbSuYXl5xcWgwEAAwOrQUJSHh2Pm779XW1TJeB3Ne++9F6+88gpeeeUVaZu12U5jpr6LWrdujW7dugGAFEyr1WqzFXbJuRgQUo3iejfWkw5SCz4krflCsYQt+5Ppsm3QaNxnyKguq+kD4K7uBFutCwgFubxiDqHuS9zeeUqmiAFhOezMEBptd/bx5m30WogZKDEgLJfLKyq4Oig4s2YIrDXZnppib2As1w3HDtTbJmUIdUGPzOhvIugFga7KEDpi6PLVWbMQ9NFHaHDrlsF2uVZbcbFGrcb2d9/FKUGokTXiynWfDwAw8+OPMRMAbKhwqj8NI9XHB+dVKkzNyIBS7yKcPnFdyXJv70oXgBx9QdDUMfTDDz8gJSXF4G+am5uLy7rMrL0n9vYGtcafeT179sTBgwdRWlqK/Px8hISEwF+cb2sDuVwOH936qykpKYiMjMTgwYNx586dSm31lxSx5HV5++23ERsbC19fXwQHB1sVvJZ16wb/rCxA956YCgC6omgic8ehyoLvNGuzncZMfRfpFyYUeXt7m62wS87FgJColvPV/SuzIKiz5wvFUfvzEgQpeHKnDKHKqM+awsKKO2WyiiyE7kq1M06q9QNCWzKE4jzTmh5o4228xIFRhrBcJoNcq3VYcObuQ87tDYy9BAFKmQzBggBBq4VMLpcKEokBYVUZQq2LMoSO+LsF//vfUAAVJ7x66196abUVw7lRMX8yfvRoh64RZ24Ookr8fLCT/jQMX40GSQCKmjfHh0VFJtuLAaHKxwc+gMHr4egLgqaY+lsOGTIEaWlpBttMndgrlUr8+OOPuHPnDho2bIh27drB19fXoI2jg1pRQEAAAsRh1XYYMmSIwTE8YMAAhIeHV3r+gPUBjz3Bq39WlvR/QRAgM9HGnuPQ2mynPZxdaIhM46tOVrPkQ50cQ9BqpYNUbsGXuqOvhtqyP3cMCL2hFxDqTqDFgFCALguhuyrslIBQLBQhk9kWEGq1UKMiINRqtVL5emfzMZ6vJhaV0b2GSi+vSlkMe7j7kHN7A2MxIIQgQKNUwjsgADLd+9EnKKjigoLR+1NbCzKEjvi7lQJQAFDdugUfvf14abUoM8rei2vEJSQkVFq3sCrLly83uF3VHERHBYT60zB8dcd+p3r1cD4z02R7KSAUT5o1GkD3f0dfEDTFmr+l/on9unXrsGLFCkRFRSE4OBj5+fk4deoUXnrpJYP3f00EtfZ47bXXDG6fP38ebdu2xa5duyzeR3UBj13Bq0aDkpISFAC4AKClXvBqz3FobbaT3A8DQrKKpR/q5BiasjLpIJVZ8cHrqKuhtuzPSxCg1J2guUVRGUGAH4Byo4BPK1bOVangpdGgVPf8BScFhCpUVDq1pWiNGCh4CwLUanWNXaDx0WpxCsAWAG/ir9dODKrVXl7wceAJg6cPOfcSBBR7eQFaLcqLi+EdEACUlaEcQGD9+iiHYVVRoHYMGXXE3018VgUXL6KxUUCo0r3fjYdzW7tG3IcffogWLVpYNAdRbaKytnjCDOiyNDJTeRrz/MRjpYqh9uLfV+3np+uIWgoIHX1B0BRb/5biMgn6F6vUajV69+5tcO7gzKD2+vXruHDhAlq2bCkFSfYaP358pWIyrjICwIY7d7Dsgw+wC0B3AGdefhndu3fHjBkzqvzbVXeh39HDO00dH7YcM+Q4XIeQrGJq7ZuMjAx89NFHdu03JibGQT2sW1R6hQWsCQhdyUsQoHHi8EpHE4MXle4ES7wt6E74vMrLIddqodF9OQpOmBcpKJUoB6ABbB4yWi6TwRuWLb7sqOPNV6PBlUceQYLupEA8IReHjKq9vFy2ePaePXvQtWtXdO/e3eBkxrgkuzvxFufnAlDdvQug4v1YhoosSjkqDwutDQGhI4iniUVGGT8vrRZq3eeNvQvT5+TkYPTo0diang7f27eRmJiIZs2amcygqI2GdC4CcLewED/88AOio6PRvXt3dOrUyary+X5iAbEq/k5ihlAjBnomnnNAQACaNm1aZTA4vF8/fLR0aZX9ceQxJC6TIBIEARkZGZX6KAa127dvx4cffogdO3YgIyMDjz/+uNWPCQAjRowAALRp0wbx8fHYvXs3Xn75ZcydO9em/RkT5xM6S5beUNDqFAIovnkTa9etw34A8wB8vXVrtdlLaxa5N2bp8M5FixYBgMHx0axZMxw4cMCuY4YchxlCsoqptW9MfaibExcXV2mbIAi1fpFYVym/e1eqZGfJkFHRnTt3pCt9DRs2dE7nzPASBGh1XxLuMGS0vLgYAfjrirt00qwLxr3U6oqTTvGKvBOKykCphEomg9bGIaPegoBSb28EabUo0TtBdPbx5icIqN+4MVpFRlbs22gdQpW3N+RKpUFp/ZSUFIwaNQoAzJbWdwT96o0zZ87E4cOH8f7775ut3ugOfAUBpT4+FVlB3QULbWkpygAE+fujEJUvWAjl5dCi4uqvOweE4kwlZV6e4XZBgFrMEJq5WJObm4uwsLBqH0MmkyE+Ph6jEhKQvncvhu7fb3YOonFAuAPA32/exJQpU7BmzRpERETg5s2bGD58OA4fPlztYwOAv15AaK7P4nMUxO9cGz6PNBoNNu/fj6379wNVZPYsPYa+/PJLzJ8/H23btsWAAQMwb948BAcHY9asWRg6dCgA08skdO7c2WzQYesoF+PPvMOHD+PZZ5/FL7/8gpycHClD+fjjj2PGjBlW79/YN998Y/a+AwcOoFevXpWyXjExMdi9e3el9tYMWTalFYCv//tfxF66hO0A+gL4fufOSusjGrM0e2uPHTt2IC0tzeD4eOyxxzBjxgzUr1/f5mOGHIcBIVnF2g91Y5mZmdi/f7/BB48gCEhMTHRWl92amGkR13Orzr59+/D666+jcePG0pDevLw8zJkzB/369XNYv8x9oQEVFTu1uhM0dwgIVbqAUCMGhLpgRq476fFWqeCl1ULw8YEWzhsyWm5HQOgFoNzLC94qlcEwXWcfb75aLWQBAfDSlToXgxFpyKiPD7wEwanBmbmiH/rVGxcvXow1a9Zg2LBhKDYx1K+mWHLiXBU/QYDSzw8oKoJa99oJJSUol8kgk8mgkskMMoJAxXurBEB9OOe9awtbhoaJJyvl+fmG2/Uu1phb0H3MmDFmP69MkQNIBJCwbZvZOYhaXYZWdBfAmePHUVRUhIiICAAVRYQsnc+rVquli3+y8nKzfZYCQjPrTloi98oV3AtgWDXtqjuGxCGY8+bNw5EjR1BUVIQOHTrg/Pnz8Pf3R//+/aX3daVlEpzE+DPvtddeQ9++fXH06FFs374dffv2RVZWVrVBkjV+T01FSEICAjt1krad3rYNy4cNw8yICIQ//LC0vaoLctYMWTZlKYC3Tp1CFoBtAEIAdPrqK3zyySdV/p69F/otcffuXZw9e9bg+FCpVFCr1RAEwaZjhhyLASFZxd4P9SlTpiAoKAiNGzc22D5hwgQ7e1Y3SQGhXG5RQPj6669j165dBl92hYWFGDx4sE0BoS0ZJm8AWicWYHE0ceidVneCJfZZpnvtvTUaeAsCBG9vk0U7HKK8vCJDCNicIVTqsrJqvZNiZx9v/gBkAQGAmD01Wpi+3NcXPoLgsODMmivo+tUbASApKQktWrTASy+9ZN2TdKBFixbh8OHDVZ44m6Wb66rSvU+lIaOlpRULswMVAaHx+7O8HGUyGeoLgnOy2xZYtGgR0tLS8MMPP+CFF17QdascixYtQu/evS3ah5ghVOkt9wBUvPfFYzfxww9Rb+tWg/sFQcDFixct76zeEOeq5iAaB4RtAHy8ejVat26NvLw8hISEoKioqNoRGl26dKnYn1YLGSqGxhb/9huu37xpsr20lqTuIoz+39TSTHyJbt3LMlQcw+aYOoZWrVqFoqIirFy5EuvXr0f37t1x9epVLFmyBDNmzEC/fv2kojBVDScUBAE/NWiA0ogIdDx+vIpeWMf4M2/16tVYtmwZGjZsiGnTpiEkJAQ9evTAmjVrHPJ4gkaDe5csgXrJEoP3jvbiRWQCmO/jg+gFC/5qX8UFuZycHHz++ec2L5viC+Af998P/ZmCv44ahbHNm2PgpElo0a2byQtSEyZMwNatW6u80G/vKI82bdpgwYIFBsfHgw8+iIMHD6J///5WHTPkHAwIyS6CVotzAwag5T//icCRI6ttb27Yw0gLftcTiXMISy0sziGXy3Hr1i2DgPDWrVs2X3GzJcPkJwhQ664sukOGUBp6Z1Q0xksX1PjohowK3t5QwTlZFpkuICyXyyutI2cJfwClYlZWL+vmzONNUKngDUBWr54UEApGVUbV/v7w1WptCs7Onz+Pjz76CEuWLJGulltzBV2/eqOoT58+OH/+vM3P2V4BAQEIDAxEYGCgxSfOIqGsDDIAal0gIGUIlcq/5hWaCghVKqhkMpQJghSw1zRTw8WsHRomvkJqo+qe3oIAQfea3FUqcebIkUqv54ABAyzuq7KgAH4WtDMOCFcDOB4fjy7PPy9tCwoKwlajANVYUVERsrOzUXjnDho2aQIAOHnPPXhVNwy70uPqLvjIdZ/xar3CY5Zm4sv++ANA9cvUmDqG/Pz8cP78efTp00f6bigpKcH//vc/zJgxQwoiysvL0ahRI7P7LispQevCQsComqq9WXTjzzxfX1+kpaWZXBbCEUpu3EA9VD6ZLi8sxBQAQWVlaNGihcF95i7ISUOWrVw2RVtWJhUEKTO6+HHrzBnsFQQcWboU/zp82OwFqeqW9LB3lMfq1asrbTM1ssySY4acgwEh2eXa8eNos38/rmdmWhQQknXEAgKl3t7wsSBztHLlSqSlpSE3N1caltW0aVOsXLnSpse3OsMkCAgApBM0jYsyEtZQi5kWXZ/FDKG37uTZR6uFr27IqFomc06WRaWCWi6HysuryoISpggqFXwAlItBuJlhc46mKiyEL1AxXNTLC2oAMt1rJgYl2sBA+AqCTcHZqqFD8d7Fi7gzYwYa3nMPAPuvoLtahw4dpEqUlp44i1TFxfAFINSrB+CvgFBWVga17oKNSi6X/gYS3fxUpVxu9XvLUUwNF7NmaJggCBBLd2iM5u75CQI0uuDohagoFBUVISQkxKDNzJkzLe5r0e+//xUQ6tb4MzWfzzggBADl7dsWP45o3rx5KCoqglJvKKyXSmW2zyrdBSwf3XNUFRdLJ3KWZuKVt24BsK2qYKtWrfD1118jKipKGoI5YsQIXLhwwaCdr6+vyWVWRAXXrsHUDEG7suguUHD5MuqZ2F6em4vxAA75Vb68UN0FOWuXTbmbmwvxErBw9SoAYNsbb2DonDko0Y3maavVWndB6vhxICwMuO8+ALVzCD45Fgfqkl3yzp4FACjd4MTfHYknfUofH/hakCGMjIzE5s2bcfToURw7dgxHjx7FV199hUgzV5urM378+ErBIGD+C02lO1mT6U7QasucpaqIQ++gO9EW5xD66Prup9UiQKuFOiAAKsApAaGsvBwqubyiKqeVWZxy3RC6cjEIr6GiKUrd48p1j6vEX9URBV0f1EFB8LWxyuiI69cBALf0MgjiFfT//ve/UKvVDll4vCa99957lRZyru7EWSS+3oKYGdK9xj4lJbirG6Jd4uUFH6O/v6ysDEovLyhlMqvfW45iPFwMgFVDw8rLyiDmgDX6J6CCUHEyrjtRfbxp00rBIAD06tXL4r6W6J2Al+uykaYuOGhNHGflRgVvqnToEHDnDoYPH46QkBDpOM5ERSErc30WA2JvXYCqvx6imIkXJSUlITU1FUVGQXS57pix5chcunQpfvrpJ2RlZWHatGmIiYnBtm3brB6CWawLXEQvvPACjh49KgUtTZo0kYIWPz+/WrtY+d1r10xu1+iG/Ap2fF9YumxK8Y0b0v99//gDSgCh7doBALS//IJcAGr8dUEKQPUXpLp2RfkDD0g3LX1vkfuqnUcYuY27v/wCoOLKtKW4sL3llHfuAABKAgPR2A2uxJXduQMfADLdlUd3GDIqZghlumGHYhDrrfsi99VqESAIkNWrB7VMZtOQzurIVSpo5PKKqpxWvmZleXnwA6DW9d9cpUV9pjIewt27uP3OO2g8ezZgwfGsLChAEABv3eOWy2R/DUkU52UqFBVzlHSZFmuU6k4Ai86cAZ54wuA+WxceByyvOFkr/PknkJ0N9OkDZWEhgqB3bOkywX7FxfhTlx0u9vFBY6MMsbykBEpvb5QLgtXvLUcxNVzMmqFhJbduSVk7QS8zJ5SWQgbAu0GDivm9Jt77Pxw8iNAWLRBmNGzPlC5duqDs9m1pXp36scfg5e+PixcvQqNWY29CArrOnIkG7dtDe/cu/gSgf7lMbVTwBjDzfrtzB3j8caiffRbeX34JoOI4BoBXAKyp4jNGDAjluuGlar05lZZm4jW67xVb+Pr64p///KfdQzBLdBd8gIpzghErV2LFF1+gQ1KSzVn0qhQVFRlMpXDU50CJmYBQ0GWLvWvgAl2pbggwAAQVFOAOgGa6i8D+v/+OMQDWyWQm6z+YuiClLS2FHICvXsEiZw3BN/67AG72GV2HMENIdin77TcAgMbCkz171rvxRGJAqAwKktaoqs3Ekxqv4GAA9l0drSniAtNy3bBE8QTLT9f3+oIAX1TM2XHWkFGv8nKovLyg8faGl5X7F4eaaXWBmSVDRk1lPE4kJ6PxW2/h2qefWva44t9a97gqvWBZU1iIEgB+uswNVCoolUqcOnUKe/fuxalTp1BeTXDipXu/l+ud7BizduFxwPRzr620jz4K9O0LCALKxUBA95qKyx743b0Lte54Kw8IgI/RUEa5UgmVtzeUcjm83OACjSn6J7z6AaH0eRMUBCUqL7lRVFiIh3v1woXu3S16nKKiIvzfP/+J4wCOA9jy3nvIzMxEVFQUft62DQO//BI/PvlkRT9KSlBkdOFEbVTwBjD9frumqx567ejRv56LLmun9fJCUBV/J6GoCBoAMl2AZFxkxxIa3esmB6Cu4vNm7dq1aN++PR599FG8/fbb0vZhw6qrT1qhqos1ZXpZravnz2MggDUFBXZl0a3ps6M+B5R6z/HmqVM488ILgCBApvtc9jFxkcLarFp17Ut12cguAJ4sK8NAAMPHjkUXAC/8/jusLdlzxwnzrK15L7nTZ3Rdwgwh2UWju8rna+GJRk2sd1OXqHRfKurgYJuH3gGOv+Jmbn/iCZpMF1zBxDyb2kap+zKtp5vbVK4Lwv00GuQDaKBr5xUcjDK5HF5OGHbnXVaGMj8/aH18EGBjQCjoggL90vtiBUN95qouXv75Z0QBuHXqFJr94x/VPm6Z7nXz0Q0pLtebo6YpLMRdAH66Pq1ZtQor161DVFSUtBzKqVOn8NJLL5k97v10Q5vUNg4Jtea51yRrRkjIxWF1f/4Jle596X///QD+OglUlJZCrRt6qapfH/5G1Sm9lUqU+/pCpVZD7gYXaExR6r8H9DIupbdvIwCAd3BwxbItRsfm9ePHEQEgWi8bVZV58+bh9r590u27upP9mTNnovDgQQBAfd0QTaG0tKKYj24ofxcA+f/7H+bove/Mvd9u5uSgGYBiveGe4nOc07QpGlTRX+HuXZTIZPDRXRhQmchKVkfQ/Y4cQOHNm2hw770m261YsQKnTp2Cj48Pli5dimeeeQZr166FYOa7qLSkBCt690bsRx/hoUcfrXK5j3K99+nV/fvRCo7JUBj3uWHDhvjb3/6GCxcuSJ8JjvwcUOldrDg1ciQG/fwzrvbpA+/CQqwF8NadOwh69FHExcXh1VdfBVARBO3fv7/SvtauXYsFCxbAx8fHovYi8b1TBCAbQJafHzpnZqJMLkeRICABQJBWa9FyL3dOnMDNpCQp811eVgZfByw/Yeq9dPnyZYO/C1A7PqM9FQNCsotMPJm2cC2kmljvpi4RhyAJISEWVb4zx9p1uGzdnxicyHXBopcbLAJeriuw0Ei3VpR04q3R4JavLxqIQ0gbNMBdb294OyHI9S0rQ2m9epDJZFJ1U0tJc4h0c6f05zaJFQyN5988Eh6Oox9/jGjdEgAAUF8XSJbosv7VEbM29XUZunIvL+lkXSguRqlMBrmucuvK//wHh77/3qoLQQ3EJSyMCnVYGlCZe+7WVJx0tHXr1mHFihVWBcYAUHj+PEp0GZWQDh0AAMo//sDd27fRRK2Gr+5ixt3/b+++4+Mo7sf/v3b3unQ6SZYsyZYty7jb2GBwbJqBBByIf2AgPcSQRgkkQEiF8KGEb2ihJhBCQgkECIEk4FAMGHDDxrjj3mXLRbL63enq3u78/riCbFzBWLb0fj4e95Bur83d7MzOe2Z2trSU8s2b00FK5rd2JJPEXC7MePygR58Ppc9yqkAysw9YpM+JzIpltrsKC4lp2ifqm/BBjnRceOGFvPfKK7n7q5ctY+jFF3P66acz+8kn0xszwZAei5EwjNyMgSBw98iRXJgJHLP2tL9lZ9Z0nJKXrXdiZWV4t21Ll6XspSU6ikSIaxp5mU63+AFM//zEtLwOgWi0vn6vAaGu6zgz56dec801DB06lHPPPZempiYWL16cy8srrrgCTdOItbbi3bCBx8aOpeC44/bZsE9l6l2AUGal2f1dBuNA7J7me++9F5/PR1VVFfM7XN7iUNUDHeunQKaM7lywAHd7O48CUxwOhi1efEAB9cEG4FnZ8vF/pIPCmNeLpmlENI2eSnET4AMizc3k7WFNgI77x0ff/S5nrl2be6xh7VoqR43a62fnOocbG8Hjgb1c33FP+9KkSZPoU1zMK7170+s//8nVWZ1ZR3dnEhCKz8SVGREKKEUymdzvAf6zXti+u7Gy04GKiw/oXKxDPSpysO8Xz/SoOzKXFzgaAkKzqYkUUJYJCFNtbSilCNg2tYWFkOn0cJSUEHe7PzEl71BwJxJYJSVoto3zIC80nV0gIrsaXMcRtewKhh0X2gi2tfHHujpOuvJK6BAQ5mUaFfZern+2u+wIYTYgjLrdGNmpTZEIMcPINQ7chnHQHUE9sr9DhxGQgwmo9vTd4eBWnDzUDmqGRIdZF/WLFhHLNKADAwYQBbatXMmfTjiB/wJDL7gAALN/fzwffghbt0LmnDl3MkmooIBENIqzkxaV+bSBcJaZ+e47NQ29wwh4ItMp4SguJuxw5KbpZcVqagByK5QeCLNDA/+OF17gorvvBsDOjNbmZS9HE4kQcbmoi8fJA240DKK7XRID9ry/pTIjgD065EcqcyxN9e0Lixalzx/NlOmOVChE3OnE37Mn8PGMBjjwESatw/nosX2U94kTJ+5yuZizzz6bhQsXcs899/D000/n8nLlypU8+uijDNywgZP/3/9jSV4exy9YsM+Gvd3hd9ZWrkx/970+e8/nmh1Imh966CHKysr43e9+t8vzDlU9oHX4/cuyq4Jv2EBh5lIQgcxMh44Bdctegvjdg6Zhw4bt8/lZqaYmbOAkp5Mi0ySZmcYf1XWwLMZlnvf4I4/w+L//vc/9Y/fjW9OaNfsMCLOdw2ZVFTidOPcyhXlP+9Kdd97Jf6+7jl7bt5OsrcWVeawz6+juTAJC8ZnkZRqAXmDHtm306t9/n8//rBe2726sxkaCAMXFGKQP/q59nFx/qEdFDvb9Ypme78CIEZgcHQGh3dJCGCjKzycCWG1thOrqCACxvn1zAaF30CBCXi/5n8N38pgmdl4eVipF3kGe5xWrrQWgx7j0Yb/jOXcXXnjhJ56/9YMP2NP6hYFMY1Y/wKXzsyOrgcpKAOJeL65MQ9PT2kqry5WbOvzHq67iif1c+HiX945Gye7leocGxsEEVLt/9zVr1jBkyJCDWnHyUDuYGRKRdetyy9m3rliBnRklKK6upt3tZsvixQx1uUg5HPTKLLrjGz0a/vlPoosW4csEhIFYjO2FhUTjcQKdNIX7s54qkNi+HYAGr3eXEfRoJuDzDxxIm8eDsVtAluow2m22teWmWe5TczOtuk6RbaN3uNSPnhn9yQZxrvZ2Qj4fF/Xrx8Zly1jicrGoQ4C3r/0tO7Omh2WlF2Jyuz++ZEVmSrBqbETbQ0DoaG0l5PVSUVREM2B3KO8HOsLkDIUIA34+7tjZkxtvvHGX+2vWrOH111+nubk5l5cNDQ2cfvrp3HvvvdyRqQuszDTafTbsOwQ5RZmFWTzA3596ivvuv/+gp03uLc3ZeuDNN9/cZfuhqgf0YJAU6cZ0/+xK4LW1+BMJJgLNlkV2/PXss8+mV69ee12QZ/eg6ayzzqKiomK/C/hYDQ20aRpBrxdMEyuznyccDrAsFnk8nByP8/fnn2fxihX73D/8uy1eF9ywAdh357CybZyxGMRie+203tO+dO2113LtddcBUDdnDrF4vNPr6O5MFpURn5pSisJIhE2Z84SCmUtQHBTbZtOxx1L7y18e4tR1ETt20ORy4e7TB9j/yd7ZUZHdfdoet4N9v+S2bZhA8THHENK0z2U07VAzamupy1wrqt7hQNuyhcbMvqydcELueZVjxhD3+/Ef6oBQKUpNE7OkBKukhKKDDQi3biUFHHP66aT4OFDbk3X//jcjOq7Y2aEhUJrp3XYd4CIVZm0tLZqGJ7ugid+PJ/PbeFpaCBcUEBgwIH2/tZUHH3yQOXPmMG/ePGbPns0DDzyw1/Nagxs25A5Ozg4NlGxA9XHyD3zK+e4XrO4M//jHP5gyZQqnnHIK48aNY/z48bz22mt7DIwblyzJ/R/bsIHkunXU6zqevDy8xx3HueXl3NynD45Jk3JTC0eefz47gO3ZVT2Votg00SoqSAUC+Dqpg+az5BtAsq6OBBAuKcHboT6KbNyIDZQNH07c58Oze13VYeGS1qVLD+iznC0tNHq9JIG7Tzopt92TCWCKlMIMh/FEo6T8fmbMn8/GUIi4y7XLJT/2tb85OwRD0UyD29q+PV1nZs8R3bRpj6/1BYNECwooKChgJ6A6BHS7jzBdeeWVuSmeHXlDIbZlpnMn9lFf7O6qq67aJS/XLVvG38vKWD5tGvn5+WiZAL05U+/vq2HvaG5me6be7Zcp4w7gkT/+kcWLF7N48WJ8Ph9f+9rXiEaj+502uTevPvQQb/zqV7n7iXicZ8aOZf4zz3yq99udo72dzbvtx86GBgpTKS52OBgOqEzHwpo1axg+fPgngtOsG2+8MRcMZu3r+TlNTbQ5HMQyl05KVlQAYGVmbC3LdNQr09zv/tEzHGaZy8X7kycDEMl0qoTDYebOncv8+fNzt+yCS/WLFuVeHzrAUw6uuuoq7A6zYZoXLjwi6ujuTALCLuK9X/2Kt6+7jg9/9zsW3HUXix94gBl33MGse+7hrd//nukPPMCiv/+dzVOnsn3GDDa9+y6hFSsIrVlDcts2Ytu3E62rI7hjR/o6ZqnULo3FjizLIh6Ps+i11+hv2zRlDprRjz466HSvvO8++q9YQd9770UdwHX2uhtvXR1tBQXkZyr0UIe5/XuSvabV7j5tj9vBvp++Zg1bHA4cTifbXC48mdGrI5Vt2/SoqaExM5LVWFJC0erVrM0shz/qssv4D3CPy0VJWRntffrQOxqFQ3jtpejGjeQphXvIEByVlRQohdrD1LO9focNG6jTdfyBAE2Ato8FKep363hpy3QwWLEY5Znyl3eAQbyqqaHB48ktUqBXV9OrvZ26LVuobG0lUllJydChJID4bp1FW9eu5d3rr99rmQ9mppBtMQxcHRrZBxNQ7S7bEOpM2RkSBxIYN2YaWRudTho/+ghz/nwaMuf/5F10ESfU1+PevBl+/evcawYMGsSM0lJ6vPEGN15xBf++7z58gGvIEKwePShOJPZar3+e9pZvEydOPKDOKlVXR5OmkSopoaDDlFG1dCmbDAN/URHh8nIq2tp2+X7u+nqyNVB4xYoDSqsnGCTs89FqGNhr1zKnXz82PP44/nCYzZnVLxuXLaM0FsMsLcXtduP3+wnl5RHo0Hmxr/2toK2NxZlgqDWTLr2ujmaPhx4jRxICwh1WIM2aN28epcEgqk8fHA4HzW73xwsP8fEIU9ZZZ53Fn//8Z3rvdo5gfjRKc3YxqA5B8/44nc5d8vL8CRN4FVjz3HM8++yzeDPvdYdtk9jP9GRvMEhdpjOpD5DNVTuROKCg9kCdet11fOUPfyDe1kbDzp0sfeIJLpk/n0hmZArgXw89xIPnnov9KdogeeEw9R3Oy2vWdXo2NlIIbC8vxwBa160DDr5TKtbQwIbycjb88Y/7fJ6juZmwxwOZANAzfDgAM086iWeAVGYlz5P79t3n/pEMhaiwLFq+9S1OfeopbCCxbRskEtx4/PGEdrvERjIe56eXX872d97Jbds8Y8YBfTen00ldh3M6YytXHhF1dLemRKd75JFHVL9+/ZTb7VajR49Ws2bNOuDXBoNBBahg+jB4yG8mqBiodlBBTVMtuq52gqoHZYEK6bqKbNigtjgcql3T1LqiIvWh368+LClRc8vL1azKSjXnmGPU+wMGqJn9+6vZgwap2UOGqDnDhqmZQ4aozQ5H7rPeHDBATf/yl9XUCRPUtAsvVO984xvqvYsvVrN++EM176c/VbOuukrNvOYa9cbll6tFt96q3rruOjXjppvUzFtuUXPvuksteOgh9f5996l5jzyilvz972rViy+qD59+Wq145RW1efp0VTtnjmpctky1rl2rwlu2qHhDg0oFg0rF40qZplKWpWzLUkopZdt27nY4JZNJtX79evXqlCnq8YsvVu2g3v3Sl1TT9u2qHdSSU05RKpU64PdrqK9XyxcuPGTpq1+2TK164oldtsViMfXBBx+ov1x9tWrWNPXWwIFKKaVeGzBAtRqGMrduPWSff6isX79e3Xzjjeq2Hj2UArXolluUUkotuO02pUDVgWp0u5WybbVu3Tq1du1apZRS/3vkEZUEteP731fqM+4bpmmqJUuWqFe+8AVlgVo3c6aa88QTSoHaeNtt+319KpVSi+bOVevcbjW7Vy+llFKz8/PV+tLSPabNtiy12TCUAvXW8ccrBWrFY48ppZTa/NprSoFaUlCgduj6Pj+3ra1N/fPpp9V6XVfzhg/Pbd/xwgvp98zUDTMeeUSlUik11+lUG3v1UipTtpRSama/fkqB+jDzu+9uwc9/rhSoGX37qg0u135/iwNldUjDkcCORlVs48Y9Pjb1C19QTbquNp5wgoqCSoGqu/XW9IPJpFJ/+5tS8+Z94nXL3npLtei6WgdqXqbubly3Ts35zW+UArVlypTP8ysdsGg0qn4H6s+ggsHgPp+7sKpKzfP71XsXXKCioF5+4QV17/XXq0ZNU+9l9sGp116rFKjaZ57JvW5Vfr6a2rOnMkGt+MlPdnnPWHOzijQ2fuKz1jqd6v2RI9WyQCB3bFoWCKigpqmZffooBWrWFVcoBerdq6/OvW7GsGFqvcez3+9tW5Zq0TT12vDhSoH66IYblG3b6n2vV31UVaXq6urULFBbTj7549fYtnryySfVsZqmFKiGP/9ZKaXUv/r2Vc1ud/oYdoDsVEqFQb199tkqCGrW+ecf8Gt399awYUqBWu90KqWUWuvxqGZdVxNA1eznuLPJ7VbvjRih6jNtgA9KS5UCdfWECaqmpmaX565YsUJ9+ctfPuj0NaxZk8vDt845RzWBWpifrxSo1YaRe97qzO/64QsvHPRn7DQM9fYpp+Q+Z35VVe7/dyZNUgrUuuefV0opNWHChIN67w+uuUYpUBv8/n0+b5nPp2YPHKhe/v3v1Qug1q9YoZRSatOmTeqGG25QrY2NKgFq1je/uc/32fS//ykFauH99yullGpxONR/jj9eLfzBD9LHyfPO2+X571RVqRZQUzt8/2lXXnnA32/h3XcrBapR09ScTLthd7k27n7qCPHZaUodBRc368L+9a9/MXnyZP785z9zyimn8Nhjj/H444+zatUq+u7h/IHdhUIhAoEANQsWUFFSQltTE6lEAiuRQJkmyjRp2rkTMx7HpWm0NjXhdTox43HMaJSmnTvxOBy4DYNUIoFT12mqqyOQl4eZSGBGo/hcLlLxOAbg1HUKvF7yfT7MwkKO+clPKD7uONa8+Sbrb7oJbds2XKZJgcuFw7YhkUC3bZRlYSYSeNxutEzVoZG+cLXrgQdouOkmBm7ejMu28QBuwMjcDjcLsDvcLEBpGrZS2Jr28f3s38z/6Do2kFIKG9Cdzk+8j515TOk6KdvGtm1028awLAzbxiB9PmZv0r/BusJCei5ZQmG/fvzjuOOY/NFHtAG1bjem1wv5+USVwnA6cbjdqEyaTMtCKUX5pk30tW3mV1ZCaSm604mm65iWRSyZxOt2YxgGiXgcXdNwu1zoShGLxXA7nTgMg0QigUPXMeNxhq9ZQ4lSzCoupt3pJBkO44/F6KsUA4Ha/HyYMYO+J5zAwilT6HPBBfg1jXWBAC0FBfh69sQoLMQ2DHA40LJ/HQ7Q9fSUR8tCNwwchgFKoes6uq6jKUUkGiXg96NrGpqmYZomzkyvvaHrpEwTpRQp06Q9HEYphbJtwsEgydZWWjZvpsC2qTBNRgA9gJrzz6f6lVfS5z0oRc1vf4uaNo3y22/Hd845u+wbqVSKv1ZWctXOndS63WypqMAqK0OVlOAIBMgLBLAz38Pp8eAyDOKRCGYigUqlCLW2EmxpIdHaSnTtWkaaJqcAH44fz9iZM7Esi7cLCvhiNMqiykrCVVW4ysrSK3a6XMRCIRLt7TRv2YJRW8s5tk05sOHJJxnx/e/z3OTJXPzss6woL6f5+ONp9nio6N8fzTAIz5/P2TNmsOjOOxl62WVoJSUsHTAAc+JE9Ndf5wsbNjDvkksY/8wzzJ48GWPIEKLRKG6Hg+Zt22jetIm2LVtwbt3KBNOkv6YRffNNCidMyP0+kVtuofUf/2DbpEmMe+ABAP76jW/wo5deYk1hIRuHDMFZVsaZU6bgBpYGArgffRR3jx5YySThpiaiDQ24//AHSlpa2PyNb3DaCy9Q+7e/UXrKKTjy8nDm52MYBslolPffeIPa997ji9dcQ9Xxx6cTkTmk2baNBmiaRiqV4orLLuP9d97h5WnTGLaPRRJy9nBoVLst225ZVnrf3O15tm2jZfbRZDKJ0+kkFAoRj0ZxWRbB+nrCW7ei/ehHDAoGmfWzn9FcUkKkpobEmjXE1q3jGw0NtAwZwsiHHsL6+teJf/nL5D33HBxIL/rq1UR++UuiNTVYv/415ZdcQrS1lW0lJRQAq8aMQQ0diqdfP0oGDEAVFmIUFxMoLSXf7ycSiVBUXIxuGNhKoRsGmq6j6Xq6nGgaCtL3IbcN207flPr4/z1sS8bj/Pnyy7nujTcAmHXllZx4003YySTxUIhYMMim1asJbdyIuXAh506fznsnnsixt91G34kTWUl6VMnyetEWLaJw6FBikQhri4upTqVYOGwYlJZyxvTpTLvwQoa88gpN/frR95ln8JeV0bplC/GJEykwTZbffTclo0YRra+nYepUvvLCCyy5+mrMRYs4ad68XX7WubfdxvBbbyWgFG2AuX49pZlp0a995zv8f//8J++efz5l55/PzgcfpHjzZryPPUbzn/7E8PnzWXrFFWDbnPHYYyy4/XaG3HwzH/p8LInFuN622fiznzHo/vt5uqyMCxobeXviRBrcblYtWEB+bS2/8vkoqqxE/+gj8Hh4/uab+cbtt7Nm0CCMa6+l4qyzKOzfHzLnfIe2bWPphRdiVVdz2nPP0drYyPqHH+bkO+/k/VtuwX/33eglJRy7adMB7Vfbtmxh8/vvc/K3voVSihqfj5JUikKlqHvwQUqvu47Zxx7LmcuXs+immzjh9ts/8R7JZJL6uXPpfeaZzLr4YtxTp3JySwszLr+cMX/9Kx9NmMDJb721/338AMz86U85/eGH9/iYDTSuWEH78uUc8+1vA/DKuHFcsIeR2d0ppQiHw6x66SXG/ehHTP/JT2h/5x0qNmxAXX89Y+65B4AtH35I77FjWXTxxYz9FAvnvd+vH6du2UIMcIbDODKLxQAEg0FWr17Nsmef5XuPPMKSSy7hC3//Oy0tLfTYwzoDa7xe2goL+cLWrejZ/WPNGhKNjZSedhpKKaZOmsQ5r75KaMsWCvv2ZVVpKW2miS+Z5LhYjLUeD4OiUTRNY+uTT9Lnhz/Mvf86v5+SaJQFo0fz5Q4jf3tjx+N8OHo0o1avZmllJYG2NsqnTsU++2zqLrmEkY89lk5jpo0bDAYpyIwoi8+HBISdbOzYsYwePZpHH300t23o0KFccMEF3Hnnnft9fVcrLLs3uJRtE49EiASDmLEYPpcLp67TmAla45EIbsOgva2N9mCQSDCIlUhQ4PNhmyZN9fW4dB2VSmEohUqlsBMJbNPETiZRmb92KoWVSqFSKZRl4XO7MRMJsCyS8ThOwyDa3o6haeR5vdimSbCtjTyPB10pkvE4ZiKB1+1GWRZ2KoWuFDrpoFaHdBBj29imidPhwKnrGIaB5nKhuVzoLhe6242vqAh3dTWlZ52F68wzIRPwKKWY+6c/Efz3vwk0NmKHwxixGE7LQlcqPR9fKRyahpFpnIXKy2kpKmLAqlU4M40yLfPXqevYto3StPQiAJoGuo4CUpaVDmoNIx20Ohzouk5jZSVGeTklq1djWhbuvDzo2ZP8wYPpcd55OC+6KL30dMb8V19l+x13ULp5M0WxGLS347Ws9IXeM7+Ng4+D/+z9XP5nbh3/39/93R/LNsxjDgcxpxM7Px9X//5UnHEGrq99DUaPPqh9dOfOncy94w4Cb71F0datFCWT9Eil8LH/DoxsZ0PCMAgHAuhDhlD04x/juvji3In4NatXs2jyZPqvXEnfZJL8TCdJVpL0Nf9CRUWoMWPw//a3FJx6KgCmafLyd79L/1dfZWAsRmC3z59bXs64TINgxplncvKMGbhIT9f64MwzGffii6yvrmbUbgsLZKU0jXAggPuMM/DddBN0OMdybxKJBM9deinHvvUWA4NBCpVijcvFpokT+fLLL+/xN0sA73372xz/298SGzWK6g6Le3QlEdIdQLufuxF3OmkeMoSy//wHx8CBh+zzPnrtNZp+/GOG79iRmyLcmRr79aOmrY0v7ONaeilgcZ8+9J85k5LqasJPP40+dSqeIUMwrrwSOky3XTFzJvVXXsmgDRsoTKVYmp/PkI8+4sPJk5k4d+4uv3MMsDSN/N2aQCtLSxm8YQOxlhYWXHUV1b/4BQ2XXko8EODUpUvZ8fTTRF58keKf/5yeHTpDWhsbmTN8OOc2NmJk3t8AXKTLfDCzUA3AioICBtfVsemaa6h66imShkHtGWcw4o03wOFg+XvvYV14Icd1mDqecjpxXHgh3HsvZM4pV0rxzwsv5Iz//Y9eHb5HCEDT8ChFdt3vKB93tH7kdjNg507e/N73+OorrxDXNJqdTmK6jp25WZljgUMpHEqhWxZFsRhFwPbMd/EBH9x8M3m3387ITJDcNHMm9oQJDEok2GkYtDqdpDKdwB7LwmdZ9CKzYuzq1dQsWsTGRx/l/NdeY+6oUZy9ZQvbPB7aPR6SbjfK6Ux3QGRu6DrJVAqXy5XubM0ct0mlcOg6euY4r1kWfVtbafT72Vlezvj165lTXc2omhqmT5rEWVOm0OZwkGdZbHU4SFZVUb1hA7V9+pBwONLHjw7zpZRtE4/F0GMxHPE4BbbNEKDOMOixYwfOoiIMwyAeDDJ/3DjMUaM4+8UXmd2zJyc3NrLJ5yPi9abbBw4HCY+HwsZGPMCOykrito1hGOimiUok0ONxTmprY051NeNraljj8dDi82EoRTIcxplK0ReoBHYEAvTcsAHHHi4pkTVr8mTGP/ssTZrGdocD0zAYHo/jBRYYBl7LYhCwvLKSEzLTkD+49FJOypxrueS44zh+6VLmut2YLhcnhsMs9HjICwQ4cedO5n/969hLlzJ8/XpW9OmDlZdHUtdJZa7VaSWTGLaNQ9NQ8TgD6+vpm0rx3ujROI4/nvFPPEEQCAAmMLNfP0y/n1aluHjFii7Txj2SSUDYiZLJJD6fj5deemmXFfGuvfZali5dustJ+FmJRGKXufmhUIg+ffpIYRFHDcuyMIyPwwClFHZmtFTTNCzLIhQK4fP58Hg8WJaFZVmkUinC4TC6rpNKpdA0LXfOQfZ12RGZ/Px8CjusKLi/i/EeCq2trSTi8XSgrxSx9nbCkQj+wkLyAwEcLhfePV1XbD9s20azbTTLSp8jcqDfRSmsaJTmbdtw6jqu0lLydltlsW7zZvy6jiMQwBMI5D6vad06Ylu3UlhUhK1p5JeU4CwtBa/3wD9/L2lKJZM4Mt+jbvFi2lasINnSgu52k1dUhL9nT/zHH48nc+5qsLGR1f/+N4naWkgkULEYqVQKS9cpq65m0PjxfPjcc1ihEJZtE4/HQdPIz88nnkjgdrvRdJ3qY46hrE8f5r/3HmYigWVZqMzFmiG9j3i93tzqibZS6UZhphGvlCIYDGLbNh6PB4/Hg57p1DFNEzPTSFWkO3/sTCPS5XKhlMLlcuFwubBdLnw9epDXowc9zzkHf0UFzW++ScDrTf/GAwfu9Vpeh1KiuZnG1atpralBD4WwmpqIh8NEIxES8TiGruMwDDTATCZJmSa2UhiaRigYJFBQQCIex7Ys9Ez5swHd4UDpevoyRB4PmmHgdLvRDINILJa+73Ix6gtfoN+ll9La0sKyBx9EN01wOjE8Hlx+P5XV1RQecwyewYMhL29/X+cTOnYuKqVY+sYbRJYsId7Whtvtpt83vkFpRQUrH38cAygoLydv1CjKRo/+TPv4thUraPjwQ6pOPhkjL4/Nzz1H8Qkn0OfMM9k5ZQqWz0evCRPSsyL2p6UlffP5oGfP3Mjf7hKRCOtffZW2BQtoq6nBk0hgJhLk9+hB7yuvxFyxgu3TplFQVoY1YADH/vjH+AoKUErx7n33kXj7bRzNzdjt7Tg1DWWakErhzASGlq5jGwb5/fqhKiqIL1+O3rMnZeeey4if/pSls2dT88QTDL74YoadfTabFi1i41/+AitW4I5EcGoamq5j+3w4AgGs6mqG/OxnFGVGV7NioRBv//CHWAsX4rdtXPF4bj0DLXOzUim8Lhcp00x3shpGeqaJrpPMXH9TGQa600mipITjH3+cgmHDqJszhz5f+hKtzc0U9ejB3D/8gbbHHsNXXk6fe+/FZRh89M1vkt/aSl5mdkFu5DszIm4YBo7CQozCQpzFxWjHHkvpVVelR2X3IrhzJwuuuw5t0SLc0Siaw4GeSOBOJIiXlGBqGkU7duDMXCLCcjhQLhfK7aatupoxr77KuvvuI/6Pf+A2TazM9V0LKyrQq6qonDgR4/zz03Xzfiz7y18I//e/uJub0eJxYtXVkJ+Pf80atEAA58iRDLnjDrRs/aMUHz38MF6fj0E/+AFLfvADrOnTcdg2yUGDGPDkkzgdDprffJN+3/se4dpaVnzrW7jWrMFtmriVwpHpdFaGQYp0pygOB61lZajrruOkyy8H22bqeedhbN1K9R13sOPXv6Zy61Y8to0/HqcYpI17GEhA2Il27NhB7969mTNnDieffHJu+x133MHTTz/N2j0sIHLrrbdy2223fWK7FBYhhBBCCNFVhM49l8Cbb0ob9zCQVUaPALuPXuw+bbKjG264gWAwmLtt7bDCmBBCCCGEEF3CCy90dgq6DbkwfScqKSnBMAzq6+t32d7Q0EBZWdkeX+N2u3FnlqsWQgghhBCiSzoMp3uINBkh7EQul4sTTjiBadOm7bJ92rRpu0whFUIIIfZlZ/vOzk6CEEKIo5SMEHay66+/nsmTJ3PiiSdy0kkn8de//pXa2lquvPLKzk6aEEKIo0T5feWoW2RJACGEEAdPAsJO9s1vfpPm5mZ+97vfUVdXx4gRI3jjjTeoqqrq7KQJIYQ4ili2haF3xtVbhRBCHM1kldGjXFe7DqEQnWX2ltmMrRyLy3Dt/8lCHGG02zTab2gnz3Xwl2gQQogjkbRxDx85h1AIIYBHFjzS6edhdfbni6NbLBXr7CSIw2TKmimc/8/zOzsZQoguQgJCIY4CMpD/+WuONXdqgzqSjPDD//2w0z5fHP1+N/N3Uld0Ex9s+4Cl9Us7OxlCiC5CAkIhjgL676Soft6ao83EzM4LCBsiDYST4U77fHF0+MOcP9AQadhlW1u8DYA/zf8TzbHmTkiVONxq2mo4pviYzk6GEKKLkFamEEeJo6nn/5QnT6E2WNvZyTgozbFm4qn4Lts6/ub/Xf1fbp1x6+f2+Q2RBsKJTx8Qnvn0mWwLbTuEKTowKxtWMr1mOq+te22X7dtD2w97WrqijvugrWx+9c6vqGmtyW2rC9dRdHdR7v6apjWHNX3i0Hq/9n0mvzx5v8+LmTEqCyppjkoHgNi7o6ndIDqXBITiM1vfvJ5QItTZyeiyklYS4BPBypGqMdLI3K1zj6p9ImbG0iOEu00ZPfbRY5m5eSanPXUav5/9e26beRsfbP3gkH++rWx2hHewNbSV9c3rD/r1W9q2MGPzDJbtXPaZGgCWbR3U81c2rGTEoyP44jNf5N1N7+a2L61fSuUDlaxrXkfVg1XYyv7UaerO5m+fT58H+uTuV95fCUBLrCW37Z1N7+zymoc+fGiXfEzZKd5Y/wbPLnv2c07t58u0zD2WvV9N+xXPL3+ecCJ8yBq/y3cuZ0ndkn0+Z2n9Ui7732VsD21nSd2Sg/7svy36W25kt6PTnjqN55Y9x7rmdft8vUIxonQEi+oWHdTniq5pRcMK1jevp6a1huU7l2NaJnXhOgJ3BVjduPpz//x4Kv6pZ9jUt9cf4tSIT0NWGT3KZVdgun7K9fQu7U0wHsw95jScQPrcJE3TcOpO2uJtuAwXDt1BxIxg2RYKhVN34jJcuB1utoe3k+/Mx1IWiVSCHr4eJFIJbGXjNJz08vfCbbjZEd7BpCGTuP+D+5m1ZRanVZ2GaZmU+kopyy9D13QiyQgKhVKKYCJIz7yeaGjYykahKHAXMLt2Nm3xNk7tcyqxVIxSXymapgHphnI8FSeRSmApiwJ3AV6Hl5ZYC+X55cRSMXxOH4lUgqgZJZgIkufMw+f0YSubYCKI3+UnYkbwOX25hpKmaWhouc/J/h9KhLCVTYG7gJSdwmW4aIu34XP6iJpRdE2n2FuMrWy2BLdQkV+R+56mbZLnzMNpOEnZKUzLRNM0DM1A13QM3cDQDDRNI5FKoGkaHoeHgDtAoacQp5HOgwJ3AU7dScSMsGD7ApbUL+H19a8D8JWBX2Fwj8H4XX4SVoL2ZDsuw4WhGUTMCEopXIYr/ZtYCQLuAJqmEUlGgHRwadomtrIp8hQRTobRNZ2oGcWpO3MrFKbsFCk7RYG7gMZIIwXuAjwOT24/ynPloaFRVVhFWV4ZHoeHpJXk+eXP8/CChwE4tuexFHoKGVA8gCJPEXmuPHaEd9CebMfv8u9xeXwNDUtZtCfbc3ltKQtb2aTsFBEzgqEZmLaJQ3fg0l0oVO51uqYTSoTwOX14HB4K3AW4DTcBTwBd0+nl74VTd3JM8TEMLx1OMBHk4fkPc9vM23JpuPfsexlXOQ7TNjnz6TMZ02sMQ0uH8sxHzwDwnWO/w9bgVk6oOAGFwm240TWd5lgzuqbjMlzomk48Fac92U6hpxCf04fX4aU0r5QiTxFuh5shJUPId+WzqnEVD8x7gGU7l9EQaeC48uMozy+nf2F/Snwlu5SbIm8RfpefPFcexd5inLqTqRumcvus23PpP7PfmVQWVNKnoA8O3UE4GcbQDCxloZQiaSWxlY3P6SOcDNPD24OIGaGmrYZ52+ZxychLsJVNviufsvwyNDRK80op9ZVSmldKRX4FfrefObVz+OIzX8RluPj1Kb+mMdLINWOvoT3Zzs/f/jkO3cEloy7hXyv/ha1syvPLqS6sxrItHLqDlJ0imAhS5CkiYSXIc+Zh2iahRIitoa0AnDfoPGZumYlDc5DvysdWNpaycuW4xFdC74LeNEYa2R7eTjwVx7RNvA4vBe4CIsl0uQc4q/9ZnNjrRP4w9w/EzBimbaKUygWruqZT6ClE07TcdkXmr1IoFJFkhGgqitfhJc+Zh0N34NAdxFIx4qk4ec48bGXj0B1YyiJlp/C7/LnfvsBdgKZp6JqO23DTFG0imAgyrnIcFfkVJK0kXqeXHt4eWMriN+/8hmAiyPvff5+athpGPjqSsZVjaY42s+rqVQBc8vIlNEWbmLphKmN7j+WasdfwyppXePqCp2mJtfC1l77GvG3zADi5z8n0L+pPeV45boc7l36H7kDXdNqT7bQn23Pf2aE7cBpOklaSeCpOyk7h1J20xlsp8ZUQNaMkrSSappG0kjh0B0qp3P6f58rD0Azchhu3w01jtDFdRnQXZ/U/i3MGnMOyncv454p/5uqhYm8xbsNNZUElXqeXmBljztY5PLf8OQBuO+M2rhpzFQXuAv666K/cPuv23BTaM/udSWleKVWBKhKpBDvadzCkxxAAVjetptBTiKEZ6TrWcOJz+oin4vhdfpyGk2A8SO+C3tw+63aUUtxw6g1sbN1Ie7IdDY3GaCM+p48vVX+Jp5Y+RdSMcmzZsbxf+z5fGfAV5m2fx/DS4eQ583AZrtwtYSXQNZ1SXykAjdFG7nz/Tm449Qa+VP2l3DF4XOU4AncFePmbL3P/vPu5fPTl9MzryZjeY/A6vLm63Of0cf4L5/PE+U/wrX9/i7L8MsrzynN5lbSSmJZJhb+ClJ0iz5lHyk7hc/rYEd5BTVsN14y9hnc2vcPyhuUUuAvwOXy5/UDX9Nx+mruPlquz25PtuePA6IrRPDz/YfJd+RR6Cpk0eBKza2cTNaO5Ojjb5nDoDrwOL82xZhoiDQwtGcrr618nz5XHVSdexZS1U6gN1qJQ9Pb3RiN9fM62IRSKtngb5fnltMZb0+0c3YlTd+bq3uxx1lY2boebUl8p9e31uWN+U7SJY4qPYWtwKw3RBuKpOIOKBzG6YjRvbnwz935Ow5mrc/KceXgcHgDyXHn4XX58Th8bWjbwbs27zN8+n1P6nsKYXmN4ZMEjXHzsxbgNN/0K+/H2prcpcBcQcAdw6A4Mzdil3Bl6+n62XCmlMHQDDQ2FYm3zWtyGm+GlwwHS5cORLh9O3YnX6WVJ3RIeXfgoS+qXcM6Ac2iONnPFCVfwo1d/xGWjL6OXvxcO3ZFrS3mdXjwOD7XBWnRNZ1zlOHRNpzXWyqrGVby67lVKfCWM6TWGsvwyAu4Ab296m1P6nILf5UfXdNY2r6WuvY6RPUdS7C3mpVUv4dAdnDfoPHaEd+S+l8/pw224MW2TRCqRazu0xltZUr+EIT2G8Mf5f+TbI75NwB2gPlJPRX4Fvf29cRpO3Ck3151xnawyehhIQHiUywaE7656F+VWFHmLcpVoNrhRKBKpBPmufAKeAIZmEEqEKHAXEEqEKPYWEzWjtCfbASjyFuUqwmzBzVY8Sim2BLcQT8Vx6A7er30/dxAoyy8jZafYEd5Byk4BpBvtmWX8s8FdNvjKBlLHFB9DXbgOAJfhojXeistwoZRC07RcYyJpJUnZKerb66kurKY2WIvP6csFB9mGeTwVR9d0nEY6APY6vOS58nLBUseDC7DL//mu/Nzvo2s6sVSMPGde7jVOw0l7sh1d0/G7/MRTcWxlo2s6HocH0zZzQXChpzDXsMw2YrP/x8wYAU+ASDJCe7KdYCKIaZkkrAShRIhgPIjTcDK291gApm6YypCSIVw09CJWNa7C0AychpNCTyHhRDqo87v9KKVI2Snak+0YukFTtAmPw4PLcOFxeHAb7lwDtjXWSpG3CF3TSdmpXEMOIJgI4nF4coEDpHsAswFFe7KdeCrO9vB2mqJNNEWbMDSDi0dezLDSYVz9+tX8Y9k/iN8UZ3toO8FEkPZkO739vclz5REzY7nfvCPLtoilYuS78nOflw2ms/nkcXhyQXbUjOby1NAMklYy18hrjjXnvle2LHy4/UPchpudkZ0s27kMl+HiyhOvZNGORdw0/SYAXv/O6yypW5JL858n/pmP6j/iuMeOA8D8PxNd01nVuCp30E7ZKfJd+bgNNyk7haUsPA4PHoeHtngbkWSElJ2iOdZMU7SJmBljwY4FGJpB30BfJo+aTO/7ezOybCRLr1iKrWxWNKwgYSVyDShDMwgmgoQSITa2bCSWimFoBl8Z+BWKvcUMeWQIVYEqNl+3me2hdL40RhupLEiPKmV/s5ZYC9tC26guqqaHtwet8Vb8Lj8tsRbq2+vxu/2U5ZURSoRyDfjGSCON0UYaI43UhmqJJCMcV34cl42+jHgqjqEbVD9UzY9P/DEaGr8d/1vu/+B+dkZ2ctnoyxhfNZ6NLRupa6/LNYiiZpSy/LJcAB81ozh0BwF3gMqCSl5a9RKTX57MvB/Oo6qwKlfush0CAOFEmG2hbfTM65kLIHRNJ5FKlyOPw0PCSqCU4u45d7OobhEPfvlBqouqcRkuNNL1kCK9X4cSody2jo3i7Lbs/pXtUEtaSTS0XF5ny51pmbkGX1u8DbfDnUuvrWwSVrqDze/yk+/KZ/72+bTEWtA0jZSdoinahK7pfHXoV6lrr+OX035Jz7yePHn+kxR6Crns1cu4+fSb6VPQh4v/ezEDigfw0IcPcVb/s5g2eRqvr3ud37z7G3r5e3HbGbcx8fmJtMRaaPplE4ZuUN9en6tPs51Xpm2mAwOnj3AiTJG3KFefaJqGz+nDqTsxbROPw0NTtCkXSDl1Z66OdzvSZcBtuHOdVNmA0u/249SdRM0ozy1/jv+t/R9+t5+/TPwLmqbhMlyEEiESqQTbQtuImlHcDjfHlR/HmqY1VAWqWNe8jhdXvUhduI6vD/s64yrH5cqmuiUdMOwI78C0TAb2GMiYv43hgsEX8IuTf5HrEGtPtmNaJs2xZjwOD5FkJFfXNUbTHWCmZWIpi17+XrlOwFWNqyj1lbKkfgkTB07k2WXPctvM23AaTi4ddSn3nH0PW9q25Do8skF0to5qjDRiKYsSXwkeh4fFdYtpjDTm6qoPtn3AiRUnct+X76Mp2sR/V/+X1lgr0zdPJ2JGuGjIRfxl0V/47rHfZf6O+bz67VfT9XU8SGO0MfdZ2U7CuvY6XIaLcCKMQ3fkOtqqi6o565mzGF81nnvOvod4Kk7UjObqS1vZu3SIZG+mZRJMBOnt742lLJqjzTy++HHuPvtu8px5NEQaeHbZs5za91R6F6QDulAihGmb6XrRtmiLt9Ezryc9fD34zTu/4YIhF3Bq31MZ+/hYbh5/M18b9jW8Tm9uFDzbnskGdD6nj6ZoEz18PdDQcnkaM2NYysptcxpO4qk4y3Yuo9RXSpG3iGA8yNDSobyx/g2GlgxlTO8xuA030zdPZ2XDSi4YcgFuhztXHqJmFMu2Pu4kyXQKhZNhwokw1UXVDC8dzuK6xVT4K6hprWFwyWBqg7UUegp5Z9M7XDv2WkzbJJwI58pb9pbtNErZKZJWMhc0ZttP2cA4nAxT316PUorWeCuNkUZCiRBRM4ppmwzuMZjzB5/Psp3LOLHXifx+9u95ceWLPHH+E3yh9xcY98Q4evt789vTfkuBu4BYKkbMjNHD14P2ZDsbWjaQslMUe4vp4e3BMcXHEIwHeWXNK5xWdRrhRJhjy45l2c5luY7u/kX9KfQUsqpxFTvbdzK4ZDCmZdISa6GqMH0d7ZSdIpKM5DpEfE5f7rcscBfkynN5fnmuU6kqUMXmts3UtdehofHAzAd4+dKXJSA8DCQgPMrJNVrEkejvS//O96d8H3XL0VG9JFIJNrZuZGPLRs4bfN4nHq8L19Hr/l4UeYpo+XXLHt7hs9Nu02j+VTPF3uJP9foHPniAhkgDd5515yFO2f7FU3G8v/di32znRt0f+OAB7ppzF9uv345Ddxz2NO0uG5hkg7OjSbZzLGtz22a++uJXGd93PKf3O53FdYu5fdbtXDDkAl7+5st7fI9fvP0L7p1w7+FK8gHJjvTuabbAgYokI1Q9WEVzrPmw1zcbWjZw5tNn8s7kd+hf1D83K+fTGvnoSH558i+ZPOqT5xDGzBgvrXqJU/qcwndf/i4Digfwjwv/8Zk+70iSslNHRD3RFYQSIWZvmc3EQRM7Oymf2ex1sxk/eLy0cQ8DKX1CiEOuh7dHZyfhoLgdboaVDmNY6bA9Pl6al57qNbhk8OeWhvqf13/qYBDgZyf97BCm5uB4HB5af926S9DSu6A3I3qOOGIaeZqmHZXBILDL7wrQr7Afz174LG9tfItJgyflFpLxu/x7fY8jLRiEzxYIZuW58mj6VVOnnGM9oHgAW3+29ZC936LLF+01qPQ6vVwy6hIg3eAPuAOH7HOPBEdKPdEVFLgLukQwCDCqfFRnJ6HbkBIohDjkzh14LquuWtXZyThkHLqDi4ZexDnHnPO5fUZZftnn9t6HQ6GncJf7A4oHcHrV6Z2TmG5gaOlQhpYOBdLTgWHfAWFXlz3H62h2oCOMlm3lplIKIcShIAGhEOKQc+iOXGO1q/jPN/7T2Uk4qoyuGM3x5cd3djK6hez5uH539w0Iu5N/f+PfR90sDCHEkU0CQiGEEJ+L3ac6is9HdimA7jxC2J2M6Dmis5MghOhi5DqEQgghxFFMoQi4A/x07E87OylCCCGOQhIQCiGEEEex7CV1CtyyCp8QQoiDJwGhEEIIcRRTqEOyYqcQQojuSQJCIYQQ4ih2zdhrmP+j+Z2dDCGEEEcpWVRGCCGEOIrlu/LJd+V3djKEEEIcpWSEUAghhBBCCCG6KQkIhRBCCCGEEKKbkoBQCCGEEEIIIbopCQiFEEIIIYQQopuSgFAIIYQQQgghuikJCIUQQgghhBCim5KAUAghhBBCCCG6KQkIhRBCCCGEEKKbkoBQCCGEEEIIIbopCQiFEEIIIYQQopuSgFAIIYQQQgghuilHZydAfHpKKUKhEEDurxBCCCGEEEe7bNtWKdXJKen6NCW/8lErFAoRCAQ6OxlCCCGEEEJ8LrZu3UplZWVnJ6NLk4DwKJYdIQyHw/j9fjRN6+wkfWqhUIg+ffqwdetWCgoKOjs54jCRfO+eJN+7L8n77knyvXv6rPmulCIcDtOrVy90Xc5y+zzJlNGjmKZpBAKBLjVKWFBQIAeLbkjyvXuSfO++JO+7J8n37umz5HtXauMeySTcFkIIIYQQQohuSgJCIYQQQgghhOimJCAURwS3280tt9yC2+3u7KSIw0jyvXuSfO++JO+7J8n37kny/eghi8oIIYQQQgghRDclI4RCCCGEEEII0U1JQCiEEEIIIYQQ3ZQEhEIIIYQQQgjRTUlAKIQQQgghhBDdlASE4rCZNWsW5513Hr169ULTNF555ZVdHldKceutt9KrVy+8Xi9nnHEGK1eu7JzEikNqf3n/ve99D03TdrmNGzeucxIrDpk777yTMWPG4Pf76dmzJxdccAFr167d5TlS7rueA8l3KfNdz6OPPsrIkSNzFyE/6aSTmDp1au5xKetd1/7yXsr7kU8CQnHYRCIRRo0axcMPP7zHx++55x7uv/9+Hn74YRYsWEB5eTlnn3024XD4MKdUHGr7y3uAc845h7q6utztjTfeOIwpFJ+HmTNncvXVVzNv3jymTZtGKpViwoQJRCKR3HOk3Hc9B5LvIGW+q6msrOSuu+5i4cKFLFy4kC9+8YtMmjQpF/RJWe+69pf3IOX9iKeE6ASAevnll3P3bdtW5eXl6q677spti8fjKhAIqL/85S+dkELxedk975VS6tJLL1WTJk3qlPSIw6ehoUEBaubMmUopKffdxe75rpSU+e6iqKhIPf7441LWu6Fs3isl5f1oICOE4ohQU1NDfX09EyZMyG1zu92cfvrpzJ07txNTJg6XGTNm0LNnTwYNGsRll11GQ0NDZydJHGLBYBCA4uJiQMp9d7F7vmdJme+6LMvihRdeIBKJcNJJJ0lZ70Z2z/ssKe9HNkdnJ0AIgPr6egDKysp22V5WVsaWLVs6I0niMDr33HP5+te/TlVVFTU1Nfzf//0fX/ziF1m0aBFut7uzkycOAaUU119/PaeeeiojRowApNx3B3vKd5Ay31UtX76ck046iXg8Tn5+Pi+//DLDhg3LBX1S1ruuveU9SHk/GkhAKI4omqbtcl8p9Yltouv55je/mft/xIgRnHjiiVRVVfH6669z0UUXdWLKxKHyk5/8hGXLlvH+++9/4jEp913X3vJdynzXNHjwYJYuXUpbWxv/+c9/uPTSS5k5c2bucSnrXdfe8n7YsGFS3o8CMmVUHBHKy8uBj0cMshoaGj7Royi6voqKCqqqqli/fn1nJ0UcAj/96U/53//+x/Tp06msrMxtl3Lfte0t3/dEynzX4HK5GDBgACeeeCJ33nkno0aN4qGHHpKy3g3sLe/3RMr7kUcCQnFEqK6upry8nGnTpuW2JZNJZs6cycknn9yJKROdobm5ma1bt1JRUdHZSRGfgVKKn/zkJ/z3v//lvffeo7q6epfHpdx3TfvL9z2RMt81KaVIJBJS1ruhbN7viZT3I49MGRWHTXt7Oxs2bMjdr6mpYenSpRQXF9O3b1+uu+467rjjDgYOHMjAgQO544478Pl8fOc73+nEVItDYV95X1xczK233spXv/pVKioq2Lx5MzfeeCMlJSVceOGFnZhq8VldffXVPP/880yZMgW/358bHQgEAni9XjRNk3LfBe0v39vb26XMd0E33ngj5557Ln369CEcDvPCCy8wY8YM3nzzTSnrXdy+8l7K+1Gi09Y3Fd3O9OnTFfCJ26WXXqqUSi9Bf8stt6jy8nLldrvV+PHj1fLlyzs30eKQ2FfeR6NRNWHCBFVaWqqcTqfq27evuvTSS1VtbW1nJ1t8RnvKc0A99dRTuedIue969pfvUua7ph/84AeqqqpKuVwuVVpaqr70pS+pt99+O/e4lPWua195L+X96KAppdThDECFEEIIIYQQQhwZ5BxCIYQQQgghhOimJCAUQgghhBBCiG5KAkIhhBBCCCGE6KYkIBRCCCGEEEKIbkoCQiGEEEIIIYTopiQgFEIIIYQQQohuSgJCIYQQQgghhOimJCAUQgghhBBCiG5KAkIhhBBCCCGE6KYkIBRCCCGEEEKIbkoCQiGEEEIIIYTopiQgFEIIIYQQQohuSgJCIYQQQgghhOimJCAUQgghhBBCiG5KAkIhhBBCCCGE6KYkIBRCCCGEEEKIbkoCQiGEEEIIIYTopiQgFEIIIYQQQohuSgJCIYQQQgghhOimJCAUQgghhBBCiG5KAkIhhBBCCCGE6KYkIBRCCCGEEEKIbur/B7gAbJGbwxYBAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p.SetMaxSinThetaOvLambda(0.2) # Important for stability of profile fit. And faster !\n", "spgex = SpaceGroupExplorer(pdiff)\n", "\n", "# NB:verbose C++ output does not appear in a notebook\n", "spgex.RunAll(keep_best=True, update_display=False, fitprofile_p1=False)\n", "\n", "for sol in spgex.GetScores():\n", " #if sol.nGoF > 4 * spgex.GetScores()[0].nGoF:\n", " if sol.GoF <= 2 * spgex.GetScores()[0].GoF:\n", " print(sol)\n", "\n", "print(\"Chosen spacegroup (smallest nGoF): \", c.GetSpaceGroup())\n", "\n", "# Updated plot with optimal spacegroup\n", "p.plot(diff=True, fig=None, hkl=True, reset=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add Cimetidine molecule to the crystal structure\n", "This is imported from a Fenske-Hall z-matrix, downloaded as needed.\n", "\n", "We can also look at options, and disable the Dynamical Occupancy Correction, because we don't expect the molecule atoms to be overlapping with each other." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Crystal Formula: C8.9 N6 S\n", "\n", "Option #0: Constrain Lattice to SpaceGroup Symmetry = Yes (Default)\n", " Choice 0: Yes (Default)\n", " Choice 1: No (Allow Crystallographic Pseudo-Symmetry)\n", "Option #1: Use Dynamical Occupancy Correction = Yes\n", " Choice 0: No\n", " Choice 1: Yes\n", "Option #2: Display Enantiomer = No\n", " Choice 0: No\n", " Choice 1: Yes\n" ] } ], "source": [ "if not os.path.exists(\"cime.fhz\"):\n", " os.system(\"curl -O https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-cimetidine/cime.fhz\")\n", "\n", "# This will automatically add the Molecule to the Crystal object\n", "m = ImportFenskeHallZMatrix(c,\"cime.fhz\")\n", "print(\"Crystal Formula:\", c.GetFormula())\n", "print()\n", "\n", "# List the options to see which are available\n", "for i in range(c.GetNbOption()):\n", " o = c.GetOption(i)\n", " print(\"Option #%d: %s = %s\"% (i, o.GetName(), o.GetChoiceName(o.GetChoice())))\n", " for j in range (o.GetNbChoice()):\n", " print(\" Choice %d: %s\" %(j, o.GetChoiceName(j)))\n", "\n", "\n", "c.GetOption(1).SetChoice(0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a MonteCarlo object and add objects (crystal, powder pattern) for optimisation" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "mc = MonteCarlo()\n", "mc.AddRefinableObj(c)\n", "mc.AddRefinableObj(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Disable profile fitting before Monte-Carlo\n", "..or else the crystal structure will not be optimised\n", "\n", "Note that the following display will be live-updated during the optimisation done below (the last plot is alwasy updated)." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "77f6fca9951e478dbd016ed5226eb856", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACwuElEQVR4nOzdeVxU5f4H8A/7JowgIlKKlkkoluYKZO6oV9S0wi6KUkYLFdcLqZlamqXe3LX0ltdcENOrZW5dxeWKC2Io0AWVstIAFTd2ZWd+f/A7p5lhZpiVYZjP+/XipZx5ZuaZw5yZ8z3f5/k+VlKpVAoiIiIiIiKyONam7gARERERERGZBgNCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIiIiIgsFANCIiIiIiIiC8WAkIiIiIiIyEIxICQiIiIiIrJQDAiJiIhagMmTJ5u6C0REZIZsTd0BIiIi0tysWbMabJNKpUhOTjZBb4iIyNwxICQiIjIjCQkJ2LFjR4Pt//3vf03QGyIiMncMCImIiMzIq6++Cn9/f3h5ecltnzp1qol6RERE5sxKKpVKTd0JIiIiIiIianosKkNERERERGShGBASERERERFZKAaEREREZi49Pd3UXSAiIjPVogLCU6dOYezYsfDx8YGVlRW+//57udutrKyU/ixbtkxsM3jw4Aa3v/zyy3KPU1hYiIiICEgkEkgkEkRERKCoqEiuTU5ODsaOHQsXFxd4enoiJiYGVVVVcm0yMzMxaNAgODk54ZFHHsHHH38MTukkIiJ11q9fL/fzxRdfICIiAuvXrzd114iIyAy1qCqjDx48wNNPP41XXnkFL7zwQoPbb926Jff7f/7zH0yfPr1B26ioKHz88cfi705OTnK3h4eHIy8vD4cPHwYAvP7664iIiMCBAwcAALW1tRgzZgzatm2LM2fO4P79+5g2bRqkUinWrVsHACgpKcGIESMwZMgQpKam4pdffkFkZCRcXFwQFxen/84gIqIW6YsvvoCvry/CwsJgZWUFALC2tkarVq1M3DMiIjJHLbbKqJWVFfbu3Yvnn39eZZvnn38epaWlOH78uLht8ODB6NmzJ1avXq30PleuXEG3bt2QkpKC/v37AwBSUlIQGBiI7Oxs+Pn54T//+Q9CQ0ORm5sLHx8fAMDOnTsRGRmJO3fuwM3NDRs2bMCcOXNw+/ZtODg4AACWLl2KdevWIS8vT/ySV0cqlaKkpASlpaVwdXXV6D5ERGTepFIp9uzZg++//x4TJkzAxIkTERYWhj179pi6a0REBiOVSlFaWgofHx9YW7eoQY3Nj7SFAiDdu3evytvz8/Oltra20oSEBLntgwYNknp6ekrbtGkj7datmzQuLk5aUlIi3r5p0yapRCJp8HgSiUT69ddfS6VSqXT+/PnSp556Su72goICKQDpiRMnpFKpVBoRESEdN26cXJu0tDQpAOnvv/+ust8VFRXS4uJiaXFxsTQ3N1cKgD/84Q9/+MMf/vCHP/xpkT+5ubkqz4vJMFrUkFFtbN26Fa6urpg4caLc9smTJ6Nz587w9vZGVlYW5syZg59++glHjx4FAOTn5zdYDBgAvLy8kJ+fL7Zp166d3O3u7u6wt7eXa9OpUye5NsJ98vPz0blzZ6X9XrJkCRYuXNhge25uLtzc3DR45URE1JLU1dXh9u3baN++vam7QkRkMCUlJejQoQNcXV1N3ZUWz2IDwq+//hqTJ0+Go6Oj3PaoqCjx/wEBAXjiiSfQp08fpKWl4ZlnngEApUMzpVKp3HZd2kj/f/SuuqGfc+bMQWxsrPi7cLC4ubnBzc0NJ0+eRFhYGNq0aYO2bdsiMzNTDC5ramrEwHTXrl2ws7PD8OHDcenSJXz//fdYsmQJampqMG7cOMTFxeGHH37AJ598Amtra1RVVeHBgwfIyspCSEgIkpKSsGHDBkyfPh0nT57EokWLkJWVhVWrViE8PFzsX25uLl555RVUV1ejvLwcAQEBOHjwIMrKyjB37lzMnTsXffv2RUZGBvz9/dG5c2dcvnwZq1evxpgxY9CnTx+4u7sjNTUV27dvR2hoqNz+uHjxImbMmAFra2u0a9cOfn5++P7773H37l0UFBTgo48+wty5c8X2s2fPxtSpU9G9e3fMmDEDS5Yswa5du1BWVoZ33nkHQP38nGXLlqFPnz7iEKwdO3bggw8+wOeff96gD8pUVFRg1KhROHnypNLbtX08IiJ1WrdubeouEBEZBadEGZ9FDsg9ffo0fv75Z7z22muNtn3mmWdgZ2eHq1evAgC8vb1x+/btBu3u3r0rZvi8vb3FTKCgsLAQ1dXVatvcuXMHABpkF2U5ODiIwZ/wI6u4uBi2trY4e/YsTp06BX9/f2zYsAEzZ87EH3/8gWPHjiEsLAzx8fFwcnLCwYMH8eKLL+Jf//oXPvjgAyQlJSEpKQk3btxAQEAATp06hTNnzqC8vBwVFRU4cOAAtm3bhq5duwKoD3xWrFiBQ4cOITAwUC4YBIC1a9fi73//O5KSkpCcnIwPPvgAa9aswaOPPioGat27d8df/vIXbN++HRkZGZg6dSrGjBkjPsa2bdswY8YMpfvjkUcewZEjR5CUlIQuXbogOzsbS5YsQXp6OiIjI5GSkiLX/vLly+jevTsAYPXq1Q0KBgHASy+9JDevFKgvJBQZGany76ItQz8eEREREZEuLDIg3LRpE3r37o2nn3660baXLl1CdXW1OBQnMDAQxcXF+PHHH8U258+fR3FxMYKCgsQ2WVlZclVNExMT4eDggN69e4ttTp06JbcURWJiInx8fBoMJdVGSkoKnnzySXh4eAAA7O3t0b17dwQEBMDZ2RkFBQUoKipC27ZtYWtri7Zt2wIA8vLy0LNnTwDAU089hXPnzqFjx46wta1PIltbWyM8PByrVq2SG5aUnJwMJycnDBo0CL/88gvy8/Px6aefIigoCIMGDcKDBw9w5swZFBUVwdbWFl26dFF5pcfa2hrt27dHcXGx3HbZ57t37x6ef/55DB06FFOmTEHbtm3h7OwMALCzsxMnHbdv3x7l5eViwZ64uDgEBgbi/PnzyMjIwObNm+Hm5obg4GBcvnxZ7vm8vLywd+9eJCcnY8yYMQgODkZ8fDwSEhLw/vvvo7KyEjU1NQgPD8egQYPwl7/8BQUFBQCAt99+G4MGDcJHH30kPt6FCxcwZMgQDBw4EMuXL9fir0lEpDnFi4xERESaaFEBYVlZGTIyMpCRkQEAuHbtGjIyMpCTkyO2KSkpwe7du5VmB3/77Td8/PHHuHDhAq5fv44ffvgBL730Enr16oXg4GAAgL+/P0aNGoWoqCikpKQgJSUFUVFRCA0NhZ+fHwAgJCQE3bp1Q0REBNLT03H8+HG89957iIqKEjN64eHhcHBwQGRkJLKysrB3714sXrwYsbGxeqXGCwoKlJYel0gkKCoqwrBhw7Bt27YG1Vcfe+wxnDhxAjU1NTh58qTcuooXL17Ew4cP0b9/fzz++OM4ffq0eNvt27dx7do1jBgxAtHR0Xj33Xdx4cIFnD17FklJSVi6dClqa2sRGBiIUaNGiVlQZSoqKpCbm4s2bdqobLN06VLExMTgxIkT6NWrF/bu3Qugft3HY8eOoWvXrpgzZw6CgoJw8OBB9OrVCwCwaNEivP7665gzZw4WLVqEf/3rX+jZsyeOHDmCJ598UulzOTg44NChQxg6dCjS0tIwefJkPP7440hKSsLevXvRsWNHJCUl4a9//SvWrVuHCxcuoLCwEElJSRg+fLj4OLNnz8Z3332H06dP4+zZs0ozzERE+po6daqpu0BERGaoRc0hFDIxAmGu3bRp07BlyxYA9cs/SKVS/PWvf21wf3t7exw/fhxr1qxBWVkZOnTogDFjxuCjjz6CjY2N2C4hIQExMTEICQkBAIwbNw6ff/65eLuNjQ0OHTqE6OhoBAcHw8nJCeHh4XLZIYlEgqNHj+Ltt98W58nFxsbKzQ/URZs2bcThrYLRo0cjPz8fEydOREJCAr777jt8/PHHWLp0qdjmtddew5o1a7Bx40Z06NAB3t7eAOozh3/729/EAHLmzJmYOXOmeL/WrVvj2WefRWZmJubNm4cvvvgC06dPF4NaNzc3fPbZZ/jss8+wefNmrFq1Smlm9uzZs3jjjTcQEhKidvLw5cuXcf78eXz88ccoLy9HREQESkpKEBERgc2bN2PHjh1YsmQJQkNDMWPGDBw8eBBz587FihUrsG7dOnTp0gWVlZViFheAylLGEokEQP2wVAcHB/zxxx9o06YNCgsLce3aNfTt2xcA0LdvXyQmJuLXX38VM8D9+vUTHyczMxMTJkwAUD90ODc3V+2wYCIidWQ/XwRSqbTBZz8RmUZtbS2qq6tN3Y1mz87OTu78mkynRQWEgwcPFguzqPL666/j9ddfV3pbhw4dkJSU1OjzeHh4YPv27WrbdOzYEQcPHlTbpkePHjh16lSjz6eNAQMGYMuWLSgoKICHhweqq6uxcuVKpKWloba2FkB9ECebAQTqX9O3336L2tpaTJo0CYMHD0ZZWRnCw8Pxz3/+Uyyu4ufnBzs7OzHT169fPyxbtgydO3dGRkYGnnjiCSQnJ4uPe/XqVTz++OOwtraGl5cXsrOzlfY7ODgYn376KS5cuICysjKVr+/JJ5/EhAkTMHDgQAD1WcWXXnoJH374oTivUeDs7IyHDx/i/v37OHDgAJ599lksWLAAb775JjIyMsQPobq6OqXPpaoAkFQqRZcuXZCamooXXngBqampeOKJJ9ClSxfxb37hwgWx/dNPP409e/ZAIpGgtraWa+kQkV5KS0uRmZkpDukXjBgxwkQ9IiKg/vwgPz+/wTkWqda6dWt4e3uzcIyJtaiAkOozcs899xxefPFF1NbW4vLly7CxscHkyZPx17/+FXv27EFNTQ2+/vprAPWBa01NDc6fPw8A8PHxwaxZs9CqVSssWbIEv/32G9555x1cv34dDg4OCA0NRVVVFe7evYsVK1bg7t278PX1RXJyMn777Td8/fXXSEhIQGBgIJycnDB48GAcPHgQzs7OsLe3x7PPPotPPvkEeXl5+Otf/4pvvvlG7espKSmBj48PCgsL4eTkhHfeeQerVq0S5+gNGzYMycnJKC0txaJFi+Dp6Ylvv/0W0dHRuHfvHry8vLBo0SLY29sjIyMDO3bsgL29PSIiIvD3v/8dY8aMQf/+/dGxY0fxOXfu3ImvvvoK+fn5GD58eIOlSQDg+eefx3fffYfnnnsOLi4uSEhIgIeHh7j/+/fvL7ZdunQpJk6ciLq6Otjb2+P7779XWsyGiEgTixcvRmlpKdzd3eW2z5s3z0Q9IiIAYjDo5eUFZ2dnBjlqSKVSPHz4UEwwcNkc07KSNpZSo2atpKQEEokExcXFcHNzQ0pKCt544w3ExMRg+vTpTdKHI0eOoF+/fg1OTlTJy8vDyJEjER4ejrlz52LlypX4+uuv8d133+F///sflixZgo8//liu0qi+zp8/Dy8vL5XrOzZmx44d+Oyzz7By5UoMHTpU7/4Y+vGIyHJlZ2ernAtNRE2jtrYWv/zyC7y8vNTWQiB59+/fx507d9C1a9cGw0cVz3HJeBgQmjkeLERElm3o0KE4ceKEqbtBZNEqKipw7do1dOrUiaOAtFBeXo7r16+jc+fODdYG5zlu0+FkJiIiIjNmZ2dn6i4Q0f/jMFHtcH81DwwIiYiIzNiRI0dM3QUiIjJjDAiJiIjMWF1dHWbOnKl2nVciIl2cPHkSVlZWrJzawrHKKBERkRm7fPkyli9fjoKCAmzatMnU3SEiIjPDDCEREZEZE2rDcY1TIiLSBb89iIiIzFhdXR0ABoREpJvKykrExMTAy8sLjo6OePbZZ5GamirX5uzZs3j66afh6OiI/v37IzMzU7ztjz/+wNixY+Hu7g4XFxd0794dP/zwQ1O/DNIDvz2IiIjMmBAQslofEeli1qxZ+Pbbb7F161akpaWhS5cuGDlyJAoKCsQ2M2fOxPLly5GamgovLy+MGzcO1dXVAIC3334blZWVOHXqFDIzM/GPf/wDrVq1MtXLIR1wDiEREZEZ45BRoubr4cOHyM7ObvLnffLJJ+Hs7NxouwcPHmDDhg3YsmULRo8eDQDYuHEjjh49ik2bNqFv374AgI8++ggjRowAAGzduhWPPvoo9u7di7CwMOTk5OCFF15Ajx49AACPPfaYkV4VGQsDQiIiIjPGIaNEzVd2djZ69+7d5M978eJFPPPMM422++2331BdXY3g4GBxm52dHfr164crV66IAWFgYKB4u4eHB/z8/HDlyhUAQExMDN566y0kJiZi+PDheOGFF/DUU08Z+BWRMTEgJCIiMmMMCImaryeffBIXL140yfNqQhhhoDjkXCqVNjoMXbj9tddew8iRI3Ho0CEkJiZiyZIlWLFiBd59910dek6mwICQiIjIjKk6oSMi03N2dtYoU2cqXbp0gb29Pc6cOYPw8HAAQHV1NS5cuIAZM2aI7VJSUtCxY0cAQGFhIX755Re5oLNDhw5488038eabb2LOnDnYuHEjA0IzwoCQiIjIjDEgJCJdubi44K233sLMmTPh4eGBjh074rPPPsPDhw8xffp0/PTTTwCAjz/+GG3atEG7du0wd+5ceHp64vnnnwcAzJgxA6NHj0bXrl1RWFiIEydOwN/f34SvirTFgJCIiMiMccgoEelj6dKlqKurQ0REBEpLS9GnTx8cOXIE7u7ucm3+9re/4erVq3j66aexf/9+2NvbAwBqa2vx9ttvIy8vD25ubhg1ahRWrVplqpdDOmBASEREZMYYEBKRPhwdHbF27VqsXbu2wW2DBw8WRyGEhoYqvf+6deuM2j8yPn57EBERmTEOGSUiIn0wICQiIjJjzBASEZE++O1BRERkxhgQEhGRPvjtQUREZMaEgJBDRomISBcMCImIiMwY5xASEZE+GBASERGZMSEg5JBRIiLSBb89iIiIzFhtbS0ABoRERKQbfnsQERGZMQaERESkD357EBERmTEhIOQcQiJqagsWLEDPnj1N3Q3SEwNCIiIiM8YMIRER6YPfHkRERGaMASEREemD3x5ERERmjOsQEpE+6urq8I9//ANdunSBg4MDOnbsiE8//RQAMHv2bHTt2hXOzs547LHHMH/+fFRXV6t9vK+//hrdu3eHg4MD2rdvj3feeacpXgbpwdbUHSAiIiLdCQEhEZEu5syZg40bN2LVqlV49tlncevWLWRnZwMAXF1dsWXLFvj4+CAzMxNRUVFwdXXFrFmzlD7Whg0bEBsbi6VLl2L06NEoLi7G2bNnm/LlkA4YEBIREbUAwnqERESaKi0txZo1a/D5559j2rRpAIDHH38czz77LABg3rx5YttOnTohLi4Ou3btUhkQfvLJJ4iLi8Pf/vY3cVvfvn2N+ArIEFrUkNFTp05h7Nix8PHxgZWVFb7//nu52yMjI2FlZSX3M2DAALk2lZWVePfdd+Hp6QkXFxeMGzcOeXl5cm0KCwsREREBiUQCiUSCiIgIFBUVybXJycnB2LFj4eLiAk9PT8TExKCqqkquTWZmJgYNGgQnJyc88sgj+Pjjj/mFTkREWuH3BlEz9vAhkJbW9D8PH2rUvStXrqCyshLDhg1TevuePXvw7LPPwtvbG61atcL8+fORk5OjtO2dO3dw8+ZNlY9FzVeLyhA+ePAATz/9NF555RW88MILStuMGjUKmzdvFn+3t7eXu33GjBk4cOAAdu7ciTZt2iAuLg6hoaG4ePEibGxsAADh4eHIy8vD4cOHAQCvv/46IiIicODAAQD1E/zHjBmDtm3b4syZM7h//z6mTZsGqVSKdevWAQBKSkowYsQIDBkyBKmpqfjll18QGRkJFxcXxMXFGXzfEBFRyyQEhAwMiZqh7Gygd++mf96LF4Fnnmm0mZOTk8rbUlJS8PLLL2PhwoUYOXIkJBIJdu7ciRUrVmj9WNS8taiAcPTo0Rg9erTaNg4ODvD29lZ6W3FxMTZt2oT4+HgMHz4cALB9+3Z06NABx44dw8iRI3HlyhUcPnwYKSkp6N+/PwBg48aNCAwMxM8//ww/Pz8kJibi8uXLyM3NhY+PDwBgxYoViIyMxKeffgo3NzckJCSgoqICW7ZsgYODAwICAvDLL79g5cqViI2NZXEAIiLSCANBombsySfrgzNTPK8GnnjiCTg5OeH48eN47bXX5G47e/YsfH19MXfuXHHbH3/8ofKxXF1d0alTJxw/fhxDhgzRrd9kEi0qINTEyZMn4eXlhdatW2PQoEH49NNP4eXlBQC4ePEiqqurERISIrb38fFBQEAAkpOTMXLkSJw7dw4SiUQMBgFgwIABkEgkSE5Ohp+fH86dO4eAgAAxGASAkSNHorKyEhcvXsSQIUNw7tw5DBo0CA4ODnJt5syZg+vXr6Nz585K+19ZWYnKykrx95KSEoPtGyIiMj8MCImaMWdnjTJ1puLo6IjZs2dj1qxZsLe3R3BwMO7evYtLly6hS5cuyMnJwc6dO9G3b18cOnQIe/fuVft4CxYswJtvvgkvLy+MHj0apaWlOHv2LN59990mekWkixY1h7Axo0ePRkJCAk6cOIEVK1YgNTUVQ4cOFQOs/Px82Nvbw93dXe5+7dq1Q35+vthGCCBleXl5ybVp166d3O3u7u6wt7dX20b4XWijzJIlS8S5ixKJBB06dNBmFxARUQvFwJCIdDF//nzExcXhww8/hL+/PyZNmoQ7d+5g/Pjx+Pvf/4533nkHPXv2RHJyMubPn6/2saZNm4bVq1dj/fr16N69O0JDQ3H16tUmeiWkK4vKEE6aNEn8f0BAAPr06QNfX18cOnQIEydOVHk/qVQqN4RT2XBOQ7QRvszVDRedM2cOYmNjxd9LSkoYFBIRWTDOISQifVhbW2Pu3LlyQ0MFn332GT777DO5bTNmzBD/v2DBAixYsEDu9jfeeANvvPGGMbpKRmJRGUJF7du3h6+vr3jlwtvbG1VVVSgsLJRrd+fOHTF75+3tjdu3bzd4rLt378q1UczyFRYWorq6Wm2bO3fuAECDzKEsBwcHuLm5yf0QEZHlYiBIRET6sOiA8P79+8jNzUX79u0BAL1794adnR2OHj0qtrl16xaysrIQFBQEAAgMDERxcTF+/PFHsc358+dRXFws1yYrKwu3bt0S2yQmJsLBwQG9/7/SVGBgIE6dOiW3FEViYiJ8fHzQqVMno71mIiJqWRgQEhGRPlpUQFhWVoaMjAxkZGQAAK5du4aMjAzk5OSgrKwM7733Hs6dO4fr16/j5MmTGDt2LDw9PTFhwgQAgEQiwfTp0xEXF4fjx48jPT0dU6ZMQY8ePcSqo/7+/hg1ahSioqKQkpKClJQUREVFITQ0FH5+fgCAkJAQdOvWDREREUhPT8fx48fx3nvvISoqSszohYeHw8HBAZGRkcjKysLevXuxePFiVhglIiKtMCAkIiJ9tKg5hBcuXJArcyvMtZs2bRo2bNiAzMxMbNu2DUVFRWjfvj2GDBmCXbt2wdXVVbzPqlWrYGtri7CwMJSXl2PYsGHYsmWLuAYhACQkJCAmJkasRjpu3Dh8/vnn4u02NjY4dOgQoqOjERwcDCcnJ4SHh2P58uViG4lEgqNHj+Ltt99Gnz594O7ujtjYWLn5gURERJpiYEhERLpoUQHh4MGD1X4hHjlypNHHcHR0xLp168QF5JXx8PDA9u3b1T5Ox44dcfDgQbVtevTogVOnTjXaJyIiIlVYVIaIiPTRooaMEhERWRoGgkTNB49H7XB/NQ8MCImIiMwYT6iITM/Ozg4A8PDhQxP3xLwI+0vYf2QaLWrIKBERkaXhkFEi07OxsUHr1q3FJcScnZ1ZJFANqVSKhw8f4s6dO2jdurVcrQ5qegwIiYiIWgAGhESm5e3tDeDPdaWpca1btxb3G5kOA0IiIiIzxgwhUfNgZWWF9u3bw8vLC9XV1abuTrNnZ2fHzGAzwYCQiIjIjDEgJGpebGxsGOiQWWFRGSIiIjPGgJCIiPTBgJCIiMiMCYFgXV2diXtCRETmiAEhERGRGWOGkIiI9MGAkIiIqAVgQEhERLpgQEhERGTGmCEkIiJ9MCAkIiIyY5xDSERE+mBASEREZMaYISQiIn0wICQiIjJjDAiJiEgfDAiJiIhaAA4ZJSIiXTAgJCIiMmPMDBIRkT4YEBIREZkxDhklIiJ9MCAkIiIyYwwIiYhIHwwIiYiIzBgDQiIi0gcDQiIiohaAASEREemCASEREZEZYyBIRET6YEBIRERkxjhklIiI9MGAkIiIyIwxICQiIn0wICQiIjJjDAiJiEgfDAiJiIhaAAaERESkCwaEREREZoyBIBER6YMBIRERkRnjkFEiItIHA0IiIiIzxoCQiIj0wYCQiIjIjDEgJCIifTAgJCIiIiIislAtKiA8deoUxo4dCx8fH1hZWeH7778Xb6uursbs2bPRo0cPuLi4wMfHB1OnTsXNmzflHmPw4MGwsrKS+3n55Zfl2hQWFiIiIgISiQQSiQQREREoKiqSa5OTk4OxY8fCxcUFnp6eiImJQVVVlVybzMxMDBo0CE5OTnjkkUfw8ccf8wovERFphRlCIiLSR4sKCB88eICnn34an3/+eYPbHj58iLS0NMyfPx9paWn47rvv8Msvv2DcuHEN2kZFReHWrVviz5dffil3e3h4ODIyMnD48GEcPnwYGRkZiIiIEG+vra3FmDFj8ODBA5w5cwY7d+7Et99+i7i4OLFNSUkJRowYAR8fH6SmpmLdunVYvnw5Vq5cacA9QkRELR0DQiIi0oetqTtgSKNHj8bo0aOV3iaRSHD06FG5bevWrUO/fv2Qk5ODjh07itudnZ3h7e2t9HGuXLmCw4cPIyUlBf379wcAbNy4EYGBgfj555/h5+eHxMREXL58Gbm5ufDx8QEArFixApGRkfj000/h5uaGhIQEVFRUYMuWLXBwcEBAQAB++eUXrFy5ErGxsbCysjLELiEiohaOASEREemjRWUItVVcXAwrKyu0bt1abntCQgI8PT3RvXt3vPfeeygtLRVvO3fuHCQSiRgMAsCAAQMgkUiQnJwstgkICBCDQQAYOXIkKisrcfHiRbHNoEGD4ODgINfm5s2buH79uhFeLRERtUQMCImISB8tKkOojYqKCrz//vsIDw+Hm5ubuH3y5Mno3LkzvL29kZWVhTlz5uCnn34Ss4v5+fnw8vJq8HheXl7Iz88X27Rr107udnd3d9jb28u16dSpk1wb4T75+fno3Lmz0n5XVlaisrJS/L2kpETLV05ERERERFTPIgPC6upqvPzyy6irq8P69evlbouKihL/HxAQgCeeeAJ9+vRBWloannnmGQBQOpxTKpXKbdeljXB1V91w0SVLlmDhwoXqXh4REVkQZgiJiEgfFjdktLq6GmFhYbh27RqOHj0qlx1U5plnnoGdnR2uXr0KAPD29sbt27cbtLt7966Y4fP29hYzgYLCwkJUV1erbXPnzh0AaJBdlDVnzhwUFxeLP7m5uY28YiIiaskYEBIRkT4sKiAUgsGrV6/i2LFjaNOmTaP3uXTpEqqrq9G+fXsAQGBgIIqLi/Hjjz+Kbc6fP4/i4mIEBQWJbbKysnDr1i2xTWJiIhwcHNC7d2+xzalTp+SWokhMTISPj0+DoaSyHBwc4ObmJvdDRESWiwEhERHpo0UFhGVlZcjIyEBGRgYA4Nq1a8jIyEBOTg5qamrw4osv4sKFC0hISEBtbS3y8/ORn58vBmW//fYbPv74Y1y4cAHXr1/HDz/8gJdeegm9evVCcHAwAMDf3x+jRo1CVFQUUlJSkJKSgqioKISGhsLPzw8AEBISgm7duiEiIgLp6ek4fvw43nvvPURFRYkBXHh4OBwcHBAZGYmsrCzs3bsXixcvZoVRIiLSCgNBIiLSR4sKCC9cuIBevXqhV69eAIDY2Fj06tULH374IfLy8rB//37k5eWhZ8+eaN++vfgjVAe1t7fH8ePHMXLkSPj5+SEmJgYhISE4duwYbGxsxOdJSEhAjx49EBISgpCQEDz11FOIj48Xb7exscGhQ4fg6OiI4OBghIWF4fnnn8fy5cvFNsIyGHl5eejTpw+io6MRGxuL2NjYJtpbRETUEjBDSERE+mhRRWUGDx6s9guxsS/LDh06ICkpqdHn8fDwwPbt29W26dixIw4ePKi2TY8ePXDq1KlGn4+IiKgxDAiJiEgXLSpDSEREZGmYISQiIn0wICQiIjJjDAiJiEgfDAiJiIjMGANBIiLSBwNCIiIiM8YMIRER6YMBIRERUQvAgJCIiHTBgJCIiMiMMUNIRET6YEBIRERkxhgIEhGRPhgQEhERmTFmCImISB8MCImIiMwYA0IiItIHA0IiIqIWgAEhERHpggEhERGRGWOGkIiI9MGAkIiIyIwxECQiIn0wICQiIjJjzBASEZE+GBASERGZMQaERESkDwaERERELQADQiIi0gUDQiIiIjPGDCEREemDASEREZEZYyBIRET6YEBIRERkxpghJCIifTAgJCIiMmMMCImISB8MCImIiFoABoRERKQLBoRERERmjIEgERHpgwEhERGRGeOQUSIi0gcDQiIiIjPGgJCIiPTBgJCIiMiMMSAkIiJ9MCAkIiJqARgQEhGRLhgQEhERmTEGgkREpA8GhERERGaMQ0aJiEgfDAiJiIjMGANCIiLSBwNCIiIiM8aAkIiI9MGAkIiIyIwxECQiIn0wICQiImoBGBgSEZEuWlRAeOrUKYwdOxY+Pj6wsrLC999/L3e7VCrFggUL4OPjAycnJwwePBiXLl2Sa1NZWYl3330Xnp6ecHFxwbhx45CXlyfXprCwEBEREZBIJJBIJIiIiEBRUZFcm5ycHIwdOxYuLi7w9PRETEwMqqqq5NpkZmZi0KBBcHJywiOPPIKPP/6YX+hERKQVDhklIiJ9tKiA8MGDB3j66afx+eefK739s88+w8qVK/H5558jNTUV3t7eGDFiBEpLS8U2M2bMwN69e7Fz506cOXMGZWVlCA0NRW1trdgmPDwcGRkZOHz4MA4fPoyMjAxERESIt9fW1mLMmDF48OABzpw5g507d+Lbb79FXFyc2KakpAQjRoyAj48PUlNTsW7dOixfvhwrV640wp4hIqKWigEhERHpRdpCAZDu3btX/L2urk7q7e0tXbp0qbitoqJCKpFIpP/85z+lUqlUWlRUJLWzs5Pu3LlTbHPjxg2ptbW19PDhw1KpVCq9fPmyFIA0JSVFbHPu3DkpAGl2drZUKpVKf/jhB6m1tbX0xo0bYptvvvlG6uDgIC0uLpZKpVLp+vXrpRKJRFpRUSG2WbJkidTHx0daV1en8essLi6WAhAfl4iILMsrr7wiBSAdMmSIqbtCRGQwPMdtOi0qQ6jOtWvXkJ+fj5CQEHGbg4MDBg0ahOTkZADAxYsXUV1dLdfGx8cHAQEBYptz585BIpGgf//+YpsBAwZAIpHItQkICICPj4/YZuTIkaisrMTFixfFNoMGDYKDg4Ncm5s3b+L69euG3wFERNQiSZkZJCIiPVhMQJifnw8AaNeundz2du3aibfl5+fD3t4e7u7uatt4eXk1eHwvLy+5NorP4+7uDnt7e7VthN+FNspUVlaipKRE7oeIiIiBIRER6cJiAkKBlZWV3O9SqbTBNkWKbZS1N0Qb4ctcXX+WLFkiFrORSCTo0KGD2r4TEVHLJuUcQiIi0oPFBITe3t4AGmbf7ty5I2bmvL29UVVVhcLCQrVtbt++3eDx7969K9dG8XkKCwtRXV2tts2dO3cANMxiypozZw6Ki4vFn9zcXPUvnIiIWjQGhEREpA+LCQg7d+4Mb29vHD16VNxWVVWFpKQkBAUFAQB69+4NOzs7uTa3bt1CVlaW2CYwMBDFxcX48ccfxTbnz59HcXGxXJusrCzcunVLbJOYmAgHBwf07t1bbHPq1Cm5pSgSExPh4+ODTp06qXwdDg4OcHNzk/shIiLLxUCQiIj00aICwrKyMmRkZCAjIwNAfSGZjIwM5OTkwMrKCjNmzMDixYuxd+9eZGVlITIyEs7OzggPDwcASCQSTJ8+HXFxcTh+/DjS09MxZcoU9OjRA8OHDwcA+Pv7Y9SoUYiKikJKSgpSUlIQFRWF0NBQ+Pn5AQBCQkLQrVs3REREID09HcePH8d7772HqKgoMYALDw+Hg4MDIiMjkZWVhb1792Lx4sWIjY1tdAgrERGRgBlCIiLSh62pO2BIFy5cwJAhQ8TfY2NjAQDTpk3Dli1bMGvWLJSXlyM6OhqFhYXo378/EhMT4erqKt5n1apVsLW1RVhYGMrLyzFs2DBs2bIFNjY2YpuEhATExMSI1UjHjRsnt/ahjY0NDh06hOjoaAQHB8PJyQnh4eFYvny52EYikeDo0aN4++230adPH7i7uyM2NlbsMxERkTYYEBIRkS6spPwGMWslJSWQSCQoLi7m8FEiIgs0ZcoUJCQkIDg4GGfOnDF1d4iIDILnuE2nRQ0ZJSIisjQcMkpERPpgQEhERGTGGAgSEZE+GBASERGZMWYIiYhIHwwIiYiIWgAGhEREpAsGhERERGaMGUIiItIHA0IiIiIzxoCQiIj0wYCQiIjIjDEQJCIifTAgJCIiMmPMEBIRkT4YEBIREbUADAiJiEgXDAiJiIjMGDOERESkDwaEREREZoyBIBER6YMBIRERkRljhpCIiPTBgJCIiIxm8uTJpu5Ci8eAkIiI9GFr6g4QEZH5mzVrVoNtUqkUycnJJuiNZWJASEREumBASEREektISMCOHTsabP/vf/9rgt5YFmYIiYhIHwwIiYhIb6+++ir8/f3h5eUlt33q1Kkm6pHlYCBIRET6YEBIRER6W7RokdLtMTExTdwTy8MMIRER6YNFZYiIiMwYA0IiItIHA0IiIiIzxoCQiIj0wYCQiIiIiIjIQjEgJCIivf373/9Gr169MGXKFGzduhV+fn7o27cv9u/fb+qutXjMEBIRkT5YVIaIiPS2YsUKnD17FqWlpejZsyeys7Ph6OiI4cOHY9y4cabuXovGgJCIiPTBgJCIiPTm5OQEZ2dnODs7Y9iwYZBIJAAAW1t+zRgbA0IiItIHh4wSEZHeevbsidraWgDA9u3bAQBVVVVo06aNKbtlERgQEhGRPnjploiI9LZ69eoG2+zt7bFnz56m7wwRERFpjBlCIiIiM8YMIRER6YMBIRERkRljQEhERPpgQEhEREaTn59v6i60eAwIiYhIHwwIiYjIaKZOnWrqLrR4DAiJiEgfLCpDRER669evX4NtUqkUV69eNUFviIiISFMMCImISG+lpaXIzMxssO7giBEjTNQjy8EMIRER6cPihox26tQJVlZWDX7efvttAEBkZGSD2wYMGCD3GJWVlXj33Xfh6ekJFxcXjBs3Dnl5eXJtCgsLERERAYlEAolEgoiICBQVFcm1ycnJwdixY+Hi4gJPT0/ExMSgqqrKqK+fiMgYFi9ejNLS0gbb582bZ4LeWBYGhEREpA+LCwhTU1Nx69Yt8efo0aMAgJdeeklsM2rUKLk2P/zwg9xjzJgxA3v37sXOnTtx5swZlJWVITQ0VFyUGQDCw8ORkZGBw4cP4/Dhw8jIyEBERIR4e21tLcaMGYMHDx7gzJkz2LlzJ7799lvExcUZeQ8Qka4mT55s6i40WxMmTIC7u7v4e3Z2NgBg0KBBpuqSxWBA2LKlp6cjNDQUEyZMQHJysrh9+vTpJuwVEbUkFjdktG3btnK/L126FI8//rjcSYuDgwO8vb2V3r+4uBibNm1CfHw8hg8fDgDYvn07OnTogGPHjmHkyJG4cuUKDh8+jJSUFPTv3x8AsHHjRgQGBuLnn3+Gn58fEhMTcfnyZeTm5sLHxwcAsGLFCkRGRuLTTz+Fm5ubMV4+EWlg1qxZDbZJpVK5kzFSLzo6GidOnDB1NywCA8GWLSYmBps3b4atrS1mzpyJlJQUxMbG4vfffzd114iohbC4DKGsqqoqbN++Ha+++iqsrKzE7SdPnoSXlxe6du2KqKgo3LlzR7zt4sWLqK6uRkhIiLjNx8cHAQEB4sniuXPnIJFIxGAQAAYMGACJRCLXJiAgQAwGAWDkyJGorKzExYsXjfaaiahxCQkJGDNmjNxPaGgo2rRpY+qumQ07OztTd8HiMDBsmaysrNClSxd06tQJu3fvRklJCaKiolBTU2PqrhFRC2FxGUJZ33//PYqKihAZGSluGz16NF566SX4+vri2rVrmD9/PoYOHYqLFy/CwcEB+fn5sLe3lxsaBQDt2rUT19vKz8+Hl5dXg+fz8vKSa9OuXTu5293d3WFvb6923a7KykpUVlaKv5eUlGj9uolIvVdffRX+/v4NjmMuoaC5I0eOmLoLFoNDRls2Ly8vXL9+HZ06dQIALFiwANu3b0d8fLxpO0ZELYZFB4SbNm3C6NGj5bJ0kyZNEv8fEBCAPn36wNfXF4cOHcLEiRNVPpZUKpXLMsr+X582ipYsWYKFCxeqflFEpLdFixYp3R4TE9PEPSFqHAPClm3Pnj0Ntk2ZMgVTpkwxQW+IqCWy2CGjf/zxB44dO4bXXntNbbv27dvD19dXXEvL29sbVVVVKCwslGt3584dMePn7e2N27dvN3isu3fvyrVRzAQWFhaiurq6QeZQ1pw5c1BcXCz+5ObmNv5iiYioxWJASERE+rDYgHDz5s3w8vLCmDFj1La7f/8+cnNz0b59ewBA7969YWdnJ1YnBYBbt24hKysLQUFBAIDAwEAUFxfjxx9/FNucP38excXFcm2ysrJw69YtsU1iYiIcHBzQu3dvlf1xcHCAm5ub3A8REVkuBoJERKQPiwwI6+rqsHnzZkybNk1uEeWysjK89957OHfuHK5fv46TJ09i7Nix8PT0xIQJEwAAEokE06dPR1xcHI4fP4709HRMmTIFPXr0EKuO+vv7Y9SoUYiKikJKSgpSUlIQFRWF0NBQ+Pn5AQBCQkLQrVs3REREID09HcePH8d7772HqKgoBnlERKQ1BoZERKQLiwwIjx07hpycHLz66qty221sbJCZmYnx48eja9eumDZtGrp27Ypz587B1dVVbLdq1So8//zzCAsLQ3BwMJydnXHgwAHY2NiIbRISEtCjRw+EhIQgJCQETz31lNwEcBsbGxw6dAiOjo4IDg5GWFgYnn/+eSxfvtz4O4CI1Dp69Cj69++PoKAg7Ny5U9ze2IgCIlPgkFHLJFvtnIhIH1ZSfoOYtZKSEkgkEhQXFzOzSGQgQUFB+OGHH2Bvb4958+ahuroaa9aswbBhw/Df//7X1N0jkhMUFIRz587Bx8cHN27cMHV3yMDCwsIabJNKpThz5ozctBOilobnuE3HoquMEhEpY2Njg9atWwMAVq5ciS1btmD8+PEoKyszbceIlOB13ZYtNTUVJ06cgLX1n4O6pFIpIiIiTNgrImpJGBASESno2bOn3LpfkZGR8PX1xVtvvWXajhEpwSGjLdvMmTPh6uoKT09Pue3vvPOOiXpERC0Nh4yaOabTiYgs24ABA3D+/Hl4e3tzCCERtRg8x206FllUhoiIqKVghpCIiPTBgJCILFpNTY2pu0CkFwaERESkDwaERGRxMjMz8Ze//AVBQUEYOnQoAgMDMXbsWGRmZqq9X35+fhP1sPlKT09HaGgoJkyYgOTkZHH79OnTTdgry8ZA0DKVlpaaugtE1EKwqAwRWZzo6Gjs2LEDHTp0ELfl5ORg8uTJOH36tMr7TZ06FYmJiU3RxWYrJiYGmzdvhq2tLWbOnImUlBTExsbi999/N3XXLBYzhC3btm3bsGzZMtjZ2SEsLAzvv/8+AGD8+PE4ceKEiXtHRC0BA0Iisji1tbWQSCRy29zc3FBbWwsA6NevX4P7SKVSXL16tUn615xZWVmhS5cuAIDdu3djwYIFiIqK4tBbE2JA2LJt2LABaWlpsLOzw9q1a/Hiiy9i27Zt/HsTkcEwICQii7N06VKEhobC3t4ebm5uKC4uRk1NDf7xj38AqB+KlZmZCVtb+Y/IESNGmKK7zYqXl5fckhwLFizA9u3bER8fb9qOkUUECOnp6Zg/fz7s7Owwc+ZMBAUFAagfsrxp0yYT9844rK2tYWdnB6A+Q+/v74/Ro0ejoKDAxD0jopaCASERWZznnnsOp06dQnl5OYqKiuDu7g5HR0fx9sWLF6O0tBTu7u5y95s3b15Td7XZ2bNnT4NtU6ZMwZQpU0zQGwIsIxAUWOKQ5TFjxshdhBkxYgR8fHwQFxdn2o4RUYvBdQjNHNdoITK+7OxsPPnkk6buBpFSvXr1QkZGBjw8PHD//n1Td8eohIs5ggULFuDGjRvIzs5WO/+3JeHnEVkKnuM2HVYZJSJqRHR0tKm7QKSSJc0hFIYsCxYsWIBBgwYhNTXVdJ1qYvw8IiJDY0BIRNQIYf4OUXNkSQHhnj17xKGTgilTpqCiosI0HTIBfh4RkaExICQii3P06FH0798fQUFB2Llzp7h9zJgxStsfOXIEJSUlqK6ubqoump2QkBBTd8HiWUJASPWfR0REhsSiMkRkcT766CMcOXIE9vb2mDdvHs6ePYs1a9bg4cOHKu8jkUjwl7/8BYcOHWrCnjY/YWFhDbZJpVJkZmaaoDcEMBAkIiL9MCAkIotjY2OD1q1bAwBWrlyJLVu2YPz48SgrK1N7vx9++KEJete8paam4sSJE7C2/nOAiVQqRUREhAl7ZdksacioMunp6ejVq5epu0FEZLYYEBKRxenZs6dcGffIyEj4+vrirbfeMm3HzMDMmTPh6uoKT09Pue3vvPOOiXpElhQQrl+/Xu53qVSKDRs2IDo6msVWiIh0xICQiCzOunXrGmwbMmQIsrOzTdAb86LqpHvSpElN3BMSWFJA+MUXX8DX1xdhYWGwsrICUL9we6tWrUzcMyIi88WiMkRERC2AJQSEWVlZmDJlCvbt2wd7e3tERETg0UcfxdSpU03dNSIis8WAkIiMYvLkyabuApFFkEqlYraspbOyskJ4eDi+/fZb1NTUYNy4cbh3756pu0VEZNY4ZJSI9DJr1qwG26RSKZKTk03QG/3k5+fD29vb1N0wS9x3piMEhJaQIRRYW1sjIiICkydPRn5+vqm7Q0Rk1hgQEpFeEhISsGPHjgbb//vf/5qgN/qZOnUqEhMTTd0Ns8R9ZzqWGBAKrK2t4ePjY+puEBGZNQaERKSXV199Ff7+/vDy8pLb3pzn9PTr16/BNqlUiqtXr5qgN+aF+840ampqYGur/CtbKpXCxsbGIgNCIiLSHwNCItLLokWLlG6PiYlp4p5orrS0FJmZmQ1OsEeMGNFkfUhPT8f8+fNhZ2eHmTNnIigoCAAwffp0bNq0qcn6oa3msO8sRWZmJmbPno2ioiLY2tqiuroanp6eWLx4MXr06CG2k0qlcutCtnSVlZW4dOkSCgoK4OHhgYCAANjb25u6W0REZosBIRFZnMWLF6O0tBTu7u5y2+fNm9dkfYiJicHmzZtha2uLmTNnIiUlBbGxsfj999+brA+6aA77zlJER0djx44d6NChg7gtJycHkydPxunTp8VtQkBYW1trim42qfj4eGzYsAF9+/aFm5sbioqKkJaWhrfeegtTpkwxdfeIiMwSA0IisjgTJkxQun3QoEFN1gcrKyt06dIFALB7924sWLAAUVFRqKmpabI+6EJx32VnZ+PJJ59s0n1nKWprayGRSOS2ubm5NQj86urqYG1t3ezfO4bw5Zdf4syZM3IZ0ZqaGgwePNjsAkJzHSVARC2P5YwxISJSQSqVYu/evU06B8vLywvXr18Xf1+wYAEGDRqE1NTUJuuDIahaqF4qleLXX39t4t60LEuXLkVoaCiGDx+OiRMnYtiwYRg/fjz+8Y9/yLUTMoSWMIfQyckJSUlJ4u9SqRRJSUlwdHQ0Ya90ExMTg9WrV2PVqlVYtWoVVq5cCQDNfpQAEbU8VlJL+AZpwUpKSiCRSFBcXAw3NzdTd4dIFBISYjZVJ/fs2YOXXnoJ3377LSZOnNjgdtk5WvzIlDdy5EgcOXKkwfZ169YhJiYGubm5ePTRR03Qs5ajvLwcRUVFcHd3Vxr4dO7cGUVFRSgrK0N1dbUJeth08vPzsXTpUqSmpqK2thZ2dnbo06cPZs+ebXbLnjz33HM4deqU+PuCBQtw48YNZGdnyw0JJrJUPMdtOhwySkR6CQsLa7BNKpUiMzPTBL3RTXl5OQDg1q1bSm9nEKiasmAQANLS0gDUf6GTfpycnODk5KTydksqKuPt7Y3Vq1ebuhsGIYwS6NSpE4D6gHD79u2Ij49XeR911WaJiHTFTxUi0ktqaipOnDghd0IqlUoRERFhwl5px9nZGQDw8OFDpbc3t2Id5jD3SNhnNjY2Ju5JyyfMIbTUCxdLlixBSEgIevfubequaGXPnj0Ntk2ZMqXBXEhNq80SEemKASER6WXmzJlwdXWFp6en3PZ33nnHRD3SnpB9ETKFiurq6oz23AUFBWL5fA8PD43uYw4VShkQGkd6ejp69eolt82S5hAq88EHH4jVb1siTavNEhHpyjLGmPy/BQsWwMrKSu5Hds6BVCrFggUL4OPjAycnJwwePBiXLl2Se4zKykq8++678PT0hIuLC8aNG4e8vDy5NoWFhYiIiIBEIoFEIkFERASKiork2uTk5GDs2LFwcXGBp6cnYmJiUFVVZbTXTmQs0dHRDYJBAJg0aZIJeqMbYV5WU2YIjx8/juDgYLzyyitYuHAhpk2bhmeffRbHjx9v9L5ChdJOnTph9+7dKCkpaXYVSoV9ZqlBiiGsX79e7ueLL75AREQE1q9fL9fO0gNCALCzszN1F4xG02qzRES6srgMYffu3XHs2DHxd9mr15999hlWrlyJLVu2oGvXrvjkk08wYsQI/Pzzz3B1dQUAzJgxAwcOHMDOnTvRpk0bxMXFITQ0FBcvXhQfKzw8HHl5eTh8+DAA4PXXX0dERAQOHDgAoP7DfcyYMWjbti3OnDmD+/fvY9q0aZBKpVi3bl1T7Qoi+n9CBrCiokLp7cY48frwww9x+PBh8bMFqJ9vN3r0aAwbNkztfXWZe9TUhH3Gk1bdffHFF/D19UVYWBisrKwAANbW1mjVqpVcO0uaQ6hICIKbcmF6Q8/ja2yUgFBt1t7eHm5ubiguLkZNTU2DarNERLqyuIDQ1tZWaSUyqVSK1atXY+7cuWKVwa1bt6Jdu3bYsWMH3njjDRQXF2PTpk2Ij4/H8OHDAQDbt29Hhw4dcOzYMYwcORJXrlzB4cOHkZKSgv79+wMANm7ciMDAQPz888/w8/NDYmIiLl++jNzcXPj4+AAAVqxYgcjISHz66aespETUxBoLWowxZNTa2hp3796VCwjv3r2r0Ym9pnOPTIkBof6ysrLwzTffYPfu3QgLC8OkSZOwa9cuTJ06Va5dXV0dbG1tLTJDKFzEMXaG0Bjz+I4fP44PP/wQnp6ecHNzQ1FREQoLC7Fw4UK5i0JCNdLGqs0SEenK4gLCq1evwsfHBw4ODujfvz8WL16Mxx57DNeuXUN+fj5CQkLEtg4ODhg0aBCSk5Pxxhtv4OLFi6iurpZr4+Pjg4CAACQnJ2PkyJE4d+4cJBKJGAwCwIABAyCRSJCcnAw/Pz+cO3cOAQEBYjAI1Jdur6ysxMWLFzFkyBCV/a+srERlZaX4Oyv4UXOVn59vNmXgGwv4jBHUfPXVV4iLi0N+fj6kUimsrKzQvn17fPXVVwZ/LlMQhq82p2Gs5sbKygrh4eF4+eWXkZCQgHHjxuHevXsN2llyhlCY92vsypvGmMen7SiBxqrNEhHpyqICwv79+2Pbtm3o2rUrbt++jU8++QRBQUG4dOkS8vPzAQDt2rWTu0+7du3wxx9/AKg/wbW3t4e7u3uDNsL98/Pz4eXl1eC5vby85NooPo+7uzvs7e3FNqosWbIECxcu1OJVE5nG1KlTzWYdQlNkCP39/bF3716DP25zwQyh4VhbWyMiIgKTJ09W+h2huE6mMLzUEggBobEzhMaYx6fPKAEiQVJSEhYtWoSnnnoKo0aNwuzZsyGRSLBkyRIEBgaauntkJiwqIBw9erT4/x49eiAwMBCPP/44tm7digEDBgBAgy9STb5cFdsoa69LG2XmzJmD2NhY8feSkhK5K5ZETa1fv34NtkmlUly9etUEvdFNYyd1DGq0J+wzZggNx9raWm5kiYABofEDQmPM49NllMDNmzfxyy+/oFOnTuIcYrJss2fPxu7du1FUVISQkBCkpqbC2dkZEydOxMmTJ03dPTITFhUQKnJxcUGPHj1w9epVPP/88wDqs3ft27cX29y5c0fM5nl7e6OqqgqFhYVyWcI7d+6I64B5e3vj9u3bDZ7r7t27co9z/vx5udsLCwtRXV3dIHOoyMHBAQ4ODtq/WCIjKS0tRWZmZoMhWyNGjDBRj7TXUgLCkJCQZpOVFbKq5rLvzJmwDqElEqZQGHt5E2PM49N0lMDEiRPx3Xff4auvvsKOHTsQFBSEn376CUFBQZg7d65efSDz5+joiA4dOqBDhw7w9/fHo48+CoBL/pB2LDogrKysxJUrVzBw4EB07twZ3t7eOHr0qLjGU1VVFZKSksQrgL1794adnR2OHj2KsLAwAMCtW7eQlZWFzz77DAAQGBiI4uJi/Pjjj2Lm5Pz58yguLhaDxsDAQHz66ae4deuWGHwmJibCwcHB7BbWJRLW/1IcSj1v3jwT9Uh7QtCiKrNirHUIKysrcenSJbHCYEBAgEbVEoXPH1lSqRSZmZnG6KZOhH3JgNDwFOfnKmYILUlTL29iinl8Qq2Ab775BidOnBD/1gMHDmRASPD29kZtbS1sbGxw4sQJAPUjM4y5fi61PBYVEL733nsYO3YsOnbsiDt37uCTTz5BSUkJpk2bBisrK8yYMQOLFy/GE088gSeeeAKLFy+Gs7MzwsPDAQASiQTTp09HXFwc2rRpAw8PD7z33nvo0aOHWHXU398fo0aNQlRUFL788ksA9ctOhIaGws/PD0D9Vfxu3bohIiICy5YtQ0FBAd577z1ERUWxwiiZnQkTJsj9np2djSeffBKDBg0yUY+0Z4oMYXx8PDZs2IC+ffuKFQbT0tLw1ltvNVotNDU1Ve7EEKg/IY6IiDB4P3UlBIQcMmp4ivNzLTkgFE56W/Lr7tKlCw4ePIi+ffviwIEDGDp0KNLT0+XmHpLl2rlzZ4Nttra2OHr0qAl6Q+bKogLCvLw8/PWvf8W9e/fQtm1bDBgwACkpKfD19QUAzJo1C+Xl5YiOjkZhYSH69++PxMREuQ/dVatWwdbWFmFhYSgvL8ewYcOwZcsWudR8QkICYmJixGqk48aNw+effy7ebmNjg0OHDiE6OhrBwcFwcnJCeHg4li9f3kR7gsh4oqOjxauU5sIUVUa//PJLnDlzRi6oq6mpweDBgxsNCGfOnAlXV1d4enrKbX/nnXcM3k9dMUOoP03n5yoGhOnp6Zg/fz7s7Owwc+ZMcXTK9OnTsWnTJuN3vAkJ76+myoY0tmagIZSWlsqdd6xduxbr1q1Deno69u/fD3d3dwQHB2PLli1GeX5qGYxdeZdaFot6tyi7iiLLysoKCxYswIIFC1S2cXR0xLp169QuIO/h4YHt27erfa6OHTvi4MGDatsQmSNjF3cwBlNUGXVyckJSUpK4zIxUKkVSUpJG85Kio6OVbp80aZJB+6gPBoT603R+rmJAGBMTg82bN8PW1hYzZ85ESkoKYmNj8fvvvzdZ35tKU2UIVa0Z+OGHH8otRaWNbdu2YdmyZbCzs0NYWBjef/99AMD48ePlLqrZ29sjLi4OcXFxBnktRESKLHMWOhEZzZEjR0zdBa2Zasjovn37EBwcjAEDBuC5557DwYMHG72YZC44ZFR/wvxcRYrzcxWLylhZWaFLly7o1KkTdu/ejZKSEkRFRbXIv0VTZQiFNQP37duHWbNmoba2FtXV1XjppZcQGBiIsWPHaj2Hd8OGDUhLS0NaWhqcnZ3x4osv4uHDhy16+CsRNU8MCInI4F5//XUkJyebuhsaM0VRGW9vb6xevRpnz55FSkoKTp8+jVWrVskVCzFnzBDqb8KECQ2KNT148KDB/FzFDKGXlxeuX78u3r5gwQIMGjQIqampRu9zU9M3Q5iUlIThw4cjNjYWiYmJ6NWrFwYPHoxz587JtRPWDATqM/RffvklduzYgaeeegrnzp3DF198oTJzr4q1tbU4oiImJgZvvPEGRo8ejXv37un0Wsh0NH0fGcPRo0fRv39/BAUFyY2EGzNmjNGfm1oOixoySkTGl5OTg40bNyI7OxunTp0ydXc00liWoSmCmuHDh+Ps2bPiumqN0bVCaVNhhtDwrl69iq5du+Lw4cMYOXKkuF0xINyzZ0+D+06ZMqXRuanmSN8MoaZruMmuGZiVlYWJEyeiQ4cO4pqBuixSP2bMGFy/fl1cT3DEiBHw8fFROjS0uR/vls6UawF+9NFHOHLkCOzt7TFv3jycPXsWa9aswcOHD436vNSyMENIZCYmT55s6i5o5P79+wDQoOBJcyacTJoyIDx+/DgqKio0ahsfH48hQ4Zg69atSEpKwubNmzFkyJBmNdyUGULDy8nJAQCcPn1abjurjOr+uoU13Hr06CGu4ebh4dFgDTdhzcBz587h0KFDcHJyQklJCebOnYthw4Zh/PjxWi9S/8EHH8gtLp+dnY3u3bvj8OHDcu2UHe/BwcHN6ni3dJq+j4zBxsYGrVu3hrOzMyIiInD69Gn4+PggPz9fbDN9+nSj94PMGzOERM3MrFmzGmyTSqVmMwTTHDNCQtCiKnhpbus56VOhtKmZ4/uhuRIKDilmkS15YXp91yHUZQ03YyxSD6iu0Kx4vH/zzTf4/PPPsXr16mZ3vFsqU64F2LNnTzHTHBMTgz179iA1NRWvv/46Vq5c2WILSpFhMSAkamYSEhKwY8eOBtv/+9//mqA32mvqhaINoTkMGdWGPhVKm4qQITSn90FzpyogZIZQd/qs4WboRepVVWhWPN6Fi4OWehGgOTLlWoCyVe+FglJdunTBX//6VyxYsKDFFpQiw+KnCVEz8+qrr8Lf3x+DBg2S+5k6daqpu6YRc/ziMbcMoTlVKG1uwbQ5E4K9xgLCf//73+jVqxemTJmCrVu3ws/PD3379sX+/fubvM/G1lhBKF1puoabsiqwulJVoVnxeN+9ezcAYMmSJRo9bnp6OkJDQzFhwgS5kSamGkbY3PpjTE29FqAlFZQiw2KGkKiZWbRokdLtMTExTdwT3ZhjANBYQNjcXpNQoVRWcx022NyCaXMmvA8bCwhXrFiBs2fPorS0FD179kR2djYcHR0xfPhwjBs3rsn7bUxNdWyqWzPw+PHjBg9IZSke71OnTkV8fDzatGmj0f2b27qUza0/5iwpKQmLFi3CU089hVGjRuG3335DZGQklixZgsDAQAAtt6AUGVbzO3sgIrMmZAjNaeiauQ0ZVfS///0PNjY2uHjxosb3MfZVeuHv39z3nTlRdWzV1dWJxSukUimcnJzg7OyMdu3aYdiwYZBIJHBwcGjybEVTaKoLDrJrBqakpODFF1/E+fPncfHiRQQFBaF3795aV5PUtVBYZWUlAKC6ulqj9s1tXcrm1h9jSU9PN/pzzJ49G5s3b8Yrr7yCadOm4cCBA/juu+8wZ84cg2avqeVred8ORGRS5hgACCeV5jJkVFFWVhaA+rlFvXv31ug+TXWVvrnvO3Oi6v0plUrlMlQ9e/YUC1wIw4irqqo0ziiZE2N93oSEhCAxMVH8XXbNwJKSEnzwwQcYPXo02rVrh3PnzuHOnTuYMGECzp492+CxDF0orKqqSu7fxgjDCIWKpgsWLMD27dsRHx+v0/Prq7n1xxDWr18v97tUKsWGDRsQHR2t9fqU2nB0dMR///tfLFu2DGVlZdi+fTvef/992NjYYPz48UqLFBEpw4CQiAyKRWWanrOzM4D6Rcs1JVylB4Ddu3cbvPhAY0t5kPaEv43i8ETFIaOKw4kBwN7eXun6hOZO3/dXWFhYg21SqRSZmZly22TXDHzw4AF8fHzQsWNHeHt7A6gPclQN2TZ0oTDheTTNEDa3dSmbW38M4YsvvoCvry/CwsLE49Pa2hqtWrUy6vN6e3tj/fr1SEtLg52dHdauXYsXXngB1dXV4qiB9PR09OrVS+n909PTMX/+fNjZ2WHmzJkICgoCUD9SZNOmTUbtOzUvHDJK1MwcPXoU/fv3R1BQkFzlsjFjxpiwV5ozx2E/5lZURpEuAaGxiw80lnXVlLmsv9kUNA0ILYm+76/U1FT84x//wLJly+R+hIslAtk1A7t164Zly5bhmWeewTfffAOgvriMh4eH0ucwdKEw4e+vaYaQjC8rKwtTpkzBvn37YG9vj4iICDz66KNGLwa3c+dO2NjYiNlrW1tb+Pj44ObNm/j555/xxRdfICIiokEGUxATE4PVq1dj1apVWLVqFVauXAkAWo8UuXnzpkbtkpKSMHz4cMTGxiIxMRG9evXC4MGDce7cOa2ejwyPGUKiZuajjz7CkSNHYG9vj3nz5uHs2bNYs2YNHj58aOquaaS5Z9OUMbeiMoqEkwFt3iPGvkqvbYbQ3NffbArK3odCACg7h9CS6HuxZubMmXB1dYWnp6fc9nfeeUflfTZv3txgm6urK/bt26e0vaELhQnBPwPC5sPKygrh4eF4+eWXkZCQgHHjxuHevXtN8tyy2WshU/nKK69g586daNWqldpMpS4jRX744Qe536VSKRYsWICFCxfiL3/5i9q+zp49G7t370ZRURFCQkKQmpoKZ2dnTJw4Ues5uGRYDAiJmhkbGxu0bt0aALBy5Ups2bIF48ePR1lZmWk7piEWldGPLtVChf4JxSaag8b2qSJzX3+zKSjLEArHmSZVLvPz88Uhji2FvsemqvldkyZN0utxjUnbIaPNneIcWHNmbW2NiIgITJ48Gfn5+U3ynB988IH4/6ysLLHK8AcffIBJkyZh165dKjOVusznjIyMRJ8+fTBgwADx86eoqAgXLlxoNCB0dHREhw4d0KFDB/j7++PRRx8F8OcFLTIdDhklamZ69uwpN5QvMjISsbGxZlMxrLln05TRZsiosQNdXU7yVA0lNCVth4ya+/qbTUHZmnvC+1EIEtQF4C1xXxprOHdzWitPcZidsF6hUEyqMcZel1LbYd0rVqwAUF8dOTAwUOcqrc2ZtbU1fHx8mvx5rays8MMPP+Dbb79FTU1No5nKPXv2iMGgYMqUKaioqFB5n2vXrmHgwIHIzs5GSEgIPvroIzzxxBP48MMPG+2ft7e3+DkmFLypqalp9tMyLAEzhETNzLp16xpsGzJkCLKzs03QG+2Z4xzCxoIX2e2yJf6NoaamBg4ODlrfR1cFBQUoKCiAh4eHyjlQutA2Q2ju6282BXUZQtkho/369WtwX6lUiqtXrzZBL5uWsS5A6VKF11gZWMVhdkOGDMHevXuxY8cOzJ8/v9H7G2pdSkMN6z506BDi4uIwc+ZMbNmyBX5+fmqrtDaVyZMnIyEhodk8jq7s7OwwatQoJCYmGixTefPmTTHAdXFxEZe1WLNmDVatWoWioiKNHke2LoLA1tYWR48e1buPpB8GhERkUOacIVQVvMhuN3ZAqMuVUk33eU1NjbgW3fHjx/Hhhx/C09MTbm5uKCoqQmFhIRYuXIhhw4Zp9VjKGKqoDP15gqnJHMK6ujqUlpYiMzOzwd9nxIgRxu9sEzNWZqG6ulrruVVTp06VW6pCcPToUcybNw82NjaIiYnByy+/DKB+7tehQ4ca7YviMDuhiJSmIwKEdSmdnZ3FdSkBaL0upabDuhsLiB48eIDLly+jtLQUfn5+ANRXadWFuuqZypZf0SWw1SRANvYwbWVVct3c3HDmzBkAumUqNZ0j6Orqinnz5qGkpETvC9YtcY1Uc8O/ABEZlDkvO6FphrAp+qINdUNGMzMzMXv2bBQVFcHW1hbV1dXw9PREXl4eTp06BVdXV7FtSUkJRo8erTIgVPVYixcvRo8ePeTactkJ7TV2gqns7yzsX9kM4eLFi1FaWgp3d3e5x5o3b55R+m1Khqhiqyx4uXbtmsq5VdpmYPUtFCYMs7OxscGJEyfEIZqaHluGWpdSGNbt5eUF4M/3q0QiEf+vSWAlVGl98sknUVhYCHd3d7VVWnWhLsN7+PBhg8xX1iRAVnWRwFBSU1Nx4sQJuWBaKpUiIiJC68e6efMmfvnlF0ydOhX9+vXTeI6gm5ub0mOCzAsDQqJmqLKyEpcuXRKH8gUEBMDe3t7U3dKIcNJqToGANkVlmnNAqEx0dDR27NiBDh06iNtycnLQo0cP3L17Vy4gvHv3rtqr9Koea/LkyTh9+rTS12FO7wNTa+wEU9nfWVmGcMKECXJtsrOz8eSTT2LQoEGG7rLJCe+vxi5AqQq29+zZ0yCQk0qlqKysVDq3asqUKfD399cqA6tvoTDFYXbCsfXuu+9qdH9DrUupOKxbeL8qLonUWGClbZVWXairnqkY2Aq0nWMr+ziyAdHdu3fRr1+/JhmmrWmV3NLSUrnPesHEiRPx3Xff4auvvsKOHTvE+Zw1NTXIzs7Gu+++i8DAQJw/f16jOYJkvhgQEjUz8fHx2LBhA/r27SsO5UtLS8Nbb71lFgv3NpZta460KSpjbgFhbW2tOERM4Obmhs6dOyMuLg75+flilb/27dvjq6++0vqxysrKUFRUJJ70AtoPGdV3WF1L0NiJqrqiMrIBoaLo6GixgENLo+nnjapg+/PPP0dycrJGwV1SUhIWLVqEJ554Avv27cMnn3wCiUSCJUuWIDAwUGUGVigUJgSYkZGR8PX1xVtvvaXJS2yguczTNlRgZQzqqmcqXrwSaDtfWTZANtUwbcUqudu2bcOyZctgZ2eHa9eu4f333wcAjB8/XulnQElJCQDgm2++kcs0Dhw4EF9++aXWcwQb8+9//xtLlixB9+7dMWLECCxevBhubm6YP3++VvNZyfAYEBI1M19++SXOnDkjl6mpqanB4MGDzSIgFE5WWlJA2NwzhOrus3TpUoSGhsLe3h5ubm4oLi5GTU0N1q1bh4EDB2r1PKoeKyMjA926dZNbnFjbDKG5r79pCI0V1lG2pIsm6xAK61S2RJoOTVYVvISHh2s8vLaxNdRUZWANXShMeB+YOjBszoWgjL3OqqLmMkx7w4YNSEtLg52dHdauXYsXX3wR27ZtU5lB79KlCw4ePIi+ffviwIEDGDp0KNLT0+Hq6qr1HMGQkJBGh8caqsARGR4DQqJmxsnJCUlJSRgyZAiA+qvS0dHRaN++vYl7phkhEDD1yYo2GjupNOcM4XPPPYdTp06hvLwcRUVFcHd3h6Ojo059U/VYVlZWuHXrllxbbecQmvv6m01B2YULxTmEyva3sExBS6RphlBV8LJp0ya539UNr20ua6gZ6qJbc1uXsrn1RxvNZZi2tbW1eAEoJiYG/v7+GD16NAoKCpS2X7t2LdatW4f09HTs378f7u7uCA4OxpYtW8Q2inMElRWykUqlyMzMbLR/hipwRIbHdQiJmpn4+Hjs27cPwcHBGDBgAMaNG4fLly/jn//8p6m7ppHmcvVaG6bOEOobcGoyb9PJyQnt27fXORjU9rG0HTps7utvNgVlgYAmGcJdu3YZtbCFpoyxtp+hixcJQ/COHj2K/v37IygoSJzD5+3tLRbVaMo11BT7IrwPNm7cqNfjaju009jrGZpiqOnNmzdx8uRJuc8eQ1AcytlUxowZg+vXr4tLTYwYMQLr16/HI488orS9vb094uLicPToUWRnZ+PcuXNYvnx5g0w68Ofxe+jQIYSFhWHZsmVYtmwZrKyssGzZMnHOpjpCgSMAehU4IsNjSE7UzHh7e8sVAXj++ecNOtne2MwxQ2jqgFD28fXJEBpinxvqKr22J+rmvv5mU1D2PtVkYXphPqapK//qsrZfYww9Z1nIrigbwrxjx44GFXgbW0NN3fIsqgp9KFLsy6VLlwDUFx/ThKHWpWxsuJ8wF7mp+qMrZYVUfvrpJwQFBWHu3LkaP466ec+mGqb9wQcfAPhz+GZ2dja6d++Ow4cPa/1YimvUCsfvN998g23btiEnJwexsbG4c+cOOnXq1KCQjTKGKnBEhseAkKiZE+Yk3L59W6MrcKZmzkVlTDVk1FABoab3TU9PR69evZTeZqgy6Vx2QnuNFVxQlyEUgo7mvL/VVX7UlaHfZ8LwWm2GMCsGfIrLs9y8eRN37tzBI488gmnTpjVa6EORYl+EdeKqqqo0ek2GKniiONzvX//6F+Li4lBRUYHAwECxTytWrMDgwYON3h91VB1LkydPxqlTpzBhwgT88ccfuHDhAqytrTF9+nQcPnxYq4BQ3bxnbZew0FVjwbUuBaVUrVFbUlKCLl26YP78+QDQ4PidNGmSnq+GTIkBIVEzJ3xpano12NRa2pDRyZMnyxVfaY4Bobqs7Pr16+V+l0ql2LBhA8rKyhoMC2rsKr2qkyx1fTKnCwOm1lgGRpM5hKbOAqqjrvKjrvR9n6kqhKFPZVDF5VkCAwNx5MgRREZGwtnZudFCH431pW3btvj5559RUVGh0f31LXgiLPKem5uL06dPY+DAgdi+fTt8fHzw7rvvIicnB6dOnYKfnx/u3LmDCRMm4OzZs0brjyZUHUteXl74y1/+guHDh+Ozzz7Da6+9hjVr1iAtLU3refraXDQQKtQ+9dRTGDVqFGbPni1XoVZXjQXXumQqP/zwQ2zdulXuAnRJSQk6d+5s8OOXmg8GhERmwlwCLHMcMiqcVOfm5sqtVyYsshwcHNygrSEZM0P4xRdfwNfXF2FhYeJwLmtra1RVVWlcbl+g6iRL2VxCQ2VuzLnQhLYaK7igLkOobshoc2GMyo+avs+0LYShzxBmxeVZrK2t0aZNG9TW1mpU6KOxvgjvA02XrVAseCLQtOCJ4lDf1NRUxMbGoqysDL/++isef/xx+Pn5AagP+tWtZaqsP8YowKLqWLKyssLWrVuxbt06dOzYEfv378ehQ4dgZ2endfElbS4aNFahVleNBde6FJSytrZGZGQkzpw5I267e/cuunXrpnJtTn1pOnyajIcBIVEzJ5zwmUuAZY6ZIaGvrVq1UrrIsjnPIczKysI333yD3bt3IywsDJMmTcKuXbuwcOFCra/SqzrJUsZQ7wNDDWE1B0LBBRsbG6UFFzQpKtOcA0Jj0PR9lpqaKrfOGlC/7yIiIvTug2KWUXF5lvz8fIwcORLLly8HUH/RxcfHB3FxcTo9X1N/xqoa6uvk5IRly5bhySefRGFhIdzd3VFaWgoPDw+tHt8Y62SqOpZatWqFmzdvIi4uTtz/27dvx2uvvaa0kIo62lw0MFaFWn2DfWVDTh8+fIiff/4ZgYGBGq9RC2h28U52ncSwsDCth0+T8TAgJDIT1dXVpu6CRsx5yKidnV2DL9KpU6eaTUCo7L5WVlYIDw/Hyy+/jISEBIwbNw737t3T6Sq9spMsVcPWtM0QmrrQRHPQWMEFZXNdNaky2pJput7lzJkz4erqCk9PT7ntmhTCEGiaZWxsqRd9Cn0ATf8Zq26o7+bNm+Xaurq6al0EzRgFWFQdS3l5eQ22G3N9QoG3t7f42dmUFWobo27IqbpiScpocvFO23USqekwICQyE+YSYJnjkFGhz8qGOsXExGDlypXi78YOCHV5fE32ubW1NSIiIjB58mSxJLksTa7SKzvJUlVVUNuAsCkKTZg7ZYG/JusQNjeK1Qv1Ibzexi6kqFoGQJtCGKmpqdi1axfatWsnblOXZXRycoKTk5PSvmibDamsrMSlS5dQUFAgLsXSVBnCxob66jvcryWvkykQli6R1ViF2qagy3xOfS7eabtOIjUdrkNI1MwJV87MJUNozgGhuS87ocl9ra2t4ePj02C7rlfpVb0vtR3WJpyYKDJkoQlzp27ZCXPIEB4/fhzBwcF45ZVXsHDhQkybNg3PPvssjh8/3qCtpmsWapohNISZM2di1qxZ8PX1FX80LbcvS9tjLT4+HkOGDMHWrVuRlJSE+/fvA4C4/ERT2bZtG3r06IFnnnkGS5cuFbePHz++SfthLMoulOlCm7VTdV2Q3VBrek6YMEEuGBSGuyobKbJixQoAwL1792BtbQ0bGxvU1tbis88+Q2pqKvr27dvo8wnrJAoaWyeRmo5FBYRLlixB37594erqCi8vLzz//PP4+eef5dpERkbCyspK7mfAgAFybSorK/Huu+/C09MTLi4uGDduXINhCIWFhYiIiIBEIoFEIkFERASKiork2uTk5GDs2LFwcXGBp6cnYmJiNC4jTZbHXAIsbZdAaA4aC17MZdkJfd4jul6lV/Wc2mYIFU9MBIYsNGGuhBNVcy8q8+GHH+Lw4cPYt28f4uPjceDAAfzwww/48MMPG7SNiYnB6tWrsWrVKqxatUrM0iuuWahphlBb/fr1a/CzefNmZGRkNGirbbl9bY+1L7/8EmfOnMGaNWuwaNEicdjr//73P60eR1/CcL+0tDSxWurDhw8bXIQwVGBlDMqCtfT0dAD1Qx61YcoAWdPjQ1uqMukAsHfvXgCAm5sb1q5di3PnzuE///mPuFSHJhfvPvjgA7nCNPoOnybDsaiAMCkpCW+//TZSUlJw9OhR1NTUICQkBA8ePJBrN2rUKNy6dUv8Edb8EcyYMQN79+7Fzp07cebMGZSVlSE0NFTuCyk8PBwZGRk4fPgwDh8+jIyMDLlhJbW1tRgzZgwePHiAM2fOYOfOnfj22291nmROLZe5FpUxl/4CjQcv5pIhVLXPKysrkZaWhmPHjiEtLc2gF54ayxA25wDFXAgnquqWndBkHUJTZw+tra1x9+5duW13795VOlRbKGTSqVMn7N69GyUlJUrXLFQWHGtDVTantLQUycnJ+PHHH8UfTbMgqoSEhOh0PycnJyQlJYm/C8dcY9U8DU0Y7ieVShETE4M33ngDo0ePxr179+TaaRtYGYOqYK1Pnz7o1KmT3E9wcDB8fX3x448/avUcmgbIqgiBqC40PT60pS57nZmZicuXL8PZ2VkcNurl5SXOI9fl4p26AJSalkXNIVS8ArF582Z4eXnh4sWLeO6558TtDg4OKislFRcXY9OmTYiPj8fw4cMB1Feo6tChA44dO4aRI0fiypUrOHz4MFJSUtC/f38AwMaNGxEYGIiff/4Zfn5+SExMxOXLl5GbmysO31qxYgUiIyPx6aefqlzbiywPh4wan9DnvLw8TJkypcGi4M09IFSX4YyPj8eGDRvQt29fcZHhtLQ0vPXWWwYppKDqfWmszE1L1tjcHHVzCIUTOXUno9XV1bC3tzdYf7X11VdfIS4uDvn5+Y1WL9R0zULZ47G2tlblEDxtqxvqs1aetktcNCY+Ph5Lly7FvHnzUFtbi5s3bwJouuz5ihUrEBcXh969e6NXr15wdHREVVUVHj58CFtbW+Tk5Ijv3eZSCEpV8ZK8vDxYWVlhzZo14ntlxYoVeO+997ReT09xPly3bt1UzodTtR5sdHS0TkGRMdb0BOqz16o+h8rLy5VWlc3JydH5+YxRUIh0Y1EBoaLi4mIAaDCp/eTJk/Dy8kLr1q0xaNAgfPrpp2I54osXL6K6ulruSp+Pjw8CAgKQnJyMkSNH4ty5c5BIJGIwCAADBgyARCJBcnIy/Pz8cO7cOQQEBMjN5Rk5ciQqKytx8eJFDBkyRGmfKysr5RYoLykp0X9HULNmblU7za2/wJ8n2G3btsWKFSsaLAouXPwBmmdAqG6fC8PNZLMJNTU1GDx4sNYBobITBdnPI+EkH2CGUBeNFdZRFvgL/9ckQ1hTU2PSgNDf318cdtYYTdcs1PRijbbVDVWV8x8wYADS0tLEojgBAQEN9qmhl7jw9vaWK+j0yCOP4ObNm3BwcNDp8bR16NAhxMXF4eeff8bOnTvFBeg7duyIsrKyZlkISlXxks6dO2PEiBH47rvvMGXKFHEZnqlTp8LX11er5xDmw3Xq1AmTJ09GQkIC2rdvr3Skl6r1YFu1aqXT6zPGmp4CdZ9DyqrKPvPMMzo/lyUUFDIXFhsQSqVSxMbG4tlnn0VAQIC4ffTo0XjppZfg6+uLa9euYf78+Rg6dCguXrwIBwcH5Ofnw97evsFVw3bt2onj5vPz85WuZ+Pl5SXXRrZSGQC4u7vD3t5e7fj7JUuWYOHChTq/bjI/QgbGXAIsc16HUCqVol27dg0WBdd3WFpjZP+2hi4qIww3Ey4ySaVSJCUlKV1MvjHKThR+++03cY2ympoa8STMUAvTW5LGslLC31kxKwaoDghl36/mMspAG8r2hTKGqG6oabbdEEtcqNPU87QfPHiAy5cvo7S0VG4BehsbG52zqMYmG6wB8ms/rlq1CnV1deIyPLm5uQA0y7jOmjVL7vf169dDKpWKhV1UzYdTtR5scxheq0jb7DiDupbBYgPCd955B//73/9w5swZue2yk8MDAgLQp08f+Pr64tChQ5g4caLKx5O9Mg4oL8WuSxtFc+bMQWxsrPh7SUkJOnTooLI9mT/hJM5cTubMecio0GfFRcGbsqiMLo+vLkOoONzMzs4Offr0EV+jNpSdKMg+p7KA0JwuDJhaY4tMKwsEZNfQBBpesJD93DCnY1JTmh476gIETWmabTfEEhfqNPUojG7duikdKuji4tJsC0F98MEHcr8rFi+RXYZn4MCBGj9uQkICduzY0WD7f//7X7X3U7UebHOkyxq1ZP4sMiB89913sX//fpw6dQqPPvqo2rbt27eHr6+vOCbe29sbVVVV4oei4M6dOwgKChLb3L59u8Fj3b17V8wKent74/z583K3FxYWorq6ukHmUJaDg0OTDROh5sHcMoTmPGRU8WRaWBR8zpw54rbmOGRUXVZWcbiZPpQFLKoCDg4ZNTxdhozK/n2a60Wl/Px8lfP2G6NphrCxAEEThsy266OpM4SKwwSB+qGCd+7caZLnNwRVaz9qO2zz1Vdfhb+/f4NRYJpm+hpbD1YXN2/exC+//CIWyTG0xtbN1Of4pebDoqqMSqVSvPPOO/juu+9w4sQJdO7cudH73L9/H7m5uWjfvj0AoHfv3rCzs5NbTPTWrVvIysoSA8LAwEAUFxfLVaw6f/48iouL5dpkZWXh1q1bYpvExEQ4ODigd+/eBnm91DKYW4BljhnCxrJZzb2ojKneIzk5OXJLBsgGHMwQGp4uRWXMIUOozbA5xUqduh6buhTyiI+Px759+xAcHIwBAwbgueeew8GDB3XKtuvD3L4TgPoq78OHD0dsbCwSExPRq1cvDB48GOfOnWuS51dXvESbIY+LFi1SOiUoJiZGq/6oWg9WU8KIta+++grh4eFITEzE22+/jU8//VTnx1SlscIvzXHYK2nPojKEb7/9Nnbs2IF9+/bB1dVVvDojkUjg5OSEsrIyLFiwAC+88ALat2+P69ev44MPPoCnp6d4ZVwikWD69OmIi4tDmzZt4OHhgffeew89evQQC0/4+/tj1KhRiIqKwpdffgkAeP311xEaGiqOvw8JCUG3bt0QERGBZcuWoaCgAO+99x6ioqLMpsJoTU2NzouqkubMdcgoUH+C1tSl0XXRUtYhbOrg680338R//vOfBv2Q7QszhIZj7hnCxqqoytK0UqemGUJFulQ31DfbXlpaCldXV5W337lzB9999x3efPNNtY9jjmu9zp49G7t370ZRURFCQkKQmpoKZ2dnTJw4ESdPnjT68zcW9JlblksoKPjNN9/IFTAaOHCguC6goQj7Tpvjl8yPRZ3Nb9iwAQAwePBgue2bN29GZGQkbGxskJmZiW3btqGoqAjt27fHkCFDsGvXLrkP8VWrVsHW1hZhYWEoLy/HsGHDsGXLFtjY2IhtEhISEBMTI17NHDduHD7//HPxdhsbGxw6dAjR0dEIDg6Gk5MTwsPDsXz5ciPuAf1lZmZi9uzZKCoqgq2tLaqrq+Hp6YnFixejR48epu5ei2SuQ0aF/5uyqqGmZE+0lVUQZIZQOcWTatnnZ1EZw1M3h1CTgNDUnyGNVVGVpWmlTl2PTUMUwrh69Sru3buHwMBAue3aLnEhiIyMxH/+8x9MmzYNTk5OKtuZIiCsrKzEpUuX1FZXVcfR0REdOnRAhw4d4O/vL07XkT1vMqWpU6ciMTHRqM+h7z6U1aVLFxw8eBB9+/bFgQMHMHToUKSnp6u94KAvbY5fMj8WFRA2Vh3QyclJoy8JR0dHrFu3DuvWrVPZxsPDo9FhJB07dsTBgwcbfb7mJDo6Gjt27JArZJOTk4PJkyfj9OnTJuxZy2VuAaHsSYq5BYTl5eXYunVrgwqCzT0gNFVlV8W5NxwyalzqMoSaDBk1dYZQm+qFmlbq1DVDaAhdu3YF0HCfa7vEhUCYQvLgwQOVAaFUKhVfc1N9JxhiLVNvb2/U1tbCxsZGDIpramqa/IKRMbJc6enp6NWrl9o2hl4Pdu3atVi3bh3S09Oxf/9+uLu7Izg4GFu2bNHxVTQkLKUh0GdtTmr+LCogJP3V1taK5fgFbm5uPOkzIuFL39Qnc5pSDAjNQW1tLaysrGBra4s1a9aI24UKgj179oStra3RTmDMNUPo7OystB9SqVQ8+WWG0HCULTuhOIewOWcIG6uiKkvTSp3GvlijC20WLJf18OFDAEBZWVmDQFig72eFLgyxlunOnTsbbLO1tZWrx9AU9M1y6brAvCHXgwXqC57FxcVpVSVXFcWlNADILaUh0Ob4JfPDgJC0snTpUoSGhsLe3h5ubm4oLi5GTU0N/vGPf5i6ay2WuWUI9V1TzxTq6upgZWUl13fZCoLCcg1NERAaetkJY1KcH6ouYCH9mfscQmPQ5L2mmOkwNsUlLoYPH65ywXJZwvFTVlbWaBvF/xuTMaurNnUdAn2zXLouMN9cKtQqo+tSGtSyMCAkrTz33HM4deoUysvLUVRUBHd392bxgdaSmWNRGUdHR1RUVJhNEFtbWwtXV1cUFxcjODi4wXp9H330Eezs7FBeXt6sM4SmDsDVzXEj/em7DqG5fIZoQ3ZffPLJJw2KsinLdBib4hIXgOoFy2UJf8MHDx6obCO8B6ytrZvs2DLkWqampm+WS9cF5pvzPtR3KQ1qGRgQkk6cnJzUTnonwzG3DGFtbS0cHBzMLiAU1vc8c+aMeOVX9nZVGRhDPb+y/2uquZShF96rzBAah7kXlTEExWqQQiXjuro6fP/999i1a1eD+zTnTEdSUhIWLVqEp556ChUVFQDqq5L/85//bFCsBvjzbyiMXGgKhlzL1NzpusC8MfahoYrULFq0SOl2bZfSIPPW/OvBE1k4cwsIZQvJmEufa2trxT4LJ9QlJSUIDg5GXl6eeEVX9nZDP7+y/2t7f1Nn45QNGTV1n1oSTYaMtvQMoWLWQvbYfOGFF+Dv749BgwbJ/TTnTMfs2bOxefNmvPLKK7hx4waA+gzjnDlzlLYXjjEHBwez+XwFgH//+9/o1asXpkyZgq1bt8LPzw99+/bF/v37Td01nQgLzO/fvx/ff/99kz9/fHw8hgwZgq1btyIpKQmbN2/GkCFDmkXGkcwTM4TULDT1HA9zYo5FZYRhxOYSDMhmCIVKeOfOnUNycjK++uqrZh8QmipDWFVVpbQfzbHQR0ugycL0LSVDqGk1yJqaGjg4OKCyshJ/+9vf9Fo0PD09HfPnz4ednR1mzpyJoKAgAMD06dOxadOmBn0xBNnlGIQgz97eXuVyDMLfvikzhIawYsUKnD17FqWlpejZsyeys7Ph6OiI4cOHY9y4cabuns70XWBeV4YuUkPEgJC0cvToUcybNw82NjaIiYnByy+/DKB+Ev2hQ4cavb+m1azoT+aWIZQNrsypz4oZQhcXFwD1BR6Ek07Z2w39/Mr+rylTzSEUhrgJhPeqbNaKAaHhaLLsREspKqNpNUjZY1Pf939MTAw2b94MW1tbzJw5EykpKYiNjcXvv//eoK3impuKBZY0Jbscw2OPPYbMzEy1c5VlM4TmFBA6OTnB2dkZzs7OGDZsmFitvCmLytTU1DR5ERtjMWSRmqKiIrRu3drAPSRzwyGjpJWPPvoIR44cwbFjx/Djjz/i3XffRV1dnVguuzEJCQkYM2aM3E9oaCjatGlj5J6bL3MLCGVP0Mylz3V1deIJtXCSJVvxT3YYbHMOCDXd35MnT9b6OZSprKxU2g/hNZjypDU9PR2hoaGYMGGC3AWn6dOnm6Q/hqDJHEJ1Q0bN5XgE/qwGqUixGmR1dbXBjk0rKyt06dIFnTp1wu7du1FSUoKoqCil+032vV9eXq4y2G7sWNu5c2eDbGBNTY3K5RiEvtjb25vV37Nnz57ie1UY1lhVVWX07/7MzEz85S9/Qdu2bTF06FAEBgZi7NixyMzMNOjzKHuv6qOxv218fDz27duH4OBgDBgwAM899xwOHjwo7tszZ87gt99+0+i5fHx8MHz4cPzzn//EnTt39O67ppKSkjB8+HDExsYiMTERvXr1wuDBg3Hu3Lkm6wP9qWVcKqEmY2NjI15JWrlyJbZs2YLx48erLZMti9WstGeOVUbNLSBUNiS0vLxcvE02IDRGgKPvEEtVcwiNnZFXFRAK71UHBwfU1dVpNRTPULTJ9pgLYb1MZXM0W1qGUNNqkI0dm5osGi7w8vKSWy5iwYIF2L59O+Lj4xu0lX3vDxo0CFlZWQ2Gpmp7rAnBfGVlpcpMVlMWldH0uJUtjDNq1CjMnj0bEokES5YsEQvjKCuoYm9vjz179hi0z4qfeTt27MCYMWNw5coVnDp1CgCQk5ODyZMn4/Tp01o//rZt27Bs2TLY2dkhLCwM77//PgBg/PjxOHHihFxbTfaLrMzMTMyePRtFRUWwtbVFdXU1PD09sXjxYvTo0UOubWNFagYOHAig/j3V2JSc/v37Y8uWLdizZw9efPFF2NnZ4cUXX8QLL7ygdAi2ocyePRve3t545ZVXEBISgtTUVDg7O2PixIk4efKk0Z6XlGNASFrp2bOn3BdmZGQkfH198dZbb2l0f1az0p6u88MMPTxG08erra0VFyw3lyFNskNGhT4LWW9ra2vU1NQYdV6k8Jg2NjY6ZwiVZQyMvb6U4pBRxfeqEBCaIjgTsj0AsHv3bixYsEBltsdcCNl32cDOUqqMXrhwAYmJiQ2WdJAdkbBz506cOXNGvE3TRcMFyoKTKVOmKJ2TJTt/9uLFiwDqp04o0uZYE/5WinNzZckeWyUlJWrb6fv5r+lxO3v2bOzevRtFRUUmP7FX/Mz74YcfMH78ePFvBABubm46f45v2LABaWlpsLOzw9q1a/Hiiy9i27ZtSueUartfoqOjsWPHDnTo0EHcpmnw+uuvv2LhwoVo37693PaZM2c2elHCysoKjz76KGbMmIEZM2bgxo0b2LNnD1566SUkJSWpva+mlF2cvHHjBm7fvo0ePXrA398fjz76KAConD9LxsWAkLSybt26BtuGDBmC7OxsE/TGMmgzZFSbK4ya0OXxZIMnczkBVRYQChlCYcF6Y74m2SyPrgGho6Njg2FLxs7IK2YIFd+r9vb24pIdTR2caZPtaSr6ZkqF92lFRQWkUqlcttAcq4xqU0wsODgYVVVVagPCXbt2wc/PT+tFw3Wh+N4HoPexJjymsscWqJtDaOjPf00vqsgWxjH1ib3iZ9769esxb948lJaWYuLEiSguLkZNTQ3+8Y9/6PT41tbWYjY+JiYG/v7+GD16NAoKChq01Xa/1NbWinMrBZoGr0888QQA4OTJk5BKpVi2bBkAIDQ0tNGLEv7+/nK/P/LII/jb3/6Gv/3tb40+r6aUXZy8cOECiouLAUDMrtbU1HDeuYkwICRq5rQZMqrPFUZDPV5LGzIqlUqNHhAKf1tdh4EJJ8UlJSVyBS6MnZHXdMiosYMzZYGFNtmepqJvprSmpgZOTk4oKSkRA23h/aJq2GRzyBAaYuiykDUTCrAIZAPCb775Br/++qvWi4brQlkWT5cKp7KF2oqKisTHVlWoTV1AaOjPf02PW29vb/z1r3/FN998o/bEXtt183TJcip+5j333HM4deoUysvLUVRUBHd3d50KrwjGjBkjt09GjBgBHx8fxMXFNWgrWzBIk4Bn6dKlCA0Nhb29Pdzc3HQKXv39/eUugGiy7IrwvlNH2+GvipRdnDxx4gTWrl0r187W1lbl/FkyLgaERM1YbW2teMVfk5M5fa4wGurxZLNt5hIQKqtUKAwZraysRHV1tbgfjBUQCleedV2HUDYI12VxYl00NmTU3t4edXV1BgvOzL1Ksb7DWGUvTFRXV8sFhLLbZTWHDKEhhy4XFRXJFSKprq4WKwLX1dXptGi4OqrmICrL4glZW20Ihdrs7e3F11VeXq6yUJtswSbF942hP/+VHbf/+9//EBMTI3csdujQoUFbxRP7+Ph4bNiwAX379oWbmxuKioqQlpaGt956S+5zwNBZToGTkxOcnJx0vr9AMUOdnZ2N7t274/Dhww3a7ty5s8E2dQGPIYLXNm3aID8/X26bcFFCn89PfYcFa3NxsqVUgjU33OukNW2v8mkiJCQEiYmJBuphyyF84Qvz2BpjiCuM+j6esefbGZpUKkV1dbV4sqA4ZLSysrJJMoTC2mP6ZAiBpt3nlZWVGDBgAN5++21EREQ0GDJq6MWzjT0n0tj0zZTW1taKV/+F96ywf4V5u6qG8Qon16ZgyKHLhYWFcgGhsiVhhEXDJ0+e3ODkWJ3169fL/a5uDqKyDGF5ebn4d9CUbKE24UR4x44dKpcBkP17K/49tfm8PnHiBDp16oTHHntMq/5qcwzKnthrum6eobOcxhYdHd2gmExjGgt49Aley8rKVGb89Pn8bE7Dgsk4GBCSVjS9yqdKWFhYg21SqdTgJaBbCuEL38nJSaOTOUMPj9Hl8cxtyKjscE3gz5NK4Qp9RUWF0QPCqqoq2NnZ6RUQurm5if9vKpWVlRg+fDgmTZqEiIgIpUNG1RXI0Ja5VynWN1MqDBkF/gxIhCytECgq7m8hk2hnZ2ey49GQQ5cfPHgg97u6ZW60XTT8iy++gK+vr0ZzEJVlCB88eCAGhJpmC2ULtQl/u169euF///uf0vayAaHi31qbz+thw4bBy8sLt2/fbrSPsnQ9BjVdN8/QWU5ZN2/exC+//IJOnTqJF2X0JUw1aC7Ky8sREBAg/i47xFrd366xC/3aDn/VhS4ZdjIcBoSkFU2v8qmSmpqKEydOyN1fKpUiIiLCKP01d8KJtbOzs1Ync4YaHqPL45lbQCicVClmNYUMoRAQGnMYbHV1Nezs7GBtba3TF6y2GUJDZeQrKirg6OgoXvFWVmVUk/kpmtImsJCdmxUTE4OXX34ZAFTOzTIHspls4bOhoqICDg4OsLGxgb29vdKA0M7ODnZ2ds2uqIwuFIdSygbJ+r6+rKwsfPPNN1i8eDH69euHf/3rXyrnICoLCMvKynDr1i288cYbAOo/W1asWIHBgwerfE6hUJtUKhX/du3atVNZqE1dQCho7PNaCKp1WXNO1+A+Pj4eS5cuxbx588Q523369BHXzRMYepTLxIkT8d1336Fbt27w8vJCUFAQfvrpJwQFBWHu3Lk6PaasI0eOKN3+4MEDTJ06FevXr0e7du10fnxtlk0BGh4fV65cEQNEVX87d3d3DBkyRO2Ffm2HvzZGKpVi5cqViIuLw//+9z+tjhkyDgaEpBVNr/KpMnPmTLi6usLT01Nu+zvvvGPwvrYE2mYImwNzW5hedh8DqjOEdnZ2sLW1NWpAqGuGUFUQbuyMfGVlJRwcHGBlZQUbGxuVy06YIjiTnZs1b948nD17FmvWrFE5N8scVFZWwtXVFYB8QCh8/qoLCI313m1qwoUaQU1NjZiVU/UZmZ+fD29v70Yf28rKCuHh4Zg8eTIuXbqEO3fuqJyDqCwYe/DgAWbOnIktW7bAz88Pd+7cwYQJE3D27NlGn1v28TRZdsLJyUnn7Pvdu3cBoNHvbU2P23//+99YsmQJunfvjhEjRmDx4sVwc3PD/PnzMW7cOADK180rKytrMHxS31Euip95Z8+exUsvvYTffvsNWVlZ4sXogQMHGiQgBOqD+hEjRuDJJ58Ut50+fVoMRBUDMVUX5LQZsqyKYgZ9xowZeOKJJ7Bq1SqV+1GfC/2azvdbsWJFg+AvKysLvXv3xpIlS3Q6ZsiwGBCSVjS9yqeKqg+1SZMmGbKbLYZssKLNyVxBQYE49MPDw8NY3VNKNjgxhzmEmmYIbW1tjXZSXVVVZZQ5hMbOyAsBISA/R012yGhNTY1JgjPZuVkrV67Eli1bMH78eJSVlRntOY1NNiAU3rfl5eUaB4TN5aKSPkPDlGUIhYBQVYA0depUjTPisst27N+/X+UcRGUZwqysLJSWlsLPzw9A/ZxR2WNPHdm+a7LshJAh1GVfCkFDY59lmh63K1aswNmzZ1FaWoqePXsiOzsbjo6OGD58uBgQKpJKpXB1dUVkZCQ2b97c4HZdR7kofuZ98MEHGDp0KM6dO4cDBw5g6NChSE9PF48jfUmlUsTExDQ4voQRJbt27cLPP/8s117VBTlthiyrIlzA8Pf3x5UrV7By5Uo8/fTTyMvLw4EDB5TeR98L/Zo4dOgQ4uLi5C6YPPPMM/j73/8OJycnnY4ZMizuddKKcJXv7NmzSElJwalTp+Dr6yueFJJhyV4N1iQQOX78OIKDg/HKK69g4cKFmDZtGp599lkcP37coP0KCQlReZu5rUMonIgpFpWRrTJq7IBQ32F9VVVVSve5kJH39fUVfzp16mSQjLxUKpXLTsnuG+FfFxcXVFVVicGZs7MzVq5cid69ezcanKWmpmL8+PFKF3yWlZ6ernS7MDdLEBkZidjY2AZrNTalf//73+jVqxemTJmCrVu3ws/PD3379sX+/fsbva8wpFC2qAzQMEOorKiMqTOEK1asAFBfoTIwMBBBQUHo3bu3TouWK2YIq6urxYAwNjYW/fr1k/vp27cvfvzxR50eX90cRGXB55YtW/Dkk0+isLAQAFBaWqrxBTnZv1tVVZXKQFR4XqGyquwFoKNHj6J///4ICgqSG+I3ZswYuccQjrvGLj41dtzevHkTJ0+ehJWVFZydndGuXTsMGzYMEokEDg4OarNHwufrli1b1PZBW4qfeZs3b0ZRURE8PDwwe/ZshISEYP/+/QZ7XmFfKB5bJSUlAIC+ffti2bJlcj9CpWFFWVlZmDJlCvbt2wd7e3tERETg0UcfbXR+puzfUQj6evbsCQBiJlddxi0+Ph779u1DcHAwBgwYgOeeew4HDx7U+EK/Jh48eIDLly/LXTB5+umncfPmTZ2PGTIsZghJL9euXcPf//53nD59Gt9++62pu9PiyGYINZmL9eGHH+Lw4cNyVz9LSkowevRoDBs2TOvn12XIYUVFhXjSao4BoeI6hBUVFeKab8YOCJVleBojlUrlMkeyJwfGzMjLZgEByBUtUQwIZQtnAPXBma+vL9566y2Vjx8dHY0LFy6gsLBQPEHQZkiVMDdL1pAhQ1TOzWoKumRSBML7QrF4jKZDRm1sbEyWIVSWHdB1aJi6IaPl5eVITk5uEIiMGDFC48fXNIOsLIsXHR0t93d0dXXFvn37tH68yspKlVlN4fULhVeqqqrE16tpRk/T16jsuN20aRNKS0vx1VdfYceOHQgKCsLt27exaNEizJ8/Xwwiqqqq5KrBKhICJkNT/Bywt7dHXFyc0nUCDUHV97Kw3cnJCb6+vnK3qbogJwxZ1nbZFNlholeuXAHwZ+VQ4WKwjY2N2qG9isN5Fek77L9bt25YtmyZGPy5u7tj7dq1KCgowNdffy220+aYIcNiQEh6EeYi3LhxQ+P7GGPZipZK26Iy1tbWuHv3rlxAePfuXZ2HYGg75LC2thbV1dVmGRCqGzIKoEkCQgcHB7XDxVTdVyqVihmDptrnwn5RN2RUGNamS3Am7Idbt26JAaEhhlSZkpOTE5ydneHs7CxmUgDN5uEI+0PbOYTl5eVwcnJCXV2dyY5HZdkBbYaGyQayisFNZWWlWGF34sSJKC0thbu7u1ybefPmadxX2WBJGBmgbA6isuHOivO3NNGvXz8Af/59ra2t1Y7oUBYQCgGxpsOkNQ0IlR23Dg4OyM7OxpAhQ8TvhsWLF2PgwIGYP3++2M7e3l5pVV2BYkC4evVqjBkzBunp6Y3OR2xOiouLlW4XAkJl7/HGLshpu2yK7N9TCD537NiBoUOHom/fvjh+/DhsbGy0uiD1+uuv46mnnhKDV32H/SsbFszgr3lhQEh6EQJCTdei0XfZCksjfNi6ublpdDL31VdfIS4uDvn5+eLckvbt2+Orr77S6fm1LQIknKwoy1Y1V6oCQtmiMlKpFE5OTkafQ6hLQCgEZsqGkBmT0E91Q0adnZ21fj0C4TPl9u3b6N69O4A/q0Du3r0bYWFhmDRpksoqkM1Rz549xdLtmmZSBMJ+VBwyWlpaKv7tlb1/hICwqqrKZBlCZdkBbYaGyZ50ymYIpVIpHj58CFdXV1hZWaFHjx4NgkGpVIpBgwZp3FfZIcVCcClk665evYouXbrAyspKnLspHH+A5oGW4vNlZmbi559/RkBAANq3b49u3bqpHCpdUVEBKysrpcuMaJqJFwJXXeZxdunSBQcPHkTfvn31mpMnGxDW1tbi73//O7788ku4ubnpnEU3hcYyhPoMUdd02RTZ911ubi6APwND4XcbGxuNL0hJpVJs3LgRwJ/f9S1xTjbJY0BIehHKVmv6xaLvshWWRjYg1ORkzt/fH3v37jXY82s75FBxTTRzyhAqVipUHDLq4uLSLDOEigGhJv1TlvG4dOkSxo0bh4sXL6pcFFuW0E9lQ0aF923r1q11roQofKbInnDpOqRKlqYVJ41B2bCsxjIpAsWAUNiv9+/fR9u2bcXbFE/QhIBQKpWa7HjUNzsgGwTKBofV1dWora2Fs7Oz0uxoTU0N3N3dMXfuXLz//vuNPk+/fv3kTuCHDBkCOzs7XL16FX/88Qe6du2KTz75BHPnzhX3q2xAqCxDqOz9VlhYiG7duuHzzz/H4sWLUVpaKr4ud3d3VFVVYeHChSr3haOjo3jcyb5mTTPxwnukrq5O66I0a9euxbp165Ceno79+/fD3d0dwcHBWs/Jkw0IhfOIGzduoF27djpn0dUpLS2VC1oN9TmgmCEU9qfwudUUAZPsezY3Nxd2dnbiUhdCQAhofkFKWRCry7B/XZnyM9qSsagM6UX4INd0PoBQzUpgjGpWLYlwkiCRSMwiuBJO3MwpIBT6LGRBhX3+8OFD2NnZoaKiQlxw2lgBobCWnC4BoWKgoEn/lGXU1q5di99//x1paWkaPa+w35RlCIUT49atW4tDWisrK5GWloZjx44hLS2t0UBRyJAo+2wRhlTt378f33//vUb9FZhLNhGoD6TWrl0L4M+/s3DyJpxo3rt3T9zm7u6OgoICuccQApfmVGVUW6oyhML/VQWEubm5KCsrU7n+mqLS0lIsXrxY/H379u1ITU1F3759kZOTAwDi95ewXwUuLi5KA0Jl77fMzEzk5+fjyy+/xIQJE+Du7i7e19HREeXl5SqzmsLzCtMsdMnAywYpinMyG2Nvb4/XX38dR48eRXZ2Ns6dO4fly5eLi51fvnxZPHbVDXeUPa6vXr0KoP6YF4IWAFpn0QFg27Zt6NGjB5555hksXbpU3D5+/Hi5dob6HJC9YLVx40ZYW1vj4cOHagNCbbOGjbVXzBC2adNGfG8KAWFJSQlWr17dYDSXsgtSt2/fFv8v/C3XrVsnBoMCQ8zJVvbazOkzuiVhhpD0IgwZvX//vkbt9V22wtIIJwnmFhA6OzvD2traLPosnJi0b98ewJ/7vLy8HG3atBFPaoQMoa4ZL3XKysrg6uoKe3t7uYyDJtQNGRXmJ8mSSqXiCZgywolvY4T9JszfsrOzE09OHzx4IFc2fvPmzfjXv/6l1VBx4e+gao4OoH5IlS6vvbl59dVXAdQP2xKOLeH1CoHfjRs3MHToUAD1AeGtW7fkHkMIIB4+fGgWx6MysgGhsv8LAZLisSlkjzUNhBcvXiwXxAgnq/PmzRO3C9k0xYCwuroaX3zxhVzWU9X7TbiQKhtACq8lJyenwRB9WRUVFXBychIvAOkyb1H2PsLFLmW2bduGZcuWwc7ODmFhYWKWdfz48Thx4kSD9nl5eejevTs++ugjLFiwQO1yH7KBgLAsg42NjV5ZdADYsGED0tLSYGdnh7Vr18LDwwOPPfYYfvnlF/EzwZCfA7IBoVD0KjU1Vdx+/vx5PPPMMxrtP233t0A2ICwqKkL37t1hbW0NZ2dnMSAsKysTs4PqHDt2TK4Ik7AWpL6UvbZ+/fohOztbbv1Gc/uMbkkYEJJehC82xavSqihbnBaFhcD/DwshedoOGVXF0EMwVD2ebNbI1tbWLOYQCoGNcKItnCw9ePAAHTp0kAsIXV1ddToBa0xZWRk8PT1hZWWlNgBSRjEglH2fCPOTFIdbWVtbIyYmRsw+CW2BP4/pxgj7TRjS5ebmJm57+PAhXFxcxCzGxo0bcfbsWa2GigsnVNruD4Gq165NxUlj0KWo1s2bN8Wy7N7e3nB2dkZBQQGuX7+OvLw89O7dGwDg4eGBrKwsufuWl5fD1dXV5BlCfYqJCZ8rNjY2KjOEDg4ODS6mCAGhUDm4MRMmTMCaNWvE3y9duoTAwEAMGjQIn3/+OYA/jzfFgNDKygoTJ04U2wmUvd+EY0w2gBU+6x0dHdVmhIQAThj+qEm2SXG4pGwAUVZWJg45VqQYXL344ovYtm1bg/mNQqAlPO7KlStx6NAhtSf2shlCIcuk77BQoP6zzc7ODgAQExOD5cuXw9nZGb6+vnLLjxjqc0D280l4P964cUP8/OrYsSPS0tLU7j+BpvtbkfAeENaxzcnJQb9+/VBVVSV3EaikpKTR4E42qwrUZwsNERAqe20lJSV45JFHMHr0aLkh0qb+jLZUHDJKehG+2CoqKnRbZFoqBTw8ACXLG1D9SYJQQECfq/uGHoKh6vGEL0eJRAIbGxuzyEiUlJTA2tpaPCkqKytDXV0dCgoK5NaLcnZ2lgt6DEk2Q6jtEDDhuBOyCrIBqzA/SZZQcEhxvpGQ7Rf+bYxihrB169bi3//BgwdyAaGDg4PWQ8WFx1Lc35oOPVX22gHtKk4aWnx8PIYMGYKtW7ciKSkJmzdvxpAhQ5SOkJA9Cfz999/Fi24eHh5o27Yttm/fjs6dOwP4c13QRx99VG7OECA/xFDXAj/60uZ1KyO8pz09PeW+Z4Ttzs7OaN26dYMCH8J7ubETallFRUVioCd78VK4MCQ8pvAeF/j6+iotMKLs/SZ8b8oea8Jref3119UGeffv30ebNm3EDKFsW02HS8oGhOoucCkGV2+88QZGjx6NO3fuyB2DJSUlSE5OxocffggA6N27tzjUVhXZ41rIEBri+2LMmDFy64+uWbMGS5cuxSOPPCLXzlCfA7J/8z/++ANAfaZU2C7sX9n9p2res+L+fvPNN9W2FxQXF8Pa2lrM/o0YMQI//vgjHn30UQB/ZrVVXVyTfQ8pFnqSHT6qjHBcLF68WG3xOmXvJRsbG2RnZ+Pjjz+W64MpP6MtGTOEpJe7d+/C19cXf/zxB+7fv69y6IlKv/1W/y/XMFTq3r178PDwgLOzM+rq6hpclVZk6GFy2j6eMHS4TZs2Jl0IWxslJSViBsXBwQFlZWUoKipCXV2dXEDYtm1buLm56ZyxUqesrAytWrXCw4cPtZ7TI5wsCH2V7d+ECRMatFcMGATKTlLVEZ5HCAglEolcZb1WrVqJnwfLly/H9u3bNR4qXlFRIQZ6sq9HmyrFiq9dGJqkTcVJQ9OmqJbs67527ZoY1Li7u2PAgAHYtWsXunTpgn/+859i9qdTp04oKioSgwag/v3Ru3dvPHjwQKO1TI1B32JiQnb00UcflQtghPdq27Zt4e7uLrYTyGYIG/vslH2uDh064JdffpHbLpwYC/8Kmc5XX30VP/30kzhfVqDu/SYca3fu3BGLkBQUFMDFxQVt2rRBaWmpymIvwt9WWYZQ0wyTsFB7QUGB2qInQnAlzB0bMWIELly4gM8++wxbt26Fm5ub+HkirE8I/BnsqTuxLygogI+PD27evClmCIuLi1UOa1TMcqrywQcfyP0ufA4cPnxYbruhPgeKi4vRpk0b3L9/X8weCxlCa2trueN4xIgR8PHxUbkmouL+Hj58ONq3b9/oGopC5V5vb29cunRJPPaFCxaPPPII8vLysH37duzatUvtkFTFESKNBYRTp07F4cOHMXfuXAD1FzQ0eW0jRozAv//9bwQEBACo/4yzt7c3+We0JWNASDqTSqW4du0annvuOfzxxx8oKChAhw4dtHsQmSEckEoBHcpgt2T5+flo3769mP25f/++eNVPGUMPk9P28e7fvw8rKyu4u7ubzZDRnJwccZ+2a9cON27cEL8E/f39xXa+vr5wc3NDXl6ewftQWFgINzc3ODs7a101U/gCVxYQKrp06RIGDhyo9nE0DQhv3LgBd3d3sdqhu7u7eIX8xo0b8PHxkRuK1tjCx7JkX4Ps//UJLKKjo9XOw2kKQlGtIUOGAFCfKZVd2/XatWuoq6uDl5cX7OzssHLlSnh7e2PmzJlymY/AwEAA9YtSv/jiiwDqP0PatWuHsrIy/PTTT8Z8eSpp87qVEbKjjz/+uNwJq5CdaNeundqAEGj8s1NQVFSEtm3bIjc3F1FRUQ2eq6CgANXV1bh37x46deqETZs2Aag/qZYNVtW934TPl/Lycjx48ACtWrXC7du34eXlhdatW6O2thalpaXixRZZd+/exRNPPCEutSF7fChmYbp164bRo0c3mNJx//59+Pr6oqCgQG2GUDG4ys7OxqFDh3D//n1YW1vjypUr6NatG/75z38iPj4effr0AfDnPGR1J/b3799Hx44dce/ePfwmXBhG/TG+YcMGrefRqfLtt9+ioqICkydPBlA/TDc6OhqRkZF49tlntX48RUVFRfD19ZWro5CXl4f79+/jscceEy/mWFlZITs7G927d28QnAoU9zcAte0FBQUFcHd3R9euXXHp0iWxwmi7du1w6dIlPPPMM8jLy8M333yDjIwMtRcM/vjjD/Tp0wfz58/HSy+9JL5X1V0clv1OLC4uFqcRqHtt2dnZct+vv//+O9auXWvyz2hLxiGjLcSVo0fx05EjuJGRgRuXLqEwLw/Xf/4ZOdev4/79+7h7965Ww2Y08fvvv6OoqAiD//9DVdPCMrLuHjr05y8azl2yJDk5OfDx8REDwsaCBUMPk9P28f744w+0a9dOXLNI0+DClC5duoTHHnsMANCjRw+kpqYiPT0dADB69GixnYeHB7y8vHDz5k2DPn9FRQVu3ryJTp06oV27drh9+7ZWx2pubi48PT3h4uICBwcHtVmgpUuXyg0bFK7k19XVie8tTecQXrt2TVzrCgC6du2Ky5cvo6qqCr///jt8fX3FExPFq8wlJSW4cOGCyscWPkvatWsnd8KrT5Vi4UTZlOLj47Fv3z4EBwdjwIABeO6553Dw4EGlmdJff/0VQH3W76effsKePXswYMAAAPXzXVevXt1gGJyvry+6d++OJUuWYM+ePfj9999RWFgIHx8feHh46PQZbQiqXve0adPw9ddfN3r/+/fvo3Xr1vD29pb7TPn111/RunVrtGrVCt7e3g0u1si+7zR97YWFhWjdujW8vLyQk5ODjz76CDk5Obh9+7ZYeOrOnTty1V2B+iq/ssGVuvfbjRs3xIunwvEmBO7C31T2goDg7t27SE1NhZ+fH2xsbODt7S2X8VccLjl8+HCsX7++wfvk/v37YqZGmyHw0dHRcsfg+fPnAdQvgu7o6Cju/3v37jU6X1XIdApDFIULSxs3bkRaWhrS0tLg7OyMF198EQ8fPtT5/OXFF1/ElClTxP4kJydj06ZNmDVrltjmP//5D5YsWaLTcxQWFqJjx47i715eXsjOzkZZWRkCAgJQW1srfiarWsZJldraWixbtgzXrl1T2+7u3bvw8PAQhxELf1thSLkwdLeurk7tkNSamhrk5uZi+vTpGDdunPh9BNRfHE5OTsaPP/4o/gjDgoXPKgANMuuqREdHyxXAunbtWrP4jLZkzBC2EP4vvgjFa4nCNOBaADUAHgCoBlBrZYVqqRS11taorKsD7OxQDaBGKkUVANjawsHFBbXW1qgBxG1W9vaos7ZG8cOHKK+uRn5BAb5xcMCkjz5CXxsbXJk+HfD3R3FpKVxcXWHv6AjY2MDF1RWwtkZVbS3sHR1hZWMDG3t7lJeX4/Fvv8V5AP0BJL/5Jlq/8AKqbG3Ryt0dtk5OsHVygr2LC+xcXODk5ob7JSWos7JCO29vFBUVQSKRyF0VbSnq6uqQmpqKM2fOYPr06eIX+rVr19CzZ0+V91M2RBDQfXiMsserq6tr8HhCfw8cOCAWuPD399d4CYOmJpVKcfbsWWzZsgUnT57Etm3bAAAvvfQSIiMjkZqaimeeeQaenp748ccfxSu8AQEBWL16NW7evKnRgsGa9ENYN7J79+64desWKisrce3aNTFIbez+p0+fxlNPPQUA6NChg9qTh9TUVAD1Gd6jR4/i2rVrePrpp3Hjxg3U1NTg6aefbnSIEFB/Rfro0aMYNmyYuG3UqFF4//338fjjjyMvLw+xsbHw8vKCi4sL0tPTMWbMGLHtvHnzsG7dOvz4449K5xkJGYZevXrJ9UefKsVHjhxptI2xKS2qpcJPP/0EiUSCyMhILFiwAAA0Cp5Wr16NESNG4KWXXhK3DR48GHV1dbh27Rru3r2rsoiIsSh73XV1deLQwIiICLWf4cKFMS8vL9y4cQO1tbVITU3F1q1bMXz4cABAQEAA4uPjUVRUJK6jef36dfTu3RsXL17UOPP++++/Y+DAgSgpKcGqVasglUpx6dIl3Lx5E08//TRu3bqFnJwc/Prrr4iJiRHv5+LiIjf8Ut37LTc3FwMGDEBubi5u3LiBxx57DJmZmXjqqafEQPHatWtyGZRLly4hKCgIrVq1EucEdu7cWW74vqYZplu3biEkJAQHDhxoUJVWHTs7O2zdulU8BoXM3uXLl5GZmYnnn39eDCJu376tNiObn5+PgIAAeHh4ID8/H71790ZycjJqamo0ynJqQjZA37NnD6ZOnYqXX34ZgHzA/dprr+HmzZsYN24cunfvrtVz5ObmYtSoUeLvwcHB4md6z5498f3334uFWbQ9Tzl+/DhmzZqFCxcuYNeuXSrbXb16FY8//rj4fnnmmWcAAO+++y7Ky8vx6quvYv78+ej+f+3deZBU1d3/8fe9t5fpWWGYHYaRBwcQUBJFE3Q0xgSiPzcSk1hZ/JHwe6zkcUHLir8EEx+JRjAxlcTlcUF/apWRiBZBMXHDipAHQQoNOPNIGAwwMMLgwKzN9N73/P7oJTOsEpGB6c+rqut29+3lTJ/+9tzvOeeeM2nSYYek7tq1i2Qymd2fqcu1a9fS1tbGn/70J2bOnJl93wULFrB169YBjXvNzc2HPXc0w+v1snXrViB1juPWrVtPiN/oXKaE8ATw0EMPce+999LW1sakSZP43e9+d8hhXYeybu5cakaMIBwMYsXj9HZ24gXioRDtu3bhtSwKfT729fSQ7/HgRqMko1F6OjrI93jw2TbxUIgCn4+uPXso9fsxsRhuLEbAcSASwQv4LItajwcnmWRyURE1I0diffGLTHr1VU7bvh27pQWbVNezk95mrh9ssuOdtk3rHXcQXrCAC194AY6wplimnTMBFJNOcNO33fTtBGBsG9e2iSQSWB4POA6u46S2tk3cGEhv48bgzcsjDjheL3g8JC0LPB7CsRh4PHj8fpKWhScQwAWMx0MS8Obl4eTlkTQGx+8nnkyCbeP4fHh8Pmyvl1g8jjcvj1g8TjyZJGkMefn5JI0hGo8TikToC4dJGkNPMMiODz9ka0sLSeCiggJuqK+n5n/+h2tqanhq1iw23Hcfp44bx4iKCqpragj29VFQVESgoCD1nh4PfeEwkViMRX/4A5s3b+Ync+dSW1tLXmY9skSCjo4OhpeW4vf7icXj+Hw+DKlhR7vb2ynIz6e4pCTVsmpZtLe38+B//RcbN27khhtvxLZtWltb2fj3v6em2e7tJZCXlzqX4MMP+f6MGdx08838/Ac/YMqUKQwvLaW+vp6y8nI8Hg925jyRzDDhT2EbCoVwPB62bNnCtpYW3njjDRLJJGvXruW9piZqqqv5yS238N1vfhPicf73t75FOBjkb3/7Gz+69VZIJjk7neBiDF/76le59dZbueyyy/jOd77DlClTGDt2LOXl5RQUFBx2gWdjDN3d3bS0tLBz505+//vfs2bNGnbs2MGll17K2YWFhP1+AoEAP/nJT/j+979PfX09Y8eOJRQK4fP52Lt3L+3t7axYsYK1a9eyatUqWltbefrppwFoaGhg8eLFXHHFFZxzzjnk5+dny7Rr1y6am5t55plnmDFjBuXl5TQ1NTFlyhTeffddAK644gruuusuent7BwxXC4VCvP/++7z33nu8/vrrLFmyBL/fz80335x9zOmnn85bb73Fvffey9e//nW+9a1v4fF4uOyyy1i4cCHjxo1j6tSpVFZWsmzZMgCeffbZgx48/P3vf8fr9dLQ0MAvf/nLbEK+f2IRj8f56KOPPtYMusuWLeONN97g17/+9cee3fLT9uSTT7J69WoeeOCB7PmrjY2NvPXWW9x///1cfPHF3H777UyYMIHKyspsD+HhfPnLX6arq4tFixbR3NzMV77yFUaPHp3t7b7uuuuYP38+p5566lEtSH6s/eEPf8heX7NmDRdccMEBjzHGsHnzZlasWMHEiRO54IIL+NnPfpYdwj5y5Eh+8YtfAPDNb36TuXPnMmfOHObMmcOECRNoamriu9/9LuvXr2fLli0DGjB++tOfsnPnTh555JFsD3N7ezvNzc1cd9112cYWSA07BJg7dy6vvfYa5557LpBKtDNGjBhBa2sr0Wg0O4nS+vXruemmm2hqauK5557jRz/6EdFoNJt8vPTSSyxcuDB77t9NN91EXV0dVVVVPPbYY0yaNInOzk6WLFnCAw88QHV1Na+88kq256ehoYGFCxfS3NzM+PHjD/o5b968OdvjCamenp07dzJ+/Hiqq6uPagh85oA9E4PnnXceH330EV1dXRQVFbFlyxbOP/98li5dyq5duw6ZELquS3NzM1dddRVNTU1Aqndz9erVTJgw4V86j+5gVq9enb3+gx/8gEQikW082rFjB319fcTj8eyoj2XLlh1VQhgKhWhpaaGuro7q6mra2tq4/PLLswnh9OnTmTdvHtu3b2fChAlHnfC88cYbAANmR91fZoKfmTNncuONN9LQ0MBnP/tZAKZMmcIzzzwDpHoN6+rqDlhLsH+DQWZkTCaxzCSE9913Hz09PTz55JPZhDASiWQbIBYsWMA555xDa2vrx+4hfO2113jsscewLIuLLrqILVu2ZBtIzz///OPeaCVgmWM9jlCOyuLFi7nmmmt46KGHOO+883j00Ud5/PHH2bhx44BhCIfS29tLSUkJPT09Bz3f4HgLhUI4joPf78cYQywWIxaLEY1G6e7uprCgAJNIEItE8FgWVXV1OF4viXicxpdeonfrVkbk50M8nkpaIxGSkQjxcJiu3bsZXlSEiUaJ9PWR5/XixuP4bJtoX1/qEgoRD4cpGzaMZCxGsKsrlYwagweIpRNbByCRwGNZ+GybZDSKx7JwYzGsZBKv42AlEph4HAfwezyYeBzbGLyAbQwkk/hsG8t18VoWjjHZBPhgl8Ov/iMnq8yE9uYQ28Ptsx0Hx3GwHQcrPZlMd00NH+zeTcJ1cdOvb9Jbt//rWhbV1dWUl5dTXlEBlkUkEmHdO++wLzMTo2Xh8XjwpNcINMCXp0/H6/Xy32+9RVd3N16Ph0gsxvDhwzn77LN5fflynPRz4vE4tsdDOBzGpN+7sLCQcePHM2rUKPIzsyxa1sCEvN/1nmCQ1197jWBfX/Y1HKC2uJitvb2U1dTg8XpxjSEciRCJROju7WXs2LGcedZZPPfcc4yurWXYsGGpmfTSyYCbTKbOXe7q4tR0Um5ZFh6vF+O6RKPR7Hms8Xicv6UPdqoqK/m3sWNx0uchWpZF0nWJpR+fl5eXbRhJJBJYto1FajhVMBjE4/FQkJ71NxaNZpMqv99PIpEg6boY1z3iNhaLsT3dE+rYNrZtE08kMIAF1NfXc+GFFx7T3/U1a9awevXq7HsUFhYybNgwLMvCcRzyAgG8Xi99oRDFJSWpRpv0ud0+n4+k66aGnfl8hEIh8gIBbMfBm25kcjwePB5PqvfP48EYk/ruui6uMRhjcI0hGAyy7t13qamupqOzk2HDhqV6xmybSDhMOBpl9+7d9PT0kEhPMjJ79mxOGTOGxsZG+kIhqqqrOaWubkDD0qpVq/jzyy9nP0eAG+fMYekf/0j7nj1MmjQJJ/19bmxqwgDDhw2jdMQIwuEwO9vaCOTl8bP//E96enp46qmnaGhoYOkLL+D3+7lj3jzWrVtH0/r1nHvmmZw1dizE43DKKezYtYu7588naQynnHIKW1taMED9uHG0trbSFw5TUlJC0nWJxGL89je/4YUXX+TV9Dp9p512Grfddhser5dXX32VJ556Kvs3eL1ezjjjDK6/4YbUxCrpGAsGg/x47lx2t7VRP24ctbW1VNfU4BpDIBBge2srr7zyCoFAgIsvvpiunh42b97Mhx9+yP974gkee+wx/rFlC1dffXW2vn0+H6S/D/5AgEg4jD8QoKuri6amJv62fj3Tp08nGovx1FNP8b8uvZQXX3qJ8xsa+OuqVdx1553cedddjBgxglnf+x75hYUk03ERiURo3bmT7S0t/Pdbb/HEE0/w9ttv8/Tvf88zzzzDjXPmMGzYMH74H/9BUXExgUAAr8+H1+tNxbUx+Px+etLLJ9iOQzweJ55IEIlEiKfjNRqNknRd7r//ft7fuJGKigqa3n8/+3l+5jOfYf2GDdx+++1s/uADnn/+eU4/4wza29t5dvFiLMvCsm0ikQjRWIxINMqIESPYs3cv4XCYbS0tbNq0iU3Nzaxes4Y1a9YQjcWIx+MUl5TQ0NDApMmT+fPLLzNx4kQmTZ7MtddeS3FJCcFgkPKKCoYNH866devw5+UxdepU9qWXE3GNIRQO09nZyfdnzyYWi7Gno4OFjz5KzciRGKCxsZFtLS289957vL12LWVlZbzz7rtUpYc0H6xx9P/8+7+zZMkS/u+Pf8zo0aPxer00NjbS2NhIQ0MD3d3d2QlnNm3ahGVZ3Hrrrfz2t7/FdV1GjhyZTQ7Ly8t56aWXePrpp7NrnM6ZM4dNmzbR1tbG4sWLKS0tTf2mxePE43ESiUT2ejweZ926ddx9993U1tbyxS9+kbvvvpvZs2fzxBNPcNppp7Fo0SIqKiro6elh4sSJJ8wx7lCmhHCQfe5zn+PMM8/k4Ycfzt532mmnMXPmTBYsWHDE559oCWEucV0X27YHzAa3//XMjGnhcBjbtvE4Do5lYRmDSSax0oklrnvUl+6ODro7O3ETCdxEgnBfH9FwGJ/Hg8/jwY3HGTNmDI5t09jYiGPbqQQ9GiUSiVCUntUyc2Drui4lxcV4vV66OjtxjWF4SUlqTbn8fEpLS6kdNYrCwkLC4TDRSIRhmZPHMz8jh9juaW9n37597PzwQ3p6evB6vcSiUWLxOCaZTB0s9tvG4nEKAgFs26ars5P8/HzCoRC2bWOnEx+/z5c6eOn3Xp70wV4gLw/juqnJbRyHsrIyCgsKUtvCQrL9Ikco9+G2iWSS7du2EQqF6O7qorOrCzeRwOPx4KQPJsKhUHbK/zy/n9LSUkqKiykoKKCiogLbsv75mqWlqetr1hALBuns6CAaidDb3Y3XtnFsG3+6Z3V4SUmq9y9Tpn7lcl2Xjo4OwqEQicw/41gMx3GorqxMnfBvDNFIhK3btuHYNl7HoWbkSPxeL11dXexpbyfZb+iWx3EoKS6mpKgoNaHLfu95pOuu6xKNRNi3bx+JWIz8wkIClZW0b9xIMhpNxYJl4XGc7KWkpASP49DV3U1vby/JZDKVYKTjClJrtuUHAvT09qbWmjOGpOumEhzbJpmOUcuyyA8EKCgsZM+ePbium4pVwO0Xsxb/XKLAGINtWamDSGOwbDu7np1FKpm3LCuVUCaTmHQSZFlWql7S+yzS075nbvfbX5CfT35+PsFgEDv9d2e+K59W713m4DmzRlk8HseyLEwymUr4kkncZDL7uWU/E9cFy8IGEskkHtvOJnmZkma2NmSTzsxtMn83YFsWeXl5FBcXZ78XVjpZ9Ng2Vvq30rZtvOkkMzvhQf9DloPEpQGS8Xj299njOKnvXzSK6bceYeb1E+lzy+x03Tjp35j9X5N+fye2DYEAFBeD1wvbt6d+x0VOMvuv0Nn/9ynTmJP53XJdd0BDZ2ZyL9cYHMcZ8NsMAxtF+8s2iKaXyrAgdSyQvq//uqF7gVrQMe5xoIRwEMViMfLz83n++ecHnKt10003sWHDhgGTJ2REo9EDJoWora1VsIiIHEOZxp1MEpo5UMkcHB3q8bkgk2zBgWv8ZT6zeHoYes7JNITs3zByqPsz1/ffHu2+/e5LxOPZg+0jvVYymaS3p4fOzk58Xm+2wS3ToBUKhSgvK6N0+HCM66bWYMzP/2fj0CHK0NfXl2pY8nhSjaGOk0q2D1P2WCxG86ZNeDweIpEIiXTPWyKRAGMI9vZSXlZGd08PVroR0OvxEI/HCeTl4ff5MMbgcRzGjx+Pf79Gw8zWGMO2rVsZWVOTmtDGpGbM7OjowE0mwRgK8vNJJpPZz8SxbcrKy6mqqMCbmXn7Y9SZcV32tLcTi8UI5OXR1dVFqK+PUaNGkUwkaGlpIS8vj2gkgs/rxef14vV6qaqspCA/H2MMHXv3kkw3BhcWFKSWlPgXvjfGmFRjYSJBYUHBAY3aA57TX/q5mQlyMks17f/YcDjMP7ZsIZluaHL6jYJxHAePbWM7DkWFhQMWvN8XDBJPJBg+bBhdXV3samvDuC5VixZRHgzqGPc40DmEg2jv3r0kk8nsTHwZlZWV2Smu97dgwQJ+/vOfH4/iiYjkrGyvYb8EsP9yF4d6fC7o/zkc7O+20kNMc1L/IdOD6GgO7hxSk9ANP9IDSfX6Hnk1wJSCoyhDhg84/XOf+xeeeXQs4N/Sy6Bk1H/pS9R/Su9V0e/2iP32H+lsOQsoO4Zl2X+16I/7bbU48nckAJx+tIUCCvtd7/9d7D31VLj11n/hFeVoadmJE8D+/1AP19I8d+5cenp6spdDLTItIiIiInLSOsRC93LsqYdwEJWVleE4zgG9ge3t7Qf0Gmb4/f7sej0iIiIiIiKfhHoIB5HP5+Oss85i+fLlA+5fvnx5dlprERERERGRT4t6CAfZLbfcwjXXXMPUqVOZNm0aCxcuZMeOHfzwhz8c7KKJiIiIiMgQp4RwkF199dV0dHRw55130tbWxuTJk3n55Zepq6sb7KKJiIiIiMgQp2UnTnJah1BEREREhhod4x4/OodQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFah/AkZoyht7cXILsVERERETnZZY5ttULep0/rEJ7EMuuziIiIiIgMRa2trYwaNWqwizGkKSE8iWV6CIPBIEVFRViWNdhF+pf19vZSW1tLa2urFh/NIar33KR6z12q+9ykes9Nn7TejTEEg0FqamqwbZ3l9mnSkNGTmGVZlJSUDKlewuLiYv2zyEGq99ykes9dqvvcpHrPTZ+k3ofSMe6JTOm2iIiIiIhIjlJCKCIiIiIikqOUEMoJwe/3c8cdd+D3+we7KHIcqd5zk+o9d6nuc5PqPTep3k8emlRGREREREQkR6mHUEREREREJEcpIRQREREREclRSghFRERERERylBJCERERERGRHKWEUI6bv/71r1x++eXU1NRgWRYvvPDCgP3GGObNm0dNTQ2BQIALL7yQ999/f3AKK8fUker+e9/7HpZlDbh8/vOfH5zCyjGzYMECzj77bIqKiqioqGDmzJk0NzcPeIzifuj5OPWumB96Hn74Yc4444zsIuTTpk3jlVdeye5XrA9dR6p7xfuJTwmhHDd9fX1MmTKFBx988KD7f/WrX/Gb3/yGBx98kHXr1lFVVcX06dMJBoPHuaRyrB2p7gEuvvhi2traspeXX375OJZQPg0rV67k+uuv5+2332b58uUkEglmzJhBX19f9jGK+6Hn49Q7KOaHmlGjRnHPPffwzjvv8M4773DRRRdx5ZVXZpM+xfrQdaS6B8X7Cc+IDALALF26NHvbdV1TVVVl7rnnnux9kUjElJSUmEceeWQQSiiflv3r3hhjZs2aZa688spBKY8cP+3t7QYwK1euNMYo7nPF/vVujGI+VwwfPtw8/vjjivUclKl7YxTvJwP1EMoJYdu2bezevZsZM2Zk7/P7/XzhC19g9erVg1gyOV5WrFhBRUUF48aN49prr6W9vX2wiyTHWE9PDwClpaWA4j5X7F/vGYr5oSuZTPLss8/S19fHtGnTFOs5ZP+6z1C8n9g8g10AEYDdu3cDUFlZOeD+yspKtm/fPhhFkuPokksu4Rvf+AZ1dXVs27aN22+/nYsuuoh3330Xv98/2MWTY8AYwy233EJDQwOTJ08GFPe54GD1Dor5oaqpqYlp06YRiUQoLCxk6dKlTJw4MZv0KdaHrkPVPSjeTwZKCOWEYlnWgNvGmAPuk6Hn6quvzl6fPHkyU6dOpa6ujj//+c987WtfG8SSybFyww030NjYyKpVqw7Yp7gfug5V74r5oWn8+PFs2LCB7u5ulixZwqxZs1i5cmV2v2J96DpU3U+cOFHxfhLQkFE5IVRVVQH/7DHIaG9vP6BFUYa+6upq6urq+OCDDwa7KHIM3HjjjSxbtow333yTUaNGZe9X3A9th6r3g1HMDw0+n49TTz2VqVOnsmDBAqZMmcJ9992nWM8Bh6r7g1G8n3iUEMoJYcyYMVRVVbF8+fLsfbFYjJUrV3LuuecOYslkMHR0dNDa2kp1dfVgF0U+AWMMN9xwA3/84x/5y1/+wpgxYwbsV9wPTUeq94NRzA9Nxhii0ahiPQdl6v5gFO8nHg0ZleNm3759/OMf/8je3rZtGxs2bKC0tJTRo0dz8803M3/+fOrr66mvr2f+/Pnk5+fz7W9/exBLLcfC4eq+tLSUefPmcdVVV1FdXU1LSwu33XYbZWVlfPWrXx3EUssndf3117No0SJefPFFioqKsr0DJSUlBAIBLMtS3A9BR6r3ffv2KeaHoNtuu41LLrmE2tpagsEgzz77LCtWrODVV19VrA9xh6t7xftJYtDmN5Wc8+abbxrggMusWbOMMakp6O+44w5TVVVl/H6/ueCCC0xTU9PgFlqOicPVfSgUMjNmzDDl5eXG6/Wa0aNHm1mzZpkdO3YMdrHlEzpYnQPmySefzD5GcT/0HKneFfND0+zZs01dXZ3x+XymvLzcfOlLXzKvv/56dr9ifeg6XN0r3k8OljHGHM8EVERERERERE4MOodQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVFKCEVERERERHKUEkIREREREZEcpYRQREREREQkRykhFBERERERyVH/Hx6L/IDetxOxAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pdiff.SetExtractionMode(False)\n", "p.FitScaleFactorForRw() # for a better initial display\n", "p.plot(fig=None,diff=False,hkl=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Display the 3D crystal structure\n", "*Note: this requires installing `ipywidgets` and `py3Dmol` (as of 2021/05 the conda-forge version is obsolete, so just install using pip). Otherwise You will just get a warning message*\n", "\n", "This will be updated live during the optimisation, and also when using `RestoreParamSet()` to restore some specific solutions (and generally everytime the underlying Crystal's `UpdateDisplay()` function is called). Just scroll back to see what is being done in the widget.\n", "\n", "The `display()` is only really necessary to make sure the widget appears in the notebook. In fact if `c.widget_3d()` is the *last* command in the notebook cell, the display is done automatically. See the ipywidgets documentation if you want to understand this in more details.\n", "\n", "Note that bonds may disappear during optimisation, because they are automatically assigned by the javascript viewer, which is quite strict about allowed distances. In the final solution some bonds in the middle of the chain are often missing, though you can see the atoms are reasonably close. But rest assured that any bond defined in the object still exists as defined in pyobjcryst !" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fce5512877b245a09d4f92a1c77f9716", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(c.widget_3d())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run multiple optimisations\n", "We also enable the automatic least squares every 150k trials, which allows a better convergence\n", "\n", "We perform 3 runs, each of 1 million trials using parallel tempering, with default parameters (which should be adequate for all problems). Normally for this structure it would be better to use 2 millions trials so that the correct solution is found during almost every run.\n", "\n", "Each run starts from a randomised configuration." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LSQ option: Every 150000 trials, and at the end of each run\n" ] }, { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "42440b516d0e4b71a747cd0a376846fc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d056fc2fab4948999db31f797217e2d0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(HBox(children=(Label(value='MonteCarlo:', layout=Layout(max_width='25%', width='11em')), Text(va…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Final LLK: 18608.95\n" ] } ], "source": [ "mc.GetOption(\"Automatic Least Squares Refinement\").SetChoice(2)\n", "print(\"LSQ option: \", mc.GetOption(\"Automatic Least Squares Refinement\").GetChoiceName(2))\n", "\n", "# 3D structure view which will be live-updated with the best\n", "# configuration of the current run\n", "display(c.widget_3d())\n", "\n", "# Small widget to see the progress of the optimisation, with the current run\n", "# best log-likelihood, the run number and remaining number of trials.\n", "display(mc.widget())\n", "\n", "# The powder pattern plot a few cells above should also be updated for each run best solution\n", "mc.MultiRunOptimize(nb_run=3, nb_step=1e6)\n", "print(\"Final LLK: %.2f\" % mc.GetLogLikelihood())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### List solutions\n", "All solutions are stored in a \"Parameter Set\" which can be restored (assuming that the objects - crystal structure and powder pattern are not altered e.g. by changing the list of atoms, the profile, or the fixed parameters etc...).\n", "\n", "This will only record changes of parameters such as atom coordinates, but will not record other changes such as a different spacegroup, or a change of the Scatterers (number of atoms or molecules) inside a Crystal. It can only be used to browse results obtained at the end of `MultiRunOptimize()`.\n", "\n", "At the end of the optimisation the best solution is automatically restored." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0: LLK= 21130.00, name=Best Configuration\n", " 1: LLK= 21135.00, name=Run #3\n", " 2: LLK= 21130.00, name=Run #2\n", " 3: LLK= 21155.00, name=Run #1\n" ] } ], "source": [ "for i in range(mc.GetNbParamSet()):\n", " idx = mc.GetParamSetIndex(i)\n", " cost = mc.GetParamSetCost(i)\n", " name = mc.GetFullRefinableObj().GetParamSetName(idx)\n", " print(\"%3d: LLK=%10.2f, name=%s\"%(idx, cost, name))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Restore a chosen solution (set of parameters)\n", "Restoring a solution will also update the 3D crystal view above." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a5767929d16a4a418579b71574cf1d2c", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQM0lEQVR4nOzde1zTZf8/8Nc2GAeFiRECaeqdqSiW5lkrNRXlK2mWobeKeWd2oLRu8JClpnmndnuqrLyrX7emYpaWpVmeE/N8wm5IKStNTQlTTgqMsV2/P9jn0zY22AnG2Ov5ePBQPrv47NrYxud9va/rfSmEEAJERERERETkc5Se7gARERERERF5BgNCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIiIiIh8FANCIiIiIiIiH8WAkIiIiIiIyEcxICQiIiIiIvJRDAiJiIjqgTFjxni6C0RE5IX8PN0BIiIist+0adMqHRNC4ODBgx7oDREReTsGhERERF4kLS0N69atq3T822+/9UBviIjI2zEgJCIi8iKPP/44YmJiEBERYXZ83LhxHuoRERF5M4UQQni6E0RERERERFT7WFSGiIiIiIjIRzEgJCIiIiIi8lEMCImIiLxcRkaGp7tAREReikVliIiIvMi7775r9r0QAitWrEBycjKSk5M91CsiIvJWzBASERF5kXfeeQdfffUVgoOD0aBBAzRs2BBKpRINGzb0dNeIiMgLscqoFxNCoLCwEEVFRQgJCYFCofB0l4iIqIYJIbBx40Z88cUXGD58OB5++GEkJiZi48aNnu4aEZHbCCFQVFSE6OhoKJXMYdUkBoRerLCwEBqNxtPdICIiIiKqERcvXkTTpk093Y16jWsIvVhISAguXryIZs2a4eLFiwgNDfV0l4iIqJYZDAb88ccfiIqK8nRXiIjcprCwEM2aNUNISIinu1L/CfJqBQUFAoAoKCiQjy1fvlw0atRIhIaGikaNGonPP/9c7N69WwQFBQkA4sqVK3LbYcOGiZCQEBERESF+++03s3N/9913AoD4f//v/wkhhJg3b57o06ePEEKI8+fPi9tvv100atRIxMTEVOpX586dRUhIiGjYsKG4//77hRBCaDQaERoaKrRarVi2bJlQqVRCo9GIsLAwkZ2dbfbzjz76qFCpVOK2226z+rijo6NFaGioCAkJEWvWrBFCCDF16lShVqtFcHCwWdstW7aILl26VPk8Wnt+fv75Z9GgQQObfSAiIiKimmHtGpdqBifk1jNnz57FjBkzcPz4cRQUFODgwYMwGAy46667kJ2dbTbF9MyZM0hPT0d+fj4eeeQRPPHEE5XOFxAQgNmzZ1c6PmzYMCxcuBB5eXk4ffq02W1ffvklcnJy5PWNq1atkm/78ccfoVarAQAdO3ZEfn4+evfujeeee87sHK+88gp27Nhh83GmpaWhoKAAGzZsQEpKCgBg4sSJuHbtWqW2/+///T+MGjXK5rkAWH1+7rjjDmzbtq3KnyMiIiIi8mYMCOuZRYsWYdCgQbjjjjsAADExMXjkkUcQHh6O22+/3aztp59+ik6dOkGpVOKf//wnvv/++0rnCw8Ph8FgwNdff212/Ny5c5g7dy4aNWqEGTNmmN0WEhKC69ev45tvvgEAtGzZsso+9+jRA5cvXzY71r59ezlwtKZv374AgKCgIKhUKgDAnXfeabXK3rFjx/DUU09h9+7daNy4MRo1aoSuXbtWepyWzw8RkTfJycnxdBeIiMgLMSCsZy5evFhtACbJzc2VM2LNmjVDcXGx1XazZs3CCy+8YHassLAQs2bNQnZ2Nt58800UFhbKtz3wwAN46qmnMHr0aKjVasyaNavKfnzzzTdo3bq1XX22NHr06CrPf/36dahUKjRs2BBJSUl45513kJ+fj0OHDjl1f0REddW4ceM83QUiIvJCLCpTzzRv3hy//vqrXW2bNGmCM2fOAAB+++03BAcHW22XnJyMl19+GT///LN8TK1WY8yYMQCAW2+9FSdPnpSzdgCwbNkyLFu2DFlZWejatSvmzZtX6bynTp1Co0aNcMstt+Dzzz+39yHK+vTpg7vvvrvKjZjffvtt9O7dGwBQUFCAv//97wAAPz++9InIO3Xr1q3SMSEEzp4964HeENVdBoMBZWVlnu4G2eDv7y/P8iLP4lVxPTN16lR07NgRv/zyC+644w78+OOPyMrKwiOPPFKp7aOPPoply5YBAN5880107NjR5nmTk5OxZMkS9OjRA0BFELhv3z706NED165dQ2xsrNz2l19+gcFgwJ133onbb7/d5v6IHTt2xPHjx516nM888wyuXLmCn376qcp2mzZtwptvvgkA0Gg0+PTTT5GYmIjy8nIGhUTklYqKipCZmVnpM2zgwIEe6hFR3VNWVoZz587BYDB4uitUhUaNGiEyMpJ7aXuap6vauFN6erpISEgQUVFRAoDYtGmT2e0ArH79+9//ltv06dOn0u0jR440O8/169fF2LFjRWhoqAgNDRVjx44VeXl5Zm1+++03kZCQIIKDg8Utt9wiJk2aJLRarVmb//3vf+L+++8XgYGBIjo6WsydO1cYDAaHHnNVVUalCp5ffvml+PXXX0VYWJhQKBSiUaNGYu7cuUKI6quMShU29Xq9UKvVcpXRr7/+WjRq1Eg0aNBAjB8/3uzn0tPT5eemYcOG4p///KcQoqLKqFTBc9myZaJz5842H9ekSZNESEiIUCgUIiwsTOh0OrPbAYiQkBCh0WhEq1at5HOGhYUJACIsLEycOHFCREZGyj+za9cu+Xnp1q2b2flsPT+mzwERUV3w+eefi+vXr1c6vnfvXg/0hqjuMRgM4vz58+Ls2bPi5s2boqSkhF917Ku4uFj8+eef4vTp0+Ly5ctWf4+sMlp76tXG9N988w0OHDiAe+65B4888gg2bdqEhx56SL7dcsH9N998gwkTJuDnn3/G3/72NwAVxUpat26NV199VW4XFBRkVn0yPj4ely5dwvvvvw8AePLJJ9GiRQts2bIFAKDX69GxY0fceuutWLJkCa5du4bHHnsMDz/8MJYvXw6gYg1e69at0a9fP7z88sv46aefMH78eLzyyitITU21+zFLm9MXFBTU+X0Ib7/9dhQWFiI3N7fKgjHuUlhYiAULFmDBggVO/fwvv/yCTp064fbbb0dWVpabe0dE5B7Z2dlo27atp7tBVGfodDr8/PPPiI6ONrt+o7rn2rVryM3NRevWrStNH/Wma1xvV6/mzMXHxyM+Pt7m7ZGRkWbff/nll+jXr58cDEqCg4MrtZWcOXMG27Ztw+HDh9G9e3cAwAcffICePXvixx9/RJs2bbBjxw6cPn0aFy9eRHR0NABgyZIlGD9+PF577TWEhoYiLS0NpaWlWLVqFQICAhAbG4uffvoJS5cuRUpKSr1MnV+4cKFW7y80NNTpYBCo2HbCtFgOEVFdlJycjD179ni6G0R1hl6vB4BaGXwm10j1K3Q6HdcTepDPVhn9448/sHXrVkyYMKHSbWlpaQgPD0f79u0xZcoUFBUVybcdOnQIGo1GDgaBim0TNBoNDh48KLeJjY2Vg0EAGDRoELRaLU6cOCG36dOnDwICAszaXL58GefPn7fZb61Wi8LCQrMvIiLyXf7+/p7uAlGdVB8H1+sb/o7qhnqVIXTERx99hJCQEDz88MNmx8eMGYOWLVsiMjISWVlZmDFjBr7//nvs3LkTQMW004iIiErni4iIkKek5uTkoEmTJma3h4WFQa1Wm7Vp0aKFWRvpZ3JycmxuHbFgwQLMnTvX8QdMRET10vbt2z3dBSIi8mI+myH873//izFjxiAwMNDs+MSJEzFgwADExsZi1KhR2LhxI3bt2oWTJ0/KbayNZgghzI4700ZazlnVaMmMGTNQUFAgf128eLGaR0pERPWawQBMmwbk5nq6J0RUg/bu3QuFQoH8/HxPd4XqGZ8MCL/77jv8+OOPeOKJJ6pte88998Df31/e3ykyMhJ//PFHpXZXr16VM3yRkZGVCtjk5eVBp9NV2SbX+MfcMrtoKiAgAKGhoWZfRETkw06fBhYtAmbM8HRPiIjIC/lkQPjhhx+ic+fOuPvuu6tt+8MPP0Cn0yEqKgoA0LNnTxQUFODo0aNymyNHjqCgoAC9evWS22RlZeHKlStymx07diAgIACdO3eW2+zbt89sw9QdO3YgOjq60lRSIiIim6Ri4VyLQ0RETqhXAeGNGzdw6tQpnDp1CgBw7tw5nDp1yqy6ZWFhITZs2GA1O/jLL7/g1VdfxfHjx3H+/Hl8/fXXePTRR9GpUyf07t0bABATE4PBgwdj4sSJOHz4MA4fPoyJEyciISEBbdq0AQDExcWhXbt2SEpKQkZGBnbv3o0pU6Zg4sSJckZv9OjRCAgIwPjx45GVlYVNmzZh/vz59bbCKBER1RAGhET1hlarxeTJkxEREYHAwEDce++9OHbsmFmbAwcO4O6770ZgYCC6d++OzMxM+bbffvsNDz74IMLCwtCgQQO0b98eX3/9dW0/DPIy9SogPH78ODp16oROnToBAFJSUtCpUyfMnj1bbrN+/XoIIfD3v/+90s+r1Wrs3r0bgwYNQps2bTB58mTExcVh165dZqVw09LS0KFDB8TFxSEuLg533XUX1qxZI9+uUqmwdetWBAYGonfv3khMTMRDDz2ExYsXy200Gg127tyJS5cuoUuXLkhOTkZKSgpSUlJq4qkhIqL6igEhUb0xbdo0fPbZZ/joo49w8uRJtGrVCoMGDcL169flNlOnTsXixYtx7NgxREREYOjQodDpdACAZ599FlqtFvv27UNmZiZef/11NGzY0FMPh7xEvdqY3hdx004iIh/3/fdAx47Ak08C773n6d4QeVxpaSnOnTuHli1bysUDi4uLkZ2dXet9adu2rbzXXnVu3ryJsLAwrFq1CqNHjwZQsT9fixYt8MILL6Br167o168f1q9fj5EjRwIArl+/jqZNm2LVqlVITEzEXXfdhUceeQSvvPJKjT0md7L2u5LwGrf2+Oy2E0RERPUCx3WJqpWdnS3XcahNJ06cwD333GNX219++QU6nU5epgRU7DParVs3nDlzBl27dgVQUYdC0rhxY7Rp0wZnzpwBAEyePBnPPPMMduzYgQEDBuCRRx7BXXfd5cZHRPURA0IiIiJvximjRNVq27YtTpw44ZH7tZet7ccsty2zRrr9iSeewKBBg7B161bs2LEDCxYswJIlSzBp0iQHe06+hAEhERGRN2NASFSt4OBguzN1ntKqVSuo1Wrs37/fbMro8ePH8cILL8jtDh8+jNtvvx1AxbZmP/30k1ng2axZMzz99NN4+umnMWPGDHzwwQcMCKlKDAiJiIjqAwaERF6tQYMGeOaZZzB16lQ0btwYt99+O/7973+juLgYEyZMwPfffw8AePXVV3HLLbegSZMmePnllxEeHo6HHnoIAPDCCy8gPj4erVu3Rl5eHvbs2YOYmBgPPiryBgwIiYiIvFhRYSFCAPx28SKae7ozROSShQsXwmAwICkpCUVFRejSpQu2b9+OsLAwszbPP/88zp49i7vvvhubN2+GWq0GAOj1ejz77LO4dOkSQkNDMXjwYCxbtsxTD4e8BKuMejlWYCIi8m0/r1+PVn//O76NiUG/06c93R0ij6uqciXVLawyWjfUq30IiYiIfI1Br6/4D6eMEhGRExgQEhEReTMWlSEiIhcwICQiIvJiBoOh4j8MCImIyAkMCImIiLyYYEBIREQuYEBIRETkxaQ1hAol/6QTEZHj+NeDiIjIm3ENIRERuYABIRERkReT1hAqGBASEZETGBASERF5McFtJ4iIyAUMCImIiLyYFBAyQ0jk2+bMmYOOHTt6uhvkhRgQEhEReTFmCImIyBUMCImIiLwZt50gIiIXMCAkIiLyYnKGkNtOEHk9g8GA119/Ha1atUJAQABuv/12vPbaawCA6dOno3Xr1ggODsbf/vY3zJo1Czqdrsrz/fe//0X79u0REBCAqKgoPPfcc7XxMMjL+Hm6A0REROQ8riEkqj9mzJiBDz74AMuWLcO9996LK1euIDs7GwAQEhKCVatWITo6GpmZmZg4cSJCQkIwbdo0q+dasWIFUlJSsHDhQsTHx6OgoAAHDhyozYdDXoIBIRERkRcT5eUAGBASebuioiK8+eabePvtt/HYY48BAO644w7ce++9AICZM2fKbVu0aIHU1FR88sknNgPCf/3rX0hNTcXzzz8vH+vatWsNPgLyVgwIiYiIvJiUIRQMCIlsKy4GjJm2WtW2LRAcbFfTM2fOQKvVon///lZv37hxI9544w38/PPPuHHjBsrLyxEaGmq1bW5uLi5fvmzzXESmGBASERF5MYOUIeQaQiLbsrOBzp1r/35PnADuuceupkFBQTZvO3z4MEaNGoW5c+di0KBB0Gg0WL9+PZYsWeLwuYgsMSAkIiLyYtx2gsgObdtWBGeeuF873XnnnQgKCsLu3bvxxBNPmN124MABNG/eHC+//LJ87LfffrN5rpCQELRo0QK7d+9Gv379HO83+RQGhERERF6MGUIiOwQH252p85TAwEBMnz4d06ZNg1qtRu/evXH16lX88MMPaNWqFS5cuID169eja9eu2Lp1KzZt2lTl+ebMmYOnn34aERERiI+PR1FREQ4cOIBJkybV0iMib8GAkIiIyItJASEReb9Zs2bBz88Ps2fPxuXLlxEVFYWnn34aEyZMwD//+U8899xz0Gq1GDJkCGbNmoU5c+bYPNdjjz2G0tJSLFu2DFOmTEF4eDhGjBhRew+GvIZCCCE83QlyXmFhITQaDQoKCmwuLCYiovpr/z//iXvfeAMH+vZF72+/9XR3iDyutLQU586dQ8uWLREYGOjp7lAVqvpd8Rq39tSr+SX79u3Dgw8+iOjoaCgUCnzxxRdmt48fPx4KhcLsq0ePHmZttFotJk2ahPDwcDRo0ABDhw7FpUuXzNrk5eUhKSkJGo0GGo0GSUlJyM/PN2tz4cIFPPjgg2jQoAHCw8MxefJklJWVmbXJzMxEnz59EBQUhNtuuw2vvvoqGJ8TEZEjFAYDAIB/PYiIyBn1KiC8efMm7r77brz99ts22wwePBhXrlyRv77++muz21944QVs2rQJ69evx/79+3Hjxg0kJCRALy3aBzB69GicOnUK27Ztw7Zt23Dq1CkkJSXJt+v1egwZMgQ3b97E/v37sX79enz22WdITU2V2xQWFmLgwIGIjo7GsWPHsHz5cixevBhLly514zNCRET1HgNCIiJyQb1aQxgfH4/4+Pgq2wQEBCAyMtLqbQUFBfjwww+xZs0aDBgwAACwdu1aNGvWDLt27cKgQYNw5swZbNu2DYcPH0b37t0BAB988AF69uyJH3/8EW3atMGOHTtw+vRpXLx4EdHR0QCAJUuWYPz48XjttdcQGhqKtLQ0lJaWYtWqVQgICEBsbCx++uknLF26FCkpKdxgmIiIHMK/GkRE5Ix6lSG0x969exEREYHWrVtj4sSJyM3NlW87ceIEdDod4uLi5GPR0dGIjY3FwYMHAQCHDh2CRqORg0EA6NGjBzQajVmb2NhYORgEgEGDBkGr1eKEseTxoUOH0KdPHwQEBJi1uXz5Ms6fP18jj52IiOofYcwQgksOiIjICT4VEMbHxyMtLQ179uzBkiVLcOzYMTzwwAPQarUAgJycHKjVaoSFhZn9XJMmTZCTkyO3iYiIqHTuiIgIszZNmjQxuz0sLAxqtbrKNtL3UhtrtFotCgsLzb6IiMiHMRAkIiIX1Kspo9UZOXKk/P/Y2Fh06dIFzZs3x9atW/Hwww/b/DkhhNkUTmvTOd3RRiooU9V00QULFmDu3Lk2byciIh/DgJCIiFzgUxlCS1FRUWjevDnOnj0LAIiMjERZWRny8vLM2uXm5srZu8jISPzxxx+VznX16lWzNpZZvry8POh0uirbSNNXLTOHpmbMmIGCggL56+LFi448ZCIiqmc4ZZSIiFzh0wHhtWvXcPHiRURFRQEAOnfuDH9/f+zcuVNuc+XKFWRlZaFXr14AgJ49e6KgoABHjx6V2xw5cgQFBQVmbbKysnDlyhW5zY4dOxAQEIDOnTvLbfbt22e2FcWOHTsQHR2NFi1a2OxzQEAAQkNDzb6IiMiHMRAkIiIX1KuA8MaNGzh16hROnToFADh37hxOnTqFCxcu4MaNG5gyZQoOHTqE8+fPY+/evXjwwQcRHh6O4cOHAwA0Gg0mTJiA1NRU7N69GxkZGRg7diw6dOggVx2NiYnB4MGDMXHiRBw+fBiHDx/GxIkTkZCQgDZt2gAA4uLi0K5dOyQlJSEjIwO7d+/GlClTMHHiRDmAGz16NAICAjB+/HhkZWVh06ZNmD9/PiuMEhGRYxgQEhGRC+pVQHj8+HF06tQJnTp1AgCkpKSgU6dOmD17NlQqFTIzMzFs2DC0bt0ajz32GFq3bo1Dhw4hJCREPseyZcvw0EMPITExEb1790ZwcDC2bNkClUolt0lLS0OHDh0QFxeHuLg43HXXXVizZo18u0qlwtatWxEYGIjevXsjMTERDz30EBYvXiy30Wg02LlzJy5duoQuXbogOTkZKSkpSElJqYVnioiI6g1jQCgYGBL5tDlz5qBjx441eh+rVq1Co0aNavQ+qPbVq6Iyffv2rfIP4vbt26s9R2BgIJYvX47ly5fbbNO4cWOsXbu2yvPcfvvt+Oqrr6ps06FDB+zbt6/aPhEREdkiryEkIiJyQr3KEBIREfkaeZEBM4REROQEBoRERERejFNFieoPg8GA119/Ha1atUJAQABuv/12vPbaawCA6dOno3Xr1ggODsbf/vY3zJo1Czqdrsrz/fe//0X79u0REBCAqKgoPPfcc1W2z8vLw7hx4xAWFobg4GDEx8fL1fhNffHFF2jdujUCAwMxcOBAs6r333//Pfr164eQkBCEhoaic+fOOH78uBPPBtUWBoRERETeTAoIGRgSeb0ZM2bg9ddfx6xZs3D69GmsW7dO3o4sJCQEq1atwunTp/Hmm2/igw8+wLJly2yea8WKFXj22Wfx5JNPIjMzE5s3b0arVq2qvP/x48fj+PHj2Lx5Mw4dOgQhBP7v//7PLPAsLi7Ga6+9ho8++ggHDhxAYWEhRo0aJd8+ZswYNG3aFMeOHcOJEyfw4osvwt/f38VnhmpSvVpDSERE5HNYVIaoXigqKsKbb76Jt99+G4899hgA4I477sC9994LAJg5c6bctkWLFkhNTcUnn3yCadOmWT3fv/71L6SmpuL555+Xj3Xt2tXm/Z89exabN2/GgQMH5K3U0tLS0KxZM3zxxRd49NFHAQA6nQ5vv/02unfvDgD46KOPEBMTg6NHj6Jbt264cOECpk6dirZt2wIA7rzzTmefEqolzBASERF5MQaCRPXDmTNnoNVq0b9/f6u3b9y4Effeey8iIyPRsGFDzJo1CxcuXLDaNjc3F5cvX7Z5rqeffhoNGzaUv6T79/PzkwM9ALjlllvQpk0bnDlzRj7m5+eHLl26yN+3bdsWjRo1ktukpKTgiSeewIABA7Bw4UL88ssvjj0RVOuYISQiIvJmUpVRBoZEVXrmq2fwe9HvtXZ/t4XchhUJK+xuHxQUZPO2w4cPY9SoUZg7dy4GDRoEjUaD9evXY8mSJQ6fCwBeffVVTJkyxeyYrcElIUSlPbKt7ZktHZszZw5Gjx6NrVu34ptvvsErr7yC9evXy/t+U93DgJCIiMibSRdx3H6CqEqOBGeecOeddyIoKAi7d+/GE088YXbbgQMH0Lx5c7z88svysd9++83muUJCQtCiRQvs3r0b/fr1q3R7REQEIiIizI61a9cO5eXlOHLkiDxl9Nq1a/jpp58QExMjtysvL8fx48fRrVs3AMCPP/6I/Px8eYooALRu3RqtW7fGP//5T/z973/HypUrGRDWYQwIiYiIvBmLyhDVC4GBgZg+fTqmTZsGtVqN3r174+rVq/jhhx/QqlUrXLhwAevXr0fXrl2xdetWbNq0qcrzzZkzB08//TQiIiIQHx+PoqIiHDhwAJMmTbLa/s4778SwYcMwceJEvPfeewgJCcGLL76I2267DcOGDZPb+fv7Y9KkSXjrrbfg7++P5557Dj169EC3bt1QUlKCqVOnYsSIEWjZsiUuXbqEY8eO4ZFHHnHrc0XuxTWERERE3owBIVG9MWvWLKSmpmL27NmIiYnByJEjkZubi2HDhuGf//wnnnvuOXTs2BEHDx7ErFmzqjzXY489hjfeeAPvvvsu2rdvj4SEBKtbSJhauXIlOnfujISEBPTs2RNCCHz99ddmVUKDg4Mxffp0jB49Gj179kRQUBDWr18PAFCpVLh27RrGjRuH1q1bIzExEfHx8Zg7d67rTw7VGIXganSvVlhYCI1Gg4KCAoSGhnq6O0REVMv2jhqFvp98gn1duuD+Y8c83R0ijystLcW5c+fQsmVLBAYGero7VIWqfle8xq09zBASERF5MQUzhERE5AIGhERERN6MRWWIiMgFDAiJiIi8GTemJyIiFzAgJCIi8mJSIFh5VzAiIqLqMSAkIiLyZlxDSERELmBASERE5M0YEBJZxWnUdR9/R3UDA0IiIiJvxoCQyIxKpQIAlJWVebgnVJ3i4mIAMNvnkGqfn6c7QERERM7jCDuROT8/PwQHB+Pq1avw9/eHUsn8R10jhEBxcTFyc3PRqFEjOYgnz2BASERE5M2YISQyo1AoEBUVhXPnzuG3337zdHeoCo0aNUJkZKSnu+HzGBASERF5M2n/QQaERDK1Wo0777yT00brMH9/f2YG6wgGhERERN6MGUIiq5RKJQIDAz3dDaI6j5OqiYiIvBj3HyQiIlcwICQiIvJm0sb0zBASEZETGBASERF5McEpo0RE5AIGhERERN6MgSAREbmAASEREZE3Y4aQiIhcUK8Cwn379uHBBx9EdHQ0FAoFvvjiC/k2nU6H6dOno0OHDmjQoAGio6Mxbtw4XL582ewcffv2hUKhMPsaNWqUWZu8vDwkJSVBo9FAo9EgKSkJ+fn5Zm0uXLiABx98EA0aNEB4eDgmT55cqfRxZmYm+vTpg6CgINx222149dVXucEwERE5hgEhERG5oF4FhDdv3sTdd9+Nt99+u9JtxcXFOHnyJGbNmoWTJ0/i888/x08//YShQ4dWajtx4kRcuXJF/nrvvffMbh89ejROnTqFbdu2Ydu2bTh16hSSkpLk2/V6PYYMGYKbN29i//79WL9+PT777DOkpqbKbQoLCzFw4EBER0fj2LFjWL58ORYvXoylS5e68RkhIqJ6j4EgERG5oF7tQxgfH4/4+Hirt2k0GuzcudPs2PLly9GtWzdcuHABt99+u3w8ODgYkZGRVs9z5swZbNu2DYcPH0b37t0BAB988AF69uyJH3/8EW3atMGOHTtw+vRpXLx4EdHR0QCAJUuWYPz48XjttdcQGhqKtLQ0lJaWYtWqVQgICEBsbCx++uknLF26FCkpKVAoWEiciIjswCqjRETkgnqVIXRUQUEBFAoFGjVqZHY8LS0N4eHhaN++PaZMmYKioiL5tkOHDkGj0cjBIAD06NEDGo0GBw8elNvExsbKwSAADBo0CFqtFidOnJDb9OnTBwEBAWZtLl++jPPnz9fAoyUionqJU0aJiMgF9SpD6IjS0lK8+OKLGD16NEJDQ+XjY8aMQcuWLREZGYmsrCzMmDED33//vZxdzMnJQURERKXzRUREICcnR27TpEkTs9vDwsKgVqvN2rRo0cKsjfQzOTk5aNmypdV+a7VaaLVa+fvCwkIHHzkREdUrDASJiMgFPhkQ6nQ6jBo1CgaDAe+++67ZbRMnTpT/HxsbizvvvBNdunTByZMncc899wCA1emcQgiz4860kQrKVDVddMGCBZg7d25VD4+IiHwJp4wSEZELfG7KqE6nQ2JiIs6dO4edO3eaZQetueeee+Dv74+zZ88CACIjI/HHH39Uanf16lU5wxcZGSlnAiV5eXnQ6XRVtsnNzQWAStlFUzNmzEBBQYH8dfHixWoeMRER1WucMkpERC7wqYBQCgbPnj2LXbt24ZZbbqn2Z3744QfodDpERUUBAHr27ImCggIcPXpUbnPkyBEUFBSgV69ecpusrCxcuXJFbrNjxw4EBASgc+fOcpt9+/aZbUWxY8cOREdHV5pKaiogIAChoaFmX0RE5MMYCBIRkQvqVUB448YNnDp1CqdOnQIAnDt3DqdOncKFCxdQXl6OESNG4Pjx40hLS4Ner0dOTg5ycnLkoOyXX37Bq6++iuPHj+P8+fP4+uuv8eijj6JTp07o3bs3ACAmJgaDBw/GxIkTcfjwYRw+fBgTJ05EQkIC2rRpAwCIi4tDu3btkJSUhIyMDOzevRtTpkzBxIkT5QBu9OjRCAgIwPjx45GVlYVNmzZh/vz5rDBKRESOYYaQiIhcUK8CwuPHj6NTp07o1KkTACAlJQWdOnXC7NmzcenSJWzevBmXLl1Cx44dERUVJX9J1UHVajV2796NQYMGoU2bNpg8eTLi4uKwa9cuqFQq+X7S0tLQoUMHxMXFIS4uDnfddRfWrFkj365SqbB161YEBgaid+/eSExMxEMPPYTFixfLbaRtMC5duoQuXbogOTkZKSkpSElJqaVni4iI6hUGhERE5ASFEPwL4s0KCwuh0WhQUFDA6aNERD7o2/vvR7/vvsOBFi3Q+9w5T3eHiMgteI1be+pVhpCIiMjnsMooERG5gAEhERGRN2MgSERELmBASERE5M2YISQiIhcwICQiIvJmrDJKREQuYEBIRETkzRgIEhGRCxgQEhER1QcMDImIyAkMCImIiLwZA0EiInIBA0IiIiJvxqIyRETkAgaEREREXkzBojJEROQCBoREREReTEgZQg/3g4iIvBMDQiIiIm/GDCEREbmAASEREREREZGPYkBIRETkzZghJCIiFzAgJCIi8mKsLkpERK5gQEhEROTNuO0EERG5gAEhERGRN2MgSERELmBASEREVA8wQ0hERM5gQEhEROTNGAgSEZELGBASERF5MQXXEBIRkQsYEBIREXkzYyDIcJCIiJzBgJCIiMiLSYEgM4REROQMBoRERERejIEgERG5ggEhERGRN+MaQiIicgEDQiIiIm/GQJCIiFzAgJCIiMibMUNIREQuYEBIRERERETkoxgQEhEReTFmBomIyBX1KiDct28fHnzwQURHR0OhUOCLL74wu10IgTlz5iA6OhpBQUHo27cvfvjhB7M2Wq0WkyZNQnh4OBo0aIChQ4fi0qVLZm3y8vKQlJQEjUYDjUaDpKQk5Ofnm7W5cOECHnzwQTRo0ADh4eGYPHkyysrKzNpkZmaiT58+CAoKwm233YZXX30Vgn/YiYjIEdLfDf79ICIiJ9SrgPDmzZu4++678fbbb1u9/d///jeWLl2Kt99+G8eOHUNkZCQGDhyIoqIiuc0LL7yATZs2Yf369di/fz9u3LiBhIQE6PV6uc3o0aNx6tQpbNu2Ddu2bcOpU6eQlJQk367X6zFkyBDcvHkT+/fvx/r16/HZZ58hNTVVblNYWIiBAwciOjoax44dw/Lly7F48WIsXbq0Bp4ZIiKq75gpJCIip4h6CoDYtGmT/L3BYBCRkZFi4cKF8rHS0lKh0WjEf/7zHyGEEPn5+cLf31+sX79ebvP7778LpVIptm3bJoQQ4vTp0wKAOHz4sNzm0KFDAoDIzs4WQgjx9ddfC6VSKX7//Xe5zccffywCAgJEQUGBEEKId999V2g0GlFaWiq3WbBggYiOjhYGg8Hux1lQUCAAyOclIiLfsu/OO4UAxMlGjTzdFSIit+E1bu2pVxnCqpw7dw45OTmIi4uTjwUEBKBPnz44ePAgAODEiRPQ6XRmbaKjoxEbGyu3OXToEDQaDbp37y636dGjBzQajVmb2NhYREdHy20GDRoErVaLEydOyG369OmDgIAAszaXL1/G+fPnbT4OrVaLwsJCsy8iIvJhrDJKREQu8JmAMCcnBwDQpEkTs+NNmjSRb8vJyYFarUZYWFiVbSIiIiqdPyIiwqyN5f2EhYVBrVZX2Ub6XmpjzYIFC+S1ixqNBs2aNav6gRMRUb3GMJCIiFzhMwGhRKFQmH0vhKh0zJJlG2vt3dFGSKO8VfRnxowZKCgokL8uXrxYZd+JiKh+UzBDSERELvCZgDAyMhJA5exbbm6unJmLjIxEWVkZ8vLyqmzzxx9/VDr/1atXzdpY3k9eXh50Ol2VbXJzcwFUzmKaCggIQGhoqNkXERH5MAaCRETkAp8JCFu2bInIyEjs3LlTPlZWVob09HT06tULANC5c2f4+/ubtbly5QqysrLkNj179kRBQQGOHj0qtzly5AgKCgrM2mRlZeHKlStymx07diAgIACdO3eW2+zbt89sK4odO3YgOjoaLVq0cP8TQEREREREZKFeBYQ3btzAqVOncOrUKQAVhWROnTqFCxcuQKFQ4IUXXsD8+fOxadMmZGVlYfz48QgODsbo0aMBABqNBhMmTEBqaip2796NjIwMjB07Fh06dMCAAQMAADExMRg8eDAmTpyIw4cP4/Dhw5g4cSISEhLQpk0bAEBcXBzatWuHpKQkZGRkYPfu3ZgyZQomTpwoZ/RGjx6NgIAAjB8/HllZWdi0aRPmz5+PlJSUaqewEhERyaQpox7uBhEReSc/T3fAnY4fP45+/frJ36ekpAAAHnvsMaxatQrTpk1DSUkJkpOTkZeXh+7du2PHjh0ICQmRf2bZsmXw8/NDYmIiSkpK0L9/f6xatQoqlUpuk5aWhsmTJ8vVSIcOHWq296FKpcLWrVuRnJyM3r17IygoCKNHj8bixYvlNhqNBjt37sSzzz6LLl26ICwsDCkpKXKfiYiI7KHgxvREROQChRD8C+LNCgsLodFoUFBQwPWEREQ+aH/Llrj3/HlkhoSgA7ciIqJ6gte4tadeTRklIiLyNawySkRErmBASERE5M0YCBIRkQsYEBIREdUDzBASEZEzGBASEVGNGTNmjKe7UO9JgSDDQSIicka9qjJKRESeMW3atErHhBA4ePCgB3rjW6RAkNtOEBGRMxgQEhGRy9LS0rBu3bpKx7/99lsP9Ma3sKgMERG5ggEhERG57PHHH0dMTAwiIiLMjo8bN85DPfIhDASJiMgF3IfQy3GPFiIi33awaVP0+v13nAkORszNm57uDhGRW/Aat/awqAwREZEX45RRIiJyBQNCIiIib8ZAkIiIXMCAkIiIyIuxuigREbmCASEREbns008/RadOnTB27Fh89NFHaNOmDbp27YrNmzd7umv1H6eMEhGRC1hllIiIXLZkyRIcOHAARUVF6NixI7KzsxEYGIgBAwZg6NChnu4eERER2cCAkIiIXBYUFITg4GAEBwejf//+0Gg0AAA/P/6ZqWlyURkP94OIiLwTp4wSEZHLOnbsCL1eDwBYu3YtAKCsrAy33HKLJ7vlUzhllIiInMGhWyIictkbb7xR6ZharcbGjRtrvzO+hoEgERG5gBlCIiKieoBTRomIyBkMCImIiLwYp4rWbxkZGUhISMDw4cNx8OBB+fiECRM82Csiqk84ZZSIiGpMTk4OIiMjPd0Nn8DAsH6aPHkyVq5cCT8/P0ydOhWHDx9GSkoKfv31V093jYjqCWYIiYioxowbN87TXaj/GAjWawqFAq1atUKLFi2wYcMGFBYWYuLEiSgvL/d014ionmCGkIiIXNatW7dKx4QQOHv2rAd641sUFv9S/RIREYHz58+jRYsWAIA5c+Zg7dq1WLNmjWc7RkT1BgNCIiI7jRkzBmlpaZ7uRp1UVFSEzMzMSvsODhw40EM98h3yPoTMFNZL1ir1jh07FmPHjvVAb4ioPmJASERkYdq0aZWOCSHMCjqQufnz56OoqAhhYWFmx2fOnOmhHhEREZE9GBASEVlIS0vDunXrKh3/9ttvPdAb7zB8+HCz77Ozs9G2bVv06dPHQz3yHXKG0MP9ICIi78SAkIjIwuOPP46YmBhERESYHWeBFPslJydjz549nu6GT2FASEREzmCVUSIiC/PmzasUDAIV5d/JPv7+/p7ugu+Q1g5yDaFPiYuL83QXiKie8LmAsEWLFlAoFJW+nn32WQDA+PHjK93Wo0cPs3NotVpMmjQJ4eHhaNCgAYYOHYpLly6ZtcnLy0NSUhI0Gg00Gg2SkpKQn59v1ubChQt48MEH0aBBA4SHh2Py5MkoKyur0cdPRFQbtm/f7ukuENULiYmJlb4effRRZGZmerprRFRP+NyU0WPHjkGv18vfZ2VlYeDAgXj00UflY4MHD8bKlSvl79Vqtdk5XnjhBWzZsgXr16/HLbfcgtTUVCQkJODEiRNQqVQAgNGjR+PSpUvYtm0bAODJJ59EUlIStmzZAgDQ6/UYMmQIbr31Vuzfvx/Xrl3DY489BiEEli9fXmOPn4iI6heuIazfjh07hj179kCp/GsMXwiBpKQkD/aKiOoTnwsIb731VrPvFy5ciDvuuMOs8EFAQAAiIyOt/nxBQQE+/PBDrFmzBgMGDAAArF27Fs2aNcOuXbswaNAgnDlzBtu2bcPhw4fRvXt3AMAHH3yAnj174scff0SbNm2wY8cOnD59GhcvXkR0dDQAYMmSJRg/fjxee+01hIaG1sTDJyKieooBYf00depUhISEIDw83Oz4c88956EeEVF943NTRk2VlZVh7dq1ePzxx6FQ/PWndO/evYiIiEDr1q0xceJE5ObmyredOHECOp3ObO5+dHQ0YmNj5ZL0hw4dgkajkYNBAOjRowc0Go1Zm9jYWDkYBIBBgwZBq9XixIkTNvus1WpRWFho9kVE7rVz5050794dvXr1wvr16+XjQ4YM8WCviKzjPoT1W3JycqVgEABGjhzpgd4QUX3k0wHhF198gfz8fIwfP14+Fh8fj7S0NOzZswdLlizBsWPH8MADD0Cr1QIAcnJyoFarK+211aRJE+Tk5MhtrBWkiIiIMGvTpEkTs9vDwsKgVqvlNtYsWLBAXpeo0WjQrFkzpx47Edn2yiuvYPv27di1axeOHj2KSZMmwWAwoLi42NNdIyIiInIrnw4IP/zwQ8THx5tl6UaOHIkhQ4YgNjYWDz74IL755hv89NNP2Lp1a5XnEkKYZRlN/+9KG0szZsxAQUGB/HXx4sUq+0VEjlOpVGjUqBGCg4OxdOlSdO7cGcOGDcONGzc83TWiSriGkIiIXOGzAeFvv/2GXbt24YknnqiyXVRUFJo3b46zZ88CACIjI1FWVoa8vDyzdrm5uXLGLzIyEn/88Uelc129etWsjWUmMC8vDzqdrlLm0FRAQABCQ0PNvojIvTp27Ijz58/L348fPx4pKSkoKiryXKeIiEzw84iI3MVnA8KVK1ciIiKi2jVB165dw8WLFxEVFQUA6Ny5M/z9/bFz5065zZUrV5CVlYVevXoBAHr27ImCggIcPXpUbnPkyBEUFBSYtcnKysKVK1fkNjt27EBAQAA6d+7stsdJRI5bvnw5WrRoYXasX79+yM7O9kyH6pCMjAwkJCRg+PDh8ppoAJgwYYIHe+XbFBb/Uv2yevVqdOjQAffccw8WLlwoHx82bJgHe0VE9YlPBoQGgwErV67EY489Bj+/vwqt3rhxA1OmTMGhQ4dw/vx57N27Fw8++CDCw8MxfPhwAIBGo8GECROQmpqK3bt3IyMjA2PHjkWHDh3kqqMxMTEYPHgwJk6ciMOHD+Pw4cOYOHEiEhIS0KZNGwAVG8q2a9cOSUlJyMjIwO7duzFlyhRMnDiRWT8iqrMmT56MN954A8uWLcOyZcuwdOlSAMCvv/7q4Z75MBaVqddWrFiBkydP4uTJkwgODsaIESNQXFwMwd83EbmJTwaEu3btwoULF/D444+bHVepVMjMzMSwYcPQunVrPPbYY2jdujUOHTqEkJAQud2yZcvw0EMPITExEb1790ZwcDC2bNki70EIAGlpaejQoQPi4uIQFxeHu+66C2vWrDG7r61btyIwMBC9e/dGYmIiHnroISxevLjmnwAiIicpFAq0atUKLVq0wIYNG1BYWIiJEyeivLzc013zWcwM1m9KpRL+/v4AKgZknnrqKcTHx+PPP//0cM+IqL5QCA4xebXCwkJoNBoUFBQws0jkhPLycrOZAlXJycmxuUeprxgxYgQWL15sNqV27dq1eOKJJ1BaWuq5jvmwzJAQdLhxAzlKJSL1ek93h9xs/vz5GD16tNl77ocffkBqaiq2bdvmuY4R1TBe49YeBoRejm8WIsdlZmZi+vTpyM/Ph5+fH3Q6HcLDwzF//nx06NDB5s/FxcVhx44dtdhTour9LyQEd924gT+USjRhQFjvZWdno23btp7uBlGN4zVu7bFvWJyIqB5JTk7GunXrzPbxvHDhAsaMGYPvvvsO3bp1q/QzQgi52jBRXcJtJ3xLcnIy9uzZ4+luEFE9woCQiHyOXq+HRqMxOxYaGgq9MbtSVFSEzMzMSlNJBw4cWGt9JCKyRlpPSETkLgwIicjnLFy4EAkJCVCr1QgNDUVBQQHKy8vx+uuvA6hYs1NUVISwsDCzn5s5c6YnuktUJXnbCR9YAZKRkYFZs2bB398fU6dOlbdymjBhAj788EMP9652bN++3dNdIKJ6hmsIvRznVxM5r6SkBPn5+QgLC0NgYKDNdlyzUz2ur/ScHxo0QPviYlxVKHCrweDp7tSo++67DytXroSfnx+mTp2Knj17IiUlBf369cO3337r6e4RkRvxGrf2MENIRD4rKCgIQUFB1bbjmp2/JCYmVjomhEBmZqYHekOmfGENobTtCQBs2LABc+bM4bYnREQuYkBIRFQNrtn5y7Fjx7Bnzx4olX9tYyuEQFJSkgd75dsUFv/WZxERETh//ry8BcOcOXOwdu1as31+iYjIMZwy6uWYTieqJYWFQFAQ4OPB4bvvvovExESEh4ebHf/kk08wcuRID/XKt50JDkZMSQmuKxRoXM+njBKR7+A1bu1RVt+EiKh+2blzJ7p3745evXph/fr18vEhQ4bY/iGNBnjooZrvXB2XnJxcKRgEwGCwDvCFDCEREbkfA0IiqhFjxozxdBdseuWVV7B9+3bs2rULR48exaRJk2AwGFBcXFz1D379de10kMgB3IeQiIhcwTWEROSSadOmVTomhMDBgwc90Bv7qFQqNGrUCACwdOlSrFq1CsOGDcONGzc82zEiclhGRgY6derk6W4QEXktBoRE5JK0tDSsW7eu0vG6XAK+Y8eOZoUpxo8fj+bNm+OZZ57xbMe8WE5ODiIjIz3dDZ/mC/sQvvvuu2bfCyGwYsUKJCcnIzk52UO9IiLybpwySkQuefzxxxETE4M+ffqYfY0bN87TXbNp+fLlcjAo6devH7Kzsz3ToXqgLv++6ztfmir6zjvv4KuvvkJwcDAaNGiAhg0bQqlUomHDhp7umsMyMjKQkJCA4cOHm82omDBhggd7RUS+iFVGvRwrMBHVEoXxsttNH5kZGRmYNWsW/P39MXXqVPTq1QtAxcXghx9+6Jb7qAndunWrdEwIgbNnzyI/P7/2O+QjysvL4ednfVLPT4GBaK3VohBAaD3/ky6EwMcff4wNGzYgMTERI0eOREJCAr72wvW99913H1auXAk/Pz9MnToVPXv2REpKCvr161enZ1gQ1RZe49YeThklIvKAyZMnm10MHj58GCkpKfj111893bUqFRUVITMzs1JwMnDgQA/1qP7KzMzE9OnTkZ+fDz8/P+h0OoSHh2P+/Pno0KFDpfa+kClUKBQYPXo0Ro0ahbS0NAwdOhR//vmnp7vlFIVCgVatWgEANmzYgDlz5mDixIkoLy/3cM+IyNcwICQiMqrNdXDeejE4f/58FBUVISwszOz4zJkzPdSj+is5ORnr1q1Ds2bN5GMXLlzAmDFj8N1338nHfGljeolSqURSUhLGjBmDnJwcT3fHKREREWZrmefMmYO1a9dizZo1nu0YEfkcriEkIjKqzXVw0sWgZM6cOejTpw+OHTtWa31wxvDhw82CQWndZZ8+fTzVpXpLr9dDo9GYHQsNDYVerzc75svbTiiVSkRHR3u6G07ZuHFjpbXMY8eORWlpqWc6REQ+i2sIvRznV1NdFRcXhx07dni6G1Y5tQ7OzWsI64sHHngAe/bs8XQ36qV9+/Zh5syZUKvVCA0NRUFBAcrLy/Gvf/0L9913n9zu54AAtCwrQymABnx9ElE9wWvc2sMpo0TkksTExErHhBDIzMz0QG/sw3Vw7uPv7+/pLtRb999/P/bt24eSkhLk5+cjLCwMgYGBldopAAj4ToZQq9Xihx9+wPXr19G4cWPExsZCrVZ7ultERF6LASERueTYsWPYs2cPlMq/ZqALIZCUlOTBXlWN6+DcZ/v27Z7uQr0XFBSEoKAgm7crhPCZgHDNmjVYsWIFunbtitDQUOTn5+PkyZN45plnMHbsWE93zynXr1+Xg9vGjRtX2baqarNERM7ipwoRuWTq1KkICQlBeHi42fHnnnvOQz2q3vDhw60et7kOrgan4TlyMUhkix6+ERC+99572L9/v9kAVHl5Ofr27et1AeHu3bsxe/ZshIeHy8FtXl4e5s6di/79+8vtHK02S0TkKAaEROSS5ORkq8dHjhxZyz1xwZkzQLt2wKlTwN13V77dYHD7Xdp7MUhkKiMjA506dTI7pgBgAKDySI9qV1BQENLT09GvXz8AFbMR0tPTrU6lretmz56Nbdu2ISQkRD5WWFiI+Ph4s88Ae6vNEhE5iwEhEfk8cfZsxTqsTZugsBYQWlR1dAd7Lwat8YZN7YUQ+OWXX+StNchx7777rtn3QgisWLECycnJZgMxCiGgh2/8QV+zZg0WLlyImTNnQq/Xw9/fH126dMHatWtrrQ/umrapVCpx9epVs8+Aq1evmmU/AfurzZJvSk9Px7x583DXXXdh8ODBmD59OjQaDRYsWICePXt6unvkJXzh7wcRUZXSs7LQF8D5gwfR0srtQq93+3Q8ey8GrfGGTe2XL1+O559/HhcvXkTTpk093R2v9M4776B58+ZITEyEwljlVqlUomHDhmbtfKmoTGRkJN54441av9+amLb5/vvvIzU1FTk5ORBCQKFQICoqCu+//75Zu4ULFyIhIaFStdnXX3/dHQ+NvNz06dOxYcMG5OfnIy4uDseOHUNwcDAefvhh7N2719PdIy/BgJCIakRtbvLuKu3NmwCAm8XFVm836HRun45n78WgNd6wqX1GRgaAiqwnOScrKwsff/wxNmzYgMTERIwcORKffPJJpf0ylUJAr1D47pYoK1YA998PtG9fY3dRE9M2Y2JisGnTpmrb2VttlnxTYGAgmjVrhmbNmiEmJkYegFOpfGESObkLA0IiqhHjxo2rs/sQWgoOCAAA6GwEVPqyMrcHhPZeDFojbWovbWo9Z84crF27FmvWrHFjD13TOC8P2wD418D6S1+hUCgwevRojBo1CmlpaRg6dCj+/PNPq20N8I0MoVXJySgODkawcWCnJtSFaZvVVZsl3xQZGQm9Xg+VSiXvCVteXg4DP3vJAdXPTapH5syZA4VCYfZlmsEQQmDOnDmIjo5GUFAQ+vbtix9++MHsHFqtFpMmTUJ4eDgaNGiAoUOH4tKlS2Zt8vLykJSUBI1GA41Gg6SkpEqbXV+4cAEPPvggGjRogPDwcEyePBllZWU19tiJakq3bt0qfXXt2hVHjx71dNfsFmTcw6xcp7N6u76OvTc3btwoB4OSsWPHorS01DMdsmJIZiYGAQj87TdPd8XrKZVKJCUlYfPmzfjiiy8q3w7fmTJqi85Gdt9dpGmbAwYMwMMPP4z+/ftj2LBhnLZJHrd+/fpK2UA/Pz/s3LnTQz0ib+RzGcL27dtj165d8vemb6J///vfWLp0KVatWoXWrVvjX//6FwYOHIgff/xRXufzwgsvYMuWLVi/fj1uueUWpKamIiEhASdOnJDPNXr0aFy6dAnbtm0DADz55JNISkrCli1bAFSMNA4ZMgS33nor9u/fj2vXruGxxx6DEALLly+vraeCyC3qwybvfsb1WVVlCMkxwjh9kYUv3EepVCI6OrryceOUUYXxOfeGokPuIoSAAqiYMluDanPaZlFRkdnaYlOXL1/GTz/9hBYtWlQaFCIyxf0qySHCh7zyyivi7rvvtnqbwWAQkZGRYuHChfKx0tJSodFoxH/+8x8hhBD5+fnC399frF+/Xm7z+++/C6VSKbZt2yaEEOL06dMCgDh8+LDc5tChQwKAyM7OFkII8fXXXwulUil+//13uc3HH38sAgICREFBgUOPqaCgQABw+OeI3OXzzz8X169fr3R87969HuiNc07MmycEIL7r0MHq7YVnzwpRsULLrfdbWloqTpw4IXbu3ClOnDghtFqtW8/vSdtbtBACED9//rmnu1LvXVYqxRWlUn593nvvveLs2bPi3LlzYsSIEWLJkiVCCCH69u3ryW7WCG1xsRCAuKpUerorDvvoo49EbGys6NSpk1iwYIF8vF+/fmbthg8fLoQQ4r333hN9+vQRM2bMEP/3f/8n/vWvf9Vqf4lqG69xa49PTRkFgLNnzyI6OhotW7bEqFGj5Kp8586dQ05ODuLi4uS2AQEB6NOnDw4ePAgAOHHiBHQ6nVmb6OhoxMbGym0OHToEjUaD7t27y2169OgBjUZj1iY2NtZspHfQoEHQarU4ceJElf3XarUoLCw0+yLypOHDhyMsLEz+Pjs7G0AVm7zXQaKaYix6G1NJXbFmzRr069cPH330EdLT07Fy5Ur069evVsvn1yQhZQjrUKGb+iInJ8fseyXMM2RS0aEWLVpgw4YNKCwsrHNFh9ylOC8PAGCo4QxhTVixYgVOnjyJkydPIjg4GCNGjEBxcbH83pFIf+c//vhj7NmzB/Pnz8fWrVvlWUhERK7yqYCwe/fuWL16NbZv344PPvgAOTk56NWrF65duyb/gW3SpInZzzRp0kS+LScnB2q12uzi11qbiIiISvcdERFh1sbyfsLCwqBWqyv9obe0YMECeW2iRqMxq3hGVBfY2qi+LjMYAz5h46LSUAMB4XvvvYf9+/fjzTffxLx587B8+XKkp6fjP//5j9PnNB2s8jRhLGjAKaPuZ1llVNp2Aqh43qWiQ5I5c+agT58+OHbsWK31sbaUFhQAqCiq44z09HQMGDAAKSkp2LFjBzp16oS+ffvi0KFDVttfv34dP//8M65fvw4ALgXZSqUS/v7+ACq2knnqqacQHx9fqXBQq1at8NVXX6Fr167YsmULioqKsG/fPpvTSsm37Ny5E927d0evXr2wfv16+fiQIUM82CvyNj41wTg+Pl7+f4cOHdCzZ0/ccccd+Oijj9CjRw8AkPd6kghjOfiqWLax1t6ZNtbMmDEDKSkp8veFhYUMCqlOkS5wvImUIbQVENbEGsKgoCCkp6ejX79+FfctBNLT0+1al5SYmFjpmBACmZmZbu+nswxcQ+iybt26VTomhMDZs2fNjimEgN64f6UwGLBx48ZKPzd27FiMHTu2ZjrqQXJAaMf+ndbYu4fb7t27MXv2bISHh0Ov1+Po0aMoLS1FixYt5OJwju5JOGTIELNqwQMHDkR0dDRSU1PN2r311ltYvnw5MjIysHnzZoSFhaF3795YtWqVU4+Z3M+Tm8O/8sor2L59O9RqNWbOnIkDBw7gzTffRHENF1qi+sWnAkJLDRo0QIcOHXD27Fk89NBDACqyd1FRUXKb3NxcOZsXGRmJsrIy5OXlmWUJc3Nz5UX7kZGR+OOPPyrd19WrV83Oc+TIEbPb8/LyoNPpKmUOLQUEBCDAWCKfqC7avn27p7vgsOqmjNZEhnDNmjVYuHAhZs6cCb1eD39/f3Tp0sWuKaPHjh3Dnj17zDaxF0IgKSnJ7f10lhwQ1sBz5yvsLdikwF+DGZbTDeu7sqIiAM4XlbF3D7fZs2dj27ZtCAkJwX333YcTJ05Ao9EgPj4eBw4ccGpPwpdeesns++zsbLRv377SVFC1Wo3U1NRKgSLVHZ7cHF6lUqFRo0YAIBdGHDZsGG7cuFGj90v1i09NGbWk1Wpx5swZREVFoWXLloiMjDQr01tWVob09HQ52OvcuTP8/f3N2ly5cgVZWVlym549e6KgoMCs5P6RI0dQUFBg1iYrKwtXrlyR2+zYsQMBAQHo3LlzjT5molpx7RrgRYGAJwLCyMhIvPHGGzhw4AAOHz6M7777DsuWLTPbCseWqVOnIiQkBM2bN5e/WrRogeeee87t/XSWNNvBwAqtTps/fz6KjAGPqZkzZ5p9L207AcDnNqc3GLMgzuahpT3cAFS5h5tSqcTVq1cr7su4J+HVq1flQRl37EnojdPtqYI0sNChQwd5YKFx48a1sjl8x44d5SniGRkZ2LhxI/Ly8pCbmyu3mTBhQo33g7ych4rZeERqaqrYu3ev+PXXX8Xhw4dFQkKCCAkJEefPnxdCCLFw4UKh0WjE559/LjIzM8Xf//53ERUVJQoLC+VzPP3006Jp06Zi165d4uTJk+KBBx4Qd999tygvL5fbDB48WNx1113i0KFD4tChQ6JDhw4iISFBvr28vFzExsaK/v37i5MnT4pdu3aJpk2biueee87hx8QKTL5j9OjRnu6C/QAhnn7a072w28FnnhECEOkdO1q9/eKuXTVSZdTMF18I8cYbNXf+WralWTMhAHF8+XJPd6Xeu65QiJ/VaiEAoSsp8XR3atXpTz8VAhC/qtVuPa9OpzO/n9OnxUMPPSR69OghYmJiREhIiLj11lvFgAEDxAMPPCDuv/9+sW/fPpfuMy4uzqWfJ88ZOXKk2XWgEBWvodqu7FvfKgzzGrf2+NSU0UuXLuHvf/87/vzzT9x6663o0aMHDh8+jObNmwMApk2bhpKSEiQnJyMvLw/du3fHjh07zBZuL1u2DH5+fkhMTERJSQn69++PVatWmY0CpaWlYfLkyXKBh6FDh+Ltt9+Wb1epVNi6dSuSk5PRu3dvBAUFYfTo0Vi8eHEtPRNUl02bNq3SMSGEXKW2zpPWLezb59l+OMATGcJKjNPW8fzzNX9fqPm96qQJfMwQupFeD/zrX8CUKUCDBvJhpRBylU1hMODTTz/FggUL0L59ewwcOBDz589HaGgoZs2ahaFDh3qq9zVCem8q3JwZtZymGxMTg02bNpkdc/eehFVNt9dqtfjhhx9w/fp1NG7cGLGxsVCr1S7fJ7mHaTEXiSc2h5cqDAPAhg0bMGfOnHpbYZjczNMRKbmGoyf1T3R0tNi7d2+lr86dO3u6a/b5+eeKTJrFXlp12f5//KMiQ9ipk9Xbz23eXPMZwpo+v4WaHkn+ypghPGKytyu5aPfuitfIq6+aHc4HxI+BgUIAQltUJLp16yZu3rwpcnJyRGRkpMjPzxelpaXi3nvv9VDHa87/Vq0SAhDn/P093RWH2TvrY/Xq1aJnz55i8uTJYubMmeK5J58UvZo2FWs++siunz958qQYMmSIeOihh8SBAwfk448//rhT/XZVXetPffLII4+Ic+fOmR1bs2aNCAgI8EyHXMRr3NrjUxlCIm/w+OOPIyYmptL2JZal5uss455ZNwE0qLpl3SGt/bGRZaiVDKGDXM0Y1PhIsrSGUKt1z/kIkLJQxr33JErALEMYFBSE4OBgBAcHo3///tBoNAAqZ73qg+qy+3WBq7M+pC1q5CJSL76I8kuX0HfJEoy14+/C5MmTsXLlSvj5+WHq1Kk4fPgwUlJS5H2Ya1td6483s6xu+ssvv2D8+PFYsGABYmNjERISUm8rDJN7+XRRGaK6aN68eVb3spw8ebIHeuO4P41VdrNOn/ZwT+wnXVTamnZW1wJCd2xqX9N71UlFZUQde+68WY5xi4U/LC6cLfch7Nixo1zgRHpNlJWV4ZZbbqmtrtYaecqom89r756eRUVF1VZ2TUtLw5AhQ8y+EhIS7P59SFvUSERhIdIBu6epSoM/LVq0wIYNG1BYWOjRaYR1rT81JSMjo8bvY/r06RgyZAi2bNmCIUOGYPDgwfj8888xY8YMDBs2rMbvn+qP+jdcSEQede2PPxAO63tt1lVCyhAarG9vXdcCwkoZA1RURuzbt6/dI8G1tVcd1xC6z2/nziESwB9nz8J0gyIlzLedeOONNyr9rFqttvo793auriG0d0/P1atXY9GiRfD390dUVBS2bt2K//3vf7jvvvvQrl07lJWVYcmSJejbt2+l87k666PSFjXnz6MLgLULF9r189Lgj7Tf4Zw5c7B27VqsWbPGrp93t7rWH3d49913zb4XQmDFihVITk6u0eqxgYGB+PTTT3H69GkMGjQIUVFRePLJJ+U+VMdda8kvX76M6Oho5x4E1QkMCInIrbwyAJACPlsBYR3bXN2VTe1rjZsyhGPGjEFaWpo7euT1gvz9K/5j8R4z24fQxmu43nLxvWnvnp4rVqzAyZMn4e/vj9atW2PEiBHIz89H27ZtcejQIeTm5mL48OE4cOBApfuYN2+e1fu2d9aHtEWN5Gz37rjzjz9w3pgxrk5tDf7Yq671xx3eeecdNG/eHImJifJgqFKpRMOGDWv0fiMjI3HhwgX4+/vL26a0bt0ao0aNQrNmzQBUBH2dOnWy+vPOTN/9+uuvzb4XQmDOnDmYO3cu/u///q/K/lpOcZ0+fTo0Gg0WLFiAnj17OvLQyc0YEBKRW9W1bJo95AyhjYvLujbt0ZVN7WudndPAvL66bi1QG4MWneUeefhrDaHP7UPo4pRRaU/P8PBws+OWe3oqlUr4GwPysLAwxMfHIyUlBbfffjuAiqyXaVBZk25cuwYAKLYzIKxpHLQBsrKy8PHHH2PDhg1ITEzEyJEj8cknn9T42v/169dj/vz5csZVylQmJyfjiy++wDvvvFNlptKZteTjx49Hly5d0KNHDzkLmZ+fj+PHj1cbEE6fPh0bNmxAfn4+4uLicOzYMQQHB+Phhx/G3r17nXwWyB0YEBLVMTt37sTMmTOhUqkwefJkjBo1CgAwZMgQbN261cO9q55XZgilP342siu1WrhCCDm7ZotlxsAV169flwvTNG7c2C3nNGXvc5eWloZ169ZVOv7tt9+6u0teR77gNj6XlhugK2BeVMaWnJwcREZG1lg/PUF6fTkbBtuazjdy5Eiz74cMGSJfdLdr1w779+/HAw88gEJjEa2ioqIaef9YZQyC1bU8LZ+DNrYpFAqMHj0ao0aNQlpaGoYOHYo///yzVu77pZdekv//zjvv4JZbbsHjjz+O6dOnA6g6U2nv9F3TKaHnzp3DW2+9hczMTEyaNAk9e/bEkSNHMHv27Gr7GhgYiGbNmqFZs2aIiYlB06ZNAcBs6zbyDAaERHXMK6+8gu3bt0OtVmPmzJk4cOAA3nzzTRRL+/vVcXpjQOhVeYq6VGW0rAwICHDoR7RaLebNm4eZM2faPW109+7dmD17NsLDwxEaGor8/Hzk5eVh7ty56N+/vzM9Nyc9l3ZO6fP66rpuUN0Ft/TesgwIzdYQVhEQjhs3Djt27HBTb+uGmnpvWq6tki66J0yYgJUrV1ZqHxISgi+//LJG+mKp3Pg7ru0KvjU1aCOE8Ko151VRKpVISkrCmDFjkJOTU+v3n5WVhdjYWHz55Zd2ZSqtTd9t3LgxPv/8c3lqqOWU0AYNGmDGjBkoKirCm2++iWXLliE/P9+u/kVGRkKv10OlUslTXMvLy2HwtanudRADQqI6RqVSoVGjRgCApUuXYtWqVRg2bBhu3Ljh2Y7Zqa5Nr7SL8QJbYWvKaG1mCMvLHQ4IP9+wATmvvYbVt92GJ595xq6fmT17NrZt24aQkBD5WGFhIeLj490SEEqXd/Y+d66us6oPqrvglrLvwuLi2XINYbdu3SqdQwiBs2fPurnHnldT7013bo3g7lkf0oBAeUmJXe0//fRTLFiwAO3bt8fAgQMxf/58hIaGYtasWRg6dKjd9+uuQZslS5YgNTUV//vf//DUU08BQJVFeZzhTLEUd019lc7jiSIrCoUCTZs2xWeffeZ0ptLeKaEhISGYOXMmCgsLkZ2dbde5169fX+mYn58fdu7c6VAfyf0YEBLVMR07djSbwjF+/Hg0b94cz9h5oe9p0oi9V2YI60KVUSeKZDQ7cwb/DxUXnqjidVJeXi7vRadUKnH16lWzgPDq1avuWwdlvJDwhn3i6orqLrhtTcdWATAYf2/CYEBRUREyMzMr7Ts4cOBA93faw1x9fdkKAnQ6ndv26XT3rA8p+NeXltrVfsmSJThw4ACKiorQsWNHZGdnIzAwEAMGDHAoILR30Ka6wGrr1q1ITU3F1KlTsWrVKrRp06bKojzOqCqgd9fU17o6hXb79u2Ii4vDjh07nMpUOjolNDQ01OoglCPq4x6p3oa/AaI6Zvny5ZWO9evXz+4ROE/zxgyhfFFpY8qoMA3S7Fjj5xInAkJ/435mjS5erHRbZmYmpk+fjvz8fPj5+UGn0yE8PBxTpkxBamoqcnJy5ClbUVFReP/9911+CAD+ei45Fchu1V1wy+8t09ef9DybbDsxf/58FBUVISwszOw8M2fOdG+H6wI73y+OXryfO3fO4a0RbK3RdPesD4WDAWFQUBCCg4MRHByM/v37Q6PRAHD9ItzZgOjmzZs4ffo0ioqK0KZNGwDuL8pTVbEUd019tec8Nb1ut7ptU5RKpd2ZysuXL+Onn35CixYtnJ4SSt6LASERuZVXFpWRpozakyE0GICaXADvTEBovLAzWLlATE5Oxrp16+QS5ABw4cIFjBkzBt99953T3TTNNlqjND6XzBC6j7Upo8JgqDRldPjw4WY/l52djbZt26JPnz611tfaYnCxaNG7775bKbshhIBWq5WDQUl1WyPYWqPp6qwPy1L9z+XmIhrAYz//jI52/HzHjh3ldVtSJeKysjLcYhxIcpazgVW7du2waNEitG3bFnl5eQgLC3N7UZ6qiqVMnTrVLVNf7ZlCW9Prdu3dNsWWhx9+GJ9//jnef/99rFu3Dr169cL333+PXr164eWXX3Z4Sih5LwaERORW9l6g1SnG4MVWQGga1Ai9HooaDAgNOh0cHSeXMkeWxUakY1JGQBIaGmq1bXVsZRvnz5+PDh06mLWVn0s778fbq+vWBmtTl4VeX1FlVLogtJLlTk5Olgs41Df2DjjYungPCQnBwYMHHZpe6+gaTVdnfViW6v9PeDjuu3IFA7/9Fv+w4+etVSRWq9VWC4o4wtk1hbVRlMeZvQ4dXa9smtG3fE2sXbu2Vtbt2rttSlFRkdnyAIlUJffjjz82Cyzvu+8+vPzyywDsnxIqTVOtirvWs5L7MSAkqoO0Wi1++OEHeTuA2NhYqNVqT3fLLsKbq4zaGxDWYFfKSkvh6Pby8tQxK1NZFy5ciISEBKjVaoSGhqKgoADl5eV4/fXXHe6bI9lGRwNCb6+uWxuEjQwhAAhpDaGV51vaP69ecrFo0YoVKxyeXlvbazQtS/VH/PILGgNQ1PKek5YX859++im2bdtW6WLelwpBSTy1btdy25TVq1dj0aJF8Pf3x7lz5/Diiy8CAIYNG2Z1UKhVq1b46quv0LVrV2zZsgUPPPAAMjIyrAaPkuqmqVbFXetZyf1qZxdVIrLbmjVr0K9fP3z00UdIT0/HypUr0a9fv7q56bgV3jhFUFHNlFHTx1TTGVBnCthIGULL6pMAcP/992Pfvn3YsmUL3nnnHWzduhXp6em47777rJ6rqgIEjmQb5SmjdgaE0jqr4OBgLF26FJ07d/aq6rru8Omnn6JTp04YO3YsPvroI7Rp0wZdu3bF5s2bAVhfnyu9HqvadmL79u012Gv7ZWRkICEhAcOHDzdbZzZhwgSnz+nqPoTDhw83CwalrF1V02ulNZqWrAWRzhShsSSV6gdQcVGvUKAcgMGJLL8rpIv5JUuW4MUXX8TRo0exf/9+LFq0qFb7URc58pqoSStWrMDJkydx8uRJBAcHY8SIESguLparhVp666238OOPPyIjIwPTp09HXFwcNm/ejFWrVuH69ev4+eefcf36dQB/vX+3bt2KxMRELFq0CIsWLYJCocCiRYvkNZtVkdazNmnSRF7PGhAQwKIydQB/A0R1zHvvvYf9+/ebrQkoLy9H3759q5zuUlcIb64yaquoTC0GhOVO7C1mazsCU0FBQQgKCqr2XFWteXEk26iSAhM7ny9vr67rDtWNnlsrKiMFgNKUUauvzwkTgMhI4LXXavwxVMWdWzlI3D0AJU2vtTaFOT09HY888gjGjRuHBg0aYPr06dBoNFiwYAF69uwpB5H2Tq22NY3PkmWpfoUQ8AOwdMAAlx6rowVPaqo4jbP9cQfTQiqWa0YdUVfW7SqVSnlGwOTJkxETE4P4+Hg5qLOkVquRmpqK1NRU+dju3bsxfPjwSnvUFhQUYNOmTfj444+xevVqXLhwASkpKcjNzUWLFi0qTVO1pqbWs5LrGBAS1TFBQUFIT09Hv379AFRMxUhPT7d7w3FPky7Qans6kyuqyxCajsTXyQyhE4V8nNmrTso2lpSUID8/H2FhYRWvy927gfPnAZMLKvm5tLPKqLdX13WH6i64pYDQ9L0lZWCFcV2r1Yzsf/9b8a+HA8KqKj86zc1ZMuli2toU5mPHjuHOO+/EP/7xD8TFxeHYsWMIDg7Gww8/jL1798rnsJxavXr1asyfPx89e/bEzJkzq53GVx3pvaVysYKvowVPqruYd3WDeXcWYLG1Vm3MmDFYuHAhevbsidatW+PIkSPo1asX1qxZg6efflpeN2ePqtY9l5SUeGTd7pAhQ3D+/HkEBgYiMjISAwcORHR0tFnAVx1be9Q2a9YMrVq1wqxZswCg0vt35MiR1Z67ptazkusYEBLVMWvWrMHChQsxc+ZM6PV6+Pv7o0uXLt4zZdR40erqxUqtkgJCW0GsyQWrvoa31XAmILQnQ2gqIyPDpTUvlbKNUqbC5PlTSv+v5Wlt3qzaC27ja8N0rYc0WCGqyhDWEVVVfnSWPADl5M9bFsKQptda2ypi3bp1+Nvf/oYOHTogJiYGTZs2lduaspxavWLFCnz33XcYNmyYPI1v9erVNqfxVUcKCO3d4seZwR9Tppu8SwGUdN6jR49i9uzZ6NmzJwD7Nph3tT/2sJVtj4iIQGxsLJYtW4Zu3bph2rRpmDJlCg4dOoRt27Y5FBBWte7Zcs2/ZaVYy+yyu7z00ksA/npdZ2dno3379ti2bZvd57C1R62/v7/b379UdzAgJKpjIiMjrY6ieQ3pgtSLAkLpAstWQFibU0b1TmT7qrowfPfdd83bCoEVK1bgvvvuq9G96lQOFpWh6kfPpdeh0uS9ZZkhrMsBoTOVH6tlfPzKaoIrRwthWJvCvHr1avz+++8AIGd/ysvLYbD4rLOcWn3mzBmMGDECr7/+Ou67775qp/FVRyn9zu38Xbta8MTWVF8pgHN0g/naKMBiK9uuUCjQoUMHZGVlYfz48Th+/Dgee+wxXLt2TQ7w7VXV/pLHjh0za2tZKdZWdtlR1QXXzlQYfv/99/Hss88iPz/fbI/a7777zuGtWMh7MCAkquO+27sX6yZNwrvffw+FGzfurSnyiL0XBYTVbTthGtTYWyTF6a44cUFfVWXXd955B82bN0diYqI8nUupVOLee++tVEzDnWteFG7KEHpiXVFdJU8ZNXmdShlCQ1VTRusxOUiuJiB0dL82a1OYrV1Y+/n5YefOnWbHLKdWf/DBBxg3bpx8Me3oND7LqYl3Gn//Lx44gEN2/LxU8MTZwZ+qpvo6s8G8q/2xh61se8OGDZGSkoItW7YgIyMDFy9ehF6vx7lz57Br1y6H78Pedc+WlWJtZZcdVV1w7UyF4ZiYGOj1ehw6ZM+r6y+ufFbbu56Wak7dv7ok8nEnnngCK7KycNOFUcTaJE9r86KAUFHFlNExY8bUeIbQNMPgSobQ2iVxVlYWxo4diy+//BJqtRpJSUlo2rRppb3CLMuXW2OzCqaVtu7KEDq6WXR9Zm2wRVhMGfXGKr8uMT7+6i6rpf3amjdvLn/ZWwijOraKqgQFBSEqKgqzZ882y6w4Oo1Pmpq4a9cuHD16FIuKimAAUGrn79qykqrE3sEfaaqvZM6cOejTpw+Ki4uxaNEi3HHHHcjLywMAuzaYd6ayq6PeeOONSsGWWq3GpUuX0Lp1a6SmpmLnzp3Izs7G2bNnUV5eXmk/xeosX768UsbM1rrnSpViYT277KjqqptWV2G4W7dulb66du2Ko0ePOtwXez6rV69ejQ4dOuCee+7BwoUL5ePDhg1z+P7IvZghJKrjWhmzOn+eP4+GHu6LXaQpXF4UEMJgwDQAOSUliJw2TT4shMDBgweR3Lv3X01r4IJbr9fLo3OubDthLfhSKBQYPXo0Ro0ahbS0NAwdOhR//vlnpXb2jCTbrIIZGAjLHaTkjI2dr4PaWFfkreSRdysZQnkfQi/KEF6/fl3eY7W64KE6orr1v0a2BjzsKYThbo5O47Ocmvjqf/6DYQBKain4l6b6mu5xl5iYKAc4DzzwgBzgObPBvDPTGr2NZaVYwHp22VGW1U0l9gbXzkzfdeWzWtoWw9/fH2+99ZbL62nJfRgQEtVxAQEBAIBCJ9eb1DorlRDrOoXBgDQAc1QqtB4yxOy2b7/91uwiuyYCwvLyckjhmLsDQolSqURSUhLGjBljda9Be/aqs1kF09r9ORgQempjZ28gV1+sIkMILygqs3v3bsyePbtSOfu5c+eif//+Tp1TYWeG0F3cMYXZ0Wl8llMTH/L3x30lJXisln/XNXUx78y0xvrC0/vvOTJ9d86cOZgzZw7+/PNPREREQKFQmBURsuez2tFtMaj2MCAkquOkC2u9E/vTeUQ1WzjURUq9Ho8D+JtCUWlkddy4ccD+/fL3NZIhNJ2S6kwVUykItyM7pFQqER0d7fh9oIoqmFbaqhxcQ1gb64rqumpH3q1s6eJNGUJb5ezj4+MrBYSmlS2nTp0qV7acMGECPvzwQ7md9HhVtTQAZW1rBMtKpbZI7ewZfDFluZ5RaTCgH4DVXbo4dB5X1dTFvKPPhyusrVXLyMhAp06d3LZe2ZvWwzmyf+Jbb72FOXPmIDQ0FG+99Ra6detmVkTIns9qaVsMZ9fTUs1hQEhUx0nl1A1OrC3zCDuLPNQlCoMB8wB8b+W2yZMn4zuT9Zs1kiE0+d06s4ZQCghrurKr1SqYKhWs7SAlrSG0J0gFXJ/6VB9UmyWtKkPoBVVGbZWzt1aExO5N7KXPGyf7ZOvi3Vpw/vPPP+PGjRtmFUutVSp1tKKpo6TP1tpeLypdzDdv3hwKhcLmxXxdKARlOb1V2vuxS5cueP755+V2UtXl5ORkfPHFFw7tg2jrPuzdX1IKROuS5ORk3Lhxo9JxIQQKCwtx+vRpBAcHy++PiIgIlJaWArDvs1raFkPizLYYVDMYEBLVdcY//l4TEHrhGkL5AttWEFvDVUZNs79OXdBLgYKNvmm1Wvzwww/yuq3Y2NhK+2Q5S5SVWd0DTrpA96ZMsadVmyW1su2EvA+hF2QI33//faSmpiInJ8esnP37779fqa3dm9jbOWXU0Yt3a8F5y5Yt0a5dOyxatEg+Zq1SqaMVTR2ldHCwxVVLlixBamoqEhIS8Pe//x1AxcyA559/HuPGjat0Me/ODeadZWt666VLl/DSSy+ZrV3NycnB4sWLHc50OjKF1tb2P8nJyXYV9LJkbwbdUf7+/jYHpqKjo7Fo0SK0bdsWeXl5CAsLQ1FRES5cuOD0/fnC+lFvwYCQqI6Tpoc5lTnyAIU3ZgiNfbW57rGm1xAaR1gB50b9RRUZwjVr1mDFihXo2rWrvG7r5MmTeOaZZ9yyf5SuuBjWQktHp4ySHVlSa1u6SP+XLt6qCsANBnmtoSfExMRg06ZNdrW1exN7OwNCR9e/WQvOp06dittuuw3Nmzc3a2tZqVSqaBoeHl5lO0eYDurcLC/H34Bae29t3boVqamplfYbjIqKwttvv23Wtq4UgrI1vbVly5bIy8tDhw4dMGrUKIwcORIJCQn4+uuvHV6vbHofR44cwdNPP21zCq2t7X8aNnSuVJzdGXQHbd++HZs2bbI6MPXxxx9XygKGhITgnnvucfr+fHn9aF3jU9tOLFiwAF27dkVISAgiIiLw0EMP4ccffzRrM378eCgUCrOvHj16mLXRarWYNGkSwsPD0aBBAwwdOhSXLl0ya5OXl4ekpCRoNBpoNBokJSUhPz/frM2FCxfw4IMPokGDBggPD8fkyZNR5iUX/VR7FN6WIfTGgNB4EW2rzzVdVMb0d+vMGkI5CLdygfjee+9h//79ePPNNzFv3jwsX74c6enp+M9//uN8h02U3byJyiVqTAJCZgjdx0pFTen1YjAGhFW+Pr0oON+4caPVTbBLTQZPANgdEFoGCE899RTi4+OtVtwFrG/VkJycbLU8vmWl0uTk5ErBoLV29lqzZg369euHjz76COnp6fhMr0c/ADuvXnXqfI66efOm1f0GAeDgwYM4evSo/HXs2DF07dq1VvpVFWl6q2TgwIF499130bRpU7z99tv473//i/LycrOqy/asgZs2bZr8pVKp8NRTT2Hq1Kk4ePAgBgwYgHfffRe33XZbpZ+zd/sfe0kZ9BYtWmDDhg0oLCy0nkF3gqPbgriyBrQ2149S1XwqIExPT8ezzz6Lw4cPY+fOnSgvL0dcXBxu3rxp1m7w4MG4cuWK/PX111+b3f7CCy9g06ZNWL9+Pfbv348bN24gISFBLsEMAKNHj8apU6ewbds2bNu2DadOnTKbLqLX6zFkyBDcvHkT+/fvx/r16/HZZ59xYS1VIgeEzhQb8QRpyqiXBYSfAni0rKzyHnubN9f4lFFXA0IpCLcWfAUFBSE9PV3+XgiB9PR0BAYGOn4/1u66pATWLmmk3z+njLqP1ey78ZgwBoSVXp+m39fh9YXOkl5f1QWEtgIEaxfvdY3loM48lQrpADbXUkAoTZOVpgoCFVNqO3fuXOUeeJ700ksv2dz7cfjw4bjllluQlJSEzZs3Y/HixQDsWwOXlpaGIUOGYMiQIZg3bx5Gjx6NhIQE3HJLRWktW+vhpO1/Pvvss0qBqDNs7Q157Ngxp89pizNTWskLCR+Wm5srAIj09HT52GOPPSaGDRtm82fy8/OFv7+/WL9+vXzs999/F0qlUmzbtk0IIcTp06cFAHH48GG5zaFDhwQAkZ2dLYQQ4uuvvxZKpVL8/vvvcpuPP/5YBAQEiIKCArsfQ0FBgQDg0M+4i06nq/X79EX77rxTCEDs+8c/PN0Vu+xr314IQPyiUnm6K3Y7GRYmugHihJ+fyMnJEZGRkSI/P1+UlpaKe++9V6Q/8IAQFSsMxTnj+9ydzh85Ip8/c/Fih39+T5cuQgDiQEREpduuXLkinn/+edGrVy/RvXt3ce+994oXXnhBXLlyxeH76dq1a6Wvju3aCY2x76Z+UyqFAER627YO3w9Ztz82VghAnG7QQD6Wc+CAEIDYNnCgEID4cd068x8qKZFfW/r8/FrusX2ceS1Kvu3W7a/HV15u98+dOXPG6fusbQMGDBB79uyRv7+gVIpdgLjH5HVAVevXr59Tt1maOXOm+OOPPyodf/PNNx3qj16vN7v+q8vi4uKqvN2V9291PHmN62t8eg1hQUEBAFTaGHfv3r2IiIhAo0aN0KdPH7z22mvy9IgTJ05Ap9MhLi5Obh8dHY3Y2FgcPHgQgwYNwqFDh6DRaNC9e3e5TY8ePaDRaHDw4EG0adMGhw4dQmxsrFn590GDBkGr1eLEiRPo169fTT50p2VmZmL69OnIz8+Hn58fdDodwsPDMX/+fHTo0MHT3auXpBFw4SUZQoU3ZgiFQBCABgCaNGlivseen1+tZgidWUNY1ZTRyMhIq9VBnWGt2EDOoUNIMhY0MCVlbGqr8IVPqGLKqMJYJKjS69Pkc0NXUoIA4+u6LnGpCInJ49XrdFCq7NuR0NliFq4UaHJ2O4I1a9Zg4cKFmDlzJvR6PYTBgF4AXvZwJU9vUtVaNUfWsc2bN8/q8cmTJzvUH1e2/6lt1U3rrAtFhMh1PhsQCiGQkpKCe++9F7GxsfLx+Ph4PProo2jevDnOnTuHWbNm4YEHHsCJEycQEBCAnJwcqNXqSmsLmjRpIm/2nJOTIweQpiIiIszaNGnSxOz2sLAwqNVqq5tGS7RaLbQmFQkLCwsdf/AuSE5Oxrp169CsWTP52IULFzBmzBh89913tdoXXyFd7HvLlFFvDAiVBgM6AjAY+2y2x94ttwB//CG3rZF9CE2rjDrze66lvR+tFdooLy6GNEFM2qMQ4JTRmmDtvSUVm5ICQkN1AWEN97Eq1e6zaAfLPf9MX18GnQ6wcyq0M8Us7C3Q5Op2BJYsB3WuqlS41WDAPg8WCHJUeno65s2bh7vuuguDBw/G9OnTodFosGDBAvTs2bPG77+qoGb79u11YquMus4d71+qu3w2IHzuuefwv//9D/tNNpwGzBd9x8bGokuXLmjevDm2bt2Khx9+2Ob5hLGEtsT0/660sbRgwQLMnTvX5u01Ta/Xy5kTSWhoqNn6SXIv6SJQeEtRmVreKNodFELgDQCWf9bUajU2btyIfSYZsJouKuNMBlIaNLBZJdVNrFXB1JeWQlp5U15WBlVQEACTPy5e9Dqo66wFhPIAgpSlsnj96EtL5WxtuWVBllpW7T6LJuzey880Q+jAZ6QzxSyktXym20mUl5ejb9++ZgGhoxVNZVlZwGuvAevWAVVcB0ifrbWZfXd165rp06djw4YNyM/PR1xcHI4dO4bg4GA8/PDD2Guyz6un1EaWq6a2/7l8+TJ++ukntGjRolIhJndy5P1L3scnA8JJkyZh8+bN2LdvH5o2bVpl26ioKDRv3lweAYmMjERZWZm8B4skNzdX3gcmMjISf5hkFCRXr16Vs4KRkZE4cuSI2e15eXnQ6XSVMoemZsyYgZSUFPn7wsJCs2xdTVu4cCESEhKgVqsRGhqKgoIClJeX4/XXX6+1PvgalVQ0wlsyhHYWeahLpH29bAax1jYCdyPT361TU0ZrKUNYSVkZlKdPy9/qSksRYAwIPXHRWt9VFRDamjJadvMmgoz/15WU1Hwnq1DtPosm7N7Lz+Q1X9Nb80gFmqQlHcJGgSbLiqbt2rWzuR2BmeefB/bsAd5/H6hiaqlfLW/p4o6tawIDA9GsWTM0a9YMMTEx8rWXys4pvu5SE1kuezaYd/f2Pw8//DA+//xzvP/++1i3bh169eqF77//Hr169cLLL7/s7EOpkiPvX/I+PhUQCiEwadIkbNq0CXv37kXLli2r/Zlr167h4sWLiIqKAgB07twZ/v7+2LlzpzyCeeXKFWRlZeHf//43AKBnz54oKCjA0aNH5Q+fI0eOoKCgQA4ae/bsiddeew1XrlyRz71jxw4EBASgc+fONvsTEBCAgADPTfq5//77sW/fPpSUlCA/Px9hYWFuq1ZI1knrwpwJFDxB6q9XBYRS8GKrQW1uTO/MthNSoFDLAWHxtGlo9uab8ve6khLAeLEgryFkhtBtlFUFhMa/C5avT11xsRwQejpDWO0+iybs3ctPUYsBoeVaPn9/f3Tp0kWeYi6RKppK2ZoBAwYgKiqq+iriUraosLDqgND4b20NANmbGa1KZGSkPKVcmjZbXl4OQy1/Zrma5XJ2g3l3PIempOVCH3/8sdnAyX333ee2gHDMmDFIS0uTv3fk/Uvex6cCwmeffRbr1q3Dl19+iZCQEHmtnkajQVBQEG7cuIE5c+bgkUceQVRUFM6fP4+XXnoJ4eHh8htBo9FgwoQJSE1NxS233ILGjRtjypQp6NChAwYMGACgYvPdwYMHY+LEiXjvvfcAAE8++SQSEhLkPXzi4uLQrl07JCUlYdGiRbh+/TqmTJmCiRMnIjQ01APPjmOCgoIQFBRUfUNymRwQekuG0CQgNBgMZn8A6yrpAltnMODkyZOVp/SYrlOqg0VllFJRmVq+uDr12WcwLSdjGnDU9kWrL6hyyqgxI2UZEJr+TjwdEDrC1sW15V5+phnoml5nbW+BppdeeqnSMVvbEZgqFQKBQEVAWMV2GPJ7q5YyhPZmRquyfv36Ssf8/Pywc+dOt/XTHq5muZzdYN4dz6GpVq1a4auvvkLXrl2xZcsWPPDAA8jIyHCqaNG0adMqHRNC4ODBg071jbyTTwWEK1asAAD07dvX7PjKlSsxfvx4qFQqZGZmYvXq1cjPz0dUVBT69euHTz75xOxNtmzZMvj5+SExMRElJSXo378/Vq1aZTb1IS0tDZMnT5arkQ4dOhRvv/22fLtKpcLWrVuRnJyM3r17IygoCKNHj5b3wyGSqKQ/+l6SITSdMlpeXu6WNRI1TSkE1gB4E0Dvjz6qNKWnuWmGsKbXELoyZbSWs3F5FoU5TKckMiB0P+m5NAsIja8dlfHCslJAWFz81/9NMtH1RaWiMlZYZjrc5cCBA8jNzbWZOXHUsVOncB+A0txcBMbE2GwnvbdqawDI3syoMywzdTXN1SxXVlYWPv74Y2zYsAGJiYkYOXIkPvnkk2o3mHf3c/jWW29h+fLlyMjIwObNmxEWFobevXtj1apVDp8rLS0N69atq3T822+/dapv5J18KiCsbkF3UFCQXQvNAwMDsXz5cixfvtxmm8aNG1f7Rr/99tvx1VdfVXt/5NuU3rbthLG/fgB0Op3XBITvAdgEmE2BlKb0LDAYUAZAjVooKuNMQGglUKgNlr9b0wyUNDxW21nL+szqlFGpoJCNNYTlJkG6vh4GhKbZ+zn//jeCb73V7OaazHTce++98n24Q5Hx91Pyxx+wlTcy6HSQ51zU0nvLnVvXeDtpg/lRo0YhLS3N7g3m3f0cqtVqpKamVj8N2Q6PP/44YmJiKlXHry7IpfrFpwJCct3OnTsxc+ZMqFQqTJ48GaNGjQJQsWZi69atHu5d/SRnCL2kOIfSJEOo9ZKsptJgQBCAwwCkEk2mU3oUeXnQoSIgrPF9CJ04v7xus5aDLz+LghBSwGHQ61lltAZYK34kDRQppbXlFq+B+hYQWm4PYDpt8rOtW7F+w4ZKP1NTmY5gAK4unDDdjkFTWoqXAQTNmoUlzZpZ3Y5Br9XKASEHWzxHqVQiKSkJY8aMqXKrMG/grr0VybvV/cU9VKe88sor2L59O3bt2oWjR49i0qRJMBgMKDaZlkTu5Sf90feSDKHSYsqoN1ACWANgJ4DevXujR48euP/++/HVV19VZPoNBkjPfk1XGXVmHZS1zFFtsCzCI2UITR8Dp4y6j5wJNjkmPddKacqoxXvONCD0pjWEtlhmLUxfXyOHDEFMTAz69Olj9mVvpiMjIwMJCQkYPny4WVZxwoQJVtv/DKD63FDVpk+fjpUrV+If//gH3tRqsQXA22PHYsaMGVbbm07L9qb31qeffopOnTph7Nix+Oijj9CmTRt07doVmzdv9nTXXOJNG8wTVYUZQnKISqVCo0aNAABLly7FqlWrMGzYMNy4ccOzHavH5KyPg4FIeXl5ra/PAMyrjHpNQCgEIgG8BuDWAwf+ukGrBQIC8LPBAL1CAQhR89tOOJMhNL5G7F1D6K41VZb3JwUc+rKyWl/n5AuU1tYQWgaEFq8fg0kQ6E0ZQnu3B1AIAQMqguQpEyZUmvYG2J/pmDx5MlauXAk/Pz9MnToVhw8fRkpKCn799Ver7aPsOmvVTLdjuF2pRFO9HkXGapzWyO8xeNd7a8mSJThw4ACKiorQsWNHZGdnIzAwEAMGDMDQoUNr/P5rah2pJ9XUvobkmxgQkkM6duxoVk57/PjxaN68OZ555hnPdqwek6eH2RFcZWZmYvr06cjPz4efnx90Oh3Cw8Mxf/58dOjQoYZ7WkEKEpSo2KjcGyiFQBkq+ixVRjX89huULVpA9/nnUOr10NVgQGg6ZdSZ4kHWAgWg5qvHWU5RlQIO08DDU9tOZGRkYNasWfD398fUqVPlLX8mTJiADz/80CN9cpVp9l0iZQRtFpXx0imj9m4PoNTrUQYgEK5vO6FQKNCqVSsAwIYNGzBnzhxMnDjRpYGt6gIR0+0YFjdoABQWoriw0OZ2DHpjQFiKmg8I3fkeCgoKQnBwMIKDg9G/f39oNBoA7i8qU9VnXk0OkhYVFTlV4dOW6vrqzn0N8/Pz5YF+8l0MCMkh1grp9OvXD9nZ2S6dtz6O3rmLNGVUYcdFSXJyMtatW4dmzZrJxy5cuIAxY8bgu+++c6kf9v4xVZkUYNF5yRQ1lRDQKRRQCgG9Xg+lUokT27ahK4BfZ82quOg0lhiviaIyrm5ML10Y+lkEXzVdPU5lMb213CIgLDf2zRPBmaPZHm9QVYbQVkCoN3kPGrxkgAawf3sApV6PUlQEhK5uOxEREWE24DlnzhysXbsWa9asqdRWCGE2ZdrZwRfT7RjktYFarc3tGKQMYZlCUeODLfa+h0zXQQ4ePBjTp0+HRqPBggUL5HWQHTt2lANfqeBeWVkZbrnlFrf22fIz79dff8V7772Hq1ev4oEHHnB5kHT16tVYtGgR/P39kZiYiBdffBEAMGzYMHl/RWc5MqBb7b6Gzz0HNGsGTJ9e7fVVdHQ0evXqhREjRuDhhx+2mmWvCenp6Rg5ciRGjx5t83VDtYcBIdUq7nfjOPki347MlF6vl0deJaGhodA7mdVyJuOoNBhQplBALUSNbxTtLioAOoUCfsaA0N/fH2rjc1ZWWgqFXg+dUgno9TU+ZdSZ4kG2MoQ1XT1OaXEBbjAGgsL4ey9FRYZwkgeCs5rI9nia9PutKkNo+foxmGQFvWkNob3bA0ifNxDCakCYkZGBTp062XWfGzdurHRs7NixVjMu5eXlkDZdEUK4ZfDF3/j7NZSW2hx8k36HOqWyygyhO7Jh9r6Hpk+fjg0bNiA/Px9xcXE4duwYgoOD8fDDD2Pv3r0AYLXCplqttvqcu8LyM2/mzJnYsGEDNm3aJE8ddmWQdMWKFTh58iT8/f3x1ltvYcSIEVi9erXVSrP2BMqmHBnQtbav4ZgxY3Dx4sWK66x33qk4/uef1V5fde/eHatWrcLGjRsxYsQI+Pv7Y8SIEXjkkUfcFhxau/Zbu3Yt/P398Y9//MPm64ZqDwNCqlXc78ZxjgSECxcuREJCAtRqNUJDQ1FQUIDy8nK8/vrrTt23MxlHpRAoNwZP3rLvmVIIlKlUCDEY/gqejYWSdHo9lHp9xWNCLRSVcSJgUVkpNgLUfPU4lUXAL2UGdcbnTouKgNATwZkj2Z7a4mqmVGUwoBwWAaG0hjA4uOKAxXNalzOEDs0MOXgQ2LwZWLjQ7LBSr4fW+HmzZvNmRFy4IN8mhMCKFSuQnJxsc6N7Z2lLS+WA8M8//8Sjjz7q8uBLgPF9bKgicJfeY2VWAkJ3Lxmw9z1kug4yJiYGTZs2BQCb6yBrkuVnnjRIavqZ58ogqVKphL9x/9XJkycjJiYG8fHxuH79eqW29gTK1vpqylZfre1rmJGRgdWrV1dkXRctqmiYkFDt9ZVCoUDTpk3xwgsv4IUXXsDvv/+OjRs34tFHH0V6erqdz0zVrF377dixA35+fujQoYPHXzfEgJCc4MpCZu534zhp1NieKaP3338/9u3bh5KSEuTn5yMsLAyBUubACc5kHJVCoMx4geYta5ZUAEqVSvgBKDE+Nl1+PoCK4g0Kk4DQ1Wlp1kjnLAecyhBKAaGqltfr+VkGH9JUUeO6Na3xorWmgzNrgYUj2Z7a4uo0VqUQ0KJiOrZEzhA2bAgAUFi8Pk0DQk9l7N0yM2TQIODGDasBofR5k/bNN7jz0iUkJiZCYZzirVQq0dD43LiTtqAA0lnb3HYb9Dqd1SyYI4MvansCQmnKqFJZaUaAu5cM2PseioyMxN///nd8/PHH8rTJ8vJym+sg7eWOLKe7B0mHDBli9lk2cOBAREdHW90P0NFA2ZG+WtvXcNasWbj33nvNr6/sqLJ76dIls+9vu+02PP/883j++eflY45mOy1Zu/Zr27YtevToAQBufd2QcxgQkkNcXcjM/W4cJ41CKxwIFIKCghAU5OoOWc79MVUZDHLw5C1TRpVCQKdSwR/ADeMFdnlREQBAKJVQ6fUoM16YOLPGr1rGi3gt4FxAaGUqYW3wsww+jL9v6aJVa1yX6a7gzNunnLuaKVUZA0LTd7ZlQGi5PY0weQ96KkPojpkhN4VAAwC4eRNo0EA+bvp5s/n115GBiuc2MTERI0eOxCeffOLSgKOtKada44ARABzS6dDGyfOb7u37sE6HjqiY5mtrb185C69SyRWd5dvcvGTAGmvvwWbNmlV6j/v5+VVaB2nPYLK7s5zuHiR96aWXzL7Pzs5G+/btsW3btkptTQsG2RPwuNLXdevWQaVUVgRcFueXrq9sfX7q7BjkdDTbacnatZ/p+lmJtdcN1Q4GhOSQahcyk9vJAaEHRs2c+QOlFAI6Y/DkLVNGVai4wAJMgprCwoobFQqo9HpojdOERA08JtM1d85MSVWZVJ8UximatcHP8oJUKipjss7JnYUvvH3KuauZUpVxvZzSWO1WoVLJrx1Vw4bQA4BF0Ge6htBTAaE7ZoZcu3kTDQCI3FwoWraUjysNBvm9K8rLMXrcOIwaNQppaWkYOnQo/vzT/p0C3333XbPvq5pyqpM+HwCng0Hgr7191Wo1nmvYEJMAjCotRbGNzwH5PaZSVRqQcXc2zBpH3oOm2T17B5NrqjCauwZJLSUnJ9ssJuNswONMXxuOGYMpADB3Lgw3b/61fEAIwPj3wJXPz9qcFuyJ7bKIASE5yNpC5vT0dJdG3Mg2YTDI08MsR4Orcv36dXkUtnHjxi73w5E/UCqTgNBbMoR+MAkIpc3VjRlCZXk5lAYDyo2v8Rq5qNZqoQdQrlA4t+2EENChIiDU6/XV/kGNi4vDjh07nOqqKX/LAibG50aaMqpTqSpVPnWFt085dzVTqhJCXi+nKy6GOiQECq0WBgCBISEog3lGEKgbAaE7ZoZIr7SS3FwEmwSEKoNBzt7LezIqlUhKSsKYMWOQk5Nj93288847aN68uV1TTk0DQmvsHZgx3dt3jkKBPUJgWkYGyv72N6vt5WnZfn5QW7y33J0Ns8bZ96C9g8k1leV012eeJWk9oSNqIuCRdnIUQqDg0iXItXnLyoCAAACufX46mu0k78OAkBxibSFzly5d5DLS5F66khI5ILRnyuju3bsxe/ZshIeHy6OweXl5mDt3Lvr371+znTVSCYFSKbjyggyhMBgQAKDMOHVJrpR58yaAisIpKoMB5cY/qjWSIdRqUQZAr1A4NWXUTwiUGaukmq67SUxMrHxfQiAzM9PVLgMA1Ho9NgJIj4zE8pwcOeDQmwSElkGjKxwJLEyn4k2ePBmjRo0CAJtT8byBSgho/fwAvR5lN25AHRICaLXQAghu0AA6AMJi/ZlpgChqYP1rbZHyEIU5OQg2Oe5nMKDcxnRupVKJ6Ohou+8jKysLH3/8sV1TTnUFBWbfLwEwqawM2dnZeOqppwBUbKuwZMkS9O3b1+Z9mu7tqxYC4wEURUTgHeOAlCXp80nv719pDaHEngG83G+/RXCLFmhoElxbsvYemjdvntX3UHXBvb2Dya5mOav6zLt8+TJ++ukntGjRQs7Su2r79u1uOY8tjlTJBYCbBQUo+P13lAD4CUCL7Gy0uPtuAFV/flY3ndfd0zutDZjU5uwWqowBITnE2kJm5OcDwcHWmtutpkbvvJ2uuPivDKEdI3GzZ8/Gtm3bzDbILSwsRHx8fK0GhHovyhDqS0srMoRSQGjssxwQ6nRQGQzQG2+3zMC4gzBe1AuFwrkpo8bMUaBeb7Ye7dixY9izZ4/ZqLwQAklJSe7oNtQGA8Luvx9LVq4E7rjjr4tVacqonx+U5eUeCc5Mp+LNnDkTBw4cwJtvvoliYwVUb+QvBEr9/ICyMuiMr09RXIxSABqNBvmoXJDEUFb21z59XvB+tEW6WLl59arZcZUQckDo6uNTKBQYPXo0RhkMSNu/H0PT0mxOOdXfuGH2/VYA4wsKMHXqVKxatQpt2rRBbm4uhg8fjgMHDti8T9O9fQONAV7nwEBkZ2RYv19p0EWtthkQ2iPigQdwPjgYDY2vI2vsfQ99+umnWLBgAdq3b4+BAwdi/vz5CA0NxaxZszB0aEXuyt7BZFeznJafeU899RT+85//YODAgRg9ejR69eqF77//Hr169cLLL79s93mrlJUFtGoFuJiNdWTKsjUPA/hPbi7GTJgAfwC9AJxKSUHvBx6o8rG6UhvC3mznkiVLkJqaiv/973/ygMnFixexdu1aNG7c2KFBFKoZDAjJNeXlQFgYMGEC8P/+X7XNazpjUd/oTP7w2rOGUKlU4urVq2YB4dWrV80CAneoKoBXATAYp9HUREVOd9MWFcEPgN6YAZSCGYXxuVcZp4yKmgwIy8qgUygqpsU5mSEs9fNDqF4vF8UBgKlTpyIkJATh4eFm7Z977jkXe1xBbTAAgYHwNw4ICYuAsFylglIIjwRnplPxli5dilWrVmHYsGG4YXEh703UQqBErQaKi+WAUF9SglIAYX5+KIOVoKisDCWoCAhr4rXrDGcyAVKG0HKqpspggM743rVVnTMnJweRkZF235cyKQlJAMbo9TannOotMng3AWQcOoSioiK0aVOxqjAiIsLuz14hBORwoorfkzyDISDA6enYxdevIxhAi2ref/a+h5YsWYIDBw6gqKgIHTt2RHZ2NgIDAzFgwAA5ILQ6mFwFZ9f8WX7mlZeXV2Rf1WqzQPG+++5zT0AoBNChA9CrF2AS+JeUlGDSpEn497//XWnZhq2/n45MWbamEEDJn38i68IF5KFiG6Kbixdj8OTJVT7W2qgNsXXrVqSmppoNmNx77714+eWX0bBhQ4cGUahmMCAk10jlinftsqt5TWcs6hvpok8L+zKE77//PlJTU5GTkyNfdEVFReH999936v6dCeBVQsjZNG8oKqMzXtzoLdYIKozTHlXl5VAZDBD+/hVVQGtoDaFOoYBBoahUIc4efgAKVSr4wfw5tzWqPHLkSCc7ai5ACCAoCAppZNx439JFq87fH/5C1GhwZmtKlelUPAAYP348mjdvjmeeecbl+3SWPZmUqgQAcvAjZwhLSio2ZgegUygqTWkWxtdWuRAemzJqLTvgaCZAulixDAj9hIDeGDjobQQ448aNc2oGSlVTTi0zhO0AvLtiBdq2bYu8vDyEhYWhqKjI7jXcurIyOSC03DrElDyDITBQ3pJIYm8m/trp0wgG5MyxLdW9h6QpmAqFAsHBwQgODkb//v3lNYDVZY9++eUXhISEuG3zc6DyZ16rVq3w1VdfYciQIdiyZQseeOABZGRkmA2aukQahLCodLxv3z58+OGHOHjwIGJjY+XjVf39dGTKsjWtAHyzbRsaA9gC4AFUFIwpLi7GtWvXKvYntKI2akPcvHkTp0+fNhsw0el0KC8vhxDCqUEUci8GhOSaa9cq/rXzg6OmMxb1jVSco8TKJsTWxMTEYNOmTW67f2cCeH8hYLCYflmXlUkBofGiUgpmlMY/9P56fcVIvJ9fxRqtGnhMirIylCsU0CsUVV4M2uInhFxYo7y2pkQKgWAYN0Q3vv+FRUBYFhAAf4PBqeBMlJVBf/Ys/Nq3l485MqXKdCqepF+/fsjOznb4obqLPZkUm8rLKwJ+4+tU/j2XlEBnfH+WKxRyUC7T6VCuUEALQFHF/nY1yVp2wNFMgJQhLK8iIHzsvffQwGIKshACZ8+etbuvQq+HPblLy4BwJYCTjz+Oex59VD4WEhKCL7/80q77LS0o+Gu9uE5nM6spT8sODq7I+ppkW+3NxJf88QeA6repsfYeWr58ObKzs/H+++9j3bp16NWrF/744w/MmzcPs2bNkqeAlpWV2QxAAMBgMODjVq3QsH17vJCVVU1PnPfWW29h+fLlyMjIwObNmxEWFobevXtj1apVbjm//to1q89jg9xctADwaNOmeFzaJB5V//2Upyw7WSX3LQBTfvgBJQCmAwgDELN9O+acPIkPu3ZFi4ULrQ5IPffcc/jyyy+rnM7r6rT/du3aYdGiRWYDJnfeeSf27duHAQMGODWIQu7FgJBcor1yBQEAivV6s4X+ttR0xqK+kQLCUjcX57CXwwG8EAiCSXDlBVNGpQyhME57lC64/Iz/+uv1FRlCY0Bouc+bW5SVQadUokylgtKJ8wcCKA0IAIqKbGZJ3M1QWgoljAGhVHzAIiDUBwdDLYRTwdnJ//s/dN69G+WFhfAzjua7OqXK04KCgpzKpACAoaQESgDlxj345ICwtBRlxiJO5UplpQy2oqwMWikg9NAAjbXsgKOZAKmWY7nFVE1/IWAwvndvlpbi+4MHKz2fAwcOtL+vubmwfDVZC84MVtbelTpw8W6pzCTQVZSX28xq6qX71WgqMsY6nVz8w95MfGluLgDAmTxMobGf0ib0SqUS8+fPx3333YdZs2bJ7dRqtdWqupKiwkLMBIAffjA77moW3ZJarUZqaqrVjePdoejiRTSycrz8558xFcBtFy+iefPmZrdVNwDuaJXcMq0WagBqAAOM1WnfMt52pHVrdN+xA73Pn0d8FQNS1W3p4eq0/5UrV1Y6Zq0YoSODKORezMuSS67++CMA4MLlyx7uSf0kBYTF/v4V67VqWXJycqVgELAdwIuysorRUuMFujcUlZGn3knr4IwBmcrYd7Vej0CDAfqAgIoMTA0EhAqdDuVKZcW+fQ5Os5WK4miNWTqpwmdVrF5k5OYC48f/NQWqGlpjlUVlcDCgVKIMkIMRg7EPBmNA6IzSo0cBAH8a/wUqplSNHTsWX375JdRqNZKSktC0aVOv2XaiY8eOcvl8ezMpEq3xQlwY31tSQKg0CQhLlUo5sy1RlpZCq1SiTKFw+LXlLpbZAQAOZQIMOh2kregtM3OBQsBgDKyf7NwZRVaqc86cOdPuvhZJyyDw156g1l5fBivTncuMj80uV64AZWXo1q0bunXrhoHDhqEbgK4A/pGTg6Mmr3tTUoZU0bgxAgFoTX7fUiZeMn78eKSkpFR6TsqMgasz70xpCmbXrl2xZcsWFBUVYd++fQ5PwSwweZ6BikDTYDDIWfQlS5bgxRdfxNGjR7F//34sMsmyOcPa68Idblg8Dknpn38iGcCtVm6zdwDc3iq5RSaf59cuXMBjJrdpf/4ZQMWAijQg1aRJE3lAKiAgwOqA1PXhw1FgUpVUGmwIDg7G0qVL0blzZ69fk03mGBCSS25euFDxH5YKrhFlxj9iWrXa6QtrwEYAUAPKjEGCwnhx4A0BYbk04m680JamhPpLAaEQCBYChqCgmg8I/fygdPA50+bnAwB0UobTjoDQagD1n/8AH31k93pgOSA0ZqzMAg5jsFKu0VSsM3RCifEzJe9//5OPSVOqPvvsM5SXlzs8pQqovfeCNW+88UaljZyrzKQsXQr07g3gr+cbxveWFBAG3LyJG8YiTjf8/KC2HLEvLYXWzw9lSqVT05HdYeXKlVi5ciX++9//IiysYoc0RzIBJSa/Y7PMnF6PQACqsDAYANwfFSWf31SfPn3sup9u3bph8Jgx6AZUBGdduqBr165WgzPDzZuwzBHqrASEVl9vJSVAdDQwYwaKiopw8OBBfL58OY4C2K5QYK1Gg65du1rtoxQQ+91aEWqUmVyQL1++vNJ2CtYy8brr162e2x5vvfUW/ve//yEjIwPTp09HXFwcNm/e7PAUzJumgbcQ0Gg0mD59ukNBizWrV69Ghw4dcM8992DhwoXy8WHDhjnUP3sV2xgMLzdOy9XWwsyem1euyP8vO38enQEU3XMPAEBhvEYzwIEBKSHQ+IsvoJk9Wz5k72ADeS8GhOSSUuOHYbADH3parRYnT57Erl27cPLkSZR5QdDgKWXGP9wlwcEIcCFDWFsZlBJjf5WhoQC8Y98zqZKrFMRKlQrVxr4HGAwIEgKKhg1rNiBUqVDu5weVg+cvNV6ElktBuElAKGUfTL9sXeCWGKfv6Y0XMtWRgn9/YyBdplDIUxLFjRvQA1BoNBVT/QwGh9/30nqqYisX1NKUqs2bN+OLL76wq78Sb8kmAgBSUyuKVWi18uCQwpgNk6YGq2/cgNYYlJeo1fC3GBBQlpZC5+cHnVIpZ729TanJVhPCJCCUgiNVaCjKUHkPRgB46aWX8M0339h1P0VFRfgoJQVHARwF8NUHH+DYsWPo2rUr8vPz0b59e3z77bcAKjKEpRYDodYCQmuvt3LjlhI39+zB/PnzUVRUBK3xs7PQzw9Kvd5mVtNw40ZFkTHj+73MYk2lPfTGfipQsQ+rLdaCK7VajV27dmHnzp3Izs7GoUOHsHjxYquFYaoafCn+/Xf5/4WFhXgawK7333cpiw4AK1aswMmTJ3Hy5EkEBwdjxIgRKC4uhrAYmHLXwFCprfMYX7MKOwboqlNd0FVi0oeQixcBAGL+fABAYG4uclCRDbZ3QEprsbULYP9gg6OsPTZPDtr5Mq4hJJdIo2CBdgaErux344uki4SykBCoTUYBbenWrVulY44WVbCHrYIHUnCiMk4Fs3aBVteUGzNs/sapOdJFnbq8HMWAPFVNFRqKMoXCqTV+1fE3ZnH0fn5yIGovrbG/QgpoTS5AioqKkJmZadeaqoNbt6I/gIunTqGFPfdrLCilNAYopgGhvrAQNwEEGtczrf7vf/Gf//7Xofe9NACis3JxIqlqSlVtvRdqRW6ufOEvZ4aMv/eg4mKUG4/pgoPhb7G2TaXVQufvj7Ly8hp57daGEtOA0OT1XXLtGhoCUIWEVOzjafF58/vvv+PCggV4b80axBsvlKsyf/58/HnsmPy9lHmZOXMmfszMxFOnT2PDiy+i35EjFfs/KhQV2w6gIqOY//nnmGOS0bb1evv54EG0BXDp0iUMHz4cAHDB+H7K9PdHy/Jym1lNUVyMEoUCSuM67TInMjQG42eeCkBpYaH8PrUkBVf+/v546623MGLECKxevbpScGXq+rVraGwM3qqq7lpq8vfs59OnsQLAxaIiNLOyNUV16xFNKZVK+Bsz5pMnT0a7du0QHx+P6xZZUWcrz1oqM67HBIDd33yD5e+9h40bN0Il/R2x8jewqKjI6hTb1atXY9GiRfD390diYiJefPFFABXZzT179tjsQ4nJIF648XXUoG1blADQFBVhHIBPHZip8WdWFm4z/t9dm8U78tjc9bshxzAgJJcI44dPkMneZ1Wpjf1u6hMpOClv1MiuqXeOBACusPWBXWq80FA2aVLxrxdsAq41/kEPbdcOAFBmfE0H6PW4qlSiuTEw8QsNxU2VqlIGxh38S0txMzAQQqWCn4NBtJSpk9ZRme7FJmUfLKfRzZgxo9If+gDjBVORNA28GtJFSJDxd61TKP5aQ1hUhJsA/IzZw/c++AD7Dx1y6H2vkYJLqZKxg2rrveAorVaLH374AdevX0fjxo0RGxsrFwWxxXD5MsqMQVED4+u0JCcHEALhpaU4bfwdaDUaaCyeL1VZGUrUaujKyjwaEDrzuOWfNZ0WbPKZIgWE/hoNtFYqrOaeO4e1AH63sc7L0vDhw7Fv9275+x9OncIdDz6IPn36YM+iRZgM4NC5c8Y7L4FWpZK3iSkCsLBLFzxs8blo7fV203gO0/eq9Lkzt7wcH1d1AW4MRAOM7/cSO9YtWgYgwiSreDMnx2ZAaBlcxcTEWA2upMEXXWkpVJmZKLrlFoS2bFnl4Eu5SSB1cdcudAbQzIVlEZIhQ4aYVTR+6aWXUFJSggsXLsj9dOfAULnJa3PJyy8jOyMDR44cgX9hIVYDePX6dYTec49dAZ4zATjw15rQbgBKy8oQAEAxYgTKAUCrxa8AQgHodTqo/P1tngcAvv/vfxH65JPy90V//onQW62thHSMtcd2/vx5/PTTT+jWsaNcmMxrB+3qAU4ZJZeojBejDYSocuqJRNrvRlIT+93UJ3rpYt9YQKA6UgBgyZGiCqYcmXII/JW1UBizhyovCAilEd7wjh0rvjc+hmCDAddMNkb2DwtDqb8/VFaqC7pKrdVCFxQEg78/VHYOrkjkdZtSVtZkTdHw4cPNg0EhIHJz0b9//0qV7hoaXzc6kwu1qkgBYYOoKABAqb8/FMZziBs3KgqcGJ+/AD8/h9/3YcbnwWBxwWvv1FN3vxfcYc2aNejXrx8++ugjpKenY+XKlejXr5/VanumxX2unT4tT7ELi42FHkDZ1av43+7dCBECjY3rzW5ERaGJVmsWNKnLyqBXq6FTqeDnoSmjDj1uK3TGYCkXMCuMU2I8rtZocFOphNKiwMUNY7auclks28pMLvDnmayLKzVOjQs02ae0zGT63UyFAsVWpm9ae71pjb9LjcnvQxr8U6rVCK7iM0DcuAGtSoUg40V6sUl2yN71cwqT94W1KdkSKbiSDBw4EO+++y6ioqLM3oOFhYU4ePAgVj39NI4D+FSnk6fa2lJukvUtNu7h545X50svvWQ2tbGoqAgZGRkoKCjA0aNHcfTo0Wr75gjTz6fRv/6KXwHk79uHwBs3sALA535+1U5flVgG4E8//TTi4+OrXSctvWYLAZwE8LVajaPHjmGzUomTqChUpARQZDJN15Tp5+Qfs2ahpcmMr1yLKrCW5Omdb70FrFtns53lY3vqqadw+vRpROp0OPr99zi6d6/bfzfkGGYIySUBN26gBEAQKipdhVRTEWvNmjVYuHBhlfvd0F/KCwpgAICwMATDuEeWxRoAU9L0I0v2FlWw5GiWpdQ4Eh/Yti0AQFkDwZO76a9fhxbArW3aQI+K9TXlpf+/vfuOr6q+Hz/+OufO3OyQBYRAUJApIPIFxFErUkfrqFWrVWltv9ovtmodbbVf6/i1zvqt1opaB1qts4qgogwFKiCojLBnWCEJIfPucc75/P64wwQCBBkB8n4+HnkkOXeczz2f8zn3vD8zTJ5SlBcVQUUFAFr37oTdbrIOw2dyRaOYHg/KMHAfaECY+EJ2JI55ZF9jAJ9/Hu3GG/kVsGDiRHj66dRD6cmbgnbOlJicuj6rpASAoNuNPfEeus9HwG6HRMvD07/7Hc/tZ52rlpRpkpeoYNKSk6lwYF3Ody8La9eupV+/ft+6LBwKB9JDwtqxI1VjW7dyJaHETWRO7974dZ1P332Xpe+8w8fA0MQ4Nb1/f/jsM9T69WiJCo7McJht3bqhh0Jkd1AX7oPtGRJLnNO1DkerWVSTgZWja1d8Tid6oodCUjjR0uCi/V3fjBYtrHqLG2OVCIxsif3bAwHCDgd/DocpAc53OFjQIm37Ot+sRJnNj0bjLYy6nuq6/thpp5Gxj+5ytsZG/C4X+d3jnfoiLQK69rYw2fx+LOJBQmgfFUB33313q//Xrl3LkiVL8Pv9vPLKK2S53TR98AFEo7z44osMSiy4nlwXc1+VL6pFK6NzzZr4Z+GbscO721s3y/158I478H3+ObmJRdeTDlXFUMvr04jE37Fly0hPLBOTkziH9tXCmrR76+bYsWPp2rXrfpfMSAbXt9vt+AyD5vR0CiDVgp3MxUnPPcdLH364z26bGbuVkYb16+E739nrvlO9hW65Jb7h6qvb9dnOPfdcHnroIabeeisAzeXlZI8eDXRspV1nJgGhOCgZwSAVbjcDw2Ea163bb0BYXFzME22MERBts6qqaNB1tMSAff/27WTuNrB7n9atg6VLIbGI7IHaW5fDvV2wQ1u3ApDXvz8BwHYYulceaqq2liZdp8hup5H4jUrDhg0UAsYJJ6QCwi5DhrDD48H1LSZx2J+MWAwrI4OoaZJ9gEsDBBLHvGvixjO6rwH5c+YA8BSwe51zTiKv7C1ucPYlVluLCWQlynzE48GVaJlKa2ig3u3GmXgsKxA4oHIf2LEjtRacrUWrz8EEFhMmTNjnOJwjIdlD4uzEzem+WkqbVq8muSiDb8MGYh4PESC3e3fqsrMpbmzk5tJSYoZB2qBBAOSNGQNPP82uGTMoTASE2dEoVn4+0XAY9z7GYx5OB/K52xKpqsIEGjIzyWxRIeNPTKmf178/O9xu7LuVTTNRNgAC9fVktLGEzu70hgaqHA66xWI82iKYsycmUCtMtOq5vF6CGRn0euYZNm3aROSRR1p1kd/X+aYnWzYBa9cu9KIiYjU1hAC9sJBMwDIM9DZm1nR5vQQyMuhVWgp8M44f2j9+zun1stVmo8w0W3fH3Y8JEyYQjUZTZdD4+GPsjz5K6KKLOPfVV/mTywVAVeI47LPypUXgXZgYT+gBXnzhBZ548skDHke3N5f88Y9oVVVgmpC4bvh8Ps4444wDfq+22Hw+ttlslJomJyU3btpEVjTKhUCDaVKa2HzuuefSrVu3vQZ4uwfgAAMHDuSTTz7ZZxqsnTtp0DRGp6eT29zM1kRFXMhuh1iMbm43hMO88s47LFmzZp8VBlm7Var4Et9/+xqTHWlqwpXcFo2itdEVvK3KhVtuuYVbEgFhzRdfUJ2b2+GVdp2ZdBkV31rU76dbLEb1iScC4F+//oDfIxQK8V9Dh/LwQw8d6uQdF/SaGurdbjyJILAxse5ju516Klx1FXzLIGaPLocJe7tgm9u30wRkFRbSoOu4D2Rdrg7i3LKFqsQsjdVpaWgbNlC9eDEAuRdckHpe6cCB+HJzKTrE6y6pcJhCw8AsKUErLo53lTyAsTSR7dsJAr2GDydE665Yu6tKzG4I8W50ydn8MAzyEn8729kCalRUUGOzYU98+Zs5OaQnjk1GQwPhvDzy+vYFwJu4cU+prIQHHthjzFeSL9Gy00C8JSbpYLqcO/YzduZIePXVV5kyZQpjxoxh1KhRnHnmmXz44YdttpTWr1wJwHYgum0b0RUr2O50YrPbKRg7lhu6dOG8+nocP/1patmfMd//Pl9oGt7EItDK5yPbsrCXlGDl5JDRQS2Ee/vczz//PE273YC2xdi5kybAKCwkvcX5ENm4kSBQ1Lcv4czMVLfnJFuLLnINiTK9P87GRhrT0vADZl0dkcceg40byUgEToVK4auvxxMMEsvO5ic/+Ql//OMfCbtcqQoR2Pf5ltbYSHKkbnOidUxVV1PncOAsKUEH6hLbd5fh8xHLycGTbCFsMT5y9y6eY8eOZeLEiXTv3r3Ve3h8PmqTs5QeQCWBw+FoVQY3T5mCAl778kvcbjf2RFoeaUfXZFd9PVsSS+X0SzzfBjzz1FPtmiW0XZSKB4MAiXGbVdu384+sLF65+ebU08LhcGp9zAPl8vupTsyqnZRWVUUXw+A6p5PBQCxxnVu7dm27AryUWAzzJz9BzZ+/z6dpdXU0OxwEkuv/JoZs+BPjTLeXlcWfaBj77ZLaLRhk9uDBVCbG0ga3bQPDwLd9OwtmzEh1u23ZvXN7i3G3VXsZTrK7CRMmtFpOprm8nAkTJrTrteLwkBbCo8DEiRN57LHHqK6uZuDAgTzxxBMHXHu1oFcv3LqOIzExBTYbIcPA0nWihoGp63gyM3FnZKA7HIRNE6fbTcQ0cWdkYAAmYADu9HTyCgvBbsfUNGKWhd3lwunxgMNBbV0d0WAQFi7kPCD7+uuJ3HYbsZdfJjh4MH5dR3k8OLKySMvIwJWeTsQw0Ox2nC4XmqahaRpKKd544AGmlpfzeXk50dtvb/ckA51F7vbtNOXnk3tSvO7RW14O3/te+14cDkMyeFmwAM477+ATNGcOfPYZ3HsvtNF1NW3xYjamp3OqplGZkUHW7oHAUSQWi7Fw9mxO2rqVFSefDMCuE09kwMqVzHroIYYAQ669lnunTCGYmcljHg/RwYPJKy/HXLwY2/DhhyQdVTNm0B3IOOUUQjt34gDCq1fjHjiwXa+3rVrFFpeLAXY7W3Qde4sbwlaUImu3wfo7Vq2i9OSTCaxZQzpQbrOR286gQa+ooCEzMzUbnXPYME5YtYqXJkxgvN/PsrPOoqh/f3YBsRYzNwLsuOIKun/xBb4TTiDzJz/Z472bysvpCqxPTyejxU32wXQ5nz59ers+1+F0ID0k6srL6QHsysujobycfoB/yBAA9F/9CvcHH8DAgZBoQYH42n6rRo/mFwsWcL3HQ15ODn8Bss4+m4ZgkOIlSzCamrDvZRKRw2Vvn/ucoUOpWLOGzftpFbdXVlLlcGDl55ObqHhUSqHPn89aj4dTnE6CvXvTc+5cVDCIlgg03FVVbNN1Si2LwIoV7bp2epqaCGRmUhcO0+ezz3BNm8b6N94g1+dju9NJj2iUXcuWURQKUZUYPwvQlJVFXovgdl/nW57Xy7q8PEobGmhatYrc73wHW3U13owMchItu7WLFlE4eHDqNdFolDt+/WseCYdZecopaE4n2xwObC0qCdvbwpQTDlPZvz9mUxOxFq2o+zN9+nRqampSZdC3bBnZQN+6Ol577TVqEhMepQPN9fVk72OpiPTmZnbm5FASDFIINOo6uZaFFYm0q5WzPdTmzSQ7QNbMnMkbb75J3/p6bgc+f/FF+PvfAfjFz3/OtHfeYfOuXWQngqj2yvX5WH3CCamu9ibQfedOcoB1PXtSsmEDNStW0P3UUw+4l0LNv/5F8euvU7VoEd328V1q37ULb3p6PADcsQM9cd4Ehw2Djz/GPn48/P73jOrWbZ9dUpu3biVPKZxnn03J2WcT1jRiVVUEn3+eB2tqqP7Tn+jxl7+k9lvx5z/z06oqamfP5sTEtsr58+l++un7/WwOh4PKuXPpk/g/tm4djgM89uLQkoCwg7311lvceuutTJw4kTFjxvDcc89x/vnns3r1akpLS/f/BglOXSfX6cQMh9FNE92yyLYsNMvCikbRlcKp6yjDwKlp6EqhK4WdeK2cPfFj2+33vkSAhUOHMurWW5n8/PNcunAhjBmDp43nJqfmaBl4GsD4xL4uBypdLqIOB2HAstlQmoal6/EA124nphSWrhMxDNwZGQTCYXSHA0vXwW5Hs9sJRqM43G50pxPN4aBm1y66FBWhO53YXS5sLhea3Y7mcMR/7HY0pxPd4Yi/l82GYVlYgM3hIGaa2J1OnG43plK40tKIGga2xGsdLheazYapFBlZWVhAKBJBaRp5+fnxzwCYSmFpGrFEtxWbw0E4Go3/hEJEAwFifj9Rv5+6ykoCa9fSdfVqrgyFWPDzn9Pr7LPZpGm4/vQnZm3ZQpfRo+lSVkbXE08kArjcbhxOZ7ylQNOwlEJNnUoyZItOn47ze99LtSR8G6qpiegFF+AKhagqKCA0bhyVGzawY/Vqdnz+OQX/+Q8/9XqZmhi7VTlmDJd//DFrb7iBrOuuw9OvH9lduhySKay/jWAwyBdffEGgqYn1n37Khn//m2t27SJT0xj01FMAnPSPf+A4/XSuWr+eTQMHckKXLtyfWHcMoM/NN1Px2ms4zzuP6EMPUXTJJaS3oxtaS5Zl4ff7mfbRR2z88EPOffdd7JrGyTfcQN22bfj+9jd2XHMNJ8yYgT0/f4/jpZSioqKCBfPm0Th5MuPXruXr4cMZAKwvLmbk4sWE1q4lLTGmMCm8dCkZpsmT3/kOZ154IcPuvJOqGTMoPflktn/8Mf2Arf36MXDVKgyfD/tu43UMw6CiooJ5n3/OiokTeaCmho0XXZR6fPD99xN76y2uf+YZttlsnPLgg+Tk5vJ+fj7f+eQT6ubOpcuZZ6LFYmQkapG3PP00g9sICANffUUYaBw4kL5ffx1vMdW0g+pyvnnzZlauXMkPfvCDb/X6w2HVqlWsXr2ayy+/PLUtGAyyYsUKgrNmUeHx0POyyzjl+ecxNA0zcQPLmWdCQwO43XuU6WtnzWLl8OG8tGYNhEIsKShgxPjxrMnPh/ffZ+W11zL0/ffbrNA5kjbPmcN75eWEgI1Ll3LisGFtPk9ZFrkbN7IlLw/nsGEUzJvHH0eORFu/nvubmliQGD/Z5YYbcM+Zw7If/YghU6agOxx0q61lfa9eFFZUEN5tcoyZM2dSV1fHVVddldoWi0YpbWpiw+DBNBgGpyS6Y3ZftgyHUiweNIgeK1cyf/x4rlWK7Bbj0pq6dGFIZWW8a6LNRuM77xCZNo3if/yDwOzZxG6/nazJk4nm5tItFmPVqFFY06axZcECvs7MZGRVFTUjRzJo7FhCQMPbb8MvfoFlWSxevJjf/fa3jJozhzTglEQlwIaePTl5xQpC1dWktQhOvzl4CvW3v8GgQWjnnAOA0dhI91iMNSefTNXKlVibNrU/07ZupXjBAp74619B09iclUUZEDEM7NnZaF4vqzIymOH3s27+fLJbXB921625mTX9+rGjvp6ekQhr+vThtHXr+K/Cwm81jq7N5L7/fmoJnZq77uLmpiaS7ak9IxFMw0BZFle//jpPA5+89hpX3nRTu99fhUIUhcOs7tUL/6pVZADr+/dnULLV9+yzYcMGGhYvpvuppx5wL4Xtr75KMWDbujV1DdxdLBajYOdOGgcOpNcf/sCaCRPo99vfAvCdDz5g05IlnDV8OA133cXVHs8eawm2rDDY+tFHnAzkjRoFmkajy4W9poZ1Tz7JpcCat9+GRECoYjF6/+//0htYtmMHPk0jXSkad6v825vp06ez4Pbb6QOsdrtxVFYyfeFCdm7cSEFZGXoHX586I019q3Z4caiMHDmSU045hWeeeSa1rX///lxyySU81I5ulF6vl+zsbJqbm8nardtCexiGgWEY2O12bDYbkUgEr9eLYRiEQyF8TU1kZ2QQaG5Gtywcuk5+Tg45eXmQl5fqk2+aJuWffUbl3LlogQAFHg96JELA60UZBnaguaEBj9OJZpqY0Sh2oLBnT0665x5WTZxI46xZhJqayHQ40EwTzTRRpokZicQXAzdNHJqGphQqFsNls6GZJnZNQ8ViKMNAMwywLNx2O7plpfadCnSVwtbi9+5B8NGkNj2dmiuvZPDzz6PpOp/95S90u+su+h3ApCPzgLXAL4gH4mFNwyC+SK2lFCoZQFpW6m8FmImJDnRNw2WaeIhPzOBL/LQ1UtTvcLDlyisZ8PLL6DYb9bW1fNavHz9sbEwd25CmEbTZMDQNK/Fjahoq8dsEjMQXn5748tM0DY34IspmostL8n+l1DfPg9QU8EopzORxUgrLMPAoRRakxqYB+MrKsD/zDGktWw5qa4ktXozj7LPjN9y7efL66xk3aRL9E//v0jSaHA4sux3ldGImAnLdZkPXNEzTjB9fpeIzYkYi5CpFIfGpwJvT0mj8xz/olRgD98wZZ/DzefOwAzt0Hb/TSRDiFR+JteQ8SlEGuIFNBQUUfPUVWT17suCtt+j54x9TDGxzOKjRdRyZmaBpdG1sJM0waFyxgrITT6QpPZ2ArlOTlUWvpiYadB3/pEkMv/Za1qenU52bS9QwcOg6ps+HHgiQYVn0AXKAnb16Ubh4cWp2UwDWr8c3bRraRReR0bs3AJ+8/DJlP/sZJwFbNA3TbueEWIxZwEhg6aBBqLQ0TKUwAwFsfj8nV1ayJisL9etfc+af/sSyE08k3Ls3yu1GuVw4dB0rEqFi7VpqKivpe9ppFJSUgKaR5najAH8ggN1uxzRNoobB+5Mn4/P7OeOMM+jfvz92uz1+HiXWkotFo0QiETRAT/RiSJ5nyV4N4WAQXddJ93iIxmJgWRixGLquY9N1NOIBv2kYWJaFlcj75G/V4v9YLMZXCxbgtiyKevbEMk0ympooCgQoVYoTgDU33ED/hx6Cp56CsWNhzJg2Sl4blILPP4empnjPAKcTpRT/LCtj/NatNGgaWzIyCGVkoOfmEnU6UXY7jowM7G433lCIjLw8SJzPmq7jdLmw6zqmZaFrGn6fD4/Hg81mix9nw8Cm69jtdpRlodtsxBLHyDTN+HGy2XDY7UQbG+k5dSo5loUdWFxcTGjkSDAMVDiMCoXw1tbiaGqiV0MDJ1kWH910E2ffcw/NJ55I10TPhx0XXkj3qVNT30PvDBrE5atWUQc02u30MQzm//735D3+OE5No/q009Czs/GFQnw4YwYmcMqAARRlZaH8fvK2bOF0v59NkybRuGQJpz71FO+XlHBJoivklo8+wnHFFXQPBNiSnU1JdTX2xEy6cx57jDN++1vWuN14e/Rg5IYN2IDlZWX03LqVbMuiIj2depeLEQ0NbJw2Ddtll5EdCmEmrkv+mTMpGDuW2QMHcsbq1XzudFKrFLZYjGE2GyeYJtx1FyQWHV/+/vv0uPRSYrrOur59sU44gYyePYk6nXhcLqxFixiWGDf8+XXXEfB6yV60iNHV1Sx7913qb7yRk5ub2XXzzdh790bLysLudmNzudBdrng+JiqWI7t2kX/rrWR6vaz/8Y9pLChgROL4/LCykuX9+3PymjV8cs01nPPaa6zNzyft8suJjhxJTCkMwyDk9dK0YQPulSsZO28eC++5h8a33+b8desof/ZZCidMYEdBAd2ffhpHYSFp+fmk5eRA4hzUdB0FRKJR3B5PqvIzFA4TDofx2O0QiRBoaMAIBNjxi19QXFHBJoeDM1t0Y23QNPKUYvFdd2HNm8eIzz8H4K3u3bly+XJwuVBKYSkVL69KYcViNFRXU1VRQe22bfgrKkibMYOL1qxh8aRJNK5cSeayZXS56CJOvOUWmjQN165dGPn5lPfuTde//IWMkhIipokrO5u0bt1YtXo1TqeTIUOGEAwGcbvdRCMRvNXV+LZvx37BBeRHo2QDq558krTRo8Gy2LByJTs2bqR5+XLSvviCXzY2svnRRym78869XhK+LCqisKGByttvh969ceTksHnZMgLV1XQfOZLorl2kP/UUI+rq8ASD2N1uvuzdm5LEuauIjzFb/uKLuEtLqX70Uc6fOTP1/l+XlJBbX091ejrDVqwgvagIlbh2KqUIhUJomobdbqe5vp7KF16g+P77iQAVAwZw0ooVrL/6ak7717+Ye+KJnFFejtPtxuv1kpub+63vcUX7SUDYgaLRKB6Ph3feeafVjHi33HILy5YtazVWZm8ONiA83u1vZjmlFGbi5iwWjWJFo2hK4XY6CQUC2HWdhro6nHY7jfX12DSN3OxsoqEQVZWV5GZnoymF3+sl4PORlZGBEY3GxwwkbpxsxINNm6ahTJNwMIjH7cZpt+NyOHC5XLgyM3FmZuLMyEB3u6FbN8jI2CO9lmmy7csvCa1eTfOOHQRra+OLgScuuKZhYE/coIUcDnJ/9CMKunZl4xNP4GxuhmAQKxbDiMVIc7uJRqPxxYlDIZwOB06HI/5egQAohTstjRDgyMlBz8wk5/vfp/SUU9j58stEvF6Kysoo7N0bd//+0KcP7FYDapomK2bNwj9vHs7aWnZu3EissRG3zYZmWZAI/DFNNMtCB6xIBNM0sTsc2O32eOCqFJFYLD7mLRHAaomAi0RAqSwLNA0j0ZVQAZ70dBxOJ570dLSMDPScHHJKSykdMwbnoEFwIBP0tOBtbGTTu+9S++mnOHbuhLo6wj4fNsPASfxL0EicV47E59BtNjweD670dFReHt0GDyb/rLPgu9+FFstbKKX48v33qf/Xv/BUVxOtrcUDOCB+bjgcOHNyyB8xgu4XXginn566IQbYXF7O2j//mbQNG3A0NqIiEWyaRsDtRrvxRs753e8AWDNpEjvuuYcMoDkjg5JHHmHgxRcz/YYbcH/4IVnBIA67HQUYLheeggIyu3XDM3gwOeeeG0+33r5h6GuXLWPnP/6BtnQpZkMDvmHD6HvDDdRddRX5Xi8u00QHYnY7htNJVUEBRU89Rb+xY/norLPo+dVX5BsGbqVwE6/ciBLvSWBzOvGEQqnZCZOl/dsMkLeIV5aw2++9/d3ex+MJ0/b4W3c6IT0dw+9H13VCmZkEuncna8AAci65BNdllx1Uq/7uDMPg8yeewJw6lbStW3H4/biDQdKUQjdN7JaFzbJwEj/fkr+TVBt/7/E52/GYCSzp0oWTZs5k+f33c8qUKd/kq6YR1XVwuQh7PIRKS7Guvppht90Wv5aHw1BeDiUlsNvYOMMwWP7ii/jfeQdj506MAQMY+/rrLPn73zH+8AdKg0FcSuEA3LqOTdMIWVa8osxupzY9HTV+PEP++lcAatesobB/f5Y88ADu3FwG/PrXqNpaVHk5+plngsv1zedSio9vu430118nr7mZHd26UZ2VxTkrV7ItN5eq732PYVOnEtU0mi6/nDEvvEBg8WKq7rsP5XbT5eab6ZIYKhJqbmbFL39JztKluCMR0nNzyTzlFJw//nG8YqCF1R9+SO1dd9F140aKwmFyWjwWAyYXFTHQ62VgKIQBbLHZWHneeVz8wQcseustbNdey4h2VjJuA8o1jR8kbhtXut0UrFrF/NGjOau2li/z8zlz0yY+Ov98yhYsYCitz5+kCLCoXz/GlJcT8PnYtGABw37wAz67/npGT5pEWhuv+bZmfP/72P/rv0h/4gnSb7+dumefJf/xx7Fdcw39E0Hia0OHMrCwkGEHuBh6FPjP8OGc89VX39xnKMW6e+/FPWwYPS+9lM8uuYQzpkxp8zgkJa87yaAree2KAvP+938pe+QRyvayhmjEbqf6ssvo9frr+7web5g8GfuPf0zZPsZ3GsCKG29k2LPPArBx8mS48kqiDge2F16g4Cc/Ia9FyLCof38io0ZR+sYbWC+9RO306Yx65ZXUZ4okfjS+6YXWsvL9S6cT66GHyCwupuwnP8FDfOmMrERaQkA9UAZyj3sESEDYgaqqqujevTvz58/ntNNOS21/8MEHeeWVV1jXxgQikUiESIvxFl6vlx49ekhhEUJ0GqZpYppmasxxLBbDMAxM08Tr9aJpGnl5efj9ftLT01OtWBrxirhwKISRbK1LfAXquk52dja6rsdbBxKtusnfSimCwSDBYBCn05maAj89PT3eAmYYKKVwOBzYbLYO6xp9qLSsTEt+75imid1up6GhgaKiIrxeL5FIBF3XicViaJqGruvx1tRwGI/Hg91ux+Vy4XQ6aWhowGaz4XK52pys6kh8JqVUq1lqjydKKWp37EALhQhEIhSXlpKWlYVlmjTW1NClqAh2m7k0EolQvWkT/k2b8FZX47LZiPj9mOEwjsTQCxLDLHqNG4cnN5etX35JQWEhBQMGxFvtlKKhoYG8vLzUOROLxdj09ddoW7fiSJQ/V3o6eSedhK24GL1FMN3StvXrWffBB6TFYsSamjACAazEhFfKsggFg+RkZRHw+7FpGi6nE5fTic1mI2ia6G43eloazsxMMoYMYdC4cW3uJ9jczJJ//pPSYcMoPf10TMNgwV//SnDDBuyJylwt0VNF13UswJmVRbfevcnr3p307t3R+vVrVZm3N81bt7Jp6lRijY04bTZizc2opiby8/OxDIPqqircbjexSASH240jLw93fj6ZY8ZQctpphOrq2Pjaa2jNzSibjaz8fEr79kUrLYXS0tSi7vs9PyyL5uXLCW/aRLSpibwePXB16ULTmjVkl5ZiHzQIvWWPj934tm5l27vvoofDFI8YQe7YsXtUWFV+8gmbJk9Geb3YlUKLROI9A9LSiFgWlqbhSk/HM2IEA372s1TX0PULFuBbv55h117L8ueeIzB/PnosxgnTplEUCMg97hEgAWEHSgaECxYsYHRi/RWAP//5z7z66qusTSyE29J9993H/fffv8d2KSxCCCGEEOJ44Z04keybbpJ73CPg+KwmO0bk5+djs9mo2W3dsNraWoqKitp8zV133UVzc3PqZ/v27UciqUIIIYQQQhw5+1lfVhw6EhB2IKfTyfDhw5nZYmAuxGc/a9mFtCWXy0VWVlarHyGEEJ3b3Z/uueSAEEII0R4SEHaw2267jRdeeIGXXnqJNWvW8Jvf/IZt27bxy1/+sqOTJoQQ4hjx0Lz9z0othBBCtEXWIexgV155JfX19TzwwANUV1czaNAgpk2bRs+ePTs6aUIIIY4hMTOGw3Zga50JIYQQMqnMMU6WnRBCCKHdr+H9vZdMV2ZHJ0UIIQ4Jucc9cqTLqBBCHAWiZpQJH03o6GSIY1jICLW5Xep9hRBC7IsEhEIIAczePJuoufdFe99e9Tb3fHbPYdt/XbCO9fXrD9v7i+NfIBpoc/sDcx+QygYhhBB7JQGhOGgvL3uZjQ0bOzoZ4ijyzqp38Ef9HZ2MA/Lc4ufY6d+518ffXvU2C3csPGz7rw3UHnPHTBx59cH6vbb49f5b7zYrNSqaKli+c/nhTpo4BN5c+Wa7nreva5UQ3oiXNbvWdHQyxDFEAkJx0F5f8ToLKw/fjbL49hZVLuL3s35/xPd7xb+vYGvT1iO+34NRF6wjGAu22ralaQsxMwZAQ6iBfE/+Ydt/baCWQKztFp4jZV8tpOLIawo3MWXtlFbb8h/LZ0n1ktT/hmVwx4w7Uv9va962x/sEY0E8Ds/hS+gRYlhGRyfhsGoON3PVu1ftt4tvQ6iB4seLj1CqxLFo9ubZPLHwiY5OhjiGSEAoDkrMjFHRWMHqXas7OinHtZP+ftK3et2LS1/k36v/jaWsQ5yi/TvWgou6YN0eY7DKnizj440f8/SXT7O+fj3+qD8VIB5qtYHavXb5a48af81+byS3NG3hR2//qM3HmsPNuP7kojHUeED7vWPGHSypXsKXO75MbYuZMX4383cYltFquzgwr5a/yv/7z/9L/Z88lt6IN7Xt66qvefyLx1P/z982v9V7GJbB9ubtuO3uw5zaw6s+WM+oF0btsf1wlcfDbVHlIiJGpNW2Sm8lAM2R5n2+9mhq7V1bt/aovtY3hZtYVLnosO5j8prJR10F6IaGDSytWdrRyRDHEAkIO5mWN4zJv5VSrba3DB7CRrjN5yTNqpjFz4b+jIWVC6nx11Djr9lrLW7MjB1UYNKe15qW2SqdpmW2+7XQ9uQLLV/b8vFQLNRq++GcuGF9/XoWVy1us5tQcr+GZaRuMJRSbGnaQqW3kisGXrHHTWKSpSyUUkSMSOpY7S653bAMnlj4BBf864K93oQ1hBoY+8+xAEzfNJ3/bP1Pq26QYSNMc7h5r/tSSmEpi0A0sMc+kumMmlGCsSChWCiVbktZxMwYMTNGc7iZiBFpd34YlsGmhk3sCu5iWc2y1OuS+3952cvcPuN2dvh28OH6Dxnz0hg+2fgJESOSOn7J49TyXDEtk0A00K50vLLsFZ768ik2N23m2snXsqxm2R43i3ujlGLS0kl0fbwrd868k6XVS9u8QYuZMW6fcTveiJdVtatSaUwegztm3MGgwkF8vu1z/FF/u9J93eTrePyLxxn+j+G8tvy11PbnFj/Howse5fOtnzPyhZF8sO4DfBEfED/nPq34lOsmX5e6Ad5dMBbk9RWvc8vHt1Dlq2rz8+ytTFvKSuV/zIzt8TlaXvdMy0ydN209t633DsaCqecezjKvlGLq+qn0yulFQ6gBpRQjXxgJwHbv9tTzZlXMomd2fJmivl368s/l/2wVMNwx4w6Gdx3OB+s/4K5Zd7HTv/NbpdtSVup890a8KKUwLINQLETYCOOL+AhEAwSiAYKxII2hRiJGBMMyUvsLRAP4o34aQ434Ir7Ud0XyWEbNaJtpW1m7kvzH8qkP1bOhfkNqe9gIk/lQJj+b8jOmrpvKgu0LWlVoJMuwaZmEjXDq+rI/z3z1DA/PexjDMpi2YRo1/po9nhMxIgRjQd5c+SZ//eKvVPmqKK8pT50bdcE6FlYuxFIW5TXlPLHwiVSZjppRRr04ilkVs1q959bmrThtzjb311KyK6ClLHb6d7a6niaPn6UswkaYSUsntaqwtZTFqtpV7ArsYn39etbWraUx1IhhGanyEDbCBKIBvBEvjaFG6oP11AZqeWvlW/zmk9+kui3P3DSTMyadwWPzH2Onfye7ArtQStEYamRZzTIqvZX7PddiZixVvpVSBGPBfXaLTlaGhGIhgrFg6vxq6/mGZXD1u1dzzeRrqAvWAexxrHb6d6YeMywjdY63t4zM3jybK/59BffMvqfN69TBXCMC0QAvL3uZZTXLDvi1yXKytHppqmy1V32wnoWVC9ncuBmAxlAj414dt0c6grFgaj+Tlk7i9RWvt3sflrJYV7eOpnAT102+jmAsKJNfdTBZduIYl5yS96xnzyIjMwNd+ybGDxkhLGWlWjVy03JRSpHmSCMYC6JrOo2hRnLTclPBhNvuJmyEKUgvwLAMNLT4lzQKt92NTbMRs+KBXV2wjhx3Dq9d+hpzt85l2oZphI0wVb4qctw56JpO1IzitDmxlIUv6sPj8KBrevyCi8Km2bj25Gt5c9Wb8WAOtcdaWskv8GT6fFEfmc5MomYUXdNx2pzxLzNl4o/60dDIdGWiazqV3koKPAUAuOwu7Hp86c29nfaWstA0LfV38ibfZXfhj/px29049Hjakt2wFIqwEUbXdFw2FxEzQsyMke5MR0Nrcx/NkWayXdmYysSu21PPs5SFw+bAaXMSjAXxRrwUZxTz9qq3GVgwkH75/aj2V5PjzsFSFnbdTtSMYtftOHQHmqal0tzF04WbRtxEUXoRv5v1OwKxQGo/CkUgGsBpc2LTbYRiITRNI92RDkB9qB6bZiPTlUkoFiLDmYFCMbZsLGW5ZUz8aiKWstA1nXxPPk6bk6gZpTHcyLUnX8sO7w7umHkHd51+FxsaNsQDo8Q55LQ5UzdnbR2bkBEizZ4G0Op8jlkxDMsgzZ6GTbdh02ytKh90TcewjFRaGkINpDvTceiO+DmHwhfxoWka/br0Y1jXYQRjQaasm8KaXWvYGYgH2+eUnUNBegHVvmquGnQVJxedTLoznSHPDgFg5f+s5L0177FoxyJiVgyH7sBU8WPutDlbpceu2wnFQpjKTOVP8oajJKuEbFc2Gxs3UpZTxl8X/pUJp07gkn6XMLNiJourF6fOJ7tux6bZsOm2VFnIS8vD4/BQ5atiRe0KqnxVdM/sztWDr07dADaGG8l156b2e/3Q6+md25t/lv8TwzLY2LgRm2bDrtu56KSLGHfCOB6Z9wj1ofp4UMg3eeRxeCjwFNA9sztdPF34dPOnNIebsek2LuxzIW+sfINR3UelWjcMy6B/fn/SHGlYyuLjjR+nbt5Gl4zm7LKzeXHpi6lAUaHQ0FAoXDYX2a5s3lv7Hmf3OhtNi1+HkudvsqJK0zSyXFk0hZtanTM23Za6PiSvH9mubC466SIe/+JxCtML0TUdDS11biTLTfIYt3V+eiNeXHYXafY0TBW/sWyrjO9P8hrTI6sHZ/U8i38u/yduuxvTMtE1nWxXNnWhOk7vcTpZriwaw43s9O8k05XJaT1O4+I3L8b7+3haznvtPEqzS3l+yfOc1fMs3r3iXa749xWc3etsNjdupiC9gIfHPszS6qXM3TqXTzd/mrrxtWm2+HFInB/J498cbibbnZ06RqYysWm21PMcugNf1IfLFr+m2nU7ivhNtMvuwrRMXHZXqtwnr+02zZa6DgdjQXwRH71ze7Pdux27bm+VX8nvCEtZ5KXlcedpd5LjzuGGD25gaPFQynLKmLx2MiO6jeDBeQ8CcPfpd1PRVEEgGsAXjZ9XPx3yU6asm0LEjGDT4nlrKYthxcM4tdupPLbgMTwOD3bdTsyK4bQ5Ka8px2Fz0C+/H0OKhrCxYSO7grt4fNzj/Ok/f8JU8QCzLKeMpnAT1f5qSrNLcdqcbG7cTLoznby0PEoyS1hRu4KSrBJGlYzizZVv4rA5sOt2Tu9xOlPWTaGLpwtRM0rMjFEbqOXG4Tfy7zXxXh1ZriyK0osYVTKKfvn9GF0ymvvn3s+Ghg34o3765vVlXf26VudWMnBPXiMv6HMB87fPpzHUSMyKETEiDC0eyrQN0+iR3YN+XfrRFGlKVQLZ9Pg5kbzeJM8Rm2bjpPyTGFY8jOcWP0fUjNIjqwcPj32YZ75+hrV1a/FGvFQ0VpDpymREtxH4Ij6q/FWpcmJYBlEzisvuwhvxMrL7SGZvmU26I53fjvktE7+aiGEZ5KblEowF9yhbye+QUCyEx+FB0zRiZvx7IZm/Nt2GacW/Vy1lMX7IePrl9+PmT25GQ0PTNOy6neZwM0UZRWS5stjWvI1rBl/Dy+Uv0yWtS+o46ppOzIoH+C2v7cnv2agZpXdub+458x5mbJrBoh2LeHjsw1zxzhW47C6evfBZfvj2DylML0yVo2QalFI4bI7Uda3ld12Srul8v+/3mbNlTqtWY1/ER7fMbrjsLrKcWWzzbiPblU2Bp4ClNUv55JpPuPStS7nztDv5zfTfkO/JZ962eYzpMQaX3dXqfsMbiS9Vk9xW46+hKdxE96zurK9fz9Dioeiazm9G/YYnFz1J1IymypHL7sJpc7K9eTvdMrthKpNgLJj6zk3mGcQDcZtua1VhkZeWR7W/mjR7GjErXnmTPM6GZeDQHexs2MmXv/pSlp04EpQ4pjU3NytANTc3d3RSvpWIEVF/+PQPavrG6R2dlKNG1IiqWn+tagw1Ksuy1PXvX6+4D/W3hX/r6KS1qSHYoDY1bFJbGrektr1a/qrivqPv8tIUalIRI6IqGirUWyvfUv9e9W8VM2PqgTkPKO5DOR5wKKWUag43q/pgfep1ESOiuI9D8pksy1KWZalVtavUqtpVqi5Qp5RSivtQhmm06z3qAnWqsrlSbW3aqpRS6usdXyvuQ/3Ph//Trtf3eqKXunvW3QeU7kA0oLY0blFzt8xV7695X+3071RKKWVapqr2VSvuQy2qXKSWVi9VSil1z2f3qJHPj1Tr69Yf0H4OhGVZqtZf267nTl07VV03+ToVM2OHLT0Has7mOeqx+Y+pQDSggtFg6ne1r1r5I36llFK+iE/98bM/qvdWv6csy1JKKTXxy4nqsfmPqa93fK1u+fgWddesuxT3ob7/+vdTr3ll2Stq7pa5qdccjWZvnq1eLX/1gF5jWZZaUrVEvbHiDVUXqFPr69bvtWwapqG4D/XT93+6x2MPzHlAXfXvq1TUiO7xmGmZexy3nf6dyvGAQ723+j3VEGxQSil1/mvnq/NfO1+V/rW03WVvdxEjonYFdinLslTEiOzx2ObGzeqtlW+pm6fdrIY9O0zdOeNOpZRSN0+7WfV9qu9Rnb/7YlqmKvm/ErVg2wK1079TFT1WpF5e+vJh3Wdlc6VSSqklVUvUrsCu1PbpG6erS9+89KCvDRM+nKD6PtVXLdy+UL27+l2V/ud0NXfL3L0+PxQLfat9GqahvGGv2uHdoTbWb1RRI6oWbl+oej/ZW9096241a9MsdeG/LlRKxY/zS0teUqtrV7f5XjEzlvpO2l04Fj7gtB1qf5j2h2P6HvdYIi2ExzhZtPP4FzNjxKzYMTUpxMxNMxn32jjUvcfG5WVt3Vqun3I9gwsH89wPnmvzOaZlMvbVscweP/uwpEEplWo5+jZeWPICMTPG/4z4n/0+d2vTVoozinHZXd96fy1FjAjuP7tb5fdzXz/HI/MfoeKWikOyD/ENwzK4dvK1VDRW8OZlb/LGyjf4w2d/4OrBV/OvH/6ro5N3RMXMGDd+eCObmza3WTarfdUUZRS12QJzoJKtRknXTr6WPHce/z38vynLKSPdmX7Q+9iXlteI26ffzuS1k4+b8rWhfgO9c3unWuiPRYFogA0NGxhaPBRLWczZMofvln33iKZh/rb5fLLxE9bWr+Wdy985ovs+HOob68nPy5d73CPA3tEJEELsm8PmaNWF9lgwusdoXrropY5ORrv1y+/Hgp8v2OdzbLrtsAWDwEEFgwDjh4xv93N75vQ8qH3tzmV3Efnf1mMeu2d1Z0T3EYd0PyLOrtt5/Yev0xBqoIunS6q7V6Yzs4NTduQ5bA5eunjv15qumV0P2b52DypvGXkLpdmlFKYXHrJ97EvLa8Q5vc/hrF5nHZH9Hgl9uvTp6CQctHRnOkOLhwLxc+VIB4MAAwsHMmHaBM4/8fwjvu/D4Vi79zmWSUAohDjkMpwZ/GzYzzo6GZ1KR39xthxjAzC86/A9tolDR9M0uni6tNrWGQPCjnRqt1M7bN8X9Lmgw/Ytjl457hyW71zOzf91c0cnRRxjJCAUQghxyHXN7HpIW2fE/mW6JCAUorPrk9eHAQUDOjoZ4hgjAaEQQghxDFMoPA4P1w+7vqOTIoToYOt/vb6jkyCOQbIOoRBCCHEMU0qR4cygJKuko5MihBDiGCQBoRBCCHGMOxSzaAohhOic5BtECCGEOIbdMuoWvvzFlx2dDCGEEMcoGUMohBBCHMMynBlkODM6OhlCCCGOUdJCKIQQQgghhBCdlASEQgghhBBCCNFJSUAohBBCCCGEEJ2UBIRCCCGEEEII0UlJQCiEEEIIIYQQnZQEhEIIIYQQQgjRSUlAKIQQQgghhBCdlASEQgghhBBCCNFJSUAohBBCCCGEEJ2UBIRCCCGEEEII0UlJQCiEEEIIIYQQnZS9oxMgvj2lFF6vFyD1WwghhBBCiGNd8t5WKdXBKTn+aUqO8jHL6/WSnZ3d0ckQQgghhBDisNi+fTslJSUdnYzjmgSEx7BkC6HP5yMzMxNN0zo6Sd+a1+ulR48ebN++naysrI5OjjhCJN87J8n3zkvyvnOSfO+cDjbflVL4fD66deuGrssot8NJuowewzRNIzs7+7hqJczKypIvi05I8r1zknzvvCTvOyfJ987pYPL9eLrHPZpJuC2EEEIIIYQQnZQEhEIIIYQQQgjRSUlAKI4KLpeLe++9F5fL1dFJEUeQ5HvnJPneeUned06S752T5PuxQyaVEUIIIYQQQohOSloIhRBCCCGEEKKTkoBQCCGEEEIIITopCQiFEEIIIYQQopOSgFAIIYQQQgghOikJCMUR85///Icf/OAHdOvWDU3TeP/991s9rpTivvvuo1u3bqSlpfGd73yHVatWdUxixSG1v7z/6U9/iqZprX5GjRrVMYkVh8xDDz3EiBEjyMzMpLCwkEsuuYR169a1eo6U++NPe/Jdyvzx55lnnuHkk09OLUI+evRoPv7449TjUtaPX/vLeynvRz8JCMUREwgEGDJkCH//+9/bfPzRRx/l//7v//j73//OV199RXFxMeeeey4+n+8Ip1QcavvLe4DzzjuP6urq1M+0adOOYArF4TB37lxuuukmFi5cyMyZMzEMg3HjxhEIBFLPkXJ//GlPvoOU+eNNSUkJDz/8MF9//TVff/013/3ud7n44otTQZ+U9ePX/vIepLwf9ZQQHQBQkydPTv1vWZYqLi5WDz/8cGpbOBxW2dnZ6tlnn+2AFIrDZfe8V0qp8ePHq4svvrhD0iOOnNraWgWouXPnKqWk3HcWu+e7UlLmO4vc3Fz1wgsvSFnvhJJ5r5SU92OBtBCKo8LmzZupqalh3LhxqW0ul4uzzjqLBQsWdGDKxJEyZ84cCgsL6du3L//93/9NbW1tRydJHGLNzc0A5OXlAVLuO4vd8z1JyvzxyzRN3nzzTQKBAKNHj5ay3onsnvdJUt6PbvaOToAQADU1NQAUFRW12l5UVMTWrVs7IkniCDr//PO5/PLL6dmzJ5s3b+aee+7hu9/9LosXL8blcnV08sQhoJTitttu4/TTT2fQoEGAlPvOoK18Bynzx6sVK1YwevRowuEwGRkZTJ48mQEDBqSCPinrx6+95T1IeT8WSEAojiqaprX6Xym1xzZx/LnyyitTfw8aNIhTTz2Vnj178tFHH/HDH/6wA1MmDpVf/epXLF++nHnz5u3xmJT749fe8l3K/PHppJNOYtmyZTQ1NfHuu+8yfvx45s6dm3pcyvrxa295P2DAACnvxwDpMiqOCsXFxcA3LQZJtbW1e9QoiuNf165d6dmzJxs2bOjopIhD4Ne//jVTp05l9uzZlJSUpLZLuT++7S3f2yJl/vjgdDo58cQTOfXUU3nooYcYMmQITz75pJT1TmBved8WKe9HHwkIxVGhrKyM4uJiZs6cmdoWjUaZO3cup512WgemTHSE+vp6tm/fTteuXTs6KeIgKKX41a9+xXvvvcdnn31GWVlZq8el3B+f9pfvbZEyf3xSShGJRKSsd0LJvG+LlPejj3QZFUeM3+9n48aNqf83b97MsmXLyMvLo7S0lFtvvZUHH3yQPn360KdPHx588EE8Hg9XX311B6ZaHAr7yvu8vDzuu+8+LrvsMrp27cqWLVu4++67yc/P59JLL+3AVIuDddNNN/H6668zZcoUMjMzU60D2dnZpKWloWmalPvj0P7y3e/3S5k/Dt19992cf/759OjRA5/Px5tvvsmcOXP45JNPpKwf5/aV91LejxEdNr+p6HRmz56tgD1+xo8fr5SKT0F/7733quLiYuVyudSZZ56pVqxY0bGJFofEvvI+GAyqcePGqYKCAuVwOFRpaakaP3682rZtW0cnWxyktvIcUJMmTUo9R8r98Wd/+S5l/vh0/fXXq549eyqn06kKCgrUOeeco2bMmJF6XMr68WtfeS/l/digKaXUkQxAhRBCCCGEEEIcHWQMoRBCCCGEEEJ0UhIQCiGEEEIIIUQnJQGhEEIIIYQQQnRSEhAKIYQQQgghRCclAaEQQgghhBBCdFISEAohhBBCCCFEJyUBoRBCCCGEEEJ0UhIQCiGEEEIIIUQnJQGhEEIIIYQQQnRSEhAKIYQQQgghRCclAaEQQgghhBBCdFISEAohhBBCCCFEJyUBoRBCCCGEEEJ0UhIQCiGEEEIIIUQnJQGhEEIIIYQQQnRSEhAKIYQQQgghRCclAaEQQgghhBBCdFISEAohhBBCCCFEJyUBoRBCCCGEEEJ0UhIQCiGEEEIIIUQnJQGhEEIIIYQQQnRSEhAKIYQQQgghRCf1/wEmgove6SNz8gAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p.plot(fig=None, diff=True)\n", "mc.RestoreParamSet(3, update_display=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save results to CIF and Fox (.xmlgz) formats" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# Save result so it can be opened by Fox\n", "xml_cryst_file_save_global('result.xmlgz')\n", "# Also export to the CIF format\n", "c.CIFOutput(\"result.cif\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "033033acc6c74c3daef886add86efd13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "04f420e67f7a42979e353000c07eb348": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Yrange", "layout": "IPY_MODEL_8bf9ae6abf444ae08df94efb582c5ffd", "max": 1.5, "min": -0.5, "step": 0.02631578947368421, "style": "IPY_MODEL_692f4a896dde4a909e75b3ed9b1ac0a3", "value": [ -5.551115123125783e-17, 0.9999999999999998 ] } }, "063c720771e5455fb5d1ffd0c27ad6f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_a9e855977db64785bcc8b4f2e0803fb8", "IPY_MODEL_04f420e67f7a42979e353000c07eb348", "IPY_MODEL_14341ebe2bae445389d5046be8750dab" ], "layout": "IPY_MODEL_f386dc3ff5b04e3189ba60b62d49ab07" } }, "07e57849dcd842cd8665047a4abb8a04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra dist", "layout": "IPY_MODEL_4a4568a59aa84c15afbdcbf800787fca", "max": 10, "readout_format": ".1f", "step": 0.5, "style": "IPY_MODEL_a474a39f1b7040f5b8e31bcae6884fe2", "tooltip": "Extra distance (A) with semi-transparent display", "value": 2 } }, "0d96107a068d4ce08fc8601de79e6ca9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "0e1f70ffb8d140abb0c6598cc779bf96": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "14341ebe2bae445389d5046be8750dab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Zrange", "layout": "IPY_MODEL_43962757a342404cab79c3302fadef3f", "max": 1.5, "min": -0.5, "step": 0.047619047619047616, "style": "IPY_MODEL_885742531923446e9bc635bd3250a95d", "value": [ 0.023809523809523836, 1.0238095238095237 ] } }, "1460d182a1ff4472bcc2ce497114909a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelModel", "state": { "layout": "IPY_MODEL_f443b3682ae945d3a83acf637668d8bc", "style": "IPY_MODEL_c04c3145800248a7bdd17a11e7c03cf9", "value": "MonteCarlo:" } }, "158d3575ad3344d9a5eef47bed7cd54c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "16d499f663fc47b49799b1bbd59260eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "251d7558b7a74c7bbe7b6ec9ac170760": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_dfeb9f48eaf54bfca3cb61951d344ff5", "IPY_MODEL_5f125f9947c24b8890be63be330e6398" ], "layout": "IPY_MODEL_8f4b38dea47045c2bd33aa3884f2767b" } }, "25ae317dc2e34d888314185867a0da2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "28749649ff664779b102bb5134f03a8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "29c30c7055f6440c9756d62047dd7913": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "2b2629219dc940fbb60b7d4f865da6b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "2e07987270a3424885b9240ba747c3d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "3070a2fefae345c5abab322ef7c9a10e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "33cd6a561aae4867bd27837bc6ed082d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "37a448aac66f4ed782973ae253db53c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "37efa633a61c4835be911037898323ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3b65a4ece7b54989b9018526ffdc1d40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_47bceb18d5df428cac704bb60babc52c", "IPY_MODEL_b463e11ceb97432485b4d1d458ab460d", "IPY_MODEL_5e181deaf97748278d56bd28622d3aac" ], "layout": "IPY_MODEL_b82e01cf3881477b86207dd7b856d281" } }, "3fa4d9033bb94736a381a1c6d9f1ac21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "42440b516d0e4b71a747cd0a376846fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_251d7558b7a74c7bbe7b6ec9ac170760" ], "layout": "IPY_MODEL_33cd6a561aae4867bd27837bc6ed082d" } }, "43402ab0214f43c09714b65a30d43d14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "43962757a342404cab79c3302fadef3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "47bceb18d5df428cac704bb60babc52c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Xrange", "layout": "IPY_MODEL_803acabdb80c46f9a6de317791d95549", "max": 1.5, "min": -0.5, "step": 0.07142857142857142, "style": "IPY_MODEL_ef0730344db64535880c58c7ab569d4a", "value": [ 0, 1 ] } }, "4a052a1c296e478686e683d539f4866f": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_2b2629219dc940fbb60b7d4f865da6b0", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "4a4568a59aa84c15afbdcbf800787fca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4b7730f297f840d39edcc3fbd3208be7": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 4", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_e586890e3f434a0dacb8bb200fc4b534", "toolbar": "IPY_MODEL_fdc61c966cb145379d5f2eb7c7b0ab2c", "toolbar_position": "left" } }, "4e6d91d411954df8b8afa2326de84023": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_f88b4168a4674454bf3a719070e3d4b5" } }, "518e216c806341f7b881de45166a654a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_e3eb11ea7e674c91a68e328cb138076c", "IPY_MODEL_fbc49008a6ac4d1f9a187d31997c7eba", "IPY_MODEL_73f686f827b74f6ba7f203d2b1186c5c" ], "layout": "IPY_MODEL_b4208c41ae8d41389eeaee5b296c4103" } }, "51e645aa573242a19f50ca09ff06fb52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "520bd0b61ed14bb989f9a7aa5f29a644": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "5402ac42a28945c2958ab09ac7378075": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "56bb4150895440fd865b0485322e0a63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "5d3f36397d8d4525bea4003f2ee990a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_1460d182a1ff4472bcc2ce497114909a", "IPY_MODEL_7f17c993d05a442d845970254290ec15" ], "layout": "IPY_MODEL_f63426b10f1c41098c3972c570056a3f" } }, "5e181deaf97748278d56bd28622d3aac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Zrange", "layout": "IPY_MODEL_ee202cb6d45c47b991d635f7af13f43e", "max": 1.5, "min": -0.5, "step": 0.047619047619047616, "style": "IPY_MODEL_29c30c7055f6440c9756d62047dd7913", "value": [ 0.023809523809523836, 1.0238095238095237 ] } }, "5f125f9947c24b8890be63be330e6398": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_c72974fe24104a288f13f77712bbd047", "outputs": [ { "data": { "application/3dmoljs_load.v0": "", "text/html": "" }, "metadata": {}, "output_type": "display_data" } ] } }, "692f4a896dde4a909e75b3ed9b1ac0a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "6bf5f947234b4e66b143a70d0a3f544b": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_520bd0b61ed14bb989f9a7aa5f29a644", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "73f686f827b74f6ba7f203d2b1186c5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "fullMol opac", "layout": "IPY_MODEL_7c61a7a2348b4ba58cdad2537a85225b", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_c46357387bb643b7a7740174241f32fa", "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", "value": 0.5 } }, "7426e5f971394d249d5f4e099477dae2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "77f6fca9951e478dbd016ed5226eb856": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 5", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_16d499f663fc47b49799b1bbd59260eb", "toolbar": "IPY_MODEL_6bf5f947234b4e66b143a70d0a3f544b", "toolbar_position": "left" } }, "7c0bfe2f4f2348c98baeb1db2d521c00": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_fb20ebc822d148e690ab89453aec3bed", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "7c61a7a2348b4ba58cdad2537a85225b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "7f17c993d05a442d845970254290ec15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TextModel", "state": { "disabled": true, "layout": "IPY_MODEL_8d9d2ffde3994085b21a854dd34593c0", "style": "IPY_MODEL_c9d71f937d1e4d569f05c0d1d874a595", "value": "LLK= 18612.26 " } }, "803acabdb80c46f9a6de317791d95549": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "885742531923446e9bc635bd3250a95d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "8b12d904b277450c8ee9b4a6a7749c60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_07e57849dcd842cd8665047a4abb8a04", "IPY_MODEL_eb563daee4fd48b88cb155fc153a43e4", "IPY_MODEL_e8b7df83ee4346bc9dd2b32d20222683" ], "layout": "IPY_MODEL_bb978d1baf324b599a8747447e56dbb0" } }, "8bf9ae6abf444ae08df94efb582c5ffd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8d9d2ffde3994085b21a854dd34593c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "max_width": "50%", "width": "40em" } }, "8eacf287c05749d887254f7f4b1b0d07": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_dd94b2509958449e8752fcf027643eca", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "8f1150436e1544ec8236bff78a7e27fb": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_d35a9babe4d14f45ae7cf67845afa6a3", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "8f4b38dea47045c2bd33aa3884f2767b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "953995b09f404c7db76aa00c42eec519": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a2729d7502c4449695df8f9440c273f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_3b65a4ece7b54989b9018526ffdc1d40", "IPY_MODEL_8b12d904b277450c8ee9b4a6a7749c60" ], "layout": "IPY_MODEL_cb372953b8e5456681e333899f6a4bf2" } }, "a474a39f1b7040f5b8e31bcae6884fe2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "a5767929d16a4a418579b71574cf1d2c": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 6", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_953995b09f404c7db76aa00c42eec519", "toolbar": "IPY_MODEL_8f1150436e1544ec8236bff78a7e27fb", "toolbar_position": "left" } }, "a9e855977db64785bcc8b4f2e0803fb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Xrange", "layout": "IPY_MODEL_158d3575ad3344d9a5eef47bed7cd54c", "max": 1.5, "min": -0.5, "step": 0.07142857142857142, "style": "IPY_MODEL_033033acc6c74c3daef886add86efd13", "value": [ 0, 1 ] } }, "a9f875e8ac5d49359c2914757810071c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "b4208c41ae8d41389eeaee5b296c4103": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "b463e11ceb97432485b4d1d458ab460d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Yrange", "layout": "IPY_MODEL_d6ab9bd45fb64b7b9785bed9d60872bb", "max": 1.5, "min": -0.5, "step": 0.02631578947368421, "style": "IPY_MODEL_a9f875e8ac5d49359c2914757810071c", "value": [ -5.551115123125783e-17, 0.9999999999999998 ] } }, "b6db3472924a4760b2e21af077e8ddcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_a2729d7502c4449695df8f9440c273f9", "IPY_MODEL_4e6d91d411954df8b8afa2326de84023" ], "layout": "IPY_MODEL_cf7312d87d364721b24398b437361f91" } }, "b82e01cf3881477b86207dd7b856d281": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "bb14d41c8eb247b58211bd24e5aa93e1": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 2", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_5402ac42a28945c2958ab09ac7378075", "toolbar": "IPY_MODEL_8eacf287c05749d887254f7f4b1b0d07", "toolbar_position": "left" } }, "bb978d1baf324b599a8747447e56dbb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "bd48c8151b264b11a214f6b3f326fbfc": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 1", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_3070a2fefae345c5abab322ef7c9a10e", "toolbar": "IPY_MODEL_7c0bfe2f4f2348c98baeb1db2d521c00", "toolbar_position": "left" } }, "c04c3145800248a7bdd17a11e7c03cf9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelStyleModel", "state": { "description_width": "", "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "c46357387bb643b7a7740174241f32fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "c72974fe24104a288f13f77712bbd047": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c9d71f937d1e4d569f05c0d1d874a595": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TextStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "cb372953b8e5456681e333899f6a4bf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "cf7312d87d364721b24398b437361f91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "d056fc2fab4948999db31f797217e2d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_5d3f36397d8d4525bea4003f2ee990a6" ], "layout": "IPY_MODEL_dc17af8032034860a500a1eb9240ee72" } }, "d35a9babe4d14f45ae7cf67845afa6a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "d6ab9bd45fb64b7b9785bed9d60872bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "dc17af8032034860a500a1eb9240ee72": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "dd94b2509958449e8752fcf027643eca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "dfeb9f48eaf54bfca3cb61951d344ff5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_063c720771e5455fb5d1ffd0c27ad6f7", "IPY_MODEL_518e216c806341f7b881de45166a654a" ], "layout": "IPY_MODEL_7426e5f971394d249d5f4e099477dae2" } }, "e3eb11ea7e674c91a68e328cb138076c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra dist", "layout": "IPY_MODEL_25ae317dc2e34d888314185867a0da2c", "max": 10, "readout_format": ".1f", "step": 0.5, "style": "IPY_MODEL_3fa4d9033bb94736a381a1c6d9f1ac21", "tooltip": "Extra distance (A) with semi-transparent display", "value": 2 } }, "e586890e3f434a0dacb8bb200fc4b534": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "e8b7df83ee4346bc9dd2b32d20222683": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "fullMol opac", "layout": "IPY_MODEL_37efa633a61c4835be911037898323ce", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_2e07987270a3424885b9240ba747c3d8", "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", "value": 0.5 } }, "ea1a1633984a452693bb538cd640b799": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 3", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_28749649ff664779b102bb5134f03a8d", "toolbar": "IPY_MODEL_4a052a1c296e478686e683d539f4866f", "toolbar_position": "left" } }, "eb563daee4fd48b88cb155fc153a43e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra opac.", "layout": "IPY_MODEL_0e1f70ffb8d140abb0c6598cc779bf96", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_0d96107a068d4ce08fc8601de79e6ca9", "tooltip": "Opacity for extra distance display", "value": 0.5 } }, "ee202cb6d45c47b991d635f7af13f43e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "ef0730344db64535880c58c7ab569d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "f386dc3ff5b04e3189ba60b62d49ab07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f443b3682ae945d3a83acf637668d8bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "max_width": "25%", "width": "11em" } }, "f63426b10f1c41098c3972c570056a3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f88b4168a4674454bf3a719070e3d4b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "fb20ebc822d148e690ab89453aec3bed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "fbc49008a6ac4d1f9a187d31997c7eba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra opac.", "layout": "IPY_MODEL_37a448aac66f4ed782973ae253db53c8", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_56bb4150895440fd865b0485322e0a63", "tooltip": "Opacity for extra distance display", "value": 0.5 } }, "fce5512877b245a09d4f92a1c77f9716": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_b6db3472924a4760b2e21af077e8ddcf" ], "layout": "IPY_MODEL_43402ab0214f43c09714b65a30d43d14" } }, "fdc61c966cb145379d5f2eb7c7b0ab2c": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_51e645aa573242a19f50ca09ff06fb52", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 } pyobjcryst-2024.2.1/examples/structure-solution-powder-pbso4.ipynb000066400000000000000000123151071470422267000253060ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## PbSO4 tutorial: indexing, spacegroup determination & structure solution\n", "In this notebook, you can:\n", "* Load the powder diffraction data and create the PowderPattern object, for two diffrection patterns (X-ray and neutron)\n", "* Find the diffraction peaks and index them (determine the unit cell)\n", "* Perform a profile fit to optimise the background and reflection profiles\n", "* Determine the spacegroup\n", "* Add a molecule to describe the contents of the Crystal structure\n", "* Solve the Crystal structure using a Monte-Carlo/Parallel tempering algorithm, using both X-ray and neutron diffraction patterns\n", "* Save the best result to a CIF file and to Fox .xmlgz format\n", "\n", "Notes:\n", "* This is a simple case, which illustrates the possibility of joint X-ray/neutron optimisation.\n", "* It is important to follow the steps relatively linearly and avoid going back to previous cells until you know better. For example to avoid adding multiple times Scatterer/Molecule objects in the crystal structure, or multiple crystalline phases to the powder pattern with the same crystal, etc..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# 'widget' allows live update and works in both classical notebooks and jupyter-lab.\n", "# Otherwise 'notebook', 'ipympl', 'inline' can be used\n", "%matplotlib widget\n", "\n", "import os\n", "import pyobjcryst\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from pyobjcryst.crystal import *\n", "from pyobjcryst.scatteringpower import ScatteringPowerAtom\n", "from pyobjcryst.atom import Atom\n", "from pyobjcryst.polyhedron import MakeTetrahedron\n", "from pyobjcryst.powderpattern import *\n", "from pyobjcryst.radiation import RadiationType\n", "from pyobjcryst.indexing import *\n", "from pyobjcryst.molecule import *\n", "from pyobjcryst.globaloptim import MonteCarlo\n", "from pyobjcryst.io import xml_cryst_file_save_global" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create powder pattern object, download data if necessary\n", "We start with the X-ray data which will be used to determine the unit cell and spacegroup." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", " 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Radiation: X-Ray,Wavelength= tube: Cu, Alpha1/Alpha2= 0.5Imported powder pattern: 6001 points, 2theta= 10.000 -> 160.000, step= 0.025\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100 48688 100 48688 0 0 100k 0 --:--:-- --:--:-- --:--:-- 100k\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f7376c77ccf8409ca67e032eccf72af9", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByH0lEQVR4nO3deXgUVd4+/LuzLySdzSREwzYiRILCoLI+ggOySIiKv0GMRn1FFhUwEkAZXFAHEGQdeFTABWQZnBkBFcYIiKDIHogsBhANECQhLElnpdPpPu8fPFV29ZJ0J53uTur+XFdfJF2nqqtOJ6Tu/p46pRFCCBAREREREZHq+Hh6B4iIiIiIiMgzGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKUYCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVMrP0ztADWMymXDx4kWEhYVBo9F4eneIiIiIiBpMCIGysjIkJCTAx4c1rMbEQNjEXbx4EYmJiZ7eDSIiIiIil8vPz8ctt9zi6d1o1hgIm7iwsDAAN35ZwsPDPbw3REREREQNV1paisTERPlclxoPA2ETJw0TDQ8PZyAkIiIiomaFl0Q1Pg7IJSIiIiIiUinVBcLvv/8ew4YNQ0JCAjQaDTZt2mTVJjc3F6mpqdBqtQgLC0OPHj1w/vx5ebler8eECRMQExOD0NBQpKam4sKFC4ptFBcXIz09HVqtFlqtFunp6SgpKVG0OX/+PIYNG4bQ0FDExMRg4sSJqK6ubozDJiIiIiIisqK6QFhRUYE777wTS5cutbn8119/RZ8+fdCxY0fs3LkTP/30E1577TUEBQXJbTIyMrBx40asX78eu3fvRnl5OVJSUmA0GuU2aWlpyMnJQVZWFrKyspCTk4P09HR5udFoxNChQ1FRUYHdu3dj/fr1+Pzzz5GZmdl4B09ERERERGRGI4QQnt4JT9FoNNi4cSMeeugh+bmRI0fC398fq1evtrmOTqfDTTfdhNWrV+PRRx8F8MdMn//9738xaNAg5Obm4vbbb8e+ffvQvXt3AMC+ffvQs2dPnDx5Eh06dMDXX3+NlJQU5OfnIyEhAQCwfv16PP300ygqKnL4esDS0lJotVrodDpeQ0hERETkYUajEQaDwdO74fX8/f3h6+trdznPcd2Hk8qYMZlM2LJlC6ZOnYpBgwbhyJEjaNu2LaZNmyaHxuzsbBgMBgwcOFBeLyEhAcnJydizZw8GDRqEvXv3QqvVymEQAHr06AGtVos9e/agQ4cO2Lt3L5KTk+UwCACDBg2CXq9HdnY27rvvPrcdNxERERE1jBAChYWFVpcIkX0RERGIj4/nxDEexkBopqioCOXl5XjnnXfw97//HXPmzEFWVhaGDx+O7777Dn379kVhYSECAgIQGRmpWDcuLg6FhYUAgMLCQsTGxlptPzY2VtEmLi5OsTwyMhIBAQFyG1v0ej30er38fWlpab2Pl4iIiIhcQwqDsbGxCAkJYciphRAClZWVKCoqAgC0bNnSw3ukbgyEZkwmEwDgwQcfxEsvvQQA6NKlC/bs2YMPPvgAffv2tbuuEELxi2/rP4H6tLE0e/ZsvPnmm3UfDBERERG5hdFolMNgdHS0p3enSQgODgZwoyATGxtb6/BRalyqm1SmNjExMfDz88Ptt9+ueD4pKUmeZTQ+Ph7V1dUoLi5WtCkqKpIrfvHx8bh06ZLV9i9fvqxoY1kJLC4uhsFgsKocmps2bRp0Op38yM/Pd/5AiYiIiMhlpGsGQ0JCPLwnTYvUX7zm0rMYCM0EBATg7rvvxqlTpxTPnz59Gq1btwYAdOvWDf7+/ti2bZu8vKCgAMePH0evXr0AAD179oROp8OBAwfkNvv374dOp1O0OX78OAoKCuQ2W7duRWBgILp162Z3HwMDA+Wb0PNm9ERERETeg8NEncP+8g6qGzJaXl6OM2fOyN/n5eUhJycHUVFRaNWqFaZMmYJHH30U9957L+677z5kZWXhq6++ws6dOwEAWq0Wo0aNQmZmJqKjoxEVFYXJkyejc+fOGDBgAIAbFcXBgwdj9OjRWLZsGQBgzJgxSElJQYcOHQAAAwcOxO2334709HS8++67uHbtGiZPnozRo0cz5BERERERkVuorkJ46NAhdO3aFV27dgUATJo0CV27dsXrr78OAHj44YfxwQcfYO7cuejcuTM+/PBDfP755+jTp4+8jYULF+Khhx7CiBEj0Lt3b4SEhOCrr75SjH1eu3YtOnfujIEDB2LgwIG44447FLey8PX1xZYtWxAUFITevXtjxIgReOihhzBv3jw39QR5k1OnTmHWrFme3g0iIiIi2c6dO6HRaDhzajOn6vsQNge8R0vz0L59e5w5cwb8dSQiImp6rl+/jry8PLRt2xZBQUGe3h2X2blzJ+677z4UFxcjIiLC5duvrd94jus+qqsQEhERERER0Q0MhERegBdVExERkSfo9XpMnDgRsbGxCAoKQp8+fXDw4EFFmx9//BF33nkngoKC0L17dxw7dkxedu7cOQwbNgyRkZEIDQ1Fp06d8N///tfdh0ENwEBIRERERKRSU6dOxeeff45Vq1bh8OHDuPXWWzFo0CBcu3ZNbjNlyhTMmzcPBw8eRGxsLFJTU+VbRbzwwgvQ6/X4/vvvcezYMcyZMwctWrTw1OFQPahullEib8QKIRERUfNTWVmJkydPuv11O3bs6NA9ESsqKvD+++9j5cqVGDJkCABgxYoV2LZtGz766CPcfffdAIA33ngD999/PwBg1apVuOWWW7Bx40aMGDEC58+fxyOPPILOnTsDANq1a9dIR0WNhYGQiIiIiKgRnDx5stb7SzeW7Oxs/PnPf66z3a+//gqDwYDevXvLz/n7++Oee+5Bbm6uHAh79uwpL4+KikKHDh2Qm5sLAJg4cSKee+45bN26FQMGDMAjjzyCO+64w8VHRI2JgZDIC7BCSERE1Px07NgR2dnZHnldR0izm1uehwgh6jw3kZY/++yzGDRoELZs2YKtW7di9uzZmD9/PiZMmFCPPSdPYCAkIiIiImoEISEhDlXqPOXWW29FQEAAdu/ejbS0NACAwWDAoUOHkJGRIbfbt28fWrVqBQAoLi7G6dOnFaEzMTER48aNw7hx4zBt2jSsWLGCgbAJYSAkIiIiIlKh0NBQPPfcc5gyZQqioqLQqlUrzJ07F5WVlRg1ahR++uknAMBbb72F6OhoxMXFYfr06YiJicFDDz0EAMjIyMCQIUNw2223obi4GDt27EBSUpIHj4qcxUBI5AU4ZJSIiIg84Z133oHJZEJ6ejrKyspw11134ZtvvkFkZKSizYsvvohffvkFd955J7788ksEBAQAAIxGI1544QVcuHAB4eHhGDx4MBYuXOipw6F60Ahp8DA1SaWlpdBqtdDpdAgPD/f07lA9JSUl4eTJk+CvIxERUdNz/fp15OXloW3btggKCvL07jQZtfUbz3Hdh/chJPICUoWQgZCIiIiI3ImBkMgLcMgoEREREXkCAyGRF2GFkIiIiIjciYGQyIswEBIRERGROzEQEnkRBkIiIiIicicGQiIvwElliIiIiMgTGAiJvAADIRERERF5AgMhERERERGRSjEQEnkRVgiJiIioqZgxYwa6dOni6d2gBmIgJPIiDIRERERE5E4MhERegNcQEhEREZEnMBASeQEGQiIiIvIEk8mEOXPm4NZbb0VgYCBatWqFmTNnAgBefvll3HbbbQgJCUG7du3w2muvwWAw1Lq9jz/+GJ06dUJgYCBatmyJ8ePHu+MwqAH8PL0DRPQHBkIiIiJyp2nTpmHFihVYuHAh+vTpg4KCApw8eRIAEBYWhpUrVyIhIQHHjh3D6NGjERYWhqlTp9rc1vvvv49JkybhnXfewZAhQ6DT6fDjjz+683CoHhgIibyAVCEkIiIicpeysjIsXrwYS5cuxVNPPQUA+NOf/oQ+ffoAAF599VW5bZs2bZCZmYnPPvvMbiD8+9//jszMTLz44ovyc3fffXcjHgG5AgMhkRdhhZCIiKgZqawE/q/a5lYdOwIhIXU2y83NhV6vR//+/W0u/89//oNFixbhzJkzKC8vR01NDcLDw222LSoqwsWLF+1ui7yX6q4h/P777zFs2DAkJCRAo9Fg06ZNdtuOHTsWGo0GixYtUjyv1+sxYcIExMTEIDQ0FKmpqbhw4YKiTXFxMdLT06HVaqHVapGeno6SkhJFm/Pnz2PYsGEIDQ1FTEwMJk6ciOrqahcdKTUlvIaQiIioGTp5EujWzf0PB0NocHCw3WX79u3DyJEjMWTIEGzevBlHjhzB9OnT7Z6r1rYt8m6qqxBWVFTgzjvvxP/3//1/eOSRR+y227RpE/bv34+EhASrZRkZGfjqq6+wfv16REdHIzMzEykpKcjOzoavry8AIC0tDRcuXEBWVhYAYMyYMUhPT8dXX30FADAajRg6dChuuukm7N69G1evXsVTTz0FIQSWLFnSCEdOTQEDIRERUTPSsSOQne2Z13VA+/btERwcjG+//RbPPvusYtmPP/6I1q1bY/r06fJz586ds7utsLAwtGnTBt9++y3uu++++u03eYTqAuGQIUMwZMiQWtv8/vvvGD9+PL755hsMHTpUsUyn0+Gjjz7C6tWrMWDAAADAmjVrkJiYiO3bt2PQoEHIzc1FVlYW9u3bh+7duwMAVqxYgZ49e+LUqVPo0KEDtm7dip9//hn5+fly6Jw/fz6efvppzJw50245npo3BkIiIqJmJCQE+POfPb0XdgUFBeHll1/G1KlTERAQgN69e+Py5cs4ceIEbr31Vpw/fx7r16/H3XffjS1btmDjxo21bm/GjBkYN24cYmNjMWTIEJSVleHHH3/EhAkT3HREVB+qGzJaF5PJhPT0dEyZMgWdOnWyWp6dnQ2DwYCBAwfKzyUkJCA5ORl79uwBAOzduxdarVYOgwDQo0cPaLVaRZvk5GRFBXLQoEHQ6/XIruWTJL1ej9LSUsWDmj4OGSUiIiJPeO2115CZmYnXX38dSUlJePTRR1FUVIQHH3wQL730EsaPH48uXbpgz549eO2112rd1lNPPYVFixbhvffeQ6dOnZCSkoJffvnFTUdC9aW6CmFd5syZAz8/P0ycONHm8sLCQgQEBCAyMlLxfFxcHAoLC+U2sbGxVuvGxsYq2sTFxSmWR0ZGIiAgQG5jy+zZs/Hmm286dUxERERERLb4+Phg+vTpiqGhkrlz52Lu3LmK5zIyMuSvZ8yYgRkzZiiWjx07FmPHjm2MXaVGwgqhmezsbCxevBgrV650+jYAQgjFOrbWr08bS9OmTYNOp5Mf+fn5Tu0neSdWCImIiIjIExgIzfzwww8oKipCq1at4OfnBz8/P5w7dw6ZmZlo06YNACA+Ph7V1dUoLi5WrFtUVCRX/OLj43Hp0iWr7V++fFnRxrISWFxcDIPBYFU5NBcYGIjw8HDFg5o+BkIiIiIi8gQGQjPp6ek4evQocnJy5EdCQgKmTJmCb775BgDQrVs3+Pv7Y9u2bfJ6BQUFOH78OHr16gUA6NmzJ3Q6HQ4cOCC32b9/P3Q6naLN8ePHUVBQILfZunUrAgMD0a1bN3ccLnkhBkIiIiIicifVXUNYXl6OM2fOyN/n5eUhJycHUVFRaNWqFaKjoxXt/f39ER8fjw4dOgAAtFotRo0ahczMTERHRyMqKgqTJ09G586d5VlHk5KSMHjwYIwePRrLli0DcOO2EykpKfJ2Bg4ciNtvvx3p6el49913ce3aNUyePBmjR49m1U/FGAiJiIiIyJ1UVyE8dOgQunbtiq5duwIAJk2ahK5du+L11193eBsLFy7EQw89hBEjRqB3794ICQnBV199Jd+DEADWrl2Lzp07Y+DAgRg4cCDuuOMOrF69Wl7u6+uLLVu2ICgoCL1798aIESPw0EMPYd68ea47WGpyGAiJiIiIyJ00gmegTVppaSm0Wi10Oh0ri03Y3XffjUOHDqGoqAg33XSTp3eHiIiInHD9+nXk5eWhTZs2CA4O9vTuNBlVVVU4e/Ys2rZti6CgIMUynuO6j+oqhETeiJPKEBERNV3+/v4AgMrKSg/vSdMi9ZfUf+QZqruGkMgdTpw4gVtvvRWBgYFOrcdASERE1PT4+voiIiICRUVFAICQkBCnb2GmJkIIVFZWoqioCBEREYrLrsj9GAiJXEwIgeTkZIwZM0aeVMiZdYmIiKjpiY+PBwA5FFLdIiIi5H4jz2EgJGokhw8fdnodBkIiIqKmSaPRoGXLloiNjYXBYPD07ng9f39/Vga9BAMhkYtJoa6mpsbhdXgNIRERUfPg6+vLoENNCieVIWokRqPR4ba8zoCIiIiIPIGBkMjF6lMhtFyXiIiIiMgdGAiJGkl9KoQMhERERETkTgyERC4mhTpnAqHlukRERERE7sBASNRIWCEkIiIiIm/HQEjkYg0JdQyERERERORODISkOqWlpfUazklERERE1NwwEJLqaLVajB8/vtG2X58qH4eMEhEREZEnMBCSKm3cuLHRX6M+4Y6BkIiIiIjciYGQVKkxh4yyQkhERERETQUDIamSt11DyEBIRERERJ7AQEiq5G0VQlesS0RERETkLAZCUiVvqxASEREREXkCAyGpEiuEREREREQMhKRSNTU1jf4azoQ7XkNIRERERJ7AQEiq1JjBi7OM1m3t2rXQ6XSe3g0iIiIi1WMgJPIiagiE5eXleOKJJzBmzBhP7woRERGR6jEQEnkRNQRCH58b/+0UFRV5eE+IiIiIiIGQyMXUEOpcobq62tO7QERERKR6DISkSt4W2tR0DaF0jAaDwcN7QkRERESqC4Tff/89hg0bhoSEBGg0GmzatEleZjAY8PLLL6Nz584IDQ1FQkICnnzySVy8eFGxDb1ejwkTJiAmJgahoaFITU3FhQsXFG2Ki4uRnp4OrVYLrVaL9PR0lJSUKNqcP38ew4YNQ2hoKGJiYjBx4kRWTZoBTirjGAZCIiIiIs9TXSCsqKjAnXfeiaVLl1otq6ysxOHDh/Haa6/h8OHD2LBhA06fPo3U1FRFu4yMDGzcuBHr16/H7t27UV5ejpSUFMW97dLS0pCTk4OsrCxkZWUhJycH6enp8nKj0YihQ4eioqICu3fvxvr16/H5558jMzOz8Q6eZN4avLx1v1xJOkY1HCsRERGRt/Pz9A6425AhQzBkyBCby7RaLbZt26Z4bsmSJbjnnntw/vx5tGrVCjqdDh999BFWr16NAQMGAADWrFmDxMREbN++HYMGDUJubi6ysrKwb98+dO/eHQCwYsUK9OzZE6dOnUKHDh2wdetW/Pzzz8jPz0dCQgIAYP78+Xj66acxc+ZMhIeHN2IvUGOqT+BRY4WQiIiIiDxPdRVCZ+l0Omg0GkRERAAAsrOzYTAYMHDgQLlNQkICkpOTsWfPHgDA3r17odVq5TAIAD169IBWq1W0SU5OlsMgAAwaNAh6vR7Z2dl290ev16O0tFTxIGpKGHqJiIiIvAcDYS2uX7+OV155BWlpaXLFrrCwEAEBAYiMjFS0jYuLQ2FhodwmNjbWanuxsbGKNnFxcYrlkZGRCAgIkNvYMnv2bPm6RK1Wi8TExAYdo1p5243pXbFuU6OmYyUiIiLyVgyEdhgMBowcORImkwnvvfdene2FEPKwPwCKrxvSxtK0adOg0+nkR35+fp37Rt5PTUNG1XCMRERERE0FA6ENBoMBI0aMQF5eHrZt26a4ni8+Ph7V1dUoLi5WrFNUVCRX/OLj43Hp0iWr7V6+fFnRxrISWFxcDIPBYFU5NBcYGIjw8HDFg7wLAw8RERERNRUMhBakMPjLL79g+/btiI6OVizv1q0b/P39FZPPFBQU4Pjx4+jVqxcAoGfPntDpdDhw4IDcZv/+/dDpdIo2x48fR0FBgdxm69atCAwMRLdu3RrzEMmLqSFMquEYiYiIiJoK1c0yWl5ejjNnzsjf5+XlIScnB1FRUUhISMD/+3//D4cPH8bmzZthNBrlKl5UVBQCAgKg1WoxatQoZGZmIjo6GlFRUZg8eTI6d+4szzqalJSEwYMHY/To0Vi2bBkAYMyYMUhJSUGHDh0AAAMHDsTtt9+O9PR0vPvuu7h27RomT56M0aNHs+rXxDXktgpqCktqOlYiIiIib6W6QHjo0CHcd9998veTJk0CADz11FOYMWMGvvzySwBAly5dFOt999136NevHwBg4cKF8PPzw4gRI1BVVYX+/ftj5cqV8PX1lduvXbsWEydOlGcjTU1NVdz70NfXF1u2bMHzzz+P3r17Izg4GGlpaZg3b15jHDZ5OV5DSERERESeoLpA2K9fv1pPSB05WQ0KCsKSJUuwZMkSu22ioqKwZs2aWrfTqlUrbN68uc7Xo6aFgad2Uv/UNnkSEREREbkHryEk8iJqCpNqOlYiIiIib8VASKrijhBSn9fgkFEiIiIi8gQGQlIVhhEiIiIioj8wEBK5GGcZrZ0ajpGIiIioqWAgJFXx1jCipiGjEjUdKxEREZG3YiAkcrGGBB01hCQ1HCMRERFRU8FASKrizjDC4ENERERE3o6BkFTFW2cZdcW6TYUajpGIiIioqWAgJPICvIaQiIiIiDyBgZBUxdsrhGrA/iEiIiLyHgyERF6EYYmIiIiI3ImBkFTFWyuEahoyqoZjJCIiImoqGAhJVTjLqOexX4iIiIi8BwMhkYtxllEiIiIiaioYCElVvDVwccgoEREREXkCAyGpireHEW/fP1dS07ESEREReSsGQiIXY9CpHfuHiIiIyHswEJKqeHsY8fb9IyIiIqLmhYGQyMWkUOdMuOM1hERERETkCQyEpCoMI96D7wURERGR5zEQkqp4643pXbFuU6GGYyQiIiJqKhgIidygoKAAVVVVdperacgoEREREXkPBkJSFU9VCBMSEvDAAw/Ua93mRg3HSERERNRUMBASucnOnTvtLpMqhGrAQEhERETkPVQXCL///nsMGzYMCQkJ0Gg02LRpk2K5EAIzZsxAQkICgoOD0a9fP5w4cULRRq/XY8KECYiJiUFoaChSU1Nx4cIFRZvi4mKkp6dDq9VCq9UiPT0dJSUlijbnz5/HsGHDEBoaipiYGEycOBHV1dWNcdj0f3gNIRERERHRH1QXCCsqKnDnnXdi6dKlNpfPnTsXCxYswNKlS3Hw4EHEx8fj/vvvR1lZmdwmIyMDGzduxPr167F7926Ul5cjJSUFRqNRbpOWloacnBxkZWUhKysLOTk5SE9Pl5cbjUYMHToUFRUV2L17N9avX4/PP/8cmZmZjXfw5PWBy9v3zxXUcIxERERETYWfp3fA3YYMGYIhQ4bYXCaEwKJFizB9+nQMHz4cALBq1SrExcVh3bp1GDt2LHQ6HT766COsXr0aAwYMAACsWbMGiYmJ2L59OwYNGoTc3FxkZWVh37596N69OwBgxYoV6NmzJ06dOoUOHTpg69at+Pnnn5Gfn4+EhAQAwPz58/H0009j5syZCA8Pd0NvUGOoz30I1Yj9Q0REROR5qqsQ1iYvLw+FhYUYOHCg/FxgYCD69u2LPXv2AACys7NhMBgUbRISEpCcnCy32bt3L7RarRwGAaBHjx7QarWKNsnJyXIYBIBBgwZBr9cjOzu7UY9Tzbw9hHj7/rmCGo6RiIiIqKlQXYWwNoWFhQCAuLg4xfNxcXE4d+6c3CYgIACRkZFWbaT1CwsLERsba7X92NhYRRvL14mMjERAQIDcxha9Xg+9Xi9/X1pa6ujhkZvUJ/DwthNERERE5AmsENpgOeOjEKLOWSAt29hqX582lmbPni1PVKPVapGYmFjrfpESA5fn8T0gIiIi8h4MhGbi4+MBwKpCV1RUJFfz4uPjUV1djeLi4lrbXLp0yWr7ly9fVrSxfJ3i4mIYDAaryqG5adOmQafTyY/8/Hwnj1LdOMsoEREREdEfGAjNtG3bFvHx8di2bZv8XHV1NXbt2oVevXoBALp16wZ/f39Fm4KCAhw/flxu07NnT+h0Ohw4cEBus3//fuh0OkWb48ePo6CgQG6zdetWBAYGolu3bnb3MTAwEOHh4YoHNX1qGjKqhmMkIiIiaipUdw1heXk5zpw5I3+fl5eHnJwcREVFoVWrVsjIyMCsWbPQvn17tG/fHrNmzUJISAjS0tIAAFqtFqNGjUJmZiaio6MRFRWFyZMno3PnzvKso0lJSRg8eDBGjx6NZcuWAQDGjBmDlJQUdOjQAQAwcOBA3H777UhPT8e7776La9euYfLkyRg9ejRDXiNyZ4WwPq+lprCkpmMlIiIi8laqC4SHDh3CfffdJ38/adIkAMBTTz2FlStXYurUqaiqqsLzzz+P4uJidO/eHVu3bkVYWJi8zsKFC+Hn54cRI0agqqoK/fv3x8qVK+Hr6yu3Wbt2LSZOnCjPRpqamqq496Gvry+2bNmC559/Hr1790ZwcDDS0tIwb968xu4CVfPWEFLXNarNibe+B0RERERqpBE8O2vSSktLodVqodPpWFl0wOXLl+UZYBvrR/+3337Dn/70J8TGxsrXktY1JPTBBx/El19+ic2bN2Po0KGNsl/e4tdff8Wtt96KDh064OTJk57eHSIiIvJCPMd1H15DSKri7Z9/ePv+uYIajpGIiIioqWAgJHIxBp7asX+IiIiIvAcDIamKt4cRb98/V1LTsRIRERF5KwZCUhVvnWWUt50gIiIiIk9gICTyAmoKhERERETkPRgISVXcWSEk29g/RERERN6DgZDIizAsEREREZE7MRCSqnh7hVANgVANx0hERETUVDAQkqp4axiRriFUE299L4iIiIjUhIGQyMXqM8uo5brNmRqOkYiIiKipYCAkVfH2MOLt+0dEREREzQsDIRG5FUMvERERkfdgICRV4aQynqeGYyQiIiJqKhgISVW8NYzwxvRERERE5AkMhEQuVp9Qp6ZAqIZjJCIiImoqGAhJVdwZRhh8asf+ISIiIvI8BkIiF+M1hLVTwzESERERNRUMhKQq3h5GvH3/iIiIiKh5YSAkVfHWWUalawjVgKGXiIiIyHswEBJ5ETWFJTUdKxEREZG3YiAkVfHWCqEr1m0q1HCMRERERE0FAyGpireGETXddoKIiIiIvAcDIZGLMdTVjv1DRERE5D0YCElVvP0+hGoKS2o6ViIiIiJvxUBI5GINmWVUDSFJDcdIRERE1FQwEFqoqanBq6++irZt2yI4OBjt2rXDW2+9BZPJJLcRQmDGjBlISEhAcHAw+vXrhxMnTii2o9frMWHCBMTExCA0NBSpqam4cOGCok1xcTHS09Oh1Wqh1WqRnp6OkpISdxymajkTRkpKSrBx48ZG3Bt1kt4DNd1qg4iIiMhbMRBamDNnDj744AMsXboUubm5mDt3Lt59910sWbJEbjN37lwsWLAAS5cuxcGDBxEfH4/7778fZWVlcpuMjAxs3LgR69evx+7du1FeXo6UlBQYjUa5TVpaGnJycpCVlYWsrCzk5OQgPT3drcerNs4EwilTpmD48OFOh3TOMuoYNR0rERERkbfy8/QOeJu9e/fiwQcfxNChQwEAbdq0wT//+U8cOnQIwI2T2EWLFmH69OkYPnw4AGDVqlWIi4vDunXrMHbsWOh0Onz00UdYvXo1BgwYAABYs2YNEhMTsX37dgwaNAi5ubnIysrCvn370L17dwDAihUr0LNnT5w6dQodOnTwwNGTuYqKCgDAtWvXEBER4ZbXVENIUsMxEhERETUVrBBa6NOnD7799lucPn0aAPDTTz9h9+7deOCBBwAAeXl5KCwsxMCBA+V1AgMD0bdvX+zZswcAkJ2dDYPBoGiTkJCA5ORkuc3evXuh1WrlMAgAPXr0gFarldvYotfrUVpaqniQ45wJI/Ud0sjAQ0RERERNBSuEFl5++WXodDp07NgRvr6+MBqNmDlzJh577DEAQGFhIQAgLi5OsV5cXBzOnTsntwkICEBkZKRVG2n9wsJCxMbGWr1+bGys3MaW2bNn480336z/AZLDGnqNG2cZtU06RvPrcomIiIjIM1ghtPDZZ59hzZo1WLduHQ4fPoxVq1Zh3rx5WLVqlaKdZVgQQtQZICzb2Gpf13amTZsGnU4nP/Lz8x05LPo/7ghpvIbQMQaDwdO7QERERKR6rBBamDJlCl555RWMHDkSANC5c2ecO3cOs2fPxlNPPYX4+HgANyp8LVu2lNcrKiqSq4bx8fGorq5GcXGxokpYVFSEXr16yW0uXbpk9fqXL1+2qj6aCwwMRGBgYMMPVKW8tWrXkNtO5Ofnw9/fX/7Z9HbSMdbU1Hh4T4iIiIiIFUILlZWV8PFRdouvr688vK1t27aIj4/Htm3b5OXV1dXYtWuXHPa6desGf39/RZuCggIcP35cbtOzZ0/odDocOHBAbrN//37odDq5DXkHd1YI66NVq1aKDyeaClYIiYiIiDyPFUILw4YNw8yZM9GqVSt06tQJR44cwYIFC/DMM88AuFHJycjIwKxZs9C+fXu0b98es2bNQkhICNLS0gAAWq0Wo0aNQmZmJqKjoxEVFYXJkyejc+fO8qyjSUlJGDx4MEaPHo1ly5YBAMaMGYOUlBTOMNqI6jOpjDuvdVPDkFHpGKVAWFlZiWHDhmHlypVITEz05K4RERERqQ4DoYUlS5bgtddew/PPP4+ioiIkJCRg7NixeP311+U2U6dORVVVFZ5//nkUFxeje/fu2Lp1K8LCwuQ2CxcuhJ+fH0aMGIGqqir0798fK1euhK+vr9xm7dq1mDhxojwbaWpqKpYuXeq+gyWHuKNCKK2jhkAokQLhwYMHsWPHDixduhRz5szx8F4RERERqQsDoYWwsDAsWrQIixYtsttGo9FgxowZmDFjht02QUFBWLJkieKG9paioqKwZs2aBuwtOcud1xCqKdw5w/IaQvYTERERkefwGkJSFU/MMurI+mqsEFpOKtPQ23wQERERkfMYCInscNU1hAyESvUJzERERETUOBgISVXqM6lMfSuEDDq22esXVgiJiIiI3I+BkKgODQ12rBDWTo3HTEREROQtGAhJVTxxY3oGQiV7Q0ZZISQiIiJyPwZCUhVPTCrjrnWbOgZCIiIiIvdjICSywxOTyqgBJ5UhIiIi8h4MhKQq7qwQOrOemoaM2sMKIREREZH7MRCSqrgzENZnllI1BEI1HCMRERFRU8FASFQHd96YnoiIiIjInRgISVXqcx/Chl5D6Aw1BENeQ0hERETkPRgIiergzgqhmsMRryEkIiIicj8GQlIVT9x2goFQiRVCIiIiIu/BQEiq4olJZUiJN6YnIiIi8h4MhER1qO81hM5U/dRUIbSHgZCIiIjI/RgISVXqM6kMh4y6FoeMEhEREXkPBkKiOnDIqHuwv4iIiIjcj4GQVMUdFcL6vCYrhERERETkCQyEpCqemGXUmXXUHI5YISQiIiJyPwZCIjvqe2N6VsBqx/4hIiIi8h4MhKQqvA8hEREREdEfGAiJ6uCOkKamQKiGYyQiIiJqKhgISVW8tUJY39dqDjgrKxEREZHnMBCSqtQncLnjGkI1BUF7x8pASEREROR+DIREdjT0xvTOBBw1DRm1pMZjJiIiIvIWDIQ2/P7773jiiScQHR2NkJAQdOnSBdnZ2fJyIQRmzJiBhIQEBAcHo1+/fjhx4oRiG3q9HhMmTEBMTAxCQ0ORmpqKCxcuKNoUFxcjPT0dWq0WWq0W6enpKCkpccchqpY7hoxarscho0qsEBIRERF5DwZCC8XFxejduzf8/f3x9ddf4+eff8b8+fMREREht5k7dy4WLFiApUuX4uDBg4iPj8f999+PsrIyuU1GRgY2btyI9evXY/fu3SgvL0dKSgqMRqPcJi0tDTk5OcjKykJWVhZycnKQnp7uzsMlB7jzPoRqwNtOEBEREXkPP0/vgLeZM2cOEhMT8cknn8jPtWnTRv5aCIFFixZh+vTpGD58OABg1apViIuLw7p16zB27FjodDp89NFHWL16NQYMGAAAWLNmDRITE7F9+3YMGjQIubm5yMrKwr59+9C9e3cAwIoVK9CzZ0+cOnUKHTp0cN9Bq4g7J5Wpz5BTNYYjTipDRERE5DmsEFr48ssvcdddd+Gvf/0rYmNj0bVrV6xYsUJenpeXh8LCQgwcOFB+LjAwEH379sWePXsAANnZ2TAYDIo2CQkJSE5Oltvs3bsXWq1WDoMA0KNHD2i1WrmNLXq9HqWlpYoHOc6ZwOXOG9Or6RpC82MUQqjimImIiIi8FQOhhd9++w3vv/8+2rdvj2+++Qbjxo3DxIkT8emnnwIACgsLAQBxcXGK9eLi4uRlhYWFCAgIQGRkZK1tYmNjrV4/NjZWbmPL7Nmz5WsOtVotEhMT63+w5BDeh7DxCCHkwM0KIREREZH7MRBaMJlM+POf/4xZs2aha9euGDt2LEaPHo33339f0c7y5FUIUecJrWUbW+3r2s60adOg0+nkR35+viOHRf/H2+9DqAaWFUIGQiIiIiLPYSC00LJlS9x+++2K55KSknD+/HkAQHx8PABYVfGKiorkqmF8fDyqq6tRXFxca5tLly5Zvf7ly5etqo/mAgMDER4erniQ4+ozZNQdgVDNFUK1HTMRERGRN2EgtNC7d2+cOnVK8dzp06fRunVrAEDbtm0RHx+Pbdu2ycurq6uxa9cu9OrVCwDQrVs3+Pv7K9oUFBTg+PHjcpuePXtCp9PhwIEDcpv9+/dDp9PJbciz6nsNYX2oKRDaqxASERERkftxllELL730Enr16oVZs2ZhxIgROHDgAJYvX47ly5cDuBESMjIyMGvWLLRv3x7t27fHrFmzEBISgrS0NACAVqvFqFGjkJmZiejoaERFRWHy5Mno3LmzPOtoUlISBg8ejNGjR2PZsmUAgDFjxiAlJYUzjDYiDhn1LiaTSb4Vi48PP58iIiIicjcGQgt33303Nm7ciGnTpuGtt95C27ZtsWjRIjz++ONym6lTp6KqqgrPP/88iouL0b17d2zduhVhYWFym4ULF8LPzw8jRoxAVVUV+vfvj5UrV8LX11dus3btWkycOFGejTQ1NRVLly5138GqnCPXfUrtnN2us+uruUI4btw4AFD8bhARERGRezAQ2pCSkoKUlBS7yzUaDWbMmIEZM2bYbRMUFIQlS5ZgyZIldttERUVhzZo1DdlVcpJlGHFHIHRmHTUEQnNCCPnWKawQEhEREbkfz8BIVcwDl6PXrjU0pDVGyPvss89QXV3t8u26g2UolzAQEhEREbkfz8BIteoKaq66Mb0z6ziybnZ2NkaOHIl58+Y5/TrewF4gJCIiIiL3YyAkVXFHhbCxryGsrKwEAKvbmjRF5u8BwyERERGR+zEQkqq4MxDW5z6GjdXWm9irEDbV4yEiIiJqyhgISVXceQ1hY4U7RybCaSoYCImIiIg8i4GQVMWZAOKqawjVUPVzhuV78PDDD1s9T0RERETuwUBIquKtQ0bVfNsJtR47ERERkTdgICRV8cSkMo21TlNl+R4wEBIRERF5DgMhqYq334dQbaGIFUIiIiIiz2IgJFXx1msI6xOKmmqAsnwPpO+d7WciIiIiajgGQlIVZyqE9bltRH3am6/jyLr13S9vxAohERERkWcxEJKqmIfAugKhq4KKq4NOU7/thL0KIQMhERERkfsxEJKqODNktL5BpbErhM0JJ5UhIiIi8iwGQlIVZ4aMuioQ8rYTSqwQEhEREXkPBkJSlfoEwvpOKtOcrvVzJQZCIiIiIu/BQEiq4o4Koa3XcrStGmYZNcdASERERORZDISkKo1xDWFWVhb27dtnd7uuHjLa1G/PwAohERERkffw8/QOELlTY1QIhwwZYrN9Yw0ZbeqB0BwnlSEiIiLyLFYISVXceQ1hfdZpSIWwqQQqywqhdDxNZf+JiIiImhMGQlIVd9x2orbXdEVbe4GwKVYOOWSUiIiIyLMYCElVmsNtJ5pbhZCBkIiIiMhzGAhJVTwRCF29jr0hlk29QtgU95+IiIioqWMgJFXx1gqhM21ZISQiIiIiV2EgJFVx5hpCiTsqV64YMtoUK2ycZZSIiIjIsxgI6zB79mxoNBpkZGTIzwkhMGPGDCQkJCA4OBj9+vXDiRMnFOvp9XpMmDABMTExCA0NRWpqKi5cuKBoU1xcjPT0dGi1Wmi1WqSnp6OkpMQNR6Ve3lohrM+Q0YZsw5NYISQiIiLyHgyEtTh48CCWL1+OO+64Q/H83LlzsWDBAixduhQHDx5EfHw87r//fpSVlcltMjIysHHjRqxfvx67d+9GeXk5UlJSYDQa5TZpaWnIyclBVlYWsrKykJOTg/T0dLcdnxp5ayB0pq23X0N48eJF/Pzzz3aXMxASEREReQ8GQjvKy8vx+OOPY8WKFYiMjJSfF0Jg0aJFmD59OoYPH47k5GSsWrUKlZWVWLduHQBAp9Pho48+wvz58zFgwAB07doVa9aswbFjx7B9+3YAQG5uLrKysvDhhx+iZ8+e6NmzJ1asWIHNmzfj1KlTHjlmNTAPTe667YQjmtMso23atEGnTp0castASERERORZDIR2vPDCCxg6dCgGDBigeD4vLw+FhYUYOHCg/FxgYCD69u2LPXv2AACys7NhMBgUbRISEpCcnCy32bt3L7RaLbp37y636dGjB7RardyGXM8TN6Z39W0n7LX1lgqhwWCodTkrhERERETew8/TO+CN1q9fj8OHD+PgwYNWywoLCwEAcXFxiufj4uJw7tw5uU1AQICisii1kdYvLCxEbGys1fZjY2PlNrbo9Xro9Xr5+9LSUgePigDvHzLqCG+vENbF8j1gICQiIiLyHFYILeTn5+PFF1/EmjVrEBQUZLedRqNRfC+EsHrOkmUbW+3r2s7s2bPlSWi0Wi0SExNrfU1ScmcgrOvnob6v5e3XENaFFUIiIiIi78FAaCE7OxtFRUXo1q0b/Pz84Ofnh127duEf//gH/Pz85MqgZRWvqKhIXhYfH4/q6moUFxfX2ubSpUtWr3/58mWr6qO5adOmQafTyY/8/PwGHa/aOHPbiYYGFVcMA7WlOVUIGQiJiIiIPIuB0EL//v1x7Ngx5OTkyI+77roLjz/+OHJyctCuXTvEx8dj27Zt8jrV1dXYtWsXevXqBQDo1q0b/P39FW0KCgpw/PhxuU3Pnj2h0+lw4MABuc3+/fuh0+nkNrYEBgYiPDxc8SDHNYcho95+DWFdLCf2YSAkIiIi8hxeQ2ghLCwMycnJiudCQ0MRHR0tP5+RkYFZs2ahffv2aN++PWbNmoWQkBCkpaUBALRaLUaNGoXMzExER0cjKioKkydPRufOneVJapKSkjB48GCMHj0ay5YtAwCMGTMGKSkp6NChgxuPWF08MamMM+s05J6FTSUQWlYI7Q2BJSIiIqLGx0BYD1OnTkVVVRWef/55FBcXo3v37ti6dSvCwsLkNgsXLoSfnx9GjBiBqqoq9O/fHytXroSvr6/cZu3atZg4caI8G2lqaiqWLl3q9uNRE3cMGbVcz133IWwqgcrepDJNJdASERERNScMhA7YuXOn4nuNRoMZM2ZgxowZdtcJCgrCkiVLsGTJErttoqKisGbNGhftJTnCHUNG66M+odE8TEnfNwUcMkpERETkPXgNIamKO68hbKxJZexVOZtKoOKkMkRERETeg4GQVMWd1xC6e8hoU6kQ2guETWX/iYiIiJoTBkJSlfpU1Bo6y6gz6zhbTWyKFUJ7Q0YrKys9tUtEREREqsVASKrizmsIba1vb1v1qSJaBsKmUmGzN6lMaWmpp3aJiIiISLUYCElVPH0NYV2B0Nkho02xQmhvyKjBYPDULhERERGpFgMhqYqn70NY1z0EGzJktKlUCO0NGTUajZ7aJSIiIiLVYiAkVXHHfQhrW78xh4x6W4XQkWNlICQiIiLyLAZCUhXz6lR9hoxWV1fj/vvvx6lTpxxez5HQVp8Kobffh9De/jgaCE+dOoW8vLzG20EiIiIiYiAkdXEmQNkKaRcvXsT27dsxffp0h17D1ve1rePMNYSWgdDbKoQ1NTU2n7cM5fYCYceOHdGuXbvG20EiIiIiYiAkdWnokFF/f38AgF6vd3g9ZyqEjmgqFUJ7Q0A5ZJSIiIjIezAQkqrUp0LozDBTy9ewXMeVQ0aNRmOTrBAyEBIRERF5DwZCUpWGDhl1JLhZtnEkELpiyKg7KoQ6nQ4lJSUOtbUX8Cz7Q/reXoAkIiIiosbj5+kdIHIndwRCd04qY2sbjSkiIkKxD7XhkFEiIiIi78cKIamKEAI+Pj7y13W1tWznSCWvtqCmpmsI1ThktKysDBqNBt99952nd4WIiIjIIQyEpCpCCPj6+gJo2DWE3jhk1NuuIXRkyGhts4w2RRcuXAAAfPrppx7eEyIiIiLHMBCSqphXCBsyZNSZ9RprUhmTyeT0hDfupMYKIREREVFTw0BIqmJeIawrfDV0Uhnz17T1tb02dTEPUI6ETU9x9BpC6RjcEQjz8/NRVVXV6K/jbe8FERERkT0MhKQqzgwZtTWM05nbTtib/MUWZyqE5kNGXVUhFELg66+/dmmQceTG9O4OhK1atcJf//rXRtu+RqNptG0TERERNQYGQlIVVw0ZdfU1hJ4eMvrVV1/hgQcewIYNG+q9DUveWCEEgG3btrnldYiIiIiaAgZCUhWj0Qh/f38AjXdj+oYMGXU2ELpqUpni4mIAwKVLl+q9DUuOBELzUOuuQFhdXe2W1yEiIiJqChgISVXMA6ErriG0tY2GVAgd0RhDRqWqqStDWW1DRs1v/WEymeDv789JZeqwZs0adOrUydO7QURERM0Mb0xPqmIymVx6DaGrA6Gnhoz6+d34r8CVoay2CqGvr69c4ZQCob0A2ZQ05kyvL774Iq5du9Zo2yciIiJ1YoWQVMVoNMLX1xcajcYl1xDaCnCWzzXmkFFXBUIpJLujQmh+HWdzqxA6E+ydxQlriIiIqDEwEJKqSBVCHx8fh4eM1nZjelshrLGHjDbGbScaIxDWdmP65hoIG/MYGAiJiIioMTAQkqoYjUb4+PjAx8fHJTemd9WQUWcqhI1xDaEnhowCfxwDA6HjeI9DIiIiciUGQguzZ8/G3XffjbCwMMTGxuKhhx7CqVOnFG2EEJgxYwYSEhIQHByMfv364cSJE4o2er0eEyZMQExMDEJDQ5GamooLFy4o2hQXFyM9PR1arRZarRbp6ekoKSlp7ENUNalC6Koho7VVCG19763XELp7yKj0es2tQtiY1xBKFcLm0E9ERETkPRgILezatQsvvPAC9u3bh23btqGmpgYDBw5ERUWF3Gbu3LlYsGABli5dioMHDyI+Ph73338/ysrK5DYZGRnYuHEj1q9fj927d6O8vBwpKSmKk7m0tDTk5OQgKysLWVlZyMnJQXp6uluPV22cqRA6MqmMrW1YrudM1c8R9m474YpZRl0xsUtdwcVyyKgQotkEQncMGTUYDI32GkRERKQ+nGXUQlZWluL7Tz75BLGxscjOzsa9994LIQQWLVqE6dOnY/jw4QCAVatWIS4uDuvWrcPYsWOh0+nw0UcfYfXq1RgwYACAG1PGJyYmYvv27Rg0aBByc3ORlZWFffv2oXv37gCAFStWoGfPnjh16hQ6dOjg3gNXifpcQ1jf207Y+r6uSWgaMmTUFUMJXVHh0mg0EEK4rEIohGgy18+5IxA2h9lYiYiIyHuwQlgHnU4HAIiKigIA5OXlobCwEAMHDpTbBAYGom/fvtizZw8AIDs7GwaDQdEmISEBycnJcpu9e/dCq9XKYRAAevToAa1WK7exRa/Xo7S0VPEgx0kVQmeGjNY2LNMVQ0adDYSNMWRUCjKOBhq9Xm93WV33NHR2ltGvv/7aoX1qDEePHsWMGTMcbt+Ys4xKWCEkIiIiV2IgrIUQApMmTUKfPn2QnJwMACgsLAQAxMXFKdrGxcXJywoLCxEQEIDIyMha28TGxlq9ZmxsrNzGltmzZ8vXHGq1WiQmJtb/AFXIvELo6msI7T1XV+CrbyC0nGXUFYHQ0epTbe3qqmRZ3gtSCoRSOLR09epVh/apMdx555148803cf36dYfac8goERERNTUMhLUYP348jh49in/+859WyyyHsDkyrM2yja32dW1n2rRp0Ol08iM/P7+uwyAz5tcQ1hW+aruGsLZlloGwrgqhs0GuMWYZldZ1NNDUFggdqRDaGjJqbx1pew3VkKpdeXm5Q+04ZJSIiIiaGgZCOyZMmIAvv/wS3333HW655Rb5+fj4eACwquIVFRXJVcP4+HhUV1ejuLi41jaXLl2yet3Lly9bVR/NBQYGIjw8XPEgxzVmhdDecEFnAmFDhow2JPA4O2S0tipVXZPK2Bsyam8dV10/2JDAXNsQWXOsEBIREVFTw0BoQQiB8ePHY8OGDdixYwfatm2rWN62bVvEx8dj27Zt8nPV1dXYtWsXevXqBQDo1q0b/P39FW0KCgpw/PhxuU3Pnj2h0+lw4MABuc3+/fuh0+nkNuR6Db2G0DIIOjJktCldQ+iKIaN1zVhqPmTUkUDYokULh/apLg0JzI4OGTX/UMDVlTwGQiIiImoMnGXUwgsvvIB169bhiy++QFhYmFwJ1Gq1CA4OhkajQUZGBmbNmoX27dujffv2mDVrFkJCQpCWlia3HTVqFDIzMxEdHY2oqChMnjwZnTt3lmcdTUpKwuDBgzF69GgsW7YMADBmzBikpKRwhtFG5OoKoXmAsRcS6wp8DRky6qrbTrhyyKgzFULpdWsLhFJ4bKiGVO+crRCuWbMGa9ascenkMhwySkRERI2BgdDC+++/DwDo16+f4vlPPvkETz/9NABg6tSpqKqqwvPPP4/i4mJ0794dW7duRVhYmNx+4cKF8PPzw4gRI1BVVYX+/ftj5cqVipPbtWvXYuLEifJspKmpqVi6dGnjHqDKufoawroCoeX3jTlk1J2zjDoSSuy1qampQUBAgKKN9L2t13dVRawhgdAbJpWRsEJIRERErsRAaMGRE3KNRoMZM2bUOh19UFAQlixZgiVLlthtExUVhTVr1tRnN6meGlohlE74nakQ1vU69b0PoeUso+68hrAhFcKamhqriqCtCqGvry+MRqPLApA7riF0xX0c7eGQUSIiImoMvIaQVKWh1xBKgcVW6LEVIJ0dMupIqJNe01tnGa2rjcFgsKoI2guEUntXcOeQ0cbAIaNERETUGBgISVVcVSG09b29mUddfduJugJhbm4uunTpgqqqKqe36YpJZeoKl85UCAHXBULzvvrll1+cWrepDRm1/NkgIiIisoeBkFTFmWsIbQVCKQjVViG0rCjWFQjNT/AdqRBK+2AvEC5atAg//fQTTp06Vee2zPcTuDFjriPcEQiliWcc3ae6mG/b0fsKSuo7ZNSVAdGZIaP+/v7yBFa2HDp0CH/6058cPi4iIiJqvhgISVVMJpPDQ0alE+/aAqF5MLIVCGtqauoMhNI2/Pz8nB4yams4qrRvzlxTKO2jKwOhI5PKWAZC83Wk/W+MCqH0+o6qb4XQldf7Se+rI9cdm0wmfPfdd3aXL168GL/99hvOnTtnc/m5c+ewefPm+u0oERERNSkMhKQqBoMB/v7+Dg0ZtRUIaxsyaqsyZjQabQ4rNSeFICkU1aUxriF0pEJoKxjb4kyF0PLYLfsOaJxrCJ292X19ryFsjAlgPv744wZvIzQ0FABQUVFhc/mkSZMwbNgwtwyBJSIiIs9iICRVMQ+EdVXQzIdmWj5na8iorYpWTU1NnUNCzW+94MgJuNTecjhqYwdC832rLeg4UiH08/NTbNNWIJS20xgVQlv9vGzZMly9elX+3vy9qu+QUVcNdwX+GEJr+Xoffvih08FN6n9779HRo0cBANeuXXNyL91Hr9djw4YNnt4NIiKiJo+BkFTFVRVCW1UwW0HIaDTaHAZpTloeGhrqUPBwtEJYnyGjtVX+LI+rrm3Za2MwGODn5weNRiO3sXUfQlcHQvNtWx5nWVkZxo0bh/T0dJvt6ztk1JWB0Nb7+cUXX2D06NFYvXq1U9uSAqG9/dNqtQCAoqIiJ/fSff7+97/jkUcecepaWSIiIrLGQEiqUl1djYCAgDqvIRRCWN1zEFBW58z/BZQBxvzG63XN3NmQQGirQlmf+9U5MjzT/DjsHZMjw0qlCqFGo5GPNzg4WLEfgHsDoRT4CgsL5efMw1J9h4y6MhDa6k9pcpzKykqntiXN4GpvJtqIiAgAwOXLl53arjtJYdWZ2XSJiIjIGgMhqYqjFUJ7VT3LIGgvwJgHnLqClPRcSEiIQwHCfCir5fBU4I9A6EwYcSR8ORII6xqWKa0rvQf2AqH5/RvrOg6TyeTQ0Mba9k3aD3vDYm1VCO+77z507dpV8Zxl/7nyGkKpj+644w75OcsPARwlBUJ7lc/o6GgAQH5+vtWy//znP9i2bZtTr0dERETei4GQVMXRawhtzR5q/ryt+/ZJ26upqUFQUJDczryNrYAgPdeiRQunK4Tm27Nc15lA6Mh9CGsLhKWlpbj99tsVw/dqC4RShVAKJJaB0LzP6wpV77zzDqKjo+tsV1uFUOore4HQ1vuyc+dO5OTk2NyO5Pfff691n5whbVvqK8C5YcHmpCGjVVVVmDx5Mj744APFcqnCbX5NpeSvf/0rBg4cWK/XdaX6zKZLRERE1hgISVUcrRDamwjG0QqhFAgth4zaCi0NGTJqK7R4YsjowYMHkZubqwgW9sKldA1hYGAgysrKADQsEO7cuRMA5G3ZYyvYS6S+M3/e/L1wdMioZbu//OUvDq3nCKkfzF/DkQqhrWBuXiGcP38+nnvuOcVyKXyWlpY2bKfdgDOhEhERNQwDIamKFAjruobQ3r0BHb2G0JkKobOB0HwfbFUXpZN9Z26+3tAho7bWt3eiXlVVheDgYAQHB0On0wGwDoSOzmgK/DFDaV2BsLYKodR35hVO8/fC0UllLCuEtn7GPvjgA/ztb39zaHu2tm3+GnUFwt9++w1+fn5yaJZIM5bau/4uNzcXgDIQXrx40e59Cz1BOmZHwzoRERHZxkBIquLokFEphAQEBDgdCM2HjEq3naitateQCqEUDsLCwuR1pRkiL168WOe2LLfpzCyjmzdvlq8lszVLaU1NDd59912cOHFCsZ3r16/XGQidqRDWFW4ktVUIbQ2vrU+F0LKi9sQTT1i1ee655zB79myHtmeuuroaPj4+NgPhuHHj5OfMj/Ott94CAKub1Et9aivoHj9+HMeOHQOgPJ6bb74Zbdq0cXq/GxsDIVBQUODVM8ISEZF3YyAkVZFmGXV0UhnLQOjskFGpQigFntoCYUhISL2HjJqHSek5ezcdt0Vax5kK4bBhw+RryexVCKdOnYp7771XsZ2qqioEBQXZDIS27v1YVyCUwnZdVTxHKoTAHyFLei4oKMjhCuGVK1dw8803232dhqiurlYEf8B2yDVfvmrVKpv7IfWprYqf+XWDxcXFLtjzxnXy5EmXbOfKlSvYvHmzS7bVWJ566ilMmTLF6vk77rgDcXFxHtgjIiJqDhgISVUcve2EdFIdGBhY66Qytqo1lhXCmpoahISEWLW3fK3w8HCHJoKxDITS9XiWgdCZIaP1CYTmpP22dU2jFPoktoaMSv1jq1/r6hNXVAjNQ5S0HfOKq6NVKJ1Oh5tuuslqW65gMBjQokULu7fDkPrSkdeU1luwYIHVMvPhp958Y3rpfX/hhRdQUlLS4O098MADGDZsWL0nqTl16pRLbzNiy6effop58+ZZPX/lypVGfV0iImreGAhJVSorKxEcHFxnhVA6qQ4NDVWcIFrensC8cmQ+MYszFULpHnKRkZFOXUMoBUJ/f38EBQXJ60onpc5UCKV16jvLqNRfhw4dkp+Trumz7Ofr16/LFUKpGtWiRQsAf/SheT/Y6jOdTodPPvkEQgiXVAjNT+SlIG0e1Gt7Xz7++GP569LSUkUgdPb+gPZIP0eW+2L+tVTNs9UPUniS2Gpz5MgRAMpAaR40zI+rvq5cuYItW7Y43P6ZZ57BqFGjbC4zPyZXBKJff/0VQP2GoNbU1KBjx46YPHlyg/eDiIjI3RgISVWqqqoQEhJS5zWE0klxWFiYIpBIz9sKhFI7nU6HqKgoADeChsFgkCtgdQVCg8FQa1CV9kHa/+rqavj7+ze4QmirwmeptkAo9cPp06cB3BhmKV1/Zt7PQghFhVA6kZfChmUg9PPzs7lPM2fOxDPPPIMzZ87IgfDJJ5+s9RgdHTJqKxDWFjY3bNggf91YFULp9bVard0KoRTAzV9T+rkzr/rp9XqsWLHC6jWGDx8O4I8PEp588kkUFhbKy6VbUUj+/e9/O30caWlpSElJqfNnXPLJJ58oArc582NyJBAKIfDZZ5/Z/dBDuhVHp06drCYoEkLgo48+slsBlCqU5h+IEBERNRUMhKQaBoNBrtb5+PjUOl29dFIdGxurCFaWgdDWTJTFxcVo27YtgBsBoaSkRA4J9gKhr6+vPBlMXSGiqqoKYWFh8tfuCoS1zSBqWVUJCQmxecuCyspK1NTUQKvVylVTrVarqKiab69FixY290lafvXqVTkYXLhwoZYjdHzIqGUgrGvIqHmlqrS0FLGxsfL3tb2Xly9frnV/zZkHQnuzn0r7bf6cFMbffvtt+XnLCWYkUiCSAmH37t1RVFQk/2xYVhlHjBiBmpoa3HvvvTh8+LBDxyG9R5bDiOvDvB8c6cudO3di5MiR+PDDD20ul2ar/e2337B3717Fsh9//BHPPvss/vGPf9hcV6rOSjP81uXXX3/FHXfc4ZJ+MOfKIcrU/FRUVGDHjh2e3g0i8kIMhKQa0slScHAwWrRoUWtgktrGxcUpgk1tFcKqqipUVVVBr9fjT3/6E4AbgeXq1ato2bKlVXtJZWUlQkJCEB4eDqDu2ydUVVUhOjoaAFBYWIiwsDBFIJReoz6TytQ2ZNT8ZNO83YULF2wGQlsnu9KJc2RkJEJDQwHcqA5KJ9KOBkKp8lVcXCxvZ+jQobUdoqK6Y6/CCfzRb3VVCKUA/9VXX8n7rdPpEB0djQsXLmDixIm1nqA/8sgjte6vOWk74eHhMBqNNj+QkH6epbZarVbx+lK1z15oMQ+EPj4+SEpKAnAjIAG2h79evnwZP/zwA1555RWHjkN6bSnAZWVlQaPR1GvyGvP3xJFAKL2v9tpKxw9Y3+ze/AMIW6RrLR0NhKtWrcKxY8fw448/2ly+ceNGvPDCC/L3NTU1Nm8tsmfPHsXPdcuWLZ26/yipy5QpU9C/f3/F7XWIiAAGQlIR80AYHR1d6zAze4FQOgm1FQivX78un9jGxcWhRYsWuHbtGq5du4aWLVsiODjY5uQXUiCUqn6OBEKp4vj7779Dq9UiMDBQ3hdp311dITQPmObtSktLrQJhVFQUCgoKrNqbB0IpNJ8/f14+GbecKdNeIJSqi1evXrW6/6I95vtoGQjN+6q8vBzfffcd5s6dCwCIiIiwGezMt2d+377w8HDcfPPNCAkJqTUQOjpsElBWCAHbN6m3rBBGRkYqtiH9XNn7uZB+pisrKxEaGirfYiI/P19ez/I6Qul349y5cw5dLyntd05ODgDgn//8p+I1zNU1uYuzgVBqb6/fpQohYN1H0rr2PjCRfq537drl0KyngYGBAOxX9IYPH4733nsPr7zyCkwmk+J3SVrv5MmT6N27N95++235eZ1Opxjm21iEEHj44Yfln3tqHAsXLsSuXbvsLq+oqMD48eNhMplw7tw55OXl1bq948ePAwC+//57h15/x44d0Gg0jXb/0UGDBuH1119v0DauX7/e6JM52VNeXo4ePXrU2e9ETQEDITUJxcXFePXVVxv0H790n66YmBjExMQ4FQilk1NbQ0aloXTmgTAyMhJRUVFyhTA6OhpRUVE2Z210NhBWVlZaBcKIiAj5taUT8/pMKmM0Gu2eiEvbCwwMVGxbp9NZBULL/pX6Xrq/XWRkJG655Rb5tbVaLQICAuQT37oCoWTZsmXyyXpd/Wa+j5ZDXi0D4V/+8hccOHAAABAdHW3zmjLz7VVWVsJgMKCqqkqu9AYHB1ud8JsfS7t27WrdX3PmVT/zY9Hr9bjjjjsUxyC1la5jlUjHIIU48woUcCOYAzeuh9NqtfLPY3l5OYxGI/R6vXxsEukDjtOnT2PQoEHy89XV1Vi+fLlV+JJ+bh599FEAwJdffgnAduXNPFhJ7c05Gwil47f3821eIbQc7iwd59q1a22GOPPf66SkpFpnPc3JycGrr74KAHXeO3DOnDn49NNPrY7v8uXLWLx4MQDg73//u2JZbdssKipyya1Qzp49i02bNuH222+v1/o6na7OD0R++eUX/Pzzz3aXe/P9J4uKiuQPPeqroqICkyZNQr9+/XD9+nWbH7g89thj+N///V8kJSWhTZs2aNeuXa2XQkjbWLduHQ4fPmyzDysrK7Fu3TrU1NSgf//+ANAo9x/dtWsXtm7dirfffhvfffcdNBoNVq9e7dQ25s+fj+DgYPkDFncbM2YM9u/fj3bt2kEIgZ07d0Kj0cjXaH/zzTcYPXq0y15vwoQJVrdxqq9//vOf+Oqrr2pto9PpcO7cOa/+XSPXYSCkJmHu3LmYOXNmg/7ISp9ytm7dGjExMbWeRJoHwpqaGvnkUzrxq6iogBBCcd85y0DYtm1bnDlzBteuXUNUVJQcEC1JgVCq6NgblgbcOJmtqKiQ7zl24cIFaLVa3HTTTfLx1FUJssU8qNTU1KC0tBSXLl1StJFO5uPj4xXDQW0FQvPr6IA/TtililBcXBzGjBmDhx9+GLt27YKPjw9at25tNTwxLCzM5ocA0vtz8eJF+T2xdc2iudoqhGVlZYiPjwdg3W8RERFWz5WUlCiCxdmzZ+XXl0KbrUBoPjTSmevHpG1LIU/6eSwvL0d4eDiCgoLk90daZi8QXr58GWFhYZgzZ468rE2bNtDr9Vi2bBmuXLmCmJgYRSCUtv23v/0NrVu3ltczP6HYvXu3/PWaNWswduxYqxMO834vKSmRg5NlO71erwgb//rXv2A0GhEaGoo33ngDgHIIa12B8PLly3jmmWcAAF988YXNMGK+b5Y/S9L7VlBQgLfeestqXcshr0ePHrW7L9IHDQAwfvx4myf65uG0oqLC6v+E1q1b44MPPrC5fcvfW4lOp0NcXBzS09NhNBqxePHiel9z6MiHTRkZGdi/f7/V80ajEREREXjuuefQuXNn5Obm4vfff7cKsrfddhs6depkc9slJSUICgrCmjVr6rX/tlRXVyM8PNypWXDtiYuLQ9euXZ1ax2QyYcWKFXj00Udx6tQpnDlzRl4WHBwsD403Z/7/oORf//oXvv76a6xYsQIajUYx6ZX0e7Jz505069YNQUFBmDNnjqKq/Morr+Dxxx9XVMwBYN++fRg1apRTIxtq8/nnn8tf/+UvfwFwYyIrR0YGfP311xBCKGb1dfX1uJYuXrxoNZGW+fdPPPEE7rvvPgA3guLVq1cxePBgfPjhh8jMzKx121euXMGkSZNq/fDz6tWrWLp0KX744Qd5RmTgxqUAZWVlTr0vq1atQlpaGlJTU63+FpaUlMhDiiMiItCmTRsEBQXV+kEDNQ8MhNQkSNUmZ6pels6dOwd/f3+0bNkSrVu3xsWLF+1+ki9N1iJV4qQTssLCQrRt2xbV1dWorKxEQUGBXOkpLy+XtycFwi+++ALV1dXQaDR2A2FhYSGio6Pl6wwth4eZu3btGgwGA5KTk+V1IyIiFIFQ+sPoTCA0Pymtrq7G3XffLQckSXl5Ofz8/BAVFYXff/9dfr6kpEQRtqKiohQ3Zwf+eP9uvvlmJCUlISIiAn5+ftiwYYP8iWe7du3wyy+/ALhRcfL390e7du3s3nYCuPEHy/K47SkuLoaPjw8iIiKsTvjLy8sRHR0Nf39/lJaWolWrVvKysLAwqwqhdNItBd9HH31Ufn2pihYZGYnS0lLF/ksVj9tuu02xD998843iBMmS9GFG9+7dAQDvvfceTCYTiouL5YlmpGqbdGItfaqfmJgI4I9AeOnSJcTFxcnXYQLAZ599BgAYN24cLl26hOjoaAQEBMDPzw9lZWVy4Ln55psV+zlz5kz5a/OTdynEm/+8CyEUwUn6cAC4MTSuVatWmDVrFtauXYuePXta9cGtt96KyspKOZBdu3YNvXv3RsuWLRUnvdLrv/fee3Lfnz17Vl6Wk5NjsxJhfpJl+fNh/jtZV4UQuFFtvX79OsaPH2/1O2/+c2oymRAaGoo777xTfs6ySn/mzBl5G/fcc4/Va1u6dOkS9uzZg1OnTin6W7pecf369Rg3bhwyMjIQEhJS5+y8EvN9Mp/ASaPRYMGCBfjHP/6B77//HkajEdeuXcPixYuRnp5utR3pQ5/ly5fj+PHjGDlyJG655RYkJCSgffv2ePHFFxV9NnHiREV1d9myZfKQR1vbt+fixYtYtmwZ3nvvPfz3v/+1Wn7s2DGUlZVh6tSpeOaZZ2oNy1euXJH3qaKiwmoSIsnJkycxa9Ysh07Wd+/ejTFjxuBf//oXOnbsiC5duli1sdwn6YNB8//r09LS8MADD2DMmDEAblyr/MYbb+Dnn3+WRwGYe+WVV9CyZUv8/vvvuHTpEpYsWWK1XwDQs2dPfPzxx/D19cW+fftsHsO1a9fQtWtXqyGUb775JnJyclBRUYGLFy/CYDBYvY5k0aJFWLp0KTQaDTQaDX766SdkZ2fL21y4cCEeeOABeWSO9Hdz+PDh8jq2hqBb7qf083z27FlUV1fjwoULOHLkCL755hsAN4Kn9MEvcOP/vhEjRsj/N8ydO1eeVAu4UXU1FxMTI3+9YMECed80Gg369u2LmpoaeebipKQkLFy4EAEBASgqKpI/1Dt16hSWLFkCIQSefvppeXu33norSktLYTQa0bJlS4SHh8PX17fO+8b+9NNP6Nq1q2Jb/v7+2LNnj3ypQGRkJDp27Gh1zXJ9789KTYigJk2n0wkAQqfTeXpXGtXIkSMFALFhw4Z6b2PKlCmiXbt2Qggh9uzZIwCI/v3722z7yiuviMTERHH06FEBQPz444/CZDKJwMBAMXToUAFAnDt3TvTp00c88cQTIioqSrz11lti0qRJAoC4fv26mDlzpgAgAIipU6eKcePGifbt21u9VocOHcRzzz0nhBBye3uOHTsmAIjdu3fLbV966SWxcuVKAUCUlpaKxMREERAQIKKiohzum+TkZHHbbbcJACIvL8/mfrz66qsiISFB3HvvvaJHjx5ym/fee0+MGzdO/h6A+M9//qP4Xjq+gIAA8cADD9jchxkzZggAYvXq1QKAiIqKEqNGjRIAhMlkUrR95JFHBABxyy23iKioKNGiRQtx00031XqMM2fOFDfddJPo1KmTmDBhgmLZM888I3r06CESEhLEa6+9JgCIfv36iR07dohVq1YJAKK8vFxuv3PnTgFAnDx5Uj7Gw4cPCwDi4MGDQgghtmzZIgCI8+fPy+tJbR9++GHRpUsXq+dLS0uFyWQS1dXViv37+9//LqKiosSVK1fktu+//77o1q2bePbZZ0VkZKQAIAwGg5g4caJo3769GDNmjAAg4uLiBADx8ccfi927d4vAwEDRt29fq9c1f79GjhwpL+/fv7/Yvn27ACByc3OFEEK8/fbbivbS49y5c0IIId577z35uYqKCiGEkF8jPj7e5rr2HrfffrvVc+Xl5fLPVVJSktXPyJo1awQAMXv2bCGEEBs2bFCsP2fOHEX/7tu3z+o1pGMVQojHH39c8ftmMpnEjBkzRHZ2tqipqREvvfSS1frz5s0TAERMTIz45ZdfhBBCTJ8+XQAQnTp1EgkJCYr2kvPnzwsAiuWLFy8WAQEBwmQyie7du8vP79y5U4wYMUKxna5du8pf33vvvfJ2ly5darePs7OzrX7HioqK5K+NRqOIi4sT8+fPF6WlpeL999+3u61PP/1U7NixQ/4+JiZG3k5t65k/JkyYoPi+X79+QgghCgoKrNpu2bJFlJaWirrccccdNvtbMmDAAMXypUuX2t2W+Tb+9re/CQBi2bJl8ntiuY8tW7YUNTU1te7foEGDbPaFn5+faNWqlfz9jh07hBBClJWVOfV7VJ+H1Ae2lv3www/i448/FpcuXZKPwdbvtvT/j62Hj4+P/PX48ePr3J833njDoeekx/z58+WvR40aJf75z3/K3ycmJorAwMAG99GJEyfE559/Ln9fXV2tWL5ixYpGf5/qeth6X5555hmH1n3rrbfEM888U+fvV2NRyzmuN2AgbOLU8suSkpIiAIhPPvmk3tu49957xX333SeEEMJkMin+A7c0bNgwMXjwYFFRUSECAwPFwoULRVFRkeIP0Nq1awUAkZmZKZKSkhQhSQghvv32W/l7nU4nn5QuX75cfp0ff/xRABBz584VQvzxh3fz5s02j2Hz5s0CuHHiLbXdtGmTOHLkiAAgnnzySQFAdOjQQQQEBDjULzU1NSIwMFA8++yzAlCGOSncCCHE//zP/4j77rtPpKenK/5gPP744+LBBx9UPHfp0iW7f2CeffZZm/tRWFho1VY6yZJOgiR9+vRRtLvnnnuEr6+vuH79ut3jHD16tOjcubMYMGCASExMVCzz8/MTXbp0UZxMT506VQghxIEDBwQAceDAAbn9+vXrBQBRXFws/Pz8BACxaNEiAUBcuHBBCCHE2bNn5WMwfx3gRlABIJ/Imh/L8uXL5fdBIi0z/7mVHq+//rr417/+JQCIdevWCQDir3/9qxwIY2JirNaRQvmf//xnERERIYQQ4oMPPpCX9+rVy2q/AAij0SiEEGLJkiU239sWLVoIo9GoCEhZWVlCCCFOnTqlOD7pYSuMmT8+++wzq+duvfVWAUBMmjRJvPjii4p9FuKP4AVAfPXVV/L3/fv3l5/ftm2bfDzSPkm/RwDEXXfdJUpKSsTOnTtF9+7dRefOnQUA0bdvX/Hbb7/J7UaPHi1/nZOTI38tvdcARGRkpDAYDPL3AQEBitAkPaqqqsTcuXMFcCOQWgZvIZT/d1VVVcnHvHfvXpv9d+jQISGEEE888YRISkqSP2SxfGzbtk3eVnZ2tgAgnnjiCbFu3Tr5gzFHHqNGjbIKAQUFBTZ/nhx93HbbbYr9svV4/fXXxbFjx8Tly5eFEEIYDAaxa9cuIYSQP0Awf/Tu3VsMHz7cblBOTk4WN910k+jevbsoKioSubm58odF0sM8qDn62LFjhzAYDMJoNAqdTid27dql2IdOnTrJX+v1evk9efrpp21ub8GCBQK48feoX79+imVXrlxRfKASHR0t/x3Lzs62Ct7SQ/o/TFJeXi7mzp0rDh06VO/30NajpKRE1NTUyB9GOPthkfQ7MHHiRJful6OPP//5z3IflZaWyh8aSn+fDx06JEwmk/z/VWZmpvzhmq2H+QdPth5Hjx61+v8TuPG768x+d+3aVQghxNdff21z+bVr18T58+dFfn6+8DS1nON6AwZCL/C///u/ok2bNiIwMFD8+c9/Ft9//73D63ryl8X8pMvX11csXrxYvPbaa2L79u0iLy9P/qNiNBpFZWVlg15Lep2FCxfWa32p6vXkk0/Kz7Vp00be7uXLl+WTQ+lT6GnTpgkhhAgPD1f8Z7l161bF99OnTxcPPfSQ4jnJkSNHhMFgEEIIqyqM+WP37t1CCKE40ZT+o5fWNxqN8vMmk0n85z//kY+noqJCsZ70h16qztTm4MGDAoD497//bbVfY8eOFefOnZNPUkeOHGn3j29mZqa4//775ZO/jIwMsWvXLqvwJvWzLYsXL1b0iWWwbNGihfx1ly5d5K+nTZsmf33mzBlx+PBhUVRUJHbu3CleeOEFuaKYmZkpn1glJSWJ8ePHyych//M//6MIu9LPr2Xfmj9MJpMcwoAbIcBcbGys1TqrV69W9PVjjz1md/tScDT/uTp9+rSIioqSn5szZ45VmO7fv78wGo1i/vz58gmg+SMvL89m/wcEBMi/D0IIMXjwYJs/1+a/A0aj0WZVRHrExcWJe+65R9Gv0tcdOnQQQghx/Phxq/VatWol+vfvL0pLS+X3vWPHjoo2R48eFZWVlXZf2/whhQrL59PS0hTHZ2/9t99+W3z00Ue1voYQQq4M1vaQPhQ6c+aMfLJo+ZBOlG31/8aNG8Vnn31m9f7VVfEYM2aMEEKIW265xaE+q+thORLAmUd8fLw4c+aMOH36tKipqRGAstoze/ZscfbsWZGammp3G+b/h7vi0bJlS5dtSxq1cfXqVYfX2bJli93/G4UQNn/+6mIymYTRaBSFhYV227z33nti0aJF4urVq1Zh0FJNTY38/4Stx++//y5/Lf1tSUhIEBEREeLpp58Whw8fFrt27XLonCU3N1f+WZE+4AJuBOUjR47IVWyTySQ2b94sampqhMFgEAUFBfKoCctH//79Ff9fXb16VWzfvl1kZmaKn376SRiNRrFs2TIxb948UVxcLCZMmCCeeOIJkZOTI6qrq8Xzzz8vBg4cKH/QUh9Go1Hxd9C8Ol9SUiIuXrwozp49K4QQoqqqyupDa4PBIObMmSP+/e9/K56X/i6MHj1arjgPHTpUxMTEiLZt24qTJ0/arFSfPHlSTJ8+XXz77bf1PqbGwkDoPgyEHrZ+/Xrh7+8vVqxYIX7++Wfx4osvitDQUHnoVV08+ctS18mRKx7SMEZ7D+nTz/bt2zu0vSNHjlj1nb2H9B5YVkOuX7+uGCJZXV2t+AS9tiqVZXCUHuZ/EMz/8Nl6DB482Oa2zU/8zSsVjj5KSkoU34eGhlq1OXv2rMjPzxcAxMSJE8Vdd90lL/vpp59s7pfJZBJPPPGEWLx4sUNDuwwGgxyQhRB2Twh/+OEH+WvzoZS1PU6ePCkuX75sc9lvv/0mfv31VxEUFCQ+/fRTxT49+uijVu3Hjh0rhBCKIUKWw8yk6qL549KlS4pqkaOPU6dOyds1Go3i7rvvFs8//7z8qbR5W8tPdn/55Rd5mfnQV1vvlfQBhPRetG7d2uZ6CxcuFNnZ2fL30gmw9OjYsaPV7298fLwQQoiXXnpJTJo0SfG7UllZKb755ptaPzAQQih+tqXfm/3791v1V0REhOL7u+66SwihHM5q+ZBIP+PmD71eL4qLi62OR/r6+PHj8vrfffedAG6ESPMKIgC5amVOqnJKj9GjR8vL9Hq9yM/PtxrSaUtNTY3o0KGD2Llzp80hhdJJZk1NjSgrKxOrV68WmzZtsls1tHxIH449+OCD8muWlpaKmpoacfjwYbFw4UK5bW5urs0PI86ePVvr/5FGo1Fx0mo5TFSq8koBR6/XO/w7dOnSJXHt2jXh5+cnOnbsKP/dePXVV8XGjRuF0WgUJpNJlJWVyaMeEhMTFdt49tlnxYcffijmzp0rIiMjxerVq4VerxcrVqwQR48eFSkpKXI/S7Kzs8X9998vj3Sx9TAfgVCbPXv2CH9/f9GpU6c6h6E2ttLSUrFjxw5x7tw5kZeXp/i/g8gVGAjdh4HQw+655x4xbtw4xXMdO3YUr7zyikPre/qXpaCgQOzdu1d88cUX4rbbbhNJSUk2r/nxhsf48eOt9t/ep7dTpkyxOk69Xq84kblw4UK9/iAXFRWJtWvXinnz5omSkhKbbX799Ve7x2FriKs56cRRuu7SkceaNWuEEDdOhDUajVixYoV8naX0+OKLL2y+3pUrVxyqRDZEVVWVmD17tnxMH3/8sRDiRoiQqs91fRJvXlG5ePGiSEtLEz4+PuLJJ5+s9dNzSV5enujTp4/o27ev2LNnj8P7XlpaKn766Scxa9Ys8fnnn8vPFxYWCl9fXwFA/Pe//xWVlZUiKipKdO/eXRQWFoq//OUvYsqUKeKzzz5TDB2zx2g0imvXrtk9KdPr9Y3+Pl26dEnMnDlT6HQ6YTKZxPXr18Xf/vY38fTTT4ucnJxGfe3vv/9eADeG+q5cuVJUV1eLiooK8cUXX4iff/7ZKoSYTCb5urF169aJa9euKZaXl5eLixcviqqqKkUY27Fjh3jttdfk5y5cuKAYummLwWAQ+fn5tX7QZzQaxdmzZ0VZWZmzh14rnU4njh07Vuf/G0LcGNa7YMECceXKFVFTUyMuX74szp07J55++mlRXFxc733497//Ld5+++1aP4yoTVVVlcjPz69zH65fvy7OnTsnzp49K3777bd6v15j0uv1DoV7IvL8Oa6aaITg1EGeUl1djZCQEPz73//Gww8/LD//4osvIicnx+YNafV6vWJGx9LSUiQmJkKn01ndI6zRffYZsHatw81NQtyYuUoIFBQUoEVYGAzV1QgKDkZ1dTVMRiPKyssRFhaGS4WFiI+PR+GlS7gpJgY33XQTTCYTdDodKioqcFNsLK5euQJdaSn8fH1x+fJltPvTnxAcFAQfHx+EhIaixmC4cbNyjQa+vr7Q1L2LXqnGaESNwYDAoKB6H0NJSQkEAP//m85eo9FA4+ODwMBA+PpwsmEiIiKywccH2LTJIy9dWloKrVbrmXNclfGruwk1litXrsBoNMpTR0vi4uIU9wUyN3v2bLz55pvu2D2X85GmMdZokJCQoFgW+n9T4EdHR9/49//uoWZ+LzUfHx9ERkbK9+tLSEiQt9O+fXur1/P10M1qXc3P1xd+vr4N2kZERIRrdoaIiIiImhUGQi9g634vls9Jpk2bhkmTJsnfSxVCj3j00RsPIiIiIiJqkhgIPSgmJga+vr5W1cCioiKrqqEkMDAQgc2k8kVERERERJ7Fi4c8KCAgAN26dcO2bdsUz2/btg29evXy0F4REREREZFasELoYZMmTUJ6ejruuusu9OzZE8uXL8f58+cxbtw4T+8aERERERE1cwyEHvboo4/i6tWreOutt1BQUIDk5GT897//RevWrT29a0RERERE1MzxthNNHKfkJSIiIqLmhue47sNrCImIiIiIiFSKgZCIiIiIiEilGAiJiIiIiIhUioGQiIiIiIhIpRgIiYiIiIiIVIqBkIiIiIiISKV4H8ImTrprSGlpqYf3hIiIiIjINaRzW94hr/ExEDZxZWVlAIDExEQP7wkRERERkWuVlZVBq9V6ejeaNd6YvokzmUy4ePEiwsLCoNFoPL07Xqm0tBSJiYnIz8/njU1dhH3qeuxT12J/uh771LXYn67HPnUtT/enEAJlZWVISEiAjw+vcmtMrBA2cT4+Prjllls8vRtNQnh4OP9AuBj71PXYp67F/nQ99qlrsT9dj33qWp7sT1YG3YNxm4iIiIiISKUYCImIiIiIiFSKgZCavcDAQLzxxhsIDAz09K40G+xT12Ofuhb70/XYp67F/nQ99qlrsT/Vg5PKEBERERERqRQrhERERERERCrFQEhERERERKRSDIREREREREQqxUBIRERERESkUgyE1GzMnj0bd999N8LCwhAbG4uHHnoIp06dUrQRQmDGjBlISEhAcHAw+vXrhxMnTnhoj5uW2bNnQ6PRICMjQ36O/em833//HU888QSio6MREhKCLl26IDs7W17OPnVcTU0NXn31VbRt2xbBwcFo164d3nrrLZhMJrkN+7N233//PYYNG4aEhARoNBps2rRJsdyR/tPr9ZgwYQJiYmIQGhqK1NRUXLhwwY1H4T1q60+DwYCXX34ZnTt3RmhoKBISEvDkk0/i4sWLim2wP5Xq+hk1N3bsWGg0GixatEjxPPtUyZE+zc3NRWpqKrRaLcLCwtCjRw+cP39eXs4+bV4YCKnZ2LVrF1544QXs27cP27ZtQ01NDQYOHIiKigq5zdy5c7FgwQIsXboUBw8eRHx8PO6//36UlZV5cM+938GDB7F8+XLccccdiufZn84pLi5G79694e/vj6+//ho///wz5s+fj4iICLkN+9Rxc+bMwQcffIClS5ciNzcXc+fOxbvvvoslS5bIbdiftauoqMCdd96JpUuX2lzuSP9lZGRg48aNWL9+PXbv3o3y8nKkpKTAaDS66zC8Rm39WVlZicOHD+O1117D4cOHsWHDBpw+fRqpqamKduxPpbp+RiWbNm3C/v37kZCQYLWMfapUV5/++uuv6NOnDzp27IidO3fip59+wmuvvYagoCC5Dfu0mRFEzVRRUZEAIHbt2iWEEMJkMon4+HjxzjvvyG2uX78utFqt+OCDDzy1m16vrKxMtG/fXmzbtk307dtXvPjii0II9md9vPzyy6JPnz52l7NPnTN06FDxzDPPKJ4bPny4eOKJJ4QQ7E9nARAbN26Uv3ek/0pKSoS/v79Yv3693Ob3338XPj4+Iisry2377o0s+9OWAwcOCADi3LlzQgj2Z13s9emFCxfEzTffLI4fPy5at24tFi5cKC9jn9bOVp8++uij8v+jtrBPmx9WCKnZ0ul0AICoqCgAQF5eHgoLCzFw4EC5TWBgIPr27Ys9e/Z4ZB+bghdeeAFDhw7FgAEDFM+zP5335Zdf4q677sJf//pXxMbGomvXrlixYoW8nH3qnD59+uDbb7/F6dOnAQA//fQTdu/ejQceeAAA+7OhHOm/7OxsGAwGRZuEhAQkJyezjx2g0+mg0WjkUQLsT+eZTCakp6djypQp6NSpk9Vy9qlzTCYTtmzZgttuuw2DBg1CbGwsunfvrhhWyj5tfhgIqVkSQmDSpEno06cPkpOTAQCFhYUAgLi4OEXbuLg4eRkprV+/HocPH8bs2bOtlrE/nffbb7/h/fffR/v27fHNN99g3LhxmDhxIj799FMA7FNnvfzyy3jsscfQsWNH+Pv7o2vXrsjIyMBjjz0GgP3ZUI70X2FhIQICAhAZGWm3Ddl2/fp1vPLKK0hLS0N4eDgA9md9zJkzB35+fpg4caLN5exT5xQVFaG8vBzvvPMOBg8ejK1bt+Lhhx/G8OHDsWvXLgDs0+bIz9M7QNQYxo8fj6NHj2L37t1WyzQajeJ7IYTVcwTk5+fjxRdfxNatWxXXDVhifzrOZDLhrrvuwqxZswAAXbt2xYkTJ/D+++/jySeflNuxTx3z2WefYc2aNVi3bh06deqEnJwcZGRkICEhAU899ZTcjv3ZMPXpP/Zx7QwGA0aOHAmTyYT33nuvzvbsT9uys7OxePFiHD582On+YZ/aJk3K9eCDD+Kll14CAHTp0gV79uzBBx98gL59+9pdl33adLFCSM3OhAkT8OWXX+K7777DLbfcIj8fHx8PAFafXhUVFVl9Ak43/tAWFRWhW7du8PPzg5+fH3bt2oV//OMf8PPzk/uM/em4li1b4vbbb1c8l5SUJM/cxp9R50yZMgWvvPIKRo4cic6dOyM9PR0vvfSSXNFmfzaMI/0XHx+P6upqFBcX221DSgaDASNGjEBeXh62bdsmVwcB9qezfvjhBxQVFaFVq1by36lz584hMzMTbdq0AcA+dVZMTAz8/Pzq/FvFPm1eGAip2RBCYPz48diwYQN27NiBtm3bKpa3bdsW8fHx2LZtm/xcdXU1du3ahV69erl7d71e//79cezYMeTk5MiPu+66C48//jhycnLQrl079qeTevfubXUrlNOnT6N169YA+DPqrMrKSvj4KP+M+fr6yp9wsz8bxpH+69atG/z9/RVtCgoKcPz4cfaxDVIY/OWXX7B9+3ZER0crlrM/nZOeno6jR48q/k4lJCRgypQp+OabbwCwT50VEBCAu+++u9a/VezTZshDk9kQudxzzz0ntFqt2LlzpygoKJAflZWVcpt33nlHaLVasWHDBnHs2DHx2GOPiZYtW4rS0lIP7nnTYT7LqBDsT2cdOHBA+Pn5iZkzZ4pffvlFrF27VoSEhIg1a9bIbdinjnvqqafEzTffLDZv3izy8vLEhg0bRExMjJg6darchv1Zu7KyMnHkyBFx5MgRAUAsWLBAHDlyRJ710pH+GzdunLjlllvE9u3bxeHDh8Vf/vIXceedd4qamhpPHZbH1NafBoNBpKamiltuuUXk5OQo/k7p9Xp5G+xPpbp+Ri1ZzjIqBPvUUl19umHDBuHv7y+WL18ufvnlF7FkyRLh6+srfvjhB3kb7NPmhYGQmg0ANh+ffPKJ3MZkMok33nhDxMfHi8DAQHHvvfeKY8eOeW6nmxjLQMj+dN5XX30lkpOTRWBgoOjYsaNYvny5Yjn71HGlpaXixRdfFK1atRJBQUGiXbt2Yvr06YqTa/Zn7b777jub/28+9dRTQgjH+q+qqkqMHz9eREVFieDgYJGSkiLOnz/vgaPxvNr6My8vz+7fqe+++07eBvtTqa6fUUu2AiH7VMmRPv3oo4/ErbfeKoKCgsSdd94pNm3apNgG+7R50QghROPWIImIiIiIiMgb8RpCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlIpBkIiIiIiIiKVYiAkIiIiIiJSKQZCIiIiIiIilWIgJCIiIiIiUikGQiIiIiIiIpViICQiIiIiIlKp/x9y0yctqL3FdQAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "px = PowderPattern()\n", "if not os.path.exists(\"pbso4-x.dat\"):\n", " os.system(\"curl -o pbso4-x.dat https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-pbso4/xray.dat\")\n", "px.ImportPowderPatternFullprof(\"pbso4-x.dat\")\n", "px.SetWavelength(\"Cu\") # Valid strings for X-ray tubes are \"Cu\", \"CuA1\",...\n", "print(px.GetRadiation()) # Better check the string was understood\n", "px.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find peaks & index the reflections\n", "In this case the peaks are automatically found without any parasitic phase.\n", "\n", "And the unit cell is also indexed without any ambiguity. This uses the dichotomy in volume approach (Louër & Boultif).\n", "\n", "... It is not always that easy !" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Peak dobs=0.23410+/-0.00049 iobs=5.631088e+04 (? ? ?))\n", "Peak dobs=0.26180+/-0.00049 iobs=3.661422e+04 (? ? ?))\n", "Peak dobs=0.27573+/-0.00048 iobs=1.369719e+04 (? ? ?))\n", "Peak dobs=0.28690+/-0.00041 iobs=2.120413e+04 (? ? ?))\n", "Peak dobs=0.29939+/-0.00048 iobs=5.965503e+04 (? ? ?))\n", "Peak dobs=0.31016+/-0.00048 iobs=4.475041e+04 (? ? ?))\n", "Peak dobs=0.33210+/-0.00048 iobs=6.886522e+04 (? ? ?))\n", "Peak dobs=0.36110+/-0.00048 iobs=2.483898e+04 (? ? ?))\n", "Peak dobs=0.36997+/-0.00047 iobs=3.424055e+04 (? ? ?))\n", "Peak dobs=0.38119+/-0.00047 iobs=6.008678e+03 (? ? ?))\n", "Peak dobs=0.41488+/-0.00047 iobs=1.116247e+04 (? ? ?))\n", "Peak dobs=0.43867+/-0.00047 iobs=1.291596e+04 (? ? ?))\n", "Peak dobs=0.44637+/-0.00047 iobs=3.054905e+03 (? ? ?))\n", "Peak dobs=0.45514+/-0.00046 iobs=3.965780e+03 (? ? ?))\n", "Peak dobs=0.46161+/-0.00046 iobs=1.755345e+04 (? ? ?))\n", "Peak dobs=0.46832+/-0.00046 iobs=3.017849e+03 (? ? ?))\n", "Peak dobs=0.48313+/-0.00053 iobs=5.114404e+04 (? ? ?))\n", "Peak dobs=0.49213+/-0.00052 iobs=3.115425e+04 (? ? ?))\n", "Peak dobs=0.50613+/-0.00046 iobs=1.278484e+04 (? ? ?))\n", "Peak dobs=0.53141+/-0.00045 iobs=3.895334e+03 (? ? ?))\n", "Predicting volumes from 20 peaks between d=42.716 and d= 1.882\n", "\n", "Starting indexing using 20 peaks\n", " CUBIC P : V= 407 -> 4545 A^3, max length= 49.70A\n", " -> 0 sols in 0.00s, best score= 0.0\n", "\n", " TETRAGONAL P : V= 151 -> 1089 A^3, max length= 30.86A\n", " -> 0 sols in 0.01s, best score= 0.0\n", "\n", "RHOMBOEDRAL P : V= 167 -> 1143 A^3, max length= 31.36A\n", " -> 0 sols in 0.00s, best score= 0.0\n", "\n", " HEXAGONAL P : V= 206 -> 1507 A^3, max length= 34.39A\n", " -> 0 sols in 0.01s, best score= 0.0\n", "\n", "ORTHOROMBIC P : V= 88 -> 565 A^3, max length= 25.00A\n", " -> 1 sols in 0.01s, best score= 57.5\n", "\n", " MONOCLINIC P : V= 65 -> 364 A^3, max length= 25.00A\n", " -> 3 sols in 0.06s, best score= 56.5\n", "\n", "Solutions:\n", "( 5.40 6.97 8.49 90.0 90.0 90.0 V= 320 ORTHOROMBIC P, 63.80767059326172)\n", "( 5.40 8.49 6.97 90.0 90.0 90.0 V= 320 MONOCLINIC P, 61.222660064697266)\n", "( 6.97 5.40 8.49 90.0 90.0 90.0 V= 320 MONOCLINIC P, 57.77278137207031)\n" ] } ], "source": [ "# Index\n", "pl = px.FindPeaks(1.5, -1, 1000)\n", "if len(pl) > 20:\n", " pl.resize(20) # Only keep 20 peaks\n", "for peak in pl:\n", " print(peak)\n", "\n", "ex = quick_index(pl)\n", "\n", "print(\"Solutions:\")\n", "for s in ex.GetSolutions():\n", " print(s)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a crystal phase using the indexed unit cell" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b6316e4843fb46de8b20b4e4b8f30e3c", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7fUlEQVR4nOzdeVhUZf8G8Jt9E0YQAVEUTVNSTDN3E01FCZSwwl4VtXzVpCRzzVLDLNwSNC1Tf6amkuVWmYa4ooYKihaamua+IBTMAIKs8/uD95zmzAIzbKPM/bmuueKcec45zxm0a26/z3keM6VSqQQRERERERGZHHNjd4CIiIiIiIiMg4GQiIiIiIjIRDEQEhERERERmSgGQiIiIiIiIhPFQEhERERERGSiGAiJiIiIiIhMFAMhERERERGRiWIgJCIiIiIiMlEMhERERERERCaKgZCIiIiIiMhEMRASERERERGZKAZCIiIiIiIiE8VASEREREREZKIYCImIiIiIiEwUAyEREREREZGJYiAkIiIiIiIyUQyEREREREREJoqBkIiIiIiIyEQxEBIREREREZkoBkIiIiIiIiITxUBIRERERERkohgIiYiIiIiITBQDIRERERERkYliICQiIiIiIjJRDIREREREREQmioGQiIiIiIjIRDEQEhERERERmSgGQiIjOHv2LIKCghASEoLExERx/9ixY43YKyIiIiIyNZbG7gCRKYqIiMD69ethaWmJ6dOn4+TJk5gyZQquXbtm7K4RERERkQlhhZDICMzMzNCyZUt4e3tj27ZtyM7Oxrhx41BcXGzsrhERERGRCWEgJDICNzc33LhxQ9yOjIyEn58fkpOTjdcpIiIiIjI5ZkqlUmnsThAREREREVHtY4WQiIiIiIjIRDEQEhkBZxklIiIioscBZxklMgLOMkpEREREjwNWCImMQNcso+fOnTN214iIiIjIhLBCSGQE165dQ2BgIBwcHMR9N27cgFwuN16niIiIiMjkMBASGYGVlRVWrlwJc/N/i/RKpRJhYWFG7BURERERmRoGQiIjmD59OhwdHeHq6irZ/8477xipR0RERERkirgOIRERERERkYnipDJEREREREQmioGQ6DHi7+9v7C4QERERkQnhM4RERhAaGqqxT6lU4rfffjNCb4iIiIjIVPEZQiIjaN68OQ4dOqQxy2jHjh2RlZVlxJ4RERERkSlhhZDICJRKJYYOHQorKyvJvoKCAiP2ioiIiIhMDQMhkRHY2dkhOTkZlpbSv4IDBgwwUo+IiIiIyBRxyOgTrrS0FPfu3YOjoyPMzMyM3R3S0+7du9GrVy84OztL9h8/fhy9evUyUq+IiIiIHg9KpRI5OTnw9PSUPGJD1Y8VwifcvXv34OXlZexuEBERERFVu9u3b6NJkybG7kadxkD4hHN0dARQ9pfFycnJyL2hygoKCsLPP/+MBw8ewN3d3djdISIiIjKq7OxseHl5id91qeYwED7hhGGiTk5OcHJywpEjRxAWFobIyEiMHTsWffr0QUlJCfLz8zF+/HiMHz9ePDYnJwf9+/fHhQsXcPLkSbRr1w5A2Vp4mZmZOH36tFHuyRTZ2dnByckJr776KuLj443dHSIiIqLHAh+JqnkMhHXQsGHDMHbsWHH7l19+gYWFBXx8fPDGG2+IM1va2dnh559/xvTp0yXHx8fH4/nnn6/VPpuaLl26aOzr3Lkzrly5YoTeEBEREZGpMrknNI8ePYrBgwfD09MTZmZm+OGHHzTaXLx4EUOGDIFMJoOjoyO6deuGW7duie8XFBRg0qRJcHV1hYODA4YMGYI7d+5IzpGVlYWwsDDIZDLIZDKEhYVBLpdL2ty6dQuDBw+Gg4MDXF1dERERgcLCwpq4bdjZ2aFRo0bIzMwU91laWqJhw4Y1cj0qX05ODhITE5GUlCS+kpOT0blzZ2N3jYiIiIhMiMkFwocPH+LZZ5/FypUrtb7/119/oVevXmjTpg2OHDmC3377DXPmzIGtra3YZvLkydi1axe2bt2K48ePIzc3F0FBQSgpKRHbDB8+HOfOnUNcXBzi4uJw7tw5hIWFie+XlJQgMDAQDx8+xPHjx7F161bs2LEDU6dOrZH7/vvvv/HgwQMGwMdEVFQUcnJyNPbPnj3bCL0hIiIiIlNlckNGAwICEBAQoPP9Dz/8EC+99BIWL14s7mvRooX4s0KhwLp167Bp0yb0798fALB582Z4eXnhwIEDGDhwIC5evIi4uDicPHkSXbt2BQCsXbsW3bt3x+XLl9G6dWvEx8fjjz/+wO3bt+Hp6QkAWLp0KcaMGYNPP/20WieICQgIgLm5OZYvX85pex8TISEhWvf7+fnVck+IiIioOpWUlKCoqMjY3XjsWVlZwcLCwtjdIJhgICxPaWkp9uzZgxkzZmDgwIE4e/YsmjdvjlmzZuHll18GAJw5cwZFRUXw9/cXj/P09ES7du2QmJiIgQMH4sSJE5DJZGIYBIBu3bpBJpMhMTERrVu3xokTJ9CuXTsxDALAwIEDUVBQgDNnzqBv377Vdl+//PIL6tWrV23nIyIiIiIppVKJtLQ0jUeESLf69evDw8ODE8cYGQOhivT0dOTm5mLhwoX45JNPsGjRIsTFxWHo0KE4fPgw/Pz8kJaWBmtra40Fxd3d3ZGWlgYASEtLg5ubm8b53dzcJG3UlxdwdnaGtbW12EabgoICFBQUiNvZ2dmVvl8AeOmll3Du3DlcvnwZEyZMwJgxY6p0PiIiIiJTJIRBNzc32NvbM+SUQ6lUIi8vD+np6QCARo0aGblHpo2BUEVpaSkAIDg4GO+99x4AoEOHDkhMTMRXX31V7nA+pVIp+Yuv7X8ClWmjbsGCBZg3b57O921tbbF//36sW7cOY8eOxZEjR3S2BYC9e/dq7PP395dULqn6nT17FnPmzIGVlRWmT5+OHj16AADGjh2LdevWGbl3REREZIiSkhIxDDZo0MDY3Xki2NnZASgryLi5uXH4qBHxgTIVrq6usLS0xDPPPCPZ7+PjI84y6uHhgcLCQmRlZUnapKenixU/Dw8PPHjwQOP8GRkZkjbqlcCsrCwUFRWVuzD5rFmzoFAoxNft27cl73fr1g2//fabZNkJQ8XHx+Onn36q9PGm5uzZswgKCkJISAgSExPF/eX9DiIiIrBs2TLExMQgJiYG0dHRAIBr167VeH+JiIioegnPDNrb2xu5J08W4fPiM5fGxUCowtraGp07d8bly5cl+//88080a9YMANCpUydYWVlh//794vv379/H+fPnxSpP9+7doVAokJSUJLY5deoUFAqFpM358+dx//59sU18fDxsbGzQqVMnnX20sbERF6EXXmRclQl3ZmZmaNmyJby9vbFt2zZkZ2dj3LhxKC4urq1uExERUTXjMFHD8PN6PJjckNHc3FxcvXpV3L5+/TrOnTsHFxcXNG3aFNOnT8ewYcPQu3dv9O3bF3Fxcdi9e7c49FImk2Hs2LGYOnUqGjRoABcXF0ybNg2+vr7irKM+Pj4YNGgQxo0bh9WrVwMAxo8fj6CgILRu3RpA2bDMZ555BmFhYViyZAkyMzMxbdo0jBs3jiHvCSOEOwDYtm0bIiMjKwx31tbW6NevH5ycnDB9+nRERkZi8+bN+Prrr2ur20REREREplchPH36NDp27IiOHTsCAKZMmYKOHTti7ty5AMqWA/jqq6+wePFi+Pr64v/+7/+wY8cO9OrVSzxHTEwMXn75ZYSGhqJnz56wt7fH7t27JWOft2zZAl9fX/j7+8Pf3x/t27fHpk2bxPctLCywZ88e2NraomfPnggNDcXLL7+Mzz77rJY+Caoubm5uuHHjhrgdGRkJPz8/JCcn6zymoKAAq1evFquK77//Pm7duoXevXvXQo+JiIiIKnbkyBGYmZlx5tQ6zkypVCqN3QmqvOzsbMhkMigUClYWnyC9e/fG0aNHxW0XFxdkZWWhV69eOHbsmBF7RkRERIZ69OgRrl+/jubNm8PW1tbY3ak2R44cQd++fZGVlYX69etX+/nL+9z4Hbf2mFyFkOhxoF5VFGYkK6+qSERERERU3RgIiYxg+/bt8Pb2FreFh6ofPXpkpB4RERGRKSooKEBERATc3Nxga2uLXr16afwD9a+//opnn30Wtra26Nq1K1JTU8X3bt68icGDB8PZ2RkODg5o27at1mXN6PHFQEhUTTIzM3H16lVkZmZW+hz+/v7V2CMiIiKi8s2YMQM7duzAxo0bkZKSgpYtW2LgwIGS7zPTp0/HZ599huTkZLi5uWHIkCHiUhFvv/02CgoKcPToUaSmpmLRokWoV6+esW6HKsHkZhklqm4HDx7E3Llz4erqCicnJ8jlcmRlZWHevHno16+f1mNCQ0Ml28LyI6r/4kZERERPtry8PFy6dKnWr9umTRu91kR8+PAhVq1ahQ0bNiAgIAAAsHbtWuzfvx/r1q1D586dAQAfffQRBgwYAADYuHEjmjRpgl27diE0NBS3bt3CK6+8Al9fXwBAixYtauiuqKYwEBJV0dy5cxEXFwdHR0dxX3Z2NgICAnQGwuTkZBw6dAjm5mVF+tOnTyM3N1dcvoKIiIiefJcuXSp3femacubMGTz33HMVtvvrr79QVFSEnj17ivusrKzQpUsXXLx4UQyE3bt3F993cXFB69atcfHiRQBl6zFPnDgR8fHx6N+/P1555RW0b9++mu+IahIDIZmM4uJiWFpW/x95c3NzZGRkSAJhRkaGGPa0mT59OhwdHeHq6gqgbF1CAFAoFNXev8fViBEjsGXLFmN3g4iIqMa0adMGZ86cMcp19SEsNqC+QLxSqaxw0Xjh/f/+978YOHAg9uzZg/j4eCxYsABLly7FpEmTKtFzMgYGQqrTUlNTMXPmTMjlclhaWqKoqAiurq6IiooShzZU1Zo1azB16lSkpaWJ/wNt1KgR1qxZo/OYI0eO4MiRI+L23bt3AZQFybpmxowZGvuUSiUSExON0BsiIqLaY29vr1elzlhatmwJa2trHD9+HMOHDwcAFBUV4fTp05g8ebLY7uTJk2jatCkAICsrC3/++ackdHp5eeGtt97CW2+9hVmzZmHt2rUMhE8QBkKq08LDwxEbGwsvLy9x361btzBixIhqW+/Px8cHu3btMugY9SGju3fvBoA6OWR0y5YtiI2N1dh/+PBhI/SGiIiIBA4ODpg4cSKmT58OFxcXNG3aFIsXL0ZeXh7Gjh2L3377DQDw8ccfo0GDBnB3d8eHH34IV1dXvPzyywCAyZMnIyAgAE8//TSysrJw6NAh+Pj4GPGuyFAMhFSnlZSUQCaTSfY5OTmhpKTESD0qoz5kVAiG77zzjjG7VSPefPNN+Pj4wM3NTbJ/1KhRRuoRERERCRYuXIjS0lKEhYUhJycHzz//PPbt2wdnZ2dJm3fffRdXrlzBs88+i59++kl83KWkpARvv/027ty5AycnJwwaNAgxMTHGuh2qBDOlMHiYnkjZ2dmQyWRQKBRwcnIydnceO0ePHsXs2bNhbW0NJycnKBQKFBcX45NPPsELL7xg7O6JnnrqKVy7dg3860hERPTkefToEa5fv47mzZvD1tbW2N15YpT3ufE7bu1hhZDqtN69e+Po0aPIz8+HXC6Hs7Nzrf2POi0tDR4eHnq3BfR7iJuIiIiIqLpwYXoyCXZ2dmjUqFGt/qsdh0SWb8SIEcbuAhEREZHJY4WQqIq6dOmisU+pVOLKlSt6n8PLywuXL1/G/fv34enpWZ3dMzrOMkpERET0+GIgJKqinJwcpKamaqxxOGDAAL3PYWFhAQAYPXo09u/fX639M7avv/4aDRs2hLm5OV555RX069cPAMpdloOIiIiIageHjJJJ8vf3r7ZzRUVFIScnR2P/7NmzdR7TpUsXyevatWsAypajqGtsbW3x008/ITk5Gbm5udi+fTteeOEFjVlHiYiIiKj2sUJIdVpoaKjGPqVSidTU1Gq7RkhIiNb9fn5+Oo9Rryq2a9cOFy5cgK+vb7X163HRvHlztGrVCgAQHR2NDRs2IDg4GPXr1zdux4iIiIiIgZDqNvUF4IGyQBgWFmbEXv1bVRTW+BFmFs3LyzNmt2pEhw4dcOPGDXh7ewMAxowZg2bNmmHixInG7RgRERERMRBS3aa+ALzA2AvAL1iwAAsWLBC3hQlo/vrrL2N1qcasWLFCsi2Xy9G3b19cunTJSD0iIiIiIgGfIaQ6LTw8XCMMAsCwYcOM0Jt/5eTkIDExEUlJSUhKShKHjnbq1Mmo/aoNQ4cONXYXiIiIqBpERkaiQ4cOxu4GVREDIZERqE9EIwwZff/9943VpRqzf/9+dO3aFT169MDWrVuhVCoBAIGBgUbuGRERERExEBJV0dmzZxEUFISQkBDJ2npjx47VeUxISIj4/CBQNvEKAPTq1avmOmokH330Efbt24cDBw4gKSkJrVq1QmlpaZ18XpKIiIjoScNASCYpLS2t2s4VERGBZcuWISYmBjExMYiOjgYAcSkJfQgVQqF6VpdYWFigfv36sLe3R3R0NHr06IHg4GDk5uYau2tEREQmr7S0FIsWLULLli1hY2ODpk2b4tNPPwUAzJw5E08//TTs7e3RokULzJkzB0VFReWe7+uvv0bbtm1hY2ODRo0aGX3eBqoYAyGZpFGjRlXbuczMzNCyZUt4e3tj27ZtyM7Oxrhx41BcXGzwuepiIBRmGRWMGTMGU6ZM0bp2IxEREdWuWbNmYdGiRZgzZw7++OMPxMbGwt3dHQDg6OiIDRs24I8//sDy5cuxdu1axMTE6DzXqlWr8Pbbb2P8+PFITU3FTz/9hJYtW9bWrVAlmSnr4jdQE5KdnQ2ZTAaFQgEnJydjd+ex06VLF419SqUSV65cgVwur5ZrvPrqq/jss8/EZRUAYPPmzfjvf/+LR48e6XWODh064LfffkNubi4cHByqpV+Pu5ycHDg6Ohq7G0RERFX26NEjXL9+Hc2bN4etra2xu6O3nJwcNGzYECtXrsR///vfCtsvWbIE3333HU6fPg2gbFKZH374AefOnQMANG7cGG+88QY++eQTva5f3ufG77i1h8tOUJ2mvgC8YMCAAdV2je3bt2vsGzlyJEaOHGnwueriv8988803WLJkCaysrBAaGipOnBMcHIxDhw4ZuXdEREQ1KC8PMMYyS23aAPb2FTa7ePEiCgoK0K9fP63vb9++HcuWLcPVq1eRm5uL4uJineEsPT0d9+7d03kuenyZ3JDRo0ePYvDgwfD09ISZmRl++OEHnW0nTJgAMzMzLFu2TLK/oKAAkyZNgqurKxwcHDBkyBDcuXNH0iYrKwthYWGQyWSQyWQICwvTqEjdunULgwcPhoODA1xdXREREYHCwsJqulMCNGfzFMyePdsIvdGtLj9DuGrVKqSkpCAlJQX29vZ49dVXkZeXVyfvlYiISOLSJaBTp9p/6RlC7ezsdL538uRJvP766wgICMDPP/+Ms2fP4sMPP9T5XbW8c9HjzeQqhA8fPsSzzz6LN954A6+88orOdj/88ANOnToFT09PjfcmT56M3bt3Y+vWrWjQoAGmTp2KoKAgnDlzBhYWFgCA4cOH486dO4iLiwMAjB8/HmFhYdi9ezcAoKSkBIGBgWjYsCGOHz+Of/75B6NHj4ZSqdRYyJsqLyQkROt+Pz+/Wu6JfupiSDI3N4eVlRWAsgl4nnnmGQQEBCAjI8PIPSMiIqphbdoAZ84Y57p6aNWqFezs7HDw4EGNIaO//vormjVrhg8//FDcd/PmTZ3ncnR0hLe3Nw4ePIi+fftWrt9kFCYXCAMCAhAQEFBum7t37+Kdd97Bvn37NNZKUygUWLduHTZt2oT+/fsDKHtezMvLCwcOHMDAgQNx8eJFxMXF4eTJk+jatSsAYO3atejevTsuX76M1q1bIz4+Hn/88Qdu374ths6lS5dizJgx+PTTTzlW+gmUmZmJzMxMuLi4wMXFpVLnqIuB0NPTE23atIG9vb04ZLRRo0bo3bu3sbtGRERUs+ztgeeeM3YvdLK1tcXMmTMxY8YMWFtbo2fPnsjIyMCFCxfQsmVL3Lp1C1u3bkXnzp2xZ88e7Nq1q9zzRUZG4q233oKbmxsCAgKQk5ODX3/9FZMmTaqlO6LKMLkhoxUpLS1FWFgYpk+fjrZt22q8f+bMGRQVFcHf31/c5+npiXbt2olr0J04cQIymUwMgwDQrVs3yGQySZt27dpJKpADBw5EQUEBzpTzL0kFBQXIzs6WvMi4Dh48iJ49e+KNN97AvHnzMHr0aPTq1QsHDx7U+xx1ecjonTt3kJqaKhky2rx5c7Rv397YXSMiIjJ5c+bMwdSpUzF37lz4+Phg2LBhSE9PR3BwMN577z2888476NChAxITEzFnzpxyzzV69GgsW7YMX375Jdq2bYugoCBcuXKllu6EKsvkKoQVWbRoESwtLREREaH1/bS0NFhbW0sWFQcAd3d3cW27tLQ0uLm5aRzr5uYmaSNM6StwdnaGtbV1uWvkLViwAPPmzTPonqhmzZ07F3FxcZIZM7OzsxEQEMAHq6F7yGhmZqaRe0ZERETm5ub48MMPJUNDBYsXL8bixYsl+yZPniz+HBkZicjISMn7EyZMwIQJE2qiq1RDWCFUcebMGSxfvhwbNmwQKzb6UiqVkmO0HV+ZNupmzZoFhUIhvm7fvm1QP01ZZdYF1Ie5ubnG83AZGRkwN9f/r1ddrhAGBgZK1iHs378/vvzySzRu3Nh4nSIiIiIiAKwQShw7dgzp6elo2rSpuK+kpARTp07FsmXLcOPGDXh4eKCwsBBZWVmSKmF6ejp69OgBAPDw8MCDBw80zp+RkSFWBT08PHDq1CnJ+1lZWSgqKtKoHKqysbGBjY1Nle7TlKSmpmLmzJmQy+WwtLREUVERXF1dERUVBV9f32q5xpo1azB16lSkpaWJgb5Ro0ZYs2aN3ueoy4Hwgw8+0NjXtm1bccIlIiIiIjIeBkIVYWFh4kQxgoEDByIsLAxvvPEGAKBTp06wsrLC/v37ERoaCgC4f/8+zp8/L5bUu3fvDoVCgaSkJHFh9FOnTkGhUIihsXv37vj0009x//59NGrUCAAQHx8PGxsbdOrUqVbu1xSEh4cjNjYWXl5e4r5bt25hxIgROHbsWLVcw8fHp8KHrPVVFwMhERERET2+TC4Q5ubm4urVq+L29evXce7cObi4uKBp06Zo0KCBpL2VlRU8PDzQunVrAIBMJsPYsWMxdepUNGjQAC4uLpg2bRp8fX3FMOnj44NBgwZh3LhxWL16NYCyZSeCgoLE8/j7++OZZ55BWFgYlixZgszMTEybNg3jxo3jDKPVqKSkBDKZTLLPyckJJSUlRupR+RgIiYiIiKg2mVwgPH36tGRtlClTpgAomxVpw4YNep0jJiYGlpaWCA0NRX5+Pvr164cNGzaIaxACwJYtWxARESHORjpkyBCsXLlSfN/CwgJ79uxBeHg4evbsCTs7OwwfPhyfffZZNdwlCRYuXIigoCBYW1vDyckJCoUCxcXFWLRokbG7ppUpBcIRI0Zgy5Ytxu4GERERkUkzU5rSN9A6KDs7GzKZDAqFgpXFcuTn50Mul8PZ2Rm2tra1cs20tDR4eHjo1bZz5844ffo00tPT0bBhwxruWe2aMWOGxj6lUont27fj+vXrRugRERFR9Xr06BGuX78Ob29v2NnZGbs7T4z8/HzcuHEDzZs31/h+xu+4tcfkKoRkmuzs7Gr9f9CjRo1CfHy8Xm3r8qQyW7ZsQWxsrMb+w4cPG6E3RERE1U9YXikvL4+B0AB5eXkA/v38yDgYCImqSJg4SFVeXh7u3Llj8LnqYiB888034ePjo3VtTiIiorrAwsIC9evXR3p6OgDA3t7e4CXMTIlSqUReXh7S09NRv359yWNXVPsYCImqKCcnB6mpqbC0LPvrpFQqYW5uXql19upiICwoKNB4NlapVOKff/4xUo+IiIiqn/CYiBAKqWL169fX+/EaqjkMhGSS/P399R7OWZGoqCjk5ORI1qUEgHr16hl8rroYCDlklIiITIGwDrGbmxuKioqM3Z3HnpWVFSuDjwkGQqrThLUiVSmVSqSmplbbNUJCQiTbFy9eBACDniGoy88Q6hoyOmrUKCP1iIiIqOZYWFgw6NAThYGQ6rTk5GQcOnQI5ubm4j6lUomwsLAau+Y777wDAAatdViXnzOYP3++1v0RERG13BMiIiIiUmdecROiJ9f06dPh6OiIZs2aiS9vb28xtNUE4VnC4uJig4+tixXC/fv3o2vXrujRowe2bt0q7g8MDDRir4iIiIgIYCCkOi48PByurq7itlwuBwAMGzasxq75yy+/AKhchbAuBsKPPvoI+/btw4EDB5CUlIRJkyahtLRUnGqaiIiIiIyHgZBMytChQ2v8GkKoMyQQqh9blwhTcdvb2yM6OhqdOnVCcHAwcnNzjd01IiIiIpPHZwjJpNRm4GKFsEyDBg3QoUMH2NvbIyIiAmPGjEGzZs0wePBgY3eNiIiIyOSxQkgmZefOnTV+jaqEuroYCNPT03HkyBFxyOj48ePh5+eHzp07G7trRERERCaPFUIyKc7OzsjOzoaDgwOnhK4lwpBRAIiOjoaPjw+Cg4Px+++/G7djRERERMRASKZHJpPhrbfewqpVq2rk/JWp8tXlIaMPHz7EhAkTIJPJxG17e3vk5OQYuWdERERExEBIJmn79u01FggFlQl3dTEQPnjwAMOHDxe3e/fuDUdHR/z1119G7BURERERAQyEZKIUCkWNnZsVQqk333wTPj4+cHNzk+wfNWqUkXpERERERAIGQqrTunTponV/ZRaNr0l1ORDOnz9f6/6IiIha7gkRERERqWMgpDotJycHqampsLT894+6mZkZzM1rboJdzjKqn3v37sHT09PY3SAiIiIyaVx2guq0qKgorZOXWFlZGaE3pmn8+PGwtbWFvb09Bg0aJO5v27atEXtFRERERAADIdVxISEhcHZ2rtVrskIo9e233yIzMxN5eXlwcHBAkyZN8Pfff+Phw4fG7hoRERGRyWMgJJNUG88Qqoe7ESNG6Gxbl58hzM/PR/PmzfHMM88gPz8fmZmZcHNzQ1FRkbG7RkRERGTy+AwhmaSaDF4ffPABACArKwszZswQr5eYmKjzmLocCEtLSzFjxgy0aNEC//3vf7Ft2zZ8/fXX2Llzp7G7RkRERGTyGAiJqtl3330HALCzs0NgYKC4//DhwxUeWxcDoZeXF8LCwuDm5oYdO3bg0aNH2LlzJxwcHIzdNSIiIiKTx0BIVM1GjRqFRYsWwdbWFn5+fpL9FamLgTAkJAQNGjQAAGzevBn169cHUBaYiYiIiMi4+AwhUTWbM2eO1v2muu7esmXLYGFhIW4LPz/99NPG6hIRERER/Q8DIZmkx60SV5efIVR369YtAOCkMkRERESPAZMLhEePHsXgwYPh6ekJMzMz/PDDD+J7RUVFmDlzJnx9feHg4ABPT0+MGjUK9+7dk5yjoKAAkyZNgqurKxwcHDBkyBDcuXNH0iYrKwthYWGQyWSQyWQICwuDXC6XtLl16xYGDx4MBwcHuLq6IiIiAoWFhTV161RLKhPqTCkQChgIiYiIiIzP5ALhw4cP8eyzz2LlypUa7+Xl5SElJQVz5sxBSkoKdu7ciT///BNDhgyRtJs8eTJ27dqFrVu34vjx48jNzUVQUBBKSkrENsOHD8e5c+cQFxeHuLg4nDt3DmFhYeL7JSUlCAwMxMOHD3H8+HFs3boVO3bswNSpU2vu5kn0uAavx7VfVfH999+jY8eOGDlyJDZu3IgOHToAAP755x/jdoyIiIiIAKUJA6DctWtXuW2SkpKUAJQ3b95UKpVKpVwuV1pZWSm3bt0qtrl7967S3NxcGRcXp1Qqlco//vhDCUB58uRJsc2JEyeUAJSXLl1SKpVK5d69e5Xm5ubKu3fvim2+/fZbpY2NjVKhUOh9DwqFQgnAoGNMHQClmZlZjZ3/hx9+UAJQWltbK7/99ltx/0svvaTzmL59+yoBKH///fca65exdOnSRfnw4UNlWlqa0sPDQ3nnzh0lAKW5ubmxu0ZERESPKX7HrT0mVyE0lEKhgJmZmTgz4pkzZ1BUVAR/f3+xjaenJ9q1ayeuM3fixAnIZDJ07dpVbNOtWzfIZDJJm3bt2sHT01NsM3DgQBQUFODMmTM6+1NQUIDs7GzJix4vUVFRAICGDRsiKSkJkyZNQmlpKfLy8ozcM+O4ePEi+vTpg8GDB6OwsFCsuJeWlhq5Z0RERETEZSfK8ejRI7z//vsYPnw4nJycAABpaWmwtraGs7OzpK27uzvS0tLENm5ubhrnc3Nzk7Rxd3eXvO/s7Axra2uxjTYLFizAvHnzqnRfVLNDM4VZNM3NzREdHY0NGzYgODgYubm5Ru2XsVhaWuLYsWOwsbEBAOTk5MDJyUky8ygRERERGQcrhDoUFRXh9ddfR2lpKb788ssK2yuVSnFiEACSn6vSRt2sWbOgUCjE1+3btyvsG9UuX19fyfaYMWMwZcoU5OTk6DymLk8qs27dOkl1VLjHZs2aGatLRERERPQ/DIRaFBUVITQ0FNevX8f+/fvF6iAAeHh4oLCwEFlZWZJj0tPTxYqfh4cHHjx4oHHejIwMSRv1SmBWVhaKioo0KoeqbGxs4OTkJHnR42Xx4sUa+/r27YtLly4ZoTfGFxISIqmo//nnnwCAevXqGatLRERERPQ/DIRqhDB45coVHDhwAA0aNJC836lTJ1hZWWH//v3ivvv37+P8+fPo0aMHAKB79+5QKBRISkoS25w6dQoKhULS5vz587h//77YJj4+HjY2NujUqVNN3iI9xupihVDdlClTjN0FIiIiIvofk3uGMDc3F1evXhW3r1+/jnPnzsHFxQWenp549dVXkZKSgp9//hklJSViFc/FxQXW1taQyWQYO3Yspk6digYNGsDFxQXTpk2Dr68v+vfvDwDw8fHBoEGDMG7cOKxevRoAMH78eAQFBaF169YAAH9/fzzzzDMICwvDkiVLkJmZiWnTpmHcuHGs+j3hhFBXmXBnCoHQysoKALjmJhEREdFjwOQqhKdPn0bHjh3RsWNHAGXVio4dO2Lu3Lm4c+cOfvrpJ9y5cwcdOnRAo0aNxJcwOygAxMTE4OWXX0ZoaCh69uwJe3t77N69WzJJxpYtW+Dr6wt/f3/4+/ujffv22LRpk/i+hYUF9uzZA1tbW/Ts2ROhoaF4+eWX8dlnn9Xeh0E1qrCwEAcOHEBKSkqF4acuP0OobseOHQCAO3fuGLknRERERGRyFcI+ffqU+6Vbny/ktra2WLFiBVasWKGzjYuLCzZv3lzueZo2bYqff/65wuvRk2Xr1q0AgLy8PCQkJEAulyMlJQUTJ07EyJEjjdy72telSxfJdklJCQCY7DIcRERERI8TkwuERDVtw4YNAID69etj/vz5AIDi4mL06dOnwkBYFyuEOTk5SE1NhaVl2f9usrKy4OLiAnt7eyP3jIiIiIhMbsgombbaCFy2trYa10xISNDYr6ouDxmNioqSLLkh3GPDhg2N1SUiIiIi+h9WCMmk1EbgWrVqFZ555hmkp6ejW7dusLKywvPPP1/hEOK6KiQkROt+LjtBREREZHwMhETVzM3NDUBZBezkyZMGHVsXK4TqTOEeiYiIiJ4UHDJKJuVxDSN1ecioLrdu3TJ2F4iIiIhMHiuERNWsKqGuLgbCGTNmSLbz8/MBcJZRIiIioscBAyGZlNoMXHUx3FXGli1bEBsbK27L5XKsXLlSsm4nERERERkHAyGZlNoIaawQSr355pvw8fERn63MyMgwco+IiIiISMBASPQYqMvPEBYUFOCzzz4Tt4WhosIC9URERERkPJxUhkyKMSuEI0aMqPFrP462bNmCwMBA8dW/f38A4JBRIiIioscAK4RE1ezjjz8GACgUCnFCFaVSicTExAqPrYsVQvUho+np6QCA+vXrG7FXRERERAQwEJKJqY3AtWPHDgCAra0tAgMDxf2HDx/WeUxdHjI6f/58ybZwjw0aNDBGd4iIiIhIBYeMkkmpjcD1n//8BwBgbW0NPz8/8TVq1Kgav/bj6Pvvv0fHjh0xcuRIbNy4ET179gQAZGdnG7lnRERERMQKIVE1mzFjBmJiYjT2R0REVHhsXawQLl26FL/++itycnLQoUMHJCQkoHXr1vjnn3+M3TUiIiIik8dASCblcQ1cdXnIqJ2dHezt7WFvb49+/frB0dHR2F0iIiIiov9hICST8rgHrse9f5Vhb2+PDh06oF27dhgwYAB69eoFoG7eKxEREdGThoGQqJox6Ej9888/SExMFIeM/vjjj+jatauxu0VERERE4KQyZGJqI6wlJCQAAP7++29s3bpV3K8646gudTFMCkNG3d3d0a9fP7z33nsA/h0mS0RERETGw0BIVM0+++wzAICLiwuSkpIwadIklJaWIi8vT+cxdfkZwg4dOqCkpAQAsHnzZvEeVRemv3fvnlH6RkRERGTqGAjJpNRG4BKCjpmZGaKjo9GpUycEBwcjNze3xq/9OFq2bJkk/L3yyisAyham37t3L/bs2YPg4GDs3bvXWF0kIiIiMlkMhGRSaiMQPvPMM5LtMWPGYMqUKcjJyanw2LpYIVT3/vvvAwDy8/ORnJyM06dPQy6X4/Tp00buGREREZHpYSAkqmaffPKJZFsul6NNmzY4e/aszmPq8pBRdc899xwAoLCwEP7+/vjoo4/QqlUrzJ0718g9IyIiIjI9DIRkUmojcKlfY+jQofD09MRLL71k8LF10f/93/8BABo2bIiDBw8iNDQUcrncuJ0iIiIiMlFcdoKohgkh78iRIzrbmNKMmzKZDACQlpaG2bNnIzs7G5cuXTJyr4iIiIhMk8lVCI8ePYrBgwfD09MTZmZm+OGHHyTvK5VKREZGwtPTE3Z2dujTpw8uXLggaVNQUIBJkybB1dUVDg4OGDJkCO7cuSNpk5WVhbCwMMhkMshkMoSFhWlUQW7duoXBgwfDwcEBrq6uiIiIQGFhYU3cNv2PMSqEO3furPSxdUGXLl0kryFDhgAoe4YQAJycnNClSxdjdpGIiIjIZJlcIHz48CGeffZZrFy5Uuv7ixcvRnR0NFauXInk5GR4eHhgwIABkglBJk+ejF27dmHr1q04fvw4cnNzERQUJE6tDwDDhw/HuXPnEBcXh7i4OJw7dw5hYWHi+yUlJQgMDMTDhw9x/PhxbN26FTt27MDUqVNr7ubJKIHL2dlZ77Z1MRDm5OQgMTERSUlJSEpKwo8//ggAsLGxMXLPiIiIiMjkhowGBAQgICBA63tKpRLLli3Dhx9+iKFDhwIANm7cCHd3d8TGxmLChAlQKBRYt24dNm3ahP79+wMoW1vNy8sLBw4cwMCBA3Hx4kXExcXh5MmT6Nq1KwBg7dq16N69Oy5fvozWrVsjPj4ef/zxB27fvg1PT08AwNKlSzFmzBh8+umncHJyqoVPg2qCEOrqYrirjKioKOTk5GgE49LSUiP1iIiIiIgEJlchLM/169eRlpYGf39/cZ+NjQ38/PyQmJgIADhz5gyKiookbTw9PdGuXTuxzYkTJyCTycQwCADdunWDTCaTtGnXrp0YBgFg4MCBKCgowJkzZ2r0Pk1ZbYa0oqIiHDhwACkpKXofUxdD5IIFCzBw4EBxyKjwd6eoqEjSTvXvFBERERHVDpOrEJYnLS0NAODu7i7Z7+7ujps3b4ptrK2tNaod7u7u4vFpaWlwc3PTOL+bm5ukjfp1nJ2dYW1tLbbRpqCgAAUFBeJ2dna2vrdHtWTHjh0Ayp6RS0hI0GsGzbq87EROTg5SU1NhaVn2vxtXV1cAZfccGhoKoOy+U1NTjdZHIiIiIlPFQKiF+oyPSqWywlkg1dtoa1+ZNuoWLFiAefPmldsX0q02AldsbCyAsslS5s+fDwA6n1k1BepDRnNzcwGU/SPKkiVLAJT9XlSfsSUiIiKi2sEhoyo8PDwAQKNCl56eLlbzPDw8UFhYiKysrHLbPHjwQOP8GRkZkjbq18nKykJRUZFG5VDVrFmzoFAoxNft27cNvEvTVhuBUH2yFEOuWRcrhCEhIZKK+gcffACgLDA3a9YMzZo1g7e3N9555x1jdZGIiIjIZDEQqmjevDk8PDywf/9+cV9hYSESEhLQo0cPAECnTp1gZWUlaXP//n2cP39ebNO9e3coFAokJSWJbU6dOgWFQiFpc/78edy/f19sEx8fDxsbG3Tq1ElnH21sbODk5CR5Uc0aMWKEQe1jYmIAAJmZmejWrRt69+5d4TF1ecioupEjR2rdP2zYsFruCRERERGZ3JDR3NxcXL16Vdy+fv06zp07BxcXFzRt2hSTJ09GVFQUWrVqhVatWiEqKgr29vYYPnw4gLJFtceOHYupU6eiQYMGcHFxwbRp0+Dr6yvOOurj44NBgwZh3LhxWL16NQBg/PjxCAoKQuvWrQGUTaDxzDPPICwsDEuWLEFmZiamTZuGcePGMeTVoPIC14wZM7S2FyYC0pfwjJyzszNOnjwJQP+F500hEApM6V6JiIiIHlcmFwhPnz6Nvn37ittTpkwBAIwePRobNmzAjBkzkJ+fj/DwcGRlZaFr166Ij4+Ho6OjeExMTAwsLS0RGhqK/Px89OvXDxs2bICFhYXYZsuWLYiIiBBnThwyZIjkOTILCwvs2bMH4eHh6NmzJ+zs7DB8+HB89tlnNf0RmLTyQsiWLVvE5/9UHT58uCa7BED/wFgXMAgSERERPT5MLhD26dOn3C+kZmZmiIyMRGRkpM42tra2WLFiBVasWKGzjYuLCzZv3lxuX5o2bYqff/65wj5T7XjzzTfh4+OjMUPsqFGjDDpPVQKPKYWlR48e4cCBA3BxcUG7du1gbW1t7C4RERERmRyTC4Rk2soLXMKMoOoiIiJqqjsaTCEQ7tq1CwCgUCjEZTlSUlIwceJEnc8XEhEREVHNYCAkqmamEOqq4ttvvwVQtuyEEMKLi4vRp08fBkIiIiKiWsZZRsmkVCasGTrLaFWYQpi0tbUF8O+9KpVKJCQkiPuJiIiIqPawQkgmpTZmGVUNOvoypWUnFi9ejF69euHWrVvo1q0brKys8Pzzz1f4zC0RERERVT8GQqL/0TXLqLB0SE0ypUDYsGFDAGWTKgnLchARERGRcTAQkkkpL3DJZDIsXbpUMnSxMgHNFEJdVfDzISIiInp8MBAS/U9+fj6WL18Oc/N/H61VKpVIS0urtT4wLBERERFRbeKkMmRSygtc06dPh6OjI5o1aya+vL298c4771TbNWry2CfFqVOnAADp6emIj49Hx44d0adPH5w4ccLIPSMiIiIyPawQkkkpL3CFh4dLtuVyOerXr49hw4bVdLfEZwhNwdKlSwEATk5OGD16NJKTk6FQKPD222/jyJEjxu0cERERkYlhhZBIh6FDh1bquMrMMqp+bF2Wn58PoGztQTc3N/z2228YM2YMsrKyjNwzIiIiItPDQEgmxZDAJbT19/evqe7ovGZddvPmTQDAo0ePMHToUJw+fRpyuRzZ2dlG7hkRERGR6eGQUaL/CQ0NlWzLZDK89tprSE1NNVKP6qZff/0VnTt3RmFhIfz9/dG9e3ecOnUKP/30k7G7RkRERGRyGAjJpJRXgUtOTsahQ4c0ZhkNCwurtmvU5LFPCjs7OwCAu7s7Dh48iJiYGMjlclha8n9HRERERLWN38DIpOgzy6irq6tkv6GzjFaGKS1MLzA3N8fs2bORnZ2NS5cuGbs7RERERCaJzxAS/U94eLhGGAQAPz8/g85TmVBnSoEwKSkJAJCRkYH4+Hj4+flhxowZXHaCiIiIyAhYISSTUpnANWrUKMTHx9fKtQxVXFz8xA21nD9/PgAgLy8Pw4YNQ2pqKuzt7dGqVSv8888/Ru4dERERkWl5sr5JEtWgLl26aOxTKpW4cuWKQeep6WcIU1NTMXPmTPG5u6KiIri6uiIqKgq+vr6VvnZtSU9PBwA0adIERUVFWLRoEZYvX47S0lIj94yIiIjI9DAQkkkpL3Dl5OQgNTVVo+LWu3fvmu6WSJ9AGB4ejtjYWHh5eYn7bt26hREjRuDYsWM12b1qYWVlBaDsGcJbt25hw4YNGDx4MHJycozcMyIiIiLTw0BIJqW8wBUVFYWcnBw4OztL9gsLqVfHNXQRniHUR0lJCWQymWSfk5MTSkpKDL6uMTg6OkIulyMtLU1c6iM3N9fIvSIiIiIyTQyERP+zYMECLFiwQLKvMkNGq0KfMLlw4UIEBQXB2toaTk5OUCgUKC4uxqJFi2qhh1UnBFcXFxcsWbIECoUCTk5OBi/vQURERERVx0BIJqUyQ0YHDBhQbdeojmN79+6No0ePIj8/H3K5HM7OzrC1ta30NWvb6NGjsWDBAlhZWaFZs2Z48cUXcejQoVpZ3oOIiIiIpLjsBJkUfYaMqps9e3ZNdglA5ZadsLOzQ6NGjZ6oMAgAw4YNk2wXFhZq3U9ERERENY+BkOh/QkJCNJ4fBGpnHUJTIqw3eOfOHWzduhXm5mX/GwoMDDRmt4iIiIhMEgMhmZTaDGuVuZYhx2RmZuLq1avIzMw0+DrGtGrVKgBAo0aNkJSUhGvXrqG0tBR5eXlG7hkRERGR6eEzhETVrCqzjOpz7MGDBzF37ly4urrCyckJcrkcWVlZmDdvHvr162fwtWubUBE0NzdHdHQ0nnrqKQQHB3OmUSIiIiIjYIVQTXFxMWbPno3mzZvDzs4OLVq0wMcffyxZNFupVCIyMhKenp6ws7NDnz59cOHCBcl5CgoKMGnSJLi6usLBwQFDhgzBnTt3JG2ysrIQFhYGmUwGmUyGsLAwyOXy2rhNk2VIWJPL5di1axdGjBhRgz0y3Ny5cxEXF4cff/wRmzZtwu7du7F3717MnTvX2F3TS+vWrQH8G4LffvttTJkyBVlZWcbsFhEREZFJYoVQzaJFi/DVV19h48aNaNu2LU6fPo033ngDMpkM7777LgBg8eLFiI6OxoYNG/D000/jk08+wYABA3D58mU4OjoCACZPnozdu3dj69ataNCgAaZOnYqgoCCcOXMGFhYWAIDhw4fjzp07iIuLAwCMHz8eYWFh2L17t3Fu3gSUFwhnzJgh2Y6Li0NqaiqaNm1abdeojmPNzc2RkZEh/lkDgIyMDLHy9ribMWMGvvvuO8m99u3bFy1atDBir4iIiIhMEwOhmhMnTiA4OFic4MLb2xvffvstTp8+DaDsC/uyZcvw4YcfYujQoQCAjRs3wt3dHbGxsZgwYQIUCgXWrVuHTZs2oX///gCAzZs3w8vLCwcOHMDAgQNx8eJFxMXF4eTJk+jatSsAYO3atejevTsuX74sVlGo9mzZsgWxsbHidkpKCoCyRd9riz6BcM2aNZg6dSrS0tKgVCphZmaGRo0aYc2aNbXQw6oT1hu8ffs2WrduDUtLS9ja2uKvv/4ycs+IiIiITA8DoZpevXrhq6++wp9//omnn34av/32G44fP45ly5YBAK5fv460tDT4+/uLx9jY2MDPzw+JiYmYMGECzpw5g6KiIkkbT09PtGvXDomJiRg4cCBOnDgBmUwmhkEA6NatG2QyGRITE3UGwoKCAhQUFIjb2dnZ1fwJ1G3lBa4333wTPj4+cHNzA4BKB6yanrjGx8cHu3btqtFr1KT09HQAZctmhIaGQi6XIyUlBU2aNDFyz4iIiIhMDwOhmpkzZ0KhUKBNmzawsLBASUkJPv30U/znP/8BAKSlpQEA3N3dJce5u7vj5s2bYhtra2uNJQzc3d3F49PS0sTgocrNzU1so82CBQswb968yt8g6VRQUIDPPvtM3D579iwAVPq5zpqeZXTEiBHYsmWLwdcwtnr16uHvv/+Gi4sL5s+fD6Ds2V1fX18j94yIiIjI9DAQqvnuu++wefNmxMbGom3btjh37hwmT54MT09PjB49WmwnTIghEIbulUe9jbb2FZ1n1qxZmDJliridnZ0NLy+vCu+LypQXuNSHjJ49exYXL15E/fr1q+0alTlW/dlGoV1iYmKlr2NMbm5uuHHjBoqKigAAFy9exL1798TKIRERERHVHgZCNdOnT8f777+P119/HQDg6+uLmzdvYsGCBRg9ejQ8PDwAlFX4GjVqJB6Xnp4uVg09PDxQWFiIrKwsSZUwPT0dPXr0ENs8ePBA4/oZGRka1UdVNjY2sLGxqfqNmihDhoyuXbsWAPDyyy/XeL/KW3ZCPagKDh8+DKDsWTwrKys4ODhIJpp5XAkV17t376JevXp49OgRGjRoIAZEIiIiIqo9T8a0hLUoLy9PY7ZGCwsLcdmJ5s2bw8PDA/v37xffLywsREJCghj2OnXqBCsrK0mb+/fv4/z582Kb7t27Q6FQICkpSWxz6tQpKBQKsQ3Vrvnz52sdxjtq1CiDzlPdzxAKQdXPzw9+fn64efMm3nnnHTx48AALFy5E06ZN0ahRIwQHB1frdWtKYWEhAMDFxQW5ubno168fHjx4IHmeloiIiIhqBwOhmsGDB+PTTz/Fnj17cOPGDezatQvR0dEICQkBUFbJmTx5MqKiorBr1y6cP38eY8aMgb29PYYPHw4AkMlkGDt2LKZOnYqDBw/i7NmzGDlyJHx9fcVZR318fDBo0CCMGzcOJ0+exMmTJzFu3DgEBQVxhtEaZEhYE6p2Y8aMqaHeaNLWP/WgumrVKqSkpOD27duwt7cv99jH0cSJEwFArAju2rUL/fr1w/jx443ZLSIiIiKTxCGjalasWIE5c+YgPDwc6enp8PT0xIQJEySLfs+YMQP5+fkIDw9HVlYWunbtivj4eMlwvZiYGFhaWiI0NBT5+fno168fNmzYIK5BCJQNBYyIiBBnIx0yZAhWrlxZezdLEqGhoZLtU6dOAQD+/PNPg85Tlclk9F2H0MrKCgAQEREhro/5999/G3xdY+jTpw+AfwPh9u3bcejQITz//PN47bXXjNgzIiIiItPDQKjG0dERy5YtE5eZ0MbMzAyRkZGIjIzU2cbW1hYrVqzAihUrdLZxcXHB5s2bq9BbMlR5gSs5ORmHDh0ShwxPnjwZt27dMnhhen2uVRWBgYG4ceMGvL29JfsbN25cI9erbsLnUlxcDADl/l0jIiIioprFIaNkUsoLadOnT4ejoyOaNWuGZs2aoV69egCA3NzcKl1Dn2BoSIXwgw8+gLe3N0aMGCHZHxcXZ0AvjU8IhELVvKJZeomIiIio+rFCSPQ/R44cwZEjR8TtkydPAgAyMzOrdN6qBsLQ0FAcO3YM5ubmeO655+Dj4wOlUvnELk6vfo+LFy/Giy++aKTeEBEREZk2BkIyKYYMGe3cuTMAGLzOoyHVPn388MMP2LVrFywtLbFu3TpcvXoVkyZNwldffVUt569tuj4XVgiJiIiIah8DIdH/CENGXV1dAUAMhsKalJVV1Qqhh4cHOnfuDDc3NwwcOBAbNmxAdHS0ZI3LJ9mTMjsqERERUV3EZwjJpJQXPsLDw8UwCPw7G+bAgQNr7JrqbbS1DQ4ORl5enrg9ZswYTJkyRbLkxJNE1zOWrBASERER1T5WCMmkGFKNsrGxMfiYyrSv6FhtM9X27dsXly5dqvR1HkcMhERERES1jxVCIh2EgFJaWlql8xhSITQFlZmFlYiIiIhqBgMhmZTKhI/Lly9X6hqGXKu6J6J5ErFCSERERFT7GAjJpFQmcL311luVuoYQcCoTDFXt378fXbt2RY8ePbB161Zxf//+/Q3q1+PClEMvERER0eOGzxAS/Y+wEL3g0aNHAIDs7GyDzlOVhem1+eijj7Bv3z5YW1tj9uzZ+PXXX7F8+XKkpKQY1K/HwdmzZzFjxgxjd4OIiIiI/oeBkExKecGrqKgICoUCtra2AIA33ngDGzZsgJOTk85jiouLYWlZfX+NtPUvNTUV/v7+4vbff/+NTZs2ITc3t9quW1siIiLQv39/nDhxAgAwYcIEHDx4EABw584dY3aNiIiIyCQxEBL9z+TJk3H//n00b95csv/NN9+UbKempmLmzJmQy+WwtLREUVERXF1dERUVBV9f3ypVCLW1tbS0RGxsLFq2bCnuO3z4MIKCgvS+t8eFmZkZduzYIW7Hxsbi+eefx19//YXDhw8bsWdEREREpomBkExKeeFs0aJFku3bt28DAEJDQyX7w8PDERsbCy8vL3HfrVu3MGLECBw7dqzaA+HXX3+NBg0aSPb17dsXe/furfC8jxs3Nzf8/fff4nbnzp3RuXNnHDlyBObmfKSZiIiIqLbxGxiZFEMmNDl27JjWY0pKSiCTyST7nJycUFJSImlfXbNmhoSEwNnZWdwW1h/08/OrlvPXpu3bt4vrOwLA+++/L1YMhWc2iYiIiKj2MBAS6aBrHcKFCxciKCgI/fv3x9ChQ9GvXz8EBwdrVBgNWUrCkLbh4eF69b+2fPvtt3B3d4enpydWr14t7n/66ae1ti8oKBB/Hj16NCIjIwEA1tbWNdpPIiIiItLEIaNkUgypEA4fPhzr16/XOKZ37944evQo8vPzIZfL4ezsLE5Eo+0a1R0IraysAABpaWnw8PCosH1Ne+utt7Bz507Y2Njg9ddfx969e/Hjjz8iIyNDa3vV4Ofj4wNXV1cA4JBRIiIiIiPgNzCiCugKaXZ2dmjUqJEkDKq2r6mF1vft2wcAGDVqVI2cvzL69euHXr164c6dO1AoFGjTpo1GZVXg4uIi/nzo0KHa6iIRERERacEKIZkUQyqElVlYvrLXLK9C2KVLF63tr1y5UqV+VRdHR0ccP34cvXr1AgAcOXIEEydOxFdffaXR9vvvvxcn6wGA1q1bi/ccFhZWOx0mIiIiIhErhGRSKhPuDD2mKtfQdmxOTg4SExORlJQkvpKTk9G5c2eDr1MT7ty5I4ZBwapVq7Tey9KlSzFmzBhxe+bMmfjss88AAFu3bq3RfhIRERGRJgZCIh10TSqzf/9+dO3aFT169JCEmMDAQACVe4awPFFRUcjJydHYP3v27Cqd1xjs7OwQGxsrbp8/fx5r164FABQVFRmrW0REREQmi4GQTEp1VAg/+ugj7Nu3DwcOHEBSUhImTZqE0tJS5OXlaW1f1SGj6stOCJ7EZSc6dOggmTwmOjoazZs3BwAUFhYaq1tEREREJouBkKgC6iHNwsIC9evXh729PaKjo9GpUycEBwcjNze3yteoajXxcbds2TI4OjqK21u3bsWgQYMAQOespERERERUcxgIyaRUR4WwQ4cOuHHjhrg9ZswYTJkyRRzWWZUho4a0HTFihN5tjaFBgwZa9ysUCvHnpKQkfP755wCAxo0b10q/iIiIiOhfnGWUTEplAqH6M4QrVqzQaNO3b19cunRJ6zUMGTKqzYwZM7S2T0xMrPC8tcHLy0tjn1KphFwu19pefciocDyHjBIRERHVPgZCIh0qu+xEZdYhLG/I6JYtWyQTsQgOHz5sUL9qSlpaGg4ePAgLCwtxn1KpFCfZUeft7Y3z588DAFJSUlC/fn3cuXOHgZCIiIjICDhkVIu7d+9i5MiRaNCgAezt7dGhQwecOXNGfF+pVCIyMhKenp6ws7NDnz59cOHCBck5CgoKMGnSJLi6usLBwQFDhgzBnTt3JG2ysrIQFhYGmUwGmUyGsLAwnVUVqh61seyE+nFVHTL65ptvwsfHB35+fpLX4+KVV16Bu7s7evbsKb569eolWV5CsGnTJly7dk3cXr9+vRgE33333drqMhERERH9DyuEarKystCzZ0/07dsXv/zyC9zc3PDXX3+hfv36YpvFixcjOjoaGzZswNNPP41PPvkEAwYMwOXLl8UJMyZPnozdu3dj69ataNCgAaZOnYqgoCCcOXNGrKQMHz4cd+7cQVxcHABg/PjxCAsLw+7du2v9vkk3bSGtoKAAFy5cQGZmJlxcXNCuXTtYW1vrbF+Za6heS1irT7X9P//8Y/B1aoL6+oFyuRz169fH8uXLNdquXr0aS5cuRUBAAICy4bc//PADQkJCaqWvRERERCTFQKhm0aJF8PLywvr168V93t7e4s9KpRLLli3Dhx9+iKFDhwIANm7cCHd3d8TGxmLChAlQKBRYt24dNm3ahP79+wMANm/eDC8vLxw4cAADBw7ExYsXERcXh5MnT6Jr164AgLVr16J79+64fPkyWrduXXs3XcedPXsWc+bMgZWVFfz9/cX9Y8eOxbp16yo8Xj2sbdq0CatWrULnzp3h5OQEuVyOlJQUTJw4ESNHjtQYMlrVCuHjPmRU3dChQ3Ho0CGt79nZ2eH3338Xt5VKJVJTUwEYNsSWiIiIiKoHA6Gan376CQMHDsRrr72GhIQENG7cGOHh4Rg3bhwA4Pr160hLS5MECxsbG/j5+SExMRETJkzAmTNnUFRUJGnj6emJdu3aITExEQMHDsSJEycgk8nEMAgA3bp1g0wmQ2Jios5AWFBQgIKCAnE7Ozu7uj+COiciIgLr16+HpaUl3njjDXG/6tBFbXQtTL969WocP35cMjlKcXEx+vTpIwmEgqquQygMGXVzc5PsHzVqVIXnNYby7nfTpk2YOHGiuN27d29xjcX79+9rtL937x48PT2rv5NEREREBIDPEGq4du0aVq1ahVatWmHfvn146623EBERgW+++QZA2QQaAODu7i45zt3dXXwvLS0N1tbWGouJq7dR/4IPAG5ubmIbbRYsWCA+cyiTybTO8EhSZmZmaNmyJby9vfHxxx+L+4uLi/U6/uOPP0ZISIg4q6ednR2CgoLE95VKJRISEmBra1vpPpYXCOfPn6/1z0pERESlr1eTdu7cCQDiMhyqPDw88NZbb4nbCQkJYkhfu3Yt9u7dK7727NmD4OBg7N27t3Y6TkRERGSCGAjVlJaW4rnnnkNUVBQ6duyICRMmYNy4cVi1apWknfrwNqVSWeGQN/U22tpXdJ5Zs2ZBoVCIr9u3b+tzWybNzc1NXDdQNXAlJyfrdfzYsWMRExODmJgYREdHY9OmTfj999/Rs2dPdOvWDb1798bPP/+MzZs3a1xD27ah9u/fj65du6JHjx6S5/V0zeJZ27755hv4+vriueeew8KFC8V/CAkODtbaXnW/o6Mj/vOf/wAoW3Zi5cqVOH36NJKTk3H69GnI5XKcPn265m+CiIiIyEQxEKpp1KgRnnnmGck+Hx8f3Lp1C0BZhQOARhUvPT1drBp6eHigsLAQWVlZ5bZ58OCBxvUzMjI0qo+qbGxs4OTkJHlR+bZv3y4+B6oazh49elTucUIw9/DwgLe3N7Zt24bs7GzMmTMHzZs3x6+//oqTJ0/i2LFjiImJEf9sVPeQ0Y8++gj79u3DgQMHkJSUhEmTJqG0tBR5eXkVnrc2rFq1CikpKUhJSYG9vT1effVV5OXl6bzvkpIS8WeFQiEGaVtbW7zwwgu4dOkS/P398dFHH6FVq1aYO3durdwHERERkSliIFTTs2dPXL58WbLvzz//RLNmzQAAzZs3h4eHB/bv3y++X1hYiISEBPTo0QMA0KlTJ1hZWUna3L9/H+fPnxfbdO/eHQqFAklJSWKbU6dOQaFQiG3IuIRAqBr+IyMj4efnp3d1UV/lBUILCwvUr18f9vb2iI6ORqdOnRAcHIzc3Nxq7UNlmZubw8rKCkDZMNYJEyYgICBA6z94AMDLL78s/qxUKsVnNPv164dZs2Zh9erVOHjwIEJDQ7kMCxEREVEN46Qyat577z306NEDUVFRCA0NRVJSEtasWYM1a9YAKAsJkydPRlRUFFq1aoVWrVohKioK9vb2GD58OABAJpNh7NixmDp1Kho0aAAXFxdMmzYNvr6+4qyjPj4+GDRoEMaNG4fVq1cDKFt2IigoiDOM1qDKDN9s2LChZHvkyJEYOXKk3teo6pDRBg0aoEOHDrC3t0dERATGjBmDZs2aYfDgwVU6b3Xx9PREmzZtYG9vj9DQULz//vvw9PRE7969tbZ/8803sX37dgBlQ7SFiuELL7wAoGwY6ezZs5GdnY1Lly7Vzk0QERERmShWCNV07twZu3btwrfffot27dph/vz5WLZsGUaMGCG2mTFjBiZPnozw8HA8//zzuHv3LuLj48U1CAEgJiYGL7/8MkJDQ9GzZ0/Y29tj9+7d4hqEQNlyAr6+vvD394e/vz/at2+PTZs21er9mpLMzEzcvXtX3NY3qBka6Kp7yGh6ejqOHDkiDhkdP348/Pz80LlzZ4P6pQ/VP+f6unPnDlJTU8UhowMHDkTz5s3Rvn17re1V71GpVIqTzKj+3QAAJycndOnSxeD+EBEREZH+WCHUIigoSDKLpDozMzNERkYiMjJSZxtbW1usWLECK1as0NnGxcVFfH6Kas7Bgwcxd+5cuLq6Sp67O3DgAAYMGFDh8VUNhIYcU96QUQCIjo6Gj49PlYeMzpgxQ2sfhJlUDaE+ZPTrr79GQEAAMjMzNdqePXtW8vdGqVSKS6eoLuNBRERERLWD38Cozps7dy7i4uLw448/YtasWeL+jz76SK/jqzrks6rHd+jQQZwlFSib5KZjx45VWoNy7dq1WLt2LdatW4eSkhIEBgYiKChI61qAFQkMDJT0z93dHV9++SUaN26s0TYiIkJc0xMAli9fLv4sBMLMzExcvXpVa6AkIiIiourFCiHVeebm5sjIyJAM6RX2l0fXwvQA4O/vj/j4eK3HVXeFUL3KPGXKFAwZMgSffvqpwdcR5OXlYcuWLfDw8MDrr7+Oq1ev4scff6xUle6DDz6QbO/btw8AEBcXp9HWzMwMjRo1ErdVQ+2ff/6Jnj17wtXVFU5OTpDL5cjKysK8efPQr18/g/tFRERERBVjIKQ6b82aNZg6dSrS0tIks1Z+8cUXeh2/bNkycbF1oCy0paam6mxf3c8QqhMqm+rLmhjC1tYWr776KoCyZwD79OmDNm3aiEM/a4qbm5tk9tFZs2ZhwYIFAIBffvkFv//+uyS4Z2dnIyAggIGQiIiIqIYwEFKd5+Pjg127dgGQPjf49NNP63X866+/jpCQEHFbqVQiLCxMZ3sh1AkVRkMqhjXVVp2joyOOHz+OXr16AQCOHDmCiRMn4quvvqr0OfWxfft27N69W9xWvQczMzONSm5GRgafLSQiIiKqQQyEZFJUA4i2oaDa2NraiutQCt555x2DrlWdbT/99FO89NJLePjwod7HqLtz547GvlWrVlXpucTKUL3vV199VazkKpVKcXipsOQLEREREVU/BkIyKepLHpRHqPA5ODhovDds2DC9rqHPdQxtK1TQfvnlF73Pq646Zxk1lPrvICQkBLt27YKbmxsWL15c49cnIiIion8xEJJJKCgowIULF3DmzBlxn74VwsouO2HIkNHyniFUX4tPWG4iLS3NoH6p2rJlC2JjYzX2r169WrJ99uxZzJkzB1ZWVpg+fTp69OgBABg7dizWrVtX6esLlEqlQc9PEhEREVH1YiCkOm/Tpk1YtWoVOnfujIyMDHH/t99+iwkTJlR4fG2uQ6hNTk4OUlNTYWlZ9tf1+PHjeOGFF+Dq6mrwdQQymQzR0dGwsbGR9EEIsYKIiAisX78elpaWmD59Ok6ePIkpU6bg2rVrYhtDQuP333+P999/X9zu3Lkz/vnnH/H6RERERFS7OFsD1XmrV6/G8ePHsXz5cslkMOvXr9fr+MLCQqSkpODAgQNISUlBYWGhQdev6pDRqKgo5OTkaOwvLi42qB+q7t+/jwMHDmDv3r2wt7fHkiVLsGTJEuTl5UnamZmZoWXLlvD29sa2bduQnZ2NcePGSa4dERGBZcuWISYmBjExMYiOjgYASWgULF26FAsXLhS34+Pj0bNnTwC6P6eqVEKJiIiIqHwMhFTn2dnZISEhAYA0dKhWx7QRqmWLFi3Cxo0bkZCQgPXr16Nv377YvHmzzuOqe9mJBQsWYODAgejSpQu6dOmC0aNHA4BkCQ1D5efn4/jx47hx4wZSU1MxePBgNGnSBNbW1pJ2bm5ukkXnIyMj4efnh+TkZHGfPqFRYGdnJ7mGo6OjOIuoriG8o0aNqvR9EhEREVH5OGSU6rxNmzZh4cKFmD17tjg8Eah4HUIhEM6cORPjxo0T9xcXF6NPnz4YOXKk1uOqe2F69SGjnTp1AgC4u7sbfB2BjY0NOnbsCAA4c+YMwsLC0LhxY41227dv19g3cuRIyb0LodHb2xtAWWjcvHkzNm3apHFshw4dUFJSIm4rlUpx+4svvhCXB1F9/8qVK4bfIBERERHphRVCqvM8PDywbNky/Prrr1iyZIm4v2HDhuUeJ4Szy5cvS/YlJCTA1tZW7+tX9dk49SGjQjDs2rVrpc/ZrFkzHD9+XNy+e/cuZs6cWalhqNu3bxfDoGDkyJF49OiRRttly5ZJ1hWUy+Vi8C4sLERiYiKSkpLEV3JyMjp37mxwn4iIiIhIP6wQkkkxZNkJ4f1z586hZ8+eKCkpgZWVFZ5//nmDhowa0i9tx4aEhEi2Y2Ji0LNnTzRp0sTg6wh+//13yXZhYSGmTJmCuLi4Sp+zMt58803IZDIAQP/+/ZGTkwNnZ2dJm9mzZ9dqn4iIiIhMCQMhmRRDFqYX2oaGhmL8+PGVuoa27fKOqa2ZNkNDQyXbly9fxmuvvYbU1FSt7TMzM5GZmQkXFxe4uLhI3jN0aQr134Gw7ePjoxEGAcDPz8+wmyMiIiIivTEQkkmpTCDUd71C9eMMWYewtiUnJ+PQoUPi8M3XX38dS5YskczCCgAHDx7E3Llz4erqCicnJ8jlcmRlZWHevHno168fAP2WplCl+nmsXbsW06ZN09hPRERERLWDgZBMSmUCYWWDSmWWm6jqEhX6mj59OhwdHcW1DPfu3QtnZ2eNiXLmzp2LuLg4ODo6ivuys7MREBAgBkJhllEA2LZtGyIjIzFu3DicO3euwn7IZDIuTE9ERERkRAyEZFIq8wxhRe3i4uJQv359dOvWTWv76h4yamjFUpvw8HDJtjBU87vvvsOECRPE/ebm5sjIyJAEwoyMDMnEMNeuXUNgYCAcHBzEfTdu3NC5LIb674CBkIiIiMh4GAjJpNREhTAgIEBr+5oaMlodgbBFixZIS0uDmZkZXFxc0KhRIyiVSo2q3po1azB16lSkpaVBqVTCzMwMjRo1wpo1a8Q2VlZWWLlypSQkKpVKjeGngqKiIvHn33//XVx2goGQiIiIqPYxEJJJqc1nCCtzTFUqhEJg08f9+/eRmZkJOzs7fP755zh69Ci++eYbeHp6Str5+PhorA2oTn34qeCdd97RaLtp0yZ88skn4vb333+P06dPi/1Xd+/ePY0+EREREVH14TqEZFIqM2T0q6++QkhICBITE8X3xo4dW6lrVkdbYV3E3bt3V7pPzZo1E9cJjIiIwIQJExAQEICCggK9zyEIDw+XhEFhqOiwYcM02q5evRoff/yxuB0ZGYmOHTsCAK5cuYK9e/eKrz179iA4OBh79+41uE9EREREpB9WCMmkVKZCGBISgv/+9796zaCpfg1t2+Udo0/blStXAgB69+6NmJgYcX95fVKXnp6ORo0awcLCAi4uLqhfvz6USmWlAqG6oUOH4tChQ1rfs7Ozw4ULF8Tt0tJSZGVlAQB++uknKBQKdOvWTfwc5HI5Tp8+jZdeeqnK/SIiIiIiTawQkkmpTCB0dXWFt7c3tm3bhuzsbIwbNw7FxcV6XaMy/dKXk5MTtm3bJm6X1yd1+fn5yMrKwsOHDzF9+nTcvXsXSUlJqF+/vl7H5+Tk6HxPuBd/f3+N9zZt2iQOEQXKlrv4559/AAATJ07ECy+8gEuXLsHf3x8fffQRWrVqhblz5+p9X0RERERkGAZCMimVCYRCYAHKhjj6+fkhOTlZr2to29a3f7rIZDKt+1WDVkXUh4wWFRUhICBAIxB+88038PX1xXPPPYeFCxeK+4ODg8WfQ0NDJS+ZTKZzkXsPDw+MHj1a3P7222/x1FNPASibnGbWrFlYvXo1Dh48iNDQUJ0zlRIRERFR9eCQUTIphjxDKFAPSSNHjtRYr6+qDBky+sEHHyAwMFBjvzD0Uh+jRo2CQqEQl5vo0aMHoqOjMXXqVEm7VatWISUlBVZWVvj888/x6quv4ptvvpH0U32Re+E+dM0yqqq0tFTj3h0dHTF79mxkZ2fj0qVLet8TERERERmOFcIKLFiwAGZmZpg8ebK4T6lUIjIyEp6enrCzs0OfPn0kz0UBQEFBASZNmgRXV1c4ODhgyJAhuHPnjqRNVlYWwsLCIJPJIJPJEBYWxopIDauNhemr8gyhPsqbZVRfH3zwAby9vcXt5cuXo23btoiLi5O0Mzc3h5WVFYCySuJbb72FgIAA/P3332IbYZbRZs2aiS9vb2+ts4yq97O8dQidnJzQpUsXAMDZs2cRFBRUpcl9iIiIiEgTA2E5kpOTsWbNGrRv316yf/HixYiOjsbKlSuRnJwMDw8PDBgwQPJc1eTJk7Fr1y5s3boVx48fR25uLoKCgsQ11wBg+PDhOHfuHOLi4hAXF4dz587pVVWhyntcA6EhbYV+q7etyvqE6gvVCwIDA3Hjxg1xu3///vjyyy/RuHFjybGqs4zeu3cPf/zxh86JYCqzMH1ERASWLVuGmJgYxMTEIDo6GoBhE+kQERERkSYGQh1yc3MxYsQIrF27VhxWB5R9aV22bBk+/PBDDB06FO3atcPGjRuRl5eH2NhYAIBCocC6deuwdOlS9O/fHx07dsTmzZuRmpqKAwcOAAAuXryIuLg4/N///R+6d++O7t27Y+3atfj555/FZQWo+qmGJn2XnaiNBdOrax3CyhKqgOrUK4kANCqJ6s8Zent7o23btpLnDHXRFggzMzNx9epVZGZmiu3MzMzQsmVLgyb3ISIiIqKKMRDq8PbbbyMwMBD9+/eX7L9+/TrS0tIkMyja2NjAz89PHMp25swZFBUVSdp4enqiXbt2YpsTJ05AJpOha9euYptu3bpBJpNJhsRR9aquhem1zaCp7Rratss7Rp+2Z8+eBVC2qPvWrVvF/a+++mqFx+qyb9++Sh8rPGeYkpICe3t7FBUVAdB9L7oqhDdu3EDPnj3xxhtvYN68eRg9ejR69eqFgwcPws3NTVKp1GdyHyIiIiKqGCeV0WLr1q1ISUnR+mUzLS0NAODu7i7Z7+7ujps3b4ptrK2tJZVFoY1wfFpaGtzc3DTO7+bmJrbRpqCgQLJWXHZ2tp53RUDlAuGWLVuQkpIi2a9tBk1t19C2XVVCCHz55ZeRlJQk7j9//jzi4+Mxc+ZMyGQyLFiwAN27d6/Wa2uj/pzhu+++CwB48OCB1vbqvwNhOzExEZcuXYKjo6P4fnZ2NgICAvDrr79qnKcmJvchIiIiMjUMhGpu376Nd999F/Hx8bC1tdXZzszMTLKtVCo19qlTb6OtfUXnWbBgAebNm1fudUi3ygTCgQMHYtKkSZL95T3rKRxX0Z8HbcfoEx6F2TwtLS0RHR0tLk7v6OiI0aNHIzk5Gfb29hg6dCiOHDmi9Rxnz57FnDlzYGVlhenTp6NHjx4AyiZpWbdund79Bsqq323atIG9vT1CQ0PF/foEQtUKIQBkZGRIAmFGRoZk9lIiIiIiql4MhGrOnDmD9PR0dOrUSdxXUlKCo0ePYuXKleLzfWlpaWjUqJHYJj09Xawaenh4oLCwEFlZWZIqYXp6uvjF28PDQ+sX5oyMDI3qo6pZs2ZhypQp4nZ2dja8vLwqebemx5BlJ4T3ra2t0axZM8l7umbQ1HZ8dQ8ZbdasmdblGEpKSuDj44MmTZoAACwsLHSeIyIiAuvXr4elpSWmT5+OkydPYsqUKZWapOXOnTtITU0Vl6YQqE/GJNAVCPv374+pU6ciLS1N/IeRRo0aYc2aNQb3iYiIiIj0w396V9OvXz+kpqbi3Llz4uv555/HiBEjcO7cObRo0QIeHh7Yv3+/eExhYSESEhLEsNepUydYWVlJ2ty/fx/nz58X23Tv3h0KhUIy5O/UqVNQKBRiG21sbGzg5OQkeZH+KlMhtLe3F/cJy4IMGzZMr2to266qMWPGaD1vYmIiDh06BAAoLi4u9/70naRFn+Ue1IeMClSXplClPrGPcB/Ozs7YtWsXTpw4gZMnT+LEiRPYuXMnfHx8uOwEERERUQ1hhVCNo6Mj2rVrJ9nn4OCABg0aiPsnT56MqKgotGrVCq1atUJUVBTs7e0xfPhwAIBMJsPYsWMxdepUNGjQAC4uLpg2bRp8fX3FSWp8fHwwaNAgjBs3DqtXrwYAjB8/HkFBQWjdunUt3rFpqeqkMkOHDhVDlz7XMLRfVVmzULWflpaWkn+QUCdM0iLMIBoZGYnNmzdj06ZNknb6VBKFpSnUZyNVXZpCV/+VSqXOZTRUDR48GGlpaTAzM8O5c+cwadIkTJkyBRs2bDB4iCsRERER/YuBsBJmzJiB/Px8hIeHIysrC127dkV8fLzk2aeYmBhYWloiNDQU+fn56NevHzZs2CAZxrdlyxZERESIM1YOGTIEK1eurPX7MSWVGTJqyDHajqutdQjVty0tdf/13r59u8Y+bZO0CJVEANi2bRsiIyMxbtw4/PPPP+jfvz/at2+PQYMGISQkRJzIRqC+yL22fqpOKlNeQL979y5++OEHODg4ICQkBPPnz8cff/xRpbUXiYiIiIiBUC/qE3OYmZkhMjISkZGROo+xtbXFihUrsGLFCp1tXFxcsHnz5mrqJemjqgvT79y5s8b7pW/bBw8eSKqANRGOdFUS161bh5s3b0Iul8Pf318ykU1FdA0Z1fUZCLPuPvvss/D29kZOTg7atGnDvztERERE1YDPENITZcSIEVU6vqqBUH0pEX2Oq+5JZY4fPw4AuHz5MhISEsT92qp+uuj7TN727ds1hoKOHDkSvXv3hpeXF3x9faFUKtGkSRO4uLiUO5GNQNekMrrufdSoUXBwcJAsA3Pp0qVy14IkIiIiIv2wQkiPpRkzZmjsUyqVkvBSGdW1ML0+x9XUkFHhGcaePXvi448/xqeffgoA2LRpk2RSF39/f8THx2s9h65nA3/++Wed11X9nTx48ADTpk2DmZkZ7OzsAFQ8kY22e1QNhNu2bdNY+1OpVOLKlSvIzc2V7JfL5fjpp58qvBYRERERlY+BkB5LW7ZsQWxsrMb+w4cPV+m8hj4PCABFRUVISUlBZmYmXFxc0K5dO1hbW+t1DUP7pc+xwoye6mv4Xb9+XVwHUKlUIjU1Vec5Ll26hN69e8PMzAzPPfccvv76a8ydOxcPHz7Uubi96u8kMDBQPJfwO7l48aJk7c5u3bqhYcOGiIqKgq+vr7hf15DRwsJCJCYmajz7OGDAAI3+6zO5DxERERFVjIGQHktvvvkmfHx84ObmJtk/atSoKp23MhXCzZs3Iz8/H05OTpDL5UhJScHEiRM1JmDRdbx6CNW2YL0hIXLcuHF477338OOPP+LcuXPi/q+//hrPPvuseL6wsDCd5/jnn3+wdu1aNGnSBOvWrcO9e/cwZswYfPHFF1oXt8/MzMTLL78MDw8PjVlwhd9JeHg45s6dK04mY21tjbt378LPzw8JCQliKNQ1qUzr1q2Rk5OjMSx39uzZGv2v7qU8iIiIiEwVAyE9lubPn691v+qQyMqoTCAMCwuTzJ5ZXFyMPn366AyE5Q0ZrSgQ6hN0hNlsBw8ejC+//FKsVvr6+qJZs2Ziu3feeUfnOZo0aYLBgwfDzc0NAwcORJs2bXDz5k3Y29tLFrdXKBTo2bMnXF1d4eTkhGnTpiErKwvz5s1Dv379APz7OykpKcFHH30kXuPo0aOQy+Xo168fwsPDcezYMa2fh7DdsGFDSRi8dOkS2rRpAz8/P+zfvx+zZ8+GhYUFIiIixMl9AgMDsWfPngo/MyIiIiLSjoGQTEplAuGNGzck+xISEiRDI8u7hr7v6bMWn/o51IeMqt/PsGHDdJ7D1dUVc+bMgUwmA1A2c66trS0KCwsli9tfu3YNd+7ckSypkp2djYCAADEQChYuXIigoCBxu1+/figuLsb8+fPxySefaO2n6j2UlJRIzhceHi72ZdSoUZDL5XB3d8cnn3yCESNGwNbWFq6urjrvkYiIiIgqxkBIJqUy6xBeuXIFPXv2RElJCaysrPD888/rteSBIesYVmbiGfVAaMg5Hjx4gOHDh4vbvXv3hqOjI65fvy7us7S0hK+vLzIyMiSBMCMjAwqFAl27dhUrdq+//jp69+6Ntm3b4uTJkwCAevXqITc3F4sWLcKiRYu09rO8QCg8KwkA6enpePDgAdLS0vDss89i8eLFiI+Px4EDB/S+ZyIiIiLSxEBIJkW1OqVvhfDFF1/E4sWLAZRNfBIYGAiFQgEPD49yjzMkEFamQqj6/J0+96NK/RnNF198EYcOHdJ4RnPt2rWYOnUq0tLSxOGujRo1gpWVFfbt2wdra2vMnj0bv/76K5YvXy6pnH7xxRdwdXXVqKbqGwg///xzXL9+Hc2bN4elpSVyc3PRrl07NG3aFFOnTsVzzz3HQEhERERURVyHkJ4oVV17zpAApS2k3bt3DwcOHMCHH36o1zW0bZd3jD5thX6pB8Lz58/jwIEDSElJQWFhYbnn6N27NwYPHowePXpg69at4nn27dsnaefj44Ndu3bhxIkTmDJlCh49egR7e3vk5eWha9eu8PPzQ58+fdCpUycEBwdLlodo2LCh1qG16qFcVyBs06YNWrRoAQDw8PBAYGAgnnvuOUyYMAEA0LlzZ40ZSYmIiIjIMPw2RY8lYfkEVRUtpaCPygwZVW0nDGMsKCjQ+zhDKoT6uHXrFoCy5R5OnDgh7p8xYwb+85//6DUT6kcffSSp8NWrVw/9+/fH8ePHdS47sXTpUvz666/IyclBixYtcOLECbRu3Rr9+/fHsWPH0KxZM0ycOFG8hnrA0/YZlFchVOXp6YmjR4/CysoKn3/+OYYMGYKtW7eiR48een5qRERERKQNAyE9lpKTk3Ho0CGYm/9bxK5oKQV9VKZCaMgwU/VrqB9THUNGv//+ewBAhw4dsGLFCnG/i4uLODtrRTOhXrlyBePHjxe3Dx8+DAcHBxQXF0uWnWjZsiUyMzMBAHZ2drC3t4e9vT1CQkLQvn17ABCrdMXFxeIkNcI2oDkTaGUCobm5uRjGIyIi8PXXXyMgIEDsGxERERFVDgMhPZamT58OR0dHjVkky1tKQR9VHTKqT3BTb6NPIFStJhYXF+s1FNLe3h7/93//J074IgQqfWZCLSgowKRJk9C0aVMAwMGDB9G8eXP8888/KCkpwZQpU6BUKvHw4UPxmA4dOiAzMxPm5uZYtWoVgLJnKhs0aACgrOr41ltvISkpCQAwZMgQ3L9/H/fv38dPP/2EIUOGaP08hG0hQGoTGBiIGzduwNvbGwDg7OyMlStX4t13363wcyIiIiIi3RgI6bEUHh4u2ZbL5ahfv365SynoozYCYWWGjApDUPfs2YMXX3wRRUVFcHV1RVRUlLigu6BevXpa+3/27Fl069ZN60yo6iFz4cKF8PHxEQP3o0ePsHnzZgwaNAgHDx4EABQVFWHPnj3w9fWFlZUVQkNDxfDXt29fHDp0CNbW1ti+fTsAwMLCAl999ZWkP927d0e9evWwZMkSMRBWVCFMSEiQrEPZsWNH5OfnY926dZDJZAgNDcXChQvRtm1b5Ofna/08iYiIiEg/nFSGnghDhw6t9LEjRowQf1YqleIw1Mo8Q6jP5C/qQU2fCmF2djYA4KWXXsLRo0dx4sQJfPHFFxrBGCibIVQ4r+r5UlJScPLkSRw7dgwxMTHIyMhA165dUb9+fTg5OcHHxwcymQydO3fGjh07EB4ejtDQUISGhqJly5aYMmUKbt++jWbNmqFZs2Zo2bIlGjdujJSUFKSkpMDe3l5yHwUFBUhJSREnsvH19YWZmZnYpn///pg5cyYePnwoCaMVBcKZM2di/fr1Ypvdu3fD0dFR7Iu9vT0GDx6MvLw8XLx4UdevwShycnJgZmaGw4cPG7srRERERHphhZCeCPo8WzdjxgytxyUmJkq2LSwsUFpaWqVnCKt7yKi2952cnLQ+V6drllGlUin5DGJjY1FUVIRhw4bh559/hlwuR3x8PN59910cPnxYEuD++usvAJrP8bm5uUme3ROGaF65cgV9+/ZF586d4eTkBLlcjt9++w3169cXj/3888/RuHFj/P7775I1DyuaZdTW1hZeXl5imyZNmuDSpUswMzNDly5dAAAPHz6Eu7s78vLyyv08a9udO3cAAN988w369u1r5N4QERERVYyBkJ4IO3furLDNli1bEBsbq7FftVqjWiGsypBRQ47TJxDa2dkhJycH8fHxGDp0KBQKBYqLiyULuqufQz3UlpaWSj6DvXv3wtzcHMOHD8eZM2fg5OSE1q1bixO07Nu3T1xLsW/fvjh8+DB8fHwk11J/dk+gUCjw+eefo3379rC2tgbw70Q2AuGZQNVhpeqfgbYKoYeHh0YwtbW1RYsWLXDq1Clx34ULF/DCCy9o/TyJiIiISD8MhPREcHZ2rrCN+mLrAtXF1oUKofBzeao6qYzqNbX9rEoYUtm3b18sXboUzs7OOieFUQ1Q6mFT9TP48ssv8corr+Djjz9GUVERzMzMEBwcjE8//RSTJk2CjY2NeKwQuIXnEwUffPCB+POmTZvEnxs2bIhPP/0U6enpmDhxIkaMGKExkY2+y04I9yC037p1q8Yxa9asQa9evcTtS5cuoW3btuI6hfq6ffs2XF1dYWdnZ9BxhtKnok1ERET0OGAgpDpDdSISVREREeLPqoGwomqftucFDVl2QluFUBehjYWFBRo1alRu20uXLgEAjh8/jh07doj73333Xfz666/idu/evZGRkYH8/HzI5XJJyLSzs8PAgQPFto8ePcKjR4+Qnp4uuZafnx8SEhIAAKtXrxb3JyYmYuHChXjw4AEmTpyI1atXixPZCP0XKoQ5OTniTKjqn4e2QKjNggULJNsXLlzAM888g6tXr+o8RpumTZsiMDAQP//8s0HH6Uv1GUoiIiKiJwEDIT22CgoKcOHCBWRmZsLFxQXt2rUThydWVnUNGa3uZwgNWYcwPj4eANC5c2ecOXNG3P/o0SOt7e3s7DQqYrm5uUhNTRUrk/Xr14dCoRBn8RT6cvLkScl5BB4eHoiJicGhQ4ewYMECHDhwAN988w0GDBggthECXnBwMGJjY8XhqRVVCLXJycmR9NfFxQXJycmS6+lr//79Bh9DREREVFdxllF6LG3atAl9+/bFxo0bkZCQgPXr16Nv376SpRQqo6SkRJwkpaYWpq/MkFF9Zi8VCFUoMzMzzJs3T9x//fp1xMfHo2PHjujTpw9OnDih8xxRUVHIyckRt4VZTi0sLHD58mXxpRrSVIeMduvWDb1798bPP/8s/k5WrVqFlJQUsc27776LvLw8KJVKjWG7AtXnIHUFwszMTI3+du7cGQAwe/ZsnfeoS2FhocHHEBEREdVVrBDSY2n16tU4fvy4WM0D/p20ZOTIkeUem5mZKVYVXVxcJO+pBsLqeIZQ2zkqUyEsKioCUFb927p1K15//XUAZZO67NmzR9K2UaNGuHHjhsakMjY2Nhg9ejSSk5NRUFCA4cOH45dffoGLi4vGZ/LLL7/gP//5D8zNzdG7d284OjoiOzsb+fn5+O2338Rzqq6BKFT4AEgqhwJzc3P07NlT3P7zzz/h4eGB4uJiSWW3tLQU5ubm4gyjpaWlsLKyEgPhwYMHMXfuXLH96NGjkZWVBScnJ/Tr1w8AsG/fPgBlQ1pNxebNm7FgwQJcuHDB2F0hIiKiOoSBkB5LdnZ2SEhIEKfuVyqVGpOWqBOChKurq7gUQlZWFubNmycGidLS0mp9hrC6AqFQterbty+SkpLw66+/Yvny5VqXVRg8eDBOnDihEQi///57TJo0CcOGDYOrqytu3ryJwMBAXLhwAe3atcNTTz0FuVyO48ePo6CgAJmZmbC3t8crr7yiszq3cuVKrfu1CQwMxNdffy1u79ixA7a2tpg6dark/KpLf6gGQuGZw7lz5yIuLg5OTk4AytYhzM7ORkBAgPh7fFzpU0GurHfffReZmZk1dn4iIiIyTQyE9FjatGkTFi5ciNmzZ4tVPWHSEl2EIKE6gYl6kCgpKYGFhQXMzMyq5RlCbQFPfZ8+Q0YFFhYWiI6OxoYNGxAcHIzc3Fyd59e27ISDgwPi4uJgZ2cHT09PXLlyBb1798bJkyfRpEkT2NrawtraGtnZ2eJC8zt27MCIESPEdQuBsolr2rRpY1AF7oMPPoCPjw+GDh0KoKyi27ZtW8TFxYkT0wj9Fyq/2iqE5ubmyMjIkJw7IyNDUi1+XBnyLKihOGENERER1QQGQnoseXh4YNmyZQYdIwQJ1UCoHiSECqG5ubneQ0bLW5heW6isTIXQzMxM8t6YMWPQrFkzTJw4UaNtectOCJ9BixYt4ODgAFdXV4wcORIPHjzAkiVLoFQq8eqrr6KwsBDHjx8Xl3IYOnQoYmNjxaGd4eHhOHToULmfjzYhISHiz6pVQdVgKQwZFfqsXiFcs2YNpk6dKrbv3r07GjVqhDVr1hjcn9pW3sQ4VcVASERERDWBgZDqDCFIpKWlQalUwszMTCNIlJSUwNzcXHyGrTz6LExfXUNGVZ+pE/Tt21dcYkLb+bVVCFU/AwDIy8vDlClT4ObmhmHDhsHMzAzm5uZITEyULEIvzN4pTNIiPGeZlpYmeXZQkJCQgPnz56N9+/YYNGgQZs6cCZlMJlkeorx1CFWH7ZaWlsLW1hYFBQUAAB8fH+zatUsMQOVNjvO4qclAKBD+bBMRERFVBwZCNQsWLMDOnTtx6dIl2NnZoUePHli0aBFat24ttlEqlZg3bx7WrFmDrKwsdO3aFV988QXatm0rtikoKMC0adPw7bffIj8/H/369cOXX36JJk2aiG2ysrIQERGBn376CQAwZMgQrFixAvXr16+1+61LhCBRHqFCWF1DRsurEGrbro5lJ8obMqrPZ6CNENCEQCNM2jJq1ChxmQtVM2fOxLZt2yCXy9GlSxdcuXIF9vb24nBR4N91CLX1X7ietiGjT7KafIZQCIElJSVigCciIiKqqsf/oZxalpCQgLfffhsnT57E/v37UVxcDH9/fzx8+FBss3jxYkRHR2PlypVITk6Gh4cHBgwYIJkWf/Lkydi1axe2bt2K48ePIzc3F0FBQZIvvcOHD8e5c+cQFxeHuLg4nDt3DmFhYbV6v6bGkAqhPpPKaDuH+nH6hDxDgoRqICyvb4YQhmiuWrUKXbp0QZcuXdC5c2ckJSWJbWbMmCH+fO/ePaxYsQLffPMNAKBJkyZwcXERwzagu1qmPmRUqVRWGAjPnj2LoKAghISEIDExUdw/duzYSt5xzaiNIaPCc55ERERE1YH/zKwmLi5Osr1+/Xq4ubnhzJkz6N27N5RKJZYtW4YPP/xQrIZs3LgR7u7uiI2NxYQJE6BQKLBu3Tps2rQJ/fv3B1A2ZbyXlxcOHDiAgQMH4uLFi4iLi8PJkyfRtWtXAMDatWvRvXt3XL58WVKRpOpTmWcIK7vshLbtiiahUX9f25BN4Xw5OTk4fvy4zmP9/f21Vve0EWYzHTt2LD7++GNxv+rC71u2bBF/btmyJQYNGgQLCwscPnwYQFloO3funNiPSZMmoWXLloiKipIsX2FohVCpVCIiIkKsnk+fPh0nT57ElClTcO3aNb3ur7bURiDUVXklIiIiqgxWCCugUCgAQFzP7vr160hLS4O/v7/YxsbGBn5+fmLl4syZMygqKpK08fT0RLt27cQ2J06cgEwmE8MgULbYt0wmk1RA1BUUFCA7O1vyovIJz9MB/1YIDRkyWt7C9NUxZLS8QKi6oLtAWCfw77//xqlTp8T9ERERCA0NRWhoKF577TWkpqaK76lWr3NyciSfCQCxMq0eaFQXfn/zzTfFn3/55Re8+OKL8PPzE/sYERGB06dPi8MZFy1ahC+++ALh4eEa91veLKPffPONJED+8ssvePjwIfr374/33nsP7733HrKzszFu3DhcvHhR4/OpTr///jsiIyP1bl+Ts4wKWCEkIiKi6sRAWA6lUokpU6agV69eaNeuHYB/w4W7u7ukrbu7u/heWloarK2t4ezsXG4bNzc3jWu6ublpfFlXtWDBAshkMvHl5eVV+Rs0EaqhSrVCWN3PEOraV9GyE6r7Dh48qHPIpuDMmTMAyv6RYdKkSZK+devWDb///jsuXryIoqIi+Pr64rnnnkOHDh3EdsHBwRpBs0uXLgA0q0+qs4POnz9f/Fm1XUREBICyMJmWliYGu1mzZuHVV1/FhQsXJOFUfS1IIRAK4XDVqlVISUkR20dGRuLmzZto0qQJYmJiEBMTAycnJ/j5+SE9PV3j86lOzz77LObNm4dHjx7p1Z5DRomIiOhJwyGj5XjnnXfw+++/S4blCdRn+dNn5j/1NtraV3SeWbNmYcqUKeJ2dnY2Q+H/CKFGlVKpxJUrV8Rt1WcIK6rilPcMoa73hAXXVc9RUYVQ9f0XX3wR27dvF7dVh2wKhAqc+qQyDg4O2LZtG1JTU2FlZQU3NzfcvXsXLVq0wN27d+Hi4oIWLVrgzz//1FjTTziPvoFG27DFhQsXYtCgQeI9WlhYwM7ODmvWrEF4eDiOHTsmfgbahowK1zc3Nxe3AaBfv364fPkySkpK4O3tjW3btiEyMhIXL15Ez5499eqvcK3Kys3Nha2tbYXtOGSUiIiInjSsEOowadIk/PTTTzh8+LBkZlDheS71Kl56erpYNfTw8EBhYSGysrLKbfPgwQON62ZkZGhUH1XZ2NjAyclJ8qIyOTk5SExMRFJSkvhKTk5G586dxTY1WSHUNVzQkECo/r7qkE3B4MGDAQBXr17F8OHDxf3vvfcezM3NxQmQWrVqhXr16sHe3h6tWrXC999/DwcHBzRr1kzymQAQK3iHDh1CfHw8OnbsiD59+uhc8kFblap3795o27atuJbhzJkzkZCQgP79+0uCkq4ho0BZoAoMDMSNGzfE9r6+vvDx8cG9e/fESWUiIyMlw7T1UZVJd4QlMSrCCiERERE9aRgI1SiVSrzzzjvYuXMnDh06hObNm0veb968OTw8PLB//35xX2FhIRISEtCjRw8AQKdOnWBlZSVpc//+fZw/f15s0717dygUCsmQwFOnTkGhUIhtyDBRUVGSZ+UEqqGqqs8QqgdBfYaMVuUZQtUhmwIHBwcAgLe3tzjLJwDIZDIEBgYiICAAABAYGIgPP/wQCxcuROPGjdG/f398+eWXaNy4sUbQ3Lx5MwCgdevWGD16NHbv3o2dO3di1qxZGtcHyoa2du3aFT169MDWrVsl/RcqWMuXL0e/fv0QHByMRYsWiW1Uh4xqC4QffPABvL29xfb16tVDQUEB2rdvj7y8PHz44YeIjo7GyJEjtQ671qUqFUJ9h4yq/qNAdVfyGAiJiIioJnDIqJq3334bsbGx+PHHH+Ho6ChWAmUyGezs7GBmZobJkycjKioKrVq1QqtWrRAVFQV7e3uxWiOTyTB27FhMnToVDRo0gIuLC6ZNmwZfX19x1lEfHx8MGjQI48aNw+rVqwEA48ePR1BQEGcYraSQkBCt+1VDVXVXCFUrQrpCYkXPEBpauVK9jnrfPvjgA/EfIj744APxPWH23LZt22rMpAv8uxC9s7MzfHx8xKq4ENwA4Pvvvxd/fv/992FhYQEnJyd8++23+PXXX7F8+XLY2trCzs4ODx8+xKhRo/Df//5XY6ilaoVQuBfVQKjOwsIC165dw5kzZ2BpaYnp06dj3759uHjxIvLz8/X6zHSdW1+GVgg3b96MzZs3V+vkMhwySkRERDWBgVDNqlWrAAB9+vSR7F+/fj3GjBkDoGw9tvz8fISHh4sL08fHx8PR0VFsHxMTA0tLS4SGhooL02/YsEHyBXvLli2IiIgQZyMdMmQIVq5cWbM3aOKq+xnCigKh+rahQ0bL65e2hekBYOfOnRWeQ5fjx4/js88+Q8eOHeHk5CSpuC5dulT8+c6dO/j7779ha2uL/v37IyQkBMHBwcjNzRXb1KtXT+tzd8XFxeKwUiHcCNvaQltRURGUSiWCg4PRsWNHBAUFYcqUKUhMTJRcryJVCYSPw6QyAlYIiYiIqDoxEKrR5wu5mZkZIiMjy52O3tbWFitWrMCKFSt0tnFxcRGH6pFuxcXF4kQqI0aMkKyHZ6iqVgiFL/yGVAgruk5FFURd/SopKdEaJtVnt9WHUAFr2bIlRo8ejeTkZNjb20uqrnZ2duLPXl5eyMrKgre3NywtLTFmzBhkZGRg7ty5KCwsFPsHlA1d3bNnj3hscXGxRkVQW4XQwsICJSUlKCoqgqWlJbZv3w4XFxd06NAB165dw86dOw1amL42niGsyjUqwiGjREREVBP4DCE9lt544w20aNECjRs3RvPmzeHp6YmnnnoKR44cqdJ5q/oMoRBYhC/n2gKhesAzZMioPoFQuKauCmFlCIFMJpOJQ0ZdXFzEIA5AsnTF3r174e3tjcLCQjRo0AByuRy7du3C/fv3xeC4efNmlJaWioveC4qKijQqgroCodDey8sLY8aMQUhICJ566inIZDK88cYbBoXf2hwyWhM4ZJSIiIhqAgMhPZZiY2OxaNEixMbGYvPmzfj222+xYMECZGdnV+m81VUh1Lata+ZRQ4aMAhV/4dcVCP/66y8cOHAAO3bsQPv27Q16vk4Y7lxcXIxDhw6JP6uef9myZZI+yuVyWFtbY/v27Rg6dCgsLCwQHx8vBsCCggI4OTnh5MmT+OmnnyTHllchVJ+ZdNasWbh06RIiIyNx4MABdOnSBZMmTcKjR480ls8oj+q9qC5Foo8nbcio+p8NIiIiIl0YCOmx1LBhQzz33HPw8/MTX/7+/nB1dTX4XCNGjBB/NuQZQm2BUAhr5VUI1SuKFQVC1S/4x44dw4svvoju3btj8ODBkgXd1fug/qU/ISEBCQkJ+Oijj5Camoro6GgxXLVp06bc5SSEoZfCcE+gbL1D1Zly1fswdOhQyX116NBBnGwGAM6dO4cpU6ZAqVRKZiutKBDOnDkT69evF6uIb7/9Np577jksWrQI9vb2iI6Oho+PD1577TXJbKQVUf1dGfLsIVD5IaPVGRANGTJqZWUlTmClzenTp/HUU0/pfV9ERERUd/EZQnosxcbG4o033oC1tTWcnJygUChQXFwsWWZB3YwZMzT2KZVKyVp1paWleg8ZFb54lxcIVat52gKhepVNWyAUzmFhYYGePXti9+7dAIBbt25hxIgR4oLuAtUKoer5wsLC8Pvvv4vDPKOjozF//nzUr18fmZmZCAoKQu/evREZGYlZs2ZJht8KfVQNhADw0ksvIT4+XmufVa+9c+dOODs7Y/Xq1WL/nJycYGFhAS8vL8mwUdVJZdQDYXFxMWxtbeHl5SV+xvXq1YObmxsOHTqEHj16ICIiAtu3b8ecOXPENRn1ofp7EK6vr8pWCIuKiiQTSVWF8Hls3rwZffv2LbdtaWkpDh8+rPP95cuX49q1a7h58yaefvppjfdv3ryJ1NRUBAUFVa3TRERE9NhjIKRqUd5kL6qTwuird+/eOHr0KPLz8yGXy+Hs7Kx1xkpVW7ZsQWxsrMZ+1S/GRUVFsLKy0mvIqLZAWN6QUdXJXlTf1zasVJUQCIVQJHByctJaYSrvGcItW7bgueeew2+//Yb8/Hw89dRT+PLLLzF16lQ4OTnh66+/xogRIzQC0dq1awEAJ0+eRGhoqHgd1QqlejBWnc1UeJZv3Lhx4ky9lpaW+Oijj3DixAnUq1dPcqxqAFS995KSEnh4eEg+t6KiIly8eBFKpRJNmzbF+vXrcfToUcyYMUNjndDyqH6WQrjSV2WfISwqKqrwz62hvv76a6xbt65K5xDWsnz48KHW96dMmYKdO3eiuLi42gItERERPZ4YCMkg+lThACA1NRUzZ86EXC6HpaUlioqK4OrqiqioKPj6+up9PTs7O8nsluV588034ePjo7FY+ahRo8Sfi4qKUK9ePb2GjKoOzVTfp23IqHA+1SF9xcXFku3yAmFRURFOnDiBoUOH4saNG7h+/Tr8/f0RHx+PmTNnQiaTYcGCBWJ79eGo8+fPBwCcOnUKANC8eXO0adMGvXr1wqhRoxAREQG5XK41oN+6dQsA4OHhgYyMDGRnZ8PCwgIPHz7E4MGDERUVBR8fH8nnqG1Cly+++AJfffUVlEol8vLyEBISguzsbMnah6rX1zZkVFjoXri3oqIi3L9/H/fu3UN+fj46dOiAZs2aoWHDhhrV0/JomxxI1erVq/Hqq6+iQYMGAKS/q8oOGVWvuFaFtuclS0tL8fXXX+ONN94wKLgJn7+u51V///13AEBmZiYaNmxYid7WvIKCAuzZs0cydJmIiIgMx0BIBtGnCgcA4eHhiI2NhZeXl7hP1xDI6iIEInURERHiz9VVIdRWDRT2qX7JLikpkWyXFwjd3d3RqlUrfPHFFwgODsbvv/8OuVwOf39/cRmIoUOHip+peoVw1qxZePPNN/HWW29h9erVeO+99/DNN99g4MCBcHJywo8//oji4mIsXrwY3bt3l/ShT58+2LlzJ65fv47U1FTxGu3bt8cXX3yBESNGSJ4nLCkpQUFBAS5cuIDMzEy4uLigXbt2sLa2FvsUHh6Oo0ePSiajET5XW1tbmJmZiZ+ftnUIVQOhk5MTMjMz4e3tjX79+uHu3buYPn26QbPOqp5bPQjl5OTgrbfewo8//oi9e/dqtK/skNHqDITa/uz8+OOPGDdunLj0h76EQKirfzKZDACQnp7+2AbCTz75BJ988gkuXbqE1q1bG7s7RERETywGQjKIPlU4oOyLsfClUqBrCGR5MjMzxcDh4uIiVswqq7CwENbW1hU+Q6hUKjXWHAQgqc6p/heQBhhra2sUFhaiuLi4wllDhfcdHBxQXFyMRo0awd7eHl5eXvDy8hKXgQD+XZtPuJ62CqVQvfT19dV72O3Vq1cBlA0hFAK0paUlMjIyxN+b6n189dVXePfdd/HCCy/A2dkZcrkcKSkpeOutt8Q2VlZWsLCwQJcuXTTu19LSEmZmZmLlTagC6/o8X3vtNTGkbt68GVlZWXBwcMBLL71U7merqrxAKAS+tLQ0cZ9qWKrskNHqDITa/hwJk+OoL+1REaGaqGsm2vr16wMAMjIyDDpvbUpPTweg+x6IiIhIPwyEZBB9qnAAsHDhQgQFBWlMCrNo0SK9ruPn54cLFy7AxsZGHHJaWFio1zp95dG3QqirqqceBHUFGDs7OxQWFmoEKW1f6oV99vb2YoAQnqOzsLDQWAZCdSir+vBU4N9AKJxLn2G3t2/fBgA0a9YM9+7dw+XLl9GtWzfk5+cjODgYixYtwubNm8X2Bw8exLBhw3D27FlMnDgRI0eORHFxMfz8/CSflepzhqr9FH4HugKh6vqNCoVCo8ooDFdduXIlSktLIZfL4eLiUu49ljdkVOiH6n7Vz1ZbhbBv376Qy+U4e/as1mO0bVeF8Bm1b99e3Kf+jwD6EgKhrsqnMGxW+HOhavv27ZDJZBgwYIBB1yQiIqLHEwMh1YjKTAqj6tSpU0hOToaTk5O4Lzs7Gz179qzwWPWqoirVQFheuNQ2e6jqfiE4aAuOwkyZCoVCIxBqCwjCvnr16iEnJwcAxOfoVAnLQAwbNkzsl+r51KtY169fR9u2beHi4lLuZwIAvXr1wu7duyGTyXDq1Cn07t0b69evx4EDBxAWFgYAmDZtmti+SZMmeOWVV7Bs2TL06dMHgwcPRvv27eHp6Sm2ycjIgFKpRE5OjrjOofD5CBVCIZCoBsKDBw9izpw5Yvsff/wRp06dwrx589CvXz9Jv0eNGoU+ffrgww8/RGFhocbEPKrKqxAK4VlXINRWIdQ2XFW9Inj37l20bNlSZ58MoRrwBZX9BxJhyGh+fj6mTZuGli1bSqq7whDef/75R+PY1157rUrXri5CCDZ2P4iIiJ50DIRUowyZFEZVkyZNUFBQgGbNmon7/vrrL0ngUHfw4EHMnTsXrq6ucHJyglwuR1ZWliRI6Fsh1DURjL4VQiH8qg8Z1RYIhfdTU1NRWFiIrVu34vXXXwcABAYGYs+ePWJbS0tLyZBR9dBy8OBB7Nq1CwCwceNGrFq1ChcuXEC7du3w1FNPaf1MAKBz587YvXu3eL5vvvkGjRo1EsMgAEmgj4iIwA8//IBJkybh9u3b6NWrF27duoXMzEyxzdGjRzF69GgcO3YMO3bskPwOLC0tYWNjIwZg1UA4d+5c/Pzzz2KVasiQIUhISMDLL78smdhGqVTizz//FLdzcnLKrRJqC/aqn536ftUQqO+QUfV2L774YrWtRSj8blSvoU+FUKg0q1KtEC5duhQAJIFQCJ/Z2dnV0POaVZ1rPRIREZkiLkxPlZKZmYmrV69KAkB12r17Nz799FN0794d3bp1Q/fu3TF9+nQx7Ggzd+5cxMXF4ccff8SmTZuwe/du7N27F3PnzhXbCIGwomcIhWBgaWlZqWcIhfCkT4VQeP+FF16Am5sbkpKSMGnSJJSWlmp9Nky1D6rVxYKCAsydOxfBwcEAgIkTJ8Lc3BwXL16EmZmZ+JlYW1tLPhP1vgNlz4qqi4mJEX9esGABUlJSMGDAAFy+fBnR0dEA/l3OQDjXd999B19fX8nC9Pn5+eI/FCgUCgDSQGhubo4HDx5IznPlyhXk5ubi/PnzcHFxQVJSEpKTk/Hw4UOxKiiES13KqxAKIevy5csa+wD9J5VRrxBq+zP21Vdf4YMPPtDrfNrOrXqNigLhtWvXYGlpqVHNFGYs1fX83cWLFwFIA+G9e/dw8+ZNg/tdU4R71jesExERkXasEJJB9KnCVQcfH59yw5825ubmyMjIkAxPzMjIkEzXr++QUSEYWVtbGxwIhSGjws9FRUUwMzODUqksNxA6OzujqKgI0dHR2LBhA4KDgyGXy3H16lXJUE/VCqEQDhwdHVFQUABzc3NxOOCnn36KO3fuYMSIEfjzzz8RGhoKpVKJ1NRUtGnTRtIH9SGw2j4b1erb/Pnz4eDgABsbG3h4eOC3337TaN+uXTu0a9cOpaWlYvADysJVeYFwzZo1mDlzptj++++/x8OHD3Ho0CH07dsXr7zyCpo0aYJz584BqDjcCMqrEGqb/KUyFUL1itrIkSM12kycOBEAEBUVpdc5BYWFhTA3N9caCN966y1MmDABgPQ+P/74YwBlswD36dNH3C/8OdQWdM+fPy+uP6l6P40bNzaov7WFgRC4f/8+LCwsNCb7IiIi0gcDIRlEqMKphq7s7GwEBAToFQirOktoedasWYOpU6ciLS0NSqUSZmZmaNSoEdasWSO2EWYZ1XdSGfVAaOiQUaFCaGdnh7y8vHIDobCUAwB4eXnh+vXruHnzJubNmycJ3tqGjDo4OKCgoABr1qwRK4Spqalo1aoVLl68iIYNG+LKlStiMFX9TIQ+A4BcLkfHjh3RqlUrbNy4EfPnz4ezszPmzJmDZ555RtLnwYMHAygLJcK9q4ay3bt3i/emujB9fn4+bG1ttQbC4uJi+Pj4IDY2VvwzFhQUhA0bNkhCouoC9kKlqKIqnj4VQuF+VGdAtbW11btC+Pfff6Nx48a4e/eu1utURWFhoRj8Beoh19LSUvL+xo0btfZD+H1rq/ipPjeYlZVVPZ2vQZcuXcKLL75Y5fP8/fffOHnyJIKCgqqhVzVj9OjRcHNzw5IlSyT727dvj7///pvPUxIRUaUwEJJB9KnCAUBoaKjGsUJ1Sl+61rnTRZ+qor7LTghfqm1sbMqdVEZbtaa4uFhcckN4htDe3h55eXnlVqIaN24svv/BBx/gxIkTWoO3EDaFQCg8j1dQUAAfHx8MHjwY0dHR6N+/PzZv3gxXV1fJ9b777jvJs3jAvwFBoVDg5s2byMnJQYcOHdCmTRvExcWhf//+WLt2rcbnoPq5qnvjjTewdu1aWFhYoFu3buJ+bUNG7e3tdX6uhYWFsLOzw+LFi8Uq14svvoivvvoKr732WrVUCFVDVH5+Puzt7cV9MplM7yqUQqFAw4YNxUBYnUsiFBUVwcXFRedyGAqFAg0aNNDrmsJxwlBfVarDT2tqSHh1EH7vb7/9NoYPHy4ulVFZL730EpKTk1FaWmrwrK1A2XDj5s2bl/v/qKr65ptvAEAjEP799981dk0iIqr7GAjJIPpU4QAgOTkZhw4dkgRFpVIpmaSkPJs2bcKqVavQuXNncWhqSkoK/vOf/2/vvsOjqNY/gH83PZR0SKEEuIKJAQRpClyKIPADL1zwuVKkPUhTQ/+hiHBRuIDwE2IEqYpXmhQNoBcVgpDQWwpFOiShpZC66dve3x+55zizu0k2EAyQ9/M88yQ7Mztz5t3ZnfPOOTMzFKGhoQ9d/oKCAri6upbbQigq1TVr1lSddTd/PIGy5UiMK62FUEyzViagpMuo8lq20hJv88dOODo6wsXFRb5XJAxBQUGqZDA7OxseHh7yLqVKmzZtkuUTSZdOp0NcXJx89EdZj89Qxkt0MxTX9JlMJsyZM0fOW1RUJFsI7969C+CPFkQRQ2Wio9frsWnTJrz44otynEajQWZmJvbv34/w8HC53LLYcpdRoOTZfsqE0M3NrcyEcMOGDfKaS61Wq3qQe0WfD1hW2Q0GA9zc3JCcnCzHK8uVlZUFb29vq3EwP2FjbZ64uDi0bt1alVAqE406deo88nMJ09PTcerUKfTr18+m+ceMGQONRoOvv/7aYppym9LT0x85Ibx58yaAkphW5I7IQMn+FBQUhEmTJuGLL754pHIwxhhjfzZOCFmF2Hpt38yZM1G7dm2L1ilbk7m1a9fi6NGjqkqfwWBAnTp1HikhFK0/5V1DKCrFtWvXViVxYry1hFDZyiaut9PpdNDr9bIFrLyEUK/Xw2QyoVmzZqUm3qNGjZIJrXjUgmghVK5DPLRcGDRokHymoTmREDk7O+PEiRPyLpRdunSBTqeDt7d3mQmhiINIVlxcXGRiSETy+YREpGohFAmHSKLME0LxDMqBAweqbhrTpk0bjBkzBteuXZOtOSNHjrT63DzB1i6jeXl5qFu3riohLCvZjIiIkAlhTk4OmjVrJqdVVguhWL+7u7uqm6ey3CI+ynWKlmlli1dxcbGqtVcYNGgQEhISkJ+fD6Aknr/++qucbt7ytXPnTvkIClsNGzYMkZGR8uZB5fnmm28AwGpCqNym9PT0ch/vQUTYsWMH3njjDXmdrZIYFxISgvj4eNXJGCLChg0bMGLECKstgNnZ2QCAs2fPlrtNjDHG2JOG7zLKHot3333XIhkEYLV1ypoLFy7ghRdeQPv27dG+fXu0a9cOISEh5d5J0pqUlBQAJYmSaK2zs7Mr83b1olJdt25dVWJlnhBauxNlVlYWGjduDKAkQcjOzpYJT2kJob29vexmWlhYiH379mHXrl04ceIETp48iRMnTiAiIgLBwcEoLCyUldXCwkKbEsLc3FxVAixiIrz00ksAAEdHR9UjCgoLC+Hk5ITvv/9eVfbSHuwuODk54fbt21a3VXSpFa2m7u7uqhbVjRs3olevXgD+SAgByGsjlevLyMiQiYFobSyNrV1GRdxs7TKqTGy0Wq3qxh5lJYQVaW1TJoSl3f1UlFs5TnzmCxYskOMPHTpkdR0iIRIJYYcOHZCWliZPFljrFm4wGNClSxfExsbatB3iM1LeZOhhKeNgSyyjoqIwZMgQfPXVV1ani7vV3rp1CydOnFBNO3bsGMaOHVtq65+41tL88R6luXnzJlq2bFkpcVCqzC7K7Nkjbs7FGGPmOCFkT6S6deuiV69e8o6gLi4u6Nu3Lzp27FjhZY0cORLAH5UlV1dX1KpVy6IFTUnM6+vrq7rTYlkthIWFhSgsLERxcTH+8pe/AChJWDIyMuDv728xv1BQUIAaNWrAzc0NQEny5unpWWbZxDP6UlJSULt2bZkQbty4ET/88AMAqO78OWDAAERERFjERBDz5ufno3379mjZsiXatWuH69evW2w7oE6o7t69a5EwmUwm1aMjNm/eDOCPirOnp6d8REWdOnVkRdpoNGL16tX47rvvAJS0WJ4+fRoFBQWqhFa0uGZlZcnllNcNUdkttLQWThEDAOW2EIoE/qeffpL7g7iO7+7du5g8eXKZFfQ33nijzPIqieW4ubnBaDRaPSEh9mcxr7u7u2r94iRAaUmLMiG0s7OT15neunULgPXurw8ePMCRI0cwa9Ysm7ZDrFskcL/++is0Gs1D3bxG+ZnYkhCKz7W0eZWthua9B5QnIKwR11ramhB+++23uHDhAo4dO2Z1+q5du/Dee+/J1waDwep1jcePH1ft1/7+/lZPOjEGlPTc6dGjh+rxOowxBnBCyB5CcXExYmNjceDAAcTGxlq9ocijWrp0KT755BMcO3YMJ0+exJEjRxAWFoYFCxaU+h7Rmqgc2rVrh9OnTwNQJ4Te3t5l3oihtIRQVEKtJYRFRUWyYuvr64tatWohMzMTmZmZ8Pf3h6urq+xapiQSQtHqV14raGFhoWxxvHfvHtzd3eHs7IyioiKsXr1aXgNoMBjg5eWFtm3b4uzZs+jdu7dFTARlK9Dp06fh4+ODM2fOoF27dnIeUaEG1C2dWq3WIiFs0qSJqlK9evVqAOqEUCTNt2/flpVxg8Ggur7T398f/v7++J//+R/V5yVaFzMyMuS6y6uMK8tonhAqTw7k5eXh0KFDWLp0KQDAw8PDamKnXJ7yuX1ubm6oV68eatSoUWZCWNY1rOaULYSA9YfUm7cQmp9UEPtVaSdCxD5dUFCAmjVrolGjRgAgu+Hm5eWpro8E/ngsRVJSkk3XS4pyi0eGiMTfWlff8u6YWdGEUMxfWtxFCyFgGSPx3tLuGiv26+joaFy5cqXcsjg7OwMovUVv0KBBWLVqFWbNmgWTyaS6blS878qVK+jUqZPqNzEnJ8ei9f9xICIMHDhQ7vfs8QgLC0N0dHSp0/Pz8xEaGgqTyYSkpCQkJCSUubyLFy8CAA4fPmzT+g8ePAiNRvPYnj/au3dvi2fiVlRRUdFjqYPYIi8vDy+//HK5cWfsacAJIauQTZs2oXv37vj2228RHR2Nb775Bt27d5ctQEqPkjgOHDhQVaHNysrCnDlz8Morr5T6ntzcXBw/fhynT5+WgzKpSUtLAwD4+PjAx8enQgmhqJxa6zIqutIpE0JPT094eXnJFkJvb294eXlZvWtjaQlhcXEx9u/fbxG/goICi4TQw8MDWVlZsLOzUyUEtWrVQo0aNRAYGGg1JoJoDTIajSgqKkJhYSEOHDiAN998U65XJITOzs6q5DAnJ8ciITSPr4iRuMusp6cn6tevD6AkGXV3d4eTkxOSk5PRr18/JCYmAii52YybmxtWrVpl9Tl4a9euldtbXiKtLKN5l1fzhPDVV1+VSbO3t7fFsolItTzxSJHCwkLZ0uvq6mpR4Vcm0k2aNCmzvErKVj/lthQXF6Nly5aqbRDzKp8bCfwRH5HEKVugAMguvtnZ2XB3d5f7Y15ennwkitg2QZzguHbtGnr37i3H63Q6rFu3ziL5EvuN6Dr+448/ArDe8qZMrKx1Na9oQii2v7REU9lCaP48SbGdW7ZssZrEKb/XwcHBVk/8CPHx8fImS+I3qTRLlizBxo0bLbbvwYMH8mZK//rXv1TTylpmWlpapTwKJTExEbt371Y9iqYicnJyyj0hcv36dVy6dKnU6U/y8yfT0tLkSY+HlZ+fj+nTp6Nbt24oKiqyesJl6NCh+PLLLxEcHIxGjRqhSZMmZV4KIZaxdetWxMbGWo1hQUEBtm7dCoPBIB8lJU4OVabo6Gjs378fCxYswKFDh6DRaOTNzWy1bNkyuLq6yhMsf7bx48fj1KlT8gRoVFQUNBqNvEZ73759GDduXKWtb9KkSejSpUulLOu7777DTz/9VOY84q7jT/J3jVUeTghZhYibvYSHh2PBggVYsWIFoqOjsWbNGtV8FUkcbbF06VIsXLiwzIPsokWLrCYFovIlznIGBgbCx8enzEqkMiE0GAyy8ikqfvn5+SAi+dw5wDIhbNy4MW7cuCEfmyESRHMiIRQJcEZGhozf2LFjVfHbtGkT8vPz4evrC6Cku6a7u7u8A2S/fv3kduXl5SE8PByffvqpKpnKzc1V3fUTgKrlp3v37mjVqhV+/vlnnD9/Xn5uojLv5+enuvbJWkJ4/vx51et58+YB+KNFyNfXF+PHj8fAgQMRHR0NOzs7BAYG4tatW5g9e7ZMfGrXro2cnByEhISobnAiPp/79+/Lz8S8Em+urBbC3Nxc+Pn5ybgpeXh4WIzLzs5WJRaJiYly/aLs1hJCZdfIilw/JpYtkjyxP+bl5cHNzQ0uLi7y8xHTSksIxd1rlyxZIqc1atQIxcXFWLt2LdLT0+Hj46NKCMWyZ8+ejcDAQPk+ZYXi6NGj8v/NmzdjwoQJFhUOZdyzs7Nl4mQ+X3FxsSrZ2LFjB4xGI2rWrCn3JWUFubyE8MGDB/LGP3v27LGajCjLZr4vic8tOTkZ8+fPt3iveZdX8/1fSdk6HxoaarWir0xO8/PzLX43AgMDLX5zBWVXbaWcnBz4+vpixIgRMBqNCA8Pf+hrDpUnhEozdepUnDp1ymK80WiEh4cH3nnnHbRo0QKXL1/GvXv3LBLZZs2aISQkxOqys7Oz4eLi8tDHE2t0Oh3c3Nywd+/eR16Wr68vWrduXaH3mEwmrF+/HoMHD8bVq1dx48YNOc3V1VV2jVdS/g4KO3bswC+//IL169dDo9GoLhUQ35OoqCi0adMGLi4uWLJkiapVedasWXjrrbdULeYAcPLkSbz99tsV6tlQFnFpAwD5HNGRI0fa1DPgl19+ARHhf//3f+X4yr4e19z9+/exc+dO1Tjl6+HDh6N79+4AShLFjIwM9OnTB1999RVmzJhR5rLT09Mxffr0Mrt7Z2RkYOXKlThy5Ii8IzJQcilAbm5uhT6Xb7/9FsOGDUP//v0tjoXZ2dmyS7GHhwcaNWoEFxeXMk80sGcDJ4SsQlxdXVVdWIgI0dHRFrdptzVxtJVobSqrImLeqihaGMQdLpOSkuDo6Ah/f38EBgbi/v37pZ7JFzdrEYmSqJClpKSgcePG0Ol0KCgoQHJysmzpycvLk8sTCeGePXug0+mg0WhKTQhTUlJw+/ZtecfGCRMm4N1334VOp4NWq1XF78svv4Rer0fz5s3lez08PGRCOHv2bJn4pKam4oMPPkBoaKjsRnrlyhUMGDBAxkRQVkr379+PgwcPIiwsTPW55eXlwcHBAV5eXvI5e0DJAUSZbHl5eWHUqFFW41qvXj0EBwfDw8MDDg4OiIiIkGc8mzRpIq9ZvHbtGhwdHdGkSRN5DZuSOPh7eHjISk55FQLRgurh4WFR4c/Ly4O3tzccHR2h1WrRsGFDOa127doWJxpEpVvcQGbw4MFy/aIVzdPTE1qtVnWQFy0ezZo1U5Vh3759qgqSOXEyo0OHDgCAVatWwWQyISsrS95oRrS2iYq1OKvfoEEDAH8khKmpqfD19ZXXYQIlz6YEgIkTJyI1NRXe3t5wcnKCg4MDcnNzZcJTr149VTkXLlwo/1dW3kWrsnJ/JyJV4iRODgAlXeMaNmyIRYsWYcuWLVZ7Ajz33HMoKCiQCVlmZiY6deoEf39/VaVXrH/VqlUy9qLFGShpobPWEqGsZJnvH8oum+W1EAIlra1FRUUIDQ21+M4r91OTyYSaNWuqHqliNBpVleIbN27IZbRv395i3eZSU1Nx/PhxXL16VRVvcb3itm3bMHHiREydOhU1atSwuJ64NMoyKW/gpNFosHz5cnzxxRc4fPgwjEYjMjMzER4ebvUxQ+L7vG7dOly8eBFDhgxB/fr1ERAQgKZNm2LKlCmqmE2ePFnVurt27VrZ5dHWxxgBJRX6tWvXYtWqVfj5558tpl+4cAG5ubl4//33MWbMmDKT5fT0dFmm/Px8i5sQCVeuXMGiRYtsqqwfPXoU48ePx44dOxAUFIRWrVpZzGNeJnFiUHnCatiwYejbty/Gjx8PoORa5Xnz5uHSpUtWb/Q1a9Ys+Pv74969e0hNTcWKFSssygUAr7zyCjZs2AB7e3ucPHnS6jZkZmaidevWFl0oP/nkE8THxyM/Px/379+HXq+3WI/w+eefY+XKldBoNNBoNDh37hxiYmLkMsPCwtC3b1/Z60Rcnz9o0CD5nrLuNi3KKfbnxMRE6HQ63L17F3Fxcdi3bx+AksRTnPgFSn773nzzTfnbsHTpUnlTLaCk1VVJeVO95cuXy7JpNBp07doVBoMBX3/9NXQ6HYKDgxEWFgYnJyekpaXJk3pXr17FihUrQEQYPXq0XN5zzz0HrVYLo9EIf39/uLm5wd7evtznxp47dw6tW7dWLcvR0RHHjx+Xlwp4enoiKCjI4prl8hJ19gwg9lTLyckhAJSTk/OnrC85OZmmTJlCHTt2pA4dOlDnzp1p6tSplJycrJqvZ8+edPDgQfnaZDLRgQMHqEePHg+13iFDhhAAioiIsPk93bt3V72eOXMmNWnShIiIjh8/TgBKLc+sWbOoQYMGdP78eQJAx44dI5PJRM7OztSvXz8CQElJSdS5c2caPnw4eXl50fz582n69OkEgIqKimjhwoUEgADQ+++/TxMnTqSmTZtarOv5558nDw8P0uv1cn4Rv549exLRH/Hr0KEDAaCjR4/KeadNm0b//ve/CQBptVpq0KABOTk5kb29PXXt2pWIiMLDw+mNN96gLl26ULdu3SzK0Lx5c2rWrBkBoK1bt8plKz+3OXPmUEBAAHXp0oVefvllOc+qVato4sSJ8jUA+v7771Wv33nnHSIicnJyor59+1qN+ccff0wAaNOmTQSAvLy86O2335blUHrjjTcIANWvX5+8vLyoVq1aVKdOnTL2BqKFCxdSnTp1KCQkhCZNmqSaNmbMGHr55ZcpICCA5s6dSwCoW7dudPDgQfr2228JAOXl5cn5o6KiCABduXJFbmNsbCwBoDNnzhAR0d69ewkA3b59W75PzDtw4EBq1aqVxXitVksmk4l0Op2qfP/617/Iy8uL0tPT5byrV6+mNm3a0NixY8nT05MAkF6vp8mTJ1PTpk1p/PjxBIB8fX0JAG3YsIGOHj1Kzs7Ocr9Qrlf5eQ0ZMkRO79GjBx04cIAA0OXLl4mIaMGCBar5xZCUlERERKtWrZLj8vPziYjkOvz8/Ky+t7ThhRdesBiXl5cn96vg4GCLfWTz5s0EgBYvXkxERBEREar3L1myRBXfkydPWqxDbCsR0VtvvaX6vplMJvr4448pJiaGDAYDTZs2zeL9n332GQEgHx8fun79OhERffTRRwSAQkJCKCAgQDW/cPv2bQKgmh4eHk5OTk5kMpnkbwAAioqKojfffFO1nNatW8v/u3TpIpe7cuXKUmMcExNj8R1LS0uT/xuNRvL19aVly5aRVqul1atXl7qsjRs30sGDB+VrHx8fuZyy3qccJk2apHotfrOSk5Mt5t27dy9ptVoqT8uWLa3GW+jZs6dq+sqVK0tdlnIZs2fPJgC0du1a+ZmYl9Hf358MBkOZ5evdu7fVWDg4OFDDhg3la3Fczc3NrdD36GEGEQNr044cOUIbNmyg1NRUuQ3Wvtvi98faYGdnJ/8PDQ0ttzzz5s2zaZwYli1bJv9/++236bvvvpOvGzRoQM7Ozo8co99//51++OEH+Vqn06mmr1+//rF/TuUN1j6XMWPG2PTe+fPn05gxY8r9fj0uf3YdtzrjhPAp96R+WWxNHG31+uuvEwD65ptvbH5Pr169VK+7dOkik0STyaT6ATf3t7/9jfr06UP5+fnk7OxMYWFhlJaWpjoAbdmyhQDQjBkzKDg4WJUkERH99ttv8nVOTo6slK5bt06u59ixYwSARo4cSZmZmXL+TZs20ZQpU6h58+aq+IlkKSkpSc67e/duiouLk8sBQM8//zxpNBpVDCIjI8nT05OaN2+u2laDwUDOzs40duxYAiATXgDUqlUr+bn99a9/pe7du9OIESNUB4y33nqLBgwYoBqXmppa6gFm7NixVj+vlJQUi3lFJUt5coGIqHPnzqr52rdvT/b29lRUVFTq/jBu3Dhq0aIF9ezZkxo0aKCa5uDgQK1atVJVpt9//30iIjp9+jQBoNOnT8v5t23bRgAoKyuLHBwcCAB9/vnnBIDu3r1LRESJiYlyG5TrAUoSFQCyIqvclnXr1hFQklQLYppyvxXDP//5T9qxYwcBfyTz//jHP2RC6OPjY/EekZS/9NJL5OHhQUREa9askdM7duxoUS4AZDQaiYhoxYoVVj/bWrVqkdFoVCVIv/76KxERXb16VbV9YrCWjCmH7du3W4x77rnnCABNnz6dpkyZoioz0R+JFwD66aef5OsePXrI8ZGRkXJ7RJnE9wgAtW3blrKzsykqKoo6dOhALVq0IADUtWtXunXrlpxv3Lhx8v/4+Hj5v/isAZCnp6fqhI+Tk5MqaRJDYWEhLV26lICShNQ88SZS/3YVFhbKbT5x4oTV+J09e5aIiIYPH07BwcHyJIv5EBkZKZcVExNDAGj48OG0detWeWLMluHtt9+2SALE776tyzAfmjVrpiqXteGf//wnXbhwgR48eEBERHq9nqKjo4mI5AkE5dCpUycaNGhQqYly8+bNqU6dOtShQwdKS0ujy5cvy5NFYlAmarYOBw8eJL1eT0ajkXJycig6OlpVhpCQEPl/cXGx/ExGjx5tdXnLly8noOR41K1bN9W09PR01QkVb29veRyLiYmxSLzFIH7DhLy8PFq6dCmdPXv2oT9Da0N2djYZDAZ5MqKiJ4vEd2Dy5MmVWi5bh5deeknGSKvVypOG4vh89uxZMplM8vdqxowZ8uSatUF54snacP78eYvfT6Dku1uRcrdu3ZqIiH755Rer0zMzM+n27dt0584dqmpPah33WcQJ4RPgyy+/pEaNGpGzszO99NJLdPjwYZvfW5VfFmWly97ensLDw2nu3Ll04MABSkhIkAcVo9FIBQUFj7QusZ6wsLCHen9CQgIBJQmT0KhRI7ncBw8eyMqhOAv94YcfEhGRm5ub6sdy//79qtcfffQR/f3vf1eNE+Li4kiv1xMRWbTCKIejR48SEakqmuKHXrzfaDTK8SaTib7//nu5Pfn5+ar3iQP9pUuXVHG4ePEi9e7dWzXuzJkzBIB27txpUa4JEyZQUlKSrKQOGTKk1IPvjBkz6LXXXpOVv6lTp1J0dLRF8ibibE14eLgqJuaJZa1ateT/rVq1kv9/+OGH8v8bN25QbGwspaWlUVRUFL333nuyRXHGjBmyYhUcHEyhoaGyEvLXv/5VleyK/dc8tsrBZDKpWlQdHBxU21O3bl2L92zatEkV66FDh5a6fJE4Kvera9eukZeXlxy3ZMkSi2S6R48eZDQaadmyZbICqBwSEhKsxt/JyUl+H4iI+vTpY3W/Vn4HjEaj1VYRMfj6+lL79u1VcRX/P//883K/NH9fw4YNqUePHqTVauXnHhQUpJrn/PnzVFBQUOq6lYNIKszHDxs2TLV9pb1/wYIF9PXXX5e5DiKSLYNlDeKk0I0bN2Rl0XwQFWVr8d+1axdt377d4vMrr8Vj/PjxRERUv359m2JW3mDeE6Aig5+fH924cYOuXbtGBoOBAHVrz+LFiykxMZH69+9f6jKUv+GVMfj7+1faskSvjYyMDJvfs3fv3lJ/G4nI6v5XHpPJREajkVJSUkqdZ9WqVfT5559TRkaGRTJozmAwyN8Ja8O9e/fk/+LYEhAQQB4eHjR69GiKjY2l6Ohom+osly9flvuKOMEFlCTKcXFxshXbZDLRf/7zHzIYDKTX6yk5OVn2mjAfevToofq9ysjIoAMHDtCMGTPo3LlzZDQaae3atfTZZ59RVlYWTZo0iYYPH07x8fGk0+no3XffpV69eskTLQ/DaDSqjoPK1vns7Gy6f/8+JSYmEhFRYWGhxUlrvV5PS5YsoZ07d6rGi+PCuHHjZItzv379yMfHhxo3bkxXrlyx2lJ95coV+uijj+i333576G16XDgh/PNwQljFtm3bRo6OjrR+/Xq6dOkSTZkyhWrWrCm7XpWnKr8s5VWOKmMQ3RhLG8TZz6ZNm9q0vLi4OIvYlTaIz8C8NaSoqEjVRVKn06nOoJfVSmWeOIpBeUBQHvisDX369LG6bGXFX9lSYeuQnZ2tel2zZk2LeRITE+nOnTsEgCZPnkxt27aV086dO2e1XCaTiYYPH07h4eE2de3S6/UyQSaiUiuER44ckf8ru1KWNVy5coUePHhgddqtW7fo5s2b5OLiQhs3blSVafDgwRbzT5gwgYhI1UXIvJuZaF1UDqmpqarWIluHq1evyuUajUZq164dvfvuu/KstHJe8zO7169fl9OUXV+tfVbiBIT4LAIDA62+LywsjGJiYuRrUQEWQ1BQkMX318/Pj4iIpk2bRtOnT1d9VwoKCmjfvn1lnjAgItW+Lb43p06dsoiXh4eH6nXbtm2JSN2d1XwQxD6uHIqLiykrK8tie8T/Fy9elO8/dOgQASVJpLIFEYBstVISrZxiGDdunJxWXFxMd+7csejSaY3BYKDnn3+eoqKirHYpFJVMg8FAubm5tGnTJtq9e3eprYbmgzg5NmDAALlOrVZLBoOBYmNjKSwsTM57+fJlqycjEhMTy/yNNBqNqkqreTdR0corEpzi4mKbv0OpqamUmZlJDg4OFBQUJI8bc+bMoV27dpHRaCSTyUS5ubmy10ODBg1Uyxg7dix99dVXtHTpUvL09KRNmzZRcXExrV+/ns6fP0+vv/66jLMQExNDr732muzpYm1Q9kAoy/Hjx8nR0ZFCQkLK7Yb6uGm1Wjp48CAlJSVRQkKC6reDscrACeGfhxPCKta+fXuaOHGialxQUBDNmjXLpvdX9ZclOTmZTpw4QXv27KFmzZpRcHCw1Wt+noQhNDTUovylnb2dOXOmxXYWFxerKjJ37959qANyWloabdmyhT777DPKzs62Os/NmzdL3Q5rXVyVRMVRXHdpy7B582YiKqkIazQaWr9+vbzOUgx79uyxur709HR5ndjjUlhYSIsXL5bbtGHDBiIqSSJE63N5Z+KVLSr379+nYcOGkZ2dHY0cObLMs+dCQkICde7cmbp27UrHjx+3uexarZbOnTtHixYtoh9++EGOT0lJIXt7ewJAP//8MxUUFJCXlxd16NCBUlJS6NVXX6WZM2fS9u3bVV3HSmM0GikzM7PUSllxcfFj/5xSU1Np4cKFlJOTQyaTiYqKimj27Nk0evRoio+Pf6zrPnz4MAElXX3//e9/k06no/z8fNqzZw9dunTJIgkxmUzyurGtW7dSZmamanpeXh7dv3+fCgsLVcnYwYMHae7cuXLc3bt3VV03rdHr9XTnzp0yT/QZjUZKTEyk3Nzcim56mXJycujChQvl/m4QlXTrXb58OaWnp5PBYKAHDx5QUlISjR49mrKysh66DDt37qQFCxaUeTKiLIWFhXTnzp1yy1BUVERJSUmUmJhIt27deuj1PU7FxcU2JfeMsaqv41YnGiK+dVBV0el0qFGjBnbu3ImBAwfK8VOmTEF8fLzVB9IWFxer7uio1WrRoEED5OTkWDwj7LHbvh3YssXm2U1EJXeuIkJycjJq1a4NvU4HF1dX6HQ6mIxG5ObloXbt2khNSYGfnx9SUlNRx8cHderUgclkQk5ODvLz81Gnbl1kpKcjR6uFg709Hjx4gCZ/+QtcXVxgZ2eHGjVrwqDXlzysXKOBvb09NOUX8YlkMBph0Ovh7OLy0NuQnZ0NAuD439vZazQaaOzs4OzsDHs7vtkwY4wxxqywswN2766SVWu1Wri7u1dNHbeacSh/Fva4pKenw2g0yltHC76+vqrnAiktXrwYn3zyyZ9RvEpnJ25jrNEgICBANa3mf2+B7+3tXfL3v89QUz5Lzc7ODp6envLREgEBAXI5TZs2tViffRU9rLayOdjbw8He/pGW4eHhUTmFYYwxxhhjzxROCJ8A1p73Yj5O+PDDDzF9+nT5WrQQVonBg0sGxhhjjDHG2FOJE8Iq5OPjA3t7e4vWwLS0NItWQ8HZ2RnOz0jLF2OMMcYYY6xq8cVDVcjJyQlt2rRBZGSkanxkZCQ6duxYRaVijDHGGGOMVRfcQljFpk+fjhEjRqBt27Z45ZVXsG7dOty+fRsTJ06s6qIxxhhjjDHGnnGcEFaxwYMHIyMjA/Pnz0dycjKaN2+On3/+GYGBgVVdNMYYY4wxxtgzjh878ZTjW/IyxhhjjLFnDddx/zx8DSFjjDHGGGOMVVOcEDLGGGOMMcZYNcUJIWOMMcYYY4xVU5wQMsYYY4wxxlg1xQkhY4wxxhhjjFVTnBAyxhhjjDHGWDXFzyF8yomnhmi12iouCWOMMcYYY5VD1G35CXmPHyeET7nc3FwAQIMGDaq4JIwxxhhjjFWu3NxcuLu7V3Uxnmn8YPqnnMlkwv3791G7dm1oNJqqLs4TSavVokGDBrhz5w4/2LSScEwrH8e0cnE8Kx/HtHJxPCsfx7RyVXU8iQi5ubkICAiAnR1f5fY4cQvhU87Ozg7169ev6mI8Fdzc3PgAUck4ppWPY1q5OJ6Vj2NauTielY9jWrmqMp7cMvjn4HSbMcYYY4wxxqopTggZY4wxxhhjrJrihJA985ydnTFv3jw4OztXdVGeGRzTyscxrVwcz8rHMa1cHM/KxzGtXBzP6oNvKsMYY4wxxhhj1RS3EDLGGGOMMcZYNcUJIWOMMcYYY4xVU5wQMsYYY4wxxlg1xQkhY4wxxhhjjFVTnBCyZ8bixYvRrl071K5dG3Xr1sXf//53XL16VTUPEeHjjz9GQEAAXF1d0a1bN/z+++9VVOKny+LFi6HRaDB16lQ5juNZcffu3cPw4cPh7e2NGjVqoFWrVoiJiZHTOaa2MxgMmDNnDho3bgxXV1c0adIE8+fPh8lkkvNwPMt2+PBh/O1vf0NAQAA0Gg12796tmm5L/IqLizFp0iT4+PigZs2a6N+/P+7evfsnbsWTo6x46vV6fPDBB2jRogVq1qyJgIAAjBw5Evfv31ctg+OpVt4+qjRhwgRoNBp8/vnnqvEcUzVbYnr58mX0798f7u7uqF27Nl5++WXcvn1bTueYPls4IWTPjOjoaLz33ns4efIkIiMjYTAY0KtXL+Tn58t5li5diuXLl2PlypU4c+YM/Pz88NprryE3N7cKS/7kO3PmDNatW4eWLVuqxnM8KyYrKwudOnWCo6MjfvnlF1y6dAnLli2Dh4eHnIdjarslS5ZgzZo1WLlyJS5fvoylS5fi//7v/7BixQo5D8ezbPn5+XjxxRexcuVKq9Ntid/UqVOxa9cubNu2DUePHkVeXh5ef/11GI3GP2sznhhlxbOgoACxsbGYO3cuYmNjERERgWvXrqF///6q+TieauXto8Lu3btx6tQpBAQEWEzjmKqVF9ObN2+ic+fOCAoKQlRUFM6dO4e5c+fCxcVFzsMxfcYQY8+otLQ0AkDR0dFERGQymcjPz48+/fRTOU9RURG5u7vTmjVrqqqYT7zc3Fxq2rQpRUZGUteuXWnKlClExPF8GB988AF17ty51Okc04rp168fjRkzRjVu0KBBNHz4cCLieFYUANq1a5d8bUv8srOzydHRkbZt2ybnuXfvHtnZ2dGvv/76p5X9SWQeT2tOnz5NACgpKYmIOJ7lKS2md+/epXr16tHFixcpMDCQwsLC5DSOadmsxXTw4MHyd9Qajumzh1sI2TMrJycHAODl5QUASEhIQEpKCnr16iXncXZ2RteuXXH8+PEqKePT4L333kO/fv3Qs2dP1XiOZ8X9+OOPaNu2Lf7xj3+gbt26aN26NdavXy+nc0wrpnPnzvjtt99w7do1AMC5c+dw9OhR9O3bFwDH81HZEr+YmBjo9XrVPAEBAWjevDnH2AY5OTnQaDSylwDHs+JMJhNGjBiBmTNnIiQkxGI6x7RiTCYT9u7di2bNmqF3796oW7cuOnTooOpWyjF99nBCyJ5JRITp06ejc+fOaN68OQAgJSUFAODr66ua19fXV05jatu2bUNsbCwWL15sMY3jWXG3bt3C6tWr0bRpU+zbtw8TJ07E5MmTsXHjRgAc04r64IMPMHToUAQFBcHR0RGtW7fG1KlTMXToUAAcz0dlS/xSUlLg5OQET0/PUudh1hUVFWHWrFkYNmwY3NzcAHA8H8aSJUvg4OCAyZMnW53OMa2YtLQ05OXl4dNPP0WfPn2wf/9+DBw4EIMGDUJ0dDQAjumzyKGqC8DY4xAaGorz58/j6NGjFtM0Go3qNRFZjGPAnTt3MGXKFOzfv1913YA5jqftTCYT2rZti0WLFgEAWrdujd9//x2rV6/GyJEj5XwcU9ts374dmzdvxtatWxESEoL4+HhMnToVAQEBGDVqlJyP4/loHiZ+HOOy6fV6DBkyBCaTCatWrSp3fo6ndTExMQgPD0dsbGyF48MxtU7clGvAgAGYNm0aAKBVq1Y4fvw41qxZg65du5b6Xo7p04tbCNkzZ9KkSfjxxx9x6NAh1K9fX4738/MDAIuzV2lpaRZnwFnJgTYtLQ1t2rSBg4MDHBwcEB0djS+++AIODg4yZhxP2/n7++OFF15QjQsODpZ3buN9tGJmzpyJWbNmYciQIWjRogVGjBiBadOmyRZtjuejsSV+fn5+0Ol0yMrKKnUepqbX6/Hmm28iISEBkZGRsnUQ4HhW1JEjR5CWloaGDRvK41RSUhJmzJiBRo0aAeCYVpSPjw8cHBzKPVZxTJ8tnBCyZwYRITQ0FBERETh48CAaN26smt64cWP4+fkhMjJSjtPpdIiOjkbHjh3/7OI+8Xr06IELFy4gPj5eDm3btsVbb72F+Ph4NGnShONZQZ06dbJ4FMq1a9cQGBgIgPfRiiooKICdnfowZm9vL89wczwfjS3xa9OmDRwdHVXzJCcn4+LFixxjK0QyeP36dRw4cADe3t6q6RzPihkxYgTOnz+vOk4FBARg5syZ2LdvHwCOaUU5OTmhXbt2ZR6rOKbPoCq6mQ1jle6dd94hd3d3ioqKouTkZDkUFBTIeT799FNyd3eniIgIunDhAg0dOpT8/f1Jq9VWYcmfHsq7jBJxPCvq9OnT5ODgQAsXLqTr16/Tli1bqEaNGrR582Y5D8fUdqNGjaJ69erRf/7zH0pISKCIiAjy8fGh999/X87D8Sxbbm4uxcXFUVxcHAGg5cuXU1xcnLzrpS3xmzhxItWvX58OHDhAsbGx9Oqrr9KLL75IBoOhqjarypQVT71eT/3796f69etTfHy86jhVXFwsl8HxVCtvHzVnfpdRIo6pufJiGhERQY6OjrRu3Tq6fv06rVixguzt7enIkSNyGRzTZwsnhOyZAcDq8M0338h5TCYTzZs3j/z8/MjZ2Zm6dOlCFy5cqLpCP2XME0KOZ8X99NNP1Lx5c3J2dqagoCBat26dajrH1HZarZamTJlCDRs2JBcXF2rSpAl99NFHqso1x7Nshw4dsvq7OWrUKCKyLX6FhYUUGhpKXl5e5OrqSq+//jrdvn27Cram6pUVz4SEhFKPU4cOHZLL4HiqlbePmrOWEHJM1WyJ6ddff03PPfccubi40Isvvki7d+9WLYNj+mzREBE93jZIxhhjjDHGGGNPIr6GkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJrihJAxxhhjjDHGqilOCBljjDHGGGOsmuKEkDHGGGOMMcaqKU4IGWOMMcYYY6ya4oSQMcYYY4wxxqopTggZY4wxxhhjrJr6f85oHaTUDIFpAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "uc = ex.GetSolutions()[0][0].DirectUnitCell()\n", "c = pyobjcryst.crystal.Crystal(uc[0], uc[1], uc[2], uc[3], uc[4], uc[5], \"P1\")\n", "pdiff = px.AddPowderPatternDiffraction(c)\n", "\n", "# Plot with indexing in new figure\n", "px.plot(diff=False,fig=None,hkl=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fit the profile and background\n", "We use a maximum sin(theta)/lambda because we don't really need high angle/high resolution data.\n", "\n", "This will go faster and is more reliable for spacegroup indexing and structure solution." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "No background, adding one automatically\n", "Selected PowderPatternDiffraction: with Crystal: \n", "Profile fitting finished.\n", "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", "to disable profile fitting and optimise the structure.\n", "Fit result: Rw= 8.06% Chi2= 7704.09 GoF= 1.28 LLK= 1194.686\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "286640c0bf39426a80f443c1333499e6", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADTwklEQVR4nOzdeVxU9frA8c+wgwKChOAGLWqkluaKmkhuEahpXvTnnmaLKXlRNE0Ns9Qy9262meaWZWU3s1xJTFHBrchcy/UmarIqyjKc3x8wx5lhgBkURpnn/Xrxupwz33POd8b08vB8v8+jURRFQQghhBBCCCGEzbGz9gSEEEIIIYQQQliHBIRCCCGEEEIIYaMkIBRCCCGEEEIIGyUBoRBCCCGEEELYKAkIhRBCCCGEEMJGSUAohBBCCCGEEDZKAkIhhBBCCCGEsFESEAohhBBCCCGEjZKAUAghhBBCCCFslASEQgghhBBCCGGjJCAUQgghhBBCCBslAaEQQgghhBBC2CgJCIUQQgghhBDCRklAKIQQQgghhBA2SgJCIYQQQgghhLBREhAKIYQQQgghhI2SgFAIIYQQQgghbJQEhEIIIYQQQghhoyQgFEIIIYQQQggbJQGhEEIIIYQQQtgoCQiFEEIIIYQQwkZJQCiEEEIIIYQQNkoCQiGEEEIIIYSwURIQCiGEEEIIIYSNkoBQCCv44osvqFWrFrVr1+ajjz5Szzds2NCKsxJCCCGEELZGoyiKYu1JCGFrPD09+fbbb3F2dqZ///60aNGC//73v3h5eZGWlmbt6QkhhBBCCBshAaEQVuDp6UlGRoZ63KlTJ1JSUrh48aLBeSGEEEIIISqSLBkVwgrc3d3ZtWuXerxjxw5CQ0PJzMy04qyEEEIIIYStkQyhEEIIIYQQQtgoyRAKIYQQQgghhI2SgFAIIYQQQgghbJQEhEIIIYQQQghhoyQgFOIuUrNmTWtPQQghhBBC2BAHa09ACFvk5+entpfw8PDAyckJRVFITU218syEEEIIIYQtkSqjQliBRqNh9erVODk58Z///IcmTZrQr18/OnXqRH5+vrWnJ4QQQgghbIQsGRXCCnx8fGjRogV9+/bl559/pmbNmnz++ef4+vpae2pCCCGEEMKGSEAohBWEhITg7OysHo8dO5aQkBBZMiqEEEIIISqVLBkV4i7w5JNPEhcXZ+1pCCGEEEIIGyMZQiHuAvJ7GSGEEEIIYQ2SIRTiLpCWloaXlxcpKSn4+flZezpCCCGEEMJGSIZQiLuAl5cXAEOGDLHyTIQQQgghhC2RPoRCWEHr1q2LnVMUhcOHD1f+ZIQQQgghhM2SgFAIKzh27BjdunXDzu5Wkl5RFH799VcrzkoIIYQQQtga2UMohBX4+vqyZcsWdakoFAaETZs2JSsry4ozE0IIIYQQtkQCQiGsIDAwEG9vbxwcCpP0N2/exNnZmT/++IPr169beXZCCCGEEMJWyJJRIazA1dWVxMRENSDs2LEjO3fupGvXrlaemRBCCCGEsCWSIbzHFRQU8Pfff+Pu7o5Go7H2dISZNmzYQIcOHdQlowEBAZw9e5Zdu3bRoUMHK89OCCGEEMK6FEUhKyuL2rVrG9RcEHeeBIT3uAsXLlCvXj1rT0MIIYQQQog77vz589StW9fa06jSZMnoPc7d3R0o/Mvi4eFh5dmI8tI1phdCCCGEEJCZmUm9evXUn3VFxZGA8B6nWybq4eGBh4cHCxYsYPz48QwaNIjly5dTo0YNFEUhPz+f3r17s2rVKvXav//+m4YNG3L9+nW+/fZbevfuDUDNmjW5efMm169fp1OnTmi1Wnbs2MEvv/zCDz/8wHvvvWf2/Bo0aECdOnXIycmhXbt2zJ071+S4lJQUlixZwvTp0+nUqRM//PAD1atXv41PxtCHH36Ii4sLw4YNM/n6kCFDiIuL48KFC3fsmZaQYF4IIYQQojjZElXxZEFuFdSsWTOWL1+uHh8/fpzz58+zdu1asrOz1fPe3t4kJSXx4IMPGlx/9epVg+OffvoJe3v7cs3F09OTHTt2sGfPHg4fPsz//vc/k+P8/PyYPn16uZ5xJ6xYsQI/Pz+rPV8IIYQQQghrkIDQRnh7e+Pq6spff/2lnnNxcSEoKOi27rtp0yaeeOIJ2rVrxxdffFHiOK1WS15eHi4uLly6dInOnTvTsWNH+vbti1ar5cyZM/Tt27fE6zt16sSrr75KmzZtePvtt4mKiqJt27bMmTMHgN9++4327dvTrl073nrrLQDOnTtHhw4dePrpp9m5c6d6r5kzZxISEkLHjh1JTk6+rfd/p6WkpFh7CkIIIYQQwoZIQGgjjh8/zs2bN3n44Yfv2D0LCgp488032b59O7t27eLDDz9Eq9UajMnIyKBTp0488sgjBAQEULNmTby8vNi8eTM7d+6kfv36xMXFmfW8yMhI9u7dyyeffMLw4cPZvXu3ugR28uTJfPrpp+zevZudO3dy5swZ3n33XaZNm8aPP/6oLjdITk7m+PHjxMfH89VXXzFt2rTb/hwOHTpEREQEvXv3JiEhQT0/YsQIi+81ZMiQ256PEEIIIYQQ5pI9hDagUaNGaDQaXnvtNbXv3Z3wzz//cPLkSbp166YeX7lyxWDppW7JqKIoREZG8ssvv9CgQQNeeukl0tLSuHjxIo899hgNGjQo83mPPvooGo0GPz8/HnvsMTQaDY6OjgBcunRJzXY+/vjj/Pnnn5w6dYoWLVoA0Lp1awCOHj1KQkICnTp1Aij3Ulh9UVFRLFu2DAcHB2JiYti7dy/R0dEG2VhjuvnoUxSFkydP3vZ8hBBCCFH4i+vc3FxrT0OUwNHR8Y78HCZunwSENuD48eMVsj/Ox8eHoKAgtm7diqOjI3l5eWqAZkyj0eDp6UlqaiqrV6+mW7dujBo1iujoaMztfKK/qdh4g3GtWrU4evQoDz/8MAcPHuSll17ioYce4tChQ3Tp0oX9+/fTqVMnHn74YUJCQvj0008ByMvLK+e7N5zXQw89BMC6deuIjY1l5MiR5Ofnl3hNVlYWycnJxQJ0W2pMP3DgQFavXm3taQghhKiCcnNzOX36NAUFBdaeiihFjRo18PPzk8IxViYBoY3z9fXl6tWrDBkyhH79+qmBUknWrVvH4cOHgcLlja+//jpdunTBzs6O++67j6+++spgvG7JqFarpVatWoSFhfHHH38wePBgNm/ejJubG48++uhtv4+3336b559/HkVRCA8PJzAwkAkTJvDMM89w/vx5FEUhMTERb29v0tPTadmyJe7u7nTt2pXJkyff1rN9fX05c+YMgYGBAMTGxrJq1SpWrlxZ4jUzZ84kKyurWKuJKVOm3NZc7kYTJkwodk5RFIPltUIIIcSdoigKFy9exN7ennr16klT87uQoihkZ2dz+fJlAPz9/a08I9smjenvcZmZmXh6epKRkYGHhweffvopY8aMoV+/fgaVRi1Rs2ZNHB0dSUlJoX///ly8eJG4uLh7Mq3/xBNPsGbNGurVq6eeO3fuHAMHDuSXX35Rzw0ZMoRjx46RmJhojWly7NixO7q/825Sp04d1qxZU+z8uHHj2L9/vxVmJIQQoirLy8vj1KlT1K5dG09PT2tPR5Ti6tWrXL58mYYNGxb7OdP4Z1xRcSRDWMU8//zzPP/887d1D/22E2vXrr3dKVmVVqst9n8GHh4exYrfrFixojKnVcyoUaPMLq5zrxk+fDhBQUH4+voanJcCOkIIISqC7v/jnZycrDwTURY3NzegMIi/FxMPVYUEhKJKmz17NhERETg5OeHh4UFGRgb5+fm888471p6agZL2XlYFM2bMMHk+KiqqkmcihBDClsi+tLuf/BndHSQgFFVax44d2blzJzdu3CA9PR0vLy9cXFwq5Fmpqamkpqbi7e2Nt7d3qWMPHTrE1KlTcXR0JCYmhs2bNwOFrSqWLl1aIfMTQgghhBDCmASEwia4urri6upaIffevn0706ZNw8fHBw8PD9LT00lLS2P69Ol07tzZ5DXGrSq+//57PDw8Sm1VIYQQQgjbtWPHDkJDQ0lLS6NGjRrWno6oQiQgFOI2TZs2jU2bNuHu7q6ey8zMJCwsrMSA0LhVhbe3N2lpaXTo0KFS5iyEEEIIIQSA1OEV4jbZ2dlx5coVg3NXrlwptcy1rlWFTs2aNQFISkqqkDla01dffUXz5s0ZNGgQn3/+OY0aNaJVq1Z8//331p6aEEIIIYTNk4BQ2KRu3brdsXt9/PHHjBs3juDgYNq2bUtwcDAxMTF8/PHHJV7z9ddfq30L4dam6ps3b96xed0t5s6dy+7du5k7dy6vvfYaiYmJ7Nq1izlz5lh7akIIIcRdJScnh6ioKHx9fXFxcaFDhw7Fflm8e/duHnvsMVxcXGjTpg3Jycnqa2fPnqVHjx54eXlRrVo1GjduzI8//ljZb0PcY2TJqKjSIiMji51TFMXgH8/bFRQUxPr16+/Y/aoaV1dX3NzccHNzo3PnzmobEAcH+edHCCGE0DdhwgS++eYbPv/8cwICAnj33Xfp3r07p06dUsfExMSwcOFC/Pz8mDx5Mj179uTEiRM4OjryyiuvkJuby86dO6lWrRp//PEH1atXt+I7EvcC+YlMVGlJSUnExcUZLN9UFIXBgwdbcVbFVeWyy82aNUOr1WJvb8+qVasAyM3NVZfJCiGEEBUtOzubY8eOVfpzH374YbXXXlmuX7/OkiVLWL58OWFhYQB88sknbN26laVLl9KqVSsA3njjDbp27QrA559/Tt26dVm/fj2RkZGcO3eOZ599lqZNmwLwwAMPVMC7ElWNBISiSouJicHd3R0fHx+D86NHj7bSjGzPggULDI7T09OpUaMGX3/9tXUmJIQQwuYcO3aMFi1aVPpzDxw4wOOPP27W2D///JO8vDzat2+vnnN0dKR169YcPXpUDQiDg4PV1729vWnUqBFHjx4FCquYv/zyy2zZsoUuXbrw7LPP8uijj97BdySqIgkIRZU2atQog2NdMNKvX78Kf3ZKSgp+fn5mjdVlCLt168aWLVsqclpW16dPH+Li4hg4cCCrV6+29nSEEELYgIcffpgDBw5Y5bnmUhQFKL5qSFGUMlcS6V5//vnn6d69Oxs3bmTLli3MmjWLuXPnMmbMGAtnLmyJzQWEO3fuZM6cORw4cICLFy+yfv16nnnmGfX1YcOG8fnnnxtc06ZNG/bu3ase5+TkMH78eL744gtu3LhB586d+eCDD6hbt646Ji0tjaioKLWSYs+ePVm8eLFB35hz587xyiuvEBcXh6urKwMGDOC9997DycmpYt68UIORyjBkyJASgzvjvY1///03wB3d23i3mDBhgsHxqVOniImJISEhwUozEkIIYWvc3NzMztRZy0MPPYSTkxO7du1iwIABAOTl5bF//37Gjh2rjtu7dy/169cHCn/ePHHihEHgWa9ePV566SVeeuklJk2axCeffCIBoSiVzQWE169f57HHHuO5557j2WefNTnmqaeeYtmyZeqxcYA2duxYNmzYwNq1a6lZsybjxo0jIiKCAwcOYG9vD8CAAQO4cOECmzZtAuCFF15g8ODBbNiwAQCtVkt4eDj33Xcfu3bt4urVqwwdOhRFUVi8eHFFvHXBrd++3UmtW7c2+ZyTJ0+WeI3x3saDBw+SlZWl9iasSlavXs2aNWvU444dO+Lu7s7PP/9sxVkJIYQQd5dq1arx8ssvExMTg7e3N/Xr1+fdd98lOzubESNG8OuvvwLw5ptvUrNmTWrVqsXrr7+Oj4+PmtwYO3YsYWFhNGzYkLS0NOLi4ggKCrLiuxL3ApsLCMPCwtSNuiVxdnYucalfRkYGS5cuZeXKlXTp0gWAVatWUa9ePbZt20b37t05evQomzZtYu/evbRp0wYo3BQcHBzM8ePHadSoEVu2bOGPP/7g/Pnz1K5dGygszz9s2DDefvttPDw87uC7FjrffvvtHb9nVlYWycnJxapm6jZ8m2K8t1H3S4equLdx+PDhBAUF4evra3B+yJAhVpqREEIIcXeaPXs2BQUFDB48mKysLFq2bMnmzZvx8vIyGPPqq69y8uRJHnvsMb7//nv15witVssrr7zChQsX8PDw4KmnnmL+/PnWejviHmFzAaE5duzYga+vLzVq1CAkJIS3335b/WH2wIED5OXlGfSxq127Nk2aNCEhIYHu3buzZ88ePD091WAQoG3btnh6epKQkECjRo3Ys2cPTZo0UYNBgO7du5OTk8OBAwcIDQ01ObecnBxycnLU48zMzDv99qs0/X9Q75SZM2eSlZVV7N5Tpkwp8RrjvY06ptpk3OtmzJhh8nxUVFQlz0QIIYS4u7m4uLBo0SIWLVpU7LVOnTqpK50iIiJMXi+rzER5SGN6I2FhYaxevZq4uDjmzp1LUlISTz75pBqEpaSk4OTkVOyH/1q1apGSkqKOMc6GAPj6+hqMqVWrlsHrXl5eODk5qWNMmTVrFp6enupXvXr1buv9itsXGBjI4MGD6d27t8G+uBUrVph9D91m8IpY0nq3Ku2/cyGEEEIIUTkkIDTSr18/wsPDadKkCT169OCnn37ixIkTbNy4sdTrjCtAmaoGVZ4xxiZNmkRGRob6df78eXPeljByJ4ORqKgoFixYwPz585k/fz7z5s0D4K+//rL4XrYUEMqSUSGEEEII65Mlo2Xw9/cnICBALRDi5+dHbm4uaWlpBlnCy5cv065dO3XMpUuXit3rypUralbQz8+Pffv2GbyelpZGXl5escyhPmdnZ5ydnW/7fdm60iqAWkqj0ajFYNatW0dsbCwjR44kPz/f7HvU0GrpRmGgWqdOnTsyr7tFeYruCCGEEEKIyiEZwjJcvXqV8+fP4+/vD0CLFi1wdHRk69at6piLFy/y+++/qwFhcHAwGRkZJCYmqmP27dtHRkaGwZjff/+dixcvqmO2bNmCs7OzVRqnVlWtW7dWv1q1aqX+r/6fze3y9fXlzJkz6nFsbCwhISEkJSWZfY+5Fy6wmcK2J1WNLhvr4OBAdHQ0iYmJJCUlFSvCI4QQQgghKp/N/UR27do1Tp06pR6fPn2aw4cP4+3tjbe3N7GxsTz77LP4+/tz5swZJk+ejI+PD7179wbA09OTESNGMG7cOGrWrIm3tzfjx4+nadOmatXRoKAgnnrqKUaOHMlHH30EFLadiIiIoFGjRkBhA/JHHnmEwYMHM2fOHFJTUxk/fjwjR46UCqN30D///EPDhg3JzMzEwcGBvLw8fHx87mgw8vXXXxc7N2jQIAYNGlTiNcZZs5zsbJyAkxYEkfcKV1dXvvrqK3x9fZkyZQq7d+9m4cKFsv9VCCGEEOIuYHMB4f79+w0qeEZHRwMwdOhQlixZQnJyMitWrCA9PR1/f39CQ0P58ssvcXd3V6+ZP38+Dg4OREZGqo3ply9frvYghMLea1FRUWo10p49e/L++++rr9vb27Nx40ZGjRpF+/btDRrTizvH2dmZOXPm0LRpU/XcuXPnSqzOVVmMW1WccnHhoZwcOlfB7LCvry+BgYEAzJs3j1mzZtGrVy/JEAohhBBC3AVs7icy/ZK9pmzevLnMe7i4uLB48eJSS/t6e3uzatWqUu9Tv359fvjhhzKfJ8rPy8uLgIAAg3MeHh5Ur17dSjMqZNyqQvdf5GuvvWa9SVWQZs2acebMGTUo3Lp1K1OnTuXll1+27sSEEEIIIYTtBYTCtsyePZuIiAicnJzw8PAgIyOD/Px83nnnnTv+rNTUVFJTU9Xlx6XRLUHW0RZVln0iOPiOz8vajH9x4ujoSGhoKMeOHbPSjIQQQgghhI4EhKJK69ixIzt37uTGjRukp6fj5eWFi4vLHX3G9u3bmTZtGj4+Pnh4eJCenk5aWhrTp0+nc+fOZt2joOh/FQsqk96rzMnCCyGEEMIysbGxfPfddxw+fNjaUxH3GAkIhU1wdXXF1dW1Qu49bdo0Nm3aZLDPNDMzk7CwMPMDQl1j+ry8CpmjEEIIIYQQpkjbCSFuk52dHVeuXDE4d+XKFezszP/rpQaENpAh1MnKyrL2FIQQQgghbJ4EhELcpo8//phx48YRHBxM27ZtCQ4OJiYmho8//tjse1TlJaMrVqygadOmPP7448yePVs936tXLyvOSgghhLj7FBQU8M477/DQQw/h7OxM/fr1efvttwGYOHEiDRs2xM3NjQceeICpU6eSV8bKos8++4zGjRvj7OyMv78/o0eProy3Ie4xsmRU2KRu3bqxZcuWO3KvoKAg1q9ff1v30FUZVQoKSh13L1qyZAkHDx7E0dGRRYsW0bdvX1asWFFqtV8hhBDCFk2aNIlPPvmE+fPn06FDBy5evKgWYXN3d2f58uXUrl2b5ORkRo4cibu7OxMmTDB5ryVLlhAdHc3s2bMJCwsjIyOD3bt3V+bbEfcICQhFlRYZGVnsnKIoJCcnW2E2pShaMkoVDJLs7OxwdHQEICoqikceeYSwsDBSU1OtPDMhhBDi7pGVlcXChQt5//33GTp0KAAPPvggHTp0AGDKlCnq2MDAQMaNG8eXX35ZYkD41ltvMW7cOF599VX1XKtWrSrwHYh7lQSEokpLSkoiLi7OYD+foigMHjzYirMqripnCMPDww36EHbp0gV/f3+6du1q3YkJIYSwHdnZYI12Rw8/DG5uZg09evQoOTk5JRak+/rrr1mwYAGnTp3i2rVr5Ofn4+HhYXLs5cuX+fvvv80ubidsmwSEokqLiYnB3d0dHx8fg/OVsYY+JSUFPz8/s8ZqKngu1pSens4HH3xgcE5RFJydna00IyGEEDbn2DFo0aLyn3vgADz+uFlDS6uGvnfvXvr378/06dPp3r07np6erF27lrlz51p8LyGMSUAoqrRRo0aZPN+vX78Kf/aQIUMs3qdYFTOEq1evZs2aNcXO//zzz1aYjRBCCJv08MOFwZk1nmumBg0a4Orqyvbt23n++ecNXtu9ezcBAQG8/vrr6rmzZ8+WeC93d3cCAwPZvn07oaGhls9b2BQJCIW4Ta1bty52TlEUTp48afG9qmJAOHz4cIKCgvD19TU4P2TIECvNSAghhM1xczM7U2ctLi4uTJw4kQkTJuDk5ET79u25cuUKR44c4aGHHuLcuXOsXbuWVq1asXHjxjIL2sXGxvLSSy/h6+tLWFgYWVlZ7N69mzFjxlTSOxL3CgkIhbhNWVlZJCcn4+Bg+NfJkj1yiq4PYRUMCGfMmGHyfFRUVCXPRAghhLi7TZ06FQcHB6ZNm8bff/+Nv78/L730EiNGjODf//43o0ePJicnh/DwcKZOnUpsbGyJ9xo6dCg3b95k/vz5jB8/Hh8fH/r27Vt5b0bcMzSK1H6/p2VmZuLp6UlGRkaJG4tFcZbs7yvL+vXr6dSpE15eXgbn4+PjCQkJMeseh9zdaX7tGql//IF3UNAdmZcQQghhi27evMnp06e5//77cXFxsfZ0RClK+7OSn3ErjzSmFzbpTi5X7N27t0EwqOsXZG4wqK8qZgiFEEIIIcTdS5aMiirtTu7vM9eoUaOIi4uz6Bo1TS8JeyGEEEIIUYkkIBRV2p3Y32cpXRP28qiKK7i3bt3KlClTsLe3Jyoqiv79+wOF/Qk3btxo5dkJIYQQQtg2WTIqqrSZM2eSlZVV7PyUKVMq7JmbN2/m2rVr5QruquKS0TfeeIPNmzezbds2EhMTGTNmDAUFBWRnZ1t7akIIIYQQNk8CQlGlGe/v0ynP/j5zKYqCu7s7b731ltnX6BrTV8WA0N7enho1auDm5sa8efNo0aIFvXr14tq1a9aemhBCCCGEzZOAUNie8HD46acKf8yGDRvMH6xrO1EFl4w2a9aMM2fOqMfDhg0jOjraZOZWCCGEEEJULtlDKGzPjz/CoUPw998VcntdUJefn2/5tVUwQ7h48WKD4/T0dEJDQ9VqrEIIIYQQwnokQyhsUyVk4iwJCG2pymifPn2sPQUhhBBCCFFEAkJhmyow8LqdDKEtBIRVcVmsEEIIIcS9SgJCYZvusgyhWlTGBoKlb7/91tpTEEIIIaqc2NhYmjVrVqHPWL58OTVq1KjQZ4jKJwGhsE0VuFdP9hCWTlf1deDAgVaeiRBCCCGEkKIywjZVQiZO+hAWmjBhQrFziqKQkJBghdkIIYQQQgh9kiEUtqkS9hBW9rV3q9WrVxMeHm7wFRERYbI/pBBCCGHLCgoKeOedd3jooYdwdnamfv36vP322wBMnDiRhg0b4ubmxgMPPMDUqVPJy8sr9X6fffYZjRs3xtnZGX9/f0aPHl3q+LS0NIYMGYKXlxdubm6EhYVx8uTJYuO+++47GjZsiIuLC127duX8+fPqa7/++iuhoaG4u7vj4eFBixYt2L9/fzk+DVFZJEMobNLNGzdwqaB7lyuoK+pDWBWLyrRs2ZKXXnoJV1dXIiMjee211wCkMb0QQghhZNKkSXzyySfMnz+fDh06cPHiRbVNk7u7O8uXL6d27dokJyczcuRI3N3dTa7EAViyZAnR0dHMnj2bsLAwMjIy2L17d6nPHzZsGCdPnuT777/Hw8ODiRMn8vTTT/PHH3/g6OgIQHZ2Nm+//Taff/45Tk5OjBo1iv79+6v3HjhwIM2bN2fJkiXY29tz+PBh9Vpxd5KAUNikmzdvVlhAqCNLRgtdvnyZ3377DUdHRxYtWkTfvn1ZsWIFderUsfbUhBBCiLtGVlYWCxcu5P3332fo0KEAPPjgg3To0AGAKVOmqGMDAwMZN24cX375ZYkB4VtvvcW4ceN49dVX1XOtWrUq8fm6QHD37t20a9cOKFzlU69ePb777jv+9a9/AZCXl8f7779PmzZtAPj8888JCgoiMTGR1q1bc+7cOWJiYnj44YcBaNCgQXk/ElFJZMmosEmasoeUm1JQwN9AaHa2wXlziqhUxYDQzs5O/c1gVFQUL774ImFhYfzzzz9WnpkQQghx9zh69Cg5OTl07tzZ5Otff/01HTp0wM/Pj+rVqzN16lTOnTtncuzly5f5+++/S7zXSy+9RPXq1dUv3fMdHBzUQA+gZs2aNGrUiKNHj6rnHBwcaNmypXr88MMPU6NGDXVMdHQ0zz//PF26dGH27Nn8+eefln0QotLZXIZw586dzJkzhwMHDnDx4kXWr1/PM888AxT+xmPKlCn8+OOP/PXXX3h6eqr/MdeuXVu9R6dOnYiPjze4b79+/Vi7dq16nJaWRlRUFN9//z0APXv2ZPHixQales+dO8crr7xCXFwcrq6uDBgwgPfeew8nJ6eK+wAEAJoKXJo5efJk7AHl6lX1t3bmFlGpinsIw8PDOXPmDIGBgQB07dqV2rVrM27cOOtOTAghhE15+YeX+V/W/yrteXXc67AkYonZ411dXUt8be/evfTv35/p06fTvXt3PD09Wbt2LXPnzrX4XgBvvvkm48ePNzhX0s8giqKg0Rj+Kt34WP9cbGwsAwYMYOPGjfz000+88cYbrF27lt69e5c6J2E9NhcQXr9+nccee4znnnuOZ5991uC17OxsDh48yNSpU3nsscdIS0tj7Nix9OzZs9hm2JEjR/Lmm2+qx8Z/8QYMGMCFCxfYtGkTAC+88AKDBw9mw4YNAGi1WsLDw7nvvvvYtWsXV69eZejQoSiKwuLFiyvirQs9FZkh/GLtWr4ATtnZ8VB4uHr+559/LvviKhgQTp482eD42LFjNG7cWP27IYQQQlQGS4Iza2jQoAGurq5s376d559/3uC13bt3ExAQwOuvv66eO3v2bIn3cnd3JzAwkO3btxMaGlrsdV9fX3x9fQ3OPfLII+Tn57Nv3z51yejVq1c5ceIEQUFB6rj8/Hz2799P69atATh+/Djp6enqElGAhg0b0rBhQ/7973/zf//3fyxbtkwCwruYzQWEYWFhhIWFmXzN09OTrVu3GpxbvHixuh66fv366nk3Nzf8/PxM3ufo0aNs2rSJvXv3qmn3Tz75hODgYI4fP06jRo3YsmULf/zxB+fPn1ezj3PnzmXYsGG8/fbbeHh43Im3K0pQkQHh0MGDCXr3Xbzt7GgaEqKeHzJkSInXKEW/VauKS0a/+uorZs2aRePGjenatSsvv/wyjRs3ZurUqfTs2dPa0xNCCCHuCi4uLkycOJEJEybg5ORE+/btuXLlCkeOHOGhhx7i3LlzrF27llatWrFx40bWr19f6v1iY2N56aWX8PX1JSwsjKysLHbv3s2YMWNMjm/QoAG9evVi5MiRfPTRR7i7u/Paa69Rp04devXqpY5zdHRkzJgxLFq0CEdHR0aPHk3btm1p3bo1N27cICYmhr59+3L//fdz4cIFkpKSiiVhxN1F9hCWISMjA41GY7DUEwo32fr4+NC4cWPGjx9PVlaW+tqePXvw9PQ0WIPdtm1bPD091WWDe/bsoUmTJgZLUbt3705OTg4HDhyo2DclKjQgnDZ1Kr6AnVG2Lyoqqsxrq+KS0blz57J7927mzp3La6+9Rtu2bdm1axdz5syx9tSEEEKIu8rUqVMZN24c06ZNIygoiH79+nH58mV69erFv//9b0aPHk2zZs1ISEhg6tSppd5r6NChLFiwgA8++IDGjRsTERFhsoWEvmXLltGiRQsiIiIIDg5GURR+/PFHgyqhbm5uTJw4kQEDBhAcHIyrq6u6bcre3p6rV68yZMgQGjZsSGRkJGFhYUyfPv32PxxRYWwuQ2iJmzdv8tprrzFgwACDjN3AgQO5//778fPz4/fff2fSpEn8+uuvanYxJSWlWBoeCtPzKSkp6phatWoZvO7l5YWTk5M6xpScnBxycnLU48zMzNt6j7aqQn8TUhTUlSforIoZQldXV9zc3HBzc6Nz586sWrWK1NRUHBzknx8hhBBCn52dHa+//rrB0lCdd999l3fffdfg3NixY9XvY2NjiY2NNXj9xRdf5MUXXzT7+V5eXqxYsaLE14cNG8awYcMA6NOnT7HXnZyc+OKLL8x+nrg7yE9kJcjLy6N///4UFBTwwQcfGLw2cuRI9fsmTZrQoEEDWrZsycGDB3n88ccB05ttjTflmjPG2KxZs+S3LHdARebhdFk++/JdfEfncjdo1qwZWq0We3t7Vq1axc2bN6lZsyZNmjSx9tSEEEIIIWyeLBk1IS8vj8jISE6fPs3WrVvL3M/3+OOP4+joqKbh/fz8uHTpUrFxV65cUbOCfn5+xTKBaWlp5OXlFcsc6ps0aRIZGRnq1/nz5y19e4KKXTKqC+qMl4yWRp1PFQwIFyxYgL39rfBYq9UCcN9991lrSkIIIYQQoogEhEZ0weDJkyfZtm0bNWvWLPOaI0eOkJeXh7+/PwDBwcFkZGSQmJiojtm3bx8ZGRlq1abg4GB+//13Ll68qI7ZsmULzs7OtGjRosRnOTs74+HhYfAl7i7bt2+nDdAvP9+gFUm4XsXRklTFPYTGdBnw3NxcK89ECCGEEELY3JLRa9eucerUKfX49OnTHD58GG9vb2rXrk3fvn05ePAgP/zwA1qtVs3ieXt74+TkxJ9//snq1at5+umn8fHx4Y8//mDcuHE0b96c9u3bAxAUFMRTTz2lVmmCwrYTERERNGrUCIBu3brxyCOPMHjwYObMmUNqairjx49n5MiREuTd496ePZvNwP/s7VmamMju3btZuHAh2UaN6k2pinsIjemCXgkIhRBCCCGsz+YyhPv376d58+Y0b94cgOjoaJo3b860adO4cOEC33//PRcuXKBZs2b4+/urX7rqoE5OTmzfvp3u3bvTqFEjoqKi6NatG9u2bTNYFrd69WqaNm1Kt27d6NatG48++igrV65UX7e3t2fjxo24uLjQvn17IiMjeeaZZ3jvvfcq9wOxURW5ZNTO3p4aQHVg3rx5tGjRgl69enHt2rUSr9G1naiKS0ZNmQS4p6VZexpCCCGEEDbP5jKEnTp1KnVZXllL9urVq0d8fHyZz/H29mbVqlWljqlfvz4//PBDmfcS95amjRtzZu9eKAryhg0bRkBAAC+//HKZ19rCklElO5uZQNu//rL2VIQQQlRhtvD/qfc6+TO6O9hcQChsXCX8w/PerFm4L13KWb1nhYaGcuzYsRKv0WUsq+KS0datWxscF+TloQGOV8H3KoQQwvp0K7Zyc3NxdXW18mxEaXTbafT7HIrKJwGhEHfY7QR1VTEgzMrKIjk5We07mHXpEu5+frQvpb2KEEIIUV4ODg64ublx5coVHB0dsbOzuR1Sdz1FUcjOzuby5cvUqFHDYNuVqHwSEArbchtN40X5zJw5k6ysLLy8vIBbQe8o+W2gEEKICqDRaPD39+f06dOcPXvW2tMRpahRowZ+fn7WnobNk4BQ2JZKWDKqFBSQA/yuKJzctg1vb2+aNGmCk5PTXTG/yta7d2/DE0XvsY1kCIUQQlQQJycnGjRoIBWt72KOjo6SGbxLSEAoxB22dt06PgcaKQp14+NJT0/n4MGDvPzyywwaNMjkNboqo1VxyagxRbK0QgghKoGdnR0uLi7WnoYQdz0JCIVtqYRgZNmqVSQA5+3sCJgxA4D8/Hw6depUYkBoPL8qreg92sA7FUIIIYS468kuW2FbKiHgcnVxQb8xiaIoxMfHm/VbSlsov6zLgkbn5Vl5JkIIIYQQQjKEwrZUQsC1ZN48PmzVil1aLQ5t2+Lo6EjLli3L7EtZWfOrbBMmTDA4vpmZiTNwyAaWxwohhBBC3O0kIBQ2RVEUNFTsktFavr4sAM7Z21N/716Lrq2KewhXr17NmjVr1OOslBTcP/qIhVackxBCCCGEKCQBobAtlVRl1FJqY/o7O5W7gqIojB07Vm06q83JwQ7It+60hBBCCCEEEhAKG6MUFNzd1S2rYIbw0qVLTJw4UT3OvnoVt99+43crzkkIIYQQQhSSgFDYlPK0PBg4cCCrV6+25CEWP6Mqt51o164dXbp0oXHjxgCk/vkn3jNm8JP0IRRCCCGEsDoJCIVtKWXJqHHxk8LhCgkJCXfsGWWpiiHSL7/8YnCsC8o/LFpCKoQQQgghrEcCQmFTSsvAGRc/0fn5558te0YJAaE5mUZbaDshfQiFEEIIIe4eEhAKm1JawDV8+HCCgoLw9fU1OD9kyBCLnhE7ezauQFZBAe5FWceyMo1qUZkquGT0q6++YtasWTRu3JiuXbsyIzYWL+CFggJGWntyQgghhBA2TgJCYVtKCQhnzJhh8nxUVJRFj/j6++9ZC1zWaPAND1fPl5ZpVGdVBTOEc+fOZffu3WRlZdGsWTN2b9hAnVat6KDVSkAohBBCCGFlEhAKm1IZGbgBzz5L0JIlPKjRUDckRD1vaaaxqrhy5Qq+vr5oNBrq1KmDe7VqOAOHq2DwK4QQQghxr7Gz9gSEqEyVsUfvtagofE2cNyfTWBWXjF64cIHffvuN06dPU61aNUKeeYZsa09KCCGEEEIAEhAKW1OOlhCWP6IcQWcVbjvh6urKAw88gI+PDwcOHKB5kybcD0iNUSGEEEII65OAUNiU8gRc3bp1s/AhFR903ksCAgLYtWuXejx/+nQmAvnWm5IQQgghhCgiewiFTSktexcZGWlyfHJysmXP0AWd5cgUVsUM4W+//WZwnJGZSTTQV/oQCiGEEEJYnQSEwraUkr1LSkoiLi4OOzs7veEKgwcPtugR8QkJzAW0BQWMX7uW/v37AxAeHs7GjRvNml9V9tzYsewCLisK9a09GSGEEEIIGycBobAppWXgYmJicHd3x8fHx+D86NGjLXrGnA8+YCtwVaPhP4mJ7N69m4ULF5KdbUYpFRsICHVZ2mitlp1WnosQQgghhK2TgFDYlNKWjI4aNcrk+X79+ln0DHs7O2oA2RoN8+bNY/ny5fTq1Ytr167d1vzuVa1btzY4vnntGq2A41XwvQohhBBC3GukqIywLUVBSEX+h9+4USPO6B0PGzaM6OhosrKyyr64CgZJFy5cIDs7m/z8fPr06cPm1atJQv7xEUIIIYS4G8jPZMKmVEbRlrcnTiRQ7zg9PZ3Q0FCOHTtW9sVVMCB0d3cnLi6OgwcP4ubmxsiYGLKBOtaemBBCCCGEkIBQ2JbyBIQpKSmWPcMoqOvTp0+5r60KfHx88PX1BSAqKorQdu0IA/KsOy0hhBBCCIEEhEKUaciQIRaNNw46FUXhv//9L3/++WfJFxU1pq+KGcLatWvz8MMP8/jjjzN79my+/eknPgCuWHtiQgghhBBCisoIG1NKwGVc/KRwuMKvv/56W8/49ttv8fb2pnr16iXuI9RdURX7EF64cIHk5GQcHR1ZtGgRR0+d4n4gSGOq+YcQQgghhKhMNpch3LlzJz169KB27dpoNBq+++47g9cVRSE2NpbatWvj6upKp06dOHLkiMGYnJwcxowZg4+PD9WqVaNnz55cuHDBYExaWhqDBw/G09MTT09PBg8eTHp6usGYc+fO0aNHD6pVq4aPjw9RUVHk5uZWxNsWRUoLuP788086duxIp06dDL7s7e0te4ZRQOjl5QVQapVRNTSqghlCOzs7HIua0EdFReHv60sYkFoF36sQQgghxL3G5gLC69ev89hjj/H++++bfP3dd99l3rx5vP/++yQlJeHn50fXrl0NMjtjx45l/fr1rF27ll27dnHt2jUiIiLQarXqmAEDBnD48GE2bdrEpk2bOHz4sEGDc61WS3h4ONevX2fXrl2sXbuWb775hnHjxlXcmxdl6tSpE+Hh4epXREQE9etb1j5dY/S/FSk/P78SnnJ7wsPDOXPmjHp8n7c3HwB+kiEUQgghhLA+xYYByvr169XjgoICxc/PT5k9e7Z67ubNm4qnp6fy4YcfKoqiKOnp6Yqjo6Oydu1adcz//vc/xc7OTtm0aZOiKIryxx9/KICyd+9edcyePXsUQDl27JiiKIry448/KnZ2dsr//vc/dcwXX3yhODs7KxkZGWa/h4yMDAWw6Bpbln7ihKIU5uGKvTZlyhTl0qVLxc4vXLjQomdc2LtXuQnKJo1G2bp1q3LgwAGFwlWhJV5zwMdHUUBJevfdMu//22+/KWFhYUpwcLDyxBNPKG3btlUiIiKU3377zaJ5Wsv5hARFAeV/Dg7WnooQQggh7lLyM27lkT2Eek6fPk1KSgrdunVTzzk7OxMSEkJCQgIvvvgiBw4cIC8vz2BM7dq1adKkCQkJCXTv3p09e/bg6elJmzZt1DFt27bF09OThIQEGjVqxJ49e2jSpAm1a9dWx3Tv3p2cnBwOHDhAaGho5bxpG1PaktEZM2aYPL9v3z6LnvH1Tz/xJfCIouAfH19sqbDJeVlQVGbUqFGsWbOGevXqqefOnTvHwIED+eWXXyyaqzVUxX2SQgghhBD3KgkI9ejaC9SqVcvgfK1atTh79qw6xsnJSd0Xpj9Gd31KSopaZl+fr6+vwRjj53h5eeHk5FRqm4OcnBxycnLU48zMTHPfnijDhAkTip1TFIWEhASL7rN6/Xr2Apft7PArCjJLWqKso1s8qZgREGq1Wjw9PQ3OeXh4GCxZvqvJ3kEhhBBCiLuGBIQmaIz2NimKUuycMeMxpsaXZ4yxWbNmMX369FLnIkpWWnZq9erVrFmzptj5n3/+2aJnuDg7Ew8E6Z5pSQBkxtjZs2cTERGBk5MTHh4eZGRkkJ+fzzvvvGPRPK1NdhAKIYQQQlifBIR6/Pz8gMLsnb+/v3r+8uXLajbPz8+P3Nxc0tLSDLKEly9fpl27duqYS5cuFbv/lStXDO5jvBQxLS2NvLy8YplDfZMmTSI6Olo9zszMNFg6KEpXWkA4fPhwgoKCimV3Le1DOH/KFFb26sXEggLs2rZVK2yWOi/1m7IDwo4dO7Jz505u3LhBeno6Xl5euLi4WDRHq5IMoRBCCCHEXcPmqoyW5v7778fPz4+tW7eq53Jzc4mPj1eDvRYtWuDo6Ggw5uLFi/z+++/qmODgYDIyMkhMTFTH7Nu3j4yMDIMxv//+OxcvXlTHbNmyBWdnZ1q0aFHiHJ2dnfHw8DD4EnfGjBkzTC71/eGHHyy6j6+3NwuADXZ27N2716x9fZYsGdVxdXXF39//3goGkT2EQgghhBB3E5vLEF67do1Tp06px6dPn+bw4cN4e3tTv359xo4dy8yZM2nQoAENGjRg5syZuLm5MWDAAAA8PT0ZMWIE48aNo2bNmnh7ezN+/HiaNm1Kly5dAAgKCuKpp55i5MiRfPTRRwC88MILRERE0KhRIwC6devGI488wuDBg5kzZw6pqamMHz+ekSNHSpBXkUoJuCIjI00MVyq3UIsNZM90Qa8sGRVCCCGEsD6bCwj3799vUMFTt/xy6NChLF++nAkTJnDjxg1GjRpFWloabdq0YcuWLbi7u6vXzJ8/HwcHByIjI7lx4wadO3dm+fLlBg3MV69eTVRUlFqNtGfPngaFRezt7dm4cSOjRo2iffv2uLq6MmDAAN57772K/ghsWmnZqS1bthAZGWmwh1NRFMv2ABZeVN7pWZQ9S01NJTU1FW9vb7y9vcv9zEpX9PmM0mr51spTEUIIIYSwdTYXEHbq1KnUH/A1Gg2xsbHExsaWOMbFxYXFixezePHiEsd4e3uzatWqUudSv359i5cjiooVHh5OjRo1DM5t27bNonuYCup+BL4s7RoL2k5s376dadOm4ePjg4eHB+np6aSlpTF9+nQ6d+5s0Vwrg3H11oyzZ/EA9ttANlQIIYQQ4m5ncwGhsG2lZeDGjBlDcHCwuo8wPT2dGjVq4OTkdNvPDSv6uhOmTZvGpk2bDLLWmZmZhIWF3ZUBoXH11u1ffcVG4AaFWdmJEyfi6enJrFmzCA4Otto8hRBCCCFskQSEwqaUFhAeP36c0aNHq8c7duwgJCSEjIyMcj2jPHvkzFkyamdnx5UrVwwCwitXrmBnd3fWiDKu3jr2pZf4HniXwqXaSUlJuLm50adPH3bs2GHNqQohhBBC2BwJCIVtKWWZYlJSEnFxcWpg1b9/f+bMmcPgwYMte4QuqCvPkkgzrvn4448ZN24cKSkpat9Kf39/Pv74Y8ufVwlmzJhhcOzs5EQ9YKq9PUeCgqhbty5///23wR5cIYQQQghROSQgFDaltP2jMTExuLu74+PjA8CPP/6Il5eXQdawoljSdiIoKIj169dX7IQqUEFBARuALEVh/PjxbNy4kTfeeIPc3FxrT00IIYQQwuZIQChsSykB16hRowyOddVG+/XrV65nlKutgg0UWvnz/HmWAE0VBbekJAAyMjIYOHCgdScmhBBCCGGD7s5NR0JUEEvaOvTp0wdAbR1SkSypMnqvi1++nCeAUxR+tm+88QYNGjQotbKvEEIIIYSoGJIhFKKIcWP633//nX/9618cPnzYovtYEnQWv7j8AWFWVpZBoZm7xVdffcWsWbNo3LgxXbt2Zfrrr1MTGElhC4358+eTnp5u5VkKIYQQQtgmCQiFTSktWDMuKpORkYGHhwfNmze38CG30ZjejGtXrFjBnDlzcHR0JDIyktdeew2AXr16ERcXV+5nV5S5c+eye/dusrKyaNasGT8tXEhQv36EKAp7p0whMzOTY8eOWXuaQgghhBA2SQJCYVNKCwgVReHZZ5/FwcHB4JylxU7MCepKubjMIUuWLOHgwYM4OjqyaNEi+vbty4oVK27vuRXI1dUVNzc33Nzc6Ny5M7+eOMGLwFFg7dq19O/fn9atWxMeHs7GjRutPV0hhBBCCJsiAaEQRVxdXUlMTDQICAG6du1q2Y0qOCC0s7PD0dERgKioKB555BHCwsJITU0t/3MrULNmzdBqtdjb27Nq1SoeDwpiEzAMSExMZPfu3SxcuJDs7Gwrz1QIIYQQwvZIURlhU0rLEM6cOZOsrKxi519++WULH2J5QGhJ24nw8HDOnDmjHnfp0oUPPviAOnXqWPzcyrBgwQKDHoOKouALrLS3Z968ebRo0YJevXpx7do1601SCCGEEMJGSYZQ2JZSAq7evXubPP/hhx+qFUcrnBkB4eTJk4uda9y4MZs2baqIGd1xF//5hzOArvzNsGHDCAgIICIiwoqzEkIIIYSwTRIQClGkdevWxc4pisLx48ctuo8uC2lJH0Jd24m7dR/gnZSXl8cEILegAKfISPLy8nBwcMDDw8PaUxNCCCGEsDkSEAqbUtqS0aysLJKTk4vtIaxZs2ZFT8um2NvZ8Q+AojC6f3/ee+891qxZQ9u2ba09NSGEEEIImyMBobAppQWE+fn5tGnTpth+t5ycnDv2jDLdzrX3CBdnZ2YDThoNb3/xBZcvXyYwMFACbyGEEEIIK5CiMkIUcXBwYN++fSQmJpKYmMiKFStISkoiODjYshsVLfu0ZMmo8bXmGDhwYHmeYHVuzs5MBj5WFEaOHElGRgb+/v7FMrNCCCGEEKLiyU9gwraUEnDpqox6eXkBMGrUKOLi4pgyZUplzc7kHsIJEyaYHJeQkFAZU7rjUlJT+Qz4Bxg6dCgNGzZk8ODBjBo1ytpTE0IIIYSwORIQCptS2nJO4yqjuob0ISEh5XpGuTKEJqxevZo1a9YUO//ZZ5/doSdUrob169Pujz8IBYKCglAUhZdeeol169ZZe2pCCCGEEDZHAkJhWyxYkunk5FThzyjGRMAaEBDAunXrcHNz03vEvVON1Lh664lz52gJnAQy4uJIS0sjPz+fmzdvWmV+QgghhBC2TAJCYVMsCaQcs7LggQfg1CmwM3+7bbmCtaK2E6aCybNnzzJr1qxi53/++WfLn2MFxtVbj335JQ/3709o0eu6Jbqurq5WmqEQQgghhO2SgFDYFEsqgG6uWRP274fMTKhRw+zrbmepqKlgcvjw4QQFBeHr62twfsiQIbfxpMpjvDcz8vXXcQHSuZU9VBSFkydPWm2OQgghhBC2SqqMCptiUbDm7l74v9euWfSM21rOaeLaGTNmFAsGAaKiosr/nErUu3dvNRgEuJSayk0gEOjUqROXLl2ioKCAwMBAK81QCCGEEMJ2SUAobIolwdpNXTYxP9/Sh1g2/k5de4/QarU4Af7ABx98QPfu3XFycuLq1avWnpoQQgghhM2RgFDYFEuWjB46dAiAVAsDlduqMmoiINy6dStt2rShXbt2rF27Vj0fHh5enidY3fWbN7EDjgHNmjUjOjqaX375hZSUFGtPTQghhBDC5khAKGyLBRm4gqLA7lpWVkXNphhTGcw33niDzZs3s23bNhITExkzZgwFBQVkZ2dX2rzuJG1BAZOB/2o0tG7dms6dO7N161Y0mjvVqEMIIYQQQphLisoIm2LR/j5dgGJBVrHoIZaN13+WiWszMzPp3r079vb2REVFcfPmTXr16qVmMO81D9evz46//mK2okBCAunp6bzyyis88sgj1p6aEEIIIYTNkQyhsC3lCdYsvaZovEX5Lt0zTDzr6tWrfPLJJ2qG8MCBA4wdO5bc3NzCAd98A5s3WzZHK2r6wAOMBbZoNOzdu5fr16+zdOlS6UMohBBCCGEFEhAK21KOgNCSfYeFj7izhWEeeughHn30Udzc3Jg3bx4tWrRgwYIFNG7cuHBA377w1FN39JkVafKgQQRiGDCHhoZy7NgxK81ICCGEEMJ2SUAobIolwZpupKLVWvoQoHxFZUzNr1mzZpw5c0Y9HjZsGNHR0WRV4t7GO0kD5ACHFYVt27Zx8ODBW9lOIYQQQghRqSQgFDbF0mxf4UWmg8j8EtpRlCc/qJSyX3Hx4sXFevTdyxm1/+7eTSiwBoiPj+ezzz6jYcOGLF261NpTE0IIIYSwORIQGgkMDESj0RT7euWVV4DC7Izxa23btjW4R05ODmPGjMHHx4dq1arRs2dPLly4YDAmLS2NwYMH4+npiaenJ4MHDyY9Pb2y3qbNsihrVxSkFehlCJOTk3n66adp164dTz75JMHBwfTo0YPk5ORb1+mCugrer3ivtmlY9/PP7ALeBWbMmMHgrl05dfYsb02caO2pCSGEEELYHKkyaiQpKQmtXgDw+++/07VrV/71r3+p55566imWLVumHjs5ORncY+zYsWzYsIG1a9dSs2ZNxo0bR0REBAcOHMDe3h6AAQMGcOHCBTZt2gTACy+8wODBg9mwYUNFvj2bV679fXpZu1GjRrFmzRrq1aunnjt37hwDBw7kl19+0T3kdqdpliFDhrBly5ZKedad5OzoSDzQsujY6a+/iAeuyi9EhBBCCCEqnQSERu677z6D49mzZ/Pggw8SEhKinnN2dsbPz8/k9RkZGSxdupSVK1fSpUsXAFatWkW9evXYtm0b3bt35+jRo2zatIm9e/fSpk0bAD755BOCg4M5fvw4jRo1qqB3J8qzZFT/Gq1Wi6enp8HrHh4eBr9EMA46FUUpOzNZSpXR1q1bmxiucPz48bLueldKv3aN/wOuAVSvjpKXhztg4U5NIYQQQghxB0hAWIrc3FxWrVpFdHS0QdPsHTt24OvrS40aNQgJCeHtt9/G19cXgAMHDpCXl0e3bt3U8bVr16ZJkyYkJCTQvXt39uzZg6enpxoMArRt2xZPT08SEhJKDQhzcnLIyclRjzMzM+/kW676ytGHUH/J6OzZs4mIiMDJyQkPDw8yMjLIz8/nnXfeuXVZsUeaERDqjTWWlZVFcnIyDg6Gf11r1qxp5l3vLjl5eVygsLBMtWvXODR3Ls3Hj6dl9erWnpoQQgghhM2RgLAU3333Henp6QwbNkw9FxYWxr/+9S8CAgI4ffo0U6dO5cknn+TAgQM4OzuTkpKCk5MTXl5eBveqVauWuucrJSVFDSD1+fr6lrkvbNasWUyfPv3235ytus0lox07dmTnzp3cuHGD9PR0vLy8cHFxMXxE0XhL9iuqszIxv/z8fNq0aaMuNy4cphj8YuBeEvXMM2R9+CGuuhNF73lQnTpWm5MQQgghhK2SgLAUS5cuJSwsjNq1a6vn+vXrp37fpEkTWrZsSUBAABs3bqRPnz4l3ktRFIMso/73JY0xZdKkSURHR6vHmZmZBvvZROnKs4fQ1DJTV1dXXF1dTYzWu648zzQx1sHBgX379hXLEHbt2tX8+95FOjdvjheg1mgt+nwfq1HDSjMSQgghhLBdUmW0BGfPnmXbtm08//zzpY7z9/cnICCAkydPAuDn50dubi5paWkG4y5fvkytWrXUMZcuXSp2rytXrqhjSuLs7IyHh4fBl7BAZTSmNxpvTkBYWoZw5syZJnsOTpkyxaJ53TWK3qMuvNX9CqRySvEIIYQQQgh9EhCWYNmyZfj6+hIeHl7quKtXr3L+/Hn8/f0BaNGiBY6OjmzdulUdc/HiRX7//XfatWsHQHBwMBkZGSQmJqpj9u3bR0ZGhjpGVAxLgjtdb8By9S5EL9Ax5/qiIMlUUNS7d2+DJci6/oP6hY7uJcUC5oIC/gZ1z6YQQgghhKg8EhCaUFBQwLJlyxg6dKjBMr1r164xfvx49uzZw5kzZ9ixYwc9evTAx8eH3r17A+Dp6cmIESMYN24c27dv59ChQwwaNIimTZuqVUeDgoJ46qmnGDlyJHv37mXv3r2MHDmSiIgIqTBaAQ4dOkRERAS9e/fm4IkT6vkRI0aYdb2iV1Rm69attGnThnbt2rF27Vr1vMEvDoyzfJZkJc0IHkeNGgXAwIEDzb/vXeSX33/nRyj8+vFHfjl6lF7APqOsuhBCCCGEqHiyh9CEbdu2ce7cOYYPH25w3t7enuTkZFasWEF6ejr+/v6Ehoby5Zdf4u7uro6bP38+Dg4OREZGcuPGDTp37szy5csNioKsXr2aqKgotRppz549ef/99yvnDdqYqKgoli1bhoODAy9FRvI3EA389ddfpV6n5qv0Aro33niDzZs34+TkxJQpU9i9ezcLFy4kOztbHWNcVMaiDKOJ4HHChAkGx6dPnyYmJoaEhATz71uBDh06xNSpU3F0dCQmJkbNco8YMYKlS5cWGz91xQraAm0BJSmJixcukA4cv3atMqcthBBCCCGQgNCkbt26mdz35erqyubNm8u83sXFhcWLF7N48eISx3h7e7Nq1arbmqcwj0aj4aGHHgJg4Suv8MWwYYyksHpnadSiMHoZQnt7e2oUFT+ZN28ey5cvp1evXlzTC2aM/8uxaA+hCatXr2bNmjXqsS4b+fPPP5d538qgH3DHxMSwd+9eoqOjSwy4f3zzTX6OjiYZGNOtGy4ODpyLi2NwQEDlTlwIIYQQQkhAKKo+X19fzpw5Q2BgIAoQC6wCViYllX6hiT2EzZo1U+8FMGzYMAICAnj55ZdvXXY7S0ZNjB0+fDhBQUHFWpUMGTLE/PtWIP2Ae926dcTGxjJy5MgSA+5vd+3iU6A+MG3aNOK2b0cDNEpJoXOlzVoIIYQQQoDsIRQ24Ouvv1YDOF2wNgi4efOmWdfrB4SLFy9W76UTGhqqFnoxHm/q2BQ1iDQREM6YMcNk38qoqKgy71sZdAG3TmxsLCEhISSVEHC//8MP/ARMBeLi4lgyZAhfAZ+UsYRXCCGEEELceRIQCptSroqhlradMArqLKpsWo62GNamH3DrDBo0qMSA297OjjbAs4CHhwct77+fPpjuzSmEEEIIISqWBITCplgUcJW37UR5AsJSMoRVTXUXF3KLvk9LSwNF4SbSh1AIIYQQwhokIBQ2IzU1lbOXLpFq4XXGAV1OTg4HDx5k27ZtHDx4kNzcXMPxRUGdJfkuUxVNq6qf3ngDJ71jjaLgAnwlPTiFEEIIISqdBISiytu+fTvt27fnueee44Pvv2co0KHovFn0AsKVK1cSGhrK559/Tnx8PMuWLSM0NNSwYmw5MoTqFSYCQrN6H97DdJ/P1ORkK89ECCGEEML2SJVRUeVNmzaNTZs24e7uzh8ff8wj+/aRCYRNm0bnzmXXtdQP6D766CN27dqFnd2t36Xk5+fTqVMnBg0aVHSB5QFhaUVlzOl9eDfq1q0bW7ZsKXZ+wvLl1NAdREaS/vvveAJnrl+vxNkJIYQQQgiQgFDYADs7O65cuYK7u7sacF0pOm8O/YDO1dWV+Ph4QkNDC19TFOLj43Fxcbk13njJqAV9CE2NNKf3oTVFRkYWO6coCsklZPyOnDvHLoqWJ8yZw+9z5tD46FEi3NwqdJ5CCCGEEKI4CQhFlffxxx8zbtw4UlJSyE5JwQ3wLzpfGkVX9dJoyejs2bOZMmUKWq0WR0dHWrZsedtLRnXBY7EehpTc+7BXr15l3rckhw4dYurUqTg6OhITE0O7ov17I0aMYOnSpRbdKykpibi4OIMAW1EUBg8ebHJ8g9q1aZKWhh3w3Ny5DPPwIBD4KyurnO9GCCGEEEKUlwSEosoLCgpi/fr1ABxZsoTGo0bpXij1Ol2Qph/Q+fn5sWDBglKv0403dX3JF5W8ZNTV1ZUPPvhAPb558ybOzs7UrFmz7PuWICoqimXLluHg4EBMTAx79+4lOjqav4x6AZoTOMbExODu7o6Pj4/BtaNHjzb57KRTp/gDqAZ0372bn86f5yhgJ20nhBBCCCEqnRSVEbbFgiqe6jLO2+xDeLvXrl69mvDwcPXrl19+ISIi4rYCQo1Gw0MPPURgYCDr1q0jMzOTkSNHkp+fbzAuKiqKBQsWMH/+fObPn8+8efMADALHUaNGFQsGAfr162f62UAA4AMcOHCAxv7+1AHyy9MjUgghhBBC3BYJCIVtsSQg1PUh1GoteoRxnsuigNLE/IYPH05QUBAhISGEhIRQo0YNQkJCGDJkiEXz0ufr68uZM2fU49jYWEJCQkhKSjIYZ07geOjQISIiIujduzcJCQnq+REjRph8tr+XF7v0jqc99RQTAa0NtNwQQgghhLjbSEAobIKud2DC0aMcBHLLvKL8vQGNA8DbrTI6Y8YMfH191eNvv/0WKMzeldfXX3+t7knUGTRoEDdv3jQ4Z07gaE4WUd+XY8fSCjgIbNu2jQNnzzIa2Ni9e7nfjxBCCCGEKB8JCEWVp987cP+pUywDQsGwEEwJDgFjV640O/sFxZd9mrOE1JKQ08vLy4LRt8ecwLGkLGJOTo7Je/5w4AChwOdAfHw8UzZuJBTYdvFihb0PIYQQQghhmgSEosrT9Q5cuHAhY55+msVAPPDhhx+WfqFGQxQQ3b272dkvoFiWz1Tl0GKPKiVDeLe7ceMGjRo14vHHH2f27NlqFnHfvn0mx3+bmMguYCGF2c96NWoQD2w8d64ypy2EEEIIIZCAUNgAXe9AKFy+qVAYEOr3DiyJBqhbo0aZxVf0GfchNCdDWJ7lqSkpKWaPrUgODg78/vvvHDx4EDc3N/r27UufPn3o2LGjyfHODg7E6x3PiYggnuJ7L4UQQgghRMWTgFBUeStXruS///0v7du3Z+CCBXQEfsC8JaO+wN9paepxScVXDJSjD6F6hYmAcOvWrbRp04Z27dqxdu1a9XzTpk3LvG9JSrpneHi4yfGpqamcOnWK1NTUYq/Z2dnh6OgIFO4nfPHFFwkLC+Off/4xea/pffvyX6A90LZtW6K//54fkLYTQgghhBDWIAGhqPJ0vQN3797N6ldf5RdgftH50igaDV8D/u7uBudNFV8xvNAwQ2hO1q+0ZaW9e/cmLy+PnJwcxo4dS61atWjZsiVpeoGqpd544w02b97Mtm3bSExMZMyYMRQUFJCdnW0wbvv27bRv357nnnuO6dOnM3ToUDp06MD27dvVMeHh4QaFZ7p27coHH3xAnTp1TD573KpVJAB5QEFBAbn5+ewC/srMLPf7EUIIIYQQ5SON6YVNKVcLCEurjJYjQ1jStVAYNCUmJuLgUPjXdfny5XzzzTecPHnSonnps7e3p0aNGgDMmzeP5cuX06tXL65du2Ywbtq0aWzatAl3vaA4MzOTsLAwOnfuDEBYWBijR49Wm9d7e3vTuHHjEgPC7JwcfqXwHx/tnj0kv/wyzT75hKYeHuV+P0IIIYQQonwkQyhEGSxtTF+eJaMlXQvQqVMnjhw5oh4PGzaM6OhoPD09LZuXnmbNmhlk9XT3zMrKMhhnZ2fHlStXDM5duXIFO7tb/3QYt53o0aMHAOvXrzf57FFduqB7iqIoNPvkEwBuWtjvUQghhBBC3D7JEArbYkm2T9eY3sKAUDfeokIxpWQjf/zxR4PjxMREQkNDOXcbVTkXL15scJyenk5oaCjHjh0zOP/xxx8zbtw4UlJSUBQFjUaDv78/H3/8sTrm2LFjTJ48GShsQXHx4kUeeOCBYtlGKGxi/+b69cwE/IFqwcHcBFKAG9evl/v9CCGEEEKI8pGAUNgUi7N9ACau6datG1u2bDHvmZYEoWaM7d69+23tHzSlT58+xMXFFTsfFBRUYqZPJzs7mzFjxlC/fn0A5syZw7fffsu4ceOKjY2KisLTzY0dOTlMAlr17cum/fvxATIqsb+iEEIIIYQoJAGhsFm6jFdpIoGrGzZQ8/x5g+uSk5NLu7Hh4W0uGTVW1pzLQxe0Dhw4kNWrV1t07Zw5cwgKCsLHx0c99+9//5vatWsXG6vRaIjq2pWaX33FOmBKRgYngPuBwY0a3cY7EEIIIYQQ5SEBobAtegFXQUEB9vb2JY/VaEgC3mvXjpbTp+vdQmHw4MGlPEIxPlHmtCxpTP/nn39y8+ZNs/oolmTChAkGx02bNiUmJoaEhASL7zVq1CiD4/T0dGrUqEG/fv2KjfX19aWRnx+6XODkiRN5eNYsngdm3Hefxc8WQgghhBC3R4rKCJuin60rMCNzFwO4OToSEBCgfgUGBjJ69OhSHmJ5QGiJ7JMncXF1ZY9ekGqp5cuX88svv7Bnzx4CAgJ49tlniYiIKFZUpiSljevTp0+Jr3399dfULqpuCoV/HoOAm0hjeiGEEEIIa5CAUNgscwLCUYCns3Ox86ayXzq303bCnODxn8REAHI2bDD/vkZcXFxYsGABK1euZMeOHRw4cICQkBC8jPbxrVixgqZNm/L4448ze/Zs9XyvXr1KvHdZeyb1X1e0Wlbpvi/P/k4hhBBCCHFbJCAUNsWiDKFur145207oMl7mBDqWLBnVzSs1P9+yeekJDAykTZs2BAYGsm7dOjIzMxk5ciTe3t4G45YsWcLBgwc5ePAgbm5u9O3bl+zs7FKDvm+//RYoLLxjkv6fgVaLWov0DmdShRBCCCFE2WQPobAt+tkpcwM9SwOVCl4yqjPrr78oeXFm6Xx9fTlz5gyBgYEAxMbGsmrVKj777DODcXZ2djg6OgKFFUKDgoIICwsjNTVVHRMZGVns/mUW3tGNKyi4tVRUMoRCCCGEEJVOAkJhUwwyhGZm2HLy8jh48CCpqal4e3vTpEkTnJycSnlIOTKERtfqa926tcFx9uXLuAJHs7PLnnwJzp07VyyQUxQFd3d3g3Ph4eEGgWPXrl2pXbu2QUuJpKQk4uLiDJrVl1R456uvvmLqp5/SCugKvNWhA3ZOTvjn5uIhGUIhhBBCiEonS0aNxMbGotFoDL78/PzU1xVFITY2ltq1a+Pq6kqnTp04cuSIwT1ycnIYM2YMPj4+VKtWjZ49e3LhwgWDMWlpaQwePBhPT088PT0ZPHgw6enplfEWRZECrbbU1xWNhpVA1IYNfP7558THx7Ns2TJCQ0NZtWpVydfd4SqjWVlZJCQkkJiYSGJiIqsnTiQJeNjNrcz7lsT4nomJiSQlJdGqVSuDcZMnT1aDQShsQt+4cWM2bdqknouJicHd3b1Y4Z0RI0YUe+7cuXP5ZMgQ5gKvAVu/+475tWoxp4T3LoQQQgghKpYEhCY0btyYixcvql/6S9/effdd5s2bx/vvv09SUhJ+fn507drVoOri2LFjWb9+PWvXrmXXrl1cu3aNiIgItHoByIABAzh8+DCbNm1i06ZNHD58uNRWBuLOsDRD+BHwQUQECxcuZMaMGSxevJj4+Hg+/PDDUh5S/qIypvbmzZw50+C/L10fwsF6v6iwlPE9dcpqeG/cYgKgevXqhIaGqoVndL/YWLFiRbGxrq6uONvbUwvoDHhUr44zhUsVyipGI4QQQggh7jxZMmqCg4ODQVZQR1EUFixYwOuvv66W1v/888+pVasWa9as4cUXXyQjI4OlS5eycuVKunTpAsCqVauoV68e27Zto3v37hw9epRNmzaxd+9e2rRpA8Ann3xCcHAwx48fp5E06K4wlgSEGsAVOPT33zyhu15RiI+PL7UHoGK0ZNSSDKGp1gu9e/c2Glw4qnn16mXetyRffPEFX3zxhXqcmZmJu7s7//vf/0q9TrefUJ+u8IyjoyOLFi2iYcOGnDlzxmSA16xZM/UXI6uAqwUF5CkKNQGN7CEUQgghhKh0kiE04eTJk9SuXZv777+f/v3789dffwFw+vRpUlJSDKonOjs7ExISojb0PnDgAHl5eQZjateuTZMmTdQxe/bswdPTUw0GAdq2bYunp2eZjcFzcnLIzMw0+BLm0w9RzMkQrgR2nT1L+/btadu2LR07duSHH34odcloeTKElgSPdyKPtnPnTk6cOMGff/7JE088QWZmJnPmzCEnJ6fU6zZv3lzsnHHhGX9/f8LCwvjnn3+KjV2wYAH2ensN09LScAK+BlkyKoQQQghhBZIhNNKmTRtWrFhBw4YNuXTpEm+99Rbt2rXjyJEjpKSkAFCrVi2Da2rVqsXZs2cBSElJwcnJqVg/t1q1aqnXp6Sk4OvrW+zZvr6+6piSzJo1i+m30ZDc5ukFZ0oZewgB/ICoVq3o8Pnn5j/jdqqMVlJQ5ObmxjfffIO/vz9TpkzhwoUL1K9fH39/f4vv1bx5c5588kk8PT2JiYlhx44d/P3333Tv3t30BXrvcdjo0czQ/ZmYeO9///03tWvXtnhOQgghhBDCPBIQGgkLC1O/b9q0KcHBwTz44IN8/vnntG3bFri1h0tHUZRi54wZjzE13pz7TJo0iejoaPU4MzOTevXqlXqN0KMXdJRVVEa3jNPShum3U1TGrH10Rf+NaG4jeKxTpw4PPvggAPPmzePRRx+lV69euJWjUM2vv/7KsmXLcHBwICYmhuDgYKKjo2nQoIHpC0po/bH3yhWyf/xRb1hhAafp06fz9NNPWzwvIYQQQghRNlkyWoZq1arRtGlTTp48qe4rNM7iXb58Wc0a+vn5kZubW6w4h/GYS5cuFXvWlStXimUfjTk7O+Ph4WHwJcynH3CVtWRUHVvOxvTqoSXXmxHkHbtwgQjg9dOnDZYYm6rqWZJmzZpx5swZ9XjYsGFER0ebLDRTFo1Gw0MPPVSsyX1+CZ+v/p/BZ/Pnq4HtO0eO8P7777N//36SkpLYv38/6enp7N+/3+I5CSGEEEII80hAWIacnByOHj2Kv78/999/P35+fmzdulV9PTc3l/j4eNq1awdAixYtcHR0NBhz8eJFfv/9d3VMcHAwGRkZJCYmqmP27dtHRkaGOkZUjPL0ISxvhrA8fQhLzw8XeueLL1gAjK5dm/nz5zOv6Lxur6s5Fi9ebNBOIj09ndDQUFq0aGH2PXR0Te51YmNjCQkJISkpyfQFegGhR7VqakC4JjiYJ554gmPHjtGtWzfeeOMNGjRowLRp0yyekxBCCCGEMI8sGTUyfvx4evToQf369bl8+TJvvfUWmZmZDB06FI1Gw9ixY5k5cyYNGjSgQYMGzJw5Ezc3NwYMGACAp6cnI0aMYNy4cdSsWRNvb2/Gjx9P06ZN1aqjQUFBPPXUU4wcOZKPPvoIgBdeeIGIiAipMFrR9JcrlrVktJS9baVep1v+aeKZZV5jzliNhoeAi05OrFu3jliNhpFQYkbOlAkTJhgcf/nll0RGRrJr1y6z76HTs2dPevTogaOjI5GRkbz22msMGjSIzz77zPQFRktGde/d1c6OSZMmkZWVxcKFC5k/f7705hRCCCGEqGCSITRy4cIF/u///o9GjRrRp08fnJyc2Lt3LwEBAUDhD9Jjx45l1KhRtGzZkv/9739s2bIFd3d39R7z58/nmWeeITIykvbt2+Pm5saGDRuwt7dXx6xevZqmTZvSrVs3unXrxqOPPsrKlSsr/f3aGqWE/WslOQS8tnMnvXv3LnF55ptvvsnHH39s8hlFJyyZYJlDvNzdOaN3HAuEQMkZORM++eQTvv76a7777jvS09Px9vYmIiKizD6EpujaThw8eBA3Nzf69u1LdnZ2icFtTn4+B4FtwG9HjpBvFHi7u7szZcoUPv30UxYsWGDxfIQQQgghhPkkQ2hk7dq1pb6u0WiIjY0lNja2xDEuLi4sXryYxYsXlzjG29u79NYFokJYsocQRSEKGP3YY7SbP5+YmBj27t1LdHS0wfLMN954AyjM8hbe2DDQvNNtJ94dMYLAgwe5oDd2EDDoxo0yr9WpVq0av/zyC3Xq1GHRokWkpKTQqlWrMvewmmLcdiIoKIiwsDBSU1OLjV25ciXvrlvHk4AHcOH779mflsZEoK7Re/fw8KB169YAHDp0iKlTp+Lo6EhMTIy6tHrEiBEsXbrU4jkLIYQQQohCkiEUtsWCthMaRUED1KlWzeyCKYU3LkcfwlIa0xe7fQnztmSvY0BAAHXq1AEKg7gxY8YQFhaGi4uL2ffQCQ8PN9hD2LVrVz744AP1/vo++ugjPoyMZCEwA3gzOpr3PT35sIz5R0VFsWDBAubPn1+4b3Je4c5JS/ZNCiGEEEKI4iQgFDbF0gyhL5CiV3mzzIIpRdeVemzm/EocU0JAaG6RHLAsiCvL5MmTDQrUHDt2jMaNG1NgIsBzdXXl0PnzBnM+nJeHC7eC4tTUVE6dOmWQYbS0kqkQQgghhDCPBITCpigWFJUB+Brwc3U1ODdo0CBu3rypHi8BXtd/hvGSUQuKypjVduLcOSKAyWfOkJCQQDzQBXi0eXO2bNlC8+bN6dSpE3v27CnxHiUFccuXLy/z+QDx8fF06dKF6OhoOnbsiJeXF76+vnTu3JmOHTvyr3/9i+Tk5GLXrVy5kl/++ov2QFvgX6+8wp7cXFYBB9LSaN++Pc899xzTp09n6NChdOjQge3bt1teyVQIIYQQQphF9hAK26LfdqKsgNDMIO0lo+Niyz7NCQjLHHHLG2vWUB24mZtLdHQ0F4FdQJP//Y+hQ4eSlJSEm5sbffr0YceOHWbdc9SoUcTFxTFkyBC2bNlS5viJEyeybt060tPTWbRoETt37qRatWq8+OKLPPzww8yZM4fBgwcXu87Pz49XO3ak3eHDAJxZtIiUZ5/F7+ZNlp0/z569ew0KNGVmZhIWFsbu3buL3WvQoEEMGjTIrPcnhBBCCCFMk4BQ2BZL2k6UtzF90XhL2k7cmlTZY1PS0/kfcOCBB9jYrh2f7tvH9KLXgoKCqFu3LoBBVVtjumItOkeOHMHDw4Nr166xZcsWJk6ciKenJ7NmzSI4OLjY9S4uLtSrV4969erx4IMP0rBhQ3x8fKhWrRrbt28HYPTo0SafrTH+Myg6tgOuXLliEBBeuXIFOztZyCCEEEIIUVEkIBQ2xZI9hJYs4zR4xu1UGTWDo7096YCLnR3z5s1j9/z57AeysrKIi4sDCnsSmtrDp6Nr/q4Ltv7880/atm3Lli1bzMoy+vn5odVqsbe35/jx44bP/PNP+Ocf+vXrZ/rhxn0Ii76Pvv9+xo0bR0pKCoqioNFo8Pf3N2jpIYQQQggh7iwJCIVtsWQPYSkBYbdu3UpeWnkbjenNGdulSRNITFSP9wE/Ay8+8IB6zsHBga1bt5Z4DxcXF6ZMmYKXlxcA/fr14z//+Q89e/bEx8enzCyjqfYs6jOLWlDk5+Xh4FD8nxjFqNKr7r0HOjuzfv36EucshBBCCCHuPAkIhU1RLNxDGAlcOXiQ+yIj9U4rJgum6F9X6nEZzyzLv8PCCExM5H9650KBA/HxBuNMBWM6sbGx1K1bFx8fHwACAwOpV68er7/+uprZKyvLaMrRo0eZCKQDDk8+SV5eHj4+PsycOZOmTZsCRtlQRcHOjGB469atTJkyBXt7e6Kioujfvz9QWC1148aNFs1RCCGEEELcIgGhuKcMHDiQ1atXl/t6g4qfZgQ7ScDMBg1oN2eOwT1MFUzRG2B4eIcb01MUyGqMxpYZ4OoZNWqUwfGHH36Ivb29wTLPsrKMJd13DVAPyNq4EXd3d86dO8fAgQP55ZdfgFKCchPv/e+//6Z27dq88cYbbN68GScnJ6ZMmcLu3btZuHAh2dnZFs1PCCGEEEIYkoBQ3JUmTJhQ7JyiKCQkJNzejS0sKhMDuNnbExAQYPBaSQVTjJ8BFdCYXnc/4+dYEBAa69Onj7r/UF9pWUadFStWMGfOHBwdHbl69SqeRed79epFXFwcHh4eaPXnpv95FBSo731vRgbZP/6ovqQoCrGxsbz66qtcvXqVRo0aYW9vzxtvvIGzszO9evUqtbWGEEIIIYQomwSE4q60evVq1qxZU+z8zz//fHs3trAx/Shgh94+uvT0dGrUqFFywRSjZ5g8NnN+JUk8dYp/A2l//km/11/nWaAJEDl8OFv0Pp9S9zkWe6xlhXP0l3D+888/HDlyBEdHRwIDA3kQaAwcSU6mc+fO5Ofn884775h8lqIXEL5z5gzB779P27Zt1THp6enExsZy7tw5li1bRkBAAP3796dFixZER0fzo14AKYQQQgghLCcBobgrDR8+nKCgIHx9fQ3ODxky5Lbua0ljelOFXkrKpBkoR9sJXWbQnLBs3pYt1AYedXNj+/bt/IfCv8g5SUlEFu11LHOfo5Fvv/3W7LGAwRLOhx56iOjoaJ5//nmysrLwAw4Cedeu4ezszIIFC9T9g0CxXpC69+7r6EhycjL79u2jVq1aVK9enStXrgDg6urKwIEDAbhw4QIdOnTg5Zdfpnr16hbNWwghhBBCGJKAUNyVZsyYYfJ8VFTU7d3YKDtl1lj9a8zJpBkt/7zTewjTsrM5B+z186Pdnj3cZ2dHE2CfVsucor2OZe5zNPLbb78xY8YMHn30UZ566im1D+GVK1e4//77cXR0JCYmhnbt2gHw119/UaNGDaBw+ayTkxNPPvkkdevW5dfUVI4A40JC+PDDDw32DwIlLhm9WVDA6dOnuXHjBgsXLuS3337DwcGBatWqcfToUXbt2kWHDh0AcHJyIjQ0lA8//NDs9yiEEEIIIYqTgFDYFOOWB2bRu8asTJrxfkAL2k5oFIX8/PxS9+5Vc3Liy9xcAhQFFIVY4CqF7Sf09zqWus/RSJ8+fQgODubIkSMsWbKEzp07Y29vz86dO/nvf/+Lg4MDMTEx7N27l+joaBwcHDhz5gyBgYEcOXKE1atXs2zZMrXIS2Ng06ZNpKenG+4fpPiSUV2V0ZF+fmRlZeHl5cWUKVPIzMzk2LFj3Lhxg5CQkGL3WLJkCUuWLDH7PQohhBBCiOLsrD0BISrT7Tam1/XtK+MhhdcbHZfmmKLwNDD2xAmefPJJgoOD6dGjh8llnx/268c+4KWzZ2kbHMwqIA3Yt2GDwTj9fY75ZbzX69evs3jxYhwcHGjevDn/+c9/WLhwIXZ2djz00EMEBgZy//3388033/Doo48C8MEHHxATE0NCQgLp6eksWbIEf39/ugB9gM6dO9OrVy+D/YOAQYCt6C0ZfcLDw+Dz9fDwoHXr1oSEhHDo0CEiIiLo3bs3CQkJamA+YsSIUt+XEEIIIYQonQSEwrbcocb05lxnyZLRqVotHwELGjRg586d7Nmzh//85z/F2kMA1HR1ZQHwYf36JOzciSswH/ApWsKpk5yczNNPP027du2KBZnh4eHcd9991KpVi5CQEGrUqMG7775LXFwcCQkJBAQEULduXdzc3Dhz5gxQWOhn5syZ9OjRg8uXLxMeHk5ERAQ1a9akT58+dOzYkdGjR3Ol6L3/3//9HykpKURHR/P999/fmph+QFiU5dT/3EyJiopiwYIFzJ8/n/nz57Ns2TKgcOmqEEIIIYQoP1kyKu4pllTONEk/GDGz6Xpufj4HDx4kNTUVb29vmjRpgpOTU4njlXJkCAugsF2D3thi7RqM560oKAUFaiEa4/czatQo1qxZQ7169dRzup6Ae/fupUWLFjg6OqqFe5555hk+/fRT4FY11dTUVHX5qq7QT0hICG+//bZ6zyFDhrB+/XoA5s6dyx4gC2g2dSrHjh3DxcWFLl260LNnz+Kfh96SUU3Re01NTVU/a29v78LXNBoeeughANatW0dsbCwjR44sM/MphBBCCCFKJwGhuCvpqmXqs7RypkkWVhldCbzz++90/vxzPDw8SE9P5+DBg7z88ssMGjTI9IVGgZlBoKYooCnebfA1OzsitFqu/fknS/r0ISMjo1i7BlP3VwoK+BbIAX774w/+yMxUg1atVounp6fBpbog087OjoULF1KrVi1iYmJ4+OGHmTlzJnZ2hYsGdNVU9fcyllboR1fAxtXVFTfAjcIlo7rn69/HeB+nbplC8pUrTGrfHh8fH/WzTktLY/r06Vy+fBlXV1eqV69O3759iYuLIy8vT81eCiGEEEKI8pGAUNyVkpKSiIuLUwMUsLxypkkWFJXRKAofAYuaNOHJhQvV8/n5+XTq1KnkgLAo6LQzOoaivnt6fQ112mo09AU2BAbS8j//wcvLCxcXl9LfQ1GG8AdgCRC0cSO1H35YDVqffPJJIiIicHJywsPDwyDIHDJkCLVq1SIwMFDNuF29ehU3N7eiW1u2TFa3969Zs2Zo4+OxB1atWgVAbm4uNWvWLD5/3edR9KyPMzLYtWkT7u7u6uuZmZmEhYWpBWzs7e1ZunQpw4YNY+HChQZjhRBCCCGE5SQgFHelmJgY3N3d8fHxMThvSeVMk4xaHpTFFfg1PZ0ni44VRSE+Pr7kYA29YjQ6ZgSEupyhi0aDv79/qXNSl6QWBYQfAbuAC6NHU7+oGqcuaN21axc3btwgPT3dIMh88MEHGT58OJ6ensTExNC/f3/279/Pd999BxSvpmpqGaexr776ivj4eIYCXYGZjRrh5ubG9OnT+frrrw0+A/3PRvfe7RSFK1eu3Arybtzgypkz2NnZkZ+fT3JyMo6OjrRs2ZKDBw/y7LPPlvo5CSGEEEKIsklAKO5KxsVUdHva9CtnlouFRWVWAqPT0vi6fXu0Wq0akOiyX2U9Q5fFUw9LCEKLBZGl0BQUkAMcu3mTtO3byQe2AQ2L9tMZB62urq64uroa3CMnJ4dly5ap7SQOHTrEqVOnWLp0KVCY8cvPz6dNmza4uLiYXMbZoUMHjhw5ogaK7733Hrt37yarWjWaAccSE+nVqxdz5sy5tX/Q6PMpyM9X9xC+Xq0a48aNIyUlBUVR0Bw+jH9ODh//8QctW7bk3LlzPPjgg+zfv5+tW7cSHR1NgZn7QIUQQgghhGkSEIp7gm5PW3kMHDiQ1atXFx7oBRAFZiwZ9QNG169Pp9271fPLly/Hw8Oj5AuNAkLjDGGpzAgMN584wWSgblYWD+7ezSPAMMB56FBq1a1rVtBqXKSlevXqPPDAA6SlpeHv709eXh4ajYarV6/SvXt33nrrLY4ePcqsWbNo2LAhAwYMIDMzEw8PDzp16oSvry/Hjx/n22+/ZRDQGXB3d0ej0RTvqVhChvABOzvWr19PfHw8M2bM4NGcHJ4CBgwYgK+vL7/++isPPvggAA0bNmTt2rWMGzeuzM9LCCGEEEKUTAJCcU8wZ0/bhAkTTF6XkJCgf+LW92ZmlzR6486fP8+k555j3969LPnww7LnamZAuFNRmA9c++svpq5dS//+/QEIDw9n48aNBmN/OHaMX4E9NWvy+MSJuM6bRz7Q1tOTvXv3GozVBVcXLlxg0aJFTJw4EU9PT+zt7dV9eQD33Xcfo0ePZty4cSQkJFC7dm0URaFp06a8/vrrjBo1itzcXHbv3k1ycjLr1q1T9xx26dKFL7/8Eo1Gw5IlSxgErKKwOuvatWt55ZVXjD+gW9/r7SG0K/psJk6cyLp160ivX59uQNKGDezbt49hw4bx3nvvERUVxYsvvkhGRgb2JpbfCiGEEEII80lAKO4JxnvaTFm9ejVr1qwpdv7nn3++dWBBURlT/fEc09K4CHyglzEsxigDpp+JLCkgnFtQwFZgV0AAcYmJ7N69m4ULF5KdnV1srJO9PfGAU0GB2nYiHnB2dCwWFK9atYoePXpw9OhRhg4dSlJSEoMHD+bIkSMGY728vNixYweOjo40btxYzYD6+/sze/ZsDh8+jEajoXPnzvj7+1OzZk0OHz5MaGgoDg4OKIpCr169+OOPP9R7avPzqVWrlsH+QePPQCkoUDOEusDQxcWFevXqUQ8IAurWrUtkZCTNmjVj06ZNTJkyhaysLAoKCkx+PkIIIYQQwnwSEIp7gq6KZWl0ffJ0ffV0hgwZon5v3PKgVEUBin7Gr+DmTQAev3KlzOt035uzh9AOqEFhUZl58+axfPlyevXqxbVr14qNndyuHf/99lviLl7E5emncQZaAu/9+9/0nTxZDYpjY2PJzs7mxIkT3LhxAwcHB/79739z7Ngx0tPTOXHiBPb29gwbNowTJ05w9uxZtFotderUAQpbRWRlZeHv78+PP/7IN998w9y5c7G3tyclJYXZs2fz+uuvc/z4cTp27HhrmWpRUZz8nBwoqlpa0uej6PchLPpfPz8/tFot9kAckJKSgp2dHfb29ri5uTFv3jx++OGHEj8fIYQQQghhPgkIRZVRWp88HY0F+/l0YzUm9h3albaE1ShDaE5A2AQ4A2qT+WHDhhEQEMDLL79cbKyXkxMLgN21avHY999Tvajx/ElPT4Og+MyZMzzxxBMsXLiQFStW8Nxzz6EoCoMGDSI9PZ1vvvkGf39/pkyZwrlz50hJSaF58+YcOXKEkJAQ1q5dy8CBA9W9m0888QQpn36KkpOD/yuvsGDBglI+vaKAsEhKSgp+fn7FPx+973Wf89q1aw3uM2TIEJo3b86rr76qnjtx4gQ///yzyc9HCCGEEEKYTwJCcdfKyckxqGLZpEkTnJycbu+mFvYhNKZeU0pAaNxWwZyAcJadHb4FBZwqum96ejqhoaEcO3bMxANuBar670HRag2C4piYGCIjI/Hx8SE2NlY9P2bMGBYvXqwWaJk3bx7Xrl2jR48eah9COzs7/P39eeONNwwe7TdyZOE3xvsCTdAFhCkpKQwZMoQtW7YYzB+KMoRF3w+4cQPX1q0N3ypwMjHx1rV6Svx8rOz8+fPUrVsXjUZT9mAhhBBCCCuzK3uIEJVv5cqVhIaG8vnnnxMfH8+yZcsIDQ0tvd2DOSxsOwEYVibNy7PoGRa3nSj63z59+pR8f73G9CgK8UAXYOZnn7FlyxaaN29Op06daN68uUEfx/T0dAD69euHj48PzZo1o127dqxdu5ZTp07x2muvcfToUQBmz54NQEhRX0NjWVlZJs+3bt2a1kBroFuPHrRu3ZpGjRqRmJho8jPQb0yfXVQAKDExsfALSAJatWpV4kdx6tSpEl+zhpSUFOrXr89//vMfa09FCCGEEMIskiEUd6WPPvqIXbt2YWd363cWumbrgwYNKvXaUpuol2MPocaSIJLiQZ9F+xbVR5e9JNWuqKjMRGAdcCgkRC0c4+bmRp8+fdixY4d6mX7rjsuXL7Njxw6cnJyYMmUKJ06cICQkRA2+Jk2aRFxcHCtWrGDOnDk4OjoSGRnJv4EjwPAnnuCzzz4zyNq2bt2a5ORkmgCaovegKAoajcYwqDOqMqr7E/63vT1ZWVnqftHUoq+oqKhi83jttdfUZ6amppr1mVaGtLQ0AA4cOGDlmQghhBBCmEcyhEZmzZpFq1atcHd3x9fXl2eeeYbjx48bjBk2bBgajcbgq23btgZjcnJyGDNmDD4+PlSrVo2ePXty4cIFgzFpaWkMHjwYT09PPD09GTx4sJrFsXWurq7Ex8erx8bN1k3Zvn077du357nnnmP69OkMHTqUDh06sH37dvRudOt7c5ua6xeVMSNDaNx2wqwModGzSq2qqrtHQQEFWi0uQD3goTp1CAoKom7dukDhf4O6YCk1NZXr16+rx/b29tSoUUMt0jJp0iR69epFUlISzZs359ixY3z++ee8+OKLODk5ERsby5EjR6gNfEphttE4a5uVlcXKlSvZAiQC33/+OUlJSbRq1YopU6YUnz+GGcLudnZ4eXmpf47/AqYDH3/8Mc899xy5ubk4ODiwZMkSvL29adGiBZmZmSV/TkIIIYQQokySITQSHx/PK6+8QqtWrcjPz+f111+nW7du/PHHH1SrVk0d99RTT7Fs2TL12Hhv29ixY9mwYQNr166lZs2ajBs3joiICA4cOKD2ThswYAAXLlxg06ZNALzwwgsMHjyYDRs2VMI7vbutXLmS2bNnM2XKFLRarVnN1qdNm8amTZtwd3dXz2VmZhIWFkbnzp0LT5gRnN0aULzthC4gNLW/8NYgy9tOGO82K7Wqql7mskCrxQ/QAkrRf6/t27enZs2anD59mvDwcI4cOUKTJk0IDAxk6NChpKWlcenSJV588UU8PT3V2zo7O3P9+nV2795NVlYWzZo1IygoiISEBLp06YKiKHwBvE1h0/nFixcbZG1nzpxJp06d0M1cm5sLwJQpUwyXnhplTHW/ldIV6tH9Ofby8GAlwIYNODk5cf78eapVq8bLL79My5YtmTFjhln9KfW9W6cODV54gd5GeyPvFN2+QUvnJYQQQghhLRIQGtEFZzrLli3D19eXAwcO0LFjR/W8s7PzraqJRjIyMli6dCkrV66kS5cuQGE/uHr16rFt2za6d+/O0aNH2bRpE3v37qVNmzYAfPLJJwQHB3P8+HEaNWpUQe/w3uDn51dmFUtjdnZ2XLlyxSAgvHLlisGyU0syhMb7+qAcS0bLmSEsVdE9dAGhrianotUaBMX5+fmEhIRw9OhRIiMj+fLLL4HCIPm+++5jwIAB6i2PHz/OnDlzcHFxwc3NDTc3Nzp37sy+ffu4ePEiDg4OODg44Ah8AIyrU6dY1rZ3794G09QFhMX2IRplUHWBoPq/RX+OjnqXVK9enXr16nHw4EEWLVrEhx9+yNy5cwkNDS3789Iz4e+/uRYbCxUUEAohhBBC3GskICxDRkYGQLG9aDt27MDX15caNWoQEhLC22+/rfa/O3DgAHl5eXTr1k0dX7t2bZo0aUJCQgLdu3dnz549eHp6qsEgQNu2bfH09CQhIaHEgDAnJ4ccvXL+smTulo8//phx48aRkpKi7l3z9/fn448/VscoWi1awB4LqozqB4T5+cXOFVPaktGSrivhvEG7Bh1dQGiiyqh+UOzg4ICdnR0nTpwwCIqvXLlCrVq1DHo2Pvfcc0Dhf1+tWrVCo9GgKApXrlyhdu3a1KxZk/fff5/Z/v4kAdr0dMPegyZob9wo873qN6bXBYS6P8dMoC2gCQ5Go9Go7SiioqJ45JFHGDduHIGBgaafUQpXi68QQgghhKi6JCAshaIoREdH06FDB5o0aaKeDwsL41//+hcBAQGcPn2aqVOn8uSTT3LgwAGcnZ1JSUnBycmp2LK/WrVqkZKSAhT+oG/cQB3A19dXHWPKrFmzmD59+h16h1VLUFAQ69evL31QQYHZAaGqlAyhfkCj/wz9aw2ygmVkCI2Xohq0azCaj53xclSttlhQfPPmTQYOHIivry9t27ZFo9Fw3333oSgKgYGBaDQavL29uXTpEo8Ax4CkpCT1nl27dsXJyYmvv/4agAW6F/buNfk+DN5TScVejD4PO0WhQO8zUP8cdW0b9uxh5syZuLreCuW6dOmCv78/48aNK3MexuwtvuLu8M0337BgwQJ++eUXa09FCCGEEFWIBISlGD16NL/99hu7du0yON+vXz/1+yZNmtCyZUsCAgLYuHFjqe0CdFkrHVN9yozHGJs0aRLR0dHqcWZmJvWKGpOLsikFBWg1msKgqjxLRosyhLrXFK22WEBYniWjXSgMVDLPn8ejqBefoiicPHnS5HvQ3ds4INQPinWVOf38/Awqcz755JP8888/pKam4urqyqJFi1gydy5bzp3jYTvDOlMGxWAsVJCdbfoFRSGfwn98dH0Ic7mVITRl8uTJxc41bty42BJvayswt1BRObzwwgt3VUVVIYQQQlQNUmW0BGPGjOH777/n559/Vqs2lsTf35+AgAD1h3c/Pz9yc3PVEvQ6ly9fplatWuqYS5cuFbuXbjlfSZydnfHw8DD4EhYoyhCC+UVlTLWd0Bgd6+6tf53ue3MCwmtAAvCfOnXUPny6Cp3GNEZtJ4znphMVFcXBgwc5ePAgbm5u9O3bl+zsbBRFISAggJs3b6rjhjz1FAOAXKP5ldSH0BwlVmQtygjqvrcD8gD7KlCIRWtu1rkcpNG9EEIIISqCZAiNKIrCmDFjWL9+PTt27OD+++8v85qrV69y/vx5/P39AWjRogWOjo5s3bqVyMhIAC5evMjvv//Ou+++C0BwcDAZGRkkJibSuigjtG/fPjIyMmjXrl0FvTvbpL8PTz9DWK4lo0UZQt2Zgvz8W0sQCwrAzq5YQFhgRkA4FciieJbMZIbOqKhMZNHp9M8+o0ZRNltRFLKzs3F0LCzNott3FxYWRmpqKteuXaNTp044OzsDcOXCBaoBWkUhJyeHI0eOqL0c9XsNWqLEgFA/KNdqsVMUtBpNqb+dOnToEJMmTcLV1ZWYmBj178iIESNYunSpxXOrKBIQCiGEEOJeIwGhkVdeeYU1a9bw3//+F3d3d3U/n6enJ66urly7do3Y2FieffZZ/P39OXPmDJMnT8bHx0etsujp6cmIESMYN24cNWvWxNvbm/Hjx9O0aVO16mhQUBBPPfUUI0eO5KOPPgIKl4RFRETYfIXRO01/H56i1d7KTpVjyWiBbsmo0TEAWi04OBRbMmpOq4uegAfF9xCazNAZtZ1IAuKAP8LDafLCC0VDFJKSkjhz5gyBgYFkZWUZ7Lu7efMmBw4cwMGh8J+A5o0acejiRdw0GkJDQ2nVqhUeHh6kp6dz8OBBXn75ZQYNGlTq56V+RkVfOaUUldHqfa8B8jUa7Is+G7UJPRAJvEZhQJuXl8eHH35ITEwMe/fuJTo6mr/++susOVUWXUBYEW0n9FtaSHAohBBCiDtFAkIjS5YsAaBTp04G55ctW8awYcOwt7cnOTmZFStWkJ6ejr+/P6GhoXz55ZcG7Q7mz5+Pg4MDkZGR3Lhxg86dO7N8+XK1ByHA6tWriYqKUquR9uzZk/fff7/i32QVpcu06iu2D68oGwUWLBnVD+iMqowWCwj1XtN9b0nbiVL7G+rolowWZTljAHfAz8OD+Pj4wmDK0ZF27dqpVTh79epFXFycuu+uRo0a9O3bV838nb14kX8BuYrCrl27DKqS6vcaNGXgwIGsXr2a5ORkRo0axe8U9kXUTpuG06xZPProo7z//vs0bdq06CNRDIJyOwoDQl0OcsmSJRw8eBBHJycWAX379kVRFFxdXQkMDGTdunXExsYycuRI8vU//7tARWYIdfLy8sqVsRVCCCGEMEUCQiNl/Wbf1dWVzZs3l3kfFxcXFi9ezOLFi0sc4+3tXWqjdWGZrKwskpOT1ayXTteuXdXv1SWjUHaG0MQ5dQ9hKQGhcdBXLGNYyrNKK6yiMioqM6ro9BmtliVLlhAXF8d9993HokWL8Pb25oEHHuDEiRNqwKwoCpmZmcyfP18N/JKaNqXltGlstrMjPj5e7e+n32twwoQJt+ZQ9L2iKCQkJAAwatQocnJyOAjcDxycMgWfIUN49tlnGTVqlFodU1NQQEHRst0CvYBQV0PUzs7u1lJX4JGXXuL//u//DFq/xMbGsmrVKlauXFn253U7LlyAXbugf3+zhlfGklEJCIUQQghxJ0lRGVFlzJw5k6ysrGLnDfbhabWFwQiUGRBiYsmoYpSRMtiHWFKG0KgSaPHHKOpfRLMyhHptJ4yLytjZ2alVcKOioqhevTpubm4EBAQYFKtp2LAh7u7uBAQEEBAQQC13dwKBKD8//vvf/9K+fXvatm1Lx44d+eGHH1i1ahWrV68mHAinsJDS9u3bOXv2LI6OjjRv3pzffvuN69evoytzVJCXh4eHBxqNxiBQUvSXjBYFhFo7O3UvZnh4OGfOnFHH16pVy+R+3kGDBqmFcSpMvXrwf/9Xet9JPZUREObm5lbYM4QQQghheyRDKKoM3R5OY/r78BRddoqyl4yqyzhLqeSpnyFU8vMLrzFeIqofDJl4ZkFBgfoX0ZIMoZ2ioNV/vlZLeHg433//vXpu4cKF1KpVizfffNPgFh999BE+Pj63ri0qAPNsjRo0X7DA5GOHDx9O0Ftv4QvErFnDd999R3p6Oh06dODIkSMcPnyY/v378yDgBOTNmQOLFhEQEMDcuXNv3UhR1AyhcUCoKEqxFhPHt23jwU6dcHBwoHfv3uUvKnMb+/ryrl7FUe/zKkllZQiFEEIIIe4UyRAK26ILRsAgUCtpbLFTRnsI9TOGalVN/YxiQYFhhrCEgFCXHTMnQ6gbozHR9H7y5Mn89NNP6qnevXvTrl27Yv36jIvVKEVZp9KWTM+YMQPfou+dnJyoV68eTZs2pUWLFtStW5eIiAjatGnDGWAvsHTQIC5evMjhw4d54oknbs3fqPWHLiC0w3RA5X/8OMOHD+f69etkZ2fz+uuvM2/ePAB+/PHHEudrzOyqsiZk/fOPWeMkIBRCCCHEvUYyhMK26GUIza0yWlofwgKjgNAeE3sGywoItVocjZ5Z1nuAwgyhcWN6AC8vr7LvYUSXISyz0E6R+7y90Wq12NvbExcXBxQWnykoKMAFeAC4VK0aLi4uJh6moOj+DBQFe25lCPPz84vtAbWzt+evv/5Sq6LGxMSwefNmjh49yo2SKpmaeo9arcl9oebIMbEU2RQJCIUQQghxr5EMobjr6VeSHDhw4O3drKAAhcIqmGUFP2o9WBN7CNWiMno/nJeUITTIRJaWdeT29hCWuSeyFIdPnaIL8E5KClu2bKF58+Z06tSJPXv2mBz/4bvvGlTMBXBwcGDr1q1qj0bj/Za3pq9XZbTosymws8MB0wGVs6sr+fn5NG/enCeeeIJGjRqxf/9+1q5dS0ZGhtnvUXsbe+9yLQwIs7KyDKvb3kESEAohhBDiTpIMobgrPffcc8THx5OTk4OdnR1arRZXV9fbLiKiFBSgaDSFAUkZAZSdiQyhWkm06FA/IFSDRaM9hGUuGdW7hyUZQg23MpQ5wLG//yZr2zazmsmrvf4cHYmMjGRFXBybgadu3GDo0KEkJSXh5uZGnz592LFjR7Hr869dM3lfBwcHdGFXSY3pNfpZ2qL5a4uCS62Ja/KrVSMnJ4cffviBmjVr8sQTTzB16lRq167N8OHDS3yPxrS5uWom1lK5JbzfYs8o+rNev34969evv6P9CHUVYaWojBBCCCHuJMkQijvitjN3RtasWcM777zDmjVrWLVqFV988QWzZs0iMzPz9uZWFBAqRd+XRi3wYiJDqDujn3XSvWZnlBHUWBAQmlVUxihDuBIIBTYmJxMfH8+yZcsIDQ0ttaWJrtffwYMHcXNz4++0NGoCrnZ2BAUFUbduXby9vQ2ygF999RXNgUHAl99+S6NGjWjVqpVaxGbr1q08/PDD+AINgW3HjwOFVUPDw8NvvV+tFqUouNEtVS0oek5+Tg7x8fF06dKFV4EtwKAPPwTA09OTVq1a0bdvX/Ly8khISMDT07Psz6uIqWDTXJZmCCuCLBkVQgghREWQDKGwiEEvuiL6vehMMbUvrCz33Xcfjz/+OA8++KB6Lj093aAyZrnmVlAARRnCMpeMmtpDqMsCFh1rTSwZNc4QlrmH0NIMYdH97BQFJT+fj4BdwN6QENrNmAHcaiZfr149ZsyYwYULF1i0aBETJ07E09OT69ev3+r1FxXFwjffpM7Nmyi5uXz12ms0b94cDw8PgzYec+fOZTeQBTT96CNOnj6Ni4sLXbp0oWfPnrzxxht4eHhwCFgErPr1V/4ZPZrr168bZLU0Wi15uoCw6PPUBYTa3FwmTpzIunXruFS/Pj2AD3r2ZNz27YwdO5Z9+/apge7y5cv57LPPyv68THzOlsq7ft2scZXVmF4IIYQQ4k6RgFBYZPXq1axZs6bY+Z9//tngODk5mYkTJ5Keno6DgwN5eXn4+Pgwc+ZMmjZtWuZz1qxZw3PPPYeTkxMeHh5kZGSQn5/PihUrbmtuSlFBE0WjKTtDeOsi9VyB0b44bU7OrXubyBAWaLVl7yHUZckorDhaJr3CNkpeHq5APOCs1TJhwgS016/zx/ffc97Ojv/7v/+jR48eHD161GApaIsWLThz5gyBgYEAONnbsw4Y5+BgME6/lYerqytugBvwYN26dOvWDXt7e9LT0wGwt7fn2LFj/AaEASm+vvz4449cunQJKKwI+vTTT6PJzydfFxDqluDqBYQuLi7Uq1ePmkAQUNPJib/++ovOnTurc0lPT2fYsGEMGzas7M+riH5AmJmZiYeHRymjDeXfBQGhZAiFEEIIUREkIBQWGT58OEFBQfj6+hqcHzJkiMHxqFGjWLNmDfXq1VPPnTt3joEDB/LLL7+U+ZyOHTuyc+dObty4QXp6Ol5eXqYrVlo4N40FewjtTS0ZNdq/ZaqojJ3efY0DQlMZwt9++41ZQCqQm56Oc3BwqcGzRj9DmJfHSmA2ELduHceuXqW+gwPNb9xg8oQJLNm8mQEDBrB//348PT2pW7cuAA888IAaDAI42dnRBfjE15fXGjRQx+lndps1a4Y2Ph574GZODj/v3AlAq1atGDNmDI899hgnT57kBaANUMvBgY5t27J+/Xpu3LjB/v371YBQt2cQXTBc9Bxtbi5+fn5otVoUIA7YkZvLpk2bSEpKol27dkRFRfHxxx8TFxdHeHg4GzduLPYZmaKfzf1r716adetm1nUAednZ5j3DKCBUFEUN5G6XJQHhlClTePDBB3nuuedMvp6amsqqVasYM2bMHZufEEIIIe5NsodQWGTGjBnFAi4oXHaoT6vVFtvf5eHhYXEGxdXVFX9//zKDQXPnZqfVorWzsygg1P9x2bhypsEeQl3mTu+++fn5ZQaEMbGxfEThfrllnp7s2bOHwYMH88QTTxAdHV286qcuICyajx+wAPjgmWeYOHEi79avzzrA38uLy5cv89prr5GRkcGNGzfo0aMHhw4dKpaJ9HZxQQto8vOLtZHQWbBggVp5VfcPR40aNTh58iQtWrTg7Nmz1KtXjxPAE8C5jAwGDBhARkYGXbp0Ydq0aYWfT9Gfgf7nqZ8hXLt2Lfb29rcK9+TmEhUVRUBAAPXr12fZsmX88ssvtGrVinPnzhX7PEuiH7xXT001fPHGDdBooIR9lyUV0Sn2DKPP9U5m83SBW2nLs3XefvvtUgvuTJ48mVdffZXTp0+bfD0tLY3ffvutfBMVQgghxD1FMoSiQsyePZuIiIhiSz7feecdq87LTqulwM7OvKIyum9K2UNo3IcQMCgio83PNwwiTQTE+fn5eAJ53ApC58yZo2Z4unXrZlD1c7pehhD9excUMGPGDLZ99x0Ab372Gfv27TOZpTVe4vt6cDD2Z84YzE/XRkJ97wUF6vtuVLcuYWFhaluKYcOGERAQwMsvv4w7MAlo+uijvPTSS7Rs2VJdVgpFQXlRAKguGdVlCPWrtup9rhcvXuTSpUtkZWXRrFkzZs2aRVxcnFnZZh394N3O2dnwRV3At3YtDBpU/NpyZghzcnJKrfZqCV1AOHnyZCZNmnRb99JVPy2pSNOkSZP46KOP0Gq1anVTIYQQQlRNEhCKClGeJZ+mpKamkpqaire3N97e3nTr1o0tW7aUe152+fkU2Nubt4fQjKIyJttOGAWE+kGjYiJjNOGFF4gYMwYAp6wslM6dOXnyJBs2bKBp06Zq1U8o3Keny0DaGd1PF1wVFP0AX1BQUGKWtliRH1MVUoGnn35a/by1ubnqPxgTn32WsevWGYwNDQ3l2LFj5BcFLm4aDQEBAXz66accO3ZMHafRatUiMrolo4reklEdXRhSkJuLo6MjrVq1onnz5tx///188sknaDQai1ow6Afmxh0SdU3rc7Kz0YWKiqLcKh5044ZZzzAOCO9kiwhTSzu1Wi3vv/8+o0aNUosEmUM3Nj/fdK/I7du3A3D16lXuu+++csy24t24cYN169YVW64uhBBCCMtIQCjKxThQK4mrqyuurq4W3z8kJIQjR47g7OysFqXJzc01q69baXPTBSMFUOa9dMsjNSaKyuiCxZICwgIKAxptfr5hFs/ED+Atg4LYCZy0s+OCiwvBGzcybNgw2rVrB1BsCaemlAwh3KrY+f/t3Xd4FNXXB/DvlmTTQyAJSagBFBBQkNAE6YIUEVApUm0/kaIUEQGBF6QpCkqvIkUBC6Ag0iGUAAECGHqvIZUkm7ptzvtHdoaZ3U2ygUCAnM/z7JPdmTvt7mZ3zpw794544w2ns7RfR0RgMYBUvR6+3brlHA8RoqOjpTKm7GzpC0MwGrF+/XqH9Sblk0wmrF+/HiqVCvXr178/35qlBQCVeA+hNYum6PgFwF0A+owMuLq64vDhw8jMzETt2rVx/vx5qNVqhIaGOtwHRxQ9wtoEaunJyfAGcPrUKdQVyxsM94/3CQgIHXU4tGHDBgwdOhReXl744IMPnF6XeEEgt3E9/fz8AACxsbFPbEA4ceJEfPPNNwgLC8MLL7xQ1LvDGGOMPbU4IGQFsmvXLowfPx7+/v7w8fFBSkoKkpOTMXHiREUvkA/ryJEjOHr0qKInSL1ej8aNGz/UvqktFghubvlmCIkIGkfTbTqOkWe05E1GTQB0AMwmk7JnUgcZQrGnUheNBoFEcHNzw9q1a+3KiU04D1epkrMPsAlIxQyhSoV7AAJcXLBx40a4u7vj2rVrICIEBwc7DOAvJifjZwBXXF3x3IwZUh306dNHKmOWBQ+CwSAFDSJpsHsA3QDUN5vh5+eHli1bSkEtcP89sACAuE7rRQOL0Si9j6UA+AK4ePw4sgwGREZGolWrVmjVqpWU+axatardseRGXlcWm0DIkJYGbygDRaNeL31BOsoQ3r17F4IgoEyZMvfX66DJ6KOUaW3KmltglxsxIMzMpSms+N7evXvXqV6Bi0JycjKAwg26GWOMseKIA0JWIOPHj8fWrVvh7e0tTdPr9WjXrl2hBoRly5aFwWBAhQoVpGlXrlxBSEjIQ+2b2mIBabX5dipjMpnu/3PIM4liFlDMEMqbg4rPBUEKCC0mk6KposXByavZGjQIGk2+zVi1Wq3UZFRDpBz2whpMjbh4Ec8DoK1bkbB/P86cOYOaNWuicuXKuQbw3UJD4X3mDCoQKeo8NTX1fp3IA0KjEQaDAWfOnJGysbNmzULkoUNw9/bGbABjT57E4uhouxN2tSDkNNsFoBL3XxYQjp86FVs2b4avNXDd8uKL2Pz88xg3bhxatWoljUNoNBpx+fJlpK5bB/f33oNrWhqgcRTGW/dZHhDaBGpG6z2E8mywSdaRjKMMofhZlGeabQPAwgxWxCCuQYMG0jRx2wXtKVRjraesrCwkJSXBzc0Nnp6e0nxxvM8bN27YLdu4cWOUL18ea9asKdgBFDLuHZUxxhgrHBwQsgJRq9VISEhQBF0JCQlOdzzh7D2AmzZtwpgxYxAbGyt13R8cHIwNGzY81L5pLBZpiIP8AkJHTUbF4E7s/EWeUZKPQ5itVsNLEGDJylIGhA4CCzFbJWg0DjudsSU2GVXBZhzE7GyMHz8eE6pWRY/jx3GmdWv878gRnDt3Dt26dcOqVasAOA7gTyUmYiCATIMBHrImowkJCff302iEAcAZALP//Rf//fEHXn31Vfj5+eHq5cs4d/IkRnz8Md4CsA6A3mhE69atkZWVhUaNGmHy5Mlo1aoV1IIAs9hs13rsKmswIphMUKvViIuJgXj3I5lMOHjwIK5evapoekpEyM7OxrVPP0XtrCxk3LkDz/Llc603RQdANoGbOPC8vyxoNMo6XCEnM322AeFvv/2Gr776yqll8yMGl/IspBgQFrTjFzG4zMrKgr+/P6pUqYJLly7ZrfeebW+syOnlNCIiosgDQpFTY3cyxhhjLFccELICWbx4MUaMGGEXqC1evFhRrps1qJCzvSctL9WrV88z+HvQfdMIQk6GMJ8moyaTCR7W544CQvEeQnKQIVQJArLUakAQINgGhA4Ci4ijR/EBcoKJPkSoYZ3eoUMHrFq1yu5+SHmnMophL7KyoFarkW6dRhkZUKvVuHjxoiJgcBTAX0hNxXIACWo1SufSZHTtH39gDYB6ALafPo13+vbFiRMn8Mknn+DNEiVQfe1azPv9d6wAUAXAK35+GPrvvxgxYgQyMzMxfvx4tGrVCiqLBSqtFgYAamsWTu2RU9uCyYTFixdj5MiRiEdOT6MpUVG4bjKhXLlyMJvN6NatG7788ksAOcNeiCF2en4Bobx5rU3mThxnsIS8yWhamvRc5eQ9hLYB4bhx4+wCwhs3biA9PR01atRAQYgBoXwb+WUITSYTxo4di3HjxikulNg2Gb18+bLD45BniJ804jFzk1HGGGPs4XBAyArE2UDt6NGj2L17tyLwsA0wimLfNBYLoNXmO+yEPEMoR/IOXWATkInZQ4sF2RoNYDbnZMBkncyYHQQW8zZsQDiA6IAA/BwbiyFDhqBTp044cOAA3nvvPbv7Ib3EJqO4n6HMAACDAYsXL8ZHTZpgGYC033+Htnx59OrVC4GBgWjYsCFUKhWuXr2KvXv3Kvahe9my8L58Gd5E8Jc1GR08eLD0fOVvv+GI9Tgi/PzQuHFjjBw5Er169cJ3XbqgEYDpZjPqAFgJYBaAkZ06YdWKFXjj88+lni21ZjOMrq7IVKuhs2bmNLIMYfXq1bF22TK4BwUBADZVr47PU1Oxf/9+BAYGYvbs2Xj77bexcuXKnOyQNTDItt5Tlpu87iEUM4Ql5NNkTUa9ZMNm5MX2nrxmzZrZlalYsSKA/Ds1siUGaY4Cws8//xwff/yx3XqXLVuGGTNmwNvbG+PGjZOmi1nGLAefx8TERKnDIHlA+Pbbb+Ovv/4q0D4/Do/6Ps2nwYM2HWaMMcYADgjZIzJy5Eh4e3tL9yKJ5AFGfmzvUatZs+ZDj+mmEQRYXFxgUakUA8jbMhmNDpuMSsMzWJd1lCHUWSxId3UFDAYIWVnQGAzQIyfYcJQh1Fjnqby98XVcHLbXrYvu3bujcuXKihNwsannLFmGUAwIMzUaIDsb1atXx5TnnkOzI0fQ0sUF/s8/j+eff/7+PhLh+vXrqF69umIfOgcGwv/yZeht6kQe0OhcXBAOoAWAcS1bYty77+I2ALOPDwbExKAFgPIuLlhiNGIEgItJSRAyM1Hp1Veh9vHB4cOH79ePuzuyNRrorAGJxssLwP0AW1FPJhNiYmLQsWNHaVJCQgJKly6dE4BZg0ljPtmsvIb/MMsCOTG7LDYZzQKgcTLoiIuLg7+/PxITEwFAGi6kMBiNRnh5eTkMCNPT0yEIAtRqtSJj9sknnwCw73TGZD1+R53KyAekT5YF2X/++WchHEXhS5cF7g/DYDDg2rVrqFatWqGs71FYs2YNfHx80KFDB8X0Hj164NatW4iIiCiiPWOMMfY044CQPRIDBw50OL179+5OLb9q1SosWLAA9erVkzJkUVFR6NmzZ4GCSls6QUC6TgejWg2tgx4/RUbZibLDJqPW12YHGUKdxYIUaycpQlYWtEYj0tVqlBAEu+EOAOB5f39cv34dRm9vuAsC+vfvj5kzZyoGcwfuN/VUyTKEYgCVrVZLHbSIQzmcT03FwW++cS5La13W1SZr1bdvX+mez+8+/xxre/TAVwBStmxBSQB9AYy6cAFXly7FK+PGYYhOB3ejERsAhFeogGbnzuEkgC8bNZKCUHeLBYKHB7I1GnhZt6u1NmcUgzZ5j6Ywm+Hu7o5ff/0VVaw9rLZs2RKbN29GnTp1pGKmXAZZF+V1D6HZmiEEgOz0dLh7e0sZwlS1GhonmyWmpKQgODhYCggzZOt9WEajEf7+/orgTh78paamws/Pz2HWz5a4ji+++MJunnw8Q/k9pE8aMRvWsWNHpKWlwct6UeFB9ezZExs2bChw5lZ069YtBAcH24/xWYjeffddAPbZ5d9+++2RbZMxxtizjwNCVmCPInNna9GiRThw4IAimDGbzQgICChwQBgbG4sga/NDT4sFaZ6eOQFhHh24ZFs70zACil5GxWaHYqcyJtnJtzjPXRCQqcsZ3pyys6ExmZBhvafQtqkiAAx75RVUPHYMV0uVgjhi47p16zBmzBg0atTI7n7ITOv4hGoAsG4/S6uVgjoxIOxRqpTTWdpPzp6FdIeZteMWIlJ0NFLK3R0/WJ/va98eTX/+OedFUBAuWIOxPiYTKlrLaK1BdW0AW7duldbjTgR4esLg4gI/a9DlWqKEog7lATnMZvj6+uKtt96CzlqvZ8+eRYcOHXI+d2KT0XyadcqzgraBubyzn/TYWLh7e8Ni3Yd0jSbPgPDXX3+VTtRTUlJQunRp6V7ZwgoILRYLTCYTfHx8EBcXJ02XB4dJSUnw8/NzmPWzbUroKGg8ceIE6tSpo5gnDwjd3d2dCjbzEh8fj4iICHTu3Nmp8oMGDQIAzJs3z26eRtajbFxc3EMHhGIzaoPBIH3OnGU2m1G+fHl88cUXDsf5ZIwxxp5kBeuajhV7q1atQosWLbBixQqEh4dj+fLlaNGihTQUQGGJjo7GCy+8gPr166N+/fqoV68eatSogTRZRx/O6tu3r/Tckwjk5ZUTEDoYJF5ksDaVy9RolBlCa9AlDUwvO+EXs4VuZjPM1nHyLJmZcDEakWnNGjhqMmrR63PuMQwIgBvu30e3YcMGHDp0CIcPH8ahQ4ewfv16VK9eHWpZllKdkYE0AEaNBmpxHETr366enlIwKK+37t27IzY2VrEPmRYLIgBEAojctw+RkZE4evQoXnzxxfv7KTtW2yaXYj2UkAUoLg4CEyKCpzUgNLq4INBajz7W++oEkwkrV65E07fewssApgOA2QytVgs/Pz9ERkYiMjIS/m5uOHDjBl6qXj1nTEkA12X3yDkiv4cQtgGhbF8zrXVjtgarma6ueX5Wfv31V+l5cnIySpcuLb1+2ADKdj1+fn6KJqPygFC830++TXEoCTFjCeQEqUuWLLHbRteuXQHcb4LZp08f3LlzR5pvO37l/PnzC3wcPXv2RJcuXZzuGXT+/PlObSc+Pj7fMmazGd9++22uYy+KmVE3NzckJSXZLTthwoRcv3/EprX79+/Pdz8epQfNbjLGGCveOCBkBSJm7n788Ud8/fXXmDNnDsLDw7Fw4UK7sgaDAVFRUdi5cyeioqIK1BtgYGAg2rRpAxcXF6jVari5uaF9+/Z4xZodc0QMHuWPevXqITIyEkBO8zpvACofn3ybjBqsGcJ0Nze4yPZbZT0BlwJC2f1LpuxskCDAkwiu1sHKs5OSgKwsZFt70SRHJ6MpKUgF4Go94c6Qnbw74mo2QwzN1KmpyFSrYdZqoTYasXLlSvS7ehUvA/hFlkl68803FeuQB8kA8LGfH6RTXVnAIQ8u5EET5D12EknHFWSdlgrgSmYmdgKIwv2mjWkJCfAA4BIQAJM1q2wC4GINXMlsxoIFC7BxzhxEAfAAMD0mBhMmTIBZFpTdS0lBWQAfNmoEszXYbp/H+wkoA0LBpqz82LKswYXYjDTLzQ0ueaxbnpkSm4yKcgs+AODUqVN57q+cMwGhGKzItyneK7ho0SJpfnh4uMNtiE0dxYCwadOmSExMlLKctlnGQYMGITs7GyqVyun7C+/evQsAUsAlCAJOnz7t1LK25Mcuz5rmZteuXRg1ahQWLVrkcL68qezx48cV8/bv349Jkybhhx9+cLiseDyaPMbBlDt48CBUKpUi4M7PxYsX8y1je6GHMbkbN27g66+/VnyXMsYYwAEhKyB3d3fFCSURITw8HG5ubopyD5tJ/PbbbzFx4kQcPHgQhw8fxv45czArPBxf55EFSktLQ0REhJRFErNc9erVAwBkJiRAB0Dl5wdBp5OaWzoidlCS6eUFnezHU209CRVP++QBnjE7O6e5IQD3qlWRDsAUEwPXrCxYSpRAOgBy0KxRnZqKVJUKOj+/nOOwntzmdnLnbrEgyXryqo6LQ5ZGA4tWC7XJhAULFmB56dKIspYrWbIkwsLCcOzYMYdBsmh1cjLaAqgPoH7z5njxxRdRr149RZNR+TAM8gzh9chIqR58AKwC8BqAf7OyEA5gOSC996nWk1ptuXLItGZR9RqNNA4hrENliBm8TwG09fTEggULFD1ePm+95/AFT09orM2KT1kHis+NIsNpew+h7H3Mjo8HffMN6k+ZAgAweHrCxcEJlDiMw7p166R9S0lJQalSpSAIAoYPH55nQPj222/nub9yYkBYokQJCIIgndA5CgjFsv7+/oqLMGIWLbegRR4Quri4SNnh8+fPS9NtiU1Knc0WitsQ92X27NmoVasWbt265dTycvJjdyYQEusit05o5M3ebU+YxYxmbk2AxQysswHhjh07AOQ003XkzTffVATgWVlZqFq1qvSaiGAwGDBs2DBcv35dmh4SElJoneywZ8/w4cMxfvx4RcdReREEQdG6oLClpaXZ3Sv/tHmS77NmrCA4IGQFsmrVKvz1119o3LgxGjZsiKZNm2Lz5s12gV5BMomOdOnSBX7WAAkA8N13wIkTaGbNvDkydepUh026xHHgsq5eBQBQcDBU7u6gPAJCs7UJmLFkSbjJ7jVUWwMJ8R5CysyE2PjNlJUlBTy68uWRpFZDiI+HT3Y2LKVKIUWlguDgx8M1JQUpWi101ixZhjWL0rt3b4cZVg9ZpzVuSUnIdnGBxdUVGqMRarVaymb10mrh5eUFDw8PVKhQQQqSd+/eLQXJoixBQDisTUb/+gv+/v6KYBoADLKATN4pi/niRUVgvAjAGp0O3wsCvgYwB8DmX37BwoULkW4d786jUiWYQ0MBAJctFriWK5ezcFwcOnTogBvWesxWqVBXq8X8+fNRRvbez6hbN2fb585J9/fp8ukJVB4QwibjJw92jYmJMI0Zc//4fHwUFwWk+pBt79q1ayAipKSkoESJElCpVPDw8LALCOVN+mrVqpXn/sqJ6xH/J8RtyzO4thnCUqVKKdaht97nmdvYgmKwptfr4eXlJdV3fHw8iAhpaWmoIBuSBLjfVHL37t04cuRIvsch7uPYsWMBAFFRUQAcZ/jkQdnZs2ft5suP3ZkMoRgo5dZcVZ4htK0jse5yy6yIGcLw8HCEhYXl2XTTbDZjxYoVivXa+vvvvwFAyiLaBsypqak4evQofvjhB7sxX8Us7KOk1+uhUqnw0UcfPfJtFVfiveOtWrXKtczevXuhUqmwY8cOzJ07F/369ctznWJG2tkLOB07dkRAQAD+97//Ob/jTsrMzISPjw/8/PwgCAI2bdpU4IsZaWlp+PDDD/HTTz8V+v45IzIyEoGBgYreuK9fvy4FuRaLpVADaiKShgxirLBxQMgKJCgoCD/88MP9zN3+/Zg1a5bUaYvI2Uyis25bT4hiz53LtYxtEClmNsQv6wRrE71StWrB4usLrzyyN7BmMIxly8JT9iWsFoMPWZNR8SfMZDAg/coVAIBHaCj0Oh0oLg7+JhMoMBBpLi6AtSmqXP8zZ9DdYsG7c+agPoCun3yCSpUqYe/evQ4zrB6CgHRrdi1Yr0eqhwfMPj5wz8xEhw4dEGs9Uf43KwsqlQpxcXGK4OXNN9+0Gyx9oKcnxMZrlowM6eRYXk4MmkwAIDuRzYyJgVoWbLkD2OrhgQDrawLwz2+/wc3NDft++QUA4PnccyhjvWftnIcHvIKCkAkg4+pVjBkzBsHW7EiCToe4rCzUqFFD0TGNmKl94e+/obUem0sBAkLbgenlvYya7t2DURY0kJ8f3G0CAYPBoMi+paSkICMjAxaLBSWsHeQ4CgjlGSZ5AJIfcT3iuuUBYb169aBWqx1mCOXEIEcMXmzHojx9+jT0ej0SExMREBAAHx8fADkn/waDARaLxW5cxXuyz3PDhg2l5ydPnpTGvJQTm7D+9ddfMJlMWLVqFQD7DB8RoWfPntLrGjVqAMi5X1P8vy5IQCgIAkaOHKnYB1vyDqxsA0Kxzr7//nvs2bPHbln5PYfHjx+X9tGRNWvWSFk9eXZPTp4dXLdund09kr169cKrr74KIGfMV7mYmBiH6yQi9O7dGwcPHgSQ+4UBZ4j1vXTp0lzLnDp1Ktd7LseNG4f//vsPK1asyHUcycGDB+fagZggCPjqq69yPdYHtXz5crv7Rx/E//73vwcaciY7OxuHDx+GyWSSgrfdu3dDpVJh7ty5duXFYWXatGmDIUOGYOXKldJ7ExcXh7/++kvxPSV+j/z9998IDg7G+PHjYbFYFBcwxCBz0qRJ+PfffwEAS5YsQXZ2tl3Lkofx+++/S89btGiBTp062V3Eyo+Pjw+WLVuGDz74wOn7kh+UIAh294R/+umnAIB9+/YhOjoaKpUKoaGh8PPzAxFBq9UiICAAN27cyHPdRJRvk3BxWCGtVvvQ96YnJSVBpVLlO27pZ599BpVKpfjtZc8uDgjZw/vvP8DmCrazmURnxVl/HO9ZM0zOsB36Qm9tJhNSvz6E4GD4G425Xm3TJCTADIAqV4YvgBTxhNP6g+oJwJSZCUtCAlJdXSEAsKSlwXz2LAQAXjVqIKNkSZS7dg3eAMwVKyJTp4PawUlYttmML/39sXfHDkQCWNq5M0JCQtC8eXO7DOv8OXPgAyDbmqkpazJB7+MDS0AA/LKzMWbMGJSzHtMfJhM2b96MCxcuYPDgwXj77bdx4sQJEJHdiX07lQriabI5PR3vvvQSvmnbVlFOsJ4o3XF1hUp21dMQGwutLNBZDmC3Wo3GABoCaApg67ZtWL16NcokJOAugHJ16qDmRx8h5e+/0TcmBlCpkKzTwWw9QdZbf0CTfH0x38FJpdp6JTnWzQ2u1h9Ht3zuURXi42EGkABAbbNOU0YG0q0/jpZ79yDP72h8feFmc7JhG8CMGDFCuiosBm1eXl7Q6/WKky3xJM/f31/RVOru3bt5njSIy4lj5IlXnZOTk+Hn5wdPT09pn8QT/RBrE1rxIomYjbp79y7Kli2Lxo0bS+ufMGECAMDX1xcJCQkICAiQOqTR6/XSOrt27Yqfxd5lkXMiJ/Kw3icL3O9cxbaTFXkGQB4svvHGG1i4cCEOHTqEq1ev4scff8Qff/yhWHbKlCno1auXFHjK68828ASAmzdvSs9Pnz4t1eGUKVOkzKScPDCxDZbkAdmaNWvslrUNIsSAcNeuXXYnqvI6GDt2LD744ANFnRKRoulpbGysXbO0LVu22O2DKLcMYWRkJH755Rc0adIEp0+fRokSJTBixAi7CwPOkAfgI0eOxNGjR3H06FHp+9RoNKJ27doOM4iJiYmYPHkyXnrpJfTv3x/jx4/HBx98gM8//xwRERHYsWMHDAYD5s2bh3nz5mHv3r2K/6Hr16/jzJkzmDJliuLzlx+LxYKrV68iOjraYRPlGzdu4P3338fAgQOxa9euglSHXUZ4yZIluHPnDrKzs51unnnt2jW4u7ujUaNGcHV1xejRoxXzhwwZYrdMo0aN7KYFBQVBpVIhKCgInTt3hk6ng8FgUAQdCQkJiI2Nxddffw2tVosPP/xQOgaxcynxO0Hk7u6OBg0aoEePHrlmvYgIe/bssauPc+fO2V0c6N+/v/R83759AHI+NxcuXEBGRgaqVKmCZcuWIS0tTRG0igGreIFHtGHDBowcORLDhg174CyabXAs9+GHH8LDw0P6f75+/bqiVYS8AzYAeOGFF6TnFStWxO7duzFs2DB07twZJ0+eBHD/e2XBggWoWrUqGjdurNg+EUnf2/ILP0uWLJHKtW3bFiqVCtOnT8+3U6nU1FRs3rxZcbGwdu3a0nuzevVqKVB87bXXMHv2bABAu3btcr1ww54hxJ5qqampBIBSU1OLbicAosDAR7qJY2XLEgF0YuhQp5dp06aN4nVEgwZ0RaMhIqLoIUPIDNDUiRMdLnukYUO6pFbT2XnziAA6u3EjERGdUKspycWFCKDY6GjaExhI/wUE0A2Vig63bElHwsLoAkBpaWn0T/PmOXUD0MQBA2h3xYp01tNTuaF792g9QN/Xq0eCIFACQN/7+lLr1q1p1qxZUjFBEGjnzp3UuHZtIoCOTJ0qrXtds2a0v3t3ygLIaDDQeev+vQxQixYtpHXs2LGDfH19qWbNmnbHe12noz2urkQAJWzZQpnWdZMgSGX2tGlDSSoVnfT2psOlSknbP9CrFx184QXp9R2Viva//bb0mgDa+P77RIJAZz09aX8un5XjlSrRPoDOnTtHPwQE0D2AwqtXp4YOvqYOli9PBNBdjYYuajQ521WrHa5XdKBNG7qrUtElFxcKr1tXMe+f2rUpxtWV0gDa0a4dxWm10r7v69WLzNa6FR06dIgA0G+//UbISYJSdHQ0AaBDhw4REdGff/5JACg+Pl5a7pVXXiEA1KpVK6pXr540XavVEgASZPUtN3PmTHJ3d6fr169L2zt06BA1adKEevfuLU0TBIHGjRtHAQEBNHToUAJA1apVIwC0atUqun37NjVv3pzq169PRCQtFxsbKz0HQO+88440f8CAAXTkyBECQEePHiWLxUK1a9dWlAdAarWa0tLSiIho4cKFBIAaNWpEFouFiIiysrLslnnQhyAIBIAGDRokHZ/cnj17CADt3buXiIi2bt2qWH7atGmK8jdv3lTMDwkJocTERGn+hx9+KM374osvcj4z//xDer2eiIhGjRqlWN7b25s2btxIAKhv376UkpJCRERr1qzJ9ZhECQkJiuklS5akRYsWEQC6du2aYt6AAQPs1tOrVy/p+dixY6X1Ll++PNdtG2Sf7dwMGjSItm3bRkREP//8c67r2rdvHx09etThPuzatUv6H8jrsW7dOsXrgQMHEhFRSkqKXdn09HTpM5aXfv36Scv4+PjYzZ84caJivf/880+u65J/5sT3+dChQ/Tyyy/bvX8AqHfv3vnu39ixY5367IufS7PZXGj/T7k9AgICyGQyOZyXmppKN27cUHxnvfvuu9J8jUZDAPL83BX0kVvd5lVX4vM9e/bQhQsXqEuXLgSAlixZQvPmzXug/ahUqZL0fPny5dS6dWvp9YkTJxRl69at+8jfJ/mjffv20mfJ19eXPvnkE1q6dCm9+OKLD7XeovJEnOMWExwQPgHmzZtHFStWJJ1ORy+//DLt27fP6WWL/J8lOfn+iX9eEhKI2rUjunv3gTYTbQ1AInv2fKDlyWKhO56etMkajGTv3UsEUCPA4cnEhZIlaXdAAKVERxMBtH3gQEpNSaEkgM6GhhIBFLFgAV0CaN9LL9FBDw866+1NdwH6ETknrJuXLKHbAK0C6MKFC3SoVy/KAmi/7EQjYdYsIoAWfPklERFtBGgXQLt376bPPvuMXnnlFWrQoAE1adKEhg4dSrsHDSIC6MqRI7QOoBSAVk6bRme++y5nPUOHUgxAZoC+BOjVV19VHNcrr7xCbdu2VVaN0ZgTCFWqlFPH1nURQNesgTAR0d5y5eiMpyftqlCBsnE/2Pu7YUM6FhxMSdbXqwC6tXEjEUDJAGUAtB2gkdb5U5s0cfgW3Zw8mQigdwE6AtBWgLa2b09ZAF04eVJRNtLPj8h6nEkApanVlAyQyWTK9SNwpGpVOqnT0QlfX9rq66uY94tWSyc8PSnGxYX2W4PBzU2bEpnNdHr6dCKAzllPhomUwZ74g7l06VICQJcvXyYiotOnTxMA2rx5s7ScWFb8wc7OzlZMr1SpEm3fvp0A0JEjR+yWs1gsdj/UY8aMoRkzZkjLuLi40BtvvEFvv/02AZCCTfmjU6dOivUSEfXs2VN63aBBA8V88SEGDj/88IPDk4bGjRuTIAg0adIkaVp4eDgRkRTM/Pjjj4plPv300zxPRH766Se7aV27diUA9PHHH0sneIMHD5bqS35yf+TIEZo8ebLdOqKioqTy4nv366+/SvM7d+5MJpOJzpw5Q82bNye1Wi2dcN29e1cqN3PmTOn53LlzpechISHS8yZNmkhBLADy8/Oj2bNn2+2TyWSSgr8dO3ZQt27d7E7K5IGAXq8no9FIZ8+edbg+AHTr1i0iIhoyZAj5+vrmWs+nTp2S6iMmJoYA0IwZMygiIoIuX76c53skf4wYMYJatGihmCYGzqVLl3Z6PfJHrVq1iIikiy62Dx8fH/r111/p5s2blJmZSUQ5F9HOnj1rV2fiY9CgQfTtt9/S3r17Ha5TvNgyYMAASktLo4SEBFq5cqWizJAhQ5w+hjJlylBgYKD0/SAIAplMJrp8+bJ0AcP2ceXKFbpx4wbFx8fn+t516NCBANBbb71lN++PP/6wm7Z7924CYBcAyx9btmyhrVu3ktFoJCKSAvwaNWo80PuX2+PKlSt0/PhxGjFihMPvNmcesbGxVLFixULdr4I8xPOHxYsX065du4iIpO+R2bNnU2ZmpqK8v7//A2/rzz//pPr169tNb9u2bYHXlZqaSgMHDnQ479tvv6WuXbvSzJkzyWQyUUZGRq6/q49akZ/jFiMcEBaxtWvXkouLCy1ZsoTOnj1Ln332GXl6etKNGzecWr4o/1kmTZpEryHnJN+InBOjzz//nP755x+6dOkSXblyhYhyMgOZ33xDBJCQS0YuP9et2zlsk/XL0549RDNmEFkslDBkCBFAX7VqlTPPZKKbAG0GyAWgmzdv5pzsCgLd+/FHIoBWt29PJAh0QaWi7QD1Ffdh3DjKAuiQ9fXP3bvTrBo1pACoPO6fuE2ZMoXu3LlDRET3oqPJCNASgF4EqDNAdwDaBNDWrVuJiOj0sGFkAWghQK0A2rBhg5R1MWdm0i6AjgNkNptp1IgR5GX9QdLHxJAeoJ3WfbpcujRlApR5716+1XR27lwigHZ/8QVlADQbOYEWAfRHWBhdOHWKfvnwQ9IDtL5GDfq5Y0cigCwAnQfoHEDpAP0dFkavA7TfGgBNKVuWto0bR4M8PKTg8QeAEhMSHO+IyUSnKlQgAigboANff02x+/aRBaArAHUD6DUfH2oFUAJA53Q6ab1Hq1UjstbZxf376cz27RQfGUkRK1bQyI4d6evGjSkZoK116tCG6tUpGaAPypenab1709CgIIoFaH3p0nQ8OFha58Xt24mISH/xImUDNB+gCgB1B+giQG7Wul+xYoX0Q6pSqaTDEQTB4Y//0qVLae3atdJrMXDL7YdZ/pqIKCIiQjFt2rRpdOvWLcW01q1bU1paGoWFhdldsQZAERERRERkMBgUQbQ4//z580REVKtWLbvtExH99ddf0rSbN28qXts+AgICFOu5dOmS9NzLy4uI7gfYjh7yoNv2cezYMbvsZm6PypUrK45RfIjBpXh8uS0/fvx4RcDn6EFENHLkyHz3ZfLkyUREdPLkyVzLiO+No/ofO3YsjRw50u5fKL/tvv/++yQIQp6BYUEeI0aMeOBlvb29KSoqijZs2CD9jn388cfS/GHDhtHGjRvJy8urUPb1cT+mTp1KABTZ0vweixcvJiKie/fuUVJSks3Xo4m6d+/u8DMnys7OpoyMDNLr9ZSenk5EORnnuLg42rdvnxTgyVksFnrnnXeoR48etHXrVvrjjz/sysglJSXleQwHDx6Unk+bNk0xr2LFijR9+nTq0KEDXb9+3W7dZrOZTp48SXq9nu7du0f//POPw20kJCTQ6tWr6fTp01LdfP/995SRkUFXrlxRXNhx9BAvoAGgnTt30tChQ6lmzZr0559/UkJCArVr147q1KlDp06dourVqxMAmjNnDqWlpVHJkiUJuP8/7Cx5JjUuLo4OHz5MWVlZZDKZpO9bIqL169fT3Llz6fPPPye9Xk///vsvRUZGUlZWllQmMjKSgoODqWvXrtJFOnlAnVuAPGnSJIqOjpYumhARpaen05dffkm1a9emBQsWFOiYHgcOCB8fDgiLWP369WnAgAGKadWqVaMvrRmj/BTlP8vxd95RNAs8D1AUcgKlgwDtBygcoL0AxVnLpCMn2JkN0AyAJgM0HqCxAI1BTlZrFHKySZ8DNBygr2XbiACoB3KCqQ4AtddoqCVArQFqC1A7gHpZ1yEuk2L9+38AnZRlmlJXrSKjdd92ALQFoGhr2TUAXbNeyd38ySeUZZ2+HaDszExa16ABJQI0FyBDdjYdP3aMXgUoBJB+iB2ZUaWKIrt2BKBgyLKUBgOdCgiQ5q9ETsZtB0D3kBOoTbXJ+olivv2WMgE6BtD5X38lC0AnAdpmrcMJAM2z7vNCgFYAtA85wdchgJKTkmiKdbsWgK6pVIr39xhAlyIj6crly9QfoBmtWtGAKlXoBEBrAfpv/36H+2U2m+m1cuVoYo8eimZ4DgkCZUVG0q7Vq6VJX4aF0UHZfhBAMQAd++knWoqcADvh4kU6Y1PG9nESOcFiQnQ0nbWZFwXQtV276Nqff9IetZo2y7JNREQratcmi80yMzt3JiJlU8i5c+cqlnOUfYiLiyODwVDgE8xjx45J6zWZTBQaGkpdu3aV/vflZW1PtuSBR1xcXK7VbzQapeaNRDkBo7u7OwGg5ORk2dsk0IQJE+jAgQPSNNusYaVKlRRNq8QTFSKi999/n3r37q343oqJiaElS5YotuOI2FwXuN/E1jZIBiDtt/ho2rSpw/20Pbk2m8109uxZu3lpaWl5ngyLGTZBEKQAefz48dSuXTtFuU2bNtkdk+2V+vfee0+al5ycTPv373eqWWRWVhbpdDrasmWLw+aVFy9eJKKcE9I7d+7Q0qVLacGCBdSjR48CfRbbtWsnbTM2NpZSUlJo//79ikzsiRMnHL4vp0+fljKGjiQnJ0tZTSKyu9jRpEkTxWdcr9c7vd/nz5+XMvfyz0e3bt1o8uTJZDKZKDMzk1JSUqT3rUyZMop1tG3bliZNmkTDhw+nkiVL0ujRoykxMZE+/fRTOnjwINWvX1+qZ9G5c+eoefPmVK9evVz3befOnfm+v0REW7ZsIQDk4eEhXSwsKomJibRgwQLaunUr7d+/P8/vltyawzvjYZaVy6sFCXsycUD4+KiI8rkLlT0yRqMRHh4e+P3339GlSxdp+meffYaTJ0/mOoC0nF6vh6+vL1JTU6VeAR+bI0eQdvAg7lStCvX27Ti3ZQtcTCZoLBbcuX0bakB6mAGcAtARgC8AV+tDZ/0rllPJnouvjQB2A/gXwCwAfsjfPQDnAFwEkATgNwBdpk61u1E//cgR/NiwIZ5DztiC9wBsAPDazJkYNmzY/fWdPQuftDSgdm1odToAOTfmlypVStE7oTOSr1zB6fXrESsIaDdokGJgcwCAICAmKgq/1asHcdCH29bj2eTujiN6vTREgB2zGaRWQ6VWY/kbb8Bn82YEAiiHnHoWu8YwATAAuA7gGIC269ahXbduSIiPR//atTF41ChUePllzGjaFLBu+5tdu9CsZUu7TaampsLNzQ06a708CkaDAf8sXIg7p09j9YYNGL1gAd585x0YjUYQEXQ6HdKTk9GmZEmUQs7nzSR7pABYsGcPmjVvDgBIiI3Fz19+iajdu/FKz57o9cUXKJlPD3exx47h55EjUdJoxP8iIoB16wCbLv8dyczMxO3bt7F3715UqlQJrVu3BpDTQ+err76KhIQE/Pnnn2jQoAEaN26M0NBQLFq0CIMGDULLli1RtmxZtG7dOvf33IqIkJ6eDg8PD4fj4ZlMJlgslgfu6dcZycnJ2LhxI7p16wYPDw+YzWbMmTMHiYmJeO+99/Dcc889sm1HRUWhbt26+P7771GtWjW0bdsWJpMJERERCA0NRZkyZRRjDRIRRo0ahd9++w3z589HkyZNFN+h2dnZSE9Ph4+PD1xcXKQe+Y4cOYLIyEgMHjwYKpUK8fHx8PX1zfPzLwgCkpKSYDabERwc7LAMESE2NhYlSpSAu3VYmcKQkZGBuLg4lC9fPt/P0K1bt7B792507twZ3t7e0Ov1yMrKwty5czF69Gj77yonbdu2DdeuXUO/fv0e6NiMRiNSUlLg7u4ujf/piMlkQmJiotSRSmHXZWEwm83QaDT59vDIGCvic9xihgPCIhQTE4MyZcrg4MGDeOWVV6TpU6dOxYoVK3DhwgW7ZQwGg6K3J71ej3Llyj11/yy3b9+Gv78/MjMz4eHhgfT0dJhMJhiNRpQqVQpnzpxBjRo1EBUVhTJlyqBy5coAgIz0dGTExcHf2xv34uNx8cwZlCpRAqfPnkXL1q3h5ukJnb8/VN7esFgs0Gq10nhOortpdxHs7fik7EllsVicHvTakaSkJKjVanh7e0Oj0UAQBFgsFsWJLnMSEeDpCZjNQD4n2IwxxthTTa0GCjhGZGHhgPDx4bOZJ4DtCbltACM3bdo0TJw48XHs1iMljtEkZitssxYNGjQAADS1ZqhEnl5e8LRepfYPDIR/zZoAgKpt29ptQ7wabluXITNDQBOerusgDxMMAvaDlGs0modeZ7GlUgHr1wOXLhX1njDGGGOPFl80LhY4ICxC/v7+0Gg0dmOaxcfHo3Tp0g6XGT16NIYPHy69FjOE7OlmMBtgEkzwcn2wJlnsMXv99ZwHY4wxxthTjgemL0Kurq6oW7cuduzYoZi+Y8cORRNSOZ1OBx8fH8WDFZxFeLCBax+VcXvG4Y01bxT1bjDGGGOMsWKGM4RFbPjw4ejTpw/CwsLQqFEjLF68GDdv3sSAAQOKeteeaZmmTHjrcu+c4HHTG/RIM6QV9W4wxhhjjLFihgPCIta9e3ckJSVh0qRJuHv3LmrWrIktW7agQoUKRb1rz7R0Y/oTFRAKJECtKr4J+3RjOjeXZYwxxhgrAhwQPgEGDhyIgQMHFvVuFCtGi7God0HBIliKbUBIRPCe5v3UdfTDGGOMMfYsKJ5noKzYMwmmR7r+o3eOKl6P3jk6l5I5BAgQKOdR3FjoybqfkzHGGGOsOOGAkBVLJkv+AeHdtLuYFD7pgdZff2l9xevpB6fnWd4iWHA05ijmH53/QNt72uy/sV96/qRlaxljjDHGihMOCNlDI3r6mvoN2zYMWaasPMtcSb6CCXsnPPA2bNc/cvvIXMuKmcH4jPgH3t7TpOnPTZFuzBnolgNCxhhjjLGiwwEhe2htVrfBH2f/KOrdKJBtV7YhMTMxzzLuWneH08MWhzm1DY+pHorX3x36zmE5IkKWOSd4dLbJqGqiCqnZqQBygkjVROXAseN2j3NqPUXpix1fAAAu37vscP7V5Ks4cvvIY9uffy/9+9i2xRhjjDH2pOCAkD20nVd35jtkgkWwwH2K+wNnE9efW4+yM8sWaBmzYIbBbMh1flJWUp7LO7rPkIhw/O5xxbSwxWE4GXtSem2b5YtLj1Msb6vKnCpYf249AOcCwuSsZACQAtrfzvxmV2by/snINmfnuy65yDuRhTI+40d/f4SN5zfmOl9srrvg2AIAwKJjixyWG7ljJBoua1jg48iLmJV0pP2v7aUmwvey7mHq/qkYv2c8Sn5TEkuOLym0fWCMMcYYe5JwL6PsoXm6eOJe1j3FNCKCWTBDo9ZAIAF/nf8L2eZsnEs8h0p+lXDw5kFU8qsEk2BCac/SSDemQ6vWIsuchQCPANxIvYFKfpVwI+UGNGoN/ov7D3fS7uDonaN4OfhlaNQaEBGSspJQ0r0kDGYD3LRuUKlUUtD1+urXcSzmGJZ1Woa3f38bABQ9eSZl3g8IBRJARIjLiEP/jf2RmJmIV8u/CiAnsDRajHDXumPH1R0AgOHbhmNU41E4eOsgjt89jjqL6qCcTznc0t9S1EPZmWVxJ+2O9Pqr3V9hSqspMFlM0Bv0WHR8Ea4mX5XmTzswDZ82+BQmiwmuGleU9iqNy/cu417WPaQZ0pCcnYwZETMAAC8tfAkZpgxpWZPFBBeNixTUXUy6iColqyDbnA2BBKigwr2sezALZgBAljkLLwS8gKi7Udh2eRsm7ZuEGa/NQK3AWmhesTlMggl7ru2Bv4c/Lt+7jDI+ZdB1XVd0qd4F1UpVQ8fnO2LW4Vno82If3Ey9mXN8e77CzdSbWHpiKTLGZOBS0iUYLAakGdJQyqMUfvnvF5T3LS/t87+X/sXSE0sB5DSpndEm59hi0mKkIDnyTiTqBNWB3qBHoGcgNpzfgOdKPof159ZDp9WhQZkGmHpgKta9vQ530+4iy5yFQM9AbLm0BYGegahaqiqWRi1Fy9CW6PpbV9QNrouf3vwJQV5BSDemQ2/Qo6xPzsWGCXsnYHD9wfgu4jtMOzDt/vu25yv0q90PKqhAIOy5tgdtq7TN5T+CMcYYY+zpoaKn8QYwJtHr9fD19UVqaip8fHwe67aNFiN0k3VOl5/cYjK+2vPVA2/vgzofYNmJZQ+0rEalQeIXiei7oS82XdwEAHi/9vv46eRPhbatEO8QVPOvhgZlGiiCifwsf3M53vvrvQJtyxkalcbpHjyr+1fHucRzhb4PzzIeJoMxxhh7dIryHLe44Qwhe2Ap2SloUKYBwvuHIyEzARnGDFxPuY4yPmVQ2rM0ACDAMwBZpiy4aFygVWvxReMvoFapoVapoVKp7NZJRHlOX/LGEhAI15KvoUKJChBIgEWwQKfVwWA2INucDW+dN1RQ5WT1XJT3AQZ6BkrPxWBwdZfV6FS1E7RqraL8H2f/QKohFXWD6+LH13/EmYQz+OvCX9hyaQtmtpmJlqEt4eXqhSpzqgAA7gzPyQQujcrJeE1tORWjXx2NTRc2odPaTmhRsQV+f+d33Ei9gYolKsLPzU86VjEgHFxvMDZe2IiyPmUxpeUU3E27i6YVmqKcbzlpv7r93g2/n/0drUJbYd3b6+A/wx+/dP0Flf0q407aHfzf3v9DdHw0zONzMoEWwQKDxQCNSgOd1nEAn2HMgNc0L3Sp1gXr3l6HbHM2VCoV3LXu0Kg1UjnxXkWaQOj4a0eMfGUkGpVrBADQTdYhZngMWqxogQtJF5A4MhFzI+dizKtjoFVrkZKdghJuJeA/w1/KKG/rvQ1tV+dk2hqUaYDnSj0Hf3d/ZJmzUDe4LqYdmIa9/feivG95JGXmZIPFLPCWS1vQpnIbxGfEI8Q7BPey7sHXzRda9f2vNYPZAI1aA61aCyLCiO0jMOvwLJjGmRTlzsSfwWurXkOPmj0wpeUUuGndsPq/1dBpdej+R3eE9w9HoGcgPF084aJxwUebPnJYj4wxxhhjTxvOED7l+OpJwXy+/XN8f+h7AEDGmAx4uHjkWrba3GoY3WQ0+tXuJ02LSYtBmZllsLH7RrxZ7U0QEVqubAmTxYQD7x8AAKz+bzX6bOiDVV1WofeLvWG0GFFldhWkGlKR+mWqw22JgZZlfP4D1N9MvYkKP1RAnxf74Kc3f4LL1y44+fFJvBT0EoCc5q9n4s+gVulaTtcLEUE9SY3VXVaj14u9ci0XHReNFxe+6DA7Jg/m0wxp8NZ5O1yHyWKC62TXnGUmEN79812sOb0G5nFmRfD5KAgkIC49DsHewQVaxvY9CVschp19d6KEW4lC3kPGGGOMAXyO+zhxhpAVK746X+l5XsEgAJT2Kg03rZtiWoh3CID79yKqVCqElgjFhaQLUhkXtQsAwFXjKv21vbcwN/kFgwBQ3rc85rSbgxoBNaBVazG33VxULllZsY6CBINAznG8WfXNPINBAKhVuhYyxmQ4nCfP7OYWDAKAi8ZF8dpV44rG5Ro/8mAQyKmbggSD4jK2ZradWVi7xBhjjDFWpDggZMWKj875K0xBXkF2ASEAxH8ej5LuJaXXKqgUvYeKTRGdCe5E89rPw6Atg5wuP7j+YOn5oPrOL5eXjT02OlUuv0C6oEY0GoFUg+PM6ZOqaYWmRb0LjDHGGGOFggNCVqwUJAsV5Bnk8J67AM8AxWuVKqfnSVHnap1zpuN+xqyEWwnUDqqd67ZaVGzh9H49C65+elXKIhY0m8kYY4wxxgoPB4SsWDFZTPB08XQqCCnjUwaeLp75lutZs6di7EEx6JQ3oVSr1Hi98uu5rsNRRzrPslC/0KLeBcYYY4wxBg4IWTFTPaA6etTsgaWdluZbdnij4U41+2xVqZXD6fIMocFskO4pZIwxxhhj7EnBASErVl6v8jper5J7pk5OPizBg5Bn/QwWQ65DPgAAd/bLGGOMMcaKgvO9XjDGHphZMHOGkDHGGGOMPXE4IGTsEZE3GQXAASFjjDHGGHvicEDI2CNi21GMTpN7k1HGGGOMMcaKAt9DyNgjIs8QHv/fcVQtVbUI94YxxhhjjDF7HBAy9hi8HPxyUe8CY4wxxhhjdrjJKGOPSEHGFvR180VZn7KPcG8YY4wxxhizxxlCxh6BS0MuoYJvBafLh3iH4NawW49wjxhjjDHGGLPHASFjj0CVklWKehcYY4wxxhjLFzcZZYwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6Y4IGSMMcYYY4yxYooDQsYYY4wxxhgrpjgglLl+/To++OADhIaGwt3dHZUrV8aECRNgNBoV5VQqld1j4cKFijLR0dFo1qwZ3N3dUaZMGUyaNAlEpCgTHh6OunXrws3NDZUqVbJbB2OMMcYYY4w9SjwOocz58+chCAIWLVqEKlWq4PTp0/joo4+QkZGB7777TlF2+fLleP3116XXvr6+0nO9Xo/XXnsNLVq0wNGjR3Hx4kX0798fnp6eGDFiBADg2rVraN++PT766COsXr0aBw8exMCBAxEQEIC33nrr8RwwY4wxxhhjrFhTkW3aiinMmDEDCxYswNWrV6VpKpUKGzZsQOfOnR0us2DBAowePRpxcXHQ6XQAgOnTp2POnDm4ffs2VCoVRo0ahb///hvnzp2TlhswYABOnTqFQ4cOOb1/er0evr6+SE1NhY+Pz4MdJGOMMcYYY08QPsd9fLjJaD5SU1NRsmRJu+mDBw+Gv78/6tWrh4ULF0IQBGneoUOH0KxZMykYBIC2bdsiJiYG169fl8q0adNGsc62bdvi2LFjMJlMj+ZgGGOMMcYYY0yGm4zm4cqVK5gzZw6+//57xfSvv/4arVq1gru7O3bt2oURI0YgMTERX331FQAgNjYWFStWVCxTunRpaV5oaChiY2OlafIyZrMZiYmJCA4OdrhPBoMBBoNBeq3X6x/2MBljjDHGGGPFVLEICP/v//4PEydOzLPM0aNHERYWJr2OiYnB66+/jnfeeQcffvihoqwY+AFA7dq1AQCTJk1STFepVIplxJa58unOlLE1bdo0h8fCgSFjjDHGGHtWiOe2fHfbo1csAsLBgwejR48eeZaRZ/RiYmLQokULNGrUCIsXL853/Q0bNoRer0dcXBxKly6NoKAgxMbGKsrEx8cDuJ8pzK2MVqtFqVKlct3W6NGjMXz4cOn1nTt38MILL6BcuXL57idjjDHGGGNPk7S0NEXnjazwFYuA0N/fH/7+/k6VvXPnDlq0aIG6deti+fLlUKvzv83yxIkTcHNzQ4kSJQAAjRo1wpgxY2A0GuHq6goA2L59O0JCQqTAs1GjRti0aZNiPdu3b0dYWBhcXFxy3ZZOp1Pcm+jl5YVbt27B29s7z8xicabX61GuXDncunWLb0ouJFynhY/rtHBxfRY+rtPCxfVZ+LhOC1dR1ycRIS0tDSEhIY9928VNsQgInRUTE4PmzZujfPny+O6775CQkCDNCwoKAgBs2rQJsbGxaNSoEdzd3bFnzx6MHTsW//vf/6RA7d1338XEiRPRv39/jBkzBpcuXcLUqVMxfvx4KWgbMGAA5s6di+HDh+Ojjz7CoUOHsGzZMqxZs6ZA+6xWq1G2bNlCqoFnm4+PD/9AFDKu08LHdVq4uD4LH9dp4eL6LHxcp4WrKOuTM4OPBweEMtu3b8fly5dx+fJluyBLbL/s4uKC+fPnY/jw4RAEAZUqVcKkSZMwaNAgqayvry927NiBQYMGISwsDH5+fhg+fLiiqWdoaCi2bNmCYcOGYd68eQgJCcHs2bN5DELGGGOMMcbYY8PjELJnHo9jU/i4Tgsf12nh4vosfFynhYvrs/BxnRYurs/ig8chZM88nU6HCRMmKO69ZA+H67TwcZ0WLq7Pwsd1Wri4Pgsf12nh4vosPjhDyBhjjDHGGGPFFGcIGWOMMcYYY6yY4oCQMcYYY4wxxoopDggZY4wxxhhjrJjigJAxxhhjjDHGiikOCNkzY9q0aahXrx68vb0RGBiIzp0748KFC4oyRIT/+7//Q0hICNzd3dG8eXOcOXOmiPb46TJt2jSoVCoMHTpUmsb1WXB37txB7969UapUKXh4eKB27do4fvy4NJ/r1HlmsxlfffUVQkND4e7uLo0LKwiCVIbrM2/79u3DG2+8gZCQEKhUKmzcuFEx35n6MxgMGDJkCPz9/eHp6YlOnTrh9u3bj/Eonhx51afJZMKoUaNQq1YteHp6IiQkBH379kVMTIxiHVyfSvl9RuU+/vhjqFQq/PDDD4rpXKdKztTpuXPn0KlTJ/j6+sLb2xsNGzbEzZs3pflcp88WDgjZMyM8PByDBg3C4cOHsWPHDpjNZrRp0wYZGRlSmW+//RYzZ87E3LlzcfToUQQFBeG1115DWlpaEe75k+/o0aNYvHgxXnzxRcV0rs+CSU5ORuPGjeHi4oJ///0XZ8+exffff48SJUpIZbhOnffNN99g4cKFmDt3Ls6dO4dvv/0WM2bMwJw5c6QyXJ95y8jIwEsvvYS5c+c6nO9M/Q0dOhQbNmzA2rVrceDAAaSnp6Njx46wWCyP6zCeGHnVZ2ZmJqKiojBu3DhERUVh/fr1uHjxIjp16qQox/WplN9nVLRx40YcOXIEISEhdvO4TpXyq9MrV66gSZMmqFatGvbu3YtTp05h3LhxcHNzk8pwnT5jiLFnVHx8PAGg8PBwIiISBIGCgoJo+vTpUpns7Gzy9fWlhQsXFtVuPvHS0tLoueeeox07dlCzZs3os88+IyKuzwcxatQoatKkSa7zuU4LpkOHDvT+++8rpnXt2pV69+5NRFyfBQWANmzYIL12pv5SUlLIxcWF1q5dK5W5c+cOqdVq2rp162Pb9yeRbX06EhkZSQDoxo0bRMT1mZ/c6vT27dtUpkwZOn36NFWoUIFmzZolzeM6zZujOu3evbv0PeoI1+mzhzOE7JmVmpoKAChZsiQA4Nq1a4iNjUWbNm2kMjqdDs2aNUNERESR7OPTYNCgQejQoQNat26tmM71WXB///03wsLC8M477yAwMBB16tTBkiVLpPlcpwXTpEkT7Nq1CxcvXgQAnDp1CgcOHED79u0BcH0+LGfq7/jx4zCZTIoyISEhqFmzJtexE1JTU6FSqaRWAlyfBScIAvr06YORI0eiRo0advO5TgtGEAT8888/eP7559G2bVsEBgaiQYMGimalXKfPHg4I2TOJiDB8+HA0adIENWvWBADExsYCAEqXLq0oW7p0aWkeU1q7di2ioqIwbdo0u3lcnwV39epVLFiwAM899xy2bduGAQMG4NNPP8XKlSsBcJ0W1KhRo9CzZ09Uq1YNLi4uqFOnDoYOHYqePXsC4Pp8WM7UX2xsLFxdXeHn55drGeZYdnY2vvzyS7z77rvw8fEBwPX5IL755htotVp8+umnDudznRZMfHw80tPTMX36dLz++uvYvn07unTpgq5duyI8PBwA1+mzSFvUO8DYozB48GD8999/OHDggN08lUqleE1EdtMYcOvWLXz22WfYvn274r4BW1yfzhMEAWFhYZg6dSoAoE6dOjhz5gwWLFiAvn37SuW4Tp2zbt06rF69Gr/++itq1KiBkydPYujQoQgJCUG/fv2kclyfD+dB6o/rOG8mkwk9evSAIAiYP39+vuW5Ph07fvw4fvzxR0RFRRW4frhOHRM75XrzzTcxbNgwAEDt2rURERGBhQsXolmzZrkuy3X69OIMIXvmDBkyBH///Tf27NmDsmXLStODgoIAwO7qVXx8vN0VcJbzQxsfH4+6detCq9VCq9UiPDwcs2fPhlarleqM69N5wcHBeOGFFxTTqlevLvXcxp/Rghk5ciS+/PJL9OjRA7Vq1UKfPn0wbNgwKaPN9flwnKm/oKAgGI1GJCcn51qGKZlMJnTr1g3Xrl3Djh07pOwgwPVZUPv370d8fDzKly8v/U7duHEDI0aMQMWKFQFwnRaUv78/tFptvr9VXKfPFg4I2TODiDB48GCsX78eu3fvRmhoqGJ+aGgogoKCsGPHDmma0WhEeHg4Xnnllce9u0+8Vq1aITo6GidPnpQeYWFh6NWrF06ePIlKlSpxfRZQ48aN7YZCuXjxIipUqACAP6MFlZmZCbVa+TOm0WikK9xcnw/HmfqrW7cuXFxcFGXu3r2L06dPcx07IAaDly5dws6dO1GqVCnFfK7PgunTpw/+++8/xe9USEgIRo4ciW3btgHgOi0oV1dX1KtXL8/fKq7TZ1ARdWbDWKH75JNPyNfXl/bu3Ut3796VHpmZmVKZ6dOnk6+vL61fv56io6OpZ8+eFBwcTHq9vgj3/Okh72WUiOuzoCIjI0mr1dKUKVPo0qVL9Msvv5CHhwetXr1aKsN16rx+/fpRmTJlaPPmzXTt2jVav349+fv70xdffCGV4frMW1paGp04cYJOnDhBAGjmzJl04sQJqddLZ+pvwIABVLZsWdq5cydFRUVRy5Yt6aWXXiKz2VxUh1Vk8qpPk8lEnTp1orJly9LJkycVv1MGg0FaB9enUn6fUVu2vYwScZ3ayq9O169fTy4uLrR48WK6dOkSzZkzhzQaDe3fv19aB9fps4UDQvbMAODwsXz5cqmMIAg0YcIECgoKIp1OR02bNqXo6Oii2+mnjG1AyPVZcJs2baKaNWuSTqejatWq0eLFixXzuU6dp9fr6bPPPqPy5cuTm5sbVapUicaOHas4ueb6zNuePXscfm/269ePiJyrv6ysLBo8eDCVLFmS3N3dqWPHjnTz5s0iOJqil1d9Xrt2LdffqT179kjr4PpUyu8zastRQMh1quRMnS5btoyqVKlCbm5u9NJLL9HGjRsV6+A6fbaoiIgebQ6SMcYYY4wxxtiTiO8hZIwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6Y4IGSMMcYYY4yxYooDQsYYY4wxxhgrpjggZIwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6Y4IGSMMcYYY4yxYooDQsYYY4wxxhgrpjggZIwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6Y4IGSMMcYYY4yxYooDQsYYY4wxxhgrpjggZIwxxhhjjLFiigNCxhhjjDHGGCumOCBkjDHGGGOMsWKKA0LGGGOMMcYYK6b+Hy6NqYoIhWeVAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "px.SetMaxSinThetaOvLambda(0.3)\n", "px.quick_fit_profile(auto_background=True,plot=False, init_profile=True,verbose=True)\n", "px.quick_fit_profile(plot=False, init_profile=False, asym=True, displ_transl=True, verbose=False)\n", "\n", "# Plot in new figure\n", "px.plot(diff=True, fig=None, hkl=True)\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", " (px.rw * 100, px.chi2, px.chi2/px.GetNbPointUsed(), px.llk))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Find the spacegroup\n", "The SpaceGroupExplorer can be used to find the optimal spacegroup. \n", "\n", "What `RunAll()` does is try all spacegroups and settings which are compatible with the unit cell (in this case all monoclinic and triclinic), and perform a profile fit (Le Bail only, we don't refine profile parameters or background since these parameters should be OK).\n", "\n", "From this several values are extracted for each spacegroup setting:\n", "* **Rw** - the standard full-profile weighted R factor $R_{wp}$\n", "* **GoF**: the chi2 (full profile $\\chi^2=\\Sigma\\frac{(obs-calc)^2}{\\sigma^2}$) divided by the number of points used\n", "* **nGoF**: this is the Goodness-of-Fit, but computed on integration intervals defined by P1 reflections, and then multipled by the number of reflections used divided by the number of reflections for the P1 spacegroup. This is more discriminating and allows to put forward spacegroups which yield a good fit with more extinctions.\n", "* **reflections** is the number of reflections actually taken into account for this spacegroup up to the maximum sin(theta)/lambda\n", "* **extinct446** gives the number of extinct reflections for 0<=H<=4 0<=K<=4 0<=L<=6 (which is used internally as a unique fingerprint for the extinctions)\n", "\n", "Some C++ verbose output does not appear here but will be in the jupyter server log if you see it.\n", "\n", "The results are sorting by ascending **nGOF**\n", "\n", "Unfortunately in this case the correct spacegroup (Pcmn, or Pnma if the axis were exchanged) is only one among possible choices (P21cn has the same extinctions), so we'll select it but in a real case, the different possible spacegroups would need to be tested." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Beginning spacegroup exploration... 348 to go...\n", " (# 1) P 1 : Rwp= 9.99% GoF= 6.74 nGoF= 1.81 (158 reflections, 0 extinct)\n", " (# 2) P -1 : Rwp= 9.99% GoF= 6.74 nGoF= 1.81 (158 reflections, 0 extinct) [same extinctions as:P 1]\n", " (# 3) P 1 2 1 : Rwp= 10.36% GoF= 7.14 nGoF= 1.18 ( 95 reflections, 0 extinct)\n", " (# 3) P 1 1 2 : Rwp= 10.21% GoF= 6.93 nGoF= 1.11 ( 93 reflections, 0 extinct)\n", " (# 3) P 2 1 1 : Rwp= 10.49% GoF= 7.30 nGoF= 1.26 ( 98 reflections, 0 extinct)\n", " (# 4) P 1 21 1 : Rwp= 10.56% GoF= 7.40 nGoF= 1.16 ( 93 reflections, 2 extinct)\n", " (# 4) P 1 1 21 : Rwp= 10.26% GoF= 6.99 nGoF= 1.18 ( 90 reflections, 3 extinct)\n", " (# 4) P 21 1 1 : Rwp= 10.44% GoF= 7.22 nGoF= 1.21 ( 96 reflections, 2 extinct)\n", " (# 5) C 1 2 1 : Rwp= 67.10% GoF= 302.47 nGoF= 75.71 ( 47 reflections, 84 extinct)\n", " (# 5) A 1 2 1 : P 21 c n nGoF= 0.6932 GoF= 6.600 Rw=10.06 [ 48 reflections, extinct446= 27]\n", "P m c n nGoF= 0.6932 GoF= 6.600 Rw=10.06 [ 48 reflections, extinct446= 27]\n", "P 21 m n nGoF= 0.7580 GoF= 7.658 Rw=10.82 [ 56 reflections, extinct446= 12]\n", "P m 21 n nGoF= 0.7580 GoF= 7.658 Rw=10.82 [ 56 reflections, extinct446= 12]\n", "P m m n :1 nGoF= 0.7580 GoF= 7.658 Rw=10.82 [ 56 reflections, extinct446= 12]\n", "P m m n :2 nGoF= 0.7580 GoF= 7.658 Rw=10.82 [ 56 reflections, extinct446= 12]\n", "P 21 21 2 nGoF= 0.7761 GoF= 7.636 Rw=10.79 [ 60 reflections, extinct446= 4]\n", "P 21 21 21 nGoF= 0.7936 GoF= 6.667 Rw=10.09 [ 57 reflections, extinct446= 7]\n", "P 2 c m nGoF= 0.7952 GoF= 7.402 Rw=10.64 [ 56 reflections, extinct446= 15]\n", "P m c m nGoF= 0.7952 GoF= 7.402 Rw=10.64 [ 56 reflections, extinct446= 15]\n", "P m c 21 nGoF= 0.7952 GoF= 7.402 Rw=10.64 [ 56 reflections, extinct446= 15]\n", "P 21 2 2 nGoF= 0.7972 GoF= 7.379 Rw=10.60 [ 62 reflections, extinct446= 2]\n", "P 2 21 2 nGoF= 0.8149 GoF= 7.689 Rw=10.82 [ 62 reflections, extinct446= 2]\n", "P 21 2 21 nGoF= 0.8332 GoF= 7.464 Rw=10.67 [ 59 reflections, extinct446= 5]\n", "P 2 21 21 nGoF= 0.8337 GoF= 6.719 Rw=10.12 [ 59 reflections, extinct446= 5]\n", "P 2 2 2 nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", "P m m 2 nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", "P 2 m m nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", "P m 2 m nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", "P m m m nGoF= 0.8359 GoF= 7.424 Rw=10.63 [ 64 reflections, extinct446= 0]\n", "P 2 2 21 nGoF= 0.8737 GoF= 7.506 Rw=10.70 [ 61 reflections, extinct446= 3]\n", "P 1 1 n nGoF= 1.0025 GoF= 7.164 Rw=10.41 [ 81 reflections, extinct446= 12]\n", "P 1 1 2/n nGoF= 1.0025 GoF= 7.164 Rw=10.41 [ 81 reflections, extinct446= 12]\n", "P 1 1 21/n nGoF= 1.0394 GoF= 6.164 Rw= 9.66 [ 78 reflections, extinct446= 15]\n", "P 1 21/c 1 nGoF= 1.0680 GoF= 6.298 Rw= 9.78 [ 80 reflections, extinct446= 17]\n", "P 1 1 2 nGoF= 1.1058 GoF= 6.932 Rw=10.21 [ 93 reflections, extinct446= 0]\n", "P 1 1 m nGoF= 1.1058 GoF= 6.932 Rw=10.21 [ 93 reflections, extinct446= 0]\n", "P 1 1 2/m nGoF= 1.1058 GoF= 6.932 Rw=10.21 [ 93 reflections, extinct446= 0]\n", "P 1 c 1 nGoF= 1.1097 GoF= 7.088 Rw=10.36 [ 82 reflections, extinct446= 15]\n", "P 1 2/c 1 nGoF= 1.1097 GoF= 7.088 Rw=10.36 [ 82 reflections, extinct446= 15]\n", "P 1 21 1 nGoF= 1.1626 GoF= 7.403 Rw=10.56 [ 93 reflections, extinct446= 2]\n", "P 1 21/m 1 nGoF= 1.1626 GoF= 7.403 Rw=10.56 [ 93 reflections, extinct446= 2]\n", "P 1 1 21 nGoF= 1.1787 GoF= 6.993 Rw=10.26 [ 90 reflections, extinct446= 3]\n", "P 1 1 21/m nGoF= 1.1787 GoF= 6.993 Rw=10.26 [ 90 reflections, extinct446= 3]\n", "P 1 2 1 nGoF= 1.1799 GoF= 7.136 Rw=10.36 [ 95 reflections, extinct446= 0]\n", "P 1 m 1 nGoF= 1.1799 GoF= 7.136 Rw=10.36 [ 95 reflections, extinct446= 0]\n", "P 1 2/m 1 nGoF= 1.1799 GoF= 7.136 Rw=10.36 [ 95 reflections, extinct446= 0]\n", "P 21 1 1 nGoF= 1.2087 GoF= 7.218 Rw=10.44 [ 96 reflections, extinct446= 2]\n", "P 21/m 1 1 nGoF= 1.2087 GoF= 7.218 Rw=10.44 [ 96 reflections, extinct446= 2]\n", "P 2 1 1 nGoF= 1.2603 GoF= 7.300 Rw=10.49 [ 98 reflections, extinct446= 0]\n", "P m 1 1 nGoF= 1.2603 GoF= 7.300 Rw=10.49 [ 98 reflections, extinct446= 0]\n", "P 2/m 1 1 nGoF= 1.2603 GoF= 7.300 Rw=10.49 [ 98 reflections, extinct446= 0]\n", "P 1 nGoF= 1.8070 GoF= 6.738 Rw= 9.99 [158 reflections, extinct446= 0]\n", "P -1 nGoF= 1.8070 GoF= 6.738 Rw= 9.99 [158 reflections, extinct446= 0]\n", "Chosen spacegroup (smallest nGoF): P m c n\n", "Rwp= 84.49% GoF= 473.87 nGoF= 135.82 ( 49 reflections, 85 extinct)\n", " (# 5) I 1 2 1 : Rwp= 72.81% GoF= 344.19 nGoF= 96.53 ( 46 reflections, 87 extinct)\n", " (# 5) A 1 1 2 : Rwp= 84.33% GoF= 472.07 nGoF= 129.57 ( 47 reflections, 85 extinct)\n", " (# 5) B 1 1 2 : Rwp= 71.98% GoF= 336.58 nGoF= 90.94 ( 45 reflections, 85 extinct)\n", " (# 5) I 1 1 2 : Rwp= 72.52% GoF= 341.81 nGoF= 94.15 ( 45 reflections, 87 extinct)\n", " (# 5) B 2 1 1 : Rwp= 71.94% GoF= 335.24 nGoF= 95.03 ( 47 reflections, 85 extinct)\n", " (# 5) C 2 1 1 : Rwp= 67.25% GoF= 303.93 nGoF= 77.53 ( 48 reflections, 84 extinct)\n", " (# 5) I 2 1 1 : Rwp= 72.77% GoF= 343.85 nGoF= 100.61 ( 48 reflections, 87 extinct)\n", " (# 6) P 1 m 1 : Rwp= 10.36% GoF= 7.14 nGoF= 1.18 ( 95 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 6) P 1 1 m : Rwp= 10.21% GoF= 6.93 nGoF= 1.11 ( 93 reflections, 0 extinct) [same extinctions as:P 1 1 2]\n", " (# 6) P m 1 1 : Rwp= 10.49% GoF= 7.30 nGoF= 1.26 ( 98 reflections, 0 extinct) [same extinctions as:P 2 1 1]\n", " (# 7) P 1 c 1 : Rwp= 10.36% GoF= 7.09 nGoF= 1.11 ( 82 reflections, 15 extinct)\n", " (# 7) P 1 n 1 : Rwp= 38.30% GoF= 96.80 nGoF= 45.75 ( 80 reflections, 17 extinct)\n", " (# 7) P 1 a 1 : Rwp= 43.27% GoF= 123.51 nGoF= 51.72 ( 81 reflections, 14 extinct)\n", " (# 7) P 1 1 a : Rwp= 33.41% GoF= 73.81 nGoF= 27.88 ( 81 reflections, 10 extinct)\n", " (# 7) P 1 1 n : Rwp= 10.41% GoF= 7.16 nGoF= 1.00 ( 81 reflections, 12 extinct)\n", " (# 7) P 1 1 b : Rwp= 33.47% GoF= 74.07 nGoF= 27.89 ( 81 reflections, 10 extinct)\n", " (# 7) P b 1 1 : Rwp= 33.79% GoF= 75.16 nGoF= 25.79 ( 80 reflections, 14 extinct)\n", " (# 7) P n 1 1 : Rwp= 33.65% GoF= 74.54 nGoF= 32.91 ( 81 reflections, 17 extinct)\n", " (# 7) P c 1 1 : Rwp= 38.57% GoF= 97.83 nGoF= 39.17 ( 79 reflections, 15 extinct)\n", " (# 8) C 1 m 1 : Rwp= 67.10% GoF= 302.47 nGoF= 75.71 ( 47 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 8) A 1 m 1 : Rwp= 84.49% GoF= 473.87 nGoF= 135.82 ( 49 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 8) I 1 m 1 : Rwp= 72.81% GoF= 344.19 nGoF= 96.53 ( 46 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 8) A 1 1 m : Rwp= 84.33% GoF= 472.07 nGoF= 129.57 ( 47 reflections, 85 extinct) [same extinctions as:A 1 1 2]\n", " (# 8) B 1 1 m : Rwp= 71.98% GoF= 336.58 nGoF= 90.94 ( 45 reflections, 85 extinct) [same extinctions as:B 1 1 2]\n", " (# 8) I 1 1 m : Rwp= 72.52% GoF= 341.81 nGoF= 94.15 ( 45 reflections, 87 extinct) [same extinctions as:I 1 1 2]\n", " (# 8) B m 1 1 : Rwp= 71.94% GoF= 335.24 nGoF= 95.03 ( 47 reflections, 85 extinct) [same extinctions as:B 2 1 1]\n", " (# 8) C m 1 1 : Rwp= 67.25% GoF= 303.93 nGoF= 77.53 ( 48 reflections, 84 extinct) [same extinctions as:C 2 1 1]\n", " (# 8) I m 1 1 : Rwp= 72.77% GoF= 343.85 nGoF= 100.61 ( 48 reflections, 87 extinct) [same extinctions as:I 2 1 1]\n", " (# 9) C 1 c 1 : Rwp= 64.35% GoF= 277.20 nGoF= 62.41 ( 40 reflections, 93 extinct)\n", " (# 9) A 1 n 1 : Rwp= 85.15% GoF= 479.72 nGoF= 117.17 ( 41 reflections, 93 extinct)\n", " (# 9) I 1 a 1 : Rwp= 72.80% GoF= 342.99 nGoF= 83.92 ( 40 reflections, 93 extinct)\n", " (# 9) A 1 a 1 : Rwp= 85.15% GoF= 479.72 nGoF= 117.17 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 9) C 1 n 1 : Rwp= 64.35% GoF= 277.20 nGoF= 62.41 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 9) I 1 c 1 : Rwp= 72.80% GoF= 342.99 nGoF= 83.92 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 9) A 1 1 a : Rwp= 62.57% GoF= 259.13 nGoF= 63.23 ( 41 reflections, 91 extinct)\n", " (# 9) B 1 1 n : Rwp= 71.99% GoF= 335.75 nGoF= 78.85 ( 39 reflections, 91 extinct)\n", " (# 9) I 1 1 b : Rwp= 73.52% GoF= 350.18 nGoF= 83.75 ( 39 reflections, 91 extinct)\n", " (# 9) B 1 1 b : Rwp= 71.99% GoF= 335.75 nGoF= 78.85 ( 39 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", " (# 9) A 1 1 n : Rwp= 62.57% GoF= 259.13 nGoF= 63.23 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", " (# 9) I 1 1 a : Rwp= 73.52% GoF= 350.18 nGoF= 83.75 ( 39 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", " (# 9) B b 1 1 : Rwp= 73.59% GoF= 349.69 nGoF= 83.02 ( 39 reflections, 93 extinct)\n", " (# 9) C n 1 1 : Rwp= 72.53% GoF= 352.00 nGoF= 78.33 ( 39 reflections, 93 extinct)\n", " (# 9) I c 1 1 : Rwp= 74.34% GoF= 357.22 nGoF= 82.40 ( 38 reflections, 93 extinct)\n", " (# 9) C c 1 1 : Rwp= 72.53% GoF= 352.00 nGoF= 78.33 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", " (# 9) B n 1 1 : Rwp= 73.59% GoF= 349.69 nGoF= 83.02 ( 39 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", " (# 9) I b 1 1 : Rwp= 74.34% GoF= 357.22 nGoF= 82.40 ( 38 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", " (# 10) P 1 2/m 1 : Rwp= 10.36% GoF= 7.14 nGoF= 1.18 ( 95 reflections, 0 extinct) [same extinctions as:P 1 2 1]\n", " (# 10) P 1 1 2/m : Rwp= 10.21% GoF= 6.93 nGoF= 1.11 ( 93 reflections, 0 extinct) [same extinctions as:P 1 1 2]\n", " (# 10) P 2/m 1 1 : Rwp= 10.49% GoF= 7.30 nGoF= 1.26 ( 98 reflections, 0 extinct) [same extinctions as:P 2 1 1]\n", " (# 11) P 1 21/m 1 : Rwp= 10.56% GoF= 7.40 nGoF= 1.16 ( 93 reflections, 2 extinct) [same extinctions as:P 1 21 1]\n", " (# 11) P 1 1 21/m : Rwp= 10.26% GoF= 6.99 nGoF= 1.18 ( 90 reflections, 3 extinct) [same extinctions as:P 1 1 21]\n", " (# 11) P 21/m 1 1 : Rwp= 10.44% GoF= 7.22 nGoF= 1.21 ( 96 reflections, 2 extinct) [same extinctions as:P 21 1 1]\n", " (# 12) C 1 2/m 1 : Rwp= 67.10% GoF= 302.47 nGoF= 75.71 ( 47 reflections, 84 extinct) [same extinctions as:C 1 2 1]\n", " (# 12) A 1 2/m 1 : Rwp= 84.49% GoF= 473.87 nGoF= 135.82 ( 49 reflections, 85 extinct) [same extinctions as:A 1 2 1]\n", " (# 12) I 1 2/m 1 : Rwp= 72.81% GoF= 344.19 nGoF= 96.53 ( 46 reflections, 87 extinct) [same extinctions as:I 1 2 1]\n", " (# 12) A 1 1 2/m : Rwp= 84.33% GoF= 472.07 nGoF= 129.57 ( 47 reflections, 85 extinct) [same extinctions as:A 1 1 2]\n", " (# 12) B 1 1 2/m : Rwp= 71.98% GoF= 336.58 nGoF= 90.94 ( 45 reflections, 85 extinct) [same extinctions as:B 1 1 2]\n", " (# 12) I 1 1 2/m : Rwp= 72.52% GoF= 341.81 nGoF= 94.15 ( 45 reflections, 87 extinct) [same extinctions as:I 1 1 2]\n", " (# 12) B 2/m 1 1 : Rwp= 71.94% GoF= 335.24 nGoF= 95.03 ( 47 reflections, 85 extinct) [same extinctions as:B 2 1 1]\n", " (# 12) C 2/m 1 1 : Rwp= 67.25% GoF= 303.93 nGoF= 77.53 ( 48 reflections, 84 extinct) [same extinctions as:C 2 1 1]\n", " (# 12) I 2/m 1 1 : Rwp= 72.77% GoF= 343.85 nGoF= 100.61 ( 48 reflections, 87 extinct) [same extinctions as:I 2 1 1]\n", " (# 13) P 1 2/c 1 : Rwp= 10.36% GoF= 7.09 nGoF= 1.11 ( 82 reflections, 15 extinct) [same extinctions as:P 1 c 1]\n", " (# 13) P 1 2/n 1 : Rwp= 38.30% GoF= 96.80 nGoF= 45.75 ( 80 reflections, 17 extinct) [same extinctions as:P 1 n 1]\n", " (# 13) P 1 2/a 1 : Rwp= 43.27% GoF= 123.51 nGoF= 51.72 ( 81 reflections, 14 extinct) [same extinctions as:P 1 a 1]\n", " (# 13) P 1 1 2/a : Rwp= 33.41% GoF= 73.81 nGoF= 27.88 ( 81 reflections, 10 extinct) [same extinctions as:P 1 1 a]\n", " (# 13) P 1 1 2/n : Rwp= 10.41% GoF= 7.16 nGoF= 1.00 ( 81 reflections, 12 extinct) [same extinctions as:P 1 1 n]\n", " (# 13) P 1 1 2/b : Rwp= 33.47% GoF= 74.07 nGoF= 27.89 ( 81 reflections, 10 extinct) [same extinctions as:P 1 1 b]\n", " (# 13) P 2/b 1 1 : Rwp= 33.79% GoF= 75.16 nGoF= 25.79 ( 80 reflections, 14 extinct) [same extinctions as:P b 1 1]\n", " (# 13) P 2/n 1 1 : Rwp= 33.65% GoF= 74.54 nGoF= 32.91 ( 81 reflections, 17 extinct) [same extinctions as:P n 1 1]\n", " (# 13) P 2/c 1 1 : Rwp= 38.57% GoF= 97.83 nGoF= 39.17 ( 79 reflections, 15 extinct) [same extinctions as:P c 1 1]\n", " (# 14) P 1 21/c 1 : Rwp= 9.78% GoF= 6.30 nGoF= 1.07 ( 80 reflections, 17 extinct)\n", " (# 14) P 1 21/n 1 : Rwp= 38.20% GoF= 96.17 nGoF= 44.60 ( 78 reflections, 19 extinct)\n", " (# 14) P 1 21/a 1 : Rwp= 43.29% GoF= 123.52 nGoF= 50.45 ( 79 reflections, 16 extinct)\n", " (# 14) P 1 1 21/a : Rwp= 33.43% GoF= 73.76 nGoF= 26.93 ( 78 reflections, 13 extinct)\n", " (# 14) P 1 1 21/n : Rwp= 9.66% GoF= 6.16 nGoF= 1.04 ( 78 reflections, 15 extinct)\n", " (# 14) P 1 1 21/b : Rwp= 33.31% GoF= 73.23 nGoF= 26.90 ( 78 reflections, 13 extinct)\n", " (# 14) P 21/b 1 1 : Rwp= 40.44% GoF= 107.55 nGoF= 32.31 ( 78 reflections, 16 extinct)\n", " (# 14) P 21/n 1 1 : Rwp= 33.63% GoF= 74.37 nGoF= 32.07 ( 79 reflections, 19 extinct)\n", " (# 14) P 21/c 1 1 : Rwp= 44.04% GoF= 127.39 nGoF= 44.51 ( 77 reflections, 17 extinct)\n", " (# 15) C 1 2/c 1 : Rwp= 64.35% GoF= 277.20 nGoF= 62.41 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) A 1 2/n 1 : Rwp= 85.15% GoF= 479.72 nGoF= 117.17 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) I 1 2/a 1 : Rwp= 72.80% GoF= 342.99 nGoF= 83.92 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 15) A 1 2/a 1 : Rwp= 85.15% GoF= 479.72 nGoF= 117.17 ( 41 reflections, 93 extinct) [same extinctions as:A 1 n 1]\n", " (# 15) C 1 2/n 1 : Rwp= 64.35% GoF= 277.20 nGoF= 62.41 ( 40 reflections, 93 extinct) [same extinctions as:C 1 c 1]\n", " (# 15) I 1 2/c 1 : Rwp= 72.80% GoF= 342.99 nGoF= 83.92 ( 40 reflections, 93 extinct) [same extinctions as:I 1 a 1]\n", " (# 15) A 1 1 2/a : Rwp= 62.57% GoF= 259.13 nGoF= 63.23 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", " (# 15) B 1 1 2/n : Rwp= 71.99% GoF= 335.75 nGoF= 78.85 ( 39 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", " (# 15) I 1 1 2/b : Rwp= 73.52% GoF= 350.18 nGoF= 83.75 ( 39 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", " (# 15) B 1 1 2/b : Rwp= 71.99% GoF= 335.75 nGoF= 78.85 ( 39 reflections, 91 extinct) [same extinctions as:B 1 1 n]\n", " (# 15) A 1 1 2/n : Rwp= 62.57% GoF= 259.13 nGoF= 63.23 ( 41 reflections, 91 extinct) [same extinctions as:A 1 1 a]\n", " (# 15) I 1 1 2/a : Rwp= 73.52% GoF= 350.18 nGoF= 83.75 ( 39 reflections, 91 extinct) [same extinctions as:I 1 1 b]\n", " (# 15) B 2/b 1 1 : Rwp= 73.59% GoF= 349.69 nGoF= 83.02 ( 39 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", " (# 15) C 2/n 1 1 : Rwp= 72.53% GoF= 352.00 nGoF= 78.33 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", " (# 15) I 2/c 1 1 : Rwp= 74.34% GoF= 357.22 nGoF= 82.40 ( 38 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", " (# 15) C 2/c 1 1 : Rwp= 72.53% GoF= 352.00 nGoF= 78.33 ( 39 reflections, 93 extinct) [same extinctions as:C n 1 1]\n", " (# 15) B 2/n 1 1 : Rwp= 73.59% GoF= 349.69 nGoF= 83.02 ( 39 reflections, 93 extinct) [same extinctions as:B b 1 1]\n", " (# 15) I 2/b 1 1 : Rwp= 74.34% GoF= 357.22 nGoF= 82.40 ( 38 reflections, 93 extinct) [same extinctions as:I c 1 1]\n", " (# 16) P 2 2 2 : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct)\n", " (# 17) P 2 2 21 : Rwp= 10.70% GoF= 7.51 nGoF= 0.87 ( 61 reflections, 3 extinct)\n", " (# 17) P 21 2 2 : Rwp= 10.60% GoF= 7.38 nGoF= 0.80 ( 62 reflections, 2 extinct)\n", " (# 17) P 2 21 2 : Rwp= 10.82% GoF= 7.69 nGoF= 0.81 ( 62 reflections, 2 extinct)\n", " (# 18) P 21 21 2 : Rwp= 10.79% GoF= 7.64 nGoF= 0.78 ( 60 reflections, 4 extinct)\n", " (# 18) P 2 21 21 : Rwp= 10.12% GoF= 6.72 nGoF= 0.83 ( 59 reflections, 5 extinct)\n", " (# 18) P 21 2 21 : Rwp= 10.67% GoF= 7.46 nGoF= 0.83 ( 59 reflections, 5 extinct)\n", " (# 19) P 21 21 21 : Rwp= 10.09% GoF= 6.67 nGoF= 0.79 ( 57 reflections, 7 extinct)\n", " (# 20) C 2 2 21 : Rwp= 67.30% GoF= 302.54 nGoF= 46.86 ( 29 reflections, 87 extinct)\n", " (# 20) A 21 2 2 : Rwp= 84.49% GoF= 469.69 nGoF= 85.94 ( 31 reflections, 87 extinct)\n", " (# 20) B 2 21 2 : Rwp= 72.02% GoF= 334.54 nGoF= 58.65 ( 29 reflections, 87 extinct)\n", " (# 21) C 2 2 2 : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct)\n", " (# 21) A 2 2 2 : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct)\n", " (# 21) B 2 2 2 : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct)\n", " (# 22) F 2 2 2 : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct)\n", " (# 23) I 2 2 2 : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct)\n", " (# 24) I 21 21 21 : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 25) P m m 2 : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", " (# 25) P 2 m m : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", " (# 25) P m 2 m : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", " (# 26) P m c 21 : Rwp= 10.64% GoF= 7.40 nGoF= 0.80 ( 56 reflections, 15 extinct)\n", " (# 26) P c m 21 : Rwp= 38.62% GoF= 97.41 nGoF= 26.29 ( 53 reflections, 15 extinct)\n", " (# 26) P 21 m a : Rwp= 33.50% GoF= 73.51 nGoF= 19.69 ( 57 reflections, 10 extinct)\n", " (# 26) P 21 a m : Rwp= 43.46% GoF= 123.66 nGoF= 35.71 ( 56 reflections, 14 extinct)\n", " (# 26) P b 21 m : Rwp= 34.03% GoF= 75.69 nGoF= 17.62 ( 54 reflections, 14 extinct)\n", " (# 26) P m 21 b : Rwp= 33.56% GoF= 73.73 nGoF= 19.70 ( 57 reflections, 10 extinct)\n", " (# 27) P c c 2 : Rwp= 38.60% GoF= 97.05 nGoF= 23.82 ( 48 reflections, 27 extinct)\n", " (# 27) P 2 a a : Rwp= 50.20% GoF= 164.52 nGoF= 44.37 ( 51 reflections, 22 extinct)\n", " (# 27) P b 2 b : Rwp= 43.99% GoF= 126.10 nGoF= 29.74 ( 49 reflections, 22 extinct)\n", " (# 28) P m a 2 : Rwp= 43.46% GoF= 123.66 nGoF= 35.71 ( 56 reflections, 14 extinct) [same extinctions as:P 21 a m]\n", " (# 28) P b m 2 : Rwp= 34.03% GoF= 75.69 nGoF= 17.62 ( 54 reflections, 14 extinct) [same extinctions as:P b 21 m]\n", " (# 28) P 2 m b : Rwp= 33.56% GoF= 73.73 nGoF= 19.70 ( 57 reflections, 10 extinct) [same extinctions as:P m 21 b]\n", " (# 28) P 2 c m : Rwp= 10.64% GoF= 7.40 nGoF= 0.80 ( 56 reflections, 15 extinct) [same extinctions as:P m c 21]\n", " (# 28) P c 2 m : Rwp= 38.62% GoF= 97.41 nGoF= 26.29 ( 53 reflections, 15 extinct) [same extinctions as:P c m 21]\n", " (# 28) P m 2 a : Rwp= 33.50% GoF= 73.51 nGoF= 19.69 ( 57 reflections, 10 extinct) [same extinctions as:P 21 m a]\n", " (# 29) P c a 21 : Rwp= 62.23% GoF= 251.95 nGoF= 63.79 ( 45 reflections, 29 extinct)\n", " (# 29) P b c 21 : Rwp= 33.86% GoF= 74.62 nGoF= 15.07 ( 46 reflections, 29 extinct)\n", " (# 29) P 21 a b : Rwp= 50.22% GoF= 164.48 nGoF= 42.63 ( 49 reflections, 24 extinct)\n", " (# 29) P 21 c a : Rwp= 33.54% GoF= 73.37 nGoF= 17.03 ( 49 reflections, 25 extinct)\n", " (# 29) P c 21 b : Rwp= 46.81% GoF= 142.56 nGoF= 34.27 ( 46 reflections, 25 extinct)\n", " (# 29) P b 21 a : Rwp= 48.70% GoF= 154.51 nGoF= 32.54 ( 47 reflections, 24 extinct)\n", " (# 30) P n c 2 : Rwp= 33.90% GoF= 74.86 nGoF= 19.64 ( 48 reflections, 29 extinct)\n", " (# 30) P c n 2 : Rwp= 60.42% GoF= 237.67 nGoF= 62.88 ( 46 reflections, 29 extinct)\n", " (# 30) P 2 n a : Rwp= 46.62% GoF= 141.76 nGoF= 39.52 ( 49 reflections, 25 extinct)\n", " (# 30) P 2 a n : Rwp= 43.48% GoF= 123.34 nGoF= 31.89 ( 50 reflections, 24 extinct)\n", " (# 30) P b 2 n : Rwp= 41.11% GoF= 110.18 nGoF= 20.01 ( 48 reflections, 24 extinct)\n", " (# 30) P n 2 b : Rwp= 43.81% GoF= 125.04 nGoF= 32.12 ( 48 reflections, 25 extinct)\n", " (# 31) P m n 21 : Rwp= 38.36% GoF= 96.24 nGoF= 30.94 ( 54 reflections, 17 extinct)\n", " (# 31) P n m 21 : Rwp= 33.93% GoF= 75.18 nGoF= 21.71 ( 53 reflections, 17 extinct)\n", " (# 31) P 21 m n : Rwp= 10.82% GoF= 7.66 nGoF= 0.76 ( 56 reflections, 12 extinct)\n", " (# 31) P 21 n m : Rwp= 38.36% GoF= 96.24 nGoF= 30.94 ( 54 reflections, 17 extinct) [same extinctions as:P m n 21]\n", " (# 31) P n 21 m : Rwp= 33.93% GoF= 75.18 nGoF= 21.71 ( 53 reflections, 17 extinct) [same extinctions as:P n m 21]\n", " (# 31) P m 21 n : Rwp= 10.82% GoF= 7.66 nGoF= 0.76 ( 56 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", " (# 32) P b a 2 : Rwp= 54.80% GoF= 195.52 nGoF= 44.29 ( 46 reflections, 28 extinct)\n", " (# 32) P 2 c b : Rwp= 33.43% GoF= 72.83 nGoF= 17.02 ( 49 reflections, 25 extinct)\n", " (# 32) P c 2 a : Rwp= 51.01% GoF= 169.41 nGoF= 37.84 ( 46 reflections, 25 extinct)\n", " (# 33) P n a 21 : Rwp= 61.57% GoF= 246.67 nGoF= 65.58 ( 45 reflections, 31 extinct)\n", " (# 33) P b n 21 : Rwp= 51.86% GoF= 174.89 nGoF= 39.36 ( 44 reflections, 31 extinct)\n", " (# 33) P 21 n b : Rwp= 46.56% GoF= 141.24 nGoF= 37.89 ( 47 reflections, 27 extinct)\n", " (# 33) P 21 c n : Rwp= 10.06% GoF= 6.60 nGoF= 0.69 ( 48 reflections, 27 extinct)\n", " (# 33) P c 21 n : Rwp= 44.41% GoF= 128.33 nGoF= 25.93 ( 45 reflections, 27 extinct)\n", " (# 33) P n 21 a : Rwp= 43.80% GoF= 124.89 nGoF= 30.78 ( 46 reflections, 27 extinct)\n", " (# 34) P n n 2 : Rwp= 59.76% GoF= 232.47 nGoF= 65.08 ( 46 reflections, 31 extinct)\n", " (# 34) P 2 n n : Rwp= 38.25% GoF= 95.37 nGoF= 27.50 ( 48 reflections, 27 extinct)\n", " (# 34) P n 2 n : Rwp= 33.91% GoF= 74.93 nGoF= 19.25 ( 47 reflections, 27 extinct)\n", " (# 35) C m m 2 : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", " (# 35) A 2 m m : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", " (# 35) B m 2 m : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", " (# 36) C m c 21 : Rwp= 64.42% GoF= 276.89 nGoF= 42.22 ( 27 reflections, 93 extinct)\n", " (# 36) C c m 21 : Rwp= 72.59% GoF= 351.39 nGoF= 52.23 ( 26 reflections, 93 extinct)\n", " (# 36) A 21 m a : Rwp= 62.74% GoF= 258.86 nGoF= 44.91 ( 29 reflections, 91 extinct)\n", " (# 36) A 21 a m : Rwp= 85.15% GoF= 476.52 nGoF= 80.02 ( 28 reflections, 93 extinct)\n", " (# 36) B b 21 m : Rwp= 73.68% GoF= 349.64 nGoF= 55.38 ( 26 reflections, 93 extinct)\n", " (# 36) B m 21 b : Rwp= 72.03% GoF= 334.31 nGoF= 54.62 ( 27 reflections, 91 extinct)\n", " (# 37) C c c 2 : Rwp= 70.89% GoF= 334.73 nGoF= 47.38 ( 24 reflections, 99 extinct)\n", " (# 37) A 2 a a : Rwp= 73.84% GoF= 357.94 nGoF= 57.40 ( 26 reflections, 97 extinct)\n", " (# 37) B b 2 b : Rwp= 73.70% GoF= 349.37 nGoF= 51.13 ( 24 reflections, 97 extinct)\n", " (# 38) A m m 2 : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", " (# 38) B m m 2 : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", " (# 38) B 2 m m : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", " (# 38) C 2 m m : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", " (# 38) C m 2 m : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", " (# 38) A m 2 m : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", " (# 39) A b m 2 : Rwp= 84.55% GoF= 472.67 nGoF= 77.79 ( 28 reflections, 91 extinct)\n", " (# 39) B m a 2 : Rwp= 72.05% GoF= 334.62 nGoF= 56.66 ( 28 reflections, 91 extinct)\n", " (# 39) B 2 c m : Rwp= 72.05% GoF= 334.62 nGoF= 56.66 ( 28 reflections, 91 extinct) [same extinctions as:B m a 2]\n", " (# 39) C 2 m b : Rwp= 69.01% GoF= 318.13 nGoF= 49.97 ( 29 reflections, 88 extinct)\n", " (# 39) C m 2 a : Rwp= 69.01% GoF= 318.13 nGoF= 49.97 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", " (# 39) A c 2 m : Rwp= 84.55% GoF= 472.67 nGoF= 77.79 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", " (# 40) A m a 2 : Rwp= 85.15% GoF= 476.52 nGoF= 80.02 ( 28 reflections, 93 extinct) [same extinctions as:A 21 a m]\n", " (# 40) B b m 2 : Rwp= 73.68% GoF= 349.64 nGoF= 55.38 ( 26 reflections, 93 extinct) [same extinctions as:B b 21 m]\n", " (# 40) B 2 m b : Rwp= 72.03% GoF= 334.31 nGoF= 54.62 ( 27 reflections, 91 extinct) [same extinctions as:B m 21 b]\n", " (# 40) C 2 c m : Rwp= 64.42% GoF= 276.89 nGoF= 42.22 ( 27 reflections, 93 extinct) [same extinctions as:C m c 21]\n", " (# 40) C c 2 m : Rwp= 72.59% GoF= 351.39 nGoF= 52.23 ( 26 reflections, 93 extinct) [same extinctions as:C c m 21]\n", " (# 40) A m 2 a : Rwp= 62.74% GoF= 258.86 nGoF= 44.91 ( 29 reflections, 91 extinct) [same extinctions as:A 21 m a]\n", " (# 41) A b a 2 : Rwp= 85.30% GoF= 480.04 nGoF= 66.08 ( 23 reflections, 99 extinct)\n", " (# 41) B b a 2 : Rwp= 73.70% GoF= 349.24 nGoF= 49.01 ( 23 reflections, 99 extinct)\n", " (# 41) B 2 c b : Rwp= 72.10% GoF= 334.37 nGoF= 48.62 ( 24 reflections, 97 extinct)\n", " (# 41) C 2 c b : Rwp= 66.51% GoF= 294.64 nGoF= 40.16 ( 24 reflections, 97 extinct)\n", " (# 41) C c 2 a : Rwp= 73.55% GoF= 360.14 nGoF= 47.63 ( 23 reflections, 97 extinct)\n", " (# 41) A c 2 a : Rwp= 67.38% GoF= 299.66 nGoF= 41.31 ( 24 reflections, 97 extinct)\n", " (# 42) F m m 2 : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", " (# 42) F 2 m m : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", " (# 42) F m 2 m : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", " (# 43) F d d 2 : Rwp= 80.89% GoF= 444.51 nGoF= 29.02 ( 11 reflections, 137 extinct)\n", " (# 43) F 2 d d : Rwp= 81.61% GoF= 452.81 nGoF= 32.05 ( 12 reflections, 136 extinct)\n", " (# 43) F d 2 d : Rwp= 80.89% GoF= 432.90 nGoF= 31.66 ( 12 reflections, 136 extinct)\n", " (# 44) I m m 2 : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 44) I 2 m m : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 44) I m 2 m : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 45) I b a 2 : Rwp= 74.45% GoF= 356.58 nGoF= 49.93 ( 23 reflections, 99 extinct)\n", " (# 45) I 2 c b : Rwp= 73.79% GoF= 350.67 nGoF= 53.79 ( 25 reflections, 97 extinct)\n", " (# 45) I c 2 a : Rwp= 75.26% GoF= 364.34 nGoF= 51.07 ( 23 reflections, 97 extinct)\n", " (# 46) I m a 2 : Rwp= 72.84% GoF= 342.28 nGoF= 58.75 ( 28 reflections, 93 extinct)\n", " (# 46) I b m 2 : Rwp= 74.44% GoF= 357.02 nGoF= 56.43 ( 26 reflections, 93 extinct)\n", " (# 46) I 2 m b : Rwp= 73.80% GoF= 351.28 nGoF= 60.25 ( 28 reflections, 91 extinct)\n", " (# 46) I 2 c m : Rwp= 72.84% GoF= 342.28 nGoF= 58.75 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", " (# 46) I c 2 m : Rwp= 74.44% GoF= 357.02 nGoF= 56.43 ( 26 reflections, 93 extinct) [same extinctions as:I b m 2]\n", " (# 46) I m 2 a : Rwp= 73.80% GoF= 351.28 nGoF= 60.25 ( 28 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", " (# 47) P m m m : Rwp= 10.63% GoF= 7.42 nGoF= 0.84 ( 64 reflections, 0 extinct) [same extinctions as:P 2 2 2]\n", " (# 48) P n n n :1 : Rwp= 59.75% GoF= 231.94 nGoF= 59.42 ( 42 reflections, 39 extinct)\n", " (# 48) P n n n :2 : Rwp= 59.75% GoF= 231.94 nGoF= 59.42 ( 42 reflections, 39 extinct) [same extinctions as:P n n n :1]\n", " (# 49) P c c m : Rwp= 38.60% GoF= 97.05 nGoF= 23.82 ( 48 reflections, 27 extinct) [same extinctions as:P c c 2]\n", " (# 49) P m a a : Rwp= 50.20% GoF= 164.52 nGoF= 44.37 ( 51 reflections, 22 extinct) [same extinctions as:P 2 a a]\n", " (# 49) P b m b : Rwp= 43.99% GoF= 126.10 nGoF= 29.74 ( 49 reflections, 22 extinct) [same extinctions as:P b 2 b]\n", " (# 50) P b a n :1 : Rwp= 54.90% GoF= 195.82 nGoF= 40.57 ( 42 reflections, 36 extinct)\n", " (# 50) P b a n :2 : Rwp= 54.90% GoF= 195.82 nGoF= 40.57 ( 42 reflections, 36 extinct) [same extinctions as:P b a n :1]\n", " (# 50) P n c b :1 : Rwp= 43.82% GoF= 124.72 nGoF= 28.80 ( 43 reflections, 37 extinct)\n", " (# 50) P n c b :2 : Rwp= 43.82% GoF= 124.72 nGoF= 28.80 ( 43 reflections, 37 extinct) [same extinctions as:P n c b :1]\n", " (# 50) P c n a :1 : Rwp= 63.12% GoF= 258.66 nGoF= 61.32 ( 41 reflections, 37 extinct)\n", " (# 50) P c n a :2 : Rwp= 63.12% GoF= 258.66 nGoF= 61.32 ( 41 reflections, 37 extinct) [same extinctions as:P c n a :1]\n", " (# 51) P m m a : Rwp= 33.50% GoF= 73.51 nGoF= 19.69 ( 57 reflections, 10 extinct) [same extinctions as:P 21 m a]\n", " (# 51) P m m b : Rwp= 33.56% GoF= 73.73 nGoF= 19.70 ( 57 reflections, 10 extinct) [same extinctions as:P m 21 b]\n", " (# 51) P b m m : Rwp= 34.03% GoF= 75.69 nGoF= 17.62 ( 54 reflections, 14 extinct) [same extinctions as:P b 21 m]\n", " (# 51) P c m m : Rwp= 38.62% GoF= 97.41 nGoF= 26.29 ( 53 reflections, 15 extinct) [same extinctions as:P c m 21]\n", " (# 51) P m c m : Rwp= 10.64% GoF= 7.40 nGoF= 0.80 ( 56 reflections, 15 extinct) [same extinctions as:P m c 21]\n", " (# 51) P m a m : Rwp= 43.46% GoF= 123.66 nGoF= 35.71 ( 56 reflections, 14 extinct) [same extinctions as:P 21 a m]\n", " (# 52) P n n a : Rwp= 62.46% GoF= 253.26 nGoF= 62.77 ( 41 reflections, 39 extinct)\n", " (# 52) P n n b : Rwp= 62.46% GoF= 253.28 nGoF= 62.77 ( 41 reflections, 39 extinct)\n", " (# 52) P b n n : Rwp= 51.89% GoF= 174.71 nGoF= 35.81 ( 40 reflections, 39 extinct)\n", " (# 52) P c n n : Rwp= 60.41% GoF= 236.81 nGoF= 54.69 ( 40 reflections, 39 extinct)\n", " (# 52) P n c n : Rwp= 33.89% GoF= 74.60 nGoF= 17.18 ( 42 reflections, 39 extinct)\n", " (# 52) P n a n : Rwp= 61.56% GoF= 246.08 nGoF= 59.74 ( 41 reflections, 39 extinct)\n", " (# 53) P m n a : Rwp= 46.62% GoF= 141.76 nGoF= 39.52 ( 49 reflections, 25 extinct) [same extinctions as:P 2 n a]\n", " (# 53) P n m b : Rwp= 43.81% GoF= 125.04 nGoF= 32.12 ( 48 reflections, 25 extinct) [same extinctions as:P n 2 b]\n", " (# 53) P b m n : Rwp= 41.11% GoF= 110.18 nGoF= 20.01 ( 48 reflections, 24 extinct) [same extinctions as:P b 2 n]\n", " (# 53) P c n m : Rwp= 60.42% GoF= 237.67 nGoF= 62.88 ( 46 reflections, 29 extinct) [same extinctions as:P c n 2]\n", " (# 53) P n c m : Rwp= 33.90% GoF= 74.86 nGoF= 19.64 ( 48 reflections, 29 extinct) [same extinctions as:P n c 2]\n", " (# 53) P m a n : Rwp= 43.48% GoF= 123.34 nGoF= 31.89 ( 50 reflections, 24 extinct) [same extinctions as:P 2 a n]\n", " (# 54) P c c a : Rwp= 51.06% GoF= 169.27 nGoF= 33.83 ( 41 reflections, 37 extinct)\n", " (# 54) P c c b : Rwp= 46.82% GoF= 142.28 nGoF= 30.61 ( 41 reflections, 37 extinct)\n", " (# 54) P b a a : Rwp= 58.73% GoF= 223.98 nGoF= 47.33 ( 41 reflections, 36 extinct)\n", " (# 54) P c a a : Rwp= 64.66% GoF= 271.27 nGoF= 61.76 ( 40 reflections, 37 extinct)\n", " (# 54) P b c b : Rwp= 43.93% GoF= 125.21 nGoF= 24.98 ( 41 reflections, 37 extinct)\n", " (# 54) P b a b : Rwp= 58.86% GoF= 224.90 nGoF= 47.49 ( 41 reflections, 36 extinct)\n", " (# 55) P b a m : Rwp= 54.80% GoF= 195.52 nGoF= 44.29 ( 46 reflections, 28 extinct) [same extinctions as:P b a 2]\n", " (# 55) P m c b : Rwp= 33.43% GoF= 72.83 nGoF= 17.02 ( 49 reflections, 25 extinct) [same extinctions as:P 2 c b]\n", " (# 55) P c m a : Rwp= 51.01% GoF= 169.41 nGoF= 37.84 ( 46 reflections, 25 extinct) [same extinctions as:P c 2 a]\n", " (# 56) P c c n : Rwp= 44.59% GoF= 129.01 nGoF= 23.23 ( 40 reflections, 39 extinct)\n", " (# 56) P n a a : Rwp= 64.00% GoF= 265.79 nGoF= 62.90 ( 40 reflections, 39 extinct)\n", " (# 56) P b n b : Rwp= 56.43% GoF= 206.51 nGoF= 42.55 ( 39 reflections, 39 extinct)\n", " (# 57) P b c m : Rwp= 33.86% GoF= 74.62 nGoF= 15.07 ( 46 reflections, 29 extinct) [same extinctions as:P b c 21]\n", " (# 57) P c a m : Rwp= 62.23% GoF= 251.95 nGoF= 63.79 ( 45 reflections, 29 extinct) [same extinctions as:P c a 21]\n", " (# 57) P m c a : Rwp= 33.54% GoF= 73.37 nGoF= 17.03 ( 49 reflections, 25 extinct) [same extinctions as:P 21 c a]\n", " (# 57) P m a b : Rwp= 50.22% GoF= 164.48 nGoF= 42.63 ( 49 reflections, 24 extinct) [same extinctions as:P 21 a b]\n", " (# 57) P b m a : Rwp= 48.70% GoF= 154.51 nGoF= 32.54 ( 47 reflections, 24 extinct) [same extinctions as:P b 21 a]\n", " (# 57) P c m b : Rwp= 46.81% GoF= 142.56 nGoF= 34.27 ( 46 reflections, 25 extinct) [same extinctions as:P c 21 b]\n", " (# 58) P n n m : Rwp= 59.76% GoF= 232.47 nGoF= 65.08 ( 46 reflections, 31 extinct) [same extinctions as:P n n 2]\n", " (# 58) P m n n : Rwp= 38.25% GoF= 95.37 nGoF= 27.50 ( 48 reflections, 27 extinct) [same extinctions as:P 2 n n]\n", " (# 58) P n m n : Rwp= 33.91% GoF= 74.93 nGoF= 19.25 ( 47 reflections, 27 extinct) [same extinctions as:P n 2 n]\n", " (# 59) P m m n :1 : Rwp= 10.82% GoF= 7.66 nGoF= 0.76 ( 56 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", " (# 59) P m m n :2 : Rwp= 10.82% GoF= 7.66 nGoF= 0.76 ( 56 reflections, 12 extinct) [same extinctions as:P 21 m n]\n", " (# 59) P n m m :1 : Rwp= 33.93% GoF= 75.18 nGoF= 21.71 ( 53 reflections, 17 extinct) [same extinctions as:P n m 21]\n", " (# 59) P n m m :2 : Rwp= 33.93% GoF= 75.18 nGoF= 21.71 ( 53 reflections, 17 extinct) [same extinctions as:P n m 21]\n", " (# 59) P m n m :1 : Rwp= 38.36% GoF= 96.24 nGoF= 30.94 ( 54 reflections, 17 extinct) [same extinctions as:P m n 21]\n", " (# 59) P m n m :2 : Rwp= 38.36% GoF= 96.24 nGoF= 30.94 ( 54 reflections, 17 extinct) [same extinctions as:P m n 21]\n", " (# 60) P b c n : Rwp= 41.23% GoF= 110.30 nGoF= 16.90 ( 40 reflections, 39 extinct)\n", " (# 60) P c a n : Rwp= 62.26% GoF= 251.41 nGoF= 55.35 ( 39 reflections, 39 extinct)\n", " (# 60) P n c a : Rwp= 43.80% GoF= 124.58 nGoF= 27.46 ( 41 reflections, 39 extinct)\n", " (# 60) P n a b : Rwp= 64.00% GoF= 265.79 nGoF= 62.90 ( 40 reflections, 39 extinct)\n", " (# 60) P b n a : Rwp= 56.39% GoF= 206.20 nGoF= 42.51 ( 39 reflections, 39 extinct)\n", " (# 60) P c n b : Rwp= 63.12% GoF= 258.37 nGoF= 58.35 ( 39 reflections, 39 extinct)\n", " (# 61) P b c a : Rwp= 48.69% GoF= 153.78 nGoF= 27.12 ( 39 reflections, 39 extinct)\n", " (# 61) P c a b : Rwp= 64.71% GoF= 271.41 nGoF= 58.75 ( 38 reflections, 39 extinct)\n", " (# 62) P n m a : Rwp= 43.80% GoF= 124.89 nGoF= 30.78 ( 46 reflections, 27 extinct) [same extinctions as:P n 21 a]\n", " (# 62) P m n b : Rwp= 46.56% GoF= 141.24 nGoF= 37.89 ( 47 reflections, 27 extinct) [same extinctions as:P 21 n b]\n", " (# 62) P b n m : Rwp= 51.86% GoF= 174.89 nGoF= 39.36 ( 44 reflections, 31 extinct) [same extinctions as:P b n 21]\n", " (# 62) P c m n : Rwp= 44.41% GoF= 128.33 nGoF= 25.93 ( 45 reflections, 27 extinct) [same extinctions as:P c 21 n]\n", " (# 62) P m c n : Rwp= 10.06% GoF= 6.60 nGoF= 0.69 ( 48 reflections, 27 extinct) [same extinctions as:P 21 c n]\n", " (# 62) P n a m : Rwp= 61.57% GoF= 246.67 nGoF= 65.58 ( 45 reflections, 31 extinct) [same extinctions as:P n a 21]\n", " (# 63) C m c m : Rwp= 64.42% GoF= 276.89 nGoF= 42.22 ( 27 reflections, 93 extinct) [same extinctions as:C m c 21]\n", " (# 63) C c m m : Rwp= 72.59% GoF= 351.39 nGoF= 52.23 ( 26 reflections, 93 extinct) [same extinctions as:C c m 21]\n", " (# 63) A m m a : Rwp= 62.74% GoF= 258.86 nGoF= 44.91 ( 29 reflections, 91 extinct) [same extinctions as:A 21 m a]\n", " (# 63) A m a m : Rwp= 85.15% GoF= 476.52 nGoF= 80.02 ( 28 reflections, 93 extinct) [same extinctions as:A 21 a m]\n", " (# 63) B b m m : Rwp= 73.68% GoF= 349.64 nGoF= 55.38 ( 26 reflections, 93 extinct) [same extinctions as:B b 21 m]\n", " (# 63) B m m b : Rwp= 72.03% GoF= 334.31 nGoF= 54.62 ( 27 reflections, 91 extinct) [same extinctions as:B m 21 b]\n", " (# 64) C m c a : Rwp= 66.51% GoF= 294.64 nGoF= 40.16 ( 24 reflections, 97 extinct) [same extinctions as:C 2 c b]\n", " (# 64) C c m b : Rwp= 73.55% GoF= 360.14 nGoF= 47.63 ( 23 reflections, 97 extinct) [same extinctions as:C c 2 a]\n", " (# 64) A b m a : Rwp= 67.38% GoF= 299.66 nGoF= 41.31 ( 24 reflections, 97 extinct) [same extinctions as:A c 2 a]\n", " (# 64) A c a m : Rwp= 85.30% GoF= 480.04 nGoF= 66.08 ( 23 reflections, 99 extinct) [same extinctions as:A b a 2]\n", " (# 64) B b c m : Rwp= 73.70% GoF= 349.24 nGoF= 49.01 ( 23 reflections, 99 extinct) [same extinctions as:B b a 2]\n", " (# 64) B m a b : Rwp= 72.10% GoF= 334.37 nGoF= 48.62 ( 24 reflections, 97 extinct) [same extinctions as:B 2 c b]\n", " (# 65) C m m m : Rwp= 67.34% GoF= 303.40 nGoF= 51.69 ( 32 reflections, 84 extinct) [same extinctions as:C 2 2 2]\n", " (# 65) A m m m : Rwp= 84.49% GoF= 470.23 nGoF= 91.49 ( 33 reflections, 85 extinct) [same extinctions as:A 2 2 2]\n", " (# 65) B m m m : Rwp= 72.02% GoF= 334.95 nGoF= 62.69 ( 31 reflections, 85 extinct) [same extinctions as:B 2 2 2]\n", " (# 66) C c c m : Rwp= 70.89% GoF= 334.73 nGoF= 47.38 ( 24 reflections, 99 extinct) [same extinctions as:C c c 2]\n", " (# 66) A m a a : Rwp= 73.84% GoF= 357.94 nGoF= 57.40 ( 26 reflections, 97 extinct) [same extinctions as:A 2 a a]\n", " (# 66) B b m b : Rwp= 73.70% GoF= 349.37 nGoF= 51.13 ( 24 reflections, 97 extinct) [same extinctions as:B b 2 b]\n", " (# 67) C m m a : Rwp= 69.01% GoF= 318.13 nGoF= 49.97 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", " (# 67) C m m b : Rwp= 69.01% GoF= 318.13 nGoF= 49.97 ( 29 reflections, 88 extinct) [same extinctions as:C 2 m b]\n", " (# 67) A b m m : Rwp= 84.55% GoF= 472.67 nGoF= 77.79 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", " (# 67) A c m m : Rwp= 84.55% GoF= 472.67 nGoF= 77.79 ( 28 reflections, 91 extinct) [same extinctions as:A b m 2]\n", " (# 67) B m c m : Rwp= 72.05% GoF= 334.62 nGoF= 56.66 ( 28 reflections, 91 extinct) [same extinctions as:B m a 2]\n", " (# 67) B m a m : Rwp= 72.05% GoF= 334.62 nGoF= 56.66 ( 28 reflections, 91 extinct) [same extinctions as:B m a 2]\n", " (# 68) C c c a :1 : Rwp= 72.03% GoF= 344.97 nGoF= 42.78 ( 21 reflections, 103 extinct)\n", " (# 68) C c c a :2 : Rwp= 72.03% GoF= 344.97 nGoF= 42.78 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", " (# 68) C c c b :1 : Rwp= 72.03% GoF= 344.97 nGoF= 42.78 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", " (# 68) C c c b :2 : Rwp= 72.03% GoF= 344.97 nGoF= 42.78 ( 21 reflections, 103 extinct) [same extinctions as:C c c a :1]\n", " (# 68) A b a a :1 : Rwp= 75.75% GoF= 381.58 nGoF= 48.10 ( 21 reflections, 103 extinct)\n", " (# 68) A b a a :2 : Rwp= 75.75% GoF= 381.58 nGoF= 48.10 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", " (# 68) A c a a :1 : Rwp= 75.75% GoF= 381.58 nGoF= 48.10 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", " (# 68) A c a a :2 : Rwp= 75.75% GoF= 381.58 nGoF= 48.10 ( 21 reflections, 103 extinct) [same extinctions as:A b a a :1]\n", " (# 68) B b c b :1 : Rwp= 73.75% GoF= 349.28 nGoF= 44.79 ( 21 reflections, 103 extinct)\n", " (# 68) B b c b :2 : Rwp= 73.75% GoF= 349.28 nGoF= 44.79 ( 21 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", " (# 68) B b a b :1 : Rwp= 73.75% GoF= 349.28 nGoF= 44.79 ( 21 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", " (# 68) B b a b :2 : Rwp= 73.75% GoF= 349.28 nGoF= 44.79 ( 21 reflections, 103 extinct) [same extinctions as:B b c b :1]\n", " (# 69) F m m m : Rwp= 76.91% GoF= 392.21 nGoF= 37.80 ( 16 reflections, 127 extinct) [same extinctions as:F 2 2 2]\n", " (# 70) F d d d :1 : Rwp= 80.89% GoF= 444.51 nGoF= 29.02 ( 11 reflections, 139 extinct)\n", " (# 70) F d d d :2 : Rwp= 80.89% GoF= 444.51 nGoF= 29.02 ( 11 reflections, 139 extinct) [same extinctions as:F d d d :1]\n", " (# 71) I m m m : Rwp= 72.85% GoF= 342.91 nGoF= 65.06 ( 31 reflections, 87 extinct) [same extinctions as:I 2 2 2]\n", " (# 72) I b a m : Rwp= 74.45% GoF= 356.58 nGoF= 49.93 ( 23 reflections, 99 extinct) [same extinctions as:I b a 2]\n", " (# 72) I m c b : Rwp= 73.79% GoF= 350.67 nGoF= 53.79 ( 25 reflections, 97 extinct) [same extinctions as:I 2 c b]\n", " (# 72) I c m a : Rwp= 75.26% GoF= 364.34 nGoF= 51.07 ( 23 reflections, 97 extinct) [same extinctions as:I c 2 a]\n", " (# 73) I b c a : Rwp= 75.28% GoF= 363.96 nGoF= 44.43 ( 20 reflections, 103 extinct)\n", " (# 73) I c a b : Rwp= 75.28% GoF= 363.96 nGoF= 44.43 ( 20 reflections, 103 extinct) [same extinctions as:I b c a]\n", " (# 74) I m m a : Rwp= 73.80% GoF= 351.28 nGoF= 60.25 ( 28 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", " (# 74) I m m b : Rwp= 73.80% GoF= 351.28 nGoF= 60.25 ( 28 reflections, 91 extinct) [same extinctions as:I 2 m b]\n", " (# 74) I b m m : Rwp= 74.44% GoF= 357.02 nGoF= 56.43 ( 26 reflections, 93 extinct) [same extinctions as:I b m 2]\n", " (# 74) I c m m : Rwp= 74.44% GoF= 357.02 nGoF= 56.43 ( 26 reflections, 93 extinct) [same extinctions as:I b m 2]\n", " (# 74) I m c m : Rwp= 72.84% GoF= 342.28 nGoF= 58.75 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", " (# 74) I m a m : Rwp= 72.84% GoF= 342.28 nGoF= 58.75 ( 28 reflections, 93 extinct) [same extinctions as:I m a 2]\n", "Restoring best spacegroup: P 21 c n\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "41b2183e23d24bef8a796e9c46a28b2d", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQBUlEQVR4nOzdd3hTZfsH8G/2aJNOuqCUDWUje8iQoWxBX+QnUxEHCvoyRQHLy8tyMV8RURkFREFxgWwtUPa0yJA9W7rSJm2z8/z+COeYdJG0aZO29+e6erU9OTl5kpycPPdzP0PAGGMghBBCCCGEEFLlCL1dAEIIIYQQQggh3kEBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRFBASQgghhBBCSBVFASEhhBBCCCGEVFEUEBJCCCGEEEJIFUUBISGEEEIIIYRUURQQEkIIIYQQQkgVRQEhIYQQQgghhFRRYm8XgJQcYwxarRY6nQ4qlQoCgcDbRSKEEEIIIaTUGGPQ6XSIioqCUEg5rLJEAWEFptPpEBgY6O1iEEIIIYQQUibu3r2LGjVqeLsYlRoFhBWYSqXC3bt3ER0djbt370KtVnu7SIQQQgghhJSaVqtFdHQ0VCqVt4tS+TFSoWVnZzMALDs7mzHG2JIlS5hIJGJjxoxhjDEWEBDA1Go1UyqVbMSIEU731Wq1rF27dszPz48lJSXx23v37s1at27NGGOsW7durEuXLsxisbDff/+dTZkyxeWyjRo1iolEItatWzcWGhrKwsPD2b1799jNmzfZc88957RvcnIymzNnDv+YOp3O6XauHF26dGH/93//x6xWa5GP++qrrzLGGBszZgz/vFatWsXWrl1bbFmrV6/+2Of022+/sQ8++KDI26dNm8YCAgIKlJ8QQgghhLgufx2XlB3qkFsJtWzZEuvWreP/v3LlCu7evYstW7YgLy+P365QKPDrr7/i+eefd7r/nj17nP7/7bffIBKJ3C7Hhg0bIJPJ8Mcff6B///6IiYkpct+IiAjMnTu32OP99ttvOHToEBQKBY4ePVrkfqtXry5RWSMiIty+X34ffvghWrZsWerjEFLZnD17FgMGDMCQIUNw5MgRfvu4ceO8WCpCCCGEUJfRKiI4OBgKhQI3btxA06ZNAQCHDx/GggULcPnyZRw9ehTz58/Hhg0bkJycDLPZ7HT/tLQ0vPfee7h79y5SUlKwceNGAMCuXbswbdo03L17F3Xr1oXVakV8fDyaNWvmdH/GGCwWC+RyOR48eICDBw+ia9euCAsLw7fffosdO3bglVdeQcOGDfHgwYMC5T937hymTZuGM2fOIC8vD3q9HpMnT4ZGo0FkZCRMJhNsNhtEIhFu376N+/fvIzc3F6NGjUJkZCQCAwPRp08fjB07Fn/99ReuXr0KhUKBoUOH4sKFC2jRogUAez/1MWPGwGw2o2nTpli1ahWysrIwbNgwCIVCVK9eHdHR0QCAdevW4auvvoLVasV///tfPPXUUx5/3wipLCZNmoS1a9dCLBZj2rRpOHbsGCZPnowbN254u2iEEEJIlUYZwiriypUrMBgMaNSokdN2xhieeuopjBgxAps2bcLPP/+MkSNHIisry2m/BQsWoG/fvnjhhRewYcMGAIDNZsN//vMffPrpp2jdujX8/f2xaNEirF27lr+f1WpF9+7d8eOPPyIqKgohISEICAjAk08+iYMHD6JmzZo4cOAAFi9ejA4dOuDQoUPIzs5Gampqgedw5MgRGAwGXL16FVOnTsWRI0cgk8mQkJAArVaL/v37IzExETqdDrdu3cKFCxfwxhtvYOfOnfwMrBqNBnK5HFlZWYiJicHp06eRkJCAI0eOwGazYdGiRZg+fToOHToEk8mEhIQEfPnll3j++eexa9cuPouYnp6Ob775BgcPHsS+ffswf/58T75dhFQ6AoEA9erVQ61atbB161ZotVqMHz8eFovF20UjhBBCqjTKEFYBDRs2hEAgwLvvvgux2Pktb968OTIyMhAWFobmzZsDAKpXrw6r1eq03+XLl/H666/j0KFD/NS/6enpuHr1KqZNm4aMjAyo1Wr4+flBo9Hw9xOJRPjjjz8wduxYPHjwAIcOHYJcLsfRo0fRrVs3JCcno0WLFrhy5QoEAgG6d+8Og8GAe/fuoU6dOk5l2LVrFyIjIxEZGYkLFy7w2cSuXbvi5s2bYIxBIBDAz88P169fh1arRePGjQEA7dq1AwBkZ2fj9u3b6N69O27cuIF69eoBsHdZvXv3Lq5fv462bdsCANq2bYtr167h2rVrGD9+PH+cs2fP4saNG7h48SJ69OgBwJ5BJYQULSwsDLdu3UKtWrUAAHFxcdi4cSPi4+O9WzBCSKVls9lgMpm8XQxSBIlEUqIhScTzKCCsAq5cuVLk+DjHtQuLW8cwNjYWSUlJAOwXWKFQiNDQUMTGxmLOnDnYtWsXFi5ciOvXr4MxVugx/P39kZmZiRMnTiA8PBwJCQmYPHkyGGNo1KgRQkJC8NNPP6Fbt25o1apVkWUVi8XQaDTYtWsXJBIJDh48iCZNmiA1NRWMMeTm5qJu3bpQq9W4dOkSunTpglOnTqFnz54ICAhAmzZt8MMPP2D48OGYN2+e02PUq1cPJ0+exDPPPIOTJ09izJgx0Gg0OHv2LFq3bo1Tp05BJBKhTp06aN68OX799VcIBIICXWwJIc62bdtWYNvIkSMxcuRIL5SGEFLZmUwm3Lx5EzabzdtFIcUIDAxEREQEraXtZRQQVnE//PADDAYDjh8/joYNGxa538yZMzFw4ECcO3cOmzZtQpMmTTB69Gi8//77mDJlCjIzM3Hnzh385z//cbof12X00qVLaN68Ofr27QuJRILFixejWrVqEIlEuH//PmbMmIFx48ahR48eSEpKgsFgKDDN8NChQyGRSKDVajFq1Cjo9XpotVr069cPDRo0wM8//4yzZ89CpVKhVq1aaNq0KT777DN8//33/HqNQUFBCAoKQrdu3XDp0iVER0fjo48+4h9jxowZGDNmDObPn4+mTZuia9euaN68OYYNG4atW7ciKioKMTExCA0NxfDhw9GtWzeIRCI0a9YMy5cv99wbQwghhJASYYwhOTkZIpEI0dHRtKi5D2KMIS8vjx8iFBkZ6eUSVW0CVlQ6h1QIWq0WAQEByM7OhlqtxpdffomJEyfihRdecJpp1B19+vSBXC7Hzz//jOHDhyM5ORkHDhxwO60/evRoXL58GSdOnMDUqVNx9OhRfPfdd6hevXqJylWWHMtaGtOnT8fPP/+MM2fOQKlUeqh0hBBCCHGV2WzGtWvXEBUVhYCAAG8XhxQjIyMDqampaNCgQYF6Zv46Lik7FBBWcPRhIYQQQgj5h8FgwM2bN1GrVi0oFApvF4cUQ6/X49atW6hduzbkcrnTbVTHLT+UQyeEEOI1ffr08XYRCCGVFI1L8330HvkGGkNICCGkzA0bNqzANsYYP1kVIYQQQryDAkJCCCFl7uTJkzhw4AA/uUNqaiq+/PJLfukXQgghxfvjjz/Qo0cPaDQafrI8QjyBAkJCCCFlbtq0aVCpVAgNDQUAzJkzBxs2bMCSJUu8XDJCCCGkaqMxhIQQUoGcPXsWAwYMwJAhQ3DkyBF++7hx47xYqsebMGECHwwC4GeT6927t7eKRAghhBBUwYDw4MGDGDhwIKKioiAQCPDjjz863T527FgIBAKnnw4dOjjtYzQaMXHiRISGhsLPzw+DBg3CvXv3nPbRaDQYNWoUAgICEBAQgFGjRiErK8tpnzt37mDgwIHw8/NDaGgoJk2aBJPJVBZPm5ByY7FYvF2ESm3SpElYunQplixZgiVLluDTTz8FANy4ccPLJXOPRCIBYJ8enhBStkaMGOHtIhAXGY1GTJo0CWFhYZDL5ejSpQtOnjzptE9iYiJatGgBuVyO9u3bO43Fvn37NgYOHIigoCD4+fmhSZMm2LlzZ3k/DVLBVLkuo7m5uWjRogVeeuklPPfcc4Xu88wzz2Dt2rX8/1Kp1On2d955B7/88gu2bNmCkJAQTJkyBQMGDMDp06f5Vu8XX3wR9+7dw65duwAAr776KkaNGoVffvkFgH3B9v79+6NatWo4fPgwMjIyMGbMGDDGsGLFirJ46oSUmaSkJMyYMQNZWVkQi8Uwm80IDQ3FggUL0KxZM28Xr1IRCAT8uLutW7ciLi4O48ePr3CBOBcQUiMYIZ4zffr0AtsYY069CYhvmz59Or7//nusX78eMTEx+PDDD/H000/j2rVr/D7Tpk3DsmXLEBERgffeew+DBg3C33//DYlEgjfffBMmkwkHDx6En58fLl68CH9/fy8+I1IRVLmAsG/fvujbt2+x+8hkMkRERBR6W3Z2Nr766ivEx8ejV69eAICNGzciOjoa+/btw9NPP41Lly5h165dOHbsGNq3bw8AWLNmDTp27IgrV66gYcOG2LNnDy5evIi7d+8iKioKAPDJJ59g7NixmD9/Pq23QiqUCRMmYPPmzYiOjua33blzByNGjMChQ4e8WLLKJywsDLdu3UKtWrUAAHFxcdi4cSPi4+O9WzA3cQ1tKSkpXi4JIZXHpk2bsHnz5gLbf//9dy+Uxrfk5eXh8uXL5f64jRo1glKpdGnf3NxcrFq1CuvWrePrqmvWrMHevXvx1VdfoW3btgCADz74gO9uv379etSoUQPbt2/HsGHDcOfOHTz33HN8Y2ydOnXK4FmRyqbKBYSu+OOPPxAWFobAwEB069YN8+fPR1hYGADg9OnTMJvNTmtnRUVFoWnTpjhy5AiefvppHD16FAEBAXwwCAAdOnRAQEAAjhw5goYNG+Lo0aNo2rQpHwwCwNNPPw2j0YjTp0+jR48ehZbNaDTCaDTy/2u1Wk8/fULcZrVaERAQ4LRNrVbDarV6qUSV17Zt2wpsGzlyJEaOHOmF0pQclyH8z3/+g0GDBnm5NIRUDi+//DJiY2P5Ogtn9OjRXiqR77h8+TJat25d7o97+vRpPPHEEy7te/36dZjNZnTu3JnfJpFI0K5dO1y6dIkPCDt27MjfHhwcjIYNG+LSpUsA7MMK3njjDezZswe9evXCc889h+bNm3vwGZHKiALCfPr27Yt//etfiImJwc2bNzF79mw89dRTOH36NGQyGVJSUiCVShEUFOR0v/DwcL6lOyUlpcDFGLC37DvuEx4e7nR7UFAQpFJpsS3mCxcuxNy5c0v7NAnxqEWLFmHAgAGQSqVQq9XIzs6GxWLB4sWLvV004iPatWvn9D837tobLfaEVFbz5s0rdPukSZPKuSS+p1GjRjh9+rRXHtdVjDEABRdrZ4w9dgF37vZXXnkFTz/9NHbs2IE9e/Zg4cKF+OSTTzBx4kQ3S06qEgoI83nhhRf4v5s2bYo2bdogJiYGO3bswNChQ4u8X/4Pa2Ef3JLsk9/MmTMxefJk/n+tVuvUTY8Qb+jatSsOHjwIvV6PrKwsBAUFQS6Xe7tYxIfodDokJSVBLLZ/7cydOxdxcXGoW7eul0tGCKkKlEqly5k6b6lXrx6kUikOHz6MF198EYB94q1Tp07hnXfe4fc7duwYatasCcA+ieHff//tFHhGR0fj9ddfx+uvv46ZM2dizZo1FBCSYlFA+BiRkZGIiYnB1atXAQAREREwmUzQaDROWcLU1FR06tSJ3+fhw4cFjpWWlsZnBSMiInD8+HGn2zUaDcxmc4HMoSOZTAaZTFbq50VIWVAoFFAoFN4uRpWQmZmJzMxMBAcHIzg42NvFeawFCxZAp9Px102uy+iAAQO8WSxCCPEZfn5+eOONNzBt2jQEBwejZs2a+PDDD5GXl4dx48bh/PnzAOxd7UNCQhAeHo73338foaGhePbZZwHYJz7s27cvGjRoAI1GgwMHDiA2NtaLz4pUBFVu2Ql3ZWRk4O7du4iMjAQAtG7dGhKJBHv37uX3SU5OxoULF/iAsGPHjsjOzsaJEyf4fY4fP47s7GynfS5cuIDk5GR+nz179kAmk3mljzshpGLYv38/OnfujJdeeglz587FmDFj0KVLF+zfv9/bRSvWkCFDnBrRuEwhNzkOIaTs0LITFceiRYvw3HPPYdSoUXjiiSdw7do17N692+n6uWjRIrz99tto3bo1kpOT8fPPP/MTdVmtVrz55puIjY3FM888g4YNG+Kzzz7z1tMhFUSVyxDm5OQ4Td178+ZNnDt3jm9lj4uLw3PPPYfIyEjcunUL7733HkJDQzFkyBAAQEBAAMaNG4cpU6YgJCQEwcHBmDp1Kpo1a8bPOsp9CMePH4/Vq1cDsC87MWDAADRs2BAA0KdPHzRu3BijRo3CRx99hMzMTEydOhXjx4+nGUYJIUWaM2cOdu3aBZVKxW/TarXo27cvevbs6cWSucdmswEA9Hq9l0tCSOUxaNAgHD9+HCEhIahVqxaOHTsGqVTKj00jvk8ul2P58uVYvnx5gdu6d+/Ov5dF9a6gpctISVS5gPDUqVNOM3hy4/HGjBmDVatWISkpCRs2bEBWVhYiIyPRo0cPfPvtt06VryVLlkAsFmPYsGHQ6/Xo2bMn1q1bx69BCNinfp40aRI/G+mgQYOwcuVK/naRSIQdO3ZgwoQJ6Ny5MxQKBV588UV8/PHHZf0SEFJu+vTpgz179ni7GJWKUChEWlqa0zUpLS0NQmHF6vDBrZtoMBi8XBJCKo9du3bhl19+QV5eHl555RXEx8dDKpUWOwcCIYRUuYDQsXWlMLt3737sMeRyOVasWFFsK0xwcDA2btxY7HFq1qyJX3/99bGPR4ivGzZsWIFtjDEkJSV5oTSV2xdffIEpU6YgJSWFn4QqMjISX3zxhbeL5hYuIOR+E0JKLzIyEq1atUJYWBi+//579O/fHwCKXFuZEEKAKhgQEkI87+TJkzhw4IBTlooxhlGjRnmxVJVTbGwstm/f7u1ilBq3RqXZbPZySQipPIYMGYKQkBAA4BulTSYTWrRo4c1iEUJ8HAWEhJBSmzZtGlQqFUJDQ522v/XWW14qEfF1lCEkxPOWLl1aYJtUKsW2bdvKvzCEkAqDAkJCSKlNmDCh0O2O63oS4ogyhIQQQohvqFizEBBCCClUSkqKt4vgFsoQEkIIIb6BAkJCCKkERo8e7e0iuIUyhIR43t69e9G+fXt06tQJW7Zs4bdzy2IRQkhhqMsoIaTMpKSk0Ox2HtauXbsC2xhjuHr1qhdKU3KUISTE8z744APs3r0bUqkUs2bNQmJiIpYtW4YzZ854u2iEEB9GASEhpMyMHj2a1iH0MJ1Oh6SkJIjF9sv3gQMH0LNnT6f1VSsCLhCkDCEhnpOUlMSvfwwA6enpiI+PR05OjhdLRcpLXFwcfvzxR5w7d87bRSEVDAWEhJBSqyxZq4pgwYIF0Ol0CAoKAgB8//33ACreBD7UZZQQz5NIJNi8eTPq1avHb/v9998xYMAAL5aKEOLrKCAkhJRa/qwVp3fv3l4qUeU1ZMgQp/8jIyMBAFFRUd4oTolRl1FCPO+rr77i1yHk9OjRAzt37vRSiQghFQFNKkMIKTUua5XfrFmzvFCaqiU8PBwAkJyc7OWSuIcyhIR43pAhQ/jeA466devmhdKQkrDZbFi8eDHq1asHmUyGmjVrYv78+QCAGTNmoEGDBlAqlahTpw5mz5792Gvo119/jSZNmkAmkyEyMpLWByaFogwhIaTU8metOFQJKXtcVjYrK8u7BXETZQgJIaSgmTNnYs2aNViyZAm6dOmC5ORkXL58GQCgUqmwbt06REVFISkpCePHj4dKpcL06dMLPdaqVaswefJkLFq0CH379kV2djYSExPL8+mQCoICQkKIxy1btgy7d++mbkrlgAuobDabl0viHppUhpDyo9PpoFKpvF0M8hg6nQ7Lli3DypUrMWbMGABA3bp10aVLFwDOvW5q1aqFKVOm4Ntvvy0yIPzvf/+LKVOm4O233+a3tW3btgyfAamoKCAkhHjcO++84+0iVBkVteslV27KEBLiORs2bMBHH30EiUSCYcOG4d133wUADB48GAcOHPBy6bwsLw94lGkrV40aAUqlS7teunQJRqMRPXv2LPT2bdu2YenSpbh27RpycnJgsVigVqsL3Tc1NRUPHjwo8liEOKKAkBBSZiwWS4GJZohnVdSul5QhJMTzVq1ahTNnzkAikWD58uV4/vnnsWHDBjDGvF0077t8GWjduvwf9/Rp4IknXNpVoVAUeduxY8cwfPhwzJ07F08//TQCAgKwZcsWfPLJJ24fi5D8qKZGCPG4sLAwpKamIjU1tcLNflnRVNRMW0XNbBLiy4RCISQSCQBg0qRJaNy4Mfr27YvMzEwvl8wHNGpkD8688bguql+/PhQKBfbv349XXnnF6bbExETExMTg/fff57fdvn27yGOpVCrUqlUL+/fvr3Dr1JLyRwEhIcTjQkNDkZqaipSUFAoIy1hFzbRV1ECWEF/Wv39/3Lp1C7Vq1QIAXL9+HQsXLsR//vMf7xbMFyiVLmfqvEUul2PGjBmYPn06pFIpOnfujLS0NPz111+oV68e7ty5gy1btqBt27bYsWMHtm/fXuzx4uLi8PrrryMsLAx9+/aFTqdDYmIiJk6cWE7PiFQUFBASQjyOa6E2GAxeLknlV1EDK24SnIoWyBLiy9577z3+b61Wi9dffx39+/fHrl27vFgq4o7Zs2dDLBZjzpw5ePDgASIjI/H6669j3Lhx+Pe//4233noLRqMR/fv3x+zZsxEXF1fkscaMGQODwYAlS5Zg6tSpCA0NxfPPP19+T4ZUGBQQEkLKDFX2y15FHUNYUQNZQioK7rN1/PhxL5eEuEMoFOL999936hrK+fDDD/Hhhx86bXOcxC0uLq5AgPjaa6/htddeK4uikkqEFqYnhHicQCAAQAFhefDEWLwRI0Z4qjguowwhIWWLCwjT09O9XBJCiK+jDCEhpMyYTCZvF6HScydDWNhaVYwxHDlyxOPlehzKEBJStrjPGCGEPA4FhIQQj6MMYflxJyDctGkTNm/eXGD777//7vFyPQ5lCAkpW9TYQghxFQWEhJAyQ5X9sudOl9GXX34ZsbGxCAsLc9o+evToMilbcShDSEjZos8WIcRVFBASQjxOKLQPT6aAsOy5kyGcN29eodsnTZrk0TK5gjKEhJQt6jJKCHEVTSpDCPE46jJafipqpo0WpiekbFW0awIhxHsoICSElBmq7Je9irowPZchpEorIWWDPluEEFdRQEgI8biKGqRURJQhJIQUpqJdEwgh3kMBISHE47iKCC07UfbcGUO4d+9etG/fHp06dcKWLVv47f379y+z8hWFMoSElC0aQ0gIcRUFhIQQj+OyPpT9KXvuZNo++OAD7N69G/v27cOJEycwceJE2Gw25OXllXUxC7BarZBKpXSOEFJGqLGl6omLi0PLli3L9DHWrVuHwMDAMn0MUv4oICSEeBx1GS0/7mQIRSIRAgMDoVQq8emnn6J169YYPHgwcnJyyrqYBdhsNshkMqq0ElJG6LNFCHEVBYSEEI+jDGH5cWcMYcuWLXHr1i3+/7Fjx2Ly5MnQ6XRlVbwiWa1WyGQyMMaoaxshZcCVa0JCQgJ69eqFyZMnY8+ePWjVqhW6d++Oo0ePlkMJCSG+ggJCQojHUYaw/LjzWq9YsQK1atVy2tajRw9cvny5LIpWLC5DCFAmg5Cy4EpDy4wZM7B27Vq89NJLGDNmDH755Rf88MMPmDlzZjmUkBTGZrNh8eLFqFevHmQyGWrWrIn58+cDsL9fDRo0gFKpRJ06dTB79uzHXvu//vprNGnSBDKZDJGRkXjrrbeK3V+j0WD06NEICgqCUqlE3759cfXq1QL7/fjjj2jQoAHkcjl69+6Nu3fv8redP38ePXr0gEqlglqtRuvWrXHq1KkSvBqkvFBASAjxOMoQlp+KPMsoFxDSeUKI5zleExhjhe4jl8sRHR2NZs2aITY2FjVq1EBwcDBEIlF5FZPkM3PmTCxevBizZ8/GxYsXsXnzZoSHhwMAVCoV1q1bh4sXL2LZsmVYs2YNlixZUuSxVq1ahTfffBOvvvoqkpKS8PPPP6NevXrFPv7YsWNx6tQp/Pzzzzh69CgYY+jXr5/TdTovLw/z58/H+vXrkZiYCK1Wi+HDh/O3jxgxAjVq1MDJkydx+vRpvPvuu5BIJKV8ZUhZEnu7AISQyocyhOXHnTGEvsRms0GpVAKg84SQsuB4TTCbzZBKpQX2iYiIgNVqhUgkwoEDB/j7cbMAk/Kl0+mwbNkyrFy5EmPGjAEA1K1bF126dAEAzJo1i9+3Vq1amDJlCr799ltMnz690OP997//xZQpU/D222/z29q2bVvk41+9ehU///wzEhMT0alTJwDApk2bEB0djR9//BH/+te/ANjPp5UrV6J9+/YAgPXr1yM2NhYnTpxAu3btcOfOHUybNg2NGjUCANSvX7+kLwkpJ1UuQ3jw4EEMHDgQUVFREAgE+PHHH51uZ4whLi4OUVFRUCgU6N69O/766y+nfYxGIyZOnIjQ0FD4+flh0KBBuHfvntM+Go0Go0aNQkBAAAICAjBq1ChkZWU57XPnzh0MHDgQfn5+CA0NxaRJk2iaflIpcBV8Xz6fR4wY4e0ieIS7wbfRaMSZM2ewb98+nDlzxmvvkWOGsKIFs4RUBPkDwsJs2bKlQDZQLBZj7969ZVo2UrhLly7BaDSiZ8+ehd6+bds2dOnSBREREfD398fs2bNx586dQvdNTU3FgwcPijzW66+/Dn9/f/6He3yxWMwHegAQEhKChg0b4tKlS/w2sViMNm3a8P83atQIgYGB/D6TJ0/GK6+8gl69emHRokW4fv26ey8EKXdVLkOYm5uLFi1a4KWXXsJzzz1X4PYPP/wQn376KdatW4cGDRrgv//9L3r37o0rV65ApVIBAN555x388ssv2LJlC0JCQjBlyhQMGDAAp0+f5i+sL774Iu7du4ddu3YBAF599VWMGjUKv/zyCwB7Zah///6oVq0aDh8+jIyMDIwZMwaMMaxYsaKcXg1CyoYvZQgLazlljOHIkSNeKI3nudNlND4+HqtWrULbtm2hVqtx69YtfPPNN1i+fDkmTJhQ1kV14jiG0BfOE0IqG8cxhCaTCX5+fi7fVyyunNXDN359A/d198vt8aqrqmPVgFUu769QKIq87dixYxg+fDjmzp2Lp59+GgEBAdiyZQs++eQTt48FAP/5z38wdepUp21FdS1mjEEgEDhty/+/47a4uDi8+OKL2LFjB3777Td88MEH2LJlC4YMGVJsmYgXsSoMANu+fTv/v81mYxEREWzRokX8NoPBwAICAtjnn3/OGGMsKyuLSSQStmXLFn6f+/fvM6FQyHbt2sUYY+zixYsMADt27Bi/z9GjRxkAdvnyZcYYYzt37mRCoZDdv3+f3+ebb75hMpmMZWdnu/wcsrOzGQC37kNIWROLxQwAGzdunLeLwqKiotgff/xR4Kd169beLppH9O7dmwFgMTExj923c+fOzGq18v8vXLiQAWCNGjUqwxIWrlq1aqxr164MALt9+3a5Pz4hld13333HADAA7OHDh94uTrnS6/Xs4sWLTK/Xe7sobtHr9UyhULA1a9YUuO3jjz9mderUcdo2btw4FhAQwP//wQcfsBYtWvD/16pVi73//vsuP/7ff//NALDExER+W3p6OlMoFGzr1q2MMcbWrl3LALDjx4/z+1y+fLnANkfDhw9nAwcOLPS24t4rquOWnyrXZbQ4N2/eREpKCvr06cNvk8lk6NatG59NOH36NMxms9M+UVFRaNq0Kb/P0aNHERAQ4JRy79ChAwICApz2adq0KaKiovh9nn76aRiNRpw+fbpMnychZYkx5lMZwpdffhmxsbHo1q2b08/o0aO9XTSPcGdheoVCgYSEBP5/rteDUFj+XwWUISSkbLnSZZT4FrlcjhkzZmD69OnYsGEDrl+/jmPHjuGrr75CvXr1cOfOHWzZsgXXr1/H8uXLsX379mKPFxcXh08++QTLly/H1atXcebMmWJ7odWvXx+DBw/G+PHjcfjwYZw/fx4jR45E9erVMXjwYH4/iUSCiRMn4vjx4zhz5gxeeukldOjQAe3atYNer8dbb72FP/74A7dv30ZiYiJOnjyJ2NhYj71OxPMoIHSQkpICAPxsTpzw8HD+tpSUFEilUgQFBRW7T1hYWIHjh4WFOe2T/3GCgoIglUr5fQpjNBqh1WqdfgjxJY7dlHyhEjJv3rxCP4+TJk3yQmk8z51JZeLj4/HTTz+hc+fO6NChA5YvXw7AO+MpaQwhIWXL8XNV1FjhvXv3on379ujUqRO2bNnCb+/fv3+Zl48Ubvbs2ZgyZQrmzJmD2NhYvPDCC0hNTcXgwYPx73//G2+99RZatmyJI0eOYPbs2cUea8yYMVi6dCk+++wzNGnSBAMGDCh0CQlHa9euRevWrTFgwAB07NgRjDHs3LnTaZZQpVKJGTNm4MUXX0THjh2hUCj480ckEiEjIwOjR49GgwYNMGzYMPTt2xdz584t/YtDykzl7CReSvn7RbNC+k7nl3+fwvYvyT75LVy4kD5UxKc5BoG+EBBWdu6MIYyIiMDSpUv5/7///ns8//zzZVW0YlGGkJCy5Urj3AcffIDdu3dDKpVi1qxZSExMxLJly5CXl1dexST5CIVCvP/++3j//fcL3Pbhhx/iww8/dNr2zjvv8H/HxcUhLi7O6fbXXnsNr732msuPHxQUhA0bNhR5+9ixYzF27FgAwNChQwvcLpVK8c0337j8eMQ3UIbQQUREBAAUyNClpqby2byIiAiYTCZoNJpi93n48GGB46elpTntk/9xNBoNzGZzgcyho5kzZyI7O5v/cVwIlBBfQN2UyldpuudyU8vrdDqPlsnVx6YMISFlx5VrsUgkQmBgIJRKJT799FO0bt0agwcPRk5OTnkVkxDiAyggdFC7dm1EREQ4TbdsMpmQkJDAr8fSunVrSCQSp32Sk5Nx4cIFfp+OHTsiOzsbJ06c4Pc5fvw4srOznfa5cOECkpOT+X327NkDmUyG1q1bF1lGmUwGtVrt9EOIL3GsePjyshOVRWkWpufuk5ub69EyuYIWpiekbLkSELZs2RK3bt3i/x87diwmT57slUYiQoj3VLkuozk5Obh27Rr//82bN3Hu3DkEBwejZs2aeOedd7BgwQLUr18f9evXx4IFC6BUKvHiiy8CAAICAjBu3DhMmTIFISEhCA4OxtSpU9GsWTP06tULABAbG4tnnnkG48ePx+rVqwHYl50YMGAAGjZsCADo06cPGjdujFGjRuGjjz5CZmYmpk6divHjx1OQRyo0rhIik8l8uqLfp08f7Nmzx9vFKDWLxQKBQFCqgNAbi1BTl1FCypYrYwgLm2CkR48euHz5cpmVixDie6pcQHjq1Cn06NGD/3/y5MkA7ANv161bh+nTp0Ov12PChAnQaDRo37499uzZw8/GBwBLliyBWCzGsGHDoNfr0bNnT6xbt85pcddNmzZh0qRJ/GykgwYNwsqVK/nbRSIRduzYgQkTJqBz585QKBR48cUX8fHHH5f1S0BImeIq90ql0icq+sOGDSuwjTGGpKQkL5TG86xWK+RyOfR6vUvjnR1x7483AsLKOKmMxWKptOu3kYrH1yb4IoT4rir3zdW9e/ciF94E7BO9FDYo15FcLseKFSuKnbo3ODgYGzduLLYsNWvWxK+//vrYMhNSkXCVe4VC4ROVkJMnT+LAgQNOSyswxjBq1CgvlspzLBYLZDIZ9Ho9bDabU8OUK/cFnCuO5aWyZAiTkpIwY8YMZGVlQSwWw2w2IzQ0FAsWLECzZs28XTxShdF4bkKIq6pcQEgIKVtcxcNXAsJp06ZBpVIhNDTUaftbb73lpRJ5FpchBOwVwJIEhOU91pMxVmkmlZkwYQI2b96M6OhoftudO3cwYsQIHDp0yIslI1WdK11Gi5KSksJPtFeRFZcAIL6B3iPfQJPKEEI8iquE+EqX0QkTJhQIBgHghRde8EJpPM9isfABobuvtzcDQgCVIkNotVoREBDgtE2tVnsl60qIo9JkCEePHu3p4pQrrmGMJjbzfdwSJ47rHJLyRxlCQohHOQaENHV52bNYLFAqlfzf7uAqieVdaeKCpcqQIVy0aBEGDBgAqVQKtVqN7OxsWCwWLF682NtFI1Wc1WqFRCKB2WwuMiBs165dgW2MsccuXu7rxGIxlEol0tLSIJFInIYMEN/AGENeXh5SU1MRGBjoVu8W4nkUEBJCPMpxUpnMzEwvl6byy99l1B3eyhByk9hUhgxh165dcfDgQej1emRlZSEoKIh/PwjxJovFwnfdL+ozrtPpkJSUVGAypN69e5dHEcuMQCBAZGQkbt68idu3b3u7OKQYgYGBlaJ7ckVHASEhxKN8bVKZolSWMTKOXUYrSkBYmTKEHIVCAYVC4e1iEMLjAkKtVlvktXjBggXQ6XQICgpy2j5r1qzyKGKZkkqlqF+/PnUb9WESiYQygz6CAkJCiEf52rITRRk9enSlWIfQMUPo7uvtrS6jlSlDSIivslqtfCNFUZ+xIUOGFLq9W7duZVau8iQUCiljT4gLKCAkhHiUr2UIK+sYGQ637AT3t7v3BbyfIfSF86S0MjMzkZmZieDgYAQHB3u7OISUasIpQkjVQgEhIcSjfC1DWFnHyHAq8hhCiUQCgUBQobuM7t+/H3PmzEFoaCjUajWysrKg0Wgwd+5c9OzZ09vFI1WYxWKBWCyGRCKhbpOEkGJRQEgI8ZizZ8/ivffeAwBoNBo+IBw3bhy++uorr5SpMo+RASrmshNchlAoFPKzIFZUc+bMwa5du6BSqfhtWq0Wffv2pYCQeJVjQFiSz9iDBw8QFRVVBiUjhPgaCggJIR4zadIkjBs3DidOnMCff/4JvV4PALhx44bXypR/jMyOHTvQpEmTSjNGpjQZQm+PIRSJRJBIJBU6QygUCpGWluYUEKalpdE098TrrFarywHhzp07nf5njCEuLg5z585Fv379yrKYhBAfQAEhIcRjBAIBwsLCAACjRo3C+++/j1deecWnKvwDBgwA8M/i6BVdRZ5lVCgUQiwWV+gM4RdffIEpU6YgJSUFjDF+uvsvvvjC20UjVRyXIZRKpY/9jI8dOxZt2rRBhw4d+GtjVlYWTp06RQEhIVUABYSEEI8JCwvD/fv3AQD+/v4AgC5dumDjxo3eLFalxRiDzWarsF1GueyFLzUYuCs2Nhbbt2/3djEIKcBisUAkEkEqlcJoNBa7782bN7F8+XIkJSVh4sSJ6NixI44fP445c+aUU2kJId5EfVoIIR6zbds2foZFLiAcOnQoDAaDN4tVaZV2PT9vBYTc44rF4gqfIczvwYMHuHDhgreLQQifIaxRowbu3LlT7L5+fn6YOXMmVq9ejf3792PYsGHIysoqn4ISQryOMoSEEI/iKvdcQGgwGKBWq71ZJF5l6SbK4QLCijaGkCsnN4awMgWEDRs2RE5OTqU710jFw40hbNCgAa5cueLSfVQqFWbNmoX169cjNze3jEtICPEVlCEkhHgUV9nnAsLHdVUqT5Up8AD+ea0rWpfR/BnCitxlNL+cnBwA9uVOCPEmLkPYsGFDXLlyxeVGiqysLIwdO5afMZoQUvlRQEgI8Siucq/RaADAp7qLOgY+3EyXFVn+gLCkXUbLO1DOP4awIgfqGzZsQLNmzfDEE09g0aJF/PbBgwd7sVTl5+zZsxgwYACGDBmCI0eO8NvHjRvnxVIR4J8xhA0bNoRGo0FGRoZL90tNTQWAAmu3EpJfQkICevXqhcmTJ2PPnj1o1aoVunfvjqNHj3q7aMRN9GknhHjM/v37sXjxYggEAn4imRdeeAEfffSRT6zJ5pitNBqNUCgUXixN6Xmyyyg3Q2Z5cMwQVvRJZVatWoUzZ85AIpFg+fLl/Paq0mV00qRJWLt2LcRiMaZNm4Zjx45h8uTJXl1qhthxGcIGDRoAAP7++2+EhoY+9n60iD1x1YwZM7B161ZkZWWhT58+OHnyJJRKJYYOHYo//vjD28UjbqAMISHEY+bMmYNXX30VCoWCz5Z88sknPjNTnWNA6EuZy5LyVJdRxhgfXJYHxzGEFX1SGaFQCIlEAsAeHHHS0tK8VaRyJRAIUK9ePdSqVQtbt26FVqvF+PHjK3SQX1lwYwi5pYAyMzNduh8XEDLG0KdPnzIrH6n45HI5oqOj0axZM8TGxqJGjRoIDg6GSCTydtGImyhDSAjxGKFQiKysLIjFYj5Iefjwoc8s0p0/Q1jReWqWUcBeCSyvLmIVLUM4YsQIbNq0qdDb+vfvj1u3bqFWrVpO27lKeGUXFhbm9Pzj4uKwceNGxMfHe7dghM8QcteH4q55w4YN4//mupbqdDokJSWVbSFJhRYREQGr1QqRSIQDBw4AsJ93lWFIRlVDASEhxGO++OILPP/888jLy8Pw4cMBACtXrsSaNWu8XDI7x65Q3g4IucpaaY8BgO/6WpKAkJvUxWQyQalUlqo8rnIcQ+hLGcLp06cX2MYYcxobl19RE2/4yjlf1rZt21Zg28iRIzFy5EgvlIY44sYQco1zxfWKOHnyJA4cOAChUIgTJ07gwIEDUCgUqFevXnkVl1RAW7Zs4f/mGs7EYjH27t3rxVKRkqCAkBDiMbGxsRg+fDj+97//4bfffkNkZCTeffddxMbGertoALyfIUxKSsKMGTP4LKrZbEZoaCgWLFiAZs2auX08LpDiAkJ3Ayuz2QyFQgGdTleu44byzzJant1Vi7Np0yZs3ry5wPbff//d7WNptVpPFImQEnMnQzht2jSoVCqEhobi2rVrAOxdut96661yKSupOFxpOKMJiSoeescIIR5lsVggkUhcapUub94eQzhhwgRs3rwZ0dHR/LY7d+5gxIgROHTokNvH88Qso0ql0msBITeG0Fe6jL788suIjY0t0N1z9OjRbh+L1nAj3saNIeTGuRZ3zZswYQL/t+O14IUXXijTMpKKx5MNZ8R3UEBICPEos9nsNIZQr9d7uUT/8HaXUavVioCAAKdtarW6xBkyLpCSyWQQCAQlDgiB8p1Z0DFDKBKJfCYgnDdvXqHbHSeLcRW3HiEh3uLYLV0mk7ncCEazjJa/hIQEzJs3D82bN8czzzyDGTNmICAgAAsXLkTHjh29XTwnnmw4I76DAkJCiEcZDAZYrVYcOnQIAoHAp7rOebvL6KJFizBgwABIpVKo1WpkZ2fDYrFg8eLFJTpe/slZSjLLqJ+fH4DyrQTmH0PoK11GPamqZAj37t2LWbNmQSQSYdKkSfzY4f79+2PHjh1eLl3Vxo0hBOy9CPJf886ePYvZs2dDIpFg2rRp6NSpEwBg2bJl5V7Wqq4iLd/g2HCW//PPoc9/xUMBISHEY+Lj47FlyxYYDAYcPHgQYrEYH3/8MQICAnxikglvdxnt2rUrDh48CL1ej6ysLAQFBfGZ1JLgAkAusCrJOoTezhD6UpdRT6oqAeEHH3yA3bt3QyqVYtasWUhMTMSyZcuQl5fn7aJVefkDwvzXvPxrSB4+fBi9evXC9evXAVSdtTR9Abd8Q3R0NL98A4AyXb7BExOb0ee/8vCNueAJIZXC6tWrMXToUNSoUQPz5s1DaGgoRo8ejc8//9zbRQPg/QwhR6FQIDIyslTBIPBPYCWRSEoUWHm7y6hIJPKpLqOl5ZjprCpdRkUiEQIDA6FUKvHpp5+idevWGDx4cJV5/r6MG88NFN5l1HENyUGDBmHFihUYPXo0/97pdDps3Lix3MtdFXHLNwAo0+UbkpKS0K9fP3Tq1AlPPfUUOnbsiIEDB5Z4eRH6/FceFBASQjxGoVDgzp07fCXEz88Ply9fLnXg4yneHkPoafkzbdRltHT27t2L9u3bo1OnTk7Tqffv39+l+zu+/lUlQ9iyZUvcunWL/3/s2LGYPHkydDqd9wpVAZVFo4hjQFhYl1FuDUnA3ph3+/ZtvPvuu3w3f6VS6TONeZ6SkJCAXr16YfLkydizZw9atWqF7t274+jRo14t15YtWwpkA8ti+YYJEyZg9erVOHLkCA4ePIijR4/if//7n9OkQu6gz3/lQV1GCSEeEx8fj169euH27dvo0KEDkpOTcfnyZezevdvbRQPgOxlCTyntAu/UZdRZabs/OQaEVaWFfMWKFQW29ejRA5cvX/ZCaSoWTy9Dkx83wRdQeIbQcQ1JhUKBhIQEjBw5EhqNBpMmTYLBYPCZxjxPqUhj9QDPL9/g6YnNHD//ffr0wZ49e+jzX0FRQEgI8ZiIiAi0adMGgYGBOHz4MLp27YratWsjIiLC20UD4P0xhJ6egKO0Ywi93WXU12YZ5bo/AcCnn36KdevWudX9yfE1rCoZQlJynl6GJr/HZQgdxcfHY9GiRZg1axbu3bsHwH59iY+PL3U5fIk3xur5Ek9MbDZw4EB+7VsOY6zE3U6Jb6CAkBDiUY6t0n5+fj6VKTGZTJBIJLBarV7JEHp6AH7+MYQVpcto/nUIfaXLKNf9qVatWgDs3Z9iYmLwxhtvuHR/CghJUTN3jhs3Dl999ZXTvp7O1uSXP0NY3BJAERERWLp0KQB70DBz5kwAQLVq1TxSlrLkzmvOjdUTiURlOlbPV7k7sdnOnTud/meMYc+ePVi1ahV69uzptH3UqFFlVm5S9iggJIR4lGOrtL+/v88tOyGTybwWEJY2A5VfabuMeitDyFV4fW1h+tJ2f3R8DX2pIcQbUlJSfKZnQHnKP3PnsWPHMHnyZNy4caPAvp5ehia//JPKuNpg5Hgem0wmj3db9DR3XnPHscGcshir567vvvsOCxcuRJMmTdC7d28sWLAAarUas2fPxqBBgzz+eAqFokCWrzBjx45FmzZt0KFDB37W2YCAAFy5cgUvv/yy075vvfUW/7dOp4NKpfJsoUmZ8u1POSGkwnFslfb398eDBw+8XKJ/GI1GSKVSMMa8EhCWNgOVX0VedkIoFEIoFPpUl9HS4l5DhUJR5TOEo0ePxp49e7xdjHLHzdwJAFu3bkVcXBzGjx9f6Dnu6WVo8nO8Fkul0gKf8aKCEK7RCrCf09w1wle585oXxdtB7yeffILExETodDq0bNmSn4ytV69eZRIQuurmzZtYvnw5kpKSMHHiRHTs2BHHjx/nGy02bNiAjz76CBKJBMOGDePvN3jwYD4DSyoGCggJIR6VP0PoSxVjk8kEmUwGxphXxhB6egIOT3QZ9VZAyFXAfClDWFrcaxgYGFhlMoTt2rUrsI0xhqtXr3qhNN7HzdzJNfrExcVh48aNxY7FczVb4y7Hz5lUKi3QW6OwIGTatGlYs2YNv095XhdKqiSvua9RKBRQKpVQKpXo2bMn35W4PALVs2fPolWrVoXe5ufnh5kzZ0Kn02HZsmVYsmQJsrKy+NtXrVqFM2fOQCKRYPny5Xj++eexYcMGWsOyAqKAkBDiUWazma/c+NoYQq7LaEkzhO6MVSkPFbXLqOOC2b40hjA/xhhq1KjBZxweh3sNg4ODfaohpCzpdDokJSUVqLj27t3bSyXyLseZOzkjR47EyJEjy70sjo1zEomkwGe8sCAk/0ybFSEg9KXXvKRatmzJj23k1n40mUwICQnx6ON89tlnTv8zxrBq1SpMmDCh2KUnVCoVZs2aBa1W69SAKRQK+XNs0qRJaNy4Mfr27YvMzEyPlpuUPVqHMJ+4uDgIBAKnH8dxEIwxxMXFISoqCgqFAt27d8dff/3ldAyj0YiJEyciNDQUfn5+GDRoED9rF0ej0WDUqFEICAhAQEAARo0a5dTqQkhFZTabnTKEvhYQSqVSyGSyEgWEkyZNwtKlS7FkyRIsWbIEn376KQAUOlalPJR2+QbuvSqssliWrFYrH0D4cpfR+/fv48GDB5g6dapL+3MZ2qCgIJ8678vSggULCl1zbNasWV4oDXH0uC6jXBACgA9CwsPDnfapCAGhJ/Tp08erj7906dICM51KpdJCg93S+N///odff/0VSqUSfn5+8Pf3h1AohL+/v0v3V6vVaNeuHZ8B7N+/P06ePIns7GwAQK9evfDZZ5+hevXqHi03KXsUEBaiSZMmSE5O5n8cp9L98MMP8emnn2LlypU4efIkIiIi0Lt3b6cvxHfeeQfbt2/Hli1bcPjwYeTk5GDAgAFOreAvvvgizp07h127dmHXrl04d+4czdBEKgWj0ciPg/HFgFAmk0Eul5eoyyg3VqVWrVrYunUrtFqt22NVjEYjzpw5g3379uHMmTOlqnDlH0PoTpdRxhgfmBVWWSxLvtpltF27dk4/Tz31FAAUOzujo6qYIRwyZAiCgoIKbO/WrZsXSlOxfPfdd2jVqhVGjhyJ9evXo2HDhmjbti1+/vnnUh/bZrPBZrPxjXNSqbTA9aGwIEQgEACw11GAyhcQDhs2rMDPv/71ryqzZMKFCxcwcuRI/PTTT5BKpRg1ahRq1KiB0aNHu3yMZcuWoVmzZhg8eDAYY5gwYQIGDx7MdzVu0qQJdu3aVVZPgZQR6jJaCLFYXOjsaIwxLF26FO+//z6GDh0KAFi/fj3Cw8OxefNmvPbaa8jOzsZXX33FL9AN2FveoqOjsW/fPjz99NO4dOkSdu3ahWPHjqF9+/YAgDVr1qBjx464cuUKGjZsWH5PlhAPMxgMkMlkAOwBYV5eHmw2G4RC77c/cWMIBQJBiTKEpR2rEh8fj1WrVqFt27ZQq9XIysrCmTNn8MYbb5Soe5Pj5CzudhnlGqi47qbujj8sDV/tMpq/+2N8fDxGjx7t8tT7XOU5KCioygSEpOTKciIRx94DQOEZwsIYDAaMHz8er7zyCjZv3lzpAsKTJ0/iwIEDTt9HVWnJBIFAgBdffBHDhw/Hpk2bMGjQIKSnp7t1jM2bNyMpKQl5eXlo2LAhbty4AYlEgq5du7rUtZ74Ju/X0HzQ1atXERUVhdq1a2P48OF8d7CbN28iJSXFqWuBTCZDt27dcOTIEQDA6dOnYTabnfaJiopC06ZN+X2OHj2KgIAAPhgEgA4dOiAgIIDfh5CKymAw8BlCPz8/MMZczrCUNS5DWNIuo9u2beODQc7IkSNdzjauXr0ahw8fxrJlyzBv3jysWLECCQkJ+Pzzz90uC1C6TBsXAEql0nLPEJrNZkilUgC+lSHM3/2Re19jY2Ndur9jhtCXMuPE+wrrksiN4QsPD+fH8MlkMo9MJOI44RT329WAUC6X85/PihAQupNpnTZtGlQqFWJiYvifWrVqOS2Z4C2e7D3yOEKhEKNGjcLPP/+MH3/8scj99u7di/bt26NTp078kh0KhQIDBgyAn58fhg8fDqlUCoFA4PWZWknp0LuXT/v27bFhwwY0aNAADx8+xH//+1906tQJf/31F1JSUgAU7GMfHh6O27dvA7CvvSSVSgt0oQkPD+fvn5KSgrCwsAKPHRYWxu9TFKPR6FSR9aU13ggBnANCblxCTk4OvwC6N3FjCIVCoVeWnVAoFEhISECPHj0A2FumExISSjzVvOMYIXe7jHKVDYlEUu4BIfc+AL41hnDIkCFO/3MBoaszQObvMuormXFSfhyn3ucwxgrtkliWE4k4dicHis4QGo1G/PXXX8jMzERwcHCFDAjdybQWNXHKCy+8UB5FLZKne4+4SigUIioqqsjbP/jgA+zevRtSqRSzZs1CYmIinnnmGb5L6McffwzAfp40adKkzMpJyh4FhPn07duX/7tZs2bo2LEj6tati/Xr16NDhw4A/uljz2GMFdiWX/59CtvfleMsXLgQc+fOfezzIMRbHMcQckFgTk5OgYYUb+C6jHorIIyPj8eiRYswa9YsWK1WSCQStGnThq8MussxQ+hul1FvZghNJpNThtBXuozmxwWErja8ca9hSEgIGGPIzc2lxZnLkS/MAuxOl8SlS5cW2OapiUTyZwgLG0NYWBBy+/Zt/P333/zn05PXyQcPHhQbfJSUN5ds8BSu94jjeWOxWNC9e3evzpYqEon4dSk//fRTrFu3Dt9//32BLvFSqRQrV670QgmJp1ScT4uX+Pn5oVmzZrh69SqeffZZAPYMX2RkJL9PamoqX9mNiIiAyWSCRqNxyhKmpqbyX04RERF4+PBhgcdKS0t7bKV55syZmDx5Mv+/VqtFdHR0iZ8fIZ7mmCHkMiveWPOvMFyXUaFQ6JVurBEREYVWAkvKcVp5d7teejNDyAXmgG91Gc2vNAEhdz8KCMvPpEmTsHbtWojFYkybNg3Hjh3D5MmTy3UWYK5LYmhoqNP28u6S6EqGsLAg5Ntvv8W5c+dKnSHcuXOn0//cDO1z585Fv379SnTMopTXkg1lydO9R4qTPyvctGlT/v3Or2XLlk7j5seOHYuYmBi88cYbHi8X8S7qy/IYRqMRly5dQmRkJGrXro2IiAjs3buXv91kMiEhIYEP9lq3bg2JROK0T3JyMi5cuMDv07FjR2RnZ+PEiRP8PsePH0d2dja/T1FkMhnUarXTDyG+xHFSGe7LzNcCwpKOISxKSacs79u3L/7v//6vxI9rNpudJmdxp8uoNzOEvtplND/uvOWmVH8c7jXlgoHClmMgZccTswCX1oQJEwoEg0D5d0l0ZVIZLgjhcFlt7poAlDwgHDt2LFauXIlTp07h5MmTOHXqFLKysnDq1KkSHa84nliywduf1fj4ePz000/o3LkzOnTogK5du+LXX38tce+R4h6nR48eWL9+PRISErB27Vr06NGjyMdZsWJFgXHzPXr0cFqLkFQOlCHMZ+rUqRg4cCBq1qyJ1NRU/Pe//4VWq8WYMWMgEAjwzjvvYMGCBahfvz7q16+PBQsWQKlU8lM0BwQEYNy4cZgyZQpCQkIQHByMqVOnolmzZvyso7GxsXjmmWcwfvx4rF69GgDw6quvYsCAATTDKKnwHDOEvhgQcmMIS1LRcWd8kCu4cRjffPNNie7vmGlzt8uotzOElbnLaHBwsFv3I55R2lmAfUVKSkqhM527w5VJZQrrwm4wGPDSSy+VOiC8efMmli9fjqSkJEycOBEdO3bE8ePHMWfOnFI8q9LbsGEDPvroI0gkEgwbNgzvvvsuAGDw4ME4cOCA18rl6d4jRfHVrqnE+yggzOfevXv4v//7P6Snp6NatWro0KEDjh07hpiYGADA9OnTodfrMWHCBGg0GrRv3x579uxx6ha0ZMkSiMViDBs2DHq9Hj179sS6deucWrA2bdqESZMm8ZmFQYMGUf9rUuHZbDaYzWafDQhLO4bQ16Ys5zKeQMm7jHprDGFF6zLqyhhvLtDlem54O+tQ1RSWERo5cmSFq+iOHj0ae/bsKdUxXOkymj8IsdlsEIlECAsLK3VA6Ofnh5kzZ0Kn02HZsmVYsmQJsrKySnQsT1q1ahXOnDkDiUSC5cuX4/nnn8eGDRv4hdYru/LsmkoqFgoI8+Gm1S2KQCBAXFwc4uLiitxHLpdjxYoVWLFiRZH7BAcHe7wrACHexgVZvhoQOo4hLElA6Cvjgzj5A0LqMupZ3HlrNpudJksqChcQcg2ElCEkHJ1OV2A8abt27QrsxxjD1atXS/14RU0qU1zDhuP1m7uulPa6oFKpMGvWLGi12nLvZlhYppVbsxWwjzlt3Lgx+vbti8zMzHItm7d4amIzT2SxiW+hgJAQ4jFcBdqXA0KpVAqRSFSigNCTU5Y7BkGOs4W6w7F7LnUZ9TzH8zY7O9ulgFAikfAVf1qLsOrJ3yXx3//+N86cOYP333+/QJdEnU6HpKSkAp/93r17l7ochWUIGWOwWq1FXmscA0JuH09dF9RqdaEBcFkqLNPav39/p27FvXr1QmRkJKZMmVKuZfMWT3VNLS6LPWLECGzatKnUj0HKFwWEhBCP4SrQvjqpDNdVsaQBoSdpNBr+7+zs7BLNiFeaLqPeXnaCW6NSLBbDZrP55Jp9BoMBCoUCer0eWq222Fmgz549i6+//hp5eXk4ffo0BAIB9Hp9uS55QOwyMzP5GRS58ZzlJX+XxCZNmuD69et48sknC+y7YMEC6HS6AusWz5o1q9TlKCxDCNg/e0UFhI4NegKBADKZzGeu3cVxJ9P63nvvFdjWpEkTfjw3cVbcazt9+vRCbzty5Eh5FI14GAWEhHhYVW4dy58h5IIVX6lUlLbLqCc5ji/LycnxSEBYmoXp8/Ly3H78kjIajXxFnauwms1m/rn4CoPBgPDwcNy6deux458mTZqEXr16Yfv27fysh3q9vlyXPKjq9u/fjzlz5iA0NJRfV0+j0WDu3Lno2bNnuZQhf5fENWvWAEChS00NGTKk0GN069at1OVw/Hw7/jaZTFAqlYXeJ//1OygoyKnhqiTKIzgvy0xrVVfca7tp0yZs3ry5wH1+//338ioe8SAKCAkpIWodKyh/hUIoFEIqlfpkQFjSjJg7azgVxzEAK2nXQk9mCMtzwgfHSWW4185XA8KYmBjcunULycnJxe4rEAigUqmgVCqxdetWKBQKbNq0yeeeU3nwVqPYnDlzsGvXLqexelqtFn379i23gDB/l0Q/Pz8AKJAFLGv5r8WuTBKTv4dHaGgo0tPTS/T45Rmcl2Wmtaor7rXdt28fNBoNVq5ciebNm+OZZ57BjBkzkJOTg6NHj6Jjx45eKjUpCQoICSkhah0rKP+kMtzfvhQQlmYMYXx8PFatWoW2bdvylZwzZ87gjTfecHsmQ08HhBVpDKHjpDKOmQtfYzAYULduXYjFYty/f7/YfcPCwpCWlsY/r+DgYNSoUaPAAt2Via81igmFQqSlpTkFhGlpaeXaFTl/l0Su4YVb3qC85L8WOza8FCV/EFmtWrUSB4TlGZyXZaa1qivute3WrRs6dOiArVu3IisrC3369MHJkyehVCoxdOhQ/PHHH+VbWFIqFBASUkIvv/wyYmNjERYW5rR99OjRXiqR9+WvUHB/+0pAWNoxhJ5cw8kTAaHBYOC7mla0ZSfyB4TudHctLwaDAUqlElFRUY8NCLdt24a33nqLf14KhQL169f3mXO/LPhao9gXX3yBKVOmICUlhZ9NMzIyEl988YVXygOAX24qNTW1XB83f7bPnQwhd/0uTYbQF4JzUvbkcjmio6MRHR2N2NhY1KhRAwCcllkjFQMFhISU0Lx58wrdPmnSpHIuie/IXwkBfCcgZIzxGTVuqQN3JzLx5BpOnsoQco9dkZadKKrLqK/hZnGNiIgodAxYfo6BLjcZzeMkJCRg3rx5Tl2uAgICsHDhQp/vcuVrjWKxsbHYvn27Vx67KNznKjs7u1wft6gMYXGf8/z3iYyMxMmTJ11agzM/XwzOyT9KOrN1fhEREbBarRCJRPwsutx3K6lYKCAkhHiML2cILRYLGGP8GELAXgFSKBQuH8NTazgB1GW0InQZ5QJulUrl0iLz3LITgOsB4YwZMypslytqFHs87nNe3mtS5m+cc+Vzlv/6PXDgQCxfvhwXLlxAs2bN3Hp8XwzOq7qkpCTMmDEDWVlZfANiaGgoFixY4Pb7y8m/dvfZs2fRqlUr7N271xNFJuWIAkJCiMf4ckDo2EWS685iMpncCgjzr+HEGIPNZitR9xjHgNCVYKMwnphURiKRQCKRlGtAptfr+ZkOK0KG0J2A0N0MIXW5qjhKks3lPucl/YyXlMFggEAgKHTZieLuA/xz/a5Xrx4A+yLkJQ0YiO+YMGECNm/ejOjoaH7bnTt3MGLECBw6dMjt43322WdO/zPGsGrVKkyYMKHINXuJ76LO3IQQj/HlSWUcKztcEFXapSfmz58PiURSogyfXq+HSCSCWq322Cyj7i47IRKJ+JlgyzMgzMvL4wNCX84QuhMQ7t27F7t27cLZs2exZcsW/rzv379/sffjulwBoC5XZcRTwdiMGTOwdu1avPTSSxgzZgx++eUX/PDDD5g5c2aR93ElQ+hOQ46ruOw219XTnUlluGsKNz45IyOjVGWx2Wx47rnnEB8fX6rjkNKxWq0ICAhw2qZWq/nrj7v+97//4ddff4VSqYSfnx/8/f0hFAr5NWZJxUIBISEe1qdPH28XwWt8OUPIVQpVKpXHAsItW7aAMYZTp065fd+8vDwoFAqoVKpSTSpT0i6jjkFZeQaEjLECjw34dobQ39//sUHFBx98gA4dOqBTp044ceIErl69iry8vMeu77hly5YC2UCxWExdrkpgw4YNaNasGZ544gksWrSI3z548GCPHJ/L5jZr1ozP5gYHBxebzeWyxPkDwqSkJPTr1w+dOnXCU089hY4dO2LgwIFISkrySFkdrw1AyTKE/v7+kEgkpQ4IdTodfvjhB4wePRopKSmlOhYpuUWLFmHAgAHo1asXhg4dip49e2Lw4MFYvHhxiY534cIFjBw5Ej/99BOkUilGjRqFGjVqVOmJ9Soy6jJKSAkNGzaswDbGmMe+0CsirpuS42B1XwsI/f39+UpaaQPC8PBw/PXXXyWq5HBBkb+/f4kDwtzcXH6dM3e7jObm5nolIDSbzbBarQUyhL4cELoStItEIjDGoFQq8emnnyIxMREnTpxA7dq1S/TYnpjwwVv69OmDPXv2lPvjrlq1CmfOnIFEIsGyZcsQExODl19+GYwxl49R3BqK7k6gYbPZ+Gtf/oDQ09338uPOXY6rYwiFQiF/7gkEAoSEhCAzM7NUZXFsTBk9erTHz42zZ89i9uzZkEgkmDZtGjp16gQAGDduHL766iuPPlZF1rVrVxw8eBB6vR5ZWVkICgoq0YRoHO67/tatW1i5ciUWL16MK1euoG3btpg9ezYGDRrkwdKTslZxv3EI8bKTJ0/iwIEDTrNUMsYwatQoL5bKu7hKiOOMdL4WEKpUKr6LTGkDQq6i+bhFywtTFgGh2Wx2eUbAvLw8/r5SqbTcAjIuY8aN3XQlc+ENFosFVqvV5S6jLVu2xOnTp/kuWU2aNIFOpyv3sWPlqaSNYmU1s6pQKOQDn9deew3vvPMO4uLi0LRp0wL7lmQNxfwTaADFZ3O5hieFQlEgIPR09738HLuTA65nCPNfv0NCQkqUIWzXrp3TcTknTpxw+1iPM2nSJKxduxZisRjTpk3DsWPHMHnyZNy4cQMA8ODBA0RFRXn8cSsqhULh1tj54nzyySdITEyETqdDy5YtcfbsWdSuXRu9evWigLCCoYCQkBKaNm0aVCoVQkNDnba/9dZbXiqR9+VvlQbsAWFpW5g9wTEg5CpqpQ1CuGN6IyC02WzQ6/X8eA25XA7GGMxmM1/5K45jMFmeGUIuIPT1DKFj9zlXAsIVK1agY8eO/PNSKBSQSqU4d+5cWRfVa0raKFZWM6v2798ft27dQq1atZwCsOrVqxfY15NrKBaVzeWuM02aNMGVK1ecGmu47ntSqRRqtRrZ2dmwWCxO3fdKE8jkvxa7EhDq9foCgYJarS7RDKk6nQ5JSUkQi8U4efIkHyC2bdvW7WM9jkAg4CfAeemll7Bp0yY888wzSE1NxY4dOxAXF4e5c+eiX79+Hn/ssnL79m2EhIT4/Hg8hUIBpVIJpVKJnj17olGjRgAqdg+HqoreMUJKqKhZtF544YVyLonvyD9uBfDNDCG3JlhpM4TccUqyeHNpA0IusOKCOq4iZzAYXA4I83cZLcl6Y+7iKsn5xxD6WoYwf0CYl5fHdxcsimOQrVAoSnXee6vbpTsKaxQ7dOgQMjIyij2Xympm1ffee4//2zGI+eWXXwrsWx5rKHKf0SeffBKnTp3CoUOH0LVrVwAFu+8dP34cUqkUOp0OO3fuBGOsVIGM4xqlgGtjdXNycvjzl+PqDLv5LViwADqdDkFBQU7Xt6lTp7p9rMcJCwvjGwLGjh2LNm3awM/PD1euXMGpU6eQlZWFU6dO+VxAWFzAX6tWLbRo0cKnGpQK607dsmVL/rrILb9kMpn4CYlKqySNraRkKCAkhHhMdnY2AgMDnbb5SkDIVUr8/f09NqkMV+nMyspy+76OAWFJAsrc3FwA/wSEXOVPr9dDrVa79PiOGULGGKxWa5m37FaUDCEXuMpkMr6VPicnp0A3P0eOAaFcLndp2YmKPBa5sEaxmTNn4tKlS7hz5w5iYmIKvV95LGbtuBB8ampqgSxheayhyF1zBg4ciK1btyI+Pp4PCDlc971XX30Vbdq0QYcOHfiu6KUJZHJzc52yfa40vDiev5ySTno1ZMgQ/m/HgLKw7rultW3bNv7vmzdvYvny5UhKSsKhQ4fQsWNHHD9+HHPmzPH447pj586dTv+7EvCfP3++PIpWoPHJne7Uixcvxvnz55GZmYng4GA0bdoUUqnU6T1xVWGv0ezZs90+DikZCggJIR7DfSk48pWAUKfTQSaTQSKReDwgdKx8uopbi8/f3x83b950+/5cJS1/htCVIAQo2GUUsFcWyzsg9NUMIRdwO3bZelxAmJOTg+zsbOzbtw8ajeaxM4wClW8sckREBADg3LlzRQaE7o7FKwnHDOHDhw8L7Tbqrr1792LWrFkQiUSYNGkShg8fDsDeVXXHjh0F9ucCoZCQEDzxxBN48OBBkcd2DGQmTpxY6kBGp9M5NQy5MqlMbm5ugS6K/v7+pZ4Z1DGgzMrK8sh7URQ/Pz/MnDkTOp0Oy5Ytw5IlS0rUYOdpXObSlYDfnUmQ3OFq45Or3anj4+OxatUqtG3bFmq1GllZWThz5gzeeOMNjBw50u3yFfYaleS7lZQMBYSElILRaMRff/1VoHWsqsrIyPDpgFClUgH4JwgpTUBoNpuh1+shk8lKnCEszbIT+TOEjl1GXb1/tWrVADi/HlygVla4cvt6htCxizHX9bG4rnPx8fFIT0/HX3/9hdDQUL7VfOPGjcVWjirbWGQusL1165bb9/VkY0T+gNATPvjgA+zevRtSqRSzZs1CYmIili1bVmTg73gORUVF4dixY0Ue29OBjFardQoIRSIRBAJBiTKEpZ0YyfH+Go2mVMdylUqlwqxZs6DVanH58uVyecziuBPwO17DH9dN3R2uNj652p169erVOHz4sNPxLBYLunfvXqKAsLDXKDExkZ8ciJQtWoeQkBKKj49Hjx49sH79eiQkJGDt2rXo0aMH34++KsrMzCwwdsAXA0JPZAi5Cmd0dHSJWjFLO4YwfwbLscuoq4+fv7tpebxP3OvGVVYrQkDInTfFVYxXr14NxhhefPFFzJs3DyNGjAAAfP7558U+zoQJEwoEg0DFHYvMZZPu37/v1XI4BoSeWvtOJBIhMDCQX1qkdevWGDx4cJGfX8dzKDIy0ilDuHfvXrRv3x6dOnVyypgOHz4cs2bNwpdffomlS5eWuKyO1zvAPvHK4yaPKmwMYWlmQXY8Lqe8s3VqtdppxlNv4QL+1atXY//+/Rg2bFiRr4XjuevJDBnX+BQTE8P/1KpVq0Dj07x58woEg0DB7tQKhQIJCQn8/4wxJCQkQC6Xl+gzV9hrRBnC8kMBISElxLWOLVu2DPPmzcOKFSuQkJDw2ApgZVZUl1FXg5SyVFhAWJpuityXds2aNUs9hrAkFa7SdhnVarX868Fl61zp4lha3Bc81/WSCwhL233X0xwr81zQXVxAKJPJwBhzCrJtNluBSZYqk8IWgueWKCiue2R50Gq1fOb75ZdfLnD7d999h1atWmHkyJFYv349GjZsiLZt2+Lnn38u8pgtW7Z0ynyOHTsWkydPLvK8cDyHwsLCkJ6ezneF47KN+/btw4kTJzBx4kTYbDb+M1jaQMbx881RKpV8Q1JhyipDmJOTw38vDBw4ENeuXSvV8fIrKrju37+/Rx/HE7jMZXEBv2NA6MmMqqcbn+Lj4/HTTz+hc+fO6NChA5588kl8+OGHWLNmTakmZ3J8jbjrCil7FBASUkLFtY5VVRkZGQUyhP7+/sVWQspLWWUIY2JikJWV5fa4j9IGhFxgxU3i426X0ezsbD4o4yqB5REQarVayOVyvrIuFArh7+/vc+v1FZYhLO59WrFiBQBg/vz56NChA798wOrVq8u4pN7DLQR/5swZKJVKPP/883wF9vbt224fr0+fPh4rW/4uk/nfO279tE8++QTvvvsuTpw4gcOHD+Ojjz4q8pgrVqxArVq1nLb16NGjyC6JOp2OH7OsVqudAj53s43uyv/8Afu1oriMS1l2GXUMRLjPiqc8Lrj2RcUF/GUVEHpaREQEjhw5ArPZDK1Wi8TEROzZswedOnXyyHqTarUarVu39kBJiStoDCEhJRQfH49FixZh1qxZsFqtkEgkaNOmTZXtMsoYKzRD6O/vD4PBAIvF4tW1iXJycvhMj1gshlAo9FiXUavV6tQF0xWOAaHJZILJZHJr/CmXleSCFXczhI4BYXlnCAtbkNvXugbpdDqIxWKnBp7iKsbcubVs2TI8/fTT+Omnn/Dss8+6NONrRR2L7LgQ/KRJk9C4cWNs374dIpEI586dK3L8U3nMrMoFRJs2bcLTTz+Na9euoWXLlvzt+ddP485JT16jHBuhuONnZ2fDz8+PzzZyAebYsWMRExODV199FdeuXUNwcHCBa2lJH5sTFBRUbIBRWEDoiet3Tk6OU1k8tSg6hwuuAeDTTz/FunXrCgTXFWEZF45jQOgLa/gWh1tvMi4uDvPnzwcANGvWrMwmxiFlhwJCQkooIiKiVGM8KhudTger1VpoQAjYKxvFzdBY1nQ6ndPj+/n5lao1ngtgatasCcAeoLkTEHJduhxfH3cDQrVazVe43RlDaLVanWbMLO+AMH+QFBAQ4JMBITehjFwuh0gkKjYg5AJ0rmLq6mvq6Zn6ypPjQvCAPVtms9lQvXp13L9/H/v37y8061ceM6tyDQ9t2rQBAFy9etUpICzr9dMA56CMO+e1Wi2ioqIKZMn279+POXPmoHHjxpg7dy6ysrKg0Wgwd+5c9OzZ063Htdls0Gq1Ba63gYGBxXZv12g0CAoKctrmmB3Pv6SQq3Q6Hfz9/bFy5Uq89dZbuHv3bomOUxTH4JprbNDpdLhy5QqGDRtWYZZx4ZRlhtBxfdCUlBQoFIoC58l3332HhQsXokmTJujduzcWLFgAtVqN2bNnY9CgQU77cutNXrlyBdWqVUPr1q1x6tQpbN26tcRlzMzM5BvHaIH78kOvNCGecucOEBgIuJARqIy4sUOFdRkFHj9lf1nT6XT8AthA6YOQwgJCV6dTt9ls0Gg0CAkJcXp98lfGipOVleVUQXOnyyhX4fCVDGFAQIBTJcgXOAauAoHgsV3nuIob1yDCvTcajaZAN0NHhc3UZzab0aNHD58PCB0Xggf+Oa+WLl2K9957Dz/99FOhAWF5zKzKZQiDgoKgUCgKTHJTWGOeK+unuZPNdQywHDOEhZkzZw527drllEnTarXo27ev2wFhRkYGbDZbgYlBHhcQFtbl33FCpZIGhFyG8M0330RCQgJSU1NLdJyiOAbXvrqMiztLljheC0+fPo22bduiTp06pS7DsmXLsGbNGtStWxft2rXDjz/+CD8/P4wYMQLjx4/n9+O6U+t0OrRs2RKXL1+GXC5Hr169CgSE3HqTV65cwXPPPYe+ffti8ODBqFevntvl4xpFQkND+caxkqzRS0qGAkJCPCUmBmjYEPCBKa69gevaUlSG0FNjY0qKb63X64HMzMeOp3mcjIwMyOVyREVFAXBvNrjs7GzYbDYEBwe7NGFJUcdwDKxkMtljs1iO9wW8ExBqNJoCFUtf7DKanp7uFLA8bpxj/vOfuy/XUFIUbixyjx49ANgrt5MmTeL/r0gcz6tGjRoVub5mYQvaA56dWZULCAUCAZ+xLC13s7mZmZl8QOiYISyMUChEWlqaU0CYlpbmFNi4iltmIzw83Gl7UFBQka9DXl4e9Hp9gSDdE9dvnU7HlyUkJMTjk8o48tVlXNxZsoSbEEmtVuOjjz7C2rVrkZaWVuoybN68GUlJScjLy0PDhg1x48YNSCQSdO3a1SkgdLc7tc1mw9WrV/Hyyy+jVatWAIAzZ844NcC6orBGkXv37iE6Otrdp0pKgAJCQjyBm63yyhXvlsOLuJa84jKE3vTw4UN7i/mTTwKnTyOgc+dSBSHp6ekICQnhgxt3Zhp1DB5cWdKgMPkDK4FA8NgxQvkf393ujZ7w8OFDPqvKCQgI8LnJE9LS0vh1GgE8dr3I/K8p9zl4XECYfyzy8ePHAQBxcXGlKL13cJ+BgIAA1K5d26tjtrRaLZ+xj4qK8khA6O66axqNhm8geFyG8IsvvsCUKVNw//59CIVCCAQCREZG4osvvnC7nEUFhKGhoUVm54rq4VHS65OjnJwc1K1bF4D9mleW4+LKo7GhJFwZ58jhGjO4Me6eypIpFAoIBAL4+flh+PDhfGY7f6DnbnfqO3fuwGAwoGHDhqhRowZCQkJw9uzZAtnExymsUYQyhOWHAkJCPMGxJTw7G/Bi10hvuX37NoRCIZ8x4/hCQGg0GpGeno6oyEjg9GkAQHU/v1KtiZWRkYHQ0NBSBYQhISGPrSgWJSUlpUCFLzg42KXA6t69ewDAt7xKJBKIxeJyCQhTU1PRtm1bp20hISG44mONKenp6YiJieH/f1yX0czMTAQEBPBjOlUqFcRi8WMrNPnHIstkMphMJp+bddUVXBajWrVqqF27Nm7duuU0Zqk8JScn44knngAAVK9evdBlMNydzCd/NvdxM0tnZmbyjR9qtRpCoZD/7G/YsAEfffQRJBIJhg0bhnfffRfbt2/HU089hQMHDpTquXNrwOW/PtSoUQP37t2DzWYrkHl8XINeac7HjIwMPjAu64DQUWET63hLUZMIvfHGGwX25QJCxwXZHSdFK6m+ffvygd7HH3+M6dOn4/r162jcuLHTfu52p+au3Q0bNoRAIMATTzyBs2fPul0+rlEkJSWFv24UtkwGKRu07AQhnvD33//8XYLp1iuDmzdvokaNGvysgxzuS8ybY8S4ClJthy/UxoyVOkMYGhoKpVIJqVTqViWHqziHhITwXcrcDU4fPHhQYMxiUFCQS+W4ffs2pFKp0xgjPz+/clkehM/UOmjQoAGuXr0Km81W5o/vqsIyhMVVih8+fOhUeeEqM+60cDPG+Nn5rl69WoJSexd3XoeFhaFOnTowGAxuLVDtqQXkGWO4e/cuH4wV1mU0Pj4ePXr0wPr165GQkIC1a9eiR48exc4SnX/dta5du+LXX38t8j6OGUKRSITg4GD+NSpsyY68vDyPzM548eJFREZGFgggoqOjYTabC80SXr9+HQCcGkEAuLTkyuOkp6fzn6Xg4GDodLpSrQGbX2HrYQLA4MGDH3vfO3fueKwcxXFnyRIuIHR8L7isb2nMmDGDb7DS6/X46KOP8MMPP+C1114r1XGvXLkCmUzGl7dVq1Y4c+aM28eJjY3F9u3bcfToURw7dgxHjx7Fpk2bSlU24joKCAnxBMeA0GHh4qrkxo0bqF27tv2f06eBRwsEV6tWDUKhEMnJyV4rG/elH+1QCWlgNpeqpfrhw4eoVq1aiSr+t2/fhlgs5ittQqHQ7YDw/v37BbKxrra+37lzB9HR0U5ZgmrVqnl8sof89Ho9srKyEBER4bS9UaNG0Ov1Hp99sDTyZ2AfN4bw2rVrqF+/vtO2GjVquPWcMjIyYDabAaBELezelpaWBoVCAT8/P/5a4JjleJzSLGbtKCMjA3q9ns+AcwGhY7DFdf9ctmwZ5s2bhxUrViAhIQGff/55kcflsrmJiYlITExEXl4e7t+/X+B85qSlpTll3KpVq8ZfJ/Iv2fH666+jb9++Hukid/78eacZVTlcgFzY2M6kpCSEhYUVaKzhejCU9FppNBqh1Wr5xhLutye7AroSXBfW2HD27FnExMTgm2++8VhZPIGbQfrQoUPYtWsXAM81lnAuXbrE/809RklduHABDRo04IPN1q1b4+7du/jbsV5EfB4FhIR4wtWrQIsWgFxeZQPC8+fPo2nTpvZ/nn4a+L//A65fh1gsRlRUVLm1xBYmKSkJEokEMVxAWLMmGhiNfNfJkrh27Ro/LqYkAWGNGjUgEokgFAoREBDgVkCYlZUFrVZbYNB+cHDwY8esAfaAMH8mwFMTbxTn4sWLAOwtwY4aNWoEAEUu8F3edDodsrKynCYzeNx79Pfff6NBgwZO2+rUqeNWQMS9/h06dMA333yDWxXsWuKYVeUCwsKCj3bt2hX4adu2rUcWswbAB+FcABQVFcU3RnC47p+cY8eOYdOmTUV2/8zv1q1bOHPmDLZu3VroUi85OTlO4xgBe0DIZQi5JTs4ISEhGD58OFQqFfbt24czZ86UOIt2/vx5tGjRosD2xo0bQyqV4tSpUwVuu3Dhwj/XbwdSqRSRkZElPhe56xF3XnDXLE9ea1wJrgtrbNi+fTsA4Pvvv/dYWTzh4cOHCA8PR3R0NN+93tMBIZcR7ty5M2bMmFFgGZTCFNUglpiYiI4dO/L/Dxw4EEFBQdi8ebNnCkvKBQWEhHjC33/bZxiNiamSAWFOTg7+/vtv+wxjeXkAF5SsXw/A3lXJm9mfc+fOoXHjxhDfugVERgJt2yJKq4VGoylRN8nc3Fzcv3+fDwBCQ0NdCsQ4N27ccOo+9Ljp4PPj1tRq1qyZ0/Y6deq41NXwzp07BSZ2iYqKKnSclSedO3cOAoEATZo0AU6cAGJjgbQ01KxZE3K53GcCwvwBBff37SK6g1utVly7dq1AQFi3bl23ZlTkKsmrVq2CQCDgK6wVxf379/GUSgWMHQt/sxmhoaGFBoQ6nQ5HjhzBiRMn+J+TJ08WGFtaUtz755ghBOB0fufv/tmxY0eMHTsW8fHxLj2GY4bl3LlzBW7n3kvHRhvHLPx7773HXwOsVis6deqECRMmoH79+i53YS1Meno67t27V2hAKJPJ0KpVK37iIkdJSUkFriecOnXqFDlj7ONwgQwXEHLvRWka4/JzDK7btWuH9957D5mZmbhz506xjQ3nz58HgHJbo9BoNOLMmTOPDfhTUlIQGRkJwD4MQCKRlElAqFar+fUCJ02axH8HudMF12Aw4NKlS06fXYVCgebNm/vM9Zy4hgJCQjzh77+BBg2AWrWqZECYlJQExpg9IHz0JYsnnrAHhHo9GjVqhD///NNr5eNbzK9dA+rWBWJjEfxoTEZJMpdcBaJlYCDw9dcICw52q7vlyZMn+QkvAPuXvjsB5enTpyGVSvnMGqdp06ZISUkpdopym82Ga9euFQgIo6Ojcf36dY+MYSrK4cOH0bx5c/j5+QGff25fouWzzyASidCiRYtST6bhKVxQXSsqCnj3XeDPP1G7dm08ePCg0HUeb9++DbPZXCAgbNmyJe7evevy+J/79+/zAXPnzp1x6NCh0j+ZcmS+cAEf3bxp/9x/+WWRgQS3mHV+s2bN8kg57ty5A4lEwnd/5IIQx6yUY/fPdevW8du5mR0f59KlS3xWqlOnTnz2m8MFpY4Zwrp16xbaYPPnn3/y51XTpk1d7sJamJ9//hkCgQBPPvkkYDAA/foBDg0LHTp0wNGjR53uk5aWhmvXrhUaRAJAvXr1Cjw/V/35558QCAR8r4DQ0FBIpVKPNhA6Btc6nQ7R4eH499ixyM7OLrax4cKFCwgJCcHff/+NcePGlek4d3fGrKakpPDdkAUCASIiIjweECYlJaFJkyaIjIzkv5u5jLk741u574yGDRvaG4KnTeO/8909Z4oKREn5oICQkNLKzgbu37dnCKtoQHj06FFIJBJ75ufkSUAqBb7+GkhNBUaORNeuXXH+/HmvjCM0Go1ISkqyV3YuXrRnpWJjIUtPR5BQ6NRtzFVHjx6FXC5H0//9Dxg3Dv3NZr4LzuM8fPgQt27dQvv27fltMTExbrXA79mzB126dLFXSLOzgS+/BEwmdOnSBSKRqNiB+N9//z3S09PRu3dv+4ZHFfPOnTvj7t27Lj8PdzHGsHfvXjz11FP2DSdP2n+vWwfYbHjhhRewa9culyvkZemPP/5ATEwMqv/xB7B4MfDaa6hbty4YY4Vm/LgGgvwBYadOnQAA+/btc+lxb968icjISEgkErRu3bpEEzN40/9duAChVGpvHDtwALVr1y60y+yQIUP4yZR4ycno1q2bR8px/fp11KxZkx8jy421LaqbomOGqHbt2i417ly+fBnNmzfHjBkzAKBAxf7XX39FeHi4U0+Axo0b49atWwUmaElMTIRAIMBTTz2FDz74AN9+++1jZzAtysaNG9GjRw97IHrwIPDbb8DQocCjynzPnj1x48YNp+zzmDFjIBKJ0K9fPyAlBciXvWvXrh3Onz9foollTp8+jQYNGvCT0wiFQjRo0KDEAebjvP7665j1668YMnUq0n77DZg6FcjLK9DYkJubixs3bmD69OkAgK+//hpr1qwpkzIBro9Z1ev1yMjIcBqXGhkZ6fHu/GfPnuXXDGzWrBlq166N/fv3A3BvfCuXKW/QoAHwn/8AH38MbNuG9u3b48KFC26NPS0qECXlgwJCQkrrUXehi1Ip/jabq1xAyBjDl19+icGDB0Mmk9kr+i1a2H9WrgR++AFDGzeGv78/li9fXu7lS0hIgF6vR6/u3YFLl4BmzYBHmbVRbdti9erVbmfF9uzZgz7t2kH4xx8AgC737+P27dsufXlx3bU6dOjAb6tfv77LA/CvXr2K3bt3Y9iwYfYNH34IjB8PvPceoqKiMHr0aMybN6/IzOf27dvRuHFjdOnSBdi9G1Crgc8/x1NPPQWlUsl3IfK006dP4/79+xg4cCCQnAxcuABMmGD/vCQkoEuXLjCZTKWe4MAT9u/fj6eeegoCrizHjqFtbi6EQmGh3e22bduGhg0bOmddHz5EjeBgdOrUyeVuf/v27bNndmCfmOH27dtuZY69KfPBA3QzGHCnTx/grbeAffvQIiTEtYaOtWuBqCjghx88UpYDBw6gc+fO/P9SqRTh4eFFjue8ePEiQkNDMWbMGADAhx9++NjH+OuvvxAbG4tFixZhxIgR2Llzp9Ptu3btwrPPPgvx3r32oMRq5cdZ/fbbb077btiwAQM7dkRjADKpFKNGjcKTTz5Z7Aym+THGMGPGDPz+++//LDK+Y8c/O/TtC6Sno2/fvujcuTOee+45/Otf/0JMTAx+++03fPbZZwiXSu09O6Kjgdatge++AwD069cPIpEIc+fOdaksjk6fPu3UGwIAWrRoUWg3W08IfvgQrQAEAajWrx/wySfA//5XoLGBC0if6tEDp06dwpNPPokff/yxTMoEFByzWlTAzzVOOI7nLEm2rTjp6em4dOmS03dQv379sG3bNphMpgLjW3v16oXPPvsMYWFhaNGiBaZPnw6NRoP9+/fjjz/+QM3oaISHhv5zvv36K3r27AnGGH7//XeXy1VYIPr888975DkTFzDidf/73/9YrVq1mEwmY0888QQ7ePCgy/fNzs5mAFh2dnYZlpAUa948ZlEqmRBgL9jbYRnLzPR2qcrNhg0bGAD2+++/M2azMVa9OmPvvGO/0WBgLDycsQkT2MyZM5lIJGLvvfcee/DgQbmV7/XXX2e1atVitiNH7O/NkSOM5eQwBrDL06czAOynn35y+XgpKSlMIpGwvSNH2o/39tvMKpMxFcASEhIee/8hQ4aw+vXrM5vVytiqVYxt3cq+/fZbBoDt37+/2Pvm5uaypk2bsoiICKbX6+2vb1iYvRxSKWPXr7OHDx+yyMhI1qRJE3b37l3GGGM2m41lZmayQYMGMQBs8eLF9gP26GG/r78/Y3fvshdffJGFhoayK1euuPx6uCI1NZX16tWLBQUFMZPJxNj69fbHTUlhrH59xkaNYiaTibVp04aFhISww4cPM6PR6NEyuOrYsWMMAPtm40bGgoIYmz2bsfbtGXvySfbkk0+y2NhYlp6e7rS/SCRiS5Ys+ecgJ0/a34969djapUuZUChkhw8fLvZxHz58yAQCAfv+ww8Zmz6dXT16lAFgu3btKqNn6llH33+fMYDd3rmTMY2GsfBwdqNVKyYUCu3najGy69ZlDGDWoCDGtmwpVTn++usvBoB99913jD14wNij78ahQ4eyjh07FtjfZrOxtm3bsn/168dsqanszTffZFFRUcWefzk5OUwikbDVn3zCWEYG27x5MwPAbt++zWw2G1u9ejUDwH7YuNF+ngOMvfkmY3fvso4dO7LY2FiWkpLCGGPs5MmTDADLaNSIMYBld+/OYgD27bffuvycrVYrGz58OAPA2rdvz2w2m/1aXLs2Y6+9xtjUqYyJxYxNmMAYYywtLY299NJLrG3btqxZs2Zs6tSp9vu88469rJ06MSYS2a8tj967RYsWMQDslVdeYTdv3rTv/xjr169nANiyZcuctn/55ZcMADtz5ozLz9EVNpuNfV63LtMLhSxdpWIMYElSKbO1bMk/D87ChQtZJ7mcWWvWZOz339mqVauYSCRiWVlZHi0TJzk5mb399tusU6dOrH379qxLly7snXfeYcnJyU77LVq0iEkkEqfPzMcff8wUCoXH6nlffvklEwgE7N69e/y2ixcvMgBs/fr1zjtbLIzFxTF26BBbPHUq+xlgywAGh599zZr9c553727/PXQoG1GjBhs1apTL5Zo/fz67efOm0zbuekx13LJHAaGXbdmyhUkkErZmzRp28eJF9vbbbzM/Pz92+/Ztl+5PAaGX6fXMVr8+OxAWxsSviFlos0cXRTe+zCuqW7dusYkTJzKRSMRGjx5tryAcOGB//o6BzezZjPn7M3NGBps0aRL/JdKvXz+2c+dOlpiYyMxms8fLp9Fo2Pz585lAIGBxcXH2ylBICGPcY7Vty9iQIaxbt27M39+fvfTSS+zmzZssLy/P6Tgmk4n/+/jx46xhw4bM39+fmbp0YaxLF8bu3GEMYJOUSqZSqVhiYiLLzc11Cnrz8vLY4cOH2SuvvMIAsLVr1zK2bh3/JWr96iu+HL/88gvT6/VMp9Ox3NxcptFoWHx8PPv3v//NQkJCGIB/Go3i4+3HOHWKsagoxl54gTFmr2SqVCoGgDVo0IBJJBL+dW/UqJH9vTp92n7fL76wB+3/+hc7e/Ysq1GjBlMoFGzo0KFs5cqV7M8//3S5Aujo+vXr7PDhw+yzzz5j9evXZyEhIez777+33/j00/YgizHG5s9nTKFgLDubpaamsgYNGjAALCwsjM2ePZvt37+fnT59ml26dOmxgUVpmEwmtnv3bhYcHMxiYmKYYft2++tz4oQ9SAHYpW3bmFwuZwBYq1at+Pejfv369rLZbPbzXam0n2sKBbO2a8f6tm/PpFIpGzRoENuwYQO7d+8e02g0zGg0sps3b7Jbt26xgQMHMn+JhJmaNmUMYLbq1dmgsDA2ZsyYMnvOnpL84AFL8Pdn1xQKe0MHY3zQ304sZuPGjSuy8p/566+MAewVgO1WKJhZLGaWs2fdLoNGo2G7du1iDRo0YDVr1mTG3bvtQVBUFGPz57MfvvqKAWCvv/46u3v3Lrtz5w67ffs2e++991g4wPKqVWNMLmdpr73GGgPsnXfecfoezsnJYYwxptfr2bRp01gMwIw1azIWEsJyZ89mjfNVkp977jlm/eQTxoRC+/kOMBYTw37/5hsWFBTExGIxa9GiBQPAxoWE2G8fP54xuZzlCYXsXYB9WqMG++ydd9h7kyezrVu3sm+++YatXLmSJSQksC+++IK98cYb7Nlnn2X16tVjAoGAzZs375/zcOtW+zEPHLA/gcWL7a/HX38V/gIeO2a/feFC+/9//82YQGBvNDp8mJnNZvb+++8zpVLJADClUskiIyPZ//3f/7HFixezt956i82YMYNNnDiRxcbGsujoaAaADR8+nBlSUxkbPZqxZ59lbPt2prtwgUVGRjIA7O2332YHDhxg169fL9X3gM1mYxu/+IL9CbAHbdsylpXFzn//PesnEPDXWdOUKezc2bPs0qVLLDQwkF2pVs1+m0zGDI0bs34AGzVqVPnUp9avZ2zWLHuDhU7HkpOT2fr161lgYCAbN24cYzt2MDZ3LmPZ2ezen38yPz8/NnToUJaYmOj2tZiTkZHBjh49yiQSCRvSrx9j777L2Lx59nPl3DnWv29fVq9ePXbmzBl2//59lpOTw65Nn84YwCwCAbvBBX0AO9e0KbvStClb2KXLP8HgwoWMJSczFh3NGMB0ajULBtj06dNZTk4Os1qtLDc317XC3rzJ2KJFLPvBA6rjlhMBY2U4gwB5rPbt2+OJJ57AqlWr+G2xsbF49tlnsXDhwsfeX6vVIiAgAIsVCoSq1bDZbLAyBqFQCJvNBolUCoVSCZ1OB3+VCmaLBTKZDAKhEAajEQKBABAIYDAaERQUBKFIBIPBAIvNBrVaDYVCAQgEyNRooFarYbFaIZXJIFcoIBAIYLVaYTSZoDcYYLPZIFcooHy0wLVILEZgUBAYY8jV6yESiaDRaGAymxFVvTpyc3MhVyggVyggk8nAYJ+t0mK1wsoYalSvDqvNBk1WFqxWK6qFhcFoMkHp54fs7GyIRCJIZTLk6fXw8/ODyWwGg30BYLPFApFYDLlcDl1ODvz8/aHX6yGTy2G12SCRSCAQCqFQKMAA6B6NjbDabJDKZAAAP39/5OTmQi6TgRkMCPHzgy4tDYasLFizsiC6cweRV65AlZODDgDSF0RBck+Cb764j+YSCW537w5Wty4yLBZIgoMhUSiQlpkJpUoFiES4dfcuoqKjIVUoIJZIoFAoYLFYYDSZULt2bWRnZyM5JQU2mw3+/v6w2myQy+WQy+V4+PAhxBIJcnNz+ecgkUhgs9kgk8uRlZXFv94xtWpBo9EAAH9bRkYGJFIp1Go1zGYzJBIJxEIhrl+9ioiwMKj9/XH1yhVIRCJEV6+OixcuIO3hQ1QLCYHZaMT1q1fx4P59KEQiDH/6aQzr2ROi69eBb7+1T9py7BggENhP0vv37du6dAGGDcPl7GzsTkjADzt2wATA+uhcFolECA8PR5MmTSBTKGAxmyF5tHi63mCAwWhEeHg4LBYLRADMej0kQiFys7MhsNmg1+kgZAymvDzkarW4dvEighnD8507o4dcDsH+/fbxDVOm2B9wzRrg1VdhHDwYu7VabD98GBlmM8wAbLB3M7MBMJhMCA4IgEoohFGjgRrAe127IvrgQXsXtyFDgCFDYPrjD8w3mfBXXh5yAZgB+KnVkMjlyEpPh9BmgxTAvwYPxqh27SBcsMA+tkcuB77+GpqpU/H+5s346+5d/jVxJADQ+YknMO6FF1A/MtL+un7yCdCxI/Dzz/axeC+9BMydCzRpgkyTCRu/+QZCsRgiiQQBKhXUIhG6tm4Ntclk784rEABJSfb3beRIYNYs5DZqhG9++w0HDh7Ejbt3YXn0Hvn7+0MqkYDZbFCpVAgOCoLZZAJjDGp/f5jNZlgtFty7excGvR4WqxUCACIAtUJCMHfqVNQJDAQSE4GNG4FNm4AXX7SPV4qJAQYMAJ59Ftdzc/H9zp1IzcrCqaQkaHJywH1JScRiqAMCEBwcjMDAQDDYF/+OiYlBYFAQgoKCkJOTA4VSiQsXLiA0NBTtWreGNisLVrMZMrEYRr0eZoMBZqMREqEQ6ampSEtNxbXLl8GsVrSrXRtT//UvqDdtsnedO3IEMJuB+vWBgABonn8ea376Cck6HeQyGTp16ICePXpAmZcH/PKL/b3497+B994Dbt4EnnkGljp1sE4iwc9Hj8KMf6IGsVgMq8UCNYBIhQIz6tVD1JUrwPffAwsXwnTmDGYaDBDVqYOajRohJCwMEAiQm5cHuVIJuVIJqUQCm9WK5AcP4KdUolpICMAYxCIR/JRKpKakQCqVQiQQwN/PD9lZWfBTKADGYHn0nqlVKhjy8iCVSpGt0SBArYbNYkFaaiokYjGkEgkkYjFMOTkw63Sw5ObCkJUFOWOQaTSo/vAhmjOGWx9/jFrc58tsBtq0geHqVezQ65ECwD84GEEhIVCpVBDo9VDm5KDBvXu4JRTi4c8/Y0t8PKZs2YIIsRgXq1eHtEYNpKSnQyAWIzAkBLrcXPs1HoBMIkFOVhayMjKglMmQ/vAhbGYzwoKD0feJJ+B/5Ij9vIqMBI4dAwsIwMWwMBw9fx5mANJHP0oAT8nlCFKp7N0kjx+HKTsb+2w2aAAwqRQSgQAWoxFKiQQ2sxkBALrIZJBHRdm7xu/bB1teHo4LBGBSKWpGRaG6SATB338Db7wBfPYZcOeO/bOalwdjzZq4/fAhzDk5CBGLEa7VQtCvn/380Wqh/9e/oNi7F0aBADLGkAfgDIAsh3PH9ugzqZTL4ScWIywoCJFBQfaJZG7dAjIzgUGDgB9/tH/O8/Ls3eVv3wZq1gQCAwGbDbBagaws++ewfXsgIQF49B2IzZuBhQvt3bubNAHCw2ERifAwIwO5BgM0Wi3SMjORl5cHf4UCVrMZNosFQgBhISGIiY5GeEgIBH/+aS+XSGR/LKkUprZtcTU1FX9dvQrzo8+38NF3hkqlgkgoRE5uLkKCgyESiWAyGmG1WiGRSGAxm2HQ6xGqVsOUlQWZ1Qp/APVsNohEIsiOHQPatAEAfL5qFQ6++Sa6M4ZXATwAkAmghlCIAACCVavs17+rV2G9fx+HbTZoBAIIVSpYACiVSlhtNvipVBBLpbDZbIBAAPbou0EdEACJWAwh7OP/crRaKKRSKORyyCQSPExOBmw2iEUiCAUCMKsVkTYbGqalwSIQQMwYrAAShEI8sNlQPSwMXerUgeTYMafrv6Z2bWy/dQsmxiCVy2ETCBBcrRqEAgGEsE8WplQokKfTwWwywd/fH3k5OZBKJABjyMvNRU5ODgQAAmQy9IuMhOLWLUAotJ8HACzBwTio1yNNr4cU9m63nQAkAqgDQBkQgMBDhyB5803g6FH7/Ww2+7lx8iSgUNgLyxiQnAzWtCl0NhuOZWcj49F3ohWAUqUCEwjgHxAAk8WC7IwMBPv7Q8gYApVKmHQ6tNXpoGYMc/38EJebi+zsbKjV6kK+GYmnUEDoRSaTiR+zM2TIEH7722+/jXPnzhU62YXRaHSadEGr1SI6Oho3VCoorFaIhEKAMXugZ7PZL14AxCIRbBYLbIwBNhuEQiEEAoH9AmWzQfDoN4B/2oAe/S2A/WLjdGx7dhlCgQACrjCMQQj7l5Xg0Q/y/S18dF8UcbsAvj2w1QpADyAXwG0ASSIR/u7ZE4M/+ADzb82HwWCAZHkGnjt/Hr0A1IS98lLpKRT2ynPv3sCcOUC+xY2xY4d9tsaLF/kvn/LARCIIwsLsFaH/+z9gzJh/AlXGgFWr7BOyXLwIuDiZCRMKIYiNBV5/3T5WCgAePgRefRVs924IXDmOVAqMGGEPymQy+7HWr7dXol3l729f7/Hzz4HQUHvF7vXX7cFWITNhOpFIgA4dgC++sI+nZAyYNMkeJJflpC5Cof3xxo8H3n77n/ciPt4+IYEbSzSUqYAA4KmngGXL7Oc1AJw5A0ycaF8uw2IpeB+BwD6Zyn/+A3DjOwF7xWnCBH6scVGYQABBw4bAokXA4MFATg7YK6/Atm0bRNbCmgi8wyAQwCQUwgDAIhIh198fxpo1ETNrFlTPPee8c2oq2CefQLNvH/R378KcmwubxQIBAINYjFypFJm1a6P5+vWIeLTkwYmtW6F9/30E378PZV4eFBKJ/RpqtUL86DvLyhgsAgEgEkEgFsMmEECuVMI/MBByPz8IQ0Ls5/e77wJ+fvYgaNEi4OJF6DUa5Gq1sIhEECkUkKnV8G/dGsKpU+0BpMEAw+LFePjDDxDp9bDodLAJhdDk5MBPrYZSrYY6IgKBXboAb75pv9aZTMDq1fZzw2y2n+cREfYAc/hweyAE2AO1DRuAu3cBvR5QKu3la9nSvh8XiDFmD+AYQ/aOHdAlJkJx/TrEubnwUyqRm5sLiVgMpVxuP+9kMuef6Gh7oPrMM4BY/M/7kZlpb8S6ft0emIlE9tv9/YHGjf9poHJkswHbttkDxYwM+3O1WOzXm0e/GQCIxRAIhcjV6yFVKiGRSu2vg0gE1K5tvzYFBwNpacBPPwHHj9uDY50O2WlpEIhEfN0mNy8PJpMJYpEIeoPBPrZMKrW/NLCPv9NqtYBMBj0As1QK/2rVENCmDRpMnQp5vvUUL1++jHXr1iHvt9/wnEqFagoFaj7xBPyfew5o186+k9EIfP45cvfvR9r16zBkZsJqNMJmtSJHq4VUIoFYJILoUR1GAHt9hlkssDAGq9UKgUgEJhTaG6QlEpgsFoglEghEIkAggEgqRW5eHnQiEX7z98efUin6CASoWa0a2ufloaZaDZm/vz1YHzLEPgHa0aP292fvXlivXEFOdrb9/DUawSwWCAQCmB81okMggFAkgvVRnU4sldob5kQiCEUie4O9UomAsDAIY2Ls52/r1oBWa58dfO9eWM+eRXZqKgxWKwxSKUzNmyN87lwERUTYzzUugDQY7D+nTgGdOtnLmN+ffwJff43sCxeQc/cubEYjxAAMej1gtcJiNNrfY5MJTCIBE4mgt1rBRCKkVa+OZhoNTEYj6qenU0BYDigg9KIHDx6gevXqSExM5GejA+xTcq9fvx5XrlwpcJ+4uLhCB3Z748PCuOAwH4vFApFIBIFAAMOjzKFIJAJjDHK5HCaTCSKRCKJHX5KMMWRlZcFkMsFqtUKv1/MLOivkcqhUKlgtFqQkJ6NatWrIzspCUFAQBACyHmUu7929i/CwMIjFYpiMRgSo1cjJyUFKcjIsZjOqVatmbw23WqHy94fVYkFqaiosZjOEAgGUSiVU/v6QiMUwGAwwGY0wGgwwm832jKNIBD1jYCIR6tWvj6CgIIhEIogffdne0NzAp0c/xZ3sO/jhhR+QmZ5pn1r7zh0ESaUQ6/XISk9HwKNWMFit8FcokKvVQgT7+2cymeCnVEIikeDGjRtQq1RQq9UQCAQQiUTI0mggk8mg1WqhVqlgs9kQERGBvNxcWCwWMMZgsVggFong7+8Pg8EAxaOMoFwuh1KhgNVqhUwmg1wm419rwP7FZrJaERgcjJy8PFhsNgSFhABCIUwWC4RiMayMQaZQ2L8QuB+RCAgKsldsXGGx2CsEJpP9C9hodG6AsJ8Q/G/26IvXcTuz2eyVD7H4nwqNSASbUAihRML/D7HYXrEXutDEwJj9yy07215Grkw2m/23UGivuCmV9uC3kPOeP45GY6/sWSz//IjF9iBMKrX/Dgz8p5LIMRjslTSdruigWS63f/H6+9uPVVg5bDZ7GXJz/2nBfdSqzVdA/fwKPj5gr+RlZNhfB67Cx/1wHvUq4B/7cf+LRPbyqlT234U9ruNrkJpqPz+4H8cgubDzpJC/rVarfY0vxiCRyyGSSKDNzUVAUJA9oBeJ7OVwPI+538HBxZ/PjAE5OfYf7nkKhfbPgWPlOz+Tyf6+cM+HO8eEQvvEPv7+hZ+rNpv9vNDrAcb4DAwYs1cIhUJAIIDRZAIDYDSbkZaeDovVCnVAAMIjIqA3GmG12WAwGiGRSvneFIHBwZDKZMjUaCASi5GTm4vwyEgYTSaYzGYYTSZUCwuzV8YFAggkkqLP/TJgNBrtE1UR4uO4+hBXpS6sbkTctHYttFOmIECjoYCwHFBA6EVcQHjkyBF+9jEAmD9/PuLj4wtd1LOoDCF9WLxr619bkWPKwfmH5/Fm2zdRP6S+t4tECCGEEFJhccOiqI5b9oppziRlLTQ0FCKRqMCCo6mpqQgPDy/0PjKZjFpMfdDp5NN4sdmLMNvMuJR+iQJCQgghhBBSIfjycK1KTyqVonXr1ti7d6/T9r179zp1ISW+72LaRTSu1hiNqzXGxbSyWXCXEEIIIYQQT6OA0MsmT56ML7/8El9//TUuXbqEf//737hz5w5ef/11bxeNuIgxBiuzQiwUIzY0lgJCQgghxAecST7j7SIQUiFQQOhlL7zwApYuXYr//Oc/aNmyJQ4ePIidO3ciJibG20UjLtp3Yx/aRdlnKgtRhiA5JxkGy2NmeSSEEAIAMFvNmHVgFs4mnwVNa0A85b72Plp/0Rob/9yIS2mXfOrc0pv1yNRnersYLsnIy/B2EUg5oEllKriSDLg1WAyQi+VF3s4YAwODAAJYbBZYmRVCgRAigYi/b645FwaLAX4SPwgFQsjEMuiMOsjFcmiNWvhJ/WC1WZFjygEDg1KihNVmRYgyBFqjFlabFRKRBGKhGEaLERqDBhabBWarGWabGU2qNcGl9Evwk/hBLVPDbDMjLTcN1fyqIcuQhRBFCIQCIbIMWQhVhuKG5gaqq6tDKBDCZDVBLVPzF1wbs8FPai+n1WaFQqKwT1tt1CLHlAORUAR/qT/kYjnkYjnyzHmw2CzQGrUwWU2QiWQw28xIyUkBYwwR/hFgYLinvYebmpv4/tL3+Gn4TwhRhgAAvvvrO6w9txZvt38bEqEEtQJrwV/qjxxTDoIVwfxrLxVJYbFZIBaKoTPpYLKa4Cfxg0QkwZX0KwhWBCNEGQIbs0EmkkFj0EAmkkFr1MJf6g8rsyJIHgQGBhuzwcbsM1OKBCIIBfa2HgYGs9UMiUjCb3PE3cfxNu79L2x/QiqK/LP9FTUrcmXBfW7NVjPS8tKQZ86zX0MUITBYDLAyK/RmPSQiCfRmPQQCAQJkAZCIJEjLTYNYKEamPhM1A2oi25jNX4tDFCGQiqTIM+dBKVFCLpZDIBBAZ9TBX+rv9Ppm6DMQqgwttoxao9b+HcCssDEbrDYrZv0+C91iuuGv1L9wO/s25nafiwj/CCSlJuHJmk+CgUGj1yBAHgCZSAaDxQAbs8Ff6g+JSFJeL7FXVPbztig2ZoNQIERabhoUEgWUEvvMv9xCV9cy7UvUBCuCIRPLYLFZECALcHqt5vw+B52iO2HVqVWQiWSQiCRY1X8V1DLX6kqMMeSYcpCamwq9RQ+lRAmZSMbXifwkfkjJSYHeouc/b0HyIDzMfQilRAmNXoO6wXUhE9nL5yf1w62sW7iacRXLji9DnjkPz9R7Bh1qdED3Wt0hFpZsWg/GGIxWI2zMBrlYDovNAgEEkIgkpT5/bmfdRu/43ni51ct4t8u7JT5OYfRmPRQS+9qF3LUgy5AFtUyNfTf2Yde1XXi//fuIDI2kSWXKAQWEFRwXED71xVMQyu1Bm5VZIRVJYbaa+b+5yr3BYoBMJINQIITFZrHvZzPDYrPYv+gh4C8sUpEUMpEMIqEI6XnpUMvUEEAABgZ/qT8ffBktRugteshEMtiYDQHyAGQZsiARShCiCIENNuiMOoiFYj7YCpAHIMeUA7FQDD+JH1RSFV8mgUCAu9q7iA2NhcFiQHpeOgAg0j8S2cZs/oILAAGyADzMfYiYgBik69Pt5RZKkWvOhVQkRaA8EEaL0V7ZMWRCJVXBZDVBLBRDKpJCLVPDxmzIMmTBxmwwWo1QipUQCAQIVgTDYrNPty8UCBETEIMcUw50Jh1EAhFClCGIUkWhQ40OiFJFOb0v51PO4+Dtg8gz5+Fq5lX+Qp2Sk8IfLzU3FYHyQAgFQsjFcsjE9oqOyWpCw5CGyMjLQEpuCmzMBrFQDIlQYg9eJf7INGRCJBBBb9HzX5BcRU8mlsFsNYOBwWgxIkgRhBxTDiRCe1BotplhYzb+PTdYDJAIJbAxGx/wc8fiLtaZ+kwIBUJUU1aDRCRBdVV1tKveDkNjhxbbuFAcG7MhJScFfz78E9cyryEjLwPJOcl8ZRawZw5kYhkEEEAgEPCNFNzfZpsZZqsZIqEIOaYcBMoDIRVJIRVJ0S2mG7rGdEXz8OYulUej1+CHSz9AKpLiYtpF+Ev9oZKpoJKqcE97DwaLAbnmXLzb5V1E+EcUegydUYc/bv3Bv17ce19NWQ1totqgQUgDVPOrVuxrcvL+SdzT3gMAKCVKMDDUCqyFesH1IBVJ3XyVSyc9Lx23s24jQ5+BB7oHMFlNuJZ5DWqZGrmmXKhkKmTqM2G02Gc+VslUaBTaCFKRFCqpCrWDakMilKB2UO0SV3Ye6B5Aa9Qi25CNtLw0XEi9gBxTDjLyMpBpyESgLBBmmxk6kw45phwAgMVmwd3su/CT+vGfTY1eA5VMxQdO3DXOT+IHuViOp+s+jXD/cPSs3bPMKuAmqwl55jwcvXsURqsRF9Mu8hXdl1q+hAB5gNP+jDGsP78ee67vQY4px95oZjNDLBRDKBCCMca/rlqjFgKBAEqJEiqpCn4SP5hsJmj0GoiEIogEIqhlamQZsvjXwWg1wmKzIEQRgjxzHqopq+Fm1k2E+YXxr6PWqIVIKIKfxA96i57v/cA1QokEIphtZggFQtzT3sPvY35HsCKYfw56sx7v7HoHmYZM/ppXXVWdb7hiYHix2YvoUKMDAHtF/+uzX+Ou9i6ahzXHgVsHIBPJEO4XjtS8VAgggEgogkwkQ7YxGzmmHMhEMqhkKnSt2RXPNnoW0QHRhb7+jDF8eeZL/HH7D0iE9kAyzC8Mb7R5A7WDavP73cm+g1d/eZVv6JSJZUjWJSPcPxwigQjNwpph5pMzESgP5O9jtVlxOf0yqvlVQzVltceeQzqjDudSzqFJWBOn1wsA7mnvIe6PONzX3YferIfeokezsGaQiqRoGtYUf2f8jXC/cPSs0xPhfuEIVYZCKVGWe+CYZcjC7azbuJB6AXWD6yLHlIMT90+gXnA99KrTq8Dzys9is2DN6TU4eu8oH/QLBAJYbVYYrfZrSrAiGEKBkK87SIQSWJkVfhI/VFNWw42sG2CMwU/qh/S8dHSs0RHtqrfDosOL0DC0ITY8u4F/XZYeW4pvLnwDlVSFUc1HYUzLMU7lMVgM+DDxQxy7dwwCgQB6sx4qmQpSkRThfvaJ/owWI19X0Zl0qBVYCwqxAhKRBBn/396dx0dVn/sD/8yWyWTfEwKBEEAKArKpBJfgAlSsFrUKolxpb+lFoYLRXy3UqlUBvRetFXvlWhG0teKCWBG1waWxKluAKPsiW0IIISHJZJnMen5/xHOYSSbJLGfmnMl83q9XXu2cOTPznfEwc57zPN/n21qHCnMF8pLaj79UUyrKq8thc9qkQC3VlIqClALMHTcXcYY47Kzaia2VW7H52GbcPPRm3DXyri5/IzYe2oivK77Gd2e/Q4u9BXGGOBi0Bthd7UvZJMQkwGw1A4B0DggAOq0OLsEFg9aAfkn98Ktxv8LonNFeX+Pb6m+xqmwValprpHOlp697Gqt3r0ZZVRlmjpiJ6wZeh0Fpg3o6PAC0//tf9u9l2FW9Cw6XAya9CRaHBS7BhThDHOxOOxraGqQL9bmJuTjXeg6jskYhzhCHMaljcMuYWxgQhgEDwgjXXYYwWq8sknzEY8jpckKn1cHpcsLusuNg7UFsrdyKN/a8gWmDp+G3V/7W52Pt6Pmj+MfBf+Cd/e9gcNpgJBuTUZRfhJTYFPRL6oe8pDyYDCbYnDbpZFkQhPaTgR6yAS7BBUEQ0GpvRenJUmw4sAHpcel46tqnugymTptP4w+lf8DR80cxc8RMxBnikJeUB4fLAYvDArPVjLykPCQaE7G1citW716N31/9e9w89GaP59l0eBMe/dejmHnxTPRP7o+zLWdxed/LAQBnms9ga+VWbD+9HXeOuBNzx83tNI5mWzNufetW/CjjRxieOVwKXGxOG8qry3Gs/hgGpQ3C7676HQanDe7xc7Y5bXiy9EloNVrE6GKQZkpDv6R+uHbgtYiPie/ycU6XEyu3r8Q/v/8n4gxx6J/UH8mxyfhRxo+kEwqz1Yys+CxYHBYps253tl9oOFh7EHaXHScbTqLSXIkGawOqm6vx11v+in5J/Xocd01LDd7Z9w7Kq8txsvEkshOykRSThFh9LAamDsRF6RchISYBWfFZiDfE47zlPNLj0pFsTIbJYJIuaoiZ8Z602FrQ0NaAL058gcN1h/Ht2W/x6s2vShn/jo7VH8Nj/3oMrfZWGLQG/HjwjzHj4hnSxRNv6i31+N3nv8N3Z79DbmIurux/JYw6IwpSC3Corr0a4K/f/RWzRszC7EtmS497c8+b2F29Gw9f8XCX41GTF7e/iILUAkwbMk3aduf6OzFrxCwMThuMYZnDQvba51rOYWvlVry440UsuXIJivKLPO4XBAF3b7gbo7NH465Rd8HmtMGkN+Fg7UE8+eWT+ODOD6RKlpvX3YyHr3gYwzOHSxlP9wtkm7/fjP/b+X949453pee/es3VaLW3Ij2uPbh+bfprKEgt6DROu9OOF7e/iHX71mHqoKkoqyrD2D5j8dS1T0njvHndzVh85WJMzGtvLtfmaEOluRIuwYXy6nJckn0JjtUfw7bT21DTUoPq5mokGZOw5qdrQvqb7xJceP3b1/H+wfdhd9mhgQaD0wZjXJ9xOFR3CIkxiRicNhhv7HkDVqcVGXEZeOb6Z7xeQHv/4Pt4bstzuOeSe3DVgKuQEpviUyDdHUEQsPnYZry19y0suWpJl0GLS3Dh5//4Of5j1H/guoLrpO3T3piGX479JX469KfQabtZLzUEHC4HPjz8If649Y9487Y3O11kfq38NWw7vQ2zR83GhH4TAvqczrWcQ01LDeZtmoc//fhPGNtnrMf9Wyq2YPlXy/HslGeRFZ/V6QKV1WHFHe/ege/OfodJ+ZOQbExGfko+Fl6+0Ot4Gtsacctbt6C4sBg3DrkRAKRMqy92nN6Be9+7Fzvv38mAMBwEimiNjY0CAKGxsVHpoVAUcrqcwovbXhQWf7q4x30dTofw282/FW5/+3bhtfLXhHpLfegHKAjCn7b+SXi57OUu75/xzgxhV9UuweVy+fR8bfY24Zq11wg2h81j+/WvX9/je2q2Ngu3rLtF2H1md6f7fvH+L4TPj33e7eO3V24XJq6eKBytO9rtfnWtdcJVr14lvLnnTaHsdJlQcrREeHvv28LE1ROF4k+Ku3xcvaVeKHylUFize43QYGno9jX8caTuiFC0pkj47Nhn3e5ndViF6eumC8u+XCZsr9zu838TOX1z6hth6l+nen3t789/L1z72rVC2eky4XzreaGisUL48/Y/C7e/fXuXz9dsbRauf/36Ht+70+UUrnvtOsHutEvbpr0xTbDYLYG/mTD7+tTXwlOlT0m3z7eeF+58986wjqHF1iJMfn1yp+1fnvhS+P3nv/f6mL99+zdh1Y5VgrnNLPxp65+E57c83+Pr3LX+LqG6qVoQhPb3eetbt0r37Tm7R5i0dpLHf0v31/rdZ78THE6HtO3u9+4Wyk6XCScbTgr/+Y//FF7Y+kKPr9/Ry2UvC5f95TJhe+V2n/avMlcJHxz8QPjq5FfCqYZTPe7fZG0Srnz1SuGFrS8ITdYmn15jV9Uu4eo1VwuNbZ7nJ1aHVbj2tWuFVlurT88TCnWtdcJtb90m3a5srBRmvjtTsfGIdpze0ek7urGtUZj8+mSPYyYYx+uPC7Pfm91p+y3rbhGqzFU9Pr7J2iRUNFYIGw9tFBZ9vEh4c8+bXvd7svRJYdPhTUGN9fS50zzHDRMGhBGOASGpwe1v3y6cNp/udp9VO1YJz37zbJhGdEGTtUm4+c2bvd73xfEvug2QuvLsN88KHx76ULrdYmvxOCHszon6E8Kc9+d4bKtsrPT6A+3NsfPHhJ+++dMu77c5bMKUv04Ryk6Xeb1//qb5wkeHP/J636u7XhVeL3/dp3H4q7Gt0eMEzJtfvP8L4YODH4Tk9f0xf9N84VDtoU7b522cJ+yv2d9pe/EnxcK/T/7b63P9dvNvfT4pWv7v5cI/j/5TEIT2Y2r6uul+jFp5x+uPCws2LZBudwwQw+X+j+4X9tXs89j2yGePdBksnW89L8xaP0u4+727hVvW3eJToPLKzleEd/e9KzhdTuHlspeFv3/3d4/7f//574WtFVs7Pe4nf/9Jp4DqUO0h4Vcf/Eq48Y0bu/x364s9Z/cIRWuKBKvD2u1+X5/6Wrj05UuFF7e9KCz6eJEw9v/G9njh4d4P7+3xooY3K75e0elxnx/7XHj630/7/Vxyu/GNGwW70y787du/CeNfHu/1Ql24uVwuYdob0zy2lZ4olf3zuuFvN3gEmBWNFcJ/bPgPv5+nrrVOmPHOjE7bzW1mYcpfpwR9UY/nuOHDrhFEFLT5l87HqrJVXd7vdDnx1r63cP/l94dxVO0SYhJg0BqkuRXu/rzjzwFNlL912K14/+D70u09Z/dgVJZvcxUHpAzA2eazHtsO1h7EmJwxPj1+YOpADEgegN1ndnu9/887/oy7R96NcbnjvN6/aMIibDy80et97+x/B7cNv82ncfhLbA5lsVu83u8SXKhuqcZNQ28Kyev744bBN+CTo5902n6i8YTXssdfX/5rrC1f22m70+XErupdHiWU3Zn+o+n4+MjHAICtlVsxsV9krUebFZ8lze8G2tdnDWWZaFduGXYLPjj0gce2o/VH8aOMH3ndP9WUipqWmvZ5xDPe67b8VzQudxx2V+/GA588gFU7V3UqIZ/+o+lYt3edxzaL3YIYXQwSYhI8tl+UfhEarA24Jv+aLv/d+mJE1gjcPvz2Tu/dncPlwCOfP4KP7voI8y+bjz/++I9Yft1yzHx3ZpePabY1o6qpCtcOvNbvMY3PHY+yqjKPbbvO7ML43PF+P5fcxuSMwbbKbfjLrr9g5Q0ru5xXF04ajaZ9XuAP8/+AH35ffJwL76tR2aOwp2aPdPudfe/gjuF3+P08aaY0r7+tpSdLcdNFN3HaUgRhQEhEQbtqwFXdrve0o2oHrup/VcCNRYJ1Wd/LvI6v1d7abZOXruSn5KPCXCF1sjxWf8yneX2inIQcnGk6I90+VHcIF6Vf5PPjZ46YiX8c+ofX+zYd2YS7Rt3V5WMHpQ7C8YbjUrMmUU1LDdJMaT7P7wjEtfnX4osTX3i9b1vlNozOHh2y1/bHpPxJKD1Z6rFNbAzhTX5KvkcgJDpYe9DnCwUAUJBagJONJwEAnxz9xGN+UySIM8TB4rgQ8B84dwDDM4eHfRwXZ16Mw3WHPbY125qRaEzs8jHTh07HvPG+r/87PHM49p3bh8PnD6Nsblmneblj+4zF0fqjHtsO1B7A8Azvn8dbP3sLD0580OfX78qdI+/sFIi6++7sd5jQb4JHN9gpg6YgzhDX5fICZVVl0nxGf43pM6bTd+/+c/sxMntkQM8np6sHXI0nvnwCNwy+QWpqpAY5CTke3yenm077NP/aH0UDilB6ov07rsnahE1HNmHyoMkBPVd+Sn6nf2/bT2/HZX0vC3qcFD4MCIkoaGIXW3EZi452Vu1U9Af30txLseP0Do9tDW0NHl0C/VWQWoBTjacAANXN1eiT2Mfnx16RdwW+rvhaul3TUtNl51JvLu17qdcAt661DjkJOd0uGaLRaDCx30Spbbtob81en7OUgfrJRT/BpsObvN733oH3MHNE11mKcIqPiYfNafPYdrz+OAamDOziEZA6D7o7VHfIrwyZ2PV5Z9VObD+9PeT/PULtaP1RDEr1rRuhnDLiMlDTUuPXY+ZfNh8/uegnPu8fo4vBodpD6JPQx6+GWkPSh/g1Ln+lmdJgc9o8Mkzuvqn4BlfkXdFp+4R+E7CjaoeXR7QH9hdnXhzQeJKMSVL3X9G51nPIjPP/QpzcJuVPam82NOpupYfioU9CH48Lhmeaz/j1++KL8bnjsat6F+ot9bjmtWswJG1IwF2sZ46Yibf3vS3dFgQBX1d83alpDakbA0IiksVF6Rd1ukoo+r7+e5/bVIfC2D5jsfPMTo9tx+qPoSClcxdAX43OGY3y6nIAwNmWs1Jbcl8MzxyOQ7WHpNv1lnqkmlJ9frxeq4fD5ei00PLemr0YmdXzlff8lHycbDjpsa3SXNllu365FKQW4HjDca/3HTl/pMuSPiXoNO1ddUXH6o91G9zkJ+fjRMMJj21H6o5gSJr/AcCmI5uw/LrlEVluJS6DA8CnzsAhGUOHz83pcoZkXdVVP1mFR65+pMv7TXqTtIQO0H7hx5/viUANyxiGg7UHvd63pXKL14tz3i6aib6v/95rx1RfdfzsBaijA7pBZ0DJ7BL0Teqr9FA89EnsgzPNFwLCutY6pJvk7TKcGZ+J2tZa/O+O/8Wc0XPw0k9eCvi5RmWPwoHaA9LtY/XHMCxjmGIVQRQYBoREJIuxfcZ2WTZ6svEkBiQPCPOILhDXvXRX3VzdqbW3P/KS8nC66bT0XP5k+ApSC3Cs/ph0u76tHqmxvgeEQHsmoNHa6LHN1/c0IGWAVJooqjRXyl6W1JFGo5GWL+nI7vJtmYhw6ZvYV/rvC6DHRdeHZgztdEEkkCA7zZSGz49/HvFX15ttzYg3dL28SajptDopYxuqQOzqAVd3Gyj1TeyLqqYq6XZNSw2yE0IfEI7pMwa7q73PMW5oa/C6hMnonNEoP1vu9TEnGk4gPyU/4PHE6GKktUqpZ30S+qC6uVq64BeqANqgNeCz45/h3vH3BvU8KbEpaGy78Fu07fQ2acklihwMCIlIFkPTh+JI3RGv94kLzCvNPaNW11oX1NpufRIvlPXUt/mX4cuKz0JN64WStkZrY6c1n3rSN7EvTptPe2w7bznf42LQQHuGsGM2q6qpCn0S5C1L8iYrLgt1Fs+5Ss225k6NNpSWm5jrcTLf02c7NH2oR9YXCKw0bmDKQByqO6SKfy+BiNXHos3RhkO1hxTN+LoHYxXmipBf7PAmIy7DY65uTUsNsuKzQv66Y3LGeG06JQhCl5lSk8HUZdBmdVp9arTTlcy4TOlzaLW3hnSecm+QEpuChrYGrNy+sttmP8GaPWo2kmOTZVtzUfx93Va5DZf3Y0AYaRgQEpEsClILcKzhWM87KiQ9Lh3nLeel23WW4Mpw3AOG7k60vNFoNB6ldf4+HgD6JnlmsADfA8KOwQ7QHpQlGUO/8G92Qjaqm6s9th2sPYhhGeHvRtmd7IRsj26wPZX1DkgZIM0pFbXaWzs1G+nJFXlX+PTfUK3Ek9n95/Yr0lBGNCB5gHTRo9Jcibyk0JZDe5Mel+7RqOVc67lus8xyGZw22Ot38bnWc8iK6zogDVUZZ2Z8pjSns7a1Vvbyx94mOTYZZqsZDpcD6w+sh0EbmsqJ24bfhg0zNsjyXO6NcI6cD6xUnpTFAl8ikkWaKc0j4FKbvKQ8VJorpaxgsBnCjLgM1Frar3oLEHrYW35dZQh9OdnSa/VwCp5lmy32Fr+Dl0DkJOS0B1pulXNVTVWKZHC6kx2f7TGPp6dgO82UhvNtwR//kwdNxr779gX9PEpJiU1BXWsd3tjzBl6c9qJi48iMz5SCsYrGCkWC03RTukc23O60B9y4wx86rc5rg69Tjae6LWGO1cfCYrcElQ30xv23oa61+9JrApKNyVIJpsPlUEUDnp4MTR+KldtWwiW4EKOLUcUcUfIPM4REJAu1/wB0DFjrLHVBZWK0Gm2npi7+Cubx6XHpqG+r99jmz3tyz1ACQJujDUZd6MsUOwZaQPu8pmSjfyWzodYxQ3i+7Xy38zyTjcloaGvw2KbEhQKlpcSmYN3edbi+4Hq/lmKRm/t/j3A0TPImIy6jy6UclFDbWtttcJEdn+13d1ZfJMYkosnWBCD4yoxokGRMQqO1Eect53H3qLtxZf8rlR5Sjy5Kvwhrv12Lt/a9hR8P/rHSw6EAMENIRCEVbNAkl2RjskcTFrPVLEsQ4nQ5odP4PwcjJTYFjdbGgJe+SI1NRb3FMyA0W81BlX2GI6jPiMvwWBAZABrbGpGT4XtTnnDoOP+rp8/WW1amY9AdDbLjs/HC9hew+ubVio4jOTYZFeYKAMrNIUyPS+80XzZcNNDAJbg8StHrLfXdft9kxWehpqUGA1I8G4AFexwnGhPRZP0hIAyyMiMaJBmTYLaaYXVaseanayJizuVF6RehqqkKtf+vNqJL3qMZM4REJButRtupg6TVaVVFgwxxXoaozdEmS2mUvw1lROmmdNS21gYcMItztdz50+ZfbP4RbsmxyR4d6QAEFRiHiniVXuQSXLI1X+jN8pLzsP/cfozIGqHoONzL7pRqWuQ+hnBLNaV2+n7o6bvK25qBclzQEzOE7x14D2vK1ygynzOS6LQ6OAUnWu2tMOnlLd8NlSHpQ7Bp1iakx6WrvlqIvGNASESySY3tfBLSZG1CYkyiMgNyk2RM8jg5szltskzWD3SNKDFAtTqtiNXH+v34lNgUNFgb/H6c++OVOFn1VlqpxpLRjhllf9md9qhchysvKQ8XZ14c0DEtJzEDf+DcAcWydO4XFVyCK6wnyslGzwtgwA+Nkbope06ISZBKO0VydAUVM4TvH3wf//z+nxiYOjCo54sGYlY2UoIrvVaPaUOmKT0MCgIDQiKSTccmCoB6lhTwdoIf7I+tyWBqb1QTQECYEJOAZltzwAFzojGx0wmfP7xlGMNBPFF319jm/7IboWbQGaR17AD/y+YsDvmbc0SC/JR8LLx8odLDkDLR9310H+xOuyJjEEv/gPB/D3oNCHvIEIrfSe6abMFf0EsyJqHJ1iQ1suqbqK6F4NUoGucfk7IYEBKRbDrOuwLUs+5Ux1JFOX5wU2NTcfT80YDmxCTGtF81b7I1IdHo/wlXsE1tko3JHk1pwjXfLTm2c2Aux0lnqPlyvIjztgC0d2uMkHIvOZkMJvx8zM+VHkZ7JtragD4JffDFPV8oMgb3eaVnm892u+SD3NyDUVFjW/el2V4DQmtg30/upO86axPsv7ez9JpIhRgQEpFsOq67BbTP1VO6fAwIvgTQGykgDDJDqEQGNcmYJDV6AMJ3RTpGFwOb0+axzea0qWKeabDiDHGw2C0AfsgQRmFAqBZGvRE2py3gCy5yqzBXoH9y/7C9nreAsKfy9MSYxE4BodlqDvpiTaIxEWZb+1iisYw6EHanPWTrDxJ5w4CQiGTjLUOolhPjjpkpOTJiqaZUHDl/JLAMobG90YJS2bH4mHi02Fuk20p2xHS4HAF1ag0XXzOx8YYLn2ko1nOjyFXRWBHWpS86zpkG2i+8dLcOYkJMgsdFIgCyBNRihpB8Z3FYVFFZQ9GDASERyUbsnOlOLSfGJr1Jyt7IJc2Uht3Vu5Gfku/3Yz3mECqQwYg3xEvZAKfL6dGeXglqbp5gc9p8ynLHx8SjxfZDQKiSCyGkDh8d/QiXZF8SttfzliH0JSD0WjIa5AUrMVtLvqtrrVNd52Xq3RgQEpFsvK27pZaSUY1GI3tZZGpsKk41ngqojbp48tVsa1YuQ/hD8NLTiWI0EwTB57I59yBbLRdCopla2vZb7BY4XA4MSR8SttcUKxDc9ZSJ77KpjAwXrDqu0UndO95wHIPTBis9DIoiLOYmItnEG+LRam/12NabMyXiQuWBNElwbyoT6EK+Gs2Fxaf9bTCTEJMglTcyIPROnO943nLep/9G7p9pbz7uI8WZpjMYkanseogajQZ7avZgZNbIsL5uV+uMdpeJNxlMaHN6PqbJ2oTcxNygx9Nka+L6g37Ye+9e9Enso/QwKIowQ0hEsjEZOpdlqjVTIke2cFL+JJz7f+cCemywy04Ank1MrE6rX41Z3LNZNqcNRl3kN3WRm0lvgsVh8Tkg9CgZVelxH01cgivgiy1yMelNONV4CjkJOWF93a4CQn8fI1eGsN5Sr/h/i0gyMHWgKiprKHowQ0hEsonVx3a6wtzmaAuo6UooBbNcgzuDzoCMuIyAHuvRVCbAE64EQ3tGKj4mHlaH1a8sn5Ilo1qNVspsqpk479TXgDDOECdlyJkhVN7Xv/ha8SUO4g3xqGqqQmZcZlhfN5CA0Kgzdrqg5+ux35PzlvNIje16DUQiUpa6f42JKKJ4a9yiphNjDTQQBAF2l13xjJgcy07Ex1zI8jlcDr/alLt3xAx3QGjSm/w+WVWCydCeIaxvq/fpZNaou9A8gxlC5aXHpSvemCPOEIczTWek8vJwCSQgdF83UVTXWhfwRS931c3VSDUxICRSKwaERCQbb2vMqenEOEYXA7vLropGN3qtHg6XI6hlJ+INF7J8dpd/61a5B5NWp3/ZxWDFGeKkcQPhWwPRX/5mCN2Pf7U0NCFlxcfE40zzGSTHJof1dQMJCL2ptdQGtM5qR48VPYZbh90a9PMQUWiwZJSIZOOtYYEagi9RrD4WFrulxwWawymYklGj3gir0wqgPUPoz6LPsfpYKXgJ98Lw3poPqZGYIfQnIJS6jDrUcyGElCOWjCYbIzMgtDvtsnw3/L7o90E/BxGFDgNCIgopNZWMiidJagpSm23NAZeMup/0OVwOGHS+Zwjds1nhLhmNM8RJ5apAeymvGomlrYFkCC129Rz3pJw4Q1x7QBghGcKOF/UcLodcQyIiFWPJKBGFlJpKRsUTfDUFhC7B5Vdmz51RZ4TV0Z4htDvtfj2PQWtQLCDseLKq2pLRH7rm1rfV+zT/ySMgZIaQ0N48qsJcEfaGKu7/vgN14NwBFKQWyDQiIlIzBoREFFLMEHYvmI6nnTKEfswhdM8E+NuhNFhG/YVAVs3EZSca2xp9agrCDCF1lJuYC0EQZFm6wR/drTfoq8N1h3FJ9iUyjIaI1I4BIRGFlJqCL/eAsDecrMfqY6U5hHaXfxlC4EJmLtwZQqPuwtxHQMUloz9kCAUIPi2R0TFDGGeIC/UQSeXykvLQN6mv0sPwmfsFqnOt55AZH97lMohIGQwIiSik1FQ6p7YMoUEXXFmXUW8MeA6hu3AvTO8eOMm1JmQoiBlCX7FklDrKS85D30R1BIT+lmafazkX9vUTiUgZDAg7yM/Ph0aj8fj77W9/67HPqVOncNNNNyE+Ph4ZGRm4//77YbN5ntTt2bMHRUVFMJlM6Nu3L5544olOJz6lpaUYN24cYmNjUVBQgFWrVoX8/RGFm81p86uUMZRi9bGwOCyqCQgTYxI9mqv4K1YfG/AcQuBCZi7sGUK3klGn4FR88fCuiBlCX7FklDpKM6Xh9VteV+S1g52be671HLLis2QaDRGpGbuMevHEE09g7ty50u2EhAsdAJ1OJ2688UZkZmbiq6++Ql1dHe655x4IgoCVK1cCAMxmMyZPnoxrrrkGO3bswOHDhzFnzhzEx8fjwQcfBAAcP34c06ZNw9y5c/G3v/0NX3/9Ne677z5kZmbitttuC+8bJgoxOeazyEFtGcJ4w4W1AANh1BkDnkPoTsmSUbvTv/UTw8mkN/m1PEbHDKEajjFSXm5iriKv616K7XQ5odP0fOFFo9HAJbig1Whx3nKei8kTRQkGhF4kJiYiJyfH630lJSXYv38/KioqkJvb/iX/7LPPYs6cOVi6dCmSkpLwxhtvoK2tDWvXroXRaMSIESNw+PBhPPfccyguLoZGo8GqVavQv39/PP/88wCAYcOGoaysDCtWrGBASBHN/YQCUNf8MJNBXV1Ggw3Egp1DKLI6rUiMCV/TC/cMod1lD7jUNdRMBhNqWmp8aigDeAaELsGl2swnRR9fv2vEqgOTwaSq9VqJKLRYMurFM888g/T0dIwePRpLly71KAfdsmULRowYIQWDADB16lRYrVbs3LlT2qeoqAhGo9Fjn6qqKpw4cULaZ8qUKR6vO3XqVJSVlcFut4fw3RGFlpqXFPBoKqOC+V1NtqagAjE55xAqlSF0upwBB7KhZtKbcLrpNNJie16DEPAMCNV0IYTI5rT5tMC8+/e31WEN69xiIlKOOn+FFbRw4UKMHTsWqamp2L59OxYvXozjx4/jlVdeAQBUV1cjOzvb4zGpqamIiYlBdXW1tE9+fr7HPuJjqqurMXDgQK/Pk52dDYfDgdraWvTp08fr+KxWK6zWC935zGZzUO+XSG7iCYUaOyzG6mNhtprR5mhTRbOEYBalB4KfQyjy9WRRLu6Bk8PlgF6jzp8ik8GEqqYqn9di82iWo6ILIUQ2pw0x2p4v+ohrtQLBVR0QUWSJigzh448/3qlRTMe/srIyAMADDzyAoqIijBo1Cr/85S+xatUqrF69GnV1ddLzeZsPJQiCx/aO+4gNZfzdp6Ply5cjOTlZ+svLy/P1YyAKC5PesxGHmjIlYrBqsaujA+SIrBEo7FcY8OMjdg6hW8mow+VQ7UmnlCE0+ZEhdAW3GDhRKPhTMip21tVAo5r530QUWur8FZbZggULMHPmzG736ZjRE02YMAEAcPToUaSnpyMnJwfbtm3z2Ke+vh52u13K+OXk5EjZQlFNTQ0A9LiPXq9Henp6l+NcvHgxiouLpdtms5lBIamK2ktGLXZL+5IAKugA+fT1Twf1eKPeKMscQiVLRlUdEBpMOG32MyAMYhkRolDxJyB0//4mouigzl9hmWVkZCAjIyOgx+7evRsApBLOwsJCLF26FGfOnJG2lZSUwGg0Yty4cdI+S5Ysgc1mQ0xMjLRPbm6uFHgWFhZi48aNHq9VUlKC8ePHw2Do+iq/0Wj0mJtIpDb+rt0WTmrLEAbLoDXA7myfcxzMHEKrw8oMoRcmvQkt9ha/A0I1r61I0YkBIRF1JypKRn21ZcsW/PGPf0R5eTmOHz+Ot99+G//1X/+Fm2++Gf379wcATJkyBcOHD8fs2bOxe/dufPbZZ3jooYcwd+5cJCW1d6KbNWsWjEYj5syZg71792LDhg1YtmyZ1GEUAObNm4eTJ0+iuLgYBw4cwKuvvorVq1fjoYceUuz9E8nB/YQimHltoSDOj1FLl9Fg6bV6OFwOAMHPIVQyQ6jWbpziRQNfA0K9Vg+7097etEgFGWgiUSABoZqqO4gotNRzpqYCRqMRb731Fv7whz/AarViwIABmDt3Ln7zm99I++h0OmzatAn33XcfrrjiCphMJsyaNQsrVqyQ9klOTsbmzZsxf/58jB8/HqmpqSguLvYo9Rw4cCA++ugjPPDAA/jzn/+M3NxcvPDCC1xygiKe+2LezbbmsC5n0BMpQ6iSktFgGXQGKSB0uBwBBbmCILQ3lQljN0Gj3iiVVjoF9XYZFZdOSY31bS028YJfsM2CiOQi9jdghpCIuqPOX2GFjB07Flu3bu1xv/79++PDDz/sdp+RI0fiyy+/7HafoqIi7Nq1y68xEqmde5c6tZ0Y97aSUb1WD7urvWQ0kDmEOq0OTsEZ9gxhjC4mIkpGAWBywWRkxWf59ZhmWzPiDfEhGhGRb3RaXft6mBqdXwFhbWtteyCpooZgRBRa6v0VJqKI5N6lLth19uQmrUPo7B0lfQatZ4bQ3zmE4hzEcAeEeq0eTsEJQP0BYcnsEr8f02JvQXwMA0JSlnjBSKf1LyCc8e4M9P153zCMkIjUgnMIiUhW7p0W1ZghtDgssNgtvWYOoZQhDGAOoVhyanWGt6mM+9xHtQeEgWixtTBDSIpzbzrla0AoXihrsjWFdGxEpC4MCIlIVgbdhZOQJmsTEo3qyxAG05FTTYINrMSAMtwL0/f6gJAZQlIB9znGvgaEkwdNhl6rR1VTVaiHR0QqwoCQiGRl0BqkrJUaS0bF7pa9gUeXUZfd74XpxZJTJUpG3QNCnUadXUYDxQwhqYFec6GCwNd/42mmNPz75/9mQEgUZRgQEpGs3K9Kq61kVKPR9Ko14tzfT8AZwh/mEPobTAbDPSB0utTbZTRQzBCSGrhXa/hz0SclNgVmq5nLThBFEQaERCQrMcgA1Fcy2psFUgYrBmZOwRnWtQB7e8loq72VGUJSnHvTKX8CwhhdDNocbewyShRFGBASkazcS0bVliEEeu9iywE1lXE7YQyn3h4QttiYISTluTed8qdxVIwuBi22lrDOKyYiZTEgJCJZeTSVUdkcwt7M4XL4XfYpnjCGOxPQ6wNCO+cQkvLcv4vbHG0+r70ao4tBk60prPOKiUhZDAiJSFYdM4QsGQ2PQBamd5/vGU5ajRYuwQWglwaEzBCSCrhXALQ52nxeaidGF4NmWzOMOmYIiaIFA0IikpV7kNFkbVJdyWhvnRcT6BxCMYOgFIfLEdb5i+HADCGpgXvJqL8BITOERNGFASERycqjqYxNfQFhbxXMHEIl51X2tgyhRqNBs62ZGUJSXMeSUb8CQmsTM4REUYQBIRHJyr1k1OKwIM4Qp/CIPNld9l6xKH1HwcwhVJJT6F3LTsToYlDfVs8MISnOvWTUYrf4HBDqNDq02FuYISSKIgwIiUhW7lelXYILWo26vmb8OTGKJMHMIVSyjLa3ZQhjdDGot9QzQ0iKc2/e5E+GUKPR+LVMBRFFPnWdqRFRxHPPEKqR3WUP6yLs4RLJcwh7W0DYam/tVe+JIlOgASHQvm4hl50gih4MCIlIVu4ZQrU2cNFo1DmuYASUIVRoHUJ3vS0gNOlNsDgsSg+DyDMgdPoXEFodvq9bSESRjwEhEcnK/SREjQRBUG2gGoxg5hCyqYx84gxxaLW3Kj0MouAzhGwqQxQ1GBASkazcS0aVDDS6cqjuEAYkD1B6GLILqMuoQusQunO4HNBpes+yEya9iQEhqYJOq5P+fdud/pXKW53MEBJFk95zWZaIVMGgU/ccwqXXLsWNQ25UehiyEYNul+Dyez0/vVYPm9OmaOMfu7N3dX2NM8TBYmfJKCmvY7WGP6XyDpeDASFRFGFASESyMmjVPYdw3vh5Sg9BVsF8xnqtHq32VkVP/AIpdVUzloySWui1ejgFJ4D2C0b+YlMZoujBklEikpXaM4R0gUFrQItN2fXGAmmGo2YGnQE2p03pYRBJGUJBEAIq32eGkCh6MCAkIlmpoXMl+Uav1Su+AHVvKxl1upy9KsClyCUGhLWttciMy/T78c225hCMiojUiL9aRCQrrUYLp8vZ3izEzzltFBhBCKx5j0FnQKu9VdFugr1tXcje1jWVIpcYEB6qO4Sh6UP9emzpnFLkJuaGaGREpDb81SIiWYmNC/xtc06B0Wq0cAmugErC9Fq98iWjvSxDyICQ1EIKCGsPYWiGfwHh1QOuDtGoiEiNWDJKRCFhdVi5jlUYuDeO8JdBa2BTGZklGhMxIKX3LWtCkUcMCL+v/x6D0wYrPRwiUjEGhEQUEnaXnU0JwqBja3l/H6vUHEIxo9nbmsrMHTsXW/9zq9LDIJK+G1rtrYg3xCs9HCJSsd7zK0xEqiFAgM1p61WZH7VyX3zaXwadQbGAUFwuo7eVjOq0Opi0JqWHQSQFhDanjRfniKhbzBASUUj0thN9tdJr9XC6AisZFecQsqkMUe8jBoR2J6s1iKh7DAiJSHYaaFgyGiZ6TeAlo2qYQ2h38cIBUShIGUKXjf/GiKhbDAiJKCRYMhoeYsmoWILpDzWsQ9jbmsoQqQUzhETkKwaERBQSPAkJj6C6jOoMii47IQgC7M7e1VSGSC3c5xDyogsRdYcBIRGFhM3JMqVwiNQuozqtDi7BxZJRohCRMoT8N0ZEPWBASEQhwWYh4aHTBN5lVK/Vo9XeCqM+/E1ltBotnIITgiBAq+FPEZHcxIDQJbj4b4yIusVvCCIKCbY6D49guowq2VRGp2nPEBJRaARTPUBE0YUBIRGFBJedCI9g1iEUM4RKBIRajTbgQJaIeiYGhIE0nCKi6BJVAeHSpUsxceJExMXFISUlxes+p06dwk033YT4+HhkZGTg/vvvh81m89hnz549KCoqgslkQt++ffHEE09AEASPfUpLSzFu3DjExsaioKAAq1at6vRa69evx/Dhw2E0GjF8+HBs2LBBtvdKpDQuOxEewWQBxIBdqTmEgTbDIaKeMUNIRL6KqoDQZrPh9ttvx7333uv1fqfTiRtvvBEtLS346quvsG7dOqxfvx4PPvigtI/ZbMbkyZORm5uLHTt2YOXKlVixYgWee+45aZ/jx49j2rRpuOqqq7B7924sWbIE999/P9avXy/ts2XLFsyYMQOzZ8/Gt99+i9mzZ+OOO+7Atm3bQvcBEIURO9uFh16rR5ujLaBOneJjWDJK1PswICQiX0VVr+8//OEPAIC1a9d6vb+kpAT79+9HRUUFcnNzAQDPPvss5syZg6VLlyIpKQlvvPEG2trasHbtWhiNRowYMQKHDx/Gc889h+LiYmg0GqxatQr9+/fH888/DwAYNmwYysrKsGLFCtx2220AgOeffx6TJ0/G4sWLAQCLFy9GaWkpnn/+ebz55puh/SCIwoDLToSHTqNDm6MtoPJcMWA36hRqKsOSUaKQEQNCAULPOxNRVIuqDGFPtmzZghEjRkjBIABMnToVVqsVO3fulPYpKiqC0Wj02KeqqgonTpyQ9pkyZYrHc0+dOhVlZWWw2+3d7vPNN9+E4q0RhZ3VaeUcwjBghpCIvGGGkIh8xYDQTXV1NbKzsz22paamIiYmBtXV1V3uI97uaR+Hw4Ha2tpu9xGfoytWqxVms9njj0htDDoDLHYLS0bDQAwIA/mslQwIxWUniCg0GBASka8iPiB8/PHHodFouv0rKyvz+fk0ms7duARB8NjecR+xoYwc+3h7fXfLly9HcnKy9JeXl9ft/kRKMGgNii14Hm10Wl3AGULx+yYlNkXmUfVMp9WxZJQohBgQEpGvIn4O4YIFCzBz5sxu98nPz/fpuXJycjo1damvr4fdbpeyeTk5OZ2yeDU1NQDQ4z56vR7p6end7tMxa9jR4sWLUVxcLN02m80MCkl1DLr29e1YMhp6wWQIRelx6TKOyDcsGSUKLS47QUS+iviAMCMjAxkZGbI8V2FhIZYuXYozZ86gT58+ANobzRiNRowbN07aZ8mSJbDZbIiJiZH2yc3NlQLPwsJCbNy40eO5S0pKMH78eBgMBmmfzZs344EHHvDYZ+LEid2O0Wg0esxfJFIjg9aAFhszhOGg1+phcVgCyhCK4g3xMo7INywZJQotnSbwNUqJKLpEfMmoP06dOoXy8nKcOnUKTqcT5eXlKC8vR3NzMwBgypQpGD58OGbPno3du3fjs88+w0MPPYS5c+ciKSkJADBr1iwYjUbMmTMHe/fuxYYNG7Bs2TKpwygAzJs3DydPnkRxcTEOHDiAV199FatXr8ZDDz0kjWXhwoUoKSnBM888g4MHD+KZZ57Bp59+ikWLFoX9cyGSm7jgOecQhl4wXUZFPZWqh4JOywwhUShpNBp2GCUin0RVQPjoo49izJgxeOyxx9Dc3IwxY8ZgzJgx0hxDnU6HTZs2ITY2FldccQXuuOMOTJ8+HStWrJCeIzk5GZs3b0ZlZSXGjx+P++67D8XFxR5lnAMHDsRHH32Ef/3rXxg9ejSefPJJvPDCC9KSEwAwceJErFu3DmvWrMGoUaOwdu1avPXWW7j88svD94EQhYhBy5LRcAmmy6iSuOwEUehpwKCQiHoWWWcQQVq7dm2XaxCK+vfvjw8//LDbfUaOHIkvv/yy232Kioqwa9eubvf52c9+hp/97Gfd7kMUiQw6A863nWfJaBgEGxDuv2+/zCPyjU6jY8koUYgxGCQiX0RVhpCIwkPKELJkNOTELqOBftbDMofJPCLfsGSUKPQcLge/h4moRwwIiUh2Bh2byoQLS0aJqCs2p43fw0TUIwaERCQ7ziEMH71WD4vdEnGftU6jg91lh1bDnyGiULE77QwIiahH/CUmItmJXUZ5IhJ6Oo0Obc7IzBBaHdaIC2SJIonNaWPJKBH1iAEhEclOWpieJyIhp9fq2wOrCPusdVodrE5rxAWyRJHE7mKGkIh6xoCQiGRn0BrQYm9h9icM5FiYXgnS+okRFsgSRRKb08bvYSLqEQNCIpKdmCHklenQk7qMRthJn1QyyoCQKGTYVIaIfMGAkIhkx2UnwidSu4xGaiBLFEnsTju/h4moRwwIiUh2eq0eNqcNOq1O6aH0emJAGGknfVqNFlYnM4REocQMIRH5ggEhEcmOWZ/wEefiRVyGUKOD1cGmMkShxKYyROQLBoREJDtmfcJHyhBGWBDOklGi0GNTGSLyBQNCIpIdT0DCR1yYPtIybSwZJQo9LkxPRL5gQEhEsuNJfvhImbYI+8ylZSd48YAoZLgwPRH5ggEhEcku0rJVkSxSu4yKy05E2riJIgnnEBKRLxgQEpHsmPUJn0ieQ8iSUaLQy4rPUnoIRKRyDAiJSHbM+oSPTqOD3WWPuM9cq9FGZCBLFGku63uZ0kMgIpWLrDMIIooIDW0NSg8haoiBYKRl2sRlJyJt3ESR5MyDZ5CTkKP0MIhI5ZghJCLZJRuTcduw25QeRlQQA8JIyxDqtDpYHBZmCIlCiMEgEfkiss4giCgiTB40GZMHTVZ6GFFBp9UBiLx5m3qtHlYnm8oQEREpjRlCIqIIFrEZQk1kLpdBRETU2zAgJCKKYJE6h1Cv1cNiZ8koERGR0hgQEhFFMJ2mvWQ00jKEeq2+fQ5hhAWyREREvQ0DQiKiCBapJaPMEBIREakDA0IioggmBoJGvVHhkfhHp22fQxhpgSwREVFvw4CQiCiCiV1GM+MyFR6Jf/RaPZvKEBERqQADQiKiCCbOIRQDw0ghzSFkySgREZGiGBASEUUwjUaj9BACwmUniIiI1IEBIRFRhHM+6lR6CH5jUxkiIiJ1YEBIRBThtJrI+yoX5xCyqQwREZGyIu8sgoiIIp5eq4cAgSWjRERECmNASEREYSc2wWHJKBERkbIYEBIRUdiJpaLMEBIRESmLASEREYWdFBAyQ0hERKQoBoRERBR24vqJzBASEREpK6oCwqVLl2LixImIi4tDSkqK1300Gk2nv1WrVnnss2fPHhQVFcFkMqFv37544oknIAiCxz6lpaUYN24cYmNjUVBQ0Ok5AGD9+vUYPnw4jEYjhg8fjg0bNsj2XomI1EzMEJoMJoVHQkREFN2iKiC02Wy4/fbbce+993a735o1a3DmzBnp75577pHuM5vNmDx5MnJzc7Fjxw6sXLkSK1aswHPPPSftc/z4cUybNg1XXXUVdu/ejSVLluD+++/H+vXrpX22bNmCGTNmYPbs2fj2228xe/Zs3HHHHdi2bZv8b5yISGXEgDDOEKfwSIiIiKKbRuiY2ooCa9euxaJFi9DQ0NDpPo1Ggw0bNmD69OleH/vSSy9h8eLFOHv2LIxGIwDg6aefxsqVK1FZWQmNRoOHH34YH3zwAQ4cOCA9bt68efj222+xZcsWAMCMGTNgNpvx8ccfS/v8+Mc/RmpqKt58802f34vZbEZycjIaGxuRlJTk8+OIiJR0ruUcslZkwfWoCxqNRunhEBGRyvAcN3yiKkPoqwULFiAjIwOXXnopVq1aBZfLJd23ZcsWFBUVScEgAEydOhVVVVU4ceKEtM+UKVM8nnPq1KkoKyuD3W7vdp9vvvmm27FZrVaYzWaPPyKiSCMuO8FgkIiISFkMCDt48skn8c477+DTTz/FzJkz8eCDD2LZsmXS/dXV1cjOzvZ4jHi7urq6230cDgdqa2u73Ud8jq4sX74cycnJ0l9eXl5gb5SISEFiySgREREpK+IDwscff9xrIxj3v7KyMp+f75FHHkFhYSFGjx6NBx98EE888QT+53/+x2Ofjle0xapb9+2B7tPT1fLFixejsbFR+quoqPDxnRERqQcDQiIiInWI+F/kBQsWYObMmd3uk5+fH/DzT5gwAWazGWfPnkV2djZycnI6ZfFqamoAXMgUdrWPXq9Henp6t/t0zBp2ZDQaPcpViYgikbjsBBERESkr4gPCjIwMZGRkhOz5d+/ejdjYWGmZisLCQixZsgQ2mw0xMTEAgJKSEuTm5kqBZ2FhITZu3OjxPCUlJRg/fjwMBoO0z+bNm/HAAw947DNx4sSQvRciIrVghpCIiEgdIr5k1B+nTp1CeXk5Tp06BafTifLycpSXl6O5uRkAsHHjRvzlL3/B3r178f333+OVV17B7373O/zqV7+SsnKzZs2C0WjEnDlzsHfvXmzYsAHLli1DcXGxVO45b948nDx5EsXFxThw4ABeffVVrF69Gg899JA0loULF6KkpATPPPMMDh48iGeeeQaffvopFi1aFPbPhYgo3LSaqPr5ISIiUq2oWnZizpw5eO211zpt/+KLLzBp0iR88sknWLx4MY4ePQqXy4WCggL88pe/xPz586HXX7iavWfPHsyfPx/bt29Hamoq5s2bh0cffdRj/l9paSkeeOAB7Nu3D7m5uXj44Ycxb948j9d999138cgjj+DYsWMYNGgQli5diltvvdWv98SWvEQUqTR/0EB4LGp+goiIyA88xw2fqAoIeyP+YyGiSHXg3AEMyxym9DCIiEiFeI4bPqzZISIiRTAYJCIiUh4DQiIiIiIioijFgJCIiIiIiChKMSAkIiIiIiKKUgwIiYiIiIiIohQDQiIiIiIioijFgJCIiIiIiChKMSAkIiIiIiKKUgwIiYiIiIiIohQDQiIiIiIioijFgJCIiIiIiChKMSAkIiIiIiKKUnqlB0CBEwQBZrMZAKT/JSIiIiKKdOK5rSAICo+k99MI/JQj1rlz55CVlaX0MIiIiIiIQqKiogL9+vVTehi9GjOEESwmJgYAsH//fuTm5kKj0Sg8IuqtzGYz8vLyUFFRgaSkJKWHQ70YjzUKBx5nFC481gInCAKampqQm5ur9FB6PQaEEUwMAPv27csvGQqLpKQkHmsUFjzWKBx4nFG48FgLTHJystJDiApsKkNERERERBSlGBASERERERFFKQaEEcxoNOKxxx6D0WhUeijUy/FYo3DhsUbhwOOMwoXHGkUCdhklIiIiIiKKUswQEhERERERRSkGhERERERERFGKASEREREREVGUYkBIREREREQUpRgQRoAvv/wSN910E3Jzc6HRaPD+++973C8IAh5//HHk5ubCZDJh0qRJ2LdvnzKDpYi1fPlyXHrppUhMTERWVhamT5+OQ4cOeezDY43k8NJLL2HUqFHSQs2FhYX4+OOPpft5nFEoLF++HBqNBosWLZK28VgjOTz++OPQaDQefzk5OdL9PM5I7RgQRoCWlhZccsklePHFF73e/9///d947rnn8OKLL2LHjh3IycnB5MmT0dTUFOaRUiQrLS3F/PnzsXXrVmzevBkOhwNTpkxBS0uLtA+PNZJDv3798PTTT6OsrAxlZWW49tpr8dOf/lQ6QeJxRnLbsWMHXn75ZYwaNcpjO481ksvFF1+MM2fOSH979uyR7uNxRqonUEQBIGzYsEG67XK5hJycHOHpp5+WtrW1tQnJycnCqlWrFBgh9RY1NTUCAKG0tFQQBB5rFFqpqanCK6+8wuOMZNfU1CQMGTJE2Lx5s1BUVCQsXLhQEAR+p5F8HnvsMeGSSy7xeh+PM4oEzBBGuOPHj6O6uhpTpkyRthmNRhQVFeGbb75RcGQU6RobGwEAaWlpAHisUWg4nU6sW7cOLS0tKCws5HFGsps/fz5uvPFGXH/99R7beayRnI4cOYLc3FwMHDgQM2fOxLFjxwDwOKPIoFd6ABSc6upqAEB2drbH9uzsbJw8eVKJIVEvIAgCiouLceWVV2LEiBEAeKyRvPbs2YPCwkK0tbUhISEBGzZswPDhw6UTJB5nJId169Zh165d2LFjR6f7+J1Gcrn88svx+uuv46KLLsLZs2fx1FNPYeLEidi3bx+PM4oIDAh7CY1G43FbEIRO24h8tWDBAnz33Xf46quvOt3HY43kMHToUJSXl6OhoQHr16/HPffcg9LSUul+HmcUrIqKCixcuBAlJSWIjY3tcj8eaxSsG264Qfr/I0eORGFhIQYNGoTXXnsNEyZMAMDjjNSNJaMRTuxiJV6BEtXU1HS6GkXki1//+tf44IMP8MUXX6Bfv37Sdh5rJKeYmBgMHjwY48ePx/Lly3HJJZfgT3/6E48zks3OnTtRU1ODcePGQa/XQ6/Xo7S0FC+88AL0er10PPFYI7nFx8dj5MiROHLkCL/TKCIwIIxwAwcORE5ODjZv3ixts9lsKC0txcSJExUcGUUaQRCwYMECvPfee/j8888xcOBAj/t5rFEoCYIAq9XK44xkc91112HPnj0oLy+X/saPH4+77roL5eXlKCgo4LFGIWG1WnHgwAH06dOH32kUEVgyGgGam5tx9OhR6fbx48dRXl6OtLQ09O/fH4sWLcKyZcswZMgQDBkyBMuWLUNcXBxmzZql4Kgp0syfPx9///vf8Y9//AOJiYnS1czk5GSYTCZp/S4eaxSsJUuW4IYbbkBeXh6ampqwbt06/Otf/8Inn3zC44xkk5iYKM2BFsXHxyM9PV3azmON5PDQQw/hpptuQv/+/VFTU4OnnnoKZrMZ99xzD7/TKCIwIIwAZWVluOaaa6TbxcXFAIB77rkHa9euxW9+8xtYLBbcd999qK+vx+WXX46SkhIkJiYqNWSKQC+99BIAYNKkSR7b16xZgzlz5gAAjzWSxdmzZzF79mycOXMGycnJGDVqFD755BNMnjwZAI8zCh8eaySHyspK3HnnnaitrUVmZiYmTJiArVu3YsCAAQB4nJH6aQRBEJQeBBEREREREYUf5xASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUYoBIRERERERUZRiQEhERERERBSlGBASERERERFFKQaEREREREREUer/A2Y4X7N+gpHqAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#px.SetMaxSinThetaOvLambda(0.3) # This can be used to change the number of used reflections\n", "spgex = SpaceGroupExplorer(pdiff)\n", "\n", "# NB:verbose C++ output does not appear in a notebook\n", "spgex.RunAll(keep_best=True, update_display=False, fitprofile_p1=False)\n", "\n", "for sol in spgex.GetScores():\n", " #if sol.nGoF > 4 * spgex.GetScores()[0].nGoF:\n", " if sol.GoF <= 2 * spgex.GetScores()[0].GoF:\n", " print(sol)\n", "\n", "c.GetSpaceGroup().ChangeSpaceGroup(\"Pmcn\")\n", "print(\"Chosen spacegroup (smallest nGoF): \", c.GetSpaceGroup())\n", "\n", "# Updated plot with optimal spacegroup\n", "px.plot(diff=True, fig=None, hkl=True, reset=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Add SO4 and Pb to the crystal structure\n", "First create the atomic scattering powers, then " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "UnitCell : (P m c n)\n", " Cell dimensions : 5.39801 6.95849 8.47876 90.00000 90.00000 90.00000\n", "List of scattering components (atoms): 6\n", "Pb at : 0.2500 0.2500 0.2500, Occup=1.0000 * 0.5000, ScattPow:Pb , Biso= 1.0000\n", "S at : -0.0000 0.0000-0.0000, Occup=1.0000 * 0.5000, ScattPow:S , Biso= 1.5000\n", "O1 at : -0.0000 0.0000 0.1769, Occup=1.0000 * 1.0000, ScattPow:O , Biso= 2.0000\n", "O2 at : -0.0000 0.2033-0.0589, Occup=1.0000 * 1.0000, ScattPow:O , Biso= 2.0000\n", "O3 at : 0.2270-0.1017-0.0589, Occup=1.0000 * 0.5000, ScattPow:O , Biso= 2.0000\n", "O4 at : -0.2270-0.1017-0.0589, Occup=1.0000 * 0.5000, ScattPow:O , Biso= 2.0000\n", "\n", "Occupancy = occ * dyn, where:\n", " - occ is the 'real' occupancy\n", " - dyn is the dynamical occupancy correction, indicating either\n", " an atom on a special position, or several identical atoms \n", " overlapping (dyn=0.5 -> atom on a symetry plane / 2fold axis..\n", " -> OR 2 atoms strictly overlapping)\n", "\n", " Total number of components (atoms) in one unit cell : 32\n", " Chemical formula: O3 Pb0.5 S0.5\n", " Weight: 167.635 g/mol\n" ] } ], "source": [ "pb = ScatteringPowerAtom(\"Pb\", \"Pb\", 1.0)\n", "s = ScatteringPowerAtom(\"S\", \"S\", 1.5)\n", "o = ScatteringPowerAtom(\"O\", \"O\", 2.0)\n", "\n", "# When manually creating atomic scattering power, they must be added\n", "# to the Crystal. This is done automatically when importing a Molecule.\n", "c.AddScatteringPower(pb)\n", "c.AddScatteringPower(s)\n", "c.AddScatteringPower(o)\n", "\n", "c.AddScatterer(Atom(0.25,0.25,0.25,\"Pb\", pb))\n", "c.AddScatterer(MakeTetrahedron(c,\"SO4\",s,o,1.5))\n", "\n", "# Let's see what is the resulting crystal contents\n", "print(c)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create the neutron powder diffraction data and fit the profile\n", "The same steps as for the X-ray data are performed.\n", "\n", "However the peak width is larger so that must be fixed to start" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", "100 17902 100 17902 0 0 45463 0 --:--:-- --:--:-- --:--:-- 45552\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Imported powder pattern: 2920 points, 2theta= 10.000 -> 155.950, step= 0.050\n", "No background, adding one automatically\n", "Selected PowderPatternDiffraction: with Crystal: \n", "Profile fitting finished.\n", "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n", "to disable profile fitting and optimise the structure.\n", "Fit result: Rw= 4.51% Chi2= 874.61 GoF= 0.30 LLK= 219.850\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b294cb148fbd42c991da279f33ad318f", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/O0lEQVR4nOzdeXyU5bn/8c/sS0gmG1lYBGQTgYqyoxUoi1IRilrsEVCqxZ8LUAsCtUXF2iJqVahWDvV4AEEPVVtbrRZBUVCWsmmLCoiyCyGBZJJJJpn1+f0xzwwzk0lIQmYhXO/XKy8yzzx55k4ywHznuu/70iiKoiCEEEIIIYQQ4qKjTfYAhBBCCCGEEEIkhwRCIYQQQgghhLhISSAUQgghhBBCiIuUBEIhhBBCCCGEuEhJIBRCCCGEEEKIi5QEQiGEEEIIIYS4SEkgFEIIIYQQQoiLlARCIYQQQgghhLhISSAUQgghhBBCiIuUBEIhhBBCCCGEuEhJIBRCCCGEEEKIi5QEQiGEEEKIi8CkSZOSPQQhRArSJ3sAQgghhBCi+cydO7fWMUVR2LJlSxJGI4RIdRIIhRBCCCFakFdffZXXXnut1vGPPvooCaMRQqQ6CYRCCCGEEC3InXfeSY8ePcjLy4s4fvvttydpREKIVKZRFEVJ9iCEEEIIIYQQQiSebCojhBBCCCGEEBcpCYRCCCGEEEIIcZGSQCiEEEIIIYQQFykJhEIIIYQQLcjrr7/OlVdeyeTJk1m5ciXdu3enf//+vP3228kemhAiBcmmMkIIIYQQLcjAgQP56KOPcDgc9OnTh3379mE2mxk5ciSffPJJsocnhEgx0nZCCCGEEKIFsVgsWK1WrFYrI0aMwGazAaDXy8s+IURtMmVUCCGEEKIF6dOnDz6fD4DVq1cD4Ha7ycnJSeawhBApSqaMCiGEEEIIIcRFSiqEQgghhBBCCHGRkkAohBBCCCGEEBcpCYRCCCGEEBeBoqKiZA9BCJGCJBAKIYQQQlwEbr/99mQPQQiRgmT/YSGEEEKIFmTAgAG1jimKwoEDB5IwGiFEqpNAKIQQQgjRgjgcDvbs2VOr7+CoUaOSNCIhRCqTKaNCCCGEEC3IwoULcTgctY7Pnz8/CaMRQqQ66UMohBBCCCGEEBcpqRAKIYQQQgghxEVKAqEQQgghhBBCXKQkEAohhBBCCCHERUoCoRBCCCGEEEJcpCQQCiGEEEIIIcRFSgKhEEIIIYQQQlykJBAKIYQQQgghxEVKAqEQQgghRAs3adKkZA9BCJGi9MkegBBCCCGEaB5z586tdUxRFLZs2ZKE0QghLgQSCIUQQgghWohXX32V1157rdbxjz76KAmjEUJcCCQQCiGEEEK0EHfeeSc9evQgLy8v4vjtt9+epBEJIVKdRlEUJdmDEEIIIYQQQgiReLKpjBBCCCGEEEJcpCQQCiGEEEIIIcRFStYQXuD8fj8nTpwgPT0djUaT7OEIIYQQQghx3hRFweFw0KZNG7RaqWHFlSIivPjii0rv3r2V9PR0JT09XRk0aJDy3nvvhe73+/3Ko48+qhQWFipms1kZOnSo8sUXX0Rco6amRpk+fbqSk5OjWK1W5cYbb1SOHTsWcU5paakyefJkJSMjQ8nIyFAmT56slJWVNXq8x44dUwD5kA/5kA/5kA/5kA/5kI8W9xH9Glo0P9lUJso777yDTqejS5cuAKxcuZKnn36azz77jJ49e/Lkk0/yu9/9jhUrVtCtWzd++9vfsmnTJvbv3096ejoA9957L++88w4rVqwgJyeH2bNnU1payq5du9DpdACMGTOG48eP86c//QmAu+++m44dO/LOO+80arzl5eVkZmZy7NgxMjIymvEnIYQQQogLzahRo3jjjTcwGo389re/xePx8OSTTzJu3Dj+8Y9/JHt4QjRYRUUF7du3x263Y7PZkj2cli3ZifRCkJWVpfzP//yP4vf7lYKCAmXRokWh+2pqahSbzab893//t6IoimK32xWDwaCsWbMmdM53332naLVaZe3atYqiKMpXX32lAMq2bdtC52zdulUBlH379jVqbOXl5QqglJeXh44999xzis1mUzIyMpT27dsrBw8eVBRFUa677jrFZrMpVqtV+dGPflTrWp07d1asVquSlpamXHvttYqiKIrNZlNOnjwZcV51dbXSuXNnJSMjQ7niiitqXeeuu+5SDAaDYrPZlA4dOtS6//e//73SqlUrJSMjQ0lPT1fKy8ubdM3nnntO0el0yh133BEaa0ZGhmK1WpVJkyY14KfXfC699FJFq9UqinL257hjxw7lk08+Udq2bduoawW/j4yMDKVDhw6Kx+Op89zLLrss9Jh//etfm/4NxPD4448rQ4cOrfP+/v37K0Ct54cQQojkueaaayJuL1++XBk7dqzSr1+/JI1IiKaJ9RpXxIdMyK2Hz+djzZo1VFVVMXjwYA4dOkRRURGjR48OnWMymRg6dChbtmwBYNeuXXg8nohz2rRpQ69evULnbN26FZvNxsCBA0PnDBo0CJvNFjqnLi6Xi4qKioiPcN9++y3z58/ns88+o7y8nB/+8If84Ac/AOCvf/0rdrudsrIy/vnPf+J2u2tdf/Xq1djtdnbs2MGOHTtijuHRRx+loKCA8vJyampqWLZsWa1zxo8fj91u5/Dhw7XuW7BgAf/5z38oLy/niy++wGq1Nvmaffr0YcWKFaHb+/fv59ixY6xZswan0xlz/PHw7bffYjabQ7dXr15Nv379mny9/fv3U15ejtFo5KWXXqrzvL179zb5Mc7X9u3b5R07IYRIMX369In4f3Lq1KnMmjULh8ORvEEJIVKaBMIY9uzZQ6tWrTCZTNxzzz289dZbXH755RQVFQGQn58fcX5+fn7ovqKiIoxGI1lZWfWeE90wFiAvLy90Tl2eeOIJbDZb6KN9+/YR9z/55JOMHj2aTp06AfDf//3fHD9+HLfbjdVqBQiV3o1GY8zH0Ov1tG7dmv/85z8A3HjjjWRmZvK9730PgI8++ohbb701dF+saa5vv/02NpuNmTNn1rpPp9Px3//931RUVHDJJZeg1+vP+5rhsrOzsVgsHDx4MHRs8eLF5OTkUFhYiMViYfbs2RQUFJCWlsaXX34Z8fV79+4lPz+fzMzM0M8x/Dq5ubkUFBRgsVj4y1/+Uu9YYnnllVfIysrCZrMxduzYes+tqamhdevWeL1ecnJyyMzMJCcnh+PHjwOQlpZW59d26dKFyy67jMzMTHr27MkPfvADMjMzueKKKwD417/+FRpHz549AThy5Ag5OTnk5ubyyiuvhK71s5/9DJvNRnp6Os8880yjv2chhBCJ8fzzz9OxY8eIY8OHD2ffvn3JGZAQIuVJIIyhe/fufP7552zbto17772XO+64g6+++ip0f/RunoqinHOHz+hzYp3fkOs89NBDlJeXhz6OHTsWcf+xY8fo3LlzxDGz2czXX38NQL9+/SgsLKRXr151PkZpaSmnTp1iyJAhANx0003Y7XYqKipYvXo1DocjFGhbt25NaWlpxNc//PDDVFVVsXfvXv73f/+Xzz//POL+v/71r7zxxhvk5OTQu3dvvF7veV8z3P79+6mpqeGyyy6rdd/Jkye59dZb+b//+z+Kioq47rrreOKJJyLOmTRpElOnTsVut3PgwIFa1/D7/RQVFfHoo4+ycOHCOsdRlwceeIDdu3dTXl7O7t27+eKLL2qd0717dywWCxUVFfzoRz9Cr9dz4MAB7HY7w4YN41e/+lWDHusHP/gBdrud48ePM2jQIOx2O9988w12u52f/exnzJ49m/LycjweD0uWLOH+++9nzJgxnD59mtatWwOBn+ff/vY3ysrKOHToEL/73e8a/T0LIYQQQojUJG0nYjAajaFNZfr168eOHTtYsmQJ8+bNAwIVvsLCwtD5xcXFoaphQUEBbrebsrKyiCphcXFxKGAVFBRw6tSpWo9bUlJSq/oYzWQyYTKZ6ry/Q4cOEZUxCFSZunXrBsDOnTux2+20bduW3bt3c9VVV0WcO3nyZPR6Pbfeeis9evQA4JZbbgHgqquuYseOHWRkZFBcXAzAqVOnyM7OrjUGCEyV7dmzJx9++CF9+vQJ3f+DH/yAgwcP4vV66dGjB08++WSTrhncoCdc9+7d0Wg0/PKXv0Svj3x6B6t9Xbp04dChQ6Fj4WEfAqH6zjvvBKh1DYBLL70UgO9973u8/PLLte4/F7vdzpVXXgkEpgDv3r27VkDfv38/BQUF9OvXj+nTp/Ob3/yGgQMHUlpaitvtZtCgQQ16rBEjRgBgs9m4/vrrAWjVqhXHjx8PhWMIPM8/++wzDh48GAqbwanQW7ZswW63h34nNTU1jf6ehRBCiETz+/0xl8eI1GAwGGK+lhOJJ4GwARRFweVy0alTJwoKCli/fn3oBb3b7Wbjxo08+eSTAPTt2xeDwcD69euZOHEiEKhKffHFFzz11FMADB48mPLycrZv386AAQOAwPS98vLyUGhsqjlz5tCnTx+OHDlChw4duP/++2nfvj1Go5GKigoyMjLIyMhAr9fXmtYKgbVvEyZMiDj21ltvMXfuXD7//HNuuukmzGYzf/7zn5kxYwbvvvsus2bNijj/+PHjtGvXDrfbzf79+yPWSgKsX7+eUaNGodfryczMxOfzMWzYsEZfc+fOnbXGHwxS5xJeiVWiNtq95JJLWLlyJQsXLsTr9cYMhXV9bUNkZWXx2Wefcckll+B2u+u9fmZmJsXFxTz99NO0bt2aQ4cOcfPNN3PmzJkGPVZ4357wz/1+P23atOHPf/4z8+fPZ+fOncyYMYPTp0+zfv16Jk+ezCeffIJOp2PIkCFkZ2dTVFSEVqtN6NpMIYQQzcPhcIR2Q78YuN1uDh06hN/vT/ZQRD0yMzMpKCiQXtpJJoEwyq9+9SvGjBlD+/btcTgcrFmzho8//pi1a9ei0Wh44IEHWLhwIV27dqVr164sXLgQq9XKbbfdBgQqMXfddRezZ88mJyeH7OxsHnzwQXr37s3IkSMB6NGjB9dffz3Tpk0LbZ5y9913M3bsWLp3735e4+/cuTOPP/44V1xxBYqiYLPZ2LhxIwBXX301x44dw+/3c+ONN9ZaH1eX119/nd/97nd06NCByZMnU1NTQ8+ePbHZbHTs2JG777479H3t3buXKVOmhDakGTVqFNdcc03E9X7+859z9OjR0FrFX/7yl/j9/kZfM1YgbA6rV69m6NChvPjii+Tk5PDtt9+e1/VOnDgRqq4NHjyYJUuW0KdPHxRFQafT8fXXX9eqiAYrnTqdju3bt1NWVsYf//hH8vLyyMzMpE2bNuc1JoCXXnqJ66+/nqeffpp27doxY8YMxo0bx1VXXUVubi5ZWVm0bduW7t27c9NNN5GVlYVWq+WSSy7h3//+93k/vhBCiOb3yiuv8PTTT2MwGJg4cSK//OUvgcDGbBs2bEjy6BJDURROnjyJTqejffv20tQ8BSmKgtPpDM0OC595J5IgWdubpqo777xT6dChg2I0GpXWrVsrI0aMUNatWxe6P9iYvqCgQDGZTMq1116r7NmzJ+Ia1dXVyvTp05Xs7GzFYrEoY8eOVY4ePRpxzpkzZ5RJkyYp6enpSnp6ujJp0qQmNaa/mLfkfemllxSz2RxqO5FMl156qZKWlqYoiqL07dtXSU9PV3bs2JHkUcVX//79FaPRqJSUlCR7KEIIIVSDBg1S3G63oiiKsmTJEuXmm29WqqqqlGHDhiV5ZInjdruVr776SrHb7ckeijiH06dPK1999ZXi9Xpr3Xcxv8ZNNGlMf4GrqKjAZrNRXl4ujemFEEKIi9zVV1/N5s2bQ7c/+OADHn/8cUpLS9mzZ08SR5Y4NTU1HDp0iI4dO2KxWJI9HFGP6upqDh8+TKdOnSLad4G8xk0kqaELIYQQQrQQN9xwQ0QfwpEjR/Liiy/Stm3b5A0qSWRdWuqT31FqkDWEQgghhBAtRKy2RD179mTt2rVJGI0Q4kIgFUIhhBBCiJZswwZ46aVkj0Kcp48//hiNRoPdbk/2UEQLIxVCIYQQQoiWTO1Jy7RpyR2HECIlSYVQCCGEEEIIIS5SEgiFEEIIIYRIAS6Xi5kzZ5KXl4fZbOaaa64J9WEO2rx5M1dccQVms5mBAwdG7B575MgRbrzxRrKyskhLS6Nnz5689957if42xAVGAqEQQgghREtVXX32c+k0lvLmzp3LX/7yF1auXMnu3bvp0qUL1113HaWlpaFz5syZw+9//3t27NhBXl4e48aNw+PxAHD//ffjcrnYtGkTe/bs4cknn6RVq1bJ+nbEBULWEAohhBBCtFTHjp393OmEtLTkjSWJnE4n+/btS/jjXnbZZVit1gadW1VVxdKlS1mxYgVjxowB4KWXXmL9+vW8/PLL9O/fH4BHH32UUaNGAbBy5UratWvHW2+9xcSJEzl69Cg333wzvXv3BuDSSy+Nw3clWhoJhEIIIYQQLVVl5dnPHY6LNhDu27ePvn37Jvxxd+3axVVXXdWgc7/99ls8Hg9XX3116JjBYGDAgAHs3bs3FAgHDx4cuj87O5vu3buzd+9eAGbOnMm9997LunXrGDlyJDfffDPf+973mvE7Ei2RBEIhhBBCiJbK5Tr7eUUFFBQkbyxJdNlll7Fr166kPG5DKeqU3uhm7YqinLOBe/D+n/3sZ1x33XW8++67rFu3jieeeIJnnnmGGTNmNHLk4mIigVAIIYQQoqWqqTn7ucORvHEkmdVqbXClLlm6dOmC0Wjk008/5bbbbgPA4/Gwc+dOHnjggdB527Zt45JLLgGgrKyMr7/+OiJ4tm/fnnvuuYd77rmHhx56iJdeekkCoaiXBEIhhBBCiJZKAuEFIy0tjXvvvZc5c+aQnZ3NJZdcwlNPPYXT6eSuu+7i3//+NwC/+c1vyMnJIT8/n1//+tfk5ubyox/9CIAHHniAMWPG0K1bN8rKytiwYQM9evRI4nclLgQSCIUQQgghWqroKaMipS1atAi/38+UKVNwOBz069eP999/n6ysrIhzfv7zn3PgwAGuuOIK3n77bYxGIwA+n4/777+f48ePk5GRwfXXX89zzz2XrG9HXCAkEAohhBBCtFRSIbygmM1m/vCHP/CHP/yh1n3Dhg0LrTMcO3ZszK9//vnn4zo+0TJJH0IhhBBCiJYqPBBWVSVvHEKIlCUVQiGEEEKIlsrlAq0WdDpQm5cLIUQ4CYRCCCGEEC1VTQ2YzYFQGL6eUAghVBIIhRBCCCFaqpoaMJlAowG3O9mjEUKkIAmEQgghhBAtlcsVqBAqigRCIURMEgiFEEIIIVqqYIXQ75dAKISISXYZFUIIIYRoqYIVQqOx0YHwxIkTcRqUECKVSIVQCCGEEKKlCm4q43bXGwjfe++9iNuKorBgwQIee+wxfvjDH8Z7lEKIJJJAKIQQQgjRUgWnjEK9gXDq1Kn069ePQYMGhZqf2+12du7cKYHwArFgwQL+9re/8fnnnyd7KOICI1NGhRBCCCFaqgZOGT106BDf//732bdvH6NHj+bRRx+la9euPPLIIwkcrBAiGaRCKIQQQgjRUgWnjJ5jU5m0tDQeeughHA4HS5Ys4bnnnsNutydunEKIpJEKoRBCCCFESxWcMtrATWXS09OZP38+//M//8PixYvjPz4Rwe/38+STT9KlSxdMJhOXXHIJv/vd7wCYN28e3bp1w2q1cumll/Lwww/j8Xjqvd7//u//0rNnT0wmE4WFhUyfPj0R34a4wEiFUAghhBCipXK5IDsbPJ5G7TKakZHBgAED4jgwEctDDz3ESy+9xHPPPcc111zDyZMn2bdvHxAI6ytWrKBNmzbs2bOHadOmkZ6ezty5c2Nea+nSpcyaNYtFixYxZswYysvL2bx5cyK/HXGBkEAohBBCCNFSuVyB6mAT2k6IxApO133hhRe44447AOjcuTPXXHMNAPPnzw+d27FjR2bPns2f//znOgPhb3/7W2bPns3Pf/7z0LH+/fvH8TsQFyoJhEIIIYQQLZXXCwZDIBA6nckeTfI4naBW2hLqssvAam3QqXv37sXlcjFixIiY97/55pssXryYb775hsrKSrxeLxkZGTHPLS4u5sSJE3VeS4hwEgiFEEIIIVoqjwf0+iZXCEePHs26deviMLAE27cP+vZN/OPu2gVXXdWgUy0WS533bdu2jZ/85Cc89thjXHfdddhsNtasWcMzzzzT6GsJEU0CoRBCCCFESxVeIawnEE6cOLHWMUVR2LNnTzxHlziXXRYIZ8l43Abq2rUrFouFDz/8kJ/97GcR923evJkOHTrw61//OnTsyJEjdV4rPT2djh078uGHHzJ8+PDGj1tcVCQQCiGEEEK0VA2sEO7YsYMNGzag1Z7dgF5RFKZMmZKIUcaf1drgSl2ymM1m5s2bx9y5czEajVx99dWUlJTw5Zdf0qVLF44ePcqaNWvo378/7777Lm+99Va911uwYAH33HMPeXl5jBkzBofDwebNm5kxY0aCviNxoZC2E1GeeOIJ+vfvT3p6Onl5efzoRz9i//79EedMnToVjUYT8TFo0KCIc1wuFzNmzCA3N5e0tDTGjRvH8ePHI84pKytjypQp2Gw2bDYbU6ZMkZ4/QgghhGg+DawQzpkzh/T0dDp06BD66Nixo7QpSLCHH36Y2bNn88gjj9CjRw9uvfVWiouLGT9+PL/4xS+YPn06ffr0YcuWLTz88MP1XuuOO+5g8eLFvPjii/Ts2ZOxY8dy4MCBBH0n4kKiURRFSfYgUsn111/PT37yE/r374/X6+XXv/41e/bs4auvviItLQ0IBMJTp06xfPny0NcZjUays7NDt++9917eeecdVqxYQU5ODrNnz6a0tJRdu3ah0+kAGDNmDMePH+dPf/oTAHfffTcdO3bknXfeafB4KyoqsNlslJeX17mwWAghhBAXqc6d4cc/DgTDf/wjORurJFhNTQ2HDh2iU6dOmM3mZA9H1KO+35W8xk0cmTIaZe3atRG3ly9fTl5eHrt27eLaa68NHTeZTBQUFMS8Rnl5OS+//DKrVq1i5MiRAKxevZr27dvzwQcfcN1117F3717Wrl3Ltm3bGDhwIAAvvfQSgwcPZv/+/XTv3j1O36EQQgghLhrBCqFWK20nhBAxyZTRcygvLweIqP4BfPzxx+Tl5dGtWzemTZtGcXFx6L5du3bh8XgYPXp06FibNm3o1asXW7ZsAWDr1q3YbLZQGAQYNGgQNpstdI4QQgghxHk5z11GhRAtn1QI66EoCrNmzeKaa66hV69eoeNjxozhxz/+MR06dODQoUM8/PDD/OAHP2DXrl2YTCaKioowGo1kZWVFXC8/P5+ioiIAioqKyMvLq/WYeXl5oXNicblcuFyu0O2Kiorz/TaFEEII0VIFK4RwzkDocrn48ssvKS0tJTs7m169emE0GhMwSCFEMkkgrMf06dP5z3/+w6effhpx/NZbbw193qtXL/r160eHDh149913uemmm+q8nqIoaDSa0O3wz+s6J9oTTzzBY4891phvQwghhBAXq2CF8BxTRletWsXSpUvp378/GRkZ2O12du/ezb333svkyZMTOGAhRKJJIKzDjBkzePvtt9m0aRPt2rWr99zCwkI6dOgQ2rmpoKAAt9tNWVlZRJWwuLiYIUOGhM45depUrWuVlJSQn59f52M99NBDzJo1K3S7oqKC9u3bN+p7E0IIIcRFIlgh1OkgbIZRtGXLlvHpp59GtJ3wer0MGzZMAqEQLZysIYyiKArTp0/nr3/9Kxs2bKBTp07n/JozZ85w7NgxCgsLAejbty8Gg4H169eHzjl58iRffPFFKBAOHjyY8vJytm/fHjrnX//6F+Xl5aFzYjGZTGRkZER8CCGEEELE5PFQXlXFiZKSQLWwDhaLhY0bN4ZuK4rCxo0bZZdOIS4CEgij3H///axevZrXXnuN9PR0ioqKKCoqorq6GoDKykoefPBBtm7dyuHDh/n444+58cYbyc3NZcKECQDYbDbuuusuZs+ezYcffshnn33G5MmT6d27d2jX0R49enD99dczbdo0tm3bxrZt25g2bRpjx46VHUaFEEKIC9xnn33G2LFjmTBhQsRmcXfddVdiB+L18swf/sCjv/0t+HxQR7exVatW8fe//52rr76aQYMGce211/KPf/yD1atXJ3a8QoiEkymjUZYuXQrAsGHDIo4vX76cqVOnotPp2LNnD6+88gp2u53CwkKGDx/On//8Z9LT00PnP/fcc+j1eiZOnEh1dTUjRoxgxYoVoR6EAK+++iozZ84M7UY6btw4Xnjhhfh/k0IIIYSIq5kzZ7J8+XL0ej1z5sxh27ZtzJo1i4MHDyZuEIoCPh8nSkrwBo+FbzITpqCggMWLFydubEKIlCGN6S9w0rRTCCGESD3XXnstmzZtCt1esGAB3333Hfv27eOTTz5JzCA8HjAamZ2by6nTp1kN4HSCxZKYx08SaUx/4ZDG9KlBpowKIYQQQjSzvLw8Dh8+HLq9YMEChg4dyo4dOxI3CHXNYJnDgSfqWLiNGzcycuRIZs2axbp167jyyisZNmwYW7duTdxYxXlbsGABffr0ietjrFixgszMzLg+hkg8mTIqhBBCCNHM3nzzzVrHJk+enNgdO72BiaKVLhe+qGPh5s2bxxtvvIHdbmf06NHs2LEDq9XKTTfdxMcff5yw4QohkkMCoRBCCCFES6RWAz1wNhDGqBCazWbat29P+/bt6dGjR6jdVvi+B0KIlkumjAohhBBCtERqNdCrfoQfC1dQUIDPF4iMGzZsUE/z4vf7EzBIEc7v9/Pkk0/SpUsXTCYTl1xyCb/73e+AQCW3W7duWK1WLr30Uh5++GE89bQSAfjf//1fevbsiclkorCwkOnTp9d7fllZGbfffjtZWVlYrVbGjBkT6rMd7m9/+xvdunXDbDYzatQojh07Frrv3//+N8OHDyc9PZ2MjAz69u3Lzp07m/DTEIkigVAIIYQQoiUKqxBqgjuLxggQa9asqVUN1Ov1Ef2URWI89NBDPPnkkzz88MN89dVXvPbaa+Tn5wOQnp7OihUr+Oqrr1iyZAkvvfQSzz33XJ3XWrp0Kffffz933303e/bs4e2336ZLly71Pv7UqVPZuXMnb7/9Nlu3bkVRFH74wx9GBE+n08nvfvc7Vq5cyebNm6moqOAnP/lJ6P5JkybRrl07duzYwa5du/jlL3+JIcbOtiJ1yJRRIYQQQogEGT16NOvWrUvMg4VVCDNsNjh9OmaFsC56vbxMTCSHw8GSJUt44YUXuOOOOwDo3Lkz11xzDQDz588PnduxY0dmz57Nn//8Z+bOnRvzer/97W+ZPXs2P//5z0PH+vfvX+fjHzhwgLfffpvNmzczZMgQINAirX379vztb3/jxz/+MQAej4cXXniBgQMHArBy5Up69OjB9u3bGTBgAEePHmXOnDlcdtllAHTt2rWpPxKRIPI3XQghhBCimU2cOLHWMUVR2LNnT+IGEVYhtAYD4TmmGIrk2bt3Ly6XixEjRsS8/80332Tx4sV88803VFZW4vV662zHUFxczIkTJ+q81j333MPq1atDtysrK9m7dy96vT4U9ABycnLo3r07e/fuDR3T6/X069cvdPuyyy4jMzOTvXv3MmDAAGbNmsXPfvYzVq1axciRI/nxj39M586dG/WzEIklgVAIIYQQopnt2LGDDRs2oNWeXZ2jKApTpkxJ3CDCKoRpNlvEsYvRvf+4l+8c3yXs8dqmt2Xp2KUNPt9ST3/Ibdu28ZOf/ITHHnuM6667DpvNxpo1a3jmmWcafS2A3/zmNzz44IMRx+pqTa4oChqNJuJY9O3wYwsWLOC2227j3Xff5Z///CePPvooa9asYcKECfWOSSSPBEIhhBBCiGY2Z84c0tPTyc3NjTh+rk09mpVaDfQClmAlKUYgXL9+PfPnz0en0zFz5szQerAbbriBd999N1GjjbvGhLNk6Nq1KxaLhQ8//JCf/exnEfdt3ryZDh068Otf/zp07MiRI3VeKz09nY4dO/Lhhx8yfPjwWvfn5eWRl5cXcezyyy/H6/Xyr3/9KzRl9MyZM3z99df06NEjdJ7X62Xnzp0MGDAAgP3792O320NTRAG6detGt27d+MUvfsF//dd/sXz5cgmEKUwCoRBCCCFEM7vvvvtiHr/11lsTNwg1/OnNZgzBilGMKaOPPvoo77//Pkajkfnz57N582aWLFmC0+lM3FgFZrOZefPmMXfuXIxGI1dffTUlJSV8+eWXdOnShaNHj7JmzRr69+/Pu+++y1tvvVXv9RYsWMA999xDXl4eY8aMweFwsHnzZmbMmBHz/K5duzJ+/HimTZvGsmXLSE9P55e//CVt27Zl/PjxofMMBgMzZszgD3/4AwaDgenTpzNo0CAGDBhAdXU1c+bM4ZZbbqFTp04cP36cHTt2cPPNNzfrz0o0L9llVAghhBCiJVLDn95iQR8MhDEqhDqdjszMTKxWK88++yx9+/Zl/PjxVFZWJnK0Anj44YeZPXs2jzzyCD169ODWW2+luLiY8ePH84tf/ILp06fTp08ftmzZwsMPP1zvte644w4WL17Miy++SM+ePRk7dmzMFhLhli9fTt++fRk7diyDBw9GURTee++9iF1CrVYr8+bN47bbbmPw4MFYLBbWrFkDBJ5LZ86c4fbbb6dbt25MnDiRMWPG8Nhjj53/D0fEjUapa8KwuCBUVFRgs9koLy+vc2GxEEIIIS5CmzfDNdcwok0bhg4fziOvvgoffwxDh0acNmPGDGbPnk3Hjh1Dxz766CPuvfde9u3bl9gxN4OamhoOHTpEp06dMJvNyR6OqEd9vyt5jZs4MmVUCCGEECJBHA4H6enpiXmwYIXQbMZgtQaOxagQPv/887WODR8+/IIMg0KIxpMpo0IIIYQQzeyVV16hd+/eXHXVVSxatCh0PHwtVtyp4c9gsWAMBkJpOyGEiCKBUAghhBCimS1dupTdu3eze/durFYrt9xyC06ns86t/eNCDX8GqxVjWlrg2EXcdkIIEZtMGRVCCCGEaGZarTa0EcfMmTO5/PLLGTNmDKWlpYkbhBr+jFYrpmAgbESFsKioiIKCgniMTAiRQqRCKIQQQgjRzG644QYOHz4cuj1y5EhefPFF2rZtm7hBqOHPmJZW7xrCutx+++3xGJUQIsVIhVAIIYQQopn96le/qnWsZ8+erF27NnGDCKsQBvsQ+mpq0EWdFmwwHk5RlHO2KEh1spF+6pPfUWqQQCiEEEIIEW8HDsAHH8C99ybuMdUKoS5sl1FvjEDocDjYs2cPen3ky8JRo0YlYpTNTqcLfIdutxtLsP+iSElOpxMgos+hSDwJhEIIIYQQ8TZ+POzdC3ffDbroSBYnYYFQr/Z481ZXY4o6beHChTgcDrKysiKOz58/PxGjbHZ6vR6r1UpJSQkGgwGtVlZIpRpFUXA6nRQXF5OZmRkK8SI5JBAKIYQQQsSbWgmhqAgStY5QnTKqN5kwWSz4CFQIo02YMKH21/773wy95JI4DzA+NBoNhYWFHDp0iCNHjiR7OKIemZmZsnFRCpBAKIQQQggRb0Zj4M9jxxIXCD0evIDJbMZoNOIlsIbwnBwO6NMHevSAr76K8yDjw2g00rVrV9xud7KHIupgMBikMpgiJBAKIYQQQsSbSZ2oeewYDBqUmMf0evFqNBiNRkwmEx7A53Kd++veey/w5wW+4YdWq8WsTpUVQtRNJlULIYQQQsRbsP/fsWMJfUwvhAJhgyuEJSWBP4OtKoQQLZoEQiGEEEKIeAuGrFOnEveYXi8eAoHQaDQ2vEJotwf+PH06joMTQqQKCYRCCCGEEPHk9UJpaeDz6urEPa7HEwqEwQqhXwKhECKKBEIhhBBCiHiqqjr7eSIDodeLV1Ei1hD6ozZZ+eyzzxg7diwTJkxgy5YtgYN2O3dBYGfU4O6oQogWSzaVEUIIIYSIp/AQmOAKoZuzU0a9AFEVwpkzZ7J8+XL0ej1z5sxh27ZtzLLbORg84fRpuEDbTwghGkYqhEIIIYQQ8RQMgQZDQitufrc7YlOZWBVCjUZDly5d6NixI2+88QYVFRVM27oVb3B3Tpk2KkSLJ4FQCCGEECKegoEwOzuhFUK/y4UHMJlMoTWESlQgzMvL4/Dhw6HbCxYsYKjRyI5gJTF8uqsQokWSQCiEEEIIEU/BEJiTk9AKoS+sQhjcZTQ6EL755pt07Ngx4thknY6a//qvwA1ZQyhEiyeBUAghhBAinoK9/5JUIQzfZTQ6EMZkt0NhYeBzCYRCtHgSCIUQQggh4im8QpjIQBhWIdTpdIEKocdz7i+sqoLWrQOfSyAUosWTQBjliSeeoH///qSnp5OXl8ePfvQj9u/fH3GOoigsWLCANm3aYLFYGDZsGF9++WXEOS6XixkzZpCbm0taWhrjxo3j+PHjEeeUlZUxZcoUbDYbNpuNKVOmYA/2/hFCCCFEyxC+hjCRm8qEVQgB/FrtuQOhogQqmtnZgdsSCIVo8SQQRtm4cSP3338/27ZtY/369Xi9XkaPHk1V2KLqp556imeffZYXXniBHTt2UFBQwKhRo3A4HKFzHnjgAd566y3WrFnDp59+SmVlJWPHjsXn84XOue222/j8889Zu3Yta9eu5fPPP2fKlCkJ/X6FEEIIEWdJ2lRGCasQAvhiBMLXX3+dK6+8ksmTJ7Ny5Uq6d+9Of+CJN9/EazJJIBTiIiB9CKOsXbs24vby5cvJy8tj165dXHvttSiKwuLFi/n1r3/NTTfdBMDKlSvJz8/ntdde4//9v/9HeXk5L7/8MqtWrWLkyJEArF69mvbt2/PBBx9w3XXXsXfvXtauXcu2bdsYOHAgAC+99BKDBw9m//79dO/ePbHfuBBCCCHiI3wNYYLbTniA9GCFUKNBExUIn3nmGTZv3ozD4aBPnz7s27IF86WX0nbdOn4GGE6cIDNhIxZCJINUCM+hvLwcgGx16sShQ4coKipi9OjRoXNMJhNDhw5ly5YtAOzatQuPxxNxTps2bejVq1fonK1bt2Kz2UJhEGDQoEHYbLbQObG4XC4qKioiPoQQQgiRwqqrQauFjIzkVgh1OhSvN+Ici8WC1WolPz+fESNGYDMYMAEK4AQqTp1K2HiFEMkhgbAeiqIwa9YsrrnmGnr16gVAUVERAPn5+RHn5ufnh+4rKirCaDSSlZVV7zl5eXm1HjMvLy90TixPPPFEaM2hzWajffv2Tf8GhRBCCBF/1dVgsYDVCm43hC0fiSdFrRAGA6Gi06GJCoR9+vQJLWdZvXo1VFfjJvAC0Qn4pQ+hEC2eBMJ6TJ8+nf/85z/83//9X637NBpNxG1FUWodixZ9Tqzzz3Wdhx56iPLy8tDHsWPHzvVtCCGEECKZqqvBbA4EwuDtBFC8XrwEZjJBYFMZogLh4sWL0el0Zw84nRiBTgQCoVJZmZCxCiGSRwJhHWbMmMHbb7/NRx99RLt27ULHCwoKAGpV8YqLi0NVw4KCAtxuN2VlZfWecyrGNIySkpJa1cdwJpOJjIyMiA8hhBBCpLCamkCF0GIJ3E7UOsIYFUJtVCCsRQ2r1aiBUDaVEaLFk0AYRVEUpk+fzl//+lc2bNhAp06dIu7v1KkTBQUFrF+/PnTM7XazceNGhgwZAkDfvn0xGAwR55w8eZIvvvgidM7gwYMpLy9n+/btoXP+9a9/UV5eHjpHCCGEEC1AcMqo2Ry47XIl5GGDFcJQ2wmdDs25pquqgdCpfsguo0K0fLLLaJT777+f1157jb///e+kp6eHKoE2mw2LxYJGo+GBBx5g4cKFdO3ala5du7Jw4UKsViu33XZb6Ny77rqL2bNnk5OTQ3Z2Ng8++CC9e/cO7Trao0cPrr/+eqZNm8ayZcsAuPvuuxk7dqzsMCqEEEK0JMFAqAYz3O7EPK7HE9mHsI5A6HK5+PLLLyktLSX7yy/pBehbtcLldKJJ4CY4QojkkEAYZenSpQAMGzYs4vjy5cuZOnUqAHPnzqW6upr77ruPsrIyBg4cyLp160hPTw+d/9xzz6HX65k4cSLV1dWMGDGCFStWRMzTf/XVV5k5c2ZoN9Jx48bxwgsvxPcbFEIIIURiBdcQJjoQRlUIFZ0ObVR1ctWqVSxdupT+/fuTkZGBfedOdgNOgwGXXo9WAqEQLZ4EwiiKopzzHI1Gw4IFC1iwYEGd55jNZp5//nmef/75Os/Jzs4O7OglhBBCiJbL7U5OIIyqECoxAt6yZcv49NNP0WrVVUSrVuFdu5YslwuvXo8uQdNbhRDJI2sIhRBCCCHiye0OhMEEB0KNWiE0GAxAIBBGTxm1WCxs3LgxdFupquIjwGA04jcYajWyF0K0PFIhFEIIIYSIpyQGQp9We7adlU6Hzu+POGfVqlUsWrSI+fPn4/P5MBQX00ejYfCQIfi3b0crgVCIFk8qhEIIIYQQ8eR2c/LMGe66997Q7YTw+VDC9i5QDAa0UYGwoKCAxYsXs3nzZrZt28Yn06bxuE5HYWEhitGI7lxtKoQQFzypEAohhBBCxJPLxSfbt7MuuE9BggKhNioQavT6WhXCWpxOqoGsrCwwmdBF9VQWQrQ8UiEUQgghhIgntxuXouAOu50IGp8Pf1ggJEaFsBaXi2q/n6ysLDQmE7pz9S0UQlzwJBAKIYQQQsSR3+XCDQkPhFqfD/Rhk8H0evTn2k3d5aJaUQKttEwmDBIIhWjxJBAKIYQQQsSRv6YmKYFQEzVlFIMB3TkCoVJTQ42iYLVa0ZjN6M9VURRCXPAkEAohhBBCxJFSU4OLxAdCnd+PElYh1BgM5wx4XqcTF2C1WtGazRgUBRrQo1kIceGSQCiEEEIIEUeK240bCO3XmchNZdQehECgQniOr/GFB0KLJfBCUXYaFaJFk0AohBBCCBFP6hpCi8WCR6tNXCBUFDRhFUKt0XjONYS+6mrcBAKhzmoNHHS54jhKIUSySSAUQgghhIgnjwc3kJ+fj0ejSeiU0fBNZTRGY6DfWD2h0F9djYtAeJVAKMTFQQKhEEIIIUQ8qVNGExoI/f5AhdBoDB3SBj+vZwqoogZCq9WKIS0tcDBBAVYIkRwSCIUQQggh4kijBsKCgoLAxjKJCFjB0Be2hlDTkECoboBjtVrRq4HQX10dr1EKIVKABEIhhBBCiDjSer2hCmGiA6EmLBCGKoQeT51fprhcZyuErVoB4KqoiNswhRDJJ4FQCCGEECJeFCUiELoUJTGBUA19EYHQZALAX9/jhwXCYIWwprw8bsMUQiSfBEIhhBDiPE2aNCnZQxCpyudDoyh4gNzcXGr8/sRWCMPWEOrUQOhxOuv+Orc7FAhN6ekAuByOuA1TCJF8+nOfIoQQQgiAuXPn1jqmKApbtmxJwmjEBSEY/oxGbDYbLkXBV119zn6A502tEGrDAmEwHHqqqzHV8WXB9Y5msxljMBDKlFEhWjQJhEIIIUQDvfrqq7z22mu1jn/00UdJGI24IIQFwoyMDNyAp6oq/oEwxhrCYIXQW88mMVqPB79ej1arxZSRAUggFKKlk0AohBBCNNCdd95Jjx49yMvLizh+++23J2lEIuWpgVBjNpOWloab+gNZs1EDYXDdIIDObAYCFcK6aD0e/GqINKuB0F1VFa9RCiFSgKwhFEIIIRro8ccfrxUGAWbOnJmE0Yhk2bhxIyNHjmTWrFmsW7eOK6+8kmHDhrF169baJwcDocmExWLBTYLaOMSYMhpaQ1jP4+u8XhT1a8w2GwDeysp4jVIIkQKkQiiEEEII0Qjz5s3jjTfewG63M3r0aHbs2IHVauWmm27i448/jjw5rEJoNpupBPwuV/wHqVYIg1XB8M/rq1CGB0JLZiYAHgmEQrRoEgiFEEIIIRrBbDbTvn172rdvT48ePWjXrh0AOl2MlYFqINSZzaEKoVJTE/9BxqgQ6oOBsK7HVxR0Ph/+qAqhBEIhWjaZMiqEEEII0QgFBQX4fD4ANmzYAIDX68Xv99c+Wa0G6iwWzGZzIBAmqUKot1gCd9VVIfR6Ay8M1TWEFnUNoS8RAVYIkTQSCIUQQqSMzz77jLFjxzJhwoSIVg533XVXEkd11vr16xk4cCBDhgxhzZo1oeM33HBDEkclEm3NmjW1qoF6vZ7169fXPjlYIbRYzlYIE9iYXhe+qYz6ua+uQKoeV9TztHp9YLyJWPMohEgaCYRCCCFSxsyZM1m8eDHPPfcczz33HM8++ywABw8eTPLIAh599FHef/99PvjgA7Zv386MGTPw+/0462v0fZFJ9VAfT3p9jJU4avjTW62hCiGJrBCGBcJzVgiD4wqbZuoiQVNchRBJI4FQCCFEytBoNHTp0oWOHTvyxhtvUFFRwbRp0/CqL26TTafTkZmZidVq5dlnn6Vv376MHz+eSlljFZLqoT7hYgVCtXoXVzGmjBrUQHiuCiFhIdKt0SRmiqsQImkkEAohhEgZeXl5HD58OHR7wYIFDB06lB07diRvUGH69OkTMb6pU6cya9YsHA5H8gaVYlI91CdcjECoScCU0eC6P314ILRaI+6rRQ1+mrCv8Wg0UiEUooWTQCiEECJlvPnmm3Ts2DHi2OTJk6lJkRekzz//fK3xDR8+nH379iVnQCko1UN9c2jUWlI1/BnS0tDpdHi1WjQJqBAGdxKN2FRG/bzOCmFYi4wgj1YbOi6EaJkkEAohhBCi2aR6qG8OjVpLGhYIARS9Hk0CqqXBdYLBaaJwtkJYZx9E9bg27Gs8Wi0amTIqRIsmgVAIIYQQohEatZY0GAhbtQLAr9ejTWCFUB8eCINrCOuq+AUDYViF0CsVQiFaPAmEQgghxHkqKipK9hBEAjVqLakapkzp6QAoRiNatYdhPNW3htB/jjWE4RVCr06XkCmuQojkkUAohBAi5Y0ePTrZQ6jX7bffnuwhiARq1FpSlws/YA5OGTUY0CZiyqga+oIhEM5WCP3nqhCGfY1Xp0MrFUIhWjQJhDFs2rSJG2+8kTZt2qDRaPjb3/4Wcf/UqVPRaDQRH4MGDYo4x+VyMWPGDHJzc0lLS2PcuHEcP3484pyysjKmTJmCzWbDZrMxZcoU7HZ7nL87IYRIXRMnTqz18eMf/5g9e/Yke2gADBgwoNZH//792b59e7KHljIateHKRcBXXY0bsARDltGILoEVwvA1hFq1v6ByjkCoDwuEvgRNcRVCJE+MDqqiqqqKK664gp/+9KfcfPPNMc+5/vrrWb58eei2MayJK8ADDzzAO++8w5o1a8jJyWH27NmMHTuWXbt2odPpALjttts4fvw4a9euBeDuu+9mypQpvPPOO3H6zoQQIrXt2LGDDRs2oNWefb9SURSmTJmSxFGd5XA42LNnT60G5KNGjUrSiFJPcMMVo9HI/Pnz2bx5M0uWLIm94cpFwFNVhRuwBkOWwZCYQKiGu/BAiFaLj3oqhOpxXVgg9Ot0CdkERwiRPBIIYxgzZgxjxoyp9xyTyURBQUHM+8rLy3n55ZdZtWoVI0eOBGD16tW0b9+eDz74gOuuu469e/eydu1atm3bxsCBAwF46aWXGDx4MPv376d79+7N+00JIcQFYM6cOaSnp5ObmxtxfPr06UkaUaSFCxficDjIysqKOD5//vwkjSj1BDdcAXj22WdZsWJF3RuuXMBcLhdffvklpaWlZGdn06tXr1pvDgN4nM5AhVANZhqTCb2igN8P2vhN1PK6XHgBY1iTeQAPDagQqtNbIVAh1EkgFKJFkymjTfTxxx+Tl5dHt27dmDZtGsXFxaH7du3ahcfjiVjz0qZNG3r16sWWLVsA2Lp1KzabLRQGAQYNGoTNZgudE4vL5aKioiLiQwghWor77ruvVhgEuPXWW5MwmtomTJhQKwwCDB06NAmjSU2N2nDlArVq1SqGDx/OypUr2bhxI8uXL2f48OGsXr261rletUIYDIQEA1qc1+X5a2oCgTAqpNZbIQxWFdUdUQH8BoMEQiFaOKkQNsGYMWP48Y9/TIcOHTh06BAPP/wwP/jBD9i1axcmk4mioiKMRmOtFw35+fmhneiKiorIy8urde28vLx6d6t74okneOyxx5r3GxJCCNE0djt4vRAjxF6snn/++VrH6txw5QK1bNkyPv3004ipzV6vl2HDhjF58uSIc71qhTA4ZVQTHgjDdgBtbn63Gw+1A6FHo4E61gT6nE50RG5EI4FQiJZPKoRNcOutt3LDDTfQq1cvbrzxRv75z3/y9ddf8+6779b7dYqioNFoQrfDP6/rnGgPPfQQ5eXloY9jx441/RsRQghxfrp0gdatkz0KkWAWi4WNGzeGbiuKwsaNGzHHCHihTWXUCmGox1+8K4TqlFFT1JRRn0aDv45A6K2qwgWYw9YdKgYD+gSseRRCJI9UCJtBYWEhHTp04MCBAwAUFBTgdrspKyuLqBIWFxczZMiQ0DmnTp2qda2SkhLy8/PrfCyTyVTrH3chhGjpioqK6ly3nVRnziR7BCIJVq1axaJFi5g/fz4+nw+DwUC/fv1iThlNViD01VEh9Gk0dT621+nER2SIVIxG9H5/HEcqhEg2CYTN4MyZMxw7dozCwkIA+vbti8FgYP369UycOBGAkydP8sUXX/DUU08BMHjwYMrLy9m+fTsDBgwA4F//+hfl5eWh0CiEECLg9ttvZ926dckeRqTwF8mVlRC27krUlrKhvgkKCgpYvHhxg87119TgBjLUaZi6YPUtzoFQUSuEluhAqNWi1DEFNDi9NToQGqRCKESLJoEwhsrKSr755pvQ7UOHDvH555+TnZ1NdnY2CxYs4Oabb6awsJDDhw/zq1/9itzcXCZMmACAzWbjrrvuYvbs2eTk5JCdnc2DDz5I7969Q7uO9ujRg+uvv55p06axbNkyINB2YuzYsbLDqBDiohV8gyycoiihGRgp5bvvzn7+zTfQp0/ShnIhSMlQ31y++QZ694Z9+6BDh4i7fDU1uDhbIUxUIPR7PLE3ldFo0NQxZdTvdEaMFQCpEArR4kkgjGHnzp0MHz48dHvWrFkA3HHHHSxdupQ9e/bwyiuvYLfbKSwsZPjw4fz5z38mPT099DXPPfccer2eiRMnUl1dzYgRI1ixYkWoByHAq6++ysyZM0O7kY4bN44XXnghQd+lEEKknguqz1/YTpocOiSBUBUr1H/77bf4WnKVacUKqKmBbdtqBUJFrRAmOhAqdU0ZradC6FMDYcRaSJMJg6LEb6BCiKSTQBjDsGHDUOr5x+/9998/5zXMZjPPP/98zN3WgrKzs2OuNxBCiIvVBdXnr7w89ucXsblz5/Ltt9/y05/+NLQDp6IolJSU0KVLlySPLo727g38WVpa6y7F5YoIhPrgDp4JCIReqPXmik+rrbNC6Kuurh0IzWaMEgiFaNEkEAohhEgZwan30VKyz194H1jpCQsEZr784he/oE+fPhGzZj766KPUDPXN5eDBwJ9HjtS6S3G58Go0oRlCiQqEfo8Hr0ZTa+dyv1YLdVRr/eoGOOGBUCuBUIgWTwKhEEKI1HX0KPzXf8FvfwthU/lTQkUF6HSQnS2BUHXnnXdy99131+qze/vtt6dmqG8uZWWBP48erX2f240vbLlIfYHQ6/XWqug1mdsd2FE0il+nq7NCqKjrHTPCAqHGZMLIudtiCSEuXBIIhRBCpK4dO2DLFpg9G3bvTvZoIjkckJ4ONlvgc8Hjjz8e8/jMmTMTPJIEs9sDf8YIhBq3G39YyDOqu9EGm8Dv2bOHefPmYbfb0ev1eDwecnNzWbhwIb17927ykBSvN3YgrK9CqAbCiAqhxYIJcNXURPQnFEK0HBIIhRBCpK7i4sCfdWyCkVQVFZCREfiQCuHFy+cLrCFNSzsbDMN5PPjCAqEhLS1wWA2E9913H6+99hrt27cPnXP06FEmTZrEJ5980vRxeTz41HWc4fw6Hdq6/j7FCoRmM1rA5XRKIBSihar9L4UQQgiRKkpKAn/G2Kwj6SQQCji7oVCHDjGfBxqPByVGIHRXVgLg8/mw2WwRX5ORkXH+u7J6PIFqYBRFp0NTx7UVlytmhRDAJc9xIVosqRAKIYRIXcEK4ZkzoCiQSmuYglNG09MlEF7MglXBSy6BrVtr3a31elEMhtDt4JRRjxoIFy1axNixYzEajWRkZFBeXo7X6+XJJ588v3F5vTErhIpOh9blivklGjUQhjem16lrHoMBVgjR8kggFEIIkbqCgbCmBpzOwLS8VBFeITx+PNmjSWmjR49uuU3pgxvKdOgA69bVeuNC6/GghD1vTeruq56qKgCuvfZaNm3aRHV1NXa7naysrMi2D02k8XpRGlkhxO3GHbYjKpzdBMcjgVCIFksCoRBCiNRVXBzYxbO0FE6fTr1AmJkpU0bDTJw4sdYxRVHYs2dPEkaTIOEVQr+/1hsXOp8PwprDBwOh1+mMuIzFYgn1KmwWXm/E7qZBfr0ebR2BUBO1IypIhVCIi4EEQiGEEKmrpAR69IDNmwPTRjt0SPaIzqqoCIQACYQhO3bsYMOGDaGm9BAIhFOmTEniqOIsWCG85JLAnxUVkYHQ60UJm4JptlrxUDsQNre6KoTodGj9/phfo/V48Ea1vZAKoRAtnwRCIYQQqauyEvr2DQTC06eTPZpIlZXQqlVgDaG0nQBgzpw5pKenk5ubG3F8+vTpSRpRAgSDUtu2gT8rKqCwMHS3zu9HE1YhtFgsuAm0nYgrnw9/jAqhotfXGwj90YFQDbdedYqrEKLlkV1GhRBCpK6qqrMvrlOtCud0gtUKFgtUVyd7NCnhvvvuqxUGAW699dYkjCZBnM7AlNDs7MDtqOep3u9HE14hNJtxA171OfP6669z5ZVXMnnyZFauXEn37t3p378/b7/99nkNS+vzocQIhDQyEIbaZEggFKLFkgqhEEKI1OV0QuvWgc9T7QVpdXUgDFqtgXGm2i6oIjGCbwyoawOjq8V6vx9t2CYxFosFF+BXA+EzzzzD5s2bcTgc9OnTh3379mE2mxk5ciTjxo1r8rA0Ph9KWGUyxGBAX0cg1Hm9+KM2tDGou6LGvaIphEgaqRAKIYRITX5/IHRlZgYqMKm2hsnpPBsIfT7weJI9IpEMwUCYkRG4HVUhNCgKmrCQFawQ+mpqgEBAtFqt5OfnM2LECGw2GyaTCb3+/N6z1/p8Ef0Pzw7IUGeFUOf14g9rkQFhbTKa4Q2ZEydOnPc1hBDNTwKhEEKI1BSsSKSlBdbqpVogrK4OBAF10w3qqKB89tlnjB07lgkTJrBly5bQ8bvuuisRo0wJjpa8xjK6QhgeCBUFg6KgixEIFbVC2KdPn1AT+tWrVwPgdrvJyck5r2FpfT6oY8qoTlFifo0uRlWxqRXC9957L+Lj3XffZfz48bz33nuNuo4QIv4kEAohhEhN4YEwLS21AqHXG6gIWiyBD6hzHeHMmTNZvHgxzz33HM899xzPPvssAAcPHkzUaBPmlVdeoXfv3lx11VUsWrQodHz8+PFJHFWcOZ1U+v206dgRv1YbObXZ50ML6MLaSRgMBtyAX20Ov3jx4oi+fwBGo5E333zzvIal8ftRoqp9ABqDoc5AqI8RCIMVwmBFs6GmTp3KCy+8wM6dO9mxYwc7d+7Ebrezc+fORl1HCBF/EgiFEEKkJvWFdbVWG6gQptIawmD4C04ZhTorhBqNhi5dutCxY0feeOMNKioqmDZtGl6vN0GDTZylS5eye/dudu/ejdVq5ZZbbsHpdKLUEUBaBKeTw8XFnCwqogoin6duNxAZCAE8Wi2KGgjjRef3Q6wpo0Yj+jp+Hwa/P6JFBoBRrXz6G1khPHToEN///vfZt28fo0eP5tFHH6Vr16488sgjjbqOECL+JBAKIUQLd8FOWVRfgN45fXrqTRlVA+HOr75i1969gWN1vGDOy8vj8OHDodsLFixg6NCh7NixI96jTDitVotBrUrNnDmTe+65hzFjxnA61VqGNCenE7vbjdFopFJRIp4HfrWqFmzuHuTVaiHOgVBbRyDUGgzoITRNNcTnC1QOowJhcIdUfyMrhGlpaTz00EMsW7aMDz/8kIkTJ2K32xt1DSFEYsguo0II0cLNnDmT5cuXo9frmTNnDtu2bWPWrFkpP2Wx+vRpLMBXR45QXViIJQUD4UOPP06FxcK/oM5AGGvq3+TJk5k8eXIcB5gcN9xwA4cPH6Zjx44AjBw5ksKvvmL2G28kd2BxpFRVYXe76TdkCJVbtuAtLw+9uKq220kDDFGB0KfVojtHICwqKqKgoKDJ49L5/RBjyigGAwYC6xQt4ZVLdTyaqEAYDIj+JrZWSU9PZ/78+VRUVLBv374mXUMIEV9SIRRCiBbuQp2yeOSrrwCoAvYdO5ZaU0bV8FcNnAm+UJZehPzqV78KhUEAiovp+fOfszbVekg2I5fdThXQr18/nICzpOTsfepmOvroQKjTnXNX2ttvv/28xlVXINQajegJBMIIwUAY1XYCnQ4/oDSyQhgtIyODAQMGnNc1hBDxIYFQCCFauAt1yuLxr78GYOS4cZTU1KTklFGn+hG4IX3aavnLXwJ/xqpUxVEip0l7ysupBvr3708VUF1aGrqvRg3CwZ06g7w6HRo1kA0YMKDWR//+/dm+fft5jUunKGhiTBnVGI0YAE90IK0rEGo0gV1R4zzFVQiRPDJlVAghWrgLdcpiVXExAPmXXkrZRx+lViBUw5++VSucwXFJIKzt+PHAnwleO5bIadI+hwMnMLxvX44D7rKy0H3BCqExKhD69Xo0aiBzOBzs2bOnVt/BUaNGnde4dIqCNkZj+mCFsKaOCqE2agMcCGyC09Q1j6WlpZSWlpKdnU12dnaTriGEiC+pEAohhEhJXrW6kllYmLIVwi69e5+zQrh+/XoGDhzIkCFDWLNmTej4DTfcEOdBpgA11HPkSKBVR4IkdJq004kT6Nq1K07AH9ZzsSGBcOHChTH7NM6fP/+8hqVTFIgVCE2m0BrCCPUEQrdG0+gK4YcffsjVV1/NT3/6Ux577DHuuOMOrrnmGj788MNGXUcIEX9SIRRCCJGS/A4HHo2GnIICjno8KA4HmmQPKkgNhHkdO2L98kv8lZVo61hD+Oijj/L+++9jNBqZP38+mzdvZsmSJTgvhopiSQlotYEw+N130KFDQh42OE06uJ5xwYIFrF69mlWrVjX7Y2lravAaDOj1etwGA5qw36tbfROjViA0GNCqgXDChAkxrzt06NDzGpdeUdDWs4awrimj0TuiQtMqhI888ghr164lXW1bAVBRUcGYMWMYMWJEo64lhIgvqRAKIcRForS0lG+++YbSsDVOqUyprKRaq6V169ZU0fg+aHGljiWrTRtycnPx6HR1Vgh1Oh2ZmZlYrVaeffZZ+vbty/jx46lMpYpnvBQXw+WXBz4Pm0oZb2+++Wbk5jYEpknXnOfGKLHo3W586k6cXqMx4o2BYCA0hYUiAMVgQBvniqmewHrBaOeqEEZvgAOBXVE159gEp9bjaLWUhG2wA1BSUoJWKy89hUg1UiEUQogW7sMPP+SRRx4hNzeXjIwM7HY7ZWVlPPbYYyn9Tr1SVYVbr6d169aBaZmptMuo+qLfVlBATk4OrhMnMNURCPv06RNRrZo6dSodOnTg3nvvTdRok6e4GL73Pfjii4QGwkTSu90oWVkA+MxmdGGh06M+Z2MFQn2cA6EBYq8hNJkCu4xGV/zqW0MYtglOQ/3pT39i9uzZFBUVoSgKGo2GwsJC/vSnPzXqOkKI+JNAKIQQLdyFOnVLU12N22AIBUJdTQ0oCmiSP3HUrW6SkpOfT05ODtVaLRl1BMLnn3++1rHhw4dfHD3ZSkqgW7fA5y2xKbnfj9HrRVGran6zGX15eejuuiqEGI3oohvDNyOfzxeoEEb3FAR06jFP1BRnpaYGDaBPS6t9PZ2u0RXCHj168NZbbzXqa4QQySF1eyGEaOEu1Klb2upqvEYjmZmZZzduicOUv6ZwnjlDNZCbm0tOTk5gfNKHMJLbDRUV0KVL4HYSKoRxnyatPh81aohSrFYMYcHJp75JYLHZIr5MMRoDfQLjxOV0ogV0MSqEOrWthDfq71KwmhndIgMCgVDbyEAoWpZJkyYlewgijqRCKIQQLdyFOnVL53Lhs1pp1apV5E6eMaa0JZqztBQN0Lp160Ag9PvrbTvh9XprtRVo8YJrJLOzoVWrhFYIEzZNWv2da4NVtbQ0TGFTQevaVEZjMqGPY4XQ7XRiJTA9NJpeDYSeqOeru7ISI3VUCPV6CYQXiblz59Y6pihKRD9P0fJcZP87CSHExedCnbplcLvx5eSg0+lQzOZANcbphJycZA8NV2kpCoEKYXZ2No4YgXDPnj3MmzcPu92OVquloqICq9XKL37xCyZMmIAxRvWmRQm2UmjVCrKyEhoIEzZNWv2d69TH0aWnY/L5QlObg1W36PYPGpMJg6I03ziiuNXHrWsNIdSuEHqD4TV6eiuBNhnNtQlOUVERBQUFzXIt0fxeffVVXnvttVrHP/rooySMRiRKas8XEkIIcdEyeDyhtVkEqxYpstOou7w8NGU0IyMDh89Xa2z33Xcfy5Yt495778Xv9zN8+HAGDBjAL37xC4YPH87q1auTM/hECVYI09MhMzOhU0YTNk1a/Z0b1Cmh2vT0wAsrNWx5g8+JGIFQHzVltDl7JLqC0z9jVNPrqhB61N9XrCmjfr0eXTON7/bbb2+W64j4uPPOO+nRowdDhw6N+JDfW8smFUIhhBApR1EUTF4vGjUQalu1gjNnUmanUY/DQY1GQ1paWigQKk5nRJ9En8+HzWZj2bJlfPrpp2i1Wux2Ozt37mTjxo0MGzaMyZMnJ+17iDu1Qnjb3XfzjNtNYQIrhAmbJq2GKn1GRuDP4FrBqiqwWPBVVeEF9FH9ALUWCwZFiagi6/V6PB4Pubm5LFy4kN69ezd5WMEKoT5GIDSqf6fcUYHQW8eOqKD2TWzkFNcBAwbUOqYoCgcOHGjUdURiPf744zGPz5w5M8EjEYkkgVAIIS5SqTx1q6qqCiugUasV2mDVIkUqhEplJR69Ho1GQ3p6OtWAz+GI+E910aJFjB07lr179zJ06FCMRiNer5dFixaxceNGzGqlpsVSK05bvviCfxuNFHbtmrCHTtg0afX5aFLbThgzMwPHq6ogNxe/04lbq631YktrNmMkUEV+7bXXaN++fei+o0ePMmnSJD755JMmDysUCGP0FDSq1XZ31JsrPqcTF2COESIVg6HRax4dDgd79uyptXZ21KhRjbqOECL+ZMpoDJs2beLGG2+kTZs2aDQa/va3v0XcrygKCxYsoE2bNlgsFoYNG8aXX34ZcY7L5WLGjBnk5uaSlpbGuHHjOH78eMQ5ZWVlTJkyBZvNhs1mY8qUKdhb4rbcQoiUlMpTgCoqKkgjMAUPzk7JS5lAWF2NV32hm5GRgRPwRzWav/baa9m0aRM7d+7ksssuw+l04nK5+PWvf80//vGPlj9lVK0QVgJkZJydQtqSqM/HYBA0qsHQo7aeUKqrcceYpqqzWDARmCZqi9qBNCMjA995bjgT3MwmViAMThmtVSEMBsIYb1QoTWiTsXDhQhzBdaRh5s+f36jrCCHiTyqEMVRVVXHFFVfw05/+lJtvvrnW/U899RTPPvssK1asoFu3bvz2t79l1KhR7N+/P7SA/YEHHuCdd95hzZo15OTkMHv2bMaOHcuuXbvQ6XQA3HbbbRw/fpy1a9cCcPfddzNlyhTeeeedxH2zQogW70KculVRUYEV0KlT8VItEGqqq/Gqm3Okp6cHAmEd01k7derESy+9lMDRpQg1lDiA4qqqs5vMtCCe8nIMgEXd6Mis/llVXEwm6hsH6v/54bRq6Fowfz5jx47FaDSSkZFBeXk5Xq+XJ5988vzGFVxDGGPHUNTpq9F9CP3V1fUGQkMj22RMmDAh5vGhQ4c26jpCiPiTQBjDmDFjGDNmTMz7FEVh8eLF/PrXv+amm24CYOXKleTn5/Paa6/x//7f/6O8vJyXX36ZVatWMXLkSABWr15N+/bt+eCDD7juuuvYu3cva9euZdu2bQwcOBCAl156icGDB7N//366d++emG9WCNHiXYhTtxwOB9mATw2Coal4KRIItTU1KGogDFYIU2VsKcPhwKvR4FYUTlVX46+oSPq0JIfDEbHz6PmqKS2NGQidJSVkArhcoUpyuGBrh369erFp0yaqq6ux2+1kZWU1y1RiTz1TRlHHE72pjK+qqs5AiNFYaxOcRjt6FJYuhYcfhljjEinh9ddf54knnqBnz56MGjWKhQsXkpGRwcMPP8y4ceOSPTwRJ8n+t/mCc+jQIYqKihg9enTomMlkYujQoaEeLbt27cLj8USc06ZNG3r16hU6Z+vWrdhstlAYBBg0aBA2m016vQghmtWFOHUrOGU0GAQt6lS8VAldWrc70AoDQmsINXU0po97c/RU5XBQqdHQt29fHIBfnUaZCK+88gq9e/fmqquuYtGiRaHj48ePb9bHqVF3Tk1Tg2Ba69YAVJ8+HTjB5cIXtaEMnA1qNRUVAFgsFgoLC5ttXWkwEEb3PwTqrBD61AphWqyqYhMqhLW88gosWgS/+c35XUfE1TPPPMPmzZt55pln+OUvf8n27dv59NNPefrpp5M9NBFHUiFspKKiIgDy8/Mjjufn53PkyJHQOUajkazgC5iwc4JfX1RURF5eXq3r5+Xlhc6JxeVy4XK5Qrcr1P9MhBCiLhfi1K2K8nLSAH92NgCtMjJwajRYU2SXUYPbHapyBCuEmqi+bglrjp6iFIeDcr+fgQMHUrlrV0LXEC5dupTdu3djMBj4wx/+wC233MIrr7yC0sy9/9xlZTiBdLWSnab+v16jhn/tOQKhO07TaH1q2Is5ZVStEHqjp4w6nbipIxCazRjP92d39CgArs8/x3R+VxJxZLFYsFqtWK1WRowYEVrjGj3DRLQs8tttIo1GE3E7uK11faLPiXX+ua7zxBNP8NhjjzVytEIIEebpp+HYMViyBM7x71ayOM+cAcCsvrEWDF3WFKkQGsJaYgTXEOrC3qyDBDZHT1FVRUVUEljD+umLL6KrqQG/H5q7F2AMWq0WgxrEZs6cyeWXX86YMWOavUrrKS/HSeD5CZCuvlnsViuHWo8Hf4xdO4NBzRWnQBjsfxirhUSwQhjdmN5fXY0XQj+3cBp1V1Sv19vkYFCxezcZwInt2+nUpCuIROjTpw8+nw+dThfa+MrtdpOjVsFFyyRTRhspuEV7dBWvuLg4VDUsKCjA7XZTFtWEN/qcU6dO1bp+SUlJrepjuIceeojy8vLQx7Fjx87r+xFCXGS8Xpg7F55/HuqZjZBs1WogNKhTRjMyMqhSlJSZMmr0+dCp0/EMBgMevT6wC2NY8+6ENUdPUVXFxTgIvMCs0enQJPD3d8MNN3D48OHQ7ZEjR/Liiy/Stm3bZn0cb0UF1ZwNhBm5uXgAj7pjuM7tRolqSg9nm79//OmnDBw4kCFDhrBmzZqI8Z+PYIUw5pTROiqESk0NXq025pvSWpMJE0TMUGq0b78FIKsl7jZ7njZu3MjIkSOZNWsW69at48orr2TYsGFs3bo14WNZvHhxaPPDIKPRyJtvvpnwsYjEkQphI3Xq1ImCggLWr1/PlVdeCQTeOdm4cWNoV7C+fftiMBhYv349EydOBODkyZN88cUXPPXUUwAMHjyY8vJytm/fHtoB8F//+hfl5eUMGTKkzsc3mUyYTDLZQgjRROHtbw4dgsLC5I2lHq5gJUetpASrcN6oXn/JYvL70YVVXzRWK1RUQHU1qMcT1hw9RblKSqgEenTsiC4zE86cCew0GiukNLNf/epXtY717NkztKt3c/FWVOAF2qi/c7PZTLl6HEDv9YbWmoYLVghfXLOGTTt2YDQamT9/Pps3b2bJkiU4zzM4ByuE2lhrEuuoECouV8wdUeFshdDlcsWeUnouikKr8nK2AoM9nsDfkxiV04vVvHnzeOONN7Db7YwePZodO3ZgtVq56aab+Pjjj5M9PHERSIX/V1NOZWUl33zzTej2oUOH+Pzzz8nOzuaSSy7hgQceYOHChXTt2pWuXbuycOFCrFYrt912GwA2m4277rqL2bNnk5OTQ3Z2Ng8++CC9e/cO7Trao0cPrr/+eqZNm8ayZcuAQNuJsWPHyg6jQoj4CauacOgQ1PMGVDIFp9xFr9PzlJcn/T8uj8eDBTCoVSEgMM6KikAFTA0HCWuOnqI8ZWXU6PXYbDaMOTmBQJis6pDHA4MHBz7fubNBXzJp0iReffXVes/xV1VRA7RSQ65Go6Fao8FXUYHb7Ubv86GN1RxefY5o/H4y1Sp4sJ3V+PHjqTzPn5M/GPZiVCeDFUJfrEBYx3RQrdmMCbA3tUJYWYlWUfgPMBjgu++gS5emXasFMpvNtG/fnvbt29OjRw/atWsHUKtSJ0S8JPv/1ZS0c+dOhg8fHro9a9YsAO644w5WrFjB3Llzqa6u5r777qOsrIyBAweybt26iHUizz33HHq9nokTJ1JdXc2IESNYsWJFxF/uV199lZkzZ4Z2Ix03bhwvvPBCgr5LIcRFKRgI09ICgTBFudUpd7UqhAncqbIu5WVl5ALGsIbi2mDVK0WmtKYCpaICRf25WFq3hq+/Tl4vwoMHYdeuwOdVVaHnFcDcuXNrna4oSoN2/PZXVeHSaiOmAbt0OvwOB2VlZZg422IinEn9uXTOz+fw4cN07NgRgKlTp9KhQwfuvffeRnxztQWnjMYMhGqF0B8V7jQuF746AqE+LQ0jUF3HTrrnpP69Db7V7j5xAqMEwpCCgoLQur0NGzYAgfWa/vPd2bUZNXfLFpFaJBDGMGzYsHp3ItNoNCxYsIAFCxbUeY7ZbOb555/n+eefr/Oc7Ozs0IJdIYRIiCNHID8f2rULfJ6iYlUISwFfCjQ3Ly8qCgRCdQdUkEAYi66mBr8ahozBDSmSVSE8ePDs5998A1dcEbr56quv8tprr9X6ko8++ujc13U6cUdtwuI2GPBVVlJWVoaZs+sFwwUrhPePGhUKg0HDhw9n3759537setRbIVSP+aMqhBq3G3+MDWUgsCuqDqhu6t8/NRC6Cwvh5EnKDh4k/9prm3atGD777DMefvhhDAYDc+bMCS29ueuuu3j55Zeb7XHiJXz9aJBer2f9+vVxe8y6Ngh65ZVXePrppzEYDEycOJFf/vKXQKBlSzCsipZHAqEQQlxMSkoCgTAvD4K90lKQJ1gJVANFRkYGxwB/CgTCyuJi4OwOqAD64DvnDaigXCzvtBtdLvy5uYHPg+E5Wb+/8Gr4gQMRgfDOO++kR48etVpB3X777ee8rKa6Gk9UiPKazSgOB6WlpYFAGON3bVanG3vi1EZFCVb/YgW84D4EURVCrcdTdyBUQ21NU1tdqX+frZdfDidPUnnsGHVvn9d4M2fOZPny5ej1eubMmcO2bduYNWsWB8PfCLgANXerhz179jBv3jzsdjt6vR6Px0Nubi4LFy6kd+/eQOJatojUcnFsdSaEECKgrAyysiC4pitF+YIvPKOmjCop0IewSt051BK2Dbs+uJ4wrEKYqOboqcrk8YQ2kDGpwTBpFcJDh+DSS8FmC1QIwzz++OMx+wLPnDnznJfV1tTgi6rC+c1mNE5nKBCGTy0OCvYh9MWpouyvqcEDsVt81BMIY+2ICmBU/x7WNHHKtl+t+Gf37IkbcJ082aTr1EWj0dClSxc6duzIG2+8QUVFBdOmTcMbtuuvgPvuu49ly5axZcsWNm3axNatW/njH//IfffdFzonumXLPffcw5gxYzgd4w3EVNodVZwfCYRCCHExCQbC7OyUDoShSmDUpjINqcDFWzAQprVuHTpmVDcGCQ+EwXfad+/ejdVq5ZZbbsHpdF4077RbvV40alC2Bn9WyaoQHj0Kl1wS2FVXrfA2B53LhS96J0+rFW1NTWjKqDlGIAxO2/TWEQgd5/tzcrvx1dVjVKfDp9GgcbsjDmu93roDoVrldDWxQlittrhpe/nllAHeqHYs5ysvLy+izciCBQsYOnQoO3bsaNbHudD5fL5Qo/mgjIwMfD5f6HZjWrbMmzeP5cuX89Of/pQ77riDd955h7/+9a889NBDcfseRHzIlFEhhLiYlJVBjx4pXyH0V1Xh02rRqS9Q09LSqCYwRS/Zgj0SrecIhIlqjp6S/H6sioJOffGZmZ1NJWCtqEjOO9FlZXhtNnReL5pmnCqtd7tRwnebBTStWqFzuSgtLcXC2emWEdQq3QdffcX83r2bfb2W4nLh0WqJ0XQCILB5TFQg1Hu9sdccAkb1e2xqIHSePIkZyO/cmTKNBl8zT1eP1SNv8uTJTJ48uVkfJ15ef/11nnjiCXr27MmoUaNYuHAhGRkZPPzww4wbN67ZHmfRokWMHTsWo9FIRkYG5eXleL3eUNs0aFzLFtkdteWQQCiEEBeTsjIqdDosGRkYzpwBRYG6KglJpHU68RqNBF9WaDSawO0UCIQ1aqALbzthCa6RCxtf8J324KYhI0eOpLCwkNmzZydsrEmjTu3Vq+ssbTYbDkB35gzJ6D7nPX2alZ9/Tof0dEY2Yx9Eg8cTqmIH6TMyMHm9lJSUYNZoIFYvQDV4vX/gAF8WFzf/ei23G2+s6aIqn06HxuOJHLfPhybWWAGTGuzdTaxcuk6dohzIyc2lUq9HF9xFWADwzDPPsHnzZhwOB3369GHfvn2YzWZGjhzZrIHw2muvZdOmTVRXV2O328nKysJcx++8IcJ3Ry1Ue9qm2u6oomEkEAohxEXEf+YMz61cSb9bb+UGrzewpivFNjipqanB4PXii3rh7jeb0UVVNZLBFbUDKoAluMFMWIUwUc3RU5Hr9GlMnN1MJjMzM1AhPH06KYHQfeoUZxQFX0UFvuJiwusX51OdMXm9tQOhzUYa8MUXXwS+13qaw+P3x6WKrLhc+Oqp0vj1erRRf5eMPl+dzeKDU0Y9TawQuktK8ABZWVkcMZnITIH2ManEYrFgtVqxWq2MGDEiNK2zuTeVCX88Sx2/63MJb9NyySWX8NBDD0W0aYn37qgiPiQQCiHExUJR8JeWUuz385/vvuMGCEwbTbFAaLfbSQP8US9Y/GYz+mAYS6LQDqhhQSDDZqMKsFRW1j8l8vPP4dVX4amnUrIy21wqi4owASZ1Wm1mZiYOICtJvz+N3R5YuwZ4i4oiAuH5VGdMfv/ZliOqtLw8tMC2Tz/FrCix/35ptXg1Gq7IyIhPFdntrjcQ+gyGWtV2k9+PJircBmnUv4veJm4K5CsrowronJ3NfqsVQwpsDpVK+vTpE6q0BduRud1ucsI2rkoVDWnTEq8gK+JHNpURQoiLRPWZM+j9fiq0Wj4/ejRwMAXXEQYDYXTlRbFaMXq9gWmuSeQNVknCxhfcBdV1rsAzeTL8/vfw73/Hb4ApoFLdRMQaFggrAV8ypgoqCqbqaoz5+ZQA2qjqW7A6k5+fH6rOmEymBr2oNccIhLY2bUjj7FpT6pii6tFquSE7u1YfwuaoIivnCISK0YjO54uY2mdSlDoDIecZCJWyMiqAVq1a4UtLw9jMU79ff/11rrzySiZPnszKlSvp3r07/fv35+23327Wx4mXxYsX11p3ZzQaY66NbG6fffZZo84PtmkZOnRoxEdD2rSI1CURXgghLhKHdu/mcuB7Q4fy0qZNgYMpOHWrrKwMK9R6oa1JS0OrKIHNMIJb5ydBKBCGTQUM7oJqrKioe0qk3w/B3fv+8hfo0yd+g0yyanUnT4vazsFms/E14E/G883hQKso5HbuzJnqagwVFVBTE/r9Nbk64/ViIqzliMqSk4MfCD176wiEbp0uMI5oGzZQun49aQsWYGrq89zjwV9PoFUMBkyAy+UKTB1UFCyATm0vUYv6s/I1sbKnqajAaTSi0WhQ0tMxnTjRpOvUJVFr8C50L774YsRtRVFYunQp9913X0Trifo8/vjjMY83pE2LSF1SIRRCiAvE+fbUKtq7F4AeQ4ZwOrjNeApMwYwWrBBqo6bahQJinHq3NZRSVYVLp4vo8Zaenk414KmvAnbqVGizFb7+Oq5jTLZqta1AurrRRHBTmaT0IVSf49a2bdEF+w2GPe+bWp1xqb9rQ3RbibQ00oBQTKyrQqjXo4kRCJVbbiF70SJeuOOOeh+/Phq3G6W+QGg0YgKq1Uqdx+lES+03YULUQOhvYiDUVVbiUq+hsdmwRm1oc77Op8p7MfnjH//IP/7xD6xWK2lpabRq1QqtVkurJm60tH79egYOHMiQIUNYs2ZN6PgNN9zQXEMWCSKBUAghUtiePXv44Q9/yJAhQ/jBD37A4MGDufHGG9mzZ0+jr3Xm228B6NyvH6GtIVJwt79ghVAf9UJbFwyISV5/pFRV4Yl6oRmsEHrr24UxOE23b9+zlcIWqkadLhkMhCaTiRqdDk0Sfnf+4FguuQRTfn7gYDO8EeI4dQoIazkSpFbZhvXsGbhdx4ttr8GANqo5vFJRgaL+ncxSN+loCo3HgxLcuCYWoxEjgQ2cAKrUNhD6utYTBwNhE9+MMTiduNXpqLrsbFr5/c069TtY5QVSfg1eXVwuF7t37+aDDz5g9+7duOOwgdYXX3zB5MmT+fvf/47RaGTKlCm0a9euydM9H330Ud5//30++OADtm/fzowZM/D7/TiT/KadaDwJhEKIlPLZZ58xduxYJkyYENq1DOCuu+5K4qiS57777mPZsmVs2bKFTZs2sXXrVv74xz82eHpPuAo1hLTu1g0f4LFYUjIQ2u12Wmk06KKm4oWm5iX7xUZ1NZ6oqXzBNYS++gLhkSOBP6+9Fg4dit/4UoBHXaeXHgxggNtsRpuE351d/Vlnd+6MtU0b9aD9vK/rVEOUKbjDbJAafJYuWBC4XUcg9BmN6KIC4cH33kOrKDiATlH3NYbW660/EJrNERXCGjUgG+oKhOoawqYGQlNNTWjXYENODkbA14zPhYZWeTdu3MjIkSOZNWsW69at48orr2TYsGFs3bq12cbSFKtWrWL48OGsXLmSjRs3snz5coYPHx4Kt81Fo9Fw22238Ze//AWv18u4ceM4fR49IXU6HZmZmVitVp599ln69u3L+PHjqUzGTABxXqSWLoRIKTNnzmT58uXo9XrmzJnDtm3bmDVrFgcPHkz20JLC5/OFtiAPysjICL0b3hjO774DIKdLF4xGIzVmM4YUDIRlZWVk6HS1NrgITc1LciDUVlfji3rhHKwQ1jelTjlyBKdOx5N//Su/KSkJVDrrWrN1gfPY7VQBaWGhxGc2Y4i1Zi7OSg8eJJvAGyHp33wTOBj1vHe5XHz55ZeUlpaSnZ1Nr169MNbRpD2ozkAYfG6cPBn4s75AGPVcPr1rF52BDSYT3c6jiqnz+epsMg+gMZkwcbZCWB2jt2YEvR6fRhN7zWMDWNxuFPXnYlan7ZYfO0b2ZZc16XpNNW/ePN544w3sdjujR49mx44dWK1WbrrpJj7++OOEjiXcsmXL+PTTT9GGTUP3er0MGzaMyZMnN/vjabVapkyZwqRJkyhSN4Bqij59+oR2yR09ejTr1q2jQ4cO3Hvvvc04WpEIEgiFEClFo9HQpUsXAN544w0WLFjAtGnTznv93IVq0aJFjB07FqPRSEZGBuXl5Xi9Xp588slGX8t/5gw1ej1mo5E2bdpQWVVFegoGQrvdTiuttlZYCk3NS2IgVBQFnduNP6q3XHANoVJPIKzau5cjPh8bg5XC48ehe/c4jjZ5/HY7Tq2W8N+gLy0NYxMbm5+PanUDk9zOncnq1CkwljNnQq0nVq1axdKlS+nfvz8ZGRnY7XZ2797NvffeW++L8WCIsubmRt6h9l4MTRGuIxAqJhP6qLV01V99RQWQN348nV5/HVd1NWfKymgTrGw2gKIoGLxelHoajmuiKoTB9ZDGugIh4NZqoSm7g/r9pPl8aNTgbFGrxhXHjyc8EJrNZtq3b0/79u3p0aMH7dq1A6hVXUw0i8XCxo0bGT58OBD4HW7cuPG8msY3hFarbdRzC2DixIkRt+fOnYuiKKFlDMOHD2ffvn3NNkaRGBIIhRApJS8vL6Iv14IFC1i9ejWrVq1K7sCS5Nprr2XTpk1UV1djt9vJyspq8osETXk5NRYLZqBNmzaUf/MNhSkYCMvKymil0dRqO2FSX2grVVUkq4NfdXU1Zr+/VgNvvV6PS6dDU09YrTp8mCKgJHigpKTFBkKlspLq6A09WrXC5PEE1o4lsAeju7gYB5Cdn0/rSy7BBdQcO0aw7t7U6kyNGggt0evUogNhHa0cFLMZfdQbXdv27OGAwYDHaKQMOP7CC7z0+us89thj/PCHP2zQ9+vxeDBBxC640TQWS0SFMBgITdHrIcN4dTpoyjRWtTenXv25pKnrSh3qjIV4KioqoqCgIHS7oKAgtKPshg0bgMDvOrz9RjKsWrWKRYsWMX/+fHw+HwaDgX79+jX7lNHmsGPHDjZs2BDx90VRFKZMmZLEUYnzJYFQCJFSYu3sN3ny5LhMm7mQWCyWwPbwTaQoCgaHA486Xatt27aUfv11yq4htChKrQqhWX1B6bbbSVbTifLycqwQc6qn12CIuWtkkOfkSc5oNFRbrYHpouexdiflVVbijlrDpklPR68ogVAR58pHOP/p09iB9hYLefn52AHl5MlQIGxqdSbYc7JVcOfSoPBAaLVCXdUniwWT34/X6w3thvnU8eP0MBi4xu+nBDi8YQN2u52dO3c2OBA6nU7M6vXroo2qELrVVir1BUKPwYCmKYFQbTViUCup6WpVrqqZW0/Ecvvtt7Nu3brQ7fCdMIP0ej3r16+P+1jqU1BQwOLFixPyWE2ZHh1u2rRppKenkxtVGZ8+fXpzD1UkkARCIYS4CFRWVpLu86Go6/DatGlDsdudkoGwrKwMi99fK3QFp+bVnDmTtEBot9tj9kgE8JpMtXaNjHDmDJ70dHpdfTX+f/4TbUlJ3ede4LROJ+6ojXe0wTWglZUJDYRKWRkVauBq3bo1dsCk7hAKTa/OuNW/O7WmjLZqBXp9YBOherbz11qtWACHw0GWOp1yrcHA8qwsjlVWMgM40a4dpzQaHnnkkQZ/v06nEwugrScQ6iwWjECF+gaGRw2E5uj1kGG8en39z+861BQVYQZMwZ6U7dsHjqu9KpvDgAEDah1TFIUDBw406OtTrj2FxwO33AIdO8KSJc122cZOj37vvfcibiuKwltvvUWfPn1qvUFx6623hj53OByk17VBkUhJKfY3QAghRDwUFRWRBWjU6W1t27blZE1NSgZCe1kZJq+31lQ7qzr2mrIybLG+MAFCLTFivNhRTKZau0aGM1dWQmEho66/ntJ//pOM776j4e/LX1h01dX4okKfIRg2HA6IDlFxpFWbokNgSvqXQG5YGG9qdcarhqjozY/QaCAnJ7CpTOfOdY+rVSssQEVFBVlZWSiKQqHHwx3f+x49//d/WZKby9t//zt6dU11Q1VXV2OONa4wOqs1sg9hAwKhz2CoteaxIRzHj2MGLOpU0eCmMu5mrJA7HA727NlTK9iNGjWq2R4joT74AN5+O/D54sXNNsW6sdOjp06dSr9+/Rg0aBCK2iYkvGL9yiuv8PTTT2MwGJg4cSK//OUvARg/fnxoSq64MEjbCSFESiotLeWbb76hVF2nc7Fqrsa/RUVFZAKG1q2BQCAsdrvxp2Bj+qrS0sB/TlEVwoysLGoAdxLHHAyEtZqRA4rFgqGu3mGKQquaGnT5+QwaNIgSwB7c8bIFMtbU4IteAxoMgQnekt7gcFCtVsvS0tIo12pR6nsOeb3UjBiBP8b0wojTKirwA5hi1KuD00bbtq3z6/VhgRCgrLSU1oqCqV070nNymGEyMTUtrdFhNThlVNeAQBhcQxjsn2kJjjsGv9GItgmBsErdbbWV+rPQmM24AF8z/j1euHAhjhgbFs2fP7/ZHiOh9u49+3kz9iwNTo8OOtf06EOHDvH973+fffv2MXr0aB599FG6du0aqlgvXbqU3bt3s3v3bqxWK7fccgtOpzMUHsWFQwKhECKlfPjhh1x99dX89Kc/5bHHHuOOO+7gmmuu4cMPP0z20JKiuRr/njp1iizArG6w0KZNG+zQLA26m5snWLWMekEb7PXnUdckJUMwENZqRg5gtWKoazdcpxOzomBq25a2bdtSArgTsKlGshg9HpSo6ZJWtTLki1GVjmd/OJPTiUd9Lmk0GmpMJjT1PIcqN2zAvGED2v/6L6hnd2Ofw0GNRhO7ehMMVpdcUufX6zMyIgLhif37MQOtLr0UAGdGBq1On445HbI+oUBY33RVdVOZYIXQp4Z0bT1tUPwxdkVtiGo1EAbXDgJU6XT4m3F2woQJE0LTbsMNHTq0QV8/evToZhtLs9i79+ybCZ991myXXbVqFX//+9+5+uqrGTRoENdeey3/+Mc/6pwenZaWxkMPPcSyZcv48MMPmThxIna7PRT4tFotZ86coby8nJkzZ3LPPfcwZsyY8+ptKJJDpowKIVLKI488wtq1ayPWH1RUVDBmzBhGjBiRxJElR7DxL8Czzz7LihUrmtT4t6ioiCGASQ2Ebdu2xU5grRceD9TXxDqB/H7/2cAXXSHMyKCKs9PbkqGsrIw0Ai/ma7FaA1NdY3AePYoVSO/Uifz8fLYDnZpxDVWqMXu9oUbkQWnqc68ybEOXoHj2hzO7XHjDKnWetDT09fz9OfLyy/RUP/fu3Yu+d++Y5ylVVdTodMSsw6mtFeoLhMaoQFjyxRcAZHbrFnjs/HzSv/iCmpqaRu0sHAyEsda5BmnMZiwaTahC6C4vxwfo6llLp5hMdb/hUQ9XSQleICvsd+DU60ObzSRSdMsEIKJlQsrYtw/P4MHo33kHzfHjzXbZpk6PTk9PZ/78+VRUVLBgwQJ69+5N586dsVqtjB49muzsbCZNmsS0adMoLCxk9uzZzTZmkRgSCIUQKUWr1VJSUhIRCEtKSiLWPFxMwhv/QmBNR1Ma/546dYpsCPUCa9OmDaHaYHl5Qtd01cfhcJx9gR0jEB4FfMkOhFotmhiVFF2rVhgVBfx+iHq+nvrqKzoB2d26odfrqbJa0aZgdbY5eL1erH4/VVGhOUMNBJVFRbUCYTz7w6W53aHNlAB86emY6gnjzt27+QLoBZz5+GPy6wqETifuugLU1VfDX/8aWEtYB1NmJl4CO9cCnFF7t+X06EFpaSnHc3JIA7799lt69uxZ53WiORwOLIBST09B1A1tqtS+mZ6KCmq0WtLqW6tmMmFSlFDbhobynj5NOZAVNh21xmRCm+Cpw3ABtUw4epQVX3/NcJeLLs0YCM9XRkYGmzdvZs+ePTidTrp3787BgwcxGAxce+21TJs2jZ49e7J27dpkD1U0kgRCIURK+dOf/sTs2bMpKipCURQ0Gg2FhYX86U9/SvbQkuL555+vdawpjX9Pqxs7oFYb09LS8KalBdof2O0pEwjLysoI1TWi206YzTgBYxJeSAYFp4zG6i2nC76JUV1da+yn9+2jE5B3+eUAuDMzMSdx6ms8lZeX0wpwRU2rtamB0Bm2w2dQ3PrDKQoZPh+asDCiZGVhOXaszi8xlZRwLDubnNJSnFu3kj9jRuwTnU48dVXWg7MZ1B01YzHYbBEVwspvv+VD4JG77iK3sBBLURGngZMTJ/KHP/yhwTMkHA4HZsAfY51riNWKlcAGIQCKw0G1TkfdE0ZBUb+murqaVvVUH6P5ysqo0GjICQvPbrMZfSOnvTeHOXPmpH7LBEWB4mL21NTQFcj+z3+oe2Vn4lksFjQaDWlpafzkJz8JtaxIuZ1aRaPIb08IkVJ69OjBW2+9lexhtDhVwfVqYetsTPn5cPBgSu00arfbCdWGo3by1Gg0uHU6DEkOhBZFiRkIQ9NInc5agbDi4EEA8oOVnpwc0oqK4jrWZLHb7RQCFVFrurLz86kBamKsL4pXfzjF6cQE6NXNlAB02dm08noDL7xjVMRslZWU9u3LoR07yP722zqvrXE68cXaUAbgiisCf7fUyn4swbYTFeobAzVHj/Iw8P769aTbbPhfeAHfjBksueMOHnnkkQYHwkq7HT3nrhCaFYVytUqtxOgbWUtaGmkEpqQ2JhBSVhaYIhrGZ7ViPHOm4ddoJvfdd1/M4+EtE5KushJqaigGjgPd1X87UsWYMWNCb978/ve/B8Dtdjeqii1Sz8U5B0sIIS4ywY0dCKvaWNu0CXySQoGwrKyszkAIUG0woElCZSGo4syZQHP1GIEwtPNojPFVHztGtUYTOkdXUIDZ74957oXOfuZMYOOdqOmSOTk5VALuRuwcfL5Vh0q1EmgMax5vaN0aHQTaX0RxVlWR7/Nh6dyZ8lat0AT/3sSgranBX9/avk6d6m8XoL5pUK0GI/+pU6DVUqLe1rZrhwE4+u9/N2rKfLUa8jT19CEMPn+r1HCuqarCU1e4VWlatQoFwsbQOhw4o67ta9UKU1078l7s1Ar6KeA7qHd6c7zF2uV63rx5jBs3LuI8o9HICy+8kIwhimYiFUIhhEhxLpeLL7/8ktLSUrKzs+nVq1domk5DeYJ918KqNunB6WwpFAjrqxACuI1G9Oq6p2RwBqtbMQKhUQ17Xoej1n+unpMnqTAYCL5ENwd/9iUl0KFDfAabJA618mkJq8pB4EVjpUaDN4FrJyuOHiUdMKs98Aj73FNSgiGqinZ4924uBzJ69KBo2zYsYf0Ko+lcLmjEZi+1qM9vtxoA9aWlPJWdfXbKvMOBBji9fj1vh7UKOJea4M+3vrGpz98aNZzrqqvx1hcgCWxSY6XxgVBXVUV19FgyMrA0YcfSi4IaAEsAS8eOWJO4hjC4y7XRaGT+/Pls3ryZJUuWNPo5IFKfVAiFECnH5XKxe/duPvjgA3bv3o37In4nedWqVQwfPpyVK1eyceNGli9fzvDhw+vcJjwWRVHwB6dnhVUIW7VpE+ijlkKBsLi4GJtGg6LVQowXqG6zGb26VX4yBF9AxwqEJjVsV8eaCnf6NNVh00hbdeoUOPfo0eYfZJJVqRWO6EAI4NTpYlbm4iVYIUwLa3mQpq5ltMfo73Zi504A8q+6Cm3btmTW8cJXUZSYrTUaRQ2jVUVFlJeXk+ly0aWggLfeeoutW7ey7Z//ZCvww8xMevTo0eDLuoObLjUiEOpdLvznCIS6jAzSONuqoqGM1dV4oqZQazIzSff78TZh19J4iNXDMGnUQGho2xZLhw6Yvd7AWu8kCO5ybbVaefbZZ+nbt2+TdrkWqU8CoRAipTRHAGpJli1bxqeffsqSJUt4/PHHef7559m4cSP//d//3eBrlJeXkxZ84RVWIczNy8MBKRUIi4qKKGjVCk16eszpdh6zGaPLlYSRBbiDP6sYL57N6sYlzhhVJUNFBZ6wTT6yunYFzu4s2ZIEA6E1bJpmkMtgQNOIF5Pn2x+u+sQJAFqFbe4SrIyXHzlS6/xStf1AVq9eWLp0IcPvxxtj8x+n00m6oqCpb53euagVworjxzl06BB5gD44jRtAbdNhqKdKGYsrON4GBMLg89ngdtda9xotGAgbWx0y19TgjwrO+qwsMji7qU2ivPLKK/Tu3ZurrrqKRYsWhY6PHz8+oeOo16lT+DUasrp0IU1944gkTRsN7nIdNHXqVGbNmpVaAVo0C5kyKoRIKcEAFL5mxuv1MmzYMCZPnpzEkSWHxWJh48aNDB8+HAhUJjZu3NiovmRFRUVkAX6dDm1YZSs3N5cyoNWZMzRmc/9Jkybx6quvNuIrGq6oqIgrrdY6+yL609KSuqbGF3yxHWM6q1kNQDVRL+C9Xi9pTieasJ0NW6sVn4pDh+I00uSpVKeM6mLscukyGGJWeOPVH86ljsUWtrlLpvp5VYypeM4DB/AD2jZtyFR3hD2xcyeXRG3oEpzarI3aSbVR1OdQVVERhw8fphtgDd+ExmCgOj0da3l5o1o9hCqEDVhD6K2owO12Y/H5Am/C1ENvs2EFqhpZHbJ6PBD1XDDk5pIBHCktrbXjZ2N99tlnPPzwwxgMBubMmcOQIUMAuOuuu3j55Zcjzl26dCm7d+/GYDDwhz/8gVtuuYVXXnkl1Gg9JRQXU6bT0alz59AbR5UHD4ZmFTQHr9fboPW5zbXLtUh9EgiFuADE8wV4qmmOANSSrFq1ikWLFjF//nx8Ph8Gg4F+/fo1qmJ66tQpMglsQ68Nq7oFA2HeqVMxm2vPnTu31jFFUdiyZUujv4+GOnnyJKMtljpfzPrT0jAnae2Ry+U6W52M8eI5TV2bFh0Iv/vuO3IAQ9g6tjadO1NJoGF9S1MdDOwxfkYekwlzjEAYr/5wnpISnEB6WOjIufRSAJxq9TCccvw4FWYzmQYD2b16AVD6xRe1AmFw8yN91E6qjaJWF2tKSjhw4ADXAJYOHSLWDBvS08l1OCguLqYw7PlTH0+welPfv5lqNdDncPDdd9/RCjBm19/cwJyTg5azG9E0VJrPhyYqOJvy8jAC9lOnoFu3Rl0v2syZM1m+fDl6vZ45c+awbds2Zs2axUF1d84TJ07QRq28arVaDOqbTTNnzuTyyy9nzJgxlDZio6O4Ky7mFNC+fftQD8ziL76gVQN3ma3Lnj17mDdvHna7Hb1ej8fjITc3l4ULF9K7jl6b57Jx40Yef/xxvve973H99dczb948bDYbTzzxBIMHDz6v8YrEkkAoRApJxgvwVNMcAaglKSgoYPHixed1jWCFUBP14rV169bYAXcdgfDVV1/ltddeq3X8o48+Oq/x1KeoqIhsoxHqWpuVnk6az1dny4B4itgBNcZUwZxLLsEPVEe1kzhy5AhdAd0ll4SOpaWlcVSjwRMjlFzoXME1lDF+hx6LBWOwghUmXv3h3KdO4dBqsYYFzbTsbJyAO0al2VJWRmVGBplA6yuuAKDqwIFa59ntdtoA3noaz5+TGpitPh9/e/NN5gCrDh5k6fDh9O/fn4yMDE4pCp8A9pde4pFHHmnQZX3BCl4DpoyaFYUvv/yS7sRe8xnOrH6vsaZE1zkWtxsboI/6OVnUanpVMzz/NRoNXbp0AeCnP/0pr776Ktdffz3FxcW8++67LFiwgMcee4wf/vCH3HDDDRw+fJiOaiV25MiRFBYWMnv27PMeR3PxFxVxwuulsLCQdn36AGD/+uvzvu59993Ha6+9Rvuw6dNHjx5l0qRJfPLJJ/V/cWkpzJ4Nd9wBw4aFDs+bN4833ngDu93O6NGj2bFjBw888AAPPfQQH3/88XmPWSSOBEIhUkgyXoCnmuYIQC2a1wuffBL4T7mBgaioqIgcnQ5t1Iuy3NxcvgB8dfQDu/POO+nRowd5UWvBbr/99qaMvEGKiorIslpjVpcgsBmFDgLN32Ns7BJPZWVlhGJgrECYm0sFUBMVNI4fO8ZgwNe5c8TxCpMJpZHrwy4EobYSMdak+S0WjDEqTPHqD+c7fZqqqJYHGo2GCp0Ob4xxZFZW4lKrSelt2lABeGJsPnO6pIR0oCY/v+mDs1hQtFrS/X4Obt8OwLItW/j0iy9ClVLnt9/y2f/9H9PWrGlwICQYCOvb8Eb9u2MFtm3bxlVAK3XNYl206t/JmJsm1aH8+HGyiWz7AWer6VX1tPVoqLy8vFDImzp1Kv369SMtLY39+/ezc+dO7HY7O3fu5Ic//CG/+tWvan19z549Wbt27XmPo7l4T5zgFIH/C1u3acMZoKoZppb7fD5sUVN3MzIy8Pl85/7aBx5At2oVyptvojl5kqLKSp599llOnDgRmlZqNBpZsmQJu3bt4lK1Ci8uHBIIhUghyXgBLuKvMWtczunJJ2H+fFixIvBubQN89913DDOba03bys3NxQ4odWzs8Pjjj8c8PnPmzAYPtzEUReHkyZNkdOlSZyAMrUtzOJIWCBWNBk2MsKPT6ajUanFHBQ374cMYAEPYO/MAzrQ0tAlswZAoSnk5fo0GbYxA4k9LC+yamCAaux1XjOnHVQYDStTPvkrtQegPm5p52mhE+e67Wl9fcuwYBgL9JJs+OA2a9HQKPB7y1I1aLK1aRUyZN3fqxDFo0Iv2ICU4ZbS+NYFhgXDLli3M5WwF8FxfU9OYQHj0KNmAOSo4W9WfcbW6AdH5ePPNN0OfHzp0iD/84Q/s2bOHTz75hMGDB/Ovf/2r4WE6BfiLiigGuhQUoNFosBsMzbKpzKJFixg7dixGo5GMjAzKy8vxer08+eST9X+hx4P/zTf5X+DOqip0a9Zw++uvByrL3btz/fXXo9PpuOGGGwDYsGEDfr//vMcrEksCYRMEpx+Ey8/Pp0idJqQoCo899hh/+tOfKCsrY+DAgfzxj3+kZ8+eofNdLhcPPvgg//d//0d1dTUjRozgxRdfpF3Y1tji4pPoF+AiMc61xqVR/ud/An8uXdqoQJhnMETsMAqQmZlJhUaDNsYUvmSw2+243W7SFKXOF7N6dZ2TUlGB5nyqM00QnDKqtGqFpo7qbI3BgC8qYIfWCUZNh/TYbFgbuR7rQqAtL6fGZIqYphmSnp7QQKh3OGJO63SZzWijdg89efIkbYHKsKm9FWlpMSuadrWdhTbGxjmNkpHBz8eNY9Lll8P997Pqj39k0auvnp0yf/o0VwHXXnNNw68ZDIT1vWFiMqFoNKRrtfxl82ZaEWg8Xy/1TRB3I97EcKgb91ij1j9q1J+bq5kr5GlpaTz00EM4HA6WLFnCc889l/CdTM+XtqQkVCEEqLBY0DfDGsdrr72WTZs2UV1djd1uJysr65xr8wcMGBB4PlVX8yWwBDA/+CDfADNmzGDGjBm13sC+44476qz4i9QlbSeaqGfPnpw8eTL0Eb4T2lNPPcWzzz7LCy+8wI4dOygoKGDUqFER2/Q+8MADvPXWW6xZs4ZPP/2UyspKxo4d26h3AYUQF4bgGpeOHTvyxhtvUFFRwbRp0xrfg6ukBA4fhiFD4LPPoIH9Gb/77juytdqIHoTBcbmtVvQp0lMq+Kaa1eWqFV6DjOqL++hpmYlQXFxMBtTbasBlNkNU0HAHK0xRa7SUnBxaJbGnYrzoKytx17EpkCY9nbRGVA+KotZjNpapujrmc8mdloY+qrdb0ZEj5AHmsKm9zuxs0mK0nSgP7lB6Pm0nANLTydLr6aoGpILLL2fx4sVs3ryZbdu28cnvf88SGr75kMfjQVdTg8dohPp2JdVo0FittM3MxOB2B14MnivcqoHQ04iA5VSnhKaFt9OA0M/NG6fNXNLT05k/fz7/8z//c2EtQfB4MDoclBAoNABUt2qFuRnftLNYLBQWFjZoozaHw8GWn/6UjzUarhgwgP/S6fjE7aZ/v348/vjjtcIgBN4AbcgOpiK1SCBsIr1eT0FBQeijtfofvaIoLF68mF//+tfcdNNN9OrVi5UrV+J0OkNrw8rLy3n55Zd55plnGDlyJFdeeSWrV69mz549fPDBB8n8toQQcRBc4xK0YMEChg4dyo4dOxp3IbVptvtnPwuEwX//u0Ffdvz4cWw+X8wXxt70dMxOZ2CTliQ7qb54NFVV1R0I1X9rY+0QGW+nTp0iz2SqNxD6rNZaffZ8wVATFQh1+fnYPJ7U2vL+PDmdTixuN/46fka6zEwsgNLAnWLPZ7q8y+Wilddba0MTAH9GRuB5H6bsq68AyAhrAu/Ly4vZnN4Z/J2eo1XDOWVlBTbsOHUqUNGLnoqsBqnqb79t0OVKS0tJJ/A8PKe0NNrZbIT+pp1jl9HgmkRfjIBcl0r1zZDs6JYJ6vPDF+fdPTMyMgJVrguFWo2uTk8PBTZXZiZpjez92FwWLlxI0aZN/FtR+MWDD1LZuzeW6mrm33lnUsYj4kcCYRMdOHCANm3a0KlTJ37yk5+Epn4dOnSIoqKiiGa6JpOJoUOHhnaK3LVrFx6PJ+KcNm3a0KtXr3PuJulyuaioqIj4EEKktjfffDO0q13Q5MmTqampadR1fJ9/TgUwbvnywIYyDejRpigK3333Hek1NbWmLAJ4s7Iw+nwQVS0BWL9+PQMHDmTIkCGsWbMmdDy4VqS5BatBOoejVjUzyKy+QK5phs0oGquoqIjWZnO9VSGlVSsMUS/etGfO4IdaL7jN7dqRA5xOYl/F5nby5EkyodZ61aBgOIveiXXAgAG1Pvr37892dbOVpjhx4gRZgDHGOj9tdjZWlysijAeb0rfq3v3see3ake/z4Yuq5tfXWqNRCgrg5Ek4dgyi1pgCoUDoP368QeuySktLaQUo52gyD0BWFhOGD+fHP/hB6Ha91AqiphGvO6rVQGiObplhMuHWaFAaES7rkuh/p5rLiVhvaqlTaA1t24YO+XNyyAy2u0mwCRMm0GrPHv4NDBs2DNu11wJwrdGYlPGI+JFA2AQDBw7klVde4f333+ell16iqKiIIUOGcObMmdALmvyotS3hawyLioowGo1kRf3jG35OXZ544glsNlvoo32s/0BEixP+5oFIvkmTJiXlcQ+tW8fXwPuffIK3bVvYv/+cX1NcXIxSUxPonxdrW/lgSIyxTurRRx/l/fff54MPPmD79u3MmDEDv9+PM07vVhcVFZGVlobG6azzxWlwLZK7GTajaKxTp06RazTWGwI0NtvZXoUqfVkZNRYLRE2jSuvQAR1wqgG/xwvFyZMnsQG6OpqNp6nr805HbaPvcDjYsmUL27dvD33s2LGD/v37N3kswUBoDXtxHaQvKCBbUSKWclQGxxQ2vdF86aVYgOKo8YZ2KD2fxvQAhYWBQHjkCHToUPv+ggL8Oh2FHk+ogl6fM2fOkE4D1gMCZGWR6ffzzPz5gdvnqhBaLHi12sAbNg3kOXUKp0YTswVGtdHYqHBZl0T/O9UU7733XsTHu+++y/jx43nvvfciT1TfaLCGPRc0BQVk+/0ocVpSVO/rC7+fVidOcMRqpXXr1vQaOZIioHzTJgBef/11rrzySiZPnszKlSvp2LEj/fv35+23347LWEX8yCTfJhgzZkzo8969ezN48GA6d+7MypUrGTRoEECtDQcURalzE4LGnPPQQw8xa9as0O2KigoJhS3IxIkTax1TFCVijerFwOv1psQahFTqC3n06FGKN2+mJj8fS0UFR61WLm1AkPjmm28IxcAYgVAbfPOqpASiqpg6nY5M9QXvs88+y4oVKxg/fjyVcVpzeOLECbrn5cGhQ3UGwtYFBdiBmvNcW9YURUVFZOl09QZCbU4O6T4fLpcLk8mE2+3GWFGBKy+vVq/HTLV3Wun+/aC+836hO3nyJG0INB6PJVv9ns98/XVEs/eFCxficDhqvVE6PxhWmqDo8GHSoNbzGsDUrh25wKETJ8gIrmc7cgS3TocxbAzparXw9H/+Q+HllwPq/9XBqY7nClHnEgyEJhP07Vv7fr0eb5s2dD52jIMHD9I2RrgNF6wQahsSVLOzA9NVg9/LuSqEGg01JlOttZf18Z8+TaXRGLPPaY3ZjKER16pLQ/6dGj16NOvWrTvvx2qqYDuMQYMGharS4e0wQtRAaOvaNXTI2K4desBx7BjpMZ7LDdWk1xfffYfe66VanfI7cOBAdgO9Nm/mtRdf5KmnnuKBBx6gpqaGmTNn0qZNGyZPnszTTz/NuHHjmjxWkXjJf8XVAqSlpdG7d28OHDjAj370IyDwwqEwbIpEcXFxqGpYUFCA2+2mrKws4j+/4uLi0Hb0dTGZTJiieiqJlmPHjh1s2LAh1IMKAv9gT5kyJYmjSow9e/Ywb9487HY7er0ej8dDbm4uCxcupHfv3kkZUyr1hfzd737HYz4f6ZMmMebwYXZv28al+/ad8+vOFQiNwReYMXb769OnT0QT56lTp9KhQwfuvffeJn4X9Tt+/DjdzhEIc3NzOU6g8pBop06dIlNR6g0BhoICsoGSkhLatWvHN998Q46ioI0RkLLUF33lDVwfdiE4efIkPTWa0FrPaK3VgFUR1dtvwoQJMc8fOnRok8diVxvKW2NU3tI6dsQIlHzzDd0vuwwA/alTVNpsZIe9MZuj/ttTvndv6FhFRQXpXi8eiwWDwdDk8QGBQFhaGlgTfNNNMU/Rde9O52PH+Pbbb/n+979f7+XOnDlDBqBvSCDMygpMVS0rC0xBb8COqR6rtVEVQk2wOh5DTVoalmaoEIb/OxUMPQ6Hg/379zNx4sSUeFM1vB3GjBkz6myHoRQXUw0Uqm+cAKSrmxyd2rPnvAJhk15ffPMNABr136rWrVtzxGaj39df88c//hGHw0FmZiYajYaePXtSWVlJVlZWs72h25CquGgeEgibgcvlYu/evXz/+9+nU6dOFBQUsH79eq688koA3G43GzduDPV66du3LwaDgfXr14f+8Tp58iRffPEFTz31VNK+D5F8c+bMIT09ndyo6VbTp09P0ogS57777uO1116LqHgfPXqUSZMm8cknnyRlTPHuC9mYd633bN1Kgd8PffrQv3VrNr/7LjcXF6PxeKCeF6UHDhygR04OnDkTMxBa1Sl8SvH/b+++w5q63jiAfzNIwgx7yRAVFfdW3Ltaq7a2WrVWW1u7HbXr12rV1lbttHbZumcddW/FhaKiiAtlCLL3DoFA5vv7I5ASk7BEAno+z8Ojufck94RLbs57zznvycbD4xMqFhyubMiQIYiuQSBaF2lpaRheEQiaSiojEKCIxzM6xPVxIiKkpqbCTiCoMiC0bNYMjgBuZWTAy8sLUVFRcAEgNDKSw6JicW4TGSSDg4OxdOlSdOrUCaNGjcJnn30GsViM5cuXIzAwsD7eVr1LT0+HI5cLjonzZ1P+91ZSvmyDKQsWLMDRo0dx6tQpo5kMa6K4fDFvjpHn25c3cAvKh4JKJBI4lJZC9VDw6Fi+XFTlpC5ZWVlwAqASi/GI4aA2IAS0i8k/nHilHM/fH23On8fOGixTk52dDV8+H9yaZD91cADu3NEGpGJx1VlJy6ltbWGVl4eysrIaZam0kEqhNPF5UdrZwboelp2ofJ1qrDdVa7ocRllyMrIBvZ5gp/IkR/nR0cDYsXWuQ53aF3FxUAMQd+6s22Q3cCCcDh/G1ePHMfHtt3HgwAG8/PLLCAkJwXPPPYfJkyfXacjow8NniQhffvllrV+HqRsWENbBxx9/jLFjx8LHxwfZ2dn45ptvUFRUhBkzZoDD4WDevHlYtmwZ/P394e/vj2XLlsHKygpTp04FAIjFYrzxxhv46KOP4OTkBEdHR3z88cfo2LEjhg8fbuZ3x5iTqbV7Xn755QauScNTq9UQP3SH2s7OzqxLsdTXupCPOhRYLpdDUZ4BEf7+6OLigu/lcm0AFx8PVEqC8bC4uDh0dHExGRC6eHmhCIBFaiqM38dvOKmpqfCpmDNWRQ+HTCiEVQMv6J6dnQ2pVAprGxugigW8K+YF5sfHAz174t69exjH40H4cNp9AHB0hAaVlqV4yGeffYZ///0XhYWFGDlyJMLCwmBlZYUJEybg/Pnz9fK+6ltSYiIciEwPP7S0RCmHA3kVd/5jY2Oxe9kyDAOwYtky/FzHZQPKKoJOYzdCygO/il7E2NhYNAPAeygg5FhaooDLhbpSAJuZmQlHAJxHHS4KAOXDUAGYHjbcsiWaazSIr0FPcnp6OhwsLHQZQavk4KDtHSwoqPHQV45YDDG0PeDVTVchIliWlkJj4rOssbeHnVIJjUajF8A9isZ+U7ViOYyioiKjN9YqAkL3SomQXDt0AABI67JubSV1aV8oY2KQCqB569a6bd1eew04fBgPDh7E8ePHodFosH37dowbNw65ubkQCATYs2dPretnbFitpB6SDjE1wwLCOkhNTcWUKVOQm5sLFxcX9OnTB6GhofAt/yL59NNPUVpaivfee0+3MP2pU6dgW2neycqVK8Hn8zFp0iTdwvSbNm0CrwZ36BjmSbRixQo899xzEAgEsLOzg0QigUql0vWsN2WPetc6KioKfhWBsb8/uqpU0DUlYmKqDQgniMXalPZGUtG7ubkhG4BjYqJZA0KNRoP09HR4VdSxigaq3MoKtrUYtlYfYmNjwQW0c56qqJtdeS+PpLzxduXKFbxjYWG0lwp8PootLEAmsoyKRCJ4e3vD29sbAQEB8PLyAoBG/T2RnZAAoUZjPIFRuWKBAOoqMqseP3QIQQCaA/hlxw6gjgGhbrkPYwluyusnKR8SFxsbi54AbCo1fCvki0TgVpqzmpmZCSdolw15ZD4+gECgHTJafn4NtGwJK41G20NUjYyMDNhzubULCHNzaxwQch0dYY+aBYRSqRRijQZcEwmGyMkJTtAOwbV/1OQ85ZrKTVVTy2GoMjKQA6BNpYBQ4OICBYCypKSGq2A52Z07eACgZaW1OZuPHAklgKLLl4HZs8HlcvHqq6/ilVdeeaR1Q40Nq7106ZIuiz/zeLGAsA4qpzU2hsPhYMmSJViyZInJMiKRCL/99pvRIVkM8zQaOHAgLly4gNLSUhQWFsLBwaFGQ5Kagke9ax0bGwt/ABqxGFxHR7hxOLBr3RplCQkQRUcDJibvExFiY2PRvHNnwEQyCjc3N6QDsDUxbFEul+PevXvIz8+Ho6MjOnToAMFjSDmem5sLhUIBdw5HuxZbFWnzlba2EDXwkNG4uDjtcgpEVfYQWpQ35HKjo6FWq3H50iU4KpWAieBBamsLQV6e0X3u7u5Qq9Xg8Xg4e/YsAG3CpZosP2AuFcM0qwoISy0ttYGICdn//ovmAAq9vDAmNRUZ6enwMNbDWp3cXMj5fAiNrcnn5AQNgNLyRvb96Gi8AEBYqeFbQWpnB1Gl9fLS09PRmcsFv45DWQ0kJgJVZcQsrxOn4ndbhYyMDDio1caD4Ic5OGiXm7l/33iGUyMsXFwghrbHvCZ1cQQgMPG3L/TwgHV5ufoKCCuTSqV6N+KbhJwcZAMYWPl3xuGgwMICajPMp6O4OMQBGF9pTqPAxgaxAgFw755eWS6XC8+6fE7LGRtWy3oIGw5bdoJhGhm5XI4bN27g9OnTuHHjBhQKhbmr1KAsLS3h4eHxxASDgPau9cPBIFDzu9axsbHoKBCA26aNNvkDgGHDhyOOy61y6Ync3FwUFRXBQ6Mx2fvg7u6ONAAcI2tibd26FUOGDMHmzZsRHByMjRs3YsiQIdi2bVuN6l0baeXDJl3Uau3abFVQOTnBrpZrOD6q2NhYtKtopFXVm1J+ngvi4hAREQGBVAq+Wm18jTkAZQ4OsDWRWGPnzp0GvYF8Ph9BQUG1fwMNQC6XgyrmhFURECrEYohMNPSICL63b6NQLAa+/x7+AK7X8e9NUFiIMlMBAZ+PYhsb8Mob2QmhoRABRjOSKpyc9HqkY2Nj4SEQgFPFjYFa8fDQBX1GtWgBAHAsKNBbJsOY9LQ02CoUNQsIK64JFy6YnL/4MJGrq66HsDoZGRlwBSAyEWzaNm8ORwDJDyUYqq0tW7agY8eO6NatG1asWKHbPn78+Ed6XXOwyM9HAZ8Pm4d6eEusrMCth5tgldfdzMzMrDrgIoJVWhqSLSz0hrACQLaLC+yqmAf8KD2FFcNq161bp3c+mceLBYQM04g0ZAOcqbuGXhcyNjYWHS0sgPJsiADQrVs33JbLoa6U/fBhceXD4RxlMpM9hGKxGJlcLiyM3PH/+++/ERISglWrVmHp0qX47bffEBwcjL/++usR35Gh1NRUANAGetUEhBxPT22vWwP2lMXFxaFTxe+wqkCgfJ8sORkhISFoUZFtz0RAqHZzg4NcDqVSWeO6NIYlWYxJSEioMqNtBZWrK8SlpXqN0wr3799H97IyFPfqBfsxY6ABkHPwYK3rIpVK4ahUQlnFuVK6u8O+uBipqanIv3lTu9FIQCho3hzOcrluGYPo6Gi4AUB99RBWx9oaCmdntIb2d2wKEUGWkQGeRlOzgLDS9cTY+zaG7+4OFw6nRg3+7IQE2AGwqdS7VJm4ZUvwAGQ+4jqcq1evxo0bN3Djxg1YWVnhpZdegkwmMwh+zCkoKAi9e/dG37599UaZjRkzRq+cSCqF3M7OYAkyuVgMwSP2lq1atQodO3bE+PHj8e2332Ls2LEYP3481q5da/wJ2dkQKBTgt2ljUJ+yVq3gLZFAXlZm9AZ2fSRes7OzQ3djS7Ewj0Xj/FZhmKdURQO88lwzlUqFwYMHY9q0aWas2dOpsawLGRUZCT+FAijPNgcA7dq1wzEAVEVAGFueMMMyP99kQMjhcCC1s4N1YSFApOuBBLS9tcHBwRgyZAgA7XsPDg5+LL23aWlp4PP5sCwsNDm8soLQ1xcWAMrS0iBqoHVYY2Nj0b8mPYQCAUqtrYGMDKxatQoTWrUCoqNN9tDyvL3hCW2DtamvKVuRURVAlQEJt1kzeISF6ebhV3bs338xG4DquecAOztkOjvD8tatGq3TW1lSUhK8AJCpeXkAbNq1g09cHP766y9YVfR4GenNcurRA82OHsXlq1fRf9gwPIiKgriszPScv8eAOndGtzNnEB8fj06dOhktk5+fD+uKnvMqAnKdyteEGvYQwt0djkRIKr/ZVJWi8gyuliZem19+fMkjBoRcLle3/MecOXPQrl07jB49GvmVhvlOnz7drOsQLl68GCdPnoRAIMDChQtx6dIlrFq1CrLKQ4XLyiBSKEBGzp3G2Rk2qam1/hxU9s8//yAiIgIymQxt2rRBfHw8LCwsMHDgQMyaNcugvDo6GjwAzQYPNtgn6NoVR4OD8a6TE2xsbcHj8aBSqSCTyeDi4qL3u2eaBhYQMkwj0pAN8KbCnAsK12cK87rOxZPL5ci4eRPWSqXeHf2AgAD8DIBfWKhNCmGkAR4XF4dmHh7gZmRU2XjleHtDEBEBSCR62T23bt2KFStWYOHChVCr1bCwsECPHj0eS491amoqPDw8wMnOBiotymxMRY9DTkREgwRRFXMx/Vu21AbM1fQMCVq1QruEBMTFxWHIc88BDx6YfI6oeXM4A7iVlvZEBIS+lpYgCwtwqlgvV+TnBycAMcnJBgFh7I4d4APglzdCVT17otPx47h//z7aVJE86WF3795FJwC2lXvBHiJs2RL+lpYY8e23WCwUgkQicIzMZfPo3x9cAA9On0a7rl1BGRna4VUNGBAK+vZFzzNnsLWKQCw5ORm6q0BNegg5HO17SE0FeveuWUXc3MAFkF+DIK6g4maVqR7/8vlmpY+4DueYMWN06xBWJGopLS1FcnIyevXqpfv8mhOPx9PNk/z555+xadMmjB8/XtfrDEC3FqxN+RBhved7eMDpxg0UFRUZZOOuKUtLS3A4HFhbW2Py5Mm67x9TIw7yQ0PhBKClkRExLkOG4PNffoGrjQ3up6bqXqPiBnbLqoZAVyM/P1/3PdlYR0M8idhvmmEakYZsgDc2jaU3rrL6SmG+detWrF69Gj179oSdnR0KCwtx48YNvPvuu9X2/N64cQMtKoYTVmrc2tvbo8DFRduIiIkxGRD28fEBMjKqTBph064dEBGhXRC+fP1UQDu/8JdKGR4f5e50dVJTU7VZNOPjq+0hrFgbrjAqCt7PPvtY6lNZdnY2iouL4cvnawO7ahYj5/n6YgiXC9y8iV6urtrhoibS6tu1awchgJyoKKBPnxrVx5w3SaoSGRmJ5+ztwakmkYdr584QAbh7+TK6VRoSplQq4RgTA4VQCEH5OXYZPx4+x49je1BQrQLCiIgIjOFwIDIxXBEA4OMDT5UKHADj/P3BMZHIiF9+3JzQUISHh0MXBjZgQMjp2ROuAPLv3DFZJjk5uUY9tHquXAGEwqqHQVdWHtyV1CDzY0lFoFex1uLDyrerqlmTsjpffPGF7v9SqRQRERHg8/k4evQobty4gYULFzb4MP+HdenSRRe0AtolFnx9ffHuu+/qymjS0sAF4GDkJobIxwdiACkpKXUOCEePHq1LUvXjjz8C0K6T3b78s/aw4ps3IQPgV3lplHLNhw2DEMAQZ2dIpVI4ODjo3cBeuHBhret35swZLFq0CM7OzrrvydwGTh72NGMBIcM0Ig83wAEAcrn2C/sJ1xgXFK6vFOaPMhQ4KCgIXUUikEoFzkN3XYUdOkBz7hy4MTFAv34Gz7116xberLjbXEVj2qlPH2DXLiju3oWgUkBYWV5eHrp3744hQ4Zg/fr19bZuWIXw8HAM6N5d20CtJuOhW/mQueLyIWmPW0XvgptSaXLorR4fH7jHx0MikcBu6lT9uVoPsSlfY0z2UMY+oHHeJKnK9evX8ZGVVbXnT1T+NxkfEgLMnq3bHh0djR5qNWSdO0NQnkzHcuhQAEDB8eNALW7E3L9+HbZEVQdtbdvCQqnEoVWr0HXjRqBjR+PlmjWDkseDIjISYWFhaG1pCZSWNmhAiPLAmcLCTBZJTk6GB58PqFQ1D/Bq+x7KA0J1WpouuDBFmZICFZcLvqk1Ka2sUCoUgpeVVbs6VGHZsmWQSqX4888/sXHhQhQA8PPzq1OAUp+MZZQfMmSI3lqEBbdvwwmAS48eBmXF/v5wABASE4MO5deM2vrss88MtvFVKvTv0AESicQg0NTcv494AAN9fAyeJ7K2xhKRCL+mp+O5557Tu4G9du1auNZhfu2iRYtw4sQJvcywqampTX7kRFPBksowTGO2Zw8gFgOff27umjx2Fb1xvr6+up/mzZs3mgWFH0XFUOAKtRkKfOzYMYzw8gKnVSuDnqlWHTsi3cJCO0ftIYmJiYiKisJgT0+Ax6tyjpBf9+7IA1BgorEZGxuLXr16wTIpCZxNm7Bq+fJq610bubm5uHv3LkZVBK3VDDeydXFBBpcL5SPOPaqpiuQ84uLimjWgfXyApCTY2dpqz02luZ8P45QHRyojQwHDwsLw3Xff4YcfftD7aVVVr5eZFBQUICYmBj4ajfb9V6U8YMy7fl1v86WQEPQDYDls2H8bW7VCkUgEq4qkLzVARMiteO2qGpNdugAAnvPwACcqCjDV0OZyIfHyglt2Nn744QcMad4csLPT/jQUT08U29nB7v59lJnIsJuYmIgOtrbaHvbHsDQMAN3QZxeNRpcIypji4mLYSyQodXLSm5f8sFIHB1hJJFBXrLP6iF544QXExMQgZ+FCxAFI4fOxdc4cdO7cuV5e/3HKv3ULJQBaGEmkYl++PmZGFT3EtVZUhHx/fzz/7rvYY2QOoWVqKjLt7HTzMx9m4eWFBQoFLl26hNDQUFy8eBE/9e6N04MHo7WXF2JqeX3mcrkG2WtZD2HDYQEhwzRWCgUwb562h3DFCsDMcyAet0ddmqEx27p1Kw4ePIh+/fqhT58+GDhwII4cOVLtUGCpVIqwsDCDDKMVAgICcFuphMZIY/nPP/+ESCRCewsLbdr6KoY5tmzZErEAFHfvGt3//vvvw0utxl0rK2wA4LtwIS5fvlxl3Wvj6NGjAIB+FXONajD/JNPGBvwGWqg5NjYW3t7e4GVm1qyHsF07QCoFoqK0w3CrCAhhbw8pnw+OkdT7TekmybVr1wAA4qKi6te08/KCysICFomJesHN5Q0b4AJAOGLEf2U5HOS0bo0WmZk1XoInKSkJrhVJLaronYW7uzbA+fNP7XXWyELhFWwHDkQ3AIWFhXjO2xvo1KnKQOdxUHXrhr4aDUJCQozuDw0NRRc7O+Bx3jAQCKBydIQ3gAdVzP2LjY1FSwBqI/PhKlO7u6OZRoOseuwlPLdxI74DoJkxA/z27bGqsBBLFy2qt9d/XErv30cyAD8jvzNO+TD6vMjIejue5rffIE5PRxaAYQcOQFX580UEx7w8lFZ1vevUCa1kMsgqsp8eOgTulCmYlZyMrwsLsXjx4lrVZ82aNfjoo48QGBiIPn36IDAwEF9++WXt3xhTJywgZJjG6vhxIC0NuHpVO/zHVGpopsHVNoV5xVDgyndSV65cabC208NCQ0NBGg080tKAbt0M9nft2hVXAGhCQ/WWYJDJZPj111/xySefQHj3rrbxWk39Ink8iIzc0S0tLcWFCxfwl4sLeA4O0KxejQkADn7ySY3ee01ULLfiVFgIWFpWu+wEAEhdXSGuwVpo9eHOnTto07q1dgHxmgxf6tlT+++qVdrzYmQIWGWF9vbgGQkIm9JNktDQUHg6OICfl1d9QMjlQuHri5YaDW7dugVAG2hZXb8ODZcLBAbqFecPGoReRIi4caNGdbl06RICoM3MWGVGWAAYPRo4f14bGFaRWEXYpw8683g4dfAgHFNSADP0OIknTUJfABsfnlYAoKSkBNeuXUNrLvfxBoQAuG3bog2A+CrmEcbExKAVAFE1wxs5rVujNbS9m/WBiGD/779QCwTg/vEHBBs2oC0RpJs21VsvZF1Vt8YwJScj18rKeI9c+XVHXl/D5Ikg/fFHbARw7YMP0FypxJ7583W7lUlJEGk0cKjiJon9uHGwAfBg925ArYb6009xhsfD3oED8TqXi/C9e2u1sHxAQAD279+PK1euIDQ0FFeuXMH27dsf4U0ytcECQoZprPbu1fY09OoFTJwI7NqlXRaAMbtHWWPpwYMH2Ld0KeRTpwL//FNl2eDgYPS0twevqMhoY7Vz584I4/HALy7W9kaVO3fuHORyOaZOmgSEhRk0sB/G5XKR6OICp4wMoHLWOwDbt2+Hk1yOtrduAR9/DO5bbyHH2RkDw8KMriNXW0SEq1ev4plnngHu3NH2ptWg50XdogW8ZLLH/pkoKyvD2bNn8XyfPtosrFX19lVwddUGRWvWaIPbagJyRatW8JRIql10vDELDQ3F8xXJJ2oQkIg6dkQAh4Ow8mHKFy9exAAAio4dgYcW5XZ/8UVYAUg6cKBGdQkKCkKgWAyuiWQZej76SFvf774zmfgHADBsGLhqNUbk5mqTOJmYa/s4cZ59FnwAnKNHDYKxy5cvQ6VSwbmw0GgP+8itIxGaGlov9eAGBKCjQFBlQHi/IiCs5hzY9egBfwDRRubQ1kXU7duYUFCArGeeAaytgW7dUNijB96USnGlHkc11FZN1hi2ycpCsalkQK6ukAsEoNhYaOph/VX11asQFxaidPx4TFy1Cvk2NpCtW6dbBiNy714AgP9zz5l8jRYvvQQpgJJ9+4Bdu8CLicFiLhf9N24ErKzwikqFEydOPHJdmYbBAkKGaYwUCuDwYWDCBO3jyZOB5GQgtH6+0JsScy4o3KtXL4Ofnj176obH1VZhYSEmjRqFwEWLgJ07gVdeAY4cMVn+yJEjeLNtW22AVNHrVIlIJIKsc2fIuVxtj3K5Y8eOwc/PD22Ki7XJL2qQvVLarh24RECl9yaXy/HRRx9hdbt22p67mTMBLhdpkydjtFKJzIsXa/kbMJScnIzi4mJtooRr16octlcZr0cPiIlMznusL8HBwZDJZHi2YuFuIxn3jJo7V/vvO+9UG+Ba9emDjgDC6vh3ZW4VQf2IikQSppKzVMLt3h29uFyElV/Tdu/ahaE8HoTDhxuUFQYGopTDgfrMmRrVJejUKfTSaGoWtHXsqB2O/9prVZdr00Z77t94Qxs4jhtX/WvXN19fqPv0wUwLC4MkJcHBwejp5AR+QYHB71+tUSMyJxLHY4+jXrRpg1ZqNS5euGCySMLp07ACqr2BIujYESIAqfUUrMV89x3cAHguWaLbZrd4MXoBuPLTT/VyjLqoSCy2atUqLF26FL/99huCg4Px119/AQDUCgWaSaXgmAqgORwovL3hUVqKyHoYNpr955/IAdB93jzt3/PkyRgnl+PsyZMAgNidOyHlcNDh+edNvobA2hqXPD3R9dQpqN95BwcAOI4aBbcWLcCdOBEzBQKcDgp65LoyDYMFhAzTGJ07BxQWAi++qH3cv782RfeuXWatljk8Sm/co5JKpbh8+TKuXbum+wkLC0NPI8FZdSQSCbp164YX4uLgzOejJRHuenlB/uabBr1ygHbI1e3btzEK0AZJJjL1vf7++zil0UBWPrRGoVDg33//xejRo8HZu7faoXAV+r71FtIA5G3cqNt25swZWBQVYUxSEjjvvKNLouE8dy5yAMiWLavtr8HAvfKegY7e3tpezhoGhA7laeTzyucfPi5Hjx6Fj48PmpeUaBN1VDMnSmfuXG2AW4O5S27DhkEM4Hr5XfnKqhtm1hjExsaioKAAXQBt71Q1y04AAAYMgI1aDUlICPbs2YP727fDQ60Gx9gyIgIBYnx80KoGDeHo6GgIMjLgIJUC5eu51puVKwGRCPjss5ot/P4Y8N59F0OVSlxds0Y3/7KsrAw7d+7ErBYttI37hxYST5OmoaNbRxSUFdRPJbp2hZVajcJLl5CQkGCw+8GDB1BVzHOs7tpTHgCVXb1aL1XzPnoUUU5OEFYaYs999lnkODqi1bFjKC0trZfj1FZ1icUijxyBCECzKpbHsOzQAa05HFx81BtxROAfPIgTQiF6l2endnz/fTgDiP7jD5SUlIB38yZyfX3BrWYdQPm8eSjUaJAulWIegNdff127Y9o0+CgUkLKAsOkgpkmTSCQEgCQSibmrwtSn6dOJ/P2JNJr/ts2ZQ+ThQaRSma9ej1HPnj0Nfnr06EFisdhsddq3bx/l5+cbbD9//nytX+vbb7+l5kIhqYRCov/9j2bOnEnNASoBSPXRRwbl58+fTz5OTqSxsyNassTk65aVldErIhERQMorV6hfv34EgC4cPkzk5EQ0e3aN6ldWVkZ/8PkktbEhKikhmUxGnTt3po2urqSxsSHKztYr/7u7O5XxeES5ubX7RTzkf//7Hzk6OpJ60yYigCglpUbPk0qldBeguP79H+n41Wnbti29/fbbRBMnEvXp83gOkplJBNCCFi30Nm/ZsoUCAwNpzpw5tHDhQvrggw+ob9++tHXr1sdTjzravHkzASBlt25EkybV7EmlpaQUiWgxQAAoyM+PNO7uJq9vwW++SQRQ0unTVb7sTz/9RJ/yeKSxsCAy8tl9ZOa+/ioUVObnR9cA+vnrr0mj0dC7775LAj6fZB07Eg0aZPCUM/FnaOGZhfTqvlfrpw4yGWlEIlpia0sTJ0402L1ixQrayOORum3bGr2c1MmJfgbo+PHjj1StzBMniAC6+N57hvsWLSIlQAd///2RjlFXGRkZNHfuXOrbty/17t2b+vfvT/PmzaOMjAwiItrx0ktEAMkTE02/yJdfUp6FBU1++eVHqktu+e9p24wZ/23UaCjfxYU2AdS+bVvKBCj/nXeqfS2NRkP7Nm+mkf3707179/7boVZTiZMT/Q7Q5cuXa1SvzZs3U4cOHahr1660fPlyImJt3IbEAsImjn1YnkDFxUQ2NkRff62//dIlbYO5DsFIU9C2bVtSKpUG24cPH26G2tSvwsJC8vDwoPOtWxM5OhIVFBAR0dWrV2khQEoulygqSldeJpORg4MD/TtyJBGHQxQfX+Xrv/T88xRvaUm5Xl7UDKAzO3YQPfsskbU1UVpajev5xpAhpAAo/vnnae6cOTRcICA1n0+0aJFB2bXLl1MJQFlz5tT49R8ml8upWbNm9O477xD176/9qYWfbW1JJhAQyWR1rkNV8vPzCQBt2bSJyNmZaOHCx3IcIqJ8T09aC1BeXp5uW79+/UitVuuVUyqV1K9fv8dWj7qYOHEijejYUXt92ry5xs9Tz5pFuTwefejsTBo+n+i770yWLcnLoxwuly76+5t+PbWauvn7U5aVFdHUqbV6D02J5to1KuZwKB6gXwBaAlCyv7/2WmHk+2Ft+FraG7mXxu0YV3+VeP55KnRzIz5AN2/epNLSUlq6dCmFh4dTxxYtqJjPJ1qwoGbvZ8YMShCJ6JmRI+tcHaVSSRe9vSkeoPyHbl4REZFUShIejw77+NT5GI9LVlYWbbKxoUxb26oLHjxIBFAPV1eD60JtXOjdm7I4HIPfk/rbb6mMy6Xx2pnZ2jbHI1B//DEV8Hj0zJAhNSrfp08fUigURES0atUqevHFFykjI4O1cRsICwibOBYQPoG2bycCaFKPHnTy5Mn/tqvVRN7eRO++a766PUb12Rv3OJSVldHV0FBtsFXLL+MFCxbQcEtL7Zfsb7/p7fvuq6/oPkCydu2Iiopo3bp1FBgYSL4WFqR0cSGqwd3gDRs2UCeAsjgc7TEAIjs7olrecd+5cyfNKX9+MkBqDodo8GAiudygbFlZGW2xtqZCS0uiOl5/fv75Z+JyuZS2cKG2zseO1er5C6ZMIQVAqodvntSTo0ePEgBK/ftvbf1CQx/LcYiIit58kzIAWvPHH7ptw4cPp7Nnz+oeazQaOn36NA0bNuyx1aO2zp07R3w+ny4OGUIkEhHl5NT8yamppPH01P5u+/cnKi2tsvihMWOIAIqZNo0oMZFIKiUqLCSKiyO6dInOTZ5MNwBSWVkRxcY+4jtr3LKCgylh0CBKFgopnccjdd++RIcOGS27NHgpXUm5QmP/GVt/FbhxgzR8Pl22tqY3ORx6BqBAgAYDdMTCgtQikfYc1URQEBFAowG6fv16narz59tvkxKgcy++aLJM6EsvkRKgtfPmUVlZWZ2OU58OHTpEdnZ25GhvT/E8HhVUd61PSyMC6MVH6E3Nzc6mFA6HQrp0MdyZk0Mae3vt57F160fvDY+IIAJoHEBpNbgx2bdvX73HQUFBuhEvrI37+LGAsImrKiDUaDT0999/0/Xr12nChAlUWs2XLdMIaDSk6dWLQi0tCeVDqYYNG0bh4eHaL7BPPyWyt9c2gp4GEonRYKQhpaam0ieffEIT3N0psjxYyre1pV87d6boykNkTCgtLaX2np6UYW9P1Lu3wZesTCaj4c7OVMjhUI6TEy0EaKOvL5U6OhJ5edWohy8zM5MAkD1AsUuWEG3bVruGeTmNRkMff/wxDQboB4Dyly8nqqLhtHLuXCoESDF4MFFWVq2OVZCbS6NsbSmsRQttA+SDD2pd31u3btF3AKl5PKK//tIfYv2ISkpKqEOHDtQtIIA0nTtrz109vr6BW7eIAHpNJKKc8nNX3TAzc9NoNNSlUyf60t+fNAKB9vpUW4WF2p6I8p6BqsQ/eEDfAqSsuOnx0I8SoHsuLkTh4XV4N02XvJpr5Jxjc+hB/oP6DQiJiI4eJUW7dqSpfCMK0A5z37u35q+j0ZB68GCScLn0PUB/dO9OZVu3kvroUaKQEKLr17XBxf37RElJ2mtNYaH2BoJcTuE//EAJAKW7ulZ5vVKWlFCalRWFAfTy6NGkeZyf5ypoNBqaP3++9potFtPmAQO0v7uQkOqfGxBAhx0dKTAwkFS1DNg0Gg0t79OHCKCcI0eMFzp/nuiVV7TXo3qg7NiRTnE49PPPP1db9ttvv6WEhATtg7Q0og0bKPTSJRYQNhAWEDZxFQHhm2++SXZ2drR582bi8Xj0559/UnJysi6oAEDz5s2j+fPnU1BQEEkkEvrkk0/ozp07tGLFCoMLS3FxMb366qu0b9++ausgk8no4sWLVFRUpLfdWG/Pk6i4uLjOXyxqtZpOnDhBo0aNIgcHB1repQsRQMMBOnz4MPXp00d3/tq3b0/SmBgioZDos8/q+V00Mrm5pBw/Xtu4EIuJli9v0MAwLS2NIiIiSK1WU//evWkxQCqACtq1o9/796d/yhs+D6ytqfTAAaOvUVZWRlFXr9KKnj0phsMhpVhMFB1ttGxKSgo936YNHQaogM8njZMT0bRpNZ5PR0R06tQp+u2h3se6ys7OpsIa3HRIT0+nsdbWVMjlklIoJBo/XhsUfP+9NkBbu5Zo/XqiP//UDoGeM0c7lK9vX5ILBNpGvJeXtkwdP0MDAgNpR/ldbWWnTkSrVmkbjo/Y2Pvy889pvEBAsoAAIktLops3H+n1akI+YgSlcTi08r33zNZYNam0lCg5mejiRaJNm4gWLaLEHj0ouyIQmDixQT6jMTEx5ArQCwIB/dq3L0UuWUKbp0+n1e+9R5YA/fvvv4+9Dk3NlD1TqKisqP4DwgolJdq/jbt3tUPfaxDcG8jPJ9mMGVRoa2s02K/uJ8bamoorDbs36cYNUlhZURJAtydOpJtLl9Kd1avp3KpVlH31qjbYrLgRWU+fwZSUFIqOjtbOt9uzhz7r1o3+AajEyuq/YHratJq92OLFpLSyIhcOh0aPHk2pqakUFRVFKVV8V6jVakpJSaGJzz1HkQBltW9fL++rRvbtIwLoU2dnXe+vTCajBw8eGC//4AHRBx+QRigkAkhy5gwLCBsIh4gtbNaUFRUVQSwW1/p5QqEQcrlc9/jSpUvIzc1F3759IZVK0aJSJr38/Hyo1WqDBZKJCCkpKdi4cSOWlKd4njt3Lr777jv88ccf+OijjzBv3jx8+eWXcDSxOLBcLkdISAiGDh0KTnlq9uvXr+Onn37CokWLYG1tDS6XCy8vLyxevBgtW7bUZZ0sKSkBh8OBlZWVQb04D6V5l8vlEAqFusdpaWlISkpC37599cpkZmbCt7pFlSsdZ9u2bZg+fTp++OEHfPzxx7p9WVlZICK4ubmBw+FAqVRCoVDA0tISe/fuhbe3N3r27Il58+bh999/BwC87OuLv5OScArApErvb/fu3ViyZAkSExPh5uaG3V26YGBQELB9u3Y5ikcgl8vB5XKNL4Rbg/f/8O+5OhKJBCKRSO9cVMjNzcXZs2dhe+MG+v31F1QSCRYCCHR0xDSJBJw2bYDVq4GBA2td15qKj4/HyZMnsXj+fDQrK8Mrnp54Pj0dLXk8cBYtAr74Atn5+fjjjz8wQCSC4IsvMBBAkasr7Lp0AUQilBYUIOHGDYhKStAc2lTOWe3bw23vXm3qehMUCgUSExPRsmVL8Hi8x/Ye69vWrVsxd/p0vAtgbseOcC0tBXJytGv2VeDxAGdnkLMzEoqKcD09HeFqNWxGj8aXhw9r99fRtm3b8Oqrr2IIgEU2NhhUVgaOSgXY22vT77dqBXh6QuHkhOjMTHTo2RNca2ug4rohl6MoOxsqiQSOZWVQJiYi8t9/4ZOVBQdAm/X0jz+qXVy+XqSnI6ttW9hLpdjL5ULduzfsu3VDvo0NHP384ODjg3PXruHg4cNYvXo1evbsCaVSCZVKhdTUVLi5ucHS0hI8Hg9cDgdUVobzp07B09ERGYmJGNSnDzilpYBUCkVeHgRyOdJjYiDLzoajhQV4MhnsOBxwpFIgNxfIzUVJYiL4EgmESqVeVbP5fESqVCjq1AljV68GJzCwRutH1oc///wT69evR3R0NGQyGbhcLogIkyZNwqZNm3SZGxmtsTvG4tDkQxi3cxwOTzls7upU651Zs3Bw+3aMGTAAl06dwqBevZCbloactDS42NhAJZPBQqOBEIAAgKpNG6y+dg3W5VmQqxUXh3NDh6JXSgqsqyimBqDgcqHgcsGzsoKcy4XawgJSpRIkEEBtYQHX5s2RLZEgvaAADu7uENnbIyEjA0oeDz6tWyM9MxM3wsOhKitDdwcHdC8ogCcAiacnxLNmabOH+/kBw4dXvQ5mhexsoHVrZPv44OWICKSV1xMcDgYNHYqWLVtiQN++uHb5Mg7u3Yu+vXohLysLBTdu4DMLC3TjcMC/ebPmy+c8KiIUTp4M+927cRGAsnVrwMoKt2/dgq1QiH69ekHI4cABgE1GBixiYyG1sMAOjQZvqdV40dUV+7KzIZFIYFfT88vUCQsIm7iKgPBFAHxU6g4EoHnoMYfDgZpIt93NzQ0ZWVl65X18fJCekQG5Uqn3XA9PT2zctAl/rl6N6+HhaO7nh+ycHERERoLD4aC5nx+6dOuGf/fsMTh269atMWLkSNyLjETbdu2QnJICLo+HNm3b4mJICM5fuIDp06fj/dmzkZScjK++/ho3b9+Gvb098gsLYWtnh7Xr1uGlSZNAAE6cOIG//v4be/bvh6+vL8KuX0dKaipOnDyJqa+8gmefew6du3TBrdu38fkXXyAxKQkfffIJOnbsiM1bt+LGzZtY8tVXSEhMxLZt2zB+/Hh88cUX+O2338DhcLBz506sX78e3t7emDNnDkJDQ0FEmDlzJo4ePYrRo0ejrKwM27dvx/vvvw8AcHFxwfbt2xEYGIisrCwEBARAqVSiRYsWmD59Oi5evIiLFy+iRYsWiI6OhlggQP+2bSGNiMCMPn0wlseD86VLyPD1RdjSpbj14AEWL16sd65//fVXzJ07F1wA++3sMK6oCCnduiG5f3/0++ADbTp8Hg8qlQp8I6miExISMH/+fNy5cwcvv/wy2rRpg3fffReurq5YsWIFXnjhBQiFQqSlpeHYsWMYNmwY4uLi0LVrVzg5OUGlUkEgEODOnTv4/vvvYW9vj3PnzmHJkiVYtmwZduzYAW9vb+zevRu+vr4YOnQoCgsLYW1tjfj4eLz44ou4d+8eRo0ahR07dmDZsmXo1KkTLgQHIzMuDvJLl/CqUolpAIIBnHn9dXR69llMmTIFA8RifC+VoodCgciAAISLxSgUCjFs7FiEXbuGSyEh+OCDD7B9yxa42NqiR4cOGNi7NwoyMlCSlwcrPh+nDx+Gq50d7AQCZCYlwdfJCcXp6ejUvDnkeXlQFRQAUinsAFQ0J8sAxLRsic779xtdW+3mjRs49eGHsAoJwfM9esDF1hYXrl9HokSCAgDD3n8fvi+/DJcBA+r0+W4KiAjXr1/HwoULcerUKXh6eqJ3796Ijo6Gj7c3OnbogM5duiDs+nWkpqZi3759ALRrPJ4/fx6WlpaPdHy5XI6lS5fqPq/NxGKc/OILOCQlIXbfPogLCtCMw4GVVAqLar7uZFwu0gDc02hwi8vFlE2b0GbatAYLdADg0qlTOPLMM5jl4ACfggI8/EnWAFBA2wjk8HhQE0Gp0eiuuUIAIg4Hglp8tcsAFAOQVvzL5UJmZQWFrS3uZGQgB4C4RQs4+Ptj95Ur8B85EjZubujVqxemTZsGbk0aso/BvXv3EB4ejhdffBEqlapON0efBmN3jMXhKYfx0u6XsG3CNoj4jTtgJiKUlpbCysoK8fHx8PPzA4fDwa1bt/D9998jMDAQvXv3hkgkgqWlJVq2bFnrv8GioiIcOnAARdHR+GP5crw0ciSy4uKglkrhYmur/Q4oK4OdQICMxESIAN2Pu50dbC0sUFZYCL5aDREAZ2trqEpKIAJgZ2EBnlIJEQAelwu+hQU4PB7SeTzwBg5E6wULtGvD1vW6cvYsMG0akJFRq6cp/P0h2LgRKF9qosEQQbFlCzJ++QV5t27BGgBPKATP0hLZhYVQQHvdiQVwFcABAAMCAnAiKgrTPT2xNT2dBYQNgAWETVxFQCgBwD4qdaPBfwEsOBxoiEwG1QSAx+dDqVZDQwS+hQUsLS1RWFRU5XMIgJWFBQRKJWzx0AKgHI52AeW339YujiwQmKxrTEwM2rZtCwCYJRDgfYUCncv3EYcDmZUV4ktKUMLnw9bVFYlZWVAJhbB0cEBecTHyJBKoy+uorvRT8bhV69aIiY0FhwgcQPcjtrWFVCqFs6MjCvLz9fZV/uEBsCj/6dezJyJv34ZGoYAFtDcsKvYJANgDcCr/qWieyNzdkTN9OmTTpyOgfH2q8+fPY8+ePcjPzYXv6dOYmJeHzuXHqk4ptEGd3Mi/xRwOioggBVAEoITDgW/Hjug2aBD8e/cGWrVChqMj3Fu1qrInVC6XY+bMmfjnn3902w4dOoRu3bqhWbNmNajlkyExMRFTpkxBaPlC4wDg6OgIBwcHPHjwQLete/fu2LNnD9zd3eu9JyczMxPPPvssbt68CR6PBx8fH3Tr1g2nTp1CqUyGFh4eyE1NhSUAKwBWVlZo1b49/AIC4N6iBXYePoy09HQcOnQIPRqiR9CEips60oIClNy/D+fSUqRHRSE9JgY927SBJDsbl0NCkJGWhhKpFG38/ZGekgIrS0s4enjg2u3bSMrKQutOnTB01CgoOBxkSyS4n5SEnOJipBQW4lJEBKQA3vrwQ7z6+uvYuXMnNmzYgAEDBqCwsFC3bppGo0FMTAw8PDwA1G1kAKOVIc3A7OOzsePFHbDg1X5URl1VBISzDs3C0qFL4W7j3mDHbgqSkpLg4+MDAEb/to8cOQJnZ2e0bNkSFy5cwPDhwyEWi5Gfn49Vq1bhpZdeQseOHXHs2DFERUVh/vz5OHXqFMLCwrBgwYLH83lRKoEHD4CsLECj0f1Ii4pwLCgI7s2awc/fHyJra6g5HHh06QJ4edV/PWrpzJkzOHToED7//HM4Oztj69atEIvFSE1Nxblz5/DDDz8gPz8fAY6OsPX3R9GOHRBPmcICwgbAAsImThcQpqfDztZWb1R9cVERlAoFHOzt9ba3DwhAYJ8+WLd2LbKzsiC2s8PRI0ew859/cO3aNYwdMwa//forQIQb4eEQWljg2NGjWL9+PcY99xwWL1oEaysr7QXIyGj+MpkMQoEA0VFRyMrMRJvWrVGQn4+ANm2QnJSEQwcPwoLPx0svvghrKytYCoW4HhaGWzdvwt/fH5KCAoweNQpx9+/Dy8sLQgsL7NyxA0KBANKiIlwLDcXsDz5A+3bt8O/u3di7Zw+6du2Krp06YdOmTejSqRMG9O8PgYUF1Go1rEUiJMTH4+DBg9Co1fBv2RJffP454mJjsfbvv6FQKPDu22/Dx8cHHI0G58+dg4+PDx7ExiIoKAgjhg0DqdU4f/48evXogevXr8PHywvjxo6FV7Nm4HE4yM7KQvyDBygsKACPy8X1a9egUCgw5eWXUZCfD3t7e7Rp1w55CgVsPTxg4eCA41evosv48fAMDASsqxq4oi87OxuRkZEYM2YMvv/+e/z6xRfwLSqCLwC38h9baBu8zV1dIdRowCktBVephKuzM5zs7aEsK0NpcTHEtrYoKiyEsrQUpFJBqVDASiSCyMoKefn5umDW0soKFgIBpMXFUKpU2m2WluALBCiUSODh6QmVSgUOnw8IBIhNTIQKAPh8yDUaWFhbo3e/fuCJRLh64wYKZDL0GjECiUVFaNO3L7guLrDs1Qucjh2rHDZTUFAAV1dX9OnZE/s3bUJabCyEIhFc3dxw+84dtG3fHu7Nm2PQM8/g4tWrmDt3LqZPn474+Hj0798f7777LvLy8nDw4EHY2dlBKpXiwoULcHJyQmBgYJ17OjQaDf755x9YWVnB3d1dbyjy00SpVCI4OBhWVlbIzc3FuHHjAABnz56Fq6srJBIJ2rdvD3t7+8dWB7lcjlWrVsHOzg6vvvoqrK2tUVpaiqysLHh5eUGj0cDCwgJXrlyBj48PvB5qJGk0GrP1eNWXgoICXLlyBaNHjzbZGJXL5SguLoaTk5PJ11GpVNBoNBBUcZOKqbnT8acxde9UHJpyCH28+jTIMYkI43eOx6Eph/Bp0Kd4vcvrCHAJaJBjM0ydSSSAvT2KNm2C+LXXWEDYAFhA2MTpAsJafFg0Gg0AGG30ZGRkwNbWFjY2Ngb7SkpKIBQKjQ5HNKeKO9ZqtRqrVq3ClClTdHezHy63evVqDBkyBAEBAQbPf1h8fDxee+017NmzB87OzoiPj0erVq1w9epVtG/f3ujvqCFV9CLExsaioKAAiYmJ8PDwQP/+/SGTyXDx4kUMGTLE6Hw9Y+RyOY4dO4axY8eCz+cjLi4ONjY2unmQAJCamoqoqCiMGDFCV4f09HTd3dUKK1aswO3bt/HPP/+grKwMAPSGBj5KL8Pu3bvRrVs3tGrVymSZ0NBQREZG4vXXX2e9GQzDNAp/hv2Ji8kX8ULbFzCp/aQGOaZMKcPMgzOx86WdWH5xOQY1H4S+3k/nDSumCSkrAywtUfT33xC//TYLCBsACwibuLoEhAzDMAzDNKwPT3yIDq4dkF+aj0/6fdIgx8wszsSic4uwZuwa/HX9L3jbeWNM6zENcmyGqTONBuDxUPTrrxDPmcPauA2gaY+LYRiGYRiGaQISChMw0HcgkiXJDXbMInkR7ITahrS9yB6FZYUNdmyGqTMuV5tPoVI2fObxYgEhwzAMw9TR+cTz+DToU3NXg2kCVBoVmts3R6o0tcGOKSmTQCzUZl91EDmgoKygwY7NMI9EKGQBYQNiASHDMAzD1NGl5EvYH70fubJcc1eFacSUaiUseBaw4FlAqVZW/4R6UrmH0MHSAQWlLCBkmggWEDYoFhAyDMMwTB1F5kZiWsdpCE8PN3dVmEYsoTABfvZ+DX5cvYCQ9RAyTYlIBCgU5q7FU4MFhAzDMAxTR4VlhRjqNxThGSwgZEyLL4hHC4cWAABboS2kcmmDHNegh5AFhExTIRRqs40yDYIFhAzDMAzzCDq5dcLd7LvmrgbTiOXKcuFq7QoA8LHzQUpRSoMct3JAKBaKWVIZpulgQ0YbFAsIGYZhGKYOpHIpbAW2EIvEKJIXmbs6jJkp1KaHt+XKcuFk6QQA8BH7IKkwqUHqJJFLIBZpk8pY8Cyg1qhr9Ly72Xfx1fmvHmfVGKZqbMhog2IBIcMwDNOonYw7icMxh81dDQPp0nQ0s20GAOBwONCQxsw1YsylVFmKXmt7mdyfK8uFs5UzAMDdxh1ZJVkNUq/KPYQ1pdaoMe/EPFxMvviYasUwNcCGjDYoFhAyDMMwjdrykOX4I+yPRpfJM02ahmZ22oDQx86nQdeXYxqXw/cPIyYvBnKV8SFulQPChsz2WZeAcOOtjXip3UuwFlhDpVE9ppoxTDWEQtZD2IBYQNgI/Pnnn/Dz84NIJEL37t1x8SK7K8cwzOP1v9P/w7HYY+auRrXUGjXEIjHe6PoG9kbuNXd19KQVpel6CH3tfVlA+BQLSwvD4OaDkSQxPhQ0V5YLJyvtkNGGzPZZl4BwT+QevNntTTQXN2+woa0MY0AkYnMIGxALCM1s165dmDdvHhYsWICbN29iwIABGD16NJKTWcOCYZjHQ6aU4eSDkzh6/6i5q1ItiVwCe5E9hrcY3uiGsKVL0+Fp6wlAOy8sRdIwiUKYxieuIA4jWoxAQkGC0f0KtQIivggAYC+yb7AewhJlCawtrHWPeVxelesgFsmLIBaJwefy0cqxFeLy4xqimgxjiA0ZbVAsIDSzn3/+GW+88QbefPNNBAQE4JdffoG3tzdWr15t7qoxDPOEisqJwtjWY5FQaLzx2pgUlBbAQeQAB0uHRpchMVeWCxdrFwCAt513g2WObEokZRK8sOsFTNg1wdxVeayUaiVaO7Wu0WeqIZd/ICJwOBzdY3uRPSRyicny19KuoZendi5kQ851ZBgDbMhog2IBoRkpFAqEh4dj5MiRettHjhyJy5cvm6lWDMM86e5m30UH1w6w4Fk0+jlC+aX5cLR0BAAI+UKUKkvNXKP/5JXm6TJHeou9WQ+hEcFJwRjRYgT4XH6Drb3X0OQqOQQ8Afzs/Uz2EFZmJ7QzW1ZaB1HV8xfv591HW+e2AAA3GzdkFbOAkDETkQgoYOtmNhQWEJpRbm4u1Go13Nzc9La7ubkhMzPT6HPkcjmKior0fpgnm4Y0DTa8iHk6VASEvmLfRj9HqKCsQBcQdnDpgHs598xco/8UlBXAwdIBAOBp64n04nQz16jxCU4MxiDfQQj0CsSV1Cvmrs5j8aDgAVo5toKvvS8SJYkG+4lI7zGXwwWBDMo1hOrmL6ZIUuAt9gYAuFq7Irsku6GqxjD6HB2BO3fMXYunBgsIG4HKwzkAwyEelS1fvhxisVj34+3t3RBVZMwkNi8Wo7aNwpuH3zR3VZgnyP38+/B39Ie/oz9i82PNXZ0q5Zfmw0GkDbq6uHfBrcxb5q1QJWqNGnwuHwDA5/IbfW+rOcTmxyLAJQD9ffojJDnE3NV5LKJzo9HWuS1sBDYoUZQY7K9LYpfHpboMpylFKfC207Yr3Kzd2JBRxny+/RY4fdrctXhqsIDQjJydncHj8Qx6A7Ozsw16DSt8/vnnkEgkup+UFDZE6Um2PWI7FgxYAIVaUeWixwxTGyqNChY8CwS4BCAiK8Lc1alSQel/PYRd3LvgduZtM9eIqQ0CgcvhoqtHV9zMvGnu6jwWFQGhKZWXnGhIxm4uV9dDWFhWCHuRPQDtfMPGNm/3aWHsxsJTx8oK6NnT3LV4arCA0IwEAgG6d++OoKAgve1BQUHo27ev0ecIhULY2dnp/TBPrrD0MPTz6YfhfsNx5P4Rc1eHeQIUlhVCLBQDAAb6DsTphMZ9Bza/NF83LLO5ffNGnQjHkm8JmVJWbbmIrAizzSEzl4qeVA1pzFYHhVrxWOZ53su5hwDnAACAjcAGxYpivf3GAkIOjI8Cqk+lqlJY8i31tlUX5HE4HF0QyeFwIFfLq8xKytS/hIIEBPwRgBUhK8xdFeYpwgJCM5s/fz7WrVuHDRs2ICoqCh9++CGSk5PxzjvvmLtqjJkVyYtgbWENPpePGV1mYPX11WxIGgMAKFYUY+WVlXVqXMflx8Hf0R8AIOAJ0MK+BR7kP6jvKtabynMIKxqq5gwqKjw8LwwozzRag4Bj3sl5TWINyEdVkWylgp+9HxILE81Wn+n7p2Pa/mm4m323Xl+3oPS/uaTGEsvkleYZBIQivuixJ0gyNlS1qiGjGtIYBKojWozAr1d/fWx1ZAyFJIdgxfAVOJ94vlFc65inAwsIzezll1/GL7/8gq+//hpdunTBhQsXcOzYMfj6+pq7aoyZnU88j8HNBwPQ3tWd3H4y/r7+t3krxTQKMw7MQEhKCC4kXaj1c7NLsuFu4657PKrVKJx8cLI+q1evKs8hBIAWDi1qlMnxcTPW2PYWe1e7OH2yJBkKtQKXki89zuo1ChnFGfCw8dA9bufSDpE5kWapS1ROFBwtHfHLM79gw80N9fa6JYoSWAv+W+fPz8HPoBfbWA9hQyxOLymTGAaEVRw3pyQHLlYuetsmtpuI+IL4eqlPTXrPGeBc4jn08+6H9i7tEZUTZe7qME8JFhA2Au+99x4SExMhl8sRHh6OgQMHmrtKTCNwOv40hrcYrns8o8sM7IveZ7Rngnl6pEvTYSe0w6+jfsVXwV/hdHzthnxml2TD1dpV93h4i+HYE7nHYJhbY1E5kycA9PTsidDUUDPWSKvychgVApwDEJVbdQNu251tWDRwEWLyYp74z3JaURo8bT11j9u5tMO9bPNkiT0edxwTAiagi3sX3Mu5V2+/++jcaN1wUcB4D6HRgLCa5C71Ib80X7csSk2Om1KUAi87L71t9ZU9Ny4/Di1WtTDb+W8qUotSUSQvgq+9L4a3GI5DMYfMXSXmKcECQoZphDSkwf28+7qhfYB2Dk4Pjx516hVinhznE89jSPMhaGbXDMemHsOqq6tqNQTu4YDQWmCNqR2nNtohjCqNSjf/DABGthyJEw9OmLFGWpXXIKzQ2b1zlVlQixXFOJtwFkP9hqKja8dGlTH1cbiTdQcdXDvoHrd2am22rLZX066iV7Ne4HA4NQrcaypdmo5mts10j43Nc82V5Rr8rdiL7KvsIayPgDWvNM/gpkVVPYSVl5yoUF9rlW67sw1vdH0Dpx6ceuTXepIdvX8U0zpNAwA80+oZnE08a9abddG50ei0ulOjX56IeXQsIGSYRuZC0gV0Wt0Jnd06G2SImxAwAZP3TkZYWpiZasfUl9SiVKQWpdb6eQdjDuKZls8AACwtLPHjiB+xImQFPgv6DPfz7lf7/IcDQkA7bPSHyz/gWtq1WtenssKyQiw+txi77+3GjogdALQN27+v/42D0Qex4MwC3Mi48UjHcLNxQ64sF2qNWvf64enhuv1EhGOxxx57AyZPlgcnK/1GvruNOzKLja8hCwDHY49jcofJ4HF5mNpxKnbf2/1Y62huYelh6On5X5bA+l7GoFhRrMuSW9V8PIVaoTfEd4DPgHrrZc4oztDrBfUR+xgMGzY5ZNRET92VlCtYdnHZI9fN2N+okC80mbG68pIT9e1yymV8PuBzHI87rvd5ZfRdSL6AAT4DAGjXq3yvx3tYE77GbPU5Hnscs7rNwst7XsaB6APYcHMDtt3Zprv+VrY3ci/yS/PNUEumPrCA8CkkV8lN3n1MLUo1+cVaoihp9BOc72VXPRQoqTCpVnc7zyacrY9q1crp+NN4r+d7+GrIVwb7env1RtCrQVhwdgG6/t0VubJcZEgzkCJJQWZxZqM5P1K5FOnSRx9mJFfJ8cq+VzB5z2SkFaUBAFZeWVntPKQ7WXew/OJyg7+FdGl6vdTr4Tk1cflxGLF1BJ7d/izePvx2je7uf3TqI0zeMxmHYw7jTtadGs2vKSwrhIY0cLP5b1maNs5t0MW9C3o264lPgj6p9jWMBYRedl5YNHAR5p6YiznH59TqjnSeLA9rwtfgXMI5jNg6AomSRByLPYbNtzdjyOYheH7X8yhTleF0/Gn4Ofhh4dmF+OjkRzXOmmssG2Mvz14ISw/DpeRLmHFgBt468hbOJZzDmvA1GLF1BMLSwjD7+Gysv7EeZaoyhKaGIiQ5BGWqMkjKJACAa2nXDBovpcpSROdG1+x9G+khBMoXHTdx/kNTQ9HXW5tBuptHN4RnPL6GcXUJS+QquUEyoYrrY05JDjKkGfj7+t/48fKPda5DZnEmPGz/m0PI4XDqpefreOxxvHPkHby4+0WsDF2JIZuH4KV/X8JrB14zWn5P5B6Maz1O97idS7tq52YREfZE7ql2Tmi6NF0vIDQWcOWVGgZmDpame+rOJZ7DtfRHuzmjO66Rv1FTEgsT0dy+ucF2W4Gt7nNTF1E5UWjj1AY2AhtMCJiA1w++XuXNMLVGjaxi7Y2DyuUKywqx/OJy3Mi4Ua/Drau6iQNobyhUHO/h49ZnPaRyKQrLCvX+Vsa0HoPgpOB6O0aFMlUZrqZexW9XfzP5Hs4nnsfuyN14o9sb+Hfiv5i6dyp23duFUw9OYW/UXr2ytzJv4YfLP2DmwZl16lEmIlxPvw4A+Or8V9hyewv6rOtT+zfG1Bm/+iJMUyBTymBLtno9SiWKEsiUMrhY/zdJXKlW4tuL36KbRzc83/Z5JBUmoZldM4SlheF84nmsv7ken/b7FG91fwuAdriAiC9C0IMg/B3+N97u/jZmdp0JHpdnsi4a0oDL4WobFcUZ8LP3Q35pPnztfVGsKMaJuBNQqBWY3GEyuBztPYnUolSEJIdgoO9ApBWloWeznihRlMDKwgocDgfHY4/DwdIBkjIJ/rn7D/549g/YCGwQlhaGL899iZfbv4zxbcdj6Jah2Dh+I3p69oRYJAYRgUBIKEjA/bz7mHdyHr4f/j0mtp8IhVqBPZF7cD/vPhYMWAALnoWuLi5WLsiV5WLUtlFImJsAlUaF+afm468xf2HqvqmY3Ws2xrUZp/e+y1RlyCnJgaOlI/ZE7gGHw8GUDlOQK8uFjcAGtkJbvfLnE8+jj1cfiPgi3bZSZSkuJl9E0KtBesPkKuvg2gFLhyxFkbwIs4/PRkFpASx4FlCoFShVlmLRoEUokhdhTfgabBy/EWpSQ6aUoVhRjK7uXQ16HQHtxVipUWLh2YVYMngJrCyscOT+ETSzbQYvOy/d39Dd7Ls4EH0Ab3V/CwKeADwOD8fjjmNS+0l6r7fq6iqciDuBdePWIbM4E9YW1ujZTNtTEJMbg8ziTAxqPghKtVL3e69wPf06frryE/JL8yHgCfB+z/fhYeOBV/e/ilc7vYrdkbtxLf0afhzxIx4UPICNwAZedl44n3ge3T26w8nKCWvC14DL4eKNQ28g0CsQ93Lu4eX2L+PXa78iqTAJP4z4AdG50RDyhdgesR0CngCtHFphdu/Z8LDxgJAvBKC9q93No5veOTpy/wjeOPQGzs84jyupV0BE2HVvF9aOXQtfsa/2S/HQTHjbeePLgV+iRFmiW9erQkJBAngcHlaNWoW9UXuxP3o/kiRJcLR0xI8jfoSvvfGkUrczb+v1uFT4uO/HALS9h2lFaWhm18ygTIXK64xVNrbNWHjaemp7ddb2xNjWY/H9iO9Nvs7a8LUIig9CYVkh2ru0x467OxD0ahDsRfYgIkjkEtgKbA2uFY6WjojJjcHue7uhVCvxQsALJo9hyqT2k7Do/CLIlDJ80vcTtHdpj9cOvoZnWj6DjeM3wlvsDbVGjV9Cf8GUvVPQ2a0zrqVdg1gkRkRWBJysnOBi5YKCsgIIeUK0cmwFG4ENrqRegb3IHt09uqNEUYJvh32ru0Y9LE+WhzbObQy2e9h4GARCFaLz/luvjsPhoLVTa8Tkxui9TqmyFDMOzMCm5zeBx+EhqyQLPmIfKNVKZBZnwlvsDQ1pEJoaijtZd5Any8PYNmNRoihBujQdHVw7YMvtLTjx4ARe7/I6JneYjKziLJSpyrA3ai/KVGWIzImETCmDm40bPG080de7Lw7dP4T4gngIeAIIeAK4WLmgV7NeuJV5C6/sewWeNp7wEftgy50tcLdxBxFByBdi+bDlaO3U2uC9EpHR352IL8Kyi8vwxYAvany+K17vRsYNrLq6ClklWVg2dBnshHbwd/pvWP3bh9/Gg/wHaOnYUrdNrVFj/c31ODzlsG5bK8dWVQ5dvZB0AV8Hf42enj2x8dZGHJp8yOR3Xro03ei5rrwGoFKt1Mu2Cmh7CI3d2CIiXEi6UG2jWqaUQcAT6JbSMPa3aKyHsCoPCh6ghUMLg+2d3DrhdtZtDPStW36DPZF78FK7lwAA7/R4B22c2mDTrU1YOHCh0fLfXvwWB6IPoI1zG8TkxqC/T3/EF8SjRFmCub3nYsvtLVh8fjEAbXujlUMrLB2q/U48E38GM7rMMFmXiu+chIIE/HTlJwzwGYDZx2djywtbsPPuTlhZWEGhVsDDxgNKjRKu1q44HnccHHBgLbBGTG4MFg5cCFuBLTKLM/Hbtd/wcvuX8UqnV/Db1d+QXpyOn0f+jJDkEOyN2oufn/kZnrae0JAGaUVp8LLzMvodDADrbqzD611e19sm4Amg1qih1qirbHdV0JAGpx6cQoBzABwsHcDj8KAhjV77Q6lWYtK/k+Bg6YBcWS5crV3R1aOrwed4ZehKHJt6DFYWVrASW+HYK8cwuPlgpBWlYdbhWWjn0g4lihJsvLURyZJkrB+3Hney7uCLM18Y/e4gIiwPWY6DMQdxctpJCHgCzDgwA9YW1kgsTASfy4eGNOjp2RP5pfksCVEDYwHhE+KTU5/gjcA3IBaKcTH5ItKK0uBk5QRJmQQeth7wtPWEkCfEhlsbEJEVgVJlKTq4dkDvdb0xzG8YLiRdAIGweNBirL2xFl3du6KZXTN8Hfw1iuRFUGqU2Pz8Znxw/AOsDF0JT1tP2AhsMLPrTByIPoCVz6yEWCTGz1d+xj8R/6C5fXOoNCokSZJgJ7SDgCeAh40HkiXJkCllUGqUWHtjLQBgVrdZWHtjLZ5t9SxmH5+N7JJsrBi2AjMPzcSsbrOgVCuRJk3DvZx74HK4eK3za3h5z8twEDkgszgTO1/aiZ+v/IxhW4Zhx4s7sPDsQqg0KkjkErhZa3tSeFwewtPDsWH8Bnx36TukSbXJDvZE7kEX9y4Y888YDPIdhAG+A7Dk/BLYi+zhbOWM+YHz8cahN6AmNaZ0mIJua7ph3dh12HlvJ9aEr8Fn/T5DH68+mLZ/GmLzYtHaqTXSpGkoUZQgR5aD8PRw3My8CQdLB3w58EvMPTEX3wz5BkmSJCwPWY6PAz/GrO6zAGi/vAdtGoTlw5abDAYr9PbqDUDbuJfIJXiz25sAtHd4Pz/zOawtrLF0yFK8dvA12Aps4WrtioziDDhZOuGdHu8gOjca+6L2Yd24dXjv6HtILUoFh8NBF7cueGn3SxjeYjiOxR7D9fTr8LLzgrOVM8Qisa7xP3DjQLjbuOPFgBfxd/jfyCzOxOn40+BxeXC3dsf9/PtY+cxKzD4+G/Yie+SU5ODTfp/CzdoNn57+FF52Xth4ayPCM8LRp1kf3M+/j6HNh6KgrACROZHYNmGbQS/Wrpd24UTcCSwZtAQHog9g5qGZGOw7GHdz7uJe9j281/M9TN03FdYW1uju0R0/jPwBYWlhSJemo49XH6y4tAKd3Tpjeqfp+D3sd4xrPQ7X06/j0ORDyCjOQFZxFt4+8jZKlaV4puUzsBXaIjwjHAWlBVg8aDGC4oNwIekCHC0dEfxaMEZsHYH5febDXmSPPZP26Iajfdz3Y/xx7Q/kyHIwac8kFJQW4IW2L2BO7zm6hsCX577ElwO/RIBLALp7dte9x5jcGMw7OQ/7Ju0z2mi4k3UHndw6mfy7mNphKnbc3aELEI3RkMZkg6S7Z3e0c2kHPpePkOQQJBQkwM/BT6/MgegDICIcjDmIdePWwcXKxaChwuFwjAadgHbYM6Bt0I7dMRbPtX7O4KZAhTJVmS44r6y9a3tM7zQd19KuYajfUADA8VeO65XhcXn4qO9H+AgfAdB+vnbc3YHNz29Gnky7DEBiYSJcrF0QmRMJqVyKZcOWgYiwPWI79kfvx9mEs3qJnSoz1fvS0rEl4vLjDIIEpVoJHoenFyS90PYFzD4+Gzte3AEnKyeUKEqw/uZ62IvsMWzLMDhaOsLKwgplqjKUqcpgK7CFUqOEJd8SrtauGNVqFOyEdlgbvhbpxeno5NoJ5xLPoat7V1x78xp23t2J6funw1fsi/yyfHzW7zMA2uQ319KuYVDzQTj14BQyizPxRf8vYGVhZXC+s4qzIFfLUaIoQVRuFE5NO6VL8pNWlIZp+6fpGneVVV4upLJP+n6Cz898rgsIVRoVuByu0eBRpVHhUvIl9PPphy23t2B/9H5M7TAVnd07o51LO4Pyr3d9HYvOL8K2F7bp/sbj8uPQ2a0zrCysdOUseBYoU5UZvSGl0qiw5PwSHJ5yGNYCa6y/sR4Lzi7AlA5T0Nm9s8ExjfW4O1k5aRO6VBGMOVo6Iq80z2D7qqurMKrVKFxKuYQvznyBZcOMDx19/9j7iM2LhUKtgKWFJc7POG/wua5tD6FKozL6Wezq3hU3M24aDQjj8uPwZ9ifSJemo7VTa7R0aIkXAl7Qy24akhKidwNggO8AfH/ZMGA4HnscW+9sBY/Lw66XdsHSwhLuNu64m30XAc4BumvB822f13verru7MGHXBBTJizDQdyCe3f4svh7yNRwtHXUBbnxBPH69+iuup1/H4OaDcSX1CpYNXYbjccfx/YjvdXMcLXgW8BH7IEWSAgFPgGRJMj7o+QF6ePYAQXuTY0fEDhQLtaMoQt8MxeGYw/jmwjcY5jcMdkI7fHFW+15f6fgKvjz7pa4dZCOwQUZxBoQ8IXzFvvhy0Je6jM/ZJdk4fP8wgl7VX5caAJ5r/Rx+vvIzPumnPwIkRZKClKIUyJQyJBQk4EDMARQrirXzWAsSkF2SDQBwtXZFH68+GOY3DDF5MTgYcxDz+8zHmNZjUKosRee/OkMsEmP5sOW6m+m3M2/D285bL6FXRdbzZnbNMLrVaHx/6XvkyHLw/fDv0dy+OWyFtmjv2h57ovboJd1KKkzCvJPzIJVLMarVKHwU+BGe++c5CPlCLBywEFYWVujg2gHWAmu9JVzMMULrqUZMkyaRSAgAtfiuBS27sIzG7RhHbj+4kcePHtTlry7k+ZMntVjVgvx/9aeuf3WlZj81o/Z/tKfAdYE07/g8WnR2EVl8bUFZxVm0KnQV5cnyKD4/njx+9KAea3rQxN0T6dj9YxSWFkZEREq1klRqFZUpyyhVkkrfhXxH3wR/Q99e+Ja23d5GE3dPpItJF+ntw28T/2s+vXbgNUooSKAyZRllSDOIiCi7OJuK5cVERJQiSaGJuydSUVmR7j3turuLmv3UjG5m3KTPT39OK6+sJI1GQ28deot+Df2VNBoNRedE0+67u+lwzGHd81RqFRER7YvcR8mFybQjYgepNWqSlEno89Of0/W066TRaKhUWUorLq6gfuv7UWFpIRERxefH0/KLy2n8jvEklUtpb+ReOnr/KKnUKkqVpFJcXhwRkV49pXIpDdw4kJZdWEYrLq7QHZ+IaMONDfT39b9p0dlFFJ0TTQeiDtAre1+huLw46ru+L80+NptkChmN3zGe5h6fS39c+4O+Ov8V7b67+3H8mejq+8uVX6jX2l707YVv6WLSReq8ujO9fuB1OhxzmPJl+brfxe9Xf6fs4mw6EXuCMqQZpNFodL+rPFkefRb0Ga0NX0uB6wIpVZJK/Tf0p3xZPslVcjoRe4LuZd8jIiKNRkMajYZKFCX0zuF3qO/6vrThxgYiIgpODCZJmYSup12nfFk+HY45TKEpoZQny6v2vZQqS0mhUugepxelExFRYWkhqTXqR/o9qdQqWhW6iv4X9D/SaDR0JOYIvbjrRQpJCtH9DoiICkoLavx680/Mp3/v/UsqtYom7p5In5z6xGT536/+TqO2jaIPT3xosO/Ng29SWlGayecq1UoavGkwlShKjO7XaDQ0ZvuYGtX7ZsZNGr5lOEXnRBMRkUwho1Whq+i1A6/RV+e/ouOxx2v0OlXZGbGTFpxZYHJ/XF4czT42+5GPUxdZxVk0ZNMQSihIMLr/g6MfUHx+vMH2f+/9SxtvbjTYHp4ebvS97ovcRx3+7EDT90+nvuv70vwT80mhUpBGozF6XIVKQbvu7jK5v6Gtv7Ge3jr0FinVSr3tN9Jv0MIzC40+Z+aBmZRWlEbF8mIavGkwTdg1gQpLC6lEUUJKtZJm7J9B7xx+h4ZuHkofnfyIBm4cSON2jDM4hjHfhXxHW25t0T3eG7mX1t9Yb1Buw40N9PvV3/W2aTQa+ur8V7Tyykq9bV+f/5qGbBqi+96qbPS20QbbFp9brPvOJCIa+89YgzJZxVn02oHX9LapNWoaunkoqdQqypfl06hto/S+V5RqJW29vZVWha6iafum6bb/dvU3WnFxhcExJu6eSDKFzGD7uB3jDK6TMoWMJuyaYFCWiCinJIde2fuKwfZSZSkN3TyUwtLCKDw9nAZsGEB/XPuDRmwZQafiThERUaoklV4/8LrBc6fvn667liUVJtGvob/Ss9ufpdyS3Bqd54dpNBrd87KKs+jZ7c/SK3tfoV5re9HQzUNp/I7xdDb+LGk0Gtp6eytFZEXU+hh1lSJJMfhOvJh0kcb+M5a+D/meFp5ZSIM3DTZZJ41GQ89uf1bv7+/Y/WM0bPMwWhq8lBacWUCrw1ZTdnG2br9MIaP4/HgqlhdTVnEWnYo7RSsurqAjMUdIUibRe32ZQkY5JTn03pH3KHBdIM08MJOGbh5KiQWJdXq/+6P209LgpaRUK2lf5D6asGsCRedE6/6WVWoVJRUmVfs6Y/8Zq2vjSiSSasszj4YFhE1cxYdl4bGF5PSdE60NX0ujt42m62nXSalWUstVLenX0F9J9I2IdkbspI9Pfkybb22myOxIXSN+zrE5Bq97LuEcTdg1gY7EHKm2DoWlhfT+0ffp7+t/6zXmD0QdqNN70mg0ugZ+ZelF6Ua/kM0pvSidXtz1oi5grFBx0a+OSq2iTTc30dfnv6YfLv1Qpy/CR1HRAKsLjUZT6+CrsTRiG5pULqWZB2bSoI2DDBqhpiw8s5AORR/S2zZ62+hqf4dn489SjzU9jAaF+bJ8vYZkdVIlqTR081D6K+wv+l/Q/+ib4G+oVFla4+fXxCt7X6HI7Eij+/bc22O0Md9QEgoSaPyO8Ub3Td4zmaRyqcH25MJkmvTvJIPtf1770+B8Emk/E3cy71BiQSLlluQ+cp0bmkajoaXBSw2u9/uj9tPa8LVGn3Mq7hQN2TSE1lxfQxtvbqT9Ufvppd0vUY81PajNb21ow40NFJ8fr2tAKtXKGl9rFCoFDd08VPf3/9X5ryg0JdSgnEqtohFbRujd5AlLC6M3D75p9JoYnBhMgzcN1mvISuVSmrh7okHZTTc36W7uqTVqowGhRqOh5/55Tm/b7czbejeLFp5ZSJeTL+se/3HtD/r45Me0/c52vUBRo9HQ24ffpnMJ5/Re7+HXr/Dqvld1NwArH/t/Qf8zWp6IDILTPFkejdo2ik4/OG1QtqisiPqt70frb6ynzbc207bb2wzK/HvvX/o+5HuKy4ujqXun0tzjcylFkmLy+HXVmL9zlGolrbyykq6mXjV6Lalsf9R+mn1sNqUXpdP0/dNp/on5j6U9pNFoKCIrwuiNhNq8xusHXqfBmwbT6wdep50RO+v0OiwgbFgsIGziKn9YMqWZRKS9UFdcBH+49ANJ5VLdF0NtLo4yhaxRX0wZpqmpTYOnRFFCQzYN0TVs1Rp1jXv3Voetpn/v/Wuw/WbGzSp75Iw5/eA0Tfp3Er2679VaPa+monKi6N0j7xrdt+DMAgpPD38sx62psf+MJblKbrDdVGObiOi9I+/RtdRretum759OWcVZ9V6/xiBPlmcQGH0T/A1dSLxg8jnbbm+jwHWBeg3hTGnmI/fwE2lvJHx9/muKyomiZ7Y+Y7KxffrBafr01Ke6x6/ue5WicqJMvu7NjJv0wdEPdI9DkkLom+BvDMqdTzhP34V8R0Ta3rWHewIrPPx5/unyT3Qi9oTucXRONM06NEuvfjklOUZf60H+A3rr0Ft620z9jc4+Ntugd3v33d206eYmo+WJtMFp5cD601Of0vmE8ybLq9Qq6rW2F43ZPsYg+CTSXt8+PfUpDdw40GyjAJqaHRE7aODGgUaD8MZGo9HUaLRPVcbtGEcFhQUsIGwgLMvoE6Qi86CjpaNuLsHHfT+GjcAGhyZrFzc1NXfIGEsLy1qVZximag8v+lwVKwsrfNjnQ136+Qf5D9DSoWU1z9KaEDDBIAscoJ3L4Ss2nrDGlGEthmHbC9uwYfyGWj2vpto6t0WSxPgSEVG5UUbnijWk3s1640rKlVo9Z8HABfjl6i+6x8WKYmQVZxnMNXtSOFo6olRVCrlKrtt2MfkiAr0DTT7nlU6v4PIbl2EjsNFtc7NxM5nEpzYmBEyATCnDsovL8Hzb5/WOUdmwFsNwP/8+3j3yLuYen4uWDi11SX+M6eLeBRnFGboMpSHJIUbfo5/Df4vTZ0gz4GFjmHQG0GakrZy+/3LKZfT36a973Ma5DTKLMyEpkyAqJwpp0jSD5SsqtHBogURJoi67LFWR/dLYWoTRudFVvvfR/qNxPO6/ebo3M43PKazA4/JwctpJHJ5yWG8eWgUrCyt8N+I7HJlyBN8N/87k6zD/mdxhMoJfC8awFsPMXZVqcTgco3OIa0PIM71EClP/WED4lGCBHcM0PWPbjEVKUQqe2fYMJu2ZhPFtx9foea7WrpApZYjJjdHb/qBAPwNjTVnwLKpNdPQoBDyBXjBRQaFW6GV4NYeXO7yMbXe26W1Ta9RVBi6etp4oKC3QLQPz+sHXdYtNP6mGNh+qCxge5D+Ar9j3sf7NVIXD4WD58OXY8sIWvNPjnSrLbnthG2Z0mYEJAROwePDial/7p5E/YemFpQC0QW8/734GZZrZNkOaVLtMTkax6YDQ284bKUUpALTJnkpVpbAWWOuVeb/n+xi+dTjePPwm5veZX2XdXu30Krbe2QrAdFIfoHzJi4fWQIzOizaaqbRC72a9cTXtKgDg7+t/Y3DzwdW2K+xF9tWWsRXawtLCssoyzNNJyBeiTFVm7mo8NVhAyDAM04htfn4zTrxyAj+M+EGXUbMmfnnmF7x79F29ht/9vPvwd/Sv4lnm0dW9Ky4kXTB3NYxq5dgKeaV5unUwAe26Ze7W7lU+b4DPAPRd3xepRangcXhPfEA4s+tMrL6+WrcMy8T2E81dpRqxFlijj1cfDGo+qEblfe19IRaK8ePlH+Fo6Wg0Cy6Py9PdDMiQZhhdlgLQLiF0N/suAO1afQHOAQZlnmn1DK68cQX7Ju3DmNZjqqzbGP8xOJd4DoB2+SQvW+MjEoz1EJpajqbye3KzdsOXZ79EcFIw/tf/f1XWhWEelZAnhELFeggbCgsIGYZhGjkOh2Ny+QNT/Bz88F7P97Dr3i7dtjRp1WsUmsuc3nPw3aXvdI1oQLtw+sNLGZjL+z3f1/W8AEBKUQq8xd5VPufzAZ/jja5vYPiW4Zjda/bjrqLZiUVijGgxAl+e+xLnEs9hSPMh5q7SY/Pbs78hrSgN8wNN99hxOVxoSFNlD2FHt46IyIoAoO1trDxctDI+l6+bElIVB0sHFJYVAtAuSWDqs+5i7YKckhzdY5lSBkt+9b10b3d/G34Oftg+YXu9DO1lmKoIeULI1YYjR5jHg32iGYZhnlAjWozQreVERNCQplE25OxF9hjeYjhOxp3UbUuTpqGZbeMIXnt79UZ4RrjucVx+HFo5tqr2ebO6z8KeSXvQz8dwWOGT6KPAj9DZrTP+ePaPGi2i3VTxuXysHLUSXdy7mCzjbuOOzOLMKnsIO7p2xNnEs1BpVLiQdMFkQFgbHjYeSJGk4GbmTZP187LzQmpRqu5xRFYEOrp2rPa1A70DMbPrTDYFhWkQIr6IBYQNqPG1DBiGYZh6IRaJIVPKoFQrcS/nXqMcLlphVKtRuJh8Ufc4WZIMH7GPGWv0HxuBDYoVxbpEHTUNCAHtsMCnBYfDwcT2E9HaqbW5q2J2fvbaxDLJRckmk0mJRWLM6DwD7xx5B3K13GTCmNqYEDABeyL34EbGDXR172q0jJedl27uIqBNjtPXu+8jH5th6pOQLzQ6t5x5PMwz45thGIZpEH28+mD9zfW4kHQBc3vPNXd1TApwDkBUbpTucWROpNE5Vebi7+iPmLwYtHVui9j82BoHhMzTyd/JH9G50VCqlVUOfZ7WaRoEPIHJ4K22RrYciZWhK+Fo6WgyWcvDcwivpF6pNvkOwzQ0NmS0YbEeQoZhmCfY5A6TkVmcide7vI7eXr3NXR2ThHz9FOP3su81qt610a1GY0/kHgBAriy3ygQcDDPAZwDOJp6t0dDZSe0nwd+pfnrvBTwB9k7ai+0TtpssU3nIZ64sFxrSGGQ3ZRhzE/FFLKlMA2IBIcMwzBOslWMrLBm8BCNajjB3VarlaOmIPFkeACBJktRohowCwPAWwxFfEI8vznxR4/UgmaeXm40bEgoS4Gfv1+DHthfZV5uQicvhQqVR4a/rf+Ht7m83UM0YpubYshMNiwWEDMMwTKPQ2a0zbmfd1s3Va0zJKyx4Fvj7ub/haOnIUu4zNXLq1VP4esjX5q6GUQHOAdh5dyfOJZ7DyJYjzV0dhjEg5Amh0LAewobC5hAyDMMwjUJnt864nXkb7Vzawc26+jT7Dc2CZ4GP+35s7mowTYSNwMbcVTCpu0d3zD0xFzfevtGobrwwTAWWVKZhsR5ChmEYplHo1awXLiRfaHTzBxnmSTOo+SD8/MzPcLdxN3dVGMYotuxEw2IBIcMwDNMoiEViiIVifBX8FQY1H2Tu6jDME8vV2hWTO0w2dzUYxiQhj/UQNiQ2ZJRhGIZpNDaM3wBAm/SCYRiGeTqxIaMNiwWEDMMwTKPBAkGGYRiGz+Xjw5MfmrsaTw32zcswDMMwDMMwTKPRz7sfbr1zy9zVeGqwgJBhGIZhGIZhmEbDVmgLP4eGX8fzacUCQoZhGIZhGIZhmKcUCwgZhmEYhmEYhmGeUiwgZBiGYRiGYRiGeUqxgJBhGIZhGIZhGOYpxQJChmEYhmEYhmGYpxQLCBmGYRiGYRiGYZ5SLCBkGIZhGIZhGIZ5SrGAsA6aN28ODoej9/O///1Pr0xycjLGjh0La2trODs7Y86cOVAoFHplIiIiMGjQIFhaWqJZs2b4+uuvQUQN+VYYhmEYhmEYhnmK8c1dgabq66+/xqxZs3SPbWxsdP9Xq9UYM2YMXFxcEBISgry8PMyYMQNEhN9++w0AUFRUhBEjRmDIkCEICwvD/fv38dprr8Ha2hofffRRg78fhmEYhmEYhmGePiwgrCNbW1u4u7sb3Xfq1ClERkYiJSUFnp6eAICffvoJr732Gr799lvY2dlh+/btKCsrw6ZNmyAUCtGhQwfcv38fP//8M+bPnw8Oh9OQb4dhGIZhGIZhmKcQGzJaR9999x2cnJzQpUsXfPvtt3rDQa9cuYIOHTrogkEAeOaZZyCXyxEeHq4rM2jQIAiFQr0y6enpSExMbLD3wTAMwzAMwzDM04v1ENbB3Llz0a1bNzg4OODatWv4/PPPkZCQgHXr1gEAMjMz4ebmpvccBwcHCAQCZGZm6so0b95cr0zFczIzM+Hn52f02HK5HHK5XPdYIpEA0A5BZRiGYRiGYZgnQUXbluXXePxYQFhuyZIl+Oqrr6osExYWhh49euDDDz/UbevUqRMcHBzw0ksv6XoNARgd8klEetsfLlPxB1/VcNHly5cbrae3t3eVdWcYhmEYhmGYpkYqlUIsFpu7Gk80FhCW++CDDzB58uQqyzzco1ehT58+AIC4uDg4OTnB3d0dV69e1StTUFAApVKp6wV0d3fX9RZWyM7OBgCD3sXKPv/8c8yfP1/3uLCwEL6+vkhOTmYflidAUVERvL29kZKSAjs7O3NXh3lE7Hw+edg5fbKw8/nkYef0yUFEkEqlelOwmMeDBYTlnJ2d4ezsXKfn3rx5EwDg4eEBAAgMDMS3336LjIwM3bZTp05BKBSie/fuujJffPEFFAoFBAKBroynp6fJwBMAhEKh3rzDCmKxmF34niB2dnbsfD5B2Pl88rBz+mRh5/PJw87pk4F1djQMllSmlq5cuYKVK1fi1q1bSEhIwO7du/H2229j3Lhx8PHxAQCMHDkS7dq1w6uvvoqbN2/izJkz+PjjjzFr1izdxWnq1KkQCoV47bXXcPfuXezfvx/Lli1jGUYZhmEYhmEYhmkwrIewloRCIXbt2oWvvvoKcrkcvr6+mDVrFj799FNdGR6Ph6NHj+K9995Dv379YGlpialTp+LHH3/UlRGLxQgKCsL777+PHj16wMHBAfPnz9cbDsowDMMwDMMwDPM4sYCwlrp164bQ0NBqy/n4+ODIkSNVlunYsSMuXLjwSPURCoVYvHix0WGkTNPDzueThZ3PJw87p08Wdj6fPOycMkztcYjlcmUYhmEYhmEYhnkqsTmEDMMwDMMwDMMwTykWEDIMwzAMwzAMwzylWEDIMAzDMAzDMAzzlGIBIcMwDMMwDMMwzFOKBYRNwIULFzB27Fh4enqCw+HgwIEDevuJCEuWLIGnpycsLS0xePBg3Lt3zzyVZaq1fPly9OzZE7a2tnB1dcXzzz+PmJgYvTLsnDYtq1evRqdOnXQLIQcGBuL48eO6/ex8Nm3Lly8Hh8PBvHnzdNvYOW1alixZAg6Ho/fj7u6u28/OZ9OTlpaGadOmwcnJCVZWVujSpQvCw8N1+9k5ZZiaYwFhE1BSUoLOnTvj999/N7r/+++/x88//4zff/8dYWFhcHd3x4gRIyCVShu4pkxNBAcH4/3330doaCiCgoKgUqkwcuRIlJSU6Mqwc9q0eHl5YcWKFbh+/TquX7+OoUOHYvz48brGBzufTVdYWBjWrFmDTp066W1n57Tpad++PTIyMnQ/ERERun3sfDYtBQUF6NevHywsLHD8+HFERkbip59+gr29va4MO6cMUwvENCkAaP/+/brHGo2G3N3dacWKFbptZWVlJBaL6a+//jJDDZnays7OJgAUHBxMROycPikcHBxo3bp17Hw2YVKplPz9/SkoKIgGDRpEc+fOJSL2GW2KFi9eTJ07dza6j53Ppuezzz6j/v37m9zPzinD1A7rIWziEhISkJmZiZEjR+q2CYVCDBo0CJcvXzZjzZiakkgkAABHR0cA7Jw2dWq1Gjt37kRJSQkCAwPZ+WzC3n//fYwZMwbDhw/X287OadMUGxsLT09P+Pn5YfLkyYiPjwfAzmdTdOjQIfTo0QMTJ06Eq6srunbtirVr1+r2s3PKMLXDAsImLjMzEwDg5uamt93NzU23j2m8iAjz589H//790aFDBwDsnDZVERERsLGxgVAoxDvvvIP9+/ejXbt27Hw2UTt37sSNGzewfPlyg33snDY9vXv3xpYtW3Dy5EmsXbsWmZmZ6Nu3L/Ly8tj5bILi4+OxevVq+Pv74+TJk3jnnXcwZ84cbNmyBQD7jDJMbfHNXQGmfnA4HL3HRGSwjWl8PvjgA9y5cwchISEG+9g5bVratGmDW7duobCwEHv37sWMGTMQHBys28/OZ9ORkpKCuXPn4tSpUxCJRCbLsXPadIwePVr3/44dOyIwMBAtW7bE5s2b0adPHwDsfDYlGo0GPXr0wLJlywAAXbt2xb1797B69WpMnz5dV46dU4apGdZD2MRVZEl7+I5Xdna2wZ0xpnGZPXs2Dh06hHPnzsHLy0u3nZ3TpkkgEKBVq1bo0aMHli9fjs6dO2PVqlXsfDZB4eHhyM7ORvfu3cHn88Hn8xEcHIxff/0VfD5fd97YOW26rK2t0bFjR8TGxrLPaBPk4eGBdu3a6W0LCAhAcnIyAPY9yjC1xQLCJs7Pzw/u7u4ICgrSbVMoFAgODkbfvn3NWDPGFCLCBx98gH379uHs2bPw8/PT28/O6ZOBiCCXy9n5bIKGDRuGiIgI3Lp1S/fTo0cPvPLKK7h16xZatGjBzmkTJ5fLERUVBQ8PD/YZbYL69etnsFzT/fv34evrC4B9jzJMbbEho01AcXEx4uLidI8TEhJw69YtODo6wsfHB/PmzcOyZcvg7+8Pf39/LFu2DFZWVpg6daoZa82Y8v777+Off/7BwYMHYWtrq7uDKRaLYWlpqVvvjJ3TpuOLL77A6NGj4e3tDalUip07d+L8+fM4ceIEO59NkK2trW5ObwVra2s4OTnptrNz2rR8/PHHGDt2LHx8fJCdnY1vvvkGRUVFmDFjBvuMNkEffvgh+vbti2XLlmHSpEm4du0a1qxZgzVr1gAAO6cMU1tmy2/K1Ni5c+cIgMHPjBkziEibXnnx4sXk7u5OQqGQBg4cSBEREeatNGOSsXMJgDZu3Kgrw85p0zJz5kzy9fUlgUBALi4uNGzYMDp16pRuPzufTV/lZSeI2Dltal5++WXy8PAgCwsL8vT0pAkTJtC9e/d0+9n5bHoOHz5MHTp0IKFQSG3btqU1a9bo7WfnlGFqjkNEZKZYlGEYhmEYhmEYhjEjNoeQYRiGYRiGYRjmKcUCQoZhGIZhGIZhmKcUCwgZhmEYhmEYhmGeUiwgZBiGYRiGYRiGeUqxgJBhGIZhGIZhGOYpxQJChmEYhmEYhmGYpxQLCBmGYRiGYRiGYZ5SLCBkGIZhGIZhGIZ5SrGAkGEYhmEYhmEY5inFAkKGYRiGYRiGYZinFAsIGYZhGIZhGIZhnlIsIGQYhmEYhmEYhnlKsYCQYRiGYRiGYRjmKcUCQoZhGIZhGIZhmKcUCwgZhmEYhmEYhmGeUiwgZBiGYRiGYRiGeUqxgJBhGIZhGIZhGOYpxQJChmEYhmEYhmGYpxQLCBmGYRiGYRiGYZ5SLCBkGIZhGIZhGIZ5SrGAkGEYhmEYhmEY5inFAkKGYRiGYRiGYZin1P8BrTFvws8yGcwAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pn = PowderPattern()\n", "if not os.path.exists(\"pbso4-n.dat\"):\n", " os.system(\"curl -o pbso4-n.dat https://raw.githubusercontent.com/vincefn/objcryst/master/Fox/example/tutorial-pbso4/neutron.dat\")\n", "pn.ImportPowderPatternFullprof(\"pbso4-n.dat\")\n", "pn.GetRadiation().SetRadiationType(RadiationType.RAD_NEUTRON)\n", "pn.SetWavelength(1.909)\n", "pn.SetMaxSinThetaOvLambda(0.3)\n", "pdiffn = pn.AddPowderPatternDiffraction(c)\n", "\n", "#\n", "pdiffn.GetProfile().GetPar(\"W\").SetValue(0.001)\n", "\n", "\n", "pn.FitScaleFactorForIntegratedRw()\n", "\n", "# Plot\n", "pn.plot(diff=True, fig=None, hkl=True)\n", "\n", "# Fit profile - we keep the unit cell fixed as it was already refined\n", "pn.quick_fit_profile(auto_background=True,plot=True, init_profile=True, cell=False, verbose=True)\n", "pn.quick_fit_profile(plot=False, init_profile=False, cell=False, asym=True, displ_transl=True,\n", " backgd=False, verbose=False)\n", "\n", "print(\"Fit result: Rw=%6.2f%% Chi2=%10.2f GoF=%8.2f LLK=%10.3f\" %\n", " (pn.rw * 100, pn.chi2, pn.chi2/pn.GetNbPointUsed(), pn.llk))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a MonteCarlo object and add objects (crystal, powder patterns) for optimisation" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "mc = MonteCarlo()\n", "mc.AddRefinableObj(c)\n", "mc.AddRefinableObj(px)\n", "mc.AddRefinableObj(pn)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Disable profile fitting before Monte-Carlo\n", "..or else the crystal structure will not be optimised\n", "\n", "Note that the following display will be live-updated during the optimisation done below (the last plot is always updated)." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "52ff63992bd74a9e9ac8c11c7a0f0f56", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC76klEQVR4nOzdd3hUVf4/8Pek15kkhDQIRZqR3qsU6dIWZNGVIiuLqyhZviCwKGJcVoqrgOCKZV06i4JigwVBNHQJbQlVOgmkkd6TSc7vj/zudXpmJtOSvF/P4yO5czNzJpkk9z2fzzlHIYQQICIiIiIionrHzdkDICIiIiIiIudgICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiIiKieoqBkIiIiIiIqJ5iICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiIiKieoqBkIiIiIiIqJ5iICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIionpg8uTJzh4CEbkgD2cPgIiIiIhsZ8GCBXrHhBA4fvy4E0ZDRK6OgZCIiIioDtm2bRu2b9+ud/ynn35ywmiIyNUxEBIRERHVIc8//zxiYmIQFhamdXzatGlOGhERuTKFEEI4exBERERERETkeFxUhoiIiIiIqJ5iICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiojrkiy++QOfOnTFlyhRs2rQJbdq0Qffu3fHtt986e2hE5IK4qAwRERFRHdKzZ0/89NNPyM/PR6dOnXD16lX4+PhgyJAhOHLkiLOHR0QuhttOEBEREdUhvr6+8PPzg5+fHwYPHgyVSgUA8PDgZR8R6WPLKBEREVEd0qlTJ1RUVAAAtm7dCgAoKytDgwYNnDksInJRbBklIiIiIiKqp1ghJCIiIiIiqqcYCImIiIiIiOopBkIiIiKieiA1NdXZQyAiF8RASERERFQPTJs2zdlDICIXxPWHiYiIiOqQHj166B0TQuD69etOGA0RuToGQiIiIqI6JD8/H4mJiXr7Dg4dOtRJIyIiV8aWUSIiIqI6ZNmyZcjPz9c7vnjxYieMhohcHfchJCIiIiIiqqdYISQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiIiKieoqBkIiIiIiIqJ5iICQiIiIiIqqnGAiJiIiIiIjqKQZCIiIiIiKieoqBkIiIiKiOmzx5srOHQEQuysPZAyAiIiIi21iwYIHeMSEEjh8/7oTREFFtwEBIREREVEds27YN27dv1zv+008/OWE0RFQbMBASERER1RHPP/88YmJiEBYWpnV82rRpThoREbk6hRBCOHsQRERERERE5HhcVIaIiIiIiKieYiAkIiIiIiKqpziHsJarrKzEgwcPEBgYCIVC4ezhEBERERHVmBAC+fn5iIqKgpsba1j2xEBYyz148ADR0dHOHgYRERERkc0lJSWhcePGzh5GncZAWMsFBgYCqPphUSqVTh4NEREROdPQoUOxc+dOeHl54e9//zvKy8uxcuVKjB07Ft9//72zh0dktry8PERHR8vXumRHgmq13NxcAUDk5ubKx1avXi1UKpVQKpUiOjpa3Lp1SwghxPDhw4VKpRJ+fn7id7/7nd59tWjRQvj5+Ql/f3/Rv39/IYQQKpVKpKSkaJ1XXFwsWrRoIZRKpejYsaPe/cyYMUN4enoKlUolmjZtqnf7u+++KwICAoRSqRSBgYEiNzfXqvtcvXq1cHd3F88995w8VqVSKfz8/MTkyZPN+OrZziOPPCLc3NyEEEI899xzolu3biI5OVncvn1bPPXUUxbd14ABA0S/fv1Ev379xB/+8AdRUVFh9NwXXnhBfszExETrn4AB//3vf8Wbb75p9Pb58+cLlUol8vPzbfq4RERkvX79+ml9vGHDBjF69GjRrVs3J42IyDqGrnHJPtiQW8fcvHkTixcvxrlz55Cbm4snn3wSTzzxBADgq6++Qk5ODrKzs/Hf//4XZWVlep+/detW5OTkICEhAQkJCQYf480330RERARyc3NRUlKCjz/+WO+ccePGIScnB3fu3NG7LS4uDhcuXEBubi4uXrwIPz8/q++zU6dO2Lhxo/zxtWvXkJSUhB07dqCoqKiar5bt3Lx5Ez4+PvLHGzZsQKNGjay+v//+9784cuQIfH19ceLECaPnGfo6Oco777yDTp06Oe3xiYhIX6dOnbT+Tk6fPh1z585Ffn6+8wZFRC6NgbCOWblyJYYNG4bmzZsDAD766CMkJyejrKwMfn5+AICcnByoVCp4eXkZvA8PDw80bNgQFy5cAACMGTMGQUFB6NChAwDgp59+wtNPPy3f9t133+ndx7fffguVSoXY2Fi929zd3fHRRx8hLy8PTZo0gYeHR43vU1NISAh8fX1x69Yt+diaNWvQoEEDREZGwtfXF/PmzUNERAT8/f1x6dIlrc+/cuUKwsPDERQUJH8dNe8nNDQUERER8PX1xZdffmlyLIacPn0agwYNwuOPP453333X5LkFBQUIDAxEZWUlhg0bhgEDBmDo0KHIy8sDAHTr1s3o506fPh0zZ87EwIED8dJLL+Fvf/sbBgwYIH/9kpKS8MQTT+Dxxx/HSy+9BKDqtTFs2DCMGDECO3fulO9r48aNePzxx9GnTx8cOnTI4udMRESOsW7dOjRr1kzr2KBBg3D16lXnDIiIXB4DoY7ly5eje/fuCAwMRFhYGH73u9/h2rVrWudMnz4dCoVC679evXppnVNaWorZs2cjNDQU/v7+GDt2LJKTk7XOyc7OxtSpU6FSqaBSqTB16lTk5OTUaPxJSUlo0aKF1jEfHx/8+uuvAKoCRGRkJNq1a2f0PrKyspCWloY+ffoAACZMmICcnBzk5eVh69atyM/PR1hYGACgYcOGyMrK0vr8N954A4WFhbhy5Qr+/e9/4/z581q3f/XVV9i5cycaNGiA9u3bQ61W1/g+NV27dg0lJSV49NFH9W5LSUnB008/jf/85z9ITU3F8OHDsXz5cq1zJk+ejOnTpyMnJwfXr1/Xu4/KykqkpqbizTffxLJly4yOw5iFCxfiq6++wpEjR3Ds2DGkpaXpnTNy5Eh07NgRaWlpaNeuHdzc3PDNN98gPj4eY8aMweeff27WYw0cOBA///wzLl26hI4dOyI+Ph7Hjx9HSUkJVqxYgQULFuDIkSMoKytDfHw8/vWvf2HixInYt28fIiIiAAAPHz7Ef/7zHxw+fBgHDx7E22+/bfFzJiIiIiLXxEVldMTHx+Pll19G9+7doVar8frrr2PYsGG4fPky/P395fNGjBiBDRs2yB/rVtvmzJmD7777Djt27ECDBg0wb948jB49GmfOnIG7uzsA4Nlnn0VycjL27dsHAHjhhRcwdepUg9UxczVt2lSrMgYAJSUlaN26NYCq6lROTg4aNWqEs2fPokuXLlrnTpkyBR4eHnj66acRExMDAJg4cSIAoEuXLkhISIBSqUR6ejoAIC0tDSEhIXpjAICoqCi0bdsWP/74o1Zr4RNPPIFbt25BrVYjJiYGK1eutOo+pa+jpjZt2kChUOCvf/0rPDy0X95Sta9ly5a4ffu2fOzy5cta5yUlJeH5558HAL37AIBHHnkEANChQwd89tlnerdXJzExEePHjwdQ9aZAUlISwsPDtc7573//i4CAALz66qvYtm0bJkyYgD//+c+4d+8ecnJy8NRTT5n1WFJVNyoqSv631Jp78+ZNdO/eHQDQvXt33LhxAzdu3MDMmTMBAD169MC5c+dw69YtXL58GYMGDQIAZGRkWPyciYiI6ouKigqUl5c7exguz9PT0+C1HDkeA6EOKZxJNmzYgLCwMJw5cwb9+/eXj3t7e8sVFF25ubn47LPPsGXLFgwZMgRA1dy86OhoHDx4EMOHD8eVK1ewb98+nDx5Ej179gQAfPrpp+jduzeuXbuGNm3aWDX++fPno1OnTrh79y6aNm2Kl19+GdHR0fDy8kJeXh6USiWUSiU8PDwQHBys9/lbt26Vw4pk9+7dWLBgAc6fP48JEybAx8cHn3/+OWbPno09e/Zg7ty5WucnJyejcePGKCsrw7Vr1+TnJzlw4ACGDh0KDw8PBAUFoaKiAgMHDrT4Pk+fPq03/mvXrhn9vmjS3LNRCKF1W5MmTbBp0yYsW7YMarXaYCg09rnm6NixI3bt2gWVSoWKigqTe+sEBQUhKysL+/btQ1RUFLZu3Yq1a9fqVVCN0Xyeus+5ZcuWSEhIwIgRI5CQkIDnnnsO2dnZOHfuHLp27YrTp0/D3d0djzzyCDp06IDvv/8eCoWCf+SIiGqh/Px8rtZoZ0IIpKam1rjbqz4JCgpCREQE99J2MgbCauTm5gKAXsXq559/RlhYGIKCgjBgwAC8/fbbcsvjmTNnUF5ejmHDhsnnR0VFoV27djh+/DiGDx+OEydOQKVSaYWlXr16QaVS4fjx40YDYWlpKUpLS+WPpblkkhYtWmDp0qXo2LEjhBBQqVSIj48HAPTt2xdJSUmorKzEmDFj9ObHGfPFF1/g7bffRtOmTTFlyhSUlJSgbdu2UKlUaNasGV544QUAQExMDK5cuYKpU6fKC9IMHToU/fr107q/v/zlL7h37548V/Gvf/0rKisrLb5PQ4HQFrZu3YoBAwbgww8/RIMGDXDz5s0a3d+RI0fkNwaGDx+OFStWYMKECaisrISXlxe+/vpr+Pr6an3OyJEj4ebmBi8vL3z++ecoLi7G22+/jSeffBKRkZE22Xty4cKFeO655/D222+jXbt26N+/Pzp06IBJkyZh586diIqKQtOmTREaGopnnnkGAwYMgLu7O9q3b4+1a9fW+PGJiMj2Nm/ejH/84x/w9PTEpEmT8Ne//hVA1cJsnANuX1IYDAsLg5+fH0OOCUIIFBUVyd1hkZGRTh5R/aYQ1pQ46gkhBMaNG4fs7GwcOXJEPv75558jICAATZs2xe3bt/HGG29ArVbjzJkz8Pb2xvbt2/HHP/5RK7gBkBd7+fjjj7Fs2TJs3LhRntsnad26Nf74xz9i0aJFBscUFxeHt956S+94bm5uvduH8F//+hdmz56Np59+WmulUWdo0aIF0tLSUFBQgFdffRUnTpzAF198UaOVRl3dggUL8O233+Ls2bPygkVERORcvXv3xuHDh+Hp6Ym1a9fi8OHD2Lx5M0aNGoWffvrJ2cOrsyoqKvDrr78iLCwMDRo0cPZwao3MzEykp6ejdevWeu2jeXl5UKlU9fIa19FYITThlVdewYULF3D06FGt49JqmADQrl07dOvWDU2bNsWePXswYcIEo/cnhDDawmfsHF2LFi3SaqeUNu2sj/70pz/hT3/6k7OHAQBaVcTqVg6tK9555x288847zh4GERFpcHNzg6enJwAgNjYWjz32GEaOHGn2VAOyjjSdgm+QWkb6epWXl3M+oRNxlVEjZs+ejW+//RY//fQTGjdubPLcyMhING3aVF6RMiIiAmVlZcjOztY6Lz09XV48JCIiwuDqkhkZGXoLjGjy9vaW5wFK/xEREREBwKhRo7T2IRwyZAg+/PDDOt2x4krYJmoZfr1cAwOhDiEEXnnlFXz11Vc4dOiQWfPsMjMzkZSUJPc/d+3aFZ6enjhw4IB8TkpKCi5evChv5dC7d2/k5ubi1KlT8jm//PILcnNz5XOIiIiILPHaa6/p7UPYtm1bvUXziIgkDIQ6Xn75ZWzduhXbt29HYGAgUlNTkZqaiuLiYgDQmiN2584d/PzzzxgzZgxCQ0Pl1TlVKhVmzJiBefPm4ccff8S5c+cwZcoUtG/fXl5cJCYmBiNGjMDMmTNx8uRJnDx5EjNnzsTo0aOtXmGUiIiISNehQ4fw0UcfOXsYVAv9/PPPUCgUXDm1juMcQh3r168HULWht6YNGzZg+vTpcHd3R2JiIjZv3oycnBxERkZi0KBB+Pzzz7WWc169ejU8PDwwadIkFBcXY/Dgwdi4caNWf/S2bdsQGxsrr0Y6duxYfPDBB/Z/kkRERFRvDB48GADw5z//mS16RKSHgVBHdYuu+vr6Yv/+/dXej4+PD9atW4d169YZPSckJARbt261eIxERERElrp58yZatmzp7GEQkYthyygRERFRHda0aVMAsNv+vVS7lZaWIjY2FmFhYfDx8UG/fv3kvZ8lx44dQ8eOHeHj44OePXsiMTFRvu3u3bsYM2YMgoOD4e/vj7Zt22Lv3r2OfhpUAwyERERERHWYWq0GAL3Vz4mAqn2Fv/zyS2zatAlnz55Fy5YtMXz4cK2tSubPn493330XCQkJCAsLw9ixY+WtNl5++WWUlpbi8OHDSExMxMqVKxEQEOCsp0NWYMsoERERUR0lhEB6ejqAqkoQOVZRURGuXr3q8Md99NFHzdoTsbCwEOvXr8fGjRsxcuRIAMCnn36KAwcO4LPPPkP37t0BAG+++SaGDh0KANi0aRMaN26M3bt3Y9KkSbh37x6eeuoptG/fHgDwyCOP2OlZkb0wEBIRERHVUbm5uXIlh4HQ8a5evYquXbs6/HHPnDmDLl26VHvezZs3UV5ejr59+8rHPD090aNHD1y5ckUOhL1795ZvDwkJQZs2bXDlyhUAQGxsLF566SX88MMPGDJkCJ566il06NDBxs+I7ImBkIiIiKiOkqqDAAOhMzz66KM4c+aMUx7XHNJiirqrzwohql2RVrr9T3/6E4YPH449e/bghx9+wPLly/Hee+9h9uzZVoycnIGBkIiIiKiOKiwslP/NQOh4fn5+ZlXqnKVly5bw8vLC0aNH8eyzzwIAysvLcfr0acyZM0c+7+TJk2jSpAmAqrmov/76q1bojI6OxosvvogXX3wRixYtwqeffspAWIswEBIRERHVUZohkIGQdPn7++Oll17C/PnzERISgiZNmuCdd95BUVERZsyYgf/9738AgL/97W9o0KABwsPD8frrryM0NBS/+93vAABz5szByJEj0bp1a2RnZ+PQoUOIiYlx4rMiSzEQEhEREdVRJSUlAKr2UWYgJENWrFiByspKTJ06Ffn5+ejWrRv279+P4OBgrXP+8pe/4Pr16+jYsSO+/fZbeHl5AQAqKirw8ssvIzk5GUqlEiNGjMDq1aud9XTICgyERERERHWUFAKVSiUDIRnk4+ODtWvXYu3atXq3DRw4UJ5nOHr0aIOfv27dOruOj+yP+xASERER1VFShVClUqGsrMzJoyEiV8RASERERFRHsUJIRNVhICQiIiKqoxgIiag6DIREREREdZTUMhoQEMBASEQGMRASERER1VGlpaXw9vaGj48PAyERGcRASERERFRHlZSUwNvbG97e3gyERGQQAyERERFRHVVaWgofHx8GQiIyioGQiIiIqI6qSYXwwYMHdhoVEbkSbkxPREREVEdJcwirC4R79+7V+lgIgbi4OLz11lt48skn7T1MqqXi4uLw9ddf4/z5884eCtUAAyERERFRHSW1jHp5eZncmH769Ono1q0bevXqBSEEACAnJwenT59mICSq49gySkRERFRHmdsyevv2bTz++OO4evUqhg0bhjfffBOtWrXCkiVLHDhaInIGBkIiIiKiOsrcRWX8/f2xaNEifPzxx/jxxx8xadIk5OTkOG6g5DSVlZVYuXIlWrZsCW9vbzRp0gRvv/02AGDhwoVo3bo1/Pz88Mgjj+CNN95AeXm5yfv797//jbZt28Lb2xuRkZF45ZVXHPE0qAbYMkpERERUR1m6qExgYCAWL16MvLw8XL161QEjJGdbtGgRPv30U6xevRr9+vVDSkqK/L0PDAzExo0bERUVhcTERMycOROBgYFYsGCBwftav3495s6dixUrVmDkyJHIzc3FsWPHHPl0yAoMhERERER1lLmLyuhSKpXo0aOHHUdGriA/Px/vv/8+PvjgAzz33HMAgBYtWqBfv34AgMWLF8vnNmvWDPPmzcPnn39uNBD+/e9/x7x58/CXv/xFPta9e3c7PgOyBQZCIiIiojqqpKQEvr6+8PT0RHl5OYQQUCgUzh5W/VFUBDij0vroo4CfX7WnXblyBaWlpRg8eLDB23ft2oU1a9bgxo0bKCgogFqthlKpNHhueno6Hjx4YPS+yHUxEBIRERHVUaWlpQgKCoKnpycAoKKiAh4evPxzmKtXga5dHf+4Z84AXbpUe5qvr6/R206ePIlnnnkGb731FoYPHw6VSoUdO3bgvffes/i+yLXxNwIRERFRHVVeXg4vLy85EJaXl1sUCIcNG4YffvjBXsOr+x59tCqcOeNxzdCqVSv4+vrixx9/xJ/+9Cet244dO4amTZvi9ddfl4/dvXvX6H0FBgaiWbNm+PHHHzFo0CDrxk1OwUBIREREVEdJAVAzEBqq5EyaNEnvmBACiYmJdh9jnebnZ1alzll8fHywcOFCLFiwAF5eXujbty8yMjJw6dIltGzZEvfu3cOOHTvQvXt37NmzB7t37zZ5f3FxcXjxxRcRFhaGkSNHIj8/H8eOHcPs2bMd9IzIGgyERERERHVUeXk5PD09tQKhIQkJCTh06BDc3H7bkUwIgalTpzpknOQ8b7zxBjw8PLBkyRI8ePAAkZGRePHFFzFjxgz83//9H1555RWUlpZi1KhReOONNxAXF2f0vp577jmUlJRg9erVePXVVxEaGoqJEyc67smQVRRCCOHsQZD18vLyoFKpkJuba3SSLxEREdVPHTt2RP/+/TFs2DCMHTsWKSkpiIiI0Dvvww8/xKRJkxAaGqp1/PPPP8fTTz/tqOHWWiUlJbh9+zaaN28OHx8fZw+n1jD1deM1ruOwQkhERERURxlqGTVk1qxZBo8zDBLVfW7Vn0JEREREtZG5LaNEVH8xEBIRERHVUWq1moGQiExiICQiIiKqo6SWUS8vL/ljXfHx8RgyZAhiY2Pxz3/+Ey1btkTXrl1x+PBhRw+XiJyAgZCIiIiojjKnZXThwoUYPXo0Dh8+jAULFmDUqFHo0qULxowZg61btzp6yETkYFxUhoiIiKiOMqdl1MfHB7t27cLZs2cxZMgQvP/++wCAGzdu4KOPPsKUKVMcOubajIv3W4ZfL9fACiERERFRHWXOKqMRERHw8fFBfHw8Dh06JJ+XnZ3NLRTMJH19i4qKnDyS2kX6eklfP3IOVgiJiIiI6ihzWkZ37NiB1NRUrFixAosXL0ZFRQU8PT0xYMAALFq0yNFDrpXc3d0RFBSE9PR0AICfnx8UCoWTR+W6hBAoKipCeno6goKC4O7u7uwh1WsMhERERER1lLmrjEZERGDNmjUOHFndExERAQByKKTqBQUFyV83ch4GQiIiIqI6SAgBtVqt1TJaVlbm5FHVXQqFApGRkQgLC+P2Hmbw9PRkZdBFMBASERER1UFqtRoAuA+hg7m7uzPoUK3CRWWIiIiI6iBzA+GBAwfQs2dP9OnTBzt27JCPjxo1yjEDJSKnYiAkIiIisrFz585h9OjRGD9+PI4fPy4fnzFjhsPGIIW/6lYZffPNN7F//34cPHgQp06dwuzZs1FZWckVM4nqCbaMEhEREdlYbGwsNmzYAA8PD8yfPx8nT57E3LlzcevWLYeNQQp/1VUIpRUyAWDVqlXYuHEjxo0bh4KCAoeNlYichxVCIiIiIhtTKBRo2bIlmjVrhp07dyIvLw8zZ86U2zgdwdyW0U6dOuHOnTvyx9OnT8fcuXORn5/vkHESkXMxEBIRERHZWFhYmFbIiouLw4ABA5CQkOCwMWi2jCoUCnh4eBgMhOvWrUOzZs20jg0aNAhXr151xDCJyMkYCImIiIhsbNeuXXoha8qUKSgpKXHYGDQrhNL/ucooEeliINSxfPlydO/eHYGBgQgLC8Pvfvc7XLt2TescIQTi4uIQFRUFX19fDBw4EJcuXdI6p7S0FLNnz0ZoaCj8/f0xduxYJCcna52TnZ2NqVOnQqVSQaVSYerUqcjJybH3UyQiIqJ6QHMOofR/cwNhYWEhSktL7TY2InIdDIQ64uPj8fLLL+PkyZM4cOAA1Go1hg0bhsLCQvmcd955B6tWrcIHH3yAhIQEREREYOjQoVq99nPmzMHu3buxY8cOHD16FAUFBRg9ejQqKirkc5599lmcP38e+/btw759+3D+/HlMnTrVoc+XiIiI6ibNllHAskDYo0cPNGrUCEIIu42PiFwDVxnVsW/fPq2PN2zYgLCwMJw5cwb9+/eHEAJr1qzB66+/jgkTJgAANm3ahPDwcGzfvh1//vOfkZubi88++wxbtmzBkCFDAABbt25FdHQ0Dh48iOHDh+PKlSvYt28fTp48iZ49ewIAPv30U/Tu3RvXrl1DmzZtHPvEiYiIqE6pScvo5cuXAQCJiYno0KGDfQZIRC6BFcJq5ObmAgBCQkIAALdv30ZqaiqGDRsmn+Pt7Y0BAwbI+wydOXMG5eXlWudERUWhXbt28jknTpyASqWSwyAA9OrVCyqVSmu/Il2lpaXIy8vT+o+IiIhqB81rA3szt2W0R48eev9JeJ1BVPexQmiCEAJz585Fv3790K5dOwBAamoqACA8PFzr3PDwcNy9e1c+x8vLC8HBwXrnSJ+fmpqKsLAwvccMCwuTzzFk+fLleOutt6x/UkRERGR3kyZN0jsmhEBiYqLDxmBuy2h+fj4SExPl84qLi+Hn5wcAnEdIVA8wEJrwyiuv4MKFCzh69KjebQqFQutjIYTeMV265xg6v7r7WbRoEebOnSt/nJeXh+joaJOPS0RERI6VkJCAQ4cOwc3tt2YsIYRD1wowt2V02bJlyM/Pl9/ITk9Pl29z5KqoROQcDIRGzJ49G99++y0OHz6Mxo0by8cjIiIAVFX4IiMj5ePp6ely1TAiIgJlZWXIzs7WqhKmp6ejT58+8jlpaWl6j5uRkaFXfdTk7e0Nb2/vmj05IiIisqv58+cjMDAQoaGhWsdfeeUVh43B3Arh+PHjtT7WvD5hhZCo7uMcQh1CCLzyyiv46quvcOjQITRv3lzr9ubNmyMiIgIHDhyQj5WVlSE+Pl4Oe127doWnp6fWOSkpKbh48aJ8Tu/evZGbm4tTp07J5/zyyy/Izc2VzyEiIqLaadasWXphEACefvpph41Bdw6hh4eHXDU0hRVCovqFFUIdL7/8MrZv345vvvkGgYGB8nw+lUoFX19fKBQKzJkzB8uWLUOrVq3QqlUrLFu2DH5+fnj22Wflc2fMmIF58+ahQYMGCAkJwauvvor27dvLq47GxMRgxIgRmDlzJj7++GMAwAsvvIDRo0dzhVEiIiKqMUMto+YEwszMTPnfrBAS1X0MhDrWr18PABg4cKDW8Q0bNmD69OkAgAULFqC4uBizZs1CdnY2evbsiR9++AGBgYHy+atXr4aHhwcmTZqE4uJiDB48GBs3boS7u7t8zrZt2xAbGyuvODZ27Fh88MEH9n2CREREVC/otox6eHiYte1Efn4+vLy8UFlZyQohUT3AQKjDnA1YFQoF4uLiEBcXZ/QcHx8frFu3DuvWrTN6TkhICLZu3WrNMImIiKgWys/P13oD2Z4MbTthToUwLy8PgYGBKCkpYYWQqB7gHEIiIiIiG9u8eTPat2+PLl26YMWKFfLxcePGOWwMui2j5s4hzM/Ph1KphI+PDyuERPUAAyERERGRja1fvx5nz57F2bNn4efnh4kTJ6KoqMisTiRbqUnLaGBgILy9vVkhJKoH2DJKREREZGNubm5yZS42NhaPPfYYRo4ciaysLIeNwdqWUSkQFhQUsEJIVA+wQkhERERkY6NGjcKdO3fkj4cMGYIPP/wQjRo1ctgY1Go1FAqFvKCdJS2jrBAS1R+sEBIRERHZ2GuvvaZ3rG3btti3b5/DxlBeXi63iwJVgdCcil9+fj6Cg4M5h5ConmCFkIiIiMjOLl68iHfeecehj1leXi63iwKWrzLKCiFR/cBASERERGRnQ4cOxcKFC1FZWemwx1Sr1VqB0NCiMufOncPo0aMxfvx4HD9+HEBVhfDkyZOsEBLVE2wZJSIiIrKz1NRUAEBGRgbCw8Md8piGWkZ1K4SxsbHYsGEDPDw8MH/+fJw8eRL5+flwd3dnhZConmCFkIiIiMhBUlJSHPZY5rSMKhQKtGzZEs2aNcPOnTuRl5eH9PR0KBQKVgiJ6gkGQiIiIiI70mzTfPDggcMe15yW0bCwMK3VUOPi4iCEQHJyMiuERPUEAyERERGRHRUVFcn/dmQgNKdldNeuXWjWrJn8sRAC5eXl+Oc//8kKIVE9wUBIREREZEeaVTZHB0JLVxmVKog+Pj6sEBLVEwyERERERHakGary8vIc9rjmtIzqkiqC3t7erBAS1RMMhERERER2pBkICwsLHfa4ui2j5lQIpQDICiFR/cFASERERGRHUsjy8PDQmk9ob7oto4bmEH7xxRfo3LkzpkyZgk2bNqF3794AqvYnZIWQqH7gPoREREREdiRV2YKDgx1aITSnZfS9997DsWPHkJ+fj06dOmHPnj3o2rUrvvrqK0yaNIkVQqJ6gIGQiIiIyI6kUBUSEuJyLaO+vr7w8/ODn58fBg8eDC8vL/lcVgiJ6ge2jBIRERHZkWaF0NVaRjt16oSKigoAwNatW+UAGBwczDmERPUEAyERERGRHTmrQmhOy+iaNWvg7u4ufyyNdd26dXKFUAjhmAETkVMwEBIRERHZkWYgdHSF0NpVRr29veHt7S3fDxHVXQyERERERHbkzDmElu5DKI3Vx8cHPj4+AMB5hER1HBeVISIiIrIjZ1UI1Wo1AgIC5I89PDwghEBlZSXc3H6rCZSWluLSpUvIysrC5cuXAWhXCDmPkKhuYyAkIiIisiOpwhYUFOT0VUaBqqAorSa6ZcsWrF+/Ht27d4dSqcSpU6cAAF9//TUaN26sNX4iqpsYCImIiIjsqLS0FF5eXvD390dxcbFehc5eDC0qA1QFRSkQfvzxxzh69Kg8ng0bNuCHH37Av//9b7z99tvy+Imo7uIcQiIiIiI7Ki0thbe3N/z9/QEAxcXFDnlc3TmEmhVCia+vL+Lj4+WPi4uL4ebmBl9fX84hJKonWCEkIiIisiMpEPr5+QEACgsL5XBoT7oto9K/NQPhli1bsGLFCixevBgVFRVIT0+Hm5sbtm7dipSUFHn8RFR3sUJIREREZEdSIPT19ZU/dgRTLaOSiIgIrFmzBseOHcPJkyfxwgsvQKlUIiIighVConqCgZCIiIjIjkpLS+Hj4yPP23NUIDSnZVSXNFYAXGWUqJ5gICQiIiKyI6lCKAWssrIyhzyuOS2juqQFcACwQkhUTzAQEhEREdmRFAgdXSE0p2VUV1lZmRxcWSEkqh8YCImIiIjsqKSkRCsQOrJCaGnLaFlZmXweK4RE9QMDIREREZEd6baMOnIOoaGW0eoqhFJwZYWQqH5gICQiIiKyI92WUUdVCI21jJqqEGpuWu/u7i4fI6K6i4GQiIiIyI6cWSG0pmVUCoQKhQJeXl4OC7BE5BwMhERERER25KwKobUto7ohkhVCorqNgZCIiIjIjpy17YRuy6ilFUIArBAS1QMMhERERER25IyN6YUQNZ5DCLBCSFQfMBASERER2ZFUIZTCmSMqblLoq8kqowArhET1AQMhERERkR1J+xBKi7Q4okIoBcKatoyyQkhU9zEQEhEREdmRVCEEHFdxk0KcpS2juovKeHl5MRAS1XEMhERERER2pBkIvb29HVIhlEKcpS2jhuYQsmWUqG5jICQiIiKyI2dUCG3VMsoKIVHdx0BIREREZEfOrBAaahm1ZFEZVgiJ6j4GQiIiIiI7cuYcQkMto5xDSESaGAiJiIiI7KSyshLl5eUOrxAaahl1c3ODm5ubxauMskJIVLcxEBIRERHZiRSmfHx8ADh3lVGgqkpoyaIyrBAS1X0MhAYcPnwYY8aMQVRUFBQKBb7++mut26dPnw6FQqH1X69evbTOKS0txezZsxEaGgp/f3+MHTsWycnJWudkZ2dj6tSpUKlUUKlUmDp1KnJycuz87IiIiMhRpGqgK7SMAlUBkRVCItLEQGhAYWEhOnbsiA8++MDoOSNGjEBKSor83969e7VunzNnDnbv3o0dO3bg6NGjKCgowOjRo1FRUSGf8+yzz+L8+fPYt28f9u3bh/Pnz2Pq1Kl2e15ERETkWCUlJQDgEi2jQFVAtGQOITemJ6r7PKo/pf4ZOXIkRo4cafIcb29vREREGLwtNzcXn332GbZs2YIhQ4YAALZu3Yro6GgcPHgQw4cPx5UrV7Bv3z6cPHkSPXv2BAB8+umn6N27N65du4Y2bdrY9kkRERGRwzm7Qmhpy6ihbSfYvURUt7FCaKWff/4ZYWFhaN26NWbOnIn09HT5tjNnzqC8vBzDhg2Tj0VFRaFdu3Y4fvw4AODEiRNQqVRyGASAXr16QaVSyecYUlpairy8PK3/iIiIyDXpBkJnbkwPmG4ZFUIY3JieFUKiuo2B0AojR47Etm3bcOjQIbz33ntISEjAE088If+CT01NhZeXF4KDg7U+Lzw8HKmpqfI5YWFhevcdFhYmn2PI8uXL5TmHKpUK0dHRNnxmREREZEvOqhBa0zIqHdetEHIOIVHdxpZRKzz99NPyv9u1a4du3bqhadOm2LNnDyZMmGD084QQUCgU8sea/zZ2jq5FixZh7ty58sd5eXkMhURERC7KUIUwMzPT7o9rTcuoFPw4h5CofmGF0AYiIyPRtGlTXL9+HQAQERGBsrIyZGdna52Xnp6O8PBw+Zy0tDS9+8rIyJDPMcTb2xtKpVLrPyIiInJNzp5DaEnLqDQuVgiJ6hcGQhvIzMxEUlISIiMjAQBdu3aFp6cnDhw4IJ+TkpKCixcvok+fPgCA3r17Izc3F6dOnZLP+eWXX5CbmyufQ0RERLWbFAg19yF09iqjxip+0nHOISSqX9gyakBBQQFu3Lghf3z79m2cP38eISEhCAkJQVxcHJ566ilERkbizp07eO211xAaGorx48cDAFQqFWbMmIF58+ahQYMGCAkJwauvvor27dvLq47GxMRgxIgRmDlzJj7++GMAwAsvvIDRo0dzhVEiIqI6wlDLqLNXGa2uQqj5OawQEtV9DIQGnD59GoMGDZI/lubsPffcc1i/fj0SExOxefNm5OTkIDIyEoMGDcLnn3+OwMBA+XNWr14NDw8PTJo0CcXFxRg8eDA2btwId3d3+Zxt27YhNjZWXo107NixJvc+JCIiotpFdx9CRy8qY03LqDRW6XxWCInqNgZCAwYOHAghhNHb9+/fX+19+Pj4YN26dVi3bp3Rc0JCQrB161arxkhERETOER8fj6VLl6JDhw4YMWIEFi5cCJVKheXLl6N3795a5zp72wlrFpXhHEKi+oWBkIiIiMgCCxcuxM6dO5GTk4Nhw4YhISEBfn5+mDBhAn7++Wetc529qIw1LaOcQ0hUvzAQEhEREVnAx8cH0dHRiI6ORkxMDBo3bgwAWtNCJFIglEKWoyqEarUaCoUCbm7a6wdylVEi0sVVRomIiGpo8uTJzh4COVBERAQqKioAAIcOHQJQFcAqKyv1zi0tLYWXl5e8x7AjK4S61UHA8pZRVgiJ6j5WCImIiMy0YMECvWNCCBw/ftwJoyFn2bFjh94xDw8Pre2mJKWlpVqLtDhyDqGhQGhthVAIIYdaIqpbGAiJiMhlnDt3Dm+88QY8PT0xf/58eV/WGTNm4LPPPnPy6KpWh96+fbve8Z9++skJoyFXo7uiJ6AfCB0VsNRqtcHxWDOHEAAqKioM3h8R1X78ySYiIpcRGxuLDRs2wMPDA/Pnz8fJkycxd+5c3Lp1y9lDAwA8//zziImJQVhYmNbxadOmOWlE5OpKS0vlTemB38JWeXm5VvCyNVMto8ZaVo1VCKXbGAiJ6ibOISQiIpehUCjQsmVLNGvWDDt37kReXh5mzpxptKLhaEuXLtULg0BVkKUq586dw+jRozF+/HitVtoZM2Y4cVTOU1JSotcyCsDu8wht1TIq3QfnERLVXQyERETkMsLCwnDnzh3547i4OAwYMAAJCQnOGxRZJDY2FmvWrMHq1auxevVqrFq1CgBcpsprCwcOHEDPnj3Rp08frfmEo0aN0jvXUMuodNyeTLWMGgt3uiuiav6bK40S1V0MhERE5DJ27dqFZs2aaR2bMmUKSkpKnDMgspirV3lt4c0338T+/ftx8OBBnDp1CrNnz0ZlZSWKior0zjW0qAzgvAqhOXMINcfLCiFR3cdASERERDZTH6q87u7uCAoKgp+fH1atWoWuXbti3LhxKCgo0DvXWIXQlVtGNSuLrBAS1X0MhERERGaypFWwvqoPVd5OnTpphd7p06dj7ty5yM/P1zvXWIXQFVtGy8rKtPZMBFghJKoPGAiJiIjMZEmrINVd69at0wu9gwYNwtWrV/XOdbUKYXUto7orn0r3wQohUd3FQEhERC5v2LBhzh4CAMtaBYkA5y0qY23LqG4g1Nwmg4jqJm4oQ0RELmPSpEl6x4QQSExMdMJo9EmtglJ1aPr06WjatCleeukl5w6MXFZpaSlUKpX8saMWlalJy6gmVgiJ6j4GQiIichkJCQk4dOgQ3Nx+a2ARQmDq1KlOHNVv1q1bp3fMWKtgfXXgwAEsXrwY7u7uiI2NxTPPPAOgap7lnj17nDw62yktLcWlS5eQlZWFkJAQtGvXzuBG8yUlJQgPD5c/ZoWQiFwNAyEREbmM+fPnIzAwEKGhoVrHX3nlFSeNiCwlzbP08vLC4sWLcezYMbz//vt1ap7lli1bsH79enTv3h1KpRI5OTk4e/YsXnrpJUyZMkXr3Nq27QQrhET1DwMhERG5jFmzZhk8/vTTTzt4JGQtaZ4lAKxatQobN26sc/MsP/74Yxw9elSrkq1WqzFw4MBqA6Erb0zPCiFR/cRFZYiIiGooNTXV2UNwGZZsyVBb+fr6Ij4+Xv5YCIH4+Hj4+PjonetqFUJLW0ZZISSq+xgIiYiIamjatGnOHoLLsGRLhtpqy5Yt+Oabb9C3b1/06tUL/fv3x/fff4+tW7fqnVvbt51ghZCo7mPLKBERubzU1FREREQ4exjo0aOH3jEhBK5fv+6E0ZCzREREYM2aNWada8nG9MbaPK3BVUaJyFwMhERE5PKmTZuGH374wdnDQH5+PhITE/UutIcOHeqkEdUOkydPxrZt25w9DLvJz8/H6tWrMWPGDDRq1EjrNt1A6O7uDoVCIQesxMRELFy4EDk5OXJYCw0NxbJly9C+fXurx8RVRonIXAyERETkMly9Ards2TLk5+cjODhY6/jixYudNCLXsmDBAr1jQggcP37cZaq89rBkyRKsWbMGR44cwYEDB7Ru0w2ECoUCXl5ecoVw1qxZ2L59O6Kjo+Vz7t27h8mTJ+PIkSNWj8lUy6g1FUIGQqK6i4GQiIhchm4F7saNGwgNDcXvf/97J4+syvjx4w0eHzBggINH4pq2bduG7du36x3/6aefXKbKaw8//fQTAGgtpiMpKSnRW2zG29tbrhBWVFRobVwPAEqlEhUVFTUak6mWUbVaDSEEFAqF1m2GAqG7uzvc3NzYMkpUhzEQEhGRy9CtwLVq1QrR0dHYsmWLk0dm2I0bN1BZWYnWrVs7eygu4fnnn8ecOXP0KlPp6em4ceOGk0ZlfxkZGfD19cXDhw+1jldWVkKtVmtVCAFoVQhXrFiB0aNHw8vLC0qlErm5uVCr1Vi5cmWNxmSqZVQam7u7u9ZtZWVlUCqVBj+HFUKiuouBkIiIXIZmBU6a55SUlISePXs6a0hGJScno1WrVoiMjMSDBw+cPRyXsHTpUuzatQsJCQn1Zp6lEAIPHz5E27Ztce7cOa3KnBT6dAOhZoWwf//+OHz4MIqLi5GTk4Pg4GCD21dYylTLqHS7oUCoWyEEqgIsK4REdRe3nSAiIpeUlJQk/9sVK4Tnz58HAKSkpDh3IC5GqvLqqqvzLPPz81FWVoY2bdoAALKzs+XbjAVCzQqhxNfXF5GRkTYJg4DxllEpJBpaWMZYIGSFkKhuYyAkIiKXdOvWLQDAI488gi+//NLJo9GXkZEh/7ukpMSJI3Et48eP11t0B6i78yylNtFHH31U62PAvAqhvVRXIbQkELJCSFS3MRASEZFLunPnDhQKBfr166dVdXEV6enp8r/v3r3rxJGQM0lvDEiBMDMzU77NkgqhrZnTMqqLFUKi+omBkIiIXFJ2djZUKhXCwsKQk5Pj7OHoycjIkC+eb9++7eTRuLZhw4Y5ewh2o1shNDcQShW3L774Ap07d8aUKVOwadMmtGnTBt27d8e3335bo3FZ2zKqO1bd8dYE59oSuSYuKkNERC6pqKgIfn5+CAoKcslAmJ6eLi8kohkC6rNJkybpHRNCIDEx0QmjcYysrCwAQIsWLbQ+BsxrGX3vvfdw7Ngx5Ofno1OnTrh69Sp8fHwwZMgQjB071upx2bJl1JoK4d69e7U+FkIgLi4Ob731Fp588kmL7ouI7IuBkIiIXFJhYaEcCLOzsw3um+ZMGRkZaNq0KS5cuIC8vDxnD8clJCQk4NChQ3Bz+60BSQiBqVOnOnFU9lVYWAg3Nzf4+/vDy8sLhYWF8m3S3FJTLaO+vr7w8/ODn58fBg8eLO9JaKi6Zwlbt4xaWiGcPn06unXrhl69ekEIAQDIycnB6dOnGQiJXAwDIRERuaSioiL4+/sjKCgI5eXlKC4uhp+fn7OHJcvIyECXLl2gUqmQm5vr7OG4hPnz5yMwMBChoaFax1955RUnjcj+pNepQqGAv7+/ViCUQp+pjek7deqEiooKuLu7Y+vWrQCqglmDBg1qNC5brjLq5eVlcYXw9u3bWLt2LRITEzF79mz07t0bv/zyC5YsWWLR/RCR/TEQEhGRS9KsEAJV1QVXCoTZ2dkICQmBUqlkhfD/mzVrlsHjTz/9tINH4jhSazMAo4HQVIVwzZo1evfp5eWFXbt21Whczq4Q+vv7Y9GiRcjPz8f777+P1atXu2TrNxExEBIRkYuSLrSlLQxycnIQFRXl5FH9JicnB0FBQVCpVAyE9Zg1gdDb29vu4UitVtt02wlrVxkNDAzE4sWLkZeXh6tXr1p1H0RkX1xllIiIXJJmyygAl6ouCCGQm5sLlUoFpVLJltF6rLCwEP7+/gCsqxDagxDC5hvT13SVUaVSiR49etToPojIPhgIiYjIJUkto9IiG64UCIuKilBRUSEHQlYITcvPz3f2EOzG2pbR6gJWamqq1WOSwp4lLaOVlZVQq9U2rxASketjICQiIpckXWgHBAQAgNaFtrNJ4ZQto9o2b96M9u3bo0uXLlixYoV8fNy4cU4clX1Z2zJaXYVw2rRpVo/JVCA0ViGUAp+tK4RZWVm4ceOG1nYcRORaOIeQiIhcktSKJ11sFxUVOXlEv5FaRKUK4ZUrV5w8Itewfv16nD17Fp6enli7di0mTpyIzZs3y9sO1EW6LaOa1dDi4mIoFAq9kKVZITTURimEwPXr160ekxTuDLWMGptDKI3HWIXQ0jc9fvzxRyxZsgShoaFQKpXIyclBdnY23nrrLQwePNii+yIi+2IgJCIilyRVXjw9PeHh4VFrK4Tnzp3DG2+8AU9PT8yfPx99+vQBAMyYMQOfffaZI4brMG5ubnIFKjY2Fo899hhGjhxZp6tDRUVF8jxXf39/rVbP4uJi+Pr66u2fqVkhzM/PR2Jiol54Gzp0qNVjkgKhJS2jpgKhNRXCJUuWYN++fQgMDJSP5eXlYeTIkQyERC6GLaNEROSSdFvxXLVCGBgYaDIQxsbGYs2aNVi9ejVWr16NVatWAQBu3brlkLE60qhRo3Dnzh354yFDhuDDDz9Eo0aNnDcoOzPVMlpSUqK3ByGgXSFctmyZwTmWixcvtnpM1bV/ApZXCC2dQ+jm5oaMjAytYxkZGXBz46UnkathhZCIiFySZiuen5+fSwbCoKAg+Pn5obi42Oi5CoUCLVu2BADs3LkTcXFxmDlzpsFVHmu71157Te9Y27ZtsW/fPieMxjFMrTIqVQh1aVYIx48fb/B+BwwYYPWYpHBnqkKoW/GTxmOrCuEnn3yCefPmITU1FUIIKBQKREZG4pNPPrHofojI/hgIiYjIJZmqvDhbbm4u3Nzc4O/vL49NuujVFRYWhjt37qBZs2YAgLi4OGzduhVbtmxx8Kid47vvvkPr1q3Rpk0bZw/FLky9To0FQnNWGa0JU9U+aYEbS1pGrakQxsTEYPfu3RZ9DhE5B+v2RETkcsrLy6FWq+ULbVerEBYUFCAgIAAKhQJ+fn4QQhhdNXLXrl1yGJRMmTIFJSUlDhipcxUUFGDs2LGYMGGCwx/73LlzGD16NMaPH4/jx4/Lx2fMmGHTx6muZbS6CqE9mGoZlY7pPr6t5xASUe3BCiEREbkc6aLaVVtGpUAIQGsVVEPzxeqzvXv3AoBTvi6xsbHYsGEDPDw8MH/+fJw8eRJz5861+dzN6lpGDT13b29vp1UIpWO6j2/rCiER1R6sEBIRkcuRwp+rtozqhgDpGGmTtuPQ3YfPEaS5m82aNcPOnTuRl5dnl7mbuhVCtVothytTLaNqtRqVlZU2HYvE1BxCd3d3uLu7O61CqLkKKxG5BgZCIiJyOVK4cvWWUQAuuU+iq5Au/lNSUhz+2NLcTUlcXBwGDBiAhIQEmz1GRUUFSktLtQIh8Nvr11TLKKDftmkrpsKd9PjOqhBOmzbNJvdDRLbDQGjA4cOHMWbMGERFRUGhUODrr7/Wul0Igbi4OERFRcHX1xcDBw7EpUuXtM4pLS3F7NmzERoaCn9/f4wdOxbJycla52RnZ2Pq1KlQqVRQqVSYOnWqvLcVEVF9JoWr2tYyasiBAwfQs2dP9OnTBzt27JCPjxo1yv4DdbK0tDQAVYHQ0ZvTO2Lupu7rVDcQGmsZNda2aSum5hBKx+1dIezRo4fef927d8epU6csuh8isj8GQgMKCwvRsWNHfPDBBwZvf+edd7Bq1Sp88MEHSEhIQEREBIYOHaq1j9CcOXOwe/du7NixA0ePHkVBQQFGjx6NiooK+Zxnn30W58+fx759+7Bv3z6cP38eU6dOtfvzIyJydbWpZbS6QPjmm29i//79OHjwIE6dOoXZs2ejsrLSpQKuvaSmpsLPzw+lpaXIzs529nBsztDrFNAOhLWlQigFZWMB1tIKYX5+Po4fP45Tp07J/yUkJKB79+4W3Q8R2R8DoQEjR47E3//+d4OrogkhsGbNGrz++uuYMGEC2rVrh02bNqGoqAjbt28HULUc+WeffYb33nsPQ4YMQefOnbF161YkJibi4MGDAKrmVezbtw//+te/0Lt3b/Tu3Ruffvopvv/+e1y7ds2hz5eI6jZHrbZoS7WpZbS6OYTu7u7yfoWrVq1C165dMW7cOBQUFDhsvM6SlpaGDh06AADS09OdPBrbqy4QGmsZtXeFsLpAaKhCaCoQWlMhXLZsmdYb5ZLFixdbdD9EZH8MhBa6ffs2UlNTMWzYMPmYt7c3BgwYIF9onTlzBuXl5VrnREVFoV27dvI5J06cgEqlQs+ePeVzevXqBZVKpXXBpqu0tBR5eXla/xERmRIbG4s1a9Zg9erVWL16NVatWgUANl9t0ZYMtYy6UoXQkpbRTp06ac1lmz59OubOnWvwYrmuSU1NRUxMDAA4rUKYlZWFGzduICsry+b3rbsarqtVCA0tKgMY3gfR1hXC8ePHIzg4WO/4gAEDLLofIrI/BkILSRPkw8PDtY6Hh4fLt6WmpsLLy0vvF6HuOWFhYXr3HxYWZnIFruXLl8tzDlUqFaKjo2v0fIio7nPUaou2ZKjy4koVQktaRtetW6c3l23QoEG4evWqXcfobAUFBSgqKnJaIPzxxx/Rt29f/PGPf8Rbb72F5557Dv369cOPP/5os8cwp2XU2LYTgPPmEBraB1EKhIZWhPX09IRara7RPNDy8nJMnDgR//73v62+DyKyD+5DaCWFQqH1sRBC75gu3XMMnV/d/SxatAhz586VP87Ly2MoJCKTpNUWpVASFxeHrVu3YsuWLc4dmAnSBbVUXXHlllFpjK5UwXQF0pubjz32GADYpUJnypIlS7Bv3z4EBgbKx/Ly8jBy5EgMHjzYJo9R05ZR3VCmVqvh4VHzSzNzWkYNVQi9vb0NXoNIlcby8nKj91mdnTt34ssvv8T9+/fx/PPPW3UfRGQfrBBaKCIiAoD+Pjrp6ely1TAiIgJlZWV674bqniOtvqYpIyNDr/qoydvbG0qlUus/IiJTHLHaoq0VFRXB29sb7u7uAFxvURnNQKhQKMwKrK5ckbUH6W9c8+bN4ePj4/BA6ObmhoyMDK1jGRkZcHOz3aWPLVpGExMT8eSTT6JPnz544okn0Lt3b4wZMwaJiYlWj6u6llFjFUJD1UzANnMe79+/DwC8biFyQawQWqh58+aIiIjAgQMH0LlzZwBVvyDj4+OxcuVKAEDXrl3h6emJAwcOYNKkSQCqlty+ePEi3nnnHQBA7969kZubi1OnTqFHjx4AgF9++QW5ubno06ePE54ZEZHr0GzJBKoqMGq1GuXl5UYvch3J0PgMBcLExEQsXLgQWVlZKCsrQ0lJCUJDQ7FmzRp06dLFkUN2OM0pFsHBwQ5vGf3kk08wb948pKamyt03kZGR+OSTT2z2GLoVQi8vL7i7u1u07cSrr76K7du3a3X73Lt3D5MnT8aRI0esGldZWRk8PDyMdhwZqxAaC4SaFUJrSW8IPHz40Or7ICL7YCA0oKCgADdu3JA/vn37Ns6fP4+QkBA0adIEc+bMwbJly9CqVSu0atUKy5Ytg5+fH5599lkAgEqlwowZMzBv3jw0aNAAISEhePXVV9G+fXsMGTIEABATE4MRI0Zg5syZ+PjjjwEAL7zwAkaPHo02bdo4/kkTEbmQoqIi+SIb0J6np1KpnDUsAEBlZSUKCwvlCiFgvII5a9YsPPXUU/jiiy/w+OOPQ6lUIikpCQMHDsSHH36IKVOmOHLoDpWamgpPT08EBwcjJCTE4RXCmJgY7N69266PoRsIFQqF/FoQQqCgoECrZVWiWSGsqKjQe00rlUqtbaosVVZWZrK10xkVQgZCItfFQGjA6dOnMWjQIPljac7ec889h40bN2LBggUoLi7GrFmzkJ2djZ49e+KHH37Q+qW/evVqeHh4YNKkSSguLsbgwYOxceNGuf0JALZt24bY2Fh5NdKxY8ca3fuQiKimsrKykJWVhZCQEISEhDh7OCbpBkLNVjxnB8Li4mIIIbQCobEKYUVFBT7//HMcO3ZMblXMycnBtWvX8NFHH9XpQJiWloawsDC4ubk5JRA6QmFhITw9PbWq1lIglEKhoRZJzYC1YsUKjB49Gl5eXlAqlcjNzYVarZa7jqxR3Vw/ayuENQmEmZmZAKDXxktEzsdAaMDAgQNNrqSlUCgQFxeHuLg4o+f4+Phg3bp1WLdundFzQkJCsHXr1poMlYioWj/++COWLFmC0NBQKJVK5OTkIDs7G2+99ZbNFtewtcLCQqMVQmfTnTcGGA+EK1aswLhx49CtWzc0a9YMubm5KC8vx9NPP43vv//eYWN2hvT0dHk1bWe0jDqC7hsXABAQEICCggJ5W5HqKoRPPvkkDh8+jOLiYuTk5CA4ONhoMDOXORVC3TnEpgKhLVZFld4QKC4uNvh1I9c2efJkbNu2zdnDIDthICQiquMcsdqirem22kkXj66wsIy0obw5FcL+/fvjypUr+Pvf/45ffvkFCoUC3t7euHv3bp1/QzA/P1+u5gYGBiI5OdnJI6qSn59vMKRZw1CwUalUyM3NlfcJNlQhNBSwfH19DS5AY42ysjKTc229vLz09jE2FQil4zXZNzErKwstW7bEjRs38PDhQzRp0sTq+yL7WbBggd4xIYTJPbKp9mMgJCKq46TVFjUvgm292qKt5efn683RA1yjQmgoEJpaBTUiIqJeTgfQXIlVqpo50ubNm/GPf/wDnp6emDRpEv76178CAMaNG4dDhw7Z5DF0K9mAfiA0FD6NbTthK7aeQygF2JqsTJyZmYl27drhxo0byMzMZCB0Udu2bcP27dv1jv/0009OGA05CgMhEVEd54jVFm2toKAADRo0kD+urS2j9VlBQYHcMuqMQLh+/XqcPXsWnp6eWLt2LSZOnIjNmzfXaHN1XUVFRVqvAwAICgpCTk6OyZZRewdCW88h1GxxtVZWVpa8/Y30tSHX8/zzzyMmJkb+2ZVMmzbNSSMiR2AgJCKq4xyx2qKt5efna+2dWBtaRk2tnlibFvSxlYKCAjzyyCMAnBMI3dzc5LbJ2NhYPPbYYxg5cqRNF7cx1DIaFBSE5ORkky2jCoUCnp6eKCsrw4EDB7B48WK4u7sjNjYWzzzzDABg1KhR2LNnj1XjsqZCWFpaWm3LqLUVQrVajaKiInlrDd12VXIdS5cuNXg8NjbWwSMhR2IgJCIil6PZbgjU3pbR2rigj61otv06IxCOGjUKd+7ckd9YGDJkCCIjIzFv3jybPYaxOYTVVQiBqpBVUlKCN998E/v374eXlxcWL16MY8eO4f3336/Ra92cOYSGKoSaVXlNNa0QSl+Lxo0bA2AgJHI1DIRERORydBf+kBbbcIVAaEnLaG1c0MdWDM0hlFqWHeG1117TO9a2bVvs27fPrM83Z1XFwsJCoy2jeXl58PT0lMOULikQuru7IygoCACwatUqbNy4EePGjatRgLb1HMKaVgilQBgeHg53d3cGQiIXw0BIRFRPpaamIiIiwtnDMEi3Quju7g4fHx+XaRl1d3fXutA3Fghr44I+tqK5UmxAQAAqKipMtiXa29dff40OHTrIbaySmqyqWFRUhNDQUK1j0qIy0psaxgKwr68vSkpK0KlTJ61K5vTp09G0aVO89NJLZj4zfa42h1CzfVapVDIQErkYBkIionrm2rVriI6OxrRp0/DDDz84ezh6hBAGtwZwlYVbpLCqeaFvrGW0Ni7oYyuaoV6qohUUFDglEN6/fx/jx48HAL1FZWqyqqKxOYQlJSV6bwTo8vHxQXFxscH9igcNGoSrV69W+/jGVNcy6qwKYWBgIAOhAfHx8Vi6dCk6dOiAESNGYOHChVCpVFi+fDl69+7t0LF88cUXWL58Odq2bYuhQ4di2bJlUCqVeOONNzB27FiHjoUch4GQiKiO69Gjh/zviooKnDt3Do0aNXLZlf5KS0uhVqu1KoSAawVC3TZBY2OrjQv62EJZWRnKy8u1WkaBqq+dbkXNEX799Vf538XFxVr7/dVkVUVDLaPS3os3btxAw4YNjX6uVCG0B1PhDrC8QiiFS1YI7WPhwoXYuXMncnJyMGzYMCQkJMDPzw8TJkzAzz//7NCxvPfeezh27Bjy8/PRqVMnXL16FT4+PhgyZAgDYR3GQEhEVMfl5+cjMTERHh4e2LBhA55//nmMHDkSt2/fdvbQDJLmTulWV0zt9edIhYWFRsOqI+fIuTLdhXc0A6Ez3LhxQ/733bt38eijj8of12RVRUMVQikEXrp0CW3atDH6uVKF0B5KS0v1xqXJ0gqhQqGQ5zxagxVC03x8fBAdHY3o6GjExMTIi++4u7s7fCy+vr7w8/ODn58fBg8eLL/B4eHByFCX1f1JDERE9dyyZcvkCzKpNe7WrVtYvHixM4dllLHVGV2pQmgoEAKw2wV+beNqgfD69evyvM27d+/a7H4NBcKoqCgAwM2bN/WqjpqqqxDWpIJfWlpqdDEbwPIKIWA4RJpLCoAMhIZFRESgoqICAHDo0CEAVVt1VFZWOnwsnTp1kseydetWAFUVf2Mr0FLdwEBIRFTHjR8/HsHBwcjKysKhQ4cQGRmJW7duYcCAAc4emkGGtnUAqkKXK1QIDbWMWrothqu269qKqwXCO3fu4PHHH4ebm5tNA6GhltHIyEj536YCoVQh3Lx5M9q3b48uXbpgxYoV8u3jxo2zelzmhLvKykqo1WqzP8fHx6dG2074+vrCw8ODgdCAHTt26FUDPTw8cODAAYePZc2aNXpj8fLywq5duxw+FnIcBkIionri7t27qKysxKhRo3Dv3j2ti0FXYqxC6O/v7xIVQmMto4B+ILTHxX5t4GqBMC0tDY0bN0ZkZCSSk5Ntdr+GKoTe3t7yPElzKoTr16/H2bNncfbsWfj5+WHixIly+7G1zKkQAtCqEpoTIq1tGc3Ly4NSqQQABkILsE2THIWBkIionkhNTQUAdOnSBRUVFcjMzHTyiAwzVSF0hUBoqmVUd3z2uNivDVwtEKanpyMsLAyhoaF6r/svvvgCnTt3xpQpU7Bp0ya0adMG3bt3x7fffmvyPsvLy1FeXm5wrp407yo8PNzo50sVQjc3N3nRltjYWLzwwgvw9/fHtWvXLH2aspKSErMCoVTxU6vVUKvVdmsZ1Vw1mIGQyPXwrQcionpCCoSPPfYYAODhw4cmL1idxVSFMDs72xlD0lJQUIBGjRppHZPaBnVbWnUv9h977DGMHDkSWVlZjhmsk0jfQykI+vj4wM3NzSUC4cOHD7Vus3ZVRSn867aMAkDTpk1x8+ZN+WfNEKlCOGbMGK19CKV9EmvSHl3dfo9SWJQqhFLQq65llBXC+svQVkBUd7BCSERUT6SmpqJBgwbyohe6F8auwtUrhJa0jI4aNQp37tyRPx4yZAg+/PBDvUBZ1+h+DxUKBQICApwSCMvLy5GVlYXw8HA0aNBAr0IoraoYHh4ur6ro7e1dbbue9L02VCHcuHEjzp07hy5duhj9fClgvfbaa3IYLCsrw6BBgwCgRvvPmdsyKgVBKejV1grhuXPnMHr0aIwfPx7Hjx+Xj8+YMcOmj2Mv1lap7aG+trnXd6wQEhHVE6mpqYiIiJDnN2VkZDh5RIbl5+fDy8tLvmiVuEogtKRl9LXXXtP7/LZt22Lfvn32G6ALKCgogJubm9Z+f84KhNLrXKoQ6rZiSqsquru7W7SqoqlAKG0hYIqvr6/eqrSXLl2S5ziWl5eb/HxTqmsZ1a0QmhMIbVkhLCwslL/mthAbG4sNGzbAw8MD8+fPx8mTJzF37lzcunXLJvdvb87Y+0+tVht800Nqc/f09MTatWsxceJEbN68uc63udd3rBASEdUTUiAMCgqCu7u7S1cIdQMX4Dr7EJpaZbS68a1fvx5z586129hchfQ91NyT0VmBMD09HUBVIDRUIbR2VUXpe22oZdQchgLW/fv3AVSFpposflNdy6izK4TSMVtRKBRo2bIlmjVrhp07dyIvLw8zZ8502YWzdFlbpbZUYmIinnzySfTp0wdPPPEEevfujTFjxiAxMVE+R7fN/cUXX8TIkSNd9u8F2QYDIRFRPfHw4UM0bNgQCoXC4FwqV2FsroqrVAgtaRnVVFBQgFmzZmH16tX1YtsJ3a+RswKhNF8zJCTEpq97UxVCcxiqEN6/fx/u7u5YsmQJkpOTra7KuFqFMD8/X6tCCMCmbaNhYWFardlxcXEYMGAAEhISbPYY9uSovf9mzZqFjz/+GMePH8fhw4dx4sQJ/POf/8SsWbPkc+prm3t9x0BIRFRPZGVlISQkBAAQGhrq0i2jrhoIKysrDQZCb29vKBQKk+NLSkqS/33z5k27jdEVuFIglIKHUqlEaGgoSkpKbPI6qmkgNBSwkpOTERERgaZNm6KoqMiqRZQqKytRXl7uUhXCvLw8vQqhLQPhrl275HmYkilTplgdYB3NUXv/VVRUyCvgSpRKpRxGAWjNaZXUhzb3+o5zCImI6gnNQNiwYUOXrRBW1zIqhNBqRXQkYytLKhQK+Pn5mWwZ1Q2EnTp1sssYXYErBUKpGqtUKhEcHAwAyM7O1gpypaWluHTpkvwz0q5dO705rLpq2jJqrELYqFEjNG7cGEBVQJR+Zs0lVf3sUSG0dqsae1cIyTwrVqzA6NGj4eXlBaVSidzcXKjVaqxcudKq+4uPj8fSpUvRoUMHjBgxAgsXLoRKpcLy5ctrtCgSOR4DIRFRPaFbIXTVQGiqQiiEqHZ+lD1JIcBYYDVVebp37x4UCgV8fHxw48YNu43RFRgLhM7Y+zIvLw+enp7w9vbWCoRSC9yWLVuwfv16dO/eHUqlEjk5OTh79ixeeuklTJkyxej92qJCWF5errW4yoMHD/QCYYcOHSy6XyncudIqo/auEJJ5+vfvj8OHD6O4uBg5OTkIDg6u0e/ShQsXYufOncjJycGwYcOQkJAAPz8/TJgwAT///LPtBk52x0BIRFQPlJWVoaCgQCsQuuoKfMYqhNKFd2FhodMCoVThMlQVqq6lNSkpCREREYiOjsbFixftNkZXYCwQ3r171+Fj0VzhMigoCACQk5Mj3/7xxx/j6NGjcHP7bRaNWq3GwIED7RoINeedSmEpPT0dPXv2REREBNzc3KxaWMacPQWtrRBaEwjVajWKi4vl74H0XBkItVlTpbaWr6+v1grA1vLx8ZFX1I2JiZHfyLDV6rHkOJxDSERUD0hzkWrzHEIphDlzHqHUfmjNHMf79++jcePG6NGjB06dOmW3MboCV2sZNRUIfX19ER8fL38shEB8fHy1bzoUFhbC29vb6otfQ6/n9PR0hIWFwcPDA5GRkVYFQntWCK2Zk6f7MyO9Lmy5sJIr7eNnjS1btmDQoEHYtGkT4uPjsWHDBgwaNEheYMZVRUREyPMPIyMjAVS9AVBZWenMYZEVWCEkIqoHNFdaBGrnHEJzVvK0N1OBsLptMdLS0hAREYGePXvigw8+QHZ2ttzCWNfk5+ejSZMmWscCAgKcsrqqZruiFAg1F2vZsmULVqxYgcWLF6OiogKenp7o1q1btRfjRUVFVlcHAf2tSoQQciAEgMaNG9eoQmjrOYTWtoxqzuEEqqpHfn5+Nn0tOGMfP1uytkptC+fOnUPnzp3NPn/BggXyv5s0aYJFixZBCIHjx48DADw8PHDgwAGbj5Psi4GQiKge0A2EoaGhKC4urvFFrT1UVyF05l6ENakQpqamonPnzmjVqhWAqjmFdTUQFhQU6H2NlEql0wKhFEZ8fHzg4+OjVSGMiIjAmjVrLL7fmv7saLZAA0Bubi7Ky8sNBsIHDx4gKirKrPs1p2XUWIXQVIi0dtsJqTVU8/UQGBho02qxtI+fn5+fvI8fAJvv42cvUpV60KBBAMyvUlvqww8/1PpYCIH169dj1qxZWltPmLJt2zZs375d7/hPP/0k/7u2fN3pN2wZJSKqBwwFQgAuWSU0FCYA168QVhcI09LSEB4ejoYNGwJwza+9rRiq8iqVSuTl5Vm9t561NFtGgaoqoWYg1FVZWYnRo0drtZEaUlhYaPUKo4D+GxxSC/fNmzexd+9elJeX4+rVq9izZw/GjRuHvXv3mnW/5oQ7aeNxzQqhl5eXydV7bVUhBGxfLXbUPn72smXLFnzzzTfo27cvevXqhf79++P777+3ecvoP//5T3z//ffw8/ODv78/AgIC4ObmZrAjw5jnn38eMTExGDBggNZ/06ZNs+lYybEY4YmI6gEpEEoVKSkQZmRk6LX2OVt+fr7Lt4waW2XU2EIZQgi5ZVQKhK46h9MWjAXCiooKFBUV1ShIWSovL0/+mgNVgdDU/n5XrlzBnj17sGfPHpPh1VYto9LrOT09HQDwj3/8Az179kRFRQXS0tJw+vRp5OTk4PTp03jyyServV9zWkYVCgW8vLzkcwsKCqr9nti6QmjLQGiowmuPffzsxdoqtaUuXryI//znP9i5cycmTZqEp59+Gp9//rlFYW7p0qUGj8fGxtpqmOQErBASEdUSarXa6s/NyspCQECA3CrmqlWqiooKFBcXu3TLqL+/v9ZcH4mpCmFOTg7KysoQHh6OgIAAeHt717tAKLXxOXp1Sc2WUaDqTRFTFcITJ07I/5YqaIbYeg5hWloaAODs2bN4/PHHUVBQgLKyMvzf//0fWrVqhSVLlph1v9LehtWtIunt7S0/P2NVed3zbVUhtHUgrItyc3PlN/JsRaFQ4Nlnn8WXX34JtVqNsWPH1uhvwIEDB9CzZ0/06dMHO3bskI+PGjXKFsMlB2IgJCJyYYmJiXjyySfRp08fPPHEE+jduzfGjBmDxMREi+5HdwETqZXK1QKhNK/IlSuExi6cTQVC6WI/PDwcCoXCpVd5rany8nKUlpYarBACjg+Eut+z6lpGz549K//7wYMHRs+racuo7hzClJQUeHp6ygt1vPnmmwCASZMmmRyvLnO3w/D29pbDo7GqvCYfHx+o1Wq5NdNc0vdb8/5tPYfQXPHx8RgyZAjmzp2LH374AZ07d8bAgQO13gRwFd26dbNby6ubmxumTp2Kb7/9Fl9//bXV9/Pmm29i//79OHjwIE6dOoXZs2ejsrLSqb+jyTpsGSUicmGzZs3C9u3bER0dLR+7d+8eJk+ejCNHjph9P5qb0gOQF2BwtUBoao6ej48PFAqF0yuEpgKhsbGlpqYCqGoNA1x7ldeakr4GrhIIdSuEQUFBSElJMXr+vXv30KpVK1y/fh1JSUlo1qyZwfMKCwttuqhMSkoKIiIi5Hl8LVq0AFD1O0B63ZjD3ECouQ2IuRVCoKol1ZLnnZ+fDz8/P62FRgICApCZmWn2fVgrNTVV62tXmzZSv3HjBoCq14W0pYOtubm5mb1YkURzgSN3d3d55d5Vq1Zh48aNGDdunFPCPtUMK4RERC6soqJCbrWTSHOxLKEbCAHX3IvQVIVQoVBUu3CLvZkKhP7+/mZVCIGqQOhqX3tbMfY9dGaF0JKW0eTkZPTq1Uv+tzHmhChT3N3d4ePjI79mdC/8pX/n5eWhR48eZt+vuS2jmlU6cyuEACyeR6i57YfmYzuiZVR3bpy0kXr79u3ljdRDQkJcbiN1zX38jh496rRx7N27V+s/3QWOOnXqhDt37gAAhg0bhunTp2Pu3LlsB66FWCEkIpdy7tw5vPHGG/D09MT8+fPRp08fAMCMGTPw2WefOXl0jrdixQqMHj0aXl5eUCqVyM3NhVqtxsqVKy26H0OB0BWrVKYqhED1K3nam7Uto6mpqfD19ZU/t2HDhrh//77dxulM1QXC3Nxch42loqJCL7hV1zKalJSEp59+Gkql0mQgNPVaMJdmVVk3EPr5+UGpVJqsZhpSVFQELy+vakOOZigz57loVggtoRvIdR/bFgwFZiEErl+/rnVM2kjd3d0dhw4dAuCaG6knJSXJ/zbVtmyN0tJSXLp0Sf6b0K5dO3luua7p06ejW7du6NWrl7zA0tWrV7FgwQJs3LgRQNW+hEIIeRrDoEGDcPXqVZuOmeyPgZCIXEpsbCw2bNgADw8PzJ8/HydPnsTcuXNx69YtZw/NKfr374/Dhw+juLgYOTk5CA4OtmpvqqysLL3VRENDQ10uEEphwpq2TEeoyRxCaf4gUBUIz58/b69hOpU1FcL4+HgsXboUHTp0wIgRI7Bw4UKoVCosX74cvXv3rvFYdFtGja0yWlRUhKysLDRu3BjR0dHVVggtWa7fEH9/f61AKFUmgaqf2QYNGuD27dsW3ae5i93otoxKKw8bI/3esTQQGqsQ2rKtMD8/H4mJiXr73w0dOlTrY82FTySuuJH6zZs35X9b+oaAKVu2bMH69evRvXt3KJVK5OTk4OzZs3jppZcwZcoUvfNv376NtWvXIjExEbNnz0bv3r2xcuVKfPfdd1oLawkhMHXqVJuNkxyPgZCIXIpCoUDLli0BADt37kRcXBxmzpxZoxU26wJfX99qW8BMMdYyqvlOtCswta0DYLot0xHy8/ONzufx9/dHcXExKisr9VYhlQKhxBXDuK0Yq/J6eXnBx8fHYIXQXnO7DK1wGRwcjLy8PIPfJ6lq27hxYzRu3Njkz4ctKoSar2epQvjjjz9iyZIlCA0NRWFhIb755htcuHABb731FgYPHlztfZobCHUrhNWFW6lCaGnLqKEKoa33IVy2bBny8/O1Fs4CgMWLF5v1+a62kbr0OuzSpYtNK4Qff/wxjh49qvW6V6vVGDhwoMFA6O/vj0WLFiE/Px/vv/8+Vq9ejYiICAQGBuq9gfDKK6/YbJzkeJxDSEQuJSwsTJ6TAABxcXEYMGAAEhISnDeoOsBQIKxuLpUzSNUj3QtIiau3jAK/zeHSpLu4RcOGDZGZmelyrWq2YGoeaEBAgMEKr73mdhnaAy8oKAhCCIOVSqkiGB0djcaNGzukQlhQUAC1Wo309HRERERgyZIl2LdvH7755hs88cQTaN26Nfbu3WvRthPmBkJrF5WxhKk5hKb2ebTE+PHj9cIgAAwYMMAm9+9oDx48QFBQEFq0aGHTQOjr64v4+Hj5YyEE4uPjq+06CQwMxOLFi/Gvf/0LO3bsMFhNfvrpp+V/cw5h7cNASEQuZdeuXXqr+k2ZMsWqDZGpSkVFBXJycvQCYXVzqZwhMzMTPj4+Rquhmi12zmBOIDQUWHUrhA0bNkRFRYXJDdJrKylkGNqSwVigl+Z2AbDp3C5DbzBIqyIa+tpLAbBRo0YmA2FlZWWNF5UBfqsUZ2RkQAiByMhIuLm5yQsOSfN8MzIyDO59aUhRUZFZ3QSaVTp7LipjbA5hRUUFf68b8eDBAzRq1AhRUVE2bxn95ptv0LdvX/Tq1Qv9+/fH999/j61bt5r1+UqlUmu+5ubNm9G+fXt06dIFK1askI+PGzfOZmMmx2AgJCJyYbbY+Dc3NxdCCL1AqFKpHLrAhzmkeVPGuHKFUHejcU2pqal6gRBAnVxpNDc3F+7u7gYDobFAv2PHDr1qoC3mdhlqGZUCoaE3Q5KSktCgQQP4+vqicePGSE1NRXl5ud550muwphXCsLAwpKWlyRf9kZGR+OSTTzBv3jz07t0bu3fvxrVr1zB//nx88sknZt2nJS2jmquMOrpCCMBlticYNmyYs4egRdraITIy0qYVwoiICKxZswbHjh3DyZMnceTIEbkN1Brr16/H2bNncfbsWfj5+WHixIkoKiqyWeWXHMe1mqaJiEiLtPGvl5cXFi9ejGPHjuH999+3KBRlZWUBgMEKobG5VM6SmZmpN05Nfn5+Tr2ItKZCKISQ2wElUstVXZxHmJubC6VSKS+go8nSQF/TuV2GWkal1kJDgTA5ORmNGzcGUDWPUAiBBw8eoGnTplrnVTfX1Vzh4eE4efKkViBs1KgRdu/eDQD48MMP8Ze//AVffvmlwa+nIZbOIayoqEBRUZFDK4TSY+Xn58tvjjjCpEmT9I5prpDpKu7fv4/WrVsjKioKOTk5KC4urtEcclsTQkChUMDNzQ2ZmZnw9fVFbGwsHnvsMYwcOVL+m0O1h2tcARCRSZMnT3b2EBwuKysLN27cqPd/WKSNf/38/LBq1Sp07drV4o1/jQVClUoFIYRLzfeorkLozJbR6toEjQXC7OxslJeX16sKoe7emRJHf/8MLXBTXcuoFAil75eh71F1q+GaKywsDOnp6UhJSYFCodB6jQBVrxO1Wm3R3o2WrjIq/X4w9XMHmG6JNsVUhdDRv3sSEhKwcuVK/OMf/9D6T1rIzFVILebSBvC2bBu1hKEOlffffx9KpRLjxo2Dn58fhg0bhnHjxuHTTz/FkCFD8OGHH6JRo0ZOGS9ZjxVCIheyYMECvWNCCBw/ftwJo3EOzRX2pGWxs7OzzV5hr66RNv6V5lVOnz4dTZs2xUsvvWT2fZiqEAJVlRJjF/COlpmZ6bIto1KQMRYCpKqH7sV7amoqAGhVCIODg+Hm5lZnK4TGXk+O/v5lZWUhICAAnp6e8jFpbIYqhKmpqejQoQMA06HdVhXCsLAw5Obm4urVq4iKitKriGpWks39GS0uLjbr3MDAQJSUlMhho7pKndQCbGmF3tgcQuk2R5o/f36tWCFTemNMWtH4wYMHeOSRRxw+DkMdKqdOnULXrl2xfft2tGnTBrdu3YKnpyf69++PmTNnom3btti3b5/Dx0o1w0BI5EK2bduG7du36x3/6aefnDAa55BW2NO86M7Ly8PIkSPrZSBct26d3jFLN/41VSEEHLtReHWysrL02vM0OXMfQmPbKUikr69u5SktLQ0AtKo/7u7uCAkJqZOB0NQbDNKqmuYaNmwYfvjhB6vH8vDhQ72Lfw8PDwQGBhoMhJpvSJgKhLasEALAvn370LlzZ/m4tHn4jRs3AFRViFq0aGHWfRYVFRndGkWT9IaQtHl7dYHQ19cXCoXCop8/tVqN4uJil5lDOGvWLIPHNVfIdDZpEbAGDRo4vUIodagAwKpVq7Bx40Zs374djzzyCPz9/fHMM8/Im9q72tYdZBl+94hcyPPPP4+YmBj5IkEybdo0J43I8aQV9jQvICxZYY/0ZWVlwcvLS28OiqnFNZylugqhM/chrC4QSiFINxCmp6cDgN7PdV3di7C6CqEUkDXZa26XoUAIGN+cXvP15+3tjcDAQIOBUPqZMbY9irmaNGkCALh06RImTpwIQHvzcOn33gsvvIDXXnvN4F5xusxtGZVej5cvXwZQfSBUKBQWt/waWtQH0J5DSNqk12VISAhUKhV8fX1turCMJTQ7VI4fP45p06bh+PHj8tYV7777LgCgrKwMbdu2dcoYyTYYCIlcyNKlSw0ej42NdfBInEdaYS81NVWeuC6tvEfWkS6KdRelMNU65yzmLCrjqoHQ3d0dKpVKL2hkZWXB3d1d7/PqciDU3TpGYizQJyQk4NChQ1pv/AghMHXq1BqNxVQg1H3dq9Vq5Obmar0hERoaajAQGqu6W+qxxx6T/y3tmae5eXh5eTnef/99zJkzBx999JFZgbCwsNDgCq+6pIp1YmKiViXIFGneobkMLeoj3Q/AQGiI5pxOhULh1N8TUofKmTNn0LdvX3z88ccG/xZ7eXnhgw8+cPTwyIYYCInIpcTExMgr7FEVqX1M2ly+Xbt2cpuOOTIyMgy+++9qLaPl5eXIy8tz2UVlqguEQFVA0F0IKTs7G8HBwXqBvC4HQlMVQkPfP3vN7Xr48KHBFmRDgdDQ4ioNGzY0GggDAgIs+jk0RKFQ4G9/+xsuXLiAgQMHAvht8/BBgwbB09MTDRs2xPHjx6vdPFySl5dnVuVSCoQXL15EaGioWV0YtqoQenh4wNfX12aB8Ny5c3jjjTfg6emJ+fPno0+fPgCAGTNm4LPPPjNrnDVt/7WVzMxMAL+92RAcHOz0N+3Onj0LADh16hReeOEFp46F7IM9WERELmzLli0YNGgQNm3ahPj4eGzYsAGDBg0yeyNhoCoQGqqS+Pj4wNvb2+KLDXuteqvZKmWMn58fSkpKarxhuTXMCYTBwcF6FUIpEOoyVn2q7axZVGbWrFkGX6M1ndtlrEJo6PskXYibGwhrWh2UvPHGG9i5c6f8hoHu5uGFhYU4e/as2T/zeXl5Zi0qExAQAD8/P1y5csXg18jY51gSCI1VCKVjtppDGBsbizVr1mD16tVYvXo1Vq1aBQC4deuW1nm1YSN13TcmjLU3O1JCQgIA4L///W+dfBOLWCG0SlxcHN566y2tY+Hh4fJKckIIvPXWW/jkk0+QnZ2Nnj174p///KdWf3VpaSleffVV/Oc//0FxcTEGDx6MDz/8UF7umogI0G4fk6jVagwcONCs9jGg6qJYdzl7SVBQkNEKoaNXvTVn+XtpblRxcbFZbXG2JF2UmWqtszQQ1sWLq9zcXKNfI0fPATXVMnrz5k2tY8YCoaEFnGwZCHVJm4dLRo8eDTc3N7M2D1er1SgqKjJ7bmN4eDhu376NNm3amHW+pYsCmXoTJSAgwGYVQoVCIW8dsXPnTsTFxWHmzJlQq9XyJu/Abxupe3p6Yu3atZg4cSI2b97sUhupS78Hpd8ZrlAhPHXqFIYOHYqjR49i48aNmDJlitWb2ZNrYoXQSm3btkVKSor8n+bE93feeQerVq3CBx98gISEBERERGDo0KFav/jmzJmD3bt3Y8eOHTh69CgKCgowevRoVFRUOOPpkIsbNmyYs4fgUKWlpTh79iwOHjyIs2fPoqyszNlDchqpfUwihEB8fLzZ7WOA8ZZRoKpt1NjFxrZt2zBq1Cit/0aPHl3tfmXW0m2VMkQKgc5oG83KyoK/vz+8vb2NnhMSEmJ2IGzYsGGdC4SG5uFpcuQqsZWVlcjMzHT5CmF1oqKizF5UxFiLpjHSG0XdunUz63xLK4S64UZTYGCgzQJhWFgY7ty5g71792Lv3r3o0aMHVCoVTp48iXHjxmHv3r0AqhYtk7YgiY2NxYsvvoiRI0e61M9hRkYG/P395d/xhl6rNaVWq80+t6ioCBcvXsRTTz2F9u3b4+LFi/JCd/Hx8RgyZAjmzp2LH374AZ07d8bAgQNx4sQJm46X7I8VQit5eHgYfHdECIE1a9bg9ddfx4QJEwAAmzZtQnh4OLZv344///nPyM3NxWeffYYtW7ZgyJAhAICtW7ciOjoaBw8exPDhwx36XMh12GulvdpEc4U9aR/Cs2fP4qWXXjK7IlaXbNmyBStWrMDixYtRUVGBvLw8dO3a1eKWUWOB0FSF0NGr3lpSIXTGwjLmhIDg4GC9NrXs7GyDFdrQ0FDk5+ejtLTUZMisTar7Hvr7+8stv+bMWUtNTbW6EpGTk4PKykqDgTAkJEQOgJqP5e7urnW+qUBorzdGdDVq1Ajff/+9WedKLZrmBsKnnnoKJ0+eRJcuXcw639IKYWZmJjw9PQ3u12jLQLhr1y4AQI8ePdCtWzf06tULgYGBWLx4MbZu3YrTp0/jySefxKhRo7T2dR0yZAgiIyMxb948m4zDFtLS0rRe87ZqGU1MTMTChQuRk5MDDw8PlJeXIzQ0FMuWLUP79u0Nfk6PHj1QUFCAiooKrFu3Dmlpabh48aIcqhcuXIidO3ciJycHw4YNQ0JCAvz8/DBhwgT8/PPPNR4zOQ4DoZWuX7+OqKgoeHt7o2fPnli2bBkeeeQR3L59G6mpqVoVHW9vbwwYMADHjx/Hn//8Z5w5cwbl5eVa50RFRaFdu3Y4fvy4yUBYWlqK0tJS+WPdDZCpdrPXSnu1iS1aJOsSzfaxkpIS+Pr64tq1a9iyZYtZn19ZWWm0bQ4wXSF09Kq35lQIa0MgNFQhfPTRR/XOlb4nmZmZcktbbVfd91BzQ3Jz5rlNmzbN6n0IpaqPodd+gwYNkJmZKa9kDADJycmIioqCu7u7fF7Dhg2Rl5eHsrIyrQVksrKyHLZReFRUFNLS0qBWq6vd683SQDh37lw89thjGDp0qFnn+/v7W1RNk7bx0F1QCbDtHELJ7du3sXbtWiQmJmL27Nno3bs3fvnlFyxZsgQA8Nprr+l9jqttpK77JoitWkZnzZqF7du3Izo6Wj527949TJ48GUeOHDH4Ofn5+ViwYAGef/55JCQk4IMPPsBbb72F7t27A6iahx4dHY3o6GjExMSgcePGmDx5stbPENUODIRW6NmzJzZv3ozWrVsjLS0Nf//739GnTx9cunRJnkeo+25weHg47t69C6Dqh93Ly0uvhUJzHqIxy5cv15u/SHWHvVbaq000V9gDrGuRrKv2798PoCrkmVs5efjwISoqKoyea2i1RWfJzMysduVGqWXU0RtaAzULhMbmEAJV36O6FgiNVc80n7NmIOzRo4feuUIIedN0a1QXCNVqNfLz8+XwlJycrDePX6qs636PHN0yWllZifT09GpfJ5YGQjc3Nzz55JNmj8XSllFT+4oGBATYvBXS398fixYtQn5+Pt5//32sXr3aZX6/mUv3d7utKoQVFRV6b8IolUqTU5WWLVuGc+fOISQkBL6+vmjbti0KCwsxc+ZMLFiwAGlpaXj11Vfh5uaGbt26Yf78+Th27BiaN29e4/GSYzEQWmHkyJHyv9u3b4/evXujRYsW2LRpE3r16gUAeu+Gab4LaYw55yxatAhz586VP87Ly9N6t4dqt1mzZhk8XtOV9moT3RZJT09PdOvWzaIWybpICIGVK1eiWbNmuHPnDg4cOGBW5fj+/fsAYHTBKpVKhTt37thyqFarblN64LcFXZxxkWdOCAgJCZFbFd3c3CCEQHp6usFQohmO6gpLAmGLFi3k4/n5+UhMTNSrgJlbuTKkukAIVH1PzQmEGRkZTg2EALQWRzFGCoTmVF+tYU3LqLHXQmBgIO7du2eroend9+LFi5GXl2dwUSBXlpqailatWskfBwcHo6SkBCUlJTV6Y3TFihUYPXo0vLy8oFQqkZubC7VajZUrVxr9nPHjx+PHH39Eo0aNAPy2b2ZgYCC2bduG7du3633OTz/9hAMHDlg9TnIOBkIb8Pf3R/v27XH9+nX87ne/A1D1Ax0ZGSmfk56eLlcNIyIiUFZWpveucXp6urx3jjHe3t51Zq4JkSG6K+xRlW3btuHEiRM4cOAA5s+fj4MHD5oVCJOTkwEYD4Sm5hA6mqm5jhLpd6YzlmHPysoyuKedpuDgYAghkJubi+DgYDx8+BDFxcUGP08KKnVp64nqNmw39pyXLVuG/Px8vUrq4sWLrR6LFAgNBRLpWGZmpjyfLCkpSW8ulWYglEgL5zg6EN6/f7/axV8srRBaSqVSWTRVpbpAaKs5hAcOHMDixYvh7u6O2NhYPPPMMwCAP/zhD9izZ49NHsNRdCuEmq3lUjCzRv/+/XH48GEUFxcjJycHwcHBZgXM+/fvy4/bpEkT+Pn54fLlyybnmFfX2kyuh6uM2kBpaSmuXLmCyMhING/eHBEREVrvjpSVlSE+Pl4Oe127doWnp6fWOSkpKbh48WK1gZCIap9z585h9OjRGD9+vNaWDTNmzDD7Pr799lv07dsXQ4YMQc+ePXHhwgWzPi85ORkeHh56f7QlpuYQHjhwAD179kSfPn2wY8cO+fioUaPMHrclzAmEAQEBcHNzc1ogNNT6qUk3sErVV0OBMDAwEJ6ennWuQqhUKuVFJ3QZq4qOHz/e4Nd2wIABVo8lIyMDwcHBBi9ONQMhUFWBr65CKJF+XhwVCBs2bAgPDw+zVhrNzc2FQqGw25YslrYvVhcIbdX6/eabb2L//v04ePAgTp06hdmzZ6OystIpc41roqKiAg8fPtT6fS29BtPT023yGL6+voiMjDS72qgZCN3c3NC+fXv88ssvWLp0qcG/K/aaY072xUBohVdffRXx8fG4ffs2fvnlF0ycOBF5eXl47rnnoFAoMGfOHCxbtgy7d+/GxYsXMX36dPj5+eHZZ58FUHUBNmPGDMybNw8//vgjzp07hylTpqB9+/byqqNUf3HLhbrH3E2TTfn111/Rrl07AEDLli1x/fp1s/bOun//PiIjI41O8pcu8Azdl6MvsswJhG5ubk6Z9yiEQFpaWrXjk0KCVCmT5o5LVShNCoWizm09YWoBIwByu1p1z3n16tXo3bt3jQKDqbHoBsLc3FwUFhbqBUJp+X/NQGjO4ke25ObmhsjISLMCofSmRXXTT6wVFBSE0tJSlJSUmHV+dXMIbVUhdHd3R1BQEPz8/LBq1Sp07doV48aNc8pc45rIzc3VWxlXCl22CoSW0gyEADBmzBj897//Nfs1QLUDA6EVkpOT8Yc//AFt2rTBhAkT4OXlhZMnT8rvAC9YsABz5szBrFmz0K1bN9y/fx8//PCD1sasq1evxu9+9ztMmjQJffv2hZ+fH7777juuzFTPbdmyBYMGDcKmTZsQHx+PDRs2YNCgQfV+/lxtJ22a3KxZM+zcuRN5eXnypsnmqKysxK+//ipvHt2yZUsUFhYiLS2t2s81VPXQFBISgvLycoMhz9EXWeYEQsA++3JVRwoM1c3Z1q0Q3r17F/7+/iZbKOtSIDRnsSNjWzlIHj58iLlz5+LkyZP44IMPrB6LqUAoBT3pZ0hqrdb9/ioUCoSGhmqNt7q2WHswdy9CY/su2oqlLdvmtIzaYlP4Tp06ac2Fnj59OubOnSsHztqyl6+h15atK4SWUKvVSE1N1QqEw4cPR0FBAS5cuIAvvvgCnTt3xpQpU7Bp0ya0adMG3bt3x7fffuvwsVLNsMnXCpqtU4YoFArExcUhLi7O6Dk+Pj5Yt24d1q1bZ+PRUW3GLRfqJmnTZKlKFBcXh61bt5q9dcT9+/dRXFyM1q1bA4C84MD169ervfg2JxACv226rkm6yJLGPX36dDRt2hQvvfSSWeO21MOHD102EFa3OI9E94L56tWraNWqldGKTX0MhNU955MnTwIA2rRpg6NHj1o9FlOBUKFQoHHjxvL31dRcW90A68qB8OHDh3bdH1FzUSfNdRIMKS8vR15enslAqFarUVpaWuNVpKVrKd29fDt06IDf//73LrmXr6FFggxVn319fREYGGi3ucbDhg0zurVLWloaKisrtQKhtBjU3bt38d577+HYsWPIz89Hp06d8Pnnn6Nnz54YMmQIxo4da5fxkn0wEBK5EG65UDdJmyZrmjJlitkhX2o7lPY9a9myJTw8PHDx4kU8/vjjJj/3/v376NChg9HbNQOMbnXE0BtWgwYNssuqfeXl5cjOzjYrENpqGXZLVLc4j0SpVMLDw0O+eLtw4YLJr39dDIR9+/Y1eU51FcITJ04gPDwcEydOxL/+9S+zVuA25OHDh4iJiTF6e+PGjeXva3JyMtzc3AyGWWOBsLr5pLYUFRVldK84Teas1FsTlqzyK32dTAVCoGohHFv9jXPVvXz37t2r9bEQAnFxcXjrrbe0tv0w9mZDw4YNa1wh1A3L0jhMhWXpDRPNQBgUFASlUont27cjOzsbGzduBFBVXZ81axZmzZrFRWVqIX7HiFwIt1yoYs4GzM40efJkbNu2zWGPJ120Sn+Uvb290bZtW5w5c8bk5wkhkJSUZHJlOt05b84ivTNuboXQ0eNNTk6GQqGotioiVZ6Sk5NRWVmJixcvGrwQk4SGhuLatWu2Hq7TmFshNPWcz507h27duqFbt254++238eDBA6tWV6xuPmPjxo3lNsN79+4hIiLC4GI4DRs2RFJSktb9+vn5wdfX1+IxWSsqKkq+ODclMzNTa8sCW7OkZbS6LUg0F+wxtuiVpVx1L9/p06ejW7du6NWrl9wim5OTg9OnT5sVCMPCwmocCK0Jy4YCoUKhQLNmzRAfHw+lUgkfHx+4u7vj5ZdfxnvvvQcfHx+7vilB9uG6V1xE9VB93nIhMTERCxcuRE5ODjw8PFBeXo7Q0FAsW7ZMbyl4R1mwYIHeMSGE1kqhjpCcnIzAwECtpeS7du1abSDMy8szuFCGJunCwxmrdmqSKjDmBMKQkBDcuHHD3kPSkpycjPDwcHh5eVV7bnR0NJKSknDr1i0UFRXVmwphRUUFMjIyzJpDaKoV9NKlS/jDH/4gb7Fw+vRpuwVCaRy//vqr3JJtaLxnz56VP05KSnL4/r+NGjVCZmYmSktLTW49lZmZKe+HbA+WVAirC4TSVlxpaWlo27atTcanu5dvfn4+AgMDnb6X7+3bt7F27VokJiZi9uzZ6N27N3755RcsWbJE67ysrCz4+PjAz89P67gtAqE1Yfn+/fvw8vLS+5xmzZqhUaNGmDJlCnbu3IlJkybh6aefxueff47nn38ezz//fI3GKklJSbHJ/VD1GAiJXFl2NvCvfwEDBgA9ejh7NHY1a9YsbN++XetC6969e5g8ebJZrVL2YGrjXUe6f/++Xqhr27YtduzYYbKdzpx5b9IFnrGKW2lpKS5duiRvxN2uXTuzQpGlLAmEzghRycnJZoeS6Oho3Lt3T94axJxAaG1bpCvJyMhAZWWlfKFvjKnvX15eHu7du4d27dqhUaNGCA8Px+nTpzFu3DiLxlJeXo6cnByTgbBJkya4f/8+ysrKcO3aNfQw8ju2UaNGuHfvnvw9unv3Lpo0aWLReGpKmmuWkpJicMVaSXUhuKb8/Pzg4eFh1htI1bWMagbCmtq8eTP+8Y9/wNPTE5MmTcJf//pXAMC4ceNw6NChGt9/Tfn7+2PRokXIz8/H+++/j9WrVxsM1dLvWV1hYWH43//+V6Mx6IZliamwfPnyZbRs2VLvd1OzZs1w8OBBPPvss3jmmWewbds2jB07tka/lw211b7xxhtW3x9ZhoGQyFVVVgLjxgFHjgDBwcDDh4Bb3V0YuKKiAiqVSuuYUqlERUWFk0YEkxvv2oKpyfyaDC0M06xZMxQVFZlciEW31dQQd3d3qFQqg4Fwy5YtWL9+Pbp37w6lUomcnBycPXsWL730ks0XObIkEDpjqwZDodyY6OhoHD9+HBcuXEBYWJjJgNSwYUOUlpaisLAQAQEBWrfFx8dj6dKl6NChA0aMGIGFCxdCpVJh+fLl6N27d42ejz1Ic12rC0sNGzZETk4OysvL9Vo0pYvedu3aQaFQmFUJN0R6PZsKR507d0Z5eTkuXLiAX3/91ehruk2bNigsLJRbV+/du4dOnTpZPKaakALhgwcPjAbCiooKZGdn27VdT9oqxZwFTqrbniMgIAC+vr42CYTr16/H2bNn4enpibVr12LixInYvHmzTVYwtaXAwEAsXrwYeXl5BudiZ2ZmGg2Ezlhl9OzZs+jatave8WbNmuHOnTsQQsDNzQ1Tp07F5MmTkZqaavVjGWqrzc3Ntfr+yDIMhESuau/eqjD4178CK1YA168D/3/bgbpoxYoVGD16tLxPWW5uLtRqNVauXOm0MS1dutTgcUs33rVmMr+mW7duoXPnzlrHpIvCO3fuVBsIdVey09WgQQODAcuRq95mZGTAy8tLa3seY0JDQ1FcXIzCwkK7bcCtKzk5Gf379zfr3FatWuHevXv497//bbI6CGhv1K4bCBcuXIidO3ciJycHw4YNQ0JCAvz8/DBhwgT8/PPPVj0Pe5ICobQFkzHSc87MzNRrL/3pp58QFBQkt4l369YN69evt7iCKrWamQrjnTp1goeHB7Zs2YKioiKjbYvSdi/Xrl1Do0aNcPfuXYevoKgZCI3JzMw0q0Jri7GYu+KpSqUyOh9coVAgPDzcJoHQzc1NfnMhNjYWjz32GEaOHCm/MWDO3FZHUiqVBivSycnJBn9fmxvCbUmtVuN///sfnnnmGb3bDL0h6ebmJo/dmq+3obbaY8eOWbRfL1mPgZDIVX30EdCtGzB/flUgPHOmTgfC/v374/DhwyguLkZOTg6Cg4PrzOqqNVn5rqKiApcvX9Y7VwqEd+/eRffu3Q1+7v37982a99akSROtPbwkjlz1VtqD0JyLfs3FKBwZCM2tEE6ZMgXvvvsurl69ihkzZpg8VzMQ6lZ+fHx8EB0djejoaMTExMiP76r71d65cweBgYFyG7Ixmt8/3YvG+Ph4DBgwQH6O3bp1Q0ZGBpKSkixq05QuIqWVeQ3x8fFBly5dsHbtWvj4+BgN/M2bN4eHhweuXr2Knj17IiMjw2Tbpj0EBQXBx8fHZBCTqjP2DoSNGjUyKxCa8zNjq0A4atQorS1yhgwZgsjISMybNw9AVVeHOd0YzpaUlISOHTvqHQ8LC0NRUVGN3wTTfGMlNTUVvr6+ep05kpSUFJSUlMhviGiq7g1Ja77ehtpqWSF0HAZCIleUlwf88APw7rtASAjQrBlw9izw7LPOHpnd+fr6OnT1Pkeoycp3t2/fRklJiV71Ijg4GIGBgQaDnMTceW/NmzfHpUuX9I47ctVbczelB34LFIZClD0UFhYiOzvb7EDo7e2N3/3ud1ixYkW1WzBoBkJdERERqKiogLu7uzwPSq1Wo7Ky0sJn4Bh3795F06ZNqw310vfs5s2begtGXbp0SWufyy5dugAAzp8/b1EgvHnzJgICAqqdTzdo0CCcOnUKw4cP11vIQ+Lp6YkWLVrg2rVr8uqohi6S7UmhUFS70qgUrBxRIZT2ijTl3r171S6+Y6tA+NprrwGAdtWtshJwc0P37t1x/fr1Gj+GIyQlJWH06NF6x6VpC+np6WjevLlV9/3+++/j008/RYsWLdCjRw98/fXX8Pf3x+TJkzFz5ky98w2tMCqRfoafeeYZ+Pr6yiuDS3+7a/L11myrPXPmDJ544gmr74vMx0BI5Ip++AEoLwektqSuXasqhFQrWTOZXyItTNKuXTut49LS39UFQnNCTPPmzfH999/rHddd9TYlJQUNGza0y5YgKSkpZi89L13kO6qFytxN6TW9/vrrCA0NxcCBA02eJ833MvRcduzYoXfMw8MDBw4cMHscjnTr1i2zLlbDw8OhUqn05lDl5uYiLS1Na7XPqKgoBAYG4urVqxa1ad66dQstWrSoNpw+++yzWLNmDf72t7+ZPK9NmzZODYRA1YW51AZuiCMDoTkVwqSkJHmlWGPCw8O1VnCtqfz8fCSeOwf38eNRsX8/5oaHY8XNmxYvSmRrBw4cwOLFi+Hu7o7Y2Fi5DXPUqFHYs2cPgKoFvNLS0gyGaOl3Y1pamtWBcPv27UhMTERRURHatGmDW7duwdPTE/3797c4EAYHByMgIAD37t3Diy++iKCgIK055ps2bbJqjJqUSqXB+YtkH3V3hQqi2uy774B27aoqgwDQpUtVhdBFKwP1zbBhwxz2WL/88gsaNWpkcP+76gKhtEJcdZo3b46MjAwUFBQYPSctLQ1RUVHo16+fXSpUiYmJZi89L1UIHbXIgjWBMCAgAPPmzas2PPv6+sLf39+iRXJcdY/Oy5cv47HHHqv2PIVCgUcffRRXrlzROm4obEnnGlqAw5QbN26YbBeVdOjQASUlJdXO9ZQC4dWrVxEREWG0zc6eWrVqZfLrkJaWhoCAAKOVTluJiopCeno6ysvLTZ7nyAqhZNmyZcjfvBmKffuQJgQWpaZi46efYvHixTZ7DGu8+eab2L9/Pw4ePIhTp05h9uzZqKysRFFRkXyO9HvG0NdMCmXm7EVpjK+vLxQKBfz9/fHMM8/IUwnS0tIMviF1//59eHt7G10UyM3NDb169cLf/vY3LF26FOvWrUN8fDzWr18vV2yp9mAgJHI1FRXAnj3AmDG/HevSpaqN1MTFf13lyPCla9KkSXr//f73vzd7MRhbOHHihNEVJU0FwtTUVNy5c8esPcmkVjxj1YeCggK5mvnLL79g165dZozcfLm5ubh586bZKzdKGx/X5OLIEuas1loTzlg11dby8/Nx7949swIhAMTExOiFG6ltWXdjdWsC4ZUrVxATE2PR55jy6KOP4u7du/jiiy+Mztm1t/bt2+Py5ctGV15OS0uz2QbvpmguHGJMcXExHj58aFYgTE9Pt9lqoOPHj4fX+vX4AcBP8+cjEsDpZcuqbd22N3d3dwQFBcHPzw+rVq1C165dMW7cOK034ZKSkgAYDoQhISHw8fExWSGuzsiRI+XXzrvvvgugamul69evY9WqVXrnP3jwAFFRUUar7AEBAUhPT0dwcDCA3+aY37x5Ey+99JLVv9OysrJw48YNo1shkX245tuMRPXZiRNAZqZ2IJTm2Vy8CJjxrndtVNOVOO2hJovB6LJmP7/KykqcOXMGcXFxBm/XXPpb94+2tAqlOdsTSEHnwYMHePTRR/Vuf/3115GQkID//ve/+PDDDzF79mwMHTpUvhCoKallTHclVVMaN25co4sjSyQnJ6NBgwZ2m9saGhrq8BUEbU2q9plb5X300Ufx5Zdfar12Dx06hM6dO+utNPvoo4/i+++/N3ul0dzcXNy/f9/scGqOwYMHQwiBq1evYvny5Ta7X0u0b98eJSUluH79usGf02vXrqFFixZ2H4fm7wtjgU8KN9XN+wwPD0dZWZm8kFiNZWTA73//wy4PD6xbuhTFX36J/rdu4YsvvsCzTpyD36lTJ61Fb6ZPn46mTZtqzZc1FQgVCgUaN25cozfBFi5cqHfs3//+NwDg3LlzerfdvXvXZFfEjBkzsHz5cvTt21eeYx4dHY20tDSkpaXho48+sqgy++OPP2LJkiUIDQ2Vtzmq7W+U1SYMhESu5rvvgIYNtTeij4oCgoKAxMTf5hXWMbYMX7ZSk8VgNFm7n9+tW7dQVFRkcNU5oKrVs7CwEOnp6XrzhtatW4d+/fqZ1eYotaMau9jYu3cvZsyYgREjRqBDhw5o1qwZNm/ejL/85S/V3rc5fvjhBzRs2NDsMAFUXTRJF1D2Zsmm9NZo0qQJbt++bfb55u5f6UiXL18GAINBxZCYmBjk5+cjJSUFUVFREELgxx9/NPjz8OijjyI7OxsZGRlmVcCkcGrLQNi0aVP069cPJSUlDt9yQtK1a1d4enri4MGDBr/O586dwx/+8Ae7j8OcLTBMhRtNmpvT2yQQ7t0LhRBI69oV3t7ewO9/j3GrV2Pip586NRCuW7dO79igQYO0Kt9JSUkIDg42uoqord8Ey8vLw9GjR/HII4/g559/RkpKitbUhAsXLpicA929e3eo1Wp8/vnn8t+ZMWPG4NFHH0WXLl2wfft2iwLhkiVLsG/fPq03hJKTk6t9DZFtMBASuZrvvgNGjwY0l5ZXKKqqhBcvOm9cdmar8GVLNVkMRpO1+/lJ1VHdlRgl0kXhlStXtAJhdnY2jh8/jo0bN5o1Pj8/PwQFBRm8wMvNzcWNGzfkxSGioqIwatQo7Nq1y2aB8ODBgxg2bJjW16c6jRs3NmulQ1u4dOmSWXMxrdWmTRts27ZN77grVs2NuXz5Mpo1a2b2kviar92oqCikpKQgJSXFYEVbOvfq1atmBcLz58/D3d3d7HBqrh9//BGenp4W7YdoS0FBQRgyZAi++OILvd+LmZmZSEpKsqjKbq0GDRrA09PTZLXq3r17AKqfdyttO5KSkmKT75f4/nuc8/BAu8GDqw48+SSCV65E6YkTKC8vl/cqdEVJSUkmw4+0B6atzJ8/Hx4eHvjmm2/w+OOPY/Xq1XjnnXcAAEVFRbh69Sr+7//+z+jnS9+va9euydXLvXv34qOPPoJSqcT27duRlpZm9iJHbm5uyMjI0AqErBA6DucQErmSGzeAK1e020Ul7dpVVQjrqFmzZhlcIt7S8OWKpP38AKCkpAS3b982az+///3vf2jQoIHRDX5btmwJDw8PvcU5Tp06BQDo06eP2WM0tnKgNG5p+X/p39ICIDUlhMC1a9eMVkGNcVSFUK1WIyEhwazWW2u1bt0a9+7d01pgAqiqmq9cuRL/+Mc/tP6zZzi11uXLly2q8D7yyCPw9PSUKyRSy5qhQNOiRQu4u7ubPY/w9OnTaN++vc1bfL28vJwWBiWTJk3C0aNHkZKSonX8/PnzAGD2PNyakLbAqK5CGBYWVu3vOKml1JIKuVFlZaj873/xlVqNxx9/vOpYnz5QBwRgcGmpTVcztYfqFuFp1aoVrly5YpP5lkIIfPnll5g7dy7atWuH6dOnY+PGjSgrKwNQ9XqqrKw0+Xpq3rw5PD095b8/X331FTw8PPD73/9enrN57Ngxs8f0ySefYN68eejduzd69eqF3r1744033rD+SZJFGAiJXMnu3YCPD2BoIZX27YFr14D//wubao8tW7bgm2++Qd++fdG0aVM88sgjePXVV6vdz+/48ePo1auX0YtQT09PtGzZUm8PwZMnTyIkJMSi4GDs3ecFCxagf//+Whf7rVq1QkZGBnJycsy+f2OysrKQn59v8X6CjRs3RmZmJoqLi2s8BlMuXLiAoqIiuwZCaVXNX3/9Veu4VDVv2rSp/F+zZs2cWjU3xtwVRiUeHh7yBS5QFeJUKhWaNm2qd663tzceeeQRvTc+jElISKh2u4Paaty4cfDw8MCXX36pdfz8+fPw8/PTW5DHXpo2bWpyr7lbt26Z1ern4+ODRo0a4datWzUf1JEjcC8sxF6F4rc3wzw84DZiBMa4uTl9u5bS/x9KDx48iLNnz8rhS3Lp0iWT25l07NgRmZmZem8GWOPOnTvIzMyUf68988wzyMjIkEPz/v37ERwcbDIQenh4oEOHDjhx4gSAqjcPe/bsiaCgIDRu3BjR0dH45ZdfzB5TTEwMdu/ejRMnTuDkyZM4ceKEwc4Jsg8GQiJXsns3MHw4YKjtql07QK2uCoXkVKZW1zNE2s9v4cKFSE9Ph4eHB86fP69XEdJUUVGBEydOoF+/fibve8CAAfj666+1Vh48efIkevbsaVE1o3fv3vj555+1lpK/d+8erl27hjlz5mjdl3TRaYvNnqXKgKV7a0kXm/ZeWObEiRPw9PTUqpDaWrt27aBQKPQWdqgtVfPCwkLcvn3b4jl70kqjFRUV2LRpE0aPHm30NWtoVVJDioqKcOnSpTobCIODg+W2UU3nzp1Dhw4d4K451cCO+vXrh/j4eINb0FRWVmL//v0YMGCAWffVokUL3Lx5s+aD+uYbZPr5AR07QqlUyofdRo9Gl8pKnPjmm5o/hpW2bNmCQYMGYdOmTYiPj8eGDRswaNAg+U3BrKws3Llzx+S+e1IXxf/+978aj0dqt5d+Tjp37gwfHx853O3btw9Dhw6tdoubIUOGYPfu3Xj11Vfx5Zdfon///vJtnTp1sslYyTEYCIlcRUpK1Qqj48cbvr1jx6q5hAkJjh2Xk1kavhxh2rRpFn/OgwcP8Ic//AGNGjXChQsX4OPjg+eff17elFjX8ePHUVBQUO3G5n/84x9x//59HD16FEDVBfGhQ4fM2m5C05gxY5CbmytfEAC/rVQqt1/9f61bt4abm5tN/thbGwiluUmOCISdOnWy2wqjABAYGIiYmBgk1NKfbSmoWdIyClTNQbp06RJWrFiBu3fvYu7cuSbPNScQnj9/HhUVFU7bGsKoI0eAAQOAsDBg6lTA2JL6ajWwbRvw6qvAv/8NlJTonTJhwgQcPXpUrtDn5ubiu+++w6BBg+z4BLQ98cQTyMjIwOnTp/VuO336NFJTUzHe2N8yHS1atDC7+mtUZSXw1Vf4zsMDj2uEEgDAiBFwAxB65gyys7Nr9jhWkuaRv//++1p79n300UcAfltp2VQgbNasGZRKpU1+7+7cuRNdu3aV5/d5eXmhW7du2L9/PzIyMpCQkICRI0dWez/PPvss3Nzc8N5776F58+b485//LN/WsWNHBsJahIGQyFXs2AF4elYtKGOIUlnVNqpxwV4fWBO+bKVHjx56/3Xv3l2eo2eJLVu2AKhqC4qJicHixYsRHx+PZ5991uC+Yt988w0iIiLQQ3O1WQO6desGpVKJY8eOQQiBMWPGoLy8HCNGjLBofJ07d0ZAQIAcCCsrK7F27Vr0799fr0oVGBiIHj16YP/+/RY9hiHnzp1Dw4YNjW5+bIwUCO09jzAhIQE9e/a062MAVd9HQxfXtYHUsmzpoiCPP/44UlNTsXjxYsyePdtkFbZdu3a4e/dutW8AnDp1Cl5eXmjXrp1FY7EbIYC1a4FBg4DSUmDmTGDvXqB7d/1Fwk6eBLp1A6ZMqeoWmTmzapuhjRurAs//N3DgQAgh5J/VpUuXoqyszKGtxAMGDEDz5s2xZs0avdt+/vln+Pv7m/1zM3bsWPzvf//DwYMHrR/QL78A9+/js7w8vTewEB6Osg4dMFIIp7WNas4jB37bs0+aY3n48GGEhISYbPlVKBTo0KEDLly4UKOxZGdnY8+ePXoLmr344ovYv38//vjHP0IIgeHDh1d7Xx06dMC1a9fw8ssv4+TJk1ptwl27dkVqaipDYW0hqFbLzc0VAERubq6zh0I1UVkpRNu2Qvz+96bPe/FFIR57zDFjcrDu3bvr/detWzehUqmcNqZHH31UlJeX6x0fMmSIRfdTWVkpunbtKiZMmKB1/MSJEwKA+Oabb/TOb9GihXjhhRfMuv9hw4aJUaNGiYMHDwoAYteuXRaNTzJw4EB5jJ9++qkAIA4fPmzw3L/97W8iMDBQ5OXlWfVYks6dO4vJkydb9bkNGjQQf//732v0+KaUlJQINzc38fHHH9vtMSTr1q0TXl5eorS0VG8MZ86cEQcOHBBnzpzRu90VvPTSS6J169YWf15ZWZkICgoSAMTt27dNnpuXlycCAwPFkiVLTJ43ePBgMXToUIvHYhd5eUI8+6wQgBDz5gkh/S65dUuIDh2ECAgQ4v33hTh4UIjJk4VQKITo2lWIU6eqzrt+XYhnnqn6/G7dhNi3T4iKClFZWSl/3Z588kkBQLz11ls1H29FhRDx8UL85S9CTJkixDvvCHHvntHT3333XeHt7S2ysrKEEEKkpKQIIYQYOnSoRd+DyspKERMTI/74xz9aP/a5c0WhUincAJGamqp/+1tviXw3N/GClb9raiolJUX85S9/EX369BE9e/YU/fr1E3PmzJG/Zn379tX7+2DIyy+/LB6r4TXAJ598Itzc3OTHllRUVIjWrVsLAGLhwoU1egwhqn6+H3nkETF16lSzzt+0aZNo166d6Ny5s1i+fLkQgte4jsRAWMvxh6WOOHmy6o/+vn1CiKo/kJmZmfrnbd5cdd7//wNcl9gqfNnSV199JV/saPr5558tuh8pqH333XdaxysrK8WQIUNEkyZNhFqtlo+fPHlSABB79uwx6/7j4uJESEiImDp1qmjdurWorKy0aHyS119/XQAQLVu2FO3atRPjx483eu7du3eFu7u7+Oijj6x6LCGEuHLligAg/vOf/1j1+YMGDRJPPvmk1Y9fnQsXLggA4siRI3Z7DIn05sDp06flY5s3bxa9e/cWsbGxYvHixeKVV14Rffr0EVu2bLH7eCzx2GOPiZkzZ1r1uTdv3hT3798369zJkyeLLl26GL393r17wt3dXaxfv96qsVittFSIlBQhLl0S4sgRIXbvFuKvfxUiNLQq9Bl6fefnC/HHPwrh5lb1O71RIyHWrxdC4/eA7MiRqkAICNG6tRBz54qzr70mXhs8WLQCRHNAPPjlFyGSk6tC5NmzVWNYtqwq2HXuXHX/LVsKMWqUEG+9JcT+/VXnp6RU3f9rrwnRrFnVYzRpIkSfPkL4+Ajh4VF1H//7n96wHjx4IDw8PMTUqVPF8uXLBQAxfPhwAcDi1+jChQtFw4YNDf4NqFZhoVAHBYn33d1Fnz59DJ9z546oAMR8pVLrd60zlZeXi++++058+OGHZv8e3LBhg3BzcxPp6elWP+6AAQOMBvbLly+L//znP1b/DRFq9W9vfAghFi1aJBo2bCgqKiqq/dRevXqJsrIyIYQQ77//vnjqqadESkoKr3EdhIGwlmMgrCMmTBCieXP5YuCDDz4QAMTq1au1z7txo+oPtplBoTaxVfiyl+zsbLFjxw6xatUqi/9YTp8+XcTExBj8vGPHjgkAYt++faKyslL8+c9/Fv7+/qJjx45mV4N++OEHAUAAEHFxcRaNTdONGzfk+zHnom7w4MFixIgRVj/eyy+/LMLCwkRJSYlVn79mzRrh5eVV4yqlMZs2bRIADL85Y2NFRUXC19dX/PWvf5WP9e3bV+9Cqry8XPTt29fu4zHX+vXrDVa57WHjxo0CgPjHP/5h8PY5c+aIBg0a/PZ6KC+v+p25b58Q//ynEPPnCxEbK8ScOUK8/roQK1ZUHf/sMyHWrBEiLq7qtuefF2LiRCGGDRNi4EAh+vcXol+/qpDUq5cQPXoI0bGjENHRQvj7V/1O1v2vYcOqjo67d00/qYcPhbh6Vesi2qDKyqrgNn161eMaekzd/4KChOjdW4g//UmIJUuqqpTDhwsRHKx/bkiIEDNnVj2G9HsqL0+I1aurAiIgRPv2VecsXSrExx8L8cUXYvMf/iD6AaIjIFoAIhwQb/zf/4lKC0PX2bNnBQCxfft2y8PI3/4myt3cRJ+oKJO/CzKHDhVJgHhmxIjf/tbk5Qnx888mK6H28ve//13+XTt9+nSznndaWppwc3MTn376qVWPefXqVQFAbNy40arPN2nzZiFUqqo3Et5+W4jKSnHo0CEBQJw/f77aT9cN8wcOHBB9+/blNa6DMBDWctUFwm+++UZcvnxZTJo0yeqLLrKz06er/thu2CCEqKoaNW3aVP5DMW3aNJGRkSH+/41CNG4sxOzZzhtvPZOdnS3efvvt/9fevYdFVa5tAL+HgRlmYEBFERAwUFQIQdNU1Cw1bWsf5a69UVMz0114SM1KP822hzz27azMDttDZZmhW/PUwbRU0jQPKIFaKiohiBIg53GGmXm+P1aMIpDiNmDg/l3XuoZZaw7vzMPMrHu971pL/P397TWZMWOGxMTEyLlz5256f4vFIj4+PvLSSy9VutxqtUpYWJgYDAb7hoCpU6dWGM7zR8q+BwDI6dOnb/l+lfnuu++kTZs24u/vf9Og9a9//UtcXV1v68c6Pz9f3NzcbjoEUDIylN6OkycrLDp//rwAkPXr11f7+W/GbDZLaGio9O7d+44/dlVefvllcXV1ta+sPvjgg7Jr1y77cpvNJt9++6307du3xtp0M+3bt5eYmJg/90lsNpHiYsk7cUL6Nm8uf3FzE/OGDSIffaQElldeEZkwQbZ6ekpSYKASglq3Vnq3ygKPs7NIq1Yi4eEioaFKqGrc+Npt9HoRPz9lWbduIv36KRvqnnhC6SF78kkljD39tBKwxo5VQuWSJUo7tm4V+eEHkZ9/Frl8WRl++We+H1lZIomJyhDP775TQu+XX4rs3q0MOb148Vqwq+z+p06JbNsmsmWLyLFjlfdMljGbRdatU153ZKQSdst6NquaVCqld9THR6lFhw5KqB4wQNk1YtQo5XdsxgylJ3PpUlkQEiJ/A+TVHj2UYHrsmNLjmZkpUlRU8fXYbCJr1ohNrZaFKpUsW7bsj9+38+elxNVVjgKysVUrkR49rtVfrVZq+1/0vFXHzJkzBYBER0fL5s2bqzUUvF+/ftKtW7fbet7HH39cAgICxGg03tb9q/TOO8r7OHSoyPPPK39PmyZXjUbR6XRVbsS53vz58ysMHS8bLcNA+OdjIHRwZSuCBw8elOHDh8uvv/4qzz33nBw8eFCysrLKbe3fsGGD7N+/337fsv1RqlrxXLdunZw5c6amXkrDZDaLdOsmeT4+MmzwYNm2bZssXrxYAMjGjRvF29vbXr8JEyYoWxAnTVJWXG5naI0j2bNHZPp0kVmzauxHujKjRo0SABIeHi4JCQkydOhQe03Gjh170/vPnz9fnJycJCEhocrb5OTk2DcChIWF3dZwnfj4eHnnnXeqfb/KGI3GWxrik56eLjqdTqZPn24f6nOr1qxZIwAkraot8yaTMuzu+pX6OXMqrBR26NBBnnjiiWo99614//33RaVSybFjx+74Y1clMzNTnJ2d7Su2N9vvqLYlJibav6v+kNWqfIaTk0UOHlRCzDffiGzefC3U/fOfSkAYPlwZ1ti9uxLOmjcX0WiqDB42vV4svr5ibtdO9gCSds89SnB74QWRd98V2bFD5OzZqr8vbbb6/136Z7BYRPLzlWGnv/yibNjcs0fkiy+UIbIrVih1ffVVkalTRcaNU0L1Y48pYTsqSulxDApSAqar6017PG03hkxPTxFANrq6yj0REVJYWHjzdickyOV27eQcILl9+4rt3XfFcvSo0kPcuLEyzHft2qrD9H/JaDTaN/zNnz+/6u/6ggLlf/fQoQr/n1u3bhUAsnTp0mo9d1kP+0cffaS8vk8/VWpgMIj07q3U73b83/8pNZo06dr7tmSJMm/hQnnooYfk/vvvv62H5ii4msNA6ODKPiwGQFwA8W7WTACIp6enrF27tlwgNBgMAkDc3Nxk6dKlAkC6d+8uACQ9Pd3+mBaLRV588UUBIIGBgTdtw969e6V3794yd+5c+8qd0WiUmTNnSlFR0W29rsq+JAsKCupcL6fNZpNFixZJcnLy7dxZckeMEDMgXa6rU9mUnp4uqampcs8999jn7d69W6xlPYrr1t35F1QXpKSINTpaBJAsjUbMrq4ivr63/2N1G2bOnCmDBw+WxMREcXJykvnz59v3Ozl8+LCEh4fLiBEjRKVSybx58yqEoby8PFm5cqU9PE6dOvWmz5mRkSFxcXH/1b4htWHatGn274q8vLyb3r6wsFBSUlKkT58+0qVLl8pvdPKkyD33KGFw7lxlpXP2bOX/fsKEcitrs2fPFgDi4uJyx4ZBXbx4Udq3b/+n7p9YlX79+klUVJS8+eabcvny5QrLbTabHD9+/Pb38blNJSUlsnXrVjl37pyc+uUXObJ7t0S3by+PBQaKeds2kTVrlJXqGTOUnpaBA5Ua+vkpvS9/tLKv1yv7uIWHi9x3n8gjj4iMHKkM35wzR+Ttt5XH//JLsf3wg4zp2VO8f//N8/Pzs38/enh43PL+iFQHlZaK7coVaa3TSVtAerq6yv2APAzIEEDGOjvLoaFDZWevXvJVeLh8EBIiQwICxFmtlrNnz1bjaUolKChIQkNDJTg4WNq3by+hoaGycv58yXnwQRFALK1biy02VrJmzJCzc+YoPam7dont8GExJycrQ4GzspR9QS0WKSoqsm9Es1gs5fZTnDNnjowcOVKOHz8uPVq3loGAbAwPF9vQocrBhP75TyWE7t6tDMV9+GERrfba58PbWwnWvw9dt9lsMnHiRAEg48aNk2HDhsmUKVPKhSaj0ShpaWlitVolISHBPvRy5MiRYtmzR6RrV+Wxo6NFFi++to9qTIzIhQu39kbm54s884xyv5dfrhiiZ80SAeTsgw+KD5QDIKWkpMiePXtk9OjREhcXd+2302YTuXRJSnftEsvixfJzRIRcaNFC4jdsYCCsISoRkVs+JCnVOQUFBfD09EQ+AA8AVgBXARivm27lenRMDM5dvIjIqCgUms1Y+NZb9uVvvPsuRKdD6/BwQKcDXF0BnQ4mJyfs3LcPcZs24dO1a6FWqxEZGYm4uDgMHDgQKSkp0Ov1OHToUJXnp/rtt9+watUqTJ482X745VWrVmHMmDHYsmULDAYDNBoNevToAZVKhZ49e2Lv3r0AgNTUVKjV6nKHOQaAwsJC6HQ6+wlVRQS//PILQkND7bc5cOAAjhw5gnHjxtlP5JuZmYnjx4+jX79+t/TeWywWjBkzBqtXr8bjjz+ODRs22JclJCTAZrMhLCwMer0eeXl5yMnJgZ+fH15++WV09PfH0EOH4LJ+PcYBONatG2JjY/HUU0/ZH8Nms0GlUsFsNiM9PR3R0dE4efKk8h64uQGnTwPHjgGenrfU3jIiYj/588WLF6HT6dC4ceNqPQYAlJaWwmazQavVlnvMP3reU6dOwcvLC82aNauw/Pi+fTgfG4u//Pwzcl1cMNlsxl5fX2hycvBLp05wOXgQ5kWLoH3hBQhQ7vnKnv9W24Eb7g8oJ4LftGkTVq1ahe3bt9vne3p6IiMjA25ubtdubLPBmJuLUYMH48CuXRjx2GOYN2MGUFKCnw4cwOxp06AD4OfpiajISPxPnz7QWq1ASQlQXHzt8upV5dySKhXg5FT5pFIph5wXUS6r+rts9cHJCVCrK15WNq/sUqMBtNprl5VNVSzLLi7GX4cNw4nUVEyeMQOvvPoqoFKhpKQEer2+3PtsNpsREhKCtLQ0AMC2bdvwP9efZuXiReUQ/W+8AQQFKedju/68XMuXA88+C8TGAsuWAWo1kpKS7CdsBoBNmzZh0KBBFeqenp6ODz74AC+++CJ0Ol25/5ekpCTk5OTggQceQFpaGu666y4AwBtvvIHJkyf/4f/TnTZ//nzMnDkTgHLesY4dO8JisaBNmzbQarXYvXs3Dhw4gBUrVmDMmDHIzc1FYWEhjh8/jtDQUGi1Wnh4eMBgMMBoNGLRokXw9/dHZmYmXnrpJWi1WqhUKpw7dw6tWrXChv/8BxdOnkSbpk3RDMDdPj7QFhZCfeUKVLm5+P7zz1GSng5dcTEaW63wAtAUgLayxru6KufZ8/UFfHwqTt7egLv7td8RV1fldDraSh+tSiUlJTh37hwWLlyIL774As8++yw0Gg3GjRsHPz+//7ICVNuSkpIQHx+Phx9+GK+88grmzZuHU6dOYe7cuThw4ADc3NzQpk0beHl5wdfXFyNGjLjl3+0yq1evxj/+8Q+UlpZWWNbXyQnDbDZ0BhACwPUWHs8MwKxWw+LignyzGUYALh4eKLHZkF1QAAOAFgB8y+7QtCkQFqZ8d6ekAGXn21WpgJ49gcceAwYMAHJygDVrgA8/VL6rY2KAzp1hNBjw1sqVOHHyJC5nZ9u3JAcEBqJ9+/bY/uWXcAHskxbA8KgoPCQC1Y8/Ah07Aq+/rpwOBVB+O9asUc5/mZOjnDOzdWulPRaLcsoUo1GZrl5VLn/6Sbnf0qXAmDEV3xQRYNUqyMSJkKtXkeHkhGK1Gi5qNYxGI7QAmmi10IlAa7VC/fvpl0oAnAbQAUAXAIehnGvTw8PjFipBt4uB0MGVBcJBUAKhKwDdddP1192dnOBis9mvt/DyQklOTqW3da5mO8xqNaDT4beiogqBUzQa+LVqhYzcXHj5++NSXh5KnZ3hExSEQ8nJSMnIQJdevfDYsGHILizE68uW4VRqKrTu7sguKoIZwNL338eo2FiYAKzftAnvf/gh/rN1K0wA8oqLcaW4GF98+SViYmLg5uaG++67D/v27cOePXtw8OBBTJ06FS1btsSXX36J1NRUPPnkk8jNzcX777+PUaNG4ZVXXsFrr70GANi8eTNee+01tGvXDtOmTcOxY8eQl5eHZ555BocOHcK9994LlUqFNWvW2M+R17ZtW2zduhUhISEoKioq98U1adIkJOzejbykJPTz8kJETg4eBwAnJ0xQqzHxwAFERETA2dkZ6enpEBFcuHABPXr0KPce79+/3z6vW7Nm2GcyobhJExx/9ll0nzZN+eL+A+np6XjxxRfx7bffYuzYsbj77rsxdOhQ+Pn54Z133rGvRNtsNnz++efo0aMHTp8+jV69epVbqf/pp5/w6quvwt3dHZ9++ilWr16NkSNHIjk5Ge3atcOGDRvQokULREVF2Ve4MzIyEBERgdzcXISEhCA5ORmzZ89Gly5dkLRuHQJ/+AGD0tPhCmAxgH97eGDt5s2IjIxEcHAwSo1GzDebMRnArwEB2ObjgzMGA15+6y18tmED3n77baxftw4Tx49HCy8vPDVkCP7ywAO4mpeHopwcuKnVmDN9OkICAuCh1eLEkSPoGhmJ04mJeComBlmpqUj9+Weknz4NPYAOISFootPh15Mn0drfH401GiXElU2VnCy6Snr9tUmnUy7d3JTL3zeClAt4lU1qdfnQeGOALLuuFFCZrFZlKvu7qkurFTCblR98k6n83yaT0rZqsAIwqdUottlgcnaG2mCAzssL2cXFKLFaceHyZZQCaNmqFTp26QI4OwNXrgC//qqcl02vB6ZMAaZPV96vG33wgbLy0aULMGsW0Ls3Dv70Ezw9PfHII4/g8uXLOHjwIAwGA6ZMmYLz58/jb3/7G5YvX46zZ8/aH2b48OHYtGkTDAYDLv2+MtaiRQtkZGTAxcUFDzzwAFavXg1fX9+KbfgTpaSkYPTo0Zg+fTpmzZqFs2fPIjg42H7S+j59+mDXrl0AgAd798apxESY8vKgFYEOgAFAq8aNETt4MLZ+/DE0JSVoDKAxAH+9HnqTCV5qNfRmM5o5O8PdYoG6knaUAMh3dkamxYIcAL7h4TAEB+PH06cR1qsXdAEBaBEZCZ2/v7Jy6+Wl1I7oT2KxWPCf//wHvXv3ho+Pzx15zF9//RV33XUXPvnkExw9ehRXrlxBy5YtYbVaUVRUhMaNGmHh7NkwQFnHMgB4KCoKwX5+OH7oEH67cAFeOh3u79IFB+PjoQPQNSICZ5KSoAMQ7OeHID8/NGnZEimFhQgbOhSGXr2UDV7X/2bn5SmhMCBA+X24UVYW8M47yvkpT55UvrerSby8oOrRAxg5Ehg06NpvxvXy85UNcTt2ABcuKG1Uq+0dAeUu27QBRowAfj8nbJWuXAG2bMGVAwew/qOPYDKb0aNnT7i4u2Pj9u0ohvJ9kwkgQ6fDUaMRM4YMwdy4OPzr0Ufx0pYtDIQ1gIHQwZUFQkA5gfeoUaOwYcMGuLq64vXXXwcA7N27F0lJSWjUqBGGDRtmv+/69esRExNT6eN+t307ukREINjPr9LA6AogpEULxERH46cff0R0v37wbdQIm9auxdkTJyoNpo00GjiZzRWWuTs7w8ViqXyLczWYAZQ6OeGqzQYzANPv8268tADQubnhqsWCYpMJKmdnmCwWWH+fn1dcDCtQbrIA8G3RAukZGbgvKgrnUlKQ+9tvCPTzQ1i7dtizaxfUAPROTtDZbHAH4A7lx8Pn98syaQYDfvT3x/iff0ab7t3xww8/3PJrzM3NhZeXFwCgn7c3FmZloRMAi7c3cM89uODmhjXffgu1vz8e/PvfEbdtG1waN0b7rl3xVXw8du/bZ39Ntutenw1AYy8vTJ48GW8uWYK8K1fgrFIBInAC8PCAATh/9iw6RETgeFISzpw+DScAalzb+tjCywvuLi7IuXQJWgBxH32EhXPmwMPVFVlpaSgtLkYjAF4AAnQ6NDEaEQ5lq2khgL2tW6PVihXwjoyEs7MzDAblXUtKSsKnn36K9PR0mLZuxfNFRSgflW+PCUAxAKNKhRIRlADwaN4cze66C+7NmgF6PUSvh+r6QFfJZNVq8errr+Pr+HgUWq0otNnw0bp16Nm/P7SenjcN6nWayLWtw5WFxbKtxiUlyEpNxeuvvoq8ixehB6CH8pn30mphKSyEGwANgCYGAx7o0UPZGlxaqjx+o0ZAixZAVBTw6KPK9T+yfz8wbpyyhVqlAu66C2jWDGa9HruOHkVGURFsWi1MajW8AwOReOoUCq1WmNVqFFmt5TZY+QUHo0OXLghu0wYffPIJLmVnY93GjQgJC1PCqotL+Utn5/IDHsvepxsnoxEoKgIKC69dFhYCBQXKpcWi3Lesh/j6v0tKlBXE/Hz7pSUnB6bsbLhZLLDl58NWUADnm6wU2gDYPDxQ6u4Ok06HSyYTfistRbbVitPZ2bgC4N5+/RA9YgS+PHAAy+Li0CIyEpctFkCvx44dO6DRaHD+/Hn2vFG9VVxcXH4EyA2OHDkCb29vBAQE4NChQ+jYsSM0Gg1MJhOWLVuGQYMGoVWrVjh48CCSk5MxZswYxMfH4+jRo3j++efvfINtNuW7oaSk/AgRmw3GkhLs3LEDYRER8A8Kgjg7Q+3qCo27e53YYJOQkICNGzfihRdeQJMmTbBz5054e3vj3Llz+OSTT/D2229DrVbD22iEulUrFGzaBM+//pWBsAYwEDq4skCYmZmJpk2b2odJAkqPUHFxMdq2bWufV1RUZF/RFhEcPnwYrVu3xtChQ/HNN98AAIKDg+1b0leuXAmtVot58+bh9OnTcHd3x7FjxxAUFGQfanmj8+fPw8fHB59//jlOnDiB/v374+TJk3jmmWewY8cOjBkzBmq1Gp999hmaNWuGtm3bYvHixdi4fj06tW8Pc1ERFs2Zg13bt6Nrhw5w12gwedw4uNhssJSU4GJqKibFxqJvz554Y/FinEpORiOdDh1CQ5F89Ciae3oiMjQUThYLXFUquKrVOPXTT7D8PkTBQ6/HIwMHIjUlBUmJiVADCG3TBr7e3oDVilMnTqBp48awXL2K3y5fRtPGjWEzm3G1uBiCa0HKPzAQTZo2hZNGgyv5+fg1PR0mmw25FguyTSYUAWgdGYkMiwVu7drhb5Mm4fvcXIRFRaFRo0Z44oknMHbsWPTt27daNf/hhx+wf/9+TJ06FQP694dxxw48BKCbXo9AkwlNrVbUxa9NUamARo1wNi8POSLwu+ceJFosaP/ss7D06oWWbdvCxcXlDx8jJSUFISEhCG3WDJ8vXozLycmAxYIWLVrgTEoKQtq1g3dgIMaMH4+0335DSHg4RvzjH0g6fRr9oqPR/5FHUGA24+jx4/Dx80NOTg7i4uLQrFkzDBkyxL5xpbqMRiMmTJgAPz8/BAYGYvTo0XCqbOtrPZefn48VK1bA1dUVWVlZmDt3LqxWKxYvXozg4GBkZWVh4MCBaN269X//ZCJAUhJw5IgyfDo3F8jLgzk7G6nHjkEPwMfTE86lpbD93rPrVMnwsFqh0SgBs6pQqdcrodjTU7ls1EgZWnn9VDb0sqzXuexvgwHn8/Kwac8eTJg+HRrXyge85eTk4OLFiwgPD7ePALhxyHV+fj6uXr2K5s2b/7nvBxHR9TIzAT8/FKxfD8+YGAbCGsBA6ODs+xBW48Oya9cu+Pj4ICwszD7PbDbDaDTizTffRNeuXfGXv/ylwv1WrlyJdu3aoWfPnnes/dVlNBpx9OhRdOnSBS4uLsjOzsaWLVvw0EMPwWazoWXLlpXu95OdnY20tDR06tQJzz//PJYsWQIRQW5uLo4ePYq+fftWWIF/9913MX78eGzcuBF333033njjDcyaNQtjxozB+PHjMXDgwErbaDKZ8N1338HJyQl9+vSBRqO54++DyWTCZ599hiFDhmDmzJn44osvcPbsWfTp0wdvvfUWziYl4d+LFmH+jBloqtNBZTQi/+JFBAcGwsXJqcJwQltpKS6kpuLfy5dj7Pjx8A8MxCeffgq9uzu6RkUhoGVLwMkJX3z9NeK//x6jRo9Gk6ZNkVdQgO27duG5F16AWq+372vWsm1bmABs+eorXM7Lg7ObGwZGRwMqFVJTU1FQUICIiIhqv24RQWhoKJ566in87//+b5W3mzhxIjZs2ICEhIRyQ/5OnDgBFxcXtGnT5nbednJ0Ntu1/V+un8p6Km+8rOrvynr1bryu1yuhrWwyGJQgZzAogZCIiCqXkwM0bYqCNWvgOXw4A2ENYCB0cLcTCOuzzMxM+Pj4VHlgkezsbHh4eNxSSDMajVi1ahViY2PL9bzSze3YsQMXL14sd5CcO8VqtcLJyekPDx5jNptRWlr6h8OAiIiIqA4qLAQ8PFDwwQfwfPppruPWAAZCB8dASERERET1hskEuLqi4N//huezz3IdtwY0vJ1ciIiIiIiobio7noDZXLvtaEAYCImIiIiIqG5wclKO6MxAWGMYCImIiIiIqO7QaJQDeVGNYCAkIiIiIqK6Q6NhD2ENYiAkIiIiIqK6w8WFgbAGMRASEREREVHdwSGjNYqBkIiIiIiI6g4OGa1RDIRERERERFR3sIewRjEQEhERERFR3cFAWKMYCImIiIiIqO7gkNEaxUBIRERERER1BwNhjWIgJCIiIiKiuoNDRmsUAyEREREREdUd7CGsUQyERERERERUdzAQ1igGwjrg3XffRVBQEFxdXdGpUyfs3bu3tptERERERFQ7GAhrFANhLVu3bh0mT56Ml19+GceOHcN9992HAQMGIC0trbabRkRERERU87gPYY1iIKxlS5YswejRozFmzBiEhobizTffREBAAN57773abhoRERERUc1zcWEPYQ1iIKxFZrMZCQkJ6N+/f7n5/fv3x/79+yu9j8lkQkFBQbmJiIiIiKje0GiAkydruxUNBgNhLcrOzobVakXz5s3LzW/evDkuXbpU6X0WLlwIT09P+xQQEFATTSUiIiIiqhkxMUBUVG23osFgIKwDVCpVuesiUmFemenTpyM/P98+XbhwoSaaSERERERUMx56CFi3rrZb0WA413YDGrKmTZtCrVZX6A3Mysqq0GtYRqvVQqvV1kTziIiIiIionmMPYS3SaDTo1KkTdu7cWW7+zp070b1791pqFRERERERNRTsIaxlU6ZMwYgRI9C5c2dERUVh+fLlSEtLQ2xsbG03jYiIiIiI6jkGwlo2ePBg5OTkYO7cucjMzER4eDi++uortGzZsrabRkRERERE9ZxKRKS2G0G3r6CgAJ6ensjPz4eHh0dtN4eIiIiI6L/Gddyaw30IiYiIiIiIGigGQiIiIiIiogaKgZCIiIiIiKiBYiAkIiIiIiJqoBgIiYiIiIiIGigGQiIiIiIiogaK5yF0cGVnDSkoKKjllhARERER3Rll67Y8Q96fj4HQweXk5AAAAgICarklRERERER3VmFhITw9PWu7GfUaA6GDa9KkCQAgLS2NH5Z6oKCgAAEBAbhw4QJPwloPsJ71D2tav7Ce9Q9rWn+ICAoLC+Hn51fbTan3GAgdnJOTshuop6cnv/jqEQ8PD9azHmE96x/WtH5hPesf1rR+YGdHzeBBZYiIiIiIiBooBkIiIiIiIqIGioHQwWm1WsyaNQtarba2m0J3AOtZv7Ce9Q9rWr+wnvUPa0pUfSrhsVyJiIiIiIgaJPYQEhERERERNVAMhERERERERA0UAyEREREREVEDxUBIRERERETUQDEQOoDvv/8e0dHR8PPzg0qlwubNm8stFxHMnj0bfn5+0Ol0eOCBB3DixInaaSzd1MKFC3HvvffCYDDA29sbgwYNwqlTp8rdhjV1LO+99x4iIiLsJ0KOiorC119/bV/Oejq2hQsXQqVSYfLkyfZ5rKljmT17NlQqVbnJx8fHvpz1dDwZGRkYPnw4vLy8oNfr0aFDByQkJNiXs6ZEt46B0AEUFxcjMjISy5Ytq3T5a6+9hiVLlmDZsmU4fPgwfHx80K9fPxQWFtZwS+lWxMfHY/z48fjxxx+xc+dOWCwW9O/fH8XFxfbbsKaOxd/fH4sWLcKRI0dw5MgR9OnTB48++qh95YP1dFyHDx/G8uXLERERUW4+a+p47r77bmRmZtqn5ORk+zLW07FcuXIFPXr0gIuLC77++mucPHkSr7/+Oho1amS/DWtKVA1CDgWAbNq0yX7dZrOJj4+PLFq0yD7v6tWr4unpKe+//34ttJCqKysrSwBIfHy8iLCm9UXjxo1l5cqVrKcDKywslJCQENm5c6fcf//9MmnSJBHhZ9QRzZo1SyIjIytdxno6nmnTpknPnj2rXM6aElUPewgd3Pnz53Hp0iX079/fPk+r1eL+++/H/v37a7FldKvy8/MBAE2aNAHAmjo6q9WKuLg4FBcXIyoqivV0YOPHj8fDDz+MBx98sNx81tQxnTlzBn5+fggKCsKQIUNw7tw5AKynI9q6dSs6d+6Mv//97/D29kbHjh2xYsUK+3LWlKh6GAgd3KVLlwAAzZs3Lze/efPm9mVUd4kIpkyZgp49eyI8PBwAa+qokpOT4e7uDq1Wi9jYWGzatAlhYWGsp4OKi4vD0aNHsXDhwgrLWFPH07VrV3z88cf45ptvsGLFCly6dAndu3dHTk4O6+mAzp07h/feew8hISH45ptvEBsbi4kTJ+Ljjz8GwM8oUXU513YD6M5QqVTlrotIhXlU90yYMAFJSUnYt29fhWWsqWNp27YtEhMTkZeXh40bN2LkyJGIj4+3L2c9HceFCxcwadIk7NixA66urlXejjV1HAMGDLD/3b59e0RFRaFVq1ZYvXo1unXrBoD1dCQ2mw2dO3fGggULAAAdO3bEiRMn8N577+HJJ5+03441Jbo17CF0cGVHSbtxi1dWVlaFLWNUtzz33HPYunUrdu/eDX9/f/t81tQxaTQatG7dGp07d8bChQsRGRmJt956i/V0QAkJCcjKykKnTp3g7OwMZ2dnxMfHY+nSpXB2drbXjTV1XG5ubmjfvj3OnDnDz6gD8vX1RVhYWLl5oaGhSEtLA8DfUaLqYiB0cEFBQfDx8cHOnTvt88xmM+Lj49G9e/dabBlVRUQwYcIEfP7559i1axeCgoLKLWdN6wcRgclkYj0dUN++fZGcnIzExET71LlzZwwbNgyJiYkIDg5mTR2cyWTCzz//DF9fX35GHVCPHj0qnK7p9OnTaNmyJQD+jhJVF4eMOoCioiKkpKTYr58/fx6JiYlo0qQJAgMDMXnyZCxYsAAhISEICQnBggULoNfr8cQTT9Riq6kq48ePx9q1a7FlyxYYDAb7FkxPT0/odDr7+c5YU8cxY8YMDBgwAAEBASgsLERcXBz27NmD7du3s54OyGAw2PfpLePm5gYvLy/7fNbUsbz44ouIjo5GYGAgsrKyMG/ePBQUFGDkyJH8jDqg559/Ht27d8eCBQsQExODQ4cOYfny5Vi+fDkAsKZE1VVrxzelW7Z7924BUGEaOXKkiCiHV541a5b4+PiIVquVXr16SXJycu02mqpUWS0ByIcffmi/DWvqWJ5++mlp2bKlaDQaadasmfTt21d27NhhX856Or7rTzshwpo6msGDB4uvr6+4uLiIn5+fPPbYY3LixAn7ctbT8Wzbtk3Cw8NFq9VKu3btZPny5eWWs6ZEt04lIlJLWZSIiIiIiIhqEfchJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBooBkIiIiIiIqIGioGQiIiIiIiogWIgJCIiIiIiaqAYCImIiIiIiBqo/wfj0SWeAcghJwAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6fe905883a134654b5f6d8fdbc6c3bff", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACoG0lEQVR4nOzdd3xT9f4/8Fd22tKGDrqgbISyNxRUQLCAlOG4eC9QRRGcVGQprlv1K6hcAYWfqFxFZMi96MUBWoYKyIYCCshUZEgXdLfpzPn9kZ5jVtukzWxfz8ejDyU5SU7SJD2v8/583h+ZIAgCiIiIiIiIqNGRe3oHiIiIiIiIyDMYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBopBkIiIiIiIqJGioGQiIiIiIiokWIgJCIiIiIiaqQYCImIiIiIiBoppad3gOpOEATk5+ejoKAAgYGBkMlknt4lIiIiIqJ6EwQBBQUFiI6OhlzOGpYrMRD6sIKCAjRt2tTTu0FERERE5BJXr15FixYtPL0bDRoDoQ8LDAzE1atXERMTg6tXryIoKMjTu0REREREVG/5+fmIiYlBYGCgp3elwWMg9GEymUwKgUFBQdL/79q1C//85z8hCAKio6OxcuVKBAcH44033sB3332H4uJiTJ48GbNmzTK7v6lTp+L06dOQy+UYNWoUXnnlFQwdOhRbtmxBkyZNpO0qKirwyCOP4LfffkPv3r3xzjvvmN3PJ598gtdffx3NmzdH8+bNsX79erPrf/jhB7zwwgtQqVSorKzEDz/8AIVC4fB97tq1C4mJiUhOTsa0adMwdOhQVFZWQq/XY8aMGZgxY4azXupaPfDAA/jhhx9w7do1tz0mERERUUPHKVGuxwG5DUx2djaeffZZfPnll9izZw/GjBmDmTNnAgDmzJmD3bt34+DBg1i1ahUqKyutbr969WocOHAAX3/9dbXh5ptvvkGLFi3w008/obi4GPv377fa5umnn8auXbuswiAAvPjii/j222+xZ88efPvtt1CpVHW+z/vvvx/Tpk2T/v3dd9/hp59+wsKFC1FeXl77C+Ykn376KSIjI932eEREREREztDoAuGePXswduxYREdHQyaT4csvv7Ta5syZMxg3bhx0Oh0CAwMxcOBAXLlyRbq+tLQUM2fORFhYGAICAjBu3Dir8JSTk4PExETodDrodDokJiYiNzfXbJsrV65g7NixCAgIQFhYGJKSklBWVlav57dlyxZMmjQJwcHBAIDExEQcOHAAlZWVUKlUAICSkhK0bdsWCoXC5n3I5XJ06tQJf/75JwDglVdewZAhQ6RgeeDAAcTHxwMARo0aZTO8vffee7jtttuwceNGq+tUKhV27dqF0tJS6HQ6yOXyet+nKT8/P0RFRSE7O1u6bNeuXYiPj8f48ePRo0cPfP755xg3bhz69euHzMxMs9tnZWVh7NixGDJkCKZMmWJ23a5duzBq1CiMGzcOPXv2xMmTJ2vcFyIiIiIib9boAmFRURF69OiBFStW2Lz+t99+w6233opOnTph165d+Pnnn/HSSy9Bq9VK28yaNQubN2/Gxo0bsXfvXhQWFiIhIcGs4jZp0iScOHECKSkpSElJwYkTJ5CYmChdX1lZiTFjxqCoqAh79+7Fxo0b8cUXX2DOnDn1en5paWlWE2/Dw8Nx48YNAMYqYYcOHdC/f/9q70Ov1+OXX35B27ZtAQB33nkndu/ejezsbKSmpiI3N1canqrT6cyCFwBMmDABp06dwrfffoslS5YgLS3N7PqPP/4Y//vf/9CpUyc8+eSTMBgM9b5PUzdu3EBGRgaaNWtmdrkgCPjqq6+QlJSE9evX4+uvv8aUKVOsTgosXLgQDz/8MHbv3o1PP/3U6v7Ly8vx9ddfY/HixVi9enW1+0FERERE5O0a3RzC0aNHY/To0dVe/8ILL+Cuu+7CW2+9JV0mBiMAyMvLw0cffYS1a9dixIgRAIB169YhJiYGO3fuxMiRI3HmzBmkpKTg4MGDGDBgAABg1apViIuLw7lz59CxY0ds374dv/76K65evYro6GgAwNtvv42pU6fi9ddfr3ODmOjoaKmyJ8rKykJYWJj0GK+//jpuvfVWTJs2TXps0UMPPQQ/Pz8888wzUqDq06cPAKB///64ePEigoODkZ+fDwDIzc1FSEiI2X2InU8DAwMxbNgwnDlzBlFRUdL17dq1w9q1a2EwGDBt2jTs2LGjTvdpqwXx6NGjIZfL8c4771hd3717dwBA8+bNzf7/t99+M9vu7NmzeOGFFwDA5mP07NkTABATE4OcnByr64mIiKjxqqysdOu0FV+lUqmqHa1G7tXoAmFNDAYDtm7divnz52PkyJE4fvw42rRpgwULFmDChAkAgNTUVJSXl0vDGwFjCOvatSv279+PkSNH4sCBA9DpdFIYBICBAwdCp9Nh//796NixIw4cOICuXbuaBbKRI0eitLQUqampGDZsWJ2ew5gxYzBmzBg88MADaNq0KTZs2IC4uDgoFAqUlpZCo9FAo9HA398ffn5+VrdfvXo1unbtanbZ8ePHMWLECBw9ehSzZs2CWq3G9u3bcfvtt2Pbtm14+OGHzbbPz89HUFAQKisrcejQITz++ONm11+4cAEdOnSAXC5HWFgYDAYDBg4c6PB9/vHHH1b7/91335k1wDFlOinZ9P8FQTDbLjY2Fvv27cP48eNhMBisQmFNtyUiIqLGSRAEpKenW00Rouo1bdoUkZGRbBzjYQyEJjIzM1FYWIg33ngD//d//4c333wTKSkpuOeee/Djjz9iyJAhSE9Ph1qtluboiSIiIpCeng4ASE9PR3h4uNX9h4eHm20TERFhdn1wcDDUarW0jS2lpaUoLS2V/i1W1UQhISFYtGgRxo8fD0EQEBUVhffffx8AMHv2bJw+fRrl5eV44IEHrJ5Ddb777ju8+uqr6NGjB/r06YMePXrgyy+/xG233YZevXohLi4OAPDoo4/igw8+wNKlS/Hdd99BEAT84x//QOvWrc3u7+2338aJEyeg0WjQtm1bxMfHQxAEh+/TViB0hgULFmDq1KlYsmQJWrdujTVr1rjkcYiIiKjhEMNgeHg4/P39GXJqIAgCiouLpT4OpiPJyP1kQiMucchkMmzevFmq/l2/fh3NmzfHP/7xD2zYsEHabty4cQgICMBnn32GDRs24KGHHjILZYBxnl27du3w/vvvY+HChVizZg3OnTtntk2HDh0wbdo0PPfcc5gxYwYuX76Mbdu2mW2jVqvx6aef4u9//7vNfU5OTsYrr7xidXleXl6jW4fw4MGDePTRR5GUlGTWadQTHnjgAZw9exaHDx/26H4QERGR+1VWVuL8+fMIDw9HaGiop3fHZ9y8eROZmZm45ZZbrIaP5ufnQ6fTNcpjXHdrdE1lahIWFgalUonOnTubXR4bGyt1GY2MjERZWZnV3LHMzEyp4hcZGYmMjAyr+8/KyjLbxrISmJOTg/LycqvKoakFCxYgLy9P+rl69arjT7SBGDhwIH7++WePh0HAuOwEwyAREVHjJM4Z9Pf39/Ce+Bbx9eKcS89iIDShVqvRr18/q8re+fPn0apVKwDGBisqlQo7duyQrk9LS8OpU6cwaNAgAEBcXBzy8vLMAsKhQ4eQl5dnts2pU6fMumVu374dGo1GauJii0ajkRahN12MnoiIiIg8i8NEHcPXyzs0ujmEhYWFuHjxovTvS5cu4cSJEwgJCUHLli0xb9483H///bj99tsxbNgwpKSk4JtvvsGuXbsAGJdEmDZtGubMmYPQ0FCEhIRg7ty56Natm9R1NDY2FqNGjcL06dPxwQcfAABmzJiBhIQEdOzYEQAQHx+Pzp07IzExEYsXL0Z2djbmzp2L6dOnM+QREREREZFbNLoK4dGjR9GrVy/06tULgLHRSq9evfDyyy8DAO6++268//77eOutt9CtWzf8+9//xhdffIFbb71Vuo+lS5diwoQJmDhxIgYPHgx/f3988803ZmOf169fj27duiE+Ph7x8fHo3r071q5dK12vUCiwdetWaLVaDB48GBMnTsSECRPwr3/9y02vBBGR52RkZGD+/PkwGAye3hUiIqrGrl27IJPJ2Dm1gWvUTWUaAk64JSJflJiYiHXr1uH8+fPo0KGDp3eHiKheSkpKcOnSJbRp0wZardbTu+M0u3btwrBhw5CTkyOtCe1MNb1uPMZ1n0ZXISQiIs8T1/dkhZCIiMizGAiJiMjtxEBYWVnp4T0hImrcSktLkZSUhPDwcGi1Wtx66604cuSI2Tb79u1Djx49oNVqMWDAAJw8eVK67vLlyxg7diyCg4MREBCALl264Ntvv3X306B6YCAkIiK3E+dcs0JIRORZ8+fPxxdffIE1a9bg2LFjaN++PUaOHIns7Gxpm3nz5uFf//oXjhw5gvDwcIwbN05aKuLJJ59EaWkp9uzZg5MnT+LNN99EkyZNPPV0qA4aXZdRIiLyPFYIiagxKC4uxtmzZ93+uJ06dbJrTcSioiKsXLkSn3zyCUaPHg0AWLVqFXbs2IGPPvoI/fr1AwD885//xJ133gkAWLNmDVq0aIHNmzdj4sSJuHLlCu69915069YNANC2bVsXPStyFQZCIiJyO7FCyEBIRA3Z2bNna1xf2lVSU1PRu3fvWrf77bffUF5ejsGDB0uXqVQq9O/fH2fOnJECYVxcnHR9SEgIOnbsiDNnzgAAkpKS8Pjjj2P79u0YMWIE7r33XnTv3t3Jz4hciYGQiIjcjkNGiagx6NSpE1JTUz3yuPYQFxuwXCBeEIRaF40Xr3/kkUcwcuRIbN26Fdu3b8eiRYvw9ttvY+bMmXXYc/IEBkIiInI7DhklosbA39/frkqdp7Rv3x5qtRp79+7FpEmTAADl5eU4evQoZs2aJW138OBBtGzZEgCQk5OD8+fPm4XOmJgYPPbYY3jsscewYMECrFq1ioHQhzAQEhGR23HZCSIizwsICMDjjz+OefPmISQkBC1btsRbb72F4uJiTJs2DT///DMA4NVXX0VoaCgiIiLwwgsvICwsDBMmTAAAzJo1C6NHj8Ytt9yCnJwc/PDDD4iNjfXgsyJHMRASEZHbcQ4hEZF3eOONN2AwGJCYmIiCggL07dsX27ZtQ3BwsNk2Tz/9NC5cuIAePXrg66+/hlqtBmD8Hn/yySdx7do1BAUFYdSoUVi6dKmnng7VAQMhERG5nRgIKyoqPLwnRESNm1arxbvvvot3333X6rqhQ4dK8wwTEhJs3n758uUu3T9yPa5DSEREbsdASERE5B0YCImIyO3EOYQMhERERJ7FQEhERG4nBsLy8nIP7wkREVHjxkBIRERuxyGjRERE3oGBkIiI3I6BkIiIyDswEBIRkdtxyCgREZF3YCAkIiK3Y4WQiIjIOzAQEhGR27FCSERE5B0YCImIyGNYISQi8l3Jycno2bOnp3eD6omBkIiI3E4QBAAMhERERJ7GQEhERG5nMBgAcMgoERGRpzEQEhGR2zEQEhF5B4PBgDfffBPt27eHRqNBy5Yt8frrrwMAnn32Wdxyyy3w9/dH27Zt8dJLL9X6vf3xxx+jS5cu0Gg0iIqKwlNPPeWOp0H1oPT0DhARUeMjBkLxv0RE5BkLFizAqlWrsHTpUtx6661IS0vD2bNnAQCBgYH45JNPEB0djZMnT2L69OkIDAzE/Pnzbd7XypUrMXv2bLzxxhsYPXo08vLysG/fPnc+HaoDBkIiInI7BkIiIs8rKCjAO++8gxUrVuDBBx8EALRr1w633norAODFF1+Utm3dujXmzJmD//znP9UGwv/7v//DnDlz8PTTT0uX9evXz4XPgJyBgZCIiNxObCrDQEhEDVpxMVBVbXOrTp0Af/9aNztz5gxKS0sxfPhwm9d//vnnWLZsGS5evIjCwkJUVFQgKCjI5raZmZm4fv16tfdF3qvRzSHcs2cPxo4di+joaMhkMnz55ZfVbvvoo49CJpNh2bJlZpeXlpZi5syZCAsLQ0BAAMaNG4dr166ZbZOTk4PExETodDrodDokJiYiNzfXbJsrV65g7NixCAgIQFhYGJKSklBWVuakZ0pE5L1YISSiRuHsWaBPH/f/2BlC/fz8qr3u4MGD+Pvf/47Ro0djy5YtOH78OF544YVqj1Vrui/ybo2uQlhUVIQePXrgoYcewr333lvtdl9++SUOHTqE6Ohoq+tmzZqFb775Bhs3bkRoaCjmzJmDhIQEpKamQqFQAAAmTZqEa9euISUlBQAwY8YMJCYm4ptvvgEAVFZWYsyYMWjWrBn27t2Lmzdv4sEHH4QgCFi+fLkLnjkRkfcQg2BlZaWH94SIyIU6dQJSUz3zuHbo0KED/Pz88P333+ORRx4xu27fvn1o1aoVXnjhBemyy5cvV3tfgYGBaN26Nb7//nsMGzasbvtNHtHoAuHo0aMxevToGrf5888/8dRTT2Hbtm0YM2aM2XV5eXn46KOPsHbtWowYMQIAsG7dOsTExGDnzp0YOXIkzpw5g5SUFBw8eBADBgwAAKxatQpxcXE4d+4cOnbsiO3bt+PXX3/F1atXpdD59ttvY+rUqXj99derLccTETUErBASUaPg7w/07u3pvaiWVqvFs88+i/nz50OtVmPw4MHIysrC6dOn0b59e1y5cgUbN25Ev379sHXrVmzevLnG+0tOTsZjjz2G8PBwjB49GgUFBdi3bx9mzpzppmdEddHohozWxmAwIDExEfPmzUOXLl2srk9NTUV5eTni4+Oly6Kjo9G1a1fs378fAHDgwAHodDopDALAwIEDodPpzLbp2rWrWQVy5MiRKC0tRWoNZ5JKS0uRn59v9kNE5GsYCImIvMNLL72EOXPm4OWXX0ZsbCzuv/9+ZGZmYvz48XjmmWfw1FNPoWfPnti/fz9eeumlGu/rwQcfxLJly/Dee++hS5cuSEhIwIULF9z0TKiuGl2FsDZvvvkmlEolkpKSbF6fnp4OtVqN4OBgs8sjIiKQnp4ubRMeHm512/DwcLNtIiIizK4PDg6GWq2WtrFl0aJFeOWVVxx6TkRE3kZsKsMho0REniWXy/HCCy+YDQ0VvfXWW3jrrbfMLps1a5b0/8nJyUhOTja7/tFHH8Wjjz7qil0lF2GF0ERqaireeecdfPLJJ5DJZA7dVhAEs9vYun1dtrG0YMEC5OXlST9Xr151aD+JiLwBK4RERETegYHQxE8//YTMzEy0bNkSSqUSSqUSly9fxpw5c9C6dWsAQGRkJMrKypCTk2N228zMTKniFxkZiYyMDKv7z8rKMtvGshKYk5OD8vJyq8qhKY1Gg6CgILMfIiJfw0BIRETkHRgITSQmJuKXX37BiRMnpJ/o6GjMmzcP27ZtAwD06dMHKpUKO3bskG6XlpaGU6dOYdCgQQCAuLg45OXl4fDhw9I2hw4dQl5entk2p06dQlpamrTN9u3bodFo0KdPH3c8XSIij2EgJCIi8g6Nbg5hYWEhLl68KP370qVLOHHiBEJCQtCyZUuEhoaaba9SqRAZGYmOHTsCAHQ6HaZNm4Y5c+YgNDQUISEhmDt3Lrp16yZ1HY2NjcWoUaMwffp0fPDBBwCMy04kJCRI9xMfH4/OnTsjMTERixcvRnZ2NubOnYvp06ez6kdEDR6XnSAiIvIOja5CePToUfTq1Qu9evUCAMyePRu9evXCyy+/bPd9LF26FBMmTMDEiRMxePBg+Pv745tvvpHWIASA9evXo1u3boiPj0d8fDy6d++OtWvXStcrFAps3boVWq0WgwcPxsSJEzFhwgT861//ct6TJSLyUmJTGVYIiYiIPKvRVQiHDh0qHYjY448//rC6TKvVYvny5TUuIB8SEoJ169bVeN8tW7bEli1b7N4XIqKGgkNGiaghcuQYk/h6eYtGVyEkIiLP45BRImpIVCoVAKC4uNjDe+JbxNdLfP3IMxpdhZCIqCGpqKjAr7/+iu7du3t6VxzCCiERNSQKhQJNmzZFZmYmAMDf39/hJcwaE0EQUFxcjMzMTDRt2tRs2hW5HwMhEZEPW7x4MZ5//nmkpaUhMjLS07tjN84hJKKGRvwOFkMh1a5p06Y+9beroWIgJCLyYZcuXQJgPADxpT+qrBASUUMjk8kQFRWF8PBwlJeXe3p3vJ5KpWJl0EswEBIR+bDAwEAAQEFBgYf3xDGcQ0hEDZVCoWDQIZ/CpjJERD5MDISFhYUe3hPHsEJIRETkHRgIiYh8WJMmTQAwEBIREVHdMBASEfkwXx0yKjaV4ZBRIiIiz2IgJCLyYVqtFoDvBUJWCImIiLwDAyERkQ8TK216vd7De+IYBkIiIiLvwEBIROTDfDVQMRASERF5BwZCInK6srIyn2ty4qvEQCVWCn0Fl50gIiLyDgyEROR0I0eOlJqdkGv5arASAywrhERERJ7FQEhETrdr1y5P70Kj4avBikNGiYiIvAMDIRGRD/PVYOWrlU0iIqKGhoGQiMiH+Xog9LX9JiIiamgYCInI6TQaDQCgtLTUw3vS8PlqsPLV/SYiImpoGAiJyOkCAgIAAPn5+R7ek4bPV+cQ+up+ExERNTQMhETkdGIgLCgo8PCeNHy+OhfPV/ebiIiooWEgJCKnY4XQfXx16KWv7jcREVFDw0BIRE6nVqsBcA6hO/hqsOKQUSLX+/TTT3lijohqxUBIRE4nk8kAcDigO/h6IOR7hMg18vLy8OCDD+LRRx/19K4QkZdjICQil/G1kOKLfLXS5qv7TeRrLly44OldICIvx0BIRC7D6o/r+WqF0Ff3m8hXiJ+trKwsD+8JEXk7BkIicjpxyCgP9l3PV7t1skJI5FriZ+vGjRse3hMi8naNLhDu2bMHY8eORXR0NGQyGb788kvpuvLycjz77LPo1q0bAgICEB0djQceeADXr183u4/S0lLMnDkTYWFhCAgIwLhx43Dt2jWzbXJycpCYmAidTgedTofExETk5uaabXPlyhWMHTsWAQEBCAsLQ1JSEsrKylz11IncztdCii/y1Uob5xASuZb4nVBcXOzhPSEib9foAmFRURF69OiBFStWWF1XXFyMY8eO4aWXXsKxY8fwv//9D+fPn8e4cePMtps1axY2b96MjRs3Yu/evSgsLERCQoLZgc2kSZNw4sQJpKSkICUlBSdOnEBiYqJ0fWVlJcaMGYOioiLs3bsXGzduxBdffIE5c+a47skTuRkP9l3PVyttvrrfRL6Cny0ispfS0zvgbqNHj8bo0aNtXqfT6bBjxw6zy5YvX47+/fvjypUraNmyJfLy8vDRRx9h7dq1GDFiBABg3bp1iImJwc6dOzFy5EicOXMGKSkpOHjwIAYMGAAAWLVqFeLi4nDu3Dl07NgR27dvx6+//oqrV68iOjoaAPD2229j6tSpeP311xEUFOTCV4HIPXhA4nq+XiH0tf0m8hXiZ4yIqDaNrkLoqLy8PMhkMjRt2hQAkJqaivLycsTHx0vbREdHo2vXrti/fz8A4MCBA9DpdFIYBICBAwdCp9OZbdO1a1cpDALAyJEjUVpaitTU1Gr3p7S0FPn5+WY/RN6Gy064j68GQl+d+0jkK3ztO4GIPIeBsAYlJSV47rnnMGnSJKlil56eDrVajeDgYLNtIyIikJ6eLm0THh5udX/h4eFm20RERJhdHxwcDLVaLW1jy6JFi6R5iTqdDjExMfV6jkSuxAMS1/PVQMgKIZFr8bNFRPZiIKxGeXk5/v73v8NgMOC9996rdXtBEKSqCACz/6/PNpYWLFiAvLw86efq1au17huRp7D643q+2pyFgZDItfjZIiJ7MRDaUF5ejokTJ+LSpUvYsWOH2Xy+yMhIlJWVIScnx+w2mZmZUsUvMjISGRkZVveblZVlto1lJTAnJwfl5eVWlUNTGo0GQUFBZj9E3obLTrgPK4REZAs/W0RkLwZCC2IYvHDhAnbu3InQ0FCz6/v06QOVSmXWfCYtLQ2nTp3CoEGDAABxcXHIy8vD4cOHpW0OHTqEvLw8s21OnTqFtLQ0aZvt27dDo9GgT58+rnyKRG7ja1UrX+SrgZBzCIlcy9e+E4jIcxpdl9HCwkJcvHhR+velS5dw4sQJhISEIDo6Gvfddx+OHTuGLVu2oLKyUqrihYSEQK1WQ6fTYdq0aZgzZw5CQ0MREhKCuXPnolu3blLX0djYWIwaNQrTp0/HBx98AACYMWMGEhIS0LFjRwBAfHw8OnfujMTERCxevBjZ2dmYO3cupk+fzqof+TxWCN3HVwMhK4RErsXPFhHZq9EFwqNHj2LYsGHSv2fPng0AePDBB5GcnIyvv/4aANCzZ0+z2/34448YOnQoAGDp0qVQKpWYOHEi9Ho9hg8fjk8++QQKhULafv369UhKSpK6kY4bN85s7UOFQoGtW7fiiSeewODBg+Hn54dJkybhX//6lyueNpFHsPrjegyERGQLP1tEZK9GFwiHDh1a49o89qzbo9VqsXz5cixfvrzabUJCQrBu3boa76dly5bYsmVLrY9H5KsYCF3PV4OVr+43ka/gZ4uI7MU5hETkdBwy6j6+OhfPV/ebyFdwYXoishcDIRG5DA/2XY9DRonIFn62iMheDIRE5HQ82HcfBkIisoWfLSKyFwMhETkdhwO6j68GK3G/+R4hcg1f+04gIs9hICQip/PVqpUv8tXX2lf3m8hX8LNFRPZiICQip2OF0H18NVj5amWTyFfws0VE9mIgJCKnE4MgA6Hr+Wr4ZiAkci1+tojIXgyEROR0vlq18kW++loLggClUulzQZbIV/jadwIReQ4DIRE5na9WrXyRr1baDAYDlEqlz+03ka/gZ4uI7MVASERO56tVK1/kq6+1IAhQKBQ+t99EvoIL0xORvRgIicjpOIfQfXw5EIoVQh64Ejmfr30nEJHnMBASkdP5akjxRb76WouBUPx/InIuX/tOICLPYSAkIqfjHEL38dUF3g0GAxQKhfT/RORc/FwRkb0YCInI6RgI3ceXK4QMhESuw88VEdmLgZCInM5XQ4ov8tXX2nTIKE8cEDmfr30nEJHnMBASkdOxqYz7NIRA6Gv7TuQLTD9XnKdLRDVhICQip/PVkOKLfHkdQg4ZJXIdBkIishcDIRE5HecQuo+vhm8OGSVyLdMQyM8YEdWEgZCInM5XQ4ov8tXwzaYyRK5l+rnyte8HInIvBkIicjrOIXQfXw3fnENI5Fqmnyt+xoioJgyEROR0vhpSfJGvvtacQ0jkWqwQEpG9GAiJyOl8dRijL6pvU5nff//dmbtjN84hJHItBkIishcDIRE5HQOh+9SnQvj555+jXbt2+Pnnn529W7XiHEIi1+KQUSKyFwMhETmdGAR5EOJ69QmE58+fBwD88ccfztwluzAQErkWK4REZK9GFwj37NmDsWPHIjo6GjKZDF9++aXZ9YIgIDk5GdHR0fDz88PQoUNx+vRps21KS0sxc+ZMhIWFISAgAOPGjcO1a9fMtsnJyUFiYiJ0Oh10Oh0SExORm5trts2VK1cwduxYBAQEICwsDElJSSgrK3PF0yZyK1YI3ac+r7VGowEAj3zvcMgokWsxEBKRvRpdICwqKkKPHj2wYsUKm9e/9dZbWLJkCVasWIEjR44gMjISd955JwoKCqRtZs2ahc2bN2Pjxo3Yu3cvCgsLkZCQYPaFO2nSJJw4cQIpKSlISUnBiRMnkJiYKF1fWVmJMWPGoKioCHv37sXGjRvxxRdfYM6cOa578kRu4quNTnxRfeYQioGwtLTUqftkD4PBwC6jRC7EIaNEZC+lp3fA3UaPHo3Ro0fbvE4QBCxbtgwvvPAC7rnnHgDAmjVrEBERgQ0bNuDRRx9FXl4ePvroI6xduxYjRowAAKxbtw4xMTHYuXMnRo4ciTNnziAlJQUHDx7EgAEDAACrVq1CXFwczp07h44dO2L79u349ddfcfXqVURHRwMA3n77bUydOhWvv/46goKC3PBqEDkfF0N2r/qEb08GQg4ZJXItfhcTkb0aXYWwJpcuXUJ6ejri4+OlyzQaDYYMGYL9+/cDAFJTU1FeXm62TXR0NLp27Sptc+DAAeh0OikMAsDAgQOh0+nMtunatasUBgFg5MiRKC0tRWpqqkufJ5Er8ay0e9UnEKrVagAMhEQNEYeMEpG9Gl2FsCbp6ekAgIiICLPLIyIicPnyZWkbtVqN4OBgq23E26enpyM8PNzq/sPDw822sXyc4OBgqNVqaRtbSktLzQ7e8vPz7X16RG5heuDBgxDXc0aFkHMIiRoenpwjInuxQmiDTCYz+7cgCFaXWbLcxtb2ddnG0qJFi6RGNTqdDjExMTXuF5G78ay0e/lqhZBzCIlci9/FRGQvBkITkZGRAGBVocvMzJSqeZGRkSgrK0NOTk6N22RkZFjdf1ZWltk2lo+Tk5OD8vJyq8qhqQULFiAvL0/6uXr1qoPPksi1eFbavcR5QvU54OOQUaKGh4GQiOzFQGiiTZs2iIyMxI4dO6TLysrKsHv3bgwaNAgA0KdPH6hUKrNt0tLScOrUKWmbuLg45OXl4fDhw9I2hw4dQl5entk2p06dQlpamrTN9u3bodFo0KdPn2r3UaPRICgoyOyHyJvwIMS96lMhFG/DIaNEDQ9PzhGRvRrdHMLCwkJcvHhR+velS5dw4sQJhISEoGXLlpg1axYWLlyIDh06oEOHDli4cCH8/f0xadIkAIBOp8O0adMwZ84chIaGIiQkBHPnzkW3bt2krqOxsbEYNWoUpk+fjg8++AAAMGPGDCQkJKBjx44AgPj4eHTu3BmJiYlYvHgxsrOzMXfuXEyfPp0hj3ya6cE9D0JczxmB0FMVQg4ZJXIdnpwjIns1ukB49OhRDBs2TPr37NmzAQAPPvggPvnkE8yfPx96vR5PPPEEcnJyMGDAAGzfvh2BgYHSbZYuXQqlUomJEydCr9dj+PDh+OSTT6ThTwCwfv16JCUlSd1Ix40bZ7b2oUKhwNatW/HEE09g8ODB8PPzw6RJk/Cvf/3L1S8BkUvxIMS9fDUQGgwGDhklciFWCInIXo0uEA4dOtRsbR5LMpkMycnJSE5OrnYbrVaL5cuXY/ny5dVuExISgnXr1tW4Ly1btsSWLVtq3WciXyIeeMhkMh6EuEF9FqYXA3tN34muwjmERK7FdQiJyF6cQ0hETiUe3CuVSh6EuIEzKoSeCoScQ0jkOhytQUT2YiAkIqcSDzxUKhUPQtxAXL6hLq+1twRCVgiJnI9DRonIXgyERORU4oGHSqXiQYgbiHPxfK1CyDmERK7FCiER2YuBkIicyjQQ8iDE9cRKmyAIDgc7T1cIxUDI9wmR8zEQEpG9GAiJyKlYIXQvccgo4Hiwq8/8w/rikFEi1+KQUSKyFwMhETkVm8q4l8FggEqlkv7f0dsCnqkeMBASuRYrhERkLwZCInIq06YyPNB3PdMKoaOvt/i78lQg5BxCItdhICQiezEQEpFTcQ6he5k2Z3H09fZUhVAc2splJ4hch0NGicheDIRE5FScQ+he9Rl66elAyAohketwYXoishcDIRE5FecQuld9hox6OhByDiGR63DIKBHZi4GQiJxKPPBQq9U8CHEDXwyE4uNy2Qki1+Fan0RkLwZCInIqDhl1L2cEQnf/nlghJHI90w7EPOlCRDVhICQip+KQUfeqzxxCT3UZ5RxCItdjICQiezEQEpFTsULoXqYVQl/tMsr3CZHz1Wf0ABE1LgyERORUpusQ8qy06/nyHEIuO0HkOqwQEpG9GAiJyKlYIXSv+jSO8HSFkENGiVynPqMHiKhxYSAkIqfiHEL34jqERGRLfb4biKhxYSAkIqcyrRAyELqe6bAwXwuEPFglch0OGSUiezEQEpFTmc4h5IG+63EOIRHZwqYyRGQvBkIicipWCN2rPvOEuOwEUcMlzi+WyWT8LiaiGjEQEpFTsamMe/lyUxmZTAaZTMb3CZELGAwGyOVyKBQKBkIiqhEDIRE5FZvKuJcvN5WRyWSQy+V8nxC5gGkg5EkXIqoJAyERORUrhO7ly3MIebBK5DpiIORJFyKqDQMhETkVF6Z3L1/uMipWCBkIiZyPQ0aJyF4MhETkVGwq416+PoeQgZDINQwGA2QyGavwRFQrBkILFRUVePHFF9GmTRv4+fmhbdu2ePXVV82+TAVBQHJyMqKjo+Hn54ehQ4fi9OnTZvdTWlqKmTNnIiwsDAEBARg3bhyuXbtmtk1OTg4SExOh0+mg0+mQmJiI3NxcdzxNIpcxnUPojQch3377rdVn0ZeZziF0NNh5SyDkiQMi5xMEgUNGicguDIQW3nzzTbz//vtYsWIFzpw5g7feeguLFy/G8uXLpW3eeustLFmyBCtWrMCRI0cQGRmJO++8EwUFBdI2s2bNwubNm7Fx40bs3bsXhYWFSEhIMPtSnjRpEk6cOIGUlBSkpKTgxIkTSExMdOvzJXI2MWSo1WpUVFR4eG+sjRkzBjExMZ7eDaepzxxCTy87weoFketwyCgR2Uvp6R3wNgcOHMD48eMxZswYAEDr1q3x2Wef4ejRowCMBzLLli3DCy+8gHvuuQcAsGbNGkRERGDDhg149NFHkZeXh48++ghr167FiBEjAADr1q1DTEwMdu7ciZEjR+LMmTNISUnBwYMHMWDAAADAqlWrEBcXh3PnzqFjx44eePZE9SceeKjVagiCIB2UkGv4clMZhULBIaNELmLaVIafMSKqCY/SLNx66634/vvvcf78eQDAzz//jL179+Kuu+4CAFy6dAnp6emIj4+XbqPRaDBkyBDs378fAJCamory8nKzbaKjo9G1a1dpmwMHDkCn00lhEAAGDhwInU4nbWNLaWkp8vPzzX6IvIl44KHRaAC4P2w0JoIg+OSyE6ZdRjmcjcg1WCEkInuxQmjh2WefRV5eHjp16iR9ib7++uv4xz/+AQBIT08HAERERJjdLiIiApcvX5a2UavVCA4OttpGvH16ejrCw8OtHj88PFzaxpZFixbhlVdeqfsTJHIx0yGjgHFertgFk5xLHHrpq4GQQ0aJXEcMhFqtFiUlJZ7eHSLyYqwQWvjPf/6DdevWYcOGDTh27BjWrFmDf/3rX1izZo3ZdjKZzOzfgiBYXWbJchtb29d2PwsWLEBeXp70c/XqVXueFpHb2AqE5Bq+GgjF/eZwNiLXEQNhSEgIbt686endISIvxgqhhXnz5uG5557D3//+dwBAt27dcPnyZSxatAgPPvggIiMjARgrfFFRUdLtMjMzpaphZGQkysrKkJOTY1YlzMzMxKBBg6RtMjIyrB4/KyvLqvpoSqPRSEPxiLyR6RxCgIHQlUw7ugK+02XUcshoQwqEN27cQH5+Ptq2bevpXaFGTgyEoaGhDIREVCNWCC0UFxdbNcAwHdLUpk0bREZGYseOHdL1ZWVl2L17txT2+vTpA5VKZbZNWloaTp06JW0TFxeHvLw8HD58WNrm0KFDyMvLk7Yh8kWsELqPZSD0lS6jDXkOYefOndGuXTtP7waRtA5hWFgYAyER1YgVQgtjx47F66+/jpYtW6JLly44fvw4lixZgocffhiAcZjnrFmzsHDhQnTo0AEdOnTAwoUL4e/vj0mTJgEAdDodpk2bhjlz5iA0NBQhISGYO3cuunXrJnUdjY2NxahRozB9+nR88MEHAIAZM2YgISGBHUbJp1kGQm862G9IlSjAvFun6b8dvb0nA2FDm0OYlZXl6V0gAmBeIfz5558duu2bb76JFi1aYPLkyS7aOyLyJgyEFpYvX46XXnoJTzzxBDIzMxEdHY1HH30UL7/8srTN/Pnzodfr8cQTTyAnJwcDBgzA9u3bERgYKG2zdOlSKJVKTJw4EXq9HsOHD8cnn3wiHbgBwPr165GUlCR1Ix03bhxWrFjhvidL5ALeXCH0pnDqDL46h7AhDxkl8hbiwvSODhk1GAx47rnnAICBkKiRYCC0EBgYiGXLlmHZsmXVbiOTyZCcnIzk5ORqt9FqtVi+fLnZgvaWQkJCsG7dunrsLZH3YSB0n/oOGfWWQNjQfi9E3kCsEIpDRu1pfgcAV65cAQAEBAS4eheJyEtwDiEROZV4cC8uNeFNgdB0X8Tqmi8Tg5X4WvtiIGxoQ0aJvIXpkNHy8nIUFBTYdbvy8nIAYAM7okaEgZCInMpgMEChUEhVK28KhKbBpyFUpSznEPpal1GZTMYho0QuYhoIAdg9bLQhfDcSkWMYCInIqcSDEG8PhN60X3Xlq3MIuQ4hkesxEBKRvRgIicipvDkQmu6LN+1XXTlr2QlBENw6hLYxzCFsCEOSybeZLkwPANnZ2XbdriF+HomoZgyERORUlZWVXhsIG+qQ0fpWCAH3vh6NYQ6hOA+LyFPEQCg2+LL3PdkQvhuJyDEMhETkVL4yh9Cb9quuGkIgbKhDRktLSz29C9TIiQvTi98P9n7GGQiJGh8GQiJyKg4ZdZ+GEggb4gEoAyF5mrgOoaPfxQ3x80hENWMgJCKn8uZA2NCGjIrz1OrbZbQut62PxjBktKyszNO7QI1cXb+LG8J3IxE5hoGQiJzKm+cQNrQKoeWaj3WpEIoLVbNC6FysEJKniYFQPGHEQEhE1WEgJCKn4hxC96nvwvSVlZVSwwlPBEJxHcKG2JGTgZA8jRVCIrIXAyERORWHjLqPM+YQimHSna9HY1iHkIGQPM3yu5hNZYioOgyERORU3hwIG9qQUV8NhI2hyyjnEJKnid/FcrnxUM/RCmFDrNwTkW0MhETkVN48h5BDRq1v7+lAKJPJGmQg5DqE5GliIBSXnuCQUSKqDgMhETlVXRsZuENDHTJany6jng6EDXUOISuE5GmmTaMUCgUDIRFVi4GQiJzKm5vKNNQhowqFok6VNm8JhA2xQshASJ4mnpwDwAohEdWIgZCInEo8CBGDhjcNnWtoFULxOdQ1WDEQuo43ve+pcRIXpgeMgZBNZYioOgyERORUpkNGZTKZVx0YN9Q5hAqFok7BytPLTjTkQMgKIXkaK4REZC8GQiJyKrGpjEwmg1qt9qoD44Y6ZNRXK4TiOoQMhETOx0BIRPZiICQipxLnEALG7pfedGDc0IaMmgZChULhM4HQdB3Chtpl1Jve99Q4MRASkb0YCInIqUwPQlghdC3LCiG7jHoPbxoqTY0Tu4wSkb0YCInIqSwDoTcdGDfUOYS+OmS0oc0hNA223nQihBon09EarBASUU0YCInIqcQ5hID3VQgb8pBRBkLPM30Nvel9T42T5ZBRR7uMNsTKPRHZxkBIRE5lelba2wJhQxsyWt9lJyorKxkInYiBkLyJ6cm5ulQIG8rnkohqx0BIRE7lzXMIG+qQ0bouO2EwGLjshBOZvobeNFSaGqf6DhltCKMoiMg+DIRE5FS+EggbwsGOr3YZNd3vhtRllBVC8iam38V1aSrTEL4jicg+DIQ2/Pnnn5gyZQpCQ0Ph7++Pnj17IjU1VbpeEAQkJycjOjoafn5+GDp0KE6fPm12H6WlpZg5cybCwsIQEBCAcePG4dq1a2bb5OTkIDExETqdDjqdDomJicjNzXXHUyRyGW+eQ9jQhoz6epdRcR3ChjJXiYGQvEl9l51gICRqPBgILeTk5GDw4MFQqVT47rvv8Ouvv+Ltt99G06ZNpW3eeustLFmyBCtWrMCRI0cQGRmJO++8EwUFBdI2s2bNwubNm7Fx40bs3bsXhYWFSEhIMPuCnTRpEk6cOIGUlBSkpKTgxIkTSExMdOfTJXI6b55D2FCHjNanqYxSqQTguXUIOWSUyDXq21SGgZCo8VB6ege8zZtvvomYmBisXr1auqx169bS/wuCgGXLluGFF17APffcAwBYs2YNIiIisGHDBjz66KPIy8vDRx99hLVr12LEiBEAgHXr1iEmJgY7d+7EyJEjcebMGaSkpODgwYMYMGAAAGDVqlWIi4vDuXPn0LFjR/c9aSInMj0IUalUXnVgbBoCG8LBDruMehdWCMmbVFZW1msOocFggCAI0lqGRNRwsUJo4euvv0bfvn3xt7/9DeHh4ejVqxdWrVolXX/p0iWkp6cjPj5eukyj0WDIkCHYv38/ACA1NRXl5eVm20RHR6Nr167SNgcOHIBOp5PCIAAMHDgQOp1O2saW0tJS5Ofnm/0QeRNvn0OoVCohl8sbRIWwvl1GGQidi4GQvEl9h4yK90FEDR8DoYXff/8dK1euRIcOHbBt2zY89thjSEpKwqeffgoASE9PBwBERESY3S4iIkK6Lj09HWq1GsHBwTVuEx4ebvX44eHh0ja2LFq0SJpzqNPpEBMTU/cnS+QCvhAIHWmw4M3qG6wqKyulLqPuPPBjICRyvfo2lbH8fyJquBgILRgMBvTu3RsLFy5Er1698Oijj2L69OlYuXKl2XaWQyjsGVZhuY2t7Wu7nwULFiAvL0/6uXr1qj1Pi8htvL2pjEKhcGg+jTdzxrITrBA6D+cQkjexDISOziG0/H8iargYCC1ERUWhc+fOZpfFxsbiypUrAIDIyEgAsKriZWZmSlXDyMhIlJWVIScnp8ZtMjIyrB4/KyvLqvpoSqPRICgoyOyHyJt4e1MZMRA2tAqhIwd8prf3dJdRLjtB5BoMhERkLwZCC4MHD8a5c+fMLjt//jxatWoFAGjTpg0iIyOxY8cO6fqysjLs3r0bgwYNAgD06dMHKpXKbJu0tDScOnVK2iYuLg55eXk4fPiwtM2hQ4eQl5cnbUPki3xlyGhDONDx5aYy4nukIS47odFovOp9T42TaVMZR77zGtryPERUO3YZtfDMM89g0KBBWLhwISZOnIjDhw/jww8/xIcffgjAeEZ71qxZWLhwITp06IAOHTpg4cKF8Pf3x6RJkwAAOp0O06ZNw5w5cxAaGoqQkBDMnTsX3bp1k7qOxsbGYtSoUZg+fTo++OADAMCMGTOQkJDADqPk07w5EIpDRhtKUxlfDoTi0PiGNGRUfB5arZZDRsnjLCuEpaWldt2usLBQ+v+GcOKMiGrHQGihX79+2Lx5MxYsWIBXX30Vbdq0wbJlyzB58mRpm/nz50Ov1+OJJ55ATk4OBgwYgO3btyMwMFDaZunSpVAqlZg4cSL0ej2GDx+OTz75RDpbBwDr169HUlKS1I103LhxWLFihfueLJELWM4h9KYDY/GMuSAIDITwXCAUBMGsQthQAqH4Gvr5+XnViRBqnOoyZHTDhg1Yvny59G8GQqLGgYHQhoSEBCQkJFR7vUwmQ3JyMpKTk6vdRqvVYvny5WZfrJZCQkKwbt26+uwqkdcxXezcGyuESqUSgiA0iAMdX152goGQyLXqEgjnzp1r9u+G8D1JRLXjHEIicirLhem96cC4ITeVqe+yEwyEtn377bfIysqya1vxNdRqtV71vqfGybTBl72fs4CAALN/MxASNQ4MhETkVN48h7ChrkOoUCjq3GVUrOZ6KhB6c5dRg8GAMWPGmE0ZqIlphdCbhkpT42Q6fN/e7wfLzuUMhESNAwMhETkV1yF0H2fMIazrkhX14StdRm/evAkAyM3NtWt7Dhklb1KXIaOmvRAABkKixoKBkIicSqzCAd4XCDlk1Pr23hAIvbVCKK43GxwcbNf2DITkTeoSCE0b3wEMhESNBQMhETmV2LgF8M5A2BCHjNYlEAqCIHX7ZCC0LS0tDYDjgZBzCMnTxKq7o4FQ/F58+OGHATAQEjUWDIRE5FSWgdCb5lI11CGjMpmsToEQgMcCoS+sQ5idnQ0AaNKkiV3bcw4heQvT+cXif+0NhA899BCmTZsGgIGQqLFgICQip7JVIfSWOWINbchoZWUlZDJZnQKh6ZIV7g6EvrIOoRjq7N0/Dhklb2H6+QYcC4TiKArT+yFyN3ubeZFzcB1CInIqy0AorvknXuZJ4r7JZLIGEQhN28o7GupMh5u6OxCaNh7y5i6j4nvE3teGQ0bJW5h+vgEGQvJe8+fPt7pMEATs37/fA3vTeHn+CI2IGhTLQAgAZWVlXhEIxQqhXC5vEAc69ZmLJz7/ui5ZUR/i7wHw7i6j4mviaCDkkFHyNAZC8hXr16/Hhg0brC7/8ccfPbA3jZfnj9CIqEExDYQqlQqAMRD6+/t7crcA/NVUpiFVCBtCIPT2CmFpaald25sGQntvQ+QK9ZlDyEBI7vTwww8jNjYW4eHhZpc/8MADHtqjxomBkIicqroKoTcQm8qwQlj/Re3ro6EHQn9/f2nurNg8h8idLCuE9n7OGAjJ3V577TWblyclJSE/P9/Ne9N4sakMETmVGLoA7wuEYhBpSMtO1LdC6Kk5hL4UCEtKSuza3rRCKAhCg3iPkW9iUxkicgQDIRE5lTdXCMUhow1p2QlfHTIqvkd8IRDaWyEUn4efn59DtyNytrrOITQ9aSb+m4gaPg4ZJSKnMj3YF+cQekulxHTIqLfsU32Ydut0NNR5MhCaVpEbUiA0HTIKeM+JEGp8OIeQiBzBCiEROZVphVD8r7eEL9Oz3w3hQMd02QlfnUPoC8tO1DUQskJInsIuo+Qr/vvf/6JXr16YMmUK1qxZg44dO6Jfv374+uuvPb1rjQorhETkVN4eCDUaDeRyOYqLiz29O/Xmy0NGfWHZCQZC8lUMhOQr3n77bezbtw8FBQXo2bMnzp49C61WixEjRmDo0KGe3r1Gg4GQiJzKmwOhtw0Z3bFjB7RaLW677bY63Z5NZVyLgZB8lbOaynjD9yQ1bH5+fvD394e/vz+GDx8OnU4HAF6xdnFjwlebiJzKmwOhtw0ZjY+PB4A6V8hM5xD6WoWwITaVMe0y6sjtiJytvhVC8fPpDd+T1LD17NlT+tu8bt06AMb516GhoR7es8aFcwiJyKm8ORCanv32ln2qj/oEK0/OIWzoTWXEQMimMuQpbCpDvmLZsmXS+02kVqvx+eefe2iPGidWCInIqbw5EIpnIRvKwvSmwcqXuoz62pBRR9YhlMvl0Gg0AFghJM/hHEIicgQDIRE5jcFggMFg8OpAqFQqvWYOYX3Vp0LoLXMIG1qXUYVCwUBIHmcZCO35fhAEQfpOYSAkalw4ZJSInEY8ePDWQChW1LxlDmF9mVZjfW0OoS91GS0vL7frtWUgJG9Rl6Yypt/fDITkaenp6Z7ehUaFgZCInEY8gBYPJrwtEIoH7EqlskEc6NRnLp63rEPoC0NGAfvmA4rPS61W230bIleoyxxC8f3OQEje4IEHHvD0LjQqHDJKRE5jekBh+l9vCoQcMvrXbQHPNZXxpS6jgLHap9Vqa9yeFULyFrbmEAqCAEEQIJPJbN6GgZA8oX///laXCYKACxcueGBvGi9WCGuxaNEiyGQyzJo1S7pMEAQkJycjOjoafn5+GDp0KE6fPm12u9LSUsycORNhYWEICAjAuHHjcO3aNbNtcnJykJiYCJ1OB51Oh8TEROTm5rrhWRG5BoeM2s80BNV1yGR9KoTeNGTUVwJhbSwrhAyE5Cm2AiFQc8AzDYTi7Tz9PUkNX0FBAfbv34/Dhw9LP0eOHEG/fv08vWuNCgNhDY4cOYIPP/wQ3bt3N7v8rbfewpIlS7BixQocOXIEkZGRuPPOO1FQUCBtM2vWLGzevBkbN27E3r17UVhYiISEBLMv10mTJuHEiRNISUlBSkoKTpw4gcTERLc9PyJn84UKoThk1NP7ZNq5Uq/X1+k+LCuEdeky6ummMg0xEKpUKqvbU+NUUlKCn376ye2PW59AqFAoIJPJGkw3ZvJuCxcuNDt+Fr344ose2JvGi4GwGoWFhZg8eTJWrVqF4OBg6XJBELBs2TK88MILuOeee9C1a1esWbMGxcXF2LBhAwAgLy8PH330Ed5++22MGDECvXr1wrp163Dy5Ens3LkTAHDmzBmkpKTg3//+N+Li4hAXF4dVq1Zhy5YtOHfunEeeM1F9eXsgNG2p7ukDHdMQWNdKkunQS4VC4bNzCE33x5tUVFRI1T57lp4Qn5f43LzlfU+eM3v2bNx+++0oLi526+PaaipjenlNtzH9TvH09yQ1fHfffbfZcbZoyJAhHtibxouBsBpPPvkkxowZgxEjRphdfunSJaSnpyM+Pl66TKPRYMiQIdi/fz8AIDU1FeXl5WbbREdHo2vXrtI2Bw4cgE6nw4ABA6RtBg4cCJ1OJ21D5GvEA+C+b7wByGReFwi9qamMaSCsa/ORhjJkFPDeQBgQEADAvtBuMBggl8shq3rve8v7njzn7NmzAICioiK3Pm59h4wCgFar5bBnokaCTWVs2LhxI44dO4YjR45YXSe2wY2IiDC7PCIiApcvX5a2UavVVmc8IiIipNunp6cjPDzc6v7Dw8NrbLVbWlpq9gWdn59v57Micj3xgCJy3z4A8LpKiTc1lTENgXU96HJmUxl3dsQ03W/xPeKtgbBJkybIyclxaMgoYDyoLi8vd/UukpcT39dFRUVo1qyZ2x7XVrXP9HJbLAOhv7+/2yubROQZrBBauHr1Kp5++mmsW7euxo5yll26aurcVd02trav7X4WLVokNaHR6XSIiYmp8TGJ3MkyZMnlcq8IXyKxouYNFULTsNDYKoSW+226P96koqICQUFBAGDXgbFpIFSpVF7zvifPEd/X7q4QWoY7BkIiqgkDoYXU1FRkZmaiT58+UCqVUCqV2L17N959910olUqpMmhZxcvMzJSui4yMRFlZGXJycmrcJiMjw+rxs7KyrKqPphYsWIC8vDzp5+rVq/V6vkTOZOsA2JuGzpnO8fL0PjkjENanQmg6pMyTQ0a9ub19RUUFQkJCANg3GoMVQrIkvq8LCwvd+rjVBcKaviNsBUJ3B1ki8gwGQgvDhw/HyZMnceLECemnb9++mDx5Mk6cOIG2bdsiMjISO3bskG5TVlaG3bt3Y9CgQQCAPn36QKVSmW2TlpaGU6dOSdvExcUhLy8Phw8flrY5dOgQ8vLypG1s0Wg0CAoKMvsh8hZWIauq6Ymnw5dIDFDe0CzBWRXC+nYZ9fQcwoYaCFkhJMB8yKg7mXYMBeyrxLNCSNR4cQ6hhcDAQHTt2tXssoCAAISGhkqXz5o1CwsXLkSHDh3QoUMHLFy4EP7+/pg0aRIAQKfTYdq0aZgzZw5CQ0MREhKCuXPnolu3blKTmtjYWIwaNQrTp0/HBx98AACYMWMGEhIS0LFjRzc+YyLnsToALiz0qkDoTesQOjsQOtpl1NsCobfOIdTpdJDJZKwQUp14asgo5xASkSNYIayD+fPnY9asWXjiiSfQt29f/Pnnn9i+fTsCAwOlbZYuXYoJEyZg4sSJGDx4MPz9/fHNN99IX8oAsH79enTr1g3x8fGIj49H9+7dsXbtWk88JSKnsAp+BQVeFQi9acio6eN7YsiopwOh6X6b7o83qaiogEqlQmBgoM11sixZBkJPv8fI8wRBAOA9Q0a9MRAeP34cCQkJuPvuu826rE+bNs3lj01ERqwQ2mHXrl1m/5bJZEhOTkZycnK1t9FqtVi+fDmWL19e7TYhISFYt26dk/aSyPN8oULY0IaM1repjCfmEJrut7cPGVUqlQgKCuKQUaoTlUoFwHebythzIqS+kpKSsHr1aiiVSsybNw8HDx7E7Nmz8fvvv7v8sal2piNR3Gny5MlYuXKl2x+3sWIgJCKnsTrYYIWwWt7SVMZbhow2tEDIIaME/BWyTNcddefj1icQBgQE2Gx+52wymQzt27cHAGzatAnJycmYPn26x7+jG7OTJ0/i2WefRW5urvRdFhYWhoULF6Jbt25Ofaz58+dbXSYIAtfkdjMGQiJyGqs/4CUlXhcIxXUIBUGwa7kYV3FFUxlfGjLqK3MIlUolAgIC7KrwsEJIlsTPubsXeLdsKlPXQOiOtY7Dw8Pxxx9/oHXr1gCA5ORkrFu3jlNoPOiJJ57Ahg0bzJY2u3LlCiZPnoyffvrJqY+1fv16bNiwweryH3/80amPQzVjICQip/HmQGgwGCAIghSAAPMKm7u5YsioL3YZ9fY5hEqlEhqNxq7fESuEZEn87vNUIKxPhbBTp074+OOPUV5eLg19dYXPP//c6rIpU6ZgypQpLntMqlllZSV0Op3ZZUFBQS75nn744YcRGxuL8PBws8sfeOABpz8WVY+BkIicpqKiAmb1Nr3eawKhZQACPDc3AnD+kFFf7zLqzYFQrVbbdUDPCmHjdfz4cbz00ktQqVSYN2+etHyUuFawuwNhfbqMitv27NkTpaWlOH/+PLp06eLK3SUv88YbbyAhIQFqtRpBQUHIy8tDRUUF3nzzTac/1muvvWbz8qSkJLdUqMmIgZCInKaiogJm55G9qEJoeoDkDSHE001lPLkwvWnFwRt+F9UxDYSsEFJNqmuMIr5vfLFCGBYWBgDIy8tz2X6Sd7r99tuxZ88e6PV65ObmIjg4GFqt1tO7RS7EZSeIyGkqKiqgNr3AiyqEpme/TSuEnuLppjKerBCaBkJxyKg3zyGs65BRb3jfk3uIjVFat26NTZs2IT8/H9OnT5fe154IhDKZTPp82TNX17Kq6OfnBwBci7AR8/PzQ1RUFMNgI8BASEROYxUIvbBCaDmH0FPEQGhv9ckWX112whcrhBwySjURG6OIkpOTMWTIEI9WCE2Hw9szV9fWshOA6zuk7tixAwMGDMCgQYOwceNG6fIxY8a49HGJ6C8MhETkNN4cCE0PdsQDnvru1xdffIFnnnmmTrctLy+HXC6HVqut88FifbuMms7jYyC0xqYyZK/PP/9c6pIpmjJlCkJCQgDUfRRAXZmeLALqNmTUmRXCnTt3Vrum4T//+U9s27YNO3fuxOHDhzFz5kwYDAZWJhsJnhDwDgyEROQ03jxkVDwg02g0TgshSUlJWLZsmVllwF5iKKpPhdByyKgjz8c0THpDIPTmIaP2VggNBoNUiWGFkADPLTth2UG5PoGwvhXC0tJS3HnnnRgwYIDN6xUKBZo2bQp/f38sWbIEffr0wfjx41FYWFivx6W6++9//4tevXphypQpWLNmDTp27Ih+/frh66+/dvpj8YSAd2AgJCKn8eYKoXhAplarpQOe+oagli1bAvirk6AjnBEITasAjnYZtQxlnp5D6M0VQjaVobry5DqE9Q2EKpUKSqWy3gfm4nM/c+aMzet79uxpdlJt6tSpmD17drUVRbLf8ePHkZCQgLvvvttsofdp06bVeLu3334b+/btw9tvv43nnnsOhw8fxt69e7F48WKn7yNPCHgHdhklIqeprKz02kBoWiEUD1Dqu19qtfHZ1uUPlzMCoWWwcjQQivvvaHWxPgRBQGVlpc8MGVUoFHUaMqpSqVw+94q8ny8GQtOhpn5+fvV+H9f22Vm+fLnVZcOGDcPZs2fr9bhUfffb33//vcbb+fn5wd/fH/7+/hg+fLi0JqErlmkSTwiIQ66nTp2KVq1a4fHHH3f6Y1H1WCEkIqepqKiAWS8yLxoy6ooKoRhq6nIm2zQQXr16tU5ncS1DnSOBsKyszCMVQvEAOerKFSAsDMqqf3trIKxrUxlWCD3vt99+Q3p6ulsey9Y8KPHkB+A7gVAul0tVe8DYWMZZFUJyv+q639b2N7lnz57Se2XdunUAjH8zQkNDnb6Py5cvt5p/yxMC7sdASEROU1FRAT/x7LJG47UVQmctOyEGqrpWCMWGJd9//z2WLVuGpUuXYunSpViyZAkA1HoWt6ysrM6B0FNDRsWQFLtrF3DzJrRVB+zeNodQPJjnshO+SRAEtG/fXlog3tVszYMyfc94IhDWpamMZQXIHRVCcp3qut8eOXKkxtstW7bM7P0DGE+mfv75567YTfICDIRE5DRmgVCn88pAqFarnTZMUQw39a0Qigevjp7FNa3y1WfIqKPzD+tDfM0Ejcb42FW/F2+rEJquyVaXOYRsKuNZ4u/r0qVLbnk8W/Og7r77bgCoVyfhuqprhdCbAqG7qrsNWXXdb0tKSjyzQ+S1GAiJyGmsAmEDHzIq3mddKoQVFRVSINRoNHU6i2sr1Nkb7Dw9ZBRVCx2rqg42vS0QmjbYsHfIqOkBNYeMepa7D3htNUYR50AFBQW5vWNiXbuMWlaFPBkIH3jggXo9Lvk2NhVyLzaVISKnqaiogNayQujv7xWB0BVDRsWQUN8K4a233mrzLO6UKVOqvb0gCGbDPsX/VlZWms0Bqu3xAQ8FwqoKobLqtfPmQGjvkFHTgM4KoWe5uyJnqzFKXFwcACAmJqZOnYjroy4VQtP3r6g+Ta9Etf0u+vfvb3WZIAi4cOFCvR6XnC89PR2RkZFOvc9PP/0UixcvhkqlwsSJE/Hcc88BAMaPH48vv/zSqY9F1WOFkIicpqKiAn5iGAkK8qoho66oEIpVCE90GRWDlXgAJz4ne19ry+qixwJh1WvnbXMI61IhNK26skLoWd7QyET8/bdq1QqZmZlufT9YBkLxJFFNnzPT96/IGYHQ9PaCIFhdX1BQgP379+Pw4cPSz5EjR9CvX796Pa4v+/PPP1FUVOTp3bDiiqrtypUrcezYMRw7dgz+/v647777UFxcbPO9Qq7DCiEROU1FRQW0poEwK8trAqErK4R1GZ7mqkBYXl4uLShdE08PGVVW/bFX5ucD8P4KYUVFhdnC87awQmg8uD9+/Dhuv/12j+6HaSA0ndvpTqaBEDBWV2JiYtzy2HWpEJo2qRLZWx2viWVzHa3WrBc1Fi5ciIKCAgQHB5td/uKLL9brcX1ZixYt0K9fPxw+fNgl9x8fH4/t27dXe707q7ZyuVz6W5SUlITOnTtj9OjRyM7OdvpjUfUYCInIacrKysznEF696nWB0JlNZZwVCMX7yc7ORnZ2NkJCQhASElLj7cXnYzlk1JEKoWkgFAQBgiBAJpM5/FwcIQXCqv2Ue+kcQsumMoBx3zVVlU1bWCEEHn30UXz22Wc2q03uZBoIi4uLERgY6JbHPH36tPQZFk/MdOvWDTKZDCkpKZg+fbrL9wOoW5fR6oaM1rfaahoI9Xq9VSAUm+9YGjJkSL0e19fVNofcHhMnTrS6TBAEnDx5ssbbFRQU4OTJk1ZNhu68885675OlMWPGmK1DOGLECERFRWHOnDlOfyyqHgMhETmNXq9HgPgHJDCwwQ8ZdVYgvHz5MgYPHoywsDAEBQUhNzcXOTk5eOWVVzB8+PBqbw84b8goYN2IwhWkQFj1X0XVsChvC4SWQ0YB4++7pkBo+pp6y/ve3cS5cllZWYiOjvbYfpiGmMLCQpcHwrVr12LlypXo16+f9Bnet28fAOCWW25Br169cOTIEbcFQstqn70VQltDRuvbVMb0d8Hulu515MgR/PDDD2YjGwRBQGJiYo23c2fV9vnnn7e6rEuXLkhJSUF+1QgScj0GQiJyGr1ej1CVClAogIAAr+oyWlZWBplMBqVS6XVDRi9evIhr166ZHbTm5+dj9OjR1QZCywqh6ZBRe1gOGQXcHAir9l9e1X3R2+YQmr6+Ygisbeic6WvaWIeMiu/h9PR0rwmE7piL9cEHH2Dv3r1mB96pqano27cvNBoNdDqdW7smWp68qGuFUKPRIC8vr177Yvq5YSB0r3nz5iEwMBBhYWFmlz/11FM13o5V28aHTWWIyGn0ej38lUpjwxA/P6+rEKrVaikUAt5TIRQEAVlZWWbXZ2Vl1ThfzXQILFD/IaOAe6p0YiAU1x+Ue2mF0HTOqWmFsCamr2lDHDJ6/PhxJCQk4O6778b+/fuly6dNmyb9f5MmTQB4fg05ywqhIyZPnuzw4/n5+WH37t3SvwVBwMGDBwEYP6OBgYF1aj5VV3UJhNVVCJ09ZJTqbvfu3RgxYgRmz56N7du3o1evXhg6dCgOHDhgc/snnnjCKgwCwP333+/qXSUfwwohETmNXq83ziFUq43rzHlZhVA8QPK2CmGLFi0wZ84cpKenS/P4oqKi8OGHH9Z4e6B+Q0bFOU6eCIRKLw+EpkOMHakQNuSmMklJSVi9ejWUSiXmzZuHgwcPYvbs2fj999+lbfz9/QEAGRkZntpNAPZVCOfPn291mSAIZmHXXmvXrsUbb7yBF198EZWVlVCpVIiKigJgPKkQGBiIa9euOXy/dVXXIaOuWHaCFULH1DRa4tlnn8WmTZuQm5uL+Ph4HDlyBP7+/rjnnnuwa9cu9+0kNTgMhETkNMXFxcYKoVrtdRVC04MdZwSgiooKVFZW1vkMenl5ObRaLdRqNeRyOTZv3uzQ7Z0xZDQoKAiAZwKhvGr/ZV4aCE0rhOL/13Zg3NArhDKZDO3btwcAbNq0CcnJyZg+fbrZ51s84Pf0otL2VAjXr1+PDRs2WF3+448/Ovx4kZGRWLZsmdll33//PTZt2iRVCN09ZFSs1gLG351MJqvTkFEGQveyXKbDtNGXVqtFTEwMYmJiEBsbixYtWgCAR7roUsPCIaNE5DR6vd64ML1YISwpgVKh8IpAaDqEytFqWnX3BwBNmzb1imUn6jNk1Bmvh73E5yoOGZV56TqEphVCe4eMNvQKYXh4OP744w/p38nJyRgyZIhZN0QxfHm6GYTpZ7K6QPjwww8jNjYWQ4YMMftx1lprpicVmjRp4tE5hEDty8u4asio6e3tHTJal2G7DYXp62X52kdGRkq/wx9++AEApCVxHOHpEzbkfRgILSxatAj9+vVDYGAgwsPDMWHCBJw7d85sG0EQkJycjOjoaPj5+WHo0KE4ffq02TalpaWYOXMmwsLCEBAQgHHjxlkNF8nJyUFiYiJ0Oh10Oh0SExORm5vr6qdI5DJ6vd64ML0YCAUBGpnMKw6MnV0hFP9Q63S6egXCup6Br65CWJcuo45WF+tDfK0UVa+fGAi9rUIo/n41Go3dQ0YbeoXw888/l1rDi6ZMmWIzfHn6gNOeIaOvvfYawsPDrS5PSkpy6j54qkLoaCCsbtkJV1YI58+fb/Uzb968Og3bbShqCtAbN260qgYqlUrs2LHD5n19+umn6NatG3r37o033nhDunz8+PFO3GNqCBgILezevRtPPvkkDh48iB07dqCiogLx8fFmf1DeeustLFmyBCtWrMCRI0cQGRmJO++80+zLftasWdi8eTM2btyIvXv3orCwEAkJCWZfxpMmTcKJEyeQkpKClJQUnDhxotZWwETeTK/XQyuT/TVkFIAW7qk81cY0EDqjqYz4RzsoKMgpFcLS0lIcO3YMO3fuxLFjx+yarwbYXpjeHpYdMR25bX2Ir5tM/K+XDxk1rRDW9DuprKyEwWAw+31UVlZCEATX76wXEf9WeksgVCgUbm3mYsq0QujuQGhrPqA9FUJXDRkVv58svyvXr1+PMWPGmP0kJCQgNDS0Xo/py+qyTEd13aFXrlyJY8eO4dixY/D398d9992H4uLiRve9RLXjHEILKSkpZv9evXo1wsPDkZqaittvvx2CIGDZsmV44YUXcM899wAA1qxZg4iICGzYsAGPPvoo8vLy8NFHH2Ht2rUYMWIEAGDdunWIiYnBzp07MXLkSJw5cwYpKSk4ePAgBgwYAABYtWoV4uLicO7cOXTs2NG9T5zICfR6PTRq9V8VQgAaQfCKSonpGXNnNJUxrRBevnzZ4dubBsKCggIMGzbMbA2zY8eO4fHHH8eUKVNs3r6+C9OXlpZKC0SbLrzuauIBjry0FPD3B6oOkr0tEJpWCMXXuqahc+JrZ/n7cMdSHt7Em+YQqlQqCIKAn376CU888YRH9gEwfr78/PzcOn/OVoWwtnBXVlZmNu8QcF6X0aCgIGRnZ+Pbb7/F+PHjpc+EOGzXslLrrGG7rnD8+HG89NJLUKlUmDdvHgYNGgTA2G33o48+qvf912WIbXXkcrn0XZSUlITOnTtj9OjRyM7Ortf9UsPDCmEtxPV3QkJCAACXLl1Ceno64uPjpW00Gg2GDBkiDXFITU1FeXm52TbR0dHo2rWrtM2BAweg0+mkMAgAAwcOhE6nq3GoRGlpKfLz881+iLyFWYWwKmz4y2ReEQhdOWS0rk1lxECo1+uxd+9evPPOO3jttdewfPly7N69G++//36tjy92CnV0yGhJSYl0wOiJCiH0eiA8HLLCQigVinpXIZzNkQrh8ePHMWHCBADGvxGAe4fhehNvCoQajQYVFRXYuHGjyx/P1ufO9D2k0WhQWVnpthMftgKhVqutMZS6ashoaWmptD7lxx9/jCVLlkjXuXrYriskJSVh2bJlWLp0KZYuXSo9H9Nuu/XhzEA4ZswYs3m/I0aMwHvvvYfmzZvbdXtHTprevHkTM2bMqPe6leQZDIQ1EAQBs2fPxq233oquXbsC+GttpYiICLNtIyIipOvS09OhVqsRHBxc4za2vgTDw8NrXL9p0aJF0pxDnU6HmJiYuj9BIicrLi6GWib7ax1CAH4ymVcc7LuqqUx95hAqlUqo1WoYDAarNcx2794tVfBsER9T3MbRAGJaIXR3INRoNJDp9UCzZoAgIESjqXcVwtlMK4S1NZVJSkrCa6+9BsA4ymTJkiUOV2x9menJT/E18vTJSstAZOt3t2PHDgwYMACDBg0yC41jxoyx6zFOnjyJu+66C4MGDcIdd9yBuLg4jB07FidPnpQeU6VSQSaTSfvirvd5dYGwpoBhq6mMs4aMmu6Lp9eorC+x227r1q2xadMm5OfnW3XbrY+ahow6+p59/vnnreb9dunSxWo0nKna3te25OXl4bHHHsOqVavw+uuv1/T0yEs1nnEsdfDUU0/hl19+wd69e62uM20DDFi3BrbFchtb29d2PwsWLMDs2bOlf+fn5zMUktfQ6/VQA2YVQi1qb8bhDs6uEIp/qHU6HcrLy1FZWelQ62/Lhem//PJLszXM+vbti3Xr1tX6+JaB0NsrhCUlJdBqNMaholUnxUI1Gq9rR29Z3TG9zJJMJpPavz///PM4evQovv32WwANq0I4ceJEq8sEQTA7UBR/j96wDqFGo8FHH32EadOm4ebNm4iOjjbb5p///Ce2bdsGtVqNF198Efv27cM777yD4uJiux7jiSeewIYNG8z+Bl+5cgWTJ0/GTz/9ZBaExP+WlJRIazW6UmlpqVW1r7YKYXXrEDpjyKhpIHTH83clsduuGLSSk5Oxbt06rF27ts73OXnyZKxfvx5AzRXC+r5n7VHb+9qW9evX4/PPPwcA3Lhxw2n7Qu7DQFiNmTNn4uuvv8aePXukP/SAseUvYDzDJS46CwCZmZlS1TAyMhJlZWXIyckxqxJmZmZKY80jIyNt/sHMysqyqj6aMu14R+Rt9Ho91IJg3lRGEKShUp5cK8n0oEQmk0EulzttyKj4b0cOdCoqKqRACABvv/22Q3PNxAO7ui47UVJS4rEKYaBGA+TnS4EwRKXyygqhQqGAQqGodchoeHi4NFxMpVIhOTkZzzzzDL7//vsGVSE8cuQIfvjhB8jlfw0uEgTBrBlaaWkpIiMj3boIuy1iIOzcuTMA40GqZSBUKBRo2rQpAGDJkiX45JNPMH78eLub0FRWVkqff1FQUJD0vWIaysTPmrve55YhTNyHugwZNRgM9fr+tgyapu8fXyQGH1NTpkypdr63qfnz51tdJgiC2VShmgJhfd+z9qjtfW1LZmam9P++XgFurBgILQiCgJkzZ2Lz5s3YtWsX2rRpY3Z9mzZtEBkZiR07dqBXr14AjF92u3fvxptvvgkA6NOnD1QqFXbs2CGdUU1LS8OpU6fw1ltvAQDi4uKQl5eHw4cPo3///gCAQ4cOIS8vTwqNRL6koqLCGHIAqwohYDzY8GQgtDxjXt9lASwDoaNn/k0rhIB5Jz57lJSUSIvaA3UbMuqpOYQ68fdQFQiDlUqvC4SmB7G1Dff7/PPPceHCBQB/BfQ777wTy5Yta1AVwnnz5iEwMBBhYWFmlz/11FPS/5eUlKBbt27Yt28f8vPzERQU5O7dBPDX+1vsVnnz5k2rbXr27GlW6Zk6dSpatWqFxx9/3K7HeOONN5CQkAC1Wo2goCDk5eWhoqJCOhawVSH09JDRmgKhraqiaXVcnK/sKPGzpFQqUVFRYdccs/j4eGzfvr1Oj+fN1q9fjw0bNlhd/uOPP0r/X1MgrO971h61va9tMa0KpqWlOW1fyH0YCC08+eST2LBhA7766isEBgZKZzp0Oh38/Pwgk8kwa9YsLFy4EB06dECHDh2wcOFC+Pv7Y9KkSdK206ZNw5w5cxAaGoqQkBDMnTsX3bp1k7qOxsbGYtSoUZg+fTo++OADAMCMGTOQkJDADqPkk8Q/XCqDAVCpzLqMAsaDgprmxLma2OlOVN+5MbYCoSP0ej38/PzMAqEjgdK0wgc4NmTUYDCY/T7cPWRUCoTNmgEAmnqgQlhRUVFjALfsSiuXy2t8v4i/f8smPw0pEFbXqfP+++8H8Nf7qlOnTti3bx8uXLiAPn36uHMXJeKQaDEQ2uqquHz5cqvLhg0bhrNnz9r1GLfffjv27NkDvV6P3NxcBAcHm30mTQOWOwOhIAhmQ8JFtXU61ev1Vt9BpvNn6xoIxdfht99+w913342cnBzpOnuGITck9nRVrWkOYX3fs/ao7X1t6vr164iOjsbNmzdxxx134Pbbb6+xGRp5LwZCCytXrgQADB061Ozy1atXY+rUqQCMJX+9Xo8nnngCOTk5GDBgALZv3y510QKApUuXQqlUYuLEidDr9Rg+fDg++eQTswrJ+vXrkZSUJE3IHzduHFasWOHaJ0iu89BDQFwcMGOGp/fEI8wCoVYrDRnVGAwAPD+P0PKMeW1ny+25P8B8yKgjLAOho7e3DISODBkVfxeeGjIaJDauqDooaiqXu2UO4cmTJ/Hss88iNzdXqhCHhYVh4cKF6Natm9m2lsPcauu2KL7/xYNm8bX19PvencTnGhcXh/Xr12PPnj0eC4Ti5108CeTKJjd+fn42w5LpZ9SdgbC0tBQGg8FqCYnavvOKi4utnoc9a3DWRvwstWzZElFRUWYVQnuGIXur7OxsZGdnIyQkROpEXxux+ZQl066qzuwyWh+W72txXrRIEAQkJyfjlVdewY0bNxAaGoqoqChkZmZ6fIoIOY6B0II9i3XKZDIkJycjOTm52m20Wi2WL19u82yOKCQkpMamEeRjPvnE+NPYA2F5uTEMigdCXhIILQ/wNfVsZFKfCqEgCNLBV10PuEy7hAKOVaTEffXUkNFAsTJXNV9ap1AgzQ0Hyo40S7CssGhq6YQqvv8zMzORnZ0tHUg5s9mDtzNttNSuXTtpCQ5PEAOhUqmEn5+fR5bBEE/6AH+dIHDHiY+ioiIAQEBAgNnlWq22xvdjcXGxVYWwtoZK9jAdOuvv74/c3FzpOnuGIdtj9+7deO2119C9e3eMio3Fs2++CV2LFli0aBHi4uLqvO+2fP/993j55ZcRFhYmrRubk5ODV155BcOHD6/3/XtLILQ0depU9O3bFwMHDpSOlXNzc3H06FHcvHkTHTp0QFRUFAwGAzIzM836bJD3YyAkonqbPHkyXnzxRQCAUgyEfn6AUglN1R83bwiEzqwQigdW4gR/R+6rrKwMgiDA39+/zoGwuiGjjgRCTw0ZlQJh1UGgTi7HH24IhI40SyguLjY7oK6pQvj9999LZ/hXrlyJ8vJy/Pnnn9L9NHTp6emIjIyUDmS1Wi2Cg4PNDvzdzfSESWBgoEMVQvH52Ku6SpFer/dIhVBsMGIrEFa3ILl4kqqmIaN1ZTr/0M/Pz2yOWW3DkO317LPPYtOmTcjNzUV89+44AsD/8GHcc8892LVrV1133aaXX34ZKSkpZqPC8vPzMXr0aKcGQj8/P5w7dw4XL15E+/btza4/ffq09J7r2rWr1dxPV7h06RLeffddnDx5EjNnzkRcXBwOHTqEl19+Gf/+978RGhpabeNF8n4MhETO0EiGhdXUIU08k6moqDBWB2UyICwMflUHJ54OhJYNE7Rabb0OcoqLi6HVaqUDKEcCoenwQmcGQpmdaz6arrEHuDcQ6vV6RIuB0N8faNIEgTKZWw6UHWmWYBkIa6oQvvzyy3jhhRcwefJkfPjhhwgLC8Mvv/yCHj16OHyG/8iRI3j11Vfx5Zdfmg25Mm1L720eeOABbN++3azyHBwcbDZXzN1Mh4gHBgY6VCEUn09taqsUlZSUSEHInYFQrBDaGjJa3ftR3K/qAmF951uLJ2L8/PxcUvXSarWIiYlBTEwMYgG0AICQEJcMW5TL5cjKyjILhFlZWU7rniquX+nv749ly5ZhzZo1UpBfu3YtVq5ciX79+knvuWPHjuHxxx+3q8upPXbs2IEXX3wRCoUCSUlJ+Pvf/w7AON9z69atKCgowDvvvIOlS5dKJ31u3LiBsLAwKQSmpaVJjRfJNzAQEjmD6YGPwQD4eFvt6tTUIU0KhGVl0vxBhIVBU3Ug5ulAaDp8C6j/kFGxAUNdhoKZBkLxQNHRSpLlkEaZTGb3wZYnK4RFRUVoKu63n58xEKL6A+Xjx4/jpZdegkqlwrx586QuzNOmTcNHH33k0GM70izBslpSU4VQLpdLbdcth4o6+nsdMWIE8vPzkZSUJAVSy7b0niJ2xDYlCILUYdWyQvjbb7+5df9MlZaWSgfsQUFBNiuEtT2f2tRWKTL9zvGWCmF13w/i+9RyDqGzhoyKwdLPz88lVfPIyEhp3toPVZdVlJfDUDVlwZk+/PBDzJkzB+np6dLa0VFRUfjwww9rve1///tfLFq0CF26dMGdd96JhQsXIigoCC+99BLGjRsH4K+TGeL3sumJlQ8++AB79+41C58VFRUYOnSo0wJhbWsdBgYG4sUXX0R+fj7Onj2L4uJi6PV6hIaGSsumcekJ38NASOQMpoGwoACwGJbWUNTUIU080JCXlUnzBxEWBrWXBMKCggKzAzdnDBmtbyBMS0vDG2+8AQB45JFHoNVqq21yYsmyQgjYf/bd1XMIa6pmFRYWQic2lfHzAwIDEVjVFdGWpKQkrF69GkqlEvPmzcPBgwcxe/Zsad2/uqiuCYgpRwLhhx9+iMmTJwMA7rjjDsjlcmlOlKPVEDG4DBw4EC1btpQuN21L7ykFBQU4efKkVXfWO++8E4D5+6pp06YeHzIq/g6qqxDW9nxqU1ulSK/XS1U6e78nzObCjRqFZ599FjqdzqG5cNXNIWzSpIl0nSXxYN9VQ0bF7xp7v6Msv69rs3HjRuP/mDTVUmZnY8f48U4/SRsbG4vNmzfX6bZvv/029u3bh4KCAvTs2RNnz56FVqvFiBEjrAKhrdfJz88Pu3fvxrBhwwAYT2Ds3r3bqR287V3rMCgoCP3798fVq1cBAGFhYVCpVAgLC+PSEz6IgZDIGUwDYX5+gw2ENXVI++KLLwAA8tLSvyqEzZpBXbVAtTcGwvoOGTUNhI7cl3jwtWLFCixbtgzDhg3Du+++i9tuu63aJieWioqKrA7e7D3YEkOH2IGxroHQnkWWLRUVFSFQ/HxUBcKAgoJqXz+ZTCbNn9m0aROSk5Mxffp0ly/4bvn61jRkNDY2FtOmTcMzzzyDQ4cOAfhrkW9HqyEymQyCIKBDhw4YOHCgdLlpW3pPWbhwIQoKChAcHGx2uTh/2DSIeHrIqOn8vaCgIJuBsLbnU5vaKkV6vR7NqpZWsTcQms2Fi4/HkSNH4O/v79BcuOqGjFZXKQVqD4T1+f42Hc1g+R316aefYvHixVCpVJg4cSKee+45AMD48ePxww8/2Ly/GpmGlvHjoTx0CBgxAujatc7770x+fn7w9/eHv78/hg8fLg2lNT0pIb5ept1YxffX2rVr8cYbb+DFF19EZWUlVCoV+vbt69QGhY6udSiu8Sku8RIVFcVA6IMYCImcwfTAJy8PMOli2FhI1QC93mzIqPLUKQCeDYQVFRXQ6/VmgbC+Q0YtA6EjlSBxW0EQpCqGuC/VNTmxVFBQIJ3FFdkbCMUDDfH2MpkMCoXC4UBozyLLloqKitBEbLxRNWS0SX6+1dlnUXh4uNnBSXJyMtatW4e1a9c6tK+OKi4uNut8aM+yE6ZVR5VKBaVS6XCFUHxfWoYp07b0nnL33XfbvHzIkCEA/goi/v7+aNq0qUcDYX5+vnSwHRgYaPMAtbbnU5vaKkWmoVT8b40nCATBfC5cbCxatGgBAA7NhatuyKhOp6t2UXhXDhk1nY/r7+9v9plYuXIljh07BpVKhXfffRf33XcfPv30U7s6vttkGnirTs4gLc1rAmHPnj2loa1iiCsrK5PCFPBXhdD0pJc4RSEyMhLLli1zyr7s2bMHFRUVuOOOO8wur22tQ8smSuKi9OL3ZVRUFIeM+iAGQiJnsAyEjVBubi5CAgMhKygwGzKqrAqKngyEYnXAskJY3fApezhjyOj8+fMxffp0AMb5SG+88Ua1TU4sFRQUmC2fADgeCE07bqpUKocDoT2LLFsqLCxEE4UCUCqNP4GBCJLJpLPMlj7//HOry6ZMmVKn+TLVNUsYM2YMtm7darat5ZBRjUbjUCAEjAe/jlYIxQN/T4apuhKfq1gh1Ov1Vut/ukteXp70/g4KCsL58+fdvg+mTWVkMlnN74fPPwf+9jdE3nPPX3PhqipkFRUVDs2Fy8nJgUKhsAqEQUFBKCsrs/k7qW6YqTOGjJpW2y2/o+RyuTRCISkpCZ07d8bo0aOr7YZaK1vNg65fr9t9OfzQtQ9ztRXm1Gq12fecrd9PYWGhVfW2voYOHQpBEFBYWGj1e7eluiZK4rrdYqiNjIzExYsXnbqv5HoNs/MFkbuZ/vFy4QLI3iwnJwdRYsXKpEKoqDqwdUczhepUFwjrO2TUz88PCoXC4aGB4sHXkCFDsG3bNgDAQw89hK1bt2L37t247bbbar2P/Px8q4MPPz8/u4Jpbm4uVCqV1cL2job21157zSoMAjVXs4qKihAglxs7jAJAYCCaCIJ0ltmVxGYJO3fuxOHDhzFz5kwYDAabvztbcwhrer8UFRWZH1RNmIDVer3DFUKxOlznA2IPshwyCsBj8wjz8vKkIdGOLjvhLJYnCWoMhCtWAAA2/vOfVtVApVKJHTt22P246enpiIiIsOp6KQZkW69FVlYWAEhDXEXOGDJq+lny8/NDeXm5VP0aM2YM/vjjD2nbESNG4L333kPz5s3r9mAWgTAecHog/PTTT9GtWzf07t1bmgMOGIe5OkN1gdCZBEGQqrBXrlyx6zZiE6WvvvoKa9euxTfffINvv/0Wn332GVQqlfT3iENGfRMDIZEz5OQA4nyNRlghjI+PR25uLpqJAUUMGs2aQVZSggCgXtW4+rIVCJ01ZBRwvBJkWqETQ5mfn59DjQFsnY2uqYug5ePrdDrIZDLpMle1g7dUVFQEf5nsr5MGgYHwr6xEUVGRyx9fbJbg7++PJUuWoE+fPjabJUj7aWdTGcA4j0Zag04QgK++wvvl5Q4td1BeXi69JzMyMuy+nbcQP+N+fn7ScGRPVDrLy8tRXFxsViF058L04mNZBsKAgIDqvwfFEwBVc64tWTa+qUlGRobNdRTFgGxr2GhGRgbkcrnZ0EXAeUNGTQMh8Ncoieeff14aDi7q0qULUlJSHHqMiRMnGn+efRYTAUwE8DcAJwGgmtEHwF9B2BHiMNdjx47B398f9913H4qLi+s+zNWCGAgPHDggVRSdHQhNA5vYFKY2giBYvV5ZWVmoqKhAaGio9PdEHDLqrNeD3INDRomcIScHaNECOH++QQfCiRMnWl0mCAJOnjyJZs2aIUIMKCYVQgAIg+2z0u5iKxDWt/15UVGRdDa9LoFQLpdLTR9kMpnD4dRWIHRkyKitBdpdfdBcXl6OsrIy+BsMgLjvTZpAU1UtuHnzpjRnyhUcaZZg+frW1FSmf//+uHjxIiorK41LGVRUQABwAUBrByp9pq//hx9+iC5dutQ4rNXbiFVzuVzu0Qqh+DqaziF0xXv7nnvuwb59+9C8eXObDVEsTyrU+D0hdt6tJhA6QqwQWhJfD1uBMDMzE82aNbOqKto197EG5eXlKC8vl14HsYpeVFTkUBfR2hw5cgQ//PAD5Nu2AXv2AAAEAIlAtaN2zp07h06dOuGrr76SOnzao77DXGtbWF4MhAMHDpRCvLMDoWmws6wQVtfop7Ky0mYTpcGDB+PkyZPS7aOioqDX65GdnW11goG8FwMhkTPk5AAhIUBQUIMeMir90TU5aBAEAYmJicjMzER3MWSI/60KhK38/attZuAO4hpxpsOh6huAsrOz0bFjRwB1C4SmFTp7K3siQRCQn58vHSyI6hMIXXXQbEo8CAkE/qqoBwZCXRW0bty4YXcgjI+Pt2vxcFO1NUsQCYJg9RrVNCy4oKAAXbt2RUxMjHG5jV9/Bbp0wZ0ADA40VxBPmvj7+6NHjx44fPiw1Rpg3sw0AImB0BMVQss5soGBgSgqKpLm5jlDcXGx1FAmIyPDqiGKIAgoKCgw+4zW+D0hfj86KRB27tzZ6nKxamir4UdmZqbN4d8ajQZarbbOwd50XinwV5WyoKDAZhWzrubNm4fAwECEWczjfSokpNqTtGKI2bNnj0OBUBzmKp5YGjFiBKKiojBnzpxab2vPwvJFRUXSyULxv84OhKafy9OnT5tdV12jH39/f5tNlMaPH2+2RE7fvn0BAPv27XPodSXPYiAkcoacHCA42BgIG3CFUPqja9J9EQCeeuopvPbaa7irUyfjBeJBUFUAa+nhQJieng65XG4VCOtTtbx586Z09tPRQJibm2sWNizXRKwt7BQXF8NgMNgMhPacpc7Ly7PqUOrMQFjd/ovDIJsIwl8VwsBAKKtCrK15hDVVpV2luLgYlZWVZr+jmoYYL1y4EM8//zx69uxpvKDqeb4IYJMDgVB8/bt164aff/4ZmzdvxqZNm6od1uptTLtJiu8vT1QILQOhaZXF8kRIXYknmQDAYDBYVYr0ej0qKyvNPqP1GTLqyAmQjIwMaZ06UxEREVAoFLhm4zEyMjJsBkLAGO7rGwjFEwXi6+HsESNPPPGE8X8KCgC1Gqga4np/nz7VnqQ9c+YMAMcXUX/++eetLrN3mKs9C8sXFhZKnx9XBULx78SIESOwbNkyzJ07V5q36WgF9MqVK2ZL5LRt2xbNmjXDiRMnGAh9CAMhkTPk5ACtWxsrYw24Qij90bVw//3348knn0R01ZlBKRBWBabmarVHh4ymp6ejWbNmZtUBsQW7OPTFUaZzxixbqddGDGRi2NHr9fj0009x9OhRu8KOGKwsD+CCgoLw66+/2vX4zqgQOhrWxP02GzIaGAhZ1UGyrUBYU1XaVWx1Ya2pZf/dd9+NJ5544q/hUVXPcwiA72qYv2RJ/IxMmjQJTz/9NPbv31/rGmDexLRCGBAQAKVS6ZEKoeU6m+LQRNOlKCx99tlniIqKkjom1sb0vZqWlobmzZubVYpsDVOv9sRRZSWE3FzIAEz89lvA4nPlyAkQQRCQnp5us/qmUCgQHR1tMxBmZmZW28ilPmtKuisQSgoKjN8t774LbNhgHKVy4YLNTf/8808AcGsDFHsWli8sLJRGSri6Qvjiiy9i586dmDlzJv73v/8BcLwCeuXKFfztb38zuywiIsItjcLIeRgIiZwhOxvo1csYCBtwhbA6ZWVluHnzJiLE4TpiIPTzAwICEKVS4YQHXxdbTRaCgoJQUVFh1hreXiUlJSguLpYCgKPzEcUKoRh2Dhw4gCFDhmD+/Pl2hR0xWFk+p/DwcLuaJOTm5krDXUVBQUEOnyl3NKyJVRVNeTkgViibNIHMYEBTtdrmvtdUla6L2ubvALYDYU0HxYIgmFWMkZEBaLUoEQQ0daCyIoaIcePGYc6cObh48SLuvPNOm8NavZFp5Vsmk3lscXrx9xf+009A06ZmwxSrM2nSJACwuxGG6Xv1zz//lMKUWCm6UBVCLIeM2qwQ5uZCJgj4A8CRrCz88NprkJsEBEdOgBQUFKCkpKTa4ZgtWrSw2UQkMzMTvXr1snmb+vweTdemBNwUCIOCgEmTjD9PP13t32Tx+8ida+bZs7B8YWGhFATVajVUKpVLKoQ6nU5ac3Pz5s0oKSmBVqutsQJq+f3ZqVMnZGdnW81ZDQsLq3YpIfJODIREztBIhoxWRwwoYWo1IJMBpu33w8IQoVB4rP08AJtnzE0PTBwNhOIfuroOGU1LS0NkZCQmTpyIwMBABAYGQqPRoFWrVgBqDzviAYzlH+Hw8HBkZmbWWvWsrkJ4oZoz6dVxNKxdu3YNwcHBUBQXm1UIAaBVSIjNQFhTVdpR9szfAf46WLU3EBYWFqK8vNw8EEZEIAdA62vX7K5Ci48bEhKCNm3aOPz78LScnBxp7iBgHDbqqSGjfgCCp08HwsIQWLWeX3UhxLSDZkVFhV0dPS0rhJbExzKtEDZt2lSqSpkqvHIFTQCsBDDPYEDgwoUIW7PGbBt7T4CIYS8qKsrm9S1atKi2QljdkNH6/B4t52+7rUJYJV0uR6QXBUJ7FpY3DYSAsUro7EB448YNaYTLli1bkJCQgMuXL1udKDRl6/vz0KFDAGD1NyAsLIwVQh/DQEjkDGIg1OkAN/5x8QRbFRbxgChYoTD+MTbtVBcVhRY3b9o8CHGX9PR0dOjQwewy0wMTWx35aiI+X/Ggy9/f36Ez6NeuXUPv3r2lsGPZVKa2sJOeng6FQmHVwS08PBzl5eU25wiashUIdTqdw1UAR8PaH3/8gTZt2pgftFX9t0NkJH7//XeHHt9R9szfAf6aX2P6GjZt2hSFhYU2A4PlCQIxEBY2a4a+ly8jJyfnryUpaiBWsJo0aYKWLVt69DNTFzk5OYiOjpb+7ckKYWulEqioAG7cqLVCaLoOXnp6ul2NjbKysqQTQUuWLMGoUaPM1o4TH8u0QhgWFmbzpEfGmTNoAuA7AF/27o2wn3+22sbeEyCnTp0CYKzo2NKiRQv88ssvZpcVFxfj5s2b1YbIsLAwnD9/3q7Ht2T5XanRaKB25RSCggJk6vUovXoVMTExeODbb7H95k3jUjAWJ2XEzqpZWVl2LSrvLgUFBS4PhOnp6dLvpFu3bgCAS5cu1RgIbX1/njx5Et27d7f6WxQWFuby73NyLq5DSFRfxcWAXm+cL9fAK4Rr167FsGHDsGbNGuzevRurV6/GsGHDsHHjRgCADvirw6ioeXNEGQy4fPmy2/dXZKtCKP4BM20OYS/xQF08cNTpdHYf4AiCgGvXrhlvu2oV8NlnNc5Ps+XSpUto1aqVVYt48TnaqkKISktLcfPmTbNKDgC0bNkSV69elRZGdwVpXkpe3l/DiqsOfHrfcguOHTvmsscG/pq/I7I1fwcALl++DIVCYXaAXNMyClaBMDMTiIiAomdPtAVwzc5KX35+Ppo0aYLy8nKo1WqcOXMGx44dq9cacO5kWSH0VCDMz89HR5PlHgKrRgBUFwhNK0Q1fXZMZWVlITw8HHK5HHv27LHqviiOmjA9UBbDh6Wc334DAJQ1aYL9Wi1w+rTUFMVRv/zyC5o3b15tu39xyKjp0Nhz584BADqJTcGquU1dpKWlQafTmY3CaNq0qd1LNNirf//+xp+vvsJtFy6gVatW6NevHw5fu2b8+2zj+zkrKwu33XYbAGNwF18HT3NHhTAtLU36fmvevDlUKlWtAc7W9+f3338PAFbvt4iICLs/S+QdGAiJ6ksMFBERDX4OoXiG8J133sFrr72G5cuXY/fu3fj6668hl8vhn5cHWM5diY5GSEkJsrKyPLI4fXVNFtq1awcAdRqWd/XqVajVammYjCPDY3JycqDX69EyIgKYMQOYNAkhISEOHSBdvHhR2n9T4pne1NTUam+7fft2lJSUYNSoUWaXt2nTBmVlZbh+/brd++Goixcvom2bNlJgAiBVCDtGR+PChQswGAxWtystLcWxY8ewc+fOegWktWvX4quvvsLgwYMxcOBA3H777diyZYvZ/B0A+P3339GqVSuzSqBY4bM1L0b83UsHRenpQEQEgvr2hRzAjYMH7dq//Px8KBQKDBs2DJmZmfjzzz+lky6W++iNvGXIaG5uLtqZVOsCq76TqztpY/rZ/eKLL+x6jBs3bqBZs2Y4WPW7taygicHM9PVo1qwZCgoKrNazLKw6WXbXlCn48vRpY2WzjgHsl19+Qffu3au9vnPnziguLsZvVSEUAP773/8CAGJjY23eJiYmBtevX0dF1XqhjjANHqKIiAgpMDtLQUEB9u/fj12dO+M1GL/3d+3ahX7ic7IYuVNWVobc3FyzJkK7du1y6j7VhTiv3TIQOntJINO/iQqFAq1atao1ENr6/vyhaji2ZSBs27YtMjIyfGK5HDJiICSqL/EPW3h4g+8yWl2FpbS0FB06dIA8PR0wGTIGAIiORmDVH7Pjx4+7c3cBGCuAxcXFZuskAcZhnjExMXU6K3z58mW0aNFCqtA5EgjF6mJ7k1ATHRhoFjRqm9Ny9uxZqyGwgPEAvHPnzvjpp59qvG1gYKDV0KD6BGRLtva/pKQEf/zxB7q3bAmUlxs/L4AUCKOaNEFFRYVVBaW6qnRdApI4f2ffvn04ePAgfvrpJyxdutTqZMGlS5eMQ1tNiE1DbJ31vnjxIlQqlbHqKwjAuXNAhw4IrWrFfqNqnk1t/vjjD1RWVmLv3r2YMmUKSkpK8O6772L37t14//33HX6+7iYOIxd5qkJ45coVdDSZx6xauhRarbbag+obN25IczwXL16MAwcO1PoYWVlZCAsLQ79+/TBo0CCrz83JkyelEzQicY6eZRjK/+MPlMhkmP3CC7hYWYlSAMe2b8fOHTscOgEiCAJOnDhh9bim+vXrB5lMhtWrV0u3Wb16NR566KFqO7DGxMTAUMdRHu4KhAsXLkRBQQEq09Ig3vOxY8fw4qxZxn906gTs3SttL37PtG/fHitXrkRAQIDLRyjYQ9wv0yWSQkNDnd6g5c8//zQb3t22bdtaA6Gt789Ro0ZBqVTaDISA8buUfAMDIVF9iRXC8PBGMWTUVoUlLCwM/fv3B65fByznoURHQ5mfj1B/f+zbt8/t+1zTcKhevXpJZ/gdceHCBdxyyy3Sv8PCwpCfn2/XgZsYCJubHJz20OvNKoQPPPBAtbe/efMmzpw5Y7buk6nRo0dj69atNittgDHMtmrVyqrJSfv27aHRaJyyvp+t/b948SIEQUBnsfmARSCMqBriZzlvrrqqtCsD0qVLl6QDGpE4PNjWvL5ff/0Vt9xyi7GiePWqcY5k166QhYejXCZDXtV6Z7W5cOECmjRpgt27dyMqKgp6vR55eXk2h7V6m/z8fBQVFVkNs/VEIPztt9/QXqMBevYE+vcHVq5E+4CAaquVYrh78803AcCu9eTECiEA3HLLLVYVwj/++MOqii9+B4nz/ESFFy8iX6tFixYtEDlwIIYCWDN/PnaPGYPVH39s9wmQc+fO4dq1a1LnSFtCQ0PxyCOPYOHChcjIyEBSUhIyMjJqnKM4aNAgqFQqbNmypdZ9sGQrEEZGRjq9kcvdd9+N4OBgKDMzIY5xOH/+PIaYLuFRtawC8NdUgfDwcDz22GO46667cPHiRafuU12Icy5Nw5qzA3R+fj6ys7PNTnp17twZP9uYu2pKEATMnj3b7MTu5cuXERMTY7akE/BXIOQ8Qt/BQEhUX2lpgFyOlKNHsf3QIePcD4shQQ2FrTOEb775Jn799Vf069sXuHwZsGzIUFVZGd2zp0cC4dmzZ6FQKGwOsRwyZAgOHjxoNYSrNpaBUDw7ak+V8OrVq5DL5QjOzER/pRL9FQosSUnB5cuX0b9/f+O8l8OHq739/v37AUCa+2Jp7NixSEtLq/a1PnnypLS+lCmlUokuXbpYNZyoiTRvx+Snuv0Xg3k7cW6XOGQ0IACQyxFWtRCyZXXG3nl/zvT7779bVQi1Wi3CwsJw5coVq+0PHTr016L0P/xgbF7Rty8gl6OgSROU21lZuXjxIiZPnoyvvvoK//d//wcAGD58uM1hrd5GHGpsupadJ4aMCoKACxcuoAUAxMQA27YBMhnua9LE5u8OMFa0w8PDMX/+fIwcObLWA2PAWGERK8sdOnTA+fPnpXl5giCYreMmat26NZo2bWp2QG0wGKC8fh0lVZ+HS1eu4H0A7xQW4rXycix/6CG7ToAYDAaMHDkSAGpdS/HBBx8EYPw+X7FiBQDYXMhe1LRpU8THx+Pzzz+v8X5tsRUIo6Oj6zwnsUalpfArKkJls2Zo2bIlnn76aaT88ANw7BjQpg1gcmJGDKRiqG/Xrp3ZMFpPET9Hpq+ZswOhWOkdtmkT8NBDwC+/IC4uDr///nuNj/Pzzz9j6dKl6N27NzIyMvDf//4XFy5csBp9AxjfW1qtloHQhzAQEtXXb7+honlzjB43DivEgzYPLrHgbqmpqSgrK8OtrVsbu61azl+pOtM5unt3bN++3e3NZc6ePYs2bdqYdQAUDRkyBCUlJThy5Ijd96fX63H+/HmzLn7iQbA9XSEPHz6Mzp07Q37hAgpUKuy/4w583749KisrsXHjRhw5cgT9+vWr9vabN29G8+bNpSUqLA0ePBhdunTBq6++anXdyZMnsWfPHvzjH/+wedsePXrYdTAsEuftHD58WPqpbv/PnDmD4OBg6NLSAKXSeIAGAAoF0LIlgm7cwH333YelS5eaNbaxd96fs9y4cQM5OTk2TyD06dMHP/74o9ll2dnZOHbsGIYPH2684OuvgYEDpQpoRUQE/HNyaj1ZkJ+fj4yMDPTq1QvLli2TmpQsXrzY5rBWbyMOpTUNhMHBwcjLy6u2Wi0yGAxOOxj/888/kZubi8iiIqB1a+N6l+3bo69aXe3B6a+//irNn+vcubNVBc9SRUUFrl69Kp00uOWWW5CbmysN6zt79iwKCgqs3kMymQw9e/Y0C4QXL15EdHk5lFXbNmvWDJ+Y3EbYvt2uEyBr167FlStXcNttt0lr/lVn8ODB+P3337Fw4UIsWrQI586ds1qL09J9992HvXv31jgc3dK1a9dw6dIlq66t3bp1w+XLlx1qpGUXMWQ2b47k5GSUlJRg/vz5xjWC//Y3s0B4/vx5aDQa6f3arl07XLlyxeGTg3V2+jRg8V0CGF8zuVxutgSIWFG1d43M2pw9exYhACI3bwY++QTo0QODq6rXNQ2XFhvIiPt0//33Y/PmzejTp4/VtnK5HG3atGEg9CEMhET1deECMqqGvUnnPD3YUdPd1q5di6ioKPQQJ49bLm4cEwPIZLine3cEBwdj/Pjxbh2a8+uvv1bbPa9nz54ICgoyq0DV5ueff0ZlZaXZH0FHhsfs3r3beDb+3DksHDwYBd27I+LqVfhptVJzhxdffNHmbbOzs7FmzRrMnDmz2nXtlEolZsyYgd27d5sNYztz5ozUbOLee++1eduePXsiNTXV7uYK4rwdS5b7f/LkSbzxxhsYMWIEZKdPA7fcApgegLZvD1y8iLlz5+LSpUtm1RB75/05y7Zt2wDAZqi95557sGvXLrPgv23bNgiCYAyEpaXA9u3A2LHS9UE9eqC9TIa1a9fW+LhiIBLnhopDxlxSSXGBX375BRqNxuzgPyQkBIIg1NrJ95lnnkH79u3rNHzb0tGjR6EA0CQjAxDnyXbvjk5lZThz5ozVQXVFRQV+/vln6QRP37598dtvv9W4z9euXUNlZaUUCMXfmdgU6bHHHkNUVBTuuusuq9v27t0b33zzjVQxP3L4MDoCCK76Ptm0aRM+1GjQPiICA4ODcfvzz2PLwoU1ngDR6/WYNWsWYmNjsXPnTrtepzZt2mDBggV47rnnzEY7VGfChAkICgrCxIkT7Z5n/Morr0Cn01kNIe9V9TdCHO3gLIaqE3t+cXF46KGH8N577+HXX381NjaJjTX+Xa5qbCb+XRCHOrZv316q7LpF167AHXcAFidLDh48iB49epg1tOrYsSOKioqc1gX10KFDGC0GzgkTAADNFy1CixYtagyER48exaBBgzB16lSzwFrdGpk9evSwaz6uTTdvAm+9Bbiw6zVZEMin5eXlCQCEvLw8T+9K49WmjbAtNlZo3769EGRsKSEI69d7eq/c4uzZs4JGoxFeffVVQZgwQRB69rS9YceOgvDUU0JKSooAQAAgfPXVVy7fv1OnTglyuVx49913q90mISFBaNeunXD48GG77jMpKUkICAgQSktLzS4PCQkRBgwYUONt16xZIwAQNm/cKAhqtSC8844gfPWVIADCY2PGCB07dhQMBoPN25aXlwtdunQRAAiXL1+u8XEyMzOFmJgYAYCwfPlyoUWLFtLrHhQUVO3t8vPzhdtvv11o3ry58Pvvv9f4GPYyGAzC3/72N6F169ZCUWGhIHToIAjTpplvNHOmILRpIwgGg9CjRw8BgDB+/HihrKzMKfvgyL62adNG6N69u83fQ2ZmphAUFCRERkYKS5YsEUaPHi0AEOLi4owbbN9u/Pz/8stfN3rtNaFArRYiwsOFtLS0ah/73XffFZRKpdl3edu2bYVZs2Y57fm50rBhw4TRo0ebXZaeni4oFArh//2//1fjbVu3bi0AEMaMGSMUFhbWaz/uvvtuYcIttxh/Dzt3Gi985RWhNChIACDs3r3bbPvvvvtOACAcOXJEEARB+PPPPwUAwn/+859qH+M///mPAEC4evWqIAiCUFhYKH2+lEqlAEB49tlnbd72+vXrQocOHQSZTCakpKQIQyMijPu6bZu0zahRowQAwlszZgiGli0FQaMRhNxcq/syGAxCamqqMH36dAGAcO7cOYdeK0edP39eaNu2raDRaIS7775bmDdvnnDx4kVBEAShsrJSEATjd8jRo0eFe++9VwAgLFmyxOZ+i99P6enpTtu/9LFjhYuA8NNPPwmCIAgXLlwQ5HK58N577wnCwYPG1/nQIaGiokKIiYkRHn30Uem2V65cEQAIn376qdP2p1rZ2cZ9AQRh0yZBqPq9VVZWCtHR0Vaf+eLiYsHf31945ZVXnPLwgwYNEtb26CEI/v6CUFkpCO+/LwiA8GHv3sKtt95qtX1WVpZw/PhxQavVCsnJyYIgCEJFRYVw8eJFYdOmTdU+ztq1awWZTCakpqY6vpNTpwoCIOR9+y2Pcd2EgdDHMRB62NmzggAIDwUHC0899ZTQrl07IS8gQBCqORhoSM6fPy+EhoYKERERQsH69cY/bh9/bHvjadMEoV07QaisFD799FPp4Gnx4sXCzp07hfLycqfvX3FxsRAXFye0a9fOKryZOnv2rBAYGCj4+/vXGoLEQPePf/zD6rp58+YJAISvv/5aqKioMDv4LysrEw4cOCCEhoYKoaGhQtEPPxhfr4MHBeH6dUEAhINz5woAhOeee87sfvV6vXTfAOw+KEhNTZVuA0Do2LGj0LFjR+HQoUM13u7cuXNC06ZNBQDCXXfdJRw5ckTIzMy06zFN5ebmCt98840wYcKEvw4M//c/4/PescN84y1bjJenpgqrVq2S9rlbt27Cl19+KZw4cUL4448/HN4HR7377rsCAOHHH3+sdptDhw6Zva4xMTFCVlaW8cpZswSheXNBMA2TVYG/bdX2c+bMEXKrDu7F98mpU6eEoKAgYcyYMWaP9fe//13o27evs5+m0507d05QKBTGA28LCQkJQufOnYX9+/fbvO3Jkyelz5RCoRDi4uKEiooKh/chNzdX+PjjjwWZTCbsvftu4wkXMVxW/Q7GdeoktGrVSsjIyBAuX74spKenC8OGDRNatmxpdgLglltuEXr37i1cunRJuky8vrS0VIiLixO6detm9vhiwAEgxMbGVntiRxAE4csvv5S2XaNQCCUBAX/tqyAIe/bsETQajQBA6BIcLFQAwoY77hDmzJkjjBo1SnjzzTeFKVOmCFqtVrqf+Ph4h1+zurh586aQlJQkdOrUSXrsLl26CGq1WoiIiDD7bIwfP77a1+Gnn34SVCqV0KlTJ+Gzzz4T9Hp9/XZs716hTKEQFgUEmL1/xo8fL3Tv3l0oyc8XDMHBQvaDDwpfffWVAMDsJKDBYBCGDBkitG/fXiguLq7fvtRG/B40+ck4fFh46qmnBADCgQMHrG7yyCOPCDKZTNi6dWu9HnrdunUCAOH3zp0FYdgw44WlpYJw112CAAg9AWHXrl1CeXm5YDAYhJ9++kn6fYaEhEjfXfYoLy8XunbtKsTFxUknDOzWsaMxEL7wAo9x3UQmCE4alEx19t5772Hx4sVIS0tDly5dsGzZsmobRljKz8+HTqfDHXfcgR49eqCwsBD+/v6IiIjAsWPHMHjwYAwePBgnTpxA7969kZeXhz59+qCgoAC//fYbAgMDUVJSgrS0NNx6660IDQ3F77//jqCgIGlIliAIuH79Opo3bw5BEGwOVTMYDNLlMpkMer0eWq222mFtDUJaGsonTkT2vn1oLQjYvmcP3nnnHTzwww8Yq9NBdvy4cf5KA1BSUgKNRgOZTIYbN27gmWeewYYNG9BNp0PK3/6GyNWrjcPkPv/c2FDD0oEDwKBBwDPPAK+9hrNXr+KOO+6QOqoBxtbm06dPx7Rp0xAWFga9Xo+goCDIZDJpmFdN7ydBEJCXl4cbN27giy++wKJFi5Cfn48ff/yxxq57gHHeUZ8+fZCRkYHAwECUl5cjOjpa6h4aFxcHuVyOjz76CABQVFRkNU+nqKgIw4YNw5EjR+Dn5we9Xo9Ro0YhOjoae/fulYZv7tixAyO2bAHWrzd2ZVWpgJgYCPfeizHnz+O7776DUqlERUWF1YL1S5cuxSyxjbodLl26BIVCgfDwcIeasOTm5mLatGn4n0lXvrFjxyI6OhoGgwGhoaGIjY1FYWEhioqK0KJFC+Tn58NgMGDv3r04c+aM2Typwf37Y89TT0H+5JPA0KHAV1+Zv0/Ky4Fu3QC5HNiyBeUxMfjiiy/w1FNPmbVb79KlCzp16oQ2bdpgwoQJCAkJQWpqKnr06CG12i8vL4dKpUJlZSXkcnmt30Hnz5/H4cOH8fbbb+PEiROYMWMG3n///Rpv98UXXyAzMxMxMTG46667jMuPZGUBnTsDf/87sHz5XxsXFgJhYTh6663oVzUHR6PRICIiArm5udLaeG3atMGRI0fM2rdv2rQJEydOxKJFizBjxgwEBwd7zXeqULW+5/79+zF//nyo1Woc3LoVusJC4+tQNeTt888/x9/+9jcAwJw5c/CPf/wDffr0gV6vx82bN3HvvfdKc8327duHO+64Ay+99BIef/xxREZG4rfffoNCoUCbNm1QXFwMjUaDyspKqNVqXLhwAVu3bkWLFi3w/IIFKL54EUndu2PetWuQjRpl/IwBQHEx0KIFCm65BXceOoSzAPIBKKo+Z3PnzsXixYul5zZt2jR8/PHHAIzfS71798aWLVtwxx134OjRoygoKMCePXsQFxdnPJw3GFBaXIyFr72GXt27Y8yoUVDJ5cCNG8DRo8D588Y5swEBQJMmQFYWco4ehX7TJkSnpQEffghMn272+hYUFGD16tV4+umn8TWAAQD+BeA0gFwAxUol7p08Gd179ULnbt0Q07o1NP7+xjm5CsVfUcNgMP9vdf9vMBg/h4WFQEiIcUi3Vmv8EYcvymR/fW5lMmzZuhWr/v1vpKam4rZbb0VWZiZ++uknyAC8u2wZpk+fDpnxzWLz57tvv8XkyZMhvqMH9OsHjVqN2269FaUlJdixfTsWPPccIiMicOPPP/HHmTPo2LIlim/eBIqLcUuTJjj0n/+g+ZUrGFhYiP0APnvoIfy/qt8dAOk9VVZWhpcAvArgKwAXWrfG3BUrjM2tAgKAgAD8fOECRtx1FyKbN8fQ4cNRVlGBcXffjaYhIWjbrh2ioqKkv0XFxcW4ceMGWrRogdLSUvj7+8NgMCAtLc1sHu22bdug1WoR2KQJVOXl8EtLQ+vXX4e8shLH+vZFh82bobt5E1/4++Op0lI8+9ZbmDV7ttXn7ZdffkGfPn1QUVGBf/zjH8jKysLUqVPRsWNH5ObmIjg4GF26dMGRI0eQkZGBPn36YM+ePZDL5dBqtTh44AA+++gjqPLzMSUmBv93/Tpky5YB4nDPigoIrVvjUHExJufkIFOlQpPQUKSnpyMUQMt27bDqP/+xOV9Qotcbu67HxBi/y2GcIjF06FDExMRAq9VCr9djzJgxkMlkePjhh3H9+nWsXr0aAwYMgFwux8ihQ3HijTcw9csvAQBbY2ORcOYM8vLyEBQUVP1jU70xEHrYf/7zHyQmJuK9997D4MGD8cEHH+Df//43fv31V5udmyyJgXAfgAAABhhP5Zj+19Zl9mwjVyig9fNDQVERKgUBWj8/FOn10Gi1MAgCyioqoAsORtbNm6gUBAgAVGo1dE2b4mZuLtQaDYJDQlBSVgaDIECuUqGwqAg3srMRFRWF6+npiIyKQpOgIISEhaGsvBxpGRkoLCpCQFCQ8fnL5bj655/IyMzEgLg4lJaVQZDLkZubC42fHwKaNEFufj7Ufn5QqVSoMBhQVl6OpiEhqKishFypRGFREeRKJdIzMxHTsiXkSiWaBAbiZm4uYmJioFSrcfXyZaCyEgoAQQEBMJSXQ61QoKS4GEH+/qgoLUV006bIOH0alenpCL9xAxGZmcgB8DcAIxcuxIIFC/Djjz/iiTvuwEEAyoAAXO3aFccKCxHZuzcq1Goc+uUXtI6NRYVCgR9270bnrl0R06oVgpo2RdOQEFy+ehWQy9GrTx9UCgIOHjmC4pIStG/fHhkZGQgJCUG7tm1x7NgxKJVK5GRno2nTpsjPz0fLli2RmZGBsLAwZGRkoKiwEJmZmWjTpg2ysrIQEhwsNUM4d/YsKsrK0KdHD5QUFiI8JASoqMDWb77B7XFxaNeqFTZt3IgWERG4pW1bnDpwAE0BRGo08CstRSsAvbRaxJSUGA8YZs0CXnnFfF6YpWXLgDlzjH98Bw+GEBuLM9nZWLxmDfIBlJr8lACoqHovtu/QAYVFRcjJy0PnLl2QV1AAjVaL4pISZOfk4Hp6uvS+Fb/MZAD+du+9ePjhh9FJnEckftVV89+C/Hw88sgjEAwGqamELjAQzZs3x/U//0R+QQFkAP6zcSM6i4sdiwc3AKBQQFAosPjNN5F1/Tp279wJFQA1gACVCn06dMAjo0cjJjPTeKD6z38CL79svO28ecCKFSh7/HFsz8jAd0ePQtBq0aVPH/xy7hx69u6NKYmJCAwKMv6hFQ/MLH/E6yz3rY7/v3//fnz55ZfYumULmoWFoaiwECUlJZABUADwk8mgFARoAGiqnmuHmBiE+fsj+9w5jOzZE7cIAiKvXIE8Jwe45x5gzRrjQbGlCxeAESOAP/80njzo0QM5ISE4df06LmRk4MDp04BWi59//RUVACqr3iPi/6s0GuirGkKoVSqUlZcDAAb074+8vDxkZGQgNjYWv//+O3JyclBaVoaQ4GBkVy2LMHDAAAwdOhQPTZ0KjVJpXBzc9Ke83PzfxcXGA/6sLODkSSAlxXggfuyYdafdV18F/vlPCAMHIrdLFxy+fh2ply7hwrVruFlYCIWfH977f/8PUcHBxnmIggAoFKiUyfD/3n8f277/HpUAlGo1goKDYTAYEB4WhqY6HcLDwlCq1+P7779H06AgxN5yC2QAoiMjER4WhsuXL6O4oABqpRLRUVG4cO4cwkJDUVFWBn+tFoUFBYiKjERR1Ta52dlo2aIF9MXFOHP6NPz9/BDRrBlkgoCbN25Aq1YjNzsb2TdvGt/bAJrrdJgwaBACdu0yHhT6+Rm7rHbujEq5HMdOnMD+AweggLFxQROtFhVVz1OrVGLknXcitGlToLISJ3/5BRfOnoW86j0m3iZEp0NxQQFgMEAll0OnUkFRWoqAqn0IlMmgFt+/I0caP2Oma6N9+y3w8MPSurEGAGVqNRQqFZQqlTFoV/1UGv5/e/ceG1Wd93H8M5fOpe10eqM3KFilCHJpHsCFsuyCF8gSw4r7x3oLgV3/WFdwS4gxjz5/gIZQ4h8muiQYYqK4G9PoKuo+UZbmUStq2AVMV0RBENSqbadKOzOddmbamfP8cTpDB4q6MnSYzvuVnMyZ35mmvznznTO/7++c8/vFFezvl2EYycnYE/Vx2Gxy2myySeb9TT/mHqfSUmnUtDKSzLotXSr96U/mvWQX4fP5dPzttzXjz3/WpEOHZJugI1j/VJ2Sjkp6QVL+H/+o/9myRZWJEYxH7Nu3T6tWrZIk/V7Sf5eXa3pvryz/wf1piXZSbGSxjCwatX7+crFBOnol3SopMTzP7yQ9nXi9xSIlEnur9dxis8mwWhXs79dAf79kGCn/54fW7TKPz0m//rX04oupv9l//7uM3/5WlnA4+Z5T3oPLlVKflPrF4+Z9f5LZyelwmK+x2xWJxxUKhxWJxczvVzQqu859v0evO0b+55uSbBaLutxu3TEwQEI4DkgIM2zRokWaP3++du3alSybNWuW1qxZo+bm5h/8+0RC2PeHPyh89qxKiosVDYfldrs1HImou7NT8Xhc1ZWV+q6nR4G+PgWDQZUVF8vlcMhqtcqIxeTMy1MwEJARi2lwYED9fr9cLpeMWEz+vj7FhoZUXlqqgVBIxR6PbFarenw+5bvdshiGbFarwgMDcjudigwOajgaNc8ojdwwbbdaZYnH5Xa7FfT7kwcrm9Uqm8UiIxZLOYDZrVYZ8biso8pGP45VNta2Sxk1KXHgTzQ4Q5LOjixfut16a3BQf5P02jvvJM/oGoah9evX663nnlOTpOWSpkkqv4R6XCkCkmKFhYp5PHLPmKH8hgZZli6VVqz48WdCz5yR/vpX6V//Mifv7unJqRFZ5XKZA6rcfbeZHCfmbhoYkB58UHrhBXOfTASlpWbve12dmRz85jdSQ8P3/00oZDbk//EP6fhx6fRpaaRxcsUqLjYnvf7lL6WmpuSouhfYu1f6y1+kf//bTHqvwIZ9TKmdhImOFlmtMiRZbDbFDEOyWhU3DNlcLjlLSpRXUiJLUZH0q19JP/+5dOSIdPCgdOpU8gxUfHhY/v5+DQ4NaSgWU57LJZfbrXyPR67RDWCbTaFwWKc//1xd336rIq9XrsJCfdfbq2HDUGV1tULhsAYlFVZUqKi6Wo6SEk2dPVt506ebMVZbO/YbjEalDz8048rvlwKB1LNliWXUWdhoNCq73a7I0JAsNptcBQXnzsL90FJSYp4traoyP++BAXOOyvJys9H/H39AMamry6y3328m34mk9PxldAfR6E6k71u3283Omt7ec9MnJf7HxTqOEo/nd05JF++4+oHt/aGQ+vr6VFlVpXffe0+FHo+8FRUqrq5WT3+/5HZrzwsvKG/KFM392c80f/58TZo0SSUlJRfddYkrSNxutznidGJfdnebn0tiiURkDA8rFAyqp7tbHZ9/rvcPHFBlebmKi4rkystTOBQy499u13AsJl9Pj8KRiLzFxQr09+vs2bOqr69XsL9fV9XVyWKzKRAI6KqZM/W/7e3qqKqS4XZr8uTJqq6u1j333CO3zyfrkSPm7+FIx4ficbOeifWRJSYpHImot7dX1rw8+QMBdXR0qLCoSLa8PEUiEdmdTl111VXqHxhQkdcru9MpT22tnDU15vFqjKmHJJmf/T//ae6XcNj8TMrKzH3j91+0TpLMY19ZmTl4z/kdarGY+RiPa8gwNBiN6rMvvpDH61XcalXcYlFBUZE+6+qSfdYsVa5Zo/pHHlHgm2/kPXCAhHAckBBmUDQaVX5+vl588UXddtttyfKmpia1t7ePOfJhJBJJGRY5EAiotrb2iv2yGIaRvJzUMIwLJi8d/bpoNKpvvvlGfr9fDQ0N+vrrr1VaWqq8vDyFw2GdOnVKM2fOVCQSSb7Xs2fPyuFw6MSJE5o7d67sdnvykqpwOKyTJ0+qu6tLs2bOlMUwZJVU7PVqKBLR8U8+UaCvTxbDUGl5ua6ZMUOuggL1nD0rw2LRwOCgTp8+rbKyMg0PDyscDisQCGj16tUpI4CNJRAIKD8/Xx999JF5uZ7Vqs8++kiVXq9KXC7Zhoflcjg0FInIZrHo89OnFfT7Na22Vm6nU/+3f78mlZVpUlmZbJK8xcX69NNPVV1drePHj2tSRYWGhoY0e/ZsDcfjCo38COXn58udn6/S0lINDAzIarMpHo/LZrMpPz9fVpvt3CVnNpsGolENSyoqKdGQYSjP7VZ4eFhDhiFPcbHZQBhpJMStVvPSuHSLRs1EIBI5t4TD5o/HxS57+r7LoEY3NsbjMbFPEj94Vuu5HtLRj4WFZgPxhy75CwbNntZw2GyMhcMXNljHasSO3nZ+g+tyrNvt5ntzOCSnM3V99GVmlyoSMfdJIGDui8R+HqvBMUo4HJbVak0Op9/b2/u9DcYUibhPLHl5F5a53WbS+1Pep2GY7yUSOdfwtlrNfed0mvt3dCNqrMZ+ohE/0qiPS7KONFA/Pn5cgf5+/deCBSooLFRcUmRoSLJYNBAOKy5JFosmVVaqLxBQocej4VhMvb29Ki4ultvtlnRurr2LHbcB4LK5/34F9uyRNxi8Ytu4EwkJYQYl7st77733tGTJkmT59u3btWfPnjGHGN66daseeeSRC8r5sgAAAGBCOHBAgeZmed94gzbuOGAewivA+YMEXGzgFkl66KGH5Pf7k0u2zFEFAAAA/Ci/+IXU0pLpWuSMNF3Tg5+ivLxcNptNXV1dKeU+n++Cm6ITnE6nef07AAAAAFwizhBmkMPh0IIFC9Ta2ppS3tramnIJKQAAAABcDpwhzLDNmzdr7dq1WrhwoRobG7V79259+eWXuvfeezNdNQAAAAATHAlhht1+++367rvv9Oijj6qzs1Nz5szR66+/rmnTpmW6agAAAAAmOEYZzXKJeQgZgQkAAAATBW3c8cM9hAAAAACQo0gIAQAAACBHkRACAAAAQI4iIQQAAACAHEVCCAAAAAA5ioQQAAAAAHIU8xBmMcMwFAgEJCn5CAAAAGS7RNuWGfIuP+YhzGI9PT2qqKjIdDUAAACAy6Kjo0NTpkzJdDUmNM4QZjGHwyFJ+vjjj1VTUyOLxZLhGmGiCgQCqq2tVUdHB5PD4rIi1jAeiDOMF2LtpzMMQ8FgUDU1NZmuyoRHQpjFEgng5MmTOchgXBQVFRFrGBfEGsYDcYbxQqz9NF6vN9NVyAkMKgMAAAAAOYqEEAAAAAByFAlhFnM6ndqyZYucTmemq4IJjljDeCHWMB6IM4wXYg3ZgFFGAQAAACBHcYYQAAAAAHIUCSEAAAAA5CgSQgAAAADIUSSEAAAAAJCjSAizwDvvvKPVq1erpqZGFotFr7zySsp2wzC0detW1dTUyO12a/ny5Tp27FhmKous1dzcrOuvv14ej0cVFRVas2aNTpw4kfIaYg3psGvXLs2bNy85UXNjY6PeeOON5HbiDJdDc3OzLBaLNm3alCwj1pAOW7dulcViSVmqqqqS24kzXOlICLNAKBRSQ0ODdu7cOeb2xx57TI8//rh27typQ4cOqaqqSitWrFAwGBznmiKbtbW1acOGDTp48KBaW1s1PDyslStXKhQKJV9DrCEdpkyZoh07dujw4cM6fPiwbrzxRt16663JBhJxhnQ7dOiQdu/erXnz5qWUE2tIl9mzZ6uzszO5HD16NLmNOMMVz0BWkWTs3bs3+TwejxtVVVXGjh07kmXhcNjwer3GU089lYEaYqLw+XyGJKOtrc0wDGINl1dJSYnx9NNPE2dIu2AwaNTX1xutra3GsmXLjKamJsMwOKYhfbZs2WI0NDSMuY04QzbgDGGWO3PmjLq6urRy5cpkmdPp1LJly/T+++9nsGbIdn6/X5JUWloqiVjD5RGLxdTS0qJQKKTGxkbiDGm3YcMG3XLLLbr55ptTyok1pNPJkydVU1Ojuro63XHHHTp9+rQk4gzZwZ7pCuDSdHV1SZIqKytTyisrK/XFF19kokqYAAzD0ObNm7V06VLNmTNHErGG9Dp69KgaGxsVDodVWFiovXv36rrrrks2kIgzpENLS4s++OADHTp06IJtHNOQLosWLdJzzz2nGTNmqLu7W9u2bdOSJUt07Ngx4gxZgYRwgrBYLCnPDcO4oAz4sTZu3KgPP/xQ77777gXbiDWkw7XXXqv29nb19fXppZde0rp169TW1pbcTpzhUnV0dKipqUn79++Xy+W66OuINVyqVatWJdfnzp2rxsZGXXPNNdqzZ48WL14siTjDlY1LRrNcYhSrRA9Ugs/nu6A3Cvgx7r//fr322mt66623NGXKlGQ5sYZ0cjgcmj59uhYuXKjm5mY1NDToiSeeIM6QNkeOHJHP59OCBQtkt9tlt9vV1tamJ598Una7PRlPxBrSraCgQHPnztXJkyc5piErkBBmubq6OlVVVam1tTVZFo1G1dbWpiVLlmSwZsg2hmFo48aNevnll/Xmm2+qrq4uZTuxhsvJMAxFIhHiDGlz00036ejRo2pvb08uCxcu1N1336329nZdffXVxBoui0gkok8++UTV1dUc05AVuGQ0C/T39+vUqVPJ52fOnFF7e7tKS0s1depUbdq0Sdu3b1d9fb3q6+u1fft25efn66677spgrZFtNmzYoOeff16vvvqqPB5PsjfT6/XK7XYn5+8i1nCpHn74Ya1atUq1tbUKBoNqaWnR22+/rX379hFnSBuPx5O8BzqhoKBAZWVlyXJiDenwwAMPaPXq1Zo6dap8Pp+2bdumQCCgdevWcUxDViAhzAKHDx/WDTfckHy+efNmSdK6dev07LPP6sEHH9Tg4KDuu+8+9fb2atGiRdq/f788Hk+mqowstGvXLknS8uXLU8qfeeYZrV+/XpKINaRFd3e31q5dq87OTnm9Xs2bN0/79u3TihUrJBFnGD/EGtLhq6++0p133qlvv/1WkyZN0uLFi3Xw4EFNmzZNEnGGK5/FMAwj05UAAAAAAIw/7iEEAAAAgBxFQggAAAAAOYqEEAAAAAByFAkhAAAAAOQoEkIAAAAAyFEkhAAAAACQo0gIAQAAACBHkRACAAAAQI4iIQQAAACAHEVCCAAAAAA5ioQQAAAAAHIUCSEAAAAA5CgSQgAAAADIUSSEAAAAAJCjSAgBAAAAIEeREAIAAABAjiIhBAAAAIAcRUIIAAAAADmKhBAAAAAAchQJIQAAAADkKBJCAAAAAMhRJIQAAAAAkKP+H525/hPYftm2AAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pdiff.SetExtractionMode(False)\n", "pdiffn.SetExtractionMode(False)\n", "\n", "px.FitScaleFactorForRw()\n", "pn.FitScaleFactorForRw()\n", "\n", "pn.plot(fig=None,diff=False,hkl=True)\n", "px.plot(fig=None,diff=False,hkl=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Display the 3D crystal structure\n", "*Note: this requires installing `ipywidgets` and `py3Dmol` (as of 2021/05 the conda-forge version is obsolete, so just install using pip). Otherwise You will just get a warning message*\n", "\n", "This will be updated live during the optimisation, and also when using `RestoreParamSet()` to restore some specific solutions (and generally everytime the underlying Crystal's `UpdateDisplay()` function is called). Just scroll back to see what is being done in the widget.\n", "\n", "The `display()` is only really necessary to make sure the widget appears in the notebook. In fact if `c.widget_3d()` is the *last* command in the notebook cell, the display is done automatically. See the ipywidgets documentation if you want to understand this in more details.\n", "\n", "Note that bonds may disappear during optimisation, because they are automatically assigned by the javascript viewer, which is quite strict about allowed distances. In the final solution some bonds in the middle of the chain are often missing, though you can see the atoms are reasonably close. But rest assured that any bond defined in the object still exists as defined in pyobjcryst !" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "79259c7636504fe7baccfa6ee4d2f0f5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(c.widget_3d())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run multiple optimisations\n", "We also enable the automatic least squares every 150k trials, which allows a better convergence\n", "\n", "We perform 3 runs, each of 1 million trials using parallel tempering, with default parameters (which should be adequate for all problems). Normally for this structure it would be better to use 2 millions trials so that the correct solution is found during almost every run.\n", "\n", "Each run starts from a randomised configuration." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LSQ option: Every 150000 trials, and at the end of each run\n" ] }, { "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8d18d8c1d9d94a51b12a8d1b9d843bea", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(VBox(children=(HBox(children=(VBox(children=(FloatRangeSlider(value=(0.0, 1.0), description='Xra…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "79965d9b2f58431580723d7e13cca396", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Box(children=(HBox(children=(Label(value='MonteCarlo:', layout=Layout(max_width='25%', width='11em')), Text(va…" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Final LLK: 2968.07\n" ] } ], "source": [ "mc.GetOption(\"Automatic Least Squares Refinement\").SetChoice(2)\n", "print(\"LSQ option: \", mc.GetOption(\"Automatic Least Squares Refinement\").GetChoiceName(2))\n", "\n", "# 3D structure view which will be live-updated with the best\n", "# configuration of the current run\n", "display(c.widget_3d())\n", "\n", "# Small widget to see the progress of the optimisation, with the current run\n", "# best log-likelihood, the run number and remaining number of trials.\n", "display(mc.widget())\n", "\n", "# The powder pattern plot a few cells above should also be updated for each run best solution\n", "mc.MultiRunOptimize(nb_run=3, nb_step=1e5)\n", "print(\"Final LLK: %.2f\" % mc.GetLogLikelihood())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### List solutions\n", "All solutions are stored in a \"Parameter Set\" which can be restored (assuming that the objects - crystal structure and powder pattern are not altered e.g. by changing the list of atoms, the profile, or the fixed parameters etc...).\n", "\n", "This will only record changes of parameters such as atom coordinates, but will not record other changes such as a different spacegroup, or a change of the Scatterers (number of atoms or molecules) inside a Crystal. It can only be used to browse results obtained at the end of `MultiRunOptimize()`.\n", "\n", "At the end of the optimisation the best solution is automatically restored." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0: LLK= 3778.00, name=Best Configuration\n", " 1: LLK= 3839.00, name=Run #3\n", " 2: LLK= 3827.00, name=Run #2\n", " 3: LLK= 3776.00, name=Run #1\n" ] } ], "source": [ "for i in range(mc.GetNbParamSet()):\n", " idx = mc.GetParamSetIndex(i)\n", " cost = mc.GetParamSetCost(i)\n", " name = mc.GetFullRefinableObj().GetParamSetName(idx)\n", " print(\"%3d: LLK=%10.2f, name=%s\"%(idx, cost, name))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Restore a chosen solution (set of parameters)\n", "Restoring a solution will also update the 3D crystal view above." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "26fc02afd8ef4a268848164426b18468", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADK+0lEQVR4nOzdeXhU5dn48e/sS5bJRkgCISC7goIIyFIBQZCKC9Rqq6BWtFUr1IJo3SrWFrXvq9Bia9VaRZbi8hOX0hcF0SibIIggm+wESEhIMpPJMvv5/ZGZMcskmawzSe7PdeWSnDlzzn1IBs99nue5b5WiKApCCCGEEEIIIToddaQDEEIIIYQQQggRGZIQCiGEEEIIIUQnJQmhEEIIIYQQQnRSkhAKIYQQQgghRCclCaEQQgghhBBCdFKSEAohhBBCCCFEJyUJoRBCCCGEEEJ0UpIQCiGEEEIIIUQnJQmhEEIIIYQQQnRSkhAKIYQQQgghRCclCaEQQgghhBBCdFKSEAohhBBCCCGixq233hrpEDoVbaQDEEIIIYQQQnQ+Dz30UK1tiqKwZcuWCETTeUlCKIQQQgghhGhzK1euZNWqVbW2f/bZZxGIpvOShFAIIYQQQgjR5u68804GDhxIampqte233XZbhCLqnFSKoiiRDkIIIYQQQgghRNuTojJCCCGEEEII0UlJQiiEEEIIIYQQnZQkhEIIIYQQQgjRSUlCKIQQQgghhGhzb7/9NkOHDmXmzJksW7aM/v37M3z4cD788MNIh9apSFEZIYQQQgghRJsbOXIkn332GXa7nSFDhnDw4EGMRiOTJk3iyy+/jHR4nYa0nRBCCCGEEEK0OZPJhNlsxmw2M3HiRCwWCwBaraQobUmmjAohhBBCCCHa3JAhQ/B6vQCsWLECAJfLRXJyciTD6nRkyqgQQgghhBBCdFIyQiiEEEIIIYQQnZQkhEIIIYQQQgjRSUlCKIQQQgghhIgaeXl5kQ6hU5GEUAghhBBCCBE1brvttkiH0KlITVchhBBCCCFEmxsxYkStbYqicPjw4QhE03lJQiiEEEIIIYRoc3a7nb1799bqO3jVVVdFKKLOSaaMCiGEEEIIIdrcokWLsNvttbY//vjjEYim85I+hEIIIYQQQgjRSckIoRBCCCGEEEJ0UpIQCiGEEEIIIUQnJQmhEEIIIYQQQnRSkhAKIYQQQgghRCclCaEQQgghhBBCdFKSEAohhBBCCCFEJyUJoRBCCCGEEEJ0UpIQCiGEEEIIIaLGrbfeGukQOhVtpAMQQgghhBBCdD4PPfRQrW2KorBly5YIRNN5SUIohBBCCCGEaHMrV65k1apVtbZ/9tlnEYim85KEUAghhBBCCNHm7rzzTgYOHEhqamq17bfddluEIuqcVIqiKJEOQgghhBBCCCFE25OiMkIIIYQQQgjRSUlCKIQQQgghhBCdlKwhbMcURaGkpAS73U5cXBwqlSrSIQkhhBBCCNFsiqJgt9vJyMhArZYxrNYkCWE7ZrfbSUhIiHQYQgghhBBCtIqcnBy6d+8e6TA6NEkI27G4uDhycnLIzMwkJyeH+Pj4SIckhBBCCCFEWK666ireeecd9Ho9f/zjH3G73Tz33HNcd911rFq1iszMTOLi4iIdZocnCWE7plKpgklgfHx88M9Llixh4cKFKIqCxWIhOzubXr16cdVVV7Ft2zYUReHnP/85r776arXj9enTh9zcXFQqFcOGDSM7O5uEhAQOHjxIWlpacD+Hw8GgQYMoKCigV69e7N69u9px7rrrLt58803MZjMJCQmcOHGi2uvPP/88CxcuRK1WoygKp0+fRq/XN/qYS5Ys4cEHH2TmzJm88cYbJCQkoCgKHo+H6dOns2LFipb5iw5D7969OXHiBF6vt83OKYQQQgjRnun1enr06AHAiy++yBtvvMGsWbOoqKgI3tfKkqjWJxNyO5ijR4/y+OOP880332Cz2fjxj3/MlVdeCcBjjz2G3W4nLy+P5cuX4/P5ar1/xYoVWK1WduzYwY4dO0Ke48knnyQtLQ2bzYbD4eDll1+utc/111+P1WqtlQwCLFy4kD179mCz2fjuu+8wm81NPuaQIUN44403gt8fOnSInJwcVq9eTXl5eQN/Wy3n6NGjGI3GNjufEEIIIUR7N2TIkGr3dXfccQfz5s3DbrdHLqhOSBLCDua5555j8uTJ9OrVC4B//OMfnD59GpfLxfjx4wEwm831Pm3RarV06dKFPXv2AHDttdeSkJDAxRdfDMBnn33GzTffHHzto48+qnWMDz/8EIvFwty5c2u9ptFo+Mc//kFJSQk9evRAq9U2+5hVJSUlYTKZOHbsWHDbkiVLSE5OJj09HZPJxPz580lLSyMmJoZ9+/ZVe/+BAwfo2rUrCQkJwb/HqsdJSUkhLS0Nk8nE//t//6/eWIQQQgghRGhLly6lZ8+e1bZNmDCBgwcPRiagTkoSwg4mJyeH3r17V9tmNBr5/vvvg9/feOON/OhHP6qzYlNRURHnzp1j9OjRAMyYMQOr1UpJSQkrVqzAbreTmpoKQJcuXSgqKqr2/ieeeIKysjIOHDjAv/71r1rTP9977z3eeecdkpOTGTx4MB6Pp9nHrOrQoUM4HA4GDBhQ67Xc3Fxuvvlm/v3vf5OXl8eUKVN45plnqu1z6623cscdd2C1Wjl8+HCtY/h8PvLy8njyySdZtGhRnXEIIYQQQggR7WQNYQ3PPPMM7733HgcPHsRkMjF69Giee+45+vfvH9znjjvuYNmyZdXeN3LkSLZt2xb83ul08uCDD/Lvf/+biooKJk6cyN///vdqVZKKi4uZO3cuH374IQDXXXcdS5cubVbl0KysrGojY1C55q9fv34APPvss2zbto1Tp06FfP/MmTPRarXcfPPNDBw4EKhMIAEuvfRSduzYQXx8PPn5+QCcO3eOpKSkWjEAZGRkcNFFF/Hpp58yZMiQ4OtXXnklx44dw+PxMHDgQJ577rkmHVOj0dSKv3///qhUKn73u9+h1Vb/9Q6M9vXp04fjx48Ht+3fv7/afjk5Odx5550AtY4BcMEFFwBw8cUX89prr9X+SxRCCCFExPl8PlwuV6TDEHXQ6XQh7+VE25OEsIbs7Gx+/etfM3z4cDweD4899hiTJ09m//79xMTEBPe7+uqref3114Pf6/X6asd54IEH+Oijj1i9ejXJycnMnz+fadOmsXPnzuAv/y233MLp06dZt24dAL/85S+ZNWtWyOmS4VqwYAFDhgzh5MmTZGVl8etf/5rMzEz0ej0ffPABzzzzDIcOHQqZ6EDlGsLp06dX27ZmzRoeeughdu/ezYwZMzAajbz11lvMmTOHtWvXMm/evGr7nz59mu7du+NyuTh06BAjR46s9vr69eu56qqr0Gq1JCQk4PV6GT9+fKOP+fXXX9eK/9ChQ9UK4NSl6pRZRVGqvdajRw+WLVvGokWL8Hg8df5dhXqvEEIIISLP5XJx/PjxkPUSRPRISEggLS2t1lImWUPYtiQhrCGQnAW8/vrrpKamsnPnTq644orgdoPBUGfiYbPZeO2111i+fDmTJk0CKhOtzMxMNmzYwJQpUzhw4ADr1q1j27ZtwYTp1VdfZdSoURw6dKjaiGRj9O7dm6effppLLrmkWpVRgNmzZ+N0OoNTKffs2ROs7FSft99+mz/96U9kZWUxc+ZMHA4HF110ERaLhZ49e/LLX/4SgIEDB3LgwAFmzZoVLEhz1VVXMXbs2GrH+81vfsOpU6eCaxV/97vf4fP5Gn3MUAlhS1ixYgXjxo3j73//O8nJyRw9erRVziOEEEKIlqcoCrm5uWg0GjIzM6WpeRRSFIXy8nJOnDjB0qVLWbduHTfddBO/+93vgMpCgu+//35kg+xEVIoMcdTryJEj9O3bl7179zJo0CCgcsro+++/j16vJyEhgXHjxvGnP/0puAZu48aNTJw4kaKiIhITE4PHuuSSS7jhhht46qmn+Ne//sW8efOwWq3VzpeQkMDixYv5xS9+ETIep9OJ0+kMfl9SUkJmZiY2m63T9SH85z//yZw5c7j55purVRqNhN69e3Pu3DlKS0sjGocQQgjR2bndbo4cOUJGRgYWiyXS4Yh67N27F41GQ//+/fnb3/7GF198wZtvvsk111zDBx98gMVi6ZT3uG1NRgjroSgK8+bNY+zYscFkEGDq1Kn89Kc/JSsri+PHj/PEE09w5ZVXsnPnTgwGA3l5eej1+mrJIEDXrl3Jy8sDIC8vL5hAVpWamhrcJ5RnnnmGp556qoWusH276667uOuuuyIdBoCMIgohhBBRItATuOZyHhF9NBoNKpUKt9vN3LlzufDCC5k6dWqt4oKidUlCWI/777+fPXv2sGnTpmrbA+0RAAYNGsRll11GVlYWa9euZcaMGXUeT1GUanOkQ7V+qLlPTY888ki19XWBEUIhhBBCCPEDaWge/WJjY7HZbMHvJ02aRHp6OvPnz49gVJ2PTKquw5w5c/jwww/57LPPqlUGDSU9PZ2srKxgi4K0tDRcLhfFxcXV9svPz6dr167Bfc6dO1frWAUFBcF9QjEYDMTHx1f7EkIIIYQQor1JTU2tVbzvoosuqlXTQ7QuSQhrUBSF+++/n/fee4+NGzfWakweSmFhITk5OaSnpwMwbNgwdDod69evD+6Tm5vLd999F+ztN2rUKGw2G9u3bw/u89VXX2Gz2YL7CCGEEEIIAfD555+jUqlq1Z/oULxevA88AGfPRjqSTkWmjNbw61//mlWrVvHBBx8QFxcXXM9nsVgwmUyUlpaycOFCfvKTn5Cens6JEyd49NFHSUlJCbZrsFgszJ49m/nz55OcnExSUhIPPvgggwcPDlYdHThwIFdffTV33303L7/8MlDZdmLatGlNrjAqhBBCCCFEe2X/9lvi/vIXNttsDP7LXyIdTqchI4Q1vPTSS9hsNsaPH096enrw66233gIqF7/u3buX66+/nn79+nH77bfTr18/tm7dSlxcXPA4ixcv5oYbbuCmm25izJgxmM1mPvroo2oNOFeuXMngwYOZPHkykydP5uKLL2b58uVtfs1CCCGEEEJEWu7WrQDs/+CDCEfSuUhCWIOiKCG/7rjjDgBMJhMff/wx+fn5uFwuTp48yRtvvFGrsIvRaGTp0qUUFhZSXl7ORx99VGufpKQkVqxYQUlJCSUlJaxYsYKEhIQ2ulIhhBBCCBFNnE4nc+fOJTU1FaPRyNixY4N9mAM2b97MJZdcgtFoZOTIkezduzf42smTJ7n22mtJTEwkJiaGiy66iP/+979tfRlNVrJnDwDJxcW4XK4IR9N5SEIohBBCCCFEFHjooYf4f//v/7Fs2TJ27dpFnz59mDJlSrU2DAsWLOB///d/2bFjB6mpqVx33XW43W6gcumT0+nkiy++YO/evTz33HPExsZG6nIazf399wD0pbLQomgbsoZQCCGEEEJ0aOXl5Rw8eLDNzztgwADMZnNY+5aVlfHSSy/xxhtvMHXqVABeffVV1q9fz2uvvcbw4cMBePLJJ7nqqqsAWLZsGd27d2fNmjXcdNNNnDp1ip/85CcMHjwYgAsuuKAVrqr1aHNyAOgNHCgtjWwwnYgkhEIIIYQQokM7ePAgw4YNa/Pz7ty5k0svvTSsfY8ePYrb7WbMmDHBbTqdjhEjRnDgwIFgQjhq1Kjg60lJSfTv358DBw4AMHfuXO69914++eQTJk2axE9+8hMuvvjiFryi1hVz/jw2tRqLz4dLKo22GUkIhRBCCCFEhzZgwAB27twZkfOGS1EUAFQqVa3tNbfVFHj9rrvuYsqUKaxdu5ZPPvmEZ555hueff545c+Y0MvLIiC8vJzcuDovNhrPKNFnRuiQhFEIIIYQQHZrZbA57pC5S+vTpg16vZ9OmTdxyyy0AuN1uvv76ax544IHgftu2baNHjx4AFBcX8/3331dLPDMzM7nnnnu45557eOSRR3j11VfbTUJo8nopsFjAZsPdkfstRhlJCIUQQgghhIiwmJgY7r33XhYsWEBSUhI9evTgz3/+M+Xl5cyePZtvv/0WgD/84Q8kJyfTtWtXHnvsMVJSUrjhhhsAeOCBB5g6dSr9+vWjuLiYjRs3MnDgwAheVePE+Hy4EhPh1CncNlukw+k0JCEUQgghhBAiCjz77LP4fD5mzZqF3W7nsssu4+OPPyYxMbHaPr/5zW84fPgwl1xyCR9++CF6vR4Ar9fLr3/9a06fPk18fDxXX301ixcvjtTlNIricmEEfKmpAHhKSiIbUCciCaEQQgghhBBRwGg08te//pW//vWvtV4bP358cJ3htGnTQr5/6dKlrRpfa3IVFWEAVOnpAHjt9sgG1IlIH0IhhBBCCCFERFXk5wOgdO0KgE9GCNuMJIRCCCGEEEKIiKrwN6JX+aeMKmVlkQynU5GEUAghhBBCCBFRDn9CqE9JoUylkoSwDUlCKIQQQgghhIgoV2EhAIaUFCrUaigvj3BEnYckhEIIIYQQQoiIchcXA5UJoVOrRVVREeGIOg9JCIUQQgghhBAR5fE3ojenpuLUalFLQthmJCEUQgghhBBCRJS3uBg3EJOUhEunQ+10RjqkTkMSQiGEEEIIIURE+ex27EBMbCxunQ6dJIRtRhJCIYQQQggh2rmFCxcyZMiQSIfRdCUllAFarRaPwYDO5Yp0RJ2GJIRCCCGEEEKIiFKVllKm0QDgMRrRud0RjqjzkIRQCCGEEEIIEVGqsjIq/Amhz2hE7/FEOKLOQxJCIYQQQgghooDP5+O5556jT58+GAwGevTowZ/+9CcAHn74Yfr164fZbOaCCy7giSeewN3AKNq//vUvLrroIgwGA+np6dx///1tcRlNoqqowKnVAuAzmTB6vRGOqPPQRjoAIYQQQgghBDzyyCO8+uqrLF68mLFjx5Kbm8vBgwcBiIuL44033iAjI4O9e/dy9913ExcXx0MPPRTyWC+99BLz5s3j2WefZerUqdhsNjZv3tyWl9MoKqcTb5WE0CAJYZuRhFAIIYQQQogIs9vt/OUvf+HFF1/k9ttvB6B3796MHTsWgMcffzy4b8+ePZk/fz5vvfVWnQnhH//4R+bPn89vfvOb4Lbhw4e34hU0j9rlwqPTAaAyGtEpSoQj6jwkIRRCCCGEEB1beTn4R9ra1IABYDaHteuBAwdwOp1MnDgx5OvvvvsuS5Ys4ciRI5SWluLxeIiPjw+5b35+PmfPnq3zWNFI63YHE0KMRgyRDadTkYRQCCGEEEJ0bAcPwrBhbX/enTvh0kvD2tVkMtX52rZt2/jZz37GU089xZQpU7BYLKxevZrnn3++0ceKVlqPB4/RCIDKZEIf4Xg6E0kIhRBCCCFExzZgQGVyFonzhqlv376YTCY+/fRT7rrrrmqvbd68maysLB577LHgtpMnT9Z5rLi4OHr27Mmnn37KhAkTGh93BOjcbrz+EUK1yYQxwvF0JpIQCiGEEEKIjs1sDnukLlKMRiMPP/wwDz30EHq9njFjxlBQUMC+ffvo06cPp06dYvXq1QwfPpy1a9eyZs2aeo+3cOFC7rnnHlJTU5k6dSp2u53NmzczZ86cNrqixtF6vfj0leOCapNJkpQ2JH/XQgghhBBCRIEnnngCrVbL73//e86ePUt6ejr33HMPs2fP5re//S33338/TqeTa665hieeeIKFCxfWeazbb78dh8PB4sWLefDBB0lJSeHGG29su4tpJL3Xi9dQuXJQHea6S9EyVIoiJXzas5KSEiwWCzabrc6FxUIIIYQQnYXD4eD48eP06tULo1EmHkazqj+rirg4Pr/0UqZ/9RXfPvkkvf7wBywg97htQBrTCyGEEEIIISJK7/OBf4RQIyOEbUoSQiGEEEIIIUREGXw+FP+IrjY2NsLRdC6SEAohhBBCCCEix+2uLGzib5ehjYmJaDidjSSEQgghhBBCiMhxuSr/G0gIZYSwTUlCKIQQQgghhIgchwOobEgPoI+Li2Q0nY4khEIIIYQQQnQw5eXlHD58mCNHjlBaWhrcfuLEicgFVRenE6iSEEpV0TYlfQiFEEIIIYToYE6dOkXPnj1RqVScPn2a0tJS0tLScPqTr2ii+EcI1f61gzqZMtqmZIRQCCGEEEKIDshoNGIwGOjduzc+n48TJ04QjS3IPWVlwA8JoUFGCNuUJIRCCCGEEEJ0MDqdrtpoYEZGBnFxcZT5k69oEkgINYGE0GKJZDidjiSEQgghhBBCtHMLFy5kyJAhwe979+6Nwd/oPSA5OZlhw4Y1+RxvvPEGCQkJTX5/XTz+NY4a/1RRlb8foWgbkhAKIYQQQgghIiY4QhhYO1gjkRWtSxLCGp555hmGDx9OXFwcqamp3HDDDRw6dKjaPoqisHDhQjIyMjCZTIwfP559+/ZV28fpdDJnzhxSUlKIiYnhuuuu4/Tp09X2KS4uZtasWVgsFiwWC7NmzcJqtbb2JQohhBBCCBE1vOXlQJX+gyoV0Vf6puOShLCG7Oxsfv3rX7Nt2zbWr1+Px+Nh8uTJ1eZb//nPf+aFF17gxRdfZMeOHaSlpXHVVVdht9uD+zzwwAOsWbOG1atXs2nTJkpLS5k2bRperze4zy233MLu3btZt24d69atY/fu3cyaNatNr1cIIYQQQkQHn8/Hc889R58+fTAYDPTo0YM//elPADz88MP069cPs9nMBRdcwBNPPIHb7a73eP/617+46KKLMBgMpKenc//999e7f3FxMbfddhuJiYmYzWamTp3K4cOHa+33/vvv069fP4xGI1dddRU5OTnB17799lsmTJhAXFwc8fHxDBs2jK+//rr+6/YnhLoqxWQkIWw70naihnXr1lX7/vXXXyc1NZWdO3dyxRVXoCgKS5Ys4bHHHmPGjBkALFu2jK5du7Jq1Sp+9atfYbPZeO2111i+fDmTJk0CYMWKFWRmZrJhwwamTJnCgQMHWLduHdu2bWPkyJEAvPrqq4waNYpDhw7Rv3//tr1wIYQQQggRUY888givvvoqixcvZuzYseTm5nLw4EEA4uLieOONN8jIyGDv3r3cfffdxMXF8dBDD4U81ksvvcS8efN49tlnmTp1Kjabjc2bN/P999/Tr1+/kO+54447OHz4MB9++CHx8fE8/PDD/PjHP2b//v3odDqgsr/hn/70J5YtW4Zer+e+++7jZz/7GZs3bwbg1ltvZejQobz00ktoNBp2794dfG9dPIGEsEq7CY9aDT5f4/4CRZNIQtgAm80GQFJSEgDHjx8nLy+PyZMnB/cxGAyMGzeOLVu28Ktf/YqdO3fidrur7ZORkcGgQYPYsmULU6ZMYevWrVgslmAyCHD55ZdjsVjYsmVLnQmh0+msVjGqpKSkRa9XCCGEEEK0Pbvdzl/+8hdefPFFbr/9dqCyMMzYsWMBePzxx4P79uzZk/nz5/PWW2/VmRA+9dRT3HnnnUybNg2ovJe99tprqzWpryqQCG7evJnRo0cDsHLlSjIzM3n//ff56U9/CoDb7ebFF18M3sMuW7aMgQMHsn37dkaMGMGpU6dYsGABAwYMAKBv374NXrtSUYETMPgb0wO4JSFsMzJltB6KojBv3jzGjh3LoEGDAMjLywOga9eu1fbt2rVr8LW8vDz0ej2JiYn17pOamlrrnKmpqcF9QnnmmWeCaw4tFguZmZlNv0AhhBBCCBEVDhw4gNPpZOLEiSFff/fddxk7dixpaWnExsbyxBNPcOrUqZD75ufnc+7cOa677jq6d+9e7ctgMHDPPfcQGxsb/AqcX6vVVhusSE5Opn///hw4cCC4TavVctlllwW/HzBgAAkJCcF95s2bx1133cWkSZN49tlnOXr0aIPX7nU4KhPCKsVkXGpJU9qKjBDW4/7772fPnj1s2rSp1msqlara94qi1NpWU819Qu3f0HEeeeQR5s2bF/y+pKREkkIhhBBCiAbc+597OWM/02bn6xbXjZemvRT2/qYqo2M1bdu2jZ/97Gc89dRTTJkyBYvFwurVq3n++efrPZZara7VeiI1NZU//OEPPPjgg9W219WwPtS9aah71cC2hQsXcsstt7B27Vr+7//+jyeffJLVq1czffr0Oq/PFyIh9Gg0de4vWpYkhHWYM2cOH374IV988QXdu3cPbk9LSwMqR/jS09OD2/Pz84OjhmlpabhcLoqLi6uNEubn5weH4NPS0jh37lyt8xYUFNQafazKYDDU+mALIYQQQoj6NSY5i4S+fftiMpn49NNPueuuu6q9tnnzZrKysnjssceC206ePFnnseLi4ujZsyfZ2dlcddVV1V4LLIOqOVPtwgsvxOPx8NVXXwXvVwsLC/n+++8ZOHBgcD+Px8PXX3/NiBEjADh06BBWqzU4RRSgX79+9OvXj9/+9rf8/Oc/5/XXX683IVRcLkkII0jGYmtQFIX777+f9957j40bN9KrV69qr/fq1Yu0tDTWr18f3OZyucjOzg5+eIYNG4ZOp6u2T25uLt99911wn1GjRmGz2di+fXtwn6+++gqbzRbcRwghhBBCdA5Go5GHH36Yhx56iDfffJOjR4+ybds2XnvtNfr06cOpU6dYvXo1R48e5a9//Str1qyp93gLFy7k+eef569//SuHDx9m165dLF26tM79+/bty/XXX8/dd9/Npk2b+Pbbb5k5cybdunXj+uuvD+6n0+mYM2cOX331Fbt27eIXv/gFl19+OSNGjKCiooL777+fzz//nJMnT7J582Z27NhRLaEMRXE6ayWEXkkI24yMENbw61//mlWrVvHBBx8QFxcXXM9nsVgwmUyoVCoeeOABFi1aRN++fenbty+LFi3CbDZzyy23BPedPXs28+fPJzk5maSkJB588EEGDx4crDo6cOBArr76au6++25efvllAH75y18ybdo0qTAqhBBCCNEJPfHEE2i1Wn7/+99z9uxZ0tPTueeee5g9eza//e1vuf/++3E6nVxzzTU88cQTLFy4sM5j3X777TgcDhYvXsyDDz5ISkoKN954Y73nf/311/nNb37DtGnTcLlcXHHFFfz3v/+tViXUbDbz8MMPc8stt3D69GnGjh3Lv/71LwA0Gg2FhYXcdtttnDt3jpSUFGbMmMFTTz1V/4WHSAhlhLDtqJS6Jgx3UnWt33v99de54447gMpRxKeeeoqXX36Z4uJiRo4cyd/+9rdg4RkAh8PBggULWLVqFRUVFUycOJG///3v1db7FRUVMXfuXD788EMArrvuOl588UUSEhLCjrekpASLxYLNZiO+Su8WIYQQQojOyOFwcPz4cXr16oXRaIx0OFHH6/WiiZJkK/Cz8i1ciOvttxnsdqPVVo5XbUpN5UcFBXKP2wYkIWznJCEUQgghhPiBJISVzp8/z7lz51CpVCQmJgZrX0RTv+tgQvjoo9jff5/Lq6Ql2d26Mf7sWbnHbQOyhlAIIYQQQogOpqCggIEDB3LhhReiVqs5evQoXq830mGF5nZX9h2sQtHKyra2In/TQgghhBBCdDAqlQq1P8nq2rUrJpOJw4cPR2VSqHK58NRICH2SELYZGSEUQgghhBCig7FYLDidzuD38fHxZGVlVSsQEy1UbjfumusaozDOjkpSbyGEEEIIITqYqv2yAwwGA/369YtANPVTeTy1qooqkhC2GRkhFEIIIYQQHY7UTazO4/Gwa9cuioqKIh1KUOBnpHa5avUdlISw7UhCKIQQQgghOoxASwWXyxXhSKJLaWkpaior1EeL8vJyALQFBXhqrhmUhLDNyJRRIYQQQgjRYWi1WsxmMwUFBeh0umBhlc7OVlTEhUBxaSkOhyOisSiKQnl5Ofn5+SQkJOAuKcFbIyFUqjSpF61LEkIhhBBCCNFhqFQq0tPTOX78OCdPnox0OFGj8OxZyt1ufIA1ShrTJyQkkJaWxlmPB5/ZXO01lV4foag6H0kIhRBCCCFEh6LX6+nbt69MG61i9a238oh//aCybRuqhISIxqPT6YLTezVeL76aU0RlymibkYRQCCGEEEJ0OGq1GqPRGOkwokbcwYMYKyoAKDp6lKQxYyIc0Q+0Xi/eGiOCKvnZtRmZVC2EEEIIIUQHl+V0YvOvyys5dSrC0VSn9XprVRWVKaNtRxJCIYQQQgghOjCXy0Vvn4+z3boBUJGXF+GIqtN6vSgyQhgxkhAKIYQQQgjRgdntdroAjh49AHCeOxfZgGrQ+XxQo6qoJIRtRxJCIYQQQgghOjC73U4ioO3VCw/gLiiIdEg/UBQMilKrzYRGEsI2IwmhEEIIIYQQHVhpURGxgKlbN6yAt7AwwhFV4XYDoKqREKolIWwzkhAKIYQQQgjRgVWcPQuAvmtX7Go1SnFxhCOqwuGo/K+MEEaMJIRCCCGEEEJ0YI7cXAAMaWmU6XRQUhLhiKpwOoHaawY1NRrVi9YjCaEQQgghhBAdmCs/HwBTRgYVej0auz3CEVXhTwjVJlO1zTJC2HYkIRRCCCGEEKID8/qLyJi7dcNhNKIrK4twRFXUMUKolhHCNiMJoRBCCCGEEB2Yz19ERpuaijsmBkNFRYQjqqKOEUJtje9F65GEUAghhBBCiI6sqAgHgMmENzYWkz8Jiwr+WGquGdTJCGGbkYRQCCGEEEKIDkxts1Gi0QCgxMVh9rd6iAbe8nIAtDEx1bZrJSFsM5IQCiGEEEII0YFpSkoo1ekAUMXGYvT5IhzRD9ylpUDtEUJJCNuOJIRCCCGEEEJ0YNrycsqrJIQmRYlwRD8IJIQ1Rwj1cXGRCKdTkoRQCCGEEEKIDkzrcODS64HKhFAPECXTRj3+iqc1E0JZQ9h2JCEUQgghhBCiA9M6nbgNBgDU/pE3j80WyZCCJCGMPEkIhRBCCCGE6MD0Lhdef0Ko8SeEjqKiSIYU5PYnhLrY2Grba/YlFK1HEkIhhBBCCCE6MIPbjdff109rsQDg8PcmjDRvHQkh/jWPovVJQiiEEEIIIUQHZvB48AUSwvh4AJxRMkLoLS/HDRhqThFVS5rSVuRvWgghhBBCiA7M5PWCf42ePjERAGdxcSRDCvJVVOAEDP4praLtSUIohBBCCCFEB2ZSFPBPydQlJADRU1TGV14uCWGESUIohBBCCCFEBxajKKj8xWQMSUkAuK3WCEb0A5/DIQlhhElCKIQQQgghRAflKi1FD6j9awdNyclA9IwQKjJlNOIkIRRCCCGEEKKDKi8oAH4oJmNKSsIHeO32CEb1A0VGCCNOEkIhhBBCCCE6qIrz5wHQ+tcOmsxmygFfaWnkgqrK6ZSEMMIkIRRCCCGEEKKDcvgTwkAxGaPRSDmgRMsIoT8h1EnfwYiRhFAIIYQQQogOKtCAXu8vJqNSqShXqVDKyyMZVpDK6cStUqFSqSIdSqclCaEQQgghhBAdlMvfgD5QXRSgQq1GVVYWqZCqc7lwSxP6iJK/fSGEEEIIITqoQHsJY0pKcJtTo0FVURGhiKpTuVy4NZpIh9GpSUIYwhdffMG1115LRkYGKpWK999/v9rrd9xxByr/0Hbg6/LLL6+2j9PpZM6cOaSkpBATE8N1113H6dOnq+1TXFzMrFmzsFgsWCwWZs2ahTVKesIIIYQQQoj2z+O/tzR16RLc5tRoUEdJQqh2ufDICGFEyd9+CGVlZVxyySW8+OKLde5z9dVXk5ubG/z673//W+31Bx54gDVr1rB69Wo2bdpEaWkp06ZNw+v1Bve55ZZb2L17N+vWrWPdunXs3r2bWbNmtdp1CSGEEEKIzsVbUgJATJWE0K3ToXY6IxVSNSq3G49WG+kwOjX52w9h6tSpTJ06td59DAYDaWlpIV+z2Wy89tprLF++nEmTJgGwYsUKMjMz2bBhA1OmTOHAgQOsW7eObdu2MXLkSABeffVVRo0axaFDh+jfv3/LXpQQQgghhOh0fKWlOACj2Rzc5tbp0ERJQqh2u/FKQhhRMkLYRJ9//jmpqan069ePu+++m/z8/OBrO3fuxO12M3ny5OC2jIwMBg0axJYtWwDYunUrFoslmAwCXH755VgsluA+oTidTkpKSqp9CSGEEEIIEYqqtJSa5WO8Oh0atzsi8dSk8XgkIYwwSQibYOrUqaxcuZKNGzfy/PPPs2PHDq688kqc/icteXl56PV6EhMTq72va9eu5OXlBfdJTU2tdezU1NTgPqE888wzwTWHFouFzMzMFrwyIYQQQgjRoZSVUV5jjZ7XYEDrckUooOo0bjc+SQgjSv72m+Dmm28O/nnQoEFcdtllZGVlsXbtWmbMmFHn+xRFqdZjJVS/lZr71PTII48wb9684PclJSWSFAohhBBCiJDU5eVU1Kji6TMY0Ho8EYqoOo3Xi1ea0keUjBC2gPT0dLKysjh8+DAAaWlpuFwuiouLq+2Xn59P165dg/ucO3eu1rEKCgqC+4RiMBiIj4+v9iWEEEIIIUQoqooKHDUSQsVgQB8lCaHW40GRhDCiJCFsAYWFheTk5JCeng7AsGHD0Ol0rF+/PrhPbm4u3333HaNHjwZg1KhR2Gw2tm/fHtznq6++wmazBfcRQgghhBACIDs7m0mTJjFv3jw++eQThg4dyvjx49m6dWu979NWVOCsMSVTMRrRV6l8H0larxefJIQRJVNGQygtLeXIkSPB748fP87u3btJSkoiKSmJhQsX8pOf/IT09HROnDjBo48+SkpKCtOnTwfAYrEwe/Zs5s+fT3JyMklJSTz44IMMHjw4WHV04MCBXH311dx99928/PLLAPzyl79k2rRpUmFUCCGEiJBbb72VlStXRjoMIWp5+OGHeeedd7BarUyePJkdO3ZgNpuZMWMGn3/+eZ3v0zqdlNVMuEwmDD5f6wYcJp3Ph6LXRzqMTk0SwhC+/vprJkyYEPw+sGbv9ttv56WXXmLv3r28+eabWK1W0tPTmTBhAm+99RZxcXHB9yxevBitVstNN91ERUUFEydO5I033kBTZch+5cqVzJ07N1iN9Lrrrqu396EQQgghWsZDDz1Ua5uiKPVW+hYt75tvvuGJJ55Ap9OxYMGC4Cyp2bNn89prr0U4uuhiNBrJzMwkMzOTgQMH0r17d4Bq95ah6JxO3DUSQpXZHF0JocEQ6TA6NUkIQxg/fjyKotT5+scff9zgMYxGI0uXLmXp0qV17pOUlMSKFSuaFKMQQgghmm7lypWsWrWq1vbPPvssAtF0XnPnzuX1119Hq9WyYMECtm3bxrx58zh27FikQ4s6aWlpeL1eNBoNGzduBMDj8eBrILHTud24Y2OrbVPHxGAE8PlAHcEVZIqCQRLCiJM1hEIIIYRo0DfffMO0adOYPn16tVG02bNnRzCqprvzzjsZOHAg48aNq/Z12223RTq0TkWlUtGnTx969uzJO++8Q0lJCXfffTeeKCl4Ek1Wr15dazRQq9VWq1kRisHlwlMj4VIHEkSHo0VjbDR/L0RJCCNLEkIhhBBCNGju3LksWbKExYsXs3jxYl544QWAdjuS8/TTT4fsBzx37twIRNN5paamcuLEieD3CxcuZNy4cezYsSNyQbUz2gZ6+Ok9HjwmU7Vt6pgYAHxlNVvWtzF/QqoyGiMbRycnCaEQQgghGiQjOaI1vPvuu/Ts2bPatpkzZ+KI9MhVB2LyevHVSLi0/roXjhot0tpc4OcsCWFESUIohBBCiAbJSI4Q7ZPR68VnNlfbFjUJodMJgKrGCKZoW5IQCiGEEKJBMpIjRGStX7+ekSNHMnr0aFavXh3cfs0119T9Jq8Xk6Kg+KeIBuji4wFwWq2tEWr4/P9+qCUhjChJCIUQQgjR6TTp5lqICHryySf5+OOP2bBhA9u3b2fOnDn4fD7Ky8vrflPgtWhPCGuMYIq2JQmhEEIIITqdJt1cixYniXn4NBoNCQkJmM1mXnjhBYYNG8b1119PaWlp3W/yF41R1Wg7YUhIAMAV6YTQP2VUEsLIkoRQCCGEEJ1Ok26uRYuTxDx8Q4YMqbaO94477mDevHnY7fa63+T/fVb71wwGBBJCd0lJS4fZKD7/z1kjCWFESUIohBBCiCabPHlypENokibdXIsWJ4l5+JYuXVprHe+ECRM4ePBgne/x+hM+tX+KaIAxMREAT4R/3z3+n7OmxpRW0bbqb1wihBBCCAHcdNNNtbYpisLevXsjEE3zLV26tNa2hm6uRcsLJOaBROeOO+4gKyuLe++9N7KBdRDOwkLMgNY/IhhgiJKE0F1aih5JCCNNEkIhhBBCNGjHjh1s3LgRtfqHyUWKojBr1qwIRiXaO0nMW5eruLgyIbRYqm03JybiA7wNjMR6PJ4GG983h9ufkGolIYwoSQiFEEII0aAFCxYQFxdHSkpKte33339/hCISovNxOp3s27ePoqIikpKSGDRoEHq9vs793f4+gzVHCE1mMw5CJ4R79+7l4Ycfxmq1otVqcbvdpKSksGjRIgYPHtySlxOcMqqrscZRtC1JCIUQQgjRoPvuuy/k9ptvvrmNI2ldeXl5pKWlRToMIWpZvnw5L730EsOHDyc+Ph6r1cquXbu49957mTlzZsj3ePxVRPX+KaIBarWaCkAJUbznvvvuY9WqVWRmZga3nTp1iltvvZUvv/yyxa4HwOs/v65GFVTRtiQhFEIIIYTwu+222/jkk08iHUanJ4l5bS+//DKbNm2qNm3b4/Ewfvz4OhNCt9WKGzDXGCEEcKpUIRNCr9eLpcYU0/j4eLxeb7PiD8VbVoYbMEiV0YiShFAIIYQQnc6IESNqbVMUhcOHD0cgGlHVrbfeSkFBgSTmNZhMJrKzs5kwYQJQ+fuanZ2N0Wis8z1em40ywBxijZ5TrQ6ZED777LNMmzYNvV5PfHw8NpsNj8fDc88912LXEoyvrAwHYDAYWvzYInySEAohhBCiydrrSI7dbmfv3r21CmZcddVVEYqo83nooYdYvnx5re1FRUWYTKYIRBTdli9fzrPPPsvjjz+O1+tFp9Nx2WWXsWLFijrf4y0poRSICZUQajSoKipqbb/iiiv44osvqKiowGq1kpiYWG/S2Ry+igpJCKOAJIRCCCGEaLL2OsVy0aJF2O12EmusrXr88ccjFFHns3LlSvR6Pf/617+qJebz58+v9XMRkJaWxpIlSxr1HsVupxToEmJKplurReV01vlek8nU6om5r6ICJ5IQRpokhEIIIYRoUEebYjl9+vSQ28eNG9fGkXRed955J7179+bSSy+tlgDedtttXHLJJRGMrH3wer3cc889HDlyhNdee40LLrig1j5KaSllQM8QI4RujQa1w9EGkdZNKS+XEcIoIAmhEEIIIRrUKaZYfvAB9OkDF10U6Ug6haeffjrk9rlz57ZxJO3T8uXLee2114iJieFvf/sbzz//fK19VGVllBI64XLr9ahdrjaItG6Kw4EDiJeEMKLUDe8ihBBCiM4uMMUS4PTp0wwaNIhDhw51nCmWDgfccAMMGgStUE1RiJa2b98+LrjgAkaOHMmpU6dC71RejkOjQaVS1XrJq9OhCZEQvv322wwdOpSZM2eybNky+vfvz/Dhw/nwww9b+hLA4ZApo1FARgiFEEII0aCqUyw/+eQT9u3bx7x581i7dm0Eo2o5uxYv5tLAN59+CpMnRzIcIRp08uRJsrKyyMzM5MCBAyH30ZSX49CGvt336vVo/Q95qnr++efZvHkzdrudIUOGcPDgQYxGI5MmTeK6665r0WvAP0IoCWFkyQihEEIIIRplz549APz3v//l448/jnA0LeP0a69xBvABnDwZ4WiEaFjVhDAnJyfkPhqHA7dOF/I1n8GAzu2utd1kMmE2m+natSsTJ07EYrFgMBhqTRdvEU4nDkCv17f8sUXYJCEUQgghRKPs2rWLn/70p4wdO5b/+Z//iXQ4LSIpP5/tQKFKhZKXF+lwOrXJMjoblqoJYW5uLu4QyZ3W6cRZR7LlMxrReTy1tg8ZMiTYhD7Q0sLlcpGcnNyC0VdSOZ24VCrUaklJIkmmjAohhBCiUXbv3s0z99/PFbt2scFmi3Q4zaYoCl3KyjibkUHe2bMYjx0jLtJBdQI33XRTrW2KorB3794IRNO+OBwOzp07R1ZWFmlpaSiKwtmzZ8nKyqq2n87pxBMbG/ogRiO6EOtlQ7W20Ov1vPvuuy0RejUqlwu3JIMRJwmhEEIIIcLmcDiw2+1c8d13DD56FEuIYhXtjbW4mEyfj7PDh3Pugw9IPnxYEsI2sGPHDjZu3FhtdEhRFGbNmhXBqNqHQBGZS3NzSTp/HoCcnJxaCaHe7cZT1/o8kwmjz9eqcTZE5XLh1mgiGoOQhFAIIYQQjWC1WgHoevo0AF0UhYqyMkwh+py1Fzm7dnExkHH55Xz9wQdcVFAQ6ZA6hQULFhAXF0dKSkq17ffff3+EImo/8vPzAej/6qvoSkrQVtlWlcHtxldXc3mTCUOEE0KNy4VHEsKIkzFaIYQQQoQtkBAmHjtGSd++mICCb7+NaEzNdf7rrwFIHTGCEqMRfVFRhCPqHO67775aySDAzTffHIFo2her1cogwHD8OOrCQibyw2czyOfD4PXiM5tDHkNlNmNUlLDPmdcKa2vVbjee1ihWIxpFEkIhhBBChM1qtZIJ6Gw2yq+9FoCSb76JbFDNVHHoEAAJl1xCRXw8xhCl+OvzzTffMG3aNKZPn86WLVuC22fPnt2icQoRYLPZuApQTCbo3p2pOh3FxcXVd6qoqLzRr2P0Xh0biwlQwhwlvO2225oTckgaSQijgvwEhBBCCBE2q9VKP/+fDTNm4HvhBZz79kU0puZScnKoUKkwJSXhSkwkJj8fXC4IsxT+3Llzef3119FqtSxYsIBt27Yxb948jh071sqRi87KarXSV62G3r0hNZXeRUVsq5kQlpUBoNSREGr8xWacNhvGxMTg9hEjRtTaV1EUDh8+3ELRV4nB48ErPQgjTkYIhRBCCBG2wAghgOXSSyt79x0/HsmQmq+gAKtOByoVdOlSuc1fqCMcKpWKPn360LNnT9555x1KSkq4++678YQo6S8aZm/kCG1nZLVa6avRoOrVC3r0oAchpoyWllb+Ny50iaRAQlhRY4q03W5ny5YtbN++Pfi1Y8cOhg8f3sJXAVqPB28dfRJF25GEUAghhBBhs1qt9FCpUFJTUZtMFOt0KO28CIu2uBi7f52VvmvXyo01R1vqkZqayokTJ4LfL1y4kHHjxrFjx46WDLPDefPNNxk8eDCXXnopzz77bHD79ddfH8Go2gebzUYvgF69ICuLbh5P7Smj/hFCTR0Joda/vWZCuGjRopBJ+eOPP97suGvF4PXik6b0EScJoRBCCCHCZrVauUCvR5VZOU5o1+vRtfNehMaSEhzx8ZV/Tk+v3FhztKUe7777Lj179qy2bebMmTgcjhaKsGN66aWX2LVrF7t27cJsNnPjjTdSXl6O0ohCJ52VtbiYbh4PXHAB9OhBssuFveaotn+EUGOxhDyGzv8776zxuz59+nQSq0whDRg3blzzA68Zg8eDIglhxMkaQiGEEEKEzWq1Mkqthu7dASgzmUgKTE1rp+LKy/H4E7pY/3X5CgvlqXkrU6vV6PzTBefOncuFF17I1KlTKZIqrw1SnTtXWSG0V69g0RhDjbYTSmkpKsCQlBTyGHp/ouhsxGh4S9P5fDJCGAXk3zohhBBChM1ms9FNUcA/QlgRE4O5vDzCUTWdoihY3G5ITQUgrkcPAMrPnIlkWJ3CNddcU22q7aRJk/j73/9Ot27dIhdUO2E4d67yD1lZ4P+djS0srLaPy59YG5KTQx4jkBC6S0paKcoGeDxoFAVFispEnCSEQgghhAib1WolzeMJJoSuuDhi2/HUyOLiYlIBrX+qaEJaGhVARSv0XBPVPfroo7Wm2l500UWsW7cuMgGFIVpajOgCo3ppaeD/3TXWmLrt8CeIxjoSQkNCAgCuSE35djoBUBmNkTm/CJKEUAghhBBhKyssJNbjqbwRBdwWCxaXC9rpuq9zJ04QDxj8Ca7FYsEKuAMjMGFYv349I0eOZPTo0axevTq4/ZprrmnZYDs4t9vN22+/jS/MvniRMHfuXJYsWcLixYtZvHgxL7zwAkCbtxgxlZTgA0hOhpgY3DodZn8RmQBnYSFeIKaOhDDQasITqaqu/gdJKpMpMucXQZIQCiGEECJ8gWlpKSkA+JKSKgsStNNWASVHjwJg9o9UJSQkUAx4GtF24sknn+Tjjz9mw4YNbN++nTlz5uDz+Shvx1NpI+EPf/gDN998M19++WWkQ6lTtLQYMZeVUWE2g1YLKhVOi4Ukr5eKiorgPu7iYsqAOH/xmJqM/rWF7kh9dgMjhJIQRpwkhEIIIYQImzpQ8MOfEKr8/21M375oUnbyJABxvXoBlSOExYDSiMImGo2GhIQEzGYzL7zwAsOGDeP666+ntJ0X22lLiqLw0t//zoXAUX+SHo2ipcVIXEVFsDIugCcxkVSo1nrCbbVSCsTXkRCa/AmhN8IjhGp/yxcROZIQCiGEEM0QLWuK2oo2sN7Inwiq/cVY2msvwoqzZwGIy8oCfpgy2pi2E0OGDKmWJNxxxx3MmzdPGqw3QkFBAT8pKmIf4Pjss0iHU6doaDHicDhI9npx+9cAAvi6dCGV6s3pvTZb5QhhXY3p/dVJvTWmmrYZ/9+ZRhLCiJOEMIQvvviCa6+9loyMDFQqFe+//3611xVFYeHChWRkZGAymRg/fjz79u2rto/T6WTOnDmkpKQQExPDddddx+nTp6vtU1xczKxZs7BYLFgsFmbNmlXtgyyEECL6RcuaorZiDIx6+dcl6f0FLVz+xKq9cfmLx2i6dAFAq9Vi12rRNKLQxtKlS2slCRMmTODgwYMtFmdHd+TwYQJtz+N27YpoLNHOZrPRFfBWWRuo6tq11gih126nlLoTQlQqKgBfpBJC/5TRQGIqIkcSwhDKysq45JJLePHFF0O+/uc//5kXXniBF198kR07dpCWlsZVV11V7UngAw88wJo1a1i9ejWbNm2itLSUadOm4fV6g/vccsst7N69m3Xr1rFu3Tp2797NrFmzWv36hBBCtJxoWVPUFpxOJ/FuNz6NBgKN3P3FZRyNKMISTTwFBXgBqtw0VxgM6GS6Z5s6s2MHmf4/Z506FdFYop3VaiUVgq1SAHQZGbUSQux2yoCYehIuh0qFEuERQq0khBEnCWEIU6dO5Y9//CMzZsyo9ZqiKCxZsoTHHnuMGTNmMGjQIJYtW0Z5eTmrVq0CKp/cvPbaazz//PNMmjSJoUOHsmLFCvbu3cuGDRsAOHDgAOvWreOf//wno0aNYtSoUbz66qv85z//4dChQ216vUIIIZouWtYUtQWbzUYK4IqPB5UKgNiuXfEAjnbapkEpLMSu1YL6h1sil8mEXgrCtKmKr78GYP/w4QwuLUWJ4kqjAEVFRRw5coSiRqw1bSk2m41UQJ2REdxmyMysNWWUsjIcGg0q/2c1FKdaDXX8rrf2Qy3FXwBHGxvbqucRDZOEsJGOHz9OXl4ekydPDm4zGAyMGzcuuHZk586duN3uavtkZGQwaNCg4D5bt27FYrEwcuTI4D6XX345Foul2hqUmpxOJyUlJdW+hBBCRE40rClqK1arlWTAW2XtkiUhASvgaqdFZdQ2G+U1GmN7YmIw+KezhcPj8eB0Otm1axcbNmxg165duFyulg61Q1MdOIBDrcY+ZgyJQFGVhyzR5NNPP2XMmDH84he/4KmnnuL2229n7NixfPrpp20Wg7WoiBR+mK4NoOvWjTjAXmWkXlNWhkOnq/dYLo0mOFIHsHfvXn784x8zevRorrzySkaNGsW1117L3r17W/oycPtH4XV1TWkVbUYb6QDamzz/E9CuXbtW2961a1dO+iuV5eXlodfrSfT3d6m6T+D9eXl5pFYZ6g9ITU0N7hPKM888w1NPPdWsaxBCCCGawmq1kgIoVdYuWSwWbICmnSaEOrsdR42y9764OIxuN/h81UYOq9q7dy8PP/wwVquVwsJCzp49S0pKCpMnT0av17Nr1y7uvfdeZs6c2RaX0e7F5+SQl5hIzIABAJz/5huSL7ggwlHV9vvf/55169ZVW5dXUlLC1KlTmThxYpvEUJabiwYwduv2w0b/GljXmTPBTbqysloPO2pyazSoqiSE9913H6tWrSIzMzO47dSpU9x6660t3g7EVVKCHhkhjAYyQthENYffFUWpd0g+1D6h9m/oOI888gg2my34lZOT08jIhRBCiKYJJIRq/80n/FCV0xeBqXMtwVBejrvGCIUSH195g1TPOsL77ruPl19+mS1bttClSxdsNhvZ2dns37+fpUuXkp2dzT/+8Y/WDb4DSS0uxt69O0mXXAJAyf79EY4oNLVaTUGNiroFBQWo63hw0Bqc/oEDU5Upo4H1hN4qgwqGigoqGujx59ZqUVdJCL1eLxaLpdo+8fHx1WpgtJRA/0O9jBBGnIwQNlKaf/F8Xl4e6VWG6vPz84OjhmlpabhcLoqLi6uNEubn5zN69OjgPudCLMAvKCioNfpYlcFgwNDA0x4hhBBtr6ioiKKiIpKSkkjy9/fqaKxWK70Brf//hVB5s2gDEhtRlTOamB0OvDVugNWBKbElJcHiOTVVvXE2mUxkZ2czdOhQvF4viqKQnZ2N0WhszdA7jOLiYtI8Hip69qTLxRfjAxyHD0c6rJBeeeUV5s+fT15eXvAhfnp6Oq+88kqbxRCojKsO9ACFYEKoqpKsmhwO3FX3CcGt06GuMj362WefZdq0aej1+srPts2Gx+Phueeea8Er8J/b/8DFUOPzJ9qeJISN1KtXL9LS0li/fj1Dhw4FwOVykZ2dHfywDBs2DJ1Ox/r167npppsAyM3N5bvvvuPPf/4zAKNGjcJms7F9+3ZGjBgBwFdffYXNZgsmjUIIIaLfp59+yu9//3tSUlKIj4/HarVSXFzMU0891WZTyNpKYIRQV+WBqFarpVSjQdUO17T7fD7ivV6UKmsiATSBhN5mg+7dQ7636o2zXq/ntttuo6SkhO7du3PFFVdw2WWXsWLFila+go7h6OHDXAzk9e+PzmwmV63GF6WVRgcOHMiaNWsiGoM3kPRVffDkH7XXFBZWfq8oxLjdeBoYffPo9WiqrHe94oor+OKLL6ioqMBqtZKYmNhqDzY8paX4AKNMGY04SQhDKC0t5ciRI8Hvjx8/zu7du0lKSqJHjx488MADLFq0iL59+9K3b18WLVqE2WzmlltuASqnz8yePZv58+eTnJxMUlISDz74IIMHD2bSpElA5T8oV199NXfffTcvv/wyAL/85S+ZNm0a/fv3b/uLFkII0STRsKaorQSKyqiqTBkFKNfr0bbDNg0lJSUkAmU1RnT1geurZ9SzLW+cO7qcb77hMiD54osBKDQa0eTmRjaoKKYEkr6qv7d6PWV6PfpAldHSUjSKgrqB2Qo+vR5tiIc5JpMJUwPTTZvLU1qKAzC28nlEwyQhDOHrr79mwoQJwe/nzZsHwO23384bb7zBQw89REVFBffddx/FxcWMHDmSTz75pNrNwOLFi9Fqtdx0001UVFQwceJE3njjDTQaTXCflStXMnfu3GA10uuuu67O3odCCCGiU2BNUdX/B7T1mqK2UlpQQCwEm9IHOI1GdO2wTUMgwXXUmFZn8CeEis1G/dUB2ubGuaMr2rMHgBj/A/ESiwVTO12T2hZUxcV4AG2N0b9SsxlToCe2PzHU1Xh4U5PPYEAboZ6p3vJyHCCfnyggCWEI48ePR1GUOl9XqVQsXLiQhQsX1rmP0Whk6dKlLF26tM59kpKSZDqJEEK0c9GwpqiteAJr32skUC6zGWM7vIG3FhTQE9BVWRMJYPSv5XecO4fcqrY+b2B6qL9qpttiISlKp4zWxW63V3so1Jo0JSWU6fVYahQhdMbHY87Pr/zGnxAaavxu1+QzGjFEKCH0lZfjRBLCaNDxHl8KIYQQbSiwpmjr1q1s27aNrVu38t577zFw4MBIh9byAq0laiSEnthYTO2w717Z6dMAGGvcNMempVUWNglR/K2mSDYo7yj0+fl4VKofKmUmJBAbpb9Pb775JoMHD+bSSy/l2WefDW6//vrr2ywGXWkp5SGmJ3uTk4l3OPB6vTj9v7vmqpVIQzEaMVSpILp+/XpGjhzJ6NGjWb16dXD7Nddc0zLBV+ErLaUcSQijgSSEQgghhAhPYO1SjYTQFx9feVMZpTfxdXH416mZaxSOsSQmUgI4A6MtIURDg/KOwlhUhNVggMCymuRkEiI0atWQl156iV27drFr1y7MZjM33ngj5eXl9c4sa8itt97aqP2NZWU4zOZa21Vdu5IKnD9/Hrt/hDWuR4/6D2Yyoa+SED755JN8/PHHbNiwge3btzNnzhx8Ph/lrTAlXCkvpxxk7W0UkCmjQgghhAiLNlCwosYaQgJl4222YLXD9sDpTwhjaiSECQkJlACqQAIcQmcqJtTaTHY79pgYAo8Z1F26EAv4HA7UUZYsqNVqdDodAHPnzuXCCy9k6tSpYY0QP/TQQ7W2KYrCli1bGhWD2enEFaKdhDYzk3Tg3LlzWE6fJgWwZGXVeyyV2YzB5wt+r9FoSPBX3X3hhRd44403uP766yltjaJR/oRQRggjTxJCIYQQohXk5eUFe9d2FPqSEjxqda1iFuqqbRraUULo9o8A6mr0/7VYLBQCsfXc5HemYkKtLaasDEeVhwyBNZ0lx4+TEGVTr6+55hpOnDhBz549AZg0aRLp6enMnz+/wfeuXLmSVatW1dr+2WefNSqGGJcLb4j+mKY+fUgE9ubkoM/LowxIaWDKqDomBhPg8XjQarUMGTKk2vXdcccdZGVlce+99zYqxnCo/AlhIMEWkSMJoRBCCNEKbrvtNj755JNIh9GijGVlVJjNxNUoZqEN3MwHRhDbiWA/t8TEatsTEhI4BsTUcz2dqZhQa4t3OnFV6QVp9BeXsZ84EXUJ4aOPPlprW79+/Vi3bl2D773zzjsZOHAgqf61kgG33XZb2Of3er1YQvTOBIgbMAA1UHLoEN4zZygAUhpoTK+Ji8NEZcu1hISEkMUQJ0yYwMGDB8OOMVwqhwOnRoNK1VAtX9HaJCEUQgghmmHEiBG1tvl8vmr9bDsKc0UFzi5dqFlLMVjavp0lhBQX41CpavVBM5lM2FUqCNGfLSAaGpR3FAkeD6VVRgjN/nVvZe2g0ujatWuZNm0as2fP5p///Ge9+z799NMht8+dOzfs85WUlJAE2GpO2wb0F1wAgOPoUTRnz3JGpSIrJqbe42kTEjADhTZbcKpoW1H7E0IReTKvQQghhGgGu93Oli1b2L59O9u3b2fmzJnk5uZy2WWXRTq0FuVyuUjweHCHuGk0+Ec83PWsuYtGaqsVu7b2s3GVSkWFToc60NNNtJqKigpSFKXaVON4/3TFCn8V2Gj22f/9H/8Exr75Jr4qa/Fai9VqJQnQhJqa7R9Z9Z48ie7cOYrM5gZH3/T+0fGywGh5G1I7nbhDfP5E25OEUAghhGiGRYsWYfcnDlarlYULF3L27NlGTQNrD2w2GymAr8b0SgCzf81XoGpne6EtKaHMYAj5mtNoRFtW1sYRdT7F+fmVCU6VdZwJPXviA1zt4Pcp5b//ZTZwh9vNyX37Wv18trw8TNRe9wpAQgIVajXeU6eIKSqiPMQoYk16//rfigYSQnsrPBzROJ149PoWP65oPEkIhRBCiGaYPn06if4k6bnnnsPhcGAA1O2sBUNDrFYrKYAqxJqk+KSkyjYNYfTtiyb6sjIcdVQ4dJlM6CsqGn3M1rhx7sjsx48DYKhS6dUcF4cV8NbT9iMaOJ1Oep48GewJmPvWW61+zvIzZ4A6Gs6rVNjj4lCfPUtieTmKf8SwPgZ/0hhICNuyz6LW5cJbxwMZ0bYkIRRCCCFagM/n48UXX+R/p0/HAQz94x8jHVKLCowQakKMTMTHx2MDXIHG9e2EsbwcV2xsyNe8MTEYnM463xsNDco7grITJwAwZmYGt6lUKqwazQ99L6PU4cOHGe3zUXTddZxWq1Ea6EH59ttvM3ToUGbOnMmyZcvo378/w4cP58MPPwz7nBX+hLBm78yAsu7dubioCIOioPOvKayPyT/11On/u26NPot10blc+CQhjAoycVcIIYRoATk5OZSWlnKDf93TRSdPgtMJHeSGx2q1MhBwpqfXes1isWAFEqL8Br4mk9MZsnw/gC8uDlM9o7yBG2edTsdf//pXbrzxRt58881WuXHuyBw5OQDE1khe7Ho9migvUnR2xw4GAUVTpnBowwaM/mupy/PPP8/mzZux2+0MGTKEgwcPYjQamTRpEtddd11Y53T7R+FjqiTQVXlGjGCof+pq/IUXNng8s3/9byAhrKvP4rFjx3C5XOhbcIqnzuPBF2V9JjsrGSEUQgghWsCRI0cwAGk7d/Jdv36VG3fsiGhMLcl69iwxgCnEyEQgIVTCaM4dTeLc7pDl+wGwWNArCjgcIV+ueeN8zz33MHXqVM63s1HSSHP6H6Ak9O1bbXu50Yiuniqv0cDu/3wnjh2LPSWFxOLievc3mUyYzWa6du3KxIkTsVgsGAwGtI0orBLonakPtYYQiJ8yJfjnxLFjGzxeYA2hx598B/osBkyaNImbb76Z06dP8/rrr4cdZzj0Hg+KNKWPCpIQCiGEEC3g8OHDjFGrUZeVceDGGykBvF98EemwWkzpyZMAGOtICG1Qb5uGaONwOEhQFFR1FN5QBxLFOq4p1I3z3//+d7qFsW5L/MCTm4uDyvYHVTliYjBEeVEfz8GDeABVr164MzNJq6iAekaIhwwZgtfrBWDFihVAZfXe5DCKvwT4Ag8cQhR3Aujy4x8DsP6SS7j48ssbPJ4qrrKJTCAhfPTRR4NN6QFOnDjBp/6psOdaco2womDy+cBsbrljiiaThFAIIYRoAYcPH+bKpCQwGokbNYoDQMW330Y6rBbj8I/kqEKUu9fr9djVajTtKCEsLioiCdDWaBIeoPGPnGCzhXy95o0zwEUXXRRWg3JRRX4+xVot1GiP4I6Px1zH6Gy00J88Sb7ZDDodmj59MCsK3noqoy5ZsgRNjb57er2ed999N/yTFhdTqlaDf3S6JnVcHOTnc9U334Q3vdPfp9BXx2d3xowZvPfeewAcOHAg/Dgb4v/ZqhrokyjahiSEQgghRAs4cuQII/R6GDSIzF69OAF4Dh+OdFgtJtgCIESVUYAKgwFNlI/oVFV85gx6wFDH1Dt9IPGtIyGsKT8/n9/85je88sorLRRh56ApKsIeYp2tNzGRuCiv1GspKMDq/zyYL7oIgMKvv27Vc2rq6J1ZTZcutRLsOmm1OFQqfHVUxy3wVx8dPnw4+1qyrUZ5OQCqOoo6ibYlCaEQQgjRAk6ePMkApxOGDCErK4vjgLYdNNYOly/QAqCOhNBpMqH33+S1B3b/FFhTHVM8AwmhK8yG3cuXL2ftX//KuwsWtEyAnYTeZqMsxCiRKjkZi9db7xTMSEsvK6PCP4U6+bLLALB+802rnlNrt1PWwoVYKjQaCJEQut1u8vLyeOmll5h79dUcOngQt9vdQietbOmi9U9ZFZElCaEQQgjRAnJPnybdaoWLLyY2NpZ8sxlzYSF4PJEOrUWoi4pwq9XBKWY1uc1mjFE+xa+qQD+3mDrK95v9fd7Kw1w3tf+773gf+H8lJeTu3NkSIXYK5vJynCEqvWpSU9EBviitNOp2uejh8+H1V/vsNnAgdqD8yJF63+d0Otm1axcbNmxg165duBo5CmosK6O8hQuxOLRa1CEe5pw6dQqPx8O4gweZ+fTT3O12s3///uDrZ8+ebfpJ/efTSEIYFSQhFEIIIZrJ6XRiKCxE6/VCnz4AONLSUPt80EFGCbVWK2UmU51T0byxsRhdLvD52jiypnH4b2bjsrJCvm72t9dwhJkQJm3ezCBABZR2sB6UrSnO4cAbWK9Zhc4/lbf01Km2DikshceOEQOo/b8/FouFXJUKn/9BQyjLly9nwoQJLFu2jOzsbF5//XUmTJgQLDATDnNFBa4WXnfn0uvRhEgIDx8+jA7o/9prrI2NZRzwxiuv8N///pe1a9dy/fXX89///rdJ51T808u1FkszIhctRfoQCiGEEM109uxZgl3UevX64b/HjsHx41Cj+Eh7ZCgtDTmSE+CzWCqfMtvt0A5u8lz+RE9XR1EZS0oK5YArMFW2Hoqi0PvECYpSUthcWspFrbyOrKNQFIVEj4f8EIWKAu1N7MePE3/JJW0dWoNs+/eTBhj9/RNVKhVFBgOmeh4gvPzyy2zatAm1+ofxGI/Hw/jx45k5c2ZY541xOilp4c+XW69H45/CWdWRI0cYq9GgLi3lF3FxXAb4Nmwgwf+ZsVqtfP311/zYX9m0MZzFxRgBfT3/poi2IyOEQgghRDOdOXOGXoFv/MmfOdCLsJ4Rg/bC5/MR43DgrqtnH6AKvBalU/xq8gbWBtZxTRaLhRLA7W/YXZ+cnBxGuN2UDRmC46KL6HrmDIq/vYCoW5nNRgqg9Y/GVmX2T8Usb6DZe6RU+AtGxQ0YENxmj4lBX08vTpPJRHZ2dvB7RVHIzs7G2Ig1gRaPB189n8Om8JpMaENM9z5y5Ag3JiRAcjLHc3IYodFQfOoUkydP5sknn6Rv3778/ve/b9I5Hf7Plb6Fr0U0jSSEQgghOh1PC6/rO3PmDBcAvvR08N/cpffuXdmsvTnrbKKEzWYjWVFQQkztC1AH+qKFWZUz0pSiIuxqNdRRsTEhIQEb4K3nBj/g4NdfcwlguvJKMqdPJ0ZRONLEqXSdifXoUQB0GRm1Xov3j7RXROkDFdfx4wAkXHhhcFtFYiKxdVTrhMopox988AFjxozh8ssv54orruA///lP2FNGFUUh0eeDej6HTeGLiUHndNbafuTIEcYqCowbR4zFws8GDuSPLhcbNmzgpptuwtqMhz8u/+dK34gejKL1yJRRIYQQncLevXt5+OGHsVqtaLVa3G43KSkpLFq0iMGDBzfr2KdPn6avRoOqd+/gtqysLHIBw7FjtGwJiLZXUFBACqCuY3olgDZQfbSdjBBqrFZK9XrqKmkRHx/PYSA+jOsp/OwzNEDSlClc0rUrPP44Z9aupe+117ZgxB1P2YkTABh79Kj1WkqPHjio0u4kyvhOn+YckFql6q6nSxcSjx2r8z1paWksWbKkyecsKywkFlCHmGLbLDExGENUDz1y+DB9yspg6FAA3BdfzIjvvuPSe+9Fp9dz8ODBJp/S5R8hNNRRtVi0LRkhFEKICPvmm2+YNm0a06dPZ8uWLcHts2fPjmBUHc99993Hyy+/zJYtW/jiiy/YunUrf/vb37jvvvuafewzZ87QT6dD1Ss4cTSYEFb4RxLas0BCqAsxtS8g2M+vnSSE+pKSyiI5ddBoNJRqNKjCGPF0fPMNPkA9cCCmbt0oUqnwfv99C0bbMZX7W3+YQxT2iYmNpRjwhFnUp61pc3PJ1+lQVS2ylJ5OrM8HYfbjXHHPPbw7dixKHU3hawq0StHW0TuzyRISiPP5qrWU8Hq9uI8dw+x0gn8Np3nECCzAqS1biI+PZ8SIEU0+pae4GBdgDswsEBElCaEQQkTY3LlzWbJkCYsXL2bx4sW88MILAByr50mzaDyv14ulRjGG+Ph4vC2w1uvMmTNk+XxwQbC0DFlZWZylciShvTt//jzJ/FDoIxSj/ybVE8aau2hgKivD0UBTbIdej7q0tMFj6Y8e5XxsLPgTzFyzGX2Urn2LJi7/dNC4Kp+bqmw6Hcr5820ZUtgMhYUU1Vj7p/Mntt4wPvNuh4OxL7/MjZs38/3PfhbWOcv8v1OGEFNsm0OVlEQiVJsCmpOTw4WBqfX+hDD1yisBsG7a1Oxzeq1WSoGYFq6YKppGpowKIUSEqVQq+vhbFbzzzjssXLiQu+++u8XXuXV2zz77LNOmTUOv1xMfH4/NZsPj8fDcc881+9jnT50i2eX6ocIo0KVLFwo0GrRhVKmMdkWnT2OGYM+1UOK6dMEBuPPy6pyGGU1iHQ7c9SS4AE6DAW2IcvxVKYpCyvnzlPTuTWBCrTU5mfgwG9p3Zt68PFyApY7fqzKDAXWUjjjH2mycqFEh0+yfMm47cICk/v3rff/eP/+ZS4G9QOLWrWGd0+FPoM0N/N42lrZLFxKBXKuVLv7pqEeOHGEw4I2LQ+P/+cRddBGngJNbtlBUVERSM9Yyemw27FDrIZ2IDBkhFEKICEtNTeWEfy0NwMKFCxk3bhw7duyIXFAd0BVXXMEXX3zBRx99xN/+9jfWrl1LdnY2P/rRj5p9bHWgV1qVhFClUlGRlITJZgNFafY5IqnCP1VN42/WHorFYsFKeG0aokGc2x2y/11VbrMZfYhy/FUVFRXR1+PBG6gqCzi6daNLGCOLnV5+PudVKrQ6XciXnTEx6MKYTpmdnc2kSZOYN28en3zyCUOHDmX8+PFsDTPRaorEsjIqavz+JPoLzNjCWFvn/OADjms0bBk3ju5WK+TlNfwef4GqmHoezDSFvmtXYgFbldHYI0eOMFClQj1wIKhUfPrpp4z50Y+4Q6Ph399+y+23387YsWP59NNPm3ROn9UqCWEUkRFCIYSIsHfffbfWtpkzZ4bdl0o0jslkwlTP2rHG8vl8xASSoJpT39LSMBQUVPbma8f9tlyBKXD1rF0KVOW0tIORMbfbTZLPR1kDBS08MTEYG6gyeuL77xkC5AwaFNym7t2btK1b8ZaVoZEpcXVSFxZSrNVS1wRId3w8iWFU6X344Yd55513sFqtTJ48mR07dmA2m5kxYwaff/55i8YMgNNJgtuNq0Zxl4wBAygHyo4cafAQKUeOcCwtDe3EiZCdjXfTJjQ33ljve1x5efiAhCoPnlqC0f+gp7TKVNcjR44wU69H5W+r8fvf/55169ax69JL6Zqby4CPPqKkpISpU6cyceLERp9TKSmhVKXCYDC0zEWIZpERQiGEEKIZzp8/T6bHg1erhRprewJTrYjSSonh8gXir6fKaGCEMJw2DZFmLSoiGdA0UJxDiYvDFKL6YlXnvv4aDZA4fHhwm+nCC1ED+dKgvl46m42Senrw+RITiQnRDqEmo9FIZmYmgwcPZuDAgXTv3p2kpCQ0Gk1LhvuDQJJaY+pmateunAXc/hH1OpWX06ukhNLBg+k9dizFQGEY6/K8+flYAVMDa18by9ytW2VYVVp8HDl8mN5eL/invqrVagoKCnD06UNWWRl4vRQUFKBWNzGVKC3FWUfLF9H25CchhBBCNEOgKb0rIwNTjZuj2L59K/9w9mzwxqo9UgWmktVT7j4hIYEjQLfi4rYJqhlsJ0/ShfqrpgJgsWD2esHrhTqSi9JvvwUg3l94AyB5yBAAzn/zDenjxrVEyB2SyW6n2Gyu83V1SgrxYaylTktLw+v1otFo2LhxI1DZa9Tn87VYrFUpOTmoAG2N6qhqtZpigwFtAw+Aij/7jETANH48gwYP5gDQbefOhs9bWEiJRkPLdiH8ISF0VqnoWnToEHEeT/DfrVdeeYX58+dzaM8e4gHf0KF079OHV155pUnnVJeX49Trmx27aBkyQiiEEFGiqKiII0eOUNQORljao/Xr1zNy5EhGjx7N6tWrg9uvueaaZh030JReFaJSYmBNkauhEYMopy8uptRgqLOJO1RWbLUCqjBL6EdSqX/Nbn1VUwFUCQmVf6jnmtyHD+MBVFV66WX4y/HbDxxoTpgdXkx5OY64uksQabt2JQFwNLAec/Xq1bVGA7VaLevXr2+BKGsr87cUMVTpOxpgj4tD10Cl3bzsbHxAj8mTSUlJ4ZjBgP7o0QbPqy4uxt4KUyzV/ubwHv/Ud5/Phz7QLsefEA4cOJA1a9aw8p//ZBuw+vbbee+99xg4cGCTzqktL8cl00WjhiSEQggRYZ9++iljxozhF7/4BU899VSzF+uL0J588kk+/vhjNmzYwPbt25kzZw4+n4/yBqpINiQwQqj3r7WpKqVnT0qA0nbek85gs1FWz407VN6Al2m1aOz2Noqq6cr8CXpsz5717qfz3yjXlxDqTp3ivNlcLVmOSU7mvEqFK4yb/M4s3unEXU9REb1/bZutStGtxtC20pTEiiNHKAUSqzwECHAmJxPbwEMR5+7dnAQuuOgiAGzp6STm50MDI5o6u53yFlz/HOTvBej2J4QnT56kl8uFolZDYJaDX9aIERQBZc2cDq11OvG0xrWIJpEpo0IIEWGBxfpxVW64m7NYX4Sm0WhI8I/4vPDCC7zxxhtcf/31lDazGuSZ06fprVKhDjFCmJqaylkgoR2PEHo8HmLLyvCE0fvMaTSiDbMpdySV+/u5JfjbvdRF6y864ysqQh2ieTpA/PnzlCQnU7P+6nmjEVWVNVmiBq8Xi8eDr57CPnr/lN6yU6egStGeSHOfOEER0CXUmtq0NBIPH673/dqjR8kxm+nlnzLp69sX44kTlWuN/dM3QzGWlWFrjeJUMTF4VCrK/Gsj9+/fzwDA06MHuhqjeEnJyWzTaIhr5ui3wenEV88UdNG2ZIRQCCEiLLBYv6pmLdYXIQ0ZMqRae4877riDefPmYW/miJbt2DFiFaV2hVEqexHm0r6b0587d44uioKqgQIsAC6zGUMDbRqigdu/xkvfwBpCg//18jqazPt8PrqUleEK0QbAnpCAqR1UXI2YoiLUgLaen0FgSm95lH1+lNOnOQ2khEhm1d26YfH5oJ7PQcK5cxRX+TzFDh5cedxjx+o9r9nhwN0aCaFKRYXBgMu/hvDAgQNcpNGg9ccV4HQ62bVrF+tiYjhx4gQul6vJpzS63SgtXBxHNJ3cbQghRIQFFuuPGjWKyy+/nFGjRrFgwYImL9YXoS1dupSeNaYITpgwgYNh9AyrjxKYFhiiFHxKSgq5gLpKsYb25vTp06QCujCaYXtiYzE5nVHfd9F77hwlajXU0f8uwOAfFa2oIyE5e/YsvRQFTYiRRmdqKvHtYPpspJT7R81NIaZdBgT67TnDaD0RyuTJk5v0voZo8/I4AyQHphRXofOPJNfZesLlIq2sDE+V9Ydd/BVqbbt313veOLcbpRnN4OvjjItD4y8edeDAAQZpNMGWEwDLly9nwoQJLFu2jG9MJtbabEwYP54VK1Y06XwmrxcamIYu2o5MGRVCiAgLLNYX7ZM+MC0wxAihwWCgUK9H30CRiWh2+vRpfgTEhNP7zGJB6/OBwwFRvD5IVVREiV5PQ2Mtcd274wUq6pj6mbNnD6OAshojKQCqzEy6fvstiqKgUqmaHXNHY/3+e8xAbD2/V3H+BzieBh6o3HTTTbW2KYrC3r17mxNinQyFhRSbTCHXKJr9iZ71wAFiQvxeeL7/Hi2gr/Ja5sCB5APOPXtIqOukikKC14sqRBLaEjxpaSQXFGCz2TiwaxcZLhdUSQhffvllNm3ahFqtZllBAbf/+9943niD8Xfe2fieuR4PRkVBLU3po4YkhEIIIUQzxJ8/j8NoxBioSFlDaVwcMTZb2wbVgs6cOkUKoKpjDV1VmsDNqtUa1QmhzmoNqzhHerduFAGOOkYIC/2FNVL8VUWr0vfuTSJQcOIEXVq4kXhHYPdXsbTUKFpSVWxSEnbAG2h7UocdO3awcePGatPsFUVh1qxZLRJrNT4fsSUlOOpYUxvvr8pZ1wihdds2UoCYYcOC27KysjgEdKln7aGzqAgDoK2nF2hzqLOyyNy7l61bt1K6e3flFMIqCaHJZCI7O5sJEyZgvuwylH//m/UrV2Ksp49knfz/HqpbabRTNJ5MGRVCCNFpBNbAbNiwgV27djVrDQxAeXk5aQ4HZWk1S4r8wJGUhMHthmZMH7z11lub/N7mKj58GDWEtYYwUISFKE+ADaWlOMOYrpaWlkYhdU9ZrNi/HwCTv1pkVXH+liMFu3Y1PdAOzHHqFG4gJUTrhgC1Wo1VrYYGRtgXLFhAXFwcWVlZwa+ePXty//33t3DUwPnzaH0+lDoSwpS+fXEAzjoqo5bt2oUNSL344uC2hIQETut0aE+dqvO0Rf6p7YZ6ptg2R9yAAXQHHnzwQYKNJGpMGf3ggw8YM2YMC197jTHAmo8+atKUUZ//56mVojJRQ0YIhRAiCjidTvbt20dRURFJSUkMGjQIvTTtbVHLly/npZdeYvjw4ZU986xWdu3axb333tv4KU9+p06dohfgq2f0zJuaCocPV1YQbCAJeeihh2ptUxSFLVu2NCm+llAW6EcWRkJoDOxjtbZeQC0gpqICTxgjnjqdjhKdDkMdxWE0J09SqlYTG2KkI9Cc3vrdd/CTnzQr3o7IffYsBUDXBpICm1aLpri43n3uu+++kNtvvvnmpoZXN//0YV0dLUuSU1I4BXjrKkS0fz+HgP41EjtrYiIx9RQhKj54kHTA0q9fE4JumKlvXzKAg/v28Ui/fpWf4Sq/12lpaSxZsgSAvLw8Tqank56YSFo9D8PqYj95EgtgaMJ7ReuQhFAIISKsNRIVUVvVNTABHo+H8ePHN/nv+cSJE/QFDCF6EAYFRhJyc6GBm7mVK1eyatWqWts/++yzJsXXElyB6ZJhTFUz+StGegsL0TSwb6QoikK8y0V5mGuxKkwmjHUkJObcXPJiY+kTYo1gsn+NWEU770HZWpT8fIq1WjI09f+mlOr16KKoOI9y+jQqKkfUQtFoNJzXatHXse7RcOIER7VahteoFupISyNhzx5wu0MWOyr1T0FN9o88t7ju3VEDv7npJm70eKCeabpdu3ZlvVZLjwbaa9SlxJ8QxoXxUEa0DZky2gQLFy5EpVJV+6r6hERRFBYuXEhGRgYmk4nx48ezb9++asdwOp3MmTOHlJQUYmJiuO666zgdZWWVhRBtI5Co/OUvf+Hpp59m6dKlZGdn849//CPSoXUogTUwAYqikJ2d3bQ1MH6njh2jBxBTT480feCmJ4xKiXfeeScDBw5k3Lhx1b5uu+22JsfYXEpeXuUfwhghjPX3UCtrYlXItmCz2UgGNGFcD4ArPh59HQlJUlER1joSS7XJRIFGg68d96BsTdrCQmxhfPYqTCYMzewV2pLKvv8eL/UnZlaTKXQhKUXBkpdHfmJirUJDqgsuqHyIUse00YoTJ/AAya00Qoi/ouvzDzyAYf/+evs+qlQqznfpQmJeXpMqCpcF+oDK2tqoIQlhE1100UXk5uYGv6pWsvrzn//MCy+8wIsvvsiOHTtIS0vjqquuqtbr6oEHHmDNmjWsXr2aTZs2UVpayrRp0/B6vZG4HCFEBLVGoiJqq7oG5vLLL+eKK67gP//5T5PLpgNY9+5FB2jquUnrcsEF2AFfGEnS008/TWqIkbi5c+c2Ocbm8Pl86IqKcOv1EBPT4P7x3brhpu42DdHgzKlTJAGmEL0DQ1ESEzGVl4d8Lb28nIo61pIBFJrNaP09D0V1puJiysJYx+mIja3z778heYGHGS3IfugQeUBmPclMaXx86EJS588T43RSEqL3onFg5cq9unoR+s6e5bxajTpEZdMW0asXaLWwbh0cPAhXXFHv7o5evTC63dCEz7ojNxcXkCIjhFFDEsIm0mq1pKWlBb+6+OfAK4rCkiVLeOyxx5gxYwaDBg1i2bJllJeXB6cB2Ww2XnvtNZ5//nkmTZrE0KFDWbFiBXv37mXDhg2RvCwhRAS0RqLSUXzzzTdMmzaN6dOnV1tHN3v27EYfK7AGZvPmzWzbto1//etfPPXUU01aAxPgC/QwrKdSYkZGBrlARV19yaJYfn4+yT4frsTEsPZPTkmhAHDV0aYhGhQcOIAaiK+nmElVmtRU4kMUH/KWl9PN68VXT2Jgj48nJsrXU0ZKXGkpnjCKijjj44l3OJp0jtYYWXcdPcoZKiuD1sXdpQvxZWW1X/BPH/aF+Pci8ZJL8AGldbTKUOXnY23Nh4SxsTBqFPzhD5XfjxtX7+7qwAjigQONPpUrL49iIFGqjEYNWUPYRIcPHyYjIwODwcDIkSNZtGgRF1xwAcePHycvL69aM1SDwcC4cePYsmULv/rVr9i5cydut7vaPhkZGQwaNIgtW7YwZcqUOs/rdDpxOp3B70tKSlrnAoUQbabqYn1R3dy5c3n99dfRarUsWLCAbdu2MW/ePI7V8RQ9XDabjQVDhvAPn4/4H/8YVq0Cg6HRx9GdOIFbrUZXT+W/bt26cRZIOXmShsfYosvp06dJAwizGmBycjIFgCWKR8Vs/iQ+MURl0FC03bqRqCh4ysvRms3B7UW7dtEF0NazftTRpQvp/kqkogpFIcnl+mF9bT3cyckkut3g84E69DjGiBBtPxRF4XAT17jV6+xZctVqLqvnM6HOyCBh925wOqv9u+LzJ09JIeLN6tuX04B2715CjZvqi4spi41tZvANmDIFvvwSLr0UGnhQlnzppZQD+j170Fa5nw2Ht7AQm0ZD1zp+nqLtyU+iCUaOHMmbb77Jxx9/zKuvvkpeXh6jR4+msLAwOD2ha421CV27dg2+lpeXh16vJ7HGE9eq+9TlmWeewWKxBL8yw5zyIoQQ7ZFKpaJPnz707NmTd955h5KSEu6++248Hk+zjvv3P/2JN8rLyXE44L33oAmzMxRFIS43t3INWT2FMQIjhL4onkZZl9OnT9MN0NRRUbGmQEKo1FMtMdLKjx4FqqztbIDJP5J4/rvvqm237dwJQKy/mmgo3owMUpvZ2qQjcuXnYwIMYfxeGXr0QAso9RQ5sdvtbNmyhe3btwe/duzYwfDhw1ss5mA8BQWUxMVVK05Vax//qLG3xki5bft2TgIDhg6t9Z6ePXtynMrG9aHE2O046+h12mJ+8Qt44AFYu7bBXXv368dBoGz79kafRlVcTLlU0Y4qkhA2wdSpU/nJT37C4MGDmTRpEmv9H5xly5YF96m5WFhRlFrbagpnn0ceeQSbzRb8yqmjrLEQQkRKS/bMS01N5USVfl4LFy5k3Lhx7Nixo8nH/OSTT3D9z/9g1ulYMGAAZ2JjK5PCRjp79iyZTifeBgojdO3alTxAm5/f4DHXr1/PyJEjGT16NKtXrw5uv+aaaxodX0vIycmhh0qF4YILwtrfYDBg0+lQN9A3LpI8gaIdYRaVCTQaL6wxlc++ezcOIOOyy+p8rzori3igohXWsrVn+d9+C0BcGAVS4v37FAemZ4ewaNGianUaAh5//PEmRli32JISnIF+m3UIXFdxjdFhx7ffcojKOhQ1JSYmclqrRVvHg6NEhwMlzN/ZJsvIgMWLGxwdBOjTpw/fAb49exp9Gk1JCRVVRttF5MmU0RYQExPD4MGDOXz4MDfccANQOQqYXmXRcH5+fnDUMC0tDZfLRXFxcbVRwvz8fEaPHl3vuQwGA4YmTGsSQoiW1hY98959991a22bOnNnkNhFnz57lhhtu4FBMDNqf/pSfXnYZq+bMYf5HH6FWFGjgoVxV3377Lf0A0yWX1LufRqPBHh+PMYy1ZE8++SQff/wxer2exx9/nM2bN/OXv/yF8iYW1WiuE8ePkwmoGtEMuzwuDl0Ur5tT5eVh1etJCHOEItA+orTG9EPHd99xUqulfz036Sb/WrGiPXvoJj3Xgor27aM7kBhGC4VANc+CvXtJqqPQyfTp00NuH9fAOrhGKy0l1u3G56+mW5dk//q64v37SZk2Lbhdd/w4J/R6poQoKqNSqbAmJREbYnS93G4nw+fjbJgPZtpCt27d+E6j4efHj4PXW+8siZoMpaU4Wnu0UzSKjBC2AKfTyYEDB0hPT6dXr16kpaWxfv364Osul4vs7Oxgsjds2DB0Ol21fXJzc/nuu+8aTAiFECJarFy5kmuuuaba17Rp00gOs79bJGzcuJGMigoyy8pQX389U6dOZYOioC4ogEOHGnWs73btoicQf+mlDe7rTk7G6HRCqEITVWg0GhISEjCbzbzwwgsMGzaM66+/ntIIld3PP3yYGEUJlqQPhychgZgGrjOSdIWF2BuxFiu5Xz9cgPP48erHOXmSogaKYsT5k5mSGq2nOju7f1pk13qm2wak+/exNaKf4+nTp1mzZg1KE1oi1Mv/O6Dt06fe3dIHDcJFZYuKII+HhMJCSrt1q3M2mDMjg/iKilr/TuR98w1awFxfv9M2plarOd+tGzqXCxpZMCumogKvJIRRRRLCJnjwwQfJzs7m+PHjfPXVV9x4442UlJRw++23o1KpeOCBB1i0aBFr1qzhu+++44477sBsNnPLLbcAYLFYmD17NvPnz+fTTz/lm2++YebMmcEpqEII0R5EY8+8hmzZsoU7U1NBr4dJk+jVqxeHkpLwqlRQpfVHOAq2b0cLqPxTCuujBEYEGii2MmTIkGpTZO+44w7mzZsXcjpcW3AFivd07x7+m7p0IdbprCwCEmV8Ph/G4mK8YRbJAVBrtRRoNHhrTOVLLC7G08DIacrFF+MDHK1R3KQdcx45QpFKRVwYUyCTe/SgBKiokZDX5ezZswwdOpQZM2bwv//7v82MtDqXP8EzN1CQKLlLF06qVHirJkrHj6P1+VD720uEogpMP6/ybwBA4TffAJWVSKOJN1Bp1D8FOFxJLheqMAoKibYjCWETnD59mp///Of079+fGTNmoNfr2bZtW7AE8UMPPcQDDzzAfffdx2WXXcaZM2f45JNPiKvSb2fx4sXccMMN3HTTTYwZMwaz2cxHH32EphFD7kJEi5ZcM9ZZNbdISiREW8+8cGzZsoXrtVqYMAFiY1GpVAwaNYojcXGV1fUawRtGy4mAYBXSBnoRLl26lJ41Cm1MmDCBg/Wsn2pVgXXqjRgh1GZkVDbYLipqlZCa4+TJk6R6vWgbMQUWoNhkqrYGNDcnh0yPh5iLL673fUldu5ILuMNMZjoL1alTnDeZwttXpaJYp8MTZiuTf//739jtdmbOnMn//M//tGh/Z5t/3WgX/zTiuqhUKs7GxaGvUg3Z6x8ljq+n0I3JP6JcsxdhqX8tYmo961Uj4cIrruCMSoVv166w32PLyyOR8AoKibYjawiboOpC/1BUKhULFy5k4cKFde5jNBpZunQpS5cubeHohGg9bbFmrDPZu3cvDz/8MFarFa1Wi9vtJiUlhUWLFjG4gRuOzm7y5Ml88sknjXqP0+nk5N69DFCp4JFHgtvHjBnDhk8+od/WrYS7glBRFIw5Obh1OnRhPOk2B6aYhdGcPlrY7XYS7HZ8KhXqEGue6mLwJ49Kbi6qBopvtLX9+/dzCRBXzyhNKGXx8ZiqJLjbV67keuCCa6+t931qtZrzRiOKFICrxlhQgL0RPehKYmPDKsoE8Pbbb/PjH/+Y+++/nxUrVrB582auaKDJergqDhygCMhqoJAUgL1bN/pUeRBg27gRL5BVz9KglIsvphxQvv2WmCq/W55jx7CpVFgaMbLdFkaNGsVuRSFu82biw3xP3u7dWIDYMAoKibYjCaEQImwrV65k1apVtbZ/9tlnEYim/bvvvvtYtWpVtfYxp06d4tZbb+XLRo5WdVQ33XRTrW2KorC3jubN9Tl8+DBX+nyVo1dVqnZec801LHr0UX597BgUFITVc6+wsJBMh4OyHj1ICKOXVkqvXliB2KNH283/eE+ePElvwJWWhlEbftQx/im0pYcOERdlDzYO7tnDVEDVyLhcWVn0qFJeP+c//wEg4Uc/avC9douF2HPnwjpPdnY2Tz/9NBdffDFXX301Dz/8MBaLhWeeeYZRo0Y1KuZollRSgjWMkfWAspQU4sJ4mJKfn8/27dt58803GT58OOnp6axZs6bFEkLl2DGOA+PDmEKt6t+ftAMHUCoqUJlMOLds4Vvg4sA0yxCyevXiINBj165qPUvVOTnkG41YmnsBLeyyyy7jLyoV4xvx73GRf6Q0Ocw+oKJttJf/LwkhokBgzVjNaYLRvGYsmnm9XiyW6v+Lj4+Pb9EpTu3djh072LhxY7WeX4qiMGvWrEYfa9++fVwDeAYMQFvlCf/gwYM5lZ5eub7vq6+gSlXAuhw+fJjBgBLmTU237t05BvTdty9k0+mqnE4n+/bto6ioiKSkJAYNGoQ+Aj27AglhOFNiq0q88EJ8QMn+/Q1ea1s79/XXlWtlGjldzTB4MJlbt1J45gyJ6el4v/kGW2wsljAKKLnT04kPszn9ww8/zDvvvIPVamXy5Mns2LEDs9nMjBkz+PzzzxsVc7Syl5TQzeultIHCLFV5u3Wji79/ZH0CDycnTpyIWq3mhhtuYM2aNbzwwgsNtvUKh/HMGc6ZTBiNxgb3jRs+HM3773N+2zZSJkwg5uBBDsfFcXU9Mwp69uzJJ0APfwP7gNizZ7GFmJ4faWazmdzUVGLOnYPz5yGMGQGl/nWYXaJsPWRnJ2sIhRBha49rxqLZs88+y7Rp05g0aRIzZsxg4sSJXH/99Tz33HORDq1ZJk+e3GLHWrBgAXFxcWRlZQW/evbsyf3339/oYx3Yt49r1Wq0119fbbtKpaLnuHEU6nSwbVtYx/r+4EEuBmLCHLXJyMjgKOBtoLjI8uXLmTBhAsuWLSM7O5vXX3+dCRMmsGLFirDO05JOnDhBX8DQyOmVPfr04RxQ1siqrW2hLFDts5EJYZexY1EDx9evZ+/evfQpL8cd5sMAbc+epLpc+MJ40GM0GsnMzGTw4MEMHDiQ7t27k5SU1KHqCxzZsYNYIL6ekbKadBdcQLrPh724uN79Nm7cyIABA8jwJ13Tp0/n5MmT7N69uxkR+3m9JBYWUhjmtM0e116LB8h56y04fpz4sjKcDaw5TUlJ4VRMDOYTJ8BfIdXj8dDDbscTRvGqSLAFWmHs3BnW/s6TJ3EA2iib/trZyQihEEJEyBVXXMEXX3xBRUUFVquVxMTEsJ48R4uWnM5Zl/vuuy/k9ptvvrnRx3Js2kQXn6/adNGAQYMHs+3dd/nxtm1hrSM8u3Vr5ZqZMIs8dOvWjf8APz55st79Xn75ZTZt2lRtRNTj8TB+/Pgm915sqhPHj3OHSoWqkSOE6enpfKNSVd7URhFFUVACMTWiSA5AtyuvBCBnwwaOnDvHL4CECRPCem9M//7EAqf376d7A1NV09LS8Hq9aDQaNm7cCFT+/H1RWLG1qU5+/jlDgcyxY8N+T8yFF6IFzn79Nf2vuirkPi6XizVr1lT7nIwbN47Y2Fg+/vhjhg4d2rzAT51C7/VSFubvTs/Bg9ltMuFctw5Xnz4oQMx119X7HpVKhXrQIMxffQXnzkFaGsd27qQfUDRiRPPibyW6gQOxbd+O5auvYMqUBvf3nT5NscFAeguM2IqWIwmhEEJEmMlkwhRmxb1o0pLTOVuboiikbt9OudGIOcSo3qBBg/jS42HqV1+hCqPJsifwNLyBJ/4BCQkJnDObMZ0/Dy5XZduLEEwmE9nZ2UzwJxuKopCdnR2RBwXW77+v7EHYu3ej3qfRaCg2mYhtoMVGW8vJySHN6cSRlITRYGjUe/UZGZTq9exZtYr3FIUFAGGOhCf7E5Hcr75qMCEMVbROq9VW61vc3tn8azGNYX524Ie/w8Jdu6COhHDt2rUUFBTwi1/8IrhNr9czbtw4NmzYwO9+97tmRA3KgQOogNhGVPosGTaMizZvpmjpUr4FJv/kJw2+J3HiRPjqKzxbt6KdPp2cjz+mH5BRx3VHWs9evdih0TApzNkVxnPnKLFYCL9MlWgLMmVUCCFEk7TkdM7Wtn//fsaXlWEbNQpCFEgZNGgQ2wB1aSnUWL8TSuKRI9hjYiDMXloqlQp1v36oFaVWj7Gqli9fzgcffMCYMWO4/PLLueKKK/jPf/4TkSmj2kBT7SZMVStLTKxWlTMa7N+/nwsAwqgQWYtKhfmaa7hGo2EC4NXpIMzpwmn+kTBbmFPqQtE2oqhPtFMOHsRqNIIl/BIpXYYNA6DI348vlLVr1zJo0CAGX3ghPPdcZWuZV19l0qRJbNq0iYqKimbFXbx1K+VAX/9ocTiyFi5EpyiknjrF12PG0DuMhysXT5vGWSD//fcrz/vZZ7iBxJEjmxR3a+vZsydfulwoX30VVu/RrlYrZd26tUFkojEkIRRCNFtLrhkT7cd9991HSogiAk2Zzlkfp9PJrl272LBhA7t27cLlcjX6GFvffZdLgaQ6CiD17NmTgzEx+FSqBtcRlpaWMrCkhOL+/aER057iL7+88g+BdWwhpKWlsWTJEjZv3sy2bdv4z3/+w5///GfS0tLCPk9LUBSFhJwcPFpto4vKALjT0kguLQ2ug4oG+/fv5yKVCkMTi1mor7uOyzweXoDK0cEwR20NGRlY1Wo8YRaW6ci8Xi+xZ89S0sjfZ43FwnmDgbJ6kurNmzfzox/9CB5/HB59FDwe+OUvuSEmBqfTyaZNm5oVu23LFg4Cw+rpI1hT1sSJ/H74cGYAs0JU6A7l0mHD+Eqtxrt5MwBJu3dzLDUVGjmq3VZ69uzJJkBVVFTvv20ApXY7vTwekJYTUUcSQiFE2G666aZaXz/96U9bdM2YkAS7qpYqsmJbuRKvSoWhjjU8arWaQZdfzom4uAYTwi8//5wRgGHcuEbF0GfMGAqA8q++Cmv/vLw8+vXrx4UXXsjRMCostqRvv/2W3uXlVPTsGXJEtSFKnz7Eer0QZu+4tnBg3z4GqFSoGlkkJ+jaayE+HjWg+cMfwn+fSkVubCzGBtaPdgbffvstF3g86BtRUCagpFs3zCdPhlxPWVhYyMGDB7kuLQ2efRaeeQays2HcOLKWLiUjLa3Z024Ne/dy0GwmvRE9OQEWff45y6xWevToEdb+er2ekz17knbsGKVHjnCp1UpplI4Ogn92hUqFV6uFBlpQndq+nXjA3Nz1nKLFdZw5CEKIVtee1oy1B21RlKW9a4kiK7m5uVx8+DD5AwaQXk8z7FGjRvHl5s30aqBB/baXX2YqEFujWmlDLr7kEvYAl2zbhrmBfdesWcOvf/1rxuXn87OiIj4eM4af7dlDUhuVnv+///s/JqnVmAOjmo2UcPnl8NZbFG7dSvINN7RscE1UsHs3Jp8PmpoQJifDmTNw9Cg0cpTRmpZG0unTTTsvlQ+JPvnkkya/P1pkb9zILwFDIwrKBOiHDKHvsWN89913XFxj/eGnn34KwPiPPoLBg2HePFCrYdEiVGPG8NC4cSzbsKHpgVdUkFpQgKMJhV3M5oY+7bWVXnstvr/8Bddll5EEZMye3ehjtJWEhAQGjxjBoWPHuPDTT6GequMF/lHPlNGj2yo8ESZJCIUQYQusGas5TTAa14y1Bx01wc7Ly2uxKY4tUWTls7ff5mbAcffd9e43evRoVjoc3L5/f2WFv65da+1z/Phx+PhjnHo9hkY2Cu/bty8bgcsaWKN44MABbrzxRt694AKmA+UXXoh+zx6WDRnC7adOtfp6MkVReO+tt5inUqEZMqRJx+h91VX4gNzs7KhICBVFQXXwYOU3TU0IAWJjG50MAnguuIDM77/H6/Ggqefn19EfEh1Zu7ay4XoTEqvU8eNJe+89Xt24sVZC+PLLLzPnooswfv01fPTRD6Pao0fD6NH8NC+PeYcPY7fbiYtrfHdM25dfYgG6XH11o9/bFLfMnctLf/kLD9hs7Bk4kIsb+fCprU2aNIl3Fy/miQ0bUFVUQB1F0go2bMAJJEdpxdROTRHtms1mUwDFZrNFOhQhRCP97W9/UwoKCmptX716dQSiaTlXXXVVix0rNzdX+c1vfqOMHj1aGTlypDJ27FjlgQceUHJzc8M+xquXXaa4QVHy8+vdr6ioSEmtXPWmKMuXh9xn+vTpylaDQXFdfXWjriPgt126VB6/nlj+9Kc/KfcZDJX7LVmiKIqi5Nx9t+ICZeXChU06b2N8+eWXyvDA38PWrU06htfrVY6pVMq2ceNaNrgmOnHihPIgKG6jUVE8njY//54//lFRQDnwySf17tezZ0/l2LFjyokTJ4Jfx48fV8aOHdtGkbYej8ej/Mpkqvy9slobf4DNmxUFlN/V+PclJydHAZTcAQMU5dJLFcXnq/6+VasUBZQLQfmkgb//uuyeOVMpAyXnyJEmvb8pnnvuOWXJ7bcrnnZwf3fw4EFlgEpV+bN9//2Q+/h8PuW/MTHK9+npYR9X7nHbjiSE7Zx8WIQQkTJ8+PBaX5dddplisVgiHVqQ1+tVsnU65ftevcLaf+DAgcrJlBRF+fnPa71mtVqVbjqd4lWrFeWll5oUz20TJlTeNL37bsjXfT6fMuPii5VyjUZR7rrrhxfKy5V8o1H5NDW1SedtjHnz5ilPJSQoPpNJUZzOJh9nS0KCsisjowUja7olS5Yo/0+lUtxjxkTk/OXff68ooPzfPffUu19HfUikKIqyc+dOZQko5d27N+0AFRWKS6tVfh8Xp/iqJH2vvPKKcmV9yYjTqfjS0pR/GQzKk08+2aRT7+vWTcmOiWla3J3ErFmzlANareK98caQrx86eFA5B8r3N90U9jHlHrftSFEZIYQQTWK329myZQvbt28Pfu3YsYPhjajCF6558+Yx9JJLeHf+fJRPPqmsIBiG7e++yxi3G1WIqXihjBo1io+0WvjwQygrq/baRx99xAy3G5VGAz/9aaOvASBl6FBO1lN84fePPsqDe/bg7dIFFi/+4QWTiV1XX824/Hy8gamPrWTXrl1MNZlQjRhRZ7/EcBT26kWP/PyoqDT69ttv8yODAe2YMRE5v6lPH4q1Wsr9a6jq0laVeyPh888/5wqVCn0T1g8CYDRiGziQoXY7x44dC25e+5//sDQmBoYPh1BFo/R6VPfcw889HnZ//nnjz1tWRu+zZzkvhVDqNW/ePP7m8cCaNXD2bK3Xd77yCqlA93a+JKKjkoRQCNEoLdECQHQMixYtwm6319r++OOPt9g5SkpKWLBgAesXL2blwYPc+MILqKZMqVyDlJfX4PuLn3mGMpWKCx59NKzzTZkyhf/Ny6tMBt97r9pr773zDr81mVBdc01lgZEmGDduHP/xeHC9/TZ4vdVeKysrw/D884xUqYh9773K9WpVmO+7jwLAGua1NIWiKBzatYsh58/Dj3/crGO5hg4l2ePBV+XmPRJycnI4vmULXRyOyqQhElQq8rt3J/bQIbw1fu6dxTcff8xQRUEzdWqTjxFzzTVMALb4C8Rs2bIFw4cfcmFpKfz5z3W3gfnVr9ABA7ZuxRPmw6SAs0uXYlAU4iWRqdeQIUPIGT8eu6Lg/f3va71ueest8o1GTM34+YtWFOkhStE8Mpwu2tKbb76pjBo1Spk7d67y+OOPK/fff78yevRoZXkd661E0zRmfVxH5vV6lSlTpijjtFqlVKtVfIMHK/MuvVT5WWamYouLU8r69lWUev7tKzp6VCkGZdPIkY0654gRI5SvEhIU5aKLguvNDh06pNyu1VZOS9u2rcnX5PF4lJ9kZlYe5+OPq732ydy5iheU4t/8JuR7y8rKlN9pNIpHo1GUnJwmx1Cfo0ePKjMC6wcPH27WsT5euVJRQDn/17+2UHRN88ILLyi/1GoVn0qlKCGmY7aVk7NnK0WgbP7ii4jFECkej0e5O7B+sDn/vh09qnhBeWXUKOXbb79VsiwW5axer/h+/OMG35p39dXKGVC+2bw5/PP5fMqpzEzlM41GqaioaHrcncS+ffuU30DlZ63K9N1tL72kOEDZfsMNjTqe3OO2HUkI2zn5sIi2NGbMGMXr9Vbb5na7lTERWpfTUbVkUZY24/MpyuefK8pDDynK736nKEePNvuQ77//vnJFoBDIuHGKUlKi7N69W7nwwguVC0GxqdWKb9IkRXG5Qr5/6+jRSiko+Xv3Nuq8b775pjIykBQ9+6zy6aefKhdqtUqhSqWUXXNNs6/rT3/8o7JbpVK8w4YFE87j77yj2ED5KiNDUWp8xqq66+abFatarXjrSBqb64UXXlA+VqkU9yWXNPtYhw8fVvaCcmbSpOYH1gzjx49XNqelKcqoURGNw5OdrSig/HXWrHr3czgcys6dO5X169crO3fuVJzNWMcZLXbs2KH8Hyi2Cy9s9rG+799fOQXKVItF+SomRvFaLIpy/HiD73Ps3684QfnvsGFhn8v73nuKAsr/RElxpPbgyvHjlU8sFsWnVivKbbcpBbffrhSrVMr3cXGKt7y8UceSe9y2IwlhOycfFtGWJk2apGzcuDH4vc/nUzZs2KBMnDgxglG1X+2hKEtY8vMVZerUygSqWzdFSUlRlJgYRfnwwyYfsry8XLmtVy+lXK1WlIkTFaWsrNrrmzZtUsaD4larFd/tt9eqLFixbp3iAWXN5Zc3+tw2m00xGo3K1iuvVBRQtul0SqlGo3j79VOU8+ebfE0BBw8eVEaB4lWplNIf/Uhx/upXSgUou00mpfjUqXrf+/XXXysLQXHpdIpy8mSzY6nK5XIp13brVvlzXLGi2cdzu93K02q14jAaFcXhaIEIG6+iokLpotcrLr1eURYtikgMQS6XUqHVKotTUurcpaPOwvjjL36heEFxv/JKs49lP3BAOatWKwoo7vh4Rfnyy7Dfu+XqqxU3KMfDKQr17beKIzZWWQvK5k2bmhFx5/LPf/5T0YCyQK1WDhkMynFQ/p2QoNhOnGj0seQet+1IQtjOyYdFtKXc3Fxl5syZSmZmpjJkyJAmtQAQPxgwYIDidrtrbZ8U4RGVRvnyy8oksEsXRXn/fcXjditKaamiTJ+uKBqNojSxOuLff/YzxQ5KyYgRtZLB/9/efYdHVW0NHP5NSSeNBAIhEELoTYRI702qIGChWuCKFJGLDUURuQgICoooggjSURApoYmhg0CA0ElCCSGk9z6ZzMz+/ojMd3MBpQRiyHqfZ55kTl1nZs+Zvfbec85Ns2bNUoNu9uSNGaNUTo7KyspSRz75RGXa2KjdGo26EhZ2X/vv37+/atK4sdoyYIDaoNGo1FGjlEpJua9t3U7Lli1VT1BnQCWWKaNmajTq2oULd7XuuFdeUbEajTL26HHrJfYfwLzZs9UxUDn+/nfsdb1Xb/yZVJuXLy+S7d2rvXv3qjdAWfR6paKjiyWG/xbVrp26ACrk5Mnbzn8cR2GcOX1abbG1ValOTnf8LN+rnMREZQoKUioj457WM2Znq512dsqo0ajcd99V6tSpgvNVZmZBY8+JEwXnrBEjlMXOTp21sVHPtm9fJDGXFvn5+SooKEh98cUXqkuXLgpQv/76631tS+q4j44khCXc3X5YLBaLteK5e/duZSim1lpRsmVnZ6saNWooQLm7u6sjR46o+Pj44g6rxNqwYYNKuU2SsXfv3mKI5h5ZLErNnq0sOp3Ka9ZMvTdkiGrYsKHS6/Vq4sSJypyXp2506lQwbGjp0nvabs7cuSoP1GVf34LK2h0XtahmzZqpSWXLKrNeryzOzirmz/v37bGxUZsfoFdl3bp1ClCAeuONN+57O3dy5swZ5e3tbd3HsGHD7nrdGzduqL5/9pComTOLJJ7LJ0+qLTqdMup0Sh09WiTbVEqpQ4cOqc2gsry9iywZuFtZWVmqc9OmKlarVZYXX3yk+76TvMBApUAN9PFRWbcp24/bKIzcnBw1y9lZKVCJ33xT3OEopZT6ZNIkNQNU7s3P0O0efn5qV7t2qryzs4p6SL/XLQ3MZrM6c+bMfa8vCeGjIwlhCfffH5bMzEy1ZMkSlZ2drfLy8tSSJUusLY1Lly5VgLpw4YIC1Pfff6/S09Nv+UIy3eUNey0Wizp16lSRH4/458jMzFTr169Xq1evVnl5eSomJkZ9//33ClDHduxQc3191QpQv4PaVKeO+m7u3FtatsVj6to1pZ5+WilQX9rbK/2fDQTDhw9XY8aMUYAKCAhQGlD76tQpqGB99tlf3xDcYlHq8GFlbtdOKVDfarUq6i5+h3jx4kXVsWNHVV2nU9/4+KjPQB2fMkVZHvDm47m5uapv376qcuXKKi4u7oG29Vf279+v5syZc9vk4K8MHTpUzbp58/qxY+/vYil5eUodO6bU+++rFDs7laHRqJw73B/xflksFtWnRg1l0OmU6tdPqXv8DdGDGDZ4sFqn0ymTvX2RD6+9b2azMtSurQ5rNOqDiRNvmR0bG6vefPNN1bJlS9WsWbOSOQrDYik4RyxbpmJ8fQuSwYfQqHK/jEaj+uKLL1QZUL9/8okKmzxZ5S1bVnBv0GPHlEpOVhaLRfn5+akR/30vUPHISUL46EhCWMLd/LDUqF5dNWnSRAGqfv366quvvlKA2rlzp4qLi1PdunVTgBo0aJC1NVqj0aj69eurZ599VkVGRqqvv/5aAWrPnj1q0KBBavLkybfd5+7du9XHH3+sALX/Hq+WdvnyZTV8+HC1YMECtXv37kI3l01MTHykN999HH6obzQa1bJly1RmZmaRbfP69etq6NChys7Oztp7cfNRB9Q6Dw+lHByUxdZWhZcrp34GlQPqPKjvx40rsjhKE6PRqDZv3qxee+01NW3aNJXzCCvN92LvihXqtyeeUCZ7e2WuVEm9VL688vf3V3PmzFFJf/62zmKxqB49eig3Nzf16quvKkDta9GiIHHx9VVq0iSlVqxQatMmpdatU6Yvv1SmV19VGRUqKAXqmqOj6qnTqY23u8H0HeTn56spU6ao559/Xv34448P6ej/WdLT01XdOnXUWFA5Wm1BT2yzZkoNGaLU228r9cknSk2bVvC7ualTlXrnHaVef71gfufOStWsqSy2tkqBMjo7qwWgNsyd+1BinTdvnnoGlEGrVXF2diry7bcf2lVSlSrolTq6YIHa9efvNNWGDQ9tX/dlzx5lBvWdjY26HBqqNm7cePsrWBqNBa/T1asq7tKlf0aDm9msVHKyUuHhSh0+rNTmzSp/3jwVM2yYyu3XT1latVJmT09rT9vvGo2a16tXcUd9C4vForp27Wr9brt5HqtWrZp68sknVc2aNe+rjiOKliSEj45GqX/AHWPFfcvIyMDV1ZVUwB7I12jIB/KUwgjWR/5//X+75xa9nlyTCSNQtUYNLl65gt7JiTcmTOBsaCj5Wi0BLVqQnpPDex99RFZ+Pkag0VNPMWLUKMIiImjZvj06B4eCGxnb2BT8tbVF2dgQfOoUFr2e1evXs2DJEm7eBejTTz9lxIgR/Prrr3z66adERUXxzjvv0K1bNzp27Pi3xx8fH8+iRYt48803cXFxsU43GAz07duXM2fOEBwcDMDGjRsZMmQIrq6ubN26lYEDB3Lp0iW8vLys6x0+fJhatWrhcYd7jCUnJ+Ph4UF+fj56vR7Nn/c8Cg0NpXr16uj1+kLLL126FFtbWwYOHIhW+/+3/czKymLv3r089dRThfZ/L3bv3s3EiRMJDg5m2rRpTJo0qdB8i8XCsmXLeP7558nPz8fBwQE7Ozvi4+OJi4ujYcOGnDlzhm+++YaePXvSp08fjh49ysCBA4mIiMDOzo59+/axdeNGTs+cyUdlyxKQkkK6oyOuEyfCyJFQvjwXLlwg5eBBqn34Ie6JicyuWpXkZ57hq6++uq/jupO8vDzs7OyszxMTE0lMTKRu3bpFsn2lFHFxcVSsWBGA/Px8bGxs7im+/Px8jh079pdl12g0sn37dkJDQzlx4gS9evXis88+48KFC1SvXp2oqCiGDBnCokWL0Gg0xMbGUrFiRWtZ+9+4bt5TS6/XY7FYsFgst5TDv2I0GrH975uPm0yQlQXx8RAVRfTRo+QeOwYHD1I9JYUMYKGNDbufeop9ISGcO3eOatWqFdqmwWDAYDDg6urKhAkT+Oqrr2ikFD82aULDyEhISvr//QNXdDoOmM1sdXIivk4d3n7vPQYMGHDXx1BanTlzhh49elAO6Jqby6edO6OLiYG4ODTZ2Zjz89ECGp0OnJ3//1G+PLE2NszdvJlQBwd2paTQsn17du7ceU9l524ZDAaqVKlC2cREpjk48GxuLjpAVauG5oknoG5dqFIFfHzA2xtcXcHFha0HDhBx4wZjx44F/v8cYMjNRW+xoMvNZW9gIHapqTTz8UEXHU3awYOkbdlCVaORCI2Gytu2oe/WrciP6UElT5+O66RJXAOCgEx3d5o0akR2eDhVLRYq5ORQNjMTrcViXSfJxQWPXr3QtGlDftOmnM3NpU7jxvz000907twZBwcHoqKiqFevHjY2NiilOHf2LOvWrKFl48ZcDAmhQ/PmNKpRA1NqKtrsbHISEsiOi8PLyYmEK1cIP3mSMkB5R0cMiYn4eXiQFx+PXVYWJCejSUmB/4oJCuoTN4BovZ5Ii4VLFgvHgeNA95dfZtGiRfd0Ln1UDAYDS5YsoXbt2owYMYKIiAgGDBiAXq/HxsaGESNG0LZt2+IOs1S7WcdNT08vVMcTRU8SwhLu5oflt4ED2bRmDb26dMG7XDnWrV6NLWAL2Gu16C0WbP587qTXozGZ8HJ3Jys11bpcFS8v9EqRmpBgnWYL2AB2Gg1ONjZojEa0dwrmHpm0WgwWyx2T1Gq1ahGXkkJ6Tg52zs44e3pyLToaV09PsLPD3tmZ0xcvkpCWhruXF1169MDB1ZXYlBQyc3NZuW4dRqBm/fqEXrlCem4unhUq8Pb777Pm55/Ze+gQ/xo9mlZt2/LpZ5+RazJx8uxZ6jVsyNKVK7FxcGD/4cOcOn+el0eM4Mjx4zw/aBCz5s7ly/nzadGmDe+9/z5BQUGMHj2adu3a4erqyvr16/nll1/YsWMHy5YtA+Dbb79l1KhRhIeH88knn7B161bS09Px9/dn//79vPzyy8TGxtK9e3emTp3K2rVrOXDgAP/+97+pU6cOK1asoHv37nh5eRETE0N4eDj9+/enatWqxMfH4+joyIIFC/Dz88PDw4PLly+TmppKly5dGD16NOvXr8fX15fZs2fz7LPPkpqaSo8ePThw4ACZmZlotVqGDh3Kpk2b8K9WjXXz5lH2wgVcQ0JQ69ejSUyEgAAOBQRQ66OP8PT2vuX9NKSmcrRpU9pdvswG4BNg4IwZ/Pvf/+abb74hPT2dyZMno9PprOsYjUZsbGysyc7tbNiwgR9//JEdO3bQqVMnevXqhYuLC8OGDQNg2LBhvPrqqzRu3Jgyf97IOzQ0lL1791KpUiVat25NUFAQHTt2xNHRsaBCaTDg6OgIwMyZM0lJSaFy5cqMGzeOSZMm0apVK/r168fatWvp3bs3aWlpBAYGEh0dzcSJE9FoNKSlpaHVanF2dmb37t0MHjyYxMRELBYLW7ZsoXPnzsyZM4fz58/z+uuvM23aNMp5enI1JIT0ixfxBmqXKYNLVhYBFSrQvkYN3HNySImL40p0NElaLUk2NkTm5aHKl6dBly5ovLz4+ptvGD9uHBW9vEhKSGDp99/j5+3NGyNGsHLxYtITEgioV48K7u40b9QIS04O0VeuoDeZcLG15VpYGNfDw6np44OHjQ3XL1zA29kZe5MJfW4uDrd5DyKAC05OpLZuTa9Fixg/eTI7d+5k8eLF9OzZ828/62azmcmTJzN9+nTGjBnDZx99xI3wcMa++SYXYmPJzs3lww8/5O233/7bbYlbXblyhbp166LX62ndujXnzp3jgw8+YOzYsTRv3hw/Pz/c3Nx46aWXmD17NpUqVSIoKIjY2Fhyc3Pp06cPK1aseCjJ4E3Xr18nOTkZNzc3/jN+PDmbNzO0Vi06e3mhv3QJTVwc2ttUR/IBC6A0GixKobe1RWM0crv0wqDVchEId3EhvkUL3Pr3Z9jw4Q/tmB7UzOefp+3ZszQymTBFRpJrMpHh5MR1GxsumUyEZGaS7uKCf+3aGCIiqJSYSFutlkYWCzffqUQgA0CrxWyxoAOcbWxwtbPDnJ2NnVLo7hjB/7NoNGQoRfaffzOBrD8fqUCmrS0JZjM5Dg6Uq1OH7cHBJAMtevWiXocOPNG4MfPnz6d+/frUr18fe3t76tSpg7+//0N45Yqe0WgkMzPzjo3BonhIQvjoSEJYwt38sFy9epVOnTqxfv16nnzySb744gsaNWpEeHg4jRo1olWrVuzcuRMPDw88PDxYuXIlb731Fi1btuT8+fPk5+cTFBREpUqVrCfxypUrs2fPnkL78/T0ZM/vv1Pb3x9zbi6N69dHb7HgX6UKZ0+etCaRDWvVIiU+njr+/mA08lzfvthYLAQfPsxzffvi5uBATloau7Zt4+yJE3i5u2On0RATGYkN4OboiCknBwetlhpVq5KTnk5mcvL/J6oaDTZK4Wpvj3e5cqTGx8OflYT/ToRtAN3/tGYWJTNg+vOR/+dfnZ0d2Xl5YGODo7MzuSYTyRkZ6OzsMJhM5CuFWaOhep06XAwPx2A2YzSbcXZxITUjAzt7e7IMBmzt7TFZLJT38uJaVBRuZctSs04dDv/xB/kWC45OTjz34oukZWTw8/r1mJRCZ2OD0mrJzcvDQkFFSguUc3cnOysLS34+PhUq0LBBA/YFBaEFXujTh/jwcKLOn6c8UM/REV1OTsEBVq8OvXvDyy9Dw4Z39Zpkf/89Ca+9hh9wCQhzceFcRgZxwPMvvYRRq6V+QAAaBwfefPttbO3syMvP59333uPb777jWmQk1apXx9fPD3sHB9Zv2FBQIQTq1KpFWFgYGqBDu3bs27cPDaD58zgb1q+PX9WqBAYGWqdXrlSJ6OhoHOzsKFOmDE729kRHR1OpYkWe6dWL5UuWoMxmdFDooaegMcRep0NjNlufP92xI+Xc3Njz22+YjUZ8K1bkRmQk3p6eONnZkRIfj71ej51Wiyk3FxelcAU89XpczGYc/ueUa/HwQOPjg6ZSJahUCeztib12jeyrV7FLScEtLw+7lBRsuXs5gAGwc3EhNTeXzPx8DH9OMwCOZcsSnZJCJpAJaJ2dydJqsS1bljMREWQCaba2pDg40GHIEAYPH06tWrWsSfT9UErxzTffMGHCBEwmEze/enbt2kW7du3+kT0IJcnu3buZNWsWO3fuxMXFhYyMDAB69+5NZmYmly5dIjo6GicnJ7Kzs63rtGrV6m8bZR6G5cuXW8tCbm4uZeztefP553FMT+f0gQNkx8XRr3Nn0qOjSUtNxaNsWS6FhWE2m3EtV446AQFEJifTuW9ftBUr8suxY/y8axcBTz3FokWLrI1DJZVSinPnzuHv74+joyNKKYKCgjhx4gRXzpzBOTycAQEBGK9coZyDA4nx8TiXKYObuztbfv+d2LQ0vP38aNO1K/UaNyYhIwM7V1dOhYZyNSEBrasroTdukG6x8PvRo0QlJvL6qFHMnj0bjUbD3r172b9/PydPnmTo0KEcPnyYypUrEx8fz5IlS6hUqRJHjx6VSrp4qCQhfHQkISzh7vbDEh8ff8ehiYsXL+btt98mNjYWBwcHcnNzycvLw83NjV9++YUlS5ag1WoJDAzkhx9+4NVXX7Wue/z4cWxtbdFqtbz//vsEBgby9NNPs337dvLz8wsPRbsDi8WCUgqdTsfBgwdJSEigT58+hISE4O7ubm1h/PHHH8nMzCQiIoLRo0fj4+ODnZ0dGo2G3D97GHx9fWnWrBmHDx+mW7du1K5dm1MnT1LR05MKZcuSk5HB5zNnkpeVxdCBA5nxn/9w5uRJpn/yCd27dAGTiTUrVvDNV1/h4uDAK0OHUr9WLd576y3sdDo+nzmT61eu4OHqijEnBz3goNfjYGPDDwsXUsHDg8irVynv7s4bo0ahMZlIio/n9+3bsRiNONrY0KNrV3RKobNYyE5P59rly5R1d6di+fIE7dpFfl4eNf39qezjw/FjxzDm5uLn60tsdDQWk4nynp5U9PLCwcYGjVJgsZBvNGLKyyMzPR2dRoO9rS2J8fE42NmRYzBQyccHpdWSmpGBZ/ny6G1tsWg0mJTCtkwZcHUlxWQiUSlqdetWkAg2bw5/Dp+8V6kJCbgePMiWceMon5DAk+XKQVwcthZLkfUwP2xKp8Oi1WLWakGvR+n15Obnk56TQz6gtbVF7+BAcno6XpUqUdHXF41eT57FwrGTJ8HGhkZPPUWOrS1pFgv+TZqg9fTE7OWFTZUqBUPjKlYEe/u/jeXqlSs0qV6dhl5ebA0MJCsnh9y8PLJycqj/xBNciYkhPj0d31q18PHzQwENGjTg/Pnz1KtXjx9++AEXFxfr0Oa6devStGlT0tPT2bx5s3XYrcViITg4mIiICFq0aIGvr2+Rv67BwcEEBwdTr149nJycCAgIKPJ9lFZ5eXkcOHCAJ598kvXr19OzZ098fHwAyMzMJCgoiGbNmpGSkoJer6dWrVrFGm9sbCzz5s2jYsWKDBw4kHLlygEFyVBkZCRVqlTBYrGg1WrRarUYDAaCg4N58sknS3zC9zClpqZy+PBhunfvXuinCndisVgwGo3Y38W5SIhHSRLCR0cSwhKuKD4sZrOZ1NRUPD0977iMyWQiKCiIzp07Fxry97+uXbtG+fLlH6gn4Z8gJSUFR0dH6xfk7NmzcXFxYeTIkX+5Xk5ODuPGjWPgwIF06tSp0Dyz2Qzwl6/f3LlzmTBhAhkZGTg7OxMdHU1sbCwBAQFcunSJkydP8vzzz99Va77ZbEar1WI2mx/qULC/kpubi8lksh7Lju3bqennx76dO6lcrhxd2rfHu2JFUpOT2bZ1K40bNaJO7doFv1H5M9m1/rVYQKP5/4dWW/i5RsOWwEDcy5alddu2oNFgyMtjS2AgvXr3xsbWFr2NjXW9jMxMFi1ezJCXXsLTywudrS0avZ7zoaE4u7lR5TbJ0JUrV6hevToTJ05k+vTpQMHvuBo2bFjoPfnf35gWhS+++IJWrVrRvHnzu1o+MDCQjRs3MmfOnNueG/Lz89HpdHdVYRRCCCEeNUkIHx1JCEs4+bA8XpRSmEwmGT73D5aWloabm1txhyGEEEI81qSO++hI07AQ/yAajUaSwX84SQaFEEII8TiRhFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopSShFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQj/Ab799lv8/Pywt7enSZMmHDhwoLhDEkIIIYQQQpQCkhAWs59++onx48czadIkQkJCaNOmDd27d+f69evFHZoQQgghhBDiMadRSqniDqI0a9asGY0bN2bBggXWaXXq1KFv377MmDHjb9fPyMjA1dWV9PR0XFxcHmaoQgghhBBCPBJSx310pIewGBmNRk6cOEHXrl0LTe/atSuHDx++7Tp5eXlkZGQUegghhBBCCCHE/ZCEsBglJSVhNpvx8vIqNN3Ly4u4uLjbrjNjxgxcXV2tj8qVKz+KUIUQQgghhBCPIUkI/wE0Gk2h50qpW6bd9P7775Oenm59REVFPYoQhRBCCCGEEI8hfXEHUJp5enqi0+lu6Q1MSEi4pdfwJjs7O+zs7B5FeEIIIYQQQojHnPQQFiNbW1uaNGnCrl27Ck3ftWsXLVu2LKaohBBCCCGEePgMJgPrL6xn+6XtxR1KqSY9hMVswoQJDB06lICAAFq0aMGiRYu4fv06r7/+enGHJoQQQgghxEMz48AMHGwcOHD9AA28GuDj4lPcIZVKkhAWsxdeeIHk5GSmTp1KbGws9evXZ9u2bfj6+hZ3aEIIIYQQQjwUZouZQ1GH2DV0FwHeASw7tYxJbScVd1ilkgwZ/QcYPXo0165dIy8vjxMnTtC2bdviDkkIIYQotc7En+GTvZ8gt2oWJd319OvkmfKKO4zbCooIonO1zmg0GjpU7cCR6CPFHVKpJQmhEEKIIqWUwqIsxR3GPUszpBGaFEpufm6RbC8uK45/7/g3BpOBPFMe2cbsItnuP1F0RjTPrXuO939/nxsZN4o7nAeSZkjj3V3vkmvKZeGJhcUdjhD37UbGDQb9MogB6wY81P18dvAzUnJT7nm9ZaeXMeyJYQDotDqUUtIIU0wkIRRCCFGkPgj6gBGbRxR3GHdtT8QeBvw8gL5r+7L45GL6/9wfk8XEmrNryMnPue/tTgqahK3OluaLm9N1ZVeeXPgkJ2NPPpYVnjd3vMkn7T+hT+0+vLzx5X9sj8TdGPTLID5o8wGfdvyU9RfWczX1anGHJP5hrqdfZ/6x+cUdxt/6NvhbPu/6OeUdyxOTGVNo3um405yNP/tA24/PiufojaMERQTxyqZX7mnd5JxkDCYD3s7e1ml+bn5EpEU8UEzi/khCKDBZTJyKO/WXyyil2Htt711tSwjx+MvJz7EmNiaLiSspV5h/bD7Dfh2Gvd4eB70Dh64fumW9kNgQVp1ZxeWUy0RnRD/qsG9hNBv5z/7/8F6r91jdfzWfd/2ctr5tab2kNReTLvLqplfve9sxWTFM7zSdj9t9zL6X97FjyA4G/DyA3mt6P5SkMCMvg7l/zCU2M5aZB2cWarFPzklm6r6pHLlxhFmHZjHx94lFFkNKbgp6rZ665erS3Kc5Lzd6me9Pfl8k237UYjJjKOdUjra+bdFpdSx+ZjGvbHrlsUziRUEPmlKKLw5/QY9VPVgaspQxW8fQe01vBvw84JY6ze6I3SwJWcLE3yeyJGQJZov5nvYXkxnDq5teveWKmkopUnNTScxO5Pl1zxdJI4RSiuCYYJpVakarKq1uOR/PPzaf0dtGYzQb72v7v135jcEbBtP/5/580OYD6nrWJTA8EOCutrnq7CqGNBhSaNqTFQsazcSjJwnhY+SXC78UqqAB1mFbK06vuO068VnxnIo7xWtbXis07VraNQCCo4MZs3UMH+7+kHHbxxGeHF5o/eiMaOKz4jGYDHwb/C1tlrZhzdk1D3Qc/8Qv3tCkUOtr8nci0yLvOzE2WUxcSLxwX+uKR+Nq6tViKaO7ruwiPiv+rpc/EXOCgb8MJCMv47bzzyWcu2NDkMFk+Mtj/PXir3Rb2Y1uq7qx7vw6OizrwLyj8yjnWI4P2nzAx+0/5j8d/8OE3ybw9MqnGfDzAPZe28vgDYOZe2QueeY8vj76NYM2DCI6I5qwpDBrxSolN+UvPz9phjSG/jqUjaEbORZ9jC1hW/h0/6csDVlKcHTwPb83K06vYEjDITxV6SlrS/XE1hM59OohpnaYShnbMrec9+5GQnYC5RzLodPqeLbOswBUc6/GziE7CfAOoN2P7eiwrAN/RP3BO7+9Q1JO0l1t92LiRdacXcOm0E1MPzCdsdvGkm3M5tVNr9JnbR9C4kLotqob7vbuvLj+RXqu7knvNb0ZtnEYTSs15Zvgb1BK4aB34KfzP/Hi+hd5b9d7d73/29lxeQfdqnezPh9YfyCB4YGEJYXx9dGvWX12Na9seoVlp5ZZl8k2ZrPs1DK6rOjCWzvfIjE78b73f5NFWR74s7k1fCu9avSyPq/qVpVGXo3uqQzk5OeUqCHTZosZg8lw2+lZxiwAsoxZ5ObnEpUexajAUUw/MP2W5f/3tb+bZOlM/Jk7DtE+dP0QR24c4WrqVTaGbryLI7l7SimmH5jOqK2j6LS8U8GtD55fD8CrT77KloFb6FC1A0tClljPR3FZcUw/MB0NGp6p9Qx9a/flUFThJCsyLZKFx28/zPjLI18yMnAkw58cztwjc61JU745n26rujFuxzjG7xxP75q9Gb55OCdiTjzQMW64uIHWlVuj0WhoVbkVB68fLHT81zOu07FqR07Hnb7nbZ+MPcmiE4v4tue3nBx5kna+7ZjUdhIrz6zk9cDXqT2/tvW78nadCUopAsMD6VmzZ6Hpnfw6sSV8yz3HIx6cRv0Ta9/irmVkZODq6kpcUhx+3/lxfvR5fFx8aLyoMdM7TmfOkTks7LWQOt/UIXRMKPOPzWdcs3GM2zGOdc+to9fqXlR0rsjvV38nfGw4Wo2Wzis6U9OjJkazkTPxZ/B09MTJxokp7acw5485zOw8Ez83PzQaDUM2DMFoNtK5WmdCk0LpX6c/H+z+gM5+nYnKiKKhV0MARjQegY3WhtPxp2lcsbE1/pz8HI7HHKeMbRn0Wj0RqREFFZrq3Vh9djX1y9fntSavkZSTxKf7P8XJ1olDUYeY0WkGALU9a+Nm70ZOfg7jd4zH29mbdr7t2B+5n5EBI/Fy8uJcwjl83XxxsXNBKcV3x78jIy+D8c3HM3nPZE7GnWTJM0uo7FoZKEj+xm4bS1mHskzrOA1/d3+eXvk0TrZObHxhI0azEb1Wj06rK/RebAzdSE2Pmjyz5hmmdpjKoAaDrPPOxp/FYDLgYONA/fL17/h+bru0jTHbxhA+NhwbnQ1n489yNuEsgxoMsg7LeK/Ve7fs+3YSsxPxcPQgJTcFT0fPuy9UfyE8OZwaZWug0Wis03678hthSWG80ewN67SE7AQ8HT25lnaNhOwEmvs0JyMvg/UX1tOmShsCwwPxdfOlq39XytiWwWQxsT9yP00qNsHV3vW+4zsddxo3ezd83Qqu0quU4lj0MZr5NLtlWYuysPjkYoY0HIKdzg6tRotGo+FKyhXK2JbBq4zXLesYTAZqz6/Nv5v/mxGNR+Bg48CWsC08U+uZQq/JtbRr2OnsqOhc8b6P5b8ppWiztA1V3aqyst9Ka2UzNTcVD0cPYjNjicuKo7JrZet7PXzTcDr4dWDpqaWMbDISs8XMqbhT1PKsxbAnhtF9VXfsdHZMajOJGxk3yDXlUs29GlP3TcXBxoFsYzY6rY7u1btToUwFanrUxNnWGXu9Pa8FvsbmFzcTkxnDqrOreK3Ja7ctY9EZ0VR0rsj5hPNsDN3IwAYDqV62unV+WFIYr299nTRDGtXcq2FRFkwWE9nGbDr5dbrt1eY+O/gZ1ctWZ92FdbjYueDl5EXTSk3JNGZyNv4sV1KvsKb/GladXUVUehQjA0besfwrpXh65dMEDgrEVmd722VCYkP4IeQH5ve4t+Fhm0I3EZsVy+sBt7+FkEVZ2BS6iTHbxvB196/ZGLaRb3t8i7Od8x23aVEWOi/vzJCGQ4jNjKWNbxsSsxP5ZN8nvNbkNcY2HYvJYiIpJ4kKZSqw8/JO2ldtj53e7pZt5eTnMGHnBJpVakZF54rMPDiTwEGBlLEtc0/HCTBkwxC+6PpFoc9MbGYsA38ZiKu9KwEVAxjYYCCjt45mRqcZfHf8O66mXWVQ/UEMbjiYkNgQPtzzIb1q9MLD0YOD1w9yJfUK87rNIzEnkfiseCo6VyQzL5PP//icN5q+QaMKjTgWfYzeNXuTnZ/N0pClbLu8jTK2Zfio7UeEJ4dT27M2TSs1vadj6bO2DyufXVnofdgStoXI9EjGNh1baNl8cz4rz6zklScLD5Ubvmk4jSs2ZkzTMQCkG9JxsXMpdI4A2B+5H09HT+qWqwtAZl4mZWzLcDX1KkduHGFxyGIqOVeiQfkGtK/ani/++II8cx7u9u74uPgwqc0kbHQ26DQ6zMqMXltw4fi159ay8MRCPm73Me2rti+0z+iMaELiQrDV2XIs+hgWZeFi0kXSDGnUL1efj9t/TFxWHGvPreVyymWupl7F1d6VbGM2tjpbPB09Gdt0LAtPLMTVzhWLsuDr6ouPiw/fBH+Do40jNjob6/70Wj2fd/kc/7L+t7zW/9n3Hw5cP0Cvmr0Y12xcoXnJOcm8sP4FNBoN1d2rcyr+FH8M/8M6Xyl1y+t5tzaGbmTynsk09GrIyn4r77hcbn4uk/dM5kzCGXycfbicepmFvRZS27M2UNA4823wt3zd42ugoJHt3zv/TRnbMjQo34DjMcdpVbkVTbyb8OWRL2nh04LJ7Saj0WjYEraFuUfmsrDXQjaFbcLDwaNQOYpKj2LqvqnU9qzNWy3fsk4PTQrF392/0Gt8O6m5qTy//nm2DtqKrc4WpRRdVnRh66CtaDQaWv7QkkENBlHNvRoJ2Qm81uS1v9zef7uRcYNhvw5jaZ+l1u/am5RSbLi4gfrl6zN1/1TCksIAmPv0XNr4trEudyLmBGvOreHzrp/fsv1+P/WjXrl6TO0wlczMTFxdXUlPT8fFxeWuYxT3ThLCEu5mQjju13EEJwfzr8b/IiojipOxJzmXcI7GFRsTmhRK3XJ1yTXl4ungiZ3ejpC4EBqUb8DhqMNcSLzAx+0+poxtGbydvckyZrHuwjrK2JZhfo/57InYg8Fk4NUnX2XbpW18fexr4rPjmddtHgtPLKRV5VZsvbSVDS9swFZnS1R6FMExwXg5eZGUk0ROfg6LQxYDBV94Pw34CT93Py6nXKbHqh7U8qxFTGYMl1Mu06xSM1INqXg6evJVt69Yfno5IXEheDp60qN6D1adXUW36t0IiQ3Bx8WHvZF7efmJl/nx9I982OZDLMrCgesH8Hf351LKpYLLGJ8uaJX+tse3jNsxjna+7TgTfwZHG0eql61OmypteO/396hQpgKtKrfip/M/sfzZ5ViUheGbh2NRFkY2GcnFxIvkmnLZF7mPyi6Vic+Ox15vj1aj5bXGrzH016HU9KjJ6v6r+deWfzGx1UTa+LbhWto1Bm8YTB3POiTnJjP2qbE42TrRuVpnfr/6O9P2T6ND1Q5MbjeZlze9jJ+bH3mmPP7V5F+M2DwCf3d/3OzdOJd4jmdrP8vOKzvpX6c/7au2t/ZonIw9ydXUq2wK24St1pZWVVrx6YFPGRUwihkHZ3Bq5KmC1s2D01naZylu9m5cSr5EmiGNpyo9BcDC4ws5HnOc75+5daiX0WxEKUW1edVY99w6WlZuSUxmDH3X9gWgvFN56pWrx5HoI3g5eVkbBw5FHcJGZ8Obzd7kQOQBXOxcOBR1iAF1B5CZl8m2y9uo5laN2KxYfF19CU8JZ1TAKALDA0nKScJkMVGhTAVmdZmFg94BjUbDxcSLaDQaanvWJio9iuz8bGuiOWXfFLQaLTM6zaBRhUZ8uv9T1l1YRye/TqQYUqjuXp08cx6tq7RmU+gmbHW2JOQkYKO1QaPRsLzvcgasG0BGXgYbnt9AYHggkemReDl54eHoQURqBG72biRkJ7Dzyk7c7N1QKOp41mFi64m42LlwPf06r2x6BZ1GZz3OvZF7mdB8AheTLpJtzLZ+weeZ8jibcJaGXg2x19tbX+vxO8ZzLe0aNjobulTrwrmEc5R1KItFWUjJTSEiLQJ7vT355nyaVmrKgesHaFulLfuv78dB7wBATY+afNntS1JzU1l3YR1ONk7ULVeX/ZH7WXV2FeOajaNztc50XNaRMU+NwdXeld+v/s7nXT/H09GTdEM6znbOLA1ZSqYxk8i0SCLTI0k1pLKg5wJrpehBRaZF4mrvSmRaJDU9auJgUxD/O7+9g4ejB+OajcNB70CWMYu4rDjGbh/L9sHb0WpuP8Dl66Nf88vFX3ih3gtUdavK0lNLsdHZML/7fNwd3K3LKaU4cP0AgeGBzOoy6y9j7P9zfz7r/BlKKWp41Lir45qydwo9a/S0fr5ux6IsXEy8SL3y9Vh2ahnbL2/HXm/PB20+oHrZ6tZjPHrjKO/+/i5+bn7U8azDe63fK7SdB6kc37QnYg9f/PEF3/T45pZK3l8xWUz0XtOb7YNvvan05ZTL6LV6qrpVBQoqs1P3TWV88/FUca1ChTIVrMvmmfLYHbGb9Lx0Wvi0wE5vxwvrXwCgeaXmWJSFmKwYFvVaxJhtBYlWC58WrL+4HjudHWObjqVppaaYLCam7puKwWQgJjOGLQO33FUDGsCpuFPM+WMOy59dXmh6ljGLUVtHYbKYWPLMEmsZnRQ0iU1hm9j04iZrwpNvzqfn6p7WC2Q0qtCILeFbaFKxCTn5OXzd/WssykI5p3J0W1nQqzoqYBRrz69Fg4ZUQyr+7v60qtyKXjV7YbKYCE0KZc6ROUxsNZGmlZqSZkjj4PWDzDo8C2fbgsQ105hZkIxpbahXrh7vt3mfT/d/ypmEM9T1rEtocihKKez19vSo0YN0QzpPVnySPFNeQa/7E0PZEraFJaeW4F3Gm6erP02WMYtBDQaRkZeBi13hynhcVhxhSWFUca1CZHokV1Ov0qFqB/zc/QotF5kWySubXqFl5ZaMfmq09Ttrc9hmtl3axvwe82n5Q0v8y/qzpn/B6KLYzFheWP8C87rPIyE7gSEbhtCnVh8qOldkUptJXEq5xMjAkVRxrcLSPkut5867MXzTcIwWI3O6zsFWZ3vXDZBR6VF4Onpa3/ubuqzows4hO1FK0W1VN1b1W0VGXgbfn/ie6Z2m88vFX9gSvoUFPRfc0tgSkxnDiM0j8HT05Me+P95yTlNKMTJwJIk5idQsW5MzCWew09lhspjYMnDLX37mJ/4+ka7+Xeno19E67fsT3+No40hl18ocvH6QD9p8QGRaJDMPzmRBrwV39Toopei9pjezusyyNmT83fJphjTe2P4GsVmxDGkwhDRDGvsi9/F5188LNRDeFJ0RzftB7/Nuq3epYl9FEsJHRBLCEu5mQvj25rd5vvHzPPvTs7zS6BXebvk21b+uTuxbsei1eoKuBtFrTS8uvXGJWvNrsazvMtZfWE/Lyi0JSwpjZueZfBP8DbMPz+b86PN8deQr/Mv6M6LxrReGmPvHXGIyY1h6aim/Df2tUI/fnSilUCgOXT/E5398jq+rL8ExwSzvu5waHjUIjg4mNiuWyXsmM7vLbKqXrX7LF8vN7fz3STAhO4HJeyYzq8usQl9YN1vDcvJz2DFkBwevH+TrY18zrcM0mng34Y+oP+i2qhsxE2JwsnUiJDYED0cP3vv9PV5p9Apd/bsCBRW2m63TBpOBwRsGs7j3YhaeWEibKm1oVaUVkWmRdFnRhe96fcfllMu81uQ1LiReIOhqEIGXAtGgYV73edT0qEmaIY05f8whNCmUau7VuJh0kbX91/JB0AecSzxHS5+WTGk/hRVnVhAYHsiMTjOo5l6Nb4O/ZVCDQbg7uFuH+i0+uZjAQYFk5mUy5Nch9K/TnyYVm+Dh6MGh64doXaU1DRY04OvuX7Py7Epsdba80/IdPj/8OZ2rdebg9YNkGbP4rtd3TN4zGT83P2KyYhjSYAidqnXCoixoNVrCksLovKIzT1Z4kjqedcjJz2Fut7n0WduHL7p+QRXXKuSb87mQeIFmPs1YdGIRno6eRKRG0L5qexp4NWD8jvEYTAaW9lla6P3bE7EHO70dRrOR9lXbczjqMCdjT9K0UlOquVfD0caRafunsTlsM21925JvzicyPRJHG0drcnwu4Rw9avTAXm/PM7WewdfVlw93f0hYchhPVniSMU3H8M6udxjcYDBONk642bsRHBNMk4pNaO7TnLd+e4uMvAyaVGzCHzf+wNnWmWdqPcOYbWMY0XgEbX3bFvxwPvooyTnJfNfrO3RaHdfTr2M0G/F392f9hfXMD55PmiENJxsnfnjmB2p41GBpyFJuZNzgzeZv8tnBz6hfvj555jzWnFuDwWRAq9HSzrcdf9z4g6beTWnr25YNFzfQ1b8r/er0I9eUy6bQTTT0akgNjxoopVh2ehmvNXkNrUaLUoptl7ZRvWx1annWIjojmlRD6l/2Qj+ookg+7ka+OZ+159ay9vxaPB09CU0KxcnGiZX9Vha6CMHdOB5znHd3vYteq2d6p+kEeAcwZe8UQuJCmNN1zm17L/7btbRrjN46mkxjJtM7TsfFzoVZh2exoOeCWyrKN/X/uT8rn115SwXy7ywIXsCqs6sY2WQkSTlJXEy6SGR6JGv7r+V6+nVqe9a+bY9fUQhPDmf8jvG8WP9F65X//s7ea3vZH7mfye0mF3k8NxsBbldpvBvrzq/j+5PfU798feY8PafQvP2R+wmJLWhsbOLdhOWnl3Mj4wYftf3ojkn/j6d+JCMvgzK2ZWhZuSUf7/2Yd1u+y9jtY/Fz86NRhUbU9KjJpeRLvNPqHaCgp9jP3Y/QpFBqedTiwz0fotfqic+K56O2HxHgHcDKMyvpW7vvbb/z7kZIbAj1y9dHr9VjNBsLlQ+LshASG8ITFZ4gzZBGWYeyd2xMeVguJl7kSuoVvjzyJYGDArmWdo0JOyew8cWN2OpsSc5J5o3tb/Bi/RdxtXPl4PWDPFXpKbr6d8WiLARdDaJppaYsPrkYG50NQRFBfNfzO07Hn+aTfZ9Qx7MOUztM/dsbml9IvMCXR75kUe9FRXZsq86sYu35tXg4eNClWhcGNxxcZNu+KSMvg7PxZ2laqSk2OhtmHZqFTqPjjWZv3HZkw42MG7yx/Q1+feHXQtPjsuJ4P+h9KrtUplfNXjSt1BSlFJ1XdGbnkJ3WHua/MvePgqGu/9sodTfyTHm89dtbNKrQCFc7V56r99wdlw0MD2R3xG7qu9ZneIvhkhA+CkqUaOnp6QpQ6enpSimlotKjrPMiUiOs/6fkpKgX17+olFKqzvw6Kio9SmXlZanc/NxC24vLjFNKKZVjzFEms+mO+zVbzGr2odn3HK/FYlGbQzery8mXb9m32WJWFxMv3vM27yTdkK7Ck8JvO89sMaut4VuLbF9mi/m200NiQ9TJmJO3TDeajCroapDKMGTc9z73RuxVHX7soPqs6aMCwwJvu8xXR75SZotZhSWFqcTsRKWUUufiz6l159epfHO+upBwQfX7qZ/aeXmnUkqp5JxkNXLLSPX0iqdVwKIAtfPyTtVzVU91Ju6MikqPUhaLRQ34eYDqvrK7Wnd+3X3Hfi+MJqPKystSS0OWqvCkcJVvzlcms0nNODBDfXbwM5WZl6ksFst9bz/HmKPSDekq35yvfjj5g8oz5SmllPoj6o972k5abprKzMtUOy7tuKvlzRazyjZmW/8Pjg5Wcw7PKdJy+TgISwpTh68fVumGdJWZl/lA24rJiFEvrn9RRaRGqOd+fu6e188wZKiOyzqqjss6ql8v/qqG/TpMXU6+rFJzU29ZtseqHvcdpyHfoDov76wWHl+ogqODb7v9h8VsMatuK7upbGO2upBwQeWb8++4rMViUb1W91IxGTGPLL778dzPz6nYzFjr8++Cv1OjAkepwLBAtfjEYtXou0Z39X1myDco7y+81fjt41X/n/qrKylXrPOiM6LVrIOzVPV51R+4nD6uNoVuUi1/aKm6rexW6P1QSqnlp5aral9VU6MDR6s+a/rc9jvVZDapkVtGqm+PfWudZrFY1MmYk2rQL4P+9nvgtc2vqXPx54rmYP5LXGac+u3yb0W+3TvJzc9V47ePV8tPLb/t/MG/DFanYk/ddl63ld1U5+WdC9Xvfjr3k7U8G/INd9xvXGac6ru27wN9396ttNw0VX52eTV49eBCdVzx8EgPYQl3s4fwXlpPwpLCqOVZ6yFHJh4Fo9nI7EOzea/1e3fVune3QpNC0Wl0bArbRKvKrWhRuYV1nsFkIDItUsqQKJGG/TqMpJwkprSfcs+/L4OCYZAaNPiX9Wfa/mkERQSh1WgJHBho7Q08n3Ce2Ydn82PfH4s4+kdjQfACdl/bzeWUy4x9aizDGw8HCnqHw5LDrMOFI1Ij+OzQZ3zX67viDPdvHY85ztu/vU2mMZOVz65k7Pax/DbkN+tQ0jxT3l33uqYb0u84zFApRUxmDJVcKhVZ7I8bk8WETqO7ZZRBljGLsKQwmng3ua/tfhv8LQeuH7AOO/1fcVlxjNo66pZes5LqYuJFfgj54Zbf4B29cZSfzv90S4/4TYN+GYSvqy8zOs8oNH312dWsObeG6u7Vmdtt7i3rbQrdRExmDDY6m9uOHHsYcvNzyc/NlyGjj4gkhCXc/SSEQghRWuXk57DyzMp7uojCnag/h8L/dO4nEnMSGddsHEopuq7syspnV972wkQlQUpuCr9c+IWXGr1Et5Xd2PDCBj47+BkXki5wOu40R0YcoUKZCre9oNQ/VWZeJmmGNEZtHcXA+gMfytA+Ubze3P4mLzV66ZafsZgtZvr93I//dPiP9UJ3JZ3JYqLfT/3YPHBzoenT9k+jfdX2tK7S+rbrHblxBF9X3zte8GzM1jH0rd2Xhl4NMSuzdXh+p+WdOB5znCPDj1CnXJ2iPZi/IHXcR0cSwhJOPixCCFG8zBYzXVd2ZdugbVxPv85XR7+656uS/lMdiz7GhJ0T6FenHx2qdiDfks/y08uZ32M+3xz7hmru1eheo3txhykEV1Ov8uqmV1nYa2GhESxT9k7B19X3lqvBlnQ9V/dk66Cthab1WduHnwf8fN+/M87Jz+FfW/5FtjEbJ1sn3OzcmNttLs/+9Cyudq6s7Lfykf4GVeq4j07RjTETQgghSiGdVsewhsP4eG/B1Zqf9n+6uEMqMk0rNeXgqwcLTfvq6FdcSbnCpZRLPF398TlWUbJVc6/G0j5L+XDPh6zqtwqA36/+TnRGNFPaTyne4B4C7zLeXEu7Zr2K7817ST7IRaccbRytrx3A8tPL6bu2Lw3KN+CzLp89ULzin00SQiGEEOIBDX1iKKvPruZk7MlCl3p/HD1f93mCIoIKVUaF+Cfwc/fDVmfL+YTz1PCowYyDM9gy8PG80Xm/Ov1Yf2E9Ad4BZBmz0Gl0tPdtX6T7GPbEMMo6lKWSs/wu9nEnQ0ZLOOlOF0II8ShdTrnM/GPzCU8OZ9vgbcUdjhCFXE+/zssbX6a8U3lerP8ifWv3Le6QHop8cz4dlnXARmeDrc6Wyi6Veb/1+397G52SROq4j470EAohhBDirvm5+bE/cv9d3YNWiEetimsVFvZaSHZ+No0qNCrucB4aG50NK/utJCI1gjPxZ0gzpD1WyaB4tCQhFEIIIcRd02l1WJSFTn6dijsUIW6rhkeN4g7hkajqVpWqblXp4NehuEMRJdyju1SQEEIIIR4LvWr2eux/KymEEKWF9BAKIYQQ4p5M6zituEMQQghRRKSHUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopSShFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopSShFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopSShFAIIYQQQgghSilJCIUQQgghhBCilJKEUAghhBBCCCFKKUkIhRBCCCGEEKKUkoRQCCGEEEIIIUopSQiFEEIIIYQQopTSF3cA4v4ppcjIyACw/hVCCCGEEKKku1m3VUoVcySPP42SV7nESkxMpHz58sUdhhBCCCGEEA9FVFQUPj4+xR3GY016CEswW1tbAC5cuIC3tzcajaaYIxKPq4yMDCpXrkxUVBQuLi7FHY54jElZE4+ClDPxqEhZu39KKTIzM/H29i7uUB57khCWYDcTwEqVKslJRjwSLi4uUtbEIyFlTTwKUs7EoyJl7f64uroWdwilglxURgghhBBCCCFKKUkIhRBCCCGEEKKUkoSwBLOzs+Pjjz/Gzs6uuEMRjzkpa+JRkbImHgUpZ+JRkbImSgK5yqgQQgghhBBClFLSQyiEEEIIIYQQpZQkhEIIIYQQQghRSklCKIQQQgghhBCllCSEQgghhBBCCFFKSUJYAuzfv5/evXvj7e2NRqNh48aNheYrpZgyZQre3t44ODjQvn17zp8/XzzBihJrxowZPPXUUzg7O1O+fHn69u1LWFhYoWWkrImisGDBAho2bGi9UXOLFi3Yvn27db6UM/EwzJgxA41Gw/jx463TpKyJojBlyhQ0Gk2hR4UKFazzpZyJfzpJCEuA7OxsnnjiCebPn3/b+bNmzWLOnDnMnz+f4OBgKlSoQJcuXcjMzHzEkYqSbN++fYwZM4YjR46wa9cuTCYTXbt2JTs727qMlDVRFHx8fJg5cybHjx/n+PHjdOzYkT59+lgrSFLORFELDg5m0aJFNGzYsNB0KWuiqNSrV4/Y2Fjr4+zZs9Z5Us7EP54SJQqgfv31V+tzi8WiKlSooGbOnGmdZjAYlKurq/ruu++KIULxuEhISFCA2rdvn1JKypp4uNzd3dXixYulnIkil5mZqWrUqKF27dql2rVrp958802llJzTRNH5+OOP1RNPPHHbeVLOREkgPYQlXEREBHFxcXTt2tU6zc7Ojnbt2nH48OFijEyUdOnp6QCULVsWkLImHg6z2czatWvJzs6mRYsWUs5EkRszZgw9e/akc+fOhaZLWRNF6dKlS3h7e+Pn58eLL77I1atXASlnomTQF3cA4sHExcUB4OXlVWi6l5cXkZGRxRGSeAwopZgwYQKtW7emfv36gJQ1UbTOnj1LixYtMBgMlClThl9//ZW6detaK0hSzkRRWLt2LSdPniQ4OPiWeXJOE0WlWbNmLF++nJo1axIfH8+0adNo2bIl58+fl3ImSgRJCB8TGo2m0HOl1C3ThLhbY8eO5cyZMxw8ePCWeVLWRFGoVasWp06dIi0tjV9++YWXXnqJffv2WedLORMPKioqijfffJPffvsNe3v7Oy4nZU08qO7du1v/b9CgAS1atMDf359ly5bRvHlzQMqZ+GeTIaMl3M2rWN1sgbopISHhltYoIe7GG2+8webNm9mzZw8+Pj7W6VLWRFGytbWlevXqBAQEMGPGDJ544gm++uorKWeiyJw4cYKEhASaNGmCXq9Hr9ezb98+5s2bh16vt5YnKWuiqDk5OdGgQQMuXbok5zRRIkhCWML5+flRoUIFdu3aZZ1mNBrZt28fLVu2LMbIREmjlGLs2LFs2LCB3bt34+fnV2i+lDXxMCmlyMvLk3ImikynTp04e/Ysp06dsj4CAgIYPHgwp06dolq1alLWxEORl5fHxYsXqVixopzTRIkgQ0ZLgKysLC5fvmx9HhERwalTpyhbtixVqlRh/PjxTJ8+nRo1alCjRg2mT5+Oo6MjgwYNKsaoRUkzZswYVq9ezaZNm3B2dra2Zrq6uuLg4GC9f5eUNfGgPvjgA7p3707lypXJzMxk7dq17N27lx07dkg5E0XG2dnZ+hvom5ycnPDw8LBOl7ImisLbb79N7969qVKlCgkJCUybNo2MjAxeeuklOaeJEkESwhLg+PHjdOjQwfp8woQJALz00kv8+OOPvPvuu+Tm5jJ69GhSU1Np1qwZv/32G87OzsUVsiiBFixYAED79u0LTV+6dCkvv/wygJQ1USTi4+MZOnQosbGxuLq60rBhQ3bs2EGXLl0AKWfi0ZGyJorCjRs3GDhwIElJSZQrV47mzZtz5MgRfH19ASln4p9Po5RSxR2EEEIIIYQQQohHT35DKIQQQgghhBCllCSEQgghhBBCCFFKSUIohBBCCCGEEKWUJIRCCCGEEEIIUUpJQiiEEEIIIYQQpZQkhEIIIYQQQghRSklCKIQQQgghhBCllCSEQgghhBBCCFFKSUIohBBCCCGEEKWUJIRCCCGEEEIIUUpJQiiEEEIIIYQQpZQkhEIIIYQQQghRSklCKIQQQgghhBCllCSEQgghhBBCCFFKSUIohBBCCCGEEKWUJIRCCCGEEEIIUUpJQiiEEEIIIYQQpZQkhEIIIYQQQghRSklCKIQQQgghhBCllCSEQgghhBBCCFFKSUIohBBCCCGEEKWUJIRCCCGEEEIIUUr9HzAy0nyg2JOpAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "75ce021dae3d45469c8ed911c3e2f017", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADrtklEQVR4nOzdeXwU9f348dfslYschBgCGsGTpoKiKJetQFGQglC0BcuhVMXWg9QviFQFjLUi1iooVmqtRQxQqvZnq8Ui4IEFRBCwjYoWFQSUCEIuSLLXzO+PnRl2N9fuZq8k7+fjkQdkMjv72c3uZt7zfn/eH0XTNA0hhBBCCCGEEB2OJdEDEEIIIYQQQgiRGBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAclAaEQQgghhBBCdFASEAohhBBCCCFEByUBoRBCCCGEEEJ0UBIQCiGEEEIIIUQHJQGhEEIIIYQQQnRQEhAKIYQQQgghRAdlS/QAROQ0TaO6upqamhoyMzNRFCXRQxJCCCGEEKLVNE2jpqaG7t27Y7FIDiuWJCBsw2pqasjJyUn0MIQQQgghhIiJAwcOcNpppyV6GO2aBIRtWGZmJgcOHKCwsJADBw6QlZWV6CEJIYQQQgjRatXV1RQWFpKZmZnoobR7EhC2YYqimEFgVlaW+f/FixdTUlKCpmlkZ2ezceNGzjjjDK644gq2bt2Kpmn89Kc/5Zlnngk43tlnn82hQ4dQFIV+/fqxceNGcnJy+OSTTygoKDD3q6+vp3fv3hw5coQzzjiDDz74IOA4N910E88//zzp6enk5OSwb9++gJ8/+uijlJSUYLFY0DSNgwcP4nA4wj7m4sWLufPOO5kyZQrPPfccOTk5aJqGx+Nh/PjxrFixIjpPdAjOOuss9u3bh9frjdt9CiGEEEK0dzIlKvakILed+fzzz5k7dy67du2iqqqKH/7wh/zgBz8A4N5776Wmpoby8nJKS0tRVbXB7VesWEFlZSXbt29n+/btjd7HfffdR0FBAVVVVdTX1/P000832GfcuHFUVlY2CAYBSkpK+O9//0tVVRUffvgh6enpER+zb9++PPfcc+b3n376KQcOHGD16tXU1ta28GxFz+eff05qamrc7k8IIYQQQohokICwnXn44YcZMWIEZ5xxBgB/+MMfOHjwIC6Xi6FDhwKQnp7e7NUWm83GKaecwn//+18ArrrqKnJycjj//PMBeOutt5g4caL5s1dffbXBMV555RWys7MpLi5u8DOr1cof/vAHqqurOf3007HZbK0+pr/c3FzS0tL44osvzG2LFy+mS5cudOvWjbS0NGbNmkVBQQEZGRl89NFHAbffvXs3Xbt2JScnx3we/Y+Tl5dHQUEBaWlp/O1vf2t2LEIIIYQQQiQzCQjbmQMHDnDWWWcFbEtNTeV///uf+f2Pf/xjvv/97zfZsenYsWN88803DB48GICrr76ayspKqqurWbFiBTU1NeTn5wNwyimncOzYsYDbz5s3jxMnTrB7927+/Oc/Nyj//H//7//x4osv0qVLF/r06YPH42n1Mf19+umn1NfX853vfKfBzw4dOsTEiRP5y1/+Qnl5OSNHjuShhx4K2Gfy5MlMmzaNyspK9uzZ0+AYqqpSXl7Offfdx4IFC5ochxBCCCGEEMlO5hC2Mz169AjIjIFvzt+5554LwMKFC9m6dSv79+9v9PZTpkzBZrMxceJEioqKAF8ACXDRRRexfft2srKyOHz4MADffPMNubm5DcYA0L17d8477zzeeOMN+vbta/78Bz/4AV988QUej4eioiIefvjhiI5ptVobjL9Xr14oisKvfvUrbLbAl7eR7Tv77LPZu3evue3jjz8O2O/AgQPccMMNAA2OAXDmmWcCcP755/Pss882fBKFEEIIkXCqquJyuRI9DNEEu93e6LmciD8JCNuZ2bNn07dvX7788kt69OjBbbfdRmFhIQ6Hg3/84x889NBDfPrpp40GOuCbQzh+/PiAbS+//DJ33XUXH3zwAVdffTWpqan89a9/ZcaMGaxZs4aZM2cG7H/w4EFOO+00XC4Xn376KQMGDAj4+fr167niiiuw2Wzk5OTg9XoZOnRo2Md8//33G4z/008/DWiA0xT/kllN0wJ+dvrpp7N8+XIWLFiAx+Np8rlq7LZCCCGESDyXy8XevXsb7ZcgkkdOTg4FBQXSOCbBJCBsZ8466yweeOABLrjggoAuowA33ngjTqfTLKX873//y+mnn97iMV944QUefPBBevTowZQpU6ivr+e8884jOzubnj17cvPNNwNQVFTE7t27mTp1qtmQ5oorruB73/tewPF++ctfsn//fnOu4q9+9StUVQ37mI0FhNGwYsUKhgwZwlNPPUWXLl34/PPPY3I/QgghhIg+TdM4dOgQVquVwsJCWdQ8CWmaRm1trVkd1q1btwSPqGNTNElxtGnV1dVkZ2dTVVXV4dYh/NOf/sSMGTOYOHFiQKfRRDjrrLP45ptvOH78eELHIYQQQnR0brebzz77jO7du5OdnZ3o4YhmHD16lMOHD3Puuec2KB/tyOe48SYZQtFm3XTTTdx0002JHgaAZBGFEEKIJGGsCexwOBI8EtGS9PR0wBfEy3zCxJEcuhBCCCGEaHdkXlryk99RcpCAUAghRMzt2rWLMWPGMH78eLZs2WJuv/HGGxM4KiGEEEJIyagQQoiYKy4uZtmyZdhsNmbPns369es5ceJEg2VyhBBCNO7tt99m2LBhVFRUkJOTk+jhiHZEAkIhhBAxpygKZ599NgAvvvgi559/PmVlZfTr1y/BIxNCCCE6NikZFUIIEXP5+fns27fP/P7H3bvzJ6CsrCxhYxJCCCGEBIRCCCHi4KWXXqJnz57m91fs2cONwId//3uihiSEEEnH6XRSXFxMfn4+qampfO973zPXYTZs3ryZCy64gNTUVAYMGBBwYe3LL7/kqquuonPnzmRkZHDeeefx2muvxfthiDZGAkIhhBDxp3eW87rdCR6IEEIkj7vuuou//e1vLF++nJ07d3L22WczcuRIjh07Zu4ze/Zsfve737F9+3by8/MZO3Ysbv2z9LbbbsPpdPLOO+9QVlbGww8/TKdOnRL1cEQbIXMIhRBCxJ/Fdz1SU9UED0QI0RHU1tbyySefxP1+v/Od75hr7bXkxIkTLF26lOeee45Ro0YB8Mwzz7B+/XqeffZZLrnkEgDuu+8+rrjiCgCWL1/Oaaedxssvv8yECRPYv38/11xzDX369AHgzDPPjMGjEu2NBIRCCCHiTw8IVY8nwQMRQnQEn3zySUKaWO3YsYOLLroopH0///xz3G43l156qbnNbrfTv39/du/ebQaEgwYNMn+em5tLr1692L17N+Dr6HzLLbewbt06Lr/8cq655hrOP//8KD4i0R5JQCiEECL+9IBw+q9/zZYf/zjBgxFCtHff+c532LFjR0LuN1SapgENF2vXNK3FBdyNn990002MHDmSNWvWsG7dOh566CEeffRRZsyYEebIRUfS4QLCd955h0ceeYQdO3Zw6NAhXn75ZX70ox+ZP582bRrLly8PuM2AAQPYunWr+b3T6eTOO+/kL3/5C3V1dQwfPpynnnqK0047zdynoqKC4uJiXnnlFQDGjh3LkiVLAtaN2b9/P7fddhtvvvkmaWlpTJo0id/97nc4HI7YPHghhEiQCRMmBHx/9KuvyAX27N+fmAEJITqU9PT0kDN1iXL22WfjcDjYtGkTkyZNAsDtdvP+++9zxx13mPtt3bqV008/HfCdb/7vf/8LCDwLCwv5xS9+wS9+8QvuvvtunnnmGQkIRbM6XEB44sQJLrjgAn72s59xzTXXNLrPlVdeybJly8zvgwO0O+64g1dffZXVq1fTpUsXZs2axZgxY9ixYwdWqxWASZMmcfDgQdauXQvAzTffzNSpU3n11VcB8Hq9jB49mlNOOYVNmzZx9OhRrr/+ejRNY8mSJbF46EIIkTDbt2/nzTffxKJnBnf85z9cVF3N+Pz8BI9MCCGSQ0ZGBrfccguzZ88mNzeX008/nd/+9rfU1tZy44038p///AeAX//613Tp0oWuXbty7733kpeXZyY37rjjDkaNGsW5555LRUUFb775JkVFRQl8VKIt6HAB4ahRo8yJuk1JSUmhoKCg0Z9VVVXx7LPPUlpayuWXXw7AihUrKCwsZMOGDYwcOZLdu3ezdu1atm7dyoABAwDfpOBBgwbx6aef0qtXL9atW8fHH3/MgQMH6N69OwCPPvoo06ZN48EHHyQrKyuKj1oIIRJr9uzZZGZmkpeXB8DXaWn0BH4ybFhCxyWEEMlk4cKFqKrK1KlTqamp4eKLL+b111+nc+fOAfv88pe/ZM+ePVxwwQW88sorZvLC6/Vy2223cfDgQbKysrjyyitZtGhRoh6OaCM6XEAYirfffpv8/HxycnIYMmQIDz74IPn6VewdO3bgdrsZMWKEuX/37t3p3bs3W7ZsYeTIkbz77rtkZ2ebwSDAwIEDyc7OZsuWLfTq1Yt3332X3r17m8EgwMiRI3E6nezYsYNhTZwkOZ1OnE6n+X11dXW0H74QQkTdrbfeGvC9Md/lBxdckIjhCCFEUkpNTeWJJ57giSeeaPCzoUOHmvMMx4wZ0+jtpcpMRELWIQwyatQoVq5cyZtvvsmjjz7K9u3b+cEPfmAGYeXl5TgcjoArNQBdu3alvLzc3Ce/kTKo/Pz8gH26du0a8PPOnTvjcDjMfRrz0EMPkZ2dbX4VFha26vEKIURC6KWjsg6hEEIIkViSIQwyceJE8/+9e/fm4osvpkePHqxZs4arr766ydsFd4BqrBtUJPsEu/vuu5k5c6b5fXV1tQSFQog2RzECQr+KByGEEELEn2QIW9CtWzd69OjBnj17ACgoKMDlclFRURGw3+HDh82MX0FBAd98802DYx05ciRgn+BMYEVFBW63u0Hm0F9KSgpZWVkBX0II0eboAeGRo0cTPBAhhBCiY5OAsAVHjx7lwIEDdOvWDYB+/fpht9tZv369uc+hQ4f48MMPGTx4MOBbMLSqqopt27aZ+7z33ntUVVUF7PPhhx9y6NAhc59169aRkpKSkIVThRAinowM4YKXXkrwSIQQQoiOrcOVjB4/fpzPPvvM/H7v3r188MEH5ObmkpubS0lJCddccw3dunVj37593HPPPeTl5TF+/HgAsrOzufHGG5k1axZdunQhNzeXO++8kz59+phdR4uKirjyyiuZPn06Tz/9NOBbdmLMmDH06tULgBEjRvDd736XqVOn8sgjj3Ds2DHuvPNOpk+fLlk/IUS7079//4DvT+zeTTrw6VdfJWZAQgghhAA6YED4/vvvB3TwNObjXX/99SxdupSysjKef/55Kisr6datG8OGDeOvf/0rmZmZ5m0WLVqEzWZjwoQJ5sL0zz33nLkGIcDKlSspLi42u5GOHTuWJ5980vy51WplzZo13HrrrVx66aUBC9MLIUR7U1NTQ1lZGTab78/Otu9/n/6bNnFRMyXyQgghhIg9RTP614o2qbq6muzsbKqqqiSzKJKCx+MxT/qFMLz88ssMHTrU7NC8bcgQ+r/zDg//6EfMefnlBI9OCNGe1NfXs3fvXs444wxSU1MTPRzRjOZ+V3KOGz9y1iaEaLWysjLmzJlDZWUlNpsNt9tNXl4eCxYsoE+fPokenkgCRtm9QdX/Pa+RJXqEEEIIET/SVEYI0Wq33norTz/9NFu2bOGdd97h3Xff5fe//32DxchF6+3atYsxY8Ywfvx4tmzZYm6/8cYbEziq8BkBoepyJXQcQgjRXpSUlNC3b99ED0O0QZIhFEK0mtfrJTs7O2BbVlYWXq83QSNqv4qLi1m2bBk2m43Zs2ezdetWZs6cyRdffJHooYXFmKugysL0QgghREJJQCiEaLWFCxcyZswYHA4HWVlZVFVV4fF4ePjhhxM9tHZHURTOPvtsAF588UVKSkqYPn06Ho8nwSMLj6pPX1fkooEQMTd58mRWrlyZ6GEIIZKUBIRCiFa77LLLeOedd6irq6OyspLOnTvLRP4Yyc/PZ9++ffTs2RPwlQitWLGC0tLSxA4sTEbJKBIQChE1d911V4NtmqYFlJeL5KaqKo888gjPPPMMBw4coGvXrvz85z/n3nvvZc6cObz88sscPHiQgoICJk+ezPz587Hb7U0e789//jOPPvoon332Gbm5uVxzzTUBXe+FAAkIhRBRlJaWRlpaWqKH0a691MhC7lOmTGHKlCkJGE3kzPbWbSyzKUQyW7lyJatWrWqw/a233krAaEQk7r77bp555hkWLVrE9773PQ4dOsQnn3wCQGZmJs899xzdu3enrKyM6dOnk5mZ2eiFAIClS5cyc+ZMFi5cyKhRo6iqqmLz5s3xfDiijZCAUAghRNxJhlCI6LvhhhsoKioiP6h773XXXZegEYlw1NTU8Pjjj/Pkk09y/fXXA3DWWWfxve99D4C5c+ea+/bs2ZNZs2bx17/+tcmA8De/+Q2zZs3il7/8pbntkksuieEjEG2VBIRCCCHizlwCVwJCIaLmgQceaHR7cXFxnEeShGprQc+0xdV3vgPp6SHtunv3bpxOJ8OHD2/05y+99BKLFy/ms88+4/jx43g8nibX5zt8+DBff/11k8cSwp8EhEKImBkxYgTr1q1L9DDapWPHjnHs2DFyc3PJzc1N9HDCp+o5QikZFULEwyefQL9+8b/fHTvgootC2rW5KRdbt27l2muv5f7772fkyJFkZ2ezevVqHn300bCPJUQwCQiFEK02YcKEBts0TaOsrCwBo2nf3njjDebPn09eXh5ZWVlUVlZSUVHB/fff37auBOsBoXQZFULExXe+4wvOEnG/ITrnnHNIS0vjjTfe4Kabbgr42ebNm+nRowf33nuvue3LL79s8liZmZn07NmTN954g2HDhoU/btGhSEAohGi17du38+abb2KxWMxtmqYxderUBI6qfZo/fz5r164lMzPT3FZdXc2oUaPaVECoybITQoh4Sk8POVOXKKmpqcyZM4e77roLh8PBpZdeypEjR/joo484++yz2b9/P6tXr+aSSy5hzZo1vPzyy80er6SkhF/84hfk5+czatQoampq2Lx5MzNmzIjTIxJthaXlXYQQonmzZ88mMzOTHj16mF89e/bk9ttvT/TQ2h2LxcKRI0cCth05ciQgGG8LFKNkVAJCIaJm/fr1DBgwgMGDB7N69Wpz++jRoxM4KhGOefPmMWvWLObPn09RURETJ07k8OHDjBs3jv/7v//j9ttvp2/fvmzZsoV58+Y1e6zrr7+exYsX89RTT3HeeecxZswY9uzZE6dHItoSRTNn9ou2qLq6muzsbKqqqpqcWCyEaD92797NPffcQ3l5OZqmoSgK3bp148EHH6SoqCjRwwvZGxdfzPAdO3j10ku5atOmRA9HiHZh8ODBvPbaazgcDubOnYv7P//h8ZdeYvjVV3eopSfq6+vZu3cvZ5xxhqyJm+Sa+13JOW78SMmoEEK0IUVFRS2WCbUJxhxCVW1hRyFEqKxWKzk5OQA8du+9PJeXx7g+fTjerVtiByaESGptq8ZICCFE+6AHgpoEhEJETd++fdm3b5/vG4uFacDMbt2oqalJ4KiEEMlOAkIhRMyUl5cneggiWUlTGSGibsmSJfTs2TNg27DMTD5JxPp7Qog2QwJCIUTMXHfddYkeQrvncrl4++2321zwbZaKSoZQiNgw3ltOZ2LHIYRIejKHUAjRav3792+wTdM06WYWBw888AC/+c1v+P73v88777yT6OGETrqMChFbRs9ACQiFEC2QgFAI0Wo1NTWUlZVhswV+pFxxxRUJGlH7FRx8G/OFdu3alYDRtIJRMioZQiFiw3hvuVzU1NQErF0qhBD+pGRUCNFqCxYsaLRpwdy5cxMwmvatpqaGLVu2sG3bNrZt28bPfvYzAHr16pXgkYVHSkaFiL7nn3+ePn36cNFFF7Hw8cd9G10uxo0bl9iBCSGSmgSEQohWGz9+PJ07d26wfciQIQkYTfsWHHwbazNdc801iRpSZCRDKETULV26lJ07d7Jz507SU1P5MVBbV4csOS2EaI4EhEKI6Pv4Y1i7NtGjaJeCg28jIOzRo0eihhQZyRAKEXUWiwW73Q5A8Q038AtgVHk53377bWIHJoRIahIQCiGi77zzYNSoRI+iQ+jUqRMA1dXVCR5JeBTJEAoRdaNHjz65DqGqcjnwVFoap556aiKHJeKkpKSEvn37xvQ+nnvuOXJycmJ6HyL+pKmMEEK0YYqiALS9haf1QFACQiGi55577jn5jf7eOs/rZa1UbAghmiEZQiGEaMOy9+9nG6C43YkeSlgkQyhEjMk6hEKIEElAKIQQbVifNWu4BMiorEz0UMIjAaEQsWU0kvF4EjsOERZVVXn44Yc5++yzSUlJ4fTTT+fBBx8EYM6cOZx77rmkp6dz5plnMm/ePNwtXAz885//zHnnnUdKSgrdunXj9ttvb3b/iooKrrvuOjp37kx6ejqjRo1qdE3hv//975x77rmkpqZyxRVXcODAAfNn//nPfxg2bBiZmZlkZWXRr18/3n///QieDREvEhAKIUQb5rVagTaYITQCQel+KERsGO8xvaxctA133303Dz/8MPPmzePjjz9m1apVdO3aFYDMzEyee+45Pv74Yx5//HGeeeYZFi1a1OSxli5dym233cbNN99MWVkZr7zyCmeffXaz9z9t2jTef/99XnnlFd599100TeOHP/xhQOBZW1vLgw8+yPLly9m8eTPV1dVce+215s8nT57Maaedxvbt29mxYwe/+tWvzGZHIjnJHEIhhGjDVONkr61lAYwModeb4IEI0U5J9r3Nqamp4fHHH+fJJ5/k+uuvB+Css87ie9/7HhC4tm/Pnj2ZNWsWf/3rX7nrrrsaPd5vfvMbZs2axS9/+Utz2yWXXNLk/e/Zs4dXXnmFzZs3M3jwYABWrlxJYWEhf//73/nJT34CgNvt5sknn2TAgAEALF++nKKiIrZt20b//v3Zv38/s2fP5jvf+Q4A55xzTqRPiYgTyRAKIUQbplr0j/E2FhCacwglQyhEbEgWvs3ZvXs3TqeT4cOHN/rzl156ie9973sUFBTQqVMn5s2bx/79+xvd9/Dhw3z99ddNHusXv/gFnTp1Mr+M+7fZbGagB9ClSxd69erF7t27zW02m42LL77Y/P473/kOOTk55j4zZ87kpptu4vLLL2fhwoV8/vnn4T0RIu46XIbwnXfe4ZFHHmHHjh0cOnSIl19+mR/96EeA74rH3Llzee211/jiiy/Izs42X8zdu3c3jzF06FA2btwYcNyJEyeyevVq8/uKigqKi4t55ZVXABg7dixLliwJaNW7f/9+brvtNt58803S0tKYNGkSv/vd73A4HLF7AoSII6/Xi1UvaRSx4W2jGUJFuowKEVsSCDZwyz9v4auar+J2f6dmnsrSMUtD3j8tLa3Jn23dupVrr72W+++/n5EjR5Kdnc3q1at59NFHwz4WwK9//WvuvPPOgG1aE68ZTdPMjtaG4O/9t5WUlDBp0iTWrFnDv/71L+677z5Wr17N+PHjmx2TSJwOFxCeOHGCCy64gJ/97Gdcc801AT+rra1l586dzJs3jwsuuICKigruuOMOxo4d22Ay7PTp0/n1r39tfh/8xps0aRIHDx40Wz3ffPPNTJ06lVdffRXwnSiPHj2aU045hU2bNnH06FGuv/56NE1jyZIlsXjoQsRdTU2NrFcUY962niGUgFCI2JD3VgPhBGeJcM4555CWlsYbb7zBTTfdFPCzzZs306NHD+69915z25dfftnksTIzM+nZsydvvPEGw4YNa/Dz/Px88vPzA7Z997vfxePx8N5775klo0ePHuV///sfRUVF5n4ej4f333+f/v37A/Dpp59SWVlplogCnHvuuZx77rn83//9Hz/96U9ZtmyZBIRJrMMFhKNGjWJUEwtmZ2dns379+oBtS5YsMeuhTz/9dHN7eno6BQUFjR5n9+7drF27lq1bt5pp92eeeYZBgwbx6aef0qtXL9atW8fHH3/MgQMHzOzjo48+yrRp03jwwQfJysqKxsMVIqGqKislIIwxIyBU2lhAaGQvLJLFECI2JCBsc1JTU5kzZw533XUXDoeDSy+9lCNHjvDRRx9x9tlns3//flavXs0ll1zCmjVrePnll5s9XklJCb/4xS/Iz89n1KhR1NTUsHnzZmbMmNHo/ueccw7jxo1j+vTpPP3002RmZvKrX/2KU089lXHjxpn72e12ZsyYwRNPPIHdbuf2229n4MCB9O/fn7q6OmbPns2Pf/xjzjjjDA4ePMj27dsbJGFEcpE5hC2oqqpCUZQGJ7UrV64kLy+P8847jzvvvDNgUeh3332X7OzsgBrsgQMHkp2dzZYtW8x9evfuHVCKOnLkSJxOJzt27GhyPE6nk+rq6oAvIZJV9dGjiR5Cu2cGhG2ty6gRCMpJqxCxIe+tNmnevHnMmjWL+fPnU1RUxMSJEzl8+DDjxo3j//7v/7j99tvp27cvW7ZsYd68ec0e6/rrr2fx4sU89dRTnHfeeYwZM6bRJST8LVu2jH79+jFmzBgGDRqEpmm89tprAV1C09PTmTNnDpMmTWLQoEGkpaWZ06asVitHjx7luuuu49xzz2XChAmMGjWK+++/v/VPjoiZDpchDEd9fT2/+tWvmDRpUkDGbvLkyZxxxhkUFBTw4Ycfcvfdd/Of//zHzC6Wl5c3SMODLz1fXl5u7mO0ETZ07twZh8Nh7tOYhx56SN5Uos2o97tQImLD6DJqaWMZQkUyhELEljSVaZMsFgv33ntvQGmo4be//S2//e1vA7bdcccd5v9LSkooKSkJ+PnPf/5zfv7zn4d8/507d+b5559v8ufTpk1j2rRpAFx99dUNfu5wOPjLX/4S8v2J5CABYRPcbjfXXnstqqry1FNPBfxs+vTp5v979+7NOeecw8UXX8zOnTu56KKLgMYn2wZPyg1ln2B33303M2fONL+vrq6msLAw9AcmRBypTmeih9DuGU1lLG00QyhdRoWIjZrqajITPQghRJsgJaONcLvdTJgwgb1797J+/foW5/NddNFF2O12Mw1fUFDAN99802C/I0eOmFnBgoKCBpnAiooK3G53g8yhv5SUFLKysgK+hEhWmsuV6CG0ex69ZLTNBoRS1iZETMjFFiFEqCQgDGIEg3v27GHDhg106dKlxdt89NFHuN1uunXrBsCgQYOoqqpi27Zt5j7vvfceVVVVZtemQYMG8eGHH3Lo0CFzn3Xr1pGSkkK/fv2i/KiESAzJEMaet42XjMpJqxCx4W1jF4mEEInT4UpGjx8/zmeffWZ+v3fvXj744ANyc3Pp3r07P/7xj9m5cyf//Oc/8Xq9ZhYvNzcXh8PB559/zsqVK/nhD39IXl4eH3/8MbNmzeLCCy/k0ksvBaCoqIgrr7zS7NIEvmUnxowZQ69evQAYMWIE3/3ud5k6dSqPPPIIx44d484772T69OmS9RPthmQIY09t4yWjModQiNjQvN5ED0EI0UZ0uAzh+++/z4UXXsiFF14IwMyZM7nwwguZP38+Bw8e5JVXXuHgwYP07duXbt26mV9Gd1CHw8Ebb7zByJEj6dWrF8XFxYwYMYINGzYELMC9cuVK+vTpw4gRIxgxYgTnn38+paWl5s+tVitr1qwhNTWVSy+9lAkTJvCjH/2I3/3ud/F9QoSIIQkIY0/TSy6tbezkTzKEQsSW2sY+E4QQidPhMoRDhw5Fa+YEpLmfARQWFrJx48YW7yc3N5cVK1Y0u8/pp5/OP//5zxaPJURbJQFhHBgBYVsrGdX/tcgcQiFiQjKELZ/TicST31Fy6HAZQiFE/EhAGHtGU5a2tjC9mSFM8DiEaK86ckBoVGy55G9Q0qutrQUIWOdQxF+HyxAKIeJHAsI4MDJsbSzTZs4hbGPjFqKtUNvYRaJostlspKenc+TIEex2OxaL5D+SjaZp1NbWcvjwYXJycgKmXYn4k4BQCBEzWhtrdNImtdWAUP9XmsoIERtaG/tMiCZFUejWrRt79+7lyy+/TPRwRDNycnIoKChI9DA6PAkIhRAxo3XgK9RxY5SMtrHyMCkZFSK2OnLJKPiaAJ5zzjlSNprE7Ha7ZAaThASEQoiYkQxhHOgnfW1tgXdZdkKI2OroASGAxWIhNTU10cMQIulJUbUQImZUCQhjz8gQtrGA0CIBoRAx1ZHnEAohwiMBoRAiduSEJPaM0ss2FhBKhlCI2JJ1CIUQoZKAUAgROxIQxp40lRFCNEJKRoUQoZKAUAgRM9JUJvaUtl4ymuBxCNFeSUAohAiV/C0WQsSMNJWJg7aaIZSSUSFiSgJCIUSoJCAUQsSMZAhjz8gMtrUF3s2S0YSOQoj2SwJCIUSo5G+xECJ2JCCMvbZeMioZQiFioiMvTC+ECI8EhEKImJEMYRy00S6jBvkjJERsSIZQCBEq+VsshIgZRU5IYs5sKtPGMm1GZtDaxsYtRFvhHxBOnjw5gSMRQiQ7W6IHIIRovyRDGHtttcuozCEUIvruuusu8/8V775LZ0ADtmzZkrAxCSGSnwSEQojo8s/4SEAYe220qYwsOyFE9K1cuZJVq1YBcODbbynctAmAt7p0SeSwhBBJTv4WCyGiyz8wkZLRmFOiMIcwEeVkRobQGvd7FqL9uuGGGygqKmLIkCFcfPrpDAGGANddd12ihyaESGKSIRRCRJd/YCIZwpgLZw6hfzmZQdO0hJSTKZqGG19AqGkaiqK0dBMhRAseeOCBk9/4XZArLi5OwGiEEG2FBIRCiOiSDGF8GRnCEAJC/3Iyf2+99VbUh9USC+DW//V6vdhs8udIiGiSLqNCiFDJX2AhRHRJhjCuwlmY3igny8/PD9ieiHIyi6bhVRSsmobaxuY/CtEWyDqEQohQSUAohIgu/5MQOSGJvTAyhAHlZH4SUU6mAB5FIVXT8EomQ4ioC8gQahpIWbYQognSVEYIEV1+JyGKZAhjztJWu4wCXk6WjAohWu+FF17gwgsvZMqUKfy9rIxewCXAP/7xj0QPTQiRxCRDKISILr/ARBamjwNj+Ya2tsC7UTIKONtYMCtEsnr00UfZvHkzNTU19D7zTD4DUoHhjzzCuB/9KMGjE0IkK8kQCiGiS5rKxJU5h7CNBYQWwGOxYEMyhEJES1paGunp6XTt2pUBhYVkAymAzSoLvAghmiYBoRAiuiQgjCsljDmE69evZ8CAAQwePJjVq1eb20ePHh2z8TXFgm8OIYAqrxMhoqJv377mBZYFw4cD4AI65+QkblBCiKQnAaEQIrqkZDS+wigZve+++3j99dfZsGED27ZtY8aMGaiqSm1tbaxH2YCiaah6QOh1ueJ+/0K0R4sXL8ZqZAP1z2IHUPqnPyVuUEKIpCcBoRAiuiQgjCtLGAvTW61WcnJySE9P57HHHqNfv36MGTOG48ePx3qYDRglowCq2x33+xeivfPPvHvlPSaEaIYEhEKI6PIPCKVZSMwpYWQI+/bty759+8zvu3Xrxr/+9S+OHj0aq+E1yQJ49YBQTlaFiAG/z195jwkhmiNdRoUQ0SUZwvgKIyBcsmRJwPc7duwAfGVm8WYBVD0g1GR5EiGizn8dwkOHDpHbs2fiBiOESGodLkP4zjvvcNVVV9G9e3cUReHvf/97wM81TaOkpITu3buTlpbG0KFD+eijjwL2cTqdzJgxg7y8PDIyMhg7diwHDx4M2KeiooKpU6eSnZ1NdnY2U6dOpbKyMmCf/fv3c9VVV5GRkUFeXh7FxcW4ZC6NaOtkYfq4CidDGCw1NRWA+vr6qI4pFIqmncwQyueeENHn9/l72513JnAgQohk1+ECwhMnTnDBBRfw5JNPNvrz3/72tzz22GM8+eSTbN++nYKCAq644gpqamrMfe644w5efvllVq9ezaZNmzh+/DhjxowJaJ0+adIkPvjgA9auXcvatWv54IMPmDp1qvlzr9fL6NGjOXHiBJs2bWL16tX87W9/Y9asWbF78ELEgf9VaYtkCGPO0oplJ/KrqzkEqN9+G+VRtcy/ZFSVDKEQUdG/f3/za+qaNfTHtzD9rrKyRA9NCJHEOlzJ6KhRoxg1alSjP9M0jcWLF3Pvvfdy9dVXA7B8+XK6du3KqlWr+PnPf05VVRXPPvsspaWlXH755QCsWLGCwsJCNmzYwMiRI9m9ezdr165l69atDBgwAIBnnnmGQYMG8emnn9KrVy/WrVvHxx9/zIEDB+jevTvgW1B22rRpPPjgg2RlZcXh2RAi+jSvF8X4RjKEMWdkCK0hBoROp5OPPvqIY8eOobz9NrlAzu7dMRxh4/xLRqWpjBDRUVNTQ1lZGTabjZ2TJnHRX/4CwGXf/W6CRyaESGYdLkPYnL1791JeXs6IESPMbSkpKQwZMoQtW7YAvjk3brc7YJ/u3bvTu3dvc593332X7OxsMxgEGDhwINnZ2QH79O7d2wwGAUaOHInT6TTn9TTG6XRSXV0d8CVEMvEv/5MMYeyZJaMh7FtaWsqwYcNYvnw5Gzdu5NWvvmIYsCEB2QMLoElAKERULViwwKxo0vwuyN0+bVqCRiSEaAs6XIawOeXl5QB07do1YHvXrl358ssvzX0cDgedO3dusI9x+/LycvLz8xscPz8/P2Cf4Pvp3LkzDofD3KcxDz30EPfff3+Yj0yI+DFKRr0kd5fRyZMns3LlykQPo9XCmUP49NNPs2nTJix6IPbB/v30/uwzzv/4Y34X01E2pABefb00TS4cCBEV48ePP/mN3+fvJX36JGA0Qoi2QgLCRiiKEvC9pmkNtgUL3qex/SPZJ9jdd9/NzJkzze+rq6spLCxsdmxCxJPR3txNcgSEd911V4NtmqaZ2fq2zhJGyWhaWhobN25k2LBhAGh2OxsBeywH2AQrJzOE0lRGiOjzzxDKPF0hRHMkIPRTUFAA+LJ33bp1M7cfPnzYzOYVFBTgcrmoqKgIyBIePnyYwYMHm/t88803DY5/5MiRgOO89957AT+vqKjA7XY3yBz6S0lJISUlJcJHKETsGdkeFycbniTSypUrWbVqVYPtb731VgJGE31GhrD5S1Y+paWlLFy4kLlz5+L1enF++SVDgV+ef34sh9iQPmbVyBDKyaoQ0eeXeZeybCFEc2QOoZ8zzjiDgoIC1q9fb25zuVxs3LjRDPb69euH3W4P2OfQoUN8+OGH5j6DBg2iqqqKbdu2mfu89957VFVVBezz4YcfcujQIXOfdevWkZKSQr9+/WL6OIWIJSND6CI5MoQ33HADRUVFDBkyJODruuuuS/TQoiKcktGCggIWL17M5s2b2bp1K3+4+moWATktVEBEnf66MAJCyV4IEX2aLEwvhAhRh8sQHj9+nM8++8z8fu/evXzwwQfk5uZy+umnc8cdd7BgwQLOOecczjnnHBYsWEB6ejqTJk0CIDs7mxtvvJFZs2bRpUsXcnNzufPOO+nTp4/ZdbSoqIgrr7yS6dOn8/TTTwNw8803M2bMGHr16gXAiBEj+O53v8vUqVN55JFHOHbsGHfeeSfTp0+XDqOiTTMyhG6SI0P4wAMPNLq9uLg4ziOJDSOUs0ZwW68eCKrxLtnUXxeaZAiFiB3/klEpyxZCNKPDBYTvv/++OX8GMOfjXX/99Tz33HPcdddd1NXVceutt1JRUcGAAQNYt24dmZmZ5m0WLVqEzWZjwoQJ1NXVMXz4cJ577jms1pOnZCtXrqS4uNjsRjp27NiAtQ+tVitr1qzh1ltv5dJLLyUtLY1Jkybxu9/Fu7WDENGVbBnC9i6cOYTBVD0gtMY7IDMyhDbfnyApZxMiBmQOoRAiRB0uIBw6dChaMydOiqJQUlJCSUlJk/ukpqayZMkSlixZ0uQ+ubm5rFixotmxnH766fzzn/9sccxCtCVGhtADWCUgjLlwlp0IZmTmrPHu8hmcIZQuo0JEnX/JqCYZQiFEM2QOoRAiqowr0W6LRTKEcWAuTB/BbY1ALGEBoWQIhYgd/wyhvMeEEM2QgFAIEVVGQOhRlJAanSSKUc7d1hkf4pEEhEhAKET7JQGhECJEHa5kVAgRW8kWEE6YMKHBNk3TKCsrS8Boos8/QxjKmqn+jJJRS4ICQqRkVIjY8S8ZlYBQCNEMCQiFEFGl+ZWMpiVByej27dt58803sVhOFkRomsbUqVMTOKrosfjNIfR6vdhsYXysG4FYvH9PxoUCyRAKETv+AaE0lRFCNEMCQiFEVJkZQoslKTKEs2fPJjMzk7y8vIDtt99+e4JGFF0WTcONL0OohhvY6QFh3Od6BpWMIhlCIaLOv4GeZAiFEM2RgFAIEVVG+Z9qsSRFl9Fbb7210e0TJ06M80hiQ8FXnmvVNLzhBlbG/nEOyDSv17d+opEhlOyFENGnqnjwnehJFl4I0RxpKiOEiCozQ2i1mvPbROy0JkNotKVXEhAQAmC3+76XgFCI6PN6McJAyRAKIZojAaEQIqoCMoQSEMacBT1DSAQlo3ogFu+SUTMjKAGhELGjqicDQnmPCSGaIQGhECKqjIDQa7UmxRzCppSXlyd6CFGhaBpeRcEGEZeMxrvLqPEaMeYQSpdRIWLAPyCMIEP49ddfR3c8QoikJXMIhRBRZWR/VKs1qTOE1113HevWrUv0MFrNgq+BD15v2HPxlASXjCqSIRQidvRycmj5Pfbaa68F3VSjpKSE+++/nx/+8IcxGqAQIllIQCiEiCr/DGEyBIT9+/dvsE3TNPbs2ZOA0USfomm49bUHvS5XWLc1flcWKRkVov1RVd9ng6a1mCGcNm0aF198MQMHDjS7k1ZWVvL+++9LQChEByABoRAiqswMoc2WFCWjNTU1lJWVNVif74orrkjQiKLLCtTpayyG20lQSVBAaCw7YWYIpWRUiOhTVTxGQNjCRZe9e/fyxBNPUFZWxowZMxg0aBDvvfce8+fPj9NghRCJJAGhECKqzKYyNhu2JAgIFyxYQE1NDZ07dw7YPnfu3ASNKLosmobXCAjDzLRpCVqHULqMChEH+vxiaPk9lpGRwd13301NTQ2PP/44ixYtorKyMg6DFEIkAwkIhRBRZQQlms2WFF2rxo8f3+j2IUOGxHkksaHAyYAw3AyhkamLd8lo8BxCyRAKEX2qas4vJsSLLpmZmcydO5fq6mo++eSTGA9QCJEskuF8TQjRnhgZQrs9KeYQNvDhh7ByZaJHETUWfEt8QASLTyeoZNTMTDocvu8lQyhE9Gmar2SU8N9jWVlZjc6/FkK0T5IhFEJElZkhtNuxJngsjerTx/fv5MmJHUeUWP1LRsMNCPVAMGEBoZ4hRDKEQkSdYmQIIeQMoRCiY5IMoRAiqszyP5stOTOE7YyCr6MrhJ8FMJrKWBOdIZSAUIjoU1U0RUFFsvBCiOZJQCiEiCpz0fFkzRC2MxZ8az5C+MtOmCWjcQ7c/S8aBHwvhIgaTdPQFAUvNJkh3LhxI5dffjkzZ85k3bp1XHjhhQwdOpR3330XgBEjRsRvwEKIhJGAUAgRVf4dJKUmPfb85xCGnQXQA8FElYxqxlIg7SR74Wknj0O0D4qqouoBYVMXXebMmcOyZcv46KOPGDduHKeddho5OTmMGzeOn/zkJ5SVlcV30EKIhJDzNSFEVJknHg6HL0OoaaA3NhDRZ8G3xAe0vZJR2kGX0bKyMubMmUNlZSU2mw23201eXh4LFiygjzFfVYhE0DOEHmjyoktqaiqFhYX873//o2/fvjz55JMA/PSnP+WRRx5h6tSp8RuvECJhJCAUQkRV8Mk+Xq9ZGiiiz4pfyWikTWUSXDLalpvK3HrrraxatYrCwkJz2/79+5k8eTL//ve/Ezgy0dEpqgotlIwWFBTg9XqZPXs2EyZMIC8vD4/HQ0pKCj179uT222+P65iFEIkhZ2lCiKgyT/ZTUnz/SkAYU/4BYdgZwgQHhFo7CAi9Xi/Z2dkB27KysvC24cck2gljDqGiNPkeW716NeC7sGGw2WysX78egIkTJ8Z+nEKIhJOzNCFEVDVYUsDjORkciujSAzkjsAp7YXqjZDTeAaFRomq1+jogtuHgaeHChYwZMwaHw0FWVhZVVVV4PB4efvjhRA9NdHSahgZkahoFBw6EdVObXMQTokORd7wQIqqMk3uLHgSqLheWjIxEDqlx7WFuox5Yaa3MEMY9INTHaWkHAeFll13GO++8Q11dHZWVlXTu3JnU1NRED0sIFH3ZCTvwnY8+SvRwhBBJTAJCIURUaaqKF7DpAaHH6cSR2CE1TlXB2rYXxtA8HhRA1bOxYS9MrweCicoQKlYrXk5mKtuytLQ00tLSEj0MIU4KvuhVUwOZmU3u7nQ6+eijjzj27bfkrllD73nzcOTlxWGgQohEk2UnhBDR5fGgAlYjIKyvT+x4mtIOlggInosXcZfROAeEqj5OIyBsyxlCIZKWPofwJ6ed5vt+794Gu6xfv54BAwZwzjnn0KdPH5YvX87Gf/yDq594gmHf+Q4rVqyI86CFEIkgAaEQIqo0rxcvJwPCsBdLj5d2EBAagVXEAWGiMoTGPFOrFa2ZhhdtybFjx/jss884duxYoociBHCyZFQtKPBtOHSowT733Xcfr7/+OqeccgqjR49GVVXuv/12zgA2pqTwhz/8Ib6DFkIkhJSMCiGiSvN6UfErGZUMYcwYASFtLEPoHxB6oU0HhG+88Qbz588nLy+PrKwsduzYwTfffMMLL7zA8OHDEz080ZFpGprFQnaXLr7vG/l8sFqt5OTkkJGRwdixY/nyyy8Zd8st1AAbXS6ZDytEByEBoRAiulTVFxDqJxIepzOx4/GjaRrmjJr2EBAacwaNBd4jzBDG+w+B2XjIZkNVFLM5Tls0f/581q5dS6Y+N0vR52zNnz9fAkKRUIpeMpqbn+/b0MjnQ9++fdm3bx+lpaUsXLiQ7du3U3HoEPuAf9TWSsmoEB2ElIwG6dmzJ4qiNPi67bbbAJg2bVqDnw0cODDgGE6nkxkzZpCXl2dedTt48GDAPhUVFUydOpXs7Gyys7OZOnUqlZWV8XqYQsRMMmcIA9aGaw8BofEYjKYybWQdQv85hCq06QyhxWLhyJEjjW4XIpGMhek7G41hGnmfLVmyhJ49e1JQUMDixYvZvHkzH730ErXArNpaCoxyUyFEuyYZwiDbt28POGn88MMPueKKK/jJT35ibrvyyitZtmyZ+b3DEdhD8Y477uDVV19l9erVdOnShVmzZjFmzBh27NiBVe9qOGnSJA4ePMjatWsBuPnmm5k6dSqvvvpqLB+eEDGnBWUIk2kOocfjOfmh14aDEIM5hzDSDKEeEMb7D0FAQKgo5jjaoj/+8Y/MmjWL8vJyNL/A+o9//GMCRyUEZpfRLl27+r7VuxK35PDXX9MViO9lIiFEIklAGOSUU04J+H7hwoWcddZZDBkyxNyWkpLS5FWzqqoqnn32WUpLS7n88ssBWLFiBYWFhWzYsIGRI0eye/du1q5dy9atWxkwYAAAzzzzDIMGDeLTTz+lV69eMXp0QsSBniG06hdK1CQKCL1+AZPmdod0cpTMzLl4xhzCMIPcZCgZbetdRouKinj55ZfN742S0aKiokQNSQhALxm1WOiil4zWHz9OKAujuOrqfLeXLLcQHYa825vhcrlYsWIFN9xwg/lHHuDtt98mPz+fc889l+nTp3P48GHzZzt27MDtdjNixAhzW/fu3enduzdbtmwB4N133yU7O9sMBgEGDhxIdna2uU9TnE4n1dXVAV9CJBMjQ2jRA8JkmkPo8QtOk6mUNVLmHEL9uW4rGUL/gFBr4xlCIZKVERDm6RnC6oqKkG7ndTopRzKEQnQkEhA24+9//zuVlZVMmzbN3DZq1ChWrlzJm2++yaOPPsr27dv5wQ9+gFM/6S0vL8fhcNC5c+eAY3Xt2pXy8nJzn3xjkref/Px8c5+mPPTQQ+a8w+zsbAoLC1v5KIWIMiNDaCw7kUwBod9YkmlckQqeQxhups3iHxDGcR6hmdm0WHxNZdpwhlCIpBVUMloTYp8C1e3mOiQgFKIjkZLRZjz77LOMGjWK7t27m9smTpxo/r93795cfPHF9OjRgzVr1nD11Vc3eSxN0wKyjP7/b2qfxtx9993MnDnT/L66ulqCQpFUjAyhUTKaVHMI21lAaGbaIs0Q+gWBqtttHifWND0QVWw2X1OZdpghrKqqIjs7O9HDEB2Y0WXUaCpTd/x4g3369+/fYFv94cPsRwJCIToSyRA24csvv2TDhg3cdNNNze7XrVs3evTowZ49ewAoKCjA5XJREVSacfjwYbrqV+kKCgr45ptvGhzryJEj5j5NSUlJISsrK+BLiGSxa9cu7ty2jZ8B//niC8A3h/DGG29M7MB0/vMZ20NAGK0MIcT3+TADWb2pTFsOCJ9//nn69OnDRRddxMKFC83t48aNS+CohMDMENpTUlDxzZsOVlNTw5YtW9i2bZv59bfZs7kECQiF6EgkIGzCsmXLyM/PZ/To0c3ud/ToUQ4cOEC3bt0A6NevH3a7nfXr15v7HDp0iA8//JDBgwcDMGjQIKqqqti2bZu5z3vvvUdVVZW5jxBtUXFxMXecey73Ac//6188hi9D+IUeHCaaZAgDKZqGcYqYiIDQ7DLahktGly5dys6dO9m5cyfp6enmdm8bfkyifTDmENr05k2NNfhasGABNTU1AdtUl4u5SEAoREciAWEjVFVl2bJlXH/99dhsJ6tqjx8/zp133sm7777Lvn37ePvtt7nqqqvIy8tj/PjxAGRnZ3PjjTcya9Ys3njjDXbt2sWUKVPo06eP2XW0qKiIK6+8kunTp7N161a2bt3K9OnTGTNmjHQYFW2aoiicmprKqYrCU/PnUw3c9/zzeJJkzT9ve8sQBi9MH0GXUeNZiGfzn/a0ML3FYsGuP//FxcXm9m+//TZRQxIC8L2/FUUxA8LGLhiNHz++Qc8DzeNhSIM9hRDtmQSEjdiwYQP79+/nhhtuCNhutVopKytj3LhxnHvuuVx//fWce+65vPvuu2RmZpr7LVq0iB/96EdMmDCBSy+9lPT0dF599VVzDUKAlStX0qdPH0aMGMGIESM4//zzKS0tjdtjFCIW8vPzOXTiBKqiYEtNpQS4qEcPtm/fnuihAUEBYRLNbYyUGVjpDXzCbc5iUVUzIIzn8iD+GcK23mV09OjR7Nu3r8H2xhqHCRFPxhxCu92Oh9ArCIzSUskQCtFxSFOZRowYMSJggWFDWloar7/+eou3T01NZcmSJSxZsqTJfXJzc1mxYkWrxilEsnnppZfYMmQIKmDXg5Qr+/Rh7urViR2YTvWbQ9MeMoRe/fEYAWEkJaPGs5CQOYR6hrAtB4T33HNPwPezgcFAkSxMLxJM0TTQS0braXwOYWPUEPcTQrQfEhAKIaJLVdEUBZsepCTTwvT+ZZHJNK5INZhDGG6GUNNwKwpoWsLmEGptvGQ02G/1f//TDta5FG2bkSG02Wx4CD3QkwyhEB2PlIwKIaJLVdE4uQ5hMl1t9i8TbRcBoZ4RtKSmBnwfKoum4dKXuklEyWh7yBA2xdUOXl+ibTMyhBaLBS9AiJ8PRvdiCQiF6DgkQyiEiC5V5RhQfegQCskVeLW3ZSeCS0bDzbRZVJV6iwVUNSEZQqvdjltRAtZDbC+c7eD1JdoBRUFRlCabyjTKyBC2sC6yEKL9kIBQCBE1b7zxBv/34Yecoqrk//73HAe+XLWKRaNGMXz48EQPLyBbmUyBaqSCS0bDbSqjgK9klAQvOyEZQiGizlh2AsCrKCEHhMbnZGO9FIQQ7ZOUjAohomb+/Pk8es45PGWz8dwf/8irwMOjRjF//vxEDw1ofyWjRmmX0oo5hB79hDGuz4ceAFraQZfRpkiGUCSaRV+YHggrQxhu6bkQou2TgFAIETUWi4UKlwtVUbCnpQFwrKYGiyU5PmoCMoRJNLcxUuYcwggzhBZNw60vhxPP50MzAkKbDdViaZclo5IhFIlmzCEEX4Yw1DmExn7WFnYTQrQfUjIqhIiaP/7xj/xi4ECq3G5Shw1DAWxbt/LHEJZriYf2liE0M4I2GyqRZQi9CcgQdoSmMu66ukQPQXRwCpglo2oYAaHRZVRmEArRcUhAKISImqKiIh7q0YPs//2P8957D5eisOmSSygqKkr00ID2N4fQKBm16AFhJBlCj833ZyAhAaHV6mt60Q4zhO7jxxM9BNHBKZqG4h8Qhvj5oEmGUIgOJznquIQQ7YemoeonIU6AJFqPzT/oCXWR5mTmn2kLq4ugzqJpeIyS0TjPIVTxBYSqxYKlHWYI1draRA9BdHDGOoQQXlMZI5MoJ4hCdBzyfhdCRJe+DiFAvcWCkkwBYTubQ2g8BsVq9WUIw112AvAmICDUvF5fQGix+DIX7SRDqPo9/xIQikSzgDmHUDKEQojmSMmoECKq3B4PH2sahzdswA3YkujE2D8I1NpByaiZIbTbfQtPRzKHUC8ZjWvG1MgQWiygKO0mQ+j1es2rrN4TJxI6FiEsmgbGBR+LJfTPByND2E4u1AghWiYZQiFE1JSWlnL7/v284vGwceNG/gLMLCtjxYoViR4aEFhS2d5KRlVFCT9DqGl47XYgvhlC1T9D2I66jHr1xwWSIRSJ599lVFUUlFBKRl95hTO3bQPkBFGIjkTe70KIqHn66af5w6mnMjs1lQceeIBfORws6dmTP/zhD4keGhCUIWwHAaG5DqFRMhpmhtAKaEZTmXg+H34BodaOmsp4vV6M34AEhCLRLH4BoRZqyei4ceR+/TUA1nbyvhRCtEwCQiFE1KSlpbGrrs5sZOCyWCirqiI1NTXBI/MJCAjbweLLWlCX0UiWnVATWDJqtVrR2lFTmYAMoSxMLxJMgZPrEIZTMup/eyFEhyABoRAiakpLS/n38eP8rLaWgQMHMs3pZEt1ddKUjCZTQOiJwv23dj0/K6Dqi9rHMyDUvF409AxhGygZnTx5ckj7eTweMyDUJCAUCRaQIbRYUIICwl27djFmzBjGjx/Pli1bzO036v9KUxkhOg5pKiOEiJqCggL+r3NnbIrCxVu3siUvj5TUVAoKChI9NCAo6ElAyWhZWRlz5syhsrISm82G2+0mLy+PBQsW0KdPn7CP16CpTJgBoaJpaMYcwngGhJoW0FQmWQLCu+66q8E2TdMCTpabE5AhTKLuuqJjUvCVk4MeEAZ9PhQXF7Ns2TJsNhuzZ89m69atzAS+0H9uwff6VxTJFQrR3klAKISIKkXT0PSr0h6bjYwkmqtnZAXdJGYO4a233sqqVasoLCw0t+3fv5/Jkyfz73//O+zj+WcIQ54j5McKaHqGMK4BclBTmWQpGV25ciWrVq1qsP2tt94K6fb+AaFkCEWiWf0+ixv7fFAUhbPPPhuAF198kZKSEqYDRu2CFd9SKlar5AqFaO8kIBRCRJeqmnMIPXZ7Ui07YQSETjBbq8eT1+slOzs7YFtWVhbeMAM5gxo0h7A1AWGilp3QLJakaW9/ww03UFRURH5+fsD26667LqTb+5eMSoZQJFpLGcL8/Hz27dtHz549ASgpKWHFAw9Qqu9nwfeZJQGhEO2fBIRCiKhSNA30gFC12bBEGOzEglEWmaiAcOHChYwZMwaHw0FWVhZVVVV4PB4efvjhyA7olyH0hLvshKb5SsJSUnzfxrNkNGgdwmQpGX3ggQca3V5cXBzS7f0zhLSDdS5F2+a/MH1jzZteeumlBreZkpLClLo6wHfByOPx4DCqCIQQ7ZYEhEKIqFJUFa8eEGp2O9YkCgiNDKFLURISEF522WW888471NXVUVlZSefOnVvVgVX1m0MY9jqE+m0VfQ5hXDOEelMZRVGSKkPYWl79cQESEIqEs2haQIaQUN5ntpOnhRbAnUSf30KI2JEuo0KI6PKbt4LNlrQBYSLXIUxLS6Nbt26tX47DCOoiWYfQL5j0QHwDZFU11+tL+oBw7Vr49tuQdpWAUCQT/2UnCLULsV9AaIWIy9mFEG2LBIRCiKhSVNUsGdXsdqxJ0jAEMIMeVwQNWJKR0VTGqmcIw1p2wpgnpAeEajwDQr8F3JN+2YlRo2DChJB29Xg8J9duk4BQJJgFwC9DGErzJjUoIIzG8jhCiOQnAaEQIqoUTTObyigOB7YkCgjNLqMJKhmNtoCF6RUltJIwgxFMOhy+DGECuoxCcmUI169fz4ABAxg8eDCrV68GvTHM6G3bQrq91+s9OQ8jibrrio7JCgEBYfDnwwsvvMCFF17IlClTWL58Ob169aLft9/yit8+XnkdC9EhSEAohIgu/8WQ7XasSXKyD34BocWSkAxhg4BDN3r06MgOqAfbVocDTVEaLDzdrESWjHq9vgAWPSCM3z0367777uP1119nw4YNbNu2jRm33YYKhNon1z8gVOREWiSYBVCMktFGMoSPPvoomzdv5tFHH+VXv/oV27Zt4yVF4RG/fTyS6RaiQ0iWv8NCiHbC4rfsRNJlCPVSRa+ioCQgQ9gg4JgxA1VVqY1waQ7/dQgjbipjs+HhZLAcF35zCEmiklGr1UpOTg7p6ek89thjXHTOOYwDjoa4pqAEhCKZWKDZpjJpaWmkp6fTtWtXhg8fTnZ2Ng6bLaDboFcCQiE6BAkIhRBR5b8wPQ4HtiQ52QfA4/EFhBZLeNm0KAkOOPr168e4ceM4fvx4RMdrsDB9KwLCeGYIFVU1m68kU8lo37592bdvn/n9+EsuYSZQHeJrxePxnAwI20FJsmjb/APCxjKEffv2NZvGrFixAgAV6OK3jyoXNoToECQgFEJElaKqaPpJiCUlBXuSnOyDLwumKoqvAUsCTtiDA45p06Yxc+ZMampqIjugMQ9QzxCG1VTGr0OphzgHMF6vuTQJSRQQLlmyxFykG+DoF18wDPhbbm5It/e63eYfVYsEhCKR9HVGzTmEVmuDTPzixYsbLDqfpij4r07oCTE7LoRo22QdQiFEVFlU1TwJUVJSSKoljfVARLVYwsumRcmSJUsabBs2bBiffPJJRMczSmAtVqtvDmEYj0nzen0dMfVgMt4lowFNZeJ3z2Gp3L/f958QlwdR/crrrBIQigRSvd4GGcJQSrODu0KrUjIqRIeQrH+HhRBtlOLXVMYMCJMkA4SRIUxQyWi0aXq3TovFEnaG0CgFU2w2vMQ3Q6ioqtlUJpkyhMHqjx0DfAF3KLx+2RTJEIpEMks9m2kq0xiLpvHeGWfw2b33AoGvaSFE+yUBYZCSkhIURQn4KigoMH+uaRolJSV0796dtLQ0hg4dykcffRRwDKfTyYwZM8jLyyMjI4OxY8dy8ODBgH0qKiqYOnUq2dnZZGdnM3XqVCorK+PxEIWIKcUvQ2hJSQGS6CqzHkCF3ZEzWfln2sJcdsIMCK1WPPFelzG4y2iSBoSa/hx9G2Jw5/86t7WH15dos7x+F3yg8ZJR8J2v7Ny5kw0bNrBz5048qsrB/HxUvUxa5hAK0TFIQNiI8847j0OHDplfZWVl5s9++9vf8thjj/Hkk0+yfft2CgoKuOKKKwLmAN1xxx28/PLLrF69mk2bNnH8+HHGjBljTt4GmDRpEh988AFr165l7dq1fPDBB0ydOjWuj1OIWFA07WRAqJfauSPsohl1eiCiWq0JKRmFhidgrlYEy5rHExAQhhPkmid6VqtvPl+CSkZJ4pJR4zmaf/RoaPv7/S5TJUMoEkjVX38By04EBYSlpaUMGzaM5cuXs3HjRpYtW8ZVqsrGY8ewOHzF/klzMU+0GZMnT070EEQEZA5hI2w2W0BW0KBpGosXL+bee+/l6quvBmD58uV07dqVVatW8fOf/5yqqiqeffZZSktLufzyywFf967CwkI2bNjAyJEj2b17N2vXrmXr1q0MGDAAgGeeeYZBgwbx6aef0qtXr/g9WCGizOIXEFr1gNBZU0NK586JHBagl1jqJaOWBGRwSktLWbp0KZdccglZWVlUVlayc+dObrnlFqZMmRL+Af0CKzXM5Rs8Ticp+NYh9CYgQ2gsTYLVmjQZwv79+wd8X/P553QCPg3xpFjzy6akdpAM4a5du5g3bx52u53Zs2czePBgAG688UaeffbZBI+u4/L6VQAAjQaETz/9NJs2bcJiOXlJpubJJ+n/zTf80m73HUdKRkUT7rrrrgbbNE1jy5YtCRiNaC0JCBuxZ88eunfvTkpKCgMGDGDBggWceeaZ7N27l/LyckaMGGHum5KSwpAhQ9iyZQs///nP2bFjB263O2Cf7t2707t3b7Zs2cLIkSN59913yc7ONoNBgIEDB5Kdnc2WLVuaDQidTidOvw/o6urqKD96IVonoGQ0yTKEih4QahZLeB05o6SxEzCPx8PQoUMjCgiNpjJA2E1ljOyXxWaL/7qM/nMIrdakyRDW1NRQVlaGTS+z2zhhAkNefJFBttD+VBonz26brcNkCIuLi1m2bBk2m43Zs2ezdetWZs6cyRdffJHooXVoRoYQ47XbSMloWloaGzduZNiwYYDvZH4zYLdasegBoSYlo6IJK1euZNWqVQ22v/XWWwkYjWitZPk7nDQGDBjA888/z+uvv84zzzxDeXk5gwcP5ujRo5SXlwPQtWvXgNt07drV/Fl5eTkOh4POQdmQ4H3y8/Mb3Hd+fr65T1Meeughc95hdnY2hYWFET9WIWLBomnmVWkjQ+iKcJ29qPN6US2WhAWExgmYQdM0Nm7cSGqIXSwbaM0cQqOkzAgIE5UhTKI5hAsWLAgo/zdOhm/VT45bYuzvTEsjHV+w394pisLZZ59Nz549efHFF6murmb69Okd4rE3ZteuXYwZM4bx48cHZEpuvPHGuI7DeH+bDZEaufBSWlrKP/7xDy699FIGDhzIZZddxr+AX/bta5aMysL0oik33HADRUVFDBkyJODruuuuS/TQRAQkQxhk1KhR5v/79OnDoEGDOOuss1i+fDkDBw4EfH8A/Wma1mBbsOB9Gts/lOPcfffdzJw50/y+urpagkKRVCyaZl6VtqWnA0mYIbRasSTgyndpaSkLFy5k7ty5eL1e7HY7F198sbkodNiCF3gPI8g1TvSMgDCuJaOq6lv6A9+4Q+vhGXvjx48P3KC/Rga18LlsMAJCd3o6GTU1OJ1OM9vYXuXn57Nv3z5z/caSkhJWrFhBaWlpYgeWIMmSMVWDS0YbyRAWFBSwePFivxv5qjtezsiQOYSiRQ888ECj24uLi+M8EhENkiFsQUZGBn369GHPnj3mvMLgLN7hw4fNrGFBQQEul4uKiopm9/nmm28a3NeRI0caZB+DpaSkkJWVFfAlRDLxzxAaXUY9SRIQJjpDaJyAbd68ma1bt/Lvf/+bRYsWNTpnORSaf7fOSEtG7fb4d131G3cylYwGM9ZmDLVjqHHy7MnIIAOor6+P1dCSxksvvWQGg4YpU6Z0iMfemGTJmJoVAMaasKFk4vXXuWKzmQGhlIyKUEkzmbYtWf8OJw2n08nu3bvp1q0bZ5xxBgUFBaxfv978ucvlYuPGjeZE+n79+mG32wP2OXToEB9++KG5z6BBg6iqqmLbtm3mPu+99x5VVVXmPkK0Vf4ZQmMOoZosjQn8uoyGk00zRL0c7OBBaKFMvFmqenIOYZhNZQLWIYx3kx1VhSQsGW1Af47sIb5WND0gVPWA0Jksr3sRN0bG1FBSUsKQIUPYvn17XMcRHBBitWJt6X1m3MZuN+cQSsmoCHbXXXc1+Jo9e7Y0k2nj2nctSwTuvPNOrrrqKk4//XQOHz7Mb37zG6qrq7n++utRFIU77riDBQsWcM4553DOOeewYMEC0tPTmTRpEgDZ2dnceOONzJo1iy5dupCbm8udd95Jnz59zK6jRUVFXHnllUyfPp2nn34agJtvvpkxY8ZIh1HR5lkbmUOoJkm2QFFVNIsl5EWag0W9HMwo9440IPIL4jRFCesx+WcI1TiXjCp6phbwnajG7Z7DZASEIT43RjZFzcoiAziWJK97ET8vvfRSg21TpkyJrItwK5hNZfxLRlu6kZEhtNslQyia1FwzmV27dnHhhRcmYFSitSQgDHLw4EF++tOf8u2333LKKacwcOBAtm7dSo8ePQDflZG6ujpuvfVWKioqGDBgAOvWrSMzM9M8xqJFi7DZbEyYMIG6ujqGDx/Oc889h9V68rRn5cqVFBcXm91Ix44dy5NPPhnfBytEDFg4uRiykSH01tUlcER+VBXNmEMYQUBolIMBvPjii5SUlCS2gYbX61tUnsgzhBa7HU+8S2j13wOQ1CWjxgmyI8Tn1Tx5zs4mHTgkGUKRIF6/LsLgyxS2mIn3yxBaZQ6haILRTOall15iz549/Otf/+LUU08lLS2NwYMHU1hYyPLlyxk0aFCihyrCIAFhkNWrVzf7c0VRKCkpoaSkpMl9UlNTWbJkCUuWLGlyn9zc3MgbSQiRxCyaZgaE1iQrGTUzUxGufZdsDTSU4DmEEXQZtdhscV+X0czUAiRRU5kG9JNqR4jBsnHyrGRl4QDqk2XubAytX7+euXPnYrVaKS4u5tprrwVg9OjRrFmzJsGj67g0I9vXTJfRBozPBLsdqz7/WzKEIpjRTOb3v/89X331FfPmzaOuro7f/e539OzZkxkzZnD33Xfz9ttvJ3agIixJe2FWCNE2WTmZIbSmpQHJkyE0ApFIM4TJ1kBD83hOBoRhZvmCS0bj2lSmsQxhEs4jNNZmTAlxf+Pk2aJXjLj8lrBor+677z5ef/11NmzYwLZt25gxYwaqqlLbAYLhZBbcZVQJcw6hGRB20OVDRMs+/PBDunfvzqZNmzjrrLO46KKLOOOMM7j11lsDKuJE2yABoRAiajRNazQg1JKk7MjiHxAmYQASNq/Xt2QE+rITEZaMqnEuGVVUFfzmEPoGFP+ury3Sg2QrmCfLzTIyLHpA6O4AAaHVaiUnJ4f09HQee+wx+vXrx7hx4zieLGuPJgljeki8NNZUpqUTPiP4szgcsuxEnG3cuJHLL7+cmTNnsm7dOi688EKGDh3Ku+++m+ihNUlRFM4//3xeeOEFPB4P6enpfPvtt3g8HtRk/DwXzZKSUSFE1Hi93sCAMMmayqCqaDZbaB33Yi0a9x+UIQznmJpfeVikXVcj5rcOoRkYer0ng8MkofgFgVp9PUqnTs3ub2QIrdnZQMcICPv27RtQRj1t2jR69OjBLbfcktiBJciECRMCN9TVoX3xBWXHjsV1HKrf+xv0pSRauo3L5fv89ptDGNKFENFqc+bM4cUXX6SyspIRI0awfft20tPTufrqq5O69NKYZjV16lQmT55MeXk5NpstoNO+aBskIBRCRI3b7Q4ICI2F6ZNmDqGqolmtYLMlPkN44kTrj+G/np+iRJwh1BQl7nMIG2QI41myGiL/gNBZVUVqqAFhTg4A7g6QJWtsrvywYcP45JNPEjCaxNu+fTtvvvkmFuP1fc01aB9/zNQ4LynV6LITLdzGU1+PlcA5hKrMIYyL1NRUCgsLKSwspKioiNNOOw2gTZVeXnnllaxbtw4Am03Ci7ZGfmNCiKjxeDzYOHlV2sgQaskUEOpNZaKZIRwxYoT5hzBk0cge+TeVCXMpjeCSUUscT/wUVUXTXyPJXDLqP6/SWV1N6qmnNn8DYyF7PUPo6QABoQg0e/ZsMjMzycvL8234+msAbr/ppriOw2gqY3QZtegZQlVVTwarQTz19aTgKxmVpjLxVVBQ4KuwsVp58803AZK29LJBFhzfdJGysrIEjEZEiwSEQoio8Xg8pHAyQ2jPyACScA6hzRZRQBjNP4TeEyfMK/bGiUC4Atbzs1haXmfMj5FBsNrtaFYrShyDdkXTzC6jSjJnCP3GFEqDGOPk2QgIVWms0uHceuutgRsOHQJg4lVXxXUcTWUIvV5v0wGh/hlgcTjMi3pSMhofjXW4j3XppcfjiSiT558Fdzqd7Nmzh4qKCj777DNcLhcOo9xYtCkSEAohosYoGTVOJmxGU5kkyhBisURcMtqgHAxfQDh16tSwj1VXXY1RgHjixAmysrLCPkaDDGGkcwjDzC62VsCyE0keELoAByEGhEaQrQeEWpJ0102E8vJyCgoKEj2MpKHW18e1i5/mt6wM6F1G8QWEdiPYC+L1CwgVfR/JECZWtEsvy8rKmDNnDpWVldhsNtxuN3l5eSxYsIA+ffqEdAwjC/6vf/2LBx54gIqKCvO9np2dTbdu3Vi8eDFjx46N6thFbElAKISIGk9QQGh3OHCTPBlCRdN82bAIS0YblIPpbr/99rCPVe8XELrq6yGSgNCvOUtrFqZX49x1VdE0lKCAUPV4kq7ttcXr5TiQS4gNYiQgNF133XXhl1G3YzXHjpGtzwuLh+AMoaJ3GXU1c+HFCAitDgfogYjMIWxfbr31VlatWkVhYaG5bf/+/UyePJl///vfIR8D4Omnn6Zz58588MEH1NTU0LdvXw4ePMhVV13FI488IgFhGyMBoRAiatz6CYVxddlms+EkeTKEVr+mMpFM1W9QDqabOHFi2Mdy+zWVcVZXQ35+2MdQvN6T6/lFmCG0OhwRr8sYKf8MoXHC6nW5ki4gVLxeai0WclU1rIAQo/lMkrzuY6l///4Ntmmaxp49exIwmuR15NAhss8/P27311iXUSvgbaYE1D9DaFyocXfgixrtkdfrJVu/YGXIysrCG0GFRlpaGsePHyc9PZ309HSGDx/OBx98QHp6ekTHE4klAaEQImo8eibQop9MWCwWXABJcpXZYmQII5xDGE0ev/ll7urqiI6heL1mYKVZrWFlCAMCwniXjGqa2WXUmG/qdblovJAtcSyqygmbDVwunJWVLe6vBAWEWrIstxJDNTU1lJWVNShtu+KKKxI0osR6/vnneeSRR7Db7UyYMIFf6dun3nUX744cGbdxeI2Ot34BIfiqOJq8jf75bU1JMTOE0QwIv/76a7p37x6147UnL7zwAg899BDnnXceV1xxBQsWLCArK4t58+ZFNdO2cOFCxowZg8PhICsri6qqKjweDw8//HDYxyotLWXUqFEMHjwYVVWx2+3885//5M9//jMzZ86M2phFfEhAKISIGvOEQp9UrigKboAkKRm1GusQ2mwJ//Dz+gULkQaEwev5RTqHUIvzuowWI1PLyRNVNQmbV1i8XupTUnwB4dGjLe5vzrfSmykpHSC7smDBAmpqaujcuXPA9rlz5yZoRIm1dOlSdu7cid1u54knnuDHwPOcDNDixfws1gNCi9+FlyZvY5SMpqSAxYIKuCO8qPHaa68FfK9pGiUlJdx///388Ic/jOiY7dmjjz7K5s2bzdLLTz75hNTUVC6//PKoBoSXXXYZ77zzDnV1dVRWVtK5c2dS9W7g4dA0jYKCAnbt2kV5eTlpaWkBmceXXnopamMW8ZHocyIhRDtinDxY/JoWJFNAaNE0XymUUTKqaaCE05sTnE4nH330EceOHSM3N5fevXtH1FUtIEMY4RIU/hnCcANCVS/pserlYXFdmN4vQxjKiWqiKKqKKy0Namqor6hoeX+vFy8nl1tJltd9LI0fP77R7UOGDInzSJKDxWIxm7YUFxfz3V/+klHAsaqqZm8XacfHphhz/4zlI5RQAkKjwkMfv1dR8ER4UWPatGlcfPHFDBw4EE3/XKqsrOT9999PaEC4ceNGHnjgAc4//3yuvPJK5syZQ3Z2Ng899BCDBg1K2LjS0tICSi+N4CpW6/mlpaWRpjd9C9fjjz/OM888w1lnnUX//v35+9//TkZGBpMnT2b69OlRHqmIFwkIhRBRE3xCAeBWlKRpXW41SkaN8Xm9ZmlUKEpLS1m6dCmXXHIJWVlZVFZWsnPnTm655RamTJkS1li8fvPLvBGuV9cgIAzjtlrQshNxzRBqmjl30Dz5TMLgyaqquNLTAXCHEBDi8eBVFDMrkyzNlDqKXbt2MW/ePOx2O7Nnz2awvhj8jTfeyLPPPhuXMYwePZp9+/bRs2dPAC4HugE3GPNK/USj42NTArJ9nJyr21wmXtVvY9MvaDgtFohw6ZS9e/fyxBNPUFZWxowZMxg0aBDvvfce8+fPj+h40TJnzhxefPFFKisrGTFiBNu3byc9PZ2rr76at99+O2Hj6tu3r7n80IoVKwBwuVx06dIlYWNqyqpVqygrK6O2tpZevXrxxRdfYLfbueyyyyQgbMMkIBRCRE1TAaGSJCfGVk0Dm828Wh5uQPj000+zadOmgGUnPB4PQ4cODTsgVP2uvEe6gLmiqqj6+LUwO4UGB4Tx7DJq8V+H0MhcJMk8U38WVUW126kH3CHOIfQADosFDyTN3NmOori4mGXLlmGz2Zg9ezZbt25l5syZfPHFF3Ebwz333NNg23nAgz/5SYPt0ej42BRV/8w1gjvjM9nTTKOjgDmEwAmHA7tf86twZGRkcPfdd1NTU8Pjjz/OokWLqAzhPRRrqampFBYWUlhYSFFREafpnV8jWQc2mhYvXtxgm8PhiEvp5a5du7jwwgtD3j8tLQ1FUcjIyODaa681K2T8s5my7EzbIwGhECJq/Bc2NrclWYYQm+1khtDjAf3kJxRpaWls3LiRYcOGAb55FBs3boxoDobqNzcn0gyhxX89vzCXncDj8ZU32mxocW6yoxilu5wsGU3G9vYWVUW1Wqm3WPCG2GXUq5cgexSlQ5SMJhNFUTj77LMBePHFFykpKWH69Ol4kuDzx9nI6yeaHR+DacElo/pnXnPvMzUoIKxLScERYYbQkJmZydy5c6muruaTTz5p1bGioaCgwMzEvfnmm4Dvop4az5L5BHrqqacCvtc0jaVLl3Lrrbc22UU72KhRo8zn8He/+x3gy2aed9555j6y7EzbIwGhECJqgpvKAHgslqTNEGpuN+HMICwtLWXhwoXMnTvXXOD54osvNkt8wuHfVMYb4VV4RVXNuXhYLGEtpaEZAaHVCgkoGSW4qUwSBoRWVQWbjXqrFTWEoF3xegMDwiR8TO1Zfn5+QLlmSUkJK1asoLS0NLEDI3DOsCGaHR+DBQd3ZkDYTIbQzCoaAWFqKmlR6pSb9eqr9K+ogEaWKWmtcEqFV69e3eD2NpuN9evXR31cyej3v/89PXr0YMKECSj6Z5XFYqFTIyXNTZkzZ475/6KiIr7++muzqUxGRgZWq9WcNyraDgkIhRBRE9zZDnwnxkoSXKHXNA0boPllCFW3O6wgqqCgoGFpTwSNaSDwxExtRUCoGqVOESw74cYXECZiDmGDgDAJXiPBrJqGZrPhtFqxhtBcwz8gdEtAGHeNlddNmTIl7HLuWPA2ElhFq+NjY4JLRo3PPG8IAaERRKqZmVj374/KeDB+B7ffHp3j+YlGqXCsmreEI1oNy5rz4Ycf8pe//IUXX3yRCRMmMHHiRP76179y3XXXhXwM/+VD9u3bx8cff8zx48cZMWIEn376Kenp6Zx11llRHbeIvWRbB1gI0YaZJaP+AaHFkhQBoaqq2PAFIJYQTo5C8uyzvgzdgQNh39R/jTo1wrIs/+Ubws0Q4nLhQc8Qxrlk1KJpKG2gy6iRIXTabNhCea14PHj1x+VVFBQJCIVObSbTlpaWRrdu3aIWDEIjAaEeWKjNvM+MLL1xm06FhQx3Ovnq008jHsexY8f47LPPOBbxEVpmlAr37NmTF198kerq6qQpFQ5VaWkpw4YNY/ny5WzcuJFly5YxbNiwiKpPmqMoCpMmTeJvf/sbHo+HsWPH8u233za5/2uvvRbwtWbNGsaNG2cuK3LWWWeRk5NDnz59zDmZubm5nHHGGVEdt4i9xF8SEUK0G8FXmMEXEDqS4A+zx+PBBnj8MoQep5NWXX9dvtz37/794NcYIhSq04mK76qcFmFA6L/Ae7gZQvQMYbrNFvcMoZF5g5MXD5KyZFQfp8dqDSnbF1AymiQXQkQC+b2nGssQxvSug4I7SygBYdDnt+OCC+DNN6nYtIlTe/UK6/7feOMN5s+fT15enq8jM1AB3P/GGwwfPjy8B9OCZC4VDlU0G5aFwmKxMHXqVCZPnkx5eXmT+7W0fEjv3r3JysoCCJiTGTw3ViQ/yRAKIaLGKIO0+l3p9ibJibERECp+AWGrM4SGCE72NKeTWsBD5AFhqzKEekdMI0Nog4AT2FiyaZqZsUj2klHFZsNrs2EJJSBUVVT/gDAJg9yOwMxKHYtlXioEfq9pLVqfNSEyAkIjEDTL5JsJCIODSLe+XqCrujrs+58/fz5r167lH//4B6WlpbwKvKZvj7aXXnrJDAYNU6ZMoT6Mz+URI0ZEeVThMRqWGVrTsCwcFovFLP9szN69e/n+97/PJ598wogRI7jvvvs455xzzN/j6tWrG3Ro7UhzMtsTyRAKIaLG20RAaEmCk30jICSaJaPG3MEIFm/WnE7MU7MIF3/2n4uH1RreFT63Gw++E4JIl+GIlE3TQD9RTeYuo0aGULXZsIbwGrZ4vSdLRi0WlCh0ixSha5CVqqykoqKC+++/P+pZqZD4vaYbCwhfeOEFHnroIc477zyuuOIKFixYQFZWFvPmzWPs2LGtumsj8DMCwXAyhHb98zu1c2cAXFVVYd+/xWLhyJEjZGZm+j5XgCP69kSaMGFCg22aplFWVpaA0ZwUzYZl0RTp8iHJMCdThEd+Y0KIqNEaCwit1qQICN1uty9DaLefzBC2ct5a+aFDFODL8IXbVkZzuXABmqJAhIGpRZ/j5vvGEt5agnrJKHDyGHEKCK2advJE1VjEPQleI8Fs+jhVmw1LKEG712tmCJMlM96RGFmpzMxMc1t1dTWjRo1KfEDYSLbq0UcfZfPmzdTU1NC3b18++eQTUlNTufzyy1sdEJrvJ6M0O8Q5hF7Apr8n0/VF0T2hLLkS5I9//COzZs2ivLwczetFAbrp2xNp+/btvPnmmwGBqaZpTJ06NYGjaqRh2csv+6YkxGAtv0ia1yTb8iEi+iQgFEJEjZkh9JtD6LVYsCRBpsSpzxe0pqRELUO478svKQC+/uILTg33xnpTF1VRGj1ZDEVwt85wS0aN+W7GfL5w12WMlJ2TTS7MOYRJGDwZGWXVbscSwrITARnCJLkQ0pEEZKV0R44cSVxWyi8gtDTyWZOWlkZ6ejrp6ekMHz7cnHcVleyKEfgZzZtCCAg1vWrArr8n03JzgcgCwqKiIl5++WUA6r7+mrRTTzV+EPaxomn27NlkZmaSl5cXsP32GHQ/bZWf/MTMrEZTaWkpS5cu5ZJLLjGz6Dt37uSWW24Jaa5iVlYW/WOwdIhIPAkIhRBRoxlNCfwzhDZb0gSE6fhOjIyTo9ZmCNNSUsDl4viRI2HfVnO7cSsKFkVBiTRDqGnmHEItzJJRze02A0LFPyCMAzsnT1CTvWQUux3NZsPWwmt4165dlJSXk+12c/+WLXTRS6UbWwtNxEZAVkrTUBSFbt26JS4r1UJA2LdvX3OBb6M00OVy0UXPzLWKXgFgN97j+vtNa+Z9ZgSEKfp70pqRAUS+TqrBdfw4aa06QvPCKb1tavH1iRMnxnCEEYjR38xoN69Zv349c+fOxWq1UlxczLXXXgvA6NGjWbNmTdTGLWJPAkIhRNQYAaEt7eSff9ViwZoESwo4nU5s6BnCEK6WhyJVL9GMpOkCLpdv8XKLpVUBoRFQKeE2lXG7ffcPJ8tE4xAQeo3mPsEZwiQMCI0SY9XhwNrCCVpxcTG3ZGdzem0tixYt4gyXixEpKWGthSZaxz8rlRT8Pl8sjXzWNFjTFHA4HI2upxguM9tn3H+ITWW8cLJJiNWKC1BDyI43x9XK27cklqW37Y3RvGbYsGFA65vX3Hfffbz++us4HA7mzp3L5s2befzxx6mNsFGaSBzpMiqEiBqjy6jiNx9BtdlaPJmOB/+A0GpkCFtZMmoEhO4ISqoUlwu3xYLLakWJMDC1qKo5Fy/cpjKa241qXCWOY0Do1ufiWYIDwiR4jQSzozflsNuxtzA+RVE41WKhu93Oiy++yHFgUWVlm1oLrT3RNI0bxoyhJAZdLUPlv9SELc4XxTT/Cz6cLONvLkOI240b32vZUK8oEa+Tah7WLyAsP3iwVcdqjFF627VrV7P0NiUlpX00Nony52JpaSn/+Mc/uPTSSxk4cCCXXXYZ//znP5tsXrN+/XoGDBjA4MGDWb16tbl99OjRgO/iQU5ODunp6Tz22GP069ePcePGcTzGFwFE9ElAKISIGiNDiN/C9KrVmlwBYWpq1JrK2FXVd5wIAkLcbjwWC26rtdHsQSgs+rIIAFitvgyhPqZQ7t9ogGIGlXEIXlx6+ZlFP0E1MpzNnqgmgKqqJzOZDodvkfpm5Ofnc9jlMoPsX+Tk0NdqZfv27XEYrQjmcbv585o1ZD/wQOLG4NeIKO5VEn5zhCH0OYTB70KnxRLxsjgGt1/J6XXXX9+qYzXGKL0FIi69rYnkMzweovy6MZrXbN68ma1bt/Lvf/+bRYsWUdBE8xojA7hhwwa2bdvGjBkzUFXVzAD27duXffv2mftPmzaNmTNnJu/zKZokAaEQImrMk3q/K7OqzdbiyXQ8OOvrseNrqW5kCFtbpujQT0K8EVwNVfQ5fJ5WBoRGhs0IwkMOrDweswFKPOcQGifJRkBo/C6Srcuo2+nEgh4sp6SYwX9TXnrpJborCpr+nKpWK1fabGGthSaix6mXcf8fiTvZd+snzccBaxifNc0tFB4qzePB/zJcKBlCRZ/X7M9ltUa0LE7//v3Nr7EzZtAfuATY9v77YR+rJYsXL26wFl5TpbfPP/88ffr04aKLLmLhwoXm9nHjxkV9XFGR4OkWLWUAlyxZ0mANyGHDhkkn0jZIAkIhRNQ0miFMkoCwXj85C5hD2MqSUaOMUI2g6YLiduOxWn0BYQSBqaZpvpJG/UTPKNP1hHry5vGY2ay4Zgj130NwhjDZuowaz6Nit4PDgT2EJT0Ur9ds8pMsr/tEmDx5ckLu1/9k/7cPP2xuT9TJvvEaqrXZIIws23XXXdfq+1aayBA221TGmNfsx2WxRHTBqqamhi1btrBt2zZWz5vHNmA7cMkFF4R9rGhaunQpO3fuZOfOnaSnp/PjH/+Y2tpatHCW7Imn1q6V20qSAew42kGBdXQ99NBD/L//9//45JNPSEtLY/DgwTz88MP06tXL3GfatGksX7484HYDBgxg69at5vdOp5M777yTv/zlL9TV1TF8+HCeeuopTjvtNHOfiooKiouLeeWVVwAYO3YsS5YsIScnJ7YPUohYMU42/AJCLUlOjI25a7bUVPNqeWszhCn649IiuIKueL24LRa8NhuOCMbh8XhwcDIgNAIsd20t9lA+QzweVGPJCuP3FYfSXuMk2fgdJOs6hMbrRXE4UFJSQg8IjRLYJHndx9Jdd93VYJumaWzZsiUBozl5sm+323lg9mx+DDyvjykRjNe6OzUV5fhxXC5XwHpvjbXv1zSNPXv2ROHOT1YAQGgBIS5XQBAJ4LbZIgoIFyxYQE1NDZ07d8bjFwzf20SXz3ixWCzmshrFxcV897vfZdSoURw7diyh42pSggPCJUuWNNgmGcD2STKEQTZu3Mhtt93G1q1bWb9+PR6PhxEjRnAiKANw5ZVXcujQIfPrtddeC/j5HXfcwcsvv8zq1avZtGkTx48fZ8yYMWadO8CkSZP44IMPWLt2LWvXruWDDz5I+OKoQrSG1kRAaEuCE2MjM2VLSztZMtqachxNM5vKRNIl1KI3dfHa7dgiCIaMdRWDM4TeEEsUlQRlCJsqGU22LqNGwyGLw4GSmooD37zC5lhU1VwXMpSlKsD3N+fyyy9n5syZrFu3jgsvvJChQ4fy7rvvtvoxxNrKlSsZPXp0wNfgrl3JOHIk9LmsUeR/sj919Gh+AYzCtxZhIhjvRW+nTpwCHPj884Cf+2fRjK/t27dzySWXtP7OgzKENr2LpNbcZ54+rzngMVitKBG8N8ePH0/nzp19Q/ELCAfGcR3CxkpvR48eHZDxuvzyy3nqqac41VgnMdkkQYfuSEgGse2RDGGQtWvXBny/bNky8vPz2bFjB5dddpm5PSUlpclJuFVVVTz77LOUlpZy+eWXA76JzoWFhWzYsIGRI0eye/du1q5dy9atWxkwYAAAzzzzDIMGDeLTTz8NyEgK0VaoRjDiHxDa7S3Ov4oHI+NjT009uQ5ha4IQvyAwkoYRFo8Hr9WK12bDGkHTBpfLRRpg0U/0/DOEoVD8MoTGnE/V5Yr5VUJjfMZaldYkXZjeGKdFzxCm4AvC09IaX1Ft/fr1/PLECexuN3evXs1ZNhs2TWtxPa45c+bw4osvUllZyYgRI9i+fTvp6elcffXVvP322zF4ZNFzww03UFRURH5+vrntX5Mnc/OJEzjfeIOUK66I63iMk/2ePXvirq7mcqAb8Msm/lbHmnHxIz07m4vLy/n3rbdy1ltvmT/3z6L5mzt3bhTuvImS0ebeZ1EMCAOO4VdBUV9VRWQLHITvuuuuY926dQHb7rnnngb7nXfeeQ3O/ZJGgjOELXn++ed55JFHsNvtTJgwgV/96leAr0z7zTffTPDoRDgkQ9iCqqoqAHJzcwO2v/322+Tn53Puuecyffp0Dh8+bP5sx44duN1uRowYYW7r3r07vXv3Nktp3n33XbKzs81gEGDgwIFkZ2c3W27jdDqprq4O+BIiWXiMgNCvqYxms/kW+E4w4wTf5tdUptmr5S3xy8RFEhAqXi9emw3V4QgpkxTM5XL5MoRBAWGocwgVr7dByWhru66GwqOf4FiTvKmM128JFYueIXQ2c3J23333schu5489erBt2zYeOXQIxettcT2u1NRUCgsL6dOnD0VFRZx22mnk5uY2aJKRjB544IGAYBDgYEoKxUDVtm1xH88999xjNrhw6RmK8/Bd2E0E4yLUMX3Bb9v+/QE/98+i+RsyZEir71vzqwCAk+83Wlh2whsUEGpWK5ZWvjf9A0JnDM5Z/BvYGF+XXHIJ2xLwGoy6JA0Ijexrm5uTKZokGcJmaJrGzJkz+d73vkfv3r3N7aNGjeInP/kJPXr0YO/evcybN48f/OAH7Nixg5SUFMrLy3E4HA0+6Lt27Wq+icrLyxv8IQVf6/LmOow99NBD3H///VF6hEJEl7e+Hg9g87syrdntIc2/ijWjbMmalhadOYT6SU414XUQNFj1DJ1qt2OPpGS0thYrDTOEIZeMer1meaPFr9zU3tyNosATlCFM2jmExgWElBRIS8MBVDdzcma1WsnWNFJTUnjssceY949/cMeRIy2ux1VQUIDX68VqtZpX1D0eT4vlqcmqk34xqPqbb2j4Fy5+PH4la4kqXzNe684BA9iVmxuXCy4Gze02O97Cyfdbc+8zxX9tUp0a4RxCf16/iyKuGPwuampqKCsra7Du4BVxzlDHRIxeMx6Pp1XrNBrZ1zY3J1M0SQLCZtx+++3897//ZdOmTQHbJ06caP6/d+/eXHzxxfTo0YM1a9Zw9dVXN3k8TdMCFnxVgiZvN7ZPsLvvvpuZM2ea31dXV1NYWBjS4xEi1rz19XgtloAPFs1ux6ZpoGnQzGs75mMzrlKnpIS2SHNL9MCrAiIK6CxeL6rDgepwRFRSa6ztZY0wQ2jxetH0P+RGhrBVcypDZASsNr300igZ1ZJgrUp/xnqJ1owMSEvDCjib6Sbbt29fDr/7Lqfrj2dM9+702ruX37RwAuy/2LPBZrOxfv36yAefQEZAeOKbbxI6Do9fIF6ToEoa473oyMjAlZKCJZ5LkLjdJ0vC8ZtD2NyyE3oZuz/VZsMSQdOsgGP4Pe5YBIQxLb1NAM3jwfxLGcUMYVlZGXPmzKGyshKbzYbb7SYvL48FCxbQp0+fRm/TUuMj/zJtvvqKy+fNo9ujjzLr17+O2rhFfEhA2IQZM2bwyiuv8M477wR0Bm1Mt27d6NGjh/kGKSgowOVyUVFREfABdfjwYQYPHmzu800jfzCPHDlC165dm7yvlJQUUozSDyGSjOp0NuhSh93uq033egNKSePNXBzZ4fBlfWhdAKSeOIEFX0CYGkFAaPV6UW02tBDWuGtMcEBo/OsNo2TU6IhpiWdAaJSMGuNO0pJRtx5Q2NPTUfXg1dnMyeySJUv471NPoRqPx+HgUoi4G19rrt4nUor+e3QneDqDf0B4IkHZCqOE3p6ejpqaijWC5WkipQQFhBabDRWaLRltNCC027G08mKNf9WCO4I1W1syfvz4RrdHo/Q2ETx1dWalhlZfT7Quo956662sWrUqIImwf/9+Jk+ezL///e9Gb9NS9jVgTuZf/wpbt3Le3r3JOydTNEnmEAbRNI3bb7+d//f//h9vvvkmZ5xxRou3OXr0KAcOHKBbt24A9OvXD7vdHnCF99ChQ3z44YdmQDho0CCqqqoCatzfe+89qqqqzH2EaGu8TmeDEwqMNusJ7iJpBkoOx8l1CFsxJpd+wltjs5kL1IfDqgdkWkoKjggCQv8SWDhZOhpyyaiqngwIjZLROMxXMUoxHenpgF9AmGQZQiPgtmdkYNXH6mrhZNamaWj641HsdhxJUCodb0p9PSMANcFdBr1+wVdtlALCcDvCev0yhFp6OvY4fgZa3W489sACcA8020k4oNGUwW7H2sr3puYfEEr3yRbV+11M8UTQcKwpXq+X7OzsgG1ZWVkB3e+DGdnXYI1mX43ljvx6aoi2o21egoyh2267jVWrVvGPf/yDzMxMcz5fdnY2aWlpHD9+nJKSEq655hq6devGvn37uOeee8jLyzOvUmVnZ3PjjTcya9YsunTpQm5uLnfeeSd9+vQxu44WFRVx5ZVXMn36dJ5++mkAbr75ZsaMGSMdRkWbpTqdDeagmB1HXS5ookNjPKh+AaGRIWzNMgsuvVveiZQUHBEEUlZVRbXZIMKA0AhOjIDQGmZAaPWbQ2iU0MalqYz+e0jp1Ml330k6h9A4EbPpJ/PQcnbDrmk4jdeW3d7u/8BOmDChwbbyb75hD6DFIBMUDtUvIKyLUkAYbkdYIyBMycxESU+PaL3RSFk9HrxB1UQtBYRWjwdXUCZIs9sjanrlz79k1BPHLGlb5Tx+nEz9/66amqjN6164cCFjxozB4XCQlZVFVVUVHo+Hhx9+uMnbhJx93b4dbrzR9/9Dh6I0YhFP7f3vVdiWLl0KwNChQwO2L1u2jGnTpmG1WikrK+P555+nsrKSbt26MWzYMP7617+SmZlp7r9o0SJsNhsTJkwwF6Z/7rnnAjrHrVy5kuLiYrMb6dixY3nyySdj/yCFiBHN5Wp4hTlJMoTmSUlKSkjzaVpiXOmuT03FEcEcG6uqgt3uyxBGkEkyF3g3Mm3hBoSqiqoHY8bzEdcMYUaGbxx2O25I+OsjmMcvQ6jpQbe7mZNZr9eLBnxSV8fRDRv46sQJetLyvPCmjBgxokHL/GSzfft23nzzTSx+F4E2r13LUqcTopjZiITqd//OysqoHNPoCFtYWGh2hAWa7Ajrra9HBVIzMlAyMpqsJGhtg4/G2NxuvH7nJAAuaPZ95j+v2ORw+D6rWkFzOjkBZCABYSj8S9Odx4+TEaXjXnbZZbzzzjvU1dVRWVlJ586dSU2N0iIg99138v/S/b5NkoAwSEutctPS0nj99ddbPE5qaipLlixhyZIlTe6Tm5vLihUrwh6jEMnK6nI1KFMyFkxP9AK7ZkDocGCLQsmoMUfK1akTqRFkIGx6QGgseo5fxi4URgbLHhQQqiEGdXavF/QMghEQeuLQ9MLI3KTo5UVWq5UT+EoNk4nx/DoyM1H14LW58q3nnnuOPwDnfP01Z23cyKcHD7IU+MXy5UybNq3J2zWWZdM0jbKystYMPy5mz55NZmYmeXl55rYDmsbt0OpGJK3lHxD+9c9/Zsr8+a0+ZrgdYVWnEze+uf9KRgapmmZeIIikwUc47HrTKn9ORWk2UPefV3zyQHbfZ1UraE4ndYpCmqZRUVpKZUkJOaec0qpjtmcuv6DZE4NMe1paWpPrqUasd2/41798/5ey4DZJAkIhRNRYXC68eoBibjOuQCZLhtDhwGa346F1GULjD7U3M5PUCDJ8dlXF63CY3TZxOiHouWuOUTLq0EsvjeOEmiF0qCqa/ruJZ4bQq4/bpmcvFEWhnsB5RsnAaJXv6NQJrxEQNpPd+NOf/sS/gK8HDOD8Bx5g+/79fHfPHq744x+bDQgby7JpmsbUqVOj8jhi6dZbb22wze7xMBHYmeDfp+YXkNZ8+WXImdrJkyezcuXKRn8WbkdYIyDMsNshPZ10fAGk3W6PqMFHOOxerzmf1eCyWALWTw1mNLoKkJLi6xLdGi4XbosFi9fLiJoa3rrqKoZt3dq6Y7Zj/nOVW5q3nIyqDhwgu+XdRJKRgFAIETU2t7vBVWkjc5XoDKFmBDspKVitVl/5VCvGZKxzpmZn40BvFR5G2ZdDVdEcDhQjIKyvDysgNMoXgwPCkDOEqmouam83gsk4BISaHmgpfo/VpSjNnqgmgnEBwdGpk1l611yG0OFwsA0oNF7vDgdb9e3NaSzLBr5lj9oioyzSnujfZ309TiAFyMe3RJN/Q4277rqrwU00TWPLli1h31VT5Z5ePSBUFAUlI4N0oL6+HrvdHlGDj3A4vN6T81l1LQaEetWCPyXCZXECOJ14LBZfFQRwxoEDrTtekF27djFv3jzsdjuzZ882G/PdeOONPPvss1G9r3hw+33OtJUS228++4yvgI+B/p99JgFhGyQBoRAiamweD1rQSYjR9ERzOqPWPjsSml+G0GKxUA8orQgIvSdOoAKKvrSMu6YGR9A6WM1xaBpqSgoWI5Crqwur7bMREKbowYq58HSIjylF0yABGUKtthaVk51NwXeimnQZQqNDZGYmnhAyhIsXL+bPF13EptdeI2XgQJz79zMU+P0TTzR7P41l2SBwvdu2JFU/6c9KcMko9fUctVopUBRO8Xg4cuRIQAC2cuVKVq1a1eBmb731VtSGoDmdePSspBEQHqmtJTMzM6IGH+Gwq2qDgNBttTa7rp21kTmESkoKdiKfCwuAy+ULCHWRLNPTnOLiYpYtW4bNZmP27Nls3bqVmTNn8sUXX0T1fuLFf65yNLuMNiUa85WP7NtHDVAD2BL93hcRkYBQiChrruSoPVNVFYfXixo0Sd0IVPzXVkoII1ByOFAUBaf/tgh4T5ygnpNz4eorKkIPCDXNN5/I4cBidLCsqSGcFUbNOYR6sBJuhjBF08zspD2OASF1ddQrCul+J5duiyWqCzBHg9GVVklJMZ/j5k7OsjMzWQJ8/NOf8t3HHmPXrFlc+NhjHNIzuB1FiqZxBMj3enG7XNhbyJDGilJfj9NiwZudzc++/ZYjR45w9tlnmz+/4YYbKCoqIj8/P+B21113XdTGoLlcZkBo0V8Hzqoq6No1tg0+gBRVpSboeB6rFaWZ95lNVRsNCB2Ay+WKeA1kxe0OCAidYcyVDun4imL+bl988UVKSkqYPn06niTrXBwq/zmEZz39NKxfD/o6160R0/nK1dUcB6pJguoAEREJCIWIUDRLjtqD+vp6UsHMOhmMDKHr+PGEBoRmyah+gupSlFYFIaoeEKbpQWB9RQVZod5YD0Qt6elmQOiqrg4vIDROGvTHE05AqKkqafr9g1/JaBzKejUjIPTb5rZYmj1RTQT/Oad2/WTe28yV73q9hNgIHo1y3Hhc4U+U559/nkceeQS73c6ECROYM2cOqZrGj6xWNnu9fPbf/3L2xRcnZGyK04nbakU7/XQu/vZb/qEvIWV44IEHGr1dcXFxk8dcv349c+fOxWq1UlxczLXXXgvA6NGjWbNmTYP9/QNCq57Jd1ZUBOwTkwYf+CoQgj+LPTYblmbeZyleb4OlgSx6QOh0OlsVEPqvTxvtQC0/P599+/bRs2dPAEpKSlixYgWlpaVRvZ948f/MUFQVPvssKseN5Xxl5cQJbDk5FJ17Lqnvv9/q44n4k4XphYjQypUrGT16dMDXmDFj6NKlS6KHlhAnTpwgDU7OidPZjAxYok+MjWBHvwLuVpRWlSlqtbXUAal6QOisqgr9xvr9Wv0WPW9pjbsG9290ctMDECMQ0UIIrIxGBWZAaHQojUNAqNTXN8gQuK3WhM8xDaY5nb5126xWFP1EWG0mIKzTf/9G8GiU4TpD+L06nU527tzJhg0b2LlzJ64key6asnTpUnbu3MnOnTtJT0/nmmuuAcCrP/b/vvRSo7cLd4H3SCguF26rFeXuuwGo37+/1ce87777eP3119mwYQPbtm1jxowZqKpKbVOfbfX1vuw3YMvyXS5yh/M5ESGXy0UqYA3KTnvsdizNNNJKUVXz88Rg0bsgO1txwcYMCPXOrLYoX/x56aWXzGDQMGXKFOrbaKaq0b+VrW3sw8n5yj169DC/evbsGZX5yrbaWiw5OWSdeSa5qtqqDt4iMSRDKESE4lFy1JbU1tb6AsKgEwojc5XoTIniduO2WLDrV+zdLTRYaIlWV0c9kK5fAHCHsfaSVleHgm/Rc5t+0uYOt1W3kSHUb29PTfU1ygnhMdVVVJCCLyAFcKSk4CE+JaOW+npfcws/XqsVS5IFQWpdHW5F8f2RNJYpaea5deq/f6PJj/FvfQu/19LSUpYuXcoll1xCVlYWlZWV7Ny5k1tuuYUpU6a0/oHEkMViwa5fYCkuLqZHjx5MfPlljtrtnLBYsDfRLTPcBd4jGpvLhdtmw37GGQCoBw+2+phWq5UcvUT8scce47nnnmPcuHEcbyLoV+rrfRc7iCwg/Prrr+nevXvY46ypqSEV3+eLP6/djrWZE/U0TQto9gRgSUsjBahoxWel4vH4AsJhw3i5Vy8GRCE4D0ekz2OiePXP9uOAGdLX1YXVdKwxDeYrX3UVnHoqE//wh1YdFyCzvh5P585knnkmVuDw7t3kn39+q48r4kcCQiEiFEnJUXtWW1tLKphNUgxGhtCT4InmisuF12o1y1ZdLcynaYl64gR1QKa+npYrjBM9ozzU1qmTGZSFu96UUluLF7Dq2Su73c5xfXuL968HKWZA6HDgoXXrMobK4nTiCurK6LHZki4g9NbV4VIU0sBcr7HZgFB/Ts2AUH9unS0EhE8//TSbNm0KKONyu90MGzYs6QPC0aNHB5TqDbj4Yv4A3JyVxVduN2lHjjR6u3AXeI+E1eXCY7PBqacCYPn661Yfs2/fvgGPd9q0afTo0YNbbrml0f0VpxO3/lq36w1tjIAwuPw0Sw8Y77vvPu6//340TaOkpIT777+fH/7wh2GNs6aqis6APSuwiF2123E08Tmser1kAJagxeyVjAzshJbpborF4zGXs1DT0kiJ4dy+1157LeD71jyPiWIseVOtKHQyMoPHjrU6IGzgn//0/RtiQNhkfwRNo7PbDfn5ZH/nOwB8W1YWlYDw0KFDrT6GCI0EhEKIqKitrSWDhmVK9hA6NMaDze32nSDqPC103GuJpmeQsvSMQTgZPiNDZ8/MNDOE4T4/yokT1FksdDLmKFmt1EKzC08b6isrgZPljXZ9XcZQG9K0hv9JssFrs+FIshIjta7uZCMMPUPYXIlxcEDo32yoOWlpaWzcuJFhw4YBsPzZZ5l/002cpX+fzO65556A751VVZwH/GHyZGr/9CdSmnhPhLvAeySsbjdemw30km712LGAn7/wwgs89NBDnHfeeVxxxRUsWLCArKws5s2bx9ixYxs95pIlSxpsGzZsGJ988kmj+1ucTtx6BtUICL36c2KUnzocDubOncsf/vAHhgwZwrfffsv27dsBqKys5P333w87kKk9fBgLYA9aykRNScHWRDBWV1FBBifXBzUfg1HBEEYFRDCLx2MuR6Slp/vmKsbItGnTuPjiixk4cCCaHkxF+jzGWlOZS2Npnhq/pTqoqAD9wklUNFOCGm5/BK2mhjRNw9KtG1169waguon3RHMaC+bnzZsX9nFEZCQgFEJExYkTJ8jjZNbJYASI3gQvsGutr8ft1/HQa7WitCII0erqcFmtOPQTPU8YAaEx39CemXmyYUmYAaGlro56q9UsKVIUhTpFQQvhOEbwavPLEDoJfcmK1rDV1eEN6jzpdTiabXaRCFp9ve+iAZgZQprJchuZn5TcXABS9VJilx58N6W0tJSFCxcyd+5cvF4v5du2cTVw/dy5rRp/IhgNU2yZmZzIzCS9iQxhuAu8R8Lm8VCfng4pKbgVBTUooHn00UfZvHkzNTU19O3bl08++YTU1FQuv/zyJgPCcFlcLjx6QOgICgiDy0979erF4sWLqa6uZsSIEQwaNIj33nuP+fPnh32/dXoDHbtevWDQmgkIa7/91hcQBmUVjWY4rZn7aPV4UI2/C+nppKmqLyCJdBmLIP7Z1t/+9rccOnSIsrIy9u3bx5YtWyJ+HqMpnMylqgeEx/2fnxYuLIXKXD7k6FHKgTRosGZguEuyHP/8czIBR2Eheb16AVATQVlwY8F8VRzm3AofCQiFEFFx/PhxMgGrfkJsMK6Mq+HOkYsymz7HweC12bC1JgCqr8dts5FinOiFEfAaAaEjKwu7seh5mAGzpb6e+qBMW73VihJCaW6dni1x6Cd/DoeDKojL4vCpTif1QQtyq3Y7tgRfMAhmqas7WdqqKNQqCpZmnh+PHvgZS48YAaGnhYCwoKCAxYsXm98/b7FwHfC/KJQ4xpuRebZlZeHJySE3zHl7TS3wHgmbx2NeeKizWiHo8yctLY309HTS09MZPny4uUZhVMfgdqPqJfQp+uvCuHAUXH7685//nHPPPZef//znvPHGGyxatIjKFl47TXF+843vPoPmtysZGU2Wa9YdPeobcxMBoacVGUKr14umP69KRgZW8DWRirBrabDgbKvb7Wbp0qX07duXCRMmRPw8RlNYmcu6OjyA2z9jHoUpF48//jjPPPMMZ511Fv3PPJO/AxnA5GeeYfr06eZ+4fZHOLFuHRmA48ILsaSnU68o1Efw+bV3716eeOIJysrKmDFjBoMGDWLz5s1tdj3JtkYCQiGiLBqLvLZFx779lmzA261bwPaUjAycJDYg1DQNu8uF6jcHw2u3t6pM0VJfj8duN7uMhhPQGQ1IUnNyzIAy3JJRS20trqA1w5whBoS1egahk16uZLVaffMP4zDPM93ppCYoi+xJSUm6klFbfT0uv0xmvdXabEDo1X+nin4CbWQKPWFe4a5WFNA03B9/HO6QE87IEKZ27oyam0t2An+nDpcLTQ/G6h0OrEHvz759+5plqytWrAB83Tlb6hLtdDr56KOPOHbsGLm5ufTu3RtHE2st2txu6vT3d6r+ejBeJ02Vn/7vf/8DoLq6uslS1Ja49MxsWkFB4A9ycshsolzT+N059Kyl+Rj0ANHbis9vi8eDpgd/5hzFEyeiFhA21uxnypQp5OXl8ac//an559HpjNo4mtNYsNNU5lKrq8OpKL5Mqs5TXd3qE/ZVq1ZRVlZGbW0tvc48ky8AO3DZ888HBITh9kfQ3nuPj4DOenbwuM2G+/DhsMeXkZHB3XffTU1NDY8//jiLFi2SDGEcSUAoRIRiushrG3S8vBwrYA26quhwODgBaAnMAJ04cYIMfPNXDF67HWtrOue5XHjtdtL0E71wAl6jAU1KdjZpmZmohB8QWuvq8ASdyDhtNlJCeExO/Y91pt+clBOKgjUOnWA7ud1UBM1T0rKzSUuyq8A2pxO33/PrbCEgNJcB0UuAjRNfb5iZlVSLBVQVde/eMEeceGZAmJuLrUsXOmmaGXTFm8PjMYNzZ0pKg9e2f1bWvI3DwUtNLJUB4XeEtXs81BpNn4zXQ4ifg1lZWfTv3z+kfYMZAWFG0Pw0S24u2ZqGx+NpkAltKiAMnvsYCavXi9cICI055rW1EFRNEqnmmv00+zx+/jmcfTZs2ADDh0dlLE1pLNhpMnNZX49LUajzm+dXf+wYnRrfO2RpaWkoikJGRgbX/uAHOPTS7da+Pz1HjnAE6KOXKNelpaEFzdkNR2ZmJnPnzqW6upodO3bwgx/8oFXjE6GRgFCICMVykde2qM7oBhZ0QpGSksIJOLlMQgJUVVWRQeCSGJrdjrUVJzl2pxOPw4EjNdUX8IZxLI9+8pWSl0daejr1+LqWhsNRX4/brwQWwG23kx5CQGicMHbSOzAC1CoKWXHIEGZ5vahBJaO2Ll3oFMPOg5Gwu1x4/QJXp9WKtZl5juYcNeM1ZqwLGeaFkDz9JNDy1Vdh3S4ZuPSyw7T8fFJyc8kAjh49Spegi0RNiWZ1RarXe7LcMTUVWxQ+fxrrCOvxeBg6dGiTAaFmLA5vsVBLfColavVyveCmMrZTTiEVOPbNN+T6vfcBqvXXW3bQ9mgEhA6vl3r9ebDqGUe1piZqC2GH2+zHtHu3798tW2IeEBr8g50mx1dfj8tq5ahfhjAaAeGoUaPMCzSPXH89rF6NCygM+p2H7dgxKoFcPcB3d+qEpRUlxoasrCz69evX6uOI0EhAKESEjEVe84L+6EZjkde2yJi3QlCQkpGRQTmgJLBktLq62hcQ+s2PUR0ObK3odudwOnHpV7tPKApqGCf+rm+/BXwnXylpadRystV4qLKcTlxB8308dntIiz57jh7FzckOsOCbZ5UT6wyhppGtaWhBrxHHKaeQpWk46+tJMU6gE8zhdqP6jcVlszX73LqMpg9GFtrhwEV4GUKPx0Nn/TVp08t62xJjvmTaKaeQqmcLKr/6qkFAGOvqCq/XS7qmYTWCmfR0HFFoyhHcEVbTNDZu3EhqE69Zh6qC3zI89RZLi58TX375JW63m9zcXPMEO1yer7+m1mIhPWiZAof+e6g5cKBBQHhCbwLSRS/7M5hzwFtR4ZHh9VKvB+dGCaqzooK05m4UD8bnXVDpfTw0l7lUnE5cFgud77gD9Ex2OMsaNWXOnDnm/6u+/pocwAHcPH58q45rqa6mLjXVzDSqublkl5efbGAj2gQJCIWIUINFXnUTJ06M80iSg9voKBiUIczKyuJzID0KVwwjVVlZSScCGyZ409JIa8Ucp1S3G49+wlVrsaCEExAePUotkNm5M4qiUIFvmYNwZLvdVAU9166UFBwhZELUykpqLBZy/f5YuxwOLDEOCF3ffIMDUIIuoqR364YNKN+3j9P0dawSzeHxoPkFzC67HVszrxd3RQV1VitpftmjeqsVbxgnctXV1Rh9ITP0iwZtifFYrdnZZHTtCkDlwYNw4YUB+8W6uqKqspIsTjb4UTt1IrWRBlLhzAeEhh1hT3z8MX0cDlZ8+GGj+zu83oCF3p0WixmEPP/88zzyyCPY7XYmTJjAJf/9L/PfeIP/qSpXXnkllZWVVFRUcP/99zM8zOyV9fBhKlJTSQ86GU/V53fXHDgAAwcG/Kz+4EFUwBb03jTnPkZ4Qc/tdtMJOBo0t7b2yJG4BoSNZZ+/+eADugK7//tfiuI4lpZYnE7cViuDFy3i45tuomvv3q3q8tqY6kOHyNH/71q/Hr7/fdDfs+EuyWKvqTEvjgJ4zjiDH3z4IccfeohOQUvThOLYsWPmezKaTZ5E8+SZFkJEhdcoGQ06obBYLDitVlITOIewvLycXpzs/AhAdjbprShTTHO7sehXz+ut1pDW/zN4Kys5riik6yfETkVBCyMg1DSNLqpKRVADjNqMDDL1sr1mVVVRa7fjn39wp6S0ak5lKI6VlVEApJx5ZsD2DD1bcWzv3qQICFVVJdXjCVik222342imK623qgqX3R5wkuu02xssd9CcyspK8oADikL3ykrfayrai1HHkBn8ZmSYAWFNI90GY11dUfHNN+QCDiPD1qkTGaqK2+3GrmeDwp0PCIEdYWtqatielUUPfXswTdPopGlY/C5COW0283Ni6dKl7Ny5E7vdzhNPPMHEv/yFj4BrL7uM0tJSwHeBYNSoUWEHhKnHjnEiqHoAIPeccwCo1BvX+FMPH6bKaqVz0HyyFGP5lAgvUJw4cYJMMD8r0/Xfee2339J8+57I+GefjbmSTWWfv/3oI7oCh3fvTqqAEL1hGUBmVha1tG7Zj8bU+i0JM/yPf4TXXoMDB4Dwl2RJqavD5tdMLm/MGHj1VU6sWhVWQPjGG28wf/588vLyzPfkt23wwlhbJQGhECIqHIcP47LZzKvy/lwOByQwIPzqq68YDKQWFprblJwcOkW6ELamke71Ytcfq9NmC6shi1pZSa3flU+XooTVVrzq6FE6Axb9pNtQ36kTWSEspeGoquJEUEMab1paVOZZNadq924KgKyiwNOvrB49fD9PkkYqx48fJwMCSnI9KSnYmjkps9TU4AoqHaxNTcUWRkBYVVFBD2DtaadReOAAR9av55Rx48IdfuLU1FCrKKRbrWTpQf4Jo5TcT6yrK2r0cts0PfiwZGeTiS/AMrqIhjsfMFh5eTmFwOmAq7YWR1DgfryykmzA4hf0umw2FP2ii8ViMYPT4uJinvnlL7mKk2sIAhw5ciRgfKHKOn4c19lnN9iep2dqjzcyd007epTjqak0+PS22ahSFNQIT8yPHztGDmDVqxk66WWrdVE80ffPtu7bt48dO3ZgsVj46U9/yl/+8pcms8/H9QDIGspFtFbyXyuxuLiYa6+9FoDRo0ezZs2agH0VpxNVf21kZWXxDdFvylZ/9ChOwPwr4LdETFhLsmgaGS4XKX4XRfKmT2frjBl0qa+na8NbNGn+/PmsXbuWTL8LcQcPHqTQ7++2iJ1ozekVokNyOp3s3LmTDRs2sHPnTlxxWNg7GWmaRnpFBSc6d250seG6lBTsCQwIvz54kDwCAyhrbi5pgBpBVkyrr8eOrykM+MoJreGUfNbUUO83b8VttaKFsTD7kQ8+wAKk6Vf8zXF16UK619vieoKZNTVUdwpsUeDJyCAtxovD1/7vf6hAXp8+AdtzvvtdAOo+/zym9x+qiooKcvA1uzFoGRk4mnl+Op040WB9xbrMTDLCeN2fOHgQK3DG1KmowP7XXw9v4AmmHT/uW/OPk5ml2gjaz7eWGRDq8xgtnTuTSeAi18Z8QMOfevbkiTPPbHI+YLBvyss5DV/b/q/ee6/hGPRgw+43f9Jtt5udakePHs2+fft8P9A0XgAygQNffcXAgQMZNGgQs2fP5o9//GNI4zF4PB5Oc7lwN3ISrXTqRIXFgreRCy9pFRXUdmq8bUmV3Y4lwqCpTs9EWfWLZ5l64FAfpYXW4WS2defOnQwfPpzi4mJOOeUUUlJS6NGjBz179mw8+2x0Vo3DdAZjrcQNGzawbds2ZsyYgaqq1DZyITGlvh6XPve0U6dOvmZEUf776aqo4BjguuQSc5umXyA1lmQBWlySRaupwQZk+L/eFIXPc3JCq1bxY7FYOOKXuQQkQxhHkiEUIkKRlBy1V1VVVXTzeHA10U3wREYG6QlsKlO1d69vMeRTTjG3GXNljn/1FVlnnRXe8Q4cIAdI0wNMl8MRVjClHD8esKRBndUaVnau+oMPAMjq2zdgu8NoFHHkCDRzVTX3xAkOBpW51WVnk7NnD2hao0F9VPzvf3wJ9Ahqh+/4/+3dd3zV1f348dfn7pGbvQeEvQSUjVgRFbd19mfVWm0dxYli+7WiVdxWba11g1ass2oVhSqCIFOQFSBsAtl73z0/5/dHbq5JSCBASEDO8/G4jySfee7NuZ/PeX/O6t0bFQgVFh6b8x6m+qoqegP2FgNvqLGx2Dp44BMIBIj1+wm2KTD54+KwHcbgML7wU/q0ceMo1GgIbN16+InvQWpjI97mWoRwcHGkTQ2PhjtcK9ncbFUfF0cUUNAiIGzbH1BfWMgY4L3Fizt1joa8vEjz4IacHAgPNNOsufapZc1JyGCINMue2aIpnVpXxxBgCVD46KP0/tOfOv9m26gsLCQLaGgzOEyzGqsVQzsj2CY7HDg7aK7tNJkOWjt+MM5wV4Lmh2cxKSmogP8opiVoq2Vt66effsp3H37IhRdcQF2LoLO92ufmUaat3TDdTntzJV522WU42wn0LD4fgXATTK1Wi0ejwdDF989QXR1OrZa0lSt5ftgw/rRvH7X5+ST263dYU7K4S0uxApY213R/TAzmw7yez549m/vvv5+KFgPStG1WLh07MiCUpCN0tE2Ofk5KS0sZDKhtaqyaBePisPZATUEzT/ONqUXAagwHh46SksMOCGv37SOWnyZ295tMxB7GE1xDY2Or4MFuMJByGAGhb8cOVCB5zJhWy43h9+HbuxdjRwGhECT5/eS1udEGEhIwCgGNjQcMDNRV9Pv3U2Sx0KdtMzi9nlqtFhEe6bCnucL5pdVnmJREXCjU7sh5tbW1pABKmya8mrQ04rduxev1dqrmKRAuPFuzs8mLikLbohnXiUDjdOJrftAR7r8XbPPE/2AqKira7Y93uALhfovWcFNkQ0JCUw1hi3nfWvYHrCwvJyX8XbZXV0MHwVRLnhb98Oo2bDhwfTjoMrUsKFssKO18HmUbN9I8I2hdbi69D3n2jhUtXkwGEDd+fLvra1JSSGnu7x2mhkL08vvZ08E1w2O1YjzCgKQ2XAuaGJ4jMNInrqM5+I5Ac21rdnY2qCrnXn89KRddxJ8O0f/WEG7VMTAQQJx/PsqHH0I7tWBd4WBzJbYVFQhgb9Fs0qnXk9DFAaGoq2uaI9No5KqZM+Hmmylcv57Ew7wXNuTnNwWEbUatVRISiNq7F1QVOtnseciQIXzxxRetltnt9kiTVenYkk1GJekItW1ydKghyH/OSgsLGQQY29RYNTNkZhIdCDTdHHqA0jywRYvCZvMNzN7cbOsw1GzfDvzU9NEXFYX1MJqe2txu1BbBg8tkwnQYAaF2+3b2a7WY2twoLSNGANDYTgG1mVpeToyq4mlT+DOECyqinUFAukpieTm1LWppW6qLi0NznPQhrA33sYprERhoU1KIB+ztNHWrrq4mDdC2KRQZ+/WjF1DUyfcVCtdsGdLTccfFYenCQnN3sDideJqbHRqNuLVaNIdRE/Tb3/62S9IRCtfKasPfMVNSEjrA0UFwWpqTE/m9duPGzp0j/D91Aud89BHr//WvVuubA0JrZmZkmRITg7Gd60RNi5rg0957D9oZ9KWz6hcvRgUyL7mk3fXO/v3p73JBixYNhatWkQCY2zxgauZPTCT2CAMSx969AMSEHxZqNJqmPold2G9v5syZkUBLDV+/hn/9NQsXLjzofmafD7+ioAeURYtwhCdqPxZefvnlSBqbdTRXYtu5Wl0GQ5d3uVAaGgiER1FOD9+3KzrTIuH99+GJJyJ/Nobvn839wJvpkpObWuX04Oji0uGRAaEkHaH33nuPL7/8kkmTJjFhwgTOPPNMFixYEGlzfzJx//gjJsD2i1+0uz6qb1+0gL+Hajxiq6sJabXQ4qaVefrpANS2KAx2VmO4wJYSDgjVhARiOtlk1OFwkBwKoWsRkPmjo7EcRrOlmP37KWxnjrKho0dTCNStXt3hvls/+ACAzAsvbLU8KVwoaNiypdPpOCw1NaS63TR2UPvi69ePtNpaRHhi9p5UFw74zS3yiyEjAw1Ql5d3wPb1+/eTAhiGDWu13DZuHGagfO3azp24uhoVID6eQHIyscd4kJ+uZnO78beoXXYajejaCWrHjRt3wGvs2LGsW7euaxJSXU0QIjXdzU27PR0033Xu2BH5vaGdZnHtUUpK8CkKy8I1PL4PP2y1vjYnhwCQ0uIhmZqWRkowSKDN9CX28PXkoyFD2AQsvPXWI+6Tbtq0iQKLpdXopq1MnYoFqPnPfyKLct94A4CMq69udxe1Xz96+3yoRzBvqz8cOCstHpbUGY1ojlGLkaoWeajl51fR5n8fCASICYWoaVGDu6+TzYWPJVVViRWi1Xy+brP5sB4Ydobe5SIUDjqbB1ur3737oPs47Ha44QZ45JGf0hZ+8BHXZuTouHBNo/8EnE/1ZCUDQkk6Qs1NjlavXs3atWtZuXIlL774Ypc0eTrRqMuW4QP0Eye2uz4lHCjmLVjQjalqUl1dTW+vF1dKCrQYJS0mOxunouA4gsmw3fn5+AFduLZLm5JCjKpCJwpMhXl5JALWFk1zQvHx2Dpbw+hy0a+2luqBAw9YlZ6ezi6rFc369R2nffFi6oAxbfrUZJ5+Ok6gbuXKzqXjMAXChS3DWWe1u1495RQGC0HNcdCPUOza1TTya4ugPS48MmptuP9mSzXhzyxu0qRWy5PD77Xy++87dV5vSQl2rRa0WpTMTJKCQcQRFMJ7SmwgQKhFkzuPxYKxnZoNh8PBDz/8wLp16yKv9evXM7bFABdHI1BWRqNeH2mqZujVC4BQBw+kfOEgfzlw2qpV7Joz55DnMFZWUmsycclrr7E6NpboNjU9gZ07qTKbUVoMHqXNziaDpiaqLbn37uVN4DmDgf9TFL5Zt4533nmHKVOmHNYDRhEMMrS4mOKDNHkdfu217AGK/v73pn2EQDdvHvtiYkg65ZR299EPH04UULJmTafTElFaSqNOBy1azrisVvRd2IewpeoW175NLa5lbWufq0pLSQTsLab08O7ceUzSdDiqCguxAsYW0zgEbDbMhzlP7aGYPB6U5u9qQgIurRYlnIf//e9/M3z4cEaNGsWzzz4b2eeyiy766QDhKZu8eXn4gMQ296PU8EBhZUdwf5V6hgwIJamrrF0Lx0kfqO6WmZPDnrQ0MLc/1fCwyy4jABQdognPsbB9+3YmAGLUqNYrFIUamw1/i9qBzvIXFNBgMkUGX9Gnp6MBfJ1oblm7di0aIKZFetTU1KYpMDox8l7Dp5+iFwJLB9MReMeNo1d5OcEOBvNI27KFTdHRKG3mGxs0ZAg7FIXgkRT6OsH1/vtsA7LPPLPd9boLL8QINHz55TE5/+GIKimhKi4OWnxGyeF0u9tpUihWr8ajKBjCTXabaXr1wq3V4tm0qXMnLimJ9B0y9euHAbDv339kb6KbNTY2kqSq6FvUuPhstnYH7Hj66adxtNME8eGHH+6StOjKynC2rCELB4RKBwGhKCrCDeTOnEkD4Hr11UOeI6q+nsbwOVwZGcS2+b7FVVTQ2KZ5dNJpp2EAdrZ5QODfvZs5Wi0bN23ijjPO4K8+Hy//4x8sX76cN8K1d51RMHs2qaEQuhZTLDy27LFWte6paWlsHTuWEVu2kPP668yYNInzvV78B2muOyh8vNxOfC5tWaqqqG/RHw7AGxeH5Rg1JbzmjTcYB4wDbr/4YsYNH95u7XPtjh1oAN2YMTB3LjsTEzEc437unRmVvCY8Yq2lxUjMSlISUX5/l3W5aGxsJDYU+mkgGI2Goqws0sPXmpajtlosFq6++mrcbjei5Xd57VrYtAl1/37K9Hp0BkOrc2SGmx9XtvMArSMdBaJS95ABoSR1hWAQJk5s1STxZOHatIlxDgc155/f4TY6s5n8mBj07QzPfqzl/fgjowBry6ebYd6hQ+lVUYH9MAsnsWVl1LfoA9g8mEt9J25+nnDzwfgWoxI2zxkmOhGcel58kU3A2A4GLur1xz+iB3L+/OcD1oVyc+lTVUVuO6MJ6nQ6cjMyyNy+Hbp6+pTaWmyLF/MuMCzcrFJ5rPXALBlTplAI1PRwk2shBIPq6mjo06fVclNKCqUaDbTTpDZ961b2p6VBm7kdURRqk5OxdCKoE0Jgq63FG25hEB3+H1UfRoGqJ5Xm5BAHmFrUMnlSUkhrp+b7iiuuIK7lfKVuN7z3HpPb1LAeiVAoRGp9Pc6W1+LkZAKKQqCDaU00xcVUGo3c9dRTbMjKwtaJPp+xDge+8CBVmoEDSfX5EOGmoGogwAink8ZwLUkkGeHaqIpvvoksCwQCWCsrMYb7pCdPnoxJCMrWrDmsPulej4f9d97JZmBMi4FKlhYsxR1oHZQPfO01chSF4XfcwXNr1vAjMOAgBfCYAQPYFxeHbcGCw27S3beujuoW/SgBgpmZpLtcTSMadzG3x8MnWi3rgByfj/mNje3WPteHm4XHDB4MN95Ifb9+xBzDkbDfe+89pkyZwrvvvsvy5cs7rAF2hb/vCS0HBcrKQidEq7kCj8b+HTtIB6wtm7hPmsRpXi8F+/cfMEfmtGnTuPDCCyltef5f/AJGjyZt+3bq2gT8AMkjRuABnNu2dTpdHQWiUveQAaEkdYE9774b+b2uk4MS/FzU3H8/lUDGjBkH3c579tmMrari+26uAbIuWIAC6K644oB18VdcwQjgx08/7fTxqquqGOB2I1oU9hLDTWIbDtJ3r5l+2TIKzWa0LWoPep93Hn4g/5NPDrqvWLGCtK1b+bhXL9JaNClq6dQLL2RdUhKp770HLZrriVCIsl/9ikJg9FNPtbtvzRlnYA0EULu4L4149llCqsrClJTI0OsAgdBPfani4uMpGDWKQRs3Un4Ug2ocrcJVqxihqgTbadqal51NVk5OZL4ugKJFixjvduO98sp2jxcYNYoxHg+5hxiwoaqqisxgEE24L05CuLaxIVxwPd415/3YM86ILPP16kU/VSVwiAcM9X/5C/z2twRee+2o07Fn2zaGqSrG0aN/WqjRUBkTg62DAaSii4qoDT/g8Q0dSm+7HXGQNLtdLgb4/YTCTTOjxo3DAFSEa/7WP/MMcYDxl79stZ/Spw+1RiOmFSsiyzbn5DBYVXnlggv48ssvmTF/PhOAC37968Pqk/7FeedxDvDDJZdgbBFE2n12nP7WzXZHjBnDqY2N7Jw2jfx77mFYaSm6Q4zI6bjpJs50Opl7332dSg/Aj198wWC/v9VcdwCWM84gVgjKV63q9LE66y69np0JCTSOHAmAEu7j1rb2uXnwoMRwH09j//6khULYj9FATs2jkr/00ks88cQTvPzyy+3WAKvr1lENJISbqAMo4XtNsIuaX+5bvBgNkNziAUzmNdcQC2z+4IPWc2QC5557Lq+99hoJPh97gJb1lAM8HvztDCanaDRUGo2EwoMKdUZ7gejVHfRrlY4BIZ3QGhsbBSAaGxt7OikntR/OOEO4m553im0zZvR0crqN+sknQoB4pm/fQ29bUiL8iiIeBDF9+vRjnzghhL+6WpTpdGJN797tb2C3C4eiiPmnntrpYy5+8UUhQFS89VZkmc/nE7tArB816qD71u/eLZwglk+Z0mp5KBQS35tMYn9iohCq2v7O+/cLZ3y8WA3ii88+O+h5Fr32mnCAKOzdWwS/+06U//e/YnOfPiIE4mwQagfnmP/VV2IDiMLkZCGCwYOeo9O+/VaENBrxIIiXX345sphZiFp3batNK9avFz4QL0dHi40bN3bN+Q/TtyNHCjuIhuLiA9atfe45IUCsvu46IYQQrpISsS82VuwDYa+ubvd4gQULhADxyHnndfi5CyHE0i+/FAEQZbNmNe3n9QoXiOW//GUXvKtjb+HYsaJOUUTI54ss2/T0003XxE8/Pei+O202IUA44uKEyMk5qnR8/vvfCwHCvnJlq+WbJ0wQeYoinA5Hq+XlpaWiEsS6Cy8UQgixMfz93nWQNG+bN6/pfT3/vBBCiILt24UfxMKLLhKFubkiB8QOq1WoodAB+26YOlU4QHz46KNCCCGev/FGIUD4581r2kBVRZ1GI74cNky4XK5Dv2GfT9ROny6CIJaecsoBq/u91E/k1eYd+jiHEHA6RX5UlNgN4rHf/15s3bpV1NTUdLj99m3bxIdWq3BqNCLYZruqPXuEF8QHI0ce9DtxuOpqa0U1iB/OP1+IQECs+dOfhACxZ+nSA7b9rF8/UWE0Rv7e/corQoDYcoi8eqTOPfdcsbRFOlRVFd99950455xzRIuFIt9qFUtTU1vtm7Nhg6gDsffXv+6StLx++ulCgBBVVT8tdDpFAMS/Jk48cIe9e4XqdIo8s1kszsoS9ZmZQoAoSEgQAoRr7dp2z5MzcKBYr9cLr9fbqXQ99dRTIj8/v9WytWvXyjJuN5EB4XHg1VdfFdnZ2cJoNIpRo0aJFStWdHpfGRAeB1RVFJrNYmFWltig0YhthxFcnLD8fqE++6wIaDTiQxBLvvuuU7t5pk0TPhAXgujbt6/weDxdWiBoxW4XeQMHikYQWxcs6HCztaefLtwg/nzuuYdMi7OhQSwymUSFTidEm5vc7IQEUQ/CtWdP+zs3NorcpCRRDSL3++8PWP3ODTcIAaLkiiuEsNt/WlFWJpyPPircJpPYC2J4XJzweDwHTaeqquL5K64Q+8IPKQSIMhCXgbj11lsPuu+Hd97ZVLjs1Uvkbd160G0PyuMR6l//KkI6nfhaoxFXXnppq9XMQuyv23/Abh8MGSJCIG4F8eYbbxy7/NGOgtmzRQDEt5Mmtbs+EAiIr/v3FwLEJhB1IOpBvP/HP3Z80GBQ1Kalic0gbrjsMrG1nc80EAiIR0eMEAJEaPv2yPKc6GixJiPjqN/XseYvKxOVGo1Y3SYgCdjtwqko4usRIzr8Pzry8kQIxJMg9imKsMfHC3GI/N2Rur17xU6dTuxt58FK0fvvCwHiP20KvJ/edVdTABm+RnirqoQPxHcXX9zheZZOmCCcILzhhwChUEh8AqIRRHn454Y5c9rdV7XbRVlMjKgG8SqIrSCqjEYh3O7INj+ccoqoBfEQiG/nzBELv/5aOJ1OYbfbxZfz5omydevE5r/+VSwbO1ZUGwwiAOJZk0m42gS7QgiR9FySyCnP6dTndyj+HTtEXWyscIJ4CcS5IC6dMEH8+913xV/+8hfx5JNPir88+KAYCWJO+LpTGn7A0dbifv2EA8SXDz98yOtZZ302a5YQIGrfe08IIYS7qEiEQLzd5n++f+9esR3E7tGjI8sc+flCgJgzYUKXpKWt8vJyMX36dHH66aeL8ePHizPOOEPce++9ory8PLJN4cyZQoCYd++9rfZVVVX8Ny5OVBsMwtfOg6rDUVZSIpaAKEhLO2Dd/rQ0sdhgEPX19ZFlnjVrmh5YhP+fm2fNEqKmRoiVK0XQ7RbOXbs6PFfxU0+JEIjXb775iNMry7jdRwaEPezjjz8Wer1ezJkzR+zYsUNMnz5dWK1WUVhY2Kn9m78ss2fPFnv27BH/+9//xNq1a8X69evFN998I/bt2ydUVRX79u0TgUAgcuFVVbXV62BP+qSOhUIh8dyVVwoBYv6dd4oPMjNFjdHYcS3PiayxUYjly4WYOVO4kpJECMRfQTz8wAOdP4bPJ9SLL2666YUDlCgQF198sXj77bdFSUnJ0aXR7xdi40Zhf+ABUW+xCAeIt6655qC7qC6XKMnIEC4QL+p04u9XXSVeeOwx8dxzz4m//e1v4tFHHxVfzp4t1s+cKVaCCIDY/PjjBxxn96pVoghEqUYj/jN6tHhg5Eix6oknxJY//1l8d+qpohyEHcSrHTzlLS0tFfcajcIHIqgootxkEg0mkxDhc74OYsqIEa1u1gfjdrvFPXfeKR676irxyu9/L7767DOxf/9+EQgEDrpfMBgUC667TnjChdvnQfw+KUl8/MQT4suPPhLr168XK1asEJWVlWLXrl2ivLxcFOfni8KtW0XVkiVixR13iA2jR4tKEKHw/hatVuTlta6lYBZic/nmA85fUlQkNk+aJASI5SD+H4iBiiKsWq145JFHxP/+9z+xa9euSIBRWVkp/H5/pz6T9qihkKhculSsGTdO+EEss1hEXcsn5234PB7x6MCBYg6Il2JjxdcdFPxb2bpVOLRakQ/iPhDTzzxTzLznHvHHGTPEiKws8SurVeSDqB48uNW1Y8nUqcIDYscnnxzx+zumAgHR8OmnojAmRlSA2Pq//x2wyfIpU0QIxD+iosT2efNEY0NDZJ0aConvRo8WXhBbly0Tf7z0UhEAsX/atMg2oVBIhNqpaWtWvmuXaPj2WzFv/HhRoiiiWlFE3ldftbvtxilThACRo9eLz1NSxML0dFENYk90dKsa8SWpqaIWxDOxseLLm28WK2fOFLMvukis+81vRE5WlhAgvj/jjFbH/v7TT8U/QPwNxIJ//vOgH1vtzp3i2759xU6dTuzu3Vu4V61qtd5fUiJ2DRsmwr3shAvEXhBFIJwtH/IoivgiJUX88eKLxddff93uuUxPmsTKwpXtrjsidXXCed99wh0XF0mHC0Rl+BUML6vXaETBQw91fByHQ+QlJIggiK9BzOnXT3z6m9+ID+65R+R88YXYvGaNeGzWrMg9wel0ioKCAuHz+URZWZloaGgQAZ9PrFy8WHz12mvim/vuE+sNBlFjMLR6WLdv0CBRBOLZPn3EjfHx4o+JieKH6GgRBOFuU3NYMHSoKATx5kUXibVffy02btgg6urqhN1uP2gePJiKigphb/GAL9icz0IhUb1zp9j28cdi3d13ix979256YJGU1Gr7Zp/9/e+iHEShRiM2XX+9+N9f/iIad+8WIhQSfr9fuMMPFLxer3A6nUJVVVFeXi7cbrewl5eLbfPmiVfOOkt8bzCIIIjcF1444BxVf/ubECD+Gxcn/jlunPjX1Klig6IIAcIHIj8tTYhD3D9a8flESXq6aACxaMwYMeeaa8SsG24Q33/zjVi1apXw+/2ivr5eLFmyROzfv1+sW7dO+Hw+sWfPHrFkyRLx0ksviY8++kgGhN1EEeI4mPTpJDZ+/HhGjRrF66+/Hlk2ZMgQLr/8cp555plD7m+324mJieE1wAgImtp3ixa/KxoNQVVFE/6pArboaBrsdnQ6Hf5gEJWmidZtMTFUVVcTCIXonZ1NVHQ0DqeTyupqevXqRUVVFQmJiYSEAI2GmNhYyisq8Pp8ON1uUtLSSExMpLS8HFt0NBlZWbjcbnx+PzqDgUa7ne07dzJu/HgKCgvJ7NWL6JgYUtLT8fv9eH0+6hoa0Gi1DBg8mEAgwP6CApwuF6PHjMHj86FoNNTW12M0m4mLi6Oqpoak5GTcHg9CUVCFwBYTgwBiYmNxeTwEgkEKioro268fgWCQ6NhYAsEgaRkZaLRaCgoLCYRCoNEQGxdHIBgkymYjEAphMBrxejz0792b3bm5lObnI3w+NqxcSfmqVdwNmK1W0mtq+ObBB/nlP/7BnMxMBt15J7H9+pGzaxf9Bg4kNjGRjZs3k56VhT8U4ptvv+XMyZPJyMzEbLGQmJjIlq1bMRiNjB03jrq6OoqKi3E4nWRmZeFyuUhITKRf//6sWbsWq9VKQUEB8eH56FJTUyksLCQlJYWSkhL8LheN+/Zxxrhx7N62DYtej+rzUVFcTEl+PiGvl1HDh+NtaCBWp0Pr87Hmu+8Yf8oppMXEsH3FCrJNJjK0WpTiYtLDw0zXaTR8oaq8ZbEwY+5crr76ahRFOSBvdkhV4cMPcT/yCJbw4A2FwD6ghqa5yxoAdzCI3mqlz+DBuPx+PB4PWamp+N1uTDodqteLxukkUF5OoqKQ4HDQH9ADdmChXk/J7bdzz9/+hq7FdBPtcrvZfcMNJH/+Oc1DXXjCryigefy09cDaK67g7s8/b/cwO779lqKrr2ay00nL8VbLgHmAd/p07nruOQxtRmRrtmXLFh6/5RbiN2ygr6IQnZTEiqoqFgN3/eUv/PGPfyS6o/nFutj+RYvY+Yc/cFpBAektlnsBPxAAFGgaIr3NvnuABcCn8fHYRo/m//7v/zj33HNbbaM8prD8puWc2bv9UUdZuJCau+8mscW8fxU05ZWi8M8KwAcIvZ7Mfv1o9HjAYCDWZmPrpk1kJSczZvhwAnY70Xo9JlXFXVODzuUi2uMhRQhi7HaShKAe+DQri8lff82gDobfPxr2nByc995LyqpVaNsZLbCmXz8SlyxpNTBVzf79VA4ZQl+/nx+tVkoTEgglJtKo0WBNSSEqNpao2Fg8wSBLli0jOT2dXtnZRNtspCQnYzIaKSwowO1yodfpyM7OZteOHSQlJhIKf599Xi9pyck46upIiI6msqSE9IQEfC4XVcXF4PcTFxWFNhTCXVNDXCgEtbVQUsIwRcEqBJuB6hdeYOr99x/wvqorK/nP0KHcXFeHmaa8YzeZCKoq1kAAmxCsufhiJi5YQCAQ4PPMTK6pqiJfp8NhNlPv9aLVaEhJTMTlcKBRVaJUlRjA4PFgCxdhnMD69HRS5sxhaDsDSAGooRCvnHsuqStWMEBV0ZvNlPXuzYC5c+nTYhCP5Z9/TulVV3E50LJnnR/YqCjsOfNMbliyBE2bkXq7mre4mK8ffZSd8+eTHAySkJVFxtChbHG7YdAgbn7mGbQHubb5Q36MTxr55vpvuKD/BV2bOCFg1y58mzdTsHIlmXFx6LValu/YgX7YMCbPnInSdpClNlSvl3mXX07st98yVqPB1s73IgQEW7xUmq7HBpqu9S0V6nTU/v3vjLr77p/OkZ/PvjPPpF9JSWTQjFyNhvLbb+e8V15pnZ78fComTya9uBhourbU0nQfCCkKerOZQLjsowqB1+vFYrGgAGaLBY/bjcPpRFEUYmNiUDQa6uvqMNJ0jTSF020EzG3SvwUov+oqfjF3LtaoqAM/K1Xlm1dfxTJrFhPr6mg51JA3nMagTkcwGGwaPVVRUITAROs8vN9kQv/ii2RNm3bAORCC/OnTscyZQ0p4MKgyo5FtDz7IkGuvJatv31ZTN3WGv6aGVWeeyWm7dhHXItzwhdPsDf8OoKVpYBMtoAun+3fAf2gaGbW77n0nKxkQ9iC/34/FYuHTTz/lihYDXkyfPp3NmzezfPnyQx6jOSAsGDQIjduN1WIhGAhg0GoJBYN4PR4QAqvFgtftxuf1EgoEMBmNaDUatIoCqoqiKKiBAAhBKBgkFAig1WpRVJVAIIAGMOh0hEIhDDodCjRtEw4EtIqCUNWmv4VAoemL3fKnQtMX/eckAFRlZ5M4bx7GkSMJBgJ8lpHBr6qru+29Nj8AgJ8eBMBPF9bD4QPc4VctUG8wUOT3UwpsB7QjRxIYPJhRY8dy7bXXkp6efrDDHVpeHsHly6lavpyqdevQ2+3o7XaiAgGE348eMGk0GIQARSEgBEFFIQgIjYbaYJBqmgLJYsCelkb8mWdSN2AAd82Y0Xokw06oKC4msaKCze+/T4yqkmSzYUtLo8TvpyozE7V3b8aNH3/QAFgIgQgEKFi9mtL8fHzR0fQ57TSys7PRdrIAGQqF8Hg8RLVTMOhuQlWhqIiy1asRxcXkrliBTgjioqKIjo5mT1kZ9T4fDYEAAydP5rQbbiC2Tx8URYkMEHDAMYVA87iG+dfO55KBlxw8AcXFsHcvFBXh3b2b/BUr0BQVEWO3Y3U60asqBxuHMQh4FAW3EHgBt6LgVBSqNRrc0dH44uNxjRzJlS++SGKLeQePGbcbcnII5edTk5+Pz2JBO2QIGRdeGJnGpCVPRQWbpk0jfssW4kpLsQUCWI99KoGm60Fz8B9QFAI6HVWqitNopFwIvH37Yrv0Ukb8/vf0HzDgoMfa9eOP/HfGDCxVVcT6fETbbJiTk4maOpUzZ86MbBfwevnhvvuoWrAAR0kJKVYrRrOZusZGQkBicjI1gQANqoohKYkGqxXzyJGcP2MG/dqM6nk0VFUl6POx4ZtvMOn1FFdUoEtN5bwLLugwXx9vat21pLyQwkdXfcSvhv2qp5NzcEIgKipQy8vJWbgQ+969xFks7N6+HavJhM1sRgeIYBB3MMjanBx0FgvCYCBl8GD6nnceZ0+bhqJpf6zE0vx8Nn//PaPOPJO08KjOHaXDuWkTue+/T2VuLmpVFbtzc4mLiiIpLg6TVksgEGgq72i1hEIhGhsb8fp8WC0WQqEQLrebpMTEnwJGoxGPECRnZvLj5s1gNKKJiqLI7yf11FOZcMMNDJg4kf4HS1cL2zZsoOjbb/Hv24fN66WioIC6khIy4uNRNBoa7HaiYmKIS0ggpNejTUnBFxPD8Ouuo1cn5/oUTieEQijR0e1elw6X3+vFs20bxspKdixahL2sDEd1NRZFob6igiibDZPFQlVtLW6vl34DBzJx2zYqRo4ka/58GRB2AxkQ9qCysjIyMjJYvXo1p59+emT5008/zbvvvsvu3bsP2Mfn8+Hz+SJ/2+12srKyjumXJRQKtVuQFUK0KhgHg8GmGke/H71ej6IoNDQ0NAWbqkooFCIxMRF7YyNGg6Fp5EetlqDfT3FREV63m4L8fOyNjVx95ZX8uHYtifHxmE0mGurrqaqooFdWFo7GRpKTkhCqSnVlJUaDgfx9+xg4YAA6rRZUFZ1WS2N9PTt37MDn9dI3OxuhqqjBIOlpaQQDAXbu2IHf60Wn0WA2mcju3RtUFY/bjcflQqfVUl5WhlGvx+P1YrTZaPR4OH3yZFKystBaLGizsjBYrQd8LrmrV2OorKQsNxebXo/NYqGuqgqDVku0xYJOUbCazbicTvQ6HRUVFfi8XnplZaHVaNiwYQOpKSmYTSZ8Xi9xcXHsy8sjMSGBqsrKpkBBCPpkZ+Pxegn4fLicToQQRNtsxERH4wkE0PfuTUVdHVFxcUQnJqIYDMQlJ6MzmwlpNFTV1+MMhUjo1Ys6r5c+AwZQUVFBTU0NI0eORK/XU19fj8lkwufztRohsju0zWPtLW/+PRAInDAFtZOdN+jF/JSZj676iF+f8uujP6AQTVO/+Hzg9+MNBiksLyc2KYm4xES0Wi3r1q1jwoQJqOGC3IlINHXzQBMIgNOJCAZRQiEIBmmsrUUEAjgaG9m4aRNen49BgwczaPDgppYXdXWEVBVVCDxeL16fj2GnnEJFZSVevx9bQgJl1dX0HzqUkFaL0+Ohtq6OoUOHEhMTA3B4LQG6gM/nQ6/Xo+mgkC8dXHFjMePeGsfTZz/N7077XU8n52et+T4U+Y7KPHv0fvc77F9+SUx9vQwIu8Hh1f1Kx0Tbm2xHhWCAZ555hscee6w7khXRUeGpbRqbm+W1bA7XXgARHS5cNDMYDJEnu8PCk5kCnNGi2U9Hs/s1Lx/ewfqRHSwH6Lpnya0pisKI8NDrg6+6qlP7tK2XyGhnm849Ozz0sZvpgV4t/m6eVS87O5vs7OzI8uZaNnMHk84fSx19D1oub/5dBoMnDpffhVVvxRf0HXrjzlAU0OubXjQ1zRoUniOu2cSJE4GOr2cnAkVRmvK70QhGIy2/HTHhyddjgaypU1vtZwHiOzhmTIsJsPt2ZWK7gPEQTQ6lg3MH3MSZ4vAGD5wLUupazfehyHf0KNW6a/nvzv9y2+jbjvpYJ6xbboH6eujmqapOVvIRRg9KDD+5rqioaLW8qqqKlBaTXrf04IMP0tjYGHkVh9u6S5IknSjcATexplj8oYPPTydJ0pHzBD3Em+MPKyDMrcxlU/mmY5gqqTO2V2/nDwv+0NPJ6FmTJsG//93TqThpyICwBxkMBkaPHs3iNpNAL168uFUT0paMRiPR0dGtXpIkSUdi1rJZPVJ74A64iTPH4Qt1UQ2hJEkH8AQ8xJkPr4Zw5tKZPPL9I8cwVVJn6DWyxYvUvWRA2MNmzJjBW2+9xb/+9S927tzJfffdR1FREdPaGwFKkiSpCy3Ys4Dixu5vZdDclE3WEErSseMJeg67yajD58BmtB3DVEmdIR+WSd1NBoQ97JprruEf//gHjz/+OKeeeiorVqzg66+/pnfvjnrNSdLxL6gGezoJHcqtzOXiDy/u6WQcF4rtxRQ2Fnb7eSM1hF3Vh1CSjlOBUABVHDidQnfwBH4KCC/84MJO7RNUg+g0cniJnubyu3o6CdJJRgaEx4E77riDgoICfD4fGzdu5MwzO5iXS5JOAIFQAP0T+uO29sfpd/L13q+75FhjZo+hylXVJcfqbr6gD7vPTlFjUbefW9YQSieLyz6+jGdWHnpO4WOh+cGLO+BmYd7CTgWmceY4cspzmP7N9C5NS4m9hJ3VO7v0mD9nrsBPAeG60nU9mBLpZCEDQkmSulSjrxGA7VXbASh3lHPzlzf3ZJJaaW4+tbvmwGldDtfG8o0UNBQc9XF6Qq2nlqzoLOw+e7efu3lQGdksSvq521q5FU/Q0yPnbh5UZndt07XO4XMcch8FhWp3Nf9c988uTcvqotUs2LOgS4/5c9ZcQyiEYPxb4zkWM8R9n/99lwfpf/7uz116PKn7yIBQkqQuVe+pJ9mazM6aphvN0vyl/GvzvwiEAj2csibugJubT7uZdza/c9THARj/1vgj2n9P7R5e/vHlo0oDwMg3Rh5Rk7QGbwPptvTI++jOZm2ugEvWEEonBavBGvmOdbfmJqPND63qvfWH3EcgiDY2DVYXUkNdlpZaT+0J25qiJ7gCLpIsSWyvbnqwWuOu6fJznP3vs/lu/3ddcixVqHgCHv66+q/Hzb1eOjwyIJQkqUvVe+sZlTaK/Pp8ADZXbOacPudQbD8+pkhxB9z8otcvyK3KParj5NXlMSpt1BHvP2fjHJ5e9fRRpQGaaiAKGw6/H2C9p550WzqeQFPtRfxf49laufWo09MZkRrCE6AP4bF4Mi+dPLKisyixl/TIuT3BplFGS+wlpFhTqPccPCD0BDyYdCaijdHYDLYubf1Q666lyl2FL+iTD4I6weV3MSBhAD8U/4BZZya/Ib/Lz6GgYNAaDr1hC2WOMjaUbWi1bE3xGmYumclpb54GwK6aXV2WRqn7yIBQkqQuVe+pJ8OWEWmaWeGqYFLWpEiA2NPcATdWgxWdRndUBZO9tXu5a+xdXDbosiN6kp7fkM+wpGFd8hR+W9U2oKnQ1dnCZ8saQiEEdp+d7/O/P+q0dCQQCtDgbQB+6tt0IhQMpy+cToWz4tAbShEfb/v4uB5YqjtZ9JZONY3+357/8fG2j7v03M19dT1BD/3j+x+yhrDKVUWyJRmbwcbYjLGRpqZdoc5TR5WrigeXPMiV/7myy457tF744YWeTkK7XAEXA+IHsK1qG2f3OfuAIKwrRBujsfvs5JTnUOms7NQ+83bN46Pcj1ot21Wzi0+2f8Lu2t1cPOBiihqL2F61nb+v+XuXp1k6dmRAKElSl6r31pMalYov5EMIQb2nnvGZ49lRvaOnkwY0FZIsegvDkoZF+jkeiT21exiYMBCrwcq/cv512Pv7Qj5OSz2N33/1e0578zTu//b+Tu3XsjlO8+/NgdZ1n1/HjfNu7HDfMkdZq32aA8KX173MpYMuZWXRykPWIhyujWUb2VS+iSdXPBlJW9s+hAvzFh63tYVbKrd0ez/RNza8cUyD82Pt+R+eP6Ja658bb9CLUWfsVC3zt/u+5YHvHujSeUHrPfUkWBIAGJgw8JDNDvfX76dvXF+ijdFd3r+41lOLw+fArDOzsXxjlx33aATVII98/8hxOaJnnaeO4cnD2Va1jauGXMX3BV17PXD4HGREZ2D32flo20d8u+/bTu33Q/EPB4xMvb9+P/kN+Tx+1uPcOupWSh2lfLbjM55a+VSXplk6tmRAKB1XfEEfTr8TAH/I3+pG2lFtghCiw5toSA0dtIArhEAVaodPs9veyDtqG1/YUMgHWz/gzQ1vsrVya48NM94VXH4XxY3FCCEQQrC2ZC0rClcwZ+Mc5mycw8wlM5m2YBq3fHULv/vyd9w478ZW/RDsPjvJ1mS8QS+zN87mf3v/x7iMcawrO3YjpQkhyCnPobixmN01u1lesJwadw3LCpYd8D/zBD1Y9BbGpI/hh+IfDjjOwfxY8mPk9z11exiQMID8+nxuW3Ab4+aMY33pekJqKPLZhdQQ/pAfh8+BN+hl0b5F5NfnE1SDKCiMShvFv7f8mxJ7CWtL1/Lyjy/zl6V/4YOtH7CycCW7anbxTs47PLniSS758BLOf/980v6WxiUfXsLumt3UuGsiQZ3dZyfGGEOf2D7sqN7B7prdPL3yaX4s+RGn38m3ed+S8fcMDE8aUB5T2FG9g7SoNJwBJ9MXTifFmoJAMOHtCZQ7yo/q/+H0O1lZuJKX1r7EHxb8gQeXPEi9t55x6eO4b+F9uPyt+xC+uv5VluYvZX3perxBb5cEE83/h2btPQEPqkFCagin34kQgp3VOwmqwVbBaUFDARPfnthqv311+wiEAniDXmrcNUf9ebX1/tb3eWTZI5Fr4ZE4kprnttetBm9Dh9+JOk8dqlDxh/xUuaoi/0shBHtq95BXlxfZNr8+HyEEDp+DOk/dAYObOHwOLnj/Aq757Bo+3/l55Jq+qXxT5Lj1nvrI/8Xpd1LprPypFYKz4oB0Ov1O/rPtPwek2xf0tdunr85Tx6R/TWJZwTKcfiebKzZH3o8QAn/IT5mjDHfA3Sp/1LprKWwo5O6v72ZP7Z7Idx6a+n0lmhMjxzmYwsZCBiYMxPyUmU+2fxJZ3nwdaanUXhrJc76gjzc2vMHXe7+m3FHeqrleraeWBHNTQDguYxxvbnwTl9/FJ9s/YX3p+sjxm6+R++r30T++PzajjdSo1CMKlHxBX7vvtd5b39R81VFCv7h+nQ42O8rHJfYSSu2lB9y7G7wNnDX3LDaWbeTNDW+2Ok9zmaL5/7OzeicBNcCe2j2c/vbpHX7ffEEf3qA3kpaQGmp1X/EGveyv348n4MHhc1DtqiYQCkT+Ry3LGDXuGgoaCsiry6PGXcPmis04fA6cfidBNcjGso14g14qXZWcmnoq26q2kR2bjSfgYWHeQqDpuqUKtdXn3PL39sofbf8npY5SBicOptHXSFFjUaSVSXv7zVwykxJ7Cb6gj3JnOZ6gh/e2vMdvv/gtALlVuTx37nP8+Yw/kxWTxR8W/IFdtbsYnDi43WNKxyc52czPxIqCFeS58xiePJxSRylJliQ0ioadNTsjNTSbKzbjCXhYXric8RnjyYzORKvREggFSI1KZVvVNoJqELPeTFFjEQJBg7eBSmclGdEZkeAp3hyPVW9lS+UWogxRGLQGMqMzKWosQq/V0+BtIMGcQK2nFo2iQRUqZp0ZVaj0junNj6U/EmeOQ4imzusOvwNVqPiCPuo8ddh9dib1mkSVqwq9Rk9IhKh2VWMz2jDrzE2FaUXBqDXiDXpx+p24Ai7SbeloFA0hNYTVYMXldxFUg9R56kiwJFDnqSPRkohJZ0Kn0VHtqsaoM6JRNE3vW2dGo2gQNN0wjFojNe4aYkwxeINeEswJbK/eTnZsNjHGGBx+BzHGGMakj+Gvq//Kb0f8lnpvPR9v/5hdNbsYljQMV8CFRW8h1hRLtasas95MvDmekBoiwZyAM+BEr9FT4azAF/LRJ7YPWkXLtuptxJpiiTJEUe+pJ9GSSKWrErPOjMPvQKfREVSDTMiYQI27Bl+o6bMz680YtUYybBkUNhZi1psjhbUYYwy+kA+bwdZ0XG89Dp+DBm8DFr2FgNpUwLUZbGTHZvND8Q9kRmcyIXMCORU5RBujuXzQ5fxy0C/xBX1kRmfiC/kwao08tPQhDFoDZ/Y+E5ffRbI1me3B7VS5qhgQP4BESyLljnI+3f4pVw65Eo2iobCxkBJ7CTuqd+AL+qj11EbynTvgxhv0sq9uH9mx2SRZk7DoLJQ4SgiqQYQQ6DQ66r31uANuVKESbYwmMzoTo9ZIZnQmb2x8g4HxA7nnm3t4bupzXND/AuCnGsLxGeO5+MOLsRqsrCleQ5otjS92fcGlAy9lYd5Czu5zNlnRWcSaYvkm7xvqvfUszV9KsjWZ6eOnU+4oJ8mSxOTek7lowEWMShvFxLcnMj5zPGadmVhTLJWuSvQaPQJBXl0ep2edzuqi1dw48kaGJQ1jQMIAesX0YvXvVwPwUe5HTOo1iX11+1hbshZVqIxJH0NQDXLvhHsZmDAQk85EnaeOGYtm8PTZT5Mdm4074I4M5nP/xPs5+99nE22M5oysM/jP9v+w8buNZMdm0ye2D+9d8R5nvHMGL/34Etvu2MbzPzwPQEAN8O7l77KycCV3fXMXdp+dek9Tba874CYlKoU4Uxxf7v6S7NhsUqNSiTXGsrt2N4qiUO+pJysmCwCNoiEQCnDRgIv49jffRmopAG6bfxu5VbncMuqWSA2hy+/ihTUvsDR/KdHGaIYkDuHPZ/wZjaLB7rMzIH4ABq0Bs97MmuI1QNNotsWNxQxMGEiUIYpaTy2bKzZj0pkoc5Sxung1UYYohiUNw6gzsq50HQMTBuINelFQEAiseit2nz3ShDjZmszakrVY9VY23rYRf8gfaYIbUkNc+99r2Va1jShDFJWuSjSKJnLd+eTqT0izpbV7ffaH/CzYs4A1xWu48dQb2VC2Aa2iZXPFZsqcZdS4a3h08qMMTRpKvDmeWFMs1w2/jms+u4agGiSoBkm0JOLyu3D4HfSL60dQDeIKuAipISx6C9XuahQUAmqAEnsJBq2BtKg0EiwJhNQQtZ5aDFoDjd6mUYAFggxbBvXe+laFZJ1GR5QhCnfAzZ7aPZj1ZgYlDEJRFIQQketvg7eBKEMUFr0Fm8FGlauKiZkTuX3s7aRGpfLq+ld5b+t77KrZRUANoFW01HpqGZgwkCRLEg6/IxL4GbQGHvrFQ/SP78/czXO56MOLaPQ20iumF/kN+dgMNmJMMZQ7yok2RqMKlZSoFKpd1ZQ5yhiSNIRqV3Xkfd1y2i3UemqZvnA615xyTeR/MOPbGawrXYdeq4/cf4rtxZzf73yK7cX8ZvhvuP1/t6OgsLNmJ2PSxxBSQ9iMNnbX7GZi1kQ8AQ9ajZZkazKXDLiEqz+9mhhjDH8Y/QcGvTIIgBRrCrWeWi4bdBlj0sdQ6ihl2GvDeOmCl0i3pfPGhjfYXLmZSmclZ/Y+k1/0+gU6jY4npjzBzafdzFMrn+KLXV/QL64f/97yb+o8dfSL7wfAyJSRlDpKsegtOP1O4s3xTMiYwAs/vMD3Bd9zTp9zuHLIldwx9g7qPHXEmePYf89+dBodt//vdi756JLIA5B0WzoA8/fMJys6i3EZ43jx/BdZmLewKSAMuHhs2WP8/rTfc+fXd5JkSWJEyghiTDEMShiEP+Rnd+1ucspzOLfvuTj9Tu7+5m4cfgcPTHqAGGMML659kQ23bUAIwaCEQXy15yvmXjaX898/n8zoTPbW7kUVKiNTR+L0O0mPSie/IZ9GXyP94vqxt24vNoMNjaLBarDi9DtRUFhftp6RKSNZVrCMvnF9iTPHodfo0Wq0XD/8eh5b/hibKzYzd8tcJmVNYtG+ReRW5XJOn3ModZRy/fDrsRlsXDLwEp5d/SyNvkaGvDqE3536u6b5WRsK0Wv11HnqaPA2kGxNJsoQFQnEQiKEJ+Ah2hhNSITIsGVQYi+h3FlOrCmWeHM8McYYihqLCKgBXH4XabY0lhcs5/z+55NgTmBV0SqGJA2h0duIWW9GCMFpqaexa8UuVKHSL74f1e5q4sxxPDHlCV5e9zJPrXwKm8HG/vr9pNnSsBls2H12Sh2l9Ivrh9PvpMHbQKwpljRbGpXOSow6I7XuWpKsSeg1enZU7+AvZ/6F8RlNLXcafY3sqd2DN+jlvS3vsbZkLRa9hSp3FbXuWix6C7/5/DcoisLtY25nwZ4F/OPHf7Czeid7avcwJXsKf5r0JwCGJA5hWNIwVhetZnzmeN7f+j6f7vgUf8iPL+hjat+prC5ejV6rp8pVRYwxhoAawB1wkxmdSbmjHJPOhFFnZED8AO477b6jKBlLh0MRssf8Cc1utxMTE8P/zf8/hmYOJacih/7x/fEGvdh9dvrE9qF/fH82lm/ktNTTqPXUMjptNPXeevbX78eoNRISIfLr8zmj1xmY9WZK7CXEmeJIjUqNFHB+KP6BMeljqHHXoNPo8AQ8pNvSI4XyfXX7iDfHE2WIItbUVEjsG9cXm8EWSYtOo8MVcOH0OxmYMBC7z45G0WAz2NBr9UD4aaUaoN5TT0pUCtBUgNdpdOg0OjRKU6W2KlQCoQBGnTEykW5IDUXWK4oS+YyEECiKQq27tlXBtCV/yI9Oo0MIgVaj7fDzVoWKKtTIU+DdtbtZUbiCG0fe2OrYQggEAgWFem89Bq0Bi95Cqb0Ug9aASWdiYd5CxmeOR6/RE2OKwaq3sq9+H1pFS5+4Pk1PCZ2VBNQACeYEXAEXCeYEzHozeXV5xJvjyavLI8Xa9DklWhKpcFYQY4qhoKGAdFs6ZY4yTk09FU/Ag6I0dSCvdddS760npIYYlDgIBQW9Vk9QDVLrriXOHBfpaN782R0yH/rs3DTvJj6/5nOeXPEko9NG8/H2j1GFyksXvES8OZ5ady1vbXqL2ZtmE2uKBeCMrDPYVr2NKwdfiTfopVdML05NPRW9Vk+Zo4yhSUOx6C3UuGuoddcyNGloJAgNiVCnOsSX2kt5aOlDzL18LgAzl8zkuuHXcUryKawpXsNXu7/i6qFXs6tmFxf0v4DNFZuxGW3UuGtw+BzUuGuY2m8qAxMG4gv6qHHX8NDShwAix2yrwdvA6qLVXDzw4lZ5QlEUQmqIsXPGMvfyuWRFZ/HLj3/Jyt+tPOT7aOvGeTcyte9Uvsn7hqGJQ7lk4CV8sv0TnjrnqUihpaO8vKZ4DU+tfIr5184n6fkkaj21XHvKtXx41YeRbapcVUQZoih3lLO1ciuTek2i0llJZnQmZY4yMqMzIyPh+UN+jDpjpya0fnfzu9z05U2EHglx2ceXMf/a+fzyo18yLGkYBY0FPH320ywrWMaWyi1k2DIw6ozsqd3D3rq9DIgfwID4AWgUDUnWJLSKlmUFyxiVNoqsmKymgTO89WTHZtPobcRmtJFhy4g0Ue1MXg6EAjy76lnGpI/hkWWPMLXvVMocZZzT5xzWla7j5YsOHBl2V80uZi2bxcdXt+4DFlSD3PX1Xeyq2cXY9LFY9BYavA2MzxyPJ+AhMzqTVUWruGjARczbNY9lhcsYkzaGBl8DH1z5QeQ4QohIAGXSmSh1lGLSmbDqrUQZopoentTvw6QzRR4G6rX6yHcnqAaxGWxYDVaqXdUkWBIIqsHIdc+kMxFSQ2g1WrxBLyadCWi63nmDXix6yyE/N4AbvriBs7PPpsZdQ6WrklJHKQ//4mEGJgxkXek6RqWNijyE6yyHz9Fq5MuONE8Ar9PouP7z61ldvJpTU0/l1YtepVdML+ZunkuVq4o7xt6BVW+l1lNLtDEab9DLv3L+xbxd81h0wyIMWgNCCEodpQBk2DKAphq87NjsyPn++eM/eWz5Yyy/aTmZ0ZmRwn+cOY6gGmRp/lLmbJrDm5e8yfSF0/lq91e8/cu3eW/re0wbPY0JmRNIs6Xx6fZPeXndy7x3xXsMSBgANDXBc/qdlNhLIgFMsjU50txyWNIwrAZrq/ff4G2gzlNHZnQmv/r0V1w5+Eo+2/kZ86+dDzQ90Dj3vXP5f0P/H9PGTENRFBq9jWwo20C5s5zdNbsJqAGePfdZNpVvosHbwLd53/LCmheY3Hsy9024D4ffEbnPbqvaRq2nllNTT2Vy78l8sesLUqNSGZ48nE+2f8L4zPFY9BY2lW+i1F6KJ+jh6qFX8+LaF/n+xu8JqSEW7VvEOX3PodJZiSfooVdML8ocZWRFZ9HgbWBXzS7GpI/BrDdH7k/J1mQ8wabBbzSKhgZvAyE1RJw5Dm/Qy+J9i7l00KVoH9ey685d7K7dTbw5PlJ+WVW0iquHXs07Oe/wxsY3eO2i15jw9gRyb8/l7HfP5qULXuKs7LOIN8dT464h3hyPJ9gU+HXm+qYKtVX+LrGXRMpFzTV3zeubH7CoQsWoM0b2ueWrW1hftp51t6zD9JSJ8vvLSY1KbXUeu8/eajRYgYg8KG5+YFrlqiLJ2nQ9EEKwpXILA+IHMGfTHB5e+jCLb1jMJR9dwjXDruH1Da/TN64vt426jetHXE+Zo4z+8f0JqSGSrEl4Ah5cAReJlkTy6/PZULYBk86EL+TjqiFXtbq2bijbwII9C7hn/D3M3z2f8ZnjGZw4mDpPHUvzl3Jev/Nw+BxNg5oFPWyp2EJGdAb1nnpOST6FSlclDd4GHvjuAW4bdhu/HPlLGhsbiY4++DVAOkpCOqE1NjYKQDQ2NvZ0UqST3IXvXyhUVRV/Xvxn8WPJj+KaT68RF39w8QHb2b12UdRQJLwBb7el7YL3LxDBUFAIIcTdX98t9tft77ZzH8qRpuWVH18R1/33OvHQkofEg989KFJfSBXPrXrusI/DLASzENPmTzuidByuUnupYFbTreeSDy8RQghx6YeXdsu5O6vGVSPOmnuWyPhbhiioLxAvrX1JjHh9hMgpz+lwn4s+uEioqtpq2Vsb3xIvrX3pgOUd2VG1Q+gf14uHljx0NMnvMVsqtoi+L/UV83fP79F0eANewSzEh1s/FHNz5gohmq5PLr+ry84RCAXEZ9s/69T/9qIPLhKxz8aKEa+PEO/kvNNlaehIjatGjJk9Rlzw/gVHfIzN5ZvFpLcniX4v9Yt8X4+EqqrC9KRJPLfqOeEJeA76HepKG8s2dnpbp895DFNy+ObmzBUT35oohBDH7POqclYJVVUFsxBbKraIF9e8KNx+9zE515H6es/X4jcf/kaWcbuJ7EMoSVKXGJQwiD21e3AFXMSb4zvs12kz2siKyWr1RPRYG5E8IjKfU/NT0+NFn7g+R7TfyNSRLNm/JNJktMJZgc1oO6JjfXL1J+3WfB0L6bZ0dtxxfAww1JEESwJpUWlcN/w6esf2ZmLmRLZWbmV48vAO90mPSm81KqMQgne3vMsfRv+hUzWTAEOShjB9/HT6x/c/6vfQE0akjGDrtK1c2P/CHk2HUWck8JcAgxMHc9OXN6E8pmDSmTpd09kZOo2Oq4Ze1an/bYWzgtNST2Nr5VYuHnDxIbc/WgmWBK4cfCUxxpgjPobVYCWnIodZZ81qVVt9uBRFYc9de7h97O2YdCZOTT31iI91OA5nSqC2ta097bcjfxvpRnCsPq8kaxKKouB9yMuIlBHcO+FezHrzMTnXkTo963TZD7EbyT6EkiR1idOzTueH4h9w+V1EG6PZUb2jxwuGzcZnjufHkh8ZkTICV8BFlCGqp5N01AYnDqbSVUn/+P6sK20asOdIJ8COMcV0qjlUVxmSNCTye25l7mE1IewuH1z5QaSwPyptFBtv23jQ5uR/mvQn/rrqr7x92dtA04AefeP6HvaDj+fPe/7IE30cOF4K1zqNjozojMjfPTnQV4m9hItHX8wDkx7otodRt42+jWp39RHvb9VbcQfcjE4b3er7eiSa+xZLndPZB0hdoTsfzB6uGFMMd4+/m4d5uKeTclI4/u7CkiSdkCIBYcCFVW9lb91ezut3Xk8nC4DxGeMjQdPPRaIlkT6xfTgt9bTIcPJW/eEXxhdev5Ax6WO6OnmdNuKNEYfsH9YTWhbKtBrtIWscBiYMpMheFBnVML8+n75xfY9pGqWDS7QkNvVf/r9aZl86u8fSUeWqYmjSUM7vf363nTPBknBUtSvNgX3zYDaSJP28yYBQkqQukRGdQZmzDE/QE2l6crwUiDOiMyKDRPyc7J++H4veQrG9mFtH3cpto2877GOc3/984s3xxyB1ndc8yNCJ7ldDf8W3ed8SCAV4fMXjTO07taeTdFLTKBqmjZ5GvDmeZGtyj6ZlRMqIHj3/4bLoLfSN69upgbskSTrxySajkiR1GV/Qx6bqTZEmgB0Nw98TrAYr9Z76bm0a2R30Wj2VzkqSrcnd2tSoKzTP5XU0fZ2OJ5nRmRQ2FFJsL6ZPbB8mZk089E7SMfXUOT0/Obb/YX9kJO0ThU6jY989+3o6GZIkdRNZQyhJUpdxBVyc2/fcyN/HU0F/RPIIvi/4niTL8TOgTFdxBVzHZbPLQ2nu8/hzqSFMtCRS466hylUVmQ5Gkk60YFCSpJPPz+tRuSRJPWr171e3GiDkeKqxyorJYmPZxp9lQb15TroTTfNAHz+3gLDaVX1cjWQrSZIkSQcjawglSeoyLYNB8ajowZQcKMOWQU5FDilRP7+A0KK3HDejOx6OD6/6kPsm3EeM6fipST4aCeYE5m6ZS7G9uMf7rEmSJElSZ8mAUJKkk0JGdAbf5H3DOX3O6emkdDmL3tKlc6x1l14xvZiSPYUB8QN6OildItoYzZj0Mby16a0Tdi5BSZIk6eQjm4xKknRSGJgwkNzbc496Tq3jkUVvOSGbjAJcOujSnk5Cl1EUhWfPeZb5e+ZzSvIpPZ0cSZIkSeoUGRBKknRS0Gl0P9tCulVvPSGbjP4cjc0Yy9iMsT2dDEmSJEnqNNlkVJIk6QR3ItcQSpIkSZLUs2RAKEmSdII7UQeVkSRJkiSp58mAUJIk6QQnawglSZIkSTpSMiCUJEk6wT0w6QEyozN7OhmSJEmSJJ2A5KAykiRJJ7hBiYN6OgmSJEmSJJ2gZA2hJEmSJEmSJEnSSUoGhJIkSZIkSZIkSScpGRBKkiRJkiRJkiSdpGRAKEmSJEmSJEmSdJKSAWELBQUF3HzzzfTp0wez2Uy/fv149NFH8fv9rbZTFOWA1xtvvNFqm9zcXCZPnozZbCYjI4PHH38cIUSrbZYvX87o0aMxmUz07dv3gGNIkiRJkiRJkiQdS3KU0RZ27dqFqqq8+eab9O/fn23btnHrrbficrl44YUXWm37zjvvcMEFF0T+jomJifxut9uZOnUqU6ZMYf369ezZs4ebbroJq9XK/fffD0B+fj4XXXQRt956K++//z6rV6/mjjvuICkpiauuuqp73rAkSZIkSZIkSSc1RbSttpJaef7553n99dfZv39/ZJmiKHzxxRdcfvnl7e7z+uuv8+CDD1JZWYnRaATg2Wef5eWXX6akpARFUXjggQf46quv2LlzZ2S/adOmsWXLFtasWdPp9NntdmJiYmhsbCQ6OvrI3qQkSZIkSZIkHUdkGbf7yCajh9DY2Eh8fPwBy++66y4SExMZO3Ysb7zxBqqqRtatWbOGyZMnR4JBgPPPP5+ysjIKCgoi25x33nmtjnn++eezYcMGAoHAsXkzkiRJkiRJkiRJLcgmowexb98+Xn75Zf72t7+1Wv7EE09wzjnnYDabWbJkCffffz81NTU8/PDDAFRUVJCdnd1qn5SUlMi6Pn36UFFREVnWcptgMEhNTQ1paWntpsnn8+Hz+SJ/2+32o32bkiRJkiRJkiSdpE6KGsJZs2a1OxBMy9eGDRta7VNWVsYFF1zAr371K2655ZZW6x5++GEmTpzIqaeeyv3338/jjz/O888/32obRVFa/d3cMrfl8s5s09YzzzxDTExM5JWVldXJT0GSJEmSJEmSJKm1k6KG8K677uLXv/71QbdpWaNXVlbGlClTmDhxIrNnzz7k8SdMmIDdbqeyspKUlBRSU1OpqKhotU1VVRXwU01hR9vodDoSEhI6PNeDDz7IjBkzIn/b7XYZFEqSJEmSJEmSdEROioAwMTGRxMTETm1bWlrKlClTGD16NO+88w4azaErUXNycjCZTMTGxgIwceJEZs6cid/vx2AwALBo0SLS09MjgefEiROZP39+q+MsWrSIMWPGoNfrOzyX0WiM9E0UQkSajMqmo5IkSZIkSdLPRXPZVo5/2Q2EFFFaWir69+8vzj77bFFSUiLKy8sjr2ZfffWVmD17tsjNzRV5eXlizpw5Ijo6Wtxzzz2RbRoaGkRKSoq49tprRW5urvj8889FdHS0eOGFFyLb7N+/X1gsFnHfffeJHTt2iLffflvo9Xrx2WefdTq9VVVVApAv+ZIv+ZIv+ZIv+ZIv+fpZvoqLi7umoC91SE470cLcuXP53e9+1+665o9p4cKFPPjgg+Tl5aGqKn379uWWW27hzjvvRKf7qcI1NzeXO++8k3Xr1hEXF8e0adN45JFHWvUPXL58Offddx/bt28nPT2dBx54gGnTpnU6vY2NjcTGxrJjxw7S09MP2vdQko5Gc9Pk4uJiOfSzdEzJvCZ1B5nPpO4i89qRE0LgcDhIT0/vVIs96cjJgPAEJudnkbqLzGtSd5F5TeoOMp9J3UXmNelEIMNtSZIkSZIkSZKkk5QMCCVJkiRJkiRJkk5SMiA8gRmNRh599NHIqKOSdKzIvCZ1F5nXpO4g85nUXWRek04Esg+hJEmSJEmSJEnSSUrWEEqSJEmSJEmSJJ2kZEAoSZIkSZIkSZJ0kpIBoSRJkiRJkiRJ0klKBoSSJEmSJEmSJEknKRkQngBWrFjBpZdeSnp6OoqiMG/evFbrhRDMmjWL9PR0zGYzZ511Ftu3b++ZxEonrGeeeYaxY8dis9lITk7m8ssvZ/fu3a22kXlN6gqvv/46I0aMIDo6mujoaCZOnMg333wTWS/zmXQsPPPMMyiKwr333htZJvOa1BVmzZqFoiitXqmpqZH1Mp9JxzsZEJ4AXC4XI0eO5JVXXml3/XPPPcff//53XnnlFdavX09qaipTp07F4XB0c0qlE9ny5cu58847Wbt2LYsXLyYYDHLeeefhcrki28i8JnWFzMxMnn32WTZs2MCGDRs4++yzueyyyyIFJJnPpK62fv16Zs+ezYgRI1otl3lN6irDhg2jvLw88srNzY2sk/lMOu4J6YQCiC+++CLyt6qqIjU1VTz77LORZV6vV8TExIg33nijB1Io/VxUVVUJQCxfvlwIIfOadGzFxcWJt956S+Yzqcs5HA4xYMAAsXjxYjF58mQxffp0IYS8pkld59FHHxUjR45sd53MZ9KJQNYQnuDy8/OpqKjgvPPOiywzGo1MnjyZH374oQdTJp3oGhsbAYiPjwdkXpOOjVAoxMcff4zL5WLixIkyn0ld7s477+Tiiy/m3HPPbbVc5jWpK+3du5f09HT69OnDr3/9a/bv3w/IfCadGHQ9nQDp6FRUVACQkpLSanlKSgqFhYU9kSTpZ0AIwYwZMzjjjDM45ZRTAJnXpK6Vm5vLxIkT8Xq9REVF8cUXXzB06NBIAUnmM6krfPzxx2zatIn169cfsE5e06SuMn78eP79738zcOBAKisrefLJJzn99NPZvn27zGfSCUEGhD8TiqK0+lsIccAySeqsu+66i61bt7Jq1aoD1sm8JnWFQYMGsXnzZhoaGvjvf//LjTfeyPLlyyPrZT6TjlZxcTHTp09n0aJFmEymDreTeU06WhdeeGHk9+HDhzNx4kT69evHu+++y4QJEwCZz6Tjm2wyeoJrHsWq+QlUs6qqqgOeRklSZ9x999189dVXfP/992RmZkaWy7wmdSWDwUD//v0ZM2YMzzzzDCNHjuSll16S+UzqMhs3bqSqqorRo0ej0+nQ6XQsX76cf/7zn+h0ukh+knlN6mpWq5Xhw4ezd+9eeU2TTggyIDzB9enTh9TUVBYvXhxZ5vf7Wb58OaeffnoPpkw60QghuOuuu/j8889ZunQpffr0abVe5jXpWBJC4PP5ZD6Tusw555xDbm4umzdvjrzGjBnD9ddfz+bNm+nbt6/Ma9Ix4fP52LlzJ2lpafKaJp0QZJPRE4DT6SQvLy/yd35+Pps3byY+Pp5evXpx77338vTTTzNgwAAGDBjA008/jcVi4brrruvBVEsnmjvvvJMPP/yQL7/8EpvNFnmaGRMTg9lsjszfJfOadLRmzpzJhRdeSFZWFg6Hg48//phly5axcOFCmc+kLmOz2SJ9oJtZrVYSEhIiy2Vek7rCH//4Ry699FJ69epFVVUVTz75JHa7nRtvvFFe06QTggwITwAbNmxgypQpkb9nzJgBwI033sjcuXP5v//7PzweD3fccQf19fWMHz+eRYsWYbPZeirJ0gno9ddfB+Css85qtfydd97hpptuApB5TeoSlZWV3HDDDZSXlxMTE8OIESNYuHAhU6dOBWQ+k7qPzGtSVygpKeHaa6+lpqaGpKQkJkyYwNq1a+nduzcg85l0/FOEEKKnEyFJkiRJkiRJkiR1P9mHUJIkSZIkSZIk6SQlA0JJkiRJkiRJkqSTlAwIJUmSJEmSJEmSTlIyIJQkSZIkSZIkSTpJyYBQkiRJkiRJkiTpJCUDQkmSJEmSJEmSpJOUDAglSZIkSZIkSZJOUjIglCRJkiRJkiRJOknJgFCSJEmSJEmSJOkkJQNCSZIkSZIkSZKkk5QMCCVJkiRJkiRJkk5SMiCUJEmSJEmSJEk6ScmAUJIkSZIkSZIk6SQlA0JJkiRJkiRJkqSTlAwIJUmSJEmSJEmSTlIyIJQkSZIkSZIkSTpJyYBQkiRJkiRJkiTpJCUDQkmSJEmSJEmSpJOUDAglSZIkSZIkSZJOUjIglCRJkiRJkiRJOknJgFCSJEmSJEmSJOkkJQNCSZIkSZIkSZKkk9T/B88dyZMGmEJZAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pn.plot(fig=None, diff=True)\n", "px.plot(fig=None, diff=True)\n", "mc.RestoreParamSet(3, update_display=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Save results to CIF and Fox (.xmlgz) formats" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "tags": [] }, "outputs": [], "source": [ "# Save result so it can be opened by Fox\n", "xml_cryst_file_save_global('result-pbso4.xmlgz')\n", "# Also export to the CIF format\n", "c.CIFOutput(\"result-pbso4.cif\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00eaf61720014df896bc641802b04946": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "0495e49e6e0e4a8b8559285baac68113": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelStyleModel", "state": { "description_width": "", "font_family": null, "font_size": null, "font_style": null, "font_variant": null, "font_weight": null, "text_color": null, "text_decoration": null } }, "052c9fcf0466424f89e70ab56b1ba04e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "0b565d28f35d41829424bc135c3ada98": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_0cfb1f371f2249a6aabefd7234527296", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "0b6b7c6da8374d51858014a5007ed74c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "0cfb1f371f2249a6aabefd7234527296": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "10689d3795154357b394411e725adca9": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_28188eda6206475bae8e071d8a3da906", "outputs": [ { "data": { "application/3dmoljs_load.v0": "", "text/html": "" }, "metadata": {}, "output_type": "display_data" } ] } }, "10b85b79060f44dda7efc39a17d81acf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "12b76e5952bf470fb5313325228333c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "1e36803b619a49e8a0cb07e14932afd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "1eb7beebb72c48b5a3a8a23bad63e31c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra dist", "layout": "IPY_MODEL_e8e4671905f846749ac9eca5483872f7", "max": 10, "readout_format": ".1f", "step": 0.5, "style": "IPY_MODEL_e40113cd66ef463c8c9d6e436835bdfd", "tooltip": "Extra distance (A) with semi-transparent display", "value": 2 } }, "21318bc0690c43349106e866f635ef68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "220b1d52d1754ddc8d6209607d62d637": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "fullMol opac", "layout": "IPY_MODEL_a93a12ad870a4e4aa0277ac6bc9424c0", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_12b76e5952bf470fb5313325228333c7", "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", "value": 0.5 } }, "222afec0ff0d4378acecef72118b93d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "max_width": "25%", "width": "11em" } }, "24d01c655ef34f899fb164756e6fb72c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Xrange", "layout": "IPY_MODEL_00eaf61720014df896bc641802b04946", "max": 1.5, "min": -0.5, "step": 0.09090909090909091, "style": "IPY_MODEL_3666a876565b490484e4b71af85f7edc", "value": [ -0.045454545454545414, 1.0454545454545456 ] } }, "26fc02afd8ef4a268848164426b18468": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 8", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_aa1a86eca1494a07bd5f8e6596a5c35a", "toolbar": "IPY_MODEL_c6a82d9176b340ee8ea6f29f4519045f", "toolbar_position": "left" } }, "28188eda6206475bae8e071d8a3da906": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "284f4e9448354ad3939b2e9fd74df854": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Yrange", "layout": "IPY_MODEL_c5b6632c164c4d68bbc325efde6a9c99", "max": 1.5, "min": -0.5, "step": 0.07142857142857142, "style": "IPY_MODEL_8e7950cd11584233b3c2f03ff6871d4b", "value": [ 0, 1 ] } }, "286640c0bf39426a80f443c1333499e6": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 3", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_ff3a688ce673446bb68592d211035390", "toolbar": "IPY_MODEL_ce6fafe5ce1240c5a05d408c83b616cb", "toolbar_position": "left" } }, "2b523dcf54c8416ba7728c0d4be21d96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Zrange", "layout": "IPY_MODEL_10b85b79060f44dda7efc39a17d81acf", "max": 1.5, "min": -0.5, "step": 0.058823529411764705, "style": "IPY_MODEL_481817bad0fc4419ab12f53e471c841c", "value": [ 0.02941176470588236, 1.0294117647058822 ] } }, "2c1cf7cee2f746a18afb9803d93d739b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "2f6c7a475345472b8cadc25454ad2ec0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3115968ff7c74370abf416b2716cf6d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "31afd8393d17463e8dbd2f498574f003": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_7005a3e2a9884e1aa8d0ad144653d488", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "3376c0fb8be1491db70b0b916cca8047": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "3666a876565b490484e4b71af85f7edc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "36d2fc7bf4c141eeb4178ab1efaa27f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "38e638f5224f434880b8a9d76af0ae67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "41b2183e23d24bef8a796e9c46a28b2d": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 4", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_b196b30410c84a5eb65c8849163f8f4c", "toolbar": "IPY_MODEL_63ea1550325d47698266026a72267e76", "toolbar_position": "left" } }, "45a7f5a2c1344edbadc4a86871656c36": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "481817bad0fc4419ab12f53e471c841c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "49c1ee4d797b43e5b70c748ea9793f00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4c1578ba0c5d4662a8ae44aeed1def67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "4dab9349f99849f2822256d59f06f777": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_512f51d09ba9491593a247c46ae27dda", "IPY_MODEL_603cd15746f84b9e984e9bdf5e10d2ff" ], "layout": "IPY_MODEL_66d4d118953c4675b90d4984b8faa6bb" } }, "4f519d6521644854a4ac515d05555ac2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "50ec4c68bf28420cb5542356f51974ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "512f51d09ba9491593a247c46ae27dda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "LabelModel", "state": { "layout": "IPY_MODEL_222afec0ff0d4378acecef72118b93d7", "style": "IPY_MODEL_0495e49e6e0e4a8b8559285baac68113", "value": "MonteCarlo:" } }, "51ac207626824a568f4b7ebb47df1fa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "52ff63992bd74a9e9ac8c11c7a0f0f56": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 6", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_93538cfcf70d424f881d54f4ff88ab74", "toolbar": "IPY_MODEL_bab241dee1224efd9fe00fa0f4bc2b94", "toolbar_position": "left" } }, "56e04f0c6af14ba5a5125dac01b3d6a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "603cd15746f84b9e984e9bdf5e10d2ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TextModel", "state": { "disabled": true, "layout": "IPY_MODEL_b98200d1ee444845ad5c0839d12980cf", "style": "IPY_MODEL_790ec6b844d640268e95787db04b8f68", "value": "LLK= 2968.07 " } }, "635916476a354fe2a32e0891bc70cfc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "63ea1550325d47698266026a72267e76": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_97754a0f682940f3a20eba45c0a995b4", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "66d4d118953c4675b90d4984b8faa6bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "6fe905883a134654b5f6d8fdbc6c3bff": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 7", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_49c1ee4d797b43e5b70c748ea9793f00", "toolbar": "IPY_MODEL_31afd8393d17463e8dbd2f498574f003", "toolbar_position": "left" } }, "7005a3e2a9884e1aa8d0ad144653d488": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "752c8e13ba1e446491d3a5abee4328ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_e12de330dfdc4f97a3d0e6ad5752fbb2", "IPY_MODEL_d8080aed98834c4a8629085cbd9ca248" ], "layout": "IPY_MODEL_f18a443125594637a95f35331695a4b5" } }, "75ce021dae3d45469c8ed911c3e2f017": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 9", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_3115968ff7c74370abf416b2716cf6d7", "toolbar": "IPY_MODEL_a523347e6aa3465e9798a8c436fc240e", "toolbar_position": "left" } }, "787040eb6b8e4ebeaeb69f0917088853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_e13fd36aea0c4ed4be8280202e13ddf8", "IPY_MODEL_10689d3795154357b394411e725adca9" ], "layout": "IPY_MODEL_a275e9cc903a4cde873fb45b89859fb7" } }, "790ec6b844d640268e95787db04b8f68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "TextStyleModel", "state": { "description_width": "", "font_size": null, "text_color": null } }, "79259c7636504fe7baccfa6ee4d2f0f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_787040eb6b8e4ebeaeb69f0917088853" ], "layout": "IPY_MODEL_bf9bec96616c45b9a72403718b4d9645" } }, "79965d9b2f58431580723d7e13cca396": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_4dab9349f99849f2822256d59f06f777" ], "layout": "IPY_MODEL_9f5c33f717bb4ec1b1584f0b8f343d3f" } }, "82100fdd54b845cbb2b74ddc15119179": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "8d18d8c1d9d94a51b12a8d1b9d843bea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "BoxModel", "state": { "children": [ "IPY_MODEL_752c8e13ba1e446491d3a5abee4328ef" ], "layout": "IPY_MODEL_21318bc0690c43349106e866f635ef68" } }, "8e7950cd11584233b3c2f03ff6871d4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "8f9db8afa75e4d27b9bfbd99bf903a39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "91f6361f684f4a7a87e39dbeee5eb805": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_a1f532a83ee549daa387864c1f587224", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "93538cfcf70d424f881d54f4ff88ab74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "93ebe40b69054fe0b529511c4c53dc9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Zrange", "layout": "IPY_MODEL_50ec4c68bf28420cb5542356f51974ff", "max": 1.5, "min": -0.5, "step": 0.058823529411764705, "style": "IPY_MODEL_51ac207626824a568f4b7ebb47df1fa0", "value": [ 0.02941176470588236, 1.0294117647058822 ] } }, "97754a0f682940f3a20eba45c0a995b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "9889904b8d3d420583cbd39730f77213": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_d4fd79f612e241e28b76464d6a5ce976", "IPY_MODEL_284f4e9448354ad3939b2e9fd74df854", "IPY_MODEL_93ebe40b69054fe0b529511c4c53dc9d" ], "layout": "IPY_MODEL_36d2fc7bf4c141eeb4178ab1efaa27f9" } }, "988f855b8ee047b68016b83e8064829b": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_2f6c7a475345472b8cadc25454ad2ec0", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "9891994771884d8aaff0f83c43e05ffc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_24d01c655ef34f899fb164756e6fb72c", "IPY_MODEL_e45a4441a0ef462399b08d685c98c1bc", "IPY_MODEL_2b523dcf54c8416ba7728c0d4be21d96" ], "layout": "IPY_MODEL_4f519d6521644854a4ac515d05555ac2" } }, "9f5c33f717bb4ec1b1584f0b8f343d3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a1f532a83ee549daa387864c1f587224": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a275e9cc903a4cde873fb45b89859fb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a30e04847ce24f578378a88e7f067ff1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra dist", "layout": "IPY_MODEL_45a7f5a2c1344edbadc4a86871656c36", "max": 10, "readout_format": ".1f", "step": 0.5, "style": "IPY_MODEL_b84bcf6d75264fd2b40b439c7bbbe1e3", "tooltip": "Extra distance (A) with semi-transparent display", "value": 2 } }, "a4509bc59ef74c63b49811c2ccab661b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "a523347e6aa3465e9798a8c436fc240e": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_e013364b181b422fbd352c603b6e21c0", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "a880651c85ea49fc82b3d7f4bb9ff812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "fullMol opac", "layout": "IPY_MODEL_a4509bc59ef74c63b49811c2ccab661b", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_bc27902e09b54162b4d179e781e37797", "tooltip": "Opacity to display fully molecules\nwhich have at least one atom inside the limits", "value": 0.5 } }, "a93a12ad870a4e4aa0277ac6bc9424c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "aa1a86eca1494a07bd5f8e6596a5c35a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "ad60336fcd1546e282bd8d16021ef0fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "b0aa788d822e4eff81235b3c472361c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "b196b30410c84a5eb65c8849163f8f4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "b294cb148fbd42c991da279f33ad318f": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 5", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_d242510866ac48f3bca6790320e4e690", "toolbar": "IPY_MODEL_91f6361f684f4a7a87e39dbeee5eb805", "toolbar_position": "left" } }, "b6316e4843fb46de8b20b4e4b8f30e3c": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 2", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_f6f397e97c544246995e00ec745f84a4", "toolbar": "IPY_MODEL_0b565d28f35d41829424bc135c3ada98", "toolbar_position": "left" } }, "b84bcf6d75264fd2b40b439c7bbbe1e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "b98200d1ee444845ad5c0839d12980cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "max_width": "50%", "width": "40em" } }, "bab241dee1224efd9fe00fa0f4bc2b94": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_c772c45ecfb04831bf88aa7cf637d44c", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "bc27902e09b54162b4d179e781e37797": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "bf9bec96616c45b9a72403718b4d9645": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c5b6632c164c4d68bbc325efde6a9c99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "c6a82d9176b340ee8ea6f29f4519045f": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_8f9db8afa75e4d27b9bfbd99bf903a39", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "c772c45ecfb04831bf88aa7cf637d44c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "ce6fafe5ce1240c5a05d408c83b616cb": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "ToolbarModel", "state": { "_model_module_version": "^0.11", "_view_module_version": "^0.11", "collapsed": true, "layout": "IPY_MODEL_56e04f0c6af14ba5a5125dac01b3d6a7", "orientation": "vertical", "toolitems": [ [ "Home", "Reset original view", "home", "home" ], [ "Back", "Back to previous view", "arrow-left", "back" ], [ "Forward", "Forward to next view", "arrow-right", "forward" ], [ "Pan", "Left button pans, Right button zooms\nx/y fixes axis, CTRL fixes aspect", "arrows", "pan" ], [ "Zoom", "Zoom to rectangle\nx/y fixes axis", "square-o", "zoom" ], [ "Download", "Download plot", "floppy-o", "save_figure" ] ] } }, "cf4154132eda430299d4553e4ab22dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra opac.", "layout": "IPY_MODEL_0b6b7c6da8374d51858014a5007ed74c", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_ad60336fcd1546e282bd8d16021ef0fc", "tooltip": "Opacity for extra distance display", "value": 0.5 } }, "d242510866ac48f3bca6790320e4e690": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "d4fd79f612e241e28b76464d6a5ce976": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Xrange", "layout": "IPY_MODEL_052c9fcf0466424f89e70ab56b1ba04e", "max": 1.5, "min": -0.5, "step": 0.09090909090909091, "style": "IPY_MODEL_fd96c963ced042ba8a3ef66acfba134a", "value": [ -0.045454545454545414, 1.0454545454545456 ] } }, "d8080aed98834c4a8629085cbd9ca248": { "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": { "layout": "IPY_MODEL_3376c0fb8be1491db70b0b916cca8047", "outputs": [ { "data": { "application/3dmoljs_load.v0": "", "text/html": "" }, "metadata": {}, "output_type": "display_data" } ] } }, "dbbba91d199d47f79d8ad33d2fe200d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatSliderModel", "state": { "behavior": "drag-tap", "description": "extra opac.", "layout": "IPY_MODEL_b0aa788d822e4eff81235b3c472361c4", "max": 1, "readout_format": ".01f", "step": 0.1, "style": "IPY_MODEL_2c1cf7cee2f746a18afb9803d93d739b", "tooltip": "Opacity for extra distance display", "value": 0.5 } }, "de50c16f3c2141349fbdf896c271d3ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "e013364b181b422fbd352c603b6e21c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "e12de330dfdc4f97a3d0e6ad5752fbb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_9889904b8d3d420583cbd39730f77213", "IPY_MODEL_e6a470a592fa42d0ab3da35ba887172e" ], "layout": "IPY_MODEL_f78e21a3234c4c90866200ae39b2543d" } }, "e13fd36aea0c4ed4be8280202e13ddf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "children": [ "IPY_MODEL_9891994771884d8aaff0f83c43e05ffc", "IPY_MODEL_eca133ff47774924bf0c6b3ce24c2960" ], "layout": "IPY_MODEL_38e638f5224f434880b8a9d76af0ae67" } }, "e40113cd66ef463c8c9d6e436835bdfd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "e45a4441a0ef462399b08d685c98c1bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatRangeSliderModel", "state": { "_model_name": "FloatRangeSliderModel", "_view_name": "FloatRangeSliderView", "behavior": "drag-tap", "description": "Yrange", "layout": "IPY_MODEL_4c1578ba0c5d4662a8ae44aeed1def67", "max": 1.5, "min": -0.5, "step": 0.07142857142857142, "style": "IPY_MODEL_635916476a354fe2a32e0891bc70cfc0", "value": [ 0, 1 ] } }, "e6a470a592fa42d0ab3da35ba887172e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_1eb7beebb72c48b5a3a8a23bad63e31c", "IPY_MODEL_dbbba91d199d47f79d8ad33d2fe200d7", "IPY_MODEL_a880651c85ea49fc82b3d7f4bb9ff812" ], "layout": "IPY_MODEL_de50c16f3c2141349fbdf896c271d3ef" } }, "e8e4671905f846749ac9eca5483872f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "eca133ff47774924bf0c6b3ce24c2960": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": { "children": [ "IPY_MODEL_a30e04847ce24f578378a88e7f067ff1", "IPY_MODEL_cf4154132eda430299d4553e4ab22dcd", "IPY_MODEL_220b1d52d1754ddc8d6209607d62d637" ], "layout": "IPY_MODEL_1e36803b619a49e8a0cb07e14932afd0" } }, "f18a443125594637a95f35331695a4b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f6f397e97c544246995e00ec745f84a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "f7376c77ccf8409ca67e032eccf72af9": { "model_module": "jupyter-matplotlib", "model_module_version": "^0.11", "model_name": "MPLCanvasModel", "state": { "_cursor": "default", "_data_url": "", "_figure_label": "Figure 1", "_image_mode": "diff", "_model_module_version": "^0.11", "_size": [ 900, 400 ], "_view_module_version": "^0.11", "layout": "IPY_MODEL_82100fdd54b845cbb2b74ddc15119179", "toolbar": "IPY_MODEL_988f855b8ee047b68016b83e8064829b", "toolbar_position": "left" } }, "f78e21a3234c4c90866200ae39b2543d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} }, "fd96c963ced042ba8a3ef66acfba134a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": { "description_width": "" } }, "ff3a688ce673446bb68592d211035390": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {} } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 } pyobjcryst-2024.2.1/pyproject.toml000066400000000000000000000001531470422267000170710ustar00rootroot00000000000000# pyproject.toml [build-system] requires = ["setuptools", "numpy"] build-backend = "setuptools.build_meta" pyobjcryst-2024.2.1/setup.py000066400000000000000000000165511470422267000157000ustar00rootroot00000000000000#!/usr/bin/env python # Installation script for pyobjcryst """pyobjcryst - Python bindings to ObjCryst++ Object-Oriented Crystallographic Library Packages: pyobjcryst """ import os from os.path import join as pjoin import re import sys import glob import platform from setuptools import setup from setuptools import Extension import numpy as np # Use this version when git data are not available as in a git zip archive. # Update when tagging a new release. FALLBACK_VERSION = '2024.2.1' # define extension arguments here ext_kws = { 'libraries': ['ObjCryst'], 'extra_compile_args': ['-std=c++11', '-DBOOST_ERROR_CODE_HEADER_ONLY', '-DREAL=double'], 'extra_link_args': [], 'include_dirs': [np.get_include()], 'library_dirs': [] } if platform.system() == 'Windows': ext_kws['extra_compile_args'] = ['-DBOOST_ERROR_CODE_HEADER_ONLY', '-DREAL=double'] if 'CONDA_PREFIX' in os.environ: ext_kws['include_dirs'] += [pjoin(os.environ['CONDA_PREFIX'], 'include'), pjoin(os.environ['CONDA_PREFIX'], 'Library', 'include')] ext_kws['library_dirs'] += [pjoin(os.environ['CONDA_PREFIX'], 'Library', 'lib'), pjoin(os.environ['CONDA_PREFIX'], 'Library', 'bin'), pjoin(os.environ['CONDA_PREFIX'], 'libs')] ext_kws['libraries'] = ['libObjCryst'] elif platform.system() == 'Darwin': ext_kws['extra_compile_args'] += ['-fno-strict-aliasing'] # determine if we run with Python 3. PY3 = (sys.version_info[0] == 3) # Figure out the tagged name of boost_python library. def get_boost_libraries(): """Check for installed boost_python shared library. Returns list of required boost_python shared libraries that are installed on the system. If required libraries are not found, an Exception will be thrown. """ baselib = "boost_python" major, minor = (str(x) for x in sys.version_info[:2]) pytags = [major + minor, major, ''] mttags = ['', '-mt'] boostlibtags = [(pt + mt) for mt in mttags for pt in pytags] + [''] from ctypes.util import find_library for tag in boostlibtags: lib = baselib + tag found = find_library(lib) if found: break # Show warning when library was not detected. if not found: import platform import warnings ldevname = 'LIBRARY_PATH' if platform.system() == 'Darwin': ldevname = 'DYLD_FALLBACK_LIBRARY_PATH' wmsg = ("Cannot detect name suffix for the %r library. " "Consider setting %s.") % (baselib, ldevname) warnings.warn(wmsg) libs = [lib] return libs def create_extensions(): "Initialize Extension objects for the setup function." blibs = [n for n in get_boost_libraries() if not n in ext_kws['libraries']] ext_kws['libraries'] += blibs ext = Extension('pyobjcryst._pyobjcryst', glob.glob("src/extensions/*.cpp"), **ext_kws) return [ext] # versioncfgfile holds version data for git commit hash and date. # It must reside in the same directory as version.py. MYDIR = os.path.dirname(os.path.abspath(__file__)) versioncfgfile = os.path.join(MYDIR, 'src/pyobjcryst/version.cfg') gitarchivecfgfile = os.path.join(MYDIR, '.gitarchive.cfg') def gitinfo(): from subprocess import Popen, PIPE kw = dict(stdout=PIPE, cwd=MYDIR, universal_newlines=True) proc = Popen(['git', 'describe', '--match=v[[:digit:]]*', '--tags'], **kw) desc = proc.stdout.read() proc = Popen(['git', 'log', '-1', '--format=%H %ct %ci'], **kw) glog = proc.stdout.read() rv = {} rv['version'] = '.post'.join(desc.strip().split('-')[:2]).lstrip('v') rv['commit'], rv['timestamp'], rv['date'] = glog.strip().split(None, 2) return rv def getversioncfg(): if PY3: from configparser import RawConfigParser else: from ConfigParser import RawConfigParser vd0 = dict(version=FALLBACK_VERSION, commit='', date='', timestamp=0) # first fetch data from gitarchivecfgfile, ignore if it is unexpanded g = vd0.copy() cp0 = RawConfigParser(vd0) cp0.read(gitarchivecfgfile) if len(cp0.get('DEFAULT', 'commit')) > 20: g = cp0.defaults() mx = re.search(r'\btag: v(\d[^,]*)', g.pop('refnames')) if mx: g['version'] = mx.group(1) # then try to obtain version data from git. gitdir = os.path.join(MYDIR, '.git') if os.path.exists(gitdir) or 'GIT_DIR' in os.environ: try: g = gitinfo() except OSError: pass # finally, check and update the active version file cp = RawConfigParser() cp.read(versioncfgfile) d = cp.defaults() rewrite = not d or (g['commit'] and ( g['version'] != d.get('version') or g['commit'] != d.get('commit'))) if rewrite: cp.set('DEFAULT', 'version', g['version']) cp.set('DEFAULT', 'commit', g['commit']) cp.set('DEFAULT', 'date', g['date']) cp.set('DEFAULT', 'timestamp', g['timestamp']) with open(versioncfgfile, 'w') as fp: cp.write(fp) return cp versiondata = getversioncfg() with open(os.path.join(MYDIR, 'README.rst')) as fp: long_description = fp.read() # define distribution setup_args = dict( name="pyobjcryst", version=versiondata.get('DEFAULT', 'version'), author="Simon J.L. Billinge", author_email="sb2896@columbia.edu", maintainer='Vincent-Favre-Nicolin', maintainer_email='favre@esrf.fr', description="Python bindings to the ObjCryst++ library.", long_description=long_description, long_description_content_type='text/x-rst', license="BSD-style license", url="https://github.com/diffpy/pyobjcryst", # Required python packages install_requires=['numpy', 'packaging'], extras_require={'gui': ['ipywidgets', 'jupyter', 'matplotlib', 'ipympl', 'py3dmol>=2.0.1'], 'doc': ['sphinx', 'm2r2', 'sphinx_py3doc_enhanced_theme', 'nbsphinx', 'nbsphinx-link']}, # What we're installing packages=['pyobjcryst', 'pyobjcryst.tests'], package_dir={'': 'src'}, test_suite='pyobjcryst.tests', include_package_data=True, zip_safe=False, keywords="objcryst atom structure crystallography powder diffraction", classifiers=[ # List of possible values at # http://pypi.python.org/pypi?:action=list_classifiers 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX', 'Operating System :: Unix', 'Programming Language :: C++', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Programming Language :: Python :: 3.12', 'Programming Language :: Python :: 3.13', 'Topic :: Scientific/Engineering :: Chemistry', 'Topic :: Scientific/Engineering :: Physics', 'Topic :: Software Development :: Libraries', ], ) if __name__ == '__main__': setup_args['ext_modules'] = create_extensions() setup(**setup_args) pyobjcryst-2024.2.1/src/000077500000000000000000000000001470422267000147455ustar00rootroot00000000000000pyobjcryst-2024.2.1/src/extensions/000077500000000000000000000000001470422267000171445ustar00rootroot00000000000000pyobjcryst-2024.2.1/src/extensions/SConscript000066400000000000000000000036161470422267000211640ustar00rootroot00000000000000import numpy as np Import('env', 'pyoutput') # make sure numpy headers are available env.AppendUnique(CPPPATH=[np.get_include()]) # configure the boost_python library, which may have different extensions if not (GetOption('clean') or env.GetOption('help')): SConscript('SConscript.configure') # python extension module module = env.SharedLibrary('_pyobjcryst', Glob('*.cpp'), SHLIBPREFIX='', SHLIBSUFFIX='.so') Alias('module', module) # update egg info when package version changes. basedir = Dir('#').abspath version = pyoutput( 'import sys\n' 'sys.path.insert(0, %r)\n' 'from setup import versiondata\n' 'print(versiondata.get("DEFAULT", "version"))\n' % basedir) egginfo = env.Command(NoCache('#/src/pyobjcryst.egg-info/PKG-INFO'), env.Value(version), '$python -Wignore setup.py egg_info') # install extension module in a development mode. develop = Alias('develop', [egginfo, Install('#/src/pyobjcryst', module)]) test = env.Alias('test', develop, '$python -m pyobjcryst.tests.run') AlwaysBuild(test) def resolve_distutils_target(target, source, env): tgt = pyoutput('\n'.join([ "from setuptools import Distribution, Extension", "ext = Extension('pyobjcryst._pyobjcryst', [])", "attrs = dict(ext_modules=[ext])", "dist = Distribution(attrs)", "bcmd = dist.get_command_obj('build_ext')", "bcmd.finalize_options()", "print(bcmd.get_ext_fullpath(ext.name))", ])) env['distsofile'] = env.File(tgt) return 0 cmd_install = '$python setup.py install' if 'prefix' in env: cmd_install += ' --prefix=$prefix' install = env.Alias('install', module, [ resolve_distutils_target, Mkdir('$distsofile.dir'), Copy('$distsofile', '$SOURCE'), Touch('$distsofile'), cmd_install, ]) AlwaysBuild(install) # default targets: Default(module) # vim: ft=python pyobjcryst-2024.2.1/src/extensions/SConscript.configure000066400000000000000000000064111470422267000231400ustar00rootroot00000000000000import platform from os.path import join as pjoin Import('env', 'pyconfigvar', 'pyversion') # Helper functions ----------------------------------------------------------- env.Append(LIBPATH=pjoin(env['prefix'], 'Library', 'bin')) env.Append(LIBPATH=pjoin(env['prefix'], 'Library', 'lib')) env.Append(CPPPATH=[pjoin(env['prefix'], 'include')]) env.Append(CPPPATH=[pjoin(env['prefix'], 'Library', 'include')]) def CheckOptimizerFlag(context, flag): ccflags_save = context.env['CCFLAGS'] context.Message('Checking if compiler allows {!r}... '.format(flag)) context.env.Replace(CCFLAGS=[flag]) result = context.TryCompile('int a;\n', '.cpp') context.Result(result) if not result: ccflags_save.remove(flag) context.env.Replace(CCFLAGS=ccflags_save) return result def configure_boost_library(libname): '''Detect name extension of a boost library and add it to the environment. libname -- boost library name without any extension Note: CheckLib function automatically adds library to the environment. ''' mttags = ['', '-mt'] boostlibtags = mttags # check more tags for boost_python if libname == 'boost_python': major, minor = pyversion.split('.') pytags = [major + minor, major, ''] boostlibtags = [(pt + mt) for mt in mttags for pt in pytags] # using global conf defined below for t in boostlibtags: libnamefull = libname + t if conf.CheckLib(libnamefull, language='C++'): return # library not found here print('This program requires the %r library.' % libname) Exit(1) # Start configuration -------------------------------------------------------- # Anaconda Python is compiled with super fancy gcc optimizer flags. # Remove any flags that are not supported by the current compiler. custom_tests = {'CheckOptimizerFlag' : CheckOptimizerFlag} conf = Configure(env, custom_tests=custom_tests) optflags = [o for o in env['CCFLAGS'] if o[:2] in ('-f', '-m')] for o in optflags: conf.CheckOptimizerFlag(o) conf.Finish() if platform.system().lower() == "windows": ecfg = env.Clone() # ecfg.MergeFlags(pyconfigvar('BLDLIBRARY')) ecfg.Append(LIBS=['libObjCryst']) else: # Create configuration environment that links with Python shared_library, so # that the boost_python check does not fail due to unresolved Python symbols. ecfg = env.Clone() ecfg.Append(LIBS=[]) ecfg.MergeFlags(pyconfigvar('BLDLIBRARY')) # make sure there are no implicit dependency nodes in added LIBS ecfg.Replace(LIBS=[str(n) for n in ecfg['LIBS']]) newlibsindex = len(ecfg['LIBS']) conf = Configure(ecfg) if platform.system().lower() == "windows": # Why libObjCryst and not ObjCryst on windows ? if not conf.CheckLib('libObjCryst', language='C++'): print("This program requires the 'libObjCryst' library.") Exit(1) else: if not conf.CheckLib('ObjCryst', language='C++'): print("This program requires the 'libObjCryst' library.") Exit(1) configure_boost_library('boost_python') conf.Finish() if platform.system().lower() != "windows": # Use libraries that were found in the configuration. env.AppendUnique(LIBS=ecfg['LIBS'][newlibsindex:]) else: env.AppendUnique(LIBS=ecfg['LIBS']) # vim: ft=python pyobjcryst-2024.2.1/src/extensions/asymmetricunit_ext.cpp000066400000000000000000000027531470422267000236140ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::AsymmetricUnit. * *****************************************************************************/ #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void wrap_asymmetricunit() { class_("AsymmetricUnit") // Constructors .def(init(bp::arg("spg"))) // Methods .def("SetSpaceGroup", &AsymmetricUnit::SetSpaceGroup, bp::arg("spg")) .def("IsInAsymmetricUnit", &AsymmetricUnit::IsInAsymmetricUnit, (bp::arg("x"), bp::arg("y"), bp::arg("z"))) .def("Xmin", &AsymmetricUnit::Xmin) .def("Xmax", &AsymmetricUnit::Xmax) .def("Ymin", &AsymmetricUnit::Ymin) .def("Ymax", &AsymmetricUnit::Ymax) .def("Zmin", &AsymmetricUnit::Zmin) .def("Zmax", &AsymmetricUnit::Zmax) ; } pyobjcryst-2024.2.1/src/extensions/atom_ext.cpp000066400000000000000000000047211470422267000214740ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::Atom. * * Changes from ObjCryst::Atom * - The default constructor has been disabled. When not followed-up by Init, it * will cause segmentation faults, even if it is printed. * *****************************************************************************/ #include #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { // Helper function - avoid dereferencing NULL when Atom is dummy. const ScatteringPower* getscatteringpowerpointer(const Atom& a) { const ScatteringPower* rv = a.IsDummy() ? NULL : &(a.GetScatteringPower()); return rv; } } // namespace void wrap_atom() { class_ >("Atom", init(bp::arg("old"))) // Constructors .def(init >( (bp::arg("x"), bp::arg("y"), bp::arg("z"), bp::arg("name"), bp::arg("pow"), bp::arg("popu"))) [with_custodian_and_ward<1,6>()]) // Methods .def("Init", &Atom::Init, (bp::arg("x"), bp::arg("y"), bp::arg("z"), bp::arg("name"), bp::arg("pow"), bp::arg("popu")=1.0), with_custodian_and_ward<1,6>()) .def("GetMass", &Atom::GetMass) .def("GetRadius", &Atom::GetRadius) .def("IsDummy", &Atom::IsDummy) // FIXME - this should be returned as a constant reference. However, I // can't get this to work. This returns it as an internal reference, // which is probably a bad idea. .def("GetScatteringPower", &getscatteringpowerpointer, return_internal_reference<>()) //return_value_policy()) ; } pyobjcryst-2024.2.1/src/extensions/crystal_ext.cpp000066400000000000000000000346321470422267000222210ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::Crystal. * * Changes from ObjCryst::Crystal * - CIFOutput accepts a python file-like object * - CIFOutput has default mindist = 0, rather than 0.5 * - CalcDynPopCorr is not enabled, as the API states that this is for internal * use only. * - GetScatteringComponentList returns an actual list. * * Other Changes * - CreateCrystalFromCIF is placed here instead of in a seperate CIF module. This * method accepts a python file rather than a CIF object. * *****************************************************************************/ #include #include #include #include #include #include #include #undef B0 #include #include #include #include #include #include "python_streambuf.hpp" #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { // Overloaded so that AddScatterer does not add NULL void _AddScatterer(Crystal& crystal, Scatterer* scatt) { if(NULL == scatt) { PyErr_SetString(PyExc_ValueError, "Cannot add nonexistant Scatterer"); throw_error_already_set(); } // Make sure the associated ScatteringPower exists in the Crystal if(scatt->GetClassName()=="Atom") { Atom *pat=dynamic_cast(scatt); if(!(pat->IsDummy())) { const ScatteringPower *psp = &pat->GetScatteringPower(); if(crystal.GetScatteringPowerRegistry().Find(psp)<0) throw ObjCryst::ObjCrystException("The Atom's scattering power must be added to the Crystal first."); } } else if(scatt->GetClassName()=="Molecule") { Molecule *pm=dynamic_cast(scatt); for(int i=0; iGetNbComponent(); i++) { if(!(pm->GetAtom(i).IsDummy())) { if(crystal.GetScatteringPowerRegistry().Find(&(pm->GetAtom(i).GetScatteringPower()))<0) throw ObjCryst::ObjCrystException("The Molecule or Polyhedra scattering powers must be added to the Crystal first."); } } } crystal.AddScatterer(scatt); } // Overloaded so that RemoveScatterer cannot delete the passed scatterer void _RemoveScatterer(Crystal& crystal, Scatterer* scatt) { if(NULL == scatt) { PyErr_SetString(PyExc_ValueError, "Cannot remove nonexistant Scatterer"); throw_error_already_set(); } crystal.RemoveScatterer(scatt, false); } // Overload to handle invalid index values Scatterer& _GetScattByIndex(Crystal& crystal, int idx) { int i = check_index(idx, crystal.GetNbScatterer(), ALLOW_NEGATIVE); return crystal.GetScatt(i); } // Overload to handle invalid names Scatterer* _GetScattByName(Crystal& crystal, const std::string& name) { Scatterer* rv = NULL; try { CaptureStdOut gag; rv = &(crystal.GetScatt(name)); } catch (ObjCrystException e) { rv = NULL; } if (!rv) { bp::object emsg = ("Invalid atom name %r" % bp::make_tuple(name)); PyErr_SetObject(PyExc_ValueError, emsg.ptr()); throw_error_already_set(); } return rv; } // Overloaded so that AddScatteringPower does not add NULL void _AddScatteringPower(Crystal& crystal, ScatteringPower* scattpow) { if(NULL == scattpow) { PyErr_SetString(PyExc_ValueError, "Cannot add nonexistant ScatteringPower"); throw_error_already_set(); } crystal.AddScatteringPower(scattpow); } // Overloaded so that RemoveScatteringPower cannot delete the passed // scatteringpower void _RemoveScatteringPower(Crystal& crystal, ScatteringPower* scattpow) { if(NULL == scattpow) { PyErr_SetString(PyExc_ValueError, "Cannot remove nonexistant ScatteringPower"); throw_error_already_set(); } crystal.RemoveScatteringPower(scattpow, false); } void _PrintMinDistanceTable(const Crystal& crystal, const double minDistance = 0.1) { crystal.PrintMinDistanceTable(minDistance); } // We want to turn a ScatteringComponentList into an actual list bp::list _GetScatteringComponentList(Crystal& c) { const ScatteringComponentList& scl = c.GetScatteringComponentList(); bp::list l; for(int i = 0; i < scl.GetNbComponent(); ++i) { l.append(scl(i)); } return l; } void _CIFOutput(Crystal& c, bp::object output, double mindist) { boost_adaptbx::python::ostream os(output); c.CIFOutput(os, mindist); os.flush(); } std::string _CIF(const Crystal &c, double mindist) { std::stringstream s; c.CIFOutput(s, mindist); return s.str(); } void _ImportCrystalFromCIF(Crystal &cryst, bp::object input, const bool oneScatteringPowerPerElement=false, const bool connectAtoms=false) { // Reading a cif file creates some output via fpObjCrystInformUser. // Mute the output and restore it on return or exception. // Also mute any hardcoded output to cout. MuteObjCrystUserInfo muzzle; CaptureStdOut gag; boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream in(sbuf); ObjCryst::CIF cif(in); const bool verbose = false; const bool checkSymAsXYZ = true; ObjCryst::CreateCrystalFromCIF(cif, verbose, checkSymAsXYZ, oneScatteringPowerPerElement, connectAtoms, &cryst); gag.release(); muzzle.release(); } // wrap the virtual functions that need it class CrystalWrap : public Crystal, public wrapper { public: CrystalWrap() : Crystal() { SetDeleteSubObjInDestructor(false); SetDeleteRefParInDestructor(false); } CrystalWrap(const Crystal& c) : Crystal(c) { SetDeleteSubObjInDestructor(false); SetDeleteRefParInDestructor(false); } CrystalWrap(const double a, const double b, const double c , const std::string& sg) : Crystal(a, b, c, sg) { SetDeleteSubObjInDestructor(false); SetDeleteRefParInDestructor(false); } CrystalWrap(const double a, const double b, const double c , const double alpha, const double beta, const double gamma, const std::string& sg) : Crystal(a, b, c, alpha, beta, gamma, sg) { SetDeleteSubObjInDestructor(false); SetDeleteRefParInDestructor(false); } const ScatteringComponentList& default_GetScatteringComponentList() const { return this->Crystal::GetScatteringComponentList(); } const ScatteringComponentList& GetScatteringComponentList() const { override f = this->get_override("GetScatteringComponentList"); if (f) return f(); return default_GetScatteringComponentList(); } void default_UpdateDisplay() const { this->Crystal::UpdateDisplay();} virtual void UpdateDisplay() const { override f = this->get_override("UpdateDisplay"); if (f) f(); else default_UpdateDisplay(); } }; // Easier than exposing all the CIF classes // Also allow oneScatteringPowerPerElement and connectAtoms Crystal* _CreateCrystalFromCIF(bp::object input, const bool oneScatteringPowerPerElement=false, const bool connectAtoms=false) { // Reading a cif file creates some output via fpObjCrystInformUser. // Mute the output and restore it on return or exception. // Also mute any hardcoded output to cout. MuteObjCrystUserInfo muzzle; CaptureStdOut gag; boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream in(sbuf); ObjCryst::CIF cif(in); int idx0 = gCrystalRegistry.GetNb(); const bool verbose = false; const bool checkSymAsXYZ = true; ObjCryst::CreateCrystalFromCIF(cif, verbose, checkSymAsXYZ, oneScatteringPowerPerElement, connectAtoms); gag.release(); muzzle.release(); int idx = gCrystalRegistry.GetNb(); if(idx == idx0) { throw ObjCryst::ObjCrystException("Cannot create crystal from CIF"); } idx--; ObjCryst::Crystal* c = &gCrystalRegistry.GetObj( idx ); c->SetDeleteSubObjInDestructor(false); c->SetDeleteRefParInDestructor(false); return c; } } // namespace void wrap_crystal() { scope().attr("refpartype_crystal") = object(ptr(gpRefParTypeCrystal)); // Global object registry scope().attr("gCrystalRegistry") = boost::cref(gCrystalRegistry); class_, boost::noncopyable>("Crystal") /* Constructors */ .def(init( (bp::arg("a"), bp::arg("b"), bp::arg("c"), bp::arg("SpaceGroupId")))) .def(init( (bp::arg("a"), bp::arg("b"), bp::arg("c"), bp::arg("alpha"), bp::arg("beta"), bp::arg("gamma"), bp::arg("SpaceGroupId")))) .def(init(bp::arg("oldCryst"))) /* Methods */ .def("AddScatterer", &_AddScatterer, with_custodian_and_ward<1,2,with_custodian_and_ward<2,1> >()) .def("RemoveScatterer", &_RemoveScatterer) .def("GetNbScatterer", &Crystal::GetNbScatterer) .def("GetScatt", _GetScattByName, return_internal_reference<>()) .def("GetScatt", _GetScattByIndex, return_internal_reference<>()) .def("GetScatterer", _GetScattByName, return_internal_reference<>()) .def("GetScatterer", _GetScattByIndex, return_internal_reference<>()) .def("GetScattererRegistry", ( ObjRegistry& (Crystal::*) ()) &Crystal::GetScattererRegistry, return_internal_reference<>()) .def("GetScatteringPowerRegistry", ( ObjRegistry& (Crystal::*) ()) &Crystal::GetScatteringPowerRegistry, return_internal_reference<>()) .def("AddScatteringPower", &_AddScatteringPower, with_custodian_and_ward<1,2,with_custodian_and_ward<2,1> >()) .def("RemoveScatteringPower", &_RemoveScatteringPower) .def("GetScatteringPower", (ScatteringPower& (Crystal::*)(const std::string&)) &Crystal::GetScatteringPower, return_internal_reference<>()) .def("GetMasterClockScatteringPower", &Crystal::GetMasterClockScatteringPower, return_value_policy()) .def("GetScatteringComponentList", &_GetScatteringComponentList) .def("GetClockScattCompList", &Crystal::GetClockScattCompList, return_value_policy()) .def("GetMinDistanceTable", &Crystal::GetMinDistanceTable, (bp::arg("minDistance")=1.0)) .def("PrintMinDistanceTable", &_PrintMinDistanceTable, (bp::arg("minDistance")=1.0)) //.def("CalcDynPopCorr", &Crystal::CalcDynPopCorr, // (bp::arg("overlapDist")=1.0, // bp::arg("mergeDist")=0.0)) .def("ResetDynPopCorr", &Crystal::ResetDynPopCorr) .def("SetUseDynPopCorr", &Crystal::SetUseDynPopCorr) .def("GetUseDynPopCorr", &Crystal::GetUseDynPopCorr) .def("GetBumpMergeCost", &Crystal::GetBumpMergeCost) .def("SetBumpMergeDistance", (void (Crystal::*)(const ScatteringPower&, const ScatteringPower&, const double)) &Crystal::SetBumpMergeDistance, (bp::arg("scatt1"), bp::arg("scatt2"), bp::arg("dist")=1.5)) .def("SetBumpMergeDistance", (void (Crystal::*) (const ScatteringPower&, const ScatteringPower&, const double, const bool)) &Crystal::SetBumpMergeDistance, (bp::arg("scatt1"), bp::arg("scatt2"), bp::arg("dist"), bp::arg("allowMerge"))) .def("RemoveBumpMergeDistance", &Crystal::RemoveBumpMergeDistance) .def("GetBumpMergeParList", (Crystal::VBumpMergePar& (Crystal::*)()) &Crystal::GetBumpMergeParList, return_internal_reference<>()) .def("GetClockScattererList", &Crystal::GetClockScattererList, return_value_policy()) .def("CIFOutput", &_CIFOutput, (bp::arg("file"), bp::arg("mindist")=0)) .def("CIF", &_CIF, (bp::arg("mindist")=0)) .def("AddBondValenceRo", &Crystal::AddBondValenceRo) .def("RemoveBondValenceRo", &Crystal::AddBondValenceRo) .def("GetBondValenceCost", &Crystal::GetBondValenceCost) .def("GetBondValenceRoList", (std::map< pair< const ScatteringPower *, const ScatteringPower * >, double > & (Crystal::*)()) &Crystal::GetBondValenceRoList, return_internal_reference<>()) .def("ConnectAtoms", &Crystal::ConnectAtoms, (bp::arg("min_relat_dist")=0.4, bp::arg("max_relat_dist")=1.3, bp::arg("warnuser_fail")=false)) .def("GetFormula", &Crystal::GetFormula) .def("GetWeight", &Crystal::GetWeight) .def("ImportCrystalFromCIF", &_ImportCrystalFromCIF, (bp::arg("input"), bp::arg("oneScatteringPowerPerElement")=false, bp::arg("connectAtoms")=false)) .def("UpdateDisplay", &Crystal::UpdateDisplay, &CrystalWrap::default_UpdateDisplay) ; class_("BumpMergePar", no_init) .def_readwrite("mDist2", &Crystal::BumpMergePar::mDist2) .def_readwrite("mCanOverlap", &Crystal::BumpMergePar::mCanOverlap) ; def("CreateCrystalFromCIF", &_CreateCrystalFromCIF, (bp::arg("file"), bp::arg("oneScatteringPowerPerElement")=false, bp::arg("connectAtoms")=false), return_value_policy()); } pyobjcryst-2024.2.1/src/extensions/diffractiondatasinglecrystal_ext.cpp000066400000000000000000000212101470422267000264520ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst Complex Modeling Initiative * (c) 2015 Brookhaven Science Associates * Brookhaven National Laboratory. * All rights reserved. * * File coded by: Vincent Favre-Nicolin, Kevin Knox * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::DiffractionDataSingleCrystal. * Changes from ObjCryst::DiffractionDataSingleCrystal * - SetHklIobs takes float(64) H, K, L arrays rather than long integers - easier * because passing numpy int array seesm complicated, and more practical anyway * since GetH() GetK() GetL() functions from ScatteringData natively use floats. *****************************************************************************/ #include #include #include #include #include #undef B0 #include #include #include #include #include #include "python_streambuf.hpp" #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { DiffractionDataSingleCrystal* _CreateSingleCrystalDataFromCIF(bp::object input, Crystal &cryst) { // Reading a cif file creates some output via fpObjCrystInformUser. // Mute the output and restore it on return or exception. // Also mute any hardcoded output to cout. MuteObjCrystUserInfo muzzle; CaptureStdOut gag; boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream in(sbuf); ObjCryst::CIF cif(in); int idx0 = gDiffractionDataSingleCrystalRegistry.GetNb(); ObjCryst::DiffractionDataSingleCrystal* d = ObjCryst::CreateSingleCrystalDataFromCIF(cif, &cryst); gag.release(); muzzle.release(); int idx = gDiffractionDataSingleCrystalRegistry.GetNb(); if(idx == idx0) { throw ObjCryst::ObjCrystException("Cannot create single crystal diffraction data from CIF"); } return d; } void setdiffractiondatasinglecrystal_iobs(DiffractionDataSingleCrystal& diff, bp::object iobs) { CrystVector_REAL iiobs; assignCrystVector(iiobs, iobs); if(iiobs.size() != diff.GetIobs().size()) throw ObjCryst::ObjCrystException("DiffractionDataSingleCrystal::SetIobs(): " "number of elements does not match the previous Iobs list. " "Use SetHklIobs if you want to change the number of reflections."); MuteObjCrystUserInfo muzzle; diff.SetIobs(iiobs); } void setdiffractiondatasinglecrystal_sigma(DiffractionDataSingleCrystal& diff, bp::object sigma) { CrystVector_REAL ssigma; assignCrystVector(ssigma, sigma); if(ssigma.size() != diff.GetIobs().size()) throw ObjCryst::ObjCrystException("DiffractionDataSingleCrystal::SetSigma(): " "number of elements does not match the Iobs list. " "Use SetHklIobs if you want to change the number of reflections."); MuteObjCrystUserInfo muzzle; diff.SetSigma(ssigma); } // TODO: For SetHklIobs we should pass directly an integer array but that seems difficult-passed numpy arrays // are always interpreted as doubles (?). It's more practical this way. void assignCrystVector(CrystVector& cv, bp::object obj) { bp::stl_input_iterator begin(obj), end; std::list values(begin, end); cv.resize(values.size()); std::list::const_iterator vv = values.begin(); long* dst = cv.data(); for (; vv != values.end(); ++vv, ++dst) *dst = lround(*vv); } void setdiffractiondatasinglecrystal_hkliobs(DiffractionDataSingleCrystal& diff, bp::object h,bp::object k, bp::object l, bp::object iobs, bp::object sigma) { CrystVector hh; assignCrystVector(hh, h); CrystVector kk; assignCrystVector(kk, k); CrystVector ll; assignCrystVector(ll, l); CrystVector_REAL iiobs; assignCrystVector(iiobs, iobs); CrystVector_REAL ssigma; assignCrystVector(ssigma, sigma); if(hh.size() != kk.size()) throw ObjCryst::ObjCrystException("DiffractionDataSingleCrystal::SetHklIobs(): h and k array sizes differ"); if(hh.size() != ll.size()) throw ObjCryst::ObjCrystException("DiffractionDataSingleCrystal::SetHklIobs(): h and l array sizes differ"); if(hh.size() != iiobs.size()) throw ObjCryst::ObjCrystException("DiffractionDataSingleCrystal::SetHklIobs(): h and iobs array sizes differ"); if(hh.size() != ssigma.size()) throw ObjCryst::ObjCrystException("DiffractionDataSingleCrystal::SetHklIobs(): h and sigma array sizes differ"); MuteObjCrystUserInfo muzzle; diff.SetHklIobs(hh, kk, ll, iiobs, ssigma); } } // namespace void wrap_diffractiondatasinglecrystal() { // Global object registry scope().attr("gDiffractionDataSingleCrystalRegistry") = object(boost::cref(gDiffractionDataSingleCrystalRegistry)); class_ >( "DiffractionDataSingleCrystal", init((bp::arg("cryst"), bp::arg("regist")=true)) [with_custodian_and_ward<1,2>()]) // FIXME ... add crystal-less constructor .def("GetIcalc", &DiffractionDataSingleCrystal::GetIcalc, return_value_policy()) .def("GetIobs", &DiffractionDataSingleCrystal::GetIobs, return_value_policy()) .def("GetSigma", &DiffractionDataSingleCrystal::GetSigma, return_value_policy()) .def("SetIobs", &setdiffractiondatasinglecrystal_iobs, bp::arg("iobs")) .def("SetSigma", &setdiffractiondatasinglecrystal_sigma, bp::arg("sigma")) .def("SetHklIobs", &setdiffractiondatasinglecrystal_hkliobs, (bp::arg("h"),bp::arg("k"),bp::arg("l"), bp::arg("iobs"), bp::arg("sigma"))) .def("SetIobsToIcalc", &DiffractionDataSingleCrystal::SetIobsToIcalc) .def("GetRw", &DiffractionDataSingleCrystal::GetRw) .def("GetR", &DiffractionDataSingleCrystal::GetR) .def("GetChi2", &DiffractionDataSingleCrystal::GetChi2) .def("FitScaleFactorForRw", &DiffractionDataSingleCrystal::FitScaleFactorForRw) .def("FitScaleFactorForR", &DiffractionDataSingleCrystal::FitScaleFactorForR) // TODO: These functions should print a limited number of reflections - problems otherwise .def("PrintObsData", &DiffractionDataSingleCrystal::PrintObsData) .def("PrintObsCalcData", &DiffractionDataSingleCrystal::PrintObsCalcData) .def("SetUseOnlyLowAngleData", &DiffractionDataSingleCrystal::SetUseOnlyLowAngleData) .def("SaveHKLIobsIcalc", &DiffractionDataSingleCrystal::SaveHKLIobsIcalc) .def("GetLogLikelihood", &DiffractionDataSingleCrystal::GetLogLikelihood) .def("ImportHklIobs", &DiffractionDataSingleCrystal::ImportHklIobs, (bp::arg("fileName"), bp::arg("nbRefl"), bp::arg("skipLines")=0)) .def("ImportHklIobsSigma", &DiffractionDataSingleCrystal::ImportHklIobsSigma, (bp::arg("fileName"), bp::arg("nbRefl"), bp::arg("skipLines")=0)) .def("ImportShelxHKLF4", &DiffractionDataSingleCrystal::ImportShelxHKLF4) .def("ImportCIF", &DiffractionDataSingleCrystal::ImportCIF) .def("SetWavelength", (void(DiffractionDataSingleCrystal::*)(const REAL)) &DiffractionDataSingleCrystal::SetWavelength, bp::arg("wavelength")) .def("SetWavelength", (void (DiffractionDataSingleCrystal::*)(const string&, const REAL)) &DiffractionDataSingleCrystal::SetWavelength, (bp::arg("XRayTubeElementName"), bp::arg("alpha2Alpha2ratio")=0.5)) .def("SetEnergy", &DiffractionDataSingleCrystal::SetEnergy, bp::arg("nrj_kev")) ; def("CreateSingleCrystalDataFromCIF", &_CreateSingleCrystalDataFromCIF, (bp::arg("file"), bp::arg("crystal")), with_custodian_and_ward_postcall<0,2, return_value_policy >()); } pyobjcryst-2024.2.1/src/extensions/general_ext.cpp000066400000000000000000000047071470422267000221550ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to general structures and objects defined in * ObjCryst/ObjCryst/General.h * *****************************************************************************/ #include #include #include #include #include #if LIBOBJCRYST_VERSION < 2017002002000LL #error pyobjcryst requires libobjcryst 2017.2.2 or later. #endif using namespace boost::python; using namespace ObjCryst; // wrappers ------------------------------------------------------------------ namespace { const char* doc__get_libobjcryst_version_info_dict = "\ Return dictionary with version data for the loaded libobjcryst library.\n\ "; dict get_libobjcryst_version_info_dict() { dict rv; rv["version"] = libobjcryst_version_info::version; rv["version_str"] = libobjcryst_version_info::version_str; rv["major"] = libobjcryst_version_info::major; rv["minor"] = libobjcryst_version_info::minor; rv["micro"] = libobjcryst_version_info::micro; rv["date"] = libobjcryst_version_info::date; rv["git_commit"] = libobjcryst_version_info::git_commit; rv["patch"] = libobjcryst_version_info::patch; return rv; } } // namespace // --------------------------------------------------------------------------- void wrap_general() { enum_("RadiationType") .value("RAD_NEUTRON", RAD_NEUTRON) .value("RAD_XRAY", RAD_XRAY) .value("RAD_ELECTRON", RAD_ELECTRON) ; // Only import wavelength types actually used enum_("WavelengthType") .value("WAVELENGTH_MONOCHROMATIC", WAVELENGTH_MONOCHROMATIC) .value("WAVELENGTH_ALPHA12", WAVELENGTH_ALPHA12) .value("WAVELENGTH_TOF", WAVELENGTH_TOF) ; def("_get_libobjcryst_version_info_dict", get_libobjcryst_version_info_dict, doc__get_libobjcryst_version_info_dict); } pyobjcryst-2024.2.1/src/extensions/globaloptim_ext.cpp000066400000000000000000000216061470422267000230460ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::GlobalOptimObj and ObjCryst::MonteCarloObj. * * Changes from ObjCryst::MonteCarloObj: * - add access to mAutoLSQ option * * Other Changes * *****************************************************************************/ #include #include #include #include #include #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { // Overload MonteCarlo class so that it does not auto-save to XML class MonteCarloObjWrap: public MonteCarloObj, public wrapper { public: MonteCarloObjWrap(): MonteCarloObj() { this->GetOption("Save Best Config Regularly").SetChoice(0); } MonteCarloObjWrap(const string name): MonteCarloObj(name) { this->GetOption("Save Best Config Regularly").SetChoice(0); } MonteCarloObjWrap(const MonteCarloObj &old): MonteCarloObj(old) {} void default_UpdateDisplay() const { this->MonteCarloObj::UpdateDisplay();} virtual void UpdateDisplay() const { override f = this->get_override("UpdateDisplay"); if (f) f(); // Always call the default UpdateDisplay, which updates all // other objects display default_UpdateDisplay(); } }; void run_optimize(MonteCarloObj& obj, long nbSteps, const bool silent, const double finalcost, const double maxTime) { CaptureStdOut gag; obj.Optimize(nbSteps, silent, finalcost, maxTime); } void multirun_optimize(MonteCarloObj& obj, long nbCycle, long nbSteps, const bool silent, const double finalcost, const double maxTime) { CaptureStdOut gag; obj.MultiRunOptimize(nbCycle, nbSteps, silent, finalcost, maxTime); } void mc_sa(MonteCarloObj& obj, long nbSteps, const bool silent, const double finalcost, const double maxTime) { CaptureStdOut gag; obj.RunSimulatedAnnealing(nbSteps, silent, finalcost, maxTime); } void mc_pt(MonteCarloObj& obj, long nbSteps, const bool silent, const double finalcost, const double maxTime) { CaptureStdOut gag; obj.RunParallelTempering(nbSteps, silent, finalcost, maxTime); } /* void mc_random_lsq(MonteCarloObjWrap& obj, long nbCycle) { obj.RunRandomLSQMethod(nbCycle); } */ } // namespace void wrap_globaloptim() { // Global object registry scope().attr("gOptimizationObjRegistry") = boost::cref(gOptimizationObjRegistry); enum_("AnnealingSchedule") .value("CONSTANT", ANNEALING_CONSTANT) .value("BOLTZMANN", ANNEALING_BOLTZMANN) .value("CAUCHY", ANNEALING_CAUCHY) .value("EXPONENTIAL", ANNEALING_EXPONENTIAL) .value("SMART", ANNEALING_SMART) .value("GAMMA", ANNEALING_GAMMA) ; enum_("GlobalOptimType") .value("SIMULATED_ANNEALING", GLOBAL_OPTIM_SIMULATED_ANNEALING) .value("PARALLEL_TEMPERING", GLOBAL_OPTIM_PARALLEL_TEMPERING) .value("RANDOM_LSQ", GLOBAL_OPTIM_RANDOM_LSQ) .value("SIMULATED_ANNEALING_MULTI", GLOBAL_OPTIM_SIMULATED_ANNEALING_MULTI) .value("PARALLEL_TEMPERING_MULTI", GLOBAL_OPTIM_PARALLEL_TEMPERING_MULTI) ; class_("MonteCarlo") .def(init<>()) .def(init(bp::arg("old"))) .def(init(bp::arg("name"))) //////////////// OptimizationObj methods .def("RandomizeStartingConfig", &MonteCarloObj::RandomizeStartingConfig) .def("Optimize", &run_optimize, (bp::arg("nbSteps"), bp::arg("silent")=false, bp::arg("finalcost")=0.0, bp::arg("maxTime")=-1)) .def("MultiRunOptimize", &multirun_optimize, (bp::arg("nbCycle"), bp::arg("nbSteps"), bp::arg("silent")=false, bp::arg("finalcost")=0.0, bp::arg("maxTime")=-1)) .def("FixAllPar", &MonteCarloObj::FixAllPar) .def("SetParIsFixed", (void (MonteCarloObj::*)(const std::string&, const bool)) &MonteCarloObj::SetParIsFixed) .def("SetParIsFixed", (void (MonteCarloObj::*)(const RefParType*, const bool)) &MonteCarloObj::SetParIsFixed) .def("UnFixAllPar", &MonteCarloObj::UnFixAllPar) .def("SetParIsUsed", (void (MonteCarloObj::*)(const std::string&, const bool)) &MonteCarloObj::SetParIsUsed) .def("SetParIsUsed", (void (MonteCarloObj::*)(const RefParType*, const bool)) &MonteCarloObj::SetParIsUsed) .def("SetLimitsRelative", ( void (MonteCarloObj::*) (const std::string&, const double, const double) ) &MonteCarloObj::SetLimitsRelative) .def("SetLimitsRelative", ( void (MonteCarloObj::*) (const RefParType*, const double, const double) ) &MonteCarloObj::SetLimitsRelative) .def("SetLimitsAbsolute", ( void (MonteCarloObj::*) (const std::string&, const double, const double) ) &MonteCarloObj::SetLimitsAbsolute) .def("SetLimitsAbsolute", ( void (MonteCarloObj::*) (const RefParType*, const double, const double) ) &MonteCarloObj::SetLimitsAbsolute) .def("GetLogLikelihood", &MonteCarloObj::GetLogLikelihood) .def("StopAfterCycle", &MonteCarloObj::StopAfterCycle) .def("AddRefinableObj", &MonteCarloObj::AddRefinableObj, bp::arg("obj"), with_custodian_and_ward<1,2>()) .def("GetFullRefinableObj", &MonteCarloObj::GetFullRefinableObj, bp::arg("rebuild")=true, with_custodian_and_ward_postcall<1,0, return_internal_reference<> >()) .def("GetName", &MonteCarloObj::GetName, return_value_policy()) .def("SetName", &MonteCarloObj::SetName) .def("GetClassName", &MonteCarloObj::GetClassName) .def("Print", &MonteCarloObj::Print, &MonteCarloObj::Print) .def("RestoreBestConfiguration", &MonteCarloObj::RestoreBestConfiguration) .def("GetNbParamSet", &MonteCarloObj::GetNbParamSet) .def("GetParamSetIndex", &MonteCarloObj::GetParamSetIndex) .def("GetParamSetCost", &MonteCarloObj::GetParamSetCost) .def("RestoreParamSet", &MonteCarloObj::RestoreParamSet, (bp::arg("idx"), bp::arg("update_display")=true)) .def("IsOptimizing", &MonteCarloObj::IsOptimizing) .def("GetLastOptimElapsedTime", &MonteCarloObj::GetLastOptimElapsedTime) //.def("GetMainTracker", &MonteCarloObj::GetMainTracker) //.add_property("name", &MonteCarloObj::GetName, &MonteCarloObj::SetName) .def("GetNbOption", &MonteCarloObj::GetNbOption) .def("GetOption", (RefObjOpt& (MonteCarloObj::*)(const unsigned int)) &MonteCarloObj::GetOption, return_internal_reference<>()) .def("GetOption", (RefObjOpt& (MonteCarloObj::*)(const string&)) &MonteCarloObj::GetOption, with_custodian_and_ward_postcall<1,0,return_internal_reference<> >()) .add_property("trial", &MonteCarloObj::GetTrial) .add_property("run", &MonteCarloObj::GetRun) .add_property("llk", &MonteCarloObj::GetLogLikelihood) //////////////// MonteCarlo methods .def("SetAlgorithmParallTempering", &MonteCarloObj::SetAlgorithmParallTempering, (bp::arg("scheduleTemp"), bp::arg("tMax"), bp::arg("tMin"), bp::arg("scheduleMutation")=ANNEALING_SMART, bp::arg("mutMax")=16, bp::arg("mutMin")=.125)) .def("SetAlgorithmSimulAnnealing", &MonteCarloObj::SetAlgorithmSimulAnnealing, (bp::arg("scheduleTemp"), bp::arg("tMax"), bp::arg("tMin"), bp::arg("scheduleMutation")=ANNEALING_SMART, bp::arg("mutMax")=16, bp::arg("mutMin")=.125, bp::arg("nbTrialRetry")=0, bp::arg("minCostRetry")=0.)) .def("RunSimulatedAnnealing", &mc_sa, (bp::arg("nbSteps"), bp::arg("silent")=false, bp::arg("finalcost")=0.0, bp::arg("maxTime")=-1)) .def("RunParallelTempering", &mc_pt, (bp::arg("nbSteps"), bp::arg("silent")=false, bp::arg("finalcost")=0.0, bp::arg("maxTime")=-1)) // TODO: seems unstable //.def("RunRandomLSQ", &mc_random_lsq, // bp::arg("nbCycle")) .def("GetLSQObj", (LSQNumObj& (MonteCarloObj::*)()) &MonteCarloObj::GetLSQObj, with_custodian_and_ward_postcall<1,0, return_internal_reference<> >()) .def("InitLSQ", &MonteCarloObj::InitLSQ, bp::arg("useFullPowderPatternProfile")=true) ; } pyobjcryst-2024.2.1/src/extensions/globalscatteringpower_ext.cpp000066400000000000000000000024711470422267000251350ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::GlobalScatteringPower from * ObjCryst/ObjCryst/ZScatterer.h * *****************************************************************************/ #include #include #include using namespace boost::python; using namespace ObjCryst; void wrap_globalscatteringpower() { typedef void (GlobalScatteringPower::*GSPInitType)(const ZScatterer&); GSPInitType theinit = &GlobalScatteringPower::Init; class_ >("GlobalScatteringPower") .def(init()) .def(init()) .def("Init", theinit) .def("GetRadius", &GlobalScatteringPower::GetRadius) ; } pyobjcryst-2024.2.1/src/extensions/helpers.cpp000066400000000000000000000070411470422267000213140ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * Implementation of non-template binding-specific helper functions. * *****************************************************************************/ #include "helpers.hpp" #include #include #include #include // Use numpy here, but initialize it later in the extension module. #include "pyobjcryst_numpy_setup.hpp" #define NO_IMPORT_ARRAY #include namespace bp = boost::python; namespace { void black_hole_info(const std::string& s) { } } // namespace // class MuteObjCrystUserInfo ------------------------------------------------ MuteObjCrystUserInfo::MuteObjCrystUserInfo() : msave_info_func(ObjCryst::fpObjCrystInformUser) { ObjCryst::fpObjCrystInformUser = black_hole_info; } MuteObjCrystUserInfo::~MuteObjCrystUserInfo() { this->release(); } void MuteObjCrystUserInfo::release() { using ObjCryst::fpObjCrystInformUser; if (msave_info_func) fpObjCrystInformUser = msave_info_func; msave_info_func = NULL; } // class CaptureStdOut ------------------------------------------------------- CaptureStdOut::CaptureStdOut() : msave_cout_buffer(std::cout.rdbuf()) { std::cout.rdbuf(moutput.rdbuf()); } CaptureStdOut::~CaptureStdOut() { this->release(); } std::string CaptureStdOut::str() const { return moutput.str(); } void CaptureStdOut::release() { if (msave_cout_buffer) std::cout.rdbuf(msave_cout_buffer); msave_cout_buffer = NULL; } // free functions ------------------------------------------------------------ void assignCrystVector(CrystVector& cv, bp::object obj) { // copy data directly if it is a numpy array of doubles PyArrayObject* a = PyArray_Check(obj.ptr()) ? reinterpret_cast(obj.ptr()) : NULL; bool isdoublenumpyarray = a && (1 == PyArray_NDIM(a)) && (NPY_DOUBLE == PyArray_TYPE(a)); if (isdoublenumpyarray) { const double* src = static_cast(PyArray_DATA(a)); npy_intp stride = PyArray_STRIDE(a, 0) / PyArray_ITEMSIZE(a); cv.resize(PyArray_SIZE(a)); double* dst = cv.data(); const double* last = dst + cv.size(); for (; dst != last; ++dst, src += stride) *dst = *src; } // otherwise copy elementwise converting each element to a double else { bp::stl_input_iterator begin(obj), end; // use intermediate list to preserve cv when conversion fails. std::list values(begin, end); cv.resize(values.size()); std::list::const_iterator vv = values.begin(); double* dst = cv.data(); for (; vv != values.end(); ++vv, ++dst) *dst = *vv; } } int check_index(int idx, int size, NegativeIndexFlag nflag) { const int lo = (nflag == ALLOW_NEGATIVE) ? -size : 0; if (idx < lo || idx >= size) { PyErr_SetString(PyExc_IndexError, "Index out of range."); bp::throw_error_already_set(); } int rv = (idx < 0) ? size + idx : idx; return rv; } pyobjcryst-2024.2.1/src/extensions/helpers.hpp000066400000000000000000000066161470422267000213300ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * This is home to converters and utility functions that are explicitly applied * within the extensions, rather than registered in registerconverters.cpp. * *****************************************************************************/ #ifndef HELPERS_HPP #define HELPERS_HPP #include #include #include #include #include #include #include #include #include #include namespace bp = boost::python; typedef std::numeric_limits doublelim; class MuteObjCrystUserInfo { public: MuteObjCrystUserInfo(); ~MuteObjCrystUserInfo(); void release(); private: // pointer to the previous info function void (*msave_info_func)(const std::string &); }; class CaptureStdOut { public: CaptureStdOut(); ~CaptureStdOut(); std::string str() const; void release(); private: std::ostringstream moutput; std::streambuf* msave_cout_buffer; }; template std::string __str__(const T& obj) { CaptureStdOut outbuf; obj.Print(); outbuf.release(); std::string outstr = outbuf.str(); // Remove the trailing newline size_t idx = outstr.find_last_not_of("\n"); if (idx != std::string::npos) outstr.erase(idx+1); return outstr; } template std::set pyIterableToSet(const bp::object& l) { std::set cl; T typeobj; for(int i=0; i < len(l); ++i) { typeobj = bp::extract(l[i]); cl.insert(typeobj); } return cl; } // For turning vector-like containers into lists // It is assumed that T contains non-pointers template bp::list containerToPyList(T& v) { bp::list l; for(typename T::const_iterator it = v.begin(); it != v.end(); ++it) { l.append(*it); } return l; } // For turning vector-like containers into lists // It is assumed that T contains pointers template bp::list ptrcontainerToPyList(T& v) { bp::list l; for(typename T::const_iterator it = v.begin(); it != v.end(); ++it) { l.append(bp::ptr(*it)); } return l; } template bp::list setToPyList(std::set& v) { return containerToPyList< typename std::set >(v); } template bp::list vectorToPyList(std::vector& v) { return containerToPyList< typename std::vector >(v); } template bp::list listToPyList(std::list& v) { return containerToPyList< typename std::list >(v); } // Extract CrystVector from a Python object template class CrystVector; void assignCrystVector(CrystVector& cv, bp::object obj); // check index bounds and convert negative index to equivalent value enum NegativeIndexFlag {POSITIVE, ALLOW_NEGATIVE}; int check_index(int idx, int size, NegativeIndexFlag nflag); #endif pyobjcryst-2024.2.1/src/extensions/indexing_ext.cpp000066400000000000000000000402321470422267000223360ustar00rootroot00000000000000/***************************************************************************** * * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::Indexing. * * Changes from Indexing: * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #undef B0 #include #include #include #include "python_streambuf.hpp" #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; #ifndef M_PI #define M_PI 3.14159265358979323846264338327950288 #endif #define RAD2DEG (180./M_PI) namespace { bp::tuple _direct_unit_cell(const RecUnitCell &r, const bool equiv, const bool degrees=false) { const std::vector &v = r.DirectUnitCell(equiv); if(degrees) return bp::make_tuple(v[0], v[1], v[2], v[3]*RAD2DEG, v[4]*RAD2DEG, v[5]*RAD2DEG, v[6]); return bp::make_tuple(v[0], v[1], v[2], v[3], v[4], v[5], v[6]); } bp::list _vDicVolHKL(const PeakList::hkl& h) { return listToPyList< PeakList::hkl0 > (h.vDicVolHKL); } std::string __str__RecUnitCell(RecUnitCell& ruc) { std::string sys; switch(ruc.mlattice) { case TRICLINIC:sys="TRICLINIC"; break; case MONOCLINIC:sys="MONOCLINIC"; break; case ORTHOROMBIC:sys="ORTHOROMBIC"; break; case HEXAGONAL:sys="HEXAGONAL"; break; case RHOMBOEDRAL:sys="RHOMBOEDRAL"; break; case TETRAGONAL:sys="TETRAGONAL"; break; case CUBIC:sys="CUBIC"; break; } char centc; switch(ruc.mCentering) { case LATTICE_P:centc='P'; break; case LATTICE_I:centc='I'; break; case LATTICE_A:centc='A'; break; case LATTICE_B:centc='B'; break; case LATTICE_C:centc='C'; break; case LATTICE_F:centc='F'; break; } std::vector d = ruc.DirectUnitCell(); if(ruc.mNbSpurious>0) return (boost::format("%5.2f %5.2f %5.2f %5.1f %5.1f %5.1f V=%4.0f %s %c (%d SPURIOUS)") % d[0] % d[1] % d[2] % (d[3]*RAD2DEG) % (d[4]*RAD2DEG) % (d[5]*RAD2DEG) % d[6] % sys % centc % ruc.mNbSpurious).str(); return (boost::format("%5.2f %5.2f %5.2f %5.1f %5.1f %5.1f V=%4.0f %s %c") % d[0] % d[1] % d[2] % (d[3]*RAD2DEG) % (d[4]*RAD2DEG) % (d[5]*RAD2DEG) % d[6] % sys % centc).str(); } std::string __str__hkl0(PeakList::hkl0& hkl) { return (boost::format("(%2d %2d %2d)") % hkl.h % hkl.k % hkl.l).str(); } std::string __str__hkl(PeakList::hkl& hkl) { if(hkl.isIndexed) return (boost::format("Peak dobs=%7.5f+/-%7.5f iobs=%6e (%2d %2d %2d))") % hkl.dobs % hkl.dobssigma % hkl.iobs % hkl.h % hkl.k % hkl.l).str(); return (boost::format("Peak dobs=%7.5f+/-%7.5f iobs=%6e (? ? ?))") % hkl.dobs % hkl.dobssigma % hkl.iobs).str(); } class PeakListWrap : public PeakList, public wrapper { public: PeakListWrap():PeakList() {} PeakListWrap(const PeakList &p):PeakList(p) {} void ImportDhklDSigmaIntensity(bp::object input, const float defaultsigma) { CaptureStdOut gag; const std::string cname = bp::extract (input.attr("__class__").attr("__name__")); if(cname.compare("str")==0) { // Filename std::string p = bp::extract(input); std::ifstream is(p); this->PeakList::ImportDhklDSigmaIntensity(is, defaultsigma); } else { // Python file object boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream is(sbuf); this->PeakList::ImportDhklDSigmaIntensity(is, defaultsigma); } } void ImportDhklIntensity(bp::object input) { CaptureStdOut gag; const std::string cname = bp::extract (input.attr("__class__").attr("__name__")); if(cname.compare("str")==0) { // Filename std::string p = bp::extract(input); std::ifstream is(p); this->PeakList::ImportDhklIntensity(is); } else {// Python file object boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream is(sbuf); this->PeakList::ImportDhklIntensity(is); } } void default_ImportDhkl(bp::object input) { CaptureStdOut gag; const std::string cname = bp::extract (input.attr("__class__").attr("__name__")); if(cname.compare("str")==0) { // Filename std::string p = bp::extract(input); std::ifstream is(p); this->PeakList::ImportDhkl(is); } else {// Python file object boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream is(sbuf); this->PeakList::ImportDhkl(is); } } void Import2ThetaIntensity(bp::object input, const float wavelength) { CaptureStdOut gag; const std::string cname = bp::extract (input.attr("__class__").attr("__name__")); if(cname.compare("str")==0) { // Filename std::string p = bp::extract(input); std::ifstream is(p); this->PeakList::Import2ThetaIntensity(is, wavelength); } else {// Python file object boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream is(sbuf); this->PeakList::Import2ThetaIntensity(is, wavelength); } } void ExportDhklDSigmaIntensity(bp::object output) { CaptureStdOut gag; const std::string cname = bp::extract (output.attr("__class__").attr("__name__")); if(cname.compare("str")==0) { // Filename std::string sout =bp::extract(output); std::ofstream out(sout); this->PeakList::ExportDhklDSigmaIntensity(out); } else {// Python file object boost_adaptbx::python::streambuf sbuf(output); boost_adaptbx::python::streambuf::ostream out(sbuf); this->PeakList::ExportDhklDSigmaIntensity(out); } } void set_dobs_list(bp::list &l) { this->GetPeakList().clear(); bp::ssize_t n = bp::len(l); for(bp::ssize_t i=0;iAddPeak(bp::extract(l[i])); } unsigned int Length() const {return this->GetPeakList().size();} std::vector::const_iterator GetPeakIterBegin() {return this->GetPeakList().begin();} std::vector::const_iterator GetPeakIterEnd() {return this->GetPeakList().end();} void resize(const unsigned int nb) {this->GetPeakList().resize(nb);} void clear() {this->GetPeakList().clear();} bp::list _getPeakList() { return vectorToPyList< PeakList::hkl > (this->GetPeakList()); } }; std::list >::const_iterator _GetSolutionsIterBegin(const CellExplorer& c) {return c.GetSolutions().begin();} std::list >::const_iterator _GetSolutionsIterEnd(const CellExplorer& c) {return c.GetSolutions().end();} void _DicVolGag(CellExplorer &ex, const float minScore,const unsigned int minDepth, const float stopOnScore,const unsigned int stopOnDepth, const bool verbose=true) { CaptureStdOut gag; if(verbose) gag.release(); ex.DicVol(minScore, minDepth, stopOnScore, stopOnDepth); } // Custom converter struct pair_ruc_float_to_tuple { static PyObject* convert(std::pair const &p) { bp::object tpl = bp::make_tuple(bp::ptr(&p.first), p.second); PyObject* rv = tpl.ptr(); return bp::incref(rv); } static PyTypeObject const* get_pytype() { return &PyTuple_Type; } }; bp::list _GetSolutions(CellExplorer &ex) { // See containerToPyList bp::list l; for(std::list >::const_iterator pos = ex.GetSolutions().begin(); pos != ex.GetSolutions().end(); ++pos) l.append(*pos); return l; } } // namespace void wrap_indexing() { enum_("CrystalSystem") .value("TRICLINIC", TRICLINIC) .value("MONOCLINIC", MONOCLINIC) .value("ORTHOROMBIC", ORTHOROMBIC) .value("HEXAGONAL", HEXAGONAL) .value("RHOMBOEDRAL", RHOMBOEDRAL) .value("TETRAGONAL", TETRAGONAL) .value("CUBIC", CUBIC) ; enum_("CrystalCentering") .value("LATTICE_P", LATTICE_P) .value("LATTICE_I", LATTICE_I) .value("LATTICE_A", LATTICE_A) .value("LATTICE_B", LATTICE_B) .value("LATTICE_C", LATTICE_C) .value("LATTICE_F", LATTICE_F) ; def("EstimateCellVolume", &EstimateCellVolume, (bp::arg("dmin"), bp::arg("dmax"), bp::arg("nbrefl"), bp::arg("system"), bp::arg("centering"), bp::arg("kappa")=1.)); class_ ("RecUnitCell") .def(init( (bp::arg("zero")=0, bp::arg("par0")=0, bp::arg("par1")=0, bp::arg("par2")=0, bp::arg("par3")=0, bp::arg("par4")=0, bp::arg("par5")=0, bp::arg("lattice")=CUBIC, bp::arg("cent")=LATTICE_P, bp::arg("nbspurious")=0))) .def(init(bp::arg("old"))) .def("hkl2d", &RecUnitCell::hkl2d, (bp::arg("h"), bp::arg("k"), bp::arg("l"), bp::arg("derivpar")=NULL, bp::arg("derivhkl")=0)) .def("DirectUnitCell", &_direct_unit_cell, (bp::arg("equiv")=false, bp::arg("degrees")=false)) //.def_readonly("par", &RecUnitCell::par) .def_readonly("mlattice", &RecUnitCell::mlattice) .def_readonly("lattice", &RecUnitCell::mlattice) .def_readonly("mCentering", &RecUnitCell::mCentering) .def_readonly("centering", &RecUnitCell::mCentering) .def_readonly("nb_spurious", &RecUnitCell::mNbSpurious) .def_readonly("mNbSpurious", &RecUnitCell::mNbSpurious) .def("__str__", &__str__RecUnitCell) .def("__repr__", &__str__RecUnitCell) ; // Avoid the name hkl which may conflict somewhere else class_ ("PeakList_hkl0") .def(init( (bp::arg("h")=0, bp::arg("k")=0, bp::arg("l")=0))) .def_readonly("h", &PeakList::hkl0::h) .def_readonly("k", &PeakList::hkl0::k) .def_readonly("l", &PeakList::hkl0::l) .def("__str__", &__str__hkl0) .def("__repr__", &__str__hkl0) ; // Avoid the name hkl which may conflict somewhere else class_ ("PeakList_hkl") .def(init( (bp::arg("dobs")=1.0, bp::arg("iobs")=0, bp::arg("dobssigma")=0, bp::arg("iobssigma")=0, bp::arg("h")=0, bp::arg("k")=0, bp::arg("l")=0, bp::arg("d2calc")=0))) .def_readonly("dobs", &PeakList::hkl::dobs) .def_readonly("dobssigma", &PeakList::hkl::dobssigma) .def_readonly("d2obs", &PeakList::hkl::d2obs) .def_readonly("d2obsmin", &PeakList::hkl::d2obsmin) .def_readonly("d2obsmax", &PeakList::hkl::d2obsmax) .def_readonly("iobs", &PeakList::hkl::iobs) .def_readonly("iobssigma", &PeakList::hkl::iobssigma) .def_readonly("h", &PeakList::hkl::h) .def_readonly("k", &PeakList::hkl::k) .def_readonly("l", &PeakList::hkl::l) .def_readonly("isIndexed", &PeakList::hkl::isIndexed) .add_property("vDicVolHKL", &_vDicVolHKL) .def_readonly("isSpurious", &PeakList::hkl::isSpurious) .def_readonly("stats", &PeakList::hkl::stats) .def_readonly("d2calc", &PeakList::hkl::d2calc) .def_readonly("d2diff", &PeakList::hkl::d2diff) .def("__str__", &__str__hkl) .def("__repr__", &__str__hkl) ; class_ ("PeakList") .def("ImportDhklDSigmaIntensity", &PeakListWrap::ImportDhklDSigmaIntensity, (bp::arg("file"), bp::arg("defaultsigma")=0.001)) .def("ImportDhklIntensity", &PeakListWrap::ImportDhklIntensity, bp::arg("file")) .def("ImportDhkl", &PeakListWrap::ImportDhkl, bp::arg("file")) .def("Import2ThetaIntensity", &PeakListWrap::Import2ThetaIntensity, (bp::arg("file"), bp::arg("wavelength"))) .def("ExportDhklDSigmaIntensity", &PeakListWrap::ExportDhklDSigmaIntensity, bp::arg("file")) .def("Simulate", &PeakList::Simulate, (bp::arg("zero"), bp::arg("a"), bp::arg("b"), bp::arg("c"), bp::arg("alpha"), bp::arg("beta"), bp::arg("gamma"), bp::arg("deg"), bp::arg("nb")=20, bp::arg("nbspurious")=0, bp::arg("sigma")=0, bp::arg("percentMissing")=0, bp::arg("verbose")=false)) .def("GetPeakList", &PeakListWrap::_getPeakList, with_custodian_and_ward_postcall<1,0>()) // Python only .def("resize", &PeakListWrap::resize, bp::arg("nb")=20) .def("clear", &PeakListWrap::clear) .def("set_dobs_list", &PeakListWrap::set_dobs_list, (bp::arg("dobs"))) .def("__len__", &PeakListWrap::Length) .def("__iter__", range > (&PeakListWrap::GetPeakIterBegin, &PeakListWrap::GetPeakIterEnd)) ; // Register converter boost::python::to_python_converter, pair_ruc_float_to_tuple>(); class_, boost::noncopyable>("CellExplorer", init( (bp::arg("dhkl"), bp::arg("lattice"), bp::arg("nbSpurious")=0)) [with_custodian_and_ward<1,2>()]) .def("SetLengthMinMax", &CellExplorer::SetLengthMinMax) .def("SetAngleMinMax", &CellExplorer::SetAngleMinMax) .def("SetVolumeMinMax", &CellExplorer::SetVolumeMinMax) .def("SetNbSpurious", &CellExplorer::SetNbSpurious) .def("SetD2Error", &CellExplorer::SetD2Error) .def("SetMinMaxZeroShift", &CellExplorer::SetMinMaxZeroShift) .def("SetCrystalSystem", &CellExplorer::SetCrystalSystem) .def("SetCrystalCentering", &CellExplorer::SetCrystalCentering) .def("Print", &CellExplorer::Print) .def("DicVol", &_DicVolGag, (bp::arg("minScore")=10, bp::arg("minScore")=10, bp::arg("stopOnScore")=50, bp::arg("stopOnDepth")=6, bp::arg("verbose")=true)) .def("ReduceSolutions", &CellExplorer::ReduceSolutions, bp::arg("updateReportThreshold")=false) .def("GetBestScore", &CellExplorer::GetBestScore) .def("GetSolutions", &_GetSolutions) // Python only .def("__iter__", range > (&_GetSolutionsIterBegin, &_GetSolutionsIterEnd)) ; } pyobjcryst-2024.2.1/src/extensions/io_ext.cpp000066400000000000000000000062321470422267000211420ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst/RefinableObj/IO.h. * * Changes from ObjCryst::XMLCrystTag * - The istream constructor of XMLCrystTag is not wrapped. * *****************************************************************************/ #include #include #include #include #include #include #include "helpers.hpp" #include "python_streambuf.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void _XMLCrystFileLoadAllObject(bp::object input, const bool verbose=false) { // Mute all output MuteObjCrystUserInfo muzzle; CaptureStdOut gag; if(verbose) { gag.release(); muzzle.release(); } boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream in(sbuf); XMLCrystFileLoadAllObject(in); } void _XMLCrystFileSaveGlobal(bp::object output) { boost_adaptbx::python::streambuf sbuf(output); boost_adaptbx::python::streambuf::ostream out(sbuf); XMLCrystFileSaveGlobal(out); } void wrap_io() { class_ ("XMLCrystTag", init ((bp::arg("tagName"), bp::arg("isEndTag")=false, bp::arg("isEmptyTag")=false))) .def("GetName", &XMLCrystTag::GetName, return_value_policy()) .def("GetClassName", &XMLCrystTag::GetClassName, return_value_policy()) .def("GetNbAttribute", &XMLCrystTag::GetNbAttribute) .def("AddAttribute", &XMLCrystTag::AddAttribute, (bp::arg("attName"), bp::arg("attValue"))) .def("GetAttribute", &XMLCrystTag::GetAttribute, (bp::arg("attNum"), bp::arg("attName"), bp::arg("attValue"))) .def("GetAttributeName", &XMLCrystTag::GetAttributeName, return_value_policy()) .def("GetAttributeValue", &XMLCrystTag::GetAttributeValue, return_value_policy()) .def("SetIsEndTag", &XMLCrystTag::SetIsEndTag) .def("IsEndTag", &XMLCrystTag::IsEndTag) .def("SetIsEmptyTag", &XMLCrystTag::SetIsEmptyTag) .def("IsEmptyTag", &XMLCrystTag::IsEmptyTag) .def("Print", &XMLCrystTag::Print) .def("__str__", &__str__) // python-only ; def("XMLCrystFileLoadAllObject", &_XMLCrystFileLoadAllObject, (bp::arg("file"), bp::arg("verbose")=false)); def("XMLCrystFileSaveGlobal", &_XMLCrystFileSaveGlobal, bp::arg("file")); } pyobjcryst-2024.2.1/src/extensions/lsq_ext.cpp000066400000000000000000000104461470422267000213340ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::LSQNumObj. * * Changes from ObjCryst::LSQNumObj * * Other Changes * *****************************************************************************/ #include #include #include #include #include #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { bool _SafeRefine(LSQNumObj & lsq, REAL maxChi2factor, int nbCycle, bool useLevenbergMarquardt, const bool silent, const bool callBeginEndOptimization,const float minChi2var) { CaptureStdOut gag; if(!silent) gag.release(); std::list vnewpar; std::list vnewpartype; return lsq.SafeRefine(vnewpar, vnewpartype, nbCycle, useLevenbergMarquardt, silent, callBeginEndOptimization, minChi2var); } } // namespace void wrap_lsq() { class_("LSQ") /// LSQNumObj::PrepareRefParList() must be called first! .def("SetParIsFixed", (void (LSQNumObj::*)(const std::string&, const bool)) &LSQNumObj::SetParIsFixed, (bp::arg("parName"), bp::arg("fix"))) .def("SetParIsFixed", (void (LSQNumObj::*)(const RefParType *, const bool)) &LSQNumObj::SetParIsFixed, (bp::arg("type"), bp::arg("fix"))) .def("SetParIsFixed", (void (LSQNumObj::*)(RefinablePar &, const bool)) &LSQNumObj::SetParIsFixed, (bp::arg("par"), bp::arg("fix"))) //void SetParIsFixed(RefinableObj &obj, const bool fix); .def("UnFixAllPar", &LSQNumObj::UnFixAllPar) //void SetParIsUsed(const std::string& parName, const bool use); //void SetParIsUsed(const RefParType *type, const bool use); .def("Refine", &LSQNumObj::Refine, (bp::arg("nbCycle")=1, bp::arg("useLevenbergMarquardt")=false, bp::arg("silent")=false, bp::arg("callBeginEndOptimization")=true, bp::arg("minChi2var")=0.01)) .def("SafeRefine", &_SafeRefine, (bp::arg("maxChi2factor")=1.01,bp::arg("nbCycle")=1, bp::arg("useLevenbergMarquardt")=false, bp::arg("silent")=false, bp::arg("callBeginEndOptimization")=true, bp::arg("minChi2var")=0.01)) .def("Rfactor", &LSQNumObj::Rfactor) .def("RwFactor", &LSQNumObj::RwFactor) .def("ChiSquare", &LSQNumObj::ChiSquare) .def("SetRefinedObj", &LSQNumObj::SetRefinedObj, (bp::arg("obj"), bp::arg("LSQFuncIndex")=0, bp::arg("init")=true, bp::arg("recursive")=false), with_custodian_and_ward<1,2>()) .def("GetCompiledRefinedObj", (RefinableObj& (LSQNumObj::*)()) &LSQNumObj::GetCompiledRefinedObj, with_custodian_and_ward_postcall<0,1,return_internal_reference<> >()) .def("PrintRefResults", &LSQNumObj::PrintRefResults) .def("PrepareRefParList", &LSQNumObj::PrepareRefParList, (bp::arg("copy_param")=false)) .def("GetLSQCalc", &LSQNumObj::GetLSQCalc, return_value_policy()) .def("GetLSQObs", &LSQNumObj::GetLSQObs, return_value_policy()) .def("GetLSQWeight", &LSQNumObj::GetLSQWeight, return_value_policy()) .def("GetLSQDeriv", &LSQNumObj::GetLSQDeriv, bp::arg("par"), return_value_policy()) .def("BeginOptimization", &LSQNumObj::BeginOptimization, (bp::arg("allowApproximations")=false, bp::arg("enableRestraints")=false)) .def("EndOptimization", &LSQNumObj::EndOptimization) ; } pyobjcryst-2024.2.1/src/extensions/molatom_ext.cpp000066400000000000000000000061301470422267000222000ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::MolAtom. * * Changes from ObjCryst::MolAtom * - Wrapped as a to-python converter only. * - File IO is disabled * - X, Y and Z are wrapped as properties rather than methods. * *****************************************************************************/ #include #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { // Helper function - avoid dereferencing NULL when MolAtom is dummy. const ScatteringPower* getscatteringpowerpointer(const MolAtom& a) { const ScatteringPower* rv = a.IsDummy() ? NULL : &(a.GetScatteringPower()); return rv; } std::string __str__(MolAtom& a) { std::stringstream s; s << a.GetName() << " " << a.GetX() << " " << a.GetY() << " " << a.GetZ(); return s.str(); } } // namespace void wrap_molatom() { class_ ("MolAtom", init()) .def("GetName", (const std::string& (MolAtom::*)() const) &MolAtom::GetName, return_value_policy()) .def("SetName", &MolAtom::SetName) .def("GetMolecule", (Molecule& (MolAtom::*)()) &MolAtom::GetMolecule, return_internal_reference<>()) .def("GetX", &MolAtom::GetX) .def("GetY", &MolAtom::GetY) .def("GetZ", &MolAtom::GetZ) .def("GetOccupancy", &MolAtom::GetOccupancy) .def("SetX", &MolAtom::SetX) .def("SetY", &MolAtom::SetY) .def("SetZ", &MolAtom::SetZ) .def("SetOccupancy", &MolAtom::SetOccupancy) .def("IsDummy", &MolAtom::IsDummy) // FIXME - this should be returned as a constant reference. However, I // can't get this to work. This returns it as an internal reference, // which is probably a bad idea. .def("GetScatteringPower", getscatteringpowerpointer, return_internal_reference<>()) //return_value_policy()) .def("SetIsInRing", &MolAtom::SetIsInRing) .def("IsInRing", &MolAtom::IsInRing) // Python-only .add_property("X", &MolAtom::GetX, &MolAtom::SetX) .add_property("Y", &MolAtom::GetY, &MolAtom::SetY) .add_property("Z", &MolAtom::GetZ, &MolAtom::SetZ) .add_property("Occupancy", &MolAtom::GetOccupancy, &MolAtom::SetOccupancy) .def("__str__", &__str__) .def("int_ptr", &MolAtom::int_ptr) ; } pyobjcryst-2024.2.1/src/extensions/molbond_ext.cpp000066400000000000000000000072301470422267000221640ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::MolBond. * * Changes from ObjCryst::MolBond * - Added __getitem__ access for MolAtoms. * - File IO is disabled * - GetDeriv and CalcGradient are not wrapped. * - Length0, LengthDelta, LengthSigma and BondOrder are wrapped as properties * rather than methods. * *****************************************************************************/ #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { MolAtom* _GetAtom(MolBond& mb, size_t i) { MolAtom* rv = NULL; switch(i) { case 0: rv = &(mb.GetAtom1()); break; case 1: rv = &(mb.GetAtom2()); break; default: PyErr_SetString(PyExc_IndexError, "Index out of range"); throw_error_already_set(); } // Do this to avoid ugly compiler warnings return rv; } } // namespace void wrap_molbond() { class_ > ("MolBond", no_init) //init()) .def("GetMolecule", (Molecule& (MolBond::*)()) &MolBond::GetMolecule, return_internal_reference<>()) .def("GetLogLikelihood", (double (MolBond::*)() const) &MolBond::GetLogLikelihood) .def("GetLogLikelihood", (double (MolBond::*)(const bool, const bool) const) &MolBond::GetLogLikelihood) .def("GetName", &MolBond::GetName) .def("GetAtom1", (MolAtom& (MolBond::*)()) &MolBond::GetAtom1, return_internal_reference<>()) .def("GetAtom2", (MolAtom& (MolBond::*)()) &MolBond::GetAtom2, return_internal_reference<>()) .def("SetAtom1", &MolBond::SetAtom1, with_custodian_and_ward<1,2>()) .def("SetAtom2", &MolBond::SetAtom2, with_custodian_and_ward<1,2>()) .def("GetLength", &MolBond::GetLength) .def("GetLength0", &MolBond::GetLength0) .def("GetLengthDelta", &MolBond::GetLengthDelta) .def("GetLengthSigma", &MolBond::GetLengthSigma) .def("GetBondOrder", &MolBond::GetBondOrder) .def("SetLength0", &MolBond::SetLength0) .def("SetLengthDelta", &MolBond::SetLengthDelta) .def("SetLengthSigma", &MolBond::SetLengthSigma) .def("SetBondOrder", &MolBond::SetBondOrder) .def("IsFreeTorsion", &MolBond::IsFreeTorsion) .def("SetFreeTorsion", &MolBond::SetFreeTorsion) // Python-only .add_property("Length", &MolBond::GetLength) .add_property("Length0", &MolBond::GetLength0, &MolBond::SetLength0) .add_property("LengthDelta", &MolBond::GetLengthDelta, &MolBond::SetLengthDelta) .add_property("LengthSigma", &MolBond::GetLengthSigma, &MolBond::SetLengthSigma) .add_property("BondOrder", &MolBond::GetBondOrder, &MolBond::SetBondOrder) .def("__getitem__", &_GetAtom, return_internal_reference<>()) .def("int_ptr", &MolBond::int_ptr) ; } pyobjcryst-2024.2.1/src/extensions/molbondangle_ext.cpp000066400000000000000000000101401470422267000231650ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::MolBondAngle. * * Changes from ObjCryst::MolBondAngle * - Wrapped as a to-python converter only (no constructor) * - Added __getitem__ access for MolAtoms. * - File IO is disabled * - GetDeriv and CalcGradient are not wrapped. * - Angle0, AngleDelta and AngleSigma are wrapped as properties rather than * methods. * - IsFlexible and SetFlexible are not wrapped, as they are not implemented in * the library. * *****************************************************************************/ #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { MolAtom* _GetAtom(MolBondAngle& mb, size_t i) { MolAtom* rv = NULL; switch(i) { case 0: rv = &(mb.GetAtom1()); break; case 1: rv = &(mb.GetAtom2()); break; case 2: rv = &(mb.GetAtom3()); break; default: PyErr_SetString(PyExc_IndexError, "Index out of range"); throw_error_already_set(); } return rv; } } // namespace void wrap_molbondangle() { class_ > ("MolBondAngle", no_init) .def("GetMolecule", (Molecule& (MolBondAngle::*)()) &MolBondAngle::GetMolecule, return_internal_reference<>()) .def("GetName", &MolBondAngle::GetName) .def("GetLogLikelihood", (double (MolBondAngle::*)() const) &MolBondAngle::GetLogLikelihood) .def("GetLogLikelihood", (double (MolBondAngle::*)(const bool, const bool) const) &MolBondAngle::GetLogLikelihood) .def("GetAngle", &MolBondAngle::GetAngle) .def("GetAngle0", &MolBondAngle::GetAngle0) .def("GetAngleDelta", &MolBondAngle::GetAngleDelta) .def("GetAngleSigma", &MolBondAngle::GetAngleSigma) .def("SetAngle0", &MolBondAngle::SetAngle0) .def("SetAngleDelta", &MolBondAngle::SetAngleDelta) .def("SetAngleSigma", &MolBondAngle::SetAngleSigma) .def("GetAtom1", (MolAtom& (MolBondAngle::*)()) &MolBondAngle::GetAtom1, return_internal_reference<>()) .def("GetAtom2", (MolAtom& (MolBondAngle::*)()) &MolBondAngle::GetAtom2, return_internal_reference<>()) .def("GetAtom3", (MolAtom& (MolBondAngle::*)()) &MolBondAngle::GetAtom3, return_internal_reference<>()) .def("SetAtom1", &MolBondAngle::SetAtom1, with_custodian_and_ward<1,2>()) .def("SetAtom2", &MolBondAngle::SetAtom2, with_custodian_and_ward<1,2>()) .def("SetAtom3", &MolBondAngle::SetAtom3, with_custodian_and_ward<1,2>()) //.def("IsFlexible", &MolBondAngle::IsFlexible) //.def("SetFlexible", &MolBondAngle::SetFlexible) // Python-only .add_property("Angle", &MolBondAngle::GetAngle) .add_property("Angle0", &MolBondAngle::GetAngle0, &MolBondAngle::SetAngle0) .add_property("AngleDelta", &MolBondAngle::GetAngleDelta, &MolBondAngle::SetAngleDelta) .add_property("AngleSigma", &MolBondAngle::GetAngleSigma, &MolBondAngle::SetAngleSigma) .def("__getitem__", &_GetAtom, return_internal_reference<>()) // Iterate other the atoms involved .def("__iter__", range > (&MolBondAngle::begin, &MolBondAngle::end)) .def("int_ptr", &MolBondAngle::int_ptr) ; } pyobjcryst-2024.2.1/src/extensions/moldihedralangle_ext.cpp000066400000000000000000000103461470422267000240270ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::MolDihedralAngle. * * Changes from ObjCryst::MolDihedralAngle * - Wrapped as a to-python converter only (no constructor) * - Added __getitem__ access for MolAtoms. * *****************************************************************************/ #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { MolAtom* _GetAtom(MolDihedralAngle& mb, size_t i) { MolAtom* rv = NULL; switch(i) { case 0: rv = &(mb.GetAtom1()); break; case 1: rv = &(mb.GetAtom2()); break; case 2: rv = &(mb.GetAtom3()); break; case 3: rv = &(mb.GetAtom4()); break; default: PyErr_SetString(PyExc_IndexError, "Index out of range"); throw_error_already_set(); } return rv; } } // namespace void wrap_moldihedralangle() { class_ > ("MolDihedralAngle", no_init) .def("GetMolecule", (Molecule& (MolDihedralAngle::*)()) &MolDihedralAngle::GetMolecule, return_internal_reference<>()) .def("GetName", &MolDihedralAngle::GetName) .def("GetLogLikelihood", (double (MolDihedralAngle::*)() const) &MolDihedralAngle::GetLogLikelihood) .def("GetLogLikelihood", (double (MolDihedralAngle::*)(const bool, const bool) const) &MolDihedralAngle::GetLogLikelihood) .def("GetAngle", &MolDihedralAngle::GetAngle) .def("GetAngle0", &MolDihedralAngle::GetAngle0) .def("GetAngleDelta", &MolDihedralAngle::GetAngleDelta) .def("GetAngleSigma", &MolDihedralAngle::GetAngleSigma) .def("SetAngle0", &MolDihedralAngle::SetAngle0) .def("SetAngleDelta", &MolDihedralAngle::SetAngleDelta) .def("SetAngleSigma", &MolDihedralAngle::SetAngleSigma) .def("GetAtom1", (MolAtom& (MolDihedralAngle::*)()) &MolDihedralAngle::GetAtom1, return_internal_reference<>()) .def("GetAtom2", (MolAtom& (MolDihedralAngle::*)()) &MolDihedralAngle::GetAtom2, return_internal_reference<>()) .def("GetAtom3", (MolAtom& (MolDihedralAngle::*)()) &MolDihedralAngle::GetAtom3, return_internal_reference<>()) .def("GetAtom4", (MolAtom& (MolDihedralAngle::*)()) &MolDihedralAngle::GetAtom4, return_internal_reference<>()) .def("SetAtom1", &MolDihedralAngle::SetAtom1, with_custodian_and_ward<1,2>()) .def("SetAtom2", &MolDihedralAngle::SetAtom2, with_custodian_and_ward<1,2>()) .def("SetAtom3", &MolDihedralAngle::SetAtom3, with_custodian_and_ward<1,2>()) .def("SetAtom4", &MolDihedralAngle::SetAtom4, with_custodian_and_ward<1,2>()) // Python-only .add_property("Angle", &MolDihedralAngle::GetAngle) .add_property("Angle0", &MolDihedralAngle::GetAngle0, &MolDihedralAngle::SetAngle0) .add_property("AngleDelta", &MolDihedralAngle::GetAngleDelta, &MolDihedralAngle::SetAngleDelta) .add_property("AngleSigma", &MolDihedralAngle::GetAngleSigma, &MolDihedralAngle::SetAngleSigma) .def("__getitem__", &_GetAtom, return_internal_reference<>()) // Iterate other the atoms involved .def("__iter__", range > (&MolDihedralAngle::begin, &MolDihedralAngle::end)) .def("int_ptr", &MolDihedralAngle::int_ptr) ; } pyobjcryst-2024.2.1/src/extensions/molecule_ext.cpp000066400000000000000000000672751470422267000223560ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::Molecule. * * Note that all indices are zero-based. * * Changes from ObjCryst::Molecule * - The public data are not wrapped. * - Added __getitem__ access for MolAtoms. * - AddAtom returns the added MolAtom * - AddBond returns the added MolBond * - AddBondAngle returns the added MolBondAngle * - AddDihedralAngle returns the added MolDihedralAngle * - RemoveAtom returns None, has an indexed version * - RemoveBond returns None, has an indexed version * - RemoveBondAngle returns None, has an indexed version * - RemoveDihedralAngle returns None, has an indexed version * - RemoveRigidGroup returns None * - Added GetNbAtoms * - Added GetNbBonds * - Added GetNbBondAngles * - Added GetNbDihedralAngles * - Added GetNbRigidGroups * - Added GetBond * - Added GetBondAngle * - Added GetDihedralAngle * - Added GetRigidGroup * - FindBond returns the bond if found, None otherwise * - FindBondAngle returns the bond angle if found, None otherwise * - FindDihedralAngle returns the dihedral angle if found, None otherwise * - FindAtom returns the Atom if found or None otherwise * - FlipAtomGroup is not wrapped. * - FlipGroup, RotorGroup and StretchModeGroup are not wrapped. * - StretchMode getters are not wrapped. * - Quaternion ordinates Q0, Q1, Q2 and Q3 wrapped as properties. * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { // Overloaded to return added object and manage the lifetime of the object. MolAtom& _AddAtom(Molecule& m, const double x, const double y, const double z, const ScatteringPower* pow, const std::string& name, const bool updateDisplay=true) { m.AddAtom(x, y, z, pow, name, updateDisplay); m.SetDeleteSubObjInDestructor(false); std::vector& v = m.GetAtomList(); return *v.back(); } MolBond& _AddBond(Molecule& m, MolAtom& atom1, MolAtom& atom2, const double length, const double sigma, const double delta, const double bondOrder = 1., const bool updateDisplay = true) { m.AddBond(atom1, atom2, length, sigma, delta, bondOrder, updateDisplay); m.SetDeleteSubObjInDestructor(false); std::vector& v = m.GetBondList(); return *v.back(); } MolBondAngle& _AddBondAngle(Molecule& m, MolAtom& atom1, MolAtom& atom2, MolAtom& atom3, const double angle, const double sigma, const double delta, const bool updateDisplay = true) { m.AddBondAngle(atom1, atom2, atom3, angle, sigma, delta, updateDisplay); m.SetDeleteSubObjInDestructor(false); std::vector& v = m.GetBondAngleList(); return *v.back(); } MolDihedralAngle& _AddDihedralAngle(Molecule& m, MolAtom& atom1, MolAtom& atom2, MolAtom& atom3, MolAtom& atom4, const double angle, const double sigma, const double delta, const bool updateDisplay = true) { m.AddDihedralAngle(atom1, atom2, atom3, atom4, angle, sigma, delta, updateDisplay); m.SetDeleteSubObjInDestructor(false); std::vector& v = m.GetDihedralAngleList(); return *v.back(); } // New Functions size_t _GetNbAtoms(Molecule& m) { std::vector& v = m.GetAtomList(); return v.size(); } size_t _GetNbBonds(Molecule& m) { std::vector& v = m.GetBondList(); return v.size(); } size_t _GetNbBondAngles(Molecule& m) { std::vector& v = m.GetBondAngleList(); return v.size(); } size_t _GetNbDihedralAngles(Molecule& m) { std::vector& v = m.GetDihedralAngleList(); return v.size(); } size_t _GetNbRigidGroups(Molecule& m) { std::vector& v = m.GetRigidGroupList(); return v.size(); } // Overloaded for safety MolAtom& _GetAtomIdx(Molecule& m, int idx) { int i = check_index(idx, m.GetNbComponent(), ALLOW_NEGATIVE); return m.GetAtom(i); } // Overloaded for safety MolAtom* _FindAtom(Molecule& m, const std::string& name) { MolAtom* rv = NULL; auto ii = m.FindAtom(name); if (ii != m.mvpAtom.rend()) rv = *ii; return rv; } // Overloaded for safety MolAtom* _GetAtomByName(Molecule& m, const std::string& name) { MolAtom* rv = _FindAtom(m, name); if (!rv) { bp::object emsg = ("Invalid atom name %r" % bp::make_tuple(name)); PyErr_SetObject(PyExc_ValueError, emsg.ptr()); throw_error_already_set(); } return rv; } MolBond& _GetBondIdx(Molecule& m, int idx) { std::vector& v = m.GetBondList(); if(idx < 0) idx += v.size(); if(0 == v.size() || idx < 0 || idx >= (int) v.size()) { PyErr_SetString(PyExc_IndexError, "Index out of range"); throw_error_already_set(); } return *v[idx]; } MolBondAngle& _GetBondAngleIdx(Molecule& m, int idx) { std::vector& v = m.GetBondAngleList(); if(idx < 0) idx += v.size(); if(0 == v.size() || idx < 0 || idx >= (int) v.size()) { PyErr_SetString(PyExc_IndexError, "Index out of range"); throw_error_already_set(); } return *v[idx]; } MolDihedralAngle& _GetDihedralAngleIdx(Molecule& m, int idx) { std::vector& v = m.GetDihedralAngleList(); if(idx < 0) idx += v.size(); if(0 == v.size() || idx < 0 || idx >= (int) v.size()) { PyErr_SetString(PyExc_IndexError, "Index out of range"); throw_error_already_set(); } return *v[idx]; } // Overloaded for void return type and index access. void _RemoveAtom(Molecule& m, MolAtom& ma) { m.RemoveAtom(ma, false); } void _RemoveAtomIdx(Molecule& m, int idx) { m.RemoveAtom(_GetAtomIdx(m, idx), false); } void _RemoveBond(Molecule& m, const MolBond& mb) { m.RemoveBond(mb, false); } void _RemoveBondIdx(Molecule& m, int idx) { m.RemoveBond(_GetBondIdx(m, idx), false); } void _RemoveBondAngle(Molecule& m, MolBondAngle& mba) { m.RemoveBondAngle(mba, false); } void _RemoveBondAngleIdx(Molecule& m, int idx) { m.RemoveBondAngle(_GetBondAngleIdx(m, idx), false); } void _RemoveDihedralAngle(Molecule& m, MolDihedralAngle& mda) { m.RemoveDihedralAngle(mda, false); } void _RemoveDihedralAngleIdx(Molecule& m, int idx) { m.RemoveDihedralAngle(_GetDihedralAngleIdx(m, idx), false); } // Overloaded to return new rigid group object RigidGroup& _AddRigidGroup(Molecule& m, const RigidGroup& r, const bool ud=true) { m.AddRigidGroup(r, ud); // Get the new rigid group and return it std::vector& v = m.GetRigidGroupList(); return *v.back(); } // Overloaded to accept python iterable and to return the rigid group object RigidGroup& _AddRigidGroupIterable(Molecule& m, bp::object& l, const bool ud=true) { // convert l to a rigid group RigidGroup* r = new RigidGroup(); for(int i=0; i < len(l); ++i) { MolAtom* a = extract(l[i]); r->insert(a); } // Add this rigid group and delete it, since AddRigidGroup makes a copy. m.AddRigidGroup(*r, ud); delete r; // Get the new rigid group and return it std::vector& v = m.GetRigidGroupList(); return *v.back(); } // Overloaded for void return type void _RemoveRigidGroup(Molecule& m, RigidGroup& mda, const bool ud=true) { m.RemoveRigidGroup(mda, ud, false); } PyObject* _FindBond(const Molecule& m, const MolAtom& ma1, const MolAtom& ma2) { std::vector::const_iterator mbi; mbi = m.FindBond(ma1, ma2); const std::vector& bondlist = m.GetBondList(); PyObject* retval; if(bondlist.end() == mbi) { // return None retval = Py_None; } else { reference_existing_object::apply::type converter; retval = converter(*mbi); } bp::incref(retval); return retval; } PyObject* _FindBondAngle(const Molecule& m, const MolAtom& ma1, const MolAtom& ma2, const MolAtom& ma3) { std::vector::const_iterator mbai; mbai = m.FindBondAngle(ma1, ma2, ma3); const std::vector& bondanglelist = m.GetBondAngleList(); PyObject* retval; if(bondanglelist.end() == mbai) { // return None retval = Py_None; } else { reference_existing_object::apply::type converter; retval = converter(*mbai); } bp::incref(retval); return retval; } PyObject* _FindDihedralAngle(const Molecule& m, const MolAtom& ma1, const MolAtom& ma2, const MolAtom& ma3, const MolAtom& ma4) { std::vector::const_iterator mdai; mdai = m.FindDihedralAngle(ma1, ma2, ma3, ma4); const std::vector& dihedralanglelist = m.GetDihedralAngleList(); PyObject* retval; if(dihedralanglelist.end() == mdai) { // return None retval = Py_None; } else { reference_existing_object::apply::type converter; retval = converter(*mdai); } bp::incref(retval); return retval; } // This could usually be done with an indexing suite, but it doesn't work with // vectors of pointers. bp::list _GetAtomList(const Molecule& m) { bp::list l; const std::vector& v = m.GetAtomList(); l = ptrcontainerToPyList< const std::vector >(v); return l; } bp::list _GetBondList(const Molecule& m) { bp::list l; const std::vector& v = m.GetBondList(); l = ptrcontainerToPyList< const std::vector >(v); return l; } bp::list _GetBondAngleList(const Molecule& m) { bp::list l; const std::vector& v = m.GetBondAngleList(); l = ptrcontainerToPyList< const std::vector >(v); return l; } bp::list _GetDihedralAngleList(const Molecule& m) { bp::list l; const std::vector& v = m.GetDihedralAngleList(); l = ptrcontainerToPyList< const std::vector >(v); return l; } bp::list _GetStretchModeBondLengthList(const Molecule& m) { bp::list l; const std::list& v = m.GetStretchModeBondLengthList(); l = containerToPyList< const std::list >(v); return l; } bp::list _GetStretchModeBondAngleList(const Molecule& m) { bp::list l; const std::list& v = m.GetStretchModeBondAngleList(); l = containerToPyList< const std::list >(v); return l; } bp::list _GetStretchModeTorsionList(const Molecule& m) { bp::list l; const std::list& v = m.GetStretchModeTorsionList(); l = containerToPyList< const std::list >(v); return l; } bp::list _GetRigidGroupList(const Molecule& m) { bp::list l; const std::vector& v = m.GetRigidGroupList(); l = ptrcontainerToPyList< const std::vector >(v); return l; } // Access using standard iterators std::vector::const_iterator _GetAtomIterBegin(const Molecule& m) {return m.GetAtomList().begin();} std::vector::const_iterator _GetAtomIterEnd(const Molecule& m) {return m.GetAtomList().end();} std::vector::const_iterator _GetBondIterBegin(const Molecule& m) {return m.GetBondList().begin();} std::vector::const_iterator _GetBondIterEnd(const Molecule& m) {return m.GetBondList().end();} std::vector::const_iterator _GetBondAngleIterBegin(const Molecule& m) {return m.GetBondAngleList().begin();} std::vector::const_iterator _GetBondAngleIterEnd(const Molecule& m) {return m.GetBondAngleList().end();} std::vector::const_iterator _GetDihedralAngleIterBegin(const Molecule& m) {return m.GetDihedralAngleList().begin();} std::vector::const_iterator _GetDihedralAngleIterEnd(const Molecule& m) {return m.GetDihedralAngleList().end();} // Get atoms by slice bp::object getAtomSlice(Molecule& m, bp::slice& s) { bp::list l = _GetAtomList(m); return l[s]; } // Overloaded to accept a python iterable instead of a std::set. Again, could be // done with converters, but there are issues with pointers. Perhaps another // day... void _RotateAtomGroup(Molecule& m, const MolAtom& at1, const MolAtom& at2, const bp::object& atoms, const double angle, const bool keepCenter=true) { std::set catoms = pyIterableToSet(atoms); m.RotateAtomGroup(at1, at2, catoms, angle, keepCenter); } void _RotateAtomGroupVec(Molecule& m, const MolAtom& at1, const double vx, const double vy, const double vz, const bp::object& atoms, const double angle, const bool keepCenter=true) { std::set catoms = pyIterableToSet(atoms); m.RotateAtomGroup(at1, vx, vy, vz, catoms, angle, keepCenter); } // A new method for three-tuples void _RotateAtomGroup2Vec(Molecule& m, bp::object& v1, bp::object& v2, const bp::object& atoms, const double angle, const bool keepCenter=true) { double x, y, z; x = extract(v1[0]); y = extract(v1[1]); z = extract(v1[2]); MolAtom& a = _AddAtom(m, x, y, z, 0, "_rag2vectemp", false); x = extract(v2[0]); y = extract(v2[1]); z = extract(v2[2]); _RotateAtomGroupVec(m, a, x, y, z, atoms, angle, keepCenter); m.RemoveAtom(a, true); return; } void _TranslateAtomGroup(Molecule& m, const bp::object& atoms, const double dx, const double dy, const double dz, const bool keepCenter=true) { std::set catoms = pyIterableToSet(atoms); m.TranslateAtomGroup(catoms, dx, dy, dz, keepCenter); } bp::dict _GetConnectivityTable(Molecule& m) { const std::map >& ct = m.GetConnectivityTable(); std::map >::const_iterator miter; bp::dict d; for(miter = ct.begin(); miter != ct.end(); ++miter) { bp::object key(bp::ptr(miter->first)); d[key] = ptrcontainerToPyList< const std::set >(miter->second); } return d; } bp::list _AsZMatrix(const Molecule& m, const bool keeporder) { bp::list l; const std::vector& v = m.AsZMatrix(keeporder); l = containerToPyList< const std::vector >(v); return l; } std::string quatparname(const Molecule& m, int idx) { using namespace std; static bool didseparator = false; static bool prefixmolname = false; static string separator; if (!didseparator) { map qnames; for (long i = 0; i < m.GetNbPar(); ++i) { const string& pname = m.GetPar(i).GetName(); size_t n = pname.size(); if (n < 2) continue; if (pname[n - 2] != 'Q') continue; if (pname.find_last_of("0123", n - 1) == string::npos) continue; qnames[pname.substr(0, n - 2)] += 1; } map::iterator qni; const string& mname = m.GetName(); for (qni = qnames.begin(); qni != qnames.end(); ++qni) { if (qni->second == 4) { const string& qnm = qni->first; prefixmolname = (qnm.size() >= mname.size() && qnm.substr(0, mname.size()) == mname); size_t p0 = prefixmolname ? mname.size() : 0; separator = qnm.substr(p0); didseparator = true; } } } ostringstream rv; rv << (prefixmolname ? m.GetName() : "") << separator << 'Q' << idx; return rv.str(); } // Setters and getters for position void _setQ0(Molecule& m, double val) { m.GetPar(quatparname(m, 0)).SetValue(val); } double _getQ0(Molecule& m) { return m.GetPar(quatparname(m, 0)).GetValue(); } void _setQ1(Molecule& m, double val) { m.GetPar(quatparname(m, 1)).SetValue(val); } double _getQ1(Molecule& m) { return m.GetPar(quatparname(m, 1)).GetValue(); } void _setQ2(Molecule& m, double val) { m.GetPar(quatparname(m, 2)).SetValue(val); } double _getQ2(Molecule& m) { return m.GetPar(quatparname(m, 2)).GetValue(); } void _setQ3(Molecule& m, double val) { m.GetPar(quatparname(m, 3)).SetValue(val); } double _getQ3(Molecule& m) { return m.GetPar(quatparname(m, 3)).GetValue(); } const ScatteringPower* getscatteringpowerpointer(const MolZAtom& a) { const ScatteringPower* rv = a.mpPow==0 ? NULL : a.mpPow; return rv; } } // namespace void wrap_molecule() { class_ > ("Molecule", init(bp::arg("oldMolecule"))) /* Constructors */ .def(init( (bp::arg("cryst"), bp::arg("name")=""))) /* Methods */ .def("GetFormula", &Molecule::GetFormula) .def("AddAtom", &_AddAtom, (bp::arg("x"), bp::arg("y"), bp::arg("z"), bp::arg("pPow"), bp::arg("name"), bp::arg("updateDisplay")=true), with_custodian_and_ward<1,5, return_internal_reference<> >()) .def("RemoveAtom", &_RemoveAtom) .def("RemoveAtom", &_RemoveAtomIdx) .def("AddBond", &_AddBond, (bp::arg("atom1"), bp::arg("atom2"), bp::arg("length"), bp::arg("sigma"), bp::arg("delta"), bp::arg("bondOrder")=1, bp::arg("updateDisplay")=true), with_custodian_and_ward<1,2, with_custodian_and_ward<1,3, return_internal_reference<> > >()) .def("RemoveBond", &_RemoveBond) .def("RemoveBond", &_RemoveBondIdx) .def("GetBond", &_GetBondIdx, return_internal_reference<>()) .def("FindBond", &_FindBond, with_custodian_and_ward_postcall<1,0>()) .def("AddBondAngle", &_AddBondAngle, (bp::arg("atom1"), bp::arg("atom2"), bp::arg("atom3"), bp::arg("angle"), bp::arg("sigma"), bp::arg("delta"), bp::arg("updateDisplay")=true), with_custodian_and_ward<1,2, with_custodian_and_ward<1,3, with_custodian_and_ward<1,4, return_internal_reference<> > > >()) .def("RemoveBondAngle", &_RemoveBondAngle) .def("RemoveBondAngle", &_RemoveBondAngleIdx) .def("GetBondAngle", &_GetBondAngleIdx, return_internal_reference<>()) .def("FindBondAngle", &_FindBondAngle, with_custodian_and_ward_postcall<1,0>()) .def("AddDihedralAngle", &_AddDihedralAngle, (bp::arg("atom1"), bp::arg("atom2"), bp::arg("atom3"), bp::arg("atom4"), bp::arg("angle"), bp::arg("sigma"), bp::arg("delta"), bp::arg("updateDisplay")=true), with_custodian_and_ward<1,2, with_custodian_and_ward<1,3, with_custodian_and_ward<1,4, with_custodian_and_ward<1,5, return_internal_reference<> > > > >()) .def("RemoveDihedralAngle", &_RemoveDihedralAngle) .def("RemoveDihedralAngle", &_RemoveDihedralAngleIdx) .def("GetDihedralAngle", &_GetDihedralAngleIdx, return_internal_reference<>()) .def("FindDihedralAngle", &_FindDihedralAngle, with_custodian_and_ward_postcall<1,0>()) .def("AddRigidGroup", &_AddRigidGroup, (bp::arg("group"), bp::arg("updateDisplay") = true), return_internal_reference<>()) .def("AddRigidGroup", &_AddRigidGroupIterable, (bp::arg("group"), bp::arg("updateDisplay") = true), return_internal_reference<>()) .def("RemoveRigidGroup", &_RemoveRigidGroup, (bp::arg("group"), bp::arg("updateDisplay") = true)) .def("GetAtom", &_GetAtomIdx, return_internal_reference<>()) .def("GetAtom", &_GetAtomByName, return_internal_reference<>()) .def("FindAtom", &_FindAtom, return_internal_reference<>()) .def("OptimizeConformation", &Molecule::OptimizeConformation, (bp::arg("nbTrial")=10000, bp::arg("stopCost")=0)) .def("OptimizeConformationSteepestDescent", &Molecule::OptimizeConformationSteepestDescent, (bp::arg("maxStep")=0.1, bp::arg("nbSteps")=1)) .def("GetNbAtoms", &_GetNbAtoms) .def("GetNbBonds", &_GetNbBonds) .def("GetNbBondAngles", &_GetNbBondAngles) .def("GetNbDihedralAngles", &_GetNbDihedralAngles) .def("GetNbRigidGroups", &_GetNbRigidGroups) .def("GetAtomList", &_GetAtomList, with_custodian_and_ward_postcall<1,0>()) .def("GetBondList", &_GetBondList, with_custodian_and_ward_postcall<1,0>()) .def("GetBondAngleList", &_GetBondAngleList, with_custodian_and_ward_postcall<1,0>()) .def("GetDihedralAngleList", &_GetDihedralAngleList, with_custodian_and_ward_postcall<1,0>()) .def("GetRigidGroupList", &_GetRigidGroupList, with_custodian_and_ward_postcall<1,0>()) .def("GetStretchModeBondLengthList", &_GetStretchModeBondLengthList, with_custodian_and_ward_postcall<1,0>()) .def("GetStretchModeBondAngleList", &_GetStretchModeBondAngleList, with_custodian_and_ward_postcall<1,0>()) .def("GetStretchModeTorsionList", &_GetStretchModeTorsionList, with_custodian_and_ward_postcall<1,0>()) .def("RotateAtomGroup", &_RotateAtomGroup, (bp::arg("at1"), bp::arg("at2"), bp::arg("atoms"), bp::arg("angle"), bp::arg("keepCenter")=true ) ) .def("RotateAtomGroup", &_RotateAtomGroupVec, (bp::arg("at1"), bp::arg("vx"), bp::arg("vy"), bp::arg("vz"), bp::arg("atoms"), bp::arg("angle"), bp::arg("keepCenter")=true ) ) .def("RotateAtomGroup", &_RotateAtomGroup2Vec, (bp::arg("v1"), bp::arg("v2"), bp::arg("atoms"), bp::arg("angle"), bp::arg("keepCenter")=true ) ) .def("TranslateAtomGroup", &_TranslateAtomGroup, (bp::arg("atoms"), bp::arg("dx"), bp::arg("dy"), bp::arg("dz"), bp::arg("keepCenter")=true ) ) .def("GetConnectivityTable", &_GetConnectivityTable, with_custodian_and_ward_postcall<1,0>()) .def("GetBondListClock", (RefinableObjClock& (Molecule::*)()) &Molecule::GetBondListClock, return_internal_reference<>()) .def("GetAtomPositionClock", (RefinableObjClock& (Molecule::*)()) &Molecule::GetAtomPositionClock, return_internal_reference<>()) .def("GetRigidGroupClock", (RefinableObjClock& (Molecule::*)()) &Molecule::GetRigidGroupClock, return_internal_reference<>()) .def("RigidifyWithDihedralAngles", &Molecule::RigidifyWithDihedralAngles) .def("BondLengthRandomChange", &Molecule::BondLengthRandomChange, (bp::arg("mode"), bp::arg("amplitude"), bp::arg("respectRestraint")=true) ) .def("BondAngleRandomChange", &Molecule::BondAngleRandomChange, (bp::arg("mode"), bp::arg("amplitude"), bp::arg("respectRestraint")=true) ) .def("DihedralAngleRandomChange", &Molecule::DihedralAngleRandomChange, (bp::arg("mode"), bp::arg("amplitude"), bp::arg("respectRestraint")=true) ) .def("GetCenterAtom", &Molecule::GetCenterAtom, return_internal_reference<>()) // Memory management shouldn't be necessary here, but there is the // possibility that a MolAtom that was created in another Molecule is // passed to this one. This could lead to memory corruption if the // original Molecule was to be deleted before this one, hence the // with_custodian_and_ward. .def("SetCenterAtom", &Molecule::SetCenterAtom, with_custodian_and_ward<1,2>()) .def("AsZMatrix", &_AsZMatrix, with_custodian_and_ward_postcall<1,0>()) .def("BuildRingList", &Molecule::BuildRingList) .def("BuildConnectivityTable", &Molecule::BuildConnectivityTable) .def("BuildRotorGroup", &Molecule::BuildRotorGroup) .def("TuneGlobalOptimRotationAmplitude", &Molecule::TuneGlobalOptimRotationAmplitude) .def("BuildFlipGroup", &Molecule::BuildFlipGroup) .def("BuildStretchModeBondLength", &Molecule::BuildStretchModeBondLength) .def("BuildStretchModeBondAngle", &Molecule::BuildStretchModeBondAngle) .def("BuildStretchModeTorsion", &Molecule::BuildStretchModeTorsion) .def("BuildStretchModeTwist", &Molecule::BuildStretchModeTwist) .def("BuildStretchModeGroups", &Molecule::BuildStretchModeGroups) .def("UpdateScattCompList", &Molecule::UpdateScattCompList) .def("InitOptions", &Molecule::InitOptions) // Python only functions .def("__getitem__", &getAtomSlice, with_custodian_and_ward_postcall<1,0>()) .def("__getitem__", &_GetAtomIdx, return_internal_reference<>()) .def("__len__", &_GetNbAtoms) .def("__iter__", range > (&_GetAtomIterBegin, &_GetAtomIterEnd)) .def("IterAtom", range > (&_GetAtomIterBegin, &_GetAtomIterEnd)) .def("IterBond", range > (&_GetBondIterBegin, &_GetBondIterEnd)) .def("IterBondAngle", range > (&_GetBondAngleIterBegin, &_GetBondAngleIterEnd)) .def("IterDihedralAngle", range > (&_GetDihedralAngleIterBegin, &_GetDihedralAngleIterEnd)) // Properties for molecule position .add_property("Q0", &_getQ0, &_setQ0) .add_property("Q1", &_getQ1, &_setQ1) .add_property("Q2", &_getQ2, &_setQ2) .add_property("Q3", &_getQ3, &_setQ3) ; // Wrap some functions def("GetBondLength", &GetBondLength); def("GetBondAngle", &GetBondAngle); def("GetDihedralAngle", &GetDihedralAngle); def("ZScatterer2Molecule", (Molecule* (*)(ZScatterer*)) &ZScatterer2Molecule, bp::arg("zscatt"), return_value_policy()); // Wrap class_ ("MolZAtom", init()) .def("GetScatteringPower", getscatteringpowerpointer, return_internal_reference<>()) //return_value_policy()) .add_property("bond_atom", &MolZAtom::mBondAtom) .add_property("bond_angle_atom", &MolZAtom::mBondAngleAtom) .add_property("dihdral_angle_atom", &MolZAtom::mDihedralAtom) .add_property("bond_length", &MolZAtom::mBondLength) .add_property("bond_angle", &MolZAtom::mBondAngle) .add_property("dihdral_angle", &MolZAtom::mDihedralAngle) ; } pyobjcryst-2024.2.1/src/extensions/objregistry_ext.cpp000066400000000000000000000165431470422267000231040ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ObjRegistry template class. * * Changes from ObjCryst::ObjRegistry * - DeleteAll not wrapped * - C++ methods that can return const or non-const objects return non-const * objects in python. * *****************************************************************************/ #include #include #include #include #undef B0 #include #include #include #include #include #include #include #include #include "helpers.hpp" using namespace ObjCryst; using namespace boost::python; namespace { // Get objects by slice template bp::object getObjSlice(ObjRegistry& o, bp::slice& s) { bp::list l; for(typename std::vector::const_iterator it = o.begin(); it != o.end(); ++it) { l.append(bp::ptr(*it)); } return l[s]; } // Get a MonteCarloObj by dynamic casting. This assumes that the caller (from python) // first checked the correct type e.g. using GetClassName() template MonteCarloObj& getObjCastMonteCarlo(ObjRegistry& reg, const unsigned int i) { T* obj = ®.GetObj(i); MonteCarloObj *p = dynamic_cast(obj); return *p; } // Explicit specialization for ZAtom which is not polymorphic template <> MonteCarloObj& getObjCastMonteCarlo(ObjRegistry& reg, const unsigned int i) { throw ObjCryst::ObjCrystException("Cannot cast a ZAtom to a MonteCarloObj"); } /* Wrap all the class methods for the template class */ template void wrapClass(class_ > & c) { /* Functions */ c.def("Register", &ObjRegistry::Register) .def("DeRegister", (void (ObjRegistry::*)(T&)) &ObjRegistry::DeRegister) .def("DeRegister", (void (ObjRegistry::*)(const string&)) &ObjRegistry::DeRegister) .def("DeRegisterAll", &ObjRegistry::DeRegisterAll) // Dangerous and not wrapped //.def("DeleteAll", &ObjRegistry::DeleteAll) .def("GetObj", (T& (ObjRegistry::*)(const unsigned int)) &ObjRegistry::GetObj, return_internal_reference<>()) .def("GetObj", (T& (ObjRegistry::*)(const string&)) &ObjRegistry::GetObj, return_internal_reference<>()) .def("GetObj", (T& (ObjRegistry::*)(const string&, const string&)) &ObjRegistry::GetObj, return_internal_reference<>()) .def("GetNb", &ObjRegistry::GetNb) .def("Print", &ObjRegistry::Print) .def("SetName", &ObjRegistry::SetName) .def("GetName", &ObjRegistry::GetName, return_value_policy()) .def("Find", (long (ObjRegistry::*)(const string&) const) &ObjRegistry::Find) .def("Find", (long (ObjRegistry::*) (const string&, const string&, const bool) const) &ObjRegistry::Find) .def("Find", (long (ObjRegistry::*)(const T&) const) &ObjRegistry::Find) .def("GetRegistryClock", &ObjRegistry::GetRegistryClock, return_value_policy()) // Python-only methods .def("__str__", &__str__< ObjRegistry >) .def("__len__", &ObjRegistry::GetNb) .def("__getitem__", &getObjSlice, with_custodian_and_ward_postcall<1,0>()) .def("__getitem__", (T& (ObjRegistry::*)(const unsigned int)) &ObjRegistry::GetObj, return_internal_reference<>()) // Note to indexing robots: It took me a while to understand how this worked, // so that the object would be returned instead of the pointer ! // The definition of NextPolicies use in boost.python range is quite obscure // // Unrelated note: this can be dangerous, as the registry is susceptible to // change while being iterated. Example // c = pyobjcryst.crystal.Crystal(...) // for c in pyobjcryst.crystal.gCrystalRegistry: print(c.GetName()) // => this will erase the first crystal 'c' when looping other the registry, // which will effectively invalidate the iterator... .def("__iter__", range > (&ObjRegistry::list_begin, &ObjRegistry::list_end)) // Special casting functions so base class object registries can still // provide access to the correct python object .def("_getObjCastMonteCarlo", &getObjCastMonteCarlo, return_internal_reference<>()) ; } } // end namespace void wrap_objregistry() { // Template instantiation // ObjRegistry class_< ObjRegistry > CrystalRegistry("CrystalRegistry", init()); wrapClass(CrystalRegistry); // ObjRegistry class_< ObjRegistry > PowderPatternRegistry("PowderPatternRegistry", init()); wrapClass(PowderPatternRegistry); // ObjRegistry class_< ObjRegistry > DiffractionDataSingleCrystalRegistry("DiffractionDataSingleCrystalRegistry", init()); wrapClass(DiffractionDataSingleCrystalRegistry); // ObjRegistry class_< ObjRegistry > OptimizationObjRegistry("OptimizationObjRegistry", init()); wrapClass(OptimizationObjRegistry); // ObjRegistry class_< ObjRegistry > RefinableObjRegistry("RefinableObjRegistry", init()); wrapClass(RefinableObjRegistry); // ObjRegistry class_< ObjRegistry > RefObjOptRegistry("RefObjOpt", init()); wrapClass(RefObjOptRegistry); // ObjRegistry class_< ObjRegistry > ScattererRegistry("ScattererRegistry", init()); wrapClass(ScattererRegistry); // ObjRegistry class_< ObjRegistry > ScatteringPowerRegistry("ScatteringPowerRegistry", init()); wrapClass(ScatteringPowerRegistry); // ObjRegistry class_< ObjRegistry > ScatteringPowerAtomRegistry("ScatteringPowerAtomRegistry", init()); wrapClass(ScatteringPowerAtomRegistry); // ObjRegistry class_< ObjRegistry > ZAtomRegistry("ZAtomRegistry", init()); wrapClass(ZAtomRegistry); } pyobjcryst-2024.2.1/src/extensions/polyhedron_ext.cpp000066400000000000000000000070411470422267000227150ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::Polyhedron module. * *****************************************************************************/ #include #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void wrap_polyhedron() { def("MakeTetrahedron", &MakeTetrahedron, (bp::arg("cryst"), bp::arg("name"), bp::arg("centralAtom"), bp::arg("peripheralAtom"), bp::arg("dist")), with_custodian_and_ward_postcall<0,3, with_custodian_and_ward_postcall<0,4, return_value_policy > >()); def("MakeOctahedron", &MakeOctahedron, (bp::arg("cryst"), bp::arg("name"), bp::arg("centralAtom"), bp::arg("peripheralAtom"), bp::arg("dist")), with_custodian_and_ward_postcall<0,3, with_custodian_and_ward_postcall<0,4, return_value_policy > >()); def("MakeSquarePlane", &MakeSquarePlane, (bp::arg("cryst"), bp::arg("name"), bp::arg("centralAtom"), bp::arg("peripheralAtom"), bp::arg("dist")), with_custodian_and_ward_postcall<0,3, with_custodian_and_ward_postcall<0,4, return_value_policy > >()); def("MakeCube", &MakeCube, (bp::arg("cryst"), bp::arg("name"), bp::arg("centralAtom"), bp::arg("peripheralAtom"), bp::arg("dist")), with_custodian_and_ward_postcall<0,3, with_custodian_and_ward_postcall<0,4, return_value_policy > >()); def("MakeAntiPrismTetragonal", &MakeAntiPrismTetragonal, (bp::arg("cryst"), bp::arg("name"), bp::arg("centralAtom"), bp::arg("peripheralAtom"), bp::arg("dist")), with_custodian_and_ward_postcall<0,3, with_custodian_and_ward_postcall<0,4, return_value_policy > >()); def("MakePrismTrigonal", &MakePrismTrigonal, (bp::arg("cryst"), bp::arg("name"), bp::arg("centralAtom"), bp::arg("peripheralAtom"), bp::arg("dist")), with_custodian_and_ward_postcall<0,3, with_custodian_and_ward_postcall<0,4, return_value_policy > >()); def("MakeIcosahedron", &MakeIcosahedron, (bp::arg("cryst"), bp::arg("name"), bp::arg("centralAtom"), bp::arg("peripheralAtom"), bp::arg("dist")), with_custodian_and_ward_postcall<0,3, with_custodian_and_ward_postcall<0,4, return_value_policy > >()); def("MakeTriangle", &MakeTriangle, (bp::arg("cryst"), bp::arg("name"), bp::arg("centralAtom"), bp::arg("peripheralAtom"), bp::arg("dist")), with_custodian_and_ward_postcall<0,3, with_custodian_and_ward_postcall<0,4, return_value_policy > >()); } pyobjcryst-2024.2.1/src/extensions/powderpattern_ext.cpp000066400000000000000000000342371470422267000234370ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::PowderPattern. * * Changes from ObjCryst::PowderPattern * * Other Changes * *****************************************************************************/ #include #include #include #include #include #undef B0 #include #include #include #include #include "python_streambuf.hpp" #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { // This creates a C++ PowderPattern object PowderPattern* _CreatePowderPatternFromCIF(bp::object input) { // Reading a cif file creates some output via fpObjCrystInformUser. // Mute the output and restore it on return or exception. // Also mute any hardcoded output to cout. MuteObjCrystUserInfo muzzle; CaptureStdOut gag; boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream in(sbuf); ObjCryst::CIF cif(in); int idx0 = gPowderPatternRegistry.GetNb(); ObjCryst::PowderPattern* p = ObjCryst::CreatePowderPatternFromCIF(cif); gag.release(); muzzle.release(); int idx = gPowderPatternRegistry.GetNb(); if(idx == idx0) { throw ObjCryst::ObjCrystException("Cannot create powder pattern from CIF"); } return p; } // This reads the CIF into an existing PowderPattern object PowderPattern* _CreatePowderPatternFromCIF(bp::object input, PowderPattern &p) { // Reading a cif file creates some output via fpObjCrystInformUser. // Mute the output and restore it on return or exception. // Also mute any hardcoded output to cout. MuteObjCrystUserInfo muzzle; CaptureStdOut gag; boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream in(sbuf); ObjCryst::CIF cif(in); bool import_ok = false; for(map::iterator pos=cif.mvData.begin();pos!=cif.mvData.end();++pos) { if(pos->second.mPowderPatternObs.size()>10) { p.ImportPowderPatternCIF(cif); (*fpObjCrystInformUser)((boost::format("CIF: Imported POWDER PATTERN, with %d points") % p.GetNbPoint()).str()); import_ok = true; break; // only import one powder pattern } } gag.release(); muzzle.release(); if(!import_ok) { throw ObjCryst::ObjCrystException("Cannot create powder pattern from CIF"); } return &p; } PowderPatternBackground& addppbackground(PowderPattern& pp) { PowderPatternBackground* ppc = new PowderPatternBackground(); pp.AddPowderPatternComponent(*ppc); return *ppc; } PowderPatternDiffraction& addppdiffraction(PowderPattern& pp, Crystal& crst) { PowderPatternDiffraction* ppc = new PowderPatternDiffraction(); ppc->SetCrystal(crst); pp.AddPowderPatternComponent(*ppc); pp.Prepare(); return *ppc; } void setpowderpatternx (PowderPattern& pp, bp::object x) { CrystVector_REAL cvx; assignCrystVector(cvx, x); pp.SetPowderPatternX(cvx); } void setpowderpatternobs (PowderPattern& pp, bp::object x) { CrystVector_REAL cvx; assignCrystVector(cvx, x); MuteObjCrystUserInfo muzzle; pp.SetPowderPatternObs(cvx); } // Allow override (since we can't benefit from override in RefinableObjWrap) class PowderPatternWrap : public PowderPattern, public wrapper { public: PowderPatternWrap() : PowderPattern() {} PowderPatternWrap(const PowderPattern& p) : PowderPattern(p){} PeakList _FindPeaks(const float dmin=2.0,const float maxratio=0.01, const unsigned int maxpeak=100, const bool verbose=true) { CaptureStdOut gag; if(verbose) gag.release(); return this->FindPeaks(dmin, maxratio, maxpeak); } void default_UpdateDisplay() const { this->PowderPattern::UpdateDisplay();} virtual void UpdateDisplay() const { override f = this->get_override("UpdateDisplay"); if (f) f(); else default_UpdateDisplay(); } }; std::string __str__SPGScore(SPGScore& s) { if(s.ngof>0.0001) return (boost::format("%-13s nGoF=%9.4f GoF=%8.3f Rw=%5.2f [%3d reflections, extinct446=%3d]") % s.hm % s.ngof % s.gof % s.rw %s.nbreflused %s.nbextinct446).str(); return (boost::format("%-13s GoF=%8.3f Rw=%4.2f [extinct446=%3d]") % s.hm % s.gof % s.rw %s.nbreflused %s.nbextinct446).str(); } bp::list _GetScores(const SpaceGroupExplorer &spgex) { return containerToPyList(spgex.GetScores()); } } // namespace void wrap_powderpattern() { // Global object registry scope().attr("gPowderPatternRegistry") = boost::cref(gPowderPatternRegistry); class_ >("PowderPattern") .def("AddPowderPatternBackground", &addppbackground, return_internal_reference<>()) .def("AddPowderPatternDiffraction", &addppdiffraction, with_custodian_and_ward_postcall<1,0, with_custodian_and_ward_postcall<0,2,return_internal_reference<> > > ()) .def("GetNbPowderPatternComponent", &PowderPattern::GetNbPowderPatternComponent) .def("GetPowderPatternComponent", (PowderPatternComponent& (PowderPattern::*) (const int)) &PowderPattern::GetPowderPatternComponent, return_internal_reference<>()) .def("FindPeaks", &PowderPatternWrap::_FindPeaks, (bp::arg("dmin")=2.0, bp::arg("maxratio")=0.01, bp::arg("maxpeak")=100, bp::arg("verbose")=false)) .def("GetScaleFactor", (REAL (PowderPattern::*) (const int) const) &PowderPattern::GetScaleFactor) .def("GetScaleFactor", (REAL (PowderPattern::*) (const PowderPatternComponent&) const) &PowderPattern::GetScaleFactor) .def("SetScaleFactor", (void (PowderPattern::*) (const int, REAL)) &PowderPattern::SetScaleFactor) .def("SetPowderPatternPar", &PowderPattern::SetPowderPatternPar, (bp::arg("xmin"), bp::arg("xstep"), bp::arg("nbpoints"))) .def("SetPowderPatternX", &setpowderpatternx, bp::arg("x")) .def("GetPowderPatternCalc", &PowderPattern::GetPowderPatternCalc, return_value_policy()) .def("GetPowderPatternObs", &PowderPattern::GetPowderPatternObs, return_value_policy()) .def("GetPowderPatternX", &PowderPattern::GetPowderPatternX, return_value_policy()) .def("GetNbPoint", &PowderPattern::GetNbPoint) .def("GetNbPointUsed", &PowderPattern::GetNbPoint) .def("GetRadiation", (Radiation& (PowderPattern::*)()) &PowderPattern::GetRadiation, return_internal_reference<>()) .def("GetRadiationType", &PowderPattern::GetRadiationType) .def("SetRadiationType", &PowderPattern::SetRadiationType) .def("GetWavelength", &PowderPattern::GetWavelength) .def("SetWavelength", (void (PowderPattern::*) (const REAL)) &PowderPattern::SetWavelength, bp::arg("wavelength")) .def("SetWavelength", (void (PowderPattern::*) (const string&, const REAL)) &PowderPattern::SetWavelength, (bp::arg("XRayTubeElementName"), bp::arg("alpha2Alpha2ratio")=0.5)) .def("SetEnergy", &DiffractionDataSingleCrystal::SetEnergy, bp::arg("nrj_kev")) .def("ImportPowderPatternFullprof", &PowderPattern::ImportPowderPatternFullprof, bp::arg("filename")) .def("ImportPowderPatternPSI_DMC", &PowderPattern::ImportPowderPatternPSI_DMC, bp::arg("filename")) .def("ImportPowderPatternILL_D1A5", &PowderPattern::ImportPowderPatternILL_D1A5, bp::arg("filename")) .def("ImportPowderPatternXdd", &PowderPattern::ImportPowderPatternXdd, bp::arg("filename")) .def("ImportPowderPatternSietronicsCPI", &PowderPattern::ImportPowderPatternSietronicsCPI, bp::arg("filename")) .def("ImportPowderPattern2ThetaObsSigma", &PowderPattern::ImportPowderPattern2ThetaObsSigma, (bp::arg("filename"), bp::arg("nbSkip")=0)) .def("ImportPowderPatternFullprof4", &PowderPattern::ImportPowderPatternFullprof4, bp::arg("filename")) .def("ImportPowderPatternMultiDetectorLLBG42", &PowderPattern::ImportPowderPatternMultiDetectorLLBG42, bp::arg("filename")) .def("ImportPowderPattern2ThetaObs", &PowderPattern::ImportPowderPattern2ThetaObs, (bp::arg("filename"), bp::arg("nbSkip")=0)) .def("ImportPowderPatternTOF_ISIS_XYSigma", &PowderPattern::ImportPowderPatternTOF_ISIS_XYSigma, bp::arg("filename")) .def("ImportPowderPatternGSAS", &PowderPattern::ImportPowderPatternGSAS, bp::arg("filename")) .def("SetPowderPatternObs", &setpowderpatternobs, bp::arg("obs")) .def("FitScaleFactorForR", &PowderPattern::FitScaleFactorForR) .def("FitScaleFactorForIntegratedR", &PowderPattern::FitScaleFactorForIntegratedR) .def("FitScaleFactorForRw", &PowderPattern::FitScaleFactorForRw) .def("FitScaleFactorForIntegratedRw", &PowderPattern::FitScaleFactorForIntegratedRw) .def("SetMaxSinThetaOvLambda", &PowderPattern::SetMaxSinThetaOvLambda, bp::arg("max")) .def("GetMaxSinThetaOvLambda", &PowderPattern::GetMaxSinThetaOvLambda) .def("X2XCorr", &PowderPattern::X2XCorr) .def("X2PixelCorr", &PowderPattern::X2PixelCorr) .def("X2Pixel", &PowderPattern::X2Pixel) .def("STOL2X", &PowderPattern::STOL2X) .def("X2STOL", &PowderPattern::X2STOL) .def("X2XCorr", &PowderPattern::X2XCorr) .def("STOL2Pixel", &PowderPattern::STOL2Pixel) .def("UpdateDisplay", &PowderPattern::UpdateDisplay, &PowderPatternWrap::default_UpdateDisplay) .def("GetR", &PowderPattern::GetR) .def("GetIntegratedR", &PowderPattern::GetIntegratedR) .def("GetRw", &PowderPattern::GetRw) .def("GetIntegratedRw", &PowderPattern::GetIntegratedRw) .def("GetChi2", &PowderPattern::GetChi2) .def("GetIntegratedChi2", &PowderPattern::GetIntegratedChi2) .def("GetLogLikelihood", &PowderPattern::GetLogLikelihood) .def("Prepare", &PowderPattern::Prepare) .add_property("mur", &PowderPattern::GetMuR, &PowderPattern::SetMuR) .add_property("r", &PowderPattern::GetR) .add_property("r_integrated", &PowderPattern::GetIntegratedR) .add_property("rw", &PowderPattern::GetRw) .add_property("rw_integrated", &PowderPattern::GetIntegratedRw) .add_property("chi2", &PowderPattern::GetChi2) .add_property("chi2_integrated", &PowderPattern::GetIntegratedChi2) .add_property("llk", &PowderPattern::GetLogLikelihood) .add_property("wavelength", &PowderPattern::GetWavelength, (void (PowderPattern::*)(double)) &PowderPattern::SetWavelength) ; class_("SPGScore", init > ((bp::arg("hermann_mauguin"), bp::arg("rw"), bp::arg("gof"), bp::arg("nbextinct"), bp::arg("ngof")=0))) .def_readonly("hermann_mauguin", &SPGScore::hm) .def_readonly("Rw", &SPGScore::rw) .def_readonly("GoF", &SPGScore::gof) .def_readonly("nGoF", &SPGScore::ngof) .def("__str__", &__str__SPGScore) .def("__repr__", &__str__SPGScore) ; //,init(bp::arg("powdiff")),with_custodian_and_ward_postcall<1,2>() class_("SpaceGroupExplorer", init ((bp::arg("powdiff"))) [with_custodian_and_ward<1,2>()]) .def("Run", (SPGScore (SpaceGroupExplorer::*)(const string&, const bool, const bool, const bool, const bool, const double, const double)) &SpaceGroupExplorer::Run, (bp::arg("spg"), bp::arg("fitprofile")=false, bp::arg("verbose")=false, bp::arg("restore_orig")=false, bp::arg("update_display")=false, bp::arg("relative_length_tolerance")=0.01, bp::arg("absolute_angle_tolerance_degree")=1)) .def("RunAll", &SpaceGroupExplorer::RunAll, (bp::arg("fitprofile_all")=false, bp::arg("verbose")=true, bp::arg("keep_best")=true, bp::arg("update_display")=true, bp::arg("fitprofile_p1")=true, bp::arg("relative_length_tolerance")=0.01, bp::arg("absolute_angle_tolerance_degree")=1)) .def("GetScores", &_GetScores) ; // This will only return a C++ PowderPattern object def("CreatePowderPatternFromCIF", (PowderPattern* (*)(bp::object input)) &_CreatePowderPatternFromCIF, bp::arg("file"), return_value_policy()); // This can update a PowderPattern object with python methods def("CreatePowderPatternFromCIF", (PowderPattern* (*)(bp::object input, PowderPattern &)) &_CreatePowderPatternFromCIF, (bp::arg("file"), bp::arg("powpat")), return_value_policy()); } pyobjcryst-2024.2.1/src/extensions/powderpatternbackground_ext.cpp000066400000000000000000000055551470422267000255000ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::PowderPatternBackground. * * Changes from ObjCryst::PowderPatternBackground * * Other Changes * *****************************************************************************/ #include #include #include #include #undef B0 #include #include "helpers.hpp" namespace bp = boost::python; using namespace ObjCryst; using namespace boost::python; namespace { void _SetInterpPoints(PowderPatternBackground& b, bp::object tth, bp::object backgd) { CrystVector_REAL cvtth, cvbackg; assignCrystVector(cvtth, tth); assignCrystVector(cvbackg, backgd); b.SetInterpPoints(cvtth, cvbackg); } void _OptimizeBayesianBackground(PowderPatternBackground *pbackgd, const bool verbose=false) { CaptureStdOut gag; if(verbose) gag.release(); pbackgd->OptimizeBayesianBackground(); } const CrystVector_REAL& _GetInterpPointsX(PowderPatternBackground *pbackgd) { return *(pbackgd->GetInterpPoints().first); } const CrystVector_REAL& _GetInterpPointsY(PowderPatternBackground *pbackgd) { return *(pbackgd->GetInterpPoints().second); } } // namespace void wrap_powderpatternbackground() { scope().attr("refpartype_scattdata_background") = object(ptr(gpRefParTypeScattDataBackground)); class_, boost::noncopyable>( "PowderPatternBackground", no_init) //.def("SetParentPowderPattern", &PowderPatternBackground::SetParentPowderPattern) .def("GetPowderPatternCalc", &PowderPatternBackground::GetPowderPatternCalc, return_value_policy()) .def("ImportUserBackground", &PowderPatternBackground::ImportUserBackground, bp::arg("filename")) .def("SetInterpPoints", _SetInterpPoints, (bp::arg("tth"), bp::arg("backgd"))) .def("GetInterpPointsX", &_GetInterpPointsX, return_value_policy()) .def("GetInterpPointsY", &_GetInterpPointsY, return_value_policy()) .def("OptimizeBayesianBackground", &_OptimizeBayesianBackground, (bp::arg("verbose")=false)) .def("FixParametersBeyondMaxresolution", &PowderPatternBackground::FixParametersBeyondMaxresolution, bp::arg("obj")) ; } pyobjcryst-2024.2.1/src/extensions/powderpatterncomponent_ext.cpp000066400000000000000000000021111470422267000253440ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::PowderPatternComponent. * * Changes from ObjCryst::PowderPatternComponent * * Other Changes * *****************************************************************************/ #include #undef B0 #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void wrap_powderpatterncomponent() { class_, boost::noncopyable> ("PowderPatternComponent", no_init) .def("GetParentPowderPattern", (PowderPattern& (PowderPatternComponent::*)()) &PowderPatternComponent::GetParentPowderPattern, return_internal_reference<>()) ; } pyobjcryst-2024.2.1/src/extensions/powderpatterndiffraction_ext.cpp000066400000000000000000000057121470422267000256440ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::PowderPatternDiffraction. * * Changes from ObjCryst::PowderPatternDiffraction * * Other Changes * *****************************************************************************/ #include #include #include #include #undef B0 #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void wrap_powderpatterndiffraction() { enum_("ReflectionProfileType") .value("PROFILE_GAUSSIAN", PROFILE_GAUSSIAN) .value("PROFILE_LORENTZIAN", PROFILE_LORENTZIAN) .value("PROFILE_PSEUDO_VOIGT", PROFILE_PSEUDO_VOIGT) .value("PROFILE_PSEUDO_VOIGT_FINGER_COX_JEPHCOAT", PROFILE_PSEUDO_VOIGT_FINGER_COX_JEPHCOAT) .value("PROFILE_PEARSON_VII", PROFILE_PEARSON_VII) ; class_ >( "PowderPatternDiffraction", no_init) .def("GetPowderPatternCalc", &PowderPatternDiffraction::GetPowderPatternCalc, return_value_policy()) .def("SetReflectionProfilePar", &PowderPatternDiffraction::SetReflectionProfilePar, (bp::arg("type")=PROFILE_PSEUDO_VOIGT, bp::arg("fwhmCagliotiW")=1e-6, bp::arg("fwhmCagliotiU")=0, bp::arg("fwhmCagliotiV")=0, bp::arg("eta0")=0.5, bp::arg("eta1")=0)) .def("GetProfile", (ReflectionProfile& (PowderPatternDiffraction::*)()) &PowderPatternDiffraction::GetProfile, return_internal_reference<>()) .def("SetExtractionMode", &PowderPatternDiffraction::SetExtractionMode, (bp::arg("extract")=true, bp::arg("init")=false)) .def("GetExtractionMode", &PowderPatternDiffraction::GetExtractionMode) .def("ExtractLeBail", &PowderPatternDiffraction::ExtractLeBail, (bp::arg("nbcycle")=1)) .def("SetCrystal", &PowderPatternDiffraction::SetCrystal, bp::arg("crystal"), with_custodian_and_ward<1, 2>()) .def("GetNbReflBelowMaxSinThetaOvLambda", &PowderPatternDiffraction::GetNbReflBelowMaxSinThetaOvLambda) .def("GetFhklObsSq", &PowderPatternDiffraction::GetFhklObsSq, return_value_policy()) ; } pyobjcryst-2024.2.1/src/extensions/pyobjcryst.cpp000066400000000000000000000070131470422267000220610ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * definition of the _pyobjcryst Python extension module. * *****************************************************************************/ #include // Initialize numpy here. #include "pyobjcryst_numpy_setup.hpp" #include void wrap_asymmetricunit(); void wrap_atom(); void wrap_crystal(); void wrap_diffractiondatasinglecrystal(); void wrap_general(); void wrap_globaloptim(); void wrap_globalscatteringpower(); void wrap_indexing(); void wrap_io(); void wrap_lsq(); void wrap_molatom(); void wrap_molbond(); void wrap_molbondangle(); void wrap_moldihedralangle(); void wrap_molecule(); void wrap_objregistry(); void wrap_polyhedron(); void wrap_powderpattern(); void wrap_powderpatternbackground(); void wrap_powderpatterncomponent(); void wrap_powderpatterndiffraction(); void wrap_quaternion(); void wrap_radiation(); void wrap_refinableobj(); void wrap_refinableobjclock(); void wrap_refinablepar(); void wrap_reflectionprofile(); void wrap_refobjopt(); void wrap_refpartype(); void wrap_registerconverters(); void wrap_restraint(); void wrap_rigidgroup(); void wrap_scatterer(); void wrap_scatteringcomponent(); void wrap_scatteringcomponentlist(); void wrap_scatteringdata(); void wrap_scatteringpower(); void wrap_scatteringpoweratom(); void wrap_scatteringpowersphere(); void wrap_spacegroup(); void wrap_stretchmode(); void wrap_unitcell(); void wrap_zatom(); void wrap_zpolyhedron(); void wrap_zscatterer(); namespace { #if PY_MAJOR_VERSION >= 3 void* initialize_numpy() { import_array(); return NULL; } #else void initialize_numpy() { import_array(); } #endif } // namespace // Wrappers must be called according to inheritance hierarchy BOOST_PYTHON_MODULE(_pyobjcryst) { // initialize numpy module initialize_numpy(); // General stuff wrap_general(); wrap_io(); wrap_objregistry(); wrap_quaternion(); wrap_refinableobjclock(); wrap_refobjopt(); wrap_refpartype(); wrap_registerconverters(); // Core objects wrap_restraint(); wrap_refinablepar(); wrap_refinableobj(); // Other base classes wrap_scatteringdata(); wrap_scatterer(); wrap_scatteringpower(); wrap_zscatterer(); wrap_unitcell(); wrap_powderpatterncomponent(); wrap_reflectionprofile(); // Other stuff in no particular order. wrap_asymmetricunit(); wrap_atom(); wrap_crystal(); wrap_diffractiondatasinglecrystal(); wrap_globaloptim(); wrap_globalscatteringpower(); wrap_indexing(); wrap_lsq(); wrap_molatom(); wrap_molbond(); wrap_molbondangle(); wrap_moldihedralangle(); wrap_molecule(); wrap_polyhedron(); wrap_powderpattern(); wrap_powderpatternbackground(); wrap_powderpatterndiffraction(); wrap_radiation(); wrap_rigidgroup(); wrap_scatteringcomponent(); wrap_scatteringcomponentlist(); wrap_scatteringpoweratom(); wrap_scatteringpowersphere(); wrap_spacegroup(); wrap_stretchmode(); wrap_zatom(); wrap_zpolyhedron(); } pyobjcryst-2024.2.1/src/extensions/pyobjcryst_numpy_setup.hpp000066400000000000000000000021031470422267000245310ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst Complex Modeling Initiative * (c) 2017 Brookhaven Science Associates * Brookhaven National Laboratory. * All rights reserved. * * File coded by: Pavol Juhas * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * Define PY_ARRAY_UNIQUE_SYMBOL for the pyobjcryst extension module. * *****************************************************************************/ #ifndef PYOBJCRYST_NUMPY_SETUP_HPP_INCLUDED #define PYOBJCRYST_NUMPY_SETUP_HPP_INCLUDED // Specify the version of NumPy API that will be used. #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION // This macro is required for extension modules that are in several files. // It must be defined before inclusion of numpy/arrayobject.h #define PY_ARRAY_UNIQUE_SYMBOL PYOBJCRYST_NUMPY_ARRAY_SYMBOL #endif // PYOBJCRYST_NUMPY_SETUP_HPP_INCLUDED pyobjcryst-2024.2.1/src/extensions/python_streambuf.cpp000066400000000000000000000053651470422267000232520ustar00rootroot00000000000000/****************************************************************************** *** License agreement *** cctbx Copyright (c) 2006, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: (1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. (2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code ("Enhancements") to anyone; however, if you choose to make your Enhancements available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form. ******************************************************************************/ #include "python_streambuf.hpp" namespace boost_adaptbx { namespace python { // Initialize the static class variable. std::size_t streambuf::default_buffer_size = 1024; } // python } // namespace boost_adaptbx pyobjcryst-2024.2.1/src/extensions/python_streambuf.hpp000066400000000000000000000443321470422267000232540ustar00rootroot00000000000000/****************************************************************************** *** License agreement *** cctbx Copyright (c) 2006, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: (1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. (2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. (3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code ("Enhancements") to anyone; however, if you choose to make your Enhancements available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form. ******************************************************************************/ /****************************************************************************** CHANGELOG: 2009-07-07 - CLF Added license notice 2009-07-07 - CLF Changed file extension to hpp 2009-07-07 - Removed buffer_size, to be defined within the wrapper. 2015-09-24 - PJ sync with r22950 (last change in r11117). ******************************************************************************/ #ifndef BOOST_ADAPTBX_PYTHON_STREAMBUF_H #define BOOST_ADAPTBX_PYTHON_STREAMBUF_H #include #include #include #include #include #include #include // Substitute macros otherwise defined in tbxx/error_utils.hpp --------------- #include #define TBXX_ASSERT(a) assert(a) #define TBXX_UNREACHABLE_ERROR() \ std::logic_error( \ "Control flow passes through branch that should be unreachable.") // --------------------------------------------------------------------------- namespace boost_adaptbx { namespace python { namespace bp = boost::python; /// A stream buffer getting data from and putting data into a Python file object /** The aims are as follow: - Given a C++ function acting on a standard stream, e.g. \code void read_inputs(std::istream& input) { ... input >> something >> something_else; } \endcode and given a piece of Python code which creates a file-like object, to be able to pass this file object to that C++ function, e.g. \code import gzip gzip_file_obj = gzip.GzipFile(...) read_inputs(gzip_file_obj) \endcode and have the standard stream pull data from and put data into the Python file object. - When Python \c read_inputs() returns, the Python object is able to continue reading or writing where the C++ code left off. - Operations in C++ on mere files should be competitively fast compared to the direct use of \c std::fstream. \b Motivation - the standard Python library offer of file-like objects (files, compressed files and archives, network, ...) is far superior to the offer of streams in the C++ standard library and Boost C++ libraries. - i/o code involves a fair amount of text processing which is more efficiently prototyped in Python but then one may need to rewrite a time-critical part in C++, in as seamless a manner as possible. \b Usage This is 2-step: - a trivial wrapper function \code using boost_adaptbx::python::streambuf; void read_inputs_wrapper(streambuf& input) { streambuf::istream is(input); read_inputs(is); } def("read_inputs", read_inputs_wrapper); \endcode which has to be written every time one wants a Python binding for such a C++ function. - the Python side \code from boost.python import streambuf read_inputs(streambuf(python_file_obj=obj, buffer_size=1024)) \endcode \c buffer_size is optional. See also: \c default_buffer_size Note: references are to the C++ standard (the numbers between parentheses at the end of references are margin markers). */ class streambuf : public std::basic_streambuf { private: typedef std::basic_streambuf base_t; public: /* The syntax using base_t::char_type; would be nicer but Visual Studio C++ 8 chokes on it */ typedef base_t::char_type char_type; typedef base_t::int_type int_type; typedef base_t::pos_type pos_type; typedef base_t::off_type off_type; typedef base_t::traits_type traits_type; // work around Visual C++ 7.1 problem inline static int traits_type_eof() { return traits_type::eof(); } /// The default size of the read and write buffer. /** They are respectively used to buffer data read from and data written to the Python file object. It can be modified from Python. */ static std::size_t default_buffer_size; /// Construct from a Python file object /** if buffer_size is 0 the current default_buffer_size is used. */ streambuf( bp::object& python_file_obj, std::size_t buffer_size_=0) : py_read (getattr(python_file_obj, "read", bp::object())), py_write(getattr(python_file_obj, "write", bp::object())), py_seek (getattr(python_file_obj, "seek", bp::object())), py_tell (getattr(python_file_obj, "tell", bp::object())), buffer_size(buffer_size_ != 0 ? buffer_size_ : default_buffer_size), write_buffer(0), pos_of_read_buffer_end_in_py_file(0), pos_of_write_buffer_end_in_py_file(buffer_size), farthest_pptr(0) { TBXX_ASSERT(buffer_size != 0); /* Some Python file objects (e.g. sys.stdout and sys.stdin) have non-functional seek and tell. If so, assign None to py_tell and py_seek. */ if (py_tell != bp::object()) { try { py_tell(); } catch (bp::error_already_set&) { py_tell = bp::object(); py_seek = bp::object(); /* Boost.Python does not do any Python exception handling whatsoever So we need to catch it by hand like so. */ PyErr_Clear(); } } if (py_write != bp::object()) { // C-like string to make debugging easier write_buffer = new char[buffer_size + 1]; write_buffer[buffer_size] = '\0'; setp(write_buffer, write_buffer + buffer_size); // 27.5.2.4.5 (5) farthest_pptr = pptr(); } else { // The first attempt at output will result in a call to overflow setp(0, 0); } if (py_tell != bp::object()) { off_type py_pos = bp::extract(py_tell()); pos_of_read_buffer_end_in_py_file = py_pos; pos_of_write_buffer_end_in_py_file = py_pos; } } /// Mundane destructor freeing the allocated resources virtual ~streambuf() { if (write_buffer) delete[] write_buffer; } /// C.f. C++ standard section 27.5.2.4.3 /** It is essential to override this virtual function for the stream member function readsome to work correctly (c.f. 27.6.1.3, alinea 30) */ virtual std::streamsize showmanyc() { int_type const failure = traits_type::eof(); int_type status = underflow(); if (status == failure) return -1; return egptr() - gptr(); } /// C.f. C++ standard section 27.5.2.4.3 virtual int_type underflow() { int_type const failure = traits_type::eof(); if (py_read == bp::object()) { throw std::invalid_argument( "That Python file object has no 'read' attribute"); } read_buffer = py_read(buffer_size); char *read_buffer_data; bp::ssize_t py_n_read; if (PyBytes_AsStringAndSize(read_buffer.ptr(), &read_buffer_data, &py_n_read) == -1) { setg(0, 0, 0); throw std::invalid_argument( "The method 'read' of the Python file object " "did not return a string."); } off_type n_read = (off_type)py_n_read; pos_of_read_buffer_end_in_py_file += n_read; setg(read_buffer_data, read_buffer_data, read_buffer_data + n_read); // ^^^27.5.2.3.1 (4) if (n_read == 0) return failure; return traits_type::to_int_type(read_buffer_data[0]); } /// C.f. C++ standard section 27.5.2.4.5 virtual int_type overflow(int_type c=traits_type_eof()) { if (py_write == bp::object()) { throw std::invalid_argument( "That Python file object has no 'write' attribute"); } farthest_pptr = std::max(farthest_pptr, pptr()); off_type n_written = (off_type)(farthest_pptr - pbase()); bp::str chunk(pbase(), farthest_pptr); py_write(chunk); if (!traits_type::eq_int_type(c, traits_type::eof())) { py_write(traits_type::to_char_type(c)); n_written++; } if (n_written) { pos_of_write_buffer_end_in_py_file += n_written; setp(pbase(), epptr()); // ^^^ 27.5.2.4.5 (5) farthest_pptr = pptr(); } return traits_type::eq_int_type( c, traits_type::eof()) ? traits_type::not_eof(c) : c; } /// Update the python file to reflect the state of this stream buffer /** Empty the write buffer into the Python file object and set the seek position of the latter accordingly (C++ standard section 27.5.2.4.2). If there is no write buffer or it is empty, but there is a non-empty read buffer, set the Python file object seek position to the seek position in that read buffer. */ virtual int sync() { int result = 0; farthest_pptr = std::max(farthest_pptr, pptr()); if (farthest_pptr && farthest_pptr > pbase()) { off_type delta = pptr() - farthest_pptr; int_type status = overflow(); if (traits_type::eq_int_type(status, traits_type::eof())) result = -1; if (py_seek != bp::object()) py_seek(delta, 1); } else if (gptr() && gptr() < egptr()) { if (py_seek != bp::object()) py_seek(gptr() - egptr(), 1); } return result; } /// C.f. C++ standard section 27.5.2.4.2 /** This implementation is optimised to look whether the position is within the buffers, so as to avoid calling Python seek or tell. It is important for many applications that the overhead of calling into Python is avoided as much as possible (e.g. parsers which may do a lot of backtracking) */ virtual pos_type seekoff(off_type off, std::ios_base::seekdir way, std::ios_base::openmode which= std::ios_base::in | std::ios_base::out) { /* In practice, "which" is either std::ios_base::in or out since we end up here because either seekp or seekg was called on the stream using this buffer. That simplifies the code in a few places. */ int const failure = off_type(-1); if (py_seek == bp::object()) { throw std::invalid_argument( "That Python file object has no 'seek' attribute"); } // we need the read buffer to contain something! if (which == std::ios_base::in && !gptr()) { if (traits_type::eq_int_type(underflow(), traits_type::eof())) { return failure; } } // compute the whence parameter for Python seek int whence; switch (way) { case std::ios_base::beg: whence = 0; break; case std::ios_base::cur: whence = 1; break; case std::ios_base::end: whence = 2; break; default: return failure; } // Let's have a go boost::optional result = seekoff_without_calling_python( off, way, which); if (!result) { // we need to call Python if (which == std::ios_base::out) overflow(); if (way == std::ios_base::cur) { if (which == std::ios_base::in) off -= egptr() - gptr(); else if (which == std::ios_base::out) off += pptr() - pbase(); } py_seek(off, whence); result = off_type(bp::extract(py_tell())); if (which == std::ios_base::in) underflow(); } return *result; } /// C.f. C++ standard section 27.5.2.4.2 virtual pos_type seekpos(pos_type sp, std::ios_base::openmode which= std::ios_base::in | std::ios_base::out) { return streambuf::seekoff(sp, std::ios_base::beg, which); } private: bp::object py_read, py_write, py_seek, py_tell; std::size_t buffer_size; /* This is actually a Python string and the actual read buffer is its internal data, i.e. an array of characters. We use a Boost.Python object so as to hold on it: as a result, the actual buffer can't go away. */ bp::object read_buffer; /* A mere array of char's allocated on the heap at construction time and de-allocated only at destruction time. */ char *write_buffer; off_type pos_of_read_buffer_end_in_py_file, pos_of_write_buffer_end_in_py_file; // the farthest place the buffer has been written into char *farthest_pptr; boost::optional seekoff_without_calling_python( off_type off, std::ios_base::seekdir way, std::ios_base::openmode which) { boost::optional const failure; // Buffer range and current position off_type buf_begin, buf_end, buf_cur, upper_bound; off_type pos_of_buffer_end_in_py_file; if (which == std::ios_base::in) { pos_of_buffer_end_in_py_file = pos_of_read_buffer_end_in_py_file; buf_begin = reinterpret_cast(eback()); buf_cur = reinterpret_cast(gptr()); buf_end = reinterpret_cast(egptr()); upper_bound = buf_end; } else if (which == std::ios_base::out) { pos_of_buffer_end_in_py_file = pos_of_write_buffer_end_in_py_file; buf_begin = reinterpret_cast(pbase()); buf_cur = reinterpret_cast(pptr()); buf_end = reinterpret_cast(epptr()); farthest_pptr = std::max(farthest_pptr, pptr()); upper_bound = reinterpret_cast(farthest_pptr) + 1; } else { throw TBXX_UNREACHABLE_ERROR(); } // Sought position in "buffer coordinate" off_type buf_sought; if (way == std::ios_base::cur) { buf_sought = buf_cur + off; } else if (way == std::ios_base::beg) { buf_sought = buf_end + (off - pos_of_buffer_end_in_py_file); } else if (way == std::ios_base::end) { return failure; } else { throw TBXX_UNREACHABLE_ERROR(); } // if the sought position is not in the buffer, give up if (buf_sought < buf_begin || buf_sought >= upper_bound) return failure; // we are in wonderland if (which == std::ios_base::in) gbump(buf_sought - buf_cur); else if (which == std::ios_base::out) pbump(buf_sought - buf_cur); return pos_of_buffer_end_in_py_file + (buf_sought - buf_end); } public: class istream : public std::istream { public: istream(streambuf& buf) : std::istream(&buf) { exceptions(std::ios_base::badbit); } ~istream() { if (this->good()) this->sync(); } }; class ostream : public std::ostream { public: ostream(streambuf& buf) : std::ostream(&buf) { exceptions(std::ios_base::badbit); } ~ostream() { if (this->good()) this->flush(); } }; }; struct streambuf_capsule { streambuf python_streambuf; streambuf_capsule( bp::object& python_file_obj, std::size_t buffer_size=0) : python_streambuf(python_file_obj, buffer_size) {} }; struct ostream : private streambuf_capsule, streambuf::ostream { ostream( bp::object& python_file_obj, std::size_t buffer_size=0) : streambuf_capsule(python_file_obj, buffer_size), streambuf::ostream(python_streambuf) {} ~ostream() { try { if (this->good()) this->flush(); } catch (bp::error_already_set&) { PyErr_Clear(); throw std::runtime_error( "Problem closing python ostream.\n" " Known limitation: the error is unrecoverable. Sorry.\n" " Suggestion for programmer: add ostream.flush() before" " returning."); } } }; }} // boost_adaptbx::python #endif // GUARD pyobjcryst-2024.2.1/src/extensions/quaternion_ext.cpp000066400000000000000000000055331470422267000227230ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::Quaternion. * * Changes from ObjCryst::Quaternion * - IO is not wrapped * - Q0, Q1, Q2 and Q3 are wrapped as properties, rather than functions. * - RotateVector overloaded to return tuple of the mutated arguments. * *****************************************************************************/ #include #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { double getQ0(const Quaternion& q) { return q.Q0(); } double getQ1(const Quaternion& q) { return q.Q1(); } double getQ2(const Quaternion& q) { return q.Q2(); } double getQ3(const Quaternion& q) { return q.Q3(); } void setQ0(Quaternion& q, double val) { q.Q0() = val; } void setQ1(Quaternion& q, double val) { q.Q1() = val; } void setQ2(Quaternion& q, double val) { q.Q2() = val; } void setQ3(Quaternion& q, double val) { q.Q3() = val; } // Overloaded to return a tuple bp::tuple _RotateVector( const Quaternion& q, double v1, double v2, double v3 ) { q.RotateVector(v1, v2, v3); return bp::make_tuple(v1, v2, v3); } } // namespace void wrap_quaternion() { class_("Quaternion") .def(init( (bp::arg("q0"), bp::arg("q1"), bp::arg("q2"), bp::arg("q3"), bp::arg("unit")=true )) ) .def("GetConjugate", &Quaternion::GetConjugate) //.def("RotateVector", &Quaternion::RotateVector, // (bp::arg("v1"), bp::arg("v2"), bp::arg("v3"))) .def("RotateVector", &_RotateVector, (bp::arg("v1"), bp::arg("v2"), bp::arg("v3"))) .def("Normalize", &Quaternion::Normalize) .def("GetNorm", &Quaternion::GetNorm) .def("RotationQuaternion", &Quaternion::RotationQuaternion, (bp::arg("ang"), bp::arg("v1"), bp::arg("v2"), bp::arg("v3"))) .staticmethod("RotationQuaternion") .add_property("Q0", &getQ0, &setQ0) .add_property("Q1", &getQ1, &setQ1) .add_property("Q2", &getQ2, &setQ2) .add_property("Q3", &getQ3, &setQ3) .def(self * self) .def(self *= self) ; } pyobjcryst-2024.2.1/src/extensions/radiation_ext.cpp000066400000000000000000000036151470422267000225070ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::Radiation. * * Changes from ObjCryst::Radiation * - GetWavelength returns a scalar instead of a vector * *****************************************************************************/ #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace{ double _GetWavelength(Radiation& r) { return r.GetWavelength()(0); } } // anonymous namespace void wrap_radiation() { class_, boost::noncopyable>("Radiation") .def("SetRadiationType", &Radiation::SetRadiationType) .def("GetRadiationType", &Radiation::GetRadiationType) .def("SetWavelengthType", &Radiation::SetWavelengthType) .def("GetWavelengthType", &Radiation::GetWavelengthType) // Overloaded to return a single wavelength instead of a vector // .def("GetWavelength", &Radiation::GetWavelength, return_value_policy()) .def("GetWavelength", &_GetWavelength) .def("SetWavelength", (void (Radiation::*)(const REAL)) &Radiation::SetWavelength) .def("SetWavelength", (void (Radiation::*)(const std::string &,const REAL)) &Radiation::SetWavelength, (bp::arg("XRayTubeElementName"), bp::arg("alpha2Alpha2ratio")=0.5)) .def("GetXRayTubeDeltaLambda", & Radiation::GetXRayTubeDeltaLambda) .def("GetXRayTubeAlpha2Alpha1Ratio", & Radiation::GetXRayTubeAlpha2Alpha1Ratio) ; } pyobjcryst-2024.2.1/src/extensions/refinableobj_ext.cpp000066400000000000000000000515231470422267000231600ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::RefinableObj. This is a virtual class that * can be derived from in python. These bindings are used by ObjCryst objects * that inherit from RefinableObj (see for example unitcell_ext.cpp). * RefinableObj derivatives can be created in python and will work in c++ * functions that are also bound into python. * * Changes from ObjCryst::RefinableObj * - XMLOutput and XMLInput accept python file-like objects. * - GetPar that takes a const double* is not exposed, as it is designed for * internal use. * - GetParamSet returns a copy of the internal data so that no indirect * manipulation can take place from python. * - SetDeleteRefParInDestructor(false) is called in the constructors of the * python class and the parameter accessors. * - SetDeleteRefParInDestructor is not exposed. * - RemovePar is overloaded to return None. * - GetClientRegistry() override is deactivated for windows *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include "helpers.hpp" #include "python_streambuf.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { // Workaround to SetDeleteRefParInDestructor(0) when a parameter is added void _AddPar(RefinableObj& obj, RefinablePar* p) { obj.AddPar(p); obj.SetDeleteRefParInDestructor(0); } void _AddParObj(RefinableObj& obj, RefinableObj& o, const bool copyParam = false) { obj.AddPar(o, copyParam); obj.SetDeleteRefParInDestructor(0); } RefinablePar& _GetParLong(RefinableObj& obj, const long i) { obj.SetDeleteRefParInDestructor(0); return obj.GetPar(i); } RefinablePar& _GetParString(RefinableObj& obj, const string& s) { obj.SetDeleteRefParInDestructor(0); return obj.GetPar(s); } RefinablePar& _GetParNotFixedLong(RefinableObj& obj, const long i) { obj.SetDeleteRefParInDestructor(0); return obj.GetParNotFixed(i); } class RefinableObjWrap : public RefinableObj, public wrapper { public: /* alias the constructors from RefinableObj */ RefinableObjWrap() : RefinableObj() { RefinableObj::SetDeleteRefParInDestructor(false); } RefinableObjWrap(const bool internal) : RefinableObj(internal) { RefinableObj::SetDeleteRefParInDestructor(false); } // Fix for const void issue void EraseAllParamSet() { this->RefinableObj::EraseAllParamSet(); } const std::string& default_GetClassName() const { return this->RefinableObj::GetClassName(); } const std::string& GetClassName() const { override f = this->get_override("GetClassName"); if (f) return f(); return default_GetClassName(); } const std::string& default_GetName() const { return this->RefinableObj::GetName(); } const std::string& GetName() const { override f = this->get_override("GetName"); if (f) return f(); return default_GetName(); } void default_SetName(const std::string& name) { this->RefinableObj::SetName(name); } void SetName(const std::string& name) { override f = this->get_override("SetName"); if (f) f(name); else default_SetName(name); } void default_Print() const { this->RefinableObj::Print();} void Print() const { override f = this->get_override("Print"); if (f) f(); else default_Print(); } void default_RegisterClient(RefinableObj& client) const { this->RefinableObj::RegisterClient(client); } void RegisterClient(RefinableObj& client) const { override f = this->get_override("RegisterClient"); if (f) f(client); else default_RegisterClient(client); } void default_DeRegisterClient(RefinableObj& client) const { this->RefinableObj::DeRegisterClient(client); } void DeRegisterClient(RefinableObj& client) const { override f = this->get_override("DeRegisterClient"); if (f) f(client); else default_DeRegisterClient(client); } ObjRegistry< RefinableObj >& default_GetClientRegistry() { return this->RefinableObj::GetClientRegistry(); } ObjRegistry< RefinableObj >& GetClientRegistry() { override f = this->get_override("GetClientRegistry"); if (f) { #ifdef _MSC_VER return call&>(f.ptr()); #else return f(); #endif } return default_GetClientRegistry(); } void default_BeginOptimization(const bool allowApproximations, const bool enableRestraints) { this->RefinableObj::BeginOptimization(allowApproximations, enableRestraints); } void BeginOptimization(const bool allowApproximations, const bool enableRestraints) { override f = this->get_override("BeginOptimization"); if (f) f(allowApproximations, enableRestraints); else default_BeginOptimization(allowApproximations, enableRestraints); } void default_EndOptimization() { this->RefinableObj::EndOptimization();} void EndOptimization() { override f = this->get_override("EndOptimization"); if (f) f(); else default_EndOptimization(); } void default_RandomizeConfiguration() { this->RefinableObj::RandomizeConfiguration();} void RandomizeConfiguration() { override f = this->get_override("RandomizeConfiguration"); if (f) f(); else default_RandomizeConfiguration(); } void default_GlobalOptRandomMove(const double mutationAmplitude, const RefParType* type) { this->RefinableObj::GlobalOptRandomMove(mutationAmplitude, type);} void GlobalOptRandomMove(const double mutationAmplitude, const RefParType* type) { override f = this->get_override("GlobalOptRandomMove"); if (f) f(mutationAmplitude, type); else default_GlobalOptRandomMove(mutationAmplitude, type); } double default_GetLogLikelihood() const { return this->RefinableObj::GetLogLikelihood(); } double GetLogLikelihood() const { override f = this->get_override("GetLogLikelihood"); if (f) return f(); return default_GetLogLikelihood(); } unsigned int default_GetNbLSQFunction() const { return this->RefinableObj::GetNbLSQFunction(); } unsigned int GetNbLSQFunction() const { override f = this->get_override("GetNbLSQFunction"); if (f) return f(); return default_GetNbLSQFunction(); } const CrystVector& default_GetLSQCalc(const unsigned int i) const { return this->RefinableObj::GetLSQCalc(i); } const CrystVector& GetLSQCalc(const unsigned int i) const { override f = this->get_override("GetLSQCalc"); if (f) return f(i); return default_GetLSQCalc(i); } const CrystVector& default_GetLSQObs(const unsigned int i) const { return this->RefinableObj::GetLSQObs(i); } const CrystVector& GetLSQObs(const unsigned int i) const { override f = this->get_override("GetLSQObs"); if (f) return f(i); return default_GetLSQObs(i); } const CrystVector& default_GetLSQWeight(const unsigned int i) const { return this->RefinableObj::GetLSQWeight(i); } const CrystVector& GetLSQWeight(const unsigned int i) const { override f = this->get_override("GetLSQWeight"); if (f) return f(i); return default_GetLSQWeight(i); } const CrystVector& default_GetLSQDeriv(const unsigned int i, RefinablePar& rp) { return this->RefinableObj::GetLSQDeriv(i, rp); } const CrystVector& GetLSQDeriv(const unsigned int i, RefinablePar& rp) { override f = this->get_override("GetLSQDeriv"); if (f) return f(i, rp); return default_GetLSQDeriv(i, rp); } void default_XMLOutput(std::ostream& os, int indent) const { this->RefinableObj::XMLOutput(os, indent); } void XMLOutput(std::ostream& os, int indent) const { override f = this->get_override("XMLOutput"); if (f) f(os, indent); else default_XMLOutput(os, indent); } void default_XMLInput(std::istream& is, const ObjCryst::XMLCrystTag& tag) { this->RefinableObj::XMLInput(is, tag); } void XMLInput(std::istream& is, const ObjCryst::XMLCrystTag& tag) { override f = this->get_override("XMLInput"); if (f) f(is, tag); else default_XMLInput(is, tag); } void default_GetGeneGroup(const ObjCryst::RefinableObj& obj, CrystVector& groupIndex, unsigned int& firstGroup) const { this->RefinableObj::GetGeneGroup(obj, groupIndex, firstGroup);} void GetGeneGroup(const ObjCryst::RefinableObj& obj, CrystVector& groupIndex, unsigned int& firstGroup) const { override f = this->get_override("GetGeneGroup"); if (f) f(obj, groupIndex, firstGroup); else default_GetGeneGroup(obj, groupIndex, firstGroup); } void default_UpdateDisplay() const { this->RefinableObj::UpdateDisplay();} void UpdateDisplay() const { override f = this->get_override("UpdateDisplay"); if (f) f(); else default_UpdateDisplay(); } double default_GetRestraintCost() const { return this->RefinableObj::GetRestraintCost();} double GetRestraintCost() const { override f = this->get_override("GetRestraintCost"); if (f) return f(); return default_GetRestraintCost(); } void default_TagNewBestConfig() const { this->RefinableObj::TagNewBestConfig();} void TagNewBestConfig() const { override f = this->get_override("TagNewBestConfig"); if (f) f(); else default_TagNewBestConfig(); } // Protected methods void default_Prepare() { RefinableObj::Prepare();} void Prepare() { override f = this->get_override("Prepare"); if (f) f(); else default_Prepare(); } long FindPar(const std::string& name) const { return RefinableObj::FindPar(name); } void AddOption(RefObjOpt* opt) { RefinableObj::AddOption(opt); } std::map, std::string> >::iterator FindParamSet(unsigned long id) const { return RefinableObj::FindParamSet(id); } }; void _RemovePar(RefinableObj& obj, RefinablePar* refpar) { obj.RemovePar(refpar); return; } void _XMLOutput( const RefinableObj& r, bp::object output, int indent = 0) { boost_adaptbx::python::ostream os(output); os.precision(doublelim::digits10); r.XMLOutput(os, indent); os.flush(); } std::string _xml(const RefinableObj &r) { std::stringstream s; int indent=0; r.XMLOutput(s, indent); return s.str(); } void _XMLInput( RefinableObj& r, bp::object input, XMLCrystTag& tag) { boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream in(sbuf); r.XMLInput(in, tag); in.sync(); } void _XMLInputString(RefinableObj& r, const string& s) { stringstream ss(s); ss.imbue(std::locale::classic()); XMLCrystTag tag; ss>>tag; r.XMLInput(ss, tag); } } // anonymous namespace void wrap_refinableobj() { scope().attr("refpartype_objcryst") = object(ptr(gpRefParTypeObjCryst)); // Global object registry scope().attr("gRefinableObjRegistry") = boost::cref(gRefinableObjRegistry); // Global top object registry, exposed at the pyobjcryst module level scope().attr("gTopRefinableObjRegistry") = boost::cref(gTopRefinableObjRegistry); class_("RefinableObj") .def(init()) // Defined not implemented //.def(init()) /* Methods */ .def("PrepareForRefinement", &RefinableObj::PrepareForRefinement) .def("FixAllPar", &RefinableObj::FixAllPar) .def("UnFixAllPar", &RefinableObj::UnFixAllPar) .def("SetParIsFixed", (void (RefinableObj::*)(const long, const bool)) &RefinableObj::SetParIsFixed) .def("SetParIsFixed", (void (RefinableObj::*)(const std::string&, const bool)) &RefinableObj::SetParIsFixed) .def("SetParIsFixed", (void (RefinableObj::*)(const RefParType*, const bool)) &RefinableObj::SetParIsFixed) .def("SetParIsUsed", (void (RefinableObj::*)(const std::string&, const bool)) &RefinableObj::SetParIsUsed) .def("SetParIsUsed", (void (RefinableObj::*)(const RefParType*, const bool)) &RefinableObj::SetParIsUsed) .def("GetNbPar", &RefinableObj::GetNbPar) .def("GetNbParNotFixed", &RefinableObj::GetNbParNotFixed) .def("GetPar", &_GetParLong, return_internal_reference<>()) .def("GetPar", &_GetParString, return_internal_reference<>()) .def("GetParNotFixed", &_GetParNotFixedLong, return_internal_reference<>()) .def("AddPar", &_AddPar, bp::arg("par"), with_custodian_and_ward<1,2>()) .def("AddPar", &_AddParObj, (bp::arg("newRefParList"), bp::arg("copyParam")=false), with_custodian_and_ward<1,2>()) .def("RemovePar", &_RemovePar) .def("CreateParamSet", &RefinableObj::CreateParamSet, (bp::arg("name")="")) .def("ClearParamSet", &RefinableObj::ClearParamSet) .def("SaveParamSet", &RefinableObj::SaveParamSet) .def("RestoreParamSet", &RefinableObj::RestoreParamSet) .def("GetParamSet", (const CrystVector& (RefinableObj::*) (const unsigned long) const) &RefinableObj::GetParamSet, return_value_policy()) .def("GetParamSet_ParNotFixedHumanValue", &RefinableObj::GetParamSet_ParNotFixedHumanValue) .def("EraseAllParamSet", &RefinableObjWrap::EraseAllParamSet) .def("GetParamSetName", &RefinableObj::GetParamSetName, return_value_policy()) .def("SetLimitsAbsolute", ( void (RefinableObj::*) (const std::string&, const double, const double) ) &RefinableObj::SetLimitsAbsolute) .def("SetLimitsAbsolute", ( void (RefinableObj::*) (const RefParType*, const double, const double) ) &RefinableObj::SetLimitsAbsolute) .def("SetLimitsRelative", ( void (RefinableObj::*) (const std::string&, const double, const double) ) &RefinableObj::SetLimitsRelative) .def("SetLimitsRelative", ( void (RefinableObj::*) (const RefParType*, const double, const double) ) &RefinableObj::SetLimitsRelative) .def("SetLimitsProportional", ( void (RefinableObj::*) (const std::string&, const double, const double) ) &RefinableObj::SetLimitsProportional) .def("SetLimitsProportional", ( void (RefinableObj::*) (const RefParType*, const double, const double) ) &RefinableObj::SetLimitsProportional) .def("SetGlobalOptimStep", &RefinableObj::SetGlobalOptimStep) .def("GetSubObjRegistry", ( ObjRegistry& (RefinableObj::*) ()) &RefinableObj::GetSubObjRegistry, return_internal_reference<>()) .def("IsBeingRefined", &RefinableObj::IsBeingRefined) .def("BeginGlobalOptRandomMove", &RefinableObj::BeginGlobalOptRandomMove) .def("ResetParList", &RefinableObj::ResetParList) .def("GetOptionList", &RefinableObj::GetOptionList, return_value_policy()) .def("GetNbOption", &RefinableObj::GetNbOption) .def("GetOption", (RefObjOpt& (RefinableObj::*)(const unsigned int)) &RefinableObj::GetOption, return_internal_reference<>()) // Not exposed, as we want python to manage the objects //.def("SetDeleteRefParInDestructor", // &RefinableObj::SetDeleteRefParInDestructor) .def("GetRefParListClock", &RefinableObj::GetRefParListClock, return_value_policy()) .def("AddRestraint", &RefinableObj::AddRestraint, with_custodian_and_ward<1,2>()) .def("RemoveRestraint", &RefinableObj::RemoveRestraint) .def("GetClockMaster", &RefinableObj::GetClockMaster, return_value_policy()) // Virtual .def("GetClassName", &RefinableObj::GetClassName, &RefinableObjWrap::default_GetClassName, return_value_policy()) .def("GetName", &RefinableObj::GetName, &RefinableObjWrap::default_GetName, return_value_policy()) .def("SetName", &RefinableObj::SetName, &RefinableObjWrap::default_SetName) .def("Print", &RefinableObj::Print, &RefinableObjWrap::default_Print) .def("RegisterClient", &RefinableObj::RegisterClient, &RefinableObjWrap::default_RegisterClient, with_custodian_and_ward<1,2>()) .def("DeRegisterClient", &RefinableObj::DeRegisterClient, &RefinableObjWrap::default_DeRegisterClient) .def("GetClientRegistry", ( ObjRegistry& (RefinableObj::*) ()) &RefinableObj::GetClientRegistry, &RefinableObjWrap::default_GetClientRegistry, return_internal_reference<>()) .def("BeginOptimization", &RefinableObj::BeginOptimization, &RefinableObjWrap::default_BeginOptimization, (bp::arg("allowApproximations")=false, bp::arg("enableRestraints")=false)) .def("EndOptimization", &RefinableObj::EndOptimization, &RefinableObjWrap::default_EndOptimization) .def("RandomizeConfiguration", &RefinableObj::RandomizeConfiguration, &RefinableObjWrap::default_RandomizeConfiguration) .def("GlobalOptRandomMove", &RefinableObj::GlobalOptRandomMove, &RefinableObjWrap::default_GlobalOptRandomMove, (bp::arg("mutationAmplitude"), bp::arg("type")=gpRefParTypeObjCryst)) .def("GetLogLikelihood", &RefinableObj::GetLogLikelihood, &RefinableObjWrap::default_GetLogLikelihood) .def("GetNbLSQFunction", &RefinableObj::GetNbLSQFunction, &RefinableObjWrap::default_GetNbLSQFunction) .def("GetLSQCalc", &RefinableObj::GetLSQCalc, &RefinableObjWrap::default_GetLSQCalc, return_value_policy()) .def("GetLSQObs", &RefinableObj::GetLSQObs, &RefinableObjWrap::default_GetLSQObs, return_value_policy()) .def("GetLSQWeight", &RefinableObj::GetLSQWeight, &RefinableObjWrap::default_GetLSQWeight, return_value_policy()) .def("GetLSQDeriv", &RefinableObj::GetLSQDeriv, &RefinableObjWrap::default_GetLSQDeriv, return_value_policy()) .def("XMLOutput", &_XMLOutput, (bp::arg("file"), bp::arg("indent")=0)) .def("XMLOutput", &RefinableObj::XMLOutput, &RefinableObjWrap::default_XMLOutput) .def("xml", &_xml) .def("XMLInput", &_XMLInput, (bp::arg("file"), bp::arg("tag"))) .def("XMLInput", &RefinableObj::XMLInput, &RefinableObjWrap::default_XMLInput) .def("XMLInput", &_XMLInputString, (bp::arg("xml"))) .def("GetGeneGroup", &RefinableObj::GetGeneGroup, &RefinableObjWrap::default_GetGeneGroup) .def("UpdateDisplay", &RefinableObj::UpdateDisplay, &RefinableObjWrap::default_UpdateDisplay) .def("GetRestraintCost", &RefinableObj::GetRestraintCost, &RefinableObjWrap::default_GetRestraintCost) .def("TagNewBestConfig", &RefinableObj::TagNewBestConfig, &RefinableObjWrap::default_TagNewBestConfig) .def("int_ptr", &RefinableObj::int_ptr) // Additional methods for python only .def("__str__", &__str__) ; } pyobjcryst-2024.2.1/src/extensions/refinableobjclock_ext.cpp000066400000000000000000000066711470422267000242000ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::RefinableObjClock. * * Changes from ObjCryst::RefinableObjClock * - operator= is wrapped as the SetEqual method * a.SetEqual(b) -> a = b * *****************************************************************************/ #include #include #include #include "helpers.hpp" using namespace boost::python; using ObjCryst::RefinableObjClock; namespace { const char* classdoc = "We need to record exactly when refinable objects\n\ have been modified for the last time (to avoid re-computation),\n\ and to do that we need a precise time. Since the clock() function is not\n\ precise enough (and is architecture-dependant), we use a custom time,\n\ which records the number of events in the program which uses the library.\n\ This is purely internal, so don't worry about it...\n\ \n\ The clock values have nothing to do with 'time' as any normal person undertands it."; const char* addchilddoc = "Add a 'child' clock. Whenever a child clock is clicked, it will also click its parent.\n\ This function takes care of adding itself to the list of parent in the children clock."; const char* addparentdoc = "Add a 'parent' clock. Whenever a clock is clicked, all parent clocks\n\ also are."; const char* clickdoc = "Record an event for this clock (generally, the 'time'\n\ an object has been modified, or some computation has been made)"; const char * printdoc = "Print clock value. Only for debugging purposes."; const char * printstaticdoc = "Print current general clock value. Only for debugging purposes."; const char * removechilddoc = "remove a child clock. This also tells the child clock to remove the parent."; const char * removeparentdoc = "remove a parent clock"; const char * resetdoc = "Reset a Clock to 0, to force an update"; // set clock1 equal to clock2 (operator=) void SetEqual(RefinableObjClock& c1, const RefinableObjClock& c2) { c1 = c2; } } // anonymous namespace void wrap_refinableobjclock() { class_ ("RefinableObjClock", classdoc) .def("AddChild", &RefinableObjClock::AddChild, addchilddoc, with_custodian_and_ward<1,2>()) .def("AddParent", &RefinableObjClock::AddParent, addparentdoc, with_custodian_and_ward<1,2>()) .def("Click", &RefinableObjClock::Click, clickdoc) .def("Print", &RefinableObjClock::Print, printdoc) .def("PrintStatic", &RefinableObjClock::PrintStatic, printstaticdoc) .def("RemoveChild", &RefinableObjClock::RemoveChild, removechilddoc) .def("RemoveParent", &RefinableObjClock::RemoveParent, removeparentdoc) .def("Reset", &RefinableObjClock::Reset, resetdoc) .def("SetEqual", &SetEqual) .def(self < self) .def(self <= self) .def(self > self) .def(self >= self) .def("__str__", &__str__) ; } pyobjcryst-2024.2.1/src/extensions/refinablepar_ext.cpp000066400000000000000000000145171470422267000231720ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::RefinablePar and * ObjCryst::RefParDerivStepModel. * * Changes from ObjCryst::RefinablePar * - The constructor has been changed to accept a double, * rather than a pointer to a double. * - The copy and default constructors and Init are not wrapped in order to avoid * memory corruption. Since boost cannot implicitly handle double* object, a * wrapper class had to be created. However, this wrapper class cannot be used * to convert RefinablePar objected created in c++. Thus, * ObjCryst::RefinablePar objects created in c++ are passed into python as * instances of _RefinablePar, which is a python wrapper around * ObjCryst::RefinablePar. The RefinablePar python class is a wrapper around * the C++ class PyRefinablePar, which manages its own double*. These python * classes are interchangable once instantiated, so users should not notice. * - XML input/output are not exposed. * *****************************************************************************/ #include #include #include #include #include #include #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { /* A little wrapper around the initializers since python doubles and double* don't * get along. */ class PyRefinablePar : public RefinablePar { public: PyRefinablePar() : RefinablePar(), pval(0) {}; PyRefinablePar(const string& name, double value, const double min, const double max, const RefParType* type, RefParDerivStepModel derivMode=REFPAR_DERIV_STEP_RELATIVE, const bool hasLimits=true, const bool isFixed=false, const bool isUsed=true, const bool isPeriodic=false, const double humanScale=1., double period=1.) : RefinablePar() { pval = new double(value); RefinablePar::Init(name, pval, min, max, type, derivMode, hasLimits, isFixed, isUsed, isPeriodic, humanScale, period); } ~PyRefinablePar() { if( pval != NULL ) { delete pval; } } private: double* pval; }; } // anonymous namespace void wrap_refinablepar() { enum_("RefParDerivStepModel") .value("REFPAR_DERIV_STEP_ABSOLUTE", REFPAR_DERIV_STEP_ABSOLUTE) .value("REFPAR_DERIV_STEP_RELATIVE", REFPAR_DERIV_STEP_RELATIVE) ; // Class for holding RefinablePar instances created in c++. This should not // be exported to the pyobjcryst namespace class_ > ("_RefinablePar", no_init) .def("GetValue", &RefinablePar::GetValue) .def("SetValue", &RefinablePar::SetValue) .def("GetHumanValue", &RefinablePar::GetHumanValue, return_value_policy()) .def("SetHumanValue", &RefinablePar::SetHumanValue) .def("Mutate", &RefinablePar::Mutate) .def("MutateTo", &RefinablePar::MutateTo) .def("GetSigma", &RefinablePar::GetSigma) .def("GetHumanSigma", &RefinablePar::GetHumanSigma) .def("SetSigma", &RefinablePar::SetSigma) .def("GetName", &RefinablePar::GetName) .def("SetName", &RefinablePar::SetName) .def("Print", &RefinablePar::Print) .def("IsFixed", &RefinablePar::IsFixed) .def("SetIsFixed", &RefinablePar::SetIsFixed) .def("IsLimited", &RefinablePar::IsLimited) .def("SetIsLimited", &RefinablePar::SetIsLimited) .def("IsUsed", &RefinablePar::IsUsed) .def("SetIsUsed", &RefinablePar::SetIsUsed) .def("IsPeriodic", &RefinablePar::IsPeriodic) .def("SetIsPeriodic", &RefinablePar::SetIsPeriodic) .def("GetHumanScale", &RefinablePar::GetHumanScale) .def("SetHumanScale", &RefinablePar::SetHumanScale) .def("GetMin", &RefinablePar::GetMin) .def("SetMin", &RefinablePar::SetMin) .def("GetHumanMin", &RefinablePar::GetHumanMin) .def("SetHumanMin", &RefinablePar::SetHumanMin) .def("GetMax", &RefinablePar::GetMax) .def("SetMax", &RefinablePar::SetMax) .def("GetHumanMax", &RefinablePar::GetHumanMax) .def("SetHumanMax", &RefinablePar::SetHumanMax) .def("GetPeriod", &RefinablePar::GetPeriod) .def("SetPeriod", &RefinablePar::SetPeriod) .def("GetDerivStep", &RefinablePar::GetDerivStep) .def("SetDerivStep", &RefinablePar::SetDerivStep) .def("GetGlobalOptimStep", &RefinablePar::GetGlobalOptimStep) .def("SetGlobalOptimStep", &RefinablePar::SetGlobalOptimStep) .def("AssignClock", &RefinablePar::AssignClock) .def("SetLimitsAbsolute", &RefinablePar::SetLimitsAbsolute) .def("SetLimitsRelative", &RefinablePar::SetLimitsRelative) .def("SetLimitsProportional", &RefinablePar::SetLimitsProportional) // Python-only attributes .def("__str__", &__str__) .add_property("value", &RefinablePar::GetValue, &RefinablePar::SetValue) ; // Class for creating new RefinablePar instances class_ > ("RefinablePar", //... init(( bp::arg("name"), bp::arg("value"), bp::arg("min"), bp::arg("max"), bp::arg("type"), bp::arg("derivMode")=REFPAR_DERIV_STEP_RELATIVE, bp::arg("hasLimits")=true, bp::arg("isFixed")=false, bp::arg("isUsed")=true, bp::arg("isPeriodic")=false, bp::arg("humanScale")=1., bp::arg("period")=1.)) [with_custodian_and_ward<1,6>()]) ; } pyobjcryst-2024.2.1/src/extensions/reflectionprofile_ext.cpp000066400000000000000000000045661470422267000242560ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst * * File coded by: Vincent Favre-Nicolin * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ReflectionProfile. * * Changes from ObjCryst::ReflectionProfile * * Other Changes * *****************************************************************************/ #include #include #include #undef B0 #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { class ReflectionProfileWrap : public ReflectionProfile, public wrapper { public: // Pure virtual functions ReflectionProfile* CreateCopy() const { return this->get_override("CreateCopy")(); } CrystVector_REAL GetProfile( const CrystVector_REAL& x, const REAL xcenter, const REAL h, const REAL k, const REAL l) const { bp::override f = this->get_override("GetProfile"); return f(x, xcenter, h, k, l); } REAL GetFullProfileWidth( const REAL relativeIntensity, const REAL xcenter, const REAL h, const REAL k, const REAL l) { bp::override f = this->get_override("GetFullProfileWidth"); return f(relativeIntensity, xcenter, h, k, l); } void XMLOutput(ostream& os, int indent) const { bp::override f = this->get_override("XMLOutput"); f(os, indent); } void XMLInput(istream& is, const XMLCrystTag& tag) { bp::override f = this->get_override("GetProfile"); f(is, tag); } }; } // namespace void wrap_reflectionprofile() { class_, boost::noncopyable>( "ReflectionProfile") // TODO add pure_virtual bindings to the remaining public methods .def("CreateCopy", pure_virtual(&ReflectionProfile::CreateCopy), return_value_policy()) ; } pyobjcryst-2024.2.1/src/extensions/refobjopt_ext.cpp000066400000000000000000000043571470422267000225330ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::RefObjOpt. * *****************************************************************************/ #include #include #include #include using namespace boost::python; using namespace ObjCryst; namespace { class RefObjOptWrap : public RefObjOpt, public wrapper { public: void default_SetChoice(const int choice) { RefObjOpt::SetChoice(choice); } void SetChoice(const int choice) { override f = this->get_override("SetChoice"); if (f) f(choice); else default_SetChoice(choice); } }; // AtomWrap } // anonymous namespace void wrap_refobjopt() { class_("RefObjOpt") .def("Init", &RefObjOpt::Init) .def("GetNbChoice", &RefObjOpt::GetNbChoice) .def("GetChoice", &RefObjOpt::GetChoice) .def("SetChoice", (void (RefObjOpt::*)(const int)) &RefObjOpt::SetChoice, &RefObjOptWrap::default_SetChoice) .def("SetChoice", (void (RefObjOpt::*)(const std::string&)) &RefObjOpt::SetChoice) .def("GetName", &RefObjOpt::GetName, return_value_policy()) .def("GetClassName", &RefObjOpt::GetClassName, return_value_policy()) .def("GetChoiceName", &RefObjOpt::GetChoiceName, return_value_policy()) .def("GetClock", &RefObjOpt::GetClock, return_value_policy()) .def("XMLOutput", &RefObjOpt::XMLOutput) .def("XMLInput", &RefObjOpt::XMLInput) ; } pyobjcryst-2024.2.1/src/extensions/refpartype_ext.cpp000066400000000000000000000026331470422267000227150ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::RefParType. * *****************************************************************************/ #include #include #include #include using namespace ObjCryst; using namespace boost::python; namespace { bool __eq__(const RefParType* rpt1, const RefParType* rpt2) { return rpt1 == rpt2; } } // anonymous namespace void wrap_refpartype() { class_("RefParType", init()) .def(init() [with_custodian_and_ward<1,2>()]) /* Functions */ .def("IsDescendantFromOrSameAs", &RefParType::IsDescendantFromOrSameAs) .def("__eq__", &__eq__) .def("GetName", &RefParType::GetName, return_value_policy()) ; } pyobjcryst-2024.2.1/src/extensions/registerconverters.cpp000066400000000000000000000172641470422267000236210ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings for various conversions used in pyobjcryst. * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include // Use numpy here, but initialize it later in the extension module. #include "pyobjcryst_numpy_setup.hpp" #define NO_IMPORT_ARRAY #include using namespace boost::python; using namespace ObjCryst; namespace { namespace bp = boost::python; typedef std::pair< ScatteringPower const*, ScatteringPower const* > sppair; typedef std::map< sppair, double > mapsppairtodouble; typedef std::map< sppair, Crystal::BumpMergePar > mapsppairtobmp; typedef std::set MolAtomSet; typedef std::vector MolAtomVec; // Make an array out of a data pointer and a dimension vector PyObject* makeNdArray(const double* data, std::vector& dims) { PyObject* pyarray = PyArray_SimpleNew(dims.size(), &dims[0], NPY_DOUBLE); PyArrayObject* a = reinterpret_cast(pyarray); double* adata = static_cast(PyArray_DATA(a)); std::copy(data, data + PyArray_SIZE(a), adata); return bp::incref(pyarray); } // CrystVector to ndarray struct CrystVector_REAL_to_ndarray { static PyObject* convert(const CrystVector& cv) { std::vector dims(1); dims[0] = cv.numElements(); return makeNdArray((double *) cv.data(), dims); } static PyTypeObject const* get_pytype() { return &PyDoubleArrType_Type; } }; // CrystMatrix to ndarray struct CrystMatrix_REAL_to_ndarray { static PyObject* convert(const CrystMatrix& cm) { std::vector dims(2); dims[0] = cm.rows(); dims[1] = cm.cols(); return makeNdArray((double *) cm.data(), dims); } static PyTypeObject const* get_pytype() { return &PyDoubleArrType_Type; } }; // std::pair to tuple template struct std_pair_to_tuple { static PyObject* convert(std::pair const& p) { bp::object tpl = bp::make_tuple(p.first, p.second); PyObject* rv = tpl.ptr(); return bp::incref(rv); } static PyTypeObject const* get_pytype() { return &PyTuple_Type; } }; // Helper for convenience. template struct std_pair_to_python_converter { std_pair_to_python_converter() { bp::to_python_converter< std::pair, std_pair_to_tuple >(); } }; /* For MolAtomSet (std::set) */ void _addMAS(MolAtomSet& mas, MolAtom* a) { mas.insert(a); } void _updateMAS(MolAtomSet& mas, const MolAtomSet& other) { mas.insert(other.begin(), other.end()); } bool _containsMAS(const MolAtomSet& mas, MolAtom* a) { return mas.find(a) != mas.end(); } MolAtom* _getItemMAS(const MolAtomSet& mas, size_t i) { // Look for size violation if (i >= mas.size()) { PyErr_SetString(PyExc_IndexError, "index out of range"); throw_error_already_set(); } MolAtomSet::const_iterator p = mas.begin(); while (i > 0) { p++; i--; } return *p; } void _discardMAS(MolAtomSet& mas, MolAtom* a) { if( _containsMAS(mas, a) ) { mas.erase(a); } } void _removeMAS(MolAtomSet& mas, MolAtom* a) { if( _containsMAS(mas, a) ) { mas.erase(a); } else { PyErr_SetString(PyExc_KeyError, "KeyError"); throw_error_already_set(); } } /* For MolAtomVec */ void _appendMAV(MolAtomVec& mav, MolAtom* a) { mav.push_back(a); } void _extendMAV(MolAtomVec& mav, const MolAtomVec& other) { for(MolAtomVec::iterator p; p < other.end(); ++p) { mav.push_back(*p); } } bool _containsMAV(const MolAtomVec& mav, MolAtom* a) { return std::find(mav.begin(), mav.end(), a) != mav.end(); } MolAtom* _getItemMAV(const MolAtomVec& mav, size_t i) { return mav[i]; } void _setItemMAV(MolAtomVec& mav, size_t i, MolAtom* a) { mav[i] = a; } void _deleteMAV(MolAtomVec& mav, size_t i) { mav.erase(mav.begin()+i); } /* Exception translation */ PyObject* pyobjcryst_ObjCrystException; void translateException(const ObjCrystException& e) { PyErr_SetString(pyobjcryst_ObjCrystException, e.message.c_str()); } // // For testing // CrystVector getTestVector() { /* Should produce * 0 1 2 */ CrystVector tv(3); for(int i=0;i<3;i++) { tv(i) = i; } return tv; } CrystMatrix getTestMatrix() { /* Should produce * 0 1 * 2 3 * 4 5 */ CrystMatrix tm(3,2); int counter = 0; for(int i=0;i<3;i++) { for(int j=0;j<2;j++) { tm(i,j) = counter; counter++; } } return tm; } } // namespace void wrap_registerconverters() { /* Exceptions */ pyobjcryst_ObjCrystException = PyErr_NewException((char*)"pyobjcryst.ObjCrystException", 0, 0); register_exception_translator(translateException); // We want silent exceptions ObjCrystException::verbose = false; // Put ObjCrystException in module namespace scope().attr("ObjCrystException") = object(handle<>(pyobjcryst_ObjCrystException)); /* Data type converters */ to_python_converter< CrystVector, CrystVector_REAL_to_ndarray >(); to_python_converter< CrystMatrix, CrystMatrix_REAL_to_ndarray >(); // From boost sources std_pair_to_python_converter (); // Semi-converter for mapsppairtodouble class_("mapsppairtodouble", no_init) .def(map_indexing_suite()); // Semi-converter for mapsppairtobmp class_("mapsppairtobmp", no_init) .def(map_indexing_suite()); class_< MolAtomSet >("MolAtomSet", no_init) .def("add", &_addMAS, with_custodian_and_ward<1,2>()) .def("clear", &std::set::clear) .def("discard", &_discardMAS) .def("remove", &_removeMAS) .def("update", &_updateMAS, with_custodian_and_ward<1,2>()) .def("__contains__", &_containsMAS) .def("__getitem__", &_getItemMAS, return_internal_reference<>()) .def("__len__", &MolAtomSet::size) ; class_< MolAtomVec >("MolAtomVec", no_init) .def("append", &_appendMAV, with_custodian_and_ward<1,2>()) .def("extend", &_extendMAV, with_custodian_and_ward<1,2>()) .def("contains", &_containsMAV) .def("delete", &_deleteMAV) .def("__getitem__", &_getItemMAV, return_internal_reference<>()) .def("__setitem__", &_setItemMAV, with_custodian_and_ward<1,2>()) .def("__len__", &MolAtomVec::size) ; // some tests def("getTestVector", &getTestVector); def("getTestMatrix", &getTestMatrix); } pyobjcryst-2024.2.1/src/extensions/restraint_ext.cpp000066400000000000000000000054301470422267000225450ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * Changes from ObjCryst::Restraint * - The default and copy constructors are not wrapped, nor is Init. * - GetType returns a non-const reference to the RefParType. This should be a * no-no, but RefParType has no mutating methods, so this should no lead to * trouble. * - XML input/output are not exposed. * *****************************************************************************/ #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { class RestraintWrap : public Restraint, public wrapper { public: RestraintWrap() : Restraint() {}; RestraintWrap(const RefParType* type) : Restraint(type) {}; const RefParType* default_GetType() const { return this->Restraint::GetType(); } const RefParType* GetType() const { override f = this->get_override("GetType"); if(f) return f(); return this->default_GetType(); } void default_SetType(const RefParType* type) { this->Restraint::SetType(type); return; } void SetType(const RefParType* type) { override f = this->get_override("SetType"); if(f) { f(type); return; } return this->default_SetType(type); } double default_GetLogLikelihood() const { return this->Restraint::GetLogLikelihood(); } double GetLogLikelihood() const { override f = this->get_override("GetLogLikelihood"); if(f) return f(); return this->default_GetLogLikelihood(); } }; } // anonymous namespace void wrap_restraint() { class_("Restraint") .def(init((bp::arg("type")))[ with_custodian_and_ward<1,2>()]) .def("GetType", &Restraint::GetType, &RestraintWrap::default_GetType, return_internal_reference<>()) .def("SetType", &Restraint::SetType, &RestraintWrap::default_SetType, with_custodian_and_ward<1,2>()) .def("GetLogLikelihood", &Restraint::GetLogLikelihood, &RestraintWrap::default_GetLogLikelihood) ; } pyobjcryst-2024.2.1/src/extensions/rigidgroup_ext.cpp000066400000000000000000000023551470422267000227100ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::RigidGroup. * * Changes from ObjCryst::RigidGroup * - RigidGroup is wrapped to have python-set methods rather than stl::set * methods. * *****************************************************************************/ #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; typedef std::set MolAtomSet; namespace { } // namespace void wrap_rigidgroup() { class_ >("RigidGroup") .def(init()) .def("GetName", &RigidGroup::GetName) .def("int_ptr", &RigidGroup::int_ptr) ; } pyobjcryst-2024.2.1/src/extensions/scatterer_ext.cpp000066400000000000000000000224331470422267000225300ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::Scatterer. This is a virtual class that * can be derived from in python. These bindings are used by ObjCryst objects * that inherit from Scatterer (see for example atom_ext.cpp). * * Changes from ObjCryst::Scatterer * - C++ methods that can return const or non-const objects return non-const * objects in python. * - Operator string() is not exposed. * - Internal use only methods have not been exposed. * - InitRefParList is not exposed, as it is not used inside of Scatterer. * - GetClockScattCompList is exposed using a workaround, because it is not * implemented in the library. * - Methods related to visualization are not exposed. * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "helpers.hpp" using namespace ObjCryst; using namespace boost::python; namespace { class ScattererWrap : public Scatterer, public wrapper { public: ScattererWrap() : Scatterer() {} ScattererWrap(const ScattererWrap& S) : Scatterer(S) {} void default_SetX(const double x) { this->Scatterer::SetX(x);} void SetX(const double x) { override f = this->get_override("SetX"); if (f) f(x); else default_SetX(x); } void default_SetY(const double y) { this->Scatterer::SetY(y);} void SetY(const double y) { override f = this->get_override("SetY"); if (f) f(y); else default_SetY(y); } void default_SetZ(const double z) { this->Scatterer::SetZ(z);} void SetZ(const double z) { override f = this->get_override("SetZ"); if (f) f(z); else default_SetZ(z); } void default_SetOccupancy(const double occ) { this->Scatterer::SetOccupancy(occ);} void SetOccupancy(const double occ) { override f = this->get_override("SetOccupancy"); if (f) f(occ); else default_SetOccupancy(occ); } // Pure virtual Scatterer* CreateCopy() const { return this->get_override("CreateCopy")(); } int GetNbComponent() const { return this->get_override("GetNbComponent")(); } const ScatteringComponentList& GetScatteringComponentList() const { return this->get_override("GetScatteringComponentList")(); } std::string GetComponentName(const int i) const { return this->get_override("GetComponentName")(i); } void Print() const { this->get_override("Print")(); } //Need to implement the pure virtual function POVRayDescription std::ostream& default_POVRayDescription(std::ostream& os, const CrystalPOVRayOptions& options) const { if(this->GetClassName()=="Molecule") { const Molecule *p = dynamic_cast(this); return p->POVRayDescription(os, options); } if(this->GetClassName()=="ZScatterer") { const ZScatterer *p = dynamic_cast(this); return p->POVRayDescription(os, options); } const Atom *p = dynamic_cast(this); return p->POVRayDescription(os, options); } std::ostream& POVRayDescription(std::ostream& os, const CrystalPOVRayOptions& options) const { #ifdef _MSC_VER override f = this->get_override("POVRayDescription"); if(f) return call(f.ptr(), os, options); else return default_POVRayDescription(os, options); #else return this->get_override("POVRayDescription")(os, options); #endif } // interface prior to Fox version 2016.2 void GLInitDisplayList(const bool noSymmetrics, const REAL xMin, const REAL xMax, const REAL yMin, const REAL yMax, const REAL zMin, const REAL zMax, const bool displayEnantiomer, const bool displayNames, const bool hideHydrogens) const { // no operation } void GLInitDisplayList(const bool noSymmetrics, const REAL xMin, const REAL xMax, const REAL yMin, const REAL yMax, const REAL zMin, const REAL zMax, const bool displayEnantiomer, const bool displayNames, const bool hideHydrogens, const REAL fadeDistance=0) const { // no operation } const RefinableObjClock& _GetClockScattCompList() const { return mClockScattCompList; } protected: // Needed for compilation void InitRefParList() {}; }; // ScattererWrap // We want to turn a ScatteringComponentList into an actual list bp::list _GetScatteringComponentList(Scatterer& s) { const ScatteringComponentList& scl = s.GetScatteringComponentList(); bp::list l; for(int i = 0; i < scl.GetNbComponent(); ++i) { l.append(scl(i)); } return l; } } // anonymous namespace void wrap_scatterer() { scope().attr("refpartype_scatt") = object(gpRefParTypeScatt); scope().attr("refpartype_scatt_transl") = object(ptr(gpRefParTypeScattTransl)); scope().attr("refpartype_scatt_transl_x") = object(ptr(gpRefParTypeScattTranslX)); scope().attr("refpartype_scatt_transl_y") = object(ptr(gpRefParTypeScattTranslY)); scope().attr("refpartype_scatt_transl_z") = object(ptr(gpRefParTypeScattTranslZ)); scope().attr("refpartype_scatt_orient") = object(ptr(gpRefParTypeScattOrient)); scope().attr("refpartype_scatt_conform") = object(ptr(gpRefParTypeScattConform)); scope().attr("refpartype_scatt_conform_bondlength") = object(ptr(gpRefParTypeScattConformBondLength)); scope().attr("refpartype_scatt_conform_bondangle") = object(ptr(gpRefParTypeScattConformBondAngle)); scope().attr("refpartype_scatt_conform_dihedangle") = object(ptr(gpRefParTypeScattConformDihedAngle)); scope().attr("refpartype_scatt_conform_x") = object(ptr(gpRefParTypeScattConformX)); scope().attr("refpartype_scatt_conform_y") = object(ptr(gpRefParTypeScattConformY)); scope().attr("refpartype_scatt_conform_z") = object(ptr(gpRefParTypeScattConformZ)); scope().attr("refpartype_scatt_occup") = object(ptr(gpRefParTypeScattOccup)); // Global object registry scope().attr("gScattererRegistry") = boost::cref(gScattererRegistry); class_ > ("Scatterer") /* Constructors */ .def(init()) /* Methods */ .def("GetX", &Scatterer::GetX) .def("GetY", &Scatterer::GetY) .def("GetZ", &Scatterer::GetZ) .def("GetOccupancy", &Scatterer::GetOccupancy) // virtual methods .def("SetX", &Scatterer::SetX, &ScattererWrap::default_SetX) .def("SetY", &Scatterer::SetY, &ScattererWrap::default_SetY) .def("SetZ", &Scatterer::SetZ, &ScattererWrap::default_SetZ) .def("SetOccupancy", &ObjCryst::Scatterer::SetOccupancy, &ScattererWrap::default_SetOccupancy) .def("GetClockScatterer", (RefinableObjClock & (Scatterer::*)()) &Scatterer::GetClockScatterer, return_internal_reference<>()) .def("SetCrystal", &Scatterer::SetCrystal, with_custodian_and_ward<1,2>()) .def("GetCrystal", (Crystal &(Scatterer::*)()) &Scatterer::GetCrystal, return_internal_reference<>()) // pure virtual methods .def("GetNbComponent", pure_virtual(&Scatterer::GetNbComponent)) .def("GetComponentName", pure_virtual(&Scatterer::GetComponentName)) //.def("GetScatteringComponentList", // pure_virtual(&Scatterer::GetScatteringComponentList), // return_value_policy()) .def("GetScatteringComponentList", &_GetScatteringComponentList, with_custodian_and_ward_postcall<1,0>()) .def("Print", pure_virtual(&Scatterer::Print)) .def("__str__", &__str__) // protected methods .def("GetClockScattCompList", &ScattererWrap::_GetClockScattCompList, return_value_policy()) // Properties - to be compatible with MolAtom .add_property("X", &Scatterer::GetX, &Scatterer::SetX) .add_property("Y", &Scatterer::GetY, &Scatterer::SetY) .add_property("Z", &Scatterer::GetZ, &Scatterer::SetZ) .add_property("Occupancy", &Scatterer::GetOccupancy, &Scatterer::SetOccupancy) ; } pyobjcryst-2024.2.1/src/extensions/scatteringcomponent_ext.cpp000066400000000000000000000040021470422267000246120ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ScatteringComponent. * * Changes from ObjCryst::ScatteringComponent * - Added attributes X, Y, Z, Occupancy to conform to MolAtom. * *****************************************************************************/ #include #include #include "helpers.hpp" using namespace boost::python; using namespace ObjCryst; namespace { const ScatteringPower* _getScatteringPower(ScatteringComponent& s) { return s.mpScattPow; } } void wrap_scatteringcomponent() { class_("ScatteringComponent") .def("Print", &ScatteringComponent::Print) .def_readwrite("mX", &ScatteringComponent::mX) .def_readwrite("X", &ScatteringComponent::mX) .def_readwrite("mY", &ScatteringComponent::mY) .def_readwrite("Y", &ScatteringComponent::mY) .def_readwrite("mZ", &ScatteringComponent::mZ) .def_readwrite("Z", &ScatteringComponent::mZ) .def_readwrite("mOccupancy", &ScatteringComponent::mOccupancy) .def_readwrite("Occupancy", &ScatteringComponent::mOccupancy) .def_readonly("mDynPopCorr", &ScatteringComponent::mDynPopCorr) // Workaround to give attribute access. Again, returning the object, // where it should be read-only. .add_property("mpScattPow", make_function( &_getScatteringPower, return_internal_reference<>())) .def("__str__", &__str__) ; } pyobjcryst-2024.2.1/src/extensions/scatteringcomponentlist_ext.cpp000066400000000000000000000051101470422267000255070ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ScatteringComponentList. * * Changes from ObjCryst::ScatteringComponentList * - Wrapped as a to-python converter only (no constructor) * - Added python list-like access * *****************************************************************************/ #include #include #include #include #include "helpers.hpp" using namespace boost::python; using namespace ObjCryst; namespace { const ScatteringComponent& getItem(const ScatteringComponentList& scl, long idx) { long n = scl.GetNbComponent(); if(idx < 0) idx += n; if(idx < 0 || idx >= n) { PyErr_SetString(PyExc_IndexError, "index out of range"); throw_error_already_set(); } return scl(idx); } bool contains(const ScatteringComponentList& scl, const ScatteringComponent& sc) { for(long i=0; i < scl.GetNbComponent(); ++i) { if( scl(i) == sc ) return true; } return false; } // Get slices directly from the boost python object bp::object getSCSlice(bp::object & scl, bp::slice& s) { bp::list l(scl); return l[s]; } } void wrap_scatteringcomponentlist() { class_ ("ScatteringComponentList", no_init) //("ScatteringComponentList", init()) //.def(init()) .def("Reset", &ScatteringComponentList::Reset) .def("GetNbComponent", &ScatteringComponentList::GetNbComponent) .def("Print", &ScatteringComponentList::Print) .def(self == self) .def(self += self) .def(self += ScatteringComponent()) .def("__str__", &__str__) // Container-type things .def("__len__", &ScatteringComponentList::GetNbComponent) .def("__getitem__", &getItem, return_internal_reference<>()) .def("__getitem__", &getSCSlice, with_custodian_and_ward_postcall<1,0>()) .def("__contains__", &contains) ; } pyobjcryst-2024.2.1/src/extensions/scatteringdata_ext.cpp000066400000000000000000000166311470422267000235340ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst Complex Modeling Initiative * (c) 2015 Brookhaven Science Associates * Brookhaven National Laboratory. * All rights reserved. * * File coded by: Kevin Knox * * See AUTHORS.txt for a list of people who contributed. * See LICENSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ScatteringData. These bindings are * used by ObjCryst objects that inherit from ScatteringData (see, for example, * diffractiondatasinglecrystal_ext.cpp). * * Changes from ObjCryst::ScatteringData * - GetWavelength returns a scalar instead of a vector * *****************************************************************************/ #include #include #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { void _PrintFhklCalc(const ScatteringData& sd) { sd.PrintFhklCalc(); } void _PrintFhklCalcDetail(const ScatteringData& sd) { sd.PrintFhklCalcDetail(); } double _GetWavelength(ScatteringData& s) { return s.GetWavelength()(0); } bp::dict _GetScatteringFactor(ScatteringData& data) { const std::map& vsf = data.GetScatteringFactor(); std::map::const_iterator pos; bp::dict d; for(pos = vsf.begin(); pos != vsf.end(); ++pos) { bp::object key(bp::ptr(pos->first)); d[key] = pos->second; } return d; } } // anonymous namespace void wrap_scatteringdata() { scope().attr("refpartype_scattdata") = object(ptr(gpRefParTypeScattData)); scope().attr("refpartype_scattdata_scale") = object(ptr(gpRefParTypeScattDataScale)); scope().attr("refpartype_scattdata_profile") = object(ptr(gpRefParTypeScattDataProfile)); scope().attr("refpartype_scattdata_profile_type") = object(ptr(gpRefParTypeScattDataProfileType)); scope().attr("refpartype_scattdata_profile_width") = object(ptr(gpRefParTypeScattDataProfileWidth)); scope().attr("refpartype_scattdata_profile_asym") = object(ptr(gpRefParTypeScattDataProfileAsym)); scope().attr("refpartype_scattdata_corr") = object(ptr(gpRefParTypeScattDataCorr)); scope().attr("refpartype_scattdata_corr_pos") = object(ptr(gpRefParTypeScattDataCorrPos)); scope().attr("refpartype_scattdata_radiation") = object(ptr(gpRefParTypeRadiation)); scope().attr("refpartype_scattdata_radiation_wavelength") = object(ptr(gpRefParTypeRadiationWavelength)); class_, boost::noncopyable>( "ScatteringData", no_init) /* Methods */ // Have to convert from Python array to C++ array //.def("SetHKL", &ScatteringData::SetHKL) .def("GenHKLFullSpace2", (void (ScatteringData::*)(const REAL,const bool)) &ScatteringData::GenHKLFullSpace2, (bp::arg("maxsithsl"), bp::arg("unique")=false)) .def("GenHKLFullSpace", (void (ScatteringData::*)(const REAL,const bool)) &ScatteringData::GenHKLFullSpace, (bp::arg("maxtheta"), bp::arg("unique")=false)) // have to figure this out //.def("GetRadiationType", &ScatteringData::GetRadiationType, // return_value_policy()) .def("SetCrystal", &ScatteringData::SetCrystal) .def("GetCrystal", (Crystal& (ScatteringData::*)()) &ScatteringData::GetCrystal, return_internal_reference<>()) .def("HasCrystal", &ScatteringData::HasCrystal) .def("GetNbRefl", &ScatteringData::GetNbRefl) .def("GetH", &ScatteringData::GetH, return_value_policy()) .def("GetK", &ScatteringData::GetK, return_value_policy()) .def("GetL", &ScatteringData::GetL, return_value_policy()) .def("GetH2Pi", &ScatteringData::GetH2Pi, return_value_policy()) .def("GetK2Pi", &ScatteringData::GetK2Pi, return_value_policy()) .def("GetL2Pi", &ScatteringData::GetL2Pi, return_value_policy()) .def("GetReflX", &ScatteringData::GetReflX, return_value_policy()) .def("GetReflY", &ScatteringData::GetReflY, return_value_policy()) .def("GetReflZ", &ScatteringData::GetReflZ, return_value_policy()) .def("GetSinThetaOverLambda", &ScatteringData::GetSinThetaOverLambda, return_value_policy()) .def("GetTheta", &ScatteringData::GetTheta, return_value_policy()) .def("GetClockTheta", &ScatteringData::GetClockTheta, return_value_policy()) .def("GetFhklCalcSq", &ScatteringData::GetFhklCalcSq, return_value_policy()) //.def("GetFhklCalcSq_FullDeriv") .def("GetFhklCalcReal", &ScatteringData::GetFhklCalcReal, return_value_policy()) .def("GetFhklCalcImag", &ScatteringData::GetFhklCalcImag, return_value_policy()) .def("GetFhklObsSq", &ScatteringData::GetFhklObsSq, return_value_policy()) //.def("GetScatteringFactor", // (const std::map< const ScatteringPower *, CrystVector_REAL > & // (ScatteringData::*)()) &ScatteringData::GetScatteringFactor, // return_internal_reference<>()) .def("GetRadiation", (Radiation& (ScatteringData::*)()) &ScatteringData::GetRadiation, return_internal_reference<>()) .def("GetRadiationType", &ScatteringData::GetRadiationType) // Overloaded to return a single wavelength instead of a vector .def("GetWavelength", &_GetWavelength) .def("SetIsIgnoringImagScattFact", &ScatteringData::SetIsIgnoringImagScattFact) .def("IsIgnoringImagScattFact", &ScatteringData::IsIgnoringImagScattFact) .def("PrintFhklCalc", &_PrintFhklCalc) .def("PrintFhklCalcDetail", &_PrintFhklCalcDetail) // These don't seem necessary as I doubt we'll use ObjCryst for optimizations //.def("BeginOptimization") //.def("EndOptimization") //.def("SetApproximationFlag") .def("SetMaxSinThetaOvLambda", &ScatteringData::SetMaxSinThetaOvLambda) .def("GetMaxSinThetaOvLambda", &ScatteringData::GetMaxSinThetaOvLambda) .def("GetNbReflBelowMaxSinThetaOvLambda", &ScatteringData::GetNbReflBelowMaxSinThetaOvLambda) .def("GetClockNbReflBelowMaxSinThetaOvLambda", &ScatteringData::GetClockNbReflBelowMaxSinThetaOvLambda, return_value_policy()) .def("GetScatteringFactor", &_GetScatteringFactor, with_custodian_and_ward_postcall<1,0>()) ; } pyobjcryst-2024.2.1/src/extensions/scatteringpower_ext.cpp000066400000000000000000000253231470422267000237550ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ScatteringPower. * *****************************************************************************/ #include #include #include #include #include #include #include #include using namespace boost::python; using namespace ObjCryst; namespace { class ScatteringPowerWrap : public ScatteringPower, public wrapper { public: ScatteringPowerWrap() : ScatteringPower() {} ScatteringPowerWrap(const ScatteringPower& S) : ScatteringPower(S) {} ScatteringPowerWrap(const ScatteringPowerWrap& S) : ScatteringPower(S) {} // Pure Virtual functions CrystVector GetScatteringFactor( const ScatteringData& data, const int spgSymPosIndex) const { return this->get_override("GetScatteringFactor")(data, spgSymPosIndex); } double GetForwardScatteringFactor(const RadiationType type) const { return this->get_override("GetForwardScatteringFactor")(type); } CrystVector GetTemperatureFactor( const ScatteringData& data, const int spgSymPosIndex) const { return this->get_override("GetTemperatureFactor")(data, spgSymPosIndex); } CrystMatrix GetResonantScattFactReal( const ScatteringData& data, const int spgSymPosIndex) const { return this->get_override("GetResonantScattFactReal")(data, spgSymPosIndex); } CrystMatrix GetResonantScattFactImag( const ScatteringData& data, const int spgSymPosIndex) const { return this->get_override("GetResonantScattFactImag")(data, spgSymPosIndex); } double GetRadius() const { return this->get_override("GetRadius")(); } // Just plain virtual functions // bool default_IsScatteringFactorAnisotropic() const { return ScatteringPower::IsScatteringFactorAnisotropic(); } bool IsScatteringFactorAnisotropic() const { override f = this->get_override("IsScatteringFactorAnisotropic"); if (f) return f(); return default_IsScatteringFactorAnisotropic(); } bool default_IsTemperatureFactorAnisotropic() const { return ScatteringPower::IsTemperatureFactorAnisotropic(); } bool IsTemperatureFactorAnisotropic() const { override f = this->get_override("IsTemperatureFactorAnisotropic"); if (f) return f(); return default_IsTemperatureFactorAnisotropic(); } bool default_IsResonantScatteringAnisotropic() const { return ScatteringPower::IsResonantScatteringAnisotropic(); } bool IsResonantScatteringAnisotropic() const { override f = this->get_override("IsResonantScatteringAnisotropic"); if (f) return f(); return default_IsResonantScatteringAnisotropic(); } const std::string& default_GetSymbol() const { return ScatteringPower::GetSymbol(); } const std::string& GetSymbol() const { override f = this->get_override("GetSymbol"); if (f) return f(); return default_GetSymbol(); } void default_SetBiso(const double newB) { ScatteringPower::SetBiso(newB); } void SetBiso(const double newB) { override f = this->get_override("SetBiso"); if (f) f(newB); else default_SetBiso(newB); } void default_SetBij(const size_t& i, const size_t& j, const double newB) { ScatteringPower::SetBij(i, j, newB); } void SetBij(const size_t& i, const size_t& j, const double newB) { override f = this->get_override("SetBij"); if (f) f(i, j, newB); else default_SetBij(i, j, newB); } double default_GetFormalCharge() const { return ScatteringPower::GetFormalCharge(); } double GetFormalCharge() const { override f = this->get_override("GetFormalCharge"); if (f) return f(); return default_GetFormalCharge(); } void default_SetFormalCharge(const double charge) { ScatteringPower::SetFormalCharge(charge); } void SetFormalCharge(const double charge) { override f = this->get_override("SetFormalCharge"); if (f) f(charge); else default_SetFormalCharge(charge); } protected: void InitRefParList() { this->get_override("InitRefParList")(); } }; // ScatteringPowerWrap // Accessors for Bij parameters template double _GetBij(ScatteringPower& sp) { return sp.GetBij(i, j); } template void _SetBij(ScatteringPower& sp, const double newB) { return sp.SetBij(i, j, newB); } boost::python::tuple _GetColourRGB(ScatteringPower& sp) { return make_tuple(sp.GetColourRGB()[0], sp.GetColourRGB()[1], sp.GetColourRGB()[2]); } } // anonymous namespace void wrap_scatteringpower() { scope().attr("refpartype_scattpow") = object(ptr(gpRefParTypeScattPow)); // scope().attr("refpartype_scattpow_resonant") = object(ptr(gpRefParTypeScattPowResonant)); scope().attr("refpartype_scattpow_temperature") = object(ptr(gpRefParTypeScattPowTemperature)); // scope().attr("refpartype_scattpow_temperature_iso") = object(ptr(gpRefParTypeScattPowTemperatureIso)); // scope().attr("refpartype_scattpow_temperature_aniso") = object(ptr(gpRefParTypeScattPowTemperatureAniso)); // Global object registry scope().attr("gScatteringPowerRegistry") = boost::cref(gScatteringPowerRegistry); // By making this non-copyable ScatteringPower can be passed from c++ when // copy_const_reference is uses, but they are turned into RefinableObj // instances. class_ > ("ScatteringPower") .def(init()) .def("GetScatteringFactor", pure_virtual(&ScatteringPower::GetScatteringFactor), (boost::python::arg("data"), boost::python::arg("spgSymPosIndex")=-1)) .def("GetForwardScatteringFactor", pure_virtual(&ScatteringPower::GetForwardScatteringFactor)) .def("GetTemperatureFactor", pure_virtual(&ScatteringPower::GetTemperatureFactor), (boost::python::arg("data"), boost::python::arg("spgSymPosIndex")=-1)) .def("GetResonantScattFactReal", pure_virtual(&ScatteringPower::GetResonantScattFactReal), (boost::python::arg("data"), boost::python::arg("spgSymPosIndex")=-1)) .def("GetResonantScattFactImag", pure_virtual(&ScatteringPower::GetResonantScattFactImag), (boost::python::arg("data"), boost::python::arg("spgSymPosIndex")=-1)) .def("IsScatteringFactorAnisotropic", &ScatteringPower::IsScatteringFactorAnisotropic, &ScatteringPowerWrap::default_IsScatteringFactorAnisotropic) .def("IsTemperatureFactorAnisotropic", &ScatteringPower::IsTemperatureFactorAnisotropic, &ScatteringPowerWrap::default_IsTemperatureFactorAnisotropic) .def("IsResonantScatteringAnisotropic", &ScatteringPower::IsResonantScatteringAnisotropic, &ScatteringPowerWrap::default_IsResonantScatteringAnisotropic) .def("GetSymbol", &ScatteringPower::GetSymbol, &ScatteringPowerWrap::default_GetSymbol, return_value_policy()) .def("GetBiso", (double (ScatteringPower::*)()const) &ScatteringPower::GetBiso) .def("SetBiso", &ScatteringPower::SetBiso, &ScatteringPowerWrap::default_SetBiso) .def("GetBij", (double (ScatteringPower::*)(const size_t&, const size_t&) const) &ScatteringPower::GetBij) .def("SetBij", (void (ScatteringPower::*) (const size_t&, const size_t&, const double)) &ScatteringPower::SetBij, &ScatteringPowerWrap::default_SetBij) .def("IsIsotropic", &ScatteringPower::IsIsotropic) .def("GetDynPopCorrIndex", &ScatteringPower::GetDynPopCorrIndex) .def("GetNbScatteringPower", &ScatteringPower::GetNbScatteringPower) .def("GetLastChangeClock", &ScatteringPower::GetLastChangeClock, return_value_policy()) .def("GetRadius", pure_virtual(&ScatteringPower::GetRadius)) .def("GetMaximumLikelihoodPositionError", pure_virtual(&ScatteringPower::GetMaximumLikelihoodPositionError)) .def("SetMaximumLikelihoodPositionError", pure_virtual(&ScatteringPower::SetMaximumLikelihoodPositionError)) .def("GetMaximumLikelihoodNbGhostAtom", pure_virtual(&ScatteringPower::GetMaximumLikelihoodNbGhostAtom)) .def("SetMaximumLikelihoodNbGhostAtom", pure_virtual(&ScatteringPower::SetMaximumLikelihoodNbGhostAtom)) .def("GetMaximumLikelihoodParClock", &ScatteringPower::GetMaximumLikelihoodParClock, return_value_policy()) .def("GetFormalCharge", &ScatteringPower::GetFormalCharge, &ScatteringPowerWrap::default_GetFormalCharge) .def("SetFormalCharge", &ScatteringPower::SetFormalCharge, &ScatteringPowerWrap::default_SetFormalCharge) .def("GetColourRGB", &_GetColourRGB) .def("GetColour", &_GetColourRGB) .def("SetColour", (void (ScatteringPower::*)(const float,const float,const float)) &ScatteringPower::SetColour, (boost::python::arg("r"), boost::python::arg("g"), boost::python::arg("b"))) .add_property("Biso", (double (ScatteringPower::*)()const) &ScatteringPower::GetBiso, &ScatteringPower::SetBiso) .add_property("B11", &_GetBij<1,1>, &_SetBij<1,1>) .add_property("B22", &_GetBij<2,2>, &_SetBij<2,2>) .add_property("B33", &_GetBij<3,3>, &_SetBij<3,3>) .add_property("B12", &_GetBij<1,2>, &_SetBij<1,2>) .add_property("B13", &_GetBij<1,3>, &_SetBij<1,3>) .add_property("B23", &_GetBij<2,3>, &_SetBij<2,3>) ; } pyobjcryst-2024.2.1/src/extensions/scatteringpoweratom_ext.cpp000066400000000000000000000034461470422267000246400ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ScatteringPowerAtom. * *****************************************************************************/ #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void wrap_scatteringpoweratom() { typedef void (ScatteringPowerAtom::*SPAInitType)( const string&, const string&, const double); SPAInitType theinit = &ScatteringPowerAtom::Init; class_ > ("ScatteringPowerAtom", init()) .def( init > ((bp::arg("name"), bp::arg("symbol"), bp::arg("bIso")=1.0))) .def("Init", theinit, (bp::arg("name"), bp::arg("symbol"), bp::arg("biso")=1.0 )) .def("SetSymbol", &ScatteringPowerAtom::SetSymbol) .def("GetElementName", &ScatteringPowerAtom::GetElementName) .def("GetAtomicNumber", &ScatteringPowerAtom::GetAtomicNumber) .def("GetAtomicWeight", &ScatteringPowerAtom::GetAtomicWeight) ; } pyobjcryst-2024.2.1/src/extensions/scatteringpowersphere_ext.cpp000066400000000000000000000030301470422267000251530ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ScatteringPowerSphere. * *****************************************************************************/ #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void wrap_scatteringpowersphere() { typedef void (ScatteringPowerSphere::*SPSInitType)( const string&, const double, const double); SPSInitType theinit = &ScatteringPowerSphere::Init; class_ > ("ScatteringPowerSphere") .def(init >()) .def("Init", theinit, (boost::python::arg("name"), boost::python::arg("radius"), boost::python::arg("biso")=1.0 )) .def("GetRadius", &ScatteringPowerSphere::GetRadius) ; } pyobjcryst-2024.2.1/src/extensions/spacegroup_ext.cpp000066400000000000000000000127421470422267000227060ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::SpaceGroup. * *****************************************************************************/ #include #include #include #include #include #include #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { // This returns a list of translation operations bp::list GetTranslationVectors(const SpaceGroup& sg) { const std::vector& tv = sg.GetTranslationVectors(); bp::list outlist; std::vector::const_iterator vec; for(vec = tv.begin(); vec != tv.end(); ++vec) { CrystVector translation(3); for(int idx = 0; idx < 3; ++idx) { translation(idx) = vec->tr[idx]; } outlist.append(translation); } return outlist; } // Returns a list of (translation vector, rotation) tuples bp::list GetSymmetryOperations(const SpaceGroup& sg) { const std::vector& sv = sg.GetSymmetryOperations(); bp::list outlist; int r, c; std::vector::const_iterator tup; for(tup = sv.begin(); tup != sv.end(); ++tup) { CrystVector translation(3); for(int idx = 0; idx < 3; ++idx) { translation(idx) = tup->tr[idx]; } CrystMatrix rotation(3,3); for(int idx = 0; idx < 9; ++idx) { r = idx/3; c = idx%3; rotation(r,c) = tup->mx[idx]; } outlist.append(bp::make_tuple(translation, rotation)); } return outlist; } SpaceGroup* CreateSpaceGroup(const std::string& sgid) { MuteObjCrystUserInfo muzzle; // this may throw invalid_argument which is translated to ValueError SpaceGroup* rv = new SpaceGroup(sgid); return rv; } void SafeChangeSpaceGroup(SpaceGroup& sg, const std::string& sgid) { MuteObjCrystUserInfo muzzle; // this may throw invalid_argument which is translated to ValueError sg.ChangeSpaceGroup(sgid); } } // namespace void wrap_spacegroup() { class_("SpaceGroup") // Constructors .def("__init__", make_constructor(CreateSpaceGroup)) // Methods .def("ChangeSpaceGroup", &SafeChangeSpaceGroup) .def("GetName", &SpaceGroup::GetName, return_value_policy()) .def("IsInAsymmetricUnit", &SpaceGroup::IsInAsymmetricUnit) .def("ChangeToAsymmetricUnit", &SpaceGroup::ChangeToAsymmetricUnit) .def("IsInAsymmetricUnit", &SpaceGroup::IsInAsymmetricUnit) .def("GetAsymUnit", &SpaceGroup::GetAsymUnit, return_internal_reference<>()) .def("GetSpaceGroupNumber", &SpaceGroup::GetSpaceGroupNumber) .def("IsCentrosymmetric", &SpaceGroup::IsCentrosymmetric) .def("GetNbTranslationVectors", &SpaceGroup::GetNbTranslationVectors) .def("GetTranslationVectors", &GetTranslationVectors) .def("GetSymmetryOperations", &GetSymmetryOperations) .def("GetAllSymmetrics", &SpaceGroup::GetAllSymmetrics, (bp::arg("x"), bp::arg("y"), bp::arg("z"), bp::arg("noCenter")=false, bp::arg("noTransl")=false, bp::arg("noIdentical")=false)) .def("GetNbSymmetrics", &SpaceGroup::GetNbSymmetrics, (bp::arg("noCenter")=false, bp::arg("noTransl")=false)) .def("GetInversionCenter", &SpaceGroup::GetInversionCenter) .def("Print", &SpaceGroup::Print) .def("HasInversionCenter", &SpaceGroup::HasInversionCenter) .def("IsInversionCenterAtOrigin", &SpaceGroup::IsInversionCenterAtOrigin) // Requires cctbx? Forward declaration doesn't work //.def("GetCCTbxSpg", &SpaceGroup::GetCCTbxSpg, // return_value_policy()) .def("GetClockSpaceGroup", &SpaceGroup::GetClockSpaceGroup, return_value_policy()) .def("GetUniqueAxis", &SpaceGroup::GetUniqueAxis) .def("GetExtension", &SpaceGroup::GetExtension) .def("GetAllEquivRefl", &SpaceGroup::GetAllEquivRefl, (bp::arg("h"), bp::arg("k"), bp::arg("l"), bp::arg("excludeFriedelMate")=false, bp::arg("forceFriedelLaw")=false)) .def("IsReflSystematicAbsent", &SpaceGroup::IsReflSystematicAbsent) .def("IsReflCentric", &SpaceGroup::IsReflCentric) .def("GetExpectedIntensityFactor", &SpaceGroup::GetExpectedIntensityFactor) .def("__str__", &SpaceGroup::GetName, return_value_policy()) .def("__repr__", &SpaceGroup::GetName, return_value_policy()) ; } pyobjcryst-2024.2.1/src/extensions/stretchmode_ext.cpp000066400000000000000000000176551470422267000230670ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::StretchMode and its derivatives. * * Note that all indices are zero-based. * *****************************************************************************/ #include #include #include #include #include #include #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { typedef std::set MolAtomSet; class StretchModeWrap : public StretchMode, public wrapper { public: StretchModeWrap() : StretchMode() {} StretchModeWrap(const StretchModeWrap& sm) : StretchMode(sm) {} // Pure virtual void CalcDeriv(const bool derivllk=true) const { this->get_override("CalcDeriv")(derivllk); } void Stretch(const double change, const bool keepCenter) { this->get_override("Stretch")(change, keepCenter); } void RandomStretch(const double change, const bool keepCenter) { this->get_override("RandomStretch")(change); } }; // These gives us a way to add an atom to a stretch mode void _AddAtomSMBL(StretchModeBondLength& mode, MolAtom& a) { mode.mvTranslatedAtomList.insert(&a); } void _AddAtomsSMBL(StretchModeBondLength& mode, bp::object& l) { for(int i=0; i < len(l); ++i) { MolAtom* a = extract(l[i]); mode.mvTranslatedAtomList.insert(a); } } void _AddAtomsSetSMBL(StretchModeBondLength& mode, MolAtomSet& l) { MolAtomSet::const_iterator p; for(p = l.begin(); p != l.end(); ++p) { mode.mvTranslatedAtomList.insert(*p); } } bp::list _GetAtomsSMBL(StretchModeBondLength& mode) { bp::list l; MolAtomSet& v = mode.mvTranslatedAtomList; l = ptrcontainerToPyList< MolAtomSet >(v); return l; } // This one is for the angle modes template void _AddAtom(T& mode, MolAtom& a) { mode.mvRotatedAtomList.insert(&a); } template void _AddAtoms(T& mode, bp::object& l) { for(int i=0; i < len(l); ++i) { MolAtom* a = extract(l[i]); mode.mvRotatedAtomList.insert(a); } } template void _AddAtomsSet(T& mode, MolAtomSet& l) { MolAtomSet::const_iterator p; for(p = l.begin(); p != l.end(); ++p) { mode.mvRotatedAtomList.insert(*p); } } template bp::list _GetAtoms(T& mode) { bp::list l; MolAtomSet& v = mode.mvRotatedAtomList; l = ptrcontainerToPyList< MolAtomSet >(v); return l; } // These are accessors for the atoms. template MolAtom* _GetAtom0(T& mode) { return mode.mpAtom0; } template MolAtom* _GetAtom1(T& mode) { return mode.mpAtom1; } template MolAtom* _GetAtom2(T& mode) { return mode.mpAtom2; } } // namespace void wrap_stretchmode() { class_ ("StretchMode", no_init ) .def("CalcDeriv", pure_virtual(&StretchMode::CalcDeriv), (bp::arg("derivllk")=true)) .def("Stretch", pure_virtual(&StretchMode::Stretch), (bp::arg("amplitude"), bp::arg("keepCenter")=true)) .def("RandomStretch", pure_virtual(&StretchMode::RandomStretch), bp::arg("amplitude")) ; class_ > ("StretchModeBondLength", init ((bp::arg("at0"), bp::arg("at1"), bp::arg("pBond")=0)) [with_custodian_and_ward<1,2, with_custodian_and_ward<1,3, with_custodian_and_ward<1,4> > >()]) .def("AddAtom", &_AddAtomSMBL, with_custodian_and_ward<1,2>()) .def("AddAtoms", &_AddAtomsSMBL, with_custodian_and_ward<1,2>()) .def("AddAtoms", &_AddAtomsSetSMBL, with_custodian_and_ward<1,2>()) .def("GetAtoms", &_GetAtomsSMBL, with_custodian_and_ward_postcall<1,0>()) .add_property("mpAtom0", make_function( &_GetAtom0, return_internal_reference<>())) .add_property("mpAtom1", make_function( &_GetAtom1, return_internal_reference<>())) ; class_ > ("StretchModeBondAngle", init ((bp::arg("at0"), bp::arg("at1"), bp::arg("at2"), bp::arg("pBondAngle")=0)) [with_custodian_and_ward<1,2, with_custodian_and_ward<1,3, with_custodian_and_ward<1,4, with_custodian_and_ward<1,5> > > >()]) .def("AddAtom", &_AddAtom, with_custodian_and_ward<1,2>()) .def("AddAtoms", &_AddAtoms, with_custodian_and_ward<1,2>()) .def("AddAtoms", &_AddAtomsSet, with_custodian_and_ward<1,2>()) .def("GetAtoms", &_GetAtoms, with_custodian_and_ward_postcall<1,0>()) .add_property("mpAtom0", make_function( &_GetAtom0, return_internal_reference<>())) .add_property("mpAtom1", make_function( &_GetAtom1, return_internal_reference<>())) .add_property("mpAtom2", make_function( &_GetAtom2, return_internal_reference<>())) ; class_ > ("StretchModeTorsion", init ((bp::arg("at0"), bp::arg("at1"), bp::arg("pDihedralAngle")=0)) [with_custodian_and_ward<1,2, with_custodian_and_ward<1,3, with_custodian_and_ward<1,4> > >()]) .def("AddAtom", &_AddAtom, with_custodian_and_ward<1,2>()) .def("AddAtoms", &_AddAtoms, with_custodian_and_ward<1,2>()) .def("AddAtoms", &_AddAtomsSet, with_custodian_and_ward<1,2>()) .def("GetAtoms", &_GetAtoms, with_custodian_and_ward_postcall<1,0>()) .add_property("mpAtom1", make_function( &_GetAtom1, return_internal_reference<>())) .add_property("mpAtom2", make_function( &_GetAtom2, return_internal_reference<>())) ; class_ > ("StretchModeTwist", init ((bp::arg("at0"), bp::arg("at1"))) [with_custodian_and_ward<1,2, with_custodian_and_ward<1,3> >()]) .def("AddAtom", &_AddAtom, with_custodian_and_ward<1,2>()) .def("AddAtoms", &_AddAtoms, with_custodian_and_ward<1,2>()) .def("AddAtoms", &_AddAtomsSet, with_custodian_and_ward<1,2>()) .def("GetAtoms", &_GetAtoms, with_custodian_and_ward_postcall<1,0>()) .add_property("mpAtom1", make_function( &_GetAtom1, return_internal_reference<>())) .add_property("mpAtom2", make_function( &_GetAtom2, return_internal_reference<>())) ; } pyobjcryst-2024.2.1/src/extensions/unitcell_ext.cpp000066400000000000000000000141351470422267000223530ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::UnitCell. * *****************************************************************************/ #include #include #include #include #include #include #include #include "helpers.hpp" using namespace boost::python; using namespace ObjCryst; namespace bp = boost::python; namespace { bp::tuple FractionalToOrthonormalCoords(const UnitCell& uc, double x, double y, double z) { uc.FractionalToOrthonormalCoords(x,y,z); return bp::make_tuple(x,y,z); } bp::tuple OrthonormalToFractionalCoords(const UnitCell& uc, double x, double y, double z) { uc.OrthonormalToFractionalCoords(x,y,z); return bp::make_tuple(x,y,z); } bp::tuple MillerToOrthonormalCoords(const UnitCell& uc, double x, double y, double z) { uc.MillerToOrthonormalCoords(x,y,z); return bp::make_tuple(x,y,z); } bp::tuple OrthonormalToMillerCoords(const UnitCell& uc, double x, double y, double z) { uc.OrthonormalToMillerCoords(x,y,z); return bp::make_tuple(x,y,z); } // Setter for the lattice parameters. void _seta(UnitCell& u, double val) { u.GetPar("a").SetValue(val); } double _geta(UnitCell& u) { return u.GetLatticePar(0); } void _setb(UnitCell& u, double val) { u.GetPar("b").SetValue(val); } double _getb(UnitCell& u) { return u.GetLatticePar(1); } void _setc(UnitCell& u, double val) { u.GetPar("c").SetValue(val); } double _getc(UnitCell& u) { return u.GetLatticePar(2); } void _setalpha(UnitCell& u, double val) { if((val<=0)||(val>=M_PI)) throw ObjCrystException("alpha must be within ]0;pi["); RefinablePar &p = u.GetPar("alpha"); if(p.IsUsed()) p.SetValue(val); // Throwing an exception here would be risky - a warning would be more adequate // else throw ObjCrystException("alpha is fixed and cannot be changed"); } double _getalpha(UnitCell& u) { return u.GetLatticePar(3); } void _setbeta(UnitCell& u, double val) { if((val<=0)||(val>=M_PI)) throw ObjCrystException("beta must be within ]0;pi["); RefinablePar &p = u.GetPar("beta"); if(p.IsUsed()) p.SetValue(val); // Throwing an exception here would be risky - a warning would be more adequate // else throw ObjCrystException("beta is fixed and cannot be changed"); } double _getbeta(UnitCell& u) { return u.GetLatticePar(4); } void _setgamma(UnitCell& u, double val) { if((val<=0)||(val>=M_PI)) throw ObjCrystException("gamma must be within ]0;pi["); RefinablePar &p = u.GetPar("gamma"); if(p.IsUsed()) p.SetValue(val); // Throwing an exception here would be risky - a warning would be more adequate // else throw ObjCrystException("gamma is fixed and cannot be changed"); } double _getgamma(UnitCell& u) { return u.GetLatticePar(5); } void SafeChangeSpaceGroup(UnitCell& u, const std::string& sgid) { MuteObjCrystUserInfo muzzle; // this may throw invalid_argument which is translated to ValueError u.ChangeSpaceGroup(sgid); } } void wrap_unitcell() { scope().attr("refpartype_unitcell") = object(ptr(gpRefParTypeUnitCell)); scope().attr("refpartype_unitcell_length") = object(ptr(gpRefParTypeUnitCellLength)); scope().attr("refpartype_unitcell_angle") = object(ptr(gpRefParTypeUnitCellAngle)); class_ > ("UnitCell") // Constructors .def(init()) .def(init()) .def(init()) .def("GetLatticePar", (CrystVector (UnitCell::*)() const) &UnitCell::GetLatticePar) .def("GetLatticePar", (double (UnitCell::*)(const int) const) &UnitCell::GetLatticePar) .def("GetClockLatticePar", &UnitCell::GetClockLatticePar, return_value_policy()) .def("GetBMatrix", &UnitCell::GetBMatrix, return_value_policy()) .def("GetOrthMatrix", &UnitCell::GetOrthMatrix, return_value_policy()) .def("GetClockMetricMatrix", &UnitCell::GetClockMetricMatrix, return_value_policy()) .def("GetOrthonormalCoords", &UnitCell::GetOrthonormalCoords) // Modified to return a tuple .def("OrthonormalToFractionalCoords", &OrthonormalToFractionalCoords) // Modified to return a tuple .def("FractionalToOrthonormalCoords", &FractionalToOrthonormalCoords) // Modified to return a tuple .def("MillerToOrthonormalCoords", &MillerToOrthonormalCoords) // Modified to return a tuple .def("OrthonormalToMillerCoords", &OrthonormalToMillerCoords) .def("GetSpaceGroup", (SpaceGroup& (UnitCell::*)()) &UnitCell::GetSpaceGroup, return_internal_reference<>()) .def("ChangeSpaceGroup", &SafeChangeSpaceGroup) .def("GetVolume", &UnitCell::GetVolume) .def("__str__", &__str__) // python-only .add_property("a", &_geta, &_seta) .add_property("b", &_getb, &_setb) .add_property("c", &_getc, &_setc) .add_property("alpha", &_getalpha, &_setalpha) .add_property("beta", &_getbeta, &_setbeta) .add_property("gamma", &_getgamma, &_setgamma) ; } pyobjcryst-2024.2.1/src/extensions/zatom_ext.cpp000066400000000000000000000060771470422267000216740ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ZAtom. * * Changes from ObjCryst::ZAtom * - XMLOutput and Input are not wrapped. * *****************************************************************************/ #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; namespace { } void wrap_zatom() { /* This class is created internally by a ZScatterer, so it does not have an * init function */ class_("ZAtom", no_init) //init( // (bp::arg("scatt"), bp::arg("pow"), bp::arg("atomBond")=0, // bp::arg("bondLength")=1, bp::arg("atomAngle")=0, // bp::arg("bondAngle")=0, bp::arg("atomDihedral")=0, // bp::arg("popu")=1, bp::arg("name")="") // ) //[with_custodian_and_ward<2,1,with_custodian_and_ward<1,3> >()] //) // Methods .def("GetClassName", &ZAtom::GetClassName, return_value_policy()) .def("GetName", &ZAtom::GetName, return_value_policy()) .def("SetName", &ZAtom::SetName) .def("GetZScatterer", (ZScatterer& (ZAtom::*)()) &ZAtom::GetZScatterer, return_internal_reference<>()) .def("GetZBondAtom", &ZAtom::GetZBondAtom) .def("GetZAngleAtom", &ZAtom::GetZAngleAtom) .def("GetZDihedralAngleAtom", &ZAtom::GetZDihedralAngleAtom) .def("GetZBondLength", &ZAtom::GetZBondLength, return_value_policy()) .def("GetZAngle", &ZAtom::GetZAngle, return_value_policy()) .def("GetZDihedralAngle", &ZAtom::GetZDihedralAngle, return_value_policy()) .def("GetOccupancy", &ZAtom::GetOccupancy, return_value_policy()) .def("GetScatteringPower", &ZAtom::GetScatteringPower, return_internal_reference<>()) .def("SetZBondLength", &ZAtom::SetZBondLength) .def("SetZAngle", &ZAtom::SetZAngle) .def("SetZDihedralAngle", &ZAtom::SetZDihedralAngle) .def("SetOccupancy", &ZAtom::SetOccupancy) .def("SetScatteringPower", &ZAtom::SetScatteringPower, with_custodian_and_ward<1,2>()) ; } pyobjcryst-2024.2.1/src/extensions/zpolyhedron_ext.cpp000066400000000000000000000045551470422267000231160ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ZPolyhedron. * *****************************************************************************/ #include #include #include #include #include namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void wrap_zpolyhedron() { class_ > ("ZPolyhedron", init()) /* Constructors */ .def(init( (bp::arg("type"), bp::arg("cryst"), bp::arg("x"), bp::arg("y"), bp::arg("z"), bp::arg("name"), bp::arg("centralAtomPow"), bp::arg("periphAtomPow"), bp::arg("centralPeriphDist"), bp::arg("ligandPopu")=1, bp::arg("phi")=0, bp::arg("chi")=0, bp::arg("psi")=0) ) [with_custodian_and_ward<3,1, with_custodian_and_ward<1,8, with_custodian_and_ward<1,9> > >() ] ) ; enum_("RegularPolyhedraType") .value("TETRAHEDRON", TETRAHEDRON) .value("OCTAHEDRON", OCTAHEDRON) .value("SQUARE_PLANE", SQUARE_PLANE) .value("CUBE", CUBE) .value("ANTIPRISM_TETRAGONAL", ANTIPRISM_TETRAGONAL) .value("PRISM_TETRAGONAL_MONOCAP", PRISM_TETRAGONAL_MONOCAP) .value("PRISM_TETRAGONAL_DICAP", PRISM_TETRAGONAL_DICAP) .value("PRISM_TRIGONAL", PRISM_TRIGONAL) .value("PRISM_TRIGONAL_TRICAPPED", PRISM_TRIGONAL_TRICAPPED) .value("ICOSAHEDRON", ICOSAHEDRON) .value("TRIANGLE_PLANE", TRIANGLE_PLANE) ; } pyobjcryst-2024.2.1/src/extensions/zscatterer_ext.cpp000066400000000000000000000077701470422267000227310ustar00rootroot00000000000000/***************************************************************************** * * pyobjcryst by DANSE Diffraction group * Simon J. L. Billinge * (c) 2009 The Trustees of Columbia University * in the City of New York. All rights reserved. * * File coded by: Chris Farrow * * See AUTHORS.txt for a list of people who contributed. * See LICENSE_DANSE.txt for license information. * ****************************************************************************** * * boost::python bindings to ObjCryst::ZScatterer. * * Changes from ObjCryst++ * - XMLOutput and Input are not wrapped. * * - Import and output is not implemented yet. * *****************************************************************************/ #include #include #include #include #include #include "python_streambuf.hpp" #include "helpers.hpp" namespace bp = boost::python; using namespace boost::python; using namespace ObjCryst; void _ImportFenskeHallZMatrix(ZScatterer &scatt, bp::object input , bool named) { // Mute output MuteObjCrystUserInfo muzzle; CaptureStdOut gag; boost_adaptbx::python::streambuf sbuf(input); boost_adaptbx::python::streambuf::istream in(sbuf); scatt.ImportFenskeHallZMatrix(in, named); } void wrap_zscatterer() { class_ > ("ZScatterer", init(bp::arg("old"))) /* Constructors */ .def(init ((bp::arg("name"), bp::arg("cryst"), bp::arg("x")=0, bp::arg("y")=0, bp::arg("z")=0, bp::arg("phi")=0, bp::arg("chi")=0, bp::arg("psi")=0) ) [with_custodian_and_ward<1,6>()]) /* Methods */ .def("GetClassName", &ZScatterer::GetClassName, return_value_policy()) .def("AddAtom", &ZScatterer::AddAtom, (bp::arg("name"), bp::arg("pow"), bp::arg("atomBond"), bp::arg("bondLength"), bp::arg("atomAngle"), bp::arg("bondAngle"), bp::arg("atomDihedral"), bp::arg("dihedralAngle"), bp::arg("popu")=1.0 ), with_custodian_and_ward<1,3>() ) .def("GetPhi", &ZScatterer::GetPhi) .def("GetChi", &ZScatterer::GetChi) .def("GetPsi", &ZScatterer::GetPsi) .def("SetPhi", &ZScatterer::SetPhi) .def("SetChi", &ZScatterer::SetChi) .def("SetPsi", &ZScatterer::SetPsi) .def("GetZAtomX", &ZScatterer::GetZAtomX) .def("GetZAtomY", &ZScatterer::GetZAtomY) .def("GetZAtomZ", &ZScatterer::GetZAtomZ) .def("GetZBondAtom", &ZScatterer::GetZBondAtom) .def("GetZAngleAtom", &ZScatterer::GetZAngleAtom) .def("GetZDihedralAngleAtom", &ZScatterer::GetZDihedralAngleAtom) .def("GetZBondLength", &ZScatterer::GetZBondLength) .def("GetZAngle", &ZScatterer::GetZAngle) .def("GetZDihedralAngle", &ZScatterer::GetZDihedralAngle) .def("SetZBondLength", &ZScatterer::SetZBondLength) .def("SetZAngle", &ZScatterer::SetZAngle) .def("SetZDihedralAngle", &ZScatterer::SetZDihedralAngle) .def("GetZAtomRegistry", &ZScatterer::GetZAtomRegistry, return_value_policy()) .def("GetXCoord", &ZScatterer::GetXCoord, return_value_policy()) .def("GetYCoord", &ZScatterer::GetYCoord, return_value_policy()) .def("GetZCoord", &ZScatterer::GetZCoord, return_value_policy()) .def("SetCenterAtomIndex", &ZScatterer::SetCenterAtomIndex) .def("GetCenterAtomIndex", &ZScatterer::GetCenterAtomIndex) .def("ImportFenskeHallZMatrix", &_ImportFenskeHallZMatrix) // Python-only methods .def("__str__", &__str__) ; } pyobjcryst-2024.2.1/src/pyobjcryst/000077500000000000000000000000001470422267000171555ustar00rootroot00000000000000pyobjcryst-2024.2.1/src/pyobjcryst/__init__.py000066400000000000000000000071471470422267000212770ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of ObjCryst++. Objects are wrapped according to their header file in the ObjCryst source. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Modules atom -- Wrapping of Atom.h crystal -- Wrapping of Crystal.h general -- Wrapping of General.h globaloptim -- Wrapping of GlobalOptimObj.h io -- Wrapping of IO.h lsq -- Wrapping of LSQNumObj.h molecule -- Wrapping of Molecule.h polyhedron -- Wrapping of Polyhedron.h refinableobj -- Wrapping of RefinableObj.h scatterer -- Wrapping of Scatterer.h scatteringpower -- Wrapping of ScatteringPower.h scatteringpowersphere -- Wrapping of ScatteringPowerSphere.h spacegroup -- Wrapping of SpaceGroup.h unitcell -- Wrapping of UnitCell.h zscatterer -- Wrapping of ZScatterer.h General Changes - C++ methods that can return const or non-const objects return non-const objects in python. - Classes with a Print() method have the output of this method exposed in the __str__ python method. Thus, obj.Print() == print obj. - CrystVector and CrystMatrix are converted to numpy arrays. - Indexing methods raise IndexError when index is out of bounds. See the modules' documentation for specific changes. """ import warnings # Let's put this on the package level from pyobjcryst.general import ObjCrystException # version data from pyobjcryst.version import __version__ # import submodules that only import from _pyobjcryst import pyobjcryst.atom import pyobjcryst.crystal import pyobjcryst.diffractiondatasinglecrystal import pyobjcryst.general import pyobjcryst.globaloptim import pyobjcryst.indexing import pyobjcryst.io import pyobjcryst.lsq import pyobjcryst.molecule import pyobjcryst.polyhedron import pyobjcryst.powderpattern import pyobjcryst.radiation import pyobjcryst.refinableobj import pyobjcryst.reflectionprofile import pyobjcryst.scatterer import pyobjcryst.scatteringdata import pyobjcryst.scatteringpower import pyobjcryst.scatteringpowersphere import pyobjcryst.spacegroup import pyobjcryst.unitcell import pyobjcryst.zscatterer from pyobjcryst._pyobjcryst import gTopRefinableObjRegistry def loadCrystal(filename): """Load pyobjcryst Crystal object from a CIF file. :param filename: CIF file to be loaded. :return: a new Crystal object. ..deprecated:: 2.2.4 Use pyobjcryst.crystal.create_crystal_from_cif() instead, which has more options when importing a CIF, including using an URL instead of a file. """ warnings.warn("loadCrystal is deprecated. Please use " "pyobjcryst.crystal.create_crystal_from_cif() instead", DeprecationWarning) from pyobjcryst.crystal import CreateCrystalFromCIF with open(filename, 'rb') as fp: rv = CreateCrystalFromCIF(fp) return rv # silence the pyflakes syntax checker assert ObjCrystException is not None assert __version__ or True assert pyobjcryst.zscatterer pyobjcryst-2024.2.1/src/pyobjcryst/atom.py000066400000000000000000000015621470422267000204730ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of Atom.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::Atom - The default constructor has been disabled. When not followed-up by Init, it will cause segmentation faults, even if it is printed. """ __all__ = ["Atom"] from pyobjcryst._pyobjcryst import Atom pyobjcryst-2024.2.1/src/pyobjcryst/crystal.py000066400000000000000000001004151470422267000212110ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow, Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of Crystal.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::Crystal - CIFOutput accepts a python file-like object - CalcDynPopCorr is not enabled, as the API states that this is for internal use only. Other Changes - CreateCrystalFromCIF is placed here instead of in a seperate CIF module. This method accepts a python file or a filename rather than a CIF object. """ __all__ = ["Crystal", "BumpMergePar", "CreateCrystalFromCIF", "create_crystal_from_cif"] import warnings from types import MethodType from urllib.request import urlopen from multiprocessing import current_process import numpy as np from pyobjcryst._pyobjcryst import Crystal as Crystal_orig from pyobjcryst._pyobjcryst import BumpMergePar from pyobjcryst._pyobjcryst import CreateCrystalFromCIF as CreateCrystalFromCIF_orig from .refinableobj import wrap_boost_refinableobjregistry try: import py3Dmol except ImportError: py3Dmol = None try: import ipywidgets as widgets except ImportError: widgets = None class Crystal(Crystal_orig): def CIFOutput(self, file, mindist=0): """ Save the crystal structure to a CIF file. :param file: either a filename, or a python file object opened in write mode """ if isinstance(file, str): super().CIFOutput(open(file, "w"), mindist) else: super().CIFOutput(file, mindist) def UpdateDisplay(self): try: if self._display_update_disabled: return except: pass # test for _3d_widget is a bit ugly, but to correctly implement this we'd need an # __init__ function which overrides the 3 different Crystal constructors which # could be messy as well. try: if self._3d_widget is not None: self._widget_update() except AttributeError: # self._3d_widget does not exist pass def disable_display_update(self): """ Disable display (useful for multiprocessing)""" self._display_update_disabled = True def enable_display_update(self): """ Enable display""" self._display_update_disabled = False def _display_cif(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=False, full_molecule=True, only_independent_atoms=False): """ Create a CIF with the full list of atoms, including those deduced by symmetry or translation up to neighbouring unit cells :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in fractional coordinates. :param enantiomer: if True, will mirror the structure along the x axis :param full_molecule: if True, a Molecule (or Scatterer) which has at least one atom inside the view limits is entirely shown. :param only_independent_atoms: if True, only show the independent atoms, no symmetry or translation is applied :return : the CIF as a string """ cif = "data_crystal_for3d\n\n" cif += "_computing_structure_solution 'FOX http://objcryst.sourceforge.net'\n\n"; cif += "_cell_length_a %8.3f\n" % self.a cif += "_cell_length_b %8.3f\n" % self.b cif += "_cell_length_c %8.3f\n" % self.c cif += "_cell_length_alpha %8.3f\n" % np.rad2deg(self.alpha) cif += "_cell_length_beta %8.3f\n" % np.rad2deg(self.beta) cif += "_cell_length_gamma %8.3f\n" % np.rad2deg(self.gamma) cif += "loop_\n" cif += " _atom_site_label\n" cif += " _atom_site_type_symbol\n" cif += " _atom_site_fract_x\n" cif += " _atom_site_fract_y\n" cif += " _atom_site_fract_z\n" cif += " _atom_site_occupancy\n" spg = self.GetSpaceGroup() for i in range(self.GetNbScatterer()): scatt = self.GetScatterer(i) v = scatt.GetScatteringComponentList() nat = len(v) if only_independent_atoms: for j in range(len(v)): s = v[j] symbol = s.mpScattPow.GetSymbol() name = scatt.GetComponentName(j) # 3dmol.js does not like ' in names, # despite https://www.iucr.org/resources/cif/spec/version1.1/cifsyntax#bnf name = name.replace("'", "_") occ = s.Occupancy x, y, z = s.X % 1, s.Y % 1, s.Z % 1 if enantiomer: x = -x % 1 cif += " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" % (name, symbol, x, y, z, occ) else: # Generate all symmetrics to enable full molecule display nsym = spg.GetNbSymmetrics() # print(nsym) vxyz = np.empty((nsym, nat, 3), dtype=np.float32) for j in range(nat): s = v[j] x, y, z = s.X, s.Y, s.Z if enantiomer: x = -x xyzsym = spg.GetAllSymmetrics(x, y, z) for k in range(nsym): vxyz[k, j, :] = xyzsym[k] for k in range(nsym): xc, yc, zc = vxyz[k].mean(axis=0) vxyz[k, :, 0] -= (xc - xc % 1) vxyz[k, :, 1] -= (yc - yc % 1) vxyz[k, :, 2] -= (zc - zc % 1) # print(vxyz, vxyz.shape) for j in range(nat): s = v[j] symbol = s.mpScattPow.GetSymbol() name = scatt.GetComponentName(j) # 3dmol.js does not like ' in names, # despite https://www.iucr.org/resources/cif/spec/version1.1/cifsyntax#bnf name = name.replace("'", "_") occ = s.Occupancy for k in range(nsym): for dx in (-1, 0, 1): for dy in (-1, 0, 1): for dz in (-1, 0, 1): x, y, z = vxyz[k, j] + np.array((dx, dy, dz)) # print(" %12s %4s %8.4f %8.4f %8.4f %6.4f" % \ # (name, symbol, x, y, z, occ)) if full_molecule: # If any atom is within limits, display all vx, vy, vz = vxyz[k, :, 0] + dx, vxyz[k, :, 1] + dy, vxyz[k, :, 2] + dz tmp = (vx >= xmin) * (vx <= xmax) * (vy >= ymin) * \ (vy <= ymax) * (vz >= zmin) * (vz <= zmax) if tmp.sum(): cif += " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" % \ (name, symbol, x, y, z, occ) else: if xmin <= x <= xmax and ymin <= y <= ymax and zmin <= z <= zmax: cif += " %12s %4s %8.4f %8.4f %8.4f %6.4f\n" % \ (name, symbol, x, y, z, occ) return cif def _display_list(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=False, full_molecule=True, only_independent_atoms=False): """ Create a list of atoms to be displayed, so it can be supplied to py3Dmol :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in fractional coordinates. :param enantiomer: if True, will mirror the structure along the x axis :param full_molecule: if True, a Molecule (or Scatterer) which has at least one atom inside the view limits is entirely shown. :param only_independent_atoms: if True, only show the independent atoms, no symmetry or translation is applied :return : the list of atoms and bonds to be displayed for 3dmol """ spg = self.GetSpaceGroup() vv = [] idx = 0 for i in range(self.GetNbScatterer()): scatt = self.GetScatterer(i) v = scatt.GetScatteringComponentList() nat = len(v) if scatt.GetClassName() == "Molecule": # We need to generate all atomic positions and the associated bonds atoms = {} for j in range(nat): s = v[j] a = scatt.GetAtom(j) if a.IsDummy(): continue name = scatt.GetComponentName(j) name = name.replace("'", "_") symbol = s.mpScattPow.GetSymbol() occ = s.Occupancy x, y, z = s.X, s.Y, s.Z if enantiomer: x = -x atoms[a.int_ptr()] = {'x': x, 'y': y, 'z': z, 'name': name, 'j': j, 'symbol': symbol, 'bonds': [], 'bondOrder': []} for bond in scatt.IterBond(): o = bond.BondOrder if o < 1: o = 1 i1 = bond.GetAtom1().int_ptr() i2 = bond.GetAtom2().int_ptr() atoms[i1]['bonds'].append(i2) atoms[i2]['bonds'].append(i1) atoms[i1]['bondOrder'].append(o) atoms[i2]['bondOrder'].append(o) if only_independent_atoms: # Generate the index for the atoms for a in atoms.values(): a['idx'] = idx idx += 1 for a in atoms.values(): vb = [atoms[int_ptr]['idx'] for int_ptr in a['bonds']] x, y, z = self.FractionalToOrthonormalCoords(a['x'], a['y'], a['z']) vv.append({'elem': a['symbol'], 'x': x, 'y': y, 'z': z, 'bonds': vb, 'bondOrder': a['bondOrder']}) else: # Generate all symmetrics to enable full molecule display nsym = spg.GetNbSymmetrics() # print(nsym) vxyz = np.empty((nsym, nat, 3), dtype=np.float32) for j in range(nat): s = v[j] x, y, z = s.X, s.Y, s.Z if enantiomer: x = -x xyzsym = spg.GetAllSymmetrics(x, y, z) vxyz[:, j, :] = xyzsym for k in range(nsym): xc, yc, zc = vxyz[k].mean(axis=0) vxyz[k, :, 0] -= (xc - xc % 1) vxyz[k, :, 1] -= (yc - yc % 1) vxyz[k, :, 2] -= (zc - zc % 1) if full_molecule: for k in range(nsym): for dx in (-1, 0, 1): for dy in (-1, 0, 1): for dz in (-1, 0, 1): vx, vy, vz = vxyz[k, :, 0] + dx, vxyz[k, :, 1] + dy, vxyz[k, :, 2] + dz # Is at least one atom inside the limits ? tmp = (vx >= xmin) * (vx <= xmax) * (vy >= ymin) * (vy <= ymax) * ( vz >= zmin) * (vz <= zmax) if tmp.sum(): for a in atoms.values(): a['idx'] = idx idx += 1 for a in atoms.values(): j = a['j'] vb = [atoms[int_ptr]['idx'] for int_ptr in a['bonds']] x, y, z = vxyz[k, j] + np.array((dx, dy, dz)) x, y, z = self.FractionalToOrthonormalCoords(x, y, z) vv.append({'elem': a['symbol'], 'x': x, 'y': y, 'z': z, 'bonds': vb, 'bondOrder': a['bondOrder']}) else: # TODO add 'visible' value in dictionnary to determine which atoms are shown, # then update the bond and bondOrder lists for k in range(nsym): for dx in (-1, 0, 1): for dy in (-1, 0, 1): for dz in (-1, 0, 1): vx, vy, vz = vxyz[k, :, 0] + dx, vxyz[k, :, 1] + dy, vxyz[k, :, 2] + dz for a in atoms.values(): j = a['j'] x, y, z = vx[j], vy[j], vz[j] if xmin <= x <= xmax and ymin <= y <= ymax and zmin <= z <= zmax: a['idx'] = idx a['visible'] = True idx += 1 else: a['visible'] = False for a in atoms.values(): if not a['visible']: continue j = a['j'] vb = [] vo = [] for l in range(len(a['bonds'])): int_ptr = a['bonds'][l] if atoms[int_ptr]['visible']: vb.append(atoms[int_ptr]['idx']) vo.append(a['bondOrder'][l]) x, y, z = vxyz[k, j] + np.array((dx, dy, dz)) x, y, z = self.FractionalToOrthonormalCoords(x, y, z) vv.append({'elem': a['symbol'], 'x': x, 'y': y, 'z': z, 'bonds': vb, 'bondOrder': vo}) else: if only_independent_atoms: for j in range(len(v)): s = v[j] symbol = s.mpScattPow.GetSymbol() name = scatt.GetComponentName(j) # 3dmol.js does not like ' in names, # despite https://www.iucr.org/resources/cif/spec/version1.1/cifsyntax#bnf name = name.replace("'", "_") occ = s.Occupancy x, y, z = s.X, s.Y, s.Z if enantiomer: x = -x x, y, z = self.FractionalToOrthonormalCoords(x, y, z) vv.append({'elem': symbol, 'x': x, 'y': y, 'z': z}) else: # Generate all symmetrics to enable full molecule display nsym = spg.GetNbSymmetrics() # print(nsym) vxyz = np.empty((nsym, nat, 3), dtype=np.float32) for j in range(nat): s = v[j] x, y, z = s.X, s.Y, s.Z if enantiomer: x = -x xyzsym = spg.GetAllSymmetrics(x, y, z) for k in range(nsym): vxyz[k, j, :] = xyzsym[k] for k in range(nsym): xc, yc, zc = vxyz[k].mean(axis=0) vxyz[k, :, 0] -= (xc - xc % 1) vxyz[k, :, 1] -= (yc - yc % 1) vxyz[k, :, 2] -= (zc - zc % 1) # print(vxyz, vxyz.shape) for j in range(nat): s = v[j] symbol = s.mpScattPow.GetSymbol() name = scatt.GetComponentName(j) # 3dmol.js does not like ' in names, # despite https://www.iucr.org/resources/cif/spec/version1.1/cifsyntax#bnf name = name.replace("'", "_") occ = s.Occupancy for k in range(nsym): for dx in (-1, 0, 1): for dy in (-1, 0, 1): for dz in (-1, 0, 1): x, y, z = vxyz[k, j] + np.array((dx, dy, dz)) if xmin <= x <= xmax and ymin <= y <= ymax and zmin <= z <= zmax: x, y, z = self.FractionalToOrthonormalCoords(x, y, z) vv.append({'elem': symbol, 'x': x, 'y': y, 'z': z}) return vv def display_3d(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=False, full_molecule_opacity=0.5, extra_dist=2, extra_opacity=0.5): """ This will return a 3D view of the Crystal structure which can be displayed in a notebook. This cannot be automatically updated, but will remain in the notebook as a static javascript object, so it can still be useful. :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in fractional coordinates. :param enantiomer: if True, will mirror the structure along the x axis :param full_molecule_opacity: if >0, a Molecule (or Scatterer) which has at least one atom inside the view limits is entirely shown, with the given opacity (0-1) :param extra_dist: extra distance (in Angstroms) beyond the view limits, where atoms & bonds are still displayed semi-transparently :param extra_opacity: the opacity (0-1) to display the atoms within the extra distance. """ if py3Dmol is None: warnings.warn("Yout need to install py3Dmol>=0.9 to use Crystal.display_3d()") return v = py3Dmol.view() if full_molecule_opacity > 0: v.addModel() m = v.getModel() atoms = self._display_list(xmin, xmax, ymin, ymax, zmin, zmax, full_molecule=True, only_independent_atoms=False, enantiomer=enantiomer) m.addAtoms(atoms) m.setStyle({'stick': {'radius': 0.2, 'opacity': full_molecule_opacity}, 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': full_molecule_opacity}}) if extra_opacity > 0 and extra_dist > 0: dx, dy, dz = extra_dist / self.a, extra_dist / self.b, extra_dist / self.c v.addModel() m = v.getModel() atoms = self._display_list(xmin - dx, xmax + dx, ymin - dy, ymax + dy, zmin - dz, zmax + dz, full_molecule=False, only_independent_atoms=False, enantiomer=enantiomer) m.addAtoms(atoms) m.setStyle({'stick': {'radius': 0.2, 'opacity': extra_opacity}, 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': extra_opacity}}) v.addModel() m = v.getModel() m.setCrystData(self.a, self.b, self.c, np.rad2deg(self.alpha), np.rad2deg(self.beta), np.rad2deg(self.gamma)) v.addUnitCell({'box': {'color': 'purple'}, 'alabel': 'X', 'blabel': 'Y', 'clabel': 'Z', 'alabelstyle': {'fontColor': 'black', 'backgroundColor': 'white', 'inFront': True, 'fontSize': 40}, 'astyle': {'color': 'darkred', 'radius': 5, 'midpos': -10}}) atoms = self._display_list(xmin, xmax, ymin, ymax, zmin, zmax, full_molecule=False, only_independent_atoms=False, enantiomer=enantiomer) m.addAtoms(atoms) m.setStyle({'stick': {'radius': 0.2, 'opacity': 1}, 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': 1}}) v.zoomTo() return v def widget_3d(self, xmin=0, xmax=1, ymin=0, ymax=1, zmin=0, zmax=1, enantiomer=False, full_molecule_opacity=0.5, extra_dist=2, extra_opacity=0.5, width=640, height=480): """ This will return a 3D view of the Crystal structure which can be displayed in a notebook, along with controls for the display. This can be live-updated. :param xmin, xmax, ymin, ymax, zmin, zmax: the view limits in fractional coordinates. :param enantiomer: if True, will mirror the structure along the x axis :param full_molecule_opacity: if >0, a Molecule (or Scatterer) which has at least one atom inside the view limits is entirely shown, with the given opacity (0-1) :param extra_dist: extra distance (in Angstroms) beyond the view limits, where atoms & bonds are still displayed semi-transparently :param extra_opacity: the opacity (0-1) to display the atoms within the extra distance. :param width, height: the width and height of the 3D view """ if widgets is None or py3Dmol is None: warnings.warn("You need to install py3Dmol>=0.9 and ipywidgets to use Crystal.widget_3d()") return self._3d_widget = widgets.Box() # TODO: toggle for labels, toggle for stick (bonds), radius for atoms, enantiomer # Use a step of ~0.5 Angstroem xstep = 0.5 / self.a # Adapt step so we can keep orginal values as integral number steps xstep = (xmax - xmin) / np.ceil((xmax - xmin) / xstep) self.xrange = widgets.FloatRangeSlider(value=[xmin, xmax], min=xmin - 0.5, max=xmax + 0.5, step=xstep, description='Xrange', disabled=False, continuous_update=True, orientation='horizontal', readout=True) ystep = 0.5 / self.b ystep = (ymax - ymin) / np.ceil((ymax - ymin) / ystep) self.yrange = widgets.FloatRangeSlider(value=[ymin, ymax], min=ymin - 0.5, max=ymax + 0.5, step=ystep, description='Yrange', disabled=False, continuous_update=True, orientation='horizontal', readout=True) zstep = 0.5 / self.c zstep = (zmax - zmin) / np.ceil((zmax - zmin) / zstep) self.zrange = widgets.FloatRangeSlider(value=[zmin, zmax], min=zmin - 0.5, max=zmax + 0.5, step=zstep, description='Zrange', disabled=False, continuous_update=True, orientation='horizontal', readout=True) self.vbox_range = widgets.VBox([self.xrange, self.yrange, self.zrange]) self.extra_dist = widgets.FloatSlider(value=extra_dist, min=0, max=10, step=0.5, description='extra dist', tooltip='Extra distance (A) with semi-transparent display', disabled=False, continuous_update=True, orientation='horizontal', readout=True, readout_format='.1f') self.extra_opacity = widgets.FloatSlider(value=extra_opacity, min=0, max=1, step=0.1, description='extra opac.', tooltip='Opacity for extra distance display', disabled=False, continuous_update=True, orientation='horizontal', readout=True, readout_format='.01f') self.full_molecule_opacity = widgets.FloatSlider(value=full_molecule_opacity, min=0, max=1, step=0.1, description='fullMol opac', tooltip='Opacity to display fully molecules\n' 'which have at least one atom inside the limits', disabled=False, continuous_update=True, orientation='horizontal', readout=True, readout_format='.01f') self.vbox_options = widgets.VBox([self.extra_dist, self.extra_opacity, self.full_molecule_opacity]) self.hbox_options = widgets.HBox([self.vbox_range, self.vbox_options]) # catch the py3dmol display in widgets.Output ? self.output_view = widgets.Output() with self.output_view: self.py3dmol_view = py3Dmol.view(width=width, height=height) self.vbox = widgets.VBox([self.hbox_options, self.output_view]) self._3d_widget.children = [self.vbox] self._widget_update(show=True, zoom=True) self.xrange.observe(self._widget_on_change_parameter) self.yrange.observe(self._widget_on_change_parameter) self.zrange.observe(self._widget_on_change_parameter) self.extra_dist.observe(self._widget_on_change_parameter) self.extra_opacity.observe(self._widget_on_change_parameter) self.full_molecule_opacity.observe(self._widget_on_change_parameter) return self._3d_widget def _widget_update(self, show=False, zoom=False): xmin, xmax = self.xrange.value ymin, ymax = self.yrange.value zmin, zmax = self.zrange.value extra_dist = self.extra_dist.value extra_opacity = self.extra_opacity.value full_molecule_opacity = self.full_molecule_opacity.value v = self.py3dmol_view v.removeAllModels() if full_molecule_opacity > 0: v.addModel() m = v.getModel() atoms = self._display_list(xmin, xmax, ymin, ymax, zmin, zmax, full_molecule=True, only_independent_atoms=False) m.addAtoms(atoms) m.setStyle({'stick': {'radius': 0.2, 'opacity': full_molecule_opacity}, 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': full_molecule_opacity}}) if extra_opacity > 0 and extra_dist > 0: dx, dy, dz = extra_dist / self.a, extra_dist / self.b, extra_dist / self.c v.addModel() m = v.getModel() atoms = self._display_list(xmin - dx, xmax + dx, ymin - dy, ymax + dy, zmin - dz, zmax + dz, full_molecule=False, only_independent_atoms=False) m.addAtoms(atoms) m.setStyle({'stick': {'radius': 0.2, 'opacity': extra_opacity}, 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': extra_opacity}}) v.addModel() m = v.getModel() m.setCrystData(self.a, self.b, self.c, np.rad2deg(self.alpha), np.rad2deg(self.beta), np.rad2deg(self.gamma)) v.addUnitCell({'box': {'color': 'purple'}, 'alabel': 'X', 'blabel': 'Y', 'clabel': 'Z', 'alabelstyle': {'fontColor': 'black', 'backgroundColor': 'white', 'inFront': True, 'fontSize': 40}, 'astyle': {'color': 'darkred', 'radius': 5, 'midpos': -10}}) atoms = self._display_list(xmin, xmax, ymin, ymax, zmin, zmax, full_molecule=False, only_independent_atoms=False) m.addAtoms(atoms) m.setStyle({'stick': {'radius': 0.2, 'opacity': 1}, 'sphere': {'scale': 0.3, 'colorscheme': 'jmol', 'opacity': 1}}) if zoom: v.zoomTo() v.setZoomLimits(0.001, 1000) if show: v.show() else: # This avoids adding extra lines in the javascript output everytime # the model is update. Only a flicker (line removed/added) remains. self.output_view.clear_output() with self.output_view: v.update() def _widget_on_change_parameter(self, v): if v is not None: if v['name'] != 'value': return self._widget_update(zoom=True) def create_crystal_from_cif(file, oneScatteringPowerPerElement=False, connectAtoms=False, multiple=False): """ Create a crystal object from a CIF file or URL Example: create_crystal_from_cif('http://www.crystallography.net/cod/2201530.cif') :param file: the filename/URL or python file object (need to open with mode='rb') If the string begins by 'http' it is assumed that it is an URL instead, e.g. from the crystallography open database :param oneScatteringPowerPerElement: if False (the default), then there will be as many ScatteringPowerAtom created as there are different elements. If True, only one will be created per element. :param connectAtoms: if True, call Crystal::ConnectAtoms to try to create as many Molecules as possible from the list of imported atoms. :param multiple: if True, all structures from the CIF will be imported, but the returned Crystal object and those created in the globa registry will not have been created in python, and so will miss the derived functions for display & widget. :return: the imported Crystal structure :raises: ObjCrystException - if no Crystal object can be imported """ if multiple: if isinstance(file, str): if len(file) > 4: if file[:4].lower() == 'http': return CreateCrystalFromCIF_orig(urlopen(file), oneScatteringPowerPerElement, connectAtoms) with open(file, 'rb') as cif: # Make sure file object is closed afterwards c = CreateCrystalFromCIF_orig(cif, oneScatteringPowerPerElement, connectAtoms) else: c = CreateCrystalFromCIF_orig(file, oneScatteringPowerPerElement, connectAtoms) else: c = Crystal() if isinstance(file, str): if len(file) > 4: if file[:4].lower() == 'http': c.ImportCrystalFromCIF(urlopen(file), oneScatteringPowerPerElement, connectAtoms) return c with open(file, 'rb') as cif: # Make sure file object is closed afterwards c.ImportCrystalFromCIF(cif, oneScatteringPowerPerElement, connectAtoms) else: c.ImportCrystalFromCIF(file, oneScatteringPowerPerElement, connectAtoms) return c def wrap_boost_crystal(c: Crystal): """ This function is used to wrap a C++ Object by adding the python methods to it. :param c: the C++ created object to which the python function must be added. """ if '_display_cif' not in dir(c): for func in ['CIFOutput', 'UpdateDisplay', 'disable_display_update', 'enable_display_update', '_display_cif', '_display_list', 'display_3d', 'widget_3d', '_widget_update', '_widget_on_change_parameter']: exec("c.%s = MethodType(Crystal.%s, c)" % (func, func)) # PEP8, functions should be lowercase CreateCrystalFromCIF = create_crystal_from_cif pyobjcryst-2024.2.1/src/pyobjcryst/diffractiondatasinglecrystal.py000066400000000000000000000045751470422267000254700ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst Complex Modeling Initiative # (c) 2015 Brookhaven Science Associates # Brookhaven National Laboratory. # All rights reserved. # # File coded by: Kevin Knox # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Python wrapping of DiffractionDataSingleCrystal.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::DiffractionDataSingleCrystal:: In development ! """ __all__ = ["DiffractionDataSingleCrystal", "gDiffractionDataSingleCrystalRegistry", "create_singlecrystaldata_from_cif"] from urllib.request import urlopen from pyobjcryst._pyobjcryst import DiffractionDataSingleCrystal from pyobjcryst._pyobjcryst import gDiffractionDataSingleCrystalRegistry from pyobjcryst._pyobjcryst import CreateSingleCrystalDataFromCIF as crcif def create_singlecrystaldata_from_cif(file, crystal): """ Create a DiffractionDataSingleCrystal object from a CIF file. Note that this will use the last created Crystal as a reference structure. Example using the COD to load both crystal and data: c=create_crystal_from_cif('http://www.crystallography.net/cod/2201530.cif') d=create_singlecrystaldata_from_cif('http://www.crystallography.net/cod/2201530.hkl', c) param file: the filename/URL or python file object (need to open with mode='rb'). If the string begins by 'http' it is assumed that it is an URL instead, e.g. from the crystallography open database param crystal: the Crystal object which will be used for this single crystal data. :return: the imported DiffractionDataSingleCrystal :raises: ObjCrystException - if no DiffractionDataSingleCrystal object can be created """ if isinstance(file, str): if len(file) > 4: if file[:4].lower() == 'http': return crcif(urlopen(file), crystal) with open(file, 'rb') as cif: # Make sure file object is closed c = crcif(cif, crystal) else: c = crcif(file, crystal) return c # PEP8 CreateSingleCrystalDataFromCIF = create_singlecrystaldata_from_cif pyobjcryst-2024.2.1/src/pyobjcryst/fourier.py000066400000000000000000000105461470422267000212100ustar00rootroot00000000000000############################################################################## # # Fourier maps calculations # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## import numpy as np from .scatteringdata import ScatteringData def calc_fourier_map(data: ScatteringData, map_type="obs", sharpen=True, resolution=0.3): """ Compute a 3D Fourier map given a ScatteringData object :param data: a ScatteringData object with observed data, either q DiffractionDataSingleCrystal or PowderPatternDiffraction after extraction of intensities (profile fitting) :param map_type: either "obs" (the default), "diff" (difference) or "calc" :param sharpen: if True, normalise the structure factor Fourier coefficients by the average atomic scattering factor to sharpen the Fourier maps. :param resolution: approximate desired resolution for the map, in Angstroems :return: the 3D Fourier map, computed over one unit cell, with a resolution dictated by the largest HKL values. The map's origin is at the corner of the unit cell. """ if "calc" not in map_type: obs2 = data.GetFhklObsSq() nb = len(obs2) else: nb = data.GetNbReflBelowMaxSinThetaOvLambda() calc = (data.GetFhklCalcReal() + 1j * data.GetFhklCalcImag())[:nb] c = data.GetCrystal() if sharpen: # Dictionary of scattering factor for all elements vsf = data.GetScatteringFactor() # Make this a dictionary against int_ptr, so it can match # the Crystal's ScatteringComponentList vsf = {k.int_ptr(): v for k, v in vsf.items()} norm_sf = np.zeros(nb) norm0 = 0 for sc in c.GetScatteringComponentList(): norm_sf += sc.mOccupancy * sc.mDynPopCorr * vsf[sc.mpScattPow.int_ptr()][:nb] ** 2 norm0 += sc.mOccupancy * sc.mDynPopCorr * \ sc.mpScattPow.GetForwardScatteringFactor(data.GetRadiationType()) ** 2 norm_sf = np.sqrt(norm_sf / norm0) # Scale obs and calc if "calc" not in map_type: scale_fobs = np.sqrt((abs(calc) ** 2).sum() / obs2.sum()) # print(" Fourier map obs scale factor:", scale_fobs) vol = c.GetVolume() spg = c.GetSpaceGroup() h, k, l = data.GetH()[:nb], data.GetK()[:nb], data.GetL()[:nb] # Map size to achieve resolution nx = int(np.ceil(c.a / resolution)) ny = int(np.ceil(c.b / resolution)) nz = int(np.ceil(c.c / resolution)) # print("UnitCellMap::CalcFourierMap():",nx,",",ny,",",nz,",type:", map_type, ); rhof = np.zeros((nz, ny, nx), dtype=np.complex64) for i in range(nb): norm = 1 if sharpen: norm = 1 / norm_sf[i] if "calc" not in map_type: obs = scale_fobs * np.sqrt(obs2[i]) acalc = np.abs(calc[i]) for h0, k0, l0, fr, fi in spg.GetAllEquivRefl(h[i], k[i], l[i], False, data.IsIgnoringImagScattFact(), calc.real[i], calc.imag[i]): if abs(2 * h0) < nx and abs(2 * k0) < ny and abs(2 * l0) < nz: # Integer indices ih = int(np.round(h0)) ik = int(np.round(k0)) il = int(np.round(l0)) if "calc" in map_type.lower(): rhof[il, ik, ih] = (fr + 1j * fi) * norm / vol elif "obs" in map_type.lower(): rhof[il, ik, ih] = (fr + 1j * fi) * obs / max(acalc, 1e-6) * norm / vol else: rhof[il, ik, ih] = (fr + 1j * fi) * (obs - acalc) / max(acalc, 1e-6) * norm / vol # if (i<5): # print(int(h0)," ",int(k0)," ",int(l0),"(",spg.IsReflCentric(h0,k0,l0),"):" # ,fr+1j*fi," :",rhof[il, ik, ih]) if "obs" in map_type.lower() or "calc" in map_type.lower(): # F000 for obs and calc maps nbsym = spg.GetNbSymmetrics(False, False) for sc in c.GetScatteringComponentList(): sp = sc.mpScattPow rhof[0, 0, 0] += sp.GetForwardScatteringFactor(data.GetRadiationType()) * \ sc.mOccupancy * sc.mDynPopCorr * nbsym / vol # print("F000 =", rhof[0, 0, 0]) return np.fft.fftn(rhof) # , norm="backward" pyobjcryst-2024.2.1/src/pyobjcryst/general.py000066400000000000000000000015331470422267000211460ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of things from General.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). """ __all__ = ["RadiationType", "ObjCrystException", "WavelengthType"] from pyobjcryst._pyobjcryst import RadiationType, WavelengthType from pyobjcryst._pyobjcryst import ObjCrystException pyobjcryst-2024.2.1/src/pyobjcryst/globaloptim.py000066400000000000000000000147311470422267000220460ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Python wrapping of GlobalOptimObj.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::MonteCarloObj:: In development ! """ __all__ = ["MonteCarlo", "AnnealingSchedule", "GlobalOptimType"] import warnings from types import MethodType try: import ipywidgets as widgets except ImportError: widgets = None from pyobjcryst._pyobjcryst import MonteCarlo as MonteCarlo_orig, AnnealingSchedule, \ GlobalOptimType, OptimizationObjRegistry from .refinableobj import * class MonteCarlo(MonteCarlo_orig): def Optimize(self, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() if type(self) == MonteCarlo_orig: self._Optimize(int(nb_step), True, final_cost, max_time) else: super().Optimize(int(nb_step), True, final_cost, max_time) def MultiRunOptimize(self, nb_run: int, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() if type(self) == MonteCarlo_orig: self._MultiRunOptimize(int(nb_run), int(nb_step), True, final_cost, max_time) else: super().MultiRunOptimize(int(nb_run), int(nb_step), True, final_cost, max_time) def RunSimulatedAnnealing(self, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() if type(self) == MonteCarlo_orig: self._RunSimulatedAnnealing(int(nb_step), True, final_cost, max_time) else: super().RunSimulatedAnnealing(int(nb_step), True, final_cost, max_time) def RunParallelTempering(self, nb_step: int, final_cost=0, max_time=-1): self._fix_parameters_for_global_optim() if type(self) == MonteCarlo_orig: self._RunParallelTempering(int(nb_step), True, final_cost, max_time) else: super().RunParallelTempering(int(nb_step), True, final_cost, max_time) def _fix_parameters_for_global_optim(self): # Fix parameters that should not be optimised in a MonterCarlo run self.SetParIsFixed(refpartype_unitcell, True) self.SetParIsFixed(refpartype_scattdata_scale, True) self.SetParIsFixed(refpartype_scattdata_profile, True) self.SetParIsFixed(refpartype_scattdata_corr, True) self.SetParIsFixed(refpartype_scattdata_background, True) self.SetParIsFixed(refpartype_scattdata_radiation, True) def widget(self): """ Display a simple widget for this MonteCarlo, which only updates the current cost (log-likelihood). Requires ipywidgets """ if widgets is None: warnings.warn("You need to install ipywidgets to use MonteCarlo.widget()") return self._widget = widgets.Box() # See https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.html self._widget_label = widgets.Label("", layout=widgets.Layout(max_width='25%', width='20em')) self._widget_llk = widgets.Text("", disabled=True, layout=widgets.Layout(max_width='50%', width='30em')) self._widget.children = [widgets.HBox([self._widget_label, self._widget_llk])] self._widget_update() return self._widget def UpdateDisplay(self): try: if self._display_update_disabled: return except: pass try: if self._widget is not None: self._widget_update() except AttributeError: # self._3d_widget does not exist pass def disable_display_update(self): """ Disable display (useful for multiprocessing)""" self._display_update_disabled = True def enable_display_update(self): """ Enable display""" self._display_update_disabled = False def _widget_update(self): self._widget_label.value = "MonteCarlo:%s" % self.GetName() self._widget_label.layout.width = '%dem' % len(self._widget_label.value) if self.IsOptimizing(): self._widget_llk.value = "LLK=%12.2f Run %2d Trial %8d" % (self.llk, self.run, self.trial) else: self._widget_llk.value = "LLK=%12.2f " % self.llk self._widget_llk.layout.width = '%dem' % len(self._widget_llk.value) def wrap_boost_montecarlo(c: MonteCarlo): """ This function is used to wrap a C++ Object by adding the python methods to it. :param c: the C++ created object to which the python function must be added. """ if 'widget' not in dir(c): for func in ['Optimize', 'MultiRunOptimize', 'RunSimulatedAnnealing', 'RunParallelTempering']: # We keep access to the original functions... Yes, it's a kludge... exec("c._%s = c.%s" % (func, func)) for func in ['Optimize', 'MultiRunOptimize', 'RunSimulatedAnnealing', 'RunParallelTempering', '_fix_parameters_for_global_optim', 'widget', 'UpdateDisplay', 'disable_display_update', 'enable_display_update', '_widget_update']: exec("c.%s = MethodType(MonteCarlo.%s, c)" % (func, func)) class OptimizationObjRegistryWrapper(OptimizationObjRegistry): """ Wrapper class with a GetObj() method which can correctly wrap C++ objects with the python methods. This is only needed when the objects have been created from C++, e.g. when loading an XML file. """ def GetObj(self, i): o = self._GetObj(i) # TODO print("Casting OptimizationObj to MonteCarlo and wrapping..") # We get the object as an OptimizationObj, which prevents access to some functions # So we use this function to cast to a MonteCarloObj o = self._getObjCastMonteCarlo(i) wrap_boost_montecarlo(o) return o def wrap_boost_optimizationobjregistry(o): """ This function is used to wrap a C++ Object by adding the python methods to it. :param c: the C++ created object to which the python function must be added. """ # TODO: moving the original function is not very pretty. Is there a better way ? if '_GetObj' not in dir(o): o._GetObj = o.GetObj o.GetObj = MethodType(OptimizationObjRegistryWrapper.GetObj, o) pyobjcryst-2024.2.1/src/pyobjcryst/globals.py000066400000000000000000000030201470422267000211450ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # globals # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """ Global objects are exposed here. These are the main objects registries, which are tweaked to wrap pure C++ objects with the python methods. """ __all__ = ["gCrystalRegistry","gPowderPatternRegistry", "gRefinableObjRegistry", "gScattererRegistry", "gOptimizationObjRegistry", "gTopRefinableObjRegistry", "gDiffractionDataSingleCrystalRegistry"] from .refinableobj import wrap_boost_refinableobjregistry from .globaloptim import wrap_boost_optimizationobjregistry from pyobjcryst._pyobjcryst import gCrystalRegistry from pyobjcryst._pyobjcryst import gOptimizationObjRegistry from pyobjcryst._pyobjcryst import gPowderPatternRegistry from pyobjcryst._pyobjcryst import gRefinableObjRegistry from pyobjcryst._pyobjcryst import gScattererRegistry from pyobjcryst._pyobjcryst import gTopRefinableObjRegistry from pyobjcryst._pyobjcryst import gDiffractionDataSingleCrystalRegistry # Wrap registries with python methods wrap_boost_refinableobjregistry(gCrystalRegistry) wrap_boost_refinableobjregistry(gPowderPatternRegistry) wrap_boost_refinableobjregistry(gRefinableObjRegistry) wrap_boost_refinableobjregistry(gTopRefinableObjRegistry) wrap_boost_optimizationobjregistry(gOptimizationObjRegistry) pyobjcryst-2024.2.1/src/pyobjcryst/indexing.py000066400000000000000000000110611470422267000213330ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of UnitCell.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). """ __all__ = ["CrystalSystem", "CrystalCentering", "EstimateCellVolume", "RecUnitCell", "PeakList_hkl", "PeakList_hkl0", "PeakList", "CellExplorer", "quick_index"] import time from numpy import deg2rad from pyobjcryst._pyobjcryst import CrystalSystem, CrystalCentering, \ EstimateCellVolume, RecUnitCell, PeakList_hkl, PeakList_hkl0, PeakList,\ CellExplorer def quick_index(pl, min_obs_ratio=0.3, max_obs_ratio=1.5, nb_refl=20, try_centered_lattice=True, continue_on_sol=False, max_nb_spurious=0, verbose=True): if len(pl) > nb_refl: pl.resize(nb_refl) nb = len(pl) dmin = pl.GetPeakList()[nb - 1].dobs dmax = pl.GetPeakList()[0].dobs / 10 # assume there are no peaks at lower resolution if verbose: print("Predicting volumes from %2u peaks between d=%6.3f and d=%6.3f\n" % (nb, 1 / dmax, 1 / dmin)) print("Starting indexing using %2u peaks" % nb) ex = CellExplorer(pl, CrystalSystem.CUBIC, 0) ex.SetLengthMinMax(3, 25) ex.SetAngleMinMax(deg2rad(90), deg2rad(140)) ex.SetD2Error(0) stop_score = 50 report_score = 10 stop_depth = 6 + int(continue_on_sol) report_depth = 4 for nb_spurious in range(0, max_nb_spurious + 1): ex.SetNbSpurious(nb_spurious) for csys in [CrystalSystem.CUBIC, CrystalSystem.TETRAGONAL, CrystalSystem.RHOMBOEDRAL, CrystalSystem.HEXAGONAL, CrystalSystem.ORTHOROMBIC, CrystalSystem.MONOCLINIC]: if csys == CrystalSystem.CUBIC: vcen = [CrystalCentering.LATTICE_P, CrystalCentering.LATTICE_I, CrystalCentering.LATTICE_F] elif csys == CrystalSystem.TETRAGONAL: vcen = [CrystalCentering.LATTICE_P, CrystalCentering.LATTICE_I] elif csys == CrystalSystem.RHOMBOEDRAL: vcen = [CrystalCentering.LATTICE_P] elif csys == CrystalSystem.HEXAGONAL: vcen = [CrystalCentering.LATTICE_P] elif csys == CrystalSystem.ORTHOROMBIC: vcen = [CrystalCentering.LATTICE_P, CrystalCentering.LATTICE_A, CrystalCentering.LATTICE_B, CrystalCentering.LATTICE_C, CrystalCentering.LATTICE_I, CrystalCentering.LATTICE_F] elif csys == CrystalSystem.MONOCLINIC: vcen = [CrystalCentering.LATTICE_P, CrystalCentering.LATTICE_A,CrystalCentering.LATTICE_C, CrystalCentering.LATTICE_I] for cent in vcen: centc = 'P' if cent == CrystalCentering.LATTICE_I: centc = 'I' elif cent == CrystalCentering.LATTICE_A: centc = 'A' elif cent == CrystalCentering.LATTICE_B: centc = 'B' if cent == CrystalCentering.LATTICE_C: centc = 'C' elif cent == CrystalCentering.LATTICE_F: centc = 'F' minv = EstimateCellVolume(dmin, dmax, nb, csys, cent, max_obs_ratio) maxv = EstimateCellVolume(dmin, dmax, nb, csys, cent, min_obs_ratio) ex.SetVolumeMinMax(minv, maxv) lengthmax = 3 * maxv ** (1 / 3.) if lengthmax < 25: lengthmax = 25 ex.SetLengthMinMax(3, lengthmax) ex.SetCrystalSystem(csys) ex.SetCrystalCentering(cent) if verbose: print("%11s %c : V= %6.0f -> %6.0f A^3, max length=%6.2fA" % (csys.name, centc, minv, maxv, lengthmax)) t0 = time.time() ex.DicVol(report_score, report_depth, stop_score, stop_depth, verbose=False) if verbose: print(" -> %3u sols in %6.2fs, best score=%6.1f\n" % (len(ex.GetSolutions()), time.time() - t0, ex.GetBestScore())) if try_centered_lattice: break return ex pyobjcryst-2024.2.1/src/pyobjcryst/io.py000066400000000000000000000055151470422267000201440ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of IO.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::XMLCrystTag - The istream constructor of XMLCrystTag is not wrapped. Changes from IO functions: - use lower case for xml_cryst_file_load_all_object and xml_cryst_file_save_global - both functions accept either a file object or a filename, and can handle compressed files ('.xmlgz) """ __all__ = ["XMLCrystTag", "xml_cryst_file_load_all_object", "xml_cryst_file_save_global"] import gzip import os from pyobjcryst._pyobjcryst import XMLCrystTag, \ XMLCrystFileLoadAllObject as XMLCrystFileLoadAllObject_orig, \ XMLCrystFileSaveGlobal as XMLCrystFileSaveGlobal_orig from .globals import gTopRefinableObjRegistry def xml_cryst_file_load_all_object(file, verbose=False): """ Load all objects from an ObjCryst-formatted .xml or .xmlgz file :param file: the filename or python file object (need to open with mode='rb') :param verbose: if True, some information about the loaded objects is printed :return: a list of the imported top-level objects (Crystal, DiffractionDataSingleCrystal, PowderPattern) """ nb0 = len(gTopRefinableObjRegistry) if isinstance(file, str): if os.path.splitext(file)[-1] == '.xmlgz': o = gzip.open(file, mode='rb') XMLCrystFileLoadAllObject_orig(o, verbose=verbose) else: XMLCrystFileLoadAllObject_orig(open(file, 'rb'), verbose=verbose) else: XMLCrystFileLoadAllObject_orig(file, verbose=verbose) return gTopRefinableObjRegistry[nb0:] def xml_cryst_file_save_global(file): """ Save all top-level objects to an ObjCryst-formatted .xml or .xmlgz file :param file: the filename or python file object (need to open with mode='rb'). If a filename is given and the extension is 'xmlgz', the file will be compressed by gzip :return: nothing """ if isinstance(file, str): if os.path.splitext(file)[-1] == '.xmlgz': o = gzip.open(file, mode='wt', compresslevel=9, encoding=None, errors=None, newline=None) XMLCrystFileSaveGlobal_orig(o) else: XMLCrystFileSaveGlobal_orig(open(file, 'w')) else: XMLCrystFileSaveGlobal_orig(file) pyobjcryst-2024.2.1/src/pyobjcryst/lsq.py000066400000000000000000000010571470422267000203310ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Python wrapping of LSQNumObj.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::LSQNumObj:: In development ! """ from pyobjcryst._pyobjcryst import LSQ pyobjcryst-2024.2.1/src/pyobjcryst/molecule.py000066400000000000000000000121411470422267000213330ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of Molecule.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::Molecule - The public data are not wrapped. - Added __getitem__ access for MolAtoms. - AddAtom returns the added MolAtom - AddBond returns the added MolBond - AddBondAngle returns the added MolBondAngle - AddDihedralAngle returns the added MolDihedralAngle - RemoveAtom returns None, has an indexed version - RemoveBond returns None, has an indexed version - RemoveBondAngle returns None, has an indexed version - RemoveDihedralAngle returns None, has an indexed version - RemoveRigidGroup returns None - Added GetNbAtoms - Added GetNbBonds - Added GetNbBondAngles - Added GetNbDihedralAngles - Added GetNbRigidGroups - Added GetBond - Added GetBondAngle - Added GetDihedralAngle - Added GetRigidGroup - FindBond returns the bond if found, None otherwise - FindBondAngle returns the bond angle if found, None otherwise - FindDihedralAngle returns the dihedral angle if found, None otherwise - FindAtom is identical to GetAtom. - FlipAtomGroup is not wrapped. - FlipGroup, RotorGroup and StretchModeGroup are not wrapped. - StretchMode getters are not wrapped - Quaternion ordinates Q0, Q1, Q2 and Q3 wrapped as properties. Changes from ObjCryst::MolAtom - Wrapped as a to-python converter only (no constructor) - File IO is disabled - X, Y and Z are wrapped as properties rather than methods. Changes from ObjCryst::MolBondAngle - Wrapped as a to-python converter only (no constructor) - Added __getitem__ access for MolAtoms. - File IO is disabled - GetDeriv and CalcGradient are not wrapped. - Angle0, AngleDelta and AngleSigma are wrapped as properties rather than methods. - IsFlexible and SetFlexible are not wrapped, as they are not implemented in the library. Changes from ObjCryst::MolDihedralAngle - Wrapped as a to-python converter only (no constructor) - Added __getitem__ access for MolAtoms. Changes from ObjCryst::Quaternion - IO is not wrapped - Q0, Q1, Q2 and Q3 are wrapped as properties, rather than functions. - RotateVector overloaded to return tuple of the mutated arguments. Changes from ObjCryst::RigidGroup - RigidGroup is wrapped to have python-set methods rather than stl::set methods. """ __all__ = ["Molecule", "GetBondLength", "GetBondAngle", "GetDihedralAngle", "MolAtom", "MolBond", "MolBondAngle", "MolDihedralAngle", "Quaternion", "RigidGroup", "StretchMode", "StretchModeBondLength", "StretchModeBondAngle", "StretchModeTorsion", "StretchModeTwist", "ZScatterer2Molecule", "ImportFenskeHallZMatrix"] # TODO - MolRing from pyobjcryst._pyobjcryst import Molecule from pyobjcryst._pyobjcryst import GetBondLength from pyobjcryst._pyobjcryst import GetBondAngle from pyobjcryst._pyobjcryst import GetDihedralAngle from pyobjcryst._pyobjcryst import MolAtom from pyobjcryst._pyobjcryst import MolBond from pyobjcryst._pyobjcryst import MolBondAngle from pyobjcryst._pyobjcryst import MolDihedralAngle from pyobjcryst._pyobjcryst import Quaternion from pyobjcryst._pyobjcryst import RigidGroup from pyobjcryst._pyobjcryst import StretchMode from pyobjcryst._pyobjcryst import StretchModeBondLength from pyobjcryst._pyobjcryst import StretchModeBondAngle from pyobjcryst._pyobjcryst import StretchModeTorsion from pyobjcryst._pyobjcryst import StretchModeTwist from pyobjcryst._pyobjcryst import ZScatterer2Molecule from .zscatterer import ZScatterer def ImportFenskeHallZMatrix(cryst, src, named=False): """ Create a Molecule from a Fenske-Hall z-matrix. This is cleaner than importing the Z-matrix into a ZScatterer object and then using ZScatterer2Molecule, as it takes care of keeping only the created Molecule inside the Crystal. :param cryst: a Crystal object to which will belong the created Molecule :param src: either a python filed (opened in 'rb' mode), or a filename, or an url ("http://...") to a text file with the z-matrix :param named: if True, allows to read a named Z-matrix - the formatting is similar to a Fenske-Hall z-matrix but only relies on spaces between the different fields instead of a strict number of characters. """ z = ZScatterer("", cryst) z.ImportFenskeHallZMatrix(src,named) m = ZScatterer2Molecule(z) cryst.RemoveScatterer(z) cryst.AddScatterer(m) # TODO: this is a hack to keep a reference to the Crystal used for creation, # since with this function we can't use a custodian_and_ward. # It will just help avoiding deletion of the Crystal before the Molecule object. m._crystal = cryst return m pyobjcryst-2024.2.1/src/pyobjcryst/polyhedron.py000066400000000000000000000023471470422267000217200ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of Polyhedron.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). """ __all__ = ["MakeTetrahedron", "MakeOctahedron", "MakeSquarePlane", "MakeCube", "MakeAntiPrismTetragonal", "MakePrismTrigonal", "MakeIcosahedron", "MakeTriangle"] from pyobjcryst._pyobjcryst import MakeTetrahedron from pyobjcryst._pyobjcryst import MakeOctahedron from pyobjcryst._pyobjcryst import MakeSquarePlane from pyobjcryst._pyobjcryst import MakeCube from pyobjcryst._pyobjcryst import MakeAntiPrismTetragonal from pyobjcryst._pyobjcryst import MakePrismTrigonal from pyobjcryst._pyobjcryst import MakeIcosahedron from pyobjcryst._pyobjcryst import MakeTriangle pyobjcryst-2024.2.1/src/pyobjcryst/powderpattern.py000066400000000000000000000540011470422267000224250ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Python wrapping of PowderPattern.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io/en/latest/). Changes from ObjCryst::PowderPattern:: Additional functions for plotting, basic QPA and profile fitting. """ from urllib.request import urlopen from packaging.version import parse as version_parse from multiprocessing import current_process import numpy as np __all__ = ["PowderPattern", "CreatePowderPatternFromCIF", "PowderPatternBackground", "PowderPatternComponent", "PowderPatternDiffraction", "ReflectionProfileType", "SpaceGroupExplorer"] from types import MethodType from pyobjcryst._pyobjcryst import PowderPattern as PowderPattern_objcryst from pyobjcryst._pyobjcryst import CreatePowderPatternFromCIF as CreatePowderPatternFromCIF_orig from pyobjcryst._pyobjcryst import PowderPatternBackground from pyobjcryst._pyobjcryst import PowderPatternComponent from pyobjcryst._pyobjcryst import PowderPatternDiffraction from pyobjcryst._pyobjcryst import ReflectionProfileType from pyobjcryst._pyobjcryst import LSQ from pyobjcryst.refinableobj import refpartype_scattdata_background from pyobjcryst._pyobjcryst import SpaceGroupExplorer from pyobjcryst import ObjCrystException class PowderPattern(PowderPattern_objcryst): def __init__(self): super(PowderPattern, self).__init__() self._plot_fig = None self._plot_xlim = None self._plot_ylim = None self._plot_diff = False self._plot_hkl = False self._plot_hkl_fontsize = 6 self._plot_phase_labels = None # xlim last time hkl were plotted self._last_hkl_plot_xlim = None self.evts = [] self._colour_phases = ["black", "blue", "green", "red", "brown", "olive", "cyan", "purple", "magenta", "salmon"] def UpdateDisplay(self): try: if self._display_update_disabled: return except: pass if self._plot_fig is not None: if self._plot_fig is not None: self.plot() def update_display(self, return_figure=False): """ Update the plotted figure (if it exists) :param return_figure: if True, returns the figure :return: the figure if return_figure is True """ self.UpdateDisplay() if return_figure: return self.figure def disable_display_update(self): """ Disable display (useful for multiprocessing)""" self._display_update_disabled = True def enable_display_update(self): """ Enable display""" self._display_update_disabled = False def plot(self, diff=None, hkl=None, figsize=(9, 4), fontsize_hkl=6, reset=False, **kwargs): """ Show the powder pattern in a plot using matplotlib :param diff: if True, also show the difference plot :param hkl: if True, print the hkl values :param figsize: the figure size passed to matplotlib :param fontsize_hkl: fontsize for hkl coordinates :param reset: if True, will reset the x and y limits, and remove the flags to plot the difference and hkl unless the options are set at the same time. :param kwargs: additional keyword arguments: fig=None will force creating a new figure fig=fig1 will plot in the given matplotlib figure """ import matplotlib.pyplot as plt obs = self.GetPowderPatternObs() try: calc = self.GetPowderPatternCalc() except ObjCrystException: # TODO: when importing objects from an XML file, the powder pattern does not compute # correctly, Prepare() needs to be called manually. Why ? self.Prepare() calc = self.GetPowderPatternCalc() if reset: self._plot_ylim = None self._plot_xlim = None self._plot_hkl = False self._plot_diff = False if 'fig' in kwargs: self._plot_fig = kwargs['fig'] if diff is not None: self._plot_diff = diff plot_diff = self._plot_diff if hkl is not None: self._plot_hkl = hkl plot_hkl = self._plot_hkl # TODO: handle other coordinates than angles (TOF) x = np.rad2deg(self.GetPowderPatternX()) if self._plot_fig is None or 'inline' in plt.get_backend(): self._plot_fig = plt.figure(figsize=figsize) else: self._plot_fig.clear() ax = self._plot_fig.axes[0] if len(self._plot_fig.axes) else self._plot_fig.subplots() ax.plot(x, obs, 'k', label='obs', linewidth=1) ax.plot(x, calc, 'r', label='calc', linewidth=1) m = min(1, self.GetMaxSinThetaOvLambda() * self.GetWavelength()) mtth = np.rad2deg(np.arcsin(m)) * 2 if plot_diff: diff = calc - obs - obs.max() / 20 # Mask difference above max sin(theta)/lambda diff = np.ma.masked_array(diff, x > mtth) ax.plot(x, diff, 'g', label='calc-obs', linewidth=0.5) ax.legend(loc='upper right') if self.GetName() != "": self._plot_fig.title("PowderPattern: %s" % self.GetName()) if self._plot_ylim is not None: ax.set_ylim(self._plot_ylim) if self._plot_xlim is not None: ax.set_xlim(self._plot_xlim) elif m < 1: ax.set_xlim(x.min(), mtth) if plot_hkl: self._do_plot_hkl(nb_max=100, fontsize_hkl=fontsize_hkl) # print PowderPatternDiffraction names self._plot_phase_labels = [] iphase = 0 for i in range(self.GetNbPowderPatternComponent()): s = "" comp = self.GetPowderPatternComponent(i) if comp.GetClassName() == "PowderPatternDiffraction": if comp.GetName() != "": s += "%s\n" % comp.GetName() else: c = comp.GetCrystal() if c.GetName() != "": s += c.GetName() else: s += c.GetFormula() s += "[%s]" % str(c.GetSpaceGroup()) if comp.GetExtractionMode(): s += "[Le Bail mode]" self._plot_phase_labels.append(s) ax.text(0.005, 0.995, "\n" * iphase + s, horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, fontsize=6, color=self._colour_phases[iphase]) iphase += 1 if 'inline' not in plt.get_backend(): try: # Force immediate display. Not supported on all backends (e.g. nbagg) ax.draw() self._plot_fig.canvas.draw() if 'ipympl' not in plt.get_backend(): plt.pause(.001) except: pass # plt.gca().callbacks.connect('xlim_changed', self._on_xlims_change) # plt.gca().callbacks.connect('ylim_changed', self._on_ylims_change) self._plot_fig.canvas.mpl_connect('button_press_event', self._on_mouse_event) self._plot_fig.canvas.mpl_connect('draw_event', self._on_draw_event) def _do_plot_hkl(self, nb_max=100, fontsize_hkl=None): import matplotlib.pyplot as plt from matplotlib import __version__ as mpl_version if fontsize_hkl is None: fontsize_hkl = self._plot_hkl_fontsize else: self._plot_hkl_fontsize = fontsize_hkl ax = self._plot_fig.axes[0] # Plot up to nb_max hkl reflections obs = self.GetPowderPatternObs() calc = self.GetPowderPatternCalc() x = np.rad2deg(self.GetPowderPatternX()) # Clear previous text (assumes only hkl were printed) if version_parse(mpl_version) < version_parse("3.7.0"): # This will fail for matplotlib>=(3,7,0) ax.texts.clear() else: for t in ax.texts: t.remove() iphase = 0 for ic in range(self.GetNbPowderPatternComponent()): c = self.GetPowderPatternComponent(ic) if isinstance(c, PowderPatternDiffraction) is False: continue # print("HKL for:", c.GetName()) xmin, xmax = ax.get_xlim() vh = np.round(c.GetH()).astype(np.int16) vk = np.round(c.GetK()).astype(np.int16) vl = np.round(c.GetL()).astype(np.int16) stol = c.GetSinThetaOverLambda() if 'inline' not in plt.get_backend(): # 'inline' backend triggers a delayed exception (?) try: # need the renderer to avoid text overlap renderer = plt.gcf().canvas.renderer except: # Force immediate display. Not supported on all backends (e.g. nbagg) ax.draw() self._plot_fig.canvas.draw() if 'ipympl' not in plt.get_backend(): plt.pause(.001) try: renderer = self._plot_fig.canvas.renderer except: renderer = None else: renderer = None props = {'ha': 'center', 'va': 'bottom'} ct = 0 last_bbox = None tdi = ax.transData.inverted() for i in range(len(vh)): xhkl = np.rad2deg(self.X2XCorr(self.STOL2X(stol[i]))) idxhkl = int(round(self.X2PixelCorr(self.STOL2X(stol[i])))) # print(vh[i], vk[i], vl[i], xhkl, idxhkl) if xhkl < xmin or idxhkl < 0: continue if xhkl > xmax or idxhkl >= len(x): break ct += 1 if ct >= nb_max: break ihkl = max(calc[idxhkl], obs[idxhkl]) s = " %d %d %d" % (vh[i], vk[i], vl[i]) t = ax.text(xhkl, ihkl, s, props, rotation=90, fontsize=fontsize_hkl, fontweight='light', color=self._colour_phases[iphase]) if renderer is not None: # Check for overlap with previous bbox = t.get_window_extent(renderer) # print(s, bbox) if last_bbox is not None: if bbox.overlaps(last_bbox): b = bbox.transformed(tdi) t.set_y(ihkl + b.height * 1.2) last_bbox = t.get_window_extent(renderer) iphase += 1 self._last_hkl_plot_xlim = ax.get_xlim() if self._plot_phase_labels is not None: for iphase in range(len(self._plot_phase_labels)): s = self._plot_phase_labels[iphase] ax.text(0.005, 0.995, "\n" * iphase + s, horizontalalignment="left", verticalalignment="top", transform=ax.transAxes, fontsize=6, color=self._colour_phases[iphase]) @property def figure(self): """ return: the figure used for plotting, or None. Note that if you want to display it in a notebook using ipympl (aka 'matplotlib widget'), you should 'figure.canvas' to display also the toolbar (zoom, etc...). """ return self._plot_fig def quick_fit_profile(self, pdiff=None, auto_background=True, init_profile=True, plot=True, zero=True, constant_width=True, width=True, eta=True, backgd=True, cell=True, anisotropic=False, asym=False, displ_transl=False, verbose=True): if plot: self.plot() if auto_background: # Add background if necessary need_background = True for i in range(self.GetNbPowderPatternComponent()): if isinstance(self.GetPowderPatternComponent(i), PowderPatternBackground): need_background = False break if need_background: if verbose: print("No background, adding one automatically") x = self.GetPowderPatternX() bx = np.linspace(x.min(), x.max(), 20) by = np.zeros(bx.shape) b = self.AddPowderPatternBackground() b.SetInterpPoints(bx, by) # b.Print() b.UnFixAllPar() b.OptimizeBayesianBackground() if pdiff is None: # Probably just one diffraction phase, select it for i in range(self.GetNbPowderPatternComponent()): if isinstance(self.GetPowderPatternComponent(i), PowderPatternDiffraction): pdiff = self.GetPowderPatternComponent(i) break if verbose: print("Selected PowderPatternDiffraction: ", pdiff.GetName(), " with Crystal: ", pdiff.GetCrystal().GetName()) if init_profile: pdiff.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 0.0000001) pdiff.SetExtractionMode(True, True) pdiff.ExtractLeBail(10) if plot: self.UpdateDisplay() # LSQ lsq = LSQ() lsq.SetRefinedObj(self, 0, True, True) lsq.PrepareRefParList(True) # lsq.GetCompiledRefinedObj().Print() lsqr = lsq.GetCompiledRefinedObj() lsqr.FixAllPar() # lsqr.Print() # print(lsq.ChiSquare()) if zero: lsq.SetParIsFixed("Zero", False) if displ_transl: lsq.SetParIsFixed("2ThetaDispl", True) lsq.SetParIsFixed("2ThetaTransp", True) if lsqr.GetNbParNotFixed(): lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) pdiff.ExtractLeBail(10) lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) if plot: self.UpdateDisplay() if cell: lsq.SetParIsFixed("a", False) lsq.SetParIsFixed("b", False) lsq.SetParIsFixed("c", False) lsq.SetParIsFixed("alpha", False) lsq.SetParIsFixed("beta", False) lsq.SetParIsFixed("gamma", False) if constant_width: lsq.SetParIsFixed("W", False) if lsqr.GetNbParNotFixed(): lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) pdiff.ExtractLeBail(10) lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) if plot: self.UpdateDisplay() if width: lsq.SetParIsFixed("U", False) lsq.SetParIsFixed("V", False) if lsqr.GetNbParNotFixed(): lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) pdiff.ExtractLeBail(10) lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) if plot: self.UpdateDisplay() if eta: lsq.SetParIsFixed("Eta0", False) if lsqr.GetNbParNotFixed(): lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) pdiff.ExtractLeBail(10) lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) if plot: self.UpdateDisplay() if eta: lsq.SetParIsFixed("Eta1", False) if lsqr.GetNbParNotFixed(): lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) pdiff.ExtractLeBail(10) lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) if plot: self.UpdateDisplay() if asym: lsq.SetParIsFixed("Asym0", False) lsq.SetParIsFixed("Asym1", False) if lsqr.GetNbParNotFixed(): lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) pdiff.ExtractLeBail(10) lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) if plot: self.UpdateDisplay() if backgd: for i in range(self.GetNbPowderPatternComponent()): if isinstance(self.GetPowderPatternComponent(i), PowderPatternBackground): b = self.GetPowderPatternComponent(i) lsq.SetParIsFixed(refpartype_scattdata_background, False) b.FixParametersBeyondMaxresolution(lsqr) # lsqr.Print() lsq.SafeRefine(nbCycle=10, useLevenbergMarquardt=True, silent=True) break if verbose: print("Profile fitting finished.\n" "Remember to use SetExtractionMode(False) on the PowderPatternDiffraction object\n" "to disable profile fitting and optimise the structure.") def get_background(self): """ Access the background component. :return: the PowderPatternBackground for this powder pattern, or None """ for i in range(self.GetNbPowderPatternComponent()): if self.GetPowderPatternComponent(i).GetClassName() == "PowderPatternBackground": return self.GetPowderPatternComponent(i) def get_crystalline_components(self): """ Get the crystalline phase for this powder pattern :return: a list of the PowderPatternDiffraction components """ vc = [] for i in range(self.GetNbPowderPatternComponent()): if self.GetPowderPatternComponent(i).GetClassName() == "PowderPatternDiffraction": vc.append(self.GetPowderPatternComponent(i)) return vc def _on_mouse_event(self, event): if event.dblclick: # This does not work in a notebook self._plot_xlim = None self._plot_ylim = None self.plot() def _on_draw_event(self, event): if self._plot_hkl and self._last_hkl_plot_xlim is not None and len(self._plot_fig.axes): ax = self._plot_fig.axes[0] self._plot_xlim = ax.get_xlim() dx1 = abs(self._last_hkl_plot_xlim[0] - self._plot_xlim[0]) dx2 = abs(self._last_hkl_plot_xlim[1] - self._plot_xlim[1]) if max(dx1, dx2) > 0.1 * (self._last_hkl_plot_xlim[1] - self._last_hkl_plot_xlim[0]): # Need to update the hkl list self._do_plot_hkl() def qpa(self, verbose=False): """ Get the quantitative phase analysis for the current powder pattern, when multiple crystalline phases are present. :param verbose: if True, print the Crystal names and their weight percentage. :return: a dictionary with the PowderPatternDiffraction object as key, and the weight percentages as value. """ res = {} szmv_sum = 0 for pdiff in self.get_crystalline_components(): if not isinstance(pdiff, PowderPatternDiffraction): continue c = pdiff.GetCrystal() s = self.GetScaleFactor(pdiff) m = c.GetWeight() z = c.GetSpaceGroup().GetNbSymmetrics() v = c.GetVolume() # print("%25s: %12f, %10f, %3d, %10.2f" % (c.GetName(), s, m, z, v)) res[pdiff] = s * z * m * v szmv_sum += s * z * m * v if verbose: print("Weight percentages:") for k, v in res.items(): res[k] = v / szmv_sum if verbose: print("%25s: %6.2f%%" % (k.GetCrystal().GetName(), res[k] * 100)) return res def create_powderpattern_from_cif(file): """ Create a crystal object from a CIF file or URL Example from Acta Cryst. (2012). B68, 407-411 (https://doi.org/10.1107/S0108768112019994), data hosted at CCDC: c=create_crystal_from_cif('https://doi.org/10.1107/S0108768112019994/ps5016sup1.cif') p=create_powderpattern_from_cif('https://doi.org/10.1107/S0108768112019994/ps5016Isup3.rtv') :param file: the filename/URL or python file object (need to open with mode='rb') If the string begins by 'http' it is assumed that it is an URL instead, e.g. from the crystallography open database :return: the imported PowderPattern :raises: ObjCrystException - if no PowderPattern object can be imported """ p = PowderPattern() if isinstance(file, str): if len(file) > 4: if file[:4].lower() == 'http': return CreatePowderPatternFromCIF_orig(urlopen(file), p) with open(file, 'rb') as cif: # Make sure file object is closed return CreatePowderPatternFromCIF_orig(cif, p) return CreatePowderPatternFromCIF_orig(file, p) def wrap_boost_powderpattern(c: PowderPattern): """ This function is used to wrap a C++ Object by adding the python methods to it. :param c: the C++ created object to which the python function must be added. """ if '_plot_fig' not in dir(c): # Add attributes c._plot_fig = None c._plot_xlim = None c._plot_ylim = None c._plot_diff = False c._plot_hkl = False c._plot_hkl_fontsize = 6 c._plot_phase_labels = None c._last_hkl_plot_xlim = None c.evts = [] c._colour_phases = ["black", "blue", "green", "red", "brown", "olive", "cyan", "purple", "magenta", "salmon"] for func in ['UpdateDisplay', 'disable_display_update', 'enable_display_update', 'plot', '_do_plot_hkl', 'quick_fit_profile', 'get_background', 'get_crystalline_components', '_on_mouse_event', '_on_draw_event', 'qpa']: exec("c.%s = MethodType(PowderPattern.%s, c)" % (func, func)) # PEP8 CreatePowderPatternFromCIF = create_powderpattern_from_cif pyobjcryst-2024.2.1/src/pyobjcryst/radiation.py000066400000000000000000000012441470422267000215020ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Python wrapping of Radiation from ScatteringData.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::Radiation:: In development ! """ __all__ = ["Radiation", "RadiationType", "WavelengthType"] from pyobjcryst._pyobjcryst import Radiation, RadiationType, WavelengthType pyobjcryst-2024.2.1/src/pyobjcryst/refinableobj.py000066400000000000000000000167501470422267000221620ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of RefinableObj.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::RefinableObj - XMLOutput and XMLInput accept python file-like objects. - GetPar that takes a const double* is not exposed, as it is designed for internal use. - GetParamSet returns a copy of the internal data so that no indirect manipulation can take place from python. - SetDeleteRefParInDestructor(false) is called in the constructors of the python class and the parameter accessors. - SetDeleteRefParInDestructor is not exposed. - RemovePar is overloaded to return None. Changes from ObjCryst::RefinablePar - The constructor has been changed to accept a double, rather than a pointer to a double. - The copy and default constructors and Init are not wrapped in order to avoid memory corruption. Since boost cannot implicitly handle double* object, a wrapper class had to be created. However, this wrapper class cannot be used to convert RefinablePar objected created in c++. Thus, ObjCryst::RefinablePar objects created in c++ are passed into python as instances of _RefinablePar, which is a python wrapper around ObjCryst::RefinablePar. The RefinablePar python class is a wrapper around the C++ class PyRefinablePar, which manages its own double*. These python classes are interchangable once instantiated, so users should not notice. - XML input/output are not exposed. Changes from ObjCryst::RefinableObjClock - operator= is wrapped as the SetEqual method a.SetEqual(b) -> a = b Changes from ObjCryst::ObjRegistry - DeleteAll not wrapped Changes from ObjCryst::Restraint - The default and copy constructors are not wrapped, nor is Init. - GetType returns a non-const reference to the RefParType. This should be a no-no, but RefParType has no mutating methods, so this should no lead to trouble. - XML input/output are not exposed. """ __all__ = ["RefinableObjClock", "RefinableObj", "RefObjOpt", "RefinableObjRegistry", "RefParType", "RefParDerivStepModel", "RefinablePar", "Restraint", "ScattererRegistry", "ScatteringPowerRegistry", "ZAtomRegistry", "refpartype_crystal", "refpartype_objcryst", "refpartype_scatt", "refpartype_scatt_transl", "refpartype_scatt_transl_x", "refpartype_scatt_transl_y", "refpartype_scatt_transl_z", "refpartype_scatt_orient", "refpartype_scatt_conform", "refpartype_scatt_conform_bondlength", "refpartype_scatt_conform_bondangle", "refpartype_scatt_conform_dihedangle", "refpartype_scatt_conform_x", "refpartype_scatt_conform_y", "refpartype_scatt_conform_z", "refpartype_scatt_occup", "refpartype_scattdata", "refpartype_scattdata_background", "refpartype_scattdata_scale", "refpartype_scattdata_profile", "refpartype_scattdata_profile_type", "refpartype_scattdata_profile_width", "refpartype_scattdata_profile_asym", "refpartype_scattdata_corr", "refpartype_scattdata_corr_pos", "refpartype_scattdata_radiation", "refpartype_scattdata_radiation_wavelength", "refpartype_scattpow", "refpartype_scattpow_temperature", "refpartype_unitcell", "refpartype_unitcell_length", "refpartype_unitcell_angle"] from types import MethodType from pyobjcryst._pyobjcryst import RefinableObjClock from pyobjcryst._pyobjcryst import RefinableObj from pyobjcryst._pyobjcryst import RefObjOpt from pyobjcryst._pyobjcryst import RefinableObjRegistry from pyobjcryst._pyobjcryst import RefParType from pyobjcryst._pyobjcryst import RefParDerivStepModel from pyobjcryst._pyobjcryst import RefinablePar from pyobjcryst._pyobjcryst import Restraint from pyobjcryst._pyobjcryst import ScattererRegistry from pyobjcryst._pyobjcryst import ScatteringPowerRegistry from pyobjcryst._pyobjcryst import ZAtomRegistry from pyobjcryst._pyobjcryst import refpartype_crystal from pyobjcryst._pyobjcryst import refpartype_objcryst from pyobjcryst._pyobjcryst import refpartype_scatt from pyobjcryst._pyobjcryst import refpartype_scatt_transl from pyobjcryst._pyobjcryst import refpartype_scatt_transl_x from pyobjcryst._pyobjcryst import refpartype_scatt_transl_y from pyobjcryst._pyobjcryst import refpartype_scatt_transl_z from pyobjcryst._pyobjcryst import refpartype_scatt_orient from pyobjcryst._pyobjcryst import refpartype_scatt_conform from pyobjcryst._pyobjcryst import refpartype_scatt_conform_bondlength from pyobjcryst._pyobjcryst import refpartype_scatt_conform_bondangle from pyobjcryst._pyobjcryst import refpartype_scatt_conform_dihedangle from pyobjcryst._pyobjcryst import refpartype_scatt_conform_x from pyobjcryst._pyobjcryst import refpartype_scatt_conform_y from pyobjcryst._pyobjcryst import refpartype_scatt_conform_z from pyobjcryst._pyobjcryst import refpartype_scatt_occup from pyobjcryst._pyobjcryst import refpartype_scattdata from pyobjcryst._pyobjcryst import refpartype_scattdata_scale from pyobjcryst._pyobjcryst import refpartype_scattdata_profile from pyobjcryst._pyobjcryst import refpartype_scattdata_profile_type from pyobjcryst._pyobjcryst import refpartype_scattdata_profile_width from pyobjcryst._pyobjcryst import refpartype_scattdata_profile_asym from pyobjcryst._pyobjcryst import refpartype_scattdata_corr from pyobjcryst._pyobjcryst import refpartype_scattdata_corr_pos from pyobjcryst._pyobjcryst import refpartype_scattdata_radiation from pyobjcryst._pyobjcryst import refpartype_scattdata_radiation_wavelength from pyobjcryst._pyobjcryst import refpartype_scattdata_background from pyobjcryst._pyobjcryst import refpartype_scattpow from pyobjcryst._pyobjcryst import refpartype_scattpow_temperature from pyobjcryst._pyobjcryst import refpartype_unitcell from pyobjcryst._pyobjcryst import refpartype_unitcell_length from pyobjcryst._pyobjcryst import refpartype_unitcell_angle class ObjRegistryWrapper(RefinableObjRegistry): """ Wrapper class with a GetObj() method which can correctly wrap C++ objects with the python methods. This is only needed when the objects have been created from C++, e.g. when loading an XML file. """ def GetObj(self, i): o = self._GetObj(i) if o.GetClassName() == 'Crystal': from .crystal import wrap_boost_crystal wrap_boost_crystal(o) elif o.GetClassName() == 'PowderPattern': from .powderpattern import wrap_boost_powderpattern wrap_boost_powderpattern(o) elif o.GetClassName() == 'MonteCarloObj': from .globaloptim import wrap_boost_montecarlo wrap_boost_montecarlo(o) return o def wrap_boost_refinableobjregistry(o): """ This function is used to wrap a C++ Object by adding the python methods to it. :param c: the C++ created object to which the python function must be added. """ # TODO: moving the original function is not very pretty. Is there a better way ? if '_GetObj' not in dir(o): o._GetObj = o.GetObj o.GetObj = MethodType(ObjRegistryWrapper.GetObj, o) pyobjcryst-2024.2.1/src/pyobjcryst/reflectionprofile.py000066400000000000000000000012731470422267000232450ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Python wrapping of PowderPattern.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::ReflectionProfile:: In development ! """ __all__ = ["ReflectionProfile", "ReflectionProfileType"] from pyobjcryst._pyobjcryst import ReflectionProfile from pyobjcryst._pyobjcryst import ReflectionProfileType pyobjcryst-2024.2.1/src/pyobjcryst/scatterer.py000066400000000000000000000022301470422267000215200ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of Scatterer.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::Scatterer - C++ methods that can return const or non-const objects return non-const objects in python. - Operator string() is not exposed. - Internal use only methods have not been exposed. - InitRefParList is not exposed, as it is not used inside of Scatterer. - GetClockScattCompList is exposed using a workaround, because it is not implemented in the library. - Methods related to visualization are not exposed. """ __all__ = ["Scatterer"] from pyobjcryst._pyobjcryst import Scatterer pyobjcryst-2024.2.1/src/pyobjcryst/scatteringdata.py000066400000000000000000000013251470422267000225250ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst Complex Modeling Initiative # (c) 2015 Brookhaven Science Associates # Brookhaven National Laboratory. # All rights reserved. # # File coded by: Pavol Juhas # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Python wrapping of ScatteringData class. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). """ __all__ = ["ScatteringData"] from pyobjcryst._pyobjcryst import ScatteringData pyobjcryst-2024.2.1/src/pyobjcryst/scatteringpower.py000066400000000000000000000024401470422267000227470ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of ScatteringPower.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::ScatteringComponent - Added attributes X, Y, Z, Occupancy to conform to MolAtom. Changes from ObjCryst::ScatteringComponentList - Wrapped as a to-python converter only (no constructor) """ __all__ = ["ScatteringPower", "ScatteringComponent", "ScatteringPowerAtom", "ScatteringComponentList", "gScatteringPowerRegistry"] from pyobjcryst._pyobjcryst import ScatteringPower from pyobjcryst._pyobjcryst import ScatteringComponent from pyobjcryst._pyobjcryst import ScatteringPowerAtom from pyobjcryst._pyobjcryst import ScatteringComponentList from pyobjcryst._pyobjcryst import gScatteringPowerRegistry pyobjcryst-2024.2.1/src/pyobjcryst/scatteringpowersphere.py000066400000000000000000000014001470422267000241510ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of ScatteringPowerSphere.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). """ __all__ = ["ScatteringPowerSphere"] from pyobjcryst._pyobjcryst import ScatteringPowerSphere pyobjcryst-2024.2.1/src/pyobjcryst/spacegroup.py000066400000000000000000000014441470422267000217020ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of SpaceGroup.h. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). """ __all__ = ["SpaceGroup", "AsymmetricUnit"] from pyobjcryst._pyobjcryst import SpaceGroup from pyobjcryst._pyobjcryst import AsymmetricUnit pyobjcryst-2024.2.1/src/pyobjcryst/tests/000077500000000000000000000000001470422267000203175ustar00rootroot00000000000000pyobjcryst-2024.2.1/src/pyobjcryst/tests/__init__.py000066400000000000000000000045011470422267000224300ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst Complex Modeling Initiative # (c) 2013 Brookhaven Science Associates, # Brookhaven National Laboratory. # All rights reserved. # # File coded by: Pavol Juhas # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Unit tests for pyobjcryst. """ import unittest def testsuite(pattern=''): '''Create a unit tests suite for the pyobjcryst package. Parameters ---------- pattern : str, optional Regular expression pattern for selecting test cases. Select all tests when empty. Ignore the pattern when any of unit test modules fails to import. Returns ------- suite : `unittest.TestSuite` The TestSuite object containing the matching tests. ''' import re from os.path import dirname from itertools import chain from pkg_resources import resource_filename loader = unittest.defaultTestLoader thisdir = resource_filename(__name__, '') depth = __name__.count('.') + 1 topdir = thisdir for i in range(depth): topdir = dirname(topdir) suite_all = loader.discover(thisdir, top_level_dir=topdir) # always filter the suite by pattern to test-cover the selection code. suite = unittest.TestSuite() rx = re.compile(pattern) tsuites = list(chain.from_iterable(suite_all)) tsok = all(isinstance(ts, unittest.TestSuite) for ts in tsuites) if not tsok: # pragma: no cover return suite_all tcases = chain.from_iterable(tsuites) for tc in tcases: tcwords = tc.id().split('.') shortname = '.'.join(tcwords[-3:]) if rx.search(shortname): suite.addTest(tc) # verify all tests are found for an empty pattern. assert pattern or suite_all.countTestCases() == suite.countTestCases() return suite def test(verbosity=1): '''Execute all unit tests for the pyobjcryst package. Returns ------- result : `unittest.TestResult` ''' suite = testsuite() runner = unittest.TextTestRunner(verbosity=verbosity) result = runner.run(suite) return result pyobjcryst-2024.2.1/src/pyobjcryst/tests/debug.py000066400000000000000000000015531470422267000217630ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst Complex Modeling Initiative # (c) 2016 Brookhaven Science Associates, # Brookhaven National Laboratory. # All rights reserved. # # File coded by: Pavol Juhas # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """ Convenience module for debugging the unit tests using python -m pyobjcryst.tests.debug Exceptions raised by failed tests or other errors are not caught. """ if __name__ == '__main__': import sys from pyobjcryst.tests import testsuite pattern = sys.argv[1] if len(sys.argv) > 1 else '' suite = testsuite(pattern) suite.debug() pyobjcryst-2024.2.1/src/pyobjcryst/tests/pyobjcrysttest.py000066400000000000000000000076701470422267000240130ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Small tests for pyobjcryst. To check for memory leaks, run valgrind --tool=memcheck --leak-check=full /usr/bin/python ./pyobjcrysttest.py """ from __future__ import print_function from pyobjcryst.atom import Atom from pyobjcryst.crystal import Crystal from pyobjcryst.refinableobj import RefParType, RefinablePar from pyobjcryst.scatteringpower import ScatteringPowerAtom from numpy import pi def makeScatterer(): sp = ScatteringPowerAtom("Ni", "Ni") sp.SetBiso(8*pi*pi*0.003) sp.B11 = 8*pi*pi*0.003 sp.SetBij(2, 2, 8*pi*pi*0.003) sp.SetBij(3, 3, 8*pi*pi*0.003) atom = Atom(0, 0, 0, "Ni", sp) print(sp.B11) return sp, atom def makeCrystal(sp, atom): c = Crystal(3.52, 3.52, 3.52, "225") c.AddScatterer(atom) c.AddScatteringPower(sp) return c def getScatterer(): """Make a crystal and return scatterer from GetScatt.""" sp, atom = makeScatterer() c = makeCrystal(sp, atom) sp2 = c.GetScatt(sp.GetName()) return sp2 def testCrystalScope(): """Test to see if the the crystal survives after it is out of scope.""" sp, atom = makeScatterer() makeCrystal(sp, atom) # The crystal is out of scope. Since the lifetime of the atom and scatterer # are linked, the crystal should stay alive in memory. print(sp) print(atom) print(repr(atom.GetCrystal())) return def testMultiAdd(): """Test exception for multi-crystal additions.""" sp, atom = makeScatterer() makeCrystal(sp, atom) # Force this exception try: makeCrystal(sp, atom) print(sp) print(atom) print(repr(atom.GetCrystal())) except AttributeError as e: print("Exception:", e) return def testScattererScope(): """Test when atoms go out of scope before crystal.""" c = makeCrystal(*makeScatterer()) print(c) sp2 = getScatterer() print(sp2) return def testRemoveFunctions(): """Test the RemoveScatterer and RemoveScatteringPower method.""" print("Making Crystal") sp, atom = makeScatterer() c = makeCrystal(sp, atom) print(atom) print(sp) print(c) # Try to add objects with same names print("Testing name duplication") sp2, atom2 = makeScatterer() try: c.AddScatterer(atom2) except AttributeError as e: print(e) try: c.AddScatteringPower(sp2) except AttributeError as e: print(e) # Remove the scatterers print("remove scatterers") c.RemoveScatterer(atom) c.RemoveScatteringPower(sp) print(atom) print(sp) print(c) # Try to remove scatterers that are not in the crystal try: c.RemoveScatterer(atom2) except AttributeError as e: print(e) try: c.RemoveScatteringPower(sp2) except AttributeError as e: print(e) return def parTest(): rpt = RefParType("default") testpar = RefinablePar("test", 3.0, 0, 10, rpt) print(testpar.__class__, testpar) sp, atom = makeScatterer() c = makeCrystal(sp, atom) par = c.GetPar(0) print(par.__class__, par) c.AddPar(testpar); testpar2 = c.GetPar("test") print(testpar2.__class__, testpar2) del sp, atom, c testpar2.SetValue(2.17) print(testpar.__class__, testpar) return def test1(): """Run some tests.""" testCrystalScope() testMultiAdd() testScattererScope() testRemoveFunctions() return if __name__ == "__main__": test1() pyobjcryst-2024.2.1/src/pyobjcryst/tests/pyobjcrysttestutils.py000066400000000000000000000116331470422267000250660ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Utilities for tests.""" from pyobjcryst.atom import Atom from pyobjcryst.molecule import Molecule from pyobjcryst.polyhedron import MakeOctahedron from pyobjcryst.crystal import Crystal from pyobjcryst.scatteringpower import ScatteringPowerAtom from numpy import pi def makeScatterer(): sp = ScatteringPowerAtom("Ni", "Ni") sp.SetBiso(8*pi*pi*0.003) atom = Atom(0, 0, 0, "Ni", sp) return sp, atom def makeScattererAnisotropic(): sp = ScatteringPowerAtom("Ni", "Ni") sp.B11 = sp.B22 = sp.B33 = 8*pi*pi*0.003 sp.B12 = sp.B13 = sp.B23 = 0 atom = Atom(0, 0, 0, "Ni", sp) return sp, atom def makeCrystal(sp, atom): c = Crystal(3.52, 3.52, 3.52, "225") c.AddScatteringPower(sp) c.AddScatterer(atom) return c def getScatterer(): """Make a crystal and return scatterer from GetScatt.""" sp, atom = makeScatterer() c = makeCrystal(sp, atom) sp2 = c.GetScatt(sp.GetName()) return sp2 c60xyz = \ """ 3.451266498 0.685000000 0.000000000 3.451266498 -0.685000000 0.000000000 -3.451266498 0.685000000 0.000000000 -3.451266498 -0.685000000 0.000000000 0.685000000 0.000000000 3.451266498 -0.685000000 0.000000000 3.451266498 0.685000000 0.000000000 -3.451266498 -0.685000000 0.000000000 -3.451266498 0.000000000 3.451266498 0.685000000 0.000000000 3.451266498 -0.685000000 0.000000000 -3.451266498 0.685000000 0.000000000 -3.451266498 -0.685000000 3.003809890 1.409000000 1.171456608 3.003809890 1.409000000 -1.171456608 3.003809890 -1.409000000 1.171456608 3.003809890 -1.409000000 -1.171456608 -3.003809890 1.409000000 1.171456608 -3.003809890 1.409000000 -1.171456608 -3.003809890 -1.409000000 1.171456608 -3.003809890 -1.409000000 -1.171456608 1.409000000 1.171456608 3.003809890 1.409000000 -1.171456608 3.003809890 -1.409000000 1.171456608 3.003809890 -1.409000000 -1.171456608 3.003809890 1.409000000 1.171456608 -3.003809890 1.409000000 -1.171456608 -3.003809890 -1.409000000 1.171456608 -3.003809890 -1.409000000 -1.171456608 -3.003809890 1.171456608 3.003809890 1.409000000 -1.171456608 3.003809890 1.409000000 1.171456608 3.003809890 -1.409000000 -1.171456608 3.003809890 -1.409000000 1.171456608 -3.003809890 1.409000000 -1.171456608 -3.003809890 1.409000000 1.171456608 -3.003809890 -1.409000000 -1.171456608 -3.003809890 -1.409000000 2.580456608 0.724000000 2.279809890 2.580456608 0.724000000 -2.279809890 2.580456608 -0.724000000 2.279809890 2.580456608 -0.724000000 -2.279809890 -2.580456608 0.724000000 2.279809890 -2.580456608 0.724000000 -2.279809890 -2.580456608 -0.724000000 2.279809890 -2.580456608 -0.724000000 -2.279809890 0.724000000 2.279809890 2.580456608 0.724000000 -2.279809890 2.580456608 -0.724000000 2.279809890 2.580456608 -0.724000000 -2.279809890 2.580456608 0.724000000 2.279809890 -2.580456608 0.724000000 -2.279809890 -2.580456608 -0.724000000 2.279809890 -2.580456608 -0.724000000 -2.279809890 -2.580456608 2.279809890 2.580456608 0.724000000 -2.279809890 2.580456608 0.724000000 2.279809890 2.580456608 -0.724000000 -2.279809890 2.580456608 -0.724000000 2.279809890 -2.580456608 0.724000000 -2.279809890 -2.580456608 0.724000000 2.279809890 -2.580456608 -0.724000000 -2.279809890 -2.580456608 -0.724000000 """ def makeC60(): c = Crystal(100, 100, 100, "P1") c.SetName("c60frame") m = Molecule(c, "c60") c.AddScatterer(m) sp = ScatteringPowerAtom("C", "C") sp.SetBiso(8*pi*pi*0.003) c.AddScatteringPower(sp) for i, l in enumerate(c60xyz.strip().splitlines()): x, y, z = map(float, l.split()) m.AddAtom(x, y, z, sp, "C%i"%i) return c def makeMnO6(): a = 5.6 crystal = Crystal(a, a, a, "P1") sp1 = ScatteringPowerAtom("Mn", "Mn") sp1.SetBiso(8*pi*pi*0.003) sp2 = ScatteringPowerAtom("O", "O") sp2.SetBiso(8*pi*pi*0.003) crystal.AddScatteringPower(sp1) crystal.AddScatteringPower(sp2) m = MakeOctahedron(crystal, "MnO6", sp1, sp2, 0.5*a) crystal.AddScatterer(m) return crystal def datafile(filename): from pkg_resources import resource_filename rv = resource_filename(__name__, "testdata/" + filename) return rv def loadcifdata(filename): from pyobjcryst import loadCrystal fullpath = datafile(filename) crst = loadCrystal(fullpath) return crst pyobjcryst-2024.2.1/src/pyobjcryst/tests/run.py000066400000000000000000000017461470422267000215050ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst Complex Modeling Initiative # (c) 2013 Brookhaven Science Associates, # Brookhaven National Laboratory. # All rights reserved. # # File coded by: Pavol Juhas # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Convenience module for executing all unit tests with python -m pyobjcryst.tests.run """ if __name__ == '__main__': import sys # show warnings by default if not sys.warnoptions: import os, warnings warnings.simplefilter("default") # also affect subprocesses os.environ["PYTHONWARNINGS"] = "default" from pyobjcryst.tests import test # produce zero exit code for a successful test sys.exit(not test().wasSuccessful()) pyobjcryst-2024.2.1/src/pyobjcryst/tests/test_single_crystal_data.py000066400000000000000000000036441470422267000257520ustar00rootroot00000000000000#!/usr/bin/env python """Tests for diffractiondatasinglecrystal module.""" import unittest import gc import numpy as np from pyobjcryst.crystal import CreateCrystalFromCIF, Crystal from pyobjcryst.diffractiondatasinglecrystal import * from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata, datafile class test_single_crystal_data(unittest.TestCase): def test_create(self): """Test creating a DiffractionDataSingleCrystal object""" c = Crystal(3.52, 3.52, 3.52, "225") d = DiffractionDataSingleCrystal(c) def test_create_set_hkliobs(self): """test SetHklIobs, SetIobs and SetSigma""" c = Crystal(3.1, 3.2, 3.3, "Pmmm") d = DiffractionDataSingleCrystal(c) n0 = 5 nb = n0 ** 3 r = np.arange(1, nb + 1, dtype=np.float64) h = r % n0 l = r // n0 ** 2 k = (r - l * n0 ** 2) // n0 iobs = np.random.uniform(0, 100, nb) sigma = np.sqrt(iobs) d.SetHklIobs(h, k, l, iobs, sigma) # SetHklIobs sorts reflecions by sin(theta)/lambda, so do the same for comparison s = np.sqrt(h ** 2 / 3.1 ** 2 + k ** 2 / 3.2 ** 2 + l ** 2 / 3.3 ** 2) / 2 idx = np.argsort(s) iobs = np.take(iobs, idx) sigma = np.take(sigma, idx) h = np.take(h, idx) k = np.take(k, idx) l = np.take(l, idx) self.assertTrue(np.all(iobs == d.GetIobs())) self.assertTrue(np.all(sigma == d.GetSigma())) self.assertTrue(np.all(h == d.GetH())) self.assertTrue(np.all(k == d.GetK())) self.assertTrue(np.all(l == d.GetL())) # Set Iobs and sigma individually iobs = np.random.uniform(0, 100, nb) d.SetIobs(iobs) self.assertTrue(np.all(iobs == d.GetIobs())) sigma = np.random.uniform(0, 10, nb) d.SetSigma(sigma) self.assertTrue(np.all(sigma == d.GetSigma())) if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testcif.py000066400000000000000000000231551470422267000223400ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for crystal module.""" import unittest import gc from pyobjcryst.crystal import CreateCrystalFromCIF from pyobjcryst.globals import gCrystalRegistry from pyobjcryst.diffractiondatasinglecrystal import create_singlecrystaldata_from_cif from numpy import pi from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata, datafile class TestCif(unittest.TestCase): def test_Ag_silver_cif(self): '''Check loading of Ag_silver.cif ''' c = loadcifdata('Ag_silver.cif') self.assertTrue(c is not None) return def test_BaTiO3_cif(self): '''Check loading of BaTiO3.cif ''' c = loadcifdata('BaTiO3.cif') self.assertTrue(c is not None) return def test_C_graphite_hex_cif(self): '''Check loading of C_graphite_hex.cif ''' c = loadcifdata('C_graphite_hex.cif') self.assertTrue(c is not None) return def test_CaF2_fluorite_cif(self): '''Check loading of CaF2_fluorite.cif ''' c = loadcifdata('CaF2_fluorite.cif') self.assertTrue(c is not None) return def test_caffeine_cif(self): '''Check loading of caffeine.cif and the data inside. ''' c = loadcifdata('caffeine.cif') self.assertTrue(c is not None) self.assertEqual(24, c.GetNbScatterer()) self.assertAlmostEqual(14.9372, c.a, 6) self.assertAlmostEqual(14.9372, c.b, 6) self.assertAlmostEqual(6.8980, c.c, 6) self.assertAlmostEqual(pi/2, c.alpha, 6) self.assertAlmostEqual(pi/2, c.beta, 6) self.assertAlmostEqual(2*pi/3, c.gamma, 6) cifdata = """ C5 -0.06613 -0.06314 0.09562 0.00000 Uiso 1.00000 C C4 0.02779 -0.05534 0.10000 0.00000 Uiso 1.00000 C N3 0.11676 0.04116 0.08226 0.00000 Uiso 1.00000 N C2 0.10866 0.12960 0.06000 0.00000 Uiso 1.00000 C O11 0.18634 0.21385 0.04451 0.00000 Uiso 1.00000 O N1 0.01159 0.12154 0.05547 0.00000 Uiso 1.00000 N C6 -0.07738 0.02504 0.07321 0.00000 Uiso 1.00000 C O13 -0.16212 0.01800 0.06926 0.00000 Uiso 1.00000 O N7 -0.13793 -0.16353 0.11547 0.00000 Uiso 1.00000 N N9 0.01389 -0.15092 0.12255 0.00000 Uiso 1.00000 N C8 -0.08863 -0.21778 0.13210 0.00000 Uiso 1.00000 C C14 -0.25110 -0.20663 0.11847 0.00000 Uiso 1.00000 C C12 0.21968 0.04971 0.08706 0.00000 Uiso 1.00000 C C10 0.00300 0.21530 0.03186 0.00000 Uiso 1.00000 C H8 -0.12146 -0.29285 0.14834 0.00000 Uiso 1.00000 H H14a -0.27317 -0.19028 -0.00382 0.00000 Uiso 1.00000 H H14b -0.28567 -0.28182 0.13462 0.00000 Uiso 1.00000 H H14c -0.26951 -0.17639 0.22660 0.00000 Uiso 1.00000 H H12a 0.22513 0.00926 -0.01943 0.00000 Uiso 1.00000 H H12b 0.27338 0.12237 0.07281 0.00000 Uiso 1.00000 H H12c 0.22878 0.02315 0.21098 0.00000 Uiso 1.00000 H H10a 0.03488 0.24909 -0.09109 0.00000 Uiso 1.00000 H H10b -0.07008 0.19602 0.03170 0.00000 Uiso 1.00000 H H10c 0.03791 0.26293 0.13930 0.00000 Uiso 1.00000 H """ lines = filter(None, (line.strip() for line in cifdata.split('\n'))) for i, line in enumerate(lines): name, x, y, z, U, junk, occ, element = line.split() s = c.GetScatt(i) self.assertEqual(name, s.GetName()) self.assertAlmostEqual(float(x), s.X, 6) self.assertAlmostEqual(float(y), s.Y, 6) self.assertAlmostEqual(float(z), s.Z, 6) self.assertAlmostEqual(float(occ), s.Occupancy, 6) return def test_CaTiO3_cif(self): '''Check loading of CaTiO3.cif and its ADPs. ''' c = loadcifdata('CaTiO3.cif') self.assertTrue(c is not None) s = c.GetScatt(3) name = s.GetName() self.assertEqual(name, "O2") sp = c.GetScatteringPower(name) self.assertFalse(sp.IsIsotropic()) utob = 8 * pi**2 self.assertAlmostEqual(utob * 0.0065, sp.B11) self.assertAlmostEqual(utob * 0.0060, sp.B22) self.assertAlmostEqual(utob * 0.0095, sp.B33) self.assertAlmostEqual(utob * 0.0020, sp.B12) self.assertAlmostEqual(utob * -0.0008, sp.B13) self.assertAlmostEqual(utob * -0.0010, sp.B23) self.assertAlmostEqual(0.2897, s.X, 5) self.assertAlmostEqual(0.2888, s.Y, 5) self.assertAlmostEqual(0.0373, s.Z, 2) self.assertAlmostEqual(1, s.Occupancy) return def test_CdSe_cadmoselite_cif(self): '''Check loading of CdSe_cadmoselite.cif ''' c = loadcifdata('CdSe_cadmoselite.cif') self.assertTrue(c is not None) return def test_CeO2_cif(self): '''Check loading of CeO2.cif ''' c = loadcifdata('CeO2.cif') self.assertTrue(c is not None) return def test_lidocainementhol_cif(self): '''Check loading of lidocainementhol.cif ''' c = loadcifdata('lidocainementhol.cif') self.assertTrue(c is not None) return def test_NaCl_cif(self): '''Check loading of NaCl.cif ''' c = loadcifdata('NaCl.cif') self.assertTrue(c is not None) return def test_Ni_cif(self): '''Check loading of Ni.cif ''' c = loadcifdata('Ni.cif') self.assertTrue(c is not None) return def test_paracetamol_cif(self): '''Check loading of paracetamol.cif ''' c = loadcifdata('paracetamol.cif') self.assertTrue(c is not None) return def test_PbS_galena_cif(self): '''Check loading of PbS_galena.cif ''' c = loadcifdata('PbS_galena.cif') self.assertTrue(c is not None) return def test_PbTe_cif(self): '''Check loading of PbTe.cif ''' c = loadcifdata('PbTe.cif') self.assertTrue(c is not None) return def test_Si_cif(self): '''Check loading of Si.cif ''' c = loadcifdata('Si.cif') self.assertTrue(c is not None) return def test_Si_setting2_cif(self): '''Check loading of Si_setting2.cif ''' c = loadcifdata('Si_setting2.cif') self.assertTrue(c is not None) return def test_SrTiO3_tausonite_cif(self): '''Check loading of SrTiO3_tausonite.cif ''' c = loadcifdata('SrTiO3_tausonite.cif') self.assertTrue(c is not None) return def test_TiO2_anatase_cif(self): '''Check loading of TiO2_anatase.cif ''' c = loadcifdata('TiO2_anatase.cif') self.assertTrue(c is not None) return def test_TiO2_rutile_cif(self): '''Check loading of TiO2_rutile.cif and its ADP data ''' c = loadcifdata('TiO2_rutile.cif') self.assertTrue(c is not None) s = c.GetScatt(0) name = s.GetName() sp = c.GetScatteringPower(name) self.assertEqual(name, "Ti") self.assertTrue(sp.IsIsotropic()) utob = 8 * pi**2 self.assertAlmostEqual(utob * 0.00532, sp.Biso, 5) return def test_Zn_zinc_cif(self): '''Check loading of Zn_zinc.cif ''' c = loadcifdata('Zn_zinc.cif') self.assertTrue(c is not None) return def test_ZnS_sphalerite_cif(self): '''Check loading of ZnS_sphalerite.cif ''' c = loadcifdata('ZnS_sphalerite.cif') self.assertTrue(c is not None) return def test_ZnS_wurtzite_cif(self): '''Check loading of ZnS_wurtzite.cif ''' c = loadcifdata('ZnS_wurtzite.cif') self.assertTrue(c is not None) return def testBadCif(self): """Make sure we can read all cif files.""" from pyobjcryst import ObjCrystException fname = datafile('ni.stru') infile = open(fname, 'rb') self.assertRaises(ObjCrystException, CreateCrystalFromCIF, infile) infile.close() return def test_paracetamol_monomethanolate(self): """ Test loading crystal and diffraction data """ c = loadcifdata("paracetamol_monomethanolate.cif") d = create_singlecrystaldata_from_cif( datafile("paracetamol_monomethanolate_data_single_crystal.cif"), c) self.assertTrue(d is not None) def test_paracetamol_monomethanolate_ward(self): """ Test loading crystal and diffraction data, make sure custodian & ward works """ c = loadcifdata("paracetamol_monomethanolate.cif") d = create_singlecrystaldata_from_cif( datafile("paracetamol_monomethanolate_data_single_crystal.cif"), c) n = d.GetCrystal().GetName() # Replace c by another Crystal object c = loadcifdata('ZnS_sphalerite.cif') gc.collect() self.assertTrue(gCrystalRegistry.GetObj(n) is not None) # End of class TestCif if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testclocks.py000066400000000000000000000031201470422267000230430ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2010 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for crystal module.""" import unittest from pyobjcryst.tests.pyobjcrysttestutils import makeC60 from pyobjcryst.refinableobj import RefinableObjClock class TestClocks(unittest.TestCase): def testClockIncrement(self): """Make sure that clocks increment properly.""" c = makeC60() m = c.GetScatterer("c60") ref = RefinableObjClock() mclock = m.GetClockScatterer() self.assertTrue( mclock > ref ) ref.Click() self.assertFalse( mclock > ref ) m[0].X = 0.01 self.assertTrue( mclock > ref ) ref.Click() self.assertFalse( mclock > ref ) m[1].X = 0.01 self.assertTrue( mclock > ref ) ref.Click() self.assertFalse( mclock > ref ) m[1].Y = 0.01 self.assertTrue( mclock > ref ) ref.Click() self.assertFalse( mclock > ref ) m.Q0 = 1.001 self.assertTrue( mclock > ref ) ref.Click() self.assertFalse( mclock > ref ) if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testconverters.py000066400000000000000000000022331470422267000237630ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Test the converters. This verifies results from tests built into the _registerconverters module. """ import unittest from pyobjcryst._pyobjcryst import getTestVector, getTestMatrix import numpy class TestConverters(unittest.TestCase): def testVector(self): tv = numpy.arange(3, dtype=float) v = getTestVector() self.assertTrue( numpy.array_equal(tv, v) ) return def testMatrix(self): tm = numpy.arange(6, dtype=float).reshape(3, 2) m = getTestMatrix() self.assertTrue( numpy.array_equal(tm, m) ) return if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testcrystal.py000066400000000000000000000123031470422267000232510ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for crystal module.""" import unittest from pyobjcryst.tests.pyobjcrysttestutils import ( makeScatterer, makeCrystal, getScatterer, makeScattererAnisotropic) from pyobjcryst.atom import Atom class TestCrystal(unittest.TestCase): def testCrystalScope(self): """Test to see if the the crystal survives after it is out of scope.""" sp, atom = makeScatterer() makeCrystal(sp, atom) # The crystal is out of scope. Since the lifetime of the atom and # scatterer are linked, the crystal should stay alive in memory. self.assertEqual("Ni", sp.GetName()) self.assertEqual("Ni", atom.GetName()) return def testScattererScope(self): """Test when atoms go out of scope before crystal.""" sp2 = getScatterer() self.assertEqual("Ni", sp2.GetName()) return def testScattererB(self): """Test Biso and Bij of scatterer.""" sp1, junk = makeScatterer() self.assertTrue(sp1.IsIsotropic()) sp2, junk = makeScattererAnisotropic() self.assertFalse(sp2.IsIsotropic()) return def testNullData(self): """Make sure we get an error when trying to add or remove Null.""" from pyobjcryst.crystal import Crystal c = Crystal() self.assertRaises(ValueError, c.AddScatterer, None) self.assertRaises(ValueError, c.RemoveScatterer, None) self.assertRaises(ValueError, c.AddScatteringPower, None) self.assertRaises(ValueError, c.RemoveScatteringPower, None) return def testRemoveFunctions(self): """Test the RemoveScatterer and RemoveScatteringPower method.""" sp, atom = makeScatterer() c = makeCrystal(sp, atom) # You can add scatterers with the same name. That should be a no-no. sp2, atom2 = makeScatterer() c.AddScatteringPower(sp2) c.AddScatterer(atom2) # These act according to the library. You can try to remove an object # that is not in the crystal, and it will gladly do nothing for you. # Remove the scatterers c.RemoveScatterer(atom) c.RemoveScatteringPower(sp) # Remove again c.RemoveScatterer(atom) c.RemoveScatteringPower(sp) # Try to remove scatterers that are not in the crystal c.RemoveScatterer(atom2) c.RemoveScatteringPower(sp2) return def testGetScatteringComponentList(self): """Test the RemoveScatterer and RemoveScatteringPower method.""" sp, atom = makeScatterer() c = makeCrystal(sp, atom) scl = c.GetScatteringComponentList() self.assertEqual(1, len(scl)) sclcopy = scl[:] self.assertEqual(1, len(scl)) del sclcopy[0] self.assertEqual(0, len(sclcopy)) self.assertEqual(1, len(scl)) del scl[0] self.assertEqual(0, len(scl)) return def testGetScatterer(self): """Test GetScatterer and GetScatt.""" sp, atom = makeScatterer() c = makeCrystal(sp, atom) for fget in (c.GetScatterer, c.GetScatt): for i in range(c.GetNbScatterer()): fget(i) a = fget(0) ani = fget("Ni") self.assertEqual([a.X, a.Y, a.Z], [ani.X, ani.Y, ani.Z]) a.X = 0.112 self.assertEqual(a.X, ani.X) aneg = fget(-1) self.assertEqual(a.X, aneg.X) self.assertRaises(ValueError, fget, 'invalid') self.assertRaises(IndexError, fget, 10) self.assertRaises(IndexError, fget, -2) return def testDummyAtom(self): """Test dummy atoms.""" c = makeCrystal(*makeScatterer()) c.AddScatterer(Atom(0, 0, 0, "dummy", None)) d = c.GetScatterer("dummy") self.assertTrue(d.GetScatteringPower() is None) return def testEmbedding(self): """Test integrity of mutually-embedded objects.""" c = makeCrystal(*makeScatterer()) class Level1(object): def __init__(self, c): self.c = c self.level2 = Level2(self) return class Level2(object): def __init__(self, level1): self.level1 = level1 return l1 = Level1(c) del l1 return def test_display_list(self): """Test the creation of a atoms list for display using 3dmol""" c = makeCrystal(*makeScatterer()) s = c._display_list() s = c._display_list(full_molecule=True) s = c._display_list(enantiomer=True) s = c._display_list(only_independent_atoms=True) if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/000077500000000000000000000000001470422267000221305ustar00rootroot00000000000000pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/Ag_silver.cif000066400000000000000000000073601470422267000245340ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9008459.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9008459 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York Cubic closest packed, ccp, structure ; _journal_name_full 'Crystal Structures' _journal_page_first 7 _journal_page_last 83 _journal_volume 1 _journal_year 1963 _chemical_formula_sum Ag _chemical_name_mineral Silver _symmetry_space_group_name_H-M 'F m 3 m' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_length_a 4.0862 _cell_length_b 4.0862 _cell_length_c 4.0862 _cell_volume 68.227 loop_ _symmetry_equiv_pos_as_xyz x,y,z x,1/2+y,1/2+z 1/2+x,y,1/2+z 1/2+x,1/2+y,z z,-x,y z,1/2-x,1/2+y 1/2+z,-x,1/2+y 1/2+z,1/2-x,y -y,z,-x -y,1/2+z,1/2-x 1/2-y,z,1/2-x 1/2-y,1/2+z,-x x,-y,z x,1/2-y,1/2+z 1/2+x,-y,1/2+z 1/2+x,1/2-y,z -z,x,-y -z,1/2+x,1/2-y 1/2-z,x,1/2-y 1/2-z,1/2+x,-y y,-z,x y,1/2-z,1/2+x 1/2+y,-z,1/2+x 1/2+y,1/2-z,x -x,y,-z -x,1/2+y,1/2-z 1/2-x,y,1/2-z 1/2-x,1/2+y,-z x,-z,-y x,1/2-z,1/2-y 1/2+x,-z,1/2-y 1/2+x,1/2-z,-y -z,y,x -z,1/2+y,1/2+x 1/2-z,y,1/2+x 1/2-z,1/2+y,x y,-x,-z y,1/2-x,1/2-z 1/2+y,-x,1/2-z 1/2+y,1/2-x,-z -x,z,y -x,1/2+z,1/2+y 1/2-x,z,1/2+y 1/2-x,1/2+z,y z,-y,-x z,1/2-y,1/2-x 1/2+z,-y,1/2-x 1/2+z,1/2-y,-x -y,x,z -y,1/2+x,1/2+z 1/2-y,x,1/2+z 1/2-y,1/2+x,z x,z,y x,1/2+z,1/2+y 1/2+x,z,1/2+y 1/2+x,1/2+z,y -z,-y,-x -z,1/2-y,1/2-x 1/2-z,-y,1/2-x 1/2-z,1/2-y,-x y,x,z y,1/2+x,1/2+z 1/2+y,x,1/2+z 1/2+y,1/2+x,z -x,-z,-y -x,1/2-z,1/2-y 1/2-x,-z,1/2-y 1/2-x,1/2-z,-y z,y,x z,1/2+y,1/2+x 1/2+z,y,1/2+x 1/2+z,1/2+y,x -y,-x,-z -y,1/2-x,1/2-z 1/2-y,-x,1/2-z 1/2-y,1/2-x,-z z,x,-y z,1/2+x,1/2-y 1/2+z,x,1/2-y 1/2+z,1/2+x,-y -y,-z,x -y,1/2-z,1/2+x 1/2-y,-z,1/2+x 1/2-y,1/2-z,x x,y,-z x,1/2+y,1/2-z 1/2+x,y,1/2-z 1/2+x,1/2+y,-z -z,-x,y -z,1/2-x,1/2+y 1/2-z,-x,1/2+y 1/2-z,1/2-x,y y,z,-x y,1/2+z,1/2-x 1/2+y,z,1/2-x 1/2+y,1/2+z,-x -x,-y,z -x,1/2-y,1/2+z 1/2-x,-y,1/2+z 1/2-x,1/2-y,z -z,x,y -z,1/2+x,1/2+y 1/2-z,x,1/2+y 1/2-z,1/2+x,y y,-z,-x y,1/2-z,1/2-x 1/2+y,-z,1/2-x 1/2+y,1/2-z,-x -x,y,z -x,1/2+y,1/2+z 1/2-x,y,1/2+z 1/2-x,1/2+y,z z,-x,-y z,1/2-x,1/2-y 1/2+z,-x,1/2-y 1/2+z,1/2-x,-y -y,z,x -y,1/2+z,1/2+x 1/2-y,z,1/2+x 1/2-y,1/2+z,x x,-y,-z x,1/2-y,1/2-z 1/2+x,-y,1/2-z 1/2+x,1/2-y,-z -x,z,-y -x,1/2+z,1/2-y 1/2-x,z,1/2-y 1/2-x,1/2+z,-y z,-y,x z,1/2-y,1/2+x 1/2+z,-y,1/2+x 1/2+z,1/2-y,x -y,x,-z -y,1/2+x,1/2-z 1/2-y,x,1/2-z 1/2-y,1/2+x,-z x,-z,y x,1/2-z,1/2+y 1/2+x,-z,1/2+y 1/2+x,1/2-z,y -z,y,-x -z,1/2+y,1/2-x 1/2-z,y,1/2-x 1/2-z,1/2+y,-x y,-x,z y,1/2-x,1/2+z 1/2+y,-x,1/2+z 1/2+y,1/2-x,z -x,-z,y -x,1/2-z,1/2+y 1/2-x,-z,1/2+y 1/2-x,1/2-z,y z,y,-x z,1/2+y,1/2-x 1/2+z,y,1/2-x 1/2+z,1/2+y,-x -y,-x,z -y,1/2-x,1/2+z 1/2-y,-x,1/2+z 1/2-y,1/2-x,z x,z,-y x,1/2+z,1/2-y 1/2+x,z,1/2-y 1/2+x,1/2+z,-y -z,-y,x -z,1/2-y,1/2+x 1/2-z,-y,1/2+x 1/2-z,1/2-y,x y,x,-z y,1/2+x,1/2-z 1/2+y,x,1/2-z 1/2+y,1/2+x,-z -z,-x,-y -z,1/2-x,1/2-y 1/2-z,-x,1/2-y 1/2-z,1/2-x,-y y,z,x y,1/2+z,1/2+x 1/2+y,z,1/2+x 1/2+y,1/2+z,x -x,-y,-z -x,1/2-y,1/2-z 1/2-x,-y,1/2-z 1/2-x,1/2-y,-z z,x,y z,1/2+x,1/2+y 1/2+z,x,1/2+y 1/2+z,1/2+x,y -y,-z,-x -y,1/2-z,1/2-x 1/2-y,-z,1/2-x 1/2-y,1/2-z,-x loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Ag 0.00000 0.00000 0.00000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/BaTiO3.cif000066400000000000000000000571311470422267000236430ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2014-01-29 16:16:25 +0000 (Wed, 29 Jan 2014) $ #$Revision: 97630 $ #$URL: file:///home/coder/svn-repositories/cod/cif/1/51/32/1513252.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/. The original data for this entry # were provided the Crystal Eye server at # http://wwmm.ch.cam.ac.uk/crystaleye/, created by Nick Day at the # Peter Murray-Rust laboratory. # # The file may be used within the scientific community so long as # proper attribution is given to the journal article from which the # data were obtained. # data_1513252 loop_ _publ_author_name 'Yasuda, Nobuhiro' 'Murayama, Haruno' 'Fukuyama, Yoshimitsu' 'Kim, Jungeun' 'Kimura, Shigeru' 'Toriumi, Koshiro' 'Tanaka, Yoshihito' 'Moritomo, Yutaka' 'Kuroiwa, Yoshihiro' 'Kato, Kenichi' 'Tanaka, Hitoshi' 'Takata, Masaki' _publ_section_title ; X-ray diffractometry for the structure determination of a submicrometre single powder grain ; _journal_coeditor_code IA5038 _journal_issue 3 _journal_name_full 'Journal of Synchrotron Radiation' _journal_page_first 352 _journal_page_last 357 _journal_paper_doi 10.1107/S090904950900675X _journal_volume 16 _journal_year 2009 _chemical_formula_moiety 'Ba O3 Ti' _chemical_formula_sum 'Ba O3 Ti' _chemical_formula_weight 233.24 _chemical_name_systematic ; ? ; _space_group_IT_number 99 _symmetry_cell_setting tetragonal _symmetry_space_group_name_Hall 'P 4 -2' _symmetry_space_group_name_H-M 'P 4 m m' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _audit_creation_method SHELXL-97 _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_formula_units_Z 1 _cell_length_a 3.9905(13) _cell_length_b 3.9905(13) _cell_length_c 4.0412(14) _cell_measurement_temperature 300(2) _cell_volume 64.35(4) _computing_cell_refinement 'Rapid Auto(Rigaku)' _computing_data_collection 'Rapid Auto(Rigaku)' _computing_data_reduction 'Rapid Auto(Rigaku)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _diffrn_ambient_temperature 300(2) _diffrn_detector_area_resol_mean 29 _diffrn_measured_fraction_theta_full 1.000 _diffrn_measured_fraction_theta_max 1.000 _diffrn_measurement_device_type 'Rigaku Saturn 724' _diffrn_measurement_method 'Oscillation Photograph' _diffrn_radiation_monochromator 'Si(111) Channel Cut' _diffrn_radiation_source 'synchrotron radiation SPring-8 BL40XU' _diffrn_radiation_type Synchrotron _diffrn_radiation_wavelength 0.83351 _diffrn_reflns_av_R_equivalents 0.0940 _diffrn_reflns_av_sigmaI/netI 0.0823 _diffrn_reflns_limit_h_max 4 _diffrn_reflns_limit_h_min -2 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_l_max 4 _diffrn_reflns_limit_l_min -4 _diffrn_reflns_number 468 _diffrn_reflns_theta_full 29.26 _diffrn_reflns_theta_max 29.26 _diffrn_reflns_theta_min 5.92 _exptl_absorpt_coefficient_mu 18.037 _exptl_absorpt_correction_type none _exptl_crystal_colour White _exptl_crystal_density_diffrn 6.018 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 102 _exptl_crystal_size_max 0.0006 _exptl_crystal_size_mid 0.0006 _exptl_crystal_size_min 0.0003 _refine_diff_density_max 2.079 _refine_diff_density_min -1.980 _refine_diff_density_rms 0.570 _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.8(7) _refine_ls_extinction_coef none _refine_ls_extinction_method none _refine_ls_goodness_of_fit_ref 1.168 _refine_ls_matrix_type full _refine_ls_number_parameters 9 _refine_ls_number_reflns 88 _refine_ls_number_restraints 0 _refine_ls_restrained_S_all 1.168 _refine_ls_R_factor_all 0.0575 _refine_ls_R_factor_gt 0.0524 _refine_ls_shift/su_max <0.001 _refine_ls_shift/su_mean <0.001 _refine_ls_structure_factor_coef Fsqd _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0473P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_weighting_scheme calc _refine_ls_wR_factor_gt 0.0994 _refine_ls_wR_factor_ref 0.1024 _reflns_number_gt 85 _reflns_number_total 88 _reflns_threshold_expression >2\s(I) _[local]_cod_data_source_file ia5038sup1.cif _[local]_cod_data_source_block I _cod_depositor_comments ; The following automatic conversions were performed: '_symmetry_cell_setting' value 'Tetragonal' changed to 'tetragonal' according to /home/saulius/struct/CIF-dictionaries/cif_core.dic dictionary named 'cif_core.dic' version 2.4.2 from 2011-04-26. Automatic conversion script Id: cif_fix_values 1891 2012-01-12 08:04:46Z andrius ; _cod_database_code 1513252 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x, z' '-x, -y, z' 'y, -x, z' '-x, y, z' 'x, -y, z' '-y, -x, z' 'y, x, z' loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags Ba1 Ba 0.0000 0.0000 0.0000 0.0073(10) Uani 1 8 d S Ti1 Ti 0.5000 0.5000 0.476(5) 0.005(2) Uiso 1 8 d S O1 O 0.5000 0.5000 0.043(13) 0.005(8) Uiso 1 8 d S O2 O 0.0000 0.5000 0.533(13) 0.007(6) Uiso 1 4 d S loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ba1 0.0055(10) 0.0055(10) 0.0108(16) 0.000 0.000 0.000 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source Ba Ba -0.3244 2.2819 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ti Ti 0.2776 0.4457 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 O2 Ba1 O2 61.8(9) 2_554 1_544 O2 Ba1 O2 93.2(16) 2_554 2_654 O2 Ba1 O2 61.8(9) 1_544 2_654 O2 Ba1 O2 61.8(9) 2_554 1_554 O2 Ba1 O2 93.2(16) 1_544 1_554 O2 Ba1 O2 61.8(9) 2_654 1_554 O2 Ba1 O1 123.7(10) 2_554 . O2 Ba1 O1 123.7(10) 1_544 . O2 Ba1 O1 62.0(9) 2_654 . O2 Ba1 O1 62.0(9) 1_554 . O2 Ba1 O1 61.9(9) 2_554 1_445 O2 Ba1 O1 61.9(9) 1_544 1_445 O2 Ba1 O1 123.7(10) 2_654 1_445 O2 Ba1 O1 123.7(10) 1_554 1_445 O1 Ba1 O1 173(2) . 1_445 O2 Ba1 O1 62.0(9) 2_554 1_455 O2 Ba1 O1 123.7(10) 1_544 1_455 O2 Ba1 O1 123.7(10) 2_654 1_455 O2 Ba1 O1 62.0(9) 1_554 1_455 O1 Ba1 O1 89.78(13) . 1_455 O1 Ba1 O1 89.78(13) 1_445 1_455 O2 Ba1 O1 123.7(10) 2_554 1_545 O2 Ba1 O1 62.0(9) 1_544 1_545 O2 Ba1 O1 62.0(9) 2_654 1_545 O2 Ba1 O1 123.7(10) 1_554 1_545 O1 Ba1 O1 89.78(13) . 1_545 O1 Ba1 O1 89.78(13) 1_445 1_545 O1 Ba1 O1 173(2) 1_455 1_545 O2 Ba1 O2 176.2(15) 2_554 2_655 O2 Ba1 O2 120.27(12) 1_544 2_655 O2 Ba1 O2 90.60(11) 2_654 2_655 O2 Ba1 O2 120.27(12) 1_554 2_655 O1 Ba1 O2 58.3(9) . 2_655 O1 Ba1 O2 115.7(10) 1_445 2_655 O1 Ba1 O2 115.7(10) 1_455 2_655 O1 Ba1 O2 58.3(9) 1_545 2_655 O2 Ba1 O2 120.27(12) 2_554 . O2 Ba1 O2 176.2(15) 1_544 . O2 Ba1 O2 120.27(12) 2_654 . O2 Ba1 O2 90.60(11) 1_554 . O1 Ba1 O2 58.3(9) . . O1 Ba1 O2 115.7(10) 1_445 . O1 Ba1 O2 58.3(9) 1_455 . O1 Ba1 O2 115.7(10) 1_545 . O2 Ba1 O2 57.4(8) 2_655 . O2 Ba1 O2 90.60(11) 2_554 2 O2 Ba1 O2 120.27(12) 1_544 2 O2 Ba1 O2 176.2(15) 2_654 2 O2 Ba1 O2 120.27(12) 1_554 2 O1 Ba1 O2 115.7(10) . 2 O1 Ba1 O2 58.3(9) 1_445 2 O1 Ba1 O2 58.3(9) 1_455 2 O1 Ba1 O2 115.7(10) 1_545 2 O2 Ba1 O2 85.6(14) 2_655 2 O2 Ba1 O2 57.4(8) . 2 O2 Ba1 O2 120.27(12) 2_554 1_545 O2 Ba1 O2 90.60(11) 1_544 1_545 O2 Ba1 O2 120.27(12) 2_654 1_545 O2 Ba1 O2 176.2(15) 1_554 1_545 O1 Ba1 O2 115.7(10) . 1_545 O1 Ba1 O2 58.3(9) 1_445 1_545 O1 Ba1 O2 115.7(10) 1_455 1_545 O1 Ba1 O2 58.3(9) 1_545 1_545 O2 Ba1 O2 57.4(8) 2_655 1_545 O2 Ba1 O2 85.6(14) . 1_545 O2 Ba1 O2 57.4(8) 2 1_545 O1 Ti1 O2 96.6(15) . 2_665 O1 Ti1 O2 96.6(15) . 1_655 O2 Ti1 O2 89.2(3) 2_665 1_655 O1 Ti1 O2 96.6(15) . 2_655 O2 Ti1 O2 167(3) 2_665 2_655 O2 Ti1 O2 89.2(3) 1_655 2_655 O1 Ti1 O2 96.6(15) . . O2 Ti1 O2 89.2(3) 2_665 . O2 Ti1 O2 167(3) 1_655 . O2 Ti1 O2 89.2(4) 2_655 . O1 Ti1 O1 180.000(14) . 1_556 O2 Ti1 O1 83.4(15) 2_665 1_556 O2 Ti1 O1 83.4(15) 1_655 1_556 O2 Ti1 O1 83.4(15) 2_655 1_556 O2 Ti1 O1 83.4(15) . 1_556 O1 Ti1 Ba1 55.7(3) . . O2 Ti1 Ba1 130.2(10) 2_665 . O2 Ti1 Ba1 130.2(10) 1_655 . O2 Ti1 Ba1 59.0(11) 2_655 . O2 Ti1 Ba1 59.0(11) . . O1 Ti1 Ba1 124.3(3) 1_556 . O1 Ti1 Ba1 55.7(3) . 1_655 O2 Ti1 Ba1 130.2(10) 2_665 1_655 O2 Ti1 Ba1 59.0(11) 1_655 1_655 O2 Ti1 Ba1 59.0(11) 2_655 1_655 O2 Ti1 Ba1 130.2(10) . 1_655 O1 Ti1 Ba1 124.3(3) 1_556 1_655 Ba1 Ti1 Ba1 71.5(3) . 1_655 O1 Ti1 Ba1 55.7(3) . 1_565 O2 Ti1 Ba1 59.0(11) 2_665 1_565 O2 Ti1 Ba1 130.2(10) 1_655 1_565 O2 Ti1 Ba1 130.2(10) 2_655 1_565 O2 Ti1 Ba1 59.0(11) . 1_565 O1 Ti1 Ba1 124.3(3) 1_556 1_565 Ba1 Ti1 Ba1 71.5(3) . 1_565 Ba1 Ti1 Ba1 111.5(6) 1_655 1_565 O1 Ti1 Ba1 55.7(3) . 1_665 O2 Ti1 Ba1 59.0(11) 2_665 1_665 O2 Ti1 Ba1 59.0(11) 1_655 1_665 O2 Ti1 Ba1 130.2(10) 2_655 1_665 O2 Ti1 Ba1 130.2(10) . 1_665 O1 Ti1 Ba1 124.3(3) 1_556 1_665 Ba1 Ti1 Ba1 111.5(6) . 1_665 Ba1 Ti1 Ba1 71.5(3) 1_655 1_665 Ba1 Ti1 Ba1 71.5(3) 1_565 1_665 O1 Ti1 Ba1 126.9(3) . 1_666 O2 Ti1 Ba1 50.9(10) 2_665 1_666 O2 Ti1 Ba1 50.9(10) 1_655 1_666 O2 Ti1 Ba1 119.5(12) 2_655 1_666 O2 Ti1 Ba1 119.5(12) . 1_666 O1 Ti1 Ba1 53.1(3) 1_556 1_666 Ba1 Ti1 Ba1 177.4(6) . 1_666 Ba1 Ti1 Ba1 109.76(3) 1_655 1_666 Ba1 Ti1 Ba1 109.76(3) 1_565 1_666 Ba1 Ti1 Ba1 71.17(3) 1_665 1_666 O1 Ti1 Ba1 126.9(3) . 1_556 O2 Ti1 Ba1 119.5(12) 2_665 1_556 O2 Ti1 Ba1 119.5(12) 1_655 1_556 O2 Ti1 Ba1 50.9(10) 2_655 1_556 O2 Ti1 Ba1 50.9(10) . 1_556 O1 Ti1 Ba1 53.1(3) 1_556 1_556 Ba1 Ti1 Ba1 71.17(3) . 1_556 Ba1 Ti1 Ba1 109.76(3) 1_655 1_556 Ba1 Ti1 Ba1 109.76(3) 1_565 1_556 Ba1 Ti1 Ba1 177.4(6) 1_665 1_556 Ba1 Ti1 Ba1 106.2(6) 1_666 1_556 Ti1 O1 Ti1 180.000(5) . 1_554 Ti1 O1 Ba1 93.5(10) . . Ti1 O1 Ba1 86.5(10) 1_554 . Ti1 O1 Ba1 93.5(10) . 1_665 Ti1 O1 Ba1 86.5(10) 1_554 1_665 Ba1 O1 Ba1 173(2) . 1_665 Ti1 O1 Ba1 93.5(10) . 1_655 Ti1 O1 Ba1 86.5(10) 1_554 1_655 Ba1 O1 Ba1 89.78(13) . 1_655 Ba1 O1 Ba1 89.78(13) 1_665 1_655 Ti1 O1 Ba1 93.5(10) . 1_565 Ti1 O1 Ba1 86.5(10) 1_554 1_565 Ba1 O1 Ba1 89.78(13) . 1_565 Ba1 O1 Ba1 89.78(13) 1_665 1_565 Ba1 O1 Ba1 173(2) 1_655 1_565 Ti1 O2 Ti1 167(3) 1_455 . Ti1 O2 Ba1 94.5(10) 1_455 1_566 Ti1 O2 Ba1 94.5(10) . 1_566 Ti1 O2 Ba1 94.5(10) 1_455 1_556 Ti1 O2 Ba1 94.5(10) . 1_556 Ba1 O2 Ba1 93.2(16) 1_566 1_556 Ti1 O2 Ba1 85.2(11) 1_455 . Ti1 O2 Ba1 85.2(11) . . Ba1 O2 Ba1 176.2(15) 1_566 . Ba1 O2 Ba1 90.60(11) 1_556 . Ti1 O2 Ba1 85.2(11) 1_455 1_565 Ti1 O2 Ba1 85.2(11) . 1_565 Ba1 O2 Ba1 90.60(11) 1_566 1_565 Ba1 O2 Ba1 176.2(15) 1_556 1_565 Ba1 O2 Ba1 85.6(14) . 1_565 loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 Ba1 O2 2.75(4) 2_554 Ba1 O2 2.75(4) 1_544 Ba1 O2 2.75(4) 2_654 Ba1 O2 2.75(4) 1_554 Ba1 O1 2.827(3) . Ba1 O1 2.827(3) 1_445 Ba1 O1 2.827(3) 1_455 Ba1 O1 2.827(3) 1_545 Ba1 O2 2.94(4) 2_655 Ba1 O2 2.94(4) . Ba1 O2 2.94(4) 2 Ba1 O2 2.94(4) 1_545 Ti1 O1 1.75(5) . Ti1 O2 2.009(6) 2_665 Ti1 O2 2.009(6) 1_655 Ti1 O2 2.009(6) 2_655 Ti1 O2 2.009(6) . Ti1 O1 2.29(5) 1_556 Ti1 Ba1 3.414(12) 1_655 Ti1 Ba1 3.414(12) 1_565 Ti1 Ba1 3.414(12) 1_665 Ti1 Ba1 3.529(13) 1_666 Ti1 Ba1 3.529(13) 1_556 O1 Ti1 2.29(5) 1_554 O1 Ba1 2.827(3) 1_665 O1 Ba1 2.827(3) 1_655 O1 Ba1 2.827(3) 1_565 O2 Ti1 2.009(6) 1_455 O2 Ba1 2.75(4) 1_566 O2 Ba1 2.75(4) 1_556 O2 Ba1 2.94(4) 1_565 loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_4 O2 Ba1 Ti1 O1 -61.5(15) 2_554 . O2 Ba1 Ti1 O1 61.5(15) 1_544 . O2 Ba1 Ti1 O1 30.9(5) 2_654 . O2 Ba1 Ti1 O1 -30.9(5) 1_554 . O1 Ba1 Ti1 O1 180.000(3) 1_445 . O1 Ba1 Ti1 O1 -92.9(9) 1_455 . O1 Ba1 Ti1 O1 92.9(8) 1_545 . O2 Ba1 Ti1 O1 124.9(12) 2_655 . O2 Ba1 Ti1 O1 -124.9(12) . . O2 Ba1 Ti1 O1 -151.3(4) 2 . O2 Ba1 Ti1 O1 151.3(4) 1_545 . O2 Ba1 Ti1 O2 5.3(12) 2_554 2_665 O2 Ba1 Ti1 O2 128(3) 1_544 2_665 O2 Ba1 Ti1 O2 98(2) 2_654 2_665 O2 Ba1 Ti1 O2 35.9(12) 1_554 2_665 O1 Ba1 Ti1 O2 66.9(15) . 2_665 O1 Ba1 Ti1 O2 -113.1(15) 1_445 2_665 O1 Ba1 Ti1 O2 -26.1(17) 1_455 2_665 O1 Ba1 Ti1 O2 159.8(18) 1_545 2_665 O2 Ba1 Ti1 O2 -168(3) 2_655 2_665 O2 Ba1 Ti1 O2 -58.1(5) . 2_665 O2 Ba1 Ti1 O2 -84.4(12) 2 2_665 O2 Ba1 Ti1 O2 -141.9(19) 1_545 2_665 O2 Ba1 Ti1 O2 -128(3) 2_554 1_655 O2 Ba1 Ti1 O2 -5.3(12) 1_544 1_655 O2 Ba1 Ti1 O2 -35.9(11) 2_654 1_655 O2 Ba1 Ti1 O2 -98(2) 1_554 1_655 O1 Ba1 Ti1 O2 -66.9(15) . 1_655 O1 Ba1 Ti1 O2 113.1(15) 1_445 1_655 O1 Ba1 Ti1 O2 -159.8(18) 1_455 1_655 O1 Ba1 Ti1 O2 26.1(17) 1_545 1_655 O2 Ba1 Ti1 O2 58.1(5) 2_655 1_655 O2 Ba1 Ti1 O2 168(3) . 1_655 O2 Ba1 Ti1 O2 141.9(19) 2 1_655 O2 Ba1 Ti1 O2 84.4(12) 1_545 1_655 O2 Ba1 Ti1 O2 174(3) 2_554 2_655 O2 Ba1 Ti1 O2 -63.4(8) 1_544 2_655 O2 Ba1 Ti1 O2 -94.0(7) 2_654 2_655 O2 Ba1 Ti1 O2 -155.9(16) 1_554 2_655 O1 Ba1 Ti1 O2 -124.9(12) . 2_655 O1 Ba1 Ti1 O2 55.1(12) 1_445 2_655 O1 Ba1 Ti1 O2 142.1(15) 1_455 2_655 O1 Ba1 Ti1 O2 -32.0(14) 1_545 2_655 O2 Ba1 Ti1 O2 110(2) . 2_655 O2 Ba1 Ti1 O2 83.8(16) 2 2_655 O2 Ba1 Ti1 O2 26.3(8) 1_545 2_655 O2 Ba1 Ti1 O2 63.4(8) 2_554 . O2 Ba1 Ti1 O2 -174(3) 1_544 . O2 Ba1 Ti1 O2 155.9(16) 2_654 . O2 Ba1 Ti1 O2 94.0(7) 1_554 . O1 Ba1 Ti1 O2 124.9(12) . . O1 Ba1 Ti1 O2 -55.1(12) 1_445 . O1 Ba1 Ti1 O2 32.0(14) 1_455 . O1 Ba1 Ti1 O2 -142.1(15) 1_545 . O2 Ba1 Ti1 O2 -110(2) 2_655 . O2 Ba1 Ti1 O2 -26.3(8) 2 . O2 Ba1 Ti1 O2 -83.8(16) 1_545 . O2 Ba1 Ti1 O1 118.5(15) 2_554 1_556 O2 Ba1 Ti1 O1 -118.5(15) 1_544 1_556 O2 Ba1 Ti1 O1 -149.1(5) 2_654 1_556 O2 Ba1 Ti1 O1 149.1(5) 1_554 1_556 O1 Ba1 Ti1 O1 180.000(2) . 1_556 O1 Ba1 Ti1 O1 0.000(2) 1_445 1_556 O1 Ba1 Ti1 O1 87.1(8) 1_455 1_556 O1 Ba1 Ti1 O1 -87.1(9) 1_545 1_556 O2 Ba1 Ti1 O1 -55.1(12) 2_655 1_556 O2 Ba1 Ti1 O1 55.1(12) . 1_556 O2 Ba1 Ti1 O1 28.7(4) 2 1_556 O2 Ba1 Ti1 O1 -28.7(4) 1_545 1_556 O2 Ba1 Ti1 Ba1 -122.1(15) 2_554 1_655 O2 Ba1 Ti1 Ba1 0.9(16) 1_544 1_655 O2 Ba1 Ti1 Ba1 -29.7(6) 2_654 1_655 O2 Ba1 Ti1 Ba1 -91.6(5) 1_554 1_655 O1 Ba1 Ti1 Ba1 -60.62(19) . 1_655 O1 Ba1 Ti1 Ba1 119.38(19) 1_445 1_655 O1 Ba1 Ti1 Ba1 -153.5(9) 1_455 1_655 O1 Ba1 Ti1 Ba1 32.3(9) 1_545 1_655 O2 Ba1 Ti1 Ba1 64.3(12) 2_655 1_655 O2 Ba1 Ti1 Ba1 174.4(12) . 1_655 O2 Ba1 Ti1 Ba1 148.1(4) 2 1_655 O2 Ba1 Ti1 Ba1 90.7(5) 1_545 1_655 O2 Ba1 Ti1 Ba1 -0.9(16) 2_554 1_565 O2 Ba1 Ti1 Ba1 122.1(15) 1_544 1_565 O2 Ba1 Ti1 Ba1 91.6(5) 2_654 1_565 O2 Ba1 Ti1 Ba1 29.7(6) 1_554 1_565 O1 Ba1 Ti1 Ba1 60.62(19) . 1_565 O1 Ba1 Ti1 Ba1 -119.38(19) 1_445 1_565 O1 Ba1 Ti1 Ba1 -32.3(9) 1_455 1_565 O1 Ba1 Ti1 Ba1 153.5(9) 1_545 1_565 O2 Ba1 Ti1 Ba1 -174.4(12) 2_655 1_565 O2 Ba1 Ti1 Ba1 -64.3(12) . 1_565 O2 Ba1 Ti1 Ba1 -90.7(5) 2 1_565 O2 Ba1 Ti1 Ba1 -148.1(4) 1_545 1_565 O2 Ba1 Ti1 Ba1 -61.5(15) 2_554 1_665 O2 Ba1 Ti1 Ba1 61.5(15) 1_544 1_665 O2 Ba1 Ti1 Ba1 30.9(5) 2_654 1_665 O2 Ba1 Ti1 Ba1 -30.9(5) 1_554 1_665 O1 Ba1 Ti1 Ba1 0.000(1) . 1_665 O1 Ba1 Ti1 Ba1 180.0 1_445 1_665 O1 Ba1 Ti1 Ba1 -92.9(9) 1_455 1_665 O1 Ba1 Ti1 Ba1 92.9(9) 1_545 1_665 O2 Ba1 Ti1 Ba1 124.9(12) 2_655 1_665 O2 Ba1 Ti1 Ba1 -124.9(12) . 1_665 O2 Ba1 Ti1 Ba1 -151.3(4) 2 1_665 O2 Ba1 Ti1 Ba1 151.3(4) 1_545 1_665 O2 Ba1 Ti1 Ba1 118.5(15) 2_554 1_666 O2 Ba1 Ti1 Ba1 -118.5(15) 1_544 1_666 O2 Ba1 Ti1 Ba1 -149.1(5) 2_654 1_666 O2 Ba1 Ti1 Ba1 149.1(5) 1_554 1_666 O1 Ba1 Ti1 Ba1 180.0 . 1_666 O1 Ba1 Ti1 Ba1 0.0 1_445 1_666 O1 Ba1 Ti1 Ba1 87.1(9) 1_455 1_666 O1 Ba1 Ti1 Ba1 -87.1(9) 1_545 1_666 O2 Ba1 Ti1 Ba1 -55.1(12) 2_655 1_666 O2 Ba1 Ti1 Ba1 55.1(12) . 1_666 O2 Ba1 Ti1 Ba1 28.7(4) 2 1_666 O2 Ba1 Ti1 Ba1 -28.7(4) 1_545 1_666 O2 Ba1 Ti1 Ba1 118.5(15) 2_554 1_556 O2 Ba1 Ti1 Ba1 -118.5(15) 1_544 1_556 O2 Ba1 Ti1 Ba1 -149.1(5) 2_654 1_556 O2 Ba1 Ti1 Ba1 149.1(5) 1_554 1_556 O1 Ba1 Ti1 Ba1 180.0 . 1_556 O1 Ba1 Ti1 Ba1 0.0 1_445 1_556 O1 Ba1 Ti1 Ba1 87.1(9) 1_455 1_556 O1 Ba1 Ti1 Ba1 -87.1(9) 1_545 1_556 O2 Ba1 Ti1 Ba1 -55.1(12) 2_655 1_556 O2 Ba1 Ti1 Ba1 55.1(12) . 1_556 O2 Ba1 Ti1 Ba1 28.7(4) 2 1_556 O2 Ba1 Ti1 Ba1 -28.7(4) 1_545 1_556 O2 Ti1 O1 Ti1 -56(100) 2_665 1_554 O2 Ti1 O1 Ti1 -146(100) 1_655 1_554 O2 Ti1 O1 Ti1 124(100) 2_655 1_554 O2 Ti1 O1 Ti1 34(100) . 1_554 O1 Ti1 O1 Ti1 0.0 1_556 1_554 Ba1 Ti1 O1 Ti1 79(100) . 1_554 Ba1 Ti1 O1 Ti1 169(100) 1_655 1_554 Ba1 Ti1 O1 Ti1 -11(100) 1_565 1_554 Ba1 Ti1 O1 Ti1 -101(100) 1_665 1_554 Ba1 Ti1 O1 Ti1 -101(100) 1_666 1_554 Ba1 Ti1 O1 Ti1 79(100) 1_556 1_554 O2 Ti1 O1 Ba1 -135.000(4) 2_665 . O2 Ti1 O1 Ba1 135.000(1) 1_655 . O2 Ti1 O1 Ba1 45.000(3) 2_655 . O2 Ti1 O1 Ba1 -45.000(1) . . O1 Ti1 O1 Ba1 138(100) 1_556 . Ba1 Ti1 O1 Ba1 90.0 1_655 . Ba1 Ti1 O1 Ba1 -90.000(3) 1_565 . Ba1 Ti1 O1 Ba1 180.000(3) 1_665 . Ba1 Ti1 O1 Ba1 180.0 1_666 . Ba1 Ti1 O1 Ba1 0.000(3) 1_556 . O2 Ti1 O1 Ba1 45.000(4) 2_665 1_665 O2 Ti1 O1 Ba1 -45.000(1) 1_655 1_665 O2 Ti1 O1 Ba1 -135.000(3) 2_655 1_665 O2 Ti1 O1 Ba1 135.000(1) . 1_665 O1 Ti1 O1 Ba1 -42(100) 1_556 1_665 Ba1 Ti1 O1 Ba1 180.0 . 1_665 Ba1 Ti1 O1 Ba1 -90.0 1_655 1_665 Ba1 Ti1 O1 Ba1 90.000(3) 1_565 1_665 Ba1 Ti1 O1 Ba1 0.000(1) 1_666 1_665 Ba1 Ti1 O1 Ba1 180.000(2) 1_556 1_665 O2 Ti1 O1 Ba1 135.000(4) 2_665 1_655 O2 Ti1 O1 Ba1 45.000(1) 1_655 1_655 O2 Ti1 O1 Ba1 -45.000(3) 2_655 1_655 O2 Ti1 O1 Ba1 -135.000(2) . 1_655 O1 Ti1 O1 Ba1 48(100) 1_556 1_655 Ba1 Ti1 O1 Ba1 -90.0 . 1_655 Ba1 Ti1 O1 Ba1 180.000(3) 1_565 1_655 Ba1 Ti1 O1 Ba1 90.000(3) 1_665 1_655 Ba1 Ti1 O1 Ba1 90.0 1_666 1_655 Ba1 Ti1 O1 Ba1 -90.000(3) 1_556 1_655 O2 Ti1 O1 Ba1 -45.000(4) 2_665 1_565 O2 Ti1 O1 Ba1 -135.0 1_655 1_565 O2 Ti1 O1 Ba1 135.000(3) 2_655 1_565 O2 Ti1 O1 Ba1 45.000(1) . 1_565 O1 Ti1 O1 Ba1 -132(100) 1_556 1_565 Ba1 Ti1 O1 Ba1 90.0 . 1_565 Ba1 Ti1 O1 Ba1 180.0 1_655 1_565 Ba1 Ti1 O1 Ba1 -90.000(3) 1_665 1_565 Ba1 Ti1 O1 Ba1 -90.000(1) 1_666 1_565 Ba1 Ti1 O1 Ba1 90.000(2) 1_556 1_565 O2 Ba1 O1 Ti1 141.9(10) 2_554 . O2 Ba1 O1 Ti1 -141.9(10) 1_544 . O2 Ba1 O1 Ti1 -144.4(8) 2_654 . O2 Ba1 O1 Ti1 144.4(8) 1_554 . O1 Ba1 O1 Ti1 0.000(10) 1_445 . O1 Ba1 O1 Ti1 86.5(10) 1_455 . O1 Ba1 O1 Ti1 -86.5(10) 1_545 . O2 Ba1 O1 Ti1 -34.4(7) 2_655 . O2 Ba1 O1 Ti1 34.4(7) . . O2 Ba1 O1 Ti1 32.2(7) 2 . O2 Ba1 O1 Ti1 -32.2(7) 1_545 . O2 Ba1 O1 Ti1 -38.1(10) 2_554 1_554 O2 Ba1 O1 Ti1 38.1(10) 1_544 1_554 O2 Ba1 O1 Ti1 35.6(8) 2_654 1_554 O2 Ba1 O1 Ti1 -35.6(8) 1_554 1_554 O1 Ba1 O1 Ti1 180.000(10) 1_445 1_554 O1 Ba1 O1 Ti1 -93.5(10) 1_455 1_554 O1 Ba1 O1 Ti1 93.5(10) 1_545 1_554 O2 Ba1 O1 Ti1 145.6(7) 2_655 1_554 O2 Ba1 O1 Ti1 -145.6(7) . 1_554 O2 Ba1 O1 Ti1 -147.8(7) 2 1_554 O2 Ba1 O1 Ti1 147.8(7) 1_545 1_554 O2 Ba1 O1 Ba1 -38.1(10) 2_554 1_665 O2 Ba1 O1 Ba1 38.1(10) 1_544 1_665 O2 Ba1 O1 Ba1 35.6(8) 2_654 1_665 O2 Ba1 O1 Ba1 -35.6(8) 1_554 1_665 O1 Ba1 O1 Ba1 180.000(10) 1_445 1_665 O1 Ba1 O1 Ba1 -93.5(10) 1_455 1_665 O1 Ba1 O1 Ba1 93.5(10) 1_545 1_665 O2 Ba1 O1 Ba1 145.6(7) 2_655 1_665 O2 Ba1 O1 Ba1 -145.6(7) . 1_665 O2 Ba1 O1 Ba1 -147.8(7) 2 1_665 O2 Ba1 O1 Ba1 147.8(7) 1_545 1_665 O2 Ba1 O1 Ba1 -124.6(10) 2_554 1_655 O2 Ba1 O1 Ba1 -48.3(18) 1_544 1_655 O2 Ba1 O1 Ba1 -50.9(11) 2_654 1_655 O2 Ba1 O1 Ba1 -122.1(14) 1_554 1_655 O1 Ba1 O1 Ba1 93.5(10) 1_445 1_655 O1 Ba1 O1 Ba1 180.0 1_455 1_655 O1 Ba1 O1 Ba1 7(2) 1_545 1_655 O2 Ba1 O1 Ba1 59.2(10) 2_655 1_655 O2 Ba1 O1 Ba1 127.9(15) . 1_655 O2 Ba1 O1 Ba1 125.8(9) 2 1_655 O2 Ba1 O1 Ba1 61.3(15) 1_545 1_655 O2 Ba1 O1 Ba1 48.3(18) 2_554 1_565 O2 Ba1 O1 Ba1 124.6(10) 1_544 1_565 O2 Ba1 O1 Ba1 122.1(14) 2_654 1_565 O2 Ba1 O1 Ba1 50.9(11) 1_554 1_565 O1 Ba1 O1 Ba1 -93.5(10) 1_445 1_565 O1 Ba1 O1 Ba1 -7(2) 1_455 1_565 O1 Ba1 O1 Ba1 180.0 1_545 1_565 O2 Ba1 O1 Ba1 -127.9(15) 2_655 1_565 O2 Ba1 O1 Ba1 -59.2(10) . 1_565 O2 Ba1 O1 Ba1 -61.3(15) 2 1_565 O2 Ba1 O1 Ba1 -125.8(9) 1_545 1_565 O1 Ti1 O2 Ti1 0.000(16) . 1_455 O2 Ti1 O2 Ti1 96.6(14) 2_665 1_455 O2 Ti1 O2 Ti1 180.000(2) 1_655 1_455 O2 Ti1 O2 Ti1 -96.6(14) 2_655 1_455 O1 Ti1 O2 Ti1 180.000(14) 1_556 1_455 Ba1 Ti1 O2 Ti1 -43.0(6) . 1_455 Ba1 Ti1 O2 Ti1 -49.9(11) 1_655 1_455 Ba1 Ti1 O2 Ti1 43.0(6) 1_565 1_455 Ba1 Ti1 O2 Ti1 49.9(11) 1_665 1_455 Ba1 Ti1 O2 Ti1 139.5(6) 1_666 1_455 Ba1 Ti1 O2 Ti1 -133.2(9) 1_556 1_455 O1 Ti1 O2 Ba1 -133.2(9) . 1_566 O2 Ti1 O2 Ba1 -37(2) 2_665 1_566 O2 Ti1 O2 Ba1 46.8(9) 1_655 1_566 O2 Ti1 O2 Ba1 130.2(7) 2_655 1_566 O1 Ti1 O2 Ba1 46.8(9) 1_556 1_566 Ba1 Ti1 O2 Ba1 -176.2(15) . 1_566 Ba1 Ti1 O2 Ba1 176.9(7) 1_655 1_566 Ba1 Ti1 O2 Ba1 -90.2(3) 1_565 1_566 Ba1 Ti1 O2 Ba1 -83.3(18) 1_665 1_566 Ba1 Ti1 O2 Ba1 6.3(14) 1_666 1_566 Ba1 Ti1 O2 Ba1 93.6(18) 1_556 1_566 O1 Ti1 O2 Ba1 133.2(9) . 1_556 O2 Ti1 O2 Ba1 -130.2(7) 2_665 1_556 O2 Ti1 O2 Ba1 -46.8(9) 1_655 1_556 O2 Ti1 O2 Ba1 37(2) 2_655 1_556 O1 Ti1 O2 Ba1 -46.8(9) 1_556 1_556 Ba1 Ti1 O2 Ba1 90.2(3) . 1_556 Ba1 Ti1 O2 Ba1 83.3(18) 1_655 1_556 Ba1 Ti1 O2 Ba1 176.2(15) 1_565 1_556 Ba1 Ti1 O2 Ba1 -176.9(7) 1_665 1_556 Ba1 Ti1 O2 Ba1 -87.3(6) 1_666 1_556 O1 Ti1 O2 Ba1 43.0(6) . . O2 Ti1 O2 Ba1 139.6(9) 2_665 . O2 Ti1 O2 Ba1 -137.0(6) 1_655 . O2 Ti1 O2 Ba1 -54(2) 2_655 . O1 Ti1 O2 Ba1 -137.0(6) 1_556 . Ba1 Ti1 O2 Ba1 -6.9(16) 1_655 . Ba1 Ti1 O2 Ba1 86.0(13) 1_565 . Ba1 Ti1 O2 Ba1 92.9(8) 1_665 . Ba1 Ti1 O2 Ba1 -177.5(5) 1_666 . Ba1 Ti1 O2 Ba1 -90.2(3) 1_556 . O1 Ti1 O2 Ba1 -43.0(6) . 1_565 O2 Ti1 O2 Ba1 54(2) 2_665 1_565 O2 Ti1 O2 Ba1 137.0(6) 1_655 1_565 O2 Ti1 O2 Ba1 -139.6(9) 2_655 1_565 O1 Ti1 O2 Ba1 137.0(6) 1_556 1_565 Ba1 Ti1 O2 Ba1 -86.0(13) . 1_565 Ba1 Ti1 O2 Ba1 -92.9(8) 1_655 1_565 Ba1 Ti1 O2 Ba1 6.9(16) 1_665 1_565 Ba1 Ti1 O2 Ba1 96.5(12) 1_666 1_565 Ba1 Ti1 O2 Ba1 -176.2(15) 1_556 1_565 O2 Ba1 O2 Ti1 28(2) 2_554 1_455 O2 Ba1 O2 Ti1 -94.5(10) 1_544 1_455 O2 Ba1 O2 Ti1 142.8(5) 2_654 1_455 O2 Ba1 O2 Ti1 85.5(10) 1_554 1_455 O1 Ba1 O2 Ti1 141.5(14) . 1_455 O1 Ba1 O2 Ti1 -42.9(14) 1_445 1_455 O1 Ba1 O2 Ti1 29.5(10) 1_455 1_455 O1 Ba1 O2 Ti1 -146.1(9) 1_545 1_455 O2 Ba1 O2 Ti1 -148.2(7) 2_655 1_455 O2 Ba1 O2 Ti1 -40.8(13) 2 1_455 O2 Ba1 O2 Ti1 -94.5(10) 1_545 1_455 O2 Ba1 O2 Ti1 -142.8(5) 2_554 . O2 Ba1 O2 Ti1 94.5(10) 1_544 . O2 Ba1 O2 Ti1 -28(2) 2_654 . O2 Ba1 O2 Ti1 -85.5(10) 1_554 . O1 Ba1 O2 Ti1 -29.5(10) . . O1 Ba1 O2 Ti1 146.1(9) 1_445 . O1 Ba1 O2 Ti1 -141.5(14) 1_455 . O1 Ba1 O2 Ti1 42.9(14) 1_545 . O2 Ba1 O2 Ti1 40.8(13) 2_655 . O2 Ba1 O2 Ti1 148.2(7) 2 . O2 Ba1 O2 Ti1 94.5(10) 1_545 . O2 Ba1 O2 Ba1 -57.3(11) 2_554 1_566 O2 Ba1 O2 Ba1 180.00(6) 1_544 1_566 O2 Ba1 O2 Ba1 57.3(11) 2_654 1_566 O2 Ba1 O2 Ba1 0.0 1_554 1_566 O1 Ba1 O2 Ba1 56.0(7) . 1_566 O1 Ba1 O2 Ba1 -128.4(7) 1_445 1_566 O1 Ba1 O2 Ba1 -56.0(7) 1_455 1_566 O1 Ba1 O2 Ba1 128.4(7) 1_545 1_566 O2 Ba1 O2 Ba1 126.3(3) 2_655 1_566 O2 Ba1 O2 Ba1 -126.3(3) 2 1_566 O2 Ba1 O2 Ba1 180.0 1_545 1_566 O2 Ba1 O2 Ba1 122.7(11) 2_554 1_556 O2 Ba1 O2 Ba1 0.00(6) 1_544 1_556 O2 Ba1 O2 Ba1 -122.7(11) 2_654 1_556 O2 Ba1 O2 Ba1 180.0 1_554 1_556 O1 Ba1 O2 Ba1 -124.0(7) . 1_556 O1 Ba1 O2 Ba1 51.6(7) 1_445 1_556 O1 Ba1 O2 Ba1 124.0(7) 1_455 1_556 O1 Ba1 O2 Ba1 -51.6(7) 1_545 1_556 O2 Ba1 O2 Ba1 -53.7(3) 2_655 1_556 O2 Ba1 O2 Ba1 53.7(3) 2 1_556 O2 Ba1 O2 Ba1 0.0 1_545 1_556 O2 Ba1 O2 Ba1 -57.3(11) 2_554 1_565 O2 Ba1 O2 Ba1 180.00(6) 1_544 1_565 O2 Ba1 O2 Ba1 57.3(11) 2_654 1_565 O2 Ba1 O2 Ba1 0.0 1_554 1_565 O1 Ba1 O2 Ba1 56.0(7) . 1_565 O1 Ba1 O2 Ba1 -128.4(7) 1_445 1_565 O1 Ba1 O2 Ba1 -56.0(7) 1_455 1_565 O1 Ba1 O2 Ba1 128.4(7) 1_545 1_565 O2 Ba1 O2 Ba1 126.3(3) 2_655 1_565 O2 Ba1 O2 Ba1 -126.3(3) 2 1_565 O2 Ba1 O2 Ba1 180.0 1_545 1_565 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/C_graphite_hex.cif000066400000000000000000000027211470422267000255260ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9008569.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9008569 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York ; _journal_name_full 'Crystal Structures' _journal_page_first 7 _journal_page_last 83 _journal_volume 1 _journal_year 1963 _chemical_formula_sum C _chemical_name_mineral Graphite _symmetry_space_group_name_H-M 'P 63 m c' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 120 _cell_length_a 2.456 _cell_length_b 2.456 _cell_length_c 6.696 _cell_volume 34.979 loop_ _symmetry_equiv_pos_as_xyz x,y,z -x,-x+y,1/2+z x-y,x,1/2+z -y,-x,z -y,x-y,z x-y,-y,1/2+z -x,-y,1/2+z x,x-y,z -x+y,-x,z y,x,1/2+z y,-x+y,1/2+z -x+y,y,z loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z C1 0.00000 0.00000 0.00000 C2 0.33333 0.66667 0.00000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/CaF2_fluorite.cif000066400000000000000000000106041470422267000252400ustar00rootroot00000000000000data_5000222 _chemical_name_systematic 'Calcium fluoride' _chemical_name_mineral 'Fluorite' loop_ _publ_author_name 'Batchelder, D N' 'Simmons, R O' _journal_name_full 'Journal of Chemical Physics' _journal_volume 41 _journal_year 1964 _journal_page_first 2324 _journal_page_last 2329 _cell_length_a 5.4625 _cell_length_b 5.4625 _cell_length_c 5.4625 _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_volume 163.0 _cell_formula_units_Z 4 _symmetry_space_group_name_H-M 'F m -3 m' _symmetry_Int_Tables_number 225 _symmetry_cell_setting cubic loop_ _symmetry_equiv_pos_as_xyz 'x,y,z' 'y,z,x' 'z,x,y' 'x,z,y' 'y,x,z' 'z,y,x' 'x,-y,-z' 'y,-z,-x' 'z,-x,-y' 'x,-z,-y' 'y,-x,-z' 'z,-y,-x' '-x,y,-z' '-y,z,-x' '-z,x,-y' '-x,z,-y' '-y,x,-z' '-z,y,-x' '-x,-y,z' '-y,-z,x' '-z,-x,y' '-x,-z,y' '-y,-x,z' '-z,-y,x' '-x,-y,-z' '-y,-z,-x' '-z,-x,-y' '-x,-z,-y' '-y,-x,-z' '-z,-y,-x' '-x,y,z' '-y,z,x' '-z,x,y' '-x,z,y' '-y,x,z' '-z,y,x' 'x,-y,z' 'y,-z,x' 'z,-x,y' 'x,-z,y' 'y,-x,z' 'z,-y,x' 'x,y,-z' 'y,z,-x' 'z,x,-y' 'x,z,-y' 'y,x,-z' 'z,y,-x' 'x,1/2+y,1/2+z' '1/2+x,y,1/2+z' '1/2+x,1/2+y,z' 'y,1/2+z,1/2+x' '1/2+y,z,1/2+x' '1/2+y,1/2+z,x' 'z,1/2+x,1/2+y' '1/2+z,x,1/2+y' '1/2+z,1/2+x,y' 'x,1/2+z,1/2+y' '1/2+x,z,1/2+y' '1/2+x,1/2+z,y' 'y,1/2+x,1/2+z' '1/2+y,x,1/2+z' '1/2+y,1/2+x,z' 'z,1/2+y,1/2+x' '1/2+z,y,1/2+x' '1/2+z,1/2+y,x' 'x,1/2-y,1/2-z' '1/2+x,-y,1/2-z' '1/2+x,1/2-y,-z' 'y,1/2-z,1/2-x' '1/2+y,-z,1/2-x' '1/2+y,1/2-z,-x' 'z,1/2-x,1/2-y' '1/2+z,-x,1/2-y' '1/2+z,1/2-x,-y' 'x,1/2-z,1/2-y' '1/2+x,-z,1/2-y' '1/2+x,1/2-z,-y' 'y,1/2-x,1/2-z' '1/2+y,-x,1/2-z' '1/2+y,1/2-x,-z' 'z,1/2-y,1/2-x' '1/2+z,-y,1/2-x' '1/2+z,1/2-y,-x' '-x,1/2+y,1/2-z' '1/2-x,y,1/2-z' '1/2-x,1/2+y,-z' '-y,1/2+z,1/2-x' '1/2-y,z,1/2-x' '1/2-y,1/2+z,-x' '-z,1/2+x,1/2-y' '1/2-z,x,1/2-y' '1/2-z,1/2+x,-y' '-x,1/2+z,1/2-y' '1/2-x,z,1/2-y' '1/2-x,1/2+z,-y' '-y,1/2+x,1/2-z' '1/2-y,x,1/2-z' '1/2-y,1/2+x,-z' '-z,1/2+y,1/2-x' '1/2-z,y,1/2-x' '1/2-z,1/2+y,-x' '-x,1/2-y,1/2+z' '1/2-x,-y,1/2+z' '1/2-x,1/2-y,z' '-y,1/2-z,1/2+x' '1/2-y,-z,1/2+x' '1/2-y,1/2-z,x' '-z,1/2-x,1/2+y' '1/2-z,-x,1/2+y' '1/2-z,1/2-x,y' '-x,1/2-z,1/2+y' '1/2-x,-z,1/2+y' '1/2-x,1/2-z,y' '-y,1/2-x,1/2+z' '1/2-y,-x,1/2+z' '1/2-y,1/2-x,z' '-z,1/2-y,1/2+x' '1/2-z,-y,1/2+x' '1/2-z,1/2-y,x' '-x,1/2-y,1/2-z' '1/2-x,-y,1/2-z' '1/2-x,1/2-y,-z' '-y,1/2-z,1/2-x' '1/2-y,-z,1/2-x' '1/2-y,1/2-z,-x' '-z,1/2-x,1/2-y' '1/2-z,-x,1/2-y' '1/2-z,1/2-x,-y' '-x,1/2-z,1/2-y' '1/2-x,-z,1/2-y' '1/2-x,1/2-z,-y' '-y,1/2-x,1/2-z' '1/2-y,-x,1/2-z' '1/2-y,1/2-x,-z' '-z,1/2-y,1/2-x' '1/2-z,-y,1/2-x' '1/2-z,1/2-y,-x' '-x,1/2+y,1/2+z' '1/2-x,y,1/2+z' '1/2-x,1/2+y,z' '-y,1/2+z,1/2+x' '1/2-y,z,1/2+x' '1/2-y,1/2+z,x' '-z,1/2+x,1/2+y' '1/2-z,x,1/2+y' '1/2-z,1/2+x,y' '-x,1/2+z,1/2+y' '1/2-x,z,1/2+y' '1/2-x,1/2+z,y' '-y,1/2+x,1/2+z' '1/2-y,x,1/2+z' '1/2-y,1/2+x,z' '-z,1/2+y,1/2+x' '1/2-z,y,1/2+x' '1/2-z,1/2+y,x' 'x,1/2-y,1/2+z' '1/2+x,-y,1/2+z' '1/2+x,1/2-y,z' 'y,1/2-z,1/2+x' '1/2+y,-z,1/2+x' '1/2+y,1/2-z,x' 'z,1/2-x,1/2+y' '1/2+z,-x,1/2+y' '1/2+z,1/2-x,y' 'x,1/2-z,1/2+y' '1/2+x,-z,1/2+y' '1/2+x,1/2-z,y' 'y,1/2-x,1/2+z' '1/2+y,-x,1/2+z' '1/2+y,1/2-x,z' 'z,1/2-y,1/2+x' '1/2+z,-y,1/2+x' '1/2+z,1/2-y,x' 'x,1/2+y,1/2-z' '1/2+x,y,1/2-z' '1/2+x,1/2+y,-z' 'y,1/2+z,1/2-x' '1/2+y,z,1/2-x' '1/2+y,1/2+z,-x' 'z,1/2+x,1/2-y' '1/2+z,x,1/2-y' '1/2+z,1/2+x,-y' 'x,1/2+z,1/2-y' '1/2+x,z,1/2-y' '1/2+x,1/2+z,-y' 'y,1/2+x,1/2-z' '1/2+y,x,1/2-z' '1/2+y,1/2+x,-z' 'z,1/2+y,1/2-x' '1/2+z,y,1/2-x' '1/2+z,1/2+y,-x' loop_ _atom_type_symbol _atom_type_oxidation_number Ca2+ 2.000 F1- -1.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_attached_hydrogens _atom_site_calc_flag Ca1 Ca2+ 4 a 0. 0. 0. 1. 0 d F1 F1- 8 c 0.25 0.25 0.25 1. 0 d pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/CaTiO3.cif000066400000000000000000000054211470422267000236370ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2013-03-28 16:17:04 +0000 (Thu, 28 Mar 2013) $ #$Revision: 77586 $ #$URL: file:///home/coder/svn-repositories/cod/cif/1/00/00/1000022.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # ##data_calcium titanate data_1000022 loop_ _publ_author_name 'Beran, A' 'Libowitzky, E' 'Armbruster, T' _publ_section_title ; A single-crystal infrared spectroscopic and X-ray diffraction study of untwinned San Benito perovskite containing O H groups ; _journal_coden_ASTM CAMIA6 _journal_name_full 'Canadian Mineralogist' _journal_page_first 803 _journal_page_last 809 _journal_volume 34 _journal_year 1996 _chemical_compound_source ; from Benitoite Gem mine, San Benito Co., California,USA ; _chemical_formula_structural 'Ca (Ti O3)' _chemical_formula_sum 'Ca O3 Ti' _chemical_name_mineral Perovskite _chemical_name_systematic 'Calcium titanate' _symmetry_cell_setting orthorhombic _symmetry_Int_Tables_number 62 _symmetry_space_group_name_H-M 'P b n m' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_formula_units_Z 4 _cell_length_a 5.380(1) _cell_length_b 5.440(1) _cell_length_c 7.639(1) _cell_volume 223.6 _exptl_crystal_density_meas 4.03 _refine_ls_R_factor_all 0.027 _cod_database_code 1000022 loop_ _symmetry_equiv_pos_as_xyz x,y,z 1/2-x,1/2+y,1/2-z -x,-y,1/2+z 1/2+x,1/2-y,-z -x,-y,-z 1/2+x,1/2-y,1/2+z x,y,1/2-z 1/2-x,1/2+y,z loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site_aniso_U_22 _atom_site_aniso_U_23 _atom_site_aniso_U_33 Ti1 0.0059(2) .0000(1) .0000(1) 0.0052(2) 0.00025(9) 0.0045(2) Ca1 0.0082(2) 0.0016(2) 0. 0.0083(2) 0. 0.0079(2) O1 0.0082(6) 0.0002(5) 0. 0.0086(7) 0. 0.0045(5) O2 0.0065(4) 0.0020(4) -0.0008(3) 0.0060(4) -0.0010(3) 0.0095(4) loop_ _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_attached_hydrogens _atom_site_calc_flag Ti1 Ti4+ 4 b 0. 0.5 0. 1. 0 d Ca1 Ca2+ 4 c 0.00648(8) 0.0356(1) 0.25 1. 0 d O1 O2- 4 c 0.5711(3) -0.0161(3) 0.25 1. 0 d O2 O2- 8 d 0.2897(2) 0.2888(2) 0.0373(2) 1. 0 d loop_ _atom_type_symbol _atom_type_oxidation_number Ti4+ 4.000 Ca2+ 2.000 O2- -2.000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/CdSe_cadmoselite.cif000066400000000000000000000027641470422267000260130ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9008863.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9008863 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York Note: wurtzite structure ; _journal_name_full 'Crystal Structures' _journal_page_first 85 _journal_page_last 237 _journal_volume 1 _journal_year 1963 _chemical_formula_sum 'Cd Se' _chemical_name_mineral Cadmoselite _symmetry_space_group_name_H-M 'P 63 m c' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 120 _cell_length_a 4.30 _cell_length_b 4.30 _cell_length_c 7.02 _cell_volume 112.410 loop_ _symmetry_equiv_pos_as_xyz x,y,z -x,-x+y,1/2+z x-y,x,1/2+z -y,-x,z -y,x-y,z x-y,-y,1/2+z -x,-y,1/2+z x,x-y,z -x+y,-x,z y,x,1/2+z y,-x+y,1/2+z -x+y,y,z loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Cd 0.33333 0.66667 0.00000 Se 0.33333 0.66667 0.38500 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/CeO2.cif000066400000000000000000000074111470422267000233460ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9009008.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9009008 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York Fluorite structure ; _journal_name_full 'Crystal Structures' _journal_page_first 239 _journal_page_last 444 _journal_volume 1 _journal_year 1963 _chemical_formula_sum 'Ce O2' _chemical_name_mineral Cerianite-(Ce) _symmetry_space_group_name_H-M 'F m 3 m' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_length_a 5.4110 _cell_length_b 5.4110 _cell_length_c 5.4110 _cell_volume 158.428 loop_ _symmetry_equiv_pos_as_xyz x,y,z x,1/2+y,1/2+z 1/2+x,y,1/2+z 1/2+x,1/2+y,z z,-x,y z,1/2-x,1/2+y 1/2+z,-x,1/2+y 1/2+z,1/2-x,y -y,z,-x -y,1/2+z,1/2-x 1/2-y,z,1/2-x 1/2-y,1/2+z,-x x,-y,z x,1/2-y,1/2+z 1/2+x,-y,1/2+z 1/2+x,1/2-y,z -z,x,-y -z,1/2+x,1/2-y 1/2-z,x,1/2-y 1/2-z,1/2+x,-y y,-z,x y,1/2-z,1/2+x 1/2+y,-z,1/2+x 1/2+y,1/2-z,x -x,y,-z -x,1/2+y,1/2-z 1/2-x,y,1/2-z 1/2-x,1/2+y,-z x,-z,-y x,1/2-z,1/2-y 1/2+x,-z,1/2-y 1/2+x,1/2-z,-y -z,y,x -z,1/2+y,1/2+x 1/2-z,y,1/2+x 1/2-z,1/2+y,x y,-x,-z y,1/2-x,1/2-z 1/2+y,-x,1/2-z 1/2+y,1/2-x,-z -x,z,y -x,1/2+z,1/2+y 1/2-x,z,1/2+y 1/2-x,1/2+z,y z,-y,-x z,1/2-y,1/2-x 1/2+z,-y,1/2-x 1/2+z,1/2-y,-x -y,x,z -y,1/2+x,1/2+z 1/2-y,x,1/2+z 1/2-y,1/2+x,z x,z,y x,1/2+z,1/2+y 1/2+x,z,1/2+y 1/2+x,1/2+z,y -z,-y,-x -z,1/2-y,1/2-x 1/2-z,-y,1/2-x 1/2-z,1/2-y,-x y,x,z y,1/2+x,1/2+z 1/2+y,x,1/2+z 1/2+y,1/2+x,z -x,-z,-y -x,1/2-z,1/2-y 1/2-x,-z,1/2-y 1/2-x,1/2-z,-y z,y,x z,1/2+y,1/2+x 1/2+z,y,1/2+x 1/2+z,1/2+y,x -y,-x,-z -y,1/2-x,1/2-z 1/2-y,-x,1/2-z 1/2-y,1/2-x,-z z,x,-y z,1/2+x,1/2-y 1/2+z,x,1/2-y 1/2+z,1/2+x,-y -y,-z,x -y,1/2-z,1/2+x 1/2-y,-z,1/2+x 1/2-y,1/2-z,x x,y,-z x,1/2+y,1/2-z 1/2+x,y,1/2-z 1/2+x,1/2+y,-z -z,-x,y -z,1/2-x,1/2+y 1/2-z,-x,1/2+y 1/2-z,1/2-x,y y,z,-x y,1/2+z,1/2-x 1/2+y,z,1/2-x 1/2+y,1/2+z,-x -x,-y,z -x,1/2-y,1/2+z 1/2-x,-y,1/2+z 1/2-x,1/2-y,z -z,x,y -z,1/2+x,1/2+y 1/2-z,x,1/2+y 1/2-z,1/2+x,y y,-z,-x y,1/2-z,1/2-x 1/2+y,-z,1/2-x 1/2+y,1/2-z,-x -x,y,z -x,1/2+y,1/2+z 1/2-x,y,1/2+z 1/2-x,1/2+y,z z,-x,-y z,1/2-x,1/2-y 1/2+z,-x,1/2-y 1/2+z,1/2-x,-y -y,z,x -y,1/2+z,1/2+x 1/2-y,z,1/2+x 1/2-y,1/2+z,x x,-y,-z x,1/2-y,1/2-z 1/2+x,-y,1/2-z 1/2+x,1/2-y,-z -x,z,-y -x,1/2+z,1/2-y 1/2-x,z,1/2-y 1/2-x,1/2+z,-y z,-y,x z,1/2-y,1/2+x 1/2+z,-y,1/2+x 1/2+z,1/2-y,x -y,x,-z -y,1/2+x,1/2-z 1/2-y,x,1/2-z 1/2-y,1/2+x,-z x,-z,y x,1/2-z,1/2+y 1/2+x,-z,1/2+y 1/2+x,1/2-z,y -z,y,-x -z,1/2+y,1/2-x 1/2-z,y,1/2-x 1/2-z,1/2+y,-x y,-x,z y,1/2-x,1/2+z 1/2+y,-x,1/2+z 1/2+y,1/2-x,z -x,-z,y -x,1/2-z,1/2+y 1/2-x,-z,1/2+y 1/2-x,1/2-z,y z,y,-x z,1/2+y,1/2-x 1/2+z,y,1/2-x 1/2+z,1/2+y,-x -y,-x,z -y,1/2-x,1/2+z 1/2-y,-x,1/2+z 1/2-y,1/2-x,z x,z,-y x,1/2+z,1/2-y 1/2+x,z,1/2-y 1/2+x,1/2+z,-y -z,-y,x -z,1/2-y,1/2+x 1/2-z,-y,1/2+x 1/2-z,1/2-y,x y,x,-z y,1/2+x,1/2-z 1/2+y,x,1/2-z 1/2+y,1/2+x,-z -z,-x,-y -z,1/2-x,1/2-y 1/2-z,-x,1/2-y 1/2-z,1/2-x,-y y,z,x y,1/2+z,1/2+x 1/2+y,z,1/2+x 1/2+y,1/2+z,x -x,-y,-z -x,1/2-y,1/2-z 1/2-x,-y,1/2-z 1/2-x,1/2-y,-z z,x,y z,1/2+x,1/2+y 1/2+z,x,1/2+y 1/2+z,1/2+x,y -y,-z,-x -y,1/2-z,1/2-x 1/2-y,-z,1/2-x 1/2-y,1/2-z,-x loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Ce 0.00000 0.00000 0.00000 O 0.25000 0.25000 0.25000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/NaCl.cif000066400000000000000000000106241470422267000234330ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-01-26 13:05:32 +0000 (Sat, 26 Jan 2008) $ #$Revision: 19 $ #$URL: svn://cod.ibt.lt/cod/cif/4/4300180.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_4300180 _journal_name_full 'Inorganic Chemistry' _journal_year 2000 _publ_section_title ; Trimerization of NaC2N3 to Na3C6N9 in the Solid: Ab Initio Crystal Structure Determination of two Polymorphs of NaC2N3 and of Na3C6N9 from X-ray Powder Diffractometry ; loop_ _publ_author_name 'Barbara Juergens' 'Elisabeth Irran' 'Julius Schneider' 'Wolfgang Schnick' _chemical_formula_sum 'Na Cl' _cell_length_a 5.6393(7) _cell_length_b 5.6393 _cell_length_c 5.6393 _cell_angle_alpha 90.0 _cell_angle_beta 90.0 _cell_angle_gamma 90.0 _symmetry_cell_setting cubic _symmetry_space_group_name_H-M "F m 3 m" _diffrn_ambient_temperature 295(2) _pd_proc_ls_prof_R_factor "0.053" _pd_proc_ls_prof_wR_factor "0.072" _pd_calc_method "Rietveld Refinement" loop_ _symmetry_equiv_pos_as_xyz +x,+y,+z +z,+x,+y +y,+z,+x +x,+y,-z -z,+x,+y +y,-z,+x -z,+x,-y -y,-z,+x +y,-z,-x -x,+y,-z -z,-x,+y +x,-y,-z +y,+x,+z +z,+y,+x +x,+z,+y +y,+x,-z -z,+y,+x +x,-z,+y -z,+y,-x -x,-z,+y +x,-z,-y -y,+x,-z -z,-y,+x +y,-x,-z -x,-y,-z -z,-x,-y -y,-z,-x -x,-y,+z +z,-x,-y -y,+z,-x +z,-x,+y +y,+z,-x -y,+z,+x +x,-y,+z +z,+x,-y -x,+y,+z -y,-x,-z -z,-y,-x -x,-z,-y -y,-x,+z +z,-y,-x -x,+z,-y +z,-y,+x +x,+z,-y -x,+z,+y +y,-x,+z +z,+y,-x -y,+x,+z +x,+y+1/2,+z+1/2 +z,+x+1/2,+y+1/2 +y,+z+1/2,+x+1/2 +x,+y+1/2,-z+1/2 -z,+x+1/2,+y+1/2 +y,-z+1/2,+x+1/2 -z,+x+1/2,-y+1/2 -y,-z+1/2,+x+1/2 +y,-z+1/2,-x+1/2 -x,+y+1/2,-z+1/2 -z,-x+1/2,+y+1/2 +x,-y+1/2,-z+1/2 +y,+x+1/2,+z+1/2 +z,+y+1/2,+x+1/2 +x,+z+1/2,+y+1/2 +y,+x+1/2,-z+1/2 -z,+y+1/2,+x+1/2 +x,-z+1/2,+y+1/2 -z,+y+1/2,-x+1/2 -x,-z+1/2,+y+1/2 +x,-z+1/2,-y+1/2 -y,+x+1/2,-z+1/2 -z,-y+1/2,+x+1/2 +y,-x+1/2,-z+1/2 -x,-y+1/2,-z+1/2 -z,-x+1/2,-y+1/2 -y,-z+1/2,-x+1/2 -x,-y+1/2,+z+1/2 +z,-x+1/2,-y+1/2 -y,+z+1/2,-x+1/2 +z,-x+1/2,+y+1/2 +y,+z+1/2,-x+1/2 -y,+z+1/2,+x+1/2 +x,-y+1/2,+z+1/2 +z,+x+1/2,-y+1/2 -x,+y+1/2,+z+1/2 -y,-x+1/2,-z+1/2 -z,-y+1/2,-x+1/2 -x,-z+1/2,-y+1/2 -y,-x+1/2,+z+1/2 +z,-y+1/2,-x+1/2 -x,+z+1/2,-y+1/2 +z,-y+1/2,+x+1/2 +x,+z+1/2,-y+1/2 -x,+z+1/2,+y+1/2 +y,-x+1/2,+z+1/2 +z,+y+1/2,-x+1/2 -y,+x+1/2,+z+1/2 +x+1/2,+y,+z+1/2 +z+1/2,+x,+y+1/2 +y+1/2,+z,+x+1/2 +x+1/2,+y,-z+1/2 -z+1/2,+x,+y+1/2 +y+1/2,-z,+x+1/2 -z+1/2,+x,-y+1/2 -y+1/2,-z,+x+1/2 +y+1/2,-z,-x+1/2 -x+1/2,+y,-z+1/2 -z+1/2,-x,+y+1/2 +x+1/2,-y,-z+1/2 +y+1/2,+x,+z+1/2 +z+1/2,+y,+x+1/2 +x+1/2,+z,+y+1/2 +y+1/2,+x,-z+1/2 -z+1/2,+y,+x+1/2 +x+1/2,-z,+y+1/2 -z+1/2,+y,-x+1/2 -x+1/2,-z,+y+1/2 +x+1/2,-z,-y+1/2 -y+1/2,+x,-z+1/2 -z+1/2,-y,+x+1/2 +y+1/2,-x,-z+1/2 -x+1/2,-y,-z+1/2 -z+1/2,-x,-y+1/2 -y+1/2,-z,-x+1/2 -x+1/2,-y,+z+1/2 +z+1/2,-x,-y+1/2 -y+1/2,+z,-x+1/2 +z+1/2,-x,+y+1/2 +y+1/2,+z,-x+1/2 -y+1/2,+z,+x+1/2 +x+1/2,-y,+z+1/2 +z+1/2,+x,-y+1/2 -x+1/2,+y,+z+1/2 -y+1/2,-x,-z+1/2 -z+1/2,-y,-x+1/2 -x+1/2,-z,-y+1/2 -y+1/2,-x,+z+1/2 +z+1/2,-y,-x+1/2 -x+1/2,+z,-y+1/2 +z+1/2,-y,+x+1/2 +x+1/2,+z,-y+1/2 -x+1/2,+z,+y+1/2 +y+1/2,-x,+z+1/2 +z+1/2,+y,-x+1/2 -y+1/2,+x,+z+1/2 +x+1/2,+y+1/2,+z +z+1/2,+x+1/2,+y +y+1/2,+z+1/2,+x +x+1/2,+y+1/2,-z -z+1/2,+x+1/2,+y +y+1/2,-z+1/2,+x -z+1/2,+x+1/2,-y -y+1/2,-z+1/2,+x +y+1/2,-z+1/2,-x -x+1/2,+y+1/2,-z -z+1/2,-x+1/2,+y +x+1/2,-y+1/2,-z +y+1/2,+x+1/2,+z +z+1/2,+y+1/2,+x +x+1/2,+z+1/2,+y +y+1/2,+x+1/2,-z -z+1/2,+y+1/2,+x +x+1/2,-z+1/2,+y -z+1/2,+y+1/2,-x -x+1/2,-z+1/2,+y +x+1/2,-z+1/2,-y -y+1/2,+x+1/2,-z -z+1/2,-y+1/2,+x +y+1/2,-x+1/2,-z -x+1/2,-y+1/2,-z -z+1/2,-x+1/2,-y -y+1/2,-z+1/2,-x -x+1/2,-y+1/2,+z +z+1/2,-x+1/2,-y -y+1/2,+z+1/2,-x +z+1/2,-x+1/2,+y +y+1/2,+z+1/2,-x -y+1/2,+z+1/2,+x +x+1/2,-y+1/2,+z +z+1/2,+x+1/2,-y -x+1/2,+y+1/2,+z -y+1/2,-x+1/2,-z -z+1/2,-y+1/2,-x -x+1/2,-z+1/2,-y -y+1/2,-x+1/2,+z +z+1/2,-y+1/2,-x -x+1/2,+z+1/2,-y +z+1/2,-y+1/2,+x +x+1/2,+z+1/2,-y -x+1/2,+z+1/2,+y +y+1/2,-x+1/2,+z +z+1/2,+y+1/2,-x -y+1/2,+x+1/2,+z loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_thermal_displace_type _atom_site_U_iso_or_equiv _atom_site_symmetry_multiplicity NA1 .0 .0 .0 1.0 Uiso 0 4 CL2 .0 .5 .0 1.0 Uiso 0 4 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/Ni.cif000066400000000000000000000073631470422267000231720ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9008476.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9008476 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York Cubic closest packed, ccp, structure ; _journal_name_full 'Crystal Structures' _journal_page_first 7 _journal_page_last 83 _journal_volume 1 _journal_year 1963 _chemical_formula_sum Ni _chemical_name_mineral Nickel _symmetry_space_group_name_H-M 'F m 3 m' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_length_a 3.52387 _cell_length_b 3.52387 _cell_length_c 3.52387 _cell_volume 43.758 loop_ _symmetry_equiv_pos_as_xyz x,y,z x,1/2+y,1/2+z 1/2+x,y,1/2+z 1/2+x,1/2+y,z z,-x,y z,1/2-x,1/2+y 1/2+z,-x,1/2+y 1/2+z,1/2-x,y -y,z,-x -y,1/2+z,1/2-x 1/2-y,z,1/2-x 1/2-y,1/2+z,-x x,-y,z x,1/2-y,1/2+z 1/2+x,-y,1/2+z 1/2+x,1/2-y,z -z,x,-y -z,1/2+x,1/2-y 1/2-z,x,1/2-y 1/2-z,1/2+x,-y y,-z,x y,1/2-z,1/2+x 1/2+y,-z,1/2+x 1/2+y,1/2-z,x -x,y,-z -x,1/2+y,1/2-z 1/2-x,y,1/2-z 1/2-x,1/2+y,-z x,-z,-y x,1/2-z,1/2-y 1/2+x,-z,1/2-y 1/2+x,1/2-z,-y -z,y,x -z,1/2+y,1/2+x 1/2-z,y,1/2+x 1/2-z,1/2+y,x y,-x,-z y,1/2-x,1/2-z 1/2+y,-x,1/2-z 1/2+y,1/2-x,-z -x,z,y -x,1/2+z,1/2+y 1/2-x,z,1/2+y 1/2-x,1/2+z,y z,-y,-x z,1/2-y,1/2-x 1/2+z,-y,1/2-x 1/2+z,1/2-y,-x -y,x,z -y,1/2+x,1/2+z 1/2-y,x,1/2+z 1/2-y,1/2+x,z x,z,y x,1/2+z,1/2+y 1/2+x,z,1/2+y 1/2+x,1/2+z,y -z,-y,-x -z,1/2-y,1/2-x 1/2-z,-y,1/2-x 1/2-z,1/2-y,-x y,x,z y,1/2+x,1/2+z 1/2+y,x,1/2+z 1/2+y,1/2+x,z -x,-z,-y -x,1/2-z,1/2-y 1/2-x,-z,1/2-y 1/2-x,1/2-z,-y z,y,x z,1/2+y,1/2+x 1/2+z,y,1/2+x 1/2+z,1/2+y,x -y,-x,-z -y,1/2-x,1/2-z 1/2-y,-x,1/2-z 1/2-y,1/2-x,-z z,x,-y z,1/2+x,1/2-y 1/2+z,x,1/2-y 1/2+z,1/2+x,-y -y,-z,x -y,1/2-z,1/2+x 1/2-y,-z,1/2+x 1/2-y,1/2-z,x x,y,-z x,1/2+y,1/2-z 1/2+x,y,1/2-z 1/2+x,1/2+y,-z -z,-x,y -z,1/2-x,1/2+y 1/2-z,-x,1/2+y 1/2-z,1/2-x,y y,z,-x y,1/2+z,1/2-x 1/2+y,z,1/2-x 1/2+y,1/2+z,-x -x,-y,z -x,1/2-y,1/2+z 1/2-x,-y,1/2+z 1/2-x,1/2-y,z -z,x,y -z,1/2+x,1/2+y 1/2-z,x,1/2+y 1/2-z,1/2+x,y y,-z,-x y,1/2-z,1/2-x 1/2+y,-z,1/2-x 1/2+y,1/2-z,-x -x,y,z -x,1/2+y,1/2+z 1/2-x,y,1/2+z 1/2-x,1/2+y,z z,-x,-y z,1/2-x,1/2-y 1/2+z,-x,1/2-y 1/2+z,1/2-x,-y -y,z,x -y,1/2+z,1/2+x 1/2-y,z,1/2+x 1/2-y,1/2+z,x x,-y,-z x,1/2-y,1/2-z 1/2+x,-y,1/2-z 1/2+x,1/2-y,-z -x,z,-y -x,1/2+z,1/2-y 1/2-x,z,1/2-y 1/2-x,1/2+z,-y z,-y,x z,1/2-y,1/2+x 1/2+z,-y,1/2+x 1/2+z,1/2-y,x -y,x,-z -y,1/2+x,1/2-z 1/2-y,x,1/2-z 1/2-y,1/2+x,-z x,-z,y x,1/2-z,1/2+y 1/2+x,-z,1/2+y 1/2+x,1/2-z,y -z,y,-x -z,1/2+y,1/2-x 1/2-z,y,1/2-x 1/2-z,1/2+y,-x y,-x,z y,1/2-x,1/2+z 1/2+y,-x,1/2+z 1/2+y,1/2-x,z -x,-z,y -x,1/2-z,1/2+y 1/2-x,-z,1/2+y 1/2-x,1/2-z,y z,y,-x z,1/2+y,1/2-x 1/2+z,y,1/2-x 1/2+z,1/2+y,-x -y,-x,z -y,1/2-x,1/2+z 1/2-y,-x,1/2+z 1/2-y,1/2-x,z x,z,-y x,1/2+z,1/2-y 1/2+x,z,1/2-y 1/2+x,1/2+z,-y -z,-y,x -z,1/2-y,1/2+x 1/2-z,-y,1/2+x 1/2-z,1/2-y,x y,x,-z y,1/2+x,1/2-z 1/2+y,x,1/2-z 1/2+y,1/2+x,-z -z,-x,-y -z,1/2-x,1/2-y 1/2-z,-x,1/2-y 1/2-z,1/2-x,-y y,z,x y,1/2+z,1/2+x 1/2+y,z,1/2+x 1/2+y,1/2+z,x -x,-y,-z -x,1/2-y,1/2-z 1/2-x,-y,1/2-z 1/2-x,1/2-y,-z z,x,y z,1/2+x,1/2+y 1/2+z,x,1/2+y 1/2+z,1/2+x,y -y,-z,-x -y,1/2-z,1/2-x 1/2-y,-z,1/2-x 1/2-y,1/2-z,-x loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Ni 0.00000 0.00000 0.00000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/PbS_galena.cif000066400000000000000000000073361470422267000246170ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9000001.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9000001 loop_ _publ_author_name 'Ramsdell L S' _publ_section_title ; The crystal structures of some metallic sulfides ; _journal_name_full 'American Mineralogist' _journal_page_first 281 _journal_page_last 304 _journal_volume 10 _journal_year 1925 _chemical_formula_sum 'Pb S' _chemical_name_mineral Galena _symmetry_space_group_name_H-M 'F m 3 m' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_length_a 5.93 _cell_length_b 5.93 _cell_length_c 5.93 _cell_volume 208.528 loop_ _symmetry_equiv_pos_as_xyz x,y,z x,1/2+y,1/2+z 1/2+x,y,1/2+z 1/2+x,1/2+y,z z,-x,y z,1/2-x,1/2+y 1/2+z,-x,1/2+y 1/2+z,1/2-x,y -y,z,-x -y,1/2+z,1/2-x 1/2-y,z,1/2-x 1/2-y,1/2+z,-x x,-y,z x,1/2-y,1/2+z 1/2+x,-y,1/2+z 1/2+x,1/2-y,z -z,x,-y -z,1/2+x,1/2-y 1/2-z,x,1/2-y 1/2-z,1/2+x,-y y,-z,x y,1/2-z,1/2+x 1/2+y,-z,1/2+x 1/2+y,1/2-z,x -x,y,-z -x,1/2+y,1/2-z 1/2-x,y,1/2-z 1/2-x,1/2+y,-z x,-z,-y x,1/2-z,1/2-y 1/2+x,-z,1/2-y 1/2+x,1/2-z,-y -z,y,x -z,1/2+y,1/2+x 1/2-z,y,1/2+x 1/2-z,1/2+y,x y,-x,-z y,1/2-x,1/2-z 1/2+y,-x,1/2-z 1/2+y,1/2-x,-z -x,z,y -x,1/2+z,1/2+y 1/2-x,z,1/2+y 1/2-x,1/2+z,y z,-y,-x z,1/2-y,1/2-x 1/2+z,-y,1/2-x 1/2+z,1/2-y,-x -y,x,z -y,1/2+x,1/2+z 1/2-y,x,1/2+z 1/2-y,1/2+x,z x,z,y x,1/2+z,1/2+y 1/2+x,z,1/2+y 1/2+x,1/2+z,y -z,-y,-x -z,1/2-y,1/2-x 1/2-z,-y,1/2-x 1/2-z,1/2-y,-x y,x,z y,1/2+x,1/2+z 1/2+y,x,1/2+z 1/2+y,1/2+x,z -x,-z,-y -x,1/2-z,1/2-y 1/2-x,-z,1/2-y 1/2-x,1/2-z,-y z,y,x z,1/2+y,1/2+x 1/2+z,y,1/2+x 1/2+z,1/2+y,x -y,-x,-z -y,1/2-x,1/2-z 1/2-y,-x,1/2-z 1/2-y,1/2-x,-z z,x,-y z,1/2+x,1/2-y 1/2+z,x,1/2-y 1/2+z,1/2+x,-y -y,-z,x -y,1/2-z,1/2+x 1/2-y,-z,1/2+x 1/2-y,1/2-z,x x,y,-z x,1/2+y,1/2-z 1/2+x,y,1/2-z 1/2+x,1/2+y,-z -z,-x,y -z,1/2-x,1/2+y 1/2-z,-x,1/2+y 1/2-z,1/2-x,y y,z,-x y,1/2+z,1/2-x 1/2+y,z,1/2-x 1/2+y,1/2+z,-x -x,-y,z -x,1/2-y,1/2+z 1/2-x,-y,1/2+z 1/2-x,1/2-y,z -z,x,y -z,1/2+x,1/2+y 1/2-z,x,1/2+y 1/2-z,1/2+x,y y,-z,-x y,1/2-z,1/2-x 1/2+y,-z,1/2-x 1/2+y,1/2-z,-x -x,y,z -x,1/2+y,1/2+z 1/2-x,y,1/2+z 1/2-x,1/2+y,z z,-x,-y z,1/2-x,1/2-y 1/2+z,-x,1/2-y 1/2+z,1/2-x,-y -y,z,x -y,1/2+z,1/2+x 1/2-y,z,1/2+x 1/2-y,1/2+z,x x,-y,-z x,1/2-y,1/2-z 1/2+x,-y,1/2-z 1/2+x,1/2-y,-z -x,z,-y -x,1/2+z,1/2-y 1/2-x,z,1/2-y 1/2-x,1/2+z,-y z,-y,x z,1/2-y,1/2+x 1/2+z,-y,1/2+x 1/2+z,1/2-y,x -y,x,-z -y,1/2+x,1/2-z 1/2-y,x,1/2-z 1/2-y,1/2+x,-z x,-z,y x,1/2-z,1/2+y 1/2+x,-z,1/2+y 1/2+x,1/2-z,y -z,y,-x -z,1/2+y,1/2-x 1/2-z,y,1/2-x 1/2-z,1/2+y,-x y,-x,z y,1/2-x,1/2+z 1/2+y,-x,1/2+z 1/2+y,1/2-x,z -x,-z,y -x,1/2-z,1/2+y 1/2-x,-z,1/2+y 1/2-x,1/2-z,y z,y,-x z,1/2+y,1/2-x 1/2+z,y,1/2-x 1/2+z,1/2+y,-x -y,-x,z -y,1/2-x,1/2+z 1/2-y,-x,1/2+z 1/2-y,1/2-x,z x,z,-y x,1/2+z,1/2-y 1/2+x,z,1/2-y 1/2+x,1/2+z,-y -z,-y,x -z,1/2-y,1/2+x 1/2-z,-y,1/2+x 1/2-z,1/2-y,x y,x,-z y,1/2+x,1/2-z 1/2+y,x,1/2-z 1/2+y,1/2+x,-z -z,-x,-y -z,1/2-x,1/2-y 1/2-z,-x,1/2-y 1/2-z,1/2-x,-y y,z,x y,1/2+z,1/2+x 1/2+y,z,1/2+x 1/2+y,1/2+z,x -x,-y,-z -x,1/2-y,1/2-z 1/2-x,-y,1/2-z 1/2-x,1/2-y,-z z,x,y z,1/2+x,1/2+y 1/2+z,x,1/2+y 1/2+z,1/2+x,y -y,-z,-x -y,1/2-z,1/2-x 1/2-y,-z,1/2-x 1/2-y,1/2-z,-x loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Pb 0.00000 0.00000 0.00000 S 0.50000 0.50000 0.50000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/PbTe.cif000066400000000000000000000073771470422267000234630ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9008696.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9008696 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York rocksalt structure ; _journal_name_full 'Crystal Structures' _journal_page_first 85 _journal_page_last 237 _journal_volume 1 _journal_year 1963 _chemical_formula_sum 'Pb Te' _chemical_name_mineral Altaite _symmetry_space_group_name_H-M 'F m 3 m' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_length_a 6.454 _cell_length_b 6.454 _cell_length_c 6.454 _cell_volume 268.836 loop_ _symmetry_equiv_pos_as_xyz x,y,z x,1/2+y,1/2+z 1/2+x,y,1/2+z 1/2+x,1/2+y,z z,-x,y z,1/2-x,1/2+y 1/2+z,-x,1/2+y 1/2+z,1/2-x,y -y,z,-x -y,1/2+z,1/2-x 1/2-y,z,1/2-x 1/2-y,1/2+z,-x x,-y,z x,1/2-y,1/2+z 1/2+x,-y,1/2+z 1/2+x,1/2-y,z -z,x,-y -z,1/2+x,1/2-y 1/2-z,x,1/2-y 1/2-z,1/2+x,-y y,-z,x y,1/2-z,1/2+x 1/2+y,-z,1/2+x 1/2+y,1/2-z,x -x,y,-z -x,1/2+y,1/2-z 1/2-x,y,1/2-z 1/2-x,1/2+y,-z x,-z,-y x,1/2-z,1/2-y 1/2+x,-z,1/2-y 1/2+x,1/2-z,-y -z,y,x -z,1/2+y,1/2+x 1/2-z,y,1/2+x 1/2-z,1/2+y,x y,-x,-z y,1/2-x,1/2-z 1/2+y,-x,1/2-z 1/2+y,1/2-x,-z -x,z,y -x,1/2+z,1/2+y 1/2-x,z,1/2+y 1/2-x,1/2+z,y z,-y,-x z,1/2-y,1/2-x 1/2+z,-y,1/2-x 1/2+z,1/2-y,-x -y,x,z -y,1/2+x,1/2+z 1/2-y,x,1/2+z 1/2-y,1/2+x,z x,z,y x,1/2+z,1/2+y 1/2+x,z,1/2+y 1/2+x,1/2+z,y -z,-y,-x -z,1/2-y,1/2-x 1/2-z,-y,1/2-x 1/2-z,1/2-y,-x y,x,z y,1/2+x,1/2+z 1/2+y,x,1/2+z 1/2+y,1/2+x,z -x,-z,-y -x,1/2-z,1/2-y 1/2-x,-z,1/2-y 1/2-x,1/2-z,-y z,y,x z,1/2+y,1/2+x 1/2+z,y,1/2+x 1/2+z,1/2+y,x -y,-x,-z -y,1/2-x,1/2-z 1/2-y,-x,1/2-z 1/2-y,1/2-x,-z z,x,-y z,1/2+x,1/2-y 1/2+z,x,1/2-y 1/2+z,1/2+x,-y -y,-z,x -y,1/2-z,1/2+x 1/2-y,-z,1/2+x 1/2-y,1/2-z,x x,y,-z x,1/2+y,1/2-z 1/2+x,y,1/2-z 1/2+x,1/2+y,-z -z,-x,y -z,1/2-x,1/2+y 1/2-z,-x,1/2+y 1/2-z,1/2-x,y y,z,-x y,1/2+z,1/2-x 1/2+y,z,1/2-x 1/2+y,1/2+z,-x -x,-y,z -x,1/2-y,1/2+z 1/2-x,-y,1/2+z 1/2-x,1/2-y,z -z,x,y -z,1/2+x,1/2+y 1/2-z,x,1/2+y 1/2-z,1/2+x,y y,-z,-x y,1/2-z,1/2-x 1/2+y,-z,1/2-x 1/2+y,1/2-z,-x -x,y,z -x,1/2+y,1/2+z 1/2-x,y,1/2+z 1/2-x,1/2+y,z z,-x,-y z,1/2-x,1/2-y 1/2+z,-x,1/2-y 1/2+z,1/2-x,-y -y,z,x -y,1/2+z,1/2+x 1/2-y,z,1/2+x 1/2-y,1/2+z,x x,-y,-z x,1/2-y,1/2-z 1/2+x,-y,1/2-z 1/2+x,1/2-y,-z -x,z,-y -x,1/2+z,1/2-y 1/2-x,z,1/2-y 1/2-x,1/2+z,-y z,-y,x z,1/2-y,1/2+x 1/2+z,-y,1/2+x 1/2+z,1/2-y,x -y,x,-z -y,1/2+x,1/2-z 1/2-y,x,1/2-z 1/2-y,1/2+x,-z x,-z,y x,1/2-z,1/2+y 1/2+x,-z,1/2+y 1/2+x,1/2-z,y -z,y,-x -z,1/2+y,1/2-x 1/2-z,y,1/2-x 1/2-z,1/2+y,-x y,-x,z y,1/2-x,1/2+z 1/2+y,-x,1/2+z 1/2+y,1/2-x,z -x,-z,y -x,1/2-z,1/2+y 1/2-x,-z,1/2+y 1/2-x,1/2-z,y z,y,-x z,1/2+y,1/2-x 1/2+z,y,1/2-x 1/2+z,1/2+y,-x -y,-x,z -y,1/2-x,1/2+z 1/2-y,-x,1/2+z 1/2-y,1/2-x,z x,z,-y x,1/2+z,1/2-y 1/2+x,z,1/2-y 1/2+x,1/2+z,-y -z,-y,x -z,1/2-y,1/2+x 1/2-z,-y,1/2+x 1/2-z,1/2-y,x y,x,-z y,1/2+x,1/2-z 1/2+y,x,1/2-z 1/2+y,1/2+x,-z -z,-x,-y -z,1/2-x,1/2-y 1/2-z,-x,1/2-y 1/2-z,1/2-x,-y y,z,x y,1/2+z,1/2+x 1/2+y,z,1/2+x 1/2+y,1/2+z,x -x,-y,-z -x,1/2-y,1/2-z 1/2-x,-y,1/2-z 1/2-x,1/2-y,-z z,x,y z,1/2+x,1/2+y 1/2+z,x,1/2+y 1/2+z,1/2+x,y -y,-z,-x -y,1/2-z,1/2-x 1/2-y,-z,1/2-x 1/2-y,1/2-z,-x loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Pb 0.00000 0.00000 0.00000 Te 0.50000 0.50000 0.50000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/Si.cif000066400000000000000000000105131470422267000231660ustar00rootroot00000000000000data_9008565 _chemical_name 'Silicon' loop_ _publ_author_name 'Wyckoff R W G' _journal_name_full "Crystal Structures" _journal_volume 1 _journal_year 1963 _journal_page_first 7 _journal_page_last 83 _publ_section_title ; Second edition. Interscience Publishers, New York, New York Sample at T = 300 K ; _chemical_formula_sum 'Si' _cell_length_a 5.43070 _cell_length_b 5.43070 _cell_length_c 5.43070 _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_volume 160.165 _symmetry_space_group_name_H-M 'F d 3 m' loop_ _symmetry_equiv_pos_as_xyz 'x,y,z' 'x,1/2+y,1/2+z' '1/2+x,y,1/2+z' '1/2+x,1/2+y,z' '3/4+z,3/4-x,1/4+y' '3/4+z,1/4-x,3/4+y' '1/4+z,3/4-x,3/4+y' '1/4+z,1/4-x,1/4+y' '-y,1/2+z,1/2-x' '-y,+z,-x' '1/2-y,1/2+z,-x' '1/2-y,+z,1/2-x' '3/4+x,3/4-y,1/4+z' '3/4+x,1/4-y,3/4+z' '1/4+x,3/4-y,3/4+z' '1/4+x,1/4-y,1/4+z' '-z,1/2+x,1/2-y' '-z,+x,-y' '1/2-z,1/2+x,-y' '1/2-z,+x,1/2-y' '3/4+y,3/4-z,1/4+x' '3/4+y,1/4-z,3/4+x' '1/4+y,3/4-z,3/4+x' '1/4+y,1/4-z,1/4+x' '-x,1/2+y,1/2-z' '-x,+y,-z' '1/2-x,1/2+y,-z' '1/2-x,+y,1/2-z' '1/2+x,-z,1/2-y' '1/2+x,1/2-z,-y' '+x,-z,-y' '+x,1/2-z,1/2-y' '3/4-z,3/4+y,1/4+x' '3/4-z,1/4+y,3/4+x' '1/4-z,3/4+y,3/4+x' '1/4-z,1/4+y,1/4+x' '1/2+y,-x,1/2-z' '1/2+y,1/2-x,-z' '+y,-x,-z' '+y,1/2-x,1/2-z' '3/4-x,3/4+z,1/4+y' '3/4-x,1/4+z,3/4+y' '1/4-x,3/4+z,3/4+y' '1/4-x,1/4+z,1/4+y' '1/2+z,-y,1/2-x' '1/2+z,1/2-y,-x' '+z,-y,-x' '+z,1/2-y,1/2-x' '3/4-y,3/4+x,1/4+z' '3/4-y,1/4+x,3/4+z' '1/4-y,3/4+x,3/4+z' '1/4-y,1/4+x,1/4+z' 'x,1/2+z,1/2+y' 'x,+z,+y' '1/2+x,1/2+z,+y' '1/2+x,+z,1/2+y' '1/4-z,3/4-y,3/4-x' '1/4-z,1/4-y,1/4-x' '3/4-z,3/4-y,1/4-x' '3/4-z,1/4-y,3/4-x' 'y,1/2+x,1/2+z' 'y,+x,+z' '1/2+y,1/2+x,+z' '1/2+y,+x,1/2+z' '1/4-x,3/4-z,3/4-y' '1/4-x,1/4-z,1/4-y' '3/4-x,3/4-z,1/4-y' '3/4-x,1/4-z,3/4-y' 'z,1/2+y,1/2+x' 'z,+y,+x' '1/2+z,1/2+y,+x' '1/2+z,+y,1/2+x' '1/4-y,3/4-x,3/4-z' '1/4-y,1/4-x,1/4-z' '3/4-y,3/4-x,1/4-z' '3/4-y,1/4-x,3/4-z' '3/4+z,1/4+x,3/4-y' '3/4+z,3/4+x,1/4-y' '1/4+z,1/4+x,1/4-y' '1/4+z,3/4+x,3/4-y' '-y,1/2-z,1/2+x' '-y,-z,+x' '1/2-y,1/2-z,+x' '1/2-y,-z,1/2+x' '3/4+x,1/4+y,3/4-z' '3/4+x,3/4+y,1/4-z' '1/4+x,1/4+y,1/4-z' '1/4+x,3/4+y,3/4-z' '-z,1/2-x,1/2+y' '-z,-x,+y' '1/2-z,1/2-x,+y' '1/2-z,-x,1/2+y' '3/4+y,1/4+z,3/4-x' '3/4+y,3/4+z,1/4-x' '1/4+y,1/4+z,1/4-x' '1/4+y,3/4+z,3/4-x' '-x,1/2-y,1/2+z' '-x,-y,+z' '1/2-x,1/2-y,+z' '1/2-x,-y,1/2+z' '1/4-z,3/4+x,3/4+y' '1/4-z,1/4+x,1/4+y' '3/4-z,3/4+x,1/4+y' '3/4-z,1/4+x,3/4+y' 'y,-z,-x' 'y,1/2-z,1/2-x' '1/2+y,-z,1/2-x' '1/2+y,1/2-z,-x' '1/4-x,3/4+y,3/4+z' '1/4-x,1/4+y,1/4+z' '3/4-x,3/4+y,1/4+z' '3/4-x,1/4+y,3/4+z' 'z,-x,-y' 'z,1/2-x,1/2-y' '1/2+z,-x,1/2-y' '1/2+z,1/2-x,-y' '1/4-y,3/4+z,3/4+x' '1/4-y,1/4+z,1/4+x' '3/4-y,3/4+z,1/4+x' '3/4-y,1/4+z,3/4+x' 'x,-y,-z' 'x,1/2-y,1/2-z' '1/2+x,-y,1/2-z' '1/2+x,1/2-y,-z' '1/2-x,1/2+z,-y' '1/2-x,+z,1/2-y' '-x,1/2+z,1/2-y' '-x,+z,-y' '1/4+z,3/4-y,3/4+x' '1/4+z,1/4-y,1/4+x' '3/4+z,3/4-y,1/4+x' '3/4+z,1/4-y,3/4+x' '1/2-y,1/2+x,-z' '1/2-y,+x,1/2-z' '-y,1/2+x,1/2-z' '-y,+x,-z' '1/4+x,3/4-z,3/4+y' '1/4+x,1/4-z,1/4+y' '3/4+x,3/4-z,1/4+y' '3/4+x,1/4-z,3/4+y' '1/2-z,1/2+y,-x' '1/2-z,+y,1/2-x' '-z,1/2+y,1/2-x' '-z,+y,-x' '1/4+y,3/4-x,3/4+z' '1/4+y,1/4-x,1/4+z' '3/4+y,3/4-x,1/4+z' '3/4+y,1/4-x,3/4+z' '-x,-z,y' '-x,1/2-z,1/2+y' '1/2-x,-z,1/2+y' '1/2-x,1/2-z,y' '3/4+z,3/4+y,1/4-x' '3/4+z,1/4+y,3/4-x' '1/4+z,3/4+y,3/4-x' '1/4+z,1/4+y,1/4-x' '-y,-x,z' '-y,1/2-x,1/2+z' '1/2-y,-x,1/2+z' '1/2-y,1/2-x,z' '3/4+x,3/4+z,1/4-y' '3/4+x,1/4+z,3/4-y' '1/4+x,3/4+z,3/4-y' '1/4+x,1/4+z,1/4-y' '-z,-y,x' '-z,1/2-y,1/2+x' '1/2-z,-y,1/2+x' '1/2-z,1/2-y,x' '3/4+y,3/4+x,1/4-z' '3/4+y,1/4+x,3/4-z' '1/4+y,3/4+x,3/4-z' '1/4+y,1/4+x,1/4-z' '1/4-z,1/4-x,1/4-y' '1/4-z,3/4-x,3/4-y' '3/4-z,1/4-x,3/4-y' '3/4-z,3/4-x,1/4-y' 'y,z,x' 'y,1/2+z,1/2+x' '1/2+y,z,1/2+x' '1/2+y,1/2+z,x' '1/4-x,1/4-y,1/4-z' '1/4-x,3/4-y,3/4-z' '3/4-x,1/4-y,3/4-z' '3/4-x,3/4-y,1/4-z' 'z,x,y' 'z,1/2+x,1/2+y' '1/2+z,x,1/2+y' '1/2+z,1/2+x,y' '1/4-y,1/4-z,1/4-x' '1/4-y,3/4-z,3/4-x' '3/4-y,1/4-z,3/4-x' '3/4-y,3/4-z,1/4-x' loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Si 0.00000 0.00000 0.00000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/Si_setting2.cif000066400000000000000000000154061470422267000250130ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-04-05 08:13:02 +0000 (Sat, 05 Apr 2008) $ #$Revision: 340 $ #$URL: svn://cod.ibt.lt/cod/cif/2/2102763.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/. The original data for this entry # were provided by IUCr Journals, http://journals.iucr.org/. # # The file may be used within the scientific community so long as # proper attribution is given to the journal article from which the # data were obtained. # data_2102763 loop_ _publ_author_name 'Wu, Hui' 'Hartman, Michael R.' 'Udovic, Terrence J.' 'Rush, John J.' 'Zhou, Wei' 'Bowman Jr, Robert C.' 'Vajo, John J.' _publ_section_title ; Structure of the novel ternary hydrides Li~4~Tt~2~D (Tt = Si and Ge) ; _journal_issue 1 _journal_name_full 'Acta Crystallographica Section B' _journal_page_first 63 _journal_page_last 68 _journal_volume 63 _journal_year 2007 _chemical_formula_sum Si _chemical_formula_weight 28.09 _chemical_name_systematic ' ?' _symmetry_cell_setting cubic _symmetry_space_group_name_H-M 'F d -3 m' _cell_angle_alpha 90.0 _cell_angle_beta 90.0 _cell_angle_gamma 90.0 _cell_formula_units_Z 8 _cell_length_a 5.42712(9) _cell_length_b 5.42712 _cell_length_c 5.42712 _cell_volume 159.849(8) _[local]_cod_data_source_file ws5053.cif loop_ _symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz 1 +x,+y,+z 2 +z,+x,+y 3 +y,+z,+x 4 +x+1/4,+y+1/4,-z 5 -z,+x+1/4,+y+1/4 6 +y+1/4,-z,+x+1/4 7 -z+1/4,+x+1/2,-y+3/4 8 -y+3/4,-z+1/4,+x+1/2 9 +y+1/2,-z+1/4,-x+3/4 10 -x+3/4,+y+1/2,-z+1/4 11 -z+1/4,-x+3/4,+y+1/2 12 +x+1/2,-y+3/4,-z+1/4 13 +y,+x,+z 14 +z,+y,+x 15 +x,+z,+y 16 +y+1/4,+x+1/4,-z 17 -z,+y+1/4,+x+1/4 18 +x+1/4,-z,+y+1/4 19 -z+1/4,+y+1/2,-x+3/4 20 -x+3/4,-z+1/4,+y+1/2 21 +x+1/2,-z+1/4,-y+3/4 22 -y+3/4,+x+1/2,-z+1/4 23 -z+1/4,-y+3/4,+x+1/2 24 +y+1/2,-x+3/4,-z+1/4 -1 -x,-y,-z -2 -z,-x,-y -3 -y,-z,-x -4 -x+3/4,-y+3/4,+z -5 +z,-x+3/4,-y+3/4 -6 -y+3/4,+z,-x+3/4 -7 +z+3/4,-x+1/2,+y+1/4 -8 +y+1/4,+z+3/4,-x+1/2 -9 -y+1/2,+z+3/4,+x+1/4 -10 +x+1/4,-y+1/2,+z+3/4 -11 +z+3/4,+x+1/4,-y+1/2 -12 -x+1/2,+y+1/4,+z+3/4 -13 -y,-x,-z -14 -z,-y,-x -15 -x,-z,-y -16 -y+3/4,-x+3/4,+z -17 +z,-y+3/4,-x+3/4 -18 -x+3/4,+z,-y+3/4 -19 +z+3/4,-y+1/2,+x+1/4 -20 +x+1/4,+z+3/4,-y+1/2 -21 -x+1/2,+z+3/4,+y+1/4 -22 +y+1/4,-x+1/2,+z+3/4 -23 +z+3/4,+y+1/4,-x+1/2 -24 -y+1/2,+x+1/4,+z+3/4 101 +x,+y+1/2,+z+1/2 102 +z,+x+1/2,+y+1/2 103 +y,+z+1/2,+x+1/2 104 +x+1/4,+y+3/4,-z+1/2 105 -z,+x+3/4,+y+3/4 106 +y+1/4,-z+1/2,+x+3/4 107 -z+1/4,+x,-y+1/4 108 -y+3/4,-z+3/4,+x 109 +y+1/2,-z+3/4,-x+1/4 110 -x+3/4,+y,-z+3/4 111 -z+1/4,-x+1/4,+y 112 +x+1/2,-y+1/4,-z+3/4 113 +y,+x+1/2,+z+1/2 114 +z,+y+1/2,+x+1/2 115 +x,+z+1/2,+y+1/2 116 +y+1/4,+x+3/4,-z+1/2 117 -z,+y+3/4,+x+3/4 118 +x+1/4,-z+1/2,+y+3/4 119 -z+1/4,+y,-x+1/4 120 -x+3/4,-z+3/4,+y 121 +x+1/2,-z+3/4,-y+1/4 122 -y+3/4,+x,-z+3/4 123 -z+1/4,-y+1/4,+x 124 +y+1/2,-x+1/4,-z+3/4 -101 -x,-y+1/2,-z+1/2 -102 -z,-x+1/2,-y+1/2 -103 -y,-z+1/2,-x+1/2 -104 -x+3/4,-y+1/4,+z+1/2 -105 +z,-x+1/4,-y+1/4 -106 -y+3/4,+z+1/2,-x+1/4 -107 +z+3/4,-x,+y+3/4 -108 +y+1/4,+z+1/4,-x -109 -y+1/2,+z+1/4,+x+3/4 -110 +x+1/4,-y,+z+1/4 -111 +z+3/4,+x+3/4,-y -112 -x+1/2,+y+3/4,+z+1/4 -113 -y,-x+1/2,-z+1/2 -114 -z,-y+1/2,-x+1/2 -115 -x,-z+1/2,-y+1/2 -116 -y+3/4,-x+1/4,+z+1/2 -117 +z,-y+1/4,-x+1/4 -118 -x+3/4,+z+1/2,-y+1/4 -119 +z+3/4,-y,+x+3/4 -120 +x+1/4,+z+1/4,-y -121 -x+1/2,+z+1/4,+y+3/4 -122 +y+1/4,-x,+z+1/4 -123 +z+3/4,+y+3/4,-x -124 -y+1/2,+x+3/4,+z+1/4 201 +x+1/2,+y,+z+1/2 202 +z+1/2,+x,+y+1/2 203 +y+1/2,+z,+x+1/2 204 +x+3/4,+y+1/4,-z+1/2 205 -z+1/2,+x+1/4,+y+3/4 206 +y+3/4,-z,+x+3/4 207 -z+3/4,+x+1/2,-y+1/4 208 -y+1/4,-z+1/4,+x 209 +y,-z+1/4,-x+1/4 210 -x+1/4,+y+1/2,-z+3/4 211 -z+3/4,-x+3/4,+y 212 +x,-y+3/4,-z+3/4 213 +y+1/2,+x,+z+1/2 214 +z+1/2,+y,+x+1/2 215 +x+1/2,+z,+y+1/2 216 +y+3/4,+x+1/4,-z+1/2 217 -z+1/2,+y+1/4,+x+3/4 218 +x+3/4,-z,+y+3/4 219 -z+3/4,+y+1/2,-x+1/4 220 -x+1/4,-z+1/4,+y 221 +x,-z+1/4,-y+1/4 222 -y+1/4,+x+1/2,-z+3/4 223 -z+3/4,-y+3/4,+x 224 +y,-x+3/4,-z+3/4 -201 -x+1/2,-y,-z+1/2 -202 -z+1/2,-x,-y+1/2 -203 -y+1/2,-z,-x+1/2 -204 -x+1/4,-y+3/4,+z+1/2 -205 +z+1/2,-x+3/4,-y+1/4 -206 -y+1/4,+z,-x+1/4 -207 +z+1/4,-x+1/2,+y+3/4 -208 +y+3/4,+z+3/4,-x -209 -y,+z+3/4,+x+3/4 -210 +x+3/4,-y+1/2,+z+1/4 -211 +z+1/4,+x+1/4,-y -212 -x,+y+1/4,+z+1/4 -213 -y+1/2,-x,-z+1/2 -214 -z+1/2,-y,-x+1/2 -215 -x+1/2,-z,-y+1/2 -216 -y+1/4,-x+3/4,+z+1/2 -217 +z+1/2,-y+3/4,-x+1/4 -218 -x+1/4,+z,-y+1/4 -219 +z+1/4,-y+1/2,+x+3/4 -220 +x+3/4,+z+3/4,-y -221 -x,+z+3/4,+y+3/4 -222 +y+3/4,-x+1/2,+z+1/4 -223 +z+1/4,+y+1/4,-x -224 -y,+x+1/4,+z+1/4 301 +x+1/2,+y+1/2,+z 302 +z+1/2,+x+1/2,+y 303 +y+1/2,+z+1/2,+x 304 +x+3/4,+y+3/4,-z 305 -z+1/2,+x+3/4,+y+1/4 306 +y+3/4,-z+1/2,+x+1/4 307 -z+3/4,+x,-y+3/4 308 -y+1/4,-z+3/4,+x+1/2 309 +y,-z+3/4,-x+3/4 310 -x+1/4,+y,-z+1/4 311 -z+3/4,-x+1/4,+y+1/2 312 +x,-y+1/4,-z+1/4 313 +y+1/2,+x+1/2,+z 314 +z+1/2,+y+1/2,+x 315 +x+1/2,+z+1/2,+y 316 +y+3/4,+x+3/4,-z 317 -z+1/2,+y+3/4,+x+1/4 318 +x+3/4,-z+1/2,+y+1/4 319 -z+3/4,+y,-x+3/4 320 -x+1/4,-z+3/4,+y+1/2 321 +x,-z+3/4,-y+3/4 322 -y+1/4,+x,-z+1/4 323 -z+3/4,-y+1/4,+x+1/2 324 +y,-x+1/4,-z+1/4 -301 -x+1/2,-y+1/2,-z -302 -z+1/2,-x+1/2,-y -303 -y+1/2,-z+1/2,-x -304 -x+1/4,-y+1/4,+z -305 +z+1/2,-x+1/4,-y+3/4 -306 -y+1/4,+z+1/2,-x+3/4 -307 +z+1/4,-x,+y+1/4 -308 +y+3/4,+z+1/4,-x+1/2 -309 -y,+z+1/4,+x+1/4 -310 +x+3/4,-y,+z+3/4 -311 +z+1/4,+x+3/4,-y+1/2 -312 -x,+y+3/4,+z+3/4 -313 -y+1/2,-x+1/2,-z -314 -z+1/2,-y+1/2,-x -315 -x+1/2,-z+1/2,-y -316 -y+1/4,-x+1/4,+z -317 +z+1/2,-y+1/4,-x+3/4 -318 -x+1/4,+z+1/2,-y+3/4 -319 +z+1/4,-y,+x+1/4 -320 +x+3/4,+z+1/4,-y+1/2 -321 -x,+z+1/4,+y+1/4 -322 +y+3/4,-x,+z+3/4 -323 +z+1/4,+y+3/4,-x+1/2 -324 -y,+x+3/4,+z+3/4 loop_ _atom_type_symbol Si loop_ _atom_site_type_symbol _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_thermal_displace_type _atom_site_occupancy Si Si 0.125 0.125 0.125 0.0072(4) Uiso 1.0 loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_site_symmetry_2 _geom_bond_distance _geom_bond_publ_flag Si Si 4_555 2.35001(3) N Si Si 5_555 2.35001(3) N Si Si 6_555 2.35001(3) N Si Si -1_555 2.35001(3) N loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle _geom_angle_publ_flag Si Si Si 4_555 5_555 109.4712(6) N Si Si Si 4_555 6_555 109.4712(6) N Si Si Si 4_555 -1_555 109.4712(12) N Si Si Si 5_555 6_555 109.4712(12) N Si Si Si 5_555 -1_555 109.4712(6) N Si Si Si 6_555 -1_555 109.4712(6) N pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/SrTiO3_tausonite.cif000066400000000000000000000025541470422267000257770ustar00rootroot00000000000000data_9006864 _chemical_name 'Tausonite' loop_ _publ_author_name 'Mitchell R H' 'Chakhmouradian A R' 'Woodward P M' _journal_name_full "Physics and Chemistry of Minerals" _journal_volume 27 _journal_year 2000 _journal_page_first 583 _journal_page_last 589 _publ_section_title ; Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, (Sr1-2xNaxLax)TiO3 Sample: x = 0.00 ; _chemical_formula_sum 'Sr Ti O3' _cell_length_a 3.90528 _cell_length_b 3.90528 _cell_length_c 3.90528 _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_volume 59.560 _symmetry_space_group_name_H-M 'P m -3 m' loop_ _symmetry_equiv_pos_as_xyz 'x,y,z' 'z,-x,y' '-y,z,-x' 'x,-y,z' '-z,x,-y' 'y,-z,x' '-x,y,-z' 'x,-z,-y' '-z,y,x' 'y,-x,-z' '-x,z,y' 'z,-y,-x' '-y,x,z' 'x,z,y' '-z,-y,-x' 'y,x,z' '-x,-z,-y' 'z,y,x' '-y,-x,-z' 'z,x,-y' '-y,-z,x' 'x,y,-z' '-z,-x,y' 'y,z,-x' '-x,-y,z' '-z,x,y' 'y,-z,-x' '-x,y,z' 'z,-x,-y' '-y,z,x' 'x,-y,-z' '-x,z,-y' 'z,-y,x' '-y,x,-z' 'x,-z,y' '-z,y,-x' 'y,-x,z' '-x,-z,y' 'z,y,-x' '-y,-x,z' 'x,z,-y' '-z,-y,x' 'y,x,-z' '-z,-x,-y' 'y,z,x' '-x,-y,-z' 'z,x,y' '-y,-z,-x' loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Sr 0.50000 0.50000 0.50000 Ti 0.00000 0.00000 0.00000 O 0.50000 0.00000 0.00000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/TiO2_anatase.cif000066400000000000000000000034341470422267000250700ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9009086.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9009086 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York ; _journal_name_full 'Crystal Structures' _journal_page_first 239 _journal_page_last 444 _journal_volume 1 _journal_year 1963 _chemical_formula_sum 'Ti O2' _chemical_name_mineral Anatase _symmetry_space_group_name_H-M 'I 41/a m d' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_length_a 3.785 _cell_length_b 3.785 _cell_length_c 9.514 _cell_volume 136.300 loop_ _symmetry_equiv_pos_as_xyz x,y,z 1/2+x,1/2+y,1/2+z -y,1/2-x,1/4+z 1/2-y,-x,3/4+z 1/2+y,1/2+x,1/2-z +y,+x,-z 1/2+y,1/2-x,1/2-z +y,-x,-z -y,1/2+x,1/4+z 1/2-y,+x,3/4+z 1/2+x,1/2-y,1/2+z +x,-y,+z 1/2-x,y,3/4-z -x,1/2+y,1/4-z 1/2+x,y,3/4-z +x,1/2+y,1/4-z 1/2-x,1/2-y,1/2+z -x,-y,+z 1/2+y,x,3/4+z +y,1/2+x,1/4+z -y,-x,-z 1/2-y,1/2-x,1/2-z -y,x,-z 1/2-y,1/2+x,1/2-z 1/2+y,-x,3/4+z +y,1/2-x,1/4+z -x,y,z 1/2-x,1/2+y,1/2+z x,1/2-y,1/4-z 1/2+x,-y,3/4-z -x,1/2-y,1/4-z 1/2-x,-y,3/4-z loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Ti 0.00000 0.00000 0.00000 O 0.00000 0.00000 0.20660 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/TiO2_rutile.cif000066400000000000000000000021261470422267000247550ustar00rootroot00000000000000data_9004141 _chemical_name 'Rutile' loop_ _publ_author_name 'Meagher E P' 'Lager G A' _journal_name_full "The Canadian Mineralogist" _journal_volume 17 _journal_year 1979 _journal_page_first 77 _journal_page_last 85 _publ_section_title ; Polyhedral thermal expansion in the TiO2 polymorphs: Refinement of the crystal structure of rutile and brookite at high temperature Sample at 25 degrees C ; _chemical_formula_sum 'Ti O2' _cell_length_a 4.593 _cell_length_b 4.593 _cell_length_c 2.959 _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_volume 62.422 _symmetry_space_group_name_H-M 'P 42/m n m' loop_ _symmetry_equiv_pos_as_xyz 'x,y,z' '-y,-x,z' 'y,x,-z' '1/2+y,1/2-x,1/2-z' '1/2-y,1/2+x,1/2+z' '1/2+x,1/2-y,1/2+z' '1/2-x,1/2+y,1/2-z' 'x,y,-z' '-x,-y,z' 'y,x,z' '-y,-x,-z' '1/2-y,1/2+x,1/2-z' '1/2+y,1/2-x,1/2+z' '1/2-x,1/2+y,1/2+z' '1/2+x,1/2-y,1/2-z' '-x,-y,-z' loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv Ti 0.00000 0.00000 0.00000 0.00532 O 0.30510 0.30510 0.00000 0.00760 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/ZnS_sphalerite.cif000066400000000000000000000043651470422267000255550ustar00rootroot00000000000000data_9000107 _chemical_name 'Sphalerite' loop_ _publ_author_name 'Skinner B J' _journal_name_full "American Mineralogist" _journal_volume 46 _journal_year 1961 _journal_page_first 1399 _journal_page_last 1411 _publ_section_title ; Unit-cell edges of natural and synthetic sphalerites ; _chemical_formula_sum 'Zn S' _cell_length_a 5.4093 _cell_length_b 5.4093 _cell_length_c 5.4093 _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 _cell_volume 158.279 _symmetry_space_group_name_H-M 'F -4 3 m' loop_ _symmetry_equiv_pos_as_xyz 'x,y,z' 'x,1/2+y,1/2+z' '1/2+x,y,1/2+z' '1/2+x,1/2+y,z' '-z,x,-y' '-z,1/2+x,1/2-y' '1/2-z,x,1/2-y' '1/2-z,1/2+x,-y' '-y,z,-x' '-y,1/2+z,1/2-x' '1/2-y,z,1/2-x' '1/2-y,1/2+z,-x' '-x,y,-z' '-x,1/2+y,1/2-z' '1/2-x,y,1/2-z' '1/2-x,1/2+y,-z' 'x,-z,-y' 'x,1/2-z,1/2-y' '1/2+x,-z,1/2-y' '1/2+x,1/2-z,-y' 'z,-y,-x' 'z,1/2-y,1/2-x' '1/2+z,-y,1/2-x' '1/2+z,1/2-y,-x' 'y,-x,-z' 'y,1/2-x,1/2-z' '1/2+y,-x,1/2-z' '1/2+y,1/2-x,-z' 'x,z,y' 'x,1/2+z,1/2+y' '1/2+x,z,1/2+y' '1/2+x,1/2+z,y' 'z,y,x' 'z,1/2+y,1/2+x' '1/2+z,y,1/2+x' '1/2+z,1/2+y,x' 'y,x,z' 'y,1/2+x,1/2+z' '1/2+y,x,1/2+z' '1/2+y,1/2+x,z' '-z,-x,y' '-z,1/2-x,1/2+y' '1/2-z,-x,1/2+y' '1/2-z,1/2-x,y' '-y,-z,x' '-y,1/2-z,1/2+x' '1/2-y,-z,1/2+x' '1/2-y,1/2-z,x' '-x,-y,z' '-x,1/2-y,1/2+z' '1/2-x,-y,1/2+z' '1/2-x,1/2-y,z' 'z,-x,-y' 'z,1/2-x,1/2-y' '1/2+z,-x,1/2-y' '1/2+z,1/2-x,-y' 'y,-z,-x' 'y,1/2-z,1/2-x' '1/2+y,-z,1/2-x' '1/2+y,1/2-z,-x' 'x,-y,-z' 'x,1/2-y,1/2-z' '1/2+x,-y,1/2-z' '1/2+x,1/2-y,-z' '-x,z,-y' '-x,1/2+z,1/2-y' '1/2-x,z,1/2-y' '1/2-x,1/2+z,-y' '-z,y,-x' '-z,1/2+y,1/2-x' '1/2-z,y,1/2-x' '1/2-z,1/2+y,-x' '-y,x,-z' '-y,1/2+x,1/2-z' '1/2-y,x,1/2-z' '1/2-y,1/2+x,-z' '-x,-z,y' '-x,1/2-z,1/2+y' '1/2-x,-z,1/2+y' '1/2-x,1/2-z,y' '-z,-y,x' '-z,1/2-y,1/2+x' '1/2-z,-y,1/2+x' '1/2-z,1/2-y,x' '-y,-x,z' '-y,1/2-x,1/2+z' '1/2-y,-x,1/2+z' '1/2-y,1/2-x,z' 'z,x,y' 'z,1/2+x,1/2+y' '1/2+z,x,1/2+y' '1/2+z,1/2+x,y' 'y,z,x' 'y,1/2+z,1/2+x' '1/2+y,z,1/2+x' '1/2+y,1/2+z,x' loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Zn 0.00000 0.00000 0.00000 S 0.25000 0.25000 0.25000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/ZnS_wurtzite.cif000066400000000000000000000027641470422267000253130ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9008878.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9008878 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York Note: wurtzite structure ; _journal_name_full 'Crystal Structures' _journal_page_first 85 _journal_page_last 237 _journal_volume 1 _journal_year 1963 _chemical_formula_sum 'Zn S' _chemical_name_mineral Wurtzite-2H _symmetry_space_group_name_H-M 'P 63 m c' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 120 _cell_length_a 3.811 _cell_length_b 3.811 _cell_length_c 6.234 _cell_volume 78.411 loop_ _symmetry_equiv_pos_as_xyz x,y,z -x,-x+y,1/2+z x-y,x,1/2+z -y,-x,z -y,x-y,z x-y,-y,1/2+z -x,-y,1/2+z x,x-y,z -x+y,-x,z y,x,1/2+z y,-x+y,1/2+z -x+y,y,z loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Zn 0.33333 0.66667 0.00000 S 0.33333 0.66667 0.38500 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/Zn_zinc.cif000066400000000000000000000031441470422267000242270ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-03-10 08:25:41 +0000 (Mon, 10 Mar 2008) $ #$Revision: 255 $ #$URL: svn://cod.ibt.lt/cod/cif/9/9008522.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_9008522 loop_ _publ_author_name 'Wyckoff R W G' _publ_section_title ; Second edition. Interscience Publishers, New York, New York Hexagonal closest packed, hcp, structure ; _journal_name_full 'Crystal Structures' _journal_page_first 7 _journal_page_last 83 _journal_volume 1 _journal_year 1963 _chemical_formula_sum Zn _chemical_name_mineral Zinc _symmetry_space_group_name_H-M 'P 63/m m c' _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 120 _cell_length_a 2.6648 _cell_length_b 2.6648 _cell_length_c 4.9467 _cell_volume 30.421 loop_ _symmetry_equiv_pos_as_xyz x,y,z -x,-x+y,1/2+z x,x-y,1/2-z -x+y,-x,1/2-z x-y,x,1/2+z -y,-x,z y,x,-z y,-x+y,-z -y,x-y,z x-y,-y,1/2+z -x+y,y,1/2-z x,y,1/2-z -x,-y,1/2+z x,x-y,z -x,-x+y,-z x-y,x,-z -x+y,-x,z y,x,1/2+z -y,-x,1/2-z -y,x-y,1/2-z y,-x+y,1/2+z -x+y,y,z x-y,-y,-z -x,-y,-z loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Zn 0.33333 0.66667 0.25000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/caffeine.cif000066400000000000000000000064231470422267000243600ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2008-01-26 13:05:32 +0000 (Sat, 26 Jan 2008) $ #$Revision: 19 $ #$URL: svn://cod.ibt.lt/cod/cif/2/2100202.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_2100202 _journal_name_full 'Acta Crystallographica, Section B' _journal_year 2005 _journal_volume 61 _journal_page_first 329 _journal_page_last 334 _publ_section_title ; Ab initio structure determination of the high temperature phase of anhydrous caffeine by X-ray powder diffraction. ; loop_ _publ_author_name 'Derollez, Patrick' 'Correia, Nat\'alia T.' 'Dan\`ede, Florence' 'Capet, Fr\'ed\'eric' 'Affouard, Fr\'ed\'eric' 'Lefebvre, Jacques' 'Descamps, Marc' _chemical_name_common 'caffeine' _chemical_formula_moiety 'C8 H10 N4 O2' _chemical_formula_sum 'C8 H10 N4 O2' _chemical_formula_weight 194.20 _symmetry_cell_setting Trigonal _symmetry_space_group_name_H-M 'R 3 c' _symmetry_space_group_name_Hall 'R 3 -2"C' loop_ _symmetry_equiv_pos_as_xyz 'x,y,z' '-y,x-y,z' '-x+y,-x,z' '-y,-x,z+1/2' '-x+y,y,z+1/2' 'x,x-y,z+1/2' 'x+2/3,y+1/3,z+1/3' '-y+2/3,x-y+1/3,z+1/3' '-x+y+2/3,-x+1/3,z+1/3' '-y+2/3,-x+1/3,z+5/6' '-x+y+2/3,y+1/3,z+5/6' 'x+2/3,x-y+1/3,z+5/6' 'x+1/3,y+2/3,z+2/3' '-y+1/3,x-y+2/3,z+2/3' '-x+y+1/3,-x+2/3,z+2/3' '-y+1/3,-x+2/3,z+1/6' '-x+y+1/3,y+2/3,z+1/6' 'x+1/3,x-y+2/3,z+1/6' _cell_length_a 14.9372(5) _cell_length_b 14.9372(5) _cell_length_c 6.8980(2) _cell_angle_alpha 90.00000 _cell_angle_beta 90.00000 _cell_angle_gamma 120.00000 _cell_volume 1332.88(7) _cell_formula_units_Z 6 _cell_measurement_temperature 278 loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_type_symbol C5 -0.06613 -0.06314 0.09562 0.00000 Uiso 1.00000 C C4 0.02779 -0.05534 0.10000 0.00000 Uiso 1.00000 C N3 0.11676 0.04116 0.08226 0.00000 Uiso 1.00000 N C2 0.10866 0.12960 0.06000 0.00000 Uiso 1.00000 C O11 0.18634 0.21385 0.04451 0.00000 Uiso 1.00000 O N1 0.01159 0.12154 0.05547 0.00000 Uiso 1.00000 N C6 -0.07738 0.02504 0.07321 0.00000 Uiso 1.00000 C O13 -0.16212 0.01800 0.06926 0.00000 Uiso 1.00000 O N7 -0.13793 -0.16353 0.11547 0.00000 Uiso 1.00000 N N9 0.01389 -0.15092 0.12255 0.00000 Uiso 1.00000 N C8 -0.08863 -0.21778 0.13210 0.00000 Uiso 1.00000 C C14 -0.25110 -0.20663 0.11847 0.00000 Uiso 1.00000 C C12 0.21968 0.04971 0.08706 0.00000 Uiso 1.00000 C C10 0.00300 0.21530 0.03186 0.00000 Uiso 1.00000 C H8 -0.12146 -0.29285 0.14834 0.00000 Uiso 1.00000 H H14a -0.27317 -0.19028 -0.00382 0.00000 Uiso 1.00000 H H14b -0.28567 -0.28182 0.13462 0.00000 Uiso 1.00000 H H14c -0.26951 -0.17639 0.22660 0.00000 Uiso 1.00000 H H12a 0.22513 0.00926 -0.01943 0.00000 Uiso 1.00000 H H12b 0.27338 0.12237 0.07281 0.00000 Uiso 1.00000 H H12c 0.22878 0.02315 0.21098 0.00000 Uiso 1.00000 H H10a 0.03488 0.24909 -0.09109 0.00000 Uiso 1.00000 H H10b -0.07008 0.19602 0.03170 0.00000 Uiso 1.00000 H H10c 0.03791 0.26293 0.13930 0.00000 Uiso 1.00000 H pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/cime.fhz000066400000000000000000000007741470422267000235660ustar00rootroot00000000000000KEYWORDS GO HERE 17 C 1 N 1 1.465 C 2 1.366 1 119.987 N 3 1.321 2 120.030 1 6.0 C 4 1.355 3 119.982 2 6.8 N 5 1.136 4 180.000 3 46.3 N 3 1.366 2 120.022 1 186.0 C 7 1.466 3 119.988 2 354.9 C 8 1.529 7 109.482 3 185.0 S 9 1.814 8 109.456 7 180.0 C 10 1.815 9 99.984 8 180.0 C 11 1.507 10 109.466 9 180.0 N 12 1.341 11 126.014 10 90.0 C 13 1.305 12 109.239 11 180.0 N 14 1.349 13 108.723 12 360.0 C 15 1.344 14 107.593 13 359.1 C 16 1.515 15 127.952 14 179.1 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/lidocainementhol.cif000066400000000000000000000337661470422267000261500ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2013-12-28 07:07:06 +0000 (Sat, 28 Dec 2013) $ #$Revision: 91932 $ #$URL: file:///home/coder/svn-repositories/cod/cif/1/50/26/1502677.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_1502677 loop_ _publ_author_name 'Corvis, Yohann' 'N\'egrier, Philippe' 'Lazerges, Mathieu' 'Massip, St\'ephane' 'L\'eger, Jean-Michel' 'Espeau, Philippe' _publ_section_title ; Lidocaine/L-menthol binary system: cocrystallization versus solid-state immiscibility. ; _journal_issue 16 _journal_name_full 'The journal of physical chemistry. B' _journal_page_first 5420 _journal_page_last 5426 _journal_volume 114 _journal_year 2010 _chemical_absolute_configuration ad _chemical_formula_sum 'C24 H42 N2 O2' _chemical_formula_weight 390.60 _chemical_name_systematic ; ? ; _space_group_IT_number 19 _symmetry_cell_setting orthorhombic _symmetry_Int_Tables_number 19 _symmetry_space_group_name_Hall 'P 2ac 2ab' _symmetry_space_group_name_H-M 'P 21 21 21' _atom_sites_solution_hydrogens geom _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _audit_creation_method SHELXL-97 _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_formula_units_Z 4 _cell_length_a 8.4016(5) _cell_length_b 13.4207(9) _cell_length_c 22.130(2) _cell_measurement_reflns_used 2942 _cell_measurement_temperature 233(2) _cell_measurement_theta_max 72.02 _cell_measurement_theta_min 6.53 _cell_volume 2495.3(3) _computing_cell_refinement CrystalClear _computing_data_collection CrystalClear _computing_data_reduction CrystalClear _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _diffrn_ambient_temperature 233(2) _diffrn_measured_fraction_theta_full 0.949 _diffrn_measured_fraction_theta_max 0.949 _diffrn_measurement_device_type 'Rigaku RAXIS Rapid' _diffrn_measurement_method \w-scans _diffrn_radiation_monochromator confocal _diffrn_radiation_source 'micro-focus rotating anode' _diffrn_radiation_type CuK\a _diffrn_radiation_wavelength 1.54180 _diffrn_reflns_av_R_equivalents 0.0558 _diffrn_reflns_av_sigmaI/netI 0.0497 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_k_max 16 _diffrn_reflns_limit_k_min -16 _diffrn_reflns_limit_l_max 24 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_number 29398 _diffrn_reflns_theta_full 72.02 _diffrn_reflns_theta_max 72.02 _diffrn_reflns_theta_min 6.53 _exptl_absorpt_coefficient_mu 0.503 _exptl_absorpt_correction_T_max 0.9704 _exptl_absorpt_correction_T_min 0.9421 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details CrystalClear _exptl_crystal_colour colorless _exptl_crystal_density_diffrn 1.040 _exptl_crystal_density_method 'not measured' _exptl_crystal_description Prism _exptl_crystal_F_000 864 _exptl_crystal_size_max 0.12 _exptl_crystal_size_mid 0.10 _exptl_crystal_size_min 0.06 _refine_diff_density_max 0.239 _refine_diff_density_min -0.129 _refine_diff_density_rms 0.037 _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.0(3) _refine_ls_extinction_method none _refine_ls_goodness_of_fit_ref 1.011 _refine_ls_hydrogen_treatment constr _refine_ls_matrix_type full _refine_ls_number_parameters 261 _refine_ls_number_reflns 4537 _refine_ls_number_restraints 0 _refine_ls_restrained_S_all 1.011 _refine_ls_R_factor_all 0.0705 _refine_ls_R_factor_gt 0.0485 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 _refine_ls_structure_factor_coef Fsqd _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0650P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_weighting_scheme calc _refine_ls_wR_factor_gt 0.1151 _refine_ls_wR_factor_ref 0.1225 _reflns_number_gt 2942 _reflns_number_total 4537 _reflns_threshold_expression >2sigma(I) _[local]_cod_data_source_file jp101303j_si_001.cif _[local]_cod_data_source_block lidoment _[local]_cod_cif_authors_sg_H-M P212121 _cod_original_cell_volume 2495.3(4) _cod_database_code 1502677 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' '-x+1/2, -y, z+1/2' loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags C1 C 0.1012(2) -0.07692(15) 0.38847(10) 0.0540(6) Uani 1 1 d . H1 H 0.1325 -0.1465 0.3797 0.065 Uiso 1 1 calc R C2 C -0.0481(2) -0.07904(16) 0.42647(12) 0.0662(6) Uani 1 1 d . H2A H -0.1318 -0.1145 0.4044 0.079 Uiso 1 1 calc R H2B H -0.0847 -0.0106 0.4331 0.079 Uiso 1 1 calc R C3 C -0.0228(3) -0.12918(16) 0.48712(12) 0.0717(7) Uani 1 1 d . H3 H 0.0063 -0.1995 0.4795 0.086 Uiso 1 1 calc R C4 C 0.1166(3) -0.0795(2) 0.51955(12) 0.0832(8) Uani 1 1 d . H4A H 0.0865 -0.0113 0.5305 0.100 Uiso 1 1 calc R H4B H 0.1390 -0.1159 0.5570 0.100 Uiso 1 1 calc R C5 C 0.2655(3) -0.07646(19) 0.48138(12) 0.0738(7) Uani 1 1 d . H5A H 0.3031 -0.1447 0.4747 0.089 Uiso 1 1 calc R H5B H 0.3488 -0.0405 0.5034 0.089 Uiso 1 1 calc R C6 C 0.2392(2) -0.02611(15) 0.42033(10) 0.0565(6) Uani 1 1 d . H6 H 0.2052 0.0431 0.4288 0.068 Uiso 1 1 calc R O7 O 0.07270(18) -0.02715(10) 0.33198(7) 0.0686(4) Uani 1 1 d . H7 H -0.0049 -0.0530 0.3149 0.103 Uiso 1 1 calc R C8 C -0.1747(4) -0.12841(19) 0.52495(15) 0.0957(10) Uani 1 1 d . H8A H -0.1587 -0.1678 0.5612 0.144 Uiso 1 1 calc R H8B H -0.2615 -0.1565 0.5016 0.144 Uiso 1 1 calc R H8C H -0.2006 -0.0604 0.5361 0.144 Uiso 1 1 calc R C9 C 0.3888(3) -0.01951(16) 0.38121(12) 0.0701(7) Uani 1 1 d . H9 H 0.3581 0.0150 0.3434 0.084 Uiso 1 1 calc R C10 C 0.5188(3) 0.04297(17) 0.41066(13) 0.0877(9) Uani 1 1 d . H10A H 0.6044 0.0537 0.3820 0.132 Uiso 1 1 calc R H10B H 0.5597 0.0083 0.4458 0.132 Uiso 1 1 calc R H10C H 0.4750 0.1067 0.4229 0.132 Uiso 1 1 calc R C11 C 0.4576(3) -0.1210(2) 0.36291(16) 0.1052(10) Uani 1 1 d . H11A H 0.5549 -0.1110 0.3401 0.158 Uiso 1 1 calc R H11B H 0.3809 -0.1564 0.3382 0.158 Uiso 1 1 calc R H11C H 0.4806 -0.1596 0.3989 0.158 Uiso 1 1 calc R C20 C 0.0416(3) 0.24893(14) 0.38801(11) 0.0599(6) Uani 1 1 d . C21 C 0.0901(4) 0.29535(16) 0.44111(13) 0.0789(7) Uani 1 1 d . H21 H 0.0169 0.3039 0.4728 0.095 Uiso 1 1 calc R C22 C 0.2444(4) 0.32898(17) 0.44785(14) 0.0870(9) Uani 1 1 d . H22 H 0.2755 0.3610 0.4837 0.104 Uiso 1 1 calc R C23 C 0.3524(3) 0.31547(17) 0.40199(15) 0.0790(8) Uani 1 1 d . H23 H 0.4569 0.3390 0.4069 0.095 Uiso 1 1 calc R C24 C 0.3105(2) 0.26759(15) 0.34839(11) 0.0605(6) Uani 1 1 d . C25 C 0.1551(2) 0.23489(13) 0.34298(10) 0.0513(5) Uani 1 1 d . C26 C -0.1268(3) 0.21493(18) 0.38020(13) 0.0818(8) Uani 1 1 d . H26A H -0.1716 0.2455 0.3443 0.123 Uiso 1 1 calc R H26B H -0.1887 0.2343 0.4153 0.123 Uiso 1 1 calc R H26C H -0.1290 0.1430 0.3760 0.123 Uiso 1 1 calc R C27 C 0.4290(3) 0.25376(17) 0.29894(14) 0.0887(8) Uani 1 1 d . H27A H 0.4332 0.1840 0.2877 0.133 Uiso 1 1 calc R H27B H 0.5331 0.2751 0.3128 0.133 Uiso 1 1 calc R H27C H 0.3978 0.2932 0.2642 0.133 Uiso 1 1 calc R N28 N 0.10683(18) 0.18584(11) 0.28874(8) 0.0525(5) Uani 1 1 d . H28 H 0.0957 0.1214 0.2895 0.063 Uiso 1 1 calc R C29 C 0.0780(3) 0.23293(14) 0.23719(11) 0.0617(6) Uani 1 1 d . O30 O 0.0949(2) 0.32390(10) 0.23126(8) 0.0856(6) Uani 1 1 d . C31 C 0.0273(4) 0.16955(15) 0.18464(12) 0.0881(9) Uani 1 1 d . H31A H -0.0719 0.1970 0.1683 0.106 Uiso 1 1 calc R H31B H 0.1083 0.1751 0.1530 0.106 Uiso 1 1 calc R N32 N 0.0027(2) 0.06571(12) 0.19730(9) 0.0656(5) Uani 1 1 d . C33 C 0.1186(4) -0.0023(2) 0.16463(15) 0.0989(10) Uani 1 1 d . H33A H 0.0863 -0.0717 0.1707 0.119 Uiso 1 1 calc R H33B H 0.1144 0.0117 0.1212 0.119 Uiso 1 1 calc R C34 C 0.2832(4) 0.0109(3) 0.18625(18) 0.1436(14) Uani 1 1 d . H34A H 0.3147 0.0799 0.1813 0.215 Uiso 1 1 calc R H34B H 0.3540 -0.0316 0.1631 0.215 Uiso 1 1 calc R H34C H 0.2893 -0.0071 0.2286 0.215 Uiso 1 1 calc R C35 C -0.1578(4) 0.0298(2) 0.18564(17) 0.1089(12) Uani 1 1 d . H35A H -0.1577 -0.0432 0.1865 0.131 Uiso 1 1 calc R H35B H -0.1905 0.0508 0.1451 0.131 Uiso 1 1 calc R C36 C -0.2747(4) 0.0672(3) 0.2301(2) 0.1500(16) Uani 1 1 d . H36A H -0.2530 0.0379 0.2694 0.225 Uiso 1 1 calc R H36B H -0.3813 0.0490 0.2173 0.225 Uiso 1 1 calc R H36C H -0.2666 0.1391 0.2329 0.225 Uiso 1 1 calc R loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0690(13) 0.0478(10) 0.0453(15) 0.0009(11) -0.0068(11) -0.0029(9) C2 0.0685(14) 0.0578(11) 0.0722(19) 0.0079(13) -0.0031(13) -0.0019(10) C3 0.0915(16) 0.0575(12) 0.0661(19) 0.0086(13) 0.0152(15) 0.0072(12) C4 0.121(2) 0.0802(15) 0.0482(18) 0.0012(14) -0.0051(16) 0.0019(16) C5 0.0855(16) 0.0780(15) 0.0578(19) 0.0037(15) -0.0175(14) -0.0040(13) C6 0.0709(13) 0.0517(11) 0.0468(15) 0.0023(11) -0.0132(12) -0.0044(9) O7 0.0846(10) 0.0670(8) 0.0542(11) 0.0124(8) -0.0237(8) -0.0196(8) C8 0.119(2) 0.0728(15) 0.095(3) 0.0158(16) 0.0372(19) 0.0087(15) C9 0.0758(15) 0.0669(13) 0.0674(19) 0.0027(13) -0.0049(13) -0.0131(11) C10 0.0719(15) 0.0809(16) 0.110(2) 0.0074(16) -0.0165(15) -0.0198(12) C11 0.0925(18) 0.099(2) 0.124(3) -0.0276(18) 0.0344(19) -0.0101(16) C20 0.0809(15) 0.0489(12) 0.0500(17) 0.0054(11) 0.0015(13) 0.0026(10) C21 0.118(2) 0.0632(14) 0.055(2) 0.0003(13) 0.0022(17) 0.0031(14) C22 0.139(3) 0.0592(14) 0.062(2) -0.0064(15) -0.032(2) -0.0046(16) C23 0.0880(18) 0.0606(14) 0.088(2) 0.0007(15) -0.0368(18) -0.0084(12) C24 0.0641(13) 0.0498(11) 0.067(2) 0.0060(13) -0.0114(13) 0.0015(10) C25 0.0668(12) 0.0396(9) 0.0477(17) 0.0051(10) -0.0070(11) 0.0009(9) C26 0.0734(15) 0.0809(15) 0.091(2) 0.0118(15) 0.0147(14) -0.0085(12) C27 0.0688(14) 0.0881(17) 0.109(3) 0.0108(16) 0.0011(16) 0.0028(13) N28 0.0661(10) 0.0452(8) 0.0462(13) 0.0047(9) -0.0077(9) -0.0006(7) C29 0.0824(14) 0.0476(11) 0.0552(17) 0.0044(12) -0.0166(13) 0.0029(10) O30 0.1342(14) 0.0454(8) 0.0770(13) 0.0074(8) -0.0354(11) 0.0016(8) C31 0.151(2) 0.0526(13) 0.0609(19) 0.0031(12) -0.0286(17) -0.0032(14) N32 0.0818(12) 0.0583(10) 0.0567(14) 0.0005(10) -0.0142(11) -0.0030(9) C33 0.156(3) 0.0833(18) 0.057(2) -0.0145(15) 0.015(2) -0.0115(19) C34 0.126(3) 0.195(4) 0.110(3) -0.007(3) 0.019(2) 0.045(3) C35 0.125(2) 0.0797(18) 0.122(3) 0.0031(19) -0.055(2) -0.0074(18) C36 0.082(2) 0.183(3) 0.185(4) -0.041(4) 0.001(2) 0.024(2) loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle O7 C1 C2 110.79(17) O7 C1 C6 108.79(16) C2 C1 C6 112.57(19) C1 C2 C3 112.65(18) C2 C3 C8 111.4(2) C2 C3 C4 109.2(2) C8 C3 C4 112.4(2) C5 C4 C3 112.6(2) C4 C5 C6 112.7(2) C1 C6 C5 108.83(18) C1 C6 C9 113.01(19) C5 C6 C9 114.04(19) C10 C9 C6 112.3(2) C10 C9 C11 109.4(2) C6 C9 C11 114.09(19) C21 C20 C25 117.7(2) C21 C20 C26 120.7(2) C25 C20 C26 121.6(2) C22 C21 C20 120.8(3) C23 C22 C21 119.8(3) C22 C23 C24 121.5(2) C25 C24 C23 117.3(2) C25 C24 C27 121.8(2) C23 C24 C27 120.9(2) C24 C25 C20 122.8(2) C24 C25 N28 119.2(2) C20 C25 N28 118.03(18) C29 N28 C25 123.73(16) O30 C29 N28 122.8(2) O30 C29 C31 120.6(2) N28 C29 C31 116.60(17) N32 C31 C29 116.0(2) C31 N32 C35 114.8(2) C31 N32 C33 113.5(2) C35 N32 C33 108.1(2) C34 C33 N32 112.0(3) N32 C35 C36 112.6(3) loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance C1 O7 1.437(2) C1 C2 1.510(3) C1 C6 1.519(3) C2 C3 1.516(3) C3 C8 1.526(4) C3 C4 1.527(4) C4 C5 1.511(4) C5 C6 1.527(3) C6 C9 1.529(3) C9 C10 1.523(3) C9 C11 1.534(3) C20 C21 1.391(3) C20 C25 1.392(3) C20 C26 1.496(3) C21 C22 1.381(4) C22 C23 1.373(4) C23 C24 1.394(3) C24 C25 1.383(3) C24 C27 1.491(3) C25 N28 1.428(3) N28 C29 1.326(2) C29 O30 1.236(2) C29 C31 1.503(3) C31 N32 1.437(3) N32 C35 1.455(3) N32 C33 1.518(3) C33 C34 1.474(5) C35 C36 1.478(5) loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion O7 C1 C2 C3 -178.89(16) C6 C1 C2 C3 -56.8(2) C1 C2 C3 C8 178.91(19) C1 C2 C3 C4 54.2(3) C2 C3 C4 C5 -53.6(3) C8 C3 C4 C5 -177.8(2) C3 C4 C5 C6 55.5(3) O7 C1 C6 C5 177.93(17) C2 C1 C6 C5 54.7(2) O7 C1 C6 C9 -54.3(2) C2 C1 C6 C9 -177.50(18) C4 C5 C6 C1 -54.3(3) C4 C5 C6 C9 178.55(19) C1 C6 C9 C10 172.75(17) C5 C6 C9 C10 -62.3(3) C1 C6 C9 C11 -62.1(3) C5 C6 C9 C11 62.9(3) C25 C20 C21 C22 2.0(3) C26 C20 C21 C22 -178.4(2) C20 C21 C22 C23 -0.8(3) C21 C22 C23 C24 -0.5(4) C22 C23 C24 C25 0.6(3) C22 C23 C24 C27 179.8(2) C23 C24 C25 C20 0.7(3) C27 C24 C25 C20 -178.56(19) C23 C24 C25 N28 179.73(17) C27 C24 C25 N28 0.5(3) C21 C20 C25 C24 -2.0(3) C26 C20 C25 C24 178.5(2) C21 C20 C25 N28 179.00(17) C26 C20 C25 N28 -0.6(3) C24 C25 N28 C29 -76.1(2) C20 C25 N28 C29 103.0(2) C25 N28 C29 O30 2.1(3) C25 N28 C29 C31 -179.6(2) O30 C29 C31 N32 -176.6(2) N28 C29 C31 N32 5.0(3) C29 C31 N32 C35 119.6(3) C29 C31 N32 C33 -115.3(3) C31 N32 C33 C34 66.6(3) C35 N32 C33 C34 -164.8(3) C31 N32 C35 C36 -71.5(4) C33 N32 C35 C36 160.7(3) _journal_paper_doi 10.1021/jp101303j pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/ni.stru000066400000000000000000000034361470422267000234630ustar00rootroot00000000000000title structure Ni FCC format pdffit scale 1.000000 sharp 0.000000, 1.000000, 0.000000 spcgr Fm-3m cell 3.520000, 3.520000, 3.520000, 90.000000, 90.000000, 90.000000 dcell 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000 ncell 1, 1, 1, 4 atoms NI 0.00000000 0.00000000 0.00000000 1.0000 0.00000000 0.00000000 0.00000000 0.0000 0.00126651 0.00126651 0.00126651 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 NI 0.00000000 0.50000000 0.50000000 1.0000 0.00000000 0.00000000 0.00000000 0.0000 0.00126651 0.00126651 0.00126651 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 NI 0.50000000 0.00000000 0.50000000 1.0000 0.00000000 0.00000000 0.00000000 0.0000 0.00126651 0.00126651 0.00126651 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 NI 0.50000000 0.50000000 0.00000000 1.0000 0.00000000 0.00000000 0.00000000 0.0000 0.00126651 0.00126651 0.00126651 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/paracetamol.cif000066400000000000000000000242021470422267000251030ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2012-02-26 21:34:47 +0000 (Sun, 26 Feb 2012) $ #$Revision: 35909 $ #$URL: file:///home/coder/svn-repositories/cod/cif/7/10/39/7103910.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/ # # All data on this site have been placed in the public domain by the # contributors. # data_7103910 loop_ _publ_author_name 'Fabbiani, Francesca P A' 'Allan, David R' 'Dawson, Alice' 'David, William I F' 'McGregor, Pamela A' 'Oswald, Iain D H' 'Parsons, Simon' 'Pulham, Colin R' _publ_section_title ; Pressure-induced formation of a solvate of paracetamol. ; _journal_issue 24 _journal_name_full 'Chemical communications (Cambridge, England)' _journal_page_first 3004 _journal_page_last 3005 _journal_year 2003 _chemical_compound_source ; ? ; _chemical_formula_moiety ' C9 H13 N1 O3 ' _chemical_formula_sum 'C9 H13 N O3' _chemical_formula_weight 183.21 _chemical_name_common 'paracetamol monomethanolate' _chemical_name_systematic ; paracetamol monomethanolate ; _space_group_IT_number 14 _symmetry_cell_setting monoclinic _symmetry_space_group_name_Hall '-P 2ybc' _symmetry_space_group_name_H-M 'P 1 21/c 1' _atom_sites_solution_hydrogens geom _atom_sites_solution_primary direct _cell_angle_alpha 90 _cell_angle_beta 115.52(3) _cell_angle_gamma 90 _cell_formula_units_Z 4 _cell_length_a 7.630(2) _cell_length_b 17.209(3) _cell_length_c 7.3710(11) _cell_measurement_reflns_used 285 _cell_measurement_temperature 293 _cell_measurement_theta_max 18 _cell_measurement_theta_min 4 _cell_volume 873.4(4) _computing_cell_refinement ; SAINT (Siemens ,1995) ; _computing_data_collection ; SMART (Siemens, 1993) ; _computing_data_reduction ; SAINT (Siemens ,1995) ; _computing_molecular_graphics ; CAMERON (Watkin et al 1996) ; _computing_publication_material ; CRYSTALS (Watkin et al 2001) ; _computing_structure_refinement ; CRYSTALS (Watkin et al 2001) ; _computing_structure_solution DASH _diffrn_ambient_temperature 293 _diffrn_measured_fraction_theta_full 0.339 _diffrn_measured_fraction_theta_max 0.244 _diffrn_measurement_device_type 'Bruker SMART APEX CCD' _diffrn_measurement_method 'omega scans' _diffrn_radiation_monochromator graphite _diffrn_radiation_type 'Mo K\a' _diffrn_radiation_wavelength 0.71073 _diffrn_reflns_av_R_equivalents 0.05 _diffrn_reflns_limit_h_max 4 _diffrn_reflns_limit_h_min -4 _diffrn_reflns_limit_k_max 16 _diffrn_reflns_limit_k_min -17 _diffrn_reflns_limit_l_max 7 _diffrn_reflns_limit_l_min -7 _diffrn_reflns_number 801 _diffrn_reflns_theta_full 15.632 _diffrn_reflns_theta_max 20.843 _diffrn_reflns_theta_min 3.283 _diffrn_standards_decay_% 0.00 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time 0 _diffrn_standards_number 0 _exptl_absorpt_coefficient_mu 0.105 _exptl_absorpt_correction_T_max 1.0000 _exptl_absorpt_correction_T_min 0.2895 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details 'SADABS (Siemens, 1996)' _exptl_crystal_colour ' block ' _exptl_crystal_density_diffrn 1.393 _exptl_crystal_description ' colourless ' _exptl_crystal_F_000 392.000 _exptl_crystal_size_max 0.20 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.10 _refine_diff_density_max 0.33 _refine_diff_density_min -0.43 _refine_ls_extinction_method None _refine_ls_goodness_of_fit_ref 0.9312 _refine_ls_hydrogen_treatment noref _refine_ls_matrix_type full _refine_ls_number_parameters 14 _refine_ls_number_reflns 172 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.1848 _refine_ls_R_factor_gt 0.1347 _refine_ls_shift/su_max 0.000032 _refine_ls_structure_factor_coef Fsqd _refine_ls_weighting_details ; Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A~0~*T~0~(x)+A~1~*T~1~(x) ... +A~n-1~]*T~n-1~(x)] where A~i~ are the Chebychev coefficients listed below and x= Fcalc/Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)^2]^2 A~i~ are: 9.45 10.7 2.51 ; _refine_ls_weighting_scheme calc _refine_ls_wR_factor_all 0.2161 _refine_ls_wR_factor_gt 0.1845 _refine_ls_wR_factor_ref 0.2161 _reflns_limit_h_max 1 _reflns_limit_h_min -4 _reflns_limit_k_max 17 _reflns_limit_k_min 0 _reflns_limit_l_max 7 _reflns_limit_l_min 0 _reflns_number_gt 118 _reflns_number_total 223 _reflns_threshold_expression I>2.00u(I) _[local]_cod_data_source_file b310394c.txt _[local]_cod_data_source_block compound_1 _[local]_cod_cif_authors_sg_H-M 'P 1 21/c 1 ' _[local]_cod_chemical_formula_sum_orig ' C9 H13 N1 O3 ' _cod_depositor_comments ; The following automatic conversions were performed: '_symmetry_cell_setting' value 'Monoclinic' changed to 'monoclinic' according to '/home/saulius/struct/CIF-dictionaries/cif_core.dic' dictionary named 'cif_core.dic' version 2.4.1 from 2010-06-29. Automatic conversion script Id: cif_fix_enum 1527 2010-12-29 10:47:43Z saulius ; _cod_database_code 7103910 loop_ _symmetry_equiv_pos_as_xyz x,y,z -x,-y,-z -x,y+1/2,-z+1/2 x,-y+1/2,z+1/2 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_occupancy _atom_site_adp_type _atom_site_refinement_flags _atom_site_attached_hydrogens O1 O 1.418(4) 0.2012(8) 0.453(2) 0.062(4) 1.0000 Uiso G . H11 H 1.482(4) 0.1617(9) 0.447(3) 0.049(4) 1.0000 Uiso G . O2 O 0.619(4) 0.0236(8) -0.131(2) 0.062(4) 1.0000 Uiso GD . N3 N 0.626(4) 0.1452(7) -0.007(2) 0.062(4) 1.0000 Uiso GD . C4 C 0.829(4) 0.1566(6) 0.106(2) 0.062(4) 1.0000 Uiso GD . C5 C 0.971(4) 0.1085(6) 0.094(2) 0.062(4) 1.0000 Uiso GD . C6 C 1.167(4) 0.1244(7) 0.212(2) 0.062(4) 1.0000 Uiso G . C7 C 1.223(4) 0.1874(6) 0.343(2) 0.062(4) 1.0000 Uiso G . C8 C 1.080(4) 0.2343(6) 0.358(3) 0.062(4) 1.0000 Uiso G . C9 C 0.886(4) 0.2188(7) 0.241(3) 0.062(4) 1.0000 Uiso G . C10 C 0.534(4) 0.0831(8) -0.118(2) 0.062(4) 1.0000 Uiso GD . C11 C 0.316(4) 0.091(1) -0.227(3) 0.062(4) 1.0000 Uiso G . O13 O 0.351(7) -0.0905(13) -0.448(4) 0.062(4) 1.0000 Uiso G . C12 C 0.157(7) -0.078(2) -0.566(6) 0.062(4) 1.0000 Uiso G . H51 H 0.9307 0.0630 -0.0005 0.073(4) 1.0000 Uiso . . H61 H 1.2667 0.0898 0.1991 0.073(4) 1.0000 Uiso . . H81 H 1.1207 0.2785 0.4548 0.073(4) 1.0000 Uiso . . H91 H 0.7856 0.2525 0.2543 0.073(4) 1.0000 Uiso . . H111 H 0.2747 0.1438 -0.1956 0.073(4) 1.0000 Uiso . . H112 H 0.2716 0.0866 -0.3739 0.073(4) 1.0000 Uiso . . H113 H 0.2518 0.0500 -0.1792 0.073(4) 1.0000 Uiso . . H31 H 0.5405 0.1895 -0.0019 0.074(4) 1.0000 Uiso . . H131 H 0.4337 -0.0522 -0.3521 0.039(4) 1.0000 Uiso . . H121 H 0.1026 -0.1282 -0.6557 0.075(4) 1.0000 Uiso . . H122 H 0.1286 -0.0339 -0.6528 0.075(4) 1.0000 Uiso . . H123 H 0.0850 -0.0765 -0.4785 0.075(4) 1.0000 Uiso . . loop_ _atom_type_symbol _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_Cromer_Mann_a1 _atom_type_scat_Cromer_Mann_b1 _atom_type_scat_Cromer_Mann_a2 _atom_type_scat_Cromer_Mann_b2 _atom_type_scat_Cromer_Mann_a3 _atom_type_scat_Cromer_Mann_b3 _atom_type_scat_Cromer_Mann_a4 _atom_type_scat_Cromer_Mann_b4 _atom_type_scat_Cromer_Mann_c _atom_type_scat_source 'C ' 0.0033 0.0016 2.3100 20.8439 1.0200 10.2075 1.5886 0.5687 0.8650 51.6512 0.2156 International_Tables_Vol_IV_Table_2.2B 'H ' 0.0000 0.0000 0.4930 10.5109 0.3229 26.1257 0.1402 3.1424 0.0408 57.7998 0.0030 International_Tables_Vol_IV_Table_2.2B 'N ' 0.0061 0.0033 12.2126 0.0057 3.1322 9.8933 2.0125 28.9975 1.1663 0.5826 -11.5290 International_Tables_Vol_IV_Table_2.2B 'O ' 0.0106 0.0060 3.0485 13.2771 2.2868 5.7011 1.5463 0.3239 0.8670 32.9089 0.2508 International_Tables_Vol_IV_Table_2.2B loop_ _geom_angle_atom_site_label_1 _geom_angle_site_symmetry_1 _geom_angle_atom_site_label_2 _geom_angle_site_symmetry_2 _geom_angle_atom_site_label_3 _geom_angle_site_symmetry_3 _geom_angle _geom_angle_publ_flag C7 . O1 . H11 . 109.474 no H31 . N3 . C10 . 116.277 no H31 . N3 . C4 . 115.362 no C10 . N3 . C4 . 128.353 yes C9 . C4 . C5 . 119.15 yes C9 . C4 . N3 . 116.77 yes C5 . C4 . N3 . 124.05 yes H51 . C5 . C6 . 120.872 no H51 . C5 . C4 . 119.304 no C6 . C5 . C4 . 119.823 yes H61 . C6 . C7 . 120.681 no H61 . C6 . C5 . 118.513 no C7 . C6 . C5 . 120.80 yes C8 . C7 . O1 . 122.37 yes C8 . C7 . C6 . 119.35 yes O1 . C7 . C6 . 118.276 yes H81 . C8 . C9 . 120.811 no H81 . C8 . C7 . 119.196 no C9 . C8 . C7 . 119.991 yes H91 . C9 . C8 . 119.086 no H91 . C9 . C4 . 120.062 no C8 . C9 . C4 . 120.849 yes C11 . C10 . O2 . 121.759 yes C11 . C10 . N3 . 115.011 yes O2 . C10 . N3 . 123.229 yes H113 . C11 . H112 . 110.327 no H113 . C11 . H111 . 107.477 no H112 . C11 . H111 . 108.709 no H113 . C11 . C10 . 110.093 no H112 . C11 . C10 . 110.763 no H111 . C11 . C10 . 109.396 no H131 . O13 . C12 . 122.749 no H123 . C12 . H122 . 111.394 no H123 . C12 . H121 . 104.433 no H122 . C12 . H121 . 108.549 no H123 . C12 . O13 . 109.552 no H122 . C12 . O13 . 114.646 no H121 . C12 . O13 . 107.692 no loop_ _geom_bond_atom_site_label_1 _geom_bond_site_symmetry_1 _geom_bond_atom_site_label_2 _geom_bond_site_symmetry_2 _geom_bond_distance _geom_bond_publ_flag O1 . C7 . 1.3735 yes O1 . H11 . 0.85000 no O2 . C10 . 1.23881 yes N3 . H31 . 1.015 no N3 . C10 . 1.3458 yes N3 . C4 . 1.4208 yes C4 . C9 . 1.3952 yes C4 . C5 . 1.3995 yes C5 . H51 . 1.006 no C5 . C6 . 1.3918 yes C6 . H61 . 1.003 no C6 . C7 . 1.3913 yes C7 . C8 . 1.3963 yes C8 . H81 . 0.994 no C8 . C9 . 1.3869 yes C9 . H91 . 0.997 no C10 . C11 . 1.5077 yes C11 . H113 . 1.003 no C11 . H112 . 0.987 no C11 . H111 . 1.023 no O13 . H131 . 0.974 no O13 . C12 . 1.3717 yes C12 . H123 . 1.016 no C12 . H122 . 0.960 no C12 . H121 . 1.050 no pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata/paracetamol_monomethanolate.cif000066400000000000000000000242511470422267000303610ustar00rootroot00000000000000#------------------------------------------------------------------------------ #$Date: 2018-10-05 15:19:55 +0300 (Fri, 05 Oct 2018) $ #$Revision: 211332 $ #$URL: file:///home/coder/svn-repositories/cod/cif/2/20/15/2201530.cif $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/. The original data for this entry # were provided by IUCr Journals, http://journals.iucr.org/. # # The file may be used within the scientific community so long as # proper attribution is given to the journal article from which the # data were obtained. # data_2201530 loop_ _publ_author_name 'Andrew Parkin' 'Simon Parsons' 'Colin R. Pulham' _publ_section_title ; Paracetamol monohydrate at 150K ; _journal_issue 12 _journal_name_full 'Acta Crystallographica Section E' _journal_page_first o1345 _journal_page_last o1347 _journal_paper_doi 10.1107/S1600536802019840 _journal_volume 58 _journal_year 2002 _chemical_formula_iupac 'C8 H9 N O2, H2 O' _chemical_formula_moiety 'C8 H9 N O2, H2 O' _chemical_formula_sum 'C8 H11 N O3' _chemical_formula_weight 169.18 _chemical_name_common 'Paracetamol monohydrate' _chemical_name_systematic ; 4-hydroxyacetanilide hydrate ; _space_group_IT_number 14 _symmetry_cell_setting monoclinic _symmetry_space_group_name_Hall '-P 2yn' _symmetry_space_group_name_H-M 'P 1 21/n 1' _atom_sites_solution_hydrogens mixed _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _audit_creation_method SHELXL-97 _cell_angle_alpha 90.00 _cell_angle_beta 96.399(3) _cell_angle_gamma 90.00 _cell_formula_units_Z 4 _cell_length_a 4.5039(6) _cell_length_b 10.5391(14) _cell_length_c 17.048(2) _cell_measurement_reflns_used 1700 _cell_measurement_temperature 150(2) _cell_measurement_theta_max 26.4 _cell_measurement_theta_min 2.2 _cell_volume 804.18(18) _computing_cell_refinement 'SAINT (Bruker, 2002)' _computing_data_collection 'SMART (Bruker, 2001) ' _computing_data_reduction SAINT _computing_molecular_graphics ; SHELXTL and CAMERON (Watkin et al., 1993) ; _computing_publication_material SHELXTL _computing_structure_refinement SHELXTL _computing_structure_solution 'SHELXTL (Sheldrick, 1997)' _diffrn_ambient_temperature 150(2) _diffrn_measured_fraction_theta_full 0.998 _diffrn_measured_fraction_theta_max 0.998 _diffrn_measurement_device_type 'Bruker SMART APEX CCD area-detector' _diffrn_measurement_method '\f and \w' _diffrn_radiation_monochromator graphite _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_type MoK\a _diffrn_radiation_wavelength 0.71073 _diffrn_reflns_av_R_equivalents 0.0519 _diffrn_reflns_av_sigmaI/netI 0.0704 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_k_max 13 _diffrn_reflns_limit_k_min -13 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_limit_l_min -18 _diffrn_reflns_number 4516 _diffrn_reflns_theta_full 26.40 _diffrn_reflns_theta_max 26.40 _diffrn_reflns_theta_min 2.28 _exptl_absorpt_coefficient_mu 0.107 _exptl_absorpt_correction_T_max 0.962 _exptl_absorpt_correction_T_min 0.864 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details ; SADABS (Sheldrick, 1997), based on a procedure given by Blessing (1995) ; _exptl_crystal_colour Colourless _exptl_crystal_density_diffrn 1.397 _exptl_crystal_density_method 'not measured' _exptl_crystal_description needle _exptl_crystal_F_000 360 _exptl_crystal_size_max 0.45 _exptl_crystal_size_mid 0.07 _exptl_crystal_size_min 0.06 _refine_diff_density_max 0.351 _refine_diff_density_min -0.283 _refine_ls_extinction_coef 0 _refine_ls_extinction_method none _refine_ls_goodness_of_fit_ref 0.967 _refine_ls_hydrogen_treatment mixed _refine_ls_matrix_type full _refine_ls_number_parameters 126 _refine_ls_number_reflns 1650 _refine_ls_number_restraints 0 _refine_ls_restrained_S_all 0.967 _refine_ls_R_factor_all 0.0808 _refine_ls_R_factor_gt 0.0621 _refine_ls_shift/su_max <0.001 _refine_ls_shift/su_mean 0.000 _refine_ls_structure_factor_coef Fsqd _refine_ls_weighting_details 'calc w = 1/[\s^2^(Fo^2^)+(0.0834P)^2^] where P = (Fo^2^+2Fc^2^)/3' _refine_ls_weighting_scheme calc _refine_ls_wR_factor_gt 0.1433 _refine_ls_wR_factor_ref 0.1527 _reflns_number_gt 1232 _reflns_number_total 1650 _reflns_threshold_expression I>2\s(I) _cod_data_source_file na6176.cif _cod_data_source_block 1 _cod_depositor_comments ; The following automatic conversions were performed: '_atom_sites_solution_hydrogens' value 'geom + difmap' was changed to 'mixed'. Automatic conversion script Id: cif_fix_values 6452 2018-10-05 10:23:21Z andrius ; _cod_original_cell_volume 804.18(19) _cod_original_sg_symbol_Hall '-P 2yn ' _cod_original_sg_symbol_H-M 'P 21/n' _cod_database_code 2201530 _cod_database_fobs_code 2201530 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_calc_flag _atom_site_refinement_flags _atom_site_occupancy _atom_site_disorder_assembly _atom_site_disorder_group _atom_site_type_symbol C1 0.5762(5) 0.6687(2) 0.15652(13) 0.0203(5) Uani d . 1 . . C C2 0.6405(5) 0.5890(2) 0.09617(14) 0.0228(6) Uani d . 1 . . C H2 0.5360 0.5979 0.0449 0.027 Uiso calc R 1 . . H C3 0.8575(5) 0.4962(2) 0.11063(14) 0.0227(6) Uani d . 1 . . C H3 0.9020 0.4418 0.0691 0.027 Uiso calc R 1 . . H C4 1.0105(5) 0.4823(2) 0.18545(14) 0.0201(5) Uani d . 1 . . C O4 1.2257(4) 0.39115(15) 0.20327(10) 0.0237(4) Uani d . 1 . . O H4 1.256(6) 0.344(3) 0.1589(17) 0.032(7) Uiso d . 1 . . H C5 0.9479(5) 0.5626(2) 0.24524(14) 0.0231(6) Uani d . 1 . . C H5 1.0530 0.5541 0.2965 0.028 Uiso calc R 1 . . H C6 0.7335(5) 0.6550(2) 0.23077(14) 0.0228(6) Uani d . 1 . . C H6 0.6924 0.7104 0.2722 0.027 Uiso calc R 1 . . H N7 0.3541(5) 0.76490(18) 0.14821(12) 0.0210(5) Uani d . 1 . . N H7 0.317(5) 0.802(2) 0.1921(15) 0.017(6) Uiso d . 1 . . H C8 0.1973(5) 0.8114(2) 0.08327(13) 0.0197(5) Uani d . 1 . . C O8 0.2264(4) 0.77490(15) 0.01541(9) 0.0256(4) Uani d . 1 . . O C9 -0.0181(6) 0.9152(2) 0.09736(15) 0.0251(6) Uani d . 1 . . C H9A 0.0620 0.9968 0.0819 0.038 Uiso calc R 1 . . H H9B -0.0470 0.9175 0.1535 0.038 Uiso calc R 1 . . H H9C -0.2101 0.8991 0.0659 0.038 Uiso calc R 1 . . H O1W 0.1960(5) 0.73246(17) 0.41504(11) 0.0283(5) Uani d . 1 . . O H1W 0.363(9) 0.725(3) 0.452(2) 0.062(11) Uiso d . 1 . . H H2W 0.045(9) 0.739(3) 0.446(2) 0.060(10) Uiso d . 1 . . H loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site_aniso_U_23 C1 0.0202(13) 0.0170(11) 0.0232(13) -0.0018(9) -0.0003(9) 0.0017(9) C2 0.0266(14) 0.0190(11) 0.0210(13) -0.0012(10) -0.0051(9) 0.0017(9) C3 0.0269(14) 0.0182(11) 0.0226(13) -0.0013(10) 0.0005(10) -0.0032(10) C4 0.0168(13) 0.0183(11) 0.0244(13) -0.0013(9) -0.0014(9) 0.0044(10) O4 0.0286(10) 0.0211(9) 0.0204(10) 0.0044(7) -0.0020(7) 0.0001(7) C5 0.0244(14) 0.0219(12) 0.0214(13) -0.0027(10) -0.0046(9) 0.0027(10) C6 0.0257(14) 0.0213(11) 0.0204(13) -0.0012(10) -0.0012(9) -0.0043(10) N7 0.0251(12) 0.0192(10) 0.0181(11) 0.0001(8) -0.0006(8) -0.0029(8) C8 0.0212(13) 0.0172(11) 0.0198(12) -0.0040(9) -0.0015(9) -0.0012(9) O8 0.0265(10) 0.0274(9) 0.0214(10) 0.0038(7) -0.0032(7) -0.0023(7) C9 0.0268(14) 0.0219(12) 0.0250(13) -0.0001(10) -0.0034(10) 0.0005(10) O1W 0.0301(11) 0.0299(10) 0.0237(10) -0.0025(8) -0.0019(8) 0.0016(8) loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle C2 C1 C6 119.2(2) C2 C1 N7 124.2(2) C6 C1 N7 116.6(2) C1 C2 C3 119.9(2) C1 C2 H2 120.1 C3 C2 H2 120.1 C2 C3 C4 120.4(2) C2 C3 H3 119.8 C4 C3 H3 119.8 O4 C4 C5 117.6(2) O4 C4 C3 122.9(2) C5 C4 C3 119.6(2) C4 O4 H4 110.9(18) C6 C5 C4 120.0(2) C6 C5 H5 120.0 C4 C5 H5 120.0 C5 C6 C1 121.0(2) C5 C6 H6 119.5 C1 C6 H6 119.5 C8 N7 C1 130.2(2) C8 N7 H7 114.1(16) C1 N7 H7 115.6(16) O8 C8 N7 123.9(2) O8 C8 C9 120.9(2) N7 C8 C9 115.23(19) C8 C9 H9A 109.5 C8 C9 H9B 109.5 H9A C9 H9B 109.5 C8 C9 H9C 109.5 H9A C9 H9C 109.5 H9B C9 H9C 109.5 H1W O1W H2W 102(3) loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_site_symmetry_2 _geom_bond_distance _geom_bond_publ_flag C1 C2 . 1.384(3) ? C1 C6 . 1.387(3) ? C1 N7 . 1.420(3) ? C2 C3 . 1.386(3) ? C2 H2 . 0.9500 ? C3 C4 . 1.388(3) ? C3 H3 . 0.9500 ? C4 O4 . 1.374(3) ? C4 C5 . 1.378(3) ? O4 H4 . 0.93(3) ? C5 C6 . 1.375(3) ? C5 H5 . 0.9500 ? C6 H6 . 0.9500 ? N7 C8 . 1.338(3) ? N7 H7 . 0.88(3) ? C8 O8 . 1.240(3) ? C8 C9 . 1.499(3) ? C9 H9A . 0.9800 ? C9 H9B . 0.9800 ? C9 H9C . 0.9800 ? O1W H1W . 0.93(4) ? O1W H2W . 0.90(4) ? loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_site_symmetry_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA N7 H7 O4 2_655 0.88(3) 2.04(3) 2.918(3) 174(2) O4 H4 O1W 2_645 0.93(3) 1.76(3) 2.673(2) 170(2) O1W H1W O8 4_676 0.93(4) 1.85(4) 2.780(3) 171(3) O1W H2W O8 4_576 0.90(4) 1.97(4) 2.866(3) 171(3) loop_ _cod_related_entry_id _cod_related_entry_database _cod_related_entry_code 1 ChemSpider 21132048 paracetamol_monomethanolate_data_single_crystal.cif000066400000000000000000001312431470422267000343750ustar00rootroot00000000000000pyobjcryst-2024.2.1/src/pyobjcryst/tests/testdata#------------------------------------------------------------------------------ #$Date: 2016-04-02 23:58:55 +0300 (Sat, 02 Apr 2016) $ #$Revision: 180935 $ #$URL: file:///home/coder/svn-repositories/cod/hkl/2/20/15/2201530.hkl $ #------------------------------------------------------------------------------ # # This file is available in the Crystallography Open Database (COD), # http://www.crystallography.net/. The original data for this entry # were provided by IUCr Journals, http://journals.iucr.org/. # # The file may be used within the scientific community so long as # proper attribution is given to the journal article from which the # data were obtained. # data_2201530_Fobs loop_ _publ_author_name 'Parkin, Andrew' 'Parsons, Simon' 'Pulham, Colin R.' _publ_section_title ; Paracetamol monohydrate at 150K ; _journal_issue 12 _journal_name_full 'Acta Crystallographica Section E' _journal_page_first o1345 _journal_page_last o1347 _journal_volume 58 _journal_year 2002 _space_group_IT_number 14 _symmetry_space_group_name_Hall '-P 2yn' _symmetry_space_group_name_H-M 'P 1 21/n 1' _cell_angle_alpha 90.000 _cell_angle_beta 96.399 _cell_angle_gamma 90.000 _cell_length_a 4.5039 _cell_length_b 10.5391 _cell_length_c 17.0480 _exptl_crystal_F_000 360.00 _reflns_d_resolution_high 0.7993 _cod_data_source_file na61761sup2.hkl _cod_data_source_block 1 #BEGIN Tags that were not found in dictionaries: _shelx_title 'paracetamol monohydrate in P2(1)/n' _shelx_refln_list_code 4 _shelx_f_calc_maximum 111.90 _shelx_f_squared_multiplier 1.000 #END Tags that were not found in dictionaries loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' loop_ _refln_index_h _refln_index_k _refln_index_l _refln_F_squared_calc _refln_F_squared_meas _refln_F_squared_sigma _refln_observed_status 2 0 0 1505.76 1436.12 41.04 o 4 0 0 206.70 156.32 19.60 o 1 1 0 110.92 94.97 6.84 o 2 1 0 310.08 282.99 13.93 o 3 1 0 4.50 6.35 4.38 o 4 1 0 102.54 108.50 12.63 o 5 1 0 5.68 15.03 8.76 o 0 2 0 1159.71 1244.79 25.29 o 1 2 0 5942.08 5886.67 105.23 o 2 2 0 3517.90 3663.85 73.06 o 3 2 0 90.83 83.66 10.58 o 4 2 0 0.07 1.18 4.41 o 5 2 0 39.79 66.37 14.05 o 1 3 0 1870.35 1836.42 48.83 o 2 3 0 19.91 20.87 4.55 o 3 3 0 0.34 0.63 3.48 o 4 3 0 7.00 8.91 5.42 o 5 3 0 13.16 21.22 9.11 o 0 4 0 887.14 890.46 82.43 o 1 4 0 482.30 481.36 21.90 o 2 4 0 9.52 9.43 3.20 o 3 4 0 36.70 39.93 6.66 o 4 4 0 22.21 36.82 9.70 o 5 4 0 7.88 14.25 10.85 o 1 5 0 456.57 455.76 10.71 o 2 5 0 59.90 58.88 5.43 o 3 5 0 9.44 11.57 3.42 o 4 5 0 132.77 140.97 21.83 o 5 5 0 0.11 4.15 5.37 o 0 6 0 664.85 592.17 15.54 o 1 6 0 0.01 2.12 2.78 o 2 6 0 55.59 62.96 7.50 o 3 6 0 28.07 23.74 7.72 o 4 6 0 0.22 2.61 4.90 o 1 7 0 28.94 28.76 4.68 o 2 7 0 63.40 70.48 8.23 o 3 7 0 0.43 3.54 4.99 o 4 7 0 1.59 5.76 6.14 o 0 8 0 110.12 88.94 10.84 o 1 8 0 83.37 70.74 7.10 o 2 8 0 164.93 148.59 11.60 o 3 8 0 19.85 27.39 7.94 o 4 8 0 1.24 4.18 6.01 o 1 9 0 98.69 86.78 8.04 o 2 9 0 26.56 20.72 6.56 o 3 9 0 111.30 104.14 14.63 o 4 9 0 11.92 12.54 6.70 o 0 10 0 63.26 59.93 10.05 o 1 10 0 4.65 5.30 2.99 o 2 10 0 3.92 7.32 5.21 o 3 10 0 31.63 32.60 8.84 o 1 11 0 122.42 97.72 10.80 o 2 11 0 0.46 4.69 5.16 o 3 11 0 10.29 11.61 6.44 o 0 12 0 319.10 240.98 28.62 o 1 12 0 3.10 2.73 3.31 o 2 12 0 19.72 16.51 6.17 o -5 0 1 19.07 24.96 10.46 o -3 0 1 194.70 185.98 19.87 o -1 0 1 736.78 536.78 21.83 o 1 0 1 62.19 50.71 6.53 o 3 0 1 938.58 844.97 36.86 o -5 1 1 20.38 24.02 7.06 o -4 1 1 107.26 120.20 13.49 o -3 1 1 386.97 408.36 20.92 o -2 1 1 14.24 12.65 4.76 o -1 1 1 409.94 366.59 14.12 o 0 1 1 471.90 586.25 26.03 o 1 1 1 38.53 31.62 3.66 o 2 1 1 48.08 44.95 6.28 o 3 1 1 1.50 2.17 3.74 o 4 1 1 19.60 20.82 6.00 o 5 1 1 8.49 18.72 8.05 o -5 2 1 43.21 58.42 16.47 o -4 2 1 205.16 228.19 19.52 o -3 2 1 29.42 25.51 6.49 o -2 2 1 6.08 1.23 3.89 o -1 2 1 0.48 2.98 2.33 o 0 2 1 11.18 16.48 2.49 o 1 2 1 4562.27 4949.41 36.98 o 2 2 1 463.49 479.93 36.69 o 3 2 1 14.67 12.39 5.31 o 4 2 1 2.19 3.78 3.91 o 5 2 1 53.79 97.31 23.40 o -5 3 1 11.89 25.67 9.22 o -4 3 1 3.51 5.36 8.50 o -3 3 1 74.50 78.06 10.40 o -2 3 1 1417.55 1427.59 37.12 o -1 3 1 2302.03 2394.71 33.44 o 0 3 1 1497.31 1560.99 16.73 o 1 3 1 290.35 288.47 8.75 o 2 3 1 37.08 49.23 5.45 o 3 3 1 190.82 197.06 29.75 o 4 3 1 3.11 2.97 5.89 o 5 3 1 34.52 56.67 15.42 o -5 4 1 3.38 9.67 11.24 o -4 4 1 0.31 4.41 3.92 o -3 4 1 57.81 78.64 9.01 o -2 4 1 76.73 73.26 5.98 o -1 4 1 263.82 264.67 6.83 o 0 4 1 143.49 167.15 6.59 o 1 4 1 51.28 43.80 4.18 o 2 4 1 193.15 211.88 10.82 o 3 4 1 35.91 41.98 6.52 o 4 4 1 284.02 383.32 28.37 o 5 4 1 7.87 16.60 9.93 o -5 5 1 0.79 3.16 5.34 o -4 5 1 39.67 43.65 9.60 o -3 5 1 12.32 18.67 4.48 o -2 5 1 629.13 586.29 24.05 o -1 5 1 22.06 23.79 2.66 o 0 5 1 686.63 701.67 13.95 o 1 5 1 256.89 273.45 9.58 o 2 5 1 1056.00 950.36 31.70 o 3 5 1 8.40 10.23 4.00 o 4 5 1 68.10 93.32 21.43 o 5 5 1 6.75 12.94 10.06 o -5 6 1 2.42 2.34 5.38 o -4 6 1 8.45 7.38 5.84 o -3 6 1 72.00 67.30 9.26 o -2 6 1 2.12 3.54 3.54 o -1 6 1 246.82 256.10 9.73 o 0 6 1 17.60 15.58 2.94 o 1 6 1 883.18 901.18 16.88 o 2 6 1 64.06 58.10 5.44 o 3 6 1 542.68 512.47 28.83 o 4 6 1 56.08 83.88 14.31 o -4 7 1 136.79 141.80 17.14 o -3 7 1 34.83 35.54 9.21 o -2 7 1 200.63 189.80 12.94 o -1 7 1 175.86 159.48 9.44 o 0 7 1 1256.13 1302.58 36.81 o 1 7 1 35.38 31.59 4.90 o 2 7 1 20.47 20.10 4.79 o 3 7 1 189.85 147.60 16.96 o 4 7 1 0.11 2.81 5.45 o -4 8 1 49.30 65.97 12.54 o -3 8 1 40.99 31.63 8.50 o -2 8 1 54.70 50.29 7.06 o -1 8 1 105.08 99.98 8.21 o 0 8 1 179.37 154.80 9.81 o 1 8 1 102.97 93.99 8.05 o 2 8 1 66.01 67.99 10.93 o 3 8 1 3.98 3.52 4.80 o 4 8 1 0.79 1.27 5.49 o -4 9 1 36.03 33.38 9.30 o -3 9 1 95.00 91.78 13.56 o -2 9 1 83.97 78.71 9.38 o -1 9 1 92.95 87.84 8.27 o 0 9 1 103.84 94.07 8.20 o 1 9 1 91.76 67.67 6.93 o 2 9 1 3.40 6.74 4.59 o 3 9 1 4.00 7.66 5.12 o 4 9 1 0.13 2.80 5.41 o -3 10 1 88.03 81.46 13.09 o -2 10 1 0.59 6.02 4.32 o -1 10 1 156.58 131.18 10.04 o 0 10 1 261.56 238.80 13.45 o 1 10 1 2.54 5.46 2.68 o 2 10 1 58.53 49.90 10.16 o 3 10 1 10.38 12.85 6.04 o -3 11 1 30.41 37.09 10.09 o -2 11 1 91.51 69.11 11.41 o -1 11 1 80.20 69.17 7.58 o 0 11 1 192.06 159.41 11.63 o 1 11 1 3.52 4.90 4.02 o 2 11 1 24.56 26.11 7.35 o 3 11 1 25.04 25.43 8.56 o -2 12 1 2.51 2.95 4.35 o -1 12 1 55.33 56.53 8.89 o 0 12 1 204.53 167.16 12.26 o 1 12 1 57.73 51.08 10.72 o 2 12 1 5.91 7.09 5.07 o 0 13 1 6.09 9.23 4.34 o -4 0 2 1.19 5.23 7.06 o -2 0 2 651.08 560.96 29.80 o 0 0 2 494.07 378.60 26.34 o 2 0 2 50.42 44.96 8.63 o 4 0 2 103.69 106.39 17.25 o -5 1 2 4.98 9.29 5.43 o -4 1 2 13.18 16.19 6.47 o -3 1 2 280.87 283.85 19.00 o -2 1 2 80.97 64.03 7.90 o -1 1 2 4347.16 3847.83 170.44 o 0 1 2 2427.58 2581.80 26.00 o 1 1 2 116.09 114.93 7.88 o 2 1 2 890.96 918.18 22.08 o 3 1 2 8.07 9.92 4.19 o 4 1 2 280.48 302.96 17.65 o 5 1 2 182.78 349.36 53.06 o -5 2 2 174.79 221.03 20.71 o -4 2 2 333.15 379.44 24.68 o -3 2 2 85.51 74.88 9.46 o -2 2 2 224.29 235.85 15.02 o -1 2 2 6234.72 5526.72 135.69 o 0 2 2 2249.82 2727.46 55.53 o 1 2 2 165.30 178.51 11.08 o 2 2 2 6.90 8.24 3.38 o 3 2 2 0.01 0.43 3.24 o 4 2 2 43.95 58.71 11.24 o 5 2 2 15.05 23.14 9.11 o -5 3 2 21.51 27.19 13.33 o -4 3 2 59.06 61.56 10.53 o -3 3 2 116.57 117.54 13.31 o -2 3 2 139.24 140.99 9.50 o -1 3 2 0.15 0.99 2.10 o 0 3 2 104.25 116.36 5.32 o 1 3 2 778.30 929.40 18.21 o 2 3 2 112.04 110.54 7.97 o 3 3 2 150.46 166.17 11.74 o 4 3 2 89.17 106.94 14.60 o 5 3 2 18.41 24.29 8.97 o -5 4 2 25.69 34.90 16.99 o -4 4 2 332.11 410.63 24.16 o -3 4 2 12.88 11.28 4.56 o -2 4 2 4591.60 4734.31 86.07 o -1 4 2 371.49 393.65 11.96 o 0 4 2 1458.92 1555.56 24.26 o 1 4 2 32.18 33.52 3.80 o 2 4 2 13.17 11.52 3.47 o 3 4 2 54.84 68.90 10.51 o 4 4 2 7.21 10.48 6.56 o 5 4 2 26.26 50.03 11.96 o -5 5 2 16.53 21.57 14.25 o -4 5 2 13.07 13.87 4.46 o -3 5 2 5.05 6.17 4.18 o -2 5 2 216.03 225.57 10.24 o -1 5 2 917.75 987.45 21.52 o 0 5 2 63.75 63.60 4.84 o 1 5 2 1618.77 1602.51 77.47 o 2 5 2 219.60 195.52 9.29 o 3 5 2 51.77 56.45 9.18 o 4 5 2 8.15 7.35 5.13 o 5 5 2 0.46 3.66 9.02 o -5 6 2 1.81 3.01 8.36 o -4 6 2 10.89 13.93 6.65 o -3 6 2 297.78 293.69 17.51 o -2 6 2 149.52 142.07 10.80 o -1 6 2 171.81 169.07 8.29 o 0 6 2 298.72 302.02 10.12 o 1 6 2 380.03 376.60 12.11 o 2 6 2 21.62 27.71 3.82 o 3 6 2 204.12 222.16 20.65 o 4 6 2 73.97 72.07 12.76 o -4 7 2 1.74 7.08 5.67 o -3 7 2 80.27 85.76 10.10 o -2 7 2 34.74 42.47 6.96 o -1 7 2 398.00 350.43 11.87 o 0 7 2 12.65 13.27 3.07 o 1 7 2 4.06 5.89 3.23 o 2 7 2 396.22 431.07 27.22 o 3 7 2 3.40 3.65 5.49 o 4 7 2 77.89 97.33 14.47 o -4 8 2 14.27 13.83 6.60 o -3 8 2 0.19 5.34 4.63 o -2 8 2 102.25 80.72 9.06 o -1 8 2 39.08 43.89 4.94 o 0 8 2 0.54 1.82 2.77 o 1 8 2 32.80 30.81 5.54 o 2 8 2 402.90 371.62 25.22 o 3 8 2 28.73 24.79 7.92 o 4 8 2 73.40 68.95 13.10 o -4 9 2 18.20 24.91 8.18 o -3 9 2 9.88 15.60 5.93 o -2 9 2 6.79 11.34 4.34 o -1 9 2 54.81 47.60 6.13 o 0 9 2 350.42 334.94 21.32 o 1 9 2 17.07 18.16 4.11 o 2 9 2 20.70 18.58 6.78 o 3 9 2 10.91 17.38 7.19 o 4 9 2 8.33 10.06 9.67 o -3 10 2 1.36 4.99 4.75 o -2 10 2 20.20 16.62 4.61 o -1 10 2 48.07 38.48 5.57 o 0 10 2 46.85 42.73 5.96 o 1 10 2 44.39 38.18 8.46 o 2 10 2 5.63 4.34 4.68 o 3 10 2 10.94 4.10 5.12 o -3 11 2 13.10 15.85 6.59 o -2 11 2 21.59 26.77 9.41 o -1 11 2 3.76 4.06 2.74 o 0 11 2 151.37 129.69 10.28 o 1 11 2 0.62 2.94 3.85 o 2 11 2 14.43 17.43 8.30 o -2 12 2 0.75 4.72 4.79 o -1 12 2 47.00 38.01 5.64 o 0 12 2 1.24 1.51 3.42 o 1 12 2 75.67 68.55 11.71 o 2 12 2 2.88 8.20 5.29 o 0 13 2 20.90 19.63 5.75 o -5 0 3 0.03 -0.52 6.27 o -3 0 3 1141.01 1211.19 51.50 o -1 0 3 1124.71 1052.77 87.83 o 1 0 3 682.91 749.68 28.75 o 3 0 3 4.53 4.97 4.84 o 5 0 3 150.70 210.43 37.90 o -5 1 3 4.83 5.06 5.32 o -4 1 3 15.64 19.14 7.19 o -3 1 3 0.05 1.53 3.60 o -2 1 3 67.68 59.37 7.90 o -1 1 3 570.26 535.19 11.27 o 0 1 3 3198.11 3361.49 52.76 o 1 1 3 1495.18 1668.75 40.20 o 2 1 3 41.12 36.34 4.84 o 3 1 3 582.27 588.98 20.16 o 4 1 3 232.22 269.56 21.90 o 5 1 3 609.00 906.86 53.21 o -5 2 3 0.02 0.71 4.71 o -4 2 3 19.61 21.85 6.93 o -3 2 3 366.40 313.35 18.99 o -2 2 3 0.19 0.22 3.11 o -1 2 3 12521.73 11707.18 114.68 o 0 2 3 513.26 592.12 9.29 o 1 2 3 623.31 621.53 57.32 o 2 2 3 330.32 345.74 15.15 o 3 2 3 18.46 20.28 4.50 o 4 2 3 157.29 202.91 22.09 o 5 2 3 102.38 127.19 20.57 o -5 3 3 9.66 10.78 7.56 o -4 3 3 2.49 3.47 4.67 o -3 3 3 54.38 52.96 9.09 o -2 3 3 430.30 395.70 16.46 o -1 3 3 905.86 892.41 40.33 o 0 3 3 199.35 224.29 6.10 o 1 3 3 2.06 2.92 2.52 o 2 3 3 136.58 134.37 8.69 o 3 3 3 406.14 426.40 61.62 o 4 3 3 42.27 76.97 17.06 o 5 3 3 7.90 24.47 9.03 o -5 4 3 7.91 23.66 14.25 o -4 4 3 4.53 7.73 4.10 o -3 4 3 326.80 326.84 16.92 o -2 4 3 1644.92 1670.22 45.54 o -1 4 3 584.39 670.37 32.18 o 0 4 3 18.53 18.47 2.61 o 1 4 3 965.86 1071.94 38.07 o 2 4 3 233.11 224.70 10.56 o 3 4 3 63.06 71.81 10.61 o 4 4 3 0.05 4.54 5.17 o 5 4 3 2.82 8.55 6.73 o -5 5 3 0.06 4.84 10.33 o -4 5 3 18.78 21.84 5.83 o -3 5 3 79.51 77.85 8.92 o -2 5 3 857.77 883.36 23.39 o -1 5 3 13.07 15.30 3.24 o 0 5 3 178.71 204.13 6.56 o 1 5 3 166.78 194.16 8.37 o 2 5 3 8.01 9.61 2.82 o 3 5 3 15.49 16.60 5.68 o 4 5 3 23.74 22.96 7.25 o 5 5 3 20.45 24.57 12.81 o -5 6 3 1.55 4.97 10.46 o -4 6 3 25.26 30.87 8.48 o -3 6 3 0.35 4.05 3.79 o -2 6 3 86.57 97.59 9.67 o -1 6 3 2.26 4.37 2.44 o 0 6 3 228.37 284.25 12.82 o 1 6 3 46.64 53.16 4.93 o 2 6 3 26.95 23.29 4.77 o 3 6 3 181.52 156.60 11.97 o 4 6 3 34.36 33.91 8.82 o -4 7 3 6.90 9.39 5.68 o -3 7 3 268.55 256.11 17.30 o -2 7 3 653.41 632.33 24.46 o -1 7 3 0.42 1.65 2.23 o 0 7 3 166.21 193.35 9.49 o 1 7 3 53.81 52.09 5.13 o 2 7 3 52.94 51.86 10.11 o 3 7 3 50.54 53.44 10.69 o 4 7 3 4.98 11.47 6.48 o -4 8 3 21.80 31.58 9.04 o -3 8 3 11.39 11.94 4.61 o -2 8 3 187.67 154.86 12.33 o -1 8 3 127.70 125.01 7.78 o 0 8 3 135.87 136.30 9.61 o 1 8 3 0.61 3.44 3.87 o 2 8 3 310.54 261.22 21.70 o 3 8 3 6.10 9.20 5.95 o 4 8 3 1.29 2.96 5.87 o -4 9 3 155.37 179.24 20.69 o -3 9 3 0.02 1.99 3.94 o -2 9 3 50.56 42.76 7.22 o -1 9 3 10.29 11.15 3.70 o 0 9 3 40.59 35.08 5.62 o 1 9 3 5.34 8.56 5.11 o 2 9 3 89.81 70.59 11.86 o 3 9 3 28.67 26.38 7.87 o -3 10 3 2.80 5.10 4.87 o -2 10 3 0.01 2.00 2.93 o -1 10 3 464.52 394.70 17.31 o 0 10 3 151.14 138.47 11.53 o 1 10 3 37.83 36.01 8.18 o 2 10 3 0.65 3.19 4.41 o 3 10 3 12.89 22.60 8.54 o -3 11 3 20.61 25.07 8.23 o -2 11 3 52.71 41.36 6.90 o -1 11 3 2.97 3.96 2.72 o 0 11 3 40.35 40.42 7.62 o 1 11 3 43.82 37.02 8.73 o 2 11 3 2.14 2.97 4.61 o -2 12 3 0.77 2.88 4.09 o -1 12 3 0.11 2.16 2.62 o 0 12 3 30.77 33.76 7.65 o 1 12 3 19.51 13.06 5.99 o 2 12 3 42.57 33.78 8.62 o 0 13 3 1.14 3.32 3.43 o -4 0 4 258.75 265.71 28.23 o -2 0 4 375.01 361.25 25.88 o 0 0 4 1009.28 712.88 51.76 o 2 0 4 217.37 196.88 13.14 o 4 0 4 518.05 666.43 55.94 o -5 1 4 6.29 8.79 5.82 o -4 1 4 140.41 146.39 15.80 o -3 1 4 267.24 267.43 18.91 o -2 1 4 19.69 10.19 4.92 o -1 1 4 9.83 8.26 2.50 o 0 1 4 4.41 3.66 2.32 o 1 1 4 2875.20 3222.35 85.11 o 2 1 4 98.57 90.05 5.93 o 3 1 4 13.51 15.16 3.53 o 4 1 4 15.39 25.49 6.59 o 5 1 4 2.02 4.04 7.96 o -5 2 4 45.10 61.37 12.09 o -4 2 4 2.96 5.15 4.94 o -3 2 4 53.20 47.41 8.21 o -2 2 4 25.97 25.94 3.91 o -1 2 4 63.26 80.45 5.87 o 0 2 4 15.60 18.55 3.86 o 1 2 4 487.52 541.27 33.51 o 2 2 4 175.88 163.20 8.36 o 3 2 4 215.82 237.64 17.84 o 4 2 4 45.14 50.48 8.46 o 5 2 4 117.87 185.53 25.55 o -5 3 4 3.81 8.11 7.02 o -4 3 4 0.11 4.42 5.26 o -3 3 4 114.71 111.26 9.82 o -2 3 4 129.46 106.42 7.88 o -1 3 4 11.86 10.73 2.35 o 0 3 4 3657.13 4864.06 68.60 o 1 3 4 318.50 328.15 25.32 o 2 3 4 571.63 646.01 16.74 o 3 3 4 258.97 253.00 18.99 o 4 3 4 8.62 10.31 5.51 o 5 3 4 20.19 30.97 10.84 o -5 4 4 106.10 145.73 28.23 o -4 4 4 21.68 23.23 5.61 o -3 4 4 56.17 59.56 7.70 o -2 4 4 168.88 166.89 9.41 o -1 4 4 81.57 90.33 5.56 o 0 4 4 296.33 382.80 8.60 o 1 4 4 0.59 1.81 2.15 o 2 4 4 102.87 91.33 6.64 o 3 4 4 516.26 525.44 26.41 o 4 4 4 19.43 26.39 7.81 o 5 4 4 14.84 21.30 6.86 o -5 5 4 10.65 25.09 15.29 o -4 5 4 35.43 39.63 7.89 o -3 5 4 114.92 112.87 10.78 o -2 5 4 82.97 89.46 7.51 o -1 5 4 416.89 422.64 19.99 o 0 5 4 15.56 12.42 2.41 o 1 5 4 451.96 507.43 12.92 o 2 5 4 267.15 243.00 17.38 o 3 5 4 58.83 62.31 9.44 o 4 5 4 11.06 19.72 6.99 o -4 6 4 24.72 26.98 6.45 o -3 6 4 217.97 228.06 15.67 o -2 6 4 74.15 73.24 7.24 o -1 6 4 2.36 1.80 2.26 o 0 6 4 3.17 6.15 1.72 o 1 6 4 27.24 24.61 3.62 o 2 6 4 25.50 22.03 4.71 o 3 6 4 163.87 144.16 11.76 o 4 6 4 36.20 40.76 10.57 o -4 7 4 5.06 10.10 5.39 o -3 7 4 111.52 118.73 11.74 o -2 7 4 93.56 91.19 8.28 o -1 7 4 1.43 2.14 2.44 o 0 7 4 21.25 21.10 3.52 o 1 7 4 443.83 446.75 14.17 o 2 7 4 14.22 20.10 7.39 o 3 7 4 7.15 5.12 5.86 o 4 7 4 21.44 29.79 9.26 o -4 8 4 167.40 160.50 18.26 o -3 8 4 3.06 2.54 3.41 o -2 8 4 74.90 62.92 8.30 o -1 8 4 185.09 186.74 11.50 o 0 8 4 27.58 32.00 4.27 o 1 8 4 375.90 363.34 33.07 o 2 8 4 2.65 2.65 4.17 o 3 8 4 8.83 20.37 7.98 o 4 8 4 2.41 8.10 7.25 o -4 9 4 23.14 30.53 8.62 o -3 9 4 77.26 77.63 9.97 o -2 9 4 6.06 12.48 4.65 o -1 9 4 859.67 807.82 30.68 o 0 9 4 181.85 170.24 10.96 o 1 9 4 7.07 9.63 5.44 o 2 9 4 252.10 192.00 18.73 o 3 9 4 1.26 6.21 5.31 o -3 10 4 0.00 1.51 5.16 o -2 10 4 0.99 4.37 3.25 o -1 10 4 143.98 126.52 9.94 o 0 10 4 106.99 105.83 11.66 o 1 10 4 26.76 25.10 7.76 o 2 10 4 5.85 9.52 5.53 o 3 10 4 93.60 94.64 15.29 o -3 11 4 19.07 22.83 7.23 o -2 11 4 11.84 14.26 4.57 o -1 11 4 8.58 10.41 3.42 o 0 11 4 273.15 267.69 19.44 o 1 11 4 113.27 98.82 14.14 o 2 11 4 10.31 12.85 6.18 o -2 12 4 10.57 17.94 5.93 o -1 12 4 2.10 2.87 2.41 o 0 12 4 167.27 142.48 14.32 o 1 12 4 127.18 109.70 19.34 o -5 0 5 36.92 46.53 14.64 o -3 0 5 201.52 149.13 20.00 o -1 0 5 10.94 12.91 4.65 o 1 0 5 0.10 1.54 3.38 o 3 0 5 23.63 26.99 5.92 o 5 0 5 25.22 35.94 17.25 o -5 1 5 7.65 9.24 6.19 o -4 1 5 147.85 158.54 22.87 o -3 1 5 98.40 78.20 10.05 o -2 1 5 6.21 4.66 2.29 o -1 1 5 348.22 296.26 15.96 o 0 1 5 917.38 1025.01 58.22 o 1 1 5 1777.90 2146.96 91.78 o 2 1 5 149.29 160.62 7.87 o 3 1 5 126.71 112.86 9.92 o 4 1 5 778.16 815.23 41.44 o 5 1 5 1.32 6.27 8.27 o -5 2 5 73.85 100.21 15.15 o -4 2 5 16.42 11.56 5.80 o -3 2 5 175.91 171.59 13.27 o -2 2 5 79.36 71.45 5.78 o -1 2 5 198.03 215.75 11.24 o 0 2 5 148.93 144.38 5.83 o 1 2 5 7.20 6.81 3.63 o 2 2 5 102.37 105.24 6.17 o 3 2 5 122.30 108.51 13.12 o 4 2 5 4.73 8.78 4.53 o 5 2 5 68.01 79.95 15.95 o -5 3 5 14.95 26.61 10.39 o -4 3 5 21.85 17.14 6.29 o -3 3 5 11.31 12.80 3.87 o -2 3 5 1001.67 994.23 29.81 o -1 3 5 856.08 998.79 37.60 o 0 3 5 654.34 811.56 15.51 o 1 3 5 1575.73 1970.09 33.17 o 2 3 5 129.07 122.79 14.68 o 3 3 5 1248.67 1024.53 69.01 o 4 3 5 12.79 17.44 5.42 o 5 3 5 86.48 112.85 18.74 o -5 4 5 114.77 121.85 16.25 o -4 4 5 7.72 12.43 5.66 o -3 4 5 4.56 6.36 3.26 o -2 4 5 1111.65 1065.33 27.51 o -1 4 5 353.66 392.59 13.35 o 0 4 5 234.11 320.01 8.93 o 1 4 5 5.61 4.24 3.33 o 2 4 5 16.68 16.91 4.29 o 3 4 5 416.18 391.83 22.36 o 4 4 5 19.92 23.60 6.02 o 5 4 5 23.54 34.90 13.00 o -5 5 5 9.49 14.25 11.63 o -4 5 5 13.45 17.64 6.81 o -3 5 5 42.66 40.57 6.30 o -2 5 5 7.39 6.10 3.02 o -1 5 5 352.55 399.10 17.92 o 0 5 5 91.39 100.91 5.10 o 1 5 5 1696.03 1888.66 33.56 o 2 5 5 204.69 190.62 15.03 o 3 5 5 274.90 270.45 19.17 o 4 5 5 40.19 50.89 8.14 o -4 6 5 12.65 15.72 6.53 o -3 6 5 1802.71 1711.47 100.21 o -2 6 5 6.94 9.93 3.64 o -1 6 5 5.30 3.19 2.45 o 0 6 5 65.38 67.93 5.37 o 1 6 5 65.84 68.37 6.01 o 2 6 5 161.72 141.38 10.78 o 3 6 5 100.72 96.10 10.51 o 4 6 5 77.49 73.36 12.54 o -4 7 5 4.28 4.83 4.38 o -3 7 5 110.09 106.84 10.99 o -2 7 5 11.47 14.72 4.09 o -1 7 5 306.64 329.94 12.03 o 0 7 5 4.98 9.71 2.79 o 1 7 5 35.26 30.95 5.37 o 2 7 5 119.62 107.31 9.50 o 3 7 5 16.74 14.40 6.72 o 4 7 5 25.08 28.27 6.94 o -4 8 5 106.30 90.18 21.57 o -3 8 5 0.18 4.50 3.78 o -2 8 5 125.41 113.44 9.47 o -1 8 5 31.71 31.43 4.33 o 0 8 5 3.99 7.04 2.59 o 1 8 5 57.91 53.53 9.56 o 2 8 5 0.48 4.90 4.89 o 3 8 5 0.23 3.23 5.08 o 4 8 5 51.09 57.31 9.42 o -4 9 5 115.99 159.58 30.19 o -3 9 5 18.57 26.94 6.08 o -2 9 5 42.33 41.35 6.19 o -1 9 5 2.24 4.03 2.65 o 0 9 5 3.64 1.83 4.07 o 1 9 5 16.29 15.70 6.51 o 2 9 5 7.50 11.51 5.73 o 3 9 5 65.21 79.09 13.55 o -3 10 5 0.03 3.42 3.66 o -2 10 5 7.98 5.19 3.63 o -1 10 5 29.47 32.62 5.32 o 0 10 5 60.11 70.73 10.03 o 1 10 5 92.22 92.15 14.00 o 2 10 5 0.95 4.55 4.99 o 3 10 5 12.31 10.86 6.33 o -2 11 5 14.84 18.42 4.90 o -1 11 5 0.01 2.50 2.54 o 0 11 5 4.73 5.11 4.23 o 1 11 5 115.34 95.37 14.03 o 2 11 5 0.11 1.77 5.11 o -2 12 5 23.18 27.06 5.79 o -1 12 5 21.45 28.40 6.73 o 0 12 5 99.07 104.74 12.34 o 1 12 5 5.32 8.76 5.69 o -4 0 6 94.32 93.58 17.78 o -2 0 6 582.25 567.11 47.35 o 0 0 6 1380.06 1276.62 87.18 o 2 0 6 64.53 46.90 8.82 o 4 0 6 87.42 96.06 21.83 o -5 1 6 17.41 19.63 7.58 o -4 1 6 141.11 142.97 15.80 o -3 1 6 0.12 -1.74 3.92 o -2 1 6 109.61 98.28 5.51 o -1 1 6 801.35 718.01 15.10 o 0 1 6 343.53 377.35 15.34 o 1 1 6 173.37 190.75 7.38 o 2 1 6 561.91 591.66 18.13 o 3 1 6 4.91 4.51 3.18 o 4 1 6 492.53 456.38 29.71 o 5 1 6 117.17 141.67 21.76 o -5 2 6 3.20 7.74 5.85 o -4 2 6 140.19 141.44 17.64 o -3 2 6 56.14 60.32 6.60 o -2 2 6 93.48 87.36 5.63 o -1 2 6 1.77 1.50 1.75 o 0 2 6 429.63 430.26 13.53 o 1 2 6 62.01 80.37 7.59 o 2 2 6 29.03 30.29 5.24 o 3 2 6 11.69 9.85 5.11 o 4 2 6 17.53 20.57 7.70 o 5 2 6 47.94 55.72 13.18 o -5 3 6 7.52 11.41 5.80 o -4 3 6 86.10 80.50 11.76 o -3 3 6 88.34 86.35 8.01 o -2 3 6 0.98 1.97 2.21 o -1 3 6 137.44 144.57 5.76 o 0 3 6 590.53 706.72 15.54 o 1 3 6 1.12 0.86 3.07 o 2 3 6 423.57 404.03 24.16 o 3 3 6 189.60 175.08 13.04 o 4 3 6 69.76 82.18 11.19 o 5 3 6 1.54 4.92 6.56 o -5 4 6 0.02 -0.41 4.39 o -4 4 6 19.09 17.57 6.84 o -3 4 6 164.48 164.67 11.77 o -2 4 6 231.54 234.75 11.31 o -1 4 6 95.77 105.93 5.68 o 0 4 6 172.98 233.47 7.58 o 1 4 6 187.67 209.05 11.97 o 2 4 6 79.64 73.51 8.34 o 3 4 6 58.86 56.18 7.72 o 4 4 6 32.09 27.22 6.02 o -5 5 6 2.04 7.23 4.74 o -4 5 6 2.02 2.65 4.73 o -3 5 6 354.62 336.28 17.18 o -2 5 6 43.95 38.47 5.13 o -1 5 6 299.69 321.24 11.25 o 0 5 6 47.63 56.49 4.25 o 1 5 6 34.02 33.99 4.98 o 2 5 6 153.42 147.05 10.83 o 3 5 6 66.19 62.78 8.86 o 4 5 6 3.09 6.86 3.83 o -4 6 6 0.69 0.99 4.00 o -3 6 6 47.10 48.66 7.54 o -2 6 6 465.25 454.30 17.06 o -1 6 6 88.21 88.92 6.40 o 0 6 6 141.68 176.13 8.96 o 1 6 6 189.96 199.18 10.72 o 2 6 6 431.43 369.18 14.70 o 3 6 6 4.41 7.03 3.30 o 4 6 6 3.57 7.19 5.46 o -4 7 6 8.67 10.02 6.01 o -3 7 6 54.20 58.04 8.52 o -2 7 6 398.67 385.82 25.11 o -1 7 6 2.79 4.74 2.67 o 0 7 6 186.98 196.73 9.36 o 1 7 6 15.55 17.00 4.50 o 2 7 6 0.91 2.92 2.49 o 3 7 6 2.91 3.96 3.60 o 4 7 6 8.84 12.15 5.28 o -4 8 6 1.06 5.24 4.02 o -3 8 6 46.68 40.36 7.42 o -2 8 6 172.06 162.48 11.39 o -1 8 6 207.62 205.01 11.33 o 0 8 6 152.69 166.36 11.31 o 1 8 6 110.56 98.18 9.53 o 2 8 6 71.45 71.22 11.76 o 3 8 6 305.67 300.90 26.25 o -3 9 6 35.35 28.72 6.60 o -2 9 6 4.98 6.47 3.06 o -1 9 6 448.45 453.34 20.55 o 0 9 6 13.27 14.88 5.51 o 1 9 6 8.67 6.01 5.27 o 2 9 6 17.66 18.69 7.12 o 3 9 6 110.22 91.76 13.83 o -3 10 6 33.18 42.17 7.63 o -2 10 6 4.08 7.50 3.81 o -1 10 6 59.59 56.99 6.86 o 0 10 6 21.36 25.59 6.52 o 1 10 6 603.83 547.66 32.35 o 2 10 6 3.03 5.88 4.71 o 3 10 6 31.40 31.53 9.19 o -2 11 6 48.54 43.11 7.47 o -1 11 6 132.90 137.93 14.13 o 0 11 6 26.18 23.55 7.33 o 1 11 6 1.53 4.16 4.33 o 2 11 6 1.31 2.77 4.24 o -1 12 6 62.58 68.30 10.07 o 0 12 6 31.45 34.12 8.84 o 1 12 6 60.51 64.17 12.05 o -5 0 7 14.70 18.95 10.06 o -3 0 7 4.83 5.88 6.27 o -1 0 7 330.62 216.23 12.13 o 1 0 7 3071.05 3663.70 96.78 o 3 0 7 22.18 12.68 9.02 o 5 0 7 7.36 16.86 12.68 o -5 1 7 4.67 6.92 6.38 o -4 1 7 0.67 3.21 4.45 o -3 1 7 204.89 135.80 18.30 o -2 1 7 484.74 499.76 24.09 o -1 1 7 4033.13 3403.51 53.10 o 0 1 7 201.03 222.12 17.81 o 1 1 7 692.96 789.09 14.08 o 2 1 7 1.47 1.95 2.69 o 3 1 7 242.23 197.31 12.93 o 4 1 7 64.26 69.00 13.17 o 5 1 7 5.28 11.98 7.68 o -5 2 7 51.11 72.52 13.77 o -4 2 7 1.00 1.12 4.24 o -3 2 7 43.52 46.96 7.31 o -2 2 7 73.76 60.09 4.91 o -1 2 7 186.67 191.26 6.27 o 0 2 7 577.60 599.17 12.68 o 1 2 7 86.75 91.57 8.36 o 2 2 7 612.23 658.56 40.07 o 3 2 7 240.20 203.31 13.41 o 4 2 7 6.66 10.64 6.33 o 5 2 7 34.55 48.68 12.75 o -5 3 7 60.73 77.59 13.68 o -4 3 7 1.82 4.96 4.66 o -3 3 7 280.11 269.30 16.13 o -2 3 7 28.05 30.82 3.83 o -1 3 7 5.22 6.88 1.98 o 0 3 7 1.42 -1.18 2.34 o 1 3 7 371.47 457.21 17.80 o 2 3 7 327.63 320.30 16.18 o 3 3 7 257.81 240.11 17.89 o 4 3 7 15.86 15.04 6.84 o -5 4 7 3.28 9.66 5.29 o -4 4 7 10.88 15.78 6.49 o -3 4 7 14.37 18.08 5.02 o -2 4 7 9.81 12.75 3.29 o -1 4 7 5.84 4.60 1.88 o 0 4 7 60.59 88.52 5.11 o 1 4 7 12.38 22.74 5.01 o 2 4 7 421.28 402.07 18.16 o 3 4 7 96.59 85.62 9.04 o 4 4 7 36.37 39.72 7.19 o -5 5 7 3.03 5.43 5.48 o -4 5 7 0.03 0.41 4.05 o -3 5 7 128.78 120.41 10.62 o -2 5 7 0.69 2.52 2.74 o -1 5 7 861.05 950.50 18.55 o 0 5 7 300.27 333.28 9.28 o 1 5 7 88.91 89.45 7.33 o 2 5 7 438.24 378.47 17.26 o 3 5 7 1.11 4.40 3.60 o 4 5 7 3.89 7.47 4.25 o -4 6 7 3.64 7.36 5.34 o -3 6 7 18.98 23.49 5.00 o -2 6 7 182.87 184.35 11.22 o -1 6 7 90.65 98.79 6.84 o 0 6 7 61.12 73.13 5.75 o 1 6 7 0.05 1.61 2.57 o 2 6 7 0.05 2.07 2.94 o 3 6 7 65.96 51.67 7.35 o 4 6 7 23.29 22.86 5.51 o -4 7 7 96.50 95.06 14.81 o -3 7 7 25.35 31.93 6.55 o -2 7 7 96.94 102.85 9.04 o -1 7 7 406.46 457.50 19.26 o 0 7 7 4.92 5.84 3.54 o 1 7 7 1014.28 988.86 28.89 o 2 7 7 50.16 41.91 5.47 o 3 7 7 0.62 2.04 3.22 o 4 7 7 5.83 12.41 5.09 o -4 8 7 180.50 206.19 26.01 o -3 8 7 13.42 15.60 4.94 o -2 8 7 119.37 122.31 10.12 o -1 8 7 100.58 109.92 7.80 o 0 8 7 51.80 59.65 8.05 o 1 8 7 27.54 31.82 6.02 o 2 8 7 139.93 124.72 14.87 o 3 8 7 5.19 6.59 5.08 o -3 9 7 23.89 31.10 6.53 o -2 9 7 0.53 4.48 3.20 o -1 9 7 85.81 82.49 6.74 o 0 9 7 166.01 156.05 16.43 o 1 9 7 98.22 91.42 13.02 o 2 9 7 25.23 28.23 8.06 o 3 9 7 1.79 5.75 5.31 o -3 10 7 11.87 20.56 5.74 o -2 10 7 8.28 13.12 3.94 o -1 10 7 16.94 18.26 5.42 o 0 10 7 132.45 152.01 17.47 o 1 10 7 8.49 13.22 5.67 o 2 10 7 8.61 10.41 5.68 o -2 11 7 3.96 5.47 3.64 o -1 11 7 13.95 17.63 5.51 o 0 11 7 66.68 66.63 11.52 o 1 11 7 1.31 7.95 5.37 o 2 11 7 11.39 10.72 6.51 o -1 12 7 1.40 3.74 3.77 o 0 12 7 45.43 47.00 10.05 o 1 12 7 58.15 46.86 10.43 o -2 0 8 0.76 5.49 4.34 o 0 0 8 0.82 5.96 3.21 o 2 0 8 0.60 2.48 2.85 o 4 0 8 252.55 206.77 29.28 o -5 1 8 132.05 147.76 16.96 o -4 1 8 0.68 1.97 4.48 o -3 1 8 8.64 6.27 3.78 o -2 1 8 65.31 51.63 5.71 o -1 1 8 62.24 55.61 5.22 o 0 1 8 944.10 1014.91 22.81 o 1 1 8 69.32 85.34 5.07 o 2 1 8 284.36 242.35 12.73 o 3 1 8 42.81 38.77 8.50 o 4 1 8 15.77 21.43 7.53 o -5 2 8 86.23 109.13 21.43 o -4 2 8 55.76 44.49 9.11 o -3 2 8 35.37 37.36 6.55 o -2 2 8 9.26 8.77 2.58 o -1 2 8 93.92 76.51 4.09 o 0 2 8 21.02 27.20 3.65 o 1 2 8 84.48 82.36 8.14 o 2 2 8 0.00 3.14 2.90 o 3 2 8 193.55 180.44 14.40 o 4 2 8 77.50 70.91 13.59 o -5 3 8 3.88 5.92 5.11 o -4 3 8 88.19 85.15 11.78 o -3 3 8 9.50 8.86 3.95 o -2 3 8 0.33 1.86 1.88 o -1 3 8 2.01 3.51 1.90 o 0 3 8 1611.76 1850.94 35.54 o 1 3 8 7.52 12.57 4.52 o 2 3 8 31.95 29.82 5.55 o 3 3 8 393.93 353.66 18.62 o 4 3 8 27.68 27.02 8.04 o -5 4 8 21.97 29.19 8.45 o -4 4 8 225.95 218.30 19.64 o -3 4 8 224.77 182.76 13.21 o -2 4 8 54.73 53.34 4.87 o -1 4 8 2.06 3.81 1.76 o 0 4 8 69.13 72.52 6.01 o 1 4 8 276.73 305.38 15.80 o 2 4 8 477.24 413.24 19.42 o 3 4 8 6.61 7.57 3.83 o 4 4 8 37.11 39.98 9.21 o -4 5 8 9.40 12.68 5.82 o -3 5 8 351.38 336.75 19.03 o -2 5 8 246.87 234.26 12.03 o -1 5 8 36.52 32.17 3.96 o 0 5 8 277.02 330.87 9.80 o 1 5 8 95.79 88.13 7.65 o 2 5 8 758.89 684.06 24.39 o 3 5 8 0.98 5.99 3.73 o 4 5 8 0.08 3.35 3.72 o -4 6 8 1.39 2.68 4.33 o -3 6 8 46.67 47.68 8.06 o -2 6 8 3.14 5.63 3.04 o -1 6 8 142.09 160.69 8.59 o 0 6 8 15.36 17.43 4.85 o 1 6 8 99.43 115.64 8.66 o 2 6 8 423.42 373.04 16.05 o 3 6 8 3.65 7.06 3.90 o 4 6 8 47.31 55.25 8.75 o -4 7 8 48.10 62.24 12.12 o -3 7 8 108.83 97.78 11.42 o -2 7 8 421.11 436.07 18.55 o -1 7 8 0.43 3.57 2.39 o 0 7 8 248.63 252.24 15.24 o 1 7 8 77.14 83.43 9.20 o 2 7 8 350.26 330.78 18.06 o 3 7 8 13.20 14.83 3.92 o 4 7 8 15.64 24.00 6.33 o -4 8 8 170.61 172.15 20.64 o -3 8 8 0.15 2.37 3.56 o -2 8 8 36.45 33.78 5.81 o -1 8 8 289.34 295.81 14.24 o 0 8 8 14.60 18.16 4.98 o 1 8 8 120.19 138.68 12.08 o 2 8 8 66.60 67.55 12.74 o 3 8 8 25.55 24.18 7.68 o -3 9 8 38.84 38.63 9.07 o -2 9 8 12.33 15.24 4.03 o -1 9 8 127.07 144.60 11.20 o 0 9 8 260.17 262.49 16.46 o 1 9 8 2.74 4.11 5.08 o 2 9 8 0.50 2.27 4.42 o 3 9 8 159.84 147.49 17.64 o -3 10 8 44.11 55.46 11.19 o -2 10 8 0.65 0.59 2.92 o -1 10 8 22.48 25.75 5.95 o 0 10 8 63.21 61.99 11.48 o 1 10 8 4.19 6.42 5.43 o 2 10 8 14.43 16.16 6.81 o -2 11 8 63.97 61.41 11.93 o -1 11 8 34.64 37.28 7.11 o 0 11 8 1.35 5.26 4.52 o 1 11 8 54.09 53.23 11.37 o 2 11 8 0.84 4.74 5.37 o -1 12 8 143.93 171.39 21.53 o 0 12 8 14.33 20.58 7.07 o -5 0 9 113.70 119.20 22.09 o -3 0 9 3.99 5.85 4.80 o -1 0 9 11.33 11.00 4.42 o 1 0 9 1286.03 1393.17 79.40 o 3 0 9 93.02 65.87 15.42 o -5 1 9 29.95 34.14 9.33 o -4 1 9 65.50 58.50 10.03 o -3 1 9 50.66 45.35 6.49 o -2 1 9 632.89 548.18 17.13 o -1 1 9 59.55 55.05 3.54 o 0 1 9 127.58 132.29 8.15 o 1 1 9 243.95 239.35 8.52 o 2 1 9 62.99 62.89 7.10 o 3 1 9 121.52 97.76 13.25 o 4 1 9 11.40 17.32 6.97 o -5 2 9 8.91 12.43 5.86 o -4 2 9 149.05 131.78 14.71 o -3 2 9 22.57 24.37 5.76 o -2 2 9 9.08 10.14 3.41 o -1 2 9 11.02 16.56 2.52 o 0 2 9 767.13 814.13 28.13 o 1 2 9 34.92 37.37 6.14 o 2 2 9 3.95 7.31 3.58 o 3 2 9 14.25 13.51 5.96 o 4 2 9 62.92 63.21 11.89 o -5 3 9 41.60 47.46 9.75 o -4 3 9 116.27 107.17 13.63 o -3 3 9 357.18 314.65 17.63 o -2 3 9 4.54 7.35 3.06 o -1 3 9 1014.55 909.97 25.64 o 0 3 9 28.75 40.27 6.30 o 1 3 9 6.61 4.45 3.42 o 2 3 9 81.42 77.11 8.75 o 3 3 9 97.96 76.04 8.79 o 4 3 9 18.97 21.11 7.26 o -5 4 9 0.15 4.87 4.80 o -4 4 9 28.12 30.66 7.72 o -3 4 9 362.57 321.13 18.51 o -2 4 9 10.71 11.27 3.11 o -1 4 9 200.04 184.91 10.20 o 0 4 9 173.43 191.37 9.63 o 1 4 9 110.33 120.16 10.54 o 2 4 9 179.50 170.69 12.59 o 3 4 9 46.97 47.51 7.47 o 4 4 9 86.48 75.78 12.36 o -4 5 9 32.65 33.12 8.40 o -3 5 9 373.81 358.19 20.54 o -2 5 9 293.61 297.66 13.80 o -1 5 9 0.17 1.99 2.35 o 0 5 9 63.15 66.49 6.03 o 1 5 9 78.35 89.76 7.95 o 2 5 9 27.45 31.27 6.19 o 3 5 9 20.88 20.77 5.26 o 4 5 9 4.56 6.88 5.55 o -4 6 9 3.77 10.42 5.59 o -3 6 9 91.64 95.43 11.37 o -2 6 9 386.33 418.44 16.97 o -1 6 9 59.75 72.45 6.08 o 0 6 9 101.88 110.55 9.93 o 1 6 9 71.80 81.36 7.42 o 2 6 9 158.72 155.64 10.87 o 3 6 9 7.60 9.73 3.92 o 4 6 9 0.43 2.77 4.20 o -4 7 9 28.58 41.21 9.86 o -3 7 9 0.48 3.00 3.45 o -2 7 9 4.71 5.80 3.36 o -1 7 9 4.12 7.19 2.47 o 0 7 9 80.13 86.30 9.03 o 1 7 9 97.13 97.14 9.76 o 2 7 9 206.17 169.58 13.03 o 3 7 9 166.26 142.29 11.27 o -4 8 9 12.98 17.05 6.75 o -3 8 9 18.87 23.82 6.41 o -2 8 9 15.69 31.46 5.60 o -1 8 9 5.71 9.87 3.44 o 0 8 9 256.74 300.05 17.18 o 1 8 9 8.83 13.76 4.30 o 2 8 9 25.43 24.38 7.83 o 3 8 9 189.45 165.43 18.38 o -3 9 9 16.70 24.70 6.62 o -2 9 9 1.80 4.36 3.03 o -1 9 9 1.32 5.15 3.12 o 0 9 9 24.09 36.71 6.52 o 1 9 9 1.63 5.98 5.19 o 2 9 9 35.89 35.93 9.18 o 3 9 9 99.46 87.02 14.44 o -3 10 9 11.06 16.51 6.65 o -2 10 9 28.79 34.36 7.26 o -1 10 9 5.31 3.19 4.97 o 0 10 9 179.27 186.84 19.18 o 1 10 9 3.96 9.93 5.00 o 2 10 9 7.84 9.56 5.80 o -2 11 9 38.34 41.27 9.67 o -1 11 9 0.87 7.57 6.97 o 0 11 9 5.49 7.81 5.17 o 1 11 9 43.23 50.60 10.64 o -4 0 10 13.08 14.64 8.76 o -2 0 10 537.99 506.91 26.07 o 0 0 10 885.14 719.51 106.58 o 2 0 10 211.74 197.75 25.75 o 4 0 10 247.12 212.52 31.76 o -5 1 10 0.36 1.53 5.61 o -4 1 10 234.91 219.22 18.73 o -3 1 10 18.73 20.03 4.73 o -2 1 10 693.15 550.30 21.41 o -1 1 10 35.96 33.20 4.29 o 0 1 10 306.56 335.95 16.17 o 1 1 10 0.02 0.08 2.52 o 2 1 10 1.11 0.67 3.91 o 3 1 10 10.72 14.13 6.18 o 4 1 10 7.29 11.52 5.65 o -5 2 10 15.77 24.25 7.58 o -4 2 10 9.46 11.59 5.24 o -3 2 10 156.96 122.60 9.65 o -2 2 10 3.24 2.49 2.65 o -1 2 10 399.89 379.96 12.42 o 0 2 10 213.00 221.34 9.47 o 1 2 10 7.45 11.31 4.22 o 2 2 10 332.85 314.98 16.69 o 3 2 10 150.18 111.80 14.31 o 4 2 10 106.76 96.03 14.37 o -5 3 10 31.29 27.36 7.44 o -4 3 10 100.37 102.96 13.62 o -3 3 10 93.30 84.48 9.58 o -2 3 10 403.40 356.43 14.96 o -1 3 10 8.43 8.19 2.20 o 0 3 10 255.11 262.03 14.48 o 1 3 10 15.87 22.10 5.43 o 2 3 10 46.86 43.76 6.95 o 3 3 10 14.94 14.11 5.90 o 4 3 10 62.99 59.63 11.59 o -4 4 10 0.00 1.39 3.26 o -3 4 10 37.64 30.44 6.05 o -2 4 10 6.48 4.29 3.48 o -1 4 10 75.71 74.55 4.92 o 0 4 10 0.01 1.53 2.64 o 1 4 10 29.95 41.29 7.12 o 2 4 10 0.81 1.92 3.37 o 3 4 10 29.00 28.08 5.72 o 4 4 10 30.41 22.40 7.30 o -4 5 10 5.81 11.29 5.43 o -3 5 10 35.59 37.71 7.24 o -2 5 10 316.46 315.95 17.68 o -1 5 10 164.12 195.74 12.48 o 0 5 10 217.81 243.00 11.64 o 1 5 10 298.09 357.67 19.25 o 2 5 10 266.43 272.77 16.94 o 3 5 10 25.00 27.91 6.00 o 4 5 10 0.09 2.03 4.40 o -4 6 10 4.25 11.54 5.96 o -3 6 10 12.62 13.25 4.80 o -2 6 10 9.59 11.25 4.34 o -1 6 10 0.45 1.75 3.20 o 0 6 10 74.94 81.35 8.73 o 1 6 10 181.86 196.99 14.35 o 2 6 10 180.58 177.71 13.91 o 3 6 10 4.93 4.21 3.20 o -4 7 10 12.71 11.05 5.60 o -3 7 10 0.14 2.72 3.46 o -2 7 10 206.05 201.97 12.81 o -1 7 10 143.20 148.61 17.30 o 0 7 10 25.17 34.06 6.43 o 1 7 10 647.27 733.42 27.23 o 2 7 10 1.02 2.33 3.59 o 3 7 10 15.02 11.05 4.21 o -3 8 10 70.43 91.91 11.66 o -2 8 10 27.55 25.50 5.00 o -1 8 10 60.98 85.71 13.44 o 0 8 10 96.00 117.13 11.21 o 1 8 10 116.45 115.65 10.72 o 2 8 10 3.36 5.91 3.44 o 3 8 10 3.55 6.93 5.10 o -3 9 10 6.24 7.07 4.28 o -2 9 10 11.15 20.31 4.48 o -1 9 10 0.59 6.08 4.94 o 0 9 10 189.30 243.12 17.03 o 1 9 10 5.17 6.05 5.15 o 2 9 10 21.84 21.26 7.61 o -2 10 10 42.12 59.38 9.38 o -1 10 10 0.73 6.76 4.89 o 0 10 10 499.64 510.39 31.04 o 1 10 10 0.03 2.74 5.11 o 2 10 10 8.19 13.38 5.88 o -1 11 10 35.29 43.13 15.42 o 0 11 10 14.31 17.42 6.12 o 1 11 10 6.02 9.51 5.22 o -5 0 11 453.67 521.10 44.44 o -3 0 11 0.90 1.84 4.05 o -1 0 11 530.14 383.12 28.23 o 1 0 11 18.05 16.92 4.28 o 3 0 11 142.21 118.28 21.57 o -5 1 11 89.96 98.95 14.73 o -4 1 11 8.53 9.96 5.84 o -3 1 11 61.23 51.67 6.82 o -2 1 11 10.47 8.96 3.31 o -1 1 11 29.86 25.64 4.01 o 0 1 11 4.95 5.82 2.62 o 1 1 11 18.80 20.43 4.34 o 2 1 11 8.21 6.02 4.42 o 3 1 11 39.34 36.60 8.93 o 4 1 11 44.78 47.57 10.36 o -5 2 11 10.52 12.31 5.73 o -4 2 11 134.57 136.82 15.28 o -3 2 11 99.11 93.64 8.75 o -2 2 11 9.02 7.07 3.18 o -1 2 11 9.90 6.68 2.79 o 0 2 11 528.01 545.96 15.30 o 1 2 11 32.54 27.50 5.46 o 2 2 11 2.84 2.59 4.52 o 3 2 11 57.80 41.65 9.49 o 4 2 11 5.04 13.06 6.21 o -4 3 11 246.46 205.92 19.17 o -3 3 11 49.22 41.48 6.81 o -2 3 11 42.20 33.87 5.00 o -1 3 11 118.10 105.21 9.07 o 0 3 11 506.57 548.23 21.65 o 1 3 11 55.97 60.36 8.29 o 2 3 11 55.56 51.73 7.61 o 3 3 11 25.65 28.19 8.06 o 4 3 11 0.81 1.84 4.88 o -4 4 11 8.14 12.24 5.56 o -3 4 11 1.32 2.51 3.18 o -2 4 11 238.45 229.75 14.59 o -1 4 11 109.86 103.90 7.23 o 0 4 11 3.53 3.01 2.64 o 1 4 11 408.10 446.52 21.35 o 2 4 11 100.13 95.52 10.51 o 3 4 11 1.58 7.72 4.71 o 4 4 11 59.65 56.66 11.34 o -4 5 11 14.39 15.08 5.93 o -3 5 11 65.99 58.89 8.66 o -2 5 11 15.11 14.08 5.04 o -1 5 11 108.40 111.77 9.87 o 0 5 11 34.58 40.20 6.69 o 1 5 11 397.39 458.13 21.89 o 2 5 11 970.93 982.99 32.85 o 3 5 11 10.69 14.46 4.57 o -4 6 11 26.57 39.64 9.90 o -3 6 11 0.30 -0.87 3.03 o -2 6 11 3.34 5.23 3.63 o -1 6 11 0.06 0.22 4.95 o 0 6 11 0.89 4.13 3.47 o 1 6 11 117.23 128.33 11.85 o 2 6 11 125.86 133.95 12.50 o 3 6 11 168.76 140.20 12.68 o -4 7 11 4.00 4.61 4.65 o -3 7 11 2.78 6.80 4.05 o -2 7 11 1.14 3.39 3.87 o -1 7 11 212.30 251.49 21.92 o 0 7 11 53.18 60.80 7.87 o 1 7 11 195.09 199.94 14.65 o 2 7 11 102.59 107.89 11.65 o 3 7 11 2.11 4.54 3.97 o -3 8 11 67.97 102.02 13.16 o -2 8 11 44.13 47.64 7.75 o -1 8 11 2.68 8.33 5.81 o 0 8 11 5.70 7.97 3.63 o 1 8 11 16.58 21.96 5.37 o 2 8 11 78.02 68.44 9.09 o 3 8 11 173.98 129.45 15.95 o -3 9 11 30.51 32.37 7.14 o -2 9 11 5.35 10.50 6.37 o -1 9 11 7.61 6.79 5.74 o 0 9 11 52.91 57.17 8.21 o 1 9 11 0.35 2.34 4.38 o 2 9 11 47.37 42.17 9.64 o -2 10 11 247.21 320.98 28.51 o -1 10 11 3.03 6.93 5.41 o 0 10 11 3.67 3.07 5.03 o 1 10 11 14.39 19.46 7.01 o -1 11 11 10.66 15.55 11.89 o 0 11 11 7.91 9.67 10.59 o -4 0 12 9.46 14.25 8.10 o -2 0 12 56.85 56.33 9.10 o 0 0 12 929.95 846.08 71.43 o 2 0 12 17.53 29.02 11.89 o 4 0 12 34.36 22.09 11.50 o -4 1 12 157.03 162.46 17.34 o -3 1 12 42.67 33.29 5.56 o -2 1 12 167.56 138.31 9.66 o -1 1 12 26.44 20.46 3.86 o 0 1 12 42.92 39.11 4.77 o 1 1 12 15.42 13.18 4.02 o 2 1 12 141.65 125.86 16.06 o 3 1 12 76.01 61.02 11.08 o 4 1 12 41.26 45.12 10.43 o -4 2 12 33.67 31.48 6.48 o -3 2 12 66.74 62.51 7.43 o -2 2 12 110.78 93.88 7.92 o -1 2 12 42.77 38.70 4.94 o 0 2 12 341.58 351.49 17.21 o 1 2 12 79.97 83.09 9.01 o 2 2 12 575.86 495.88 30.36 o 3 2 12 65.13 48.17 10.15 o 4 2 12 39.54 35.59 9.23 o -4 3 12 63.88 60.22 9.12 o -3 3 12 4.15 3.89 3.80 o -2 3 12 165.37 147.25 10.04 o -1 3 12 6.67 7.46 3.18 o 0 3 12 0.10 3.71 3.87 o 1 3 12 220.90 237.84 24.65 o 2 3 12 10.70 13.33 6.08 o 3 3 12 0.57 2.68 4.24 o 4 3 12 108.38 86.78 14.83 o -4 4 12 49.49 49.11 8.05 o -3 4 12 0.02 1.13 3.01 o -2 4 12 107.61 103.51 10.36 o -1 4 12 315.79 303.70 13.01 o 0 4 12 132.58 137.62 12.01 o 1 4 12 31.06 38.56 7.42 o 2 4 12 206.95 201.73 15.70 o 3 4 12 110.00 94.43 13.80 o -4 5 12 118.94 134.90 13.87 o -3 5 12 36.42 31.51 6.50 o -2 5 12 17.44 21.63 5.19 o -1 5 12 38.44 44.57 9.78 o 0 5 12 47.16 51.45 7.04 o 1 5 12 18.80 24.77 6.17 o 2 5 12 133.93 134.96 12.62 o 3 5 12 32.64 33.63 8.30 o -4 6 12 47.12 63.49 10.02 o -3 6 12 1.26 5.08 3.61 o -2 6 12 304.54 346.38 21.97 o -1 6 12 4.85 8.09 6.49 o 0 6 12 37.34 47.44 7.16 o 1 6 12 205.04 214.90 15.25 o 2 6 12 170.11 178.61 18.55 o 3 6 12 4.57 4.57 3.91 o -3 7 12 39.00 49.35 8.50 o -2 7 12 20.82 23.79 5.55 o -1 7 12 4.10 8.53 6.60 o 0 7 12 93.95 112.32 10.55 o 1 7 12 98.55 113.74 11.24 o 2 7 12 41.52 49.79 8.13 o 3 7 12 69.52 73.31 9.82 o -3 8 12 67.05 86.96 11.76 o -2 8 12 0.24 5.66 5.02 o -1 8 12 150.01 190.17 20.24 o 0 8 12 149.83 185.06 19.40 o 1 8 12 2.83 4.75 3.72 o 2 8 12 3.23 8.09 4.05 o -2 9 12 0.04 5.83 6.72 o -1 9 12 84.88 84.87 14.53 o 0 9 12 194.54 244.70 22.36 o 1 9 12 49.22 52.60 7.97 o 2 9 12 27.54 25.05 7.28 o -2 10 12 0.55 0.13 4.92 o -1 10 12 142.33 194.24 22.01 o 0 10 12 32.92 33.20 15.29 o 1 10 12 9.55 14.27 6.63 o -3 0 13 31.76 30.68 7.39 o -1 0 13 295.21 208.33 18.49 o 1 0 13 175.15 194.09 28.10 o 3 0 13 356.96 268.98 33.59 o -4 1 13 0.20 4.69 4.31 o -3 1 13 21.12 19.03 4.46 o -2 1 13 1.63 3.56 2.51 o -1 1 13 37.88 31.89 4.63 o 0 1 13 117.00 127.83 9.11 o 1 1 13 97.54 99.72 14.19 o 2 1 13 10.76 14.84 6.60 o 3 1 13 56.47 51.40 10.72 o 4 1 13 1.38 5.64 5.11 o -4 2 13 36.56 25.97 6.08 o -3 2 13 4.62 6.05 3.77 o -2 2 13 77.04 62.85 6.74 o -1 2 13 271.77 219.02 11.06 o 0 2 13 78.93 71.88 8.54 o 1 2 13 365.79 383.24 19.30 o 2 2 13 7.98 10.93 6.18 o 3 2 13 77.35 66.74 12.15 o -4 3 13 13.16 15.07 4.96 o -3 3 13 285.58 278.41 17.82 o -2 3 13 75.69 59.87 6.31 o -1 3 13 4.28 3.03 3.14 o 0 3 13 64.32 67.63 8.73 o 1 3 13 0.67 3.92 3.88 o 2 3 13 47.07 49.38 10.66 o 3 3 13 108.40 86.90 13.61 o -4 4 13 38.46 35.04 7.13 o -3 4 13 7.45 10.61 4.40 o -2 4 13 54.12 61.45 8.46 o -1 4 13 37.74 31.31 8.41 o 0 4 13 86.95 102.87 10.67 o 1 4 13 517.43 565.73 25.38 o 2 4 13 110.41 102.54 14.64 o 3 4 13 112.65 101.23 14.65 o -4 5 13 13.21 13.29 4.75 o -3 5 13 9.22 9.75 4.04 o -2 5 13 22.49 18.73 4.85 o -1 5 13 3.22 2.49 5.21 o 0 5 13 140.53 162.24 17.04 o 1 5 13 127.23 135.77 12.92 o 2 5 13 44.39 47.17 7.89 o 3 5 13 1.95 6.03 4.85 o -4 6 13 82.84 110.86 13.20 o -3 6 13 5.29 4.80 3.62 o -2 6 13 122.48 129.54 12.82 o -1 6 13 8.96 9.42 6.12 o 0 6 13 49.74 64.08 11.93 o 1 6 13 88.84 95.57 10.47 o 2 6 13 21.06 27.76 7.74 o 3 6 13 133.52 126.77 16.07 o -3 7 13 2.92 2.33 3.86 o -2 7 13 124.32 141.85 17.70 o -1 7 13 3.27 8.62 5.85 o 0 7 13 31.50 45.69 9.83 o 1 7 13 84.82 91.02 10.00 o 2 7 13 88.47 79.25 9.95 o -3 8 13 123.55 161.08 15.87 o -2 8 13 0.97 4.75 5.30 o -1 8 13 97.04 109.41 16.60 o 0 8 13 18.60 29.12 8.51 o 1 8 13 37.46 44.54 7.53 o 2 8 13 21.76 25.30 5.86 o -2 9 13 6.86 16.90 7.87 o -1 9 13 3.67 4.71 5.62 o 0 9 13 499.28 590.66 56.66 o 1 9 13 73.08 76.15 9.48 o -1 10 13 18.71 28.11 9.12 o 0 10 13 1.64 7.84 9.80 o -4 0 14 2.61 4.96 4.57 o -2 0 14 206.89 158.47 14.70 o 0 0 14 2.07 3.85 3.72 o 2 0 14 523.10 410.00 42.61 o -4 1 14 6.73 6.43 4.95 o -3 1 14 2.85 4.34 2.99 o -2 1 14 39.94 34.95 5.31 o -1 1 14 489.99 420.93 15.66 o 0 1 14 749.43 721.15 44.89 o 1 1 14 58.14 62.52 11.95 o 2 1 14 70.53 63.03 12.28 o 3 1 14 32.47 23.23 7.74 o -4 2 14 3.62 3.88 3.61 o -3 2 14 3.10 3.44 3.02 o -2 2 14 0.56 1.55 2.42 o -1 2 14 9.13 15.61 3.76 o 0 2 14 792.41 779.74 51.69 o 1 2 14 176.77 183.98 20.91 o 2 2 14 8.70 13.70 6.68 o 3 2 14 73.38 54.87 11.36 o -4 3 14 11.41 16.48 5.09 o -3 3 14 33.82 34.17 6.80 o -2 3 14 0.02 1.68 3.44 o -1 3 14 148.36 132.78 11.13 o 0 3 14 173.65 155.99 12.88 o 1 3 14 741.05 779.18 30.01 o 2 3 14 14.15 14.75 6.87 o 3 3 14 33.04 36.13 9.38 o -4 4 14 8.15 8.66 4.10 o -3 4 14 69.01 75.93 9.60 o -2 4 14 43.58 47.87 7.36 o -1 4 14 3.89 3.99 5.41 o 0 4 14 0.98 3.11 3.45 o 1 4 14 135.41 138.53 13.06 o 2 4 14 12.30 22.29 7.44 o 3 4 14 0.06 4.31 4.10 o -4 5 14 13.43 12.28 4.84 o -3 5 14 6.93 11.94 4.36 o -2 5 14 75.37 81.22 10.04 o -1 5 14 167.73 195.90 19.67 o 0 5 14 4.23 9.94 6.40 o 1 5 14 23.25 31.44 8.70 o 2 5 14 22.44 40.64 9.75 o 3 5 14 0.00 2.99 4.59 o -3 6 14 30.46 31.64 6.77 o -2 6 14 184.98 204.64 34.90 o -1 6 14 2.65 4.08 5.15 o 0 6 14 11.10 26.31 8.43 o 1 6 14 0.00 4.32 3.70 o 2 6 14 4.42 4.21 4.73 o -3 7 14 1.22 1.51 3.56 o -2 7 14 17.03 23.63 8.57 o -1 7 14 0.62 7.92 5.59 o 0 7 14 3.51 6.52 5.40 o 1 7 14 205.59 191.03 14.43 o 2 7 14 88.30 76.59 9.82 o -2 8 14 25.62 36.56 9.95 o -1 8 14 5.64 11.05 6.91 o 0 8 14 4.92 18.60 7.81 o 1 8 14 25.77 33.69 6.25 o 2 8 14 38.87 39.07 6.97 o -2 9 14 6.04 6.89 5.43 o -1 9 14 3.29 12.10 6.42 o 0 9 14 23.52 37.19 9.72 o 1 9 14 77.92 84.41 13.43 o -3 0 15 227.71 205.86 18.04 o -1 0 15 618.62 483.68 24.18 o 1 0 15 646.10 632.06 52.80 o 3 0 15 0.00 0.65 6.53 o -4 1 15 61.27 58.33 8.57 o -3 1 15 45.51 44.33 6.25 o -2 1 15 88.95 73.49 7.43 o -1 1 15 78.74 65.75 6.76 o 0 1 15 10.04 14.95 4.38 o 1 1 15 9.18 12.97 7.27 o 2 1 15 41.51 37.02 9.88 o 3 1 15 1.09 5.04 4.97 o -4 2 15 20.25 21.35 5.61 o -3 2 15 64.57 67.55 11.59 o -2 2 15 111.54 85.90 7.66 o -1 2 15 364.23 295.44 16.36 o 0 2 15 25.79 28.71 6.13 o 1 2 15 122.95 142.99 18.69 o 2 2 15 18.94 17.04 7.20 o 3 2 15 117.29 81.25 14.16 o -4 3 15 6.73 5.33 3.52 o -3 3 15 3.78 3.58 3.43 o -2 3 15 0.84 1.10 3.46 o -1 3 15 0.99 4.41 3.26 o 0 3 15 9.20 10.36 4.64 o 1 3 15 16.92 17.34 7.71 o 2 3 15 1.71 3.28 4.94 o 3 3 15 140.63 103.99 15.65 o -4 4 15 5.08 1.75 2.96 o -3 4 15 53.56 55.58 8.42 o -2 4 15 36.21 30.55 6.03 o -1 4 15 195.18 194.28 19.59 o 0 4 15 1.46 4.46 3.69 o 1 4 15 379.60 402.55 22.64 o 2 4 15 88.85 96.94 14.64 o 3 4 15 77.78 65.52 13.11 o -3 5 15 1.88 6.27 3.79 o -2 5 15 17.59 18.93 8.17 o -1 5 15 2.99 8.90 6.80 o 0 5 15 78.57 90.95 13.81 o 1 5 15 0.10 0.26 4.80 o 2 5 15 1.11 0.98 4.11 o -3 6 15 46.66 69.08 10.23 o -2 6 15 0.03 7.23 5.62 o -1 6 15 13.92 22.55 7.97 o 0 6 15 22.51 31.59 8.87 o 1 6 15 133.09 153.20 18.02 o 2 6 15 55.18 51.63 15.68 o -3 7 15 1.08 6.89 6.82 o -2 7 15 0.06 6.70 6.76 o -1 7 15 12.54 16.23 7.19 o 0 7 15 11.60 24.50 8.10 o 1 7 15 38.65 49.10 10.58 o 2 7 15 6.84 10.53 4.57 o -2 8 15 0.00 2.06 6.01 o -1 8 15 52.12 61.35 12.92 o 0 8 15 131.82 150.65 19.06 o 1 8 15 21.35 26.80 8.00 o -1 9 15 7.78 20.16 8.41 o 0 9 15 51.59 63.10 12.69 o -4 0 16 8.07 9.03 4.83 o -2 0 16 111.60 87.06 11.25 o 0 0 16 275.05 283.22 35.81 o 2 0 16 30.02 21.30 10.72 o -4 1 16 10.14 11.99 5.28 o -3 1 16 10.43 12.37 3.59 o -2 1 16 26.28 28.10 4.80 o -1 1 16 619.31 587.35 20.18 o 0 1 16 0.02 6.42 5.92 o 1 1 16 63.81 66.54 13.54 o 2 1 16 44.41 33.93 9.43 o 3 1 16 29.69 26.11 8.16 o -4 2 16 0.33 0.49 3.24 o -3 2 16 8.32 9.25 5.08 o -2 2 16 60.64 57.40 6.52 o -1 2 16 47.79 44.86 7.42 o 0 2 16 260.95 272.49 17.98 o 1 2 16 34.44 30.94 9.46 o 2 2 16 45.51 39.82 10.41 o 3 2 16 10.85 8.02 5.56 o -3 3 16 35.64 31.87 6.43 o -2 3 16 138.58 140.06 12.64 o -1 3 16 40.66 41.97 6.88 o 0 3 16 317.65 336.72 20.82 o 1 3 16 10.83 17.59 7.69 o 2 3 16 1.03 3.50 5.06 o 3 3 16 1.48 0.39 7.32 o -3 4 16 3.82 7.81 3.84 o -2 4 16 48.05 42.76 9.59 o -1 4 16 16.46 18.33 7.16 o 0 4 16 26.00 31.21 8.82 o 1 4 16 3.53 7.63 5.59 o 2 4 16 63.09 72.02 13.58 o -3 5 16 105.19 124.53 13.32 o -2 5 16 69.50 65.78 12.89 o -1 5 16 204.03 219.84 21.58 o 0 5 16 35.07 40.59 9.61 o 1 5 16 110.31 112.25 15.52 o 2 5 16 24.99 36.73 15.55 o -3 6 16 3.40 7.22 6.32 o -2 6 16 56.69 60.20 13.03 o -1 6 16 0.00 1.59 5.20 o 0 6 16 42.48 65.63 13.03 o 1 6 16 3.18 10.70 6.12 o 2 6 16 26.19 28.88 12.68 o -2 7 16 0.00 4.73 6.21 o -1 7 16 150.54 185.32 22.15 o 0 7 16 33.60 43.53 10.80 o 1 7 16 237.48 306.75 26.96 o -1 8 16 1.00 7.35 7.00 o 0 8 16 2.93 6.47 7.11 o -3 0 17 58.93 50.86 9.28 o -1 0 17 811.32 813.60 53.59 o 1 0 17 71.03 76.72 21.17 o -3 1 17 40.02 35.25 5.46 o -2 1 17 1.63 4.34 2.62 o -1 1 17 39.07 48.57 7.47 o 0 1 17 41.82 53.09 11.37 o 1 1 17 27.39 40.14 10.94 o 2 1 17 85.59 75.17 14.83 o -3 2 17 58.50 47.97 9.69 o -2 2 17 72.95 59.18 6.93 o -1 2 17 37.60 41.57 7.47 o 0 2 17 62.52 59.46 12.23 o 1 2 17 53.80 50.28 12.24 o 2 2 17 44.12 38.34 10.36 o -3 3 17 0.00 -0.25 3.16 o -2 3 17 199.79 189.99 19.59 o -1 3 17 66.33 73.58 12.72 o 0 3 17 1.20 4.63 3.95 o 1 3 17 35.40 37.30 10.51 o 2 3 17 3.10 7.23 6.21 o -3 4 17 74.35 83.84 11.04 o -2 4 17 13.40 24.42 7.79 o -1 4 17 111.18 116.30 15.47 o 0 4 17 124.22 133.27 16.59 o 1 4 17 26.08 34.25 9.51 o 2 4 17 4.57 3.86 5.14 o -3 5 17 7.21 3.78 5.58 o -2 5 17 54.11 57.41 11.85 o -1 5 17 11.31 21.54 8.16 o 0 5 17 262.82 290.96 25.46 o 1 5 17 5.01 16.60 10.06 o 2 5 17 188.19 191.47 31.89 o -2 6 17 6.65 8.65 7.59 o -1 6 17 1.07 5.99 6.47 o 0 6 17 4.01 9.15 6.90 o 1 6 17 0.64 2.29 5.50 o -2 7 17 17.00 33.30 10.03 o -1 7 17 81.49 126.95 19.34 o 0 7 17 6.88 11.41 7.40 o 1 7 17 38.82 53.59 11.41 o -2 0 18 8.39 7.47 4.65 o 0 0 18 186.53 203.76 31.50 o 2 0 18 26.71 30.06 13.46 o -3 1 18 0.01 1.39 2.66 o -2 1 18 123.00 107.54 9.25 o -1 1 18 37.68 39.82 9.80 o 0 1 18 0.86 5.98 5.25 o 1 1 18 0.22 10.51 6.81 o 2 1 18 138.88 168.24 22.22 o -3 2 18 0.92 0.00 3.36 o -2 2 18 223.77 215.25 20.41 o -1 2 18 21.24 26.10 5.64 o 0 2 18 58.18 63.14 12.88 o 1 2 18 146.57 173.98 21.97 o 2 2 18 17.18 26.28 9.47 o -3 3 18 145.89 119.52 11.76 o -2 3 18 41.01 50.82 10.57 o -1 3 18 28.51 32.75 8.44 o 0 3 18 12.16 17.59 6.94 o 1 3 18 11.53 22.38 8.94 o 2 3 18 0.81 3.60 5.55 o -2 4 18 72.08 69.30 12.50 o -1 4 18 3.53 3.62 4.86 o 0 4 18 19.58 19.37 7.43 o 1 4 18 34.48 43.78 16.08 o -2 5 18 1.33 2.67 5.50 o -1 5 18 3.81 12.78 7.26 o 0 5 18 17.13 25.55 8.52 o 1 5 18 0.00 5.36 9.02 o -2 6 18 31.44 34.61 10.80 o -1 6 18 17.63 23.23 9.04 o 0 6 18 128.67 187.11 21.75 o 1 6 18 1.66 10.46 9.28 o -3 0 19 2.67 2.17 3.29 o -1 0 19 192.37 214.61 33.20 o 1 0 19 0.47 6.53 9.41 o -3 1 19 5.52 3.58 2.96 o -2 1 19 138.54 127.90 12.42 o -1 1 19 5.11 11.10 6.17 o 0 1 19 2.90 12.80 6.74 o 1 1 19 0.78 4.34 5.72 o -2 2 19 80.33 78.84 12.97 o -1 2 19 11.12 16.20 6.28 o 0 2 19 4.98 10.78 6.28 o 1 2 19 11.50 18.63 8.25 o -2 3 19 10.29 16.68 6.55 o -1 3 19 0.08 2.43 4.76 o 0 3 19 60.41 64.83 19.08 o 1 3 19 82.73 99.60 16.62 o -2 4 19 4.53 7.27 6.15 o -1 4 19 3.12 3.79 4.83 o 0 4 19 12.31 8.63 9.41 o 1 4 19 0.36 10.59 10.06 o -1 5 19 24.61 35.91 10.06 o 0 5 19 16.14 24.18 12.81 o -2 0 20 37.14 36.20 12.42 o 0 0 20 148.25 228.59 36.86 o -2 1 20 19.36 17.89 4.71 o -1 1 20 0.01 5.63 5.30 o 0 1 20 1.33 8.07 5.65 o 1 1 20 16.46 17.46 7.62 o -2 2 20 80.33 88.53 13.33 o -1 2 20 13.60 31.26 7.64 o 0 2 20 29.28 42.42 11.02 o 1 2 20 18.03 25.90 8.93 o -2 3 20 0.25 3.96 5.09 o -1 3 20 28.55 31.63 13.20 o 0 3 20 113.39 144.42 28.36 o -1 4 20 46.64 55.37 11.59 o 0 4 20 23.49 29.93 14.77 o -1 0 21 5.91 8.63 8.10 o -1 1 21 2.28 7.85 5.25 o 0 1 21 10.19 22.06 8.39 o -1 2 21 6.04 11.24 8.50 o pyobjcryst-2024.2.1/src/pyobjcryst/tests/testglobaloptim.py000066400000000000000000000075401470422267000241100ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for MonteCarlo module.""" import unittest from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata from pyobjcryst.diffractiondatasinglecrystal import DiffractionDataSingleCrystal from pyobjcryst.globaloptim import MonteCarlo, AnnealingSchedule, GlobalOptimType from pyobjcryst import refinableobj class TestGlobalOptim(unittest.TestCase): def setUp(self): self.c = loadcifdata('caffeine.cif') self.d = DiffractionDataSingleCrystal(self.c) self.d.GenHKLFullSpace2(0.4, True) self.d.SetIobsToIcalc() def tearDown(self): del self.c del self.d def test_mc_create(self): """Check Creating a basic Monte-Carlo object """ mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) def test_mc_name(self): """Check Creating a basic Monte-Carlo object """ mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) mc.SetName('caffeine') self.assertEqual(mc.GetName(), 'caffeine') def test_mc_llk(self): """Check Creating a basic Monte-Carlo object """ mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) junk = mc.GetLogLikelihood() def test_mc_fix_use_pars(self): mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) junk = mc.GetLogLikelihood() mc.FixAllPar() mc.SetParIsUsed("Scale factor", False) mc.SetParIsUsed("Scale factor", True) mc.SetParIsFixed("Scale factor", True) mc.SetParIsFixed("Scale factor", False) mc.SetParIsUsed(refinableobj.refpartype_scatt, False) mc.SetParIsUsed(refinableobj.refpartype_scatt, True) mc.SetParIsFixed(refinableobj.refpartype_scatt, True) mc.SetParIsFixed(refinableobj.refpartype_scatt, False) def test_mc_optim(self): mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) mc.RandomizeStartingConfig() mc.Optimize(nb_step=1000) def test_mc_optim_multi(self): mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) mc.RandomizeStartingConfig() mc.MultiRunOptimize(nb_run=2, nb_step=1000) def test_mc_sa(self): mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) mc.RandomizeStartingConfig() mc.RunSimulatedAnnealing(nb_step=1000) def test_mc_pt(self): mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) mc.RandomizeStartingConfig() mc.RunParallelTempering(nb_step=1000) # TODO: this is experimental and leads to segfault if testcrystal:testDummyAtom() has been run before (?!) # def test_mc_lsq(self): # mc = MonteCarlo() # mc.AddRefinableObj(self.c) # mc.AddRefinableObj(self.d) # mc.RandomizeStartingConfig() # mc.InitLSQ() # # print(mc.GetLSQObj().GetCompiledRefinedObj()) # mc.RunRandomLSQ(nbCycle=2) def test_mc_set_algo(self): mc = MonteCarlo() mc.AddRefinableObj(self.c) mc.AddRefinableObj(self.d) mc.RandomizeStartingConfig() mc.SetAlgorithmSimulAnnealing(AnnealingSchedule.SMART, 1000.0, 1.0) mc.Optimize(nb_step=1000) mc.SetAlgorithmParallTempering(AnnealingSchedule.SMART, 1000.0, 1.0) mc.Optimize(nb_step=1000) if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testindexing.py000066400000000000000000000057061470422267000234060ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for indexing module.""" import unittest from numpy import pi from pyobjcryst.indexing import CrystalSystem, CrystalCentering, \ EstimateCellVolume, RecUnitCell, PeakList, CellExplorer, quick_index class TestIndexing(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_estimate_cell_volume(self): """Check EstimateCellVolume """ # 20 reflections observed from d=47.326A to 1.537A v = EstimateCellVolume(1 / 1.537, 1 / 47.326, 20, CrystalSystem.CUBIC, CrystalCentering.LATTICE_P, 1.2) self.assertAlmostEqual(v, 309, delta=2) v = EstimateCellVolume(1 / 1.537, 1 / 47.326, 20, CrystalSystem.CUBIC, CrystalCentering.LATTICE_P, 0.3) self.assertAlmostEqual(v, 2475, delta=2) v = EstimateCellVolume(1 / 1.537, 1 / 47.326, 20, CrystalSystem.ORTHOROMBIC, CrystalCentering.LATTICE_F, 1.2) self.assertAlmostEqual(v, 308, delta=2) v = EstimateCellVolume(1 / 1.537, 1 / 47.326, 20, CrystalSystem.ORTHOROMBIC, CrystalCentering.LATTICE_I, 0.3) self.assertAlmostEqual(v, 666, delta=2) def test_recunitcell(self): r = RecUnitCell(0, 0.1, 0, 0, 0, 0, 0, CrystalSystem.CUBIC, CrystalCentering.LATTICE_P, 0) d = r.hkl2d(1, 1, 1, None, 0) self.assertAlmostEqual(d, 0.03, 5) u = r.DirectUnitCell() self.assertAlmostEqual(u[0], 10, 5) self.assertAlmostEqual(u[3], pi / 2) def test_quick_index(self): # Try to index cimetidine powder pattern from experimental list of points v = [0.106317, 0.113542, 0.146200, 0.152765, 0.161769, 0.166021, 0.186157, 0.188394, 0.189835, 0.200636, 0.207603, 0.211856, 0.212616, 0.215067, 0.220722, 0.221532, 0.223939, 0.227054, 0.231044, 0.235053] pl = PeakList() pl.set_dobs_list(v) ex = quick_index(pl, verbose=False, continue_on_sol=False) self.assertGreater(ex.GetBestScore(), 120) sols = ex.GetSolutions() # Without continue_on_sol=True, this should yield only one solution self.assertEqual(len(sols), 1) self.assertGreater(sols[0][1], 120) ruc = sols[0][0] # Check lattice type self.assertEqual(ruc.centering, CrystalCentering.LATTICE_P) self.assertEqual(ruc.lattice, CrystalSystem.MONOCLINIC) # Cell volume self.assertAlmostEqual(ruc.DirectUnitCell()[-1], 1280, delta=2) if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testlsq.py000066400000000000000000000055121470422267000223730ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for LSQ module.""" import unittest from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata from pyobjcryst.diffractiondatasinglecrystal import DiffractionDataSingleCrystal from pyobjcryst.lsq import LSQ from pyobjcryst import refinableobj class TestGlobalOptim(unittest.TestCase): def setUp(self): self.c = loadcifdata('caffeine.cif') self.d = DiffractionDataSingleCrystal(self.c) self.d.GenHKLFullSpace2(0.4, True) self.d.SetIobsToIcalc() def tearDown(self): del self.c del self.d def test_lsq_create(self): """Check Creating a basic LSQ object """ lsq = LSQ() lsq.SetRefinedObj(self.d) def test_lsq_get_obs_calc(self): """Check Creating a basic LSQ object & get obs&calc arrays """ lsq = LSQ() lsq.SetRefinedObj(self.d, 0, True, True) junk = lsq.GetLSQObs(), lsq.GetLSQCalc(), lsq.ChiSquare() def test_lsq_get_refined_obj(self): """Check Creating a basic LSQ object & get obs&calc arrays """ lsq = LSQ() lsq.SetRefinedObj(self.d, 0, True, True) lsq.PrepareRefParList() # print(lsq.GetCompiledRefinedObj()) def test_lsq_set_pr_fixed(self): """Check Creating a basic LSQ object & get obs&calc arrays """ lsq = LSQ() lsq.SetRefinedObj(self.d, 0, True, True) lsq.PrepareRefParList() lsq.SetParIsFixed(refinableobj.refpartype_objcryst, False) lsq.SetParIsFixed(refinableobj.refpartype_scattdata, True) lsq.SetParIsFixed(refinableobj.refpartype_scattdata_scale, False) lsq.SetParIsFixed(refinableobj.refpartype_unitcell, True) lsq.SetParIsFixed(refinableobj.refpartype_scattpow, True) lsq.SetParIsFixed(refinableobj.refpartype_scattdata_radiation, True) def test_lsq_refine(self): lsq = LSQ() lsq.SetRefinedObj(self.d) # Refine structural parameters lsq.SetParIsFixed(refinableobj.refpartype_objcryst, False) lsq.SetParIsFixed(refinableobj.refpartype_scattdata, True) lsq.SetParIsFixed(refinableobj.refpartype_scattdata_scale, False) lsq.SetParIsFixed(refinableobj.refpartype_unitcell, True) lsq.SetParIsFixed(refinableobj.refpartype_scattpow, True) lsq.SetParIsFixed(refinableobj.refpartype_scattdata_radiation, True) for i in range(5): self.c.RandomizeConfiguration() lsq.Refine(10, False, True) if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testmolecule.py000066400000000000000000000635061470422267000234100ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for molecule module.""" import io import unittest from pkg_resources import resource_filename from pyobjcryst import ObjCrystException from pyobjcryst.crystal import Crystal from pyobjcryst.molecule import ( GetBondLength, StretchModeBondLength, GetBondAngle, StretchModeBondAngle, GetDihedralAngle, StretchModeTorsion, ImportFenskeHallZMatrix) from pyobjcryst.refinableobj import RefParType, RefinablePar from pyobjcryst.tests.pyobjcrysttestutils import makeC60, makeMnO6 from numpy import pi numplaces = 6 class TestMolecule(unittest.TestCase): def setUp(self): self.c = makeC60() self.m = self.c.GetScatterer("c60") return def tearDown(self): del self.c del self.m return def testProperties(self): """Make sure we can access the python-only properties.""" self.m.Q0 *= 1.001 self.m.Q1 *= 1.001 self.m.Q2 *= 1.001 self.m.Q3 *= 1.001 self.m.X *= 1.001 self.m.Y *= 1.001 self.m.Z *= 1.001 self.m.Occupancy *= 1.001 return def testContainment(self): """Make sure we can still use the molecule if the crystal is out of scope.""" c = makeC60() m = self.c.GetScatterer("c60") self.assertEqual("c60", m.GetName()) del c self.assertEqual("c60", m.GetName()) return def testAddPar(self): """See if we crash if we add a parameter and delete the molecule.""" c = makeC60() m = self.c.GetScatterer("c60") rpt = RefParType("test") par = RefinablePar("testpar", 3, 0, 10, rpt) m.AddPar(par) self.assertAlmostEqual(3, par.GetValue()) del m self.assertAlmostEqual(3, par.GetValue()) del c self.assertAlmostEqual(3, par.GetValue()) return def testAtoms(self): """Make sure the atoms are there. This tests AddAtom by association. This tests GetAtom. """ self.assertEqual(60, self.m.GetNbAtoms()) for i in range(60): a1 = self.m.GetAtom(i) self.assertEqual(a1.GetName(), "C%i"%i) a = self.m.GetAtom(0) x = a.X self.assertEqual(60, self.m.GetNbAtoms()) self.m.RemoveAtom(a) self.assertEqual(59, self.m.GetNbAtoms()) # Make sure the atom is still valid. We don't want RemoveAtom deleting # the memory for an object we still have access to. self.assertEqual(a.X, x) # Check to see if a is in our list for i in range(59): self.assertNotEqual(a.GetName(), self.m.GetAtom(i)) # What happens if we try to remove an atom that is not in the molecule? # First, try the same atom again. This will throw an objcryst error. self.assertRaises(ObjCrystException, self.m.RemoveAtom, a) ## Try to remove an atom from another molecule c = makeC60() m = c.GetScatterer("c60") self.assertRaises(ObjCrystException, self.m.RemoveAtom, m.GetAtom(1)) # Remove all the atoms. for a in self.m[:]: self.m.RemoveAtom(a) atoms = self.m.GetAtomList() self.assertEqual(0, len(atoms)) self.assertEqual(0, self.m.GetNbAtoms()) return def testGetAtom(self): "check Molecule.GetAtom." m = self.m a0 = m.GetAtom(0) b0 = m.GetAtom("C0") c0 = m.GetAtom(-60) self.assertEqual([a0.X, a0.Y, a0.Z], [b0.X, b0.Y, b0.Z]) self.assertEqual([a0.X, a0.Y, a0.Z], [c0.X, c0.Y, c0.Z]) a0.X = 0.123 self.assertEqual(a0.X, b0.X) self.assertEqual(a0.X, c0.X) self.assertRaises(IndexError, m.GetAtom, 60) self.assertRaises(IndexError, m.GetAtom, -61) self.assertRaises(ValueError, m.GetAtom, "invalid") return def testFindAtom(self): "check Molecule.FindAtom." m = self.m a0 = m.GetAtom(0) b0 = m.FindAtom("C0") self.assertEqual([a0.X, a0.Y, a0.Z], [b0.X, b0.Y, b0.Z]) a0.X = 0.123 self.assertEqual(a0.X, b0.X) self.assertIs(None, m.FindAtom("invalid")) return def testBonds(self): """Test the Bond methods.""" a1 = self.m.GetAtom(0) a2 = self.m.GetAtom(1) a3 = self.m.GetAtom(2) a4 = self.m.GetAtom(3) # Check for a bond that doesn't exist bond = self.m.FindBond(a1, a2) self.assertTrue(bond is None) # Make a bond and try to find it self.m.AddBond(a1, a2, 5, 0, 0) bond1 = self.m.FindBond(a1, a2) bond2 = self.m.FindBond(a2, a1) bond3 = self.m.FindBond(a1, a3) self.assertTrue(bond1 is not None) # Cannot expect the python objects to be the same, but they should point # to the same internal object self.assertEqual(bond1.GetName(), bond2.GetName()) # Try some bad bonds self.assertTrue(bond3 is None) # Remove an atom, the bond should disappear as well. self.m.RemoveAtom(a1) bond4 = self.m.FindBond(a1, a2) self.assertTrue(bond4 is None) # Try to find a bond from an atom outside of the molecule. m = makeC60().GetScatterer("c60") b1 = m.GetAtom(0) b2 = m.GetAtom(1) bond5 = self.m.FindBond(b1, b2) self.assertTrue(bond5 is None) # Try to make a bond using an atom that is not in the structure... # This seems to be allowed by ObjCryst++, and causes no errors. This # might be necessary to constrain a distance between two molecules, # thus it is allowed. # make a good bond. bond6 = self.m.AddBond(a3, a4, 5, 0, 0) bond7 = self.m.GetBond(0) self.assertEqual(bond6.GetName(), bond7.GetName()) # Delete some bonds and see what happens name = bond6.GetName() del bond6 del bond7 bond8 = self.m.GetBond(0) self.assertEqual(name, bond8.GetName()) # Try to get a bond that doesn't exist by index self.assertRaises(IndexError, self.m.GetBond, 1) # Remove the bond bonds = self.m.GetBondList() self.assertEqual(1, len(bonds)) self.m.RemoveBond(bonds[0]) # is the bond still in existance? self.assertEqual(name, bond8.GetName()) # Can we get it from the engine? self.assertRaises(IndexError, self.m.GetBond, 0) bond9 = self.m.FindBond(a3, a4) self.assertTrue(bond9 is None) # make a good bond again bond10 = self.m.AddBond(a3, a4, 5, 0, 0) # Get an atom from that a = bond10.GetAtom1() # Try to remove that atom self.m.RemoveAtom(a) self.assertEqual(0, self.m.GetNbBonds()) return def testBondAngles(self): """Test the BondAngle accessors.""" a1 = self.m.GetAtom(0) a2 = self.m.GetAtom(1) a3 = self.m.GetAtom(2) a4 = self.m.GetAtom(3) # Check for a bondangle angle that doesn't exist ba = self.m.FindBondAngle(a1, a2, a3) self.assertTrue(ba is None) # Make a ba and try to find it self.m.AddBondAngle(a2, a1, a3, 90, 0, 0) ba1 = self.m.FindBondAngle(a2, a1, a3) ba2 = self.m.FindBondAngle(a3, a1, a2) ba3 = self.m.FindBondAngle(a1, a2, a4) self.assertTrue(ba1 is not None) self.assertEqual(ba1.GetName(), ba2.GetName()) # Try some bad bond angles self.assertTrue(ba3 is None) # Remove an atom, the bondangle should disappear as well. self.m.RemoveAtom(a1) ba4 = self.m.FindBondAngle(a2, a1, a3) self.assertTrue(ba4 is None) # Try to find a bondangle from an atom outside of the molecule. m = makeC60().GetScatterer("c60") b1 = m.GetAtom(0) b2 = m.GetAtom(1) b3 = m.GetAtom(1) ba5 = self.m.FindBondAngle(b1, b2, b3) self.assertTrue(ba5 is None) # make a good bond angle ba6 = self.m.AddBondAngle(a2, a3, a4, 5, 0, 0) ba7 = self.m.GetBondAngle(0) self.assertEqual(ba6.GetName(), ba7.GetName()) # Delete some bond angles and see what happens name = ba6.GetName() del ba6 del ba7 ba8 = self.m.GetBondAngle(0) self.assertEqual(name, ba8.GetName()) # Try to get a bond angle that doesn't exist by index self.assertRaises(IndexError, self.m.GetBondAngle, 1) # Remove the bond angle angles = self.m.GetBondAngleList() self.assertEqual(1, len(angles)) self.m.RemoveBondAngle(angles[0]) # is the object still in existance? self.assertEqual(name, ba8.GetName()) # Can we get it from the engine? self.assertRaises(IndexError, self.m.GetBondAngle, 0) ba9 = self.m.FindBondAngle(a2, a3, a4) self.assertTrue(ba9 is None) # make a good bond angle again ba10 = self.m.AddBondAngle(a2, a3, a4, 5, 0, 0) # Get an atom from that a = ba10.GetAtom1() # Try to remove that atom self.m.RemoveAtom(a) self.assertEqual(0, self.m.GetNbBondAngles()) return def testDihedralAngles(self): """Test the FindDihedralAngle method.""" a1 = self.m.GetAtom(0) a2 = self.m.GetAtom(1) a3 = self.m.GetAtom(2) a4 = self.m.GetAtom(3) a5 = self.m.GetAtom(5) # Check for a dihedral angle that doesn't exist da = self.m.FindDihedralAngle(a1, a2, a3, a4) self.assertTrue(da is None) # Make a da and try to find it self.m.AddDihedralAngle(a1, a2, a3, a4, 90, 0, 0) da1 = self.m.FindDihedralAngle(a1, a2, a3, a4) da2 = self.m.FindDihedralAngle(a1, a2, a3, a4) self.assertTrue(da1 is not None) self.assertEqual(da1.GetName(), da2.GetName()) # Remove an atom, the dihedral angle should disappear as well. self.m.RemoveAtom(a1) da4 = self.m.FindDihedralAngle(a2, a1, a3, a4) self.assertTrue(da4 is None) # Try to find a dihedral angle from an atom outside of the molecule. m = makeC60().GetScatterer("c60") b1 = m.GetAtom(0) b2 = m.GetAtom(1) b3 = m.GetAtom(1) b4 = m.GetAtom(1) da5 = self.m.FindDihedralAngle(b1, b2, b3, b4) self.assertTrue(da5 is None) # make a good dihedral angle da6 = self.m.AddDihedralAngle(a2, a3, a4, a5, 5, 0, 0) da7 = self.m.GetDihedralAngle(0) self.assertEqual(da6.GetName(), da7.GetName()) # Delete some dihedral angles and see what happens name = da6.GetName() del da6 del da7 da8 = self.m.GetDihedralAngle(0) self.assertEqual(name, da8.GetName()) # Try to get a dihedral angle that doesn't exist by index self.assertRaises(IndexError, self.m.GetDihedralAngle, 1) # Remove the dihedral angle angles = self.m.GetDihedralAngleList() self.assertEqual(1, len(angles)) self.m.RemoveDihedralAngle(angles[0]) # is the object still in existance? self.assertEqual(name, da8.GetName()) # Can we get it from the engine? self.assertRaises(IndexError, self.m.GetDihedralAngle, 0) da9 = self.m.FindDihedralAngle(a2, a3, a4, a5) self.assertTrue(da9 is None) # make a good dihedral angle again da10 = self.m.AddDihedralAngle(a2, a3, a4, a5, 5, 0, 0) # Get an atom from that a = da10.GetAtom1() # Try to remove that atom self.m.RemoveAtom(a) self.assertEqual(0, self.m.GetNbDihedralAngles()) return def testRigidGroup(self): """Test adding and manipulating a rigid group.""" # A rigid group has the interface of a set self.assertEqual(0, len(self.m.GetRigidGroupList())) self.assertEqual(0, self.m.GetNbRigidGroups()) rg = self.m.AddRigidGroup(self.m.GetAtomList()) self.assertEqual(1, self.m.GetNbRigidGroups()) rgl = self.m.GetRigidGroupList() self.assertEqual(1, len(rgl)) self.assertEqual(60, len(rgl[0])) # We would like to check to see if the atoms are the same, but the # rigid group is a set, not a list. # Test to see if we can remove the list. self.m.RemoveRigidGroup(rg) self.assertEqual(0, self.m.GetNbRigidGroups()) rgl = self.m.GetRigidGroupList() self.assertEqual(0, len(rgl)) return def testManipulation(self): """Test moving the atoms.""" ac = self.m.AddAtom(0, 0, 0, None, "center") self.assertTrue(ac.IsDummy()) self.m.SetCenterAtom(ac) a0 = self.m.GetAtom(0) x = a0.X y = a0.Y z = a0.Z # Translate the atoms self.m.TranslateAtomGroup(self.m.GetAtomList(), 0, 0, 0.5) self.assertAlmostEqual(x, a0.X) self.assertAlmostEqual(y, a0.Y) self.assertAlmostEqual(z+0.5, a0.Z) # Move them back self.m.TranslateAtomGroup(self.m.GetAtomList(), 0, 0, -0.5) self.assertAlmostEqual(x, a0.X) self.assertAlmostEqual(y, a0.Y) self.assertAlmostEqual(z, a0.Z) # Rotate the atoms import numpy xyz = [numpy.array([a.X, a.Y, a.Z]) for a in self.m] self.m.RotateAtomGroup((0,0,0), (0,0,1), self.m.GetAtomList(), pi/2) rm = numpy.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) for i in range(len(self.m)): xyzi = xyz[i] newxyz = numpy.dot(rm, xyzi) self.assertAlmostEqual(newxyz[0], self.m[i].X, 6) self.assertAlmostEqual(newxyz[1], self.m[i].Y, 6) self.assertAlmostEqual(newxyz[2], self.m[i].Z, 6) return def testZMatrix(self): """Test creating a Molecule from a z-matrix""" fname = resource_filename(__name__, "testdata/cime.fhz") c= Crystal() m = ImportFenskeHallZMatrix(c, fname) assert m.GetNbAtoms() == 17 # Test how changing a name to one that is already taken messes things up. class TestMolAtom(unittest.TestCase): def setUp(self): c = makeC60() self.m = c.GetScatterer("c60") self.a = self.m.GetAtom("C0") return def tearDown(self): del self.m del self.a return def testAccessors(self): a = self.a # Test name Get/Set self.assertEqual("C0", a.GetName()) a.SetName("test") self.assertEqual("test", a.GetName()) # Test xyz & occ Get/Set self.assertAlmostEqual(3.451266498, a.X, numplaces) self.assertAlmostEqual(0.685, a.Y, numplaces) self.assertAlmostEqual(0, a.Z, numplaces) self.assertAlmostEqual(1.0, a.Occupancy, numplaces) a.x = 3.40 a.y = 0.68 a.z = 0.1 a.occ = 1.02 self.assertAlmostEqual(3.40, a.x, numplaces) self.assertAlmostEqual(0.68, a.y, numplaces) self.assertAlmostEqual(0.1, a.z, numplaces) self.assertAlmostEqual(1.02, a.occ, numplaces) # Test GetMolecule. We can't expect the python object to be the same as # our molecule above. However, we can verify that it points to the same # object. m = a.GetMolecule() self.assertEqual(m.GetName(), self.m.GetName()) # Change something with the molecule, and check to see if it appears in # self.m m.GetAtom("C1").Occupancy = 0.1 self.assertAlmostEqual(0.1, self.m.GetAtom("C1").Occupancy, numplaces) # Test IsDummy self.assertFalse(a.IsDummy()) # Test GetScatteringPower sp = a.GetScatteringPower() self.assertEqual("ScatteringPowerAtom", sp.GetClassName()) self.assertEqual("C", sp.GetName()) # Test Ring Get/Set self.assertFalse(a.IsInRing()) a.SetIsInRing(True) self.assertTrue(a.IsInRing()) a.SetIsInRing(False) self.assertFalse(a.IsInRing()) return # End class TestMolAtom class TestMolBond(unittest.TestCase): def setUp(self): c = makeC60() self.m = c.GetScatterer("c60") # Add a bond self.a1 = self.m.GetAtom(0) self.a2 = self.m.GetAtom(1) self.b = self.m.AddBond(self.a1, self.a2, 5, 1, 2) return def tearDown(self): del self.m del self.a1 del self.a2 del self.b return def testAccessors(self): m = self.m b = self.b a1 = self.a1 a2 = self.a2 # Check the name self.assertEqual("C0-C1", b.GetName()) # Get the atoms at1 = b.GetAtom1() at2 = b.GetAtom2() self.assertEqual(at1.GetName(), a1.GetName()) self.assertEqual(at2.GetName(), a2.GetName()) # Data self.assertAlmostEqual(5, b.Length0, numplaces) self.assertAlmostEqual(1, b.LengthSigma, numplaces) self.assertAlmostEqual(2, b.LengthDelta, numplaces) self.assertAlmostEqual(1, b.BondOrder, numplaces) b.Length0 = 1.2 b.LengthSigma = 2 b.LengthDelta = 1 b.BondOrder = 2 self.assertAlmostEqual(1.2, b.Length0, numplaces) self.assertAlmostEqual(2, b.LengthSigma, numplaces) self.assertAlmostEqual(1, b.LengthDelta, numplaces) self.assertAlmostEqual(2, b.BondOrder, numplaces) # Check the log likelihood of the bond and the containing molecule b.Length0 = 4 ll = ((b.Length - (b.Length0-b.LengthDelta))/b.LengthSigma)**2 self.assertAlmostEqual(ll, b.GetLogLikelihood(), numplaces) self.assertAlmostEqual(ll, m.GetLogLikelihood(), numplaces) return # End class TestMolBond class TestMolBondAngle(unittest.TestCase): def setUp(self): c = makeC60() self.m = c.GetScatterer("c60") # Add a bond self.a1 = self.m.GetAtom(0) self.a2 = self.m.GetAtom(1) self.a3 = self.m.GetAtom(2) self.ba = self.m.AddBondAngle(self.a1, self.a2, self.a3, 5, 1, 2) return def tearDown(self): del self.m del self.a1 del self.a2 del self.a3 del self.ba return def testAccessors(self): m = self.m ba = self.ba a1 = self.a1 a2 = self.a2 a3 = self.a3 # Check the name self.assertEqual("C0-C1-C2", ba.GetName()) # Get the atoms at1 = ba.GetAtom1() at2 = ba.GetAtom2() at3 = ba.GetAtom3() self.assertEqual(at1.GetName(), a1.GetName()) self.assertEqual(at2.GetName(), a2.GetName()) self.assertEqual(at3.GetName(), a3.GetName()) # Data self.assertAlmostEqual(5, ba.Angle0, numplaces) self.assertAlmostEqual(1, ba.AngleSigma, numplaces) self.assertAlmostEqual(2, ba.AngleDelta, numplaces) ba.Angle0 = 1.2 ba.AngleSigma = 2 ba.AngleDelta = 1 self.assertAlmostEqual(1.2, ba.Angle0, numplaces) self.assertAlmostEqual(2, ba.AngleSigma, numplaces) self.assertAlmostEqual(1, ba.AngleDelta, numplaces) # Check the log likelihood of the bond and the containing molecule ba.Angle0 = 4 ll = ((ba.Angle - (ba.Angle0-ba.AngleDelta))/ba.AngleSigma)**2 self.assertAlmostEqual(ll, ba.GetLogLikelihood(), numplaces) self.assertAlmostEqual(ll, m.GetLogLikelihood(), numplaces) return # End class TestMolBondAngle class TestMolDihedralAngle(unittest.TestCase): def setUp(self): c = makeC60() self.m = c.GetScatterer("c60") # Add a bond self.a1 = self.m.GetAtom(0) self.a2 = self.m.GetAtom(1) self.a3 = self.m.GetAtom(2) self.a4 = self.m.GetAtom(3) self.da = self.m.AddDihedralAngle(self.a1, self.a2, self.a3, self.a4, 5, 1, 2) return def tearDown(self): del self.m del self.a1 del self.a2 del self.a3 del self.a4 del self.da return def testAccessors(self): m = self.m da = self.da a1 = self.a1 a2 = self.a2 a3 = self.a3 a4 = self.a4 # Check the name self.assertEqual("C0-C1-C2-C3", da.GetName()) # Get the atoms at1 = da.GetAtom1() at2 = da.GetAtom2() at3 = da.GetAtom3() at4 = da.GetAtom4() self.assertEqual(at1.GetName(), a1.GetName()) self.assertEqual(at2.GetName(), a2.GetName()) self.assertEqual(at3.GetName(), a3.GetName()) self.assertEqual(at4.GetName(), a4.GetName()) # Data # Note that the angle is in [-pi, pi] from math import pi self.assertAlmostEqual(5-2*pi, da.Angle0, numplaces) self.assertAlmostEqual(1, da.AngleSigma, numplaces) self.assertAlmostEqual(2, da.AngleDelta, numplaces) da.Angle0 = 1.2 da.AngleSigma = 2 da.AngleDelta = 1 self.assertAlmostEqual(1.2, da.Angle0, numplaces) self.assertAlmostEqual(2, da.AngleSigma, numplaces) self.assertAlmostEqual(1, da.AngleDelta, numplaces) # Check the log likelihood of the bond and the containing molecule da.Angle0 = pi-0.2 da.AngleDelta = 0 da.AngleSigma = 0.1 angle = da.Angle + (da.Angle0-da.AngleDelta) - 2*pi ll = (angle/da.AngleSigma)**2 # For some reason these are not very close in value. self.assertAlmostEqual(ll, da.GetLogLikelihood(), 2) self.assertAlmostEqual(ll, m.GetLogLikelihood(), 2) return # End class TestMolDihedralAngle class TestStretchModeBondLength(unittest.TestCase): def setUp(self): self.c = makeMnO6() self.m = self.c.GetScatterer("MnO6") return def tearDown(self): del self.m del self.c return def testStretchModeBondLength(self): """Test the StretchModeBondLength class.""" # Measure the distance ac = self.m[0] # The 0, 0, z atom atop = self.m[1] # The 0, 0, -z atom abot = self.m[6] d0 = GetBondLength(atop, abot) dc0 = GetBondLength(ac, atop) # Now create a stretch mode with just these two sm = StretchModeBondLength(atop, abot, None) sm.AddAtom(abot) self.assertEqual(sm.mpAtom0.GetName(), atop.GetName()) self.assertEqual(sm.mpAtom1.GetName(), abot.GetName()) # Stretch the bond by 5% delta = 0.05 * d0 sm.Stretch(delta) # Make sure this does what we expected d1 = GetBondLength(atop, abot) self.assertAlmostEqual(d0+delta, d1, 6) # Note that only the second atom has moved dc1 = GetBondLength(ac, atop) self.assertAlmostEqual(dc0, dc1) return # End class TestStretchModeBondLength class TestStretchModeBondAngle(unittest.TestCase): def setUp(self): self.c = makeMnO6() self.m = self.c.GetScatterer("MnO6") return def tearDown(self): del self.m del self.c return def testStretchModeBondAngle(self): """Test the StretchModeBondLength class.""" a1 = self.m[1] ac = self.m[0] a2 = self.m[2] # Measure the angle angle0 = GetBondAngle(a1, ac, a2) # Now create a stretch mode with these sm = StretchModeBondAngle(a1, ac, a2, None) sm.AddAtom(a2) self.assertEqual(sm.mpAtom0.GetName(), a1.GetName()) self.assertEqual(sm.mpAtom1.GetName(), ac.GetName()) self.assertEqual(sm.mpAtom2.GetName(), a2.GetName()) # Stretch the angle by 5% delta = 0.05 * angle0 sm.Stretch(delta) # Make sure this does what we expected angle1 = GetBondAngle(a1, ac, a2) self.assertAlmostEqual(angle0+delta, angle1, 6) return # End class TestStretchModeBondAngle class TestStretchModeTorsion(unittest.TestCase): def setUp(self): self.c = makeMnO6() self.m = self.c.GetScatterer("MnO6") return def tearDown(self): del self.m del self.c return def testStretchModeTorsion(self): """Test the StretchModeBondLength class.""" a1 = self.m[1] ac0 = self.m[3] ac1 = self.m[0] a2 = self.m[2] # Measure the angle angle0 = GetDihedralAngle(a1, ac0, ac1, a2) # Now create a stretch mode with the central bond sm = StretchModeTorsion(ac0, ac1, None) # Add the last atom so it can rotate sm.AddAtom(a2) self.assertEqual(sm.mpAtom1.GetName(), ac0.GetName()) self.assertEqual(sm.mpAtom2.GetName(), ac1.GetName()) # Stretch the angle by 5% delta = 0.25 * angle0 sm.Stretch(delta) # Make sure this does what we expected angle1 = GetDihedralAngle(a1, ac0, ac1, a2) self.assertAlmostEqual(angle0+delta, angle1, 6) return def testDummy(self): """Test adding a dummy atom.""" # In this past, dummy atoms would cause seg-faults in crystal::Print. # We test that here. self.m.AddAtom(0, 0, 0, None, "center") sp = self.m[-1].GetScatteringPower() self.assertTrue(sp is None) sm = self.m.xml() self.assertEqual(8, sm.count('Atom Name')) sc = str(self.c) sclines = sc.splitlines() self.assertTrue(sclines[2].endswith(' 8')) self.assertTrue('ScattPow: dummy' in sc) return # End class TestStretchTorsion if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testpowderpattern.py000066400000000000000000000265051470422267000244770ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst Complex Modeling Initiative # (c) 2018 Brookhaven Science Associates, # Brookhaven National Laboratory. # All rights reserved. # # File coded by: Pavol Juhas # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Unit tests for pyobjcryst.powderpattern (with indexing & """ import unittest import numpy as np from pyobjcryst import ObjCrystException from pyobjcryst.powderpattern import PowderPattern, SpaceGroupExplorer from pyobjcryst.radiation import RadiationType, WavelengthType from pyobjcryst.crystal import * from pyobjcryst.reflectionprofile import ReflectionProfileType from pyobjcryst.indexing import * from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata, datafile # ---------------------------------------------------------------------------- class TestRoutines(unittest.TestCase): pass # def test_CreatePowderPatternFromCIF(self): assert False # End of class TestRoutines # ---------------------------------------------------------------------------- class TestPowderPattern(unittest.TestCase): def setUp(self): self.pp = PowderPattern() return def test___init__(self): self.assertEqual(0, self.pp.GetNbPowderPatternComponent()) self.assertEqual(0, len(self.pp.GetPowderPatternX())) self.assertEqual(0, len(self.pp.GetPowderPatternObs())) self.assertEqual(0, len(self.pp.GetPowderPatternCalc())) return # def test_AddPowderPatternBackground(self): assert False # def test_AddPowderPatternDiffraction(self): assert False # def test_FitScaleFactorForIntegratedR(self): assert False # def test_FitScaleFactorForIntegratedRw(self): assert False # def test_FitScaleFactorForR(self): assert False # def test_FitScaleFactorForRw(self): assert False # def test_GetMaxSinThetaOvLambda(self): assert False # def test_GetNbPowderPatternComponent(self): assert False # def test_GetPowderPatternCalc(self): assert False # def test_GetPowderPatternComponent(self): assert False def test_GetPowderPatternObs(self): self.assertTrue(np.array_equal([], self.pp.GetPowderPatternObs())) return def test_GetPowderPatternX(self): self.assertTrue(np.array_equal([], self.pp.GetPowderPatternX())) return # def test_GetScaleFactor(self): assert False # def test_ImportPowderPattern2ThetaObs(self): assert False # def test_ImportPowderPattern2ThetaObsSigma(self): assert False # def test_ImportPowderPatternFullprof(self): assert False # def test_ImportPowderPatternFullprof4(self): assert False # def test_ImportPowderPatternGSAS(self): assert False # def test_ImportPowderPatternILL_D1A5(self): assert False # def test_ImportPowderPatternMultiDetectorLLBG42(self): assert False # def test_ImportPowderPatternPSI_DMC(self): assert False # def test_ImportPowderPatternSietronicsCPI(self): assert False # def test_ImportPowderPatternTOF_ISIS_XYSigma(self): assert False # def test_ImportPowderPatternXdd(self): assert False # def test_Prepare(self): assert False # def test_SetEnergy(self): assert False # def test_SetMaxSinThetaOvLambda(self): assert False def test_SetPowderPatternObs(self): pp = self.pp obs = np.array([1.0, 3.0, 7.0]) self.assertRaises(ObjCrystException, pp.SetPowderPatternObs, obs) pp.SetPowderPatternPar(0, 0.5, 3) pp.SetPowderPatternObs(obs) self.assertTrue(np.array_equal(obs, pp.GetPowderPatternObs())) pp.SetPowderPatternObs(list(obs)[::-1]) self.assertTrue(np.array_equal(obs[::-1], pp.GetPowderPatternObs())) return def test_SetPowderPatternPar(self): pp = self.pp pp.SetPowderPatternPar(0, 0.25, 5) tth = np.linspace(0, 1, 5) self.assertTrue(np.array_equal(tth, pp.GetPowderPatternX())) pp.SetPowderPatternPar(0, 0.25, 0) self.assertEqual(0, len(pp.GetPowderPatternX())) return def test_SetPowderPatternX(self): pp = self.pp tth0 = np.array([0, 0.1, 0.3, 0.7]) tth1 = np.array([0, 0.1, 0.3, 0.7, 0.75, 0.77, 0.80]) pp.SetPowderPatternX(tth0) self.assertTrue(np.array_equal(tth0, pp.GetPowderPatternX())) pp.SetPowderPatternX(list(tth1)) self.assertTrue(np.array_equal(tth1, pp.GetPowderPatternX())) pp.SetPowderPatternX(tuple(2 * tth0)) self.assertTrue(np.array_equal(2 * tth0, pp.GetPowderPatternX())) return def test_SetPowderPatternXempty(self): pp = self.pp pp.SetPowderPatternX([0, 0.1, 0.2, 0.3]) pp.SetPowderPatternX([]) self.assertEqual(0, len(pp.GetPowderPatternX())) return def test_SetWavelength(self): pp = self.pp pp.SetWavelength(1.2345) self.assertAlmostEqual(pp.GetWavelength(), 1.2345, places=4) def test_SetWavelengthXrayTube(self): pp = self.pp t = pp.GetRadiation().GetWavelengthType() w = pp.GetWavelength() pp.SetWavelength("Cu") self.assertAlmostEqual(pp.GetWavelength(), 1.5418, places=4) self.assertEqual(pp.GetRadiation().GetWavelengthType(), WavelengthType.WAVELENGTH_ALPHA12) pp.GetRadiation().SetWavelengthType(t) pp.SetWavelength(w) def test_SetRadiationType(self): pp = self.pp t = pp.GetRadiationType() pp.SetRadiationType(RadiationType.RAD_NEUTRON) self.assertEqual(pp.GetRadiationType(), RadiationType.RAD_NEUTRON) pp.SetRadiationType(t) def test_quick_fit(self): c = loadcifdata("paracetamol.cif") p = PowderPattern() p.SetWavelength(0.7) x = np.linspace(0, 40, 8001) p.SetPowderPatternX(np.deg2rad(x)) p.SetPowderPatternObs(np.ones_like(x)) pd = p.AddPowderPatternDiffraction(c) pd.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-6) # p.plot(hkl=True) calc = p.GetPowderPatternCalc() obs = np.random.poisson(calc * 1e5 / calc.max() + 50).astype(np.float64) p.SetPowderPatternObs(obs) p.SetMaxSinThetaOvLambda(0.3) p.quick_fit_profile(auto_background=True, verbose=False, plot=False) def test_peaklist_index(self): c = loadcifdata("paracetamol.cif") p = PowderPattern() p.SetWavelength(0.7) x = np.linspace(0, 40, 16001) p.SetPowderPatternX(np.deg2rad(x)) p.SetPowderPatternObs(np.ones_like(x)) pd = p.AddPowderPatternDiffraction(c) pd.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-7) # p.plot(hkl=True) calc = p.GetPowderPatternCalc() obs = np.random.poisson(calc * 1e6 / calc.max() + 50).astype(np.float64) p.SetPowderPatternObs(obs) p.SetMaxSinThetaOvLambda(0.2) p.FitScaleFactorForIntegratedRw() pl = p.FindPeaks() ex = quick_index(pl, verbose=False) sols = ex.GetSolutions() self.assertGreater(len(sols), 0) ruc = sols[0][0] # Check lattice type self.assertEqual(ruc.centering, CrystalCentering.LATTICE_P) self.assertEqual(ruc.lattice, CrystalSystem.MONOCLINIC) # Cell volume self.assertAlmostEqual(ruc.DirectUnitCell()[-1], c.GetVolume(), delta=5) def test_spacegroup_explorer(self): c = loadcifdata("paracetamol.cif") p = PowderPattern() p.SetWavelength(0.7) x = np.linspace(0, 40, 8001) p.SetPowderPatternX(np.deg2rad(x)) p.SetPowderPatternObs(np.ones_like(x)) pd = p.AddPowderPatternDiffraction(c) pd.SetReflectionProfilePar(ReflectionProfileType.PROFILE_PSEUDO_VOIGT, 1e-6, 0, 0, 0, 0) # p.plot(hkl=True) calc = p.GetPowderPatternCalc() obs = np.random.poisson(calc * 1e6 / calc.max() + 50).astype(np.float64) p.SetPowderPatternObs(obs) # NB: with max(stol)=0.2 this fails and best result is P1 p.SetMaxSinThetaOvLambda(0.3) # Do the profile optimisation in P1 pd.GetCrystal().GetSpaceGroup().ChangeSpaceGroup("P1") p.FitScaleFactorForIntegratedRw() p.quick_fit_profile(auto_background=True, init_profile=False, verbose=False, plot=False) spgex = SpaceGroupExplorer(pd) spgex.Run("P 1 21/c 1") spgex.RunAll(verbose=False) spg = spgex.GetScores()[0] # This fails about XX% of the time (fit not converging well enough ?) # self.assertEqual(spg.hermann_mauguin, 'P 1 21/c 1') # if True: #spg.hermann_mauguin != 'P 1 21/c 1': # print() # for s in spgex.GetScores(): # print(s) def test_update_nbrefl(self): c = loadcifdata("paracetamol.cif") p = PowderPattern() p.SetWavelength(1.5) x = np.linspace(0, 40, 4000) p.SetPowderPatternX(np.deg2rad(x)) p.SetPowderPatternObs(np.ones_like(x)) pd = p.AddPowderPatternDiffraction(c) p.GetPowderPatternCalc() self.assertEqual(pd.GetNbRefl(), 89) # Change lattice parameter, the reflection list is updated # during the next powder pattern calculation c.a *= 1.1 p.GetPowderPatternCalc() self.assertEqual(pd.GetNbRefl(), 92) # Change the spacegroup, the reflection list is updated # during the next powder pattern calculation c.GetSpaceGroup().ChangeSpaceGroup("P1") p.GetPowderPatternCalc() self.assertEqual(pd.GetNbRefl(), 187) # def test_SetScaleFactor(self): assert False # End of class TestPowderPattern # ---------------------------------------------------------------------------- class TestPowderPatternComponent(unittest.TestCase): pass # def test___init__(self): assert False # def test_GetParentPowderPattern(self): assert False # End of class TestPowderPatternComponent # ---------------------------------------------------------------------------- class TestPowderPatternBackground(unittest.TestCase): pass # def test___init__(self): assert False # def test_FixParametersBeyondMaxresolution(self): assert False # def test_GetPowderPatternCalc(self): assert False # def test_ImportUserBackground(self): assert False # def test_OptimizeBayesianBackground(self): assert False # def test_SetInterpPoints(self): assert False # End of class TestPowderPatternBackground # ---------------------------------------------------------------------------- class TestPowderPatternDiffraction(unittest.TestCase): pass # def test___init__(self): assert False # def test_ExtractLeBail(self): assert False # def test_GetExtractionMode(self): assert False # def test_GetNbReflBelowMaxSinThetaOvLambda(self): assert False # def test_GetPowderPatternCalc(self): assert False # def test_GetProfile(self): assert False # def test_SetCrystal(self): assert False # def test_SetExtractionMode(self): assert False # def test_SetReflectionProfilePar(self): assert False # End of class TestPowderPatternDiffraction # ---------------------------------------------------------------------------- if __name__ == '__main__': unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testradiation.py000066400000000000000000000030561470422267000235470ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # File coded by: Vincent Favre-Nicolin # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for Radiation module.""" import unittest from pyobjcryst.radiation import Radiation, RadiationType, WavelengthType from pyobjcryst.diffractiondatasinglecrystal import DiffractionDataSingleCrystal from pyobjcryst.powderpattern import PowderPattern class TestRadiation(unittest.TestCase): def testRadiation(self): """Test Radiation creation""" r = Radiation() return def testWavelength(self): """Test setting & reading wavelength""" r = Radiation() r.SetWavelength(1.24) self.assertAlmostEqual(r.GetWavelength(), 1.24, places=3) return def testType(self): """Test setting & reading X-ray Tube wavelength""" r = Radiation() r.SetWavelengthType(WavelengthType.WAVELENGTH_ALPHA12) self.assertEqual(r.GetWavelengthType(), WavelengthType.WAVELENGTH_ALPHA12) r.SetRadiationType(RadiationType.RAD_NEUTRON) self.assertEqual(r.GetRadiationType(), RadiationType.RAD_NEUTRON) r.SetWavelength("Cu") self.assertAlmostEqual(r.GetWavelength(), 1.5418, places=4) self.assertEqual(r.GetWavelengthType(), WavelengthType.WAVELENGTH_ALPHA12) return if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testrefinableobj.py000066400000000000000000000315141470422267000242170ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for refinableobj module.""" from pyobjcryst.refinableobj import RefinableObjClock, RefParType, Restraint from pyobjcryst.refinableobj import RefinablePar, RefinableObj from pyobjcryst import ObjCrystException import unittest import numpy from pyobjcryst.tests.pyobjcrysttestutils import makeScatterer, makeCrystal class TestRefinableObjClock(unittest.TestCase): def testRelations(self): """Test clicking! Chances are that someone will someday read this code for an example on how to use clocks. If not, then I've wasted my time writing this. Anyway, clocks are more complex then they appear. This is because ObjCryst++ has an internal clock that gets incremented whenever any clock is Clicked. So, one cannot trust that a clock will increment by only one value when it is clicked. Furthermore, clocks only alert their parents to a change. So, it is possible to decrease the value of a parent clock with SetEqual below the values of its children clocks. Callling Click on the parent or child will restore the proper parent > child relationship. """ c1 = RefinableObjClock() c2 = RefinableObjClock() parent = RefinableObjClock() ref = RefinableObjClock() ref2 = RefinableObjClock() c1.Reset() c2.Reset() parent.Reset() ref.Reset() ref2.Reset() # See if these things are at the same spot self.assertTrue(not (c1 < c2 or c2 < c1)) # Click one to make greater than other c1.Click() self.assertTrue(c1 > c2) self.assertFalse(c2 > c1) # Adding children advances the parent beyond all children parent.AddChild(c1) parent.AddChild(c2) self.assertTrue(parent > c1) self.assertTrue(parent > c2) self.assertTrue(c1 > c2) # Clicking parent leaves the children ref.SetEqual(c1) parent.Click() self.assertTrue(parent > ref) self.assertTrue(parent > c1) self.assertTrue(parent > c2) self.assertTrue(c1 > c2) self.assertTrue(not (c1 < ref or ref < c1)) # Resetting parent does not reset children parent.Reset() self.assertTrue(parent < c1) # Resetting child does not affect parent ref.SetEqual(parent) c1.Reset() self.assertTrue(not (parent < ref or ref < parent)) # Clicking children advances parent ref.SetEqual(parent) c1.Click() self.assertTrue(parent > c1) self.assertTrue(parent > c2) # Reset child does not affect parent or other children ref.SetEqual(parent) ref2.SetEqual(c1) c2.Reset() self.assertTrue(not (parent < ref or ref < parent)) self.assertTrue(not (c1 < ref2 or ref2 < c1)) # Increasing child above parent with SetEqual will increase parent to # child's value ref.SetEqual(parent) ref2.SetEqual(c1) ref.Click() ref.Click() self.assertTrue(ref > parent) c1.SetEqual(ref) self.assertTrue(c1 > ref2) self.assertTrue(not (parent < c1 or c1 < parent)) ref.Reset() self.assertTrue(parent > ref) # Decreasing child with SetEqual will not affect parent. c1.Click() ref2.SetEqual(c1) c1.Click() self.assertTrue(ref2 < c1) self.assertTrue(ref2 < parent) ref.SetEqual(parent) c1.SetEqual(ref2) self.assertTrue(not (ref < parent or parent < ref)) # Increasing child with SetEqual, so that it is still smaller than # parent, will increment parent parent.SetEqual(ref2) parent.Click() self.assertTrue(c1 < parent) self.assertTrue(ref2 < parent) ref.SetEqual(parent) c1.SetEqual(ref2) self.assertTrue(c1 < parent) self.assertTrue(not (ref < parent or parent < ref)) # Reducing parent with SetEqual will not affect children. ref.Reset() c1.Click() c2.Click() parent.SetEqual(ref) self.assertTrue(parent < c1) self.assertTrue(parent < c2) return def testRemoveChild(self): """Test the RemoveChild method.""" c1 = RefinableObjClock() c2 = RefinableObjClock() parent = RefinableObjClock() # Test equality values after removing child parent.AddChild(c1) c1.Click() self.assertTrue(parent > c1) parent.RemoveChild(c1) c1.Click() self.assertTrue(c1 > parent) # Try to remove a clock that is not part of another. This should do # nothing, just as in ObjCryst++. parent.RemoveChild(c2) return class TestRestraint(unittest.TestCase): def testEquality(self): """See if we get back what we put in.""" rpt = RefParType("test") res1 = Restraint(rpt) rpt2 = res1.GetType() self.assertEqual(rpt2, rpt) return class TestRefinablePar(unittest.TestCase): def setUp(self): self.rpt = RefParType("test") self.testpar = RefinablePar("test", 3.0, 0, 10, self.rpt) return def testToFromPython(self): """See if refinable parameters can be created from within python and within c++.""" c = makeCrystal(*makeScatterer()) # Get a parameter created from c++ par = c.GetPar("a") self.assertAlmostEqual(3.52, par.GetValue()) # pass a parameter and pass it into c++ c.AddPar(self.testpar); # get it back testpar2 = c.GetPar("test") self.assertAlmostEqual(self.testpar.GetValue(), testpar2.GetValue()) testpar2.SetValue(2.17) self.assertAlmostEqual(2.17, testpar2.GetValue(), places=6) self.assertAlmostEqual(self.testpar.GetValue(), testpar2.GetValue()) return def testGetType(self): """See if we can get the proper RefParType from a RefinablePar.""" rpt2 = self.testpar.GetType() self.assertEqual(rpt2, self.rpt) return class TestRefinableObj(unittest.TestCase): def setUp(self): """Make a RefinableObj and add some RefinablePars.""" self.r = RefinableObj() self.r.SetName("test1") # Add some parameters self.rpt = RefParType("test") p1 = RefinablePar("p1", 3, 0, 10, self.rpt) p2 = RefinablePar("p2", -3, -10, 0, self.rpt) self.r.AddPar(p1) self.r.AddPar(p2) return def _getPars(self): """Convenience function.""" p1 = self.r.GetPar(0) p2 = self.r.GetPar(1) return p1, p2 def testNames(self): """Test the naming methods.""" self.assertEqual("RefinableObj", self.r.GetClassName()) self.assertEqual("test1", self.r.GetName()) return def testGetPar(self): """Test GetPar.""" p1 = self.r.GetPar(0) p2 = self.r.GetPar(1) self.assertEqual(2, self.r.GetNbPar()) self.assertEqual("p1", p1.GetName()) self.assertEqual("p2", p2.GetName()) return def testFixUnFix(self): """Test FixAllPar.""" p1, p2 = self._getPars() r = self.r r.FixAllPar() self.assertTrue(p1.IsFixed()) self.assertTrue(p2.IsFixed()) r.PrepareForRefinement() self.assertEqual(0, r.GetNbParNotFixed()) r.UnFixAllPar() self.assertFalse(p1.IsFixed()) self.assertFalse(p2.IsFixed()) r.PrepareForRefinement() self.assertEqual(2, r.GetNbParNotFixed()) r.FixAllPar() self.assertTrue(p1.IsFixed()) self.assertTrue(p2.IsFixed()) r.SetParIsFixed(0, True) r.SetParIsFixed(1, False) self.assertTrue(p1.IsFixed()) self.assertFalse(p2.IsFixed()) r.PrepareForRefinement() self.assertEqual(1, r.GetNbParNotFixed()) r.SetParIsFixed("p1", False) r.SetParIsFixed("p2", True) self.assertFalse(p1.IsFixed()) self.assertTrue(p2.IsFixed()) r.PrepareForRefinement() self.assertEqual(1, r.GetNbParNotFixed()) return def testUsedUnUsed(self): """Test FixAllPar.""" p1, p2 = self._getPars() r = self.r r.SetParIsUsed("p1", False) r.SetParIsUsed("p2", True) self.assertFalse(p1.IsUsed()) self.assertTrue(p2.IsUsed()) r.SetParIsUsed(self.rpt, True) self.assertTrue(p1.IsUsed()) self.assertTrue(p2.IsUsed()) return def testAddParRefinableObj(self): """Test adding another object.""" r2 = RefinableObj() r2.SetName("test2") # Add some parameters p3 = RefinablePar("p3", 3, 0, 10, self.rpt) p4 = RefinablePar("p4", -3, -10, 0, self.rpt) r2.AddPar(p3) r2.AddPar(p4) self.r.AddPar(r2) self.assertEqual(4, self.r.GetNbPar()) return def testAddParTwice(self): """Try to add the same parameter twice. We could stop this in the bindings, but since RefinableObj doesn't delete its parameters in the destructor, it shouldn't lead to trouble. """ p3 = RefinablePar("p3", 3, 0, 10, self.rpt) self.r.AddPar(p3) self.r.AddPar(p3) return def testParmSets(self): """Test creation of parameter sets.""" self.assertRaises(ObjCrystException, self.r.SaveParamSet, 3) p1, p2 = self._getPars() r = self.r # Test saving and retrieval of parameters save1 = r.CreateParamSet("save1") savevals1 = r.GetParamSet(save1) self.assertTrue(numpy.array_equal([3, -3], savevals1)) # Change a parameter test new value p1.SetValue(8.0) save2 = r.CreateParamSet("save2") savevals2 = r.GetParamSet(save2) self.assertTrue(numpy.array_equal([8, -3], savevals2)) # Restore the old set r.RestoreParamSet(save1) self.assertEqual(3, p1.GetValue()) # Get the names self.assertEqual(r.GetParamSetName(save1), "save1") self.assertEqual(r.GetParamSetName(save2), "save2") # Delete parameter sets r.ClearParamSet(save2) self.assertRaises(ObjCrystException, r.SaveParamSet, save2) r.EraseAllParamSet() self.assertRaises(ObjCrystException, r.SaveParamSet, save1) return def testLimits(self): """Test the limit-setting functions.""" p1, p2 = self._getPars() r = self.r # Check setting absolute limits by name r.SetLimitsAbsolute("p1", 0, 1) p1.SetValue(8) self.assertEqual(1, p1.GetValue()) p1.SetValue(-1) self.assertEqual(0, p1.GetValue()) # Check setting absolute limits by type r.SetLimitsAbsolute(self.rpt, 0, 1) p1.SetValue(10) p2.SetValue(10) self.assertEqual(1, p1.GetValue()) self.assertEqual(1, p2.GetValue()) # Check setting relative limits by name r.SetLimitsRelative("p1", 0, 1) p1.SetValue(8) self.assertEqual(2, p1.GetValue()) p1.SetValue(-1) self.assertEqual(1, p1.GetValue()) # Check setting relative limits by type r.SetLimitsRelative(self.rpt, 0, 1) p1.SetValue(10) p2.SetValue(10) self.assertEqual(2, p1.GetValue()) self.assertEqual(2, p2.GetValue()) # Check setting proportional limits by name p1.SetValue(1) r.SetLimitsProportional("p1", 0, 3) p1.SetValue(8) self.assertEqual(3, p1.GetValue()) p1.SetValue(-1) self.assertEqual(0, p1.GetValue()) # Check setting proportional limits by type p1.SetValue(1) p2.SetValue(2) r.SetLimitsProportional(self.rpt, 1, 2) p1.SetValue(10) p2.SetValue(10) self.assertEqual(2, p1.GetValue()) self.assertEqual(4, p2.GetValue()) return def testOptimStep(self): """Test SetGlobalOptimStep.""" p1, p2 = self._getPars() self.r.SetGlobalOptimStep(self.rpt, 1) self.r.SetGlobalOptimStep(self.rpt, 0.1) self.assertAlmostEqual(0.1, p1.GetGlobalOptimStep()) self.assertAlmostEqual(0.1, p2.GetGlobalOptimStep()) return def test_xml(self): """Test xml() function""" x = self.r.xml() if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testspacegroup.py000066400000000000000000000033221470422267000237410ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst Complex Modeling Initiative # (c) 2019 Brookhaven Science Associates, # Brookhaven National Laboratory. # All rights reserved. # # File coded by: Pavol Juhas # # See AUTHORS.txt for a list of people who contributed. # See LICENSE.txt for license information. # ############################################################################## """Unit tests for pyobjcryst.spacegroup """ import unittest from pyobjcryst.spacegroup import SpaceGroup # ---------------------------------------------------------------------------- class TestSpaceGroup(unittest.TestCase): def setUp(self): return def test___init__(self): "check SpaceGroup.__init__()" sg = SpaceGroup() self.assertEqual(1, sg.GetSpaceGroupNumber()) self.assertRaises(ValueError, SpaceGroup, "invalid") sgfm3m = SpaceGroup("F m -3 m") self.assertEqual(225, sgfm3m.GetSpaceGroupNumber()) sg3 = SpaceGroup("3") self.assertEqual(3, sg3.GetSpaceGroupNumber()) return def test_ChangeSpaceGroup(self): "check SpaceGroup.ChangeSpaceGroup()" sg = SpaceGroup("F m -3 m") self.assertEqual("F m -3 m", sg.GetName()) self.assertRaises(ValueError, sg.ChangeSpaceGroup, "invalid") self.assertEqual("F m -3 m", sg.GetName()) sg.ChangeSpaceGroup("P1") self.assertEqual("P 1", sg.GetName()) return # End of class TestSpaceGroup # ---------------------------------------------------------------------------- if __name__ == '__main__': unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/tests/testutils.py000066400000000000000000000030641470422267000227340ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2010 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Tests for crystal module.""" import unittest import numpy from pyobjcryst.tests.pyobjcrysttestutils import loadcifdata from pyobjcryst.utils import putAtomsInMolecule class TestPutAtomsInMolecule(unittest.TestCase): def test_caffeine(self): """Check molecule conversion for caffeine. """ c = loadcifdata('caffeine.cif') xyz0 = [(sc.X, sc.Y, sc.Z) for sc in c.GetScatteringComponentList()] self.assertEqual(24, c.GetNbScatterer()) putAtomsInMolecule(c, name='espresso') self.assertEqual(1, c.GetNbScatterer()) mol = c.GetScatterer(0) self.assertEqual('espresso', mol.GetName()) self.assertEqual(24, mol.GetNbAtoms()) xyz1 = [(sc.X, sc.Y, sc.Z) for sc in c.GetScatteringComponentList()] uc0 = numpy.array(xyz0) - numpy.floor(xyz0) uc1 = numpy.array(xyz1) - numpy.floor(xyz1) self.assertTrue(numpy.allclose(uc0, uc1)) return # End of class TestPutAtomsInMolecule if __name__ == "__main__": unittest.main() pyobjcryst-2024.2.1/src/pyobjcryst/unitcell.py000066400000000000000000000013311470422267000213440ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of UnitCell.h See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). """ __all__ = ["UnitCell"] from pyobjcryst._pyobjcryst import UnitCell pyobjcryst-2024.2.1/src/pyobjcryst/utils.py000066400000000000000000000066471470422267000207040ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Utilities for crystals.""" # FIXME: check if this function does any meaningful job. def putAtomsInMolecule(crystal, alist = None, name = None): """Place atoms from a crystal into a molecule inside the crystal. Selected atoms are put into a new Molecule object, which is then placed inside of the Crystal. The atoms are then removed from the crystal. The molecule is placed at the center of mass of the moved atoms. crystal -- The crystal containing the atoms. alist -- A list of indices or names identifying the atoms. If alist is None (default), all atoms from the crystal are placed into a molecule. name -- A name for the molecule. If name is None (default), the name m_cname will be given, where cname is substituted for the crystal's name. Raises TypeError if idxlist identifies a non-atom. """ c = crystal if name is None: name = "m_%s" % c.GetName() if alist is None: alist = range(c.GetNbScatterer()) from pyobjcryst.molecule import Molecule from pyobjcryst.atom import Atom m = Molecule(c, name) # center of mass cx = cy = cz = 0.0 # mapping fractional coords back into [0, 1) from math import floor f = lambda v: v - floor(v) scat = [] for idx in alist: s = c.GetScatt(idx) if not isinstance(s, Atom): raise TypeError("identifier '%s' does not specify an Atom") sp = s.GetScatteringPower() scat.append(s) x, y, z = map(f, [s.X, s.Y, s.Z]) x, y, z = c.FractionalToOrthonormalCoords(x, y, z) m.AddAtom(x, y, z, sp, s.GetName()) cx += x cy += y cz += z # Adjust center of mass cx /= len(alist) cy /= len(alist) cz /= len(alist) # Remove scatterers from the crystal for s in scat: c.RemoveScatterer(s) # Put the molecule at the CoM m.X, m.Y, m.Z = c.OrthonormalToFractionalCoords(cx, cy, cz) # Add the molecule to the crystal c.AddScatterer(m) m.UpdateScattCompList() return def _xyztostring(crystal): """Helper function to write xyz coordinates of a crystal to a string.""" nsc = 0 out = "" scl = crystal.GetScatteringComponentList() out += "...\n" for s in scl: sp = s.mpScattPow if sp is None: continue nsc += 1 el = sp.GetSymbol() xyz = [s.X, s.Y, s.Z] xyz = crystal.FractionalToOrthonormalCoords(*xyz) x, y, z = xyz out += "%s %f %f %f\n"%(el, x, y, z) out = "%i\n"%nsc + out return out def printxyz(crystal): """Print a crystal in xyz format.""" print(_xyztostring(crystal)) return def writexyz(crystal, filename): """Write a crystal to an xyz file.""" f = open(filename, 'w') out = _xyztostring(crystal) f.write(out) f.close() return pyobjcryst-2024.2.1/src/pyobjcryst/version.py000066400000000000000000000045531470422267000212230ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """ Definition of __version__, __date__, __timestamp__, __git_commit__, libobjcryst_version_info. Notes ----- Variable `__gitsha__` is deprecated as of version 2.1. Use `__git_commit__` instead. """ __all__ = ['__date__', '__git_commit__', '__timestamp__', '__version__', 'libobjcryst_version_info'] import os.path from pkg_resources import resource_filename # obtain version information from the version.cfg file cp = dict(version='', date='', commit='', timestamp='0') fcfg = resource_filename(__name__, 'version.cfg') if not os.path.isfile(fcfg): # pragma: no cover from warnings import warn warn('Package metadata not found, execute "./setup.py egg_info".') fcfg = os.devnull with open(fcfg) as fp: kwords = [[w.strip() for w in line.split(' = ', 1)] for line in fp if line[:1].isalpha() and ' = ' in line] assert all(w[0] in cp for w in kwords), "received unrecognized keyword" cp.update(kwords) __version__ = cp['version'] __date__ = cp['date'] __git_commit__ = cp['commit'] __timestamp__ = int(cp['timestamp']) # TODO remove deprecated __gitsha__ in version 2.2. __gitsha__ = __git_commit__ del cp, fcfg, fp, kwords # version information on the active libObjCryst library ---------------------- from collections import namedtuple from pyobjcryst._pyobjcryst import _get_libobjcryst_version_info_dict libobjcryst_version_info = namedtuple('libobjcryst_version_info', "major minor micro patch version_number version date git_commit") vd = _get_libobjcryst_version_info_dict() libobjcryst_version_info = libobjcryst_version_info( version = vd['version_str'], version_number = vd['version'], major = vd['major'], minor = vd['minor'], micro = vd['micro'], patch = vd['patch'], date = vd['date'], git_commit = vd['git_commit']) del vd pyobjcryst-2024.2.1/src/pyobjcryst/zscatterer.py000066400000000000000000000041551470422267000217220ustar00rootroot00000000000000#!/usr/bin/env python ############################################################################## # # pyobjcryst by DANSE Diffraction group # Simon J. L. Billinge # (c) 2009 The Trustees of Columbia University # in the City of New York. All rights reserved. # # File coded by: Chris Farrow # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """Python wrapping of Zscatterer. See the online ObjCryst++ documentation (https://objcryst.readthedocs.io). Changes from ObjCryst::ZAtom - XMLOutput and Input are not wrapped. Changes from ObjCryst++ - XMLOutput and Input are not wrapped. """ __all__ = ["ZScatterer", "ZAtom", "ZPolyhedron", "RegularPolyhedraType", "GlobalScatteringPower"] from urllib.request import urlopen from pyobjcryst._pyobjcryst import ZScatterer as ZScatterer_orig from pyobjcryst._pyobjcryst import ZAtom from pyobjcryst._pyobjcryst import ZPolyhedron from pyobjcryst._pyobjcryst import RegularPolyhedraType from pyobjcryst._pyobjcryst import GlobalScatteringPower class ZScatterer(ZScatterer_orig): def ImportFenskeHallZMatrix(self, src, named=False): """ Import atoms from a Fenske-Hall z-matrix :param src: either a python filed (opened in 'rb' mode), or a filename, or an url ("http://...") to a text file with the z-matrix :param named: if True, allows to read a named Z-matrix - the formatting is similar to a Fenske-Hall z-matrix but only relies on spaces between the different fields instead of a strict number of characters. """ if isinstance(src, str): if len(src) > 4: if src[:4].lower() == 'http': return super().ImportFenskeHallZMatrix(urlopen(src), named) with open(src, 'rb') as fhz: # Make sure file object is closed super().ImportFenskeHallZMatrix(fhz, named) else: super().ImportFenskeHallZMatrix(src, named)