python-axolotl-curve25519-0.4.1.post2/0000755000175000017500000000000013264355231017555 5ustar tarektarek00000000000000python-axolotl-curve25519-0.4.1.post2/PKG-INFO0000644000175000017500000000042013264355231020646 0ustar tarektarek00000000000000Metadata-Version: 1.0 Name: python-axolotl-curve25519 Version: 0.4.1.post2 Summary: curve25519 with ed25519 signatures, used by libaxolotl Home-page: UNKNOWN Author: Tarek Galal Author-email: tare2.galal@gmail.com License: GPLv3 License Description: UNKNOWN Platform: any python-axolotl-curve25519-0.4.1.post2/README.md0000644000175000017500000000235413263210513021030 0ustar tarektarek00000000000000This is python wrapper for curve25519 library with ed25519 signatures. The C code was pulled from [libaxolotl-android](https://github.com/WhisperSystems/libaxolotl-android) At the moment this wrapper is meant for use by [python-axolotl](http://github.com/tgalal/python-axolotl) and provides the following methods only: ```python import axolotl_curve25519 as curve import os randm32 = os.urandom(32) randm64 = os.urandom(64) private_key = curve.generatePrivateKey(randm32) public_key = message = curve.generatePublicKey(private_key) agreement = curve.calculateAgreement(private_key, public_key) signature = curve.calculateSignature(randm64, private_key, message) verified = curve.verifySignature(public_key, message, signature) == 0 ``` # Installation ## Linux You need to have python headers installed, usually through installing package called python-dev, then as superuser run: ``` python setup.py install ``` ## Windows - Install [mingw](http://www.mingw.org/) compiler - Add mingw to your PATH - In PYTHONPATH\Lib\distutils create a file called distutils.cfg and add these lines: ``` [build] compiler=mingw32 ``` - Install gcc: ```mingw-get.exe install gcc``` - Install zlib [zlib](http://www.zlib.net/) - ```python setup.py install``` python-axolotl-curve25519-0.4.1.post2/setup.cfg0000644000175000017500000000004613264355231021376 0ustar tarektarek00000000000000[egg_info] tag_build = tag_date = 0 python-axolotl-curve25519-0.4.1.post2/python_axolotl_curve25519.egg-info/0000755000175000017500000000000013264355231026144 5ustar tarektarek00000000000000python-axolotl-curve25519-0.4.1.post2/python_axolotl_curve25519.egg-info/dependency_links.txt0000644000175000017500000000000113264355231032212 0ustar tarektarek00000000000000 python-axolotl-curve25519-0.4.1.post2/python_axolotl_curve25519.egg-info/top_level.txt0000644000175000017500000000002313264355231030671 0ustar tarektarek00000000000000axolotl_curve25519 python-axolotl-curve25519-0.4.1.post2/python_axolotl_curve25519.egg-info/PKG-INFO0000644000175000017500000000042013264355231027235 0ustar tarektarek00000000000000Metadata-Version: 1.0 Name: python-axolotl-curve25519 Version: 0.4.1.post2 Summary: curve25519 with ed25519 signatures, used by libaxolotl Home-page: UNKNOWN Author: Tarek Galal Author-email: tare2.galal@gmail.com License: GPLv3 License Description: UNKNOWN Platform: any python-axolotl-curve25519-0.4.1.post2/python_axolotl_curve25519.egg-info/SOURCES.txt0000644000175000017500000000615713264355231030041 0ustar tarektarek00000000000000MANIFEST.in README.md curve25519module.c setup.py curve/curve25519-donna.c curve/curve25519-donna.h curve/ed25519/api.h curve/ed25519/base.h curve/ed25519/base2.h curve/ed25519/d.h curve/ed25519/d2.h curve/ed25519/fe.h curve/ed25519/fe_0.c curve/ed25519/fe_1.c curve/ed25519/fe_add.c curve/ed25519/fe_cmov.c curve/ed25519/fe_copy.c curve/ed25519/fe_frombytes.c curve/ed25519/fe_invert.c curve/ed25519/fe_isnegative.c curve/ed25519/fe_isnonzero.c curve/ed25519/fe_mul.c curve/ed25519/fe_neg.c curve/ed25519/fe_pow22523.c curve/ed25519/fe_sq.c curve/ed25519/fe_sq2.c curve/ed25519/fe_sub.c curve/ed25519/fe_tobytes.c curve/ed25519/ge.h curve/ed25519/ge_add.c curve/ed25519/ge_add.h curve/ed25519/ge_double_scalarmult.c curve/ed25519/ge_frombytes.c curve/ed25519/ge_madd.c curve/ed25519/ge_madd.h curve/ed25519/ge_msub.c curve/ed25519/ge_msub.h curve/ed25519/ge_p1p1_to_p2.c curve/ed25519/ge_p1p1_to_p3.c curve/ed25519/ge_p2_0.c curve/ed25519/ge_p2_dbl.c curve/ed25519/ge_p2_dbl.h curve/ed25519/ge_p3_0.c curve/ed25519/ge_p3_dbl.c curve/ed25519/ge_p3_to_cached.c curve/ed25519/ge_p3_to_p2.c curve/ed25519/ge_p3_tobytes.c curve/ed25519/ge_precomp_0.c curve/ed25519/ge_scalarmult_base.c curve/ed25519/ge_sub.c curve/ed25519/ge_sub.h curve/ed25519/ge_tobytes.c curve/ed25519/open.c curve/ed25519/pow22523.h curve/ed25519/pow225521.h curve/ed25519/sc.h curve/ed25519/sc_muladd.c curve/ed25519/sc_reduce.c curve/ed25519/sign.c curve/ed25519/sqrtm1.h curve/ed25519/additions/compare.c curve/ed25519/additions/compare.h curve/ed25519/additions/crypto_additions.h curve/ed25519/additions/crypto_hash_sha512.h curve/ed25519/additions/curve_sigs.c curve/ed25519/additions/curve_sigs.h curve/ed25519/additions/elligator.c curve/ed25519/additions/fe_isequal.c curve/ed25519/additions/fe_isreduced.c curve/ed25519/additions/fe_mont_rhs.c curve/ed25519/additions/fe_montx_to_edy.c curve/ed25519/additions/fe_sqrt.c curve/ed25519/additions/ge_isneutral.c curve/ed25519/additions/ge_montx_to_p3.c curve/ed25519/additions/ge_neg.c curve/ed25519/additions/ge_p3_to_montx.c curve/ed25519/additions/ge_scalarmult.c curve/ed25519/additions/ge_scalarmult_cofactor.c curve/ed25519/additions/keygen.c curve/ed25519/additions/keygen.h curve/ed25519/additions/open_modified.c curve/ed25519/additions/sc_clamp.c curve/ed25519/additions/sc_cmov.c curve/ed25519/additions/sc_neg.c curve/ed25519/additions/sign_modified.c curve/ed25519/additions/utility.c curve/ed25519/additions/utility.h curve/ed25519/additions/xeddsa.c curve/ed25519/additions/xeddsa.h curve/ed25519/additions/zeroize.c curve/ed25519/additions/zeroize.h curve/ed25519/nacl_includes/crypto_int32.h curve/ed25519/nacl_includes/crypto_int64.h curve/ed25519/nacl_includes/crypto_sign.h curve/ed25519/nacl_includes/crypto_sign_edwards25519sha512batch.h curve/ed25519/nacl_includes/crypto_uint32.h curve/ed25519/nacl_includes/crypto_uint64.h curve/ed25519/nacl_includes/crypto_verify_32.h curve/ed25519/nacl_sha512/blocks.c curve/ed25519/nacl_sha512/hash.c python_axolotl_curve25519.egg-info/PKG-INFO python_axolotl_curve25519.egg-info/SOURCES.txt python_axolotl_curve25519.egg-info/dependency_links.txt python_axolotl_curve25519.egg-info/top_level.txtpython-axolotl-curve25519-0.4.1.post2/setup.py0000644000175000017500000000174213264355136021277 0ustar tarektarek00000000000000from __future__ import print_function from glob import glob from setuptools import setup,Extension sources = ['curve25519module.c', 'curve/curve25519-donna.c'] sources.extend(glob("curve/ed25519/*.c")) sources.extend(glob("curve/ed25519/additions/*.c")) sources.extend(glob("curve/ed25519/nacl_sha512/*.c")) #headers = ['curve25519-donna.h'] module_curve = Extension('axolotl_curve25519', sources = sorted(sources), # headers = headers, include_dirs = [ 'curve/ed25519/nacl_includes', 'curve/ed25519/additions', 'curve/ed25519' ] ) setup( name='python-axolotl-curve25519', version="0.4.1-2", license='GPLv3 License', author='Tarek Galal', ext_modules = [module_curve], author_email='tare2.galal@gmail.com', description='curve25519 with ed25519 signatures, used by libaxolotl', platforms='any' ) python-axolotl-curve25519-0.4.1.post2/curve/0000755000175000017500000000000013264355231020701 5ustar tarektarek00000000000000python-axolotl-curve25519-0.4.1.post2/curve/curve25519-donna.c0000644000175000017500000007627413264344414023715 0ustar tarektarek00000000000000/* Copyright 2008, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * curve25519-donna: Curve25519 elliptic curve, public key function * * http://code.google.com/p/curve25519-donna/ * * Adam Langley * * Derived from public domain C code by Daniel J. Bernstein * * More information about curve25519 can be found here * http://cr.yp.to/ecdh.html * * djb's sample implementation of curve25519 is written in a special assembly * language called qhasm and uses the floating point registers. * * This is, almost, a clean room reimplementation from the curve25519 paper. It * uses many of the tricks described therein. Only the crecip function is taken * from the sample implementation. */ #include #include #ifdef _MSC_VER #define inline __inline #endif typedef uint8_t u8; typedef int32_t s32; typedef int64_t limb; /* Field element representation: * * Field elements are written as an array of signed, 64-bit limbs, least * significant first. The value of the field element is: * x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ... * * i.e. the limbs are 26, 25, 26, 25, ... bits wide. */ /* Sum two numbers: output += in */ static void fsum(limb *output, const limb *in) { unsigned i; for (i = 0; i < 10; i += 2) { output[0+i] = output[0+i] + in[0+i]; output[1+i] = output[1+i] + in[1+i]; } } /* Find the difference of two numbers: output = in - output * (note the order of the arguments!). */ static void fdifference(limb *output, const limb *in) { unsigned i; for (i = 0; i < 10; ++i) { output[i] = in[i] - output[i]; } } /* Multiply a number by a scalar: output = in * scalar */ static void fscalar_product(limb *output, const limb *in, const limb scalar) { unsigned i; for (i = 0; i < 10; ++i) { output[i] = in[i] * scalar; } } /* Multiply two numbers: output = in2 * in * * output must be distinct to both inputs. The inputs are reduced coefficient * form, the output is not. * * output[x] <= 14 * the largest product of the input limbs. */ static void fproduct(limb *output, const limb *in2, const limb *in) { output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]); output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) + ((limb) ((s32) in2[1])) * ((s32) in[0]); output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[2]) + ((limb) ((s32) in2[2])) * ((s32) in[0]); output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) + ((limb) ((s32) in2[2])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[3]) + ((limb) ((s32) in2[3])) * ((s32) in[0]); output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) + 2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) + ((limb) ((s32) in2[3])) * ((s32) in[1])) + ((limb) ((s32) in2[0])) * ((s32) in[4]) + ((limb) ((s32) in2[4])) * ((s32) in[0]); output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) + ((limb) ((s32) in2[3])) * ((s32) in[2]) + ((limb) ((s32) in2[1])) * ((s32) in[4]) + ((limb) ((s32) in2[4])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[0]); output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) + ((limb) ((s32) in2[1])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[1])) + ((limb) ((s32) in2[2])) * ((s32) in[4]) + ((limb) ((s32) in2[4])) * ((s32) in[2]) + ((limb) ((s32) in2[0])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[0]); output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) + ((limb) ((s32) in2[4])) * ((s32) in[3]) + ((limb) ((s32) in2[2])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[2]) + ((limb) ((s32) in2[1])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[0]); output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) + 2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[3]) + ((limb) ((s32) in2[1])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[1])) + ((limb) ((s32) in2[2])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[2]) + ((limb) ((s32) in2[0])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[0]); output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) + ((limb) ((s32) in2[5])) * ((s32) in[4]) + ((limb) ((s32) in2[3])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[3]) + ((limb) ((s32) in2[2])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[2]) + ((limb) ((s32) in2[1])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[1]) + ((limb) ((s32) in2[0])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[0]); output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) + ((limb) ((s32) in2[3])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[3]) + ((limb) ((s32) in2[1])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[1])) + ((limb) ((s32) in2[4])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[4]) + ((limb) ((s32) in2[2])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[2]); output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) + ((limb) ((s32) in2[6])) * ((s32) in[5]) + ((limb) ((s32) in2[4])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[4]) + ((limb) ((s32) in2[3])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[3]) + ((limb) ((s32) in2[2])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[2]); output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) + 2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[5]) + ((limb) ((s32) in2[3])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[3])) + ((limb) ((s32) in2[4])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[4]); output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) + ((limb) ((s32) in2[7])) * ((s32) in[6]) + ((limb) ((s32) in2[5])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[5]) + ((limb) ((s32) in2[4])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[4]); output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) + ((limb) ((s32) in2[5])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[5])) + ((limb) ((s32) in2[6])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[6]); output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) + ((limb) ((s32) in2[8])) * ((s32) in[7]) + ((limb) ((s32) in2[6])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[6]); output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) + 2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[7])); output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) + ((limb) ((s32) in2[9])) * ((s32) in[8]); output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]); } /* Reduce a long form to a short form by taking the input mod 2^255 - 19. * * On entry: |output[i]| < 14*2^54 * On exit: |output[0..8]| < 280*2^54 */ static void freduce_degree(limb *output) { /* Each of these shifts and adds ends up multiplying the value by 19. * * For output[0..8], the absolute entry value is < 14*2^54 and we add, at * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */ output[8] += output[18] << 4; output[8] += output[18] << 1; output[8] += output[18]; output[7] += output[17] << 4; output[7] += output[17] << 1; output[7] += output[17]; output[6] += output[16] << 4; output[6] += output[16] << 1; output[6] += output[16]; output[5] += output[15] << 4; output[5] += output[15] << 1; output[5] += output[15]; output[4] += output[14] << 4; output[4] += output[14] << 1; output[4] += output[14]; output[3] += output[13] << 4; output[3] += output[13] << 1; output[3] += output[13]; output[2] += output[12] << 4; output[2] += output[12] << 1; output[2] += output[12]; output[1] += output[11] << 4; output[1] += output[11] << 1; output[1] += output[11]; output[0] += output[10] << 4; output[0] += output[10] << 1; output[0] += output[10]; } #if (-1 & 3) != 3 #error "This code only works on a two's complement system" #endif /* return v / 2^26, using only shifts and adds. * * On entry: v can take any value. */ static inline limb div_by_2_26(const limb v) { /* High word of v; no shift needed. */ const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); /* Set to all 1s if v was negative; else set to 0s. */ const int32_t sign = ((int32_t) highword) >> 31; /* Set to 0x3ffffff if v was negative; else set to 0. */ const int32_t roundoff = ((uint32_t) sign) >> 6; /* Should return v / (1<<26) */ return (v + roundoff) >> 26; } /* return v / (2^25), using only shifts and adds. * * On entry: v can take any value. */ static inline limb div_by_2_25(const limb v) { /* High word of v; no shift needed*/ const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32); /* Set to all 1s if v was negative; else set to 0s. */ const int32_t sign = ((int32_t) highword) >> 31; /* Set to 0x1ffffff if v was negative; else set to 0. */ const int32_t roundoff = ((uint32_t) sign) >> 7; /* Should return v / (1<<25) */ return (v + roundoff) >> 25; } /* return v / (2^25), using only shifts and adds. * * On entry: v can take any value. */ static inline s32 div_s32_by_2_25(const s32 v) { const s32 roundoff = ((uint32_t)(v >> 31)) >> 7; return (v + roundoff) >> 25; } /* Reduce all coefficients of the short form input so that |x| < 2^26. * * On entry: |output[i]| < 280*2^54 */ static void freduce_coefficients(limb *output) { unsigned i; output[10] = 0; for (i = 0; i < 10; i += 2) { limb over = div_by_2_26(output[i]); /* The entry condition (that |output[i]| < 280*2^54) means that over is, at * most, 280*2^28 in the first iteration of this loop. This is added to the * next limb and we can approximate the resulting bound of that limb by * 281*2^54. */ output[i] -= over << 26; output[i+1] += over; /* For the first iteration, |output[i+1]| < 281*2^54, thus |over| < * 281*2^29. When this is added to the next limb, the resulting bound can * be approximated as 281*2^54. * * For subsequent iterations of the loop, 281*2^54 remains a conservative * bound and no overflow occurs. */ over = div_by_2_25(output[i+1]); output[i+1] -= over << 25; output[i+2] += over; } /* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */ output[0] += output[10] << 4; output[0] += output[10] << 1; output[0] += output[10]; output[10] = 0; /* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29 * So |over| will be no more than 2^16. */ { limb over = div_by_2_26(output[0]); output[0] -= over << 26; output[1] += over; } /* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The * bound on |output[1]| is sufficient to meet our needs. */ } /* A helpful wrapper around fproduct: output = in * in2. * * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27. * * output must be distinct to both inputs. The output is reduced degree * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */ static void fmul(limb *output, const limb *in, const limb *in2) { limb t[19]; fproduct(t, in, in2); /* |t[i]| < 14*2^54 */ freduce_degree(t); freduce_coefficients(t); /* |t[i]| < 2^26 */ memcpy(output, t, sizeof(limb) * 10); } /* Square a number: output = in**2 * * output must be distinct from the input. The inputs are reduced coefficient * form, the output is not. * * output[x] <= 14 * the largest product of the input limbs. */ static void fsquare_inner(limb *output, const limb *in) { output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]); output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]); output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) + ((limb) ((s32) in[0])) * ((s32) in[2])); output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) + ((limb) ((s32) in[0])) * ((s32) in[3])); output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) + 4 * ((limb) ((s32) in[1])) * ((s32) in[3]) + 2 * ((limb) ((s32) in[0])) * ((s32) in[4]); output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) + ((limb) ((s32) in[1])) * ((s32) in[4]) + ((limb) ((s32) in[0])) * ((s32) in[5])); output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) + ((limb) ((s32) in[2])) * ((s32) in[4]) + ((limb) ((s32) in[0])) * ((s32) in[6]) + 2 * ((limb) ((s32) in[1])) * ((s32) in[5])); output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) + ((limb) ((s32) in[2])) * ((s32) in[5]) + ((limb) ((s32) in[1])) * ((s32) in[6]) + ((limb) ((s32) in[0])) * ((s32) in[7])); output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) + 2 * (((limb) ((s32) in[2])) * ((s32) in[6]) + ((limb) ((s32) in[0])) * ((s32) in[8]) + 2 * (((limb) ((s32) in[1])) * ((s32) in[7]) + ((limb) ((s32) in[3])) * ((s32) in[5]))); output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) + ((limb) ((s32) in[3])) * ((s32) in[6]) + ((limb) ((s32) in[2])) * ((s32) in[7]) + ((limb) ((s32) in[1])) * ((s32) in[8]) + ((limb) ((s32) in[0])) * ((s32) in[9])); output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) + ((limb) ((s32) in[4])) * ((s32) in[6]) + ((limb) ((s32) in[2])) * ((s32) in[8]) + 2 * (((limb) ((s32) in[3])) * ((s32) in[7]) + ((limb) ((s32) in[1])) * ((s32) in[9]))); output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) + ((limb) ((s32) in[4])) * ((s32) in[7]) + ((limb) ((s32) in[3])) * ((s32) in[8]) + ((limb) ((s32) in[2])) * ((s32) in[9])); output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) + 2 * (((limb) ((s32) in[4])) * ((s32) in[8]) + 2 * (((limb) ((s32) in[5])) * ((s32) in[7]) + ((limb) ((s32) in[3])) * ((s32) in[9]))); output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) + ((limb) ((s32) in[5])) * ((s32) in[8]) + ((limb) ((s32) in[4])) * ((s32) in[9])); output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) + ((limb) ((s32) in[6])) * ((s32) in[8]) + 2 * ((limb) ((s32) in[5])) * ((s32) in[9])); output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) + ((limb) ((s32) in[6])) * ((s32) in[9])); output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) + 4 * ((limb) ((s32) in[7])) * ((s32) in[9]); output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]); output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]); } /* fsquare sets output = in^2. * * On entry: The |in| argument is in reduced coefficients form and |in[i]| < * 2^27. * * On exit: The |output| argument is in reduced coefficients form (indeed, one * need only provide storage for 10 limbs) and |out[i]| < 2^26. */ static void fsquare(limb *output, const limb *in) { limb t[19]; fsquare_inner(t, in); /* |t[i]| < 14*2^54 because the largest product of two limbs will be < * 2^(27+27) and fsquare_inner adds together, at most, 14 of those * products. */ freduce_degree(t); freduce_coefficients(t); /* |t[i]| < 2^26 */ memcpy(output, t, sizeof(limb) * 10); } /* Take a little-endian, 32-byte number and expand it into polynomial form */ static void fexpand(limb *output, const u8 *input) { #define F(n,start,shift,mask) \ output[n] = ((((limb) input[start + 0]) | \ ((limb) input[start + 1]) << 8 | \ ((limb) input[start + 2]) << 16 | \ ((limb) input[start + 3]) << 24) >> shift) & mask; F(0, 0, 0, 0x3ffffff); F(1, 3, 2, 0x1ffffff); F(2, 6, 3, 0x3ffffff); F(3, 9, 5, 0x1ffffff); F(4, 12, 6, 0x3ffffff); F(5, 16, 0, 0x1ffffff); F(6, 19, 1, 0x3ffffff); F(7, 22, 3, 0x1ffffff); F(8, 25, 4, 0x3ffffff); F(9, 28, 6, 0x1ffffff); #undef F } #if (-32 >> 1) != -16 #error "This code only works when >> does sign-extension on negative numbers" #endif /* s32_eq returns 0xffffffff iff a == b and zero otherwise. */ static s32 s32_eq(s32 a, s32 b) { a = ~(a ^ b); a &= a << 16; a &= a << 8; a &= a << 4; a &= a << 2; a &= a << 1; return a >> 31; } /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are * both non-negative. */ static s32 s32_gte(s32 a, s32 b) { a -= b; /* a >= 0 iff a >= b. */ return ~(a >> 31); } /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array. * * On entry: |input_limbs[i]| < 2^26 */ static void fcontract(u8 *output, limb *input_limbs) { int i; int j; s32 input[10]; s32 mask; /* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */ for (i = 0; i < 10; i++) { input[i] = input_limbs[i]; } for (j = 0; j < 2; ++j) { for (i = 0; i < 9; ++i) { if ((i & 1) == 1) { /* This calculation is a time-invariant way to make input[i] * non-negative by borrowing from the next-larger limb. */ const s32 mask = input[i] >> 31; const s32 carry = -((input[i] & mask) >> 25); input[i] = input[i] + (carry << 25); input[i+1] = input[i+1] - carry; } else { const s32 mask = input[i] >> 31; const s32 carry = -((input[i] & mask) >> 26); input[i] = input[i] + (carry << 26); input[i+1] = input[i+1] - carry; } } /* There's no greater limb for input[9] to borrow from, but we can multiply * by 19 and borrow from input[0], which is valid mod 2^255-19. */ { const s32 mask = input[9] >> 31; const s32 carry = -((input[9] & mask) >> 25); input[9] = input[9] + (carry << 25); input[0] = input[0] - (carry * 19); } /* After the first iteration, input[1..9] are non-negative and fit within * 25 or 26 bits, depending on position. However, input[0] may be * negative. */ } /* The first borrow-propagation pass above ended with every limb except (possibly) input[0] non-negative. If input[0] was negative after the first pass, then it was because of a carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most, one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19. In the second pass, each limb is decreased by at most one. Thus the second borrow-propagation pass could only have wrapped around to decrease input[0] again if the first pass left input[0] negative *and* input[1] through input[9] were all zero. In that case, input[1] is now 2^25 - 1, and this last borrow-propagation step will leave input[1] non-negative. */ { const s32 mask = input[0] >> 31; const s32 carry = -((input[0] & mask) >> 26); input[0] = input[0] + (carry << 26); input[1] = input[1] - carry; } /* All input[i] are now non-negative. However, there might be values between * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */ for (j = 0; j < 2; j++) { for (i = 0; i < 9; i++) { if ((i & 1) == 1) { const s32 carry = input[i] >> 25; input[i] &= 0x1ffffff; input[i+1] += carry; } else { const s32 carry = input[i] >> 26; input[i] &= 0x3ffffff; input[i+1] += carry; } } { const s32 carry = input[9] >> 25; input[9] &= 0x1ffffff; input[0] += 19*carry; } } /* If the first carry-chain pass, just above, ended up with a carry from * input[9], and that caused input[0] to be out-of-bounds, then input[0] was * < 2^26 + 2*19, because the carry was, at most, two. * * If the second pass carried from input[9] again then input[0] is < 2*19 and * the input[9] -> input[0] carry didn't push input[0] out of bounds. */ /* It still remains the case that input might be between 2^255-19 and 2^255. * In this case, input[1..9] must take their maximum value and input[0] must * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */ mask = s32_gte(input[0], 0x3ffffed); for (i = 1; i < 10; i++) { if ((i & 1) == 1) { mask &= s32_eq(input[i], 0x1ffffff); } else { mask &= s32_eq(input[i], 0x3ffffff); } } /* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus * this conditionally subtracts 2^255-19. */ input[0] -= mask & 0x3ffffed; for (i = 1; i < 10; i++) { if ((i & 1) == 1) { input[i] -= mask & 0x1ffffff; } else { input[i] -= mask & 0x3ffffff; } } input[1] <<= 2; input[2] <<= 3; input[3] <<= 5; input[4] <<= 6; input[6] <<= 1; input[7] <<= 3; input[8] <<= 4; input[9] <<= 6; #define F(i, s) \ output[s+0] |= input[i] & 0xff; \ output[s+1] = (input[i] >> 8) & 0xff; \ output[s+2] = (input[i] >> 16) & 0xff; \ output[s+3] = (input[i] >> 24) & 0xff; output[0] = 0; output[16] = 0; F(0,0); F(1,3); F(2,6); F(3,9); F(4,12); F(5,16); F(6,19); F(7,22); F(8,25); F(9,28); #undef F } /* Input: Q, Q', Q-Q' * Output: 2Q, Q+Q' * * x2 z3: long form * x3 z3: long form * x z: short form, destroyed * xprime zprime: short form, destroyed * qmqp: short form, preserved * * On entry and exit, the absolute value of the limbs of all inputs and outputs * are < 2^26. */ static void fmonty(limb *x2, limb *z2, /* output 2Q */ limb *x3, limb *z3, /* output Q + Q' */ limb *x, limb *z, /* input Q */ limb *xprime, limb *zprime, /* input Q' */ const limb *qmqp /* input Q - Q' */) { limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], zzprime[19], zzzprime[19], xxxprime[19]; memcpy(origx, x, 10 * sizeof(limb)); fsum(x, z); /* |x[i]| < 2^27 */ fdifference(z, origx); /* does x - z */ /* |z[i]| < 2^27 */ memcpy(origxprime, xprime, sizeof(limb) * 10); fsum(xprime, zprime); /* |xprime[i]| < 2^27 */ fdifference(zprime, origxprime); /* |zprime[i]| < 2^27 */ fproduct(xxprime, xprime, z); /* |xxprime[i]| < 14*2^54: the largest product of two limbs will be < * 2^(27+27) and fproduct adds together, at most, 14 of those products. * (Approximating that to 2^58 doesn't work out.) */ fproduct(zzprime, x, zprime); /* |zzprime[i]| < 14*2^54 */ freduce_degree(xxprime); freduce_coefficients(xxprime); /* |xxprime[i]| < 2^26 */ freduce_degree(zzprime); freduce_coefficients(zzprime); /* |zzprime[i]| < 2^26 */ memcpy(origxprime, xxprime, sizeof(limb) * 10); fsum(xxprime, zzprime); /* |xxprime[i]| < 2^27 */ fdifference(zzprime, origxprime); /* |zzprime[i]| < 2^27 */ fsquare(xxxprime, xxprime); /* |xxxprime[i]| < 2^26 */ fsquare(zzzprime, zzprime); /* |zzzprime[i]| < 2^26 */ fproduct(zzprime, zzzprime, qmqp); /* |zzprime[i]| < 14*2^52 */ freduce_degree(zzprime); freduce_coefficients(zzprime); /* |zzprime[i]| < 2^26 */ memcpy(x3, xxxprime, sizeof(limb) * 10); memcpy(z3, zzprime, sizeof(limb) * 10); fsquare(xx, x); /* |xx[i]| < 2^26 */ fsquare(zz, z); /* |zz[i]| < 2^26 */ fproduct(x2, xx, zz); /* |x2[i]| < 14*2^52 */ freduce_degree(x2); freduce_coefficients(x2); /* |x2[i]| < 2^26 */ fdifference(zz, xx); // does zz = xx - zz /* |zz[i]| < 2^27 */ memset(zzz + 10, 0, sizeof(limb) * 9); fscalar_product(zzz, zz, 121665); /* |zzz[i]| < 2^(27+17) */ /* No need to call freduce_degree here: fscalar_product doesn't increase the degree of its input. */ freduce_coefficients(zzz); /* |zzz[i]| < 2^26 */ fsum(zzz, xx); /* |zzz[i]| < 2^27 */ fproduct(z2, zz, zzz); /* |z2[i]| < 14*2^(26+27) */ freduce_degree(z2); freduce_coefficients(z2); /* |z2|i| < 2^26 */ } /* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave * them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid * side-channel attacks. * * NOTE that this function requires that 'iswap' be 1 or 0; other values give * wrong results. Also, the two limb arrays must be in reduced-coefficient, * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped, * and all all values in a[0..9],b[0..9] must have magnitude less than * INT32_MAX. */ static void swap_conditional(limb a[19], limb b[19], limb iswap) { unsigned i; const s32 swap = (s32) -iswap; for (i = 0; i < 10; ++i) { const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) ); a[i] = ((s32)a[i]) ^ x; b[i] = ((s32)b[i]) ^ x; } } /* Calculates nQ where Q is the x-coordinate of a point on the curve * * resultx/resultz: the x coordinate of the resulting curve point (short form) * n: a little endian, 32-byte number * q: a point of the curve (short form) */ static void cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1}; limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; unsigned i, j; memcpy(nqpqx, q, sizeof(limb) * 10); for (i = 0; i < 32; ++i) { u8 byte = n[31 - i]; for (j = 0; j < 8; ++j) { const limb bit = byte >> 7; swap_conditional(nqx, nqpqx, bit); swap_conditional(nqz, nqpqz, bit); fmonty(nqx2, nqz2, nqpqx2, nqpqz2, nqx, nqz, nqpqx, nqpqz, q); swap_conditional(nqx2, nqpqx2, bit); swap_conditional(nqz2, nqpqz2, bit); t = nqx; nqx = nqx2; nqx2 = t; t = nqz; nqz = nqz2; nqz2 = t; t = nqpqx; nqpqx = nqpqx2; nqpqx2 = t; t = nqpqz; nqpqz = nqpqz2; nqpqz2 = t; byte <<= 1; } } memcpy(resultx, nqx, sizeof(limb) * 10); memcpy(resultz, nqz, sizeof(limb) * 10); } // ----------------------------------------------------------------------------- // Shamelessly copied from djb's code // ----------------------------------------------------------------------------- static void crecip(limb *out, const limb *z) { limb z2[10]; limb z9[10]; limb z11[10]; limb z2_5_0[10]; limb z2_10_0[10]; limb z2_20_0[10]; limb z2_50_0[10]; limb z2_100_0[10]; limb t0[10]; limb t1[10]; int i; /* 2 */ fsquare(z2,z); /* 4 */ fsquare(t1,z2); /* 8 */ fsquare(t0,t1); /* 9 */ fmul(z9,t0,z); /* 11 */ fmul(z11,z9,z2); /* 22 */ fsquare(t0,z11); /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9); /* 2^6 - 2^1 */ fsquare(t0,z2_5_0); /* 2^7 - 2^2 */ fsquare(t1,t0); /* 2^8 - 2^3 */ fsquare(t0,t1); /* 2^9 - 2^4 */ fsquare(t1,t0); /* 2^10 - 2^5 */ fsquare(t0,t1); /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0); /* 2^11 - 2^1 */ fsquare(t0,z2_10_0); /* 2^12 - 2^2 */ fsquare(t1,t0); /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0); /* 2^21 - 2^1 */ fsquare(t0,z2_20_0); /* 2^22 - 2^2 */ fsquare(t1,t0); /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0); /* 2^41 - 2^1 */ fsquare(t1,t0); /* 2^42 - 2^2 */ fsquare(t0,t1); /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0); /* 2^51 - 2^1 */ fsquare(t0,z2_50_0); /* 2^52 - 2^2 */ fsquare(t1,t0); /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0); /* 2^101 - 2^1 */ fsquare(t1,z2_100_0); /* 2^102 - 2^2 */ fsquare(t0,t1); /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0); /* 2^201 - 2^1 */ fsquare(t0,t1); /* 2^202 - 2^2 */ fsquare(t1,t0); /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0); /* 2^251 - 2^1 */ fsquare(t1,t0); /* 2^252 - 2^2 */ fsquare(t0,t1); /* 2^253 - 2^3 */ fsquare(t1,t0); /* 2^254 - 2^4 */ fsquare(t0,t1); /* 2^255 - 2^5 */ fsquare(t1,t0); /* 2^255 - 21 */ fmul(out,t1,z11); } int curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) { limb bp[10], x[10], z[11], zmone[10]; uint8_t e[32]; int i; for (i = 0; i < 32; ++i) e[i] = secret[i]; // e[0] &= 248; // e[31] &= 127; // e[31] |= 64; fexpand(bp, basepoint); cmult(x, z, e, bp); crecip(zmone, z); fmul(z, x, zmone); fcontract(mypublic, z); return 0; } python-axolotl-curve25519-0.4.1.post2/curve/curve25519-donna.h0000644000175000017500000000021113264344414023674 0ustar tarektarek00000000000000#ifndef CURVE25519_DONNA_H #define CURVE25519_DONNA_H extern int curve25519_donna(uint8_t *, const uint8_t *, const uint8_t *); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/0000755000175000017500000000000013264355231021677 5ustar tarektarek00000000000000python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_isnonzero.c0000644000175000017500000000070513264344532024547 0ustar tarektarek00000000000000#include "fe.h" #include "crypto_verify_32.h" /* return nonzero if f == 0 return 0 if f != 0 Preconditions: |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */ /* TREVOR'S COMMENT * * I think the above comment is wrong. Instead: * * return 0 if f == 0 * return -1 if f != 0 * * */ static const unsigned char zero[32]; int fe_isnonzero(const fe f) { unsigned char s[32]; fe_tobytes(s,f); return crypto_verify_32(s,zero); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_cmov.c0000644000175000017500000000240313264344532023462 0ustar tarektarek00000000000000#include "fe.h" /* Replace (f,g) with (g,g) if b == 1; replace (f,g) with (f,g) if b == 0. Preconditions: b in {0,1}. */ void fe_cmov(fe f,const fe g,unsigned int b) { crypto_int32 f0 = f[0]; crypto_int32 f1 = f[1]; crypto_int32 f2 = f[2]; crypto_int32 f3 = f[3]; crypto_int32 f4 = f[4]; crypto_int32 f5 = f[5]; crypto_int32 f6 = f[6]; crypto_int32 f7 = f[7]; crypto_int32 f8 = f[8]; crypto_int32 f9 = f[9]; crypto_int32 g0 = g[0]; crypto_int32 g1 = g[1]; crypto_int32 g2 = g[2]; crypto_int32 g3 = g[3]; crypto_int32 g4 = g[4]; crypto_int32 g5 = g[5]; crypto_int32 g6 = g[6]; crypto_int32 g7 = g[7]; crypto_int32 g8 = g[8]; crypto_int32 g9 = g[9]; crypto_int32 x0 = f0 ^ g0; crypto_int32 x1 = f1 ^ g1; crypto_int32 x2 = f2 ^ g2; crypto_int32 x3 = f3 ^ g3; crypto_int32 x4 = f4 ^ g4; crypto_int32 x5 = f5 ^ g5; crypto_int32 x6 = f6 ^ g6; crypto_int32 x7 = f7 ^ g7; crypto_int32 x8 = f8 ^ g8; crypto_int32 x9 = f9 ^ g9; b = -b; x0 &= b; x1 &= b; x2 &= b; x3 &= b; x4 &= b; x5 &= b; x6 &= b; x7 &= b; x8 &= b; x9 &= b; f[0] = f0 ^ x0; f[1] = f1 ^ x1; f[2] = f2 ^ x2; f[3] = f3 ^ x3; f[4] = f4 ^ x4; f[5] = f5 ^ x5; f[6] = f6 ^ x6; f[7] = f7 ^ x7; f[8] = f8 ^ x8; f[9] = f9 ^ x9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_1.c0000644000175000017500000000025213264344532022656 0ustar tarektarek00000000000000#include "fe.h" /* h = 1 */ void fe_1(fe h) { h[0] = 1; h[1] = 0; h[2] = 0; h[3] = 0; h[4] = 0; h[5] = 0; h[6] = 0; h[7] = 0; h[8] = 0; h[9] = 0; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_double_scalarmult.c0000644000175000017500000000450313264344532026223 0ustar tarektarek00000000000000#include "ge.h" static void slide(signed char *r,const unsigned char *a) { int i; int b; int k; for (i = 0;i < 256;++i) r[i] = 1 & (a[i >> 3] >> (i & 7)); for (i = 0;i < 256;++i) if (r[i]) { for (b = 1;b <= 6 && i + b < 256;++b) { if (r[i + b]) { if (r[i] + (r[i + b] << b) <= 15) { r[i] += r[i + b] << b; r[i + b] = 0; } else if (r[i] - (r[i + b] << b) >= -15) { r[i] -= r[i + b] << b; for (k = i + b;k < 256;++k) { if (!r[k]) { r[k] = 1; break; } r[k] = 0; } } else break; } } } } static ge_precomp Bi[8] = { #include "base2.h" } ; /* r = a * A + b * B where a = a[0]+256*a[1]+...+256^31 a[31]. and b = b[0]+256*b[1]+...+256^31 b[31]. B is the Ed25519 base point (x,4/5) with x positive. */ void ge_double_scalarmult_vartime(ge_p2 *r,const unsigned char *a,const ge_p3 *A,const unsigned char *b) { signed char aslide[256]; signed char bslide[256]; ge_cached Ai[8]; /* A,3A,5A,7A,9A,11A,13A,15A */ ge_p1p1 t; ge_p3 u; ge_p3 A2; int i; slide(aslide,a); slide(bslide,b); ge_p3_to_cached(&Ai[0],A); ge_p3_dbl(&t,A); ge_p1p1_to_p3(&A2,&t); ge_add(&t,&A2,&Ai[0]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[1],&u); ge_add(&t,&A2,&Ai[1]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[2],&u); ge_add(&t,&A2,&Ai[2]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[3],&u); ge_add(&t,&A2,&Ai[3]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[4],&u); ge_add(&t,&A2,&Ai[4]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[5],&u); ge_add(&t,&A2,&Ai[5]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[6],&u); ge_add(&t,&A2,&Ai[6]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[7],&u); ge_p2_0(r); for (i = 255;i >= 0;--i) { if (aslide[i] || bslide[i]) break; } for (;i >= 0;--i) { ge_p2_dbl(&t,r); if (aslide[i] > 0) { ge_p1p1_to_p3(&u,&t); ge_add(&t,&u,&Ai[aslide[i]/2]); } else if (aslide[i] < 0) { ge_p1p1_to_p3(&u,&t); ge_sub(&t,&u,&Ai[(-aslide[i])/2]); } if (bslide[i] > 0) { ge_p1p1_to_p3(&u,&t); ge_madd(&t,&u,&Bi[bslide[i]/2]); } else if (bslide[i] < 0) { ge_p1p1_to_p3(&u,&t); ge_msub(&t,&u,&Bi[(-bslide[i])/2]); } ge_p1p1_to_p2(r,&t); } } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_tobytes.c0000644000175000017500000000034113264344532024207 0ustar tarektarek00000000000000#include "ge.h" void ge_tobytes(unsigned char *s,const ge_p2 *h) { fe recip; fe x; fe y; fe_invert(recip,h->Z); fe_mul(x,h->X,recip); fe_mul(y,h->Y,recip); fe_tobytes(s,y); s[31] ^= fe_isnegative(x) << 7; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_pow22523.c0000644000175000017500000000017713264344532023727 0ustar tarektarek00000000000000#include "fe.h" void fe_pow22523(fe out,const fe z) { fe t0; fe t1; fe t2; int i; #include "pow22523.h" return; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/sc.h0000644000175000017500000000057613264344532022467 0ustar tarektarek00000000000000#ifndef SC_H #define SC_H /* The set of scalars is \Z/l where l = 2^252 + 27742317777372353535851937790883648493. */ #define sc_reduce crypto_sign_ed25519_ref10_sc_reduce #define sc_muladd crypto_sign_ed25519_ref10_sc_muladd extern void sc_reduce(unsigned char *); extern void sc_muladd(unsigned char *,const unsigned char *,const unsigned char *,const unsigned char *); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/sqrtm1.h0000644000175000017500000000012713264344532023301 0ustar tarektarek00000000000000-32595792,-7943725,9377950,3500415,12389472,-272473,-25146209,-2005654,326686,11406482 python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p1p1_to_p2.c0000644000175000017500000000024513264344532024405 0ustar tarektarek00000000000000#include "ge.h" /* r = p */ extern void ge_p1p1_to_p2(ge_p2 *r,const ge_p1p1 *p) { fe_mul(r->X,p->X,p->T); fe_mul(r->Y,p->Y,p->Z); fe_mul(r->Z,p->Z,p->T); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/sc_muladd.c0000644000175000017500000003031613264344532024003 0ustar tarektarek00000000000000#include "sc.h" #include "crypto_int64.h" #include "crypto_uint32.h" #include "crypto_uint64.h" static crypto_uint64 load_3(const unsigned char *in) { crypto_uint64 result; result = (crypto_uint64) in[0]; result |= ((crypto_uint64) in[1]) << 8; result |= ((crypto_uint64) in[2]) << 16; return result; } static crypto_uint64 load_4(const unsigned char *in) { crypto_uint64 result; result = (crypto_uint64) in[0]; result |= ((crypto_uint64) in[1]) << 8; result |= ((crypto_uint64) in[2]) << 16; result |= ((crypto_uint64) in[3]) << 24; return result; } /* Input: a[0]+256*a[1]+...+256^31*a[31] = a b[0]+256*b[1]+...+256^31*b[31] = b c[0]+256*c[1]+...+256^31*c[31] = c Output: s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l where l = 2^252 + 27742317777372353535851937790883648493. */ void sc_muladd(unsigned char *s,const unsigned char *a,const unsigned char *b,const unsigned char *c) { crypto_int64 a0 = 2097151 & load_3(a); crypto_int64 a1 = 2097151 & (load_4(a + 2) >> 5); crypto_int64 a2 = 2097151 & (load_3(a + 5) >> 2); crypto_int64 a3 = 2097151 & (load_4(a + 7) >> 7); crypto_int64 a4 = 2097151 & (load_4(a + 10) >> 4); crypto_int64 a5 = 2097151 & (load_3(a + 13) >> 1); crypto_int64 a6 = 2097151 & (load_4(a + 15) >> 6); crypto_int64 a7 = 2097151 & (load_3(a + 18) >> 3); crypto_int64 a8 = 2097151 & load_3(a + 21); crypto_int64 a9 = 2097151 & (load_4(a + 23) >> 5); crypto_int64 a10 = 2097151 & (load_3(a + 26) >> 2); crypto_int64 a11 = (load_4(a + 28) >> 7); crypto_int64 b0 = 2097151 & load_3(b); crypto_int64 b1 = 2097151 & (load_4(b + 2) >> 5); crypto_int64 b2 = 2097151 & (load_3(b + 5) >> 2); crypto_int64 b3 = 2097151 & (load_4(b + 7) >> 7); crypto_int64 b4 = 2097151 & (load_4(b + 10) >> 4); crypto_int64 b5 = 2097151 & (load_3(b + 13) >> 1); crypto_int64 b6 = 2097151 & (load_4(b + 15) >> 6); crypto_int64 b7 = 2097151 & (load_3(b + 18) >> 3); crypto_int64 b8 = 2097151 & load_3(b + 21); crypto_int64 b9 = 2097151 & (load_4(b + 23) >> 5); crypto_int64 b10 = 2097151 & (load_3(b + 26) >> 2); crypto_int64 b11 = (load_4(b + 28) >> 7); crypto_int64 c0 = 2097151 & load_3(c); crypto_int64 c1 = 2097151 & (load_4(c + 2) >> 5); crypto_int64 c2 = 2097151 & (load_3(c + 5) >> 2); crypto_int64 c3 = 2097151 & (load_4(c + 7) >> 7); crypto_int64 c4 = 2097151 & (load_4(c + 10) >> 4); crypto_int64 c5 = 2097151 & (load_3(c + 13) >> 1); crypto_int64 c6 = 2097151 & (load_4(c + 15) >> 6); crypto_int64 c7 = 2097151 & (load_3(c + 18) >> 3); crypto_int64 c8 = 2097151 & load_3(c + 21); crypto_int64 c9 = 2097151 & (load_4(c + 23) >> 5); crypto_int64 c10 = 2097151 & (load_3(c + 26) >> 2); crypto_int64 c11 = (load_4(c + 28) >> 7); crypto_int64 s0; crypto_int64 s1; crypto_int64 s2; crypto_int64 s3; crypto_int64 s4; crypto_int64 s5; crypto_int64 s6; crypto_int64 s7; crypto_int64 s8; crypto_int64 s9; crypto_int64 s10; crypto_int64 s11; crypto_int64 s12; crypto_int64 s13; crypto_int64 s14; crypto_int64 s15; crypto_int64 s16; crypto_int64 s17; crypto_int64 s18; crypto_int64 s19; crypto_int64 s20; crypto_int64 s21; crypto_int64 s22; crypto_int64 s23; crypto_int64 carry0; crypto_int64 carry1; crypto_int64 carry2; crypto_int64 carry3; crypto_int64 carry4; crypto_int64 carry5; crypto_int64 carry6; crypto_int64 carry7; crypto_int64 carry8; crypto_int64 carry9; crypto_int64 carry10; crypto_int64 carry11; crypto_int64 carry12; crypto_int64 carry13; crypto_int64 carry14; crypto_int64 carry15; crypto_int64 carry16; crypto_int64 carry17; crypto_int64 carry18; crypto_int64 carry19; crypto_int64 carry20; crypto_int64 carry21; crypto_int64 carry22; s0 = c0 + a0*b0; s1 = c1 + a0*b1 + a1*b0; s2 = c2 + a0*b2 + a1*b1 + a2*b0; s3 = c3 + a0*b3 + a1*b2 + a2*b1 + a3*b0; s4 = c4 + a0*b4 + a1*b3 + a2*b2 + a3*b1 + a4*b0; s5 = c5 + a0*b5 + a1*b4 + a2*b3 + a3*b2 + a4*b1 + a5*b0; s6 = c6 + a0*b6 + a1*b5 + a2*b4 + a3*b3 + a4*b2 + a5*b1 + a6*b0; s7 = c7 + a0*b7 + a1*b6 + a2*b5 + a3*b4 + a4*b3 + a5*b2 + a6*b1 + a7*b0; s8 = c8 + a0*b8 + a1*b7 + a2*b6 + a3*b5 + a4*b4 + a5*b3 + a6*b2 + a7*b1 + a8*b0; s9 = c9 + a0*b9 + a1*b8 + a2*b7 + a3*b6 + a4*b5 + a5*b4 + a6*b3 + a7*b2 + a8*b1 + a9*b0; s10 = c10 + a0*b10 + a1*b9 + a2*b8 + a3*b7 + a4*b6 + a5*b5 + a6*b4 + a7*b3 + a8*b2 + a9*b1 + a10*b0; s11 = c11 + a0*b11 + a1*b10 + a2*b9 + a3*b8 + a4*b7 + a5*b6 + a6*b5 + a7*b4 + a8*b3 + a9*b2 + a10*b1 + a11*b0; s12 = a1*b11 + a2*b10 + a3*b9 + a4*b8 + a5*b7 + a6*b6 + a7*b5 + a8*b4 + a9*b3 + a10*b2 + a11*b1; s13 = a2*b11 + a3*b10 + a4*b9 + a5*b8 + a6*b7 + a7*b6 + a8*b5 + a9*b4 + a10*b3 + a11*b2; s14 = a3*b11 + a4*b10 + a5*b9 + a6*b8 + a7*b7 + a8*b6 + a9*b5 + a10*b4 + a11*b3; s15 = a4*b11 + a5*b10 + a6*b9 + a7*b8 + a8*b7 + a9*b6 + a10*b5 + a11*b4; s16 = a5*b11 + a6*b10 + a7*b9 + a8*b8 + a9*b7 + a10*b6 + a11*b5; s17 = a6*b11 + a7*b10 + a8*b9 + a9*b8 + a10*b7 + a11*b6; s18 = a7*b11 + a8*b10 + a9*b9 + a10*b8 + a11*b7; s19 = a8*b11 + a9*b10 + a10*b9 + a11*b8; s20 = a9*b11 + a10*b10 + a11*b9; s21 = a10*b11 + a11*b10; s22 = a11*b11; s23 = 0; carry0 = (s0 + (1<<20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1<<20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1<<20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1<<20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1<<20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1<<20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1<<20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1<<20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1<<20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry18 = (s18 + (1<<20)) >> 21; s19 += carry18; s18 -= carry18 << 21; carry20 = (s20 + (1<<20)) >> 21; s21 += carry20; s20 -= carry20 << 21; carry22 = (s22 + (1<<20)) >> 21; s23 += carry22; s22 -= carry22 << 21; carry1 = (s1 + (1<<20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1<<20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1<<20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1<<20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1<<20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1<<20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1<<20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1<<20)) >> 21; s16 += carry15; s15 -= carry15 << 21; carry17 = (s17 + (1<<20)) >> 21; s18 += carry17; s17 -= carry17 << 21; carry19 = (s19 + (1<<20)) >> 21; s20 += carry19; s19 -= carry19 << 21; carry21 = (s21 + (1<<20)) >> 21; s22 += carry21; s21 -= carry21 << 21; s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; s18 = 0; carry6 = (s6 + (1<<20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1<<20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1<<20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1<<20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1<<20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1<<20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry7 = (s7 + (1<<20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1<<20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1<<20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1<<20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1<<20)) >> 21; s16 += carry15; s15 -= carry15 << 21; s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1<<20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1<<20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1<<20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1<<20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1<<20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1<<20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry1 = (s1 + (1<<20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1<<20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1<<20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1<<20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1<<20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1<<20)) >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; s[0] = s0 >> 0; s[1] = s0 >> 8; s[2] = (s0 >> 16) | (s1 << 5); s[3] = s1 >> 3; s[4] = s1 >> 11; s[5] = (s1 >> 19) | (s2 << 2); s[6] = s2 >> 6; s[7] = (s2 >> 14) | (s3 << 7); s[8] = s3 >> 1; s[9] = s3 >> 9; s[10] = (s3 >> 17) | (s4 << 4); s[11] = s4 >> 4; s[12] = s4 >> 12; s[13] = (s4 >> 20) | (s5 << 1); s[14] = s5 >> 7; s[15] = (s5 >> 15) | (s6 << 6); s[16] = s6 >> 2; s[17] = s6 >> 10; s[18] = (s6 >> 18) | (s7 << 3); s[19] = s7 >> 5; s[20] = s7 >> 13; s[21] = s8 >> 0; s[22] = s8 >> 8; s[23] = (s8 >> 16) | (s9 << 5); s[24] = s9 >> 3; s[25] = s9 >> 11; s[26] = (s9 >> 19) | (s10 << 2); s[27] = s10 >> 6; s[28] = (s10 >> 14) | (s11 << 7); s[29] = s11 >> 1; s[30] = s11 >> 9; s[31] = s11 >> 17; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/d.h0000644000175000017500000000013313264344532022272 0ustar tarektarek00000000000000-10913610,13857413,-15372611,6949391,114729,-8787816,-6275908,-3247719,-18696448,-12055116 python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_tobytes.c0000644000175000017500000000616513264344532024220 0ustar tarektarek00000000000000#include "fe.h" /* Preconditions: |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. Write p=2^255-19; q=floor(h/p). Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))). Proof: Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4. Also have |h-2^230 h9|<2^231 so |19 2^(-255)(h-2^230 h9)|<1/4. Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9). Then 0> 25; q = (h0 + q) >> 26; q = (h1 + q) >> 25; q = (h2 + q) >> 26; q = (h3 + q) >> 25; q = (h4 + q) >> 26; q = (h5 + q) >> 25; q = (h6 + q) >> 26; q = (h7 + q) >> 25; q = (h8 + q) >> 26; q = (h9 + q) >> 25; /* Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. */ h0 += 19 * q; /* Goal: Output h-2^255 q, which is between 0 and 2^255-20. */ carry0 = h0 >> 26; h1 += carry0; h0 -= carry0 << 26; carry1 = h1 >> 25; h2 += carry1; h1 -= carry1 << 25; carry2 = h2 >> 26; h3 += carry2; h2 -= carry2 << 26; carry3 = h3 >> 25; h4 += carry3; h3 -= carry3 << 25; carry4 = h4 >> 26; h5 += carry4; h4 -= carry4 << 26; carry5 = h5 >> 25; h6 += carry5; h5 -= carry5 << 25; carry6 = h6 >> 26; h7 += carry6; h6 -= carry6 << 26; carry7 = h7 >> 25; h8 += carry7; h7 -= carry7 << 25; carry8 = h8 >> 26; h9 += carry8; h8 -= carry8 << 26; carry9 = h9 >> 25; h9 -= carry9 << 25; /* h10 = carry9 */ /* Goal: Output h0+...+2^255 h10-2^255 q, which is between 0 and 2^255-20. Have h0+...+2^230 h9 between 0 and 2^255-1; evidently 2^255 h10-2^255 q = 0. Goal: Output h0+...+2^230 h9. */ s[0] = h0 >> 0; s[1] = h0 >> 8; s[2] = h0 >> 16; s[3] = (h0 >> 24) | (h1 << 2); s[4] = h1 >> 6; s[5] = h1 >> 14; s[6] = (h1 >> 22) | (h2 << 3); s[7] = h2 >> 5; s[8] = h2 >> 13; s[9] = (h2 >> 21) | (h3 << 5); s[10] = h3 >> 3; s[11] = h3 >> 11; s[12] = (h3 >> 19) | (h4 << 6); s[13] = h4 >> 2; s[14] = h4 >> 10; s[15] = h4 >> 18; s[16] = h5 >> 0; s[17] = h5 >> 8; s[18] = h5 >> 16; s[19] = (h5 >> 24) | (h6 << 1); s[20] = h6 >> 7; s[21] = h6 >> 15; s[22] = (h6 >> 23) | (h7 << 3); s[23] = h7 >> 5; s[24] = h7 >> 13; s[25] = (h7 >> 21) | (h8 << 4); s[26] = h8 >> 4; s[27] = h8 >> 12; s[28] = (h8 >> 20) | (h9 << 6); s[29] = h9 >> 2; s[30] = h9 >> 10; s[31] = h9 >> 18; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/pow225521.h0000644000175000017500000001262713264344532023350 0ustar tarektarek00000000000000 /* qhasm: fe z1 */ /* qhasm: fe z2 */ /* qhasm: fe z8 */ /* qhasm: fe z9 */ /* qhasm: fe z11 */ /* qhasm: fe z22 */ /* qhasm: fe z_5_0 */ /* qhasm: fe z_10_5 */ /* qhasm: fe z_10_0 */ /* qhasm: fe z_20_10 */ /* qhasm: fe z_20_0 */ /* qhasm: fe z_40_20 */ /* qhasm: fe z_40_0 */ /* qhasm: fe z_50_10 */ /* qhasm: fe z_50_0 */ /* qhasm: fe z_100_50 */ /* qhasm: fe z_100_0 */ /* qhasm: fe z_200_100 */ /* qhasm: fe z_200_0 */ /* qhasm: fe z_250_50 */ /* qhasm: fe z_250_0 */ /* qhasm: fe z_255_5 */ /* qhasm: fe z_255_21 */ /* qhasm: enter pow225521 */ /* qhasm: z2 = z1^2^1 */ /* asm 1: fe_sq(>z2=fe#1,z2=fe#1,>z2=fe#1); */ /* asm 2: fe_sq(>z2=t0,z2=t0,>z2=t0); */ fe_sq(t0,z); for (i = 1;i < 1;++i) fe_sq(t0,t0); /* qhasm: z8 = z2^2^2 */ /* asm 1: fe_sq(>z8=fe#2,z8=fe#2,>z8=fe#2); */ /* asm 2: fe_sq(>z8=t1,z8=t1,>z8=t1); */ fe_sq(t1,t0); for (i = 1;i < 2;++i) fe_sq(t1,t1); /* qhasm: z9 = z1*z8 */ /* asm 1: fe_mul(>z9=fe#2,z9=t1,z11=fe#1,z11=t0,z22=fe#3,z22=fe#3,>z22=fe#3); */ /* asm 2: fe_sq(>z22=t2,z22=t2,>z22=t2); */ fe_sq(t2,t0); for (i = 1;i < 1;++i) fe_sq(t2,t2); /* qhasm: z_5_0 = z9*z22 */ /* asm 1: fe_mul(>z_5_0=fe#2,z_5_0=t1,z_10_5=fe#3,z_10_5=fe#3,>z_10_5=fe#3); */ /* asm 2: fe_sq(>z_10_5=t2,z_10_5=t2,>z_10_5=t2); */ fe_sq(t2,t1); for (i = 1;i < 5;++i) fe_sq(t2,t2); /* qhasm: z_10_0 = z_10_5*z_5_0 */ /* asm 1: fe_mul(>z_10_0=fe#2,z_10_0=t1,z_20_10=fe#3,z_20_10=fe#3,>z_20_10=fe#3); */ /* asm 2: fe_sq(>z_20_10=t2,z_20_10=t2,>z_20_10=t2); */ fe_sq(t2,t1); for (i = 1;i < 10;++i) fe_sq(t2,t2); /* qhasm: z_20_0 = z_20_10*z_10_0 */ /* asm 1: fe_mul(>z_20_0=fe#3,z_20_0=t2,z_40_20=fe#4,z_40_20=fe#4,>z_40_20=fe#4); */ /* asm 2: fe_sq(>z_40_20=t3,z_40_20=t3,>z_40_20=t3); */ fe_sq(t3,t2); for (i = 1;i < 20;++i) fe_sq(t3,t3); /* qhasm: z_40_0 = z_40_20*z_20_0 */ /* asm 1: fe_mul(>z_40_0=fe#3,z_40_0=t2,z_50_10=fe#3,z_50_10=fe#3,>z_50_10=fe#3); */ /* asm 2: fe_sq(>z_50_10=t2,z_50_10=t2,>z_50_10=t2); */ fe_sq(t2,t2); for (i = 1;i < 10;++i) fe_sq(t2,t2); /* qhasm: z_50_0 = z_50_10*z_10_0 */ /* asm 1: fe_mul(>z_50_0=fe#2,z_50_0=t1,z_100_50=fe#3,z_100_50=fe#3,>z_100_50=fe#3); */ /* asm 2: fe_sq(>z_100_50=t2,z_100_50=t2,>z_100_50=t2); */ fe_sq(t2,t1); for (i = 1;i < 50;++i) fe_sq(t2,t2); /* qhasm: z_100_0 = z_100_50*z_50_0 */ /* asm 1: fe_mul(>z_100_0=fe#3,z_100_0=t2,z_200_100=fe#4,z_200_100=fe#4,>z_200_100=fe#4); */ /* asm 2: fe_sq(>z_200_100=t3,z_200_100=t3,>z_200_100=t3); */ fe_sq(t3,t2); for (i = 1;i < 100;++i) fe_sq(t3,t3); /* qhasm: z_200_0 = z_200_100*z_100_0 */ /* asm 1: fe_mul(>z_200_0=fe#3,z_200_0=t2,z_250_50=fe#3,z_250_50=fe#3,>z_250_50=fe#3); */ /* asm 2: fe_sq(>z_250_50=t2,z_250_50=t2,>z_250_50=t2); */ fe_sq(t2,t2); for (i = 1;i < 50;++i) fe_sq(t2,t2); /* qhasm: z_250_0 = z_250_50*z_50_0 */ /* asm 1: fe_mul(>z_250_0=fe#2,z_250_0=t1,z_255_5=fe#2,z_255_5=fe#2,>z_255_5=fe#2); */ /* asm 2: fe_sq(>z_255_5=t1,z_255_5=t1,>z_255_5=t1); */ fe_sq(t1,t1); for (i = 1;i < 5;++i) fe_sq(t1,t1); /* qhasm: z_255_21 = z_255_5*z11 */ /* asm 1: fe_mul(>z_255_21=fe#12,z_255_21=out,YpX1=fe#1,YpX1=r->X,Y,X); */ fe_add(r->X,p->Y,p->X); /* qhasm: YmX1 = Y1-X1 */ /* asm 1: fe_sub(>YmX1=fe#2,YmX1=r->Y,Y,X); */ fe_sub(r->Y,p->Y,p->X); /* qhasm: A = YpX1*YpX2 */ /* asm 1: fe_mul(>A=fe#3,A=r->Z,X,YplusX); */ fe_mul(r->Z,r->X,q->YplusX); /* qhasm: B = YmX1*YmX2 */ /* asm 1: fe_mul(>B=fe#2,B=r->Y,Y,YminusX); */ fe_mul(r->Y,r->Y,q->YminusX); /* qhasm: C = T2d2*T1 */ /* asm 1: fe_mul(>C=fe#4,C=r->T,T2d,T); */ fe_mul(r->T,q->T2d,p->T); /* qhasm: ZZ = Z1*Z2 */ /* asm 1: fe_mul(>ZZ=fe#1,ZZ=r->X,Z,Z); */ fe_mul(r->X,p->Z,q->Z); /* qhasm: D = 2*ZZ */ /* asm 1: fe_add(>D=fe#5,D=t0,X,X); */ fe_add(t0,r->X,r->X); /* qhasm: X3 = A-B */ /* asm 1: fe_sub(>X3=fe#1,X3=r->X,Z,Y); */ fe_sub(r->X,r->Z,r->Y); /* qhasm: Y3 = A+B */ /* asm 1: fe_add(>Y3=fe#2,Y3=r->Y,Z,Y); */ fe_add(r->Y,r->Z,r->Y); /* qhasm: Z3 = D+C */ /* asm 1: fe_add(>Z3=fe#3,Z3=r->Z,T); */ fe_add(r->Z,t0,r->T); /* qhasm: T3 = D-C */ /* asm 1: fe_sub(>T3=fe#4,T3=r->T,T); */ fe_sub(r->T,t0,r->T); /* qhasm: return */ python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/0000755000175000017500000000000013264355231023655 5ustar tarektarek00000000000000python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/ge_neg.c0000644000175000017500000000031113264344532025242 0ustar tarektarek00000000000000#include "crypto_additions.h" #include "ge.h" /* return r = -p */ void ge_neg(ge_p3* r, const ge_p3 *p) { fe_neg(r->X, p->X); fe_copy(r->Y, p->Y); fe_copy(r->Z, p->Z); fe_neg(r->T, p->T); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/fe_montx_to_edy.c0000644000175000017500000000047713264344532027215 0ustar tarektarek00000000000000 #include "fe.h" #include "crypto_additions.h" void fe_montx_to_edy(fe y, const fe u) { /* y = (u - 1) / (u + 1) NOTE: u=-1 is converted to y=0 since fe_invert is mod-exp */ fe one, um1, up1; fe_1(one); fe_sub(um1, u, one); fe_add(up1, u, one); fe_invert(up1, up1); fe_mul(y, um1, up1); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/ge_p3_to_montx.c0000644000175000017500000000067013264344532026752 0ustar tarektarek00000000000000#include "fe.h" #include "crypto_additions.h" void ge_p3_to_montx(fe u, const ge_p3 *ed) { /* u = (y + 1) / (1 - y) or u = (y + z) / (z - y) NOTE: y=1 is converted to u=0 since fe_invert is mod-exp */ fe y_plus_one, one_minus_y, inv_one_minus_y; fe_add(y_plus_one, ed->Y, ed->Z); fe_sub(one_minus_y, ed->Z, ed->Y); fe_invert(inv_one_minus_y, one_minus_y); fe_mul(u, y_plus_one, inv_one_minus_y); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/zeroize.c0000644000175000017500000000043013264344532025507 0ustar tarektarek00000000000000#include "zeroize.h" void zeroize(unsigned char* b, size_t len) { size_t count = 0; volatile unsigned char *p = b; for (count = 0; count < len; count++) p[count] = 0; } void zeroize_stack() { unsigned char m[ZEROIZE_STACK_SIZE]; zeroize(m, ZEROIZE_STACK_SIZE); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/curve_sigs.h0000644000175000017500000000122613264344532026202 0ustar tarektarek00000000000000 #ifndef __CURVE_SIGS_H__ #define __CURVE_SIGS_H__ /* returns 0 on success */ int curve25519_sign(unsigned char* signature_out, /* 64 bytes */ const unsigned char* curve25519_privkey, /* 32 bytes */ const unsigned char* msg, const unsigned long msg_len, /* <= 256 bytes */ const unsigned char* random); /* 64 bytes */ /* returns 0 on success */ int curve25519_verify(const unsigned char* signature, /* 64 bytes */ const unsigned char* curve25519_pubkey, /* 32 bytes */ const unsigned char* msg, const unsigned long msg_len); /* <= 256 bytes */ #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/crypto_additions.h0000644000175000017500000000246313264344532027413 0ustar tarektarek00000000000000 #ifndef __CRYPTO_ADDITIONS__ #define __CRYPTO_ADDITIONS__ #include "crypto_uint32.h" #include "fe.h" #include "ge.h" #define MAX_MSG_LEN 256 void sc_neg(unsigned char *b, const unsigned char *a); void sc_cmov(unsigned char* f, const unsigned char* g, unsigned char b); int fe_isequal(const fe f, const fe g); int fe_isreduced(const unsigned char* s); void fe_mont_rhs(fe v2, const fe u); void fe_montx_to_edy(fe y, const fe u); void fe_sqrt(fe b, const fe a); int ge_isneutral(const ge_p3* q); void ge_neg(ge_p3* r, const ge_p3 *p); void ge_montx_to_p3(ge_p3* p, const fe u, const unsigned char ed_sign_bit); void ge_p3_to_montx(fe u, const ge_p3 *p); void ge_scalarmult(ge_p3 *h, const unsigned char *a, const ge_p3 *A); void ge_scalarmult_cofactor(ge_p3 *q, const ge_p3 *p); void elligator(fe u, const fe r); void hash_to_point(ge_p3* p, const unsigned char* msg, const unsigned long in_len); int crypto_sign_modified( unsigned char *sm, const unsigned char *m,unsigned long long mlen, const unsigned char *sk, /* Curve/Ed25519 private key */ const unsigned char *pk, /* Ed25519 public key */ const unsigned char *random /* 64 bytes random to hash into nonce */ ); int crypto_sign_open_modified( unsigned char *m, const unsigned char *sm,unsigned long long smlen, const unsigned char *pk ); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/sc_clamp.c0000644000175000017500000000016113264344532025602 0ustar tarektarek00000000000000#include "crypto_additions.h" void sc_clamp(unsigned char* a) { a[0] &= 248; a[31] &= 127; a[31] |= 64; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/utility.h0000644000175000017500000000037413264344532025537 0ustar tarektarek00000000000000 #ifndef __UTILITY_H__ #define __UTILITY_H__ #include "fe.h" void print_vector(const char* name, const unsigned char* v); void print_bytes(const char* name, const unsigned char* v, int numbytes); void print_fe(const char* name, const fe in); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/compare.c0000644000175000017500000000122713264344532025453 0ustar tarektarek00000000000000#include #include "compare.h" /* Const-time comparison from SUPERCOP, but here it's only used for signature verification, so doesn't need to be const-time. But copied the nacl version anyways. */ int crypto_verify_32_ref(const unsigned char *x, const unsigned char *y) { unsigned int differentbits = 0; #define F(i) differentbits |= x[i] ^ y[i]; F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) F(8) F(9) F(10) F(11) F(12) F(13) F(14) F(15) F(16) F(17) F(18) F(19) F(20) F(21) F(22) F(23) F(24) F(25) F(26) F(27) F(28) F(29) F(30) F(31) return (1 & ((differentbits - 1) >> 8)) - 1; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/xeddsa.h0000644000175000017500000000117413264344532025303 0ustar tarektarek00000000000000 #ifndef __XEDDSA_H__ #define __XEDDSA_H__ /* returns 0 on success */ int xed25519_sign(unsigned char* signature_out, /* 64 bytes */ const unsigned char* curve25519_privkey, /* 32 bytes */ const unsigned char* msg, const unsigned long msg_len, /* <= 256 bytes */ const unsigned char* random); /* 64 bytes */ /* returns 0 on success */ int xed25519_verify(const unsigned char* signature, /* 64 bytes */ const unsigned char* curve25519_pubkey, /* 32 bytes */ const unsigned char* msg, const unsigned long msg_len); /* <= 256 bytes */ #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/ge_montx_to_p3.c0000644000175000017500000000365613264344532026761 0ustar tarektarek00000000000000#include "fe.h" #include "ge.h" #include "assert.h" #include "crypto_additions.h" #include "utility.h" /* sqrt(-(A+2)) */ static unsigned char A_bytes[32] = { 0x06, 0x7e, 0x45, 0xff, 0xaa, 0x04, 0x6e, 0xcc, 0x82, 0x1a, 0x7d, 0x4b, 0xd1, 0xd3, 0xa1, 0xc5, 0x7e, 0x4f, 0xfc, 0x03, 0xdc, 0x08, 0x7b, 0xd2, 0xbb, 0x06, 0xa0, 0x60, 0xf4, 0xed, 0x26, 0x0f }; void ge_montx_to_p3(ge_p3* p, const fe u, const unsigned char ed_sign_bit) { fe x, y, A, v, v2, iv, nx; fe_frombytes(A, A_bytes); /* given u, recover edwards y */ /* given u, recover v */ /* given u and v, recover edwards x */ fe_montx_to_edy(y, u); /* y = (u - 1) / (u + 1) */ fe_mont_rhs(v2, u); /* v^2 = u(u^2 + Au + 1) */ fe_sqrt(v, v2); /* v = sqrt(v^2) */ fe_mul(x, u, A); /* x = u * sqrt(-(A+2)) */ fe_invert(iv, v); /* 1/v */ fe_mul(x, x, iv); /* x = (u/v) * sqrt(-(A+2)) */ fe_neg(nx, x); /* negate x to match sign bit */ fe_cmov(x, nx, fe_isnegative(x) ^ ed_sign_bit); fe_copy(p->X, x); fe_copy(p->Y, y); fe_1(p->Z); fe_mul(p->T, p->X, p->Y); /* POSTCONDITION: check that p->X and p->Y satisfy the Ed curve equation */ /* -x^2 + y^2 = 1 + dx^2y^2 */ #ifndef NDEBUG { fe one, d, x2, y2, x2y2, dx2y2; unsigned char dbytes[32] = { 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75, 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00, 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c, 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52 }; fe_frombytes(d, dbytes); fe_1(one); fe_sq(x2, p->X); /* x^2 */ fe_sq(y2, p->Y); /* y^2 */ fe_mul(dx2y2, x2, y2); /* x^2y^2 */ fe_mul(dx2y2, dx2y2, d); /* dx^2y^2 */ fe_add(dx2y2, dx2y2, one); /* dx^2y^2 + 1 */ fe_neg(x2y2, x2); /* -x^2 */ fe_add(x2y2, x2y2, y2); /* -x^2 + y^2 */ assert(fe_isequal(x2y2, dx2y2)); } #endif } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/ge_isneutral.c0000644000175000017500000000042713264344532026507 0ustar tarektarek00000000000000#include "crypto_additions.h" #include "ge.h" /* return 1 if p is the neutral point return 0 otherwise */ int ge_isneutral(const ge_p3 *p) { fe zero; fe_0(zero); /* Check if p == neutral element == (0, 1) */ return (fe_isequal(p->X, zero) & fe_isequal(p->Y, p->Z)); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/fe_isreduced.c0000644000175000017500000000036213264344532026445 0ustar tarektarek00000000000000#include "fe.h" #include "crypto_verify_32.h" int fe_isreduced(const unsigned char* s) { fe f; unsigned char strict[32]; fe_frombytes(f, s); fe_tobytes(strict, f); if (crypto_verify_32(strict, s) != 0) return 0; return 1; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/keygen.c0000644000175000017500000000115513264344532025307 0ustar tarektarek00000000000000#include "ge.h" #include "keygen.h" #include "crypto_additions.h" void curve25519_keygen(unsigned char* curve25519_pubkey_out, const unsigned char* curve25519_privkey_in) { /* Perform a fixed-base multiplication of the Edwards base point, (which is efficient due to precalculated tables), then convert to the Curve25519 montgomery-format public key. NOTE: y=1 is converted to u=0 since fe_invert is mod-exp */ ge_p3 ed; /* Ed25519 pubkey point */ fe u; ge_scalarmult_base(&ed, curve25519_privkey_in); ge_p3_to_montx(u, &ed); fe_tobytes(curve25519_pubkey_out, u); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/curve_sigs.c0000644000175000017500000000574613264344532026210 0ustar tarektarek00000000000000#include #include #include "ge.h" #include "curve_sigs.h" #include "crypto_sign.h" #include "crypto_additions.h" int curve25519_sign(unsigned char* signature_out, const unsigned char* curve25519_privkey, const unsigned char* msg, const unsigned long msg_len, const unsigned char* random) { ge_p3 ed_pubkey_point; /* Ed25519 pubkey point */ unsigned char ed_pubkey[32]; /* Ed25519 encoded pubkey */ unsigned char *sigbuf; /* working buffer */ unsigned char sign_bit = 0; if ((sigbuf = malloc(msg_len + 128)) == 0) { memset(signature_out, 0, 64); return -1; } /* Convert the Curve25519 privkey to an Ed25519 public key */ ge_scalarmult_base(&ed_pubkey_point, curve25519_privkey); ge_p3_tobytes(ed_pubkey, &ed_pubkey_point); sign_bit = ed_pubkey[31] & 0x80; /* Perform an Ed25519 signature with explicit private key */ crypto_sign_modified(sigbuf, msg, msg_len, curve25519_privkey, ed_pubkey, random); memmove(signature_out, sigbuf, 64); /* Encode the sign bit into signature (in unused high bit of S) */ signature_out[63] &= 0x7F; /* bit should be zero already, but just in case */ signature_out[63] |= sign_bit; free(sigbuf); return 0; } int curve25519_verify(const unsigned char* signature, const unsigned char* curve25519_pubkey, const unsigned char* msg, const unsigned long msg_len) { fe u; fe y; unsigned char ed_pubkey[32]; unsigned char *verifybuf = NULL; /* working buffer */ unsigned char *verifybuf2 = NULL; /* working buffer #2 */ int result; if ((verifybuf = malloc(msg_len + 64)) == 0) { result = -1; goto err; } if ((verifybuf2 = malloc(msg_len + 64)) == 0) { result = -1; goto err; } /* Convert the Curve25519 public key into an Ed25519 public key. In particular, convert Curve25519's "montgomery" x-coordinate (u) into an Ed25519 "edwards" y-coordinate: y = (u - 1) / (u + 1) NOTE: u=-1 is converted to y=0 since fe_invert is mod-exp Then move the sign bit into the pubkey from the signature. */ fe_frombytes(u, curve25519_pubkey); fe_montx_to_edy(y, u); fe_tobytes(ed_pubkey, y); /* Copy the sign bit, and remove it from signature */ ed_pubkey[31] &= 0x7F; /* bit should be zero already, but just in case */ ed_pubkey[31] |= (signature[63] & 0x80); memmove(verifybuf, signature, 64); verifybuf[63] &= 0x7F; memmove(verifybuf+64, msg, msg_len); /* Then perform a normal Ed25519 verification, return 0 on success */ /* The below call has a strange API: */ /* verifybuf = R || S || message */ /* verifybuf2 = internal to next call gets a copy of verifybuf, S gets replaced with pubkey for hashing */ result = crypto_sign_open_modified(verifybuf2, verifybuf, 64 + msg_len, ed_pubkey); err: if (verifybuf != NULL) { free(verifybuf); } if (verifybuf2 != NULL) { free(verifybuf2); } return result; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/elligator.c0000644000175000017500000000427413264344532026014 0ustar tarektarek00000000000000#include #include "fe.h" #include "ge.h" #include "crypto_uint32.h" #include "crypto_hash_sha512.h" #include "crypto_additions.h" unsigned int legendre_is_nonsquare(fe in) { fe temp; unsigned char bytes[32]; fe_pow22523(temp, in); /* temp = in^((q-5)/8) */ fe_sq(temp, temp); /* in^((q-5)/4) */ fe_sq(temp, temp); /* in^((q-5)/2) */ fe_mul(temp, temp, in); /* in^((q-3)/2) */ fe_mul(temp, temp, in); /* in^((q-1)/2) */ /* temp is now the Legendre symbol: * 1 = square * 0 = input is zero * -1 = nonsquare */ fe_tobytes(bytes, temp); return 1 & bytes[31]; } void elligator(fe u, const fe r) { /* r = input * x = -A/(1+2r^2) # 2 is nonsquare * e = (x^3 + Ax^2 + x)^((q-1)/2) # legendre symbol * if e == 1 (square) or e == 0 (because x == 0 and 2r^2 + 1 == 0) * u = x * if e == -1 (nonsquare) * u = -x - A */ fe A, one, twor2, twor2plus1, twor2plus1inv; fe x, e, Atemp, uneg; unsigned int nonsquare; fe_1(one); fe_0(A); A[0] = 486662; /* A = 486662 */ fe_sq2(twor2, r); /* 2r^2 */ fe_add(twor2plus1, twor2, one); /* 1+2r^2 */ fe_invert(twor2plus1inv, twor2plus1); /* 1/(1+2r^2) */ fe_mul(x, twor2plus1inv, A); /* A/(1+2r^2) */ fe_neg(x, x); /* x = -A/(1+2r^2) */ fe_mont_rhs(e, x); /* e = x^3 + Ax^2 + x */ nonsquare = legendre_is_nonsquare(e); fe_0(Atemp); fe_cmov(Atemp, A, nonsquare); /* 0, or A if nonsquare */ fe_add(u, x, Atemp); /* x, or x+A if nonsquare */ fe_neg(uneg, u); /* -x, or -x-A if nonsquare */ fe_cmov(u, uneg, nonsquare); /* x, or -x-A if nonsquare */ } void hash_to_point(ge_p3* p, const unsigned char* in, const unsigned long in_len) { unsigned char hash[64]; fe h, u; unsigned char sign_bit; ge_p3 p3; crypto_hash_sha512(hash, in, in_len); /* take the high bit as Edwards sign bit */ sign_bit = (hash[31] & 0x80) >> 7; hash[31] &= 0x7F; fe_frombytes(h, hash); elligator(u, h); ge_montx_to_p3(&p3, u, sign_bit); ge_scalarmult_cofactor(p, &p3); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/utility.c0000644000175000017500000000112213264344532025522 0ustar tarektarek00000000000000#include #include #include "utility.h" void print_vector(const char* name, const unsigned char* v) { int count; printf("%s = \n", name); for (count = 0; count < 32; count++) printf("%02x ", v[count]); printf("\n"); } void print_bytes(const char* name, const unsigned char* v, int numbytes) { int count; printf("%s = \n", name); for (count = 0; count < numbytes; count++) printf("%02x ", v[count]); printf("\n"); } void print_fe(const char* name, const fe in) { unsigned char bytes[32]; fe_tobytes(bytes, in); print_vector(name, bytes); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/ge_scalarmult_cofactor.c0000644000175000017500000000047213264344532030530 0ustar tarektarek00000000000000#include "crypto_additions.h" #include "ge.h" /* return 8 * p */ void ge_scalarmult_cofactor(ge_p3 *q, const ge_p3 *p) { ge_p1p1 p1p1; ge_p2 p2; ge_p3_dbl(&p1p1, p); ge_p1p1_to_p2(&p2, &p1p1); ge_p2_dbl(&p1p1, &p2); ge_p1p1_to_p2(&p2, &p1p1); ge_p2_dbl(&p1p1, &p2); ge_p1p1_to_p3(q, &p1p1); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/sc_neg.c0000644000175000017500000000174413264344532025267 0ustar tarektarek00000000000000#include #include "crypto_additions.h" #include "sc.h" /* l = order of base point = 2^252 + 27742317777372353535851937790883648493 */ /* static unsigned char l[32] = {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0x10}; */ static unsigned char lminus1[32] = {0xec, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10}; /* b = -a (mod l) */ void sc_neg(unsigned char *b, const unsigned char *a) { unsigned char zero[32]; memset(zero, 0, 32); sc_muladd(b, lminus1, a, zero); /* b = (-1)a + 0 (mod l) */ } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/ge_scalarmult.c0000644000175000017500000000610513264344532026647 0ustar tarektarek00000000000000#include "crypto_uint32.h" #include "ge.h" #include "crypto_additions.h" static unsigned char equal(signed char b,signed char c) { unsigned char ub = b; unsigned char uc = c; unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */ crypto_uint32 y = x; /* 0: yes; 1..255: no */ y -= 1; /* 4294967295: yes; 0..254: no */ y >>= 31; /* 1: yes; 0: no */ return y; } static unsigned char negative(signed char b) { unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */ x >>= 63; /* 1: yes; 0: no */ return x; } static void cmov(ge_cached *t,const ge_cached *u,unsigned char b) { fe_cmov(t->YplusX,u->YplusX,b); fe_cmov(t->YminusX,u->YminusX,b); fe_cmov(t->Z,u->Z,b); fe_cmov(t->T2d,u->T2d,b); } static void select(ge_cached *t,const ge_cached *pre, signed char b) { ge_cached minust; unsigned char bnegative = negative(b); unsigned char babs = b - (((-bnegative) & b) << 1); fe_1(t->YplusX); fe_1(t->YminusX); fe_1(t->Z); fe_0(t->T2d); cmov(t,pre+0,equal(babs,1)); cmov(t,pre+1,equal(babs,2)); cmov(t,pre+2,equal(babs,3)); cmov(t,pre+3,equal(babs,4)); cmov(t,pre+4,equal(babs,5)); cmov(t,pre+5,equal(babs,6)); cmov(t,pre+6,equal(babs,7)); cmov(t,pre+7,equal(babs,8)); fe_copy(minust.YplusX,t->YminusX); fe_copy(minust.YminusX,t->YplusX); fe_copy(minust.Z,t->Z); fe_neg(minust.T2d,t->T2d); cmov(t,&minust,bnegative); } /* h = a * B where a = a[0]+256*a[1]+...+256^31 a[31] B is the Ed25519 base point (x,4/5) with x positive. Preconditions: a[31] <= 127 */ void ge_scalarmult(ge_p3 *h, const unsigned char *a, const ge_p3 *A) { signed char e[64]; signed char carry; ge_p1p1 r; ge_p2 s; ge_p3 t0, t1, t2; ge_cached t, pre[8]; int i; for (i = 0;i < 32;++i) { e[2 * i + 0] = (a[i] >> 0) & 15; e[2 * i + 1] = (a[i] >> 4) & 15; } /* each e[i] is between 0 and 15 */ /* e[63] is between 0 and 7 */ carry = 0; for (i = 0;i < 63;++i) { e[i] += carry; carry = e[i] + 8; carry >>= 4; e[i] -= carry << 4; } e[63] += carry; /* each e[i] is between -8 and 8 */ // Precomputation: ge_p3_to_cached(pre+0, A); // A ge_p3_dbl(&r, A); ge_p1p1_to_p3(&t0, &r); ge_p3_to_cached(pre+1, &t0); // 2A ge_add(&r, A, pre+1); ge_p1p1_to_p3(&t1, &r); ge_p3_to_cached(pre+2, &t1); // 3A ge_p3_dbl(&r, &t0); ge_p1p1_to_p3(&t0, &r); ge_p3_to_cached(pre+3, &t0); // 4A ge_add(&r, A, pre+3); ge_p1p1_to_p3(&t2, &r); ge_p3_to_cached(pre+4, &t2); // 5A ge_p3_dbl(&r, &t1); ge_p1p1_to_p3(&t1, &r); ge_p3_to_cached(pre+5, &t1); // 6A ge_add(&r, A, pre+5); ge_p1p1_to_p3(&t1, &r); ge_p3_to_cached(pre+6, &t1); // 7A ge_p3_dbl(&r, &t0); ge_p1p1_to_p3(&t0, &r); ge_p3_to_cached(pre+7, &t0); // 8A ge_p3_0(h); for (i = 63;i > 0; i--) { select(&t,pre,e[i]); ge_add(&r, h, &t); ge_p1p1_to_p2(&s,&r); ge_p2_dbl(&r,&s); ge_p1p1_to_p2(&s,&r); ge_p2_dbl(&r,&s); ge_p1p1_to_p2(&s,&r); ge_p2_dbl(&r,&s); ge_p1p1_to_p2(&s,&r); ge_p2_dbl(&r,&s); ge_p1p1_to_p3(h,&r); } select(&t,pre,e[0]); ge_add(&r, h, &t); ge_p1p1_to_p3(h,&r); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/fe_sqrt.c0000644000175000017500000000251313264344532025467 0ustar tarektarek00000000000000#include #include "fe.h" #include "crypto_additions.h" /* sqrt(-1) */ static unsigned char i_bytes[32] = { 0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4, 0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f, 0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b, 0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b }; /* Preconditions: a is square or zero */ void fe_sqrt(fe out, const fe a) { fe exp, b, b2, bi, i; #ifndef NDEBUG fe legendre, zero, one; #endif fe_frombytes(i, i_bytes); fe_pow22523(exp, a); /* b = a^(q-5)/8 */ /* PRECONDITION: legendre symbol == 1 (square) or 0 (a == zero) */ #ifndef NDEBUG fe_sq(legendre, exp); /* in^((q-5)/4) */ fe_sq(legendre, legendre); /* in^((q-5)/2) */ fe_mul(legendre, legendre, a); /* in^((q-3)/2) */ fe_mul(legendre, legendre, a); /* in^((q-1)/2) */ fe_0(zero); fe_1(one); assert(fe_isequal(legendre, zero) || fe_isequal(legendre, one)); #endif fe_mul(b, a, exp); /* b = a * a^(q-5)/8 */ fe_sq(b2, b); /* b^2 = a * a^(q-1)/4 */ /* note b^4 == a^2, so b^2 == a or -a * if b^2 != a, multiply it by sqrt(-1) */ fe_mul(bi, b, i); fe_cmov(b, bi, 1 ^ fe_isequal(b2, a)); fe_copy(out, b); /* PRECONDITION: out^2 == a */ #ifndef NDEBUG fe_sq(b2, out); assert(fe_isequal(a, b2)); #endif } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/crypto_hash_sha512.h0000644000175000017500000000023413264344532027435 0ustar tarektarek00000000000000#ifndef crypto_hash_sha512_H #define crypto_hash_sha512_H extern int crypto_hash_sha512(unsigned char *,const unsigned char *,unsigned long long); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/compare.h0000644000175000017500000000020113264344532025447 0ustar tarektarek00000000000000#ifndef __COMPARE_H__ #define __COMPARE_H__ int crypto_verify_32_ref(const unsigned char *b1, const unsigned char *b2); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/sign_modified.c0000644000175000017500000000245613264344532026632 0ustar tarektarek00000000000000#include #include "crypto_sign.h" #include "crypto_hash_sha512.h" #include "ge.h" #include "sc.h" #include "zeroize.h" #include "crypto_additions.h" /* NEW: Compare to pristine crypto_sign() Uses explicit private key for nonce derivation and as scalar, instead of deriving both from a master key. */ int crypto_sign_modified( unsigned char *sm, const unsigned char *m,unsigned long long mlen, const unsigned char *sk, const unsigned char* pk, const unsigned char* random ) { unsigned char nonce[64]; unsigned char hram[64]; ge_p3 R; int count=0; memmove(sm + 64,m,mlen); memmove(sm + 32,sk,32); /* NEW: Use privkey directly for nonce derivation */ /* NEW : add prefix to separate hash uses - see .h */ sm[0] = 0xFE; for (count = 1; count < 32; count++) sm[count] = 0xFF; /* NEW: add suffix of random data */ memmove(sm + mlen + 64, random, 64); crypto_hash_sha512(nonce,sm,mlen + 128); memmove(sm + 32,pk,32); sc_reduce(nonce); ge_scalarmult_base(&R,nonce); ge_p3_tobytes(sm,&R); crypto_hash_sha512(hram,sm,mlen + 64); sc_reduce(hram); sc_muladd(sm + 32,hram,sk,nonce); /* NEW: Use privkey directly */ /* Erase any traces of private scalar or nonce left in the stack from sc_muladd */ zeroize_stack(); zeroize(nonce, 64); return 0; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/open_modified.c0000644000175000017500000000166713264344532026636 0ustar tarektarek00000000000000#include #include "crypto_sign.h" #include "crypto_hash_sha512.h" #include "crypto_verify_32.h" #include "ge.h" #include "sc.h" #include "crypto_additions.h" int crypto_sign_open_modified( unsigned char *m, const unsigned char *sm,unsigned long long smlen, const unsigned char *pk ) { unsigned char pkcopy[32]; unsigned char rcopy[32]; unsigned char scopy[32]; unsigned char h[64]; unsigned char rcheck[32]; ge_p3 A; ge_p2 R; if (smlen < 64) goto badsig; if (sm[63] & 224) goto badsig; /* strict parsing of s */ if (ge_frombytes_negate_vartime(&A,pk) != 0) goto badsig; memmove(pkcopy,pk,32); memmove(rcopy,sm,32); memmove(scopy,sm + 32,32); memmove(m,sm,smlen); memmove(m + 32,pkcopy,32); crypto_hash_sha512(h,m,smlen); sc_reduce(h); ge_double_scalarmult_vartime(&R,h,&A,scopy); ge_tobytes(rcheck,&R); if (crypto_verify_32(rcheck,rcopy) == 0) { return 0; } badsig: return -1; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/sc_cmov.c0000644000175000017500000000072113264344532025454 0ustar tarektarek00000000000000#include "crypto_additions.h" /* Replace (f,g) with (g,g) if b == 1; replace (f,g) with (f,g) if b == 0. Preconditions: b in {0,1}. */ void sc_cmov(unsigned char* f, const unsigned char* g, unsigned char b) { int count=32; unsigned char x[32]; for (count=0; count < 32; count++) x[count] = f[count] ^ g[count]; b = -b; for (count=0; count < 32; count++) x[count] &= b; for (count=0; count < 32; count++) f[count] = f[count] ^ x[count]; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/fe_isequal.c0000644000175000017500000000031513264344532026137 0ustar tarektarek00000000000000#include "fe.h" #include "crypto_verify_32.h" /* return 1 if f == g return 0 if f != g */ int fe_isequal(const fe f, const fe g) { fe h; fe_sub(h, f, g); return 1 ^ (1 & (fe_isnonzero(h) >> 8)); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/zeroize.h0000644000175000017500000000025613264344532025522 0ustar tarektarek00000000000000#ifndef __ZEROIZE_H__ #define __ZEROIZE_H__ #include #define ZEROIZE_STACK_SIZE 1024 void zeroize(unsigned char* b, size_t len); void zeroize_stack(); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/keygen.h0000644000175000017500000000060513264344532025313 0ustar tarektarek00000000000000 #ifndef __KEYGEN_H__ #define __KEYGEN_H__ /* Sets and clears bits to make a random 32 bytes into a private key */ void sc_clamp(unsigned char* a); /* The private key should be 32 random bytes "clamped" by sc_clamp() */ void curve25519_keygen(unsigned char* curve25519_pubkey_out, /* 32 bytes */ const unsigned char* curve25519_privkey_in); /* 32 bytes */ #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/fe_mont_rhs.c0000644000175000017500000000065113264344532026330 0ustar tarektarek00000000000000#include "fe.h" void fe_mont_rhs(fe v2, fe u) { fe A, one; fe u2, Au, inner; fe_1(one); fe_0(A); A[0] = 486662; /* A = 486662 */ fe_sq(u2, u); /* u^2 */ fe_mul(Au, A, u); /* Au */ fe_add(inner, u2, Au); /* u^2 + Au */ fe_add(inner, inner, one); /* u^2 + Au + 1 */ fe_mul(v2, u, inner); /* u(u^2 + Au + 1) */ } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/additions/xeddsa.c0000644000175000017500000000447713264344532025307 0ustar tarektarek00000000000000#include #include "ge.h" #include "crypto_additions.h" #include "zeroize.h" #include "xeddsa.h" #include "crypto_verify_32.h" int xed25519_sign(unsigned char* signature_out, const unsigned char* curve25519_privkey, const unsigned char* msg, const unsigned long msg_len, const unsigned char* random) { unsigned char a[32], aneg[32]; unsigned char A[32]; ge_p3 ed_pubkey_point; unsigned char *sigbuf; /* working buffer */ unsigned char sign_bit = 0; if ((sigbuf = malloc(msg_len + 128)) == 0) { memset(signature_out, 0, 64); return -1; } /* Convert the Curve25519 privkey to an Ed25519 public key */ ge_scalarmult_base(&ed_pubkey_point, curve25519_privkey); ge_p3_tobytes(A, &ed_pubkey_point); /* Force Edwards sign bit to zero */ sign_bit = (A[31] & 0x80) >> 7; memcpy(a, curve25519_privkey, 32); sc_neg(aneg, a); sc_cmov(a, aneg, sign_bit); A[31] &= 0x7F; /* Perform an Ed25519 signature with explicit private key */ crypto_sign_modified(sigbuf, msg, msg_len, a, A, random); memmove(signature_out, sigbuf, 64); zeroize(a, 32); zeroize(aneg, 32); free(sigbuf); return 0; } int xed25519_verify(const unsigned char* signature, const unsigned char* curve25519_pubkey, const unsigned char* msg, const unsigned long msg_len) { fe u; fe y; unsigned char ed_pubkey[32]; unsigned char verifybuf[MAX_MSG_LEN + 64]; /* working buffer */ unsigned char verifybuf2[MAX_MSG_LEN + 64]; /* working buffer #2 */ if (msg_len > MAX_MSG_LEN) { return -1; } /* Convert the Curve25519 public key into an Ed25519 public key. y = (u - 1) / (u + 1) NOTE: u=-1 is converted to y=0 since fe_invert is mod-exp */ if (!fe_isreduced(curve25519_pubkey)) return -1; fe_frombytes(u, curve25519_pubkey); fe_montx_to_edy(y, u); fe_tobytes(ed_pubkey, y); memmove(verifybuf, signature, 64); memmove(verifybuf+64, msg, msg_len); /* Then perform a normal Ed25519 verification, return 0 on success */ /* The below call has a strange API: */ /* verifybuf = R || S || message */ /* verifybuf2 = internal to next call gets a copy of verifybuf, S gets replaced with pubkey for hashing */ return crypto_sign_open_modified(verifybuf2, verifybuf, 64 + msg_len, ed_pubkey); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_msub.c0000644000175000017500000000020013264344532023456 0ustar tarektarek00000000000000#include "ge.h" /* r = p - q */ void ge_msub(ge_p1p1 *r,const ge_p3 *p,const ge_precomp *q) { fe t0; #include "ge_msub.h" } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p2_0.c0000644000175000017500000000012613264344532023257 0ustar tarektarek00000000000000#include "ge.h" void ge_p2_0(ge_p2 *h) { fe_0(h->X); fe_1(h->Y); fe_1(h->Z); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_sub.c0000644000175000017500000000017513264344532023314 0ustar tarektarek00000000000000#include "ge.h" /* r = p - q */ void ge_sub(ge_p1p1 *r,const ge_p3 *p,const ge_cached *q) { fe t0; #include "ge_sub.h" } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p1p1_to_p3.c0000644000175000017500000000027713264344532024413 0ustar tarektarek00000000000000#include "ge.h" /* r = p */ extern void ge_p1p1_to_p3(ge_p3 *r,const ge_p1p1 *p) { fe_mul(r->X,p->X,p->T); fe_mul(r->Y,p->Y,p->Z); fe_mul(r->Z,p->Z,p->T); fe_mul(r->T,p->X,p->Y); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_add.c0000644000175000017500000000234713264344532023255 0ustar tarektarek00000000000000#include "fe.h" /* h = f + g Can overlap h with f or g. Preconditions: |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. Postconditions: |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */ void fe_add(fe h,const fe f,const fe g) { crypto_int32 f0 = f[0]; crypto_int32 f1 = f[1]; crypto_int32 f2 = f[2]; crypto_int32 f3 = f[3]; crypto_int32 f4 = f[4]; crypto_int32 f5 = f[5]; crypto_int32 f6 = f[6]; crypto_int32 f7 = f[7]; crypto_int32 f8 = f[8]; crypto_int32 f9 = f[9]; crypto_int32 g0 = g[0]; crypto_int32 g1 = g[1]; crypto_int32 g2 = g[2]; crypto_int32 g3 = g[3]; crypto_int32 g4 = g[4]; crypto_int32 g5 = g[5]; crypto_int32 g6 = g[6]; crypto_int32 g7 = g[7]; crypto_int32 g8 = g[8]; crypto_int32 g9 = g[9]; crypto_int32 h0 = f0 + g0; crypto_int32 h1 = f1 + g1; crypto_int32 h2 = f2 + g2; crypto_int32 h3 = f3 + g3; crypto_int32 h4 = f4 + g4; crypto_int32 h5 = f5 + g5; crypto_int32 h6 = f6 + g6; crypto_int32 h7 = f7 + g7; crypto_int32 h8 = f8 + g8; crypto_int32 h9 = f9 + g9; h[0] = h0; h[1] = h1; h[2] = h2; h[3] = h3; h[4] = h4; h[5] = h5; h[6] = h6; h[7] = h7; h[8] = h8; h[9] = h9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/d2.h0000644000175000017500000000013213264344532022353 0ustar tarektarek00000000000000-21827239,-5839606,-30745221,13898782,229458,15978800,-12551817,-6495438,29715968,9444199 python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_sub.c0000644000175000017500000000234713264344532023316 0ustar tarektarek00000000000000#include "fe.h" /* h = f - g Can overlap h with f or g. Preconditions: |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. |g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. Postconditions: |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */ void fe_sub(fe h,const fe f,const fe g) { crypto_int32 f0 = f[0]; crypto_int32 f1 = f[1]; crypto_int32 f2 = f[2]; crypto_int32 f3 = f[3]; crypto_int32 f4 = f[4]; crypto_int32 f5 = f[5]; crypto_int32 f6 = f[6]; crypto_int32 f7 = f[7]; crypto_int32 f8 = f[8]; crypto_int32 f9 = f[9]; crypto_int32 g0 = g[0]; crypto_int32 g1 = g[1]; crypto_int32 g2 = g[2]; crypto_int32 g3 = g[3]; crypto_int32 g4 = g[4]; crypto_int32 g5 = g[5]; crypto_int32 g6 = g[6]; crypto_int32 g7 = g[7]; crypto_int32 g8 = g[8]; crypto_int32 g9 = g[9]; crypto_int32 h0 = f0 - g0; crypto_int32 h1 = f1 - g1; crypto_int32 h2 = f2 - g2; crypto_int32 h3 = f3 - g3; crypto_int32 h4 = f4 - g4; crypto_int32 h5 = f5 - g5; crypto_int32 h6 = f6 - g6; crypto_int32 h7 = f7 - g7; crypto_int32 h8 = f8 - g8; crypto_int32 h9 = f9 - g9; h[0] = h0; h[1] = h1; h[2] = h2; h[3] = h3; h[4] = h4; h[5] = h5; h[6] = h6; h[7] = h7; h[8] = h8; h[9] = h9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_msub.h0000644000175000017500000000355413264344532023502 0ustar tarektarek00000000000000 /* qhasm: enter ge_msub */ /* qhasm: fe X1 */ /* qhasm: fe Y1 */ /* qhasm: fe Z1 */ /* qhasm: fe T1 */ /* qhasm: fe ypx2 */ /* qhasm: fe ymx2 */ /* qhasm: fe xy2d2 */ /* qhasm: fe X3 */ /* qhasm: fe Y3 */ /* qhasm: fe Z3 */ /* qhasm: fe T3 */ /* qhasm: fe YpX1 */ /* qhasm: fe YmX1 */ /* qhasm: fe A */ /* qhasm: fe B */ /* qhasm: fe C */ /* qhasm: fe D */ /* qhasm: YpX1 = Y1+X1 */ /* asm 1: fe_add(>YpX1=fe#1,YpX1=r->X,Y,X); */ fe_add(r->X,p->Y,p->X); /* qhasm: YmX1 = Y1-X1 */ /* asm 1: fe_sub(>YmX1=fe#2,YmX1=r->Y,Y,X); */ fe_sub(r->Y,p->Y,p->X); /* qhasm: A = YpX1*ymx2 */ /* asm 1: fe_mul(>A=fe#3,A=r->Z,X,yminusx); */ fe_mul(r->Z,r->X,q->yminusx); /* qhasm: B = YmX1*ypx2 */ /* asm 1: fe_mul(>B=fe#2,B=r->Y,Y,yplusx); */ fe_mul(r->Y,r->Y,q->yplusx); /* qhasm: C = xy2d2*T1 */ /* asm 1: fe_mul(>C=fe#4,C=r->T,xy2d,T); */ fe_mul(r->T,q->xy2d,p->T); /* qhasm: D = 2*Z1 */ /* asm 1: fe_add(>D=fe#5,D=t0,Z,Z); */ fe_add(t0,p->Z,p->Z); /* qhasm: X3 = A-B */ /* asm 1: fe_sub(>X3=fe#1,X3=r->X,Z,Y); */ fe_sub(r->X,r->Z,r->Y); /* qhasm: Y3 = A+B */ /* asm 1: fe_add(>Y3=fe#2,Y3=r->Y,Z,Y); */ fe_add(r->Y,r->Z,r->Y); /* qhasm: Z3 = D-C */ /* asm 1: fe_sub(>Z3=fe#3,Z3=r->Z,T); */ fe_sub(r->Z,t0,r->T); /* qhasm: T3 = D+C */ /* asm 1: fe_add(>T3=fe#4,T3=r->T,T); */ fe_add(r->T,t0,r->T); /* qhasm: return */ python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_invert.c0000644000175000017500000000020713264344532024025 0ustar tarektarek00000000000000#include "fe.h" void fe_invert(fe out,const fe z) { fe t0; fe t1; fe t2; fe t3; int i; #include "pow225521.h" return; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/0000755000175000017500000000000013264355231024502 5ustar tarektarek00000000000000././@LongLink0000000000000000000000000000015000000000000011211 Lustar 00000000000000python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/crypto_sign_edwards25519sha512batch.hpython-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/crypto_sign_edwards25519sha512batc0000644000175000017500000000376213264344532032674 0ustar tarektarek00000000000000#ifndef crypto_sign_edwards25519sha512batch_H #define crypto_sign_edwards25519sha512batch_H #define crypto_sign_edwards25519sha512batch_ref10_SECRETKEYBYTES 64 #define crypto_sign_edwards25519sha512batch_ref10_PUBLICKEYBYTES 32 #define crypto_sign_edwards25519sha512batch_ref10_BYTES 64 #ifdef __cplusplus #include extern std::string crypto_sign_edwards25519sha512batch_ref10(const std::string &,const std::string &); extern std::string crypto_sign_edwards25519sha512batch_ref10_open(const std::string &,const std::string &); extern std::string crypto_sign_edwards25519sha512batch_ref10_keypair(std::string *); extern "C" { #endif extern int crypto_sign_edwards25519sha512batch_ref10(unsigned char *,unsigned long long *,const unsigned char *,unsigned long long,const unsigned char *); extern int crypto_sign_edwards25519sha512batch_ref10_open(unsigned char *,unsigned long long *,const unsigned char *,unsigned long long,const unsigned char *); extern int crypto_sign_edwards25519sha512batch_ref10_keypair(unsigned char *,unsigned char *); #ifdef __cplusplus } #endif #define crypto_sign_edwards25519sha512batch crypto_sign_edwards25519sha512batch_ref10 #define crypto_sign_edwards25519sha512batch_open crypto_sign_edwards25519sha512batch_ref10_open #define crypto_sign_edwards25519sha512batch_keypair crypto_sign_edwards25519sha512batch_ref10_keypair #define crypto_sign_edwards25519sha512batch_BYTES crypto_sign_edwards25519sha512batch_ref10_BYTES #define crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES crypto_sign_edwards25519sha512batch_ref10_PUBLICKEYBYTES #define crypto_sign_edwards25519sha512batch_SECRETKEYBYTES crypto_sign_edwards25519sha512batch_ref10_SECRETKEYBYTES #define crypto_sign_edwards25519sha512batch_IMPLEMENTATION "crypto_sign/edwards25519sha512batch/ref10" #ifndef crypto_sign_edwards25519sha512batch_ref10_VERSION #define crypto_sign_edwards25519sha512batch_ref10_VERSION "-" #endif #define crypto_sign_edwards25519sha512batch_VERSION crypto_sign_edwards25519sha512batch_ref10_VERSION #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/crypto_uint32.h0000644000175000017500000000013513264344532027400 0ustar tarektarek00000000000000#ifndef crypto_uint32_h #define crypto_uint32_h typedef unsigned int crypto_uint32; #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/crypto_int64.h0000644000175000017500000000012713264344532027221 0ustar tarektarek00000000000000#ifndef crypto_int64_h #define crypto_int64_h typedef long long crypto_int64; #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/crypto_int32.h0000644000175000017500000000012113264344532027206 0ustar tarektarek00000000000000#ifndef crypto_int32_h #define crypto_int32_h typedef int crypto_int32; #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/crypto_sign.h0000644000175000017500000000135713264344532027223 0ustar tarektarek00000000000000#ifndef crypto_sign_H #define crypto_sign_H #include "crypto_sign_edwards25519sha512batch.h" #define crypto_sign crypto_sign_edwards25519sha512batch #define crypto_sign_open crypto_sign_edwards25519sha512batch_open #define crypto_sign_keypair crypto_sign_edwards25519sha512batch_keypair #define crypto_sign_BYTES crypto_sign_edwards25519sha512batch_BYTES #define crypto_sign_PUBLICKEYBYTES crypto_sign_edwards25519sha512batch_PUBLICKEYBYTES #define crypto_sign_SECRETKEYBYTES crypto_sign_edwards25519sha512batch_SECRETKEYBYTES #define crypto_sign_PRIMITIVE "edwards25519sha512batch" #define crypto_sign_IMPLEMENTATION crypto_sign_edwards25519sha512batch_IMPLEMENTATION #define crypto_sign_VERSION crypto_sign_edwards25519sha512batch_VERSION #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/crypto_uint64.h0000644000175000017500000000014313264344532027404 0ustar tarektarek00000000000000#ifndef crypto_uint64_h #define crypto_uint64_h typedef unsigned long long crypto_uint64; #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_includes/crypto_verify_32.h0000644000175000017500000000110313264344532030060 0ustar tarektarek00000000000000#ifndef crypto_verify_32_H #define crypto_verify_32_H #define crypto_verify_32_ref_BYTES 32 #ifdef __cplusplus #include extern "C" { #endif extern int crypto_verify_32_ref(const unsigned char *,const unsigned char *); #ifdef __cplusplus } #endif #define crypto_verify_32 crypto_verify_32_ref #define crypto_verify_32_BYTES crypto_verify_32_ref_BYTES #define crypto_verify_32_IMPLEMENTATION "crypto_verify/32/ref" #ifndef crypto_verify_32_ref_VERSION #define crypto_verify_32_ref_VERSION "-" #endif #define crypto_verify_32_VERSION crypto_verify_32_ref_VERSION #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p3_to_cached.c0000644000175000017500000000036613264344532025040 0ustar tarektarek00000000000000#include "ge.h" /* r = p */ static const fe d2 = { #include "d2.h" } ; extern void ge_p3_to_cached(ge_cached *r,const ge_p3 *p) { fe_add(r->YplusX,p->Y,p->X); fe_sub(r->YminusX,p->Y,p->X); fe_copy(r->Z,p->Z); fe_mul(r->T2d,p->T,d2); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p3_to_p2.c0000644000175000017500000000022513264344532024144 0ustar tarektarek00000000000000#include "ge.h" /* r = p */ extern void ge_p3_to_p2(ge_p2 *r,const ge_p3 *p) { fe_copy(r->X,p->X); fe_copy(r->Y,p->Y); fe_copy(r->Z,p->Z); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p3_dbl.c0000644000175000017500000000020313264344532023656 0ustar tarektarek00000000000000#include "ge.h" /* r = 2 * p */ void ge_p3_dbl(ge_p1p1 *r,const ge_p3 *p) { ge_p2 q; ge_p3_to_p2(&q,p); ge_p2_dbl(r,&q); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge.h0000644000175000017500000000546513264344532022457 0ustar tarektarek00000000000000#ifndef GE_H #define GE_H /* ge means group element. Here the group is the set of pairs (x,y) of field elements (see fe.h) satisfying -x^2 + y^2 = 1 + d x^2y^2 where d = -121665/121666. Representations: ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/Z ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT ge_p1p1 (completed): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T ge_precomp (Duif): (y+x,y-x,2dxy) */ #include "fe.h" typedef struct { fe X; fe Y; fe Z; } ge_p2; typedef struct { fe X; fe Y; fe Z; fe T; } ge_p3; typedef struct { fe X; fe Y; fe Z; fe T; } ge_p1p1; typedef struct { fe yplusx; fe yminusx; fe xy2d; } ge_precomp; typedef struct { fe YplusX; fe YminusX; fe Z; fe T2d; } ge_cached; #define ge_frombytes_negate_vartime crypto_sign_ed25519_ref10_ge_frombytes_negate_vartime #define ge_tobytes crypto_sign_ed25519_ref10_ge_tobytes #define ge_p3_tobytes crypto_sign_ed25519_ref10_ge_p3_tobytes #define ge_p2_0 crypto_sign_ed25519_ref10_ge_p2_0 #define ge_p3_0 crypto_sign_ed25519_ref10_ge_p3_0 #define ge_precomp_0 crypto_sign_ed25519_ref10_ge_precomp_0 #define ge_p3_to_p2 crypto_sign_ed25519_ref10_ge_p3_to_p2 #define ge_p3_to_cached crypto_sign_ed25519_ref10_ge_p3_to_cached #define ge_p1p1_to_p2 crypto_sign_ed25519_ref10_ge_p1p1_to_p2 #define ge_p1p1_to_p3 crypto_sign_ed25519_ref10_ge_p1p1_to_p3 #define ge_p2_dbl crypto_sign_ed25519_ref10_ge_p2_dbl #define ge_p3_dbl crypto_sign_ed25519_ref10_ge_p3_dbl #define ge_madd crypto_sign_ed25519_ref10_ge_madd #define ge_msub crypto_sign_ed25519_ref10_ge_msub #define ge_add crypto_sign_ed25519_ref10_ge_add #define ge_sub crypto_sign_ed25519_ref10_ge_sub #define ge_scalarmult_base crypto_sign_ed25519_ref10_ge_scalarmult_base #define ge_double_scalarmult_vartime crypto_sign_ed25519_ref10_ge_double_scalarmult_vartime extern void ge_tobytes(unsigned char *,const ge_p2 *); extern void ge_p3_tobytes(unsigned char *,const ge_p3 *); extern int ge_frombytes_negate_vartime(ge_p3 *,const unsigned char *); extern void ge_p2_0(ge_p2 *); extern void ge_p3_0(ge_p3 *); extern void ge_precomp_0(ge_precomp *); extern void ge_p3_to_p2(ge_p2 *,const ge_p3 *); extern void ge_p3_to_cached(ge_cached *,const ge_p3 *); extern void ge_p1p1_to_p2(ge_p2 *,const ge_p1p1 *); extern void ge_p1p1_to_p3(ge_p3 *,const ge_p1p1 *); extern void ge_p2_dbl(ge_p1p1 *,const ge_p2 *); extern void ge_p3_dbl(ge_p1p1 *,const ge_p3 *); extern void ge_madd(ge_p1p1 *,const ge_p3 *,const ge_precomp *); extern void ge_msub(ge_p1p1 *,const ge_p3 *,const ge_precomp *); extern void ge_add(ge_p1p1 *,const ge_p3 *,const ge_cached *); extern void ge_sub(ge_p1p1 *,const ge_p3 *,const ge_cached *); extern void ge_scalarmult_base(ge_p3 *,const unsigned char *); extern void ge_double_scalarmult_vartime(ge_p2 *,const unsigned char *,const ge_p3 *,const unsigned char *); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/pow22523.h0000644000175000017500000001261613264344532023263 0ustar tarektarek00000000000000 /* qhasm: fe z1 */ /* qhasm: fe z2 */ /* qhasm: fe z8 */ /* qhasm: fe z9 */ /* qhasm: fe z11 */ /* qhasm: fe z22 */ /* qhasm: fe z_5_0 */ /* qhasm: fe z_10_5 */ /* qhasm: fe z_10_0 */ /* qhasm: fe z_20_10 */ /* qhasm: fe z_20_0 */ /* qhasm: fe z_40_20 */ /* qhasm: fe z_40_0 */ /* qhasm: fe z_50_10 */ /* qhasm: fe z_50_0 */ /* qhasm: fe z_100_50 */ /* qhasm: fe z_100_0 */ /* qhasm: fe z_200_100 */ /* qhasm: fe z_200_0 */ /* qhasm: fe z_250_50 */ /* qhasm: fe z_250_0 */ /* qhasm: fe z_252_2 */ /* qhasm: fe z_252_3 */ /* qhasm: enter pow22523 */ /* qhasm: z2 = z1^2^1 */ /* asm 1: fe_sq(>z2=fe#1,z2=fe#1,>z2=fe#1); */ /* asm 2: fe_sq(>z2=t0,z2=t0,>z2=t0); */ fe_sq(t0,z); for (i = 1;i < 1;++i) fe_sq(t0,t0); /* qhasm: z8 = z2^2^2 */ /* asm 1: fe_sq(>z8=fe#2,z8=fe#2,>z8=fe#2); */ /* asm 2: fe_sq(>z8=t1,z8=t1,>z8=t1); */ fe_sq(t1,t0); for (i = 1;i < 2;++i) fe_sq(t1,t1); /* qhasm: z9 = z1*z8 */ /* asm 1: fe_mul(>z9=fe#2,z9=t1,z11=fe#1,z11=t0,z22=fe#1,z22=fe#1,>z22=fe#1); */ /* asm 2: fe_sq(>z22=t0,z22=t0,>z22=t0); */ fe_sq(t0,t0); for (i = 1;i < 1;++i) fe_sq(t0,t0); /* qhasm: z_5_0 = z9*z22 */ /* asm 1: fe_mul(>z_5_0=fe#1,z_5_0=t0,z_10_5=fe#2,z_10_5=fe#2,>z_10_5=fe#2); */ /* asm 2: fe_sq(>z_10_5=t1,z_10_5=t1,>z_10_5=t1); */ fe_sq(t1,t0); for (i = 1;i < 5;++i) fe_sq(t1,t1); /* qhasm: z_10_0 = z_10_5*z_5_0 */ /* asm 1: fe_mul(>z_10_0=fe#1,z_10_0=t0,z_20_10=fe#2,z_20_10=fe#2,>z_20_10=fe#2); */ /* asm 2: fe_sq(>z_20_10=t1,z_20_10=t1,>z_20_10=t1); */ fe_sq(t1,t0); for (i = 1;i < 10;++i) fe_sq(t1,t1); /* qhasm: z_20_0 = z_20_10*z_10_0 */ /* asm 1: fe_mul(>z_20_0=fe#2,z_20_0=t1,z_40_20=fe#3,z_40_20=fe#3,>z_40_20=fe#3); */ /* asm 2: fe_sq(>z_40_20=t2,z_40_20=t2,>z_40_20=t2); */ fe_sq(t2,t1); for (i = 1;i < 20;++i) fe_sq(t2,t2); /* qhasm: z_40_0 = z_40_20*z_20_0 */ /* asm 1: fe_mul(>z_40_0=fe#2,z_40_0=t1,z_50_10=fe#2,z_50_10=fe#2,>z_50_10=fe#2); */ /* asm 2: fe_sq(>z_50_10=t1,z_50_10=t1,>z_50_10=t1); */ fe_sq(t1,t1); for (i = 1;i < 10;++i) fe_sq(t1,t1); /* qhasm: z_50_0 = z_50_10*z_10_0 */ /* asm 1: fe_mul(>z_50_0=fe#1,z_50_0=t0,z_100_50=fe#2,z_100_50=fe#2,>z_100_50=fe#2); */ /* asm 2: fe_sq(>z_100_50=t1,z_100_50=t1,>z_100_50=t1); */ fe_sq(t1,t0); for (i = 1;i < 50;++i) fe_sq(t1,t1); /* qhasm: z_100_0 = z_100_50*z_50_0 */ /* asm 1: fe_mul(>z_100_0=fe#2,z_100_0=t1,z_200_100=fe#3,z_200_100=fe#3,>z_200_100=fe#3); */ /* asm 2: fe_sq(>z_200_100=t2,z_200_100=t2,>z_200_100=t2); */ fe_sq(t2,t1); for (i = 1;i < 100;++i) fe_sq(t2,t2); /* qhasm: z_200_0 = z_200_100*z_100_0 */ /* asm 1: fe_mul(>z_200_0=fe#2,z_200_0=t1,z_250_50=fe#2,z_250_50=fe#2,>z_250_50=fe#2); */ /* asm 2: fe_sq(>z_250_50=t1,z_250_50=t1,>z_250_50=t1); */ fe_sq(t1,t1); for (i = 1;i < 50;++i) fe_sq(t1,t1); /* qhasm: z_250_0 = z_250_50*z_50_0 */ /* asm 1: fe_mul(>z_250_0=fe#1,z_250_0=t0,z_252_2=fe#1,z_252_2=fe#1,>z_252_2=fe#1); */ /* asm 2: fe_sq(>z_252_2=t0,z_252_2=t0,>z_252_2=t0); */ fe_sq(t0,t0); for (i = 1;i < 2;++i) fe_sq(t0,t0); /* qhasm: z_252_3 = z_252_2*z1 */ /* asm 1: fe_mul(>z_252_3=fe#12,z_252_3=out,> 25; h0 += carry9 * 19; h9 -= carry9 << 25; carry1 = (h1 + (crypto_int64) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25; carry3 = (h3 + (crypto_int64) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25; carry5 = (h5 + (crypto_int64) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25; carry7 = (h7 + (crypto_int64) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25; carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26; carry2 = (h2 + (crypto_int64) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26; carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26; carry6 = (h6 + (crypto_int64) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26; carry8 = (h8 + (crypto_int64) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26; h[0] = h0; h[1] = h1; h[2] = h2; h[3] = h3; h[4] = h4; h[5] = h5; h[6] = h6; h[7] = h7; h[8] = h8; h[9] = h9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p3_0.c0000644000175000017500000000014413264344532023260 0ustar tarektarek00000000000000#include "ge.h" void ge_p3_0(ge_p3 *h) { fe_0(h->X); fe_1(h->Y); fe_1(h->Z); fe_0(h->T); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_mul.c0000644000175000017500000002477013264344532023326 0ustar tarektarek00000000000000#include "fe.h" #include "crypto_int64.h" /* h = f * g Can overlap h with f or g. Preconditions: |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. |g| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. Postconditions: |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc. */ /* Notes on implementation strategy: Using schoolbook multiplication. Karatsuba would save a little in some cost models. Most multiplications by 2 and 19 are 32-bit precomputations; cheaper than 64-bit postcomputations. There is one remaining multiplication by 19 in the carry chain; one *19 precomputation can be merged into this, but the resulting data flow is considerably less clean. There are 12 carries below. 10 of them are 2-way parallelizable and vectorizable. Can get away with 11 carries, but then data flow is much deeper. With tighter constraints on inputs can squeeze carries into int32. */ void fe_mul(fe h,const fe f,const fe g) { crypto_int32 f0 = f[0]; crypto_int32 f1 = f[1]; crypto_int32 f2 = f[2]; crypto_int32 f3 = f[3]; crypto_int32 f4 = f[4]; crypto_int32 f5 = f[5]; crypto_int32 f6 = f[6]; crypto_int32 f7 = f[7]; crypto_int32 f8 = f[8]; crypto_int32 f9 = f[9]; crypto_int32 g0 = g[0]; crypto_int32 g1 = g[1]; crypto_int32 g2 = g[2]; crypto_int32 g3 = g[3]; crypto_int32 g4 = g[4]; crypto_int32 g5 = g[5]; crypto_int32 g6 = g[6]; crypto_int32 g7 = g[7]; crypto_int32 g8 = g[8]; crypto_int32 g9 = g[9]; crypto_int32 g1_19 = 19 * g1; /* 1.959375*2^29 */ crypto_int32 g2_19 = 19 * g2; /* 1.959375*2^30; still ok */ crypto_int32 g3_19 = 19 * g3; crypto_int32 g4_19 = 19 * g4; crypto_int32 g5_19 = 19 * g5; crypto_int32 g6_19 = 19 * g6; crypto_int32 g7_19 = 19 * g7; crypto_int32 g8_19 = 19 * g8; crypto_int32 g9_19 = 19 * g9; crypto_int32 f1_2 = 2 * f1; crypto_int32 f3_2 = 2 * f3; crypto_int32 f5_2 = 2 * f5; crypto_int32 f7_2 = 2 * f7; crypto_int32 f9_2 = 2 * f9; crypto_int64 f0g0 = f0 * (crypto_int64) g0; crypto_int64 f0g1 = f0 * (crypto_int64) g1; crypto_int64 f0g2 = f0 * (crypto_int64) g2; crypto_int64 f0g3 = f0 * (crypto_int64) g3; crypto_int64 f0g4 = f0 * (crypto_int64) g4; crypto_int64 f0g5 = f0 * (crypto_int64) g5; crypto_int64 f0g6 = f0 * (crypto_int64) g6; crypto_int64 f0g7 = f0 * (crypto_int64) g7; crypto_int64 f0g8 = f0 * (crypto_int64) g8; crypto_int64 f0g9 = f0 * (crypto_int64) g9; crypto_int64 f1g0 = f1 * (crypto_int64) g0; crypto_int64 f1g1_2 = f1_2 * (crypto_int64) g1; crypto_int64 f1g2 = f1 * (crypto_int64) g2; crypto_int64 f1g3_2 = f1_2 * (crypto_int64) g3; crypto_int64 f1g4 = f1 * (crypto_int64) g4; crypto_int64 f1g5_2 = f1_2 * (crypto_int64) g5; crypto_int64 f1g6 = f1 * (crypto_int64) g6; crypto_int64 f1g7_2 = f1_2 * (crypto_int64) g7; crypto_int64 f1g8 = f1 * (crypto_int64) g8; crypto_int64 f1g9_38 = f1_2 * (crypto_int64) g9_19; crypto_int64 f2g0 = f2 * (crypto_int64) g0; crypto_int64 f2g1 = f2 * (crypto_int64) g1; crypto_int64 f2g2 = f2 * (crypto_int64) g2; crypto_int64 f2g3 = f2 * (crypto_int64) g3; crypto_int64 f2g4 = f2 * (crypto_int64) g4; crypto_int64 f2g5 = f2 * (crypto_int64) g5; crypto_int64 f2g6 = f2 * (crypto_int64) g6; crypto_int64 f2g7 = f2 * (crypto_int64) g7; crypto_int64 f2g8_19 = f2 * (crypto_int64) g8_19; crypto_int64 f2g9_19 = f2 * (crypto_int64) g9_19; crypto_int64 f3g0 = f3 * (crypto_int64) g0; crypto_int64 f3g1_2 = f3_2 * (crypto_int64) g1; crypto_int64 f3g2 = f3 * (crypto_int64) g2; crypto_int64 f3g3_2 = f3_2 * (crypto_int64) g3; crypto_int64 f3g4 = f3 * (crypto_int64) g4; crypto_int64 f3g5_2 = f3_2 * (crypto_int64) g5; crypto_int64 f3g6 = f3 * (crypto_int64) g6; crypto_int64 f3g7_38 = f3_2 * (crypto_int64) g7_19; crypto_int64 f3g8_19 = f3 * (crypto_int64) g8_19; crypto_int64 f3g9_38 = f3_2 * (crypto_int64) g9_19; crypto_int64 f4g0 = f4 * (crypto_int64) g0; crypto_int64 f4g1 = f4 * (crypto_int64) g1; crypto_int64 f4g2 = f4 * (crypto_int64) g2; crypto_int64 f4g3 = f4 * (crypto_int64) g3; crypto_int64 f4g4 = f4 * (crypto_int64) g4; crypto_int64 f4g5 = f4 * (crypto_int64) g5; crypto_int64 f4g6_19 = f4 * (crypto_int64) g6_19; crypto_int64 f4g7_19 = f4 * (crypto_int64) g7_19; crypto_int64 f4g8_19 = f4 * (crypto_int64) g8_19; crypto_int64 f4g9_19 = f4 * (crypto_int64) g9_19; crypto_int64 f5g0 = f5 * (crypto_int64) g0; crypto_int64 f5g1_2 = f5_2 * (crypto_int64) g1; crypto_int64 f5g2 = f5 * (crypto_int64) g2; crypto_int64 f5g3_2 = f5_2 * (crypto_int64) g3; crypto_int64 f5g4 = f5 * (crypto_int64) g4; crypto_int64 f5g5_38 = f5_2 * (crypto_int64) g5_19; crypto_int64 f5g6_19 = f5 * (crypto_int64) g6_19; crypto_int64 f5g7_38 = f5_2 * (crypto_int64) g7_19; crypto_int64 f5g8_19 = f5 * (crypto_int64) g8_19; crypto_int64 f5g9_38 = f5_2 * (crypto_int64) g9_19; crypto_int64 f6g0 = f6 * (crypto_int64) g0; crypto_int64 f6g1 = f6 * (crypto_int64) g1; crypto_int64 f6g2 = f6 * (crypto_int64) g2; crypto_int64 f6g3 = f6 * (crypto_int64) g3; crypto_int64 f6g4_19 = f6 * (crypto_int64) g4_19; crypto_int64 f6g5_19 = f6 * (crypto_int64) g5_19; crypto_int64 f6g6_19 = f6 * (crypto_int64) g6_19; crypto_int64 f6g7_19 = f6 * (crypto_int64) g7_19; crypto_int64 f6g8_19 = f6 * (crypto_int64) g8_19; crypto_int64 f6g9_19 = f6 * (crypto_int64) g9_19; crypto_int64 f7g0 = f7 * (crypto_int64) g0; crypto_int64 f7g1_2 = f7_2 * (crypto_int64) g1; crypto_int64 f7g2 = f7 * (crypto_int64) g2; crypto_int64 f7g3_38 = f7_2 * (crypto_int64) g3_19; crypto_int64 f7g4_19 = f7 * (crypto_int64) g4_19; crypto_int64 f7g5_38 = f7_2 * (crypto_int64) g5_19; crypto_int64 f7g6_19 = f7 * (crypto_int64) g6_19; crypto_int64 f7g7_38 = f7_2 * (crypto_int64) g7_19; crypto_int64 f7g8_19 = f7 * (crypto_int64) g8_19; crypto_int64 f7g9_38 = f7_2 * (crypto_int64) g9_19; crypto_int64 f8g0 = f8 * (crypto_int64) g0; crypto_int64 f8g1 = f8 * (crypto_int64) g1; crypto_int64 f8g2_19 = f8 * (crypto_int64) g2_19; crypto_int64 f8g3_19 = f8 * (crypto_int64) g3_19; crypto_int64 f8g4_19 = f8 * (crypto_int64) g4_19; crypto_int64 f8g5_19 = f8 * (crypto_int64) g5_19; crypto_int64 f8g6_19 = f8 * (crypto_int64) g6_19; crypto_int64 f8g7_19 = f8 * (crypto_int64) g7_19; crypto_int64 f8g8_19 = f8 * (crypto_int64) g8_19; crypto_int64 f8g9_19 = f8 * (crypto_int64) g9_19; crypto_int64 f9g0 = f9 * (crypto_int64) g0; crypto_int64 f9g1_38 = f9_2 * (crypto_int64) g1_19; crypto_int64 f9g2_19 = f9 * (crypto_int64) g2_19; crypto_int64 f9g3_38 = f9_2 * (crypto_int64) g3_19; crypto_int64 f9g4_19 = f9 * (crypto_int64) g4_19; crypto_int64 f9g5_38 = f9_2 * (crypto_int64) g5_19; crypto_int64 f9g6_19 = f9 * (crypto_int64) g6_19; crypto_int64 f9g7_38 = f9_2 * (crypto_int64) g7_19; crypto_int64 f9g8_19 = f9 * (crypto_int64) g8_19; crypto_int64 f9g9_38 = f9_2 * (crypto_int64) g9_19; crypto_int64 h0 = f0g0+f1g9_38+f2g8_19+f3g7_38+f4g6_19+f5g5_38+f6g4_19+f7g3_38+f8g2_19+f9g1_38; crypto_int64 h1 = f0g1+f1g0 +f2g9_19+f3g8_19+f4g7_19+f5g6_19+f6g5_19+f7g4_19+f8g3_19+f9g2_19; crypto_int64 h2 = f0g2+f1g1_2 +f2g0 +f3g9_38+f4g8_19+f5g7_38+f6g6_19+f7g5_38+f8g4_19+f9g3_38; crypto_int64 h3 = f0g3+f1g2 +f2g1 +f3g0 +f4g9_19+f5g8_19+f6g7_19+f7g6_19+f8g5_19+f9g4_19; crypto_int64 h4 = f0g4+f1g3_2 +f2g2 +f3g1_2 +f4g0 +f5g9_38+f6g8_19+f7g7_38+f8g6_19+f9g5_38; crypto_int64 h5 = f0g5+f1g4 +f2g3 +f3g2 +f4g1 +f5g0 +f6g9_19+f7g8_19+f8g7_19+f9g6_19; crypto_int64 h6 = f0g6+f1g5_2 +f2g4 +f3g3_2 +f4g2 +f5g1_2 +f6g0 +f7g9_38+f8g8_19+f9g7_38; crypto_int64 h7 = f0g7+f1g6 +f2g5 +f3g4 +f4g3 +f5g2 +f6g1 +f7g0 +f8g9_19+f9g8_19; crypto_int64 h8 = f0g8+f1g7_2 +f2g6 +f3g5_2 +f4g4 +f5g3_2 +f6g2 +f7g1_2 +f8g0 +f9g9_38; crypto_int64 h9 = f0g9+f1g8 +f2g7 +f3g6 +f4g5 +f5g4 +f6g3 +f7g2 +f8g1 +f9g0 ; crypto_int64 carry0; crypto_int64 carry1; crypto_int64 carry2; crypto_int64 carry3; crypto_int64 carry4; crypto_int64 carry5; crypto_int64 carry6; crypto_int64 carry7; crypto_int64 carry8; crypto_int64 carry9; /* |h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38)) i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8 |h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19)) i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9 */ carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26; carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26; /* |h0| <= 2^25 */ /* |h4| <= 2^25 */ /* |h1| <= 1.71*2^59 */ /* |h5| <= 1.71*2^59 */ carry1 = (h1 + (crypto_int64) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25; carry5 = (h5 + (crypto_int64) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25; /* |h1| <= 2^24; from now on fits into int32 */ /* |h5| <= 2^24; from now on fits into int32 */ /* |h2| <= 1.41*2^60 */ /* |h6| <= 1.41*2^60 */ carry2 = (h2 + (crypto_int64) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26; carry6 = (h6 + (crypto_int64) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26; /* |h2| <= 2^25; from now on fits into int32 unchanged */ /* |h6| <= 2^25; from now on fits into int32 unchanged */ /* |h3| <= 1.71*2^59 */ /* |h7| <= 1.71*2^59 */ carry3 = (h3 + (crypto_int64) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25; carry7 = (h7 + (crypto_int64) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25; /* |h3| <= 2^24; from now on fits into int32 unchanged */ /* |h7| <= 2^24; from now on fits into int32 unchanged */ /* |h4| <= 1.72*2^34 */ /* |h8| <= 1.41*2^60 */ carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26; carry8 = (h8 + (crypto_int64) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26; /* |h4| <= 2^25; from now on fits into int32 unchanged */ /* |h8| <= 2^25; from now on fits into int32 unchanged */ /* |h5| <= 1.01*2^24 */ /* |h9| <= 1.71*2^59 */ carry9 = (h9 + (crypto_int64) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25; /* |h9| <= 2^24; from now on fits into int32 unchanged */ /* |h0| <= 1.1*2^39 */ carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26; /* |h0| <= 2^25; from now on fits into int32 unchanged */ /* |h1| <= 1.01*2^24 */ h[0] = h0; h[1] = h1; h[2] = h2; h[3] = h3; h[4] = h4; h[5] = h5; h[6] = h6; h[7] = h7; h[8] = h8; h[9] = h9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/open.c0000644000175000017500000000201413264344532023003 0ustar tarektarek00000000000000#include #include "crypto_sign.h" #include "crypto_hash_sha512.h" #include "crypto_verify_32.h" #include "ge.h" #include "sc.h" int crypto_sign_open( unsigned char *m,unsigned long long *mlen, const unsigned char *sm,unsigned long long smlen, const unsigned char *pk ) { unsigned char pkcopy[32]; unsigned char rcopy[32]; unsigned char scopy[32]; unsigned char h[64]; unsigned char rcheck[32]; ge_p3 A; ge_p2 R; if (smlen < 64) goto badsig; if (sm[63] & 224) goto badsig; if (ge_frombytes_negate_vartime(&A,pk) != 0) goto badsig; memmove(pkcopy,pk,32); memmove(rcopy,sm,32); memmove(scopy,sm + 32,32); memmove(m,sm,smlen); memmove(m + 32,pkcopy,32); crypto_hash_sha512(h,m,smlen); sc_reduce(h); ge_double_scalarmult_vartime(&R,h,&A,scopy); ge_tobytes(rcheck,&R); if (crypto_verify_32(rcheck,rcopy) == 0) { memmove(m,m + 64,smlen - 64); memset(m + smlen - 64,0,64); *mlen = smlen - 64; return 0; } badsig: *mlen = -1; memset(m,0,smlen); return -1; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p3_tobytes.c0000644000175000017500000000034413264344532024614 0ustar tarektarek00000000000000#include "ge.h" void ge_p3_tobytes(unsigned char *s,const ge_p3 *h) { fe recip; fe x; fe y; fe_invert(recip,h->Z); fe_mul(x,h->X,recip); fe_mul(y,h->Y,recip); fe_tobytes(s,y); s[31] ^= fe_isnegative(x) << 7; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_add.c0000644000175000017500000000017513264344532023253 0ustar tarektarek00000000000000#include "ge.h" /* r = p + q */ void ge_add(ge_p1p1 *r,const ge_p3 *p,const ge_cached *q) { fe t0; #include "ge_add.h" } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/base2.h0000644000175000017500000000452413264344532023053 0ustar tarektarek00000000000000 { { 25967493,-14356035,29566456,3660896,-12694345,4014787,27544626,-11754271,-6079156,2047605 }, { -12545711,934262,-2722910,3049990,-727428,9406986,12720692,5043384,19500929,-15469378 }, { -8738181,4489570,9688441,-14785194,10184609,-12363380,29287919,11864899,-24514362,-4438546 }, }, { { 15636291,-9688557,24204773,-7912398,616977,-16685262,27787600,-14772189,28944400,-1550024 }, { 16568933,4717097,-11556148,-1102322,15682896,-11807043,16354577,-11775962,7689662,11199574 }, { 30464156,-5976125,-11779434,-15670865,23220365,15915852,7512774,10017326,-17749093,-9920357 }, }, { { 10861363,11473154,27284546,1981175,-30064349,12577861,32867885,14515107,-15438304,10819380 }, { 4708026,6336745,20377586,9066809,-11272109,6594696,-25653668,12483688,-12668491,5581306 }, { 19563160,16186464,-29386857,4097519,10237984,-4348115,28542350,13850243,-23678021,-15815942 }, }, { { 5153746,9909285,1723747,-2777874,30523605,5516873,19480852,5230134,-23952439,-15175766 }, { -30269007,-3463509,7665486,10083793,28475525,1649722,20654025,16520125,30598449,7715701 }, { 28881845,14381568,9657904,3680757,-20181635,7843316,-31400660,1370708,29794553,-1409300 }, }, { { -22518993,-6692182,14201702,-8745502,-23510406,8844726,18474211,-1361450,-13062696,13821877 }, { -6455177,-7839871,3374702,-4740862,-27098617,-10571707,31655028,-7212327,18853322,-14220951 }, { 4566830,-12963868,-28974889,-12240689,-7602672,-2830569,-8514358,-10431137,2207753,-3209784 }, }, { { -25154831,-4185821,29681144,7868801,-6854661,-9423865,-12437364,-663000,-31111463,-16132436 }, { 25576264,-2703214,7349804,-11814844,16472782,9300885,3844789,15725684,171356,6466918 }, { 23103977,13316479,9739013,-16149481,817875,-15038942,8965339,-14088058,-30714912,16193877 }, }, { { -33521811,3180713,-2394130,14003687,-16903474,-16270840,17238398,4729455,-18074513,9256800 }, { -25182317,-4174131,32336398,5036987,-21236817,11360617,22616405,9761698,-19827198,630305 }, { -13720693,2639453,-24237460,-7406481,9494427,-5774029,-6554551,-15960994,-2449256,-14291300 }, }, { { -3151181,-5046075,9282714,6866145,-31907062,-863023,-18940575,15033784,25105118,-7894876 }, { -24326370,15950226,-31801215,-14592823,-11662737,-5090925,1573892,-2625887,2198790,-15804619 }, { -3099351,10324967,-2241613,7453183,-5446979,-2735503,-13812022,-16236442,-32461234,-12290683 }, }, python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_sha512/0000755000175000017500000000000013264355231023677 5ustar tarektarek00000000000000python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_sha512/hash.c0000644000175000017500000000341713264344532024775 0ustar tarektarek00000000000000/* 20080913 D. J. Bernstein Public domain. */ #include typedef uint64_t uint64; extern int crypto_hashblocks_sha512(unsigned char *statebytes,const unsigned char *in,unsigned long long inlen); #define blocks crypto_hashblocks_sha512 static const unsigned char iv[64] = { 0x6a,0x09,0xe6,0x67,0xf3,0xbc,0xc9,0x08, 0xbb,0x67,0xae,0x85,0x84,0xca,0xa7,0x3b, 0x3c,0x6e,0xf3,0x72,0xfe,0x94,0xf8,0x2b, 0xa5,0x4f,0xf5,0x3a,0x5f,0x1d,0x36,0xf1, 0x51,0x0e,0x52,0x7f,0xad,0xe6,0x82,0xd1, 0x9b,0x05,0x68,0x8c,0x2b,0x3e,0x6c,0x1f, 0x1f,0x83,0xd9,0xab,0xfb,0x41,0xbd,0x6b, 0x5b,0xe0,0xcd,0x19,0x13,0x7e,0x21,0x79 } ; int crypto_hash_sha512(unsigned char *out,const unsigned char *in,unsigned long long inlen) { unsigned char h[64]; unsigned char padded[256]; int i; unsigned long long bytes = inlen; for (i = 0;i < 64;++i) h[i] = iv[i]; blocks(h,in,inlen); in += inlen; inlen &= 127; in -= inlen; for (i = 0;i < inlen;++i) padded[i] = in[i]; padded[inlen] = 0x80; if (inlen < 112) { for (i = inlen + 1;i < 119;++i) padded[i] = 0; padded[119] = bytes >> 61; padded[120] = bytes >> 53; padded[121] = bytes >> 45; padded[122] = bytes >> 37; padded[123] = bytes >> 29; padded[124] = bytes >> 21; padded[125] = bytes >> 13; padded[126] = bytes >> 5; padded[127] = bytes << 3; blocks(h,padded,128); } else { for (i = inlen + 1;i < 247;++i) padded[i] = 0; padded[247] = bytes >> 61; padded[248] = bytes >> 53; padded[249] = bytes >> 45; padded[250] = bytes >> 37; padded[251] = bytes >> 29; padded[252] = bytes >> 21; padded[253] = bytes >> 13; padded[254] = bytes >> 5; padded[255] = bytes << 3; blocks(h,padded,256); } for (i = 0;i < 64;++i) out[i] = h[i]; return 0; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/nacl_sha512/blocks.c0000644000175000017500000001442013264344532025323 0ustar tarektarek00000000000000#include typedef uint64_t uint64; static uint64 load_bigendian(const unsigned char *x) { return (uint64) (x[7]) \ | (((uint64) (x[6])) << 8) \ | (((uint64) (x[5])) << 16) \ | (((uint64) (x[4])) << 24) \ | (((uint64) (x[3])) << 32) \ | (((uint64) (x[2])) << 40) \ | (((uint64) (x[1])) << 48) \ | (((uint64) (x[0])) << 56) ; } static void store_bigendian(unsigned char *x,uint64 u) { x[7] = u; u >>= 8; x[6] = u; u >>= 8; x[5] = u; u >>= 8; x[4] = u; u >>= 8; x[3] = u; u >>= 8; x[2] = u; u >>= 8; x[1] = u; u >>= 8; x[0] = u; } #define SHR(x,c) ((x) >> (c)) #define ROTR(x,c) (((x) >> (c)) | ((x) << (64 - (c)))) #define Ch(x,y,z) ((x & y) ^ (~x & z)) #define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z)) #define Sigma0(x) (ROTR(x,28) ^ ROTR(x,34) ^ ROTR(x,39)) #define Sigma1(x) (ROTR(x,14) ^ ROTR(x,18) ^ ROTR(x,41)) #define sigma0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x,7)) #define sigma1(x) (ROTR(x,19) ^ ROTR(x,61) ^ SHR(x,6)) #define M(w0,w14,w9,w1) w0 = sigma1(w14) + w9 + sigma0(w1) + w0; #define EXPAND \ M(w0 ,w14,w9 ,w1 ) \ M(w1 ,w15,w10,w2 ) \ M(w2 ,w0 ,w11,w3 ) \ M(w3 ,w1 ,w12,w4 ) \ M(w4 ,w2 ,w13,w5 ) \ M(w5 ,w3 ,w14,w6 ) \ M(w6 ,w4 ,w15,w7 ) \ M(w7 ,w5 ,w0 ,w8 ) \ M(w8 ,w6 ,w1 ,w9 ) \ M(w9 ,w7 ,w2 ,w10) \ M(w10,w8 ,w3 ,w11) \ M(w11,w9 ,w4 ,w12) \ M(w12,w10,w5 ,w13) \ M(w13,w11,w6 ,w14) \ M(w14,w12,w7 ,w15) \ M(w15,w13,w8 ,w0 ) #define F(w,k) \ T1 = h + Sigma1(e) + Ch(e,f,g) + k + w; \ T2 = Sigma0(a) + Maj(a,b,c); \ h = g; \ g = f; \ f = e; \ e = d + T1; \ d = c; \ c = b; \ b = a; \ a = T1 + T2; int crypto_hashblocks_sha512(unsigned char *statebytes,const unsigned char *in,unsigned long long inlen) { uint64 state[8]; uint64 a; uint64 b; uint64 c; uint64 d; uint64 e; uint64 f; uint64 g; uint64 h; uint64 T1; uint64 T2; a = load_bigendian(statebytes + 0); state[0] = a; b = load_bigendian(statebytes + 8); state[1] = b; c = load_bigendian(statebytes + 16); state[2] = c; d = load_bigendian(statebytes + 24); state[3] = d; e = load_bigendian(statebytes + 32); state[4] = e; f = load_bigendian(statebytes + 40); state[5] = f; g = load_bigendian(statebytes + 48); state[6] = g; h = load_bigendian(statebytes + 56); state[7] = h; while (inlen >= 128) { uint64 w0 = load_bigendian(in + 0); uint64 w1 = load_bigendian(in + 8); uint64 w2 = load_bigendian(in + 16); uint64 w3 = load_bigendian(in + 24); uint64 w4 = load_bigendian(in + 32); uint64 w5 = load_bigendian(in + 40); uint64 w6 = load_bigendian(in + 48); uint64 w7 = load_bigendian(in + 56); uint64 w8 = load_bigendian(in + 64); uint64 w9 = load_bigendian(in + 72); uint64 w10 = load_bigendian(in + 80); uint64 w11 = load_bigendian(in + 88); uint64 w12 = load_bigendian(in + 96); uint64 w13 = load_bigendian(in + 104); uint64 w14 = load_bigendian(in + 112); uint64 w15 = load_bigendian(in + 120); F(w0 ,0x428a2f98d728ae22ULL) F(w1 ,0x7137449123ef65cdULL) F(w2 ,0xb5c0fbcfec4d3b2fULL) F(w3 ,0xe9b5dba58189dbbcULL) F(w4 ,0x3956c25bf348b538ULL) F(w5 ,0x59f111f1b605d019ULL) F(w6 ,0x923f82a4af194f9bULL) F(w7 ,0xab1c5ed5da6d8118ULL) F(w8 ,0xd807aa98a3030242ULL) F(w9 ,0x12835b0145706fbeULL) F(w10,0x243185be4ee4b28cULL) F(w11,0x550c7dc3d5ffb4e2ULL) F(w12,0x72be5d74f27b896fULL) F(w13,0x80deb1fe3b1696b1ULL) F(w14,0x9bdc06a725c71235ULL) F(w15,0xc19bf174cf692694ULL) EXPAND F(w0 ,0xe49b69c19ef14ad2ULL) F(w1 ,0xefbe4786384f25e3ULL) F(w2 ,0x0fc19dc68b8cd5b5ULL) F(w3 ,0x240ca1cc77ac9c65ULL) F(w4 ,0x2de92c6f592b0275ULL) F(w5 ,0x4a7484aa6ea6e483ULL) F(w6 ,0x5cb0a9dcbd41fbd4ULL) F(w7 ,0x76f988da831153b5ULL) F(w8 ,0x983e5152ee66dfabULL) F(w9 ,0xa831c66d2db43210ULL) F(w10,0xb00327c898fb213fULL) F(w11,0xbf597fc7beef0ee4ULL) F(w12,0xc6e00bf33da88fc2ULL) F(w13,0xd5a79147930aa725ULL) F(w14,0x06ca6351e003826fULL) F(w15,0x142929670a0e6e70ULL) EXPAND F(w0 ,0x27b70a8546d22ffcULL) F(w1 ,0x2e1b21385c26c926ULL) F(w2 ,0x4d2c6dfc5ac42aedULL) F(w3 ,0x53380d139d95b3dfULL) F(w4 ,0x650a73548baf63deULL) F(w5 ,0x766a0abb3c77b2a8ULL) F(w6 ,0x81c2c92e47edaee6ULL) F(w7 ,0x92722c851482353bULL) F(w8 ,0xa2bfe8a14cf10364ULL) F(w9 ,0xa81a664bbc423001ULL) F(w10,0xc24b8b70d0f89791ULL) F(w11,0xc76c51a30654be30ULL) F(w12,0xd192e819d6ef5218ULL) F(w13,0xd69906245565a910ULL) F(w14,0xf40e35855771202aULL) F(w15,0x106aa07032bbd1b8ULL) EXPAND F(w0 ,0x19a4c116b8d2d0c8ULL) F(w1 ,0x1e376c085141ab53ULL) F(w2 ,0x2748774cdf8eeb99ULL) F(w3 ,0x34b0bcb5e19b48a8ULL) F(w4 ,0x391c0cb3c5c95a63ULL) F(w5 ,0x4ed8aa4ae3418acbULL) F(w6 ,0x5b9cca4f7763e373ULL) F(w7 ,0x682e6ff3d6b2b8a3ULL) F(w8 ,0x748f82ee5defb2fcULL) F(w9 ,0x78a5636f43172f60ULL) F(w10,0x84c87814a1f0ab72ULL) F(w11,0x8cc702081a6439ecULL) F(w12,0x90befffa23631e28ULL) F(w13,0xa4506cebde82bde9ULL) F(w14,0xbef9a3f7b2c67915ULL) F(w15,0xc67178f2e372532bULL) EXPAND F(w0 ,0xca273eceea26619cULL) F(w1 ,0xd186b8c721c0c207ULL) F(w2 ,0xeada7dd6cde0eb1eULL) F(w3 ,0xf57d4f7fee6ed178ULL) F(w4 ,0x06f067aa72176fbaULL) F(w5 ,0x0a637dc5a2c898a6ULL) F(w6 ,0x113f9804bef90daeULL) F(w7 ,0x1b710b35131c471bULL) F(w8 ,0x28db77f523047d84ULL) F(w9 ,0x32caab7b40c72493ULL) F(w10,0x3c9ebe0a15c9bebcULL) F(w11,0x431d67c49c100d4cULL) F(w12,0x4cc5d4becb3e42b6ULL) F(w13,0x597f299cfc657e2aULL) F(w14,0x5fcb6fab3ad6faecULL) F(w15,0x6c44198c4a475817ULL) a += state[0]; b += state[1]; c += state[2]; d += state[3]; e += state[4]; f += state[5]; g += state[6]; h += state[7]; state[0] = a; state[1] = b; state[2] = c; state[3] = d; state[4] = e; state[5] = f; state[6] = g; state[7] = h; in += 128; inlen -= 128; } store_bigendian(statebytes + 0,state[0]); store_bigendian(statebytes + 8,state[1]); store_bigendian(statebytes + 16,state[2]); store_bigendian(statebytes + 24,state[3]); store_bigendian(statebytes + 32,state[4]); store_bigendian(statebytes + 40,state[5]); store_bigendian(statebytes + 48,state[6]); store_bigendian(statebytes + 56,state[7]); return 0; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/api.h0000644000175000017500000000017113264344522022621 0ustar tarektarek00000000000000#define CRYPTO_SECRETKEYBYTES 64 #define CRYPTO_PUBLICKEYBYTES 32 #define CRYPTO_BYTES 64 #define CRYPTO_DETERMINISTIC 1 python-axolotl-curve25519-0.4.1.post2/curve/ed25519/base.h0000644000175000017500000022525113264344532022773 0ustar tarektarek00000000000000{ { { 25967493,-14356035,29566456,3660896,-12694345,4014787,27544626,-11754271,-6079156,2047605 }, { -12545711,934262,-2722910,3049990,-727428,9406986,12720692,5043384,19500929,-15469378 }, { -8738181,4489570,9688441,-14785194,10184609,-12363380,29287919,11864899,-24514362,-4438546 }, }, { { -12815894,-12976347,-21581243,11784320,-25355658,-2750717,-11717903,-3814571,-358445,-10211303 }, { -21703237,6903825,27185491,6451973,-29577724,-9554005,-15616551,11189268,-26829678,-5319081 }, { 26966642,11152617,32442495,15396054,14353839,-12752335,-3128826,-9541118,-15472047,-4166697 }, }, { { 15636291,-9688557,24204773,-7912398,616977,-16685262,27787600,-14772189,28944400,-1550024 }, { 16568933,4717097,-11556148,-1102322,15682896,-11807043,16354577,-11775962,7689662,11199574 }, { 30464156,-5976125,-11779434,-15670865,23220365,15915852,7512774,10017326,-17749093,-9920357 }, }, { { -17036878,13921892,10945806,-6033431,27105052,-16084379,-28926210,15006023,3284568,-6276540 }, { 23599295,-8306047,-11193664,-7687416,13236774,10506355,7464579,9656445,13059162,10374397 }, { 7798556,16710257,3033922,2874086,28997861,2835604,32406664,-3839045,-641708,-101325 }, }, { { 10861363,11473154,27284546,1981175,-30064349,12577861,32867885,14515107,-15438304,10819380 }, { 4708026,6336745,20377586,9066809,-11272109,6594696,-25653668,12483688,-12668491,5581306 }, { 19563160,16186464,-29386857,4097519,10237984,-4348115,28542350,13850243,-23678021,-15815942 }, }, { { -15371964,-12862754,32573250,4720197,-26436522,5875511,-19188627,-15224819,-9818940,-12085777 }, { -8549212,109983,15149363,2178705,22900618,4543417,3044240,-15689887,1762328,14866737 }, { -18199695,-15951423,-10473290,1707278,-17185920,3916101,-28236412,3959421,27914454,4383652 }, }, { { 5153746,9909285,1723747,-2777874,30523605,5516873,19480852,5230134,-23952439,-15175766 }, { -30269007,-3463509,7665486,10083793,28475525,1649722,20654025,16520125,30598449,7715701 }, { 28881845,14381568,9657904,3680757,-20181635,7843316,-31400660,1370708,29794553,-1409300 }, }, { { 14499471,-2729599,-33191113,-4254652,28494862,14271267,30290735,10876454,-33154098,2381726 }, { -7195431,-2655363,-14730155,462251,-27724326,3941372,-6236617,3696005,-32300832,15351955 }, { 27431194,8222322,16448760,-3907995,-18707002,11938355,-32961401,-2970515,29551813,10109425 }, }, }, { { { -13657040,-13155431,-31283750,11777098,21447386,6519384,-2378284,-1627556,10092783,-4764171 }, { 27939166,14210322,4677035,16277044,-22964462,-12398139,-32508754,12005538,-17810127,12803510 }, { 17228999,-15661624,-1233527,300140,-1224870,-11714777,30364213,-9038194,18016357,4397660 }, }, { { -10958843,-7690207,4776341,-14954238,27850028,-15602212,-26619106,14544525,-17477504,982639 }, { 29253598,15796703,-2863982,-9908884,10057023,3163536,7332899,-4120128,-21047696,9934963 }, { 5793303,16271923,-24131614,-10116404,29188560,1206517,-14747930,4559895,-30123922,-10897950 }, }, { { -27643952,-11493006,16282657,-11036493,28414021,-15012264,24191034,4541697,-13338309,5500568 }, { 12650548,-1497113,9052871,11355358,-17680037,-8400164,-17430592,12264343,10874051,13524335 }, { 25556948,-3045990,714651,2510400,23394682,-10415330,33119038,5080568,-22528059,5376628 }, }, { { -26088264,-4011052,-17013699,-3537628,-6726793,1920897,-22321305,-9447443,4535768,1569007 }, { -2255422,14606630,-21692440,-8039818,28430649,8775819,-30494562,3044290,31848280,12543772 }, { -22028579,2943893,-31857513,6777306,13784462,-4292203,-27377195,-2062731,7718482,14474653 }, }, { { 2385315,2454213,-22631320,46603,-4437935,-15680415,656965,-7236665,24316168,-5253567 }, { 13741529,10911568,-33233417,-8603737,-20177830,-1033297,33040651,-13424532,-20729456,8321686 }, { 21060490,-2212744,15712757,-4336099,1639040,10656336,23845965,-11874838,-9984458,608372 }, }, { { -13672732,-15087586,-10889693,-7557059,-6036909,11305547,1123968,-6780577,27229399,23887 }, { -23244140,-294205,-11744728,14712571,-29465699,-2029617,12797024,-6440308,-1633405,16678954 }, { -29500620,4770662,-16054387,14001338,7830047,9564805,-1508144,-4795045,-17169265,4904953 }, }, { { 24059557,14617003,19037157,-15039908,19766093,-14906429,5169211,16191880,2128236,-4326833 }, { -16981152,4124966,-8540610,-10653797,30336522,-14105247,-29806336,916033,-6882542,-2986532 }, { -22630907,12419372,-7134229,-7473371,-16478904,16739175,285431,2763829,15736322,4143876 }, }, { { 2379352,11839345,-4110402,-5988665,11274298,794957,212801,-14594663,23527084,-16458268 }, { 33431127,-11130478,-17838966,-15626900,8909499,8376530,-32625340,4087881,-15188911,-14416214 }, { 1767683,7197987,-13205226,-2022635,-13091350,448826,5799055,4357868,-4774191,-16323038 }, }, }, { { { 6721966,13833823,-23523388,-1551314,26354293,-11863321,23365147,-3949732,7390890,2759800 }, { 4409041,2052381,23373853,10530217,7676779,-12885954,21302353,-4264057,1244380,-12919645 }, { -4421239,7169619,4982368,-2957590,30256825,-2777540,14086413,9208236,15886429,16489664 }, }, { { 1996075,10375649,14346367,13311202,-6874135,-16438411,-13693198,398369,-30606455,-712933 }, { -25307465,9795880,-2777414,14878809,-33531835,14780363,13348553,12076947,-30836462,5113182 }, { -17770784,11797796,31950843,13929123,-25888302,12288344,-30341101,-7336386,13847711,5387222 }, }, { { -18582163,-3416217,17824843,-2340966,22744343,-10442611,8763061,3617786,-19600662,10370991 }, { 20246567,-14369378,22358229,-543712,18507283,-10413996,14554437,-8746092,32232924,16763880 }, { 9648505,10094563,26416693,14745928,-30374318,-6472621,11094161,15689506,3140038,-16510092 }, }, { { -16160072,5472695,31895588,4744994,8823515,10365685,-27224800,9448613,-28774454,366295 }, { 19153450,11523972,-11096490,-6503142,-24647631,5420647,28344573,8041113,719605,11671788 }, { 8678025,2694440,-6808014,2517372,4964326,11152271,-15432916,-15266516,27000813,-10195553 }, }, { { -15157904,7134312,8639287,-2814877,-7235688,10421742,564065,5336097,6750977,-14521026 }, { 11836410,-3979488,26297894,16080799,23455045,15735944,1695823,-8819122,8169720,16220347 }, { -18115838,8653647,17578566,-6092619,-8025777,-16012763,-11144307,-2627664,-5990708,-14166033 }, }, { { -23308498,-10968312,15213228,-10081214,-30853605,-11050004,27884329,2847284,2655861,1738395 }, { -27537433,-14253021,-25336301,-8002780,-9370762,8129821,21651608,-3239336,-19087449,-11005278 }, { 1533110,3437855,23735889,459276,29970501,11335377,26030092,5821408,10478196,8544890 }, }, { { 32173121,-16129311,24896207,3921497,22579056,-3410854,19270449,12217473,17789017,-3395995 }, { -30552961,-2228401,-15578829,-10147201,13243889,517024,15479401,-3853233,30460520,1052596 }, { -11614875,13323618,32618793,8175907,-15230173,12596687,27491595,-4612359,3179268,-9478891 }, }, { { 31947069,-14366651,-4640583,-15339921,-15125977,-6039709,-14756777,-16411740,19072640,-9511060 }, { 11685058,11822410,3158003,-13952594,33402194,-4165066,5977896,-5215017,473099,5040608 }, { -20290863,8198642,-27410132,11602123,1290375,-2799760,28326862,1721092,-19558642,-3131606 }, }, }, { { { 7881532,10687937,7578723,7738378,-18951012,-2553952,21820786,8076149,-27868496,11538389 }, { -19935666,3899861,18283497,-6801568,-15728660,-11249211,8754525,7446702,-5676054,5797016 }, { -11295600,-3793569,-15782110,-7964573,12708869,-8456199,2014099,-9050574,-2369172,-5877341 }, }, { { -22472376,-11568741,-27682020,1146375,18956691,16640559,1192730,-3714199,15123619,10811505 }, { 14352098,-3419715,-18942044,10822655,32750596,4699007,-70363,15776356,-28886779,-11974553 }, { -28241164,-8072475,-4978962,-5315317,29416931,1847569,-20654173,-16484855,4714547,-9600655 }, }, { { 15200332,8368572,19679101,15970074,-31872674,1959451,24611599,-4543832,-11745876,12340220 }, { 12876937,-10480056,33134381,6590940,-6307776,14872440,9613953,8241152,15370987,9608631 }, { -4143277,-12014408,8446281,-391603,4407738,13629032,-7724868,15866074,-28210621,-8814099 }, }, { { 26660628,-15677655,8393734,358047,-7401291,992988,-23904233,858697,20571223,8420556 }, { 14620715,13067227,-15447274,8264467,14106269,15080814,33531827,12516406,-21574435,-12476749 }, { 236881,10476226,57258,-14677024,6472998,2466984,17258519,7256740,8791136,15069930 }, }, { { 1276410,-9371918,22949635,-16322807,-23493039,-5702186,14711875,4874229,-30663140,-2331391 }, { 5855666,4990204,-13711848,7294284,-7804282,1924647,-1423175,-7912378,-33069337,9234253 }, { 20590503,-9018988,31529744,-7352666,-2706834,10650548,31559055,-11609587,18979186,13396066 }, }, { { 24474287,4968103,22267082,4407354,24063882,-8325180,-18816887,13594782,33514650,7021958 }, { -11566906,-6565505,-21365085,15928892,-26158305,4315421,-25948728,-3916677,-21480480,12868082 }, { -28635013,13504661,19988037,-2132761,21078225,6443208,-21446107,2244500,-12455797,-8089383 }, }, { { -30595528,13793479,-5852820,319136,-25723172,-6263899,33086546,8957937,-15233648,5540521 }, { -11630176,-11503902,-8119500,-7643073,2620056,1022908,-23710744,-1568984,-16128528,-14962807 }, { 23152971,775386,27395463,14006635,-9701118,4649512,1689819,892185,-11513277,-15205948 }, }, { { 9770129,9586738,26496094,4324120,1556511,-3550024,27453819,4763127,-19179614,5867134 }, { -32765025,1927590,31726409,-4753295,23962434,-16019500,27846559,5931263,-29749703,-16108455 }, { 27461885,-2977536,22380810,1815854,-23033753,-3031938,7283490,-15148073,-19526700,7734629 }, }, }, { { { -8010264,-9590817,-11120403,6196038,29344158,-13430885,7585295,-3176626,18549497,15302069 }, { -32658337,-6171222,-7672793,-11051681,6258878,13504381,10458790,-6418461,-8872242,8424746 }, { 24687205,8613276,-30667046,-3233545,1863892,-1830544,19206234,7134917,-11284482,-828919 }, }, { { 11334899,-9218022,8025293,12707519,17523892,-10476071,10243738,-14685461,-5066034,16498837 }, { 8911542,6887158,-9584260,-6958590,11145641,-9543680,17303925,-14124238,6536641,10543906 }, { -28946384,15479763,-17466835,568876,-1497683,11223454,-2669190,-16625574,-27235709,8876771 }, }, { { -25742899,-12566864,-15649966,-846607,-33026686,-796288,-33481822,15824474,-604426,-9039817 }, { 10330056,70051,7957388,-9002667,9764902,15609756,27698697,-4890037,1657394,3084098 }, { 10477963,-7470260,12119566,-13250805,29016247,-5365589,31280319,14396151,-30233575,15272409 }, }, { { -12288309,3169463,28813183,16658753,25116432,-5630466,-25173957,-12636138,-25014757,1950504 }, { -26180358,9489187,11053416,-14746161,-31053720,5825630,-8384306,-8767532,15341279,8373727 }, { 28685821,7759505,-14378516,-12002860,-31971820,4079242,298136,-10232602,-2878207,15190420 }, }, { { -32932876,13806336,-14337485,-15794431,-24004620,10940928,8669718,2742393,-26033313,-6875003 }, { -1580388,-11729417,-25979658,-11445023,-17411874,-10912854,9291594,-16247779,-12154742,6048605 }, { -30305315,14843444,1539301,11864366,20201677,1900163,13934231,5128323,11213262,9168384 }, }, { { -26280513,11007847,19408960,-940758,-18592965,-4328580,-5088060,-11105150,20470157,-16398701 }, { -23136053,9282192,14855179,-15390078,-7362815,-14408560,-22783952,14461608,14042978,5230683 }, { 29969567,-2741594,-16711867,-8552442,9175486,-2468974,21556951,3506042,-5933891,-12449708 }, }, { { -3144746,8744661,19704003,4581278,-20430686,6830683,-21284170,8971513,-28539189,15326563 }, { -19464629,10110288,-17262528,-3503892,-23500387,1355669,-15523050,15300988,-20514118,9168260 }, { -5353335,4488613,-23803248,16314347,7780487,-15638939,-28948358,9601605,33087103,-9011387 }, }, { { -19443170,-15512900,-20797467,-12445323,-29824447,10229461,-27444329,-15000531,-5996870,15664672 }, { 23294591,-16632613,-22650781,-8470978,27844204,11461195,13099750,-2460356,18151676,13417686 }, { -24722913,-4176517,-31150679,5988919,-26858785,6685065,1661597,-12551441,15271676,-15452665 }, }, }, { { { 11433042,-13228665,8239631,-5279517,-1985436,-725718,-18698764,2167544,-6921301,-13440182 }, { -31436171,15575146,30436815,12192228,-22463353,9395379,-9917708,-8638997,12215110,12028277 }, { 14098400,6555944,23007258,5757252,-15427832,-12950502,30123440,4617780,-16900089,-655628 }, }, { { -4026201,-15240835,11893168,13718664,-14809462,1847385,-15819999,10154009,23973261,-12684474 }, { -26531820,-3695990,-1908898,2534301,-31870557,-16550355,18341390,-11419951,32013174,-10103539 }, { -25479301,10876443,-11771086,-14625140,-12369567,1838104,21911214,6354752,4425632,-837822 }, }, { { -10433389,-14612966,22229858,-3091047,-13191166,776729,-17415375,-12020462,4725005,14044970 }, { 19268650,-7304421,1555349,8692754,-21474059,-9910664,6347390,-1411784,-19522291,-16109756 }, { -24864089,12986008,-10898878,-5558584,-11312371,-148526,19541418,8180106,9282262,10282508 }, }, { { -26205082,4428547,-8661196,-13194263,4098402,-14165257,15522535,8372215,5542595,-10702683 }, { -10562541,14895633,26814552,-16673850,-17480754,-2489360,-2781891,6993761,-18093885,10114655 }, { -20107055,-929418,31422704,10427861,-7110749,6150669,-29091755,-11529146,25953725,-106158 }, }, { { -4234397,-8039292,-9119125,3046000,2101609,-12607294,19390020,6094296,-3315279,12831125 }, { -15998678,7578152,5310217,14408357,-33548620,-224739,31575954,6326196,7381791,-2421839 }, { -20902779,3296811,24736065,-16328389,18374254,7318640,6295303,8082724,-15362489,12339664 }, }, { { 27724736,2291157,6088201,-14184798,1792727,5857634,13848414,15768922,25091167,14856294 }, { -18866652,8331043,24373479,8541013,-701998,-9269457,12927300,-12695493,-22182473,-9012899 }, { -11423429,-5421590,11632845,3405020,30536730,-11674039,-27260765,13866390,30146206,9142070 }, }, { { 3924129,-15307516,-13817122,-10054960,12291820,-668366,-27702774,9326384,-8237858,4171294 }, { -15921940,16037937,6713787,16606682,-21612135,2790944,26396185,3731949,345228,-5462949 }, { -21327538,13448259,25284571,1143661,20614966,-8849387,2031539,-12391231,-16253183,-13582083 }, }, { { 31016211,-16722429,26371392,-14451233,-5027349,14854137,17477601,3842657,28012650,-16405420 }, { -5075835,9368966,-8562079,-4600902,-15249953,6970560,-9189873,16292057,-8867157,3507940 }, { 29439664,3537914,23333589,6997794,-17555561,-11018068,-15209202,-15051267,-9164929,6580396 }, }, }, { { { -12185861,-7679788,16438269,10826160,-8696817,-6235611,17860444,-9273846,-2095802,9304567 }, { 20714564,-4336911,29088195,7406487,11426967,-5095705,14792667,-14608617,5289421,-477127 }, { -16665533,-10650790,-6160345,-13305760,9192020,-1802462,17271490,12349094,26939669,-3752294 }, }, { { -12889898,9373458,31595848,16374215,21471720,13221525,-27283495,-12348559,-3698806,117887 }, { 22263325,-6560050,3984570,-11174646,-15114008,-566785,28311253,5358056,-23319780,541964 }, { 16259219,3261970,2309254,-15534474,-16885711,-4581916,24134070,-16705829,-13337066,-13552195 }, }, { { 9378160,-13140186,-22845982,-12745264,28198281,-7244098,-2399684,-717351,690426,14876244 }, { 24977353,-314384,-8223969,-13465086,28432343,-1176353,-13068804,-12297348,-22380984,6618999 }, { -1538174,11685646,12944378,13682314,-24389511,-14413193,8044829,-13817328,32239829,-5652762 }, }, { { -18603066,4762990,-926250,8885304,-28412480,-3187315,9781647,-10350059,32779359,5095274 }, { -33008130,-5214506,-32264887,-3685216,9460461,-9327423,-24601656,14506724,21639561,-2630236 }, { -16400943,-13112215,25239338,15531969,3987758,-4499318,-1289502,-6863535,17874574,558605 }, }, { { -13600129,10240081,9171883,16131053,-20869254,9599700,33499487,5080151,2085892,5119761 }, { -22205145,-2519528,-16381601,414691,-25019550,2170430,30634760,-8363614,-31999993,-5759884 }, { -6845704,15791202,8550074,-1312654,29928809,-12092256,27534430,-7192145,-22351378,12961482 }, }, { { -24492060,-9570771,10368194,11582341,-23397293,-2245287,16533930,8206996,-30194652,-5159638 }, { -11121496,-3382234,2307366,6362031,-135455,8868177,-16835630,7031275,7589640,8945490 }, { -32152748,8917967,6661220,-11677616,-1192060,-15793393,7251489,-11182180,24099109,-14456170 }, }, { { 5019558,-7907470,4244127,-14714356,-26933272,6453165,-19118182,-13289025,-6231896,-10280736 }, { 10853594,10721687,26480089,5861829,-22995819,1972175,-1866647,-10557898,-3363451,-6441124 }, { -17002408,5906790,221599,-6563147,7828208,-13248918,24362661,-2008168,-13866408,7421392 }, }, { { 8139927,-6546497,32257646,-5890546,30375719,1886181,-21175108,15441252,28826358,-4123029 }, { 6267086,9695052,7709135,-16603597,-32869068,-1886135,14795160,-7840124,13746021,-1742048 }, { 28584902,7787108,-6732942,-15050729,22846041,-7571236,-3181936,-363524,4771362,-8419958 }, }, }, { { { 24949256,6376279,-27466481,-8174608,-18646154,-9930606,33543569,-12141695,3569627,11342593 }, { 26514989,4740088,27912651,3697550,19331575,-11472339,6809886,4608608,7325975,-14801071 }, { -11618399,-14554430,-24321212,7655128,-1369274,5214312,-27400540,10258390,-17646694,-8186692 }, }, { { 11431204,15823007,26570245,14329124,18029990,4796082,-31446179,15580664,9280358,-3973687 }, { -160783,-10326257,-22855316,-4304997,-20861367,-13621002,-32810901,-11181622,-15545091,4387441 }, { -20799378,12194512,3937617,-5805892,-27154820,9340370,-24513992,8548137,20617071,-7482001 }, }, { { -938825,-3930586,-8714311,16124718,24603125,-6225393,-13775352,-11875822,24345683,10325460 }, { -19855277,-1568885,-22202708,8714034,14007766,6928528,16318175,-1010689,4766743,3552007 }, { -21751364,-16730916,1351763,-803421,-4009670,3950935,3217514,14481909,10988822,-3994762 }, }, { { 15564307,-14311570,3101243,5684148,30446780,-8051356,12677127,-6505343,-8295852,13296005 }, { -9442290,6624296,-30298964,-11913677,-4670981,-2057379,31521204,9614054,-30000824,12074674 }, { 4771191,-135239,14290749,-13089852,27992298,14998318,-1413936,-1556716,29832613,-16391035 }, }, { { 7064884,-7541174,-19161962,-5067537,-18891269,-2912736,25825242,5293297,-27122660,13101590 }, { -2298563,2439670,-7466610,1719965,-27267541,-16328445,32512469,-5317593,-30356070,-4190957 }, { -30006540,10162316,-33180176,3981723,-16482138,-13070044,14413974,9515896,19568978,9628812 }, }, { { 33053803,199357,15894591,1583059,27380243,-4580435,-17838894,-6106839,-6291786,3437740 }, { -18978877,3884493,19469877,12726490,15913552,13614290,-22961733,70104,7463304,4176122 }, { -27124001,10659917,11482427,-16070381,12771467,-6635117,-32719404,-5322751,24216882,5944158 }, }, { { 8894125,7450974,-2664149,-9765752,-28080517,-12389115,19345746,14680796,11632993,5847885 }, { 26942781,-2315317,9129564,-4906607,26024105,11769399,-11518837,6367194,-9727230,4782140 }, { 19916461,-4828410,-22910704,-11414391,25606324,-5972441,33253853,8220911,6358847,-1873857 }, }, { { 801428,-2081702,16569428,11065167,29875704,96627,7908388,-4480480,-13538503,1387155 }, { 19646058,5720633,-11416706,12814209,11607948,12749789,14147075,15156355,-21866831,11835260 }, { 19299512,1155910,28703737,14890794,2925026,7269399,26121523,15467869,-26560550,5052483 }, }, }, { { { -3017432,10058206,1980837,3964243,22160966,12322533,-6431123,-12618185,12228557,-7003677 }, { 32944382,14922211,-22844894,5188528,21913450,-8719943,4001465,13238564,-6114803,8653815 }, { 22865569,-4652735,27603668,-12545395,14348958,8234005,24808405,5719875,28483275,2841751 }, }, { { -16420968,-1113305,-327719,-12107856,21886282,-15552774,-1887966,-315658,19932058,-12739203 }, { -11656086,10087521,-8864888,-5536143,-19278573,-3055912,3999228,13239134,-4777469,-13910208 }, { 1382174,-11694719,17266790,9194690,-13324356,9720081,20403944,11284705,-14013818,3093230 }, }, { { 16650921,-11037932,-1064178,1570629,-8329746,7352753,-302424,16271225,-24049421,-6691850 }, { -21911077,-5927941,-4611316,-5560156,-31744103,-10785293,24123614,15193618,-21652117,-16739389 }, { -9935934,-4289447,-25279823,4372842,2087473,10399484,31870908,14690798,17361620,11864968 }, }, { { -11307610,6210372,13206574,5806320,-29017692,-13967200,-12331205,-7486601,-25578460,-16240689 }, { 14668462,-12270235,26039039,15305210,25515617,4542480,10453892,6577524,9145645,-6443880 }, { 5974874,3053895,-9433049,-10385191,-31865124,3225009,-7972642,3936128,-5652273,-3050304 }, }, { { 30625386,-4729400,-25555961,-12792866,-20484575,7695099,17097188,-16303496,-27999779,1803632 }, { -3553091,9865099,-5228566,4272701,-5673832,-16689700,14911344,12196514,-21405489,7047412 }, { 20093277,9920966,-11138194,-5343857,13161587,12044805,-32856851,4124601,-32343828,-10257566 }, }, { { -20788824,14084654,-13531713,7842147,19119038,-13822605,4752377,-8714640,-21679658,2288038 }, { -26819236,-3283715,29965059,3039786,-14473765,2540457,29457502,14625692,-24819617,12570232 }, { -1063558,-11551823,16920318,12494842,1278292,-5869109,-21159943,-3498680,-11974704,4724943 }, }, { { 17960970,-11775534,-4140968,-9702530,-8876562,-1410617,-12907383,-8659932,-29576300,1903856 }, { 23134274,-14279132,-10681997,-1611936,20684485,15770816,-12989750,3190296,26955097,14109738 }, { 15308788,5320727,-30113809,-14318877,22902008,7767164,29425325,-11277562,31960942,11934971 }, }, { { -27395711,8435796,4109644,12222639,-24627868,14818669,20638173,4875028,10491392,1379718 }, { -13159415,9197841,3875503,-8936108,-1383712,-5879801,33518459,16176658,21432314,12180697 }, { -11787308,11500838,13787581,-13832590,-22430679,10140205,1465425,12689540,-10301319,-13872883 }, }, }, { { { 5414091,-15386041,-21007664,9643570,12834970,1186149,-2622916,-1342231,26128231,6032912 }, { -26337395,-13766162,32496025,-13653919,17847801,-12669156,3604025,8316894,-25875034,-10437358 }, { 3296484,6223048,24680646,-12246460,-23052020,5903205,-8862297,-4639164,12376617,3188849 }, }, { { 29190488,-14659046,27549113,-1183516,3520066,-10697301,32049515,-7309113,-16109234,-9852307 }, { -14744486,-9309156,735818,-598978,-20407687,-5057904,25246078,-15795669,18640741,-960977 }, { -6928835,-16430795,10361374,5642961,4910474,12345252,-31638386,-494430,10530747,1053335 }, }, { { -29265967,-14186805,-13538216,-12117373,-19457059,-10655384,-31462369,-2948985,24018831,15026644 }, { -22592535,-3145277,-2289276,5953843,-13440189,9425631,25310643,13003497,-2314791,-15145616 }, { -27419985,-603321,-8043984,-1669117,-26092265,13987819,-27297622,187899,-23166419,-2531735 }, }, { { -21744398,-13810475,1844840,5021428,-10434399,-15911473,9716667,16266922,-5070217,726099 }, { 29370922,-6053998,7334071,-15342259,9385287,2247707,-13661962,-4839461,30007388,-15823341 }, { -936379,16086691,23751945,-543318,-1167538,-5189036,9137109,730663,9835848,4555336 }, }, { { -23376435,1410446,-22253753,-12899614,30867635,15826977,17693930,544696,-11985298,12422646 }, { 31117226,-12215734,-13502838,6561947,-9876867,-12757670,-5118685,-4096706,29120153,13924425 }, { -17400879,-14233209,19675799,-2734756,-11006962,-5858820,-9383939,-11317700,7240931,-237388 }, }, { { -31361739,-11346780,-15007447,-5856218,-22453340,-12152771,1222336,4389483,3293637,-15551743 }, { -16684801,-14444245,11038544,11054958,-13801175,-3338533,-24319580,7733547,12796905,-6335822 }, { -8759414,-10817836,-25418864,10783769,-30615557,-9746811,-28253339,3647836,3222231,-11160462 }, }, { { 18606113,1693100,-25448386,-15170272,4112353,10045021,23603893,-2048234,-7550776,2484985 }, { 9255317,-3131197,-12156162,-1004256,13098013,-9214866,16377220,-2102812,-19802075,-3034702 }, { -22729289,7496160,-5742199,11329249,19991973,-3347502,-31718148,9936966,-30097688,-10618797 }, }, { { 21878590,-5001297,4338336,13643897,-3036865,13160960,19708896,5415497,-7360503,-4109293 }, { 27736861,10103576,12500508,8502413,-3413016,-9633558,10436918,-1550276,-23659143,-8132100 }, { 19492550,-12104365,-29681976,-852630,-3208171,12403437,30066266,8367329,13243957,8709688 }, }, }, { { { 12015105,2801261,28198131,10151021,24818120,-4743133,-11194191,-5645734,5150968,7274186 }, { 2831366,-12492146,1478975,6122054,23825128,-12733586,31097299,6083058,31021603,-9793610 }, { -2529932,-2229646,445613,10720828,-13849527,-11505937,-23507731,16354465,15067285,-14147707 }, }, { { 7840942,14037873,-33364863,15934016,-728213,-3642706,21403988,1057586,-19379462,-12403220 }, { 915865,-16469274,15608285,-8789130,-24357026,6060030,-17371319,8410997,-7220461,16527025 }, { 32922597,-556987,20336074,-16184568,10903705,-5384487,16957574,52992,23834301,6588044 }, }, { { 32752030,11232950,3381995,-8714866,22652988,-10744103,17159699,16689107,-20314580,-1305992 }, { -4689649,9166776,-25710296,-10847306,11576752,12733943,7924251,-2752281,1976123,-7249027 }, { 21251222,16309901,-2983015,-6783122,30810597,12967303,156041,-3371252,12331345,-8237197 }, }, { { 8651614,-4477032,-16085636,-4996994,13002507,2950805,29054427,-5106970,10008136,-4667901 }, { 31486080,15114593,-14261250,12951354,14369431,-7387845,16347321,-13662089,8684155,-10532952 }, { 19443825,11385320,24468943,-9659068,-23919258,2187569,-26263207,-6086921,31316348,14219878 }, }, { { -28594490,1193785,32245219,11392485,31092169,15722801,27146014,6992409,29126555,9207390 }, { 32382935,1110093,18477781,11028262,-27411763,-7548111,-4980517,10843782,-7957600,-14435730 }, { 2814918,7836403,27519878,-7868156,-20894015,-11553689,-21494559,8550130,28346258,1994730 }, }, { { -19578299,8085545,-14000519,-3948622,2785838,-16231307,-19516951,7174894,22628102,8115180 }, { -30405132,955511,-11133838,-15078069,-32447087,-13278079,-25651578,3317160,-9943017,930272 }, { -15303681,-6833769,28856490,1357446,23421993,1057177,24091212,-1388970,-22765376,-10650715 }, }, { { -22751231,-5303997,-12907607,-12768866,-15811511,-7797053,-14839018,-16554220,-1867018,8398970 }, { -31969310,2106403,-4736360,1362501,12813763,16200670,22981545,-6291273,18009408,-15772772 }, { -17220923,-9545221,-27784654,14166835,29815394,7444469,29551787,-3727419,19288549,1325865 }, }, { { 15100157,-15835752,-23923978,-1005098,-26450192,15509408,12376730,-3479146,33166107,-8042750 }, { 20909231,13023121,-9209752,16251778,-5778415,-8094914,12412151,10018715,2213263,-13878373 }, { 32529814,-11074689,30361439,-16689753,-9135940,1513226,22922121,6382134,-5766928,8371348 }, }, }, { { { 9923462,11271500,12616794,3544722,-29998368,-1721626,12891687,-8193132,-26442943,10486144 }, { -22597207,-7012665,8587003,-8257861,4084309,-12970062,361726,2610596,-23921530,-11455195 }, { 5408411,-1136691,-4969122,10561668,24145918,14240566,31319731,-4235541,19985175,-3436086 }, }, { { -13994457,16616821,14549246,3341099,32155958,13648976,-17577068,8849297,65030,8370684 }, { -8320926,-12049626,31204563,5839400,-20627288,-1057277,-19442942,6922164,12743482,-9800518 }, { -2361371,12678785,28815050,4759974,-23893047,4884717,23783145,11038569,18800704,255233 }, }, { { -5269658,-1773886,13957886,7990715,23132995,728773,13393847,9066957,19258688,-14753793 }, { -2936654,-10827535,-10432089,14516793,-3640786,4372541,-31934921,2209390,-1524053,2055794 }, { 580882,16705327,5468415,-2683018,-30926419,-14696000,-7203346,-8994389,-30021019,7394435 }, }, { { 23838809,1822728,-15738443,15242727,8318092,-3733104,-21672180,-3492205,-4821741,14799921 }, { 13345610,9759151,3371034,-16137791,16353039,8577942,31129804,13496856,-9056018,7402518 }, { 2286874,-4435931,-20042458,-2008336,-13696227,5038122,11006906,-15760352,8205061,1607563 }, }, { { 14414086,-8002132,3331830,-3208217,22249151,-5594188,18364661,-2906958,30019587,-9029278 }, { -27688051,1585953,-10775053,931069,-29120221,-11002319,-14410829,12029093,9944378,8024 }, { 4368715,-3709630,29874200,-15022983,-20230386,-11410704,-16114594,-999085,-8142388,5640030 }, }, { { 10299610,13746483,11661824,16234854,7630238,5998374,9809887,-16694564,15219798,-14327783 }, { 27425505,-5719081,3055006,10660664,23458024,595578,-15398605,-1173195,-18342183,9742717 }, { 6744077,2427284,26042789,2720740,-847906,1118974,32324614,7406442,12420155,1994844 }, }, { { 14012521,-5024720,-18384453,-9578469,-26485342,-3936439,-13033478,-10909803,24319929,-6446333 }, { 16412690,-4507367,10772641,15929391,-17068788,-4658621,10555945,-10484049,-30102368,-4739048 }, { 22397382,-7767684,-9293161,-12792868,17166287,-9755136,-27333065,6199366,21880021,-12250760 }, }, { { -4283307,5368523,-31117018,8163389,-30323063,3209128,16557151,8890729,8840445,4957760 }, { -15447727,709327,-6919446,-10870178,-29777922,6522332,-21720181,12130072,-14796503,5005757 }, { -2114751,-14308128,23019042,15765735,-25269683,6002752,10183197,-13239326,-16395286,-2176112 }, }, }, { { { -19025756,1632005,13466291,-7995100,-23640451,16573537,-32013908,-3057104,22208662,2000468 }, { 3065073,-1412761,-25598674,-361432,-17683065,-5703415,-8164212,11248527,-3691214,-7414184 }, { 10379208,-6045554,8877319,1473647,-29291284,-12507580,16690915,2553332,-3132688,16400289 }, }, { { 15716668,1254266,-18472690,7446274,-8448918,6344164,-22097271,-7285580,26894937,9132066 }, { 24158887,12938817,11085297,-8177598,-28063478,-4457083,-30576463,64452,-6817084,-2692882 }, { 13488534,7794716,22236231,5989356,25426474,-12578208,2350710,-3418511,-4688006,2364226 }, }, { { 16335052,9132434,25640582,6678888,1725628,8517937,-11807024,-11697457,15445875,-7798101 }, { 29004207,-7867081,28661402,-640412,-12794003,-7943086,31863255,-4135540,-278050,-15759279 }, { -6122061,-14866665,-28614905,14569919,-10857999,-3591829,10343412,-6976290,-29828287,-10815811 }, }, { { 27081650,3463984,14099042,-4517604,1616303,-6205604,29542636,15372179,17293797,960709 }, { 20263915,11434237,-5765435,11236810,13505955,-10857102,-16111345,6493122,-19384511,7639714 }, { -2830798,-14839232,25403038,-8215196,-8317012,-16173699,18006287,-16043750,29994677,-15808121 }, }, { { 9769828,5202651,-24157398,-13631392,-28051003,-11561624,-24613141,-13860782,-31184575,709464 }, { 12286395,13076066,-21775189,-1176622,-25003198,4057652,-32018128,-8890874,16102007,13205847 }, { 13733362,5599946,10557076,3195751,-5557991,8536970,-25540170,8525972,10151379,10394400 }, }, { { 4024660,-16137551,22436262,12276534,-9099015,-2686099,19698229,11743039,-33302334,8934414 }, { -15879800,-4525240,-8580747,-2934061,14634845,-698278,-9449077,3137094,-11536886,11721158 }, { 17555939,-5013938,8268606,2331751,-22738815,9761013,9319229,8835153,-9205489,-1280045 }, }, { { -461409,-7830014,20614118,16688288,-7514766,-4807119,22300304,505429,6108462,-6183415 }, { -5070281,12367917,-30663534,3234473,32617080,-8422642,29880583,-13483331,-26898490,-7867459 }, { -31975283,5726539,26934134,10237677,-3173717,-605053,24199304,3795095,7592688,-14992079 }, }, { { 21594432,-14964228,17466408,-4077222,32537084,2739898,6407723,12018833,-28256052,4298412 }, { -20650503,-11961496,-27236275,570498,3767144,-1717540,13891942,-1569194,13717174,10805743 }, { -14676630,-15644296,15287174,11927123,24177847,-8175568,-796431,14860609,-26938930,-5863836 }, }, }, { { { 12962541,5311799,-10060768,11658280,18855286,-7954201,13286263,-12808704,-4381056,9882022 }, { 18512079,11319350,-20123124,15090309,18818594,5271736,-22727904,3666879,-23967430,-3299429 }, { -6789020,-3146043,16192429,13241070,15898607,-14206114,-10084880,-6661110,-2403099,5276065 }, }, { { 30169808,-5317648,26306206,-11750859,27814964,7069267,7152851,3684982,1449224,13082861 }, { 10342826,3098505,2119311,193222,25702612,12233820,23697382,15056736,-21016438,-8202000 }, { -33150110,3261608,22745853,7948688,19370557,-15177665,-26171976,6482814,-10300080,-11060101 }, }, { { 32869458,-5408545,25609743,15678670,-10687769,-15471071,26112421,2521008,-22664288,6904815 }, { 29506923,4457497,3377935,-9796444,-30510046,12935080,1561737,3841096,-29003639,-6657642 }, { 10340844,-6630377,-18656632,-2278430,12621151,-13339055,30878497,-11824370,-25584551,5181966 }, }, { { 25940115,-12658025,17324188,-10307374,-8671468,15029094,24396252,-16450922,-2322852,-12388574 }, { -21765684,9916823,-1300409,4079498,-1028346,11909559,1782390,12641087,20603771,-6561742 }, { -18882287,-11673380,24849422,11501709,13161720,-4768874,1925523,11914390,4662781,7820689 }, }, { { 12241050,-425982,8132691,9393934,32846760,-1599620,29749456,12172924,16136752,15264020 }, { -10349955,-14680563,-8211979,2330220,-17662549,-14545780,10658213,6671822,19012087,3772772 }, { 3753511,-3421066,10617074,2028709,14841030,-6721664,28718732,-15762884,20527771,12988982 }, }, { { -14822485,-5797269,-3707987,12689773,-898983,-10914866,-24183046,-10564943,3299665,-12424953 }, { -16777703,-15253301,-9642417,4978983,3308785,8755439,6943197,6461331,-25583147,8991218 }, { -17226263,1816362,-1673288,-6086439,31783888,-8175991,-32948145,7417950,-30242287,1507265 }, }, { { 29692663,6829891,-10498800,4334896,20945975,-11906496,-28887608,8209391,14606362,-10647073 }, { -3481570,8707081,32188102,5672294,22096700,1711240,-33020695,9761487,4170404,-2085325 }, { -11587470,14855945,-4127778,-1531857,-26649089,15084046,22186522,16002000,-14276837,-8400798 }, }, { { -4811456,13761029,-31703877,-2483919,-3312471,7869047,-7113572,-9620092,13240845,10965870 }, { -7742563,-8256762,-14768334,-13656260,-23232383,12387166,4498947,14147411,29514390,4302863 }, { -13413405,-12407859,20757302,-13801832,14785143,8976368,-5061276,-2144373,17846988,-13971927 }, }, }, { { { -2244452,-754728,-4597030,-1066309,-6247172,1455299,-21647728,-9214789,-5222701,12650267 }, { -9906797,-16070310,21134160,12198166,-27064575,708126,387813,13770293,-19134326,10958663 }, { 22470984,12369526,23446014,-5441109,-21520802,-9698723,-11772496,-11574455,-25083830,4271862 }, }, { { -25169565,-10053642,-19909332,15361595,-5984358,2159192,75375,-4278529,-32526221,8469673 }, { 15854970,4148314,-8893890,7259002,11666551,13824734,-30531198,2697372,24154791,-9460943 }, { 15446137,-15806644,29759747,14019369,30811221,-9610191,-31582008,12840104,24913809,9815020 }, }, { { -4709286,-5614269,-31841498,-12288893,-14443537,10799414,-9103676,13438769,18735128,9466238 }, { 11933045,9281483,5081055,-5183824,-2628162,-4905629,-7727821,-10896103,-22728655,16199064 }, { 14576810,379472,-26786533,-8317236,-29426508,-10812974,-102766,1876699,30801119,2164795 }, }, { { 15995086,3199873,13672555,13712240,-19378835,-4647646,-13081610,-15496269,-13492807,1268052 }, { -10290614,-3659039,-3286592,10948818,23037027,3794475,-3470338,-12600221,-17055369,3565904 }, { 29210088,-9419337,-5919792,-4952785,10834811,-13327726,-16512102,-10820713,-27162222,-14030531 }, }, { { -13161890,15508588,16663704,-8156150,-28349942,9019123,-29183421,-3769423,2244111,-14001979 }, { -5152875,-3800936,-9306475,-6071583,16243069,14684434,-25673088,-16180800,13491506,4641841 }, { 10813417,643330,-19188515,-728916,30292062,-16600078,27548447,-7721242,14476989,-12767431 }, }, { { 10292079,9984945,6481436,8279905,-7251514,7032743,27282937,-1644259,-27912810,12651324 }, { -31185513,-813383,22271204,11835308,10201545,15351028,17099662,3988035,21721536,-3148940 }, { 10202177,-6545839,-31373232,-9574638,-32150642,-8119683,-12906320,3852694,13216206,14842320 }, }, { { -15815640,-10601066,-6538952,-7258995,-6984659,-6581778,-31500847,13765824,-27434397,9900184 }, { 14465505,-13833331,-32133984,-14738873,-27443187,12990492,33046193,15796406,-7051866,-8040114 }, { 30924417,-8279620,6359016,-12816335,16508377,9071735,-25488601,15413635,9524356,-7018878 }, }, { { 12274201,-13175547,32627641,-1785326,6736625,13267305,5237659,-5109483,15663516,4035784 }, { -2951309,8903985,17349946,601635,-16432815,-4612556,-13732739,-15889334,-22258478,4659091 }, { -16916263,-4952973,-30393711,-15158821,20774812,15897498,5736189,15026997,-2178256,-13455585 }, }, }, { { { -8858980,-2219056,28571666,-10155518,-474467,-10105698,-3801496,278095,23440562,-290208 }, { 10226241,-5928702,15139956,120818,-14867693,5218603,32937275,11551483,-16571960,-7442864 }, { 17932739,-12437276,-24039557,10749060,11316803,7535897,22503767,5561594,-3646624,3898661 }, }, { { 7749907,-969567,-16339731,-16464,-25018111,15122143,-1573531,7152530,21831162,1245233 }, { 26958459,-14658026,4314586,8346991,-5677764,11960072,-32589295,-620035,-30402091,-16716212 }, { -12165896,9166947,33491384,13673479,29787085,13096535,6280834,14587357,-22338025,13987525 }, }, { { -24349909,7778775,21116000,15572597,-4833266,-5357778,-4300898,-5124639,-7469781,-2858068 }, { 9681908,-6737123,-31951644,13591838,-6883821,386950,31622781,6439245,-14581012,4091397 }, { -8426427,1470727,-28109679,-1596990,3978627,-5123623,-19622683,12092163,29077877,-14741988 }, }, { { 5269168,-6859726,-13230211,-8020715,25932563,1763552,-5606110,-5505881,-20017847,2357889 }, { 32264008,-15407652,-5387735,-1160093,-2091322,-3946900,23104804,-12869908,5727338,189038 }, { 14609123,-8954470,-6000566,-16622781,-14577387,-7743898,-26745169,10942115,-25888931,-14884697 }, }, { { 20513500,5557931,-15604613,7829531,26413943,-2019404,-21378968,7471781,13913677,-5137875 }, { -25574376,11967826,29233242,12948236,-6754465,4713227,-8940970,14059180,12878652,8511905 }, { -25656801,3393631,-2955415,-7075526,-2250709,9366908,-30223418,6812974,5568676,-3127656 }, }, { { 11630004,12144454,2116339,13606037,27378885,15676917,-17408753,-13504373,-14395196,8070818 }, { 27117696,-10007378,-31282771,-5570088,1127282,12772488,-29845906,10483306,-11552749,-1028714 }, { 10637467,-5688064,5674781,1072708,-26343588,-6982302,-1683975,9177853,-27493162,15431203 }, }, { { 20525145,10892566,-12742472,12779443,-29493034,16150075,-28240519,14943142,-15056790,-7935931 }, { -30024462,5626926,-551567,-9981087,753598,11981191,25244767,-3239766,-3356550,9594024 }, { -23752644,2636870,-5163910,-10103818,585134,7877383,11345683,-6492290,13352335,-10977084 }, }, { { -1931799,-5407458,3304649,-12884869,17015806,-4877091,-29783850,-7752482,-13215537,-319204 }, { 20239939,6607058,6203985,3483793,-18386976,-779229,-20723742,15077870,-22750759,14523817 }, { 27406042,-6041657,27423596,-4497394,4996214,10002360,-28842031,-4545494,-30172742,-4805667 }, }, }, { { { 11374242,12660715,17861383,-12540833,10935568,1099227,-13886076,-9091740,-27727044,11358504 }, { -12730809,10311867,1510375,10778093,-2119455,-9145702,32676003,11149336,-26123651,4985768 }, { -19096303,341147,-6197485,-239033,15756973,-8796662,-983043,13794114,-19414307,-15621255 }, }, { { 6490081,11940286,25495923,-7726360,8668373,-8751316,3367603,6970005,-1691065,-9004790 }, { 1656497,13457317,15370807,6364910,13605745,8362338,-19174622,-5475723,-16796596,-5031438 }, { -22273315,-13524424,-64685,-4334223,-18605636,-10921968,-20571065,-7007978,-99853,-10237333 }, }, { { 17747465,10039260,19368299,-4050591,-20630635,-16041286,31992683,-15857976,-29260363,-5511971 }, { 31932027,-4986141,-19612382,16366580,22023614,88450,11371999,-3744247,4882242,-10626905 }, { 29796507,37186,19818052,10115756,-11829032,3352736,18551198,3272828,-5190932,-4162409 }, }, { { 12501286,4044383,-8612957,-13392385,-32430052,5136599,-19230378,-3529697,330070,-3659409 }, { 6384877,2899513,17807477,7663917,-2358888,12363165,25366522,-8573892,-271295,12071499 }, { -8365515,-4042521,25133448,-4517355,-6211027,2265927,-32769618,1936675,-5159697,3829363 }, }, { { 28425966,-5835433,-577090,-4697198,-14217555,6870930,7921550,-6567787,26333140,14267664 }, { -11067219,11871231,27385719,-10559544,-4585914,-11189312,10004786,-8709488,-21761224,8930324 }, { -21197785,-16396035,25654216,-1725397,12282012,11008919,1541940,4757911,-26491501,-16408940 }, }, { { 13537262,-7759490,-20604840,10961927,-5922820,-13218065,-13156584,6217254,-15943699,13814990 }, { -17422573,15157790,18705543,29619,24409717,-260476,27361681,9257833,-1956526,-1776914 }, { -25045300,-10191966,15366585,15166509,-13105086,8423556,-29171540,12361135,-18685978,4578290 }, }, { { 24579768,3711570,1342322,-11180126,-27005135,14124956,-22544529,14074919,21964432,8235257 }, { -6528613,-2411497,9442966,-5925588,12025640,-1487420,-2981514,-1669206,13006806,2355433 }, { -16304899,-13605259,-6632427,-5142349,16974359,-10911083,27202044,1719366,1141648,-12796236 }, }, { { -12863944,-13219986,-8318266,-11018091,-6810145,-4843894,13475066,-3133972,32674895,13715045 }, { 11423335,-5468059,32344216,8962751,24989809,9241752,-13265253,16086212,-28740881,-15642093 }, { -1409668,12530728,-6368726,10847387,19531186,-14132160,-11709148,7791794,-27245943,4383347 }, }, }, { { { -28970898,5271447,-1266009,-9736989,-12455236,16732599,-4862407,-4906449,27193557,6245191 }, { -15193956,5362278,-1783893,2695834,4960227,12840725,23061898,3260492,22510453,8577507 }, { -12632451,11257346,-32692994,13548177,-721004,10879011,31168030,13952092,-29571492,-3635906 }, }, { { 3877321,-9572739,32416692,5405324,-11004407,-13656635,3759769,11935320,5611860,8164018 }, { -16275802,14667797,15906460,12155291,-22111149,-9039718,32003002,-8832289,5773085,-8422109 }, { -23788118,-8254300,1950875,8937633,18686727,16459170,-905725,12376320,31632953,190926 }, }, { { -24593607,-16138885,-8423991,13378746,14162407,6901328,-8288749,4508564,-25341555,-3627528 }, { 8884438,-5884009,6023974,10104341,-6881569,-4941533,18722941,-14786005,-1672488,827625 }, { -32720583,-16289296,-32503547,7101210,13354605,2659080,-1800575,-14108036,-24878478,1541286 }, }, { { 2901347,-1117687,3880376,-10059388,-17620940,-3612781,-21802117,-3567481,20456845,-1885033 }, { 27019610,12299467,-13658288,-1603234,-12861660,-4861471,-19540150,-5016058,29439641,15138866 }, { 21536104,-6626420,-32447818,-10690208,-22408077,5175814,-5420040,-16361163,7779328,109896 }, }, { { 30279744,14648750,-8044871,6425558,13639621,-743509,28698390,12180118,23177719,-554075 }, { 26572847,3405927,-31701700,12890905,-19265668,5335866,-6493768,2378492,4439158,-13279347 }, { -22716706,3489070,-9225266,-332753,18875722,-1140095,14819434,-12731527,-17717757,-5461437 }, }, { { -5056483,16566551,15953661,3767752,-10436499,15627060,-820954,2177225,8550082,-15114165 }, { -18473302,16596775,-381660,15663611,22860960,15585581,-27844109,-3582739,-23260460,-8428588 }, { -32480551,15707275,-8205912,-5652081,29464558,2713815,-22725137,15860482,-21902570,1494193 }, }, { { -19562091,-14087393,-25583872,-9299552,13127842,759709,21923482,16529112,8742704,12967017 }, { -28464899,1553205,32536856,-10473729,-24691605,-406174,-8914625,-2933896,-29903758,15553883 }, { 21877909,3230008,9881174,10539357,-4797115,2841332,11543572,14513274,19375923,-12647961 }, }, { { 8832269,-14495485,13253511,5137575,5037871,4078777,24880818,-6222716,2862653,9455043 }, { 29306751,5123106,20245049,-14149889,9592566,8447059,-2077124,-2990080,15511449,4789663 }, { -20679756,7004547,8824831,-9434977,-4045704,-3750736,-5754762,108893,23513200,16652362 }, }, }, { { { -33256173,4144782,-4476029,-6579123,10770039,-7155542,-6650416,-12936300,-18319198,10212860 }, { 2756081,8598110,7383731,-6859892,22312759,-1105012,21179801,2600940,-9988298,-12506466 }, { -24645692,13317462,-30449259,-15653928,21365574,-10869657,11344424,864440,-2499677,-16710063 }, }, { { -26432803,6148329,-17184412,-14474154,18782929,-275997,-22561534,211300,2719757,4940997 }, { -1323882,3911313,-6948744,14759765,-30027150,7851207,21690126,8518463,26699843,5276295 }, { -13149873,-6429067,9396249,365013,24703301,-10488939,1321586,149635,-15452774,7159369 }, }, { { 9987780,-3404759,17507962,9505530,9731535,-2165514,22356009,8312176,22477218,-8403385 }, { 18155857,-16504990,19744716,9006923,15154154,-10538976,24256460,-4864995,-22548173,9334109 }, { 2986088,-4911893,10776628,-3473844,10620590,-7083203,-21413845,14253545,-22587149,536906 }, }, { { 4377756,8115836,24567078,15495314,11625074,13064599,7390551,10589625,10838060,-15420424 }, { -19342404,867880,9277171,-3218459,-14431572,-1986443,19295826,-15796950,6378260,699185 }, { 7895026,4057113,-7081772,-13077756,-17886831,-323126,-716039,15693155,-5045064,-13373962 }, }, { { -7737563,-5869402,-14566319,-7406919,11385654,13201616,31730678,-10962840,-3918636,-9669325 }, { 10188286,-15770834,-7336361,13427543,22223443,14896287,30743455,7116568,-21786507,5427593 }, { 696102,13206899,27047647,-10632082,15285305,-9853179,10798490,-4578720,19236243,12477404 }, }, { { -11229439,11243796,-17054270,-8040865,-788228,-8167967,-3897669,11180504,-23169516,7733644 }, { 17800790,-14036179,-27000429,-11766671,23887827,3149671,23466177,-10538171,10322027,15313801 }, { 26246234,11968874,32263343,-5468728,6830755,-13323031,-15794704,-101982,-24449242,10890804 }, }, { { -31365647,10271363,-12660625,-6267268,16690207,-13062544,-14982212,16484931,25180797,-5334884 }, { -586574,10376444,-32586414,-11286356,19801893,10997610,2276632,9482883,316878,13820577 }, { -9882808,-4510367,-2115506,16457136,-11100081,11674996,30756178,-7515054,30696930,-3712849 }, }, { { 32988917,-9603412,12499366,7910787,-10617257,-11931514,-7342816,-9985397,-32349517,7392473 }, { -8855661,15927861,9866406,-3649411,-2396914,-16655781,-30409476,-9134995,25112947,-2926644 }, { -2504044,-436966,25621774,-5678772,15085042,-5479877,-24884878,-13526194,5537438,-13914319 }, }, }, { { { -11225584,2320285,-9584280,10149187,-33444663,5808648,-14876251,-1729667,31234590,6090599 }, { -9633316,116426,26083934,2897444,-6364437,-2688086,609721,15878753,-6970405,-9034768 }, { -27757857,247744,-15194774,-9002551,23288161,-10011936,-23869595,6503646,20650474,1804084 }, }, { { -27589786,15456424,8972517,8469608,15640622,4439847,3121995,-10329713,27842616,-202328 }, { -15306973,2839644,22530074,10026331,4602058,5048462,28248656,5031932,-11375082,12714369 }, { 20807691,-7270825,29286141,11421711,-27876523,-13868230,-21227475,1035546,-19733229,12796920 }, }, { { 12076899,-14301286,-8785001,-11848922,-25012791,16400684,-17591495,-12899438,3480665,-15182815 }, { -32361549,5457597,28548107,7833186,7303070,-11953545,-24363064,-15921875,-33374054,2771025 }, { -21389266,421932,26597266,6860826,22486084,-6737172,-17137485,-4210226,-24552282,15673397 }, }, { { -20184622,2338216,19788685,-9620956,-4001265,-8740893,-20271184,4733254,3727144,-12934448 }, { 6120119,814863,-11794402,-622716,6812205,-15747771,2019594,7975683,31123697,-10958981 }, { 30069250,-11435332,30434654,2958439,18399564,-976289,12296869,9204260,-16432438,9648165 }, }, { { 32705432,-1550977,30705658,7451065,-11805606,9631813,3305266,5248604,-26008332,-11377501 }, { 17219865,2375039,-31570947,-5575615,-19459679,9219903,294711,15298639,2662509,-16297073 }, { -1172927,-7558695,-4366770,-4287744,-21346413,-8434326,32087529,-1222777,32247248,-14389861 }, }, { { 14312628,1221556,17395390,-8700143,-4945741,-8684635,-28197744,-9637817,-16027623,-13378845 }, { -1428825,-9678990,-9235681,6549687,-7383069,-468664,23046502,9803137,17597934,2346211 }, { 18510800,15337574,26171504,981392,-22241552,7827556,-23491134,-11323352,3059833,-11782870 }, }, { { 10141598,6082907,17829293,-1947643,9830092,13613136,-25556636,-5544586,-33502212,3592096 }, { 33114168,-15889352,-26525686,-13343397,33076705,8716171,1151462,1521897,-982665,-6837803 }, { -32939165,-4255815,23947181,-324178,-33072974,-12305637,-16637686,3891704,26353178,693168 }, }, { { 30374239,1595580,-16884039,13186931,4600344,406904,9585294,-400668,31375464,14369965 }, { -14370654,-7772529,1510301,6434173,-18784789,-6262728,32732230,-13108839,17901441,16011505 }, { 18171223,-11934626,-12500402,15197122,-11038147,-15230035,-19172240,-16046376,8764035,12309598 }, }, }, { { { 5975908,-5243188,-19459362,-9681747,-11541277,14015782,-23665757,1228319,17544096,-10593782 }, { 5811932,-1715293,3442887,-2269310,-18367348,-8359541,-18044043,-15410127,-5565381,12348900 }, { -31399660,11407555,25755363,6891399,-3256938,14872274,-24849353,8141295,-10632534,-585479 }, }, { { -12675304,694026,-5076145,13300344,14015258,-14451394,-9698672,-11329050,30944593,1130208 }, { 8247766,-6710942,-26562381,-7709309,-14401939,-14648910,4652152,2488540,23550156,-271232 }, { 17294316,-3788438,7026748,15626851,22990044,113481,2267737,-5908146,-408818,-137719 }, }, { { 16091085,-16253926,18599252,7340678,2137637,-1221657,-3364161,14550936,3260525,-7166271 }, { -4910104,-13332887,18550887,10864893,-16459325,-7291596,-23028869,-13204905,-12748722,2701326 }, { -8574695,16099415,4629974,-16340524,-20786213,-6005432,-10018363,9276971,11329923,1862132 }, }, { { 14763076,-15903608,-30918270,3689867,3511892,10313526,-21951088,12219231,-9037963,-940300 }, { 8894987,-3446094,6150753,3013931,301220,15693451,-31981216,-2909717,-15438168,11595570 }, { 15214962,3537601,-26238722,-14058872,4418657,-15230761,13947276,10730794,-13489462,-4363670 }, }, { { -2538306,7682793,32759013,263109,-29984731,-7955452,-22332124,-10188635,977108,699994 }, { -12466472,4195084,-9211532,550904,-15565337,12917920,19118110,-439841,-30534533,-14337913 }, { 31788461,-14507657,4799989,7372237,8808585,-14747943,9408237,-10051775,12493932,-5409317 }, }, { { -25680606,5260744,-19235809,-6284470,-3695942,16566087,27218280,2607121,29375955,6024730 }, { 842132,-2794693,-4763381,-8722815,26332018,-12405641,11831880,6985184,-9940361,2854096 }, { -4847262,-7969331,2516242,-5847713,9695691,-7221186,16512645,960770,12121869,16648078 }, }, { { -15218652,14667096,-13336229,2013717,30598287,-464137,-31504922,-7882064,20237806,2838411 }, { -19288047,4453152,15298546,-16178388,22115043,-15972604,12544294,-13470457,1068881,-12499905 }, { -9558883,-16518835,33238498,13506958,30505848,-1114596,-8486907,-2630053,12521378,4845654 }, }, { { -28198521,10744108,-2958380,10199664,7759311,-13088600,3409348,-873400,-6482306,-12885870 }, { -23561822,6230156,-20382013,10655314,-24040585,-11621172,10477734,-1240216,-3113227,13974498 }, { 12966261,15550616,-32038948,-1615346,21025980,-629444,5642325,7188737,18895762,12629579 }, }, }, { { { 14741879,-14946887,22177208,-11721237,1279741,8058600,11758140,789443,32195181,3895677 }, { 10758205,15755439,-4509950,9243698,-4879422,6879879,-2204575,-3566119,-8982069,4429647 }, { -2453894,15725973,-20436342,-10410672,-5803908,-11040220,-7135870,-11642895,18047436,-15281743 }, }, { { -25173001,-11307165,29759956,11776784,-22262383,-15820455,10993114,-12850837,-17620701,-9408468 }, { 21987233,700364,-24505048,14972008,-7774265,-5718395,32155026,2581431,-29958985,8773375 }, { -25568350,454463,-13211935,16126715,25240068,8594567,20656846,12017935,-7874389,-13920155 }, }, { { 6028182,6263078,-31011806,-11301710,-818919,2461772,-31841174,-5468042,-1721788,-2776725 }, { -12278994,16624277,987579,-5922598,32908203,1248608,7719845,-4166698,28408820,6816612 }, { -10358094,-8237829,19549651,-12169222,22082623,16147817,20613181,13982702,-10339570,5067943 }, }, { { -30505967,-3821767,12074681,13582412,-19877972,2443951,-19719286,12746132,5331210,-10105944 }, { 30528811,3601899,-1957090,4619785,-27361822,-15436388,24180793,-12570394,27679908,-1648928 }, { 9402404,-13957065,32834043,10838634,-26580150,-13237195,26653274,-8685565,22611444,-12715406 }, }, { { 22190590,1118029,22736441,15130463,-30460692,-5991321,19189625,-4648942,4854859,6622139 }, { -8310738,-2953450,-8262579,-3388049,-10401731,-271929,13424426,-3567227,26404409,13001963 }, { -31241838,-15415700,-2994250,8939346,11562230,-12840670,-26064365,-11621720,-15405155,11020693 }, }, { { 1866042,-7949489,-7898649,-10301010,12483315,13477547,3175636,-12424163,28761762,1406734 }, { -448555,-1777666,13018551,3194501,-9580420,-11161737,24760585,-4347088,25577411,-13378680 }, { -24290378,4759345,-690653,-1852816,2066747,10693769,-29595790,9884936,-9368926,4745410 }, }, { { -9141284,6049714,-19531061,-4341411,-31260798,9944276,-15462008,-11311852,10931924,-11931931 }, { -16561513,14112680,-8012645,4817318,-8040464,-11414606,-22853429,10856641,-20470770,13434654 }, { 22759489,-10073434,-16766264,-1871422,13637442,-10168091,1765144,-12654326,28445307,-5364710 }, }, { { 29875063,12493613,2795536,-3786330,1710620,15181182,-10195717,-8788675,9074234,1167180 }, { -26205683,11014233,-9842651,-2635485,-26908120,7532294,-18716888,-9535498,3843903,9367684 }, { -10969595,-6403711,9591134,9582310,11349256,108879,16235123,8601684,-139197,4242895 }, }, }, { { { 22092954,-13191123,-2042793,-11968512,32186753,-11517388,-6574341,2470660,-27417366,16625501 }, { -11057722,3042016,13770083,-9257922,584236,-544855,-7770857,2602725,-27351616,14247413 }, { 6314175,-10264892,-32772502,15957557,-10157730,168750,-8618807,14290061,27108877,-1180880 }, }, { { -8586597,-7170966,13241782,10960156,-32991015,-13794596,33547976,-11058889,-27148451,981874 }, { 22833440,9293594,-32649448,-13618667,-9136966,14756819,-22928859,-13970780,-10479804,-16197962 }, { -7768587,3326786,-28111797,10783824,19178761,14905060,22680049,13906969,-15933690,3797899 }, }, { { 21721356,-4212746,-12206123,9310182,-3882239,-13653110,23740224,-2709232,20491983,-8042152 }, { 9209270,-15135055,-13256557,-6167798,-731016,15289673,25947805,15286587,30997318,-6703063 }, { 7392032,16618386,23946583,-8039892,-13265164,-1533858,-14197445,-2321576,17649998,-250080 }, }, { { -9301088,-14193827,30609526,-3049543,-25175069,-1283752,-15241566,-9525724,-2233253,7662146 }, { -17558673,1763594,-33114336,15908610,-30040870,-12174295,7335080,-8472199,-3174674,3440183 }, { -19889700,-5977008,-24111293,-9688870,10799743,-16571957,40450,-4431835,4862400,1133 }, }, { { -32856209,-7873957,-5422389,14860950,-16319031,7956142,7258061,311861,-30594991,-7379421 }, { -3773428,-1565936,28985340,7499440,24445838,9325937,29727763,16527196,18278453,15405622 }, { -4381906,8508652,-19898366,-3674424,-5984453,15149970,-13313598,843523,-21875062,13626197 }, }, { { 2281448,-13487055,-10915418,-2609910,1879358,16164207,-10783882,3953792,13340839,15928663 }, { 31727126,-7179855,-18437503,-8283652,2875793,-16390330,-25269894,-7014826,-23452306,5964753 }, { 4100420,-5959452,-17179337,6017714,-18705837,12227141,-26684835,11344144,2538215,-7570755 }, }, { { -9433605,6123113,11159803,-2156608,30016280,14966241,-20474983,1485421,-629256,-15958862 }, { -26804558,4260919,11851389,9658551,-32017107,16367492,-20205425,-13191288,11659922,-11115118 }, { 26180396,10015009,-30844224,-8581293,5418197,9480663,2231568,-10170080,33100372,-1306171 }, }, { { 15121113,-5201871,-10389905,15427821,-27509937,-15992507,21670947,4486675,-5931810,-14466380 }, { 16166486,-9483733,-11104130,6023908,-31926798,-1364923,2340060,-16254968,-10735770,-10039824 }, { 28042865,-3557089,-12126526,12259706,-3717498,-6945899,6766453,-8689599,18036436,5803270 }, }, }, { { { -817581,6763912,11803561,1585585,10958447,-2671165,23855391,4598332,-6159431,-14117438 }, { -31031306,-14256194,17332029,-2383520,31312682,-5967183,696309,50292,-20095739,11763584 }, { -594563,-2514283,-32234153,12643980,12650761,14811489,665117,-12613632,-19773211,-10713562 }, }, { { 30464590,-11262872,-4127476,-12734478,19835327,-7105613,-24396175,2075773,-17020157,992471 }, { 18357185,-6994433,7766382,16342475,-29324918,411174,14578841,8080033,-11574335,-10601610 }, { 19598397,10334610,12555054,2555664,18821899,-10339780,21873263,16014234,26224780,16452269 }, }, { { -30223925,5145196,5944548,16385966,3976735,2009897,-11377804,-7618186,-20533829,3698650 }, { 14187449,3448569,-10636236,-10810935,-22663880,-3433596,7268410,-10890444,27394301,12015369 }, { 19695761,16087646,28032085,12999827,6817792,11427614,20244189,-1312777,-13259127,-3402461 }, }, { { 30860103,12735208,-1888245,-4699734,-16974906,2256940,-8166013,12298312,-8550524,-10393462 }, { -5719826,-11245325,-1910649,15569035,26642876,-7587760,-5789354,-15118654,-4976164,12651793 }, { -2848395,9953421,11531313,-5282879,26895123,-12697089,-13118820,-16517902,9768698,-2533218 }, }, { { -24719459,1894651,-287698,-4704085,15348719,-8156530,32767513,12765450,4940095,10678226 }, { 18860224,15980149,-18987240,-1562570,-26233012,-11071856,-7843882,13944024,-24372348,16582019 }, { -15504260,4970268,-29893044,4175593,-20993212,-2199756,-11704054,15444560,-11003761,7989037 }, }, { { 31490452,5568061,-2412803,2182383,-32336847,4531686,-32078269,6200206,-19686113,-14800171 }, { -17308668,-15879940,-31522777,-2831,-32887382,16375549,8680158,-16371713,28550068,-6857132 }, { -28126887,-5688091,16837845,-1820458,-6850681,12700016,-30039981,4364038,1155602,5988841 }, }, { { 21890435,-13272907,-12624011,12154349,-7831873,15300496,23148983,-4470481,24618407,8283181 }, { -33136107,-10512751,9975416,6841041,-31559793,16356536,3070187,-7025928,1466169,10740210 }, { -1509399,-15488185,-13503385,-10655916,32799044,909394,-13938903,-5779719,-32164649,-15327040 }, }, { { 3960823,-14267803,-28026090,-15918051,-19404858,13146868,15567327,951507,-3260321,-573935 }, { 24740841,5052253,-30094131,8961361,25877428,6165135,-24368180,14397372,-7380369,-6144105 }, { -28888365,3510803,-28103278,-1158478,-11238128,-10631454,-15441463,-14453128,-1625486,-6494814 }, }, }, { { { 793299,-9230478,8836302,-6235707,-27360908,-2369593,33152843,-4885251,-9906200,-621852 }, { 5666233,525582,20782575,-8038419,-24538499,14657740,16099374,1468826,-6171428,-15186581 }, { -4859255,-3779343,-2917758,-6748019,7778750,11688288,-30404353,-9871238,-1558923,-9863646 }, }, { { 10896332,-7719704,824275,472601,-19460308,3009587,25248958,14783338,-30581476,-15757844 }, { 10566929,12612572,-31944212,11118703,-12633376,12362879,21752402,8822496,24003793,14264025 }, { 27713862,-7355973,-11008240,9227530,27050101,2504721,23886875,-13117525,13958495,-5732453 }, }, { { -23481610,4867226,-27247128,3900521,29838369,-8212291,-31889399,-10041781,7340521,-15410068 }, { 4646514,-8011124,-22766023,-11532654,23184553,8566613,31366726,-1381061,-15066784,-10375192 }, { -17270517,12723032,-16993061,14878794,21619651,-6197576,27584817,3093888,-8843694,3849921 }, }, { { -9064912,2103172,25561640,-15125738,-5239824,9582958,32477045,-9017955,5002294,-15550259 }, { -12057553,-11177906,21115585,-13365155,8808712,-12030708,16489530,13378448,-25845716,12741426 }, { -5946367,10645103,-30911586,15390284,-3286982,-7118677,24306472,15852464,28834118,-7646072 }, }, { { -17335748,-9107057,-24531279,9434953,-8472084,-583362,-13090771,455841,20461858,5491305 }, { 13669248,-16095482,-12481974,-10203039,-14569770,-11893198,-24995986,11293807,-28588204,-9421832 }, { 28497928,6272777,-33022994,14470570,8906179,-1225630,18504674,-14165166,29867745,-8795943 }, }, { { -16207023,13517196,-27799630,-13697798,24009064,-6373891,-6367600,-13175392,22853429,-4012011 }, { 24191378,16712145,-13931797,15217831,14542237,1646131,18603514,-11037887,12876623,-2112447 }, { 17902668,4518229,-411702,-2829247,26878217,5258055,-12860753,608397,16031844,3723494 }, }, { { -28632773,12763728,-20446446,7577504,33001348,-13017745,17558842,-7872890,23896954,-4314245 }, { -20005381,-12011952,31520464,605201,2543521,5991821,-2945064,7229064,-9919646,-8826859 }, { 28816045,298879,-28165016,-15920938,19000928,-1665890,-12680833,-2949325,-18051778,-2082915 }, }, { { 16000882,-344896,3493092,-11447198,-29504595,-13159789,12577740,16041268,-19715240,7847707 }, { 10151868,10572098,27312476,7922682,14825339,4723128,-32855931,-6519018,-10020567,3852848 }, { -11430470,15697596,-21121557,-4420647,5386314,15063598,16514493,-15932110,29330899,-15076224 }, }, }, { { { -25499735,-4378794,-15222908,-6901211,16615731,2051784,3303702,15490,-27548796,12314391 }, { 15683520,-6003043,18109120,-9980648,15337968,-5997823,-16717435,15921866,16103996,-3731215 }, { -23169824,-10781249,13588192,-1628807,-3798557,-1074929,-19273607,5402699,-29815713,-9841101 }, }, { { 23190676,2384583,-32714340,3462154,-29903655,-1529132,-11266856,8911517,-25205859,2739713 }, { 21374101,-3554250,-33524649,9874411,15377179,11831242,-33529904,6134907,4931255,11987849 }, { -7732,-2978858,-16223486,7277597,105524,-322051,-31480539,13861388,-30076310,10117930 }, }, { { -29501170,-10744872,-26163768,13051539,-25625564,5089643,-6325503,6704079,12890019,15728940 }, { -21972360,-11771379,-951059,-4418840,14704840,2695116,903376,-10428139,12885167,8311031 }, { -17516482,5352194,10384213,-13811658,7506451,13453191,26423267,4384730,1888765,-5435404 }, }, { { -25817338,-3107312,-13494599,-3182506,30896459,-13921729,-32251644,-12707869,-19464434,-3340243 }, { -23607977,-2665774,-526091,4651136,5765089,4618330,6092245,14845197,17151279,-9854116 }, { -24830458,-12733720,-15165978,10367250,-29530908,-265356,22825805,-7087279,-16866484,16176525 }, }, { { -23583256,6564961,20063689,3798228,-4740178,7359225,2006182,-10363426,-28746253,-10197509 }, { -10626600,-4486402,-13320562,-5125317,3432136,-6393229,23632037,-1940610,32808310,1099883 }, { 15030977,5768825,-27451236,-2887299,-6427378,-15361371,-15277896,-6809350,2051441,-15225865 }, }, { { -3362323,-7239372,7517890,9824992,23555850,295369,5148398,-14154188,-22686354,16633660 }, { 4577086,-16752288,13249841,-15304328,19958763,-14537274,18559670,-10759549,8402478,-9864273 }, { -28406330,-1051581,-26790155,-907698,-17212414,-11030789,9453451,-14980072,17983010,9967138 }, }, { { -25762494,6524722,26585488,9969270,24709298,1220360,-1677990,7806337,17507396,3651560 }, { -10420457,-4118111,14584639,15971087,-15768321,8861010,26556809,-5574557,-18553322,-11357135 }, { 2839101,14284142,4029895,3472686,14402957,12689363,-26642121,8459447,-5605463,-7621941 }, }, { { -4839289,-3535444,9744961,2871048,25113978,3187018,-25110813,-849066,17258084,-7977739 }, { 18164541,-10595176,-17154882,-1542417,19237078,-9745295,23357533,-15217008,26908270,12150756 }, { -30264870,-7647865,5112249,-7036672,-1499807,-6974257,43168,-5537701,-32302074,16215819 }, }, }, { { { -6898905,9824394,-12304779,-4401089,-31397141,-6276835,32574489,12532905,-7503072,-8675347 }, { -27343522,-16515468,-27151524,-10722951,946346,16291093,254968,7168080,21676107,-1943028 }, { 21260961,-8424752,-16831886,-11920822,-23677961,3968121,-3651949,-6215466,-3556191,-7913075 }, }, { { 16544754,13250366,-16804428,15546242,-4583003,12757258,-2462308,-8680336,-18907032,-9662799 }, { -2415239,-15577728,18312303,4964443,-15272530,-12653564,26820651,16690659,25459437,-4564609 }, { -25144690,11425020,28423002,-11020557,-6144921,-15826224,9142795,-2391602,-6432418,-1644817 }, }, { { -23104652,6253476,16964147,-3768872,-25113972,-12296437,-27457225,-16344658,6335692,7249989 }, { -30333227,13979675,7503222,-12368314,-11956721,-4621693,-30272269,2682242,25993170,-12478523 }, { 4364628,5930691,32304656,-10044554,-8054781,15091131,22857016,-10598955,31820368,15075278 }, }, { { 31879134,-8918693,17258761,90626,-8041836,-4917709,24162788,-9650886,-17970238,12833045 }, { 19073683,14851414,-24403169,-11860168,7625278,11091125,-19619190,2074449,-9413939,14905377 }, { 24483667,-11935567,-2518866,-11547418,-1553130,15355506,-25282080,9253129,27628530,-7555480 }, }, { { 17597607,8340603,19355617,552187,26198470,-3176583,4593324,-9157582,-14110875,15297016 }, { 510886,14337390,-31785257,16638632,6328095,2713355,-20217417,-11864220,8683221,2921426 }, { 18606791,11874196,27155355,-5281482,-24031742,6265446,-25178240,-1278924,4674690,13890525 }, }, { { 13609624,13069022,-27372361,-13055908,24360586,9592974,14977157,9835105,4389687,288396 }, { 9922506,-519394,13613107,5883594,-18758345,-434263,-12304062,8317628,23388070,16052080 }, { 12720016,11937594,-31970060,-5028689,26900120,8561328,-20155687,-11632979,-14754271,-10812892 }, }, { { 15961858,14150409,26716931,-665832,-22794328,13603569,11829573,7467844,-28822128,929275 }, { 11038231,-11582396,-27310482,-7316562,-10498527,-16307831,-23479533,-9371869,-21393143,2465074 }, { 20017163,-4323226,27915242,1529148,12396362,15675764,13817261,-9658066,2463391,-4622140 }, }, { { -16358878,-12663911,-12065183,4996454,-1256422,1073572,9583558,12851107,4003896,12673717 }, { -1731589,-15155870,-3262930,16143082,19294135,13385325,14741514,-9103726,7903886,2348101 }, { 24536016,-16515207,12715592,-3862155,1511293,10047386,-3842346,-7129159,-28377538,10048127 }, }, }, { { { -12622226,-6204820,30718825,2591312,-10617028,12192840,18873298,-7297090,-32297756,15221632 }, { -26478122,-11103864,11546244,-1852483,9180880,7656409,-21343950,2095755,29769758,6593415 }, { -31994208,-2907461,4176912,3264766,12538965,-868111,26312345,-6118678,30958054,8292160 }, }, { { 31429822,-13959116,29173532,15632448,12174511,-2760094,32808831,3977186,26143136,-3148876 }, { 22648901,1402143,-22799984,13746059,7936347,365344,-8668633,-1674433,-3758243,-2304625 }, { -15491917,8012313,-2514730,-12702462,-23965846,-10254029,-1612713,-1535569,-16664475,8194478 }, }, { { 27338066,-7507420,-7414224,10140405,-19026427,-6589889,27277191,8855376,28572286,3005164 }, { 26287124,4821776,25476601,-4145903,-3764513,-15788984,-18008582,1182479,-26094821,-13079595 }, { -7171154,3178080,23970071,6201893,-17195577,-4489192,-21876275,-13982627,32208683,-1198248 }, }, { { -16657702,2817643,-10286362,14811298,6024667,13349505,-27315504,-10497842,-27672585,-11539858 }, { 15941029,-9405932,-21367050,8062055,31876073,-238629,-15278393,-1444429,15397331,-4130193 }, { 8934485,-13485467,-23286397,-13423241,-32446090,14047986,31170398,-1441021,-27505566,15087184 }, }, { { -18357243,-2156491,24524913,-16677868,15520427,-6360776,-15502406,11461896,16788528,-5868942 }, { -1947386,16013773,21750665,3714552,-17401782,-16055433,-3770287,-10323320,31322514,-11615635 }, { 21426655,-5650218,-13648287,-5347537,-28812189,-4920970,-18275391,-14621414,13040862,-12112948 }, }, { { 11293895,12478086,-27136401,15083750,-29307421,14748872,14555558,-13417103,1613711,4896935 }, { -25894883,15323294,-8489791,-8057900,25967126,-13425460,2825960,-4897045,-23971776,-11267415 }, { -15924766,-5229880,-17443532,6410664,3622847,10243618,20615400,12405433,-23753030,-8436416 }, }, { { -7091295,12556208,-20191352,9025187,-17072479,4333801,4378436,2432030,23097949,-566018 }, { 4565804,-16025654,20084412,-7842817,1724999,189254,24767264,10103221,-18512313,2424778 }, { 366633,-11976806,8173090,-6890119,30788634,5745705,-7168678,1344109,-3642553,12412659 }, }, { { -24001791,7690286,14929416,-168257,-32210835,-13412986,24162697,-15326504,-3141501,11179385 }, { 18289522,-14724954,8056945,16430056,-21729724,7842514,-6001441,-1486897,-18684645,-11443503 }, { 476239,6601091,-6152790,-9723375,17503545,-4863900,27672959,13403813,11052904,5219329 }, }, }, { { { 20678546,-8375738,-32671898,8849123,-5009758,14574752,31186971,-3973730,9014762,-8579056 }, { -13644050,-10350239,-15962508,5075808,-1514661,-11534600,-33102500,9160280,8473550,-3256838 }, { 24900749,14435722,17209120,-15292541,-22592275,9878983,-7689309,-16335821,-24568481,11788948 }, }, { { -3118155,-11395194,-13802089,14797441,9652448,-6845904,-20037437,10410733,-24568470,-1458691 }, { -15659161,16736706,-22467150,10215878,-9097177,7563911,11871841,-12505194,-18513325,8464118 }, { -23400612,8348507,-14585951,-861714,-3950205,-6373419,14325289,8628612,33313881,-8370517 }, }, { { -20186973,-4967935,22367356,5271547,-1097117,-4788838,-24805667,-10236854,-8940735,-5818269 }, { -6948785,-1795212,-32625683,-16021179,32635414,-7374245,15989197,-12838188,28358192,-4253904 }, { -23561781,-2799059,-32351682,-1661963,-9147719,10429267,-16637684,4072016,-5351664,5596589 }, }, { { -28236598,-3390048,12312896,6213178,3117142,16078565,29266239,2557221,1768301,15373193 }, { -7243358,-3246960,-4593467,-7553353,-127927,-912245,-1090902,-4504991,-24660491,3442910 }, { -30210571,5124043,14181784,8197961,18964734,-11939093,22597931,7176455,-18585478,13365930 }, }, { { -7877390,-1499958,8324673,4690079,6261860,890446,24538107,-8570186,-9689599,-3031667 }, { 25008904,-10771599,-4305031,-9638010,16265036,15721635,683793,-11823784,15723479,-15163481 }, { -9660625,12374379,-27006999,-7026148,-7724114,-12314514,11879682,5400171,519526,-1235876 }, }, { { 22258397,-16332233,-7869817,14613016,-22520255,-2950923,-20353881,7315967,16648397,7605640 }, { -8081308,-8464597,-8223311,9719710,19259459,-15348212,23994942,-5281555,-9468848,4763278 }, { -21699244,9220969,-15730624,1084137,-25476107,-2852390,31088447,-7764523,-11356529,728112 }, }, { { 26047220,-11751471,-6900323,-16521798,24092068,9158119,-4273545,-12555558,-29365436,-5498272 }, { 17510331,-322857,5854289,8403524,17133918,-3112612,-28111007,12327945,10750447,10014012 }, { -10312768,3936952,9156313,-8897683,16498692,-994647,-27481051,-666732,3424691,7540221 }, }, { { 30322361,-6964110,11361005,-4143317,7433304,4989748,-7071422,-16317219,-9244265,15258046 }, { 13054562,-2779497,19155474,469045,-12482797,4566042,5631406,2711395,1062915,-5136345 }, { -19240248,-11254599,-29509029,-7499965,-5835763,13005411,-6066489,12194497,32960380,1459310 }, }, }, { { { 19852034,7027924,23669353,10020366,8586503,-6657907,394197,-6101885,18638003,-11174937 }, { 31395534,15098109,26581030,8030562,-16527914,-5007134,9012486,-7584354,-6643087,-5442636 }, { -9192165,-2347377,-1997099,4529534,25766844,607986,-13222,9677543,-32294889,-6456008 }, }, { { -2444496,-149937,29348902,8186665,1873760,12489863,-30934579,-7839692,-7852844,-8138429 }, { -15236356,-15433509,7766470,746860,26346930,-10221762,-27333451,10754588,-9431476,5203576 }, { 31834314,14135496,-770007,5159118,20917671,-16768096,-7467973,-7337524,31809243,7347066 }, }, { { -9606723,-11874240,20414459,13033986,13716524,-11691881,19797970,-12211255,15192876,-2087490 }, { -12663563,-2181719,1168162,-3804809,26747877,-14138091,10609330,12694420,33473243,-13382104 }, { 33184999,11180355,15832085,-11385430,-1633671,225884,15089336,-11023903,-6135662,14480053 }, }, { { 31308717,-5619998,31030840,-1897099,15674547,-6582883,5496208,13685227,27595050,8737275 }, { -20318852,-15150239,10933843,-16178022,8335352,-7546022,-31008351,-12610604,26498114,66511 }, { 22644454,-8761729,-16671776,4884562,-3105614,-13559366,30540766,-4286747,-13327787,-7515095 }, }, { { -28017847,9834845,18617207,-2681312,-3401956,-13307506,8205540,13585437,-17127465,15115439 }, { 23711543,-672915,31206561,-8362711,6164647,-9709987,-33535882,-1426096,8236921,16492939 }, { -23910559,-13515526,-26299483,-4503841,25005590,-7687270,19574902,10071562,6708380,-6222424 }, }, { { 2101391,-4930054,19702731,2367575,-15427167,1047675,5301017,9328700,29955601,-11678310 }, { 3096359,9271816,-21620864,-15521844,-14847996,-7592937,-25892142,-12635595,-9917575,6216608 }, { -32615849,338663,-25195611,2510422,-29213566,-13820213,24822830,-6146567,-26767480,7525079 }, }, { { -23066649,-13985623,16133487,-7896178,-3389565,778788,-910336,-2782495,-19386633,11994101 }, { 21691500,-13624626,-641331,-14367021,3285881,-3483596,-25064666,9718258,-7477437,13381418 }, { 18445390,-4202236,14979846,11622458,-1727110,-3582980,23111648,-6375247,28535282,15779576 }, }, { { 30098053,3089662,-9234387,16662135,-21306940,11308411,-14068454,12021730,9955285,-16303356 }, { 9734894,-14576830,-7473633,-9138735,2060392,11313496,-18426029,9924399,20194861,13380996 }, { -26378102,-7965207,-22167821,15789297,-18055342,-6168792,-1984914,15707771,26342023,10146099 }, }, }, { { { -26016874,-219943,21339191,-41388,19745256,-2878700,-29637280,2227040,21612326,-545728 }, { -13077387,1184228,23562814,-5970442,-20351244,-6348714,25764461,12243797,-20856566,11649658 }, { -10031494,11262626,27384172,2271902,26947504,-15997771,39944,6114064,33514190,2333242 }, }, { { -21433588,-12421821,8119782,7219913,-21830522,-9016134,-6679750,-12670638,24350578,-13450001 }, { -4116307,-11271533,-23886186,4843615,-30088339,690623,-31536088,-10406836,8317860,12352766 }, { 18200138,-14475911,-33087759,-2696619,-23702521,-9102511,-23552096,-2287550,20712163,6719373 }, }, { { 26656208,6075253,-7858556,1886072,-28344043,4262326,11117530,-3763210,26224235,-3297458 }, { -17168938,-14854097,-3395676,-16369877,-19954045,14050420,21728352,9493610,18620611,-16428628 }, { -13323321,13325349,11432106,5964811,18609221,6062965,-5269471,-9725556,-30701573,-16479657 }, }, { { -23860538,-11233159,26961357,1640861,-32413112,-16737940,12248509,-5240639,13735342,1934062 }, { 25089769,6742589,17081145,-13406266,21909293,-16067981,-15136294,-3765346,-21277997,5473616 }, { 31883677,-7961101,1083432,-11572403,22828471,13290673,-7125085,12469656,29111212,-5451014 }, }, { { 24244947,-15050407,-26262976,2791540,-14997599,16666678,24367466,6388839,-10295587,452383 }, { -25640782,-3417841,5217916,16224624,19987036,-4082269,-24236251,-5915248,15766062,8407814 }, { -20406999,13990231,15495425,16395525,5377168,15166495,-8917023,-4388953,-8067909,2276718 }, }, { { 30157918,12924066,-17712050,9245753,19895028,3368142,-23827587,5096219,22740376,-7303417 }, { 2041139,-14256350,7783687,13876377,-25946985,-13352459,24051124,13742383,-15637599,13295222 }, { 33338237,-8505733,12532113,7977527,9106186,-1715251,-17720195,-4612972,-4451357,-14669444 }, }, { { -20045281,5454097,-14346548,6447146,28862071,1883651,-2469266,-4141880,7770569,9620597 }, { 23208068,7979712,33071466,8149229,1758231,-10834995,30945528,-1694323,-33502340,-14767970 }, { 1439958,-16270480,-1079989,-793782,4625402,10647766,-5043801,1220118,30494170,-11440799 }, }, { { -5037580,-13028295,-2970559,-3061767,15640974,-6701666,-26739026,926050,-1684339,-13333647 }, { 13908495,-3549272,30919928,-6273825,-21521863,7989039,9021034,9078865,3353509,4033511 }, { -29663431,-15113610,32259991,-344482,24295849,-12912123,23161163,8839127,27485041,7356032 }, }, }, { { { 9661027,705443,11980065,-5370154,-1628543,14661173,-6346142,2625015,28431036,-16771834 }, { -23839233,-8311415,-25945511,7480958,-17681669,-8354183,-22545972,14150565,15970762,4099461 }, { 29262576,16756590,26350592,-8793563,8529671,-11208050,13617293,-9937143,11465739,8317062 }, }, { { -25493081,-6962928,32500200,-9419051,-23038724,-2302222,14898637,3848455,20969334,-5157516 }, { -20384450,-14347713,-18336405,13884722,-33039454,2842114,-21610826,-3649888,11177095,14989547 }, { -24496721,-11716016,16959896,2278463,12066309,10137771,13515641,2581286,-28487508,9930240 }, }, { { -17751622,-2097826,16544300,-13009300,-15914807,-14949081,18345767,-13403753,16291481,-5314038 }, { -33229194,2553288,32678213,9875984,8534129,6889387,-9676774,6957617,4368891,9788741 }, { 16660756,7281060,-10830758,12911820,20108584,-8101676,-21722536,-8613148,16250552,-11111103 }, }, { { -19765507,2390526,-16551031,14161980,1905286,6414907,4689584,10604807,-30190403,4782747 }, { -1354539,14736941,-7367442,-13292886,7710542,-14155590,-9981571,4383045,22546403,437323 }, { 31665577,-12180464,-16186830,1491339,-18368625,3294682,27343084,2786261,-30633590,-14097016 }, }, { { -14467279,-683715,-33374107,7448552,19294360,14334329,-19690631,2355319,-19284671,-6114373 }, { 15121312,-15796162,6377020,-6031361,-10798111,-12957845,18952177,15496498,-29380133,11754228 }, { -2637277,-13483075,8488727,-14303896,12728761,-1622493,7141596,11724556,22761615,-10134141 }, }, { { 16918416,11729663,-18083579,3022987,-31015732,-13339659,-28741185,-12227393,32851222,11717399 }, { 11166634,7338049,-6722523,4531520,-29468672,-7302055,31474879,3483633,-1193175,-4030831 }, { -185635,9921305,31456609,-13536438,-12013818,13348923,33142652,6546660,-19985279,-3948376 }, }, { { -32460596,11266712,-11197107,-7899103,31703694,3855903,-8537131,-12833048,-30772034,-15486313 }, { -18006477,12709068,3991746,-6479188,-21491523,-10550425,-31135347,-16049879,10928917,3011958 }, { -6957757,-15594337,31696059,334240,29576716,14796075,-30831056,-12805180,18008031,10258577 }, }, { { -22448644,15655569,7018479,-4410003,-30314266,-1201591,-1853465,1367120,25127874,6671743 }, { 29701166,-14373934,-10878120,9279288,-17568,13127210,21382910,11042292,25838796,4642684 }, { -20430234,14955537,-24126347,8124619,-5369288,-5990470,30468147,-13900640,18423289,4177476 }, }, }, python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_neg.c0000644000175000017500000000152713264344532023275 0ustar tarektarek00000000000000#include "fe.h" /* h = -f Preconditions: |f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. Postconditions: |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc. */ void fe_neg(fe h,const fe f) { crypto_int32 f0 = f[0]; crypto_int32 f1 = f[1]; crypto_int32 f2 = f[2]; crypto_int32 f3 = f[3]; crypto_int32 f4 = f[4]; crypto_int32 f5 = f[5]; crypto_int32 f6 = f[6]; crypto_int32 f7 = f[7]; crypto_int32 f8 = f[8]; crypto_int32 f9 = f[9]; crypto_int32 h0 = -f0; crypto_int32 h1 = -f1; crypto_int32 h2 = -f2; crypto_int32 h3 = -f3; crypto_int32 h4 = -f4; crypto_int32 h5 = -f5; crypto_int32 h6 = -f6; crypto_int32 h7 = -f7; crypto_int32 h8 = -f8; crypto_int32 h9 = -f9; h[0] = h0; h[1] = h1; h[2] = h2; h[3] = h3; h[4] = h4; h[5] = h5; h[6] = h6; h[7] = h7; h[8] = h8; h[9] = h9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/sign.c0000644000175000017500000000146113264344532023007 0ustar tarektarek00000000000000#include #include "crypto_sign.h" #include "crypto_hash_sha512.h" #include "ge.h" #include "sc.h" int crypto_sign( unsigned char *sm,unsigned long long *smlen, const unsigned char *m,unsigned long long mlen, const unsigned char *sk ) { unsigned char pk[32]; unsigned char az[64]; unsigned char nonce[64]; unsigned char hram[64]; ge_p3 R; memmove(pk,sk + 32,32); crypto_hash_sha512(az,sk,32); az[0] &= 248; az[31] &= 63; az[31] |= 64; *smlen = mlen + 64; memmove(sm + 64,m,mlen); memmove(sm + 32,az + 32,32); crypto_hash_sha512(nonce,sm + 32,mlen + 32); memmove(sm + 32,pk,32); sc_reduce(nonce); ge_scalarmult_base(&R,nonce); ge_p3_tobytes(sm,&R); crypto_hash_sha512(hram,sm,mlen + 64); sc_reduce(hram); sc_muladd(sm + 32,hram,az,nonce); return 0; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe.h0000644000175000017500000000362313264344532022450 0ustar tarektarek00000000000000#ifndef FE_H #define FE_H #include "crypto_int32.h" typedef crypto_int32 fe[10]; /* fe means field element. Here the field is \Z/(2^255-19). An element t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on context. */ #define fe_frombytes crypto_sign_ed25519_ref10_fe_frombytes #define fe_tobytes crypto_sign_ed25519_ref10_fe_tobytes #define fe_copy crypto_sign_ed25519_ref10_fe_copy #define fe_isnonzero crypto_sign_ed25519_ref10_fe_isnonzero #define fe_isnegative crypto_sign_ed25519_ref10_fe_isnegative #define fe_0 crypto_sign_ed25519_ref10_fe_0 #define fe_1 crypto_sign_ed25519_ref10_fe_1 #define fe_cswap crypto_sign_ed25519_ref10_fe_cswap #define fe_cmov crypto_sign_ed25519_ref10_fe_cmov #define fe_add crypto_sign_ed25519_ref10_fe_add #define fe_sub crypto_sign_ed25519_ref10_fe_sub #define fe_neg crypto_sign_ed25519_ref10_fe_neg #define fe_mul crypto_sign_ed25519_ref10_fe_mul #define fe_sq crypto_sign_ed25519_ref10_fe_sq #define fe_sq2 crypto_sign_ed25519_ref10_fe_sq2 #define fe_mul121666 crypto_sign_ed25519_ref10_fe_mul121666 #define fe_invert crypto_sign_ed25519_ref10_fe_invert #define fe_pow22523 crypto_sign_ed25519_ref10_fe_pow22523 extern void fe_frombytes(fe,const unsigned char *); extern void fe_tobytes(unsigned char *,const fe); extern void fe_copy(fe,const fe); extern int fe_isnonzero(const fe); extern int fe_isnegative(const fe); extern void fe_0(fe); extern void fe_1(fe); extern void fe_cswap(fe,fe,unsigned int); extern void fe_cmov(fe,const fe,unsigned int); extern void fe_add(fe,const fe,const fe); extern void fe_sub(fe,const fe,const fe); extern void fe_neg(fe,const fe); extern void fe_mul(fe,const fe,const fe); extern void fe_sq(fe,const fe); extern void fe_sq2(fe,const fe); extern void fe_mul121666(fe,const fe); extern void fe_invert(fe,const fe); extern void fe_pow22523(fe,const fe); #endif python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_sq2.c0000644000175000017500000001373213264344532023232 0ustar tarektarek00000000000000#include "fe.h" #include "crypto_int64.h" /* h = 2 * f * f Can overlap h with f. Preconditions: |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. Postconditions: |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc. */ /* See fe_mul.c for discussion of implementation strategy. */ void fe_sq2(fe h,const fe f) { crypto_int32 f0 = f[0]; crypto_int32 f1 = f[1]; crypto_int32 f2 = f[2]; crypto_int32 f3 = f[3]; crypto_int32 f4 = f[4]; crypto_int32 f5 = f[5]; crypto_int32 f6 = f[6]; crypto_int32 f7 = f[7]; crypto_int32 f8 = f[8]; crypto_int32 f9 = f[9]; crypto_int32 f0_2 = 2 * f0; crypto_int32 f1_2 = 2 * f1; crypto_int32 f2_2 = 2 * f2; crypto_int32 f3_2 = 2 * f3; crypto_int32 f4_2 = 2 * f4; crypto_int32 f5_2 = 2 * f5; crypto_int32 f6_2 = 2 * f6; crypto_int32 f7_2 = 2 * f7; crypto_int32 f5_38 = 38 * f5; /* 1.959375*2^30 */ crypto_int32 f6_19 = 19 * f6; /* 1.959375*2^30 */ crypto_int32 f7_38 = 38 * f7; /* 1.959375*2^30 */ crypto_int32 f8_19 = 19 * f8; /* 1.959375*2^30 */ crypto_int32 f9_38 = 38 * f9; /* 1.959375*2^30 */ crypto_int64 f0f0 = f0 * (crypto_int64) f0; crypto_int64 f0f1_2 = f0_2 * (crypto_int64) f1; crypto_int64 f0f2_2 = f0_2 * (crypto_int64) f2; crypto_int64 f0f3_2 = f0_2 * (crypto_int64) f3; crypto_int64 f0f4_2 = f0_2 * (crypto_int64) f4; crypto_int64 f0f5_2 = f0_2 * (crypto_int64) f5; crypto_int64 f0f6_2 = f0_2 * (crypto_int64) f6; crypto_int64 f0f7_2 = f0_2 * (crypto_int64) f7; crypto_int64 f0f8_2 = f0_2 * (crypto_int64) f8; crypto_int64 f0f9_2 = f0_2 * (crypto_int64) f9; crypto_int64 f1f1_2 = f1_2 * (crypto_int64) f1; crypto_int64 f1f2_2 = f1_2 * (crypto_int64) f2; crypto_int64 f1f3_4 = f1_2 * (crypto_int64) f3_2; crypto_int64 f1f4_2 = f1_2 * (crypto_int64) f4; crypto_int64 f1f5_4 = f1_2 * (crypto_int64) f5_2; crypto_int64 f1f6_2 = f1_2 * (crypto_int64) f6; crypto_int64 f1f7_4 = f1_2 * (crypto_int64) f7_2; crypto_int64 f1f8_2 = f1_2 * (crypto_int64) f8; crypto_int64 f1f9_76 = f1_2 * (crypto_int64) f9_38; crypto_int64 f2f2 = f2 * (crypto_int64) f2; crypto_int64 f2f3_2 = f2_2 * (crypto_int64) f3; crypto_int64 f2f4_2 = f2_2 * (crypto_int64) f4; crypto_int64 f2f5_2 = f2_2 * (crypto_int64) f5; crypto_int64 f2f6_2 = f2_2 * (crypto_int64) f6; crypto_int64 f2f7_2 = f2_2 * (crypto_int64) f7; crypto_int64 f2f8_38 = f2_2 * (crypto_int64) f8_19; crypto_int64 f2f9_38 = f2 * (crypto_int64) f9_38; crypto_int64 f3f3_2 = f3_2 * (crypto_int64) f3; crypto_int64 f3f4_2 = f3_2 * (crypto_int64) f4; crypto_int64 f3f5_4 = f3_2 * (crypto_int64) f5_2; crypto_int64 f3f6_2 = f3_2 * (crypto_int64) f6; crypto_int64 f3f7_76 = f3_2 * (crypto_int64) f7_38; crypto_int64 f3f8_38 = f3_2 * (crypto_int64) f8_19; crypto_int64 f3f9_76 = f3_2 * (crypto_int64) f9_38; crypto_int64 f4f4 = f4 * (crypto_int64) f4; crypto_int64 f4f5_2 = f4_2 * (crypto_int64) f5; crypto_int64 f4f6_38 = f4_2 * (crypto_int64) f6_19; crypto_int64 f4f7_38 = f4 * (crypto_int64) f7_38; crypto_int64 f4f8_38 = f4_2 * (crypto_int64) f8_19; crypto_int64 f4f9_38 = f4 * (crypto_int64) f9_38; crypto_int64 f5f5_38 = f5 * (crypto_int64) f5_38; crypto_int64 f5f6_38 = f5_2 * (crypto_int64) f6_19; crypto_int64 f5f7_76 = f5_2 * (crypto_int64) f7_38; crypto_int64 f5f8_38 = f5_2 * (crypto_int64) f8_19; crypto_int64 f5f9_76 = f5_2 * (crypto_int64) f9_38; crypto_int64 f6f6_19 = f6 * (crypto_int64) f6_19; crypto_int64 f6f7_38 = f6 * (crypto_int64) f7_38; crypto_int64 f6f8_38 = f6_2 * (crypto_int64) f8_19; crypto_int64 f6f9_38 = f6 * (crypto_int64) f9_38; crypto_int64 f7f7_38 = f7 * (crypto_int64) f7_38; crypto_int64 f7f8_38 = f7_2 * (crypto_int64) f8_19; crypto_int64 f7f9_76 = f7_2 * (crypto_int64) f9_38; crypto_int64 f8f8_19 = f8 * (crypto_int64) f8_19; crypto_int64 f8f9_38 = f8 * (crypto_int64) f9_38; crypto_int64 f9f9_38 = f9 * (crypto_int64) f9_38; crypto_int64 h0 = f0f0 +f1f9_76+f2f8_38+f3f7_76+f4f6_38+f5f5_38; crypto_int64 h1 = f0f1_2+f2f9_38+f3f8_38+f4f7_38+f5f6_38; crypto_int64 h2 = f0f2_2+f1f1_2 +f3f9_76+f4f8_38+f5f7_76+f6f6_19; crypto_int64 h3 = f0f3_2+f1f2_2 +f4f9_38+f5f8_38+f6f7_38; crypto_int64 h4 = f0f4_2+f1f3_4 +f2f2 +f5f9_76+f6f8_38+f7f7_38; crypto_int64 h5 = f0f5_2+f1f4_2 +f2f3_2 +f6f9_38+f7f8_38; crypto_int64 h6 = f0f6_2+f1f5_4 +f2f4_2 +f3f3_2 +f7f9_76+f8f8_19; crypto_int64 h7 = f0f7_2+f1f6_2 +f2f5_2 +f3f4_2 +f8f9_38; crypto_int64 h8 = f0f8_2+f1f7_4 +f2f6_2 +f3f5_4 +f4f4 +f9f9_38; crypto_int64 h9 = f0f9_2+f1f8_2 +f2f7_2 +f3f6_2 +f4f5_2; crypto_int64 carry0; crypto_int64 carry1; crypto_int64 carry2; crypto_int64 carry3; crypto_int64 carry4; crypto_int64 carry5; crypto_int64 carry6; crypto_int64 carry7; crypto_int64 carry8; crypto_int64 carry9; h0 += h0; h1 += h1; h2 += h2; h3 += h3; h4 += h4; h5 += h5; h6 += h6; h7 += h7; h8 += h8; h9 += h9; carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26; carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26; carry1 = (h1 + (crypto_int64) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25; carry5 = (h5 + (crypto_int64) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25; carry2 = (h2 + (crypto_int64) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26; carry6 = (h6 + (crypto_int64) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26; carry3 = (h3 + (crypto_int64) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25; carry7 = (h7 + (crypto_int64) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25; carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26; carry8 = (h8 + (crypto_int64) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26; carry9 = (h9 + (crypto_int64) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25; carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26; h[0] = h0; h[1] = h1; h[2] = h2; h[3] = h3; h[4] = h4; h[5] = h5; h[6] = h6; h[7] = h7; h[8] = h8; h[9] = h9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_0.c0000644000175000017500000000025213264344532022655 0ustar tarektarek00000000000000#include "fe.h" /* h = 0 */ void fe_0(fe h) { h[0] = 0; h[1] = 0; h[2] = 0; h[3] = 0; h[4] = 0; h[5] = 0; h[6] = 0; h[7] = 0; h[8] = 0; h[9] = 0; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/sc_reduce.c0000644000175000017500000001771313264344532024012 0ustar tarektarek00000000000000#include "sc.h" #include "crypto_int64.h" #include "crypto_uint32.h" #include "crypto_uint64.h" static crypto_uint64 load_3(const unsigned char *in) { crypto_uint64 result; result = (crypto_uint64) in[0]; result |= ((crypto_uint64) in[1]) << 8; result |= ((crypto_uint64) in[2]) << 16; return result; } static crypto_uint64 load_4(const unsigned char *in) { crypto_uint64 result; result = (crypto_uint64) in[0]; result |= ((crypto_uint64) in[1]) << 8; result |= ((crypto_uint64) in[2]) << 16; result |= ((crypto_uint64) in[3]) << 24; return result; } /* Input: s[0]+256*s[1]+...+256^63*s[63] = s Output: s[0]+256*s[1]+...+256^31*s[31] = s mod l where l = 2^252 + 27742317777372353535851937790883648493. Overwrites s in place. */ void sc_reduce(unsigned char *s) { crypto_int64 s0 = 2097151 & load_3(s); crypto_int64 s1 = 2097151 & (load_4(s + 2) >> 5); crypto_int64 s2 = 2097151 & (load_3(s + 5) >> 2); crypto_int64 s3 = 2097151 & (load_4(s + 7) >> 7); crypto_int64 s4 = 2097151 & (load_4(s + 10) >> 4); crypto_int64 s5 = 2097151 & (load_3(s + 13) >> 1); crypto_int64 s6 = 2097151 & (load_4(s + 15) >> 6); crypto_int64 s7 = 2097151 & (load_3(s + 18) >> 3); crypto_int64 s8 = 2097151 & load_3(s + 21); crypto_int64 s9 = 2097151 & (load_4(s + 23) >> 5); crypto_int64 s10 = 2097151 & (load_3(s + 26) >> 2); crypto_int64 s11 = 2097151 & (load_4(s + 28) >> 7); crypto_int64 s12 = 2097151 & (load_4(s + 31) >> 4); crypto_int64 s13 = 2097151 & (load_3(s + 34) >> 1); crypto_int64 s14 = 2097151 & (load_4(s + 36) >> 6); crypto_int64 s15 = 2097151 & (load_3(s + 39) >> 3); crypto_int64 s16 = 2097151 & load_3(s + 42); crypto_int64 s17 = 2097151 & (load_4(s + 44) >> 5); crypto_int64 s18 = 2097151 & (load_3(s + 47) >> 2); crypto_int64 s19 = 2097151 & (load_4(s + 49) >> 7); crypto_int64 s20 = 2097151 & (load_4(s + 52) >> 4); crypto_int64 s21 = 2097151 & (load_3(s + 55) >> 1); crypto_int64 s22 = 2097151 & (load_4(s + 57) >> 6); crypto_int64 s23 = (load_4(s + 60) >> 3); crypto_int64 carry0; crypto_int64 carry1; crypto_int64 carry2; crypto_int64 carry3; crypto_int64 carry4; crypto_int64 carry5; crypto_int64 carry6; crypto_int64 carry7; crypto_int64 carry8; crypto_int64 carry9; crypto_int64 carry10; crypto_int64 carry11; crypto_int64 carry12; crypto_int64 carry13; crypto_int64 carry14; crypto_int64 carry15; crypto_int64 carry16; s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; s18 = 0; carry6 = (s6 + (1<<20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1<<20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1<<20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1<<20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1<<20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1<<20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry7 = (s7 + (1<<20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1<<20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1<<20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1<<20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1<<20)) >> 21; s16 += carry15; s15 -= carry15 << 21; s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1<<20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1<<20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1<<20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1<<20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1<<20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1<<20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry1 = (s1 + (1<<20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1<<20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1<<20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1<<20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1<<20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1<<20)) >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; s[0] = s0 >> 0; s[1] = s0 >> 8; s[2] = (s0 >> 16) | (s1 << 5); s[3] = s1 >> 3; s[4] = s1 >> 11; s[5] = (s1 >> 19) | (s2 << 2); s[6] = s2 >> 6; s[7] = (s2 >> 14) | (s3 << 7); s[8] = s3 >> 1; s[9] = s3 >> 9; s[10] = (s3 >> 17) | (s4 << 4); s[11] = s4 >> 4; s[12] = s4 >> 12; s[13] = (s4 >> 20) | (s5 << 1); s[14] = s5 >> 7; s[15] = (s5 >> 15) | (s6 << 6); s[16] = s6 >> 2; s[17] = s6 >> 10; s[18] = (s6 >> 18) | (s7 << 3); s[19] = s7 >> 5; s[20] = s7 >> 13; s[21] = s8 >> 0; s[22] = s8 >> 8; s[23] = (s8 >> 16) | (s9 << 5); s[24] = s9 >> 3; s[25] = s9 >> 11; s[26] = (s9 >> 19) | (s10 << 2); s[27] = s10 >> 6; s[28] = (s10 >> 14) | (s11 << 7); s[29] = s11 >> 1; s[30] = s11 >> 9; s[31] = s11 >> 17; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p2_dbl.h0000644000175000017500000000270413264344532023672 0ustar tarektarek00000000000000 /* qhasm: enter ge_p2_dbl */ /* qhasm: fe X1 */ /* qhasm: fe Y1 */ /* qhasm: fe Z1 */ /* qhasm: fe A */ /* qhasm: fe AA */ /* qhasm: fe XX */ /* qhasm: fe YY */ /* qhasm: fe B */ /* qhasm: fe X3 */ /* qhasm: fe Y3 */ /* qhasm: fe Z3 */ /* qhasm: fe T3 */ /* qhasm: XX=X1^2 */ /* asm 1: fe_sq(>XX=fe#1,XX=r->X,X); */ fe_sq(r->X,p->X); /* qhasm: YY=Y1^2 */ /* asm 1: fe_sq(>YY=fe#3,YY=r->Z,Y); */ fe_sq(r->Z,p->Y); /* qhasm: B=2*Z1^2 */ /* asm 1: fe_sq2(>B=fe#4,B=r->T,Z); */ fe_sq2(r->T,p->Z); /* qhasm: A=X1+Y1 */ /* asm 1: fe_add(>A=fe#2,A=r->Y,X,Y); */ fe_add(r->Y,p->X,p->Y); /* qhasm: AA=A^2 */ /* asm 1: fe_sq(>AA=fe#5,AA=t0,Y); */ fe_sq(t0,r->Y); /* qhasm: Y3=YY+XX */ /* asm 1: fe_add(>Y3=fe#2,Y3=r->Y,Z,X); */ fe_add(r->Y,r->Z,r->X); /* qhasm: Z3=YY-XX */ /* asm 1: fe_sub(>Z3=fe#3,Z3=r->Z,Z,X); */ fe_sub(r->Z,r->Z,r->X); /* qhasm: X3=AA-Y3 */ /* asm 1: fe_sub(>X3=fe#1,X3=r->X,Y); */ fe_sub(r->X,t0,r->Y); /* qhasm: T3=B-Z3 */ /* asm 1: fe_sub(>T3=fe#4,T3=r->T,T,Z); */ fe_sub(r->T,r->T,r->Z); /* qhasm: return */ python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_frombytes.c0000644000175000017500000000173313264344532024536 0ustar tarektarek00000000000000#include "ge.h" static const fe d = { #include "d.h" } ; static const fe sqrtm1 = { #include "sqrtm1.h" } ; int ge_frombytes_negate_vartime(ge_p3 *h,const unsigned char *s) { fe u; fe v; fe v3; fe vxx; fe check; fe_frombytes(h->Y,s); fe_1(h->Z); fe_sq(u,h->Y); fe_mul(v,u,d); fe_sub(u,u,h->Z); /* u = y^2-1 */ fe_add(v,v,h->Z); /* v = dy^2+1 */ fe_sq(v3,v); fe_mul(v3,v3,v); /* v3 = v^3 */ fe_sq(h->X,v3); fe_mul(h->X,h->X,v); fe_mul(h->X,h->X,u); /* x = uv^7 */ fe_pow22523(h->X,h->X); /* x = (uv^7)^((q-5)/8) */ fe_mul(h->X,h->X,v3); fe_mul(h->X,h->X,u); /* x = uv^3(uv^7)^((q-5)/8) */ fe_sq(vxx,h->X); fe_mul(vxx,vxx,v); fe_sub(check,vxx,u); /* vx^2-u */ if (fe_isnonzero(check)) { fe_add(check,vxx,u); /* vx^2+u */ if (fe_isnonzero(check)) return -1; fe_mul(h->X,h->X,sqrtm1); } if (fe_isnegative(h->X) == (s[31] >> 7)) fe_neg(h->X,h->X); fe_mul(h->T,h->X,h->Y); return 0; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_sub.h0000644000175000017500000000404013264344532023314 0ustar tarektarek00000000000000 /* qhasm: enter ge_sub */ /* qhasm: fe X1 */ /* qhasm: fe Y1 */ /* qhasm: fe Z1 */ /* qhasm: fe Z2 */ /* qhasm: fe T1 */ /* qhasm: fe ZZ */ /* qhasm: fe YpX2 */ /* qhasm: fe YmX2 */ /* qhasm: fe T2d2 */ /* qhasm: fe X3 */ /* qhasm: fe Y3 */ /* qhasm: fe Z3 */ /* qhasm: fe T3 */ /* qhasm: fe YpX1 */ /* qhasm: fe YmX1 */ /* qhasm: fe A */ /* qhasm: fe B */ /* qhasm: fe C */ /* qhasm: fe D */ /* qhasm: YpX1 = Y1+X1 */ /* asm 1: fe_add(>YpX1=fe#1,YpX1=r->X,Y,X); */ fe_add(r->X,p->Y,p->X); /* qhasm: YmX1 = Y1-X1 */ /* asm 1: fe_sub(>YmX1=fe#2,YmX1=r->Y,Y,X); */ fe_sub(r->Y,p->Y,p->X); /* qhasm: A = YpX1*YmX2 */ /* asm 1: fe_mul(>A=fe#3,A=r->Z,X,YminusX); */ fe_mul(r->Z,r->X,q->YminusX); /* qhasm: B = YmX1*YpX2 */ /* asm 1: fe_mul(>B=fe#2,B=r->Y,Y,YplusX); */ fe_mul(r->Y,r->Y,q->YplusX); /* qhasm: C = T2d2*T1 */ /* asm 1: fe_mul(>C=fe#4,C=r->T,T2d,T); */ fe_mul(r->T,q->T2d,p->T); /* qhasm: ZZ = Z1*Z2 */ /* asm 1: fe_mul(>ZZ=fe#1,ZZ=r->X,Z,Z); */ fe_mul(r->X,p->Z,q->Z); /* qhasm: D = 2*ZZ */ /* asm 1: fe_add(>D=fe#5,D=t0,X,X); */ fe_add(t0,r->X,r->X); /* qhasm: X3 = A-B */ /* asm 1: fe_sub(>X3=fe#1,X3=r->X,Z,Y); */ fe_sub(r->X,r->Z,r->Y); /* qhasm: Y3 = A+B */ /* asm 1: fe_add(>Y3=fe#2,Y3=r->Y,Z,Y); */ fe_add(r->Y,r->Z,r->Y); /* qhasm: Z3 = D-C */ /* asm 1: fe_sub(>Z3=fe#3,Z3=r->Z,T); */ fe_sub(r->Z,t0,r->T); /* qhasm: T3 = D+C */ /* asm 1: fe_add(>T3=fe#4,T3=r->T,T); */ fe_add(r->T,t0,r->T); /* qhasm: return */ python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_copy.c0000644000175000017500000000070613264344532023474 0ustar tarektarek00000000000000#include "fe.h" /* h = f */ void fe_copy(fe h,const fe f) { crypto_int32 f0 = f[0]; crypto_int32 f1 = f[1]; crypto_int32 f2 = f[2]; crypto_int32 f3 = f[3]; crypto_int32 f4 = f[4]; crypto_int32 f5 = f[5]; crypto_int32 f6 = f[6]; crypto_int32 f7 = f[7]; crypto_int32 f8 = f[8]; crypto_int32 f9 = f[9]; h[0] = f0; h[1] = f1; h[2] = f2; h[3] = f3; h[4] = f4; h[5] = f5; h[6] = f6; h[7] = f7; h[8] = f8; h[9] = f9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_isnegative.c0000644000175000017500000000041213264344532024652 0ustar tarektarek00000000000000#include "fe.h" /* return 1 if f is in {1,3,5,...,q-2} return 0 if f is in {0,2,4,...,q-1} Preconditions: |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. */ int fe_isnegative(const fe f) { unsigned char s[32]; fe_tobytes(s,f); return s[0] & 1; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_p2_dbl.c0000644000175000017500000000016013264344532023657 0ustar tarektarek00000000000000#include "ge.h" /* r = 2 * p */ void ge_p2_dbl(ge_p1p1 *r,const ge_p2 *p) { fe t0; #include "ge_p2_dbl.h" } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_precomp_0.c0000644000175000017500000000015613264344532024406 0ustar tarektarek00000000000000#include "ge.h" void ge_precomp_0(ge_precomp *h) { fe_1(h->yplusx); fe_1(h->yminusx); fe_0(h->xy2d); } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_scalarmult_base.c0000644000175000017500000000465513264344532025673 0ustar tarektarek00000000000000#include "ge.h" #include "crypto_uint32.h" static unsigned char equal(signed char b,signed char c) { unsigned char ub = b; unsigned char uc = c; unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */ crypto_uint32 y = x; /* 0: yes; 1..255: no */ y -= 1; /* 4294967295: yes; 0..254: no */ y >>= 31; /* 1: yes; 0: no */ return y; } static unsigned char negative(signed char b) { unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */ x >>= 63; /* 1: yes; 0: no */ return x; } static void cmov(ge_precomp *t,ge_precomp *u,unsigned char b) { fe_cmov(t->yplusx,u->yplusx,b); fe_cmov(t->yminusx,u->yminusx,b); fe_cmov(t->xy2d,u->xy2d,b); } /* base[i][j] = (j+1)*256^i*B */ static ge_precomp base[32][8] = { #include "base.h" } ; static void select(ge_precomp *t,int pos,signed char b) { ge_precomp minust; unsigned char bnegative = negative(b); unsigned char babs = b - (((-bnegative) & b) << 1); ge_precomp_0(t); cmov(t,&base[pos][0],equal(babs,1)); cmov(t,&base[pos][1],equal(babs,2)); cmov(t,&base[pos][2],equal(babs,3)); cmov(t,&base[pos][3],equal(babs,4)); cmov(t,&base[pos][4],equal(babs,5)); cmov(t,&base[pos][5],equal(babs,6)); cmov(t,&base[pos][6],equal(babs,7)); cmov(t,&base[pos][7],equal(babs,8)); fe_copy(minust.yplusx,t->yminusx); fe_copy(minust.yminusx,t->yplusx); fe_neg(minust.xy2d,t->xy2d); cmov(t,&minust,bnegative); } /* h = a * B where a = a[0]+256*a[1]+...+256^31 a[31] B is the Ed25519 base point (x,4/5) with x positive. Preconditions: a[31] <= 127 */ void ge_scalarmult_base(ge_p3 *h,const unsigned char *a) { signed char e[64]; signed char carry; ge_p1p1 r; ge_p2 s; ge_precomp t; int i; for (i = 0;i < 32;++i) { e[2 * i + 0] = (a[i] >> 0) & 15; e[2 * i + 1] = (a[i] >> 4) & 15; } /* each e[i] is between 0 and 15 */ /* e[63] is between 0 and 7 */ carry = 0; for (i = 0;i < 63;++i) { e[i] += carry; carry = e[i] + 8; carry >>= 4; e[i] -= carry << 4; } e[63] += carry; /* each e[i] is between -8 and 8 */ ge_p3_0(h); for (i = 1;i < 64;i += 2) { select(&t,i / 2,e[i]); ge_madd(&r,h,&t); ge_p1p1_to_p3(h,&r); } ge_p3_dbl(&r,h); ge_p1p1_to_p2(&s,&r); ge_p2_dbl(&r,&s); ge_p1p1_to_p2(&s,&r); ge_p2_dbl(&r,&s); ge_p1p1_to_p2(&s,&r); ge_p2_dbl(&r,&s); ge_p1p1_to_p3(h,&r); for (i = 0;i < 64;i += 2) { select(&t,i / 2,e[i]); ge_madd(&r,h,&t); ge_p1p1_to_p3(h,&r); } } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/fe_sq.c0000644000175000017500000001353413264344532023150 0ustar tarektarek00000000000000#include "fe.h" #include "crypto_int64.h" /* h = f * f Can overlap h with f. Preconditions: |f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc. Postconditions: |h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc. */ /* See fe_mul.c for discussion of implementation strategy. */ void fe_sq(fe h,const fe f) { crypto_int32 f0 = f[0]; crypto_int32 f1 = f[1]; crypto_int32 f2 = f[2]; crypto_int32 f3 = f[3]; crypto_int32 f4 = f[4]; crypto_int32 f5 = f[5]; crypto_int32 f6 = f[6]; crypto_int32 f7 = f[7]; crypto_int32 f8 = f[8]; crypto_int32 f9 = f[9]; crypto_int32 f0_2 = 2 * f0; crypto_int32 f1_2 = 2 * f1; crypto_int32 f2_2 = 2 * f2; crypto_int32 f3_2 = 2 * f3; crypto_int32 f4_2 = 2 * f4; crypto_int32 f5_2 = 2 * f5; crypto_int32 f6_2 = 2 * f6; crypto_int32 f7_2 = 2 * f7; crypto_int32 f5_38 = 38 * f5; /* 1.959375*2^30 */ crypto_int32 f6_19 = 19 * f6; /* 1.959375*2^30 */ crypto_int32 f7_38 = 38 * f7; /* 1.959375*2^30 */ crypto_int32 f8_19 = 19 * f8; /* 1.959375*2^30 */ crypto_int32 f9_38 = 38 * f9; /* 1.959375*2^30 */ crypto_int64 f0f0 = f0 * (crypto_int64) f0; crypto_int64 f0f1_2 = f0_2 * (crypto_int64) f1; crypto_int64 f0f2_2 = f0_2 * (crypto_int64) f2; crypto_int64 f0f3_2 = f0_2 * (crypto_int64) f3; crypto_int64 f0f4_2 = f0_2 * (crypto_int64) f4; crypto_int64 f0f5_2 = f0_2 * (crypto_int64) f5; crypto_int64 f0f6_2 = f0_2 * (crypto_int64) f6; crypto_int64 f0f7_2 = f0_2 * (crypto_int64) f7; crypto_int64 f0f8_2 = f0_2 * (crypto_int64) f8; crypto_int64 f0f9_2 = f0_2 * (crypto_int64) f9; crypto_int64 f1f1_2 = f1_2 * (crypto_int64) f1; crypto_int64 f1f2_2 = f1_2 * (crypto_int64) f2; crypto_int64 f1f3_4 = f1_2 * (crypto_int64) f3_2; crypto_int64 f1f4_2 = f1_2 * (crypto_int64) f4; crypto_int64 f1f5_4 = f1_2 * (crypto_int64) f5_2; crypto_int64 f1f6_2 = f1_2 * (crypto_int64) f6; crypto_int64 f1f7_4 = f1_2 * (crypto_int64) f7_2; crypto_int64 f1f8_2 = f1_2 * (crypto_int64) f8; crypto_int64 f1f9_76 = f1_2 * (crypto_int64) f9_38; crypto_int64 f2f2 = f2 * (crypto_int64) f2; crypto_int64 f2f3_2 = f2_2 * (crypto_int64) f3; crypto_int64 f2f4_2 = f2_2 * (crypto_int64) f4; crypto_int64 f2f5_2 = f2_2 * (crypto_int64) f5; crypto_int64 f2f6_2 = f2_2 * (crypto_int64) f6; crypto_int64 f2f7_2 = f2_2 * (crypto_int64) f7; crypto_int64 f2f8_38 = f2_2 * (crypto_int64) f8_19; crypto_int64 f2f9_38 = f2 * (crypto_int64) f9_38; crypto_int64 f3f3_2 = f3_2 * (crypto_int64) f3; crypto_int64 f3f4_2 = f3_2 * (crypto_int64) f4; crypto_int64 f3f5_4 = f3_2 * (crypto_int64) f5_2; crypto_int64 f3f6_2 = f3_2 * (crypto_int64) f6; crypto_int64 f3f7_76 = f3_2 * (crypto_int64) f7_38; crypto_int64 f3f8_38 = f3_2 * (crypto_int64) f8_19; crypto_int64 f3f9_76 = f3_2 * (crypto_int64) f9_38; crypto_int64 f4f4 = f4 * (crypto_int64) f4; crypto_int64 f4f5_2 = f4_2 * (crypto_int64) f5; crypto_int64 f4f6_38 = f4_2 * (crypto_int64) f6_19; crypto_int64 f4f7_38 = f4 * (crypto_int64) f7_38; crypto_int64 f4f8_38 = f4_2 * (crypto_int64) f8_19; crypto_int64 f4f9_38 = f4 * (crypto_int64) f9_38; crypto_int64 f5f5_38 = f5 * (crypto_int64) f5_38; crypto_int64 f5f6_38 = f5_2 * (crypto_int64) f6_19; crypto_int64 f5f7_76 = f5_2 * (crypto_int64) f7_38; crypto_int64 f5f8_38 = f5_2 * (crypto_int64) f8_19; crypto_int64 f5f9_76 = f5_2 * (crypto_int64) f9_38; crypto_int64 f6f6_19 = f6 * (crypto_int64) f6_19; crypto_int64 f6f7_38 = f6 * (crypto_int64) f7_38; crypto_int64 f6f8_38 = f6_2 * (crypto_int64) f8_19; crypto_int64 f6f9_38 = f6 * (crypto_int64) f9_38; crypto_int64 f7f7_38 = f7 * (crypto_int64) f7_38; crypto_int64 f7f8_38 = f7_2 * (crypto_int64) f8_19; crypto_int64 f7f9_76 = f7_2 * (crypto_int64) f9_38; crypto_int64 f8f8_19 = f8 * (crypto_int64) f8_19; crypto_int64 f8f9_38 = f8 * (crypto_int64) f9_38; crypto_int64 f9f9_38 = f9 * (crypto_int64) f9_38; crypto_int64 h0 = f0f0 +f1f9_76+f2f8_38+f3f7_76+f4f6_38+f5f5_38; crypto_int64 h1 = f0f1_2+f2f9_38+f3f8_38+f4f7_38+f5f6_38; crypto_int64 h2 = f0f2_2+f1f1_2 +f3f9_76+f4f8_38+f5f7_76+f6f6_19; crypto_int64 h3 = f0f3_2+f1f2_2 +f4f9_38+f5f8_38+f6f7_38; crypto_int64 h4 = f0f4_2+f1f3_4 +f2f2 +f5f9_76+f6f8_38+f7f7_38; crypto_int64 h5 = f0f5_2+f1f4_2 +f2f3_2 +f6f9_38+f7f8_38; crypto_int64 h6 = f0f6_2+f1f5_4 +f2f4_2 +f3f3_2 +f7f9_76+f8f8_19; crypto_int64 h7 = f0f7_2+f1f6_2 +f2f5_2 +f3f4_2 +f8f9_38; crypto_int64 h8 = f0f8_2+f1f7_4 +f2f6_2 +f3f5_4 +f4f4 +f9f9_38; crypto_int64 h9 = f0f9_2+f1f8_2 +f2f7_2 +f3f6_2 +f4f5_2; crypto_int64 carry0; crypto_int64 carry1; crypto_int64 carry2; crypto_int64 carry3; crypto_int64 carry4; crypto_int64 carry5; crypto_int64 carry6; crypto_int64 carry7; crypto_int64 carry8; crypto_int64 carry9; carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26; carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26; carry1 = (h1 + (crypto_int64) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25; carry5 = (h5 + (crypto_int64) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25; carry2 = (h2 + (crypto_int64) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26; carry6 = (h6 + (crypto_int64) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26; carry3 = (h3 + (crypto_int64) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25; carry7 = (h7 + (crypto_int64) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25; carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26; carry8 = (h8 + (crypto_int64) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26; carry9 = (h9 + (crypto_int64) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25; carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26; h[0] = h0; h[1] = h1; h[2] = h2; h[3] = h3; h[4] = h4; h[5] = h5; h[6] = h6; h[7] = h7; h[8] = h8; h[9] = h9; } python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_madd.h0000644000175000017500000000355413264344532023441 0ustar tarektarek00000000000000 /* qhasm: enter ge_madd */ /* qhasm: fe X1 */ /* qhasm: fe Y1 */ /* qhasm: fe Z1 */ /* qhasm: fe T1 */ /* qhasm: fe ypx2 */ /* qhasm: fe ymx2 */ /* qhasm: fe xy2d2 */ /* qhasm: fe X3 */ /* qhasm: fe Y3 */ /* qhasm: fe Z3 */ /* qhasm: fe T3 */ /* qhasm: fe YpX1 */ /* qhasm: fe YmX1 */ /* qhasm: fe A */ /* qhasm: fe B */ /* qhasm: fe C */ /* qhasm: fe D */ /* qhasm: YpX1 = Y1+X1 */ /* asm 1: fe_add(>YpX1=fe#1,YpX1=r->X,Y,X); */ fe_add(r->X,p->Y,p->X); /* qhasm: YmX1 = Y1-X1 */ /* asm 1: fe_sub(>YmX1=fe#2,YmX1=r->Y,Y,X); */ fe_sub(r->Y,p->Y,p->X); /* qhasm: A = YpX1*ypx2 */ /* asm 1: fe_mul(>A=fe#3,A=r->Z,X,yplusx); */ fe_mul(r->Z,r->X,q->yplusx); /* qhasm: B = YmX1*ymx2 */ /* asm 1: fe_mul(>B=fe#2,B=r->Y,Y,yminusx); */ fe_mul(r->Y,r->Y,q->yminusx); /* qhasm: C = xy2d2*T1 */ /* asm 1: fe_mul(>C=fe#4,C=r->T,xy2d,T); */ fe_mul(r->T,q->xy2d,p->T); /* qhasm: D = 2*Z1 */ /* asm 1: fe_add(>D=fe#5,D=t0,Z,Z); */ fe_add(t0,p->Z,p->Z); /* qhasm: X3 = A-B */ /* asm 1: fe_sub(>X3=fe#1,X3=r->X,Z,Y); */ fe_sub(r->X,r->Z,r->Y); /* qhasm: Y3 = A+B */ /* asm 1: fe_add(>Y3=fe#2,Y3=r->Y,Z,Y); */ fe_add(r->Y,r->Z,r->Y); /* qhasm: Z3 = D+C */ /* asm 1: fe_add(>Z3=fe#3,Z3=r->Z,T); */ fe_add(r->Z,t0,r->T); /* qhasm: T3 = D-C */ /* asm 1: fe_sub(>T3=fe#4,T3=r->T,T); */ fe_sub(r->T,t0,r->T); /* qhasm: return */ python-axolotl-curve25519-0.4.1.post2/curve/ed25519/ge_madd.c0000644000175000017500000000020013264344532023415 0ustar tarektarek00000000000000#include "ge.h" /* r = p + q */ void ge_madd(ge_p1p1 *r,const ge_p3 *p,const ge_precomp *q) { fe t0; #include "ge_madd.h" } python-axolotl-curve25519-0.4.1.post2/MANIFEST.in0000644000175000017500000000235113264355047021321 0ustar tarektarek00000000000000include curve/curve25519-donna.h include curve/ed25519/api.h include curve/ed25519/base.h include curve/ed25519/base2.h include curve/ed25519/d.h include curve/ed25519/d2.h include curve/ed25519/fe.h include curve/ed25519/ge.h include curve/ed25519/ge_add.h include curve/ed25519/ge_madd.h include curve/ed25519/ge_msub.h include curve/ed25519/ge_p2_dbl.h include curve/ed25519/ge_sub.h include curve/ed25519/pow22523.h include curve/ed25519/pow225521.h include curve/ed25519/sc.h include curve/ed25519/sqrtm1.h include curve/ed25519/additions/compare.h include curve/ed25519/additions/crypto_additions.h include curve/ed25519/additions/crypto_hash_sha512.h include curve/ed25519/additions/curve_sigs.h include curve/ed25519/additions/keygen.h include curve/ed25519/additions/utility.h include curve/ed25519/additions/xeddsa.h include curve/ed25519/additions/zeroize.h include curve/ed25519/nacl_includes/crypto_int32.h include curve/ed25519/nacl_includes/crypto_int64.h include curve/ed25519/nacl_includes/crypto_sign.h include curve/ed25519/nacl_includes/crypto_sign_edwards25519sha512batch.h include curve/ed25519/nacl_includes/crypto_uint32.h include curve/ed25519/nacl_includes/crypto_uint64.h include curve/ed25519/nacl_includes/crypto_verify_32.h python-axolotl-curve25519-0.4.1.post2/curve25519module.c0000644000175000017500000001235413263210513022656 0ustar tarektarek00000000000000/* tell python that PyArg_ParseTuple(t#) means Py_ssize_t, not int */ #define PY_SSIZE_T_CLEAN #include #if (PY_VERSION_HEX < 0x02050000) typedef int Py_ssize_t; #endif /* This is required for compatibility with Python 2. */ #if PY_MAJOR_VERSION >= 3 #include #define y "y" #else #define PyBytes_FromStringAndSize PyString_FromStringAndSize #define y "t" #endif int curve25519_sign(unsigned char* signature_out, const unsigned char* curve25519_privkey, const unsigned char* msg, const unsigned long msg_len, const unsigned char* random); int curve25519_verify(const unsigned char* signature, const unsigned char* curve25519_pubkey, const unsigned char* msg, const unsigned long msg_len); int curve25519_donna(char *mypublic, const char *secret, const char *basepoint); static PyObject * calculateSignature(PyObject *self, PyObject *args) { const char *random; const char *privatekey; const char *message; char signature[64]; Py_ssize_t randomlen, privatekeylen, messagelen; if (!PyArg_ParseTuple(args, y"#"y"#"y"#:generate",&random, &randomlen, &privatekey, &privatekeylen, &message, &messagelen)) return NULL; if (privatekeylen != 32) { PyErr_SetString(PyExc_ValueError, "private key must be 32-byte string" ); return NULL; } if (randomlen != 64) { PyErr_SetString(PyExc_ValueError, "random must be 64-byte string"); return NULL; } curve25519_sign((unsigned char *)signature, (unsigned char *)privatekey, (unsigned char *)message, messagelen, (unsigned char *)random); return PyBytes_FromStringAndSize((char *)signature, 64); } static PyObject * verifySignature(PyObject *self, PyObject *args) { const char *publickey; const char *message; const char *signature; Py_ssize_t publickeylen, messagelen, signaturelen; if (!PyArg_ParseTuple(args, y"#"y"#"y"#:generate", &publickey, &publickeylen, &message, &messagelen, &signature, &signaturelen)) return NULL; if (publickeylen != 32) { PyErr_SetString(PyExc_ValueError, "publickey must be 32-byte string"); return NULL; } if (signaturelen != 64) { PyErr_SetString(PyExc_ValueError, "signature must be 64-byte string"); return NULL; } int result = curve25519_verify((unsigned char *)signature, (unsigned char *)publickey, (unsigned char *)message, messagelen); return Py_BuildValue("i", result); } static PyObject * generatePrivateKey(PyObject *self, PyObject *args) { char *random; Py_ssize_t randomlen; if(!PyArg_ParseTuple(args, y"#:clamp", &random, &randomlen)) { return NULL; } if(randomlen != 32) { PyErr_SetString(PyExc_ValueError, "random must be 32-byte string"); return NULL; } random[0] &= 248; random[31] &= 127; random[31] |= 64; return PyBytes_FromStringAndSize((char *)random, 32); } static PyObject * generatePublicKey(PyObject *self, PyObject *args) { const char *private; char mypublic[32]; char basepoint[32] = {9}; Py_ssize_t privatelen; if (!PyArg_ParseTuple(args, y"#:makepublic", &private, &privatelen)) return NULL; if (privatelen != 32) { PyErr_SetString(PyExc_ValueError, "input must be 32-byte string"); return NULL; } curve25519_donna(mypublic, private, basepoint); return PyBytes_FromStringAndSize((char *)mypublic, 32); } static PyObject * calculateAgreement(PyObject *self, PyObject *args) { const char *myprivate, *theirpublic; char shared_key[32]; Py_ssize_t myprivatelen, theirpubliclen; if (!PyArg_ParseTuple(args, y"#"y"#:generate", &myprivate, &myprivatelen, &theirpublic, &theirpubliclen)) return NULL; if (myprivatelen != 32) { PyErr_SetString(PyExc_ValueError, "input must be 32-byte string"); return NULL; } if (theirpubliclen != 32) { PyErr_SetString(PyExc_ValueError, "input must be 32-byte string"); return NULL; } curve25519_donna(shared_key, myprivate, theirpublic); return PyBytes_FromStringAndSize((char *)shared_key, 32); } static PyMethodDef curve25519_functions[] = { {"calculateSignature", calculateSignature, METH_VARARGS, "random+privatekey+message->signature"}, {"verifySignature", verifySignature, METH_VARARGS, "publickey+message+signature->valid"}, {"generatePrivateKey", generatePrivateKey, METH_VARARGS, "data->private"}, {"generatePublicKey", generatePublicKey, METH_VARARGS, "private->public"}, {"calculateAgreement", calculateAgreement, METH_VARARGS, "private+public->shared"}, {NULL, NULL, 0, NULL}, }; #if PY_MAJOR_VERSION >= 3 static struct PyModuleDef curve25519_module = { PyModuleDef_HEAD_INIT, "axolotl_curve25519", NULL, NULL, curve25519_functions, }; PyObject * PyInit_axolotl_curve25519(void) { return PyModule_Create(&curve25519_module); } #else PyMODINIT_FUNC initaxolotl_curve25519(void) { (void)Py_InitModule("axolotl_curve25519", curve25519_functions); } #endif