pax_global_header 0000666 0000000 0000000 00000000064 14656600250 0014516 g ustar 00root root 0000000 0000000 52 comment=a6e791a8fb22723ceb1a581ae2fe739b10c0b62f
cmaes-0.11.1/ 0000775 0000000 0000000 00000000000 14656600250 0012666 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/.github/ 0000775 0000000 0000000 00000000000 14656600250 0014226 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/.github/ISSUE_TEMPLATE/ 0000775 0000000 0000000 00000000000 14656600250 0016411 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/.github/ISSUE_TEMPLATE/bug_report.md 0000664 0000000 0000000 00000001066 14656600250 0021106 0 ustar 00root root 0000000 0000000 ---
name: "Bug report"
about: Create a bug report to improve cmaes
title: ""
labels: bug
assignees: ''
---
# Bug reports
*Please file a bug report here.*
## Expected Behavior
*Please describe the behavior you are expecting*
## Current Behavior and Steps to Reproduce
*What is the current behavior? Please provide detailed steps or example for reproducing.*
## Context
Please provide any relevant information about your setup. This is important in case the issue is not reproducible except for under certain conditions.
* cmaes version or commit revision:
cmaes-0.11.1/.github/ISSUE_TEMPLATE/feature_request.md 0000664 0000000 0000000 00000000271 14656600250 0022136 0 ustar 00root root 0000000 0000000 ---
name: "Feature request"
about: Suggest an idea for new features in cmaes.
title: ""
labels: enhancement
assignees: ''
---
# Feature Request
*Please write your suggestion here.*
cmaes-0.11.1/.github/ISSUE_TEMPLATE/question.md 0000664 0000000 0000000 00000001551 14656600250 0020604 0 ustar 00root root 0000000 0000000 ---
name: "Question"
about: Ask questions about implementations, features, or any other project-related inquiries
title: "[Question] "
labels: question
assignees: ''
---
## Summary of the Question
## Detailed Explanation
## Context and Environment
## Additional Information
cmaes-0.11.1/.github/workflows/ 0000775 0000000 0000000 00000000000 14656600250 0016263 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/.github/workflows/examples.yml 0000664 0000000 0000000 00000003166 14656600250 0020632 0 ustar 00root root 0000000 0000000 name: Run examples
on:
pull_request:
paths:
- '.github/workflows/examples.yml'
- 'examples/**.py'
- 'cmaes/**.py'
jobs:
examples:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
architecture: x64
- name: Install dependencies
run: |
pip install -U pip setuptools
pip install --progress-bar off optuna numpy scipy
pip install --progress-bar off -U .
- run: python examples/quadratic_2d_function.py
- run: python examples/ipop_cma.py
- run: python examples/bipop_cma.py
- run: python examples/ellipsoid_function.py
- run: python examples/optuna_sampler.py
- run: python examples/lra_cma.py
- run: python examples/ws_cma.py
- run: python examples/cma_with_margin_binary.py
- run: python examples/cma_with_margin_integer.py
examples-cmawm-without-scipy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.x'
architecture: x64
check-latest: true
- name: Install dependencies
run: |
pip install -U pip setuptools
pip install --progress-bar off -U .
- run: python examples/cma_with_margin_binary.py
- run: python examples/cma_with_margin_integer.py
cmaes-0.11.1/.github/workflows/pypi-publish.yml 0000664 0000000 0000000 00000002625 14656600250 0021440 0 ustar 00root root 0000000 0000000 name: Publish distributions to TestPyPI and PyPI
on:
push:
tags:
- v*.*.*
jobs:
build-n-publish:
name: Build and publish Python distributions to TestPyPI and PyPI
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.x'
- name: Install dependencies
run: |
python -m pip install --upgrade pip setuptools
pip install --progress-bar off twine wheel build
- name: Build distribution packages
run: python -m build --sdist --wheel
- name: Verify the distributions
run: twine check dist/*
- uses: actions/upload-artifact@v2
with:
name: distribution
path: dist/
- name: Publish distribution to Test PyPI
uses: pypa/gh-action-pypi-publish@v1.4.1
with:
user: __token__
password: ${{ secrets.TEST_PYPI_PASSWORD }}
repository_url: https://test.pypi.org/legacy/
- name: Publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@v1.4.1
with:
user: __token__
password: ${{ secrets.PYPI_PASSWORD }}
- name: Create GitHub release
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
export TAGNAME=$(jq --raw-output .ref "$GITHUB_EVENT_PATH" | sed -e "s/refs\/tags\///")
gh release create ${TAGNAME} --draft dist/*
cmaes-0.11.1/.github/workflows/tests.yml 0000664 0000000 0000000 00000003205 14656600250 0020150 0 ustar 00root root 0000000 0000000 name: Run tests and linters
on:
pull_request:
paths:
- '.github/workflows/tests.yml'
- 'pyproject.toml'
- '**.py'
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.x'
architecture: x64
- name: Install dependencies
run: |
python -m pip install --upgrade pip setuptools
pip install --progress-bar off numpy matplotlib scipy mypy flake8 black
- run: flake8 . --show-source --statistics
- run: black --check .
- run: mypy cmaes
test:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v2
- name: Setup Python${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
architecture: x64
- name: Install dependencies
run: |
python -m pip install --upgrade pip setuptools numpy scipy hypothesis
pip install --progress-bar off .
- run: python -m unittest
test-numpy2:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v4
with:
architecture: x64
- name: Install dependencies
run: |
python -m pip install --upgrade pip setuptools scipy hypothesis
python -m pip install --pre --upgrade numpy
pip install --progress-bar off .
- run: python -m unittest cmaes-0.11.1/.gitignore 0000664 0000000 0000000 00000000174 14656600250 0014660 0 ustar 00root root 0000000 0000000 venv/
dist/
build/
__pycache__/
.mypy_cache/
*.pyc
.eggs/
*.egg-info/
.hypothesis
tmp/
benchmark/*.json
*.stats
*.sqlite3
cmaes-0.11.1/LICENSE 0000664 0000000 0000000 00000002061 14656600250 0013672 0 ustar 00root root 0000000 0000000 MIT License
Copyright (c) 2020 CyberAgent, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
cmaes-0.11.1/README.md 0000664 0000000 0000000 00000040301 14656600250 0014143 0 ustar 00root root 0000000 0000000 # cmaes
[](./LICENSE) [](https://pypistats.org/packages/cmaes)
:whale: [**Paper is now available on arXiv!**](https://arxiv.org/abs/2402.01373)
*Simple* and *Practical* Python library for CMA-ES.
Please refer to the [paper](https://arxiv.org/abs/2402.01373) [Nomura and Shibata 2024] for detailed information, including the design philosophy and advanced examples.

## Installation
Supported Python versions are 3.7 or later.
```
$ pip install cmaes
```
Or you can install via [conda-forge](https://anaconda.org/conda-forge/cmaes).
```
$ conda install -c conda-forge cmaes
```
## Usage
This library provides an "ask-and-tell" style interface. We employ the standard version of CMA-ES [Hansen 2016].
```python
import numpy as np
from cmaes import CMA
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
if __name__ == "__main__":
optimizer = CMA(mean=np.zeros(2), sigma=1.3)
for generation in range(50):
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = quadratic(x[0], x[1])
solutions.append((x, value))
print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
optimizer.tell(solutions)
```
And you can use this library via [Optuna](https://github.com/optuna/optuna) [Akiba et al. 2019], an automatic hyperparameter optimization framework.
Optuna's built-in CMA-ES sampler which uses this library under the hood is available from [v1.3.0](https://github.com/optuna/optuna/releases/tag/v1.3.0) and stabled at [v2.0.0](https://github.com/optuna/optuna/releases/tag/v2.2.0).
See [the documentation](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.CmaEsSampler.html) or [v2.0 release blog](https://medium.com/optuna/optuna-v2-3165e3f1fc2) for more details.
```python
import optuna
def objective(trial: optuna.Trial):
x1 = trial.suggest_uniform("x1", -4, 4)
x2 = trial.suggest_uniform("x2", -4, 4)
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
if __name__ == "__main__":
sampler = optuna.samplers.CmaEsSampler()
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=250)
```
## CMA-ES variants
#### Learning Rate Adaptation CMA-ES [Nomura et al. 2023]
The performance of the CMA-ES can deteriorate when faced with *difficult* problems such as multimodal or noisy ones, if its hyperparameter values are not properly configured.
The Learning Rate Adaptation CMA-ES (LRA-CMA) effectively addresses this issue by autonomously adjusting the learning rate.
Consequently, LRA-CMA eliminates the need for expensive hyperparameter tuning.
LRA-CMA can be used by simply adding `lr_adapt=True` to the initialization of `CMA()`.
Source code
```python
import numpy as np
from cmaes import CMA
def rastrigin(x):
dim = len(x)
return 10 * dim + sum(x**2 - 10 * np.cos(2 * np.pi * x))
if __name__ == "__main__":
dim = 40
optimizer = CMA(mean=3*np.ones(dim), sigma=2.0, lr_adapt=True)
for generation in range(50000):
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = rastrigin(x)
if generation % 500 == 0:
print(f"#{generation} {value}")
solutions.append((x, value))
optimizer.tell(solutions)
if optimizer.should_stop():
break
```
The full source code is available [here](./examples/lra_cma.py).
#### Warm Starting CMA-ES [Nomura et al. 2021]
Warm Starting CMA-ES (WS-CMA) is a method that transfers prior knowledge from similar tasks through the initialization of the CMA-ES.
This is useful especially when the evaluation budget is limited (e.g., hyperparameter optimization of machine learning algorithms).

Source code
```python
import numpy as np
from cmaes import CMA, get_warm_start_mgd
def source_task(x1: float, x2: float) -> float:
b = 0.4
return (x1 - b) ** 2 + (x2 - b) ** 2
def target_task(x1: float, x2: float) -> float:
b = 0.6
return (x1 - b) ** 2 + (x2 - b) ** 2
if __name__ == "__main__":
# Generate solutions from a source task
source_solutions = []
for _ in range(1000):
x = np.random.random(2)
value = source_task(x[0], x[1])
source_solutions.append((x, value))
# Estimate a promising distribution of the source task,
# then generate parameters of the multivariate gaussian distribution.
ws_mean, ws_sigma, ws_cov = get_warm_start_mgd(
source_solutions, gamma=0.1, alpha=0.1
)
optimizer = CMA(mean=ws_mean, sigma=ws_sigma, cov=ws_cov)
# Run WS-CMA-ES
print(" g f(x1,x2) x1 x2 ")
print("=== ========== ====== ======")
while True:
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = target_task(x[0], x[1])
solutions.append((x, value))
print(
f"{optimizer.generation:3d} {value:10.5f}"
f" {x[0]:6.2f} {x[1]:6.2f}"
)
optimizer.tell(solutions)
if optimizer.should_stop():
break
```
The full source code is available [here](./examples/ws_cma.py).
#### CMA-ES with Margin [Hamano et al. 2022]
CMA-ES with Margin (CMAwM) introduces a lower bound on the marginal probability for each discrete dimension, ensuring that samples avoid being fixed to a single point.
This method can be applied to mixed spaces consisting of continuous (such as float) and discrete elements (including integer and binary types).
|CMA|CMAwM|
|---|---|
|||
The above figures are taken from [EvoConJP/CMA-ES_with_Margin](https://github.com/EvoConJP/CMA-ES_with_Margin).
Source code
```python
import numpy as np
from cmaes import CMAwM
def ellipsoid_onemax(x, n_zdim):
n = len(x)
n_rdim = n - n_zdim
r = 10
if len(x) < 2:
raise ValueError("dimension must be greater one")
ellipsoid = sum([(1000 ** (i / (n_rdim - 1)) * x[i]) ** 2 for i in range(n_rdim)])
onemax = n_zdim - (0.0 < x[(n - n_zdim) :]).sum()
return ellipsoid + r * onemax
def main():
binary_dim, continuous_dim = 10, 10
dim = binary_dim + continuous_dim
bounds = np.concatenate(
[
np.tile([-np.inf, np.inf], (continuous_dim, 1)),
np.tile([0, 1], (binary_dim, 1)),
]
)
steps = np.concatenate([np.zeros(continuous_dim), np.ones(binary_dim)])
optimizer = CMAwM(mean=np.zeros(dim), sigma=2.0, bounds=bounds, steps=steps)
print(" evals f(x)")
print("====== ==========")
evals = 0
while True:
solutions = []
for _ in range(optimizer.population_size):
x_for_eval, x_for_tell = optimizer.ask()
value = ellipsoid_onemax(x_for_eval, binary_dim)
evals += 1
solutions.append((x_for_tell, value))
if evals % 300 == 0:
print(f"{evals:5d} {value:10.5f}")
optimizer.tell(solutions)
if optimizer.should_stop():
break
if __name__ == "__main__":
main()
```
Source code is also available [here](./examples/cmaes_with_margin.py).
#### CatCMA [Hamano et al. 2024]
CatCMA is a method for mixed-category optimization problems, which is the problem of simultaneously optimizing continuous and categorical variables. CatCMA employs the joint probability distribution of multivariate Gaussian and categorical distributions as the search distribution.

Source code
```python
import numpy as np
from cmaes import CatCMA
def sphere_com(x, c):
dim_co = len(x)
dim_ca = len(c)
if dim_co < 2:
raise ValueError("dimension must be greater one")
sphere = sum(x * x)
com = dim_ca - sum(c[:, 0])
return sphere + com
def rosenbrock_clo(x, c):
dim_co = len(x)
dim_ca = len(c)
if dim_co < 2:
raise ValueError("dimension must be greater one")
rosenbrock = sum(100 * (x[:-1] ** 2 - x[1:]) ** 2 + (x[:-1] - 1) ** 2)
clo = dim_ca - (c[:, 0].argmin() + c[:, 0].prod() * dim_ca)
return rosenbrock + clo
def mc_proximity(x, c, cat_num):
dim_co = len(x)
dim_ca = len(c)
if dim_co < 2:
raise ValueError("dimension must be greater one")
if dim_co != dim_ca:
raise ValueError(
"number of dimensions of continuous and categorical variables "
"must be equal in mc_proximity"
)
c_index = np.argmax(c, axis=1) / cat_num
return sum((x - c_index) ** 2) + sum(c_index)
if __name__ == "__main__":
cont_dim = 5
cat_dim = 5
cat_num = np.array([3, 4, 5, 5, 5])
# cat_num = 3 * np.ones(cat_dim, dtype=np.int64)
optimizer = CatCMA(mean=3.0 * np.ones(cont_dim), sigma=1.0, cat_num=cat_num)
for generation in range(200):
solutions = []
for _ in range(optimizer.population_size):
x, c = optimizer.ask()
value = mc_proximity(x, c, cat_num)
if generation % 10 == 0:
print(f"#{generation} {value}")
solutions.append(((x, c), value))
optimizer.tell(solutions)
if optimizer.should_stop():
break
```
The full source code is available [here](./examples/catcma.py).
#### Separable CMA-ES [Ros and Hansen 2008]
Sep-CMA-ES is an algorithm that limits the covariance matrix to a diagonal form.
This reduction in the number of parameters enhances scalability, making Sep-CMA-ES well-suited for high-dimensional optimization tasks.
Additionally, the learning rate for the covariance matrix is increased, leading to superior performance over the (full-covariance) CMA-ES on separable functions.
Source code
```python
import numpy as np
from cmaes import SepCMA
def ellipsoid(x):
n = len(x)
if len(x) < 2:
raise ValueError("dimension must be greater one")
return sum([(1000 ** (i / (n - 1)) * x[i]) ** 2 for i in range(n)])
if __name__ == "__main__":
dim = 40
optimizer = SepCMA(mean=3 * np.ones(dim), sigma=2.0)
print(" evals f(x)")
print("====== ==========")
evals = 0
while True:
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = ellipsoid(x)
evals += 1
solutions.append((x, value))
if evals % 3000 == 0:
print(f"{evals:5d} {value:10.5f}")
optimizer.tell(solutions)
if optimizer.should_stop():
break
```
Full source code is available [here](./examples/sep_cma.py).
#### IPOP-CMA-ES [Auger and Hansen 2005]
IPOP-CMA-ES is a method that involves restarting the CMA-ES with an incrementally increasing population size, as described below.

Source code
```python
import math
import numpy as np
from cmaes import CMA
def ackley(x1, x2):
# https://www.sfu.ca/~ssurjano/ackley.html
return (
-20 * math.exp(-0.2 * math.sqrt(0.5 * (x1 ** 2 + x2 ** 2)))
- math.exp(0.5 * (math.cos(2 * math.pi * x1) + math.cos(2 * math.pi * x2)))
+ math.e + 20
)
if __name__ == "__main__":
bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]])
lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]
mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
sigma = 32.768 * 2 / 5 # 1/5 of the domain width
optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0)
for generation in range(200):
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = ackley(x[0], x[1])
solutions.append((x, value))
print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
optimizer.tell(solutions)
if optimizer.should_stop():
# popsize multiplied by 2 (or 3) before each restart.
popsize = optimizer.population_size * 2
mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
optimizer = CMA(mean=mean, sigma=sigma, population_size=popsize)
print(f"Restart CMA-ES with popsize={popsize}")
```
Full source code is available [here](./examples/ipop_cma.py).
## Citation
If you use our library in your work, please cite our paper:
Masahiro Nomura, Masashi Shibata.
**cmaes : A Simple yet Practical Python Library for CMA-ES**
[https://arxiv.org/abs/2402.01373](https://arxiv.org/abs/2402.01373)
Bibtex:
```
@article{nomura2024cmaes,
title={cmaes : A Simple yet Practical Python Library for CMA-ES},
author={Nomura, Masahiro and Shibata, Masashi},
journal={arXiv preprint arXiv:2402.01373},
year={2024}
}
```
## Contact
For any questions, feel free to raise an issue or contact me at nomura_masahiro@cyberagent.co.jp.
## Links
**Projects using cmaes:**
* [Optuna](https://github.com/optuna/optuna) : A hyperparameter optimization framework that supports CMA-ES using this library under the hood.
* [Kubeflow/Katib](https://www.kubeflow.org/docs/components/katib/katib-config/) : Kubernetes-based system for hyperparameter tuning and neural architecture search
* (If you are using `cmaes` in your project and would like it to be listed here, please submit a GitHub issue.)
**Other libraries:**
We have great respect for all libraries involved in CMA-ES.
* [pycma](https://github.com/CMA-ES/pycma) : Most renowned CMA-ES implementation, created and maintained by Nikolaus Hansen.
* [pymoo](https://github.com/msu-coinlab/pymoo) : A library for multi-objective optimization in Python.
* [evojax](https://github.com/google/evojax) : evojax offers a JAX-port of this library.
* [evosax](https://github.com/RobertTLange/evosax) : evosax provides a JAX-based implementation of CMA-ES and sep-CMA-ES, inspired by this library.
**References:**
* [Akiba et al. 2019] [T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A Next-generation Hyperparameter Optimization Framework, KDD, 2019.](https://dl.acm.org/citation.cfm?id=3330701)
* [Auger and Hansen 2005] [A. Auger, N. Hansen, A Restart CMA Evolution Strategy with Increasing Population Size, CEC, 2005.](http://www.cmap.polytechnique.fr/~nikolaus.hansen/cec2005ipopcmaes.pdf)
* [Hamano et al. 2022] [R. Hamano, S. Saito, M. Nomura, S. Shirakawa, CMA-ES with Margin: Lower-Bounding Marginal Probability for Mixed-Integer Black-Box Optimization, GECCO, 2022.](https://arxiv.org/abs/2205.13482)
* [Hamano et al. 2024] [R. Hamano, S. Saito, M. Nomura, K. Uchida, S. Shirakawa, CatCMA : Stochastic Optimization for Mixed-Category Problems, GECCO, 2024.](https://arxiv.org/abs/2405.09962)
* [Hansen 2016] [N. Hansen, The CMA Evolution Strategy: A Tutorial. arXiv:1604.00772, 2016.](https://arxiv.org/abs/1604.00772)
* [Nomura et al. 2021] [M. Nomura, S. Watanabe, Y. Akimoto, Y. Ozaki, M. Onishi, Warm Starting CMA-ES for Hyperparameter Optimization, AAAI, 2021.](https://arxiv.org/abs/2012.06932)
* [Nomura et al. 2023] [M. Nomura, Y. Akimoto, I. Ono, CMA-ES with Learning
Rate Adaptation: Can CMA-ES with Default Population Size Solve Multimodal
and Noisy Problems?, GECCO, 2023.](https://arxiv.org/abs/2304.03473)
* [Nomura and Shibata 2024] [M. Nomura, M. Shibata, cmaes : A Simple yet Practical Python Library for CMA-ES, arXiv:2402.01373, 2024.](https://arxiv.org/abs/2402.01373)
* [Ros and Hansen 2008] [R. Ros, N. Hansen, A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity, PPSN, 2008.](https://hal.inria.fr/inria-00287367/document)
cmaes-0.11.1/benchmark/ 0000775 0000000 0000000 00000000000 14656600250 0014620 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/benchmark/README.md 0000664 0000000 0000000 00000003052 14656600250 0016077 0 ustar 00root root 0000000 0000000 # Continuous benchmarking using kurobako and GitHub Actions
Benchmark scripts are built on [kurobako](https://github.com/sile/kurobako).
See [Introduction to Kurobako: A Benchmark Tool for Hyperparameter Optimization Algorithms](https://medium.com/optuna/kurobako-a2e3f7b760c7) for more details.
## How to run benchmark scripts
GitHub Actions continuously run the benchmark scripts and comment on your pull request.
If you want to run on your local machines, please execute following after installed kurobako.
```console
$ ./benchmark/runner.sh -h
runner.sh is an entrypoint to run benchmarkers.
Usage:
$ runner.sh
Problem:
rosenbrock : https://www.sfu.ca/~ssurjano/rosen.html
six-hump-camel : https://www.sfu.ca/~ssurjano/camel6.html
himmelblau : https://en.wikipedia.org/wiki/Himmelblau%27s_function
ackley : https://www.sfu.ca/~ssurjano/ackley.html
rastrigin : https://www.sfu.ca/~ssurjano/rastr.html
Options:
--help, -h print this
Example:
$ runner.sh rosenbrock ./tmp/kurobako.json
$ cat ./tmp/kurobako.json | kurobako plot curve --errorbar -o ./tmp
$ ./benchmark/runner.sh rosenbrock ./tmp/kurobako.json
$ cat ./tmp/kurobako.json | kurobako plot curve --errorbar -o ./tmp
```
`kurobako plot curve` requires gnuplot. If you want to run on Docker container, please execute following:
```
$ docker pull sile/kurobako
$ ./benchmark/runner.sh rosenbrock ./tmp/kurobako.json
$ cat ./tmp/kurobako.json | docker run -v $PWD/tmp/images/:/images/ --rm -i sile/kurobako plot curve
```
cmaes-0.11.1/benchmark/optuna_solver.py 0000664 0000000 0000000 00000011633 14656600250 0020076 0 ustar 00root root 0000000 0000000 import argparse
import optuna
import warnings
from kurobako import solver
from kurobako.solver.optuna import OptunaSolverFactory
warnings.filterwarnings(
"ignore",
category=optuna.exceptions.ExperimentalWarning,
module="optuna.samplers._cmaes",
)
parser = argparse.ArgumentParser()
parser.add_argument(
"sampler",
choices=["cmaes", "sep-cmaes", "ipop-cmaes", "ipop-sep-cmaes", "pycma", "ws-cmaes"],
)
parser.add_argument(
"--loglevel", choices=["debug", "info", "warning", "error"], default="warning"
)
parser.add_argument("--warm-starting-trials", type=int, default=0)
args = parser.parse_args()
if args.loglevel == "debug":
optuna.logging.set_verbosity(optuna.logging.DEBUG)
elif args.loglevel == "info":
optuna.logging.set_verbosity(optuna.logging.INFO)
elif args.loglevel == "warning":
optuna.logging.set_verbosity(optuna.logging.WARNING)
elif args.loglevel == "error":
optuna.logging.set_verbosity(optuna.logging.ERROR)
def create_cmaes_study(seed):
sampler = optuna.samplers.CmaEsSampler(seed=seed, warn_independent_sampling=True)
return optuna.create_study(sampler=sampler, pruner=optuna.pruners.NopPruner())
def create_sep_cmaes_study(seed):
sampler = optuna.samplers.CmaEsSampler(
seed=seed, warn_independent_sampling=True, use_separable_cma=True
)
return optuna.create_study(sampler=sampler, pruner=optuna.pruners.NopPruner())
def create_ipop_cmaes_study(seed):
sampler = optuna.samplers.CmaEsSampler(
seed=seed,
warn_independent_sampling=True,
restart_strategy="ipop",
inc_popsize=2,
)
return optuna.create_study(sampler=sampler, pruner=optuna.pruners.NopPruner())
def create_ipop_sep_cmaes_study(seed):
sampler = optuna.samplers.CmaEsSampler(
seed=seed,
warn_independent_sampling=True,
restart_strategy="ipop",
inc_popsize=2,
use_separable_cma=True,
)
return optuna.create_study(sampler=sampler, pruner=optuna.pruners.NopPruner())
def create_pycma_study(seed):
sampler = optuna.integration.PyCmaSampler(
seed=seed,
warn_independent_sampling=True,
)
return optuna.create_study(sampler=sampler, pruner=optuna.pruners.NopPruner())
class WarmStartingCmaEsSampler(optuna.samplers.BaseSampler):
def __init__(self, seed, warm_starting_trials: int) -> None:
self._seed = seed
self._warm_starting = True
self._warm_starting_trials = warm_starting_trials
self._sampler = optuna.samplers.RandomSampler(seed=seed)
self._source_trials = []
def infer_relative_search_space(self, study, trial):
return self._sampler.infer_relative_search_space(study, trial)
def sample_relative(
self,
study,
trial,
search_space,
):
return self._sampler.sample_relative(study, trial, search_space)
def sample_independent(self, study, trial, param_name, param_distribution):
return self._sampler.sample_independent(
study, trial, param_name, param_distribution
)
def after_trial(
self,
study,
trial,
state,
values,
):
if not self._warm_starting:
return self._sampler.after_trial(study, trial, state, values)
if len(self._source_trials) < self._warm_starting_trials:
assert state == optuna.trial.TrialState.PRUNED
self._source_trials.append(
optuna.create_trial(
params=trial.params,
distributions=trial.distributions,
values=values,
)
)
if len(self._source_trials) == self._warm_starting_trials:
self._sampler = optuna.samplers.CmaEsSampler(
seed=self._seed + 1, source_trials=self._source_trials or None
)
self._warm_starting = False
else:
return self._sampler.after_trial(study, trial, state, values)
def create_warm_start_study(seed):
sampler = WarmStartingCmaEsSampler(seed, args.warm_starting_trials)
return optuna.create_study(sampler=sampler, pruner=optuna.pruners.NopPruner())
if __name__ == "__main__":
if args.sampler == "cmaes":
factory = OptunaSolverFactory(create_cmaes_study)
elif args.sampler == "sep-cmaes":
factory = OptunaSolverFactory(create_sep_cmaes_study)
elif args.sampler == "ipop-cmaes":
factory = OptunaSolverFactory(create_ipop_cmaes_study)
elif args.sampler == "ipop-sep-cmaes":
factory = OptunaSolverFactory(create_ipop_sep_cmaes_study)
elif args.sampler == "pycma":
factory = OptunaSolverFactory(create_pycma_study)
elif args.sampler == "ws-cmaes":
factory = OptunaSolverFactory(
create_warm_start_study, warm_starting_trials=args.warm_starting_trials
)
else:
raise ValueError("unsupported sampler")
runner = solver.SolverRunner(factory)
runner.run()
cmaes-0.11.1/benchmark/problem_himmelblau.py 0000664 0000000 0000000 00000002570 14656600250 0021035 0 ustar 00root root 0000000 0000000 from kurobako import problem
from kurobako.problem import Problem
from typing import List
from typing import Optional
class HimmelblauEvaluator(problem.Evaluator):
def __init__(self, params: List[Optional[float]]):
self._x1, self._x2 = params
self._current_step = 0
def evaluate(self, next_step: int) -> List[float]:
self._current_step = 1
value = (self._x1**2 + self._x2 - 11.0) ** 2 + (
self._x1 + self._x2**2 - 7.0
) ** 2
return [value]
def current_step(self) -> int:
return self._current_step
class HimmelblauProblem(problem.Problem):
def create_evaluator(
self, params: List[Optional[float]]
) -> Optional[problem.Evaluator]:
return HimmelblauEvaluator(params)
class HimmelblauProblemFactory(problem.ProblemFactory):
def create_problem(self, seed: int) -> Problem:
return HimmelblauProblem()
def specification(self) -> problem.ProblemSpec:
params = [
problem.Var("x1", problem.ContinuousRange(-4, 4)),
problem.Var("x2", problem.ContinuousRange(-4, 4)),
]
return problem.ProblemSpec(
name="Himmelblau Function",
params=params,
values=[problem.Var("Himmelblau")],
)
if __name__ == "__main__":
runner = problem.ProblemRunner(HimmelblauProblemFactory())
runner.run()
cmaes-0.11.1/benchmark/problem_rastrigin.py 0000664 0000000 0000000 00000003003 14656600250 0020710 0 ustar 00root root 0000000 0000000 import sys
import numpy as np
from kurobako import problem
from kurobako.problem import Problem
from typing import List
from typing import Optional
class RastriginEvaluator(problem.Evaluator):
def __init__(self, params: List[Optional[float]]):
self.n = len(params)
self.x = np.array(params, dtype=float)
self._current_step = 0
def evaluate(self, next_step: int) -> List[float]:
self._current_step = 1
value = 10 * self.n + np.sum(self.x**2 - 10 * np.cos(2 * np.pi * self.x))
return [value]
def current_step(self) -> int:
return self._current_step
class RastriginProblem(problem.Problem):
def create_evaluator(
self, params: List[Optional[float]]
) -> Optional[problem.Evaluator]:
return RastriginEvaluator(params)
class RastriginProblemFactory(problem.ProblemFactory):
def __init__(self, dim):
self.dim = dim
def create_problem(self, seed: int) -> Problem:
return RastriginProblem()
def specification(self) -> problem.ProblemSpec:
params = [
problem.Var(f"x{i + 1}", problem.ContinuousRange(-5.12, 5.12))
for i in range(self.dim)
]
return problem.ProblemSpec(
name=f"Rastrigin (dim={self.dim})",
params=params,
values=[problem.Var("Rastrigin")],
)
if __name__ == "__main__":
dim = int(sys.argv[1]) if len(sys.argv) == 2 else 2
runner = problem.ProblemRunner(RastriginProblemFactory(dim))
runner.run()
cmaes-0.11.1/benchmark/problem_rosenbrock.py 0000664 0000000 0000000 00000002624 14656600250 0021065 0 ustar 00root root 0000000 0000000 from kurobako import problem
from kurobako.problem import Problem
from typing import List
from typing import Optional
class RosenbrockEvaluator(problem.Evaluator):
"""
See https://www.sfu.ca/~ssurjano/rosen.html
"""
def __init__(self, params: List[Optional[float]]):
self._x1, self._x2 = params
self._current_step = 0
def evaluate(self, next_step: int) -> List[float]:
self._current_step = 1
value = 100 * (self._x2 - self._x1**2) ** 2 + (self._x1 - 1) ** 2
return [value]
def current_step(self) -> int:
return self._current_step
class RosenbrockProblem(problem.Problem):
def create_evaluator(
self, params: List[Optional[float]]
) -> Optional[problem.Evaluator]:
return RosenbrockEvaluator(params)
class RosenbrockProblemFactory(problem.ProblemFactory):
def create_problem(self, seed: int) -> Problem:
return RosenbrockProblem()
def specification(self) -> problem.ProblemSpec:
params = [
problem.Var("x1", problem.ContinuousRange(-5, 10)),
problem.Var("x2", problem.ContinuousRange(-5, 10)),
]
return problem.ProblemSpec(
name="Rosenbrock Function",
params=params,
values=[problem.Var("Rosenbrock")],
)
if __name__ == "__main__":
runner = problem.ProblemRunner(RosenbrockProblemFactory())
runner.run()
cmaes-0.11.1/benchmark/problem_six_hump_camel.py 0000664 0000000 0000000 00000003034 14656600250 0021707 0 ustar 00root root 0000000 0000000 from kurobako import problem
from kurobako.problem import Problem
from typing import List
from typing import Optional
class SixHumpCamelEvaluator(problem.Evaluator):
"""
See https://www.sfu.ca/~ssurjano/camel6.html
"""
def __init__(self, params: List[Optional[float]]):
self._x1, self._x2 = params
self._current_step = 0
def evaluate(self, next_step: int) -> List[float]:
self._current_step = 1
value = (
(4 - 2.1 * (self._x1**2) + (self._x1**4) / 3) * (self._x1**2)
+ self._x1 * self._x2
+ (-4 + 4 * self._x2**2) * (self._x2**2)
)
return [value]
def current_step(self) -> int:
return self._current_step
class SixHumpCamelProblem(problem.Problem):
def create_evaluator(
self, params: List[Optional[float]]
) -> Optional[problem.Evaluator]:
return SixHumpCamelEvaluator(params)
class SixHumpCamelProblemFactory(problem.ProblemFactory):
def create_problem(self, seed: int) -> Problem:
return SixHumpCamelProblem()
def specification(self) -> problem.ProblemSpec:
params = [
problem.Var("x1", problem.ContinuousRange(-5, 10)),
problem.Var("x2", problem.ContinuousRange(-5, 10)),
]
return problem.ProblemSpec(
name="Six-Hump Camel Function",
params=params,
values=[problem.Var("Six-Hump Camel")],
)
if __name__ == "__main__":
runner = problem.ProblemRunner(SixHumpCamelProblemFactory())
runner.run()
cmaes-0.11.1/benchmark/problem_sphere.py 0000664 0000000 0000000 00000002710 14656600250 0020200 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import sys
import numpy as np
from kurobako import problem
from kurobako.problem import Problem
from typing import Optional
class SphereEvaluator(problem.Evaluator):
def __init__(self, params: list[Optional[float]]):
self.n = len(params)
self.x = np.array(params, dtype=float)
self._current_step = 0
def evaluate(self, next_step: int) -> list[float]:
self._current_step = 1
value = np.mean(self.x**2)
return [value]
def current_step(self) -> int:
return self._current_step
class SphereProblem(problem.Problem):
def create_evaluator(
self, params: list[Optional[float]]
) -> Optional[problem.Evaluator]:
return SphereEvaluator(params)
class SphereProblemFactory(problem.ProblemFactory):
def __init__(self, dim):
self.dim = dim
def create_problem(self, seed: int) -> Problem:
return SphereProblem()
def specification(self) -> problem.ProblemSpec:
params = [
problem.Var(f"x{i + 1}", problem.ContinuousRange(-5.12, 5.12))
for i in range(self.dim)
]
return problem.ProblemSpec(
name=f"Sphere (dim={self.dim})",
params=params,
values=[problem.Var("Sphere")],
)
if __name__ == "__main__":
dim = int(sys.argv[1]) if len(sys.argv) == 2 else 2
runner = problem.ProblemRunner(SphereProblemFactory(dim))
runner.run()
cmaes-0.11.1/benchmark/runner.sh 0000775 0000000 0000000 00000006074 14656600250 0016477 0 ustar 00root root 0000000 0000000 #!/bin/sh
set -e
KUROBAKO=${KUROBAKO:-kurobako}
DIR=$(cd $(dirname $0); pwd)
REPEATS=${REPEATS:-5}
BUDGET=${BUDGET:-300}
SEED=${SEED:-1}
DIM=${DIM:-2}
SURROGATE_ROOT=${SURROGATE_ROOT:-$(dirname $DIR)/tmp/surrogate-models}
WARM_START=${WARM_START:-0}
usage() {
cat <
Problem:
rosenbrock : https://www.sfu.ca/~ssurjano/rosen.html
six-hump-camel : https://www.sfu.ca/~ssurjano/camel6.html
himmelblau : https://en.wikipedia.org/wiki/Himmelblau%27s_function
ackley : https://www.sfu.ca/~ssurjano/ackley.html
rastrigin : https://www.sfu.ca/~ssurjano/rastr.html
sphere : https://www.sfu.ca/~ssurjano/spheref.html
toxic-lightgbm : https://github.com/c-bata/benchmark-warm-starting-cmaes
Options:
--help, -h print this
Example:
$ $(basename ${0}) rosenbrock ./tmp/kurobako.json
$ cat ./tmp/kurobako.json | kurobako plot curve --errorbar -o ./tmp
EOF
}
case "$1" in
himmelblau)
PROBLEM=$($KUROBAKO problem command python $DIR/problem_himmelblau.py)
;;
rosenbrock)
PROBLEM=$($KUROBAKO problem command python $DIR/problem_rosenbrock.py)
;;
six-hump-camel)
PROBLEM=$($KUROBAKO problem command python $DIR/problem_six_hump_camel.py)
;;
ackley)
PROBLEM=$($KUROBAKO problem sigopt --dim $DIM ackley)
;;
rastrigin)
# "kurobako problem sigopt --dim 8 rastrigin" only accepts 8-dim.
PROBLEM=$($KUROBAKO problem command python $DIR/problem_rastrigin.py $DIM)
;;
sphere)
# "kurobako problem sigopt --dim 8 rastrigin" only accepts 8-dim.
PROBLEM=$($KUROBAKO problem command python $DIR/problem_sphere.py $DIM)
;;
toxic-lightgbm)
PROBLEM=$($KUROBAKO problem warm-starting \
$($KUROBAKO problem surrogate $SURROGATE_ROOT/wscmaes-toxic-source/) \
$($KUROBAKO problem surrogate $SURROGATE_ROOT/wscmaes-toxic-target/))
;;
help|--help|-h)
usage
exit 0
;;
*)
echo "[Error] Invalid problem '${1}'"
usage
exit 1
;;
esac
RANDOM_SOLVER=$($KUROBAKO solver random)
CMAES_SOLVER=$($KUROBAKO solver --name 'cmaes' command -- python $DIR/optuna_solver.py cmaes)
SEP_CMAES_SOLVER=$($KUROBAKO solver --name 'sep-cmaes' command -- python $DIR/optuna_solver.py sep-cmaes)
IPOP_CMAES_SOLVER=$($KUROBAKO solver --name 'ipop-cmaes' command -- python $DIR/optuna_solver.py ipop-cmaes)
IPOP_SEP_CMAES_SOLVER=$($KUROBAKO solver --name 'ipop-sep-cmaes' command -- python $DIR/optuna_solver.py ipop-sep-cmaes)
PYCMA_SOLVER=$($KUROBAKO solver --name 'pycma' command -- python $DIR/optuna_solver.py pycma)
WS_CMAES_SOLVER=$($KUROBAKO solver --name 'ws-cmaes' command -- python $DIR/optuna_solver.py ws-cmaes --warm-starting-trials $WARM_START)
$KUROBAKO studies \
--solvers $RANDOM_SOLVER $CMAES_SOLVER $PYCMA_SOLVER \
--problems $PROBLEM \
--seed $SEED --repeats $REPEATS --budget $BUDGET \
| $KUROBAKO run --parallelism 6 > $2
cmaes-0.11.1/cmaes/ 0000775 0000000 0000000 00000000000 14656600250 0013756 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/cmaes/__init__.py 0000664 0000000 0000000 00000000432 14656600250 0016066 0 ustar 00root root 0000000 0000000 from ._cma import CMA # NOQA
from ._sepcma import SepCMA # NOQA
from ._warm_start import get_warm_start_mgd # NOQA
from ._cmawm import CMAwM # NOQA
from ._xnes import XNES # NOQA
from ._dxnesic import DXNESIC # NOQA
from ._catcma import CatCMA # NOQA
__version__ = "0.11.1"
cmaes-0.11.1/cmaes/_catcma.py 0000664 0000000 0000000 00000043762 14656600250 0015733 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import math
import numpy as np
from typing import Any
from typing import cast
from typing import Optional
_EPS = 1e-8
_MEAN_MAX = 1e32
_SIGMA_MAX = 1e32
class CatCMA:
"""CatCMA stochastic optimizer class with ask-and-tell interface.
Example:
.. code::
import numpy as np
from cmaes import CatCMA
def sphere_com(x, c):
return sum(x*x) + len(c) - sum(c[:,0])
optimizer = CatCMA(mean=3 * np.ones(3), sigma=2.0, cat_num=np.array([3, 3, 3]))
for generation in range(50):
solutions = []
for _ in range(optimizer.population_size):
# Ask a parameter
x, c = optimizer.ask()
value = sphere_com(x, c)
solutions.append(((x, c), value))
print(f"#{generation} {value}")
# Tell evaluation values.
optimizer.tell(solutions)
Args:
mean:
Initial mean vector of multivariate gaussian distribution.
sigma:
Initial standard deviation of covariance matrix.
cat_num:
Numbers of categories.
bounds:
Lower and upper domain boundaries for each parameter (optional).
n_max_resampling:
A maximum number of resampling parameters (default: 100).
If all sampled parameters are infeasible, the last sampled one
will be clipped with lower and upper bounds.
seed:
A seed number (optional).
population_size:
A population size (optional).
cov:
A covariance matrix (optional).
cat_param:
A parameter of categorical distribution (optional).
margin:
A margin (lower bound) of categorical distribution (optional).
min_eigenvalue:
Lower bound of eigenvalue of multivariate Gaussian distribution (optional).
"""
# Paper: https://arxiv.org/abs/2405.09962
def __init__(
self,
mean: np.ndarray,
sigma: float,
cat_num: np.ndarray,
bounds: Optional[np.ndarray] = None,
n_max_resampling: int = 100,
seed: Optional[int] = None,
population_size: Optional[int] = None,
cov: Optional[np.ndarray] = None,
cat_param: Optional[np.ndarray] = None,
margin: Optional[np.ndarray] = None,
min_eigenvalue: Optional[float] = None,
):
assert sigma > 0, "sigma must be non-zero positive value"
assert np.all(
np.abs(mean) < _MEAN_MAX
), f"Abs of all elements of mean vector must be less than {_MEAN_MAX}"
self._n_co = len(mean)
self._n_ca = len(cat_num)
self._n = self._n_co + self._n_ca
assert self._n_co > 1, "The dimension of mean must be larger than 1"
assert self._n_ca > 0, "The dimension of categorical variable must be positive"
assert np.all(cat_num > 1), "The number of categories must be larger than 1"
if population_size is None:
population_size = 4 + math.floor(3 * math.log(self._n))
assert population_size > 0, "popsize must be non-zero positive value."
mu = population_size // 2
# CatCMA assumes that the weights of the lower half are zero.
# (CMA uses negative weights while CatCMA uses positive weights.)
weights_prime = np.array(
[
math.log((population_size + 1) / 2) - math.log(i + 1) if i < mu else 0
for i in range(population_size)
]
)
weights = weights_prime / weights_prime.sum()
mu_eff = 1 / ((weights**2).sum())
# learning rate for the rank-one update
alpha_cov = 2
c1 = alpha_cov / ((self._n_co + 1.3) ** 2 + mu_eff)
# learning rate for the rank-μ update
cmu = min(
1 - c1 - 1e-8, # 1e-8 is for large popsize.
alpha_cov
* (mu_eff - 2 + 1 / mu_eff)
/ ((self._n_co + 2) ** 2 + alpha_cov * mu_eff / 2),
)
assert c1 <= 1 - cmu, "invalid learning rate for the rank-one update"
assert cmu <= 1 - c1, "invalid learning rate for the rank-μ update"
cm = 1
# learning rate for the cumulation for the step-size control
c_sigma = (mu_eff + 2) / (self._n_co + mu_eff + 5)
d_sigma = (
1 + 2 * max(0, math.sqrt((mu_eff - 1) / (self._n_co + 1)) - 1) + c_sigma
)
assert (
c_sigma < 1
), "invalid learning rate for cumulation for the step-size control"
# learning rate for cumulation for the rank-one update
cc = (4 + mu_eff / self._n_co) / (self._n_co + 4 + 2 * mu_eff / self._n_co)
assert cc <= 1, "invalid learning rate for cumulation for the rank-one update"
self._popsize = population_size
self._mu = mu
self._mu_eff = mu_eff
self._cc = cc
self._c1 = c1
self._cmu = cmu
self._c_sigma = c_sigma
self._d_sigma = d_sigma
self._cm = cm
# E||N(0, I)||
self._chi_n = math.sqrt(self._n_co) * (
1.0 - (1.0 / (4.0 * self._n_co)) + 1.0 / (21.0 * (self._n_co**2))
)
self._weights = weights
# evolution path
self._p_sigma = np.zeros(self._n_co)
self._pc = np.zeros(self._n_co)
self._mean = mean.copy()
if cov is None:
self._C = np.eye(self._n_co)
else:
assert cov.shape == (
self._n_co,
self._n_co,
), "Invalid shape of covariance matrix"
self._C = cov
self._sigma = sigma
self._D: Optional[np.ndarray] = None
self._B: Optional[np.ndarray] = None
# categorical distribution
# Parameters in categorical distribution with fewer categories
# must be zero-padded at the end.
self._K = cat_num
self._Kmax = np.max(self._K)
if cat_param is None:
self._q = np.zeros((self._n_ca, self._Kmax))
for i in range(self._n_ca):
self._q[i, : self._K[i]] = 1 / self._K[i]
else:
assert cat_param.shape == (
self._n_ca,
self._Kmax,
), "Invalid shape of categorical distribution parameter"
for i in range(self._n_ca):
assert np.all(cat_param[i, self._K[i] :] == 0), (
"Parameters in categorical distribution with fewer categories "
"must be zero-padded at the end"
)
assert np.all(
(cat_param >= 0) & (cat_param <= 1)
), "All elements in categorical distribution parameter must be between 0 and 1"
assert np.allclose(
np.sum(cat_param, axis=1), 1
), "Each row in categorical distribution parameter must sum to 1"
self._q = cat_param
self._q_min = (
margin
if margin is not None
else (1 - 0.73 ** (1 / self._n_ca)) / (self._K - 1)
)
self._min_eigenvalue = min_eigenvalue if min_eigenvalue is not None else 1e-30
# ASNG
self._param_sum = np.sum(cat_num - 1)
self._alpha = 1.5
self._delta_init = 1.0
self._Delta = 1.0
self._Delta_max = np.inf
self._gamma = 0.0
self._s = np.zeros(self._param_sum)
self._delta = self._delta_init / self._Delta
self._eps = self._delta
# bounds contains low and high of each parameter.
assert bounds is None or _is_valid_bounds(bounds, mean), "invalid bounds"
self._bounds = bounds
self._n_max_resampling = n_max_resampling
self._g = 0
self._rng = np.random.RandomState(seed)
# Termination criteria
self._tolxup = 1e4
self._tolfun = 1e-12
self._tolconditioncov = 1e14
self._funhist_term = 10 + math.ceil(30 * self._n_co / population_size)
self._funhist_values = np.empty(self._funhist_term)
def __getstate__(self) -> dict[str, Any]:
attrs = {}
for name in self.__dict__:
# Remove _rng in pickle serialized object.
if name == "_rng":
continue
if name == "_C":
sym1d = _compress_symmetric(self._C)
attrs["_c_1d"] = sym1d
continue
attrs[name] = getattr(self, name)
return attrs
def __setstate__(self, state: dict[str, Any]) -> None:
state["_C"] = _decompress_symmetric(state["_c_1d"])
del state["_c_1d"]
self.__dict__.update(state)
# Set _rng for unpickled object.
setattr(self, "_rng", np.random.RandomState())
@property
def cont_dim(self) -> int:
"""A number of dimensions of continuous variable"""
return self._n_co
@property
def cat_dim(self) -> int:
"""A number of dimensions of categorical variable"""
return self._n_ca
@property
def dim(self) -> int:
"""A number of dimensions"""
return self._n
@property
def cat_num(self) -> np.ndarray:
"""Numbers of categories"""
return self._K
@property
def population_size(self) -> int:
"""A population size"""
return self._popsize
@property
def generation(self) -> int:
"""Generation number which is monotonically incremented
when multi-variate gaussian distribution is updated."""
return self._g
@property
def mean(self) -> np.ndarray:
"""Mean Vector"""
return self._mean
def reseed_rng(self, seed: int) -> None:
self._rng.seed(seed)
def set_bounds(self, bounds: Optional[np.ndarray]) -> None:
"""Update boundary constraints"""
assert bounds is None or _is_valid_bounds(bounds, self._mean), "invalid bounds"
self._bounds = bounds
def ask(self) -> tuple[np.ndarray, np.ndarray]:
"""Sample a parameter"""
for i in range(self._n_max_resampling):
x, c = self._sample_solution()
if self._is_feasible(x):
return x, c
x, c = self._sample_solution()
x = self._repair_infeasible_params(x)
return x, c
def _eigen_decomposition(self) -> tuple[np.ndarray, np.ndarray]:
if self._B is not None and self._D is not None:
return self._B, self._D
self._C = (self._C + self._C.T) / 2
D2, B = np.linalg.eigh(self._C)
D = np.sqrt(np.where(D2 < 0, _EPS, D2))
self._C = np.dot(np.dot(B, np.diag(D**2)), B.T)
self._B, self._D = B, D
return B, D
def _sample_solution(self) -> tuple[np.ndarray, np.ndarray]:
# x : continuous variable
B, D = self._eigen_decomposition()
z = self._rng.randn(self._n_co) # ~ N(0, I)
y = cast(np.ndarray, B.dot(np.diag(D))).dot(z) # ~ N(0, C)
x = self._mean + self._sigma * y # ~ N(m, σ^2 C)
# c : categorical variable
# Categorical variables are one-hot encoded.
# Variables with fewer categories are zero-padded at the end.
rand_q = self._rng.rand(self._n_ca, 1)
cum_q = self._q.cumsum(axis=1)
c = (cum_q - self._q <= rand_q) & (rand_q < cum_q)
return x, c
def _is_feasible(self, param: np.ndarray) -> bool:
if self._bounds is None:
return True
return cast(
bool,
np.all(param >= self._bounds[:, 0]) and np.all(param <= self._bounds[:, 1]),
) # Cast bool_ to bool.
def _repair_infeasible_params(self, param: np.ndarray) -> np.ndarray:
if self._bounds is None:
return param
# clip with lower and upper bound.
param = np.where(param < self._bounds[:, 0], self._bounds[:, 0], param)
param = np.where(param > self._bounds[:, 1], self._bounds[:, 1], param)
return param
def tell(
self, solutions: list[tuple[tuple[np.ndarray, np.ndarray], float]]
) -> None:
"""Tell evaluation values"""
assert len(solutions) == self._popsize, "Must tell popsize-length solutions."
for s in solutions:
assert np.all(
np.abs(s[0][0]) < _MEAN_MAX
), f"Abs of all param values must be less than {_MEAN_MAX} to avoid overflow errors"
self._g += 1
solutions.sort(key=lambda s: s[1])
# Stores best evaluation values of the
# last 'self._funhist_term' generations.
funhist_idx = self.generation % self._funhist_term
self._funhist_values[funhist_idx] = solutions[0][1]
# Sample new population of search_points, for k=1, ..., popsize
B, D = self._eigen_decomposition()
self._B, self._D = None, None
x_k = np.array([s[0][0] for s in solutions]) # ~ N(m, σ^2 C)
y_k = (x_k - self._mean) / self._sigma # ~ N(0, C)
# Selection and recombination
y_w = np.sum(y_k[: self._mu].T * self._weights[: self._mu], axis=1)
self._mean += self._cm * self._sigma * y_w
# Step-size control
C_2 = cast(
np.ndarray, cast(np.ndarray, B.dot(np.diag(1 / D))).dot(B.T)
) # C^(-1/2) = B D^(-1) B^T
self._p_sigma = (1 - self._c_sigma) * self._p_sigma + math.sqrt(
self._c_sigma * (2 - self._c_sigma) * self._mu_eff
) * C_2.dot(y_w)
norm_p_sigma = np.linalg.norm(self._p_sigma)
self._sigma *= np.exp(
(self._c_sigma / self._d_sigma) * (norm_p_sigma / self._chi_n - 1)
)
self._sigma = min(self._sigma, _SIGMA_MAX)
# Covariance matrix adaption
h_sigma_cond_left = norm_p_sigma / math.sqrt(
1 - (1 - self._c_sigma) ** (2 * (self._g + 1))
)
h_sigma_cond_right = (1.4 + 2 / (self._n_co + 1)) * self._chi_n
h_sigma = 1.0 if h_sigma_cond_left < h_sigma_cond_right else 0.0
self._pc = (1 - self._cc) * self._pc + h_sigma * math.sqrt(
self._cc * (2 - self._cc) * self._mu_eff
) * y_w
delta_h_sigma = (1 - h_sigma) * self._cc * (2 - self._cc)
assert delta_h_sigma <= 1
rank_one = np.outer(self._pc, self._pc)
rank_mu = np.sum(
np.array([w * np.outer(y, y) for w, y in zip(self._weights, y_k)]), axis=0
)
self._C = (
(
1
+ self._c1 * delta_h_sigma
- self._c1
- self._cmu * np.sum(self._weights)
)
* self._C
+ self._c1 * rank_one
+ self._cmu * rank_mu
)
# Post-processing to prevent the minimum eigenvalue from becoming too small
B, D = self._eigen_decomposition()
sigma_min = np.sqrt(self._min_eigenvalue / np.min(D))
self._sigma = max(self._sigma, sigma_min)
# Update of categorical distribution
c = np.array([s[0][1] for s in solutions])
ngrad = (self._weights[:, np.newaxis, np.newaxis] * (c - self._q)).sum(axis=0)
# Approximation of the square root of the fisher information matrix :
# Appendix B in https://proceedings.mlr.press/v97/akimoto19a.html
sl = []
for i, K in enumerate(self._K):
q_i = self._q[i, : K - 1]
q_i_K = self._q[i, K - 1]
s_i = 1.0 / np.sqrt(q_i) * ngrad[i, : K - 1]
s_i += np.sqrt(q_i) * ngrad[i, : K - 1].sum() / (q_i_K + np.sqrt(q_i_K))
sl += list(s_i)
ngrad_sqF = np.array(sl)
pnorm = np.sqrt(np.dot(ngrad_sqF, ngrad_sqF)) + 1e-30
self._eps = self._delta / pnorm
self._q += self._eps * ngrad
# Update of ASNG
self._delta = self._delta_init / self._Delta
beta = self._delta / (self._param_sum**0.5)
self._s = (1 - beta) * self._s + np.sqrt(beta * (2 - beta)) * ngrad_sqF / pnorm
self._gamma = (1 - beta) ** 2 * self._gamma + beta * (2 - beta)
self._Delta *= np.exp(
beta * (self._gamma - np.dot(self._s, self._s) / self._alpha)
)
self._Delta = min(self._Delta, self._Delta_max)
# Margin Correction
for i in range(self._n_ca):
Ki = self._K[i]
self._q[i, :Ki] = np.maximum(self._q[i, :Ki], self._q_min[i])
q_sum = self._q[i, :Ki].sum()
tmp = q_sum - self._q_min[i] * Ki
self._q[i, :Ki] -= (q_sum - 1) * (self._q[i, :Ki] - self._q_min[i]) / tmp
self._q[i, :Ki] /= self._q[i, :Ki].sum()
def should_stop(self) -> bool:
B, D = self._eigen_decomposition()
# Stop if the range of function values of the recent generation is below tolfun.
if (
self.generation > self._funhist_term
and np.max(self._funhist_values) - np.min(self._funhist_values)
< self._tolfun
):
return True
# Stop if detecting divergent behavior.
if self._sigma * np.max(D) > self._tolxup:
return True
# Stop if the condition number of the covariance matrix exceeds 1e14.
condition_cov = np.max(D) / np.min(D)
if condition_cov > self._tolconditioncov:
return True
return False
def _is_valid_bounds(bounds: Optional[np.ndarray], mean: np.ndarray) -> bool:
if bounds is None:
return True
if (mean.size, 2) != bounds.shape:
return False
if not np.all(bounds[:, 0] <= mean):
return False
if not np.all(mean <= bounds[:, 1]):
return False
return True
def _compress_symmetric(sym2d: np.ndarray) -> np.ndarray:
assert len(sym2d.shape) == 2 and sym2d.shape[0] == sym2d.shape[1]
n = sym2d.shape[0]
dim = (n * (n + 1)) // 2
sym1d = np.zeros(dim)
start = 0
for i in range(n):
sym1d[start : start + n - i] = sym2d[i][i:] # noqa: E203
start += n - i
return sym1d
def _decompress_symmetric(sym1d: np.ndarray) -> np.ndarray:
n = int(np.sqrt(sym1d.size * 2))
assert (n * (n + 1)) // 2 == sym1d.size
R, C = np.triu_indices(n)
out = np.zeros((n, n), dtype=sym1d.dtype)
out[R, C] = sym1d
out[C, R] = sym1d
return out
cmaes-0.11.1/cmaes/_cma.py 0000664 0000000 0000000 00000045140 14656600250 0015233 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import math
import numpy as np
from typing import Any
from typing import cast
from typing import Optional
_EPS = 1e-8
_MEAN_MAX = 1e32
_SIGMA_MAX = 1e32
class CMA:
"""CMA-ES stochastic optimizer class with ask-and-tell interface.
Example:
.. code::
import numpy as np
from cmaes import CMA
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
optimizer = CMA(mean=np.zeros(2), sigma=1.3)
for generation in range(50):
solutions = []
for _ in range(optimizer.population_size):
# Ask a parameter
x = optimizer.ask()
value = quadratic(x[0], x[1])
solutions.append((x, value))
print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
# Tell evaluation values.
optimizer.tell(solutions)
Args:
mean:
Initial mean vector of multi-variate gaussian distributions.
sigma:
Initial standard deviation of covariance matrix.
bounds:
Lower and upper domain boundaries for each parameter (optional).
n_max_resampling:
A maximum number of resampling parameters (default: 100).
If all sampled parameters are infeasible, the last sampled one
will be clipped with lower and upper bounds.
seed:
A seed number (optional).
population_size:
A population size (optional).
cov:
A covariance matrix (optional).
lr_adapt:
Flag for learning rate adaptation (optional; default=False)
"""
def __init__(
self,
mean: np.ndarray,
sigma: float,
bounds: Optional[np.ndarray] = None,
n_max_resampling: int = 100,
seed: Optional[int] = None,
population_size: Optional[int] = None,
cov: Optional[np.ndarray] = None,
lr_adapt: bool = False,
):
assert sigma > 0, "sigma must be non-zero positive value"
assert np.all(
np.abs(mean) < _MEAN_MAX
), f"Abs of all elements of mean vector must be less than {_MEAN_MAX}"
n_dim = len(mean)
assert n_dim > 1, "The dimension of mean must be larger than 1"
if population_size is None:
population_size = 4 + math.floor(3 * math.log(n_dim)) # (eq. 48)
assert population_size > 0, "popsize must be non-zero positive value."
mu = population_size // 2
# (eq.49)
weights_prime = np.array(
[
math.log((population_size + 1) / 2) - math.log(i + 1)
for i in range(population_size)
]
)
mu_eff = (np.sum(weights_prime[:mu]) ** 2) / np.sum(weights_prime[:mu] ** 2)
mu_eff_minus = (np.sum(weights_prime[mu:]) ** 2) / np.sum(
weights_prime[mu:] ** 2
)
# learning rate for the rank-one update
alpha_cov = 2
c1 = alpha_cov / ((n_dim + 1.3) ** 2 + mu_eff)
# learning rate for the rank-μ update
cmu = min(
1 - c1 - 1e-8, # 1e-8 is for large popsize.
alpha_cov
* (mu_eff - 2 + 1 / mu_eff)
/ ((n_dim + 2) ** 2 + alpha_cov * mu_eff / 2),
)
assert c1 <= 1 - cmu, "invalid learning rate for the rank-one update"
assert cmu <= 1 - c1, "invalid learning rate for the rank-μ update"
min_alpha = min(
1 + c1 / cmu, # eq.50
1 + (2 * mu_eff_minus) / (mu_eff + 2), # eq.51
(1 - c1 - cmu) / (n_dim * cmu), # eq.52
)
# (eq.53)
positive_sum = np.sum(weights_prime[weights_prime > 0])
negative_sum = np.sum(np.abs(weights_prime[weights_prime < 0]))
weights = np.where(
weights_prime >= 0,
1 / positive_sum * weights_prime,
min_alpha / negative_sum * weights_prime,
)
cm = 1 # (eq. 54)
# learning rate for the cumulation for the step-size control (eq.55)
c_sigma = (mu_eff + 2) / (n_dim + mu_eff + 5)
d_sigma = 1 + 2 * max(0, math.sqrt((mu_eff - 1) / (n_dim + 1)) - 1) + c_sigma
assert (
c_sigma < 1
), "invalid learning rate for cumulation for the step-size control"
# learning rate for cumulation for the rank-one update (eq.56)
cc = (4 + mu_eff / n_dim) / (n_dim + 4 + 2 * mu_eff / n_dim)
assert cc <= 1, "invalid learning rate for cumulation for the rank-one update"
self._n_dim = n_dim
self._popsize = population_size
self._mu = mu
self._mu_eff = mu_eff
self._cc = cc
self._c1 = c1
self._cmu = cmu
self._c_sigma = c_sigma
self._d_sigma = d_sigma
self._cm = cm
# E||N(0, I)|| (p.28)
self._chi_n = math.sqrt(self._n_dim) * (
1.0 - (1.0 / (4.0 * self._n_dim)) + 1.0 / (21.0 * (self._n_dim**2))
)
self._weights = weights
# evolution path
self._p_sigma = np.zeros(n_dim)
self._pc = np.zeros(n_dim)
self._mean = mean.copy()
if cov is None:
self._C = np.eye(n_dim)
else:
assert cov.shape == (n_dim, n_dim), "Invalid shape of covariance matrix"
self._C = cov
self._sigma = sigma
self._D: Optional[np.ndarray] = None
self._B: Optional[np.ndarray] = None
# bounds contains low and high of each parameter.
assert bounds is None or _is_valid_bounds(bounds, mean), "invalid bounds"
self._bounds = bounds
self._n_max_resampling = n_max_resampling
self._g = 0
self._rng = np.random.RandomState(seed)
# for learning rate adaptation
self._lr_adapt = lr_adapt
self._alpha = 1.4
self._beta_mean = 0.1
self._beta_Sigma = 0.03
self._gamma = 0.1
self._Emean = np.zeros([self._n_dim, 1])
self._ESigma = np.zeros([self._n_dim * self._n_dim, 1])
self._Vmean = 0.0
self._VSigma = 0.0
self._eta_mean = 1.0
self._eta_Sigma = 1.0
# Termination criteria
self._tolx = 1e-12 * sigma
self._tolxup = 1e4
self._tolfun = 1e-12
self._tolconditioncov = 1e14
self._funhist_term = 10 + math.ceil(30 * n_dim / population_size)
self._funhist_values = np.empty(self._funhist_term * 2)
def __getstate__(self) -> dict[str, Any]:
attrs = {}
for name in self.__dict__:
# Remove _rng in pickle serialized object.
if name == "_rng":
continue
if name == "_C":
sym1d = _compress_symmetric(self._C)
attrs["_c_1d"] = sym1d
continue
attrs[name] = getattr(self, name)
return attrs
def __setstate__(self, state: dict[str, Any]) -> None:
state["_C"] = _decompress_symmetric(state["_c_1d"])
del state["_c_1d"]
self.__dict__.update(state)
# Set _rng for unpickled object.
setattr(self, "_rng", np.random.RandomState())
@property
def dim(self) -> int:
"""A number of dimensions"""
return self._n_dim
@property
def population_size(self) -> int:
"""A population size"""
return self._popsize
@property
def generation(self) -> int:
"""Generation number which is monotonically incremented
when multi-variate gaussian distribution is updated."""
return self._g
@property
def mean(self) -> np.ndarray:
"""Mean Vector"""
return self._mean
def reseed_rng(self, seed: int) -> None:
self._rng.seed(seed)
def set_bounds(self, bounds: Optional[np.ndarray]) -> None:
"""Update boundary constraints"""
assert bounds is None or _is_valid_bounds(bounds, self._mean), "invalid bounds"
self._bounds = bounds
def ask(self) -> np.ndarray:
"""Sample a parameter"""
for i in range(self._n_max_resampling):
x = self._sample_solution()
if self._is_feasible(x):
return x
x = self._sample_solution()
x = self._repair_infeasible_params(x)
return x
def _eigen_decomposition(self) -> tuple[np.ndarray, np.ndarray]:
if self._B is not None and self._D is not None:
return self._B, self._D
self._C = (self._C + self._C.T) / 2
D2, B = np.linalg.eigh(self._C)
D = np.sqrt(np.where(D2 < 0, _EPS, D2))
self._C = np.dot(np.dot(B, np.diag(D**2)), B.T)
self._B, self._D = B, D
return B, D
def _sample_solution(self) -> np.ndarray:
B, D = self._eigen_decomposition()
z = self._rng.randn(self._n_dim) # ~ N(0, I)
y = cast(np.ndarray, B.dot(np.diag(D))).dot(z) # ~ N(0, C)
x = self._mean + self._sigma * y # ~ N(m, σ^2 C)
return x
def _is_feasible(self, param: np.ndarray) -> bool:
if self._bounds is None:
return True
return cast(
bool,
np.all(param >= self._bounds[:, 0]) and np.all(param <= self._bounds[:, 1]),
) # Cast bool_ to bool.
def _repair_infeasible_params(self, param: np.ndarray) -> np.ndarray:
if self._bounds is None:
return param
# clip with lower and upper bound.
param = np.where(param < self._bounds[:, 0], self._bounds[:, 0], param)
param = np.where(param > self._bounds[:, 1], self._bounds[:, 1], param)
return param
def tell(self, solutions: list[tuple[np.ndarray, float]]) -> None:
"""Tell evaluation values"""
assert len(solutions) == self._popsize, "Must tell popsize-length solutions."
for s in solutions:
assert np.all(
np.abs(s[0]) < _MEAN_MAX
), f"Abs of all param values must be less than {_MEAN_MAX} to avoid overflow errors"
self._g += 1
solutions.sort(key=lambda s: s[1])
# Stores 'best' and 'worst' values of the
# last 'self._funhist_term' generations.
funhist_idx = 2 * (self.generation % self._funhist_term)
self._funhist_values[funhist_idx] = solutions[0][1]
self._funhist_values[funhist_idx + 1] = solutions[-1][1]
# Sample new population of search_points, for k=1, ..., popsize
B, D = self._eigen_decomposition()
self._B, self._D = None, None
# keep old values for learning rate adaptation
if self._lr_adapt:
old_mean = np.copy(self._mean)
old_sigma = self._sigma
old_Sigma = self._sigma**2 * self._C
old_invsqrtC = B @ np.diag(1 / D) @ B.T
else:
old_mean, old_sigma, old_Sigma, old_invsqrtC = None, None, None, None
x_k = np.array([s[0] for s in solutions]) # ~ N(m, σ^2 C)
y_k = (x_k - self._mean) / self._sigma # ~ N(0, C)
# Selection and recombination
y_w = np.sum(y_k[: self._mu].T * self._weights[: self._mu], axis=1) # eq.41
self._mean += self._cm * self._sigma * y_w
# Step-size control
C_2 = cast(
np.ndarray, cast(np.ndarray, B.dot(np.diag(1 / D))).dot(B.T)
) # C^(-1/2) = B D^(-1) B^T
self._p_sigma = (1 - self._c_sigma) * self._p_sigma + math.sqrt(
self._c_sigma * (2 - self._c_sigma) * self._mu_eff
) * C_2.dot(y_w)
norm_p_sigma = np.linalg.norm(self._p_sigma)
self._sigma *= np.exp(
(self._c_sigma / self._d_sigma) * (norm_p_sigma / self._chi_n - 1)
)
self._sigma = min(self._sigma, _SIGMA_MAX)
# Covariance matrix adaption
h_sigma_cond_left = norm_p_sigma / math.sqrt(
1 - (1 - self._c_sigma) ** (2 * (self._g + 1))
)
h_sigma_cond_right = (1.4 + 2 / (self._n_dim + 1)) * self._chi_n
h_sigma = 1.0 if h_sigma_cond_left < h_sigma_cond_right else 0.0 # (p.28)
# (eq.45)
self._pc = (1 - self._cc) * self._pc + h_sigma * math.sqrt(
self._cc * (2 - self._cc) * self._mu_eff
) * y_w
# (eq.46)
w_io = self._weights * np.where(
self._weights >= 0,
1,
self._n_dim / (np.linalg.norm(C_2.dot(y_k.T), axis=0) ** 2 + _EPS),
)
delta_h_sigma = (1 - h_sigma) * self._cc * (2 - self._cc) # (p.28)
assert delta_h_sigma <= 1
# (eq.47)
rank_one = np.outer(self._pc, self._pc)
rank_mu = np.sum(
np.array([w * np.outer(y, y) for w, y in zip(w_io, y_k)]), axis=0
)
self._C = (
(
1
+ self._c1 * delta_h_sigma
- self._c1
- self._cmu * np.sum(self._weights)
)
* self._C
+ self._c1 * rank_one
+ self._cmu * rank_mu
)
# Learning rate adaptation: https://arxiv.org/abs/2304.03473
if self._lr_adapt:
assert isinstance(old_mean, np.ndarray)
assert isinstance(old_sigma, (int, float))
assert isinstance(old_Sigma, np.ndarray)
assert isinstance(old_invsqrtC, np.ndarray)
self._lr_adaptation(old_mean, old_sigma, old_Sigma, old_invsqrtC)
def _lr_adaptation(
self,
old_mean: np.ndarray,
old_sigma: float,
old_Sigma: np.ndarray,
old_invsqrtC: np.ndarray,
) -> None:
# calculate one-step difference of the parameters
Deltamean = (self._mean - old_mean).reshape([self._n_dim, 1])
Sigma = (self._sigma**2) * self._C
# note that we use here matrix representation instead of vec one
DeltaSigma = Sigma - old_Sigma
# local coordinate
old_inv_sqrtSigma = old_invsqrtC / old_sigma
locDeltamean = old_inv_sqrtSigma.dot(Deltamean)
locDeltaSigma = (
old_inv_sqrtSigma.dot(DeltaSigma.dot(old_inv_sqrtSigma))
).reshape(self.dim * self.dim, 1) / np.sqrt(2)
# moving average E and V
self._Emean = (
1 - self._beta_mean
) * self._Emean + self._beta_mean * locDeltamean
self._ESigma = (
1 - self._beta_Sigma
) * self._ESigma + self._beta_Sigma * locDeltaSigma
self._Vmean = (1 - self._beta_mean) * self._Vmean + self._beta_mean * (
float(np.linalg.norm(locDeltamean)) ** 2
)
self._VSigma = (1 - self._beta_Sigma) * self._VSigma + self._beta_Sigma * (
float(np.linalg.norm(locDeltaSigma)) ** 2
)
# estimate SNR
sqnormEmean = np.linalg.norm(self._Emean) ** 2
hatSNRmean = (
sqnormEmean - (self._beta_mean / (2 - self._beta_mean)) * self._Vmean
) / (self._Vmean - sqnormEmean)
sqnormESigma = np.linalg.norm(self._ESigma) ** 2
hatSNRSigma = (
sqnormESigma - (self._beta_Sigma / (2 - self._beta_Sigma)) * self._VSigma
) / (self._VSigma - sqnormESigma)
# update learning rate
before_eta_mean = self._eta_mean
relativeSNRmean = np.clip(
(hatSNRmean / self._alpha / self._eta_mean) - 1, -1, 1
)
self._eta_mean = self._eta_mean * np.exp(
min(self._gamma * self._eta_mean, self._beta_mean) * relativeSNRmean
)
relativeSNRSigma = np.clip(
(hatSNRSigma / self._alpha / self._eta_Sigma) - 1, -1, 1
)
self._eta_Sigma = self._eta_Sigma * np.exp(
min(self._gamma * self._eta_Sigma, self._beta_Sigma) * relativeSNRSigma
)
# cap
self._eta_mean = min(self._eta_mean, 1.0)
self._eta_Sigma = min(self._eta_Sigma, 1.0)
# update parameters
self._mean = old_mean + self._eta_mean * Deltamean.reshape(self._n_dim)
Sigma = old_Sigma + self._eta_Sigma * DeltaSigma
# decompose Sigma to sigma and C
eigs, _ = np.linalg.eigh(Sigma)
logeigsum = sum([np.log(e) for e in eigs])
self._sigma = np.exp(logeigsum / 2.0 / self._n_dim)
self._sigma = min(self._sigma, _SIGMA_MAX)
self._C = Sigma / (self._sigma**2)
# step-size correction
self._sigma *= before_eta_mean / self._eta_mean
def should_stop(self) -> bool:
B, D = self._eigen_decomposition()
dC = np.diag(self._C)
# Stop if the range of function values of the recent generation is below tolfun.
if (
self.generation > self._funhist_term
and np.max(self._funhist_values) - np.min(self._funhist_values)
< self._tolfun
):
return True
# Stop if the std of the normal distribution is smaller than tolx
# in all coordinates and pc is smaller than tolx in all components.
if np.all(self._sigma * dC < self._tolx) and np.all(
self._sigma * self._pc < self._tolx
):
return True
# Stop if detecting divergent behavior.
if self._sigma * np.max(D) > self._tolxup:
return True
# No effect coordinates: stop if adding 0.2-standard deviations
# in any single coordinate does not change m.
if np.any(self._mean == self._mean + (0.2 * self._sigma * np.sqrt(dC))):
return True
# No effect axis: stop if adding 0.1-standard deviation vector in
# any principal axis direction of C does not change m. "pycma" check
# axis one by one at each generation.
i = self.generation % self.dim
if np.all(self._mean == self._mean + (0.1 * self._sigma * D[i] * B[:, i])):
return True
# Stop if the condition number of the covariance matrix exceeds 1e14.
condition_cov = np.max(D) / np.min(D)
if condition_cov > self._tolconditioncov:
return True
return False
def _is_valid_bounds(bounds: Optional[np.ndarray], mean: np.ndarray) -> bool:
if bounds is None:
return True
if (mean.size, 2) != bounds.shape:
return False
if not np.all(bounds[:, 0] <= mean):
return False
if not np.all(mean <= bounds[:, 1]):
return False
return True
def _compress_symmetric(sym2d: np.ndarray) -> np.ndarray:
assert len(sym2d.shape) == 2 and sym2d.shape[0] == sym2d.shape[1]
n = sym2d.shape[0]
dim = (n * (n + 1)) // 2
sym1d = np.zeros(dim)
start = 0
for i in range(n):
sym1d[start : start + n - i] = sym2d[i][i:] # noqa: E203
start += n - i
return sym1d
def _decompress_symmetric(sym1d: np.ndarray) -> np.ndarray:
n = int(np.sqrt(sym1d.size * 2))
assert (n * (n + 1)) // 2 == sym1d.size
R, C = np.triu_indices(n)
out = np.zeros((n, n), dtype=sym1d.dtype)
out[R, C] = sym1d
out[C, R] = sym1d
return out
cmaes-0.11.1/cmaes/_cmawm.py 0000664 0000000 0000000 00000031576 14656600250 0015607 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import functools
import numpy as np
from typing import cast
from typing import Optional
from cmaes import CMA
from cmaes._cma import _is_valid_bounds
try:
from scipy import stats
chi2_ppf = functools.partial(stats.chi2.ppf, df=1)
norm_cdf = stats.norm.cdf
except ImportError:
from cmaes._stats import chi2_ppf # type: ignore
from cmaes._stats import norm_cdf
class CMAwM:
"""CMA-ES with Margin class with ask-and-tell interface.
The code is adapted from https://github.com/EvoConJP/CMA-ES_with_Margin.
Example:
.. code::
import numpy as np
from cmaes import CMAwM
def ellipsoid_onemax(x, n_zdim):
n = len(x)
n_rdim = n - n_zdim
ellipsoid = sum([(1000 ** (i / (n_rdim - 1)) * x[i]) ** 2 for i in range(n_rdim)])
onemax = n_zdim - (0. < x[(n - n_zdim):]).sum()
return ellipsoid + 10 * onemax
binary_dim, continuous_dim = 10, 10
dim = binary_dim + continuous_dim
bounds = np.concatenate(
[
np.tile([0, 1], (binary_dim, 1)),
np.tile([-np.inf, np.inf], (continuous_dim, 1)),
]
)
steps = np.concatenate([np.ones(binary_dim), np.zeros(continuous_dim)])
optimizer = CMAwM(mean=np.zeros(dim), sigma=2.0, bounds=bounds, steps=steps)
evals = 0
while True:
solutions = []
for _ in range(optimizer.population_size):
x_for_eval, x_for_tell = optimizer.ask()
value = ellipsoid_onemax(x_for_eval, binary_dim)
evals += 1
solutions.append((x_for_tell, value))
optimizer.tell(solutions)
if optimizer.should_stop():
break
Args:
mean:
Initial mean vector of multi-variate gaussian distributions.
sigma:
Initial standard deviation of covariance matrix.
bounds:
Lower and upper domain boundaries for each parameter.
steps:
Each value represents a step of discretization for each dimension.
Zero (or negative value) means a continuous space.
n_max_resampling:
A maximum number of resampling parameters (default: 100).
If all sampled parameters are infeasible, the last sampled one
will be clipped with lower and upper bounds.
seed:
A seed number (optional).
population_size:
A population size (optional).
cov:
A covariance matrix (optional).
margin:
A margin parameter (optional).
"""
# Paper: https://arxiv.org/abs/2205.13482
def __init__(
self,
mean: np.ndarray,
sigma: float,
bounds: np.ndarray,
steps: np.ndarray,
n_max_resampling: int = 100,
seed: Optional[int] = None,
population_size: Optional[int] = None,
cov: Optional[np.ndarray] = None,
margin: Optional[float] = None,
):
# initialize `CMA`
self._cma = CMA(
mean, sigma, bounds, n_max_resampling, seed, population_size, cov
)
n_dim = self._cma.dim
population_size = self._cma.population_size
self._n_max_resampling = n_max_resampling
# split discrete space and continuous space
assert len(bounds) == len(steps), "bounds and steps must be the same length"
assert not np.isnan(steps).any(), "steps should not include NaN"
self._discrete_idx = np.where(steps > 0)[0]
discrete_list = [
np.arange(bounds[i][0], bounds[i][1] + steps[i] / 2, steps[i])
for i in self._discrete_idx
]
max_discrete = max([len(discrete) for discrete in discrete_list], default=0)
discrete_space = np.full((len(self._discrete_idx), max_discrete), np.nan)
for i, discrete in enumerate(discrete_list):
discrete_space[i, : len(discrete)] = discrete
# continuous_space contains low and high of each parameter.
self._continuous_idx = np.where(steps <= 0)[0]
self._continuous_space = bounds[self._continuous_idx]
assert _is_valid_bounds(
self._continuous_space, mean[self._continuous_idx]
), "invalid bounds"
# discrete_space
self._n_zdim = len(discrete_space)
if self._n_zdim == 0:
return
self.margin = margin if margin is not None else 1 / (n_dim * population_size)
assert self.margin > 0, "margin must be non-zero positive value."
self.z_space = discrete_space
self.z_lim = (self.z_space[:, 1:] + self.z_space[:, :-1]) / 2
for i in range(self._n_zdim):
self.z_space[i][np.isnan(self.z_space[i])] = np.nanmax(self.z_space[i])
self.z_lim[i][np.isnan(self.z_lim[i])] = np.nanmax(self.z_lim[i])
self.z_lim_low = np.concatenate(
[self.z_lim.min(axis=1).reshape([self._n_zdim, 1]), self.z_lim], 1
)
self.z_lim_up = np.concatenate(
[self.z_lim, self.z_lim.max(axis=1).reshape([self._n_zdim, 1])], 1
)
m_z = self._cma._mean[self._discrete_idx].reshape(([self._n_zdim, 1]))
# m_z_lim_low ->| mean vector |<- m_z_lim_up
self.m_z_lim_low = (
self.z_lim_low
* np.where(np.sort(np.concatenate([self.z_lim, m_z], 1)) == m_z, 1, 0)
).sum(axis=1)
self.m_z_lim_up = (
self.z_lim_up
* np.where(np.sort(np.concatenate([self.z_lim, m_z], 1)) == m_z, 1, 0)
).sum(axis=1)
self._A = np.full(n_dim, 1.0)
@property
def dim(self) -> int:
"""A number of dimensions"""
return self._cma.dim
@property
def population_size(self) -> int:
"""A population size"""
return self._cma.population_size
@property
def generation(self) -> int:
"""Generation number which is monotonically incremented
when multi-variate gaussian distribution is updated."""
return self._cma.generation
@property
def mean(self) -> np.ndarray:
"""Mean Vector"""
return self._cma.mean
@property
def _rng(self) -> np.random.RandomState:
return self._cma._rng
def reseed_rng(self, seed: int) -> None:
self._cma.reseed_rng(seed)
def ask(self) -> tuple[np.ndarray, np.ndarray]:
"""Sample a parameter and return (i) encoded x and (ii) raw x.
The encoded x is used for the evaluation.
The raw x is used for updating the distribution."""
for i in range(self._n_max_resampling):
x = self._cma._sample_solution()
if self._is_continuous_feasible(x[self._continuous_idx]):
x_encoded = x.copy()
if self._n_zdim > 0:
x_encoded[self._discrete_idx] = self._encode_discrete_params(
x[self._discrete_idx]
)
return x_encoded, x
x = self._cma._sample_solution()
x[self._continuous_idx] = self._repair_continuous_params(
x[self._continuous_idx]
)
x_encoded = x.copy()
if self._n_zdim > 0:
x_encoded[self._discrete_idx] = self._encode_discrete_params(
x[self._discrete_idx]
)
return x_encoded, x
def _is_continuous_feasible(self, continuous_param: np.ndarray) -> bool:
if self._continuous_space is None:
return True
return cast(
bool,
np.all(continuous_param >= self._continuous_space[:, 0])
and np.all(continuous_param <= self._continuous_space[:, 1]),
) # Cast bool_ to bool.
def _repair_continuous_params(self, continuous_param: np.ndarray) -> np.ndarray:
if self._continuous_space is None:
return continuous_param
# clip with lower and upper bound.
param = np.where(
continuous_param < self._continuous_space[:, 0],
self._continuous_space[:, 0],
continuous_param,
)
param = np.where(
param > self._continuous_space[:, 1], self._continuous_space[:, 1], param
)
return param
def _encode_discrete_params(self, discrete_param: np.ndarray) -> np.ndarray:
"""Encode the values into discrete domain."""
mean = self._cma._mean
x = (discrete_param - mean[self._discrete_idx]) * self._A[
self._discrete_idx
] + mean[self._discrete_idx]
x = x.reshape([self._n_zdim, 1])
x_enc = (
self.z_space
* np.where(np.sort(np.concatenate((self.z_lim, x), axis=1)) == x, 1, 0)
).sum(axis=1)
return x_enc.reshape(self._n_zdim)
def tell(self, solutions: list[tuple[np.ndarray, float]]) -> None:
"""Tell evaluation values"""
self._cma.tell(solutions)
mean = self._cma._mean
sigma = self._cma._sigma
C = self._cma._C
if self._n_zdim == 0:
return
# margin correction
updated_m_integer = mean[self._discrete_idx, np.newaxis]
self.z_lim_low = np.concatenate(
[self.z_lim.min(axis=1).reshape([self._n_zdim, 1]), self.z_lim], 1
)
self.z_lim_up = np.concatenate(
[self.z_lim, self.z_lim.max(axis=1).reshape([self._n_zdim, 1])], 1
)
self.m_z_lim_low = (
self.z_lim_low
* np.where(
np.sort(np.concatenate([self.z_lim, updated_m_integer], 1))
== updated_m_integer,
1,
0,
)
).sum(axis=1)
self.m_z_lim_up = (
self.z_lim_up
* np.where(
np.sort(np.concatenate([self.z_lim, updated_m_integer], 1))
== updated_m_integer,
1,
0,
)
).sum(axis=1)
# calculate probability low_cdf := Pr(X <= m_z_lim_low) and up_cdf := Pr(m_z_lim_up < X)
# sig_z_sq_Cdiag = self.model.sigma * self.model.A * np.sqrt(np.diag(self.model.C))
z_scale = (
sigma
* self._A[self._discrete_idx]
* np.sqrt(np.diag(C)[self._discrete_idx])
)
updated_m_integer = updated_m_integer.flatten()
low_cdf = norm_cdf(self.m_z_lim_low, loc=updated_m_integer, scale=z_scale)
up_cdf = 1.0 - norm_cdf(self.m_z_lim_up, loc=updated_m_integer, scale=z_scale)
mid_cdf = 1.0 - (low_cdf + up_cdf)
# edge case
edge_mask = np.maximum(low_cdf, up_cdf) > 0.5
# otherwise
side_mask = np.maximum(low_cdf, up_cdf) <= 0.5
if np.any(edge_mask):
# modify mask (modify or not)
modify_mask = np.minimum(low_cdf, up_cdf) < self.margin
# modify sign
modify_sign = np.sign(mean[self._discrete_idx] - self.m_z_lim_up)
# distance from m_z_lim_up
dist = (
sigma
* self._A[self._discrete_idx]
* np.sqrt(
chi2_ppf(q=1.0 - 2.0 * self.margin) * np.diag(C)[self._discrete_idx]
)
)
# modify mean vector
mean[self._discrete_idx] = mean[
self._discrete_idx
] + modify_mask * edge_mask * (
self.m_z_lim_up + modify_sign * dist - mean[self._discrete_idx]
)
# correct probability
low_cdf = np.maximum(low_cdf, self.margin / 2.0)
up_cdf = np.maximum(up_cdf, self.margin / 2.0)
modified_low_cdf = low_cdf + (1.0 - low_cdf - up_cdf - mid_cdf) * (
low_cdf - self.margin / 2
) / (low_cdf + mid_cdf + up_cdf - 3.0 * self.margin / 2)
modified_up_cdf = up_cdf + (1.0 - low_cdf - up_cdf - mid_cdf) * (
up_cdf - self.margin / 2
) / (low_cdf + mid_cdf + up_cdf - 3.0 * self.margin / 2)
modified_low_cdf = np.clip(modified_low_cdf, 1e-10, 0.5 - 1e-10)
modified_up_cdf = np.clip(modified_up_cdf, 1e-10, 0.5 - 1e-10)
# modify mean vector and A (with sigma and C fixed)
chi_low_sq = np.sqrt(chi2_ppf(q=1.0 - 2 * modified_low_cdf))
chi_up_sq = np.sqrt(chi2_ppf(q=1.0 - 2 * modified_up_cdf))
C_diag_sq = np.sqrt(np.diag(C))[self._discrete_idx]
# simultaneous equations
self._A[self._discrete_idx] = self._A[self._discrete_idx] + side_mask * (
(self.m_z_lim_up - self.m_z_lim_low)
/ ((chi_low_sq + chi_up_sq) * sigma * C_diag_sq)
- self._A[self._discrete_idx]
)
mean[self._discrete_idx] = mean[self._discrete_idx] + side_mask * (
(self.m_z_lim_low * chi_up_sq + self.m_z_lim_up * chi_low_sq)
/ (chi_low_sq + chi_up_sq)
- mean[self._discrete_idx]
)
def should_stop(self) -> bool:
return self._cma.should_stop()
cmaes-0.11.1/cmaes/_dxnesic.py 0000664 0000000 0000000 00000034545 14656600250 0016137 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import math
import sys
import numpy as np
from typing import cast
from typing import Optional
_EPS = 1e-8
_MEAN_MAX = 1e32
_SIGMA_MAX = 1e32
class DXNESIC:
"""DX-NES-IC stochastic optimizer class with ask-and-tell interface.
Example:
.. code::
import numpy as np
from cmaes import DXNESIC
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
optimizer = DXNESIC(mean=np.zeros(2), sigma=1.3)
for generation in range(50):
solutions = []
for _ in range(optimizer.population_size):
# Ask a parameter
x = optimizer.ask()
value = quadratic(x[0], x[1])
solutions.append((x, value))
print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
# Tell evaluation values.
optimizer.tell(solutions)
Args:
mean:
Initial mean vector of multi-variate gaussian distributions.
sigma:
Initial standard deviation of covariance matrix.
bounds:
Lower and upper domain boundaries for each parameter (optional).
n_max_resampling:
A maximum number of resampling parameters (default: 100).
If all sampled parameters are infeasible, the last sampled one
will be clipped with lower and upper bounds.
seed:
A seed number (optional).
population_size:
A population size (optional).
cov:
A covariance matrix (optional).
"""
# Paper: https://ieeexplore.ieee.org/abstract/document/9504865
def __init__(
self,
mean: np.ndarray,
sigma: float,
bounds: Optional[np.ndarray] = None,
n_max_resampling: int = 100,
seed: Optional[int] = None,
population_size: Optional[int] = None,
):
assert sigma > 0, "sigma must be non-zero positive value"
assert np.all(
np.abs(mean) < _MEAN_MAX
), f"Abs of all elements of mean vector must be less than {_MEAN_MAX}"
n_dim = len(mean)
assert n_dim > 1, "The dimension of mean must be larger than 1"
if population_size is None:
population_size = 4 + math.floor(3 * math.log(n_dim))
assert population_size > 0, "popsize must be non-zero positive value."
w_rank_hat = np.log(population_size / 2 + 1) - np.log(
np.arange(1, population_size + 1)
)
w_rank_hat[np.where(w_rank_hat < 0)] = 0
w_rank = w_rank_hat / sum(w_rank_hat) - (1.0 / population_size)
mu_eff = 1 / sum((w_rank + (1.0 / population_size)) ** 2)
# learning rate for the cumulation for the step-size control
c_sigma = (mu_eff + 2) / (n_dim + mu_eff + 5)
assert (
c_sigma < 1
), "invalid learning rate for cumulation for the step-size control"
# distance weight parameter
h_inv = _get_h_inv(n_dim)
self._n_dim = n_dim
self._popsize = population_size
self._mu_eff = mu_eff
self._h_inv = h_inv
self._c_sigma = c_sigma
# E||N(0, I)||
self._chi_n = math.sqrt(self._n_dim) * (
1.0 - (1.0 / (4.0 * self._n_dim)) + 1.0 / (21.0 * (self._n_dim**2))
)
# weights
self._w_rank = w_rank
self._w_rank_hat = w_rank_hat
# for antithetic sampling
self._zsym: Optional[np.ndarray] = None
# learning rate
self._eta_mean = 1.0
self._eta_move_sigma = 1.0
self._c_gamma = 1.0 / (3.0 * (n_dim - 1.0))
self._d_gamma = min(1.0, n_dim / population_size)
self._gamma = 1.0
# evolution path
self._p_sigma = np.zeros(n_dim)
# distribution parameter
self._mean = mean.copy()
self._sigma = sigma
self._B = np.eye(n_dim)
# bounds contains low and high of each parameter.
assert bounds is None or _is_valid_bounds(bounds, mean), "invalid bounds"
self._bounds = bounds
self._n_max_resampling = n_max_resampling
self._g = 0
self._rng = np.random.RandomState(seed)
# Termination criteria
self._tolx = 1e-12 * sigma
self._tolxup = 1e4
self._tolfun = 1e-12
self._tolconditioncov = 1e14
self._funhist_term = 10 + math.ceil(30 * n_dim / population_size)
self._funhist_values = np.empty(self._funhist_term * 2)
@property
def dim(self) -> int:
"""A number of dimensions"""
return self._n_dim
@property
def population_size(self) -> int:
"""A population size"""
return self._popsize
@property
def generation(self) -> int:
"""Generation number which is monotonically incremented
when multi-variate gaussian distribution is updated."""
return self._g
def _alpha_dist(self, num_feasible: int) -> float:
return (
self._h_inv
* min(1.0, math.sqrt(float(self._popsize) / self._n_dim))
* math.sqrt(float(num_feasible) / self._popsize)
)
def _w_dist_hat(self, z: np.ndarray, num_feasible: int) -> float:
return math.exp(self._alpha_dist(num_feasible) * np.linalg.norm(z))
def _eta_stag_sigma(self, num_feasible: int) -> float:
return math.tanh(
(0.024 * num_feasible + 0.7 * self._n_dim + 20.0) / (self._n_dim + 12.0)
)
def _eta_conv_sigma(self, num_feasible: int) -> float:
return 2.0 * math.tanh(
(0.025 * num_feasible + 0.75 * self._n_dim + 10.0) / (self._n_dim + 4.0)
)
def _eta_move_B(self, num_feasible: int) -> float:
return (
180
* self._n_dim
* math.tanh(0.02 * num_feasible)
/ (47 * (self._n_dim**2) + 6400)
)
def _eta_stag_B(self, num_feasible: int) -> float:
return (
168
* self._n_dim
* math.tanh(0.02 * num_feasible)
/ (47 * (self._n_dim**2) + 6400)
)
def _eta_conv_B(self, num_feasible: int) -> float:
return (
12
* self._n_dim
* math.tanh(0.02 * num_feasible)
/ (47 * (self._n_dim**2) + 6400)
)
def reseed_rng(self, seed: int) -> None:
self._rng.seed(seed)
def set_bounds(self, bounds: Optional[np.ndarray]) -> None:
"""Update boundary constraints"""
assert bounds is None or _is_valid_bounds(bounds, self._mean), "invalid bounds"
self._bounds = bounds
def ask(self) -> np.ndarray:
"""Sample a parameter"""
for i in range(self._n_max_resampling):
x = self._sample_solution()
if self._is_feasible(x):
return x
x = self._sample_solution()
x = self._repair_infeasible_params(x)
return x
def _sample_solution(self) -> np.ndarray:
# antithetic sampling
if self._zsym is None:
z = self._rng.randn(self._n_dim) # ~ N(0, I)
self._zsym = z
else:
z = -self._zsym
self._zsym = None
x = self._mean + self._sigma * self._B.dot(z) # ~ N(m, σ^2 B B^T)
return x
def _is_feasible(self, param: np.ndarray) -> bool:
if self._bounds is None:
return True
return cast(
bool,
np.all(param >= self._bounds[:, 0]) and np.all(param <= self._bounds[:, 1]),
) # Cast bool_ to bool.
def _repair_infeasible_params(self, param: np.ndarray) -> np.ndarray:
if self._bounds is None:
return param
# clip with lower and upper bound.
param = np.where(param < self._bounds[:, 0], self._bounds[:, 0], param)
param = np.where(param > self._bounds[:, 1], self._bounds[:, 1], param)
return param
def tell(self, solutions: list[tuple[np.ndarray, float]]) -> None:
"""Tell evaluation values"""
assert len(solutions) == self._popsize, "Must tell popsize-length solutions."
for s in solutions:
assert np.all(
np.abs(s[0]) < _MEAN_MAX
), f"Abs of all param values must be less than {_MEAN_MAX} to avoid overflow errors"
# counting # feasible solutions
lamb_feas = len([s[1] for s in solutions if s[1] < sys.maxsize])
self._g += 1
solutions.sort(key=lambda s: s[1])
# Stores 'best' and 'worst' values of the
# last 'self._funhist_term' generations.
funhist_idx = 2 * (self.generation % self._funhist_term)
self._funhist_values[funhist_idx] = solutions[0][1]
self._funhist_values[funhist_idx + 1] = solutions[-1][1]
z_k = np.array(
[
np.linalg.inv(self._sigma * self._B).dot(s[0] - self._mean)
for s in solutions
]
)
# Evolution path
z_w = np.sum(z_k.T * self._w_rank, axis=1)
self._p_sigma = (1 - self._c_sigma) * self._p_sigma + math.sqrt(
self._c_sigma * (2 - self._c_sigma) * self._mu_eff
) * z_w
norm_p_sigma = np.linalg.norm(self._p_sigma)
# switching learning rate depending on search situation
movement_phase = norm_p_sigma >= self._chi_n
# distance weight
w_dist_tmp = np.array(
[
self._w_rank_hat[i] * self._w_dist_hat(z_k[i, :], lamb_feas)
for i in range(self.population_size)
]
)
w_dist = w_dist_tmp / sum(w_dist_tmp) - 1.0 / self.population_size
# switching weights and learning rate
w = w_dist if movement_phase else self._w_rank
eta_sigma = (
self._eta_move_sigma
if norm_p_sigma >= self._chi_n
else (
self._eta_stag_sigma(lamb_feas)
if norm_p_sigma >= 0.1 * self._chi_n
else self._eta_conv_sigma(lamb_feas)
)
)
eta_B = (
self._eta_move_B(lamb_feas)
if norm_p_sigma >= self._chi_n
else (
self._eta_stag_B(lamb_feas)
if norm_p_sigma >= 0.1 * self._chi_n
else self._eta_conv_B(lamb_feas)
)
)
# natural gradient estimation in local coordinate
G_delta = np.sum(
[w[i] * z_k[i, :] for i in range(self.population_size)], axis=0
)
G_M = np.sum(
[
w[i] * (np.outer(z_k[i, :], z_k[i, :]) - np.eye(self._n_dim))
for i in range(self.population_size)
],
axis=0,
)
G_sigma = G_M.trace() / self._n_dim
G_B = G_M - G_sigma * np.eye(self._n_dim)
# parameter update
bBBT = self._B @ self._B.T
self._mean += self._eta_mean * self._sigma * np.dot(self._B, G_delta)
self._sigma *= math.exp((eta_sigma / 2.0) * G_sigma)
# self._B = self._B.dot(expm((eta_B / 2.0) * G_B))
self._B = self._B.dot(_expm((eta_B / 2.0) * G_B))
aBBT = self._B @ self._B.T
# emphasizing expansion
e, v = np.linalg.eigh(bBBT)
tau_vec = [
(v[:, i].reshape(self._n_dim, 1).T @ aBBT @ v[:, i].reshape(self._n_dim, 1))
/ (
v[:, i].reshape(self._n_dim, 1).T
@ bBBT
@ v[:, i].reshape(self._n_dim, 1)
)
- 1
for i in range(self._n_dim)
]
flg_tau = [1.0 if tau_vec[i] > 0 else 0.0 for i in range(self._n_dim)]
tau = max(tau_vec)
gamma = max(
(1.0 - self._c_gamma) * self._gamma
+ self._c_gamma * math.sqrt(1.0 + self._d_gamma * tau),
1.0,
)
if movement_phase:
Q = (gamma - 1.0) * np.sum(
[flg_tau[i] * np.outer(v[:, i], v[:, i]) for i in range(self._n_dim)],
axis=0,
) + np.eye(self._n_dim)
stepQ = math.pow(np.linalg.det(Q), 1.0 / self._n_dim)
self._sigma *= stepQ
self._B = Q @ self._B / stepQ
def should_stop(self) -> bool:
A = self._B.dot(self._B.T)
A = (A + A.T) / 2
E2, V = np.linalg.eigh(A)
E = np.sqrt(np.where(E2 < 0, _EPS, E2))
diagA = np.diag(A)
# Stop if the range of function values of the recent generation is below tolfun.
if (
self.generation > self._funhist_term
and np.max(self._funhist_values) - np.min(self._funhist_values)
< self._tolfun
):
return True
# Stop if detecting divergent behavior.
if self._sigma * np.max(E) > self._tolxup:
return True
# No effect coordinates: stop if adding 0.2-standard deviations
# in any single coordinate does not change m.
if np.any(self._mean == self._mean + (0.2 * self._sigma * np.sqrt(diagA))):
return True
# No effect axis: stop if adding 0.1-standard deviation vector in
# any principal axis direction of C does not change m. "pycma" check
# axis one by one at each generation.
i = self.generation % self.dim
if np.all(self._mean == self._mean + (0.1 * self._sigma * E[i] * V[:, i])):
return True
# Stop if the condition number of the covariance matrix exceeds 1e14.
condition_cov = np.max(E) / np.min(E)
if condition_cov > self._tolconditioncov:
return True
return False
def _is_valid_bounds(bounds: Optional[np.ndarray], mean: np.ndarray) -> bool:
if bounds is None:
return True
if (mean.size, 2) != bounds.shape:
return False
if not np.all(bounds[:, 0] <= mean):
return False
if not np.all(mean <= bounds[:, 1]):
return False
return True
def _get_h_inv(dim: int) -> float:
def f(a: float) -> float:
return ((1.0 + a * a) * math.exp(a * a / 2.0) / 0.24) - 10.0 - dim
def f_prime(a: float) -> float:
return (1.0 / 0.24) * a * math.exp(a * a / 2.0) * (3.0 + a * a)
h_inv = 6.0
while abs(f(h_inv)) > 1e-10:
last = h_inv
h_inv = h_inv - 0.5 * (f(h_inv) / f_prime(h_inv))
if abs(h_inv - last) < 1e-16:
# Exit early since no further improvements are happening
break
return h_inv
def _expm(mat: np.ndarray) -> np.ndarray:
D, U = np.linalg.eigh(mat)
expD = np.exp(D)
return U @ np.diag(expD) @ U.T
cmaes-0.11.1/cmaes/_sepcma.py 0000664 0000000 0000000 00000027525 14656600250 0015752 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import math
import numpy as np
from typing import Any
from typing import cast
from typing import Optional
_EPS = 1e-8
_MEAN_MAX = 1e32
_SIGMA_MAX = 1e32
class SepCMA:
"""Separable CMA-ES stochastic optimizer class with ask-and-tell interface.
Example:
.. code::
import numpy as np
from cmaes import SepCMA
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
optimizer = SepCMA(mean=np.zeros(2), sigma=1.3)
for generation in range(50):
solutions = []
for _ in range(optimizer.population_size):
# Ask a parameter
x = optimizer.ask()
value = quadratic(x[0], x[1])
solutions.append((x, value))
print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
# Tell evaluation values.
optimizer.tell(solutions)
Args:
mean:
Initial mean vector of multi-variate gaussian distributions.
sigma:
Initial standard deviation of covariance matrix.
bounds:
Lower and upper domain boundaries for each parameter (optional).
n_max_resampling:
A maximum number of resampling parameters (default: 100).
If all sampled parameters are infeasible, the last sampled one
will be clipped with lower and upper bounds.
seed:
A seed number (optional).
population_size:
A population size (optional).
"""
def __init__(
self,
mean: np.ndarray,
sigma: float,
bounds: Optional[np.ndarray] = None,
n_max_resampling: int = 100,
seed: Optional[int] = None,
population_size: Optional[int] = None,
):
assert sigma > 0, "sigma must be non-zero positive value"
assert np.all(
np.abs(mean) < _MEAN_MAX
), f"Abs of all elements of mean vector must be less than {_MEAN_MAX}"
n_dim = len(mean)
assert n_dim > 1, "The dimension of mean must be larger than 1"
if population_size is None:
population_size = 4 + math.floor(3 * math.log(n_dim)) # (eq. 48)
assert population_size > 0, "popsize must be non-zero positive value."
mu = population_size // 2
# (eq.49)
weights_prime = np.array(
[math.log(mu + 1) - math.log(i + 1) for i in range(mu)]
)
weights = weights_prime / sum(weights_prime)
mu_eff = 1 / sum(weights**2)
# learning rate for the rank-one update
alpha_cov = 2
c1 = alpha_cov / ((n_dim + 1.3) ** 2 + mu_eff)
# learning rate for the rank-μ update
cmu_full = 2 / mu_eff / ((n_dim + np.sqrt(2)) ** 2) + (1 - 1 / mu_eff) * min(
1, (2 * mu_eff - 1) / ((n_dim + 2) ** 2 + mu_eff)
)
cmu = (n_dim + 2) / 3 * cmu_full
cm = 1 # (eq. 54)
# learning rate for the cumulation for the step-size control
c_sigma = (mu_eff + 2) / (n_dim + mu_eff + 3)
d_sigma = 1 + 2 * max(0, math.sqrt((mu_eff - 1) / (n_dim + 1)) - 1) + c_sigma
assert (
c_sigma < 1
), "invalid learning rate for cumulation for the step-size control"
# learning rate for cumulation for the rank-one update
cc = 4 / (n_dim + 4)
assert cc <= 1, "invalid learning rate for cumulation for the rank-one update"
self._n_dim = n_dim
self._popsize = population_size
self._mu = mu
self._mu_eff = mu_eff
self._cc = cc
self._c1 = c1
self._cmu = cmu
self._c_sigma = c_sigma
self._d_sigma = d_sigma
self._cm = cm
# E||N(0, I)|| (p.28)
self._chi_n = math.sqrt(self._n_dim) * (
1.0 - (1.0 / (4.0 * self._n_dim)) + 1.0 / (21.0 * (self._n_dim**2))
)
self._weights = weights
# evolution path
self._p_sigma = np.zeros(n_dim)
self._pc = np.zeros(n_dim)
self._mean = mean
self._sigma = sigma
self._D: Optional[np.ndarray] = None
self._C: np.ndarray = np.ones(n_dim)
# bounds contains low and high of each parameter.
assert bounds is None or _is_valid_bounds(bounds, mean), "invalid bounds"
self._bounds = bounds
self._n_max_resampling = n_max_resampling
self._g = 0
self._rng = np.random.RandomState(seed)
# Termination criteria
self._tolx = 1e-12 * sigma
self._tolxup = 1e4
self._tolfun = 1e-12
self._tolconditioncov = 1e14
self._funhist_term = 10 + math.ceil(30 * n_dim / population_size)
self._funhist_values = np.empty(self._funhist_term * 2)
@property
def dim(self) -> int:
"""A number of dimensions"""
return self._n_dim
@property
def population_size(self) -> int:
"""A population size"""
return self._popsize
@property
def generation(self) -> int:
"""Generation number which is monotonically incremented
when multi-variate gaussian distribution is updated."""
return self._g
@property
def mean(self) -> np.ndarray:
"""Mean Vector"""
return self._mean
def reseed_rng(self, seed: int) -> None:
self._rng.seed(seed)
def __getstate__(self) -> dict[str, Any]:
attrs = {}
for name in self.__dict__:
# Remove _rng in pickle serialized object.
if name == "_rng":
continue
attrs[name] = getattr(self, name)
return attrs
def __setstate__(self, state: dict[str, Any]) -> None:
self.__dict__.update(state)
# Set _rng for unpickled object.
setattr(self, "_rng", np.random.RandomState())
def set_bounds(self, bounds: Optional[np.ndarray]) -> None:
"""Update boundary constraints"""
assert bounds is None or _is_valid_bounds(bounds, self._mean), "invalid bounds"
self._bounds = bounds
def ask(self) -> np.ndarray:
"""Sample a parameter"""
for i in range(self._n_max_resampling):
x = self._sample_solution()
if self._is_feasible(x):
return x
x = self._sample_solution()
x = self._repair_infeasible_params(x)
return x
def _eigen_decomposition(self) -> np.ndarray:
if self._D is not None:
return self._D
self._D = np.sqrt(np.where(self._C < 0, _EPS, self._C))
return self._D
def _sample_solution(self) -> np.ndarray:
D = self._eigen_decomposition()
z = self._rng.randn(self._n_dim) # ~ N(0, I)
y = D * z # ~ N(0, C)
x = self._mean + self._sigma * y # ~ N(m, σ^2 C)
return x
def _is_feasible(self, param: np.ndarray) -> bool:
if self._bounds is None:
return True
return cast(
bool,
np.all(param >= self._bounds[:, 0]) and np.all(param <= self._bounds[:, 1]),
) # Cast bool_ to bool
def _repair_infeasible_params(self, param: np.ndarray) -> np.ndarray:
if self._bounds is None:
return param
# clip with lower and upper bound.
param = np.where(param < self._bounds[:, 0], self._bounds[:, 0], param)
param = np.where(param > self._bounds[:, 1], self._bounds[:, 1], param)
return param
def tell(self, solutions: list[tuple[np.ndarray, float]]) -> None:
"""Tell evaluation values"""
assert len(solutions) == self._popsize, "Must tell popsize-length solutions."
for s in solutions:
assert np.all(
np.abs(s[0]) < _MEAN_MAX
), f"Abs of all param values must be less than {_MEAN_MAX} to avoid overflow errors"
self._g += 1
solutions.sort(key=lambda s: s[1])
# Stores 'best' and 'worst' values of the
# last 'self._funhist_term' generations.
funhist_idx = 2 * (self.generation % self._funhist_term)
self._funhist_values[funhist_idx] = solutions[0][1]
self._funhist_values[funhist_idx + 1] = solutions[-1][1]
# Sample new population of search_points, for k=1, ..., popsize
D = self._eigen_decomposition()
self._D = None
x_k = np.array([s[0] for s in solutions]) # ~ N(m, σ^2 C)
y_k = (x_k - self._mean) / self._sigma # ~ N(0, C)
# Selection and recombination
y_w = np.sum(y_k[: self._mu].T * self._weights[: self._mu], axis=1)
self._mean += self._cm * self._sigma * y_w
# Step-size control
self._p_sigma = (1 - self._c_sigma) * self._p_sigma + math.sqrt(
self._c_sigma * (2 - self._c_sigma) * self._mu_eff
) * (y_w / D)
norm_p_sigma = np.linalg.norm(self._p_sigma)
self._sigma *= np.exp(
(self._c_sigma / self._d_sigma) * (norm_p_sigma / self._chi_n - 1)
)
self._sigma = min(self._sigma, _SIGMA_MAX)
# Covariance matrix adaption
h_sigma_cond_left = norm_p_sigma / math.sqrt(
1 - (1 - self._c_sigma) ** (2 * (self._g + 1))
)
h_sigma_cond_right = (1.4 + 2 / (self._n_dim + 1)) * self._chi_n
h_sigma = 1.0 if h_sigma_cond_left < h_sigma_cond_right else 0.0 # (p.28)
# (eq.45)
self._pc = (1 - self._cc) * self._pc + h_sigma * math.sqrt(
self._cc * (2 - self._cc) * self._mu_eff
) * y_w
delta_h_sigma = (1 - h_sigma) * self._cc * (2 - self._cc) # (p.28)
assert delta_h_sigma <= 1
# (eq.47)
rank_one = self._pc**2
rank_mu = np.sum(
np.array([w * (y**2) for w, y in zip(self._weights, y_k)]), axis=0
)
self._C = (
(
1
+ self._c1 * delta_h_sigma
- self._c1
- self._cmu * np.sum(self._weights)
)
* self._C
+ self._c1 * rank_one
+ self._cmu * rank_mu
)
def should_stop(self) -> bool:
D = self._eigen_decomposition()
# Stop if the range of function values of the recent generation is below tolfun.
if (
self.generation > self._funhist_term
and np.max(self._funhist_values) - np.min(self._funhist_values)
< self._tolfun
):
return True
# Stop if the std of the normal distribution is smaller than tolx
# in all coordinates and pc is smaller than tolx in all components.
if np.all(self._sigma * self._C < self._tolx) and np.all(
self._sigma * self._pc < self._tolx
):
return True
# Stop if detecting divergent behavior.
if self._sigma * np.max(D) > self._tolxup:
return True
# No effect coordinates: stop if adding 0.2-standard deviations
# in any single coordinate does not change m.
if np.any(self._mean == self._mean + (0.2 * self._sigma * np.sqrt(self._C))):
return True
# No effect axis: stop if adding 0.1-standard deviation vector in
# any principal axis direction of C does not change m. "pycma" check
# axis one by one at each generation.
i = self.generation % self.dim
if np.all(
self._mean == self._mean + (0.1 * self._sigma * D[i] * np.ones(self._n_dim))
):
return True
# Stop if the condition number of the covariance matrix exceeds 1e14.
condition_cov = np.max(D) / np.min(D)
if condition_cov > self._tolconditioncov:
return True
return False
def _is_valid_bounds(bounds: Optional[np.ndarray], mean: np.ndarray) -> bool:
if bounds is None:
return True
if (mean.size, 2) != bounds.shape:
return False
if not np.all(bounds[:, 0] <= mean):
return False
if not np.all(mean <= bounds[:, 1]):
return False
return True
cmaes-0.11.1/cmaes/_stats.py 0000664 0000000 0000000 00000001751 14656600250 0015631 0 ustar 00root root 0000000 0000000 import math
import numpy as np
@np.vectorize
def norm_cdf(x: float, loc: float = 0.0, scale: float = 1.0) -> float:
x = (x - loc) / scale
x = x / 2**0.5
z = abs(x)
if z < 1 / 2**0.5:
y = 0.5 + 0.5 * math.erf(x)
else:
y = 0.5 * math.erfc(z)
if x > 0:
y = 1.0 - y
return y
@np.vectorize
def chi2_ppf(q: float) -> float:
"""
only deal with the special case df=1, loc=0, scale=1
solve chi2.cdf(x; df=1) = erf(sqrt(x/2)) = q with bisection method
"""
if q == 0:
return 0.0
if q == 1:
return math.inf
a, b = 0.0, 100.0
if q < 0.9:
for _ in range(100):
m = (a + b) / 2
if math.erf(math.sqrt(m / 2)) < q:
a = m
else:
b = m
else:
for _ in range(100):
m = (a + b) / 2
if math.erfc(math.sqrt(m / 2)) > 1.0 - q:
a = m
else:
b = m
return m
cmaes-0.11.1/cmaes/_warm_start.py 0000664 0000000 0000000 00000004663 14656600250 0016663 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import math
import numpy as np
def get_warm_start_mgd(
source_solutions: list[tuple[np.ndarray, float]],
gamma: float = 0.1,
alpha: float = 0.1,
) -> tuple[np.ndarray, float, np.ndarray]:
"""Estimates a promising distribution of the source task, then
returns a multivariate gaussian distribution (the mean vector
and the covariance matrix) used for initialization of the CMA-ES.
Args:
source_solutions:
List of solutions (parameter, value) on a source task.
gamma:
top-(gamma x 100)% solutions are selected from a set of solutions
on a source task. (default: 0.1).
alpha:
prior parameter for the initial covariance matrix (default: 0.1).
Returns:
The tuple of mean vector, sigma, and covariance matrix.
"""
# Paper: https://arxiv.org/abs/2012.06932
assert 0 < gamma <= 1, "gamma should be in (0, 1]"
if len(source_solutions) == 0:
raise ValueError("solutions should contain one or more items.")
# Select top-(gamma x 100)% solutions
source_solutions = sorted(source_solutions, key=lambda t: t[1])
gamma_n = math.floor(len(source_solutions) * gamma)
assert gamma_n >= 1, "One or more solutions must be selected from a source task"
dim = len(source_solutions[0][0])
top_gamma_solutions = np.empty(
shape=(
gamma_n,
dim,
),
dtype=float,
)
for i in range(gamma_n):
top_gamma_solutions[i] = source_solutions[i][0]
# Estimation of a Promising Distribution of a Source Task.
first_term = alpha**2 * np.eye(dim)
cov_term = np.zeros(shape=(dim, dim), dtype=float)
for i in range(gamma_n):
cov_term += np.dot(
top_gamma_solutions[i, :].reshape(dim, 1),
top_gamma_solutions[i, :].reshape(dim, 1).T,
)
second_term = cov_term / gamma_n
mean_term = np.zeros(
shape=(
dim,
1,
),
dtype=float,
)
for i in range(gamma_n):
mean_term += top_gamma_solutions[i, :].reshape(dim, 1)
mean_term /= gamma_n
third_term = np.dot(mean_term, mean_term.T)
mu = mean_term
mean = mu[:, 0]
Sigma = first_term + second_term - third_term
det_sigma = np.linalg.det(Sigma)
sigma = math.pow(det_sigma, 1.0 / 2.0 / dim)
cov = Sigma / math.pow(det_sigma, 1.0 / dim)
return mean, sigma, cov
cmaes-0.11.1/cmaes/_xnes.py 0000664 0000000 0000000 00000021510 14656600250 0015443 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import math
import numpy as np
from typing import cast
from typing import Optional
_EPS = 1e-8
_MEAN_MAX = 1e32
_SIGMA_MAX = 1e32
class XNES:
"""xNES stochastic optimizer class with ask-and-tell interface.
Example:
.. code::
import numpy as np
from cmaes import XNES
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
optimizer = XNES(mean=np.zeros(2), sigma=1.3)
for generation in range(50):
solutions = []
for _ in range(optimizer.population_size):
# Ask a parameter
x = optimizer.ask()
value = quadratic(x[0], x[1])
solutions.append((x, value))
print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
# Tell evaluation values.
optimizer.tell(solutions)
Args:
mean:
Initial mean vector of multi-variate gaussian distributions.
sigma:
Initial standard deviation of covariance matrix.
bounds:
Lower and upper domain boundaries for each parameter (optional).
n_max_resampling:
A maximum number of resampling parameters (default: 100).
If all sampled parameters are infeasible, the last sampled one
will be clipped with lower and upper bounds.
seed:
A seed number (optional).
population_size:
A population size (optional).
"""
# Paper: https://dl.acm.org/doi/10.1145/1830483.1830557
def __init__(
self,
mean: np.ndarray,
sigma: float,
bounds: Optional[np.ndarray] = None,
n_max_resampling: int = 100,
seed: Optional[int] = None,
population_size: Optional[int] = None,
):
assert sigma > 0, "sigma must be non-zero positive value"
assert np.all(
np.abs(mean) < _MEAN_MAX
), f"Abs of all elements of mean vector must be less than {_MEAN_MAX}"
n_dim = len(mean)
assert n_dim > 1, "The dimension of mean must be larger than 1"
if population_size is None:
population_size = 4 + math.floor(3 * math.log(n_dim))
assert population_size > 0, "popsize must be non-zero positive value."
w_hat = np.log(population_size / 2 + 1) - np.log(
np.arange(1, population_size + 1)
)
w_hat[np.where(w_hat < 0)] = 0
weights = w_hat / sum(w_hat) - (1.0 / population_size)
self._n_dim = n_dim
self._popsize = population_size
# weights
self._weights = weights
# learning rate
self._eta_mean = 1.0
self._eta_sigma = (3 / 5) * (3 + math.log(n_dim)) / (n_dim * math.sqrt(n_dim))
self._eta_B = self._eta_sigma
# distribution parameter
self._mean = mean.copy()
self._sigma = sigma
self._B = np.eye(n_dim)
# bounds contains low and high of each parameter.
assert bounds is None or _is_valid_bounds(bounds, mean), "invalid bounds"
self._bounds = bounds
self._n_max_resampling = n_max_resampling
self._g = 0
self._rng = np.random.RandomState(seed)
# Termination criteria
self._tolx = 1e-12 * sigma
self._tolxup = 1e4
self._tolfun = 1e-12
self._tolconditioncov = 1e14
self._funhist_term = 10 + math.ceil(30 * n_dim / population_size)
self._funhist_values = np.empty(self._funhist_term * 2)
@property
def dim(self) -> int:
"""A number of dimensions"""
return self._n_dim
@property
def population_size(self) -> int:
"""A population size"""
return self._popsize
@property
def generation(self) -> int:
"""Generation number which is monotonically incremented
when multi-variate gaussian distribution is updated."""
return self._g
def reseed_rng(self, seed: int) -> None:
self._rng.seed(seed)
def set_bounds(self, bounds: Optional[np.ndarray]) -> None:
"""Update boundary constraints"""
assert bounds is None or _is_valid_bounds(bounds, self._mean), "invalid bounds"
self._bounds = bounds
def ask(self) -> np.ndarray:
"""Sample a parameter"""
for i in range(self._n_max_resampling):
x = self._sample_solution()
if self._is_feasible(x):
return x
x = self._sample_solution()
x = self._repair_infeasible_params(x)
return x
def _sample_solution(self) -> np.ndarray:
z = self._rng.randn(self._n_dim) # ~ N(0, I)
x = self._mean + self._sigma * self._B.dot(z) # ~ N(m, σ^2 B B^T)
return x
def _is_feasible(self, param: np.ndarray) -> bool:
if self._bounds is None:
return True
return cast(
bool,
np.all(param >= self._bounds[:, 0]) and np.all(param <= self._bounds[:, 1]),
) # Cast bool_ to bool.
def _repair_infeasible_params(self, param: np.ndarray) -> np.ndarray:
if self._bounds is None:
return param
# clip with lower and upper bound.
param = np.where(param < self._bounds[:, 0], self._bounds[:, 0], param)
param = np.where(param > self._bounds[:, 1], self._bounds[:, 1], param)
return param
def tell(self, solutions: list[tuple[np.ndarray, float]]) -> None:
"""Tell evaluation values"""
assert len(solutions) == self._popsize, "Must tell popsize-length solutions."
for s in solutions:
assert np.all(
np.abs(s[0]) < _MEAN_MAX
), f"Abs of all param values must be less than {_MEAN_MAX} to avoid overflow errors"
self._g += 1
solutions.sort(key=lambda s: s[1])
# Stores 'best' and 'worst' values of the
# last 'self._funhist_term' generations.
funhist_idx = 2 * (self.generation % self._funhist_term)
self._funhist_values[funhist_idx] = solutions[0][1]
self._funhist_values[funhist_idx + 1] = solutions[-1][1]
z_k = np.array(
[
np.linalg.inv(self._sigma * self._B).dot(s[0] - self._mean)
for s in solutions
]
)
# natural gradient estimation in local coordinate
G_delta = np.sum(
[self._weights[i] * z_k[i, :] for i in range(self.population_size)], axis=0
)
G_M = np.sum(
[
self._weights[i]
* (np.outer(z_k[i, :], z_k[i, :]) - np.eye(self._n_dim))
for i in range(self.population_size)
],
axis=0,
)
G_sigma = G_M.trace() / self._n_dim
G_B = G_M - G_sigma * np.eye(self._n_dim)
# parameter update
self._mean += self._eta_mean * self._sigma * np.dot(self._B, G_delta)
self._sigma *= math.exp((self._eta_sigma / 2.0) * G_sigma)
self._B = self._B.dot(_expm((self._eta_B / 2.0) * G_B))
def should_stop(self) -> bool:
A = self._B.dot(self._B.T)
A = (A + A.T) / 2
E2, V = np.linalg.eigh(A)
E = np.sqrt(np.where(E2 < 0, _EPS, E2))
diagA = np.diag(A)
# Stop if the range of function values of the recent generation is below tolfun.
if (
self.generation > self._funhist_term
and np.max(self._funhist_values) - np.min(self._funhist_values)
< self._tolfun
):
return True
# Stop if detecting divergent behavior.
if self._sigma * np.max(E) > self._tolxup:
return True
# No effect coordinates: stop if adding 0.2-standard deviations
# in any single coordinate does not change m.
if np.any(self._mean == self._mean + (0.2 * self._sigma * np.sqrt(diagA))):
return True
# No effect axis: stop if adding 0.1-standard deviation vector in
# any principal axis direction of C does not change m. "pycma" check
# axis one by one at each generation.
i = self.generation % self.dim
if np.all(self._mean == self._mean + (0.1 * self._sigma * E[i] * V[:, i])):
return True
# Stop if the condition number of the covariance matrix exceeds 1e14.
condition_cov = np.max(E) / np.min(E)
if condition_cov > self._tolconditioncov:
return True
return False
def _is_valid_bounds(bounds: Optional[np.ndarray], mean: np.ndarray) -> bool:
if bounds is None:
return True
if (mean.size, 2) != bounds.shape:
return False
if not np.all(bounds[:, 0] <= mean):
return False
if not np.all(mean <= bounds[:, 1]):
return False
return True
def _expm(mat: np.ndarray) -> np.ndarray:
D, U = np.linalg.eigh(mat)
expD = np.exp(D)
return U @ np.diag(expD) @ U.T
cmaes-0.11.1/cmaes/cma.py 0000664 0000000 0000000 00000000323 14656600250 0015066 0 ustar 00root root 0000000 0000000 import warnings
from ._cma import CMA
__all__ = ["CMA"]
warnings.warn(
"This module is deprecated. Please import CMA class from the "
"package root (ex: from cmaes import CMA).",
FutureWarning,
)
cmaes-0.11.1/examples/ 0000775 0000000 0000000 00000000000 14656600250 0014504 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/examples/bipop_cma.py 0000664 0000000 0000000 00000005010 14656600250 0017003 0 ustar 00root root 0000000 0000000 import math
import numpy as np
from cmaes import CMA
def ackley(x1, x2):
return (
-20 * math.exp(-0.2 * math.sqrt(0.5 * (x1**2 + x2**2)))
- math.exp(0.5 * (math.cos(2 * math.pi * x1) + math.cos(2 * math.pi * x2)))
+ math.e
+ 20
)
def main():
seed = 0
rng = np.random.RandomState(0)
bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]])
lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]
mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds))
sigma0 = 32.768 * 2 / 5 # 1/5 of the domain width
sigma = sigma0
optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0)
n_restarts = 0 # A small restart doesn't count in the n_restarts
small_n_eval, large_n_eval = 0, 0
popsize0 = optimizer.population_size
inc_popsize = 2
# Initial run is with "normal" population size; it is
# the large population before first doubling, but its
# budget accounting is the same as in case of small
# population.
poptype = "small"
while n_restarts <= 5:
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = ackley(x[0], x[1])
solutions.append((x, value))
# print("{:10.5f} {:6.2f} {:6.2f}".format(value, x[0], x[1]))
optimizer.tell(solutions)
if optimizer.should_stop():
seed += 1
n_eval = optimizer.population_size * optimizer.generation
if poptype == "small":
small_n_eval += n_eval
else: # poptype == "large"
large_n_eval += n_eval
if small_n_eval < large_n_eval:
poptype = "small"
popsize_multiplier = inc_popsize**n_restarts
popsize = math.floor(
popsize0 * popsize_multiplier ** (rng.uniform() ** 2)
)
sigma = sigma0 * 10 ** (-2 * rng.uniform())
else:
poptype = "large"
n_restarts += 1
popsize = popsize0 * (inc_popsize**n_restarts)
sigma = sigma0
mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds))
optimizer = CMA(
mean=mean,
sigma=sigma,
bounds=bounds,
seed=seed,
population_size=popsize,
)
print("Restart CMA-ES with popsize={} ({})".format(popsize, poptype))
if __name__ == "__main__":
main()
cmaes-0.11.1/examples/catcma.py 0000664 0000000 0000000 00000003166 14656600250 0016314 0 ustar 00root root 0000000 0000000 import numpy as np
from cmaes import CatCMA
def sphere_com(x, c):
dim_co = len(x)
dim_ca = len(c)
if dim_co < 2:
raise ValueError("dimension must be greater one")
sphere = sum(x * x)
com = dim_ca - sum(c[:, 0])
return sphere + com
def rosenbrock_clo(x, c):
dim_co = len(x)
dim_ca = len(c)
if dim_co < 2:
raise ValueError("dimension must be greater one")
rosenbrock = sum(100 * (x[:-1] ** 2 - x[1:]) ** 2 + (x[:-1] - 1) ** 2)
clo = dim_ca - (c[:, 0].argmin() + c[:, 0].prod() * dim_ca)
return rosenbrock + clo
def mc_proximity(x, c, cat_num):
dim_co = len(x)
dim_ca = len(c)
if dim_co < 2:
raise ValueError("dimension must be greater one")
if dim_co != dim_ca:
raise ValueError(
"number of dimensions of continuous and categorical variables "
"must be equal in mc_proximity"
)
c_index = np.argmax(c, axis=1) / cat_num
return sum((x - c_index) ** 2) + sum(c_index)
if __name__ == "__main__":
cont_dim = 5
cat_dim = 5
cat_num = np.array([3, 4, 5, 5, 5])
# cat_num = 3 * np.ones(cat_dim, dtype=np.int64)
optimizer = CatCMA(mean=3.0 * np.ones(cont_dim), sigma=1.0, cat_num=cat_num)
for generation in range(200):
solutions = []
for _ in range(optimizer.population_size):
x, c = optimizer.ask()
value = mc_proximity(x, c, cat_num)
if generation % 10 == 0:
print(f"#{generation} {value}")
solutions.append(((x, c), value))
optimizer.tell(solutions)
if optimizer.should_stop():
break
cmaes-0.11.1/examples/cma_with_margin_binary.py 0000664 0000000 0000000 00000002515 14656600250 0021555 0 ustar 00root root 0000000 0000000 import numpy as np
from cmaes import CMAwM
def ellipsoid_onemax(x, n_zdim):
n = len(x)
n_rdim = n - n_zdim
r = 10
if len(x) < 2:
raise ValueError("dimension must be greater one")
ellipsoid = sum([(1000 ** (i / (n_rdim - 1)) * x[i]) ** 2 for i in range(n_rdim)])
onemax = n_zdim - (0.0 < x[(n - n_zdim) :]).sum()
return ellipsoid + r * onemax
def main():
binary_dim, continuous_dim = 10, 10
dim = binary_dim + continuous_dim
bounds = np.concatenate(
[
np.tile([-np.inf, np.inf], (continuous_dim, 1)),
np.tile([0, 1], (binary_dim, 1)),
]
)
steps = np.concatenate([np.zeros(continuous_dim), np.ones(binary_dim)])
optimizer = CMAwM(mean=np.zeros(dim), sigma=2.0, bounds=bounds, steps=steps)
print(" evals f(x)")
print("====== ==========")
evals = 0
while True:
solutions = []
for _ in range(optimizer.population_size):
x_for_eval, x_for_tell = optimizer.ask()
value = ellipsoid_onemax(x_for_eval, binary_dim)
evals += 1
solutions.append((x_for_tell, value))
if evals % 300 == 0:
print(f"{evals:5d} {value:10.5f}")
optimizer.tell(solutions)
if optimizer.should_stop():
break
if __name__ == "__main__":
main()
cmaes-0.11.1/examples/cma_with_margin_integer.py 0000664 0000000 0000000 00000002303 14656600250 0021721 0 ustar 00root root 0000000 0000000 import numpy as np
from cmaes import CMAwM
def ellipsoid_int(x, _):
n = len(x)
if len(x) < 2:
raise ValueError("dimension must be greater one")
return sum([(1000 ** (i / (n - 1)) * x[i]) ** 2 for i in range(n)])
def main():
integer_dim, continuous_dim = 10, 10
dim = integer_dim + continuous_dim
bounds = np.concatenate(
[
np.tile([-np.inf, np.inf], (continuous_dim, 1)),
np.tile([-10, 11], (integer_dim, 1)),
]
)
steps = np.concatenate([np.zeros(continuous_dim), np.ones(integer_dim)])
optimizer = CMAwM(mean=5 * np.ones(dim), sigma=2.0, bounds=bounds, steps=steps)
print(" evals f(x)")
print("====== ==========")
evals = 0
while True:
solutions = []
for _ in range(optimizer.population_size):
x_for_eval, x_for_tell = optimizer.ask()
value = ellipsoid_int(x_for_eval, integer_dim)
evals += 1
solutions.append((x_for_tell, value))
if evals % 300 == 0:
print(f"{evals:5d} {value:10.5f}")
optimizer.tell(solutions)
if optimizer.should_stop():
break
if __name__ == "__main__":
main()
cmaes-0.11.1/examples/ellipsoid_function.py 0000664 0000000 0000000 00000001457 14656600250 0020756 0 ustar 00root root 0000000 0000000 import numpy as np
from cmaes import CMA
def ellipsoid(x):
n = len(x)
if len(x) < 2:
raise ValueError("dimension must be greater one")
return sum([(1000 ** (i / (n - 1)) * x[i]) ** 2 for i in range(n)])
def main():
dim = 40
optimizer = CMA(mean=3 * np.ones(dim), sigma=2.0)
print(" evals f(x)")
print("====== ==========")
evals = 0
while True:
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = ellipsoid(x)
evals += 1
solutions.append((x, value))
if evals % 3000 == 0:
print(f"{evals:5d} {value:10.5f}")
optimizer.tell(solutions)
if optimizer.should_stop():
break
if __name__ == "__main__":
main()
cmaes-0.11.1/examples/ipop_cma.py 0000664 0000000 0000000 00000003210 14656600250 0016641 0 ustar 00root root 0000000 0000000 import math
import numpy as np
from cmaes import CMA
def ackley(x1, x2):
return (
-20 * math.exp(-0.2 * math.sqrt(0.5 * (x1**2 + x2**2)))
- math.exp(0.5 * (math.cos(2 * math.pi * x1) + math.cos(2 * math.pi * x2)))
+ math.e
+ 20
)
def main():
seed = 0
rng = np.random.RandomState(1)
bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]])
lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]
mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds))
sigma = 32.768 * 2 / 5 # 1/5 of the domain width
optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0)
# Multiplier for increasing population size before each restart.
inc_popsize = 2
print(" g f(x1,x2) x1 x2 ")
print("=== ========== ====== ======")
for generation in range(200):
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = ackley(x[0], x[1])
solutions.append((x, value))
print(f"{generation:3d} {value:10.5f} {x[0]:6.2f} {x[1]:6.2f}")
optimizer.tell(solutions)
if optimizer.should_stop():
seed += 1
popsize = optimizer.population_size * inc_popsize
mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds))
optimizer = CMA(
mean=mean,
sigma=sigma,
bounds=bounds,
seed=seed,
population_size=popsize,
)
print("Restart CMA-ES with popsize={}".format(popsize))
if __name__ == "__main__":
main()
cmaes-0.11.1/examples/lra_cma.py 0000664 0000000 0000000 00000001325 14656600250 0016455 0 ustar 00root root 0000000 0000000 import numpy as np
from cmaes import CMA
def rastrigin(x):
dim = len(x)
if dim < 2:
raise ValueError("dimension must be greater one")
return 10 * dim + sum(x**2 - 10 * np.cos(2 * np.pi * x))
if __name__ == "__main__":
dim = 40
optimizer = CMA(mean=3 * np.ones(dim), sigma=2.0, seed=10, lr_adapt=True)
for generation in range(50000):
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = rastrigin(x)
if generation % 500 == 0:
print(f"#{generation} {value}")
solutions.append((x, value))
optimizer.tell(solutions)
if optimizer.should_stop():
break
cmaes-0.11.1/examples/optuna_sampler.py 0000664 0000000 0000000 00000000656 14656600250 0020116 0 ustar 00root root 0000000 0000000 import optuna
def objective(trial: optuna.Trial):
x1 = trial.suggest_float("x1", -4, 4)
x2 = trial.suggest_float("x2", -4, 4)
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
def main():
optuna.logging.set_verbosity(optuna.logging.INFO)
study = optuna.create_study(sampler=optuna.samplers.CmaEsSampler())
study.optimize(objective, n_trials=250, gc_after_trial=False)
if __name__ == "__main__":
main()
cmaes-0.11.1/examples/quadratic_2d_function.py 0000664 0000000 0000000 00000001345 14656600250 0021330 0 ustar 00root root 0000000 0000000 import numpy as np
from cmaes import CMA
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
def main():
optimizer = CMA(mean=np.zeros(2), sigma=1.3)
print(" g f(x1,x2) x1 x2 ")
print("=== ========== ====== ======")
while True:
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = quadratic(x[0], x[1])
solutions.append((x, value))
print(
f"{optimizer.generation:3d} {value:10.5f}"
f" {x[0]:6.2f} {x[1]:6.2f}"
)
optimizer.tell(solutions)
if optimizer.should_stop():
break
if __name__ == "__main__":
main()
cmaes-0.11.1/examples/sep_cma.py 0000664 0000000 0000000 00000001465 14656600250 0016473 0 ustar 00root root 0000000 0000000 import numpy as np
from cmaes import SepCMA
def ellipsoid(x):
n = len(x)
if len(x) < 2:
raise ValueError("dimension must be greater one")
return sum([(1000 ** (i / (n - 1)) * x[i]) ** 2 for i in range(n)])
def main():
dim = 40
optimizer = SepCMA(mean=3 * np.ones(dim), sigma=2.0)
print(" evals f(x)")
print("====== ==========")
evals = 0
while True:
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = ellipsoid(x)
evals += 1
solutions.append((x, value))
if evals % 3000 == 0:
print(f"{evals:5d} {value:10.5f}")
optimizer.tell(solutions)
if optimizer.should_stop():
break
if __name__ == "__main__":
main()
cmaes-0.11.1/examples/ws_cma.py 0000664 0000000 0000000 00000002442 14656600250 0016331 0 ustar 00root root 0000000 0000000 import numpy as np
from cmaes import CMA, get_warm_start_mgd
def source_task(x1: float, x2: float) -> float:
b = 0.4
return (x1 - b) ** 2 + (x2 - b) ** 2
def target_task(x1: float, x2: float) -> float:
b = 0.6
return (x1 - b) ** 2 + (x2 - b) ** 2
def main() -> None:
# Generate solutions from a source task
source_solutions = []
for _ in range(1000):
x = np.random.random(2)
value = source_task(x[0], x[1])
source_solutions.append((x, value))
# Estimate a promising distribution of the source task
ws_mean, ws_sigma, ws_cov = get_warm_start_mgd(
source_solutions, gamma=0.1, alpha=0.1
)
optimizer = CMA(mean=ws_mean, sigma=ws_sigma, cov=ws_cov)
# Run WS-CMA-ES
print(" g f(x1,x2) x1 x2 ")
print("=== ========== ====== ======")
while True:
solutions = []
for _ in range(optimizer.population_size):
x = optimizer.ask()
value = target_task(x[0], x[1])
solutions.append((x, value))
print(
f"{optimizer.generation:3d} {value:10.5f}"
f" {x[0]:6.2f} {x[1]:6.2f}"
)
optimizer.tell(solutions)
if optimizer.should_stop():
break
if __name__ == "__main__":
main()
cmaes-0.11.1/fuzzing.py 0000664 0000000 0000000 00000002011 14656600250 0014726 0 ustar 00root root 0000000 0000000 import sys
import atheris
import hypothesis.extra.numpy as npst
from hypothesis import given, strategies as st
from cmaes import CMA
@given(data=st.data())
def test_cma_tell(data):
dim = data.draw(st.integers(min_value=2, max_value=100))
mean = data.draw(npst.arrays(dtype=float, shape=dim))
sigma = data.draw(st.floats(min_value=1e-16))
n_iterations = data.draw(st.integers(min_value=1))
try:
optimizer = CMA(mean, sigma)
except AssertionError:
return
popsize = optimizer.population_size
for _ in range(n_iterations):
tell_solutions = data.draw(
st.lists(
st.tuples(npst.arrays(dtype=float, shape=dim), st.floats()),
min_size=popsize,
max_size=popsize,
)
)
optimizer.ask()
try:
optimizer.tell(tell_solutions)
except AssertionError:
return
optimizer.ask()
atheris.Setup(sys.argv, test_cma_tell.hypothesis.fuzz_one_input)
atheris.Fuzz()
cmaes-0.11.1/pyproject.toml 0000664 0000000 0000000 00000002575 14656600250 0015613 0 ustar 00root root 0000000 0000000 [build-system]
requires = ["setuptools>=61"]
build-backend = "setuptools.build_meta"
[project]
name = "cmaes"
description = "Lightweight Covariance Matrix Adaptation Evolution Strategy (CMA-ES) implementation for Python 3."
readme = "README.md"
authors = [
{ name = "Masashi Shibata", "email" = "m.shibata1020@gmail.com" }
]
maintainers = [
{ name = "Masahiro Nomura", "email" = "nomura_masahiro@cyberagent.co.jp" }
]
requires-python = ">=3.7"
license = {file = "LICENSE"}
classifiers = [
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
"Intended Audience :: Science/Research",
]
dependencies = ["numpy"]
dynamic = ["version"]
[project.optional-dependencies]
cmawm = ["scipy"]
[project.urls]
"Homepage" = "https://github.com/CyberAgentAILab/cmaes"
[tool.setuptools.dynamic]
version = {attr = "cmaes.__version__"}
[tool.setuptools]
packages = ["cmaes"]
include-package-data = false
[tool.mypy]
ignore_missing_imports = true
disallow_untyped_defs = true
cmaes-0.11.1/requirements-bench.txt 0000664 0000000 0000000 00000000024 14656600250 0017223 0 ustar 00root root 0000000 0000000 kurobako
cma
optuna
cmaes-0.11.1/requirements-dev.txt 0000664 0000000 0000000 00000000173 14656600250 0016727 0 ustar 00root root 0000000 0000000 # install_requires
numpy>=1.20.0
# visualization
matplotlib
scipy
# Fuzzing
hypothesis
atheris
# lint
mypy
flake8
black
cmaes-0.11.1/setup.cfg 0000664 0000000 0000000 00000000150 14656600250 0014503 0 ustar 00root root 0000000 0000000 [flake8]
ignore =
E203,
W503
max-line-length = 100
statistics = True
exclude = venv,build,.eggs
cmaes-0.11.1/tests/ 0000775 0000000 0000000 00000000000 14656600250 0014030 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/tests/__init__.py 0000664 0000000 0000000 00000000000 14656600250 0016127 0 ustar 00root root 0000000 0000000 cmaes-0.11.1/tests/test_boundary.py 0000664 0000000 0000000 00000004105 14656600250 0017264 0 ustar 00root root 0000000 0000000 import numpy as np
from unittest import TestCase
from cmaes import CMA, SepCMA
CMA_CLASSES = [CMA, SepCMA]
class TestCMABoundary(TestCase):
def test_valid_dimension(self):
for CmaClass in CMA_CLASSES:
with self.subTest(f"Class: {CmaClass.__name__}"):
CmaClass(
mean=np.zeros(2), sigma=1.3, bounds=np.array([[-10, 10], [-10, 10]])
)
def test_invalid_dimension(self):
for CmaClass in CMA_CLASSES:
with self.subTest(f"Class: {CmaClass.__name__}"):
with self.assertRaises(AssertionError):
CmaClass(mean=np.zeros(2), sigma=1.3, bounds=np.array([-10, 10]))
def test_mean_located_out_of_bounds(self):
mean = np.zeros(5)
bounds = np.empty(shape=(5, 2))
bounds[:, 0], bounds[:, 1] = 1.0, 5.0
for CmaClass in CMA_CLASSES:
with self.subTest(f"Class: {CmaClass.__name__}"):
with self.assertRaises(AssertionError):
CmaClass(mean=mean, sigma=1.3, bounds=bounds)
def test_set_valid_bounds(self):
for CmaClass in CMA_CLASSES:
with self.subTest(f"Class: {CmaClass.__name__}"):
optimizer = CmaClass(mean=np.zeros(2), sigma=1.3)
optimizer.set_bounds(bounds=np.array([[-10, 10], [-10, 10]]))
def test_set_invalid_bounds(self):
for CmaClass in CMA_CLASSES:
with self.subTest(f"Class: {CmaClass.__name__}"):
optimizer = CmaClass(mean=np.zeros(2), sigma=1.3)
with self.assertRaises(AssertionError):
optimizer.set_bounds(bounds=np.array([-10, 10]))
def test_set_bounds_which_does_not_contain_mean(self):
for CmaClass in CMA_CLASSES:
with self.subTest(f"Class: {CmaClass.__name__}"):
optimizer = CmaClass(mean=np.zeros(2), sigma=1.3)
bounds = np.empty(shape=(5, 2))
bounds[:, 0], bounds[:, 1] = 1.0, 5.0
with self.assertRaises(AssertionError):
optimizer.set_bounds(bounds)
cmaes-0.11.1/tests/test_cmawm.py 0000664 0000000 0000000 00000002315 14656600250 0016546 0 ustar 00root root 0000000 0000000 import warnings
import numpy as np
from numpy.testing import assert_almost_equal
from unittest import TestCase
from cmaes import CMA, CMAwM
class TestCMAwM(TestCase):
def test_no_discrete_spaces(self):
mean = np.zeros(2)
bounds = np.array([[-10, 10], [-10, 10]])
steps = np.array([0, 0])
sigma = 1.3
seed = 1
cma_optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=seed)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
cmawm_optimizer = CMAwM(
mean=mean, sigma=sigma, bounds=bounds, steps=steps, seed=seed
)
for i in range(100):
solutions = []
for _ in range(cma_optimizer.population_size):
cma_x = cma_optimizer.ask()
cmawm_x_encoded, cmawm_x_for_tell = cmawm_optimizer.ask()
assert_almost_equal(cma_x, cmawm_x_encoded)
assert_almost_equal(cma_x, cmawm_x_for_tell)
objective = (cma_x[0] - 3) ** 2 + cma_x[1] ** 2
solutions.append((cma_x, objective))
cma_optimizer.tell(solutions)
cmawm_optimizer.tell(solutions)
cmaes-0.11.1/tests/test_compress_symmetric.py 0000664 0000000 0000000 00000002161 14656600250 0021370 0 ustar 00root root 0000000 0000000 import numpy as np
from unittest import TestCase
from cmaes._cma import _decompress_symmetric, _compress_symmetric
class TestCompressSymmetric(TestCase):
def test_compress_symmetric_odd(self):
sym2d = np.array([[1, 2], [2, 3]])
actual = _compress_symmetric(sym2d)
expected = np.array([1, 2, 3])
self.assertTrue(np.all(np.equal(actual, expected)))
def test_compress_symmetric_even(self):
sym2d = np.array([[1, 2, 3], [2, 4, 5], [3, 5, 6]])
actual = _compress_symmetric(sym2d)
expected = np.array([1, 2, 3, 4, 5, 6])
self.assertTrue(np.all(np.equal(actual, expected)))
def test_decompress_symmetric_odd(self):
sym1d = np.array([1, 2, 3])
actual = _decompress_symmetric(sym1d)
expected = np.array([[1, 2], [2, 3]])
self.assertTrue(np.all(np.equal(actual, expected)))
def test_decompress_symmetric_even(self):
sym1d = np.array([1, 2, 3, 4, 5, 6])
actual = _decompress_symmetric(sym1d)
expected = np.array([[1, 2, 3], [2, 4, 5], [3, 5, 6]])
self.assertTrue(np.all(np.equal(actual, expected)))
cmaes-0.11.1/tests/test_fuzzing.py 0000664 0000000 0000000 00000004003 14656600250 0017132 0 ustar 00root root 0000000 0000000 import hypothesis.extra.numpy as npst
import unittest
from hypothesis import given, strategies as st
from cmaes import CMA, SepCMA
class TestFuzzing(unittest.TestCase):
@given(
data=st.data(),
)
def test_cma_tell(self, data):
dim = data.draw(st.integers(min_value=2, max_value=100))
mean = data.draw(npst.arrays(dtype=float, shape=dim))
sigma = data.draw(st.floats(min_value=1e-16))
n_iterations = data.draw(st.integers(min_value=1))
try:
optimizer = CMA(mean, sigma)
except AssertionError:
return
popsize = optimizer.population_size
for _ in range(n_iterations):
tell_solutions = data.draw(
st.lists(
st.tuples(npst.arrays(dtype=float, shape=dim), st.floats()),
min_size=popsize,
max_size=popsize,
)
)
optimizer.ask()
try:
optimizer.tell(tell_solutions)
except AssertionError:
return
optimizer.ask()
@given(
data=st.data(),
)
def test_sepcma_tell(self, data):
dim = data.draw(st.integers(min_value=2, max_value=100))
mean = data.draw(npst.arrays(dtype=float, shape=dim))
sigma = data.draw(st.floats(min_value=1e-16))
n_iterations = data.draw(st.integers(min_value=1))
try:
optimizer = SepCMA(mean, sigma)
except AssertionError:
return
popsize = optimizer.population_size
for _ in range(n_iterations):
tell_solutions = data.draw(
st.lists(
st.tuples(npst.arrays(dtype=float, shape=dim), st.floats()),
min_size=popsize,
max_size=popsize,
)
)
optimizer.ask()
try:
optimizer.tell(tell_solutions)
except AssertionError:
return
optimizer.ask()
cmaes-0.11.1/tests/test_stats.py 0000664 0000000 0000000 00000002716 14656600250 0016605 0 ustar 00root root 0000000 0000000 import math
from unittest import TestCase
from cmaes import _stats
# Test Cases in this file is generated by SciPy v1.9.3
class TestNormCDF(TestCase):
def test_standard_normal_distribution(self):
self.assertAlmostEqual(_stats.norm_cdf(-30), 4.906713927147907e-198, places=205)
self.assertAlmostEqual(_stats.norm_cdf(-10), 7.619853024160469e-24, places=30)
self.assertAlmostEqual(_stats.norm_cdf(-1), 0.15865525393145707)
self.assertAlmostEqual(_stats.norm_cdf(0), 0.5)
self.assertAlmostEqual(_stats.norm_cdf(1), 0.8413447460685429)
self.assertAlmostEqual(
_stats.norm_cdf(8),
0.9999999999999993338661852249060757458209991455078125,
places=30,
)
self.assertAlmostEqual(_stats.norm_cdf(10), 1.0)
def test_mu_and_sigma(self):
self.assertAlmostEqual(_stats.norm_cdf(1, loc=2, scale=3), 0.36944134018176367)
class TestChi2PPF(TestCase):
def test(self):
self.assertAlmostEqual(_stats.chi2_ppf(0.0), 0.0)
self.assertAlmostEqual(
_stats.chi2_ppf(0.00000001), 1.5707963267948962e-16, places=25
)
self.assertAlmostEqual(_stats.chi2_ppf(0.5), 0.454936423119572)
self.assertAlmostEqual(_stats.chi2_ppf(0.99999999), 32.84125335146885)
self.assertAlmostEqual(
_stats.chi2_ppf(0.999999999999999777955395074969), 67.39648382445012
)
self.assertAlmostEqual(_stats.chi2_ppf(1.0), math.inf)
cmaes-0.11.1/tests/test_termination_criterion.py 0000664 0000000 0000000 00000001612 14656600250 0022050 0 ustar 00root root 0000000 0000000 import numpy as np
from unittest import TestCase
from cmaes import CMA
class TestTerminationCriterion(TestCase):
def test_stop_if_objective_values_are_not_changed(self):
optimizer = CMA(mean=np.zeros(2), sigma=1.3)
popsize = optimizer.population_size
rng = np.random.RandomState(seed=1)
for i in range(optimizer._funhist_term + 1):
self.assertFalse(optimizer.should_stop())
optimizer.tell([(rng.randn(2), 0.01) for _ in range(popsize)])
self.assertTrue(optimizer.should_stop())
def test_stop_if_detect_divergent_behavior(self):
optimizer = CMA(mean=np.zeros(2), sigma=1e-4)
popsize = optimizer.population_size
nd_rng = np.random.RandomState(1)
solutions = [(100 * nd_rng.randn(2), 0.01) for _ in range(popsize)]
optimizer.tell(solutions)
self.assertTrue(optimizer.should_stop())
cmaes-0.11.1/tests/test_warm_start.py 0000664 0000000 0000000 00000000620 14656600250 0017622 0 ustar 00root root 0000000 0000000 import numpy as np
from unittest import TestCase
from cmaes import CMA, get_warm_start_mgd
class TestWarmStartCMA(TestCase):
def test_dimension(self):
optimizer = CMA(mean=np.zeros(10), sigma=1.3)
source_solutions = [(optimizer.ask(), 0.0) for _ in range(100)]
ws_mean, ws_sigma, ws_cov = get_warm_start_mgd(source_solutions)
self.assertEqual(ws_mean.size, 10)
cmaes-0.11.1/tools/ 0000775 0000000 0000000 00000000000 14656600250 0014026 5 ustar 00root root 0000000 0000000 cmaes-0.11.1/tools/cmaes_visualizer.py 0000664 0000000 0000000 00000020245 14656600250 0017750 0 ustar 00root root 0000000 0000000 """
Usage:
cmaes_visualizer.py OPTIONS
Optional arguments:
-h, --help show this help message and exit
--function {quadratic,himmelblau,rosenbrock,six-hump-camel}
--seed SEED
--frames FRAMES
--interval INTERVAL
--pop-per-frame POP_PER_FRAME
--restart-strategy {ipop,bipop}
Example:
python3 cmaes_visualizer.py --function six-hump-camel --pop-per-frame 2
python3 tools/cmaes_visualizer.py --function himmelblau \
--restart-strategy ipop --frames 500 --interval 10 --pop-per-frame 6
"""
import argparse
import math
import numpy as np
from scipy import stats
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from pylab import rcParams
from cmaes._cma import CMA
parser = argparse.ArgumentParser()
parser.add_argument(
"--function",
choices=["quadratic", "himmelblau", "rosenbrock", "six-hump-camel"],
)
parser.add_argument(
"--seed",
type=int,
default=1,
)
parser.add_argument(
"--frames",
type=int,
default=100,
)
parser.add_argument(
"--interval",
type=int,
default=20,
)
parser.add_argument(
"--pop-per-frame",
type=int,
default=1,
)
parser.add_argument(
"--restart-strategy",
choices=["ipop", "bipop"],
default="",
)
args = parser.parse_args()
rcParams["figure.figsize"] = 10, 5
fig, (ax1, ax2) = plt.subplots(1, 2)
color_dict = {
"red": ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)),
"green": ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)),
"blue": ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
"yellow": ((1.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
}
bw = LinearSegmentedColormap("BlueWhile", color_dict)
def himmelblau(x1, x2):
return (x1**2 + x2 - 11.0) ** 2 + (x1 + x2**2 - 7.0) ** 2
def himmelblau_contour(x1, x2):
return np.log(himmelblau(x1, x2) + 1)
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
def quadratic_contour(x1, x2):
return np.log(quadratic(x1, x2) + 1)
def rosenbrock(x1, x2):
return 100 * (x2 - x1**2) ** 2 + (x1 - 1) ** 2
def rosenbrock_contour(x1, x2):
return np.log(rosenbrock(x1, x2) + 1)
def six_hump_camel(x1, x2):
return (
(4 - 2.1 * (x1**2) + (x1**4) / 3) * (x1**2)
+ x1 * x2
+ (-4 + 4 * x2**2) * (x2**2)
)
def six_hump_camel_contour(x1, x2):
return np.log(six_hump_camel(x1, x2) + 1.0316)
function_name = ""
if args.function == "quadratic":
function_name = "Quadratic function"
objective = quadratic
contour_function = quadratic_contour
global_minimums = [
(3.0, -2.0),
]
# input domain
x1_lower_bound, x1_upper_bound = -4, 4
x2_lower_bound, x2_upper_bound = -4, 4
elif args.function == "himmelblau":
function_name = "Himmelblau function"
objective = himmelblau
contour_function = himmelblau_contour
global_minimums = [
(3.0, 2.0),
(-2.805118, 3.131312),
(-3.779310, -3.283186),
(3.584428, -1.848126),
]
# input domain
x1_lower_bound, x1_upper_bound = -4, 4
x2_lower_bound, x2_upper_bound = -4, 4
elif args.function == "rosenbrock":
# https://www.sfu.ca/~ssurjano/rosen.html
function_name = "Rosenbrock function"
objective = rosenbrock
contour_function = rosenbrock_contour
global_minimums = [
(1, 1),
]
# input domain
x1_lower_bound, x1_upper_bound = -5, 10
x2_lower_bound, x2_upper_bound = -5, 10
elif args.function == "six-hump-camel":
# https://www.sfu.ca/~ssurjano/camel6.html
function_name = "Six-hump camel function"
objective = six_hump_camel
contour_function = six_hump_camel_contour
global_minimums = [
(0.0898, -0.7126),
(-0.0898, 0.7126),
]
# input domain
x1_lower_bound, x1_upper_bound = -3, 3
x2_lower_bound, x2_upper_bound = -2, 2
else:
raise ValueError("invalid function type")
seed = args.seed
bounds = np.array([[x1_lower_bound, x1_upper_bound], [x2_lower_bound, x2_upper_bound]])
sigma0 = (x1_upper_bound - x2_lower_bound) / 5
optimizer = CMA(mean=np.zeros(2), sigma=sigma0, bounds=bounds, seed=seed)
solutions = []
trial_number = 0
rng = np.random.RandomState(seed)
# Variables for IPOP and BIPOP
inc_popsize = 2
n_restarts = 0 # A small restart doesn't count in the n_restarts
small_n_eval, large_n_eval = 0, 0
popsize0 = optimizer.population_size
poptype = "small"
def init():
ax1.set_xlim(x1_lower_bound, x1_upper_bound)
ax1.set_ylim(x2_lower_bound, x2_upper_bound)
ax2.set_xlim(x1_lower_bound, x1_upper_bound)
ax2.set_ylim(x2_lower_bound, x2_upper_bound)
# Plot 4 local minimum value
for m in global_minimums:
ax1.plot(m[0], m[1], "y*", ms=10)
ax2.plot(m[0], m[1], "y*", ms=10)
# Plot contour of himmelblau function
x1 = np.arange(x1_lower_bound, x1_upper_bound, 0.01)
x2 = np.arange(x2_lower_bound, x2_upper_bound, 0.01)
x1, x2 = np.meshgrid(x1, x2)
ax1.contour(x1, x2, contour_function(x1, x2), 30, cmap=bw)
def get_next_popsize_sigma():
global optimizer, n_restarts, poptype, small_n_eval, large_n_eval, sigma0
if args.restart_strategy == "ipop":
n_restarts += 1
popsize = optimizer.population_size * inc_popsize
print(f"Restart CMA-ES with popsize={popsize} at trial={trial_number}")
return popsize, sigma0
elif args.restart_strategy == "bipop":
n_eval = optimizer.population_size * optimizer.generation
if poptype == "small":
small_n_eval += n_eval
else: # poptype == "large"
large_n_eval += n_eval
if small_n_eval < large_n_eval:
poptype = "small"
popsize_multiplier = inc_popsize**n_restarts
popsize = math.floor(popsize0 * popsize_multiplier ** (rng.uniform() ** 2))
sigma = sigma0 * 10 ** (-2 * rng.uniform())
else:
poptype = "large"
n_restarts += 1
popsize = popsize0 * (inc_popsize**n_restarts)
sigma = sigma0
print(
f"Restart CMA-ES with popsize={popsize} ({poptype}) at trial={trial_number}"
)
return popsize, sigma
raise Exception("must not reach here")
def update(frame):
global solutions, optimizer, trial_number
if len(solutions) == optimizer.population_size:
optimizer.tell(solutions)
solutions = []
if optimizer.should_stop():
popsize, sigma = get_next_popsize_sigma()
lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]
mean = lower_bounds + (rng.rand(2) * (upper_bounds - lower_bounds))
optimizer = CMA(
mean=mean,
sigma=sigma,
bounds=bounds,
seed=seed,
population_size=popsize,
)
n_sample = min(optimizer.population_size - len(solutions), args.pop_per_frame)
for i in range(n_sample):
x = optimizer.ask()
evaluation = objective(x[0], x[1])
# Plot sample points
ax1.plot(x[0], x[1], "o", c="r", label="2d", alpha=0.5)
solution = (
x,
evaluation,
)
solutions.append(solution)
trial_number += n_sample
# Update title
if args.restart_strategy == "ipop":
fig.suptitle(
f"IPOP-CMA-ES {function_name} trial={trial_number} "
f"popsize={optimizer.population_size}"
)
elif args.restart_strategy == "bipop":
fig.suptitle(
f"BIPOP-CMA-ES {function_name} trial={trial_number} "
f"popsize={optimizer.population_size} ({poptype})"
)
else:
fig.suptitle(f"CMA-ES {function_name} trial={trial_number}")
# Plot multivariate gaussian distribution of CMA-ES
x, y = np.mgrid[
x1_lower_bound:x1_upper_bound:0.01, x2_lower_bound:x2_upper_bound:0.01
]
rv = stats.multivariate_normal(optimizer._mean, optimizer._C)
pos = np.dstack((x, y))
ax2.contourf(x, y, rv.pdf(pos))
if frame % 50 == 0:
print(f"Processing frame {frame}")
def main():
ani = animation.FuncAnimation(
fig,
update,
frames=args.frames,
init_func=init,
blit=False,
interval=args.interval,
)
ani.save(f"./tmp/{args.function}.mp4")
if __name__ == "__main__":
main()
cmaes-0.11.1/tools/optuna_profile.py 0000664 0000000 0000000 00000002117 14656600250 0017427 0 ustar 00root root 0000000 0000000 import argparse
import cProfile
import logging
import pstats
import optuna
parser = argparse.ArgumentParser()
parser.add_argument("--storage", choices=["memory", "sqlite"], default="memory")
parser.add_argument("--params", type=int, default=100)
parser.add_argument("--trials", type=int, default=1000)
args = parser.parse_args()
def objective(trial: optuna.Trial):
val = 0
for i in range(args.params):
xi = trial.suggest_uniform(str(i), -4, 4)
val += (xi - 2) ** 2
return val
def main():
logging.disable(level=logging.INFO)
storage = None
if args.storage == "sqlite":
storage = f"sqlite:///db-{args.trials}-{args.params}.sqlite3"
sampler = optuna.samplers.CmaEsSampler()
study = optuna.create_study(sampler=sampler, storage=storage)
profiler = cProfile.Profile()
profiler.runcall(
study.optimize, objective, n_trials=args.trials, gc_after_trial=False
)
profiler.dump_stats("profile.stats")
stats = pstats.Stats("profile.stats")
stats.sort_stats("time").print_stats(5)
if __name__ == "__main__":
main()
cmaes-0.11.1/tools/ws_cmaes_visualizer.py 0000664 0000000 0000000 00000016005 14656600250 0020460 0 ustar 00root root 0000000 0000000 """
Usage:
python3 tools/ws_cmaes_visualizer.py OPTIONS
Optional arguments:
-h, --help show this help message and exit
--function {quadratic,himmelblau,rosenbrock,six-hump-camel,sphere,rot-ellipsoid}
--seed SEED
--alpha ALPHA
--gamma GAMMA
--frames FRAMES
--interval INTERVAL
--pop-per-frame POP_PER_FRAME
Example:
python3 ws_cmaes_visualizer.py --function rot-ellipsoid
"""
import argparse
import math
import numpy as np
from scipy import stats
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from pylab import rcParams
from cmaes import get_warm_start_mgd
parser = argparse.ArgumentParser()
parser.add_argument(
"--function",
choices=[
"quadratic",
"himmelblau",
"rosenbrock",
"six-hump-camel",
"sphere",
"rot-ellipsoid",
],
)
parser.add_argument(
"--seed",
type=int,
default=1,
)
parser.add_argument(
"--alpha",
type=float,
default=0.1,
)
parser.add_argument(
"--gamma",
type=float,
default=0.1,
)
parser.add_argument(
"--frames",
type=int,
default=100,
)
parser.add_argument(
"--interval",
type=int,
default=20,
)
parser.add_argument(
"--pop-per-frame",
type=int,
default=10,
)
args = parser.parse_args()
rcParams["figure.figsize"] = 10, 5
fig, (ax1, ax2) = plt.subplots(1, 2)
color_dict = {
"red": ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)),
"green": ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)),
"blue": ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
"yellow": ((1.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
}
bw = LinearSegmentedColormap("BlueWhile", color_dict)
def himmelbleu(x1, x2):
return (x1**2 + x2 - 11.0) ** 2 + (x1 + x2**2 - 7.0) ** 2
def himmelbleu_contour(x1, x2):
return np.log(himmelbleu(x1, x2) + 1)
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
def quadratic_contour(x1, x2):
return np.log(quadratic(x1, x2) + 1)
def rosenbrock(x1, x2):
return 100 * (x2 - x1**2) ** 2 + (x1 - 1) ** 2
def rosenbrock_contour(x1, x2):
return np.log(rosenbrock(x1, x2) + 1)
def six_hump_camel(x1, x2):
return (
(4 - 2.1 * (x1**2) + (x1**4) / 3) * (x1**2)
+ x1 * x2
+ (-4 + 4 * x2**2) * (x2**2)
)
def six_hump_camel_contour(x1, x2):
return np.log(six_hump_camel(x1, x2) + 1.0316)
def sphere(x1, x2):
offset = 0.6
return (x1 - offset) ** 2 + (x2 - offset) ** 2
def sphere_contour(x1, x2):
return np.log(sphere(x1, x2) + 1)
def ellipsoid(x1, x2):
offset = 0.6
scale = 5**2
return (x1 - offset) ** 2 + scale * (x2 - offset) ** 2
def rot_ellipsoid(x1, x2):
rot_x1 = math.sqrt(3.0) / 2.0 * x1 + 1.0 / 2.0 * x2
rot_x2 = 1.0 / 2.0 * x1 + math.sqrt(3.0) / 2.0 * x2
return ellipsoid(rot_x1, rot_x2)
def rot_ellipsoid_contour(x1, x2):
return np.log(rot_ellipsoid(x1, x2) + 1)
function_name = ""
if args.function == "quadratic":
function_name = "Quadratic function"
objective = quadratic
contour_function = quadratic_contour
global_minimums = [
(3.0, -2.0),
]
# input domain
x1_lower_bound, x1_upper_bound = -4, 4
x2_lower_bound, x2_upper_bound = -4, 4
elif args.function == "himmelblau":
function_name = "Himmelblau function"
objective = himmelbleu
contour_function = himmelbleu_contour
global_minimums = [
(3.0, 2.0),
(-2.805118, 3.131312),
(-3.779310, -3.283186),
(3.584428, -1.848126),
]
# input domain
x1_lower_bound, x1_upper_bound = -4, 4
x2_lower_bound, x2_upper_bound = -4, 4
elif args.function == "rosenbrock":
# https://www.sfu.ca/~ssurjano/rosen.html
function_name = "Rosenbrock function"
objective = rosenbrock
contour_function = rosenbrock_contour
global_minimums = [
(1, 1),
]
# input domain
x1_lower_bound, x1_upper_bound = -5, 10
x2_lower_bound, x2_upper_bound = -5, 10
elif args.function == "six-hump-camel":
# https://www.sfu.ca/~ssurjano/camel6.html
function_name = "Six-hump camel function"
objective = six_hump_camel
contour_function = six_hump_camel_contour
global_minimums = [
(0.0898, -0.7126),
(-0.0898, 0.7126),
]
# input domain
x1_lower_bound, x1_upper_bound = -3, 3
x2_lower_bound, x2_upper_bound = -2, 2
elif args.function == "sphere":
function_name = "Sphere function with offset=0.6"
objective = sphere
contour_function = sphere_contour
global_minimums = [
(0.6, 0.6),
]
# input domain
x1_lower_bound, x1_upper_bound = 0, 1
x2_lower_bound, x2_upper_bound = 0, 1
elif args.function == "rot-ellipsoid":
function_name = "Rot Ellipsoid function with offset=0.6"
objective = rot_ellipsoid
contour_function = rot_ellipsoid_contour
global_minimums = []
# input domain
x1_lower_bound, x1_upper_bound = 0, 1
x2_lower_bound, x2_upper_bound = 0, 1
else:
raise ValueError("invalid function type")
seed = args.seed
rng = np.random.RandomState(seed)
solutions = []
def init():
ax1.set_xlim(x1_lower_bound, x1_upper_bound)
ax1.set_ylim(x2_lower_bound, x2_upper_bound)
ax2.set_xlim(x1_lower_bound, x1_upper_bound)
ax2.set_ylim(x2_lower_bound, x2_upper_bound)
# Plot 4 local minimum value
for m in global_minimums:
ax1.plot(m[0], m[1], "y*", ms=10)
ax2.plot(m[0], m[1], "y*", ms=10)
# Plot contour of the function
x1 = np.arange(x1_lower_bound, x1_upper_bound, 0.01)
x2 = np.arange(x2_lower_bound, x2_upper_bound, 0.01)
x1, x2 = np.meshgrid(x1, x2)
ax1.contour(x1, x2, contour_function(x1, x2), 30, cmap=bw)
def update(frame):
global solutions
for i in range(args.pop_per_frame):
x1 = (x1_upper_bound - x1_lower_bound) * rng.random() + x1_lower_bound
x2 = (x2_upper_bound - x2_lower_bound) * rng.random() + x2_lower_bound
evaluation = objective(x1, x2)
# Plot sample points
ax1.plot(x1, x2, "o", c="r", label="2d", alpha=0.5)
solution = (
np.array([x1, x2], dtype=float),
evaluation,
)
solutions.append(solution)
# Update title
fig.suptitle(
f"WS-CMA-ES {function_name} with alpha={args.alpha} and gamma={args.gamma} (frame={frame})"
)
# Plot multivariate gaussian distribution of CMA-ES
x, y = np.mgrid[
x1_lower_bound:x1_upper_bound:0.01, x2_lower_bound:x2_upper_bound:0.01
]
if math.floor(len(solutions) * args.alpha) > 1:
mean, sigma, cov = get_warm_start_mgd(
solutions, alpha=args.alpha, gamma=args.gamma
)
rv = stats.multivariate_normal(mean, cov)
pos = np.dstack((x, y))
ax2.contourf(x, y, rv.pdf(pos))
if frame % 50 == 0:
print(f"Processing frame {frame}")
def main():
ani = animation.FuncAnimation(
fig,
update,
frames=args.frames,
init_func=init,
blit=False,
interval=args.interval,
)
ani.save(f"./tmp/{args.function}.mp4")
if __name__ == "__main__":
main()