pax_global_header 0000666 0000000 0000000 00000000064 14766462667 0014542 g ustar 00root root 0000000 0000000 52 comment=f96e682c625fbf5919bb526d38aba414915fe32b
python-elasticsearch-8.17.2/ 0000775 0000000 0000000 00000000000 14766462667 0015772 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/.buildkite/ 0000775 0000000 0000000 00000000000 14766462667 0020024 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/.buildkite/Dockerfile 0000664 0000000 0000000 00000001411 14766462667 0022013 0 ustar 00root root 0000000 0000000 ARG PYTHON_VERSION=3.13
FROM python:${PYTHON_VERSION}
# Default UID/GID to 1000
# it can be overridden at build time
ARG BUILDER_UID=1000
ARG BUILDER_GID=1000
ENV BUILDER_USER elastic
ENV BUILDER_GROUP elastic
ENV PATH="${PATH}:/var/lib/elastic/.local/bin"
# Create user
RUN groupadd --system -g ${BUILDER_GID} ${BUILDER_GROUP} \
&& useradd --system --shell /bin/bash -u ${BUILDER_UID} -g ${BUILDER_GROUP} -d /var/lib/elastic -m elastic 1>/dev/null 2>/dev/null \
&& mkdir -p /code/elasticsearch-py && mkdir /code/elasticsearch-py/build \
&& chown -R ${BUILDER_USER}:${BUILDER_GROUP} /code/
WORKDIR /code/elasticsearch-py
USER ${BUILDER_USER}:${BUILDER_GROUP}
RUN python -m pip install --disable-pip-version-check nox
COPY --chown=$BUILDER_USER:$BUILDER_GROUP . .
python-elasticsearch-8.17.2/.buildkite/certs/ 0000775 0000000 0000000 00000000000 14766462667 0021144 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/.buildkite/certs/README.md 0000664 0000000 0000000 00000001670 14766462667 0022427 0 ustar 00root root 0000000 0000000 # CI certificates
This directory contains certificates that can be used to test against Elasticsearch in CI
## Generating new certificates using the Certificate Authority cert and key
Before adding support for Python 3.13, we generated certificates with
[`elasticsearch-certutil`](https://www.elastic.co/guide/en/elasticsearch/reference/current/certutil.html).
However, those certificates are not compliant with RFC 5280, and Python now
enforces compliance by enabling the VERIFY_X509_STRICT flag by default.
If you need to generate new certificates, you can do so with
[trustme](https://trustme.readthedocs.io/en/latest/) as follows:
```
```bash
pip install trustme
python -m trustme --identities instance
# Use the filenames expected by our tests
mv client.pem ca.crt
mv server.pem testnode.crt
mv server.key testnode.key
```
For more control over the generated certificates, trustme also offers a Python
API, but we have not needed it so far.
python-elasticsearch-8.17.2/.buildkite/certs/ca.crt 0000664 0000000 0000000 00000001250 14766462667 0022237 0 ustar 00root root 0000000 0000000 -----BEGIN CERTIFICATE-----
MIIByTCCAW+gAwIBAgIUIYClYWXiTsB8aMrEEMrzdrk5rOswCgYIKoZIzj0EAwIw
QDEXMBUGA1UECgwOdHJ1c3RtZSB2MS4yLjAxJTAjBgNVBAsMHFRlc3RpbmcgQ0Eg
I2JpdzFXYzEwbHBxQ0ZRTDUwIBcNMDAwMTAxMDAwMDAwWhgPMzAwMDAxMDEwMDAw
MDBaMEAxFzAVBgNVBAoMDnRydXN0bWUgdjEuMi4wMSUwIwYDVQQLDBxUZXN0aW5n
IENBICNiaXcxV2MxMGxwcUNGUUw1MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE
SN7++A76LmOR0tKKra1M6VVzGUljjL9fVPxOEIblOOJJhA7mKLQguNzEHjucNV23
LcDzMX/M/oUBGdYZBbAv4qNFMEMwHQYDVR0OBBYEFCrGGcO9v0UAWSsD93P/x2MT
NiJbMBIGA1UdEwEB/wQIMAYBAf8CAQkwDgYDVR0PAQH/BAQDAgGGMAoGCCqGSM49
BAMCA0gAMEUCIQDGyO21zIAwmARtoc2atVmmqZdPVkegHkCKCFY4P+KeEAIgKMCz
aU8LPCVyA+ZF9K+tcqkNK5h/5s7wlQ5DSeKSuE8=
-----END CERTIFICATE-----
python-elasticsearch-8.17.2/.buildkite/certs/testnode.crt 0000664 0000000 0000000 00000001456 14766462667 0023511 0 ustar 00root root 0000000 0000000 -----BEGIN CERTIFICATE-----
MIICKzCCAdKgAwIBAgIUZeLIKR7XTP5Gx/moiuzcWcfHaSswCgYIKoZIzj0EAwIw
QDEXMBUGA1UECgwOdHJ1c3RtZSB2MS4yLjAxJTAjBgNVBAsMHFRlc3RpbmcgQ0Eg
I2JpdzFXYzEwbHBxQ0ZRTDUwIBcNMDAwMTAxMDAwMDAwWhgPMzAwMDAxMDEwMDAw
MDBaMEIxFzAVBgNVBAoMDnRydXN0bWUgdjEuMi4wMScwJQYDVQQLDB5UZXN0aW5n
IGNlcnQgIzNPWkpxTWh0WmxrNGlDMm0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNC
AASp6UadRZ0ZP3F2KeEkIUOf0B8GOTX55B91RO/PLUQb26wZcWmHGPOJ0HAy9F2E
Y+rJ1zDUnfB5msowei/iuoaMo4GlMIGiMB0GA1UdDgQWBBSP5z3h8b13ul407YOd
kyjKNcf/vTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFCrGGcO9v0UAWSsD93P/
x2MTNiJbMBYGA1UdEQEB/wQMMAqCCGluc3RhbmNlMA4GA1UdDwEB/wQEAwIFoDAq
BgNVHSUBAf8EIDAeBggrBgEFBQcDAgYIKwYBBQUHAwEGCCsGAQUFBwMDMAoGCCqG
SM49BAMCA0cAMEQCIHPP7chQolK+N+GZ+rJ49euoTSzb2YIU5vnCY/bFEWO+AiBC
OTFYhR9Mw/e+WdJVZO78XZYKy5uA28JwsZuu7E0kZA==
-----END CERTIFICATE-----
python-elasticsearch-8.17.2/.buildkite/certs/testnode.key 0000664 0000000 0000000 00000000343 14766462667 0023503 0 ustar 00root root 0000000 0000000 -----BEGIN EC PRIVATE KEY-----
MHcCAQEEIN+K8+F47YchiH+7gA8KBG8u35PWcOJN+Fszv8TPEEpdoAoGCCqGSM49
AwEHoUQDQgAEqelGnUWdGT9xdinhJCFDn9AfBjk1+eQfdUTvzy1EG9usGXFphxjz
idBwMvRdhGPqydcw1J3weZrKMHov4rqGjA==
-----END EC PRIVATE KEY-----
python-elasticsearch-8.17.2/.buildkite/functions/ 0000775 0000000 0000000 00000000000 14766462667 0022034 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/.buildkite/functions/cleanup.sh 0000775 0000000 0000000 00000003647 14766462667 0024034 0 ustar 00root root 0000000 0000000 #!/usr/bin/env bash
#
# Shared cleanup routines between different steps
#
# Please source .buildkite/functions/imports.sh as a whole not just this file
#
# Version 1.0.0
# - Initial version after refactor
function cleanup_volume {
if [[ "$(docker volume ls -q -f name=$1)" ]]; then
echo -e "\033[34;1mINFO:\033[0m Removing volume $1\033[0m"
(docker volume rm "$1") || true
fi
}
function container_running {
if [[ "$(docker ps -q -f name=$1)" ]]; then
return 0;
else return 1;
fi
}
function cleanup_node {
if container_running "$1"; then
echo -e "\033[34;1mINFO:\033[0m Removing container $1\033[0m"
(docker container rm --force --volumes "$1") || true
fi
if [[ -n "$1" ]]; then
echo -e "\033[34;1mINFO:\033[0m Removing volume $1-${suffix}-data\033[0m"
cleanup_volume "$1-${suffix}-data"
fi
}
function cleanup_network {
if [[ "$(docker network ls -q -f name=$1)" ]]; then
echo -e "\033[34;1mINFO:\033[0m Removing network $1\033[0m"
(docker network rm "$1") || true
fi
}
function cleanup_trap {
status=$?
set +x
if [[ "$DETACH" != "true" ]]; then
echo -e "\033[34;1mINFO:\033[0m clean the network if not detached (start and exit)\033[0m"
cleanup_all_in_network "$1"
fi
# status is 0 or SIGINT
if [[ "$status" == "0" || "$status" == "130" ]]; then
echo -e "\n\033[32;1mSUCCESS run-tests\033[0m"
exit 0
else
echo -e "\n\033[31;1mFAILURE during run-tests\033[0m"
exit ${status}
fi
};
function cleanup_all_in_network {
if [[ -z "$(docker network ls -q -f name="^$1\$")" ]]; then
echo -e "\033[34;1mINFO:\033[0m $1 is already deleted\033[0m"
return 0
fi
containers=$(docker network inspect -f '{{ range $key, $value := .Containers }}{{ printf "%s\n" .Name}}{{ end }}' $1)
while read -r container; do
cleanup_node "$container"
done <<< "$containers"
cleanup_network $1
echo -e "\033[32;1mSUCCESS:\033[0m Cleaned up and exiting\033[0m"
};
python-elasticsearch-8.17.2/.buildkite/functions/imports.sh 0000775 0000000 0000000 00000003463 14766462667 0024076 0 ustar 00root root 0000000 0000000 #!/usr/bin/env bash
#
# Sets up all the common variables and imports relevant functions
#
# Version 1.0.1
# - Initial version after refactor
# - Validate STACK_VERSION asap
function require_stack_version() {
if [[ -z $STACK_VERSION ]]; then
echo -e "\033[31;1mERROR:\033[0m Required environment variable [STACK_VERSION] not set\033[0m"
exit 1
fi
}
require_stack_version
if [[ -z $es_node_name ]]; then
# only set these once
set -euo pipefail
export TEST_SUITE=${TEST_SUITE-platinum}
export RUNSCRIPTS=${RUNSCRIPTS-}
export DETACH=${DETACH-false}
export CLEANUP=${CLEANUP-false}
export es_node_name=instance
export elastic_password=changeme
export elasticsearch_image=elasticsearch
export elasticsearch_url=https://elastic:${elastic_password}@${es_node_name}:9200
if [[ $TEST_SUITE != "platinum" ]]; then
export elasticsearch_url=http://${es_node_name}:9200
fi
export external_elasticsearch_url=${elasticsearch_url/$es_node_name/localhost}
export elasticsearch_container="${elasticsearch_image}:${STACK_VERSION}"
export suffix=rest-test
export moniker=$(echo "$elasticsearch_container" | tr -C "[:alnum:]" '-')
export network_name=${moniker}${suffix}
export ssl_cert="${script_path}/certs/testnode.crt"
export ssl_key="${script_path}/certs/testnode.key"
export ssl_ca="${script_path}/certs/ca.crt"
fi
export script_path=$(dirname $(realpath -s $0))
source $script_path/functions/cleanup.sh
source $script_path/functions/wait-for-container.sh
trap "cleanup_trap ${network_name}" EXIT
if [[ "$CLEANUP" == "true" ]]; then
cleanup_all_in_network $network_name
exit 0
fi
echo -e "\033[34;1mINFO:\033[0m Creating network $network_name if it does not exist already \033[0m"
docker network inspect "$network_name" > /dev/null 2>&1 || docker network create "$network_name"
python-elasticsearch-8.17.2/.buildkite/functions/wait-for-container.sh 0000775 0000000 0000000 00000002474 14766462667 0026112 0 ustar 00root root 0000000 0000000 #!/usr/bin/env bash
#
# Exposes a routine scripts can call to wait for a container if that container set up a health command
#
# Please source .buildkite/functions/imports.sh as a whole not just this file
#
# Version 1.0.1
# - Initial version after refactor
# - Make sure wait_for_contiainer is silent
function wait_for_container {
set +x
until ! container_running "$1" || (container_running "$1" && [[ "$(docker inspect -f "{{.State.Health.Status}}" ${1})" != "starting" ]]); do
echo ""
docker inspect -f "{{range .State.Health.Log}}{{.Output}}{{end}}" ${1}
echo -e "\033[34;1mINFO:\033[0m waiting for node $1 to be up\033[0m"
sleep 2;
done;
# Always show logs if the container is running, this is very useful both on CI as well as while developing
if container_running $1; then
docker logs $1
fi
if ! container_running $1 || [[ "$(docker inspect -f "{{.State.Health.Status}}" ${1})" != "healthy" ]]; then
cleanup_all_in_network $2
echo
echo -e "\033[31;1mERROR:\033[0m Failed to start $1 in detached mode beyond health checks\033[0m"
echo -e "\033[31;1mERROR:\033[0m dumped the docker log before shutting the node down\033[0m"
return 1
else
echo
echo -e "\033[32;1mSUCCESS:\033[0m Detached and healthy: ${1} on docker network: ${network_name}\033[0m"
return 0
fi
}
python-elasticsearch-8.17.2/.buildkite/pipeline.yml 0000664 0000000 0000000 00000001634 14766462667 0022360 0 ustar 00root root 0000000 0000000 steps:
- label: ":elasticsearch: :python: ES Python {{ matrix.python }} {{ matrix.nox_session }} ({{ matrix.connection }})"
agents:
provider: "gcp"
env:
PYTHON_VERSION: "{{ matrix.python }}"
TEST_SUITE: "platinum"
STACK_VERSION: "8.17.0-SNAPSHOT"
PYTHON_CONNECTION_CLASS: "{{ matrix.connection }}"
NOX_SESSION: "{{ matrix.nox_session }}"
matrix:
setup:
python:
- "3.8"
- "3.9"
- "3.10"
- "3.11"
- "3.12"
- "3.13"
connection:
- "urllib3"
- "requests"
nox_session:
- "test"
adjustments:
- with:
python: "3.8"
connection: "urllib3"
nox_session: "test_otel"
- with:
python: "3.13"
connection: "urllib3"
nox_session: "test_otel"
command: ./.buildkite/run-tests
python-elasticsearch-8.17.2/.buildkite/pull-requests.json 0000664 0000000 0000000 00000000374 14766462667 0023550 0 ustar 00root root 0000000 0000000 {
"jobs": [
{
"enabled": true,
"pipeline_slug": "elasticsearch-py-integration-tests",
"allow_org_users": true
},
{
"enabled": true,
"pipeline_slug": "docs-build-pr",
"allow_org_users": true
}
]
}
python-elasticsearch-8.17.2/.buildkite/run-elasticsearch.sh 0000775 0000000 0000000 00000012724 14766462667 0024005 0 ustar 00root root 0000000 0000000 #!/usr/bin/env bash
#
# Launch one or more Elasticsearch nodes via the Docker image,
# to form a cluster suitable for running the REST API tests.
#
# Export the STACK_VERSION variable, eg. '8.0.0-SNAPSHOT'.
# Export the TEST_SUITE variable, eg. 'free' or 'platinum' defaults to 'free'.
# Export the NUMBER_OF_NODES variable to start more than 1 node
# Version 1.6.0
# - Initial version of the run-elasticsearch.sh script
# - Deleting the volume should not dependent on the container still running
# - Fixed `ES_JAVA_OPTS` config
# - Moved to STACK_VERSION and TEST_VERSION
# - Refactored into functions and imports
# - Support NUMBER_OF_NODES
# - Added 5 retries on docker pull for fixing transient network errors
# - Added flags to make local CCR configurations work
# - Added action.destructive_requires_name=false as the default will be true in v8
# - Added ingest.geoip.downloader.enabled=false as it causes false positives in testing
# - Moved ELASTIC_PASSWORD and xpack.security.enabled to the base arguments for "Security On by default"
# - Use https only when TEST_SUITE is "platinum", when "free" use http
script_path=$(dirname $(realpath -s $0))
source $script_path/functions/imports.sh
set -euo pipefail
echo -e "\033[34;1mINFO:\033[0m Take down node if called twice with the same arguments (DETACH=true) or on seperate terminals \033[0m"
cleanup_node $es_node_name
master_node_name=${es_node_name}
cluster_name=${moniker}${suffix}
BUILDKITE=${BUILDKITE-false}
# Set vm.max_map_count kernel setting to 262144 if we're in CI
if [[ "$BUILDKITE" == "true" ]]; then
sudo sysctl -w vm.max_map_count=262144
fi
declare -a volumes
environment=($(cat <<-END
--env ELASTIC_PASSWORD=$elastic_password
--env xpack.security.enabled=true
--env node.name=$es_node_name
--env cluster.name=$cluster_name
--env cluster.initial_master_nodes=$master_node_name
--env discovery.seed_hosts=$master_node_name
--env cluster.routing.allocation.disk.threshold_enabled=false
--env bootstrap.memory_lock=true
--env node.attr.testattr=test
--env path.repo=/tmp
--env repositories.url.allowed_urls=http://snapshot.test*
--env action.destructive_requires_name=false
--env ingest.geoip.downloader.enabled=false
--env cluster.deprecation_indexing.enabled=false
END
))
if [[ "$TEST_SUITE" == "platinum" ]]; then
environment+=($(cat <<-END
--env xpack.license.self_generated.type=trial
--env xpack.security.http.ssl.enabled=true
--env xpack.security.http.ssl.verification_mode=certificate
--env xpack.security.http.ssl.key=certs/testnode.key
--env xpack.security.http.ssl.certificate=certs/testnode.crt
--env xpack.security.http.ssl.certificate_authorities=certs/ca.crt
--env xpack.security.transport.ssl.enabled=true
--env xpack.security.transport.ssl.verification_mode=certificate
--env xpack.security.transport.ssl.key=certs/testnode.key
--env xpack.security.transport.ssl.certificate=certs/testnode.crt
--env xpack.security.transport.ssl.certificate_authorities=certs/ca.crt
END
))
volumes+=($(cat <<-END
--volume $ssl_cert:/usr/share/elasticsearch/config/certs/testnode.crt
--volume $ssl_key:/usr/share/elasticsearch/config/certs/testnode.key
--volume $ssl_ca:/usr/share/elasticsearch/config/certs/ca.crt
END
))
else
environment+=($(cat <<-END
--env xpack.security.http.ssl.enabled=false
END
))
fi
cert_validation_flags=""
if [[ "$TEST_SUITE" == "platinum" ]]; then
cert_validation_flags="--insecure --cacert /usr/share/elasticsearch/config/certs/ca.crt --resolve ${es_node_name}:443:127.0.0.1"
fi
# Pull the container, retry on failures up to 5 times with
# short delays between each attempt. Fixes most transient network errors.
docker_pull_attempts=0
until [ "$docker_pull_attempts" -ge 5 ]
do
docker pull docker.elastic.co/elasticsearch/"$elasticsearch_container" && break
docker_pull_attempts=$((docker_pull_attempts+1))
echo "Failed to pull image, retrying in 10 seconds (retry $docker_pull_attempts/5)..."
sleep 10
done
NUMBER_OF_NODES=${NUMBER_OF_NODES-1}
http_port=9200
for (( i=0; i<$NUMBER_OF_NODES; i++, http_port++ )); do
node_name=${es_node_name}$i
node_url=${external_elasticsearch_url/9200/${http_port}}$i
if [[ "$i" == "0" ]]; then node_name=$es_node_name; fi
environment+=($(cat <<-END
--env node.name=$node_name
END
))
echo "$i: $http_port $node_url "
volume_name=${node_name}-${suffix}-data
volumes+=($(cat <<-END
--volume $volume_name:/usr/share/elasticsearch/data${i}
END
))
# make sure we detach for all but the last node if DETACH=false (default) so all nodes are started
local_detach="true"
if [[ "$i" == "$((NUMBER_OF_NODES-1))" ]]; then local_detach=$DETACH; fi
echo -e "\033[34;1mINFO:\033[0m Starting container $node_name \033[0m"
set -x
docker run \
-u "$(id -u)" \
--name "$node_name" \
--network "$network_name" \
--env "ES_JAVA_OPTS=-Xms1g -Xmx1g -da:org.elasticsearch.xpack.ccr.index.engine.FollowingEngineAssertions" \
"${environment[@]}" \
"${volumes[@]}" \
--publish "$http_port":9200 \
--ulimit nofile=65536:65536 \
--ulimit memlock=-1:-1 \
--detach="$local_detach" \
--health-cmd="curl $cert_validation_flags --fail $elasticsearch_url/_cluster/health || exit 1" \
--health-interval=2s \
--health-retries=20 \
--health-timeout=2s \
--rm \
docker.elastic.co/elasticsearch/"$elasticsearch_container";
set +x
if wait_for_container "$es_node_name" "$network_name"; then
echo -e "\033[32;1mSUCCESS:\033[0m Running on: $node_url\033[0m"
fi
done
python-elasticsearch-8.17.2/.buildkite/run-nox.sh 0000775 0000000 0000000 00000000157 14766462667 0021774 0 ustar 00root root 0000000 0000000 #!/bin/bash
if [[ -z "$NOX_SESSION" ]]; then
NOX_SESSION=test-${PYTHON_VERSION%-dev}
fi
nox -s $NOX_SESSION
python-elasticsearch-8.17.2/.buildkite/run-repository.sh 0000775 0000000 0000000 00000004150 14766462667 0023404 0 ustar 00root root 0000000 0000000 #!/usr/bin/env bash
# Called by entry point `run-test` use this script to add your repository specific test commands
# Once called Elasticsearch is up and running and the following parameters are available to this script
# ELASTICSEARCH_VERSION -- version e.g Major.Minor.Patch(-Prelease)
# ELASTICSEARCH_CONTAINER -- the docker moniker as a reference to know which docker image distribution is used
# ELASTICSEARCH_URL -- The url at which elasticsearch is reachable
# NETWORK_NAME -- The docker network name
# NODE_NAME -- The docker container name also used as Elasticsearch node name
# When run in CI the test-matrix is used to define additional variables
# TEST_SUITE -- either `oss` or `xpack`, defaults to `oss` in `run-tests`
set -e
echo -e "\033[34;1mINFO:\033[0m URL ${ELASTICSEARCH_URL}\033[0m"
echo -e "\033[34;1mINFO:\033[0m VERSION ${ELASTICSEARCH_VERSION}\033[0m"
echo -e "\033[34;1mINFO:\033[0m CONTAINER ${ELASTICSEARCH_CONTAINER}\033[0m"
echo -e "\033[34;1mINFO:\033[0m TEST_SUITE ${TEST_SUITE}\033[0m"
echo -e "\033[34;1mINFO:\033[0m NOX_SESSION ${NOX_SESSION}\033[0m"
echo -e "\033[34;1mINFO:\033[0m PYTHON_VERSION ${PYTHON_VERSION}\033[0m"
echo -e "\033[34;1mINFO:\033[0m PYTHON_CONNECTION_CLASS ${PYTHON_CONNECTION_CLASS}\033[0m"
echo -e "\033[1m>>>>> Build [elastic/elasticsearch-py container] >>>>>>>>>>>>>>>>>>>>>>>>>>>>>\033[0m"
docker build \
--file .buildkite/Dockerfile \
--tag elastic/elasticsearch-py \
--build-arg "PYTHON_VERSION=${PYTHON_VERSION}" \
--build-arg "BUILDER_UID=$(id -u)" \
--build-arg "BUILDER_GID=$(id -g)" \
.
echo -e "\033[1m>>>>> Run [elastic/elasticsearch-py container] >>>>>>>>>>>>>>>>>>>>>>>>>>>>>\033[0m"
mkdir -p junit
docker run \
-u "$(id -u):$(id -g)" \
--network=${network_name} \
--env "STACK_VERSION=${STACK_VERSION}" \
--env "ELASTICSEARCH_URL=${elasticsearch_url}" \
--env "TEST_SUITE=${TEST_SUITE}" \
--env "PYTHON_CONNECTION_CLASS=${PYTHON_CONNECTION_CLASS}" \
--env "TEST_TYPE=server" \
--env "FORCE_COLOR=1" \
--name elasticsearch-py \
--rm \
elastic/elasticsearch-py \
nox -s ${NOX_SESSION}-${PYTHON_VERSION}
python-elasticsearch-8.17.2/.buildkite/run-tests 0000775 0000000 0000000 00000001711 14766462667 0021716 0 ustar 00root root 0000000 0000000 #!/usr/bin/env bash
#
# Version 1.1
# - Moved to .ci folder and seperated out `run-repository.sh`
# - Add `$RUNSCRIPTS` env var for running Elasticsearch dependent products
# Default environment variables
export STACK_VERSION="${STACK_VERSION:=8.0.0-SNAPSHOT}"
export TEST_SUITE="${TEST_SUITE:=platinum}"
export PYTHON_VERSION="${PYTHON_VERSION:=3.13}"
export PYTHON_CONNECTION_CLASS="${PYTHON_CONNECTION_CLASS:=urllib3}"
script_path=$(dirname $(realpath -s $0))
source $script_path/functions/imports.sh
set -euo pipefail
echo "--- :elasticsearch: Starting Elasticsearch"
DETACH=true bash $script_path/run-elasticsearch.sh
if [[ -n "$RUNSCRIPTS" ]]; then
for RUNSCRIPT in ${RUNSCRIPTS//,/ }; do
echo -e "\033[1m>>>>> Running run-$RUNSCRIPT.sh >>>>>>>>>>>>>>>>>>>>>>>>>>>>>\033[0m"
CONTAINER_NAME=${RUNSCRIPT} \
DETACH=true \
bash $script_path/run-${RUNSCRIPT}.sh
done
fi
echo "+++ :python: Client tests"
bash $script_path/run-repository.sh
python-elasticsearch-8.17.2/.coveragerc 0000664 0000000 0000000 00000000422 14766462667 0020111 0 ustar 00root root 0000000 0000000 [run]
omit =
*/python?.?/*
*/lib-python/?.?/*.py
*/lib_pypy/*
*/site-packages/*
*.egg/*
elasticsearch/_async/client/
elasticsearch/_sync/client/
test_elasticsearch/*
[report]
show_missing = True
exclude_lines=
raise NotImplementedError*
python-elasticsearch-8.17.2/.dockerignore 0000664 0000000 0000000 00000000045 14766462667 0020445 0 ustar 00root root 0000000 0000000 docs
example
venv
.tox
.nox
.*_cache
python-elasticsearch-8.17.2/.github/ 0000775 0000000 0000000 00000000000 14766462667 0017332 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/.github/ISSUE_TEMPLATE.md 0000664 0000000 0000000 00000002110 14766462667 0022031 0 ustar 00root root 0000000 0000000
**Describe the feature**:
**Elasticsearch version** (`bin/elasticsearch --version`):
**`elasticsearch-py` version (`elasticsearch.__versionstr__`)**:
Please make sure the major version matches the Elasticsearch server you are running.
**Description of the problem including expected versus actual behavior**:
**Steps to reproduce**:
python-elasticsearch-8.17.2/.github/make.sh 0000775 0000000 0000000 00000012564 14766462667 0020616 0 ustar 00root root 0000000 0000000 #!/usr/bin/env bash
# ------------------------------------------------------- #
#
# Skeleton for common build entry script for all elastic
# clients. Needs to be adapted to individual client usage.
#
# Must be called: ./.github/make.sh
#
# Version: 1.1.0
#
# Targets:
# ---------------------------
# assemble : build client artefacts with version
# bump : bump client internals to version
# codegen : generate endpoints
# docsgen : generate documentation
# examplegen : generate the doc examples
# clean : clean workspace
#
# ------------------------------------------------------- #
# ------------------------------------------------------- #
# Bootstrap
# ------------------------------------------------------- #
script_path=$(dirname "$(realpath -s "$0")")
repo=$(realpath "$script_path/../")
# shellcheck disable=SC1090
CMD=$1
TASK=$1
TASK_ARGS=()
VERSION=$2
STACK_VERSION=$VERSION
set -euo pipefail
product="elastic/elasticsearch-py"
output_folder=".github/output"
codegen_folder=".github/output"
OUTPUT_DIR="$repo/${output_folder}"
REPO_BINDING="${OUTPUT_DIR}:/sln/${output_folder}"
WORKFLOW="${WORKFLOW-staging}"
mkdir -p "$OUTPUT_DIR"
echo -e "\033[34;1mINFO:\033[0m PRODUCT ${product}\033[0m"
echo -e "\033[34;1mINFO:\033[0m VERSION ${STACK_VERSION}\033[0m"
echo -e "\033[34;1mINFO:\033[0m OUTPUT_DIR ${OUTPUT_DIR}\033[0m"
# ------------------------------------------------------- #
# Parse Command
# ------------------------------------------------------- #
case $CMD in
clean)
echo -e "\033[36;1mTARGET: clean workspace $output_folder\033[0m"
rm -rf "$output_folder"
echo -e "\033[32;1mdone.\033[0m"
exit 0
;;
assemble)
if [ -v $VERSION ]; then
echo -e "\033[31;1mTARGET: assemble -> missing version parameter\033[0m"
exit 1
fi
echo -e "\033[36;1mTARGET: assemble artefact $VERSION\033[0m"
TASK=release
TASK_ARGS=("$VERSION" "$output_folder")
;;
codegen)
VERSION=$(git rev-parse --abbrev-ref HEAD)
echo -e "\033[36;1mTARGET: codegen API $VERSION\033[0m"
TASK=codegen
# VERSION is BRANCH here for now
TASK_ARGS=("$VERSION" "$codegen_folder")
;;
docsgen)
if [ -v $VERSION ]; then
echo -e "\033[31;1mTARGET: docsgen -> missing version parameter\033[0m"
exit 1
fi
echo -e "\033[36;1mTARGET: generate docs for $VERSION\033[0m"
TASK=codegen
# VERSION is BRANCH here for now
TASK_ARGS=("$VERSION" "$codegen_folder")
;;
examplesgen)
echo -e "\033[36;1mTARGET: generate examples\033[0m"
TASK=codegen
# VERSION is BRANCH here for now
TASK_ARGS=("$VERSION" "$codegen_folder")
;;
bump)
if [ -v $VERSION ]; then
echo -e "\033[31;1mTARGET: bump -> missing version parameter\033[0m"
exit 1
fi
echo -e "\033[36;1mTARGET: bump to version $VERSION\033[0m"
TASK=bump
# VERSION is BRANCH here for now
TASK_ARGS=("$VERSION")
;;
*)
echo -e "\nUsage:\n\t $CMD is not supported right now\n"
exit 1
esac
# ------------------------------------------------------- #
# Build Container
# ------------------------------------------------------- #
echo -e "\033[34;1mINFO: building $product container\033[0m"
docker build \
--build-arg BUILDER_UID="$(id -u)" \
--file $repo/.buildkite/Dockerfile \
--tag ${product} \
.
# ------------------------------------------------------- #
# Run the Container
# ------------------------------------------------------- #
echo -e "\033[34;1mINFO: running $product container\033[0m"
if [[ "$CMD" == "assemble" ]]; then
# Build dists into .github/output
docker run \
-u "$(id -u)" \
--rm -v $repo/.github/output:/code/elasticsearch-py/dist \
$product \
/bin/bash -c "pip install build; python /code/elasticsearch-py/utils/build-dists.py $VERSION"
# Verify that there are dists in .github/output
if compgen -G ".github/output/*" > /dev/null; then
# Tarball everything up in .github/output
if [[ "$WORKFLOW" == 'snapshot' ]]; then
cd $repo/.github/output && tar -czvf elasticsearch-py-$VERSION-SNAPSHOT.tar.gz * && cd -
else
cd $repo/.github/output && tar -czvf elasticsearch-py-$VERSION.tar.gz * && cd -
fi
echo -e "\033[32;1mTARGET: successfully assembled client v$VERSION\033[0m"
exit 0
else
echo -e "\033[31;1mTARGET: assemble failed, empty workspace!\033[0m"
exit 1
fi
fi
if [[ "$CMD" == "bump" ]]; then
docker run \
--rm -v $repo:/code/elasticsearch-py \
$product \
/bin/bash -c "python /code/elasticsearch-py/utils/bump-version.py $VERSION"
exit 0
fi
if [[ "$CMD" == "codegen" ]]; then
docker run \
--rm -v $repo:/code/elasticsearch-py \
$product \
/bin/bash -c "cd /code && python -m pip install nox && \
git clone https://$CLIENTS_GITHUB_TOKEN@github.com/elastic/elastic-client-generator-python.git && \
cd /code/elastic-client-generator-python && GIT_BRANCH=$VERSION python -m nox -s generate-es && \
cd /code/elasticsearch-py && python -m nox -s format"
exit 0
fi
if [[ "$CMD" == "docsgen" ]]; then
echo "TODO"
fi
if [[ "$CMD" == "examplesgen" ]]; then
echo "TODO"
fi
echo "Must be called with '.github/make.sh [command]"
exit 1
python-elasticsearch-8.17.2/.github/workflows/ 0000775 0000000 0000000 00000000000 14766462667 0021367 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/.github/workflows/backport.yml 0000664 0000000 0000000 00000001300 14766462667 0023711 0 ustar 00root root 0000000 0000000 name: Backport
on:
pull_request_target:
types:
- closed
- labeled
jobs:
backport:
name: Backport
runs-on: ubuntu-latest
# Only react to merged PRs for security reasons.
# See https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#pull_request_target.
if: >
github.event.pull_request.merged
&& (
github.event.action == 'closed'
|| (
github.event.action == 'labeled'
&& contains(github.event.label.name, 'backport')
)
)
steps:
- uses: tibdex/backport@9565281eda0731b1d20c4025c43339fb0a23812e # v2.0.4
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
python-elasticsearch-8.17.2/.github/workflows/ci.yml 0000664 0000000 0000000 00000003151 14766462667 0022505 0 ustar 00root root 0000000 0000000 ---
name: CI
on: [push, pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v4
- name: Set up Python 3.x
uses: actions/setup-python@v5
with:
python-version: "3.x"
- name: Install dependencies
run: |
python3 -m pip install nox
- name: Lint the code
run: nox -s lint
package:
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v4
- name: Set up Python 3.x
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install dependencies
run: |
python3 -m pip install build
- name: Build dists
run: python utils/build-dists.py
test-linux:
strategy:
fail-fast: false
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12", "3.13"]
nox-session: [""]
runs-on: ["ubuntu-latest"]
runs-on: ${{ matrix.runs-on }}
name: test-${{ matrix.python-version }}
continue-on-error: false
steps:
- name: Checkout Repository
uses: actions/checkout@v4
- name: Set Up Python - ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install Dependencies
run: |
python -m pip install nox
- name: Run Tests
shell: bash
run: .buildkite/run-nox.sh
env:
PYTHON_VERSION: ${{ matrix.python-version }}
NOX_SESSION: ${{ matrix.nox-session }}
python-elasticsearch-8.17.2/.github/workflows/docs-preview.yml 0000664 0000000 0000000 00000000744 14766462667 0024526 0 ustar 00root root 0000000 0000000 ---
name: docs-preview
on:
pull_request_target:
types: [opened]
permissions:
pull-requests: write
jobs:
doc-preview-pr:
runs-on: ubuntu-latest
steps:
- uses: elastic/docs/.github/actions/docs-preview@master
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
repo: ${{ github.event.repository.name }}
preview-path: 'guide/en/elasticsearch/client/python-api/index.html'
pr: ${{ github.event.pull_request.number }}
python-elasticsearch-8.17.2/.gitignore 0000664 0000000 0000000 00000004267 14766462667 0017773 0 ustar 00root root 0000000 0000000 # Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
node_modules
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/sphinx/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# Pycharm project settings
.idea
# elasticsearch files
test_elasticsearch/cover
test_elasticsearch/local.py
.buildkite/output
junit/
# sample code for GitHub issues
issues/
python-elasticsearch-8.17.2/.readthedocs.yml 0000664 0000000 0000000 00000000774 14766462667 0021070 0 ustar 00root root 0000000 0000000 version: 2
build:
os: ubuntu-22.04
tools:
# To work around https://github.com/aio-libs/aiohttp/issues/7675, we need
# to set AIOHTTP_NO_EXTENSIONS to 1 but it has to be done in
# https://readthedocs.org/dashboard/elasticsearch-py/environmentvariables/
# because of https://github.com/readthedocs/readthedocs.org/issues/6311
python: "3"
python:
install:
- path: .
extra_requirements:
- "docs"
sphinx:
configuration: docs/sphinx/conf.py
fail_on_warning: true
python-elasticsearch-8.17.2/CHANGELOG.md 0000664 0000000 0000000 00000000137 14766462667 0017604 0 ustar 00root root 0000000 0000000 See: https://www.elastic.co/guide/en/elasticsearch/client/python-api/master/release-notes.html
python-elasticsearch-8.17.2/CODE_OF_CONDUCT.md 0000664 0000000 0000000 00000000063 14766462667 0020570 0 ustar 00root root 0000000 0000000 See: https://www.elastic.co/community/codeofconduct python-elasticsearch-8.17.2/CONTRIBUTING.md 0000664 0000000 0000000 00000006743 14766462667 0020235 0 ustar 00root root 0000000 0000000 # Contributing to the Python Elasticsearch Client
If you have a bugfix or new feature that you would like to contribute to
elasticsearch-py, please find or open an issue about it first. Talk about what
you would like to do. It may be that somebody is already working on it, or that
there are particular issues that you should know about before implementing the
change.
We enjoy working with contributors to get their code accepted. There are many
approaches to fixing a problem and it is important to find the best approach
before writing too much code.
## Running Elasticsearch locally
We've provided a script to start an Elasticsearch cluster of a certain version
found at `.buildkite/run-elasticsearch.sh`.
There are several environment variables that control integration tests:
- `PYTHON_VERSION`: Version of Python to use, defaults to `3.9`
- `PYTHON_CONNECTION_CLASS`: Connection class to use, defaults to `Urllib3HttpConnection`
- `STACK_VERSION`: Version of Elasticsearch to use. These should be
the same as tags of `docker.elastic.co/elasticsearch/elasticsearch`
such as `8.0.0-SNAPSHOT`, `7.x-SNAPSHOT`, etc. Defaults to the
same `*-SNAPSHOT` version as the branch.
**NOTE: You don't need to run the live integration tests for all changes. If
you don't have Elasticsearch running locally the integration tests will be skipped.**
## API Code Generation
All API methods for the `Elasticsearch` and `AsyncElasticsearch` client instances
(like `search()`) are automatically generated from the
[Elasticsearch specification](https://github.com/elastic/elasticsearch-specification)
and [rest-api-spec](https://github.com/elastic/elasticsearch/tree/master/rest-api-spec/src/main/resources/rest-api-spec/api).
Any changes to these methods should instead be submitted to the Elasticsearch specification project and will be imported the next time
the clients API is generated. The generator itself is currently a private project.
## Contributing Code Changes
The process for contributing to any of the Elasticsearch repositories is similar.
1. Please make sure you have signed the [Contributor License
Agreement](http://www.elastic.co/contributor-agreement/). We are not
asking you to assign copyright to us, but to give us the right to distribute
your code without restriction. We ask this of all contributors in order to
assure our users of the origin and continuing existence of the code. You only
need to sign the CLA once.
2. Run the linter and test suite to ensure your changes do not break existing code:
```
# Install Nox for task management
$ python -m pip install nox
# Auto-format and lint your changes
$ nox -rs format
# Run the test suite
$ nox -rs test
```
3. Rebase your changes.
Update your local repository with the most recent code from the main
elasticsearch-py repository, and rebase your branch on top of the latest `main`
branch. We prefer your changes to be squashed into a single commit for easier
backporting.
4. Submit a pull request. Push your local changes to your forked copy of the
repository and submit a pull request. In the pull request, describe what your
changes do and mention the number of the issue where discussion has taken
place, eg “Closes #123″. Please consider adding or modifying tests related to
your changes.
Then sit back and wait. There will probably be a discussion about the pull
request and, if any changes are needed, we would love to work with you to get
your pull request merged into elasticsearch-py.
python-elasticsearch-8.17.2/LICENSE 0000664 0000000 0000000 00000023637 14766462667 0017012 0 ustar 00root root 0000000 0000000
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
python-elasticsearch-8.17.2/NOTICE 0000664 0000000 0000000 00000000075 14766462667 0016700 0 ustar 00root root 0000000 0000000 Elasticsearch Python Client
Copyright 2022 Elasticsearch B.V. python-elasticsearch-8.17.2/README.md 0000664 0000000 0000000 00000013217 14766462667 0017255 0 ustar 00root root 0000000 0000000
# Elasticsearch Python Client

*The official Python client for Elasticsearch.*
## Features
* Translating basic Python data types to and from JSON
* Configurable automatic discovery of cluster nodes
* Persistent connections
* Load balancing (with pluggable selection strategy) across available nodes
* Failed connection penalization (time based - failed connections won't be
retried until a timeout is reached)
* Support for TLS and HTTP authentication
* Thread safety across requests
* Pluggable architecture
* Helper functions for idiomatically using APIs together
## Installation
[Download the latest version of Elasticsearch](https://www.elastic.co/downloads/elasticsearch)
or
[sign-up](https://cloud.elastic.co/registration?elektra=en-ess-sign-up-page)
for a free trial of Elastic Cloud.
Refer to the [Installation section](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_installation)
of the getting started documentation.
## Connecting
Refer to the [Connecting section](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_connecting)
of the getting started documentation.
## Usage
-----
* [Creating an index](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_creating_an_index)
* [Indexing a document](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_indexing_documents)
* [Getting documents](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_getting_documents)
* [Searching documents](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_searching_documents)
* [Updating documents](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_updating_documents)
* [Deleting documents](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_deleting_documents)
* [Deleting an index](https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/getting-started-python.html#_deleting_an_index)
## Compatibility
Language clients are forward compatible; meaning that the clients support
communicating with greater or equal minor versions of Elasticsearch without
breaking. It does not mean that the clients automatically support new features
of newer Elasticsearch versions; it is only possible after a release of a new
client version. For example, a 8.12 client version won't automatically support
the new features of the 8.13 version of Elasticsearch, the 8.13 client version
is required for that. Elasticsearch language clients are only backwards
compatible with default distributions and without guarantees made.
| Elasticsearch Version | Elasticsearch-Python Branch | Supported |
| --------------------- | ------------------------ | --------- |
| main | main | |
| 8.x | 8.x | 8.x |
| 7.x | 7.x | 7.17 |
If you have a need to have multiple versions installed at the same time older
versions are also released as ``elasticsearch7`` and ``elasticsearch8``.
## Documentation
Documentation for the client is [available on elastic.co] and [Read the Docs].
[available on elastic.co]: https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html
[Read the Docs]: https://elasticsearch-py.readthedocs.io
## Feedback 🗣️
The engineering team here at Elastic is looking for developers to participate in
research and feedback sessions to learn more about how you use our Python client and
what improvements we can make to their design and your workflow. If you're interested in
sharing your insights into developer experience and language client design, please fill
out this [short form]. Depending on the number of responses we get, we may either
contact you for a 1:1 conversation or a focus group with other developers who use the
same client. Thank you in advance - your feedback is crucial to improving the user
experience for all Elasticsearch developers!
[short form]: https://forms.gle/bYZwDQXijfhfwshn9
## License
This software is licensed under the [Apache License 2.0](./LICENSE). See [NOTICE](./NOTICE).
python-elasticsearch-8.17.2/catalog-info.yaml 0000664 0000000 0000000 00000003201 14766462667 0021215 0 ustar 00root root 0000000 0000000 ---
# yaml-language-server: $schema=https://json.schemastore.org/catalog-info.json
apiVersion: backstage.io/v1alpha1
kind: Component
metadata:
name: elasticsearch-py
spec:
type: library
owner: group:devtools-team
lifecycle: production
dependsOn:
- "resource:elasticsearch-py"
---
# yaml-language-server: $schema=https://gist.githubusercontent.com/elasticmachine/988b80dae436cafea07d9a4a460a011d/raw/e57ee3bed7a6f73077a3f55a38e76e40ec87a7cf/rre.schema.json
apiVersion: backstage.io/v1alpha1
kind: Resource
metadata:
name: elasticsearch-py
description: elasticsearch-py integration tests
spec:
type: buildkite-pipeline
owner: group:devtools-team
system: buildkite
implementation:
apiVersion: buildkite.elastic.dev/v1
kind: Pipeline
metadata:
name: elasticsearch-py integration tests
spec:
repository: elastic/elasticsearch-py
pipeline_file: .buildkite/pipeline.yml
env:
ELASTIC_SLACK_NOTIFICATIONS_ENABLED: 'true'
SLACK_NOTIFICATIONS_CHANNEL: '#devtools-notify-python'
teams:
devtools-team:
access_level: MANAGE_BUILD_AND_READ
everyone:
access_level: READ_ONLY
cancel_intermediate_builds: true
cancel_intermediate_builds_branch_filter: '!main'
schedules:
main:
branch: 'main'
cronline: '0 10 * * *'
message: 'Daily run for main branch'
Daily 8.14:
branch: '8.14'
cronline: '0 10 * * *'
message: 'Daily run for 8.14 branch'
Daily 8.15:
branch: '8.15'
cronline: '0 10 * * *'
message: 'Daily run for 8.15 branch'
python-elasticsearch-8.17.2/docs/ 0000775 0000000 0000000 00000000000 14766462667 0016722 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/docs/examples/ 0000775 0000000 0000000 00000000000 14766462667 0020540 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/docs/examples/00272f75a6afea91f8554ef7cda0c1f2.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-cache.asciidoc:75
[source, python]
----
resp = client.security.clear_cached_realms(
realms="default_file,ldap1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/004743b9c9f61588926ccf734696b713.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026272 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/forcemerge.asciidoc:216
[source, python]
----
resp = client.indices.forcemerge(
index=".ds-my-data-stream-2099.03.07-000001",
max_num_segments="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/004a17b42ab5155bb61da797a006fa9f.asciidoc 0000664 0000000 0000000 00000000646 14766462667 0026601 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/pinned-query.asciidoc:13
[source, python]
----
resp = client.search(
query={
"pinned": {
"ids": [
"1",
"4",
"100"
],
"organic": {
"match": {
"description": "iphone"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/006e0e16c9f1da58c0bfe57377f7fc38.asciidoc 0000664 0000000 0000000 00000000741 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stemmer-tokenfilter.asciidoc:85
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "whitespace",
"filter": [
"stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/007179b5e241da650562a5f0a5007823.asciidoc 0000664 0000000 0000000 00000001543 14766462667 0026220 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:193
[source, python]
----
resp = client.watcher.put_watch(
id="cluster_health_watch",
trigger={
"schedule": {
"interval": "10s"
}
},
input={
"http": {
"request": {
"host": "localhost",
"port": 9200,
"path": "/_cluster/health"
}
}
},
condition={
"compare": {
"ctx.payload.status": {
"eq": "red"
}
}
},
actions={
"send_email": {
"email": {
"to": "username@example.org",
"subject": "Cluster Status Warning",
"body": "Cluster status is RED"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/008ed823c89e703c447ac89c6b689833.asciidoc 0000664 0000000 0000000 00000000263 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/feature-migration.asciidoc:158
[source, python]
----
resp = client.migration.post_feature_upgrade()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0091fc75271b1fbbd4269622a4881e8b.asciidoc 0000664 0000000 0000000 00000000464 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/common-script-uses.asciidoc:107
[source, python]
----
resp = client.search(
index="my-index",
query={
"match": {
"http.clientip": "40.135.0.0"
}
},
fields=[
"http.clientip"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/00ad41bde67beac991534ae0e04b1296.asciidoc 0000664 0000000 0000000 00000000375 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/data-stream-reindex.asciidoc:273
[source, python]
----
resp = client.indices.get_data_stream(
name="my-data-stream",
filter_path="data_streams.indices.index_name",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/00b3b6d76a368ae71277ea24af318693.asciidoc 0000664 0000000 0000000 00000000235 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shard-stores.asciidoc:140
[source, python]
----
resp = client.indices.shard_stores()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/00c05aa931fc985985e3e21c93cf43ff.asciidoc 0000664 0000000 0000000 00000000477 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:443
[source, python]
----
resp = client.render_search_template(
source="{ \"query\": {{#toJson}}my_query{{/toJson}} }",
params={
"my_query": {
"match_all": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/00d65f7b9daa1c6b18eedd8ace206bae.asciidoc 0000664 0000000 0000000 00000000426 14766462667 0027246 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/asciifolding-tokenfilter.asciidoc:21
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"asciifolding"
],
text="açaí à la carte",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/00e0c964c79fcc1876ab957da2ffce82.asciidoc 0000664 0000000 0000000 00000003712 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1204
[source, python]
----
resp = client.indices.create(
index="italian_example",
settings={
"analysis": {
"filter": {
"italian_elision": {
"type": "elision",
"articles": [
"c",
"l",
"all",
"dall",
"dell",
"nell",
"sull",
"coll",
"pell",
"gl",
"agl",
"dagl",
"degl",
"negl",
"sugl",
"un",
"m",
"t",
"s",
"v",
"d"
],
"articles_case": True
},
"italian_stop": {
"type": "stop",
"stopwords": "_italian_"
},
"italian_keywords": {
"type": "keyword_marker",
"keywords": [
"esempio"
]
},
"italian_stemmer": {
"type": "stemmer",
"language": "light_italian"
}
},
"analyzer": {
"rebuilt_italian": {
"tokenizer": "standard",
"filter": [
"italian_elision",
"lowercase",
"italian_stop",
"italian_keywords",
"italian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/00fea15cbca83be9d5f1a024ff2ec708.asciidoc 0000664 0000000 0000000 00000000675 14766462667 0027111 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-elasticsearch.asciidoc:204
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="my-e5-model",
inference_config={
"service": "elasticsearch",
"service_settings": {
"num_allocations": 1,
"num_threads": 1,
"model_id": ".multilingual-e5-small"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/010d5e901a2690fa7b2396edbe6cd463.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/common-log-format-example.asciidoc:161
[source, python]
----
resp = client.indices.put_index_template(
name="my-data-stream-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
priority=500,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/015e6e6132b6d6d44bddb06bc3b316ed.asciidoc 0000664 0000000 0000000 00000002132 14766462667 0026734 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:1051
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"range": {
"year": {
"gt": 2023
}
}
}
}
},
{
"standard": {
"query": {
"term": {
"topic": "elastic"
}
}
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
},
source=False,
aggs={
"topics": {
"terms": {
"field": "topic"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0163af36c8472ac0c5160c8b716f5b26.asciidoc 0000664 0000000 0000000 00000000646 14766462667 0026452 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filter-aggregation.asciidoc:58
[source, python]
----
resp = client.search(
index="sales",
size="0",
filter_path="aggregations",
query={
"term": {
"type": "t-shirt"
}
},
aggs={
"avg_price": {
"avg": {
"field": "price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0165d22da5f2fc7678392b31d8eb5566.asciidoc 0000664 0000000 0000000 00000000651 14766462667 0026471 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:1363
[source, python]
----
resp = client.inference.put(
task_type="rerank",
inference_id="my-rerank-model",
inference_config={
"service": "cohere",
"service_settings": {
"model_id": "rerank-english-v3.0",
"api_key": "{{COHERE_API_KEY}}"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/016f3147dae9ff2c3e831257ae470361.asciidoc 0000664 0000000 0000000 00000000437 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:54
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"add": {
"index": "logs-*",
"alias": "logs"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/019e329ed5a930aef825266822e7377a.asciidoc 0000664 0000000 0000000 00000001263 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/asciifolding-tokenfilter.asciidoc:118
[source, python]
----
resp = client.indices.create(
index="asciifold_example",
settings={
"analysis": {
"analyzer": {
"standard_asciifolding": {
"tokenizer": "standard",
"filter": [
"my_ascii_folding"
]
}
},
"filter": {
"my_ascii_folding": {
"type": "asciifolding",
"preserve_original": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/01ae196538fac197eedbbf458a4ef31b.asciidoc 0000664 0000000 0000000 00000001315 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/keyword.asciidoc:260
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"kwd": {
"type": "keyword",
"ignore_above": 3
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"kwd": [
"foo",
"foo",
"bang",
"bar",
"baz"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/01b23f09d2b7f140faf649eadbbf3ac3.asciidoc 0000664 0000000 0000000 00000001521 14766462667 0027075 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/index-templates.asciidoc:86
[source, python]
----
resp = client.cluster.put_component_template(
name="component_template1",
template={
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
}
}
}
},
)
print(resp)
resp1 = client.cluster.put_component_template(
name="runtime_component_template",
template={
"mappings": {
"runtime": {
"day_of_week": {
"type": "keyword",
"script": {
"source": "emit(doc['@timestamp'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ENGLISH))"
}
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/01bc0f2ed30eb3dd23511d01ce0ac6e1.asciidoc 0000664 0000000 0000000 00000000324 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/start-transform.asciidoc:85
[source, python]
----
resp = client.transform.start_transform(
transform_id="ecommerce_transform",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/01cd0ea360282a2c591a366679d7187d.asciidoc 0000664 0000000 0000000 00000000371 14766462667 0026375 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/task-queue-backlog.asciidoc:83
[source, python]
----
resp = client.tasks.list(
human=True,
detailed=True,
actions="indices:data/write/bulk",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/01da9e0620e48270617fc248e6415cac.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0026446 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations.asciidoc:36
[source, python]
----
resp = client.search(
index="my-index-000001",
aggs={
"my-agg-name": {
"terms": {
"field": "my-field"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/01dc7bdc223bd651574ed2d3954a5b1c.asciidoc 0000664 0000000 0000000 00000000274 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/execute-watch.asciidoc:153
[source, python]
----
resp = client.watcher.execute_watch(
id="my_watch",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/01f50acf7998b24969f451e922d145eb.asciidoc 0000664 0000000 0000000 00000002111 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:184
[source, python]
----
resp = client.indices.create(
index="basque_example",
settings={
"analysis": {
"filter": {
"basque_stop": {
"type": "stop",
"stopwords": "_basque_"
},
"basque_keywords": {
"type": "keyword_marker",
"keywords": [
"Adibidez"
]
},
"basque_stemmer": {
"type": "stemmer",
"language": "basque"
}
},
"analyzer": {
"rebuilt_basque": {
"tokenizer": "standard",
"filter": [
"lowercase",
"basque_stop",
"basque_keywords",
"basque_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/020c95db88ef356093f03be84893ddf9.asciidoc 0000664 0000000 0000000 00000000272 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/get-follow-stats.asciidoc:41
[source, python]
----
resp = client.ccr.follow_stats(
index="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/020de6b6cb960a76297452725a38889f.asciidoc 0000664 0000000 0000000 00000000612 14766462667 0026337 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/has-child-query.asciidoc:53
[source, python]
----
resp = client.search(
query={
"has_child": {
"type": "child",
"query": {
"match_all": {}
},
"max_children": 10,
"min_children": 2,
"score_mode": "min"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0246f73cc2ed3dfec577119e8cd15404.asciidoc 0000664 0000000 0000000 00000000546 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:183
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"name": {
"properties": {
"last": {
"type": "text"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/025155da86802ebf4c3aeee5aab692f9.asciidoc 0000664 0000000 0000000 00000001173 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/tophits-aggregation.asciidoc:254
[source, python]
----
resp = client.indices.create(
index="sales",
mappings={
"properties": {
"tags": {
"type": "keyword"
},
"comments": {
"type": "nested",
"properties": {
"username": {
"type": "keyword"
},
"comment": {
"type": "text"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/02520ac7816b2c4cf8fb413fd16122f2.asciidoc 0000664 0000000 0000000 00000000332 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/flush-job.asciidoc:81
[source, python]
----
resp = client.ml.flush_job(
job_id="low_request_rate",
calc_interim=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0264e994a7e68561e2ca6be0f0d90ee9.asciidoc 0000664 0000000 0000000 00000001143 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:571
[source, python]
----
resp = client.search(
aggs={
"JapaneseCars": {
"terms": {
"field": "make",
"include": [
"mazda",
"honda"
]
}
},
"ActiveCarManufacturers": {
"terms": {
"field": "make",
"exclude": [
"rover",
"jensen"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0280247e0cf2e561c548f22c9fb31163.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0026362 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-tokens.asciidoc:205
[source, python]
----
resp = client.security.invalidate_token(
username="myuser",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/02853293a5b7cd9cc7a886eb413bbeb6.asciidoc 0000664 0000000 0000000 00000001160 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/mapping-charfilter.asciidoc:26
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
char_filter=[
{
"type": "mapping",
"mappings": [
"٠ => 0",
"١ => 1",
"٢ => 2",
"٣ => 3",
"٤ => 4",
"٥ => 5",
"٦ => 6",
"٧ => 7",
"٨ => 8",
"٩ => 9"
]
}
],
text="My license plate is ٢٥٠١٥",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/029de2f5383a42e1ac4ca1565bd2a130.asciidoc 0000664 0000000 0000000 00000000674 14766462667 0026574 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/index-prefixes.asciidoc:41
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"full_name": {
"type": "text",
"index_prefixes": {
"min_chars": 1,
"max_chars": 10
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/02b00f21e9d23d82276ace0dd154d779.asciidoc 0000664 0000000 0000000 00000000437 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/routing-field.asciidoc:62
[source, python]
----
resp = client.search(
index="my-index-000001",
routing="user1,user2",
query={
"match": {
"title": "document"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/02b6aa3e5652839f03de3a655854b897.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:466
[source, python]
----
resp = client.search(
index="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/02c48d461536709c3fc8a0e8147c3787.asciidoc 0000664 0000000 0000000 00000000730 14766462667 0026332 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/pipeline.asciidoc:54
[source, python]
----
resp = client.ingest.put_pipeline(
id="pipelineB",
description="outer pipeline",
processors=[
{
"pipeline": {
"name": "pipelineA"
}
},
{
"set": {
"field": "outer_pipeline_set",
"value": "outer"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/02f65c6bab8f40bf3ce18160623d1870.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0026530 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-index-template-v1.asciidoc:41
[source, python]
----
resp = client.indices.get_template(
name="template_1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/02fad6b80bb29c2a7e6840db2fc67b18.asciidoc 0000664 0000000 0000000 00000001247 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/wildcard.asciidoc:78
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_wildcard": {
"type": "wildcard"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"my_wildcard": "This string can be quite lengthy"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"wildcard": {
"my_wildcard": {
"value": "*quite*lengthy"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/0308cbd85281f95fc458042afe3f587d.asciidoc 0000664 0000000 0000000 00000000274 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:85
[source, python]
----
resp = client.get(
index="my-index-000001",
id="0",
source="*.id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/032eac56b798bea29390e102538f4a26.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026446 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/refresh.asciidoc:109
[source, python]
----
resp = client.indices.refresh(
index="my-index-000001,my-index-000002",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/033838729cfb5d1a28d04f69ee78d924.asciidoc 0000664 0000000 0000000 00000001717 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:299
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "Polygon",
"orientation": "LEFT",
"coordinates": [
[
[
-177,
10
],
[
176,
15
],
[
172,
0
],
[
176,
-15
],
[
-177,
-10
],
[
-177,
10
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0350410d11579f4e876c798ce1eaef5b.asciidoc 0000664 0000000 0000000 00000001615 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:565
[source, python]
----
resp = client.index(
index="my-index-000001",
id="5",
refresh=True,
document={
"query": {
"bool": {
"should": [
{
"match": {
"message": {
"query": "Japanese art",
"_name": "query1"
}
}
},
{
"match": {
"message": {
"query": "Holand culture",
"_name": "query2"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0350ff5ebb8207c004eb771088339cb4.asciidoc 0000664 0000000 0000000 00000002000 14766462667 0026437 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rrf.asciidoc:127
[source, python]
----
resp = client.search(
index="example-index",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"term": {
"text": "blue shoes sale"
}
}
}
},
{
"standard": {
"query": {
"sparse_vector": {
"field": "ml.tokens",
"inference_id": "my_elser_model",
"query": "What blue shoes are on sale?"
}
}
}
}
],
"rank_window_size": 50,
"rank_constant": 20
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/03582fc93683e573062bcfda45e01d69.asciidoc 0000664 0000000 0000000 00000001443 14766462667 0026467 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/custom-analyzer.asciidoc:59
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"type": "custom",
"tokenizer": "standard",
"char_filter": [
"html_strip"
],
"filter": [
"lowercase",
"asciifolding"
]
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_custom_analyzer",
text="Is this déjà vu?",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/035a7a919eb6513b4769a3727b7d6447.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/testing.asciidoc:9
[source, python]
----
resp = client.indices.analyze(
analyzer="whitespace",
text="The quick brown fox.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/03891265df2111a38e0b6b24c1b967e1.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026362 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-service-accounts.asciidoc:320
[source, python]
----
resp = client.security.get_service_accounts()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/03b1d76fa0b773d5b7d74ecb7e1e1a80.asciidoc 0000664 0000000 0000000 00000000533 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:152
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="my_snapshot_2099.05.06",
indices="my-index,logs-my_app-default",
rename_pattern="(.+)",
rename_replacement="restored-$1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/03c4b815bf1e6a8c5cfcc6ddf94bc093.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0027120 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/apis/sql-search-api.asciidoc:17
[source, python]
----
resp = client.sql.query(
format="txt",
query="SELECT * FROM library ORDER BY page_count DESC LIMIT 5",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/04412d11783dac25b5fd2ec5407078a3.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-api-key-id-api.asciidoc:93
[source, python]
----
resp = client.connector.update_api_key_id(
connector_id="my-connector",
api_key_id="my-api-key-id",
api_key_secret_id="my-connector-secret-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/044b2f99e7438e408685b258db17f863.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026355 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:141
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n process where process.name == \"regsvr32.exe\"\n ",
size=50,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/046b2249bbc49e77848c114cee940f17.asciidoc 0000664 0000000 0000000 00000003416 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/text-expansion-query.asciidoc:164
[source, python]
----
resp = client.search(
index="my-index",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"multi_match": {
"query": "How is the weather in Jamaica?",
"fields": [
"title",
"description"
]
}
}
}
},
{
"standard": {
"query": {
"text_expansion": {
"ml.inference.title_expanded.predicted_value": {
"model_id": ".elser_model_2",
"model_text": "How is the weather in Jamaica?"
}
}
}
}
},
{
"standard": {
"query": {
"text_expansion": {
"ml.inference.description_expanded.predicted_value": {
"model_id": ".elser_model_2",
"model_text": "How is the weather in Jamaica?"
}
}
}
}
}
],
"window_size": 10,
"rank_constant": 20
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0470d7101637568b9d3d1239f06325a7.asciidoc 0000664 0000000 0000000 00000001540 14766462667 0026155 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/update-desired-nodes.asciidoc:21
[source, python]
----
resp = client.perform_request(
"PUT",
"/_internal/desired_nodes/<history_id>/<version>",
headers={"Content-Type": "application/json"},
body={
"nodes": [
{
"settings": {
"node.name": "instance-000187",
"node.external_id": "instance-000187",
"node.roles": [
"data_hot",
"master"
],
"node.attr.data": "hot",
"node.attr.logical_availability_zone": "zone-0"
},
"processors": 8,
"memory": "58gb",
"storage": "2tb"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/047266b0d20fdb62ebc72d51952c8f6d.asciidoc 0000664 0000000 0000000 00000000623 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:344
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "Will Smith",
"type": "cross_fields",
"fields": [
"first_name",
"last_name"
],
"operator": "and"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/048652b6abfe195da8ea8cef10ee01b1.asciidoc 0000664 0000000 0000000 00000000324 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/reset-transform.asciidoc:67
[source, python]
----
resp = client.transform.reset_transform(
transform_id="ecommerce_transform",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/04d586a536061ec1045d0bb2dc3d1a5f.asciidoc 0000664 0000000 0000000 00000001073 14766462667 0026570 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/set.asciidoc:39
[source, python]
----
resp = client.ingest.put_pipeline(
id="set_os",
description="sets the value of host.os.name from the field os",
processors=[
{
"set": {
"field": "host.os.name",
"value": "{{{os}}}"
}
}
],
)
print(resp)
resp1 = client.ingest.simulate(
id="set_os",
docs=[
{
"_source": {
"os": "Ubuntu"
}
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/04d6ce0c903bd468afbecd3aa1c4a78a.asciidoc 0000664 0000000 0000000 00000001155 14766462667 0027161 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/put-pipeline.asciidoc:126
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline-id",
description="My optional pipeline description",
processors=[
{
"set": {
"description": "My optional processor description",
"field": "my-keyword-field",
"value": "foo"
}
}
],
meta={
"reason": "set my-keyword-field to foo",
"serialization": {
"class": "MyPipeline",
"id": 10
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/04de2e3a9c00c2056b07bf9cf9e63a99.asciidoc 0000664 0000000 0000000 00000001023 14766462667 0026674 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-google-vertex-ai.asciidoc:133
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="google_vertex_ai_embeddings",
inference_config={
"service": "googlevertexai",
"service_settings": {
"service_account_json": "",
"model_id": "",
"location": "",
"project_id": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/04f5dd677c777bcb15d7d5fa63275fc8.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/health.asciidoc:48
[source, python]
----
resp = client.cluster.health(
wait_for_status="yellow",
timeout="50s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0502284d4685c478eb68761f979f4303.asciidoc 0000664 0000000 0000000 00000001513 14766462667 0026207 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/evaluate-dfanalytics.asciidoc:321
[source, python]
----
resp = client.ml.evaluate_data_frame(
index="house_price_predictions",
query={
"bool": {
"filter": [
{
"term": {
"ml.is_training": False
}
}
]
}
},
evaluation={
"regression": {
"actual_field": "price",
"predicted_field": "ml.price_prediction",
"metrics": {
"r_squared": {},
"mse": {},
"msle": {
"offset": 10
},
"huber": {
"delta": 1.5
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/050b3947025fee403232b8e6e9112dab.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0026441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:256
[source, python]
----
resp = client.sql.query(
format="yaml",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/05148cc541f447486d9daf15ab77292b.asciidoc 0000664 0000000 0000000 00000002556 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/ilm.asciidoc:31
[source, python]
----
resp = client.ilm.put_lifecycle(
name="logs",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_size": "50gb"
}
}
},
"warm": {
"min_age": "30d",
"actions": {
"shrink": {
"number_of_shards": 1
},
"forcemerge": {
"max_num_segments": 1
}
}
},
"cold": {
"min_age": "60d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"frozen": {
"min_age": "90d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"delete": {
"min_age": "735d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0518c673094fb18ecb491a3b78af4695.asciidoc 0000664 0000000 0000000 00000000743 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-allocate.asciidoc:89
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"allocate": {
"include": {
"box_type": "hot,warm"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/05284c8ea91769c09c8db47db8a6629a.asciidoc 0000664 0000000 0000000 00000000241 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/repositories.asciidoc:57
[source, python]
----
resp = client.cat.repositories(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/053497b6960f80fd7b005b7c6d54358f.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0026415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-delete.asciidoc:40
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"delete": {
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/05500e77aef581d92f6c605f7a48f7df.asciidoc 0000664 0000000 0000000 00000001523 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:199
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "polygon",
"coordinates": [
[
[
1000,
-1001
],
[
1001,
-1001
],
[
1001,
-1000
],
[
1000,
-1000
],
[
1000,
-1001
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/059e04aaf093379401f665c33ac796dc.asciidoc 0000664 0000000 0000000 00000000704 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keyword-marker-tokenfilter.asciidoc:163
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "keyword_marker",
"keywords": [
"jumping"
]
},
"stemmer"
],
text="fox running and jumping",
explain=True,
attributes="keyword",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/05a09078fe1016e900e445ad4039cf97.asciidoc 0000664 0000000 0000000 00000002731 14766462667 0026401 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/esql/esql-getting-started-enrich-policy.asciidoc:8
[source, python]
----
resp = client.indices.create(
index="clientips",
mappings={
"properties": {
"client_ip": {
"type": "keyword"
},
"env": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="clientips",
operations=[
{
"index": {}
},
{
"client_ip": "172.21.0.5",
"env": "Development"
},
{
"index": {}
},
{
"client_ip": "172.21.2.113",
"env": "QA"
},
{
"index": {}
},
{
"client_ip": "172.21.2.162",
"env": "QA"
},
{
"index": {}
},
{
"client_ip": "172.21.3.15",
"env": "Production"
},
{
"index": {}
},
{
"client_ip": "172.21.3.16",
"env": "Production"
}
],
)
print(resp1)
resp2 = client.enrich.put_policy(
name="clientip_policy",
match={
"indices": "clientips",
"match_field": "client_ip",
"enrich_fields": [
"env"
]
},
)
print(resp2)
resp3 = client.enrich.execute_policy(
name="clientip_policy",
wait_for_completion=False,
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/05ba0fdd0215e313ecea8a2f8f5a43b4.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0027004 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-a-data-stream.asciidoc:360
[source, python]
----
resp = client.indices.get_data_stream(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/05bee3adf46b9d6a2fef96c51bf958da.asciidoc 0000664 0000000 0000000 00000000761 14766462667 0027220 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/document-level-security.asciidoc:46
[source, python]
----
resp = client.security.put_role(
name="click_role",
indices=[
{
"names": [
"events-*"
],
"privileges": [
"read"
],
"query": {
"match": {
"category": "click"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/05e637284bc3bedd46e0b7c26ad983c4.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:249
[source, python]
----
resp = client.ingest.put_pipeline(
id="alibabacloud_ai_search_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "alibabacloud_ai_search_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/05f4a4b284f68f7fb13603d7cd854083.asciidoc 0000664 0000000 0000000 00000000521 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:332
[source, python]
----
resp = client.indices.put_settings(
index="logs-my_app-default",
settings={
"index": {
"lifecycle": {
"name": "new-lifecycle-policy"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/05f6049c677a156bdf9b83e71a3b87ed.asciidoc 0000664 0000000 0000000 00000000231 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/ssl.asciidoc:90
[source, python]
----
resp = client.ssl.certificates()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0601b5cb5328c9ebff30f4be1b210f93.asciidoc 0000664 0000000 0000000 00000000355 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-status-api.asciidoc:333
[source, python]
----
resp = client.snapshot.status(
repository="my_repository",
snapshot="snapshot_2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/060a56477e39f272fc5a9cfe47443cf1.asciidoc 0000664 0000000 0000000 00000001317 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/simplepattern-tokenizer.asciidoc:39
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "simple_pattern",
"pattern": "[0123456789]{3}"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="fd-786-335-514-x",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/0620a10ff15a2bb3eb489afc24ff0131.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:342
[source, python]
----
resp = client.search(
index="my-index-000001",
size="surprise_me",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/06454a8e85e2d3479c90390bb955eb39.asciidoc 0000664 0000000 0000000 00000000377 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-api.asciidoc:589
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="snapshot*,-snapshot_3",
sort="name",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/066e0bdcdfa3b8afa5d1e5777f73fccb.asciidoc 0000664 0000000 0000000 00000000520 14766462667 0027255 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/rollover-index.asciidoc:333
[source, python]
----
resp = client.indices.rollover(
alias="my-alias",
conditions={
"max_age": "7d",
"max_docs": 1000,
"max_primary_shard_size": "50gb",
"max_primary_shard_docs": "2000"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/069030e5f43d8f8ce3e3eca40205027e.asciidoc 0000664 0000000 0000000 00000002353 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/properties.asciidoc:17
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"manager": {
"properties": {
"age": {
"type": "integer"
},
"name": {
"type": "text"
}
}
},
"employees": {
"type": "nested",
"properties": {
"age": {
"type": "integer"
},
"name": {
"type": "text"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"region": "US",
"manager": {
"name": "Alice White",
"age": 30
},
"employees": [
{
"name": "John Smith",
"age": 34
},
{
"name": "Peter Brown",
"age": 26
}
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/06a761823a694850a6efe5d5bf61478c.asciidoc 0000664 0000000 0000000 00000000643 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/match-enrich-policy-type-ex.asciidoc:44
[source, python]
----
resp = client.enrich.put_policy(
name="users-policy",
match={
"indices": "users",
"match_field": "email",
"enrich_fields": [
"first_name",
"last_name",
"city",
"zip",
"state"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/06b5d3d56c4d4e3b61ae42ea26401c40.asciidoc 0000664 0000000 0000000 00000000772 14766462667 0026576 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/multi-search.asciidoc:16
[source, python]
----
resp = client.msearch(
index="my-index-000001",
searches=[
{},
{
"query": {
"match": {
"message": "this is a test"
}
}
},
{
"index": "my-index-000002"
},
{
"query": {
"match_all": {}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/06c0db0f42223761e32fa418066b275f.asciidoc 0000664 0000000 0000000 00000000676 14766462667 0026370 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/snapshot/corrupt-repository.asciidoc:97
[source, python]
----
resp = client.snapshot.create_repository(
name="my-repo",
repository={
"type": "s3",
"settings": {
"bucket": "repo-bucket",
"client": "elastic-internal-71bcd3",
"base_path": "myrepo",
"readonly": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/06d65e3505dcb306977185e8545cf4a8.asciidoc 0000664 0000000 0000000 00000000437 14766462667 0026422 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/increase-cluster-shard-limit.asciidoc:172
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.total_shards_per_node": 400
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0709a38613d2de90d418ce12b36af30e.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:113
[source, python]
----
resp = client.cluster.reroute()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/070cf72783cfe534a04f2f64e4016052.asciidoc 0000664 0000000 0000000 00000000650 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/subobjects.asciidoc:92
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"subobjects": False
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="metric_1",
document={
"time": "100ms",
"time.min": "10ms",
"time.max": "900ms"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/0718a0b4f4905a8c90c1ff93de557e56.asciidoc 0000664 0000000 0000000 00000000551 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/extendedstats-aggregation.asciidoc:70
[source, python]
----
resp = client.search(
index="exams",
size=0,
aggs={
"grades_stats": {
"extended_stats": {
"field": "grade",
"sigma": 3
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0721c8adec544d5ecea3fcc410e45feb.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0027164 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/activate-user-profile.asciidoc:104
[source, python]
----
resp = client.security.activate_user_profile(
grant_type="password",
username="jacknich",
password="l0ng-r4nd0m-p@ssw0rd",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0722b302b2b3275a988d858044f99d5d.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026324 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:45
[source, python]
----
resp = client.indices.get_mapping(
index="kibana_sample_data_ecommerce",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0737ebaea33631f001fb3f4226948492.asciidoc 0000664 0000000 0000000 00000000653 14766462667 0026374 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/geoip.asciidoc:237
[source, python]
----
resp = client.indices.create(
index="my_ip_locations",
mappings={
"properties": {
"geoip": {
"properties": {
"location": {
"type": "geo_point"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/073864d3f52f8f79aafdaa85a88ac46a.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-cache.asciidoc:82
[source, python]
----
resp = client.security.clear_cached_realms(
realms="*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/074e4602d1ca54412380a40867d078bc.asciidoc 0000664 0000000 0000000 00000001142 14766462667 0026277 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/slowlog.asciidoc:180
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index.indexing.slowlog.threshold.index.warn": "10s",
"index.indexing.slowlog.threshold.index.info": "5s",
"index.indexing.slowlog.threshold.index.debug": "2s",
"index.indexing.slowlog.threshold.index.trace": "500ms",
"index.indexing.slowlog.source": "1000",
"index.indexing.slowlog.reformat": True,
"index.indexing.slowlog.include.user": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0755471d7dce4785d2e7ed0c10182ea3.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/get-transform-stats.asciidoc:336
[source, python]
----
resp = client.transform.get_transform_stats(
transform_id="ecommerce-customer-transform",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/07a5fdeb7805cec1d28ba288b28f5ff5.asciidoc 0000664 0000000 0000000 00000000332 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/stop-job.asciidoc:81
[source, python]
----
resp = client.rollup.stop_job(
id="sensor",
wait_for_completion=True,
timeout="10s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/07ba3eaa931f2cf110052e3544db51f8.asciidoc 0000664 0000000 0000000 00000000633 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:884
[source, python]
----
resp = client.reindex(
max_docs=10,
source={
"index": "my-index-000001",
"query": {
"function_score": {
"random_score": {},
"min_score": 0.9
}
}
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/07c07f6d497b1a3012aa4320f830e09e.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/post-forget-follower.asciidoc:139
[source, python]
----
resp = client.ccr.forget_follower(
index="leader_index",
follower_cluster="follower_cluster",
follower_index="follower_index",
follower_index_uuid="vYpnaWPRQB6mNspmoCeYyA",
leader_remote_cluster="leader_cluster",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/07dadb9b0a774bd8e7f3527cf8a44afc.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0027132 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/semantic-query.asciidoc:17
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"semantic": {
"field": "inference_field",
"query": "Best surfing places"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/07de76cb0e7f11c7533788faf8c093c3.asciidoc 0000664 0000000 0000000 00000000577 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:205
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"title": {
"type": "text"
},
"labels": {
"type": "flattened"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/07ec38b97601286ec106986a84e1e5f7.asciidoc 0000664 0000000 0000000 00000000736 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-set-query.asciidoc:49
[source, python]
----
resp = client.indices.create(
index="job-candidates",
mappings={
"properties": {
"name": {
"type": "keyword"
},
"programming_languages": {
"type": "keyword"
},
"required_matches": {
"type": "long"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/080c34d8151d02b760571e3a2899fa97.asciidoc 0000664 0000000 0000000 00000001624 14766462667 0026325 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/pattern-capture-tokenfilter.asciidoc:91
[source, python]
----
resp = client.indices.create(
index="test",
settings={
"analysis": {
"filter": {
"email": {
"type": "pattern_capture",
"preserve_original": True,
"patterns": [
"([^@]+)",
"(\\p{L}+)",
"(\\d+)",
"@(.+)"
]
}
},
"analyzer": {
"email": {
"tokenizer": "uax_url_email",
"filter": [
"email",
"lowercase",
"unique"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/082e78c7a2061a7c4a52b494e5ede0e8.asciidoc 0000664 0000000 0000000 00000001543 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/rank-vectors.asciidoc:64
[source, python]
----
resp = client.indices.create(
index="my-rank-vectors-bit",
mappings={
"properties": {
"my_vector": {
"type": "rank_vectors",
"element_type": "bit"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="my-rank-vectors-bit",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"my_vector": [
127,
-127,
0,
1,
42
]
},
{
"index": {
"_id": "2"
}
},
{
"my_vector": "8100012a7f"
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/083b92e8ea264e49bf9fd40fc6a3094b.asciidoc 0000664 0000000 0000000 00000001121 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-elasticsearch.asciidoc:264
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="my-e5-model",
inference_config={
"service": "elasticsearch",
"service_settings": {
"adaptive_allocations": {
"enabled": True,
"min_number_of_allocations": 3,
"max_number_of_allocations": 10
},
"num_threads": 1,
"model_id": ".multilingual-e5-small"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/083e514297c09e91211f0d168aef1b0b.asciidoc 0000664 0000000 0000000 00000000721 14766462667 0026444 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/bi-directional-disaster-recovery.asciidoc:256
[source, python]
----
resp = client.update_by_query(
index="logs-generic-default",
query={
"match": {
"event.sequence": "97"
}
},
script={
"source": "ctx._source.event.original = params.new_event",
"lang": "painless",
"params": {
"new_event": "FOOBAR"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/086ec4c5d86bbf80fb80162e94037689.asciidoc 0000664 0000000 0000000 00000002735 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/weighted-tokens-query.asciidoc:21
[source, python]
----
resp = client.search(
query={
"weighted_tokens": {
"query_expansion_field": {
"tokens": {
"2161": 0.4679,
"2621": 0.307,
"2782": 0.1299,
"2851": 0.1056,
"3088": 0.3041,
"3376": 0.1038,
"3467": 0.4873,
"3684": 0.8958,
"4380": 0.334,
"4542": 0.4636,
"4633": 2.2805,
"4785": 1.2628,
"4860": 1.0655,
"5133": 1.0709,
"7139": 1.0016,
"7224": 0.2486,
"7387": 0.0985,
"7394": 0.0542,
"8915": 0.369,
"9156": 2.8947,
"10505": 0.2771,
"11464": 0.3996,
"13525": 0.0088,
"14178": 0.8161,
"16893": 0.1376,
"17851": 1.5348,
"19939": 0.6012
},
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": False
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0881397074d261ccc2db514daf116c31.asciidoc 0000664 0000000 0000000 00000000341 14766462667 0026436 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:128
[source, python]
----
resp = client.security.get_api_key(
id="VuaCfGcBCdbkQm-e5aOx",
with_limited_by=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/08a76b3f5a8394d8f9084113334a260a.asciidoc 0000664 0000000 0000000 00000000560 14766462667 0026317 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/boxplot-aggregation.asciidoc:149
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_boxplot": {
"boxplot": {
"field": "load_time",
"compression": 200
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/08c9af9dd519c011deedd406f3061836.asciidoc 0000664 0000000 0000000 00000002604 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/preview-datafeed.asciidoc:157
[source, python]
----
resp = client.ml.preview_datafeed(
datafeed_config={
"indices": [
"kibana_sample_data_ecommerce"
],
"query": {
"bool": {
"filter": [
{
"term": {
"_index": "kibana_sample_data_ecommerce"
}
}
]
}
},
"scroll_size": 1000
},
job_config={
"description": "Find customers spending an unusually high amount in an hour",
"analysis_config": {
"bucket_span": "1h",
"detectors": [
{
"detector_description": "High total sales",
"function": "high_sum",
"field_name": "taxful_total_price",
"over_field_name": "customer_full_name.keyword"
}
],
"influencers": [
"customer_full_name.keyword",
"category.keyword"
]
},
"analysis_limits": {
"model_memory_limit": "10mb"
},
"data_description": {
"time_field": "order_date",
"time_format": "epoch_ms"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/08e08feb514b24006e13f258d617d873.asciidoc 0000664 0000000 0000000 00000000251 14766462667 0026375 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:234
[source, python]
----
resp = client.get_script(
id="calculate-score",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/08e79ca9fdcdfebb2c6a79e6837e649d.asciidoc 0000664 0000000 0000000 00000000556 14766462667 0027164 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cardinality-aggregation.asciidoc:229
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"tag_cardinality": {
"cardinality": {
"field": "tag",
"missing": "N/A"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/08f20902821a4f7a73ce7b959c5bdbdc.asciidoc 0000664 0000000 0000000 00000000672 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/regexp-query.asciidoc:23
[source, python]
----
resp = client.search(
query={
"regexp": {
"user.id": {
"value": "k.*y",
"flags": "ALL",
"case_insensitive": True,
"max_determinized_states": 10000,
"rewrite": "constant_score_blended"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/091200b658023db31dffc2f08a85a9cc.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026577 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/total-shards-per-node.asciidoc:174
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"routing.allocation.total_shards_per_node": -1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0957bbd535f58c97b12ffba90813d64c.asciidoc 0000664 0000000 0000000 00000000364 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:367
[source, python]
----
resp = client.indices.create(
index="analyze_sample",
settings={
"index.analyze.max_token_count": 20000
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/095d60b2cfc5004c97efc49f27287262.asciidoc 0000664 0000000 0000000 00000000572 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:198
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sales_over_time": {
"date_histogram": {
"field": "date",
"fixed_interval": "30d"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/095e3f21941a9cc75f398389a075152d.asciidoc 0000664 0000000 0000000 00000001175 14766462667 0026343 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/infer-trained-model.asciidoc:1150
[source, python]
----
resp = client.ml.infer_trained_model(
model_id="cross-encoder__ms-marco-tinybert-l-2-v2",
docs=[
{
"text_field": "Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers."
},
{
"text_field": "New York City is famous for the Metropolitan Museum of Art."
}
],
inference_config={
"text_similarity": {
"text": "How many people live in Berlin?"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09769561f082b50558fb7d8707719963.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026135 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-stats.asciidoc:2588
[source, python]
----
resp = client.nodes.stats(
metric="ingest",
filter_path="nodes.*.ingest",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/099006ab11b52ea99693401dceee8bad.asciidoc 0000664 0000000 0000000 00000000432 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:220
[source, python]
----
resp = client.put_script(
id="calculate-score",
script={
"lang": "painless",
"source": "Math.log(_score * 2) + params['my_modifier']"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09944369863fd8666d5301d717317276.asciidoc 0000664 0000000 0000000 00000000724 14766462667 0026055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/condition-tokenfilter.asciidoc:22
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "condition",
"filter": [
"lowercase"
],
"script": {
"source": "token.getTerm().length() < 5"
}
}
],
text="THE QUICK BROWN FOX",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09a44b619a99f6bf3f01bd5e258fd22d.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026707 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/keyword-tokenizer.asciidoc:15
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
text="New York",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09a478fe32a7b7d814083ffa5297bcdf.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/fuzzy-query.asciidoc:29
[source, python]
----
resp = client.search(
query={
"fuzzy": {
"user.id": {
"value": "ki"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09bdf9a7e22733d668476724042a406c.asciidoc 0000664 0000000 0000000 00000000673 14766462667 0026333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-tutorial.asciidoc:131
[source, python]
----
resp = client.indices.put_index_template(
name="timeseries_template",
index_patterns=[
"timeseries"
],
data_stream={},
template={
"settings": {
"number_of_shards": 1,
"number_of_replicas": 1,
"index.lifecycle.name": "timeseries_policy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09cb1b18bf4033b4afafb25bd3dab12c.asciidoc 0000664 0000000 0000000 00000000734 14766462667 0027142 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rule-query.asciidoc:71
[source, python]
----
resp = client.search(
query={
"rule": {
"match_criteria": {
"user_query": "pugs"
},
"ruleset_ids": [
"my-ruleset"
],
"organic": {
"match": {
"description": "puggles"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09ce0ec993c494ac01f01ef9815fcc4b.asciidoc 0000664 0000000 0000000 00000000667 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/grok-syntax.asciidoc:150
[source, python]
----
resp = client.indices.put_mapping(
index="my-index",
runtime={
"http.clientip": {
"type": "ip",
"script": "\n String clientip=grok('%{COMMONAPACHELOG}').extract(doc[\"message\"].value)?.clientip;\n if (clientip != null) emit(clientip);\n "
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09d617863a103c82fb4101e6165ea7fe.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-all-query.asciidoc:11
[source, python]
----
resp = client.search(
query={
"match_all": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/09e6e06ba562f4b9bac59455e9151a80.asciidoc 0000664 0000000 0000000 00000000700 14766462667 0026540 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/evaluate-dfanalytics.asciidoc:523
[source, python]
----
resp = client.ml.evaluate_data_frame(
index="animal_classification",
evaluation={
"classification": {
"actual_field": "animal_class",
"metrics": {
"auc_roc": {
"class_name": "dog"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a3003fa5af850e415634b50b1029859.asciidoc 0000664 0000000 0000000 00000000472 14766462667 0026300 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/bi-directional-disaster-recovery.asciidoc:237
[source, python]
----
resp = client.search(
index="logs-generic-default*",
filter_path="hits.hits._index",
query={
"match": {
"event.sequence": "97"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a3186bf20b5359393406fc0cb433313.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0026273 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:433
[source, python]
----
resp = client.sql.query(
format="json",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
columnar=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a46ac2968a574ce145f197f10d30152.asciidoc 0000664 0000000 0000000 00000001720 14766462667 0026367 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/getting-started.asciidoc:9
[source, python]
----
resp = client.bulk(
index="library",
refresh=True,
operations=[
{
"index": {
"_id": "Leviathan Wakes"
}
},
{
"name": "Leviathan Wakes",
"author": "James S.A. Corey",
"release_date": "2011-06-02",
"page_count": 561
},
{
"index": {
"_id": "Hyperion"
}
},
{
"name": "Hyperion",
"author": "Dan Simmons",
"release_date": "1989-05-26",
"page_count": 482
},
{
"index": {
"_id": "Dune"
}
},
{
"name": "Dune",
"author": "Frank Herbert",
"release_date": "1965-06-01",
"page_count": 604
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a46cc8fe93e372909660a63dc52ae3b.asciidoc 0000664 0000000 0000000 00000000431 14766462667 0026617 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/rollover-index.asciidoc:315
[source, python]
----
resp = client.indices.create(
index="",
aliases={
"my-alias": {
"is_write_index": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a650401134f07e40216f0d0d1a66a32.asciidoc 0000664 0000000 0000000 00000000236 14766462667 0026252 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/allocation.asciidoc:126
[source, python]
----
resp = client.cat.allocation(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a6d56a66a2652ac6de68f8bd544a175.asciidoc 0000664 0000000 0000000 00000001117 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:115
[source, python]
----
resp = client.search(
index="index1",
query={
"query_string": {
"query": "running with scissors",
"fields": [
"comment",
"comment.english"
]
}
},
highlight={
"order": "score",
"fields": {
"comment": {
"matched_fields": [
"comment.english"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a701bdc7b6786026f40c0be8ebfc753.asciidoc 0000664 0000000 0000000 00000001131 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/ecommerce-tutorial.asciidoc:439
[source, python]
----
resp = client.transform.preview_transform(
source={
"index": "kibana_sample_data_ecommerce",
"query": {
"bool": {
"filter": {
"term": {
"currency": "EUR"
}
}
}
}
},
latest={
"unique_key": [
"geoip.country_iso_code",
"geoip.region_name"
],
"sort": "order_date"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a758d9dec74d9e942cf41a06499234f.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026563 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:287
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"counter": 1,
"tags": [
"red"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a84c5b7c0793be745b13eaf13e94422.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026531 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/total-shards-per-node.asciidoc:78
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"routing.allocation.total_shards_per_node": "2"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0a9173f3b22716c78653976dc4799eae.asciidoc 0000664 0000000 0000000 00000001040 14766462667 0026421 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:131
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"product": {
"terms": {
"field": "product"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ac295efdabd59e7b1f1a4577535d942.asciidoc 0000664 0000000 0000000 00000000475 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:161
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n sequence\n [ process where process.name == \"regsvr32.exe\" ]\n [ file where stringContains(file.name, \"scrobj.dll\") ]\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ac9e7dd7e4acba51888256326ed5ffe.asciidoc 0000664 0000000 0000000 00000000446 14766462667 0027060 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-api.asciidoc:287
[source, python]
----
resp = client.search(
index="my-index-000001",
track_total_hits=True,
query={
"match": {
"user.id": "elkbee"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ad86b582aff1235f37ccb2cc90adad5.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0027100 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:151
[source, python]
----
resp = client.indices.open(
index=".ds-my-data-stream-2099.03.07-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ad8edd10542ec2c4d5d8700d7e2ba97.asciidoc 0000664 0000000 0000000 00000001065 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-amazon-bedrock.asciidoc:162
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="amazon_bedrock_embeddings",
inference_config={
"service": "amazonbedrock",
"service_settings": {
"access_key": "",
"secret_key": "",
"region": "us-east-1",
"provider": "amazontitan",
"model": "amazon.titan-embed-text-v2:0"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0adbce828234ca221e3d03b184296407.asciidoc 0000664 0000000 0000000 00000000676 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/common-script-uses.asciidoc:84
[source, python]
----
resp = client.indices.put_mapping(
index="my-index",
runtime={
"http.clientip": {
"type": "ip",
"script": "\n String clientip=grok('%{COMMONAPACHELOG}').extract(doc[\"message\"].value)?.clientip;\n if (clientip != null) emit(clientip); \n "
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ade87c8cb0e3c188d2e3dce279d5cc2.asciidoc 0000664 0000000 0000000 00000001211 14766462667 0027114 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-filtering-api.asciidoc:122
[source, python]
----
resp = client.connector.update_filtering(
connector_id="my-g-drive-connector",
rules=[
{
"field": "file_extension",
"id": "exclude-txt-files",
"order": 0,
"policy": "exclude",
"rule": "equals",
"value": "txt"
},
{
"field": "_",
"id": "DEFAULT",
"order": 1,
"policy": "include",
"rule": "regex",
"value": ".*"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0aff04881be21eea45375ec4f4f50e66.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-api-keys.asciidoc:89
[source, python]
----
resp = client.security.create_api_key(
name="my-api-key",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0b1c5486f96bfa5db8db854c0178dbe5.asciidoc 0000664 0000000 0000000 00000000671 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/remote-clusters-connect.asciidoc:44
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"cluster_one": {
"seeds": [
"127.0.0.1:{remote-interface-default-port}"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0b47b0bef81b9b5eecfb3775695bd6ad.asciidoc 0000664 0000000 0000000 00000000476 14766462667 0027135 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// monitoring/production.asciidoc:96
[source, python]
----
resp = client.security.put_user(
username="remote_monitor",
password="changeme",
roles=[
"remote_monitoring_agent"
],
full_name="Internal Agent For Remote Monitoring",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0b4e50f1b5a0537cbb1a41276bb51c54.asciidoc 0000664 0000000 0000000 00000001103 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-api.asciidoc:167
[source, python]
----
resp = client.search(
index="my-index-000001",
runtime_mappings={
"day_of_week": {
"type": "keyword",
"script": {
"source": "emit(doc['@timestamp'].value.dayOfWeekEnum\n .getDisplayName(TextStyle.FULL, Locale.ENGLISH))"
}
}
},
aggs={
"day_of_week": {
"terms": {
"field": "day_of_week"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0b615ff4ef5a8847ee8109b2fd11619a.asciidoc 0000664 0000000 0000000 00000001002 14766462667 0026617 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:243
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"script_score": {
"query": {
"match": {
"message": "some message"
}
},
"script": {
"id": "calculate-score",
"params": {
"my_modifier": 2
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0b913fb9e010d877c0be015519cfddc6.asciidoc 0000664 0000000 0000000 00000002114 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/index-mgmt.asciidoc:177
[source, python]
----
resp = client.index(
index="my-index-000001",
document={
"@timestamp": "2019-05-18T15:57:27.541Z",
"ip": "225.44.217.191",
"extension": "jpg",
"response": "200",
"geo": {
"coordinates": {
"lat": 38.53146222,
"lon": -121.7864906
}
},
"url": "https://media-for-the-masses.theacademyofperformingartsandscience.org/uploads/charles-fullerton.jpg"
},
)
print(resp)
resp1 = client.index(
index="my-index-000002",
document={
"@timestamp": "2019-05-20T03:44:20.844Z",
"ip": "198.247.165.49",
"extension": "php",
"response": "200",
"geo": {
"coordinates": {
"lat": 37.13189556,
"lon": -76.4929875
}
},
"memory": 241720,
"url": "https://theacademyofperformingartsandscience.org/people/type:astronauts/name:laurel-b-clark/profile"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/0b987b4101e016653a32d7b092d47e4c.asciidoc 0000664 0000000 0000000 00000001512 14766462667 0026363 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/object.asciidoc:46
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"region": {
"type": "keyword"
},
"manager": {
"properties": {
"age": {
"type": "integer"
},
"name": {
"properties": {
"first": {
"type": "text"
},
"last": {
"type": "text"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0bc6155e0c88062a4d8490da49db3aa8.asciidoc 0000664 0000000 0000000 00000003447 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:812
[source, python]
----
resp = client.search(
index="retrievers_example_nested",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"nested": {
"path": "nested_field",
"inner_hits": {
"name": "nested_vector",
"_source": False,
"fields": [
"nested_field.paragraph_id"
]
},
"query": {
"knn": {
"field": "nested_field.nested_vector",
"query_vector": [
1,
0,
0.5
],
"k": 10
}
}
}
}
}
},
{
"standard": {
"query": {
"term": {
"topic": "ai"
}
}
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
},
source=[
"topic"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0bcd380315ef4691b8c79df6ca53a85f.asciidoc 0000664 0000000 0000000 00000000554 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:397
[source, python]
----
resp = client.search(
sort=[
{
"price": {
"unmapped_type": "long"
}
}
],
query={
"term": {
"product": "chocolate"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0bee07a581c5776e068f6f4efad5a399.asciidoc 0000664 0000000 0000000 00000000567 14766462667 0026731 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-across-clusters.asciidoc:194
[source, python]
----
resp = client.esql.async_query(
format="json",
query="\n FROM my-index-000001,cluster_one:my-index-000001,cluster_two:my-index*\n | STATS COUNT(http.response.status_code) BY user.id\n | LIMIT 2\n ",
include_ccs_metadata=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c05c66cfe3a2169b1ec1aba77e26db2.asciidoc 0000664 0000000 0000000 00000000437 14766462667 0027021 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rank-feature-query.asciidoc:274
[source, python]
----
resp = client.search(
index="test",
query={
"rank_feature": {
"field": "pagerank",
"saturation": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c2ca704a39dda8b3a7c5806ec6c6cf8.asciidoc 0000664 0000000 0000000 00000000673 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1377
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
runtime={
"http.client_ip": {
"type": "ip",
"script": "\n String clientip=grok('%{COMMONAPACHELOG}').extract(doc[\"message\"].value)?.clientip;\n if (clientip != null) emit(clientip); \n "
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c2d9ac7e3f28d4d802e21cbbbcfeb34.asciidoc 0000664 0000000 0000000 00000000305 14766462667 0027160 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/recovery.asciidoc:118
[source, python]
----
resp = client.cat.recovery(
v=True,
h="i,s,t,ty,st,shost,thost,f,fp,b,bp",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c464965126cc09e6812716a145991d4.asciidoc 0000664 0000000 0000000 00000000250 14766462667 0026163 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-info.asciidoc:306
[source, python]
----
resp = client.nodes.info(
node_id="ingest",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c52af573c9401a2a687e86a4beb182b.asciidoc 0000664 0000000 0000000 00000000616 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/attachment.asciidoc:214
[source, python]
----
resp = client.ingest.put_pipeline(
id="cbor-attachment",
description="Extract attachment information",
processors=[
{
"attachment": {
"field": "data",
"remove_binary": True
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c688eecf4ebdffdbe1deae0983c3ed8.asciidoc 0000664 0000000 0000000 00000001404 14766462667 0027433 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/cumulative-cardinality-aggregation.asciidoc:46
[source, python]
----
resp = client.search(
index="user_hits",
size=0,
aggs={
"users_per_day": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "day"
},
"aggs": {
"distinct_users": {
"cardinality": {
"field": "user_id"
}
},
"total_new_users": {
"cumulative_cardinality": {
"buckets_path": "distinct_users"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c6f9c9da75293fae69659ac1d6329de.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026727 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-tokens.asciidoc:181
[source, python]
----
resp = client.security.invalidate_token(
refresh_token="vLBPvmAB6KvwvJZr27cS",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c6fc67c2dd1c1771cd866ce471d74e1.asciidoc 0000664 0000000 0000000 00000001220 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:212
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping4",
roles=[
"superuser"
],
enabled=True,
rules={
"any": [
{
"field": {
"username": "esadmin"
}
},
{
"field": {
"groups": [
"cn=admins,dc=example,dc=com",
"cn=other,dc=example,dc=com"
]
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c7c40cd17985c3dd32aeaadbafc4fce.asciidoc 0000664 0000000 0000000 00000000603 14766462667 0027321 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:926
[source, python]
----
resp = client.render_search_template(
source={
"query": {
"match": {
"message": "{{^name_exists}}Hello World{{/name_exists}}"
}
}
},
params={
"name_exists": False
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c892d328b73d38396aaef6d9cbcd36b.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0026771 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete.asciidoc:88
[source, python]
----
resp = client.delete(
index="my-index-000001",
id="1",
routing="shard-1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0c8be7aec84ea86b243904f5d4162f5a.asciidoc 0000664 0000000 0000000 00000000562 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:292
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"match": {
"title": {
"query": "fluffy pancakes breakfast",
"minimum_should_match": 2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ca6aae1ab2f0be6127beea8a245374e.asciidoc 0000664 0000000 0000000 00000000655 14766462667 0027075 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:1004
[source, python]
----
resp = client.async_search.submit(
index="my-index-000001,cluster*:my-index-000001,-cluster_three:*",
query={
"match": {
"user.id": "kimchy"
}
},
source=[
"user.id",
"message",
"http.response.status_code"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0cee58617e75f493c5049d77be1c49f3.asciidoc 0000664 0000000 0000000 00000000721 14766462667 0026566 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/fuzzy-query.asciidoc:46
[source, python]
----
resp = client.search(
query={
"fuzzy": {
"user.id": {
"value": "ki",
"fuzziness": "AUTO",
"max_expansions": 50,
"prefix_length": 0,
"transpositions": True,
"rewrite": "constant_score_blended"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0cf29da4b9f0503bd1a79bdc883aadbc.asciidoc 0000664 0000000 0000000 00000001201 14766462667 0027156 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/avg-aggregation.asciidoc:45
[source, python]
----
resp = client.search(
index="exams",
size="0",
runtime_mappings={
"grade.corrected": {
"type": "double",
"script": {
"source": "emit(Math.min(100, doc['grade'].value * params.correction))",
"params": {
"correction": 1.2
}
}
}
},
aggs={
"avg_corrected_grade": {
"avg": {
"field": "grade.corrected"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0d0f7ece06f21e624d21b09804732f61.asciidoc 0000664 0000000 0000000 00000000526 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/avg-aggregation.asciidoc:92
[source, python]
----
resp = client.search(
index="exams",
size="0",
aggs={
"grade_avg": {
"avg": {
"field": "grade",
"missing": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0d30077cd34e93377a3a86f2ebd69415.asciidoc 0000664 0000000 0000000 00000000612 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/create-connector-api.asciidoc:118
[source, python]
----
resp = client.connector.put(
connector_id="my-connector",
index_name="search-google-drive",
name="My Connector",
description="My Connector to sync data to Elastic index from Google Drive",
service_type="google_drive",
language="en",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0d49474511b236bc89e768c8ee91adf1.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/simple-query-string-query.asciidoc:24
[source, python]
----
resp = client.search(
query={
"simple_query_string": {
"query": "\"fried eggs\" +(eggplant | potato) -frittata",
"fields": [
"title^5",
"body"
],
"default_operator": "and"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0d54ddad2bf6f76aa5c35f53ba77748a.asciidoc 0000664 0000000 0000000 00000000432 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/porterstem-tokenfilter.asciidoc:28
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"porter_stem"
],
text="the foxes jumping quickly",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0d59af9dc556dc526b9394051efa800a.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/ignore-missing-component-templates.asciidoc:91
[source, python]
----
resp = client.indices.rollover(
alias="logs-foo-bar",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0d689ac6e78be5d438f9b5d441be2b44.asciidoc 0000664 0000000 0000000 00000003635 14766462667 0026724 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:1191
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"term": {
"topic": "elastic"
}
}
}
},
{
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"query_string": {
"query": "(information retrieval) OR (artificial intelligence)",
"default_field": "text"
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
},
source=False,
size=1,
explain=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0d8063b484a18f8672fb5ed8712c5c97.asciidoc 0000664 0000000 0000000 00000000776 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template.asciidoc:305
[source, python]
----
resp = client.indices.put_index_template(
name="template_1",
index_patterns=[
"foo",
"bar"
],
template={
"settings": {
"number_of_shards": 3
}
},
meta={
"description": "set number of shards to three",
"serialization": {
"class": "MyIndexTemplate",
"id": 17
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0d94d76b7f00d0459d1f8c962c144dcd.asciidoc 0000664 0000000 0000000 00000002153 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:314
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping8",
roles=[
"superuser"
],
enabled=True,
rules={
"all": [
{
"any": [
{
"field": {
"dn": "*,ou=admin,dc=example,dc=com"
}
},
{
"field": {
"username": [
"es-admin",
"es-system"
]
}
}
]
},
{
"field": {
"groups": "cn=people,dc=example,dc=com"
}
},
{
"except": {
"field": {
"metadata.terminated_date": None
}
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0da477cb8a7883539ce3ae7ac1e9c5cb.asciidoc 0000664 0000000 0000000 00000000603 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/histogram-aggregation.asciidoc:89
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"prices": {
"histogram": {
"field": "price",
"interval": 50,
"min_doc_count": 1
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0da747e9d98bae157d3520ff1b489ad4.asciidoc 0000664 0000000 0000000 00000000547 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-s3.asciidoc:45
[source, python]
----
resp = client.snapshot.create_repository(
name="my_s3_repository",
repository={
"type": "s3",
"settings": {
"bucket": "my-bucket",
"client": "my-alternate-client"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0db06c3cba57cf442ac7fab89966e1e1.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0027030 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:76
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"my_id": "1",
"text": "This is a question",
"my_join_field": "question"
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"my_id": "2",
"text": "This is another question",
"my_join_field": "question"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/0dd30ffe2f900dde86cc9bb601d5e68e.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0027123 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/nodes.asciidoc:387
[source, python]
----
resp = client.cat.nodes(
v=True,
h="id,ip,port,v,m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ddf705317d9c5095b4a1419a2e3bace.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-app-privileges.asciidoc:101
[source, python]
----
resp = client.security.get_privileges()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0dfa9733c94bc43c6f14c7b6984c98fb.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/component-templates.asciidoc:113
[source, python]
----
resp = client.cat.component_templates(
name="my-template-*",
v=True,
s="name",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0dfde6a9d953822fd4b3aa0121ddd8fb.asciidoc 0000664 0000000 0000000 00000000767 14766462667 0027122 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search-application/apis/search-application-render-query.asciidoc:119
[source, python]
----
resp = client.search_application.render_query(
name="my-app",
params={
"query_string": "my first query",
"text_fields": [
{
"name": "title",
"boost": 5
},
{
"name": "description",
"boost": 1
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0e0d8f652d7d29371b5ea7c7544385eb.asciidoc 0000664 0000000 0000000 00000001057 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:538
[source, python]
----
resp = client.search(
index="amazon-bedrock-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "amazon_bedrock_embeddings",
"model_text": "Calculate fuel cost"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0e118857b815b62118a30c042f079db1.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026304 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:262
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "quick brown f",
"type": "phrase_prefix",
"fields": [
"subject",
"message"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0e31b8ad176b31028becf9500989bcbd.asciidoc 0000664 0000000 0000000 00000001025 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-watsonx-ai.asciidoc:102
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="watsonx-embeddings",
inference_config={
"service": "watsonxai",
"service_settings": {
"api_key": "",
"url": "",
"model_id": "ibm/slate-30m-english-rtrvr",
"project_id": "",
"api_version": "2024-03-14"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0e3b4a48a3450cd99c95ec46d4701b58.asciidoc 0000664 0000000 0000000 00000001602 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filter-aggregation.asciidoc:167
[source, python]
----
resp = client.search(
index="sales",
size="0",
filter_path="aggregations",
aggs={
"hats": {
"filter": {
"term": {
"type": "hat"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
},
"t_shirts": {
"filter": {
"term": {
"type": "t-shirt"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0e5d25c7bb738c42d471020d678e2966.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/start-trained-model-deployment.asciidoc:206
[source, python]
----
resp = client.ml.start_trained_model_deployment(
model_id="my_model",
deployment_id="my_model_for_ingest",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0e71a18d1aac61720cdc6b3f91fe643f.asciidoc 0000664 0000000 0000000 00000000502 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/simple-query-string-query.asciidoc:153
[source, python]
----
resp = client.search(
query={
"simple_query_string": {
"fields": [
"content"
],
"query": "foo bar -baz"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0e84bb54b8a9a5387f252eeffeb1098e.asciidoc 0000664 0000000 0000000 00000001376 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/getting-started.asciidoc:84
[source, python]
----
resp = client.watcher.put_watch(
id="log_error_watch",
trigger={
"schedule": {
"interval": "10s"
}
},
input={
"search": {
"request": {
"indices": [
"logs"
],
"body": {
"query": {
"match": {
"message": "error"
}
}
}
}
}
},
condition={
"compare": {
"ctx.payload.hits.total": {
"gt": 0
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ea146b178561bc8b9002bed8a35641f.asciidoc 0000664 0000000 0000000 00000000340 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/get-autoscaling-policy.asciidoc:75
[source, python]
----
resp = client.autoscaling.get_autoscaling_policy(
name="my_autoscaling_policy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ea2167ce7c87d311b20c4f8c698a8d0.asciidoc 0000664 0000000 0000000 00000001533 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/point-in-time-api.asciidoc:196
[source, python]
----
resp = client.search(
slice={
"id": 0,
"max": 2
},
query={
"match": {
"message": "foo"
}
},
pit={
"id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA=="
},
)
print(resp)
resp1 = client.search(
slice={
"id": 1,
"max": 2
},
pit={
"id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA=="
},
query={
"match": {
"message": "foo"
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/0eae571e9e1c40a40cb4b1c9530a8987.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026605 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/migrate-to-data-tiers.asciidoc:160
[source, python]
----
resp = client.ilm.migrate_to_data_tiers(
legacy_template_to_delete="global-template",
node_attribute="custom_attribute_name",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0eb2c1284a9829224913a860190580d8.asciidoc 0000664 0000000 0000000 00000000770 14766462667 0026162 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/fingerprint-tokenfilter.asciidoc:76
[source, python]
----
resp = client.indices.create(
index="fingerprint_example",
settings={
"analysis": {
"analyzer": {
"whitespace_fingerprint": {
"tokenizer": "whitespace",
"filter": [
"fingerprint"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0ec2178fb0103862b47cc20bc5885972.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026373 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/register-fs-repo.asciidoc:127
[source, python]
----
resp = client.snapshot.create_repository(
name="my_fs_backup",
repository={
"type": "fs",
"settings": {
"location": "my_fs_backup_location",
"readonly": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0eccea755bd4f6dd47579a9022690546.asciidoc 0000664 0000000 0000000 00000000650 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/remote-clusters-migration.asciidoc:133
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"my_remote": {
"mode": "proxy",
"proxy_address": "my.remote.cluster.com:9443"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0f028f71f04c1d569fab402869565a84.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:476
[source, python]
----
resp = client.indices.put_settings(
index=".reindexed-v9-ml-anomalies-custom-example",
settings={
"index": {
"number_of_replicas": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0f2e5e006b663a88ee99b130ab1b4844.asciidoc 0000664 0000000 0000000 00000001201 14766462667 0026524 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:572
[source, python]
----
resp = client.search(
sort=[
{
"_geo_distance": {
"pin.location": [
[
-70,
40
],
[
-71,
42
]
],
"order": "asc",
"unit": "km"
}
}
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0f3a78296825d507dda6771f7ceb9d61.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/allocation_filtering.asciidoc:22
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.exclude._ip": "10.0.0.1"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0f4583c56cfe5bd59eeb35bfba02957c.asciidoc 0000664 0000000 0000000 00000000772 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rank-eval.asciidoc:318
[source, python]
----
resp = client.rank_eval(
index="my-index-000001",
requests=[
{
"id": "JFK query",
"request": {
"query": {
"match_all": {}
}
},
"ratings": []
}
],
metric={
"recall": {
"k": 20,
"relevant_rating_threshold": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0f547926ebf092e19fc5fb433e9ac8c1.asciidoc 0000664 0000000 0000000 00000001015 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/porterstem-tokenfilter.asciidoc:97
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "whitespace",
"filter": [
"lowercase",
"porter_stem"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0f7aa40ad26d59a9268630b980a3d594.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026466 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/simulate-template.asciidoc:61
[source, python]
----
resp = client.indices.simulate_template(
name="template_1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0fa220ee3fb267020382f74aa70eb1e9.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026574 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/state.asciidoc:157
[source, python]
----
resp = client.cluster.state(
metric="_all",
index="foo,bar",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0fb472645116d58ddef89ca976d15a01.asciidoc 0000664 0000000 0000000 00000002743 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:471
[source, python]
----
resp = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {}
},
{
"@timestamp": 1516729294000,
"model_number": "QVKC92Q",
"measures": {
"voltage": 5.2
}
},
{
"index": {}
},
{
"@timestamp": 1516642894000,
"model_number": "QVKC92Q",
"measures": {
"voltage": 5.8
}
},
{
"index": {}
},
{
"@timestamp": 1516556494000,
"model_number": "QVKC92Q",
"measures": {
"voltage": 5.1
}
},
{
"index": {}
},
{
"@timestamp": 1516470094000,
"model_number": "QVKC92Q",
"measures": {
"voltage": 5.6
}
},
{
"index": {}
},
{
"@timestamp": 1516383694000,
"model_number": "HG537PU",
"measures": {
"voltage": 4.2
}
},
{
"index": {}
},
{
"@timestamp": 1516297294000,
"model_number": "HG537PU",
"measures": {
"voltage": 4
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0fb7705ddbf1fc2b65d2de2e00fe5769.asciidoc 0000664 0000000 0000000 00000001404 14766462667 0027036 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/scripted-metric-aggregation.asciidoc:63
[source, python]
----
resp = client.search(
index="ledger",
size="0",
aggs={
"profit": {
"scripted_metric": {
"init_script": {
"id": "my_init_script"
},
"map_script": {
"id": "my_map_script"
},
"combine_script": {
"id": "my_combine_script"
},
"params": {
"field": "amount"
},
"reduce_script": {
"id": "my_reduce_script"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0fbca60a487f5f22a4d51d73b2434cc4.asciidoc 0000664 0000000 0000000 00000000644 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:37
[source, python]
----
resp = client.indices.create(
index="elser-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "sparse_vector"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0fc4b589df5388da784c6d981e769e31.asciidoc 0000664 0000000 0000000 00000001036 14766462667 0026601 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template-v1.asciidoc:155
[source, python]
----
resp = client.indices.put_template(
name="template_1",
index_patterns=[
"te*"
],
settings={
"number_of_shards": 1
},
aliases={
"alias1": {},
"alias2": {
"filter": {
"term": {
"user.id": "kimchy"
}
},
"routing": "shard-1"
},
"{index}-alias": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0fd08e14ad651827be53897a6bdaf0b8.asciidoc 0000664 0000000 0000000 00000000377 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-bool-prefix-query.asciidoc:13
[source, python]
----
resp = client.search(
query={
"match_bool_prefix": {
"message": "quick brown f"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/0fe74ccd098c742619805a7c0bd0fae6.asciidoc 0000664 0000000 0000000 00000000342 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/schedule-now-transform.asciidoc:58
[source, python]
----
resp = client.transform.schedule_now_transform(
transform_id="ecommerce_transform",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/100d4e33158069f3caa32e8bfa0eb3d0.asciidoc 0000664 0000000 0000000 00000000517 14766462667 0026652 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:175
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic": "runtime",
"properties": {
"@timestamp": {
"type": "date"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/102c7de25d13c87cf28839ada9f63c95.asciidoc 0000664 0000000 0000000 00000001074 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:213
[source, python]
----
resp = client.index(
index="index",
id="1",
document={
"my_date": "2016-05-11T16:30:55.328Z"
},
)
print(resp)
resp1 = client.search(
index="index",
query={
"constant_score": {
"filter": {
"range": {
"my_date": {
"gte": "now-1h",
"lte": "now"
}
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/103296e16b4233926ad1f07360385606.asciidoc 0000664 0000000 0000000 00000002415 14766462667 0026071 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1794
[source, python]
----
resp = client.indices.create(
index="turkish_example",
settings={
"analysis": {
"filter": {
"turkish_stop": {
"type": "stop",
"stopwords": "_turkish_"
},
"turkish_lowercase": {
"type": "lowercase",
"language": "turkish"
},
"turkish_keywords": {
"type": "keyword_marker",
"keywords": [
"örnek"
]
},
"turkish_stemmer": {
"type": "stemmer",
"language": "turkish"
}
},
"analyzer": {
"rebuilt_turkish": {
"tokenizer": "standard",
"filter": [
"apostrophe",
"turkish_lowercase",
"turkish_stop",
"turkish_keywords",
"turkish_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1070e59ba144cdf309fd9b2591612b95.asciidoc 0000664 0000000 0000000 00000000525 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/refresh.asciidoc:98
[source, python]
----
resp = client.index(
index="test",
id="3",
document={
"test": "test"
},
)
print(resp)
resp1 = client.index(
index="test",
id="4",
refresh=False,
document={
"test": "test"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/10796a4efa3c2a5e9e50b6bdeb08bbb9.asciidoc 0000664 0000000 0000000 00000001530 14766462667 0027110 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/update-desired-nodes.asciidoc:80
[source, python]
----
resp = client.perform_request(
"PUT",
"/_internal/desired_nodes/Ywkh3INLQcuPT49f6kcppA/100",
headers={"Content-Type": "application/json"},
body={
"nodes": [
{
"settings": {
"node.name": "instance-000187",
"node.external_id": "instance-000187",
"node.roles": [
"data_hot",
"master"
],
"node.attr.data": "hot",
"node.attr.logical_availability_zone": "zone-0"
},
"processors": 8,
"memory": "58gb",
"storage": "2tb"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/109db8ff7b715aca98de8ef1ab7e44ab.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0027205 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/post-resume-follow.asciidoc:43
[source, python]
----
resp = client.ccr.resume_follow(
index="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/10a16abe990288253ea25a1b1712fe3d.asciidoc 0000664 0000000 0000000 00000000652 14766462667 0026517 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-user.asciidoc:232
[source, python]
----
resp = client.perform_request(
"POST",
"/_security/_query/user",
params={
"with_profile_uid": "true"
},
headers={"Content-Type": "application/json"},
body={
"query": {
"prefix": {
"roles": "other"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/10b924bf6298aa6157ed00ce12f8edc1.asciidoc 0000664 0000000 0000000 00000002140 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/execute-watch.asciidoc:369
[source, python]
----
resp = client.watcher.execute_watch(
ignore_condition=True,
watch={
"trigger": {
"schedule": {
"interval": "10s"
}
},
"input": {
"search": {
"request": {
"indices": [
"logs"
],
"body": {
"query": {
"match": {
"message": "error"
}
}
}
}
}
},
"condition": {
"compare": {
"ctx.payload.hits.total": {
"gt": 0
}
}
},
"actions": {
"log_error": {
"logging": {
"text": "Found {{ctx.payload.hits.total}} errors in the logs"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/10d8b17e73d31dcd907de67327ed78a2.asciidoc 0000664 0000000 0000000 00000002651 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:578
[source, python]
----
resp = client.indices.create(
index="dutch_example",
settings={
"analysis": {
"filter": {
"dutch_stop": {
"type": "stop",
"stopwords": "_dutch_"
},
"dutch_keywords": {
"type": "keyword_marker",
"keywords": [
"voorbeeld"
]
},
"dutch_stemmer": {
"type": "stemmer",
"language": "dutch"
},
"dutch_override": {
"type": "stemmer_override",
"rules": [
"fiets=>fiets",
"bromfiets=>bromfiets",
"ei=>eier",
"kind=>kinder"
]
}
},
"analyzer": {
"rebuilt_dutch": {
"tokenizer": "standard",
"filter": [
"lowercase",
"dutch_stop",
"dutch_keywords",
"dutch_override",
"dutch_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/10d9da8a3b7061479be908c8c5c76cfb.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026703 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:223
[source, python]
----
resp = client.security.get_api_key(
realm_name="native1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/10de9fd4a38755020a07c4ec964d44c9.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/oidc-guide.asciidoc:431
[source, python]
----
resp = client.security.put_role_mapping(
name="oidc-example",
roles=[
"example_role"
],
enabled=True,
rules={
"field": {
"realm.name": "oidc1"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/10e4c1f246ada8c6b500d8ea6c1e335f.asciidoc 0000664 0000000 0000000 00000000745 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/shingle-tokenfilter.asciidoc:298
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"standard_shingle": {
"tokenizer": "standard",
"filter": [
"shingle"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/10f0c8fed98455c460c374b50ffbb204.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-migrate-data-stream-from-ilm-to-dsl.asciidoc:301
[source, python]
----
resp = client.indices.rollover(
alias="dsl-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/10f7a2c0a952ba3bc3d20b7d5f310f41.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search-application/apis/list-search-applications.asciidoc:99
[source, python]
----
resp = client.search_application.list()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/111c31db1fd29baeaa9964eafaea6789.asciidoc 0000664 0000000 0000000 00000000577 14766462667 0027125 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/run-as-privilege.asciidoc:184
[source, python]
----
resp = client.security.put_user(
username="analyst_user",
refresh=True,
password="l0nger-r4nd0mer-p@ssw0rd",
roles=[
"my_analyst_role"
],
full_name="Monday Jaffe",
metadata={
"innovation": 8
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/111c69ca94162c1523b799a5c14723dd.asciidoc 0000664 0000000 0000000 00000000370 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/term-query.asciidoc:118
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"full_text": "Quick Brown Foxes!"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1147a02afa087278e51fa365fb9e06b7.asciidoc 0000664 0000000 0000000 00000000234 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// api-conventions.asciidoc:355
[source, python]
----
resp = client.search(
size="1000",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/114d470e752efa9672ca68d7290fada8.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/add-alias.asciidoc:16
[source, python]
----
resp = client.indices.put_alias(
index="my-data-stream",
name="my-alias",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1153bd92ca18356db927054958cd95c6.asciidoc 0000664 0000000 0000000 00000000610 14766462667 0026407 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/function-score-query.asciidoc:269
[source, python]
----
resp = client.search(
query={
"function_score": {
"field_value_factor": {
"field": "my-int",
"factor": 1.2,
"modifier": "sqrt",
"missing": 1
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/115529722ba30b0b0d51a7ff87e59198.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-roles.asciidoc:64
[source, python]
----
resp = client.security.get_role(
name="my_admin_role",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/118f249a3b26c33416f641b33f2b74f8.asciidoc 0000664 0000000 0000000 00000001273 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pattern-tokenizer.asciidoc:128
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "pattern",
"pattern": ","
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="comma,separated,values",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/11be807bdeaeecc8174dec88e0851ea7.asciidoc 0000664 0000000 0000000 00000000446 14766462667 0027127 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:437
[source, python]
----
resp = client.perform_request(
"GET",
"/_connector/_sync_job",
params={
"connector_id": "my-connector-id",
"size": "1"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/11c395d1649733bcab853fe31ec393b2.asciidoc 0000664 0000000 0000000 00000000224 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/get-license.asciidoc:62
[source, python]
----
resp = client.license.get()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/11c43c4aa5435f8a99dcc0d1f03c648f.asciidoc 0000664 0000000 0000000 00000000510 14766462667 0026665 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/max-aggregation.asciidoc:99
[source, python]
----
resp = client.search(
index="sales",
aggs={
"grade_max": {
"max": {
"field": "grade",
"missing": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/11d9043d3050a7175069dec7e0adc963.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/regexp-syntax.asciidoc:50
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"my_field": "a\\b"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/11e772ff5dbb73408ae30a1a367a0d9b.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/delete-pipeline.asciidoc:97
[source, python]
----
resp = client.ingest.delete_pipeline(
id="*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/11e8d6e14686efabb8634b6522c05cb5.asciidoc 0000664 0000000 0000000 00000000727 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:467
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"pre_tags": [
"",
""
],
"post_tags": [
"",
""
],
"fields": {
"body": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/120fcf9f55128d6a81d5e87a9c235bbd.asciidoc 0000664 0000000 0000000 00000000576 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/chat-completion-inference.asciidoc:305
[source, python]
----
resp = client.inference.stream_inference(
task_type="chat_completion",
inference_id="openai-completion",
model="gpt-4o",
messages=[
{
"role": "user",
"content": "What is Elastic?"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1233be1d4c9c7ca54126f1a0693b26de.asciidoc 0000664 0000000 0000000 00000001263 14766462667 0026603 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:104
[source, python]
----
resp = client.index(
index="my-index-000001",
id="3",
routing="1",
refresh=True,
document={
"my_id": "3",
"text": "This is an answer",
"my_join_field": {
"name": "answer",
"parent": "1"
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="4",
routing="1",
refresh=True,
document={
"my_id": "4",
"text": "This is another answer",
"my_join_field": {
"name": "answer",
"parent": "1"
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/123693835b3b85b9a2fa6fd1d3ad89c7.asciidoc 0000664 0000000 0000000 00000000604 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/routing-field.asciidoc:20
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
routing="user1",
refresh=True,
document={
"title": "This is a document"
},
)
print(resp)
resp1 = client.get(
index="my-index-000001",
id="1",
routing="user1",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/12433d2b637d002e8d5c9a1adce69d3b.asciidoc 0000664 0000000 0000000 00000000261 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:106
[source, python]
----
resp = client.indices.create(
index="publications",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1252fa45847edba5ec2b2f33da70ec5b.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0027020 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:125
[source, python]
----
resp = client.cluster.state(
filter_path="routing_table.indices.**.state",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1259a9c151730e42de35bb2d1ba700c6.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026502 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-mapping.asciidoc:76
[source, python]
----
resp = client.indices.get_mapping(
index="my-index-000001,my-index-000002",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/128283698535116931dca9d16a16dca2.asciidoc 0000664 0000000 0000000 00000000240 14766462667 0026312 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-roles.asciidoc:99
[source, python]
----
resp = client.security.get_role()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1295f51b9e5d4ba9987b02478146b50b.asciidoc 0000664 0000000 0000000 00000000637 14766462667 0026416 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/high-jvm-memory-pressure.asciidoc:76
[source, python]
----
resp = client.indices.put_settings(
settings={
"index.max_result_window": 5000
},
)
print(resp)
resp1 = client.cluster.put_settings(
persistent={
"search.max_buckets": 20000,
"search.allow_expensive_queries": False
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/12adea5d76f73d94d80d42f53f67563f.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0026640 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:393
[source, python]
----
resp = client.indices.add_block(
index=".ml-anomalies-custom-example",
block="read_only",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/12cb446446211f95f651e196a1f059b4.asciidoc 0000664 0000000 0000000 00000000375 14766462667 0026323 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:302
[source, python]
----
resp = client.snapshot.create(
repository="my_repository",
snapshot="my_snapshot",
wait_for_completion=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/12d5ff4b8d3d832b32a7e7e2a520d0bb.asciidoc 0000664 0000000 0000000 00000000417 14766462667 0026741 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-calendar-event.asciidoc:162
[source, python]
----
resp = client.ml.get_calendar_events(
calendar_id="planned-outages",
start="1635638400000",
end="1635724800000",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/12e9e758f7f18a6cbf27e9d0aea57a19.asciidoc 0000664 0000000 0000000 00000000547 14766462667 0027006 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-managed-service.asciidoc:167
[source, python]
----
resp = client.update(
index=".elastic-connectors",
id="connector_id",
doc={
"features": {
"native_connector_api_keys": {
"enabled": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/12ec704d62ffedcb03787e6aba69d382.asciidoc 0000664 0000000 0000000 00000000700 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/shingle-tokenfilter.asciidoc:374
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "stop",
"stopwords": [
"a"
]
},
{
"type": "shingle",
"filler_token": "+"
}
],
text="fox jumps a lazy dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/12facf3617a41551ce2f0c4d005cb1c7.asciidoc 0000664 0000000 0000000 00000001016 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:82
[source, python]
----
resp = client.indices.create(
index="movies",
mappings={
"properties": {
"name_and_plot": {
"type": "text"
},
"name": {
"type": "text",
"copy_to": "name_and_plot"
},
"plot": {
"type": "text",
"copy_to": "name_and_plot"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1302e24b0476e0e9af7a2c890edf9f62.asciidoc 0000664 0000000 0000000 00000000447 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-api.asciidoc:406
[source, python]
----
resp = client.search(
index="my-index-000001",
track_total_hits=False,
query={
"match": {
"user.id": "elkbee"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1313c540fef7e7c18a066f07789673fc.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026500 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:673
[source, python]
----
resp = client.sql.get_async(
id="FmdMX2pIang3UWhLRU5QS0lqdlppYncaMUpYQ05oSkpTc3kwZ21EdC1tbFJXQToxOTI=",
keep_alive="5d",
wait_for_completion_timeout="2s",
format="json",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/132ea3d5a0ffb6b5203e356e8329f679.asciidoc 0000664 0000000 0000000 00000001143 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:315
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/134384b8c63cfbd8d762fb01757bb3f9.asciidoc 0000664 0000000 0000000 00000000716 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/constant-keyword.asciidoc:40
[source, python]
----
resp = client.index(
index="logs-debug",
document={
"date": "2019-12-12",
"message": "Starting up Elasticsearch",
"level": "debug"
},
)
print(resp)
resp1 = client.index(
index="logs-debug",
document={
"date": "2019-12-12",
"message": "Starting up Elasticsearch"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/135819da3a4bde684357c57a49ad8e85.asciidoc 0000664 0000000 0000000 00000000244 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/deprecation.asciidoc:67
[source, python]
----
resp = client.migration.deprecations()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13670d1534125831c2059eebd86d840c.asciidoc 0000664 0000000 0000000 00000002146 14766462667 0026314 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:283
[source, python]
----
resp = client.indices.create(
index="brazilian_example",
settings={
"analysis": {
"filter": {
"brazilian_stop": {
"type": "stop",
"stopwords": "_brazilian_"
},
"brazilian_keywords": {
"type": "keyword_marker",
"keywords": [
"exemplo"
]
},
"brazilian_stemmer": {
"type": "stemmer",
"language": "brazilian"
}
},
"analyzer": {
"rebuilt_brazilian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"brazilian_stop",
"brazilian_keywords",
"brazilian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/136ae86b8d497dda799cf1cb583df929.asciidoc 0000664 0000000 0000000 00000001312 14766462667 0026733 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-field-mapping.asciidoc:80
[source, python]
----
resp = client.indices.create(
index="publications",
mappings={
"properties": {
"id": {
"type": "text"
},
"title": {
"type": "text"
},
"abstract": {
"type": "text"
},
"author": {
"properties": {
"id": {
"type": "text"
},
"name": {
"type": "text"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/137709a0a0dc38d6094291c9fc75b804.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026400 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:348
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"counter": 1,
"tags": [
"production"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/137c62a4443bdd7d5b95a15022a9dc30.asciidoc 0000664 0000000 0000000 00000002241 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:86
[source, python]
----
resp = client.indices.create(
index="arabic_example",
settings={
"analysis": {
"filter": {
"arabic_stop": {
"type": "stop",
"stopwords": "_arabic_"
},
"arabic_keywords": {
"type": "keyword_marker",
"keywords": [
"مثال"
]
},
"arabic_stemmer": {
"type": "stemmer",
"language": "arabic"
}
},
"analyzer": {
"rebuilt_arabic": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"arabic_stop",
"arabic_normalization",
"arabic_keywords",
"arabic_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/138f7703c47ddf63633fdf5ca9bc7fa4.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:391
[source, python]
----
resp = client.index(
index="my-index-000001",
id="2",
routing="user1",
document={
"counter": 1,
"tags": [
"env2"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13917f7cfb6a382c293275ff71134ec4.asciidoc 0000664 0000000 0000000 00000000724 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:947
[source, python]
----
resp = client.render_search_template(
source={
"query": {
"match": {
"message": "Hello {{#name_exists}}{{query_string}}{{/name_exists}}{{^name_exists}}World{{/name_exists}}"
}
}
},
params={
"query_string": "Kimchy",
"name_exists": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13b02da42d3afe7f0b649e1c98ac9549.asciidoc 0000664 0000000 0000000 00000001314 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keep-types-tokenfilter.asciidoc:185
[source, python]
----
resp = client.indices.create(
index="keep_types_example",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"extract_alpha"
]
}
},
"filter": {
"extract_alpha": {
"type": "keep_types",
"types": [
""
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13cc51ca3a783cdbb1f1d353eaedbf23.asciidoc 0000664 0000000 0000000 00000000373 14766462667 0027152 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/troubleshooting.asciidoc:114
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.xpack.security.authc": "debug"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13d90ba227131aefbf4fcfd5992e662a.asciidoc 0000664 0000000 0000000 00000001703 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/bool-query.asciidoc:159
[source, python]
----
resp = client.search(
query={
"bool": {
"should": [
{
"match": {
"name.first": {
"query": "shay",
"_name": "first"
}
}
},
{
"match": {
"name.last": {
"query": "banon",
"_name": "last"
}
}
}
],
"filter": {
"terms": {
"name.last": [
"banon",
"kimchy"
],
"_name": "test"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13d91782399ba1f291e103c18b5338cc.asciidoc 0000664 0000000 0000000 00000001024 14766462667 0026372 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/create-index-from-source.asciidoc:94
[source, python]
----
resp = client.indices.create_from(
source="my-index",
dest="my-new-index",
create_from={
"settings_override": {
"index": {
"number_of_shards": 5
}
},
"mappings_override": {
"properties": {
"field2": {
"type": "boolean"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13df08eefc9ba98e311793bbca74133b.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-user-profile.asciidoc:115
[source, python]
----
resp = client.security.get_user_profile(
uid="u_79HkWkwmnBH5gqFKwoxggWPjEBOur1zLPXQPEl1VBW0_0",
data="app1.key1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13e3fefbf55f672926aa389d76fc8bea.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0027061 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/securing-communications/change-passwords-native-users.asciidoc:42
[source, python]
----
resp = client.security.change_password(
username="user1",
password="new-test-password",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13ebcb01ebf1b5d2b5c52739db47e30c.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0027005 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/recovery.asciidoc:185
[source, python]
----
resp = client.indices.recovery(
index="index1,index2",
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13ecdf99114098c76b050397d9c3d4e6.asciidoc 0000664 0000000 0000000 00000000477 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/post-inference.asciidoc:202
[source, python]
----
resp = client.inference.inference(
task_type="sparse_embedding",
inference_id="my-elser-model",
input="The sky above the port was the color of television tuned to a dead channel.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/13fe12cdb73bc89f07a83f1e6b127511.asciidoc 0000664 0000000 0000000 00000001042 14766462667 0026605 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:208
[source, python]
----
resp = client.indices.create(
index="google-vertex-ai-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 768,
"element_type": "float",
"similarity": "dot_product"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/141ef0ebaa3b0772892b79b9bb85efb0.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/update-inference.asciidoc:83
[source, python]
----
resp = client.inference.update(
inference_id="my-inference-endpoint",
inference_config={
"service_settings": {
"api_key": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/14254a0e725044faedf9370ead76f6ce.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-api.asciidoc:465
[source, python]
----
resp = client.search(
q="user.id:elkbee",
size="0",
terminate_after="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/142de21c40e84e2e2d8d832e5b3b36db.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/migrate-to-data-tiers-routing-guide.asciidoc:175
[source, python]
----
resp = client.ilm.migrate_to_data_tiers()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1445ca2e813ed1c25504107b4b11760e.asciidoc 0000664 0000000 0000000 00000000430 14766462667 0026342 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/getting-started.asciidoc:205
[source, python]
----
resp = client.ccr.follow(
index="server-metrics-follower",
wait_for_active_shards="1",
remote_cluster="leader",
leader_index="server-metrics",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1452829804551d2d6acedd4e73b29637.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026403 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/ignore-missing-component-templates.asciidoc:62
[source, python]
----
resp = client.indices.create_data_stream(
name="logs-foo-bar",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/146bd22fd0e7be2345619e8f11d3a4cb.asciidoc 0000664 0000000 0000000 00000000372 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/hotspotting.asciidoc:253
[source, python]
----
resp = client.cat.tasks(
v=True,
s="time:desc",
h="type,action,running_time,node,cancellable",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/147d341cb212dcc015c129a9c5dcf9c9.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026665 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/put-trained-models-aliases.asciidoc:87
[source, python]
----
resp = client.ml.put_trained_model_alias(
model_id="flight-delay-prediction-1574775339910",
model_alias="flight_delay_model",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/148edc235fcfbc263561f87f5533e688.asciidoc 0000664 0000000 0000000 00000001160 14766462667 0026561 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:196
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"percolate": {
"field": "query",
"documents": [
{
"message": "bonsai tree"
},
{
"message": "new tree"
},
{
"message": "the office"
},
{
"message": "office tree"
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/14936b96cfb8ff999a833f615ba75495.asciidoc 0000664 0000000 0000000 00000000734 14766462667 0026527 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:518
[source, python]
----
resp = client.search(
index="bicycles,other_cycles",
query={
"bool": {
"must": {
"match": {
"description": "dutch"
}
},
"filter": {
"term": {
"cycle_type": "bicycle"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/149a0eea54cdf6ea3052af6dba2d2a63.asciidoc 0000664 0000000 0000000 00000000640 14766462667 0027073 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-set-priority.asciidoc:29
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"set_priority": {
"priority": 50
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/14a1db30e13eb1d03cfd9710ca847ebb.asciidoc 0000664 0000000 0000000 00000001260 14766462667 0027004 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-new-data-stream.asciidoc:65
[source, python]
----
resp = client.bulk(
index="my-data-stream",
operations=[
{
"create": {}
},
{
"@timestamp": "2099-05-06T16:21:15.000Z",
"message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
},
{
"create": {}
},
{
"@timestamp": "2099-05-06T16:25:42.000Z",
"message": "192.0.2.255 - - [06/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/14a33c364873c2f930ca83d0a3005389.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026311 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/disk-usage-exceeded.asciidoc:46
[source, python]
----
resp = client.cluster.allocation_explain(
index="my-index",
shard=0,
primary=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/14af7e2899e64f231068bded6aaf9ec5.asciidoc 0000664 0000000 0000000 00000000730 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/dynamic.asciidoc:27
[source, python]
----
resp = client.index(
index="my-index-000001",
id="2",
document={
"username": "marywhite",
"email": "mary@white.com",
"name": {
"first": "Mary",
"middle": "Alice",
"last": "White"
}
},
)
print(resp)
resp1 = client.indices.get_mapping(
index="my-index-000001",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/14afe65afee3d43f27aaaa5b37f26a31.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0027101 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:164
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "Point",
"coordinates": [
-77.03653,
38.897676
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/14b81f96297952970b78a3216e059596.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0026131 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/async-search.asciidoc:159
[source, python]
----
resp = client.async_search.get(
id="FmRldE8zREVEUzA2ZVpUeGs2ejJFUFEaMkZ5QTVrSTZSaVN3WlNFVmtlWHJsdzoxMDc=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/14f124294a4a0e3a657d1468c36161cd.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026365 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/aggregate-metric-double.asciidoc:205
[source, python]
----
resp = client.search(
index="stats-index",
query={
"term": {
"agg_metric": {
"value": 702.3
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/14f2dab0583c5a9fcc39931d33194872.asciidoc 0000664 0000000 0000000 00000000266 14766462667 0026467 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:296
[source, python]
----
resp = client.search(
index="sample_weblogs_by_clientip",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/150b5fee5678bf8cdf0932da73eada80.asciidoc 0000664 0000000 0000000 00000001173 14766462667 0027045 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-stats.asciidoc:2556
[source, python]
----
resp = client.nodes.stats(
metric="indices",
index_metric="fielddata",
fields="field1,field2",
)
print(resp)
resp1 = client.nodes.stats(
metric="indices",
index_metric="fielddata",
level="indices",
fields="field1,field2",
)
print(resp1)
resp2 = client.nodes.stats(
metric="indices",
index_metric="fielddata",
level="shards",
fields="field1,field2",
)
print(resp2)
resp3 = client.nodes.stats(
metric="indices",
index_metric="fielddata",
fields="field*",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/151d2b11807ec684b0c01aa89189a801.asciidoc 0000664 0000000 0000000 00000000566 14766462667 0026365 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:474
[source, python]
----
resp = client.search(
query={
"query_string": {
"fields": [
"title",
"content"
],
"query": "this that thus",
"minimum_should_match": 2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1522a9297151d7046e6345b9b27539ca.asciidoc 0000664 0000000 0000000 00000000701 14766462667 0026241 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:340
[source, python]
----
resp = client.connector.update_configuration(
connector_id="my-connector-id",
values={
"host": "127.0.0.1",
"port": 5432,
"username": "myuser",
"password": "mypassword",
"database": "chinook",
"schema": "public",
"tables": "album,artist"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/154d703732daf5c5fcd0122e6a50213f.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:339
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
runtime={
"measures.start": {
"type": "long"
},
"measures.end": {
"type": "long"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/156bc64c94f9f3334fbce25165d2286a.asciidoc 0000664 0000000 0000000 00000000654 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/index-sorting.asciidoc:15
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index": {
"sort.field": "date",
"sort.order": "desc"
}
},
mappings={
"properties": {
"date": {
"type": "date"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1570976f7807b88dc8a046b833be057b.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/hotspotting.asciidoc:34
[source, python]
----
resp = client.cat.nodes(
v=True,
s="master,name",
h="name,master,node.role,heap.percent,disk.used_percent,cpu",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1572696b97822d3332be51700e09672f.asciidoc 0000664 0000000 0000000 00000000561 14766462667 0026171 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:130
[source, python]
----
resp = client.search(
index="range_index",
query={
"range": {
"time_frame": {
"gte": "2015-10-31",
"lte": "2015-11-01",
"relation": "within"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1598a0fec6b1ca78cadbaba65f465196.asciidoc 0000664 0000000 0000000 00000001417 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pattern-tokenizer.asciidoc:216
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "pattern",
"pattern": "\"((?:\\\\\"|[^\"]|\\\\\")+)\"",
"group": 1
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="\"value\", \"value with embedded \\\" quote\"",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/15a34bfe0ef8ef6333c8c7b55c011e5d.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:275
[source, python]
----
resp = client.indices.analyze(
filter=[
"lowercase"
],
text="BaR",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/15ac33d641b376d9494075eb1f0d4066.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/data-stream-reindex.asciidoc:224
[source, python]
----
resp = client.indices.cancel_migrate_reindex(
index="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/15c76cc8a038f686395053a240262929.asciidoc 0000664 0000000 0000000 00000000744 14766462667 0026174 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/classic-tokenfilter.asciidoc:132
[source, python]
----
resp = client.indices.create(
index="classic_example",
settings={
"analysis": {
"analyzer": {
"classic_analyzer": {
"tokenizer": "classic",
"filter": [
"classic"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/15d4be58359542775f4aff88e6d8adb5.asciidoc 0000664 0000000 0000000 00000000576 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:135
[source, python]
----
resp = client.ingest.simulate(
id="my-pipeline",
docs=[
{
"_source": {
"my-keyword-field": "FOO"
}
},
{
"_source": {
"my-keyword-field": "BAR"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/15d948d593d2624ac5e2b155052048f0.asciidoc 0000664 0000000 0000000 00000000453 14766462667 0026315 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/remove-duplicates-tokenfilter.asciidoc:24
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"keyword_repeat",
"stemmer"
],
text="jumping dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/15e90b82827c8512670820cf856a9c71.asciidoc 0000664 0000000 0000000 00000000706 14766462667 0026256 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/date-index-name.asciidoc:23
[source, python]
----
resp = client.ingest.put_pipeline(
id="monthlyindex",
description="monthly date-time index naming",
processors=[
{
"date_index_name": {
"field": "date1",
"index_name_prefix": "my-index-",
"date_rounding": "M"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/15f769bbd7b5fddeb3353ae726b71b14.asciidoc 0000664 0000000 0000000 00000003315 14766462667 0026762 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:405
[source, python]
----
resp = client.search(
index="my-index-bit-vectors",
query={
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "dotProduct(params.query_vector, 'my_dense_vector')",
"params": {
"query_vector": [
0.23,
1.45,
3.67,
4.89,
-0.56,
2.34,
3.21,
1.78,
-2.45,
0.98,
-0.12,
3.45,
4.56,
2.78,
1.23,
0.67,
3.89,
4.12,
-2.34,
1.56,
0.78,
3.21,
4.12,
2.45,
-1.67,
0.34,
-3.45,
4.56,
-2.78,
1.23,
-0.67,
3.89,
-4.34,
2.12,
-1.56,
0.78,
-3.21,
4.45,
2.12,
1.67
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1605be45a5711d1929d6ad2d1ae0f797.asciidoc 0000664 0000000 0000000 00000000341 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/discovery/voting.asciidoc:26
[source, python]
----
resp = client.cluster.state(
filter_path="metadata.cluster_coordination.last_committed_config",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/160de80948e0c7db49b1c311848a66a2.asciidoc 0000664 0000000 0000000 00000001652 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/getting-started.asciidoc:161
[source, python]
----
resp = client.watcher.put_watch(
id="log_error_watch",
trigger={
"schedule": {
"interval": "10s"
}
},
input={
"search": {
"request": {
"indices": [
"logs"
],
"body": {
"query": {
"match": {
"message": "error"
}
}
}
}
}
},
condition={
"compare": {
"ctx.payload.hits.total": {
"gt": 0
}
}
},
actions={
"log_error": {
"logging": {
"text": "Found {{ctx.payload.hits.total}} errors in the logs"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/160f39a50847bad0be4be1529a95e4ce.asciidoc 0000664 0000000 0000000 00000003517 14766462667 0026701 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1140
[source, python]
----
resp = client.indices.create(
index="irish_example",
settings={
"analysis": {
"filter": {
"irish_hyphenation": {
"type": "stop",
"stopwords": [
"h",
"n",
"t"
],
"ignore_case": True
},
"irish_elision": {
"type": "elision",
"articles": [
"d",
"m",
"b"
],
"articles_case": True
},
"irish_stop": {
"type": "stop",
"stopwords": "_irish_"
},
"irish_lowercase": {
"type": "lowercase",
"language": "irish"
},
"irish_keywords": {
"type": "keyword_marker",
"keywords": [
"sampla"
]
},
"irish_stemmer": {
"type": "stemmer",
"language": "irish"
}
},
"analyzer": {
"rebuilt_irish": {
"tokenizer": "standard",
"filter": [
"irish_hyphenation",
"irish_elision",
"irish_lowercase",
"irish_stop",
"irish_keywords",
"irish_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/16239fe9f0b0dcfd5ea64c08c6fed21d.asciidoc 0000664 0000000 0000000 00000001201 14766462667 0027112 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/reverse-nested-aggregation.asciidoc:22
[source, python]
----
resp = client.indices.create(
index="issues",
mappings={
"properties": {
"tags": {
"type": "keyword"
},
"comments": {
"type": "nested",
"properties": {
"username": {
"type": "keyword"
},
"comment": {
"type": "text"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/162b5b693b713f0bfab1209d59443c46.asciidoc 0000664 0000000 0000000 00000000502 14766462667 0026444 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/bool-query.asciidoc:133
[source, python]
----
resp = client.search(
query={
"constant_score": {
"filter": {
"term": {
"status": "active"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/16351d99d0608789d04a0bb11a537098.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0026242 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/edgengram-tokenfilter.asciidoc:143
[source, python]
----
resp = client.indices.create(
index="edge_ngram_example",
settings={
"analysis": {
"analyzer": {
"standard_edge_ngram": {
"tokenizer": "standard",
"filter": [
"edge_ngram"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1637ef51d673b35cc8894ee80cd61c87.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/high-cpu-usage.asciidoc:28
[source, python]
----
resp = client.cat.nodes(
v=True,
s="cpu:desc",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1648dd31d0fef01e7504ebeb687f4f30.asciidoc 0000664 0000000 0000000 00000002333 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rank-feature-query.asciidoc:92
[source, python]
----
resp = client.index(
index="test",
id="1",
refresh=True,
document={
"url": "https://en.wikipedia.org/wiki/2016_Summer_Olympics",
"content": "Rio 2016",
"pagerank": 50.3,
"url_length": 42,
"topics": {
"sports": 50,
"brazil": 30
}
},
)
print(resp)
resp1 = client.index(
index="test",
id="2",
refresh=True,
document={
"url": "https://en.wikipedia.org/wiki/2016_Brazilian_Grand_Prix",
"content": "Formula One motor race held on 13 November 2016",
"pagerank": 50.3,
"url_length": 47,
"topics": {
"sports": 35,
"formula one": 65,
"brazil": 20
}
},
)
print(resp1)
resp2 = client.index(
index="test",
id="3",
refresh=True,
document={
"url": "https://en.wikipedia.org/wiki/Deadpool_(film)",
"content": "Deadpool is a 2016 American superhero film",
"pagerank": 50.3,
"url_length": 37,
"topics": {
"movies": 60,
"super hero": 65
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/16535685833419f0033545ffce4fdf00.asciidoc 0000664 0000000 0000000 00000001156 14766462667 0026327 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:372
[source, python]
----
resp = client.search(
index="index2",
query={
"query_string": {
"query": "running with scissors",
"fields": [
"comment",
"comment.english"
]
}
},
highlight={
"order": "score",
"fields": {
"comment.english": {
"type": "fvh",
"matched_fields": [
"comment"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1659420311d907d9fc024b96f4150216.asciidoc 0000664 0000000 0000000 00000000561 14766462667 0026153 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/length-tokenfilter.asciidoc:27
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "length",
"min": 0,
"max": 4
}
],
text="the quick brown fox jumps over the lazy dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/16634cfa7916cf4e8048a1d70e6240f2.asciidoc 0000664 0000000 0000000 00000002750 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-client.asciidoc:427
[source, python]
----
resp = client.search_application.put(
name="my-example-app",
search_application={
"indices": [
"example-index"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"bool\": {\n \"must\": [\n {{#query}}\n {{/query}}\n ],\n \"filter\": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n \"_source\": {\n \"includes\": [\"title\", \"plot\"]\n },\n \"highlight\": {\n \"fields\": {\n \"title\": { \"fragment_size\": 0 },\n \"plot\": { \"fragment_size\": 200 }\n }\n },\n \"aggs\": {{#toJson}}_es_aggs{{/toJson}},\n \"from\": {{from}},\n \"size\": {{size}},\n \"sort\": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ",
"params": {
"query": "",
"_es_filters": {},
"_es_aggs": {},
"_es_sort_fields": {},
"size": 10,
"from": 0
},
"dictionary": {}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/166bcfc6d5d39defec7ad6aa44d0914b.asciidoc 0000664 0000000 0000000 00000000464 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:80
[source, python]
----
resp = client.tasks.list()
print(resp)
resp1 = client.tasks.list(
nodes="nodeId1,nodeId2",
)
print(resp1)
resp2 = client.tasks.list(
nodes="nodeId1,nodeId2",
actions="cluster:*",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/16985e5b17d2da0955a14fbe02e8dfca.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:243
[source, python]
----
resp = client.termvectors(
index="my-index-000001",
id="1",
fields=[
"text"
],
offsets=True,
payloads=True,
positions=True,
term_statistics=True,
field_statistics=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/169b39bb889ecd47541bed3e48725488.asciidoc 0000664 0000000 0000000 00000000371 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:73
[source, python]
----
resp = client.search(
index="bug_reports",
query={
"term": {
"labels": "urgent"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/16a7ce08b4a6b3af269f27eecc71d664.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:546
[source, python]
----
resp = client.indices.delete(
index="books",
)
print(resp)
resp1 = client.indices.delete(
index="my-explicit-mappings-books",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/170c8a3fb81a4e93cd3034a3b5a43ac9.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0026660 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-shape-query.asciidoc:280
[source, python]
----
resp = client.index(
index="test",
id="1",
document={
"location": {
"coordinates": [
[
46.25,
20.14
],
[
47.49,
19.04
]
],
"type": "multipoint"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/172155ca4bf6dfcbd489453f50739396.asciidoc 0000664 0000000 0000000 00000000401 14766462667 0026471 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-api.asciidoc:408
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="snapshot*",
size="2",
sort="name",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17266cee5eaaddf08e5534bf580a1910.asciidoc 0000664 0000000 0000000 00000000227 14766462667 0026674 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/stats.asciidoc:90
[source, python]
----
resp = client.watcher.stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/172b18e435c400bed85227624de3acfd.asciidoc 0000664 0000000 0000000 00000001304 14766462667 0026603 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/run-as-privilege.asciidoc:143
[source, python]
----
resp = client.security.put_role(
name="my_analyst_role",
refresh=True,
cluster=[
"monitor"
],
indices=[
{
"names": [
"index1",
"index2"
],
"privileges": [
"manage"
]
}
],
applications=[
{
"application": "myapp",
"privileges": [
"read"
],
"resources": [
"*"
]
}
],
metadata={
"version": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/172d150e56a225155a62c7b18bf8da67.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026455 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:502
[source, python]
----
resp = client.sql.query(
format="txt",
query="SELECT YEAR(release_date) AS year FROM library WHERE page_count > 300 AND author = 'Frank Herbert' GROUP BY year HAVING COUNT(*) > 0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17316a81c9dbdd120b7754116bf0461c.asciidoc 0000664 0000000 0000000 00000001470 14766462667 0026441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/_connectors-create-native-api-key.asciidoc:12
[source, python]
----
resp = client.security.create_api_key(
name="my-connector-api-key",
role_descriptors={
"my-connector-connector-role": {
"cluster": [
"monitor",
"manage_connector"
],
"indices": [
{
"names": [
"my-index_name",
".search-acl-filter-my-index_name",
".elastic-connectors*"
],
"privileges": [
"all"
],
"allow_restricted_indices": False
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1736545c8b5674f6d311f3277eb387f1.asciidoc 0000664 0000000 0000000 00000000401 14766462667 0026332 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-data-stream-retention.asciidoc:131
[source, python]
----
resp = client.indices.put_data_lifecycle(
name="my-data-stream",
data_retention="30d",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/173b190078621415a80e851eaf794e8a.asciidoc 0000664 0000000 0000000 00000001224 14766462667 0026321 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/standard-analyzer.asciidoc:154
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_english_analyzer": {
"type": "standard",
"max_token_length": 5,
"stopwords": "_english_"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_english_analyzer",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/174b93c323aa8e9cc8ee2a3df5736810.asciidoc 0000664 0000000 0000000 00000002616 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/delegate-pki-authentication.asciidoc:83
[source, python]
----
resp = client.security.delegate_pki(
x509_certificate_chain=[
"MIIDeDCCAmCgAwIBAgIUBzj/nGGKxP2iXawsSquHmQjCJmMwDQYJKoZIhvcNAQELBQAwUzErMCkGA1UEAxMiRWxhc3RpY3NlYXJjaCBUZXN0IEludGVybWVkaWF0ZSBDQTEWMBQGA1UECxMNRWxhc3RpY3NlYXJjaDEMMAoGA1UEChMDb3JnMB4XDTIzMDcxODE5MjkwNloXDTQzMDcxMzE5MjkwNlowSjEiMCAGA1UEAxMZRWxhc3RpY3NlYXJjaCBUZXN0IENsaWVudDEWMBQGA1UECxMNRWxhc3RpY3NlYXJjaDEMMAoGA1UEChMDb3JnMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAllHL4pQkkfwAm/oLkxYYO+r950DEy1bjH+4viCHzNADLCTWO+lOZJVlNx7QEzJE3QGMdif9CCBBxQFMapA7oUFCLq84fPSQQu5AnvvbltVD9nwVtCs+9ZGDjMKsz98RhSLMFIkxdxi6HkQ3Lfa4ZSI4lvba4oo+T/GveazBDS+NgmKyq00EOXt3tWi1G9vEVItommzXWfv0agJWzVnLMldwkPqsw0W7zrpyT7FZS4iLbQADGceOW8fiauOGMkscu9zAnDR/SbWl/chYioQOdw6ndFLn1YIFPd37xL0WsdsldTpn0vH3YfzgLMffT/3P6YlwBegWzsx6FnM/93Ecb4wIDAQABo00wSzAJBgNVHRMEAjAAMB0GA1UdDgQWBBQKNRwjW+Ad/FN1Rpoqme/5+jrFWzAfBgNVHSMEGDAWgBRcya0c0x/PaI7MbmJVIylWgLqXNjANBgkqhkiG9w0BAQsFAAOCAQEACZ3PF7Uqu47lplXHP6YlzYL2jL0D28hpj5lGtdha4Muw1m/BjDb0Pu8l0NQ1z3AP6AVcvjNDkQq6Y5jeSz0bwQlealQpYfo7EMXjOidrft1GbqOMFmTBLpLA9SvwYGobSTXWTkJzonqVaTcf80HpMgM2uEhodwTcvz6v1WEfeT/HMjmdIsq4ImrOL9RNrcZG6nWfw0HR3JNOgrbfyEztEI471jHznZ336OEcyX7gQuvHE8tOv5+oD1d7s3Xg1yuFp+Ynh+FfOi3hPCuaHA+7F6fLmzMDLVUBAllugst1C3U+L/paD7tqIa4ka+KNPCbSfwazmJrt4XNiivPR4hwH5g=="
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17566e23c191f1004a2719f2c4242307.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026133 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/get-autoscaling-capacity.asciidoc:268
[source, python]
----
resp = client.autoscaling.get_autoscaling_capacity()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/178be73b74ba9f297429e32267084ac7.asciidoc 0000664 0000000 0000000 00000001202 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-or-query.asciidoc:10
[source, python]
----
resp = client.search(
query={
"span_or": {
"clauses": [
{
"span_term": {
"field": "value1"
}
},
{
"span_term": {
"field": "value2"
}
},
{
"span_term": {
"field": "value3"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/178c920d5e8ec0071f77290fa059802c.asciidoc 0000664 0000000 0000000 00000000426 14766462667 0026406 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/update-settings.asciidoc:138
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"refresh_interval": "1s"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/179f0a3e84ff4bbac18787a018eabf89.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:482
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "Jon",
"type": "cross_fields",
"analyzer": "standard",
"fields": [
"first",
"last",
"*.edge"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17a1e308761afd3282f13d44d7be008a.asciidoc 0000664 0000000 0000000 00000000564 14766462667 0026527 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:699
[source, python]
----
resp = client.indices.create(
index="example",
mappings={
"properties": {
"comment": {
"type": "text",
"term_vector": "with_positions_offsets"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17b1647c8509543f2388c886f2584a20.asciidoc 0000664 0000000 0000000 00000001313 14766462667 0026176 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// reranking/semantic-reranking.asciidoc:107
[source, python]
----
resp = client.search(
retriever={
"text_similarity_reranker": {
"retriever": {
"standard": {
"query": {
"match": {
"text": "How often does the moon hide the sun?"
}
}
}
},
"field": "text",
"inference_id": "elastic-rerank",
"inference_text": "How often does the moon hide the sun?",
"rank_window_size": 100,
"min_score": 0.5
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17c2b0a6b0305804ff3b7fd3b4a68df3.asciidoc 0000664 0000000 0000000 00000001310 14766462667 0026655 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/simulate-pipeline.asciidoc:223
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"description": "_description",
"processors": [
{
"set": {
"field": "field2",
"value": "_value"
}
}
]
},
docs=[
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17dd67a66c49f7eb618dd17430e48dfa.asciidoc 0000664 0000000 0000000 00000000667 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:239
[source, python]
----
resp = client.search(
index="index",
query={
"constant_score": {
"filter": {
"range": {
"my_date": {
"gte": "now-1h/m",
"lte": "now/m"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17e6f3fac556f08a78f7a876e71acb89.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/allocation/delayed.asciidoc:40
[source, python]
----
resp = client.indices.put_settings(
index="_all",
settings={
"settings": {
"index.unassigned.node_left.delayed_timeout": "5m"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17f8a8990b0166befa3bc2b10fd28134.asciidoc 0000664 0000000 0000000 00000000476 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:40
[source, python]
----
resp = client.index(
index="my-index-000001",
id="match_value",
document={
"query": {
"match": {
"field": "value"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/17fb298fb1e47f7d946a772d68f4e2df.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:246
[source, python]
----
resp = client.delete_by_query(
index="my-data-stream",
query={
"match": {
"user.id": "vlb44hny"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/182df084f028479ecbe8d7648ddad892.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0026651 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/start-ilm.asciidoc:84
[source, python]
----
resp = client.ilm.get_status()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/186a7143d50e8c3ee01094e1a9ff0c0c.asciidoc 0000664 0000000 0000000 00000001613 14766462667 0026605 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:659
[source, python]
----
resp = client.indices.create(
index="passage_vectors",
mappings={
"properties": {
"full_text": {
"type": "text"
},
"creation_time": {
"type": "date"
},
"paragraph": {
"type": "nested",
"properties": {
"vector": {
"type": "dense_vector",
"dims": 2,
"index_options": {
"type": "hnsw"
}
},
"text": {
"type": "text",
"index": False
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/187733e50c60350f3f75921bea3b72c2.asciidoc 0000664 0000000 0000000 00000000573 14766462667 0026376 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:615
[source, python]
----
resp = client.search(
index="my-index-000001",
scroll="1m",
slice={
"field": "@timestamp",
"id": 0,
"max": 10
},
query={
"match": {
"message": "foo"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/187e8786e0a90f1f6278cf89b670de0a.asciidoc 0000664 0000000 0000000 00000002177 14766462667 0026576 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:891
[source, python]
----
resp = client.indices.create(
index="german_example",
settings={
"analysis": {
"filter": {
"german_stop": {
"type": "stop",
"stopwords": "_german_"
},
"german_keywords": {
"type": "keyword_marker",
"keywords": [
"Beispiel"
]
},
"german_stemmer": {
"type": "stemmer",
"language": "light_german"
}
},
"analyzer": {
"rebuilt_german": {
"tokenizer": "standard",
"filter": [
"lowercase",
"german_stop",
"german_keywords",
"german_normalization",
"german_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/188e6208cccb13027a5c1c95440841ee.asciidoc 0000664 0000000 0000000 00000002274 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filters-aggregation.asciidoc:13
[source, python]
----
resp = client.bulk(
index="logs",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"body": "warning: page could not be rendered"
},
{
"index": {
"_id": 2
}
},
{
"body": "authentication error"
},
{
"index": {
"_id": 3
}
},
{
"body": "warning: connection timed out"
}
],
)
print(resp)
resp1 = client.search(
index="logs",
size=0,
aggs={
"messages": {
"filters": {
"filters": {
"errors": {
"match": {
"body": "error"
}
},
"warnings": {
"match": {
"body": "warning"
}
}
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/189f0cd1ee2485cf11a2968f01d54e5b.asciidoc 0000664 0000000 0000000 00000001357 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/derivative-aggregation.asciidoc:235
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
},
"sales_deriv": {
"derivative": {
"buckets_path": "sales",
"unit": "day"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/18ddb7e7a4bcafd449df956e828ed7a8.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0027144 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:552
[source, python]
----
resp = client.tasks.cancel(
task_id="r1A2WoRbTwKZ516z6NEs5A:36619",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/190a21e32db2125ddaea0f634e126a84.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/clone-index.asciidoc:97
[source, python]
----
resp = client.indices.clone(
index="my_source_index",
target="my_target_index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/19174d872fd1e43cbfb7a96a33d13c96.asciidoc 0000664 0000000 0000000 00000003533 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cartesian-centroid-aggregation.asciidoc:183
[source, python]
----
resp = client.indices.create(
index="places",
mappings={
"properties": {
"geometry": {
"type": "shape"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="places",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"name": "NEMO Science Museum",
"geometry": "POINT(491.2350 5237.4081)"
},
{
"index": {
"_id": 2
}
},
{
"name": "Sportpark De Weeren",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
496.5305328369141,
5239.347642069457
],
[
496.6979026794433,
5239.172175893484
],
[
496.9425201416015,
5239.238958618537
],
[
496.7944622039794,
5239.420969150824
],
[
496.5305328369141,
5239.347642069457
]
]
]
}
}
],
)
print(resp1)
resp2 = client.search(
index="places",
size="0",
aggs={
"centroid": {
"cartesian_centroid": {
"field": "geometry"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/192fa1f6f51dfb640e9e15bb5cd7eebc.asciidoc 0000664 0000000 0000000 00000000256 14766462667 0027203 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/error-handling.asciidoc:148
[source, python]
----
resp = client.ilm.retry(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/193234bb5dc6451fd15b584fbefd2446.asciidoc 0000664 0000000 0000000 00000001173 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/role-templates.asciidoc:16
[source, python]
----
resp = client.security.put_role(
name="example1",
indices=[
{
"names": [
"my-index-000001"
],
"privileges": [
"read"
],
"query": {
"template": {
"source": {
"term": {
"acl.username": "{{_user.username}}"
}
}
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/193704020a19714dec390452a4e75e8d.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026310 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:54
[source, python]
----
resp = client.indices.create(
index="books",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/193d86b6cc34e12c2be806d27816a35c.asciidoc 0000664 0000000 0000000 00000001147 14766462667 0026540 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:363
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
params={
"size": 5,
"query_string": "mountain climbing",
"text_fields": [
{
"name": "title",
"boost": 10
},
{
"name": "description",
"boost": 2
},
{
"name": "state",
"boost": 1
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/194bbac15e709174ac85b681f3a3d137.asciidoc 0000664 0000000 0000000 00000001176 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template.asciidoc:195
[source, python]
----
resp = client.indices.put_index_template(
name="template_1",
index_patterns=[
"template*"
],
template={
"settings": {
"number_of_shards": 1
},
"aliases": {
"alias1": {},
"alias2": {
"filter": {
"term": {
"user.id": "kimchy"
}
},
"routing": "shard-1"
},
"{index}-alias": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/196aed02b11def364bab84e455c1a073.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0026652 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template.asciidoc:333
[source, python]
----
resp = client.indices.put_index_template(
name="template_1",
index_patterns=[
"logs-*"
],
data_stream={},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/199f5165d876267080046c907e93483f.asciidoc 0000664 0000000 0000000 00000000373 14766462667 0026137 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:153
[source, python]
----
resp = client.indices.analyze(
index="my-index-000001",
field="my-field",
text="this is a test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/19c00c6b29bc7dbc5e92b3668da2da93.asciidoc 0000664 0000000 0000000 00000000733 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/simulate-ingest.asciidoc:279
[source, python]
----
resp = client.simulate.ingest(
docs=[
{
"_index": "my-index",
"_id": "123",
"_source": {
"foo": "bar"
}
},
{
"_index": "my-index",
"_id": "456",
"_source": {
"foo": "rab"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/19ee488226d357d1576e7d3ae7a4693f.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/keyword-analyzer.asciidoc:14
[source, python]
----
resp = client.indices.analyze(
analyzer="keyword",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a1f3421717ff744ed83232729289bb0.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0026324 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// slm/apis/slm-delete.asciidoc:71
[source, python]
----
resp = client.slm.delete_lifecycle(
policy_id="daily-snapshots",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a2890b90f3699fc2a4f27f94b145be9.asciidoc 0000664 0000000 0000000 00000001003 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:487
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="nightly-cluster-state-snapshots",
schedule="0 30 2 * * ?",
name="",
repository="my_secure_repository",
config={
"include_global_state": True,
"indices": "-*"
},
retention={
"expire_after": "30d",
"min_count": 5,
"max_count": 50
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a3897cfb4f974c09d0d847baac8aa6d.asciidoc 0000664 0000000 0000000 00000000444 14766462667 0027051 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/hotspotting.asciidoc:196
[source, python]
----
resp = client.indices.stats(
level="shards",
human=True,
expand_wildcards="all",
filter_path="indices.*.total.indexing.index_total",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a3a4b8a4bfee4ab84ddd13d8835f560.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0027033 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/start-dfanalytics.asciidoc:88
[source, python]
----
resp = client.ml.start_data_frame_analytics(
id="loganalytics",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a4f8beb6847678880ca113ee6fb75ca.asciidoc 0000664 0000000 0000000 00000000555 14766462667 0026720 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/completion-suggest.asciidoc:362
[source, python]
----
resp = client.search(
index="music",
pretty=True,
suggest={
"song-suggest": {
"regex": "n[ever|i]r",
"completion": {
"field": "suggest"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a56df055b94466ca76818e0858752c6.asciidoc 0000664 0000000 0000000 00000000650 14766462667 0026343 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:97
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="openai_embeddings",
inference_config={
"service": "openai",
"service_settings": {
"api_key": "",
"model_id": "text-embedding-ada-002"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a6dbe5df488c4a16e2f1101ba8a25d9.asciidoc 0000664 0000000 0000000 00000000357 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pattern-tokenizer.asciidoc:32
[source, python]
----
resp = client.indices.analyze(
tokenizer="pattern",
text="The foo_bar_size's default is 5.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a7483796087053ba55029d0dc2ab356.asciidoc 0000664 0000000 0000000 00000000534 14766462667 0026314 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/multivalued-fields.asciidoc:191
[source, python]
----
resp = client.index(
index="mv",
refresh=True,
document={
"a": [
2,
None,
1
]
},
)
print(resp)
resp1 = client.esql.query(
query="FROM mv | LIMIT 1",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/1a81fe0186369838531e116e85aa4ccd.asciidoc 0000664 0000000 0000000 00000001213 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/filter-search-results.asciidoc:29
[source, python]
----
resp = client.indices.create(
index="shirts",
mappings={
"properties": {
"brand": {
"type": "keyword"
},
"color": {
"type": "keyword"
},
"model": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.index(
index="shirts",
id="1",
refresh=True,
document={
"brand": "gucci",
"color": "red",
"model": "slim"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/1a8d92e93481c432a91f7c213099800a.asciidoc 0000664 0000000 0000000 00000000253 14766462667 0026316 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-api-key.asciidoc:295
[source, python]
----
resp = client.security.query_api_keys()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a9e03ce0355872a7db27fedc783fbec.asciidoc 0000664 0000000 0000000 00000000673 14766462667 0027051 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-google-vertex-ai.asciidoc:151
[source, python]
----
resp = client.inference.put(
task_type="rerank",
inference_id="google_vertex_ai_rerank",
inference_config={
"service": "googlevertexai",
"service_settings": {
"service_account_json": "",
"project_id": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1a9efb56adb2cd84faa9825a129381b9.asciidoc 0000664 0000000 0000000 00000000536 14766462667 0026766 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-search.asciidoc:222
[source, python]
----
resp = client.rollup.rollup_search(
index="sensor-1,sensor_rollup",
size=0,
aggregations={
"max_temperature": {
"max": {
"field": "temperature"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1aa91d3d48140d6367b6cabca8737b8f.asciidoc 0000664 0000000 0000000 00000001357 14766462667 0026703 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/bulk.asciidoc:642
[source, python]
----
resp = client.bulk(
operations=[
{
"update": {
"_id": "5",
"_index": "index1"
}
},
{
"doc": {
"my_field": "foo"
}
},
{
"update": {
"_id": "6",
"_index": "index1"
}
},
{
"doc": {
"my_field": "foo"
}
},
{
"create": {
"_id": "7",
"_index": "index1"
}
},
{
"my_field": "foo"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1aa96eeaf63fc967e166d1a2fcdccccc.asciidoc 0000664 0000000 0000000 00000001506 14766462667 0027342 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/subobjects.asciidoc:131
[source, python]
----
resp = client.indices.create(
index="my-index-000002",
mappings={
"properties": {
"metrics": {
"subobjects": False,
"properties": {
"time": {
"type": "object",
"properties": {
"min": {
"type": "long"
},
"max": {
"type": "long"
}
}
}
}
}
}
},
)
print(resp)
resp1 = client.indices.get_mapping(
index="my-index-000002",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/1adee74383e5594e45c937177d75aa2a.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/unsigned_long.asciidoc:93
[source, python]
----
resp = client.search(
index="my_index",
query={
"match_all": {}
},
sort={
"my_counter": "desc"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b076ceb1ead9f6897c2f351f0e45f74.asciidoc 0000664 0000000 0000000 00000001261 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-api-keys.asciidoc:226
[source, python]
----
resp = client.security.create_api_key(
name="my-restricted-api-key",
role_descriptors={
"my-restricted-role-descriptor": {
"indices": [
{
"names": [
"my-search-app"
],
"privileges": [
"read"
]
}
],
"restriction": {
"workflows": [
"search_application_query"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b0b29e5cd7550c648d0892378e93804.asciidoc 0000664 0000000 0000000 00000000370 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-calendar-job.asciidoc:42
[source, python]
----
resp = client.ml.delete_calendar_job(
calendar_id="planned-outages",
job_id="total-requests",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b0dc9d076bbb58c6a2953ef4323d2fc.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/ack-watch.asciidoc:196
[source, python]
----
resp = client.watcher.ack_watch(
watch_id="my_watch",
action_id="test_index",
)
print(resp)
resp1 = client.watcher.get_watch(
id="my_watch",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/1b0f40959a7a4d124372f2bd3f7eac85.asciidoc 0000664 0000000 0000000 00000001343 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/fingerprint-tokenfilter.asciidoc:117
[source, python]
----
resp = client.indices.create(
index="custom_fingerprint_example",
settings={
"analysis": {
"analyzer": {
"whitespace_": {
"tokenizer": "whitespace",
"filter": [
"fingerprint_plus_concat"
]
}
},
"filter": {
"fingerprint_plus_concat": {
"type": "fingerprint",
"max_output_size": 100,
"separator": "+"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b2ab75d3c8064fac6ecc63104396c02.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0026600 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/put-calendar-job.asciidoc:42
[source, python]
----
resp = client.ml.put_calendar_job(
calendar_id="planned-outages",
job_id="total-requests",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b3762712c14a19e8c2956b4f530d327.asciidoc 0000664 0000000 0000000 00000001273 14766462667 0026316 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/put-follow.asciidoc:114
[source, python]
----
resp = client.ccr.follow(
index="follower_index",
wait_for_active_shards="1",
remote_cluster="remote_cluster",
leader_index="leader_index",
settings={
"index.number_of_replicas": 0
},
max_read_request_operation_count=1024,
max_outstanding_read_requests=16,
max_read_request_size="1024k",
max_write_request_operation_count=32768,
max_write_request_size="16k",
max_outstanding_write_requests=8,
max_write_buffer_count=512,
max_write_buffer_size="512k",
max_retry_delay="10s",
read_poll_timeout="30s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b37e2237c9e3aaf84d56cc5c0bdb9ec.asciidoc 0000664 0000000 0000000 00000000673 14766462667 0027123 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/error-handling.asciidoc:19
[source, python]
----
resp = client.ilm.put_lifecycle(
name="shrink-index",
policy={
"phases": {
"warm": {
"min_age": "5d",
"actions": {
"shrink": {
"number_of_shards": 4
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b47d988b218ee595430ec91eba91d80.asciidoc 0000664 0000000 0000000 00000000711 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/ignore-missing-component-templates.asciidoc:47
[source, python]
----
resp = client.indices.put_index_template(
name="logs-foo",
index_patterns=[
"logs-foo-*"
],
data_stream={},
composed_of=[
"logs-foo_component1",
"logs-foo_component2"
],
ignore_missing_component_templates=[
"logs-foo_component2"
],
priority=500,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b5c8d6e61930a308008b5b1ace2aa07.asciidoc 0000664 0000000 0000000 00000001163 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/properties.asciidoc:74
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"manager.name": "Alice White"
}
},
aggs={
"Employees": {
"nested": {
"path": "employees"
},
"aggs": {
"Employee Ages": {
"histogram": {
"field": "employees.age",
"interval": 5
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1b98b60d8e558fcccf9c550bdbf5b5c9.asciidoc 0000664 0000000 0000000 00000001074 14766462667 0027141 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/role-templates.asciidoc:75
[source, python]
----
resp = client.security.put_role(
name="example3",
indices=[
{
"names": [
"my-index-000001"
],
"privileges": [
"read"
],
"query": {
"template": {
"source": "{ \"terms\": { \"group.statuses\": {{#toJson}}_user.metadata.statuses{{/toJson}} }}"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ba7afe23a26fe9ac7856d8c5bc1059d.asciidoc 0000664 0000000 0000000 00000002135 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1502
[source, python]
----
resp = client.indices.create(
index="romanian_example",
settings={
"analysis": {
"filter": {
"romanian_stop": {
"type": "stop",
"stopwords": "_romanian_"
},
"romanian_keywords": {
"type": "keyword_marker",
"keywords": [
"exemplu"
]
},
"romanian_stemmer": {
"type": "stemmer",
"language": "romanian"
}
},
"analyzer": {
"rebuilt_romanian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"romanian_stop",
"romanian_keywords",
"romanian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1bceb160ed2bcd51ee040caf21acf780.asciidoc 0000664 0000000 0000000 00000003704 14766462667 0027145 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:391
[source, python]
----
resp = client.search_application.put(
name="my-search-app",
search_application={
"indices": [
"index1"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"retriever\": {\n \"rrf\": {\n \"retrievers\": [\n {{#text_fields}}\n {\n \"standard\": {\n \"query\": {\n \"match\": {\n \"{{.}}\": \"{{query_string}}\"\n }\n }\n }\n },\n {{/text_fields}}\n {{#elser_fields}}\n {\n \"standard\": {\n \"query\": {\n \"sparse_vector\": {\n \"field\": \"ml.inference.{{.}}_expanded.predicted_value\",\n \"inference_id\": \"\",\n \"query\": \"{{query_string}}\"\n }\n }\n }\n },\n {{/elser_fields}}\n ],\n \"rank_window_size\": {{rrf.rank_window_size}},\n \"rank_constant\": {{rrf.rank_constant}}\n }\n }\n }\n ",
"params": {
"elser_fields": [
"title",
"meta_description"
],
"text_fields": [
"title",
"meta_description"
],
"query_string": "",
"rrf": {
"rank_window_size": 100,
"rank_constant": 60
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1c142bc8cac8d9dcb4f60e22902d434f.asciidoc 0000664 0000000 0000000 00000000614 14766462667 0026746 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/string-stats-aggregation.asciidoc:65
[source, python]
----
resp = client.search(
index="my-index-000001",
size="0",
aggs={
"message_stats": {
"string_stats": {
"field": "message.keyword",
"show_distribution": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1c1f2a6a193d9e64c37242b2824b3031.asciidoc 0000664 0000000 0000000 00000002405 14766462667 0026356 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/tsds-reindex.asciidoc:44
[source, python]
----
resp = client.cluster.put_component_template(
name="source_template",
template={
"settings": {
"index": {
"number_of_replicas": 2,
"number_of_shards": 2,
"mode": "time_series",
"routing_path": [
"metricset"
]
}
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"metricset": {
"type": "keyword",
"time_series_dimension": True
},
"k8s": {
"properties": {
"tx": {
"type": "long"
},
"rx": {
"type": "long"
}
}
}
}
}
},
)
print(resp)
resp1 = client.indices.put_index_template(
name="1",
index_patterns=[
"k8s*"
],
composed_of=[
"source_template"
],
data_stream={},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/1c330f0fc9eac19d0edeb8c4017b9b93.asciidoc 0000664 0000000 0000000 00000001014 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:67
[source, python]
----
resp = client.ingest.put_pipeline(
id="hugging_face_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "hugging_face_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1c3e3c4f2d268f1826a9b417e1868a58.asciidoc 0000664 0000000 0000000 00000000525 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:317
[source, python]
----
resp = client.update(
index="my-index-000001",
id="1",
script={
"source": "ctx._source.tags.add(params['tag'])",
"lang": "painless",
"params": {
"tag": "blue"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1c87b5bf682bc1e8809a657529e14b07.asciidoc 0000664 0000000 0000000 00000002153 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-shape-query.asciidoc:189
[source, python]
----
resp = client.indices.create(
index="shapes",
mappings={
"properties": {
"location": {
"type": "geo_shape"
}
}
},
)
print(resp)
resp1 = client.index(
index="shapes",
id="deu",
document={
"location": {
"type": "envelope",
"coordinates": [
[
13,
53
],
[
14,
52
]
]
}
},
)
print(resp1)
resp2 = client.search(
index="example",
query={
"bool": {
"filter": {
"geo_shape": {
"location": {
"indexed_shape": {
"index": "shapes",
"id": "deu",
"path": "location"
}
}
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/1c8b6768c4eefc76fcb38708152f561b.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/delete-dfanalytics.asciidoc:57
[source, python]
----
resp = client.ml.delete_data_frame_analytics(
id="loganalytics",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1c9dac4183a3532c91dbd1a46907729b.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:459
[source, python]
----
resp = client.indices.delete(
index="music",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cab9da122778a95061831265c250cc1.asciidoc 0000664 0000000 0000000 00000001051 14766462667 0026354 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/valuecount-aggregation.asciidoc:49
[source, python]
----
resp = client.search(
index="sales",
size=0,
runtime_mappings={
"tags": {
"type": "keyword",
"script": "\n emit(doc['type'].value);\n if (doc['promoted'].value) {\n emit('hot');\n }\n "
}
},
aggs={
"tags_count": {
"value_count": {
"field": "tags"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cadbcf2cfeb312f73b7f098291356ac.asciidoc 0000664 0000000 0000000 00000000365 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:345
[source, python]
----
resp = client.index(
index="example",
document={
"location": "MULTIPOINT (102.0 2.0, 103.0 2.0)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cb3b45335ab1b9697c358104d44ea39.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/using-ip-filtering.asciidoc:158
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"xpack.security.transport.filter.enabled": False
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cbecd19be22979aefb45b4f160e77ea.asciidoc 0000664 0000000 0000000 00000001025 14766462667 0027120 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:171
[source, python]
----
resp = client.ingest.put_pipeline(
id="google_vertex_ai_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "google_vertex_ai_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cca4bb2f0ea7e43181be8bd965149d4.asciidoc 0000664 0000000 0000000 00000000372 14766462667 0026753 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1296
[source, python]
----
resp = client.eql.get(
id="FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
wait_for_completion_timeout="2s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cd3b9d65576a9212eef898eb3105758.asciidoc 0000664 0000000 0000000 00000000357 14766462667 0026507 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/restart-cluster.asciidoc:35
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.enable": "primaries"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cea60c47d5c0e150b4c8fff4cd75ffe.asciidoc 0000664 0000000 0000000 00000001407 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/script.asciidoc:112
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"processors": [
{
"script": {
"description": "Set index based on `lang` field and `dataset` param",
"lang": "painless",
"source": "\n ctx['_index'] = ctx['lang'] + '-' + params['dataset'];\n ",
"params": {
"dataset": "catalog"
}
}
}
]
},
docs=[
{
"_index": "generic-index",
"_source": {
"lang": "fr"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ceaa211756e2db3d48c6bc4b1a861b0.asciidoc 0000664 0000000 0000000 00000000551 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:944
[source, python]
----
resp = client.eql.search(
index="my-index*",
max_samples_per_key=2,
size=20,
query="\n sample\n [any where uptime > 0] by host,os\n [any where port > 100] by host,op_sys\n [any where bool == true] by host,os\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cecd4d87a92427175157d41859df2af.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0026547 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/allocation-explain.asciidoc:16
[source, python]
----
resp = client.cluster.allocation_explain(
index="my-index-000001",
shard=0,
primary=False,
current_node="my-node",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1cfa04e9654c1484e3d4c75bf439400a.asciidoc 0000664 0000000 0000000 00000002630 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:226
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "polygon",
"coordinates": [
[
[
1000,
-1001
],
[
1001,
-1001
],
[
1001,
-1000
],
[
1000,
-1000
],
[
1000,
-1001
]
],
[
[
1000.2,
-1001.2
],
[
1000.8,
-1001.2
],
[
1000.8,
-1001.8
],
[
1000.2,
-1001.8
],
[
1000.2,
-1001.2
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1d252d9217c61c2c1cbe7a92f77b078f.asciidoc 0000664 0000000 0000000 00000003463 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-api-key.asciidoc:613
[source, python]
----
resp = client.security.query_api_keys(
size=0,
query={
"bool": {
"must": {
"term": {
"invalidated": False
}
},
"should": [
{
"range": {
"expiration": {
"gte": "now"
}
}
},
{
"bool": {
"must_not": {
"exists": {
"field": "expiration"
}
}
}
}
],
"minimum_should_match": 1
}
},
aggs={
"keys_by_username": {
"composite": {
"sources": [
{
"usernames": {
"terms": {
"field": "username"
}
}
}
]
},
"aggs": {
"expires_soon": {
"filter": {
"range": {
"expiration": {
"lte": "now+30d/d"
}
}
},
"aggs": {
"key_names": {
"terms": {
"field": "name"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1d746272a7511bf91302a15b5c58ca0e.asciidoc 0000664 0000000 0000000 00000000666 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:707
[source, python]
----
resp = client.search(
index="passage_vectors",
fields=[
"full_text",
"creation_time"
],
source=False,
knn={
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1d9b695a17cffd910c496c9b03c75d6f.asciidoc 0000664 0000000 0000000 00000001165 14766462667 0026722 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-migrate-data-stream-from-ilm-to-dsl.asciidoc:34
[source, python]
----
resp = client.ilm.put_lifecycle(
name="pre-dsl-ilm-policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_size": "50gb"
}
}
},
"delete": {
"min_age": "7d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1dadb7efe27b6c0c231eb6535e413bd9.asciidoc 0000664 0000000 0000000 00000001002 14766462667 0027016 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-azure-ai-studio.asciidoc:168
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="azure_ai_studio_embeddings",
inference_config={
"service": "azureaistudio",
"service_settings": {
"api_key": "",
"target": "",
"provider": "",
"endpoint_type": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1db086021e83205b6eab3b7765911cc2.asciidoc 0000664 0000000 0000000 00000000633 14766462667 0026441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/parent-aggregation.asciidoc:16
[source, python]
----
resp = client.indices.create(
index="parent_example",
mappings={
"properties": {
"join": {
"type": "join",
"relations": {
"question": "answer"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1db715eb00832686ecddb6603684fc26.asciidoc 0000664 0000000 0000000 00000000251 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/enroll-kibana.asciidoc:34
[source, python]
----
resp = client.security.enroll_kibana()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1dbb8cf17fbc45c87c7d2f75f15f9778.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0027011 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:102
[source, python]
----
resp = client.cluster.state(
filter_path="metadata.indices.*.stat*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e08e054c761353f99211cd18e8ca47b.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0026463 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-snapshot.asciidoc:49
[source, python]
----
resp = client.ml.delete_model_snapshot(
job_id="farequote",
snapshot_id="1491948163",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e0b85750d4e63ebbc927d4627c44bf8.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:604
[source, python]
----
resp = client.indices.forcemerge(
index="my-index-000001",
only_expunge_deletes=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e18a67caf8f06ff2710ec4a8b30f625.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:169
[source, python]
----
resp = client.cluster.state(
filter_path="metadata.indices.*.state,-metadata.indices.logstash-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e26353d546d733634187b8c3a7837a7.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026251 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connectors-api.asciidoc:110
[source, python]
----
resp = client.connector.list(
service_type="sharepoint_online",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e2c5cef7a3f254c71a33865eb4d7569.asciidoc 0000664 0000000 0000000 00000001054 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/distance-feature-query.asciidoc:98
[source, python]
----
resp = client.search(
index="items",
query={
"bool": {
"must": {
"match": {
"name": "chocolate"
}
},
"should": {
"distance_feature": {
"field": "production_date",
"pivot": "7d",
"origin": "now"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e3384bc255729b65a6f0fc8011ff733.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/segments.asciidoc:18
[source, python]
----
resp = client.indices.segments(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e3553a73da487017f7a95088b6aa957.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-roles-cache.asciidoc:62
[source, python]
----
resp = client.security.clear_cached_roles(
name="*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e4b17b830ead15087ccd96151a5ebde.asciidoc 0000664 0000000 0000000 00000001076 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/string-stats-aggregation.asciidoc:133
[source, python]
----
resp = client.search(
index="my-index-000001",
size=0,
runtime_mappings={
"message_and_context": {
"type": "keyword",
"script": "\n emit(doc['message.keyword'].value + ' ' + doc['context.keyword'].value)\n "
}
},
aggs={
"message_stats": {
"string_stats": {
"field": "message_and_context"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e547696f54582840040b1aa6661760c.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0026154 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/restore-from-snapshot.asciidoc:400
[source, python]
----
resp = client.indices.rollover(
alias="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e871f060dbe1a5c316ed205278804a8.asciidoc 0000664 0000000 0000000 00000001554 14766462667 0026453 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:338
[source, python]
----
resp = client.search(
aggs={
"countries": {
"terms": {
"field": "artist.country",
"order": {
"rock>playback_stats.avg": "desc"
}
},
"aggs": {
"rock": {
"filter": {
"term": {
"genre": "rock"
}
},
"aggs": {
"playback_stats": {
"stats": {
"field": "play_count"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e94a2bb95bc245bcfb87ac7d611cf49.asciidoc 0000664 0000000 0000000 00000000671 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-aggregation.asciidoc:335
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_outlier": {
"percentiles": {
"field": "load_time",
"tdigest": {
"execution_hint": "high_accuracy"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1e9cab0b2727624e22e8cf4e7ca498ac.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:45
[source, python]
----
resp = client.cluster.health(
pretty=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ea24f67fbbb6293d53caf2fe0c4b984.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0027034 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/simple-analyzer.asciidoc:15
[source, python]
----
resp = client.indices.analyze(
analyzer="simple",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ead35c954963e83f89872048dabdbe9.asciidoc 0000664 0000000 0000000 00000000570 14766462667 0026652 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-role.asciidoc:137
[source, python]
----
resp = client.security.query_role(
query={
"bool": {
"must_not": {
"term": {
"metadata._reserved": True
}
}
}
},
sort=[
"name"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1eb9c6ecb827ca69f7b17f7d2a26eae9.asciidoc 0000664 0000000 0000000 00000000640 14766462667 0027136 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:280
[source, python]
----
resp = client.render_search_template(
source={
"query": {
"term": {
"url.full": "{{#url}}{{host}}/{{page}}{{/url}}"
}
}
},
params={
"host": "http://example.com",
"page": "hello-world"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ec66f188f681598cb5d7df700b214e3.asciidoc 0000664 0000000 0000000 00000001465 14766462667 0026563 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keyword-marker-tokenfilter.asciidoc:365
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"my_custom_keyword_marker_filter",
"porter_stem"
]
}
},
"filter": {
"my_custom_keyword_marker_filter": {
"type": "keyword_marker",
"keywords_path": "analysis/example_word_list.txt"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ed26c7b445ab1c167bd9385e1f0066f.asciidoc 0000664 0000000 0000000 00000000370 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/apis/delete-async-sql-search-api.asciidoc:18
[source, python]
----
resp = client.sql.delete_async(
id="FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ed77bf308fa4ab328b36060e412f500.asciidoc 0000664 0000000 0000000 00000003222 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/histogram-aggregation.asciidoc:334
[source, python]
----
resp = client.indices.create(
index="metrics_index",
mappings={
"properties": {
"network": {
"properties": {
"name": {
"type": "keyword"
}
}
},
"latency_histo": {
"type": "histogram"
}
}
},
)
print(resp)
resp1 = client.index(
index="metrics_index",
id="1",
refresh=True,
document={
"network.name": "net-1",
"latency_histo": {
"values": [
1,
3,
8,
12,
15
],
"counts": [
3,
7,
23,
12,
6
]
}
},
)
print(resp1)
resp2 = client.index(
index="metrics_index",
id="2",
refresh=True,
document={
"network.name": "net-2",
"latency_histo": {
"values": [
1,
6,
8,
12,
14
],
"counts": [
8,
17,
8,
7,
6
]
}
},
)
print(resp2)
resp3 = client.search(
index="metrics_index",
size="0",
aggs={
"latency_buckets": {
"histogram": {
"field": "latency_histo",
"interval": 5
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/1eea46b08610972b79fdc4649748455d.asciidoc 0000664 0000000 0000000 00000001436 14766462667 0026427 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:82
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"script_score": {
"query": {
"bool": {
"filter": {
"term": {
"status": "published"
}
}
}
},
"script": {
"source": "cosineSimilarity(params.query_vector, 'my_dense_vector') + 1.0",
"params": {
"query_vector": [
4,
3.4,
-0.2
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ef5119db55a6f2b6fc0ab92f36e7f8e.asciidoc 0000664 0000000 0000000 00000000632 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:63
[source, python]
----
resp = client.search(
index="my-index-000001",
sort=[
{
"post_date": {
"format": "strict_date_optional_time_nanos"
}
}
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1f00e73c144603e97f6c14ab15fa1913.asciidoc 0000664 0000000 0000000 00000002332 14766462667 0026441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:940
[source, python]
----
resp = client.indices.create(
index="greek_example",
settings={
"analysis": {
"filter": {
"greek_stop": {
"type": "stop",
"stopwords": "_greek_"
},
"greek_lowercase": {
"type": "lowercase",
"language": "greek"
},
"greek_keywords": {
"type": "keyword_marker",
"keywords": [
"παράδειγμα"
]
},
"greek_stemmer": {
"type": "stemmer",
"language": "greek"
}
},
"analyzer": {
"rebuilt_greek": {
"tokenizer": "standard",
"filter": [
"greek_lowercase",
"greek_stop",
"greek_keywords",
"greek_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1f13c7caef9c2fe0f73fce8795bbc9b0.asciidoc 0000664 0000000 0000000 00000001706 14766462667 0027215 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/testing.asciidoc:125
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"std_folded": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"asciifolding"
]
}
}
}
},
mappings={
"properties": {
"my_text": {
"type": "text",
"analyzer": "std_folded"
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="std_folded",
text="Is this déjà vu?",
)
print(resp1)
resp2 = client.indices.analyze(
index="my-index-000001",
field="my_text",
text="Is this déjà vu?",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/1f3dd84ab11bae09d3f99b1b3536e239.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/create-snapshot-api.asciidoc:31
[source, python]
----
resp = client.snapshot.create(
repository="my_repository",
snapshot="my_snapshot",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1f507659757e2844cefced25848540a0.asciidoc 0000664 0000000 0000000 00000001034 14766462667 0026415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-distance-query.asciidoc:187
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "12km",
"pin.location": [
-70,
40
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1f673e1a0de2970dc648618d5425a994.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0026411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:273
[source, python]
----
resp = client.indices.refresh()
print(resp)
resp1 = client.search(
index="my-new-index-000001",
size="0",
filter_path="hits.total",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/1f6a190fa1aade1fb66680388f184ef9.asciidoc 0000664 0000000 0000000 00000000575 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/validate.asciidoc:272
[source, python]
----
resp = client.indices.validate_query(
index="my-index-000001",
rewrite=True,
all_shards=True,
query={
"match": {
"user.id": {
"query": "kimchy",
"fuzziness": "auto"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1f8a6d2cc57ed8997a52354aca371aac.asciidoc 0000664 0000000 0000000 00000001101 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/configuring-pki-realm.asciidoc:267
[source, python]
----
resp = client.security.put_role_mapping(
name="direct_pki_only",
roles=[
"role_for_pki1_direct"
],
rules={
"all": [
{
"field": {
"realm.name": "pki1"
}
},
{
"field": {
"metadata.pki_delegated_by_user": None
}
}
]
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1f900f7178e80051e75d4fd04467cf49.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/pipeline.asciidoc:79
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
pipeline="pipelineB",
document={
"field": "value"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1fb2c77c0988bc6545040b20e3afa7e9.asciidoc 0000664 0000000 0000000 00000003404 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/dls-e2e-guide.asciidoc:139
[source, python]
----
resp = client.security.create_api_key(
name="john-api-key",
expiration="1d",
role_descriptors={
"sharepoint-online-role": {
"index": [
{
"names": [
"sharepoint-search-application"
],
"privileges": [
"read"
],
"query": {
"template": {
"params": {
"access_control": [
"john@example.co",
"Engineering Members"
]
},
"source": "\n {\n \"bool\": {\n \"should\": [\n {\n \"bool\": {\n \"must_not\": {\n \"exists\": {\n \"field\": \"_allow_access_control\"\n }\n }\n }\n },\n {\n \"terms\": {\n \"_allow_access_control.enum\": {{#toJson}}access_control{{/toJson}}\n }\n }\n ]\n }\n }\n "
}
}
}
],
"restriction": {
"workflows": [
"search_application_query"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1fddbd602a6acf896a393cdb500a2831.asciidoc 0000664 0000000 0000000 00000001212 14766462667 0026735 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/rate-aggregation.asciidoc:310
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"by_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"avg_number_of_sales_per_year": {
"rate": {
"field": "price",
"unit": "year",
"mode": "value_count"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1fe2ed1d65c4774755de44c9b9d6ed67.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026735 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:986
[source, python]
----
resp = client.nodes.stats(
metric="ingest",
filter_path="nodes.*.ingest",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ff12523efbd59c213c676937757c460.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-api-keys.asciidoc:116
[source, python]
----
resp = client.security.invalidate_api_key(
ids=[
"VuaCfGcBCdbkQm-e5aOx"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ff296e868635fd102239871a331331b.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026246 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cardinality-aggregation.asciidoc:47
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"type_count": {
"cardinality": {
"field": "type",
"precision_threshold": 100
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/1ff9b263b7c3e83278bb6a776a51590a.asciidoc 0000664 0000000 0000000 00000000537 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/histogram-aggregation.asciidoc:31
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"prices": {
"histogram": {
"field": "price",
"interval": 50
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/20005d8a6555b259b299d862cd218701.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026243 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-query.asciidoc:190
[source, python]
----
resp = client.search(
query={
"match": {
"message": {
"query": "this is a test",
"operator": "and"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2006f577a113bda40905cf7b405bf1cf.asciidoc 0000664 0000000 0000000 00000000713 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:816
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"set": {
"description": "If 'url.scheme' is 'http', set 'url.insecure' to true",
"if": "ctx.url?.scheme =~ /^http[^s]/",
"field": "url.insecure",
"value": True
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2009f2d1ba0780a799a0fdce889c9739.asciidoc 0000664 0000000 0000000 00000003232 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:695
[source, python]
----
resp = client.bulk(
index="passage_vectors",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"full_text": "first paragraph another paragraph",
"creation_time": "2019-05-04",
"paragraph": [
{
"vector": [
0.45,
45
],
"text": "first paragraph",
"paragraph_id": "1"
},
{
"vector": [
0.8,
0.6
],
"text": "another paragraph",
"paragraph_id": "2"
}
]
},
{
"index": {
"_id": "2"
}
},
{
"full_text": "number one paragraph number two paragraph",
"creation_time": "2020-05-04",
"paragraph": [
{
"vector": [
1.2,
4.5
],
"text": "number one paragraph",
"paragraph_id": "1"
},
{
"vector": [
-1,
42
],
"text": "number two paragraph",
"paragraph_id": "2"
}
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/200f6d4cc7b9c300b8962a119e03873f.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026443 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-data-stream.asciidoc:286
[source, python]
----
resp = client.indices.get_data_stream(
name="my-data-stream*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/20162e1dac807a7604f58dad814d1bc5.asciidoc 0000664 0000000 0000000 00000001274 14766462667 0026605 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/hunspell-tokenfilter.asciidoc:199
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"en": {
"tokenizer": "standard",
"filter": [
"my_en_US_dict_stemmer"
]
}
},
"filter": {
"my_en_US_dict_stemmer": {
"type": "hunspell",
"locale": "en_US",
"dedup": False
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/20179a8889e949d6a8ee5fbf2ba35c96.asciidoc 0000664 0000000 0000000 00000001063 14766462667 0026656 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:408
[source, python]
----
resp = client.search(
index="google-vertex-ai-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "google_vertex_ai_embeddings",
"model_text": "Calculate fuel cost"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/203c3bb334384bdfb11ff1101ccfba25.asciidoc 0000664 0000000 0000000 00000000776 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/phrase-suggest.asciidoc:290
[source, python]
----
resp = client.search(
index="test",
suggest={
"text": "obel prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"smoothing": {
"laplace": {
"alpha": 0.7
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/20407c847adb8393ce41dc656384afc4.asciidoc 0000664 0000000 0000000 00000001506 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:787
[source, python]
----
resp = client.search(
index="passage_vectors",
fields=[
"creation_time",
"full_text"
],
source=False,
knn={
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2,
"filter": {
"bool": {
"filter": [
{
"range": {
"creation_time": {
"gte": "2019-05-01",
"lte": "2019-05-05"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2051ffe025550ab6645bfd525eaed3c4.asciidoc 0000664 0000000 0000000 00000001076 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:246
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"pin.location": {
"top_left": "POINT (-74.1 40.73)",
"bottom_right": "POINT (-71.12 40.01)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2063713516847eef5d1dbf4ca1e877b0.asciidoc 0000664 0000000 0000000 00000003515 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geohexgrid-aggregation.asciidoc:29
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (4.912350 52.374081)",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (4.901618 52.369219)",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (4.914722 52.371667)",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (4.405200 51.222900)",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (2.336389 48.861111)",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (2.327000 48.860000)",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
aggregations={
"large-grid": {
"geohex_grid": {
"field": "location",
"precision": 4
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/206c723296be8ef8d58aef3ee01f5ba2.asciidoc 0000664 0000000 0000000 00000001010 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline.asciidoc:176
[source, python]
----
resp = client.search(
aggs={
"my_date_histo": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "day"
},
"aggs": {
"the_deriv": {
"derivative": {
"buckets_path": "_count"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/206d57bf0cb022c8229894e7753eca83.asciidoc 0000664 0000000 0000000 00000001671 14766462667 0026471 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-shape-query.asciidoc:58
[source, python]
----
resp = client.search(
index="example",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_shape": {
"location": {
"shape": {
"type": "envelope",
"coordinates": [
[
13,
53
],
[
14,
52
]
]
},
"relation": "within"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2081739da0c69de8af6f5bf9e94433e6.asciidoc 0000664 0000000 0000000 00000000556 14766462667 0026653 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:376
[source, python]
----
resp = client.index(
index="example",
document={
"location": "MULTILINESTRING ((102.0 2.0, 103.0 2.0, 103.0 3.0, 102.0 3.0), (100.0 0.0, 101.0 0.0, 101.0 1.0, 100.0 1.0), (100.2 0.2, 100.8 0.2, 100.8 0.8, 100.2 0.8))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/208c2b41bd1659aae8f02fa3e3b7378a.asciidoc 0000664 0000000 0000000 00000001637 14766462667 0026674 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/copy-to.asciidoc:15
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"first_name": {
"type": "text",
"copy_to": "full_name"
},
"last_name": {
"type": "text",
"copy_to": "full_name"
},
"full_name": {
"type": "text"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"first_name": "John",
"last_name": "Smith"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"match": {
"full_name": {
"query": "John Smith",
"operator": "and"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/209a9190082498f0b7daa26f8834846b.asciidoc 0000664 0000000 0000000 00000000445 14766462667 0026336 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/norms.asciidoc:21
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"title": {
"type": "text",
"norms": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/20bc71cc5bbe04184e27827f3777a406.asciidoc 0000664 0000000 0000000 00000000372 14766462667 0026455 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:723
[source, python]
----
resp = client.search(
index="my-index-000001",
fields=[
"@timestamp",
"day_of_week"
],
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/20c595907b4afbf26bd60e816a6ddf6a.asciidoc 0000664 0000000 0000000 00000000426 14766462667 0026762 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:275
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
params={
"query_string": "kayaking"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/20e3b181114e00c943a27a9bbcf85f15.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-record.asciidoc:286
[source, python]
----
resp = client.ml.get_records(
job_id="low_request_rate",
sort="record_score",
desc=True,
start="1454944100000",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/20f62d0540bf6261549bd286416eae28.asciidoc 0000664 0000000 0000000 00000000642 14766462667 0026375 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/enrich/put-enrich-policy.asciidoc:30
[source, python]
----
resp = client.enrich.put_policy(
name="my-policy",
match={
"indices": "users",
"match_field": "email",
"enrich_fields": [
"first_name",
"last_name",
"city",
"zip",
"state"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2105f2d1d81977054a93163a175793ce.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026237 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-status-api.asciidoc:81
[source, python]
----
resp = client.snapshot.status()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2155c920d7d860f3ee7542f2211b4fec.asciidoc 0000664 0000000 0000000 00000000576 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/text-expansion-query.asciidoc:25
[source, python]
----
resp = client.search(
query={
"text_expansion": {
"": {
"model_id": "the model to produce the token weights",
"model_text": "the query string"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/21565b72da426776e445b1a166f6e104.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026316 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/has-child-query.asciidoc:31
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my-join-field": {
"type": "join",
"relations": {
"parent": "child"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/216848930c2d344fe0bed0daa70c35b9.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026605 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:620
[source, python]
----
resp = client.tasks.list(
detailed=True,
actions="*/delete/byquery",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/216a6573ab4ab023e5dcac4eaa08c3c8.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0027006 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/register-repository.asciidoc:185
[source, python]
----
resp = client.snapshot.verify_repository(
name="my_unverified_backup",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/216e24f05cbb82c1718713fbab8623d2.asciidoc 0000664 0000000 0000000 00000001231 14766462667 0026517 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/geoip.asciidoc:136
[source, python]
----
resp = client.ingest.put_pipeline(
id="geoip",
description="Add ip geolocation info",
processors=[
{
"geoip": {
"field": "ip",
"target_field": "geo",
"database_file": "GeoLite2-Country.mmdb"
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="geoip",
document={
"ip": "89.160.20.128"
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/21715c32c140feeab04b38ff6d6de111.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026653 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:143
[source, python]
----
resp = client.indices.get_mapping(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2185c9dfc62a59313df1702ec1c3513e.asciidoc 0000664 0000000 0000000 00000000714 14766462667 0026531 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-aggregation.asciidoc:88
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_outlier": {
"percentiles": {
"field": "load_time",
"percents": [
95,
99,
99.9
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/218b9009f120e8ad33f710e019179562.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0026225 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-repo-api.asciidoc:125
[source, python]
----
resp = client.snapshot.get_repository(
name="my_repository",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/21a226d91d8edd209f6a821064e83918.asciidoc 0000664 0000000 0000000 00000001166 14766462667 0026407 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/global-aggregation.asciidoc:18
[source, python]
----
resp = client.search(
index="sales",
size="0",
query={
"match": {
"type": "t-shirt"
}
},
aggs={
"all_products": {
"global": {},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
},
"t_shirts": {
"avg": {
"field": "price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/21bb03ca9123de3237c1c76934f9f172.asciidoc 0000664 0000000 0000000 00000001532 14766462667 0026450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filters-aggregation.asciidoc:138
[source, python]
----
resp = client.index(
index="logs",
id="4",
refresh=True,
document={
"body": "info: user Bob logged out"
},
)
print(resp)
resp1 = client.search(
index="logs",
size=0,
aggs={
"messages": {
"filters": {
"other_bucket_key": "other_messages",
"filters": {
"errors": {
"match": {
"body": "error"
}
},
"warnings": {
"match": {
"body": "warning"
}
}
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/21c1e6ee886140ce0cd67184dd19b981.asciidoc 0000664 0000000 0000000 00000000267 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/dangling-indices-list.asciidoc:19
[source, python]
----
resp = client.dangling_indices.list_dangling_indices()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/21cd01cb90d3ea1acd0ab22d7edd2c88.asciidoc 0000664 0000000 0000000 00000001003 14766462667 0027134 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:162
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="azure_ai_studio_embeddings",
inference_config={
"service": "azureaistudio",
"service_settings": {
"api_key": "",
"target": "",
"provider": "",
"endpoint_type": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/21d0ab6e420bfe7a1639db6af5b2e9c0.asciidoc 0000664 0000000 0000000 00000001470 14766462667 0027021 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/median-absolute-deviation-aggregation.asciidoc:116
[source, python]
----
resp = client.search(
index="reviews",
filter_path="aggregations",
size=0,
runtime_mappings={
"rating.out_of_ten": {
"type": "long",
"script": {
"source": "emit(doc['rating'].value * params.scaleFactor)",
"params": {
"scaleFactor": 2
}
}
}
},
aggs={
"review_average": {
"avg": {
"field": "rating.out_of_ten"
}
},
"review_variability": {
"median_absolute_deviation": {
"field": "rating.out_of_ten"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/21d41e8cbd107fbdf0901f885834dafc.asciidoc 0000664 0000000 0000000 00000001234 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/wildcard.asciidoc:139
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"card": {
"type": "wildcard"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"card": [
"king",
"ace",
"ace",
"jack"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/21d5fe55ca32b10b118224ea1a8a2e04.asciidoc 0000664 0000000 0000000 00000004776 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/bucket-count-ks-test-aggregation.asciidoc:81
[source, python]
----
resp = client.search(
index="correlate_latency",
size="0",
filter_path="aggregations",
aggs={
"buckets": {
"terms": {
"field": "version",
"size": 2
},
"aggs": {
"latency_ranges": {
"range": {
"field": "latency",
"ranges": [
{
"to": 0
},
{
"from": 0,
"to": 105
},
{
"from": 105,
"to": 225
},
{
"from": 225,
"to": 445
},
{
"from": 445,
"to": 665
},
{
"from": 665,
"to": 885
},
{
"from": 885,
"to": 1115
},
{
"from": 1115,
"to": 1335
},
{
"from": 1335,
"to": 1555
},
{
"from": 1555,
"to": 1775
},
{
"from": 1775
}
]
}
},
"ks_test": {
"bucket_count_ks_test": {
"buckets_path": "latency_ranges>_count",
"alternative": [
"less",
"greater",
"two_sided"
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/21e95d29bc37deb5689a654aa323b4ba.asciidoc 0000664 0000000 0000000 00000000576 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/configuring-ldap-realm.asciidoc:138
[source, python]
----
resp = client.security.put_role_mapping(
name="admins",
roles=[
"monitoring",
"user"
],
rules={
"field": {
"groups": "cn=admins,dc=example,dc=com"
}
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/221e9b14567f950008459af77757750e.asciidoc 0000664 0000000 0000000 00000000757 14766462667 0026213 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:54
[source, python]
----
resp = client.watcher.put_watch(
id="cluster_health_watch",
trigger={
"schedule": {
"interval": "10s"
}
},
input={
"http": {
"request": {
"host": "localhost",
"port": 9200,
"path": "/_cluster/health"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2224143c45dfc83a2d10b98cd4f94bb5.asciidoc 0000664 0000000 0000000 00000001103 14766462667 0026602 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/nested-query.asciidoc:415
[source, python]
----
resp = client.search(
index="my-index",
query={
"bool": {
"must_not": [
{
"nested": {
"path": "comments",
"query": {
"term": {
"comments.author": "nik9000"
}
}
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/222e49c924ca8bac7b41bc952a39261c.asciidoc 0000664 0000000 0000000 00000001342 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/semantic-query.asciidoc:55
[source, python]
----
resp = client.search(
index="my-index",
size=3,
query={
"bool": {
"should": [
{
"match": {
"title": {
"query": "mountain lake",
"boost": 1
}
}
},
{
"semantic": {
"field": "title_semantic",
"query": "mountain lake",
"boost": 2
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/22334f4b24bb8977d3e1bf2ffdc29d3f.asciidoc 0000664 0000000 0000000 00000003235 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:315
[source, python]
----
resp = client.search(
query={
"nested": {
"path": "parent",
"query": {
"bool": {
"must": {
"range": {
"parent.age": {
"gte": 21
}
}
},
"filter": {
"nested": {
"path": "parent.child",
"query": {
"match": {
"parent.child.name": "matt"
}
}
}
}
}
}
}
},
sort=[
{
"parent.child.age": {
"mode": "min",
"order": "asc",
"nested": {
"path": "parent",
"filter": {
"range": {
"parent.age": {
"gte": 21
}
}
},
"nested": {
"path": "parent.child",
"filter": {
"match": {
"parent.child.name": "matt"
}
}
}
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2238ac4170275f6cfc2af49c3f014cbc.asciidoc 0000664 0000000 0000000 00000001216 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/extendedstats-aggregation.asciidoc:108
[source, python]
----
resp = client.search(
index="exams",
size=0,
runtime_mappings={
"grade.corrected": {
"type": "double",
"script": {
"source": "emit(Math.min(100, doc['grade'].value * params.correction))",
"params": {
"correction": 1.2
}
}
}
},
aggs={
"grades_stats": {
"extended_stats": {
"field": "grade.corrected"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/22619a4111f66e1b7231693b8f8d069a.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026316 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/managing-watches.asciidoc:30
[source, python]
----
resp = client.watcher.query_watches(
size=100,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/22882d4eb8b99f44c8e0d3a2c893fc4b.asciidoc 0000664 0000000 0000000 00000001427 14766462667 0026722 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:408
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my-small": {
"type": "keyword",
"ignore_above": 2
},
"my-large": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"my-small": [
"ok",
"bad"
],
"my-large": "ok content"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
fields=[
"my-*"
],
source=False,
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/229b83cbcd8efa1b0288a728a2abacb4.asciidoc 0000664 0000000 0000000 00000002631 14766462667 0027102 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/point.asciidoc:21
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"location": {
"type": "point"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"text": "Point as an object using GeoJSON format",
"location": {
"type": "Point",
"coordinates": [
-71.34,
41.12
]
}
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"text": "Point as a WKT POINT primitive",
"location": "POINT (-71.34 41.12)"
},
)
print(resp2)
resp3 = client.index(
index="my-index-000001",
id="3",
document={
"text": "Point as an object with 'x' and 'y' keys",
"location": {
"x": -71.34,
"y": 41.12
}
},
)
print(resp3)
resp4 = client.index(
index="my-index-000001",
id="4",
document={
"text": "Point as an array",
"location": [
-71.34,
41.12
]
},
)
print(resp4)
resp5 = client.index(
index="my-index-000001",
id="5",
document={
"text": "Point as a string",
"location": "-71.34,41.12"
},
)
print(resp5)
----
python-elasticsearch-8.17.2/docs/examples/22b176a184517cf1b5801f5eb4f17f97.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-dsl.asciidoc:349
[source, python]
----
resp = client.indices.rollover(
alias="datastream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/22cb99d4e6ba3101a2d9f59764a90877.asciidoc 0000664 0000000 0000000 00000000357 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:177
[source, python]
----
resp = client.index(
index="example",
document={
"location": "POINT (-77.03653 38.897676)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/22d8e92b4100f8e4f52260ef8d3aa2b2.asciidoc 0000664 0000000 0000000 00000001051 14766462667 0026601 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/binary.asciidoc:12
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"name": {
"type": "text"
},
"blob": {
"type": "binary"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"name": "Some binary blob",
"blob": "U29tZSBiaW5hcnkgYmxvYg=="
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/22dd833336fa22c8a8f67bb754ffba9a.asciidoc 0000664 0000000 0000000 00000001053 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:278
[source, python]
----
resp = client.search(
index="azure-openai-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "azure_openai_embeddings",
"model_text": "Calculate fuel cost"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/22dde5fe7ac5d85d52115641a68b3c55.asciidoc 0000664 0000000 0000000 00000000617 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:202
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"lowercase",
{
"type": "stop",
"stopwords": [
"a",
"is",
"this"
]
}
],
text="this is a test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/22ef90a7fb057728d2115f0c6f551819.asciidoc 0000664 0000000 0000000 00000001450 14766462667 0026403 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-aggregation.asciidoc:250
[source, python]
----
resp = client.search(
index="sales",
aggs={
"price_ranges": {
"range": {
"field": "price",
"ranges": [
{
"to": 100
},
{
"from": 100,
"to": 200
},
{
"from": 200
}
]
},
"aggs": {
"price_stats": {
"stats": {
"field": "price"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/23074748d6c978176df5b04265e88938.asciidoc 0000664 0000000 0000000 00000000472 14766462667 0026223 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/increase-cluster-shard-limit.asciidoc:109
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
name="index.routing.allocation.include._tier_preference",
flat_settings=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2308c9948cbebd2092eec03b11281005.asciidoc 0000664 0000000 0000000 00000000526 14766462667 0026441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/register-fs-repo.asciidoc:93
[source, python]
----
resp = client.snapshot.create_repository(
name="my_fs_backup",
repository={
"type": "fs",
"settings": {
"location": "E:\\Mount\\Backups\\My_fs_backup_location"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2310d84ebf113f2a3ed14cc53172ae4a.asciidoc 0000664 0000000 0000000 00000000577 14766462667 0026655 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/text-expansion-query.asciidoc:100
[source, python]
----
resp = client.search(
index="my-index",
query={
"text_expansion": {
"ml.tokens": {
"model_id": ".elser_model_2",
"model_text": "How is the weather in Jamaica?"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2342a56279106ea643026df657bf7f88.asciidoc 0000664 0000000 0000000 00000001017 14766462667 0026332 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/similarity.asciidoc:24
[source, python]
----
resp = client.indices.create(
index="index",
settings={
"index": {
"similarity": {
"my_similarity": {
"type": "DFR",
"basic_model": "g",
"after_effect": "l",
"normalization": "h2",
"normalization.h2.c": "3.0"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/234cec3ead32d7ed71afbe1edfea23df.asciidoc 0000664 0000000 0000000 00000000747 14766462667 0027414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/has-parent-query.asciidoc:122
[source, python]
----
resp = client.search(
query={
"has_parent": {
"parent_type": "parent",
"score": True,
"query": {
"function_score": {
"script_score": {
"script": "_score * doc['view_count'].value"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/236f50d89a07b83119af72e367e685da.asciidoc 0000664 0000000 0000000 00000001015 14766462667 0026471 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:298
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_size": "50gb",
"max_age": "30d",
"min_primary_shard_size": "1gb"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/239f615e0009c5cb1dc4e82ec4c0dab5.asciidoc 0000664 0000000 0000000 00000001273 14766462667 0026743 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:76
[source, python]
----
resp = client.watcher.put_watch(
id="cluster_health_watch",
trigger={
"schedule": {
"interval": "10s"
}
},
input={
"http": {
"request": {
"host": "localhost",
"port": 9200,
"path": "/_cluster/health",
"auth": {
"basic": {
"username": "elastic",
"password": "x-pack-test-password"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/23b062c157235246d7c347b9047b2435.asciidoc 0000664 0000000 0000000 00000000565 14766462667 0026154 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:119
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping1",
roles=[
"user"
],
enabled=True,
rules={
"field": {
"username": "*"
}
},
metadata={
"version": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/23c4ae62f7035f2796e0ac3c7c4c20a9.asciidoc 0000664 0000000 0000000 00000000703 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-migrate.asciidoc:57
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"migrate": {},
"allocate": {
"number_of_replicas": 1
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2408020186af569a76a30eccadaed0d5.asciidoc 0000664 0000000 0000000 00000001613 14766462667 0026657 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/script.asciidoc:48
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"processors": [
{
"script": {
"description": "Extract 'tags' from 'env' field",
"lang": "painless",
"source": "\n String[] envSplit = ctx['env'].splitOnToken(params['delimiter']);\n ArrayList tags = new ArrayList();\n tags.add(envSplit[params['position']].trim());\n ctx['tags'] = tags;\n ",
"params": {
"delimiter": "-",
"position": 1
}
}
}
]
},
docs=[
{
"_source": {
"env": "es01-prod"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/24275847128b68da6e14233aa1259fb9.asciidoc 0000664 0000000 0000000 00000001770 14766462667 0026327 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/collapse-search-results.asciidoc:93
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": "GET /search"
}
},
collapse={
"field": "user.id",
"inner_hits": [
{
"name": "largest_responses",
"size": 3,
"sort": [
{
"http.response.bytes": {
"order": "desc"
}
}
]
},
{
"name": "most_recent",
"size": 3,
"sort": [
{
"@timestamp": {
"order": "desc"
}
}
]
}
]
},
sort=[
"http.response.bytes"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/242a26ced0e5706e48dcda19a4003094.asciidoc 0000664 0000000 0000000 00000000746 14766462667 0026526 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:970
[source, python]
----
resp = client.reindex(
source={
"remote": {
"host": "http://otherhost:9200",
"username": "user",
"password": "pass"
},
"index": "my-index-000001",
"query": {
"match": {
"test": "data"
}
}
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/246763219ec06172f7aa57bba28d344a.asciidoc 0000664 0000000 0000000 00000005210 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/rank-vectors.asciidoc:159
[source, python]
----
resp = client.indices.create(
index="my-rank-vectors-bit",
mappings={
"properties": {
"my_vector": {
"type": "rank_vectors",
"element_type": "bit"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="my-rank-vectors-bit",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"my_vector": [
127,
-127,
0,
1,
42
]
},
{
"index": {
"_id": "2"
}
},
{
"my_vector": "8100012a7f"
}
],
)
print(resp1)
resp2 = client.search(
index="my-rank-vectors-bit",
query={
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "maxSimDotProduct(params.query_vector, 'my_vector')",
"params": {
"query_vector": [
[
0.35,
0.77,
0.95,
0.15,
0.11,
0.08,
0.58,
0.06,
0.44,
0.52,
0.21,
0.62,
0.65,
0.16,
0.64,
0.39,
0.93,
0.06,
0.93,
0.31,
0.92,
0,
0.66,
0.86,
0.92,
0.03,
0.81,
0.31,
0.2,
0.92,
0.95,
0.64,
0.19,
0.26,
0.77,
0.64,
0.78,
0.32,
0.97,
0.84
]
]
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/2493c25e1ef944bc4de0f726470bcdec.asciidoc 0000664 0000000 0000000 00000001257 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/frequent-item-sets-aggregation.asciidoc:144
[source, python]
----
resp = client.async_search.submit(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"my_agg": {
"frequent_item_sets": {
"minimum_set_size": 3,
"fields": [
{
"field": "category.keyword"
},
{
"field": "geoip.city_name",
"exclude": "other"
}
],
"size": 3
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/249bf48252c8cea47ef872541c8a884c.asciidoc 0000664 0000000 0000000 00000002703 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/grant-api-keys.asciidoc:133
[source, python]
----
resp = client.security.grant_api_key(
grant_type="password",
username="test_admin",
password="x-pack-test-password",
api_key={
"name": "my-api-key",
"expiration": "1d",
"role_descriptors": {
"role-a": {
"cluster": [
"all"
],
"indices": [
{
"names": [
"index-a*"
],
"privileges": [
"read"
]
}
]
},
"role-b": {
"cluster": [
"all"
],
"indices": [
{
"names": [
"index-b*"
],
"privileges": [
"all"
]
}
]
}
},
"metadata": {
"application": "my-application",
"environment": {
"level": 1,
"trusted": True,
"tags": [
"dev",
"staging"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/24a037008e0fc2550ecb6a5d36c04a93.asciidoc 0000664 0000000 0000000 00000001042 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:816
[source, python]
----
resp = client.search(
index="sales",
size="0",
runtime_mappings={
"date.day_of_week": {
"type": "keyword",
"script": "emit(doc['date'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ENGLISH))"
}
},
aggs={
"day_of_week": {
"terms": {
"field": "date.day_of_week"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/24ad3c234f69f55a3fbe2d488e70178a.asciidoc 0000664 0000000 0000000 00000001213 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/evaluate-dfanalytics.asciidoc:360
[source, python]
----
resp = client.ml.evaluate_data_frame(
index="student_performance_mathematics_reg",
query={
"term": {
"ml.is_training": {
"value": True
}
}
},
evaluation={
"regression": {
"actual_field": "G3",
"predicted_field": "ml.G3_prediction",
"metrics": {
"r_squared": {},
"mse": {},
"msle": {},
"huber": {}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/24aee6033bf77a68ced74e3fd9d34283.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-index-template-v1.asciidoc:85
[source, python]
----
resp = client.indices.get_template(
name="template_1,template_2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/24bdccb07bba7e7e6ff45d3d4cd83064.asciidoc 0000664 0000000 0000000 00000000631 14766462667 0027115 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:250
[source, python]
----
resp = client.update_by_query(
index="my-data-stream",
pipeline="my-pipeline",
)
print(resp)
resp1 = client.reindex(
source={
"index": "my-data-stream"
},
dest={
"index": "my-new-data-stream",
"op_type": "create",
"pipeline": "my-pipeline"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/24d66b2ebdf662d8b03e17214e65c825.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:375
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"xpack.profiling.templates.enabled": False
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/24d806d1803158dacd4dda73c4204d3e.asciidoc 0000664 0000000 0000000 00000000336 14766462667 0026603 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/get-query-rule.asciidoc:111
[source, python]
----
resp = client.query_rules.get_rule(
ruleset_id="my-ruleset",
rule_id="my-rule1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/24f4dfdf9922d5aa79151675b7767742.asciidoc 0000664 0000000 0000000 00000000464 14766462667 0026433 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:385
[source, python]
----
resp = client.search(
index="my-index-000001",
scroll="1m",
size=100,
query={
"match": {
"message": "foo"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/253140cb1e270e5ee23e15dbaeaaa0ea.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0027053 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:29
[source, python]
----
resp = client.indices.data_streams_stats(
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25576b6773322f0929d4c635a940dba0.asciidoc 0000664 0000000 0000000 00000000640 14766462667 0026320 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:530
[source, python]
----
resp = client.search(
query={
"query_string": {
"fields": [
"title",
"content"
],
"query": "this OR that OR thus",
"type": "cross_fields",
"minimum_should_match": 2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/256eba7a77c8890a43afeda8ce8a3225.asciidoc 0000664 0000000 0000000 00000001076 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/semantic-search/generate-embeddings.asciidoc:54
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-text-embeddings-pipeline",
description="Text embedding pipeline",
processors=[
{
"inference": {
"model_id": "sentence-transformers__msmarco-minilm-l-12-v3",
"target_field": "my_embeddings",
"field_map": {
"my_text_field": "text_field"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25737fd456fd317cc4cc2db76b6cf28e.asciidoc 0000664 0000000 0000000 00000000422 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:150
[source, python]
----
resp = client.indices.create(
index="test-000001",
aliases={
"test-alias": {
"is_write_index": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2592e5361f7ea3b3dd1840f63d760dae.asciidoc 0000664 0000000 0000000 00000001554 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/mlt-query.asciidoc:67
[source, python]
----
resp = client.search(
query={
"more_like_this": {
"fields": [
"name.first",
"name.last"
],
"like": [
{
"_index": "marvel",
"doc": {
"name": {
"first": "Ben",
"last": "Grimm"
},
"_doc": "You got no idea what I'd... what I'd give to be invisible."
}
},
{
"_index": "marvel",
"_id": "2"
}
],
"min_term_freq": 1,
"max_query_terms": 12
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25981b7b3d55b87e1484586d57b695b1.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0026347 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/concurrency-control.asciidoc:24
[source, python]
----
resp = client.index(
index="products",
id="1567",
document={
"product": "r2d2",
"details": "A resourceful astromech droid"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25a0dad6547d432f5a3d394528f1c138.asciidoc 0000664 0000000 0000000 00000000341 14766462667 0026451 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:401
[source, python]
----
resp = client.get(
index="my-index-000001",
id="2",
routing="user1",
stored_fields="tags,counter",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25ae1a698f867ba5139605cc952436c0.asciidoc 0000664 0000000 0000000 00000001343 14766462667 0026407 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/context-suggest.asciidoc:168
[source, python]
----
resp = client.search(
index="place",
pretty=True,
suggest={
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"place_type": [
{
"context": "cafe"
},
{
"context": "restaurants",
"boost": 2
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25c0e66a433a0cd596e0641b752ff6d7.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/shards.asciidoc:414
[source, python]
----
resp = client.cat.shards(
h="index,shard,prirep,state,unassigned.reason",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25cb9e1da00dfd971065ce182467434d.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/voting-exclusions.asciidoc:122
[source, python]
----
resp = client.cluster.delete_voting_config_exclusions()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25d40d3049e57e2bb70c2c5b88bd7b87.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/allocation/delayed.asciidoc:95
[source, python]
----
resp = client.indices.put_settings(
index="_all",
settings={
"settings": {
"index.unassigned.node_left.delayed_timeout": "0"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/25ecfe423548ac1d7cc86de4a18c48c6.asciidoc 0000664 0000000 0000000 00000001557 14766462667 0026776 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/pattern-replace-charfilter.asciidoc:54
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"char_filter": [
"my_char_filter"
]
}
},
"char_filter": {
"my_char_filter": {
"type": "pattern_replace",
"pattern": "(\\d+)-(?=\\d)",
"replacement": "$1_"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="My credit card is 123-456-789",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/25ed47fcb890fcf8d8518ae067362d18.asciidoc 0000664 0000000 0000000 00000000731 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/median-absolute-deviation-aggregation.asciidoc:31
[source, python]
----
resp = client.search(
index="reviews",
size=0,
aggs={
"review_average": {
"avg": {
"field": "rating"
}
},
"review_variability": {
"median_absolute_deviation": {
"field": "rating"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/261480571394632db40e88fbb6c59c2f.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/delete-role-mappings.asciidoc:52
[source, python]
----
resp = client.security.delete_role_mapping(
name="mapping1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/26168987f799cdc4ee4151c85ba7afc5.asciidoc 0000664 0000000 0000000 00000000552 14766462667 0026653 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:213
[source, python]
----
resp = client.search(
index="my-index-000001",
filter_path="aggregations",
aggs={
"my-num-field-stats": {
"stats": {
"field": "my-num-field"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/262196e4323dfc1f8e6daf77d7ba3b6a.asciidoc 0000664 0000000 0000000 00000000544 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-gcs.asciidoc:217
[source, python]
----
resp = client.snapshot.create_repository(
name="my_gcs_repository",
repository={
"type": "gcs",
"settings": {
"bucket": "my_other_bucket",
"base_path": "dev"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2623eb122cc0299b42fc9eca6e7f5e56.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-builtin-privileges.asciidoc:64
[source, python]
----
resp = client.security.get_builtin_privileges()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/262a778d754add491fbc9c721ac25bf0.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026674 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/whitespace-analyzer.asciidoc:14
[source, python]
----
resp = client.indices.analyze(
analyzer="whitespace",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/26419320085434680142567d5fda9c35.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026104 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/ipprefix-aggregation.asciidoc:340
[source, python]
----
resp = client.search(
index="network-traffic",
size=0,
aggs={
"ipv4-subnets": {
"ip_prefix": {
"field": "ipv4",
"prefix_length": 24,
"min_doc_count": 3
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2643b8c512cb3f3449259cdf498c6ab5.asciidoc 0000664 0000000 0000000 00000001507 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:525
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d"
}
}
},
{
"product": {
"terms": {
"field": "product"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2646710ece0c4c843aebeacd370d0396.asciidoc 0000664 0000000 0000000 00000000743 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:141
[source, python]
----
resp = client.indices.create(
index="my-byte-quantized-index",
mappings={
"properties": {
"my_vector": {
"type": "dense_vector",
"dims": 3,
"index": True,
"index_options": {
"type": "int8_hnsw"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/268151ed1f0e12586e66e614b61d7981.asciidoc 0000664 0000000 0000000 00000001132 14766462667 0026325 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-polygon-query.asciidoc:122
[source, python]
----
resp = client.search(
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_polygon": {
"person.location": {
"points": [
"drn5x1g8cu2y",
"30, -80",
"20, -90"
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/26abfc49c238c2b5d259983ac38dbcee.asciidoc 0000664 0000000 0000000 00000000555 14766462667 0027053 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/recipes/stemming.asciidoc:173
[source, python]
----
resp = client.search(
index="index",
query={
"simple_query_string": {
"fields": [
"body"
],
"quote_field_suffix": ".exact",
"query": "\"ski\""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/26bd8c027c82cd72c007c10fa66dc97f.asciidoc 0000664 0000000 0000000 00000000436 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:438
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="my_snapshot_2099.05.06",
indices="*",
include_global_state=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/26d3ab748a855eb383e992eb1ff79662.asciidoc 0000664 0000000 0000000 00000000355 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/delete-async-eql-search-api.asciidoc:20
[source, python]
----
resp = client.eql.delete(
id="FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/26f237f9bf14e8b972cc33ff6aebefa2.asciidoc 0000664 0000000 0000000 00000000432 14766462667 0027131 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keyword-marker-tokenfilter.asciidoc:35
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"stemmer"
],
text="fox running and jumping",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/270549e6b062228312c4e7a54a2c2209.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026224 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/task-queue-backlog.asciidoc:55
[source, python]
----
resp = client.nodes.hot_threads()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2716453454dbf9c6dde2ea6850a62214.asciidoc 0000664 0000000 0000000 00000001221 14766462667 0026452 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/alias.asciidoc:12
[source, python]
----
resp = client.indices.create(
index="trips",
mappings={
"properties": {
"distance": {
"type": "long"
},
"route_length_miles": {
"type": "alias",
"path": "distance"
},
"transit_mode": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.search(
query={
"range": {
"route_length_miles": {
"gte": 39
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/271fe0b452b62189505ce4a1d6f8bde1.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-aggregation.asciidoc:110
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_outlier": {
"percentiles": {
"field": "load_time",
"keyed": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2720e613d520ce352b62e990c2d283f7.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026367 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/remove-policy-from-index.asciidoc:93
[source, python]
----
resp = client.ilm.remove_policy(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/272e27bf1fcc4fe5dbd4092679dd0342.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:604
[source, python]
----
resp = client.indices.add_block(
index=".ml-anomalies-custom-example",
block="write",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2731a8577ad734a732d784c5dcb1225d.asciidoc 0000664 0000000 0000000 00000002150 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1359
[source, python]
----
resp = client.indices.create(
index="norwegian_example",
settings={
"analysis": {
"filter": {
"norwegian_stop": {
"type": "stop",
"stopwords": "_norwegian_"
},
"norwegian_keywords": {
"type": "keyword_marker",
"keywords": [
"eksempel"
]
},
"norwegian_stemmer": {
"type": "stemmer",
"language": "norwegian"
}
},
"analyzer": {
"rebuilt_norwegian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"norwegian_stop",
"norwegian_keywords",
"norwegian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/27384266370152add76471dd0332a2f1.asciidoc 0000664 0000000 0000000 00000001412 14766462667 0026221 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/update-transform.asciidoc:263
[source, python]
----
resp = client.transform.update_transform(
transform_id="simple-kibana-ecomm-pivot",
source={
"index": "kibana_sample_data_ecommerce",
"query": {
"term": {
"geoip.continent_name": {
"value": "Asia"
}
}
}
},
description="Maximum priced ecommerce data by customer_id in Asia",
dest={
"index": "kibana_sample_data_ecommerce_transform_v2",
"pipeline": "add_timestamp_pipeline"
},
frequency="15m",
sync={
"time": {
"field": "order_date",
"delay": "120s"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2740b69e7246ac6d1ad249382f21d534.asciidoc 0000664 0000000 0000000 00000001047 14766462667 0026400 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/aggregate-metric-double.asciidoc:26
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"my-agg-metric-field": {
"type": "aggregate_metric_double",
"metrics": [
"min",
"max",
"sum",
"value_count"
],
"default_metric": "max"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/274feaaa727e0ddf61b3c0f093182839.asciidoc 0000664 0000000 0000000 00000001034 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:414
[source, python]
----
resp = client.search(
index="my-index-000001",
runtime_mappings={
"duration": {
"type": "long",
"script": {
"source": "\n emit(doc['measures.end'].value - doc['measures.start'].value);\n "
}
}
},
aggs={
"duration_stats": {
"stats": {
"field": "duration"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/275ec358d5d1e4b9ff06cb4ae7e47650.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-index-template.asciidoc:84
[source, python]
----
resp = client.indices.get_index_template(
name="temp*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/27600d6a78623b69689d4218618e4278.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026124 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/unsigned_long.asciidoc:47
[source, python]
----
resp = client.search(
index="my_index",
query={
"term": {
"my_counter": 18446744073709552000
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/276e5b71ff5c6879a9b819076ad82301.asciidoc 0000664 0000000 0000000 00000002501 14766462667 0026420 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:33
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_dense_vector": {
"type": "dense_vector",
"index": False,
"dims": 3
},
"my_byte_dense_vector": {
"type": "dense_vector",
"index": False,
"dims": 3,
"element_type": "byte"
},
"status": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"my_dense_vector": [
0.5,
10,
6
],
"my_byte_dense_vector": [
0,
10,
6
],
"status": "published"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"my_dense_vector": [
-0.5,
10,
10
],
"my_byte_dense_vector": [
0,
10,
10
],
"status": "published"
},
)
print(resp2)
resp3 = client.indices.refresh(
index="my-index-000001",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/277fefe2b623af61f8274f73efc97aed.asciidoc 0000664 0000000 0000000 00000001261 14766462667 0027065 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/dissect-syntax.asciidoc:115
[source, python]
----
resp = client.scripts_painless_execute(
script={
"source": "\n String response=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] \"%{verb} %{request} HTTP/%{httpversion}\" %{response} %{size}').extract(doc[\"message\"].value)?.response;\n if (response != null) emit(Integer.parseInt(response)); \n "
},
context="long_field",
context_setup={
"index": "my-index",
"document": {
"message": "247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/278d5bfa1a01f91d5c84679ef1bca390.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/concurrency-control.asciidoc:61
[source, python]
----
resp = client.get(
index="products",
id="1567",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2793fa53b7d269852aa74f6bf57e34dc.asciidoc 0000664 0000000 0000000 00000001343 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/ngram-tokenfilter.asciidoc:208
[source, python]
----
resp = client.indices.create(
index="ngram_custom_example",
settings={
"index": {
"max_ngram_diff": 2
},
"analysis": {
"analyzer": {
"default": {
"tokenizer": "whitespace",
"filter": [
"3_5_grams"
]
}
},
"filter": {
"3_5_grams": {
"type": "ngram",
"min_gram": 3,
"max_gram": 5
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/279e2b29261971999923fdc658bba8ff.asciidoc 0000664 0000000 0000000 00000000627 14766462667 0026526 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:556
[source, python]
----
resp = client.search(
source={
"includes": [
"obj1.*",
"obj2.*"
],
"excludes": [
"*.description"
]
},
query={
"term": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/27f9f604e7a48799fa30529cbc0ff619.asciidoc 0000664 0000000 0000000 00000001345 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/delimited-payload-tokenfilter.asciidoc:173
[source, python]
----
resp = client.indices.create(
index="delimited_payload_example",
settings={
"analysis": {
"analyzer": {
"whitespace_plus_delimited": {
"tokenizer": "whitespace",
"filter": [
"plus_delimited"
]
}
},
"filter": {
"plus_delimited": {
"type": "delimited_payload",
"delimiter": "+",
"encoding": "int"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/282e9e845b606f29a5bba174ae4c4c4d.asciidoc 0000664 0000000 0000000 00000001340 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-security.asciidoc:40
[source, python]
----
resp = client.security.create_api_key(
name="my-restricted-api-key",
expiration="7d",
role_descriptors={
"my-restricted-role-descriptor": {
"indices": [
{
"names": [
"website-product-search"
],
"privileges": [
"read"
]
}
],
"restriction": {
"workflows": [
"search_application_query"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/28415647fced5f983b42f8435332a625.asciidoc 0000664 0000000 0000000 00000001035 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:157
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"processors": [
{
"lowercase": {
"field": "my-keyword-field"
}
}
]
},
docs=[
{
"_source": {
"my-keyword-field": "FOO"
}
},
{
"_source": {
"my-keyword-field": "BAR"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/28543836b62b5622a402e6f7731d68f0.asciidoc 0000664 0000000 0000000 00000000521 14766462667 0026241 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:421
[source, python]
----
resp = client.indices.downsample(
index=".ds-my-data-stream-2023.07.26-000001",
target_index=".ds-my-data-stream-2023.07.26-000001-downsample",
config={
"fixed_interval": "1h"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2856a5ceff1861aa9a78099f1c517fe7.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026647 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/troubleshooting.asciidoc:14
[source, python]
----
resp = client.indices.get_mapping(
index=".watches",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2864a24608b3ac59d21f604f8a31d131.asciidoc 0000664 0000000 0000000 00000000761 14766462667 0026366 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/jwt-realm.asciidoc:504
[source, python]
----
resp = client.security.put_role(
name="jwt_role1",
refresh=True,
cluster=[
"manage"
],
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
]
}
],
run_as=[
"user123_runas"
],
metadata={
"version": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2864d04bf99860ed5dbe1458f1ab5f78.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/put-autoscaling-policy.asciidoc:22
[source, python]
----
resp = client.autoscaling.put_autoscaling_policy(
name="",
policy={
"roles": [],
"deciders": {
"fixed": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2879d7bf4167194b102bf97117327164.asciidoc 0000664 0000000 0000000 00000000746 14766462667 0026200 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/htmlstrip-charfilter.asciidoc:64
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "keyword",
"char_filter": [
"html_strip"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2884eacac3ad05ff794f5296ec7427e7.asciidoc 0000664 0000000 0000000 00000000605 14766462667 0026724 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/knn-query.asciidoc:58
[source, python]
----
resp = client.search(
index="my-image-index",
size=3,
query={
"knn": {
"field": "image-vector",
"query_vector": [
-5,
9,
-12
],
"k": 10
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2891aa10ee9d474780adf94d5607f2db.asciidoc 0000664 0000000 0000000 00000000500 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:177
[source, python]
----
resp = client.search(
index="index_long,index_double",
sort=[
{
"field": {
"numeric_type": "double"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2897ccc2a3bf3d0cd89328ee4413fae5.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:605
[source, python]
----
resp = client.async_search.get(
id="FklQYndoTDJ2VEFlMEVBTzFJMGhJVFEaLVlKYndBWWZSMUdicUc4WVlEaFl4ZzoxNTU=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2898cf033b5bdefdbe3723af850b25c5.asciidoc 0000664 0000000 0000000 00000001300 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/collapse-search-results.asciidoc:53
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": "GET /search"
}
},
collapse={
"field": "user.id",
"inner_hits": {
"name": "most_recent",
"size": 5,
"sort": [
{
"@timestamp": "desc"
}
]
},
"max_concurrent_group_searches": 4
},
sort=[
{
"http.response.bytes": {
"order": "desc"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/28ac880057135e46b3b00c7f3976538c.asciidoc 0000664 0000000 0000000 00000000422 14766462667 0026322 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/allocation/filtering.asciidoc:122
[source, python]
----
resp = client.indices.put_settings(
index="test",
settings={
"index.routing.allocation.include._ip": "192.168.2.*"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/291110f4cac02f4610d0853f5800a70d.asciidoc 0000664 0000000 0000000 00000001027 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/weighted-avg-aggregation.asciidoc:214
[source, python]
----
resp = client.search(
index="exams",
size=0,
aggs={
"weighted_grade": {
"weighted_avg": {
"value": {
"field": "grade",
"missing": 2
},
"weight": {
"field": "weight",
"missing": 3
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2932e6f71e247cf52e11d2f38f114ddf.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:300
[source, python]
----
resp = client.reindex(
slices="5",
refresh=True,
source={
"index": "my-index-000001"
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/295b3aaeb223612afdd991744dc9c873.asciidoc 0000664 0000000 0000000 00000000621 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:489
[source, python]
----
resp = client.ingest.put_pipeline(
id="my_test_scores_pipeline",
description="Calculates the total test score",
processors=[
{
"script": {
"source": "ctx.total_score = (ctx.math_score + ctx.verbal_score)"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2968ffb8135f77ba3a9b876dd4918119.asciidoc 0000664 0000000 0000000 00000000607 14766462667 0026516 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:134
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "azure-ai-studio-embeddings",
"pipeline": "azure_ai_studio_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/29783e5de3a5f3c985cbf11094cf49a0.asciidoc 0000664 0000000 0000000 00000000576 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keyword-repeat-tokenfilter.asciidoc:274
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"keyword_repeat",
"stemmer",
"remove_duplicates"
],
text="fox running and jumping",
explain=True,
attributes="keyword",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/29824032d7d64512d17458fdd687b1f6.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026342 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:144
[source, python]
----
resp = client.tasks.list(
parent_task_id="oTUltX4IQMOUUVeiohTt8A:123",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/29953082744b7a36e437b392a6391c81.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026170 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:699
[source, python]
----
resp = client.render_search_template(
id="my-search-template",
params={
"from": 20,
"size": 10
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/299900fb08da80fe455cf3f1bb7d62ee.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-field-mapping.asciidoc:102
[source, python]
----
resp = client.indices.get_field_mapping(
index="publications",
fields="title",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/29aeabacb1fdf5b083d5f091b6d1bd44.asciidoc 0000664 0000000 0000000 00000000443 14766462667 0027161 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/data-stream-reindex.asciidoc:105
[source, python]
----
resp = client.indices.migrate_reindex(
reindex={
"source": {
"index": "my-data-stream"
},
"mode": "upgrade"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/29d9df958de292cec50daaf31844b573.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-field-mapping.asciidoc:232
[source, python]
----
resp = client.indices.get_field_mapping(
index="my-index-000001,my-index-000002",
fields="message",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/29e002ab596bae58712eb048ac1768d1.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026531 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/collapse-search-results.asciidoc:189
[source, python]
----
resp = client.index(
index="my-index-000001",
routing="xyz",
document={
"@timestamp": "2099-11-15T13:12:00",
"message": "You know for search!",
"user.id": "xyz"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a1eece9a59ac1773edcf0a932c26de0.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0027106 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/oidc-logout-api.asciidoc:53
[source, python]
----
resp = client.security.oidc_logout(
token="dGhpcyBpcyBub3QgYSByZWFsIHRva2VuIGJ1dCBpdCBpcyBvbmx5IHRlc3QgZGF0YS4gZG8gbm90IHRyeSB0byByZWFkIHRva2VuIQ==",
refresh_token="vLBPvmAB6KvwvJZr27cS",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a21674c40f9b182a8944769d20b2357.asciidoc 0000664 0000000 0000000 00000001477 14766462667 0026253 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/rank-vectors.asciidoc:137
[source, python]
----
resp = client.search(
index="my-rank-vectors-float",
query={
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "maxSimDotProduct(params.query_vector, 'my_vector')",
"params": {
"query_vector": [
[
0.5,
10,
6
],
[
-0.5,
10,
10
]
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a247e36a86a373bcbf478ac9a588f44.asciidoc 0000664 0000000 0000000 00000000552 14766462667 0026635 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/index_.asciidoc:328
[source, python]
----
resp = client.index(
index="my-index-000001",
routing="kimchy",
document={
"@timestamp": "2099-11-15T13:12:00",
"message": "GET /search HTTP/1.1 200 1070000",
"user": {
"id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a287d213a812b98d8353c563a058cfc.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026455 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/boxplot-aggregation.asciidoc:31
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_boxplot": {
"boxplot": {
"field": "load_time"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a44d254e6e32abe97515fd2eb34705d.asciidoc 0000664 0000000 0000000 00000000435 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:643
[source, python]
----
resp = client.sql.get_async(
id="FnR0TDhyWUVmUmVtWXRWZER4MXZiNFEad2F5UDk2ZVdTVHV1S0xDUy00SklUdzozMTU=",
wait_for_completion_timeout="2s",
format="json",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a47d11c6e19c9da5104e738359ea8a8.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026540 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/migrate-to-data-tiers-routing-guide.asciidoc:208
[source, python]
----
resp = client.ilm.start()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a5f7e7d6b92c66e52616845146d2820.asciidoc 0000664 0000000 0000000 00000002200 14766462667 0026325 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/painless-examples.asciidoc:522
[source, python]
----
resp = client.transform.preview_transform(
id="index_compare",
source={
"index": [
"index1",
"index2"
],
"query": {
"match_all": {}
}
},
dest={
"index": "compare"
},
pivot={
"group_by": {
"unique-id": {
"terms": {
"field": ""
}
}
},
"aggregations": {
"compare": {
"scripted_metric": {
"map_script": "state.doc = new HashMap(params['_source'])",
"combine_script": "return state",
"reduce_script": " \n if (states.size() != 2) {\n return \"count_mismatch\"\n }\n if (states.get(0).equals(states.get(1))) {\n return \"match\"\n } else {\n return \"mismatch\"\n }\n "
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a67608dadbf220a2f040f3a79d3677d.asciidoc 0000664 0000000 0000000 00000001314 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/attachment.asciidoc:162
[source, python]
----
resp = client.ingest.put_pipeline(
id="attachment",
description="Extract attachment information including original binary",
processors=[
{
"attachment": {
"field": "data",
"remove_binary": False
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="attachment",
document={
"data": "e1xydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbG9yIHNpdCBhbWV0DQpccGFyIH0="
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/2a70194ebd2f01a3229a5092513676b3.asciidoc 0000664 0000000 0000000 00000001363 14766462667 0026301 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/htmlstrip-charfilter.asciidoc:106
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "keyword",
"char_filter": [
"my_custom_html_strip_char_filter"
]
}
},
"char_filter": {
"my_custom_html_strip_char_filter": {
"type": "html_strip",
"escaped_tags": [
"b"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a71e2d7f7179dd76183d30789046808.asciidoc 0000664 0000000 0000000 00000000717 14766462667 0026271 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/multivalued-fields.asciidoc:224
[source, python]
----
resp = client.bulk(
index="mv",
refresh=True,
operations=[
{
"index": {}
},
{
"a": 1,
"b": [
2,
1
]
},
{
"index": {}
},
{
"a": 2,
"b": 3
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a91e1fb8ad93a188fa9d77ec01bc431.asciidoc 0000664 0000000 0000000 00000001711 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-inner-hits.asciidoc:90
[source, python]
----
resp = client.indices.create(
index="test",
mappings={
"properties": {
"comments": {
"type": "nested"
}
}
},
)
print(resp)
resp1 = client.index(
index="test",
id="1",
refresh=True,
document={
"title": "Test title",
"comments": [
{
"author": "kimchy",
"number": 1
},
{
"author": "nik9000",
"number": 2
}
]
},
)
print(resp1)
resp2 = client.search(
index="test",
query={
"nested": {
"path": "comments",
"query": {
"match": {
"comments.number": 2
}
},
"inner_hits": {}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/2a9747bcfaf1f9491ebd410b3fcb6798.asciidoc 0000664 0000000 0000000 00000000454 14766462667 0026776 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:45
[source, python]
----
resp = client.search(
query={
"query_string": {
"query": "(new york city) OR (big apple)",
"default_field": "content"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2a9d3119a9e26e29220be436b9382955.asciidoc 0000664 0000000 0000000 00000001032 14766462667 0026323 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:241
[source, python]
----
resp = client.indices.create(
index="mistral-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 1024,
"element_type": "float",
"similarity": "dot_product"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2aa548b692fc2fe7b6f0d90eb8b2ae29.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/delete-watch.asciidoc:66
[source, python]
----
resp = client.watcher.delete_watch(
id="my_watch",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2abfe0d3f5593d23d2dfa608b1e2532a.asciidoc 0000664 0000000 0000000 00000001574 14766462667 0026746 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:796
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"user_name": {
"terms": {
"field": "user_name"
}
}
},
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d",
"order": "desc"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ac37c3c572170ded67f1d5a0c8151ab.asciidoc 0000664 0000000 0000000 00000000501 14766462667 0026652 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1204
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
tiebreaker_field="event.sequence",
query="\n process where process.name == \"cmd.exe\" and stringContains(process.executable, \"System32\")\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ac7efe3919ee0c7971f5d502f482662.asciidoc 0000664 0000000 0000000 00000001427 14766462667 0026563 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:159
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"script_score": {
"query": {
"bool": {
"filter": {
"term": {
"status": "published"
}
}
}
},
"script": {
"source": "1 / (1 + l1norm(params.queryVector, 'my_dense_vector'))",
"params": {
"queryVector": [
4,
3.4,
-0.2
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2acf75803494fef29f9ca70671aa6be1.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-delete-roles.asciidoc:100
[source, python]
----
resp = client.security.bulk_delete_role(
names=[
"my_admin_role",
"superuser"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ad35a13262f98574a48f88b4a838512.asciidoc 0000664 0000000 0000000 00000000305 14766462667 0026327 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/alias-privileges.asciidoc:92
[source, python]
----
resp = client.get(
index="current_year",
id="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ade05fb3fb06a67df25e097dfadb045.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0027101 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/range-enrich-policy-type-ex.asciidoc:125
[source, python]
----
resp = client.get(
index="my-index-000001",
id="my_id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2aec92bc31bc24bce58d983738f9e0fe.asciidoc 0000664 0000000 0000000 00000000710 14766462667 0027047 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/matrix-stats-aggregation.asciidoc:128
[source, python]
----
resp = client.search(
aggs={
"matrixstats": {
"matrix_stats": {
"fields": [
"poverty",
"income"
],
"missing": {
"income": 50000
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2afc1231679898bd864d06679d9e951b.asciidoc 0000664 0000000 0000000 00000001611 14766462667 0026433 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline.asciidoc:202
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "day"
},
"aggs": {
"categories": {
"terms": {
"field": "category"
}
},
"min_bucket_selector": {
"bucket_selector": {
"buckets_path": {
"count": "categories._bucket_count"
},
"script": {
"source": "params.count != 0"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2afd49985950cbcccf727fa858d00067.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0026640 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/semantic-text.asciidoc:159
[source, python]
----
resp = client.indices.create(
index="test-index",
query={
"match": {
"my_field": "Which country is Paris in?"
}
},
highlight={
"fields": {
"my_field": {
"type": "semantic",
"number_of_fragments": 2,
"order": "score"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2afdf0d83724953aa2875b5fb37d60cc.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0026701 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:384
[source, python]
----
resp = client.esql.async_query_get(
id="FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
wait_for_completion_timeout="30s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2b1c560f00d9bcf5caaf56c03f6b5962.asciidoc 0000664 0000000 0000000 00000000422 14766462667 0026743 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connector-sync-jobs-api.asciidoc:85
[source, python]
----
resp = client.perform_request(
"GET",
"/_connector/_sync_job",
params={
"job_type": "full,incremental"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2b47be4b712147a429102aef386470ee.asciidoc 0000664 0000000 0000000 00000000554 14766462667 0026452 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/detect-threats-with-eql.asciidoc:277
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n sequence by process.pid\n [process where process.name == \"regsvr32.exe\"]\n [library where dll.name == \"scrobj.dll\"]\n [network where true]\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2b59b014349d45bf894aca90b2b1fbe0.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-a-data-stream.asciidoc:377
[source, python]
----
resp = client.indices.delete_data_stream(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2b5a5f8689f04d095fa86570130ee4d4.asciidoc 0000664 0000000 0000000 00000000740 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:22
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_id": {
"type": "keyword"
},
"my_join_field": {
"type": "join",
"relations": {
"question": "answer"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2b5c69778eb3daba9fbd7242bcc2daf9.asciidoc 0000664 0000000 0000000 00000001672 14766462667 0027212 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-api-key.asciidoc:729
[source, python]
----
resp = client.security.query_api_keys(
size=0,
query={
"bool": {
"filter": {
"term": {
"invalidated": True
}
}
}
},
aggs={
"invalidated_keys": {
"composite": {
"sources": [
{
"username": {
"terms": {
"field": "username"
}
}
},
{
"key_name": {
"terms": {
"field": "name"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2b7687e3d7c06824950e00618c297864.asciidoc 0000664 0000000 0000000 00000000313 14766462667 0026177 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/resolve-cluster.asciidoc:205
[source, python]
----
resp = client.indices.resolve_cluster(
name="my-index*,clust*:my-index*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ba15c066d55a9b26d49b09471151cb4.asciidoc 0000664 0000000 0000000 00000003465 14766462667 0026453 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/adjacency-matrix-aggregation.asciidoc:36
[source, python]
----
resp = client.bulk(
index="emails",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"accounts": [
"hillary",
"sidney"
]
},
{
"index": {
"_id": 2
}
},
{
"accounts": [
"hillary",
"donald"
]
},
{
"index": {
"_id": 3
}
},
{
"accounts": [
"vladimir",
"donald"
]
}
],
)
print(resp)
resp1 = client.search(
index="emails",
size=0,
aggs={
"interactions": {
"adjacency_matrix": {
"filters": {
"grpA": {
"terms": {
"accounts": [
"hillary",
"sidney"
]
}
},
"grpB": {
"terms": {
"accounts": [
"donald",
"mitt"
]
}
},
"grpC": {
"terms": {
"accounts": [
"vladimir",
"nigel"
]
}
}
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/2bacdcb278705d944f367cfb984cf4d2.asciidoc 0000664 0000000 0000000 00000001073 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:32
[source, python]
----
resp = client.search(
index="my-index-000001",
sort=[
{
"post_date": {
"order": "asc",
"format": "strict_date_optional_time_nanos"
}
},
"user",
{
"name": "desc"
},
{
"age": "desc"
},
"_score"
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2bc1d52efec2076dc9fc2a3a2d90e8ab.asciidoc 0000664 0000000 0000000 00000000577 14766462667 0027174 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/boxplot-aggregation.asciidoc:177
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_boxplot": {
"boxplot": {
"field": "load_time",
"execution_hint": "high_accuracy"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2bc57cd3f32b59b0b44ca63b19cdfcc0.asciidoc 0000664 0000000 0000000 00000001037 14766462667 0027100 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:623
[source, python]
----
resp = client.search(
index="image-index",
knn={
"field": "image-vector",
"query_vector": [
1,
5,
-20
],
"k": 5,
"num_candidates": 50,
"similarity": 36,
"filter": {
"term": {
"file-type": "png"
}
}
},
fields=[
"title"
],
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2c079d1ae4819a0c206b9e1aa5623523.asciidoc 0000664 0000000 0000000 00000002737 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/passthrough.asciidoc:11
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"attributes": {
"type": "passthrough",
"priority": 10,
"properties": {
"id": {
"type": "keyword"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"attributes": {
"id": "foo",
"zone": 10
}
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"bool": {
"must": [
{
"match": {
"id": "foo"
}
},
{
"match": {
"zone": 10
}
}
]
}
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"bool": {
"must": [
{
"match": {
"attributes.id": "foo"
}
},
{
"match": {
"attributes.zone": 10
}
}
]
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/2c090fe7ec7b66b3f5c178d71c46323b.asciidoc 0000664 0000000 0000000 00000000554 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:403
[source, python]
----
resp = client.indices.stats(
metric="fielddata",
human=True,
fields="my_join_field",
)
print(resp)
resp1 = client.nodes.stats(
metric="indices",
index_metric="fielddata",
human=True,
fields="my_join_field",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/2c0dbdcf400cde5d36f7c9e6c1101011.asciidoc 0000664 0000000 0000000 00000000244 14766462667 0026725 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/health.asciidoc:107
[source, python]
----
resp = client.cat.health(
v=True,
ts=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2c1e16e9ac24cfea979af2a69900d3c2.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0026753 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/put-synonym-rule.asciidoc:113
[source, python]
----
resp = client.synonyms.put_synonym_rule(
set_id="my-synonyms-set",
rule_id="test-1",
synonyms="hello, hi, howdy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2c27a8eb6528126f37a843d434cd88b6.asciidoc 0000664 0000000 0000000 00000000626 14766462667 0026475 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/flatten-graph-tokenfilter.asciidoc:39
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "synonym_graph",
"synonyms": [
"dns, domain name system"
]
}
],
text="domain name system is fragile",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2c3207c0c985d253b2ecccc14e69e25a.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:412
[source, python]
----
resp = client.indices.add_block(
index=".ds-my-data-stream-2023.07.26-000001",
block="write",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2c3dff44904d3d73ff47f1afe89c7f86.asciidoc 0000664 0000000 0000000 00000000425 14766462667 0027013 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:375
[source, python]
----
resp = client.update_by_query(
index="my-index-000001",
query={
"term": {
"user.id": "kimchy"
}
},
max_docs=1,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2c44657adf550b8ade5cf5334106d38b.asciidoc 0000664 0000000 0000000 00000001073 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1404
[source, python]
----
resp = client.search(
index="my-index-000001",
runtime_mappings={
"http.clientip": {
"type": "ip",
"script": "\n String clientip=grok('%{COMMONAPACHELOG}').extract(doc[\"message\"].value)?.clientip;\n if (clientip != null) emit(clientip);\n "
}
},
query={
"match": {
"http.clientip": "40.135.0.0"
}
},
fields=[
"http.clientip"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2c602b4ee8f22cda2cdf19bad31da0af.asciidoc 0000664 0000000 0000000 00000002200 14766462667 0027220 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster.asciidoc:59
[source, python]
----
resp = client.nodes.info()
print(resp)
resp1 = client.nodes.info(
node_id="_all",
)
print(resp1)
resp2 = client.nodes.info(
node_id="_local",
)
print(resp2)
resp3 = client.nodes.info(
node_id="_master",
)
print(resp3)
resp4 = client.nodes.info(
node_id="node_name_goes_here",
)
print(resp4)
resp5 = client.nodes.info(
node_id="node_name_goes_*",
)
print(resp5)
resp6 = client.nodes.info(
node_id="10.0.0.3,10.0.0.4",
)
print(resp6)
resp7 = client.nodes.info(
node_id="10.0.0.*",
)
print(resp7)
resp8 = client.nodes.info(
node_id="_all,master:false",
)
print(resp8)
resp9 = client.nodes.info(
node_id="data:true,ingest:true",
)
print(resp9)
resp10 = client.nodes.info(
node_id="coordinating_only:true",
)
print(resp10)
resp11 = client.nodes.info(
node_id="master:true,voting_only:false",
)
print(resp11)
resp12 = client.nodes.info(
node_id="rack:2",
)
print(resp12)
resp13 = client.nodes.info(
node_id="ra*:2",
)
print(resp13)
resp14 = client.nodes.info(
node_id="ra*:2*",
)
print(resp14)
----
python-elasticsearch-8.17.2/docs/examples/2c86840a46242a38cf82024a9321be46.asciidoc 0000664 0000000 0000000 00000001142 14766462667 0026305 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:362
[source, python]
----
resp = client.indices.create(
index="my-explicit-mappings-books",
mappings={
"dynamic": False,
"properties": {
"name": {
"type": "text"
},
"author": {
"type": "text"
},
"release_date": {
"type": "date",
"format": "yyyy-MM-dd"
},
"page_count": {
"type": "integer"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ceded6ee764adf1aaaac0a1cd25ed5f.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0027457 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/restore-from-snapshot.asciidoc:418
[source, python]
----
resp = client.cat.indices(
v=True,
health="red",
h="index,status,health",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2d01a9e5550b525496757f1bd7f0e706.asciidoc 0000664 0000000 0000000 00000000562 14766462667 0026407 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/index_.asciidoc:456
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
timeout="5m",
document={
"@timestamp": "2099-11-15T13:12:00",
"message": "GET /search HTTP/1.1 200 1070000",
"user": {
"id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2d0244c020075595acb625aa5ba8f455.asciidoc 0000664 0000000 0000000 00000001333 14766462667 0026434 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/synthetic-source.asciidoc:253
[source, python]
----
resp = client.index(
index="idx_keep",
id="1",
document={
"path": {
"to": [
{
"foo": [
3,
2,
1
]
},
{
"foo": [
30,
20,
10
]
}
],
"bar": "baz"
},
"ids": [
200,
100,
300,
100
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2d150ff3b6b991b58fea6aa5cc669aa3.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-phrase-query.asciidoc:66
[source, python]
----
resp = client.search(
query={
"match_phrase": {
"message": {
"query": "this is a test",
"analyzer": "my_analyzer"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2d2f5ec97aa34ff7822a6a1ed08ef335.asciidoc 0000664 0000000 0000000 00000002003 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:423
[source, python]
----
resp = client.bulk(
index="test",
refresh=True,
operations=[
{
"index": {
"_index": "test1"
}
},
{
"s": 1,
"m": 3.1415
},
{
"index": {
"_index": "test1"
}
},
{
"s": 2,
"m": 1
},
{
"index": {
"_index": "test2"
}
},
{
"s": 3.1,
"m": 2.71828
}
],
)
print(resp)
resp1 = client.search(
index="test*",
filter_path="aggregations",
aggs={
"tm": {
"top_metrics": {
"metrics": {
"field": "m"
},
"sort": {
"s": "asc"
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/2d37b02cbf6d30ae11bf239a54ec9423.asciidoc 0000664 0000000 0000000 00000003575 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:316
[source, python]
----
resp = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {}
},
{
"@timestamp": 1516729294000,
"model_number": "QVKC92Q",
"measures": {
"voltage": "5.2",
"start": "300",
"end": "8675309"
}
},
{
"index": {}
},
{
"@timestamp": 1516642894000,
"model_number": "QVKC92Q",
"measures": {
"voltage": "5.8",
"start": "300",
"end": "8675309"
}
},
{
"index": {}
},
{
"@timestamp": 1516556494000,
"model_number": "QVKC92Q",
"measures": {
"voltage": "5.1",
"start": "300",
"end": "8675309"
}
},
{
"index": {}
},
{
"@timestamp": 1516470094000,
"model_number": "QVKC92Q",
"measures": {
"voltage": "5.6",
"start": "300",
"end": "8675309"
}
},
{
"index": {}
},
{
"@timestamp": 1516383694000,
"model_number": "HG537PU",
"measures": {
"voltage": "4.2",
"start": "400",
"end": "8625309"
}
},
{
"index": {}
},
{
"@timestamp": 1516297294000,
"model_number": "HG537PU",
"measures": {
"voltage": "4.0",
"start": "400",
"end": "8625309"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2d60e3bdfee7afbddee149f40450b8b5.asciidoc 0000664 0000000 0000000 00000000463 14766462667 0027200 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/validate.asciidoc:149
[source, python]
----
resp = client.indices.validate_query(
index="my-index-000001",
query={
"query_string": {
"query": "@timestamp:foo",
"lenient": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2d8fcb03de417a71e7888bbdd948a692.asciidoc 0000664 0000000 0000000 00000000261 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/transforms.asciidoc:197
[source, python]
----
resp = client.cat.transforms(
v=True,
format="json",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2d9b30acd6b5683f39d53494c0dd779c.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/restart-cluster.asciidoc:147
[source, python]
----
resp = client.cat.health()
print(resp)
resp1 = client.cat.recovery()
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/2dad2b0c8ba503228f4b11cecca0b348.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0026771 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-migrate-data-stream-from-ilm-to-dsl.asciidoc:222
[source, python]
----
resp = client.indices.put_data_lifecycle(
name="dsl-data-stream",
data_retention="7d",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2de6885bacb8769b8f22dce253c96b0c.asciidoc 0000664 0000000 0000000 00000001045 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/intervals-query.asciidoc:424
[source, python]
----
resp = client.search(
query={
"intervals": {
"my_text": {
"match": {
"query": "hot porridge",
"filter": {
"script": {
"source": "interval.start > 10 && interval.end < 20 && interval.gaps == 0"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e09666d3ad5ad9afc22763ee6e97a2b.asciidoc 0000664 0000000 0000000 00000000557 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// slm/apis/slm-put.asciidoc:160
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="hourly-snapshots",
schedule="1h",
name="",
repository="my_repository",
config={
"indices": [
"data-*",
"important"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e364833626c9790c042c8f006fcc999.asciidoc 0000664 0000000 0000000 00000001403 14766462667 0026340 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/multiplexer-tokenfilter.asciidoc:36
[source, python]
----
resp = client.indices.create(
index="multiplexer_example",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"my_multiplexer"
]
}
},
"filter": {
"my_multiplexer": {
"type": "multiplexer",
"filters": [
"lowercase",
"lowercase, porter_stem"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e36fe22051a47e052e349854d9948b9.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/explain.asciidoc:198
[source, python]
----
resp = client.explain(
index="my-index-000001",
id="0",
q="message:search",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e3d1b293da93f2a9ecfc26786ec28d6.asciidoc 0000664 0000000 0000000 00000016077 14766462667 0027006 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:60
[source, python]
----
resp = client.indices.put_index_template(
name="my-data-stream-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
template={
"settings": {
"index": {
"mode": "time_series",
"routing_path": [
"kubernetes.namespace",
"kubernetes.host",
"kubernetes.node",
"kubernetes.pod"
],
"number_of_replicas": 0,
"number_of_shards": 2
}
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"kubernetes": {
"properties": {
"container": {
"properties": {
"cpu": {
"properties": {
"usage": {
"properties": {
"core": {
"properties": {
"ns": {
"type": "long"
}
}
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"nanocores": {
"type": "long",
"time_series_metric": "gauge"
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
}
}
},
"memory": {
"properties": {
"available": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"majorpagefaults": {
"type": "long"
},
"pagefaults": {
"type": "long",
"time_series_metric": "gauge"
},
"rss": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"usage": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
},
"workingset": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
}
}
},
"name": {
"type": "keyword"
},
"start_time": {
"type": "date"
}
}
},
"host": {
"type": "keyword",
"time_series_dimension": True
},
"namespace": {
"type": "keyword",
"time_series_dimension": True
},
"node": {
"type": "keyword",
"time_series_dimension": True
},
"pod": {
"type": "keyword",
"time_series_dimension": True
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e7844477b41fcfa9efefee4ec0e7101.asciidoc 0000664 0000000 0000000 00000002420 14766462667 0027047 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-using-query-rules.asciidoc:241
[source, python]
----
resp = client.search(
index="my-index-000001",
retriever={
"rule": {
"match_criteria": {
"query_string": "puggles",
"user_country": "us"
},
"ruleset_ids": [
"my-ruleset"
],
"retriever": {
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"query_string": {
"query": "pugs"
}
}
}
},
{
"standard": {
"query": {
"query_string": {
"query": "puggles"
}
}
}
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e796e5ca59768d4426abbf9a049db3e.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/split-index.asciidoc:175
[source, python]
----
resp = client.indices.split(
index="my_source_index",
target="my_target_index",
settings={
"index.number_of_shards": 2
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e7f4b9be999422a12abb680572b13c8.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/get-lifecycle.asciidoc:82
[source, python]
----
resp = client.ilm.get_lifecycle(
name="my_policy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e847378ba26aa64d40186b6e3e6a1da.asciidoc 0000664 0000000 0000000 00000000653 14766462667 0026617 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/unsigned_long.asciidoc:159
[source, python]
----
resp = client.search(
index="my_index",
query={
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "field('my_counter').asBigInteger(BigInteger.ZERO).floatValue()"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2e93eaaebf75fa4a2451e8a76ffa9f20.asciidoc 0000664 0000000 0000000 00000000753 14766462667 0027130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:105
[source, python]
----
resp = client.indices.put_index_template(
name="my-data-stream-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
priority=500,
template={
"mappings": {
"properties": {
"message": {
"type": "text"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ebcdd00ccbf26b4c8e6d9c80dfb3d55.asciidoc 0000664 0000000 0000000 00000000756 14766462667 0027262 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:170
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "linestring",
"coordinates": [
[
-377.03653,
389.897676
],
[
-377.009051,
389.889939
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ec8d757188349a4630e120ba2c98c3b.asciidoc 0000664 0000000 0000000 00000000606 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/pattern_replace-tokenfilter.asciidoc:36
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "pattern_replace",
"pattern": "(dog)",
"replacement": "watch$1"
}
],
text="foxes jump lazy dogs",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ee002e60bd7a38d466e5f0eb0c38946.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:375
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"add": {
"index": "my-index-2099.05.06-000001",
"alias": "my-alias",
"routing": "1"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ee239df3243c98418f7d9a5c7be4cfd.asciidoc 0000664 0000000 0000000 00000001461 14766462667 0027004 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/flatten-graph-tokenfilter.asciidoc:203
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_index_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"my_custom_word_delimiter_graph_filter",
"flatten_graph"
]
}
},
"filter": {
"my_custom_word_delimiter_graph_filter": {
"type": "word_delimiter_graph",
"catenate_all": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2eebaeb3983a04ef7a9201c1f4d40dc1.asciidoc 0000664 0000000 0000000 00000003364 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/dissect-syntax.asciidoc:204
[source, python]
----
resp = client.bulk(
index="my-index",
refresh=True,
operations=[
{
"index": {}
},
{
"timestamp": "2020-04-30T14:30:17-05:00",
"message": "40.135.0.0 - - [30/Apr/2020:14:30:17 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:30:53-05:00",
"message": "232.0.0.0 - - [30/Apr/2020:14:30:53 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:12-05:00",
"message": "26.1.0.0 - - [30/Apr/2020:14:31:12 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:19-05:00",
"message": "247.37.0.0 - - [30/Apr/2020:14:31:19 -0500] \"GET /french/splash_inet.html HTTP/1.0\" 200 3781"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:22-05:00",
"message": "247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:27-05:00",
"message": "252.0.0.0 - - [30/Apr/2020:14:31:27 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:28-05:00",
"message": "not a valid apache log"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f0b2181c434a879a23b4643bdd92575.asciidoc 0000664 0000000 0000000 00000000536 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-settings.asciidoc:82
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001,my-index-000002",
)
print(resp)
resp1 = client.indices.get_settings(
index="_all",
)
print(resp1)
resp2 = client.indices.get_settings(
index="log_2099_*",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/2f195eeb93229e40c4d8f1a6ab4a358c.asciidoc 0000664 0000000 0000000 00000001243 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/fingerprint.asciidoc:39
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"processors": [
{
"fingerprint": {
"fields": [
"user"
]
}
}
]
},
docs=[
{
"_source": {
"user": {
"last_name": "Smith",
"first_name": "John",
"date_of_birth": "1980-01-15",
"is_active": True
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f2580ea420e1836d922fe48fa8ada97.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/delete-auto-follow-pattern.asciidoc:39
[source, python]
----
resp = client.ccr.delete_auto_follow_pattern(
name="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f2fd35905feef0b561c05d70c7064c1.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:570
[source, python]
----
resp = client.indices.get_mapping(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f4a55dfeba8851b306ef9c1b216ef54.asciidoc 0000664 0000000 0000000 00000000401 14766462667 0026753 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:85
[source, python]
----
resp = client.search(
index="bug_reports",
query={
"term": {
"labels.release": "v1.3.0"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f4e28c81db47547ad39d0926babab12.asciidoc 0000664 0000000 0000000 00000002133 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:689
[source, python]
----
resp = client.indices.create(
index="estonian_example",
settings={
"analysis": {
"filter": {
"estonian_stop": {
"type": "stop",
"stopwords": "_estonian_"
},
"estonian_keywords": {
"type": "keyword_marker",
"keywords": [
"näide"
]
},
"estonian_stemmer": {
"type": "stemmer",
"language": "estonian"
}
},
"analyzer": {
"rebuilt_estonian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"estonian_stop",
"estonian_keywords",
"estonian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f72a63c73dd672ac2dc3997ad15dd41.asciidoc 0000664 0000000 0000000 00000001026 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/semantic-text.asciidoc:242
[source, python]
----
resp = client.indices.create(
index="test-index",
mappings={
"properties": {
"source_field": {
"type": "text",
"fields": {
"infer_field": {
"type": "semantic_text",
"inference_id": ".elser-2-elasticsearch"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f9574fee2ebecd6f7d917ee99b26bcc.asciidoc 0000664 0000000 0000000 00000000660 14766462667 0027235 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/doc-values.asciidoc:65
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"status_code": {
"type": "keyword"
},
"session_id": {
"type": "keyword",
"doc_values": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f98924c3d593ea2b60edb9cef5bee22.asciidoc 0000664 0000000 0000000 00000000274 14766462667 0027054 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:484
[source, python]
----
resp = client.indices.forcemerge(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2f9ee29fe49f7d206a41212aa5945296.asciidoc 0000664 0000000 0000000 00000001033 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/create-index-from-source.asciidoc:117
[source, python]
----
resp = client.indices.create_from(
source="my-index",
dest="my-new-index",
create_from={
"settings_override": {
"index": {
"blocks.write": None,
"blocks.read": None,
"blocks.read_only": None,
"blocks.read_only_allow_delete": None,
"blocks.metadata": None
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2fa45d74ba9933188c4728f8a9e5372c.asciidoc 0000664 0000000 0000000 00000000753 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/index_.asciidoc:227
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"action.auto_create_index": "my-index-000001,index10,-index1*,+ind*"
},
)
print(resp)
resp1 = client.cluster.put_settings(
persistent={
"action.auto_create_index": "false"
},
)
print(resp1)
resp2 = client.cluster.put_settings(
persistent={
"action.auto_create_index": "true"
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/2fa7ded8515b32f26c54394ea598f573.asciidoc 0000664 0000000 0000000 00000001670 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/index-templates.asciidoc:123
[source, python]
----
resp = client.indices.put_index_template(
name="template_1",
index_patterns=[
"te*",
"bar*"
],
template={
"settings": {
"number_of_shards": 1
},
"mappings": {
"_source": {
"enabled": True
},
"properties": {
"host_name": {
"type": "keyword"
},
"created_at": {
"type": "date",
"format": "EEE MMM dd HH:mm:ss Z yyyy"
}
}
},
"aliases": {
"mydata": {}
}
},
priority=500,
composed_of=[
"component_template1",
"runtime_component_template"
],
version=3,
meta={
"description": "my custom"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2fc2c790a85be29bbcba50bdde1493f4.asciidoc 0000664 0000000 0000000 00000000352 14766462667 0027110 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:225
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="my_snapshot_2099.05.06",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2fc80a2ad1ca8b2dcb13ed1895b8e861.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0027025 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/update-settings.asciidoc:128
[source, python]
----
resp = client.cluster.put_settings(
transient={
"indices.recovery.*": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2fd0b3c132b46aa34cc9d92dd2d4bc85.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0027023 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/common-grams-tokenfilter.asciidoc:28
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "common_grams",
"common_words": [
"is",
"the"
]
}
],
text="the quick fox is brown",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2fe28d9a91b3081a9ec4601af8fb7b1c.asciidoc 0000664 0000000 0000000 00000001531 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:716
[source, python]
----
resp = client.indices.create(
index="test",
mappings={
"dynamic": False,
"properties": {
"text": {
"type": "text"
}
}
},
)
print(resp)
resp1 = client.index(
index="test",
refresh=True,
document={
"text": "words words",
"flag": "bar"
},
)
print(resp1)
resp2 = client.index(
index="test",
refresh=True,
document={
"text": "words words",
"flag": "foo"
},
)
print(resp2)
resp3 = client.indices.put_mapping(
index="test",
properties={
"text": {
"type": "text"
},
"flag": {
"type": "text",
"analyzer": "keyword"
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/2fea3e324939cc7e9c396964aeee7111.asciidoc 0000664 0000000 0000000 00000000544 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-query.asciidoc:256
[source, python]
----
resp = client.search(
query={
"match": {
"message": {
"query": "to be or not to be",
"operator": "and",
"zero_terms_query": "all"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2fee452baff92b409cbfc8d71eb5fc0e.asciidoc 0000664 0000000 0000000 00000000224 14766462667 0027257 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/nodes.asciidoc:361
[source, python]
----
resp = client.cat.nodes(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/2ffa953b29ed0156c9e610daf66b8e48.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-tutorial.asciidoc:410
[source, python]
----
resp = client.ilm.explain_lifecycle(
index="timeseries-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/300576666769b78fa6fa26b232837f81.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026255 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/get-autoscaling-capacity.asciidoc:22
[source, python]
----
resp = client.autoscaling.get_autoscaling_capacity()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/305c4cfb2ad4b58b4c319ffbf32336cc.asciidoc 0000664 0000000 0000000 00000000726 14766462667 0027031 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:143
[source, python]
----
resp = client.search(
index="my-index-000001",
script_fields={
"my_doubled_field": {
"script": {
"lang": "painless",
"source": "doc['my_field'].value * params.get('multiplier');",
"params": {
"multiplier": 2
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3082ae0c3ecdc61808103214631b40c6.asciidoc 0000664 0000000 0000000 00000001371 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/avg-bucket-aggregation.asciidoc:57
[source, python]
----
resp = client.search(
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"avg_monthly_sales": {
"avg_bucket": {
"buckets_path": "sales_per_month>sales",
"gap_policy": "skip",
"format": "#,##0.00;(#,##0.00)"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/309f0721145b5c656338a02459c3ff1e.asciidoc 0000664 0000000 0000000 00000000507 14766462667 0026315 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rank-feature-query.asciidoc:254
[source, python]
----
resp = client.search(
index="test",
query={
"rank_feature": {
"field": "pagerank",
"saturation": {
"pivot": 8
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/30abc76a39e551f4b52c65002bb6405d.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:285
[source, python]
----
resp = client.security.get_api_key(
username="myuser",
realm_name="native1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/30bd3c0785f3df4795684754adeb5ecb.asciidoc 0000664 0000000 0000000 00000000720 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:97
[source, python]
----
resp = client.render_search_template(
source={
"query": {
"match": {
"message": "{{query_string}}"
}
},
"from": "{{from}}",
"size": "{{size}}"
},
params={
"query_string": "hello world",
"from": 20,
"size": 10
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/30d051f534aeb884176eedb2c11dac85.asciidoc 0000664 0000000 0000000 00000001102 14766462667 0026656 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-elasticsearch.asciidoc:176
[source, python]
----
resp = client.inference.put(
task_type="rerank",
inference_id="my-elastic-rerank",
inference_config={
"service": "elasticsearch",
"service_settings": {
"model_id": ".rerank-v1",
"num_threads": 1,
"adaptive_allocations": {
"enabled": True,
"min_number_of_allocations": 1,
"max_number_of_allocations": 4
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/30db2702dd0071c72a090b8311d0db09.asciidoc 0000664 0000000 0000000 00000001442 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/tophits-aggregation.asciidoc:201
[source, python]
----
resp = client.search(
index="sales",
query={
"match": {
"body": "elections"
}
},
aggs={
"top_sites": {
"terms": {
"field": "domain",
"order": {
"top_hit": "desc"
}
},
"aggs": {
"top_tags_hits": {
"top_hits": {}
},
"top_hit": {
"max": {
"script": {
"source": "_score"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/30f3e3b9df46afd12e68bc71f18483b4.asciidoc 0000664 0000000 0000000 00000001021 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:131
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
)
print(resp)
resp1 = client.indices.create(
index="my-index-000002",
)
print(resp1)
resp2 = client.indices.put_mapping(
index="my-index-000001,my-index-000002",
properties={
"user": {
"properties": {
"name": {
"type": "keyword"
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/30fa37c9575fe81a0ea7c12cfc08e277.asciidoc 0000664 0000000 0000000 00000001020 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/copy-to.asciidoc:71
[source, python]
----
resp = client.indices.create(
index="bad_example_index",
mappings={
"properties": {
"field_1": {
"type": "text",
"copy_to": "field_2"
},
"field_2": {
"type": "text",
"copy_to": "field_3"
},
"field_3": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/310bdfb0d0d75bac7bff036a3fe51d4d.asciidoc 0000664 0000000 0000000 00000001023 14766462667 0027146 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:145
[source, python]
----
resp = client.ingest.put_pipeline(
id="azure_ai_studio_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "azure_ai_studio_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3166455372f2d96622caff076e91ebe7.asciidoc 0000664 0000000 0000000 00000000534 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:308
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"percolate": {
"field": "query",
"index": "my-index-000001",
"id": "2",
"version": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/316cd43feb3b86396483903af1a048b1.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026455 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:782
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sale_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "year",
"missing": "2000/01/01"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3182f26c61fbe5cf89400804533d5ed2.asciidoc 0000664 0000000 0000000 00000000657 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:808
[source, python]
----
resp = client.render_search_template(
id="my-search-template",
params={
"query_string": "My string",
"text_fields": [
{
"user_name": "John"
},
{
"user_name": "kimchy"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/31832bd71c31c46a1ccf8d1c210d89d4.asciidoc 0000664 0000000 0000000 00000001204 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-multiple-indices.asciidoc:51
[source, python]
----
resp = client.search(
index="my-index-*",
query={
"bool": {
"must": [
{
"match": {
"user.id": "kimchy"
}
}
],
"must_not": [
{
"terms": {
"_index": [
"my-index-01"
]
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/318e209cc4d6f306e65cb2f5598a50b1.asciidoc 0000664 0000000 0000000 00000000756 14766462667 0026547 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:194
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "LineString",
"coordinates": [
[
-77.03653,
38.897676
],
[
-77.009051,
38.889939
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/31a79a57b242713edec6795599ba0d5d.asciidoc 0000664 0000000 0000000 00000000631 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/semantic-search/field-mappings.asciidoc:15
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"my_tokens": {
"type": "sparse_vector"
},
"my_text_field": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/31ab4ec26176857280af630bf84a2823.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026373 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/saml-sp-metadata.asciidoc:48
[source, python]
----
resp = client.security.saml_service_provider_metadata(
realm_name="saml1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/31ac1b68dc7c26a1d37350be47ae9381.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/completion.asciidoc:12
[source, python]
----
resp = client.indices.create(
index="music",
mappings={
"properties": {
"suggest": {
"type": "completion"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/31aed390c30bd4f42a5c56253695e53f.asciidoc 0000664 0000000 0000000 00000000662 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/whitespace-analyzer.asciidoc:131
[source, python]
----
resp = client.indices.create(
index="whitespace_example",
settings={
"analysis": {
"analyzer": {
"rebuilt_whitespace": {
"tokenizer": "whitespace",
"filter": []
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/31f4400716500149cccbc19aa06bff66.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/dangling-index-delete.asciidoc:19
[source, python]
----
resp = client.dangling_indices.delete_dangling_index(
index_uuid="",
accept_data_loss=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/320645d771e952af2a67bb7445c3688d.asciidoc 0000664 0000000 0000000 00000002241 14766462667 0026411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1648
[source, python]
----
resp = client.indices.create(
index="sorani_example",
settings={
"analysis": {
"filter": {
"sorani_stop": {
"type": "stop",
"stopwords": "_sorani_"
},
"sorani_keywords": {
"type": "keyword_marker",
"keywords": [
"mînak"
]
},
"sorani_stemmer": {
"type": "stemmer",
"language": "sorani"
}
},
"analyzer": {
"rebuilt_sorani": {
"tokenizer": "standard",
"filter": [
"sorani_normalization",
"lowercase",
"decimal_digit",
"sorani_stop",
"sorani_keywords",
"sorani_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32123981430e5a8b34fe14314fc48429.asciidoc 0000664 0000000 0000000 00000000447 14766462667 0026240 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-multiple-indices.asciidoc:17
[source, python]
----
resp = client.search(
index="my-index-000001,my-index-000002",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3218f8ccd59c8c90349816e0428e8fb8.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026504 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/circuit-breaker-errors.asciidoc:99
[source, python]
----
resp = client.indices.clear_cache(
fielddata=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3250a8d2d2a9619035040e55a03620b9.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026217 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/network/tracers.asciidoc:46
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.http.HttpTracer": "TRACE",
"logger.org.elasticsearch.http.HttpBodyTracer": "TRACE"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/327466380bcd55361973b4a96c6dccb2.asciidoc 0000664 0000000 0000000 00000002131 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1698
[source, python]
----
resp = client.indices.create(
index="spanish_example",
settings={
"analysis": {
"filter": {
"spanish_stop": {
"type": "stop",
"stopwords": "_spanish_"
},
"spanish_keywords": {
"type": "keyword_marker",
"keywords": [
"ejemplo"
]
},
"spanish_stemmer": {
"type": "stemmer",
"language": "light_spanish"
}
},
"analyzer": {
"rebuilt_spanish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"spanish_stop",
"spanish_keywords",
"spanish_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32a7acdfb7046966b28f394476c99126.asciidoc 0000664 0000000 0000000 00000000355 14766462667 0026426 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:153
[source, python]
----
resp = client.index(
index="example",
document={
"location": "POINT (-377.03653 389.897676)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32af23a4b0fea6c81c4688ce5fe4ac35.asciidoc 0000664 0000000 0000000 00000001043 14766462667 0027030 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-rank-aggregation.asciidoc:184
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_ranks": {
"percentile_ranks": {
"field": "load_time",
"values": [
500,
600
],
"hdr": {
"number_of_significant_value_digits": 3
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32b7963c5cabbe9cc7d15da62f5edda9.asciidoc 0000664 0000000 0000000 00000000566 14766462667 0027212 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-user-profile-data.asciidoc:124
[source, python]
----
resp = client.security.update_user_profile_data(
uid="u_P_0BMHgaOK3p7k-PFWUCbw9dQ-UFjt01oWJ_Dp2PmPc_0",
labels={
"direction": "west"
},
data={
"app1": {
"font": "large"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32b8a5152b47930f2e16c40c8615c7bb.asciidoc 0000664 0000000 0000000 00000003147 14766462667 0026452 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-client.asciidoc:286
[source, python]
----
resp = client.search_application.put(
name="my-example-app",
search_application={
"indices": [
"example-index"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"bool\": {\n \"must\": [\n {{#query}}\n {\n \"multi_match\" : {\n \"query\": \"{{query}}\",\n \"fields\": [ \"title^4\", \"plot\", \"actors\", \"directors\" ]\n }\n },\n {\n \"multi_match\" : {\n \"query\": \"{{query}}\",\n \"type\": \"phrase_prefix\",\n \"fields\": [ \"title^4\", \"plot\"]\n }\n },\n {{/query}}\n ],\n \"filter\": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n \"aggs\": {{#toJson}}_es_aggs{{/toJson}},\n \"from\": {{from}},\n \"size\": {{size}},\n \"sort\": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ",
"params": {
"query": "",
"_es_filters": {},
"_es_aggs": {},
"_es_sort_fields": {},
"size": 10,
"from": 0
},
"dictionary": {}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32c8c86702ccd68eb70f1573409c2a1f.asciidoc 0000664 0000000 0000000 00000001400 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-searchable-snapshot.asciidoc:130
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_size": "50gb"
},
"searchable_snapshot": {
"snapshot_repository": "backing_repo",
"replicate_for": "14d"
}
}
},
"delete": {
"min_age": "28d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32cd57666bc80b8cf793d06fa1086669.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0026501 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:203
[source, python]
----
resp = client.sql.query(
format="tsv",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32ce26b8af95f7ccc2a7bd5e77a39d6c.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0027137 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:562
[source, python]
----
resp = client.indices.recovery(
index="my-index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/32de5dd306bd014d67053d2f175defcd.asciidoc 0000664 0000000 0000000 00000000400 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/troubleshooting.asciidoc:748
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.xpack.security.authc.saml": "debug"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3312c82f81816bf76629db9582991812.asciidoc 0000664 0000000 0000000 00000001355 14766462667 0026211 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/slowlog.asciidoc:135
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index.search.slowlog.threshold.query.warn": "10s",
"index.search.slowlog.threshold.query.info": "5s",
"index.search.slowlog.threshold.query.debug": "2s",
"index.search.slowlog.threshold.query.trace": "500ms",
"index.search.slowlog.threshold.fetch.warn": "1s",
"index.search.slowlog.threshold.fetch.info": "800ms",
"index.search.slowlog.threshold.fetch.debug": "500ms",
"index.search.slowlog.threshold.fetch.trace": "200ms",
"index.search.slowlog.include.user": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/331caebf810a923644eb6de26e5a97f4.asciidoc 0000664 0000000 0000000 00000000754 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:417
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_join_field": {
"type": "join",
"relations": {
"question": [
"answer",
"comment"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3337c817ebd438254505a31e91c91724.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026244 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-data-stream.asciidoc:77
[source, python]
----
resp = client.indices.get_data_stream(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3341d3bbb53052447a37c92a04c14b70.asciidoc 0000664 0000000 0000000 00000000357 14766462667 0026351 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:356
[source, python]
----
resp = client.update(
index="my-index-000001",
id="1",
script="ctx._source.new_field = 'value_of_new_field'",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3343a4cf559060c422d86c786a95e535.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026332 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/apostrophe-tokenfilter.asciidoc:22
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"apostrophe"
],
text="Istanbul'a veya Istanbul'dan",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/334811cfceb6858aeec5b3461717dd63.asciidoc 0000664 0000000 0000000 00000001065 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/geoip.asciidoc:188
[source, python]
----
resp = client.ingest.put_pipeline(
id="geoip",
description="Add ip geolocation info",
processors=[
{
"geoip": {
"field": "ip"
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="geoip",
document={
"ip": "80.231.5.0"
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/33610800d9de3c3e6d6b3c611ace7330.asciidoc 0000664 0000000 0000000 00000000266 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:134
[source, python]
----
resp = client.tasks.get(
task_id="oTUltX4IQMOUUVeiohTt8A:124",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/336613f48dd95ea993dd3bcce264fd0e.asciidoc 0000664 0000000 0000000 00000001017 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-allocate.asciidoc:116
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"cold": {
"actions": {
"allocate": {
"require": {
"box_type": "cold",
"storage": "high"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/33732208fc6e6fe1e8d278299681932e.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026346 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:183
[source, python]
----
resp = client.index(
index="example",
document={
"location": "LINESTRING (-377.03653 389.897676, -377.009051 389.889939)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3386fe07e90844dbcdbbe7c07f09e04a.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/delete-synonyms-set.asciidoc:66
[source, python]
----
resp = client.synonyms.delete_synonym(
id="my-synonyms-set",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/339c4e5af9f9069ad9912aa574488b59.asciidoc 0000664 0000000 0000000 00000002241 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:346
[source, python]
----
resp = client.indices.create(
index="my-index-bit-vectors",
mappings={
"properties": {
"my_dense_vector": {
"type": "dense_vector",
"index": False,
"element_type": "bit",
"dims": 40
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-bit-vectors",
id="1",
document={
"my_dense_vector": [
8,
5,
-15,
1,
-7
]
},
)
print(resp1)
resp2 = client.index(
index="my-index-bit-vectors",
id="2",
document={
"my_dense_vector": [
-1,
115,
-3,
4,
-128
]
},
)
print(resp2)
resp3 = client.index(
index="my-index-bit-vectors",
id="3",
document={
"my_dense_vector": [
2,
18,
-5,
0,
-124
]
},
)
print(resp3)
resp4 = client.indices.refresh(
index="my-index-bit-vectors",
)
print(resp4)
----
python-elasticsearch-8.17.2/docs/examples/33b732bb301e99d2161bd2246494f487.asciidoc 0000664 0000000 0000000 00000001025 14766462667 0026314 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/geo-match-enrich-policy-type-ex.asciidoc:95
[source, python]
----
resp = client.ingest.put_pipeline(
id="postal_lookup",
processors=[
{
"enrich": {
"description": "Add 'geo_data' based on 'geo_location'",
"policy_name": "postal_policy",
"field": "geo_location",
"target_field": "geo_data",
"shape_relation": "INTERSECTS"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/33d480fc6812ada75756cf5337bc9092.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026467 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connector-sync-jobs-api.asciidoc:64
[source, python]
----
resp = client.perform_request(
"GET",
"/_connector/_sync_job",
params={
"from": "0",
"size": "2"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/33f148e3d8676de6cc52f58749898a13.asciidoc 0000664 0000000 0000000 00000001045 14766462667 0026440 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:278
[source, python]
----
resp = client.search(
query={
"dis_max": {
"queries": [
{
"match_phrase_prefix": {
"subject": "quick brown f"
}
},
{
"match_phrase_prefix": {
"message": "quick brown f"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/342ddf9121aeddd82fea2464665e25da.asciidoc 0000664 0000000 0000000 00000000446 14766462667 0026761 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/create-connector-api.asciidoc:27
[source, python]
----
resp = client.connector.put(
connector_id="my-connector",
index_name="search-google-drive",
name="My Connector",
service_type="google_drive",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/343dd09a8c76987e586858be3bdc51eb.asciidoc 0000664 0000000 0000000 00000003006 14766462667 0026647 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:574
[source, python]
----
resp = client.indices.create(
index="my_queries2",
settings={
"analysis": {
"analyzer": {
"wildcard_suffix": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"reverse",
"wildcard_edge_ngram"
]
},
"wildcard_suffix_search_time": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"reverse"
]
}
},
"filter": {
"wildcard_edge_ngram": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 32
}
}
}
},
mappings={
"properties": {
"query": {
"type": "percolator"
},
"my_field": {
"type": "text",
"fields": {
"suffix": {
"type": "text",
"analyzer": "wildcard_suffix",
"search_analyzer": "wildcard_suffix_search_time"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/344b4144244d57f87c6aa4652b100b25.asciidoc 0000664 0000000 0000000 00000000347 14766462667 0026304 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-query.asciidoc:167
[source, python]
----
resp = client.index(
index="my-index-000001",
id="2",
document={
"color": "blue"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/346f28d82acb5427c304aa574fea0008.asciidoc 0000664 0000000 0000000 00000001310 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1847
[source, python]
----
resp = client.indices.create(
index="thai_example",
settings={
"analysis": {
"filter": {
"thai_stop": {
"type": "stop",
"stopwords": "_thai_"
}
},
"analyzer": {
"rebuilt_thai": {
"tokenizer": "thai",
"filter": [
"lowercase",
"decimal_digit",
"thai_stop"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3477a89d869b1f7f72d50c2ca86c4679.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/activate-watch.asciidoc:88
[source, python]
----
resp = client.watcher.activate_watch(
watch_id="my_watch",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3487e60e1ae9d4925ce540cd63574385.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0026421 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/boosting-query.asciidoc:18
[source, python]
----
resp = client.search(
query={
"boosting": {
"positive": {
"term": {
"text": "apple"
}
},
"negative": {
"term": {
"text": "pie tart fruit crumble tree"
}
},
"negative_boost": 0.5
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/34be27141e3a476c138546190101c8bc.asciidoc 0000664 0000000 0000000 00000000370 14766462667 0026300 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-vector-tile-api.asciidoc:38
[source, python]
----
resp = client.search_mvt(
index="my-index",
field="my-geo-field",
zoom="15",
x="5271",
y="12710",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/34d51c54b62e9a160c0ddacc10134bb0.asciidoc 0000664 0000000 0000000 00000000536 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-first-query.asciidoc:10
[source, python]
----
resp = client.search(
query={
"span_first": {
"match": {
"span_term": {
"user.id": "kimchy"
}
},
"end": 3
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/34d63740b58209a3d031212909743925.asciidoc 0000664 0000000 0000000 00000001037 14766462667 0026012 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:213
[source, python]
----
resp = client.search(
index="openai-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "openai_embeddings",
"model_text": "Calculate fuel cost"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35260b615d0b5628c95d7cc814c39bd3.asciidoc 0000664 0000000 0000000 00000000744 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/has-child-query.asciidoc:141
[source, python]
----
resp = client.search(
query={
"has_child": {
"type": "child",
"query": {
"function_score": {
"script_score": {
"script": "_score * doc['click_count'].value"
}
}
},
"score_mode": "max"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/353020cb30a885ee7f5ce2b141ba574a.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/prefix-query.asciidoc:58
[source, python]
----
resp = client.search(
query={
"prefix": {
"user": "ki"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3541d4a85e27b2c3896a7a7ee98b4b37.asciidoc 0000664 0000000 0000000 00000000243 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// health/health.asciidoc:486
[source, python]
----
resp = client.health_report(
verbose=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3544f17cb97b613a2f733707c676f759.asciidoc 0000664 0000000 0000000 00000001523 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filter-aggregation.asciidoc:122
[source, python]
----
resp = client.search(
index="sales",
size="0",
filter_path="aggregations",
aggs={
"f": {
"filters": {
"filters": {
"hats": {
"term": {
"type": "hat"
}
},
"t_shirts": {
"term": {
"type": "t-shirt"
}
}
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3545261682af72f4bee57f2bac0a9590.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shard-stores.asciidoc:156
[source, python]
----
resp = client.indices.shard_stores(
status="green",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35563ef92dddef9d83906d9c43c60d0f.asciidoc 0000664 0000000 0000000 00000000670 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-termvectors.asciidoc:10
[source, python]
----
resp = client.mtermvectors(
docs=[
{
"_index": "my-index-000001",
"_id": "2",
"term_statistics": True
},
{
"_index": "my-index-000001",
"_id": "1",
"fields": [
"message"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/355d0ee2fcb6c1fc403c6267f710e25a.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:722
[source, python]
----
resp = client.reindex(
source={
"index": [
"my-index-000001",
"my-index-000002"
]
},
dest={
"index": "my-new-index-000002"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35a272df8c919a12d7c3106a18245748.asciidoc 0000664 0000000 0000000 00000000542 14766462667 0026320 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/infer-trained-model.asciidoc:956
[source, python]
----
resp = client.ml.infer_trained_model(
model_id="lang_ident_model_1",
docs=[
{
"text": "The fool doth think he is wise, but the wise man knows himself to be a fool."
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35be136ba9df7474a5521631e2a385b1.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/apis/explain-lifecycle.asciidoc:56
[source, python]
----
resp = client.indices.explain_data_lifecycle(
index=".ds-metrics-2023.03.22-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35c33ef48cf8a4ee368874141622f9d5.asciidoc 0000664 0000000 0000000 00000000736 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:503
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"strings_as_text": {
"match_mapping_type": "string",
"mapping": {
"type": "text"
}
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35c664285f2e8b7d5d50ca37ae3ba794.asciidoc 0000664 0000000 0000000 00000000637 14766462667 0026635 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/collapse-search-results.asciidoc:160
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": "GET /search"
}
},
collapse={
"field": "user.id"
},
sort=[
"user.id"
],
search_after=[
"dd5ce1ad"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35eef1765e9a5991d77592a0c7490fe0.asciidoc 0000664 0000000 0000000 00000000510 14766462667 0026502 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/min-aggregation.asciidoc:99
[source, python]
----
resp = client.search(
index="sales",
aggs={
"grade_min": {
"min": {
"field": "grade",
"missing": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35f892b475a1770f18328158be7039fd.asciidoc 0000664 0000000 0000000 00000000605 14766462667 0026341 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:71
[source, python]
----
resp = client.indices.create(
index="my-index-2",
mappings={
"properties": {
"my_vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "dot_product"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/35fc63cbefce7bc131ad467b5ba209ef.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0027170 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/disk/decrease-data-node-disk-usage.asciidoc:79
[source, python]
----
resp = client.cat.allocation(
v=True,
s="disk.avail",
h="node,disk.percent,disk.avail,disk.total,disk.used,disk.indices,shards",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3608e4fcd17dd8d5f88ec9a3db2f5d89.asciidoc 0000664 0000000 0000000 00000000436 14766462667 0027075 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/put-synonyms-set.asciidoc:89
[source, python]
----
resp = client.synonyms.put_synonym(
id="my-synonyms-set",
synonyms_set=[
{
"synonyms": "hello => hi => howdy"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/360b3cef34bbddc5d9579ca95f0cb061.asciidoc 0000664 0000000 0000000 00000000473 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:155
[source, python]
----
resp = client.indices.put_mapping(
index="my-data-stream",
write_index_only=True,
properties={
"message": {
"type": "text"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/360c4f373e72ba861584ee85bd218124.asciidoc 0000664 0000000 0000000 00000001344 14766462667 0026404 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:262
[source, python]
----
resp = client.indices.create(
index="test_index",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"lowercase",
"porter_stem"
]
}
}
}
},
mappings={
"properties": {
"query": {
"type": "percolator"
},
"body": {
"type": "text",
"analyzer": "my_analyzer"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3613f402ee63f0efb6b8d9c6a919b410.asciidoc 0000664 0000000 0000000 00000000664 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:133
[source, python]
----
resp = client.esql.query(
format="txt",
query="\n FROM library\n | KEEP author, name, page_count, release_date\n | SORT page_count DESC\n | LIMIT 5\n ",
filter={
"range": {
"page_count": {
"gte": 100,
"lte": 200
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/362dfccdb6f7933b22c909542e0b4e0a.asciidoc 0000664 0000000 0000000 00000000635 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:221
[source, python]
----
resp = client.update_by_query(
index="my-data-stream",
query={
"match": {
"user.id": "l7gk7f82"
}
},
script={
"source": "ctx._source.user.id = params.new_id",
"params": {
"new_id": "XgdX0NoX"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3649194a97d265a3bc758f8b38f7561e.asciidoc 0000664 0000000 0000000 00000000716 14766462667 0026437 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-text-hybrid-search:21
[source, python]
----
resp = client.indices.create(
index="semantic-embeddings",
mappings={
"properties": {
"semantic_text": {
"type": "semantic_text"
},
"content": {
"type": "text",
"copy_to": "semantic_text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/365256ebdfa47b449780771d9beba8d9.asciidoc 0000664 0000000 0000000 00000000372 14766462667 0026646 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/check-in-connector-sync-job-api.asciidoc:56
[source, python]
----
resp = client.perform_request(
"PUT",
"/_connector/_sync_job/my-connector-sync-job/_check_in",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/36792c81c053e0555407d1e83e7e054f.asciidoc 0000664 0000000 0000000 00000005535 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:452
[source, python]
----
resp = client.search(
index="movies",
size=10,
retriever={
"rescorer": {
"rescore": {
"window_size": 50,
"query": {
"rescore_query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "cosineSimilarity(params.queryVector, 'product-vector_final_stage') + 1.0",
"params": {
"queryVector": [
-0.5,
90,
-10,
14.8,
-156
]
}
}
}
}
}
},
"retriever": {
"rrf": {
"rank_window_size": 100,
"retrievers": [
{
"standard": {
"query": {
"sparse_vector": {
"field": "plot_embedding",
"inference_id": "my-elser-model",
"query": "films that explore psychological depths"
}
}
}
},
{
"standard": {
"query": {
"multi_match": {
"query": "crime",
"fields": [
"plot",
"title"
]
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
10,
22,
77
],
"k": 10,
"num_candidates": 10
}
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/36962727b806315b221e8a63e05caddc.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026453 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/explicit-mapping.asciidoc:49
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"employee-id": {
"type": "keyword",
"index": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/36ac0ef9ea63efc431580f7ade8ad53c.asciidoc 0000664 0000000 0000000 00000000564 14766462667 0027126 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:78
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "openai-embeddings",
"pipeline": "openai_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/36b26905c5f96d0b785c3267fb63838d.asciidoc 0000664 0000000 0000000 00000033346 14766462667 0026435 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:422
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"ip": {
"type": "ip"
},
"version": {
"type": "version"
},
"missing_keyword": {
"type": "keyword"
},
"@timestamp": {
"type": "date"
},
"type_test": {
"type": "keyword"
},
"@timestamp_pretty": {
"type": "date",
"format": "dd-MM-yyyy"
},
"event_type": {
"type": "keyword"
},
"event": {
"properties": {
"category": {
"type": "alias",
"path": "event_type"
}
}
},
"host": {
"type": "keyword"
},
"os": {
"type": "keyword"
},
"bool": {
"type": "boolean"
},
"uptime": {
"type": "long"
},
"port": {
"type": "long"
}
}
},
)
print(resp)
resp1 = client.indices.create(
index="my-index-000002",
mappings={
"properties": {
"ip": {
"type": "ip"
},
"@timestamp": {
"type": "date"
},
"@timestamp_pretty": {
"type": "date",
"format": "yyyy-MM-dd"
},
"type_test": {
"type": "keyword"
},
"event_type": {
"type": "keyword"
},
"event": {
"properties": {
"category": {
"type": "alias",
"path": "event_type"
}
}
},
"host": {
"type": "keyword"
},
"op_sys": {
"type": "keyword"
},
"bool": {
"type": "boolean"
},
"uptime": {
"type": "long"
},
"port": {
"type": "long"
}
}
},
)
print(resp1)
resp2 = client.indices.create(
index="my-index-000003",
mappings={
"properties": {
"host_ip": {
"type": "ip"
},
"@timestamp": {
"type": "date"
},
"date": {
"type": "date"
},
"event_type": {
"type": "keyword"
},
"event": {
"properties": {
"category": {
"type": "alias",
"path": "event_type"
}
}
},
"missing_keyword": {
"type": "keyword"
},
"host": {
"type": "keyword"
},
"os": {
"type": "keyword"
},
"bool": {
"type": "boolean"
},
"uptime": {
"type": "long"
},
"port": {
"type": "long"
}
}
},
)
print(resp2)
resp3 = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"@timestamp": "1234567891",
"@timestamp_pretty": "12-12-2022",
"missing_keyword": "test",
"type_test": "abc",
"ip": "10.0.0.1",
"event_type": "alert",
"host": "doom",
"uptime": 0,
"port": 1234,
"os": "win10",
"version": "1.0.0",
"id": 11
},
{
"index": {
"_id": 2
}
},
{
"@timestamp": "1234567892",
"@timestamp_pretty": "13-12-2022",
"event_type": "alert",
"type_test": "abc",
"host": "CS",
"uptime": 5,
"port": 1,
"os": "win10",
"version": "1.2.0",
"id": 12
},
{
"index": {
"_id": 3
}
},
{
"@timestamp": "1234567893",
"@timestamp_pretty": "12-12-2022",
"event_type": "alert",
"type_test": "abc",
"host": "farcry",
"uptime": 1,
"port": 1234,
"bool": False,
"os": "win10",
"version": "2.0.0",
"id": 13
},
{
"index": {
"_id": 4
}
},
{
"@timestamp": "1234567894",
"@timestamp_pretty": "13-12-2022",
"event_type": "alert",
"type_test": "abc",
"host": "GTA",
"uptime": 3,
"port": 12,
"os": "slack",
"version": "10.0.0",
"id": 14
},
{
"index": {
"_id": 5
}
},
{
"@timestamp": "1234567895",
"@timestamp_pretty": "17-12-2022",
"event_type": "alert",
"host": "sniper 3d",
"uptime": 6,
"port": 1234,
"os": "fedora",
"version": "20.1.0",
"id": 15
},
{
"index": {
"_id": 6
}
},
{
"@timestamp": "1234568896",
"@timestamp_pretty": "17-12-2022",
"event_type": "alert",
"host": "doom",
"port": 65123,
"bool": True,
"os": "redhat",
"version": "20.10.0",
"id": 16
},
{
"index": {
"_id": 7
}
},
{
"@timestamp": "1234567897",
"@timestamp_pretty": "17-12-2022",
"missing_keyword": "yyy",
"event_type": "failure",
"host": "doom",
"uptime": 15,
"port": 1234,
"bool": True,
"os": "redhat",
"version": "20.2.0",
"id": 17
},
{
"index": {
"_id": 8
}
},
{
"@timestamp": "1234567898",
"@timestamp_pretty": "12-12-2022",
"missing_keyword": "test",
"event_type": "success",
"host": "doom",
"uptime": 16,
"port": 512,
"os": "win10",
"version": "1.2.3",
"id": 18
},
{
"index": {
"_id": 9
}
},
{
"@timestamp": "1234567899",
"@timestamp_pretty": "15-12-2022",
"missing_keyword": "test",
"event_type": "success",
"host": "GTA",
"port": 12,
"bool": True,
"os": "win10",
"version": "1.2.3",
"id": 19
},
{
"index": {
"_id": 10
}
},
{
"@timestamp": "1234567893",
"missing_keyword": None,
"ip": "10.0.0.5",
"event_type": "alert",
"host": "farcry",
"uptime": 1,
"port": 1234,
"bool": True,
"os": "win10",
"version": "1.2.3",
"id": 110
}
],
)
print(resp3)
resp4 = client.bulk(
index="my-index-000002",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"@timestamp": "1234567991",
"type_test": "abc",
"ip": "10.0.0.1",
"event_type": "alert",
"host": "doom",
"uptime": 0,
"port": 1234,
"op_sys": "win10",
"id": 21
},
{
"index": {
"_id": 2
}
},
{
"@timestamp": "1234567992",
"type_test": "abc",
"event_type": "alert",
"host": "CS",
"uptime": 5,
"port": 1,
"op_sys": "win10",
"id": 22
},
{
"index": {
"_id": 3
}
},
{
"@timestamp": "1234567993",
"type_test": "abc",
"@timestamp_pretty": "2022-12-17",
"event_type": "alert",
"host": "farcry",
"uptime": 1,
"port": 1234,
"bool": False,
"op_sys": "win10",
"id": 23
},
{
"index": {
"_id": 4
}
},
{
"@timestamp": "1234567994",
"event_type": "alert",
"host": "GTA",
"uptime": 3,
"port": 12,
"op_sys": "slack",
"id": 24
},
{
"index": {
"_id": 5
}
},
{
"@timestamp": "1234567995",
"event_type": "alert",
"host": "sniper 3d",
"uptime": 6,
"port": 1234,
"op_sys": "fedora",
"id": 25
},
{
"index": {
"_id": 6
}
},
{
"@timestamp": "1234568996",
"@timestamp_pretty": "2022-12-17",
"ip": "10.0.0.5",
"event_type": "alert",
"host": "doom",
"port": 65123,
"bool": True,
"op_sys": "redhat",
"id": 26
},
{
"index": {
"_id": 7
}
},
{
"@timestamp": "1234567997",
"@timestamp_pretty": "2022-12-17",
"event_type": "failure",
"host": "doom",
"uptime": 15,
"port": 1234,
"bool": True,
"op_sys": "redhat",
"id": 27
},
{
"index": {
"_id": 8
}
},
{
"@timestamp": "1234567998",
"ip": "10.0.0.1",
"event_type": "success",
"host": "doom",
"uptime": 16,
"port": 512,
"op_sys": "win10",
"id": 28
},
{
"index": {
"_id": 9
}
},
{
"@timestamp": "1234567999",
"ip": "10.0.0.1",
"event_type": "success",
"host": "GTA",
"port": 12,
"bool": False,
"op_sys": "win10",
"id": 29
}
],
)
print(resp4)
resp5 = client.bulk(
index="my-index-000003",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"@timestamp": "1334567891",
"host_ip": "10.0.0.1",
"event_type": "alert",
"host": "doom",
"uptime": 0,
"port": 12,
"os": "win10",
"id": 31
},
{
"index": {
"_id": 2
}
},
{
"@timestamp": "1334567892",
"event_type": "alert",
"host": "CS",
"os": "win10",
"id": 32
},
{
"index": {
"_id": 3
}
},
{
"@timestamp": "1334567893",
"event_type": "alert",
"host": "farcry",
"bool": True,
"os": "win10",
"id": 33
},
{
"index": {
"_id": 4
}
},
{
"@timestamp": "1334567894",
"event_type": "alert",
"host": "GTA",
"os": "slack",
"bool": True,
"id": 34
},
{
"index": {
"_id": 5
}
},
{
"@timestamp": "1234567895",
"event_type": "alert",
"host": "sniper 3d",
"os": "fedora",
"id": 35
},
{
"index": {
"_id": 6
}
},
{
"@timestamp": "1234578896",
"host_ip": "10.0.0.1",
"event_type": "alert",
"host": "doom",
"bool": True,
"os": "redhat",
"id": 36
},
{
"index": {
"_id": 7
}
},
{
"@timestamp": "1234567897",
"event_type": "failure",
"missing_keyword": "test",
"host": "doom",
"bool": True,
"os": "redhat",
"id": 37
},
{
"index": {
"_id": 8
}
},
{
"@timestamp": "1234577898",
"event_type": "success",
"host": "doom",
"os": "win10",
"id": 38,
"date": "1671235200000"
},
{
"index": {
"_id": 9
}
},
{
"@timestamp": "1234577899",
"host_ip": "10.0.0.5",
"event_type": "success",
"host": "GTA",
"bool": True,
"os": "win10",
"id": 39
}
],
)
print(resp5)
----
python-elasticsearch-8.17.2/docs/examples/36b86b97feedcf5632824eefc251d6ed.asciidoc 0000664 0000000 0000000 00000000365 14766462667 0027067 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:484
[source, python]
----
resp = client.search(
index="books",
query={
"match": {
"name": "brave"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/36d229f734adcdab00be266a7ce038b1.asciidoc 0000664 0000000 0000000 00000000605 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:404
[source, python]
----
resp = client.indices.create(
index="my-bit-vectors",
mappings={
"properties": {
"my_vector": {
"type": "dense_vector",
"dims": 40,
"element_type": "bit"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/36da9668fef56910370f16bfb772cc40.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shard-request-cache.asciidoc:125
[source, python]
----
resp = client.indices.stats(
metric="request_cache",
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/36e09bbd5896498ede0f5d37a18eae2c.asciidoc 0000664 0000000 0000000 00000000601 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/parent-id-query.asciidoc:60
[source, python]
----
resp = client.index(
index="my-index-000001",
id="2",
routing="1",
refresh=True,
document={
"text": "This is a child document.",
"my-join-field": {
"name": "my-child",
"parent": "1"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/36fae9dfc0b815546b45745bac054b67.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:496
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"model_number": "HG537PU"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/370b297ed3433577adf53e64f572d89d.asciidoc 0000664 0000000 0000000 00000000364 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/delete-connector-sync-job-api.asciidoc:52
[source, python]
----
resp = client.perform_request(
"DELETE",
"/_connector/_sync_job/my-connector-sync-job-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/371962cf63e65c10026177c6a1bad0b6.asciidoc 0000664 0000000 0000000 00000000247 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/start-slm.asciidoc:63
[source, python]
----
resp = client.slm.start()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3722dad876023e0757138dd5a6d3240e.asciidoc 0000664 0000000 0000000 00000000664 14766462667 0026400 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/create-index-from-source.asciidoc:63
[source, python]
----
resp = client.indices.create(
index="my-index",
settings={
"index": {
"number_of_shards": 3,
"blocks.write": True
}
},
mappings={
"properties": {
"field1": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/37530f35f315b9f35e3e6a13cf2a1ccd.asciidoc 0000664 0000000 0000000 00000001073 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:731
[source, python]
----
resp = client.search(
aggs={
"actors": {
"terms": {
"field": "actors",
"size": 10,
"collect_mode": "breadth_first"
},
"aggs": {
"costars": {
"terms": {
"field": "actors",
"size": 5
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3758b8f2ab9f6f28a764ee6c42c85766.asciidoc 0000664 0000000 0000000 00000001062 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:550
[source, python]
----
resp = client.search(
index="my-index-000001",
scroll="1m",
slice={
"id": 0,
"max": 2
},
query={
"match": {
"message": "foo"
}
},
)
print(resp)
resp1 = client.search(
index="my-index-000001",
scroll="1m",
slice={
"id": 1,
"max": 2
},
query={
"match": {
"message": "foo"
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/3759ca688c4bd3c838780a9aad63258b.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-index-template.asciidoc:41
[source, python]
----
resp = client.indices.get_index_template(
name="template_1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/375bf2c51ce6cc386f9d4d635d5e84a7.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-grid-query.asciidoc:345
[source, python]
----
resp = client.search(
index="my_locations",
query={
"geo_grid": {
"location": {
"geohex": "811fbffffffffff"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/376fbc965e1b093f6dbc198a94c83aa9.asciidoc 0000664 0000000 0000000 00000002772 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/common-script-uses.asciidoc:260
[source, python]
----
resp = client.bulk(
index="my-index",
refresh=True,
operations=[
{
"index": {}
},
{
"gc": "[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 384K, committed 384K, reserved 1048576K"
},
{
"index": {}
},
{
"gc": "[2021-03-24T20:27:24.184+0000][90239][gc,heap,exit] class space used 15255K, capacity 16726K, committed 16844K, reserved 1048576K"
},
{
"index": {}
},
{
"gc": "[2021-03-24T20:27:24.184+0000][90239][gc,heap,exit] Metaspace used 115409K, capacity 119541K, committed 120248K, reserved 1153024K"
},
{
"index": {}
},
{
"gc": "[2021-04-19T15:03:21.735+0000][84408][gc,heap,exit] class space used 14503K, capacity 15894K, committed 15948K, reserved 1048576K"
},
{
"index": {}
},
{
"gc": "[2021-04-19T15:03:21.735+0000][84408][gc,heap,exit] Metaspace used 107719K, capacity 111775K, committed 112724K, reserved 1146880K"
},
{
"index": {}
},
{
"gc": "[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit] class space used 266K, capacity 367K, committed 384K, reserved 1048576K"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/376ff4b2b5f657481af78a778aaab57f.asciidoc 0000664 0000000 0000000 00000002452 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:154
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"nr": {
"type": "integer"
},
"state": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="my-index",
refresh=True,
operations=[
{
"index": {}
},
{
"nr": 1,
"state": "started"
},
{
"index": {}
},
{
"nr": 2,
"state": "stopped"
},
{
"index": {}
},
{
"nr": 3,
"state": "N/A"
},
{
"index": {}
},
{
"nr": 4
}
],
)
print(resp1)
resp2 = client.search(
index="my-index",
filter_path="aggregations",
aggs={
"my_top_metrics": {
"top_metrics": {
"metrics": {
"field": "state",
"missing": "N/A"
},
"sort": {
"nr": "desc"
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/377af0ea9b19c113f224d8150890b41b.asciidoc 0000664 0000000 0000000 00000004270 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significantterms-aggregation.asciidoc:412
[source, python]
----
resp = client.search(
query={
"bool": {
"filter": [
{
"term": {
"event.outcome": "failure"
}
},
{
"range": {
"@timestamp": {
"gte": "2021-02-01",
"lt": "2021-02-04"
}
}
},
{
"term": {
"service.name": {
"value": "frontend-node"
}
}
}
]
}
},
aggs={
"failure_p_value": {
"significant_terms": {
"field": "user_agent.version",
"background_filter": {
"bool": {
"must_not": [
{
"term": {
"event.outcome": "failure"
}
}
],
"filter": [
{
"range": {
"@timestamp": {
"gte": "2021-02-01",
"lt": "2021-02-04"
}
}
},
{
"term": {
"service.name": {
"value": "frontend-node"
}
}
}
]
}
},
"p_value": {
"background_is_superset": False,
"normalize_above": 1000
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/378e55f78fa13578a1302bae8d479765.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026432 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-query.asciidoc:134
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"color": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/37983daac3d9c8582583a507b3adb7f2.asciidoc 0000664 0000000 0000000 00000000431 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shutdown/apis/shutdown-delete.asciidoc:57
[source, python]
----
resp = client.shutdown.put_node(
node_id="USpTGYaBSIKbgSUJR2Z9lg",
type="restart",
reason="Demonstrating how the node shutdown API works",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/37ae7c3e4d6d954487ec4185fe7d9ec8.asciidoc 0000664 0000000 0000000 00000001005 14766462667 0026735 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significantterms-aggregation.asciidoc:130
[source, python]
----
resp = client.search(
aggregations={
"forces": {
"terms": {
"field": "force"
},
"aggregations": {
"significant_crime_types": {
"significant_terms": {
"field": "crime_type"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/37b84f2ab7c2f6b4fe0e14cc7e018b1f.asciidoc 0000664 0000000 0000000 00000002132 14766462667 0027027 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/bi-directional-disaster-recovery.asciidoc:41
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"clusterB": {
"mode": "proxy",
"skip_unavailable": True,
"server_name": "clusterb.es.region-b.gcp.elastic-cloud.com",
"proxy_socket_connections": 18,
"proxy_address": "clusterb.es.region-b.gcp.elastic-cloud.com:9400"
}
}
}
},
)
print(resp)
resp1 = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"clusterA": {
"mode": "proxy",
"skip_unavailable": True,
"server_name": "clustera.es.region-a.gcp.elastic-cloud.com",
"proxy_socket_connections": 18,
"proxy_address": "clustera.es.region-a.gcp.elastic-cloud.com:9400"
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/37c73410bf13429279cbc61a413957d8.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026314 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:558
[source, python]
----
resp = client.cluster.stats(
filter_path="indices.shards.total",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/37eaab0630976d3dee90a52011342883.asciidoc 0000664 0000000 0000000 00000000734 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stop-tokenfilter.asciidoc:106
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "whitespace",
"filter": [
"stop"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/37f1f2e75ed95308ae436bbbb8d5645e.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/start-trial.asciidoc:44
[source, python]
----
resp = client.license.post_start_trial(
acknowledge=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3819d0a5c2eed635c88e9e7bf2e81584.asciidoc 0000664 0000000 0000000 00000000430 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/revert-snapshot.asciidoc:84
[source, python]
----
resp = client.ml.revert_model_snapshot(
job_id="low_request_rate",
snapshot_id="1637092688",
delete_intervening_results=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/386eb7dcd3149db82605bf22c5d851bf.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-api-key.asciidoc:373
[source, python]
----
resp = client.security.create_api_key(
name="application-key-1",
metadata={
"application": "my-application"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/388d3eda4f792d3fce044777739217e6.asciidoc 0000664 0000000 0000000 00000000730 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/evaluate-dfanalytics.asciidoc:442
[source, python]
----
resp = client.ml.evaluate_data_frame(
index="animal_classification",
evaluation={
"classification": {
"actual_field": "animal_class",
"predicted_field": "ml.animal_class_prediction",
"metrics": {
"multiclass_confusion_matrix": {}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/388ec2b038d3ad69378f4c2e5bc36dce.asciidoc 0000664 0000000 0000000 00000001562 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-field-masking-query.asciidoc:16
[source, python]
----
resp = client.search(
query={
"span_near": {
"clauses": [
{
"span_term": {
"text": "quick brown"
}
},
{
"span_field_masking": {
"query": {
"span_term": {
"text.stems": "fox"
}
},
"field": "text"
}
}
],
"slop": 5,
"in_order": False
}
},
highlight={
"require_field_match": False,
"fields": {
"*": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/38af4a55c1ea0f908dc7b06d680d2789.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:507
[source, python]
----
resp = client.indices.create_data_stream(
name="new-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/38b20fe981605e80a41517e9aa13134a.asciidoc 0000664 0000000 0000000 00000001550 14766462667 0026364 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/bucket-selector-aggregation.asciidoc:51
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"total_sales": {
"sum": {
"field": "price"
}
},
"sales_bucket_filter": {
"bucket_selector": {
"buckets_path": {
"totalSales": "total_sales"
},
"script": "params.totalSales > 200"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/38eed000de433b540116928681c520d3.asciidoc 0000664 0000000 0000000 00000000344 14766462667 0026302 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/preview-datafeed.asciidoc:116
[source, python]
----
resp = client.ml.preview_datafeed(
datafeed_id="datafeed-high_sum_total_sales",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/38f7739f750f1411bccf511a0abaaea3.asciidoc 0000664 0000000 0000000 00000000245 14766462667 0026736 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/field-caps.asciidoc:18
[source, python]
----
resp = client.field_caps(
fields="rating",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/38ffa96674b5fd4042589af0ebb0437b.asciidoc 0000664 0000000 0000000 00000000554 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/configuring-ldap-realm.asciidoc:152
[source, python]
----
resp = client.security.put_role_mapping(
name="basic_users",
roles=[
"user"
],
rules={
"field": {
"groups": "cn=users,dc=example,dc=com"
}
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3924ee252581ebb96ac0e60046125ae8.asciidoc 0000664 0000000 0000000 00000000272 14766462667 0026452 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-users.asciidoc:68
[source, python]
----
resp = client.security.get_user(
username="jacknich",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3951d7fcd7f849fa278daf342872125a.asciidoc 0000664 0000000 0000000 00000000313 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:378
[source, python]
----
resp = client.indices.analyze(
index="analyze_sample",
text="this is a test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/39760996f94ad34aaceaa16a5cc97993.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shutdown/apis/shutdown-get.asciidoc:67
[source, python]
----
resp = client.shutdown.get_node(
node_id="USpTGYaBSIKbgSUJR2Z9lg",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/397ab5f9ea0b69ae85038bb0b9915180.asciidoc 0000664 0000000 0000000 00000000324 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-dsl.asciidoc:523
[source, python]
----
resp = client.indices.data_streams_stats(
name="datastream",
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/397bdb40d0146102f1f4c6a35675e16a.asciidoc 0000664 0000000 0000000 00000002140 14766462667 0026437 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/recipes/stemming.asciidoc:11
[source, python]
----
resp = client.indices.create(
index="index",
settings={
"analysis": {
"analyzer": {
"english_exact": {
"tokenizer": "standard",
"filter": [
"lowercase"
]
}
}
}
},
mappings={
"properties": {
"body": {
"type": "text",
"analyzer": "english",
"fields": {
"exact": {
"type": "text",
"analyzer": "english_exact"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="index",
id="1",
document={
"body": "Ski resort"
},
)
print(resp1)
resp2 = client.index(
index="index",
id="2",
document={
"body": "A pair of skis"
},
)
print(resp2)
resp3 = client.indices.refresh(
index="index",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/398389933901b572a06a752bc780af7c.asciidoc 0000664 0000000 0000000 00000000727 14766462667 0026341 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-anthropic.asciidoc:137
[source, python]
----
resp = client.inference.put(
task_type="completion",
inference_id="anthropic_completion",
inference_config={
"service": "anthropic",
"service_settings": {
"api_key": "",
"model_id": ""
},
"task_settings": {
"max_tokens": 1024
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/39963032d423e2f20f53c4621b6ca3c6.asciidoc 0000664 0000000 0000000 00000000324 14766462667 0026363 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/ngram-tokenizer.asciidoc:24
[source, python]
----
resp = client.indices.analyze(
tokenizer="ngram",
text="Quick Fox",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/39ce44333d28ed2b833722d3e3cb06f3.asciidoc 0000664 0000000 0000000 00000001751 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/bool-query.asciidoc:187
[source, python]
----
resp = client.search(
include_named_queries_score=True,
query={
"bool": {
"should": [
{
"match": {
"name.first": {
"query": "shay",
"_name": "first"
}
}
},
{
"match": {
"name.last": {
"query": "banon",
"_name": "last"
}
}
}
],
"filter": {
"terms": {
"name.last": [
"banon",
"kimchy"
],
"_name": "test"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/39d6f575c9458d9c941364dfd0493fa0.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-calendar-event.asciidoc:118
[source, python]
----
resp = client.ml.get_calendar_events(
calendar_id="planned-outages",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a12feb0de224bfaaf518d95b9f516ff.asciidoc 0000664 0000000 0000000 00000002761 14766462667 0027123 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/put-watch.asciidoc:126
[source, python]
----
resp = client.watcher.put_watch(
id="my-watch",
trigger={
"schedule": {
"cron": "0 0/1 * * * ?"
}
},
input={
"search": {
"request": {
"indices": [
"logstash*"
],
"body": {
"query": {
"bool": {
"must": {
"match": {
"response": 404
}
},
"filter": {
"range": {
"@timestamp": {
"from": "{{ctx.trigger.scheduled_time}}||-5m",
"to": "{{ctx.trigger.triggered_time}}"
}
}
}
}
}
}
}
}
},
condition={
"compare": {
"ctx.payload.hits.total": {
"gt": 0
}
}
},
actions={
"email_admin": {
"email": {
"to": "admin@domain.host.com",
"subject": "404 recently encountered"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a204b57072a104d9b50f3a9e064a8f6.asciidoc 0000664 0000000 0000000 00000000534 14766462667 0026443 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:620
[source, python]
----
resp = client.search(
index=".ml-anomalies-custom-example",
size=0,
aggs={
"job_ids": {
"terms": {
"field": "job_id",
"size": 100
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a2953fd81d65118a776c87a81530e15.asciidoc 0000664 0000000 0000000 00000000665 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:605
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"order": "score",
"fields": {
"comment": {
"fragment_size": 150,
"number_of_fragments": 3
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a2f37f8f32b1aa6bcfb252b9e00f904.asciidoc 0000664 0000000 0000000 00000000377 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules.asciidoc:97
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index": {
"mode": "standard"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a3adae6dbb2c0316a7d98d0a6c1d4f8.asciidoc 0000664 0000000 0000000 00000002000 14766462667 0027070 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:342
[source, python]
----
resp = client.search(
index="quantized-image-index",
knn={
"field": "image-vector",
"query_vector": [
0.1,
-2
],
"k": 15,
"num_candidates": 100
},
fields=[
"title"
],
rescore={
"window_size": 10,
"query": {
"rescore_query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "cosineSimilarity(params.query_vector, 'image-vector') + 1.0",
"params": {
"query_vector": [
0.1,
-2
]
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a3e6e2627cafa08e4402a0de95785cc.asciidoc 0000664 0000000 0000000 00000001203 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/collapse-search-results.asciidoc:207
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": "you know for search"
}
},
collapse={
"field": "user.id"
},
rescore={
"window_size": 50,
"query": {
"rescore_query": {
"match_phrase": {
"message": "you know for search"
}
},
"query_weight": 0.3,
"rescore_query_weight": 1.4
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a489743e49902df38e3368cae00717a.asciidoc 0000664 0000000 0000000 00000000261 14766462667 0026411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/high-cpu-usage.asciidoc:47
[source, python]
----
resp = client.nodes.hot_threads()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a4953663a5a3809b692c27446e16b7f.asciidoc 0000664 0000000 0000000 00000000605 14766462667 0026333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:206
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "amazon-bedrock-embeddings",
"pipeline": "amazon_bedrock_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a5f2e2313614ea9693545edee22ac43.asciidoc 0000664 0000000 0000000 00000000401 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/delete-service-token.asciidoc:53
[source, python]
----
resp = client.security.delete_service_token(
namespace="elastic",
service="fleet-server",
name="token42",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a6238835c7d9f51e6d91f92885fadeb.asciidoc 0000664 0000000 0000000 00000001037 14766462667 0026653 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:13
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"post_date": {
"type": "date"
},
"user": {
"type": "keyword"
},
"name": {
"type": "keyword"
},
"age": {
"type": "integer"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3a64ae799cc03fadbb802794730c23da.asciidoc 0000664 0000000 0000000 00000001061 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-shape-query.asciidoc:86
[source, python]
----
resp = client.indices.create(
index="example_points",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.index(
index="example_points",
id="1",
refresh=True,
document={
"name": "Wind & Wetter, Berlin, Germany",
"location": [
13.400544,
52.530286
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/3aa0e2d25a51bf5f3f0bda7fd8403bf2.asciidoc 0000664 0000000 0000000 00000001245 14766462667 0027074 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stop-tokenfilter.asciidoc:183
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"default": {
"tokenizer": "whitespace",
"filter": [
"my_custom_stop_words_filter"
]
}
},
"filter": {
"my_custom_stop_words_filter": {
"type": "stop",
"ignore_case": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ab8f65fcb55a0e3664c55749ec41efd.asciidoc 0000664 0000000 0000000 00000002273 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1407
[source, python]
----
resp = client.indices.create(
index="persian_example",
settings={
"analysis": {
"char_filter": {
"zero_width_spaces": {
"type": "mapping",
"mappings": [
"\\u200C=>\\u0020"
]
}
},
"filter": {
"persian_stop": {
"type": "stop",
"stopwords": "_persian_"
}
},
"analyzer": {
"rebuilt_persian": {
"tokenizer": "standard",
"char_filter": [
"zero_width_spaces"
],
"filter": [
"lowercase",
"decimal_digit",
"arabic_normalization",
"persian_normalization",
"persian_stop",
"persian_stem"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3abedc1d68fe1d20621157406b2b1de0.asciidoc 0000664 0000000 0000000 00000001621 14766462667 0026646 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/word-delimiter-tokenfilter.asciidoc:359
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "keyword",
"filter": [
"my_custom_word_delimiter_filter"
]
}
},
"filter": {
"my_custom_word_delimiter_filter": {
"type": "word_delimiter",
"type_table": [
"- => ALPHA"
],
"split_on_case_change": False,
"split_on_numerics": False,
"stem_english_possessive": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ac075c5b5bbe648d40d06cce3061367.asciidoc 0000664 0000000 0000000 00000000732 14766462667 0026605 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:577
[source, python]
----
resp = client.render_search_template(
source="{ \"query\": { \"bool\": { \"filter\": [ {{#year_scope}} { \"range\": { \"@timestamp\": { \"gte\": \"now-1y/d\", \"lt\": \"now/d\" } } }, {{/year_scope}} { \"term\": { \"user.id\": \"{{user_id}}\" }}]}}}",
params={
"year_scope": False,
"user_id": "kimchy"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ac8b5234e9d53859245cf8ab0094ca5.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-job.asciidoc:74
[source, python]
----
resp = client.ml.delete_job(
job_id="total-requests",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3af10fde8138d9d95df127d39d9a0ed2.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/troubleshooting-shards-capacity.asciidoc:223
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.max_shards_per_node": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3afc6dacf90b42900ab571aad8a61d75.asciidoc 0000664 0000000 0000000 00000002211 14766462667 0027014 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1599
[source, python]
----
resp = client.indices.create(
index="serbian_example",
settings={
"analysis": {
"filter": {
"serbian_stop": {
"type": "stop",
"stopwords": "_serbian_"
},
"serbian_keywords": {
"type": "keyword_marker",
"keywords": [
"пример"
]
},
"serbian_stemmer": {
"type": "stemmer",
"language": "serbian"
}
},
"analyzer": {
"rebuilt_serbian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"serbian_stop",
"serbian_keywords",
"serbian_stemmer",
"serbian_normalization"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b0475515ee692a2d9850c2bd7cdb895.asciidoc 0000664 0000000 0000000 00000001425 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:648
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"unindexed_longs": {
"match_mapping_type": "long",
"mapping": {
"type": "long",
"index": False
}
}
},
{
"unindexed_doubles": {
"match_mapping_type": "double",
"mapping": {
"type": "float",
"index": False
}
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b04cc894e6a47d57983484010feac0c.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:869
[source, python]
----
resp = client.get(
index="metricbeat-2016.05.30-1",
id="1",
)
print(resp)
resp1 = client.get(
index="metricbeat-2016.05.31-1",
id="1",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/3b05128cba6852e79a905bcdd5a8ebc0.asciidoc 0000664 0000000 0000000 00000000336 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:374
[source, python]
----
resp = client.search(
index="my-index-000001",
size="surprise_me",
error_trace=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b162509ed14eda44a9681cd1108fa39.asciidoc 0000664 0000000 0000000 00000001331 14766462667 0026526 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/phrase-suggest.asciidoc:80
[source, python]
----
resp = client.search(
index="test",
suggest={
"text": "noble prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"gram_size": 3,
"direct_generator": [
{
"field": "title.trigram",
"suggest_mode": "always"
}
],
"highlight": {
"pre_tag": "",
"post_tag": ""
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b18e9de638ff0b1c7a1f1f6bf1c24f3.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0027031 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-app-privileges.asciidoc:94
[source, python]
----
resp = client.security.get_privileges(
application="myapp",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b1ff884f3bab390ae357e622c0544a9.asciidoc 0000664 0000000 0000000 00000003103 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rrf.asciidoc:186
[source, python]
----
resp = client.indices.create(
index="example-index",
mappings={
"properties": {
"text": {
"type": "text"
},
"vector": {
"type": "dense_vector",
"dims": 1,
"index": True,
"similarity": "l2_norm",
"index_options": {
"type": "hnsw"
}
},
"integer": {
"type": "integer"
}
}
},
)
print(resp)
resp1 = client.index(
index="example-index",
id="1",
document={
"text": "rrf",
"vector": [
5
],
"integer": 1
},
)
print(resp1)
resp2 = client.index(
index="example-index",
id="2",
document={
"text": "rrf rrf",
"vector": [
4
],
"integer": 2
},
)
print(resp2)
resp3 = client.index(
index="example-index",
id="3",
document={
"text": "rrf rrf rrf",
"vector": [
3
],
"integer": 1
},
)
print(resp3)
resp4 = client.index(
index="example-index",
id="4",
document={
"text": "rrf rrf rrf rrf",
"integer": 2
},
)
print(resp4)
resp5 = client.index(
index="example-index",
id="5",
document={
"vector": [
0
],
"integer": 1
},
)
print(resp5)
resp6 = client.indices.refresh(
index="example-index",
)
print(resp6)
----
python-elasticsearch-8.17.2/docs/examples/3b40db1c5c6b36f087d7a09a4ce285c6.asciidoc 0000664 0000000 0000000 00000000250 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-index-template.asciidoc:93
[source, python]
----
resp = client.indices.get_index_template()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b606631284877f9bca15051630995ad.asciidoc 0000664 0000000 0000000 00000001010 14766462667 0026234 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:441
[source, python]
----
resp = client.search(
index="my_test_scores",
query={
"term": {
"grad_year": "2099"
}
},
sort=[
{
"_script": {
"type": "number",
"script": {
"source": "doc['math_score'].value + doc['verbal_score'].value"
},
"order": "desc"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b64821fe9db73eb03860c60d775d7ff.asciidoc 0000664 0000000 0000000 00000001115 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-cross-cluster-api-key.asciidoc:197
[source, python]
----
resp = client.perform_request(
"PUT",
"/_security/cross_cluster/api_key/VuaCfGcBCdbkQm-e5aOx",
headers={"Content-Type": "application/json"},
body={
"access": {
"replication": [
{
"names": [
"archive"
]
}
]
},
"metadata": {
"application": "replication"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b8ab7027e0d616fb432acd8813e086c.asciidoc 0000664 0000000 0000000 00000000540 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/index_.asciidoc:544
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"@timestamp": "2099-11-15T13:12:00",
"message": "GET /search HTTP/1.1 200 1070000",
"user": {
"id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3b9c54604535d97e8368d47148aecc6f.asciidoc 0000664 0000000 0000000 00000000441 14766462667 0026505 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/update-snapshot.asciidoc:55
[source, python]
----
resp = client.ml.update_model_snapshot(
job_id="it_ops_new_logs",
snapshot_id="1491852978",
description="Snapshot 1",
retain=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ba2896bcc724c27be8f0decf6f81813.asciidoc 0000664 0000000 0000000 00000000674 14766462667 0026776 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// monitoring/indices.asciidoc:126
[source, python]
----
resp = client.indices.put_template(
name="custom_monitoring",
index_patterns=[
".monitoring-beats-7-*",
".monitoring-es-7-*",
".monitoring-kibana-7-*",
".monitoring-logstash-7-*"
],
order=1,
settings={
"number_of_shards": 5,
"number_of_replicas": 2
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3bb491db29deba25e1cc82bcaa1aa1a1.asciidoc 0000664 0000000 0000000 00000000520 14766462667 0027210 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:781
[source, python]
----
resp = client.reindex(
source={
"index": "my-index-000001"
},
dest={
"index": "my-new-index-000001"
},
script={
"source": "ctx._source.tag = ctx._source.remove(\"flag\")"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3bb5951a9e1186af5d154f56ffc13502.asciidoc 0000664 0000000 0000000 00000001506 14766462667 0026540 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/ignore-above.asciidoc:10
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"message": {
"type": "keyword",
"ignore_above": 20
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"message": "Syntax error"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"message": "Syntax error with some long stacktrace"
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
aggs={
"messages": {
"terms": {
"field": "message"
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/3bc4a3681e3ea9cb3de49f72085807d8.asciidoc 0000664 0000000 0000000 00000004265 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:321
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"linear": {
"retrievers": [
{
"retriever": {
"standard": {
"query": {
"function_score": {
"query": {
"term": {
"topic": "ai"
}
},
"functions": [
{
"script_score": {
"script": {
"source": "doc['timestamp'].value.millis"
}
}
}
],
"boost_mode": "replace"
}
},
"sort": {
"timestamp": {
"order": "asc"
}
}
}
},
"weight": 2,
"normalizer": "minmax"
},
{
"retriever": {
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
},
"weight": 1.5
}
],
"rank_window_size": 10
}
},
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3bc872dbcdad8ff02cbaea39e7f38352.asciidoc 0000664 0000000 0000000 00000000505 14766462667 0027177 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:204
[source, python]
----
resp = client.indices.create(
index="index_double",
mappings={
"properties": {
"field": {
"type": "date"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3bfa2362add163802fc2210cc2f37ba2.asciidoc 0000664 0000000 0000000 00000000461 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/clone-snapshot-api.asciidoc:16
[source, python]
----
resp = client.snapshot.clone(
repository="my_repository",
snapshot="source_snapshot",
target_snapshot="target_snapshot",
indices="index_a,index_b",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3c04f75bcbb07125d51b21b9b2c9f6f0.asciidoc 0000664 0000000 0000000 00000002005 14766462667 0026654 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/index-field.asciidoc:11
[source, python]
----
resp = client.index(
index="index_1",
id="1",
document={
"text": "Document in index 1"
},
)
print(resp)
resp1 = client.index(
index="index_2",
id="2",
refresh=True,
document={
"text": "Document in index 2"
},
)
print(resp1)
resp2 = client.search(
index="index_1,index_2",
query={
"terms": {
"_index": [
"index_1",
"index_2"
]
}
},
aggs={
"indices": {
"terms": {
"field": "_index",
"size": 10
}
}
},
sort=[
{
"_index": {
"order": "asc"
}
}
],
script_fields={
"index_name": {
"script": {
"lang": "painless",
"source": "doc['_index']"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/3c09ca91057216125ed0e3856a91ff95.asciidoc 0000664 0000000 0000000 00000015631 14766462667 0026410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-ilm.asciidoc:91
[source, python]
----
resp = client.indices.put_index_template(
name="datastream_template",
index_patterns=[
"datastream*"
],
data_stream={},
template={
"settings": {
"index": {
"mode": "time_series",
"number_of_replicas": 0,
"number_of_shards": 2
},
"index.lifecycle.name": "datastream_policy"
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"kubernetes": {
"properties": {
"container": {
"properties": {
"cpu": {
"properties": {
"usage": {
"properties": {
"core": {
"properties": {
"ns": {
"type": "long"
}
}
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"nanocores": {
"type": "long",
"time_series_metric": "gauge"
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
}
}
},
"memory": {
"properties": {
"available": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"majorpagefaults": {
"type": "long"
},
"pagefaults": {
"type": "long",
"time_series_metric": "gauge"
},
"rss": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"usage": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
},
"workingset": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
}
}
},
"name": {
"type": "keyword"
},
"start_time": {
"type": "date"
}
}
},
"host": {
"type": "keyword",
"time_series_dimension": True
},
"namespace": {
"type": "keyword",
"time_series_dimension": True
},
"node": {
"type": "keyword",
"time_series_dimension": True
},
"pod": {
"type": "keyword",
"time_series_dimension": True
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3c0d0c38e1c819a35a68cdba5ae8ccc4.asciidoc 0000664 0000000 0000000 00000001007 14766462667 0027102 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:262
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="alibabacloud_ai_search_embeddings",
inference_config={
"service": "alibabacloud-ai-search",
"service_settings": {
"api_key": "",
"service_id": "",
"host": "",
"workspace": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3c345feb7c52fd54bcb5d5505fd8bc3b.asciidoc 0000664 0000000 0000000 00000000652 14766462667 0027120 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/infer-trained-model.asciidoc:1115
[source, python]
----
resp = client.ml.infer_trained_model(
model_id="model2",
docs=[
{
"text_field": ""
}
],
inference_config={
"question_answering": {
"question": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3c36dc17359c6b6b6a40d04da9293fa7.asciidoc 0000664 0000000 0000000 00000001436 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:393
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_movavg": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.unweightedAvg(values)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3c5d5a5c34a62724942329658c688f5e.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0026346 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:480
[source, python]
----
resp = client.ml.set_upgrade_mode(
enabled=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3c65cb58e131ef46f4dd081683b970ac.asciidoc 0000664 0000000 0000000 00000001070 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-distance-query.asciidoc:125
[source, python]
----
resp = client.search(
index="my_locations,my_geoshapes",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "200km",
"pin.location": {
"lat": 40,
"lon": -70
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3c6abb9885cb1a997fcdd16f7fa4f673.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0027061 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shrink-index.asciidoc:17
[source, python]
----
resp = client.indices.shrink(
index="my-index-000001",
target="shrunk-my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3c7621a81fa982b79f040a6d2611530e.asciidoc 0000664 0000000 0000000 00000001614 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/simulate-template.asciidoc:157
[source, python]
----
resp = client.cluster.put_component_template(
name="ct1",
template={
"settings": {
"index.number_of_shards": 2
}
},
)
print(resp)
resp1 = client.cluster.put_component_template(
name="ct2",
template={
"settings": {
"index.number_of_replicas": 0
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
}
}
}
},
)
print(resp1)
resp2 = client.indices.put_index_template(
name="final-template",
index_patterns=[
"my-index-*"
],
composed_of=[
"ct1",
"ct2"
],
priority=5,
)
print(resp2)
resp3 = client.indices.simulate_template(
name="final-template",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/3cd2f7f9096a8e8180f27b6c30e71840.asciidoc 0000664 0000000 0000000 00000001165 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filters-aggregation.asciidoc:76
[source, python]
----
resp = client.search(
index="logs",
size=0,
aggs={
"messages": {
"filters": {
"filters": [
{
"match": {
"body": "error"
}
},
{
"match": {
"body": "warning"
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3cd93a48906069709b76420c66930c01.asciidoc 0000664 0000000 0000000 00000001267 14766462667 0026172 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stemmer-tokenfilter.asciidoc:264
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"lowercase",
"my_stemmer"
]
}
},
"filter": {
"my_stemmer": {
"type": "stemmer",
"language": "light_german"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3d05fa99ba8e1f2c3f3dfe59e4ee60f6.asciidoc 0000664 0000000 0000000 00000000476 14766462667 0027145 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:24
[source, python]
----
resp = client.search(
query={
"match": {
"content": "kimchy"
}
},
highlight={
"fields": {
"content": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3d1a0e1dc5310544d032108ae0b3f099.asciidoc 0000664 0000000 0000000 00000000341 14766462667 0026416 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-all-query.asciidoc:23
[source, python]
----
resp = client.search(
query={
"match_all": {
"boost": 1.2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3d1ff6097e2359f927c88c2ccdb36252.asciidoc 0000664 0000000 0000000 00000000205 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/root.asciidoc:17
[source, python]
----
resp = client.info()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3d316bddd8503a6cc10566630a4155d3.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0026434 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/get-settings.asciidoc:22
[source, python]
----
resp = client.perform_request(
"GET",
"/_watcher/settings",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3d48d1ba49f680aac32177d653944623.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0026375 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/actions.asciidoc:186
[source, python]
----
resp = client.watcher.ack_watch(
watch_id="",
action_id="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3d6935e04de21ab2f103e5b61cfd7a5b.asciidoc 0000664 0000000 0000000 00000000675 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:647
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"rename": {
"description": "Rename 'provider' to 'cloud.provider'",
"field": "provider",
"target_field": "cloud.provider",
"ignore_failure": True
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3d6a56dd3d93ece0e3da3fb66b4696d3.asciidoc 0000664 0000000 0000000 00000000222 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-usage.asciidoc:71
[source, python]
----
resp = client.nodes.usage()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3d82257167e8a14a7f474848b32da128.asciidoc 0000664 0000000 0000000 00000001157 14766462667 0026333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/set.asciidoc:157
[source, python]
----
resp = client.ingest.put_pipeline(
id="set_bar",
description="sets the value of bar from the field foo",
processors=[
{
"set": {
"field": "bar",
"copy_from": "foo"
}
}
],
)
print(resp)
resp1 = client.ingest.simulate(
id="set_bar",
docs=[
{
"_source": {
"foo": [
"foo1",
"foo2"
]
}
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/3da35090e093c2d83c3b7d0d83bcb4ae.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0026746 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// path-settings-overview.asciidoc:51
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.exclude._name": "target-node-name"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3db2b5a6424aa92ecab7a8640c38685a.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete.asciidoc:186
[source, python]
----
resp = client.delete(
index="my-index-000001",
id="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3dd45f65e7bfe207e8d796118f25613c.asciidoc 0000664 0000000 0000000 00000000337 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/increase-cluster-shard-limit.asciidoc:147
[source, python]
----
resp = client.cluster.get_settings(
flat_settings=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3e121b43773cbb6dffa9b483c86a1f8d.asciidoc 0000664 0000000 0000000 00000001454 14766462667 0026766 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-update-api-keys.asciidoc:87
[source, python]
----
resp = client.security.create_api_key(
name="my-api-key",
role_descriptors={
"role-a": {
"cluster": [
"all"
],
"indices": [
{
"names": [
"index-a*"
],
"privileges": [
"read"
]
}
]
}
},
metadata={
"application": "my-application",
"environment": {
"level": 1,
"trusted": True,
"tags": [
"dev",
"staging"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3e13c8a81f40a537eddc0b57633b45f8.asciidoc 0000664 0000000 0000000 00000000356 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:295
[source, python]
----
resp = client.indices.analyze(
index="test_index",
analyzer="my_analyzer",
text="missing bicycles",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3e1cb34fd6e510c79c2fff2126ac1c61.asciidoc 0000664 0000000 0000000 00000000561 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/meta-field.asciidoc:9
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"_meta": {
"class": "MyApp::User",
"version": {
"min": "1.0",
"max": "1.3"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3e278e6c193b4c17dbdc70670e15d78c.asciidoc 0000664 0000000 0000000 00000000701 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:654
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"fields": {
"comment": {
"fragment_size": 150,
"number_of_fragments": 3,
"no_match_size": 150
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3e33c1a4298ea6a0dec65a3ebf9ba973.asciidoc 0000664 0000000 0000000 00000000400 14766462667 0027027 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:339
[source, python]
----
resp = client.termvectors(
index="my-index-000001",
doc={
"fullname": "John Doe",
"text": "test test test"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3e4227250d49e81df48773f8ba803ea7.asciidoc 0000664 0000000 0000000 00000000440 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:134
[source, python]
----
resp = client.indices.put_mapping(
index="my-data-stream",
properties={
"message": {
"type": "text"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3e6db3d80439c2c176dbd1bb1296b6cf.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:1010
[source, python]
----
resp = client.render_search_template(
id="my-search-template",
params={
"query_string": "hello world"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3e8ed6ae016eb823cb00d9035b8ac459.asciidoc 0000664 0000000 0000000 00000000245 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search.asciidoc:16
[source, python]
----
resp = client.search(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ea33023474e77d73ac0540e3a02b0b2.asciidoc 0000664 0000000 0000000 00000001104 14766462667 0026415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/mapping-roles.asciidoc:148
[source, python]
----
resp = client.security.put_role_mapping(
name="basic_users",
roles=[
"user"
],
rules={
"any": [
{
"field": {
"dn": "cn=John Doe,cn=contractors,dc=example,dc=com"
}
},
{
"field": {
"groups": "cn=users,dc=example,dc=com"
}
}
]
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ea4c971b3f47735dcc207ee2645fa03.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:420
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"remove_index": {
"index": "my-index-2099.05.06-000001"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3eb4cdd4a799a117ac1ff5f02b18a512.asciidoc 0000664 0000000 0000000 00000001427 14766462667 0026746 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:70
[source, python]
----
resp = client.indices.create(
index="index",
mappings={
"properties": {
"query": {
"type": "percolator"
},
"body": {
"type": "text"
}
}
},
)
print(resp)
resp1 = client.indices.update_aliases(
actions=[
{
"add": {
"index": "index",
"alias": "queries"
}
}
],
)
print(resp1)
resp2 = client.index(
index="queries",
id="1",
refresh=True,
document={
"query": {
"match": {
"body": "quick brown fox"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/3ec95ba697ff97ee2d1a721a393b5926.asciidoc 0000664 0000000 0000000 00000003205 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/analyzer.asciidoc:38
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase"
]
},
"my_stop_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"english_stop"
]
}
},
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
}
}
}
},
mappings={
"properties": {
"title": {
"type": "text",
"analyzer": "my_analyzer",
"search_analyzer": "my_stop_analyzer",
"search_quote_analyzer": "my_analyzer"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"title": "The Quick Brown Fox"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"title": "A Quick Brown Fox"
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"query_string": {
"query": "\"the quick brown fox\""
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/3eca58ef7592b3a857ea3a9898de5997.asciidoc 0000664 0000000 0000000 00000001367 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geohashgrid-aggregation.asciidoc:99
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggregations={
"zoomed-in": {
"filter": {
"geo_bounding_box": {
"location": {
"top_left": "POINT (4.9 52.4)",
"bottom_right": "POINT (5.0 52.3)"
}
}
},
"aggregations": {
"zoom1": {
"geohash_grid": {
"field": "location",
"precision": 8
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ed39eb60fbfafb70f7825b8d103bf17.asciidoc 0000664 0000000 0000000 00000001052 14766462667 0027036 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-distance-query.asciidoc:75
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "200km",
"pin.location": {
"lat": 40,
"lon": -70
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ed79871d956bfb2d6d2721d7272520c.asciidoc 0000664 0000000 0000000 00000000267 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/stats.asciidoc:118
[source, python]
----
resp = client.watcher.stats(
metric="current_watches",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ee232bcb2281a12b33cd9764ee4081a.asciidoc 0000664 0000000 0000000 00000001410 14766462667 0026570 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/geo-grid.asciidoc:174
[source, python]
----
resp = client.ingest.put_pipeline(
id="geohex2shape",
description="translate H3 cell to polygon with enriched fields",
processors=[
{
"geo_grid": {
"description": "Ingest H3 cells like '811fbffffffffff' and create polygons",
"field": "geocell",
"tile_type": "geohex",
"target_format": "wkt",
"target_field": "shape",
"parent_field": "parent",
"children_field": "children",
"non_children_field": "nonChildren",
"precision_field": "precision"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f1fe5f5f99b98d0891f38003e10b636.asciidoc 0000664 0000000 0000000 00000000542 14766462667 0026501 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-async-query-api.asciidoc:23
[source, python]
----
resp = client.esql.async_query(
query="\n FROM library\n | EVAL year = DATE_TRUNC(1 YEARS, release_date)\n | STATS MAX(page_count) BY year\n | SORT year\n | LIMIT 5\n ",
wait_for_completion_timeout="2s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f20459d358611793272f63dc596e889.asciidoc 0000664 0000000 0000000 00000001014 14766462667 0026212 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significanttext-aggregation.asciidoc:455
[source, python]
----
resp = client.search(
index="news",
query={
"match": {
"custom_all": "elasticsearch"
}
},
aggs={
"tags": {
"significant_text": {
"field": "custom_all",
"source_fields": [
"content",
"title"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f292a5f67e20f91bf18f5c2412a07bf.asciidoc 0000664 0000000 0000000 00000000761 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/match-enrich-policy-type-ex.asciidoc:79
[source, python]
----
resp = client.ingest.put_pipeline(
id="user_lookup",
processors=[
{
"enrich": {
"description": "Add 'user' data based on 'email'",
"policy_name": "users-policy",
"field": "email",
"target_field": "user",
"max_matches": "1"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f2e5132e35b9e8b3203a4a0541cf0d4.asciidoc 0000664 0000000 0000000 00000000706 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-searchable-snapshot.asciidoc:103
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"cold": {
"actions": {
"searchable_snapshot": {
"snapshot_repository": "backing_repo"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f30310cc6d0adae6b0f61705624a695.asciidoc 0000664 0000000 0000000 00000000713 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/create-snapshot-api.asciidoc:166
[source, python]
----
resp = client.snapshot.create(
repository="my_repository",
snapshot="snapshot_2",
wait_for_completion=True,
indices="index_1,index_2",
ignore_unavailable=True,
include_global_state=False,
metadata={
"taken_by": "user123",
"taken_because": "backup before upgrading"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f5b5bee692e7d4b0992dc0a64e95a60.asciidoc 0000664 0000000 0000000 00000002127 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-inner-hits.asciidoc:442
[source, python]
----
resp = client.indices.create(
index="test",
mappings={
"properties": {
"my_join_field": {
"type": "join",
"relations": {
"my_parent": "my_child"
}
}
}
},
)
print(resp)
resp1 = client.index(
index="test",
id="1",
refresh=True,
document={
"number": 1,
"my_join_field": "my_parent"
},
)
print(resp1)
resp2 = client.index(
index="test",
id="2",
routing="1",
refresh=True,
document={
"number": 1,
"my_join_field": {
"name": "my_child",
"parent": "1"
}
},
)
print(resp2)
resp3 = client.search(
index="test",
query={
"has_child": {
"type": "my_child",
"query": {
"match": {
"number": 1
}
},
"inner_hits": {}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/3f60a892bed18151b7baac6cc712576a.asciidoc 0000664 0000000 0000000 00000001002 14766462667 0026657 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/kstem-tokenfilter.asciidoc:98
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "whitespace",
"filter": [
"lowercase",
"kstem"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f669878713a14dfba251c7ce74dd5c4.asciidoc 0000664 0000000 0000000 00000002002 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:640
[source, python]
----
resp = client.transform.preview_transform(
source={
"index": "kibana_sample_data_ecommerce"
},
pivot={
"group_by": {
"customer_id": {
"terms": {
"field": "customer_id"
}
}
},
"aggregations": {
"last": {
"top_metrics": {
"metrics": [
{
"field": "email"
},
{
"field": "customer_first_name.keyword"
},
{
"field": "customer_last_name.keyword"
}
],
"sort": {
"order_date": "desc"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f8dc309b63fa0437898107b0d964217.asciidoc 0000664 0000000 0000000 00000000267 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/anomaly-detectors.asciidoc:287
[source, python]
----
resp = client.cat.ml_jobs(
h="id,s,dpr,mb",
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f94ed945ae6416a0eb372c2db14d7e0.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0026671 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/recipes/stemming.asciidoc:116
[source, python]
----
resp = client.search(
index="index",
query={
"simple_query_string": {
"fields": [
"body.exact"
],
"query": "ski"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3f9dcf2aa42f3ecfb5ebfe48c1774103.asciidoc 0000664 0000000 0000000 00000000522 14766462667 0027115 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:360
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"order_stats": {
"stats": {
"field": "taxful_total_price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3faec4ca15d8c2fbbd16781b1c8693d6.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0027033 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:473
[source, python]
----
resp = client.search(
index="mistral-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "mistral_embeddings",
"model_text": "Calculate fuel cost"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3faf5e2873de340acfe0a617017db784.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0026674 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:283
[source, python]
----
resp = client.search(
query={
"query_string": {
"query": "(content:this OR name:this) AND (content:that OR name:that)"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3fb1289c80a354da66693bfb25d7b412.asciidoc 0000664 0000000 0000000 00000000740 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:514
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="nightly-snapshots",
schedule="0 30 2 * * ?",
name="",
repository="my_repository",
config={
"include_global_state": False,
"indices": "*"
},
retention={
"expire_after": "30d",
"min_count": 5,
"max_count": 50
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3fb2f41ad229a31ad3ae408cc50cbed5.asciidoc 0000664 0000000 0000000 00000000435 14766462667 0027070 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-api.asciidoc:234
[source, python]
----
resp = client.search(
index="my-index-000001",
timeout="2s",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3fe0fb38f75d2a34fb1e6ac9bedbcdbc.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0027410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/ignored-field.asciidoc:21
[source, python]
----
resp = client.search(
query={
"exists": {
"field": "_ignored"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3fe4264ace04405989141c43aadfff81.asciidoc 0000664 0000000 0000000 00000000710 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-roles.asciidoc:173
[source, python]
----
resp = client.security.put_role(
name="cli_or_drivers_minimal",
cluster=[
"cluster:monitor/main"
],
indices=[
{
"names": [
"test"
],
"privileges": [
"read",
"indices:admin/get"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3fe5e6c0d5ea4586aa04f989ae54b72e.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/verify-repo-api.asciidoc:31
[source, python]
----
resp = client.snapshot.verify_repository(
name="my_repository",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3fe79ed63195c5f8018648a5a6d645f6.asciidoc 0000664 0000000 0000000 00000000640 14766462667 0026513 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/routing-field.asciidoc:87
[source, python]
----
resp = client.indices.create(
index="my-index-000002",
mappings={
"_routing": {
"required": True
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000002",
id="1",
document={
"text": "No routing value provided"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/3fe9006f6c7faea162e43fb250f4da38.asciidoc 0000664 0000000 0000000 00000000502 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:483
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"set": {
"field": "_source.my-long-field",
"value": 10
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3fecd5c6d0c172566da4a54320e1cff3.asciidoc 0000664 0000000 0000000 00000000727 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/dictionary-decompounder-tokenfilter.asciidoc:32
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "dictionary_decompounder",
"word_list": [
"Donau",
"dampf",
"meer",
"schiff"
]
}
],
text="Donaudampfschiff",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/3ffe9952786ab258bb6ab928b03148a2.asciidoc 0000664 0000000 0000000 00000000440 14766462667 0026546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/rare-terms-aggregation.asciidoc:92
[source, python]
----
resp = client.search(
aggs={
"genres": {
"rare_terms": {
"field": "genre"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/400e89eb46ead8e9c9e40f123fd5e590.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:434
[source, python]
----
resp = client.reindex(
source={
"index": "source",
"size": 100
},
dest={
"index": "dest",
"routing": "=cat"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/402092585940953420404c2884a47e59.asciidoc 0000664 0000000 0000000 00000002060 14766462667 0025744 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:860
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d",
"order": "desc"
}
}
},
{
"product": {
"terms": {
"field": "product"
}
}
}
]
},
"aggregations": {
"the_avg": {
"avg": {
"field": "price"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4029af36cb3f8202549017f7378803b4.asciidoc 0000664 0000000 0000000 00000000234 14766462667 0026241 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/get-settings.asciidoc:16
[source, python]
----
resp = client.cluster.get_settings()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4053de806dfd9172167999ce098107c4.asciidoc 0000664 0000000 0000000 00000000546 14766462667 0026351 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/constant-score-query.asciidoc:12
[source, python]
----
resp = client.search(
query={
"constant_score": {
"filter": {
"term": {
"user.id": "kimchy"
}
},
"boost": 1.2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/405511f7c1f12cc0a227b4563fe7b2e2.asciidoc 0000664 0000000 0000000 00000000365 14766462667 0026520 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-async-query-get-api.asciidoc:17
[source, python]
----
resp = client.esql.async_query_get(
id="FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/405ac843a9156d3cab374e199cac87fb.asciidoc 0000664 0000000 0000000 00000000575 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/create-connector-sync-job-api.asciidoc:21
[source, python]
----
resp = client.perform_request(
"POST",
"/_connector/_sync_job",
headers={"Content-Type": "application/json"},
body={
"id": "connector-id",
"job_type": "full",
"trigger_method": "on_demand"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/405db6f3a01eceacfaa8b0ed3e4b3ac2.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0027300 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-overall-buckets.asciidoc:181
[source, python]
----
resp = client.ml.get_overall_buckets(
job_id="job-*",
top_n=2,
overall_score=50,
start="1403532000000",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4061fd5ba7221ca85805ed14d59a6bc5.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:271
[source, python]
----
resp = client.delete_script(
id="calculate-score",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/406a0f1c1aac947bcee58f86b6d036c1.asciidoc 0000664 0000000 0000000 00000003143 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/actions.asciidoc:112
[source, python]
----
resp = client.watcher.put_watch(
id="log_event_watch",
trigger={
"schedule": {
"interval": "5m"
}
},
input={
"search": {
"request": {
"indices": "log-events",
"body": {
"size": 0,
"query": {
"match": {
"status": "error"
}
}
}
}
}
},
condition={
"compare": {
"ctx.payload.hits.total": {
"gt": 5
}
}
},
throttle_period="15m",
actions={
"email_administrator": {
"email": {
"to": "sys.admino@host.domain",
"subject": "Encountered {{ctx.payload.hits.total}} errors",
"body": "Too many error in the system, see attached data",
"attachments": {
"attached_data": {
"data": {
"format": "json"
}
}
},
"priority": "high"
}
},
"notify_pager": {
"webhook": {
"method": "POST",
"host": "pager.service.domain",
"port": 1234,
"path": "/{{watch_id}}",
"body": "Encountered {{ctx.payload.hits.total}} errors"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/408060f0c52300588a6dee774f4fd6a5.asciidoc 0000664 0000000 0000000 00000044327 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-dsl.asciidoc:218
[source, python]
----
resp = client.bulk(
index="datastream",
refresh=True,
operations=[
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:49:00Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 91153,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 463314616
},
"usage": {
"bytes": 307007078,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 585236
},
"rss": {
"bytes": 102728
},
"pagefaults": 120901,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:45:50Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 124501,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 982546514
},
"usage": {
"bytes": 360035574,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1339884
},
"rss": {
"bytes": 381174
},
"pagefaults": 178473,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:50Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 38907,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 862723768
},
"usage": {
"bytes": 379572388,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 431227
},
"rss": {
"bytes": 386580
},
"pagefaults": 233166,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:40Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 86706,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 567160996
},
"usage": {
"bytes": 103266017,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1724908
},
"rss": {
"bytes": 105431
},
"pagefaults": 233166,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:00Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 150069,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 639054643
},
"usage": {
"bytes": 265142477,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1786511
},
"rss": {
"bytes": 189235
},
"pagefaults": 138172,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:42:40Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 82260,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 854735585
},
"usage": {
"bytes": 309798052,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 924058
},
"rss": {
"bytes": 110838
},
"pagefaults": 259073,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:42:10Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 153404,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 279586406
},
"usage": {
"bytes": 214904955,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1047265
},
"rss": {
"bytes": 91914
},
"pagefaults": 302252,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:40:20Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 125613,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 822782853
},
"usage": {
"bytes": 100475044,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 2109932
},
"rss": {
"bytes": 278446
},
"pagefaults": 74843,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:40:10Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 100046,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 567160996
},
"usage": {
"bytes": 362826547,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1986724
},
"rss": {
"bytes": 402801
},
"pagefaults": 296495,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:38:30Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 40018,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 1062428344
},
"usage": {
"bytes": 265142477,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 2294743
},
"rss": {
"bytes": 340623
},
"pagefaults": 224530,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/40a42f005144cfed3dd1dcf2638e8211.asciidoc 0000664 0000000 0000000 00000000475 14766462667 0026603 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:774
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
params={
"field": "price",
"operator": "gte",
"value": 500
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/40b73b5c7ca144dc3f63f5b741f33d80.asciidoc 0000664 0000000 0000000 00000000745 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:157
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"constant_score": {
"filter": {
"percolate": {
"field": "query",
"document": {
"message": "A new bonsai tree in the office"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/40bd86e400d27e68b8f0ae580c29d32d.asciidoc 0000664 0000000 0000000 00000000357 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:279
[source, python]
----
resp = client.cluster.stats(
human=True,
filter_path="indices.mappings.total_deduplicated_mapping_size*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/40c3e7bb1fdc125a1ab21bd7d7326694.asciidoc 0000664 0000000 0000000 00000001454 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/multivalued-fields.asciidoc:145
[source, python]
----
resp = client.indices.create(
index="mv",
mappings={
"properties": {
"b": {
"type": "long"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="mv",
refresh=True,
operations=[
{
"index": {}
},
{
"a": 1,
"b": [
2,
2,
1
]
},
{
"index": {}
},
{
"a": 2,
"b": [
1,
1
]
}
],
)
print(resp1)
resp2 = client.esql.query(
query="FROM mv | EVAL b=TO_STRING(b) | LIMIT 2",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/40d88d4f53343ef663c89ba488ab8001.asciidoc 0000664 0000000 0000000 00000000721 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:412
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "envelope",
"coordinates": [
[
1000,
100
],
[
1001,
100
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/40d90d9dc6f4942bf92d88bfc5a34672.asciidoc 0000664 0000000 0000000 00000000517 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-bool-prefix-query.asciidoc:59
[source, python]
----
resp = client.search(
query={
"match_bool_prefix": {
"message": {
"query": "quick brown f",
"analyzer": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/40f287bf733420bbab134b74c7d0ea5d.asciidoc 0000664 0000000 0000000 00000000747 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/ingest-vectors.asciidoc:68
[source, python]
----
resp = client.index(
index="amazon-reviews",
id="1",
document={
"review_text": "This product is lifechanging! I'm telling all my friends about it.",
"review_vector": [
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7,
0.8
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/40f97f70e8e743c6a6296c81b920aeb0.asciidoc 0000664 0000000 0000000 00000000425 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:314
[source, python]
----
resp = client.nodes.stats(
human=True,
filter_path="nodes.*.name,nodes.*.indices.mappings.total_estimated_overhead*,nodes.*.jvm.mem.heap_max*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4113c57384aa37c58d11579e20c00760.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026226 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:65
[source, python]
----
resp = client.get(
index="my-index-000001",
id="0",
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/41175d304e660da2931764f9a4418fd3.asciidoc 0000664 0000000 0000000 00000000606 14766462667 0026322 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-pipeline-api.asciidoc:94
[source, python]
----
resp = client.connector.update_pipeline(
connector_id="my-connector",
pipeline={
"extract_binary_content": True,
"name": "my-connector-pipeline",
"reduce_whitespace": True,
"run_ml_inference": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/41195ef13af0465cdee1ae18f6c00fde.asciidoc 0000664 0000000 0000000 00000000215 14766462667 0027025 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// slm/apis/slm-stop.asciidoc:52
[source, python]
----
resp = client.slm.stop()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/412f8238ab5182678f1d8f6383031b11.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026230 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-alias.asciidoc:16
[source, python]
----
resp = client.indices.get_alias(
index="my-data-stream",
name="my-alias",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/413fdcc7c437775a16bb55b81c2bbe2b.asciidoc 0000664 0000000 0000000 00000001024 14766462667 0026742 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1616
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
runtime={
"http.client.ip": {
"type": "ip",
"script": "\n String clientip=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] \"%{verb} %{request} HTTP/%{httpversion}\" %{status} %{size}').extract(doc[\"message\"].value)?.clientip;\n if (clientip != null) emit(clientip);\n "
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/415b46bc2b7a7b4dcf9a73ac67ea20e9.asciidoc 0000664 0000000 0000000 00000000734 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/circle.asciidoc:99
[source, python]
----
resp = client.index(
index="circles",
id="2",
pipeline="polygonize_circles",
document={
"circle": {
"type": "circle",
"radius": "40m",
"coordinates": [
30,
10
]
}
},
)
print(resp)
resp1 = client.get(
index="circles",
id="2",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/416a3ba11232d3c078c1c31340cf356f.asciidoc 0000664 0000000 0000000 00000000540 14766462667 0026421 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:487
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"tags_schema": "styled",
"fields": {
"comment": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/41ad6077f9c1b8d8fefab6ea1660edcd.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/format.asciidoc:13
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"date": {
"type": "date",
"format": "yyyy-MM-dd"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/41d24383d29b2808a65258a0a3256e96.asciidoc 0000664 0000000 0000000 00000000562 14766462667 0026243 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-jinaai.asciidoc:188
[source, python]
----
resp = client.indices.create(
index="jinaai-index",
mappings={
"properties": {
"content": {
"type": "semantic_text",
"inference_id": "jinaai-embeddings"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/41dbd79f624b998d01c10921e9a35c4b.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:296
[source, python]
----
resp = client.update(
index="test",
id="1",
doc={
"name": "new_name"
},
detect_noop=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/41fd33a293a575bd71a1fac7bcc8b47c.asciidoc 0000664 0000000 0000000 00000002534 14766462667 0027032 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search-application/apis/put-search-application.asciidoc:153
[source, python]
----
resp = client.search_application.put(
name="my-app",
search_application={
"indices": [
"index1",
"index2"
],
"template": {
"script": {
"source": {
"query": {
"query_string": {
"query": "{{query_string}}",
"default_field": "{{default_field}}"
}
}
},
"params": {
"query_string": "*",
"default_field": "*"
}
},
"dictionary": {
"properties": {
"query_string": {
"type": "string"
},
"default_field": {
"type": "string",
"enum": [
"title",
"description"
]
},
"additionalProperties": False
},
"required": [
"query_string"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4207219a892339e8f3abe0df8723dd27.asciidoc 0000664 0000000 0000000 00000000367 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/misc.asciidoc:136
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.metadata.administrator": "sysadmin@example.com"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/421e68e2b9789f0e8c08760d9e685d1c.asciidoc 0000664 0000000 0000000 00000001155 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/update-job.asciidoc:264
[source, python]
----
resp = client.ml.update_job(
job_id="low_request_rate",
description="An updated job",
detectors={
"detector_index": 0,
"description": "An updated detector description"
},
groups=[
"kibana_sample_data",
"kibana_sample_web_logs"
],
model_plot_config={
"enabled": True
},
renormalization_window_days=30,
background_persist_interval="2h",
model_snapshot_retention_days=7,
results_retention_days=60,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/424fbf082cd4affb84439abfc916b597.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0027000 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/downsample-data-stream.asciidoc:65
[source, python]
----
resp = client.indices.downsample(
index="my-time-series-index",
target_index="my-downsampled-time-series-index",
config={
"fixed_interval": "1d"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/425eaaf9c7e3b1e77a3474fbab4183b4.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/task-queue-backlog.asciidoc:36
[source, python]
----
resp = client.cat.thread_pool(
v=True,
s="t,n",
h="type,name,node_name,active,queue,rejected,completed",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4275ecbe4aa68d43a8a7139866610a27.asciidoc 0000664 0000000 0000000 00000000722 14766462667 0026463 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/weighted-avg-aggregation.asciidoc:55
[source, python]
----
resp = client.search(
index="exams",
size=0,
aggs={
"weighted_grade": {
"weighted_avg": {
"value": {
"field": "grade"
},
"weight": {
"field": "weight"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/42ba7c1d13aee91fe6f0a8a42c30eb74.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0027020 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:132
[source, python]
----
resp = client.indices.rollover(
alias="my-data-stream",
lazy=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/42bc7608bb675dd6238e2fecbb758d06.asciidoc 0000664 0000000 0000000 00000001046 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/geo-match-enrich-policy-type-ex.asciidoc:36
[source, python]
----
resp = client.index(
index="postal_codes",
id="1",
refresh="wait_for",
document={
"location": {
"type": "envelope",
"coordinates": [
[
13,
53
],
[
14,
52
]
]
},
"postal_code": "96598"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/42d02087f1c8ab0452ef373079a76843.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0026325 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/stop-analyzer.asciidoc:15
[source, python]
----
resp = client.indices.analyze(
analyzer="stop",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/42deb4fe32afbe0f94185e256a79c447.asciidoc 0000664 0000000 0000000 00000001207 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/stop-analyzer.asciidoc:249
[source, python]
----
resp = client.indices.create(
index="stop_example",
settings={
"analysis": {
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
}
},
"analyzer": {
"rebuilt_stop": {
"tokenizer": "lowercase",
"filter": [
"english_stop"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4301cb9d970ec65778f91ce1f438e0d5.asciidoc 0000664 0000000 0000000 00000000740 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:291
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"add": {
"index": "logs-nginx.access-prod",
"alias": "logs"
}
},
{
"add": {
"index": "logs-my_app-default",
"alias": "logs",
"is_write_index": True
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/430705509f8367aef92be413f702520b.asciidoc 0000664 0000000 0000000 00000000371 14766462667 0026315 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-status-api.asciidoc:82
[source, python]
----
resp = client.connector.update_status(
connector_id="my-connector",
status="needs_configuration",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4310869b97d4224acaa6d66b1e196048.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026403 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-elser.asciidoc:184
[source, python]
----
resp = client.search(
index="my-index",
query={
"sparse_vector": {
"field": "content_embedding",
"inference_id": "my-elser-endpoint",
"query": "How to avoid muscle soreness after running?"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4323f6d224847eccdce59c23e33fda0a.asciidoc 0000664 0000000 0000000 00000000761 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/cjk-bigram-tokenfilter.asciidoc:126
[source, python]
----
resp = client.indices.create(
index="cjk_bigram_example",
settings={
"analysis": {
"analyzer": {
"standard_cjk_bigram": {
"tokenizer": "standard",
"filter": [
"cjk_bigram"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/433cf45a23decdf3a096016ffaaf26ba.asciidoc 0000664 0000000 0000000 00000000605 14766462667 0027101 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:396
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"add": {
"index": "my-index-2099.05.06-000001",
"alias": "my-alias",
"search_routing": "1",
"index_routing": "2"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4342ccf6cc24fd80bd3cd1f9a4c2ef8e.asciidoc 0000664 0000000 0000000 00000001003 14766462667 0027170 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:515
[source, python]
----
resp = client.clear_scroll(
scroll_id=[
"DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==",
"DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAAABFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAAAxZrUllkUVlCa1NqNmRMaUhiQlZkMWFBAAAAAAAAAAIWa1JZZFFZQmtTajZkTGlIYkJWZDFhQQAAAAAAAAAFFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAABBZrUllkUVlCa1NqNmRMaUhiQlZkMWFB"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/435e0d6a7d86e074d572d9671b7b9676.asciidoc 0000664 0000000 0000000 00000001476 14766462667 0026440 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:226
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "Polygon",
"coordinates": [
[
[
100,
0
],
[
101,
0
],
[
101,
1
],
[
100,
1
],
[
100,
0
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/43854be6aae61edbea5f9ab988cb4ce5.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0027217 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/using-ip-filtering.asciidoc:146
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"xpack.security.transport.filter.allow": "172.16.0.0/24"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/43d9e314431336a6f084cea76dfd6489.asciidoc 0000664 0000000 0000000 00000000624 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:254
[source, python]
----
resp = client.search(
index="restaurants",
retriever={
"knn": {
"field": "vector",
"query_vector": [
10,
22,
77
],
"k": 10,
"num_candidates": 10
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/43e86fbaeed068dcc981214338559b5a.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/resolve-cluster.asciidoc:92
[source, python]
----
resp = client.indices.resolve_cluster(
name="my-index-*,cluster*:my-index-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/43f77ddf1ed8106d4f47a12d39df8e3b.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/range-enrich-policy-type-ex.asciidoc:113
[source, python]
----
resp = client.index(
index="my-index-000001",
id="my_id",
pipeline="networks_lookup",
document={
"ip": "10.100.34.1"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/43fe75fa9f3fca846598fdad58fd98cb.asciidoc 0000664 0000000 0000000 00000000215 14766462667 0027162 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/usage.asciidoc:44
[source, python]
----
resp = client.xpack.usage()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44198781d164a15be633d4469485a544.asciidoc 0000664 0000000 0000000 00000001234 14766462667 0026174 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:383
[source, python]
----
resp = client.search(
index="my-index-bit-vectors",
query={
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "dotProduct(params.query_vector, 'my_dense_vector')",
"params": {
"query_vector": [
8,
5,
-15,
1,
-7
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/441be98c597698bb2809372abf086c3e.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0026504 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/doc-count-field.asciidoc:80
[source, python]
----
resp = client.search(
aggs={
"histogram_titles": {
"terms": {
"field": "my_text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/441f330f6872f995769db1ce2b9627e2.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0026427 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:686
[source, python]
----
resp = client.search(
stored_fields=[],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44231f7cdd5c3a21025861cdef31e355.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:206
[source, python]
----
resp = client.indices.shrink(
index="my-index",
target="my-shrunken-index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4427517dcd8ec9997541150cdc11a0de.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/snapshot/corrupt-repository.asciidoc:116
[source, python]
----
resp = client.snapshot.delete_repository(
name="my-repo",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4435b654994b575ba181ea679871c78c.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-api.asciidoc:26
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44385b61342e20ea05f254015b2b04d7.asciidoc 0000664 0000000 0000000 00000000364 14766462667 0026272 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-delete-roles.asciidoc:54
[source, python]
----
resp = client.security.bulk_delete_role(
names=[
"my_admin_role",
"my_user_role"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/443dd902f64b3217505c9595839c3b2d.asciidoc 0000664 0000000 0000000 00000000450 14766462667 0026326 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-multiple-indices.asciidoc:138
[source, python]
----
resp = client.search(
indices_boost=[
{
"my-alias": 1.4
},
{
"my-index*": 1.3
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/443e8da9968f1c65f46a2a65a1e1e078.asciidoc 0000664 0000000 0000000 00000002365 14766462667 0026562 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-tsds.asciidoc:147
[source, python]
----
resp = client.indices.put_index_template(
name="my-weather-sensor-index-template",
index_patterns=[
"metrics-weather_sensors-*"
],
data_stream={},
template={
"settings": {
"index.mode": "time_series",
"index.lifecycle.name": "my-lifecycle-policy"
},
"mappings": {
"properties": {
"sensor_id": {
"type": "keyword",
"time_series_dimension": True
},
"location": {
"type": "keyword",
"time_series_dimension": True
},
"temperature": {
"type": "half_float",
"time_series_metric": "gauge"
},
"humidity": {
"type": "half_float",
"time_series_metric": "gauge"
},
"@timestamp": {
"type": "date"
}
}
}
},
priority=500,
meta={
"description": "Template for my weather sensor data"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/445f8a6ef75fb43da52990b3a9063c78.asciidoc 0000664 0000000 0000000 00000000524 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1656
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"http.responses": "304"
}
},
fields=[
"http.client_ip",
"timestamp",
"http.verb"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/446e8fc8ccfb13bb5ec64e32a5676d18.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/elision-tokenfilter.asciidoc:34
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"elision"
],
text="j’examine près du wharf",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4479e8c63a04fa22207a6a8803eadcad.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/allocation_awareness.asciidoc:62
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.awareness.attributes": "rack_id"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44939997b0f2601f82a93585a879f65a.asciidoc 0000664 0000000 0000000 00000001321 14766462667 0026275 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/simplepatternsplit-tokenizer.asciidoc:40
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "simple_pattern_split",
"pattern": "_"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="an_underscored_phrase",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/4498b9d3b0c77e1b9ef6664ff5963ce2.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shard-request-cache.asciidoc:61
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index.requests.cache.enable": False
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44b8a236d7cfb31c43c6d066ae16d8cd.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/profile.asciidoc:40
[source, python]
----
resp = client.search(
index="my-index-000001",
profile=True,
query={
"match": {
"message": "GET /search"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44bca3f17d403517af3616754dc795bb.asciidoc 0000664 0000000 0000000 00000001343 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/script-score-query.asciidoc:352
[source, python]
----
resp = client.explain(
index="my-index-000001",
id="0",
query={
"script_score": {
"query": {
"match": {
"message": "elasticsearch"
}
},
"script": {
"source": "\n long count = doc['count'].value;\n double normalizedCount = count / 10;\n if (explanation != null) {\n explanation.set('normalized count = count / 10 = ' + count + ' / 10 = ' + normalizedCount);\n }\n return normalizedCount;\n "
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44da736ce0e1587c1e7c45eee606ead7.asciidoc 0000664 0000000 0000000 00000000535 14766462667 0026771 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:409
[source, python]
----
resp = client.update_by_query(
index="my-index-000001",
script={
"source": "ctx._source.count++",
"lang": "painless"
},
query={
"term": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44db41b8465af951e366da97ade63bc1.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/apis/reload-analyzers.asciidoc:160
[source, python]
----
resp = client.indices.reload_search_analyzers(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44dd65d69267017fa2fb2cffadef40bb.asciidoc 0000664 0000000 0000000 00000001022 14766462667 0027111 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cardinality-aggregation.asciidoc:188
[source, python]
----
resp = client.search(
index="sales",
size="0",
runtime_mappings={
"type_and_promoted": {
"type": "keyword",
"script": "emit(doc['type'].value + ' ' + doc['promoted'].value)"
}
},
aggs={
"type_promoted_count": {
"cardinality": {
"field": "type_and_promoted"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/44dfac5bc3131014e2c6bb1ebc76b33d.asciidoc 0000664 0000000 0000000 00000000507 14766462667 0027006 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:146
[source, python]
----
resp = client.indices.create(
index="index_double",
mappings={
"properties": {
"field": {
"type": "double"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/451b441c3311103d0d2bdbab771b26d2.asciidoc 0000664 0000000 0000000 00000000661 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:987
[source, python]
----
resp = client.put_script(
id="my-search-template",
script={
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"match\": {\n {{=( )=}}\n \"message\": \"(query_string)\"\n (={{ }}=)\n }\n }\n }\n "
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/451e7c29b2cf738cfc822f7c175bef56.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0026721 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-new-data-stream.asciidoc:29
[source, python]
----
resp = client.indices.put_index_template(
name="my-index-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
priority=500,
template={
"lifecycle": {
"data_retention": "7d"
}
},
meta={
"description": "Template with data stream lifecycle"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4527d9bb12cf738111a188af235d5d4c.asciidoc 0000664 0000000 0000000 00000001071 14766462667 0026531 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/grok-syntax.asciidoc:176
[source, python]
----
resp = client.search(
index="my-index",
runtime_mappings={
"http.clientip": {
"type": "ip",
"script": "\n String clientip=grok('%{COMMONAPACHELOG}').extract(doc[\"message\"].value)?.clientip;\n if (clientip != null) emit(clientip);\n "
}
},
query={
"match": {
"http.clientip": "40.135.0.0"
}
},
fields=[
"http.clientip"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/45499ed1824d1d7cb59972580d2344cb.asciidoc 0000664 0000000 0000000 00000000542 14766462667 0026417 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/unsigned_long.asciidoc:68
[source, python]
----
resp = client.search(
index="my_index",
query={
"range": {
"my_counter": {
"gte": "9223372036854775808",
"lte": "18446744073709551615"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/455029c3d66306ad5d48f6dbddaf7324.asciidoc 0000664 0000000 0000000 00000002736 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/sum-aggregation.asciidoc:140
[source, python]
----
resp = client.indices.create(
index="metrics_index",
mappings={
"properties": {
"latency_histo": {
"type": "histogram"
}
}
},
)
print(resp)
resp1 = client.index(
index="metrics_index",
id="1",
refresh=True,
document={
"network.name": "net-1",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
3,
7,
23,
12,
6
]
}
},
)
print(resp1)
resp2 = client.index(
index="metrics_index",
id="2",
refresh=True,
document={
"network.name": "net-2",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
8,
17,
8,
7,
6
]
}
},
)
print(resp2)
resp3 = client.search(
index="metrics_index",
size="0",
filter_path="aggregations",
aggs={
"total_latency": {
"sum": {
"field": "latency_histo"
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/4553e0acb6336687d61eaecc73f517b7.asciidoc 0000664 0000000 0000000 00000001414 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/mapping-charfilter.asciidoc:109
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"char_filter": [
"my_mappings_char_filter"
]
}
},
"char_filter": {
"my_mappings_char_filter": {
"type": "mapping",
"mappings": [
":) => _happy_",
":( => _sad_"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/45813d971bfa890ffa2f51f3f480cce5.asciidoc 0000664 0000000 0000000 00000000525 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:355
[source, python]
----
resp = client.search(
index="test_index",
query={
"percolate": {
"field": "query",
"document": {
"body": "Bycicles are missing"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/458b2228aed7464d915a5d73cb6b98f6.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/snapshots.asciidoc:135
[source, python]
----
resp = client.cat.snapshots(
repository="repo1",
v=True,
s="id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/45954b8aaedfed57012be8b6538b0a24.asciidoc 0000664 0000000 0000000 00000002073 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/chat-completion-inference.asciidoc:356
[source, python]
----
resp = client.inference.stream_inference(
task_type="chat_completion",
inference_id="openai-completion",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What's the price of a scarf?"
}
]
}
],
tools=[
{
"type": "function",
"function": {
"name": "get_current_price",
"description": "Get the current price of a item",
"parameters": {
"type": "object",
"properties": {
"item": {
"id": "123"
}
}
}
}
}
],
tool_choice={
"type": "function",
"function": {
"name": "get_current_price"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/45b74f1904533fdb37a5a6f3c8f4ec9b.asciidoc 0000664 0000000 0000000 00000001531 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/edgengram-tokenizer.asciidoc:144
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "edge_ngram",
"min_gram": 2,
"max_gram": 10,
"token_chars": [
"letter",
"digit"
]
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="2 Quick Foxes.",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/45c6e54a9c9e08623af96752b4bde346.asciidoc 0000664 0000000 0000000 00000000735 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-distance-query.asciidoc:213
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "12km",
"pin.location": "POINT (-70 40)"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/45ef5156dbd2d3fd4fd22b8d99f7aad4.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0027131 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/restart-cluster.asciidoc:233
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.enable": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/46064e81620162a23e75002a7eeb8b10.asciidoc 0000664 0000000 0000000 00000000522 14766462667 0026271 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/move-to-step.asciidoc:194
[source, python]
----
resp = client.ilm.move_to_step(
index="my-index-000001",
current_step={
"phase": "hot",
"action": "complete",
"name": "complete"
},
next_step={
"phase": "warm"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/46103fee3cd5f53dc75123def82d52ad.asciidoc 0000664 0000000 0000000 00000000633 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:293
[source, python]
----
resp = client.indices.put_index_template(
name="my-data-stream-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
priority=500,
template={
"settings": {
"index.refresh_interval": "30s"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/464dffb6a6e24a860223d1c32b232f95.asciidoc 0000664 0000000 0000000 00000002320 14766462667 0026524 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/minhash-tokenfilter.asciidoc:134
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"filter": {
"my_shingle_filter": {
"type": "shingle",
"min_shingle_size": 5,
"max_shingle_size": 5,
"output_unigrams": False
},
"my_minhash_filter": {
"type": "min_hash",
"hash_count": 1,
"bucket_count": 512,
"hash_set_size": 1,
"with_rotation": True
}
},
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"my_shingle_filter",
"my_minhash_filter"
]
}
}
}
},
mappings={
"properties": {
"fingerprint": {
"type": "text",
"analyzer": "my_analyzer"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4659f639d71a54df571260ee5798dbb3.asciidoc 0000664 0000000 0000000 00000001371 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geotilegrid-aggregation.asciidoc:114
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggregations={
"zoomed-in": {
"filter": {
"geo_bounding_box": {
"location": {
"top_left": "POINT (4.9 52.4)",
"bottom_right": "POINT (5.0 52.3)"
}
}
},
"aggregations": {
"zoom1": {
"geotile_grid": {
"field": "location",
"precision": 22
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/46658f00edc4865dfe472a392374cd0f.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template-v1.asciidoc:258
[source, python]
----
resp = client.indices.get_template(
name="template_1",
filter_path="*.version",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4670dd81a9865e07ae74ae8b0266e384.asciidoc 0000664 0000000 0000000 00000001515 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/t-test-aggregation.asciidoc:148
[source, python]
----
resp = client.search(
index="node_upgrade",
size=0,
runtime_mappings={
"startup_time_before.adjusted": {
"type": "long",
"script": {
"source": "emit(doc['startup_time_before'].value - params.adjustment)",
"params": {
"adjustment": 10
}
}
}
},
aggs={
"startup_time_ttest": {
"t_test": {
"a": {
"field": "startup_time_before.adjusted"
},
"b": {
"field": "startup_time_after"
},
"type": "paired"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/467833bd44b35a89a7fe0d7df5f253f1.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/pattern-analyzer.asciidoc:29
[source, python]
----
resp = client.indices.analyze(
analyzer="pattern",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/468f7ec42cdd8287cdea3ec1cea4a514.asciidoc 0000664 0000000 0000000 00000000644 14766462667 0027125 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:338
[source, python]
----
resp = client.update(
index="my-index-000001",
id="1",
script={
"source": "if (ctx._source.tags.contains(params['tag'])) { ctx._source.tags.remove(ctx._source.tags.indexOf(params['tag'])) }",
"lang": "painless",
"params": {
"tag": "blue"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/46a0eaaf5c881f1ba716d1812b36c724.asciidoc 0000664 0000000 0000000 00000001424 14766462667 0026604 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/bi-directional-disaster-recovery.asciidoc:87
[source, python]
----
resp = client.ccr.put_auto_follow_pattern(
name="logs-generic-default",
remote_cluster="clusterB",
leader_index_patterns=[
".ds-logs-generic-default-20*"
],
leader_index_exclusion_patterns="*-replicated_from_clustera",
follow_index_pattern="{{leader_index}}-replicated_from_clusterb",
)
print(resp)
resp1 = client.ccr.put_auto_follow_pattern(
name="logs-generic-default",
remote_cluster="clusterA",
leader_index_patterns=[
".ds-logs-generic-default-20*"
],
leader_index_exclusion_patterns="*-replicated_from_clusterb",
follow_index_pattern="{{leader_index}}-replicated_from_clustera",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/46b1c1f6e0c86528be84c373eeb8d425.asciidoc 0000664 0000000 0000000 00000001030 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/update-license.asciidoc:145
[source, python]
----
resp = client.license.post(
acknowledge=True,
licenses=[
{
"uid": "893361dc-9749-4997-93cb-802e3d7fa4xx",
"type": "basic",
"issue_date_in_millis": 1411948800000,
"expiry_date_in_millis": 1914278399999,
"max_nodes": 1,
"issued_to": "issuedTo",
"issuer": "issuer",
"signature": "xx"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/46b771a9932c3fa6057a7b2679c72ef0.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/data-stream-reindex.asciidoc:143
[source, python]
----
resp = client.indices.get_migrate_reindex_status(
index="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/46c5c14f20118dcf519ff6ef21360209.asciidoc 0000664 0000000 0000000 00000001012 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-downsample.asciidoc:37
[source, python]
----
resp = client.ilm.put_lifecycle(
name="datastream_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_docs": 1
},
"downsample": {
"fixed_interval": "1h"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/46ce40227fa60aa6ba435f366b3a1f5f.asciidoc 0000664 0000000 0000000 00000000737 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/uni-directional-disaster-recovery.asciidoc:101
[source, python]
----
resp = client.ccr.pause_follow(
index="kibana_sample_data_ecommerce2",
)
print(resp)
resp1 = client.indices.close(
index="kibana_sample_data_ecommerce2",
)
print(resp1)
resp2 = client.ccr.unfollow(
index="kibana_sample_data_ecommerce2",
)
print(resp2)
resp3 = client.indices.open(
index="kibana_sample_data_ecommerce2",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/46ebd468c3f132a4978088964466c5cd.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0026432 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/apostrophe-tokenfilter.asciidoc:77
[source, python]
----
resp = client.indices.create(
index="apostrophe_example",
settings={
"analysis": {
"analyzer": {
"standard_apostrophe": {
"tokenizer": "standard",
"filter": [
"apostrophe"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/472ec8c57fec8457e31fe6dd7f6e3713.asciidoc 0000664 0000000 0000000 00000000533 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:448
[source, python]
----
resp = client.search(
query={
"query_string": {
"fields": [
"title"
],
"query": "this that thus",
"minimum_should_match": 2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/473c8ddd4e4b7814a64e5fe40d9d6dca.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/task-management.asciidoc:31
[source, python]
----
resp = client.tasks.cancel(
task_id="2j8UKw1bRO283PMwDugNNg:5326",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4752f82fec8b46e5a4b3788b76e3041f.asciidoc 0000664 0000000 0000000 00000001101 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-migrate.asciidoc:84
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"migrate": {
"enabled": False
},
"allocate": {
"include": {
"rack_id": "one,two"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/47909e194d10743093f4a22c27a85925.asciidoc 0000664 0000000 0000000 00000001317 14766462667 0026171 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:198
[source, python]
----
resp = client.search(
size=10000,
query={
"match": {
"user.id": "elkbee"
}
},
pit={
"id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
"keep_alive": "1m"
},
sort=[
{
"@timestamp": {
"order": "asc",
"format": "strict_date_optional_time_nanos",
"numeric_type": "date_nanos"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/47e6dfb5b09d954c9c0c33fda2b6c66d.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0027051 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-user.asciidoc:167
[source, python]
----
resp = client.security.put_user(
username="jacknich",
password="l0ng-r4nd0m-p@ssw0rd",
roles=[
"admin",
"other_role1"
],
full_name="Jack Nicholson",
email="jacknich@example.com",
metadata={
"intelligence": 7
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/47fde7874e15a37242993fd69c62063b.asciidoc 0000664 0000000 0000000 00000000672 14766462667 0026432 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-rank-aggregation.asciidoc:29
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_ranks": {
"percentile_ranks": {
"field": "load_time",
"values": [
500,
600
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/480e531db799c4c909afd8e2a73a8d0b.asciidoc 0000664 0000000 0000000 00000000231 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/forcemerge.asciidoc:199
[source, python]
----
resp = client.indices.forcemerge()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4818a1288ac24a56d6d6a4130ee70202.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026355 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:212
[source, python]
----
resp = client.get_script(
id="my-search-template",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4824a823a830a2a5d990eacfd783ac22.asciidoc 0000664 0000000 0000000 00000001157 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:448
[source, python]
----
resp = client.delete_by_query(
index="my-index-000001",
slice={
"id": 0,
"max": 2
},
query={
"range": {
"http.response.bytes": {
"lt": 2000000
}
}
},
)
print(resp)
resp1 = client.delete_by_query(
index="my-index-000001",
slice={
"id": 1,
"max": 2
},
query={
"range": {
"http.response.bytes": {
"lt": 2000000
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/48313f620c2871b6f4019b66be730109.asciidoc 0000664 0000000 0000000 00000001561 14766462667 0026235 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/filter-search-results.asciidoc:112
[source, python]
----
resp = client.search(
index="shirts",
query={
"bool": {
"filter": {
"term": {
"brand": "gucci"
}
}
}
},
aggs={
"colors": {
"terms": {
"field": "color"
}
},
"color_red": {
"filter": {
"term": {
"color": "red"
}
},
"aggs": {
"models": {
"terms": {
"field": "model"
}
}
}
}
},
post_filter={
"term": {
"color": "red"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/483d669ec0768bc4e275a568c6164704.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026340 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/post-pause-follow.asciidoc:35
[source, python]
----
resp = client.ccr.pause_follow(
index="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/484e24d1ed1a154ba9753e6090d38d78.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026463 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:140
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "point",
"coordinates": [
-377.03653,
389.897676
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/487f0e07fd83c05f9763e0795c525e2e.asciidoc 0000664 0000000 0000000 00000003770 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geoline-aggregation.asciidoc:13
[source, python]
----
resp = client.indices.create(
index="test",
mappings={
"properties": {
"my_location": {
"type": "geo_point"
},
"group": {
"type": "keyword"
},
"@timestamp": {
"type": "date"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="test",
refresh=True,
operations=[
{
"index": {}
},
{
"my_location": {
"lat": 52.373184,
"lon": 4.889187
},
"@timestamp": "2023-01-02T09:00:00Z"
},
{
"index": {}
},
{
"my_location": {
"lat": 52.370159,
"lon": 4.885057
},
"@timestamp": "2023-01-02T10:00:00Z"
},
{
"index": {}
},
{
"my_location": {
"lat": 52.369219,
"lon": 4.901618
},
"@timestamp": "2023-01-02T13:00:00Z"
},
{
"index": {}
},
{
"my_location": {
"lat": 52.374081,
"lon": 4.91235
},
"@timestamp": "2023-01-02T16:00:00Z"
},
{
"index": {}
},
{
"my_location": {
"lat": 52.371667,
"lon": 4.914722
},
"@timestamp": "2023-01-03T12:00:00Z"
}
],
)
print(resp1)
resp2 = client.search(
index="test",
filter_path="aggregations",
aggs={
"line": {
"geo_line": {
"point": {
"field": "my_location"
},
"sort": {
"field": "@timestamp"
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/488f6df1df71972392b670ce557f7ff3.asciidoc 0000664 0000000 0000000 00000000501 14766462667 0026574 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template-v1.asciidoc:240
[source, python]
----
resp = client.indices.put_template(
name="template_1",
index_patterns=[
"my-index-*"
],
order=0,
settings={
"number_of_shards": 1
},
version=123,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/48d9697a14dfe131325521f48a7adc84.asciidoc 0000664 0000000 0000000 00000000754 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:867
[source, python]
----
resp = client.render_search_template(
id="my-search-template",
params={
"query_string": "My string",
"text_fields": [
{
"user_name": "John",
"last": False
},
{
"user_name": "kimchy",
"last": True
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/48de51de87a8ad9fd8b8db1ca25b85c1.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0027134 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/similarity.asciidoc:542
[source, python]
----
resp = client.indices.close(
index="index",
)
print(resp)
resp1 = client.indices.put_settings(
index="index",
settings={
"index": {
"similarity": {
"default": {
"type": "boolean"
}
}
}
},
)
print(resp1)
resp2 = client.indices.open(
index="index",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/48e142e6c69014e0509d4c9251749d77.asciidoc 0000664 0000000 0000000 00000000670 14766462667 0026261 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-openai.asciidoc:161
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="openai-embeddings",
inference_config={
"service": "openai",
"service_settings": {
"api_key": "",
"model_id": "text-embedding-3-small",
"dimensions": 128
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/49100a4f53c0ba345fadacdc4f2f86e4.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0027016 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:74
[source, python]
----
resp = client.search(
q="kimchy",
filter_path="took,hits.hits._id,hits.hits._score",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4955bae30f265b9e436f82b015de6d7e.asciidoc 0000664 0000000 0000000 00000000573 14766462667 0026635 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-query.asciidoc:193
[source, python]
----
resp = client.search(
index="my-index-000001",
pretty=True,
query={
"terms": {
"color": {
"index": "my-index-000001",
"id": "2",
"path": "color"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/496d35c89dc991a1509f7e8fb93ade45.asciidoc 0000664 0000000 0000000 00000002346 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:232
[source, python]
----
resp = client.indices.create(
index="bengali_example",
settings={
"analysis": {
"filter": {
"bengali_stop": {
"type": "stop",
"stopwords": "_bengali_"
},
"bengali_keywords": {
"type": "keyword_marker",
"keywords": [
"উদাহরণ"
]
},
"bengali_stemmer": {
"type": "stemmer",
"language": "bengali"
}
},
"analyzer": {
"rebuilt_bengali": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"bengali_keywords",
"indic_normalization",
"bengali_normalization",
"bengali_stop",
"bengali_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4980d6fcb369692b0b29ddc6767d4324.asciidoc 0000664 0000000 0000000 00000000407 14766462667 0026502 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/diagnose-unassigned-shards.asciidoc:198
[source, python]
----
resp = client.cluster.allocation_explain(
index="my-index-000001",
shard=0,
primary=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4982c547be1ad9455ae836990aea92c5.asciidoc 0000664 0000000 0000000 00000000631 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/start-trained-model-deployment.asciidoc:228
[source, python]
----
resp = client.ml.start_trained_model_deployment(
model_id="my_model",
deployment_id="my_model_for_search",
adaptive_allocations={
"enabled": True,
"min_number_of_allocations": 3,
"max_number_of_allocations": 10
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4989cc97ce1c8fff634a10d343031bd0.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/disk/increase-data-node-capacity.asciidoc:104
[source, python]
----
resp = client.cat.shards(
v=True,
h="state,node",
s="state",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/49a19615ebe2c013b8321152163478ab.asciidoc 0000664 0000000 0000000 00000001361 14766462667 0026301 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/fields.asciidoc:92
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"text": "quick brown fox"
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"text": "quick fox"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"script_score": {
"query": {
"match": {
"text": "quick brown fox"
}
},
"script": {
"source": "_termStats.termFreq().getAverage()"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/49c052a748c943180db78fee8e144239.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026420 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-api-key-cache.asciidoc:56
[source, python]
----
resp = client.security.clear_api_key_cache(
ids="yVGMr3QByxdh1MSaicYx,YoiMaqREw0YVpjn40iMg",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/49c40b51da2469a6e00fea8fa6fbf56e.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/task-management.asciidoc:11
[source, python]
----
resp = client.tasks.list(
pretty=True,
detailed=True,
group_by="parents",
human=True,
actions="*data/read/esql",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/49cb3f48a0097bfc597c52fa51c6d379.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/saml-guide.asciidoc:936
[source, python]
----
resp = client.security.put_role(
name="saml-service-role",
cluster=[
"manage_saml",
"manage_token"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/49d87c2eb7314ed34221c5fb4f21dfcc.asciidoc 0000664 0000000 0000000 00000000340 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:263
[source, python]
----
resp = client.indices.analyze(
index="analyze_sample",
normalizer="my_normalizer",
text="BaR",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/49e8773a34fcbf825de38426cff5509c.asciidoc 0000664 0000000 0000000 00000000550 14766462667 0026647 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/profile.asciidoc:1275
[source, python]
----
resp = client.search(
index="my-knn-index",
profile=True,
knn={
"field": "my-vector",
"query_vector": [
-5,
9,
-12
],
"k": 3,
"num_candidates": 100
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/49f4d2a461536d150e16b1e0a3148678.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0026310 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/clearcache.asciidoc:116
[source, python]
----
resp = client.indices.clear_cache(
index="my-index-000001",
fielddata=True,
)
print(resp)
resp1 = client.indices.clear_cache(
index="my-index-000001",
query=True,
)
print(resp1)
resp2 = client.indices.clear_cache(
index="my-index-000001",
request=True,
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/4a1951844bd39f26961bfc965f3432b1.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0026411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-get.asciidoc:144
[source, python]
----
resp = client.mget(
index="my-index-000001",
docs=[
{
"_id": "1"
},
{
"_id": "2"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4a2080ae55d931eb0643cc3eb91ec524.asciidoc 0000664 0000000 0000000 00000002046 14766462667 0026602 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/multi-fields.asciidoc:82
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"text": {
"type": "text",
"fields": {
"english": {
"type": "text",
"analyzer": "english"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"text": "quick brown fox"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"text": "quick brown foxes"
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"multi_match": {
"query": "quick brown foxes",
"fields": [
"text",
"text.english"
],
"type": "most_fields"
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/4a4b8a406681584a91c0e614c1fa4344.asciidoc 0000664 0000000 0000000 00000002226 14766462667 0026367 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-api-keys.asciidoc:134
[source, python]
----
resp = client.security.create_api_key(
name="my-api-key",
expiration="1d",
role_descriptors={
"role-a": {
"cluster": [
"all"
],
"indices": [
{
"names": [
"index-a*"
],
"privileges": [
"read"
]
}
]
},
"role-b": {
"cluster": [
"all"
],
"indices": [
{
"names": [
"index-b*"
],
"privileges": [
"all"
]
}
]
}
},
metadata={
"application": "my-application",
"environment": {
"level": 1,
"trusted": True,
"tags": [
"dev",
"staging"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4a72c68b96f44e80463084dfc0449d51.asciidoc 0000664 0000000 0000000 00000001046 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:287
[source, python]
----
resp = client.search(
index="my-index-000001",
runtime_mappings={
"day_of_week": {
"type": "keyword",
"script": {
"source": "emit(doc['@timestamp'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ENGLISH))"
}
}
},
aggs={
"day_of_week": {
"terms": {
"field": "day_of_week"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4a7510a9c0468303658383c00796dad2.asciidoc 0000664 0000000 0000000 00000000775 14766462667 0026244 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/ignore-malformed.asciidoc:70
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index.mapping.ignore_malformed": True
},
mappings={
"properties": {
"number_one": {
"type": "byte"
},
"number_two": {
"type": "integer",
"ignore_malformed": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4aa81a694266fb634904224d14cd9a87.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0026401 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:668
[source, python]
----
resp = client.search(
index="my_queries2",
query={
"percolate": {
"field": "query",
"document": {
"my_field": "wxyz"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4ae494d1e62231e832fc0436b04e2014.asciidoc 0000664 0000000 0000000 00000000735 14766462667 0026361 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/validate.asciidoc:122
[source, python]
----
resp = client.indices.validate_query(
index="my-index-000001",
query={
"bool": {
"must": {
"query_string": {
"query": "*:*"
}
},
"filter": {
"term": {
"user.id": "kimchy"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4af15c4f26ddefb9c350e7a246a66a15.asciidoc 0000664 0000000 0000000 00000001364 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:362
[source, python]
----
resp = client.search(
index="node",
filter_path="aggregations",
aggs={
"ip": {
"terms": {
"field": "ip",
"order": {
"tm.m": "desc"
}
},
"aggs": {
"tm": {
"top_metrics": {
"metrics": {
"field": "m"
},
"sort": {
"date": "desc"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4b1044259a6d777d87529eae25675005.asciidoc 0000664 0000000 0000000 00000000676 14766462667 0026263 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:450
[source, python]
----
resp = client.ingest.put_pipeline(
id="set-foo",
description="sets foo",
processors=[
{
"set": {
"field": "foo",
"value": "bar"
}
}
],
)
print(resp)
resp1 = client.update_by_query(
index="my-index-000001",
pipeline="set-foo",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/4b3a49710fafa35d6d41a8ec12434515.asciidoc 0000664 0000000 0000000 00000001277 14766462667 0026530 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:467
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"percolate": {
"field": "query",
"documents": [
{
"message": "bonsai tree"
},
{
"message": "new tree"
},
{
"message": "the office"
},
{
"message": "office tree"
}
]
}
},
highlight={
"fields": {
"message": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4b5110a21676cc0e26e050a4b4552235.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026253 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/get-synonyms-set.asciidoc:81
[source, python]
----
resp = client.synonyms.get_synonym(
id="my-synonyms-set",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4b91ad7c9b44e07db4a4e81390f19ad3.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/stream-inference.asciidoc:92
[source, python]
----
resp = client.inference.stream_inference(
task_type="completion",
inference_id="openai-completion",
input="What is Elastic?",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4ba86373e13e106de044f190343be328.asciidoc 0000664 0000000 0000000 00000001762 14766462667 0026373 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:365
[source, python]
----
resp = client.search(
aggs={
"countries": {
"terms": {
"field": "artist.country",
"order": [
{
"rock>playback_stats.avg": "desc"
},
{
"_count": "desc"
}
]
},
"aggs": {
"rock": {
"filter": {
"term": {
"genre": "rock"
}
},
"aggs": {
"playback_stats": {
"stats": {
"field": "play_count"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bb4a64cf04e3feb133b0221d29beaa9.asciidoc 0000664 0000000 0000000 00000000432 14766462667 0027006 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:127
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="my_snapshot_2099.05.06",
indices="my-index,logs-my_app-default",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bb7bcfebca682fb9c9e3e47bfd5ef6f.asciidoc 0000664 0000000 0000000 00000001630 14766462667 0027441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:821
[source, python]
----
resp = client.search(
size=0,
track_total_hits=False,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"user_name": {
"terms": {
"field": "user_name"
}
}
},
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d",
"order": "desc"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bba59cf745ac7b996bf90308bc26957.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pathhierarchy-tokenizer.asciidoc:349
[source, python]
----
resp = client.search(
index="file-path-test",
query={
"bool": {
"must": {
"match": {
"file_path": "16"
}
},
"filter": {
"term": {
"file_path.tree": "/User/alice"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bc4db44b8c74610b73f21a421099a13.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026431 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-tokens.asciidoc:194
[source, python]
----
resp = client.security.invalidate_token(
realm_name="saml1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bc744b0f33b322741a8caf6d8d7d765.asciidoc 0000664 0000000 0000000 00000000566 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/index_.asciidoc:594
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
op_type="create",
document={
"@timestamp": "2099-11-15T13:12:00",
"message": "GET /search HTTP/1.1 200 1070000",
"user": {
"id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bd42e31ac4a5cf237777f1a0e97aba8.asciidoc 0000664 0000000 0000000 00000000313 14766462667 0026746 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:286
[source, python]
----
resp = client.transform.start_transform(
transform_id="suspicious_client_ips",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4be07b34db282044c88d5021c7ea08ee.asciidoc 0000664 0000000 0000000 00000001466 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:17
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"my_vector": {
"type": "dense_vector",
"dims": 3
},
"my_text": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index",
id="1",
document={
"my_text": "text1",
"my_vector": [
0.5,
10,
6
]
},
)
print(resp1)
resp2 = client.index(
index="my-index",
id="2",
document={
"my_text": "text2",
"my_vector": [
-0.5,
10,
10
]
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/4be20da16d2b58216e8b307218c7bf3a.asciidoc 0000664 0000000 0000000 00000001230 14766462667 0026574 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:188
[source, python]
----
resp = client.indices.put_index_template(
name="my-data-stream-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
priority=500,
template={
"mappings": {
"properties": {
"host": {
"properties": {
"ip": {
"type": "ip",
"ignore_malformed": True
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bef98a2dac575a50ee0783c2269f1db.asciidoc 0000664 0000000 0000000 00000000676 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:498
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"text_embedding": {
"type": "dense_vector",
"dims": 384,
"index_options": {
"type": "flat"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bf6bb703a52267379ae2b1e1308cf8b.asciidoc 0000664 0000000 0000000 00000001044 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/script-query.asciidoc:156
[source, python]
----
resp = client.search(
query={
"bool": {
"filter": {
"script": {
"script": {
"source": "doc['num1'].value > params.param1",
"lang": "painless",
"params": {
"param1": 5
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4bfcb2861f1d572bd0d66acd66deab0b.asciidoc 0000664 0000000 0000000 00000000441 14766462667 0027161 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/update-datafeed.asciidoc:166
[source, python]
----
resp = client.ml.update_datafeed(
datafeed_id="datafeed-test-job",
query={
"term": {
"geo.src": "US"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c174e228b6b74497b73ef2be80de7ad.asciidoc 0000664 0000000 0000000 00000000264 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/get-trained-models.asciidoc:1467
[source, python]
----
resp = client.ml.get_trained_models()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c3db8987d7b2d3d3df78ff1e71e7ede.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0027146 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-query.asciidoc:22
[source, python]
----
resp = client.search(
query={
"match": {
"message": {
"query": "this is a test"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c5f0d7af287618062bb627b44ccb23e.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:197
[source, python]
----
resp = client.indices.forcemerge(
index="my-index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c712bd5637892a11f16b8975a0a98ed.asciidoc 0000664 0000000 0000000 00000000263 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/dataframeanalytics.asciidoc:137
[source, python]
----
resp = client.cat.ml_data_frame_analytics(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c777b8360ef6c7671ae2e3803c0b0f6.asciidoc 0000664 0000000 0000000 00000001734 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/tophits-aggregation.asciidoc:52
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"top_tags": {
"terms": {
"field": "type",
"size": 3
},
"aggs": {
"top_sales_hits": {
"top_hits": {
"sort": [
{
"date": {
"order": "desc"
}
}
],
"_source": {
"includes": [
"date",
"price"
]
},
"size": 1
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c77d12039fe2445c9251e33979071ac.asciidoc 0000664 0000000 0000000 00000000772 14766462667 0026333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/categorize-text-aggregation.asciidoc:282
[source, python]
----
resp = client.search(
index="log-messages",
filter_path="aggregations",
aggs={
"categories": {
"categorize_text": {
"field": "message",
"categorization_filters": [
"\\w+\\_\\d{3}"
],
"similarity_threshold": 11
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c803b088c1915a7b0634d5cafabe606.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0026602 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/ipprefix-aggregation.asciidoc:219
[source, python]
----
resp = client.search(
index="network-traffic",
size=0,
aggs={
"ipv4-subnets": {
"ip_prefix": {
"field": "ipv4",
"prefix_length": 24,
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c9350ed09b28f00e297ebe73c3b95a2.asciidoc 0000664 0000000 0000000 00000000714 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-elasticsearch.asciidoc:236
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="my-msmarco-minilm-model",
inference_config={
"service": "elasticsearch",
"service_settings": {
"num_allocations": 1,
"num_threads": 1,
"model_id": "msmarco-MiniLM-L12-cos-v5"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4c95d54b32df4dc49e9762b6c1ae2c05.asciidoc 0000664 0000000 0000000 00000001001 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/text.asciidoc:368
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"tag": {
"type": "text",
"fielddata": True,
"fielddata_frequency_filter": {
"min": 0.001,
"max": 0.1,
"min_segment_size": 500
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4ca15672fc5ab1d80a127d086b6d2837.asciidoc 0000664 0000000 0000000 00000000251 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/allocation-explain.asciidoc:457
[source, python]
----
resp = client.cluster.allocation_explain()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4ca5bc2c2b2f64d15b9c16370ae97a39.asciidoc 0000664 0000000 0000000 00000001042 14766462667 0026665 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geohashgrid-aggregation.asciidoc:212
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggregations={
"tiles-in-bounds": {
"geohash_grid": {
"field": "location",
"precision": 8,
"bounds": {
"top_left": "POINT (4.21875 53.4375)",
"bottom_right": "POINT (5.625 52.03125)"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4cb44556b8c699f43489b17b42ddd475.asciidoc 0000664 0000000 0000000 00000000757 14766462667 0026516 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-get.asciidoc:222
[source, python]
----
resp = client.mget(
docs=[
{
"_index": "test",
"_id": "1",
"stored_fields": [
"field1",
"field2"
]
},
{
"_index": "test",
"_id": "2",
"stored_fields": [
"field3",
"field4"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4cd40113e0fc90c37976f28d7e4a2327.asciidoc 0000664 0000000 0000000 00000002530 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/normalizer.asciidoc:18
[source, python]
----
resp = client.indices.create(
index="index",
settings={
"analysis": {
"normalizer": {
"my_normalizer": {
"type": "custom",
"char_filter": [],
"filter": [
"lowercase",
"asciifolding"
]
}
}
}
},
mappings={
"properties": {
"foo": {
"type": "keyword",
"normalizer": "my_normalizer"
}
}
},
)
print(resp)
resp1 = client.index(
index="index",
id="1",
document={
"foo": "BÀR"
},
)
print(resp1)
resp2 = client.index(
index="index",
id="2",
document={
"foo": "bar"
},
)
print(resp2)
resp3 = client.index(
index="index",
id="3",
document={
"foo": "baz"
},
)
print(resp3)
resp4 = client.indices.refresh(
index="index",
)
print(resp4)
resp5 = client.search(
index="index",
query={
"term": {
"foo": "BAR"
}
},
)
print(resp5)
resp6 = client.search(
index="index",
query={
"match": {
"foo": "BAR"
}
},
)
print(resp6)
----
python-elasticsearch-8.17.2/docs/examples/4cdbd53f08df4bf66e2a47c0f1fcb3f8.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/clearcache.asciidoc:136
[source, python]
----
resp = client.indices.clear_cache(
index="my-index-000001",
fields="foo,bar",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4cdcc3fde5cea165a3a7567962b9bd61.asciidoc 0000664 0000000 0000000 00000003141 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/put-synonyms-set.asciidoc:131
[source, python]
----
resp = client.synonyms.put_synonym(
id="my-synonyms-set",
synonyms_set=[
{
"id": "test-1",
"synonyms": "hello, hi"
}
],
)
print(resp)
resp1 = client.indices.create(
index="test-index",
settings={
"analysis": {
"filter": {
"synonyms_filter": {
"type": "synonym_graph",
"synonyms_set": "my-synonyms-set",
"updateable": True
}
},
"analyzer": {
"my_index_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase"
]
},
"my_search_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"synonyms_filter"
]
}
}
}
},
mappings={
"properties": {
"title": {
"type": "text",
"analyzer": "my_index_analyzer",
"search_analyzer": "my_search_analyzer"
}
}
},
)
print(resp1)
resp2 = client.synonyms.put_synonym(
id="my-synonyms-set",
synonyms_set=[
{
"id": "test-1",
"synonyms": "hello, hi, howdy"
}
],
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/4ce4563e207233c48ffe849728052dca.asciidoc 0000664 0000000 0000000 00000000255 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:412
[source, python]
----
resp = client.indices.rollover(
alias="logs-my_app-default",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4d21725453955582ff12b4a1104aa7b6.asciidoc 0000664 0000000 0000000 00000000524 14766462667 0026304 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/update-filter.asciidoc:50
[source, python]
----
resp = client.ml.update_filter(
filter_id="safe_domains",
description="Updated list of domains",
add_items=[
"*.myorg.com"
],
remove_items=[
"wikipedia.org"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4d2e6eb7fea407deeb7a859c267fda62.asciidoc 0000664 0000000 0000000 00000001466 14766462667 0027143 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/put-job.asciidoc:260
[source, python]
----
resp = client.rollup.put_job(
id="sensor",
index_pattern="sensor-*",
rollup_index="sensor_rollup",
cron="*/30 * * * * ?",
page_size=1000,
groups={
"date_histogram": {
"field": "timestamp",
"fixed_interval": "1h",
"delay": "7d"
},
"terms": {
"fields": [
"node"
]
}
},
metrics=[
{
"field": "temperature",
"metrics": [
"min",
"max",
"sum"
]
},
{
"field": "voltage",
"metrics": [
"avg"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4d46e2160784bdf7cce948e9f0d31fc8.asciidoc 0000664 0000000 0000000 00000001651 14766462667 0026725 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/word-delimiter-graph-tokenfilter.asciidoc:410
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "keyword",
"filter": [
"my_custom_word_delimiter_graph_filter"
]
}
},
"filter": {
"my_custom_word_delimiter_graph_filter": {
"type": "word_delimiter_graph",
"type_table": [
"- => ALPHA"
],
"split_on_case_change": False,
"split_on_numerics": False,
"stem_english_possessive": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4d7c0b52d3c0a084157428624c543c90.asciidoc 0000664 0000000 0000000 00000000225 14766462667 0026302 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/common/apis/get-ml-info.asciidoc:44
[source, python]
----
resp = client.ml.info()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4da0cb8693e9ceceee2ba3b558014bbf.asciidoc 0000664 0000000 0000000 00000001565 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-sharepoint-online.asciidoc:1088
[source, python]
----
resp = client.update_by_query(
index="INDEX_NAME",
conflicts="proceed",
query={
"bool": {
"filter": [
{
"match": {
"object_type": "drive_item"
}
},
{
"exists": {
"field": "file"
}
},
{
"range": {
"lastModifiedDateTime": {
"lte": "now-180d"
}
}
}
]
}
},
script={
"source": "ctx._source.body = ''",
"lang": "painless"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4dc151eebefd484a28aed1a175743364.asciidoc 0000664 0000000 0000000 00000001000 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:93
[source, python]
----
resp = client.ingest.put_pipeline(
id="openai_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "openai_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4de4bb55bbc0a76c75d256f245a3ee3f.asciidoc 0000664 0000000 0000000 00000000556 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/elastic-infer-service.asciidoc:100
[source, python]
----
resp = client.inference.put(
task_type="sparse_embedding",
inference_id="elser-model-eis",
inference_config={
"service": "elastic",
"service_settings": {
"model_name": "elser"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4ded8ad815ac0e83b1c21a6c18fd0763.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/ecommerce-tutorial.asciidoc:401
[source, python]
----
resp = client.transform.start_transform(
transform_id="ecommerce-customer-transform",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4e1f02928ef243bf07fd425754b7642b.asciidoc 0000664 0000000 0000000 00000000472 14766462667 0026466 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/add-nodes.asciidoc:109
[source, python]
----
resp = client.cluster.post_voting_config_exclusions(
node_names="node_name",
)
print(resp)
resp1 = client.cluster.post_voting_config_exclusions(
node_names="node_name",
timeout="1m",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/4e2317aa45e87922d07c8ddc67a82d32.asciidoc 0000664 0000000 0000000 00000001422 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pathhierarchy-tokenizer.asciidoc:100
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "path_hierarchy",
"delimiter": "-",
"replacement": "/",
"skip": 2
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="one-two-three-four-five",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/4e3414fc712b16311f9e433dd366f49d.asciidoc 0000664 0000000 0000000 00000000344 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/delete-inference.asciidoc:70
[source, python]
----
resp = client.inference.delete(
task_type="sparse_embedding",
inference_id="my-elser-model",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4e4608ae4ce93c27bd174a9ea078cab2.asciidoc 0000664 0000000 0000000 00000001726 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/semantic-search/hybrid-search.asciidoc:10
[source, python]
----
resp = client.search(
index="my-index",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"match": {
"my_text_field": "the query string"
}
}
}
},
{
"standard": {
"query": {
"sparse_vector": {
"field": "my_tokens",
"inference_id": "my-elser-endpoint",
"query": "the query string"
}
}
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4e50d9d25bfb07ac73e3a2be5d2fbbf7.asciidoc 0000664 0000000 0000000 00000001327 14766462667 0027173 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:229
[source, python]
----
resp = client.search(
size=10000,
query={
"match": {
"user.id": "elkbee"
}
},
pit={
"id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
"keep_alive": "1m"
},
sort=[
{
"@timestamp": {
"order": "asc",
"format": "strict_date_optional_time_nanos"
}
},
{
"_shard_doc": "desc"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4e5f7a97efdbf517f7a2ed6ef7ff469c.asciidoc 0000664 0000000 0000000 00000000535 14766462667 0027245 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:409
[source, python]
----
resp = client.render_search_template(
source="{ \"query\": { \"terms\": { \"tags\": {{#toJson}}tags{{/toJson}} }}}",
params={
"tags": [
"prod",
"es01"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4e6b78ac991ed2d5f9a2e7c89f4fc471.asciidoc 0000664 0000000 0000000 00000000547 14766462667 0027021 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/completion-suggest.asciidoc:121
[source, python]
----
resp = client.search(
index="music",
pretty=True,
suggest={
"song-suggest": {
"prefix": "nir",
"completion": {
"field": "suggest"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4e926063a9494b563387617b08c4f232.asciidoc 0000664 0000000 0000000 00000000375 14766462667 0026200 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/restore-from-snapshot.asciidoc:284
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="*",
verbose=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4e931cfac74e46e221cf4a9ab88a182d.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/field-caps.asciidoc:251
[source, python]
----
resp = client.field_caps(
fields="rating,title",
include_unmapped=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4ed946065faa92f9950f04e402676a97.asciidoc 0000664 0000000 0000000 00000000236 14766462667 0026424 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/info.asciidoc:206
[source, python]
----
resp = client.xpack.info(
human=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4edfb5934d14ad7655bd7e19a112b5c0.asciidoc 0000664 0000000 0000000 00000002637 14766462667 0026701 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:522
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"bool": {
"must": [
{
"term": {
"tags": "vegetarian"
}
},
{
"range": {
"rating": {
"gte": 4.5
}
}
}
],
"should": [
{
"term": {
"category": "Main Course"
}
},
{
"multi_match": {
"query": "curry spicy",
"fields": [
"title^2",
"description"
]
}
},
{
"range": {
"date": {
"gte": "now-1M/d"
}
}
}
],
"must_not": [
{
"term": {
"category.keyword": "Dessert"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4ee31fd4ea6d18f32ec28b7fa433441d.asciidoc 0000664 0000000 0000000 00000000751 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/put-app-privileges.asciidoc:94
[source, python]
----
resp = client.security.put_privileges(
privileges={
"myapp": {
"read": {
"actions": [
"data:read/*",
"action:login"
],
"metadata": {
"description": "Read access to myapp"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4eeded40f30949e359714a5bb6c88612.asciidoc 0000664 0000000 0000000 00000000562 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:31
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "elser-embeddings",
"pipeline": "elser_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f08d9e21d9f199acc77abfb83287878.asciidoc 0000664 0000000 0000000 00000000753 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search-application/apis/search-application-search.asciidoc:130
[source, python]
----
resp = client.search_application.search(
name="my-app",
params={
"query_string": "my first query",
"text_fields": [
{
"name": "title",
"boost": 5
},
{
"name": "description",
"boost": 1
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f140d8922efdf3420e41b1cb669a289.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026540 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/delete-component-template.asciidoc:31
[source, python]
----
resp = client.cluster.delete_component_template(
name="template_1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f1e1205154d280db21fbd2754ed5398.asciidoc 0000664 0000000 0000000 00000001042 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/aggregate-metric-double.asciidoc:114
[source, python]
----
resp = client.indices.create(
index="stats-index",
mappings={
"properties": {
"agg_metric": {
"type": "aggregate_metric_double",
"metrics": [
"min",
"max",
"sum",
"value_count"
],
"default_metric": "max"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f3366fc26e7ea4de446dfa5cdec9683.asciidoc 0000664 0000000 0000000 00000000677 14766462667 0027074 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/function-score-query.asciidoc:380
[source, python]
----
resp = client.search(
query={
"function_score": {
"gauss": {
"@timestamp": {
"origin": "2013-09-17",
"scale": "10d",
"offset": "5d",
"decay": 0.5
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f621ab694f62ddb89e0684a9e76c4d1.asciidoc 0000664 0000000 0000000 00000000633 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:586
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"fields": {
"comment": {
"fragment_size": 150,
"number_of_fragments": 3
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f666d710758578e2582850dac3ad144.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0026327 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-user-profile-data.asciidoc:141
[source, python]
----
resp = client.security.get_user_profile(
uid="u_P_0BMHgaOK3p7k-PFWUCbw9dQ-UFjt01oWJ_Dp2PmPc_0",
data="*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f6694ef147a73b1163bde3c13779d26.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/rejected-requests.asciidoc:68
[source, python]
----
resp = client.nodes.stats(
human=True,
filter_path="nodes.*.indexing_pressure",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f67b5f5c040f611bd2560a5d38ea6f5.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/rare-terms-aggregation.asciidoc:331
[source, python]
----
resp = client.search(
aggs={
"genres": {
"rare_terms": {
"field": "genre",
"missing": "N/A"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4f8a4ad49e2bca6784c88ede18a1a709.asciidoc 0000664 0000000 0000000 00000000232 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/delete-license.asciidoc:43
[source, python]
----
resp = client.license.delete()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4fa9ee04188cbf0b38cfc28f6a56527d.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-datafeed.asciidoc:80
[source, python]
----
resp = client.ml.get_datafeeds(
datafeed_id="datafeed-high_sum_total_sales",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4fb0629146ca78b85e823edd405497bb.asciidoc 0000664 0000000 0000000 00000000766 14766462667 0026562 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/put-dfanalytics.asciidoc:914
[source, python]
----
resp = client.ml.put_data_frame_analytics(
id="loan_classification",
source={
"index": "loan-applicants"
},
dest={
"index": "loan-applicants-classified"
},
analysis={
"classification": {
"dependent_variable": "label",
"training_percent": 75,
"num_top_classes": 2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4fcca1687d7b2cf08de526539fea5a76.asciidoc 0000664 0000000 0000000 00000002504 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/text-expansion-query.asciidoc:119
[source, python]
----
resp = client.search(
index="my-index",
query={
"bool": {
"should": [
{
"text_expansion": {
"ml.inference.title_expanded.predicted_value": {
"model_id": ".elser_model_2",
"model_text": "How is the weather in Jamaica?",
"boost": 1
}
}
},
{
"text_expansion": {
"ml.inference.description_expanded.predicted_value": {
"model_id": ".elser_model_2",
"model_text": "How is the weather in Jamaica?",
"boost": 1
}
}
},
{
"multi_match": {
"query": "How is the weather in Jamaica?",
"fields": [
"title",
"description"
],
"boost": 4
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/4ff2dcec03fe097075cf1d174a019a1f.asciidoc 0000664 0000000 0000000 00000001011 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:721
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match_phrase": {
"message": "number 1"
}
},
highlight={
"fields": {
"message": {
"type": "plain",
"fragment_size": 15,
"number_of_fragments": 3,
"fragmenter": "simple"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50096ee0ca53fe8a88450ebb2a50f285.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:143
[source, python]
----
resp = client.sql.query(
format="csv",
delimiter=";",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5024c524a7db0d6bb44c1820007cc5f4.asciidoc 0000664 0000000 0000000 00000001245 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/grok.asciidoc:39
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"description": "...",
"processors": [
{
"grok": {
"field": "message",
"patterns": [
"%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes:int} %{NUMBER:duration:double}"
]
}
}
]
},
docs=[
{
"_source": {
"message": "55.3.244.1 GET /index.html 15824 0.043"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50522d3d5b3d055f712ad737e3d1707a.asciidoc 0000664 0000000 0000000 00000001626 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/token-count.asciidoc:14
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"name": {
"type": "text",
"fields": {
"length": {
"type": "token_count",
"analyzer": "standard"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"name": "John Smith"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"name": "Rachel Alice Williams"
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"term": {
"name.length": 3
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/505a6c21a4cb608d3662fab1a35eb6df.asciidoc 0000664 0000000 0000000 00000002102 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/doc-count-field.asciidoc:54
[source, python]
----
resp = client.index(
index="my_index",
id="1",
document={
"my_text": "histogram_1",
"my_histogram": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
3,
7,
23,
12,
6
]
},
"_doc_count": 45
},
)
print(resp)
resp1 = client.index(
index="my_index",
id="2",
document={
"my_text": "histogram_2",
"my_histogram": {
"values": [
0.1,
0.25,
0.35,
0.4,
0.45,
0.5
],
"counts": [
8,
17,
8,
7,
6,
2
]
},
"_doc_count": 62
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/50764f4ea88079156b0aff2835bcdc45.asciidoc 0000664 0000000 0000000 00000000375 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:221
[source, python]
----
resp = client.cluster.state(
metric="metadata",
pretty=True,
filter_path="metadata.stored_scripts",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5093bfd281dbe41bd0dba8ff979e6e47.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0027061 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/apis/get-stored-script-api.asciidoc:30
[source, python]
----
resp = client.get_script(
id="my-stored-script",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50a9623c153cabe64101efb633e10e6c.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/delete-autoscaling-policy.asciidoc:37
[source, python]
----
resp = client.autoscaling.delete_autoscaling_policy(
name="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50b5c0332949d2154c72b629b5fa6222.asciidoc 0000664 0000000 0000000 00000000574 14766462667 0026313 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:345
[source, python]
----
resp = client.index(
index="my-index-000001",
refresh="wait_for",
document={
"user_id": 12345
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
refresh="wait_for",
document={
"user_id": 12346
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/50c2b06ecddb5a4aebd8b78e38af5f1f.asciidoc 0000664 0000000 0000000 00000002617 14766462667 0027261 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-a-data-stream.asciidoc:55
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my-lifecycle-policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_size": "50gb"
}
}
},
"warm": {
"min_age": "30d",
"actions": {
"shrink": {
"number_of_shards": 1
},
"forcemerge": {
"max_num_segments": 1
}
}
},
"cold": {
"min_age": "60d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"frozen": {
"min_age": "90d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"delete": {
"min_age": "735d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50c2cea2adbe9523458c2686ab11df54.asciidoc 0000664 0000000 0000000 00000001340 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/delimited-payload-tokenfilter.asciidoc:206
[source, python]
----
resp = client.indices.create(
index="text_payloads",
mappings={
"properties": {
"text": {
"type": "text",
"term_vector": "with_positions_payloads",
"analyzer": "payload_delimiter"
}
}
},
settings={
"analysis": {
"analyzer": {
"payload_delimiter": {
"tokenizer": "whitespace",
"filter": [
"delimited_payload"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50d5c5b7e8ed9a95b8d9a25a32a77425.asciidoc 0000664 0000000 0000000 00000000432 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/unique-tokenfilter.asciidoc:26
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"unique"
],
text="the quick fox jumps the lazy fox",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50d9c0508ddb0fc5ba5a893eec219dd8.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/synthetic-source.asciidoc:129
[source, python]
----
resp = client.index(
index="idx",
id="1",
document={
"foo.bar.baz": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50dc35d3d8705bd62aed20a15209476c.asciidoc 0000664 0000000 0000000 00000001035 14766462667 0026521 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:364
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping9",
rules={
"field": {
"realm.name": "cloud-saml"
}
},
role_templates=[
{
"template": {
"source": "saml_user"
}
},
{
"template": {
"source": "_user_{{username}}"
}
}
],
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/50f922e9f002d8ac570953be59414b7b.asciidoc 0000664 0000000 0000000 00000000567 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/combined-fields-query.asciidoc:156
[source, python]
----
resp = client.search(
query={
"combined_fields": {
"query": "database systems",
"fields": [
"title",
"abstract"
],
"operator": "and"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/511e5bb8ab881171b7e8629095e30b85.asciidoc 0000664 0000000 0000000 00000000261 14766462667 0026404 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-dsl.asciidoc:400
[source, python]
----
resp = client.search(
index="datastream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/515e1104d136082e826d1b32af011759.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0026216 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/nested-aggregation.asciidoc:38
[source, python]
----
resp = client.index(
index="products",
id="0",
refresh=True,
document={
"name": "LED TV",
"resellers": [
{
"reseller": "companyA",
"price": 350
},
{
"reseller": "companyB",
"price": 500
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5174c3c731fc1703e5b43ae2bae7a80e.asciidoc 0000664 0000000 0000000 00000000447 14766462667 0026665 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/apis/clear-sql-cursor-api.asciidoc:29
[source, python]
----
resp = client.sql.clear_cursor(
cursor="sDXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAAEWYUpOYklQMHhRUEtld3RsNnFtYU1hQQ==:BAFmBGRhdGUBZgVsaWtlcwFzB21lc3NhZ2UBZgR1c2Vy9f///w8=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/518fcf1dc1edd7dba0864accf71b49f4.asciidoc 0000664 0000000 0000000 00000000455 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-shard-routing.asciidoc:48
[source, python]
----
resp = client.search(
index="my-index-000001",
preference="_local",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5195a88194f7a139c635a84398d76205.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026210 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/restore-snapshot-api.asciidoc:60
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="my_snapshot",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/519e46350316a33162740e5d7968aa2c.asciidoc 0000664 0000000 0000000 00000000751 14766462667 0026240 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:1103
[source, python]
----
resp = client.search(
index="image-index",
knn={
"field": "image-vector",
"query_vector": [
-5,
9,
-12
],
"k": 10,
"num_candidates": 100,
"rescore_vector": {
"oversample": 2
}
},
fields=[
"title",
"file-type"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/51b40610ae05730b4c6afd25647d7ae0.asciidoc 0000664 0000000 0000000 00000001333 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:489
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"date": "2015-10-01T05:30:00Z"
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"date": "2015-10-01T06:30:00Z"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
size="0",
aggs={
"by_day": {
"date_histogram": {
"field": "date",
"calendar_interval": "day",
"offset": "+6h"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/51b44224feee6e2e5974824334474c77.asciidoc 0000664 0000000 0000000 00000000610 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-s3.asciidoc:371
[source, python]
----
resp = client.snapshot.create_repository(
name="my_s3_repository",
repository={
"type": "s3",
"settings": {
"client": "my-client",
"bucket": "my-bucket",
"endpoint": "my.s3.endpoint"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/51f1a0930362594b231a5bcc17673768.asciidoc 0000664 0000000 0000000 00000001013 14766462667 0026224 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/modify-data-streams-api.asciidoc:17
[source, python]
----
resp = client.indices.modify_data_stream(
actions=[
{
"remove_backing_index": {
"data_stream": "my-logs",
"index": ".ds-my-logs-2099.01.01-000001"
}
},
{
"add_backing_index": {
"data_stream": "my-logs",
"index": "index-to-add"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/51f6cb682424e110f289af79c106f4c7.asciidoc 0000664 0000000 0000000 00000000420 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/troubleshooting-shards-capacity.asciidoc:401
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.max_shards_per_node.frozen": 3200
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5275842787967b6db876025f4a1c6942.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026213 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters.asciidoc:128
[source, python]
----
resp = client.search(
suggest={
"text": "tring out Elasticsearch",
"my-suggest-1": {
"term": {
"field": "message"
}
},
"my-suggest-2": {
"term": {
"field": "user"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5276a831513623e43ed567eb52b6dba9.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-shard-routing.asciidoc:109
[source, python]
----
resp = client.index(
index="my-index-000001",
routing="my-routing-value",
document={
"@timestamp": "2099-11-15T13:12:00",
"message": "GET /search HTTP/1.1 200 1070000",
"user": {
"id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/528e5f1c345c3769248cc6889e8cf552.asciidoc 0000664 0000000 0000000 00000000456 14766462667 0026444 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/similarity.asciidoc:47
[source, python]
----
resp = client.indices.put_mapping(
index="index",
properties={
"title": {
"type": "text",
"similarity": "my_similarity"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/529671ffaf7cc75fe83a81d729788be4.asciidoc 0000664 0000000 0000000 00000001242 14766462667 0026660 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-known-issues.asciidoc:124
[source, python]
----
resp = client.update(
index=".elastic-connectors",
id="connector_id",
doc={
"configuration": {
"field_a": {
"type": "str",
"value": ""
},
"field_b": {
"type": "bool",
"value": False
},
"field_c": {
"type": "int",
"value": 1
},
"field_d": {
"type": "list",
"value": "a,b"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/529b975b7cedaac58dce9821956adc37.asciidoc 0000664 0000000 0000000 00000004327 14766462667 0027011 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:390
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "MultiPolygon",
"coordinates": [
[
[
[
102,
2
],
[
103,
2
],
[
103,
3
],
[
102,
3
],
[
102,
2
]
]
],
[
[
[
100,
0
],
[
101,
0
],
[
101,
1
],
[
100,
1
],
[
100,
0
]
],
[
[
100.2,
0.2
],
[
100.8,
0.2
],
[
100.8,
0.8
],
[
100.2,
0.8
],
[
100.2,
0.2
]
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52a2d119addb15366a935115518335fd.asciidoc 0000664 0000000 0000000 00000000544 14766462667 0026367 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shrink-index.asciidoc:52
[source, python]
----
resp = client.indices.put_settings(
index="my_source_index",
settings={
"settings": {
"index.number_of_replicas": 0,
"index.routing.allocation.require._name": "shrink_node_name"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52b71aa4ae6563abae78cd20ff06d1e9.asciidoc 0000664 0000000 0000000 00000000363 14766462667 0027030 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/hotspotting.asciidoc:148
[source, python]
----
resp = client.nodes.stats(
human=True,
filter_path="nodes.*.name,nodes.*.indices.indexing",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52bc577a0d0cd42b46f33e0ef5124df8.asciidoc 0000664 0000000 0000000 00000000726 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:644
[source, python]
----
resp = client.put_script(
id="my-search-template",
script={
"lang": "mustache",
"source": {
"query": {
"match": {
"message": "{{query_string}}"
}
},
"from": "{{from}}",
"size": "{{size}}"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52be795b68e6ef3f396f35fea52d0481.asciidoc 0000664 0000000 0000000 00000000452 14766462667 0026646 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/detect-threats-with-eql.asciidoc:51
[source, python]
----
resp = client.indices.put_index_template(
name="my-data-stream-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
priority=500,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52c2b4c180388f5ae044588ba70b70f0.asciidoc 0000664 0000000 0000000 00000001210 14766462667 0026441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/knn-query.asciidoc:178
[source, python]
----
resp = client.search(
index="my-image-index",
size=10,
query={
"bool": {
"must": {
"knn": {
"field": "image-vector",
"query_vector": [
-5,
9,
-12
],
"k": 3
}
},
"filter": {
"term": {
"file-type": "png"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52c7e4172a446c394210a07c464c57d2.asciidoc 0000664 0000000 0000000 00000000356 14766462667 0026312 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:606
[source, python]
----
resp = client.delete_by_query_rethrottle(
task_id="r1A2WoRbTwKZ516z6NEs5A:36619",
requests_per_second="-1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52cdb5526ce69d0223d1dd198308bfea.asciidoc 0000664 0000000 0000000 00000001113 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/dynamic.asciidoc:53
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic": False,
"properties": {
"user": {
"properties": {
"name": {
"type": "text"
},
"social_networks": {
"dynamic": True,
"properties": {}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52f1c1689ab35353858cdeaab7597546.asciidoc 0000664 0000000 0000000 00000000730 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/common-log-format-example.asciidoc:174
[source, python]
----
resp = client.index(
index="my-data-stream",
pipeline="my-pipeline",
document={
"message": "89.160.20.128 - - [05/May/2099:16:21:15 +0000] \"GET /favicon.ico HTTP/1.1\" 200 3638 \"-\" \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36\""
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52f4c5eb08d39f98e2e2f5527ece9731.asciidoc 0000664 0000000 0000000 00000001104 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-alibabacloud-ai-search.asciidoc:210
[source, python]
----
resp = client.inference.put(
task_type="sparse_embedding",
inference_id="alibabacloud_ai_search_sparse",
inference_config={
"service": "alibabacloud-ai-search",
"service_settings": {
"api_key": "",
"service_id": "ops-text-sparse-embedding-001",
"host": "default-j01.platform-cn-shanghai.opensearch.aliyuncs.com",
"workspace": "default"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/52fd112e970882c4d7cc4b0cca8e2c6f.asciidoc 0000664 0000000 0000000 00000001002 14766462667 0026747 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/numeric.asciidoc:23
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"number_of_bytes": {
"type": "integer"
},
"time_in_seconds": {
"type": "float"
},
"price": {
"type": "scaled_float",
"scaling_factor": 100
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5302f4f2bcc0f400ff71c791e6f68d7b.asciidoc 0000664 0000000 0000000 00000000627 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keyword-marker-tokenfilter.asciidoc:95
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "keyword_marker",
"keywords": [
"jumping"
]
},
"stemmer"
],
text="fox running and jumping",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5305bc07c1bf90bab3e8db1de3e31b26.asciidoc 0000664 0000000 0000000 00000000463 14766462667 0027013 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shutdown/apis/shutdown-put.asciidoc:102
[source, python]
----
resp = client.shutdown.put_node(
node_id="USpTGYaBSIKbgSUJR2Z9lg",
type="restart",
reason="Demonstrating how the node shutdown API works",
allocation_delay="20m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/532ddf9afdcd0b1c9c0bb331e74d8df3.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0027166 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:158
[source, python]
----
resp = client.indices.create(
index="index_long",
mappings={
"properties": {
"field": {
"type": "long"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/532f371934b61fb4992d37bedcc085de.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shutdown/apis/shutdown-get.asciidoc:55
[source, python]
----
resp = client.shutdown.put_node(
node_id="USpTGYaBSIKbgSUJR2Z9lg",
type="restart",
reason="Demonstrating how the node shutdown API works",
allocation_delay="10m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5330191ec9f11281ebf6867bf11c58ae.asciidoc 0000664 0000000 0000000 00000000464 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:394
[source, python]
----
resp = client.delete_by_query(
index="my-index-000001",
routing="1",
query={
"range": {
"age": {
"gte": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5332c4cca5fbb45cc700dcd34f37bc38.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0027022 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:557
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"english": "Some English text",
"count": 5
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/537bce129338d9227bccb6a0283dab45.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0026603 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/data-stream-reindex.asciidoc:232
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"migrate.data_stream_reindex_max_request_per_second": 10000
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/53aa8b21e2b1c4d48960343711296704.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026222 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/regexp-syntax.asciidoc:60
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"regexp": {
"my_field.keyword": "a\\\\.*"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/53b908c3432118c5a6e460f74d32006b.asciidoc 0000664 0000000 0000000 00000000516 14766462667 0026305 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:11
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "this is a test",
"fields": [
"subject",
"message"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/53bb7f0e3429861aadb8dd3d588085cd.asciidoc 0000664 0000000 0000000 00000000446 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:272
[source, python]
----
resp = client.search(
index="my-data-stream",
seq_no_primary_term=True,
query={
"match": {
"user.id": "yWIumJd7"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/53c6256295111524d5ff2885bdcb99a9.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/get-transform-stats.asciidoc:328
[source, python]
----
resp = client.transform.get_transform(
transform_id="_stats",
from_="5",
size="10",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/53d9d2ec9cb8d211772d764e76fe6890.asciidoc 0000664 0000000 0000000 00000000567 14766462667 0026601 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/inference.asciidoc:784
[source, python]
----
resp = client.ingest.simulate(
id="query_helper_pipeline",
docs=[
{
"_source": {
"content": "artificial intelligence in medicine articles published in the last 12 months"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/53e4ac5a4009fd21024f4b31e54aa83f.asciidoc 0000664 0000000 0000000 00000000426 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/oidc-guide.asciidoc:619
[source, python]
----
resp = client.security.put_user(
username="facilitator",
password="",
roles=[
"facilitator-role"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/54059961f05904368ced52c894a50e23.asciidoc 0000664 0000000 0000000 00000001430 14766462667 0026250 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:214
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_moving_max": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.max(values)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/540aefc39303c925a4efff71ebe2f002.asciidoc 0000664 0000000 0000000 00000000517 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significantterms-aggregation.asciidoc:560
[source, python]
----
resp = client.search(
aggs={
"tags": {
"significant_terms": {
"field": "tag",
"min_doc_count": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5433bb83628cc91d81fbe53c533b2a09.asciidoc 0000664 0000000 0000000 00000000765 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/asciifolding-tokenfilter.asciidoc:83
[source, python]
----
resp = client.indices.create(
index="asciifold_example",
settings={
"analysis": {
"analyzer": {
"standard_asciifolding": {
"tokenizer": "standard",
"filter": [
"asciifolding"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5457c94f0039c6b95c7f9f305d0c6b58.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0026500 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-stats.asciidoc:2538
[source, python]
----
resp = client.nodes.stats(
metric="indices",
)
print(resp)
resp1 = client.nodes.stats(
metric="os,process",
)
print(resp1)
resp2 = client.nodes.stats(
node_id="10.0.0.1",
metric="process",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/548a9b6f447bb820380c1c23e57c18c3.asciidoc 0000664 0000000 0000000 00000001000 14766462667 0026446 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:15
[source, python]
----
resp = client.ingest.put_pipeline(
id="cohere_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "cohere_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/548b85bd9e6e7d33e36133953869449b.asciidoc 0000664 0000000 0000000 00000000370 14766462667 0026357 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:338
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"xpack.monitoring.collection.enabled": False
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/54a215d242ab65123b09e9dfb71bcbbf.asciidoc 0000664 0000000 0000000 00000000547 14766462667 0026743 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:237
[source, python]
----
resp = client.search(
aggs={
"genres": {
"terms": {
"field": "genre",
"order": {
"_key": "asc"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/54a47b5d07e7bfbea75c77f35eaae18d.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0027130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-known-issues.asciidoc:77
[source, python]
----
resp = client.indices.put_mapping(
index=".elastic-connectors-sync-jobs-v1",
properties={
"job_type": {
"type": "keyword"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/54c12d5099d7b715c15f5bbf65b386a1.asciidoc 0000664 0000000 0000000 00000000774 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:310
[source, python]
----
resp = client.indices.create(
index="alibabacloud-ai-search-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 1024,
"element_type": "float"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/55085e6a2891040b6ac696561d0787c8.asciidoc 0000664 0000000 0000000 00000001371 14766462667 0026256 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/passthrough.asciidoc:93
[source, python]
----
resp = client.indices.create(
index="my-index-000002",
mappings={
"properties": {
"attributes": {
"type": "passthrough",
"priority": 10,
"properties": {
"id": {
"type": "keyword"
}
}
},
"resource.attributes": {
"type": "passthrough",
"priority": 20,
"properties": {
"id": {
"type": "keyword"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/55096381f811388fafd8e244dd2402c8.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/rollover-index.asciidoc:451
[source, python]
----
resp = client.indices.rollover(
alias="my-alias",
settings={
"index.number_of_shards": 2
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/551467688d8c701315d0a371850a4056.asciidoc 0000664 0000000 0000000 00000000600 14766462667 0026072 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:54
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "hugging-face-embeddings",
"pipeline": "hugging_face_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/551799fef2f86e393db83a967e4a30d1.asciidoc 0000664 0000000 0000000 00000001660 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/aggregate-metric-double.asciidoc:264
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"agg_metric": {
"type": "aggregate_metric_double",
"metrics": [
"min",
"max",
"sum",
"value_count"
],
"default_metric": "max"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"agg_metric": {
"min": -302.5,
"max": 702.3,
"sum": 200,
"value_count": 25
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/553904c175a76d5ba83bc5d46fff7373.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/saml-guide.asciidoc:1031
[source, python]
----
resp = client.security.saml_logout(
token="46ToAxZVaXVVZTVKOVF5YU04ZFJVUDVSZlV3",
refresh_token="mJdXLtmvTUSpoLwMvdBt_w",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/553d79817bb1333970e99507c37a159a.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026257 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/similarity.asciidoc:522
[source, python]
----
resp = client.indices.create(
index="index",
settings={
"index": {
"similarity": {
"default": {
"type": "boolean"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5553cf7a02c22f616cd994747f2dd5a5.asciidoc 0000664 0000000 0000000 00000001015 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/nested.asciidoc:60
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"bool": {
"must": [
{
"match": {
"user.first": "Alice"
}
},
{
"match": {
"user.last": "Smith"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5566cff431570f522e1fc5475b2ed875.asciidoc 0000664 0000000 0000000 00000003527 14766462667 0026503 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/phrase-suggest.asciidoc:22
[source, python]
----
resp = client.indices.create(
index="test",
settings={
"index": {
"number_of_shards": 1,
"analysis": {
"analyzer": {
"trigram": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"shingle"
]
},
"reverse": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"reverse"
]
}
},
"filter": {
"shingle": {
"type": "shingle",
"min_shingle_size": 2,
"max_shingle_size": 3
}
}
}
}
},
mappings={
"properties": {
"title": {
"type": "text",
"fields": {
"trigram": {
"type": "text",
"analyzer": "trigram"
},
"reverse": {
"type": "text",
"analyzer": "reverse"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="test",
refresh=True,
document={
"title": "noble warriors"
},
)
print(resp1)
resp2 = client.index(
index="test",
refresh=True,
document={
"title": "nobel prize"
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/55838e0b21c4f4da2dc8aaec045a6d5f.asciidoc 0000664 0000000 0000000 00000001203 14766462667 0027022 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-aggregation.asciidoc:185
[source, python]
----
resp = client.search(
index="latency",
size=0,
runtime_mappings={
"load_time.seconds": {
"type": "long",
"script": {
"source": "emit(doc['load_time'].value / params.timeUnit)",
"params": {
"timeUnit": 1000
}
}
}
},
aggs={
"load_time_outlier": {
"percentiles": {
"field": "load_time.seconds"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/558b3f9b987771e9f9f35e51a0d7e062.asciidoc 0000664 0000000 0000000 00000001376 14766462667 0026524 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/profile.asciidoc:1160
[source, python]
----
resp = client.indices.create(
index="my-dfs-index",
settings={
"number_of_shards": 2,
"number_of_replicas": 1
},
mappings={
"properties": {
"my-keyword": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="my-dfs-index",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"my-keyword": "a"
},
{
"index": {
"_id": "2"
}
},
{
"my-keyword": "b"
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/5597eeb8f43b5d47bd07f27122c24194.asciidoc 0000664 0000000 0000000 00000000736 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:1073
[source, python]
----
resp = client.async_search.submit(
index="my-index-000001,cluster_one:my-index-000001,cluster_two:my-index-000001",
ccs_minimize_roundtrips=False,
query={
"match": {
"user.id": "kimchy"
}
},
source=[
"user.id",
"message",
"http.response.status_code"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/55d349ccb0efd5e1c06c6dd383a593cf.asciidoc 0000664 0000000 0000000 00000000666 14766462667 0027052 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:1030
[source, python]
----
resp = client.async_search.submit(
index="my-index-000001,cluster*:my-index-*,cluster_three:-my-index-000001",
query={
"match": {
"user.id": "kimchy"
}
},
source=[
"user.id",
"message",
"http.response.status_code"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/55e8ddf643726dec51531ada0bec7143.asciidoc 0000664 0000000 0000000 00000000223 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// slm/apis/slm-stats.asciidoc:32
[source, python]
----
resp = client.slm.get_stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/55f0fec6342f677af74de2124b801aa2.asciidoc 0000664 0000000 0000000 00000000611 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:229
[source, python]
----
resp = client.search(
index="byte-image-index",
knn={
"field": "byte-image-vector",
"query_vector": [
-5,
9
],
"k": 10,
"num_candidates": 100
},
fields=[
"title"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/55f4a15b84b724b9fbf2efd29a4da120.asciidoc 0000664 0000000 0000000 00000000247 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/authenticate.asciidoc:41
[source, python]
----
resp = client.security.authenticate()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5619103306878d58a058bce87c5bd82b.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0026412 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/recovery.asciidoc:342
[source, python]
----
resp = client.indices.recovery(
human=True,
detailed=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5632c3b947062d3a5fc0e4f3413b3308.asciidoc 0000664 0000000 0000000 00000000521 14766462667 0026361 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/register-fs-repo.asciidoc:17
[source, python]
----
resp = client.snapshot.create_repository(
name="my_fs_backup",
repository={
"type": "fs",
"settings": {
"location": "/mount/backups/my_fs_backup_location"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/563dfbf421422c837ee6929ae2ede876.asciidoc 0000664 0000000 0000000 00000000305 14766462667 0026640 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/migrate-to-data-stream.asciidoc:59
[source, python]
----
resp = client.indices.migrate_to_data_stream(
name="my-logs",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/565386eee0951865a684e41fab53b40c.asciidoc 0000664 0000000 0000000 00000001024 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-elser.asciidoc:128
[source, python]
----
resp = client.inference.put(
task_type="sparse_embedding",
inference_id="my-elser-model",
inference_config={
"service": "elser",
"service_settings": {
"adaptive_allocations": {
"enabled": True,
"min_number_of_allocations": 3,
"max_number_of_allocations": 10
},
"num_threads": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56563f91d9f0b74e9e4aae9cb221845b.asciidoc 0000664 0000000 0000000 00000001756 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-cross-cluster-api-key.asciidoc:111
[source, python]
----
resp = client.perform_request(
"POST",
"/_security/cross_cluster/api_key",
headers={"Content-Type": "application/json"},
body={
"name": "my-cross-cluster-api-key",
"expiration": "1d",
"access": {
"search": [
{
"names": [
"logs*"
]
}
],
"replication": [
{
"names": [
"archive*"
]
}
]
},
"metadata": {
"description": "phase one",
"environment": {
"level": 1,
"trusted": True,
"tags": [
"dev",
"staging"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/565908b03edff1d6e6e7cdfb92177faf.asciidoc 0000664 0000000 0000000 00000001000 14766462667 0027051 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/stats-aggregation.asciidoc:53
[source, python]
----
resp = client.search(
index="exams",
size=0,
runtime_mappings={
"grade.weighted": {
"type": "double",
"script": "\n emit(doc['grade'].value * doc['weight'].value)\n "
}
},
aggs={
"grades_stats": {
"stats": {
"field": "grade.weighted"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/568979150ce18739f8d3ea859355aaa3.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026431 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-users.asciidoc:92
[source, python]
----
resp = client.security.get_user(
username="jacknich",
with_profile_uid=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/569f10fee671632017c722fd983009d4.asciidoc 0000664 0000000 0000000 00000002045 14766462667 0026331 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:548
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"shop": {
"terms": {
"field": "shop"
}
}
},
{
"product": {
"terms": {
"field": "product"
}
}
},
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56a1aa4f7fa62f2289e20607e3039bf3.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:19
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"email": {
"type": "keyword"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56a903530990313b753b1be33578997a.asciidoc 0000664 0000000 0000000 00000001615 14766462667 0026172 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:448
[source, python]
----
resp = client.search(
query={
"dis_max": {
"queries": [
{
"multi_match": {
"query": "Will Smith",
"type": "cross_fields",
"fields": [
"first",
"last"
],
"minimum_should_match": "50%"
}
},
{
"multi_match": {
"query": "Will Smith",
"type": "cross_fields",
"fields": [
"*.edge"
]
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56b6b50b174a935d368301ebd717231d.asciidoc 0000664 0000000 0000000 00000000267 14766462667 0026373 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/stats.asciidoc:125
[source, python]
----
resp = client.watcher.stats(
metric="current_watches",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56da252798b8e7b006738428aa1a7f4c.asciidoc 0000664 0000000 0000000 00000001203 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:373
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"my_range": {
"type": "long_range"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"my_range": {
"gt": 200,
"lt": 300
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/56da9c55774f4c2e8eadde0579bdc60c.asciidoc 0000664 0000000 0000000 00000001071 14766462667 0027054 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:463
[source, python]
----
resp = client.search(
index="test*",
filter_path="aggregations",
aggs={
"tm": {
"top_metrics": {
"metrics": {
"field": "m"
},
"sort": {
"s": {
"order": "asc",
"numeric_type": "double"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56db76c987106a870357854d3068ad98.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026272 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/list-query-rulesets.asciidoc:164
[source, python]
----
resp = client.query_rules.list_rulesets()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56e90a63f94eeb882fe8acbcd74229c2.asciidoc 0000664 0000000 0000000 00000001430 14766462667 0026776 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:256
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_moving_min": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.min(values)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56f3a6bec7be5a90fb43144c331a5b5a.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026743 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:260
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
flat_settings=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/56fa6c9e08258157d445e2f92274962b.asciidoc 0000664 0000000 0000000 00000000636 14766462667 0026352 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/shingle-tokenfilter.asciidoc:220
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "shingle",
"min_shingle_size": 2,
"max_shingle_size": 3,
"output_unigrams": False
}
],
text="quick brown fox jumps",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/571314a948e49f1f9614d36fcf79392a.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0026425 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:877
[source, python]
----
resp = client.async_search.get(
id="FjktRGJ1Y2w1U0phLTRhZnVyeUZ2MVEbWEJyeVBPQldTV3FGZGdIeUVabXBldzo5NzA4",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/578808065fee8691355b8f25c35782cd.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0026355 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/profile.asciidoc:1023
[source, python]
----
resp = client.search(
index="my-index-000001",
filter_path="profile.shards.fetch",
profile=True,
query={
"term": {
"user.id": {
"value": "elkbee"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5797df4b8e71d821a1488cbb63481104.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0026410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/troubleshooting-shards-capacity.asciidoc:418
[source, python]
----
resp = client.health_report(
feature="shards_capacity",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/57a3e8d2ca64e37e90d658c4cd935399.asciidoc 0000664 0000000 0000000 00000001170 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/distance-feature-query.asciidoc:127
[source, python]
----
resp = client.search(
index="items",
query={
"bool": {
"must": {
"match": {
"name": "chocolate"
}
},
"should": {
"distance_feature": {
"field": "location",
"pivot": "1000m",
"origin": [
-71.3,
41.15
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/57c690f8fa95bacf4b250803be7467e4.asciidoc 0000664 0000000 0000000 00000000365 14766462667 0026640 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:427
[source, python]
----
resp = client.index(
index="example",
document={
"location": "BBOX (1000.0, 1002.0, 2000.0, 1000.0)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/57dc15e5ad663c342fd5c1d86fcd1b29.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/oidc-prepare-authentication-api.asciidoc:106
[source, python]
----
resp = client.security.oidc_prepare_authentication(
realm="oidc1",
state="lGYK0EcSLjqH6pkT5EVZjC6eIW5YCGgywj2sxROO",
nonce="zOBXLJGUooRrbLbQk5YCcyC8AXw3iloynvluYhZ5",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/57e0bbab98f17d5b564d1ea146a55fe4.asciidoc 0000664 0000000 0000000 00000001465 14766462667 0026766 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template.asciidoc:227
[source, python]
----
resp = client.indices.put_index_template(
name="template_1",
index_patterns=[
"temp*"
],
priority=0,
template={
"settings": {
"number_of_shards": 1,
"number_of_replicas": 0
},
"mappings": {
"_source": {
"enabled": False
}
}
},
)
print(resp)
resp1 = client.indices.put_index_template(
name="template_2",
index_patterns=[
"template*"
],
priority=1,
template={
"settings": {
"number_of_shards": 2
},
"mappings": {
"_source": {
"enabled": True
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/582c4b05401dbc190b19411282d85310.asciidoc 0000664 0000000 0000000 00000000617 14766462667 0026213 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:380
[source, python]
----
resp = client.update(
index="my-index-000001",
id="1",
script={
"source": "if (ctx._source.tags.contains(params['tag'])) { ctx.op = 'delete' } else { ctx.op = 'none' }",
"lang": "painless",
"params": {
"tag": "green"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/582da02c09e0597b4396c87e33571e7b.asciidoc 0000664 0000000 0000000 00000000451 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:311
[source, python]
----
resp = client.sql.query(
format="json",
cursor="sDXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAAEWYUpOYklQMHhRUEtld3RsNnFtYU1hQQ==:BAFmBGRhdGUBZgVsaWtlcwFzB21lc3NhZ2UBZgR1c2Vy9f///w8=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5836b09198feb1269ed12839b416123d.asciidoc 0000664 0000000 0000000 00000000475 14766462667 0026336 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-jinaai.asciidoc:218
[source, python]
----
resp = client.search(
index="jinaai-index",
query={
"semantic": {
"field": "content",
"query": "who inspired taking care of the sea?"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5837d5f50665ac0a26181d3aaeb3f204.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/start-trained-model-deployment.asciidoc:214
[source, python]
----
resp = client.ml.start_trained_model_deployment(
model_id="my_model",
deployment_id="my_model_for_search",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/584f502cf840134f2db5f39e2483ced1.asciidoc 0000664 0000000 0000000 00000002167 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1454
[source, python]
----
resp = client.indices.create(
index="portuguese_example",
settings={
"analysis": {
"filter": {
"portuguese_stop": {
"type": "stop",
"stopwords": "_portuguese_"
},
"portuguese_keywords": {
"type": "keyword_marker",
"keywords": [
"exemplo"
]
},
"portuguese_stemmer": {
"type": "stemmer",
"language": "light_portuguese"
}
},
"analyzer": {
"rebuilt_portuguese": {
"tokenizer": "standard",
"filter": [
"lowercase",
"portuguese_stop",
"portuguese_keywords",
"portuguese_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/585a34ad79aee16678b37da785933ac8.asciidoc 0000664 0000000 0000000 00000000211 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/stop.asciidoc:85
[source, python]
----
resp = client.ilm.stop()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/585b19369cb9b9763a7e8d405f009a47.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:249
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
runtime={
"day_of_week": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5865ca8d2bcd087ed5dbee33fafee57f.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0027276 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-existing-data-stream.asciidoc:111
[source, python]
----
resp = client.indices.explain_data_lifecycle(
index=".ds-my-data-stream-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/586cfa0e5fd695b7d451e854f9fb4a9c.asciidoc 0000664 0000000 0000000 00000001741 14766462667 0027014 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-grid-query.asciidoc:20
[source, python]
----
resp = client.indices.create(
index="my_locations",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.index(
index="my_locations",
id="1",
refresh=True,
document={
"location": "POINT(4.912350 52.374081)",
"city": "Amsterdam",
"name": "NEMO Science Museum"
},
)
print(resp1)
resp2 = client.index(
index="my_locations",
id="2",
refresh=True,
document={
"location": "POINT(4.405200 51.222900)",
"city": "Antwerp",
"name": "Letterenhuis"
},
)
print(resp2)
resp3 = client.index(
index="my_locations",
id="3",
refresh=True,
document={
"location": "POINT(2.336389 48.861111)",
"city": "Paris",
"name": "Musée du Louvre"
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/58ca855be30049f8f0879e532db51ee2.asciidoc 0000664 0000000 0000000 00000002402 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/put-transform.asciidoc:320
[source, python]
----
resp = client.transform.put_transform(
transform_id="ecommerce_transform1",
source={
"index": "kibana_sample_data_ecommerce",
"query": {
"term": {
"geoip.continent_name": {
"value": "Asia"
}
}
}
},
pivot={
"group_by": {
"customer_id": {
"terms": {
"field": "customer_id",
"missing_bucket": True
}
}
},
"aggregations": {
"max_price": {
"max": {
"field": "taxful_total_price"
}
}
}
},
description="Maximum priced ecommerce data by customer_id in Asia",
dest={
"index": "kibana_sample_data_ecommerce_transform1",
"pipeline": "add_timestamp_pipeline"
},
frequency="5m",
sync={
"time": {
"field": "order_date",
"delay": "60s"
}
},
retention_policy={
"time": {
"field": "order_date",
"max_age": "30d"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/58dd26afc919722e21358c91e112b27a.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:459
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"range": {
"date": {
"gte": "2023-05-01",
"lte": "2023-05-31"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/58e684e0b771b4646662fe12d3060c05.asciidoc 0000664 0000000 0000000 00000000754 14766462667 0026326 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/cjk-width-tokenfilter.asciidoc:69
[source, python]
----
resp = client.indices.create(
index="cjk_width_example",
settings={
"analysis": {
"analyzer": {
"standard_cjk_width": {
"tokenizer": "standard",
"filter": [
"cjk_width"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/58f72be60c25752d7899a35fc60fe6eb.asciidoc 0000664 0000000 0000000 00000000363 14766462667 0026647 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/misc.asciidoc:182
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.indices.recovery": "DEBUG"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/591c7fb7451069829a14bba593136f1f.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026406 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/forecast.asciidoc:88
[source, python]
----
resp = client.ml.forecast(
job_id="low_request_rate",
duration="10d",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5969c446688c8b326acc80276573e9d2.asciidoc 0000664 0000000 0000000 00000001503 14766462667 0026353 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:324
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"number_of_fragments": 3,
"fragment_size": 150,
"fields": {
"body": {
"pre_tags": [
""
],
"post_tags": [
""
]
},
"blog.title": {
"number_of_fragments": 0
},
"blog.author": {
"number_of_fragments": 0
},
"blog.comment": {
"number_of_fragments": 5,
"order": "score"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/59726e3c90e1218487a781508788c243.asciidoc 0000664 0000000 0000000 00000000634 14766462667 0026130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/autodatehistogram-aggregation.asciidoc:293
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sale_date": {
"auto_date_histogram": {
"field": "date",
"buckets": 10,
"missing": "2000/01/01"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/597d456edfcb3d410954a3e9b5babf9a.asciidoc 0000664 0000000 0000000 00000000706 14766462667 0027052 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/disk-usage.asciidoc:51
[source, python]
----
resp = client.indices.create(
index="index",
mappings={
"dynamic_templates": [
{
"strings": {
"match_mapping_type": "string",
"mapping": {
"type": "keyword"
}
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5987afb2c17c73fe3d860937565ef115.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026500 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/point-in-time-api.asciidoc:46
[source, python]
----
resp = client.open_point_in_time(
index="my-index-000001",
keep_alive="1m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/599454613ac699d447537e79e65ae35a.asciidoc 0000664 0000000 0000000 00000000654 14766462667 0026364 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:67
[source, python]
----
resp = client.search(
index="my-index-000001",
script_fields={
"my_doubled_field": {
"script": {
"source": "doc['my_field'].value * params['multiplier']",
"params": {
"multiplier": 2
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/599f693cc7d30b1153f5eeecec8eb23a.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/delete-index-template-v1.asciidoc:35
[source, python]
----
resp = client.indices.delete_template(
name="my-legacy-index-template",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/59aa5216630f80c5dc298fc5bba4a819.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:415
[source, python]
----
resp = client.indices.get_settings(
index=".reindexed-v9-ml-anomalies-custom-example",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/59b8b9555f4aa30bc4613f819e9fc8f0.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/close.asciidoc:78
[source, python]
----
resp = client.indices.close(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/59d015f7bd0eeab40d0885010a62fa70.asciidoc 0000664 0000000 0000000 00000001200 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/role-templates.asciidoc:52
[source, python]
----
resp = client.security.put_role(
name="example2",
indices=[
{
"names": [
"my-index-000001"
],
"privileges": [
"read"
],
"query": {
"template": {
"source": {
"term": {
"group.id": "{{_user.metadata.group_id}}"
}
}
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/59d736a4d064ed2013c7ead8e32e0998.asciidoc 0000664 0000000 0000000 00000000614 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-openai.asciidoc:177
[source, python]
----
resp = client.inference.put(
task_type="completion",
inference_id="openai-completion",
inference_config={
"service": "openai",
"service_settings": {
"api_key": "",
"model_id": "gpt-3.5-turbo"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/59f0ad2a6f97200e98e8eb079cdd8334.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-get.asciidoc:162
[source, python]
----
resp = client.mget(
index="my-index-000001",
ids=[
"1",
"2"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5a006feed86309b547bbaa1baca1c496.asciidoc 0000664 0000000 0000000 00000003477 14766462667 0027033 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:148
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"numeric_counts": {
"match_mapping_type": [
"long",
"double"
],
"match": "count",
"mapping": {
"type": "{dynamic_type}",
"index": False
}
}
},
{
"integers": {
"match_mapping_type": "long",
"mapping": {
"type": "integer"
}
}
},
{
"strings": {
"match_mapping_type": "string",
"mapping": {
"type": "text",
"fields": {
"raw": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
},
{
"non_objects_keyword": {
"match_mapping_type": "*",
"unmatch_mapping_type": "object",
"mapping": {
"type": "keyword"
}
}
}
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"my_integer": 5,
"my_string": "Some string",
"my_boolean": "false",
"field": {
"count": 4
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/5a3855f1b3e37d89ab7cbcc4f7ae1dd3.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0027122 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/limit-token-count-tokenfilter.asciidoc:43
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "limit",
"max_token_count": 2
}
],
text="quick fox jumps over lazy dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5a3fe9584d203d1fd6c96981ba34e0de.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/geo-match-enrich-policy-type-ex.asciidoc:17
[source, python]
----
resp = client.indices.create(
index="postal_codes",
mappings={
"properties": {
"location": {
"type": "geo_shape"
},
"postal_code": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5a6bb9ac6830668ecc00550c1aa8f2f1.asciidoc 0000664 0000000 0000000 00000000724 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:286
[source, python]
----
resp = client.security.put_role(
name="logstash-reader",
indices=[
{
"names": [
"logstash-*"
],
"privileges": [
"read_cross_cluster",
"read",
"view_index_metadata"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5a754dcc854b9154296550a0b581cb9d.asciidoc 0000664 0000000 0000000 00000000560 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/ipprefix-aggregation.asciidoc:50
[source, python]
----
resp = client.search(
index="network-traffic",
size=0,
aggs={
"ipv4-subnets": {
"ip_prefix": {
"field": "ipv4",
"prefix_length": 24
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5a7f05ab1d05b4eef5ff327168517165.asciidoc 0000664 0000000 0000000 00000000510 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-shard-routing.asciidoc:140
[source, python]
----
resp = client.search(
index="my-index-000001",
routing="my-routing-value,my-routing-value-2",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5ab9b44939fb30f5b4adbdcc4bcc0733.asciidoc 0000664 0000000 0000000 00000001017 14766462667 0027104 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-ilm.asciidoc:53
[source, python]
----
resp = client.ilm.put_lifecycle(
name="datastream_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_age": "5m"
},
"downsample": {
"fixed_interval": "1h"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5ad365ed9e1a3c26093a0f09666c133a.asciidoc 0000664 0000000 0000000 00000000735 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:252
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping5",
role_templates=[
{
"template": {
"source": "{{#tojson}}groups{{/tojson}}"
},
"format": "json"
}
],
rules={
"field": {
"realm.name": "saml1"
}
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5afbd9caed88c32f8a2968c07054f096.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/logstash/delete-pipeline.asciidoc:73
[source, python]
----
resp = client.logstash.delete_pipeline(
id="my_pipeline",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b0cc9e186a8f765a11141809b8b17b7.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0026457 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search-application/apis/list-search-applications.asciidoc:106
[source, python]
----
resp = client.search_application.list(
from_="0",
size="3",
q="app*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b191f2dbfa46c774cc9b9b9e8d1d831.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-user-privileges.asciidoc:40
[source, python]
----
resp = client.security.get_user_privileges()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b1ae98ad03e2819fc7c3468840ef448.asciidoc 0000664 0000000 0000000 00000000440 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:637
[source, python]
----
resp = client.eql.search(
index="my-index*",
query="\n sample by host\n [any where uptime > 0]\n [any where port > 100]\n [any where bool == true]\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b266deba5396c7810af1b8315c23596.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-grid-query.asciidoc:62
[source, python]
----
resp = client.search(
index="my_locations",
size=0,
aggs={
"grouped": {
"geohash_grid": {
"field": "location",
"precision": 2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b281956e35a26e734c482b42b356c0d.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026376 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/alias-exists.asciidoc:16
[source, python]
----
resp = client.indices.exists_alias(
name="my-alias",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b2a13366bd4e1ab4b25d04d360570dc.asciidoc 0000664 0000000 0000000 00000000717 14766462667 0026571 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-component-template.asciidoc:262
[source, python]
----
resp = client.cluster.put_component_template(
name="template_1",
template={
"settings": {
"number_of_shards": 1
}
},
meta={
"description": "set number of shards to one",
"serialization": {
"class": "MyComponentTemplate",
"id": 10
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b3384992c398ea8a3064d2e08725e2b.asciidoc 0000664 0000000 0000000 00000002742 14766462667 0026416 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:291
[source, python]
----
resp = client.indices.create(
index="node",
mappings={
"properties": {
"ip": {
"type": "ip"
},
"date": {
"type": "date"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="node",
refresh=True,
operations=[
{
"index": {}
},
{
"ip": "192.168.0.1",
"date": "2020-01-01T01:01:01",
"m": 1
},
{
"index": {}
},
{
"ip": "192.168.0.1",
"date": "2020-01-01T02:01:01",
"m": 2
},
{
"index": {}
},
{
"ip": "192.168.0.2",
"date": "2020-01-01T02:01:01",
"m": 3
}
],
)
print(resp1)
resp2 = client.search(
index="node",
filter_path="aggregations",
aggs={
"ip": {
"terms": {
"field": "ip"
},
"aggs": {
"tm": {
"top_metrics": {
"metrics": {
"field": "m"
},
"sort": {
"date": "desc"
}
}
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/5b58007f10700ec7934580f034404652.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026066 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/index_.asciidoc:579
[source, python]
----
resp = client.create(
index="my-index-000001",
id="1",
document={
"@timestamp": "2099-11-15T13:12:00",
"message": "GET /search HTTP/1.1 200 1070000",
"user": {
"id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b6bc085943e9189236d98b3c05ed62c.asciidoc 0000664 0000000 0000000 00000001105 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:44
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_size": "25GB"
}
}
},
"delete": {
"min_age": "30d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5b7d6f1db88ca6f42c48fa3dbb4341e8.asciidoc 0000664 0000000 0000000 00000000443 14766462667 0027045 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-mapping.asciidoc:85
[source, python]
----
resp = client.indices.get_mapping(
index="*",
)
print(resp)
resp1 = client.indices.get_mapping(
index="_all",
)
print(resp1)
resp2 = client.indices.get_mapping()
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/5b8119b4d9a09f4643be5a5b40875c8f.asciidoc 0000664 0000000 0000000 00000001542 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/boolean.asciidoc:78
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"is_published": True
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"is_published": False
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
aggs={
"publish_state": {
"terms": {
"field": "is_published"
}
}
},
sort=[
"is_published"
],
fields=[
{
"field": "weight"
}
],
runtime_mappings={
"weight": {
"type": "long",
"script": "emit(doc['is_published'].value ? 10 : 0)"
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/5bb0d84185df2f276f01bb2fba709e1a.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026741 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1482
[source, python]
----
resp = client.eql.search(
index="cluster_one:my-data-stream,cluster_two:my-data-stream",
query="\n process where process.name == \"regsvr32.exe\"\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5bba213a7f543190139d1a69ab2ed076.asciidoc 0000664 0000000 0000000 00000000535 14766462667 0026523 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-across-clusters.asciidoc:302
[source, python]
----
resp = client.esql.async_query(
format="json",
query="\n FROM cluster_one:my-index*,cluster_two:logs*\n | STATS COUNT(http.response.status_code) BY user.id\n | LIMIT 2\n ",
include_ccs_metadata=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5bbccf103107e505c17ae59863753efd.asciidoc 0000664 0000000 0000000 00000000377 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-influencer.asciidoc:158
[source, python]
----
resp = client.ml.get_influencers(
job_id="high_sum_total_sales",
sort="influencer_score",
desc=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5c187ba92dd1678fda86b5eec8cc7421.asciidoc 0000664 0000000 0000000 00000000763 14766462667 0027002 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/script-query.asciidoc:24
[source, python]
----
resp = client.search(
query={
"bool": {
"filter": {
"script": {
"script": "\n double amount = doc['amount'].value;\n if (doc['type'].value == 'expense') {\n amount *= -1;\n }\n return amount < 10;\n "
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5c22172a944864a7d138decdc08558b4.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/detect-threats-with-eql.asciidoc:73
[source, python]
----
resp = client.cat.indices(
index="my-data-stream",
v=True,
h="health,status,index,docs.count",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5c249eaeb99e6aee07162128288ac1b1.asciidoc 0000664 0000000 0000000 00000001576 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/moving-percentiles-aggregation.asciidoc:43
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_percentile": {
"percentiles": {
"field": "price",
"percents": [
1,
99
]
}
},
"the_movperc": {
"moving_percentiles": {
"buckets_path": "the_percentile",
"window": 10
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5c24a9a0ddbfa50628dacdb9d25f7ab0.asciidoc 0000664 0000000 0000000 00000000554 14766462667 0027164 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/extendedstats-aggregation.asciidoc:172
[source, python]
----
resp = client.search(
index="exams",
size=0,
aggs={
"grades_stats": {
"extended_stats": {
"field": "grade",
"missing": 0
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5c2f486c27bd5346e512265f93375d16.asciidoc 0000664 0000000 0000000 00000000534 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/range-query.asciidoc:241
[source, python]
----
resp = client.search(
query={
"range": {
"timestamp": {
"time_zone": "+01:00",
"gte": "2020-01-01T00:00:00",
"lte": "now"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5c6fbeac20dc23b613847f35d431ecab.asciidoc 0000664 0000000 0000000 00000001601 14766462667 0027016 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/function-score-query.asciidoc:578
[source, python]
----
resp = client.search(
query={
"function_score": {
"functions": [
{
"gauss": {
"price": {
"origin": "0",
"scale": "20"
}
}
},
{
"gauss": {
"location": {
"origin": "11, 12",
"scale": "2km"
}
}
}
],
"query": {
"match": {
"properties": "balcony"
}
},
"score_mode": "multiply"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5c7ece1f30267adabdb832424871900a.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-unbalanced-cluster.asciidoc:24
[source, python]
----
resp = client.cat.allocation(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5c8ac24dd56e85d8f3f6705ec3c6dc32.asciidoc 0000664 0000000 0000000 00000001167 14766462667 0027000 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/circle.asciidoc:27
[source, python]
----
resp = client.indices.create(
index="circles",
mappings={
"properties": {
"circle": {
"type": "geo_shape"
}
}
},
)
print(resp)
resp1 = client.ingest.put_pipeline(
id="polygonize_circles",
description="translate circle to polygon",
processors=[
{
"circle": {
"field": "circle",
"error_distance": 28,
"shape_type": "geo_shape"
}
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/5ccfd9f4698dcd7cdfbc6bad60081aab.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0027340 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/get-dfanalytics.asciidoc:218
[source, python]
----
resp = client.ml.get_data_frame_analytics(
id="loganalytics",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5cd792dff7d5891c33bef098d9338ce1.asciidoc 0000664 0000000 0000000 00000001522 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/store.asciidoc:20
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"title": {
"type": "text",
"store": True
},
"date": {
"type": "date",
"store": True
},
"content": {
"type": "text"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"title": "Some short title",
"date": "2015-01-01",
"content": "A very long content field..."
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
stored_fields=[
"title",
"date"
],
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/5ceb734e3affe00e2cdc29af748d95bf.asciidoc 0000664 0000000 0000000 00000001036 14766462667 0027206 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/inference-apis.asciidoc:114
[source, python]
----
resp = client.inference.put(
task_type="sparse_embedding",
inference_id="small_chunk_size",
inference_config={
"service": "elasticsearch",
"service_settings": {
"num_allocations": 1,
"num_threads": 1
},
"chunking_settings": {
"strategy": "sentence",
"max_chunk_size": 100,
"sentence_overlap": 0
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5cf12cc4f98d98dc79bead7e6556679c.asciidoc 0000664 0000000 0000000 00000000543 14766462667 0027026 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/synthetic-source.asciidoc:10
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5cfab507e50d8c5182939412a9dbcdc8.asciidoc 0000664 0000000 0000000 00000003523 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geocentroid-aggregation.asciidoc:184
[source, python]
----
resp = client.indices.create(
index="places",
mappings={
"properties": {
"geometry": {
"type": "geo_shape"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="places",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"name": "NEMO Science Museum",
"geometry": "POINT(4.912350 52.374081)"
},
{
"index": {
"_id": 2
}
},
{
"name": "Sportpark De Weeren",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
4.965305328369141,
52.39347642069457
],
[
4.966979026794433,
52.391721758934835
],
[
4.969425201416015,
52.39238958618537
],
[
4.967944622039794,
52.39420969150824
],
[
4.965305328369141,
52.39347642069457
]
]
]
}
}
],
)
print(resp1)
resp2 = client.search(
index="places",
size="0",
aggs={
"centroid": {
"geo_centroid": {
"field": "geometry"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/5d03bb385904d20c5323885706738459.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026115 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/aliases.asciidoc:16
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"add": {
"index": "my-data-stream",
"alias": "my-alias"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5d3ee81bcf6ad57f39052c9065963cc3.asciidoc 0000664 0000000 0000000 00000001377 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/copy-to.asciidoc:139
[source, python]
----
resp = client.indices.create(
index="test_index",
mappings={
"dynamic": "strict",
"properties": {
"description": {
"properties": {
"notes": {
"type": "text",
"copy_to": [
"description.notes_raw"
],
"analyzer": "standard",
"search_analyzer": "standard"
},
"notes_raw": {
"type": "keyword"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5d428ea66252fd252b6a8d6f47605c86.asciidoc 0000664 0000000 0000000 00000001521 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/cjk-bigram-tokenfilter.asciidoc:176
[source, python]
----
resp = client.indices.create(
index="cjk_bigram_example",
settings={
"analysis": {
"analyzer": {
"han_bigrams": {
"tokenizer": "standard",
"filter": [
"han_bigrams_filter"
]
}
},
"filter": {
"han_bigrams_filter": {
"type": "cjk_bigram",
"ignored_scripts": [
"hangul",
"hiragana",
"katakana"
],
"output_unigrams": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5d5b06468c54308f52c212cca5d58fef.asciidoc 0000664 0000000 0000000 00000000514 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:469
[source, python]
----
resp = client.sql.query(
format="json",
cursor="sDXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAAEWWWdrRlVfSS1TbDYtcW9lc1FJNmlYdw==:BAFmBmF1dGhvcgFmBG5hbWUBZgpwYWdlX2NvdW50AWYMcmVsZWFzZV9kYXRl+v///w8=",
columnar=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5d5cdbd4c5c62a90ff2a39cba4a59368.asciidoc 0000664 0000000 0000000 00000001163 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:610
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
params={
"elser": True,
"text": True,
"query_string": "where is the best mountain climbing?",
"elser_fields": [
{
"name": "title",
"boost": 1
},
{
"name": "description",
"boost": 1
}
],
"text_query_boost": 4,
"min_score": 10
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5d689d74062cddd01a0711a2fa7f23fd.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/network/tracers.asciidoc:92
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.transport.TransportService.tracer": "TRACE"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5d7980d8c745abf7ea0fa573e818bd5b.asciidoc 0000664 0000000 0000000 00000001353 14766462667 0027000 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/shingle-tokenfilter.asciidoc:488
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"en": {
"tokenizer": "standard",
"filter": [
"my_shingle_filter"
]
}
},
"filter": {
"my_shingle_filter": {
"type": "shingle",
"min_shingle_size": 2,
"max_shingle_size": 5,
"output_unigrams": False
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5d9d7b84e2fec7ecd832145cbb951cf1.asciidoc 0000664 0000000 0000000 00000001337 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:600
[source, python]
----
resp = client.search(
size=0,
aggs={
"expired_sessions": {
"terms": {
"field": "account_id",
"include": {
"partition": 0,
"num_partitions": 20
},
"size": 10000,
"order": {
"last_access": "asc"
}
},
"aggs": {
"last_access": {
"max": {
"field": "access_date"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5da6efd5b038ada64c9e853c88c1ec47.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:114
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "brown fox",
"type": "best_fields",
"fields": [
"subject",
"message"
],
"tie_breaker": 0.3
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5daf8ede198be9b118da5bee9896cb00.asciidoc 0000664 0000000 0000000 00000001545 14766462667 0027143 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:333
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"flattened": {
"type": "flattened"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"flattened": {
"field": [
"apple",
"apple",
"banana",
"avocado",
"10",
"200",
"AVOCADO",
"Banana",
"Tangerine"
]
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/5dbf06ca9058843f572676fcaf587f75.asciidoc 0000664 0000000 0000000 00000000571 14766462667 0026577 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/variablewidthhistogram-aggregation.asciidoc:18
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"prices": {
"variable_width_histogram": {
"field": "price",
"buckets": 2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5ddc26da6e163fda54f52d33b5157051.asciidoc 0000664 0000000 0000000 00000000545 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/semantic-search/search.asciidoc:9
[source, python]
----
resp = client.search(
index="my-index",
query={
"sparse_vector": {
"field": "my_tokens",
"inference_id": "my-elser-endpoint",
"query": "the query string"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5deeed427f35cbaee4b8ddc45002a9d7.asciidoc 0000664 0000000 0000000 00000000374 14766462667 0027203 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-delete-roles.asciidoc:77
[source, python]
----
resp = client.security.bulk_delete_role(
names=[
"my_admin_role",
"not_an_existing_role"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5df3226fdc8f1f66ae92ba2f527af8c0.asciidoc 0000664 0000000 0000000 00000000336 14766462667 0027047 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:52
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"my_field": 5
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5dfb23f6e36ef484f1d3271bae76a8d1.asciidoc 0000664 0000000 0000000 00000000246 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/recovery.asciidoc:240
[source, python]
----
resp = client.indices.recovery(
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5dfe24287bb930ad33345caf092a004b.asciidoc 0000664 0000000 0000000 00000000475 14766462667 0026603 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/exists-query.asciidoc:56
[source, python]
----
resp = client.search(
query={
"bool": {
"must_not": {
"exists": {
"field": "user.id"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e021307d331a4483a5aa2198168451b.asciidoc 0000664 0000000 0000000 00000001311 14766462667 0026210 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-roles.asciidoc:189
[source, python]
----
resp = client.security.put_role(
name="only_remote_access_role",
remote_indices=[
{
"clusters": [
"my_remote"
],
"names": [
"logs*"
],
"privileges": [
"read",
"read_cross_cluster",
"view_index_metadata"
]
}
],
remote_cluster=[
{
"clusters": [
"my_remote"
],
"privileges": [
"monitor_stats"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e099493f135ff7bd614e935c4f2bf5a.asciidoc 0000664 0000000 0000000 00000000516 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shard-request-cache.asciidoc:88
[source, python]
----
resp = client.search(
index="my-index-000001",
request_cache=True,
size=0,
aggs={
"popular_colors": {
"terms": {
"field": "colors"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e124875d97c27362ae858160ae1c6d5.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/get-auto-follow-pattern.asciidoc:50
[source, python]
----
resp = client.ccr.get_auto_follow_pattern()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e21dbac92f34d236a8f0cc0d3a39cdd.asciidoc 0000664 0000000 0000000 00000001645 14766462667 0027107 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/jwt-realm.asciidoc:411
[source, python]
----
resp = client.security.put_role_mapping(
name="jwt1_users",
refresh=True,
roles=[
"user"
],
rules={
"all": [
{
"field": {
"realm.name": "jwt1"
}
},
{
"field": {
"username": "principalname1"
}
},
{
"field": {
"dn": "CN=Principal Name 1,DC=example.com"
}
},
{
"field": {
"groups": "group1"
}
},
{
"field": {
"metadata.jwt_claim_other": "other1"
}
}
]
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e2f7097eb299de553d0fa0087d70a59.asciidoc 0000664 0000000 0000000 00000001247 14766462667 0026561 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:748
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index": {
"sort.field": [
"username",
"timestamp"
],
"sort.order": [
"asc",
"desc"
]
}
},
mappings={
"properties": {
"username": {
"type": "keyword",
"doc_values": True
},
"timestamp": {
"type": "date"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e3673bcbef5731746e400c4f3fe134d.asciidoc 0000664 0000000 0000000 00000001063 14766462667 0026617 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-shape-query.asciidoc:262
[source, python]
----
resp = client.index(
index="test",
id="1",
document={
"location": [
{
"coordinates": [
46.25,
20.14
],
"type": "point"
},
{
"coordinates": [
47.49,
19.04
],
"type": "point"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e415c490a46358643ee2aab554b4876.asciidoc 0000664 0000000 0000000 00000000536 14766462667 0026410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:63
[source, python]
----
resp = client.cluster.allocation_explain(
filter_path="index,node_allocation_decisions.node_name,node_allocation_decisions.deciders.*",
index="my-index",
shard=0,
primary=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e47a407b6ca29dadf6eac5ab1d71163.asciidoc 0000664 0000000 0000000 00000001630 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-polygon-query.asciidoc:12
[source, python]
----
resp = client.search(
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_polygon": {
"person.location": {
"points": [
{
"lat": 40,
"lon": -70
},
{
"lat": 30,
"lon": -80
},
{
"lat": 20,
"lon": -90
}
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e6419bc3e2db0d0f05bce58d8cc9215.asciidoc 0000664 0000000 0000000 00000001500 14766462667 0026747 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:669
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"rename": {
"description": "Rename 'provider' to 'cloud.provider'",
"field": "provider",
"target_field": "cloud.provider",
"on_failure": [
{
"set": {
"description": "Set 'error.message'",
"field": "error.message",
"value": "Field 'provider' does not exist. Cannot rename to 'cloud.provider'",
"override": False
}
}
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e87dd38ac3a0fd59ad794005b16d13e.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026671 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:353
[source, python]
----
resp = client.slm.get_lifecycle(
policy_id="nightly-snapshots",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5e9a7845e60b79685aab59877c5fbd1a.asciidoc 0000664 0000000 0000000 00000000430 14766462667 0026646 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/ignored-field.asciidoc:51
[source, python]
----
resp = client.search(
aggs={
"ignored_fields": {
"terms": {
"field": "_ignored"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5ea9da129ca70a5fe534f27a82d80b29.asciidoc 0000664 0000000 0000000 00000000547 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:681
[source, python]
----
resp = client.indices.create(
index="example",
mappings={
"properties": {
"comment": {
"type": "text",
"index_options": "offsets"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5f031b7bd2b7d98d2d10df7420d269ff.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026674 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:407
[source, python]
----
resp = client.indices.resolve_index(
name="new-data-stream*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5f16358ebb5d14b86f57612d5f92d923.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0026475 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/semantic-text.asciidoc:26
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"inference_field": {
"type": "semantic_text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5f1ed9cfdc149763b444acfbe10b0e16.asciidoc 0000664 0000000 0000000 00000000531 14766462667 0027030 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:271
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"user_id": {
"type": "keyword",
"ignore_above": 20
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5f3373887e8d3dc31239b687a5151449.asciidoc 0000664 0000000 0000000 00000001247 14766462667 0026267 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/coerce.asciidoc:19
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"number_one": {
"type": "integer"
},
"number_two": {
"type": "integer",
"coerce": False
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"number_one": "10"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"number_two": "10"
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/5f3549ac7fee94682ca0d7439eebdd2a.asciidoc 0000664 0000000 0000000 00000000504 14766462667 0027054 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:235
[source, python]
----
resp = client.search(
index="index_long,index_double",
sort=[
{
"field": {
"numeric_type": "date_nanos"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5f72ab800c3db9d118df95e2a378d411.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/alias-privileges.asciidoc:59
[source, python]
----
resp = client.get(
index=".ds-my-data-stream-2099.03.09-000003",
id="2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5f7b59d4fad0bdce6b09abb520ddb51d.asciidoc 0000664 0000000 0000000 00000002307 14766462667 0027245 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/use-elasticsearch-for-time-series-data.asciidoc:101
[source, python]
----
resp = client.search(
index="my-data-stream",
runtime_mappings={
"source.ip": {
"type": "ip",
"script": "\n String sourceip=grok('%{IPORHOST:sourceip} .*').extract(doc[ \"message\" ].value)?.sourceip;\n if (sourceip != null) emit(sourceip);\n "
}
},
query={
"bool": {
"filter": [
{
"range": {
"@timestamp": {
"gte": "now-1d/d",
"lt": "now/d"
}
}
},
{
"range": {
"source.ip": {
"gte": "192.0.2.0",
"lte": "192.0.2.255"
}
}
}
]
}
},
fields=[
"*"
],
source=False,
sort=[
{
"@timestamp": "desc"
},
{
"source.ip": "desc"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5f8acd1e367b048b5542dbc6079bcc88.asciidoc 0000664 0000000 0000000 00000001631 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/hyphenation-decompounder-tokenfilter.asciidoc:144
[source, python]
----
resp = client.indices.create(
index="hyphenation_decompound_example",
settings={
"analysis": {
"analyzer": {
"standard_hyphenation_decompound": {
"tokenizer": "standard",
"filter": [
"22_char_hyphenation_decompound"
]
}
},
"filter": {
"22_char_hyphenation_decompound": {
"type": "hyphenation_decompounder",
"word_list_path": "analysis/example_word_list.txt",
"hyphenation_patterns_path": "analysis/hyphenation_patterns.xml",
"max_subword_size": 22
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5f8fb5513d4f725434db2f517ad4298f.asciidoc 0000664 0000000 0000000 00000001553 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/similarity.asciidoc:359
[source, python]
----
resp = client.indices.create(
index="index",
settings={
"number_of_shards": 1,
"similarity": {
"scripted_tfidf": {
"type": "scripted",
"weight_script": {
"source": "double idf = Math.log((field.docCount+1.0)/(term.docFreq+1.0)) + 1.0; return query.boost * idf;"
},
"script": {
"source": "double tf = Math.sqrt(doc.freq); double norm = 1/Math.sqrt(doc.length); return weight * tf * norm;"
}
}
}
},
mappings={
"properties": {
"field": {
"type": "text",
"similarity": "scripted_tfidf"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5faa121e00a0582160b2adb2b72fed67.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-settings.asciidoc:98
[source, python]
----
resp = client.indices.get_settings(
index="log_2099_-*",
name="index.number_*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5fca6671bc8eaddc44ac488d1c3c6909.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-calendar.asciidoc:95
[source, python]
----
resp = client.ml.get_calendars(
calendar_id="planned-outages",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5fd002a018c589eb73fadad25889dbe9.asciidoc 0000664 0000000 0000000 00000003136 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-using-query-rules.asciidoc:122
[source, python]
----
resp = client.query_rules.put_ruleset(
ruleset_id="my-ruleset",
rules=[
{
"rule_id": "rule1",
"type": "pinned",
"criteria": [
{
"type": "fuzzy",
"metadata": "query_string",
"values": [
"puggles",
"pugs"
]
},
{
"type": "exact",
"metadata": "user_country",
"values": [
"us"
]
}
],
"actions": {
"ids": [
"id1",
"id2"
]
}
},
{
"rule_id": "rule2",
"type": "exclude",
"criteria": [
{
"type": "contains",
"metadata": "query_string",
"values": [
"beagles"
]
}
],
"actions": {
"docs": [
{
"_index": "my-index-000001",
"_id": "id3"
},
{
"_index": "my-index-000002",
"_id": "id4"
}
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5fde0d78e9b2cc0519f8a63848ed344e.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026720 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/get-query-ruleset.asciidoc:108
[source, python]
----
resp = client.query_rules.get_ruleset(
ruleset_id="my-ruleset",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/5ffe6fd303400e8678fa1ead291e237f.asciidoc 0000664 0000000 0000000 00000000522 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-aggregation.asciidoc:30
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_outlier": {
"percentiles": {
"field": "load_time"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/600d33c80f8872dda85c87ed41da95fd.asciidoc 0000664 0000000 0000000 00000001061 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:343
[source, python]
----
resp = client.search(
index="azure-ai-studio-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "azure_ai_studio_embeddings",
"model_text": "Calculate fuel cost"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6013ed65d2058da5ce704b47a504b60a.asciidoc 0000664 0000000 0000000 00000001617 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:222
[source, python]
----
resp = client.bulk(
index="test",
refresh=True,
operations=[
{
"index": {}
},
{
"s": 1,
"m": 3.1415
},
{
"index": {}
},
{
"s": 2,
"m": 1
},
{
"index": {}
},
{
"s": 3,
"m": 2.71828
}
],
)
print(resp)
resp1 = client.search(
index="test",
filter_path="aggregations",
aggs={
"tm": {
"top_metrics": {
"metrics": {
"field": "m"
},
"sort": {
"s": "desc"
},
"size": 3
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/601ad3b0ceccb3fcd282e5ec36748954.asciidoc 0000664 0000000 0000000 00000000363 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-service-credentials.asciidoc:64
[source, python]
----
resp = client.security.get_service_credentials(
namespace="elastic",
service="fleet-server",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/60299454aa19fec15a604a0dd06fe522.asciidoc 0000664 0000000 0000000 00000000446 14766462667 0026530 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/disk/increase-other-node-capacity.asciidoc:27
[source, python]
----
resp = client.cluster.get_settings(
include_defaults=True,
filter_path="*.cluster.routing.allocation.disk.watermark.high*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/602e04051c092cf77de2f75a563661b8.asciidoc 0000664 0000000 0000000 00000000221 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat.asciidoc:63
[source, python]
----
resp = client.cat.master(
help=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/604da59fe41160efa10a846a9dacc07a.asciidoc 0000664 0000000 0000000 00000000356 14766462667 0026744 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/get-async-eql-status-api.asciidoc:25
[source, python]
----
resp = client.eql.get_status(
id="FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6061aadb3b870791278212d1e8f52b39.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/common/apis/get-ml-memory.asciidoc:234
[source, python]
----
resp = client.ml.get_memory_stats(
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/608cadc6b8a3f194612b69279ccc96de.asciidoc 0000664 0000000 0000000 00000002426 14766462667 0026721 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:728
[source, python]
----
resp = client.search_application.put(
name="my_search_application",
search_application={
"indices": [
"index1"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"script_score\": {\n \"query\": {\n \"bool\": {\n \"filter\": {\n \"range\": {\n \"{{field}}\": {\n \"{{operator}}\": {{value}}\n }\n }\n }\n }\n },\n \"script\": {\n \"source\": \"cosineSimilarity({{#toJson}}query_vector{{/toJson}}, '{{dense_vector_field}}') + 1.0\"\n }\n }\n }\n }\n ",
"params": {
"field": "price",
"operator": "gte",
"value": 1000,
"dense_vector_field": "product-vector",
"query_vector": []
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6097ae69c64454a92a89ef01b994e9f9.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026523 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/put-synonym-rule.asciidoc:151
[source, python]
----
resp = client.synonyms.put_synonym_rule(
set_id="my-synonyms-set",
rule_id="test-1",
synonyms="hello => hi => howdy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/60a9aa5dcde9023901f6ff27231a10c4.asciidoc 0000664 0000000 0000000 00000001047 14766462667 0026600 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significanttext-aggregation.asciidoc:417
[source, python]
----
resp = client.search(
index="news",
query={
"match": {
"content": "madrid"
}
},
aggs={
"tags": {
"significant_text": {
"field": "content",
"background_filter": {
"term": {
"content": "spain"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/60b0fc1b6ae418621ff1b31591fa1fce.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026735 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:280
[source, python]
----
resp = client.watcher.delete_watch(
id="cluster_health_watch",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/60cab62af1540db2ad3b696b0ee1d7a8.asciidoc 0000664 0000000 0000000 00000000531 14766462667 0027013 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:165
[source, python]
----
resp = client.search(
index="queries",
query={
"percolate": {
"field": "query",
"document": {
"body": "fox jumps over the lazy dog"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/60d3f9a99cc91b43aaa7524a9a74dba0.asciidoc 0000664 0000000 0000000 00000000305 14766462667 0026747 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/rejected-requests.asciidoc:50
[source, python]
----
resp = client.nodes.stats(
metric="breaker",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/60f889fbed5df3185444f7015b48ed76.asciidoc 0000664 0000000 0000000 00000000264 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-index.asciidoc:16
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/610f629d0486a64546d62402a0a5e00f.asciidoc 0000664 0000000 0000000 00000000517 14766462667 0026304 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-syntax.asciidoc:296
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"query_string": {
"query": "kimchy\\!",
"fields": [
"user.id"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/612c2e975f833de9815651135735eae5.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:253
[source, python]
----
resp = client.tasks.cancel(
nodes="nodeId1,nodeId2",
actions="*reindex",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/615dc36f0978c676624fb7d1144b4899.asciidoc 0000664 0000000 0000000 00000000345 14766462667 0026352 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/apis/get-lifecycle-stats.asciidoc:69
[source, python]
----
resp = client.indices.get_data_lifecycle_stats(
human=True,
pretty=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/618c9d42284c067891fb57034a4fd834.asciidoc 0000664 0000000 0000000 00000000253 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/start-job.asciidoc:56
[source, python]
----
resp = client.rollup.start_job(
id="sensor",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/61bf6ac15ae3e22323454a9a2872a2fa.asciidoc 0000664 0000000 0000000 00000000507 14766462667 0026577 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cardinality-aggregation.asciidoc:13
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"type_count": {
"cardinality": {
"field": "type"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/61c49cee90c6aa0eafbdd5cc03936e7d.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0027171 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic-mapping.asciidoc:11
[source, python]
----
resp = client.index(
index="data",
id="1",
document={
"count": 5
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/61d6b9503459914c436930c3ae87d454.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026246 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/list-query-rulesets.asciidoc:171
[source, python]
----
resp = client.query_rules.list_rulesets(
from_="0",
size="3",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/61e38e95191f4dde791070c6fce8a092.asciidoc 0000664 0000000 0000000 00000001437 14766462667 0026563 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:546
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_movavg": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.holt(values, 0.3, 0.1)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/621665fdbd7fc103c09bfeed28b67b1a.asciidoc 0000664 0000000 0000000 00000000256 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:150
[source, python]
----
resp = client.count(
filter_path="-_shards",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/621f4553e24592d40c8cdbbdfaeb027e.asciidoc 0000664 0000000 0000000 00000001006 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:387
[source, python]
----
resp = client.search(
index="image-index",
knn={
"field": "image-vector",
"query_vector": [
54,
10,
-2
],
"k": 5,
"num_candidates": 50,
"filter": {
"term": {
"file-type": "png"
}
}
},
fields=[
"title"
],
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6220087321e6d288024a70c6b09bd720.asciidoc 0000664 0000000 0000000 00000000515 14766462667 0026221 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:358
[source, python]
----
resp = client.index(
index="my-index-000001",
id="4",
refresh=True,
document={
"query": {
"match": {
"message": "lazy dog"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6244204213f60edf2f23295f9059f2c9.asciidoc 0000664 0000000 0000000 00000000266 14766462667 0026330 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/stats.asciidoc:169
[source, python]
----
resp = client.watcher.stats(
metric="queued_watches",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/624e69dedf42c4877234b87ec1d00068.asciidoc 0000664 0000000 0000000 00000000356 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/snapshot/repeated-snapshot-failures.asciidoc:105
[source, python]
----
resp = client.slm.get_lifecycle(
policy_id="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/62c311e7ab4de8b79e532929a5069975.asciidoc 0000664 0000000 0000000 00000002726 14766462667 0026431 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/rank-features.asciidoc:16
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"topics": {
"type": "rank_features"
},
"negative_reviews": {
"type": "rank_features",
"positive_score_impact": False
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"topics": {
"politics": 20,
"economics": 50.8
},
"negative_reviews": {
"1star": 10,
"2star": 100
}
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"topics": {
"politics": 5.2,
"sports": 80.1
},
"negative_reviews": {
"1star": 1,
"2star": 10
}
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"rank_feature": {
"field": "topics.politics"
}
},
)
print(resp3)
resp4 = client.search(
index="my-index-000001",
query={
"rank_feature": {
"field": "negative_reviews.1star"
}
},
)
print(resp4)
resp5 = client.search(
index="my-index-000001",
query={
"term": {
"topics": "economics"
}
},
)
print(resp5)
----
python-elasticsearch-8.17.2/docs/examples/62ccee6ad356428c2d625742f961ceb7.asciidoc 0000664 0000000 0000000 00000000345 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-api-key.asciidoc:206
[source, python]
----
resp = client.security.update_api_key(
id="VuaCfGcBCdbkQm-e5aOx",
role_descriptors={},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/62d3c8fccb11471bdc12555c1a7777f2.asciidoc 0000664 0000000 0000000 00000000522 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/synthetic-source.asciidoc:93
[source, python]
----
resp = client.index(
index="idx",
id="1",
document={
"foo": [
{
"bar": 1
},
{
"baz": 2
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/62eafc5b3ab75cc67314d5a8567d6077.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:231
[source, python]
----
resp = client.security.get_api_key(
username="myuser",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/62f1ec1bb5cc5a9c2efd536a7474f549.asciidoc 0000664 0000000 0000000 00000000524 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/hunspell-tokenfilter.asciidoc:73
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "hunspell",
"locale": "en_US"
}
],
text="the foxes jumping quickly",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/630d127ccedd25a6cff31ea098ac2847.asciidoc 0000664 0000000 0000000 00000001506 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/t-test-aggregation.asciidoc:86
[source, python]
----
resp = client.search(
index="node_upgrade",
size=0,
aggs={
"startup_time_ttest": {
"t_test": {
"a": {
"field": "startup_time_before",
"filter": {
"term": {
"group": "A"
}
}
},
"b": {
"field": "startup_time_before",
"filter": {
"term": {
"group": "B"
}
}
},
"type": "heteroscedastic"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6326f5c6fd2a6e6b1aff9a643b94f455.asciidoc 0000664 0000000 0000000 00000001577 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/fields.asciidoc:50
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"text": "quick brown fox",
"popularity": 1
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"text": "quick fox",
"popularity": 5
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"function_score": {
"query": {
"match": {
"text": "quick brown fox"
}
},
"script_score": {
"script": {
"lang": "expression",
"source": "_score * doc['popularity']"
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/6329fb2840a4373ff6d342f2653247cb.asciidoc 0000664 0000000 0000000 00000000266 14766462667 0026406 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:299
[source, python]
----
resp = client.indices.get_mapping(
index="books",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/634ecacf14b83c5f0bb8b6273cf6418e.asciidoc 0000664 0000000 0000000 00000003507 14766462667 0026764 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-security.asciidoc:128
[source, python]
----
resp = client.search_application.put(
name="website-product-search",
search_application={
"indices": [
"website-products"
],
"template": {
"script": {
"source": {
"query": {
"term": {
"{{field_name}}": "{{field_value}}"
}
},
"aggs": {
"color_facet": {
"terms": {
"field": "color",
"size": "{{agg_size}}"
}
}
}
},
"params": {
"field_name": "product_name",
"field_value": "hello world",
"agg_size": 5
}
},
"dictionary": {
"properties": {
"field_name": {
"type": "string",
"enum": [
"name",
"color",
"description"
]
},
"field_value": {
"type": "string"
},
"agg_size": {
"type": "integer",
"minimum": 1,
"maximum": 10
}
},
"required": [
"field_name"
],
"additionalProperties": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/63521e0089c631d6668c44a0a9d7fdcc.asciidoc 0000664 0000000 0000000 00000001267 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/limit-token-count-tokenfilter.asciidoc:123
[source, python]
----
resp = client.indices.create(
index="custom_limit_example",
settings={
"analysis": {
"analyzer": {
"whitespace_five_token_limit": {
"tokenizer": "whitespace",
"filter": [
"five_token_limit"
]
}
},
"filter": {
"five_token_limit": {
"type": "limit",
"max_token_count": 5
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6352e846bb83725ae6d853aa64d8697d.asciidoc 0000664 0000000 0000000 00000001052 14766462667 0026503 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-distance-query.asciidoc:158
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "12km",
"pin.location": {
"lat": 40,
"lon": -70
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6365312d470426cab1b77e9ffde49170.asciidoc 0000664 0000000 0000000 00000000665 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/document-level-security.asciidoc:30
[source, python]
----
resp = client.security.put_role(
name="click_role",
indices=[
{
"names": [
"events-*"
],
"privileges": [
"read"
],
"query": "{\"match\": {\"category\": \"click\"}}"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/636ee2066450605247ec1f68d04b8ee4.asciidoc 0000664 0000000 0000000 00000000443 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1465
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"http.clientip": "40.135.0.0"
}
},
fields=[
"*"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/63893e7e9479a9b60db71dcddcc79aaf.asciidoc 0000664 0000000 0000000 00000000323 14766462667 0027065 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-calendar.asciidoc:44
[source, python]
----
resp = client.ml.delete_calendar(
calendar_id="planned-outages",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/63a53fcb0717ae9033a679cbfc932851.asciidoc 0000664 0000000 0000000 00000001065 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-alibabacloud-ai-search.asciidoc:174
[source, python]
----
resp = client.inference.put(
task_type="completion",
inference_id="alibabacloud_ai_search_completion",
inference_config={
"service": "alibabacloud-ai-search",
"service_settings": {
"host": "default-j01.platform-cn-shanghai.opensearch.aliyuncs.com",
"api_key": "{{API_KEY}}",
"service_id": "ops-qwen-turbo",
"workspace": "default"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/63bf3480627a89b4b4ede4150e1d6bc0.asciidoc 0000664 0000000 0000000 00000004531 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-create-roles.asciidoc:125
[source, python]
----
resp = client.security.bulk_put_role(
roles={
"my_admin_role": {
"cluster": [
"all"
],
"indices": [
{
"names": [
"index1",
"index2"
],
"privileges": [
"all"
],
"field_security": {
"grant": [
"title",
"body"
]
},
"query": "{\"match\": {\"title\": \"foo\"}}"
}
],
"applications": [
{
"application": "myapp",
"privileges": [
"admin",
"read"
],
"resources": [
"*"
]
}
],
"run_as": [
"other_user"
],
"metadata": {
"version": 1
}
},
"my_user_role": {
"cluster": [
"all"
],
"indices": [
{
"names": [
"index1"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"title",
"body"
]
},
"query": "{\"match\": {\"title\": \"foo\"}}"
}
],
"applications": [
{
"application": "myapp",
"privileges": [
"admin",
"read"
],
"resources": [
"*"
]
}
],
"run_as": [
"other_user"
],
"metadata": {
"version": 1
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/63cc960215ae83b359c12df3c0993bfa.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-index.asciidoc:136
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index": {
"number_of_shards": 3,
"number_of_replicas": 2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/63e20883732ec30b5400046be2efb0f1.asciidoc 0000664 0000000 0000000 00000000255 14766462667 0026435 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/flush.asciidoc:127
[source, python]
----
resp = client.indices.flush(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/63ecdab34940af053acc409164914c32.asciidoc 0000664 0000000 0000000 00000003353 14766462667 0026523 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/sparse-vector.asciidoc:63
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"text": {
"type": "text",
"analyzer": "standard"
},
"impact": {
"type": "sparse_vector"
},
"positive": {
"type": "sparse_vector"
},
"negative": {
"type": "sparse_vector"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
document={
"text": "I had some terribly delicious carrots.",
"impact": [
{
"I": 0.55,
"had": 0.4,
"some": 0.28,
"terribly": 0.01,
"delicious": 1.2,
"carrots": 0.8
},
{
"I": 0.54,
"had": 0.4,
"some": 0.28,
"terribly": 2.01,
"delicious": 0.02,
"carrots": 0.4
}
],
"positive": {
"I": 0.55,
"had": 0.4,
"some": 0.28,
"terribly": 0.01,
"delicious": 1.2,
"carrots": 0.8
},
"negative": {
"I": 0.54,
"had": 0.4,
"some": 0.28,
"terribly": 2.01,
"delicious": 0.02,
"carrots": 0.4
}
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"term": {
"impact": {
"value": "delicious"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/640621cea39cdeeb76fbc95bff31a18d.asciidoc 0000664 0000000 0000000 00000001321 14766462667 0027115 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-last-sync-api.asciidoc:122
[source, python]
----
resp = client.connector.last_sync(
connector_id="my-connector",
last_access_control_sync_error="Houston, we have a problem!",
last_access_control_sync_scheduled_at="2023-11-09T15:13:08.231Z",
last_access_control_sync_status="pending",
last_deleted_document_count=42,
last_incremental_sync_scheduled_at="2023-11-09T15:13:08.231Z",
last_indexed_document_count=42,
last_sync_error="Houston, we have a problem!",
last_sync_scheduled_at="2024-11-09T15:13:08.231Z",
last_sync_status="completed",
last_synced="2024-11-09T15:13:08.231Z",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/640a89d0b39630269433425ff476faf3.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026331 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// upgrade/archived-settings.asciidoc:32
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"archived.*": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/640da6dd719a34975b5627dfa5fcdd55.asciidoc 0000664 0000000 0000000 00000000367 14766462667 0026721 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:487
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"xpack.monitoring.collection.enabled": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/640dbeecb736bd25f6f2b392b76a7531.asciidoc 0000664 0000000 0000000 00000000253 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/stats.asciidoc:1914
[source, python]
----
resp = client.cluster.stats(
include_remotes=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/640e4f2c2d29f9851320a70927bd7a6c.asciidoc 0000664 0000000 0000000 00000000357 14766462667 0026466 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-with-existing-indices.asciidoc:185
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"indices.lifecycle.poll_interval": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/641009f2147e1ca56215c701f45c970b.asciidoc 0000664 0000000 0000000 00000001026 14766462667 0026302 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geotilegrid-aggregation.asciidoc:185
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggregations={
"tiles-in-bounds": {
"geotile_grid": {
"field": "location",
"precision": 22,
"bounds": {
"top_left": "POINT (4.9 52.4)",
"bottom_right": "POINT (5.0 52.3)"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6414b9276ba1c63898c3ff5cbe03c54e.asciidoc 0000664 0000000 0000000 00000000225 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/segments.asciidoc:134
[source, python]
----
resp = client.indices.segments()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/641f75862c70e25e79d249d9e0a79f03.asciidoc 0000664 0000000 0000000 00000001506 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/nested-query.asciidoc:41
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"nested": {
"path": "obj1",
"query": {
"bool": {
"must": [
{
"match": {
"obj1.name": "blue"
}
},
{
"range": {
"obj1.count": {
"gt": 5
}
}
}
]
}
},
"score_mode": "avg"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/642161d70dacf7d153767d37d3726838.asciidoc 0000664 0000000 0000000 00000000305 14766462667 0026331 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-index-caps.asciidoc:171
[source, python]
----
resp = client.rollup.get_rollup_index_caps(
index="*_rollup",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/642c0c1c76e9bf226cd216ebae9ab958.asciidoc 0000664 0000000 0000000 00000002204 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keep-words-tokenfilter.asciidoc:118
[source, python]
----
resp = client.indices.create(
index="keep_words_example",
settings={
"analysis": {
"analyzer": {
"standard_keep_word_array": {
"tokenizer": "standard",
"filter": [
"keep_word_array"
]
},
"standard_keep_word_file": {
"tokenizer": "standard",
"filter": [
"keep_word_file"
]
}
},
"filter": {
"keep_word_array": {
"type": "keep",
"keep_words": [
"one",
"two",
"three"
]
},
"keep_word_file": {
"type": "keep",
"keep_words_path": "analysis/example_word_list.txt"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/643b9506d1129d5215f9a1bb0b509aba.asciidoc 0000664 0000000 0000000 00000001414 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:316
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"full_name": {
"path_match": "name.*",
"path_unmatch": "*.middle",
"mapping": {
"type": "text",
"copy_to": "full_name"
}
}
}
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"name": {
"first": "John",
"middle": "Winston",
"last": "Lennon"
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/643e19c3b6ac1134554dd890e2249c2b.asciidoc 0000664 0000000 0000000 00000000552 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/logs.asciidoc:20
[source, python]
----
resp = client.indices.put_index_template(
name="my-index-template",
index_patterns=[
"logs-*"
],
data_stream={},
template={
"settings": {
"index.mode": "logsdb"
}
},
priority=101,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/645433e8e479e5d71c100f66dd2de5d0.asciidoc 0000664 0000000 0000000 00000044404 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:256
[source, python]
----
resp = client.bulk(
index="my-data-stream",
refresh=True,
pipeline="my-timestamp-pipeline",
operations=[
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:49:00Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 91153,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 463314616
},
"usage": {
"bytes": 307007078,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 585236
},
"rss": {
"bytes": 102728
},
"pagefaults": 120901,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:45:50Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 124501,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 982546514
},
"usage": {
"bytes": 360035574,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1339884
},
"rss": {
"bytes": 381174
},
"pagefaults": 178473,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:50Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 38907,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 862723768
},
"usage": {
"bytes": 379572388,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 431227
},
"rss": {
"bytes": 386580
},
"pagefaults": 233166,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:40Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 86706,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 567160996
},
"usage": {
"bytes": 103266017,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1724908
},
"rss": {
"bytes": 105431
},
"pagefaults": 233166,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:44:00Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 150069,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 639054643
},
"usage": {
"bytes": 265142477,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1786511
},
"rss": {
"bytes": 189235
},
"pagefaults": 138172,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:42:40Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 82260,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 854735585
},
"usage": {
"bytes": 309798052,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 924058
},
"rss": {
"bytes": 110838
},
"pagefaults": 259073,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:42:10Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 153404,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 279586406
},
"usage": {
"bytes": 214904955,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1047265
},
"rss": {
"bytes": 91914
},
"pagefaults": 302252,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:40:20Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 125613,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 822782853
},
"usage": {
"bytes": 100475044,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 2109932
},
"rss": {
"bytes": 278446
},
"pagefaults": 74843,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:40:10Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 100046,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 567160996
},
"usage": {
"bytes": 362826547,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 1986724
},
"rss": {
"bytes": 402801
},
"pagefaults": 296495,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
},
{
"create": {}
},
{
"@timestamp": "2022-06-21T15:38:30Z",
"kubernetes": {
"host": "gke-apps-0",
"node": "gke-apps-0-0",
"pod": "gke-apps-0-0-0",
"container": {
"cpu": {
"usage": {
"nanocores": 40018,
"core": {
"ns": 12828317850
},
"node": {
"pct": 0.0000277905
},
"limit": {
"pct": 0.0000277905
}
}
},
"memory": {
"available": {
"bytes": 1062428344
},
"usage": {
"bytes": 265142477,
"node": {
"pct": 0.01770037710617187
},
"limit": {
"pct": 0.00009923134671484496
}
},
"workingset": {
"bytes": 2294743
},
"rss": {
"bytes": 340623
},
"pagefaults": 224530,
"majorpagefaults": 0
},
"start_time": "2021-03-30T07:59:06Z",
"name": "container-name-44"
},
"namespace": "namespace26"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64622409407316d2d47094e692d9b516.asciidoc 0000664 0000000 0000000 00000001214 14766462667 0026106 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/evaluate-dfanalytics.asciidoc:401
[source, python]
----
resp = client.ml.evaluate_data_frame(
index="student_performance_mathematics_reg",
query={
"term": {
"ml.is_training": {
"value": False
}
}
},
evaluation={
"regression": {
"actual_field": "G3",
"predicted_field": "ml.G3_prediction",
"metrics": {
"r_squared": {},
"mse": {},
"msle": {},
"huber": {}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6464124d1677f4552ddddd95a340ca3a.asciidoc 0000664 0000000 0000000 00000001245 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:196
[source, python]
----
resp = client.index(
index="library",
refresh=True,
document={
"title": "Book #1",
"rating": 200.1
},
)
print(resp)
resp1 = client.index(
index="library",
refresh=True,
document={
"title": "Book #2",
"rating": 1.7
},
)
print(resp1)
resp2 = client.index(
index="library",
refresh=True,
document={
"title": "Book #3",
"rating": 0.1
},
)
print(resp2)
resp3 = client.search(
filter_path="hits.hits._source",
source="title",
sort="rating:desc",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/646d71869f1a18c5bede7759559bfc47.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-field-mapping.asciidoc:242
[source, python]
----
resp = client.indices.get_field_mapping(
index="_all",
fields="message",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6490d89a4e43cac5e6b9bc19840d5478.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/fingerprint-analyzer.asciidoc:19
[source, python]
----
resp = client.indices.analyze(
analyzer="fingerprint",
text="Yes yes, Gödel said this sentence is consistent and.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64a6fb4bcb8cfea139a0e5d3765c063a.asciidoc 0000664 0000000 0000000 00000000347 14766462667 0027034 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/translate.asciidoc:9
[source, python]
----
resp = client.sql.translate(
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=10,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64a79861225553799b26e118d7851dcc.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0026264 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/error-handling.asciidoc:61
[source, python]
----
resp = client.ilm.explain_lifecycle(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64aff98cf477555e7411714c17006572.asciidoc 0000664 0000000 0000000 00000000454 14766462667 0026261 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/range-query.asciidoc:150
[source, python]
----
resp = client.search(
query={
"range": {
"timestamp": {
"gte": "now-1d/d",
"lte": "now/d"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64c572abc23394a77b6cca0b5368ee1d.asciidoc 0000664 0000000 0000000 00000000247 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// features/apis/get-features-api.asciidoc:18
[source, python]
----
resp = client.features.get_features()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64c804869ddfbcb9075817d0bbf71b5c.asciidoc 0000664 0000000 0000000 00000001045 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:592
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
params={
"elser": True,
"query_string": "where is the best mountain climbing?",
"elser_fields": [
{
"name": "title",
"boost": 1
},
{
"name": "description",
"boost": 1
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64ca2ccb79a8f4add5b8fe2d3322ae92.asciidoc 0000664 0000000 0000000 00000000467 14766462667 0027125 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/avg-aggregation.asciidoc:13
[source, python]
----
resp = client.search(
index="exams",
size="0",
aggs={
"avg_grade": {
"avg": {
"field": "grade"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64d24f4b2a57dba48092dafe3eb68ad1.asciidoc 0000664 0000000 0000000 00000000607 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-get.asciidoc:245
[source, python]
----
resp = client.mget(
index="test",
stored_fields="field1,field2",
docs=[
{
"_id": "1"
},
{
"_id": "2",
"stored_fields": [
"field3",
"field4"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/64ffaa6814ec1ec4f59b8f33b47cffb4.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0027132 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// upgrade/archived-settings.asciidoc:73
[source, python]
----
resp = client.indices.put_settings(
index="my-index",
settings={
"archived.*": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/650a0fb27c66a790c4687267423af1da.asciidoc 0000664 0000000 0000000 00000000673 14766462667 0026463 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:104
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"remove": {
"index": "logs-nginx.access-prod",
"alias": "logs"
}
},
{
"add": {
"index": "logs-my_app-default",
"alias": "logs"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6521c3578dc4ad4a6db697700986e78e.asciidoc 0000664 0000000 0000000 00000001665 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/context-suggest.asciidoc:315
[source, python]
----
resp = client.search(
index="place",
pretty=True,
suggest={
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"location": [
{
"lat": 43.6624803,
"lon": -79.3863353,
"precision": 2
},
{
"context": {
"lat": 43.6624803,
"lon": -79.3863353
},
"boost": 2
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/653c0d0ef146c997ef6bc6450d4f5f94.asciidoc 0000664 0000000 0000000 00000001012 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:700
[source, python]
----
resp = client.search(
aggs={
"actors": {
"terms": {
"field": "actors",
"size": 10
},
"aggs": {
"costars": {
"terms": {
"field": "actors",
"size": 5
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/654882f545eca8d7047695f867c63072.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026274 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/stop-transform.asciidoc:87
[source, python]
----
resp = client.transform.stop_transform(
transform_id="ecommerce_transform",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/65578c390837cb4c0fcc77fb17857714.asciidoc 0000664 0000000 0000000 00000001177 14766462667 0026433 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline.asciidoc:92
[source, python]
----
resp = client.search(
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"max_monthly_sales": {
"max_bucket": {
"buckets_path": "sales_per_month>sales"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/657cf67bbc48f3b8c7fa15e275a5ef72.asciidoc 0000664 0000000 0000000 00000000624 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/ignore-missing-component-templates.asciidoc:14
[source, python]
----
resp = client.cluster.put_component_template(
name="logs-foo_component1",
template={
"mappings": {
"properties": {
"host.name": {
"type": "keyword"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/658842bf41e0fcb7969937155946a0ff.asciidoc 0000664 0000000 0000000 00000000630 14766462667 0026431 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:157
[source, python]
----
resp = client.security.put_role(
name="slm-read-only",
cluster=[
"read_slm"
],
indices=[
{
"names": [
".slm-history-*"
],
"privileges": [
"read"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/65b6185356f16f2f0d84bc5aee2ed0fc.asciidoc 0000664 0000000 0000000 00000000547 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/sparse-vector-query.asciidoc:26
[source, python]
----
resp = client.search(
query={
"sparse_vector": {
"field": "ml.tokens",
"inference_id": "the inference ID to produce the token weights",
"query": "the query string"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/65c671fbecdb5b0d75c13d63f87e36f0.asciidoc 0000664 0000000 0000000 00000001372 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geodistance-aggregation.asciidoc:149
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggs={
"rings_around_amsterdam": {
"geo_distance": {
"field": "location",
"origin": "POINT (4.894 52.3760)",
"ranges": [
{
"to": 100000
},
{
"from": 100000,
"to": 300000
},
{
"from": 300000
}
],
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6606d46685d10377b996b5f20f1229b5.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026252 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-index-name-api.asciidoc:82
[source, python]
----
resp = client.connector.update_index_name(
connector_id="my-connector",
index_name="data-from-my-google-drive",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6636701d31b0c9eb8316f1f8e99cc918.asciidoc 0000664 0000000 0000000 00000001350 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/scripted-metric-aggregation.asciidoc:19
[source, python]
----
resp = client.search(
index="ledger",
size="0",
query={
"match_all": {}
},
aggs={
"profit": {
"scripted_metric": {
"init_script": "state.transactions = []",
"map_script": "state.transactions.add(doc.type.value == 'sale' ? doc.amount.value : -1 * doc.amount.value)",
"combine_script": "double profit = 0; for (t in state.transactions) { profit += t } return profit",
"reduce_script": "double profit = 0; for (a in states) { profit += a } return profit"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/66539dc6011dd2e0282cf81db1f3df27.asciidoc 0000664 0000000 0000000 00000000243 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat.asciidoc:91
[source, python]
----
resp = client.cat.nodes(
h="ip,port,heapPercent,name",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/666c420fe61fa122386da3c356a64943.asciidoc 0000664 0000000 0000000 00000001075 14766462667 0026400 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:602
[source, python]
----
resp = client.search(
query={
"term": {
"user": "kimchy"
}
},
sort={
"_script": {
"type": "number",
"script": {
"lang": "painless",
"source": "doc['field_name'].value * params.factor",
"params": {
"factor": 1.1
}
},
"order": "asc"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6689aa213884196b47a6f482d4993749.asciidoc 0000664 0000000 0000000 00000000714 14766462667 0026223 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/put-pipeline.asciidoc:17
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline-id",
description="My optional pipeline description",
processors=[
{
"set": {
"description": "My optional processor description",
"field": "my-keyword-field",
"value": "foo"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/66915e95b723ee2f6e5164a94b8f98c1.asciidoc 0000664 0000000 0000000 00000000365 14766462667 0026517 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/create-index-from-source.asciidoc:85
[source, python]
----
resp = client.indices.create_from(
source="my-index",
dest="my-new-index",
create_from=None,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6693f0ffa0de3229b5dedda197810e70.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026701 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1368
[source, python]
----
resp = client.eql.get(
id="FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
keep_alive="5d",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/669773766b041be768003055ad523038.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0026103 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/alias-privileges.asciidoc:47
[source, python]
----
resp = client.get(
index=".ds-my-data-stream-2099.03.08-000002",
id="2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6705eca2095ade294548cfb25bf2dd86.asciidoc 0000664 0000000 0000000 00000000417 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/diagnose-unassigned-shards.asciidoc:166
[source, python]
----
resp = client.cat.shards(
v=True,
h="index,shard,prirep,state,node,unassigned.reason",
s="state",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/672d30eb3af573140d966e88b14814f8.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/date-index-name.asciidoc:43
[source, python]
----
resp = client.index(
index="my-index",
id="1",
pipeline="monthlyindex",
document={
"date1": "2016-04-25T12:02:01.789Z"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6742a8cd0b7b4c1c325ce2f22faf6cb4.asciidoc 0000664 0000000 0000000 00000000716 14766462667 0027026 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/categorize-text-aggregation.asciidoc:213
[source, python]
----
resp = client.search(
index="log-messages",
filter_path="aggregations",
aggs={
"categories": {
"categorize_text": {
"field": "message",
"categorization_filters": [
"\\w+\\_\\d{3}"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/674bb755111c6fbaa4c5ac759395c122.asciidoc 0000664 0000000 0000000 00000000562 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:132
[source, python]
----
resp = client.indices.get_settings(
index="my-index",
flat_settings=True,
include_defaults=True,
)
print(resp)
resp1 = client.cluster.get_settings(
flat_settings=True,
include_defaults=True,
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/67967388db610dcb9d24fb59ede348d8.asciidoc 0000664 0000000 0000000 00000000467 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/min-aggregation.asciidoc:17
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"min_price": {
"min": {
"field": "price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/67a1f31cf60773a2378c2c30723c4b96.asciidoc 0000664 0000000 0000000 00000000732 14766462667 0026376 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-rank-aggregation.asciidoc:216
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_ranks": {
"percentile_ranks": {
"field": "load_time",
"values": [
500,
600
],
"missing": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/67a490d749a0c3bb16a266663423893d.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026325 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/getting-started.asciidoc:202
[source, python]
----
resp = client.watcher.delete_watch(
id="log_error_watch",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/67a55ac3aaee09f4aeeb7d2763da3335.asciidoc 0000664 0000000 0000000 00000003517 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geobounds-aggregation.asciidoc:104
[source, python]
----
resp = client.indices.create(
index="places",
mappings={
"properties": {
"geometry": {
"type": "geo_shape"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="places",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"name": "NEMO Science Museum",
"geometry": "POINT(4.912350 52.374081)"
},
{
"index": {
"_id": 2
}
},
{
"name": "Sportpark De Weeren",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
4.965305328369141,
52.39347642069457
],
[
4.966979026794433,
52.391721758934835
],
[
4.969425201416015,
52.39238958618537
],
[
4.967944622039794,
52.39420969150824
],
[
4.965305328369141,
52.39347642069457
]
]
]
}
}
],
)
print(resp1)
resp2 = client.search(
index="places",
size="0",
aggs={
"viewport": {
"geo_bounds": {
"field": "geometry"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/67aac8882fa476db8a5878b67ea08eb3.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/repo-analysis-api.asciidoc:32
[source, python]
----
resp = client.perform_request(
"POST",
"/_snapshot/my_repository/_analyze",
params={
"blob_count": "10",
"max_blob_size": "1mb",
"timeout": "120s"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/67b71a95b6fe6c83faae51ea038a1bf1.asciidoc 0000664 0000000 0000000 00000000352 14766462667 0027033 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:407
[source, python]
----
resp = client.esql.async_query_delete(
id="FmdMX2pIang3UWhLRU5QS0lqdlppYncaMUpYQ05oSkpTc3kwZ21EdC1tbFJXQToxOTI=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/67bab07fda27ef77e3bc948211051a33.asciidoc 0000664 0000000 0000000 00000000407 14766462667 0026611 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/hotspotting.asciidoc:160
[source, python]
----
resp = client.cat.thread_pool(
thread_pool_patterns="write,search",
v=True,
s="n,nn",
h="n,nn,q,a,r,c",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/67c3808751223eef69a57e6fd02ddf4f.asciidoc 0000664 0000000 0000000 00000001236 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/mlt-query.asciidoc:38
[source, python]
----
resp = client.search(
query={
"more_like_this": {
"fields": [
"title",
"description"
],
"like": [
{
"_index": "imdb",
"_id": "1"
},
{
"_index": "imdb",
"_id": "2"
},
"and potentially some more text here as well"
],
"min_term_freq": 1,
"max_query_terms": 12
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/67ffa135c50c43d6788636c88078c7d1.asciidoc 0000664 0000000 0000000 00000000756 14766462667 0026435 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/simulate-pipeline.asciidoc:156
[source, python]
----
resp = client.ingest.simulate(
id="my-pipeline-id",
docs=[
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/682336e5232c9ad3d866cb203d1c58c1.asciidoc 0000664 0000000 0000000 00000001037 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:135
[source, python]
----
resp = client.indices.create(
index="azure-openai-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 1536,
"element_type": "float",
"similarity": "dot_product"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6843d859e2965d17cad4f033c81db83f.asciidoc 0000664 0000000 0000000 00000000770 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:351
[source, python]
----
resp = client.indices.put_index_template(
name="my-data-stream-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
priority=500,
template={
"settings": {
"sort.field": [
"@timestamp"
],
"sort.order": [
"desc"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6856f7c6a732ab55ca71c1ee2ec2bbad.asciidoc 0000664 0000000 0000000 00000002734 14766462667 0027115 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/max-aggregation.asciidoc:126
[source, python]
----
resp = client.indices.create(
index="metrics_index",
mappings={
"properties": {
"latency_histo": {
"type": "histogram"
}
}
},
)
print(resp)
resp1 = client.index(
index="metrics_index",
id="1",
refresh=True,
document={
"network.name": "net-1",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
3,
7,
23,
12,
6
]
}
},
)
print(resp1)
resp2 = client.index(
index="metrics_index",
id="2",
refresh=True,
document={
"network.name": "net-2",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
8,
17,
8,
7,
6
]
}
},
)
print(resp2)
resp3 = client.search(
index="metrics_index",
size="0",
filter_path="aggregations",
aggs={
"max_latency": {
"max": {
"field": "latency_histo"
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/6859530dd9d85e59bd33a53ec96a3836.asciidoc 0000664 0000000 0000000 00000000752 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/match-enrich-policy-type-ex.asciidoc:20
[source, python]
----
resp = client.index(
index="users",
id="1",
refresh="wait_for",
document={
"email": "mardy.brown@asciidocsmith.com",
"first_name": "Mardy",
"last_name": "Brown",
"city": "New Orleans",
"county": "Orleans",
"state": "LA",
"zip": 70116,
"web": "mardy.asciidocsmith.com"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/686bc640b877de845c46bef372a9866c.asciidoc 0000664 0000000 0000000 00000001513 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/parent-aggregation.asciidoc:95
[source, python]
----
resp = client.search(
index="parent_example",
size="0",
aggs={
"top-names": {
"terms": {
"field": "owner.display_name.keyword",
"size": 10
},
"aggs": {
"to-questions": {
"parent": {
"type": "answer"
},
"aggs": {
"top-tags": {
"terms": {
"field": "tags.keyword",
"size": 10
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/68721288dc9ad8aa1b55099b4d303051.asciidoc 0000664 0000000 0000000 00000000561 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:534
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "quick brown f",
"type": "bool_prefix",
"fields": [
"subject",
"message"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/68738b4fd0dda177022be45be95b4c84.asciidoc 0000664 0000000 0000000 00000000336 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:208
[source, python]
----
resp = client.reindex_rethrottle(
task_id="r1A2WoRbTwKZ516z6NEs5A:36619",
requests_per_second="-1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6884454f57c3a41059037ea762f48d77.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026265 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/standard-analyzer.asciidoc:17
[source, python]
----
resp = client.indices.analyze(
analyzer="standard",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/68a891f609ca3a379d2d64e4914f3067.asciidoc 0000664 0000000 0000000 00000000417 14766462667 0026423 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/kstem-tokenfilter.asciidoc:29
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"kstem"
],
text="the foxes jumping quickly",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/68b64313bf89ec3f2c645da61999dbb4.asciidoc 0000664 0000000 0000000 00000000251 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-info.asciidoc:226
[source, python]
----
resp = client.nodes.info(
node_id="plugins",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/68cb8a452e780ca78b0cb761be3629af.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:714
[source, python]
----
resp = client.search(
stored_fields="_none_",
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/68d7f7d4d268ee98caead5aef19933d6.asciidoc 0000664 0000000 0000000 00000002675 14766462667 0027110 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/tsds-reindex.asciidoc:168
[source, python]
----
resp = client.cluster.put_component_template(
name="destination_template",
template={
"settings": {
"index": {
"number_of_replicas": 0,
"number_of_shards": 4,
"mode": "time_series",
"routing_path": [
"metricset"
],
"time_series": {
"end_time": "2023-09-01T14:00:00.000Z",
"start_time": "2023-09-01T06:00:00.000Z"
}
}
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"metricset": {
"type": "keyword",
"time_series_dimension": True
},
"k8s": {
"properties": {
"tx": {
"type": "long"
},
"rx": {
"type": "long"
}
}
}
}
}
},
)
print(resp)
resp1 = client.indices.put_index_template(
name="2",
index_patterns=[
"k9s*"
],
composed_of=[
"destination_template"
],
data_stream={},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/691fe20d467324ed43a36fd15852c492.asciidoc 0000664 0000000 0000000 00000000500 14766462667 0026400 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/uni-directional-disaster-recovery.asciidoc:174
[source, python]
----
resp = client.ccr.follow(
index="kibana_sample_data_ecommerce",
wait_for_active_shards="1",
remote_cluster="clusterB",
leader_index="kibana_sample_data_ecommerce2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/692606cc6d6462becc321d92961a3bac.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// text-structure/apis/test-grok-pattern.asciidoc:60
[source, python]
----
resp = client.text_structure.test_grok_pattern(
grok_pattern="Hello %{WORD:first_name} %{WORD:last_name}",
text=[
"Hello John Doe",
"this does not match"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69541f0bb81ab3797926bb2a00607cda.asciidoc 0000664 0000000 0000000 00000000701 14766462667 0026523 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:748
[source, python]
----
resp = client.inference.put(
task_type="rerank",
inference_id="my-msmarco-minilm-model",
inference_config={
"service": "elasticsearch",
"service_settings": {
"num_allocations": 1,
"num_threads": 1,
"model_id": "cross-encoder__ms-marco-minilm-l-6-v2"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69582847099ee62ed34feddfaba83ef6.asciidoc 0000664 0000000 0000000 00000000603 14766462667 0027014 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/histogram-aggregation.asciidoc:307
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"quantity": {
"histogram": {
"field": "quantity",
"interval": 10,
"missing": 0
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/698e0a2b67ba7842caa801d9ef46ebe3.asciidoc 0000664 0000000 0000000 00000001010 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:511
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"require_field_match": False,
"fields": {
"body": {
"pre_tags": [
""
],
"post_tags": [
""
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69a08e7bdcc616f3bdcb8ae842d9e30e.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0027124 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:360
[source, python]
----
resp = client.get(
index="my-index-000001",
id="1",
stored_fields="tags,counter",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69ab708fe65a75f870223d2289c3d171.asciidoc 0000664 0000000 0000000 00000001350 14766462667 0026412 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/redact.asciidoc:107
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"description": "Hide my IP",
"processors": [
{
"redact": {
"field": "message",
"patterns": [
"%{IP:REDACTED}",
"%{EMAILADDRESS:REDACTED}"
],
"prefix": "*",
"suffix": "*"
}
}
]
},
docs=[
{
"_source": {
"message": "55.3.244.1 GET /index.html 15824 0.043 test@elastic.co"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69c07cfdf8054c301cd6186c5d71aa02.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0026606 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:350
[source, python]
----
resp = client.update_by_query(
index="my-index-000001,my-index-000002",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69d5710bdec73041c66f21d5f96637e8.asciidoc 0000664 0000000 0000000 00000000511 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:216
[source, python]
----
resp = client.indices.create(
index="index_long",
mappings={
"properties": {
"field": {
"type": "date_nanos"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69d9b8fd364596aa37eae6864d8a6d89.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/getting-started.asciidoc:61
[source, python]
----
resp = client.search(
index=".watcher-history*",
pretty=True,
sort=[
{
"result.execution_time": "desc"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69daf5ec2a9bc07096e1833286c36076.asciidoc 0000664 0000000 0000000 00000000745 14766462667 0026500 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-tutorial.asciidoc:334
[source, python]
----
resp = client.indices.put_index_template(
name="timeseries_template",
index_patterns=[
"timeseries-*"
],
template={
"settings": {
"number_of_shards": 1,
"number_of_replicas": 1,
"index.lifecycle.name": "timeseries_policy",
"index.lifecycle.rollover_alias": "timeseries"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/69f8b0f2a9ba47e11f363d788cee9d6d.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0027013 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/deprecation.asciidoc:146
[source, python]
----
resp = client.migration.deprecations(
index="logstash-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6a1702dd50690cae833572e48a0ddf25.asciidoc 0000664 0000000 0000000 00000000507 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:33
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "Will Smith",
"fields": [
"title",
"*_name"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6a350a17701e8c8158407191f2718b66.asciidoc 0000664 0000000 0000000 00000000272 14766462667 0026162 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/post-unfollow.asciidoc:80
[source, python]
----
resp = client.ccr.unfollow(
index="follower_index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6a3a578ce37fb2c63ccfab7f75db9bae.asciidoc 0000664 0000000 0000000 00000000456 14766462667 0027272 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:295
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"ingest.geoip.downloader.enabled": False,
"indices.lifecycle.history_index_enabled": False
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6a3a86ff58e5f20950d429cf2832c229.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/get-pipeline.asciidoc:82
[source, python]
----
resp = client.ingest.get_pipeline(
id="my-pipeline-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6a3f06962cceb3dfd3cd4fb5c679fa75.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0027131 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/mapping-charfilter.asciidoc:141
[source, python]
----
resp = client.indices.analyze(
index="my-index-000001",
tokenizer="keyword",
char_filter=[
"my_mappings_char_filter"
],
text="I'm delighted about it :(",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6a50c1c53673fe9cc3cbda38a2853cdd.asciidoc 0000664 0000000 0000000 00000000347 14766462667 0027036 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:683
[source, python]
----
resp = client.sql.delete_async(
id="FmdMX2pIang3UWhLRU5QS0lqdlppYncaMUpYQ05oSkpTc3kwZ21EdC1tbFJXQToxOTI=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6a55dbba114c6c1408474f7e9cfdbb94.asciidoc 0000664 0000000 0000000 00000000555 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/register-repository.asciidoc:167
[source, python]
----
resp = client.snapshot.create_repository(
name="my_unverified_backup",
verify=False,
repository={
"type": "fs",
"settings": {
"location": "my_unverified_backup_location"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6a9655fe22fa5db7a540c145bcf1fb31.asciidoc 0000664 0000000 0000000 00000001124 14766462667 0026744 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/aggregate-metric-double.asciidoc:133
[source, python]
----
resp = client.index(
index="stats-index",
id="1",
document={
"agg_metric": {
"min": -302.5,
"max": 702.3,
"sum": 200,
"value_count": 25
}
},
)
print(resp)
resp1 = client.index(
index="stats-index",
id="2",
document={
"agg_metric": {
"min": -93,
"max": 1702.3,
"sum": 300,
"value_count": 25
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/6a969ebe7490d93d35be895b14e5a42a.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:309
[source, python]
----
resp = client.indices.get(
index="logs-my_app-default",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6aa2941855d13f365f70aa8767ecb137.asciidoc 0000664 0000000 0000000 00000001762 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/multi-fields.asciidoc:10
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"city": {
"type": "text",
"fields": {
"raw": {
"type": "keyword"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"city": "New York"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"city": "York"
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"match": {
"city": "york"
}
},
sort={
"city.raw": "asc"
},
aggs={
"Cities": {
"terms": {
"field": "city.raw"
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/6aca241c0361d26f134712821e2d09a9.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026347 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/clean-up-repo-api.asciidoc:85
[source, python]
----
resp = client.snapshot.cleanup_repository(
name="my_repository",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6af9dc1c3240aa8e623ff3622bcb1b48.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0026741 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/allocation_filtering.asciidoc:70
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.exclude._ip": "192.168.2.*"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b0288acb739c4667d41339e5100c327.asciidoc 0000664 0000000 0000000 00000000470 14766462667 0026317 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-query.asciidoc:234
[source, python]
----
resp = client.search(
query={
"match": {
"message": {
"query": "this is a testt",
"fuzziness": "AUTO"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b0d492c0f50103fefeab385a7bebd01.asciidoc 0000664 0000000 0000000 00000000764 14766462667 0027022 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/constant-keyword.asciidoc:11
[source, python]
----
resp = client.indices.create(
index="logs-debug",
mappings={
"properties": {
"@timestamp": {
"type": "date"
},
"message": {
"type": "text"
},
"level": {
"type": "constant_keyword",
"value": "debug"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b104a66ab47fc1e1f24a5738f82feb4.asciidoc 0000664 0000000 0000000 00000000527 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/getting-started.asciidoc:288
[source, python]
----
resp = client.ccr.put_auto_follow_pattern(
name="beats",
remote_cluster="leader",
leader_index_patterns=[
"metricbeat-*",
"packetbeat-*"
],
follow_index_pattern="{{leader_index}}-copy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b1336ff477f91d4a0db0b06db546ff0.asciidoc 0000664 0000000 0000000 00000000225 14766462667 0026671 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/stop.asciidoc:51
[source, python]
----
resp = client.watcher.stop()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b1e837a8469eca2d03d5c36f5910f34.asciidoc 0000664 0000000 0000000 00000001244 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filter-aggregation.asciidoc:13
[source, python]
----
resp = client.search(
index="sales",
size="0",
filter_path="aggregations",
aggs={
"avg_price": {
"avg": {
"field": "price"
}
},
"t_shirts": {
"filter": {
"term": {
"type": "t-shirt"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b3dcde0656d3a96dbcfed1ec814e10a.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0027165 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shutdown/apis/shutdown-delete.asciidoc:71
[source, python]
----
resp = client.shutdown.delete_node(
node_id="USpTGYaBSIKbgSUJR2Z9lg",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b67c6121efb86ee100d40c2646f77b5.asciidoc 0000664 0000000 0000000 00000000556 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/slowlog.asciidoc:219
[source, python]
----
resp = client.indices.put_settings(
index="*",
settings={
"index.search.slowlog.include.user": True,
"index.search.slowlog.threshold.fetch.warn": "30s",
"index.search.slowlog.threshold.query.warn": "30s"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b6e275efe3d2aafe0fc3443f2c96868.asciidoc 0000664 0000000 0000000 00000000611 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:161
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "google-vertex-ai-embeddings",
"pipeline": "google_vertex_ai_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b6f5e0ab4ef523fc9a3a4a655848f64.asciidoc 0000664 0000000 0000000 00000000572 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/sparse-vector-query.asciidoc:44
[source, python]
----
resp = client.search(
query={
"sparse_vector": {
"field": "ml.tokens",
"query_vector": {
"token1": 0.5,
"token2": 0.3,
"token3": 0.2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b6fd0a5942dfb9762ad2790cf421a80.asciidoc 0000664 0000000 0000000 00000002356 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-client.asciidoc:363
[source, python]
----
resp = client.search_application.put(
name="my-example-app",
search_application={
"indices": [
"example-index"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"bool\": {\n \"must\": [\n {{#query}}\n {{/query}}\n ],\n \"filter\": {{#toJson}}_es_filters{{/toJson}}\n }\n },\n \"_source\": {\n \"includes\": [\"title\", \"plot\"]\n },\n \"aggs\": {{#toJson}}_es_aggs{{/toJson}},\n \"from\": {{from}},\n \"size\": {{size}},\n \"sort\": {{#toJson}}_es_sort_fields{{/toJson}}\n }\n ",
"params": {
"query": "",
"_es_filters": {},
"_es_aggs": {},
"_es_sort_fields": {},
"size": 10,
"from": 0
},
"dictionary": {}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b77795e9249c8d9865f7a49fd86a863.asciidoc 0000664 0000000 0000000 00000000464 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/range-query.asciidoc:16
[source, python]
----
resp = client.search(
query={
"range": {
"age": {
"gte": 10,
"lte": 20,
"boost": 2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6b8c5c8145c287c4fc535fa57ccf95a7.asciidoc 0000664 0000000 0000000 00000000407 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connector-sync-jobs-api.asciidoc:71
[source, python]
----
resp = client.perform_request(
"GET",
"/_connector/_sync_job",
params={
"status": "pending"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6ba332596f5eb29660c90ab2d480e7dc.asciidoc 0000664 0000000 0000000 00000001204 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template-v1.asciidoc:189
[source, python]
----
resp = client.indices.put_template(
name="template_1",
index_patterns=[
"te*"
],
order=0,
settings={
"number_of_shards": 1
},
mappings={
"_source": {
"enabled": False
}
},
)
print(resp)
resp1 = client.indices.put_template(
name="template_2",
index_patterns=[
"tes*"
],
order=1,
settings={
"number_of_shards": 1
},
mappings={
"_source": {
"enabled": True
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/6baf72c04d48cb04c2f8be609ff3b3b5.asciidoc 0000664 0000000 0000000 00000000716 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/semantic-text.asciidoc:132
[source, python]
----
resp = client.search(
index="test-index",
query={
"match": {
"my_semantic_field": "Which country is Paris in?"
}
},
highlight={
"fields": {
"my_semantic_field": {
"number_of_fragments": 2,
"order": "score"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6bbc613bd4f9aec1bbdbabf5db021d28.asciidoc 0000664 0000000 0000000 00000001244 14766462667 0027311 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:232
[source, python]
----
resp = client.search(
query={
"bool": {
"should": [
{
"match": {
"title": "quick brown fox"
}
},
{
"match": {
"title.original": "quick brown fox"
}
},
{
"match": {
"title.shingles": "quick brown fox"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6bfa0a9a50c4e94276c7d63af1c31d9e.asciidoc 0000664 0000000 0000000 00000002537 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/context-suggest.asciidoc:25
[source, python]
----
resp = client.indices.create(
index="place",
mappings={
"properties": {
"suggest": {
"type": "completion",
"contexts": [
{
"name": "place_type",
"type": "category"
},
{
"name": "location",
"type": "geo",
"precision": 4
}
]
}
}
},
)
print(resp)
resp1 = client.indices.create(
index="place_path_category",
mappings={
"properties": {
"suggest": {
"type": "completion",
"contexts": [
{
"name": "place_type",
"type": "category",
"path": "cat"
},
{
"name": "location",
"type": "geo",
"precision": 4,
"path": "loc"
}
]
},
"loc": {
"type": "geo_point"
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/6c00dae1a456ae5e854e98e895dca2ab.asciidoc 0000664 0000000 0000000 00000000761 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/function-score-query.asciidoc:137
[source, python]
----
resp = client.search(
query={
"function_score": {
"query": {
"match": {
"message": "elasticsearch"
}
},
"script_score": {
"script": {
"source": "Math.log(2 + doc['my-int'].value)"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6c0acbff2df9003ccaf4350c9e2e186e.asciidoc 0000664 0000000 0000000 00000001556 14766462667 0027116 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-polygon-query.asciidoc:62
[source, python]
----
resp = client.search(
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_polygon": {
"person.location": {
"points": [
[
-70,
40
],
[
-80,
30
],
[
-90,
20
]
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6c3f7c8601e8cc13d36eef98a5e2cb34.asciidoc 0000664 0000000 0000000 00000001515 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/nested-query.asciidoc:139
[source, python]
----
resp = client.indices.create(
index="drivers",
mappings={
"properties": {
"driver": {
"type": "nested",
"properties": {
"last_name": {
"type": "text"
},
"vehicle": {
"type": "nested",
"properties": {
"make": {
"type": "text"
},
"model": {
"type": "text"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6c70b022a8a74b887fe46e514feb38c0.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/recovery.asciidoc:18
[source, python]
----
resp = client.indices.recovery(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6c72460570307f23478100db04a84c8e.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026223 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-component-template.asciidoc:92
[source, python]
----
resp = client.cluster.get_component_template(
name="temp*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6c72f6791ba9223943f7556c5bfaa728.asciidoc 0000664 0000000 0000000 00000000710 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:58
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"user.id": "kimchy"
}
},
fields=[
"user.id",
"http.response.*",
{
"field": "@timestamp",
"format": "epoch_millis"
}
],
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6c8bf6d4d68b7756f953be4c07655337.asciidoc 0000664 0000000 0000000 00000000565 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-reload-secure-settings.asciidoc:69
[source, python]
----
resp = client.nodes.reload_secure_settings(
secure_settings_password="keystore-password",
)
print(resp)
resp1 = client.nodes.reload_secure_settings(
node_id="nodeId1,nodeId2",
secure_settings_password="keystore-password",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/6c927313867647e0ef3cd3a37cb410cc.asciidoc 0000664 0000000 0000000 00000000347 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-api-keys.asciidoc:185
[source, python]
----
resp = client.security.invalidate_api_key(
username="myuser",
realm_name="native1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6cb1dae368c945ecf7c9ec332a5743a2.asciidoc 0000664 0000000 0000000 00000001500 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/text.asciidoc:180
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"text": {
"type": "text",
"fields": {
"raw": {
"type": "keyword"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"text": [
"the quick brown fox",
"the quick brown fox",
"jumped over the lazy dog"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/6cd083045bf06e80b83889a939a18451.asciidoc 0000664 0000000 0000000 00000004052 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/nested.asciidoc:87
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"user": {
"type": "nested"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"group": "fans",
"user": [
{
"first": "John",
"last": "Smith"
},
{
"first": "Alice",
"last": "White"
}
]
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"nested": {
"path": "user",
"query": {
"bool": {
"must": [
{
"match": {
"user.first": "Alice"
}
},
{
"match": {
"user.last": "Smith"
}
}
]
}
}
}
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"nested": {
"path": "user",
"query": {
"bool": {
"must": [
{
"match": {
"user.first": "Alice"
}
},
{
"match": {
"user.last": "White"
}
}
]
}
},
"inner_hits": {
"highlight": {
"fields": {
"user.first": {}
}
}
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/6ce6cac9df216c52371c2e77e6e07ba1.asciidoc 0000664 0000000 0000000 00000003104 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/put-query-ruleset.asciidoc:123
[source, python]
----
resp = client.query_rules.put_ruleset(
ruleset_id="my-ruleset",
rules=[
{
"rule_id": "my-rule1",
"type": "pinned",
"criteria": [
{
"type": "contains",
"metadata": "user_query",
"values": [
"pugs",
"puggles"
]
},
{
"type": "exact",
"metadata": "user_country",
"values": [
"us"
]
}
],
"actions": {
"ids": [
"id1",
"id2"
]
}
},
{
"rule_id": "my-rule2",
"type": "exclude",
"criteria": [
{
"type": "fuzzy",
"metadata": "user_query",
"values": [
"rescue dogs"
]
}
],
"actions": {
"docs": [
{
"_index": "index1",
"_id": "id3"
},
{
"_index": "index2",
"_id": "id4"
}
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6ce8334def48552ba7d44025580d9105.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026403 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:242
[source, python]
----
resp = client.indices.create(
index="",
aliases={
"my-alias": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6cf3307c00f464c46475e352e067d714.asciidoc 0000664 0000000 0000000 00000001360 14766462667 0026320 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:103
[source, python]
----
resp = client.search(
index="my_geoshapes",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"pin.location": {
"top_left": {
"lat": 40.73,
"lon": -74.1
},
"bottom_right": {
"lat": 40.01,
"lon": -71.12
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6d48f83c4a36d0544d876d3eff48dcef.asciidoc 0000664 0000000 0000000 00000000250 14766462667 0027004 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:262
[source, python]
----
resp = client.slm.execute_retention()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6d81c749ff9554044ee5f3ad92dcb89a.asciidoc 0000664 0000000 0000000 00000002676 14766462667 0026742 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-tsds.asciidoc:58
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my-weather-sensor-lifecycle-policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_age": "1d",
"max_primary_shard_size": "50gb"
}
}
},
"warm": {
"min_age": "30d",
"actions": {
"shrink": {
"number_of_shards": 1
},
"forcemerge": {
"max_num_segments": 1
}
}
},
"cold": {
"min_age": "60d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"frozen": {
"min_age": "90d",
"actions": {
"searchable_snapshot": {
"snapshot_repository": "found-snapshots"
}
}
},
"delete": {
"min_age": "735d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6db118771354792646229e7a3c30c7e9.asciidoc 0000664 0000000 0000000 00000002501 14766462667 0026253 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:991
[source, python]
----
resp = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {}
},
{
"timestamp": 1516729294000,
"temperature": 200,
"voltage": 5.2,
"node": "a"
},
{
"index": {}
},
{
"timestamp": 1516642894000,
"temperature": 201,
"voltage": 5.8,
"node": "b"
},
{
"index": {}
},
{
"timestamp": 1516556494000,
"temperature": 202,
"voltage": 5.1,
"node": "a"
},
{
"index": {}
},
{
"timestamp": 1516470094000,
"temperature": 198,
"voltage": 5.6,
"node": "b"
},
{
"index": {}
},
{
"timestamp": 1516383694000,
"temperature": 200,
"voltage": 4.2,
"node": "c"
},
{
"index": {}
},
{
"timestamp": 1516297294000,
"temperature": 202,
"voltage": 4,
"node": "c"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6dbfe5565a95508e65d304131847f9fc.asciidoc 0000664 0000000 0000000 00000000556 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/edgengram-tokenfilter.asciidoc:34
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 2
}
],
text="the quick brown fox jumps",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6dcd3916679f6aa64f79524c75991ebd.asciidoc 0000664 0000000 0000000 00000000564 14766462667 0026604 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:248
[source, python]
----
resp = client.esql.query(
query="\n FROM library\n | EVAL year = DATE_EXTRACT(\"year\", release_date)\n | WHERE page_count > 300 AND author == \"Frank Herbert\"\n | STATS count = COUNT(*) by year\n | WHERE count > 0\n | LIMIT 5\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6dd2a107bc64fd6f058fb17c21640649.asciidoc 0000664 0000000 0000000 00000000341 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-tokens.asciidoc:216
[source, python]
----
resp = client.security.invalidate_token(
username="myuser",
realm_name="saml1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6dd4c02fe3d6b800648a04d3e2d29fc1.asciidoc 0000664 0000000 0000000 00000000363 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/delete-snapshot-api.asciidoc:78
[source, python]
----
resp = client.snapshot.delete(
repository="my_repository",
snapshot="snapshot_2,snapshot_3",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6ddd4e657efbf45def430a6419825796.asciidoc 0000664 0000000 0000000 00000000776 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-azure-ai-studio.asciidoc:185
[source, python]
----
resp = client.inference.put(
task_type="completion",
inference_id="azure_ai_studio_completion",
inference_config={
"service": "azureaistudio",
"service_settings": {
"api_key": "",
"target": "",
"provider": "",
"endpoint_type": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6e000496a1fa8b57148518eaad692f35.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026452 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-all-query.asciidoc:39
[source, python]
----
resp = client.search(
query={
"match_none": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6e0b675eff7ed73c09a76a415930a486.asciidoc 0000664 0000000 0000000 00000000633 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/parent-id-query.asciidoc:24
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my-join-field": {
"type": "join",
"relations": {
"my-parent": "my-child"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6e1157f3184fa192d47a3d0e3ea17a6c.asciidoc 0000664 0000000 0000000 00000001241 14766462667 0026606 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/unique-tokenfilter.asciidoc:130
[source, python]
----
resp = client.indices.create(
index="letter_unique_pos_example",
settings={
"analysis": {
"analyzer": {
"letter_unique_pos": {
"tokenizer": "letter",
"filter": [
"unique_pos"
]
}
},
"filter": {
"unique_pos": {
"type": "unique",
"only_on_same_position": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6e1ae8d6103e0b77f14fb0ea1bfb7ffa.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0027164 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:397
[source, python]
----
resp = client.index(
index="example",
document={
"location": "GEOMETRYCOLLECTION (POINT (1000.0 100.0), LINESTRING (1001.0 100.0, 1002.0 100.0))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6e498b9dc753b94abf2618c407fa5cd8.asciidoc 0000664 0000000 0000000 00000000504 14766462667 0026721 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:453
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": ".ml-anomalies-custom-example"
},
dest={
"index": ".reindexed-v9-ml-anomalies-custom-example"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6e6b78e6b689a5d6aa637271b6d084e2.asciidoc 0000664 0000000 0000000 00000002744 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:363
[source, python]
----
resp = client.search(
index="movies",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"sparse_vector": {
"field": "plot_embedding",
"inference_id": "my-elser-model",
"query": "films that explore psychological depths"
}
}
}
},
{
"standard": {
"query": {
"multi_match": {
"query": "crime",
"fields": [
"plot",
"title"
]
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
10,
22,
77
],
"k": 10,
"num_candidates": 10
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6e86225ed4a6e3be8078b83ef301f731.asciidoc 0000664 0000000 0000000 00000000550 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:66
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"percolate": {
"field": "query",
"document": {
"message": "A new bonsai tree in the office"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6ea062455229151e311869a81ee40252.asciidoc 0000664 0000000 0000000 00000001011 14766462667 0026140 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-multiple-indices.asciidoc:83
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
resp1 = client.search(
index="_all",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp1)
resp2 = client.search(
index="*",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/6edfc35a66afd9b884431fccf48fdbf5.asciidoc 0000664 0000000 0000000 00000000716 14766462667 0027227 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-with-synonyms.asciidoc:114
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"lowercase",
{
"type": "synonym_graph",
"synonyms": [
"pc => personal computer",
"computer, pc, laptop"
]
}
],
text="Check how PC synonyms work",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6eead05dd3b04722ef0ea5644c2e047d.asciidoc 0000664 0000000 0000000 00000002554 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/bucket-script-aggregation.asciidoc:50
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"total_sales": {
"sum": {
"field": "price"
}
},
"t-shirts": {
"filter": {
"term": {
"type": "t-shirt"
}
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"t-shirt-percentage": {
"bucket_script": {
"buckets_path": {
"tShirtSales": "t-shirts>sales",
"totalSales": "total_sales"
},
"script": "params.tShirtSales / params.totalSales * 100"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f0389ac52808df23bb6081a1acd4eed.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026743 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/built-in-users.asciidoc:158
[source, python]
----
resp = client.security.enable_user(
username="logstash_system",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f07152055e99416deb10e95b428b847.asciidoc 0000664 0000000 0000000 00000001273 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/edgengram-tokenfilter.asciidoc:199
[source, python]
----
resp = client.indices.create(
index="edge_ngram_custom_example",
settings={
"analysis": {
"analyzer": {
"default": {
"tokenizer": "whitespace",
"filter": [
"3_5_edgegrams"
]
}
},
"filter": {
"3_5_edgegrams": {
"type": "edge_ngram",
"min_gram": 3,
"max_gram": 5
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f34e27481460a95e59ffbacb76bd637.asciidoc 0000664 0000000 0000000 00000002547 14766462667 0026650 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/custom-analyzer.asciidoc:159
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"char_filter": [
"emoticons"
],
"tokenizer": "punctuation",
"filter": [
"lowercase",
"english_stop"
]
}
},
"tokenizer": {
"punctuation": {
"type": "pattern",
"pattern": "[ .,!?]"
}
},
"char_filter": {
"emoticons": {
"type": "mapping",
"mappings": [
":) => _happy_",
":( => _sad_"
]
}
},
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_custom_analyzer",
text="I'm a :) person, and you?",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/6f3b723bf6179b96c3413597ed7f49e1.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026504 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-update-api-keys.asciidoc:302
[source, python]
----
resp = client.security.bulk_update_api_keys(
ids=[
"VuaCfGcBCdbkQm-e5aOx",
"H3_AhoIBA9hmeQJdg7ij"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f48ab7cbb8a4a46d0e9272c07166eaf.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026761 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/apis/sql-translate-api.asciidoc:18
[source, python]
----
resp = client.sql.translate(
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=10,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f4cbebfd6d2cee54aa3e7a86a755ef8.asciidoc 0000664 0000000 0000000 00000001560 14766462667 0027276 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/knn-query.asciidoc:210
[source, python]
----
resp = client.search(
index="my-image-index",
size=3,
query={
"bool": {
"should": [
{
"match": {
"title": {
"query": "mountain lake",
"boost": 1
}
}
},
{
"knn": {
"field": "image-vector",
"query_vector": [
-5,
9,
-12
],
"k": 10,
"boost": 2
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f5adbd55a3a2760e7fe9d32df18b1a1.asciidoc 0000664 0000000 0000000 00000000527 14766462667 0027036 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/getting-started.asciidoc:114
[source, python]
----
resp = client.index(
index="logs",
document={
"timestamp": "2015-05-17T18:12:07.613Z",
"request": "GET index.html",
"status_code": 404,
"message": "Error: File not found"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f6d5a4a90e1265822628d4ced963639.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026417 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/field-mapping.asciidoc:63
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"create_date": "2015/09/02"
},
)
print(resp)
resp1 = client.indices.get_mapping(
index="my-index-000001",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/6f842819c50e8490080dd085e0c6aca3.asciidoc 0000664 0000000 0000000 00000000453 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/normalizer.asciidoc:125
[source, python]
----
resp = client.search(
index="index",
size=0,
aggs={
"foo_terms": {
"terms": {
"field": "foo"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f855bc92b4cc6e6a63f95bce1cb4441.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/logstash/get-pipeline.asciidoc:75
[source, python]
----
resp = client.logstash.get_pipeline(
id="my_pipeline",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f8a682c908b826ca90cadd9d2f582b4.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:670
[source, python]
----
resp = client.search(
stored_fields=[
"user",
"postDate"
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6f8bdca97e43aac75e32de655aa4314a.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:450
[source, python]
----
resp = client.connector.delete(
connector_id="my-connector-id&delete_sync_jobs=true",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6fa02c2ad485bbe91f44b321158250f3.asciidoc 0000664 0000000 0000000 00000001170 14766462667 0026517 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/search-as-you-type.asciidoc:87
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"multi_match": {
"query": "brown f",
"type": "bool_prefix",
"fields": [
"my_field",
"my_field._2gram",
"my_field._3gram"
]
}
},
highlight={
"fields": {
"my_field": {
"matched_fields": [
"my_field._index_prefix"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6fa570ae7039171e2ab722344ec1063f.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026444 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-field-mapping.asciidoc:20
[source, python]
----
resp = client.indices.get_field_mapping(
index="my-index-000001",
fields="user",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6fbb88f399618e1b47412082062ce2bd.asciidoc 0000664 0000000 0000000 00000002032 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:537
[source, python]
----
resp = client.transform.preview_transform(
source={
"index": "kibana_sample_data_logs"
},
pivot={
"group_by": {
"timestamp": {
"date_histogram": {
"field": "timestamp",
"fixed_interval": "1h"
}
}
},
"aggregations": {
"bytes.max": {
"max": {
"field": "bytes"
}
},
"top": {
"top_metrics": {
"metrics": [
{
"field": "clientip"
},
{
"field": "geo.src"
}
],
"sort": {
"bytes": "desc"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6fbbf40cab0187f544ff7bca31d18d57.asciidoc 0000664 0000000 0000000 00000002552 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:253
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "Polygon",
"coordinates": [
[
[
100,
0
],
[
101,
0
],
[
101,
1
],
[
100,
1
],
[
100,
0
]
],
[
[
100.2,
0.2
],
[
100.8,
0.2
],
[
100.8,
0.8
],
[
100.2,
0.8
],
[
100.2,
0.2
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6fc778e9a888b16b937c5c2a7a1ec140.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// searchable-snapshots/apis/clear-cache.asciidoc:75
[source, python]
----
resp = client.searchable_snapshots.clear_cache(
index="my-index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6fd82baa17a48e09e3d2eed514af7f46.asciidoc 0000664 0000000 0000000 00000003132 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:359
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "MultiLineString",
"coordinates": [
[
[
102,
2
],
[
103,
2
],
[
103,
3
],
[
102,
3
]
],
[
[
100,
0
],
[
101,
0
],
[
101,
1
],
[
100,
1
]
],
[
[
100.2,
0.2
],
[
100.8,
0.2
],
[
100.8,
0.8
],
[
100.2,
0.8
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6fe6c095c6995e0f2214f5f3bc85d74e.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/apis/delete-lifecycle.asciidoc:83
[source, python]
----
resp = client.indices.delete_data_lifecycle(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/6febf0e6883b23b15ac213abc4bac326.asciidoc 0000664 0000000 0000000 00000001051 14766462667 0027007 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/context-suggest.asciidoc:282
[source, python]
----
resp = client.search(
index="place",
suggest={
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"location": {
"lat": 43.662,
"lon": -79.38
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7011fcdd231804f9c3894154ae2c3fbc.asciidoc 0000664 0000000 0000000 00000000477 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/sparse-vector.asciidoc:14
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"text.tokens": {
"type": "sparse_vector"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/701f1fffc65e9e51c96aa60261e2eae3.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026761 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-cross-cluster-api-key.asciidoc:126
[source, python]
----
resp = client.security.get_api_key(
id="VuaCfGcBCdbkQm-e5aOx",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7021ddb273a3a00847324d2f670c4c04.asciidoc 0000664 0000000 0000000 00000001573 14766462667 0026355 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:548
[source, python]
----
resp = client.search(
index="image-index",
query={
"match": {
"title": {
"query": "mountain lake",
"boost": 0.9
}
}
},
knn=[
{
"field": "image-vector",
"query_vector": [
54,
10,
-2
],
"k": 5,
"num_candidates": 50,
"boost": 0.1
},
{
"field": "title-vector",
"query_vector": [
1,
20,
-52,
23,
10
],
"k": 10,
"num_candidates": 10,
"boost": 0.5
}
],
size=10,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7067a498bb6c788854a26443a64b843a.asciidoc 0000664 0000000 0000000 00000001330 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/script-query.asciidoc:87
[source, python]
----
resp = client.search(
runtime_mappings={
"amount.signed": {
"type": "double",
"script": "\n double amount = doc['amount'].value;\n if (doc['type'].value == 'expense') {\n amount *= -1;\n }\n emit(amount);\n "
}
},
query={
"bool": {
"filter": {
"range": {
"amount.signed": {
"lt": 10
}
}
}
}
},
fields=[
{
"field": "amount.signed"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/708e7ec681be41791f232817a07cda82.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-api.asciidoc:538
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="snapshot*",
size="2",
sort="name",
offset="2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/70bbe14bc4d5a5d58e81ab2b02408817.asciidoc 0000664 0000000 0000000 00000000543 14766462667 0026602 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/configuring-pki-realm.asciidoc:159
[source, python]
----
resp = client.security.put_role_mapping(
name="users",
roles=[
"user"
],
rules={
"field": {
"dn": "cn=John Doe,ou=example,o=com"
}
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/70c736ecb3746dbe839af0e468712805.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/delete-transform.asciidoc:59
[source, python]
----
resp = client.transform.delete_transform(
transform_id="ecommerce_transform",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/70cc66bf4054ebf0ad4955cb99d9ab80.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/update-trained-model-deployment.asciidoc:80
[source, python]
----
resp = client.ml.update_trained_model_deployment(
model_id="elastic__distilbert-base-uncased-finetuned-conll03-english",
number_of_allocations=4,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/70f89dd6b71ea890ad3cf47d83e43344.asciidoc 0000664 0000000 0000000 00000001337 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:66
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
description="My optional pipeline description",
processors=[
{
"set": {
"description": "My optional processor description",
"field": "my-long-field",
"value": 10
}
},
{
"set": {
"description": "Set 'my-boolean-field' to true",
"field": "my-boolean-field",
"value": True
}
},
{
"lowercase": {
"field": "my-keyword-field"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7106e6317e6368b9863cf64df9c6f0c9.asciidoc 0000664 0000000 0000000 00000001203 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/put-transform.asciidoc:384
[source, python]
----
resp = client.transform.put_transform(
transform_id="ecommerce_transform2",
source={
"index": "kibana_sample_data_ecommerce"
},
latest={
"unique_key": [
"customer_id"
],
"sort": "order_date"
},
description="Latest order for each customer",
dest={
"index": "kibana_sample_data_ecommerce_transform2"
},
frequency="5m",
sync={
"time": {
"field": "order_date",
"delay": "60s"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/711443504b69d0d296e717c716a223e2.asciidoc 0000664 0000000 0000000 00000001772 14766462667 0026241 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/nested-query.asciidoc:212
[source, python]
----
resp = client.search(
index="drivers",
query={
"nested": {
"path": "driver",
"query": {
"nested": {
"path": "driver.vehicle",
"query": {
"bool": {
"must": [
{
"match": {
"driver.vehicle.make": "Powell Motors"
}
},
{
"match": {
"driver.vehicle.model": "Canyonero"
}
}
]
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7148c8512079d378af70302e65502dd2.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026240 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-tutorial.asciidoc:378
[source, python]
----
resp = client.indices.create(
index="timeseries-000001",
aliases={
"timeseries": {
"is_write_index": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7163346755400594d1dd7e445aa19ff0.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026325 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:426
[source, python]
----
resp = client.search(
index="music",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/719141517d83b7e8e929b347a8d67c9f.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026442 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/restore-from-snapshot.asciidoc:337
[source, python]
----
resp = client.indices.get(
index="kibana_sample_data_flights,.ds-my-data-stream-2022.06.17-000001",
features="settings",
flat_settings=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/71998bb300ac2a58419b0772cdc1c586.asciidoc 0000664 0000000 0000000 00000001331 14766462667 0026453 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/version.asciidoc:85
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"versions": {
"type": "version"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"versions": [
"8.0.0-beta1",
"8.5.0",
"0.90.12",
"2.6.1",
"1.3.4",
"1.3.4"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/71c629c44bf3c542a0daacbfc253c4b0.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0027007 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/stats.asciidoc:1907
[source, python]
----
resp = client.cluster.stats(
node_id="node1,node*,master:false",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/71de08a2d962c66f0c60677eff23f8d1.asciidoc 0000664 0000000 0000000 00000001417 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-aggregation.asciidoc:123
[source, python]
----
resp = client.search(
index="sales",
aggs={
"price_ranges": {
"range": {
"field": "price",
"keyed": True,
"ranges": [
{
"key": "cheap",
"to": 100
},
{
"key": "average",
"from": 100,
"to": 200
},
{
"key": "expensive",
"from": 200
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/71e47a83f632ef159956287bbfe4ca12.asciidoc 0000664 0000000 0000000 00000001242 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/shape-query.asciidoc:54
[source, python]
----
resp = client.search(
index="example",
query={
"shape": {
"geometry": {
"shape": {
"type": "envelope",
"coordinates": [
[
1355,
5355
],
[
1400,
5200
]
]
},
"relation": "within"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/71fa652ddea811eb3c8bf8c5db21e549.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:230
[source, python]
----
resp = client.indices.analyze(
index="analyze_sample",
analyzer="whitespace",
text="this is a test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/722238b4e7b78cdb3c6a986780e7e286.asciidoc 0000664 0000000 0000000 00000001114 14766462667 0026504 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-field-note.asciidoc:105
[source, python]
----
resp = client.search(
index="range_index",
size="0",
query={
"range": {
"time_frame": {
"gte": "2019-11-01",
"format": "yyyy-MM-dd"
}
}
},
aggs={
"november_data": {
"date_histogram": {
"field": "time_frame",
"calendar_interval": "day",
"format": "yyyy-MM-dd"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/726994d8f3793b86628255a797155a52.asciidoc 0000664 0000000 0000000 00000000323 14766462667 0026141 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors.asciidoc:19
[source, python]
----
resp = client.nodes.info(
node_id="ingest",
filter_path="nodes.*.ingest.processors",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/72a3668ddc95d9aec47cc679d1e7afc5.asciidoc 0000664 0000000 0000000 00000001461 14766462667 0027070 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:79
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"cluster_one": {
"seeds": [
"35.238.149.1:9300"
],
"skip_unavailable": True
},
"cluster_two": {
"seeds": [
"35.238.149.2:9300"
],
"skip_unavailable": False
},
"cluster_three": {
"seeds": [
"35.238.149.3:9300"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/72ae3851160fcf02b8e2cdfd4e57d238.asciidoc 0000664 0000000 0000000 00000000247 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/start-ilm.asciidoc:66
[source, python]
----
resp = client.ilm.start()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/72b999120785dfba2827268482e9be0a.asciidoc 0000664 0000000 0000000 00000003627 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geobounds-aggregation.asciidoc:12
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (4.912350 52.374081)",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (4.901618 52.369219)",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (4.914722 52.371667)",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (4.405200 51.222900)",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (2.336389 48.861111)",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (2.327000 48.860000)",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
query={
"match": {
"name": "musée"
}
},
aggs={
"viewport": {
"geo_bounds": {
"field": "location",
"wrap_longitude": True
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/72bae0252b74ff6fd9f0702ff008d84a.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-api.asciidoc:670
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="*",
sort="name",
from_sort_value="snapshot_2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/72beebe779a258c225dee7b023e60c52.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/point-in-time-api.asciidoc:152
[source, python]
----
resp = client.nodes.stats(
metric="indices",
index_metric="search",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/730045fae3743c39b612813a42c330c3.asciidoc 0000664 0000000 0000000 00000000757 14766462667 0026304 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/index-prefixes.asciidoc:64
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"prefix": {
"full_name": {
"value": "ki"
}
}
},
highlight={
"fields": {
"full_name": {
"matched_fields": [
"full_name._index_prefix"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73250f845738c428246a3ade66a8f54c.asciidoc 0000664 0000000 0000000 00000002074 14766462667 0026416 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/weighted-avg-aggregation.asciidoc:152
[source, python]
----
resp = client.index(
index="exams",
refresh=True,
document={
"grade": 100,
"weight": [
2,
3
]
},
)
print(resp)
resp1 = client.index(
index="exams",
refresh=True,
document={
"grade": 80,
"weight": 3
},
)
print(resp1)
resp2 = client.search(
index="exams",
filter_path="aggregations",
size=0,
runtime_mappings={
"weight.combined": {
"type": "double",
"script": "\n double s = 0;\n for (double w : doc['weight']) {\n s += w;\n }\n emit(s);\n "
}
},
aggs={
"weighted_grade": {
"weighted_avg": {
"value": {
"script": "doc.grade.value + 1"
},
"weight": {
"field": "weight.combined"
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/734e2b1d1ca84a305240a449738f0eba.asciidoc 0000664 0000000 0000000 00000000445 14766462667 0026520 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/restore-from-snapshot.asciidoc:467
[source, python]
----
resp = client.cat.indices(
v=True,
index=".ds-my-data-stream-2022.06.17-000001,kibana_sample_data_flightsh=index,status,health",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73646c12ad33a813ab2280f1dc83500e.asciidoc 0000664 0000000 0000000 00000000441 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/put-follow.asciidoc:30
[source, python]
----
resp = client.ccr.follow(
index="",
wait_for_active_shards="1",
remote_cluster="",
leader_index="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/738db420e3ad2a127ea75fb8e5051926.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:455
[source, python]
----
resp = client.search(
index="last-log-from-clientip",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73b07b24ab2c4cd304a57f9cbda8b863.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026742 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// behavioral-analytics/apis/list-analytics-collection.asciidoc:66
[source, python]
----
resp = client.search_application.get_behavioral_analytics()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73be1f93d789264e5b972ddb5991bc66.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0026576 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/logging-config.asciidoc:180
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.discovery": "DEBUG"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73d1a6c5ef90b7e35d43a0bfdc1e158d.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0027025 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-index-caps.asciidoc:95
[source, python]
----
resp = client.rollup.get_rollup_index_caps(
index="sensor_rollup",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73df03be6ee78b10106581dbd7cb39ef.asciidoc 0000664 0000000 0000000 00000001432 14766462667 0026761 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:489
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_movavg": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.ewma(values, 0.3)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73ebc89cb32adb389ae16bb088d7c7e6.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:242
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.enable": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73f9271dee9b8539b6aa7e17f323c623.asciidoc 0000664 0000000 0000000 00000001424 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/multi-terms-aggregation.asciidoc:342
[source, python]
----
resp = client.search(
index="products",
aggs={
"genres_and_products": {
"multi_terms": {
"terms": [
{
"field": "genre"
},
{
"field": "product"
}
],
"order": {
"total_quantity": "desc"
}
},
"aggs": {
"total_quantity": {
"sum": {
"field": "quantity"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/73fa0d6d03cd98ea538fff9e89d99eed.asciidoc 0000664 0000000 0000000 00000000355 14766462667 0027167 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-service-accounts.asciidoc:63
[source, python]
----
resp = client.security.get_service_accounts(
namespace="elastic",
service="fleet-server",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7404c6e809fee5d7eb9678a82a872806.asciidoc 0000664 0000000 0000000 00000000744 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations.asciidoc:180
[source, python]
----
resp = client.search(
index="my-index-000001",
aggs={
"my-agg-name": {
"terms": {
"field": "my-field"
},
"aggs": {
"my-sub-agg-name": {
"avg": {
"field": "my-other-field"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/741180473ba526219578ad0422f4fe81.asciidoc 0000664 0000000 0000000 00000001303 14766462667 0026232 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-features-api.asciidoc:97
[source, python]
----
resp = client.perform_request(
"PUT",
"/_connector/my-connector/_features",
headers={"Content-Type": "application/json"},
body={
"features": {
"document_level_security": {
"enabled": True
},
"incremental_sync": {
"enabled": True
},
"sync_rules": {
"advanced": {
"enabled": False
},
"basic": {
"enabled": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7429b16221fe741fd31b0584786dd0b0.asciidoc 0000664 0000000 0000000 00000000573 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/post-inference.asciidoc:249
[source, python]
----
resp = client.inference.inference(
task_type="text_embedding",
inference_id="my-cohere-endpoint",
input="The sky above the port was the color of television tuned to a dead channel.",
task_settings={
"input_type": "ingest"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/744aeb2af40f519e430e21e004e3c3b7.asciidoc 0000664 0000000 0000000 00000001425 14766462667 0026576 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/multivalued-fields.asciidoc:99
[source, python]
----
resp = client.indices.create(
index="mv",
mappings={
"properties": {
"b": {
"type": "long"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="mv",
refresh=True,
operations=[
{
"index": {}
},
{
"a": 1,
"b": [
2,
2,
1
]
},
{
"index": {}
},
{
"a": 2,
"b": [
1,
1
]
}
],
)
print(resp1)
resp2 = client.esql.query(
query="FROM mv | LIMIT 2",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/7456ef459d510d66ba4492cc9fbdc6c6.asciidoc 0000664 0000000 0000000 00000000743 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/remote-clusters-connect.asciidoc:194
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"cluster_two": {
"mode": None,
"seeds": None,
"skip_unavailable": None,
"transport.compress": None
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/745864ef2427188241a4702b94ea57be.asciidoc 0000664 0000000 0000000 00000001273 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/histogram-aggregation.asciidoc:164
[source, python]
----
resp = client.search(
index="sales",
size="0",
query={
"constant_score": {
"filter": {
"range": {
"price": {
"lte": "500"
}
}
}
}
},
aggs={
"prices": {
"histogram": {
"field": "price",
"interval": 50,
"extended_bounds": {
"min": 0,
"max": 500
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/74678f8bbc7e4fc1885719d1cf63ac67.asciidoc 0000664 0000000 0000000 00000001412 14766462667 0026652 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/daterange-aggregation.asciidoc:354
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"range": {
"date_range": {
"field": "date",
"format": "MM-yyy",
"ranges": [
{
"from": "01-2015",
"to": "03-2015",
"key": "quarter_01"
},
{
"from": "03-2015",
"to": "06-2015",
"key": "quarter_02"
}
],
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/746e0a1cb5984f2672963b363505c7b3.asciidoc 0000664 0000000 0000000 00000001245 14766462667 0026330 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/date.asciidoc:188
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"date": {
"type": "date",
"format": "strict_date_optional_time||epoch_second"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="example",
refresh=True,
document={
"date": 1618321898
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
fields=[
{
"field": "date"
}
],
source=False,
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/746e87db7e1e8b5e6b40d8b5b188de42.asciidoc 0000664 0000000 0000000 00000000476 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/stats-aggregation.asciidoc:14
[source, python]
----
resp = client.search(
index="exams",
size="0",
aggs={
"grades_stats": {
"stats": {
"field": "grade"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7471e97aaaf21c3a200abdd89f15c3cc.asciidoc 0000664 0000000 0000000 00000001140 14766462667 0027014 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/intervals-query.asciidoc:393
[source, python]
----
resp = client.search(
query={
"intervals": {
"my_text": {
"match": {
"query": "hot porridge",
"max_gaps": 10,
"filter": {
"not_containing": {
"match": {
"query": "salty"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7478ff69113fb53f41ea07cdf911fa67.asciidoc 0000664 0000000 0000000 00000001535 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:1343
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"daily_sales": {
"date_histogram": {
"field": "order_date",
"calendar_interval": "day"
},
"aggs": {
"daily_revenue": {
"sum": {
"field": "taxful_total_price"
}
},
"smoothed_revenue": {
"moving_fn": {
"buckets_path": "daily_revenue",
"window": 3,
"script": "MovingFunctions.unweightedAvg(values)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/747a4b5001423938d7d05399d28f1995.asciidoc 0000664 0000000 0000000 00000000356 14766462667 0026204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-with-existing-indices.asciidoc:74
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"indices.lifecycle.poll_interval": "1m"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/74a80c28737a0648db0dfe7f049d12f2.asciidoc 0000664 0000000 0000000 00000000255 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:278
[source, python]
----
resp = client.exists(
index="my-index-000001",
id="0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/74b13ceb6cda3acaa9e9f58c9e5e2431.asciidoc 0000664 0000000 0000000 00000000504 14766462667 0027117 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/meta-field.asciidoc:31
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
meta={
"class": "MyApp2::User3",
"version": {
"min": "1.3",
"max": "1.5"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/74da377bccad43da2b0e276c086d26ba.asciidoc 0000664 0000000 0000000 00000000773 14766462667 0027030 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/cluster-info.asciidoc:388
[source, python]
----
resp = client.cluster.info(
target="_all",
)
print(resp)
resp1 = client.cluster.info(
target="http",
)
print(resp1)
resp2 = client.cluster.info(
target="ingest",
)
print(resp2)
resp3 = client.cluster.info(
target="thread_pool",
)
print(resp3)
resp4 = client.cluster.info(
target="script",
)
print(resp4)
resp5 = client.cluster.info(
target="http,ingest",
)
print(resp5)
----
python-elasticsearch-8.17.2/docs/examples/750ac969f9a05567f5cdf4f93d6244b6.asciidoc 0000664 0000000 0000000 00000000653 14766462667 0026574 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:281
[source, python]
----
resp = client.cluster.reroute(
commands=[
{
"allocate_empty_primary": {
"index": "my-index",
"shard": 0,
"node": "my-node",
"accept_data_loss": "true"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7594a9a85c8511701e281974cbc253e1.asciidoc 0000664 0000000 0000000 00000001051 14766462667 0026323 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:236
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="amazon_bedrock_embeddings",
inference_config={
"service": "amazonbedrock",
"service_settings": {
"access_key": "",
"secret_key": "",
"region": "",
"provider": "",
"model": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/75957a7d1b67e3d47899c5f18b32cb61.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026504 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/close-job.asciidoc:105
[source, python]
----
resp = client.ml.close_job(
job_id="low_request_rate",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/75aba7b1d3a22dce62f26b8b1e6bee58.asciidoc 0000664 0000000 0000000 00000000505 14766462667 0027110 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/validate.asciidoc:173
[source, python]
----
resp = client.indices.validate_query(
index="my-index-000001",
explain=True,
query={
"query_string": {
"query": "@timestamp:foo",
"lenient": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/75c347b181112d2c4538c01ade903afe.asciidoc 0000664 0000000 0000000 00000000601 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:257
[source, python]
----
resp = client.indices.validate_query(
index="my-index-000001",
rewrite=True,
query={
"match": {
"user.id": {
"query": "kimchy",
"fuzziness": "auto"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/75e13a00f0909c955031ff62acc14a79.asciidoc 0000664 0000000 0000000 00000000723 14766462667 0026452 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/collapse-search-results.asciidoc:12
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": "GET /search"
}
},
collapse={
"field": "user.id"
},
sort=[
{
"http.response.bytes": {
"order": "desc"
}
}
],
from_=0,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/75e360d03fb416f0a65ca37c662c2e9c.asciidoc 0000664 0000000 0000000 00000001542 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/scripted-metric-aggregation.asciidoc:159
[source, python]
----
resp = client.bulk(
index="transactions",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"type": "sale",
"amount": 80
},
{
"index": {
"_id": 2
}
},
{
"type": "cost",
"amount": 10
},
{
"index": {
"_id": 3
}
},
{
"type": "cost",
"amount": 30
},
{
"index": {
"_id": 4
}
},
{
"type": "sale",
"amount": 130
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/75e6d66e94e61bd8a555beaaee255c36.asciidoc 0000664 0000000 0000000 00000000525 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-search.asciidoc:178
[source, python]
----
resp = client.rollup.rollup_search(
index="sensor_rollup",
size=0,
aggregations={
"avg_temperature": {
"avg": {
"field": "temperature"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/763ce1377c8dfa1ca6a042d8ee99f4f5.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/tsds-reindex.asciidoc:284
[source, python]
----
resp = client.indices.rollover(
alias="k9s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/76448aaaaa2c352bb6e09d2f83a3fbb3.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0027017 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/letter-tokenizer.asciidoc:16
[source, python]
----
resp = client.indices.analyze(
tokenizer="letter",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7659f2f2b0fbe8584b855a01638b95ed.asciidoc 0000664 0000000 0000000 00000001044 14766462667 0026561 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:777
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"user_name": {
"terms": {
"field": "user_name"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/765c9c8b40b67a42121648045dbf10fb.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026446 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/jvm-memory-pressure.asciidoc:11
[source, python]
----
resp = client.nodes.stats(
filter_path="nodes.*.jvm.mem.pools.old",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/766cfc1c9fcd2c186e965761ceb2c07d.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0027002 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/increase-tier-capacity.asciidoc:300
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"number_of_replicas": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/769f75829a8e6670aa4cf83d0d737046.asciidoc 0000664 0000000 0000000 00000001523 14766462667 0026431 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/autodatehistogram-aggregation.asciidoc:124
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"date": "2015-10-01T00:30:00Z"
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"date": "2015-10-01T01:30:00Z"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="3",
refresh=True,
document={
"date": "2015-10-01T02:30:00Z"
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
size="0",
aggs={
"by_day": {
"auto_date_histogram": {
"field": "date",
"buckets": 3
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/76b279835936ee4b546a171c671c3cd7.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026421 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/cjk-width-tokenfilter.asciidoc:28
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"cjk_width"
],
text="シーサイドライナー",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/76bc87c2592864152768687c2963d1d1.asciidoc 0000664 0000000 0000000 00000001256 14766462667 0026216 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-api-key.asciidoc:154
[source, python]
----
resp = client.security.update_api_key(
id="VuaCfGcBCdbkQm-e5aOx",
role_descriptors={
"role-a": {
"indices": [
{
"names": [
"*"
],
"privileges": [
"write"
]
}
]
}
},
metadata={
"environment": {
"level": 2,
"trusted": True,
"tags": [
"production"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/76c167d8ab305cb43b594f140c902dfe.asciidoc 0000664 0000000 0000000 00000000624 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shrink-index.asciidoc:168
[source, python]
----
resp = client.indices.shrink(
index="my_source_index",
target="my_target_index",
settings={
"index.number_of_replicas": 1,
"index.number_of_shards": 1,
"index.codec": "best_compression"
},
aliases={
"my_search_indices": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/76c73b54f3f1e5cb1c0fcccd7c3fd18e.asciidoc 0000664 0000000 0000000 00000003631 14766462667 0027202 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/ingest-vectors.asciidoc:86
[source, python]
----
resp = client.bulk(
operations=[
{
"index": {
"_index": "amazon-reviews",
"_id": "2"
}
},
{
"review_text": "This product is amazing! I love it.",
"review_vector": [
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7,
0.8
]
},
{
"index": {
"_index": "amazon-reviews",
"_id": "3"
}
},
{
"review_text": "This product is terrible. I hate it.",
"review_vector": [
0.8,
0.7,
0.6,
0.5,
0.4,
0.3,
0.2,
0.1
]
},
{
"index": {
"_index": "amazon-reviews",
"_id": "4"
}
},
{
"review_text": "This product is great. I can do anything with it.",
"review_vector": [
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7,
0.8
]
},
{
"index": {
"_index": "amazon-reviews",
"_id": "5"
}
},
{
"review_text": "This product has ruined my life and the lives of my family and friends.",
"review_vector": [
0.8,
0.7,
0.6,
0.5,
0.4,
0.3,
0.2,
0.1
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/76dbdd0b2bd48c3c6b1a8d81e23bafd6.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0027157 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:149
[source, python]
----
resp = client.indices.analyze(
analyzer="standard",
text="this is a test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/76e02434835630cb830724beb92df354.asciidoc 0000664 0000000 0000000 00000002636 14766462667 0026325 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:1433
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"rrf": {
"retrievers": [
{
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
},
{
"text_similarity_reranker": {
"retriever": {
"standard": {
"query": {
"term": {
"topic": "ai"
}
}
}
},
"field": "text",
"inference_id": "my-rerank-model",
"inference_text": "Can I use generative AI to identify user intent and improve search relevance?"
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
},
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77082b1ffaae9ac52dfc133fa597baa7.asciidoc 0000664 0000000 0000000 00000000546 14766462667 0027121 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:241
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"match": {
"description": {
"query": "fluffy pancakes",
"operator": "and"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7709a48020a6cefbbe547fb944541cdb.asciidoc 0000664 0000000 0000000 00000001140 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:421
[source, python]
----
resp = client.bulk(
index="my-bit-vectors",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"my_vector": [
127,
-127,
0,
1,
42
]
},
{
"index": {
"_id": "2"
}
},
{
"my_vector": "8100012a7f"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7741a04e7e621c528cd72848d875776d.asciidoc 0000664 0000000 0000000 00000000340 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-new-data-stream.asciidoc:56
[source, python]
----
resp = client.indices.create_data_stream(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77447e2966708e92f5e219d43ac3f00d.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026420 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:232
[source, python]
----
resp = client.tasks.list(
actions="*reindex",
wait_for_completion=True,
timeout="10s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/774bfde8793dc4927f7cad2dd91c5b5f.asciidoc 0000664 0000000 0000000 00000001113 14766462667 0027064 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/multi-search-template-api.asciidoc:44
[source, python]
----
resp = client.msearch_template(
index="my-index",
search_templates=[
{},
{
"id": "my-search-template",
"params": {
"query_string": "hello world",
"from": 0,
"size": 10
}
},
{},
{
"id": "my-other-search-template",
"params": {
"query_type": "match_all"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77518e8c6198acfe77c0934fd2fe65cb.asciidoc 0000664 0000000 0000000 00000005335 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// text-structure/apis/find-message-structure.asciidoc:93
[source, python]
----
resp = client.text_structure.find_message_structure(
messages=[
"[2024-03-05T10:52:36,256][INFO ][o.a.l.u.VectorUtilPanamaProvider] [laptop] Java vector incubator API enabled; uses preferredBitSize=128",
"[2024-03-05T10:52:41,038][INFO ][o.e.p.PluginsService ] [laptop] loaded module [repository-url]",
"[2024-03-05T10:52:41,042][INFO ][o.e.p.PluginsService ] [laptop] loaded module [rest-root]",
"[2024-03-05T10:52:41,043][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-core]",
"[2024-03-05T10:52:41,043][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-redact]",
"[2024-03-05T10:52:41,043][INFO ][o.e.p.PluginsService ] [laptop] loaded module [ingest-user-agent]",
"[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-monitoring]",
"[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [repository-s3]",
"[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-analytics]",
"[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-ent-search]",
"[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-autoscaling]",
"[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [lang-painless]]",
"[2024-03-05T10:52:41,059][INFO ][o.e.p.PluginsService ] [laptop] loaded module [lang-expression]",
"[2024-03-05T10:52:41,059][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-eql]",
"[2024-03-05T10:52:43,291][INFO ][o.e.e.NodeEnvironment ] [laptop] heap size [16gb], compressed ordinary object pointers [true]",
"[2024-03-05T10:52:46,098][INFO ][o.e.x.s.Security ] [laptop] Security is enabled",
"[2024-03-05T10:52:47,227][INFO ][o.e.x.p.ProfilingPlugin ] [laptop] Profiling is enabled",
"[2024-03-05T10:52:47,259][INFO ][o.e.x.p.ProfilingPlugin ] [laptop] profiling index templates will not be installed or reinstalled",
"[2024-03-05T10:52:47,755][INFO ][o.e.i.r.RecoverySettings ] [laptop] using rate limit [40mb] with [default=40mb, read=0b, write=0b, max=0b]",
"[2024-03-05T10:52:47,787][INFO ][o.e.d.DiscoveryModule ] [laptop] using discovery type [multi-node] and seed hosts providers [settings]",
"[2024-03-05T10:52:49,188][INFO ][o.e.n.Node ] [laptop] initialized",
"[2024-03-05T10:52:49,199][INFO ][o.e.n.Node ] [laptop] starting ..."
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7752b677825523bfb0c38ad9325a6d47.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/delete-connector-api.asciidoc:79
[source, python]
----
resp = client.connector.delete(
connector_id="another-connector",
delete_sync_jobs=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/776b553df0e507c96dbdbaedecaca0cc.asciidoc 0000664 0000000 0000000 00000000447 14766462667 0027335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/infer-trained-model.asciidoc:987
[source, python]
----
resp = client.ml.infer_trained_model(
model_id="model2",
docs=[
{
"text_field": "The movie was awesome!!"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7777326c6052fee28061e5b82540aedc.asciidoc 0000664 0000000 0000000 00000000556 14766462667 0026471 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-aggregation.asciidoc:402
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"grade_percentiles": {
"percentiles": {
"field": "grade",
"missing": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7781b13b0ffff6026d10c4e3ab4a3a51.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026657 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// behavioral-analytics/apis/put-analytics-collection.asciidoc:55
[source, python]
----
resp = client.search_application.put_behavioral_analytics(
name="my_analytics_collection",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77828fcaecc3f058c48b955928198ff6.asciidoc 0000664 0000000 0000000 00000001461 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/grok.asciidoc:132
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"description": "parse multiple patterns",
"processors": [
{
"grok": {
"field": "message",
"patterns": [
"%{FAVORITE_DOG:pet}",
"%{FAVORITE_CAT:pet}"
],
"pattern_definitions": {
"FAVORITE_DOG": "beagle",
"FAVORITE_CAT": "burmese"
}
}
}
]
},
docs=[
{
"_source": {
"message": "I love burmese cats!"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77b90f6787195767b6da60d8532714b4.asciidoc 0000664 0000000 0000000 00000001001 14766462667 0026260 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-azure-openai.asciidoc:147
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="azure_openai_embeddings",
inference_config={
"service": "azureopenai",
"service_settings": {
"api_key": "",
"resource_name": "",
"deployment_id": "",
"api_version": "2024-02-01"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77c099c97ea6911e2dd6e996da7dcca0.asciidoc 0000664 0000000 0000000 00000000357 14766462667 0027012 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-hot-threads.asciidoc:78
[source, python]
----
resp = client.nodes.hot_threads()
print(resp)
resp1 = client.nodes.hot_threads(
node_id="nodeId1,nodeId2",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/77c50f982906718ecc59aa708aed728f.asciidoc 0000664 0000000 0000000 00000000522 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:299
[source, python]
----
resp = client.update(
index="my-index-000001",
id="1",
script={
"source": "ctx._source.counter += params.count",
"lang": "painless",
"params": {
"count": 4
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77ca1a3193f75651e0bf9e8fe5227a04.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-job-model-snapshot-upgrade-stats.asciidoc:127
[source, python]
----
resp = client.ml.get_model_snapshot_upgrade_stats(
job_id="low_request_rate",
snapshot_id="_all",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77cebba946fe648873a1e7375c13df41.asciidoc 0000664 0000000 0000000 00000000531 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:215
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.disk.watermark.low": "90%",
"cluster.routing.allocation.disk.watermark.high": "95%"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77d0780c5faea4c9ec51a322a6811b3b.asciidoc 0000664 0000000 0000000 00000003363 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1309
[source, python]
----
resp = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {}
},
{
"timestamp": "2020-04-30T14:30:17-05:00",
"message": "40.135.0.0 - - [30/Apr/2020:14:30:17 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:30:53-05:00",
"message": "232.0.0.0 - - [30/Apr/2020:14:30:53 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:12-05:00",
"message": "26.1.0.0 - - [30/Apr/2020:14:31:12 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:19-05:00",
"message": "247.37.0.0 - - [30/Apr/2020:14:31:19 -0500] \"GET /french/splash_inet.html HTTP/1.0\" 200 3781"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:22-05:00",
"message": "247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:27-05:00",
"message": "252.0.0.0 - - [30/Apr/2020:14:31:27 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:28-05:00",
"message": "not a valid apache log"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/77e3dcd87d2b2c8e6ec842462b02df1f.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/clone-index.asciidoc:16
[source, python]
----
resp = client.indices.clone(
index="my-index-000001",
target="cloned-my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/78043831fd32004a82930c8ac8a1d809.asciidoc 0000664 0000000 0000000 00000003142 14766462667 0026311 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:1378
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"text_similarity_reranker": {
"retriever": {
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"query_string": {
"query": "(information retrieval) OR (artificial intelligence)",
"default_field": "text"
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
},
"field": "text",
"inference_id": "my-rerank-model",
"inference_text": "What are the state of the art applications of AI in information retrieval?"
}
},
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/78176cd6f570e1534bb40b19e6e900b6.asciidoc 0000664 0000000 0000000 00000000225 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/alias.asciidoc:93
[source, python]
----
resp = client.cat.aliases(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/783c4fa5351a242364210fc32496beb2.asciidoc 0000664 0000000 0000000 00000000573 14766462667 0026367 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/concurrency-control.asciidoc:102
[source, python]
----
resp = client.index(
index="products",
id="1567",
if_seq_no="362",
if_primary_term="2",
document={
"product": "r2d2",
"details": "A resourceful astromech droid",
"tags": [
"droid"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7841b65a3bb880ed66cec453925a50cf.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:380
[source, python]
----
resp = client.delete_by_query(
index="my-index-000001,my-index-000002",
query={
"match_all": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7846974b47a3eab1832a475663d23ad9.asciidoc 0000664 0000000 0000000 00000001416 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:292
[source, python]
----
resp = client.search(
size=10000,
query={
"match": {
"user.id": "elkbee"
}
},
pit={
"id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
"keep_alive": "1m"
},
sort=[
{
"@timestamp": {
"order": "asc",
"format": "strict_date_optional_time_nanos"
}
}
],
search_after=[
"2021-05-20T05:30:04.832Z",
4294967298
],
track_total_hits=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7885ca9d7c61050095288eef6bc6cca9.asciidoc 0000664 0000000 0000000 00000001050 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/jwt-realm.asciidoc:676
[source, python]
----
resp = client.security.put_role_mapping(
name="jwt8_users",
refresh=True,
roles=[
"user"
],
rules={
"all": [
{
"field": {
"realm.name": "jwt8"
}
},
{
"field": {
"username": "principalname1"
}
}
]
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7888c509774a2abfe82ca370c43d8789.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:4
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "cohere-embeddings",
"pipeline": "cohere_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/78c4035e4fbf6851140660f6ed2a1fa5.asciidoc 0000664 0000000 0000000 00000000217 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/stats.asciidoc:121
[source, python]
----
resp = client.indices.stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/78c96113ae4ed0054e581b17542528a7.asciidoc 0000664 0000000 0000000 00000000540 14766462667 0026317 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:409
[source, python]
----
resp = client.reindex(
source={
"index": "source",
"query": {
"match": {
"company": "cat"
}
}
},
dest={
"index": "dest",
"routing": "=cat"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/78e20b4cff470ed7357de1fd74bcfeb7.asciidoc 0000664 0000000 0000000 00000000670 14766462667 0027137 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:137
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"remove": {
"index": "index1",
"alias": "logs-non-existing"
}
},
{
"add": {
"index": "index2",
"alias": "logs-non-existing"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/790684b45bef2bb848ea932f0fd0cfbd.asciidoc 0000664 0000000 0000000 00000001710 14766462667 0027045 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/intervals-query.asciidoc:539
[source, python]
----
resp = client.search(
query={
"intervals": {
"my_text": {
"all_of": {
"ordered": False,
"max_gaps": 1,
"intervals": [
{
"match": {
"query": "my favorite food",
"max_gaps": 0,
"ordered": True
}
},
{
"match": {
"query": "cold porridge",
"max_gaps": 4,
"ordered": True
}
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/790c49fe2ec638e5e8db51a9236bba35.asciidoc 0000664 0000000 0000000 00000001375 14766462667 0026720 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:133
[source, python]
----
resp = client.search(
index="my_locations,my_geoshapes",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"pin.location": {
"top_left": {
"lat": 40.73,
"lon": -74.1
},
"bottom_right": {
"lat": 40.01,
"lon": -71.12
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7965d4dbafdc7ca9e1ee6759939dd2e8.asciidoc 0000664 0000000 0000000 00000003703 14766462667 0027104 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/how-watcher-works.asciidoc:50
[source, python]
----
resp = client.watcher.put_watch(
id="log_errors",
metadata={
"color": "red"
},
trigger={
"schedule": {
"interval": "5m"
}
},
input={
"search": {
"request": {
"indices": "log-events",
"body": {
"size": 0,
"query": {
"match": {
"status": "error"
}
}
}
}
}
},
condition={
"compare": {
"ctx.payload.hits.total": {
"gt": 5
}
}
},
transform={
"search": {
"request": {
"indices": "log-events",
"body": {
"query": {
"match": {
"status": "error"
}
}
}
}
}
},
actions={
"my_webhook": {
"webhook": {
"method": "POST",
"host": "mylisteninghost",
"port": 9200,
"path": "/{{watch_id}}",
"body": "Encountered {{ctx.payload.hits.total}} errors"
}
},
"email_administrator": {
"email": {
"to": "sys.admino@host.domain",
"subject": "Encountered {{ctx.payload.hits.total}} errors",
"body": "Too many error in the system, see attached data",
"attachments": {
"attached_data": {
"data": {
"format": "json"
}
}
},
"priority": "high"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/79b43a1bf02fb5b38f54b8d5aa5dab53.asciidoc 0000664 0000000 0000000 00000000637 14766462667 0027034 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/autodatehistogram-aggregation.asciidoc:43
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sales_over_time": {
"auto_date_histogram": {
"field": "date",
"buckets": 5,
"format": "yyyy-MM-dd"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/79bf91ace935d095d8e44b3ef3fe2efa.asciidoc 0000664 0000000 0000000 00000000575 14766462667 0027151 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/diagnose-unassigned-shards.asciidoc:269
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
flat_settings=True,
include_defaults=True,
)
print(resp)
resp1 = client.cluster.get_settings(
flat_settings=True,
include_defaults=True,
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/79cb85efd5e4c435e73b253cb9feabb1.asciidoc 0000664 0000000 0000000 00000001245 14766462667 0027131 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/dissect-syntax.asciidoc:250
[source, python]
----
resp = client.search(
index="my-index",
runtime_mappings={
"http.response": {
"type": "long",
"script": "\n String response=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] \"%{verb} %{request} HTTP/%{httpversion}\" %{response} %{size}').extract(doc[\"message\"].value)?.response;\n if (response != null) emit(Integer.parseInt(response));\n "
}
},
query={
"match": {
"http.response": "304"
}
},
fields=[
"http.response"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/79d206a528be704050a437adce2496dd.asciidoc 0000664 0000000 0000000 00000001064 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:629
[source, python]
----
resp = client.inference.put(
task_type="rerank",
inference_id="my-elastic-rerank",
inference_config={
"service": "elasticsearch",
"service_settings": {
"model_id": ".rerank-v1",
"num_threads": 1,
"adaptive_allocations": {
"enabled": True,
"min_number_of_allocations": 1,
"max_number_of_allocations": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/79e053326a3a8eec828523a035393f66.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026330 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:354
[source, python]
----
resp = client.delete(
index=".ds-my-data-stream-2099.03.08-000003",
id="bfspvnIBr7VVZlfp2lqX",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/79e8bbbd6c440a21b0b4260c8cb1a61c.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026724 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:207
[source, python]
----
resp = client.index(
index="example",
document={
"location": "LINESTRING (-77.03653 38.897676, -77.009051 38.889939)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/79f33e05b203eb46eef7958fbc95ef77.asciidoc 0000664 0000000 0000000 00000000337 14766462667 0026737 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/get-auto-follow-pattern.asciidoc:93
[source, python]
----
resp = client.ccr.get_auto_follow_pattern(
name="my_auto_follow_pattern",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/79feb4a0c0a21b7015a52f9736cd4683.asciidoc 0000664 0000000 0000000 00000002710 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-inner-hits.asciidoc:324
[source, python]
----
resp = client.indices.create(
index="test",
mappings={
"properties": {
"comments": {
"type": "nested",
"properties": {
"votes": {
"type": "nested"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="test",
id="1",
refresh=True,
document={
"title": "Test title",
"comments": [
{
"author": "kimchy",
"text": "comment text",
"votes": []
},
{
"author": "nik9000",
"text": "words words words",
"votes": [
{
"value": 1,
"voter": "kimchy"
},
{
"value": -1,
"voter": "other"
}
]
}
]
},
)
print(resp1)
resp2 = client.search(
index="test",
query={
"nested": {
"path": "comments.votes",
"query": {
"match": {
"comments.votes.voter": "kimchy"
}
},
"inner_hits": {}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/79ff4e7fa5c004226d05d7e2bfb5dc1e.asciidoc 0000664 0000000 0000000 00000002256 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/passthrough.asciidoc:134
[source, python]
----
resp = client.indices.put_index_template(
name="my-metrics",
index_patterns=[
"metrics-mymetrics-*"
],
priority=200,
data_stream={},
template={
"settings": {
"index.mode": "time_series"
},
"mappings": {
"properties": {
"attributes": {
"type": "passthrough",
"priority": 10,
"time_series_dimension": True,
"properties": {
"host.name": {
"type": "keyword"
}
}
},
"cpu": {
"type": "integer",
"time_series_metric": "counter"
}
}
}
},
)
print(resp)
resp1 = client.index(
index="metrics-mymetrics-test",
document={
"@timestamp": "2020-01-01T00:00:00.000Z",
"attributes": {
"host.name": "foo",
"zone": "bar"
},
"cpu": 10
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7a0c633a67244e9703344d036e584d95.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0026246 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/enable-user-profile.asciidoc:60
[source, python]
----
resp = client.security.enable_user_profile(
uid="u_79HkWkwmnBH5gqFKwoxggWPjEBOur1zLPXQPEl1VBW0_0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7a0eb2222fe282d3aab66e12feff2a3b.asciidoc 0000664 0000000 0000000 00000002104 14766462667 0027070 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:832
[source, python]
----
resp = client.index(
index="ip_location",
refresh=True,
document={
"ip": "192.168.1.1",
"country": "Canada",
"city": "Montreal"
},
)
print(resp)
resp1 = client.index(
index="logs",
id="1",
refresh=True,
document={
"host": "192.168.1.1",
"message": "the first message"
},
)
print(resp1)
resp2 = client.index(
index="logs",
id="2",
refresh=True,
document={
"host": "192.168.1.2",
"message": "the second message"
},
)
print(resp2)
resp3 = client.search(
index="logs",
runtime_mappings={
"location": {
"type": "lookup",
"target_index": "ip_location",
"input_field": "host",
"target_field": "ip",
"fetch_fields": [
"country",
"city"
]
}
},
fields=[
"host",
"message",
"location"
],
source=False,
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/7a23a385a63c87cab58fd494870450fd.asciidoc 0000664 0000000 0000000 00000001052 14766462667 0026547 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:181
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping4",
roles=[
"superuser"
],
enabled=True,
rules={
"any": [
{
"field": {
"username": "esadmin"
}
},
{
"field": {
"groups": "cn=admins,dc=example,dc=com"
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7a27336a61284d079f3cc3994cf927d1.asciidoc 0000664 0000000 0000000 00000003206 14766462667 0026417 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/dls-overview.asciidoc:283
[source, python]
----
resp = client.security.create_api_key(
name="my-api-key",
role_descriptors={
"role-source1": {
"indices": [
{
"names": [
"source1"
],
"privileges": [
"read"
],
"query": {
"template": {
"params": {
"access_control": [
"example.user@example.com",
"source1-user-group"
]
}
},
"source": "..."
}
}
]
},
"role-source2": {
"indices": [
{
"names": [
"source2"
],
"privileges": [
"read"
],
"query": {
"template": {
"params": {
"access_control": [
"example.user@example.com",
"source2-user-group"
]
}
},
"source": "..."
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7a2b9a7b2b6553a48bd4db60a939c0fc.asciidoc 0000664 0000000 0000000 00000000646 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:331
[source, python]
----
resp = client.index(
index="test_index",
id="1",
refresh=True,
document={
"query": {
"match": {
"body": {
"query": "miss bicycl",
"analyzer": "whitespace"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7a2fdfd7b0553d63440af7598f9ad867.asciidoc 0000664 0000000 0000000 00000000721 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/semantic-text.asciidoc:63
[source, python]
----
resp = client.indices.create(
index="my-index-000003",
mappings={
"properties": {
"inference_field": {
"type": "semantic_text",
"inference_id": "my-elser-endpoint-for-ingest",
"search_inference_id": "my-elser-endpoint-for-search"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7a3a7fbd81e5050b42e8c1eca26c7c1d.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0027023 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/async-search.asciidoc:340
[source, python]
----
resp = client.async_search.delete(
id="FmRldE8zREVEUzA2ZVpUeGs2ejJFUFEaMkZ5QTVrSTZSaVN3WlNFVmtlWHJsdzoxMDc=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7a8de5606f283f4ef171b015eef6befa.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/stats.asciidoc:149
[source, python]
----
resp = client.indices.stats(
metric="search",
groups="group1,group2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7a987cd13383bdc990155d7bd5fb221e.asciidoc 0000664 0000000 0000000 00000001066 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/field-level-security.asciidoc:114
[source, python]
----
resp = client.security.put_role(
name="test_role5",
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"*"
],
"except": [
"customer.handle"
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7ab968a61bb0783f563dd6d29b253901.asciidoc 0000664 0000000 0000000 00000002754 14766462667 0026475 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:379
[source, python]
----
resp = client.indices.create(
index="catalan_example",
settings={
"analysis": {
"filter": {
"catalan_elision": {
"type": "elision",
"articles": [
"d",
"l",
"m",
"n",
"s",
"t"
],
"articles_case": True
},
"catalan_stop": {
"type": "stop",
"stopwords": "_catalan_"
},
"catalan_keywords": {
"type": "keyword_marker",
"keywords": [
"example"
]
},
"catalan_stemmer": {
"type": "stemmer",
"language": "catalan"
}
},
"analyzer": {
"rebuilt_catalan": {
"tokenizer": "standard",
"filter": [
"catalan_elision",
"lowercase",
"catalan_stop",
"catalan_keywords",
"catalan_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7ae434b3667c589a8e70fe560f4ee3f9.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026651 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:18
[source, python]
----
resp = client.update_by_query(
index="my-index-000001",
conflicts="proceed",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7af1f62b0cf496cbf593d83d30b472cc.asciidoc 0000664 0000000 0000000 00000001423 14766462667 0026761 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:226
[source, python]
----
resp = client.security.create_api_key(
name="music-connector",
role_descriptors={
"music-connector-role": {
"cluster": [
"monitor",
"manage_connector"
],
"indices": [
{
"names": [
"music",
".search-acl-filter-music",
".elastic-connectors*"
],
"privileges": [
"all"
],
"allow_restricted_indices": False
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7b3e913368e96eaa6e22e0d03c81310e.asciidoc 0000664 0000000 0000000 00000000360 14766462667 0026530 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/store.asciidoc:30
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index.store.type": "hybridfs"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7b3f255d28ce5b46d111402b96b41351.asciidoc 0000664 0000000 0000000 00000000570 14766462667 0026364 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/run-as-privilege.asciidoc:170
[source, python]
----
resp = client.security.put_user(
username="admin_user",
refresh=True,
password="l0ng-r4nd0m-p@ssw0rd",
roles=[
"my_admin_role"
],
full_name="Eirian Zola",
metadata={
"intelligence": 7
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7b5c231526846f2f7b98d78f3656ae6a.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:364
[source, python]
----
resp = client.update(
index="test",
id="1",
doc={
"name": "new_name"
},
doc_as_upsert=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7b7a828c21c856a3cbc41fd2f85108bf.asciidoc 0000664 0000000 0000000 00000000611 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:483
[source, python]
----
resp = client.indices.refresh()
print(resp)
resp1 = client.search(
index="my-index-000001",
size="0",
filter_path="hits.total",
query={
"range": {
"http.response.bytes": {
"lt": 2000000
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7b864d61767ab283cfd5f9b9ba784b1f.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:207
[source, python]
----
resp = client.security.get_api_key(
name="my-api-key",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7b908b1189f076942de8cd497ff1fa59.asciidoc 0000664 0000000 0000000 00000000632 14766462667 0026577 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:216
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "quick brown fox",
"type": "most_fields",
"fields": [
"title",
"title.original",
"title.shingles"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7b9dfe5857bde1bd8483ea3241656714.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/whitespace-tokenizer.asciidoc:14
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7ba29f0be2297b54a640b0a17d7ef5ca.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026747 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/delete-ip-location-database.asciidoc:16
[source, python]
----
resp = client.ingest.delete_ip_location_database(
id="my-database-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7bdc283b96c7a965fae23013647b8578.asciidoc 0000664 0000000 0000000 00000000762 14766462667 0026505 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/semantic-text.asciidoc:220
[source, python]
----
resp = client.indices.create(
index="test-index",
mappings={
"properties": {
"source_field": {
"type": "text",
"copy_to": "infer_field"
},
"infer_field": {
"type": "semantic_text",
"inference_id": ".elser-2-elasticsearch"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7c24d4bef3f2045407fbf1b95c5416f9.asciidoc 0000664 0000000 0000000 00000001506 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:34
[source, python]
----
resp = client.indices.create(
index="range_index",
settings={
"number_of_shards": 2
},
mappings={
"properties": {
"expected_attendees": {
"type": "integer_range"
},
"time_frame": {
"type": "date_range",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
},
)
print(resp)
resp1 = client.index(
index="range_index",
id="1",
refresh=True,
document={
"expected_attendees": {
"gte": 10,
"lt": 20
},
"time_frame": {
"gte": "2015-10-31 12:00:00",
"lte": "2015-11-01"
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7c3414279d47e9c29105d061ed316ef8.asciidoc 0000664 0000000 0000000 00000000464 14766462667 0026415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/completion-suggest.asciidoc:104
[source, python]
----
resp = client.index(
index="music",
id="1",
refresh=True,
document={
"suggest": [
"Nevermind",
"Nirvana"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7c4551abbb7a5f3841109f7664bc4aad.asciidoc 0000664 0000000 0000000 00000001236 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/pattern-analyzer.asciidoc:267
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"camel": {
"type": "pattern",
"pattern": "([^\\p{L}\\d]+)|(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)|(?<=[\\p{L}&&[^\\p{Lu}]])(?=\\p{Lu})|(?<=\\p{Lu})(?=\\p{Lu}[\\p{L}&&[^\\p{Lu}]])"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="camel",
text="MooseX::FTPClass2_beta",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7c5aed55a2a1dce4b63c18e1ce8146ff.asciidoc 0000664 0000000 0000000 00000004324 14766462667 0027116 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/ipprefix-aggregation.asciidoc:14
[source, python]
----
resp = client.indices.create(
index="network-traffic",
mappings={
"properties": {
"ipv4": {
"type": "ip"
},
"ipv6": {
"type": "ip"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="network-traffic",
refresh=True,
operations=[
{
"index": {
"_id": 0
}
},
{
"ipv4": "192.168.1.10",
"ipv6": "2001:db8:a4f8:112a:6001:0:12:7f10"
},
{
"index": {
"_id": 1
}
},
{
"ipv4": "192.168.1.12",
"ipv6": "2001:db8:a4f8:112a:6001:0:12:7f12"
},
{
"index": {
"_id": 2
}
},
{
"ipv4": "192.168.1.33",
"ipv6": "2001:db8:a4f8:112a:6001:0:12:7f33"
},
{
"index": {
"_id": 3
}
},
{
"ipv4": "192.168.1.10",
"ipv6": "2001:db8:a4f8:112a:6001:0:12:7f10"
},
{
"index": {
"_id": 4
}
},
{
"ipv4": "192.168.2.41",
"ipv6": "2001:db8:a4f8:112c:6001:0:12:7f41"
},
{
"index": {
"_id": 5
}
},
{
"ipv4": "192.168.2.10",
"ipv6": "2001:db8:a4f8:112c:6001:0:12:7f10"
},
{
"index": {
"_id": 6
}
},
{
"ipv4": "192.168.2.23",
"ipv6": "2001:db8:a4f8:112c:6001:0:12:7f23"
},
{
"index": {
"_id": 7
}
},
{
"ipv4": "192.168.3.201",
"ipv6": "2001:db8:a4f8:114f:6001:0:12:7201"
},
{
"index": {
"_id": 8
}
},
{
"ipv4": "192.168.3.107",
"ipv6": "2001:db8:a4f8:114f:6001:0:12:7307"
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7c5e41a7c0075d87b8f8348a6efa990c.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0026646 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/managing.asciidoc:102
[source, python]
----
resp = client.ccr.pause_follow(
index="follower_index",
)
print(resp)
resp1 = client.indices.close(
index="follower_index",
)
print(resp1)
resp2 = client.ccr.follow(
index="follower_index",
wait_for_active_shards="1",
remote_cluster="remote_cluster",
leader_index="leader_index",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/7c9076f3e93a8f61189783c736bf6082.asciidoc 0000664 0000000 0000000 00000000746 14766462667 0026365 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/field-level-security.asciidoc:43
[source, python]
----
resp = client.security.put_role(
name="test_role2",
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"event_*"
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7ca224d1a7de20a15c008e1b9dbda377.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0026737 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:807
[source, python]
----
resp = client.search(
aggs={
"tags": {
"terms": {
"field": "tags",
"missing": "N/A"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7cd23457e220c8b64c5b0041d2acc27a.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026563 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/advanced-configuration.asciidoc:123
[source, python]
----
resp = client.nodes.info(
node_id="_all",
metric="jvm",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7cd3d8388c51a9f6ee3f730cdaddbb89.asciidoc 0000664 0000000 0000000 00000000425 14766462667 0027141 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/update-settings.asciidoc:97
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"refresh_interval": None
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7d1cbcb545aa19260073dbb2b7ef5074.asciidoc 0000664 0000000 0000000 00000001542 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:658
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"size": 2,
"sources": [
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d"
}
}
},
{
"product": {
"terms": {
"field": "product"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7d3a74fe0ba3fe95d1c3275365ff9315.asciidoc 0000664 0000000 0000000 00000001653 14766462667 0026635 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:374
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"flattened": {
"type": "flattened"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"flattened": {
"field": [
{
"id": 1,
"name": "foo"
},
{
"id": 2,
"name": "bar"
},
{
"id": 3,
"name": "baz"
}
]
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7d880157a95f64ad339225d4af71c2de.asciidoc 0000664 0000000 0000000 00000000756 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/suggest-user-profile.asciidoc:105
[source, python]
----
resp = client.security.suggest_user_profiles(
name="jack",
hint={
"uids": [
"u_8RKO7AKfEbSiIHZkZZ2LJy2MUSDPWDr3tMI_CkIGApU_0",
"u_79HkWkwmnBH5gqFKwoxggWPjEBOur1zLPXQPEl1VBW0_0"
],
"labels": {
"direction": [
"north",
"east"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7d9eba51a269571ae62fb8b442b373ce.asciidoc 0000664 0000000 0000000 00000001406 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stemmer-override-tokenfilter.asciidoc:25
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"lowercase",
"custom_stems",
"porter_stem"
]
}
},
"filter": {
"custom_stems": {
"type": "stemmer_override",
"rules_path": "analysis/stemmer_override.txt"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7dabae9b37d2cbd724f2a069be9e753b.asciidoc 0000664 0000000 0000000 00000000340 14766462667 0027117 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/reset-job.asciidoc:79
[source, python]
----
resp = client.ml.reset_job(
job_id="total-requests",
wait_for_completion=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7daff6b7e668ab8a762b8ab5dff7a167.asciidoc 0000664 0000000 0000000 00000002246 14766462667 0027146 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/sparse-vector-query.asciidoc:260
[source, python]
----
resp = client.search(
index="my-index",
query={
"sparse_vector": {
"field": "ml.tokens",
"inference_id": "my-elser-model",
"query": "How is the weather in Jamaica?",
"prune": True,
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": False
}
}
},
rescore={
"window_size": 100,
"query": {
"rescore_query": {
"sparse_vector": {
"field": "ml.tokens",
"inference_id": "my-elser-model",
"query": "How is the weather in Jamaica?",
"prune": True,
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": True
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7db09cab02d71f3a10d91071216d80fc.asciidoc 0000664 0000000 0000000 00000001036 14766462667 0026570 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/ingest-vectors.asciidoc:108
[source, python]
----
resp = client.search(
index="amazon-reviews",
retriever={
"knn": {
"field": "review_vector",
"query_vector": [
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7,
0.8
],
"k": 2,
"num_candidates": 5
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7db798942cf2d334456e30ef5fcb801b.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:161
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"match": {
"description": {
"query": "fluffy pancakes"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7dc6c0a6386289ac6a34105e839ced55.asciidoc 0000664 0000000 0000000 00000001033 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/rate-aggregation.asciidoc:33
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"by_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"my_rate": {
"rate": {
"unit": "year"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7dc82f7d36686fd57a47e34cbda39a4e.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0027005 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/delimited-payload-tokenfilter.asciidoc:47
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"delimited_payload"
],
text="the|0 brown|10 fox|5 is|0 quick|10",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7dd0d9cc6c5982a2c003d301e90feeba.asciidoc 0000664 0000000 0000000 00000001644 14766462667 0027031 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:824
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"daily_sales": {
"date_histogram": {
"field": "order_date",
"calendar_interval": "day",
"format": "yyyy-MM-dd"
},
"aggs": {
"revenue": {
"sum": {
"field": "taxful_total_price"
}
},
"unique_customers": {
"cardinality": {
"field": "customer_id"
}
},
"avg_basket_size": {
"avg": {
"field": "total_quantity"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7dd481337e40f16185f3baa3fc2cce15.asciidoc 0000664 0000000 0000000 00000000444 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/routing-field.asciidoc:38
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"terms": {
"_routing": [
"user1"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7de7e647c1c9cbe0a1df0d104fc0a947.asciidoc 0000664 0000000 0000000 00000000472 14766462667 0027034 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-s3.asciidoc:23
[source, python]
----
resp = client.snapshot.create_repository(
name="my_s3_repository",
repository={
"type": "s3",
"settings": {
"bucket": "my-bucket"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7dedb148ff74912de81b8f8275f0d7f3.asciidoc 0000664 0000000 0000000 00000000444 14766462667 0026731 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:174
[source, python]
----
resp = client.search(
index="index",
aggs={
"price_ranges": {
"terms": {
"field": "price_range"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7df191cc7f814e410a4ac7261065e6ef.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:474
[source, python]
----
resp = client.tasks.list(
detailed=True,
actions="*byquery",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e126e2751311db60cfcbb22c9c41caa.asciidoc 0000664 0000000 0000000 00000000211 14766462667 0026720 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/shards.asciidoc:395
[source, python]
----
resp = client.cat.shards()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e16d21cba51eb8960835b63a1a7266a.asciidoc 0000664 0000000 0000000 00000000642 14766462667 0026531 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/field-mapping.asciidoc:103
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_date_formats": [
"MM/dd/yyyy"
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"create_date": "09/25/2015"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7e20b6e15e409b02a5e452ceddf1e1e0.asciidoc 0000664 0000000 0000000 00000001650 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:579
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d",
"order": "desc"
}
}
},
{
"product": {
"terms": {
"field": "product",
"order": "asc"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e2b9bf4ab353c377b761101775edf93.asciidoc 0000664 0000000 0000000 00000001746 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-tsds.asciidoc:220
[source, python]
----
resp = client.bulk(
index="metrics-weather_sensors-dev",
operations=[
{
"create": {}
},
{
"@timestamp": "2099-05-06T16:21:15.000Z",
"sensor_id": "HAL-000001",
"location": "plains",
"temperature": 26.7,
"humidity": 49.9
},
{
"create": {}
},
{
"@timestamp": "2099-05-06T16:25:42.000Z",
"sensor_id": "SYKENET-000001",
"location": "swamp",
"temperature": 32.4,
"humidity": 88.9
}
],
)
print(resp)
resp1 = client.index(
index="metrics-weather_sensors-dev",
document={
"@timestamp": "2099-05-06T16:21:15.000Z",
"sensor_id": "SYKENET-000001",
"location": "swamp",
"temperature": 32.4,
"humidity": 88.9
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7e484b8b41f9dbc2bcf1f340db197c1d.asciidoc 0000664 0000000 0000000 00000000370 14766462667 0027036 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:31
[source, python]
----
resp = client.reindex(
source={
"index": "my-index-000001"
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e48648ca27024831c60b455e836c496.asciidoc 0000664 0000000 0000000 00000001037 14766462667 0026256 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/pinned-query.asciidoc:55
[source, python]
----
resp = client.search(
query={
"pinned": {
"docs": [
{
"_index": "my-index-000001",
"_id": "1"
},
{
"_id": "4"
}
],
"organic": {
"match": {
"description": "iphone"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e49705769c42895fb7b1e2ca028ff47.asciidoc 0000664 0000000 0000000 00000000266 14766462667 0026513 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/securing-communications/update-tls-certificates.asciidoc:713
[source, python]
----
resp = client.cat.nodes()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e4cb3de3e3c75646b60f9f81ddc59cc.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0027057 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/clear-trained-model-deployment-cache.asciidoc:49
[source, python]
----
resp = client.ml.clear_trained_model_deployment_cache(
model_id="elastic__distilbert-base-uncased-finetuned-conll03-english",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e5faa551f2c95ffd627da352563d450.asciidoc 0000664 0000000 0000000 00000000551 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:275
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping6",
roles=[
"example-user"
],
enabled=True,
rules={
"field": {
"dn": "*,ou=subtree,dc=example,dc=com"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e74d1a54e816e8f40cfdaa01b070788.asciidoc 0000664 0000000 0000000 00000002004 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rrf.asciidoc:250
[source, python]
----
resp = client.search(
index="example-index",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"term": {
"text": "rrf"
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
3
],
"k": 5,
"num_candidates": 5
}
}
],
"rank_window_size": 5,
"rank_constant": 1
}
},
size=3,
aggs={
"int_count": {
"terms": {
"field": "integer"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7e77509ab646276ff78f58bb38bec8dd.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026734 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/delete-query-ruleset.asciidoc:75
[source, python]
----
resp = client.query_rules.delete_ruleset(
ruleset_id="my-ruleset",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7ebeb6cf26be5b5ecdfd408bd0fc3215.asciidoc 0000664 0000000 0000000 00000002151 14766462667 0027251 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/profile.asciidoc:1248
[source, python]
----
resp = client.indices.create(
index="my-knn-index",
mappings={
"properties": {
"my-vector": {
"type": "dense_vector",
"dims": 3,
"index": True,
"similarity": "l2_norm"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="my-knn-index",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"my-vector": [
1,
5,
-20
]
},
{
"index": {
"_id": "2"
}
},
{
"my-vector": [
42,
8,
-15
]
},
{
"index": {
"_id": "3"
}
},
{
"my-vector": [
15,
11,
23
]
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7ebfb30b3ece855c1b783d9210939469.asciidoc 0000664 0000000 0000000 00000000344 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/flush-job.asciidoc:108
[source, python]
----
resp = client.ml.flush_job(
job_id="total-requests",
advance_time="1514804400000",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7ed26b34ce90192a1563dcddf0e45dc0.asciidoc 0000664 0000000 0000000 00000001307 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/derivative-aggregation.asciidoc:43
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
},
"sales_deriv": {
"derivative": {
"buckets_path": "sales"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7f1fade93225f8cf6000b93334d76ce4.asciidoc 0000664 0000000 0000000 00000001115 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/ip-location.asciidoc:188
[source, python]
----
resp = client.ingest.put_pipeline(
id="ip_location",
description="Add ip geolocation info",
processors=[
{
"ip_location": {
"field": "ip"
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="ip_location",
document={
"ip": "80.231.5.0"
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/7f2d511cb64743c006225e5933a14bb4.asciidoc 0000664 0000000 0000000 00000001565 14766462667 0026366 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-across-clusters.asciidoc:69
[source, python]
----
resp = client.security.put_role(
name="remote1",
cluster=[
"cross_cluster_search"
],
indices=[
{
"names": [
""
],
"privileges": [
"read"
]
}
],
remote_indices=[
{
"names": [
"logs-*"
],
"privileges": [
"read",
"read_cross_cluster"
],
"clusters": [
"my_remote_cluster"
]
}
],
remote_cluster=[
{
"privileges": [
"monitor_enrich"
],
"clusters": [
"my_remote_cluster"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7f37031fb40b68a61255b7c71d7eed0b.asciidoc 0000664 0000000 0000000 00000000425 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/execute-watch.asciidoc:305
[source, python]
----
resp = client.watcher.execute_watch(
id="my_watch",
action_modes={
"action1": "force_simulate",
"action2": "skip"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7f514e9e785e4323d16396359cb184f2.asciidoc 0000664 0000000 0000000 00000000632 14766462667 0026347 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:195
[source, python]
----
resp = client.indices.put_mapping(
index="range_index",
properties={
"ip_allowlist": {
"type": "ip_range"
}
},
)
print(resp)
resp1 = client.index(
index="range_index",
id="2",
document={
"ip_allowlist": "192.168.0.0/16"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7f56755fb6c42f7e6203339a6d0cb6e6.asciidoc 0000664 0000000 0000000 00000000511 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-query.asciidoc:283
[source, python]
----
resp = client.search(
query={
"match": {
"message": {
"query": "ny city",
"auto_generate_synonyms_phrase_query": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7f92ddd4e940a37d6227c43fd279c8f5.asciidoc 0000664 0000000 0000000 00000000452 14766462667 0026646 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:759
[source, python]
----
resp = client.search(
index="my-index-000001",
size=1,
query={
"match": {
"client_ip": "211.11.9.0"
}
},
fields=[
"*"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7fb921376cbf66bf9f381bcdd62030ba.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/apis/get-script-contexts-api.asciidoc:16
[source, python]
----
resp = client.get_script_context()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7fbebf0fc9b4a402917a4723ad547c6a.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/snapshot/corrupt-repository.asciidoc:147
[source, python]
----
resp = client.snapshot.create_repository(
name="my-repo",
repository={
"type": "s3",
"settings": {
"bucket": "repo-bucket",
"client": "elastic-internal-71bcd3",
"base_path": "myrepo"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7fd2532f4e12e3efbc58af195060b31e.asciidoc 0000664 0000000 0000000 00000000774 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/pattern-replace-charfilter.asciidoc:205
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"text": "The fooBarBaz method"
},
)
print(resp)
resp1 = client.search(
index="my-index-000001",
query={
"match": {
"text": "bar"
}
},
highlight={
"fields": {
"text": {}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/7fd5883564d183603e60b37d286ac7e2.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-expired-data.asciidoc:70
[source, python]
----
resp = client.ml.delete_expired_data(
timeout="1h",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7fde3ff91c4a2e7080444af37d5cd287.asciidoc 0000664 0000000 0000000 00000001044 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:289
[source, python]
----
resp = client.esql.query(
query="\n FROM library\n | EVAL year = DATE_EXTRACT(\"year\", release_date)\n | WHERE page_count > ?page_count AND author == ?author\n | STATS count = COUNT(*) by year\n | WHERE count > ?count\n | LIMIT 5\n ",
params=[
{
"page_count": 300
},
{
"author": "Frank Herbert"
},
{
"count": 0
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7fe2179705304af5e87eb382dca6235a.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:318
[source, python]
----
resp = client.indices.open(
index="logs-my_app-default",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7fe9f0a583e079f7fc6fd64d12b6e9e5.asciidoc 0000664 0000000 0000000 00000001376 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/sum-aggregation.asciidoc:54
[source, python]
----
resp = client.search(
index="sales",
size="0",
runtime_mappings={
"price.weighted": {
"type": "double",
"script": "\n double price = doc['price'].value;\n if (doc['promoted'].value) {\n price *= 0.8;\n }\n emit(price);\n "
}
},
query={
"constant_score": {
"filter": {
"match": {
"type": "hat"
}
}
}
},
aggs={
"hat_prices": {
"sum": {
"field": "price.weighted"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7fef68840761c6982c14ad7af96caf37.asciidoc 0000664 0000000 0000000 00000000676 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/nested.asciidoc:24
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"group": "fans",
"user": [
{
"first": "John",
"last": "Smith"
},
{
"first": "Alice",
"last": "White"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/7ff4124df0541ee2496034004f4146d4.asciidoc 0000664 0000000 0000000 00000000507 14766462667 0026312 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/eager-global-ordinals.asciidoc:74
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"tags": {
"type": "keyword",
"eager_global_ordinals": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/800861c15bb33ca01a46fb97dde7537a.asciidoc 0000664 0000000 0000000 00000000305 14766462667 0026603 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-filter.asciidoc:72
[source, python]
----
resp = client.ml.get_filters(
filter_id="safe_domains",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/80135e8c644e34cc70ce8a4e7915d1a2.asciidoc 0000664 0000000 0000000 00000001444 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/attachment.asciidoc:315
[source, python]
----
resp = client.ingest.put_pipeline(
id="attachment",
description="Extract attachment information",
processors=[
{
"attachment": {
"field": "data",
"indexed_chars": 11,
"indexed_chars_field": "max_size",
"remove_binary": True
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id_2",
pipeline="attachment",
document={
"data": "e1xydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbG9yIHNpdCBhbWV0DQpccGFyIH0=",
"max_size": 5
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id_2",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/803bbc14fbec0e49dfed9fab49c8a7f8.asciidoc 0000664 0000000 0000000 00000000464 14766462667 0027277 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/term-query.asciidoc:99
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"full_text": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8051766cadded0892290bc2cc06e145c.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/ack-watch.asciidoc:251
[source, python]
----
resp = client.watcher.ack_watch(
watch_id="my_watch",
action_id="action1,action2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/805f5550b90e75aa5cc82b90d8c6c242.asciidoc 0000664 0000000 0000000 00000001204 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significanttext-aggregation.asciidoc:221
[source, python]
----
resp = client.search(
index="news",
query={
"match": {
"content": "elasticsearch"
}
},
aggs={
"sample": {
"sampler": {
"shard_size": 100
},
"aggs": {
"keywords": {
"significant_text": {
"field": "content",
"filter_duplicate_text": True
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/807c0c9763f8c1114b3c8278c2a0cb56.asciidoc 0000664 0000000 0000000 00000002465 14766462667 0026463 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/intervals-query.asciidoc:28
[source, python]
----
resp = client.search(
query={
"intervals": {
"my_text": {
"all_of": {
"ordered": True,
"intervals": [
{
"match": {
"query": "my favorite food",
"max_gaps": 0,
"ordered": True
}
},
{
"any_of": {
"intervals": [
{
"match": {
"query": "hot water"
}
},
{
"match": {
"query": "cold porridge"
}
}
]
}
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8080cd9e24a8785728ce7c372ec4acf1.asciidoc 0000664 0000000 0000000 00000000502 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/how-watcher-works.asciidoc:159
[source, python]
----
resp = client.perform_request(
"PUT",
"/_watcher/settings",
headers={"Content-Type": "application/json"},
body={
"index.routing.allocation.include.role": "watcher"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/808f4db1e2361be77dd6816c1f818139.asciidoc 0000664 0000000 0000000 00000000272 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shard-stores.asciidoc:19
[source, python]
----
resp = client.indices.shard_stores(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/80dbaf28d1976dc00de3fe2018067e81.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-management/migrate-index-allocation-filters.asciidoc:132
[source, python]
----
resp = client.indices.delete_template(
name=".cloud-hot-warm-allocation-0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/80dd7f5882c59b9c1c90e8351937441f.asciidoc 0000664 0000000 0000000 00000001401 14766462667 0026423 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-update-api-keys.asciidoc:182
[source, python]
----
resp = client.security.bulk_update_api_keys(
ids=[
"VuaCfGcBCdbkQm-e5aOx",
"H3_AhoIBA9hmeQJdg7ij"
],
role_descriptors={
"role-a": {
"indices": [
{
"names": [
"*"
],
"privileges": [
"write"
]
}
]
}
},
metadata={
"environment": {
"level": 2,
"trusted": True,
"tags": [
"production"
]
}
},
expiration="30d",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/80edd2124a822d9f9bf22ecc49d2c2e9.asciidoc 0000664 0000000 0000000 00000000340 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/get-synonym-rule.asciidoc:72
[source, python]
----
resp = client.synonyms.get_synonym_rule(
set_id="my-synonyms-set",
rule_id="test-1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/812a3d7ab461d74efd9136aaf4bcf11c.asciidoc 0000664 0000000 0000000 00000000561 14766462667 0027026 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-field-note.asciidoc:49
[source, python]
----
resp = client.search(
index="range_index",
size="0",
aggs={
"range_histo": {
"histogram": {
"field": "expected_attendees",
"interval": 5
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/812deb6b7668c7444f3b99d843d2adc1.asciidoc 0000664 0000000 0000000 00000001751 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/shape-query.asciidoc:132
[source, python]
----
resp = client.indices.create(
index="shapes",
mappings={
"properties": {
"geometry": {
"type": "shape"
}
}
},
)
print(resp)
resp1 = client.index(
index="shapes",
id="footprint",
document={
"geometry": {
"type": "envelope",
"coordinates": [
[
1355,
5355
],
[
1400,
5200
]
]
}
},
)
print(resp1)
resp2 = client.search(
index="example",
query={
"shape": {
"geometry": {
"indexed_shape": {
"index": "shapes",
"id": "footprint",
"path": "geometry"
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/8141b60ad245ece2ff5e8d0817400ee5.asciidoc 0000664 0000000 0000000 00000000556 14766462667 0026617 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql-search-api.asciidoc:684
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n sequence by process.pid\n [ file where file.name == \"cmd.exe\" and process.pid != 2013 ]\n [ process where stringContains(process.executable, \"regsvr32\") ]\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8141cdaddbe7d794f09f9ee84e46194c.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0027005 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/count.asciidoc:73
[source, python]
----
resp = client.cat.count(
index="my-index-000001",
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/81612c2537386e031b7eb604f6756a71.asciidoc 0000664 0000000 0000000 00000000500 14766462667 0026233 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/clone-index.asciidoc:123
[source, python]
----
resp = client.indices.clone(
index="my_source_index",
target="my_target_index",
settings={
"index.number_of_shards": 5
},
aliases={
"my_search_indices": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8194f1fae6aa72ab91ea559daad932d4.asciidoc 0000664 0000000 0000000 00000000474 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-shard-routing.asciidoc:169
[source, python]
----
resp = client.search(
index="my-index-000001",
max_concurrent_shard_requests="3",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/819e00cc6547d925d80090b94e0650d7.asciidoc 0000664 0000000 0000000 00000000655 14766462667 0026333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:243
[source, python]
----
resp = client.search(
index="my-index-000001,cluster_one:my-index-000001,cluster_two:my-index-000001",
query={
"match": {
"user.id": "kimchy"
}
},
source=[
"user.id",
"message",
"http.response.status_code"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/81aad155ff23b1b396833b1182c9d46b.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026527 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/disk-usage-exceeded.asciidoc:35
[source, python]
----
resp = client.cat.shards(
v=True,
)
print(resp)
resp1 = client.cat.recovery(
v=True,
active_only=True,
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/81c7a392efd505b686eed978fb7d9d17.asciidoc 0000664 0000000 0000000 00000002447 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:636
[source, python]
----
resp = client.indices.create(
index="english_example",
settings={
"analysis": {
"filter": {
"english_stop": {
"type": "stop",
"stopwords": "_english_"
},
"english_keywords": {
"type": "keyword_marker",
"keywords": [
"example"
]
},
"english_stemmer": {
"type": "stemmer",
"language": "english"
},
"english_possessive_stemmer": {
"type": "stemmer",
"language": "possessive_english"
}
},
"analyzer": {
"rebuilt_english": {
"tokenizer": "standard",
"filter": [
"english_possessive_stemmer",
"lowercase",
"english_stop",
"english_keywords",
"english_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/81ee2ad368208c4c78098292547b0577.asciidoc 0000664 0000000 0000000 00000000542 14766462667 0026261 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/mapping-roles.asciidoc:180
[source, python]
----
resp = client.security.put_role_mapping(
name="admin_user",
roles=[
"monitoring"
],
rules={
"field": {
"dn": "cn=Admin,ou=example,o=com"
}
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/81ef5774355180fc44d2a52b5182d24a.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026374 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/string-stats-aggregation.asciidoc:24
[source, python]
----
resp = client.search(
index="my-index-000001",
size="0",
aggs={
"message_stats": {
"string_stats": {
"field": "message.keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/81f1b1e1d5c81683b6bf471c469e6046.asciidoc 0000664 0000000 0000000 00000001210 14766462667 0026457 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/filter-search-results.asciidoc:81
[source, python]
----
resp = client.search(
index="shirts",
query={
"bool": {
"filter": [
{
"term": {
"color": "red"
}
},
{
"term": {
"brand": "gucci"
}
}
]
}
},
aggs={
"models": {
"terms": {
"field": "model"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8206a7cc615ad93fec322513b8fdd4fd.asciidoc 0000664 0000000 0000000 00000000570 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-set-query.asciidoc:107
[source, python]
----
resp = client.index(
index="job-candidates",
id="2",
refresh=True,
document={
"name": "Jason Response",
"programming_languages": [
"java",
"php"
],
"required_matches": 2
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/820f689eaaef15fc07abd1073fa880f8.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:11
[source, python]
----
resp = client.search(
from_=5,
size=20,
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/821422f8a03dc98d024a15fc737fe9eb.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/delete-trained-models-aliases.asciidoc:57
[source, python]
----
resp = client.ml.delete_trained_model_alias(
model_id="flight-delay-prediction-1574775339910",
model_alias="flight_delay_model",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/821ac598f5f4a795a13f8dd0c0c4d8d6.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-tsds.asciidoc:243
[source, python]
----
resp = client.indices.create_data_stream(
name="metrics-weather_sensors-dev",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/824fded1f9db28906ae7e85ae8de9bd0.asciidoc 0000664 0000000 0000000 00000001047 14766462667 0027146 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/post-resume-follow.asciidoc:90
[source, python]
----
resp = client.ccr.resume_follow(
index="follower_index",
max_read_request_operation_count=1024,
max_outstanding_read_requests=16,
max_read_request_size="1024k",
max_write_request_operation_count=32768,
max_write_request_size="16k",
max_outstanding_write_requests=8,
max_write_buffer_count=512,
max_write_buffer_size="512k",
max_retry_delay="10s",
read_poll_timeout="30s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/827b7e9308ea288f18aea00a5accc38e.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-component-template.asciidoc:46
[source, python]
----
resp = client.cluster.get_component_template(
name="template_1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/82844ef45e11c0eece100d3109db3182.asciidoc 0000664 0000000 0000000 00000001063 14766462667 0026517 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-amazon-bedrock.asciidoc:180
[source, python]
----
resp = client.inference.put(
task_type="completion",
inference_id="amazon_bedrock_completion",
inference_config={
"service": "amazonbedrock",
"service_settings": {
"access_key": "",
"secret_key": "",
"region": "us-east-1",
"provider": "amazontitan",
"model": "amazon.titan-text-premier-v1:0"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/828f0045747fde4888a947bb99e190e3.asciidoc 0000664 0000000 0000000 00000001200 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:837
[source, python]
----
resp = client.search(
index="movies",
retriever={
"rule": {
"match_criteria": {
"query_string": "harry potter"
},
"ruleset_ids": [
"my-ruleset"
],
"retriever": {
"standard": {
"query": {
"query_string": {
"query": "harry potter"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/829a40d484c778a8c58340c7bf09e1d8.asciidoc 0000664 0000000 0000000 00000001322 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/filter-search-results.asciidoc:195
[source, python]
----
resp = client.search(
query={
"match": {
"message": {
"operator": "or",
"query": "the quick brown"
}
}
},
rescore={
"window_size": 50,
"query": {
"rescore_query": {
"match_phrase": {
"message": {
"query": "the quick brown",
"slop": 2
}
}
},
"query_weight": 0.7,
"rescore_query_weight": 1.2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/82bb6c61dab959f4446dc5ecab7ecbdf.asciidoc 0000664 0000000 0000000 00000001602 14766462667 0027264 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/chat-completion-inference.asciidoc:322
[source, python]
----
resp = client.inference.stream_inference(
task_type="chat_completion",
inference_id="openai-completion",
messages=[
{
"role": "assistant",
"content": "Let's find out what the weather is",
"tool_calls": [
{
"id": "call_KcAjWtAww20AihPHphUh46Gd",
"type": "function",
"function": {
"name": "get_current_weather",
"arguments": "{\"location\":\"Boston, MA\"}"
}
}
]
},
{
"role": "tool",
"content": "The weather is cold",
"tool_call_id": "call_KcAjWtAww20AihPHphUh46Gd"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/82d6de3081de7b0664f44adf2942675a.asciidoc 0000664 0000000 0000000 00000000367 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// behavioral-analytics/apis/list-analytics-collection.asciidoc:91
[source, python]
----
resp = client.search_application.get_behavioral_analytics(
name="my_analytics_collection",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/82e94b6cdf65e324575f916b3776b779.asciidoc 0000664 0000000 0000000 00000000646 14766462667 0026450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:538
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"strings_as_keywords": {
"match_mapping_type": "string",
"runtime": {}
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/83062a543163370328cf2e21a68c1bd3.asciidoc 0000664 0000000 0000000 00000000671 14766462667 0026303 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-wait-for-snapshot.asciidoc:40
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"delete": {
"actions": {
"wait_for_snapshot": {
"policy": "slm-policy-name"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/831f65d700577e11112c711236110f61.asciidoc 0000664 0000000 0000000 00000001142 14766462667 0026051 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/pattern-analyzer.asciidoc:180
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_email_analyzer": {
"type": "pattern",
"pattern": "\\W|_",
"lowercase": True
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_email_analyzer",
text="John_Smith@foo-bar.com",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/8330b2ea6317769e52d0647ba434b354.asciidoc 0000664 0000000 0000000 00000000540 14766462667 0026312 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-get.asciidoc:268
[source, python]
----
resp = client.mget(
routing="key1",
docs=[
{
"_index": "test",
"_id": "1",
"routing": "key2"
},
{
"_index": "test",
"_id": "2"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8345d2615f43a934fe1871a5120eca1d.asciidoc 0000664 0000000 0000000 00000002326 14766462667 0026451 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/ecommerce-tutorial.asciidoc:77
[source, python]
----
resp = client.transform.preview_transform(
source={
"index": "kibana_sample_data_ecommerce",
"query": {
"bool": {
"filter": {
"term": {
"currency": "EUR"
}
}
}
}
},
pivot={
"group_by": {
"customer_id": {
"terms": {
"field": "customer_id"
}
}
},
"aggregations": {
"total_quantity.sum": {
"sum": {
"field": "total_quantity"
}
},
"taxless_total_price.sum": {
"sum": {
"field": "taxless_total_price"
}
},
"total_quantity.max": {
"max": {
"field": "total_quantity"
}
},
"order_id.cardinality": {
"cardinality": {
"field": "order_id"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/834764b2fba6cbb41eaabd740be75656.asciidoc 0000664 0000000 0000000 00000001111 14766462667 0026744 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keyword-repeat-tokenfilter.asciidoc:384
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"tokenizer": "standard",
"filter": [
"keyword_repeat",
"porter_stem",
"remove_duplicates"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8357aa6099089940589ae3e97e7bcffa.asciidoc 0000664 0000000 0000000 00000000251 14766462667 0026576 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-dsl.asciidoc:362
[source, python]
----
resp = client.indices.get_data_stream()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/83780c8f5f17eb21064c1ba6e0a7aa10.asciidoc 0000664 0000000 0000000 00000000414 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/wrapper-query.asciidoc:10
[source, python]
----
resp = client.search(
query={
"wrapper": {
"query": "eyJ0ZXJtIiA6IHsgInVzZXIuaWQiIDogImtpbWNoeSIgfX0="
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/838a4eabebba4c06100fb37dc30c7722.asciidoc 0000664 0000000 0000000 00000001473 14766462667 0026735 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-search.asciidoc:84
[source, python]
----
resp = client.rollup.put_job(
id="sensor",
index_pattern="sensor-*",
rollup_index="sensor_rollup",
cron="*/30 * * * * ?",
page_size=1000,
groups={
"date_histogram": {
"field": "timestamp",
"fixed_interval": "1h",
"delay": "7d"
},
"terms": {
"fields": [
"node"
]
}
},
metrics=[
{
"field": "temperature",
"metrics": [
"min",
"max",
"sum"
]
},
{
"field": "voltage",
"metrics": [
"avg"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/839710129a165cf93c6e329abedf9089.asciidoc 0000664 0000000 0000000 00000001130 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-cross-cluster-api-key.asciidoc:89
[source, python]
----
resp = client.perform_request(
"POST",
"/_security/cross_cluster/api_key",
headers={"Content-Type": "application/json"},
body={
"name": "my-cross-cluster-api-key",
"access": {
"search": [
{
"names": [
"logs*"
]
}
]
},
"metadata": {
"application": "search"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/839a4b2930856790e34cc9dfeb983284.asciidoc 0000664 0000000 0000000 00000000644 14766462667 0026435 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling.asciidoc:129
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"downsample": {
"fixed_interval": "1h"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/83b94f9e7b3a9abca8e165ea56927714.asciidoc 0000664 0000000 0000000 00000000363 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/rollover-index.asciidoc:386
[source, python]
----
resp = client.indices.create(
index="",
aliases={
"my-write-alias": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/83cd4eb89818b4c32f654d370eafa920.asciidoc 0000664 0000000 0000000 00000000565 14766462667 0026635 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keep-types-tokenfilter.asciidoc:41
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "keep_types",
"types": [
""
]
}
],
text="1 quick fox 2 lazy dogs",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/83d712b9ffb2e703212b762eba3c521a.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026600 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:46
[source, python]
----
resp = client.search(
index="my-alias",
ignore_unavailable=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/83d8c920460a12f87b9d5bf65515c367.asciidoc 0000664 0000000 0000000 00000001502 14766462667 0026412 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:342
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_moving_sum": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.stdDev(values, MovingFunctions.unweightedAvg(values))"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/83dd715e45a5da097123c6d10f22f8f4.asciidoc 0000664 0000000 0000000 00000001573 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-containing-query.asciidoc:10
[source, python]
----
resp = client.search(
query={
"span_containing": {
"little": {
"span_term": {
"field1": "foo"
}
},
"big": {
"span_near": {
"clauses": [
{
"span_term": {
"field1": "bar"
}
},
{
"span_term": {
"field1": "baz"
}
}
],
"slop": 5,
"in_order": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/83dfd0852101eca3ba8174c9c38b4e73.asciidoc 0000664 0000000 0000000 00000000266 14766462667 0026617 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// monitoring/indices.asciidoc:112
[source, python]
----
resp = client.indices.get_template(
name=".monitoring-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/840b6c5c3d9c56aed854cfab8da04486.asciidoc 0000664 0000000 0000000 00000004256 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pathhierarchy-tokenizer.asciidoc:195
[source, python]
----
resp = client.indices.create(
index="file-path-test",
settings={
"analysis": {
"analyzer": {
"custom_path_tree": {
"tokenizer": "custom_hierarchy"
},
"custom_path_tree_reversed": {
"tokenizer": "custom_hierarchy_reversed"
}
},
"tokenizer": {
"custom_hierarchy": {
"type": "path_hierarchy",
"delimiter": "/"
},
"custom_hierarchy_reversed": {
"type": "path_hierarchy",
"delimiter": "/",
"reverse": "true"
}
}
}
},
mappings={
"properties": {
"file_path": {
"type": "text",
"fields": {
"tree": {
"type": "text",
"analyzer": "custom_path_tree"
},
"tree_reversed": {
"type": "text",
"analyzer": "custom_path_tree_reversed"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="file-path-test",
id="1",
document={
"file_path": "/User/alice/photos/2017/05/16/my_photo1.jpg"
},
)
print(resp1)
resp2 = client.index(
index="file-path-test",
id="2",
document={
"file_path": "/User/alice/photos/2017/05/16/my_photo2.jpg"
},
)
print(resp2)
resp3 = client.index(
index="file-path-test",
id="3",
document={
"file_path": "/User/alice/photos/2017/05/16/my_photo3.jpg"
},
)
print(resp3)
resp4 = client.index(
index="file-path-test",
id="4",
document={
"file_path": "/User/alice/photos/2017/05/15/my_photo1.jpg"
},
)
print(resp4)
resp5 = client.index(
index="file-path-test",
id="5",
document={
"file_path": "/User/bob/photos/2017/05/16/my_photo1.jpg"
},
)
print(resp5)
----
python-elasticsearch-8.17.2/docs/examples/84108653e9e03b4edacd878ec870df77.asciidoc 0000664 0000000 0000000 00000002146 14766462667 0026650 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1043
[source, python]
----
resp = client.indices.create(
index="hungarian_example",
settings={
"analysis": {
"filter": {
"hungarian_stop": {
"type": "stop",
"stopwords": "_hungarian_"
},
"hungarian_keywords": {
"type": "keyword_marker",
"keywords": [
"példa"
]
},
"hungarian_stemmer": {
"type": "stemmer",
"language": "hungarian"
}
},
"analyzer": {
"rebuilt_hungarian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"hungarian_stop",
"hungarian_keywords",
"hungarian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8417d8d35ec5fc5665dfb2f95d6d1101.asciidoc 0000664 0000000 0000000 00000001170 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/getting-started.asciidoc:131
[source, python]
----
resp = client.search(
index=".watcher-history*",
pretty=True,
query={
"bool": {
"must": [
{
"match": {
"result.condition.met": True
}
},
{
"range": {
"result.execution_time": {
"gte": "now-10s"
}
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/841ad0a70f4271f61f0bac0b467b59c5.asciidoc 0000664 0000000 0000000 00000000603 14766462667 0026600 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-termvectors.asciidoc:97
[source, python]
----
resp = client.mtermvectors(
index="my-index-000001",
docs=[
{
"_id": "2",
"fields": [
"message"
],
"term_statistics": True
},
{
"_id": "1"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/841d8b766902c8e3ae85c228a31383ac.asciidoc 0000664 0000000 0000000 00000000423 14766462667 0026463 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/apis/get-async-sql-search-status-api.asciidoc:18
[source, python]
----
resp = client.sql.get_async_status(
id="FmdMX2pIang3UWhLRU5QS0lqdlppYncaMUpYQ05oSkpTc3kwZ21EdC1tbFJXQToxOTI=",
format="json",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84237aa9da49ab4b4c4e2b21d2548df2.asciidoc 0000664 0000000 0000000 00000000342 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/verify-repo-integrity-api.asciidoc:31
[source, python]
----
resp = client.snapshot.repository_verify_integrity(
name="my_repository",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84243213614fe64930b1d430704afb29.asciidoc 0000664 0000000 0000000 00000000755 14766462667 0026232 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1014
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
runtime={
"voltage_corrected": {
"type": "double",
"script": {
"source": "\n emit(doc['voltage'].value * params['multiplier'])\n ",
"params": {
"multiplier": 2
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84465de841fe5c6099a0382f786f2cb8.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026513 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:76
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"remove": {
"index": "logs-nginx.access-prod",
"alias": "logs"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8478c39c71bbb559ef6ab919f918f22b.asciidoc 0000664 0000000 0000000 00000000627 14766462667 0026655 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1223
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
filter={
"range": {
"@timestamp": {
"gte": "now-1d/d",
"lt": "now/d"
}
}
},
query="\n file where (file.type == \"file\" and file.name == \"cmd.exe\")\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8494d09c39e109a012094eb9d6ec52ac.asciidoc 0000664 0000000 0000000 00000000567 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/pipeline.asciidoc:36
[source, python]
----
resp = client.ingest.put_pipeline(
id="pipelineA",
description="inner pipeline",
processors=[
{
"set": {
"field": "inner_pipeline_set",
"value": "inner"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84c61160ca815e29e9973ba1380219dd.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026376 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// searchable-snapshots/apis/shard-stats.asciidoc:79
[source, python]
----
resp = client.searchable_snapshots.stats(
index="my-index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84c69fb07050f0e89720007a6507a221.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0026222 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/high-cpu-usage.asciidoc:118
[source, python]
----
resp = client.tasks.cancel(
task_id="oTUltX4IQMOUUVeiohTt8A:464",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84e2cf7417c9e0c9e6f3c23031001440.asciidoc 0000664 0000000 0000000 00000000240 14766462667 0026360 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/enrich/enrich-stats.asciidoc:135
[source, python]
----
resp = client.enrich.stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84edb44c5b74426f448b2baa101092d6.asciidoc 0000664 0000000 0000000 00000000444 14766462667 0026526 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:75
[source, python]
----
resp = client.search(
index="range_index",
query={
"term": {
"expected_attendees": {
"value": 12
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84ef9fe951c6d3caa7438238a5b23319.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:487
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"term": {
"author.keyword": "Maria Rodriguez"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84f2f0cea90340bdd041421afdb58ec3.asciidoc 0000664 0000000 0000000 00000001035 14766462667 0026734 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:7
[source, python]
----
resp = client.indices.create(
index="index1",
mappings={
"properties": {
"comment": {
"type": "text",
"analyzer": "standard",
"fields": {
"english": {
"type": "text",
"analyzer": "english"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/84f3e8524f6ff80e870c03ab71551538.asciidoc 0000664 0000000 0000000 00000000475 14766462667 0026422 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-shard-routing.asciidoc:79
[source, python]
----
resp = client.search(
index="my-index-000001",
preference="my-custom-shard-string",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/850bfd0a00d32475a54ac7f87fb4cc4d.asciidoc 0000664 0000000 0000000 00000001206 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:563
[source, python]
----
resp = client.search(
index="my-index-000001",
runtime_mappings={
"measures.voltage": {
"type": "double",
"script": {
"source": "if (doc['model_number.keyword'].value.equals('HG537PU'))\n {emit(1.7 * params._source['measures']['voltage']);}\n else{emit(params._source['measures']['voltage']);}"
}
}
},
query={
"match": {
"model_number": "HG537PU"
}
},
fields=[
"measures.voltage"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/851f9754dbefc099c54c5423ca4565c0.asciidoc 0000664 0000000 0000000 00000000622 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/ipprefix-aggregation.asciidoc:107
[source, python]
----
resp = client.search(
index="network-traffic",
size=0,
aggs={
"ipv6-subnets": {
"ip_prefix": {
"field": "ipv6",
"prefix_length": 64,
"is_ipv6": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/852b394d78b8c79ee0055b5501981a4b.asciidoc 0000664 0000000 0000000 00000001226 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:607
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"product_name": {
"terms": {
"field": "product",
"missing_bucket": True,
"missing_order": "last"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/853fc710cea79fb4e1a85fb6d149f9c5.asciidoc 0000664 0000000 0000000 00000002335 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:876
[source, python]
----
resp = client.search(
index="movies",
retriever={
"rule": {
"match_criteria": {
"query_string": "harry potter"
},
"ruleset_ids": [
"my-ruleset"
],
"retriever": {
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"query_string": {
"query": "sorcerer's stone"
}
}
}
},
{
"standard": {
"query": {
"query_string": {
"query": "chamber of secrets"
}
}
}
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/85479e02af00681210e17e3d0ff51e21.asciidoc 0000664 0000000 0000000 00000000570 14766462667 0026365 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/date.asciidoc:93
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"date": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/85519a614ae18c998986d46bbad82b76.asciidoc 0000664 0000000 0000000 00000000732 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:100
[source, python]
----
resp = client.indices.put_index_template(
name="my_template",
index_patterns=[
"test-*"
],
template={
"settings": {
"number_of_shards": 1,
"number_of_replicas": 1,
"index.lifecycle.name": "my_policy",
"index.lifecycle.rollover_alias": "test-alias"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8566f5ecf4ae14802ba63c8cc7c629f8.asciidoc 0000664 0000000 0000000 00000000634 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:216
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="mistral_embeddings",
inference_config={
"service": "mistral",
"service_settings": {
"api_key": "",
"model": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/856c10ad554c26b70f1121454caff40a.asciidoc 0000664 0000000 0000000 00000000546 14766462667 0026517 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:250
[source, python]
----
resp = client.search(
index="byte-image-index",
knn={
"field": "byte-image-vector",
"query_vector": "fb09",
"k": 10,
"num_candidates": 100
},
fields=[
"title"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8582e918a6275472d2eba2e95f1dbe77.asciidoc 0000664 0000000 0000000 00000001742 14766462667 0026566 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/disk-usage-exceeded.asciidoc:65
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.disk.watermark.low": "90%",
"cluster.routing.allocation.disk.watermark.low.max_headroom": "100GB",
"cluster.routing.allocation.disk.watermark.high": "95%",
"cluster.routing.allocation.disk.watermark.high.max_headroom": "20GB",
"cluster.routing.allocation.disk.watermark.flood_stage": "97%",
"cluster.routing.allocation.disk.watermark.flood_stage.max_headroom": "5GB",
"cluster.routing.allocation.disk.watermark.flood_stage.frozen": "97%",
"cluster.routing.allocation.disk.watermark.flood_stage.frozen.max_headroom": "5GB"
},
)
print(resp)
resp1 = client.indices.put_settings(
index="*",
expand_wildcards="all",
settings={
"index.blocks.read_only_allow_delete": None
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/858fde15fb0a0340873b123043f8c3b4.asciidoc 0000664 0000000 0000000 00000002026 14766462667 0026444 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/histogram.asciidoc:118
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"my_text": "histogram_1",
"my_histogram": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
3,
7,
23,
12,
6
]
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
document={
"my_text": "histogram_2",
"my_histogram": {
"values": [
0.1,
0.25,
0.35,
0.4,
0.45,
0.5
],
"counts": [
8,
17,
8,
7,
6,
2
]
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/85ae90b63ecba9d2bad16144b054c0a1.asciidoc 0000664 0000000 0000000 00000000717 14766462667 0026734 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:535
[source, python]
----
resp = client.sql.query(
format="txt",
runtime_mappings={
"release_day_of_week": {
"type": "keyword",
"script": "\n emit(doc['release_date'].value.dayOfWeekEnum.toString())\n "
}
},
query="\n SELECT * FROM library WHERE page_count > 300 AND author = 'Frank Herbert'\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/85d2e33791f1a74a69dfb04a60e69306.asciidoc 0000664 0000000 0000000 00000002556 14766462667 0026475 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/actions.asciidoc:57
[source, python]
----
resp = client.watcher.put_watch(
id="error_logs_alert",
metadata={
"color": "red"
},
trigger={
"schedule": {
"interval": "5m"
}
},
input={
"search": {
"request": {
"indices": "log-events",
"body": {
"size": 0,
"query": {
"match": {
"status": "error"
}
}
}
}
}
},
condition={
"compare": {
"ctx.payload.hits.total": {
"gt": 5
}
}
},
actions={
"email_administrator": {
"throttle_period": "15m",
"email": {
"to": "sys.admino@host.domain",
"subject": "Encountered {{ctx.payload.hits.total}} errors",
"body": "Too many error in the system, see attached data",
"attachments": {
"attached_data": {
"data": {
"format": "json"
}
}
},
"priority": "high"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/85e2719d9fd6d2c2d47d28d39f2e3f7e.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/feature-migration.asciidoc:53
[source, python]
----
resp = client.migration.get_feature_upgrade_status()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/85f0e5e8ab91ceab63c21dbedd9f4037.asciidoc 0000664 0000000 0000000 00000002124 14766462667 0027117 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:737
[source, python]
----
resp = client.indices.create(
index="finnish_example",
settings={
"analysis": {
"filter": {
"finnish_stop": {
"type": "stop",
"stopwords": "_finnish_"
},
"finnish_keywords": {
"type": "keyword_marker",
"keywords": [
"esimerkki"
]
},
"finnish_stemmer": {
"type": "stemmer",
"language": "finnish"
}
},
"analyzer": {
"rebuilt_finnish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"finnish_stop",
"finnish_keywords",
"finnish_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/85f2839beeb71edb66988e5c82188be0.asciidoc 0000664 0000000 0000000 00000001001 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/update-license.asciidoc:69
[source, python]
----
resp = client.license.post(
licenses=[
{
"uid": "893361dc-9749-4997-93cb-802e3d7fa4xx",
"type": "basic",
"issue_date_in_millis": 1411948800000,
"expiry_date_in_millis": 1914278399999,
"max_nodes": 1,
"issued_to": "issuedTo",
"issuer": "issuer",
"signature": "xx"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/85f6667f148d16d075493fddf07e2932.asciidoc 0000664 0000000 0000000 00000000504 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:616
[source, python]
----
resp = client.reindex(
source={
"index": ".ds-my-data-stream-2099.03.07-000001"
},
dest={
"index": "new-data-stream",
"op_type": "create"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/85f9fc6f98e8573efed9b034e853d5ae.asciidoc 0000664 0000000 0000000 00000000610 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-elasticsearch.asciidoc:289
[source, python]
----
resp = client.inference.put(
task_type="sparse_embedding",
inference_id="use_existing_deployment",
inference_config={
"service": "elasticsearch",
"service_settings": {
"deployment_id": ".elser_model_2"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8619bd17bbfe33490b1f277007f654db.asciidoc 0000664 0000000 0000000 00000000756 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-cohere.asciidoc:214
[source, python]
----
resp = client.inference.put(
task_type="rerank",
inference_id="cohere-rerank",
inference_config={
"service": "cohere",
"service_settings": {
"api_key": "",
"model_id": "rerank-english-v3.0"
},
"task_settings": {
"top_n": 10,
"return_documents": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/861f5f61409dc87f3671293b87839ff7.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026366 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/stats.asciidoc:1542
[source, python]
----
resp = client.cluster.stats(
human=True,
pretty=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8621c05cc7cf3880bde751f6670a0c3a.asciidoc 0000664 0000000 0000000 00000000455 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:439
[source, python]
----
resp = client.indices.put_settings(
index=".reindexed-v9-ml-anomalies-custom-example",
settings={
"index": {
"number_of_replicas": 0
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/86280dcb49aa89083be4b2644daf1b7c.asciidoc 0000664 0000000 0000000 00000000305 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-job.asciidoc:240
[source, python]
----
resp = client.ml.get_jobs(
job_id="high_sum_total_sales",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/862907653d1c18d2e80eff7f421200e2.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026375 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/saml-guide.asciidoc:677
[source, python]
----
resp = client.security.put_role_mapping(
name="saml-example",
roles=[
"example_role"
],
enabled=True,
rules={
"field": {
"realm.name": "saml1"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/863253bf0ab7d227ff72a0a384f4de8c.asciidoc 0000664 0000000 0000000 00000000373 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:673
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"indices.lifecycle.poll_interval": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8634c9993485d622fb12d24f4f242264.asciidoc 0000664 0000000 0000000 00000001100 14766462667 0026245 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:433
[source, python]
----
resp = client.indices.modify_data_stream(
actions=[
{
"remove_backing_index": {
"data_stream": "my-data-stream",
"index": ".ds-my-data-stream-2023.07.26-000001"
}
},
{
"add_backing_index": {
"data_stream": "my-data-stream",
"index": ".ds-my-data-stream-2023.07.26-000001-downsample"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/867f7d43a78066731ead2e223960fc07.asciidoc 0000664 0000000 0000000 00000000365 14766462667 0026416 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:408
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"action.destructive_requires_name": False
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8684589e31d96ab229e8c4feb4d704bb.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/enrich/get-enrich-policy.asciidoc:130
[source, python]
----
resp = client.enrich.get_policy(
name="my-policy,other-policy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/86926bcebf213ac182d4373027554858.asciidoc 0000664 0000000 0000000 00000000476 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/unsigned_long.asciidoc:13
[source, python]
----
resp = client.indices.create(
index="my_index",
mappings={
"properties": {
"my_counter": {
"type": "unsigned_long"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8696ba08ca6cc4992110c331732e5f47.asciidoc 0000664 0000000 0000000 00000000543 14766462667 0026404 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/boxplot-aggregation.asciidoc:205
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"grade_boxplot": {
"boxplot": {
"field": "grade",
"missing": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8699d35269a47ba867fa8cc766287413.asciidoc 0000664 0000000 0000000 00000000241 14766462667 0026356 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/start-basic.asciidoc:48
[source, python]
----
resp = client.license.post_start_basic()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/86c5594c4ec551391096c1abcd652b50.asciidoc 0000664 0000000 0000000 00000000605 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/unsigned_long.asciidoc:125
[source, python]
----
resp = client.search(
index="my_index",
query={
"match_all": {}
},
script_fields={
"count10": {
"script": {
"source": "Long.divideUnsigned(doc['my_counter'].value, 10)"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8703f3b1b3895543abc36e2a7a0013d3.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0026441 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/allocation/prioritization.asciidoc:17
[source, python]
----
resp = client.indices.create(
index="index_1",
)
print(resp)
resp1 = client.indices.create(
index="index_2",
)
print(resp1)
resp2 = client.indices.create(
index="index_3",
settings={
"index.priority": 10
},
)
print(resp2)
resp3 = client.indices.create(
index="index_4",
settings={
"index.priority": 5
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/871154d08efd7251cf3272e758f06acf.asciidoc 0000664 0000000 0000000 00000001415 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/common-grams-tokenfilter.asciidoc:126
[source, python]
----
resp = client.indices.create(
index="common_grams_example",
settings={
"analysis": {
"analyzer": {
"index_grams": {
"tokenizer": "whitespace",
"filter": [
"common_grams"
]
}
},
"filter": {
"common_grams": {
"type": "common_grams",
"common_words": [
"a",
"is",
"the"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8731188553e14134b0a533010318f91a.asciidoc 0000664 0000000 0000000 00000000713 14766462667 0026057 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significantterms-aggregation.asciidoc:70
[source, python]
----
resp = client.search(
query={
"terms": {
"force": [
"British Transport Police"
]
}
},
aggregations={
"significant_crime_types": {
"significant_terms": {
"field": "crime_type"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8739fad1fb2323950b673acf0c9f2ff5.asciidoc 0000664 0000000 0000000 00000000261 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/open-close.asciidoc:126
[source, python]
----
resp = client.indices.open(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/873e2333734b1cf5ed066596e5f74b0a.asciidoc 0000664 0000000 0000000 00000003742 14766462667 0026475 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geocentroid-aggregation.asciidoc:13
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (4.912350 52.374081)",
"city": "Amsterdam",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (4.901618 52.369219)",
"city": "Amsterdam",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (4.914722 52.371667)",
"city": "Amsterdam",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (4.405200 51.222900)",
"city": "Antwerp",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (2.336389 48.861111)",
"city": "Paris",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (2.327000 48.860000)",
"city": "Paris",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
aggs={
"centroid": {
"geo_centroid": {
"field": "location"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/873fbbc6ab81409058591385fd602736.asciidoc 0000664 0000000 0000000 00000001745 14766462667 0026342 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/nested-query.asciidoc:171
[source, python]
----
resp = client.index(
index="drivers",
id="1",
document={
"driver": {
"last_name": "McQueen",
"vehicle": [
{
"make": "Powell Motors",
"model": "Canyonero"
},
{
"make": "Miller-Meteor",
"model": "Ecto-1"
}
]
}
},
)
print(resp)
resp1 = client.index(
index="drivers",
id="2",
refresh=True,
document={
"driver": {
"last_name": "Hudson",
"vehicle": [
{
"make": "Mifune",
"model": "Mach Five"
},
{
"make": "Miller-Meteor",
"model": "Ecto-1"
}
]
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/87416e6a1ca2da324dbed6deb05303eb.asciidoc 0000664 0000000 0000000 00000000736 14766462667 0027022 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/count.asciidoc:112
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"user.id": "kimchy"
},
)
print(resp)
resp1 = client.count(
index="my-index-000001",
q="user:kimchy",
)
print(resp1)
resp2 = client.count(
index="my-index-000001",
query={
"term": {
"user.id": "kimchy"
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/8743887d9b89ea1a2d5e780c349972cf.asciidoc 0000664 0000000 0000000 00000000777 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/collapse-search-results.asciidoc:263
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": "GET /search"
}
},
collapse={
"field": "geo.country_name",
"inner_hits": {
"name": "by_location",
"collapse": {
"field": "user.id"
},
"size": 3
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/87457bb3467484bec3e9df4e25942ba6.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/multivalued-fields.asciidoc:275
[source, python]
----
resp = client.esql.query(
query="FROM mv | EVAL b=MV_MIN(b) | EVAL b + 2, a + b | LIMIT 4",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/87469f8b7e9b965408479d276c3ce8aa.asciidoc 0000664 0000000 0000000 00000000344 14766462667 0026530 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// behavioral-analytics/apis/list-analytics-collection.asciidoc:111
[source, python]
----
resp = client.search_application.get_behavioral_analytics(
name="my*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/87733deeea4b441b595d19a0f97346f0.asciidoc 0000664 0000000 0000000 00000000263 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// health/health.asciidoc:479
[source, python]
----
resp = client.health_report(
feature="shards_availability",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/877ea90c663b5df9efe95717646a666f.asciidoc 0000664 0000000 0000000 00000002145 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:159
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"group": {
"type": "keyword"
},
"user": {
"type": "nested",
"properties": {
"first": {
"type": "keyword"
},
"last": {
"type": "keyword"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"group": "fans",
"user": [
{
"first": "John",
"last": "Smith"
},
{
"first": "Alice",
"last": "White"
}
]
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
fields=[
"*"
],
source=False,
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/87846c3ddacab1da4af626ae8099e4be.asciidoc 0000664 0000000 0000000 00000000537 14766462667 0027131 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/mapping-roles.asciidoc:190
[source, python]
----
resp = client.security.put_role_mapping(
name="basic_user",
roles=[
"user"
],
rules={
"field": {
"dn": "cn=John Doe,ou=example,o=com"
}
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/87b0b496747ad6c1e4ab4b462128fa1c.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/nodeattrs.asciidoc:119
[source, python]
----
resp = client.cat.nodeattrs(
v=True,
h="name,pid,attr,value",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/87c3e9963400a3e4b296ef8d1c86fae3.asciidoc 0000664 0000000 0000000 00000000332 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-roles-cache.asciidoc:55
[source, python]
----
resp = client.security.clear_cached_roles(
name="my_admin_role,my_test_role",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/87c42ef733a50954e4d757fc0a08decc.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:261
[source, python]
----
resp = client.security.create_api_key(
name="my-api-key-1",
metadata={
"application": "my-application"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/87d970b4944b6d742c484d7184996c8a.asciidoc 0000664 0000000 0000000 00000000474 14766462667 0026366 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:708
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
params={
"query_string": "Where is the best place for mountain climbing?"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/87f854393d715aabf4d45e90a8eb74ce.asciidoc 0000664 0000000 0000000 00000000614 14766462667 0026722 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/median-absolute-deviation-aggregation.asciidoc:173
[source, python]
----
resp = client.search(
index="reviews",
size=0,
aggs={
"review_variability": {
"median_absolute_deviation": {
"field": "rating",
"missing": 5
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/88195d87a350e7fff200131f410c3e88.asciidoc 0000664 0000000 0000000 00000001220 14766462667 0026400 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-aggregation.asciidoc:70
[source, python]
----
resp = client.search(
index="sales",
aggs={
"price_ranges": {
"range": {
"field": "price",
"keyed": True,
"ranges": [
{
"to": 100
},
{
"from": 100,
"to": 200
},
{
"from": 200
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/88341b4eba71ec722f3e38fa1696fe87.asciidoc 0000664 0000000 0000000 00000002534 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:40
[source, python]
----
resp = client.transform.preview_transform(
source={
"index": "kibana_sample_data_ecommerce"
},
dest={
"index": "sample_ecommerce_orders_by_customer"
},
pivot={
"group_by": {
"user": {
"terms": {
"field": "user"
}
},
"customer_id": {
"terms": {
"field": "customer_id"
}
}
},
"aggregations": {
"order_count": {
"value_count": {
"field": "order_id"
}
},
"total_order_amt": {
"sum": {
"field": "taxful_total_price"
}
},
"avg_amt_per_order": {
"avg": {
"field": "taxful_total_price"
}
},
"avg_unique_products_per_order": {
"avg": {
"field": "total_unique_products"
}
},
"total_unique_products": {
"cardinality": {
"field": "products.product_id"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/88554b79dba8fd79991855a692b69ff9.asciidoc 0000664 0000000 0000000 00000002304 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// graph/explore.asciidoc:315
[source, python]
----
resp = client.graph.explore(
index="clicklogs",
query={
"match": {
"query.raw": "midi"
}
},
controls={
"use_significance": False,
"sample_size": 2000,
"timeout": 2000,
"sample_diversity": {
"field": "category.raw",
"max_docs_per_value": 500
}
},
vertices=[
{
"field": "product",
"size": 5,
"min_doc_count": 10,
"shard_min_doc_count": 3
}
],
connections={
"query": {
"bool": {
"filter": [
{
"range": {
"query_time": {
"gte": "2015-10-01 00:00:00"
}
}
}
]
}
},
"vertices": [
{
"field": "query.raw",
"size": 5,
"min_doc_count": 10,
"shard_min_doc_count": 3
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/88a08d0b15ef41324f5c23db533d47d1.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026521 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/standard-tokenizer.asciidoc:16
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/88a283dfccc481f1afba79d9b3c61f51.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-user.asciidoc:117
[source, python]
----
resp = client.perform_request(
"GET",
"/_security/_query/user",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/88b19973b970adf9b73fca82017d4951.asciidoc 0000664 0000000 0000000 00000000422 14766462667 0026501 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-multiple-indices.asciidoc:36
[source, python]
----
resp = client.search(
index="my-index-*",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/88cecae3f0363fc186d955dd8616b5d4.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/get-async-eql-status-api.asciidoc:90
[source, python]
----
resp = client.eql.get_status(
id="FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
keep_alive="5d",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/88cf60d3310a56d8ae12704abc05b565.asciidoc 0000664 0000000 0000000 00000000246 14766462667 0026524 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/get-trial-status.asciidoc:46
[source, python]
----
resp = client.license.get_trial_status()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/894fce12d8f0d01e4c4083885a0c0077.asciidoc 0000664 0000000 0000000 00000000567 14766462667 0026466 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:183
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "mistral-embeddings",
"pipeline": "mistral_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8963fb1e3d0900ba3b68be212e8972ee.asciidoc 0000664 0000000 0000000 00000001312 14766462667 0026617 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/position-increment-gap.asciidoc:53
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"names": {
"type": "text",
"position_increment_gap": 0
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"names": [
"John Abraham",
"Lincoln Smith"
]
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"match_phrase": {
"names": "Abraham Lincoln"
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/897668edcbb0785fa5229aeb2dfc963e.asciidoc 0000664 0000000 0000000 00000000517 14766462667 0027011 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:51
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"query": {
"match": {
"message": "bonsai tree"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/89a6b24618cafd60de1702a5b9f28a8d.asciidoc 0000664 0000000 0000000 00000002032 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/phrase-suggest.asciidoc:221
[source, python]
----
resp = client.search(
index="test",
suggest={
"text": "noble prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"direct_generator": [
{
"field": "title.trigram",
"suggest_mode": "always",
"min_word_length": 1
}
],
"collate": {
"query": {
"source": {
"match": {
"{{field_name}}": "{{suggestion}}"
}
}
},
"params": {
"field_name": "title"
},
"prune": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/89aed93f641a5e243bdc3ee5cdc2acc6.asciidoc 0000664 0000000 0000000 00000006337 14766462667 0027210 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:484
[source, python]
----
resp = client.search_application.put(
name="my_search_application",
search_application={
"indices": [
"index1",
"index2"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"bool\": {\n \"should\": [\n {{#text}}\n {\n \"multi_match\": {\n \"query\": \"{{query_string}}\",\n \"fields\": [{{#text_fields}}\"{{name}}^{{boost}}\",{{/text_fields}}],\n \"boost\": \"{{text_query_boost}}\"\n }\n },\n {{/text}}\n {{#elser}}\n {{#elser_fields}}\n {\n \"sparse_vector\": {\n \"field\": \"ml.inference.{{.}}_expanded.predicted_value\",\n \"inference_id\": \"\",\n \"query\": \"{{query_string}}\"\n }\n },\n {{/elser_fields}}\n { \"bool\": { \"must\": [] } },\n {{/elser}}\n {{^text}}\n {{^elser}}\n {\n \"query_string\": {\n \"query\": \"{{query_string}}\",\n \"default_field\": \"{{default_field}}\",\n \"default_operator\": \"{{default_operator}}\",\n \"boost\": \"{{text_query_boost}}\"\n }\n },\n {{/elser}}\n {{/text}}\n { \"bool\": { \"must\": [] } }\n ],\n \"minimum_should_match\": 1\n }\n },\n \"min_score\": \"{{min_score}}\",\n \"explain\": \"{{explain}}\",\n \"from\": \"{{from}}\",\n \"size\": \"{{size}}\"\n }\n ",
"params": {
"text": False,
"elser": False,
"elser_fields": [
{
"name": "title",
"boost": 1
},
{
"name": "description",
"boost": 1
}
],
"text_fields": [
{
"name": "title",
"boost": 10
},
{
"name": "description",
"boost": 5
},
{
"name": "state",
"boost": 1
}
],
"query_string": "*",
"text_query_boost": 4,
"default_field": "*",
"default_operator": "OR",
"explain": False,
"from": 0,
"size": 10,
"min_score": 0
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/89b72dd7f747f6297c2b089e8bc807be.asciidoc 0000664 0000000 0000000 00000000506 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/put-repo-api.asciidoc:16
[source, python]
----
resp = client.snapshot.create_repository(
name="my_repository",
repository={
"type": "fs",
"settings": {
"location": "my_backup_location"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/89c57917bc7bd2e6387b5eb54ece37b1.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:174
[source, python]
----
resp = client.count(
index="my-index-000001",
query={
"exists": {
"field": "my-field"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/89d2a3748dc14c6d5d4c6f94b9b03938.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/split-index.asciidoc:50
[source, python]
----
resp = client.indices.add_block(
index="my_source_index",
block="write",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/89dee10a24ea2727af5b00039a4271bd.asciidoc 0000664 0000000 0000000 00000010066 14766462667 0026600 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geoline-aggregation.asciidoc:159
[source, python]
----
resp = client.indices.create(
index="tour",
mappings={
"properties": {
"city": {
"type": "keyword",
"time_series_dimension": True
},
"category": {
"type": "keyword"
},
"route": {
"type": "long"
},
"name": {
"type": "keyword"
},
"location": {
"type": "geo_point"
},
"@timestamp": {
"type": "date"
}
}
},
settings={
"index": {
"mode": "time_series",
"routing_path": [
"city"
],
"time_series": {
"start_time": "2023-01-01T00:00:00Z",
"end_time": "2024-01-01T00:00:00Z"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="tour",
refresh=True,
operations=[
{
"index": {}
},
{
"@timestamp": "2023-01-02T09:00:00Z",
"route": 0,
"location": "POINT(4.889187 52.373184)",
"city": "Amsterdam",
"category": "Attraction",
"name": "Royal Palace Amsterdam"
},
{
"index": {}
},
{
"@timestamp": "2023-01-02T10:00:00Z",
"route": 1,
"location": "POINT(4.885057 52.370159)",
"city": "Amsterdam",
"category": "Attraction",
"name": "The Amsterdam Dungeon"
},
{
"index": {}
},
{
"@timestamp": "2023-01-02T13:00:00Z",
"route": 2,
"location": "POINT(4.901618 52.369219)",
"city": "Amsterdam",
"category": "Museum",
"name": "Museum Het Rembrandthuis"
},
{
"index": {}
},
{
"@timestamp": "2023-01-02T16:00:00Z",
"route": 3,
"location": "POINT(4.912350 52.374081)",
"city": "Amsterdam",
"category": "Museum",
"name": "NEMO Science Museum"
},
{
"index": {}
},
{
"@timestamp": "2023-01-03T12:00:00Z",
"route": 4,
"location": "POINT(4.914722 52.371667)",
"city": "Amsterdam",
"category": "Museum",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {}
},
{
"@timestamp": "2023-01-04T09:00:00Z",
"route": 5,
"location": "POINT(4.401384 51.220292)",
"city": "Antwerp",
"category": "Attraction",
"name": "Cathedral of Our Lady"
},
{
"index": {}
},
{
"@timestamp": "2023-01-04T12:00:00Z",
"route": 6,
"location": "POINT(4.405819 51.221758)",
"city": "Antwerp",
"category": "Museum",
"name": "Snijders&Rockoxhuis"
},
{
"index": {}
},
{
"@timestamp": "2023-01-04T15:00:00Z",
"route": 7,
"location": "POINT(4.405200 51.222900)",
"city": "Antwerp",
"category": "Museum",
"name": "Letterenhuis"
},
{
"index": {}
},
{
"@timestamp": "2023-01-05T10:00:00Z",
"route": 8,
"location": "POINT(2.336389 48.861111)",
"city": "Paris",
"category": "Museum",
"name": "Musée du Louvre"
},
{
"index": {}
},
{
"@timestamp": "2023-01-05T14:00:00Z",
"route": 9,
"location": "POINT(2.327000 48.860000)",
"city": "Paris",
"category": "Museum",
"name": "Musée dOrsay"
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/89f547649895176c246bb8c41313ff21.asciidoc 0000664 0000000 0000000 00000000575 14766462667 0026275 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-syntax.asciidoc:202
[source, python]
----
resp = client.esql.query(
query="\nFROM library\n| EVAL year = DATE_EXTRACT(\"year\", release_date)\n| WHERE page_count > ? AND match(author, ?, {\"minimum_should_match\": ?})\n| LIMIT 5\n",
params=[
300,
"Frank Herbert",
2
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/89f8eac24f3ec6a7668d580aaf0eeefa.asciidoc 0000664 0000000 0000000 00000000455 14766462667 0027223 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:292
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"snowball"
],
text="detailed output",
explain=True,
attributes=[
"keyword"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8a0b5f759de3f27f0801c1176e616117.asciidoc 0000664 0000000 0000000 00000000540 14766462667 0026400 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-semantic-text.asciidoc:36
[source, python]
----
resp = client.indices.create(
index="semantic-embeddings",
mappings={
"properties": {
"content": {
"type": "semantic_text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8a12cd824404d74f098d854716a26899.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026263 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-datafeed.asciidoc:49
[source, python]
----
resp = client.ml.delete_datafeed(
datafeed_id="datafeed-total-requests",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8a1b6eae4893c5dd27b3d81fd8d70f5b.asciidoc 0000664 0000000 0000000 00000000255 14766462667 0027053 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:467
[source, python]
----
resp = client.tasks.get(
task_id="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8a1f6cffa653800282c0ae160ee375bc.asciidoc 0000664 0000000 0000000 00000000617 14766462667 0026671 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:161
[source, python]
----
resp = client.update(
index="test",
id="1",
script={
"source": "if (ctx._source.tags.contains(params.tag)) { ctx._source.tags.remove(ctx._source.tags.indexOf(params.tag)) }",
"lang": "painless",
"params": {
"tag": "blue"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8a4941cae0b32d68b22bec2d12c82860.asciidoc 0000664 0000000 0000000 00000000534 14766462667 0026602 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:356
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n sequence by process.pid with maxspan=1h\n [ process where process.name == \"regsvr32.exe\" ]\n [ file where stringContains(file.name, \"scrobj.dll\") ]\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8a617dbfe5887f8ecc8815de132b6eb0.asciidoc 0000664 0000000 0000000 00000000516 14766462667 0027002 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:268
[source, python]
----
resp = client.security.put_user(
username="cross-cluster-kibana",
password="l0ng-r4nd0m-p@ssw0rd",
roles=[
"logstash-reader",
"kibana-access"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8aa17bd25a3f2d634e5253b4b72fec4c.asciidoc 0000664 0000000 0000000 00000000536 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/explain-dfanalytics.asciidoc:126
[source, python]
----
resp = client.ml.explain_data_frame_analytics(
source={
"index": "houses_sold_last_10_yrs"
},
analysis={
"regression": {
"dependent_variable": "price"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8aa74aee3dcf4b34028e4c5e1c1ed27b.asciidoc 0000664 0000000 0000000 00000001441 14766462667 0027105 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:35
[source, python]
----
resp = client.indices.create(
index="bug_reports",
mappings={
"properties": {
"title": {
"type": "text"
},
"labels": {
"type": "flattened"
}
}
},
)
print(resp)
resp1 = client.index(
index="bug_reports",
id="1",
document={
"title": "Results are not sorted correctly.",
"labels": {
"priority": "urgent",
"release": [
"v1.2.5",
"v1.3.0"
],
"timestamp": {
"created": 1541458026,
"closed": 1541457010
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/8ab11a25e017124a70484781ca11fb52.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0026353 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/detect-threats-with-eql.asciidoc:94
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
filter_path="-hits.events",
query="\n any where process.name == \"regsvr32.exe\" \n ",
size=200,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8b07372a21a10a16b52e70fc0c87ad4e.asciidoc 0000664 0000000 0000000 00000000600 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/object.asciidoc:11
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"region": "US",
"manager": {
"age": 30,
"name": {
"first": "John",
"last": "Smith"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8b301122cbf42be6eafeda714a36559e.asciidoc 0000664 0000000 0000000 00000001455 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/logstash/put-pipeline.asciidoc:80
[source, python]
----
resp = client.logstash.put_pipeline(
id="my_pipeline",
pipeline={
"description": "Sample pipeline for illustration purposes",
"last_modified": "2021-01-02T02:50:51.250Z",
"pipeline_metadata": {
"type": "logstash_pipeline",
"version": "1"
},
"username": "elastic",
"pipeline": "input {}\n filter { grok {} }\n output {}",
"pipeline_settings": {
"pipeline.workers": 1,
"pipeline.batch.size": 125,
"pipeline.batch.delay": 50,
"queue.type": "memory",
"queue.max_bytes": "1gb",
"queue.checkpoint.writes": 1024
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8b38eeb41eb388ee6d92f26b5c0cc48d.asciidoc 0000664 0000000 0000000 00000001424 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:868
[source, python]
----
resp = client.put_script(
id="my-prod-tag-script",
script={
"lang": "painless",
"source": "\n Collection tags = ctx.tags;\n if(tags != null){\n for (String tag : tags) {\n if (tag.toLowerCase().contains('prod')) {\n return false;\n }\n }\n }\n return true;\n "
},
)
print(resp)
resp1 = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"drop": {
"description": "Drop documents that don't contain 'prod' tag",
"if": {
"id": "my-prod-tag-script"
}
}
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/8b3a94495127efd9d56b2cd7f3eecdca.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0027134 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-role-mappings.asciidoc:70
[source, python]
----
resp = client.security.get_role_mapping(
name="mapping1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8b5bc6e217b0d33e4c88d84f5c1a0712.asciidoc 0000664 0000000 0000000 00000000515 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/missing-aggregation.asciidoc:12
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"products_without_a_price": {
"missing": {
"field": "price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8b652e3205a5e9e0187f56ce3c36ae4e.asciidoc 0000664 0000000 0000000 00000000553 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/categorize-text-aggregation.asciidoc:158
[source, python]
----
resp = client.search(
index="log-messages",
filter_path="aggregations",
aggs={
"categories": {
"categorize_text": {
"field": "message"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8b7956a2b88fd798a895d3466d671b58.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/network/tracers.asciidoc:29
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"http.tracer.include": "*",
"http.tracer.exclude": ""
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8b8b6aac2111b2d8b93758ac737e6543.asciidoc 0000664 0000000 0000000 00000001217 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/synthetic-source.asciidoc:224
[source, python]
----
resp = client.indices.create(
index="idx_keep",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"path": {
"type": "object",
"synthetic_source_keep": "all"
},
"ids": {
"type": "integer",
"synthetic_source_keep": "arrays"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8bf1e7a6d529547906ba8b1d6501fa0c.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/set-connector-sync-job-error-api.asciidoc:63
[source, python]
----
resp = client.perform_request(
"PUT",
"/_connector/_sync_job/my-connector-sync-job/_error",
headers={"Content-Type": "application/json"},
body={
"error": "some-error"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c2060b0272556457f4871c5d7a589fd.asciidoc 0000664 0000000 0000000 00000000656 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:244
[source, python]
----
resp = client.security.put_role(
name="logstash-reader",
indices=[
{
"names": [
"logstash-*"
],
"privileges": [
"read",
"view_index_metadata"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c47c80139f40f25db44f5781ca2dfbe.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0026703 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:491
[source, python]
----
resp = client.indices.get_alias(
index=".ml-anomalies-custom-example",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c5d48252cd6d1ee26a2bb817f89c78e.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-filter.asciidoc:46
[source, python]
----
resp = client.ml.delete_filter(
filter_id="safe_domains",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c619666488927dac6ecb7dcebca44c2.asciidoc 0000664 0000000 0000000 00000000751 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:4
[source, python]
----
resp = client.indices.create(
index="cohere-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 1024,
"element_type": "byte"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c639d3eef5c2de29e12bd9c6a42d3d4.asciidoc 0000664 0000000 0000000 00000001701 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:738
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"categories": {
"terms": {
"field": "category.keyword",
"size": 5,
"order": {
"total_revenue": "desc"
}
},
"aggs": {
"total_revenue": {
"sum": {
"field": "taxful_total_price"
}
},
"avg_order_value": {
"avg": {
"field": "taxful_total_price"
}
},
"total_items": {
"sum": {
"field": "total_quantity"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c693e057f6e85fbf2b56ca442719362.asciidoc 0000664 0000000 0000000 00000001405 14766462667 0026502 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/aggregate-metric-double.asciidoc:161
[source, python]
----
resp = client.search(
index="stats-index",
size="0",
aggs={
"metric_min": {
"min": {
"field": "agg_metric"
}
},
"metric_max": {
"max": {
"field": "agg_metric"
}
},
"metric_value_count": {
"value_count": {
"field": "agg_metric"
}
},
"metric_sum": {
"sum": {
"field": "agg_metric"
}
},
"metric_avg": {
"avg": {
"field": "agg_metric"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c6f3bb8abae9ff1d21e776f16ad1c86.asciidoc 0000664 0000000 0000000 00000001750 14766462667 0027133 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/put-dfanalytics.asciidoc:580
[source, python]
----
resp = client.ml.put_data_frame_analytics(
id="model-flight-delays-pre",
source={
"index": [
"kibana_sample_data_flights"
],
"query": {
"range": {
"DistanceKilometers": {
"gt": 0
}
}
},
"_source": {
"includes": [],
"excludes": [
"FlightDelay",
"FlightDelayType"
]
}
},
dest={
"index": "df-flight-delays",
"results_field": "ml-results"
},
analysis={
"regression": {
"dependent_variable": "FlightDelayMin",
"training_percent": 90
}
},
analyzed_fields={
"includes": [],
"excludes": [
"FlightNum"
]
},
model_memory_limit="100mb",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c8b5224befab7804461c7e7b6086d9a.asciidoc 0000664 0000000 0000000 00000001121 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/id-field.asciidoc:14
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"text": "Document with ID 1"
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"text": "Document with ID 2"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"terms": {
"_id": [
"1",
"2"
]
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/8c9081dc738d1290fd76071b283fcaec.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:98
[source, python]
----
resp = client.get(
index="my-index-000001",
id="2",
routing="user1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8c92c5e87facbae8dc4f58376ec21815.asciidoc 0000664 0000000 0000000 00000000365 14766462667 0027006 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1038
[source, python]
----
resp = client.search(
index="my-index-000001",
fields=[
"voltage_corrected",
"node"
],
size=2,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8cbf9b46ce3ccc966c4902d2e0c56317.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keyword-repeat-tokenfilter.asciidoc:156
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"keyword_repeat",
"stemmer"
],
text="fox running and jumping",
explain=True,
attributes="keyword",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8cd00a3aba7c3c158277bc032aac2830.asciidoc 0000664 0000000 0000000 00000003154 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/bulk.asciidoc:620
[source, python]
----
resp = client.bulk(
operations=[
{
"update": {
"_id": "1",
"_index": "index1",
"retry_on_conflict": 3
}
},
{
"doc": {
"field": "value"
}
},
{
"update": {
"_id": "0",
"_index": "index1",
"retry_on_conflict": 3
}
},
{
"script": {
"source": "ctx._source.counter += params.param1",
"lang": "painless",
"params": {
"param1": 1
}
},
"upsert": {
"counter": 1
}
},
{
"update": {
"_id": "2",
"_index": "index1",
"retry_on_conflict": 3
}
},
{
"doc": {
"field": "value"
},
"doc_as_upsert": True
},
{
"update": {
"_id": "3",
"_index": "index1",
"_source": True
}
},
{
"doc": {
"field": "value"
}
},
{
"update": {
"_id": "4",
"_index": "index1"
}
},
{
"doc": {
"field": "value"
},
"_source": True
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8cef2b98f3fe3a85874f1b48ebe6ec63.asciidoc 0000664 0000000 0000000 00000001674 14766462667 0027102 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/elision-tokenfilter.asciidoc:165
[source, python]
----
resp = client.indices.create(
index="elision_case_insensitive_example",
settings={
"analysis": {
"analyzer": {
"default": {
"tokenizer": "whitespace",
"filter": [
"elision_case_insensitive"
]
}
},
"filter": {
"elision_case_insensitive": {
"type": "elision",
"articles": [
"l",
"m",
"t",
"qu",
"n",
"s",
"j"
],
"articles_case": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8d05862be1f9e7edaba162b1888b5677.asciidoc 0000664 0000000 0000000 00000002526 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:50
[source, python]
----
resp = client.indices.put_mapping(
index="cooking_blog",
properties={
"title": {
"type": "text",
"analyzer": "standard",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"description": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"author": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"date": {
"type": "date",
"format": "yyyy-MM-dd"
},
"category": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"tags": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"rating": {
"type": "float"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8d064eda2199de52e5be9ee68a5b7c68.asciidoc 0000664 0000000 0000000 00000001127 14766462667 0027007 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/semantic-search/generate-embeddings.asciidoc:17
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-text-embeddings-pipeline",
description="Text embedding pipeline",
processors=[
{
"inference": {
"model_id": ".elser_model_2",
"input_output": [
{
"input_field": "my_text_field",
"output_field": "my_tokens"
}
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8d421c5bec38eecce4679b219cacc9db.asciidoc 0000664 0000000 0000000 00000001353 14766462667 0027207 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-rank-aggregation.asciidoc:128
[source, python]
----
resp = client.search(
index="latency",
size=0,
runtime_mappings={
"load_time.seconds": {
"type": "long",
"script": {
"source": "emit(doc['load_time'].value / params.timeUnit)",
"params": {
"timeUnit": 1000
}
}
}
},
aggs={
"load_time_ranks": {
"percentile_ranks": {
"values": [
500,
600
],
"field": "load_time.seconds"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8d4ca17349e7e82c329cdd854cc670a1.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:184
[source, python]
----
resp = client.security.put_role(
name="remote-search",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8d4dda5d988d568f4f4210a6387e026f.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/saml-logout-api.asciidoc:72
[source, python]
----
resp = client.security.saml_logout(
token="46ToAxZVaXVVZTVKOVF5YU04ZFJVUDVSZlV3",
refresh_token="mJdXLtmvTUSpoLwMvdBt_w",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8d6631b622f9bfb8fa70154f6fb8b153.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/uni-directional-disaster-recovery.asciidoc:188
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
q="kimchy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8d7193902a353872740a3324c60c5001.asciidoc 0000664 0000000 0000000 00000000656 14766462667 0026070 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/index-sorting.asciidoc:113
[source, python]
----
resp = client.indices.create(
index="events",
settings={
"index": {
"sort.field": "timestamp",
"sort.order": "desc"
}
},
mappings={
"properties": {
"timestamp": {
"type": "date"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8d9b04f2a97f4229dec9e620126de049.asciidoc 0000664 0000000 0000000 00000000360 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-s3.asciidoc:609
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.com.amazonaws.request": "DEBUG"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8db799543eb084ec71547980863d60b9.asciidoc 0000664 0000000 0000000 00000001265 14766462667 0026360 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/sum-bucket-aggregation.asciidoc:42
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"sum_monthly_sales": {
"sum_bucket": {
"buckets_path": "sales_per_month>sales"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8de6fed6ba2b94ce6a12ce076be2b4d7.asciidoc 0000664 0000000 0000000 00000000232 14766462667 0027175 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/segments.asciidoc:132
[source, python]
----
resp = client.cat.segments(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e06d8b2b737c43806018eae2ca061c1.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0026520 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/string-stats-aggregation.asciidoc:178
[source, python]
----
resp = client.search(
index="my-index-000001",
size="0",
aggs={
"message_stats": {
"string_stats": {
"field": "message.keyword",
"missing": "[empty message]"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e0f43829df9af20547ea6896f4c0124.asciidoc 0000664 0000000 0000000 00000001072 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:327
[source, python]
----
resp = client.ilm.put_lifecycle(
name="rollover_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_size": "50gb"
}
}
},
"delete": {
"min_age": "1d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e208098a0156c4c92afe0a06960b230.asciidoc 0000664 0000000 0000000 00000000635 14766462667 0026366 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/saml-authenticate-api.asciidoc:89
[source, python]
----
resp = client.security.saml_authenticate(
content="PHNhbWxwOlJlc3BvbnNlIHhtbG5zOnNhbWxwPSJ1cm46b2FzaXM6bmFtZXM6dGM6U0FNTDoyLjA6cHJvdG9jb2wiIHhtbG5zOnNhbWw9InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMD.....",
ids=[
"4fee3b046395c4e751011e97f8900b5273d56685"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e286a205a1f84f888a6d99f2620c80e.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0026505 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/logging-config.asciidoc:272
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.deprecation": "OFF"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e2bbef535fef688d397e60e09aefa7f.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0027150 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/hotspotting.asciidoc:206
[source, python]
----
resp = client.indices.stats(
metric="indexing,search",
level="shards",
human=True,
expand_wildcards="all",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e42a17edace2bc6e42c6a1532779937.asciidoc 0000664 0000000 0000000 00000000467 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/max-aggregation.asciidoc:17
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"max_price": {
"max": {
"field": "price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e43bb5b7946143e69d397bb81d87df0.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/get-follow-stats.asciidoc:225
[source, python]
----
resp = client.ccr.follow_stats(
index="follower_index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e68cdfad45e7e6dff254d931eea29d4.asciidoc 0000664 0000000 0000000 00000005344 14766462667 0027154 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:687
[source, python]
----
resp = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {}
},
{
"@timestamp": "2020-06-21T15:00:01-05:00",
"message": "211.11.9.0 - - [2020-06-21T15:00:01-05:00] \"GET /english/index.html HTTP/1.0\" 304 0"
},
{
"index": {}
},
{
"@timestamp": "2020-06-21T15:00:01-05:00",
"message": "211.11.9.0 - - [2020-06-21T15:00:01-05:00] \"GET /english/index.html HTTP/1.0\" 304 0"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:30:17-05:00",
"message": "40.135.0.0 - - [2020-04-30T14:30:17-05:00] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:30:53-05:00",
"message": "232.0.0.0 - - [2020-04-30T14:30:53-05:00] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:31:12-05:00",
"message": "26.1.0.0 - - [2020-04-30T14:31:12-05:00] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:31:19-05:00",
"message": "247.37.0.0 - - [2020-04-30T14:31:19-05:00] \"GET /french/splash_inet.html HTTP/1.0\" 200 3781"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:31:27-05:00",
"message": "252.0.0.0 - - [2020-04-30T14:31:27-05:00] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:31:29-05:00",
"message": "247.37.0.0 - - [2020-04-30T14:31:29-05:00] \"GET /images/hm_brdl.gif HTTP/1.0\" 304 0"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:31:29-05:00",
"message": "247.37.0.0 - - [2020-04-30T14:31:29-05:00] \"GET /images/hm_arw.gif HTTP/1.0\" 304 0"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:31:32-05:00",
"message": "247.37.0.0 - - [2020-04-30T14:31:32-05:00] \"GET /images/nav_bg_top.gif HTTP/1.0\" 200 929"
},
{
"index": {}
},
{
"@timestamp": "2020-04-30T14:31:43-05:00",
"message": "247.37.0.0 - - [2020-04-30T14:31:43-05:00] \"GET /french/images/nav_venue_off.gif HTTP/1.0\" 304 0"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e89fee0be6a436c4e3d7c152659c47e.asciidoc 0000664 0000000 0000000 00000001053 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-scheduling-api.asciidoc:96
[source, python]
----
resp = client.connector.update_scheduling(
connector_id="my-connector",
scheduling={
"access_control": {
"enabled": True,
"interval": "0 10 0 * * ?"
},
"full": {
"enabled": True,
"interval": "0 20 0 * * ?"
},
"incremental": {
"enabled": False,
"interval": "0 30 0 * * ?"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e92b10ebcfedc76562ab52d0e46b916.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:234
[source, python]
----
resp = client.delete_script(
id="my-search-template",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e9e7dc5fad2b2b8e74ab4dc225d9c53.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0027127 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/common/apis/set-upgrade-mode.asciidoc:102
[source, python]
----
resp = client.ml.set_upgrade_mode(
enabled=False,
timeout="10m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8e9f7261af6264c92d0eb4d586a176f9.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0026571 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/lowercase-tokenfilter.asciidoc:82
[source, python]
----
resp = client.indices.create(
index="lowercase_example",
settings={
"analysis": {
"analyzer": {
"whitespace_lowercase": {
"tokenizer": "whitespace",
"filter": [
"lowercase"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8eac28d2e9b6482b413d61817456a14f.asciidoc 0000664 0000000 0000000 00000001056 14766462667 0026466 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:272
[source, python]
----
resp = client.search(
aggs={
"genres": {
"terms": {
"field": "genre",
"order": {
"max_play_count": "desc"
}
},
"aggs": {
"max_play_count": {
"max": {
"field": "play_count"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8ecefdcf8f153cf91588e9fdde8f3e6b.asciidoc 0000664 0000000 0000000 00000000565 14766462667 0027333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:299
[source, python]
----
resp = client.search(
query={
"query_string": {
"fields": [
"content",
"name^5"
],
"query": "this AND that OR thus",
"tie_breaker": 0
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8ed31628081db2b6e9106d61d1e142be.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/simple-query-string-query.asciidoc:291
[source, python]
----
resp = client.search(
query={
"simple_query_string": {
"query": "ny city",
"auto_generate_synonyms_phrase_query": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8edcd80d9b545a222dcc2f25ca4c6d5f.asciidoc 0000664 0000000 0000000 00000001132 14766462667 0027111 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:455
[source, python]
----
resp = client.search_application.search(
name="my-search-app",
params={
"query_string": "What is the most popular brand of coffee sold in the United States?",
"elser_fields": [
"title",
"meta_description"
],
"text_fields": [
"title",
"meta_description"
],
"rrf": {
"rank_window_size": 50,
"rank_constant": 25
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8ee9521f57661a050efb614f02b4a090.asciidoc 0000664 0000000 0000000 00000000426 14766462667 0026451 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:58
[source, python]
----
resp = client.search(
aggs={
"genres": {
"terms": {
"field": "genre"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8f0c5c81cdb902c136db821947ee70a1.asciidoc 0000664 0000000 0000000 00000001115 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/min-aggregation.asciidoc:53
[source, python]
----
resp = client.search(
index="sales",
size=0,
runtime_mappings={
"price.adjusted": {
"type": "double",
"script": "\n double price = doc['price'].value;\n if (doc['promoted'].value) {\n price *= 0.8;\n }\n emit(price);\n "
}
},
aggs={
"min_price": {
"min": {
"field": "price.adjusted"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8f2875d976332cf5da8fb7764097a307.asciidoc 0000664 0000000 0000000 00000000746 14766462667 0026442 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-data-stream-retention.asciidoc:112
[source, python]
----
resp = client.indices.put_index_template(
name="template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
priority=500,
template={
"lifecycle": {
"data_retention": "7d"
}
},
meta={
"description": "Template with data stream lifecycle"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8f4a7f68f2ca3698abdf20026a2d8c5f.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/high-cpu-usage.asciidoc:81
[source, python]
----
resp = client.tasks.list(
actions="*search",
detailed=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8f6f7ea5abf56152b4a5639ddf40848f.asciidoc 0000664 0000000 0000000 00000001056 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/jwt-realm.asciidoc:471
[source, python]
----
resp = client.security.put_role_mapping(
name="native1_users",
refresh=True,
roles=[
"user"
],
rules={
"all": [
{
"field": {
"realm.name": "native1"
}
},
{
"field": {
"username": "principalname1"
}
}
]
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8f7936f219500305e5b2518dbbf949ea.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:742
[source, python]
----
resp = client.async_search.status(
id="FmpwbThueVB4UkRDeUxqb1l4akIza3cbWEJyeVBPQldTV3FGZGdIeUVabXBldzoyMDIw",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8f9a3fcd17a111f63caa3bef6e5f00f2.asciidoc 0000664 0000000 0000000 00000000475 14766462667 0027113 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:782
[source, python]
----
resp = client.search(
aggs={
"tags": {
"terms": {
"field": "tags",
"execution_hint": "map"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8f9f88cf9a27c1138226efb94ac09e73.asciidoc 0000664 0000000 0000000 00000000400 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/ip.asciidoc:112
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"term": {
"ip_addr": "192.168.0.0/16"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8fe128323a944765f525c76d85af7a2f.asciidoc 0000664 0000000 0000000 00000001127 14766462667 0026504 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/random-sampler-aggregation.asciidoc:25
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size="0",
track_total_hits=False,
aggregations={
"sampling": {
"random_sampler": {
"probability": 0.1
},
"aggs": {
"price_percentiles": {
"percentiles": {
"field": "taxful_total_price"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/8fec06a98d0151c1d717a01491d0b8f0.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-migrate-data-stream-from-ilm-to-dsl.asciidoc:79
[source, python]
----
resp = client.index(
index="dsl-data-stream",
document={
"@timestamp": "2023-10-18T16:21:15.000Z",
"message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/90083d93e46fad2524755b8d4d1306fc.asciidoc 0000664 0000000 0000000 00000001003 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/set-connector-sync-job-stats-api.asciidoc:81
[source, python]
----
resp = client.perform_request(
"PUT",
"/_connector/_sync_job/my-connector-sync-job/_stats",
headers={"Content-Type": "application/json"},
body={
"deleted_document_count": 10,
"indexed_document_count": 20,
"indexed_document_volume": 1000,
"total_document_count": 2000,
"last_seen": "2023-01-02T10:00:00Z"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/901d66919e584515717bf78ab5ca2cbb.asciidoc 0000664 0000000 0000000 00000001277 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/daterange-aggregation.asciidoc:276
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"range": {
"date_range": {
"field": "date",
"time_zone": "CET",
"ranges": [
{
"to": "2016/02/01"
},
{
"from": "2016/02/01",
"to": "now/d"
},
{
"from": "now/d"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/902cfd5aeec2f65b3adf55f5e38b21f0.asciidoc 0000664 0000000 0000000 00000000372 14766462667 0027117 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/uni-directional-disaster-recovery.asciidoc:117
[source, python]
----
resp = client.index(
index="kibana_sample_data_ecommerce2",
document={
"user": "kimchy"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9054187cbab5c9e1c4ca2a4dba6a5db0.asciidoc 0000664 0000000 0000000 00000000213 14766462667 0027067 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/info.asciidoc:57
[source, python]
----
resp = client.xpack.info()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/90631797c7fbda43902abf2cc0ea8304.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shard-request-cache.asciidoc:132
[source, python]
----
resp = client.nodes.stats(
metric="indices",
index_metric="request_cache",
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/908326e14ad76c2ff04a9b6d8365751f.asciidoc 0000664 0000000 0000000 00000001125 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:872
[source, python]
----
resp = client.search(
index="passage_vectors",
fields=[
"creation_time",
"full_text"
],
source=False,
knn={
"query_vector": [
0.45,
45
],
"field": "paragraph.vector",
"k": 2,
"num_candidates": 2,
"inner_hits": {
"_source": False,
"fields": [
"paragraph.text"
],
"size": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/909a032a9c1f7095b798444705b09ad6.asciidoc 0000664 0000000 0000000 00000000435 14766462667 0026332 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:443
[source, python]
----
resp = client.index(
index="example",
document={
"location": "GEOMETRYCOLLECTION (POINT (100.0 0.0), LINESTRING (101.0 0.0, 102.0 1.0))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/90c087560ea6c0b7405f710971c86ef0.asciidoc 0000664 0000000 0000000 00000001425 14766462667 0026403 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/put-auto-follow-pattern.asciidoc:119
[source, python]
----
resp = client.ccr.put_auto_follow_pattern(
name="my_auto_follow_pattern",
remote_cluster="remote_cluster",
leader_index_patterns=[
"leader_index*"
],
follow_index_pattern="{{leader_index}}-follower",
settings={
"index.number_of_replicas": 0
},
max_read_request_operation_count=1024,
max_outstanding_read_requests=16,
max_read_request_size="1024k",
max_write_request_operation_count=32768,
max_write_request_size="16k",
max_outstanding_write_requests=8,
max_write_buffer_count=512,
max_write_buffer_size="512k",
max_retry_delay="10s",
read_poll_timeout="30s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/90e06d5ec5e454832d8fbd2e73ec2248.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/delete-autoscaling-policy.asciidoc:85
[source, python]
----
resp = client.autoscaling.delete_autoscaling_policy(
name="*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/90f1f5304922fb6d097846dd1444c075.asciidoc 0000664 0000000 0000000 00000001164 14766462667 0026330 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:137
[source, python]
----
resp = client.watcher.put_watch(
id="cluster_health_watch",
trigger={
"schedule": {
"interval": "10s"
}
},
input={
"http": {
"request": {
"host": "localhost",
"port": 9200,
"path": "/_cluster/health"
}
}
},
condition={
"compare": {
"ctx.payload.status": {
"eq": "red"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9116ee8a5b00cc877291ed5559563f24.asciidoc 0000664 0000000 0000000 00000001253 14766462667 0026416 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/ack-watch.asciidoc:68
[source, python]
----
resp = client.watcher.put_watch(
id="my_watch",
trigger={
"schedule": {
"yearly": {
"in": "february",
"on": 29,
"at": "noon"
}
}
},
input={
"simple": {
"payload": {
"send": "yes"
}
}
},
condition={
"always": {}
},
actions={
"test_index": {
"throttle_period": "15m",
"index": {
"index": "test"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/911c56114e50ce7440eb83efc91d28b8.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0026546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:223
[source, python]
----
resp = client.indices.put_mapping(
index="my-data-stream",
properties={
"host": {
"properties": {
"ip": {
"type": "ip",
"ignore_malformed": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9120b6a49ec39a1571339fddf8e1a26f.asciidoc 0000664 0000000 0000000 00000000472 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:466
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"set": {
"field": "my-long-field",
"value": 10
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/91270cef57ac455547ffd47839420887.asciidoc 0000664 0000000 0000000 00000002110 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/rate-aggregation.asciidoc:175
[source, python]
----
resp = client.search(
index="sales",
filter_path="aggregations",
size="0",
aggs={
"buckets": {
"composite": {
"sources": [
{
"month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
}
}
},
{
"type": {
"terms": {
"field": "type"
}
}
}
]
},
"aggs": {
"avg_price": {
"rate": {
"field": "price",
"unit": "day"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9129dec88d35571b3166c6677297f03b.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026342 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/get-transform.asciidoc:115
[source, python]
----
resp = client.transform.get_transform(
transform_id="ecommerce_transform1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9138550002cb26ab64918cce427963b8.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026324 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template.asciidoc:277
[source, python]
----
resp = client.indices.put_index_template(
name="template_1",
index_patterns=[
"foo",
"bar"
],
priority=0,
template={
"settings": {
"number_of_shards": 1
}
},
version=123,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/913c163c197802078a8af72150178061.asciidoc 0000664 0000000 0000000 00000001560 14766462667 0026076 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/derivative-aggregation.asciidoc:136
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
},
"sales_deriv": {
"derivative": {
"buckets_path": "sales"
}
},
"sales_2nd_deriv": {
"derivative": {
"buckets_path": "sales_deriv"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9143be4f137574271953a7a8107e175b.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026245 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-user-profile.asciidoc:69
[source, python]
----
resp = client.security.get_user_profile(
uid="u_79HkWkwmnBH5gqFKwoxggWPjEBOur1zLPXQPEl1VBW0_0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9169d19a80175ec94f80865d0f9bef4c.asciidoc 0000664 0000000 0000000 00000002171 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:314
[source, python]
----
resp = client.search(
index="restaurants",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"multi_match": {
"query": "Austria",
"fields": [
"city",
"region"
]
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
10,
22,
77
],
"k": 10,
"num_candidates": 10
}
}
],
"rank_constant": 1,
"rank_window_size": 50
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/91750571c195718f0ff246e058e4bc63.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:73
[source, python]
----
resp = client.search(
index="twitter",
query={
"match": {
"title": "elasticsearch"
}
},
sort=[
{
"date": "asc"
},
{
"tie_breaker_id": "asc"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/91c01fcad9bf341d039a15dfc593dcd7.asciidoc 0000664 0000000 0000000 00000000475 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/field-caps.asciidoc:310
[source, python]
----
resp = client.field_caps(
index="my-index-*",
fields="rating",
index_filter={
"range": {
"@timestamp": {
"gte": "2018"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/91c925fc71abe0ddfe52457e9130363b.asciidoc 0000664 0000000 0000000 00000000526 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/grant-api-keys.asciidoc:178
[source, python]
----
resp = client.security.grant_api_key(
grant_type="password",
username="test_admin",
password="x-pack-test-password",
run_as="test_user",
api_key={
"name": "another-api-key"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/91cbeeda86b4e4e393fc79d4e3a4a781.asciidoc 0000664 0000000 0000000 00000001121 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/sampler-aggregation.asciidoc:91
[source, python]
----
resp = client.search(
index="stackoverflow",
size="0",
query={
"query_string": {
"query": "tags:kibana OR tags:javascript"
}
},
aggs={
"low_quality_keywords": {
"significant_terms": {
"field": "tags",
"size": 3,
"exclude": [
"kibana",
"javascript"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/91e106a2affbc8df32cd940684a779ed.asciidoc 0000664 0000000 0000000 00000000517 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/put-ip-location-database.asciidoc:22
[source, python]
----
resp = client.ingest.put_ip_location_database(
id="my-database-1",
configuration={
"name": "GeoIP2-Domain",
"maxmind": {
"account_id": "1234567"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/91ed08faaed54cb5ace9a295af937439.asciidoc 0000664 0000000 0000000 00000001002 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations.asciidoc:337
[source, python]
----
resp = client.search(
index="my-index-000001",
size="0",
runtime_mappings={
"message.length": {
"type": "long",
"script": "emit(doc['message.keyword'].value.length())"
}
},
aggs={
"message_length": {
"histogram": {
"interval": 10,
"field": "message.length"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9200ed8d5f798a158def4c526e41269e.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/field-caps.asciidoc:191
[source, python]
----
resp = client.field_caps(
index="my-index-000001",
fields="rating",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/92035a2a62d01a511662af65606d5fc6.asciidoc 0000664 0000000 0000000 00000001131 14766462667 0026353 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/bucket-sort-aggregation.asciidoc:142
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"bucket_truncate": {
"bucket_sort": {
"from": 1,
"size": 1
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9216e8e544e6d193eda1f59e9160a225.asciidoc 0000664 0000000 0000000 00000001275 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-near-query.asciidoc:12
[source, python]
----
resp = client.search(
query={
"span_near": {
"clauses": [
{
"span_term": {
"field": "value1"
}
},
{
"span_term": {
"field": "value2"
}
},
{
"span_term": {
"field": "value3"
}
}
],
"slop": 12,
"in_order": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/922529276f87cb9d116be2468d108466.asciidoc 0000664 0000000 0000000 00000000553 14766462667 0026265 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/specify-analyzer.asciidoc:74
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"default": {
"type": "simple"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9225841fdcddaf83ebdb90c2b0399e20.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026764 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/get-trained-models-stats.asciidoc:412
[source, python]
----
resp = client.ml.get_trained_models_stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/92284d24bbb80ce6943f2ddcbf74b833.asciidoc 0000664 0000000 0000000 00000001216 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:136
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"flattened_field": {
"type": "flattened"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"flattened_field": {
"subfield": "value"
}
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
fields=[
"flattened_field.subfield"
],
source=False,
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/923aee95078219ee6eb321a252e1121b.asciidoc 0000664 0000000 0000000 00000000735 14766462667 0026451 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/ngram-tokenfilter.asciidoc:161
[source, python]
----
resp = client.indices.create(
index="ngram_example",
settings={
"analysis": {
"analyzer": {
"standard_ngram": {
"tokenizer": "standard",
"filter": [
"ngram"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9250ac57ec81d5192e8ad4c462438489.asciidoc 0000664 0000000 0000000 00000002226 14766462667 0026420 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-jinaai.asciidoc:204
[source, python]
----
resp = client.bulk(
index="jinaai-index",
operations=[
{
"index": {
"_index": "jinaai-index",
"_id": "1"
}
},
{
"content": "Sarah Johnson is a talented marine biologist working at the Oceanographic Institute. Her groundbreaking research on coral reef ecosystems has garnered international attention and numerous accolades."
},
{
"index": {
"_index": "jinaai-index",
"_id": "2"
}
},
{
"content": "She spends months at a time diving in remote locations, meticulously documenting the intricate relationships between various marine species. "
},
{
"index": {
"_index": "jinaai-index",
"_id": "3"
}
},
{
"content": "Her dedication to preserving these delicate underwater environments has inspired a new generation of conservationists."
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/926c0134aeaad53bd0f3bdad9c430217.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:769
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"text": "words words",
"flag": "foo"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9270964d35d172ea5b193c5fc7a473dd.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/templates.asciidoc:67
[source, python]
----
resp = client.cat.templates(
name="my-template-*",
v=True,
s="name",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/927b20a221f975b75d1227b67d0eb7e2.asciidoc 0000664 0000000 0000000 00000000646 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:268
[source, python]
----
resp = client.esql.query(
query="\n FROM library\n | EVAL year = DATE_EXTRACT(\"year\", release_date)\n | WHERE page_count > ? AND author == ?\n | STATS count = COUNT(*) by year\n | WHERE count > ?\n | LIMIT 5\n ",
params=[
300,
"Frank Herbert",
0
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9298aaf8232a819e79b3bf8471245e98.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026432 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-job-stats.asciidoc:381
[source, python]
----
resp = client.ml.get_job_stats(
job_id="low_request_rate",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/92d0c12d53a900308150d572c3f2f82f.asciidoc 0000664 0000000 0000000 00000000745 14766462667 0026367 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:477
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"strings_as_keywords": {
"match_mapping_type": "string",
"mapping": {
"type": "keyword"
}
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/92d343eb755971c44a939d0660bf5ac2.asciidoc 0000664 0000000 0000000 00000000546 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/refresh.asciidoc:87
[source, python]
----
resp = client.index(
index="test",
id="1",
refresh=True,
document={
"test": "test"
},
)
print(resp)
resp1 = client.index(
index="test",
id="2",
refresh=True,
document={
"test": "test"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/92f073762634a4b2274f71002494192e.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026076 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/add-nodes.asciidoc:152
[source, python]
----
resp = client.cluster.state(
filter_path="metadata.cluster_coordination.voting_config_exclusions",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/92fa6608673cec5a2ed568a07e80d36b.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026635 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1549
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"range": {
"timestamp": {
"gte": "2020-04-30T14:31:27-05:00"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/92fe53019958ba466d1272da0834cf53.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0026406 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/stats.asciidoc:17
[source, python]
----
resp = client.indices.stats(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/930a3c5667e3bf47b4e8cc28e7bf8d5f.asciidoc 0000664 0000000 0000000 00000001405 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/run-as-privilege.asciidoc:114
[source, python]
----
resp = client.security.put_role(
name="my_admin_role",
refresh=True,
cluster=[
"manage"
],
indices=[
{
"names": [
"index1",
"index2"
],
"privileges": [
"manage"
]
}
],
applications=[
{
"application": "myapp",
"privileges": [
"admin",
"read"
],
"resources": [
"*"
]
}
],
run_as=[
"analyst_user"
],
metadata={
"version": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/930ba37af73dd5ff0342ecfe6c60a4e9.asciidoc 0000664 0000000 0000000 00000000515 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/extendedstats-aggregation.asciidoc:14
[source, python]
----
resp = client.search(
index="exams",
size=0,
aggs={
"grades_stats": {
"extended_stats": {
"field": "grade"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9313f534e1aa266cde7d4af74665497f.asciidoc 0000664 0000000 0000000 00000000526 14766462667 0026562 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-zoom.asciidoc:219
[source, python]
----
resp = client.connector.put(
connector_id="my-{service-name-stub}-connector",
index_name="my-elasticsearch-index",
name="Content synced from {service-name}",
service_type="{service-name-stub}",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/931817b168e055ecf738785c721125dd.asciidoc 0000664 0000000 0000000 00000002242 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/inference.asciidoc:750
[source, python]
----
resp = client.ingest.put_pipeline(
id="query_helper_pipeline",
processors=[
{
"script": {
"source": "ctx.prompt = 'Please generate an elasticsearch search query on index `articles_index` for the following natural language query. Dates are in the field `@timestamp`, document types are in the field `type` (options are `news`, `publication`), categories in the field `category` and can be multiple (options are `medicine`, `pharmaceuticals`, `technology`), and document names are in the field `title` which should use a fuzzy match. Ignore fields which cannot be determined from the natural language query context: ' + ctx.content"
}
},
{
"inference": {
"model_id": "openai_chat_completions",
"input_output": {
"input_field": "prompt",
"output_field": "query"
}
}
},
{
"remove": {
"field": "prompt"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/931da02a06953a768f4ad3fecfd7b2df.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/total-shards-per-node.asciidoc:147
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
name="index.routing.allocation.total_shards_per_node",
flat_settings=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9326e323f7ffde678fa04d2d1de3d3bc.asciidoc 0000664 0000000 0000000 00000001077 14766462667 0027052 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:603
[source, python]
----
resp = client.search(
index="alibabacloud-ai-search-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "alibabacloud_ai_search_embeddings",
"model_text": "Calculate fuel cost"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9334ccd09548b585cd637d7c66c5ae65.asciidoc 0000664 0000000 0000000 00000002347 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/filter-search-results.asciidoc:244
[source, python]
----
resp = client.search(
query={
"match": {
"message": {
"operator": "or",
"query": "the quick brown"
}
}
},
rescore=[
{
"window_size": 100,
"query": {
"rescore_query": {
"match_phrase": {
"message": {
"query": "the quick brown",
"slop": 2
}
}
},
"query_weight": 0.7,
"rescore_query_weight": 1.2
}
},
{
"window_size": 10,
"query": {
"score_mode": "multiply",
"rescore_query": {
"function_score": {
"script_score": {
"script": {
"source": "Math.log10(doc.count.value + 2)"
}
}
}
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/93429d2bfbc0a9b7a4854b27e34658cf.asciidoc 0000664 0000000 0000000 00000000602 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:23
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"message": {
"type": "text"
},
"query": {
"type": "percolator"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/93444b445446c1a6033347d6267253d6.asciidoc 0000664 0000000 0000000 00000000454 14766462667 0026103 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-phrase-prefix-query.asciidoc:22
[source, python]
----
resp = client.search(
query={
"match_phrase_prefix": {
"message": {
"query": "quick brown f"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/934aa38c3adcc4cf74ea40cd8736876c.asciidoc 0000664 0000000 0000000 00000000533 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-index.asciidoc:178
[source, python]
----
resp = client.indices.create(
index="test",
settings={
"number_of_shards": 1
},
mappings={
"properties": {
"field1": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/934ced0998552cc95a28e48554147e8b.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0026427 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:582
[source, python]
----
resp = client.cluster.allocation_explain(
index="my-index",
shard=0,
primary=False,
current_node="my-node",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/935566d5426d44ade486a49ec5289741.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0026346 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-text-hybrid-search:76
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 10
},
dest={
"index": "semantic-embeddings"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/935ee7c1b86ba9592604834bb673c7a3.asciidoc 0000664 0000000 0000000 00000003517 14766462667 0026502 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geotilegrid-aggregation.asciidoc:38
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (4.912350 52.374081)",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (4.901618 52.369219)",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (4.914722 52.371667)",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (4.405200 51.222900)",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (2.336389 48.861111)",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (2.327000 48.860000)",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
aggregations={
"large-grid": {
"geotile_grid": {
"field": "location",
"precision": 8
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/936d809c848f8b77d5b55f57f0aab89a.asciidoc 0000664 0000000 0000000 00000000574 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/field-mapping.asciidoc:81
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"date_detection": False
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"create_date": "2015/09/02"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/937089157fc82cf08b68a954d0e6d52c.asciidoc 0000664 0000000 0000000 00000000515 14766462667 0026505 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:240
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n sequence with maxspan=1h\n [ process where process.name == \"regsvr32.exe\" ]\n [ file where stringContains(file.name, \"scrobj.dll\") ]\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9370e4935ab6678571d3227973b8c830.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026206 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:37
[source, python]
----
resp = client.indices.get(
index="_all",
filter_path="*.aliases",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/937ffc65cbb20505a8aba25b37a796a5.asciidoc 0000664 0000000 0000000 00000001145 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/boolean.asciidoc:22
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"is_published": {
"type": "boolean"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"is_published": "true"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"term": {
"is_published": True
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/9382f022086c692ba05efb0acae65946.asciidoc 0000664 0000000 0000000 00000000522 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/synthetic-source.asciidoc:63
[source, python]
----
resp = client.index(
index="idx",
id="1",
document={
"foo": [
{
"bar": 1
},
{
"bar": 2
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9399cbbd133ec2b7aad2820fa617ae3a.asciidoc 0000664 0000000 0000000 00000000634 14766462667 0027026 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/children-aggregation.asciidoc:16
[source, python]
----
resp = client.indices.create(
index="child_example",
mappings={
"properties": {
"join": {
"type": "join",
"relations": {
"question": "answer"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/93bd651aff81daa2b86f9f2089e6d088.asciidoc 0000664 0000000 0000000 00000001141 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:49
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"my_id": "1",
"text": "This is a question",
"my_join_field": {
"name": "question"
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"my_id": "2",
"text": "This is another question",
"my_join_field": {
"name": "question"
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/93cd0fdd5ca22838db06aa1cabdbe8bd.asciidoc 0000664 0000000 0000000 00000001057 14766462667 0027321 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:139
[source, python]
----
resp = client.search(
index="hugging-face-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "hugging_face_embeddings",
"model_text": "What's margin of error?"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/93d7ba4130722cae04f9690e52a8f54f.asciidoc 0000664 0000000 0000000 00000000717 14766462667 0026546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:459
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "envelope",
"coordinates": [
[
100,
1
],
[
101,
0
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/93fb59d3204f37af952198b331fb6bb7.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:223
[source, python]
----
resp = client.tasks.get(
task_id="oTUltX4IQMOUUVeiohTt8A:12345",
wait_for_completion=True,
timeout="10s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9403764e6eccad7b321b65e9a10c5727.asciidoc 0000664 0000000 0000000 00000000543 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:543
[source, python]
----
resp = client.search(
aggs={
"tags": {
"terms": {
"field": "tags",
"include": ".*sport.*",
"exclude": "water_.*"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/940e8c2c7ff92d71f489bdb7183c1ce6.asciidoc 0000664 0000000 0000000 00000000250 14766462667 0026720 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/segments.asciidoc:116
[source, python]
----
resp = client.indices.segments(
index="test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9410af79177dd1df9b7b16229a581e18.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/change-password.asciidoc:76
[source, python]
----
resp = client.security.change_password(
username="jacknich",
password="new-test-password",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/941c8d05486200e835d97642e4ee05d5.asciidoc 0000664 0000000 0000000 00000002117 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:183
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"text": {
"type": "text",
"term_vector": "with_positions_offsets_payloads",
"store": True,
"analyzer": "fulltext_analyzer"
},
"fullname": {
"type": "text",
"term_vector": "with_positions_offsets_payloads",
"analyzer": "fulltext_analyzer"
}
}
},
settings={
"index": {
"number_of_shards": 1,
"number_of_replicas": 0
},
"analysis": {
"analyzer": {
"fulltext_analyzer": {
"type": "custom",
"tokenizer": "whitespace",
"filter": [
"lowercase",
"type_as_payload"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/94246f45025ed394cd6415ed8d7a0588.asciidoc 0000664 0000000 0000000 00000000255 14766462667 0026422 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/delete-job.asciidoc:85
[source, python]
----
resp = client.rollup.delete_job(
id="sensor",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/944806221eb89f5af2298ccdf2902277.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026417 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-caps.asciidoc:171
[source, python]
----
resp = client.rollup.get_rollup_caps(
id="_all",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/944a2dc22dae2a8503299926326a9c18.asciidoc 0000664 0000000 0000000 00000001115 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/ip.asciidoc:11
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"ip_addr": {
"type": "ip"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"ip_addr": "192.168.1.1"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"term": {
"ip_addr": "192.168.0.0/16"
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/946522c26d02bebf5c527ba28e55c724.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:358
[source, python]
----
resp = client.update_by_query(
index="my-index-000001",
routing="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9467e52087a13b63b02d78c35ff6f798.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026433 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-phrase-query.asciidoc:11
[source, python]
----
resp = client.search(
query={
"match_phrase": {
"message": "this is a test"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/947efe87db7f8813c0878f8affc3e2d1.asciidoc 0000664 0000000 0000000 00000000242 14766462667 0027016 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/resolve-cluster.asciidoc:83
[source, python]
----
resp = client.indices.resolve_cluster()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/948418e0ef1b7e7cfee2f11be715d7d2.asciidoc 0000664 0000000 0000000 00000004541 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:715
[source, python]
----
resp = client.indices.create(
index="retrievers_example_nested",
settings={
"number_of_shards": 1
},
mappings={
"properties": {
"nested_field": {
"type": "nested",
"properties": {
"paragraph_id": {
"type": "keyword"
},
"nested_vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm",
"index": True,
"index_options": {
"type": "flat"
}
}
}
},
"topic": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.index(
index="retrievers_example_nested",
id="1",
document={
"nested_field": [
{
"paragraph_id": "1a",
"nested_vector": [
-1.12,
-0.59,
0.78
]
},
{
"paragraph_id": "1b",
"nested_vector": [
-0.12,
1.56,
0.42
]
},
{
"paragraph_id": "1c",
"nested_vector": [
1,
-1,
0
]
}
],
"topic": [
"ai"
]
},
)
print(resp1)
resp2 = client.index(
index="retrievers_example_nested",
id="2",
document={
"nested_field": [
{
"paragraph_id": "2a",
"nested_vector": [
0.23,
1.24,
0.65
]
}
],
"topic": [
"information_retrieval"
]
},
)
print(resp2)
resp3 = client.index(
index="retrievers_example_nested",
id="3",
document={
"topic": [
"ai"
]
},
)
print(resp3)
resp4 = client.indices.refresh(
index="retrievers_example_nested",
)
print(resp4)
----
python-elasticsearch-8.17.2/docs/examples/94cd66bf93f99881c1bda547283a0357.asciidoc 0000664 0000000 0000000 00000001617 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:306
[source, python]
----
resp = client.bulk(
index="quantized-image-index",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"image-vector": [
0.1,
-2
],
"title": "moose family"
},
{
"index": {
"_id": "2"
}
},
{
"image-vector": [
0.75,
-1
],
"title": "alpine lake"
},
{
"index": {
"_id": "3"
}
},
{
"image-vector": [
1.2,
0.1
],
"title": "full moon"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9501e6c8e95c21838653ea15b9b7ed5f.asciidoc 0000664 0000000 0000000 00000000364 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:791
[source, python]
----
resp = client.search(
query={
"term": {
"query.extraction_result": "failed"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/950f1230536422567f99a205ff4165ec.asciidoc 0000664 0000000 0000000 00000000526 14766462667 0026250 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/rollover-index.asciidoc:405
[source, python]
----
resp = client.indices.rollover(
alias="my-write-alias",
conditions={
"max_age": "7d",
"max_docs": 1000,
"max_primary_shard_size": "50gb",
"max_primary_shard_docs": "2000"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/95414139c7b1203e3c2d99a354415801.asciidoc 0000664 0000000 0000000 00000000231 14766462667 0026144 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/recovery.asciidoc:89
[source, python]
----
resp = client.cat.recovery(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9559de0c2190f99fcc344887fc7b232a.asciidoc 0000664 0000000 0000000 00000001263 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:480
[source, python]
----
resp = client.indices.create(
index="bicycles",
mappings={
"properties": {
"cycle_type": {
"type": "constant_keyword",
"value": "bicycle"
},
"name": {
"type": "text"
}
}
},
)
print(resp)
resp1 = client.indices.create(
index="other_cycles",
mappings={
"properties": {
"cycle_type": {
"type": "keyword"
},
"name": {
"type": "text"
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/956cb470258024af964cd2dabbaf7c7c.asciidoc 0000664 0000000 0000000 00000000557 14766462667 0026766 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-management/migrate-index-allocation-filters.asciidoc:220
[source, python]
----
resp = client.indices.put_settings(
index="my-index",
settings={
"index.routing.allocation.require.data": None,
"index.routing.allocation.include._tier_preference": "data_warm,data_hot"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/957d2e6ddbb9a9b16549c5e67b93b41b.asciidoc 0000664 0000000 0000000 00000000515 14766462667 0026721 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:267
[source, python]
----
resp = client.search(
query={
"query_string": {
"fields": [
"content",
"name"
],
"query": "this AND that"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9584b042223982e0bfde8d12d42c9705.asciidoc 0000664 0000000 0000000 00000000561 14766462667 0026404 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/configuring-kerberos-realm.asciidoc:179
[source, python]
----
resp = client.security.put_role_mapping(
name="kerbrolemapping",
roles=[
"monitoring_user"
],
enabled=True,
rules={
"field": {
"username": "user@REALM"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/95b3f53f2065737bbeba6199e8a12df3.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-query.asciidoc:152
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"color": [
"blue",
"green"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/95c03bdef4faf6bef039c986f4cb3aba.asciidoc 0000664 0000000 0000000 00000000470 14766462667 0027265 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:259
[source, python]
----
resp = client.search(
index=".watcher-history*",
pretty=True,
query={
"match": {
"result.condition.met": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/95c1b376652533c352bbf793c74d1b08.asciidoc 0000664 0000000 0000000 00000000463 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-role.asciidoc:247
[source, python]
----
resp = client.security.query_role(
query={
"match": {
"description": {
"query": "user access"
}
}
},
size=1,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9606c271921cb800d5ea395b16d6ceaf.asciidoc 0000664 0000000 0000000 00000002134 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:843
[source, python]
----
resp = client.indices.create(
index="galician_example",
settings={
"analysis": {
"filter": {
"galician_stop": {
"type": "stop",
"stopwords": "_galician_"
},
"galician_keywords": {
"type": "keyword_marker",
"keywords": [
"exemplo"
]
},
"galician_stemmer": {
"type": "stemmer",
"language": "galician"
}
},
"analyzer": {
"rebuilt_galician": {
"tokenizer": "standard",
"filter": [
"lowercase",
"galician_stop",
"galician_keywords",
"galician_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9608820dbeac261ba53fb89bb9400560.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026527 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:239
[source, python]
----
resp = client.security.get_api_key(
owner=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/962e6187bbd71c5749376efed04b65ba.asciidoc 0000664 0000000 0000000 00000001077 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/field-level-security.asciidoc:142
[source, python]
----
resp = client.security.put_role(
name="test_role6",
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
],
"field_security": {
"except": [
"customer.handle"
],
"grant": [
"customer.*"
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/966ff3a4c5b61ed1a36d44c17ce06157.asciidoc 0000664 0000000 0000000 00000001756 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/normalizers.asciidoc:27
[source, python]
----
resp = client.indices.create(
index="index",
settings={
"analysis": {
"char_filter": {
"quote": {
"type": "mapping",
"mappings": [
"« => \"",
"» => \""
]
}
},
"normalizer": {
"my_normalizer": {
"type": "custom",
"char_filter": [
"quote"
],
"filter": [
"lowercase",
"asciifolding"
]
}
}
}
},
mappings={
"properties": {
"foo": {
"type": "keyword",
"normalizer": "my_normalizer"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9684e5fa8c22a07a372feb6fc1f5f7c0.asciidoc 0000664 0000000 0000000 00000001556 14766462667 0026776 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/has-privileges.asciidoc:75
[source, python]
----
resp = client.security.has_privileges(
cluster=[
"monitor",
"manage"
],
index=[
{
"names": [
"suppliers",
"products"
],
"privileges": [
"read"
]
},
{
"names": [
"inventory"
],
"privileges": [
"read",
"write"
]
}
],
application=[
{
"application": "inventory_manager",
"privileges": [
"read",
"data:write/inventory"
],
"resources": [
"product/1852563"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/968fb5b92aa65af09544f7c002b0953e.asciidoc 0000664 0000000 0000000 00000000550 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-semantic-text.asciidoc:144
[source, python]
----
resp = client.search(
index="semantic-embeddings",
query={
"semantic": {
"field": "content",
"query": "How to avoid muscle soreness while running?"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/96b9289c3c4c6b135ab3386562c4ee8d.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/troubleshooting-shards-capacity.asciidoc:174
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.max_shards_per_node": 1200
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/96e137e42d12c180e2c702db30714a9e.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/text.asciidoc:39
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"full_name": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/96e88611f99e6834bd64b58dc8a282c1.asciidoc 0000664 0000000 0000000 00000000600 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/semantic-text.asciidoc:42
[source, python]
----
resp = client.indices.create(
index="my-index-000002",
mappings={
"properties": {
"inference_field": {
"type": "semantic_text",
"inference_id": "my-openai-endpoint"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/96ea0e80323d6d2d99964625c004a44d.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0026403 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-migrate-data-stream-from-ilm-to-dsl.asciidoc:394
[source, python]
----
resp = client.indices.put_data_lifecycle(
name="dsl-data-stream",
data_retention="7d",
enabled=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/971c7a36ee79f2b3aa82c64ea338de70.asciidoc 0000664 0000000 0000000 00000000526 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:345
[source, python]
----
resp = client.indices.create(
index="index",
mappings={
"properties": {
"foo": {
"type": "keyword",
"eager_global_ordinals": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/971fd23adb81bb5842c7750e0379336a.asciidoc 0000664 0000000 0000000 00000001174 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:764
[source, python]
----
resp = client.search(
index="movies",
retriever={
"text_similarity_reranker": {
"retriever": {
"standard": {
"query": {
"match": {
"genre": "drama"
}
}
}
},
"field": "plot",
"inference_id": "my-msmarco-minilm-model",
"inference_text": "films that explore psychological depths"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/973a3ff47fc4ce036ecd9bd363fef9f7.asciidoc 0000664 0000000 0000000 00000000631 14766462667 0027151 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:849
[source, python]
----
resp = client.reindex(
source={
"index": "metricbeat-*"
},
dest={
"index": "metricbeat"
},
script={
"lang": "painless",
"source": "ctx._index = 'metricbeat-' + (ctx._index.substring('metricbeat-'.length(), ctx._index.length())) + '-1'"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/975b4b92464d52068516aa2f0f955cc1.asciidoc 0000664 0000000 0000000 00000000257 14766462667 0026410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/segments.asciidoc:125
[source, python]
----
resp = client.indices.segments(
index="test1,test2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/976e5f9baf81bd6ca0e9f80916a0a4f9.asciidoc 0000664 0000000 0000000 00000001057 14766462667 0027004 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/field-level-security.asciidoc:18
[source, python]
----
resp = client.security.put_role(
name="test_role1",
indices=[
{
"names": [
"events-*"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"category",
"@timestamp",
"message"
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/97916243f245478b735471a9e37f33d1.asciidoc 0000664 0000000 0000000 00000001036 14766462667 0026203 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/iprange-aggregation.asciidoc:12
[source, python]
----
resp = client.search(
index="ip_addresses",
size=10,
aggs={
"ip_ranges": {
"ip_range": {
"field": "ip",
"ranges": [
{
"to": "10.0.0.5"
},
{
"from": "10.0.0.5"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/97a3216af3d4b4d805d467d9c715cb3e.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/get-desired-balance.asciidoc:27
[source, python]
----
resp = client.perform_request(
"GET",
"/_internal/desired_balance",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/97ae2b62aa372a955278be6f660356ba.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/combined-fields-query.asciidoc:57
[source, python]
----
resp = client.search(
query={
"combined_fields": {
"query": "distributed consensus",
"fields": [
"title^2",
"body"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/97babc8d19ef0866774576716eb6d19e.asciidoc 0000664 0000000 0000000 00000000567 14766462667 0026606 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:781
[source, python]
----
resp = client.update_by_query(
index="test",
refresh=True,
conflicts="proceed",
)
print(resp)
resp1 = client.search(
index="test",
filter_path="hits.total",
query={
"match": {
"flag": "foo"
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/97c6c07f46f4177f0565a04bc50924a3.asciidoc 0000664 0000000 0000000 00000002160 14766462667 0026402 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:113
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"query_string": {
"query": "(information retrieval) OR (artificial intelligence)",
"default_field": "text"
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
},
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/97da68c09c9f1a97a21780fd404e213a.asciidoc 0000664 0000000 0000000 00000000637 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/ipprefix-aggregation.asciidoc:279
[source, python]
----
resp = client.search(
index="network-traffic",
size=0,
aggs={
"ipv4-subnets": {
"ip_prefix": {
"field": "ipv4",
"prefix_length": 24,
"append_prefix_length": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/97ea5ab17213cb1faaf6f3ea13607098.asciidoc 0000664 0000000 0000000 00000000227 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/start.asciidoc:49
[source, python]
----
resp = client.watcher.start()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/97f5df84efec655f479fad78bc392d4d.asciidoc 0000664 0000000 0000000 00000001442 14766462667 0027107 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/profile.asciidoc:835
[source, python]
----
resp = client.search(
index="my-index-000001",
profile=True,
query={
"term": {
"user.id": {
"value": "elkbee"
}
}
},
aggs={
"my_scoped_agg": {
"terms": {
"field": "http.response.status_code"
}
},
"my_global_agg": {
"global": {},
"aggs": {
"my_level_agg": {
"terms": {
"field": "http.response.status_code"
}
}
}
}
},
post_filter={
"match": {
"message": "search"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/983fbb78e57e8fe98db38cf2d217e943.asciidoc 0000664 0000000 0000000 00000002173 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-inner-hits.asciidoc:212
[source, python]
----
resp = client.indices.create(
index="test",
mappings={
"properties": {
"comments": {
"type": "nested"
}
}
},
)
print(resp)
resp1 = client.index(
index="test",
id="1",
refresh=True,
document={
"title": "Test title",
"comments": [
{
"author": "kimchy",
"text": "comment text"
},
{
"author": "nik9000",
"text": "words words words"
}
]
},
)
print(resp1)
resp2 = client.search(
index="test",
query={
"nested": {
"path": "comments",
"query": {
"match": {
"comments.text": "words"
}
},
"inner_hits": {
"_source": False,
"docvalue_fields": [
"comments.text.keyword"
]
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/9851f5225150bc032fb3b195cd447f4f.asciidoc 0000664 0000000 0000000 00000001624 14766462667 0026457 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:213
[source, python]
----
resp = client.bulk(
index="byte-image-index",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"byte-image-vector": [
5,
-20
],
"title": "moose family"
},
{
"index": {
"_id": "2"
}
},
{
"byte-image-vector": [
8,
-15
],
"title": "alpine lake"
},
{
"index": {
"_id": "3"
}
},
{
"byte-image-vector": [
11,
23
],
"title": "full moon"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/98574a419b6be603a0af8f7f22a92d23.asciidoc 0000664 0000000 0000000 00000000240 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/grok.asciidoc:258
[source, python]
----
resp = client.ingest.processor_grok()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/98621bea4765b1b838cc9daa914bf5c5.asciidoc 0000664 0000000 0000000 00000000553 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:340
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n sequence with maxspan=1h\n [ process where process.name == \"regsvr32.exe\" ] by process.pid\n [ file where stringContains(file.name, \"scrobj.dll\") ] by process.pid\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/986f892bfa4dfdf1da8455fdf84a4b0c.asciidoc 0000664 0000000 0000000 00000001077 14766462667 0027147 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-alibabacloud-ai-search.asciidoc:228
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="alibabacloud_ai_search_embeddings",
inference_config={
"service": "alibabacloud-ai-search",
"service_settings": {
"api_key": "",
"service_id": "ops-text-embedding-001",
"host": "default-j01.platform-cn-shanghai.opensearch.aliyuncs.com",
"workspace": "default"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/98855f4bda8726d5d123aeebf7869e47.asciidoc 0000664 0000000 0000000 00000000233 14766462667 0026654 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/nodeattrs.asciidoc:88
[source, python]
----
resp = client.cat.nodeattrs(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9887f65af249bbf09190b1153ea2597b.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:615
[source, python]
----
resp = client.sql.get_async_status(
id="FnR0TDhyWUVmUmVtWXRWZER4MXZiNFEad2F5UDk2ZVdTVHV1S0xDUy00SklUdzozMTU=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/98b403c356a9b14544e9b9f646845e9f.asciidoc 0000664 0000000 0000000 00000000776 14766462667 0026446 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:848
[source, python]
----
resp = client.put_script(
id="my-search-template",
script={
"lang": "mustache",
"source": {
"query": {
"multi_match": {
"query": "{{query_string}}",
"fields": "[{{#text_fields}}{{user_name}}{{^last}},{{/last}}{{/text_fields}}]"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/98c1080d8630d3a18d564312300d020f.asciidoc 0000664 0000000 0000000 00000001232 14766462667 0026210 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/network-direction.asciidoc:66
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"processors": [
{
"network_direction": {
"internal_networks": [
"private"
]
}
}
]
},
docs=[
{
"_source": {
"source": {
"ip": "128.232.110.120"
},
"destination": {
"ip": "192.168.1.1"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/98f43710cedd28a464e8abf4b09bcc9a.asciidoc 0000664 0000000 0000000 00000000675 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations.asciidoc:95
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"range": {
"@timestamp": {
"gte": "now-1d/d",
"lt": "now/d"
}
}
},
aggs={
"my-agg-name": {
"terms": {
"field": "my-field"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/98f7525ec0bc8945eafa008a5a9c50c0.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1253
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
wait_for_completion_timeout="2s",
query="\n process where process.name == \"cmd.exe\"\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/990c0d794ed6f05d1620b5d49f7aff6e.asciidoc 0000664 0000000 0000000 00000000347 14766462667 0026724 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-data-stream-retention.asciidoc:183
[source, python]
----
resp = client.indices.get_data_lifecycle(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/99160b7c3c3fc1fac98aeb426dbcb3cb.asciidoc 0000664 0000000 0000000 00000001517 14766462667 0027175 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/fields.asciidoc:244
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"first_name": {
"type": "text"
},
"last_name": {
"type": "text"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"first_name": "Barry",
"last_name": "White"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
script_fields={
"full_name": {
"script": {
"lang": "painless",
"source": "params._source.first_name + ' ' + params._source.last_name"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/991b9ba53f0eccec8ec5a42f8d9b655c.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0027133 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:628
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"fields": {
"body": {},
"blog.title": {
"number_of_fragments": 0
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/99474a7e7979816c874aeac4403be5d0.asciidoc 0000664 0000000 0000000 00000001107 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/rate-aggregation.asciidoc:104
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"by_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"avg_price": {
"rate": {
"field": "price",
"unit": "day"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/996521cef7803ef363a49ac6321ea1de.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:256
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n sequence with maxspan=1d\n [ process where process.name == \"cmd.exe\" ]\n ![ process where stringContains(process.command_line, \"ocx\") ]\n [ file where stringContains(file.name, \"scrobj.dll\") ]\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/996f320a0f537c24b9cd0d71b5f7c1f8.asciidoc 0000664 0000000 0000000 00000001172 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/function-score-query.asciidoc:175
[source, python]
----
resp = client.search(
query={
"function_score": {
"query": {
"match": {
"message": "elasticsearch"
}
},
"script_score": {
"script": {
"params": {
"a": 5,
"b": 1.2
},
"source": "params.a / Math.pow(params.b, doc['my-int'].value)"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/99803d7b111b862c0c82e9908e549b16.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026340 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-mistral.asciidoc:113
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="mistral-embeddings-test",
inference_config={
"service": "mistral",
"service_settings": {
"api_key": "",
"model": "mistral-embed"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/998651b98e152add530084a631a4ab5a.asciidoc 0000664 0000000 0000000 00000000373 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:528
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"indices.lifecycle.poll_interval": "1m"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/998c8479c8704bca0e121d5969859517.asciidoc 0000664 0000000 0000000 00000000264 14766462667 0026303 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:417
[source, python]
----
resp = client.count(
index="music",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/99a56f423df3a0e57b7f20146f0d33b5.asciidoc 0000664 0000000 0000000 00000000605 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/match-only-text.asciidoc:26
[source, python]
----
resp = client.indices.create(
index="logs",
mappings={
"properties": {
"@timestamp": {
"type": "date"
},
"message": {
"type": "match_only_text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/99b617a0a83fcfbe5755ccc724a4ce62.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/context-suggest.asciidoc:118
[source, python]
----
resp = client.index(
index="place_path_category",
id="1",
document={
"suggest": [
"timmy's",
"starbucks",
"dunkin donuts"
],
"cat": [
"cafe",
"food"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/99c1cfe60f3ccf5bf3abd24c31ed9034.asciidoc 0000664 0000000 0000000 00000000731 14766462667 0027114 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/put-auto-follow-pattern.asciidoc:20
[source, python]
----
resp = client.ccr.put_auto_follow_pattern(
name="",
remote_cluster="",
leader_index_patterns=[
""
],
leader_index_exclusion_patterns=[
""
],
follow_index_pattern="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/99fb82d49ac477e6a9dfdd71f9465374.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026665 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/delete-ip-location-database.asciidoc:58
[source, python]
----
resp = client.ingest.delete_ip_location_database(
id="example-database-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9a02bd47c000a3d9a8911233c37c890f.asciidoc 0000664 0000000 0000000 00000001272 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:367
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"date": "2015-10-01T00:30:00Z"
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"date": "2015-10-01T01:30:00Z"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
size="0",
aggs={
"by_day": {
"date_histogram": {
"field": "date",
"calendar_interval": "day"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/9a036a792be1d39af9fd0d1adb5f3402.asciidoc 0000664 0000000 0000000 00000000665 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keep-words-tokenfilter.asciidoc:26
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "keep",
"keep_words": [
"dog",
"elephant",
"fox"
]
}
],
text="the quick fox jumps over the lazy dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9a05cc10eea1251e23b82a4549913536.asciidoc 0000664 0000000 0000000 00000000400 14766462667 0026353 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/hotspotting.asciidoc:108
[source, python]
----
resp = client.cat.allocation(
v=True,
s="node",
h="node,shards,disk.percent,disk.indices,disk.used",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9a09d33ec11e20b6081cae882282ca60.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-privileges-cache.asciidoc:63
[source, python]
----
resp = client.security.clear_cached_privileges(
application="*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9a203aae3e1412d919546276fb52a5ca.asciidoc 0000664 0000000 0000000 00000000701 14766462667 0026521 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-cohere.asciidoc:196
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="cohere-embeddings",
inference_config={
"service": "cohere",
"service_settings": {
"api_key": "",
"model_id": "embed-english-light-v3.0",
"embedding_type": "byte"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9a49b7572d571e00e20dbebdd30f9368.asciidoc 0000664 0000000 0000000 00000002331 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-vector-tile-api.asciidoc:119
[source, python]
----
resp = client.search(
index="my-index",
size=10000,
query={
"geo_bounding_box": {
"my-geo-field": {
"top_left": {
"lat": -40.979898069620134,
"lon": -45
},
"bottom_right": {
"lat": -66.51326044311186,
"lon": 0
}
}
}
},
aggregations={
"grid": {
"geotile_grid": {
"field": "my-geo-field",
"precision": 11,
"size": 65536,
"bounds": {
"top_left": {
"lat": -40.979898069620134,
"lon": -45
},
"bottom_right": {
"lat": -66.51326044311186,
"lon": 0
}
}
}
},
"bounds": {
"geo_bounds": {
"field": "my-geo-field",
"wrap_longitude": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9a4d5e41c52c20635d1fd9c6e13f6c7a.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0026703 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:833
[source, python]
----
resp = client.index(
index="metricbeat-2016.05.30",
id="1",
refresh=True,
document={
"system.cpu.idle.pct": 0.908
},
)
print(resp)
resp1 = client.index(
index="metricbeat-2016.05.31",
id="1",
refresh=True,
document={
"system.cpu.idle.pct": 0.105
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/9a743b6575c6fe5acdf46024a7fda8a1.asciidoc 0000664 0000000 0000000 00000000551 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:542
[source, python]
----
resp = client.search(
index="my_test_scores_2",
query={
"term": {
"grad_year": "2099"
}
},
sort=[
{
"total_score": {
"order": "desc"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9ab351893dae65ec97fd8cb6832950fb.asciidoc 0000664 0000000 0000000 00000001642 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:1288
[source, python]
----
resp = client.search(
index="product-index",
query={
"script_score": {
"query": {
"bool": {
"filter": {
"range": {
"price": {
"gte": 1000
}
}
}
}
},
"script": {
"source": "cosineSimilarity(params.queryVector, 'product-vector') + 1.0",
"params": {
"queryVector": [
-0.5,
90,
-10,
14.8,
-156
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9ad14a9d7bf2699e2d86b6a607d410c0.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:112
[source, python]
----
resp = client.search_application.get(
name="my_search_application",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9ad38ab4d9c3983e97e8c38fec611f10.asciidoc 0000664 0000000 0000000 00000000606 14766462667 0026725 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/getting-started.asciidoc:107
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"leader": {
"seeds": [
"127.0.0.1:9300"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9ae268058c0ea32ef8926568e011c728.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-features-api.asciidoc:129
[source, python]
----
resp = client.perform_request(
"PUT",
"/_connector/my-connector/_features",
headers={"Content-Type": "application/json"},
body={
"features": {
"document_level_security": {
"enabled": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9aedc45f83e022732789e8d796f5a43c.asciidoc 0000664 0000000 0000000 00000001012 14766462667 0026563 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/reroute.asciidoc:200
[source, python]
----
resp = client.cluster.reroute(
commands=[
{
"move": {
"index": "test",
"shard": 0,
"from_node": "node1",
"to_node": "node2"
}
},
{
"allocate_replica": {
"index": "test",
"shard": 1,
"node": "node3"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9af44592fb2e78fb17ad3e834bbef7a7.asciidoc 0000664 0000000 0000000 00000000236 14766462667 0027060 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/geoip-stats.asciidoc:17
[source, python]
----
resp = client.ingest.geo_ip_stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9afa0844883b7471883aa378a8dd10b4.asciidoc 0000664 0000000 0000000 00000002102 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// behavioral-analytics/apis/post-analytics-collection-event.asciidoc:75
[source, python]
----
resp = client.search_application.post_behavioral_analytics_event(
collection_name="my_analytics_collection",
event_type="search_click",
payload={
"session": {
"id": "1797ca95-91c9-4e2e-b1bd-9c38e6f386a9"
},
"user": {
"id": "5f26f01a-bbee-4202-9298-81261067abbd"
},
"search": {
"query": "search term",
"results": {
"items": [
{
"document": {
"id": "123",
"index": "products"
}
}
],
"total_results": 10
},
"sort": {
"name": "relevance"
},
"search_application": "website"
},
"document": {
"id": "123",
"index": "products"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9b0f34d122a4b348dc86df7410d6ebb6.asciidoc 0000664 0000000 0000000 00000000371 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/cancel-connector-sync-job-api.asciidoc:57
[source, python]
----
resp = client.perform_request(
"PUT",
"/_connector/_sync_job/my-connector-sync-job-id/_cancel",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9b30a69fec54cf01f7af1b04a6e15239.asciidoc 0000664 0000000 0000000 00000000224 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/get-ccr-stats.asciidoc:109
[source, python]
----
resp = client.ccr.stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9b345e0bfd45f3a37194585ec9193478.asciidoc 0000664 0000000 0000000 00000000267 14766462667 0026432 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/forcemerge.asciidoc:179
[source, python]
----
resp = client.indices.forcemerge(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9b68748c061b768c0153c1f2508ce207.asciidoc 0000664 0000000 0000000 00000001156 14766462667 0026325 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/uni-directional-disaster-recovery.asciidoc:49
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"clusterA": {
"mode": "proxy",
"skip_unavailable": "true",
"server_name": "clustera.es.region-a.gcp.elastic-cloud.com",
"proxy_socket_connections": "18",
"proxy_address": "clustera.es.region-a.gcp.elastic-cloud.com:9400"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9b92266d87170e93a84f9700596d9035.asciidoc 0000664 0000000 0000000 00000001147 14766462667 0026216 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-shape-query.asciidoc:30
[source, python]
----
resp = client.indices.create(
index="example",
mappings={
"properties": {
"location": {
"type": "geo_shape"
}
}
},
)
print(resp)
resp1 = client.index(
index="example",
refresh=True,
document={
"name": "Wind & Wetter, Berlin, Germany",
"location": {
"type": "point",
"coordinates": [
13.400544,
52.530286
]
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/9ba6f1e64c1dfff5aac26eaa1d093f48.asciidoc 0000664 0000000 0000000 00000001526 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stemmer-override-tokenfilter.asciidoc:57
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"lowercase",
"custom_stems",
"porter_stem"
]
}
},
"filter": {
"custom_stems": {
"type": "stemmer_override",
"rules": [
"running, runs => run",
"stemmer => stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9ba868784f417a8d3679b3c8ed5939ad.asciidoc 0000664 0000000 0000000 00000000635 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:176
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_size": "100gb"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9bae72e974bdeb56007d9104e73eff92.asciidoc 0000664 0000000 0000000 00000000323 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:188
[source, python]
----
resp = client.update(
index="test",
id="1",
script="ctx._source.remove('new_field')",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9bb24fe09e3d1c73a71d00b994ba8cfb.asciidoc 0000664 0000000 0000000 00000000242 14766462667 0027031 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/shards.asciidoc:352
[source, python]
----
resp = client.cat.shards(
index="my-index-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9bd5a470ee6d2b4a1f5280adc39675d2.asciidoc 0000664 0000000 0000000 00000001405 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-mysql.asciidoc:503
[source, python]
----
resp = client.update(
index=".elastic-connectors",
id="connector_id",
doc={
"configuration": {
"tables": {
"type": "list",
"value": "*"
},
"ssl_enabled": {
"type": "bool",
"value": False
},
"ssl_ca": {
"type": "str",
"value": ""
},
"fetch_size": {
"type": "int",
"value": 50
},
"retry_count": {
"type": "int",
"value": 3
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9beb260834f8cfb240f6308950dbb9c2.asciidoc 0000664 0000000 0000000 00000000663 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:523
[source, python]
----
resp = client.search(
sort=[
{
"_geo_distance": {
"pin.location": "drm3btev3e86",
"order": "asc",
"unit": "km"
}
}
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9bfdda207b701028a3439e495e800c02.asciidoc 0000664 0000000 0000000 00000000644 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:288
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sales_over_time": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M",
"format": "yyyy-MM-dd"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9c01db07c9ac395b6370e3b33965c21f.asciidoc 0000664 0000000 0000000 00000000732 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/oidc-authenticate-api.asciidoc:74
[source, python]
----
resp = client.security.oidc_authenticate(
redirect_uri="https://oidc-kibana.elastic.co:5603/api/security/oidc/callback?code=jtI3Ntt8v3_XvcLzCFGq&state=4dbrihtIAt3wBTwo6DxK-vdk-sSyDBV8Yf0AjdkdT5I",
state="4dbrihtIAt3wBTwo6DxK-vdk-sSyDBV8Yf0AjdkdT5I",
nonce="WaBPH0KqPVdG5HHdSxPRjfoZbXMCicm5v1OiAj0DUFM",
realm="oidc1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9c021836acf7c0370e289f611325868d.asciidoc 0000664 0000000 0000000 00000000653 14766462667 0026333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-configuration-api.asciidoc:315
[source, python]
----
resp = client.connector.update_configuration(
connector_id="my-spo-connector",
values={
"tenant_id": "my-tenant-id",
"tenant_name": "my-sharepoint-site",
"client_id": "foo",
"secret_value": "bar",
"site_collections": "*"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9c2ce0132e4527077443f007d27b1158.asciidoc 0000664 0000000 0000000 00000001226 14766462667 0026227 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:422
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"flattened": {
"type": "flattened"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"flattened": {
"field": [
"foo"
]
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/9c4ac64e73141f6cbf2fb6da0743d9b7.asciidoc 0000664 0000000 0000000 00000000524 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/specify-analyzer.asciidoc:130
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": {
"query": "Quick foxes",
"analyzer": "stop"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9c5cbbdbe0075ab9c2611627fe4748fb.asciidoc 0000664 0000000 0000000 00000001000 14766462667 0026747 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/decimal-digit-tokenfilter.asciidoc:75
[source, python]
----
resp = client.indices.create(
index="decimal_digit_example",
settings={
"analysis": {
"analyzer": {
"whitespace_decimal_digit": {
"tokenizer": "whitespace",
"filter": [
"decimal_digit"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9c6ea5fe2339d6c7e5e4bf1b98990248.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0026660 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:132
[source, python]
----
resp = client.search(
index="image-index",
knn={
"field": "image-vector",
"query_vector": [
-5,
9,
-12
],
"k": 10,
"num_candidates": 100
},
fields=[
"title",
"file-type"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9c7c8051592b6af3adb5d7c490849068.asciidoc 0000664 0000000 0000000 00000000712 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/put-datafeed.asciidoc:168
[source, python]
----
resp = client.ml.put_datafeed(
datafeed_id="datafeed-test-job",
pretty=True,
indices=[
"kibana_sample_data_logs"
],
query={
"bool": {
"must": [
{
"match_all": {}
}
]
}
},
job_id="test-job",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9cb150d67dfa0947f29aa809bcc93c6e.asciidoc 0000664 0000000 0000000 00000000400 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// datatiers.asciidoc:240
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
filter_path="*.settings.index.routing.allocation.include._tier_preference",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9cbb097e5498a9fde39e3b1d3b62a4d2.asciidoc 0000664 0000000 0000000 00000001036 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/infer-trained-model.asciidoc:1052
[source, python]
----
resp = client.ml.infer_trained_model(
model_id="model2",
docs=[
{
"text_field": "This is a very happy person"
}
],
inference_config={
"zero_shot_classification": {
"labels": [
"glad",
"sad",
"bad",
"rad"
],
"multi_label": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9cc64ab2f60f995f5dbfaca67aa6dd41.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-query-api.asciidoc:16
[source, python]
----
resp = client.esql.query(
query="\n FROM library\n | EVAL year = DATE_TRUNC(1 YEARS, release_date)\n | STATS MAX(page_count) BY year\n | SORT year\n | LIMIT 5\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9cc952d4a03264b700136cbc45abc8c6.asciidoc 0000664 0000000 0000000 00000001243 14766462667 0026601 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/rank-vectors.asciidoc:42
[source, python]
----
resp = client.indices.create(
index="my-rank-vectors-byte",
mappings={
"properties": {
"my_vector": {
"type": "rank_vectors",
"element_type": "byte"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-rank-vectors-byte",
id="1",
document={
"my_vector": [
[
1,
2,
3
],
[
4,
5,
6
]
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/9cd37d0ccbc66ad47ddb626564b27cc8.asciidoc 0000664 0000000 0000000 00000002105 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/execute-watch.asciidoc:333
[source, python]
----
resp = client.watcher.execute_watch(
watch={
"trigger": {
"schedule": {
"interval": "10s"
}
},
"input": {
"search": {
"request": {
"indices": [
"logs"
],
"body": {
"query": {
"match": {
"message": "error"
}
}
}
}
}
},
"condition": {
"compare": {
"ctx.payload.hits.total": {
"gt": 0
}
}
},
"actions": {
"log_error": {
"logging": {
"text": "Found {{ctx.payload.hits.total}} errors in the logs"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9cf6c7012a4f2bb562bc256aa28c3409.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/execute-watch.asciidoc:320
[source, python]
----
resp = client.watcher.execute_watch(
id="my_watch",
action_modes={
"_all": "force_execute"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9cfbc41bb7b6fbdb26550dd2789c274e.asciidoc 0000664 0000000 0000000 00000000531 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:521
[source, python]
----
resp = client.delete_by_query(
index="my-index-000001",
refresh=True,
slices="5",
query={
"range": {
"http.response.bytes": {
"lt": 2000000
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d1fb129ac783355a20097effded1845.asciidoc 0000664 0000000 0000000 00000001563 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:12
[source, python]
----
resp = client.bulk(
index="test",
refresh=True,
operations=[
{
"index": {}
},
{
"s": 1,
"m": 3.1415
},
{
"index": {}
},
{
"s": 2,
"m": 1
},
{
"index": {}
},
{
"s": 3,
"m": 2.71828
}
],
)
print(resp)
resp1 = client.search(
index="test",
filter_path="aggregations",
aggs={
"tm": {
"top_metrics": {
"metrics": {
"field": "m"
},
"sort": {
"s": "desc"
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/9d31c7eaf8c6b56cee2fdfdde8a442bb.asciidoc 0000664 0000000 0000000 00000000646 14766462667 0027355 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-shrink.asciidoc:90
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"shrink": {
"max_primary_shard_size": "50gb"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d396afad93782699d7a929578c85284.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0026375 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:192
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="google_vertex_ai_embeddings",
inference_config={
"service": "googlevertexai",
"service_settings": {
"service_account_json": "",
"model_id": "text-embedding-004",
"location": "",
"project_id": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d461ae140ddc018efd2650559800cd1.asciidoc 0000664 0000000 0000000 00000001021 14766462667 0026517 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-allocate.asciidoc:147
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"allocate": {
"number_of_replicas": 1,
"require": {
"box_type": "cold"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d5855075e7008270459cc88c189043d.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0026212 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:112
[source, python]
----
resp = client.security.put_user(
username="cross-cluster-user",
password="l0ng-r4nd0m-p@ssw0rd",
roles=[
"remote-replication"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d662fc9f943c287b7144f5e4e2ae358.asciidoc 0000664 0000000 0000000 00000000621 14766462667 0026570 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/median-absolute-deviation-aggregation.asciidoc:90
[source, python]
----
resp = client.search(
index="reviews",
size=0,
aggs={
"review_variability": {
"median_absolute_deviation": {
"field": "rating",
"compression": 100
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d66cb59711f24e6b4ff85608c9b5a1b.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/task-queue-backlog.asciidoc:73
[source, python]
----
resp = client.tasks.list(
pretty=True,
human=True,
detailed=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d67db8370a98854812d38ae73ee2a12.asciidoc 0000664 0000000 0000000 00000001215 14766462667 0026475 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:302
[source, python]
----
resp = client.search(
index="index2",
query={
"query_string": {
"query": "running with scissors",
"fields": [
"comment",
"comment.english"
]
}
},
highlight={
"order": "score",
"fields": {
"comment": {
"type": "fvh",
"matched_fields": [
"comment",
"comment.english"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d79645ab3a9da3f63c54a1516214a5a.asciidoc 0000664 0000000 0000000 00000000217 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// health/health.asciidoc:471
[source, python]
----
resp = client.health_report()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9d9c8d715b72ce336e604c2c8a2b540e.asciidoc 0000664 0000000 0000000 00000001707 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/bucket-sort-aggregation.asciidoc:54
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"total_sales": {
"sum": {
"field": "price"
}
},
"sales_bucket_sort": {
"bucket_sort": {
"sort": [
{
"total_sales": {
"order": "desc"
}
}
],
"size": 3
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9de10a59a5f56dd0906be627896cc789.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0026571 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:543
[source, python]
----
resp = client.search(
index="bicycles,other_cycles",
query={
"match": {
"description": "dutch"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9de4704d2f047dae1259249112488697.asciidoc 0000664 0000000 0000000 00000000471 14766462667 0026261 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-azure.asciidoc:72
[source, python]
----
resp = client.snapshot.create_repository(
name="my_backup",
repository={
"type": "azure",
"settings": {
"client": "secondary"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9de4ea9d5f3d427a71ee07d998cb5611.asciidoc 0000664 0000000 0000000 00000000313 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/blocks.asciidoc:138
[source, python]
----
resp = client.indices.add_block(
index="my-index-000001",
block="write",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9de4edafd22a8b9cb557632b2c8779cd.asciidoc 0000664 0000000 0000000 00000000651 14766462667 0027061 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:309
[source, python]
----
resp = client.esql.query(
query="\n FROM library\n | EVAL year = DATE_EXTRACT(\"year\", release_date)\n | WHERE page_count > ?1 AND author == ?2\n | STATS count = COUNT(*) by year\n | WHERE count > ?3\n | LIMIT 5\n ",
params=[
300,
"Frank Herbert",
0
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9e0e3ce27967f164f4585c5231ba9c75.asciidoc 0000664 0000000 0000000 00000000437 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/search-as-you-type.asciidoc:71
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"my_field": "quick brown fox jump lazy dog"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9e3c28d5820c38ea117eb2e9a5061089.asciidoc 0000664 0000000 0000000 00000000545 14766462667 0026466 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rank-feature-query.asciidoc:321
[source, python]
----
resp = client.search(
index="test",
query={
"rank_feature": {
"field": "pagerank",
"sigmoid": {
"pivot": 7,
"exponent": 0.6
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9e563b8d5a7845f644db8d5bbf453eb6.asciidoc 0000664 0000000 0000000 00000000704 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/put-synonyms-set.asciidoc:67
[source, python]
----
resp = client.synonyms.put_synonym(
id="my-synonyms-set",
synonyms_set=[
{
"id": "test-1",
"synonyms": "hello, hi"
},
{
"synonyms": "bye, goodbye"
},
{
"id": "test-2",
"synonyms": "test => check"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9e5ae957fd0663662bfbed9d1effe99e.asciidoc 0000664 0000000 0000000 00000000644 14766462667 0027166 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:559
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"set": {
"description": "Set '_routing' to 'geoip.country_iso_code' value",
"field": "_routing",
"value": "{{{geoip.country_iso_code}}}"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9e962baf1fb407c21d6c47dcd37cec29.asciidoc 0000664 0000000 0000000 00000000720 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:255
[source, python]
----
resp = client.render_search_template(
source={
"query": {
"match": {
"message": "{{query_string}}"
}
},
"from": "{{from}}{{^from}}0{{/from}}",
"size": "{{size}}{{^size}}10{{/size}}"
},
params={
"query_string": "hello world"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9e9717d9108ae1425bfacf71c7c44539.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat.asciidoc:127
[source, python]
----
resp = client.cat.indices(
bytes="b",
s="store.size:desc,index:asc",
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9eda9c39428b0c2c53cbd8ee7ae0f888.asciidoc 0000664 0000000 0000000 00000000542 14766462667 0027061 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/saml-guide.asciidoc:1016
[source, python]
----
resp = client.security.saml_authenticate(
content="PHNhbWxwOlJlc3BvbnNlIHhtbG5zOnNhbWxwPSJ1cm46b2FzaXM6bmFtZXM6dGM6U0FNTDoyLjA6cHJvdG9jb2wiIHhtbG5zOnNhbWw9InVybjpvYXNpczpuYW1lczp0YzpTQU1MOjIuMD.....",
ids=[],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9eef31d85ebaf6c27054d7375715dbe0.asciidoc 0000664 0000000 0000000 00000001745 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/actions.asciidoc:228
[source, python]
----
resp = client.watcher.put_watch(
id="log_event_watch",
trigger={
"schedule": {
"interval": "5m"
}
},
input={
"search": {
"request": {
"indices": "log-events",
"body": {
"query": {
"match": {
"status": "error"
}
}
}
}
}
},
condition={
"compare": {
"ctx.payload.hits.total": {
"gt": 0
}
}
},
actions={
"log_hits": {
"foreach": "ctx.payload.hits.hits",
"max_iterations": 500,
"logging": {
"text": "Found id {{ctx.payload._id}} with field {{ctx.payload._source.my_field}}"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9f04cc1a0c6cdb3ed2247f1399713767.asciidoc 0000664 0000000 0000000 00000000463 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/keyword.asciidoc:31
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"tags": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9f0a0029982d9b3423a2a3de1f1b5136.asciidoc 0000664 0000000 0000000 00000003753 14766462667 0026451 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cartesian-centroid-aggregation.asciidoc:13
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (491.2350 5237.4081)",
"city": "Amsterdam",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (490.1618 5236.9219)",
"city": "Amsterdam",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (491.4722 5237.1667)",
"city": "Amsterdam",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (440.5200 5122.2900)",
"city": "Antwerp",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (233.6389 4886.1111)",
"city": "Paris",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (232.7000 4886.0000)",
"city": "Paris",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
aggs={
"centroid": {
"cartesian_centroid": {
"field": "location"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/9f22a0920cc763eefa233ced963d9624.asciidoc 0000664 0000000 0000000 00000000454 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-term-query.asciidoc:34
[source, python]
----
resp = client.search(
query={
"span_term": {
"user.id": {
"term": "kimchy",
"boost": 2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9f286416f1b18940f13cb27ab5c8458e.asciidoc 0000664 0000000 0000000 00000001403 14766462667 0026467 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/pattern_replace-tokenfilter.asciidoc:133
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "keyword",
"filter": [
"my_pattern_replace_filter"
]
}
},
"filter": {
"my_pattern_replace_filter": {
"type": "pattern_replace",
"pattern": "[£|€]",
"replacement": "",
"all": False
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9f3341489fefd38c4e439c29f6dcb86c.asciidoc 0000664 0000000 0000000 00000001122 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-set-query.asciidoc:224
[source, python]
----
resp = client.search(
index="job-candidates",
query={
"terms_set": {
"programming_languages": {
"terms": [
"c++",
"java",
"php"
],
"minimum_should_match_script": {
"source": "Math.min(params.num_terms, doc['required_matches'].value)"
},
"boost": 1
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9f66b5243050f71ed51bc787a7ac1218.asciidoc 0000664 0000000 0000000 00000001020 14766462667 0026450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:215
[source, python]
----
resp = client.bulk(
index="index2",
refresh=True,
operations=[
{
"index": {
"_id": "doc1"
}
},
{
"comment": "run with scissors"
},
{
"index": {
"_id": "doc2"
}
},
{
"comment": "running with scissors"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9f7671119236423e0e40801ef6485af1.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026240 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/uppercase-tokenfilter.asciidoc:30
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"uppercase"
],
text="the Quick FoX JUMPs",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9f99be2d58c48a6bf8e892aa24604197.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/update-dfanalytics.asciidoc:98
[source, python]
----
resp = client.ml.update_data_frame_analytics(
id="loganalytics",
model_memory_limit="200mb",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9fa55fc76ec4bd81f372e9389f1da851.asciidoc 0000664 0000000 0000000 00000000450 14766462667 0026727 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:318
[source, python]
----
resp = client.indices.put_settings(
index="my-data-stream",
settings={
"index": {
"refresh_interval": "30s"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9fda516a5dc60ba477b970eaad4429db.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/apis/get-lifecycle.asciidoc:148
[source, python]
----
resp = client.indices.get_data_lifecycle(
name="my-data-stream*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9feff356f302ea4915347ab71cc4887a.asciidoc 0000664 0000000 0000000 00000000561 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/simulate-template.asciidoc:241
[source, python]
----
resp = client.indices.simulate_template(
index_patterns=[
"my-index-*"
],
composed_of=[
"ct2"
],
priority=10,
template={
"settings": {
"index.number_of_replicas": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9ff9b2a73419a6c82f17a358b4991499.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026432 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/point-in-time-api.asciidoc:165
[source, python]
----
resp = client.close_point_in_time(
id="46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/9ffe41322c095af1b6ea45a79b640a6f.asciidoc 0000664 0000000 0000000 00000001563 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-within-query.asciidoc:11
[source, python]
----
resp = client.search(
query={
"span_within": {
"little": {
"span_term": {
"field1": "foo"
}
},
"big": {
"span_near": {
"clauses": [
{
"span_term": {
"field1": "bar"
}
},
{
"span_term": {
"field1": "baz"
}
}
],
"slop": 5,
"in_order": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a00311843b5f8f3e9f7d511334a828b1.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026373 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-caps.asciidoc:98
[source, python]
----
resp = client.rollup.get_rollup_caps(
id="sensor-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a008f42379930edc354b4074e0a33344.asciidoc 0000664 0000000 0000000 00000000367 14766462667 0026311 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:116
[source, python]
----
resp = client.index(
index="index",
id="1",
document={
"designation": "spoon",
"price": 13
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a01753fa7b4ba6dc19054f4f42d91cd9.asciidoc 0000664 0000000 0000000 00000001005 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:620
[source, python]
----
resp = client.render_search_template(
source="{ \"query\": { \"bool\": { \"filter\": [ { \"range\": { \"@timestamp\": { \"gte\": {{#year_scope}} \"now-1y/d\" {{/year_scope}} {{^year_scope}} \"now-1d/d\" {{/year_scope}} , \"lt\": \"now/d\" }}}, { \"term\": { \"user.id\": \"{{user_id}}\" }}]}}}",
params={
"year_scope": True,
"user_id": "kimchy"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a037beb3d02296e1d36dd43ef5c935dd.asciidoc 0000664 0000000 0000000 00000000515 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keyword-repeat-tokenfilter.asciidoc:49
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"keyword_repeat"
],
text="fox running and jumping",
explain=True,
attributes="keyword",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a0497157fdefecd04e597edb800a1a95.asciidoc 0000664 0000000 0000000 00000000420 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:513
[source, python]
----
resp = client.search(
source="obj.*",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a04a8d90f8245ff5f30a9983909faa1d.asciidoc 0000664 0000000 0000000 00000002274 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:427
[source, python]
----
resp = client.indices.create(
index="my_queries1",
settings={
"analysis": {
"analyzer": {
"wildcard_prefix": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"wildcard_edge_ngram"
]
}
},
"filter": {
"wildcard_edge_ngram": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 32
}
}
}
},
mappings={
"properties": {
"query": {
"type": "percolator"
},
"my_field": {
"type": "text",
"fields": {
"prefix": {
"type": "text",
"analyzer": "wildcard_prefix",
"search_analyzer": "standard"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a0871be90badeecd2f8d8ec90230e248.asciidoc 0000664 0000000 0000000 00000002165 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/pattern-replace-charfilter.asciidoc:104
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"char_filter": [
"my_char_filter"
],
"filter": [
"lowercase"
]
}
},
"char_filter": {
"my_char_filter": {
"type": "pattern_replace",
"pattern": "(?<=\\p{Lower})(?=\\p{Upper})",
"replacement": " "
}
}
}
},
mappings={
"properties": {
"text": {
"type": "text",
"analyzer": "my_analyzer"
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="The fooBarBaz method",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a0a7557bb7e2aff7918557cd648f41af.asciidoc 0000664 0000000 0000000 00000001136 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:127
[source, python]
----
resp = client.search(
index="index",
aggs={
"price_ranges": {
"range": {
"field": "price",
"ranges": [
{
"to": 10
},
{
"from": 10,
"to": 100
},
{
"from": 100
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a0c64894f14d28b7e0c902add71d2e9a.asciidoc 0000664 0000000 0000000 00000000365 14766462667 0026701 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:511
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"xpack.profiling.templates.enabled": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a0c868282c0514a342ad04998cdc2175.asciidoc 0000664 0000000 0000000 00000000372 14766462667 0026372 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:367
[source, python]
----
resp = client.delete_by_query(
index="my-index-000001",
conflicts="proceed",
query={
"match_all": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a0d53dcb3df938fc0a01d248571a41e4.asciidoc 0000664 0000000 0000000 00000001567 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:246
[source, python]
----
resp = client.search(
runtime_mappings={
"price.discounted": {
"type": "double",
"script": "\n double price = doc['price'].value;\n if (doc['product'].value == 'mad max') {\n price *= 0.8;\n }\n emit(price);\n "
}
},
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"price": {
"histogram": {
"interval": 5,
"field": "price.discounted"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a0f4e902d18460337684d74ea932fbe9.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:263
[source, python]
----
resp = client.update(
index="test",
id="1",
doc={
"name": "new_name"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1070cf2f5969d42d71cda057223f152.asciidoc 0000664 0000000 0000000 00000000243 14766462667 0026444 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:248
[source, python]
----
resp = client.cat.shards(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1377b32d7fe3680079ae0df73009b0e.asciidoc 0000664 0000000 0000000 00000001374 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/tophits-aggregation.asciidoc:293
[source, python]
----
resp = client.search(
index="sales",
query={
"term": {
"tags": "car"
}
},
aggs={
"by_sale": {
"nested": {
"path": "comments"
},
"aggs": {
"by_user": {
"terms": {
"field": "comments.username",
"size": 1
},
"aggs": {
"by_nested": {
"top_hits": {}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1490f71d705053951870fd2d3bceb39.asciidoc 0000664 0000000 0000000 00000000754 14766462667 0026463 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/enabled.asciidoc:99
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"session_data": {
"type": "object",
"enabled": False
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="session_1",
document={
"session_data": "foo bar"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a159143bb578403bb9c7ff37d635d7ad.asciidoc 0000664 0000000 0000000 00000000670 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/predicate-tokenfilter.asciidoc:20
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "predicate_token_filter",
"script": {
"source": "\n token.term.length() > 3\n "
}
}
],
text="the fox jumps the lazy dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a159e1ce0cba7a35ce44db9bebad22f3.asciidoc 0000664 0000000 0000000 00000000226 14766462667 0027235 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// slm/apis/slm-get.asciidoc:132
[source, python]
----
resp = client.slm.get_lifecycle()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a162eb50853331c80596f5994e9d1c38.asciidoc 0000664 0000000 0000000 00000000441 14766462667 0026334 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:212
[source, python]
----
resp = client.search_application.render_query(
name="my_search_application",
params={
"query_string": "rock climbing"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a180c97f8298fb2388fdcaf7b2e1b81e.asciidoc 0000664 0000000 0000000 00000001063 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:440
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="nightly-snapshots",
schedule="0 30 2 * * ?",
name="",
repository="my_repository",
config={
"indices": "*",
"include_global_state": True,
"feature_states": [
"kibana",
"security"
]
},
retention={
"expire_after": "30d",
"min_count": 5,
"max_count": 50
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1879930c1dac36a57d7f094a680420b.asciidoc 0000664 0000000 0000000 00000001336 14766462667 0026457 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geohashgrid-aggregation.asciidoc:130
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggregations={
"zoomed-in": {
"filter": {
"geo_bounding_box": {
"location": {
"top_left": "u17",
"bottom_right": "u17"
}
}
},
"aggregations": {
"zoom1": {
"geohash_grid": {
"field": "location",
"precision": 8
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a197076e0e74951ea88f20309ec257e2.asciidoc 0000664 0000000 0000000 00000001533 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/condition-tokenfilter.asciidoc:125
[source, python]
----
resp = client.indices.create(
index="palindrome_list",
settings={
"analysis": {
"analyzer": {
"whitespace_reverse_first_token": {
"tokenizer": "whitespace",
"filter": [
"reverse_first_token"
]
}
},
"filter": {
"reverse_first_token": {
"type": "condition",
"filter": [
"reverse"
],
"script": {
"source": "token.getPosition() === 0"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1acf454bd6477183ce27ace872deb46.asciidoc 0000664 0000000 0000000 00000001735 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/field-level-security.asciidoc:169
[source, python]
----
resp = client.security.put_role(
name="test_role7",
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"a.*"
],
"except": [
"a.b*"
]
}
}
],
)
print(resp)
resp1 = client.security.put_role(
name="test_role8",
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"a.b*"
],
"except": [
"a.b.c*"
]
}
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a1b668795243398f5bc40bcc9bead884.asciidoc 0000664 0000000 0000000 00000001643 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:254
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"my_range": {
"type": "long_range"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"my_range": [
{
"gte": 200,
"lte": 300
},
{
"gte": 1,
"lte": 100
},
{
"gte": 200,
"lte": 300
},
{
"gte": 200,
"lte": 500
}
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a1ccd51eef37e43c935a047b0ee15daa.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0027072 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:401
[source, python]
----
resp = client.indices.rollover(
alias="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1d0603b24a5b048f0959975d8057534.asciidoc 0000664 0000000 0000000 00000000545 14766462667 0026244 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:360
[source, python]
----
resp = client.termvectors(
index="my-index-000001",
doc={
"fullname": "John Doe",
"text": "test test test"
},
fields=[
"fullname"
],
per_field_analyzer={
"fullname": "keyword"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1dcc6668d13271c8207ff5ff1d35492.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/index-mgmt.asciidoc:215
[source, python]
----
resp = client.indices.get(
index="my-index-000001,my-index-000002",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1dda7e7c01be96a4acf7b725d70385f.asciidoc 0000664 0000000 0000000 00000001305 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:684
[source, python]
----
resp = client.search(
index="index",
retriever={
"text_similarity_reranker": {
"retriever": {
"standard": {
"query": {
"match_phrase": {
"text": "landmark in Paris"
}
}
}
},
"field": "text",
"inference_id": "my-cohere-rerank-model",
"inference_text": "Most famous landmark in Paris",
"rank_window_size": 100,
"min_score": 0.5
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1e5884051755b5a5f4d7549f319f4c7.asciidoc 0000664 0000000 0000000 00000001065 14766462667 0026423 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/nested-aggregation.asciidoc:13
[source, python]
----
resp = client.indices.create(
index="products",
mappings={
"properties": {
"resellers": {
"type": "nested",
"properties": {
"reseller": {
"type": "keyword"
},
"price": {
"type": "double"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1e5f3956f9a697e79478fc9a6e30e1f.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/thai-tokenizer.asciidoc:20
[source, python]
----
resp = client.indices.analyze(
tokenizer="thai",
text="การที่ได้ต้องแสดงว่างานดี",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a1f70bc71b763b58206814c40a7440e7.asciidoc 0000664 0000000 0000000 00000000471 14766462667 0026366 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/update-settings.asciidoc:47
[source, python]
----
resp = client.perform_request(
"PUT",
"/_watcher/settings",
headers={"Content-Type": "application/json"},
body={
"index.auto_expand_replicas": "0-4"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a21319c9eff1ac47d7fe7490f1ef2efa.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0027127 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/decimal-digit-tokenfilter.asciidoc:20
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"decimal_digit"
],
text="१-one two-२ ३",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a21a7bf052b41f5b996dc58f7b69770f.asciidoc 0000664 0000000 0000000 00000000274 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:323
[source, python]
----
resp = client.ml.set_upgrade_mode(
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a253a1712953f7292bdd646c48ec7fd2.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:240
[source, python]
----
resp = client.search(
index="my-index-000001",
sort="@timestamp:desc",
size="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a28111cdd9b5aaea96c779cbfbf38780.asciidoc 0000664 0000000 0000000 00000002100 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:482
[source, python]
----
resp = client.indices.create(
index="czech_example",
settings={
"analysis": {
"filter": {
"czech_stop": {
"type": "stop",
"stopwords": "_czech_"
},
"czech_keywords": {
"type": "keyword_marker",
"keywords": [
"příklad"
]
},
"czech_stemmer": {
"type": "stemmer",
"language": "czech"
}
},
"analyzer": {
"rebuilt_czech": {
"tokenizer": "standard",
"filter": [
"lowercase",
"czech_stop",
"czech_keywords",
"czech_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a2abd6b6b6b6df7c574a557b5468b5e1.asciidoc 0000664 0000000 0000000 00000001231 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:191
[source, python]
----
resp = client.indices.create(
index="index2",
mappings={
"properties": {
"comment": {
"type": "text",
"analyzer": "standard",
"term_vector": "with_positions_offsets",
"fields": {
"english": {
"type": "text",
"analyzer": "english",
"term_vector": "with_positions_offsets"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a2b2ce031120dac49b5120b26eea8758.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/indices.asciidoc:119
[source, python]
----
resp = client.cat.indices(
index="my-index-*",
v=True,
s="index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a2bab367f0e598ae27a2f4ec82e778e9.asciidoc 0000664 0000000 0000000 00000001445 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/migrating-to-downsampling.asciidoc:25
[source, python]
----
resp = client.rollup.put_job(
id="sensor",
index_pattern="sensor-*",
rollup_index="sensor_rollup",
cron="0 0 * * * *",
page_size=1000,
groups={
"date_histogram": {
"field": "timestamp",
"fixed_interval": "60m"
},
"terms": {
"fields": [
"node"
]
}
},
metrics=[
{
"field": "temperature",
"metrics": [
"min",
"max",
"sum"
]
},
{
"field": "voltage",
"metrics": [
"avg"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a2bd0782aadfd0a902d7f590ee7f49fe.asciidoc 0000664 0000000 0000000 00000000636 14766462667 0027130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-elser.asciidoc:44
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"content_embedding": {
"type": "sparse_vector"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a2c3e284354e8d49cf51bb8dd5ef3613.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/upgrade-transforms.asciidoc:103
[source, python]
----
resp = client.transform.upgrade_transforms()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a2dabdcbb661e7690166ae6d0de27e46.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/alias.asciidoc:55
[source, python]
----
resp = client.field_caps(
index="trips",
fields="route_*,transit_mode",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a322c8c73d6f2f5e1e375588ed20b636.asciidoc 0000664 0000000 0000000 00000000657 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:149
[source, python]
----
resp = client.security.put_role(
name="remote-search",
indices=[
{
"names": [
"target-indices"
],
"privileges": [
"read",
"read_cross_cluster"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a325f31e94fb1e8739258910593504a8.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026247 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/oidc-guide.asciidoc:610
[source, python]
----
resp = client.security.put_role(
name="facilitator-role",
cluster=[
"manage_oidc",
"manage_token"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3464bd6f0a61623562162859566b078.asciidoc 0000664 0000000 0000000 00000000477 14766462667 0026174 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/uni-directional-disaster-recovery.asciidoc:75
[source, python]
----
resp = client.ccr.follow(
index="kibana_sample_data_ecommerce2",
wait_for_active_shards="1",
remote_cluster="clusterA",
leader_index="kibana_sample_data_ecommerce",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a34d70d7022eb4ba48909d440c80390f.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0026446 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// api-conventions.asciidoc:164
[source, python]
----
resp = client.search(
index=",,",
query={
"match": {
"test": "data"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a34e758e019f563d323ca90ad9fd6e3e.asciidoc 0000664 0000000 0000000 00000000250 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:268
[source, python]
----
resp = client.indices.get_alias(
index="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3646b59da66b9ab68bdbc8dc2e6a9be.asciidoc 0000664 0000000 0000000 00000001356 14766462667 0027215 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:159
[source, python]
----
resp = client.search(
index="restaurants",
retriever={
"standard": {
"query": {
"bool": {
"should": [
{
"match": {
"region": "Austria"
}
}
],
"filter": [
{
"term": {
"year": "2019"
}
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3779f21f132787c48681bfb50453592.asciidoc 0000664 0000000 0000000 00000001117 14766462667 0026256 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/ip-location.asciidoc:85
[source, python]
----
resp = client.ingest.put_pipeline(
id="ip_location",
description="Add ip geolocation info",
processors=[
{
"ip_location": {
"field": "ip"
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="ip_location",
document={
"ip": "89.160.20.128"
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/a38f29375eabd0103f8d7c00b17bb0ab.asciidoc 0000664 0000000 0000000 00000000242 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/allocation/delayed.asciidoc:82
[source, python]
----
resp = client.cluster.health()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3a14f7f0e80725f695a901a7e1d579d.asciidoc 0000664 0000000 0000000 00000000370 14766462667 0026547 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/trim-tokenfilter.asciidoc:65
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
filter=[
"trim"
],
text=" fox ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3a2856ac2338a624a1fa5f31aec4db4.asciidoc 0000664 0000000 0000000 00000000417 14766462667 0026733 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:98
[source, python]
----
resp = client.security.create_api_key(
name="my-api-key",
role_descriptors={},
metadata={
"application": "myapp"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3a64d568fe93a22b042a8b31b9905b0.asciidoc 0000664 0000000 0000000 00000001561 14766462667 0026526 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/simulate-pipeline.asciidoc:309
[source, python]
----
resp = client.ingest.simulate(
verbose=True,
pipeline={
"description": "_description",
"processors": [
{
"set": {
"field": "field2",
"value": "_value2"
}
},
{
"set": {
"field": "field3",
"value": "_value3"
}
}
]
},
docs=[
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3c8f474b0700711a356682f37e62b39.asciidoc 0000664 0000000 0000000 00000001042 14766462667 0026314 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:174
[source, python]
----
resp = client.indices.create(
index="azure-ai-studio-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 1536,
"element_type": "float",
"similarity": "dot_product"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3ce0cfe2176f3d8a36959a5916995f0.asciidoc 0000664 0000000 0000000 00000000242 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:283
[source, python]
----
resp = client.tasks.list(
group_by="none",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3cfd350c73a104b99a998c6be931408.asciidoc 0000664 0000000 0000000 00000000245 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/state.asciidoc:164
[source, python]
----
resp = client.cluster.state(
metric="blocks",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3d13833714f9bb918e5e0f62a49bd0e.asciidoc 0000664 0000000 0000000 00000001075 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/iprange-aggregation.asciidoc:114
[source, python]
----
resp = client.search(
index="ip_addresses",
size=0,
aggs={
"ip_ranges": {
"ip_range": {
"field": "ip",
"ranges": [
{
"to": "10.0.0.5"
},
{
"from": "10.0.0.5"
}
],
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3d943ac9d45b4eff4aa0c679b4eceb3.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0027200 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/dangling-index-import.asciidoc:19
[source, python]
----
resp = client.dangling_indices.import_dangling_index(
index_uuid="",
accept_data_loss=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3e79d6c626a490341c5b731acbb4a5d.asciidoc 0000664 0000000 0000000 00000000264 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:313
[source, python]
----
resp = client.exists_source(
index="my-index-000001",
id="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3f19f3787cb331f230cdac67ff578e8.asciidoc 0000664 0000000 0000000 00000000524 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significantterms-aggregation.asciidoc:660
[source, python]
----
resp = client.search(
aggs={
"tags": {
"significant_terms": {
"field": "tags",
"execution_hint": "map"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3f3c1f3f31dbd225da5fd14633bc4a0.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0027012 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/geo-match-enrich-policy-type-ex.asciidoc:131
[source, python]
----
resp = client.get(
index="users",
id="0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3f56fa16c6cc67c2db31a4ba9ca11a7.asciidoc 0000664 0000000 0000000 00000000550 14766462667 0027074 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/range-enrich-policy-type-ex.asciidoc:56
[source, python]
----
resp = client.enrich.put_policy(
name="networks-policy",
range={
"indices": "networks",
"match_field": "range",
"enrich_fields": [
"name",
"department"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a3f66deb467df86edbf66e1dca31da51.asciidoc 0000664 0000000 0000000 00000000607 14766462667 0027206 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/completion-suggest.asciidoc:189
[source, python]
----
resp = client.search(
index="music",
source="suggest",
suggest={
"song-suggest": {
"prefix": "nir",
"completion": {
"field": "suggest",
"size": 5
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a412fe22a74900c72434391ed75139dc.asciidoc 0000664 0000000 0000000 00000001367 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geohexgrid-aggregation.asciidoc:105
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggregations={
"zoomed-in": {
"filter": {
"geo_bounding_box": {
"location": {
"top_left": "POINT (4.9 52.4)",
"bottom_right": "POINT (5.0 52.3)"
}
}
},
"aggregations": {
"zoom1": {
"geohex_grid": {
"field": "location",
"precision": 12
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a425fcab60f603504becee7d001f0a4b.asciidoc 0000664 0000000 0000000 00000000367 14766462667 0027010 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/allocation/prioritization.asciidoc:48
[source, python]
----
resp = client.indices.put_settings(
index="index_4",
settings={
"index.priority": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a428d518162918733d49261ffd65cfc1.asciidoc 0000664 0000000 0000000 00000000751 14766462667 0026415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/unique-tokenfilter.asciidoc:95
[source, python]
----
resp = client.indices.create(
index="custom_unique_example",
settings={
"analysis": {
"analyzer": {
"standard_truncate": {
"tokenizer": "standard",
"filter": [
"unique"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a43954d055f042d625a905513821f5f0.asciidoc 0000664 0000000 0000000 00000000747 14766462667 0026240 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:824
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
params={
"knn_field": "image-vector",
"query_vector": [
-5,
9,
-12
],
"k": 10,
"num_candidates": 100,
"fields": [
"title",
"file-type"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a45244aa3adbf3c793fede100786d1f5.asciidoc 0000664 0000000 0000000 00000000570 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/autodatehistogram-aggregation.asciidoc:17
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sales_over_time": {
"auto_date_histogram": {
"field": "date",
"buckets": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a45605347d6438e7aecdf3b37198616d.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/move-to-step.asciidoc:156
[source, python]
----
resp = client.ilm.move_to_step(
index="my-index-000001",
current_step={
"phase": "new",
"action": "complete",
"name": "complete"
},
next_step={
"phase": "warm",
"action": "forcemerge",
"name": "forcemerge"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a45810722dc4f468f81b1e8a451d21be.asciidoc 0000664 0000000 0000000 00000000364 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/network/tracers.asciidoc:16
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.http.HttpTracer": "TRACE"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a45d80a3fdba70c1b1ba493e51652c8a.asciidoc 0000664 0000000 0000000 00000000725 14766462667 0026737 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:284
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "multipoint",
"coordinates": [
[
1002,
1002
],
[
1003,
2000
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a45eb0cdd138d9c894ca2de9352549a1.asciidoc 0000664 0000000 0000000 00000001172 14766462667 0026703 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/getting-started.asciidoc:27
[source, python]
----
resp = client.watcher.put_watch(
id="log_error_watch",
trigger={
"schedule": {
"interval": "10s"
}
},
input={
"search": {
"request": {
"indices": [
"logs"
],
"body": {
"query": {
"match": {
"message": "error"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a46f566ca031375658c22f89b87dc6d2.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026500 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:379
[source, python]
----
resp = client.cat.indices(
index=".ml-anomalies-custom-example",
v=True,
h="index,store.size",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a49acb27f56fe799a9b1342f85cba0f3.asciidoc 0000664 0000000 0000000 00000000771 14766462667 0026776 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/word-delimiter-graph-tokenfilter.asciidoc:137
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "keyword",
"filter": [
"word_delimiter_graph"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a4a3c3cd09efa75168dab90105afb2e9.asciidoc 0000664 0000000 0000000 00000000336 14766462667 0027026 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/get-inference.asciidoc:74
[source, python]
----
resp = client.inference.get(
task_type="sparse_embedding",
inference_id="my-elser-model",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a4bae4d956bc0a663f42cfec36bf8e0b.asciidoc 0000664 0000000 0000000 00000000737 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:150
[source, python]
----
resp = client.indices.create(
index="index",
mappings={
"properties": {
"price_range": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.index(
index="index",
id="1",
document={
"designation": "spoon",
"price": 13,
"price_range": "10-100"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a4bd9bf52b4f098838d12bcb8dfc3482.asciidoc 0000664 0000000 0000000 00000001265 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/min-bucket-aggregation.asciidoc:42
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"min_monthly_sales": {
"min_bucket": {
"buckets_path": "sales_per_month>sales"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a4dbd52004f3ab1580eb73997f77dcab.asciidoc 0000664 0000000 0000000 00000002717 14766462667 0026762 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/ecommerce-tutorial.asciidoc:165
[source, python]
----
resp = client.transform.put_transform(
transform_id="ecommerce-customer-transform",
source={
"index": [
"kibana_sample_data_ecommerce"
],
"query": {
"bool": {
"filter": {
"term": {
"currency": "EUR"
}
}
}
}
},
pivot={
"group_by": {
"customer_id": {
"terms": {
"field": "customer_id"
}
}
},
"aggregations": {
"total_quantity.sum": {
"sum": {
"field": "total_quantity"
}
},
"taxless_total_price.sum": {
"sum": {
"field": "taxless_total_price"
}
},
"total_quantity.max": {
"max": {
"field": "total_quantity"
}
},
"order_id.cardinality": {
"cardinality": {
"field": "order_id"
}
}
}
},
dest={
"index": "ecommerce-customers"
},
retention_policy={
"time": {
"field": "order_date",
"max_age": "60d"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a4e510aa9145ccedae151c4a6634f0a4.asciidoc 0000664 0000000 0000000 00000000423 14766462667 0026725 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stemmer-tokenfilter.asciidoc:23
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"stemmer"
],
text="the foxes jumping quickly",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a4ee2214d621bcfaf768c46d21325958.asciidoc 0000664 0000000 0000000 00000000654 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:74
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="hugging_face_embeddings",
inference_config={
"service": "hugging_face",
"service_settings": {
"api_key": "",
"url": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a4f259522b4dc10a0323aff58236c2c2.asciidoc 0000664 0000000 0000000 00000000572 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/completion-suggest.asciidoc:47
[source, python]
----
resp = client.index(
index="music",
id="1",
refresh=True,
document={
"suggest": {
"input": [
"Nevermind",
"Nirvana"
],
"weight": 34
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a512e4dd8880ce0395937db1bab1d205.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0026606 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/edgengram-tokenizer.asciidoc:28
[source, python]
----
resp = client.indices.analyze(
tokenizer="edge_ngram",
text="Quick Fox",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a520168c1c8b454a8f102d6a13027c73.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/get-follow-info.asciidoc:149
[source, python]
----
resp = client.ccr.follow_info(
index="follower_index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5217a93efabceee9be19949e484f930.asciidoc 0000664 0000000 0000000 00000000700 14766462667 0027000 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/completion-suggest.asciidoc:83
[source, python]
----
resp = client.index(
index="music",
id="1",
refresh=True,
document={
"suggest": [
{
"input": "Nevermind",
"weight": 10
},
{
"input": "Nirvana",
"weight": 3
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a547bb926c25f670078b98fbe67de3cc.asciidoc 0000664 0000000 0000000 00000000347 14766462667 0026724 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/delete-synonym-rule.asciidoc:108
[source, python]
----
resp = client.synonyms.delete_synonym_rule(
set_id="my-synonyms-set",
rule_id="test-1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a56c20a733a350673d41829c8daaafbe.asciidoc 0000664 0000000 0000000 00000000753 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/deciders/fixed-decider.asciidoc:37
[source, python]
----
resp = client.autoscaling.put_autoscaling_policy(
name="my_autoscaling_policy",
policy={
"roles": [
"data_hot"
],
"deciders": {
"fixed": {
"storage": "1tb",
"memory": "32gb",
"processors": 2.3,
"nodes": 8
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a594f05459d9eecc8050c73fc8da336f.asciidoc 0000664 0000000 0000000 00000001013 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:129
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="azure_openai_embeddings",
inference_config={
"service": "azureopenai",
"service_settings": {
"api_key": "",
"resource_name": "",
"deployment_id": "",
"api_version": "2024-02-01"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5a58e8ad66afe831bc295500e3e8739.asciidoc 0000664 0000000 0000000 00000000533 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-unfollow.asciidoc:45
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"unfollow": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5a5fb129de2f492e8fd33043a73439c.asciidoc 0000664 0000000 0000000 00000001475 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/dictionary-decompounder-tokenfilter.asciidoc:152
[source, python]
----
resp = client.indices.create(
index="dictionary_decompound_example",
settings={
"analysis": {
"analyzer": {
"standard_dictionary_decompound": {
"tokenizer": "standard",
"filter": [
"22_char_dictionary_decompound"
]
}
},
"filter": {
"22_char_dictionary_decompound": {
"type": "dictionary_decompounder",
"word_list_path": "analysis/example_word_list.txt",
"max_subword_size": 22
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5aeb2c8bdf91f6146026ec8edc476b6.asciidoc 0000664 0000000 0000000 00000001242 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/date_nanos.asciidoc:155
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"date": {
"type": "date_nanos"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"date": [
"2015-01-01T12:10:30.000Z",
"2014-01-01T12:10:30.000Z"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a5b59f0170a2feaa39e40243fd7ae359.asciidoc 0000664 0000000 0000000 00000001716 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-client.asciidoc:196
[source, python]
----
resp = client.search_application.put(
name="my-example-app",
search_application={
"indices": [
"my-example-app"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"bool\": {\n \"must\": [\n {{#query}}\n {\n \"query_string\": {\n \"query\": \"{{query}}\",\n \"search_fields\": {{#toJson}}search_fields{{/toJson}}\n }\n }\n {{/query}}\n ]\n }\n }\n }\n ",
"params": {
"query": "",
"search_fields": ""
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5dfcfd1cfb3558e7912456669c92eee.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0027007 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/saml-prepare-authentication-api.asciidoc:85
[source, python]
----
resp = client.security.saml_prepare_authentication(
realm="saml1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5e2b3588258430f2e595abda98e3943.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-cache.asciidoc:60
[source, python]
----
resp = client.security.clear_cached_realms(
realms="default_file",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5e6ad9e65615f6f92ae6a19674dd742.asciidoc 0000664 0000000 0000000 00000001210 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:595
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"percolate": {
"field": "query",
"documents": [
{
"message": "Japanse art"
},
{
"message": "Holand culture"
},
{
"message": "Japanese art and Holand culture"
},
{
"message": "no-match"
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5e6ccfb6019238e6db602373b9af147.asciidoc 0000664 0000000 0000000 00000000345 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-existing-data-stream.asciidoc:19
[source, python]
----
resp = client.indices.put_data_lifecycle(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5e793d82a4455cf4105dac82a156617.asciidoc 0000664 0000000 0000000 00000000540 14766462667 0026455 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/validate.asciidoc:214
[source, python]
----
resp = client.indices.validate_query(
index="my-index-000001",
rewrite=True,
query={
"more_like_this": {
"like": {
"_id": "2"
},
"boost_terms": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5ebcd70c34d1ece77a4fb27cc050917.asciidoc 0000664 0000000 0000000 00000000732 14766462667 0027030 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-rank-aggregation.asciidoc:76
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_ranks": {
"percentile_ranks": {
"field": "load_time",
"values": [
500,
600
],
"keyed": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a5f9eb40087921e67d820775acf71522.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0026416 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:218
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"city": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a60aaed30d7d26eaacbb2c0ed4ddc66d.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0027362 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/data-stream-reindex-cancel.asciidoc:41
[source, python]
----
resp = client.indices.cancel_migrate_reindex(
index="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a6169bc057ce8654bd306ff4b062081b.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0026530 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/completion-suggest.asciidoc:279
[source, python]
----
resp = client.search(
index="music",
pretty=True,
suggest={
"song-suggest": {
"prefix": "nor",
"completion": {
"field": "suggest",
"skip_duplicates": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a6204edaa0bcf7b82a89ab4f6bda0914.asciidoc 0000664 0000000 0000000 00000000324 14766462667 0027076 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/open-job.asciidoc:74
[source, python]
----
resp = client.ml.open_job(
job_id="low_request_rate",
timeout="35m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a62833baf15f2c9ac094a9289e56a012.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-tutorial.asciidoc:166
[source, python]
----
resp = client.index(
index="timeseries",
document={
"message": "logged the request",
"@timestamp": "1591890611"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a63e0d0504e0c9313814b7f4e2641353.asciidoc 0000664 0000000 0000000 00000004066 14766462667 0026306 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-aggregation.asciidoc:340
[source, python]
----
resp = client.indices.create(
index="metrics_index",
mappings={
"properties": {
"network": {
"properties": {
"name": {
"type": "keyword"
}
}
},
"latency_histo": {
"type": "histogram"
}
}
},
)
print(resp)
resp1 = client.index(
index="metrics_index",
id="1",
refresh=True,
document={
"network.name": "net-1",
"latency_histo": {
"values": [
1,
3,
8,
12,
15
],
"counts": [
3,
7,
23,
12,
6
]
}
},
)
print(resp1)
resp2 = client.index(
index="metrics_index",
id="2",
refresh=True,
document={
"network.name": "net-2",
"latency_histo": {
"values": [
1,
6,
8,
12,
14
],
"counts": [
8,
17,
8,
7,
6
]
}
},
)
print(resp2)
resp3 = client.search(
index="metrics_index",
size="0",
filter_path="aggregations",
aggs={
"latency_ranges": {
"range": {
"field": "latency_histo",
"ranges": [
{
"to": 2
},
{
"from": 2,
"to": 3
},
{
"from": 3,
"to": 10
},
{
"from": 10
}
]
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/a669e9d56e34c95ef4c780e92ed307f1.asciidoc 0000664 0000000 0000000 00000000324 14766462667 0026651 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1425
[source, python]
----
resp = client.eql.get(
id="FjlmbndxNmJjU0RPdExBTGg0elNOOEEaQk9xSjJBQzBRMldZa1VVQ2pPa01YUToxMDY=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a675fafa7c688cb3ea1be09bf887ebf0.asciidoc 0000664 0000000 0000000 00000000451 14766462667 0027213 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/data-stream-reindex.asciidoc:310
[source, python]
----
resp = client.indices.get(
index=".migrated-ds-my-data-stream-2025.01.23-000001",
human=True,
filter_path="*.settings.index.version.created_string",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a692b4c0ca7825c467880b346841f5a5.asciidoc 0000664 0000000 0000000 00000000636 14766462667 0026412 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:162
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"name": {
"properties": {
"first": {
"type": "text"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a699189c8d1a7573beeaea768f2fc618.asciidoc 0000664 0000000 0000000 00000000547 14766462667 0026737 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/restore-from-snapshot.asciidoc:436
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="snapshot-20200617",
indices="kibana_sample_data_flights,.ds-my-data-stream-2022.06.17-000001",
include_aliases=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a69b1ce5cc9528fb3639185eaf241ae3.asciidoc 0000664 0000000 0000000 00000000352 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/clear-scroll-api.asciidoc:31
[source, python]
----
resp = client.clear_scroll(
scroll_id="DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a6b2815d54df34b6b8d00226e9a1af0c.asciidoc 0000664 0000000 0000000 00000000711 14766462667 0026657 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/semantic-search/field-mappings.asciidoc:59
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"my_embeddings.predicted_value": {
"type": "dense_vector",
"dims": 384
},
"my_text_field": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a6bb306ca250cf651f19cae808b97012.asciidoc 0000664 0000000 0000000 00000000256 14766462667 0026604 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-index.asciidoc:17
[source, python]
----
resp = client.indices.get(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a6be6c1cb4a556866fdccb0dee2f1dea.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0027324 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/index-template-exists-v1.asciidoc:23
[source, python]
----
resp = client.indices.exists_template(
name="template_1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a6ccac9f80c5e5efdaab992f3a32d919.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0027210 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-migrate-data-stream-from-ilm-to-dsl.asciidoc:407
[source, python]
----
resp = client.indices.get_data_stream(
name="dsl-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a6ef8cd8c8218d547727ffc5485bfbd7.asciidoc 0000664 0000000 0000000 00000001276 14766462667 0027022 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/daterange-aggregation.asciidoc:85
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"range": {
"date_range": {
"field": "date",
"missing": "1976/11/30",
"ranges": [
{
"key": "Older",
"to": "2016/02/01"
},
{
"key": "Newer",
"from": "2016/02/01",
"to": "now/d"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a6fdd0100cd362df54af6c95d1055c96.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-mapping.asciidoc:17
[source, python]
----
resp = client.indices.get_mapping(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a71154ea11a5214f409ecfd118e9b5e3.asciidoc 0000664 0000000 0000000 00000001574 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/saml-guide.asciidoc:1049
[source, python]
----
resp = client.security.saml_invalidate(
query="SAMLRequest=nZFda4MwFIb%2FiuS%2BmviRpqFaClKQdbvo2g12M2KMraCJ9cRR9utnW4Wyi13sMie873MeznJ1aWrnS3VQGR0j4mLkKC1NUeljjA77zYyhVbIE0dR%2By7fmaHq7U%2BdegXWGpAZ%2B%2F4pR32luBFTAtWgUcCv56%2Fp5y30X87Yz1khTIycdgpUW9kY7WdsC9zxoXTvMvWuVV98YyMnSGH2SYE5pwALBIr9QKiwDGpW0oGVUznGeMyJZKFkQ4jBf5HnhUymjIhzCAL3KNFihbYx8TBYzzGaY7EnIyZwHzCWMfiDnbRIftkSjJr%2BFu0e9v%2B0EgOquRiiZjKpiVFp6j50T4WXoyNJ%2FEWC9fdqc1t%2F1%2B2F3aUpjzhPiXpqMz1%2FHSn4A&SigAlg=http%3A%2F%2Fwww.w3.org%2F2001%2F04%2Fxmldsig-more%23rsa-sha256&Signature=MsAYz2NFdovMG2mXf6TSpu5vlQQyEJAg%2B4KCwBqJTmrb3yGXKUtIgvjqf88eCAK32v3eN8vupjPC8LglYmke1ZnjK0%2FKxzkvSjTVA7mMQe2AQdKbkyC038zzRq%2FYHcjFDE%2Bz0qISwSHZY2NyLePmwU7SexEXnIz37jKC6NMEhus%3D",
realm="saml1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a72613de3774571ba24def4b495161b5.asciidoc 0000664 0000000 0000000 00000000463 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:428
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"user_id": {
"type": "alias",
"path": "user_identifier"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a735081e715d385b4d471eea0f2b57da.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:249
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"slm.retention_schedule": "0 30 1 * * ?"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a73a9a6f19516b8ead63182a9ae5b540.asciidoc 0000664 0000000 0000000 00000000614 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:330
[source, python]
----
resp = client.index(
index="example",
document={
"location": "MULTILINESTRING ((1002.0 200.0, 1003.0 200.0, 1003.0 300.0, 1002.0 300.0), (1000.0 100.0, 1001.0 100.0, 1001.0 100.0, 1000.0 100.0), (1000.2 0.2, 1000.8 100.2, 1000.8 100.8, 1000.2 100.8))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a75765e3fb130421dde6c3c2f12e8acb.asciidoc 0000664 0000000 0000000 00000000545 14766462667 0026747 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/claim-connector-sync-job-api.asciidoc:69
[source, python]
----
resp = client.perform_request(
"PUT",
"/_connector/_sync_job/my-connector-sync-job-id/_claim",
headers={"Content-Type": "application/json"},
body={
"worker_hostname": "some-machine"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a769d696bf12f5e9de4b3250646d250c.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:229
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "alibabacloud-ai-search-embeddings",
"pipeline": "alibabacloud_ai_search_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a78dfb844d385405d4b0fb0e09b4a5a4.asciidoc 0000664 0000000 0000000 00000000342 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:211
[source, python]
----
resp = client.update(
index="test",
id="1",
script="ctx._source['my-object'].remove('my-subfield')",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a799477dff04578b200788a63f9cff71.asciidoc 0000664 0000000 0000000 00000001225 14766462667 0026516 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/iprange-aggregation.asciidoc:162
[source, python]
----
resp = client.search(
index="ip_addresses",
size=0,
aggs={
"ip_ranges": {
"ip_range": {
"field": "ip",
"ranges": [
{
"key": "infinity",
"to": "10.0.0.5"
},
{
"key": "and-beyond",
"from": "10.0.0.5"
}
],
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a7cf31f4b907e4c00132aca75f55790c.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/delete-pipeline.asciidoc:79
[source, python]
----
resp = client.ingest.delete_pipeline(
id="pipeline-one",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a7d814caf2a995d2aeadecc3495011be.asciidoc 0000664 0000000 0000000 00000001226 14766462667 0027107 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/boolean.asciidoc:248
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"bool": {
"type": "boolean"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"bool": [
True,
False,
True,
False
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a7e58d4dc477a84c1306fd5749aafd8b.asciidoc 0000664 0000000 0000000 00000000701 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/explicit-mapping.asciidoc:20
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"age": {
"type": "integer"
},
"email": {
"type": "keyword"
},
"name": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a7fb1c0d0827d66bfa66016f2564b10c.asciidoc 0000664 0000000 0000000 00000000446 14766462667 0026605 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/detect-threats-with-eql.asciidoc:139
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n process where process.name == \"regsvr32.exe\" and process.command_line.keyword != null\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a8019280dab5b04211ae3b21e5e08223.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0026414 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/register-fs-repo.asciidoc:107
[source, python]
----
resp = client.snapshot.create_repository(
name="my_fs_backup",
repository={
"type": "fs",
"settings": {
"location": "My_fs_backup_location"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a810da963d3b28d79dcd17be829bb271.asciidoc 0000664 0000000 0000000 00000000672 14766462667 0026707 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:620
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"user.id": "kimchy"
}
},
docvalue_fields=[
"user.id",
"http.response.*",
{
"field": "date",
"format": "epoch_millis"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a811b82ba4632bdd9065829085188bc9.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-api.asciidoc:50
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="my_snapshot",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a84bc239eb2f607e8bed1fdb70d63823.asciidoc 0000664 0000000 0000000 00000000652 14766462667 0026764 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/deciders/proactive-storage-decider.asciidoc:28
[source, python]
----
resp = client.autoscaling.put_autoscaling_policy(
name="my_autoscaling_policy",
policy={
"roles": [
"data_hot"
],
"deciders": {
"proactive_storage": {
"forecast_window": "10m"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a861a89f52008610e813b9f073951c58.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0026251 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/stats.asciidoc:135
[source, python]
----
resp = client.indices.stats(
metric="merge,refresh",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a89052bcdfe40e604a98d12be6ae59d2.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:474
[source, python]
----
resp = client.index(
index="example",
document={
"location": "BBOX (100.0, 102.0, 2.0, 0.0)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a8add749c3f41ad1308a45308df14103.asciidoc 0000664 0000000 0000000 00000001340 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/tophits-aggregation.asciidoc:277
[source, python]
----
resp = client.index(
index="sales",
id="1",
refresh=True,
document={
"tags": [
"car",
"auto"
],
"comments": [
{
"username": "baddriver007",
"comment": "This car could have better brakes"
},
{
"username": "dr_who",
"comment": "Where's the autopilot? Can't find it"
},
{
"username": "ilovemotorbikes",
"comment": "This car has two extra wheels"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a8dff54362184b2732b9bd248cf6df8a.asciidoc 0000664 0000000 0000000 00000001167 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:418
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"my_range": {
"type": "integer_range"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"my_range": {
"lte": 2147483647
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a9280b55a7284952f604ec7bece712f6.asciidoc 0000664 0000000 0000000 00000000633 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1186
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"range": {
"voltage_corrected": {
"gte": 16,
"lte": 20,
"boost": 1
}
}
},
fields=[
"voltage_corrected",
"node"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a941fd568f2e20e13df909ab24506073.asciidoc 0000664 0000000 0000000 00000000437 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// monitoring/production.asciidoc:52
[source, python]
----
resp = client.cluster.get_settings()
print(resp)
resp1 = client.cluster.put_settings(
persistent={
"xpack.monitoring.collection.enabled": False
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/a9541c64512ebc5fcff2dc48487dc0b7.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:16
[source, python]
----
resp = client.esql.query(
format="txt",
query="FROM library | KEEP author, name, page_count, release_date | SORT page_count DESC | LIMIT 5",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a9554396506888e392a1aee0ca28e6fc.asciidoc 0000664 0000000 0000000 00000001756 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:329
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"add": {
"index": "my-index-2099.05.06-000001",
"alias": "my-alias",
"filter": {
"bool": {
"filter": [
{
"range": {
"@timestamp": {
"gte": "now-1d/d",
"lt": "now/d"
}
}
},
{
"term": {
"user.id": "kimchy"
}
}
]
}
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a95a123b9f862e52ab1e8f875961c852.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026504 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-multiple-indices.asciidoc:124
[source, python]
----
resp = client.search(
indices_boost=[
{
"my-index-000001": 1.4
},
{
"my-index-000002": 1.3
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a95ae76fca7c3e273e4bd10323b3caa6.asciidoc 0000664 0000000 0000000 00000001015 14766462667 0027016 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:119
[source, python]
----
resp = client.ingest.put_pipeline(
id="azure_openai_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "azure_openai_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a960b43e720b4934edb74ab4b085ca77.asciidoc 0000664 0000000 0000000 00000000244 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connectors-api.asciidoc:88
[source, python]
----
resp = client.connector.list()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a97aace57c6442bbb90e1e14effbcda3.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0027246 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:118
[source, python]
----
resp = client.sql.query(
format="csv",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a97f984c01fa1d96e6d33a0e8e2cb90f.asciidoc 0000664 0000000 0000000 00000000577 14766462667 0027001 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:20
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"query": {
"type": "percolator"
},
"field": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a985e6b7b2ead9c3f30a9bc97d8b598e.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0027071 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/field-caps.asciidoc:201
[source, python]
----
resp = client.field_caps(
fields="rating,title",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a98692a565904ec0783884d81a7b71fc.asciidoc 0000664 0000000 0000000 00000000225 14766462667 0026425 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/health.asciidoc:87
[source, python]
----
resp = client.cat.health(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a999b5661bebb802bbbfe04faacf1971.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0027112 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:511
[source, python]
----
resp = client.reindex(
source={
"index": "my-index-2099.10.*"
},
dest={
"index": "my-index-2099.10"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a99bc141066ef673e35f306157750ec9.asciidoc 0000664 0000000 0000000 00000000413 14766462667 0026410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/lowercase-tokenizer.asciidoc:20
[source, python]
----
resp = client.indices.analyze(
tokenizer="lowercase",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a99bf70ae38bdf1c6f350140b25e0422.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026606 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-shard-routing.asciidoc:125
[source, python]
----
resp = client.search(
index="my-index-000001",
routing="my-routing-value",
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a9c08023354aa9b9023807962df71d13.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026312 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/forcemerge.asciidoc:189
[source, python]
----
resp = client.indices.forcemerge(
index="my-index-000001,my-index-000002",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a9d44463dcea3cb0ea4c8f8460cea524.asciidoc 0000664 0000000 0000000 00000001024 14766462667 0027025 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geohexgrid-aggregation.asciidoc:176
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggregations={
"tiles-in-bounds": {
"geohex_grid": {
"field": "location",
"precision": 12,
"bounds": {
"top_left": "POINT (4.9 52.4)",
"bottom_right": "POINT (5.0 52.3)"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a9dd5cd3f2b31e7c8129ea63bab868b4.asciidoc 0000664 0000000 0000000 00000002623 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:656
[source, python]
----
resp = client.search_application.put(
name="my_search_application",
search_application={
"indices": [
"index1",
"index2"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"bool\": {\n \"should\": [\n {{#elser_fields}}\n {\n \"sparse_vector\": {\n \"field\": \"ml.inference.{{.}}_expanded.predicted_value\",\n \"inference_id\": \"\",\n \"query\": \"{{query_string}}\"\n }\n },\n {{/elser_fields}}\n ]\n }\n },\n \"min_score\": \"{{min_score}}\"\n }\n ",
"params": {
"query_string": "*",
"min_score": "10",
"elser_fields": [
{
"name": "title"
},
{
"name": "description"
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a9dd9595e96c307b8c798beaeb571521.asciidoc 0000664 0000000 0000000 00000000453 14766462667 0026651 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/upgrade-job-model-snapshot.asciidoc:83
[source, python]
----
resp = client.ml.upgrade_job_snapshot(
job_id="low_request_rate",
snapshot_id="1828371",
timeout="45m",
wait_for_completion=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a9f14efc26fdd3c37a71f06c310163d9.asciidoc 0000664 0000000 0000000 00000001302 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/retriever.asciidoc:650
[source, python]
----
resp = client.search(
retriever={
"text_similarity_reranker": {
"retriever": {
"standard": {
"query": {
"match": {
"text": "How often does the moon hide the sun?"
}
}
}
},
"field": "text",
"inference_id": "my-elastic-rerank",
"inference_text": "How often does the moon hide the sun?",
"rank_window_size": 100,
"min_score": 0.5
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/a9fe70387d9c96a07830e1859c57efbb.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026646 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-index.asciidoc:154
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"number_of_shards": 3,
"number_of_replicas": 2
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa1771b702f4b771491ba4ab743a9197.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/increase-tier-capacity.asciidoc:245
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
name="index.number_of_replicas",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa3284717241ed79d3d1d3bdbbdce598.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/lowercase-tokenfilter.asciidoc:20
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"lowercase"
],
text="THE Quick FoX JUMPs",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa5c0fa51a3553ce7caa763c3832120d.asciidoc 0000664 0000000 0000000 00000000745 14766462667 0026653 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:603
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="monthly-snapshots",
name="",
schedule="0 56 23 1 * ?",
repository="my_repository",
config={
"indices": "*",
"include_global_state": True
},
retention={
"expire_after": "366d",
"min_count": 1,
"max_count": 12
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa5fbb68d3a8e0d0c894791cb6cf0b13.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0027034 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/reverse-tokenfilter.asciidoc:79
[source, python]
----
resp = client.indices.create(
index="reverse_example",
settings={
"analysis": {
"analyzer": {
"whitespace_reverse": {
"tokenizer": "whitespace",
"filter": [
"reverse"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa6282d4bc92c753c4bd7a5b166abece.asciidoc 0000664 0000000 0000000 00000000501 14766462667 0027102 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/start-trained-model-deployment.asciidoc:166
[source, python]
----
resp = client.ml.start_trained_model_deployment(
model_id="elastic__distilbert-base-uncased-finetuned-conll03-english",
wait_for="started",
timeout="1m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa676d54a59dee87ecd28bcc1edce59b.asciidoc 0000664 0000000 0000000 00000001064 14766462667 0027276 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-alibabacloud-ai-search.asciidoc:192
[source, python]
----
resp = client.inference.put(
task_type="rerank",
inference_id="alibabacloud_ai_search_rerank",
inference_config={
"service": "alibabacloud-ai-search",
"service_settings": {
"api_key": "",
"service_id": "ops-bge-reranker-larger",
"host": "default-j01.platform-cn-shanghai.opensearch.aliyuncs.com",
"workspace": "default"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa699ff3234f54d091575a38e859a627.asciidoc 0000664 0000000 0000000 00000000536 14766462667 0026432 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations.asciidoc:287
[source, python]
----
resp = client.search(
index="my-index-000001",
typed_keys=True,
aggs={
"my-agg-name": {
"histogram": {
"field": "my-field",
"interval": 1000
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa7cf5df36b867aee5e3314ac4b4fa68.asciidoc 0000664 0000000 0000000 00000001051 14766462667 0027120 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// slm/apis/slm-put.asciidoc:124
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="daily-snapshots",
schedule="0 30 1 * * ?",
name="",
repository="my_repository",
config={
"indices": [
"data-*",
"important"
],
"ignore_unavailable": False,
"include_global_state": False
},
retention={
"expire_after": "30d",
"min_count": 5,
"max_count": 50
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa7f62279b487989440d423c1ed4a1c0.asciidoc 0000664 0000000 0000000 00000000510 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/restore-snapshot-api.asciidoc:94
[source, python]
----
resp = client.indices.get_index_template(
name="*",
filter_path="index_templates.name,index_templates.index_template.index_patterns,index_templates.index_template.data_stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aa814309ad5f1630886ba75255b444f5.asciidoc 0000664 0000000 0000000 00000000272 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/task-queue-backlog.asciidoc:104
[source, python]
----
resp = client.cluster.pending_tasks()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aaa7a61b07861235fb6e489b946c705c.asciidoc 0000664 0000000 0000000 00000000452 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/index_.asciidoc:487
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
version="2",
version_type="external",
document={
"user": {
"id": "elkbee"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aab3de5a8a3fefbe012fc2ed50dfe4d6.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0027410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// searchable-snapshots/apis/node-cache-stats.asciidoc:102
[source, python]
----
resp = client.searchable_snapshots.cache_stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aab810de3314d5e11bd564ea096785b8.asciidoc 0000664 0000000 0000000 00000000642 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:428
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"bool": {
"filter": [
{
"term": {
"category.keyword": "Breakfast"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aaba346e0becdf12db13658296e0b8a1.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0027015 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/error-handling.asciidoc:42
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index.number_of_shards": 2,
"index.lifecycle.name": "shrink-index"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aac5996a8398cc8f7701a063df0b2346.asciidoc 0000664 0000000 0000000 00000001036 14766462667 0026546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/saml-guide.asciidoc:716
[source, python]
----
resp = client.security.put_role_mapping(
name="saml-finance",
roles=[
"finance_data"
],
enabled=True,
rules={
"all": [
{
"field": {
"realm.name": "saml1"
}
},
{
"field": {
"groups": "finance-team"
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aad7d80990a6a3c391ff555ce09ae9dc.asciidoc 0000664 0000000 0000000 00000001154 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/numeric.asciidoc:295
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"f": {
"type": "scaled_float",
"scaling_factor": 0.01
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"f": 123
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/aadf36ae37460a735e06b953b4cee494.asciidoc 0000664 0000000 0000000 00000002127 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/frequent-item-sets-aggregation.asciidoc:301
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
runtime_mappings={
"price_range": {
"type": "keyword",
"script": {
"source": "\n def bucket_start = (long) Math.floor(doc['taxful_total_price'].value / 50) * 50;\n def bucket_end = bucket_start + 50;\n emit(bucket_start.toString() + \"-\" + bucket_end.toString());\n "
}
}
},
size=0,
aggs={
"my_agg": {
"frequent_item_sets": {
"minimum_set_size": 4,
"fields": [
{
"field": "category.keyword"
},
{
"field": "price_range"
},
{
"field": "geoip.city_name"
}
],
"size": 3
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ab0fd1908c9957cc7f63165c156e48cd.asciidoc 0000664 0000000 0000000 00000002216 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/enabled.asciidoc:17
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"user_id": {
"type": "keyword"
},
"last_updated": {
"type": "date"
},
"session_data": {
"type": "object",
"enabled": False
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="session_1",
document={
"user_id": "kimchy",
"session_data": {
"arbitrary_object": {
"some_array": [
"foo",
"bar",
{
"baz": 2
}
]
}
},
"last_updated": "2015-12-06T18:20:22"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="session_2",
document={
"user_id": "jpountz",
"session_data": "none",
"last_updated": "2015-12-06T18:22:13"
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ab1372270c11bcd6f36d1a13e6c69276.asciidoc 0000664 0000000 0000000 00000000734 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:414
[source, python]
----
resp = client.async_search.submit(
index="my-index-000001,cluster_one:my-index-000001,cluster_two:my-index-000001",
ccs_minimize_roundtrips=True,
query={
"match": {
"user.id": "kimchy"
}
},
source=[
"user.id",
"message",
"http.response.status_code"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ab1a989958c1d345a9dc3dd36ad90c27.asciidoc 0000664 0000000 0000000 00000000562 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:242
[source, python]
----
resp = client.index(
index="example",
document={
"location": "POLYGON ((1000.0 1000.0, 1001.0 1000.0, 1001.0 1001.0, 1000.0 1001.0, 1000.0 1000.0), (1000.2 1000.2, 1000.8 1000.2, 1000.8 1000.8, 1000.2 1000.8, 1000.2 1000.2))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ab24bfdfd8c1c7b3044b21a3b4684370.asciidoc 0000664 0000000 0000000 00000001114 14766462667 0026651 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/fields.asciidoc:167
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"cost_price": 100
},
)
print(resp)
resp1 = client.search(
index="my-index-000001",
script_fields={
"sales_price": {
"script": {
"lang": "expression",
"source": "doc['cost_price'] * markup",
"params": {
"markup": 0.2
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/ab29bfbd35ee482cf54052b03d62cd31.asciidoc 0000664 0000000 0000000 00000001333 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geodistance-aggregation.asciidoc:96
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggs={
"rings": {
"geo_distance": {
"field": "location",
"origin": "POINT (4.894 52.3760)",
"unit": "km",
"ranges": [
{
"to": 100
},
{
"from": 100,
"to": 300
},
{
"from": 300
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ab317aa09c4bd44abbf02517141e37ef.asciidoc 0000664 0000000 0000000 00000001325 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/term-vector.asciidoc:35
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"text": {
"type": "text",
"term_vector": "with_positions_offsets"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"text": "Quick brown fox"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"match": {
"text": "brown fox"
}
},
highlight={
"fields": {
"text": {}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ab3c36b70459093beafbfd3a7ae75b9b.asciidoc 0000664 0000000 0000000 00000002040 14766462667 0027110 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:386
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"date": "2015-10-01T05:30:00Z"
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh=True,
document={
"date": "2015-10-01T06:30:00Z"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
size="0",
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"date": {
"date_histogram": {
"field": "date",
"calendar_interval": "day",
"offset": "+6h",
"format": "iso8601"
}
}
}
]
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ab8b4537fad80107bc88f633d4039a52.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-index.asciidoc:216
[source, python]
----
resp = client.indices.create(
index="logs",
aliases={
"": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ab8de34fcfc0277901cb39618ecfc9d5.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0027054 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/allocation-explain.asciidoc:108
[source, python]
----
resp = client.cluster.allocation_explain(
index="my-index-000001",
shard=0,
primary=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/abb4a58089574211d434946a923e5725.asciidoc 0000664 0000000 0000000 00000005237 14766462667 0026253 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/inference-bucket-aggregation.asciidoc:95
[source, python]
----
resp = client.search(
index="kibana_sample_data_logs",
size=0,
aggs={
"client_ip": {
"composite": {
"sources": [
{
"client_ip": {
"terms": {
"field": "clientip"
}
}
}
]
},
"aggs": {
"url_dc": {
"cardinality": {
"field": "url.keyword"
}
},
"bytes_sum": {
"sum": {
"field": "bytes"
}
},
"geo_src_dc": {
"cardinality": {
"field": "geo.src"
}
},
"geo_dest_dc": {
"cardinality": {
"field": "geo.dest"
}
},
"responses_total": {
"value_count": {
"field": "timestamp"
}
},
"success": {
"filter": {
"term": {
"response": "200"
}
}
},
"error404": {
"filter": {
"term": {
"response": "404"
}
}
},
"error503": {
"filter": {
"term": {
"response": "503"
}
}
},
"malicious_client_ip": {
"inference": {
"model_id": "malicious_clients_model",
"buckets_path": {
"response_count": "responses_total",
"url_dc": "url_dc",
"bytes_sum": "bytes_sum",
"geo_src_dc": "geo_src_dc",
"geo_dest_dc": "geo_dest_dc",
"success": "success._count",
"error404": "error404._count",
"error503": "error503._count"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/abc280775734daa6cf2c28868e155d10.asciidoc 0000664 0000000 0000000 00000001222 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/weighted-avg-aggregation.asciidoc:101
[source, python]
----
resp = client.index(
index="exams",
refresh=True,
document={
"grade": [
1,
2,
3
],
"weight": 2
},
)
print(resp)
resp1 = client.search(
index="exams",
size=0,
aggs={
"weighted_grade": {
"weighted_avg": {
"value": {
"field": "grade"
},
"weight": {
"field": "weight"
}
}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/abc496de5fd013099a134db369b34a8b.asciidoc 0000664 0000000 0000000 00000001007 14766462667 0026671 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/sum-aggregation.asciidoc:109
[source, python]
----
resp = client.search(
index="sales",
size="0",
query={
"constant_score": {
"filter": {
"match": {
"type": "hat"
}
}
}
},
aggs={
"hat_prices": {
"sum": {
"field": "price",
"missing": 100
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/abc7a670a47516b58b6b07d7497b140c.asciidoc 0000664 0000000 0000000 00000002365 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/search-speed.asciidoc:272
[source, python]
----
resp = client.search(
index="index",
query={
"constant_score": {
"filter": {
"bool": {
"should": [
{
"range": {
"my_date": {
"gte": "now-1h",
"lte": "now-1h/m"
}
}
},
{
"range": {
"my_date": {
"gt": "now-1h/m",
"lt": "now/m"
}
}
},
{
"range": {
"my_date": {
"gte": "now/m",
"lte": "now"
}
}
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/abd4fc3ce7784413a56fe2dcfe2809b5.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:754
[source, python]
----
resp = client.search(
index="test",
filter_path="hits.total",
query={
"match": {
"flag": "foo"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/abdbc81e799e28c833556b1c29f03ba6.asciidoc 0000664 0000000 0000000 00000000241 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-users.asciidoc:118
[source, python]
----
resp = client.security.get_user()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ac22cc2b0f4ad659055feed2852a2d59.asciidoc 0000664 0000000 0000000 00000002474 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:1485
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"text_similarity_reranker": {
"retriever": {
"text_similarity_reranker": {
"retriever": {
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
},
"rank_window_size": 100,
"field": "text",
"inference_id": "my-rerank-model",
"inference_text": "What are the state of the art applications of AI in information retrieval?"
}
},
"rank_window_size": 10,
"field": "text",
"inference_id": "my-other-more-expensive-rerank-model",
"inference_text": "Applications of Large Language Models in technology and their impact on user satisfaction"
}
},
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ac366b9dda7040e743dee85335354094.asciidoc 0000664 0000000 0000000 00000000570 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/shingle-tokenfilter.asciidoc:116
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
{
"type": "shingle",
"min_shingle_size": 2,
"max_shingle_size": 3
}
],
text="quick brown fox jumps",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ac483996d479946d57c374c3a86b2621.asciidoc 0000664 0000000 0000000 00000000515 14766462667 0026351 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/search-as-you-type.asciidoc:18
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_field": {
"type": "search_as_you_type"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ac497917ef707538198a8458ae3d5c6b.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-query.asciidoc:165
[source, python]
----
resp = client.search(
query={
"match": {
"message": "this is a test"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ac5b91aa75696f9880451c9439fd9eec.asciidoc 0000664 0000000 0000000 00000001443 14766462667 0026656 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:461
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"my_range": {
"type": "date_range"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"my_range": [
{
"gte": 1504224000000,
"lte": 1504569600000
},
{
"gte": "2017-09-01",
"lte": "2017-09-10"
}
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/ac73895ca1882cd1ac65b1facfbb5c63.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0027110 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:10
[source, python]
----
resp = client.delete_by_query(
index="my-index-000001",
query={
"match": {
"user.id": "elkbee"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ac8328bc51fd396b3ce5f7ef3e1e73df.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0027134 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:64
[source, python]
----
resp = client.snapshot.get_repository()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ac85e05c0bf2fd5099fbcb9c492f447e.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/update-settings.asciidoc:73
[source, python]
----
resp = client.cluster.put_settings(
flat_settings=True,
transient={
"indices.recovery.max_bytes_per_sec": "20mb"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ac9fe9b64891095bcf84066f719b3dc4.asciidoc 0000664 0000000 0000000 00000000575 14766462667 0026655 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-source-only.asciidoc:41
[source, python]
----
resp = client.snapshot.create_repository(
name="my_src_only_repository",
repository={
"type": "source",
"settings": {
"delegate_type": "fs",
"location": "my_backup_repository"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/acb10091ad335ddd15d71021aaf23c62.asciidoc 0000664 0000000 0000000 00000000730 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:631
[source, python]
----
resp = client.search(
track_scores=True,
sort=[
{
"post_date": {
"order": "desc"
}
},
{
"name": "desc"
},
{
"age": "desc"
}
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/acb850c08f51226eadb75be09e336076.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/async-search.asciidoc:259
[source, python]
----
resp = client.async_search.status(
id="FmRldE8zREVEUzA2ZVpUeGs2ejJFUFEaMkZ5QTVrSTZSaVN3WlNFVmtlWHJsdzoxMDc=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/acc44366a9908684b2c8c2b119a4fb2b.asciidoc 0000664 0000000 0000000 00000001305 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-using-query-rules.asciidoc:202
[source, python]
----
resp = client.search(
index="my-index-000001",
retriever={
"rule": {
"retriever": {
"standard": {
"query": {
"query_string": {
"query": "puggles"
}
}
}
},
"match_criteria": {
"query_string": "puggles",
"user_country": "us"
},
"ruleset_ids": [
"my-ruleset"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/acc52da725a996ae696b00d9f818dfde.asciidoc 0000664 0000000 0000000 00000000723 14766462667 0027057 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pathhierarchy-tokenizer.asciidoc:328
[source, python]
----
resp = client.indices.analyze(
index="file-path-test",
analyzer="custom_path_tree",
text="/User/alice/photos/2017/05/16/my_photo1.jpg",
)
print(resp)
resp1 = client.indices.analyze(
index="file-path-test",
analyzer="custom_path_tree_reversed",
text="/User/alice/photos/2017/05/16/my_photo1.jpg",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/acc6cd860032167e34fa5e0c043ab3b0.asciidoc 0000664 0000000 0000000 00000000407 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:335
[source, python]
----
resp = client.search(
query={
"query_string": {
"query": "city.\\*:(this AND that OR thus)"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad0dcbc7fc619e952c8825b8f307b7b2.asciidoc 0000664 0000000 0000000 00000000636 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:410
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "Jon",
"type": "cross_fields",
"fields": [
"first",
"first.edge",
"last",
"last.edge"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad2416ca0581316cee6c63129685bca5.asciidoc 0000664 0000000 0000000 00000000574 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:498
[source, python]
----
resp = client.search(
query={
"query_string": {
"fields": [
"title",
"content"
],
"query": "this OR that OR thus",
"minimum_should_match": 2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad2b8aed84c67cdc295917b47a12d3dc.asciidoc 0000664 0000000 0000000 00000002031 14766462667 0027034 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/knn-query.asciidoc:43
[source, python]
----
resp = client.bulk(
index="my-image-index",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"image-vector": [
1,
5,
-20
],
"file-type": "jpg",
"title": "mountain lake"
},
{
"index": {
"_id": "2"
}
},
{
"image-vector": [
42,
8,
-15
],
"file-type": "png",
"title": "frozen lake"
},
{
"index": {
"_id": "3"
}
},
{
"image-vector": [
15,
11,
23
],
"file-type": "jpg",
"title": "mountain lake lodge"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad3b159657d4bcb373623fdc61acc3bf.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0027026 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/count.asciidoc:16
[source, python]
----
resp = client.count(
index="my-index-000001",
q="user:kimchy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad57ccba0a060da4f5313692fa26a235.asciidoc 0000664 0000000 0000000 00000002433 14766462667 0026650 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/date_nanos.asciidoc:30
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"date": {
"type": "date_nanos"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"date": "2015-01-01"
},
{
"index": {
"_id": "2"
}
},
{
"date": "2015-01-01T12:10:30.123456789Z"
},
{
"index": {
"_id": "3"
}
},
{
"date": 1420070400000
}
],
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
sort={
"date": "asc"
},
runtime_mappings={
"date_has_nanos": {
"type": "boolean",
"script": "emit(doc['date'].value.nano != 0)"
}
},
fields=[
{
"field": "date",
"format": "strict_date_optional_time_nanos"
},
{
"field": "date_has_nanos"
}
],
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ad63eca6829a25293c9be589c1870547.asciidoc 0000664 0000000 0000000 00000001430 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:298
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_moving_sum": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.sum(values)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad6d81be5fad4bad87486b699454dce5.asciidoc 0000664 0000000 0000000 00000001004 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/t-test-aggregation.asciidoc:32
[source, python]
----
resp = client.search(
index="node_upgrade",
size=0,
aggs={
"startup_time_ttest": {
"t_test": {
"a": {
"field": "startup_time_before"
},
"b": {
"field": "startup_time_after"
},
"type": "paired"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad88e46bb06739991498dee248850223.asciidoc 0000664 0000000 0000000 00000000223 14766462667 0026345 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/thread_pool.asciidoc:142
[source, python]
----
resp = client.cat.thread_pool()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad92a1a8bb1b0f26d1536fe8ba4ffd17.asciidoc 0000664 0000000 0000000 00000000453 14766462667 0027106 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/render-search-template-api.asciidoc:39
[source, python]
----
resp = client.render_search_template(
id="my-search-template",
params={
"query_string": "hello world",
"from": 20,
"size": 10
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ad9889fd8a4b5930e312a51f3bc996dc.asciidoc 0000664 0000000 0000000 00000001115 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-elasticsearch.asciidoc:140
[source, python]
----
resp = client.inference.put(
task_type="sparse_embedding",
inference_id="my-elser-model",
inference_config={
"service": "elasticsearch",
"service_settings": {
"adaptive_allocations": {
"enabled": True,
"min_number_of_allocations": 1,
"max_number_of_allocations": 4
},
"num_threads": 1,
"model_id": ".elser_model_2"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ada2675a9c631da2bfe627fc2618f5ed.asciidoc 0000664 0000000 0000000 00000000654 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/script-score-query.asciidoc:18
[source, python]
----
resp = client.search(
query={
"script_score": {
"query": {
"match": {
"message": "elasticsearch"
}
},
"script": {
"source": "doc['my-int'].value / 10 "
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/adc18ca0c344d81d68ec3b9422b54ff5.asciidoc 0000664 0000000 0000000 00000001123 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/multi-search.asciidoc:318
[source, python]
----
resp = client.msearch(
index="my-index-000001",
searches=[
{},
{
"query": {
"match_all": {}
},
"from": 0,
"size": 10
},
{},
{
"query": {
"match_all": {}
}
},
{
"index": "my-index-000002"
},
{
"query": {
"match_all": {}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/adced6e22ef03c2ae3b14aa5bdd24fd9.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0027315 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/data-stream-reindex-status.asciidoc:130
[source, python]
----
resp = client.indices.get_migrate_reindex_status(
index="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/add240aa149d8b11139947502b279ee0.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:403
[source, python]
----
resp = client.scroll(
scroll="1m",
scroll_id="DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/add82cbe7cd95c4be5ce1c9958f2f208.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0027141 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:335
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"multi_match": {
"query": "vegetarian curry",
"fields": [
"title^3",
"description^2",
"tags"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/adf36e2d8fc05c3719c91912481c4e19.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026540 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/enable-users.asciidoc:50
[source, python]
----
resp = client.security.enable_user(
username="jacknich",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/adf728b0c11c5c309c730205609a379d.asciidoc 0000664 0000000 0000000 00000000624 14766462667 0026446 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:532
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"set": {
"description": "Set dynamic '' field to 'code' value",
"field": "{{{service}}}",
"value": "{{{code}}}"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ae0d20c2ebb59278e08a26c9634d90c9.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026617 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:290
[source, python]
----
resp = client.snapshot.create(
repository="my_repository",
snapshot="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ae3473adaf1515afcf7773f26c018e5c.asciidoc 0000664 0000000 0000000 00000000551 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-zoom.asciidoc:60
[source, python]
----
resp = client.connector.put(
connector_id="my-{service-name-stub}-connector",
index_name="my-elasticsearch-index",
name="Content synced from {service-name}",
service_type="{service-name-stub}",
is_native=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ae398a6b6494e7982ef2549fc2cd2d8e.asciidoc 0000664 0000000 0000000 00000002306 14766462667 0026735 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:353
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"full_name": {
"path_match": [
"name.*",
"user.name.*"
],
"path_unmatch": [
"*.middle",
"*.midinitial"
],
"mapping": {
"type": "text",
"copy_to": "full_name"
}
}
}
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"name": {
"first": "John",
"middle": "Winston",
"last": "Lennon"
}
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"user": {
"name": {
"first": "Jane",
"midinitial": "M",
"last": "Salazar"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ae4aa368617637a390074535df86e64b.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026406 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/common/apis/set-upgrade-mode.asciidoc:80
[source, python]
----
resp = client.ml.set_upgrade_mode(
enabled=True,
timeout="10m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ae591d49e54b838c15cdcf64a8dee9c2.asciidoc 0000664 0000000 0000000 00000000654 14766462667 0027065 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:222
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_docs": 10000000
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ae82eb17c23cb8e5761cb6240a5ed0a6.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0026736 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/put-dfanalytics.asciidoc:793
[source, python]
----
resp = client.ml.put_data_frame_analytics(
id="student_performance_mathematics_0.3",
source={
"index": "student_performance_mathematics"
},
dest={
"index": "student_performance_mathematics_reg"
},
analysis={
"regression": {
"dependent_variable": "G3",
"training_percent": 70,
"randomize_seed": 19673948271
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ae9ccfaa146731ab9176df90670db1c2.asciidoc 0000664 0000000 0000000 00000001474 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/bulk.asciidoc:509
[source, python]
----
resp = client.bulk(
operations=[
{
"index": {
"_index": "test",
"_id": "1"
}
},
{
"field1": "value1"
},
{
"delete": {
"_index": "test",
"_id": "2"
}
},
{
"create": {
"_index": "test",
"_id": "3"
}
},
{
"field1": "value3"
},
{
"update": {
"_id": "1",
"_index": "test"
}
},
{
"doc": {
"field2": "value2"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aeaa97939a05f5b2f3f2c43b771f35e3.asciidoc 0000664 0000000 0000000 00000000543 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:316
[source, python]
----
resp = client.termvectors(
index="my-index-000001",
id="1",
fields=[
"text",
"some_field_without_term_vectors"
],
offsets=True,
positions=True,
term_statistics=True,
field_statistics=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aebf9cc593fcf0d4ca08f8b61b67bf17.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-azure.asciidoc:206
[source, python]
----
resp = client.snapshot.create_repository(
name="my_backup",
repository={
"type": "azure",
"settings": {
"client": "secondary",
"container": "my_container",
"base_path": "snapshots_prefix"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aee26dd62fbb6d614a0798f3344c0598.asciidoc 0000664 0000000 0000000 00000002003 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/reverse-nested-aggregation.asciidoc:57
[source, python]
----
resp = client.search(
index="issues",
query={
"match_all": {}
},
aggs={
"comments": {
"nested": {
"path": "comments"
},
"aggs": {
"top_usernames": {
"terms": {
"field": "comments.username"
},
"aggs": {
"comment_to_issue": {
"reverse_nested": {},
"aggs": {
"top_tags_per_comment": {
"terms": {
"field": "tags"
}
}
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/aee4734ee63dbbbd12a21ee886f7a829.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0027047 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:548
[source, python]
----
resp = client.search(
sort=[
{
"_geo_distance": {
"pin.location": [
-70,
40
],
"order": "asc",
"unit": "km"
}
}
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af00a58d9171d32f6efe52d94e51e526.asciidoc 0000664 0000000 0000000 00000002320 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:992
[source, python]
----
resp = client.indices.create(
index="hindi_example",
settings={
"analysis": {
"filter": {
"hindi_stop": {
"type": "stop",
"stopwords": "_hindi_"
},
"hindi_keywords": {
"type": "keyword_marker",
"keywords": [
"उदाहरण"
]
},
"hindi_stemmer": {
"type": "stemmer",
"language": "hindi"
}
},
"analyzer": {
"rebuilt_hindi": {
"tokenizer": "standard",
"filter": [
"lowercase",
"decimal_digit",
"hindi_keywords",
"indic_normalization",
"hindi_normalization",
"hindi_stop",
"hindi_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af18f5c5fb2364ae23c6a14431820aba.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/enrich/get-enrich-policy.asciidoc:94
[source, python]
----
resp = client.enrich.get_policy(
name="my-policy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af44cc7fb0c435d4497c77baf904bf5e.asciidoc 0000664 0000000 0000000 00000000577 14766462667 0027060 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:103
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sales_over_time": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af517b6936fa41d124d68b107b2efdc3.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/delete-lifecycle.asciidoc:82
[source, python]
----
resp = client.ilm.delete_lifecycle(
name="my_policy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af607715d0693587dd12962266359a96.asciidoc 0000664 0000000 0000000 00000000553 14766462667 0026210 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-s3.asciidoc:232
[source, python]
----
resp = client.snapshot.create_repository(
name="my_s3_repository",
repository={
"type": "s3",
"settings": {
"bucket": "my-bucket",
"another_setting": "setting-value"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af746266a49a693ff6170c88da8a8c04.asciidoc 0000664 0000000 0000000 00000001472 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stop-tokenfilter.asciidoc:210
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"default": {
"tokenizer": "whitespace",
"filter": [
"my_custom_stop_words_filter"
]
}
},
"filter": {
"my_custom_stop_words_filter": {
"type": "stop",
"ignore_case": True,
"stopwords": [
"and",
"is",
"the"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af7c5add165b005aefb552d79130fed6.asciidoc 0000664 0000000 0000000 00000000456 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-grid-query.asciidoc:232
[source, python]
----
resp = client.search(
index="my_locations",
query={
"geo_grid": {
"location": {
"geotile": "6/32/22"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af84b3995564a7ca84360a526a4ac896.asciidoc 0000664 0000000 0000000 00000001224 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/truncate-tokenfilter.asciidoc:128
[source, python]
----
resp = client.indices.create(
index="5_char_words_example",
settings={
"analysis": {
"analyzer": {
"lowercase_5_char": {
"tokenizer": "lowercase",
"filter": [
"5_char_trunc"
]
}
},
"filter": {
"5_char_trunc": {
"type": "truncate",
"length": 5
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af85ad2551d1cc6742c6521d71c889cc.asciidoc 0000664 0000000 0000000 00000000537 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/specify-analyzer.asciidoc:50
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"title": {
"type": "text",
"analyzer": "whitespace"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af91019991bee136df5460e2fd4ac72a.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/rollover-index.asciidoc:243
[source, python]
----
resp = client.indices.rollover(
alias="my-data-stream",
lazy=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/af970eb8b93cdea52209e1256eba9d8c.asciidoc 0000664 0000000 0000000 00000000267 14766462667 0027052 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shard-stores.asciidoc:130
[source, python]
----
resp = client.indices.shard_stores(
index="test1,test2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afa11ebb493ebbfd77acbbe50d2ce6db.asciidoc 0000664 0000000 0000000 00000002324 14766462667 0027460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:591
[source, python]
----
resp = client.search(
index="my-data-stream",
size=0,
aggs={
"tsid": {
"terms": {
"field": "_tsid"
},
"aggs": {
"over_time": {
"date_histogram": {
"field": "@timestamp",
"fixed_interval": "1d"
},
"aggs": {
"min": {
"min": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"max": {
"max": {
"field": "kubernetes.container.memory.usage.bytes"
}
},
"avg": {
"avg": {
"field": "kubernetes.container.memory.usage.bytes"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afa24b7d72c2d9f586023a49bd655ec7.asciidoc 0000664 0000000 0000000 00000002324 14766462667 0026707 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/use-elasticsearch-for-time-series-data.asciidoc:158
[source, python]
----
resp = client.async_search.submit(
index="my-data-stream",
runtime_mappings={
"source.ip": {
"type": "ip",
"script": "\n String sourceip=grok('%{IPORHOST:sourceip} .*').extract(doc[ \"message\" ].value)?.sourceip;\n if (sourceip != null) emit(sourceip);\n "
}
},
query={
"bool": {
"filter": [
{
"range": {
"@timestamp": {
"gte": "now-2y/d",
"lt": "now/d"
}
}
},
{
"range": {
"source.ip": {
"gte": "192.0.2.0",
"lte": "192.0.2.255"
}
}
}
]
}
},
fields=[
"*"
],
source=False,
sort=[
{
"@timestamp": "desc"
},
{
"source.ip": "desc"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afadb6bb7d0fa5a4531708af1ea8f9f8.asciidoc 0000664 0000000 0000000 00000000423 14766462667 0027175 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-with-existing-indices.asciidoc:159
[source, python]
----
resp = client.reindex(
source={
"index": "mylogs-*"
},
dest={
"index": "mylogs",
"op_type": "create"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afbea723c4ba0d50c67d04ebb73a4101.asciidoc 0000664 0000000 0000000 00000000322 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search-application/apis/delete-search-application.asciidoc:75
[source, python]
----
resp = client.search_application.delete(
name="my-app",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afc0a9cffc0100797a3f093094394763.asciidoc 0000664 0000000 0000000 00000001604 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/saml-invalidate-api.asciidoc:88
[source, python]
----
resp = client.security.saml_invalidate(
query_string="SAMLRequest=nZFda4MwFIb%2FiuS%2BmviRpqFaClKQdbvo2g12M2KMraCJ9cRR9utnW4Wyi13sMie873MeznJ1aWrnS3VQGR0j4mLkKC1NUeljjA77zYyhVbIE0dR%2By7fmaHq7U%2BdegXWGpAZ%2B%2F4pR32luBFTAtWgUcCv56%2Fp5y30X87Yz1khTIycdgpUW9kY7WdsC9zxoXTvMvWuVV98YyMnSGH2SYE5pwALBIr9QKiwDGpW0oGVUznGeMyJZKFkQ4jBf5HnhUymjIhzCAL3KNFihbYx8TBYzzGaY7EnIyZwHzCWMfiDnbRIftkSjJr%2BFu0e9v%2B0EgOquRiiZjKpiVFp6j50T4WXoyNJ%2FEWC9fdqc1t%2F1%2B2F3aUpjzhPiXpqMz1%2FHSn4A&SigAlg=http%3A%2F%2Fwww.w3.org%2F2001%2F04%2Fxmldsig-more%23rsa-sha256&Signature=MsAYz2NFdovMG2mXf6TSpu5vlQQyEJAg%2B4KCwBqJTmrb3yGXKUtIgvjqf88eCAK32v3eN8vupjPC8LglYmke1ZnjK0%2FKxzkvSjTVA7mMQe2AQdKbkyC038zzRq%2FYHcjFDE%2Bz0qISwSHZY2NyLePmwU7SexEXnIz37jKC6NMEhus%3D",
realm="saml1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afcacd742d18bf220e02f0bc6891526d.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026743 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/autodatehistogram-aggregation.asciidoc:270
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sale_date": {
"auto_date_histogram": {
"field": "date",
"buckets": 10,
"minimum_interval": "minute"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afd90d268187f995dc002abc189f818d.asciidoc 0000664 0000000 0000000 00000001233 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:345
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d",
"format": "yyyy-MM-dd"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afdb19ad1ebb4f64e235528b640817b6.asciidoc 0000664 0000000 0000000 00000000573 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:793
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"drop": {
"description": "Drop documents with 'network.name' of 'Guest'",
"if": "ctx?.network?.name == 'Guest'"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afe30f159937b38d74c869570cfcd369.asciidoc 0000664 0000000 0000000 00000000543 14766462667 0026574 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/restore-snapshot-api.asciidoc:274
[source, python]
----
resp = client.indices.close(
index="index_1",
)
print(resp)
resp1 = client.snapshot.restore(
repository="my_repository",
snapshot="snapshot_2",
wait_for_completion=True,
indices="index_1",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/afe5aeb9317f0ae470b28e85a8d98274.asciidoc 0000664 0000000 0000000 00000001371 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/null-value.asciidoc:12
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"status_code": {
"type": "keyword",
"null_value": "NULL"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"status_code": None
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"status_code": []
},
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"term": {
"status_code": "NULL"
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/afe87a2850326e0328fbebbefec2e839.asciidoc 0000664 0000000 0000000 00000000313 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-shards.asciidoc:177
[source, python]
----
resp = client.search_shards(
index="my-index-000001",
routing="foo,bar",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/afef5cac988592b97ae289ab39c2f437.asciidoc 0000664 0000000 0000000 00000000702 14766462667 0027010 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/text.asciidoc:307
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_field": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/affc7ff234dc3acccb2bf7dc51f54813.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0027252 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/charfilters/htmlstrip-charfilter.asciidoc:21
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
char_filter=[
"html_strip"
],
text="I'm so happy!
",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b00ac39faf96785e89be8d4205fb984d.asciidoc 0000664 0000000 0000000 00000001175 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:572
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
params={
"text": True,
"size": 5,
"query_string": "mountain climbing",
"text_fields": [
{
"name": "title",
"boost": 10
},
{
"name": "description",
"boost": 5
},
{
"name": "state",
"boost": 1
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b00d74eed431a272c829c0f798e3a539.asciidoc 0000664 0000000 0000000 00000003137 14766462667 0026547 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:89
[source, python]
----
resp = client.indices.create(
index="test",
mappings={
"properties": {
"d": {
"type": "date"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="test",
refresh=True,
operations=[
{
"index": {}
},
{
"s": 1,
"m": 3.1415,
"i": 1,
"d": "2020-01-01T00:12:12Z",
"t": "cat"
},
{
"index": {}
},
{
"s": 2,
"m": 1,
"i": 6,
"d": "2020-01-02T00:12:12Z",
"t": "dog"
},
{
"index": {}
},
{
"s": 3,
"m": 2.71828,
"i": -12,
"d": "2019-12-31T00:12:12Z",
"t": "chicken"
}
],
)
print(resp1)
resp2 = client.search(
index="test",
filter_path="aggregations",
aggs={
"tm": {
"top_metrics": {
"metrics": [
{
"field": "m"
},
{
"field": "i"
},
{
"field": "d"
},
{
"field": "t.keyword"
}
],
"sort": {
"s": "desc"
}
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b00f3bc0e47905aaa2124d6a025c75d4.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:21
[source, python]
----
resp = client.sql.query(
format="txt",
query="SELECT * FROM library ORDER BY page_count DESC LIMIT 5",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b02e4907c9936c1adc16ccce9d49900d.asciidoc 0000664 0000000 0000000 00000000221 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/health.asciidoc:165
[source, python]
----
resp = client.cluster.health()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b09f155602f9b2a6c40fe7c4a5436b7a.asciidoc 0000664 0000000 0000000 00000001420 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:151
[source, python]
----
resp = client.search(
runtime_mappings={
"day_of_week": {
"type": "keyword",
"script": "\n emit(doc['timestamp'].value.dayOfWeekEnum\n .getDisplayName(TextStyle.FULL, Locale.ENGLISH))\n "
}
},
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"dow": {
"terms": {
"field": "day_of_week"
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b0b1ae9582599f501f3b3ed8a42ea2af.asciidoc 0000664 0000000 0000000 00000000527 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/circle.asciidoc:66
[source, python]
----
resp = client.index(
index="circles",
id="1",
pipeline="polygonize_circles",
document={
"circle": "CIRCLE (30 10 40)"
},
)
print(resp)
resp1 = client.get(
index="circles",
id="1",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b0bddf2ffaa83049b195829c06b875cd.asciidoc 0000664 0000000 0000000 00000000345 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:187
[source, python]
----
resp = client.search_application.render_query(
name="my_search_application",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b0ce54ff4fec0b0c712506eb81e633f4.asciidoc 0000664 0000000 0000000 00000001157 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/date-index-name.asciidoc:78
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"description": "monthly date-time index naming",
"processors": [
{
"date_index_name": {
"field": "date1",
"index_name_prefix": "my-index-",
"date_rounding": "M"
}
}
]
},
docs=[
{
"_source": {
"date1": "2016-04-25T12:02:01.789Z"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b0d3f839237fabf8cdc2221734c668ad.asciidoc 0000664 0000000 0000000 00000001535 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/distance-feature-query.asciidoc:62
[source, python]
----
resp = client.index(
index="items",
id="1",
refresh=True,
document={
"name": "chocolate",
"production_date": "2018-02-01",
"location": [
-71.34,
41.12
]
},
)
print(resp)
resp1 = client.index(
index="items",
id="2",
refresh=True,
document={
"name": "chocolate",
"production_date": "2018-01-01",
"location": [
-71.3,
41.15
]
},
)
print(resp1)
resp2 = client.index(
index="items",
id="3",
refresh=True,
document={
"name": "chocolate",
"production_date": "2017-12-01",
"location": [
-71.3,
41.12
]
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b0eaf67e5cce24ef8889bf20951ccec1.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0027125 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:131
[source, python]
----
resp = client.search(
query={
"dis_max": {
"queries": [
{
"match": {
"subject": "brown fox"
}
},
{
"match": {
"message": "brown fox"
}
}
],
"tie_breaker": 0.3
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b0ee6f19875fe5bad8aab02d60e3532c.asciidoc 0000664 0000000 0000000 00000001067 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/geoip.asciidoc:85
[source, python]
----
resp = client.ingest.put_pipeline(
id="geoip",
description="Add ip geolocation info",
processors=[
{
"geoip": {
"field": "ip"
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="geoip",
document={
"ip": "89.160.20.128"
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b0fa301cd3c6b9db128e34114f0c1e8f.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:111
[source, python]
----
resp = client.index(
index="test",
id="1",
document={
"counter": 1,
"tags": [
"red"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b0fe9a7c8e519995258786be4bef36c4.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026651 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-elser.asciidoc:170
[source, python]
----
resp = client.tasks.cancel(
task_id="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b109d0141ec8a0aed5d3805abc349a20.asciidoc 0000664 0000000 0000000 00000001442 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:438
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_movavg": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.linearWeightedAvg(values)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b11a0675e49df0709be693297ca73a2c.asciidoc 0000664 0000000 0000000 00000000256 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/info.asciidoc:199
[source, python]
----
resp = client.xpack.info(
categories="build,features",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b14122481ae1f158f1a9a1bfbc4a41b1.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/secure-settings.asciidoc:39
[source, python]
----
resp = client.nodes.reload_secure_settings(
secure_settings_password="keystore-password",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b16700002af3aa70639f3e88c733bf35.asciidoc 0000664 0000000 0000000 00000000371 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/point-in-time-api.asciidoc:101
[source, python]
----
resp = client.open_point_in_time(
index="my-index-000001",
keep_alive="1m",
allow_partial_search_results=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b17143780e9904bfc1e1c53436497fa1.asciidoc 0000664 0000000 0000000 00000000430 14766462667 0026376 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:574
[source, python]
----
resp = client.sql.query(
format="json",
wait_for_completion_timeout="2s",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b176e0d428726705298184ef39ad5cb2.asciidoc 0000664 0000000 0000000 00000000640 14766462667 0026411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:153
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping2",
roles=[
"user",
"admin"
],
enabled=True,
rules={
"field": {
"username": [
"esadmin01",
"esadmin02"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b195068563b1dc0f721f5f8c8d172312.asciidoc 0000664 0000000 0000000 00000000371 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:299
[source, python]
----
resp = client.index(
index="example",
document={
"location": "MULTIPOINT (1002.0 2000.0, 1003.0 2000.0)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b1e81b70b874a1f0cf75a0ec6e430ddc.asciidoc 0000664 0000000 0000000 00000000367 14766462667 0027027 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-async-query-stop-api.asciidoc:25
[source, python]
----
resp = client.esql.async_query_stop(
id="FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b1ee1b0b5f7af596e5f81743cfd3755f.asciidoc 0000664 0000000 0000000 00000000344 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/rollover-index.asciidoc:375
[source, python]
----
resp = client.search(
index=",,",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b1efa1c51a34dd5ab5511b71a399f5b1.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:456
[source, python]
----
resp = client.reindex(
source={
"index": "source"
},
dest={
"index": "dest",
"pipeline": "some_ingest_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b1f7cb4157b13368373383abd7d2b8cb.asciidoc 0000664 0000000 0000000 00000001014 14766462667 0026606 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/remote-clusters-connect.asciidoc:168
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"cluster_two": {
"transport.compress": False
},
"cluster_three": {
"transport.compress": True,
"transport.ping_schedule": "60s"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b22559a7c319f90bc63a41cac1c39b4c.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-api-keys.asciidoc:162
[source, python]
----
resp = client.security.invalidate_api_key(
ids=[
"VuaCfGcBCdbkQm-e5aOx"
],
owner=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b23ed357dce8ec0014708b7b2850a8fb.asciidoc 0000664 0000000 0000000 00000000223 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/tasks.asciidoc:84
[source, python]
----
resp = client.cat.tasks(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b2440b492149b705ef107137fdccb0c2.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/get-follow-info.asciidoc:34
[source, python]
----
resp = client.ccr.follow_info(
index="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b24a374c0ad264abbcacb5686f5ed61c.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0027074 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/delimited-payload-tokenfilter.asciidoc:246
[source, python]
----
resp = client.termvectors(
index="text_payloads",
id="1",
fields=[
"text"
],
payloads=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b25256ed615cd837461b0bfa590526b7.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0026455 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/pause-auto-follow-pattern.asciidoc:85
[source, python]
----
resp = client.ccr.pause_auto_follow_pattern(
name="my_auto_follow_pattern",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b2652b1763a5fd31e95c983869b433bd.asciidoc 0000664 0000000 0000000 00000002305 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/avg-aggregation.asciidoc:118
[source, python]
----
resp = client.index(
index="metrics_index",
id="1",
document={
"network.name": "net-1",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
3,
7,
23,
12,
6
]
}
},
)
print(resp)
resp1 = client.index(
index="metrics_index",
id="2",
document={
"network.name": "net-2",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
8,
17,
8,
7,
6
]
}
},
)
print(resp1)
resp2 = client.search(
index="metrics_index",
size="0",
aggs={
"avg_latency": {
"avg": {
"field": "latency_histo"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b2b26f8568c5dba7649e79f09b859272.asciidoc 0000664 0000000 0000000 00000000435 14766462667 0026520 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/saml-guide.asciidoc:944
[source, python]
----
resp = client.security.put_user(
username="saml-service-user",
password="",
roles=[
"saml-service-role"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b2dec193082462c775169db438308bc3.asciidoc 0000664 0000000 0000000 00000000723 14766462667 0026402 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:46
[source, python]
----
resp = client.security.put_role(
name="remote-replication",
cluster=[
"read_ccr"
],
indices=[
{
"names": [
"leader-index-name"
],
"privileges": [
"monitor",
"read"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b2e1e802fc3c5fbeb4190af7d598c23e.asciidoc 0000664 0000000 0000000 00000000524 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/index_.asciidoc:277
[source, python]
----
resp = client.index(
index="my-index-000001",
document={
"@timestamp": "2099-11-15T13:12:00",
"message": "GET /search HTTP/1.1 200 1070000",
"user": {
"id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b2e20bca1846d7d584626b12eae9f6dc.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/disk/increase-other-node-capacity.asciidoc:80
[source, python]
----
resp = client.cat.nodes(
v=True,
h="name,node.role,disk.used_percent,disk.used,disk.avail,disk.total",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b2e4f3257c0e0aa3311f7270034bbc42.asciidoc 0000664 0000000 0000000 00000000545 14766462667 0026503 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-management/migrate-index-allocation-filters.asciidoc:175
[source, python]
----
resp = client.indices.put_settings(
index="my-index",
settings={
"index.routing.allocation.require.data": None,
"index.routing.allocation.include._tier_preference": "data_hot"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b3479ee4586c15020549afae58d94d65.asciidoc 0000664 0000000 0000000 00000001370 14766462667 0026501 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-point.asciidoc:225
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"point": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"point": [
{
"lat": -90,
"lon": -80
},
{
"lat": 10,
"lon": 30
}
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b3623b8c7f3e7650f52b6fb8b050f583.asciidoc 0000664 0000000 0000000 00000000250 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:405
[source, python]
----
resp = client.features.get_features()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b3685560cb328f179d96ffe7c2668f72.asciidoc 0000664 0000000 0000000 00000001520 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:611
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_movavg": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "if (values.length > 5*2) {MovingFunctions.holtWinters(values, 0.3, 0.1, 0.1, 5, false)}"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b3756e700d0f6c7e8919003bdf26bc8f.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-unbalanced-cluster.asciidoc:76
[source, python]
----
resp = client.perform_request(
"DELETE",
"/_internal/desired_balance",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b37919cc438b47477343833b4e522408.asciidoc 0000664 0000000 0000000 00000001070 14766462667 0026170 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:424
[source, python]
----
resp = client.termvectors(
index="imdb",
doc={
"plot": "When wealthy industrialist Tony Stark is forced to build an armored suit after a life-threatening incident, he ultimately decides to use its technology to fight against evil."
},
term_statistics=True,
field_statistics=True,
positions=False,
offsets=False,
filter={
"max_num_terms": 3,
"min_term_freq": 1,
"min_doc_freq": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b3a1c4220617ded67ed43fff2051d324.asciidoc 0000664 0000000 0000000 00000000506 14766462667 0026601 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/eager-global-ordinals.asciidoc:51
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"tags": {
"type": "keyword",
"eager_global_ordinals": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b3a711c3deddcdb8a3f6623184a8b794.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0026753 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:124
[source, python]
----
resp = client.update(
index="test",
id="1",
script={
"source": "ctx._source.counter += params.count",
"lang": "painless",
"params": {
"count": 4
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b3cd07f02059165fd62a2f148be3dc58.asciidoc 0000664 0000000 0000000 00000001217 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/numeric.asciidoc:259
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"long": {
"type": "long"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"long": [
0,
0,
-123466,
87612
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b3ed567d2c0915a280b6b15f7a37539b.asciidoc 0000664 0000000 0000000 00000001505 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/percentiles-bucket-aggregation.asciidoc:43
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"percentiles_monthly_sales": {
"percentiles_bucket": {
"buckets_path": "sales_per_month>sales",
"percents": [
25,
50,
75
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b3f442a7d9eb391121dcab991787f9d6.asciidoc 0000664 0000000 0000000 00000001231 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/binary.asciidoc:68
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"binary": {
"type": "binary",
"doc_values": True
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"binary": [
"IAA=",
"EAA="
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b3fffd96fdb118cd059b5f1d67d928de.asciidoc 0000664 0000000 0000000 00000000721 14766462667 0027143 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:330
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "MultiPoint",
"coordinates": [
[
102,
2
],
[
103,
2
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b42e7d627cd79e4c5e7a4a3cd8b19ce0.asciidoc 0000664 0000000 0000000 00000002062 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:948
[source, python]
----
resp = client.ingest.put_pipeline(
id="one-pipeline-to-rule-them-all",
processors=[
{
"pipeline": {
"description": "If 'service.name' is 'apache_httpd', use 'httpd_pipeline'",
"if": "ctx.service?.name == 'apache_httpd'",
"name": "httpd_pipeline"
}
},
{
"pipeline": {
"description": "If 'service.name' is 'syslog', use 'syslog_pipeline'",
"if": "ctx.service?.name == 'syslog'",
"name": "syslog_pipeline"
}
},
{
"fail": {
"description": "If 'service.name' is not 'apache_httpd' or 'syslog', return a failure message",
"if": "ctx.service?.name != 'apache_httpd' && ctx.service?.name != 'syslog'",
"message": "This pipeline requires service.name to be either `syslog` or `apache_httpd`"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b430122345d560bbd2a77826f5c475f7.asciidoc 0000664 0000000 0000000 00000001570 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:272
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"ip_fields": {
"match": [
"ip_*",
"*_ip"
],
"unmatch": [
"one*",
"*two"
],
"mapping": {
"type": "ip"
}
}
}
]
},
)
print(resp)
resp1 = client.index(
index="my-index",
id="1",
document={
"one_ip": "will not match",
"ip_two": "will not match",
"three_ip": "12.12.12.12",
"ip_four": "13.13.13.13"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b45a8c6fc746e9c90fd181e69a605fad.asciidoc 0000664 0000000 0000000 00000000407 14766462667 0027000 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/post-inference.asciidoc:107
[source, python]
----
resp = client.inference.inference(
task_type="completion",
inference_id="openai_chat_completions",
input="What is Elastic?",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b45c60f908b329835ab40609423f378e.asciidoc 0000664 0000000 0000000 00000000311 14766462667 0026321 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/increase-tier-capacity.asciidoc:272
[source, python]
----
resp = client.cat.nodes(
h="node.role",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b4693f2aa9fa65db04ab2499355c54fc.asciidoc 0000664 0000000 0000000 00000001037 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:4
[source, python]
----
resp = client.search(
index="cohere-embeddings",
knn={
"field": "content_embedding",
"query_vector_builder": {
"text_embedding": {
"model_id": "cohere_embeddings",
"model_text": "Muscles in human body"
}
},
"k": 10,
"num_candidates": 100
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b47945c7db8868dd36ba079b742f2a90.asciidoc 0000664 0000000 0000000 00000000446 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search-application/apis/put-search-application.asciidoc:202
[source, python]
----
resp = client.search_application.search(
name="my-app",
params={
"default_field": "author",
"query_string": "Jane"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b4946ecc9101b97102a1c5bcb19e5607.asciidoc 0000664 0000000 0000000 00000000731 14766462667 0026526 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:534
[source, python]
----
resp = client.render_search_template(
source="{ \"query\": { \"bool\": { \"filter\": [ {{#year_scope}} { \"range\": { \"@timestamp\": { \"gte\": \"now-1y/d\", \"lt\": \"now/d\" } } }, {{/year_scope}} { \"term\": { \"user.id\": \"{{user_id}}\" }}]}}}",
params={
"year_scope": True,
"user_id": "kimchy"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b4aec2a1d353852507c091bdb629b765.asciidoc 0000664 0000000 0000000 00000000461 14766462667 0026527 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/put-filter.asciidoc:57
[source, python]
----
resp = client.ml.put_filter(
filter_id="safe_domains",
description="A list of safe domains",
items=[
"*.google.com",
"wikipedia.org"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b4d1fc887e40885cdf6ac2d01487cb76.asciidoc 0000664 0000000 0000000 00000000646 14766462667 0026721 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-multi-term-query.asciidoc:28
[source, python]
----
resp = client.search(
query={
"span_multi": {
"match": {
"prefix": {
"user.id": {
"value": "ki",
"boost": 1.08
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b4d9d5017d42f27281e734e969949623.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0026264 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/snapshot/corrupt-repository.asciidoc:140
[source, python]
----
resp = client.snapshot.get_repository(
name="my-repo",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b4da132cb934c33d61e2b60988c6d4a3.asciidoc 0000664 0000000 0000000 00000001352 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/serial-diff-aggregation.asciidoc:69
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "day"
},
"aggs": {
"the_sum": {
"sum": {
"field": "lemmings"
}
},
"thirtieth_difference": {
"serial_diff": {
"buckets_path": "the_sum",
"lag": 30
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b4f3165e873f551fbaa03945877eb370.asciidoc 0000664 0000000 0000000 00000000671 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/field-mapping.asciidoc:126
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_date_formats": [
"yyyy/MM",
"MM/dd/yyyy"
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"create_date": "09/25/2015"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b4f4c9ad3301c97fb3c38d108a3bc453.asciidoc 0000664 0000000 0000000 00000001642 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/remote-clusters-connect.asciidoc:125
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"cluster_one": {
"seeds": [
"127.0.0.1:{remote-interface-default-port}"
]
},
"cluster_two": {
"mode": "sniff",
"seeds": [
"127.0.0.1:{remote-interface-default-port-plus1}"
],
"transport.compress": True,
"skip_unavailable": True
},
"cluster_three": {
"mode": "proxy",
"proxy_address": "127.0.0.1:{remote-interface-default-port-plus2}"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b504119238b44cddd3b5944da20a498d.asciidoc 0000664 0000000 0000000 00000000452 14766462667 0026530 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:214
[source, python]
----
resp = client.index(
index="example",
document={
"location": "POLYGON ((1000.0 -1001.0, 1001.0 -1001.0, 1001.0 -1000.0, 1000.0 -1000.0, 1000.0 -1001.0))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b515427f8685ca7d79176def672d19fa.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:618
[source, python]
----
resp = client.indices.refresh()
print(resp)
resp1 = client.search(
index="my-index-000001",
size="0",
q="extra:test",
filter_path="hits.total",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b52951b78cd5fb2f9353d1c7e6d37070.asciidoc 0000664 0000000 0000000 00000000536 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/wildcard-query.asciidoc:21
[source, python]
----
resp = client.search(
query={
"wildcard": {
"user.id": {
"value": "ki*y",
"boost": 1,
"rewrite": "constant_score_blended"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b557f114e21dbc6f531d4e7621a08e8f.asciidoc 0000664 0000000 0000000 00000001674 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/source-field.asciidoc:80
[source, python]
----
resp = client.indices.create(
index="logs",
mappings={
"_source": {
"includes": [
"*.count",
"meta.*"
],
"excludes": [
"meta.description",
"meta.other.*"
]
}
},
)
print(resp)
resp1 = client.index(
index="logs",
id="1",
document={
"requests": {
"count": 10,
"foo": "bar"
},
"meta": {
"name": "Some metric",
"description": "Some metric description",
"other": {
"foo": "one",
"baz": "two"
}
}
},
)
print(resp1)
resp2 = client.search(
index="logs",
query={
"match": {
"meta.other.foo": "one"
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b573e893de0d5f92d67f4f5eb7f0c353.asciidoc 0000664 0000000 0000000 00000001273 14766462667 0026727 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/stats-bucket-aggregation.asciidoc:41
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"stats_monthly_sales": {
"stats_bucket": {
"buckets_path": "sales_per_month>sales"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b583bf8d3a2f49d633aa2cfed5606418.asciidoc 0000664 0000000 0000000 00000001126 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-component-template.asciidoc:196
[source, python]
----
resp = client.cluster.put_component_template(
name="template_1",
template={
"settings": {
"number_of_shards": 1
},
"aliases": {
"alias1": {},
"alias2": {
"filter": {
"term": {
"user.id": "kimchy"
}
},
"routing": "shard-1"
},
"{index}-alias": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b58b17975bbce307b2ccce5051a449e8.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:538
[source, python]
----
resp = client.search(
index="my-index-000001",
size="0",
filter_path="hits.total",
query={
"range": {
"http.response.bytes": {
"lt": 2000000
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b590241c4296299b836fbb5a95bdd2dc.asciidoc 0000664 0000000 0000000 00000000524 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:299
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"avg_order_value": {
"avg": {
"field": "taxful_total_price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b5bc1bb7278f2f95bc54790c78c928e0.asciidoc 0000664 0000000 0000000 00000001566 14766462667 0026647 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/get-job.asciidoc:170
[source, python]
----
resp = client.rollup.put_job(
id="sensor2",
index_pattern="sensor-*",
rollup_index="sensor_rollup",
cron="*/30 * * * * ?",
page_size=1000,
groups={
"date_histogram": {
"field": "timestamp",
"fixed_interval": "1h",
"delay": "7d"
},
"terms": {
"fields": [
"node"
]
}
},
metrics=[
{
"field": "temperature",
"metrics": [
"min",
"max",
"sum"
]
},
{
"field": "voltage",
"metrics": [
"avg"
]
}
],
)
print(resp)
resp1 = client.rollup.get_jobs(
id="_all",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b5e5cd4eccc40d7c5f2a1fcb654bd4a4.asciidoc 0000664 0000000 0000000 00000001426 14766462667 0027246 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/diversified-sampler-aggregation.asciidoc:33
[source, python]
----
resp = client.search(
index="stackoverflow",
size="0",
query={
"query_string": {
"query": "tags:elasticsearch"
}
},
aggs={
"my_unbiased_sample": {
"diversified_sampler": {
"shard_size": 200,
"field": "author"
},
"aggs": {
"keywords": {
"significant_terms": {
"field": "tags",
"exclude": [
"elasticsearch"
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b601bc78fb69e15a42e0783219ddc38d.asciidoc 0000664 0000000 0000000 00000001265 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/max-bucket-aggregation.asciidoc:42
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"max_monthly_sales": {
"max_bucket": {
"buckets_path": "sales_per_month>sales"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b607eea422295a3e9acd75f9ed1c8cb7.asciidoc 0000664 0000000 0000000 00000000547 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:372
[source, python]
----
resp = client.search(
sort=[
{
"price": {
"missing": "_last"
}
}
],
query={
"term": {
"product": "chocolate"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b61afb7ca29a11243232ffcc8b5a43cf.asciidoc 0000664 0000000 0000000 00000000323 14766462667 0027012 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-field-mapping.asciidoc:171
[source, python]
----
resp = client.indices.get_field_mapping(
index="publications",
fields="a*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b620ef4400d2f660fe2c67835938442c.asciidoc 0000664 0000000 0000000 00000000346 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/delete-autoscaling-policy.asciidoc:68
[source, python]
----
resp = client.autoscaling.delete_autoscaling_policy(
name="my_autoscaling_policy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b62eaa20c4e0e48134a6d1d1b3c30b26.asciidoc 0000664 0000000 0000000 00000013200 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// text-structure/apis/find-field-structure.asciidoc:95
[source, python]
----
resp = client.bulk(
refresh=True,
operations=[
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:36,256][INFO ][o.a.l.u.VectorUtilPanamaProvider] [laptop] Java vector incubator API enabled; uses preferredBitSize=128"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,038][INFO ][o.e.p.PluginsService ] [laptop] loaded module [repository-url]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,042][INFO ][o.e.p.PluginsService ] [laptop] loaded module [rest-root]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,043][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-core]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,043][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-redact]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,043][INFO ][o.e.p.PluginsService ] [laptop] loaded module [ingest-user-agent]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-monitoring]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [repository-s3]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-analytics]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-ent-search]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-autoscaling]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,044][INFO ][o.e.p.PluginsService ] [laptop] loaded module [lang-painless]]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,059][INFO ][o.e.p.PluginsService ] [laptop] loaded module [lang-expression]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:41,059][INFO ][o.e.p.PluginsService ] [laptop] loaded module [x-pack-eql]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:43,291][INFO ][o.e.e.NodeEnvironment ] [laptop] heap size [16gb], compressed ordinary object pointers [true]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:46,098][INFO ][o.e.x.s.Security ] [laptop] Security is enabled"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:47,227][INFO ][o.e.x.p.ProfilingPlugin ] [laptop] Profiling is enabled"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:47,259][INFO ][o.e.x.p.ProfilingPlugin ] [laptop] profiling index templates will not be installed or reinstalled"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:47,755][INFO ][o.e.i.r.RecoverySettings ] [laptop] using rate limit [40mb] with [default=40mb, read=0b, write=0b, max=0b]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:47,787][INFO ][o.e.d.DiscoveryModule ] [laptop] using discovery type [multi-node] and seed hosts providers [settings]"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:49,188][INFO ][o.e.n.Node ] [laptop] initialized"
},
{
"index": {
"_index": "test-logs"
}
},
{
"message": "[2024-03-05T10:52:49,199][INFO ][o.e.n.Node ] [laptop] starting ..."
}
],
)
print(resp)
resp1 = client.text_structure.find_field_structure(
index="test-logs",
field="message",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b638e11d6a8a084290f8934d224abd52.asciidoc 0000664 0000000 0000000 00000000420 14766462667 0026450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/troubleshooting-shards-capacity.asciidoc:450
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.max_shards_per_node.frozen": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b63ce79ce4fa1bb9b99a789f4dcfef4e.asciidoc 0000664 0000000 0000000 00000000402 14766462667 0027307 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:272
[source, python]
----
resp = client.indices.put_settings(
index="test",
settings={
"top_metrics_max_size": 100
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b65dbb51ddd496189c65a9326a53480c.asciidoc 0000664 0000000 0000000 00000000556 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-read-only-url.asciidoc:14
[source, python]
----
resp = client.snapshot.create_repository(
name="my_read_only_url_repository",
repository={
"type": "url",
"settings": {
"url": "file:/mount/backups/my_fs_backup_location"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b66be1daf6c220eb66d94e708b2fae39.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/state.asciidoc:150
[source, python]
----
resp = client.cluster.state(
metric="metadata,routing_table",
index="foo,bar",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b67fa8c560dd10a8e6f226048cd21562.asciidoc 0000664 0000000 0000000 00000001044 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:472
[source, python]
----
resp = client.render_search_template(
source="{ \"query\": { \"bool\": { \"must\": {{#toJson}}clauses{{/toJson}} }}}",
params={
"clauses": [
{
"term": {
"user.id": "kimchy"
}
},
{
"term": {
"url.domain": "example.com"
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b68ed7037042719945a2452d23e64c78.asciidoc 0000664 0000000 0000000 00000000516 14766462667 0026254 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:343
[source, python]
----
resp = client.index(
index="my-index-000001",
id="3",
refresh=True,
document={
"query": {
"match": {
"message": "brown fox"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b691d41f84b5b46e9051b51db22a46af.asciidoc 0000664 0000000 0000000 00000000724 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/rare-terms-aggregation.asciidoc:308
[source, python]
----
resp = client.search(
aggs={
"genres": {
"rare_terms": {
"field": "genre",
"include": [
"swing",
"rock"
],
"exclude": [
"jazz"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b6a6aa9ba20e9a019371ae268488833f.asciidoc 0000664 0000000 0000000 00000000337 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/cluster/remote-clusters-migration.asciidoc:97
[source, python]
----
resp = client.cluster.get_settings(
filter_path="persistent.cluster.remote",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b6a7ffd2003c38f4aa321f067d162be5.asciidoc 0000664 0000000 0000000 00000001434 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-elser.asciidoc:260
[source, python]
----
resp = client.search(
index="my-index",
query={
"bool": {
"should": [
{
"sparse_vector": {
"field": "content_embedding",
"inference_id": "my-elser-endpoint",
"query": "How to avoid muscle soreness after running?",
"boost": 1
}
},
{
"query_string": {
"query": "toxins",
"boost": 4
}
}
]
}
},
min_score=10,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b6c872d04eabb39d1947cde6b29d4ae1.asciidoc 0000664 0000000 0000000 00000000471 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:419
[source, python]
----
resp = client.search(
aggs={
"tags": {
"terms": {
"field": "tags",
"min_doc_count": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b6d278737d27973e498ac61cda9e5126.asciidoc 0000664 0000000 0000000 00000000714 14766462667 0026510 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:509
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"daily_orders": {
"date_histogram": {
"field": "order_date",
"calendar_interval": "day",
"format": "yyyy-MM-dd",
"min_doc_count": 0
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b6e29a0e14b611d4aaafb3051220ea56.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/specify-analyzer.asciidoc:158
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"title": {
"type": "text",
"analyzer": "whitespace",
"search_analyzer": "simple"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b6e385760e036e36827f719b540d9c11.asciidoc 0000664 0000000 0000000 00000000564 14766462667 0026337 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/profile.asciidoc:1186
[source, python]
----
resp = client.search(
index="my-dfs-index",
search_type="dfs_query_then_fetch",
pretty=True,
size="0",
profile=True,
query={
"term": {
"my-keyword": {
"value": "a"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b6f690896001f8f9ad5bf24e1304a552.asciidoc 0000664 0000000 0000000 00000000743 14766462667 0026467 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:162
[source, python]
----
resp = client.indices.create(
index="my-byte-quantized-index",
mappings={
"properties": {
"my_vector": {
"type": "dense_vector",
"dims": 4,
"index": True,
"index_options": {
"type": "int4_hnsw"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b717a583b5165e5c6caafc42fdfd9086.asciidoc 0000664 0000000 0000000 00000003526 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cartesian-bounds-aggregation.asciidoc:97
[source, python]
----
resp = client.indices.create(
index="places",
mappings={
"properties": {
"geometry": {
"type": "shape"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="places",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"name": "NEMO Science Museum",
"geometry": "POINT(491.2350 5237.4081)"
},
{
"index": {
"_id": 2
}
},
{
"name": "Sportpark De Weeren",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[
496.5305328369141,
5239.347642069457
],
[
496.6979026794433,
5239.172175893484
],
[
496.9425201416015,
5239.238958618537
],
[
496.7944622039794,
5239.420969150824
],
[
496.5305328369141,
5239.347642069457
]
]
]
}
}
],
)
print(resp1)
resp2 = client.search(
index="places",
size="0",
aggs={
"viewport": {
"cartesian_bounds": {
"field": "geometry"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b724f547c5d67e95bbc0a9920e47033c.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pathhierarchy-tokenizer.asciidoc:289
[source, python]
----
resp = client.search(
index="file-path-test",
query={
"term": {
"file_path.tree": "/User/alice/photos/2017/05/16"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b728d6ba226dba719aadcd8b8099cc74.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:177
[source, python]
----
resp = client.cat.allocation(
v=True,
h="node,shards,disk.*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b7a4f5b9a93eff44268a1ee38ee1c6d3.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0027053 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:199
[source, python]
----
resp = client.reindex(
source={
"index": "archive"
},
dest={
"index": "my-data-stream",
"op_type": "create"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b7a9f60b3646efe3834ca8381f8aa560.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/logging-config.asciidoc:193
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"logger.org.elasticsearch.discovery": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b7ad394975863a8f5ee29627c3ab738b.asciidoc 0000664 0000000 0000000 00000000577 14766462667 0026601 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/histogram-aggregation.asciidoc:248
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"prices": {
"histogram": {
"field": "price",
"interval": 50,
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b7bb5503e64bd869b2ac1c46c434a079.asciidoc 0000664 0000000 0000000 00000001117 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:226
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"histo": {
"histogram": {
"field": "price",
"interval": 5
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b7c99eb38d4b37e22de1ffcb0e88ae4c.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:279
[source, python]
----
resp = client.index(
index="my-index-000001",
id="2",
document={
"message": "A new bonsai tree in the office"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b7df0848b2dc3093f931976db5b8cfff.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0027004 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:38
[source, python]
----
resp = client.cluster.health(
filter_path="status,*_shards",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b7f8bd33c22f3c93336ab57c2e091f73.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/delete-query-rule.asciidoc:78
[source, python]
----
resp = client.query_rules.delete_rule(
ruleset_id="my-ruleset",
rule_id="my-rule1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b80e1f5b26bae4f3c2f8a604b7caaf17.asciidoc 0000664 0000000 0000000 00000001061 14766462667 0027101 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:290
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping7",
roles=[
"ldap-example-user"
],
enabled=True,
rules={
"all": [
{
"field": {
"dn": "*,ou=subtree,dc=example,dc=com"
}
},
{
"field": {
"realm.name": "ldap1"
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b81a7b5f5ef19553f9cd49196f31018c.asciidoc 0000664 0000000 0000000 00000000720 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/distance-feature-query.asciidoc:37
[source, python]
----
resp = client.indices.create(
index="items",
mappings={
"properties": {
"name": {
"type": "keyword"
},
"production_date": {
"type": "date"
},
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b82b156c7b9d1d78054577a6947a6cdd.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/geo-grid.asciidoc:91
[source, python]
----
resp = client.index(
index="geocells",
id="1",
pipeline="geotile2shape",
document={
"geocell": "4/8/5"
},
)
print(resp)
resp1 = client.get(
index="geocells",
id="1",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b839f79a5d58506baed5714f1876ab55.asciidoc 0000664 0000000 0000000 00000000363 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql-search-api.asciidoc:30
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n process where process.name == \"regsvr32.exe\"\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b8400dbe39215705060500f0e569f452.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0026222 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:312
[source, python]
----
resp = client.connector.get(
connector_id="my-connector-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b84932030e60a2cd58884b9dc6d3147f.asciidoc 0000664 0000000 0000000 00000000337 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:644
[source, python]
----
resp = client.search_application.search(
name="my_search_application",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b85716ba42a57096452665c38995da7d.asciidoc 0000664 0000000 0000000 00000000626 14766462667 0026346 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/preview-dfanalytics.asciidoc:75
[source, python]
----
resp = client.ml.preview_data_frame_analytics(
config={
"source": {
"index": "houses_sold_last_10_yrs"
},
"analysis": {
"regression": {
"dependent_variable": "price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b857abedc64e367def172bd07075e5c7.asciidoc 0000664 0000000 0000000 00000001163 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/fingerprint-analyzer.asciidoc:89
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_fingerprint_analyzer": {
"type": "fingerprint",
"stopwords": "_english_"
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_fingerprint_analyzer",
text="Yes yes, Gödel said this sentence is consistent and.",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/b87438263ccd68624b1d69d8750f9432.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0026351 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/doc-values.asciidoc:37
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"status_code": {
"type": "long"
},
"session_id": {
"type": "long",
"index": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b87bc8a521995051c7e7395f9c047e1c.asciidoc 0000664 0000000 0000000 00000001402 14766462667 0026475 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/ignore-malformed.asciidoc:16
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"number_one": {
"type": "integer",
"ignore_malformed": True
},
"number_two": {
"type": "integer"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"text": "Some text value",
"number_one": "foo"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"text": "Some text value",
"number_two": "foo"
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b88a2d96da1401d548a4540cca223d27.asciidoc 0000664 0000000 0000000 00000001344 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-vector-tile-api.asciidoc:707
[source, python]
----
resp = client.search_mvt(
index="museums",
field="location",
zoom="13",
x="4207",
y="2692",
grid_agg="geotile",
grid_precision=2,
fields=[
"name",
"price"
],
query={
"term": {
"included": True
}
},
aggs={
"min_price": {
"min": {
"field": "price"
}
},
"max_price": {
"max": {
"field": "price"
}
},
"avg_price": {
"avg": {
"field": "price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b8c03bbd917d0cf5474a3e46ebdd7aad.asciidoc 0000664 0000000 0000000 00000000447 14766462667 0027175 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/cjk-bigram-tokenfilter.asciidoc:22
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"cjk_bigram"
],
text="東京都は、日本の首都であり",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b8cc74a92bac837bfd8ba6d5935350ed.asciidoc 0000664 0000000 0000000 00000001355 14766462667 0027052 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:317
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"enabled": False
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"user_id": "kimchy",
"session_data": {
"object": {
"some_field": "some_value"
}
}
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
fields=[
"user_id",
{
"field": "session_data.object.*",
"include_unmapped": True
}
],
source=False,
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b8dc3764c4467922474b2cdec74bb86b.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:445
[source, python]
----
resp = client.transform.start_transform(
transform_id="last-log-from-clientip",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b8e6e320a19936f6edfc242ccb5cde43.asciidoc 0000664 0000000 0000000 00000001346 14766462667 0027045 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/position-increment-gap.asciidoc:15
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"names": [
"John Abraham",
"Lincoln Smith"
]
},
)
print(resp)
resp1 = client.search(
index="my-index-000001",
query={
"match_phrase": {
"names": {
"query": "Abraham Lincoln"
}
}
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"match_phrase": {
"names": {
"query": "Abraham Lincoln",
"slop": 101
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/b9370fa1aa18fe4bc00cf81ef0c0d45b.asciidoc 0000664 0000000 0000000 00000000474 14766462667 0027077 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:318
[source, python]
----
resp = client.search(
query={
"query_string": {
"fields": [
"city.*"
],
"query": "this AND that OR thus"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b94cee0f74f57742b3948f9b784dfdd4.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0026741 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:537
[source, python]
----
resp = client.clear_scroll(
scroll_id="DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==,DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAAABFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAAAxZrUllkUVlCa1NqNmRMaUhiQlZkMWFBAAAAAAAAAAIWa1JZZFFZQmtTajZkTGlIYkJWZDFhQQAAAAAAAAAFFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAABBZrUllkUVlCa1NqNmRMaUhiQlZkMWFB",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b968853454b4416f7baa3209eb335957.asciidoc 0000664 0000000 0000000 00000001021 14766462667 0026326 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cartesian-centroid-aggregation.asciidoc:79
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggs={
"cities": {
"terms": {
"field": "city.keyword"
},
"aggs": {
"centroid": {
"cartesian_centroid": {
"field": "location"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b96f465abb658fe32889c3d183f159a3.asciidoc 0000664 0000000 0000000 00000000762 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/limit-token-count-tokenfilter.asciidoc:96
[source, python]
----
resp = client.indices.create(
index="limit_example",
settings={
"analysis": {
"analyzer": {
"standard_one_token_limit": {
"tokenizer": "standard",
"filter": [
"limit"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b9a8f39ab9b1ed18c6c1db61ac4e6a9e.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0027177 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:317
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="_current",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b9ba66209b7fcc111a7bcef0b3e00052.asciidoc 0000664 0000000 0000000 00000000441 14766462667 0026724 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/passthrough.asciidoc:77
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"attributes": {
"id": "foo"
},
"id": "bar"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/b9f716219359a6c973dafc50b348de33.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/source-field.asciidoc:24
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"_source": {
"enabled": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba07330ed3291b3970f4eb01dacd8086.asciidoc 0000664 0000000 0000000 00000004264 14766462667 0026606 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geodistance-aggregation.asciidoc:10
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (4.912350 52.374081)",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (4.901618 52.369219)",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (4.914722 52.371667)",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (4.405200 51.222900)",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (2.336389 48.861111)",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (2.327000 48.860000)",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
aggs={
"rings_around_amsterdam": {
"geo_distance": {
"field": "location",
"origin": "POINT (4.894 52.3760)",
"ranges": [
{
"to": 100000
},
{
"from": 100000,
"to": 300000
},
{
"from": 300000
}
]
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ba0e7e0b18fc9ec6c623d40186d1f61b.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026744 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/resolve-cluster.asciidoc:271
[source, python]
----
resp = client.indices.resolve_cluster(
name="not-present,clust*:my-index*,oldcluster:*",
ignore_unavailable=False,
timeout="5s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba10b644a4e9a2e7d78744ca607355d0.asciidoc 0000664 0000000 0000000 00000000546 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/put-follow.asciidoc:91
[source, python]
----
resp = client.ccr.follow(
index=".ds-logs-mysql-default_copy-2022-01-01-000001",
remote_cluster="remote_cluster",
leader_index=".ds-logs-mysql-default-2022-01-01-000001",
data_stream_name="logs-mysql-default_copy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba21a7fbb74180ff138d97032f28ace7.asciidoc 0000664 0000000 0000000 00000000571 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-user-profile-data.asciidoc:106
[source, python]
----
resp = client.security.update_user_profile_data(
uid="u_P_0BMHgaOK3p7k-PFWUCbw9dQ-UFjt01oWJ_Dp2PmPc_0",
labels={
"direction": "east"
},
data={
"app1": {
"theme": "default"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba3b9783aa188c6841e1926c5ab1472d.asciidoc 0000664 0000000 0000000 00000000506 14766462667 0026540 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:101
[source, python]
----
resp = client.search_application.put(
name="my_search_application",
search_application={
"indices": [
"index1",
"index2"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba5dc6fb9bbe1406714da5d641462a23.asciidoc 0000664 0000000 0000000 00000000775 14766462667 0026671 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:96
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"strings_as_ip": {
"match_mapping_type": "string",
"match": "ip*",
"runtime": {
"type": "ip"
}
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba6040de55afb2c8fb9e5b24bb038820.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-index-template-v1.asciidoc:94
[source, python]
----
resp = client.indices.get_template(
name="temp*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba650046f9063f6c43d76f47e0f94403.asciidoc 0000664 0000000 0000000 00000001216 14766462667 0026406 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/date.asciidoc:244
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"date": {
"type": "date"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"date": [
"2015-01-01T12:10:30Z",
"2014-01-01T12:10:30Z"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/ba66768ed04f7b87906badff40ff40ed.asciidoc 0000664 0000000 0000000 00000000652 14766462667 0027060 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:153
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_size": "50gb"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba8c3578613ae0bf890f6a05706ce776.asciidoc 0000664 0000000 0000000 00000000655 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1024
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
filter_path="-hits.events._source",
query="\n process where process.name == \"regsvr32.exe\"\n ",
fields=[
"event.type",
"process.*",
{
"field": "@timestamp",
"format": "epoch_millis"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ba9a5f66a6148612de0ad2491fd6c90d.asciidoc 0000664 0000000 0000000 00000001344 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/classic-tokenizer.asciidoc:148
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "classic",
"max_token_length": 5
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/baadbfffcd0c16f51eb3537f516dc3ed.asciidoc 0000664 0000000 0000000 00000000363 14766462667 0027330 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/disable-user-profile.asciidoc:65
[source, python]
----
resp = client.security.disable_user_profile(
uid="u_79HkWkwmnBH5gqFKwoxggWPjEBOur1zLPXQPEl1VBW0_0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bab4c3b22c1768fcc7153345e4096dfb.asciidoc 0000664 0000000 0000000 00000000510 14766462667 0026665 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/remove-duplicates-tokenfilter.asciidoc:79
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"keyword_repeat",
"stemmer",
"remove_duplicates"
],
text="jumping dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb067c049331cc850a77b18bdfff81b5.asciidoc 0000664 0000000 0000000 00000002162 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1311
[source, python]
----
resp = client.indices.create(
index="lithuanian_example",
settings={
"analysis": {
"filter": {
"lithuanian_stop": {
"type": "stop",
"stopwords": "_lithuanian_"
},
"lithuanian_keywords": {
"type": "keyword_marker",
"keywords": [
"pavyzdys"
]
},
"lithuanian_stemmer": {
"type": "stemmer",
"language": "lithuanian"
}
},
"analyzer": {
"rebuilt_lithuanian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"lithuanian_stop",
"lithuanian_keywords",
"lithuanian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb28d1f7f3f09f5061d7f4351aee89fc.asciidoc 0000664 0000000 0000000 00000000751 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/field-level-security.asciidoc:96
[source, python]
----
resp = client.security.put_role(
name="test_role4",
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"customer.*"
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb293e1bdf0c6f6d9069eeb7edc9d399.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0027140 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/disable-users.asciidoc:51
[source, python]
----
resp = client.security.disable_user(
username="jacknich",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb2ba5d1885f87506f90dbb002e518f4.asciidoc 0000664 0000000 0000000 00000002430 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:604
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"query_string": {
"query": "(information retrieval) OR (artificial intelligence)",
"default_field": "text"
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
},
highlight={
"fields": {
"text": {
"fragment_size": 150,
"number_of_fragments": 3
}
}
},
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb5a67e3d2d9cd3016e487e627769fe8.asciidoc 0000664 0000000 0000000 00000006733 14766462667 0026660 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:129
[source, python]
----
resp = client.bulk(
index="cooking_blog",
refresh="wait_for",
operations=[
{
"index": {
"_id": "1"
}
},
{
"title": "Perfect Pancakes: A Fluffy Breakfast Delight",
"description": "Learn the secrets to making the fluffiest pancakes, so amazing you won't believe your tastebuds. This recipe uses buttermilk and a special folding technique to create light, airy pancakes that are perfect for lazy Sunday mornings.",
"author": "Maria Rodriguez",
"date": "2023-05-01",
"category": "Breakfast",
"tags": [
"pancakes",
"breakfast",
"easy recipes"
],
"rating": 4.8
},
{
"index": {
"_id": "2"
}
},
{
"title": "Spicy Thai Green Curry: A Vegetarian Adventure",
"description": "Dive into the flavors of Thailand with this vibrant green curry. Packed with vegetables and aromatic herbs, this dish is both healthy and satisfying. Don't worry about the heat - you can easily adjust the spice level to your liking.",
"author": "Liam Chen",
"date": "2023-05-05",
"category": "Main Course",
"tags": [
"thai",
"vegetarian",
"curry",
"spicy"
],
"rating": 4.6
},
{
"index": {
"_id": "3"
}
},
{
"title": "Classic Beef Stroganoff: A Creamy Comfort Food",
"description": "Indulge in this rich and creamy beef stroganoff. Tender strips of beef in a savory mushroom sauce, served over a bed of egg noodles. It's the ultimate comfort food for chilly evenings.",
"author": "Emma Watson",
"date": "2023-05-10",
"category": "Main Course",
"tags": [
"beef",
"pasta",
"comfort food"
],
"rating": 4.7
},
{
"index": {
"_id": "4"
}
},
{
"title": "Vegan Chocolate Avocado Mousse",
"description": "Discover the magic of avocado in this rich, vegan chocolate mousse. Creamy, indulgent, and secretly healthy, it's the perfect guilt-free dessert for chocolate lovers.",
"author": "Alex Green",
"date": "2023-05-15",
"category": "Dessert",
"tags": [
"vegan",
"chocolate",
"avocado",
"healthy dessert"
],
"rating": 4.5
},
{
"index": {
"_id": "5"
}
},
{
"title": "Crispy Oven-Fried Chicken",
"description": "Get that perfect crunch without the deep fryer! This oven-fried chicken recipe delivers crispy, juicy results every time. A healthier take on the classic comfort food.",
"author": "Maria Rodriguez",
"date": "2023-05-20",
"category": "Main Course",
"tags": [
"chicken",
"oven-fried",
"healthy"
],
"rating": 4.9
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb64a7228a479f6aeeaccaf7560e11ee.asciidoc 0000664 0000000 0000000 00000001371 14766462667 0027120 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:394
[source, python]
----
resp = client.transform.put_transform(
transform_id="last-log-from-clientip",
source={
"index": [
"kibana_sample_data_logs"
]
},
latest={
"unique_key": [
"clientip"
],
"sort": "timestamp"
},
frequency="1m",
dest={
"index": "last-log-from-clientip"
},
sync={
"time": {
"field": "timestamp",
"delay": "60s"
}
},
retention_policy={
"time": {
"field": "timestamp",
"max_age": "30d"
}
},
settings={
"max_page_search_size": 500
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb792e64a4c1f872296073b457aa03c8.asciidoc 0000664 0000000 0000000 00000000352 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:366
[source, python]
----
resp = client.snapshot.delete(
repository="my_repository",
snapshot="my_snapshot_2099.05.06",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb975b342de7e838ebf6a36aaa1a8749.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:477
[source, python]
----
resp = client.index(
index="my-index-000001",
id="3",
routing="1",
refresh=True,
document={
"text": "This is a vote",
"my_join_field": {
"name": "vote",
"parent": "2"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bb9e268ec62d19ca2a6366cbb48fae68.asciidoc 0000664 0000000 0000000 00000000223 14766462667 0027045 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/count.asciidoc:95
[source, python]
----
resp = client.cat.count(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bc01aee2ab2ce1690986374bd836e1c7.asciidoc 0000664 0000000 0000000 00000000621 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:317
[source, python]
----
resp = client.search(
index="cooking_blog",
query={
"multi_match": {
"query": "vegetarian curry",
"fields": [
"title",
"description",
"tags"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bc4d308069af23929a49d856f6bc3008.asciidoc 0000664 0000000 0000000 00000001406 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geodistance-aggregation.asciidoc:122
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggs={
"rings": {
"geo_distance": {
"field": "location",
"origin": "POINT (4.894 52.3760)",
"unit": "km",
"distance_type": "plane",
"ranges": [
{
"to": 100
},
{
"from": 100,
"to": 300
},
{
"from": 300
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bcae0f00ae1e6f08fa395ca741fe84f9.asciidoc 0000664 0000000 0000000 00000000753 14766462667 0027123 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rank-eval.asciidoc:403
[source, python]
----
resp = client.rank_eval(
index="my-index-000001",
requests=[
{
"id": "JFK query",
"request": {
"query": {
"match_all": {}
}
},
"ratings": []
}
],
metric={
"dcg": {
"k": 20,
"normalize": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bcb572658986d69ae17c28ddd7e4bfd8.asciidoc 0000664 0000000 0000000 00000000305 14766462667 0027012 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/field-usage-stats.asciidoc:172
[source, python]
----
resp = client.indices.field_usage_stats(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bcbd4d4749126837723438ff4faeb0f6.asciidoc 0000664 0000000 0000000 00000000606 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:192
[source, python]
----
resp = client.search(
index="my-index-000001",
filter_path="aggregations",
size=0,
aggs={
"top_values": {
"terms": {
"field": "my-field",
"size": 10
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bcc75fc01b45e482638c65b8fbdf09fa.asciidoc 0000664 0000000 0000000 00000000251 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:419
[source, python]
----
resp = client.search(
index="books",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bccd4eb26b1a325d103b12e198a13c08.asciidoc 0000664 0000000 0000000 00000000373 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/slowlog.asciidoc:102
[source, python]
----
resp = client.indices.get_settings(
index="_all",
expand_wildcards="all",
filter_path="*.settings.index.*.slowlog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bcd1afb793240b1dddd9fa5d3f21192b.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0027076 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:315
[source, python]
----
resp = client.update(
index="test",
id="1",
doc={
"product_price": 100
},
upsert={
"product_price": 50
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bcdfaa4487747249699a86a0dcd22f5e.asciidoc 0000664 0000000 0000000 00000001320 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/simulate-ingest.asciidoc:352
[source, python]
----
resp = client.simulate.ingest(
docs=[
{
"_index": "my-index",
"_id": "123",
"_source": {
"foo": "bar"
}
},
{
"_index": "my-index",
"_id": "456",
"_source": {
"foo": "rab"
}
}
],
pipeline_substitutions={
"my-pipeline": {
"processors": [
{
"uppercase": {
"field": "foo"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd0d30a7683037e1ebadd163514765d4.asciidoc 0000664 0000000 0000000 00000001132 14766462667 0026520 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/configuring-active-directory-realm.asciidoc:192
[source, python]
----
resp = client.security.put_role_mapping(
name="basic_users",
roles=[
"user"
],
rules={
"any": [
{
"field": {
"groups": "cn=users,dc=example,dc=com"
}
},
{
"field": {
"dn": "cn=John Doe,cn=contractors,dc=example,dc=com"
}
}
]
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd1e55b8cb2ca9e496e223e717d76640.asciidoc 0000664 0000000 0000000 00000001124 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-polygon-query.asciidoc:93
[source, python]
----
resp = client.search(
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_polygon": {
"person.location": {
"points": [
"40, -70",
"30, -80",
"20, -90"
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd23c3a03907b1238dcb07ab9eecae7b.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0027073 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:367
[source, python]
----
resp = client.update_by_query(
index="my-index-000001",
scroll_size="100",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd298b11933605c641626750c981d70b.asciidoc 0000664 0000000 0000000 00000001562 14766462667 0026244 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/simulate-multi-component-templates.asciidoc:50
[source, python]
----
resp = client.cluster.put_component_template(
name="ct1",
template={
"settings": {
"index.number_of_shards": 2
}
},
)
print(resp)
resp1 = client.cluster.put_component_template(
name="ct2",
template={
"settings": {
"index.number_of_replicas": 0
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
}
}
}
},
)
print(resp1)
resp2 = client.indices.simulate_template(
index_patterns=[
"my*"
],
template={
"settings": {
"index.number_of_shards": 3
}
},
composed_of=[
"ct1",
"ct2"
],
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/bd2a387e8c21bf01a1039e81d7602921.asciidoc 0000664 0000000 0000000 00000000754 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:788
[source, python]
----
resp = client.put_script(
id="my-search-template",
script={
"lang": "mustache",
"source": {
"query": {
"multi_match": {
"query": "{{query_string}}",
"fields": "[{{#text_fields}}{{user_name}},{{/text_fields}}]"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd3d710ec50a151453e141691163af72.asciidoc 0000664 0000000 0000000 00000000245 14766462667 0026353 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:276
[source, python]
----
resp = client.tasks.list(
group_by="parents",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd458073196a19ecdeb24a8016488c20.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/delete-index-template.asciidoc:32
[source, python]
----
resp = client.indices.delete_index_template(
name="my-index-template",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd57976bc93ca64b2d3e001df9f06c82.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/resolve.asciidoc:107
[source, python]
----
resp = client.indices.resolve_index(
name="f*,remoteCluster1:bar*",
expand_wildcards="all",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd5bd5d8b3d81241335fe1e5747080ac.asciidoc 0000664 0000000 0000000 00000000674 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/error-handling.asciidoc:122
[source, python]
----
resp = client.ilm.put_lifecycle(
name="shrink-index",
policy={
"phases": {
"warm": {
"min_age": "5d",
"actions": {
"shrink": {
"number_of_shards": 1
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd68666ca2e0be12f7624016317a62bc.asciidoc 0000664 0000000 0000000 00000000400 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-stats.asciidoc:2573
[source, python]
----
resp = client.nodes.stats(
groups="_all",
)
print(resp)
resp1 = client.nodes.stats(
metric="indices",
groups="foo,bar",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/bd6f30e3caa3632260da42d9ff82c98c.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-api-key-cache.asciidoc:63
[source, python]
----
resp = client.security.clear_api_key_cache(
ids="*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd7330af2609bdd8aa10958f5e640b93.asciidoc 0000664 0000000 0000000 00000000513 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:649
[source, python]
----
resp = client.index(
index="my_queries2",
id="2",
refresh=True,
document={
"query": {
"match": {
"my_field.suffix": "xyz"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd767ea03171fe71c73f58f16d5da92f.asciidoc 0000664 0000000 0000000 00000000447 14766462667 0026717 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pathhierarchy-tokenizer.asciidoc:273
[source, python]
----
resp = client.search(
index="file-path-test",
query={
"match": {
"file_path": "/User/bob/photos/2017/05"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd7a1417fc27b5a801334ec44462b376.asciidoc 0000664 0000000 0000000 00000000237 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/datafeeds.asciidoc:130
[source, python]
----
resp = client.cat.ml_datafeeds(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bd7fa2f122ab861cd00e0b9154d120b3.asciidoc 0000664 0000000 0000000 00000000706 14766462667 0026642 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/common-script-uses.asciidoc:29
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"@timestamp": {
"format": "strict_date_optional_time||epoch_second",
"type": "date"
},
"message": {
"type": "wildcard"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bdaf00d791706d7fde25fd65d3735b94.asciidoc 0000664 0000000 0000000 00000001226 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/keyword.asciidoc:184
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"kwd": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"kwd": [
"foo",
"foo",
"bar",
"baz"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/bdb30dd52d32f50994008f4f9c0da5f0.asciidoc 0000664 0000000 0000000 00000000356 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:571
[source, python]
----
resp = client.update_by_query_rethrottle(
task_id="r1A2WoRbTwKZ516z6NEs5A:36619",
requests_per_second="-1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bdc1afd2181154bb78797360f9dbb1a0.asciidoc 0000664 0000000 0000000 00000000430 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/ack-watch.asciidoc:140
[source, python]
----
resp = client.watcher.execute_watch(
id="my_watch",
record_execution=True,
)
print(resp)
resp1 = client.watcher.get_watch(
id="my_watch",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/bdc55256fa5f701680631a149dbb75a9.asciidoc 0000664 0000000 0000000 00000000704 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:420
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"sales_by_category": {
"terms": {
"field": "category.keyword",
"size": 5,
"order": {
"_count": "desc"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bdc68012c121062628d6d73468bf4866.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0026323 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/register-repository.asciidoc:215
[source, python]
----
resp = client.snapshot.cleanup_repository(
name="my_repository",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bdd28276618235487ac96bd6679bc206.asciidoc 0000664 0000000 0000000 00000001350 14766462667 0026417 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/aggs-tutorial.asciidoc:1770
[source, python]
----
resp = client.search(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"daily_sales": {
"date_histogram": {
"field": "order_date",
"calendar_interval": "day"
},
"aggs": {
"revenue": {
"sum": {
"field": "taxful_total_price"
}
},
"cumulative_revenue": {
"cumulative_sum": {
"buckets_path": "revenue"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bde74dbbcef8ebf8541cae2c1711255f.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0027172 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search-application/apis/get-search-application.asciidoc:93
[source, python]
----
resp = client.search_application.get(
name="my-app",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bdfb86cdfffb9d2ee6e3d399f00a57b0.asciidoc 0000664 0000000 0000000 00000001737 14766462667 0027303 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/top-metrics-aggregation.asciidoc:499
[source, python]
----
resp = client.search(
index="test*",
filter_path="aggregations",
aggs={
"ip": {
"terms": {
"field": "ip"
},
"aggs": {
"tm": {
"top_metrics": {
"metrics": {
"field": "m"
},
"sort": {
"s": "desc"
},
"size": 1
}
},
"having_tm": {
"bucket_selector": {
"buckets_path": {
"top_m": "tm[m]"
},
"script": "params.top_m < 1000"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be285eef1d2df0dfcf876e2d4b361f1e.asciidoc 0000664 0000000 0000000 00000001552 14766462667 0027210 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/common-grams-tokenfilter.asciidoc:206
[source, python]
----
resp = client.indices.create(
index="common_grams_example",
settings={
"analysis": {
"analyzer": {
"index_grams": {
"tokenizer": "whitespace",
"filter": [
"common_grams_query"
]
}
},
"filter": {
"common_grams_query": {
"type": "common_grams",
"common_words": [
"a",
"is",
"the"
],
"ignore_case": True,
"query_mode": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be3a6431d01846950dc1a39a7a6a1faa.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:532
[source, python]
----
resp = client.tasks.get(
task_id="r1A2WoRbTwKZ516z6NEs5A:36619",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be5b415d7f33d6f0397ac2f8b5c10521.asciidoc 0000664 0000000 0000000 00000000436 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:647
[source, python]
----
resp = client.update_by_query(
index="my-index-000001",
refresh=True,
slices="5",
script={
"source": "ctx._source['extra'] = 'test'"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be5c5a9c25901737585e4fff9195da3c.asciidoc 0000664 0000000 0000000 00000000657 14766462667 0026652 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:435
[source, python]
----
resp = client.search(
index="my-bit-vectors",
filter_path="hits.hits",
query={
"knn": {
"query_vector": [
127,
-127,
0,
1,
42
],
"field": "my_vector"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be5d62e7c8f63687c585305fbe70d7d0.asciidoc 0000664 0000000 0000000 00000000652 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-aggregation.asciidoc:288
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_outlier": {
"percentiles": {
"field": "load_time",
"tdigest": {
"compression": 200
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be5fef0640c3a650ee96f84e3376a1be.asciidoc 0000664 0000000 0000000 00000000710 14766462667 0026762 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:335
[source, python]
----
resp = client.update(
index="test",
id="1",
scripted_upsert=True,
script={
"source": "\n if ( ctx.op == 'create' ) {\n ctx._source.counter = params.count\n } else {\n ctx._source.counter += params.count\n }\n ",
"params": {
"count": 4
}
},
upsert={},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be6b0bfcdce1ef100af89f74da5d4748.asciidoc 0000664 0000000 0000000 00000000573 14766462667 0027205 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/put-trained-model-definition-part.asciidoc:70
[source, python]
----
resp = client.ml.put_trained_model_definition_part(
model_id="elastic__distilbert-base-uncased-finetuned-conll03-english",
part="0",
definition="...",
total_definition_length=265632637,
total_parts=64,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be9376b1e354ad9c6bdad83f6a0ce5ad.asciidoc 0000664 0000000 0000000 00000003031 14766462667 0027174 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:129
[source, python]
----
resp = client.transform.preview_transform(
source={
"index": "kibana_sample_data_flights",
"query": {
"bool": {
"filter": [
{
"term": {
"Cancelled": False
}
}
]
}
}
},
dest={
"index": "sample_flight_delays_by_carrier"
},
pivot={
"group_by": {
"carrier": {
"terms": {
"field": "Carrier"
}
}
},
"aggregations": {
"flights_count": {
"value_count": {
"field": "FlightNum"
}
},
"delay_mins_total": {
"sum": {
"field": "FlightDelayMin"
}
},
"flight_mins_total": {
"sum": {
"field": "FlightTimeMin"
}
},
"delay_time_percentage": {
"bucket_script": {
"buckets_path": {
"delay_time": "delay_mins_total.value",
"flight_time": "flight_mins_total.value"
},
"script": "(params.delay_time / params.flight_time) * 100"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/be9836fe55c5fada404a2adc1663d832.asciidoc 0000664 0000000 0000000 00000001202 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1435
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
runtime={
"http": {
"type": "composite",
"script": "emit(grok(\"%{COMMONAPACHELOG}\").extract(doc[\"message\"].value))",
"fields": {
"clientip": {
"type": "ip"
},
"verb": {
"type": "keyword"
},
"response": {
"type": "long"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/beaf43b274b0f32cf3cf48f59e5cb1f2.asciidoc 0000664 0000000 0000000 00000000437 14766462667 0027121 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-api.asciidoc:751
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="snapshot_*",
sort="start_time",
from_sort_value="1577833200000",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/beb0b9ff4f68672273fcff1b7bae706b.asciidoc 0000664 0000000 0000000 00000000475 14766462667 0027136 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:411
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"user_identifier": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/beba2a9795c8a13653e1edf64eec4357.asciidoc 0000664 0000000 0000000 00000000504 14766462667 0026766 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/allocation/filtering.asciidoc:74
[source, python]
----
resp = client.indices.put_settings(
index="test",
settings={
"index.routing.allocation.require.size": "big",
"index.routing.allocation.require.rack": "rack1"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bed14cc152522ca0726ac3746ebc31db.asciidoc 0000664 0000000 0000000 00000001433 14766462667 0026726 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/unsigned_long.asciidoc:31
[source, python]
----
resp = client.bulk(
index="my_index",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"my_counter": 0
},
{
"index": {
"_id": 2
}
},
{
"my_counter": 9223372036854776000
},
{
"index": {
"_id": 3
}
},
{
"my_counter": 18446744073709552000
},
{
"index": {
"_id": 4
}
},
{
"my_counter": 18446744073709552000
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/befa73a8a419fcf3b7798548b54a20bf.asciidoc 0000664 0000000 0000000 00000002266 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:1146
[source, python]
----
resp = client.search(
index="my-index",
size=10,
knn={
"query_vector": [
0.04283529,
0.85670587,
-0.51402352,
0
],
"field": "my_int4_vector",
"k": 20,
"num_candidates": 50
},
rescore={
"window_size": 20,
"query": {
"rescore_query": {
"script_score": {
"query": {
"match_all": {}
},
"script": {
"source": "(dotProduct(params.queryVector, 'my_int4_vector') + 1.0)",
"params": {
"queryVector": [
0.04283529,
0.85670587,
-0.51402352,
0
]
}
}
}
},
"query_weight": 0,
"rescore_query_weight": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bf17440ac178d2ef5f5be643d033920b.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-elser.asciidoc:138
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "my-index",
"pipeline": "elser-v2-test"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bf1de9fa1b825fa875d27fa08821a6d1.asciidoc 0000664 0000000 0000000 00000000374 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-across-clusters.asciidoc:119
[source, python]
----
resp = client.security.put_user(
username="remote_user",
password="",
roles=[
"remote1"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bf2e6ea2bae621b9b2fee7003e891f86.asciidoc 0000664 0000000 0000000 00000000474 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/recipes/stemming.asciidoc:58
[source, python]
----
resp = client.search(
index="index",
query={
"simple_query_string": {
"fields": [
"body"
],
"query": "ski"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bf3c3bc41c593a80faebef1df353e483.asciidoc 0000664 0000000 0000000 00000000775 14766462667 0027123 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-jinaai.asciidoc:169
[source, python]
----
resp = client.inference.put(
task_type="rerank",
inference_id="jinaai-rerank",
inference_config={
"service": "jinaai",
"service_settings": {
"api_key": "",
"model_id": "jina-reranker-v2-base-multilingual"
},
"task_settings": {
"top_n": 10,
"return_documents": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bf3f520b47581d861e802730aaf2a519.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:35
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"add": {
"index": "logs-nginx.access-prod",
"alias": "logs"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bf448c3889c18266e2e6d3af4f614da2.asciidoc 0000664 0000000 0000000 00000000676 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:336
[source, python]
----
resp = client.index(
index=".ds-my-data-stream-2099-03-08-000003",
id="bfspvnIBr7VVZlfp2lqX",
if_seq_no="0",
if_primary_term="1",
document={
"@timestamp": "2099-03-08T11:06:07.000Z",
"user": {
"id": "8a4f500d"
},
"message": "Login successful"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bf639275d0818be04317ee5ab6075da6.asciidoc 0000664 0000000 0000000 00000000701 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/has-parent-query.asciidoc:52
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"has_parent": {
"parent_type": "parent",
"query": {
"term": {
"tag": {
"value": "Elasticsearch"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bf8680d940c84e43a9483a25548dea57.asciidoc 0000664 0000000 0000000 00000002472 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/search-analyzer.asciidoc:16
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"filter": {
"autocomplete_filter": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 20
}
},
"analyzer": {
"autocomplete": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"autocomplete_filter"
]
}
}
}
},
mappings={
"properties": {
"text": {
"type": "text",
"analyzer": "autocomplete",
"search_analyzer": "standard"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"text": "Quick Brown Fox"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"match": {
"text": {
"query": "Quick Br",
"operator": "and"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/bf9f13dc6c24cc225a72e32177e9ee02.asciidoc 0000664 0000000 0000000 00000003465 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-distance-query.asciidoc:17
[source, python]
----
resp = client.indices.create(
index="my_locations",
mappings={
"properties": {
"pin": {
"properties": {
"location": {
"type": "geo_point"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="my_locations",
id="1",
document={
"pin": {
"location": {
"lat": 40.12,
"lon": -71.34
}
}
},
)
print(resp1)
resp2 = client.indices.create(
index="my_geoshapes",
mappings={
"properties": {
"pin": {
"properties": {
"location": {
"type": "geo_shape"
}
}
}
}
},
)
print(resp2)
resp3 = client.index(
index="my_geoshapes",
id="1",
document={
"pin": {
"location": {
"type": "polygon",
"coordinates": [
[
[
13,
51.5
],
[
15,
51.5
],
[
15,
54
],
[
13,
54
],
[
13,
51.5
]
]
]
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/bfb0db2a72f22c9c2046119777efbb43.asciidoc 0000664 0000000 0000000 00000000714 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-search.asciidoc:78
[source, python]
----
resp = client.search(
index="elser-embeddings",
query={
"sparse_vector": {
"field": "content_embedding",
"inference_id": "elser_embeddings",
"query": "How to avoid muscle soreness after running?"
}
},
source=[
"id",
"content"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bfb1aa83da8e3f414d50b5ed7894ed33.asciidoc 0000664 0000000 0000000 00000000663 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:165
[source, python]
----
resp = client.search(
index="my-index-000001",
script_fields={
"my_doubled_field": {
"script": {
"source": "field('my_field').get(null) * params['multiplier']",
"params": {
"multiplier": 2
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bfb8a15cd05b43094ffbce8078bad3e1.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0027107 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-api.asciidoc:357
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="snapshot_2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bfd6fa3f44e6165f8999102f5a8e24d6.asciidoc 0000664 0000000 0000000 00000000745 14766462667 0026653 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:41
[source, python]
----
resp = client.search(
index="index1",
query={
"query_string": {
"query": "running with scissors",
"fields": [
"comment",
"comment.english"
]
}
},
highlight={
"order": "score",
"fields": {
"comment": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/bfdad8a928ea30d7cf60d0a0a6bc6e2e.asciidoc 0000664 0000000 0000000 00000001467 14766462667 0027252 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/bulk.asciidoc:721
[source, python]
----
resp = client.bulk(
filter_path="items.*.error",
operations=[
{
"update": {
"_id": "5",
"_index": "index1"
}
},
{
"doc": {
"my_field": "baz"
}
},
{
"update": {
"_id": "6",
"_index": "index1"
}
},
{
"doc": {
"my_field": "baz"
}
},
{
"update": {
"_id": "7",
"_index": "index1"
}
},
{
"doc": {
"my_field": "baz"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c00c9412609832ebceb9e786dd9542df.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-name-description-api.asciidoc:85
[source, python]
----
resp = client.connector.update_name(
connector_id="my-connector",
name="Custom connector",
description="This is my customized connector",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c012f42b26eb8dd9b197644c3ed954cf.asciidoc 0000664 0000000 0000000 00000000642 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:400
[source, python]
----
resp = client.index(
index="my-index-000001",
id="2",
document={
"name": {
"first": "Paul",
"last": "McCartney",
"title": {
"value": "Sir",
"category": "order of chivalry"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c03ce952de42eae4b522cedc9fd3d14a.asciidoc 0000664 0000000 0000000 00000000516 14766462667 0027167 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:269
[source, python]
----
resp = client.index(
index="example",
document={
"location": "POLYGON ((100.0 0.0, 101.0 0.0, 101.0 1.0, 100.0 1.0, 100.0 0.0), (100.2 0.2, 100.8 0.2, 100.8 0.8, 100.2 0.8, 100.2 0.2))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c065a200c00e2005d88ec2f0c10c908a.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026471 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/shingle-tokenfilter.asciidoc:31
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"shingle"
],
text="quick brown fox jumps",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c067182d385f59ce5952fb9a716fbf05.asciidoc 0000664 0000000 0000000 00000001215 14766462667 0026561 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/post-calendar-event.asciidoc:85
[source, python]
----
resp = client.ml.post_calendar_events(
calendar_id="planned-outages",
events=[
{
"description": "event 1",
"start_time": 1513641600000,
"end_time": 1513728000000
},
{
"description": "event 2",
"start_time": 1513814400000,
"end_time": 1513900800000
},
{
"description": "event 3",
"start_time": 1514160000000,
"end_time": 1514246400000
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c088ce5291ae28650b6091cdec489398.asciidoc 0000664 0000000 0000000 00000000740 14766462667 0026501 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/point-in-time-api.asciidoc:55
[source, python]
----
resp = client.search(
size=100,
query={
"match": {
"title": "elasticsearch"
}
},
pit={
"id": "46ToAwMDaWR5BXV1aWQyKwZub2RlXzMAAAAAAAAAACoBYwADaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQADaWR5BXV1aWQyKgZub2RlXzIAAAAAAAAAAAwBYgACBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==",
"keep_alive": "1m"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c0a4b0c1c6eff14da8b152ceb19c1c31.asciidoc 0000664 0000000 0000000 00000000274 14766462667 0027065 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/restart-cluster.asciidoc:93
[source, python]
----
resp = client.cat.health()
print(resp)
resp1 = client.cat.nodes()
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/c0c638e3d218b0ecbe5c4d77c964ae9e.asciidoc 0000664 0000000 0000000 00000000443 14766462667 0027047 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/term-query.asciidoc:28
[source, python]
----
resp = client.search(
query={
"term": {
"user.id": {
"value": "kimchy",
"boost": 1
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c0ddfb2e6315f5bcf0d3ef414b5bbed3.asciidoc 0000664 0000000 0000000 00000000440 14766462667 0027236 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-configuration-api.asciidoc:342
[source, python]
----
resp = client.connector.update_configuration(
connector_id="my-spo-connector",
values={
"secret_value": "foo-bar"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c0ebaa33e750b87555dc352073f692e8.asciidoc 0000664 0000000 0000000 00000001064 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/update-settings.asciidoc:187
[source, python]
----
resp = client.indices.close(
index="my-index-000001",
)
print(resp)
resp1 = client.indices.put_settings(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"content": {
"type": "custom",
"tokenizer": "whitespace"
}
}
}
},
)
print(resp1)
resp2 = client.indices.open(
index="my-index-000001",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/c0ff8b3db994c4736f7579dde18097d2.asciidoc 0000664 0000000 0000000 00000000355 14766462667 0026657 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:303
[source, python]
----
resp = client.get_source(
index="my-index-000001",
id="1",
source_includes="*.id",
source_excludes="entities",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c10a486a28cbc5b2f15c3474ae31a431.asciidoc 0000664 0000000 0000000 00000000737 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:187
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="nightly-snapshots",
schedule="0 30 1 * * ?",
name="",
repository="my_repository",
config={
"indices": "*",
"include_global_state": True
},
retention={
"expire_after": "30d",
"min_count": 5,
"max_count": 50
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c11c4d6b30e882871bf0074f407149bd.asciidoc 0000664 0000000 0000000 00000000467 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/parent-id-query.asciidoc:47
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"text": "This is a parent document.",
"my-join-field": "my-parent"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c12d6e962f083c728f9397932f05202e.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connector-sync-jobs-api.asciidoc:78
[source, python]
----
resp = client.perform_request(
"GET",
"/_connector/_sync_job",
params={
"connector_id": "connector-1"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c1409f591a01589638d9b00436ce42c0.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026314 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-cache.asciidoc:67
[source, python]
----
resp = client.security.clear_cached_realms(
realms="default_file",
usernames="rdeniro,alpacino",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c147de68fd6da032ad4a3c1bf626f5d6.asciidoc 0000664 0000000 0000000 00000000554 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:422
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"fields": {
"comment": {
"type": "plain"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c155d2670ff82b135c7dcec0fc8a3f23.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1378
[source, python]
----
resp = client.eql.delete(
id="FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c18100d62ed31bc9e05f62900156e6a8.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026442 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connectors-api.asciidoc:102
[source, python]
----
resp = client.connector.list(
index_name="search-google-drive",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c186ecf6f799ddff7add1abdecea5821.asciidoc 0000664 0000000 0000000 00000001637 14766462667 0027365 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/fields.asciidoc:287
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"full_name": {
"type": "text",
"store": True
},
"title": {
"type": "text",
"store": True
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"full_name": "Alice Ball",
"title": "Professor"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
script_fields={
"name_with_title": {
"script": {
"lang": "painless",
"source": "params._fields['title'].value + ' ' + params._fields['full_name'].value"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/c187b52646cedeebe0716327add65642.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/apis/get-async-sql-search-api.asciidoc:18
[source, python]
----
resp = client.sql.get_async(
id="FmdMX2pIang3UWhLRU5QS0lqdlppYncaMUpYQ05oSkpTc3kwZ21EdC1tbFJXQToxOTI=",
format="json",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c1a39c2628ada04c3ddd61a303b65d44.asciidoc 0000664 0000000 0000000 00000001432 14766462667 0026650 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:200
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"script_score": {
"query": {
"bool": {
"filter": {
"term": {
"status": "published"
}
}
}
},
"script": {
"source": "(24 - hamming(params.queryVector, 'my_byte_dense_vector')) / 24",
"params": {
"queryVector": [
4,
3,
0
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c1a895497066a3dac674d4b1a119048d.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/term-query.asciidoc:137
[source, python]
----
resp = client.search(
index="my-index-000001",
pretty=True,
query={
"term": {
"full_text": "Quick Brown Foxes!"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c1ac9e53b04f7acee4b4933969d6b574.asciidoc 0000664 0000000 0000000 00000001202 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/preview-transform.asciidoc:296
[source, python]
----
resp = client.transform.preview_transform(
source={
"index": "kibana_sample_data_ecommerce"
},
pivot={
"group_by": {
"customer_id": {
"terms": {
"field": "customer_id",
"missing_bucket": True
}
}
},
"aggregations": {
"max_price": {
"max": {
"field": "taxful_total_price"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c1ad9ff64728a5bfeeb485e60ec694a1.asciidoc 0000664 0000000 0000000 00000001004 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rank-eval.asciidoc:459
[source, python]
----
resp = client.rank_eval(
index="my-index-000001",
requests=[
{
"id": "JFK query",
"request": {
"query": {
"match_all": {}
}
},
"ratings": []
}
],
metric={
"expected_reciprocal_rank": {
"maximum_relevance": 3,
"k": 20
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c1efc5cfcb3c29711bfe118f1baa28b0.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0027161 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/keyword-analyzer.asciidoc:71
[source, python]
----
resp = client.indices.create(
index="keyword_example",
settings={
"analysis": {
"analyzer": {
"rebuilt_keyword": {
"tokenizer": "keyword",
"filter": []
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c208a06212dc0cf6ac413d4f2c154296.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/flush.asciidoc:137
[source, python]
----
resp = client.indices.flush(
index="my-index-000001,my-index-000002",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c208de54369379e8d78ab201be18b6be.asciidoc 0000664 0000000 0000000 00000001310 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:234
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"longs_as_strings": {
"match_mapping_type": "string",
"match": "long_*",
"unmatch": "*_text",
"mapping": {
"type": "long"
}
}
}
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"long_num": "5",
"long_text": "foo"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/c21aaedb5752a83489476fa3b5e2e9ff.asciidoc 0000664 0000000 0000000 00000001243 14766462667 0026771 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/put-query-rule.asciidoc:120
[source, python]
----
resp = client.query_rules.put_rule(
ruleset_id="my-ruleset",
rule_id="my-rule1",
type="pinned",
criteria=[
{
"type": "contains",
"metadata": "user_query",
"values": [
"pugs",
"puggles"
]
},
{
"type": "exact",
"metadata": "user_country",
"values": [
"us"
]
}
],
actions={
"ids": [
"id1",
"id2"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c21eb4bc30087188241cbba6b6b89999.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-service-type-api.asciidoc:84
[source, python]
----
resp = client.connector.update_service_type(
connector_id="my-connector",
service_type="sharepoint_online",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c23e32775340d7bc6f46820313014d8a.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026302 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:525
[source, python]
----
resp = client.index(
index="my_test_scores_2",
pipeline="my_test_scores_pipeline",
document={
"student": "kimchy",
"grad_year": "2099",
"math_score": 1200,
"verbal_score": 800
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c267e90b7873a7c8c8af06f01e958e69.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/bi-directional-disaster-recovery.asciidoc:185
[source, python]
----
resp = client.search(
index="logs*",
size="0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c26b185952ddf9842e18493aca2de147.asciidoc 0000664 0000000 0000000 00000000501 14766462667 0026545 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:102
[source, python]
----
resp = client.index(
index="books",
document={
"name": "Snow Crash",
"author": "Neal Stephenson",
"release_date": "1992-06-01",
"page_count": 470
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c27b7d9836aa4ea756f59e9c42911721.asciidoc 0000664 0000000 0000000 00000000336 14766462667 0026502 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/scroll-api.asciidoc:35
[source, python]
----
resp = client.scroll(
scroll_id="DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c28f0b0dd3246cb91d6facb3295a61d7.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026746 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/restore-from-snapshot.asciidoc:409
[source, python]
----
resp = client.indices.close(
index="kibana_sample_data_flights,.ds-my-data-stream-2022.06.17-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c2c21e2824fbf6b7198ede30419da82b.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:529
[source, python]
----
resp = client.clear_scroll(
scroll_id="_all",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c2d7c36daac8608d2515c549b2c82436.asciidoc 0000664 0000000 0000000 00000001460 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:491
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"tile": {
"geotile_grid": {
"field": "location",
"precision": 22,
"bounds": {
"top_left": "POINT (4.9 52.4)",
"bottom_right": "POINT (5.0 52.3)"
}
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c318fde926842722825a51e5c9c326a9.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/trim-tokenfilter.asciidoc:34
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
text=" fox ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c38c882c642dd412e8fa4c3eed49d12f.asciidoc 0000664 0000000 0000000 00000000431 14766462667 0026764 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/search-as-you-type.asciidoc:162
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match_phrase_prefix": {
"my_field": "brown f"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c3b77e11b16e37e9e37e28dec922432e.asciidoc 0000664 0000000 0000000 00000000431 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-syntax.asciidoc:187
[source, python]
----
resp = client.esql.query(
query="\nFROM library\n| WHERE match(author, \"Frank Herbert\", {\"minimum_should_match\": 2, \"operator\": \"AND\"})\n| LIMIT 5\n",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c4272ad0309ffbcbe9ce96bf9fb4352a.asciidoc 0000664 0000000 0000000 00000001065 14766462667 0027124 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/context-suggest.asciidoc:140
[source, python]
----
resp = client.search(
index="place",
pretty=True,
suggest={
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"place_type": [
"cafe",
"restaurants"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c42bc6e74afc3d43cd032ec2bfd77385.asciidoc 0000664 0000000 0000000 00000000455 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/word-delimiter-tokenfilter.asciidoc:58
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
filter=[
"word_delimiter"
],
text="Neil's-Super-Duper-XL500--42+AutoCoder",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c4607ca79b2bcde39305d6f4f21cad37.asciidoc 0000664 0000000 0000000 00000000613 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:226
[source, python]
----
resp = client.esql.query(
locale="fr-FR",
query="\n ROW birth_date_string = \"2023-01-15T00:00:00.000Z\"\n | EVAL birth_date = date_parse(birth_date_string)\n | EVAL month_of_birth = DATE_FORMAT(\"MMMM\",birth_date)\n | LIMIT 5\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c464ed2001d66a1446f37659dc9efc2a.asciidoc 0000664 0000000 0000000 00000001101 14766462667 0026612 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/daterange-aggregation.asciidoc:19
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"range": {
"date_range": {
"field": "date",
"format": "MM-yyyy",
"ranges": [
{
"to": "now-10M/M"
},
{
"from": "now-10M/M"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c47f030216a3c89f92f31787fc4d5df5.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/plugins.asciidoc:56
[source, python]
----
resp = client.cat.plugins(
v=True,
s="component",
h="name,component,version,description",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c48b8bcd6f41e0d12b58e854e09ea893.asciidoc 0000664 0000000 0000000 00000000670 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:361
[source, python]
----
resp = client.index(
index="example",
document={
"location": "MULTIPOLYGON (((1002.0 200.0, 1003.0 200.0, 1003.0 300.0, 1002.0 300.0, 102.0 200.0)), ((1000.0 100.0, 1001.0 100.0, 1001.0 100.0, 1000.0 100.0, 1000.0 100.0), (1000.2 100.2, 1000.8 100.2, 1000.8 100.8, 1000.2 100.8, 1000.2 100.2)))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c4a1d03dcfb82913d0724a42b0a89f20.asciidoc 0000664 0000000 0000000 00000000232 14766462667 0026566 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/clearcache.asciidoc:158
[source, python]
----
resp = client.indices.clear_cache()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c4b727723b57052b6504bb74fe09abc6.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026527 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template.asciidoc:18
[source, python]
----
resp = client.indices.put_index_template(
name="template_1",
index_patterns=[
"template*"
],
priority=1,
template={
"settings": {
"number_of_shards": 2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c4c1a87414741a678f6cb91804daf095.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rank-feature-query.asciidoc:348
[source, python]
----
resp = client.search(
index="test",
query={
"rank_feature": {
"field": "pagerank",
"linear": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c4fadbb7f61e5f83ab3fc9cd4b82b5e5.asciidoc 0000664 0000000 0000000 00000000514 14766462667 0027264 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:246
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="my_snapshot_2099.05.06",
feature_states=[
"geoip"
],
include_global_state=False,
indices="-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c526fca1609b4c3c1d12dfd218d69a50.asciidoc 0000664 0000000 0000000 00000000400 14766462667 0026654 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:383
[source, python]
----
resp = client.reindex(
source={
"index": "my-index-000001"
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c54597143ac86540726f6422fd98b22e.asciidoc 0000664 0000000 0000000 00000001026 14766462667 0026333 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-settings.asciidoc:56
[source, python]
----
resp = client.perform_request(
"PUT",
"/_security/settings",
headers={"Content-Type": "application/json"},
body={
"security": {
"index.auto_expand_replicas": "0-all"
},
"security-tokens": {
"index.auto_expand_replicas": "0-all"
},
"security-profile": {
"index.auto_expand_replicas": "0-all"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c554a1791f29bbbcddda84c64deaba6f.asciidoc 0000664 0000000 0000000 00000000361 14766462667 0027254 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:229
[source, python]
----
resp = client.sql.query(
format="txt",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c580092fd3d36c32b09d63921708a67b.asciidoc 0000664 0000000 0000000 00000001027 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/dis-max-query.asciidoc:18
[source, python]
----
resp = client.search(
query={
"dis_max": {
"queries": [
{
"term": {
"title": "Quick pets"
}
},
{
"term": {
"body": "Quick pets"
}
}
],
"tie_breaker": 0.7
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c5802e9f3f4068fcecb6937b867b270d.asciidoc 0000664 0000000 0000000 00000000551 14766462667 0026643 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:400
[source, python]
----
resp = client.search(
aggs={
"genres": {
"terms": {
"field": "genre",
"order": {
"_count": "asc"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c580990a70028bb49cca8a6bde86bbf6.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-update-api-keys.asciidoc:242
[source, python]
----
resp = client.security.bulk_update_api_keys(
ids=[
"VuaCfGcBCdbkQm-e5aOx",
"H3_AhoIBA9hmeQJdg7ij"
],
role_descriptors={},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c5ba7c4badb5ef5ca32740106e4aa6b6.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0027073 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:42
[source, python]
----
resp = client.termvectors(
index="my-index-000001",
id="1",
fields="message",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c5bc577ff92f889225b0d2617adcb48c.asciidoc 0000664 0000000 0000000 00000000341 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/sysconfig/file-descriptors.asciidoc:29
[source, python]
----
resp = client.nodes.stats(
metric="process",
filter_path="**.max_file_descriptors",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c5cc19e48549fbc5327a9d46874bbeee.asciidoc 0000664 0000000 0000000 00000000613 14766462667 0027004 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:321
[source, python]
----
resp = client.search(
index="quantized-image-index",
knn={
"field": "image-vector",
"query_vector": [
0.1,
-2
],
"k": 10,
"num_candidates": 100
},
fields=[
"title"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c5ed7d83ade97a417aef28b9e2871e5d.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0027064 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/common-log-format-example.asciidoc:189
[source, python]
----
resp = client.search(
index="my-data-stream",
filter_path="hits.hits._source",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6151a0788a10a7f40da684d72c3255c.asciidoc 0000664 0000000 0000000 00000002620 14766462667 0026444 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/flattened.asciidoc:225
[source, python]
----
resp = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {}
},
{
"title": "Something really urgent",
"labels": {
"priority": "urgent",
"release": [
"v1.2.5",
"v1.3.0"
],
"timestamp": {
"created": 1541458026,
"closed": 1541457010
}
}
},
{
"index": {}
},
{
"title": "Somewhat less urgent",
"labels": {
"priority": "high",
"release": [
"v1.3.0"
],
"timestamp": {
"created": 1541458026,
"closed": 1541457010
}
}
},
{
"index": {}
},
{
"title": "Not urgent",
"labels": {
"priority": "low",
"release": [
"v1.2.0"
],
"timestamp": {
"created": 1541458026,
"closed": 1541457010
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c630a1f891aa9aa651f9982b832a42e1.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:923
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"drop": {
"description": "Drop documents that contain 'network.name' of 'Guest'",
"if": "ctx.network?.name != null && ctx.network.name.contains('Guest')"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6339d09f85000a6432304b0ec63b8f6.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-component-template.asciidoc:236
[source, python]
----
resp = client.cluster.put_component_template(
name="template_1",
template={
"settings": {
"number_of_shards": 1
}
},
version=123,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c639036b87d02fb864e27c4ca29ef833.asciidoc 0000664 0000000 0000000 00000001704 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/diversified-sampler-aggregation.asciidoc:99
[source, python]
----
resp = client.search(
index="stackoverflow",
size="0",
query={
"query_string": {
"query": "tags:kibana"
}
},
runtime_mappings={
"tags.hash": {
"type": "long",
"script": "emit(doc['tags'].hashCode())"
}
},
aggs={
"my_unbiased_sample": {
"diversified_sampler": {
"shard_size": 200,
"max_docs_per_value": 3,
"field": "tags.hash"
},
"aggs": {
"keywords": {
"significant_terms": {
"field": "tags",
"exclude": [
"kibana"
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c64b61bedb21b9def8fce5092e677af9.asciidoc 0000664 0000000 0000000 00000000705 14766462667 0027140 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters.asciidoc:52
[source, python]
----
resp = client.search(
suggest={
"my-suggest-1": {
"text": "tring out Elasticsearch",
"term": {
"field": "message"
}
},
"my-suggest-2": {
"text": "kmichy",
"term": {
"field": "user.id"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c654b09be981be12fc7be0ba33f8652b.asciidoc 0000664 0000000 0000000 00000003172 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:313
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "multilinestring",
"coordinates": [
[
[
1002,
200
],
[
1003,
200
],
[
1003,
300
],
[
1002,
300
]
],
[
[
1000,
100
],
[
1001,
100
],
[
1001,
100
],
[
1000,
100
]
],
[
[
1000.2,
100.2
],
[
1000.8,
100.2
],
[
1000.8,
100.8
],
[
1000.2,
100.8
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c65b00a285f510dcd2865aa3539b4e03.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026516 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/apis/get-transform.asciidoc:106
[source, python]
----
resp = client.transform.get_transform(
size="10",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c66dab0b114fa3e228e1c0e0e5a99b60.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0026731 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:247
[source, python]
----
resp = client.search(
index="my-index-000001",
fields=[
"user.first"
],
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c67b0f00c2e690303c0e5af2f51e0fea.asciidoc 0000664 0000000 0000000 00000000672 14766462667 0026736 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters.asciidoc:13
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": "tring out Elasticsearch"
}
},
suggest={
"my-suggestion": {
"text": "tring out Elasticsearch",
"term": {
"field": "message"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6abe91b5527870face2b826f37ba1da.asciidoc 0000664 0000000 0000000 00000001051 14766462667 0027027 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:438
[source, python]
----
resp = client.search(
index="image-index",
query={
"match": {
"title": {
"query": "mountain lake",
"boost": 0.9
}
}
},
knn={
"field": "image-vector",
"query_vector": [
54,
10,
-2
],
"k": 5,
"num_candidates": 50,
"boost": 0.1
},
size=10,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6b365c7da97d7e50f36820a7d36f548.asciidoc 0000664 0000000 0000000 00000000451 14766462667 0026561 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/disk/decrease-data-node-disk-usage.asciidoc:127
[source, python]
----
resp = client.indices.put_settings(
index="my_index,my_other_index",
settings={
"index.number_of_replicas": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6b5c695a9b757b5e7325345b206bde5.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/delete-pipeline.asciidoc:88
[source, python]
----
resp = client.ingest.delete_pipeline(
id="pipeline-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6b8713bd49661d69d6b868f5b991d17.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-set-query.asciidoc:85
[source, python]
----
resp = client.index(
index="job-candidates",
id="1",
refresh=True,
document={
"name": "Jane Smith",
"programming_languages": [
"c++",
"java"
],
"required_matches": 2
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6bdd5c7de79d6d9ac8e33a397b511e8.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0027064 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:327
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"user_id": {
"type": "long"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6d39d22188dc7bbfdad811a94cbcc2b.asciidoc 0000664 0000000 0000000 00000000407 14766462667 0027172 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/classic-tokenizer.asciidoc:25
[source, python]
----
resp = client.indices.analyze(
tokenizer="classic",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c6d5e3b6ff9c665ec5344a4bfa7add80.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0027130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// modules/network/tracers.asciidoc:106
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"transport.tracer.include": "*",
"transport.tracer.exclude": "internal:coordination/fault_detection/*"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c733f20641b20e124f26198534755d6d.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026236 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations.asciidoc:149
[source, python]
----
resp = client.search(
index="my-index-000001",
aggs={
"my-first-agg-name": {
"terms": {
"field": "my-field"
}
},
"my-second-agg-name": {
"avg": {
"field": "my-other-field"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c765ce78f3605c0e70d213f22aac8a53.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/put-autoscaling-policy.asciidoc:73
[source, python]
----
resp = client.autoscaling.put_autoscaling_policy(
name="my_autoscaling_policy",
policy={
"roles": [
"data_hot"
],
"deciders": {
"fixed": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c76cb6a080959b0d87afd780cf814be2.asciidoc 0000664 0000000 0000000 00000001172 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/match-bool-prefix-query.asciidoc:28
[source, python]
----
resp = client.search(
query={
"bool": {
"should": [
{
"term": {
"message": "quick"
}
},
{
"term": {
"message": "brown"
}
},
{
"prefix": {
"message": "f"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c793efe7280e9b6e09981c4d4f832348.asciidoc 0000664 0000000 0000000 00000001321 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/ip.asciidoc:166
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"ip": {
"type": "ip"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"ip": [
"192.168.0.1",
"192.168.0.1",
"10.10.12.123",
"2001:db8::1:0:0:1",
"::afff:4567:890a"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/c79b284fa7a5d7421c6daae62bc697f9.asciidoc 0000664 0000000 0000000 00000000323 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/uni-directional-disaster-recovery.asciidoc:163
[source, python]
----
resp = client.indices.delete(
index="kibana_sample_data_ecommerce",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c79e8ee86b332302b25c5c1f5f4f89d7.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/document-level-security.asciidoc:67
[source, python]
----
resp = client.security.put_role(
name="dept_role",
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
],
"query": {
"term": {
"department_id": 12
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c8210f23c10d0642f24c1e43faa4deda.asciidoc 0000664 0000000 0000000 00000001752 14766462667 0026727 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-a-data-stream.asciidoc:144
[source, python]
----
resp = client.cluster.put_component_template(
name="my-mappings",
template={
"mappings": {
"properties": {
"@timestamp": {
"type": "date",
"format": "date_optional_time||epoch_millis"
},
"message": {
"type": "wildcard"
}
}
}
},
meta={
"description": "Mappings for @timestamp and message fields",
"my-custom-meta-field": "More arbitrary metadata"
},
)
print(resp)
resp1 = client.cluster.put_component_template(
name="my-settings",
template={
"settings": {
"index.lifecycle.name": "my-lifecycle-policy"
}
},
meta={
"description": "Settings for ILM",
"my-custom-meta-field": "More arbitrary metadata"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/c87038b96ab06d9a741a130f94de4f02.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026530 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete.asciidoc:144
[source, python]
----
resp = client.delete(
index="my-index-000001",
id="1",
timeout="5m",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c873f9cd093e26515148f052e28c7805.asciidoc 0000664 0000000 0000000 00000000360 14766462667 0026335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-snapshot.asciidoc:248
[source, python]
----
resp = client.ml.get_model_snapshots(
job_id="high_sum_total_sales",
start="1575402236000",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c8aa8e8c0ac160b8c4efd1ac3b9f48f3.asciidoc 0000664 0000000 0000000 00000000776 14766462667 0027207 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/ingest-vectors.asciidoc:35
[source, python]
----
resp = client.indices.create(
index="amazon-reviews",
mappings={
"properties": {
"review_vector": {
"type": "dense_vector",
"dims": 8,
"index": True,
"similarity": "cosine"
},
"review_text": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c8bbf362f06a0d8dab33ec0d99743343.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0026701 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/classic-tokenfilter.asciidoc:21
[source, python]
----
resp = client.indices.analyze(
tokenizer="classic",
filter=[
"classic"
],
text="The 2 Q.U.I.C.K. Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c8e2109b19d50467ab83a40006462e9f.asciidoc 0000664 0000000 0000000 00000000347 14766462667 0026376 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/enrich/execute-enrich-policy.asciidoc:45
[source, python]
----
resp = client.enrich.execute_policy(
name="my-policy",
wait_for_completion=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c92b761c18d8e1c3df75c04a21503e16.asciidoc 0000664 0000000 0000000 00000001147 14766462667 0026531 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:360
[source, python]
----
resp = client.cluster.put_component_template(
name="logs-my_app-settings",
template={
"settings": {
"index.default_pipeline": "logs-my_app-default",
"index.lifecycle.name": "logs"
}
},
)
print(resp)
resp1 = client.indices.put_index_template(
name="logs-my_app-template",
index_patterns=[
"logs-my_app-*"
],
data_stream={},
priority=500,
composed_of=[
"logs-my_app-settings",
"logs-my_app-mappings"
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/c956bf1f0829a5f0357c0494ed8b6ca3.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-template-api.asciidoc:43
[source, python]
----
resp = client.search_template(
index="my-index",
id="my-search-template",
params={
"query_string": "hello world",
"from": 0,
"size": 10
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c95d5317525c2ff625e6971c277247af.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026421 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/keyword-tokenizer.asciidoc:61
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
filter=[
"lowercase"
],
text="john.SMITH@example.COM",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c96669604d0e66a097ddf3093b025ccd.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations.asciidoc:126
[source, python]
----
resp = client.search(
index="my-index-000001",
size=0,
aggs={
"my-agg-name": {
"terms": {
"field": "my-field"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c96e5740b79f703c5b77e3ddc9fdf3a0.asciidoc 0000664 0000000 0000000 00000000770 14766462667 0027004 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-a-data-stream.asciidoc:210
[source, python]
----
resp = client.indices.put_index_template(
name="my-index-template",
index_patterns=[
"my-data-stream*"
],
data_stream={},
composed_of=[
"my-mappings",
"my-settings"
],
priority=500,
meta={
"description": "Template for my time series data",
"my-custom-meta-field": "More arbitrary metadata"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c97fd95ebdcf56cc973582e37f732ed2.asciidoc 0000664 0000000 0000000 00000000252 14766462667 0027014 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/enrich/get-enrich-policy.asciidoc:182
[source, python]
----
resp = client.enrich.get_policy()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c9a6ab0a56bb0177f158277185f68302.asciidoc 0000664 0000000 0000000 00000002242 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/subobjects.asciidoc:20
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"metrics": {
"type": "object",
"subobjects": False,
"properties": {
"time": {
"type": "long"
},
"time.min": {
"type": "long"
},
"time.max": {
"type": "long"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="metric_1",
document={
"metrics.time": 100,
"metrics.time.min": 10,
"metrics.time.max": 900
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="metric_2",
document={
"metrics": {
"time": 100,
"time.min": 10,
"time.max": 900
}
},
)
print(resp2)
resp3 = client.indices.get_mapping(
index="my-index-000001",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/c9afa715021f2e6450e72ac73271960c.asciidoc 0000664 0000000 0000000 00000001114 14766462667 0026444 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/parent-aggregation.asciidoc:39
[source, python]
----
resp = client.index(
index="parent_example",
id="1",
document={
"join": {
"name": "question"
},
"body": "I have Windows 2003 server and i bought a new Windows 2008 server...",
"title": "Whats the best way to file transfer my site from server to a newer one?",
"tags": [
"windows-server-2003",
"windows-server-2008",
"file-transfer"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c9b6cbe93c8bd23e3f658c3af4e70092.asciidoc 0000664 0000000 0000000 00000003014 14766462667 0026766 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/edgengram-tokenizer.asciidoc:264
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"autocomplete": {
"tokenizer": "autocomplete",
"filter": [
"lowercase"
]
},
"autocomplete_search": {
"tokenizer": "lowercase"
}
},
"tokenizer": {
"autocomplete": {
"type": "edge_ngram",
"min_gram": 2,
"max_gram": 10,
"token_chars": [
"letter"
]
}
}
}
},
mappings={
"properties": {
"title": {
"type": "text",
"analyzer": "autocomplete",
"search_analyzer": "autocomplete_search"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"title": "Quick Foxes"
},
)
print(resp1)
resp2 = client.indices.refresh(
index="my-index-000001",
)
print(resp2)
resp3 = client.search(
index="my-index-000001",
query={
"match": {
"title": {
"query": "Quick Fo",
"operator": "and"
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/c9c396b94bb88098477e2b08b55a12ee.asciidoc 0000664 0000000 0000000 00000002207 14766462667 0026562 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/bulk.asciidoc:774
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"dynamic_templates": [
{
"geo_point": {
"mapping": {
"type": "geo_point"
}
}
}
]
},
)
print(resp)
resp1 = client.bulk(
operations=[
{
"index": {
"_index": "my_index",
"_id": "1",
"dynamic_templates": {
"work_location": "geo_point"
}
}
},
{
"field": "value1",
"work_location": "41.12,-71.34",
"raw_location": "41.12,-71.34"
},
{
"create": {
"_index": "my_index",
"_id": "2",
"dynamic_templates": {
"home_location": "geo_point"
}
}
},
{
"field": "value2",
"home_location": "41.12,-71.34"
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/c9ce07a7d3d8a317f08535bdd3aa69a3.asciidoc 0000664 0000000 0000000 00000000575 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:224
[source, python]
----
resp = client.update(
index="test",
id="1",
script={
"source": "if (ctx._source.tags.contains(params.tag)) { ctx.op = 'delete' } else { ctx.op = 'noop' }",
"lang": "painless",
"params": {
"tag": "green"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/c9d9a1d751f20f6197c825cb4378fe9f.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026651 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-query.asciidoc:21
[source, python]
----
resp = client.search(
query={
"terms": {
"user.id": [
"kimchy",
"elkbee"
],
"boost": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ca06db2aa4747910278f96315f7be94b.asciidoc 0000664 0000000 0000000 00000001142 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:356
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"pin.location": {
"top": 40.73,
"left": -74.1,
"bottom": 40.01,
"right": -71.12
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ca08e511e5907d258081b10a1a9f0072.asciidoc 0000664 0000000 0000000 00000001240 14766462667 0026350 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:454
[source, python]
----
resp = client.indices.put_index_template(
name="new-data-stream-template",
index_patterns=[
"new-data-stream*"
],
data_stream={},
priority=500,
template={
"mappings": {
"properties": {
"@timestamp": {
"type": "date_nanos"
}
}
},
"settings": {
"sort.field": [
"@timestamp"
],
"sort.order": [
"desc"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ca1cc4bcef22fdf9153833bfe6a55294.asciidoc 0000664 0000000 0000000 00000001154 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:367
[source, python]
----
resp = client.bulk(
refresh=True,
operations=[
{
"index": {
"_index": ".ds-my-data-stream-2099.03.08-000003",
"_id": "bfspvnIBr7VVZlfp2lqX",
"if_seq_no": 0,
"if_primary_term": 1
}
},
{
"@timestamp": "2099-03-08T11:06:07.000Z",
"user": {
"id": "8a4f500d"
},
"message": "Login successful"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ca3bcd6278510ebced5f74484033cb36.asciidoc 0000664 0000000 0000000 00000000257 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/apis/get-script-languages-api.asciidoc:17
[source, python]
----
resp = client.get_script_languages()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ca5ae0eb7709f3807bc6239cd4bd9141.asciidoc 0000664 0000000 0000000 00000000247 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:246
[source, python]
----
resp = client.security.get_api_key()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ca5dda98e977125d40a7fe1e178e213f.asciidoc 0000664 0000000 0000000 00000000555 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/sparse-vector-query.asciidoc:134
[source, python]
----
resp = client.search(
index="my-index",
query={
"sparse_vector": {
"field": "ml.tokens",
"inference_id": "my-elser-model",
"query": "How is the weather in Jamaica?"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ca98afbd6a90f63e02f62239d225313b.asciidoc 0000664 0000000 0000000 00000000374 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/dangling-index-import.asciidoc:65
[source, python]
----
resp = client.dangling_indices.import_dangling_index(
index_uuid="zmM4e0JtBkeUjiHD-MihPQ",
accept_data_loss=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/caaafef1a76c2bec677704c2dc233218.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0027021 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/simulate-index.asciidoc:39
[source, python]
----
resp = client.indices.simulate_index_template(
name="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/caab99520d3fe41f6154d74a7f696057.asciidoc 0000664 0000000 0000000 00000000264 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/delete-index.asciidoc:16
[source, python]
----
resp = client.indices.delete(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cac74a85c6b352a6e23d8673abae126f.asciidoc 0000664 0000000 0000000 00000001437 14766462667 0026756 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/frequent-item-sets-aggregation.asciidoc:257
[source, python]
----
resp = client.async_search.submit(
index="kibana_sample_data_ecommerce",
size=0,
aggs={
"my_agg": {
"frequent_item_sets": {
"minimum_set_size": 3,
"fields": [
{
"field": "category.keyword"
},
{
"field": "geoip.city_name"
}
],
"size": 3,
"filter": {
"term": {
"geoip.continent_name": "Europe"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cafed0e2c2b1d1574eb4a5ecd514a97a.asciidoc 0000664 0000000 0000000 00000000420 14766462667 0027153 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/split-index.asciidoc:16
[source, python]
----
resp = client.indices.split(
index="my-index-000001",
target="split-my-index-000001",
settings={
"index.number_of_shards": 2
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cb0c3223fd45148497df73adfba2e9ce.asciidoc 0000664 0000000 0000000 00000000537 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:674
[source, python]
----
resp = client.reindex(
source={
"index": "my-index-000001",
"query": {
"term": {
"user.id": "kimchy"
}
}
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cb16f1ff85399ddaa418834be580c9de.asciidoc 0000664 0000000 0000000 00000000671 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:136
[source, python]
----
resp = client.security.put_role(
name="slm-admin",
cluster=[
"manage_slm",
"cluster:admin/snapshot/*"
],
indices=[
{
"names": [
".slm-history-*"
],
"privileges": [
"all"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cb1d2a787bbe88974cfc5f132556a51c.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:421
[source, python]
----
resp = client.indices.delete_data_stream(
name="*",
expand_wildcards="all",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cb2f70601cb004b9ece9b0b43a9dc21a.asciidoc 0000664 0000000 0000000 00000000332 14766462667 0027002 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shard-request-cache.asciidoc:49
[source, python]
----
resp = client.indices.clear_cache(
index="my-index-000001,my-index-000002",
request=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cb3c483816b6ea150ff6c559fa144d32.asciidoc 0000664 0000000 0000000 00000001154 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-tutorial.asciidoc:75
[source, python]
----
resp = client.ilm.put_lifecycle(
name="timeseries_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_primary_shard_size": "50GB",
"max_age": "30d"
}
}
},
"delete": {
"min_age": "90d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cb4388b72d41c431ec9ca8255b2f65fb.asciidoc 0000664 0000000 0000000 00000001144 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/shape-query.asciidoc:27
[source, python]
----
resp = client.indices.create(
index="example",
mappings={
"properties": {
"geometry": {
"type": "shape"
}
}
},
)
print(resp)
resp1 = client.index(
index="example",
id="1",
refresh="wait_for",
document={
"name": "Lucky Landing",
"geometry": {
"type": "point",
"coordinates": [
1355.400544,
5255.530286
]
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/cb71332115c92cfb89375abd30b8bbbb.asciidoc 0000664 0000000 0000000 00000000216 14766462667 0026737 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat.asciidoc:42
[source, python]
----
resp = client.cat.master(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cb71c6ecfb8b19725c374572444e5d32.asciidoc 0000664 0000000 0000000 00000000623 14766462667 0026546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:366
[source, python]
----
resp = client.search(
index="my-index-000001",
aggs={
"avg_start": {
"avg": {
"field": "measures.start"
}
},
"avg_end": {
"avg": {
"field": "measures.end"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cba3462a307e2483c14e3e198f6960e3.asciidoc 0000664 0000000 0000000 00000001442 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/put-lifecycle.asciidoc:66
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"_meta": {
"description": "used for nginx log",
"project": {
"name": "myProject",
"department": "myDepartment"
}
},
"phases": {
"warm": {
"min_age": "10d",
"actions": {
"forcemerge": {
"max_num_segments": 1
}
}
},
"delete": {
"min_age": "30d",
"actions": {
"delete": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cbc2b5595890f87165aab1a741b1d22c.asciidoc 0000664 0000000 0000000 00000001540 14766462667 0026605 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-manual.asciidoc:224
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-timestamp-pipeline",
description="Shifts the @timestamp to the last 15 minutes",
processors=[
{
"set": {
"field": "ingest_time",
"value": "{{_ingest.timestamp}}"
}
},
{
"script": {
"lang": "painless",
"source": "\n def delta = ChronoUnit.SECONDS.between(\n ZonedDateTime.parse(\"2022-06-21T15:49:00Z\"),\n ZonedDateTime.parse(ctx[\"ingest_time\"])\n );\n ctx[\"@timestamp\"] = ZonedDateTime.parse(ctx[\"@timestamp\"]).plus(delta,ChronoUnit.SECONDS).toString();\n "
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cbfd6f23f8283e64ec3157c65bb722c4.asciidoc 0000664 0000000 0000000 00000000265 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat.asciidoc:218
[source, python]
----
resp = client.cat.templates(
v=True,
s="order:desc,index_patterns",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cc0cca5556ec6224c7134c233734beed.asciidoc 0000664 0000000 0000000 00000000233 14766462667 0026660 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/getting-started.asciidoc:132
[source, python]
----
resp = client.cluster.remote_info()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cc56be758d5d75febbd975786187c861.asciidoc 0000664 0000000 0000000 00000000356 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-service-token.asciidoc:103
[source, python]
----
resp = client.security.create_service_token(
namespace="elastic",
service="fleet-server",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cc5eefcc2102aae7e87b0c87b4af10b8.asciidoc 0000664 0000000 0000000 00000001454 14766462667 0027167 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/multivalued-fields.asciidoc:54
[source, python]
----
resp = client.indices.create(
index="mv",
mappings={
"properties": {
"b": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="mv",
refresh=True,
operations=[
{
"index": {}
},
{
"a": 1,
"b": [
"foo",
"foo",
"bar"
]
},
{
"index": {}
},
{
"a": 2,
"b": [
"bar",
"bar"
]
}
],
)
print(resp1)
resp2 = client.esql.query(
query="FROM mv | LIMIT 2",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/cc7f1c74ede6810e2c9db19256d6b653.asciidoc 0000664 0000000 0000000 00000000455 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/common-script-uses.asciidoc:193
[source, python]
----
resp = client.search(
index="my-index",
query={
"match": {
"http.response": "304"
}
},
fields=[
"http.response"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cc90639f2e65bd89cb73296cac6135cf.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/delete-trained-models.asciidoc:60
[source, python]
----
resp = client.ml.delete_trained_model(
model_id="regression-job-one-1574775307356",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cc9dac8db7a1482e2fbe3235197c3de1.asciidoc 0000664 0000000 0000000 00000000715 14766462667 0027040 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/restore-snapshot-api.asciidoc:248
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="snapshot_2",
wait_for_completion=True,
indices="index_1,index_2",
ignore_unavailable=True,
include_global_state=False,
rename_pattern="index_(.+)",
rename_replacement="restored_index_$1",
include_aliases=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ccc613951c61f0b17e1ed8a2d3ae54a2.asciidoc 0000664 0000000 0000000 00000003320 14766462667 0026734 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/simulate-ingest.asciidoc:62
[source, python]
----
resp = client.simulate.ingest(
docs=[
{
"_index": "my-index",
"_id": "id",
"_source": {
"foo": "bar"
}
},
{
"_index": "my-index",
"_id": "id",
"_source": {
"foo": "rab"
}
}
],
pipeline_substitutions={
"my-pipeline": {
"processors": [
{
"set": {
"field": "field3",
"value": "value3"
}
}
]
}
},
component_template_substitutions={
"my-component-template": {
"template": {
"mappings": {
"dynamic": "true",
"properties": {
"field3": {
"type": "keyword"
}
}
},
"settings": {
"index": {
"default_pipeline": "my-pipeline"
}
}
}
}
},
index_template_substitutions={
"my-index-template": {
"index_patterns": [
"my-index-*"
],
"composed_of": [
"component_template_1",
"component_template_2"
]
}
},
mapping_addition={
"dynamic": "strict",
"properties": {
"foo": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ccec66fb20d5ede6c691e0890cfe402a.asciidoc 0000664 0000000 0000000 00000000342 14766462667 0027115 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-job.asciidoc:91
[source, python]
----
resp = client.ml.delete_job(
job_id="total-requests",
wait_for_completion=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ccf84c1e5e5602a9e841cb8f7e3bb29f.asciidoc 0000664 0000000 0000000 00000000743 14766462667 0027056 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/standard-analyzer.asciidoc:284
[source, python]
----
resp = client.indices.create(
index="standard_example",
settings={
"analysis": {
"analyzer": {
"rebuilt_standard": {
"tokenizer": "standard",
"filter": [
"lowercase"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cd16538654e0f834ff19fe6cf329c398.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0026576 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:65
[source, python]
----
resp = client.indices.create(
index="hugging-face-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 768,
"element_type": "float"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cd373a6eb1ef4748616500b26fab3006.asciidoc 0000664 0000000 0000000 00000000722 14766462667 0026523 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/async-search.asciidoc:21
[source, python]
----
resp = client.async_search.submit(
index="sales*",
size="0",
sort=[
{
"date": {
"order": "asc"
}
}
],
aggs={
"sale_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "1d"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cd38c601ab293a6ec0e2df71d0c96b58.asciidoc 0000664 0000000 0000000 00000001306 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template.asciidoc:353
[source, python]
----
resp = client.cluster.put_component_template(
name="template_with_2_shards",
template={
"settings": {
"index.number_of_shards": 2
}
},
)
print(resp)
resp1 = client.cluster.put_component_template(
name="template_with_3_shards",
template={
"settings": {
"index.number_of_shards": 3
}
},
)
print(resp1)
resp2 = client.indices.put_index_template(
name="template_1",
index_patterns=[
"t*"
],
composed_of=[
"template_with_2_shards",
"template_with_3_shards"
],
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/cd67ad2c09fafef2d441c3502d0bb3d7.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0027102 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/apis/put-lifecycle.asciidoc:84
[source, python]
----
resp = client.indices.put_data_lifecycle(
name="my-data-stream",
data_retention="7d",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cd6eee201a233b989ac1f2794fa6d640.asciidoc 0000664 0000000 0000000 00000001001 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1107
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
filter_path="-hits.events._source",
runtime_mappings={
"day_of_week": {
"type": "keyword",
"script": "emit(doc['@timestamp'].value.dayOfWeekEnum.toString())"
}
},
query="\n process where process.name == \"regsvr32.exe\"\n ",
fields=[
"@timestamp",
"day_of_week"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cd6fa7f63c93bb04824acd3a7d1f8de3.asciidoc 0000664 0000000 0000000 00000001563 14766462667 0027125 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-not-query.asciidoc:13
[source, python]
----
resp = client.search(
query={
"span_not": {
"include": {
"span_term": {
"field1": "hoya"
}
},
"exclude": {
"span_near": {
"clauses": [
{
"span_term": {
"field1": "la"
}
},
{
"span_term": {
"field1": "hoya"
}
}
],
"slop": 0,
"in_order": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cd7da0c3769682f546cc1888e569382e.asciidoc 0000664 0000000 0000000 00000001007 14766462667 0026513 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:776
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match_phrase": {
"message": "number 1"
}
},
highlight={
"fields": {
"message": {
"type": "plain",
"fragment_size": 15,
"number_of_fragments": 3,
"fragmenter": "span"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cd8006165ac64f1ef99af48e5a35a25b.asciidoc 0000664 0000000 0000000 00000000332 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-app-privileges.asciidoc:64
[source, python]
----
resp = client.security.get_privileges(
application="myapp",
name="read",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cd93919e13f656ad2e6629f45c579b93.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026513 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shard-stores.asciidoc:120
[source, python]
----
resp = client.indices.shard_stores(
index="test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cda045dfd79acd160ed8668f2ee17ea7.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0027132 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/term-query.asciidoc:170
[source, python]
----
resp = client.search(
index="my-index-000001",
pretty=True,
query={
"match": {
"full_text": "Quick Brown Foxes!"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdb68b3f565df7c85e52a55864b37d40.asciidoc 0000664 0000000 0000000 00000000471 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:364
[source, python]
----
resp = client.indices.create(
index="my-new-index-000001",
mappings={
"properties": {
"user_id": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdb7613b445e6ed6e8b473f9cae1af90.asciidoc 0000664 0000000 0000000 00000001707 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/intervals-query.asciidoc:497
[source, python]
----
resp = client.search(
query={
"intervals": {
"my_text": {
"all_of": {
"ordered": True,
"max_gaps": 1,
"intervals": [
{
"match": {
"query": "my favorite food",
"max_gaps": 0,
"ordered": True
}
},
{
"match": {
"query": "cold porridge",
"max_gaps": 4,
"ordered": True
}
}
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdc04e6d3d37f036c7045ee4a582ef06.asciidoc 0000664 0000000 0000000 00000001367 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:610
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"strings_as_keywords": {
"match_mapping_type": "string",
"mapping": {
"type": "text",
"norms": False,
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdc38c98320a0df705ec8d173c725375.asciidoc 0000664 0000000 0000000 00000000532 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-grid-query.asciidoc:287
[source, python]
----
resp = client.search(
index="my_locations",
size=0,
aggs={
"grouped": {
"geohex_grid": {
"field": "location",
"precision": 1
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdce7bc083dfb36e6f1d465a5c9d5049.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0027051 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connector-sync-jobs-api.asciidoc:56
[source, python]
----
resp = client.perform_request(
"GET",
"/_connector/_sync_job",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdd29b01e730b3996de68a2788050021.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0026374 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/enrich/delete-enrich-policy.asciidoc:42
[source, python]
----
resp = client.enrich.delete_policy(
name="my-policy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdd7127681254f4d614cc075f9e6fbcf.asciidoc 0000664 0000000 0000000 00000000425 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:427
[source, python]
----
resp = client.delete_by_query(
index="my-index-000001",
query={
"term": {
"user.id": "kimchy"
}
},
max_docs=1,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cde19d110a58317610033ea3dcb0eb80.asciidoc 0000664 0000000 0000000 00000001473 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:737
[source, python]
----
resp = client.render_search_template(
source="\n {\n \"query\": {\n \"match\": {\n {{#query_message}}\n {{#query_string}}\n \"message\": \"Hello {{#first_name_section}}{{first_name}}{{/first_name_section}} {{#last_name_section}}{{last_name}}{{/last_name_section}}\"\n {{/query_string}}\n {{/query_message}}\n }\n }\n }\n ",
params={
"query_message": {
"query_string": {
"first_name_section": {
"first_name": "John"
},
"last_name_section": {
"last_name": "kimchy"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cde4104a29dfe942d55863cdd8718627.asciidoc 0000664 0000000 0000000 00000000254 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/start-slm.asciidoc:76
[source, python]
----
resp = client.slm.get_status()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdf400299acd1c7b1b7bb42e284e3d08.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0026742 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:141
[source, python]
----
resp = client.update(
index="test",
id="1",
script={
"source": "ctx._source.tags.add(params.tag)",
"lang": "painless",
"params": {
"tag": "blue"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cdfd4fef983c1c0fe8d7417f67d01eae.asciidoc 0000664 0000000 0000000 00000000375 14766462667 0027222 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/red-yellow-cluster-status.asciidoc:157
[source, python]
----
resp = client.indices.put_settings(
settings={
"index.number_of_replicas": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce0a1aba713b0448b0c6a504af7b3a08.asciidoc 0000664 0000000 0000000 00000000240 14766462667 0026707 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:339
[source, python]
----
resp = client.slm.get_stats()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce0c3d7330727f7673cf68fc9a1cfb86.asciidoc 0000664 0000000 0000000 00000000267 14766462667 0026724 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/clearcache.asciidoc:17
[source, python]
----
resp = client.indices.clear_cache(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce247fc08371e1b30cb52195e521c076.asciidoc 0000664 0000000 0000000 00000001324 14766462667 0026443 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:219
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"pin.location": {
"top_left": [
-74.1,
40.73
],
"bottom_right": [
-71.12,
40.01
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce2c2e8f5a2e4daf051b6e10122e5aae.asciidoc 0000664 0000000 0000000 00000000614 14766462667 0027070 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:519
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"text_embedding": {
"type": "dense_vector",
"dims": 384,
"index_options": {
"type": "int4_hnsw"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce3c391c2b1915cfc44a2917bca71d19.asciidoc 0000664 0000000 0000000 00000001035 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/put-dfanalytics.asciidoc:650
[source, python]
----
resp = client.ml.put_data_frame_analytics(
id="loganalytics",
description="Outlier detection on log data",
source={
"index": "logdata"
},
dest={
"index": "logdata_out"
},
analysis={
"outlier_detection": {
"compute_feature_influence": True,
"outlier_fraction": 0.05,
"standardization_enabled": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce725697f93b3eebb3a266314568565a.asciidoc 0000664 0000000 0000000 00000001073 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/fingerprint-analyzer.asciidoc:159
[source, python]
----
resp = client.indices.create(
index="fingerprint_example",
settings={
"analysis": {
"analyzer": {
"rebuilt_fingerprint": {
"tokenizer": "standard",
"filter": [
"lowercase",
"asciifolding",
"fingerprint"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce8471d31e5d60309e142feb040fd2f8.asciidoc 0000664 0000000 0000000 00000000247 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/query-watches.asciidoc:73
[source, python]
----
resp = client.watcher.query_watches()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce899fcf55da72fc32e623d1ad88b301.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/ignore-missing-component-templates.asciidoc:72
[source, python]
----
resp = client.cluster.put_component_template(
name="logs-foo_component2",
template={
"mappings": {
"properties": {
"host.ip": {
"type": "ip"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ce8eebfb810335803630abe83278bee7.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0026707 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:253
[source, python]
----
resp = client.security.get_api_key(
active_only=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cecfaa659af6646b3b67d7b311586fa0.asciidoc 0000664 0000000 0000000 00000002165 14766462667 0026767 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/attachment.asciidoc:396
[source, python]
----
resp = client.ingest.put_pipeline(
id="attachment",
description="Extract attachment information from arrays",
processors=[
{
"foreach": {
"field": "attachments",
"processor": {
"attachment": {
"target_field": "_ingest._value.attachment",
"field": "_ingest._value.data",
"remove_binary": True
}
}
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="attachment",
document={
"attachments": [
{
"filename": "ipsum.txt",
"data": "dGhpcyBpcwpqdXN0IHNvbWUgdGV4dAo="
},
{
"filename": "test.txt",
"data": "VGhpcyBpcyBhIHRlc3QK"
}
]
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/cedb56a71cc743d80263ce352bb21720.asciidoc 0000664 0000000 0000000 00000000600 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-elser.asciidoc:157
[source, python]
----
resp = client.inference.put(
task_type="sparse_embedding",
inference_id="my-elser-model",
inference_config={
"service": "elser",
"service_settings": {
"num_allocations": 1,
"num_threads": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cee491dd0a8d10ed0cb11a2faa0c99f0.asciidoc 0000664 0000000 0000000 00000001020 14766462667 0027137 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/infer-trained-model.asciidoc:1185
[source, python]
----
resp = client.ml.infer_trained_model(
model_id="model2",
docs=[
{
"text_field": "The Amazon rainforest covers most of the Amazon basin in South America"
}
],
inference_config={
"ner": {
"tokenization": {
"bert": {
"truncate": "first"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cee591c1fc70d4f180c623a3a6d07755.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-tokens.asciidoc:78
[source, python]
----
resp = client.security.get_token(
grant_type="client_credentials",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cf23f18761df33f08bc6f6d1875496fd.asciidoc 0000664 0000000 0000000 00000000453 14766462667 0026647 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:399
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"routing.allocation.total_shards_per_node": 5
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cf47cd4a39cd62a3ecad919e54a67bca.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/ignored-field.asciidoc:36
[source, python]
----
resp = client.search(
query={
"term": {
"_ignored": "@timestamp"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cf5dab4334783ca9b8942eab68fb7174.asciidoc 0000664 0000000 0000000 00000002171 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/nested-aggregation.asciidoc:114
[source, python]
----
resp = client.search(
index="products",
size="0",
query={
"match": {
"name": "led tv"
}
},
aggs={
"resellers": {
"nested": {
"path": "resellers"
},
"aggs": {
"filter_reseller": {
"filter": {
"bool": {
"filter": [
{
"term": {
"resellers.reseller": "companyB"
}
}
]
}
},
"aggs": {
"min_price": {
"min": {
"field": "resellers.price"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cf75a880c749a2f2010a8ec3f348e5c3.asciidoc 0000664 0000000 0000000 00000000450 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1391
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
keep_on_completion=True,
wait_for_completion_timeout="2s",
query="\n process where process.name == \"cmd.exe\"\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cf8ca470156698dbf47fdc822d0a714f.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/get-desired-nodes.asciidoc:70
[source, python]
----
resp = client.perform_request(
"GET",
"/_internal/desired_nodes/_latest",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cf9f51d719a2e90ffe36ed6fe56a4a69.asciidoc 0000664 0000000 0000000 00000001027 14766462667 0027067 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:83
[source, python]
----
resp = client.security.put_role(
name="remote-replication",
cluster=[
"manage_ccr"
],
indices=[
{
"names": [
"follower-index-name"
],
"privileges": [
"monitor",
"read",
"write",
"manage_follow_index"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cfad3631be0634ee49c424f9ccec62d9.asciidoc 0000664 0000000 0000000 00000000306 14766462667 0027043 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-api-keys.asciidoc:174
[source, python]
----
resp = client.security.invalidate_api_key(
owner=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cfd4b34f35e531a20739a3b308d57134.asciidoc 0000664 0000000 0000000 00000000637 14766462667 0026452 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:199
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_docs": 100000000
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/cffce059425d3d21e7f9571500d63524.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/delete-roles.asciidoc:46
[source, python]
----
resp = client.security.delete_role(
name="my_admin_role",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d003ee256d24aa6000bd9dbf1d608dc5.asciidoc 0000664 0000000 0000000 00000001036 14766462667 0026731 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-elser.asciidoc:78
[source, python]
----
resp = client.ingest.put_pipeline(
id="elser-v2-test",
processors=[
{
"inference": {
"model_id": ".elser_model_2",
"input_output": [
{
"input_field": "content",
"output_field": "content_embedding"
}
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d003f9110e5a474230abe11f36da9297.asciidoc 0000664 0000000 0000000 00000001133 14766462667 0026435 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/redact.asciidoc:50
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"description": "Hide my IP",
"processors": [
{
"redact": {
"field": "message",
"patterns": [
"%{IP:client}"
]
}
}
]
},
docs=[
{
"_source": {
"message": "55.3.244.1 GET /index.html 15824 0.043"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d01d309b0257d6fbca6d0941adeb3256.asciidoc 0000664 0000000 0000000 00000001620 14766462667 0026655 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/simulate-index.asciidoc:151
[source, python]
----
resp = client.cluster.put_component_template(
name="ct1",
template={
"settings": {
"index.number_of_shards": 2
}
},
)
print(resp)
resp1 = client.cluster.put_component_template(
name="ct2",
template={
"settings": {
"index.number_of_replicas": 0
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
}
}
}
},
)
print(resp1)
resp2 = client.indices.put_index_template(
name="final-template",
index_patterns=[
"my-index-*"
],
composed_of=[
"ct1",
"ct2"
],
priority=5,
)
print(resp2)
resp3 = client.indices.simulate_index_template(
name="my-index-000001",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/d03139a851888db53f8b7affd85eb495.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/check-in-connector-api.asciidoc:75
[source, python]
----
resp = client.connector.check_in(
connector_id="my-connector",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d0378fe5e3aad05a2fd2e6e81213374f.asciidoc 0000664 0000000 0000000 00000002153 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:331
[source, python]
----
resp = client.indices.create(
index="bulgarian_example",
settings={
"analysis": {
"filter": {
"bulgarian_stop": {
"type": "stop",
"stopwords": "_bulgarian_"
},
"bulgarian_keywords": {
"type": "keyword_marker",
"keywords": [
"пример"
]
},
"bulgarian_stemmer": {
"type": "stemmer",
"language": "bulgarian"
}
},
"analyzer": {
"rebuilt_bulgarian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"bulgarian_stop",
"bulgarian_keywords",
"bulgarian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d03b0e2f0f3f5ac8d53287c445007a89.asciidoc 0000664 0000000 0000000 00000000667 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/similarity.asciidoc:32
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"default_field": {
"type": "text"
},
"boolean_sim_field": {
"type": "text",
"similarity": "boolean"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d04f0c8c44e8b4fb55f2e7d9d05977e7.asciidoc 0000664 0000000 0000000 00000002713 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:155
[source, python]
----
resp = client.bulk(
operations=[
{
"index": {
"_index": "books"
}
},
{
"name": "Revelation Space",
"author": "Alastair Reynolds",
"release_date": "2000-03-15",
"page_count": 585
},
{
"index": {
"_index": "books"
}
},
{
"name": "1984",
"author": "George Orwell",
"release_date": "1985-06-01",
"page_count": 328
},
{
"index": {
"_index": "books"
}
},
{
"name": "Fahrenheit 451",
"author": "Ray Bradbury",
"release_date": "1953-10-15",
"page_count": 227
},
{
"index": {
"_index": "books"
}
},
{
"name": "Brave New World",
"author": "Aldous Huxley",
"release_date": "1932-06-01",
"page_count": 268
},
{
"index": {
"_index": "books"
}
},
{
"name": "The Handmaids Tale",
"author": "Margaret Atwood",
"release_date": "1985-06-01",
"page_count": 311
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d050c6fa7d806457a5f32d30b07e9521.asciidoc 0000664 0000000 0000000 00000001121 14766462667 0026443 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:504
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"dot_expander": {
"description": "Expand 'my-object-field.my-property'",
"field": "my-object-field.my-property"
}
},
{
"set": {
"description": "Set 'my-object-field.my-property' to 10",
"field": "my-object-field.my-property",
"value": 10
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d0546f047359b85a7e98207dc8de896a.asciidoc 0000664 0000000 0000000 00000001342 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/coerce.asciidoc:60
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index.mapping.coerce": False
},
mappings={
"properties": {
"number_one": {
"type": "integer",
"coerce": True
},
"number_two": {
"type": "integer"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"number_one": "10"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"number_two": "10"
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/d05b2a37106fce0ebbd41e2fd6bd26c2.asciidoc 0000664 0000000 0000000 00000002734 14766462667 0027076 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/min-aggregation.asciidoc:126
[source, python]
----
resp = client.indices.create(
index="metrics_index",
mappings={
"properties": {
"latency_histo": {
"type": "histogram"
}
}
},
)
print(resp)
resp1 = client.index(
index="metrics_index",
id="1",
refresh=True,
document={
"network.name": "net-1",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
3,
7,
23,
12,
6
]
}
},
)
print(resp1)
resp2 = client.index(
index="metrics_index",
id="2",
refresh=True,
document={
"network.name": "net-2",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
8,
17,
8,
7,
6
]
}
},
)
print(resp2)
resp3 = client.search(
index="metrics_index",
size="0",
filter_path="aggregations",
aggs={
"min_latency": {
"min": {
"field": "latency_histo"
}
}
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/d06a649bc38aa9a6433b64efa78d8cb5.asciidoc 0000664 0000000 0000000 00000003367 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/common-script-uses.asciidoc:52
[source, python]
----
resp = client.bulk(
index="my-index",
refresh=True,
operations=[
{
"index": {}
},
{
"timestamp": "2020-04-30T14:30:17-05:00",
"message": "40.135.0.0 - - [30/Apr/2020:14:30:17 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:30:53-05:00",
"message": "232.0.0.0 - - [30/Apr/2020:14:30:53 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:12-05:00",
"message": "26.1.0.0 - - [30/Apr/2020:14:31:12 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:19-05:00",
"message": "247.37.0.0 - - [30/Apr/2020:14:31:19 -0500] \"GET /french/splash_inet.html HTTP/1.0\" 200 3781"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:22-05:00",
"message": "247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:27-05:00",
"message": "252.0.0.0 - - [30/Apr/2020:14:31:27 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"
},
{
"index": {}
},
{
"timestamp": "2020-04-30T14:31:28-05:00",
"message": "not a valid apache log"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d095b422d9803c02b62c01adffc85376.asciidoc 0000664 0000000 0000000 00000000250 14766462667 0026524 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/get-job.asciidoc:94
[source, python]
----
resp = client.rollup.get_jobs(
id="sensor",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d0dee031197214b59ff9ac7540527d2c.asciidoc 0000664 0000000 0000000 00000001434 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:43
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_movfn": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "MovingFunctions.unweightedAvg(values)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d0fad375f6e074e9067ed93d3faa07bd.asciidoc 0000664 0000000 0000000 00000004064 14766462667 0027051 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/cartesian-bounds-aggregation.asciidoc:12
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (491.2350 5237.4081)",
"city": "Amsterdam",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (490.1618 5236.9219)",
"city": "Amsterdam",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (491.4722 5237.1667)",
"city": "Amsterdam",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (440.5200 5122.2900)",
"city": "Antwerp",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (233.6389 4886.1111)",
"city": "Paris",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (232.7000 4886.0000)",
"city": "Paris",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
query={
"match": {
"name": "musée"
}
},
aggs={
"viewport": {
"cartesian_bounds": {
"field": "location"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/d0fde00ef381e61b8a9e99f18cb5970a.asciidoc 0000664 0000000 0000000 00000000453 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/simple-query-string-query.asciidoc:181
[source, python]
----
resp = client.search(
query={
"simple_query_string": {
"query": "foo | bar + baz*",
"flags": "OR|AND|PREFIX"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d11ea753a5d86f7e630fd69a069948b1.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:168
[source, python]
----
resp = client.sql.query(
format="json",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d1299b9ae1e621d2fdd0b8644c142ace.asciidoc 0000664 0000000 0000000 00000002126 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/categorize-text-aggregation.asciidoc:334
[source, python]
----
resp = client.search(
index="log-messages",
filter_path="aggregations",
aggs={
"daily": {
"date_histogram": {
"field": "time",
"fixed_interval": "1d"
},
"aggs": {
"categories": {
"categorize_text": {
"field": "message",
"categorization_filters": [
"\\w+\\_\\d{3}"
]
},
"aggs": {
"hit": {
"top_hits": {
"size": 1,
"sort": [
"time"
],
"_source": "message"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d12df43ffcdcd937bae9b26fb475e239.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0027125 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/uaxurlemail-tokenizer.asciidoc:14
[source, python]
----
resp = client.indices.analyze(
tokenizer="uax_url_email",
text="Email me at john.smith@global-international.com",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d133b5d82238f7d4778c341cbe0bc969.asciidoc 0000664 0000000 0000000 00000000705 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-termvectors.asciidoc:141
[source, python]
----
resp = client.mtermvectors(
docs=[
{
"_index": "my-index-000001",
"doc": {
"message": "test test test"
}
},
{
"_index": "my-index-000001",
"doc": {
"message": "Another test ..."
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d13c7cdfc976e0c7b70737cd6a7becb8.asciidoc 0000664 0000000 0000000 00000001517 14766462667 0027135 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/rate-aggregation.asciidoc:411
[source, python]
----
resp = client.search(
index="sales",
size=0,
runtime_mappings={
"price.adjusted": {
"type": "double",
"script": {
"source": "emit(doc['price'].value * params.adjustment)",
"params": {
"adjustment": 0.9
}
}
}
},
aggs={
"by_date": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"avg_price": {
"rate": {
"field": "price.adjusted"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d14fe5838fc02224f4b5ade2626d6026.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/apis/explain.asciidoc:106
[source, python]
----
resp = client.ilm.explain_lifecycle(
index="my-index-000001",
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d1b53bc9794e8609bd6f2245624bf977.asciidoc 0000664 0000000 0000000 00000001306 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/estimate-model-memory.asciidoc:60
[source, python]
----
resp = client.ml.estimate_model_memory(
analysis_config={
"bucket_span": "5m",
"detectors": [
{
"function": "sum",
"field_name": "bytes",
"by_field_name": "status",
"partition_field_name": "app"
}
],
"influencers": [
"source_ip",
"dest_ip"
]
},
overall_cardinality={
"status": 10,
"app": 50
},
max_bucket_cardinality={
"source_ip": 300,
"dest_ip": 30
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d1ce66957f8bd84bf01c4bfaee3ba0c3.asciidoc 0000664 0000000 0000000 00000000473 14766462667 0027200 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:974
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
filter_path="hits.events._source.@timestamp,hits.events._source.process.pid",
query="\n process where process.name == \"regsvr32.exe\"\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d1d8b6e642db1a7c70dbbf0fe6d8e92d.asciidoc 0000664 0000000 0000000 00000003433 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/sparse-vector-query.asciidoc:195
[source, python]
----
resp = client.search(
index="my-index",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"multi_match": {
"query": "How is the weather in Jamaica?",
"fields": [
"title",
"description"
]
}
}
}
},
{
"standard": {
"query": {
"sparse_vector": {
"field": "ml.inference.title_expanded.predicted_value",
"inference_id": "my-elser-model",
"query": "How is the weather in Jamaica?",
"boost": 1
}
}
}
},
{
"standard": {
"query": {
"sparse_vector": {
"field": "ml.inference.description_expanded.predicted_value",
"inference_id": "my-elser-model",
"query": "How is the weather in Jamaica?",
"boost": 1
}
}
}
}
],
"window_size": 10,
"rank_constant": 20
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d1e0fee64389e7c8d4c092030626b61f.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:215
[source, python]
----
resp = client.security.get_api_key(
name="my-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d1ea13e1e8372cbf1480a414723ff55a.asciidoc 0000664 0000000 0000000 00000001457 14766462667 0026611 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-zoom.asciidoc:247
[source, python]
----
resp = client.security.create_api_key(
name="connector_name-connector-api-key",
role_descriptors={
"connector_name-connector-role": {
"cluster": [
"monitor",
"manage_connector"
],
"indices": [
{
"names": [
"index_name",
".search-acl-filter-index_name",
".elastic-connectors*"
],
"privileges": [
"all"
],
"allow_restricted_indices": False
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d1ecce3632ae338b5e329b0e5ff3bed7.asciidoc 0000664 0000000 0000000 00000000711 14766462667 0027114 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:382
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_join_field": {
"type": "join",
"relations": {
"question": "answer"
},
"eager_global_ordinals": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d1fde25de1980b7e84fa878289fd0bcb.asciidoc 0000664 0000000 0000000 00000000355 14766462667 0027064 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:660
[source, python]
----
resp = client.search(
index="my-index-000001",
size="0",
q="extra:test",
filter_path="hits.total",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d23452f333b77bf5b463310e2a665560.asciidoc 0000664 0000000 0000000 00000001047 14766462667 0026310 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/run-as-privilege.asciidoc:51
[source, python]
----
resp = client.security.put_role(
name="my_director",
refresh=True,
cluster=[
"manage"
],
indices=[
{
"names": [
"index1",
"index2"
],
"privileges": [
"manage"
]
}
],
run_as=[
"jacknich",
"rdeniro"
],
metadata={
"version": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d260225cf97e068ead2a8a6bb5aefd90.asciidoc 0000664 0000000 0000000 00000002130 14766462667 0027032 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1551
[source, python]
----
resp = client.indices.create(
index="russian_example",
settings={
"analysis": {
"filter": {
"russian_stop": {
"type": "stop",
"stopwords": "_russian_"
},
"russian_keywords": {
"type": "keyword_marker",
"keywords": [
"пример"
]
},
"russian_stemmer": {
"type": "stemmer",
"language": "russian"
}
},
"analyzer": {
"rebuilt_russian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"russian_stop",
"russian_keywords",
"russian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d268aec16bb1eb909b634e856175094c.asciidoc 0000664 0000000 0000000 00000001245 14766462667 0026547 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/stop-analyzer.asciidoc:133
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_stop_analyzer": {
"type": "stop",
"stopwords": [
"the",
"over"
]
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_stop_analyzer",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/d27591881da6f5767523b1beb233adc7.asciidoc 0000664 0000000 0000000 00000000366 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-azure.asciidoc:87
[source, python]
----
resp = client.snapshot.create_repository(
name="my_backup",
repository={
"type": "azure"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d2e7dead222cfbebbd2c21a7cc1893b4.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0027237 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// api-conventions.asciidoc:260
[source, python]
----
resp = client.cluster.state(
metric="metadata",
filter_path="metadata.indices.*.system",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d2f52c106685bd8eab47e11d644d7a70.asciidoc 0000664 0000000 0000000 00000001452 14766462667 0026616 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/date.asciidoc:41
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"date": {
"type": "date"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"date": "2015-01-01"
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"date": "2015-01-01T12:10:30Z"
},
)
print(resp2)
resp3 = client.index(
index="my-index-000001",
id="3",
document={
"date": 1420070400001
},
)
print(resp3)
resp4 = client.search(
index="my-index-000001",
sort={
"date": "asc"
},
)
print(resp4)
----
python-elasticsearch-8.17.2/docs/examples/d2f6040c058a9555dfa62bb42d896a8f.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:513
[source, python]
----
resp = client.search(
index="my_queries1",
query={
"percolate": {
"field": "query",
"document": {
"my_field": "abcd"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d2f6fb271e97fde8685d7744e6718cc7.asciidoc 0000664 0000000 0000000 00000000437 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/delimited-payload-tokenfilter.asciidoc:234
[source, python]
----
resp = client.index(
index="text_payloads",
id="1",
document={
"text": "the|0 brown|3 fox|4 is|0 quick|10"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d305110a8cabfbebd1e38d85559d1023.asciidoc 0000664 0000000 0000000 00000003467 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:436
[source, python]
----
resp = client.indices.create(
index="cjk_example",
settings={
"analysis": {
"filter": {
"english_stop": {
"type": "stop",
"stopwords": [
"a",
"and",
"are",
"as",
"at",
"be",
"but",
"by",
"for",
"if",
"in",
"into",
"is",
"it",
"no",
"not",
"of",
"on",
"or",
"s",
"such",
"t",
"that",
"the",
"their",
"then",
"there",
"these",
"they",
"this",
"to",
"was",
"will",
"with",
"www"
]
}
},
"analyzer": {
"rebuilt_cjk": {
"tokenizer": "standard",
"filter": [
"cjk_width",
"lowercase",
"cjk_bigram",
"english_stop"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3263afc69b6f969b9bbd8738cd07b97.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/post-pause-follow.asciidoc:73
[source, python]
----
resp = client.ccr.pause_follow(
index="follower_index",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3440ec81dde5f1a01c0206cb35e539c.asciidoc 0000664 0000000 0000000 00000000601 14766462667 0026650 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-reindex.asciidoc:106
[source, python]
----
resp = client.reindex(
wait_for_completion=False,
source={
"index": "test-data",
"size": 50
},
dest={
"index": "azure-openai-embeddings",
"pipeline": "azure_openai_embeddings_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d34946f59b6f938b141a37cb0b729308.asciidoc 0000664 0000000 0000000 00000000572 14766462667 0026416 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/geo-match-enrich-policy-type-ex.asciidoc:58
[source, python]
----
resp = client.enrich.put_policy(
name="postal_policy",
geo_match={
"indices": "postal_codes",
"match_field": "location",
"enrich_fields": [
"location",
"postal_code"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d35a4d78a8b70c9e4d636efb0a92be9d.asciidoc 0000664 0000000 0000000 00000000776 14766462667 0027064 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/multi-terms-aggregation.asciidoc:61
[source, python]
----
resp = client.search(
index="products",
aggs={
"genres_and_products": {
"multi_terms": {
"terms": [
{
"field": "genre"
},
{
"field": "product"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d35c8cf7a98b3f112e1de8797ec6689d.asciidoc 0000664 0000000 0000000 00000000427 14766462667 0026741 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/oidc-prepare-authentication-api.asciidoc:134
[source, python]
----
resp = client.security.oidc_prepare_authentication(
iss="http://127.0.0.1:8080",
login_hint="this_is_an_opaque_string",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3672a87a857ddb87519788236e57497.asciidoc 0000664 0000000 0000000 00000001367 14766462667 0026320 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-jinaai.asciidoc:232
[source, python]
----
resp = client.search(
index="jinaai-index",
retriever={
"text_similarity_reranker": {
"retriever": {
"standard": {
"query": {
"semantic": {
"field": "content",
"query": "who inspired taking care of the sea?"
}
}
}
},
"field": "content",
"rank_window_size": 100,
"inference_id": "jinaai-rerank",
"inference_text": "who inspired taking care of the sea?"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d37b065a94b3ff65a2a8a204fc3b097c.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1324
[source, python]
----
resp = client.eql.get_status(
id="FmNJRUZ1YWZCU3dHY1BIOUhaenVSRkEaaXFlZ3h4c1RTWFNocDdnY2FSaERnUTozNDE=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d37b0bda2bd24ab310e6b26708c7c6fb.asciidoc 0000664 0000000 0000000 00000001452 14766462667 0027014 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/movfn-aggregation.asciidoc:144
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_date_histo": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M"
},
"aggs": {
"the_sum": {
"sum": {
"field": "price"
}
},
"the_movavg": {
"moving_fn": {
"buckets_path": "the_sum",
"window": 10,
"script": "return values.length > 0 ? values[0] : Double.NaN"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3a0f648d0fd50b54a4e9ebe363c5047.asciidoc 0000664 0000000 0000000 00000002651 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:221
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"linear": {
"retrievers": [
{
"retriever": {
"standard": {
"query": {
"query_string": {
"query": "(information retrieval) OR (artificial intelligence)",
"default_field": "text"
}
}
}
},
"weight": 2,
"normalizer": "minmax"
},
{
"retriever": {
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
},
"weight": 1.5,
"normalizer": "minmax"
}
],
"rank_window_size": 10
}
},
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3a5b70d493e0bd77b3f2b586341c83c.asciidoc 0000664 0000000 0000000 00000001052 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1635
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
runtime={
"http.responses": {
"type": "long",
"script": "\n String response=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] \"%{verb} %{request} HTTP/%{httpversion}\" %{response} %{size}').extract(doc[\"message\"].value)?.response;\n if (response != null) emit(Integer.parseInt(response));\n "
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3d117fec34301520ccdb26332e7c98a.asciidoc 0000664 0000000 0000000 00000000774 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/registered-domain.asciidoc:35
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"processors": [
{
"registered_domain": {
"field": "fqdn",
"target_field": "url"
}
}
]
},
docs=[
{
"_source": {
"fqdn": "www.example.ac.uk"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3dccdb15822e971ededb9f6f7d8ada1.asciidoc 0000664 0000000 0000000 00000000531 14766462667 0027266 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:354
[source, python]
----
resp = client.search(
query={
"query_string": {
"fields": [
"content",
"name.*^5"
],
"query": "this AND that OR thus"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3e5edac5b461020017fd9d8ec7a91fa.asciidoc 0000664 0000000 0000000 00000001301 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/managing-roles.asciidoc:262
[source, python]
----
resp = client.security.put_role(
name="clicks_admin",
run_as=[
"clicks_watcher_1"
],
cluster=[
"monitor"
],
indices=[
{
"names": [
"events-*"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"category",
"@timestamp",
"message"
]
},
"query": "{\"match\": {\"category\": \"click\"}}"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d3e9e1169c3514fd46e253cd8b5ae3cb.asciidoc 0000664 0000000 0000000 00000001432 14766462667 0026761 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/predicate-tokenfilter.asciidoc:102
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"my_script_filter"
]
}
},
"filter": {
"my_script_filter": {
"type": "predicate_token_filter",
"script": {
"source": "\n token.type.contains(\"ALPHANUM\")\n "
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4158d486e7fee2702a14068b69e3b33.asciidoc 0000664 0000000 0000000 00000015720 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/downsampling-dsl.asciidoc:45
[source, python]
----
resp = client.indices.put_index_template(
name="datastream_template",
index_patterns=[
"datastream*"
],
data_stream={},
template={
"lifecycle": {
"downsampling": [
{
"after": "1m",
"fixed_interval": "1h"
}
]
},
"settings": {
"index": {
"mode": "time_series"
}
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"kubernetes": {
"properties": {
"container": {
"properties": {
"cpu": {
"properties": {
"usage": {
"properties": {
"core": {
"properties": {
"ns": {
"type": "long"
}
}
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"nanocores": {
"type": "long",
"time_series_metric": "gauge"
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
}
}
},
"memory": {
"properties": {
"available": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"majorpagefaults": {
"type": "long"
},
"pagefaults": {
"type": "long",
"time_series_metric": "gauge"
},
"rss": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
},
"usage": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
},
"limit": {
"properties": {
"pct": {
"type": "float"
}
}
},
"node": {
"properties": {
"pct": {
"type": "float"
}
}
}
}
},
"workingset": {
"properties": {
"bytes": {
"type": "long",
"time_series_metric": "gauge"
}
}
}
}
},
"name": {
"type": "keyword"
},
"start_time": {
"type": "date"
}
}
},
"host": {
"type": "keyword",
"time_series_dimension": True
},
"namespace": {
"type": "keyword",
"time_series_dimension": True
},
"node": {
"type": "keyword",
"time_series_dimension": True
},
"pod": {
"type": "keyword",
"time_series_dimension": True
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4323be84152fa91abd76e966d4751dc.asciidoc 0000664 0000000 0000000 00000000454 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-api-key.asciidoc:474
[source, python]
----
resp = client.security.query_api_keys(
query={
"term": {
"name": {
"value": "application-key-1"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d443db2755fde3b49ca3a9d296c4a96f.asciidoc 0000664 0000000 0000000 00000001011 14766462667 0026764 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/delimited-payload-tokenfilter.asciidoc:120
[source, python]
----
resp = client.indices.create(
index="delimited_payload",
settings={
"analysis": {
"analyzer": {
"whitespace_delimited_payload": {
"tokenizer": "whitespace",
"filter": [
"delimited_payload"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d44ecc69090c0b2bc08a6cbc2e3467c5.asciidoc 0000664 0000000 0000000 00000000663 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significanttext-aggregation.asciidoc:153
[source, python]
----
resp = client.search(
index="news",
query={
"simple_query_string": {
"query": "+elasticsearch +pozmantier"
}
},
source=[
"title",
"source"
],
highlight={
"fields": {
"content": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d46e9739bbf25eb2f7225f58ab08b2a7.asciidoc 0000664 0000000 0000000 00000000502 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/saml-complete-logout-api.asciidoc:89
[source, python]
----
resp = client.security.saml_complete_logout(
realm="saml1",
ids=[
"_1c368075e0b3..."
],
content="PHNhbWxwOkxvZ291dFJlc3BvbnNlIHhtbG5zOnNhbWxwPSJ1cm46...",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d48b274a4b6098ffef0c016c6c945fb9.asciidoc 0000664 0000000 0000000 00000000356 14766462667 0026720 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-tokens.asciidoc:222
[source, python]
----
resp = client.security.get_token(
grant_type="refresh_token",
refresh_token="vLBPvmAB6KvwvJZr27cS",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d49318764244113ad2ac4cc0f06d77ec.asciidoc 0000664 0000000 0000000 00000001061 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:1034
[source, python]
----
resp = client.indices.create(
index="image-index",
mappings={
"properties": {
"image-vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm",
"index_options": {
"type": "hnsw",
"m": 32,
"ef_construction": 100
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4a41fb74b41b41a0ee114a2311f2815.asciidoc 0000664 0000000 0000000 00000000631 14766462667 0026475 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:245
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_age": "7d"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4b405ef0302227e050ac8f0e39068e1.asciidoc 0000664 0000000 0000000 00000000603 14766462667 0026435 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/evaluate-dfanalytics.asciidoc:259
[source, python]
----
resp = client.ml.evaluate_data_frame(
index="my_analytics_dest_index",
evaluation={
"outlier_detection": {
"actual_field": "is_outlier",
"predicted_probability_field": "ml.outlier_score"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4b50ae96e541c0031264a10f6afccbf.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026730 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-a-data-stream.asciidoc:336
[source, python]
----
resp = client.indices.migrate_to_data_stream(
name="my-time-series-data",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4cdcf01014c75693b080c778071c1b5.asciidoc 0000664 0000000 0000000 00000000535 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/stats-aggregation.asciidoc:102
[source, python]
----
resp = client.search(
index="exams",
size="0",
aggs={
"grades_stats": {
"stats": {
"field": "grade",
"missing": 0
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4d450f536d747d5ef5050d2d8c66f09.asciidoc 0000664 0000000 0000000 00000001364 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/validate.asciidoc:93
[source, python]
----
resp = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"user": {
"id": "kimchy"
},
"@timestamp": "2099-11-15T14:12:12",
"message": "trying out Elasticsearch"
},
{
"index": {
"_id": 2
}
},
{
"user": {
"id": "kimchi"
},
"@timestamp": "2099-11-15T14:12:13",
"message": "My user ID is similar to kimchy!"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4df39f72d3a3b80cd4042f6a21c3f19.asciidoc 0000664 0000000 0000000 00000000445 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/put-ip-location-database.asciidoc:40
[source, python]
----
resp = client.ingest.put_ip_location_database(
id="my-database-2",
configuration={
"name": "standard_location",
"ipinfo": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4ef6ac034c4d42cb75d830ec69146e6.asciidoc 0000664 0000000 0000000 00000000345 14766462667 0026703 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/delete-auto-follow-pattern.asciidoc:75
[source, python]
----
resp = client.ccr.delete_auto_follow_pattern(
name="my_auto_follow_pattern",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d4fb482a51d67a1af48e429af6019a46.asciidoc 0000664 0000000 0000000 00000001216 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/index-sorting.asciidoc:40
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index": {
"sort.field": [
"username",
"date"
],
"sort.order": [
"asc",
"desc"
]
}
},
mappings={
"properties": {
"username": {
"type": "keyword",
"doc_values": True
},
"date": {
"type": "date"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d50b030edfe6d1128eb76aa5ba9d4e27.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0027032 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/put-trained-models-aliases.asciidoc:99
[source, python]
----
resp = client.ml.put_trained_model_alias(
model_id="flight-delay-prediction-1580004349800",
model_alias="flight_delay_model",
reassign=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d5132d34ae922fa8e898889b627a1405.asciidoc 0000664 0000000 0000000 00000001514 14766462667 0026417 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/children-aggregation.asciidoc:95
[source, python]
----
resp = client.search(
index="child_example",
size="0",
aggs={
"top-tags": {
"terms": {
"field": "tags.keyword",
"size": 10
},
"aggs": {
"to-answers": {
"children": {
"type": "answer"
},
"aggs": {
"top-names": {
"terms": {
"field": "owner.display_name.keyword",
"size": 10
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d5242b1ab0213f25e5e0742032274ce6.asciidoc 0000664 0000000 0000000 00000001260 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/attachment.asciidoc:53
[source, python]
----
resp = client.ingest.put_pipeline(
id="attachment",
description="Extract attachment information",
processors=[
{
"attachment": {
"field": "data",
"remove_binary": True
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="attachment",
document={
"data": "e1xydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbG9yIHNpdCBhbWV0DQpccGFyIH0="
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/d524db57be9f16abac5396895b9a2a59.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/resolve.asciidoc:53
[source, python]
----
resp = client.indices.resolve_index(
name="my-index-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d547d55efbf75374f6de1f224323bc73.asciidoc 0000664 0000000 0000000 00000001651 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/geo-grid.asciidoc:39
[source, python]
----
resp = client.indices.create(
index="geocells",
mappings={
"properties": {
"geocell": {
"type": "geo_shape"
}
}
},
)
print(resp)
resp1 = client.ingest.put_pipeline(
id="geotile2shape",
description="translate rectangular z/x/y geotile to bounding box",
processors=[
{
"geo_grid": {
"field": "geocell",
"tile_type": "geotile"
}
}
],
)
print(resp1)
resp2 = client.ingest.put_pipeline(
id="geohex2shape",
description="translate H3 cell to polygon",
processors=[
{
"geo_grid": {
"field": "geocell",
"tile_type": "geohex",
"target_format": "wkt"
}
}
],
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/d5533f08f5cc0479f07a46c761f0786b.asciidoc 0000664 0000000 0000000 00000000660 14766462667 0026476 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:327
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"counter": {
"type": "integer",
"store": False
},
"tags": {
"type": "keyword",
"store": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d56a9d89282df56adbbc34b91390ac17.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/get-auto-follow-pattern.asciidoc:55
[source, python]
----
resp = client.ccr.get_auto_follow_pattern(
name="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d59e9cc75814575aa5e275dbe262918c.asciidoc 0000664 0000000 0000000 00000000451 14766462667 0026563 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-grid-query.asciidoc:119
[source, python]
----
resp = client.search(
index="my_locations",
query={
"geo_grid": {
"location": {
"geohash": "u0"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d5abaf1fd26f0abf410dd8827d077bbf.asciidoc 0000664 0000000 0000000 00000000377 14766462667 0027175 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:173
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"match_all": {}
},
sort=[
"my_id"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d5bf9bc08f622ece98632a14a3982e27.asciidoc 0000664 0000000 0000000 00000000504 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:770
[source, python]
----
resp = client.search(
query={
"match_all": {}
},
script_fields={
"test1": {
"script": "params['_source']['message']"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d5d0ecf75843ddb5f92cfebd089e53e9.asciidoc 0000664 0000000 0000000 00000000503 14766462667 0027143 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:748
[source, python]
----
resp = client.reindex(
source={
"index": "my-index-000001",
"_source": [
"user.id",
"_doc"
]
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d5dcddc6398b473b6ad9bce5c6adf986.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0027225 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:435
[source, python]
----
resp = client.search(
scroll="1m",
sort=[
"_doc"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d5ead6aacbfbedc8396f87bb34acc880.asciidoc 0000664 0000000 0000000 00000000347 14766462667 0027350 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/get-async-eql-search-api.asciidoc:20
[source, python]
----
resp = client.eql.get(
id="FkpMRkJGS1gzVDRlM3g4ZzMyRGlLbkEaTXlJZHdNT09TU2VTZVBoNDM3cFZMUToxMDM=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d603e76ab70131f7ec6b08758f95a0e3.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/recovery.asciidoc:148
[source, python]
----
resp = client.cat.recovery(
v=True,
h="i,s,t,ty,st,rep,snap,f,fp,b,bp",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d64679f8a53928fe9958dbe5ee5d9d13.asciidoc 0000664 0000000 0000000 00000001303 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:280
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"parent_id": {
"type": "answer",
"id": "1"
}
},
aggs={
"parents": {
"terms": {
"field": "my_join_field#question",
"size": 10
}
}
},
runtime_mappings={
"parent": {
"type": "long",
"script": "\n emit(Integer.parseInt(doc['my_join_field#question'].value)) \n "
}
},
fields=[
{
"field": "parent"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d64d509440afbed7cefd04b6898962eb.asciidoc 0000664 0000000 0000000 00000001053 14766462667 0026776 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-distance-query.asciidoc:100
[source, python]
----
resp = client.search(
index="my_geoshapes",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "200km",
"pin.location": {
"lat": 40,
"lon": -70
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d66e2b4d1931bf88c72e74670156e43f.asciidoc 0000664 0000000 0000000 00000000445 14766462667 0026500 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-api.asciidoc:332
[source, python]
----
resp = client.search(
index="my-index-000001",
track_total_hits=100,
query={
"match": {
"user.id": "elkbee"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d681508a745b2bc777d47ba606d24224.asciidoc 0000664 0000000 0000000 00000000234 14766462667 0026375 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/fielddata.asciidoc:158
[source, python]
----
resp = client.cat.fielddata(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d681b643da0d7f0a384f627b6d56111b.asciidoc 0000664 0000000 0000000 00000000463 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/dissect-syntax.asciidoc:89
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"message": {
"type": "wildcard"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d690a6af462c70a783625a323e11c72c.asciidoc 0000664 0000000 0000000 00000000471 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:187
[source, python]
----
resp = client.indices.create(
index="test-index",
settings={
"number_of_shards": 1,
"number_of_replicas": 1,
"index.lifecycle.name": "my_policy"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d69bd36335774c8ae1286cee21310241.asciidoc 0000664 0000000 0000000 00000001052 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-api-key.asciidoc:72
[source, python]
----
resp = client.security.put_role(
name="remote-search",
remote_indices=[
{
"clusters": [
"my_remote_cluster"
],
"names": [
"target-index"
],
"privileges": [
"read",
"read_cross_cluster",
"view_index_metadata"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d69cf7c82602431d9e339583e7dfb988.asciidoc 0000664 0000000 0000000 00000002022 14766462667 0026515 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/configuring.asciidoc:10
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"std_english": {
"type": "standard",
"stopwords": "_english_"
}
}
}
},
mappings={
"properties": {
"my_text": {
"type": "text",
"analyzer": "standard",
"fields": {
"english": {
"type": "text",
"analyzer": "std_english"
}
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
field="my_text",
text="The old brown cow",
)
print(resp1)
resp2 = client.indices.analyze(
index="my-index-000001",
field="my_text.english",
text="The old brown cow",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/d6a21afa4a94b9baa734eac430940bcf.asciidoc 0000664 0000000 0000000 00000000302 14766462667 0027067 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connectors-api.asciidoc:95
[source, python]
----
resp = client.connector.list(
from_="0",
size="2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d6a4548b29e939fb197189c20c7c016f.asciidoc 0000664 0000000 0000000 00000000566 14766462667 0026507 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/elastic-infer-service.asciidoc:115
[source, python]
----
resp = client.inference.put(
task_type="chat_completion",
inference_id="chat-completion-endpoint",
inference_config={
"service": "elastic",
"service_settings": {
"model_id": "model-1"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d70f55cd29cdb2dcd775ffa9e23ff393.asciidoc 0000664 0000000 0000000 00000001115 14766462667 0027136 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/max-aggregation.asciidoc:52
[source, python]
----
resp = client.search(
index="sales",
size=0,
runtime_mappings={
"price.adjusted": {
"type": "double",
"script": "\n double price = doc['price'].value;\n if (doc['promoted'].value) {\n price *= 0.8;\n }\n emit(price);\n "
}
},
aggs={
"max_price": {
"max": {
"field": "price.adjusted"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7141bd4d0db964f5cc4a872ad79dce9.asciidoc 0000664 0000000 0000000 00000000253 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// features/apis/reset-features-api.asciidoc:20
[source, python]
----
resp = client.features.reset_features()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7348119df9f89a556a7b767d5298c7e.asciidoc 0000664 0000000 0000000 00000001305 14766462667 0026527 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geoline-aggregation.asciidoc:218
[source, python]
----
resp = client.search(
index="tour",
filter_path="aggregations",
aggregations={
"path": {
"terms": {
"field": "city"
},
"aggregations": {
"museum_tour": {
"geo_line": {
"point": {
"field": "location"
},
"sort": {
"field": "@timestamp"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7717318d93d0a1f3ad049f9c6604417.asciidoc 0000664 0000000 0000000 00000001346 14766462667 0026410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/standard-tokenizer.asciidoc:139
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "standard",
"max_token_length": 5
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/d775836a0d7abecc6637aa988f204c30.asciidoc 0000664 0000000 0000000 00000000714 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:224
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"fullname": "John Doe",
"text": "test test test "
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
refresh="wait_for",
document={
"fullname": "Jane Doe",
"text": "Another test ..."
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/d7898526d239d2aea83727fb982f8f77.asciidoc 0000664 0000000 0000000 00000000223 14766462667 0026524 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/refresh.asciidoc:119
[source, python]
----
resp = client.indices.refresh()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7919fb6f4d02dde1390775eb8365b79.asciidoc 0000664 0000000 0000000 00000000452 14766462667 0026570 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/text.asciidoc:335
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"my_field": {
"type": "text",
"fielddata": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7a55a7c491e97079e429483085f1d58.asciidoc 0000664 0000000 0000000 00000000703 14766462667 0026353 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-migrate-data-stream-from-ilm-to-dsl.asciidoc:60
[source, python]
----
resp = client.indices.put_index_template(
name="dsl-data-stream-template",
index_patterns=[
"dsl-data-stream*"
],
data_stream={},
priority=500,
template={
"settings": {
"index.lifecycle.name": "pre-dsl-ilm-policy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7a5b0159ffdcdd1ab9078b38829a08b.asciidoc 0000664 0000000 0000000 00000001645 14766462667 0026771 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/semantic-query.asciidoc:87
[source, python]
----
resp = client.search(
index="my-index",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"term": {
"text": "shoes"
}
}
}
},
{
"standard": {
"query": {
"semantic": {
"field": "semantic_field",
"query": "shoes"
}
}
}
}
],
"rank_window_size": 50,
"rank_constant": 20
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7ae456f119246e95f2f4c37e7544b8c.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0026572 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/start-datafeed.asciidoc:115
[source, python]
----
resp = client.ml.start_datafeed(
datafeed_id="datafeed-low_request_rate",
start="2019-04-07T18:22:16Z",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7b61bfb6adb22986a43388b823894cc.asciidoc 0000664 0000000 0000000 00000000711 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:4
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="cohere_embeddings",
inference_config={
"service": "cohere",
"service_settings": {
"api_key": "",
"model_id": "embed-english-v3.0",
"embedding_type": "byte"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7d92816cac64b7c70d72b0000eeeeea.asciidoc 0000664 0000000 0000000 00000000756 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/field-level-security.asciidoc:77
[source, python]
----
resp = client.security.put_role(
name="test_role3",
indices=[
{
"names": [
"*"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"customer.handle"
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7f42d1b906dc406be1819d17c625d5f.asciidoc 0000664 0000000 0000000 00000001076 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filter-aggregation.asciidoc:83
[source, python]
----
resp = client.search(
index="sales",
size="0",
filter_path="aggregations",
aggs={
"t_shirts": {
"filter": {
"term": {
"type": "t-shirt"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d7fe687201ac87b307cd06ed015dd317.asciidoc 0000664 0000000 0000000 00000000457 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:288
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"user_id": {
"type": "keyword",
"ignore_above": 100
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d803ed00d8f45f81c33e415e1c1ecb8c.asciidoc 0000664 0000000 0000000 00000000755 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:642
[source, python]
----
resp = client.reindex(
source={
"index": "my-data-stream",
"query": {
"range": {
"@timestamp": {
"gte": "now-7d/d",
"lte": "now/d"
}
}
}
},
dest={
"index": "new-data-stream",
"op_type": "create"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d80ac403d8d936ca9dec185c7da13f2f.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0027042 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/apis/create-stored-script-api.asciidoc:17
[source, python]
----
resp = client.put_script(
id="my-stored-script",
script={
"lang": "painless",
"source": "Math.log(_score * 2) + params['my_modifier']"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d8310e5606c61e7a6e64a90838b1a830.asciidoc 0000664 0000000 0000000 00000002000 14766462667 0026365 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/parent-aggregation.asciidoc:59
[source, python]
----
resp = client.index(
index="parent_example",
id="2",
routing="1",
document={
"join": {
"name": "answer",
"parent": "1"
},
"owner": {
"location": "Norfolk, United Kingdom",
"display_name": "Sam",
"id": 48
},
"body": "Unfortunately you're pretty much limited to FTP...",
"creation_date": "2009-05-04T13:45:37.030"
},
)
print(resp)
resp1 = client.index(
index="parent_example",
id="3",
routing="1",
refresh=True,
document={
"join": {
"name": "answer",
"parent": "1"
},
"owner": {
"location": "Norfolk, United Kingdom",
"display_name": "Troll",
"id": 49
},
"body": "Use Linux...",
"creation_date": "2009-05-05T13:45:37.030"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/d8496fa0e5a394fd758617ed6a6c956f.asciidoc 0000664 0000000 0000000 00000000704 14766462667 0026660 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:373
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"percolate": {
"field": "query",
"document": {
"message": "The quick brown fox jumps over the lazy dog"
}
}
},
highlight={
"fields": {
"message": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d84a861ce563508aeaaf30a9dd84b5cf.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:271
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"hot": {
"actions": {
"rollover": {
"max_age": "7d",
"max_size": "100gb",
"min_docs": 1000
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d851282dba548251d10db5954a339307.asciidoc 0000664 0000000 0000000 00000000715 14766462667 0026314 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/paginate-search-results.asciidoc:136
[source, python]
----
resp = client.search(
index="twitter",
query={
"match": {
"title": "elasticsearch"
}
},
search_after=[
1463538857,
"654323"
],
sort=[
{
"date": "asc"
},
{
"tie_breaker_id": "asc"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d870d5bd1f97fc75872a298fcddec513.asciidoc 0000664 0000000 0000000 00000010366 14766462667 0027012 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// text-structure/apis/find-structure.asciidoc:101
[source, python]
----
resp = client.text_structure.find_structure(
text_files=[
{
"name": "Leviathan Wakes",
"author": "James S.A. Corey",
"release_date": "2011-06-02",
"page_count": 561
},
{
"name": "Hyperion",
"author": "Dan Simmons",
"release_date": "1989-05-26",
"page_count": 482
},
{
"name": "Dune",
"author": "Frank Herbert",
"release_date": "1965-06-01",
"page_count": 604
},
{
"name": "Dune Messiah",
"author": "Frank Herbert",
"release_date": "1969-10-15",
"page_count": 331
},
{
"name": "Children of Dune",
"author": "Frank Herbert",
"release_date": "1976-04-21",
"page_count": 408
},
{
"name": "God Emperor of Dune",
"author": "Frank Herbert",
"release_date": "1981-05-28",
"page_count": 454
},
{
"name": "Consider Phlebas",
"author": "Iain M. Banks",
"release_date": "1987-04-23",
"page_count": 471
},
{
"name": "Pandora's Star",
"author": "Peter F. Hamilton",
"release_date": "2004-03-02",
"page_count": 768
},
{
"name": "Revelation Space",
"author": "Alastair Reynolds",
"release_date": "2000-03-15",
"page_count": 585
},
{
"name": "A Fire Upon the Deep",
"author": "Vernor Vinge",
"release_date": "1992-06-01",
"page_count": 613
},
{
"name": "Ender's Game",
"author": "Orson Scott Card",
"release_date": "1985-06-01",
"page_count": 324
},
{
"name": "1984",
"author": "George Orwell",
"release_date": "1985-06-01",
"page_count": 328
},
{
"name": "Fahrenheit 451",
"author": "Ray Bradbury",
"release_date": "1953-10-15",
"page_count": 227
},
{
"name": "Brave New World",
"author": "Aldous Huxley",
"release_date": "1932-06-01",
"page_count": 268
},
{
"name": "Foundation",
"author": "Isaac Asimov",
"release_date": "1951-06-01",
"page_count": 224
},
{
"name": "The Giver",
"author": "Lois Lowry",
"release_date": "1993-04-26",
"page_count": 208
},
{
"name": "Slaughterhouse-Five",
"author": "Kurt Vonnegut",
"release_date": "1969-06-01",
"page_count": 275
},
{
"name": "The Hitchhiker's Guide to the Galaxy",
"author": "Douglas Adams",
"release_date": "1979-10-12",
"page_count": 180
},
{
"name": "Snow Crash",
"author": "Neal Stephenson",
"release_date": "1992-06-01",
"page_count": 470
},
{
"name": "Neuromancer",
"author": "William Gibson",
"release_date": "1984-07-01",
"page_count": 271
},
{
"name": "The Handmaid's Tale",
"author": "Margaret Atwood",
"release_date": "1985-06-01",
"page_count": 311
},
{
"name": "Starship Troopers",
"author": "Robert A. Heinlein",
"release_date": "1959-12-01",
"page_count": 335
},
{
"name": "The Left Hand of Darkness",
"author": "Ursula K. Le Guin",
"release_date": "1969-06-01",
"page_count": 304
},
{
"name": "The Moon is a Harsh Mistress",
"author": "Robert A. Heinlein",
"release_date": "1966-04-01",
"page_count": 288
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d87175daed2327565d4325528c6d8b38.asciidoc 0000664 0000000 0000000 00000000252 14766462667 0026415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:235
[source, python]
----
resp = client.get(
index="my-index-000001",
id="0",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d87cfcc0a297f75ffe646b2e61940d14.asciidoc 0000664 0000000 0000000 00000000760 14766462667 0026720 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/uppercase-tokenfilter.asciidoc:92
[source, python]
----
resp = client.indices.create(
index="uppercase_example",
settings={
"analysis": {
"analyzer": {
"whitespace_uppercase": {
"tokenizer": "whitespace",
"filter": [
"uppercase"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d880630b6f7dc634c4078293f9cd3d80.asciidoc 0000664 0000000 0000000 00000002105 14766462667 0026474 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:716
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"size": 2,
"sources": [
{
"date": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "1d",
"order": "desc"
}
}
},
{
"product": {
"terms": {
"field": "product",
"order": "asc"
}
}
}
],
"after": {
"date": 1494288000000,
"product": "mad max"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d88f883ed2fb8be35cd3e72ddffcf4ef.asciidoc 0000664 0000000 0000000 00000001312 14766462667 0027367 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/length-tokenfilter.asciidoc:149
[source, python]
----
resp = client.indices.create(
index="length_custom_example",
settings={
"analysis": {
"analyzer": {
"whitespace_length_2_to_10_char": {
"tokenizer": "whitespace",
"filter": [
"length_2_to_10_char"
]
}
},
"filter": {
"length_2_to_10_char": {
"type": "length",
"min": 2,
"max": 10
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d89d36741d906a71eca6c144e8d83889.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026513 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/tasks.asciidoc:243
[source, python]
----
resp = client.tasks.cancel(
task_id="oTUltX4IQMOUUVeiohTt8A:12345",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d8a82511cb94f49b4fe4828fee3ba074.asciidoc 0000664 0000000 0000000 00000000330 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/circuit-breaker-errors.asciidoc:63
[source, python]
----
resp = client.cat.nodes(
v=True,
h="name,node*,heap*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d8c053ee26c1533ce936ec81101d8e1b.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026604 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/get-ip-location-database.asciidoc:61
[source, python]
----
resp = client.ingest.get_ip_location_database(
id="my-database-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d8c401a5b7359ec65947b9f35ecf6927.asciidoc 0000664 0000000 0000000 00000001517 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/ngram-tokenizer.asciidoc:220
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "ngram",
"min_gram": 3,
"max_gram": 3,
"token_chars": [
"letter",
"digit"
]
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="2 Quick Foxes.",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/d8ea6a1a1c546bf29f65f8c65439b156.asciidoc 0000664 0000000 0000000 00000000734 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:190
[source, python]
----
resp = client.indices.create(
index="byte-image-index",
mappings={
"properties": {
"byte-image-vector": {
"type": "dense_vector",
"element_type": "byte",
"dims": 2
},
"title": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d8fa7ca2ec8dbfa034603ea566e33f5b.asciidoc 0000664 0000000 0000000 00000002133 14766462667 0027112 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/filters-aggregation.asciidoc:208
[source, python]
----
resp = client.search(
index="sales",
size="0",
filter_path="aggregations",
aggs={
"the_filter": {
"filters": {
"keyed": False,
"filters": {
"t-shirt": {
"term": {
"type": "t-shirt"
}
},
"hat": {
"term": {
"type": "hat"
}
}
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
},
"sort_by_avg_price": {
"bucket_sort": {
"sort": {
"avg_price": "asc"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d93d52b6057a7aff3d0766ca44c505e0.asciidoc 0000664 0000000 0000000 00000001077 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:206
[source, python]
----
resp = client.cluster.put_component_template(
name="my-aliases",
template={
"aliases": {
"my-alias": {}
}
},
)
print(resp)
resp1 = client.indices.put_index_template(
name="my-index-template",
index_patterns=[
"my-index-*"
],
composed_of=[
"my-aliases",
"my-mappings",
"my-settings"
],
template={
"aliases": {
"yet-another-alias": {}
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/d94f666616dea141dcb7aaf08a35bc10.asciidoc 0000664 0000000 0000000 00000000624 14766462667 0026746 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/keep-types-tokenfilter.asciidoc:94
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "keep_types",
"types": [
""
],
"mode": "exclude"
}
],
text="1 quick fox 2 lazy dogs",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d952ac7c73219d8cabc080679e035514.asciidoc 0000664 0000000 0000000 00000000776 14766462667 0026473 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/semantic-search/search.asciidoc:34
[source, python]
----
resp = client.search(
index="my-index",
knn={
"field": "my_embeddings.predicted_value",
"k": 10,
"num_candidates": 100,
"query_vector_builder": {
"text_embedding": {
"model_id": "sentence-transformers__msmarco-minilm-l-12-v3",
"model_text": "the query string"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d979f934af0992fb8c8596beff80b638.asciidoc 0000664 0000000 0000000 00000000463 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:530
[source, python]
----
resp = client.search(
source=[
"obj1.*",
"obj2.*"
],
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d983c1ea730eeabac9e914656d7c9be2.asciidoc 0000664 0000000 0000000 00000002124 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1263
[source, python]
----
resp = client.indices.create(
index="latvian_example",
settings={
"analysis": {
"filter": {
"latvian_stop": {
"type": "stop",
"stopwords": "_latvian_"
},
"latvian_keywords": {
"type": "keyword_marker",
"keywords": [
"piemērs"
]
},
"latvian_stemmer": {
"type": "stemmer",
"language": "latvian"
}
},
"analyzer": {
"rebuilt_latvian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"latvian_stop",
"latvian_keywords",
"latvian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d98fb2ff2cdd154dff4a576430755d98.asciidoc 0000664 0000000 0000000 00000001576 14766462667 0026736 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1122
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"timestamp": {
"type": "date"
},
"temperature": {
"type": "long"
},
"voltage": {
"type": "double"
},
"node": {
"type": "keyword"
},
"voltage_corrected": {
"type": "double",
"on_script_error": "fail",
"script": {
"source": "\n emit(doc['voltage'].value * params['multiplier'])\n ",
"params": {
"multiplier": 4
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d9a1ad1c5746b75972c74dd4d3a3d623.asciidoc 0000664 0000000 0000000 00000001022 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/parent-join.asciidoc:442
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_join_field": {
"type": "join",
"relations": {
"question": [
"answer",
"comment"
],
"answer": "vote"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d9de409a4a197ce7cbe3714e07155d34.asciidoc 0000664 0000000 0000000 00000001414 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/engine.asciidoc:28
[source, python]
----
resp = client.search(
query={
"function_score": {
"query": {
"match": {
"body": "foo"
}
},
"functions": [
{
"script_score": {
"script": {
"source": "pure_df",
"lang": "expert_scripts",
"params": {
"field": "body",
"term": "foo"
}
}
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/d9e0cba8e150681d861f5fd1545514e2.asciidoc 0000664 0000000 0000000 00000000551 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:513
[source, python]
----
resp = client.sql.query(
format="txt",
query="SELECT YEAR(release_date) AS year FROM library WHERE page_count > ? AND author = ? GROUP BY year HAVING COUNT(*) > ?",
params=[
300,
"Frank Herbert",
0
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/da0fe1316e5b8fd68e2a8525bcd8b0f6.asciidoc 0000664 0000000 0000000 00000001040 14766462667 0027034 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/recipes/scoring.asciidoc:169
[source, python]
----
resp = client.search(
query={
"bool": {
"must": {
"match": {
"body": "elasticsearch"
}
},
"should": {
"rank_feature": {
"field": "pagerank",
"saturation": {
"pivot": 10
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/da18bae37cda566c0254b30c15221b01.asciidoc 0000664 0000000 0000000 00000000415 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-service-token-caches.asciidoc:61
[source, python]
----
resp = client.security.clear_cached_service_tokens(
namespace="elastic",
service="fleet-server",
name="token1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/da24c13eee8c9aeae9a23faf80489e31.asciidoc 0000664 0000000 0000000 00000001147 14766462667 0027125 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:177
[source, python]
----
resp = client.indices.delete(
index="my-index",
)
print(resp)
resp1 = client.reindex(
source={
"index": "restored-my-index"
},
dest={
"index": "my-index"
},
)
print(resp1)
resp2 = client.indices.delete_data_stream(
name="logs-my_app-default",
)
print(resp2)
resp3 = client.reindex(
source={
"index": "restored-logs-my_app-default"
},
dest={
"index": "logs-my_app-default",
"op_type": "create"
},
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/da3f280bc65b581fb3097be768061bee.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/saml-prepare-authentication-api.asciidoc:96
[source, python]
----
resp = client.security.saml_prepare_authentication(
acs="https://kibana.org/api/security/saml/callback",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/da8db0769dff7305f178c12b1111bc99.asciidoc 0000664 0000000 0000000 00000000541 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/simple-query-string-query.asciidoc:262
[source, python]
----
resp = client.search(
query={
"simple_query_string": {
"query": "this is a test",
"fields": [
"subject^3",
"message"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/da90e457e2a34fe47dd82a0a2f336095.asciidoc 0000664 0000000 0000000 00000000510 14766462667 0026611 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/range-enrich-policy-type-ex.asciidoc:33
[source, python]
----
resp = client.index(
index="networks",
id="1",
refresh="wait_for",
document={
"range": "10.100.0.0/16",
"name": "production",
"department": "OPS"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/daae2e6acebc84e537764f4ba07f2e6e.asciidoc 0000664 0000000 0000000 00000000360 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// path-settings-overview.asciidoc:75
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.exclude._name": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dabb159e0b3456024889fb9754a10655.asciidoc 0000664 0000000 0000000 00000000453 14766462667 0026404 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:76
[source, python]
----
resp = client.indices.create(
index="example",
mappings={
"properties": {
"geometry": {
"type": "shape"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dabcf0bead37cae1d3e5d2813fd3ccfe.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0027455 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/ip.asciidoc:143
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"query_string": {
"query": "ip_addr:\"2001:db8::/48\""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dac8ec8547bc446637fd97d9fa872f4f.asciidoc 0000664 0000000 0000000 00000006054 14766462667 0027026 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/put-dfanalytics.asciidoc:822
[source, python]
----
resp = client.ml.put_data_frame_analytics(
id="flight_prices",
source={
"index": [
"kibana_sample_data_flights"
]
},
dest={
"index": "kibana_sample_flight_prices"
},
analysis={
"regression": {
"dependent_variable": "AvgTicketPrice",
"num_top_feature_importance_values": 2,
"feature_processors": [
{
"frequency_encoding": {
"field": "DestWeather",
"feature_name": "DestWeather_frequency",
"frequency_map": {
"Rain": 0.14604811155570188,
"Heavy Fog": 0.14604811155570188,
"Thunder & Lightning": 0.14604811155570188,
"Cloudy": 0.14604811155570188,
"Damaging Wind": 0.14604811155570188,
"Hail": 0.14604811155570188,
"Sunny": 0.14604811155570188,
"Clear": 0.14604811155570188
}
}
},
{
"target_mean_encoding": {
"field": "DestWeather",
"feature_name": "DestWeather_targetmean",
"target_map": {
"Rain": 626.5588814585794,
"Heavy Fog": 626.5588814585794,
"Thunder & Lightning": 626.5588814585794,
"Hail": 626.5588814585794,
"Damaging Wind": 626.5588814585794,
"Cloudy": 626.5588814585794,
"Clear": 626.5588814585794,
"Sunny": 626.5588814585794
},
"default_value": 624.0249512020454
}
},
{
"one_hot_encoding": {
"field": "DestWeather",
"hot_map": {
"Rain": "DestWeather_Rain",
"Heavy Fog": "DestWeather_Heavy Fog",
"Thunder & Lightning": "DestWeather_Thunder & Lightning",
"Cloudy": "DestWeather_Cloudy",
"Damaging Wind": "DestWeather_Damaging Wind",
"Hail": "DestWeather_Hail",
"Clear": "DestWeather_Clear",
"Sunny": "DestWeather_Sunny"
}
}
}
]
}
},
analyzed_fields={
"includes": [
"AvgTicketPrice",
"Cancelled",
"DestWeather",
"FlightDelayMin",
"DistanceMiles"
]
},
model_memory_limit="30mb",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dad2d4add751fde5c39475ca709cc14b.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0027111 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/allocation/filtering.asciidoc:54
[source, python]
----
resp = client.indices.put_settings(
index="test",
settings={
"index.routing.allocation.include.size": "big,medium"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dadb69a225778ecd6528924c0aa029bb.asciidoc 0000664 0000000 0000000 00000001266 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:85
[source, python]
----
resp = client.indices.create(
index="image-index",
mappings={
"properties": {
"image-vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm"
},
"title-vector": {
"type": "dense_vector",
"dims": 5,
"similarity": "l2_norm"
},
"title": {
"type": "text"
},
"file-type": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dae57cf7df18adb4dc64426eb159733a.asciidoc 0000664 0000000 0000000 00000001065 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/percentile-aggregation.asciidoc:370
[source, python]
----
resp = client.search(
index="latency",
size=0,
aggs={
"load_time_outlier": {
"percentiles": {
"field": "load_time",
"percents": [
95,
99,
99.9
],
"hdr": {
"number_of_significant_value_digits": 3
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/daf5631eba5285f1b929d5d8d8dc0d50.asciidoc 0000664 0000000 0000000 00000001330 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/uaxurlemail-tokenizer.asciidoc:95
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "my_tokenizer"
}
},
"tokenizer": {
"my_tokenizer": {
"type": "uax_url_email",
"max_token_length": 5
}
}
}
},
)
print(resp)
resp1 = client.indices.analyze(
index="my-index-000001",
analyzer="my_analyzer",
text="john.smith@global-international.com",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/db19cc7a26ca80106d86d688f4be67a8.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/stop-dfanalytics.asciidoc:75
[source, python]
----
resp = client.ml.stop_data_frame_analytics(
id="loganalytics",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/db773f690edf659ac9b044dc854c77eb.asciidoc 0000664 0000000 0000000 00000003232 14766462667 0027005 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-vector-tile-api.asciidoc:671
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "geo_point"
},
"name": {
"type": "keyword"
},
"price": {
"type": "long"
},
"included": {
"type": "boolean"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": "1"
}
},
{
"location": "POINT (4.912350 52.374081)",
"name": "NEMO Science Museum",
"price": 1750,
"included": True
},
{
"index": {
"_id": "2"
}
},
{
"location": "POINT (4.901618 52.369219)",
"name": "Museum Het Rembrandthuis",
"price": 1500,
"included": False
},
{
"index": {
"_id": "3"
}
},
{
"location": "POINT (4.914722 52.371667)",
"name": "Nederlands Scheepvaartmuseum",
"price": 1650,
"included": True
},
{
"index": {
"_id": "4"
}
},
{
"location": "POINT (4.914722 52.371667)",
"name": "Amsterdam Centre for Architecture",
"price": 0,
"included": True
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/db8710a9793ae0817a45892d33468160.asciidoc 0000664 0000000 0000000 00000000323 14766462667 0026246 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/diskusage.asciidoc:75
[source, python]
----
resp = client.indices.disk_usage(
index="my-index-000001",
run_expensive_tasks=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/db879dcf70abc4a9a14063a9a2d8d6f5.asciidoc 0000664 0000000 0000000 00000003517 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geohashgrid-aggregation.asciidoc:27
[source, python]
----
resp = client.indices.create(
index="museums",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="museums",
refresh=True,
operations=[
{
"index": {
"_id": 1
}
},
{
"location": "POINT (4.912350 52.374081)",
"name": "NEMO Science Museum"
},
{
"index": {
"_id": 2
}
},
{
"location": "POINT (4.901618 52.369219)",
"name": "Museum Het Rembrandthuis"
},
{
"index": {
"_id": 3
}
},
{
"location": "POINT (4.914722 52.371667)",
"name": "Nederlands Scheepvaartmuseum"
},
{
"index": {
"_id": 4
}
},
{
"location": "POINT (4.405200 51.222900)",
"name": "Letterenhuis"
},
{
"index": {
"_id": 5
}
},
{
"location": "POINT (2.336389 48.861111)",
"name": "Musée du Louvre"
},
{
"index": {
"_id": 6
}
},
{
"location": "POINT (2.327000 48.860000)",
"name": "Musée d'Orsay"
}
],
)
print(resp1)
resp2 = client.search(
index="museums",
size="0",
aggregations={
"large-grid": {
"geohash_grid": {
"field": "location",
"precision": 3
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/db9a8e3edee7c9a96ea0875fd4bbaa69.asciidoc 0000664 0000000 0000000 00000000255 14766462667 0027304 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// monitoring/collecting-monitoring-data.asciidoc:45
[source, python]
----
resp = client.cluster.get_settings()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dbc50b8c934171e94604575a8b36f349.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/update-settings.asciidoc:151
[source, python]
----
resp = client.indices.forcemerge(
index="my-index-000001",
max_num_segments="5",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dbcd8892dd01c43d5a60c94173574faf.asciidoc 0000664 0000000 0000000 00000001472 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-field-note.asciidoc:12
[source, python]
----
resp = client.indices.create(
index="range_index",
settings={
"number_of_shards": 2
},
mappings={
"properties": {
"expected_attendees": {
"type": "integer_range"
},
"time_frame": {
"type": "date_range",
"format": "yyyy-MM-dd||epoch_millis"
}
}
},
)
print(resp)
resp1 = client.index(
index="range_index",
id="1",
refresh=True,
document={
"expected_attendees": {
"gte": 10,
"lte": 20
},
"time_frame": {
"gte": "2019-10-28",
"lte": "2019-11-04"
}
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/dbd1b930782d34d7396fdb2db1216c0d.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/ids-query.asciidoc:13
[source, python]
----
resp = client.search(
query={
"ids": {
"values": [
"1",
"4",
"100"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dbdd58cdeac9ef20b42ff73e4864e697.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0027143 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-field-mapping.asciidoc:251
[source, python]
----
resp = client.indices.get_field_mapping(
index="_all",
fields="*.id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dbf93d02ab86a09929a21232b19709cc.asciidoc 0000664 0000000 0000000 00000000355 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/stop-trained-model-deployment.asciidoc:73
[source, python]
----
resp = client.ml.stop_trained_model_deployment(
model_id="my_model_for_search",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dbf9abc37899352751dab0ede62af2fd.asciidoc 0000664 0000000 0000000 00000000450 14766462667 0027124 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-tokens.asciidoc:121
[source, python]
----
resp = client.security.invalidate_token(
token="dGhpcyBpcyBub3QgYSByZWFsIHRva2VuIGJ1dCBpdCBpcyBvbmx5IHRlc3QgZGF0YS4gZG8gbm90IHRyeSB0byByZWFkIHRva2VuIQ==",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dc33160f4087443f867080a8f5b2cfbd.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0026547 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:176
[source, python]
----
resp = client.esql.query(
format="json",
query="\n FROM library\n | KEEP author, name, page_count, release_date\n | SORT page_count DESC\n | LIMIT 5\n ",
columnar=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dc3b7603e7d688106acb804059af7834.asciidoc 0000664 0000000 0000000 00000000416 14766462667 0026466 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:496
[source, python]
----
resp = client.search(
source=False,
query={
"match": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dc468865da947b4a9136a5b92878d918.asciidoc 0000664 0000000 0000000 00000000674 14766462667 0026445 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-update-api-keys.asciidoc:131
[source, python]
----
resp = client.security.create_api_key(
name="my-other-api-key",
metadata={
"application": "my-application",
"environment": {
"level": 2,
"trusted": True,
"tags": [
"dev",
"staging"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dc4dcfeae8a5f248639335c2c9809549.asciidoc 0000664 0000000 0000000 00000000352 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pathhierarchy-tokenizer.asciidoc:17
[source, python]
----
resp = client.indices.analyze(
tokenizer="path_hierarchy",
text="/one/two/three",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dc8c94c9bef1f879282caea5c406f36e.asciidoc 0000664 0000000 0000000 00000000442 14766462667 0027062 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:189
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
filter=[
"lowercase"
],
char_filter=[
"html_strip"
],
text="this is a test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dcc02ad69da0a5aa10c4e53b34be8ec0.asciidoc 0000664 0000000 0000000 00000000502 14766462667 0027136 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-get.asciidoc:16
[source, python]
----
resp = client.mget(
docs=[
{
"_index": "my-index-000001",
"_id": "1"
},
{
"_index": "my-index-000001",
"_id": "2"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dcee24dba43050e4b01b6e3a3211ce09.asciidoc 0000664 0000000 0000000 00000000702 14766462667 0026715 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1281
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"@timestamp": {
"format": "strict_date_optional_time||epoch_second",
"type": "date"
},
"message": {
"type": "wildcard"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dcf82f3aacae49c0bb4ccbc673f13e9f.asciidoc 0000664 0000000 0000000 00000001722 14766462667 0027335 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:1202
[source, python]
----
resp = client.search(
index="my-index",
size=10,
query={
"script_score": {
"query": {
"knn": {
"query_vector": [
0.04283529,
0.85670587,
-0.51402352,
0
],
"field": "my_int4_vector",
"num_candidates": 20
}
},
"script": {
"source": "(dotProduct(params.queryVector, 'my_int4_vector') + 1.0)",
"params": {
"queryVector": [
0.04283529,
0.85670587,
-0.51402352,
0
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dcfa7f479a33f459a2d222a92e651451.asciidoc 0000664 0000000 0000000 00000002005 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-roles.asciidoc:126
[source, python]
----
resp = client.security.put_role(
name="my_admin_role",
description="Grants full access to all management features within the cluster.",
cluster=[
"all"
],
indices=[
{
"names": [
"index1",
"index2"
],
"privileges": [
"all"
],
"field_security": {
"grant": [
"title",
"body"
]
},
"query": "{\"match\": {\"title\": \"foo\"}}"
}
],
applications=[
{
"application": "myapp",
"privileges": [
"admin",
"read"
],
"resources": [
"*"
]
}
],
run_as=[
"other_user"
],
metadata={
"version": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd0b196a099e1cca08c5ce4dd74e935a.asciidoc 0000664 0000000 0000000 00000000453 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:27
[source, python]
----
resp = client.watcher.put_watch(
id="cluster_health_watch",
trigger={
"schedule": {
"interval": "10s"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd16c9c981551c9da47ebb5ef5105fa0.asciidoc 0000664 0000000 0000000 00000002760 14766462667 0026766 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:535
[source, python]
----
resp = client.indices.update_aliases(
actions=[
{
"add": {
"index": ".reindexed-v9-ml-anomalies-custom-example",
"alias": ".ml-anomalies-example1",
"filter": {
"term": {
"job_id": {
"value": "example1"
}
}
},
"is_hidden": True
}
},
{
"add": {
"index": ".reindexed-v9-ml-anomalies-custom-example",
"alias": ".ml-anomalies-example2",
"filter": {
"term": {
"job_id": {
"value": "example2"
}
}
},
"is_hidden": True
}
},
{
"remove": {
"index": ".ml-anomalies-custom-example",
"aliases": ".ml-anomalies-*"
}
},
{
"remove_index": {
"index": ".ml-anomalies-custom-example"
}
},
{
"add": {
"index": ".reindexed-v9-ml-anomalies-custom-example",
"alias": ".ml-anomalies-custom-example",
"is_hidden": True
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd1a25d821d0c8deaeaa9c8083152a54.asciidoc 0000664 0000000 0000000 00000000255 14766462667 0026742 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/grok.asciidoc:293
[source, python]
----
resp = client.ingest.processor_grok(
s=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd3b263e9fa4226e59bedfc957d399d2.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/getting-started.asciidoc:22
[source, python]
----
resp = client.sql.query(
format="txt",
query="SELECT * FROM library WHERE release_date < '2000-01-01'",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd3ee00ab2af607b32532180d60a41d4.asciidoc 0000664 0000000 0000000 00000001255 14766462667 0026562 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/snowball-tokenfilter.asciidoc:19
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "standard",
"filter": [
"lowercase",
"my_snow"
]
}
},
"filter": {
"my_snow": {
"type": "snowball",
"language": "English"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd4f051ab62f0507e3b6e3d6f333e85f.asciidoc 0000664 0000000 0000000 00000000261 14766462667 0026674 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-component-template.asciidoc:101
[source, python]
----
resp = client.cluster.get_component_template()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd71b0c9f9197684ff29c61062c55660.asciidoc 0000664 0000000 0000000 00000000247 14766462667 0026424 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-settings.asciidoc:38
[source, python]
----
resp = client.security.get_settings()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd7814258121d3c2e576a7f00469d7e3.asciidoc 0000664 0000000 0000000 00000001003 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:197
[source, python]
----
resp = client.ingest.put_pipeline(
id="mistral_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "mistral_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dd792bb53703a57f9207e36d16e26255.asciidoc 0000664 0000000 0000000 00000002502 14766462667 0026405 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:1162
[source, python]
----
resp = client.bulk(
index="my-index-000001",
refresh=True,
operations=[
{
"index": {}
},
{
"timestamp": 1516729294000,
"temperature": 200,
"voltage": 5.2,
"node": "a"
},
{
"index": {}
},
{
"timestamp": 1516642894000,
"temperature": 201,
"voltage": 5.8,
"node": "b"
},
{
"index": {}
},
{
"timestamp": 1516556494000,
"temperature": 202,
"voltage": 5.1,
"node": "a"
},
{
"index": {}
},
{
"timestamp": 1516470094000,
"temperature": 198,
"voltage": 5.6,
"node": "b"
},
{
"index": {}
},
{
"timestamp": 1516383694000,
"temperature": 200,
"voltage": 4.2,
"node": "c"
},
{
"index": {}
},
{
"timestamp": 1516297294000,
"temperature": 202,
"voltage": 4,
"node": "c"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dda949d20d07a9edbe64cefc623df945.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0027130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:472
[source, python]
----
resp = client.indices.put_mapping(
index="my_test_scores",
properties={
"total_score": {
"type": "long"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ddcfa47381d47078dbec651e31b69949.asciidoc 0000664 0000000 0000000 00000000434 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/detect-threats-with-eql.asciidoc:209
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n library where process.name == \"regsvr32.exe\" and dll.name == \"scrobj.dll\"\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dddb6a6ebd145f8411c5b4910d332f87.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/multivalued-fields.asciidoc:233
[source, python]
----
resp = client.esql.query(
query="FROM mv | EVAL b + 2, a + b | LIMIT 4",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dde283eab92608e7bfbfa09c6482a12e.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0027033 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-api-keys.asciidoc:140
[source, python]
----
resp = client.security.invalidate_api_key(
realm_name="native1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dde92fdf3469349ffe2c81764333543a.asciidoc 0000664 0000000 0000000 00000000436 14766462667 0026566 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/apis/create-index-from-source.asciidoc:137
[source, python]
----
resp = client.indices.create_from(
source="my-index",
dest="my-new-index",
create_from={
"remove_index_blocks": False
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ddf375e4b6175d830fa4097ea0b41536.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/delete-desired-nodes.asciidoc:61
[source, python]
----
resp = client.perform_request(
"DELETE",
"/_internal/desired_nodes",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ddf56782ecc7eaeb3115e150c4830013.asciidoc 0000664 0000000 0000000 00000000771 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:591
[source, python]
----
resp = client.update_by_query(
index="my-index-000001",
slice={
"id": 0,
"max": 2
},
script={
"source": "ctx._source['extra'] = 'test'"
},
)
print(resp)
resp1 = client.update_by_query(
index="my-index-000001",
slice={
"id": 1,
"max": 2
},
script={
"source": "ctx._source['extra'] = 'test'"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/de139866a220124360e5e27d1a736ea4.asciidoc 0000664 0000000 0000000 00000001200 14766462667 0026357 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:288
[source, python]
----
resp = client.search(
query={
"term": {
"product": "chocolate"
}
},
sort=[
{
"offer.price": {
"mode": "avg",
"order": "asc",
"nested": {
"path": "offer",
"filter": {
"term": {
"offer.color": "blue"
}
}
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/de2f59887737de3a27716177b60393a2.asciidoc 0000664 0000000 0000000 00000000344 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:245
[source, python]
----
resp = client.indices.analyze(
index="analyze_sample",
field="obj1.field1",
text="this is a test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/de876505acc75d371d1f6f484c449197.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-index.asciidoc:257
[source, python]
----
resp = client.indices.create(
index="test",
settings={
"index.write.wait_for_active_shards": "2"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/de90249caeac6f1601a7e7e9f98f1bec.asciidoc 0000664 0000000 0000000 00000000501 14766462667 0027127 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-api-key.asciidoc:400
[source, python]
----
resp = client.security.query_api_keys(
with_limited_by=True,
query={
"ids": {
"values": [
"VuaCfGcBCdbkQm-e5aOx"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dea22bb4997e368950f0fc80f2a5f304.asciidoc 0000664 0000000 0000000 00000000336 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/explicit-mapping.asciidoc:123
[source, python]
----
resp = client.indices.get_field_mapping(
index="my-index-000001",
fields="employee-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dea4ac54c63a10c62eccd7b7f6543b86.asciidoc 0000664 0000000 0000000 00000000777 14766462667 0027045 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/context-suggest.asciidoc:100
[source, python]
----
resp = client.index(
index="place",
id="1",
document={
"suggest": {
"input": [
"timmy's",
"starbucks",
"dunkin donuts"
],
"contexts": {
"place_type": [
"cafe",
"food"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dead0682932ea6ec33c1197017bcb209.asciidoc 0000664 0000000 0000000 00000001057 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:295
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"pin.location": {
"top_left": "dr5r9ydj2y73",
"bottom_right": "drj7teegpus6"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dec2af498a7e5892e8fcd09ae779c8f0.asciidoc 0000664 0000000 0000000 00000001047 14766462667 0027101 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/iprange-aggregation.asciidoc:61
[source, python]
----
resp = client.search(
index="ip_addresses",
size=0,
aggs={
"ip_ranges": {
"ip_range": {
"field": "ip",
"ranges": [
{
"mask": "10.0.0.0/25"
},
{
"mask": "10.0.0.127/25"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dee3023098d9e63aa9e113beea5686da.asciidoc 0000664 0000000 0000000 00000002066 14766462667 0026765 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:789
[source, python]
----
resp = client.search_application.put(
name="my_search_application",
search_application={
"indices": [
"index1"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"knn\": {\n \"field\": \"{{knn_field}}\",\n \"query_vector\": {{#toJson}}query_vector{{/toJson}},\n \"k\": \"{{k}}\",\n \"num_candidates\": {{num_candidates}}\n },\n \"fields\": {{#toJson}}fields{{/toJson}}\n }\n ",
"params": {
"knn_field": "image-vector",
"query_vector": [],
"k": 10,
"num_candidates": 100,
"fields": [
"title",
"file-type"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/df04e2e9af66d5e30b1bfdbd458cab13.asciidoc 0000664 0000000 0000000 00000000264 14766462667 0027170 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:239
[source, python]
----
resp = client.cat.nodes(
v=True,
h="heap.max",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/df0d27d3abd286b75aef7ddcf0e6c66c.asciidoc 0000664 0000000 0000000 00000001763 14766462667 0027272 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/apis/reload-analyzers.asciidoc:116
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index": {
"analysis": {
"analyzer": {
"my_synonyms": {
"tokenizer": "whitespace",
"filter": [
"synonym"
]
}
},
"filter": {
"synonym": {
"type": "synonym_graph",
"synonyms_path": "analysis/synonym.txt",
"updateable": True
}
}
}
}
},
mappings={
"properties": {
"text": {
"type": "text",
"analyzer": "standard",
"search_analyzer": "my_synonyms"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/df103a3df9b353357e72f9180ef421a1.asciidoc 0000664 0000000 0000000 00000000553 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/rare-terms-aggregation.asciidoc:280
[source, python]
----
resp = client.search(
aggs={
"genres": {
"rare_terms": {
"field": "genre",
"include": "swi*",
"exclude": "electro*"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/df1336e768fb6fc1826a5afa30a57285.asciidoc 0000664 0000000 0000000 00000000534 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:61
[source, python]
----
resp = client.index(
index="my-data-stream",
document={
"@timestamp": "2099-03-08T11:06:07.000Z",
"user": {
"id": "8a4f500d"
},
"message": "Login successful"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/df34c8ebaaa59a3ee0e3f28e2443bc30.asciidoc 0000664 0000000 0000000 00000002654 14766462667 0027112 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/nested-query.asciidoc:298
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"properties": {
"comments": {
"type": "nested"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index",
id="1",
refresh=True,
document={
"comments": [
{
"author": "kimchy"
}
]
},
)
print(resp1)
resp2 = client.index(
index="my-index",
id="2",
refresh=True,
document={
"comments": [
{
"author": "kimchy"
},
{
"author": "nik9000"
}
]
},
)
print(resp2)
resp3 = client.index(
index="my-index",
id="3",
refresh=True,
document={
"comments": [
{
"author": "nik9000"
}
]
},
)
print(resp3)
resp4 = client.search(
index="my-index",
query={
"nested": {
"path": "comments",
"query": {
"bool": {
"must_not": [
{
"term": {
"comments.author": "nik9000"
}
}
]
}
}
}
},
)
print(resp4)
----
python-elasticsearch-8.17.2/docs/examples/df7dbac966b67404b8bfa9cdda5ef480.asciidoc 0000664 0000000 0000000 00000000272 14766462667 0027213 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/ack-watch.asciidoc:259
[source, python]
----
resp = client.watcher.ack_watch(
watch_id="my_watch",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/df7ed126d8c92ddd3655c59ce4f305c9.asciidoc 0000664 0000000 0000000 00000000357 14766462667 0027007 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/thread_pool.asciidoc:178
[source, python]
----
resp = client.cat.thread_pool(
thread_pool_patterns="generic",
v=True,
h="id,name,active,rejected,completed",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/df81b88a2192dd6f9912e0c948a44487.asciidoc 0000664 0000000 0000000 00000000632 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-task.asciidoc:36
[source, python]
----
resp = client.inference.put(
task_type="sparse_embedding",
inference_id="elser_embeddings",
inference_config={
"service": "elasticsearch",
"service_settings": {
"num_allocations": 1,
"num_threads": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/df82a9cb21a7557f3ddba2509f76f608.asciidoc 0000664 0000000 0000000 00000000450 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/fingerprint-tokenfilter.asciidoc:35
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"fingerprint"
],
text="zebra jumps over resting resting dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dfa16b7300d225e013f23625f44c087b.asciidoc 0000664 0000000 0000000 00000002401 14766462667 0026432 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/similarity.asciidoc:194
[source, python]
----
resp = client.indices.create(
index="index",
settings={
"number_of_shards": 1,
"similarity": {
"scripted_tfidf": {
"type": "scripted",
"script": {
"source": "double tf = Math.sqrt(doc.freq); double idf = Math.log((field.docCount+1.0)/(term.docFreq+1.0)) + 1.0; double norm = 1/Math.sqrt(doc.length); return query.boost * tf * idf * norm;"
}
}
}
},
mappings={
"properties": {
"field": {
"type": "text",
"similarity": "scripted_tfidf"
}
}
},
)
print(resp)
resp1 = client.index(
index="index",
id="1",
document={
"field": "foo bar foo"
},
)
print(resp1)
resp2 = client.index(
index="index",
id="2",
document={
"field": "bar baz"
},
)
print(resp2)
resp3 = client.indices.refresh(
index="index",
)
print(resp3)
resp4 = client.search(
index="index",
explain=True,
query={
"query_string": {
"query": "foo^1.7",
"default_field": "field"
}
},
)
print(resp4)
----
python-elasticsearch-8.17.2/docs/examples/dfa75000edf4b960ed9002595a051871.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026442 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/migrate-to-data-tiers-routing-guide.asciidoc:139
[source, python]
----
resp = client.ilm.stop()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dfb20907cfc5ac520ea3b1dba5f00811.asciidoc 0000664 0000000 0000000 00000000440 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/example-watches/example-watch-clusterstatus.asciidoc:115
[source, python]
----
resp = client.search(
index=".watcher-history*",
sort=[
{
"result.execution_time": "desc"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dfb641d2d3155669ad6fb5a424dabf4f.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/migrate-to-data-tiers-routing-guide.asciidoc:158
[source, python]
----
resp = client.ilm.get_status()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dfbf53781adc6640493d49931a352167.asciidoc 0000664 0000000 0000000 00000001515 14766462667 0026412 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/enabled.asciidoc:64
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"enabled": False
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="session_1",
document={
"user_id": "kimchy",
"session_data": {
"arbitrary_object": {
"some_array": [
"foo",
"bar",
{
"baz": 2
}
]
}
},
"last_updated": "2015-12-06T18:20:22"
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="session_1",
)
print(resp2)
resp3 = client.indices.get_mapping(
index="my-index-000001",
)
print(resp3)
----
python-elasticsearch-8.17.2/docs/examples/dfcc83efefaddccfe5dce0695c2266ef.asciidoc 0000664 0000000 0000000 00000000463 14766462667 0027520 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/nested-query.asciidoc:23
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"obj1": {
"type": "nested"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dfcdcd3ea6753dcc391a4a52cf640527.asciidoc 0000664 0000000 0000000 00000001655 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/update-desired-nodes.asciidoc:118
[source, python]
----
resp = client.perform_request(
"PUT",
"/_internal/desired_nodes/Ywkh3INLQcuPT49f6kcppA/101",
headers={"Content-Type": "application/json"},
body={
"nodes": [
{
"settings": {
"node.name": "instance-000187",
"node.external_id": "instance-000187",
"node.roles": [
"data_hot",
"master"
],
"node.attr.data": "hot",
"node.attr.logical_availability_zone": "zone-0"
},
"processors_range": {
"min": 8,
"max": 10
},
"memory": "58gb",
"storage": "2tb"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dfce1be1d035aff0b8fdf4a8839f7795.asciidoc 0000664 0000000 0000000 00000000644 14766462667 0027144 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/update-trained-model-deployment.asciidoc:121
[source, python]
----
resp = client.ml.update_trained_model_deployment(
model_id="elastic__distilbert-base-uncased-finetuned-conll03-english",
adaptive_allocations={
"enabled": True,
"min_number_of_allocations": 3,
"max_number_of_allocations": 10
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dfdf82b8d99436582f150117695190b3.asciidoc 0000664 0000000 0000000 00000001115 14766462667 0026337 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/children-aggregation.asciidoc:39
[source, python]
----
resp = client.index(
index="child_example",
id="1",
document={
"join": {
"name": "question"
},
"body": "I have Windows 2003 server and i bought a new Windows 2008 server...",
"title": "Whats the best way to file transfer my site from server to a newer one?",
"tags": [
"windows-server-2003",
"windows-server-2008",
"file-transfer"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dff61a76d5ef9ca8cbe59a416269a84b.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0027067 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/delete-pipeline.asciidoc:34
[source, python]
----
resp = client.ingest.delete_pipeline(
id="my-pipeline-id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/dffbbdc4025e5777c647d8818847b960.asciidoc 0000664 0000000 0000000 00000000327 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-api-keys.asciidoc:275
[source, python]
----
resp = client.security.get_api_key(
id="VuaCfGcBCdbkQm-e5aOx",
owner=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e017c2de6f93a8dd97f5c6e002dd5c4f.asciidoc 0000664 0000000 0000000 00000001347 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/post-calendar-event.asciidoc:132
[source, python]
----
resp = client.ml.post_calendar_events(
calendar_id="dst-germany",
events=[
{
"description": "Fall 2024",
"start_time": 1729994400000,
"end_time": 1730167200000,
"skip_result": False,
"skip_model_update": False,
"force_time_shift": -3600
},
{
"description": "Spring 2025",
"start_time": 1743296400000,
"end_time": 1743469200000,
"skip_result": False,
"skip_model_update": False,
"force_time_shift": 3600
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e04267ffc50d916800b919c6cdc9622a.asciidoc 0000664 0000000 0000000 00000000373 14766462667 0026546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/ignore-above.asciidoc:74
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index.mapping.ignore_above": 256
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e0734215054e1ff5df712ce3a826cdba.asciidoc 0000664 0000000 0000000 00000000426 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:604
[source, python]
----
resp = client.indices.delete(
index="my-index",
)
print(resp)
resp1 = client.indices.delete_data_stream(
name="logs-my_app-default",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/e08fb1435dc659c24badf25b676efb68.asciidoc 0000664 0000000 0000000 00000000543 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/index-prefixes.asciidoc:21
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"body_text": {
"type": "text",
"index_prefixes": {}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e095fc96504efecc588f97673912e3d3.asciidoc 0000664 0000000 0000000 00000002443 14766462667 0026602 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/put-job.asciidoc:420
[source, python]
----
resp = client.ml.put_job(
job_id="test-job1",
pretty=True,
analysis_config={
"bucket_span": "15m",
"detectors": [
{
"detector_description": "Sum of bytes",
"function": "sum",
"field_name": "bytes"
}
]
},
data_description={
"time_field": "timestamp",
"time_format": "epoch_ms"
},
analysis_limits={
"model_memory_limit": "11MB"
},
model_plot_config={
"enabled": True,
"annotations_enabled": True
},
results_index_name="test-job1",
datafeed_config={
"indices": [
"kibana_sample_data_logs"
],
"query": {
"bool": {
"must": [
{
"match_all": {}
}
]
}
},
"runtime_mappings": {
"hour_of_day": {
"type": "long",
"script": {
"source": "emit(doc['timestamp'].value.getHour());"
}
}
},
"datafeed_id": "datafeed-test-job1"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e09d30195108bd6a1f6857394a6123ea.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026371 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/reverse-tokenfilter.asciidoc:24
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"reverse"
],
text="quick fox jumps",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e09ee13ce253c7892dd5ef076fbfbba5.asciidoc 0000664 0000000 0000000 00000001110 14766462667 0027120 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/remove-duplicates-tokenfilter.asciidoc:136
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_analyzer": {
"tokenizer": "standard",
"filter": [
"keyword_repeat",
"stemmer",
"remove_duplicates"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e0a7c730ef0f22e3edffe9a254bc56e7.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0027115 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:240
[source, python]
----
resp = client.reindex(
source={
"index": "my-index-000001",
"slice": {
"id": 0,
"max": 2
}
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
resp1 = client.reindex(
source={
"index": "my-index-000001",
"slice": {
"id": 1,
"max": 2
}
},
dest={
"index": "my-new-index-000001"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/e0b2f56c34e33ff52f8f9658be2f7ca1.asciidoc 0000664 0000000 0000000 00000000253 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/stats.asciidoc:111
[source, python]
----
resp = client.indices.stats(
index="index1,index2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e0bbfb368eae307e9508ab8d6e9cf23c.asciidoc 0000664 0000000 0000000 00000000257 14766462667 0027131 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/fielddata.asciidoc:108
[source, python]
----
resp = client.cat.fielddata(
v=True,
fields="body",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e0d4a800de2d8f4062e69433586c38db.asciidoc 0000664 0000000 0000000 00000000622 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/saml-complete-logout-api.asciidoc:75
[source, python]
----
resp = client.security.saml_complete_logout(
realm="saml1",
ids=[
"_1c368075e0b3..."
],
query_string="SAMLResponse=fZHLasMwEEVbfb1bf...&SigAlg=http%3A%2F%2Fwww.w3.org%2F2000%2F09%2Fxmldsig%23rsa-sha1&Signature=CuCmFn%2BLqnaZGZJqK...",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e0fcef99656799de6b88117d56f131e2.asciidoc 0000664 0000000 0000000 00000000445 14766462667 0026602 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:276
[source, python]
----
resp = client.explain(
index="my-index-000001",
id="0",
query={
"match": {
"message": "elasticsearch"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e1220f2c28db6ef0233e26e6bd3866fa.asciidoc 0000664 0000000 0000000 00000002421 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/tophits-aggregation.asciidoc:427
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"top_tags": {
"terms": {
"field": "type",
"size": 3
},
"aggs": {
"top_sales_hits": {
"top_hits": {
"sort": [
{
"date": {
"order": "desc"
}
}
],
"_source": {
"includes": [
"date",
"price"
]
},
"size": 1
}
},
"having.top_salary": {
"bucket_selector": {
"buckets_path": {
"tp": "top_sales_hits[_source.price]"
},
"script": "params.tp < 180"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e12f2d2ddca387630e7855a6db952da2.asciidoc 0000664 0000000 0000000 00000001703 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-aggregation.asciidoc:180
[source, python]
----
resp = client.search(
index="sales",
runtime_mappings={
"price.euros": {
"type": "double",
"script": {
"source": "\n emit(doc['price'].value * params.conversion_rate)\n ",
"params": {
"conversion_rate": 0.835526591
}
}
}
},
aggs={
"price_ranges": {
"range": {
"field": "price.euros",
"ranges": [
{
"to": 100
},
{
"from": 100,
"to": 200
},
{
"from": 200
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e1337c6b76defd5a46d05220f9d9c9fc.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-tokens.asciidoc:134
[source, python]
----
resp = client.security.get_token(
grant_type="password",
username="test_admin",
password="x-pack-test-password",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e14a5a5a1c880031486bfff43031fa3a.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026566 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/circuit-breaker-errors.asciidoc:71
[source, python]
----
resp = client.nodes.stats(
metric="breaker",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e16a353e619b935c5c70769b1b9fa100.asciidoc 0000664 0000000 0000000 00000001125 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/composite-aggregation.asciidoc:458
[source, python]
----
resp = client.search(
size=0,
aggs={
"my_buckets": {
"composite": {
"sources": [
{
"tile": {
"geotile_grid": {
"field": "location",
"precision": 8
}
}
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e1874cc7cd22b6860ca8b11bde3c70c1.asciidoc 0000664 0000000 0000000 00000001021 14766462667 0026734 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:227
[source, python]
----
resp = client.search(
index="index2",
query={
"query_string": {
"query": "running with scissors",
"fields": [
"comment",
"comment.english"
]
}
},
highlight={
"order": "score",
"fields": {
"comment": {
"type": "fvh"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e194e9cbe3eb2305f4f7cdda0cf529bd.asciidoc 0000664 0000000 0000000 00000000705 14766462667 0027202 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/misc.asciidoc:10
[source, python]
----
resp = client.search(
typed_keys=True,
suggest={
"text": "some test mssage",
"my-first-suggester": {
"term": {
"field": "message"
}
},
"my-second-suggester": {
"phrase": {
"field": "message"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e19f5e3724d9f3f36a817b9a811ca42e.asciidoc 0000664 0000000 0000000 00000001227 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline.asciidoc:62
[source, python]
----
resp = client.search(
aggs={
"my_date_histo": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "day"
},
"aggs": {
"the_sum": {
"sum": {
"field": "lemmings"
}
},
"the_deriv": {
"derivative": {
"buckets_path": "the_sum"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e1c08f5774e81da31cd75aa1bdc2c548.asciidoc 0000664 0000000 0000000 00000001525 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/percolate-query.asciidoc:688
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"bool": {
"should": [
{
"percolate": {
"field": "query",
"document": {
"message": "bonsai tree"
},
"name": "query1"
}
},
{
"percolate": {
"field": "query",
"document": {
"message": "tulip flower"
},
"name": "query2"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e1d6ecab4148b09f4c605474157e7dbd.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0026701 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:305
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e1f20ee96ce80edcc35b647cef731e15.asciidoc 0000664 0000000 0000000 00000000455 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/match-enrich-policy-type-ex.asciidoc:101
[source, python]
----
resp = client.index(
index="my-index-000001",
id="my_id",
pipeline="user_lookup",
document={
"email": "mardy.brown@asciidocsmith.com"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e1f6ea7c0937cf7e6ea7e8209e52e8bb.asciidoc 0000664 0000000 0000000 00000000432 14766462667 0027060 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/index-sorting.asciidoc:158
[source, python]
----
resp = client.search(
index="events",
size=10,
sort=[
{
"timestamp": "desc"
}
],
track_total_hits=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e22a1da3c622611be6855e534c0709ae.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0026516 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-rules/apis/test-query-ruleset.asciidoc:117
[source, python]
----
resp = client.query_rules.test(
ruleset_id="my-ruleset",
match_criteria={
"query_string": "puggles"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e26c96978096ccc592849cca9db67ffc.asciidoc 0000664 0000000 0000000 00000000373 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// shard-request-cache.asciidoc:74
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index.requests.cache.enable": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e26e8bfa68aa4ab265b22304c38c3aef.asciidoc 0000664 0000000 0000000 00000004213 14766462667 0027023 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/esql/esql-getting-started-sample-data.asciidoc:7
[source, python]
----
resp = client.indices.create(
index="sample_data",
mappings={
"properties": {
"client_ip": {
"type": "ip"
},
"message": {
"type": "keyword"
}
}
},
)
print(resp)
resp1 = client.bulk(
index="sample_data",
operations=[
{
"index": {}
},
{
"@timestamp": "2023-10-23T12:15:03.360Z",
"client_ip": "172.21.2.162",
"message": "Connected to 10.1.0.3",
"event_duration": 3450233
},
{
"index": {}
},
{
"@timestamp": "2023-10-23T12:27:28.948Z",
"client_ip": "172.21.2.113",
"message": "Connected to 10.1.0.2",
"event_duration": 2764889
},
{
"index": {}
},
{
"@timestamp": "2023-10-23T13:33:34.937Z",
"client_ip": "172.21.0.5",
"message": "Disconnected",
"event_duration": 1232382
},
{
"index": {}
},
{
"@timestamp": "2023-10-23T13:51:54.732Z",
"client_ip": "172.21.3.15",
"message": "Connection error",
"event_duration": 725448
},
{
"index": {}
},
{
"@timestamp": "2023-10-23T13:52:55.015Z",
"client_ip": "172.21.3.15",
"message": "Connection error",
"event_duration": 8268153
},
{
"index": {}
},
{
"@timestamp": "2023-10-23T13:53:55.832Z",
"client_ip": "172.21.3.15",
"message": "Connection error",
"event_duration": 5033755
},
{
"index": {}
},
{
"@timestamp": "2023-10-23T13:55:01.543Z",
"client_ip": "172.21.3.15",
"message": "Connected to 10.1.0.1",
"event_duration": 1756467
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/e270f3f721a5712cd11a5ca03554f5b0.asciidoc 0000664 0000000 0000000 00000000622 14766462667 0026507 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:171
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "Will Smith",
"type": "best_fields",
"fields": [
"first_name",
"last_name"
],
"operator": "and"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e273060a675c959fd5f3cde27c8aff07.asciidoc 0000664 0000000 0000000 00000000504 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/disk-usage.asciidoc:14
[source, python]
----
resp = client.indices.create(
index="index",
mappings={
"properties": {
"foo": {
"type": "integer",
"index": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2750d69bcb6d4c7e16e704cd0fb3530.asciidoc 0000664 0000000 0000000 00000001011 14766462667 0026663 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rank-feature-query.asciidoc:67
[source, python]
----
resp = client.indices.create(
index="test",
mappings={
"properties": {
"pagerank": {
"type": "rank_feature"
},
"url_length": {
"type": "rank_feature",
"positive_score_impact": False
},
"topics": {
"type": "rank_features"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2883c88b5ceca9fce1e70e716d80025.asciidoc 0000664 0000000 0000000 00000000471 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/version.asciidoc:19
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_version": {
"type": "version"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2a22c6fd58cc0becf4c383134a08f8b.asciidoc 0000664 0000000 0000000 00000001072 14766462667 0027027 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/intervals-query.asciidoc:455
[source, python]
----
resp = client.search(
query={
"intervals": {
"my_text": {
"match": {
"query": "salty",
"filter": {
"contained_by": {
"match": {
"query": "hot porridge"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2a753029b450942a3228e3003a55a7d.asciidoc 0000664 0000000 0000000 00000000643 14766462667 0026300 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/apis/put-lifecycle.asciidoc:111
[source, python]
----
resp = client.indices.put_data_lifecycle(
name="my-weather-sensor-data-stream",
downsampling=[
{
"after": "1d",
"fixed_interval": "10m"
},
{
"after": "7d",
"fixed_interval": "1d"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2a7d127b82ddebb690a959dcd0cbc09.asciidoc 0000664 0000000 0000000 00000000750 14766462667 0027116 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/elision-tokenfilter.asciidoc:96
[source, python]
----
resp = client.indices.create(
index="elision_example",
settings={
"analysis": {
"analyzer": {
"whitespace_elision": {
"tokenizer": "whitespace",
"filter": [
"elision"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2b4867a9f72bda87ebaa3608d3fba4c.asciidoc 0000664 0000000 0000000 00000001277 14766462667 0027130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:354
[source, python]
----
resp = client.render_search_template(
source={
"query": {
"range": {
"user.effective.date": {
"gte": "{{date.min}}",
"lte": "{{date.max}}",
"format": "{{#join delimiter='||'}}date.formats{{/join delimiter='||'}}"
}
}
}
},
params={
"date": {
"min": "2098",
"max": "06/05/2099",
"formats": [
"dd/MM/yyyy",
"yyyy"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2bcc8f4ed2b4de82729e7a5a7c8f634.asciidoc 0000664 0000000 0000000 00000000256 14766462667 0027061 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// synonyms/apis/list-synonyms-sets.asciidoc:86
[source, python]
----
resp = client.synonyms.get_synonyms_sets()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2d8cf24a12053eb09fec7087cdab43a.asciidoc 0000664 0000000 0000000 00000001460 14766462667 0027024 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/normalize-aggregation.asciidoc:95
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
},
"percent_of_total_sales": {
"normalize": {
"buckets_path": "sales",
"method": "percent_of_sum",
"format": "00.00%"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e2ec9e867f7141b304b53ebc59098f2a.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/update-api-key.asciidoc:258
[source, python]
----
resp = client.security.update_api_key(
id="VuaCfGcBCdbkQm-e5aOx",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e3019fd5f23458ae49ad9854c97d321c.asciidoc 0000664 0000000 0000000 00000000335 14766462667 0026557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/oidc-prepare-authentication-api.asciidoc:78
[source, python]
----
resp = client.security.oidc_prepare_authentication(
realm="oidc1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e308899a306e61d1a590868308689955.asciidoc 0000664 0000000 0000000 00000001261 14766462667 0026136 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/ip-location.asciidoc:136
[source, python]
----
resp = client.ingest.put_pipeline(
id="ip_location",
description="Add ip geolocation info",
processors=[
{
"ip_location": {
"field": "ip",
"target_field": "geo",
"database_file": "GeoLite2-Country.mmdb"
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="ip_location",
document={
"ip": "89.160.20.128"
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/e30ea6e3823a139d7693d8cce1920a06.asciidoc 0000664 0000000 0000000 00000000520 14766462667 0026532 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/multi-match-query.asciidoc:50
[source, python]
----
resp = client.search(
query={
"multi_match": {
"query": "this is a test",
"fields": [
"subject^3",
"message"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e316271f668c9889bf548311fb421f1e.asciidoc 0000664 0000000 0000000 00000000560 14766462667 0026421 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:846
[source, python]
----
resp = client.search(
aggs={
"ip_addresses": {
"terms": {
"field": "destination_ip",
"missing": "0.0.0.0",
"value_type": "ip"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e317a8380dfbc76c4e7f23d0997b3518.asciidoc 0000664 0000000 0000000 00000000364 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:524
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"action.destructive_requires_name": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e324ea1547635180c31c1adf77870ba2.asciidoc 0000664 0000000 0000000 00000002120 14766462667 0026436 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/tsds-reindex.asciidoc:249
[source, python]
----
resp = client.cluster.put_component_template(
name="destination_template",
template={
"settings": {
"index": {
"number_of_replicas": 2,
"number_of_shards": 2,
"mode": "time_series",
"routing_path": [
"metricset"
]
}
},
"mappings": {
"properties": {
"@timestamp": {
"type": "date"
},
"metricset": {
"type": "keyword",
"time_series_dimension": True
},
"k8s": {
"properties": {
"tx": {
"type": "long"
},
"rx": {
"type": "long"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e35abc9403e4aef7d538ab29ccc363b3.asciidoc 0000664 0000000 0000000 00000000417 14766462667 0027034 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/prevalidate-node-removal.asciidoc:111
[source, python]
----
resp = client.perform_request(
"POST",
"/_internal/prevalidate_node_removal",
params={
"names": "node1,node2"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e3678142aec988e2ff0ae5d934dc39e9.asciidoc 0000664 0000000 0000000 00000003761 14766462667 0026737 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-point.asciidoc:28
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"location": {
"type": "geo_point"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"text": "Geopoint as an object using GeoJSON format",
"location": {
"type": "Point",
"coordinates": [
-71.34,
41.12
]
}
},
)
print(resp1)
resp2 = client.index(
index="my-index-000001",
id="2",
document={
"text": "Geopoint as a WKT POINT primitive",
"location": "POINT (-71.34 41.12)"
},
)
print(resp2)
resp3 = client.index(
index="my-index-000001",
id="3",
document={
"text": "Geopoint as an object with 'lat' and 'lon' keys",
"location": {
"lat": 41.12,
"lon": -71.34
}
},
)
print(resp3)
resp4 = client.index(
index="my-index-000001",
id="4",
document={
"text": "Geopoint as an array",
"location": [
-71.34,
41.12
]
},
)
print(resp4)
resp5 = client.index(
index="my-index-000001",
id="5",
document={
"text": "Geopoint as a string",
"location": "41.12,-71.34"
},
)
print(resp5)
resp6 = client.index(
index="my-index-000001",
id="6",
document={
"text": "Geopoint as a geohash",
"location": "drm3btev3e86"
},
)
print(resp6)
resp7 = client.search(
index="my-index-000001",
query={
"geo_bounding_box": {
"location": {
"top_left": {
"lat": 42,
"lon": -72
},
"bottom_right": {
"lat": 40,
"lon": -74
}
}
}
},
)
print(resp7)
----
python-elasticsearch-8.17.2/docs/examples/e375c7da666276c4df6664c6821cd5f4.asciidoc 0000664 0000000 0000000 00000001205 14766462667 0026562 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/rank-vectors.asciidoc:17
[source, python]
----
resp = client.indices.create(
index="my-rank-vectors-float",
mappings={
"properties": {
"my_vector": {
"type": "rank_vectors"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-rank-vectors-float",
id="1",
document={
"my_vector": [
[
0.5,
10,
6
],
[
-0.5,
10,
10
]
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/e3a6462ca79c101314da0680c97678cd.asciidoc 0000664 0000000 0000000 00000001202 14766462667 0026450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrieve-selected-fields.asciidoc:734
[source, python]
----
resp = client.search(
query={
"match_all": {}
},
script_fields={
"test1": {
"script": {
"lang": "painless",
"source": "doc['price'].value * 2"
}
},
"test2": {
"script": {
"lang": "painless",
"source": "doc['price'].value * params.factor",
"params": {
"factor": 2
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e3b3a8ae12ab947ad3ba96eb228402ca.asciidoc 0000664 0000000 0000000 00000000432 14766462667 0027013 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/store.asciidoc:122
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index.store.preload": [
"nvd",
"dvd"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e3f2f6ee3e312b8a90634827ae954d70.asciidoc 0000664 0000000 0000000 00000001535 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:421
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "GeometryCollection",
"geometries": [
{
"type": "Point",
"coordinates": [
100,
0
]
},
{
"type": "LineString",
"coordinates": [
[
101,
0
],
[
102,
1
]
]
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e3fe842951dc873d7d00c8f6a010c53f.asciidoc 0000664 0000000 0000000 00000000373 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/task-queue-backlog.asciidoc:90
[source, python]
----
resp = client.tasks.list(
human=True,
detailed=True,
actions="indices:data/write/search",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4193867485595c9c92f909a052d2a90.asciidoc 0000664 0000000 0000000 00000000734 14766462667 0026274 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/has-parent-query.asciidoc:27
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my-join-field": {
"type": "join",
"relations": {
"parent": "child"
}
},
"tag": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e41a9bac42d0c1cb103674ae9039b7af.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0026732 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/field-mapping.asciidoc:234
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"numeric_detection": True
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"my_float": "1.0",
"my_integer": "1"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/e441cb3be3c2f007621ee1f8c9a2e0ef.asciidoc 0000664 0000000 0000000 00000000562 14766462667 0027025 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/matrix-stats-aggregation.asciidoc:45
[source, python]
----
resp = client.search(
aggs={
"statistics": {
"matrix_stats": {
"fields": [
"poverty",
"income"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e451900efbd8be50c2b8347a83816aa6.asciidoc 0000664 0000000 0000000 00000001315 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/extended-stats-bucket-aggregation.asciidoc:44
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"stats_monthly_sales": {
"extended_stats_bucket": {
"buckets_path": "sales_per_month>sales"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e46c83db1580e14be844079cd008f518.asciidoc 0000664 0000000 0000000 00000000501 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/enable-index-allocation.asciidoc:130
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"routing.allocation.enable": "all"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e47a71a2e314dbbee5db8142a23957ce.asciidoc 0000664 0000000 0000000 00000000643 14766462667 0026752 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:621
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"set": {
"description": "Index the ingest timestamp as 'event.ingested'",
"field": "event.ingested",
"value": "{{{_ingest.timestamp}}}"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e48e7da65c2b32d724fd7e3bfa175c6f.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0027055 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-overall-buckets.asciidoc:136
[source, python]
----
resp = client.ml.get_overall_buckets(
job_id="job-*",
overall_score=80,
start="1403532000000",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e494162e83ce041c56b2e2bc29d33474.asciidoc 0000664 0000000 0000000 00000000627 14766462667 0026462 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:394
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n sequence by process.pid with maxspan=1h\n [ process where process.name == \"regsvr32.exe\" ]\n [ file where stringContains(file.name, \"scrobj.dll\") ]\n until [ process where event.type == \"termination\" ]\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4b2b5e0aaedf3cbbcde3d61eb1f13fc.asciidoc 0000664 0000000 0000000 00000000352 14766462667 0027450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/refresh.asciidoc:108
[source, python]
----
resp = client.index(
index="test",
id="4",
refresh="wait_for",
document={
"test": "test"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4b38973c74037335378d8480f1ce894.asciidoc 0000664 0000000 0000000 00000001703 14766462667 0026272 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/apis/simulate-ingest.asciidoc:435
[source, python]
----
resp = client.simulate.ingest(
docs=[
{
"_index": "my-index",
"_id": "123",
"_source": {
"foo": "foo"
}
},
{
"_index": "my-index",
"_id": "456",
"_source": {
"bar": "rab"
}
}
],
component_template_substitutions={
"my-mappings_template": {
"template": {
"mappings": {
"dynamic": "strict",
"properties": {
"foo": {
"type": "keyword"
},
"bar": {
"type": "keyword"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4b64b8277af259a52c8d3940157b5fa.asciidoc 0000664 0000000 0000000 00000002346 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/painless-examples.asciidoc:402
[source, python]
----
resp = client.transform.put_transform(
transform_id="data_log",
source={
"index": "kibana_sample_data_logs"
},
dest={
"index": "data-logs-by-client"
},
pivot={
"group_by": {
"machine.os": {
"terms": {
"field": "machine.os.keyword"
}
},
"machine.ip": {
"terms": {
"field": "clientip"
}
}
},
"aggregations": {
"time_frame.lte": {
"max": {
"field": "timestamp"
}
},
"time_frame.gte": {
"min": {
"field": "timestamp"
}
},
"time_length": {
"bucket_script": {
"buckets_path": {
"min": "time_frame.gte.value",
"max": "time_frame.lte.value"
},
"script": "params.max - params.min"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4b6a6a921c97b4c0bbe97bd89f4cf33.asciidoc 0000664 0000000 0000000 00000000317 14766462667 0027052 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/promote-data-stream-api.asciidoc:32
[source, python]
----
resp = client.indices.promote_data_stream(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4be53736bcc02b03068fd72fdbfe271.asciidoc 0000664 0000000 0000000 00000000406 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:114
[source, python]
----
resp = client.indices.put_mapping(
index="publications",
properties={
"title": {
"type": "text"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4d1f01c025fb797a1d87f372760eabf.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/hotspotting.asciidoc:271
[source, python]
----
resp = client.tasks.list(
human=True,
detailed=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4de6035653e8202c43631f02d244661.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0026227 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-across-clusters.asciidoc:127
[source, python]
----
resp = client.search(
index="cluster_one:my-index-000001",
size=1,
query={
"match": {
"user.id": "kimchy"
}
},
source=[
"user.id",
"message",
"http.response.status_code"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e4ea514eb9a01716d9bbc5aa04ee0252.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026736 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/query-user.asciidoc:192
[source, python]
----
resp = client.perform_request(
"POST",
"/_security/_query/user",
headers={"Content-Type": "application/json"},
body={
"query": {
"prefix": {
"roles": "other"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e51a86b666f447cda5f634547a8e1a4a.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026624 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-data-stream.asciidoc:28
[source, python]
----
resp = client.indices.create_data_stream(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e551ea38a2d8f8deac110b33304200cc.asciidoc 0000664 0000000 0000000 00000001113 14766462667 0026637 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// reranking/learning-to-rank-search-usage.asciidoc:17
[source, python]
----
resp = client.search(
index="my-index",
query={
"multi_match": {
"fields": [
"title",
"content"
],
"query": "the quick brown fox"
}
},
rescore={
"learning_to_rank": {
"model_id": "ltr-model",
"params": {
"query_text": "the quick brown fox"
}
},
"window_size": 100
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e586d1d2a997133e039fd352a42a72b3.asciidoc 0000664 0000000 0000000 00000000732 14766462667 0026460 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/terms-set-query.asciidoc:136
[source, python]
----
resp = client.search(
index="job-candidates",
query={
"terms_set": {
"programming_languages": {
"terms": [
"c++",
"java",
"php"
],
"minimum_should_match_field": "required_matches"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e58833449d01379df20ad06dc28144d8.asciidoc 0000664 0000000 0000000 00000000436 14766462667 0026410 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update-by-query.asciidoc:331
[source, python]
----
resp = client.update_by_query(
index="my-index-000001",
conflicts="proceed",
query={
"term": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e58b7965c3a314c34bc444c6db3b1b79.asciidoc 0000664 0000000 0000000 00000000443 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/enable-index-allocation.asciidoc:104
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
name="index.routing.allocation.enable",
flat_settings=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e5901f48eb8a419b878fc2cb815d8691.asciidoc 0000664 0000000 0000000 00000000355 14766462667 0026571 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/update-settings.asciidoc:50
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"indices.recovery.max_bytes_per_sec": "50mb"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e5c710b08a545522d50b4ce35503bc46.asciidoc 0000664 0000000 0000000 00000001325 14766462667 0026435 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:230
[source, python]
----
resp = client.index(
index="my-data-stream",
pipeline="my-pipeline",
document={
"@timestamp": "2099-03-07T11:04:05.000Z",
"my-keyword-field": "foo"
},
)
print(resp)
resp1 = client.bulk(
index="my-data-stream",
pipeline="my-pipeline",
operations=[
{
"create": {}
},
{
"@timestamp": "2099-03-07T11:04:06.000Z",
"my-keyword-field": "foo"
},
{
"create": {}
},
{
"@timestamp": "2099-03-07T11:04:07.000Z",
"my-keyword-field": "bar"
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/e5f50b31f165462d883ecbff45f74985.asciidoc 0000664 0000000 0000000 00000001155 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-index-template-v1.asciidoc:20
[source, python]
----
resp = client.indices.put_template(
name="template_1",
index_patterns=[
"te*",
"bar*"
],
settings={
"number_of_shards": 1
},
mappings={
"_source": {
"enabled": False
},
"properties": {
"host_name": {
"type": "keyword"
},
"created_at": {
"type": "date",
"format": "EEE MMM dd HH:mm:ss Z yyyy"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e5f89a04f50df707a0a53ec0f2eecbbd.asciidoc 0000664 0000000 0000000 00000000345 14766462667 0027171 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:77
[source, python]
----
resp = client.get(
index="my-index-000001",
id="0",
source_includes="*.id",
source_excludes="entities",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e5f8f83df37ab2296dc4bfed95d7aba7.asciidoc 0000664 0000000 0000000 00000000417 14766462667 0027224 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/enable-cluster-allocation.asciidoc:112
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.enable": "all"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e608cd0c034f6c245ea87f425e09ce2f.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0026677 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-term-query.asciidoc:10
[source, python]
----
resp = client.search(
query={
"span_term": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e60b7f75ca806f2c74927c3d9409a986.asciidoc 0000664 0000000 0000000 00000000525 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/create-role-mappings.asciidoc:166
[source, python]
----
resp = client.security.put_role_mapping(
name="mapping3",
roles=[
"ldap-user"
],
enabled=True,
rules={
"field": {
"realm.name": "ldap1"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e60c2bf89fdf38187709d04dd1c55330.asciidoc 0000664 0000000 0000000 00000000617 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/mlt-query.asciidoc:19
[source, python]
----
resp = client.search(
query={
"more_like_this": {
"fields": [
"title",
"description"
],
"like": "Once upon a time",
"min_term_freq": 1,
"max_query_terms": 12
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e60ded7becfd5b2ccaef5bad2aaa93f5.asciidoc 0000664 0000000 0000000 00000000551 14766462667 0027546 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:185
[source, python]
----
resp = client.search(
aggs={
"products": {
"terms": {
"field": "product",
"size": 5,
"show_term_doc_count_error": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e61b5abe85000cc954a42e2cd74f3a26.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0026660 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/put-calendar.asciidoc:50
[source, python]
----
resp = client.ml.put_calendar(
calendar_id="planned-outages",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e6369e7cef82d881af593d5526bf79bd.asciidoc 0000664 0000000 0000000 00000000455 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-term-query.asciidoc:22
[source, python]
----
resp = client.search(
query={
"span_term": {
"user.id": {
"value": "kimchy",
"boost": 2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e63775a2ff22b945ab9d5f630b80c506.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/health.asciidoc:202
[source, python]
----
resp = client.cluster.health(
index="my-index-000001",
level="shards",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e63cf08350e9381f519c2835843be7cd.asciidoc 0000664 0000000 0000000 00000000653 14766462667 0026502 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/field-mapping.asciidoc:175
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_date_formats": [
"yyyy/MM||MM/dd/yyyy"
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"create_date": "09/25/2015"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/e642be44a62a89cf4afb2db28220c9a9.asciidoc 0000664 0000000 0000000 00000000454 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:459
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"ingest.geoip.downloader.enabled": True,
"indices.lifecycle.history_index_enabled": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e650d73c57ab313e686fec01e3b0c90f.asciidoc 0000664 0000000 0000000 00000000653 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:915
[source, python]
----
resp = client.reindex(
source={
"index": "my-index-000001"
},
dest={
"index": "my-new-index-000001",
"version_type": "external"
},
script={
"source": "if (ctx._source.foo == 'bar') {ctx._version++; ctx._source.remove('foo')}",
"lang": "painless"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e697ef947f3fb7835f7fadb9125b1043.asciidoc 0000664 0000000 0000000 00000000603 14766462667 0026645 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:375
[source, python]
----
resp = client.sql.query(
format="txt",
query="SELECT * FROM library ORDER BY page_count DESC",
filter={
"range": {
"page_count": {
"gte": 100,
"lte": 200
}
}
},
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e6b972611c0ec8ab4c240f33f323d85b.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0026613 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:418
[source, python]
----
resp = client.search(
index="my-index-000001",
size="0",
aggs={
"by_day": {
"date_histogram": {
"field": "date",
"calendar_interval": "day",
"time_zone": "-01:00"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e6ccd979c34ba03007e625c6ec3e71a9.asciidoc 0000664 0000000 0000000 00000000213 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:260
[source, python]
----
resp = client.indices.get_alias()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e6dcc2911d2416a65eaec9846b956e15.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026626 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/refresh.asciidoc:19
[source, python]
----
resp = client.indices.refresh(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e6e47da87079a8b67f767a2a01878cf2.asciidoc 0000664 0000000 0000000 00000000716 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:578
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"set": {
"description": "Use geo_point dynamic template for address field",
"field": "_dynamic_templates",
"value": {
"address": "geo_point"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e6f6d3aeea7ecea47cfd5c3d727f7004.asciidoc 0000664 0000000 0000000 00000002456 14766462667 0027215 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:448
[source, python]
----
resp = client.search(
index="retrievers_example",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"query_string": {
"query": "(information retrieval) OR (artificial intelligence)",
"default_field": "text"
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
0.23,
0.67,
0.89
],
"k": 3,
"num_candidates": 5
}
}
],
"rank_window_size": 10,
"rank_constant": 1
}
},
collapse={
"field": "year",
"inner_hits": {
"name": "topic related documents",
"_source": [
"year"
]
}
},
source=False,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e6faae2e272ee57727f38e55a3de5bb2.asciidoc 0000664 0000000 0000000 00000000505 14766462667 0027047 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:557
[source, python]
----
resp = client.search(
highlight={
"fields": [
{
"title": {}
},
{
"text": {}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e715fb8c792bf09ac98f0ceca99beb84.asciidoc 0000664 0000000 0000000 00000000276 14766462667 0027152 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:345
[source, python]
----
resp = client.migration.deprecations(
index=".ml-anomalies-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e71d300cd87f09a9527cf45395dd7eb1.asciidoc 0000664 0000000 0000000 00000000247 14766462667 0026635 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// slm/apis/slm-execute-retention.asciidoc:40
[source, python]
----
resp = client.slm.execute_retention()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e77c2f41a7eca765b0c5f734a66d919f.asciidoc 0000664 0000000 0000000 00000000767 14766462667 0026727 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/attachment.asciidoc:133
[source, python]
----
resp = client.ingest.put_pipeline(
id="attachment",
description="Extract attachment information",
processors=[
{
"attachment": {
"field": "data",
"properties": [
"content",
"title"
],
"remove_binary": True
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e784fc00894635470adfd78a0c46b427.asciidoc 0000664 0000000 0000000 00000001235 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-component-template.asciidoc:19
[source, python]
----
resp = client.cluster.put_component_template(
name="template_1",
template={
"settings": {
"number_of_shards": 1
},
"mappings": {
"_source": {
"enabled": False
},
"properties": {
"host_name": {
"type": "keyword"
},
"created_at": {
"type": "date",
"format": "EEE MMM dd HH:mm:ss Z yyyy"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e7cfe670b4177d1011076f845ec2916c.asciidoc 0000664 0000000 0000000 00000000516 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-manage-data-stream-retention.asciidoc:144
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"data_streams.lifecycle.retention.default": "7d",
"data_streams.lifecycle.retention.max": "90d"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e7d819634d765cde269e2669e2dc677f.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0026604 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-api-keys.asciidoc:151
[source, python]
----
resp = client.security.invalidate_api_key(
username="myuser",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e7e95022867c72a6563137f066dd2973.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0026256 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significantterms-aggregation.asciidoc:207
[source, python]
----
resp = client.search(
aggs={
"hotspots": {
"geohash_grid": {
"field": "location",
"precision": 5
},
"aggs": {
"significant_crime_types": {
"significant_terms": {
"field": "crime_type"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e7eca57a5bf5a53cbbe2463bce11495b.asciidoc 0000664 0000000 0000000 00000000507 14766462667 0027111 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/valuecount-aggregation.asciidoc:15
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"types_count": {
"value_count": {
"field": "type"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e8211247c280a3fbbbdd32850b743b7b.asciidoc 0000664 0000000 0000000 00000000675 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/put-dfanalytics.asciidoc:723
[source, python]
----
resp = client.ml.put_data_frame_analytics(
id="house_price_regression_analysis",
source={
"index": "houses_sold_last_10_yrs"
},
dest={
"index": "house_price_predictions"
},
analysis={
"regression": {
"dependent_variable": "price"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e821d27a8b810821707ba860e31f8b78.asciidoc 0000664 0000000 0000000 00000000600 14766462667 0026376 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/put-mapping.asciidoc:238
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
properties={
"city": {
"type": "text",
"fields": {
"raw": {
"type": "keyword"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e827a9040e137410d62d10bb3b3cbb71.asciidoc 0000664 0000000 0000000 00000000263 14766462667 0026505 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/get-watch.asciidoc:55
[source, python]
----
resp = client.watcher.get_watch(
id="my_watch",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e82c33def91faddcfeed7b02cd258605.asciidoc 0000664 0000000 0000000 00000001057 14766462667 0027205 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/multi-terms-aggregation.asciidoc:248
[source, python]
----
resp = client.search(
index="products",
aggs={
"genres_and_products": {
"multi_terms": {
"terms": [
{
"field": "genre"
},
{
"field": "product",
"missing": "Product Z"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e84e23232c7ecc8d6377ec2c16a60269.asciidoc 0000664 0000000 0000000 00000000621 14766462667 0026544 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-index.asciidoc:198
[source, python]
----
resp = client.indices.create(
index="test",
aliases={
"alias_1": {},
"alias_2": {
"filter": {
"term": {
"user.id": "kimchy"
}
},
"routing": "shard-1"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e88a057a13e191e4d5faa22edf2ae8ed.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0027122 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:368
[source, python]
----
resp = client.cluster.get_settings(
filter_path="**.xpack.profiling.templates.enabled",
include_defaults=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e891e1d4805172da45a81f62b6b44aca.asciidoc 0000664 0000000 0000000 00000001171 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:464
[source, python]
----
resp = client.search(
size=0,
runtime_mappings={
"normalized_genre": {
"type": "keyword",
"script": "\n String genre = doc['genre'].value;\n if (doc['product'].value.startsWith('Anthology')) {\n emit(genre + ' anthology');\n } else {\n emit(genre);\n }\n "
}
},
aggs={
"genres": {
"terms": {
"field": "normalized_genre"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e89bf0d893b7bf43c2d9b44db6cfe21b.asciidoc 0000664 0000000 0000000 00000000511 14766462667 0027125 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rank-feature-query.asciidoc:295
[source, python]
----
resp = client.search(
index="test",
query={
"rank_feature": {
"field": "pagerank",
"log": {
"scaling_factor": 4
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e8a2726eea5545355d1d0835d4599f55.asciidoc 0000664 0000000 0000000 00000000377 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/ip.asciidoc:126
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"term": {
"ip_addr": "2001:db8::/48"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e8bb5c57bdeff22be8e5f39a99dfe70e.asciidoc 0000664 0000000 0000000 00000001376 14766462667 0027317 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/sampler-aggregation.asciidoc:22
[source, python]
----
resp = client.search(
index="stackoverflow",
size="0",
query={
"query_string": {
"query": "tags:kibana OR tags:javascript"
}
},
aggs={
"sample": {
"sampler": {
"shard_size": 200
},
"aggs": {
"keywords": {
"significant_terms": {
"field": "tags",
"exclude": [
"kibana",
"javascript"
]
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e8c348cabe15dfe58ab4c3cc13a963fe.asciidoc 0000664 0000000 0000000 00000000263 14766462667 0027201 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-shards.asciidoc:78
[source, python]
----
resp = client.search_shards(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e8cbe2269f3dff6b231e73119e81511d.asciidoc 0000664 0000000 0000000 00000000336 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/exists-query.asciidoc:20
[source, python]
----
resp = client.search(
query={
"exists": {
"field": "user"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e8ea65153d7775f25b08dfdfe6954498.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026577 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/simple-query-string-query.asciidoc:245
[source, python]
----
resp = client.search(
query={
"simple_query_string": {
"query": "Will Smith",
"fields": [
"title",
"*_name"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e8f1c9ee003d115ec8f55e57990df6e4.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0026721 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-category.asciidoc:154
[source, python]
----
resp = client.ml.get_categories(
job_id="esxi_log",
page={
"size": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e905543b281e9c41395304da76ed2ea3.asciidoc 0000664 0000000 0000000 00000000260 14766462667 0026455 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/troubleshooting.asciidoc:29
[source, python]
----
resp = client.indices.delete(
index=".watches",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e930a572e8ddfdecc13498c04007b9e3.asciidoc 0000664 0000000 0000000 00000001030 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:97
[source, python]
----
resp = client.indices.create(
index="openai-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 1536,
"element_type": "float",
"similarity": "dot_product"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e93ff228ab3e63738e1c83fdfb7424b9.asciidoc 0000664 0000000 0000000 00000000652 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:446
[source, python]
----
resp = client.search(
query={
"match": {
"user.id": "kimchy"
}
},
highlight={
"pre_tags": [
""
],
"post_tags": [
""
],
"fields": {
"body": {}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e95ba581b298cd7bb598374afbfed315.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/frequent-item-sets-aggregation.asciidoc:173
[source, python]
----
resp = client.async_search.get(
id="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e95e61988dc3073a007f7b7445dd233b.asciidoc 0000664 0000000 0000000 00000001072 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/lifecycle/tutorial-migrate-data-stream-from-ilm-to-dsl.asciidoc:192
[source, python]
----
resp = client.indices.put_index_template(
name="dsl-data-stream-template",
index_patterns=[
"dsl-data-stream*"
],
data_stream={},
priority=500,
template={
"settings": {
"index.lifecycle.name": "pre-dsl-ilm-policy",
"index.lifecycle.prefer_ilm": False
},
"lifecycle": {
"data_retention": "7d"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e9625da419bff6470ffd9927c59ca159.asciidoc 0000664 0000000 0000000 00000000360 14766462667 0026652 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/rejected-requests.asciidoc:29
[source, python]
----
resp = client.cat.thread_pool(
v=True,
h="id,name,queue,active,rejected,completed",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e9738fe09a99080506a07945795e8eda.asciidoc 0000664 0000000 0000000 00000000427 14766462667 0026442 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/stop-tokenfilter.asciidoc:31
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"stop"
],
text="a quick fox jumps over the lazy dog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e99c45a47dc0ba7440aea8a9a99c84fa.asciidoc 0000664 0000000 0000000 00000001132 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significanttext-aggregation.asciidoc:39
[source, python]
----
resp = client.search(
index="news",
query={
"match": {
"content": "Bird flu"
}
},
aggregations={
"my_sample": {
"sampler": {
"shard_size": 100
},
"aggregations": {
"keywords": {
"significant_text": {
"field": "content"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e9a0b450af6219772631703d602c7092.asciidoc 0000664 0000000 0000000 00000002273 14766462667 0026233 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/text-expansion-query.asciidoc:229
[source, python]
----
resp = client.search(
index="my-index",
query={
"text_expansion": {
"ml.tokens": {
"model_id": ".elser_model_2",
"model_text": "How is the weather in Jamaica?",
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": False
}
}
}
},
rescore={
"window_size": 100,
"query": {
"rescore_query": {
"text_expansion": {
"ml.tokens": {
"model_id": ".elser_model_2",
"model_text": "How is the weather in Jamaica?",
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": True
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e9f9e184499a793828233e536fac0487.asciidoc 0000664 0000000 0000000 00000000435 14766462667 0026364 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/delete-by-query.asciidoc:412
[source, python]
----
resp = client.delete_by_query(
index="my-index-000001",
scroll_size="5000",
query={
"term": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e9fc47015922d51c2b05e502ce9c622e.asciidoc 0000664 0000000 0000000 00000000645 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-google-ai-studio.asciidoc:103
[source, python]
----
resp = client.inference.put(
task_type="completion",
inference_id="google_ai_studio_completion",
inference_config={
"service": "googleaistudio",
"service_settings": {
"api_key": "",
"model_id": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/e9fe3b53b5b6e1ff9566b5237c0fa513.asciidoc 0000664 0000000 0000000 00000002000 14766462667 0026676 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/children-aggregation.asciidoc:59
[source, python]
----
resp = client.index(
index="child_example",
id="2",
routing="1",
document={
"join": {
"name": "answer",
"parent": "1"
},
"owner": {
"location": "Norfolk, United Kingdom",
"display_name": "Sam",
"id": 48
},
"body": "Unfortunately you're pretty much limited to FTP...",
"creation_date": "2009-05-04T13:45:37.030"
},
)
print(resp)
resp1 = client.index(
index="child_example",
id="3",
routing="1",
refresh=True,
document={
"join": {
"name": "answer",
"parent": "1"
},
"owner": {
"location": "Norfolk, United Kingdom",
"display_name": "Troll",
"id": 49
},
"body": "Use Linux...",
"creation_date": "2009-05-05T13:45:37.030"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/ea020ea32d5cd35e577c61a120f92451.asciidoc 0000664 0000000 0000000 00000001621 14766462667 0026513 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-a-data-stream.asciidoc:240
[source, python]
----
resp = client.bulk(
index="my-data-stream",
operations=[
{
"create": {}
},
{
"@timestamp": "2099-05-06T16:21:15.000Z",
"message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
},
{
"create": {}
},
{
"@timestamp": "2099-05-06T16:25:42.000Z",
"message": "192.0.2.255 - - [06/May/2099:16:25:42 +0000] \"GET /favicon.ico HTTP/1.0\" 200 3638"
}
],
)
print(resp)
resp1 = client.index(
index="my-data-stream",
document={
"@timestamp": "2099-05-06T16:21:15.000Z",
"message": "192.0.2.42 - - [06/May/2099:16:21:15 +0000] \"GET /images/bg.jpg HTTP/1.0\" 200 24736"
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/ea29029884a5fd9a8d8830d25884bf07.asciidoc 0000664 0000000 0000000 00000000433 14766462667 0026506 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/parent-id-query.asciidoc:79
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"parent_id": {
"type": "my-child",
"id": "1"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ea313059c18d6edbd28c3f743a5e7c1c.asciidoc 0000664 0000000 0000000 00000001015 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/significantterms-aggregation.asciidoc:602
[source, python]
----
resp = client.search(
query={
"match": {
"city": "madrid"
}
},
aggs={
"tags": {
"significant_terms": {
"field": "tag",
"background_filter": {
"term": {
"text": "spain"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ea5391267ced860c00214c096e08c8d4.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/update-settings.asciidoc:19
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"number_of_replicas": 2
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ea5b4d2d87fd4e040afad18903c44869.asciidoc 0000664 0000000 0000000 00000001360 14766462667 0026703 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:185
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"pin.location": {
"top_left": {
"lat": 40.73,
"lon": -74.1
},
"bottom_right": {
"lat": 40.01,
"lon": -71.12
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ea61aa2531ea73ccc0acd2d41f0518eb.asciidoc 0000664 0000000 0000000 00000001363 14766462667 0027063 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/rank-feature.asciidoc:11
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"pagerank": {
"type": "rank_feature"
},
"url_length": {
"type": "rank_feature",
"positive_score_impact": False
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"pagerank": 8,
"url_length": 22
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"rank_feature": {
"field": "pagerank"
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ea66a620c23337545e409c120c4ed5d9.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/ilm-tutorial.asciidoc:207
[source, python]
----
resp = client.ilm.explain_lifecycle(
index=".ds-timeseries-*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ea68e3428cc2ca3455bf312d09451489.asciidoc 0000664 0000000 0000000 00000000717 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:1244
[source, python]
----
resp = client.indices.create(
index="product-index",
mappings={
"properties": {
"product-vector": {
"type": "dense_vector",
"dims": 5,
"index": False
},
"price": {
"type": "long"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ea690283f301c6ce957efad93d7d5c5d.asciidoc 0000664 0000000 0000000 00000000741 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/length-tokenfilter.asciidoc:109
[source, python]
----
resp = client.indices.create(
index="length_example",
settings={
"analysis": {
"analyzer": {
"standard_length": {
"tokenizer": "standard",
"filter": [
"length"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ea8c4229afa6dd4f1321355542be9912.asciidoc 0000664 0000000 0000000 00000001411 14766462667 0026531 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/attachment.asciidoc:268
[source, python]
----
resp = client.ingest.put_pipeline(
id="attachment",
description="Extract attachment information",
processors=[
{
"attachment": {
"field": "data",
"indexed_chars": 11,
"indexed_chars_field": "max_size",
"remove_binary": True
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="attachment",
document={
"data": "e1xydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbG9yIHNpdCBhbWV0DQpccGFyIH0="
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ea92390651e8ecad0c890658985343c5.asciidoc 0000664 0000000 0000000 00000000737 14766462667 0026430 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:557
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="hourly-snapshots",
name="",
schedule="0 0 * * * ?",
repository="my_repository",
config={
"indices": "*",
"include_global_state": True
},
retention={
"expire_after": "1d",
"min_count": 1,
"max_count": 24
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eab3cad0257c539c5efd2689aa52f242.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0026750 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:111
[source, python]
----
resp = client.indices.data_streams_stats(
name="my-data-stream",
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eac3bc428d03eb4926fa51f74b9bc4d5.asciidoc 0000664 0000000 0000000 00000003143 14766462667 0027035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/highlighting.asciidoc:354
[source, python]
----
resp = client.search(
query={
"match": {
"comment": {
"query": "foo bar"
}
}
},
rescore={
"window_size": 50,
"query": {
"rescore_query": {
"match_phrase": {
"comment": {
"query": "foo bar",
"slop": 1
}
}
},
"rescore_query_weight": 10
}
},
source=False,
highlight={
"order": "score",
"fields": {
"comment": {
"fragment_size": 150,
"number_of_fragments": 3,
"highlight_query": {
"bool": {
"must": {
"match": {
"comment": {
"query": "foo bar"
}
}
},
"should": {
"match_phrase": {
"comment": {
"query": "foo bar",
"slop": 1,
"boost": 10
}
}
},
"minimum_should_match": 0
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ead4d875877d618594d0cdbdd9b7998b.asciidoc 0000664 0000000 0000000 00000000417 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/add-nodes.asciidoc:170
[source, python]
----
resp = client.cluster.delete_voting_config_exclusions()
print(resp)
resp1 = client.cluster.delete_voting_config_exclusions(
wait_for_removal=False,
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/eada8af6588584ac88f1e5b15f4a5c2a.asciidoc 0000664 0000000 0000000 00000002326 14766462667 0027053 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/valuecount-aggregation.asciidoc:97
[source, python]
----
resp = client.index(
index="metrics_index",
id="1",
document={
"network.name": "net-1",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
3,
7,
23,
12,
6
]
}
},
)
print(resp)
resp1 = client.index(
index="metrics_index",
id="2",
document={
"network.name": "net-2",
"latency_histo": {
"values": [
0.1,
0.2,
0.3,
0.4,
0.5
],
"counts": [
8,
17,
8,
7,
6
]
}
},
)
print(resp1)
resp2 = client.search(
index="metrics_index",
size="0",
aggs={
"total_requests": {
"value_count": {
"field": "latency_histo"
}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/eae8931d01b3b878dd0c45214121e662.asciidoc 0000664 0000000 0000000 00000000544 14766462667 0026447 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:329
[source, python]
----
resp = client.search(
index="my_locations",
query={
"geo_bounding_box": {
"pin.location": {
"top_left": "dr",
"bottom_right": "dr"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eaf53b05959cc6b7fb09579baf34de68.asciidoc 0000664 0000000 0000000 00000002123 14766462667 0027001 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline.asciidoc:127
[source, python]
----
resp = client.search(
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sale_type": {
"terms": {
"field": "type"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
}
}
},
"hat_vs_bag_ratio": {
"bucket_script": {
"buckets_path": {
"hats": "sale_type['hat']>sales",
"bags": "sale_type['bag']>sales"
},
"script": "params.hats / params.bags"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eaf6a846ded090fd6ac48269ad2b328b.asciidoc 0000664 0000000 0000000 00000000606 14766462667 0027045 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-rollover.asciidoc:38
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index.lifecycle.name": "my_policy",
"index.lifecycle.rollover_alias": "my_data"
},
aliases={
"my_data": {
"is_write_index": True
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eafdabe80b21b90495555fa6d9089412.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026622 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-service-token-caches.asciidoc:68
[source, python]
----
resp = client.security.clear_cached_service_tokens(
namespace="elastic",
service="fleet-server",
name="token1,token2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb09235533a1c65a0627ba05f7d4ad4d.asciidoc 0000664 0000000 0000000 00000001155 14766462667 0026600 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/context-suggest.asciidoc:253
[source, python]
----
resp = client.index(
index="place",
id="1",
document={
"suggest": {
"input": "timmy's",
"contexts": {
"location": [
{
"lat": 43.6624803,
"lon": -79.3863353
},
{
"lat": 43.6624718,
"lon": -79.3873227
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb141f8df8ead40ff7440b623ea92267.asciidoc 0000664 0000000 0000000 00000001062 14766462667 0026701 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/copy-to.asciidoc:94
[source, python]
----
resp = client.indices.create(
index="good_example_index",
mappings={
"properties": {
"field_1": {
"type": "text",
"copy_to": [
"field_2",
"field_3"
]
},
"field_2": {
"type": "text"
},
"field_3": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb14cedd3bdda9ffef3c118f3d528dcd.asciidoc 0000664 0000000 0000000 00000000340 14766462667 0027415 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/update.asciidoc:178
[source, python]
----
resp = client.update(
index="test",
id="1",
script="ctx._source.new_field = 'value_of_new_field'",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb33a7e5a0fe83fdaa0f79354f659428.asciidoc 0000664 0000000 0000000 00000000641 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:740
[source, python]
----
resp = client.indices.put_mapping(
index="my-index-000001",
runtime={
"client_ip": {
"type": "ip",
"script": {
"source": "String m = doc[\"message\"].value; int end = m.indexOf(\" \"); emit(m.substring(0, end));"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb4e43b47867b54214a8630172dd0e21.asciidoc 0000664 0000000 0000000 00000000345 14766462667 0026370 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-forecast.asciidoc:75
[source, python]
----
resp = client.ml.delete_forecast(
job_id="total-requests",
forecast_id="_all",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb54506fbc71a7d250e86b22d0600114.asciidoc 0000664 0000000 0000000 00000000331 14766462667 0026426 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/list-connectors-api.asciidoc:117
[source, python]
----
resp = client.connector.list(
service_type="sharepoint_online,google_drive",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb5486d2fe4283475bf9e0e09280be16.asciidoc 0000664 0000000 0000000 00000000643 14766462667 0026556 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-forcemerge.asciidoc:64
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"forcemerge": {
"max_num_segments": 1
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb5987b58dae90c3a8a1609410be0570.asciidoc 0000664 0000000 0000000 00000002160 14766462667 0026534 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1092
[source, python]
----
resp = client.indices.create(
index="indonesian_example",
settings={
"analysis": {
"filter": {
"indonesian_stop": {
"type": "stop",
"stopwords": "_indonesian_"
},
"indonesian_keywords": {
"type": "keyword_marker",
"keywords": [
"contoh"
]
},
"indonesian_stemmer": {
"type": "stemmer",
"language": "indonesian"
}
},
"analyzer": {
"rebuilt_indonesian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"indonesian_stop",
"indonesian_keywords",
"indonesian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb6d62f1d855a8e8fe9eab2656d47504.asciidoc 0000664 0000000 0000000 00000001453 14766462667 0026725 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/phrase-suggest.asciidoc:410
[source, python]
----
resp = client.search(
index="test",
suggest={
"text": "obel prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"direct_generator": [
{
"field": "title.trigram",
"suggest_mode": "always"
},
{
"field": "title.reverse",
"suggest_mode": "always",
"pre_filter": "reverse",
"post_filter": "reverse"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb964d8d7f27c057a4542448ba5b74e4.asciidoc 0000664 0000000 0000000 00000000477 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/get-snapshot-api.asciidoc:488
[source, python]
----
resp = client.snapshot.get(
repository="my_repository",
snapshot="snapshot*",
size="2",
sort="name",
after="c25hcHNob3RfMixteV9yZXBvc2l0b3J5LHNuYXBzaG90XzI=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb96d7dd5f3116a50f7a86b729f1a934.asciidoc 0000664 0000000 0000000 00000000530 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-scheduling-api.asciidoc:126
[source, python]
----
resp = client.connector.update_scheduling(
connector_id="my-connector",
scheduling={
"full": {
"enabled": True,
"interval": "0 10 0 * * ?"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eb9a41f7fc8bdf5559bb9db822ae3a65.asciidoc 0000664 0000000 0000000 00000004553 14766462667 0027142 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/bulk-create-roles.asciidoc:236
[source, python]
----
resp = client.security.bulk_put_role(
roles={
"my_admin_role": {
"cluster": [
"bad_cluster_privilege"
],
"indices": [
{
"names": [
"index1",
"index2"
],
"privileges": [
"all"
],
"field_security": {
"grant": [
"title",
"body"
]
},
"query": "{\"match\": {\"title\": \"foo\"}}"
}
],
"applications": [
{
"application": "myapp",
"privileges": [
"admin",
"read"
],
"resources": [
"*"
]
}
],
"run_as": [
"other_user"
],
"metadata": {
"version": 1
}
},
"my_user_role": {
"cluster": [
"all"
],
"indices": [
{
"names": [
"index1"
],
"privileges": [
"read"
],
"field_security": {
"grant": [
"title",
"body"
]
},
"query": "{\"match\": {\"title\": \"foo\"}}"
}
],
"applications": [
{
"application": "myapp",
"privileges": [
"admin",
"read"
],
"resources": [
"*"
]
}
],
"run_as": [
"other_user"
],
"metadata": {
"version": 1
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ebb1c7554e91adb4552599f3e5de1865.asciidoc 0000664 0000000 0000000 00000000421 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/split-index.asciidoc:90
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"index": {
"number_of_routing_shards": 30
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ebd76a45e153c4656c5871e23b7b5508.asciidoc 0000664 0000000 0000000 00000000340 14766462667 0026463 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/delete-app-privileges.asciidoc:47
[source, python]
----
resp = client.security.delete_privileges(
application="myapp",
name="read",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ebef3dc8ed1766d433a5cffc40fde7ae.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0027342 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:289
[source, python]
----
resp = client.ilm.remove_policy(
index="logs-my_app-default",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec0e50f78390b8622cef4e0b0cd45967.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026621 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql-search-api.asciidoc:586
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
query="\n process where (process.name == \"cmd.exe\" and process.pid != 2013)\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec135f0cc0d3f526df68000b2a95c65b.asciidoc 0000664 0000000 0000000 00000000425 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// migration/migrate_9_0.asciidoc:403
[source, python]
----
resp = client.indices.create_from(
source=".ml-anomalies-custom-example",
dest=".reindexed-v9-ml-anomalies-custom-example",
create_from=None,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec195297eb804cba1cb19c9926773059.asciidoc 0000664 0000000 0000000 00000000517 14766462667 0026500 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/set-up-lifecycle-policy.asciidoc:265
[source, python]
----
resp = client.indices.put_settings(
index="mylogs-pre-ilm*",
settings={
"index": {
"lifecycle": {
"name": "mylogs_policy_existing"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec420b28e327f332c9e99d6040c4eb3f.asciidoc 0000664 0000000 0000000 00000000535 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/geo-match-enrich-policy-type-ex.asciidoc:117
[source, python]
----
resp = client.index(
index="users",
id="0",
pipeline="postal_lookup",
document={
"first_name": "Mardy",
"last_name": "Brown",
"geo_location": "POINT (13.5 52.5)"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec44999b6618ac6bbacb23eb08c0fa88.asciidoc 0000664 0000000 0000000 00000001460 14766462667 0027044 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/common-script-uses.asciidoc:324
[source, python]
----
resp = client.search(
index="my-index",
runtime_mappings={
"gc_size": {
"type": "keyword",
"script": "\n Map gc=dissect('[%{@timestamp}][%{code}][%{desc}] %{ident} used %{usize}, capacity %{csize}, committed %{comsize}, reserved %{rsize}').extract(doc[\"gc.keyword\"].value);\n if (gc != null) emit(\"used\" + ' ' + gc.usize + ', ' + \"capacity\" + ' ' + gc.csize + ', ' + \"committed\" + ' ' + gc.comsize);\n "
}
},
size=1,
aggs={
"sizes": {
"terms": {
"field": "gc_size",
"size": 10
}
}
},
fields=[
"gc_size"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec4b43c3ebd8816799fa004596b2f0cb.asciidoc 0000664 0000000 0000000 00000000466 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/slowlog.asciidoc:232
[source, python]
----
resp = client.indices.put_settings(
index="*",
settings={
"index.indexing.slowlog.include.user": True,
"index.indexing.slowlog.threshold.index.warn": "30s"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec5a2ce156c36aaa267fa31dd9367307.asciidoc 0000664 0000000 0000000 00000000615 14766462667 0026671 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/checkpoints.asciidoc:80
[source, python]
----
resp = client.ingest.put_pipeline(
id="set_ingest_time",
description="Set ingest timestamp.",
processors=[
{
"set": {
"field": "event.ingested",
"value": "{{{_ingest.timestamp}}}"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec69543e39c1f6afb5aff6fb9adc400d.asciidoc 0000664 0000000 0000000 00000001017 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/highlighting-multi-fields.asciidoc:29
[source, python]
----
resp = client.bulk(
index="index1",
refresh=True,
operations=[
{
"index": {
"_id": "doc1"
}
},
{
"comment": "run with scissors"
},
{
"index": {
"_id": "doc2"
}
},
{
"comment": "running with scissors"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ec736c31f49c54e5424efa2e53b22906.asciidoc 0000664 0000000 0000000 00000001300 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/user-agent.asciidoc:31
[source, python]
----
resp = client.ingest.put_pipeline(
id="user_agent",
description="Add user agent information",
processors=[
{
"user_agent": {
"field": "agent"
}
}
],
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="my_id",
pipeline="user_agent",
document={
"agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36"
},
)
print(resp1)
resp2 = client.get(
index="my-index-000001",
id="my_id",
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ec8f176ebf436d5719bdeca4a9ea8220.asciidoc 0000664 0000000 0000000 00000001236 14766462667 0027050 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/multi-terms-aggregation.asciidoc:172
[source, python]
----
resp = client.search(
index="products",
runtime_mappings={
"genre.length": {
"type": "long",
"script": "emit(doc['genre'].value.length())"
}
},
aggs={
"genres_and_products": {
"multi_terms": {
"terms": [
{
"field": "genre.length"
},
{
"field": "product"
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ecc57597f6b791d1151ad79d9f4ce67b.asciidoc 0000664 0000000 0000000 00000000703 14766462667 0026731 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:643
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sales_over_time": {
"date_histogram": {
"field": "date",
"calendar_interval": "1M",
"format": "yyyy-MM-dd",
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ece01f9382e450f669c0e0925e5b30e5.asciidoc 0000664 0000000 0000000 00000001140 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/daterange-aggregation.asciidoc:305
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"range": {
"date_range": {
"field": "date",
"format": "MM-yyy",
"ranges": [
{
"to": "now-10M/M"
},
{
"from": "now-10M/M"
}
],
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ecfd0d94dd14ef05dfa861f22544b388.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0026773 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-error-api.asciidoc:87
[source, python]
----
resp = client.connector.update_error(
connector_id="my-connector",
error="Houston, we have a problem!",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed01b542bb56b1521ea8d5a3c67aa891.asciidoc 0000664 0000000 0000000 00000000553 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/repository-gcs.asciidoc:142
[source, python]
----
resp = client.snapshot.create_repository(
name="my_gcs_repository",
repository={
"type": "gcs",
"settings": {
"bucket": "my_bucket",
"client": "my_alternate_client"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed01d27b8f80bb4ea54bf4e32b8d6258.asciidoc 0000664 0000000 0000000 00000001602 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/geodistance-aggregation.asciidoc:203
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggs={
"rings_around_amsterdam": {
"geo_distance": {
"field": "location",
"origin": "POINT (4.894 52.3760)",
"ranges": [
{
"to": 100000,
"key": "first_ring"
},
{
"from": 100000,
"to": 300000,
"key": "second_ring"
},
{
"from": 300000,
"key": "third_ring"
}
],
"keyed": True
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed09432c6069e41409f0a5e0d1d3842a.asciidoc 0000664 0000000 0000000 00000000461 14766462667 0026446 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/apis/reload-analyzers.asciidoc:16
[source, python]
----
resp = client.indices.reload_search_analyzers(
index="my-index-000001",
)
print(resp)
resp1 = client.indices.clear_cache(
index="my-index-000001",
request=True,
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/ed12eeadb4e530b53c4975dadaa06054.asciidoc 0000664 0000000 0000000 00000000275 14766462667 0027021 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/grok.asciidoc:281
[source, python]
----
resp = client.ingest.processor_grok(
ecs_compatibility="v1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed250b74bc77c15bb794f55a12d762c3.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026615 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// setup/sysconfig/swap.asciidoc:77
[source, python]
----
resp = client.nodes.info(
filter_path="**.mlockall",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed27843eff311f3011b679e97e6fda50.asciidoc 0000664 0000000 0000000 00000000534 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:647
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="my_snapshot_2099.05.06",
indices="my-index,logs-my_app-default",
index_settings={
"index.number_of_replicas": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed3bdf4d6799b43526851e92b6a60c55.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-field-mapping.asciidoc:135
[source, python]
----
resp = client.indices.get_field_mapping(
index="publications",
fields="author.id,abstract,name",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed5bfa68d01e079aac94de78dc5caddf.asciidoc 0000664 0000000 0000000 00000000225 14766462667 0027345 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/master.asciidoc:57
[source, python]
----
resp = client.cat.master(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed5c3b45e8de912faba44507d827eb93.asciidoc 0000664 0000000 0000000 00000000665 14766462667 0026775 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:501
[source, python]
----
resp = client.search(
sort=[
{
"_geo_distance": {
"pin.location": "POINT (-70 40)",
"order": "asc",
"unit": "km"
}
}
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed60daeaec351fc8b3f39a3dfad6fc4e.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0027411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-mapping.asciidoc:275
[source, python]
----
resp = client.indices.create(
index="amazon-bedrock-embeddings",
mappings={
"properties": {
"content_embedding": {
"type": "dense_vector",
"dims": 1024,
"element_type": "float",
"similarity": "dot_product"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed688d86eeaa4d7969acb0f574eb917f.asciidoc 0000664 0000000 0000000 00000000512 14766462667 0027073 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:495
[source, python]
----
resp = client.index(
index="my_queries1",
id="1",
refresh=True,
document={
"query": {
"term": {
"my_field.prefix": "abc"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed6b996ea389e0955a01c2e67f4c8339.asciidoc 0000664 0000000 0000000 00000000334 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:101
[source, python]
----
resp = client.field_caps(
index="my-index-000001",
fields="my-field",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed7fa1971ac322aeccd6391ab32d0490.asciidoc 0000664 0000000 0000000 00000000431 14766462667 0026735 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/disk/increase-master-node-capacity.asciidoc:83
[source, python]
----
resp = client.cat.nodes(
v=True,
h="name,master,node.role,disk.used_percent,disk.used,disk.avail,disk.total",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ed85ed833bec7286a0dfbe64077c5715.asciidoc 0000664 0000000 0000000 00000002111 14766462667 0026707 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:530
[source, python]
----
resp = client.indices.create(
index="danish_example",
settings={
"analysis": {
"filter": {
"danish_stop": {
"type": "stop",
"stopwords": "_danish_"
},
"danish_keywords": {
"type": "keyword_marker",
"keywords": [
"eksempel"
]
},
"danish_stemmer": {
"type": "stemmer",
"language": "danish"
}
},
"analyzer": {
"rebuilt_danish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"danish_stop",
"danish_keywords",
"danish_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/edae616e1244babf6032aecc6aaaf836.asciidoc 0000664 0000000 0000000 00000000766 14766462667 0027166 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:474
[source, python]
----
resp = client.search(
sort=[
{
"_geo_distance": {
"pin.location": {
"lat": 40,
"lon": -70
},
"order": "asc",
"unit": "km"
}
}
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/edb25dc0162b039d477cb06aed2d6275.asciidoc 0000664 0000000 0000000 00000002401 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/sparse-vector-query.asciidoc:152
[source, python]
----
resp = client.search(
index="my-index",
query={
"bool": {
"should": [
{
"sparse_vector": {
"field": "ml.inference.title_expanded.predicted_value",
"inference_id": "my-elser-model",
"query": "How is the weather in Jamaica?",
"boost": 1
}
},
{
"sparse_vector": {
"field": "ml.inference.description_expanded.predicted_value",
"inference_id": "my-elser-model",
"query": "How is the weather in Jamaica?",
"boost": 1
}
},
{
"multi_match": {
"query": "How is the weather in Jamaica?",
"fields": [
"title",
"description"
],
"boost": 4
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/edb5cad890208014ecd91f3f739ce193.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026704 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/set-up-tsds.asciidoc:276
[source, python]
----
resp = client.indices.rollover(
alias="metrics-weather_sensors-dev",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/edcfadbfb14d97a2f5e6e21ef7039818.asciidoc 0000664 0000000 0000000 00000001713 14766462667 0027133 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/function-score-query.asciidoc:41
[source, python]
----
resp = client.search(
query={
"function_score": {
"query": {
"match_all": {}
},
"boost": "5",
"functions": [
{
"filter": {
"match": {
"test": "bar"
}
},
"random_score": {},
"weight": 23
},
{
"filter": {
"match": {
"test": "cat"
}
},
"weight": 42
}
],
"max_boost": 42,
"score_mode": "max",
"boost_mode": "multiply",
"min_score": 42
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ee08328cd157d547de19b4abe867b23e.asciidoc 0000664 0000000 0000000 00000000235 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// alias.asciidoc:277
[source, python]
----
resp = client.indices.get_alias(
name="logs",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ee0fd67acc807f1bddf5e9807c06e7eb.asciidoc 0000664 0000000 0000000 00000006315 14766462667 0027220 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/weighted-tokens-query.asciidoc:86
[source, python]
----
resp = client.search(
index="my-index",
query={
"weighted_tokens": {
"query_expansion_field": {
"tokens": {
"2161": 0.4679,
"2621": 0.307,
"2782": 0.1299,
"2851": 0.1056,
"3088": 0.3041,
"3376": 0.1038,
"3467": 0.4873,
"3684": 0.8958,
"4380": 0.334,
"4542": 0.4636,
"4633": 2.2805,
"4785": 1.2628,
"4860": 1.0655,
"5133": 1.0709,
"7139": 1.0016,
"7224": 0.2486,
"7387": 0.0985,
"7394": 0.0542,
"8915": 0.369,
"9156": 2.8947,
"10505": 0.2771,
"11464": 0.3996,
"13525": 0.0088,
"14178": 0.8161,
"16893": 0.1376,
"17851": 1.5348,
"19939": 0.6012
},
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": False
}
}
}
},
rescore={
"window_size": 100,
"query": {
"rescore_query": {
"weighted_tokens": {
"query_expansion_field": {
"tokens": {
"2161": 0.4679,
"2621": 0.307,
"2782": 0.1299,
"2851": 0.1056,
"3088": 0.3041,
"3376": 0.1038,
"3467": 0.4873,
"3684": 0.8958,
"4380": 0.334,
"4542": 0.4636,
"4633": 2.2805,
"4785": 1.2628,
"4860": 1.0655,
"5133": 1.0709,
"7139": 1.0016,
"7224": 0.2486,
"7387": 0.0985,
"7394": 0.0542,
"8915": 0.369,
"9156": 2.8947,
"10505": 0.2771,
"11464": 0.3996,
"13525": 0.0088,
"14178": 0.8161,
"16893": 0.1376,
"17851": 1.5348,
"19939": 0.6012
},
"pruning_config": {
"tokens_freq_ratio_threshold": 5,
"tokens_weight_threshold": 0.4,
"only_score_pruned_tokens": True
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ee223e604bb695cad2517d28ae63ac34.asciidoc 0000664 0000000 0000000 00000001706 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rrf.asciidoc:53
[source, python]
----
resp = client.search(
index="example-index",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"term": {
"text": "shoes"
}
}
}
},
{
"knn": {
"field": "vector",
"query_vector": [
1.25,
2,
3.5
],
"k": 50,
"num_candidates": 100
}
}
],
"rank_window_size": 50,
"rank_constant": 20
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ee2d97090d617ed8aa2a87ea33556dd7.asciidoc 0000664 0000000 0000000 00000000446 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/truncate-tokenfilter.asciidoc:24
[source, python]
----
resp = client.indices.analyze(
tokenizer="whitespace",
filter=[
"truncate"
],
text="the quinquennial extravaganza carried on",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ee577c4c7cc723e99569ea2d1137adba.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0026771 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-roles-cache.asciidoc:48
[source, python]
----
resp = client.security.clear_cached_roles(
name="my_admin_role",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ee634d59def6302134d24fa90e18b609.asciidoc 0000664 0000000 0000000 00000000767 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/deciders/machine-learning-decider.asciidoc:48
[source, python]
----
resp = client.autoscaling.put_autoscaling_policy(
name="my_autoscaling_policy",
policy={
"roles": [
"ml"
],
"deciders": {
"ml": {
"num_anomaly_jobs_in_queue": 5,
"num_analytics_jobs_in_queue": 3,
"down_scale_delay": "30m"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ee90d1fb22b59d30da339d825303b912.asciidoc 0000664 0000000 0000000 00000001243 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/put-app-privileges.asciidoc:136
[source, python]
----
resp = client.security.put_privileges(
privileges={
"app01": {
"read": {
"actions": [
"action:login",
"data:read/*"
]
},
"write": {
"actions": [
"action:login",
"data:write/*"
]
}
},
"app02": {
"all": {
"actions": [
"*"
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eeb35b759bd239bb773c8ebd5fe63d05.asciidoc 0000664 0000000 0000000 00000001004 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geocentroid-aggregation.asciidoc:79
[source, python]
----
resp = client.search(
index="museums",
size="0",
aggs={
"cities": {
"terms": {
"field": "city.keyword"
},
"aggs": {
"centroid": {
"geo_centroid": {
"field": "location"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eec051555c8050d017d3fe38ea59e3a0.asciidoc 0000664 0000000 0000000 00000000424 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search.asciidoc:915
[source, python]
----
resp = client.search(
index="my-index-000001",
from_="40",
size="20",
query={
"term": {
"user.id": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eed37703cfe8fec093ed5a42210a6ffd.asciidoc 0000664 0000000 0000000 00000001445 14766462667 0027124 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/rollup-getting-started.asciidoc:38
[source, python]
----
resp = client.rollup.put_job(
id="sensor",
index_pattern="sensor-*",
rollup_index="sensor_rollup",
cron="*/30 * * * * ?",
page_size=1000,
groups={
"date_histogram": {
"field": "timestamp",
"fixed_interval": "60m"
},
"terms": {
"fields": [
"node"
]
}
},
metrics=[
{
"field": "temperature",
"metrics": [
"min",
"max",
"sum"
]
},
{
"field": "voltage",
"metrics": [
"avg"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eee6110831c08b9c1b3f56b24656e95b.asciidoc 0000664 0000000 0000000 00000000643 14766462667 0026543 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-hugging-face.asciidoc:107
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="hugging-face-embeddings",
inference_config={
"service": "hugging_face",
"service_settings": {
"api_key": "",
"url": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eef9deff7f9799d1f7657bb7e2afb7f1.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0027244 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/restore-snapshot.asciidoc:429
[source, python]
----
resp = client.indices.delete(
index="*",
expand_wildcards="all",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef10e8d07d9fae945e035d5dee1e9754.asciidoc 0000664 0000000 0000000 00000000660 14766462667 0027003 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/flatten-graph-tokenfilter.asciidoc:118
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "synonym_graph",
"synonyms": [
"dns, domain name system"
]
},
"flatten_graph"
],
text="domain name system is fragile",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef22234b97cc06d7dd620b4ce7c97b31.asciidoc 0000664 0000000 0000000 00000000411 14766462667 0026672 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:700
[source, python]
----
resp = client.reindex(
max_docs=1,
source={
"index": "my-index-000001"
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef33b3b373f7040b874146599db5d557.asciidoc 0000664 0000000 0000000 00000000360 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:179
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
filter=[
"lowercase"
],
text="this is a test",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef3666b5d288faefbcbc4a25e8f506da.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0027215 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:84
[source, python]
----
resp = client.count(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef46c42d473b2acc151a6a41272e0f14.asciidoc 0000664 0000000 0000000 00000001146 14766462667 0026573 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:661
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic": "runtime",
"runtime": {
"day_of_week": {
"type": "keyword",
"script": {
"source": "emit(doc['@timestamp'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ENGLISH))"
}
}
},
"properties": {
"@timestamp": {
"type": "date"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef643bab44e7de6ddddde23a2eece5c7.asciidoc 0000664 0000000 0000000 00000000545 14766462667 0027425 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/getting-started.asciidoc:283
[source, python]
----
resp = client.index(
index="books",
document={
"name": "The Great Gatsby",
"author": "F. Scott Fitzgerald",
"release_date": "1925-04-10",
"page_count": 180,
"language": "EN"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef779b87b3b0fb6e6bae9c8875e3a1cf.asciidoc 0000664 0000000 0000000 00000001300 14766462667 0027137 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:699
[source, python]
----
resp = client.search(
index="sales",
size="0",
runtime_mappings={
"date.promoted_is_tomorrow": {
"type": "date",
"script": "\n long date = doc['date'].value.toInstant().toEpochMilli();\n if (doc['promoted'].value) {\n date += 86400;\n }\n emit(date);\n "
}
},
aggs={
"sales_over_time": {
"date_histogram": {
"field": "date.promoted_is_tomorrow",
"calendar_interval": "1M"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef867e563cbffe7866769a096b5d7a92.asciidoc 0000664 0000000 0000000 00000001324 14766462667 0026667 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/cumulative-sum-aggregation.asciidoc:40
[source, python]
----
resp = client.search(
index="sales",
size=0,
aggs={
"sales_per_month": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
},
"aggs": {
"sales": {
"sum": {
"field": "price"
}
},
"cumulative_sales": {
"cumulative_sum": {
"buckets_path": "sales"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef8f30e85e12e9a5a8817d28977598e4.asciidoc 0000664 0000000 0000000 00000001161 14766462667 0026525 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/range-aggregation.asciidoc:13
[source, python]
----
resp = client.search(
index="sales",
aggs={
"price_ranges": {
"range": {
"field": "price",
"ranges": [
{
"to": 100
},
{
"from": 100,
"to": 200
},
{
"from": 200
}
]
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ef9c29759459904fef162acd223462c4.asciidoc 0000664 0000000 0000000 00000000314 14766462667 0026477 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-stats.asciidoc:2595
[source, python]
----
resp = client.nodes.stats(
metric="ingest",
filter_path="nodes.*.ingest",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/efa146bf81a9351ba42b92a6decbcfee.asciidoc 0000664 0000000 0000000 00000001056 14766462667 0027252 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/common-script-uses.asciidoc:173
[source, python]
----
resp = client.indices.put_mapping(
index="my-index",
runtime={
"http.response": {
"type": "long",
"script": "\n String response=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] \"%{verb} %{request} HTTP/%{httpversion}\" %{response} %{size}').extract(doc[\"message\"].value)?.response;\n if (response != null) emit(Integer.parseInt(response));\n "
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/efa924638043f3a6b23ccb824d757eba.asciidoc 0000664 0000000 0000000 00000001030 14766462667 0026670 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/multivalued-fields.asciidoc:11
[source, python]
----
resp = client.bulk(
index="mv",
refresh=True,
operations=[
{
"index": {}
},
{
"a": 1,
"b": [
2,
1
]
},
{
"index": {}
},
{
"a": 2,
"b": 3
}
],
)
print(resp)
resp1 = client.esql.query(
query="FROM mv | LIMIT 2",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/efbd4936cca1a752493d8fa2ba6ad1a3.asciidoc 0000664 0000000 0000000 00000001110 14766462667 0027076 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:130
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"runtime": {
"day_of_week": {
"type": "keyword",
"script": {
"source": "emit(doc['@timestamp'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ENGLISH))"
}
}
},
"properties": {
"@timestamp": {
"type": "date"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eff2fc92d46eb3c8f4d424eed18f54a2.asciidoc 0000664 0000000 0000000 00000000567 14766462667 0027142 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/function-score-query.asciidoc:19
[source, python]
----
resp = client.search(
query={
"function_score": {
"query": {
"match_all": {}
},
"boost": "5",
"random_score": {},
"boost_mode": "multiply"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/eff8ecaed1ed084909c64450fc363a20.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0026761 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/update-settings.asciidoc:101
[source, python]
----
resp = client.cluster.put_settings(
transient={
"indices.recovery.max_bytes_per_sec": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f03352bb1129938a89f97e4b650038dd.asciidoc 0000664 0000000 0000000 00000001021 14766462667 0026402 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:223
[source, python]
----
resp = client.ingest.put_pipeline(
id="amazon_bedrock_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "amazon_bedrock_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f04e1284d09ceb4443d67b2ef9c7f476.asciidoc 0000664 0000000 0000000 00000000351 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/delete-snapshot-api.asciidoc:36
[source, python]
----
resp = client.snapshot.delete(
repository="my_repository",
snapshot="my_snapshot",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f0816beb8ac21cb0940858b72f6b1946.asciidoc 0000664 0000000 0000000 00000000264 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/fielddata.asciidoc:132
[source, python]
----
resp = client.cat.fielddata(
fields="body,soul",
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f097c02541056f3c0fc855e7bbeef8a8.asciidoc 0000664 0000000 0000000 00000002123 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:1746
[source, python]
----
resp = client.indices.create(
index="swedish_example",
settings={
"analysis": {
"filter": {
"swedish_stop": {
"type": "stop",
"stopwords": "_swedish_"
},
"swedish_keywords": {
"type": "keyword_marker",
"keywords": [
"exempel"
]
},
"swedish_stemmer": {
"type": "stemmer",
"language": "swedish"
}
},
"analyzer": {
"rebuilt_swedish": {
"tokenizer": "standard",
"filter": [
"lowercase",
"swedish_stop",
"swedish_keywords",
"swedish_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f09817fd13ff3dce52eb79d0722409c3.asciidoc 0000664 0000000 0000000 00000001533 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/percolator.asciidoc:115
[source, python]
----
resp = client.indices.create(
index="new_index",
mappings={
"properties": {
"query": {
"type": "percolator"
},
"body": {
"type": "text"
}
}
},
)
print(resp)
resp1 = client.reindex(
refresh=True,
source={
"index": "index"
},
dest={
"index": "new_index"
},
)
print(resp1)
resp2 = client.indices.update_aliases(
actions=[
{
"remove": {
"index": "index",
"alias": "queries"
}
},
{
"add": {
"index": "new_index",
"alias": "queries"
}
}
],
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/f0bfc8d7ab4eb94ea5fdf2e087d8cf5b.asciidoc 0000664 0000000 0000000 00000001173 14766462667 0027355 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/boxplot-aggregation.asciidoc:83
[source, python]
----
resp = client.search(
index="latency",
size=0,
runtime_mappings={
"load_time.seconds": {
"type": "long",
"script": {
"source": "emit(doc['load_time'].value / params.timeUnit)",
"params": {
"timeUnit": 1000
}
}
}
},
aggs={
"load_time_boxplot": {
"boxplot": {
"field": "load_time.seconds"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f0c3235d8fce641d6ff8ce90ab7b7b8b.asciidoc 0000664 0000000 0000000 00000000514 14766462667 0027130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-termvectors.asciidoc:120
[source, python]
----
resp = client.mtermvectors(
index="my-index-000001",
ids=[
"1",
"2"
],
parameters={
"fields": [
"message"
],
"term_statistics": True
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f10ab582387b2c157917a60205c993f7.asciidoc 0000664 0000000 0000000 00000000576 14766462667 0026332 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/meta.asciidoc:9
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"latency": {
"type": "long",
"meta": {
"unit": "ms"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f128a9dff5051b47efe2c53c4454a68f.asciidoc 0000664 0000000 0000000 00000000526 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/rollover-index.asciidoc:261
[source, python]
----
resp = client.indices.rollover(
alias="my-data-stream",
conditions={
"max_age": "7d",
"max_docs": 1000,
"max_primary_shard_size": "50gb",
"max_primary_shard_docs": "2000"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f14d0e4a280fee540e8e5f0fc4d0e9f1.asciidoc 0000664 0000000 0000000 00000000533 14766462667 0027037 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-grid-query.asciidoc:174
[source, python]
----
resp = client.search(
index="my_locations",
size=0,
aggs={
"grouped": {
"geotile_grid": {
"field": "location",
"precision": 6
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f1508a2221152842894819e762e63491.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026035 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:696
[source, python]
----
resp = client.sql.query(
format="json",
keep_on_completion=True,
wait_for_completion_timeout="2s",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f160561efab38e40c2feebf5a2542ab5.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0027023 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/nodes-stats.asciidoc:2603
[source, python]
----
resp = client.nodes.stats(
metric="ingest",
filter_path="nodes.*.ingest.pipelines",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f18248c181690b81d090275b072f0070.asciidoc 0000664 0000000 0000000 00000000440 14766462667 0026144 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1351
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
keep_alive="2d",
wait_for_completion_timeout="2s",
query="\n process where process.name == \"cmd.exe\"\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f187ac2dc35425cb0ef48f328cc7e435.asciidoc 0000664 0000000 0000000 00000000460 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-cert.asciidoc:195
[source, python]
----
resp = client.security.put_user(
username="cross-search-user",
password="l0ng-r4nd0m-p@ssw0rd",
roles=[
"remote-search"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f1b24217b1d9ba6ea5e4fa6e6f412022.asciidoc 0000664 0000000 0000000 00000000604 14766462667 0026656 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/post-inference.asciidoc:138
[source, python]
----
resp = client.inference.inference(
task_type="rerank",
inference_id="cohere_rerank",
input=[
"luke",
"like",
"leia",
"chewy",
"r2d2",
"star",
"wars"
],
query="star wars main character",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f1bf0c03581b79c3324cfa3246a60e4d.asciidoc 0000664 0000000 0000000 00000000743 14766462667 0026604 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:183
[source, python]
----
resp = client.indices.create(
index="my-byte-quantized-index",
mappings={
"properties": {
"my_vector": {
"type": "dense_vector",
"dims": 64,
"index": True,
"index_options": {
"type": "bbq_hnsw"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f1bf3edbd9e6c7e01b00c74c99a58b61.asciidoc 0000664 0000000 0000000 00000001022 14766462667 0027033 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1454
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"cluster_one": {
"seeds": [
"127.0.0.1:9300"
]
},
"cluster_two": {
"seeds": [
"127.0.0.1:9301"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f1d2b8169160adfd27f32988113f0f9f.asciidoc 0000664 0000000 0000000 00000000755 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/word-delimiter-tokenfilter.asciidoc:148
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_analyzer": {
"tokenizer": "keyword",
"filter": [
"word_delimiter"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f1dc6f69453867ffafe86e998dd464d9.asciidoc 0000664 0000000 0000000 00000000522 14766462667 0026760 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/pathhierarchy-tokenizer.asciidoc:309
[source, python]
----
resp = client.search(
index="file-path-test",
query={
"term": {
"file_path.tree_reversed": {
"value": "my_photo1.jpg"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f1e2af6dbb30fc5335e7d0b5507a2a93.asciidoc 0000664 0000000 0000000 00000000301 14766462667 0026733 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/reset-job.asciidoc:62
[source, python]
----
resp = client.ml.reset_job(
job_id="total-requests",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f2175feadc2abe545899889e6d4ffcad.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0027151 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// slm/apis/slm-get.asciidoc:77
[source, python]
----
resp = client.slm.get_lifecycle(
policy_id="daily-snapshots",
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f235544a883fd04bed2dc369b0c450f3.asciidoc 0000664 0000000 0000000 00000000465 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:409
[source, python]
----
resp = client.sql.query(
format="txt",
query="SELECT * FROM library",
filter={
"terms": {
"_routing": [
"abc"
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f2359acfb6eaa919125463cc1d3a7cd1.asciidoc 0000664 0000000 0000000 00000000564 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authorization/mapping-roles.asciidoc:138
[source, python]
----
resp = client.security.put_role_mapping(
name="admins",
roles=[
"monitoring",
"user"
],
rules={
"field": {
"groups": "cn=admins,dc=example,dc=com"
}
},
enabled=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f268416813befd13c604642c6fe6eda9.asciidoc 0000664 0000000 0000000 00000001324 14766462667 0026627 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/lowercase-tokenfilter.asciidoc:131
[source, python]
----
resp = client.indices.create(
index="custom_lowercase_example",
settings={
"analysis": {
"analyzer": {
"greek_lowercase_example": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"greek_lowercase"
]
}
},
"filter": {
"greek_lowercase": {
"type": "lowercase",
"language": "greek"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f27c28ddbf4c266b5f42d14da837b8de.asciidoc 0000664 0000000 0000000 00000000217 14766462667 0027046 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/flush.asciidoc:147
[source, python]
----
resp = client.indices.flush()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f281ff50b2cdb67ac0ece93f1594fa95.asciidoc 0000664 0000000 0000000 00000001705 14766462667 0027051 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-shape-query.asciidoc:111
[source, python]
----
resp = client.search(
index="example_points",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_shape": {
"location": {
"shape": {
"type": "envelope",
"coordinates": [
[
13,
53
],
[
14,
52
]
]
},
"relation": "intersects"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f298c4eb50ea97b34c57f8756eb350d3.asciidoc 0000664 0000000 0000000 00000000243 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/pending_tasks.asciidoc:57
[source, python]
----
resp = client.cat.pending_tasks(
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f29a28fffa7ec604a33a838f48f7ea79.asciidoc 0000664 0000000 0000000 00000001567 14766462667 0027020 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query_filter_context.asciidoc:81
[source, python]
----
resp = client.search(
query={
"bool": {
"must": [
{
"match": {
"title": "Search"
}
},
{
"match": {
"content": "Elasticsearch"
}
}
],
"filter": [
{
"term": {
"status": "published"
}
},
{
"range": {
"publish_date": {
"gte": "2015-01-01"
}
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f29b2674299ddf51a25ed87619025ede.asciidoc 0000664 0000000 0000000 00000000525 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-search.asciidoc:122
[source, python]
----
resp = client.rollup.rollup_search(
index="sensor_rollup",
size=0,
aggregations={
"max_temperature": {
"max": {
"field": "temperature"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f2a5f77f929cc7b893b80f4bd5b1a192.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/get-connector-api.asciidoc:74
[source, python]
----
resp = client.connector.get(
connector_id="my-connector",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f2b2d62bc0a44940ad14fca57d6d008a.asciidoc 0000664 0000000 0000000 00000005217 14766462667 0026736 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/examples.asciidoc:215
[source, python]
----
resp = client.transform.put_transform(
transform_id="suspicious_client_ips",
source={
"index": "kibana_sample_data_logs"
},
dest={
"index": "sample_weblogs_by_clientip"
},
sync={
"time": {
"field": "timestamp",
"delay": "60s"
}
},
pivot={
"group_by": {
"clientip": {
"terms": {
"field": "clientip"
}
}
},
"aggregations": {
"url_dc": {
"cardinality": {
"field": "url.keyword"
}
},
"bytes_sum": {
"sum": {
"field": "bytes"
}
},
"geo.src_dc": {
"cardinality": {
"field": "geo.src"
}
},
"agent_dc": {
"cardinality": {
"field": "agent.keyword"
}
},
"geo.dest_dc": {
"cardinality": {
"field": "geo.dest"
}
},
"responses.total": {
"value_count": {
"field": "timestamp"
}
},
"success": {
"filter": {
"term": {
"response": "200"
}
}
},
"error404": {
"filter": {
"term": {
"response": "404"
}
}
},
"error5xx": {
"filter": {
"range": {
"response": {
"gte": 500,
"lt": 600
}
}
}
},
"timestamp.min": {
"min": {
"field": "timestamp"
}
},
"timestamp.max": {
"max": {
"field": "timestamp"
}
},
"timestamp.duration_ms": {
"bucket_script": {
"buckets_path": {
"min_time": "timestamp.min.value",
"max_time": "timestamp.max.value"
},
"script": "(params.max_time - params.min_time)"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f2c9afd052878b2ec00908739b0d0f74.asciidoc 0000664 0000000 0000000 00000002527 14766462667 0026551 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:697
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"rename": {
"description": "Rename 'provider' to 'cloud.provider'",
"field": "provider",
"target_field": "cloud.provider",
"on_failure": [
{
"set": {
"description": "Set 'error.message'",
"field": "error.message",
"value": "Field 'provider' does not exist. Cannot rename to 'cloud.provider'",
"override": False,
"on_failure": [
{
"set": {
"description": "Set 'error.message.multi'",
"field": "error.message.multi",
"value": "Document encountered multiple ingest errors",
"override": True
}
}
]
}
}
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f2e854b6c99659ccc1824e86c096e433.asciidoc 0000664 0000000 0000000 00000000345 14766462667 0026514 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/auto-follow/resume-auto-follow-pattern.asciidoc:86
[source, python]
----
resp = client.ccr.resume_auto_follow_pattern(
name="my_auto_follow_pattern",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f2ec53c0ef5025de8890d0ff8ec287a0.asciidoc 0000664 0000000 0000000 00000001010 14766462667 0026755 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rank-eval.asciidoc:359
[source, python]
----
resp = client.rank_eval(
index="my-index-000001",
requests=[
{
"id": "JFK query",
"request": {
"query": {
"match_all": {}
}
},
"ratings": []
}
],
metric={
"mean_reciprocal_rank": {
"k": 20,
"relevant_rating_threshold": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f2f1cae094855a45fd8f73478bec8e70.asciidoc 0000664 0000000 0000000 00000000500 14766462667 0026716 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/split-index.asciidoc:209
[source, python]
----
resp = client.indices.split(
index="my_source_index",
target="my_target_index",
settings={
"index.number_of_shards": 5
},
aliases={
"my_search_indices": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f321d4e92aa83d573ecf52bf56b0b774.asciidoc 0000664 0000000 0000000 00000000524 14766462667 0026702 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:377
[source, python]
----
resp = client.perform_request(
"POST",
"/_connector/_sync_job",
headers={"Content-Type": "application/json"},
body={
"id": "my-connector-id",
"job_type": "full"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f329242d7c8406297eff9bf609870c37.asciidoc 0000664 0000000 0000000 00000000670 14766462667 0026435 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/suggesters/completion-suggest.asciidoc:304
[source, python]
----
resp = client.search(
index="music",
pretty=True,
suggest={
"song-suggest": {
"prefix": "nor",
"completion": {
"field": "suggest",
"fuzzy": {
"fuzziness": 2
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f32f0c19b42de3b87dd764fe4ca17e7c.asciidoc 0000664 0000000 0000000 00000000516 14766462667 0027047 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/query-string-query.asciidoc:420
[source, python]
----
resp = client.search(
query={
"query_string": {
"default_field": "title",
"query": "ny city",
"auto_generate_synonyms_phrase_query": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f342465c65ba76383dedbb334b57b616.asciidoc 0000664 0000000 0000000 00000001312 14766462667 0026536 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/index-options.asciidoc:32
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"text": {
"type": "text",
"index_options": "offsets"
}
}
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"text": "Quick brown fox"
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"match": {
"text": "brown fox"
}
},
highlight={
"fields": {
"text": {}
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/f34c02351662481dd61a5c2a3e206c60.asciidoc 0000664 0000000 0000000 00000001013 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/hyphenation-decompounder-tokenfilter.asciidoc:25
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
{
"type": "hyphenation_decompounder",
"hyphenation_patterns_path": "analysis/hyphenation_patterns.xml",
"word_list": [
"Kaffee",
"zucker",
"tasse"
]
}
],
text="Kaffeetasse",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3594de7ef39ab09b0bb12c1e76bfe6b.asciidoc 0000664 0000000 0000000 00000000504 14766462667 0027120 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/shrink-index.asciidoc:125
[source, python]
----
resp = client.indices.shrink(
index="my_source_index",
target="my_target_index",
settings={
"index.routing.allocation.require._name": None,
"index.blocks.write": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3697682a886ab129530f3e5c1b30632.asciidoc 0000664 0000000 0000000 00000000271 14766462667 0026323 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/termvectors.asciidoc:16
[source, python]
----
resp = client.termvectors(
index="my-index-000001",
id="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f37173a75cd1b0d683c6f67819dd1de3.asciidoc 0000664 0000000 0000000 00000000262 14766462667 0026631 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:800
[source, python]
----
resp = client.get(
index="my-new-index-000001",
id="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f388e571224dd6850f8c9f9f08fca3da.asciidoc 0000664 0000000 0000000 00000000315 14766462667 0026725 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/invalidate-api-keys.asciidoc:129
[source, python]
----
resp = client.security.invalidate_api_key(
name="my-api-key",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3942d9b34138dfca79dff707af270b7.asciidoc 0000664 0000000 0000000 00000000473 14766462667 0026722 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:1169
[source, python]
----
resp = client.eql.search(
index="my-data-stream",
timestamp_field="file.accessed",
event_category_field="file.type",
query="\n file where (file.size > 1 and file.type == \"file\")\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f39512478cae2db8f4566a1e4af9e8f5.asciidoc 0000664 0000000 0000000 00000001742 14766462667 0026727 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/rollup-getting-started.asciidoc:217
[source, python]
----
resp = client.rollup.rollup_search(
index="sensor_rollup",
size=0,
aggregations={
"timeline": {
"date_histogram": {
"field": "timestamp",
"fixed_interval": "7d"
},
"aggs": {
"nodes": {
"terms": {
"field": "node"
},
"aggs": {
"max_temperature": {
"max": {
"field": "temperature"
}
},
"avg_voltage": {
"avg": {
"field": "voltage"
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3ab820e1f2f54ea718017aeae865742.asciidoc 0000664 0000000 0000000 00000001036 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/oidc-guide.asciidoc:470
[source, python]
----
resp = client.security.put_role_mapping(
name="oidc-finance",
roles=[
"finance_data"
],
enabled=True,
rules={
"all": [
{
"field": {
"realm.name": "oidc1"
}
},
{
"field": {
"groups": "finance-team"
}
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3b185131f40687c25d2f85e1231d8bd.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026450 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/validate.asciidoc:105
[source, python]
----
resp = client.indices.validate_query(
index="my-index-000001",
q="user.id:kimchy",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3b4ddce8ff21fc1a76a7c0d9c36650e.asciidoc 0000664 0000000 0000000 00000000633 14766462667 0027123 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-shrink.asciidoc:65
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"shrink": {
"number_of_shards": 1
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3c696cd63a3f042e62cbb94b75c2427.asciidoc 0000664 0000000 0000000 00000000342 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// upgrade/archived-settings.asciidoc:24
[source, python]
----
resp = client.cluster.get_settings(
flat_settings=True,
filter_path="persistent.archived*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3e1dfe1c440e3590be26f265e19425d.asciidoc 0000664 0000000 0000000 00000001427 14766462667 0026623 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:235
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"script_score": {
"query": {
"bool": {
"filter": {
"term": {
"status": "published"
}
}
}
},
"script": {
"source": "1 / (1 + l2norm(params.queryVector, 'my_dense_vector'))",
"params": {
"queryVector": [
4,
3.4,
-0.2
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3fb3cba44988b6e9fee93316138b2cf.asciidoc 0000664 0000000 0000000 00000000343 14766462667 0026777 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-privileges-cache.asciidoc:56
[source, python]
----
resp = client.security.clear_cached_privileges(
application="myapp,my-other-app",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3fb52680482925c202c2e2f8af6f044.asciidoc 0000664 0000000 0000000 00000000277 14766462667 0026465 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:459
[source, python]
----
resp = client.cat.count(
index="my-index-000001",
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f3fe2012557ebbce1ebad4fc997c092d.asciidoc 0000664 0000000 0000000 00000000502 14766462667 0027114 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/register-fs-repo.asciidoc:32
[source, python]
----
resp = client.snapshot.create_repository(
name="my_fs_backup",
repository={
"type": "fs",
"settings": {
"location": "my_fs_backup_location"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f43d551aaaad73d979adf1b86533e6a3.asciidoc 0000664 0000000 0000000 00000000571 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:216
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sales_over_time": {
"date_histogram": {
"field": "date",
"fixed_interval": "2w"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f43ec4041e3b72bbde063452990bfc4b.asciidoc 0000664 0000000 0000000 00000000310 14766462667 0026656 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/clearcache.asciidoc:148
[source, python]
----
resp = client.indices.clear_cache(
index="my-index-000001,my-index-000002",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f44d287c6937785eb09b91353c1deb1e.asciidoc 0000664 0000000 0000000 00000000350 14766462667 0026554 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-datafeed-stats.asciidoc:183
[source, python]
----
resp = client.ml.get_datafeed_stats(
datafeed_id="datafeed-high_sum_total_sales",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f453e14bcf30853e57618bf12f83e148.asciidoc 0000664 0000000 0000000 00000001231 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/pattern-analyzer.asciidoc:385
[source, python]
----
resp = client.indices.create(
index="pattern_example",
settings={
"analysis": {
"tokenizer": {
"split_on_non_word": {
"type": "pattern",
"pattern": "\\W+"
}
},
"analyzer": {
"rebuilt_pattern": {
"tokenizer": "split_on_non_word",
"filter": [
"lowercase"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f454e3f8ad5f5bd82a4a25af7dee9ca1.asciidoc 0000664 0000000 0000000 00000002017 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/array.asciidoc:39
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"message": "some arrays in this document...",
"tags": [
"elasticsearch",
"wow"
],
"lists": [
{
"name": "prog_list",
"description": "programming list"
},
{
"name": "cool_list",
"description": "cool stuff list"
}
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="2",
document={
"message": "no arrays in this document...",
"tags": "elasticsearch",
"lists": {
"name": "prog_list",
"description": "programming list"
}
},
)
print(resp1)
resp2 = client.search(
index="my-index-000001",
query={
"match": {
"tags": "elasticsearch"
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/f45990264f8755b96b11c69c12c90ff4.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026424 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/troubleshooting-searches.asciidoc:21
[source, python]
----
resp = client.indices.exists(
index="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f495f9c99916a05e3b28166d31955fad.asciidoc 0000664 0000000 0000000 00000001064 14766462667 0026511 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/terms-aggregation.asciidoc:292
[source, python]
----
resp = client.search(
aggs={
"genres": {
"terms": {
"field": "genre",
"order": {
"playback_stats.max": "desc"
}
},
"aggs": {
"playback_stats": {
"stats": {
"field": "play_count"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f49ac80f0130cae8d0ea6f4472a149dd.asciidoc 0000664 0000000 0000000 00000001061 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/knn-query.asciidoc:18
[source, python]
----
resp = client.indices.create(
index="my-image-index",
mappings={
"properties": {
"image-vector": {
"type": "dense_vector",
"dims": 3,
"index": True,
"similarity": "l2_norm"
},
"file-type": {
"type": "keyword"
},
"title": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f4ae3f3fbf07a7d39122ac5ac20b9c03.asciidoc 0000664 0000000 0000000 00000001132 14766462667 0027012 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/knn-search.asciidoc:280
[source, python]
----
resp = client.indices.create(
index="quantized-image-index",
mappings={
"properties": {
"image-vector": {
"type": "dense_vector",
"element_type": "float",
"dims": 2,
"index": True,
"index_options": {
"type": "int8_hnsw"
}
},
"title": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f4b9baed3c6a82be3672cbc8999c2368.asciidoc 0000664 0000000 0000000 00000000320 14766462667 0026774 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/terms-enum.asciidoc:19
[source, python]
----
resp = client.terms_enum(
index="stackoverflow",
field="tags",
string="kiba",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f4c194628761a4cf2a01453a96bbcc3c.asciidoc 0000664 0000000 0000000 00000004400 14766462667 0026604 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:344
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "multipolygon",
"coordinates": [
[
[
[
1002,
200
],
[
1003,
200
],
[
1003,
300
],
[
1002,
300
],
[
1002,
200
]
]
],
[
[
[
1000,
200
],
[
1001,
100
],
[
1001,
100
],
[
1000,
100
],
[
1000,
100
]
],
[
[
1000.2,
200.2
],
[
1000.8,
100.2
],
[
1000.8,
100.8
],
[
1000.2,
100.8
],
[
1000.2,
100.2
]
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f4dc1286d0a2f8d1fde64fbf12fd9f8d.asciidoc 0000664 0000000 0000000 00000001455 14766462667 0027217 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// troubleshooting/common-issues/disk-usage-exceeded.asciidoc:90
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster.routing.allocation.disk.watermark.low": None,
"cluster.routing.allocation.disk.watermark.low.max_headroom": None,
"cluster.routing.allocation.disk.watermark.high": None,
"cluster.routing.allocation.disk.watermark.high.max_headroom": None,
"cluster.routing.allocation.disk.watermark.flood_stage": None,
"cluster.routing.allocation.disk.watermark.flood_stage.max_headroom": None,
"cluster.routing.allocation.disk.watermark.flood_stage.frozen": None,
"cluster.routing.allocation.disk.watermark.flood_stage.frozen.max_headroom": None
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f4f557716049b23f8840d58d71e748f0.asciidoc 0000664 0000000 0000000 00000000426 14766462667 0026351 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/update-settings.asciidoc:121
[source, python]
----
resp = client.indices.put_settings(
index="my-index-000001",
settings={
"index": {
"refresh_interval": "-1"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f4fdfe52ecba65eec6beb30d8deb8bbf.asciidoc 0000664 0000000 0000000 00000000600 14766462667 0027557 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/post-forget-follower.asciidoc:41
[source, python]
----
resp = client.ccr.forget_follower(
index="",
follower_cluster="",
follower_index="",
follower_index_uuid="",
leader_remote_cluster="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5013174f77868da4dc40cdd745d4ea4.asciidoc 0000664 0000000 0000000 00000000505 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/rare-terms-aggregation.asciidoc:130
[source, python]
----
resp = client.search(
aggs={
"genres": {
"rare_terms": {
"field": "genre",
"max_doc_count": 2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5140f08f56c64b5789357539f8b9ba8.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026436 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/delete-alias.asciidoc:16
[source, python]
----
resp = client.indices.delete_alias(
index="my-data-stream",
name="my-alias",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f545bb95214769aca993c1632a71ad2c.asciidoc 0000664 0000000 0000000 00000003305 14766462667 0026537 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:785
[source, python]
----
resp = client.indices.create(
index="french_example",
settings={
"analysis": {
"filter": {
"french_elision": {
"type": "elision",
"articles_case": True,
"articles": [
"l",
"m",
"t",
"qu",
"n",
"s",
"j",
"d",
"c",
"jusqu",
"quoiqu",
"lorsqu",
"puisqu"
]
},
"french_stop": {
"type": "stop",
"stopwords": "_french_"
},
"french_keywords": {
"type": "keyword_marker",
"keywords": [
"Example"
]
},
"french_stemmer": {
"type": "stemmer",
"language": "light_french"
}
},
"analyzer": {
"rebuilt_french": {
"tokenizer": "standard",
"filter": [
"french_elision",
"lowercase",
"french_stop",
"french_keywords",
"french_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f54f6d06163221f2c7aff6e8db942be3.asciidoc 0000664 0000000 0000000 00000000740 14766462667 0026705 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/take-snapshot.asciidoc:579
[source, python]
----
resp = client.slm.put_lifecycle(
policy_id="daily-snapshots",
name="",
schedule="0 45 23 * * ?",
repository="my_repository",
config={
"indices": "*",
"include_global_state": True
},
retention={
"expire_after": "30d",
"min_count": 1,
"max_count": 31
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f57ce7de0946e9416ddb9150e95f4b74.asciidoc 0000664 0000000 0000000 00000000775 14766462667 0026661 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-azure-openai.asciidoc:165
[source, python]
----
resp = client.inference.put(
task_type="completion",
inference_id="azure_openai_completion",
inference_config={
"service": "azureopenai",
"service_settings": {
"api_key": "",
"resource_name": "",
"deployment_id": "",
"api_version": "2024-02-01"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5815d573cee0447910c9668003887b8.asciidoc 0000664 0000000 0000000 00000000574 14766462667 0026273 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/datehistogram-aggregation.asciidoc:122
[source, python]
----
resp = client.search(
index="sales",
size="0",
aggs={
"sales_over_time": {
"date_histogram": {
"field": "date",
"calendar_interval": "2d"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f58969ac405db85f439c5940d014964b.asciidoc 0000664 0000000 0000000 00000001010 14766462667 0026413 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-bounding-box-query.asciidoc:271
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_bounding_box": {
"pin.location": {
"wkt": "BBOX (-74.1, -71.12, 40.73, 40.01)"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f58fd031597e2c3df78bf0efd07206e3.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026710 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/start-basic.asciidoc:68
[source, python]
----
resp = client.license.post_start_basic(
acknowledge=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5bf2526af19d964f8c4c59d4795cffc.asciidoc 0000664 0000000 0000000 00000001300 14766462667 0027010 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/mlt-query.asciidoc:121
[source, python]
----
resp = client.indices.create(
index="imdb",
mappings={
"properties": {
"title": {
"type": "text",
"term_vector": "yes"
},
"description": {
"type": "text"
},
"tags": {
"type": "text",
"fields": {
"raw": {
"type": "text",
"analyzer": "keyword",
"term_vector": "yes"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5cbbb60ca26867a5d2da625a68a6e65.asciidoc 0000664 0000000 0000000 00000001613 14766462667 0026757 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// transform/ecommerce-tutorial.asciidoc:337
[source, python]
----
resp = client.indices.create(
index="ecommerce-customers",
mappings={
"properties": {
"total_quantity.sum": {
"type": "double"
},
"total_quantity": {
"type": "object"
},
"taxless_total_price": {
"type": "object"
},
"taxless_total_price.sum": {
"type": "double"
},
"order_id.cardinality": {
"type": "long"
},
"customer_id": {
"type": "keyword"
},
"total_quantity.max": {
"type": "integer"
},
"order_id": {
"type": "object"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5e50fe8a60467adb2c5ee9e0f2d88da.asciidoc 0000664 0000000 0000000 00000000435 14766462667 0027133 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:348
[source, python]
----
resp = client.sql.clear_cursor(
cursor="sDXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAAEWYUpOYklQMHhRUEtld3RsNnFtYU1hQQ==:BAFmBGRhdGUBZgVsaWtlcwFzB21lc3NhZ2UBZgR1c2Vy9f///w8=",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5e6378cc41ddf5326fe4084396c59b2.asciidoc 0000664 0000000 0000000 00000000714 14766462667 0026564 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/specify-analyzer.asciidoc:186
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"default": {
"type": "simple"
},
"default_search": {
"type": "whitespace"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5eed3f2e3558a238487bc85305b7a71.asciidoc 0000664 0000000 0000000 00000000425 14766462667 0026553 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:241
[source, python]
----
resp = client.index(
index="example",
document={
"location": "POLYGON ((100.0 0.0, 101.0 0.0, 101.0 1.0, 100.0 1.0, 100.0 0.0))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f5ef80dd92c67059ca353a833e6b7b5e.asciidoc 0000664 0000000 0000000 00000000746 14766462667 0026723 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/sum-aggregation.asciidoc:14
[source, python]
----
resp = client.search(
index="sales",
size="0",
query={
"constant_score": {
"filter": {
"match": {
"type": "hat"
}
}
}
},
aggs={
"hat_prices": {
"sum": {
"field": "price"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f625fdbbe78c4198d9e40b35f3f008b3.asciidoc 0000664 0000000 0000000 00000000412 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-known-issues.asciidoc:99
[source, python]
----
resp = client.update(
index=".elastic-connectors",
id="connector-id",
doc={
"custom_scheduling": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f63f6343e74bd5c844854272e746de14.asciidoc 0000664 0000000 0000000 00000000307 14766462667 0026422 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/deactivate-watch.asciidoc:88
[source, python]
----
resp = client.watcher.deactivate_watch(
watch_id="my_watch",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f642b64e592131f37209a5100fe161cc.asciidoc 0000664 0000000 0000000 00000001744 14766462667 0026370 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/dynamic/templates.asciidoc:425
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"dynamic_templates": [
{
"named_analyzers": {
"match_mapping_type": "string",
"match": "*",
"mapping": {
"type": "text",
"analyzer": "{name}"
}
}
},
{
"no_doc_values": {
"match_mapping_type": "*",
"mapping": {
"type": "{dynamic_type}",
"doc_values": False
}
}
}
]
},
)
print(resp)
resp1 = client.index(
index="my-index-000001",
id="1",
document={
"english": "Some English text",
"count": 5
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/f6566395f85d3afe917228643d7318d6.asciidoc 0000664 0000000 0000000 00000000270 14766462667 0026355 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:469
[source, python]
----
resp = client.indices.delete(
index="my-index-000001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f656c1e64268293ecc8ebd8065628faa.asciidoc 0000664 0000000 0000000 00000000410 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-service-token-caches.asciidoc:76
[source, python]
----
resp = client.security.clear_cached_service_tokens(
namespace="elastic",
service="fleet-server",
name="*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f65abb38dd0cfedeb06e0cef206fbdab.asciidoc 0000664 0000000 0000000 00000000377 14766462667 0027470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/ngram-tokenfilter.asciidoc:30
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"ngram"
],
text="Quick fox",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f66643c54999426c5afa6d5a87435d4e.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-api-key-cache.asciidoc:49
[source, python]
----
resp = client.security.clear_api_key_cache(
ids="yVGMr3QByxdh1MSaicYx",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f679e414de48b8fe25e458844be05618.asciidoc 0000664 0000000 0000000 00000000436 14766462667 0026516 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/connectors-API-tutorial.asciidoc:179
[source, python]
----
resp = client.connector.put(
connector_id="my-connector-id",
name="Music catalog",
index_name="music",
service_type="postgresql",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f67d8aab9106ad24b1d2c771d3840ed1.asciidoc 0000664 0000000 0000000 00000003407 14766462667 0026671 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// watcher/actions.asciidoc:276
[source, python]
----
resp = client.watcher.put_watch(
id="log_event_watch",
trigger={
"schedule": {
"interval": "5m"
}
},
input={
"search": {
"request": {
"indices": "log-events",
"body": {
"size": 0,
"query": {
"match": {
"status": "error"
}
}
}
}
}
},
condition={
"compare": {
"ctx.payload.hits.total": {
"gt": 0
}
}
},
actions={
"email_administrator": {
"email": {
"to": "sys.admino@host.domain",
"subject": "Encountered {{ctx.payload.hits.total}} errors",
"body": "Too many error in the system, see attached data",
"attachments": {
"attached_data": {
"data": {
"format": "json"
}
}
},
"priority": "high"
}
},
"notify_pager": {
"condition": {
"compare": {
"ctx.payload.hits.total": {
"gt": 5
}
}
},
"webhook": {
"method": "POST",
"host": "pager.service.domain",
"port": 1234,
"path": "/{{watch_id}}",
"body": "Encountered {{ctx.payload.hits.total}} errors"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6911b0f2f56523ccbd8027f276981b3.asciidoc 0000664 0000000 0000000 00000000616 14766462667 0026467 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/combined-fields-query.asciidoc:15
[source, python]
----
resp = client.search(
query={
"combined_fields": {
"query": "database systems",
"fields": [
"title",
"abstract",
"body"
],
"operator": "and"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6982ff80b9a64cd5fcac5b20908c906.asciidoc 0000664 0000000 0000000 00000000404 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/delete-calendar-event.asciidoc:49
[source, python]
----
resp = client.ml.delete_calendar_event(
calendar_id="planned-outages",
event_id="LS8LJGEBMTCMA-qz49st",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6c9d72fa26cbedd0c3f9fa64a88c38a.asciidoc 0000664 0000000 0000000 00000000332 14766462667 0027211 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/alias.asciidoc:86
[source, python]
----
resp = client.search(
query={
"match_all": {}
},
source="route_length_miles",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6d493650b4344f17297b568016fb445.asciidoc 0000664 0000000 0000000 00000000274 14766462667 0026257 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/apis/follow/post-unfollow.asciidoc:39
[source, python]
----
resp = client.ccr.unfollow(
index="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6de702c3d097af0b0bd391c4f947233.asciidoc 0000664 0000000 0000000 00000000451 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/disk/decrease-data-node-disk-usage.asciidoc:103
[source, python]
----
resp = client.cat.indices(
v=True,
s="rep:desc,pri.store.size:desc",
h="health,index,pri,rep,store.size,pri.store.size",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6df4acf3c7a4f85706ff314b21ebcb2.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0027115 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/clear-privileges-cache.asciidoc:49
[source, python]
----
resp = client.security.clear_cached_privileges(
application="myapp",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6ead39c5505045543b9225deca7367d.asciidoc 0000664 0000000 0000000 00000000332 14766462667 0026542 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cluster/voting-exclusions.asciidoc:115
[source, python]
----
resp = client.cluster.post_voting_config_exclusions(
node_names="nodeName1,nodeName2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6edbed2b5b2709bbc13866a4780e27a.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026761 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/params/dynamic.asciidoc:9
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
document={
"username": "johnsmith",
"name": {
"first": "John",
"last": "Smith"
}
},
)
print(resp)
resp1 = client.indices.get_mapping(
index="my-index-000001",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/f6eff830fb0fad200ebfb1e3e46f6f0e.asciidoc 0000664 0000000 0000000 00000000701 14766462667 0027250 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/execute-watch.asciidoc:161
[source, python]
----
resp = client.watcher.execute_watch(
id="my_watch",
trigger_data={
"triggered_time": "now",
"scheduled_time": "now"
},
alternative_input={
"foo": "bar"
},
ignore_condition=True,
action_modes={
"my-action": "force_simulate"
},
record_execution=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f6f647eb644a2d236637ff05f833cb73.asciidoc 0000664 0000000 0000000 00000000502 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/_connectors-create-native-api-key.asciidoc:43
[source, python]
----
resp = client.perform_request(
"POST",
"/_connector/_secret",
headers={"Content-Type": "application/json"},
body={
"value": "encoded_api_key"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f70a54cd9a9f4811bf962e469f2ca2ea.asciidoc 0000664 0000000 0000000 00000000467 14766462667 0027000 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/bool-query.asciidoc:91
[source, python]
----
resp = client.search(
query={
"bool": {
"filter": {
"term": {
"status": "active"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f70ff57c80cdbce3f1e7c63ee307c92d.asciidoc 0000664 0000000 0000000 00000000447 14766462667 0027135 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:508
[source, python]
----
resp = client.reindex(
source={
"index": "my_test_scores"
},
dest={
"index": "my_test_scores_2",
"pipeline": "my_test_scores_pipeline"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f7139b3c0e066be832b9100ae17157cc.asciidoc 0000664 0000000 0000000 00000000441 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// esql/esql-rest.asciidoc:50
[source, python]
----
resp = client.esql.query(
format="txt",
query="\n FROM library\n | KEEP author, name, page_count, release_date\n | SORT page_count DESC\n | LIMIT 5\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f733b25cd4c448b226bb76862974eef2.asciidoc 0000664 0000000 0000000 00000001477 14766462667 0026565 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/pattern-capture-tokenfilter.asciidoc:51
[source, python]
----
resp = client.indices.create(
index="test",
settings={
"analysis": {
"filter": {
"code": {
"type": "pattern_capture",
"preserve_original": True,
"patterns": [
"(\\p{Ll}+|\\p{Lu}\\p{Ll}+|\\p{Lu}+)",
"(\\d+)"
]
}
},
"analyzer": {
"code": {
"tokenizer": "pattern",
"filter": [
"code",
"lowercase"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f749efe8f11ebd43ef83db91922c736e.asciidoc 0000664 0000000 0000000 00000001157 14766462667 0027012 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ccr/uni-directional-disaster-recovery.asciidoc:133
[source, python]
----
resp = client.cluster.put_settings(
persistent={
"cluster": {
"remote": {
"clusterB": {
"mode": "proxy",
"skip_unavailable": "true",
"server_name": "clusterb.es.region-b.gcp.elastic-cloud.com",
"proxy_socket_connections": "18",
"proxy_address": "clusterb.es.region-b.gcp.elastic-cloud.com:9400"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f7726cc2c60dea26b88bf0df99fb0813.asciidoc 0000664 0000000 0000000 00000000462 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:197
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"runtime": {
"day_of_week": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f785b5d17eb59f8d2a353c2dee66eb5b.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0027057 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/get-connector-sync-job-api.asciidoc:51
[source, python]
----
resp = client.perform_request(
"GET",
"/_connector/_sync_job/my-connector-sync-job",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f7b20e4bb8366f6d2e4486f3bf4211bc.asciidoc 0000664 0000000 0000000 00000001271 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/histogram-aggregation.asciidoc:201
[source, python]
----
resp = client.search(
index="sales",
size="0",
query={
"constant_score": {
"filter": {
"range": {
"price": {
"lte": "500"
}
}
}
}
},
aggs={
"prices": {
"histogram": {
"field": "price",
"interval": 50,
"hard_bounds": {
"min": 100,
"max": 200
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f7d3d367a3d8e8ff0eca426b6ea85252.asciidoc 0000664 0000000 0000000 00000000407 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/tsds-reindex.asciidoc:222
[source, python]
----
resp = client.reindex(
source={
"index": "k8s"
},
dest={
"index": "k9s",
"op_type": "create"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f7dc2fed08e57abda2c3e8a14f8eb098.asciidoc 0000664 0000000 0000000 00000002141 14766462667 0027204 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/lang-analyzer.asciidoc:136
[source, python]
----
resp = client.indices.create(
index="armenian_example",
settings={
"analysis": {
"filter": {
"armenian_stop": {
"type": "stop",
"stopwords": "_armenian_"
},
"armenian_keywords": {
"type": "keyword_marker",
"keywords": [
"օրինակ"
]
},
"armenian_stemmer": {
"type": "stemmer",
"language": "armenian"
}
},
"analyzer": {
"rebuilt_armenian": {
"tokenizer": "standard",
"filter": [
"lowercase",
"armenian_stop",
"armenian_keywords",
"armenian_stemmer"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f7ec9062b3a7578fed55f119d7c22b74.asciidoc 0000664 0000000 0000000 00000000414 14766462667 0026636 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/testing.asciidoc:62
[source, python]
----
resp = client.indices.analyze(
tokenizer="standard",
filter=[
"lowercase",
"asciifolding"
],
text="Is this déja vu?",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f823e4b87ed181b27f73ebc51351f0ee.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/delete-data-stream.asciidoc:32
[source, python]
----
resp = client.indices.delete_data_stream(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f83eb6605c7c56e297a494b318400ef0.asciidoc 0000664 0000000 0000000 00000001022 14766462667 0026461 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/filter-search-results.asciidoc:58
[source, python]
----
resp = client.search(
index="shirts",
query={
"bool": {
"filter": [
{
"term": {
"color": "red"
}
},
{
"term": {
"brand": "gucci"
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f86337e13526c968848cfe29a52d658f.asciidoc 0000664 0000000 0000000 00000000776 14766462667 0026454 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/inference-api/infer-api-ingest-pipeline.asciidoc:41
[source, python]
----
resp = client.ingest.put_pipeline(
id="elser_embeddings_pipeline",
processors=[
{
"inference": {
"model_id": "elser_embeddings",
"input_output": {
"input_field": "content",
"output_field": "content_embedding"
}
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f8651356ce2e7e93fa306c30f57ed588.asciidoc 0000664 0000000 0000000 00000000757 14766462667 0026575 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/truncate-tokenfilter.asciidoc:93
[source, python]
----
resp = client.indices.create(
index="custom_truncate_example",
settings={
"analysis": {
"analyzer": {
"standard_truncate": {
"tokenizer": "standard",
"filter": [
"truncate"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f8833488041f3d318435b60917fa877c.asciidoc 0000664 0000000 0000000 00000001507 14766462667 0026265 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-overview.asciidoc:98
[source, python]
----
resp = client.search_application.put(
name="my_search_application",
search_application={
"indices": [
"my_search_index1",
"my_search_index2"
],
"template": {
"script": {
"source": {
"query": {
"query_string": {
"query": "{{query_string}}",
"default_field": "{{default_field}}"
}
}
},
"params": {
"query_string": "*",
"default_field": "*"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f8a0010753b1ff563dc42d703902d2fa.asciidoc 0000664 0000000 0000000 00000001751 14766462667 0026522 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/bool-query.asciidoc:39
[source, python]
----
resp = client.search(
query={
"bool": {
"must": {
"term": {
"user.id": "kimchy"
}
},
"filter": {
"term": {
"tags": "production"
}
},
"must_not": {
"range": {
"age": {
"gte": 10,
"lte": 20
}
}
},
"should": [
{
"term": {
"tags": "env1"
}
},
{
"term": {
"tags": "deployed"
}
}
],
"minimum_should_match": 1,
"boost": 1
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f8cafb1a08bc9b2dd5239f99d4e93f4c.asciidoc 0000664 0000000 0000000 00000000545 14766462667 0027142 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenizers/chargroup-tokenizer.asciidoc:33
[source, python]
----
resp = client.indices.analyze(
tokenizer={
"type": "char_group",
"tokenize_on_chars": [
"whitespace",
"-",
"\n"
]
},
text="The QUICK brown-fox",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f8cb1a04c2e487ff006b5ae0e1a7afbd.asciidoc 0000664 0000000 0000000 00000000266 14766462667 0027163 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/apis/rollup-caps.asciidoc:181
[source, python]
----
resp = client.rollup.get_rollup_caps(
id="sensor-1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f8f960550104c33e00dc78bc8723ccef.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026614 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// quickstart/full-text-filtering-tutorial.asciidoc:42
[source, python]
----
resp = client.indices.create(
index="cooking_blog",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f92d2f5018a8843ffbb56ade15f84406.asciidoc 0000664 0000000 0000000 00000000246 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// licensing/get-basic-status.asciidoc:41
[source, python]
----
resp = client.license.get_basic_status()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f95a4d7ab02bf400246c8822f0245f02.asciidoc 0000664 0000000 0000000 00000000273 14766462667 0026442 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// cat/trainedmodel.asciidoc:124
[source, python]
----
resp = client.cat.ml_trained_models(
h="c,o,l,ct,v",
v=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f96d4614f2fc294339fef325b794355f.asciidoc 0000664 0000000 0000000 00000000370 14766462667 0026512 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/get-bucket.asciidoc:208
[source, python]
----
resp = client.ml.get_buckets(
job_id="low_request_rate",
anomaly_score=80,
start="1454530200001",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f96d8131e8a592fbf6dfd686173940a9.asciidoc 0000664 0000000 0000000 00000001023 14766462667 0026567 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/watcher/update-settings.asciidoc:22
[source, python]
----
resp = client.watcher.put_watch(
id="test_watch",
trigger={
"schedule": {
"hourly": {
"minute": [
0,
5
]
}
}
},
input={
"simple": {
"payload": {
"send": "yes"
}
}
},
condition={
"always": {}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f9732ce07960134ea7156e118c2da8a6.asciidoc 0000664 0000000 0000000 00000000661 14766462667 0026464 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/analyzers/simple-analyzer.asciidoc:134
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
settings={
"analysis": {
"analyzer": {
"my_custom_simple_analyzer": {
"tokenizer": "lowercase",
"filter": []
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f978088f5117d4addd55c11ee3777312.asciidoc 0000664 0000000 0000000 00000000403 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/get-service-credentials.asciidoc:56
[source, python]
----
resp = client.security.create_service_token(
namespace="elastic",
service="fleet-server",
name="token1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f97aa2efabbf11a534073041eb2658c9.asciidoc 0000664 0000000 0000000 00000000304 14766462667 0026662 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/apis/delete-stored-script-api.asciidoc:30
[source, python]
----
resp = client.delete_script(
id="my-stored-script",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f98687271e1bec031cc34d05d8f4b60b.asciidoc 0000664 0000000 0000000 00000000577 14766462667 0026630 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/span-multi-term-query.asciidoc:12
[source, python]
----
resp = client.search(
query={
"span_multi": {
"match": {
"prefix": {
"user.id": {
"value": "ki"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f994498dd6576be657dedce2822d2b9e.asciidoc 0000664 0000000 0000000 00000002130 14766462667 0026736 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-text-hybrid-search:119
[source, python]
----
resp = client.search(
index="semantic-embeddings",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"match": {
"content": "How to avoid muscle soreness while running?"
}
}
}
},
{
"standard": {
"query": {
"semantic": {
"field": "semantic_text",
"query": "How to avoid muscle soreness while running?"
}
}
}
}
]
}
},
highlight={
"fields": {
"semantic_text": {
"number_of_fragments": 2
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f9a315ea99bed0cf2f36be1d74eb3e4a.asciidoc 0000664 0000000 0000000 00000000620 14766462667 0027176 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:407
[source, python]
----
resp = client.index(
index="example",
document={
"location": "MULTIPOLYGON (((102.0 2.0, 103.0 2.0, 103.0 3.0, 102.0 3.0, 102.0 2.0)), ((100.0 0.0, 101.0 0.0, 101.0 1.0, 100.0 1.0, 100.0 0.0), (100.2 0.2, 100.8 0.2, 100.8 0.8, 100.2 0.8, 100.2 0.2)))"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f9bad6fd369764185e1cb09b89ee39cc.asciidoc 0000664 0000000 0000000 00000001323 14766462667 0027010 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/text.asciidoc:237
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"text": {
"type": "text",
"store": True
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"text": [
"the quick brown fox",
"the quick brown fox",
"jumped over the lazy dog"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/f9c8245cc13770dff052b6759a749efa.asciidoc 0000664 0000000 0000000 00000000261 14766462667 0026640 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/get.asciidoc:294
[source, python]
----
resp = client.get_source(
index="my-index-000001",
id="1",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/f9f541ae23a184301913f07e62d1afd3.asciidoc 0000664 0000000 0000000 00000000455 14766462667 0026531 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// sql/endpoints/rest.asciidoc:657
[source, python]
----
resp = client.sql.query(
format="json",
keep_alive="2d",
wait_for_completion_timeout="2s",
query="SELECT * FROM library ORDER BY page_count DESC",
fetch_size=5,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fa42ae3bf6a300420cd0f77ba006458a.asciidoc 0000664 0000000 0000000 00000000313 14766462667 0026640 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:17
[source, python]
----
resp = client.indices.analyze(
analyzer="standard",
text="Quick Brown Foxes!",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fa5dcd1c7fadc473a791daf0d7ceec36.asciidoc 0000664 0000000 0000000 00000001057 14766462667 0027341 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/metrics/geoline-aggregation.asciidoc:318
[source, python]
----
resp = client.search(
index="tour",
filter_path="aggregations",
aggregations={
"path": {
"time_series": {},
"aggregations": {
"museum_tour": {
"geo_line": {
"point": {
"field": "location"
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fa61e3481b1f889b3bd4253866bb1c6b.asciidoc 0000664 0000000 0000000 00000006266 14766462667 0026633 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/bucket-correlation-aggregation.asciidoc:103
[source, python]
----
resp = client.search(
index="correlate_latency",
size="0",
filter_path="aggregations",
aggs={
"buckets": {
"terms": {
"field": "version",
"size": 2
},
"aggs": {
"latency_ranges": {
"range": {
"field": "latency",
"ranges": [
{
"to": 0
},
{
"from": 0,
"to": 105
},
{
"from": 105,
"to": 225
},
{
"from": 225,
"to": 445
},
{
"from": 445,
"to": 665
},
{
"from": 665,
"to": 885
},
{
"from": 885,
"to": 1115
},
{
"from": 1115,
"to": 1335
},
{
"from": 1335,
"to": 1555
},
{
"from": 1555,
"to": 1775
},
{
"from": 1775
}
]
}
},
"bucket_correlation": {
"bucket_correlation": {
"buckets_path": "latency_ranges>_count",
"function": {
"count_correlation": {
"indicator": {
"expectations": [
0,
52.5,
165,
335,
555,
775,
1000,
1225,
1445,
1665,
1775
],
"doc_count": 200
}
}
}
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fa82d86a046d67366cfe9ce65535e433.asciidoc 0000664 0000000 0000000 00000001071 14766462667 0026562 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// graph/explore.asciidoc:402
[source, python]
----
resp = client.graph.explore(
index="clicklogs",
vertices=[
{
"field": "product",
"include": [
"1854873"
]
}
],
connections={
"vertices": [
{
"field": "query.raw",
"exclude": [
"midi keyboard",
"midi",
"synth"
]
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fa88f6f5a7d728ec4f1d05244228cb09.asciidoc 0000664 0000000 0000000 00000000575 14766462667 0026641 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/bool-query.asciidoc:110
[source, python]
----
resp = client.search(
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"term": {
"status": "active"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fa946228e946da256d40264c8b070a1a.asciidoc 0000664 0000000 0000000 00000000563 14766462667 0026456 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations.asciidoc:241
[source, python]
----
resp = client.search(
index="my-index-000001",
aggs={
"my-agg-name": {
"terms": {
"field": "my-field"
},
"meta": {
"my-metadata-field": "foo"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fa9a3ef94470f3d9bd6500b65bf993d1.asciidoc 0000664 0000000 0000000 00000000405 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/multiplexer-tokenfilter.asciidoc:61
[source, python]
----
resp = client.indices.analyze(
index="multiplexer_example",
analyzer="my_analyzer",
text="Going HOME",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fab4b811ba968aa4df92fb1ac059ea31.asciidoc 0000664 0000000 0000000 00000000464 14766462667 0027106 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/geo-shape.asciidoc:106
[source, python]
----
resp = client.indices.create(
index="example",
mappings={
"properties": {
"location": {
"type": "geo_shape"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fab702851e90e945c1b62dec0bb6a205.asciidoc 0000664 0000000 0000000 00000000374 14766462667 0026664 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// behavioral-analytics/apis/delete-analytics-collection.asciidoc:59
[source, python]
----
resp = client.search_application.delete_behavioral_analytics(
name="my_analytics_collection",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fabe14480624a99e8ee42c7338672058.asciidoc 0000664 0000000 0000000 00000000312 14766462667 0026412 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/create-index.asciidoc:270
[source, python]
----
resp = client.indices.create(
index="test",
wait_for_active_shards="2",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fad26f4fb5a1bc9c38db33394e877d94.asciidoc 0000664 0000000 0000000 00000000333 14766462667 0026776 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/df-analytics/apis/get-dfanalytics-stats.asciidoc:539
[source, python]
----
resp = client.ml.get_data_frame_analytics_stats(
id="weblog-outliers",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fad524db23eb5718ff310956e590b00d.asciidoc 0000664 0000000 0000000 00000000476 14766462667 0026620 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/function-score-query.asciidoc:241
[source, python]
----
resp = client.search(
query={
"function_score": {
"random_score": {
"seed": 10,
"field": "_seq_no"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/faf7d8b9827cf5c0db5c177f01dc31c4.asciidoc 0000664 0000000 0000000 00000001044 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/rank-eval.asciidoc:263
[source, python]
----
resp = client.rank_eval(
index="my-index-000001",
requests=[
{
"id": "JFK query",
"request": {
"query": {
"match_all": {}
}
},
"ratings": []
}
],
metric={
"precision": {
"k": 20,
"relevant_rating_threshold": 1,
"ignore_unlabeled": False
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fb0152f6c70f647a8b6709969113486d.asciidoc 0000664 0000000 0000000 00000001265 14766462667 0026344 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/keyword.asciidoc:222
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"kwd": {
"type": "keyword",
"store": True
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"kwd": [
"foo",
"foo",
"bar",
"baz"
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/fb1180992b2087dfb36576b44c4261e4.asciidoc 0000664 0000000 0000000 00000000700 14766462667 0026377 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/change-mappings-and-settings.asciidoc:249
[source, python]
----
resp = client.indices.put_mapping(
index="my-data-stream",
write_index_only=True,
properties={
"host": {
"properties": {
"ip": {
"type": "ip",
"ignore_malformed": True
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fb1263cfdcbb6a89b20b57004d7e0dfc.asciidoc 0000664 0000000 0000000 00000001207 14766462667 0027102 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/set.asciidoc:96
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"processors": [
{
"set": {
"field": "my_field",
"value": "{{{input_field.1}}}"
}
}
]
},
docs=[
{
"_index": "index",
"_id": "id",
"_source": {
"input_field": [
"Ubuntu",
"Windows",
"Ventura"
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fb2b91206cfa8b86b4c7117ac1b5193b.asciidoc 0000664 0000000 0000000 00000001667 14766462667 0026675 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/pipeline/cumulative-cardinality-aggregation.asciidoc:145
[source, python]
----
resp = client.search(
index="user_hits",
size=0,
aggs={
"users_per_day": {
"date_histogram": {
"field": "timestamp",
"calendar_interval": "day"
},
"aggs": {
"distinct_users": {
"cardinality": {
"field": "user_id"
}
},
"total_new_users": {
"cumulative_cardinality": {
"buckets_path": "distinct_users"
}
},
"incremental_new_users": {
"derivative": {
"buckets_path": "total_new_users"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fb3505d976283fb7c7b9705a761e0dc2.asciidoc 0000664 0000000 0000000 00000001566 14766462667 0026560 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:264
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "polygon",
"orientation": "clockwise",
"coordinates": [
[
[
1000,
1000
],
[
1000,
1001
],
[
1001,
1001
],
[
1001,
1000
],
[
1000,
1000
]
]
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fb4799d2fe4011bf6084f89d97d9a4a5.asciidoc 0000664 0000000 0000000 00000000321 14766462667 0026644 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// autoscaling/apis/get-autoscaling-policy.asciidoc:47
[source, python]
----
resp = client.autoscaling.get_autoscaling_policy(
name="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fb56c2ac77d4c308d7702b6b33698382.asciidoc 0000664 0000000 0000000 00000000445 14766462667 0026472 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/docs/_connectors-create-native-api-key.asciidoc:54
[source, python]
----
resp = client.connector.update_api_key_id(
connector_id="my_connector_id>",
api_key_id="API key_id",
api_key_secret_id="secret_id",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fb955375a202f66133af009c04cb77ad.asciidoc 0000664 0000000 0000000 00000000717 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/range-enrich-policy-type-ex.asciidoc:17
[source, python]
----
resp = client.indices.create(
index="networks",
mappings={
"properties": {
"range": {
"type": "ip_range"
},
"name": {
"type": "keyword"
},
"department": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fbb38243221c8fb311660616e3add9ce.asciidoc 0000664 0000000 0000000 00000001130 14766462667 0026600 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:420
[source, python]
----
resp = client.search(
sort=[
{
"_geo_distance": {
"pin.location": [
-70,
40
],
"order": "asc",
"unit": "km",
"mode": "min",
"distance_type": "arc",
"ignore_unmapped": True
}
}
],
query={
"term": {
"user": "kimchy"
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fbc5ab85b908480bf944b55da0a43488.asciidoc 0000664 0000000 0000000 00000000407 14766462667 0026625 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/prefix-query.asciidoc:16
[source, python]
----
resp = client.search(
query={
"prefix": {
"user.id": {
"value": "ki"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fbdad6620eb645f5f1f02e3673604d01.asciidoc 0000664 0000000 0000000 00000000733 14766462667 0026610 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/geo-distance-query.asciidoc:236
[source, python]
----
resp = client.search(
index="my_locations",
query={
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "12km",
"pin.location": "drm3btev3e86"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc1907515f6a913884a9f86451e90ee8.asciidoc 0000664 0000000 0000000 00000001013 14766462667 0026425 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/semantic-search-elser.asciidoc:316
[source, python]
----
resp = client.indices.create(
index="my-index",
mappings={
"_source": {
"excludes": [
"content_embedding"
]
},
"properties": {
"content_embedding": {
"type": "sparse_vector"
},
"content": {
"type": "text"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc190fbbf71949331266dcb3f46a1198.asciidoc 0000664 0000000 0000000 00000000303 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/data-stream-stats.asciidoc:57
[source, python]
----
resp = client.indices.data_streams_stats(
name="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc26f51bb22c0b5270a66b4722f18aa7.asciidoc 0000664 0000000 0000000 00000000727 14766462667 0026603 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-allocate.asciidoc:60
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"allocate": {
"number_of_replicas": 2,
"total_shards_per_node": 200
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc3f5f40fa283559ca615cd0eb0a1755.asciidoc 0000664 0000000 0000000 00000000611 14766462667 0026666 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/doc-count-field.asciidoc:34
[source, python]
----
resp = client.indices.create(
index="my_index",
mappings={
"properties": {
"my_histogram": {
"type": "histogram"
},
"my_text": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc49437ce2e7916facf58128308c2aa3.asciidoc 0000664 0000000 0000000 00000000707 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// searchable-snapshots/apis/mount-snapshot.asciidoc:134
[source, python]
----
resp = client.searchable_snapshots.mount(
repository="my_repository",
snapshot="my_snapshot",
wait_for_completion=True,
index="my_docs",
renamed_index="docs",
index_settings={
"index.number_of_replicas": 0
},
ignore_index_settings=[
"index.refresh_interval"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc51fbc60b0e20aac83300a43ad90252.asciidoc 0000664 0000000 0000000 00000001542 14766462667 0026634 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/shape.asciidoc:375
[source, python]
----
resp = client.index(
index="example",
document={
"location": {
"type": "geometrycollection",
"geometries": [
{
"type": "point",
"coordinates": [
1000,
100
]
},
{
"type": "linestring",
"coordinates": [
[
1001,
100
],
[
1002,
100
]
]
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc5a81f34d416e4b45ca8a859dd3b8f1.asciidoc 0000664 0000000 0000000 00000000640 14766462667 0026766 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/autodatehistogram-aggregation.asciidoc:190
[source, python]
----
resp = client.search(
index="my-index-000001",
size="0",
aggs={
"by_day": {
"auto_date_histogram": {
"field": "date",
"buckets": 3,
"time_zone": "-01:00"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc75ea748e5f49b8ab292e453ab641a6.asciidoc 0000664 0000000 0000000 00000001113 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// aggregations/bucket/nested-aggregation.asciidoc:62
[source, python]
----
resp = client.search(
index="products",
size="0",
query={
"match": {
"name": "led tv"
}
},
aggs={
"resellers": {
"nested": {
"path": "resellers"
},
"aggs": {
"min_price": {
"min": {
"field": "resellers.price"
}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc8a426f8a5112e61e2acb913982a8d9.asciidoc 0000664 0000000 0000000 00000000376 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// index-modules/index-sorting.asciidoc:137
[source, python]
----
resp = client.search(
index="events",
size=10,
sort=[
{
"timestamp": "desc"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fc9a1b1173690a911725cff3912e9755.asciidoc 0000664 0000000 0000000 00000000534 14766462667 0026411 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ilm/actions/ilm-readonly.asciidoc:22
[source, python]
----
resp = client.ilm.put_lifecycle(
name="my_policy",
policy={
"phases": {
"warm": {
"actions": {
"readonly": {}
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fccbddfba9f975de7e321732874dfb78.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0027147 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/data-stream-stats.asciidoc:182
[source, python]
----
resp = client.indices.data_streams_stats(
name="my-data-stream*",
human=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fce5c03a388c893cb11a6696e068543f.asciidoc 0000664 0000000 0000000 00000002406 14766462667 0026555 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/has-privileges-user-profile.asciidoc:104
[source, python]
----
resp = client.security.has_privileges_user_profile(
uids=[
"u_LQPnxDxEjIH0GOUoFkZr5Y57YUwSkL9Joiq-g4OCbPc_0",
"u_rzRnxDgEHIH0GOUoFkZr5Y27YUwSk19Joiq=g4OCxxB_1",
"u_does-not-exist_0"
],
privileges={
"cluster": [
"monitor",
"create_snapshot",
"manage_ml"
],
"index": [
{
"names": [
"suppliers",
"products"
],
"privileges": [
"create_doc"
]
},
{
"names": [
"inventory"
],
"privileges": [
"read",
"write"
]
}
],
"application": [
{
"application": "inventory_manager",
"privileges": [
"read",
"data:write/inventory"
],
"resources": [
"product/1852563"
]
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fce7a35a737fc9e54ac1225e310dd561.asciidoc 0000664 0000000 0000000 00000001550 14766462667 0026673 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:121
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"script_score": {
"query": {
"bool": {
"filter": {
"term": {
"status": "published"
}
}
}
},
"script": {
"source": "\n double value = dotProduct(params.query_vector, 'my_dense_vector');\n return sigmoid(1, Math.E, -value); \n ",
"params": {
"query_vector": [
4,
3.4,
-0.2
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd04289c54493e19c1d3ac70d0b489c4.asciidoc 0000664 0000000 0000000 00000001201 14766462667 0026535 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest.asciidoc:840
[source, python]
----
resp = client.ingest.put_pipeline(
id="my-pipeline",
processors=[
{
"drop": {
"description": "Drop documents that don't contain 'prod' tag",
"if": "\n Collection tags = ctx.tags;\n if(tags != null){\n for (String tag : tags) {\n if (tag.toLowerCase().contains('prod')) {\n return false;\n }\n }\n }\n return true;\n "
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd0cd8ecd03468726b59a605eea06d75.asciidoc 0000664 0000000 0000000 00000001640 14766462667 0026706 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// query-dsl/rank-feature-query.asciidoc:138
[source, python]
----
resp = client.search(
index="test",
query={
"bool": {
"must": [
{
"match": {
"content": "2016"
}
}
],
"should": [
{
"rank_feature": {
"field": "pagerank"
}
},
{
"rank_feature": {
"field": "url_length",
"boost": 0.1
}
},
{
"rank_feature": {
"field": "topics.sports",
"boost": 0.4
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd26bfdbe95b2d2db374385d12849f77.asciidoc 0000664 0000000 0000000 00000000726 14766462667 0026725 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/trim-tokenfilter.asciidoc:99
[source, python]
----
resp = client.indices.create(
index="trim_example",
settings={
"analysis": {
"analyzer": {
"keyword_trim": {
"tokenizer": "keyword",
"filter": [
"trim"
]
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd2d289e6b725fcc3cbe8fe7ffe02ea0.asciidoc 0000664 0000000 0000000 00000000246 14766462667 0027273 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/get-index-template-v1.asciidoc:103
[source, python]
----
resp = client.indices.get_template()
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd352b472d44d197022a46fce90b6ecb.asciidoc 0000664 0000000 0000000 00000001266 14766462667 0026700 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/multi-get.asciidoc:184
[source, python]
----
resp = client.mget(
docs=[
{
"_index": "test",
"_id": "1",
"_source": False
},
{
"_index": "test",
"_id": "2",
"_source": [
"field3",
"field4"
]
},
{
"_index": "test",
"_id": "3",
"_source": {
"include": [
"user"
],
"exclude": [
"user.location"
]
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd60b4092c6552164862cec287359676.asciidoc 0000664 0000000 0000000 00000000354 14766462667 0026262 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/anomaly-detection/apis/stop-datafeed.asciidoc:80
[source, python]
----
resp = client.ml.stop_datafeed(
datafeed_id="datafeed-low_request_rate",
timeout="30s",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd620f09dbce62c6f0f603a366623607.asciidoc 0000664 0000000 0000000 00000001044 14766462667 0026533 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// connector/apis/update-connector-filtering-api.asciidoc:156
[source, python]
----
resp = client.connector.update_filtering(
connector_id="my-sql-connector",
advanced_snippet={
"value": [
{
"tables": [
"users",
"orders"
],
"query": "SELECT users.id AS id, orders.order_id AS order_id FROM users JOIN orders ON users.id = orders.user_id"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd6fdc8fa994dd02cf1177077325304f.asciidoc 0000664 0000000 0000000 00000000623 14766462667 0026632 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/troubleshooting/data/restore-from-snapshot.asciidoc:454
[source, python]
----
resp = client.snapshot.restore(
repository="my_repository",
snapshot="snapshot-20200617",
feature_states=[
"geoip"
],
indices="kibana_sample_data_flights,.ds-my-data-stream-2022.06.17-000001",
include_aliases=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd738a9af7b5d21da31a7722f03aade8.asciidoc 0000664 0000000 0000000 00000000353 14766462667 0027032 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/size-your-shards.asciidoc:171
[source, python]
----
resp = client.cat.shards(
v=True,
h="index,prirep,shard,store",
s="prirep,store",
bytes="gb",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd7eeadab6251d9113c4380a7fbe2572.asciidoc 0000664 0000000 0000000 00000001041 14766462667 0026745 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/remote-clusters-privileges-api-key.asciidoc:27
[source, python]
----
resp = client.security.put_role(
name="remote-replication",
cluster=[
"manage_ccr"
],
remote_indices=[
{
"clusters": [
"my_remote_cluster"
],
"names": [
"leader-index"
],
"privileges": [
"cross_cluster_replication"
]
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fd9b668eeb1f117950bd4991c7c03fb1.asciidoc 0000664 0000000 0000000 00000000363 14766462667 0026712 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// indices/analyze.asciidoc:163
[source, python]
----
resp = client.indices.analyze(
analyzer="standard",
text=[
"this is a test",
"the second text"
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fdada036a875d7995d5d7aba9c06361e.asciidoc 0000664 0000000 0000000 00000000570 14766462667 0026772 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/dense-vector.asciidoc:94
[source, python]
----
resp = client.indices.create(
index="my-index-2",
mappings={
"properties": {
"my_vector": {
"type": "dense_vector",
"dims": 3,
"index": False
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fdc8e090293e78e9a6b283650b682517.asciidoc 0000664 0000000 0000000 00000000274 14766462667 0026425 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:161
[source, python]
----
resp = client.indices.open(
index="my-data-stream",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fde3463ddf136fdfff1306a60986515e.asciidoc 0000664 0000000 0000000 00000000362 14766462667 0026713 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// upgrade/archived-settings.asciidoc:64
[source, python]
----
resp = client.indices.get_settings(
index="*",
flat_settings=True,
filter_path="**.settings.archived*",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fdf7cfdf1c92d21ee710675596eac6fd.asciidoc 0000664 0000000 0000000 00000002133 14766462667 0027137 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// tab-widgets/semantic-search/hybrid-search.asciidoc:55
[source, python]
----
resp = client.search(
index="my-index",
retriever={
"rrf": {
"retrievers": [
{
"standard": {
"query": {
"match": {
"my_text_field": "the query string"
}
}
}
},
{
"knn": {
"field": "text_embedding.predicted_value",
"k": 10,
"num_candidates": 100,
"query_vector_builder": {
"text_embedding": {
"model_id": "sentence-transformers__msmarco-minilm-l-12-v3",
"model_text": "the query string"
}
}
}
}
]
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fe208d94ec93eabf3bd06139fa70701e.asciidoc 0000664 0000000 0000000 00000002156 14766462667 0026762 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rollup/migrating-to-downsampling.asciidoc:59
[source, python]
----
resp = client.indices.put_index_template(
name="sensor-template",
index_patterns=[
"sensor-*"
],
data_stream={},
template={
"lifecycle": {
"downsampling": [
{
"after": "1d",
"fixed_interval": "1h"
}
]
},
"settings": {
"index.mode": "time_series"
},
"mappings": {
"properties": {
"node": {
"type": "keyword",
"time_series_dimension": True
},
"temperature": {
"type": "half_float",
"time_series_metric": "gauge"
},
"voltage": {
"type": "half_float",
"time_series_metric": "gauge"
},
"@timestamp": {
"type": "date"
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fe3a927d868cbc530e08e05964d5174a.asciidoc 0000664 0000000 0000000 00000001124 14766462667 0026550 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/sort-search-results.asciidoc:117
[source, python]
----
resp = client.index(
index="my-index-000001",
id="1",
refresh=True,
document={
"product": "chocolate",
"price": [
20,
4
]
},
)
print(resp)
resp1 = client.search(
query={
"term": {
"product": "chocolate"
}
},
sort=[
{
"price": {
"order": "asc",
"mode": "avg"
}
}
],
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/fe54f3e53dbe7dee40ec3108a461d19a.asciidoc 0000664 0000000 0000000 00000001116 14766462667 0027033 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// security/authentication/jwt-realm.asciidoc:522
[source, python]
----
resp = client.security.put_role_mapping(
name="jwt_user1",
refresh=True,
roles=[
"jwt_role1"
],
rules={
"all": [
{
"field": {
"realm.name": "jwt2"
}
},
{
"field": {
"username": "user2"
}
}
]
},
enabled=True,
metadata={
"version": 1
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fe6429d0d82174aa5acf95e96e237380.asciidoc 0000664 0000000 0000000 00000001322 14766462667 0026552 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/range.asciidoc:324
[source, python]
----
resp = client.indices.create(
index="idx",
settings={
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
mappings={
"properties": {
"my_range": {
"type": "ip_range"
}
}
},
)
print(resp)
resp1 = client.index(
index="idx",
id="1",
document={
"my_range": [
"10.0.0.0/24",
{
"gte": "10.0.0.0",
"lte": "10.0.0.255"
}
]
},
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/fe6e35839f7d7381f8ec535c8f21959b.asciidoc 0000664 0000000 0000000 00000000714 14766462667 0026607 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// how-to/recipes/scoring.asciidoc:124
[source, python]
----
resp = client.search(
index="index",
query={
"script_score": {
"query": {
"match": {
"body": "elasticsearch"
}
},
"script": {
"source": "_score * saturation(doc['pagerank'].value, 10)"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fe7169bab8e626f582c9ea87585d0f35.asciidoc 0000664 0000000 0000000 00000000611 14766462667 0026651 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/types/histogram.asciidoc:98
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"my_histogram": {
"type": "histogram"
},
"my_text": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fe806011466e7cdc1590da186297edb6.asciidoc 0000664 0000000 0000000 00000000263 14766462667 0026547 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// api-conventions.asciidoc:119
[source, python]
----
resp = client.indices.create(
index="",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fe825c05e13e8163073166572c7ac97d.asciidoc 0000664 0000000 0000000 00000000525 14766462667 0026412 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/geo-grid.asciidoc:199
[source, python]
----
resp = client.index(
index="geocells",
id="1",
pipeline="geohex2shape",
document={
"geocell": "811fbffffffffff"
},
)
print(resp)
resp1 = client.get(
index="geocells",
id="1",
)
print(resp1)
----
python-elasticsearch-8.17.2/docs/examples/fe8c3e2632f5057bfbd1898a8fe4d0d2.asciidoc 0000664 0000000 0000000 00000002456 14766462667 0027002 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-application-api.asciidoc:325
[source, python]
----
resp = client.search_application.put(
name="my_search_application",
search_application={
"indices": [
"index1",
"index2"
],
"template": {
"script": {
"lang": "mustache",
"source": "\n {\n \"query\": {\n \"multi_match\": {\n \"query\": \"{{query_string}}\",\n \"fields\": [{{#text_fields}}\"{{name}}^{{boost}}\",{{/text_fields}}]\n }\n },\n \"explain\": \"{{explain}}\",\n \"from\": \"{{from}}\",\n \"size\": \"{{size}}\"\n }\n ",
"params": {
"query_string": "*",
"text_fields": [
{
"name": "title",
"boost": 10
},
{
"name": "description",
"boost": 5
}
],
"explain": False,
"from": 0,
"size": 10
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fe96ca3b2a559d8411aca7ed5f3854bd.asciidoc 0000664 0000000 0000000 00000000326 14766462667 0027045 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/common-options.asciidoc:229
[source, python]
----
resp = client.indices.get_settings(
index="my-index-000001",
flat_settings=True,
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/febb71d774e0a1fc67454213d7448c53.asciidoc 0000664 0000000 0000000 00000000342 14766462667 0026541 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// scripting/using.asciidoc:367
[source, python]
----
resp = client.update(
index="my-index-000001",
id="1",
script="ctx._source.remove('new_field')",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fece7c0fe1f7d113aa05ff5346a18aff.asciidoc 0000664 0000000 0000000 00000001634 14766462667 0027176 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// data-streams/use-a-data-stream.asciidoc:81
[source, python]
----
resp = client.bulk(
index="my-data-stream",
refresh=True,
operations=[
{
"create": {}
},
{
"@timestamp": "2099-03-08T11:04:05.000Z",
"user": {
"id": "vlb44hny"
},
"message": "Login attempt failed"
},
{
"create": {}
},
{
"@timestamp": "2099-03-08T11:06:07.000Z",
"user": {
"id": "8a4f500d"
},
"message": "Login successful"
},
{
"create": {}
},
{
"@timestamp": "2099-03-09T11:07:08.000Z",
"user": {
"id": "l7gk7f82"
},
"message": "Logout successful"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/feda4b996ea7004f8b2c5f5007fb717b.asciidoc 0000664 0000000 0000000 00000000771 14766462667 0026770 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/range-enrich-policy-type-ex.asciidoc:91
[source, python]
----
resp = client.ingest.put_pipeline(
id="networks_lookup",
processors=[
{
"enrich": {
"description": "Add 'network' data based on 'ip'",
"policy_name": "networks-policy",
"field": "ip",
"target_field": "network",
"max_matches": "10"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fef520cbc9b0656e6aac7b3dd3da9984.asciidoc 0000664 0000000 0000000 00000000472 14766462667 0027130 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// eql/eql.asciidoc:789
[source, python]
----
resp = client.eql.search(
index="my-index*",
query="\n sample by host\n [any where uptime > 0] by os\n [any where port > 100] by op_sys\n [any where bool == true] by os\n ",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff05842419968a2141bde0371ac2f6f4.asciidoc 0000664 0000000 0000000 00000000677 14766462667 0026470 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/search-template.asciidoc:320
[source, python]
----
resp = client.render_search_template(
source={
"query": {
"match": {
"user.group.emails": "{{#join}}emails{{/join}}"
}
}
},
params={
"emails": [
"user1@example.com",
"user_one@example.com"
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff09e13391cecb2e8b9dd440b37e065f.asciidoc 0000664 0000000 0000000 00000000325 14766462667 0026763 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:316
[source, python]
----
resp = client.search(
index="my-new-index-000001",
size="0",
filter_path="hits.total",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff1b96d2fdcf628bd938bff9e939943c.asciidoc 0000664 0000000 0000000 00000001013 14766462667 0027077 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/runtime.asciidoc:965
[source, python]
----
resp = client.indices.create(
index="my-index-000001",
mappings={
"properties": {
"timestamp": {
"type": "date"
},
"temperature": {
"type": "long"
},
"voltage": {
"type": "double"
},
"node": {
"type": "keyword"
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff27e5cddd1f58d8a8f84f807fd27eec.asciidoc 0000664 0000000 0000000 00000001314 14766462667 0027234 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ingest/processors/redact.asciidoc:179
[source, python]
----
resp = client.ingest.simulate(
pipeline={
"processors": [
{
"redact": {
"field": "message",
"patterns": [
"%{GITHUB_NAME:GITHUB_NAME}"
],
"pattern_definitions": {
"GITHUB_NAME": "@%{USERNAME}"
}
}
}
]
},
docs=[
{
"_source": {
"message": "@elastic-data-management the PR is ready for review"
}
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff56ded50c65998c70f3c5691ddc6f86.asciidoc 0000664 0000000 0000000 00000000316 14766462667 0026740 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// snapshot-restore/apis/delete-repo-api.asciidoc:33
[source, python]
----
resp = client.snapshot.delete_repository(
name="my_repository",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff63ae39c34925dbfa54282ec9989124.asciidoc 0000664 0000000 0000000 00000001007 14766462667 0026562 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// docs/reindex.asciidoc:1009
[source, python]
----
resp = client.reindex(
source={
"remote": {
"host": "http://otherhost:9200",
"headers": {
"Authorization": "ApiKey API_KEY_VALUE"
}
},
"index": "my-index-000001",
"query": {
"match": {
"test": "data"
}
}
},
dest={
"index": "my-new-index-000001"
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff776c0fccf93e1c7050f7cb7efbae0b.asciidoc 0000664 0000000 0000000 00000000470 14766462667 0027264 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// ml/trained-models/apis/infer-trained-model.asciidoc:1012
[source, python]
----
resp = client.ml.infer_trained_model(
model_id="model2",
docs=[
{
"text_field": "Hi my name is Josh and I live in Berlin"
}
],
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff7b81fa96c3b994efa3dee230512291.asciidoc 0000664 0000000 0000000 00000000672 14766462667 0026714 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// graph/explore.asciidoc:210
[source, python]
----
resp = client.graph.explore(
index="clicklogs",
query={
"match": {
"query.raw": "midi"
}
},
vertices=[
{
"field": "product"
}
],
connections={
"vertices": [
{
"field": "query.raw"
}
]
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ff945f5db7d8a9b0d9f6a2f2fcf849e3.asciidoc 0000664 0000000 0000000 00000001126 14766462667 0027155 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// mapping/fields/tier-field.asciidoc:10
[source, python]
----
resp = client.index(
index="index_1",
id="1",
document={
"text": "Document in index 1"
},
)
print(resp)
resp1 = client.index(
index="index_2",
id="2",
refresh=True,
document={
"text": "Document in index 2"
},
)
print(resp1)
resp2 = client.search(
index="index_1,index_2",
query={
"terms": {
"_tier": [
"data_hot",
"data_warm"
]
}
},
)
print(resp2)
----
python-elasticsearch-8.17.2/docs/examples/ffcf80e1094aa2d774f56f6b0bc54827.asciidoc 0000664 0000000 0000000 00000000471 14766462667 0026711 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// analysis/tokenfilters/word-delimiter-graph-tokenfilter.asciidoc:47
[source, python]
----
resp = client.indices.analyze(
tokenizer="keyword",
filter=[
"word_delimiter_graph"
],
text="Neil's-Super-Duper-XL500--42+AutoCoder",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ffd63dd186ab81b893faec3b3358fa09.asciidoc 0000664 0000000 0000000 00000000300 14766462667 0027041 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// rest-api/security/delete-users.asciidoc:45
[source, python]
----
resp = client.security.delete_user(
username="jacknich",
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/ffda10edaa7ce087703193c3cb95a426.asciidoc 0000664 0000000 0000000 00000007032 14766462667 0026751 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// search/search-your-data/retrievers-examples.asciidoc:14
[source, python]
----
resp = client.indices.create(
index="retrievers_example",
settings={
"number_of_shards": 1
},
mappings={
"properties": {
"vector": {
"type": "dense_vector",
"dims": 3,
"similarity": "l2_norm",
"index": True,
"index_options": {
"type": "flat"
}
},
"text": {
"type": "text"
},
"year": {
"type": "integer"
},
"topic": {
"type": "keyword"
},
"timestamp": {
"type": "date"
}
}
},
)
print(resp)
resp1 = client.index(
index="retrievers_example",
id="1",
document={
"vector": [
0.23,
0.67,
0.89
],
"text": "Large language models are revolutionizing information retrieval by boosting search precision, deepening contextual understanding, and reshaping user experiences in data-rich environments.",
"year": 2024,
"topic": [
"llm",
"ai",
"information_retrieval"
],
"timestamp": "2021-01-01T12:10:30"
},
)
print(resp1)
resp2 = client.index(
index="retrievers_example",
id="2",
document={
"vector": [
0.12,
0.56,
0.78
],
"text": "Artificial intelligence is transforming medicine, from advancing diagnostics and tailoring treatment plans to empowering predictive patient care for improved health outcomes.",
"year": 2023,
"topic": [
"ai",
"medicine"
],
"timestamp": "2022-01-01T12:10:30"
},
)
print(resp2)
resp3 = client.index(
index="retrievers_example",
id="3",
document={
"vector": [
0.45,
0.32,
0.91
],
"text": "AI is redefining security by enabling advanced threat detection, proactive risk analysis, and dynamic defenses against increasingly sophisticated cyber threats.",
"year": 2024,
"topic": [
"ai",
"security"
],
"timestamp": "2023-01-01T12:10:30"
},
)
print(resp3)
resp4 = client.index(
index="retrievers_example",
id="4",
document={
"vector": [
0.34,
0.21,
0.98
],
"text": "Elastic introduces Elastic AI Assistant, the open, generative AI sidekick powered by ESRE to democratize cybersecurity and enable users of every skill level.",
"year": 2023,
"topic": [
"ai",
"elastic",
"assistant"
],
"timestamp": "2024-01-01T12:10:30"
},
)
print(resp4)
resp5 = client.index(
index="retrievers_example",
id="5",
document={
"vector": [
0.11,
0.65,
0.47
],
"text": "Learn how to spin up a deployment of our hosted Elasticsearch Service and use Elastic Observability to gain deeper insight into the behavior of your applications and systems.",
"year": 2024,
"topic": [
"documentation",
"observability",
"elastic"
],
"timestamp": "2025-01-01T12:10:30"
},
)
print(resp5)
resp6 = client.indices.refresh(
index="retrievers_example",
)
print(resp6)
----
python-elasticsearch-8.17.2/docs/examples/ffe45a7c70071730c2078cabb8cbdf95.asciidoc 0000664 0000000 0000000 00000002150 14766462667 0026754 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// vectors/vector-functions.asciidoc:294
[source, python]
----
resp = client.search(
index="my-index-000001",
query={
"script_score": {
"query": {
"bool": {
"filter": {
"term": {
"status": "published"
}
}
}
},
"script": {
"source": "\n float[] v = doc['my_dense_vector'].vectorValue;\n float vm = doc['my_dense_vector'].magnitude;\n float dotProduct = 0;\n for (int i = 0; i < v.length; i++) {\n dotProduct += v[i] * params.queryVector[i];\n }\n return dotProduct / (vm * (float) params.queryVectorMag);\n ",
"params": {
"queryVector": [
4,
3.4,
-0.2
],
"queryVectorMag": 5.25357
}
}
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/examples/fff86117c47f974074284644e8a97a99.asciidoc 0000664 0000000 0000000 00000000625 14766462667 0026373 0 ustar 00root root 0000000 0000000 // This file is autogenerated, DO NOT EDIT
// inference/service-jinaai.asciidoc:155
[source, python]
----
resp = client.inference.put(
task_type="text_embedding",
inference_id="jinaai-embeddings",
inference_config={
"service": "jinaai",
"service_settings": {
"model_id": "jina-embeddings-v3",
"api_key": ""
}
},
)
print(resp)
----
python-elasticsearch-8.17.2/docs/guide/ 0000775 0000000 0000000 00000000000 14766462667 0020017 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/docs/guide/configuration.asciidoc 0000664 0000000 0000000 00000036534 14766462667 0024401 0 ustar 00root root 0000000 0000000 [[config]]
== Configuration
This page contains information about the most important configuration options of
the Python {es} client.
[discrete]
[[tls-and-ssl]]
=== TLS/SSL
The options in this section can only be used when the node is configured for HTTPS. An error will be raised if using these options with an HTTP node.
[discrete]
==== Verifying server certificates
The typical route to verify a cluster certificate is via a "CA bundle" which can be specified via the `ca_certs` parameter. If no options are given and the https://github.com/certifi/python-certifi[certifi package] is installed then certifi's CA bundle is used by default.
If you have your own CA bundle to use you can configure via the `ca_certs` parameter:
[source,python]
------------------------------------
client = Elasticsearch(
"https://...",
ca_certs="/path/to/certs.pem"
)
------------------------------------
If using a generated certificate or certificate with a known fingerprint you can use the `ssl_assert_fingerprint` to specify the fingerprint which tries to match the server's leaf certificate during the TLS handshake. If there is any matching certificate the connection is verified, otherwise a `TlsError` is raised.
In Python 3.9 and earlier only the leaf certificate will be verified but in Python 3.10+ private APIs are used to verify any certificate in the certificate chain. This helps when using certificates that are generated on a multi-node cluster.
[source,python]
------------------------------------
client = Elasticsearch(
"https://...",
ssl_assert_fingerprint=(
"315f5bdb76d078c43b8ac0064e4a0164612b1fce77c869345bfc94c75894edd3"
)
)
------------------------------------
To disable certificate verification use the `verify_certs=False` parameter. This option should be avoided in production, instead use the other options to verify the clusters' certificate.
[source,python]
------------------------------------
client = Elasticsearch(
"https://...",
verify_certs=False
)
------------------------------------
[discrete]
==== TLS versions
Configuring the minimum TLS version to connect to is done via the `ssl_version` parameter. By default this is set to a minimum value of TLSv1.2. Use the `ssl.TLSVersion` enumeration to specify versions.
[source,python]
------------------------------------
import ssl
client = Elasticsearch(
...,
ssl_version=ssl.TLSVersion.TLSv1_2
)
------------------------------------
[discrete]
==== Client TLS certificate authentication
Elasticsearch can be configured to authenticate clients via TLS client certificates. Client certificate and keys can be configured via the `client_cert` and `client_key` parameters:
[source,python]
------------------------------------
client = Elasticsearch(
...,
client_cert="/path/to/cert.pem",
client_key="/path/to/key.pem",
)
------------------------------------
[discrete]
==== Using an SSLContext
For advanced users an `ssl.SSLContext` object can be used for configuring TLS via the `ssl_context` parameter. The `ssl_context` parameter can't be combined with any other TLS options except for the `ssl_assert_fingerprint` parameter.
[source,python]
------------------------------------
import ssl
# Create and configure an SSLContext
ctx = ssl.create_default_context()
ctx.load_verify_locations(...)
client = Elasticsearch(
...,
ssl_context=ctx
)
------------------------------------
[discrete]
[[compression]]
=== HTTP compression
Compression of HTTP request and response bodies can be enabled with the `http_compress` parameter.
If enabled then HTTP request bodies will be compressed with `gzip` and HTTP responses will include
the `Accept-Encoding: gzip` HTTP header. By default compression is disabled.
[source,python]
------------------------------------
client = Elasticsearch(
...,
http_compress=True # Enable compression!
)
------------------------------------
HTTP compression is recommended to be enabled when requests are traversing the network.
Compression is automatically enabled when connecting to Elastic Cloud.
[discrete]
[[timeouts]]
=== Request timeouts
Requests can be configured to timeout if taking too long to be serviced. The `request_timeout` parameter can be passed via the client constructor or the client `.options()` method. When the request times out the node will raise a `ConnectionTimeout` exception which can trigger retries.
Setting `request_timeout` to `None` will disable timeouts.
[source,python]
------------------------------------
client = Elasticsearch(
...,
request_timeout=10 # 10 second timeout
)
# Search request will timeout in 5 seconds
client.options(request_timeout=5).search(...)
------------------------------------
[discrete]
==== API and server timeouts
There are API-level timeouts to take into consideration when making requests which can cause the request to timeout on server-side rather than client-side. You may need to configure both a transport and API level timeout for long running operations.
In the example below there are three different configurable timeouts for the `cluster.health` API all with different meanings for the request:
[source,python]
------------------------------------
client.options(
# Amount of time to wait for an HTTP response to start.
request_timeout=30
).cluster.health(
# Amount of time to wait to collect info on all nodes.
timeout=30,
# Amount of time to wait for info from the master node.
master_timeout=10,
)
------------------------------------
[discrete]
[[retries]]
=== Retries
Requests can be retried if they don't return with a successful response. This provides a way for requests to be resilient against transient failures or overloaded nodes.
The maximum number of retries per request can be configured via the `max_retries` parameter. Setting this parameter to 0 disables retries. This parameter can be set in the client constructor or per-request via the client `.options()` method:
[source,python]
------------------------------------
client = Elasticsearch(
...,
max_retries=5
)
# For this API request we disable retries with 'max_retries=0'
client.options(max_retries=0).index(
index="blogs",
document={
"title": "..."
}
)
------------------------------------
[discrete]
==== Retrying on connection errors and timeouts
Connection errors are automatically retried if retries are enabled. Retrying requests on connection timeouts can be enabled or disabled via the `retry_on_timeout` parameter. This parameter can be set on the client constructor or via the client `.options()` method:
[source,python]
------------------------------------
client = Elasticsearch(
...,
retry_on_timeout=True
)
client.options(retry_on_timeout=False).info()
------------------------------------
[discrete]
==== Retrying status codes
By default if retries are enabled `retry_on_status` is set to `(429, 502, 503, 504)`. This parameter can be set on the client constructor or via the client `.options()` method. Setting this value to `()` will disable the default behavior.
[source,python]
------------------------------------
client = Elasticsearch(
...,
retry_on_status=()
)
# Retry this API on '500 Internal Error' statuses
client.options(retry_on_status=[500]).index(
index="blogs",
document={
"title": "..."
}
)
------------------------------------
[discrete]
==== Ignoring status codes
By default an `ApiError` exception will be raised for any non-2XX HTTP requests that exhaust retries, if any. If you're expecting an HTTP error from the API but aren't interested in raising an exception you can use the `ignore_status` parameter via the client `.options()` method.
A good example where this is useful is setting up or cleaning up resources in a cluster in a robust way:
[source,python]
------------------------------------
client = Elasticsearch(...)
# API request is robust against the index not existing:
resp = client.options(ignore_status=404).indices.delete(index="delete-this")
resp.meta.status # Can be either '2XX' or '404'
# API request is robust against the index already existing:
resp = client.options(ignore_status=[400]).indices.create(
index="create-this",
mapping={
"properties": {"field": {"type": "integer"}}
}
)
resp.meta.status # Can be either '2XX' or '400'
------------------------------------
When using the `ignore_status` parameter the error response will be returned serialized just like a non-error response. In these cases it can be useful to inspect the HTTP status of the response. To do this you can inspect the `resp.meta.status`.
[discrete]
[[sniffing]]
=== Sniffing for new nodes
Additional nodes can be discovered by a process called "sniffing" where the client will query the cluster for more nodes that can handle requests.
Sniffing can happen at three different times: on client instantiation, before requests, and on a node failure. These three behaviors can be enabled and disabled with the `sniff_on_start`, `sniff_before_requests`, and `sniff_on_node_failure` parameters.
IMPORTANT: When using an HTTP load balancer or proxy you cannot use sniffing functionality as the cluster would supply the client with IP addresses to directly connect to the cluster, circumventing the load balancer. Depending on your configuration this might be something you don't want or break completely.
[discrete]
==== Waiting between sniffing attempts
To avoid needlessly sniffing too often there is a delay between attempts to discover new nodes. This value can be controlled via the `min_delay_between_sniffing` parameter.
[discrete]
==== Filtering nodes which are sniffed
By default nodes which are marked with only a `master` role will not be used. To change the behavior the parameter `sniffed_node_callback` can be used. To mark a sniffed node not to be added to the node pool
return `None` from the `sniffed_node_callback`, otherwise return a `NodeConfig` instance.
[source,python]
------------------------------------
from typing import Optional, Dict, Any
from elastic_transport import NodeConfig
from elasticsearch import Elasticsearch
def filter_master_eligible_nodes(
node_info: Dict[str, Any],
node_config: NodeConfig
) -> Optional[NodeConfig]:
# This callback ignores all nodes that are master eligible
# instead of master-only nodes (default behavior)
if "master" in node_info.get("roles", ()):
return None
return node_config
client = Elasticsearch(
"https://localhost:9200",
sniffed_node_callback=filter_master_eligible_nodes
)
------------------------------------
The `node_info` parameter is part of the response from the `nodes.info()` API, below is an example
of what that object looks like:
[source,json]
------------------------------------
{
"name": "SRZpKFZ",
"transport_address": "127.0.0.1:9300",
"host": "127.0.0.1",
"ip": "127.0.0.1",
"version": "5.0.0",
"build_hash": "253032b",
"roles": ["master", "data", "ingest"],
"http": {
"bound_address": ["[fe80::1]:9200", "[::1]:9200", "127.0.0.1:9200"],
"publish_address": "1.1.1.1:123",
"max_content_length_in_bytes": 104857600
}
}
------------------------------------
[discrete]
[[node-pool]]
=== Node Pool
[discrete]
==== Selecting a node from the pool
You can specify a node selector pattern via the `node_selector_class` parameter. The supported values are `round_robin` and `random`. Default is `round_robin`.
[source,python]
------------------------------------
client = Elasticsearch(
...,
node_selector_class="round_robin"
)
------------------------------------
Custom selectors are also supported:
[source,python]
------------------------------------
from elastic_transport import NodeSelector
class CustomSelector(NodeSelector):
def select(nodes): ...
client = Elasticsearch(
...,
node_selector_class=CustomSelector
)
------------------------------------
[discrete]
==== Marking nodes dead and alive
Individual nodes of Elasticsearch may have transient connectivity or load issues which may make them unable to service requests. To combat this the pool of nodes will detect when a node isn't able to service requests due to transport or API errors.
After a node has been timed out it will be moved back to the set of "alive" nodes but only after the node returns a successful response will the node be marked as "alive" in terms of consecutive errors.
The `dead_node_backoff_factor` and `max_dead_node_backoff` parameters can be used to configure how long the node pool will put the node into timeout with each consecutive failure. Both parameters use a unit of seconds.
The calculation is equal to `min(dead_node_backoff_factor * (2 ** (consecutive_failures - 1)), max_dead_node_backoff)`.
[discrete]
[[serializer]]
=== Serializers
Serializers transform bytes on the wire into native Python objects and vice-versa. By default the client ships with serializers for `application/json`, `application/x-ndjson`, `text/*`, `application/vnd.apache.arrow.stream` and `application/mapbox-vector-tile`.
You can define custom serializers via the `serializers` parameter:
[source,python]
------------------------------------
from elasticsearch import Elasticsearch, JsonSerializer
class JsonSetSerializer(JsonSerializer):
"""Custom JSON serializer that handles Python sets"""
def default(self, data: Any) -> Any:
if isinstance(data, set):
return list(data)
return super().default(data)
client = Elasticsearch(
...,
# Serializers are a mapping of 'mimetype' to Serializer class.
serializers={"application/json": JsonSetSerializer()}
)
------------------------------------
If the `orjson` package is installed, you can use the faster ``OrjsonSerializer`` for the default mimetype (``application/json``):
[source,python]
------------------------------------
from elasticsearch import Elasticsearch, OrjsonSerializer
es = Elasticsearch(
...,
serializer=OrjsonSerializer()
)
------------------------------------
orjson is particularly fast when serializing vectors as it has native numpy support. This will be the default in a future release. Note that you can install orjson with the `orjson` extra:
[source,sh]
--------------------------------------------
$ python -m pip install elasticsearch[orjson]
--------------------------------------------
[discrete]
[[nodes]]
=== Nodes
[discrete]
==== Node implementations
The default node class for synchronous I/O is `urllib3` and the default node class for asynchronous I/O is `aiohttp`.
For all of the built-in HTTP node implementations like `urllib3`, `requests`, and `aiohttp` you can specify with a simple string to the `node_class` parameter:
[source,python]
------------------------------------
from elasticsearch import Elasticsearch
client = Elasticsearch(
...,
node_class="requests"
)
------------------------------------
You can also specify a custom node implementation via the `node_class` parameter:
[source,python]
------------------------------------
from elasticsearch import Elasticsearch
from elastic_transport import Urllib3HttpNode
class CustomHttpNode(Urllib3HttpNode):
...
client = Elasticsearch(
...
node_class=CustomHttpNode
)
------------------------------------
[discrete]
==== HTTP connections per node
Each node contains its own pool of HTTP connections to allow for concurrent requests. This value is configurable via the `connections_per_node` parameter:
[source,python]
------------------------------------
client = Elasticsearch(
...,
connections_per_node=5
)
------------------------------------
python-elasticsearch-8.17.2/docs/guide/connecting.asciidoc 0000664 0000000 0000000 00000032737 14766462667 0023662 0 ustar 00root root 0000000 0000000 [[connecting]]
== Connecting
This page contains the information you need to connect the Client with {es}.
[discrete]
[[connect-ec]]
=== Connecting to Elastic Cloud
https://www.elastic.co/guide/en/cloud/current/ec-getting-started.html[Elastic Cloud]
is the easiest way to get started with {es}. When connecting to Elastic Cloud
with the Python {es} client you should always use the `cloud_id`
parameter to connect. You can find this value within the "Manage Deployment"
page after you've created a cluster (look in the top-left if you're in Kibana).
We recommend using a Cloud ID whenever possible because your client will be
automatically configured for optimal use with Elastic Cloud including HTTPS and
HTTP compression.
[source,python]
----
from elasticsearch import Elasticsearch
# Password for the 'elastic' user generated by Elasticsearch
ELASTIC_PASSWORD = ""
# Found in the 'Manage Deployment' page
CLOUD_ID = "deployment-name:dXMtZWFzdDQuZ2Nw..."
# Create the client instance
client = Elasticsearch(
cloud_id=CLOUD_ID,
basic_auth=("elastic", ELASTIC_PASSWORD)
)
# Successful response!
client.info()
# {'name': 'instance-0000000000', 'cluster_name': ...}
----
[discrete]
[[connect-self-managed-new]]
=== Connecting to a self-managed cluster
By default {es} will start with security features like authentication and TLS
enabled. To connect to the {es} cluster you'll need to configure the Python {es}
client to use HTTPS with the generated CA certificate in order to make requests
successfully.
If you're just getting started with {es} we recommend reading the documentation
on https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html[configuring]
and
https://www.elastic.co/guide/en/elasticsearch/reference/current/starting-elasticsearch.html[starting {es}]
to ensure your cluster is running as expected.
When you start {es} for the first time you'll see a distinct block like the one
below in the output from {es} (you may have to scroll up if it's been a while):
```sh
----------------------------------------------------------------
-> Elasticsearch security features have been automatically configured!
-> Authentication is enabled and cluster connections are encrypted.
-> Password for the elastic user (reset with `bin/elasticsearch-reset-password -u elastic`):
lhQpLELkjkrawaBoaz0Q
-> HTTP CA certificate SHA-256 fingerprint:
a52dd93511e8c6045e21f16654b77c9ee0f34aea26d9f40320b531c474676228
...
----------------------------------------------------------------
```
Note down the `elastic` user password and HTTP CA fingerprint for the next
sections. In the examples below they will be stored in the variables
`ELASTIC_PASSWORD` and `CERT_FINGERPRINT` respectively.
Depending on the circumstances there are two options for verifying the HTTPS
connection, either verifying with the CA certificate itself or via the HTTP CA
certificate fingerprint.
[discrete]
==== Verifying HTTPS with CA certificates
Using the `ca_certs` option is the default way the Python {es} client verifies
an HTTPS connection.
The generated root CA certificate can be found in the `certs` directory in your
{es} config location (`$ES_CONF_PATH/certs/http_ca.crt`). If you're running {es}
in Docker there is
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html[additional documentation for retrieving the CA certificate].
Once you have the `http_ca.crt` file somewhere accessible pass the path to the
client via `ca_certs`:
[source,python]
----
from elasticsearch import Elasticsearch
# Password for the 'elastic' user generated by Elasticsearch
ELASTIC_PASSWORD = ""
# Create the client instance
client = Elasticsearch(
"https://localhost:9200",
ca_certs="/path/to/http_ca.crt",
basic_auth=("elastic", ELASTIC_PASSWORD)
)
# Successful response!
client.info()
# {'name': 'instance-0000000000', 'cluster_name': ...}
----
NOTE: If you don't specify `ca_certs` or `ssl_assert_fingerprint` then the
https://certifiio.readthedocs.io[certifi package] will be used for `ca_certs` by
default if available.
[discrete]
==== Verifying HTTPS with certificate fingerprints (Python 3.10 or later)
NOTE: Using this method **requires using Python 3.10 or later** and isn't
available when using the `aiohttp` HTTP client library so can't be used with
`AsyncElasticsearch`.
This method of verifying the HTTPS connection takes advantage of the certificate
fingerprint value noted down earlier. Take this SHA256 fingerprint value and
pass it to the Python {es} client via `ssl_assert_fingerprint`:
[source,python]
----
from elasticsearch import Elasticsearch
# Fingerprint either from Elasticsearch startup or above script.
# Colons and uppercase/lowercase don't matter when using
# the 'ssl_assert_fingerprint' parameter
CERT_FINGERPRINT = "A5:2D:D9:35:11:E8:C6:04:5E:21:F1:66:54:B7:7C:9E:E0:F3:4A:EA:26:D9:F4:03:20:B5:31:C4:74:67:62:28"
# Password for the 'elastic' user generated by Elasticsearch
ELASTIC_PASSWORD = ""
client = Elasticsearch(
"https://localhost:9200",
ssl_assert_fingerprint=CERT_FINGERPRINT,
basic_auth=("elastic", ELASTIC_PASSWORD)
)
# Successful response!
client.info()
# {'name': 'instance-0000000000', 'cluster_name': ...}
----
The certificate fingerprint can be calculated using `openssl x509` with the
certificate file:
[source,sh]
----
openssl x509 -fingerprint -sha256 -noout -in /path/to/http_ca.crt
----
If you don't have access to the generated CA file from {es} you can use the
following script to output the root CA fingerprint of the {es} instance with
`openssl s_client`:
[source,sh]
----
# Replace the values of 'localhost' and '9200' to the
# corresponding host and port values for the cluster.
openssl s_client -connect localhost:9200 -servername localhost -showcerts /dev/null \
| openssl x509 -fingerprint -sha256 -noout -in /dev/stdin
----
The output of `openssl x509` will look something like this:
[source,sh]
----
SHA256 Fingerprint=A5:2D:D9:35:11:E8:C6:04:5E:21:F1:66:54:B7:7C:9E:E0:F3:4A:EA:26:D9:F4:03:20:B5:31:C4:74:67:62:28
----
[discrete]
[[connect-no-security]]
=== Connecting without security enabled
WARNING: Running {es} without security enabled is not recommended.
If your cluster is configured with
https://www.elastic.co/guide/en/elasticsearch/reference/current/security-settings.html[security explicitly disabled]
then you can connect via HTTP:
[source,python]
----
from elasticsearch import Elasticsearch
# Create the client instance
client = Elasticsearch("http://localhost:9200")
# Successful response!
client.info()
# {'name': 'instance-0000000000', 'cluster_name': ...}
----
[discrete]
[[connect-url]]
=== Connecting to multiple nodes
The Python {es} client supports sending API requests to multiple nodes in the
cluster. This means that work will be more evenly spread across the cluster
instead of hammering the same node over and over with requests. To configure the
client with multiple nodes you can pass a list of URLs, each URL will be used as
a separate node in the pool.
[source,python]
----
from elasticsearch import Elasticsearch
# List of nodes to connect use with different hosts and ports.
NODES = [
"https://localhost:9200",
"https://localhost:9201",
"https://localhost:9202",
]
# Password for the 'elastic' user generated by Elasticsearch
ELASTIC_PASSWORD = ""
client = Elasticsearch(
NODES,
ca_certs="/path/to/http_ca.crt",
basic_auth=("elastic", ELASTIC_PASSWORD)
)
----
By default nodes are selected using round-robin, but alternate node selection
strategies can be configured with `node_selector_class` parameter.
NOTE: If your {es} cluster is behind a load balancer like when using Elastic
Cloud you won't need to configure multiple nodes. Instead use the load balancer
host and port.
[discrete]
[[authentication]]
=== Authentication
This section contains code snippets to show you how to connect to various {es}
providers. All authentication methods are supported on the client constructor
or via the per-request `.options()` method:
[source,python]
----
from elasticsearch import Elasticsearch
# Authenticate from the constructor
client = Elasticsearch(
"https://localhost:9200",
ca_certs="/path/to/http_ca.crt",
basic_auth=("username", "password")
)
# Authenticate via the .options() method:
client.options(
basic_auth=("username", "password")
).indices.get(index="*")
# You can persist the authenticated client to use
# later or use for multiple API calls:
auth_client = client.options(api_key="api_key")
for i in range(10):
auth_client.index(
index="example-index",
document={"field": i}
)
----
[discrete]
[[auth-basic]]
==== HTTP Basic authentication (Username and Password)
HTTP Basic authentication uses the `basic_auth` parameter by passing in a
username and password within a tuple:
[source,python]
----
from elasticsearch import Elasticsearch
# Adds the HTTP header 'Authorization: Basic '
client = Elasticsearch(
"https://localhost:9200",
ca_certs="/path/to/http_ca.crt",
basic_auth=("username", "password")
)
----
[discrete]
[[auth-bearer]]
==== HTTP Bearer authentication
HTTP Bearer authentication uses the `bearer_auth` parameter by passing the token
as a string. This authentication method is used by
https://www.elastic.co/guide/en/elasticsearch/reference/{branch}/security-api-create-service-token.html[Service Account Tokens]
and https://www.elastic.co/guide/en/elasticsearch/reference/{branch}/security-api-get-token.html[Bearer Tokens].
[source,python]
----
from elasticsearch import Elasticsearch
# Adds the HTTP header 'Authorization: Bearer token-value'
client = Elasticsearch(
"https://localhost:9200",
bearer_auth="token-value"
)
----
[discrete]
[[auth-apikey]]
==== API Key authentication
You can configure the client to use {es}'s API Key for connecting to your
cluster. These can be generated through the
https://www.elastic.co/guide/en/elasticsearch/reference/current/security-api-create-api-key.html[Elasticsearch Create API key API]
or https://www.elastic.co/guide/en/kibana/current/api-keys.html#create-api-key[Kibana Stack Management].
[source,python]
----
from elasticsearch import Elasticsearch
# Adds the HTTP header 'Authorization: ApiKey '
client = Elasticsearch(
"https://localhost:9200",
ca_certs="/path/to/http_ca.crt",
api_key="api_key",
)
----
[discrete]
[[compatibility-mode]]
=== Enabling the Compatibility Mode
The {es} server version 8.0 is introducing a new compatibility mode that allows
you a smoother upgrade experience from 7 to 8. In a nutshell, you can use the
latest 7.x Python {es} {es} client with an 8.x {es} server, giving more room to
coordinate the upgrade of your codebase to the next major version.
If you want to leverage this functionality, please make sure that you are using
the latest 7.x Python {es} client and set the environment variable
`ELASTIC_CLIENT_APIVERSIONING` to `true`. The client is handling the rest
internally. For every 8.0 and beyond Python {es} client, you're all set! The
compatibility mode is enabled by default.
[discrete]
[[connecting-faas]]
=== Using the Client in a Function-as-a-Service Environment
This section illustrates the best practices for leveraging the {es} client in a
Function-as-a-Service (FaaS) environment.
The most influential optimization is to initialize the client outside of the
function, the global scope.
This practice does not only improve performance but also enables background
functionality as – for example –
https://www.elastic.co/blog/elasticsearch-sniffing-best-practices-what-when-why-how[sniffing].
The following examples provide a skeleton for the best practices.
IMPORTANT: The async client shouldn't be used within Function-as-a-Service as a new event
loop must be started for each invocation. Instead the synchronous `Elasticsearch`
client is recommended.
[discrete]
[[connecting-faas-gcp]]
==== GCP Cloud Functions
[source,python]
----
from elasticsearch import Elasticsearch
# Client initialization
client = Elasticsearch(
cloud_id="deployment-name:ABCD...",
api_key=...
)
def main(request):
# Use the client
client.search(index=..., query={"match_all": {}})
----
[discrete]
[[connecting-faas-aws]]
==== AWS Lambda
[source,python]
----
from elasticsearch import Elasticsearch
# Client initialization
client = Elasticsearch(
cloud_id="deployment-name:ABCD...",
api_key=...
)
def main(event, context):
# Use the client
client.search(index=..., query={"match_all": {}})
----
[discrete]
[[connecting-faas-azure]]
==== Azure Functions
[source,python]
----
import azure.functions as func
from elasticsearch import Elasticsearch
# Client initialization
client = Elasticsearch(
cloud_id="deployment-name:ABCD...",
api_key=...
)
def main(request: func.HttpRequest) -> func.HttpResponse:
# Use the client
client.search(index=..., query={"match_all": {}})
----
Resources used to assess these recommendations:
* https://cloud.google.com/functions/docs/bestpractices/tips#use_global_variables_to_reuse_objects_in_future_invocations[GCP Cloud Functions: Tips & Tricks]
* https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html[Best practices for working with AWS Lambda functions]
* https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python?tabs=azurecli-linux%2Capplication-level#global-variables[Azure Functions Python developer guide]
* https://docs.aws.amazon.com/lambda/latest/operatorguide/global-scope.html[AWS Lambda: Comparing the effect of global scope]
python-elasticsearch-8.17.2/docs/guide/esql-pandas.asciidoc 0000664 0000000 0000000 00000125405 14766462667 0023736 0 ustar 00root root 0000000 0000000 [[esql-pandas]]
=== ES|QL and Pandas
The {ref}/esql.html[Elasticsearch Query Language (ES|QL)] provides a powerful
way to filter, transform, and analyze data stored in {es}. Designed to be easy
to learn and use, it is a perfect fit for data scientists familiar with Pandas
and other dataframe-based libraries. ES|QL queries produce tables with named
columns, which is the definition of dataframes.
This page shows you an example of using ES|QL and Pandas together to work with
dataframes.
[discrete]
[[import-data]]
==== Import data
Use the
https://github.com/elastic/elasticsearch/blob/main/x-pack/plugin/esql/qa/testFixtures/src/main/resources/employees.csv[`employees` sample data] and
https://github.com/elastic/elasticsearch/blob/main/x-pack/plugin/esql/qa/testFixtures/src/main/resources/mapping-default.json[mapping].
The easiest way to load this dataset is to run https://gist.github.com/pquentin/7cf29a5932cf52b293699dd994b1a276[two Elasticsearch API requests] in the Kibana Console.
.Index mapping request
[%collapsible]
====
[source,console]
--------------------------------------------------
PUT employees
{
"mappings": {
"properties": {
"avg_worked_seconds": {
"type": "long"
},
"birth_date": {
"type": "date"
},
"emp_no": {
"type": "integer"
},
"first_name": {
"type": "keyword"
},
"gender": {
"type": "keyword"
},
"height": {
"type": "double",
"fields": {
"float": {
"type": "float"
},
"half_float": {
"type": "half_float"
},
"scaled_float": {
"type": "scaled_float",
"scaling_factor": 100
}
}
},
"hire_date": {
"type": "date"
},
"is_rehired": {
"type": "boolean"
},
"job_positions": {
"type": "keyword"
},
"languages": {
"type": "integer",
"fields": {
"byte": {
"type": "byte"
},
"long": {
"type": "long"
},
"short": {
"type": "short"
}
}
},
"last_name": {
"type": "keyword"
},
"salary": {
"type": "integer"
},
"salary_change": {
"type": "double",
"fields": {
"int": {
"type": "integer"
},
"keyword": {
"type": "keyword"
},
"long": {
"type": "long"
}
}
},
"still_hired": {
"type": "boolean"
}
}
}
}
--------------------------------------------------
// TEST[skip:TBD]
====
.Bulk request to ingest data
[%collapsible]
====
[source,console]
--------------------------------------------------
PUT employees/_bulk
{ "index": {}}
{"birth_date":"1953-09-02T00:00:00Z","emp_no":"10001","first_name":"Georgi","gender":"M","hire_date":"1986-06-26T00:00:00Z","languages":"2","last_name":"Facello","salary":"57305","height":"2.03","still_hired":"true","avg_worked_seconds":"268728049","job_positions":["Senior Python Developer","Accountant"],"is_rehired":["false","true"],"salary_change":"1.19"}
{ "index": {}}
{"birth_date":"1964-06-02T00:00:00Z","emp_no":"10002","first_name":"Bezalel","gender":"F","hire_date":"1985-11-21T00:00:00Z","languages":"5","last_name":"Simmel","salary":"56371","height":"2.08","still_hired":"true","avg_worked_seconds":"328922887","job_positions":"Senior Team Lead","is_rehired":["false","false"],"salary_change":["-7.23","11.17"]}
{ "index": {}}
{"birth_date":"1959-12-03T00:00:00Z","emp_no":"10003","first_name":"Parto","gender":"M","hire_date":"1986-08-28T00:00:00Z","languages":"4","last_name":"Bamford","salary":"61805","height":"1.83","still_hired":"false","avg_worked_seconds":"200296405","salary_change":["14.68","12.82"]}
{ "index": {}}
{"birth_date":"1954-05-01T00:00:00Z","emp_no":"10004","first_name":"Chirstian","gender":"M","hire_date":"1986-12-01T00:00:00Z","languages":"5","last_name":"Koblick","salary":"36174","height":"1.78","still_hired":"true","avg_worked_seconds":"311267831","job_positions":["Reporting Analyst","Tech Lead","Head Human Resources","Support Engineer"],"is_rehired":"true","salary_change":["3.65","-0.35","1.13","13.48"]}
{ "index": {}}
{"birth_date":"1955-01-21T00:00:00Z","emp_no":"10005","first_name":"Kyoichi","gender":"M","hire_date":"1989-09-12T00:00:00Z","languages":"1","last_name":"Maliniak","salary":"63528","height":"2.05","still_hired":"true","avg_worked_seconds":"244294991","is_rehired":["false","false","false","true"],"salary_change":["-2.14","13.07"]}
{ "index": {}}
{"birth_date":"1953-04-20T00:00:00Z","emp_no":"10006","first_name":"Anneke","gender":"F","hire_date":"1989-06-02T00:00:00Z","languages":"3","last_name":"Preusig","salary":"60335","height":"1.56","still_hired":"false","avg_worked_seconds":"372957040","job_positions":["Tech Lead","Principal Support Engineer","Senior Team Lead"],"salary_change":"-3.90"}
{ "index": {}}
{"birth_date":"1957-05-23T00:00:00Z","emp_no":"10007","first_name":"Tzvetan","gender":"F","hire_date":"1989-02-10T00:00:00Z","languages":"4","last_name":"Zielinski","salary":"74572","height":"1.70","still_hired":"true","avg_worked_seconds":"393084805","is_rehired":["true","false","true","false"],"salary_change":["-7.06","1.99","0.57"]}
{ "index": {}}
{"birth_date":"1958-02-19T00:00:00Z","emp_no":"10008","first_name":"Saniya","gender":"M","hire_date":"1994-09-15T00:00:00Z","languages":"2","last_name":"Kalloufi","salary":"43906","height":"2.10","still_hired":"true","avg_worked_seconds":"283074758","job_positions":["Senior Python Developer","Junior Developer","Purchase Manager","Internship"],"is_rehired":["true","false"],"salary_change":["12.68","3.54","0.75","-2.92"]}
{ "index": {}}
{"birth_date":"1952-04-19T00:00:00Z","emp_no":"10009","first_name":"Sumant","gender":"F","hire_date":"1985-02-18T00:00:00Z","languages":"1","last_name":"Peac","salary":"66174","height":"1.85","still_hired":"false","avg_worked_seconds":"236805489","job_positions":["Senior Python Developer","Internship"]}
{ "index": {}}
{"birth_date":"1963-06-01T00:00:00Z","emp_no":"10010","first_name":"Duangkaew","hire_date":"1989-08-24T00:00:00Z","languages":"4","last_name":"Piveteau","salary":"45797","height":"1.70","still_hired":"false","avg_worked_seconds":"315236372","job_positions":["Architect","Reporting Analyst","Tech Lead","Purchase Manager"],"is_rehired":["true","true","false","false"],"salary_change":["5.05","-6.77","4.69","12.15"]}
{ "index": {}}
{"birth_date":"1953-11-07T00:00:00Z","emp_no":"10011","first_name":"Mary","hire_date":"1990-01-22T00:00:00Z","languages":"5","last_name":"Sluis","salary":"31120","height":"1.50","still_hired":"true","avg_worked_seconds":"239615525","job_positions":["Architect","Reporting Analyst","Tech Lead","Senior Team Lead"],"is_rehired":["true","true"],"salary_change":["10.35","-7.82","8.73","3.48"]}
{ "index": {}}
{"birth_date":"1960-10-04T00:00:00Z","emp_no":"10012","first_name":"Patricio","hire_date":"1992-12-18T00:00:00Z","languages":"5","last_name":"Bridgland","salary":"48942","height":"1.97","still_hired":"false","avg_worked_seconds":"365510850","job_positions":["Head Human Resources","Accountant"],"is_rehired":["false","true","true","false"],"salary_change":"0.04"}
{ "index": {}}
{"birth_date":"1963-06-07T00:00:00Z","emp_no":"10013","first_name":"Eberhardt","hire_date":"1985-10-20T00:00:00Z","languages":"1","last_name":"Terkki","salary":"48735","height":"1.94","still_hired":"true","avg_worked_seconds":"253864340","job_positions":"Reporting Analyst","is_rehired":["true","true"]}
{ "index": {}}
{"birth_date":"1956-02-12T00:00:00Z","emp_no":"10014","first_name":"Berni","hire_date":"1987-03-11T00:00:00Z","languages":"5","last_name":"Genin","salary":"37137","height":"1.99","still_hired":"false","avg_worked_seconds":"225049139","job_positions":["Reporting Analyst","Data Scientist","Head Human Resources"],"salary_change":["-1.89","9.07"]}
{ "index": {}}
{"birth_date":"1959-08-19T00:00:00Z","emp_no":"10015","first_name":"Guoxiang","hire_date":"1987-07-02T00:00:00Z","languages":"5","last_name":"Nooteboom","salary":"25324","height":"1.66","still_hired":"true","avg_worked_seconds":"390266432","job_positions":["Principal Support Engineer","Junior Developer","Head Human Resources","Support Engineer"],"is_rehired":["true","false","false","false"],"salary_change":["14.25","12.40"]}
{ "index": {}}
{"birth_date":"1961-05-02T00:00:00Z","emp_no":"10016","first_name":"Kazuhito","hire_date":"1995-01-27T00:00:00Z","languages":"2","last_name":"Cappelletti","salary":"61358","height":"1.54","still_hired":"false","avg_worked_seconds":"253029411","job_positions":["Reporting Analyst","Python Developer","Accountant","Purchase Manager"],"is_rehired":["false","false"],"salary_change":["-5.18","7.69"]}
{ "index": {}}
{"birth_date":"1958-07-06T00:00:00Z","emp_no":"10017","first_name":"Cristinel","hire_date":"1993-08-03T00:00:00Z","languages":"2","last_name":"Bouloucos","salary":"58715","height":"1.74","still_hired":"false","avg_worked_seconds":"236703986","job_positions":["Data Scientist","Head Human Resources","Purchase Manager"],"is_rehired":["true","false","true","true"],"salary_change":"-6.33"}
{ "index": {}}
{"birth_date":"1954-06-19T00:00:00Z","emp_no":"10018","first_name":"Kazuhide","hire_date":"1987-04-03T00:00:00Z","languages":"2","last_name":"Peha","salary":"56760","height":"1.97","still_hired":"false","avg_worked_seconds":"309604079","job_positions":"Junior Developer","is_rehired":["false","false","true","true"],"salary_change":["-1.64","11.51","-5.32"]}
{ "index": {}}
{"birth_date":"1953-01-23T00:00:00Z","emp_no":"10019","first_name":"Lillian","hire_date":"1999-04-30T00:00:00Z","languages":"1","last_name":"Haddadi","salary":"73717","height":"2.06","still_hired":"false","avg_worked_seconds":"342855721","job_positions":"Purchase Manager","is_rehired":["false","false"],"salary_change":["-6.84","8.42","-7.26"]}
{ "index": {}}
{"birth_date":"1952-12-24T00:00:00Z","emp_no":"10020","first_name":"Mayuko","gender":"M","hire_date":"1991-01-26T00:00:00Z","last_name":"Warwick","salary":"40031","height":"1.41","still_hired":"false","avg_worked_seconds":"373309605","job_positions":"Tech Lead","is_rehired":["true","true","false"],"salary_change":"-5.81"}
{ "index": {}}
{"birth_date":"1960-02-20T00:00:00Z","emp_no":"10021","first_name":"Ramzi","gender":"M","hire_date":"1988-02-10T00:00:00Z","last_name":"Erde","salary":"60408","height":"1.47","still_hired":"false","avg_worked_seconds":"287654610","job_positions":"Support Engineer","is_rehired":"true"}
{ "index": {}}
{"birth_date":"1952-07-08T00:00:00Z","emp_no":"10022","first_name":"Shahaf","gender":"M","hire_date":"1995-08-22T00:00:00Z","last_name":"Famili","salary":"48233","height":"1.82","still_hired":"false","avg_worked_seconds":"233521306","job_positions":["Reporting Analyst","Data Scientist","Python Developer","Internship"],"is_rehired":["true","false"],"salary_change":["12.09","2.85"]}
{ "index": {}}
{"birth_date":"1953-09-29T00:00:00Z","emp_no":"10023","first_name":"Bojan","gender":"F","hire_date":"1989-12-17T00:00:00Z","last_name":"Montemayor","salary":"47896","height":"1.75","still_hired":"true","avg_worked_seconds":"330870342","job_positions":["Accountant","Support Engineer","Purchase Manager"],"is_rehired":["true","true","false"],"salary_change":["14.63","0.80"]}
{ "index": {}}
{"birth_date":"1958-09-05T00:00:00Z","emp_no":"10024","first_name":"Suzette","gender":"F","hire_date":"1997-05-19T00:00:00Z","last_name":"Pettey","salary":"64675","height":"2.08","still_hired":"true","avg_worked_seconds":"367717671","job_positions":"Junior Developer","is_rehired":["true","true","true","true"]}
{ "index": {}}
{"birth_date":"1958-10-31T00:00:00Z","emp_no":"10025","first_name":"Prasadram","gender":"M","hire_date":"1987-08-17T00:00:00Z","last_name":"Heyers","salary":"47411","height":"1.87","still_hired":"false","avg_worked_seconds":"371270797","job_positions":"Accountant","is_rehired":["true","false"],"salary_change":["-4.33","-2.90","12.06","-3.46"]}
{ "index": {}}
{"birth_date":"1953-04-03T00:00:00Z","emp_no":"10026","first_name":"Yongqiao","gender":"M","hire_date":"1995-03-20T00:00:00Z","last_name":"Berztiss","salary":"28336","height":"2.10","still_hired":"true","avg_worked_seconds":"359208133","job_positions":"Reporting Analyst","is_rehired":["false","true"],"salary_change":["-7.37","10.62","11.20"]}
{ "index": {}}
{"birth_date":"1962-07-10T00:00:00Z","emp_no":"10027","first_name":"Divier","gender":"F","hire_date":"1989-07-07T00:00:00Z","last_name":"Reistad","salary":"73851","height":"1.53","still_hired":"false","avg_worked_seconds":"374037782","job_positions":"Senior Python Developer","is_rehired":"false"}
{ "index": {}}
{"birth_date":"1963-11-26T00:00:00Z","emp_no":"10028","first_name":"Domenick","gender":"M","hire_date":"1991-10-22T00:00:00Z","last_name":"Tempesti","salary":"39356","height":"2.07","still_hired":"true","avg_worked_seconds":"226435054","job_positions":["Tech Lead","Python Developer","Accountant","Internship"],"is_rehired":["true","false","false","true"]}
{ "index": {}}
{"birth_date":"1956-12-13T00:00:00Z","emp_no":"10029","first_name":"Otmar","gender":"M","hire_date":"1985-11-20T00:00:00Z","last_name":"Herbst","salary":"74999","height":"1.99","still_hired":"false","avg_worked_seconds":"257694181","job_positions":["Senior Python Developer","Data Scientist","Principal Support Engineer"],"is_rehired":"true","salary_change":["-0.32","-1.90","-8.19"]}
{ "index": {}}
{"birth_date":"1958-07-14T00:00:00Z","emp_no":"10030","gender":"M","hire_date":"1994-02-17T00:00:00Z","languages":"3","last_name":"Demeyer","salary":"67492","height":"1.92","still_hired":"false","avg_worked_seconds":"394597613","job_positions":["Tech Lead","Data Scientist","Senior Team Lead"],"is_rehired":["true","false","false"],"salary_change":"-0.40"}
{ "index": {}}
{"birth_date":"1959-01-27T00:00:00Z","emp_no":"10031","gender":"M","hire_date":"1991-09-01T00:00:00Z","languages":"4","last_name":"Joslin","salary":"37716","height":"1.68","still_hired":"false","avg_worked_seconds":"348545109","job_positions":["Architect","Senior Python Developer","Purchase Manager","Senior Team Lead"],"is_rehired":"false"}
{ "index": {}}
{"birth_date":"1960-08-09T00:00:00Z","emp_no":"10032","gender":"F","hire_date":"1990-06-20T00:00:00Z","languages":"3","last_name":"Reistad","salary":"62233","height":"2.10","still_hired":"false","avg_worked_seconds":"277622619","job_positions":["Architect","Senior Python Developer","Junior Developer","Purchase Manager"],"is_rehired":["false","false"],"salary_change":["9.32","-4.92"]}
{ "index": {}}
{"birth_date":"1956-11-14T00:00:00Z","emp_no":"10033","gender":"M","hire_date":"1987-03-18T00:00:00Z","languages":"1","last_name":"Merlo","salary":"70011","height":"1.63","still_hired":"false","avg_worked_seconds":"208374744","is_rehired":"true"}
{ "index": {}}
{"birth_date":"1962-12-29T00:00:00Z","emp_no":"10034","gender":"M","hire_date":"1988-09-21T00:00:00Z","languages":"1","last_name":"Swan","salary":"39878","height":"1.46","still_hired":"false","avg_worked_seconds":"214393176","job_positions":["Business Analyst","Data Scientist","Python Developer","Accountant"],"is_rehired":"false","salary_change":"-8.46"}
{ "index": {}}
{"birth_date":"1953-02-08T00:00:00Z","emp_no":"10035","gender":"M","hire_date":"1988-09-05T00:00:00Z","languages":"5","last_name":"Chappelet","salary":"25945","height":"1.81","still_hired":"false","avg_worked_seconds":"203838153","job_positions":["Senior Python Developer","Data Scientist"],"is_rehired":"false","salary_change":["-2.54","-6.58"]}
{ "index": {}}
{"birth_date":"1959-08-10T00:00:00Z","emp_no":"10036","gender":"M","hire_date":"1992-01-03T00:00:00Z","languages":"4","last_name":"Portugali","salary":"60781","height":"1.61","still_hired":"false","avg_worked_seconds":"305493131","job_positions":"Senior Python Developer","is_rehired":["true","false","false"]}
{ "index": {}}
{"birth_date":"1963-07-22T00:00:00Z","emp_no":"10037","gender":"M","hire_date":"1990-12-05T00:00:00Z","languages":"2","last_name":"Makrucki","salary":"37691","height":"2.00","still_hired":"true","avg_worked_seconds":"359217000","job_positions":["Senior Python Developer","Tech Lead","Accountant"],"is_rehired":"false","salary_change":"-7.08"}
{ "index": {}}
{"birth_date":"1960-07-20T00:00:00Z","emp_no":"10038","gender":"M","hire_date":"1989-09-20T00:00:00Z","languages":"4","last_name":"Lortz","salary":"35222","height":"1.53","still_hired":"true","avg_worked_seconds":"314036411","job_positions":["Senior Python Developer","Python Developer","Support Engineer"]}
{ "index": {}}
{"birth_date":"1959-10-01T00:00:00Z","emp_no":"10039","gender":"M","hire_date":"1988-01-19T00:00:00Z","languages":"2","last_name":"Brender","salary":"36051","height":"1.55","still_hired":"false","avg_worked_seconds":"243221262","job_positions":["Business Analyst","Python Developer","Principal Support Engineer"],"is_rehired":["true","true"],"salary_change":"-6.90"}
{ "index": {}}
{"emp_no":"10040","first_name":"Weiyi","gender":"F","hire_date":"1993-02-14T00:00:00Z","languages":"4","last_name":"Meriste","salary":"37112","height":"1.90","still_hired":"false","avg_worked_seconds":"244478622","job_positions":"Principal Support Engineer","is_rehired":["true","false","true","true"],"salary_change":["6.97","14.74","-8.94","1.92"]}
{ "index": {}}
{"emp_no":"10041","first_name":"Uri","gender":"F","hire_date":"1989-11-12T00:00:00Z","languages":"1","last_name":"Lenart","salary":"56415","height":"1.75","still_hired":"false","avg_worked_seconds":"287789442","job_positions":["Data Scientist","Head Human Resources","Internship","Senior Team Lead"],"salary_change":["9.21","0.05","7.29","-2.94"]}
{ "index": {}}
{"emp_no":"10042","first_name":"Magy","gender":"F","hire_date":"1993-03-21T00:00:00Z","languages":"3","last_name":"Stamatiou","salary":"30404","height":"1.44","still_hired":"true","avg_worked_seconds":"246355863","job_positions":["Architect","Business Analyst","Junior Developer","Internship"],"salary_change":["-9.28","9.42"]}
{ "index": {}}
{"emp_no":"10043","first_name":"Yishay","gender":"M","hire_date":"1990-10-20T00:00:00Z","languages":"1","last_name":"Tzvieli","salary":"34341","height":"1.52","still_hired":"true","avg_worked_seconds":"287222180","job_positions":["Data Scientist","Python Developer","Support Engineer"],"is_rehired":["false","true","true"],"salary_change":["-5.17","4.62","7.42"]}
{ "index": {}}
{"emp_no":"10044","first_name":"Mingsen","gender":"F","hire_date":"1994-05-21T00:00:00Z","languages":"1","last_name":"Casley","salary":"39728","height":"2.06","still_hired":"false","avg_worked_seconds":"387408356","job_positions":["Tech Lead","Principal Support Engineer","Accountant","Support Engineer"],"is_rehired":["true","true"],"salary_change":"8.09"}
{ "index": {}}
{"emp_no":"10045","first_name":"Moss","gender":"M","hire_date":"1989-09-02T00:00:00Z","languages":"3","last_name":"Shanbhogue","salary":"74970","height":"1.70","still_hired":"false","avg_worked_seconds":"371418933","job_positions":["Principal Support Engineer","Junior Developer","Accountant","Purchase Manager"],"is_rehired":["true","false"]}
{ "index": {}}
{"emp_no":"10046","first_name":"Lucien","gender":"M","hire_date":"1992-06-20T00:00:00Z","languages":"4","last_name":"Rosenbaum","salary":"50064","height":"1.52","still_hired":"true","avg_worked_seconds":"302353405","job_positions":["Principal Support Engineer","Junior Developer","Head Human Resources","Internship"],"is_rehired":["true","true","false","true"],"salary_change":"2.39"}
{ "index": {}}
{"emp_no":"10047","first_name":"Zvonko","gender":"M","hire_date":"1989-03-31T00:00:00Z","languages":"4","last_name":"Nyanchama","salary":"42716","height":"1.52","still_hired":"true","avg_worked_seconds":"306369346","job_positions":["Architect","Data Scientist","Principal Support Engineer","Senior Team Lead"],"is_rehired":"true","salary_change":["-6.36","12.12"]}
{ "index": {}}
{"emp_no":"10048","first_name":"Florian","gender":"M","hire_date":"1985-02-24T00:00:00Z","languages":"3","last_name":"Syrotiuk","salary":"26436","height":"2.00","still_hired":"false","avg_worked_seconds":"248451647","job_positions":"Internship","is_rehired":["true","true"]}
{ "index": {}}
{"emp_no":"10049","first_name":"Basil","gender":"F","hire_date":"1992-05-04T00:00:00Z","languages":"5","last_name":"Tramer","salary":"37853","height":"1.52","still_hired":"true","avg_worked_seconds":"320725709","job_positions":["Senior Python Developer","Business Analyst"],"salary_change":"-1.05"}
{ "index": {}}
{"birth_date":"1958-05-21T00:00:00Z","emp_no":"10050","first_name":"Yinghua","gender":"M","hire_date":"1990-12-25T00:00:00Z","languages":"2","last_name":"Dredge","salary":"43026","height":"1.96","still_hired":"true","avg_worked_seconds":"242731798","job_positions":["Reporting Analyst","Junior Developer","Accountant","Support Engineer"],"is_rehired":"true","salary_change":["8.70","10.94"]}
{ "index": {}}
{"birth_date":"1953-07-28T00:00:00Z","emp_no":"10051","first_name":"Hidefumi","gender":"M","hire_date":"1992-10-15T00:00:00Z","languages":"3","last_name":"Caine","salary":"58121","height":"1.89","still_hired":"true","avg_worked_seconds":"374753122","job_positions":["Business Analyst","Accountant","Purchase Manager"]}
{ "index": {}}
{"birth_date":"1961-02-26T00:00:00Z","emp_no":"10052","first_name":"Heping","gender":"M","hire_date":"1988-05-21T00:00:00Z","languages":"1","last_name":"Nitsch","salary":"55360","height":"1.79","still_hired":"true","avg_worked_seconds":"299654717","is_rehired":["true","true","false"],"salary_change":["-0.55","-1.89","-4.22","-6.03"]}
{ "index": {}}
{"birth_date":"1954-09-13T00:00:00Z","emp_no":"10053","first_name":"Sanjiv","gender":"F","hire_date":"1986-02-04T00:00:00Z","languages":"3","last_name":"Zschoche","salary":"54462","height":"1.58","still_hired":"false","avg_worked_seconds":"368103911","job_positions":"Support Engineer","is_rehired":["true","false","true","false"],"salary_change":["-7.67","-3.25"]}
{ "index": {}}
{"birth_date":"1957-04-04T00:00:00Z","emp_no":"10054","first_name":"Mayumi","gender":"M","hire_date":"1995-03-13T00:00:00Z","languages":"4","last_name":"Schueller","salary":"65367","height":"1.82","still_hired":"false","avg_worked_seconds":"297441693","job_positions":"Principal Support Engineer","is_rehired":["false","false"]}
{ "index": {}}
{"birth_date":"1956-06-06T00:00:00Z","emp_no":"10055","first_name":"Georgy","gender":"M","hire_date":"1992-04-27T00:00:00Z","languages":"5","last_name":"Dredge","salary":"49281","height":"2.04","still_hired":"false","avg_worked_seconds":"283157844","job_positions":["Senior Python Developer","Head Human Resources","Internship","Support Engineer"],"is_rehired":["false","false","true"],"salary_change":["7.34","12.99","3.17"]}
{ "index": {}}
{"birth_date":"1961-09-01T00:00:00Z","emp_no":"10056","first_name":"Brendon","gender":"F","hire_date":"1990-02-01T00:00:00Z","languages":"2","last_name":"Bernini","salary":"33370","height":"1.57","still_hired":"true","avg_worked_seconds":"349086555","job_positions":"Senior Team Lead","is_rehired":["true","false","false"],"salary_change":["10.99","-5.17"]}
{ "index": {}}
{"birth_date":"1954-05-30T00:00:00Z","emp_no":"10057","first_name":"Ebbe","gender":"F","hire_date":"1992-01-15T00:00:00Z","languages":"4","last_name":"Callaway","salary":"27215","height":"1.59","still_hired":"true","avg_worked_seconds":"324356269","job_positions":["Python Developer","Head Human Resources"],"salary_change":["-6.73","-2.43","-5.27","1.03"]}
{ "index": {}}
{"birth_date":"1954-10-01T00:00:00Z","emp_no":"10058","first_name":"Berhard","gender":"M","hire_date":"1987-04-13T00:00:00Z","languages":"3","last_name":"McFarlin","salary":"38376","height":"1.83","still_hired":"false","avg_worked_seconds":"268378108","job_positions":"Principal Support Engineer","salary_change":"-4.89"}
{ "index": {}}
{"birth_date":"1953-09-19T00:00:00Z","emp_no":"10059","first_name":"Alejandro","gender":"F","hire_date":"1991-06-26T00:00:00Z","languages":"2","last_name":"McAlpine","salary":"44307","height":"1.48","still_hired":"false","avg_worked_seconds":"237368465","job_positions":["Architect","Principal Support Engineer","Purchase Manager","Senior Team Lead"],"is_rehired":"false","salary_change":["5.53","13.38","-4.69","6.27"]}
{ "index": {}}
{"birth_date":"1961-10-15T00:00:00Z","emp_no":"10060","first_name":"Breannda","gender":"M","hire_date":"1987-11-02T00:00:00Z","languages":"2","last_name":"Billingsley","salary":"29175","height":"1.42","still_hired":"true","avg_worked_seconds":"341158890","job_positions":["Business Analyst","Data Scientist","Senior Team Lead"],"is_rehired":["false","false","true","false"],"salary_change":["-1.76","-0.85"]}
{ "index": {}}
{"birth_date":"1962-10-19T00:00:00Z","emp_no":"10061","first_name":"Tse","gender":"M","hire_date":"1985-09-17T00:00:00Z","languages":"1","last_name":"Herber","salary":"49095","height":"1.45","still_hired":"false","avg_worked_seconds":"327550310","job_positions":["Purchase Manager","Senior Team Lead"],"is_rehired":["false","true"],"salary_change":["14.39","-2.58","-0.95"]}
{ "index": {}}
{"birth_date":"1961-11-02T00:00:00Z","emp_no":"10062","first_name":"Anoosh","gender":"M","hire_date":"1991-08-30T00:00:00Z","languages":"3","last_name":"Peyn","salary":"65030","height":"1.70","still_hired":"false","avg_worked_seconds":"203989706","job_positions":["Python Developer","Senior Team Lead"],"is_rehired":["false","true","true"],"salary_change":"-1.17"}
{ "index": {}}
{"birth_date":"1952-08-06T00:00:00Z","emp_no":"10063","first_name":"Gino","gender":"F","hire_date":"1989-04-08T00:00:00Z","languages":"3","last_name":"Leonhardt","salary":"52121","height":"1.78","still_hired":"true","avg_worked_seconds":"214068302","is_rehired":"true"}
{ "index": {}}
{"birth_date":"1959-04-07T00:00:00Z","emp_no":"10064","first_name":"Udi","gender":"M","hire_date":"1985-11-20T00:00:00Z","languages":"5","last_name":"Jansch","salary":"33956","height":"1.93","still_hired":"false","avg_worked_seconds":"307364077","job_positions":"Purchase Manager","is_rehired":["false","false","true","false"],"salary_change":["-8.66","-2.52"]}
{ "index": {}}
{"birth_date":"1963-04-14T00:00:00Z","emp_no":"10065","first_name":"Satosi","gender":"M","hire_date":"1988-05-18T00:00:00Z","languages":"2","last_name":"Awdeh","salary":"50249","height":"1.59","still_hired":"false","avg_worked_seconds":"372660279","job_positions":["Business Analyst","Data Scientist","Principal Support Engineer"],"is_rehired":["false","true"],"salary_change":["-1.47","14.44","-9.81"]}
{ "index": {}}
{"birth_date":"1952-11-13T00:00:00Z","emp_no":"10066","first_name":"Kwee","gender":"M","hire_date":"1986-02-26T00:00:00Z","languages":"5","last_name":"Schusler","salary":"31897","height":"2.10","still_hired":"true","avg_worked_seconds":"360906451","job_positions":["Senior Python Developer","Data Scientist","Accountant","Internship"],"is_rehired":["true","true","true"],"salary_change":"5.94"}
{ "index": {}}
{"birth_date":"1953-01-07T00:00:00Z","emp_no":"10067","first_name":"Claudi","gender":"M","hire_date":"1987-03-04T00:00:00Z","languages":"2","last_name":"Stavenow","salary":"52044","height":"1.77","still_hired":"true","avg_worked_seconds":"347664141","job_positions":["Tech Lead","Principal Support Engineer"],"is_rehired":["false","false"],"salary_change":["8.72","4.44"]}
{ "index": {}}
{"birth_date":"1962-11-26T00:00:00Z","emp_no":"10068","first_name":"Charlene","gender":"M","hire_date":"1987-08-07T00:00:00Z","languages":"3","last_name":"Brattka","salary":"28941","height":"1.58","still_hired":"true","avg_worked_seconds":"233999584","job_positions":"Architect","is_rehired":"true","salary_change":["3.43","-5.61","-5.29"]}
{ "index": {}}
{"birth_date":"1960-09-06T00:00:00Z","emp_no":"10069","first_name":"Margareta","gender":"F","hire_date":"1989-11-05T00:00:00Z","languages":"5","last_name":"Bierman","salary":"41933","height":"1.77","still_hired":"true","avg_worked_seconds":"366512352","job_positions":["Business Analyst","Junior Developer","Purchase Manager","Support Engineer"],"is_rehired":"false","salary_change":["-3.34","-6.33","6.23","-0.31"]}
{ "index": {}}
{"birth_date":"1955-08-20T00:00:00Z","emp_no":"10070","first_name":"Reuven","gender":"M","hire_date":"1985-10-14T00:00:00Z","languages":"3","last_name":"Garigliano","salary":"54329","height":"1.77","still_hired":"true","avg_worked_seconds":"347188604","is_rehired":["true","true","true"],"salary_change":"-5.90"}
{ "index": {}}
{"birth_date":"1958-01-21T00:00:00Z","emp_no":"10071","first_name":"Hisao","gender":"M","hire_date":"1987-10-01T00:00:00Z","languages":"2","last_name":"Lipner","salary":"40612","height":"2.07","still_hired":"false","avg_worked_seconds":"306671693","job_positions":["Business Analyst","Reporting Analyst","Senior Team Lead"],"is_rehired":["false","false","false"],"salary_change":"-2.69"}
{ "index": {}}
{"birth_date":"1952-05-15T00:00:00Z","emp_no":"10072","first_name":"Hironoby","gender":"F","hire_date":"1988-07-21T00:00:00Z","languages":"5","last_name":"Sidou","salary":"54518","height":"1.82","still_hired":"true","avg_worked_seconds":"209506065","job_positions":["Architect","Tech Lead","Python Developer","Senior Team Lead"],"is_rehired":["false","false","true","false"],"salary_change":["11.21","-2.30","2.22","-5.44"]}
{ "index": {}}
{"birth_date":"1954-02-23T00:00:00Z","emp_no":"10073","first_name":"Shir","gender":"M","hire_date":"1991-12-01T00:00:00Z","languages":"4","last_name":"McClurg","salary":"32568","height":"1.66","still_hired":"false","avg_worked_seconds":"314930367","job_positions":["Principal Support Engineer","Python Developer","Junior Developer","Purchase Manager"],"is_rehired":["true","false"],"salary_change":"-5.67"}
{ "index": {}}
{"birth_date":"1955-08-28T00:00:00Z","emp_no":"10074","first_name":"Mokhtar","gender":"F","hire_date":"1990-08-13T00:00:00Z","languages":"5","last_name":"Bernatsky","salary":"38992","height":"1.64","still_hired":"true","avg_worked_seconds":"382397583","job_positions":["Senior Python Developer","Python Developer"],"is_rehired":["true","false","false","true"],"salary_change":["6.70","1.98","-5.64","2.96"]}
{ "index": {}}
{"birth_date":"1960-03-09T00:00:00Z","emp_no":"10075","first_name":"Gao","gender":"F","hire_date":"1987-03-19T00:00:00Z","languages":"5","last_name":"Dolinsky","salary":"51956","height":"1.94","still_hired":"false","avg_worked_seconds":"370238919","job_positions":"Purchase Manager","is_rehired":"true","salary_change":["9.63","-3.29","8.42"]}
{ "index": {}}
{"birth_date":"1952-06-13T00:00:00Z","emp_no":"10076","first_name":"Erez","gender":"F","hire_date":"1985-07-09T00:00:00Z","languages":"3","last_name":"Ritzmann","salary":"62405","height":"1.83","still_hired":"false","avg_worked_seconds":"376240317","job_positions":["Architect","Senior Python Developer"],"is_rehired":"false","salary_change":["-6.90","-1.30","8.75"]}
{ "index": {}}
{"birth_date":"1964-04-18T00:00:00Z","emp_no":"10077","first_name":"Mona","gender":"M","hire_date":"1990-03-02T00:00:00Z","languages":"5","last_name":"Azuma","salary":"46595","height":"1.68","still_hired":"false","avg_worked_seconds":"351960222","job_positions":"Internship","salary_change":"-0.01"}
{ "index": {}}
{"birth_date":"1959-12-25T00:00:00Z","emp_no":"10078","first_name":"Danel","gender":"F","hire_date":"1987-05-26T00:00:00Z","languages":"2","last_name":"Mondadori","salary":"69904","height":"1.81","still_hired":"true","avg_worked_seconds":"377116038","job_positions":["Architect","Principal Support Engineer","Internship"],"is_rehired":"true","salary_change":["-7.88","9.98","12.52"]}
{ "index": {}}
{"birth_date":"1961-10-05T00:00:00Z","emp_no":"10079","first_name":"Kshitij","gender":"F","hire_date":"1986-03-27T00:00:00Z","languages":"2","last_name":"Gils","salary":"32263","height":"1.59","still_hired":"false","avg_worked_seconds":"320953330","is_rehired":"false","salary_change":"7.58"}
{ "index": {}}
{"birth_date":"1957-12-03T00:00:00Z","emp_no":"10080","first_name":"Premal","gender":"M","hire_date":"1985-11-19T00:00:00Z","languages":"5","last_name":"Baek","salary":"52833","height":"1.80","still_hired":"false","avg_worked_seconds":"239266137","job_positions":"Senior Python Developer","salary_change":["-4.35","7.36","5.56"]}
{ "index": {}}
{"birth_date":"1960-12-17T00:00:00Z","emp_no":"10081","first_name":"Zhongwei","gender":"M","hire_date":"1986-10-30T00:00:00Z","languages":"2","last_name":"Rosen","salary":"50128","height":"1.44","still_hired":"true","avg_worked_seconds":"321375511","job_positions":["Accountant","Internship"],"is_rehired":["false","false","false"]}
{ "index": {}}
{"birth_date":"1963-09-09T00:00:00Z","emp_no":"10082","first_name":"Parviz","gender":"M","hire_date":"1990-01-03T00:00:00Z","languages":"4","last_name":"Lortz","salary":"49818","height":"1.61","still_hired":"false","avg_worked_seconds":"232522994","job_positions":"Principal Support Engineer","is_rehired":"false","salary_change":["1.19","-3.39"]}
{ "index": {}}
{"birth_date":"1959-07-23T00:00:00Z","emp_no":"10083","first_name":"Vishv","gender":"M","hire_date":"1987-03-31T00:00:00Z","languages":"1","last_name":"Zockler","salary":"39110","height":"1.42","still_hired":"false","avg_worked_seconds":"331236443","job_positions":"Head Human Resources"}
{ "index": {}}
{"birth_date":"1960-05-25T00:00:00Z","emp_no":"10084","first_name":"Tuval","gender":"M","hire_date":"1995-12-15T00:00:00Z","languages":"1","last_name":"Kalloufi","salary":"28035","height":"1.51","still_hired":"true","avg_worked_seconds":"359067056","job_positions":"Principal Support Engineer","is_rehired":"false"}
{ "index": {}}
{"birth_date":"1962-11-07T00:00:00Z","emp_no":"10085","first_name":"Kenroku","gender":"M","hire_date":"1994-04-09T00:00:00Z","languages":"5","last_name":"Malabarba","salary":"35742","height":"2.01","still_hired":"true","avg_worked_seconds":"353404008","job_positions":["Senior Python Developer","Business Analyst","Tech Lead","Accountant"],"salary_change":["11.67","6.75","8.40"]}
{ "index": {}}
{"birth_date":"1962-11-19T00:00:00Z","emp_no":"10086","first_name":"Somnath","gender":"M","hire_date":"1990-02-16T00:00:00Z","languages":"1","last_name":"Foote","salary":"68547","height":"1.74","still_hired":"true","avg_worked_seconds":"328580163","job_positions":"Senior Python Developer","is_rehired":["false","true"],"salary_change":"13.61"}
{ "index": {}}
{"birth_date":"1959-07-23T00:00:00Z","emp_no":"10087","first_name":"Xinglin","gender":"F","hire_date":"1986-09-08T00:00:00Z","languages":"5","last_name":"Eugenio","salary":"32272","height":"1.74","still_hired":"true","avg_worked_seconds":"305782871","job_positions":["Junior Developer","Internship"],"is_rehired":["false","false"],"salary_change":"-2.05"}
{ "index": {}}
{"birth_date":"1954-02-25T00:00:00Z","emp_no":"10088","first_name":"Jungsoon","gender":"F","hire_date":"1988-09-02T00:00:00Z","languages":"5","last_name":"Syrzycki","salary":"39638","height":"1.91","still_hired":"false","avg_worked_seconds":"330714423","job_positions":["Reporting Analyst","Business Analyst","Tech Lead"],"is_rehired":"true"}
{ "index": {}}
{"birth_date":"1963-03-21T00:00:00Z","emp_no":"10089","first_name":"Sudharsan","gender":"F","hire_date":"1986-08-12T00:00:00Z","languages":"4","last_name":"Flasterstein","salary":"43602","height":"1.57","still_hired":"true","avg_worked_seconds":"232951673","job_positions":["Junior Developer","Accountant"],"is_rehired":["true","false","false","false"]}
{ "index": {}}
{"birth_date":"1961-05-30T00:00:00Z","emp_no":"10090","first_name":"Kendra","gender":"M","hire_date":"1986-03-14T00:00:00Z","languages":"2","last_name":"Hofting","salary":"44956","height":"2.03","still_hired":"true","avg_worked_seconds":"212460105","is_rehired":["false","false","false","true"],"salary_change":["7.15","-1.85","3.60"]}
{ "index": {}}
{"birth_date":"1955-10-04T00:00:00Z","emp_no":"10091","first_name":"Amabile","gender":"M","hire_date":"1992-11-18T00:00:00Z","languages":"3","last_name":"Gomatam","salary":"38645","height":"2.09","still_hired":"true","avg_worked_seconds":"242582807","job_positions":["Reporting Analyst","Python Developer"],"is_rehired":["true","true","false","false"],"salary_change":["-9.23","7.50","5.85","5.19"]}
{ "index": {}}
{"birth_date":"1964-10-18T00:00:00Z","emp_no":"10092","first_name":"Valdiodio","gender":"F","hire_date":"1989-09-22T00:00:00Z","languages":"1","last_name":"Niizuma","salary":"25976","height":"1.75","still_hired":"false","avg_worked_seconds":"313407352","job_positions":["Junior Developer","Accountant"],"is_rehired":["false","false","true","true"],"salary_change":["8.78","0.39","-6.77","8.30"]}
{ "index": {}}
{"birth_date":"1964-06-11T00:00:00Z","emp_no":"10093","first_name":"Sailaja","gender":"M","hire_date":"1996-11-05T00:00:00Z","languages":"3","last_name":"Desikan","salary":"45656","height":"1.69","still_hired":"false","avg_worked_seconds":"315904921","job_positions":["Reporting Analyst","Tech Lead","Principal Support Engineer","Purchase Manager"],"salary_change":"-0.88"}
{ "index": {}}
{"birth_date":"1957-05-25T00:00:00Z","emp_no":"10094","first_name":"Arumugam","gender":"F","hire_date":"1987-04-18T00:00:00Z","languages":"5","last_name":"Ossenbruggen","salary":"66817","height":"2.10","still_hired":"false","avg_worked_seconds":"332920135","job_positions":["Senior Python Developer","Principal Support Engineer","Accountant"],"is_rehired":["true","false","true"],"salary_change":["2.22","7.92"]}
{ "index": {}}
{"birth_date":"1965-01-03T00:00:00Z","emp_no":"10095","first_name":"Hilari","gender":"M","hire_date":"1986-07-15T00:00:00Z","languages":"4","last_name":"Morton","salary":"37702","height":"1.55","still_hired":"false","avg_worked_seconds":"321850475","is_rehired":["true","true","false","false"],"salary_change":["-3.93","-6.66"]}
{ "index": {}}
{"birth_date":"1954-09-16T00:00:00Z","emp_no":"10096","first_name":"Jayson","gender":"M","hire_date":"1990-01-14T00:00:00Z","languages":"4","last_name":"Mandell","salary":"43889","height":"1.94","still_hired":"false","avg_worked_seconds":"204381503","job_positions":["Architect","Reporting Analyst"],"is_rehired":["false","false","false"]}
{ "index": {}}
{"birth_date":"1952-02-27T00:00:00Z","emp_no":"10097","first_name":"Remzi","gender":"M","hire_date":"1990-09-15T00:00:00Z","languages":"3","last_name":"Waschkowski","salary":"71165","height":"1.53","still_hired":"false","avg_worked_seconds":"206258084","job_positions":["Reporting Analyst","Tech Lead"],"is_rehired":["true","false"],"salary_change":"-1.12"}
{ "index": {}}
{"birth_date":"1961-09-23T00:00:00Z","emp_no":"10098","first_name":"Sreekrishna","gender":"F","hire_date":"1985-05-13T00:00:00Z","languages":"4","last_name":"Servieres","salary":"44817","height":"2.00","still_hired":"false","avg_worked_seconds":"272392146","job_positions":["Architect","Internship","Senior Team Lead"],"is_rehired":"false","salary_change":["-2.83","8.31","4.38"]}
{ "index": {}}
{"birth_date":"1956-05-25T00:00:00Z","emp_no":"10099","first_name":"Valter","gender":"F","hire_date":"1988-10-18T00:00:00Z","languages":"2","last_name":"Sullins","salary":"73578","height":"1.81","still_hired":"true","avg_worked_seconds":"377713748","is_rehired":["true","true"],"salary_change":["10.71","14.26","-8.78","-3.98"]}
{ "index": {}}
{"birth_date":"1953-04-21T00:00:00Z","emp_no":"10100","first_name":"Hironobu","gender":"F","hire_date":"1987-09-21T00:00:00Z","languages":"4","last_name":"Haraldson","salary":"68431","height":"1.77","still_hired":"true","avg_worked_seconds":"223910853","job_positions":"Purchase Manager","is_rehired":["false","true","true","false"],"salary_change":["13.97","-7.49"]}
--------------------------------------------------
// TEST[skip:TBD]
====
[discrete]
[[convert-dataset-pandas-dataframe]]
==== Convert the dataset
Use the ES|QL CSV import to convert the `employees` dataset to a Pandas
dataframe object.
[source,python]
------------------------------------
from io import StringIO
from elasticsearch import Elasticsearch
import pandas as pd
client = Elasticsearch(
"https://[host].elastic-cloud.com",
api_key="...",
)
response = client.esql.query(
query="FROM employees | LIMIT 500",
format="csv",
)
df = pd.read_csv(StringIO(response.body))
print(df)
------------------------------------
Even though the dataset contains only 100 records, a LIMIT of 500 is specified to suppress
ES|QL warnings about potentially missing records. This prints the
following dataframe:
[source,python]
------------------------------------
avg_worked_seconds ... salary_change.long still_hired
0 268728049 ... 1 True
1 328922887 ... [-7, 11] True
2 200296405 ... [12, 14] False
3 311267831 ... [0, 1, 3, 13] True
4 244294991 ... [-2, 13] True
.. ... ... ... ...
95 204381503 ... NaN False
96 206258084 ... -1 False
97 272392146 ... [-2, 4, 8] False
98 377713748 ... [-8, -3, 10, 14] True
99 223910853 ... [-7, 13] True
------------------------------------
You can now analyze the data with Pandas or you can also continue transforming
the data using ES|QL.
[discrete]
[[analyze-data]]
==== Analyze the data with Pandas
In the next example, the {ref}/esql-commands.html#esql-stats-by[STATS ... BY]
command is utilized to count how many employees are speaking a given language.
The results are sorted with the `languages` column using
{ref}/esql-commands.html#esql-sort[SORT]:
[source,python]
------------------------------------
response = client.esql.query(
query="""
FROM employees
| STATS count = COUNT(emp_no) BY languages
| SORT languages
| LIMIT 500
""",
format="csv",
)
df = pd.read_csv(
StringIO(response.body),
dtype={"count": "Int64", "languages": "Int64"},
)
print(df)
------------------------------------
Note that the `dtype` parameter of `pd.read_csv()` is useful when the type
inferred by Pandas is not enough. The code prints the following response:
[source,python]
------------------------------------
count languages
0 15 1
1 19 2
2 17 3
3 18 4
4 21 5
------------------------------------
[discrete]
[[passing-params]]
==== Pass parameters to a query with ES|QL
Use the
{ref}/esql-rest.html#esql-rest-params[built-in parameters support of the ES|QL REST API]
to pass parameters to a query:
[source,python]
------------------------------------
response = client.esql.query(
query="""
FROM employees
| STATS count = COUNT(emp_no) BY languages
| WHERE languages >= (?)
| SORT languages
| LIMIT 500
""",
format="csv",
params=[3],
)
df = pd.read_csv(
StringIO(response.body),
dtype={"count": "Int64", "languages": "Int64"},
)
print(df)
------------------------------------
The code above outputs the following:
[source,python]
------------------------------------
count languages
0 17 3
1 18 4
2 21 5
------------------------------------
If you want to learn more about ES|QL, refer to the
{ref}/esql.html[ES|QL documentation]. You can also check out this other
https://github.com/elastic/elasticsearch-labs/blob/main/supporting-blog-content/Boston-Celtics-Demo/celtics-esql-demo.ipynb[Python example using Boston Celtics data]. python-elasticsearch-8.17.2/docs/guide/examples.asciidoc 0000664 0000000 0000000 00000004575 14766462667 0023350 0 ustar 00root root 0000000 0000000 [[examples]]
== Examples
Below you can find examples of how to use the most frequently called APIs with
the Python client.
* <>
* <>
* <>
* <>
* <>
* <>
[discrete]
[[ex-index]]
=== Indexing a document
To index a document, you need to specify three pieces of information: `index`,
`id`, and a `document`:
[source,py]
----------------------------
from datetime import datetime
from elasticsearch import Elasticsearch
client = Elasticsearch('https://localhost:9200')
doc = {
'author': 'author_name',
'text': 'Interesting content...',
'timestamp': datetime.now(),
}
resp = client.index(index="test-index", id=1, document=doc)
print(resp['result'])
----------------------------
[discrete]
[[ex-get]]
=== Getting a document
To get a document, you need to specify its `index` and `id`:
[source,py]
----------------------------
resp = client.get(index="test-index", id=1)
print(resp['_source'])
----------------------------
[discrete]
[[ex-refresh]]
=== Refreshing an index
You can perform the refresh operation on an index:
[source,py]
----------------------------
client.indices.refresh(index="test-index")
----------------------------
[discrete]
[[ex-search]]
=== Searching for a document
The `search()` method returns results that are matching a query:
[source,py]
----------------------------
resp = client.search(index="test-index", query={"match_all": {}})
print("Got %d Hits:" % resp['hits']['total']['value'])
for hit in resp['hits']['hits']:
print("%(timestamp)s %(author)s: %(text)s" % hit["_source"])
----------------------------
[discrete]
[[ex-update]]
=== Updating a document
To update a document, you need to specify three pieces of information: `index`,
`id`, and a `doc`:
[source,py]
----------------------------
from datetime import datetime
from elasticsearch import Elasticsearch
client = Elasticsearch('https://localhost:9200')
doc = {
'author': 'author_name',
'text': 'Interesting modified content...',
'timestamp': datetime.now(),
}
resp = client.update(index="test-index", id=1, doc=doc)
print(resp['result'])
----------------------------
[discrete]
[[ex-delete]]
=== Deleting a document
You can delete a document by specifying its `index`, and `id` in the `delete()`
method:
[source,py]
----------------------------
client.delete(index="test-index", id=1)
----------------------------
python-elasticsearch-8.17.2/docs/guide/getting-started.asciidoc 0000664 0000000 0000000 00000005446 14766462667 0024635 0 ustar 00root root 0000000 0000000 [[getting-started-python]]
== Getting started
This page guides you through the installation process of the Python client,
shows you how to instantiate the client, and how to perform basic Elasticsearch
operations with it.
[discrete]
=== Requirements
* https://www.python.org/[Python] 3.8 or newer
* https://pip.pypa.io/en/stable/[`pip`], installed by default alongside Python
[discrete]
=== Installation
To install the latest version of the client, run the following command:
[source,shell]
--------------------------
python -m pip install elasticsearch
--------------------------
Refer to the <> page to learn more.
[discrete]
=== Connecting
You can connect to the Elastic Cloud using an API key and the Elasticsearch
endpoint.
[source,py]
----
from elasticsearch import Elasticsearch
client = Elasticsearch(
"https://...", # Elasticsearch endpoint
api_key="api_key",
)
----
Your Elasticsearch endpoint can be found on the **My deployment** page of your
deployment:
image::images/es-endpoint.jpg[alt="Finding Elasticsearch endpoint",align="center"]
You can generate an API key on the **Management** page under Security.
image::images/create-api-key.png[alt="Create API key",align="center"]
For other connection options, refer to the <> section.
[discrete]
=== Operations
Time to use Elasticsearch! This section walks you through the basic, and most
important, operations of Elasticsearch. For more operations and more advanced
examples, refer to the <> page.
[discrete]
==== Creating an index
This is how you create the `my_index` index:
[source,py]
----
client.indices.create(index="my_index")
----
[discrete]
==== Indexing documents
This is a simple way of indexing a document:
[source,py]
----
client.index(
index="my_index",
id="my_document_id",
document={
"foo": "foo",
"bar": "bar",
}
)
----
[discrete]
==== Getting documents
You can get documents by using the following code:
[source,py]
----
client.get(index="my_index", id="my_document_id")
----
[discrete]
==== Searching documents
This is how you can create a single match query with the Python client:
[source,py]
----
client.search(index="my_index", query={
"match": {
"foo": "foo"
}
})
----
[discrete]
==== Updating documents
This is how you can update a document, for example to add a new field:
[source,py]
----
client.update(index="my_index", id="my_document_id", doc={
"foo": "bar",
"new_field": "new value",
})
----
[discrete]
==== Deleting documents
[source,py]
----
client.delete(index="my_index", id="my_document_id")
----
[discrete]
==== Deleting an index
[source,py]
----
client.indices.delete(index="my_index")
----
[discrete]
== Further reading
* Use <> for a more comfortable experience with the APIs.
python-elasticsearch-8.17.2/docs/guide/helpers.asciidoc 0000664 0000000 0000000 00000004574 14766462667 0023173 0 ustar 00root root 0000000 0000000 [[client-helpers]]
== Client helpers
You can find here a collection of simple helper functions that abstract some
specifics of the raw API. For detailed examples, refer to
https://elasticsearch-py.readthedocs.io/en/stable/helpers.html[this page].
[discrete]
[[bulk-helpers]]
=== Bulk helpers
There are several helpers for the bulk API since its requirement for specific
formatting and other considerations can make it cumbersome if used directly.
All bulk helpers accept an instance of `{es}` class and an iterable `action`
(any iterable, can also be a generator, which is ideal in most cases since it
allows you to index large datasets without the need of loading them into
memory).
The items in the iterable `action` should be the documents we wish to index in
several formats. The most common one is the same as returned by `search()`, for
example:
[source,yml]
----------------------------
{
'_index': 'index-name',
'_id': 42,
'_routing': 5,
'pipeline': 'my-ingest-pipeline',
'_source': {
"title": "Hello World!",
"body": "..."
}
}
----------------------------
Alternatively, if `_source` is not present, it pops all metadata fields from
the doc and use the rest as the document data:
[source,yml]
----------------------------
{
"_id": 42,
"_routing": 5,
"title": "Hello World!",
"body": "..."
}
----------------------------
The `bulk()` api accepts `index`, `create`, `delete`, and `update` actions. Use
the `_op_type` field to specify an action (`_op_type` defaults to `index`):
[source,yml]
----------------------------
{
'_op_type': 'delete',
'_index': 'index-name',
'_id': 42,
}
{
'_op_type': 'update',
'_index': 'index-name',
'_id': 42,
'doc': {'question': 'The life, universe and everything.'}
}
----------------------------
[discrete]
[[scan]]
=== Scan
Simple abstraction on top of the `scroll()` API - a simple iterator that yields
all hits as returned by underlining scroll requests.
By default scan does not return results in any pre-determined order. To have a
standard order in the returned documents (either by score or explicit sort
definition) when scrolling, use `preserve_order=True`. This may be an expensive
operation and will negate the performance benefits of using `scan`.
[source,py]
----------------------------
scan(es,
query={"query": {"match": {"title": "python"}}},
index="orders-*"
)
---------------------------- python-elasticsearch-8.17.2/docs/guide/images/ 0000775 0000000 0000000 00000000000 14766462667 0021264 5 ustar 00root root 0000000 0000000 python-elasticsearch-8.17.2/docs/guide/images/create-api-key.png 0000664 0000000 0000000 00000235274 14766462667 0024607 0 ustar 00root root 0000000 0000000 PNG
IHDR F Zef -zTXtRaw profile type exif xڥWv8E1ZooReWee*"Hfe룉r-6_?w
w?ob~}yK=ٚW넷W-}PZ|^}r!HׅB?,[-0: F?bnu~~p߬gxǗ;V$y}.4wqw\̩.~ S,I{뽂4902+?5(E%Fr!Ax}
ϕ !bd\ dͅ䲳$3ud1LnМR='ۆ32BܴIV)RC=SJ9TSK=s9,P%hJ*RK+kZk r+zgΕ;gw}FɌ<ʨ>)gyYg}*vRqwuv9O9߳J뷯Ț{eL5-Np3Mtd(Wlu1zeN93ɤ-Oǽ'͔)of(uy)kK44oƞ.TPmv.Ӯw=phe@ ʎ}6~C1gh>On|$ƯDݰy̽*ûS].=z͝Uwk!m҉xGõlBc1yt:sDJYj:q՞=̔,N^=[=&ЮFqz$THё:ŦxdV#@ˮ0;=Ҟf?MI`|ll
0ήiYgB>K]+ʕF9v2'%Xg|=t|#+ώEnR´S>#L۶;
(DdnfWYMFe']uSSpةyhrwO+f R)S<hڥZ6q
fVv+0w&