pax_global_header 0000666 0000000 0000000 00000000064 14132474026 0014515 g ustar 00root root 0000000 0000000 52 comment=04d377f321972801888381356cb6259766eb63b6
geopandas-0.10.2/ 0000775 0000000 0000000 00000000000 14132474026 0013536 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/.coveragerc 0000664 0000000 0000000 00000000401 14132474026 0015652 0 ustar 00root root 0000000 0000000 [report]
exclude_lines =
pragma: no cover
def __repr__
raise AssertionError
raise NotImplementedError
if __name__ == .__main__.:
omit =
geopandas/tests/*
geopandas/io/tests/*
geopandas/tools/tests/*
geopandas/_version.py
geopandas-0.10.2/.gitattributes 0000664 0000000 0000000 00000000043 14132474026 0016426 0 ustar 00root root 0000000 0000000 geopandas/_version.py export-subst
geopandas-0.10.2/.github/ 0000775 0000000 0000000 00000000000 14132474026 0015076 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/.github/ISSUE_TEMPLATE/ 0000775 0000000 0000000 00000000000 14132474026 0017261 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/.github/ISSUE_TEMPLATE/bug_report.md 0000664 0000000 0000000 00000001674 14132474026 0021763 0 ustar 00root root 0000000 0000000 ---
name: Bug Report
about: Create a bug report to help us improve geopandas
title: "BUG:"
labels: "bug, needs triage"
---
- [ ] I have checked that this issue has not already been reported.
- [ ] I have confirmed this bug exists on the latest version of geopandas.
- [ ] (optional) I have confirmed this bug exists on the master branch of geopandas.
---
**Note**: Please read [this guide](https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) detailing how to provide the necessary information for us to reproduce your bug.
#### Code Sample, a copy-pastable example
```python
# Your code here
```
#### Problem description
[this should explain **why** the current behaviour is a problem and why the expected output is a better solution]
#### Expected Output
#### Output of ``geopandas.show_versions()``
[paste the output of ``geopandas.show_versions()`` here leaving a blank line after the details tag]
geopandas-0.10.2/.github/ISSUE_TEMPLATE/feature_request.md 0000664 0000000 0000000 00000001635 14132474026 0023013 0 ustar 00root root 0000000 0000000 ---
name: Feature Request
about: Suggest an idea for geopandas
title: "ENH:"
labels: "enhancement"
---
#### Is your feature request related to a problem?
[this should provide a description of what the problem is, e.g. "I wish I could use geopandas to do [...]"]
#### Describe the solution you'd like
[this should provide a description of the feature request, e.g. "`GeoDataFrame.foo` should get a new parameter `bar` that [...]", try to write a docstring for the desired feature]
#### API breaking implications
[this should provide a description of how this feature will affect the API]
#### Describe alternatives you've considered
[this should provide a description of any alternative solutions or features you've considered]
#### Additional context
[add any other context, code examples, or references to existing implementations about the feature request here]
```python
# Your code here, if applicable
```
geopandas-0.10.2/.github/ISSUE_TEMPLATE/installation_issue.md 0000664 0000000 0000000 00000001507 14132474026 0023517 0 ustar 00root root 0000000 0000000 ---
name: Installation Issue
about: Ask about installing geopandas
title: ""
labels: "installation"
---
- [ ] I have read the [documentation on installation](https://geopandas.org/install.html) and followed the instructions provided.
- [ ] I have looked through [issues labeled "installation"](https://github.com/geopandas/geopandas/labels/installation) in the geopandas repo.
- If your issue is related to installation using the `conda-forge` channel, please open an issue in [geopandas-feedstock repository](https://github.com/conda-forge/geopandas-feedstock) instead.
---
#### System information
[what operating system do you have and what package management system are you
using]
#### Environment details
[if using conda, paste the output of `conda info` and `conda list`; if using
pip, `pip freeze`]
geopandas-0.10.2/.github/ISSUE_TEMPLATE/submit_question.md 0000664 0000000 0000000 00000001434 14132474026 0023037 0 ustar 00root root 0000000 0000000 ---
name: Submit Question
about: Ask a general question about geopandas
title: "QST:"
labels: "question"
---
- [ ] I have searched the [geopandas] tag on [StackOverflow](https://stackoverflow.com/questions/tagged/geopandas) and [GIS StackExchange](https://gis.stackexchange.com/questions/tagged/geopandas) for similar questions.
- [ ] I have asked my usage related question on [StackOverflow](https://stackoverflow.com) or [GIS StackExhange](https://gis.stackexchange.com).
---
#### Question about geopandas
**Note**: If you'd still like to submit a question, please read [this guide](
https://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports) detailing how to provide the necessary information for us to reproduce your question.
```python
# Your code here, if applicable
```
geopandas-0.10.2/.github/workflows/ 0000775 0000000 0000000 00000000000 14132474026 0017133 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/.github/workflows/release_to_pypi.yml 0000664 0000000 0000000 00000003245 14132474026 0023045 0 ustar 00root root 0000000 0000000 name: Publish geopandas to PyPI / GitHub
on:
push:
tags:
- "v*"
jobs:
build-n-publish:
name: Build and publish geopandas to PyPI
runs-on: ubuntu-latest
steps:
- name: Checkout source
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: "3.x"
- name: Build a binary wheel and a source tarball
run: |
python -m pip install --upgrade pip
pip install setuptools wheel
python setup.py sdist bdist_wheel
- name: Publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@master
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}
- name: Create GitHub Release
id: create_release
uses: actions/create-release@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # This token is provided by Actions, you do not need to create your own token
with:
tag_name: ${{ github.ref }}
release_name: ${{ github.ref }}
draft: false
prerelease: false
- name: Get Asset name
run: |
export PKG=$(ls dist/ | grep tar)
set -- $PKG
echo "name=$1" >> $GITHUB_ENV
- name: Upload Release Asset (sdist) to GitHub
id: upload-release-asset
uses: actions/upload-release-asset@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
upload_url: ${{ steps.create_release.outputs.upload_url }}
asset_path: dist/${{ env.name }}
asset_name: ${{ env.name }}
asset_content_type: application/zip
geopandas-0.10.2/.github/workflows/tests.yaml 0000664 0000000 0000000 00000007245 14132474026 0021171 0 ustar 00root root 0000000 0000000 name: Tests
on:
push:
branches: [master]
pull_request:
branches: [master]
schedule:
- cron: "0 0 * * *"
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
Linting:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/setup-python@v2
- uses: pre-commit/action@v2.0.0
Test:
needs: Linting
name: ${{ matrix.os }}, ${{ matrix.env }}
runs-on: ${{ matrix.os }}
defaults:
run:
shell: bash -l {0}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
postgis: [false]
dev: [false]
env:
- ci/envs/37-minimal.yaml
- ci/envs/38-no-optional-deps.yaml
- ci/envs/37-pd10.yaml
- ci/envs/37-latest-defaults.yaml
- ci/envs/37-latest-conda-forge.yaml
- ci/envs/38-latest-conda-forge.yaml
- ci/envs/39-latest-conda-forge.yaml
include:
- env: ci/envs/37-latest-conda-forge.yaml
os: macos-latest
postgis: false
dev: false
- env: ci/envs/38-latest-conda-forge.yaml
os: macos-latest
postgis: false
dev: false
- env: ci/envs/37-latest-conda-forge.yaml
os: windows-latest
postgis: false
dev: false
- env: ci/envs/38-latest-conda-forge.yaml
os: windows-latest
postgis: false
dev: false
- env: ci/envs/38-dev.yaml
os: ubuntu-latest
dev: true
steps:
- uses: actions/checkout@v2
- name: Setup Conda
uses: conda-incubator/setup-miniconda@v2
with:
environment-file: ${{ matrix.env }}
- name: Check and Log Environment
run: |
python -V
python -c "import geopandas; geopandas.show_versions();"
conda info
# save conda list to file and print out
# so that we can do the HAS_PYGEOS check without calling conda again
conda list 2>&1 | tee conda.txt
if ( cat conda.txt | grep -q pygeos )
then
echo "Setting HAS_PYGEOS=1"
echo "HAS_PYGEOS=1" >> $GITHUB_ENV
else
echo "Setting HAS_PYGEOS=0"
echo "HAS_PYGEOS=0" >> $GITHUB_ENV
fi
- name: Test without PyGEOS
env:
USE_PYGEOS: 0
run: |
pytest -v -r s -n auto --color=yes --cov=geopandas --cov-append --cov-report term-missing --cov-report xml geopandas/
- name: Test with PyGEOS
if: env.HAS_PYGEOS == 1
env:
USE_PYGEOS: 1
run: |
pytest -v -r s -n auto --color=yes --cov=geopandas --cov-append --cov-report term-missing --cov-report xml geopandas/
- name: Test with PostGIS
if: contains(matrix.env, '38-latest-conda-forge.yaml') && contains(matrix.os, 'ubuntu')
env:
PGUSER: postgres
PGPASSWORD: postgres
PGHOST: "127.0.0.1"
PGPORT: 5432
run: |
conda install postgis -c conda-forge
sh ci/scripts/setup_postgres.sh
pytest -v -r s --color=yes --cov=geopandas --cov-append --cov-report term-missing --cov-report xml geopandas/io/tests/test_sql.py | tee /dev/stderr | if grep SKIPPED >/dev/null;then echo "TESTS SKIPPED, FAILING" && exit 1;fi
- name: Test docstrings
if: contains(matrix.env, '38-latest-conda-forge.yaml') && contains(matrix.os, 'ubuntu')
env:
USE_PYGEOS: 1
run: |
pytest -v --color=yes --doctest-only geopandas --ignore=geopandas/datasets
- uses: codecov/codecov-action@v1
geopandas-0.10.2/.gitignore 0000664 0000000 0000000 00000001405 14132474026 0015526 0 ustar 00root root 0000000 0000000 # Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
env/
venv*/
build/
dist/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
result_images
# Sphinx documentation
doc/_build/
.buildinfo
# Jupyter Notebook
.ipynb_checkpoints
# pytest
.pytest_cache
.mypy_cache
# projects
.spyderproject
.spyproject
.idea
.ropeproject
.vscode
*.py~
.DS_Store
examples/nybb_*.zip
doc/source/savefig
doc/source/reference
doc/source/docs/reference/api/*.rst
geopandas.egg-info
geopandas/version.py
.asv
doc/source/getting_started/my_file.geojson
geopandas-0.10.2/.pre-commit-config.yaml 0000664 0000000 0000000 00000000412 14132474026 0020014 0 ustar 00root root 0000000 0000000 files: 'geopandas\/'
repos:
- repo: https://github.com/python/black
rev: 20.8b1
hooks:
- id: black
language_version: python3
- repo: https://gitlab.com/pycqa/flake8
rev: 3.8.3
hooks:
- id: flake8
language: python_venv
geopandas-0.10.2/CHANGELOG.md 0000664 0000000 0000000 00000075235 14132474026 0015363 0 ustar 00root root 0000000 0000000 Changelog
=========
Version 0.10.2 (October 16, 2021)
---------------------------------
Small bug-fix release:
- Fix regression in `overlay()` in case no geometries are intersecting (but
have overlapping total bounds) (#2172).
- Fix regression in `overlay()` with `keep_geom_type=True` in case the
overlay of two geometries in a GeometryCollection with other geometry types
(#2177).
- Fix `overlay()` to honor the `keep_geom_type` keyword for the
`op="differnce"` case (#2164).
- Fix regression in `plot()` with a mapclassify `scheme` in case the
formatted legend labels have duplicates (#2166).
- Fix a bug in the `explore()` method ignoring the `vmin` and `vmax` keywords
in case they are set to 0 (#2175).
- Fix `unary_union` to correctly handle a GeoSeries with missing values (#2181).
- Avoid internal deprecation warning in `clip()` (#2179).
Version 0.10.1 (October 8, 2021)
--------------------------------
Small bug-fix release:
- Fix regression in `overlay()` with non-overlapping geometries and a
non-default `how` (i.e. not "intersection") (#2157).
Version 0.10.0 (October 3, 2021)
--------------------------------
Highlights of this release:
- A new `sjoin_nearest()` method to join based on proximity, with the
ability to set a maximum search radius (#1865). In addition, the `sindex`
attribute gained a new method for a "nearest" spatial index query (#1865,
#2053).
- A new `explore()` method on GeoDataFrame and GeoSeries with native support
for interactive visualization based on folium / leaflet.js (#1953)
- The `geopandas.sjoin()`/`overlay()`/`clip()` functions are now also
available as methods on the GeoDataFrame (#2141, #1984, #2150).
New features and improvements:
- Add support for pandas' `value_counts()` method for geometry dtype (#2047).
- The `explode()` method has a new `ignore_index` keyword (consistent with
pandas' explode method) to reset the index in the result, and a new
`index_parts` keywords to control whether a cumulative count indexing the
parts of the exploded multi-geometries should be added (#1871).
- `points_from_xy()` is now available as a GeoSeries method `from_xy` (#1936).
- The `to_file()` method will now attempt to detect the driver (if not
specified) based on the extension of the provided filename, instead of
defaulting to ESRI Shapefile (#1609).
- Support for the `storage_options` keyword in `read_parquet()` for
specifying filesystem-specific options (e.g. for S3) based on fsspec (#2107).
- The read/write functions now support `~` (user home directory) expansion (#1876).
- Support the `convert_dtypes()` method from pandas to preserve the
GeoDataFrame class (#2115).
- Support WKB values in the hex format in `GeoSeries.from_wkb()` (#2106).
- Update the `estimate_utm_crs()` method to handle crossing the antimeridian
with pyproj 3.1+ (#2049).
- Improved heuristic to decide how many decimals to show in the repr based on
whether the CRS is projected or geographic (#1895).
- Switched the default for `geocode()` from GeoCode.Farm to the Photon
geocoding API (https://photon.komoot.io) (#2007).
Deprecations and compatibility notes:
- The `op=` keyword of `sjoin()` to indicate which spatial predicate to use
for joining is being deprecated and renamed in favor of a new `predicate=`
keyword (#1626).
- The `cascaded_union` attribute is deprecated, use `unary_union` instead (#2074).
- Constructing a GeoDataFrame with a duplicated "geometry" column is now
disallowed. This can also raise an error in the `pd.concat(.., axis=1)`
function if this results in duplicated active geometry columns (#2046).
- The `explode()` method currently returns a GeoSeries/GeoDataFrame with a
MultiIndex, with an additional level with indices of the parts of the
exploded multi-geometries. For consistency with pandas, this will change in
the future and the new `index_parts` keyword is added to control this.
Bug fixes:
- Fix in the `clip()` function to correctly clip MultiPoints instead of
leaving them intact when partly outside of the clip bounds (#2148).
- Fix `GeoSeries.isna()` to correctly return a boolean Series in case of an
empty GeoSeries (#2073).
- Fix the GeoDataFrame constructor to preserve the geometry name when the
argument is already a GeoDataFrame object (i.e. `GeoDataFrame(gdf)`) (#2138).
- Fix loss of the values' CRS when setting those values as a column
(`GeoDataFrame.__setitem__`) (#1963)
- Fix in `GeoDataFrame.apply()` to preserve the active geometry column name
(#1955).
- Fix in `sjoin()` to not ignore the suffixes in case of a right-join
(`how="right`) (#2065).
- Fix `GeoDataFrame.explode()` with a MultiIndex (#1945).
- Fix the handling of missing values in `to/from_wkb` and `to_from_wkt` (#1891).
- Fix `to_file()` and `to_json()` when DataFrame has duplicate columns to
raise an error (#1900).
- Fix bug in the colors shown with user-defined classification scheme (#2019).
- Fix handling of the `path_effects` keyword in `plot()` (#2127).
- Fix `GeoDataFrame.explode()` to preserve `attrs` (#1935)
Notes on (optional) dependencies:
- GeoPandas 0.10.0 dropped support for Python 3.6 and pandas 0.24. Further,
the minimum required versions are numpy 1.18, shapely 1.6, fiona 1.8,
matplotlib 3.1 and pyproj 2.2.
- Plotting with a classification schema now requires mapclassify version >=
2.4 (#1737).
- Compatibility fixes for the latest numpy in combination with Shapely 1.7 (#2072)
- Compatibility fixes for the upcoming Shapely 1.8 (#2087).
- Compatibility fixes for the latest PyGEOS (#1872, #2014) and matplotlib
(colorbar issue, #2066).
Version 0.9.0 (February 28, 2021)
---------------------------------
Many documentation improvements and a restyled and restructured website with
a new logo (#1564, #1579, #1617, #1668, #1731, #1750, #1757, #1759).
New features and improvements:
- The `geopandas.read_file` function now accepts more general
file-like objects (e.g. `fsspec` open file objects). It will now also
automatically recognize zipped files (#1535).
- The `GeoDataFrame.plot()` method now provides access to the pandas plotting
functionality for the non-geometry columns, either using the `kind` keyword
or the accessor method (e.g. `gdf.plot(kind="bar")` or `gdf.plot.bar()`)
(#1465).
- New `from_wkt()`, `from_wkb()`, `to_wkt()`, `to_wkb()` methods for
GeoSeries to construct a GeoSeries from geometries in WKT or WKB
representation, or to convert a GeoSeries to a pandas Seriew with WKT or WKB
values (#1710).
- New `GeoSeries.z` attribute to access the z-coordinates of Point geometries
(similar to the existing `.x` and `.y` attributes) (#1773).
- The `to_crs()` method now handles missing values (#1618).
- Support for pandas' new `.attrs` functionality (#1658).
- The `dissolve()` method now allows dissolving by no column (`by=None`) to
create a union of all geometries (single-row GeoDataFrame) (#1568).
- New `estimate_utm_crs()` method on GeoSeries/GeoDataFrame to determine the
UTM CRS based on the bounds (#1646).
- `GeoDataFrame.from_dict()` now accepts `geometry` and `crs` keywords
(#1619).
- `GeoDataFrame.to_postgis()` and `geopandas.read_postgis()` now supports
both sqlalchemy engine and connection objects (#1638).
- The `GeoDataFrame.explode()` method now allows exploding based on a
non-geometry column, using the pandas implementation (#1720).
- Performance improvement in `GeoDataFrame/GeoSeries.explode()` when using
the PyGEOS backend (#1693).
- The binary operation and predicate methods (eg `intersection()`,
`intersects()`) have a new `align` keyword which allows optionally not
aligning on the index before performing the operation with `align=False`
(#1668).
- The `GeoDataFrame.dissolve()` method now supports all relevant keywords of
`groupby()`, i.e. the `level`, `sort`, `observed` and `dropna` keywords
(#1845).
- The `geopandas.overlay()` function now accepts `make_valid=False` to skip
the step to ensure the input geometries are valid using `buffer(0)` (#1802).
- The `GeoDataFrame.to_json()` method gained a `drop_id` keyword to
optionally not write the GeoDataFrame's index as the "id" field in the
resulting JSON (#1637).
- A new `aspect` keyword in the plotting methods to optionally allow retaining
the original aspect (#1512)
- A new `interval` keyword in the `legend_kwds` group of the `plot()` method
to control the appearance of the legend labels when using a classification
scheme (#1605).
- The spatial index of a GeoSeries (accessed with the `sindex` attribute) is
now stored on the underlying array. This ensures that the spatial index is
preserved in more operations where possible, and that multiple geometry
columns of a GeoDataFrame can each have a spatial index (#1444).
- Addition of a `has_sindex` attribute on the GeoSeries/GeoDataFrame to check
if a spatial index has already been initialized (#1627).
- The `geopandas.testing.assert_geoseries_equal()` and `assert_geodataframe_equal()`
testing utilities now have a `normalize` keyword (False by default) to
normalize geometries before comparing for equality (#1826). Those functions
now also give a more informative error message when failing (#1808).
Deprecations and compatibility notes:
- The `is_ring` attribute currently returns True for Polygons. In the future,
this will be False (#1631). In addition, start to check it for LineStrings
and LinearRings (instead of always returning False).
- The deprecated `objects` keyword in the `intersection()` method of the
`GeoDataFrame/GeoSeries.sindex` spatial index object has been removed
(#1444).
Bug fixes:
- Fix regression in the `plot()` method raising an error with empty
geometries (#1702, #1828).
- Fix `geopandas.overlay()` to preserve geometries of the correct type which
are nested within a GeometryCollection as a result of the overlay
operation (#1582). In addition, a warning will now be raised if geometries
of different type are dropped from the result (#1554).
- Fix the repr of an empty GeoSeries to not show spurious warnings (#1673).
- Fix the `.crs` for empty GeoDataFrames (#1560).
- Fix `geopandas.clip` to preserve the correct geometry column name (#1566).
- Fix bug in `plot()` method when using `legend_kwds` with multiple subplots
(#1583)
- Fix spurious warning with `missing_kwds` keyword of the `plot()` method
when there are no areas with missing data (#1600).
- Fix the `plot()` method to correctly align values passed to the `column`
keyword as a pandas Series (#1670).
- Fix bug in plotting MultiPoints when passing values to determine the color
(#1694)
- The `rename_geometry()` method now raises a more informative error message
when a duplicate column name is used (#1602).
- Fix `explode()` method to preserve the CRS (#1655)
- Fix the `GeoSeries.apply()` method to again accept the `convert_dtype`
keyword to be consistent with pandas (#1636).
- Fix `GeoDataFrame.apply()` to preserve the CRS when possible (#1848).
- Fix bug in containment test as `geom in geoseries` (#1753).
- The `shift()` method of a GeoSeries/GeoDataFrame now preserves the CRS
(#1744).
- The PostGIS IO functionality now quotes table names to ensure it works with
case-sensitive names (#1825).
- Fix the `GeoSeries` constructor without passing data but only an index (#1798).
Notes on (optional) dependencies:
- GeoPandas 0.9.0 dropped support for Python 3.5. Further, the minimum
required versions are pandas 0.24, numpy 1.15 and shapely 1.6 and fiona 1.8.
- The `descartes` package is no longer required for plotting polygons. This
functionality is now included by default in GeoPandas itself, when
matplotlib is available (#1677).
- Fiona is now only imported when used in `read_file`/`to_file`. This means
you can now force geopandas to install without fiona installed (although it
is still a default requirement) (#1775).
- Compatibility with the upcoming Shapely 1.8 (#1659, #1662, #1819).
Version 0.8.2 (January 25, 2021)
--------------------------------
Small bug-fix release for compatibility with PyGEOS 0.9.
Version 0.8.1 (July 15, 2020)
-----------------------------
Small bug-fix release:
- Fix a regression in the `plot()` method when visualizing with a
JenksCaspallSampled or FisherJenksSampled scheme (#1486).
- Fix spurious warning in `GeoDataFrame.to_postgis` (#1497).
- Fix the un-pickling with `pd.read_pickle` of files written with older
GeoPandas versions (#1511).
Version 0.8.0 (June 24, 2020)
-----------------------------
**Experimental**: optional use of PyGEOS to speed up spatial operations (#1155).
PyGEOS is a faster alternative for Shapely (being contributed back to a future
version of Shapely), and is used in element-wise spatial operations and for
spatial index in e.g. `sjoin` (#1343, #1401, #1421, #1427, #1428). See the
[installation docs](https://geopandas.readthedocs.io/en/latest/install.html#using-the-optional-pygeos-dependency)
for more info and how to enable it.
New features and improvements:
- IO enhancements:
- New `GeoDataFrame.to_postgis()` method to write to PostGIS database (#1248).
- New Apache Parquet and Feather file format support (#1180, #1435)
- Allow appending to files with `GeoDataFrame.to_file` (#1229).
- Add support for the `ignore_geometry` keyword in `read_file` to only read
the attribute data. If set to True, a pandas DataFrame without geometry is
returned (#1383).
- `geopandas.read_file` now supports reading from file-like objects (#1329).
- `GeoDataFrame.to_file` now supports specifying the CRS to write to the file
(#802). By default it still uses the CRS of the GeoDataFrame.
- New `chunksize` keyword in `geopandas.read_postgis` to read a query in
chunks (#1123).
- Improvements related to geometry columns and CRS:
- Any column of the GeoDataFrame that has a "geometry" dtype is now returned
as a GeoSeries. This means that when having multiple geometry columns, not
only the "active" geometry column is returned as a GeoSeries, but also
accessing another geometry column (`gdf["other_geom_column"]`) gives a
GeoSeries (#1336).
- Multiple geometry columns in a GeoDataFrame can now each have a different
CRS. The global `gdf.crs` attribute continues to returns the CRS of the
"active" geometry column. The CRS of other geometry columns can be accessed
from the column itself (eg `gdf["other_geom_column"].crs`) (#1339).
- New `set_crs()` method on GeoDataFrame/GeoSeries to set the CRS of naive
geometries (#747).
- Improvements related to plotting:
- The y-axis is now scaled depending on the center of the plot when using a
geographic CRS, instead of using an equal aspect ratio (#1290).
- When passing a column of categorical dtype to the `column=` keyword of the
GeoDataFrame `plot()`, we now honor all categories and its order (#1483).
In addition, a new `categories` keyword allows to specify all categories
and their order otherwise (#1173).
- For choropleths using a classification scheme (using `scheme=`), the
`legend_kwds` accept two new keywords to control the formatting of the
legend: `fmt` with a format string for the bin edges (#1253), and `labels`
to pass fully custom class labels (#1302).
- New `covers()` and `covered_by()` methods on GeoSeries/GeoDataframe for the
equivalent spatial predicates (#1460, #1462).
- GeoPandas now warns when using distance-based methods with data in a
geographic projection (#1378).
Deprecations:
- When constructing a GeoSeries or GeoDataFrame from data that already has a
CRS, a deprecation warning is raised when both CRS don't match, and in the
future an error will be raised in such a case. You can use the new `set_crs`
method to override an existing CRS. See
[the docs](https://geopandas.readthedocs.io/en/latest/projections.html#projection-for-multiple-geometry-columns).
- The helper functions in the `geopandas.plotting` module are deprecated for
public usage (#656).
- The `geopandas.io` functions are deprecated, use the top-level `read_file` and
`to_file` instead (#1407).
- The set operators (`&`, `|`, `^`, `-`) are deprecated, use the
`intersection()`, `union()`, `symmetric_difference()`, `difference()` methods
instead (#1255).
- The `sindex` for empty dataframe will in the future return an empty spatial
index instead of `None` (#1438).
- The `objects` keyword in the `intersection` method of the spatial index
returned by the `sindex` attribute is deprecated and will be removed in the
future (#1440).
Bug fixes:
- Fix the `total_bounds()` method to ignore missing and empty geometries (#1312).
- Fix `geopandas.clip` when masking with non-overlapping area resulting in an
empty GeoDataFrame (#1309, #1365).
- Fix error in `geopandas.sjoin` when joining on an empty geometry column (#1318).
- CRS related fixes: `pandas.concat` preserves CRS when concatenating GeoSeries
objects (#1340), preserve the CRS in `geopandas.clip` (#1362) and in
`GeoDataFrame.astype` (#1366).
- Fix bug in `GeoDataFrame.explode()` when 'level_1' is one of the column names
(#1445).
- Better error message when rtree is not installed (#1425).
- Fix bug in `GeoSeries.equals()` (#1451).
- Fix plotting of multi-part geometries with additional style keywords (#1385).
And we now have a [Code of Conduct](https://github.com/geopandas/geopandas/blob/master/CODE_OF_CONDUCT.md)!
GeoPandas 0.8.0 is the last release to support Python 3.5. The next release
will require Python 3.6, pandas 0.24, numpy 1.15 and shapely 1.6 or higher.
Version 0.7.0 (February 16, 2020)
---------------------------------
Support for Python 2.7 has been dropped. GeoPandas now works with Python >= 3.5.
The important API change of this release is that GeoPandas now requires
PROJ > 6 and pyproj > 2.2, and that the `.crs` attribute of a GeoSeries and
GeoDataFrame no longer stores the CRS information as a proj4 string or dict,
but as a ``pyproj.CRS`` object (#1101).
This gives a better user interface and integrates improvements from pyproj and
PROJ 6, but might also require some changes in your code. Check the
[migration guide](https://geopandas.readthedocs.io/en/latest/projections.html#upgrading-to-geopandas-0-7-with-pyproj-2-2-and-proj-6)
in the documentation.
Other API changes;
- The `GeoDataFrame.to_file` method will now also write the GeoDataFrame index
to the file, if the index is named and/or non-integer. You can use the
`index=True/False` keyword to overwrite this default inference (#1059).
New features and improvements:
- A new `geopandas.clip` function to clip a GeoDataFrame to the spatial extent
of another shape (#1128).
- The `geopandas.overlay` function now works for all geometry types, including
points and linestrings in addition to polygons (#1110).
- The `plot()` method gained support for missing values (in the column that
determines the colors). By default it doesn't plot the corresponding
geometries, but using the new `missing_kwds` argument you can specify how to
style those geometries (#1156).
- The `plot()` method now also supports plotting GeometryCollection and
LinearRing objects (#1225).
- Added support for filtering with a geometry or reading a subset of the rows in
`geopandas.read_file` (#1160).
- Added support for the new nullable integer data type of pandas in
`GeoDataFrame.to_file` (#1220).
Bug fixes:
- `GeoSeries.reset_index()` now correctly results in a GeoDataFrame instead of DataFrame (#1252).
- Fixed the `geopandas.sjoin` function to handle MultiIndex correctly (#1159).
- Fixed the `geopandas.sjoin` function to preserve the index name of the left GeoDataFrame (#1150).
Version 0.6.3 (February 6, 2020)
---------------------------------
Small bug-fix release:
- Compatibility with Shapely 1.7 and pandas 1.0 (#1244).
- Fix `GeoDataFrame.fillna` to accept non-geometry values again when there are
no missing values in the geometry column. This should make it easier to fill
the numerical columns of the GeoDataFrame (#1279).
Version 0.6.2 (November 18, 2019)
---------------------------------
Small bug-fix release fixing a few regressions:
- Fix a regression in passing an array of RRB(A) tuples to the ``.plot()``
method (#1178, #1211).
- Fix the ``bounds`` and ``total_bounds`` attributes for empty GeoSeries, which
also fixes the repr of an empty or all-NA GeoSeries (#1184, #1195).
- Fix filtering of a GeoDataFrame to preserve the index type when ending up
with an empty result (#1190).
Version 0.6.1 (October 12, 2019)
--------------------------------
Small bug-fix release fixing a few regressions:
- Fix `astype` when converting to string with Multi geometries (#1145) or when converting a dataframe without geometries (#1144).
- Fix `GeoSeries.fillna` to accept `np.nan` again (#1149).
Version 0.6.0 (September 27, 2019)
----------------------------------
Important note! This will be the last release to support Python 2.7 (#1031)
API changes:
- A refactor of the internals based on the pandas ExtensionArray interface (#1000). The main user visible changes are:
- The `.dtype` of a GeoSeries is now a `'geometry'` dtype (and no longer a numpy `object` dtype).
- The `.values` of a GeoSeries now returns a custom `GeometryArray`, and no longer a numpy array. To get back a numpy array of Shapely scalars, you can convert explicitly using `np.asarray(..)`.
- The `GeoSeries` constructor now raises a warning when passed non-geometry data. Currently the constructor falls back to return a pandas `Series`, but in the future this will raise an error (#1085).
- The missing value handling has been changed to now separate the concepts of missing geometries and empty geometries (#601, 1062). In practice this means that (see [the docs](https://geopandas.readthedocs.io/en/v0.6.0/missing_empty.html) for more details):
- `GeoSeries.isna` now considers only missing values, and if you want to check for empty geometries, you can use `GeoSeries.is_empty` (`GeoDataFrame.isna` already only looked at missing values).
- `GeoSeries.dropna` now actually drops missing values (before it didn't drop either missing or empty geometries)
- `GeoSeries.fillna` only fills missing values (behaviour unchanged).
- `GeoSeries.align` uses missing values instead of empty geometries by default to fill non-matching index entries.
New features and improvements:
- Addition of a `GeoSeries.affine_transform` method, equivalent of Shapely's function (#1008).
- Addition of a `GeoDataFrame.rename_geometry` method to easily rename the active geometry column (#1053).
- Addition of `geopandas.show_versions()` function, which can be used to give an overview of the installed libraries in bug reports (#899).
- The `legend_kwds` keyword of the `plot()` method can now also be used to specify keywords for the color bar (#1102).
- Performance improvement in the `sjoin()` operation by re-using existing spatial index of the input dataframes, if available (#789).
- Updated documentation to work with latest version of geoplot and contextily (#1044, #1088).
- A new ``geopandas.options`` configuration, with currently a single option to control the display precision of the coordinates (``options.display_precision``). The default is now to show less coordinates (3 for projected and 5 for geographic coordinates), but the default can be overridden with the option.
Bug fixes:
- Also try to use `pysal` instead of `mapclassify` if available (#1082).
- The `GeoDataFrame.astype()` method now correctly returns a `GeoDataFrame` if the geometry column is preserved (#1009).
- The `to_crs` method now uses `always_xy=True` to ensure correct lon/lat order handling for pyproj>=2.2.0 (#1122).
- Fixed passing list-like colors in the `plot()` method in case of "multi" geometries (#1119).
- Fixed the coloring of shapes and colorbar when passing a custom `norm` in the `plot()` method (#1091, #1089).
- Fixed `GeoDataFrame.to_file` to preserve VFS file paths (e.g. when a "s3://" path is specified) (#1124).
- Fixed failing case in ``geopandas.sjoin`` with empty geometries (#1138).
In addition, the minimum required versions of some dependencies have been increased: GeoPandas now requirs pandas >=0.23.4 and matplotlib >=2.0.1 (#1002).
Version 0.5.1 (July 11, 2019)
-----------------------------
- Compatibility with latest mapclassify version 2.1.0 (#1025).
Version 0.5.0 (April 25, 2019)
------------------------------
Improvements:
* Significant performance improvement (around 10x) for `GeoDataFrame.iterfeatures`,
which also improves `GeoDataFrame.to_file` (#864).
* File IO enhancements based on Fiona 1.8:
* Support for writing bool dtype (#855) and datetime dtype, if the file format supports it (#728).
* Support for writing dataframes with multiple geometry types, if the file format allows it (e.g. GeoJSON for all types, or ESRI Shapefile for Polygon+MultiPolygon) (#827, #867, #870).
* Compatibility with pyproj >= 2 (#962).
* A new `geopandas.points_from_xy()` helper function to convert x and y coordinates to Point objects (#896).
* The `buffer` and `interpolate` methods now accept an array-like to specify a variable distance for each geometry (#781).
* Addition of a `relate` method, corresponding to the shapely method that returns the DE-9IM matrix (#853).
* Plotting improvements:
* Performance improvement in plotting by only flattening the geometries if there are actually 'Multi' geometries (#785).
* Choropleths: access to all `mapclassify` classification schemes and addition of the `classification_kwds` keyword in the `plot` method to specify options for the scheme (#876).
* Ability to specify a matplotlib axes object on which to plot the color bar with the `cax` keyword, in order to have more control over the color bar placement (#894).
* Changed the default provider in ``geopandas.tools.geocode`` from Google (now requires an API key) to Geocode.Farm (#907, #975).
Bug fixes:
- Remove the edge in the legend marker (#807).
- Fix the `align` method to preserve the CRS (#829).
- Fix `geopandas.testing.assert_geodataframe_equal` to correctly compare left and right dataframes (#810).
- Fix in choropleth mapping when the values contain missing values (#877).
- Better error message in `sjoin` if the input is not a GeoDataFrame (#842).
- Fix in `read_postgis` to handle nullable (missing) geometries (#856).
- Correctly passing through the `parse_dates` keyword in `read_postgis` to the underlying pandas method (#860).
- Fixed the shape of Antarctica in the included demo dataset 'naturalearth_lowres'
(by updating to the latest version) (#804).
Version 0.4.1 (March 5, 2019)
-----------------------------
Small bug-fix release for compatibility with the latest Fiona and PySAL
releases:
* Compatibility with Fiona 1.8: fix deprecation warning (#854).
* Compatibility with PySAL 2.0: switched to `mapclassify` instead of `PySAL` as
dependency for choropleth mapping with the `scheme` keyword (#872).
* Fix for new `overlay` implementation in case the intersection is empty (#800).
Version 0.4.0 (July 15, 2018)
-----------------------------
Improvements:
* Improved `overlay` function (better performance, several incorrect behaviours fixed) (#429)
* Pass keywords to control legend behavior (`legend_kwds`) to `plot` (#434)
* Add basic support for reading remote datasets in `read_file` (#531)
* Pass kwargs for `buffer` operation on GeoSeries (#535)
* Expose all geopy services as options in geocoding (#550)
* Faster write speeds to GeoPackage (#605)
* Permit `read_file` filtering with a bounding box from a GeoDataFrame (#613)
* Set CRS on GeoDataFrame returned by `read_postgis` (#627)
* Permit setting markersize for Point GeoSeries plots with column values (#633)
* Started an example gallery (#463, #690, #717)
* Support for plotting MultiPoints (#683)
* Testing functionality (e.g. `assert_geodataframe_equal`) is now publicly exposed (#707)
* Add `explode` method to GeoDataFrame (similar to the GeoSeries method) (#671)
* Set equal aspect on active axis on multi-axis figures (#718)
* Pass array of values to column argument in `plot` (#770)
Bug fixes:
* Ensure that colorbars are plotted on the correct axis (#523)
* Handle plotting empty GeoDataFrame (#571)
* Save z-dimension when writing files (#652)
* Handle reading empty shapefiles (#653)
* Correct dtype for empty result of spatial operations (#685)
* Fix empty `sjoin` handling for pandas>=0.23 (#762)
Version 0.3.0 (August 29, 2017)
-------------------------------
Improvements:
* Improve plotting performance using ``matplotlib.collections`` (#267)
* Improve default plotting appearance. The defaults now follow the new matplotlib defaults (#318, #502, #510)
* Provide access to x/y coordinates as attributes for Point GeoSeries (#383)
* Make the NYBB dataset available through ``geopandas.datasets`` (#384)
* Enable ``sjoin`` on non-integer-index GeoDataFrames (#422)
* Add ``cx`` indexer to GeoDataFrame (#482)
* ``GeoDataFrame.from_features`` now also accepts a Feature Collection (#225, #507)
* Use index label instead of integer id in output of ``iterfeatures`` and
``to_json`` (#421)
* Return empty data frame rather than raising an error when performing a spatial join with non overlapping geodataframes (#335)
Bug fixes:
* Compatibility with shapely 1.6.0 (#512)
* Fix ``fiona.filter`` results when bbox is not None (#372)
* Fix ``dissolve`` to retain CRS (#389)
* Fix ``cx`` behavior when using index of 0 (#478)
* Fix display of lower bin in legend label of choropleth plots using a PySAL scheme (#450)
Version 0.2.0
-------------
Improvements:
* Complete overhaul of the documentation
* Addition of ``overlay`` to perform spatial overlays with polygons (#142)
* Addition of ``sjoin`` to perform spatial joins (#115, #145, #188)
* Addition of ``__geo_interface__`` that returns a python data structure
to represent the ``GeoSeries`` as a GeoJSON-like ``FeatureCollection`` (#116)
and ``iterfeatures`` method (#178)
* Addition of the ``explode`` (#146) and ``dissolve`` (#310, #311) methods.
* Addition of the ``sindex`` attribute, a Spatial Index using the optional
dependency ``rtree`` (``libspatialindex``) that can be used to speed up
certain operations such as overlays (#140, #141).
* Addition of the ``GeoSeries.cx`` coordinate indexer to slice a GeoSeries based
on a bounding box of the coordinates (#55).
* Improvements to plotting: ability to specify edge colors (#173), support for
the ``vmin``, ``vmax``, ``figsize``, ``linewidth`` keywords (#207), legends
for chloropleth plots (#210), color points by specifying a colormap (#186) or
a single color (#238).
* Larger flexibility of ``to_crs``, accepting both dicts and proj strings (#289)
* Addition of embedded example data, accessible through
``geopandas.datasets.get_path``.
API changes:
* In the ``plot`` method, the ``axes`` keyword is renamed to ``ax`` for
consistency with pandas, and the ``colormap`` keyword is renamed to ``cmap``
for consistency with matplotlib (#208, #228, #240).
Bug fixes:
* Properly handle rows with missing geometries (#139, #193).
* Fix ``GeoSeries.to_json`` (#263).
* Correctly serialize metadata when pickling (#199, #206).
* Fix ``merge`` and ``concat`` to return correct GeoDataFrame (#247, #320, #322).
geopandas-0.10.2/CODE_OF_CONDUCT.md 0000664 0000000 0000000 00000016403 14132474026 0016341 0 ustar 00root root 0000000 0000000 # GeoPandas Project Code of Conduct
Behind the GeoPandas Project is an engaged and respectful community made up of people
from all over the world and with a wide range of backgrounds.
Naturally, this implies diversity of ideas and perspectives on often complex
problems. Disagreement and healthy discussion of conflicting viewpoints is
welcome: the best solutions to hard problems rarely come from a single angle.
But disagreement is not an excuse for aggression: humans tend to take
disagreement personally and easily drift into behavior that ultimately degrades
a community. This is particularly acute with online communication across
language and cultural gaps, where many cues of human behavior are unavailable.
We are outlining here a set of principles and processes to support a
healthy community in the face of these challenges.
Fundamentally, we are committed to fostering a productive, harassment-free
environment for everyone. Rather than considering this code an exhaustive list
of things that you can’t do, take it in the spirit it is intended - a guide to
make it easier to enrich all of us and the communities in which we participate.
Importantly: as a member of our community, *you are also a steward of these
values*. Not all problems need to be resolved via formal processes, and often
a quick, friendly but clear word on an online forum or in person can help
resolve a misunderstanding and de-escalate things.
However, sometimes these informal processes may be inadequate: they fail to
work, there is urgency or risk to someone, nobody is intervening publicly and
you don't feel comfortable speaking in public, etc. For these or other
reasons, structured follow-up may be necessary and here we provide the means
for that: we welcome reports by emailing
[*geopandas-conduct@googlegroups.com*](mailto:geopandas-conduct@googlegroups.com)
or by filling out
[this form](https://docs.google.com/forms/d/e/1FAIpQLSd8Tbi2zNl1i2N9COX0yavHEqTGFIPQ1_cLcy1A3JgVc1OrAQ/viewform).
This code applies equally to founders, developers, mentors and new community
members, in all spaces managed by the GeoPandas Project. This
includes the mailing lists, our GitHub organization, our chat room, in-person
events, and any other forums created by the project team. In addition,
violations of this code outside these spaces may affect a person's ability to
participate within them.
By embracing the following principles, guidelines and actions to follow or
avoid, you will help us make the GeoPandas Project a welcoming and productive community. Feel
free to contact the Code of Conduct Committee at
[*geopandas-conduct@googlegroups.com*](mailto:geopandas-conduct@googlegroups.com) with any questions.
1. **Be friendly and patient**.
2. **Be welcoming**. We strive to be a community that welcomes and supports
people of all backgrounds and identities. This includes, but is not limited
to, members of any race, ethnicity, culture, national origin, color,
immigration status, social and economic class, educational level, sex, sexual
orientation, gender identity and expression, age, physical appearance, family
status, technological or professional choices, academic
discipline, religion, mental ability, and physical ability.
3. **Be considerate**. Your work will be used by other people, and you in turn
will depend on the work of others. Any decision you take will affect users
and colleagues, and you should take those consequences into account when
making decisions. Remember that we're a world-wide community. You may be
communicating with someone with a different primary language or cultural
background.
4. **Be respectful**. Not all of us will agree all the time, but disagreement is
no excuse for poor behavior or poor manners. We might all experience some
frustration now and then, but we cannot allow that frustration to turn into a
personal attack. It’s important to remember that a community where people
feel uncomfortable or threatened is not a productive one.
5. **Be careful in the words that you choose**. Be kind to others. Do not insult
or put down other community members. Harassment and other exclusionary
behavior are not acceptable. This includes, but is not limited to:
* Violent threats or violent language directed against another person
* Discriminatory jokes and language
* Posting sexually explicit or violent material
* Posting (or threatening to post) other people's personally identifying
information ("doxing")
* Personal insults, especially those using racist, sexist, and xenophobic terms
* Unwelcome sexual attention
* Advocating for, or encouraging, any of the above behavior
* Repeated harassment of others. In general, if someone asks you to stop,
then stop
6. **Moderate your expectations**. Please respect that community members choose
how they spend their time in the project. A thoughtful question about your
expectations is preferable to demands for another person's time.
7. **When we disagree, try to understand why**. Disagreements, both social and
technical, happen all the time and the GeoPandas Project is no exception. Try to
understand where others are coming from, as seeing a question from their
viewpoint may help find a new path forward. And don’t forget that it is
human to err: blaming each other doesn’t get us anywhere, while we can learn
from mistakes to find better solutions.
8. **A simple apology can go a long way**. It can often de-escalate a situation,
and telling someone that you are sorry is an act of empathy that doesn’t
automatically imply an admission of guilt.
## Reporting
If you believe someone is violating the code of conduct, please report this in
a timely manner. Code of conduct violations reduce the value of the community
for everyone and we take them seriously.
You can file a report by emailing
[*geopandas-conduct@googlegroups.com*](mailto:geopandas-conduct@googlegroups.com) or by filing out
[this form](https://docs.google.com/forms/d/e/1FAIpQLSd8Tbi2zNl1i2N9COX0yavHEqTGFIPQ1_cLcy1A3JgVc1OrAQ/viewform).
The online form gives you the option to keep your report anonymous or request
that we follow up with you directly. While we cannot follow up on an anonymous
report, we will take appropriate action.
Messages sent to the e-mail address or through the form will be sent
only to the Code of Conduct Committee, which currently consists of:
* Hannah Aizenman
* Joris Van den Bossche
* Martin Fleischmann
## Enforcement
Enforcement procedures within the GeoPandas Project follow Project Jupyter's
[*Enforcement Manual*](https://github.com/jupyter/governance/blob/master/conduct/enforcement.md). For information on enforcement, please view the [original manual](https://github.com/jupyter/governance/blob/master/conduct/enforcement.md).
Original text courtesy of the [*Speak
Up!*](http://web.archive.org/web/20141109123859/http://speakup.io/coc.html),
[*Django*](https://www.djangoproject.com/conduct) and [*Jupyter*](https://github.com/jupyter/governance/blob/master/conduct/code_of_conduct.md) Projects,
modified by the GeoPandas Project. We are grateful to those projects for contributing these materials under open licensing terms for us to easily reuse.
All content on this page is licensed under a [*Creative Commons
Attribution*](http://creativecommons.org/licenses/by/3.0/) license.
geopandas-0.10.2/CONTRIBUTING.md 0000664 0000000 0000000 00000005343 14132474026 0015774 0 ustar 00root root 0000000 0000000 Guidelines
==========
Contributions to GeoPandas are very welcome. They are likely to
be accepted more quickly if they follow these guidelines.
At this stage of GeoPandas development, the priorities are to define a
simple, usable, and stable API and to have clean, maintainable,
readable code. Performance matters, but not at the expense of those
goals.
In general, GeoPandas follows the conventions of the pandas project
where applicable. Please read the [contributing
guidelines](https://geopandas.readthedocs.io/en/latest/community/contributing.html).
In particular, when submitting a pull request:
- Install the requirements for the development environment (one can do this
with either conda, and the environment.yml file, or pip, and the
requirements-dev.txt file, and can use the pandas contributing guidelines
as a guide).
- All existing tests should pass. Please make sure that the test
suite passes, both locally and on
[GitHub Actions](https://github.com/geopandas/geopandas/actions). Status on
GHA will be visible on a pull request. GHA are automatically enabled
on your own fork as well. To trigger a check, make a PR to your own fork.
- New functionality should include tests. Please write reasonable
tests for your code and make sure that they pass on your pull request.
- Classes, methods, functions, etc. should have docstrings. The first
line of a docstring should be a standalone summary. Parameters and
return values should be documented explicitly.
Improving the documentation and testing for code already in GeoPandas
is a great way to get started if you'd like to make a contribution.
Style
-----
- GeoPandas supports Python 3.7+ only. The last version of GeoPandas
supporting Python 2 is 0.6.
- GeoPandas follows [the PEP 8
standard](http://www.python.org/dev/peps/pep-0008/) and uses
[Black](https://black.readthedocs.io/en/stable/) and
[Flake8](http://flake8.pycqa.org/en/latest/) to ensure a consistent
code format throughout the project.
- Imports should be grouped with standard library imports first,
third-party libraries next, and GeoPandas imports third. Within each
grouping, imports should be alphabetized. Always use absolute
imports when possible, and explicit relative imports for local
imports when necessary in tests.
- You can set up [pre-commit hooks](https://pre-commit.com/) to
automatically run `black` and `flake8` when you make a git
commit. This can be done by installing `pre-commit`:
$ python -m pip install pre-commit
From the root of the geopandas repository, you should then install
`pre-commit`:
$ pre-commit install
Then `black` and `flake8` will be run automatically each time you
commit changes. You can skip these checks with `git commit
--no-verify`.
geopandas-0.10.2/LICENSE.txt 0000664 0000000 0000000 00000002740 14132474026 0015364 0 ustar 00root root 0000000 0000000 Copyright (c) 2013-2016, GeoPandas developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Enthought, Inc. nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
geopandas-0.10.2/MANIFEST.in 0000664 0000000 0000000 00000000110 14132474026 0015264 0 ustar 00root root 0000000 0000000 include versioneer.py
include geopandas/_version.py
include LICENSE.txt
geopandas-0.10.2/README.md 0000664 0000000 0000000 00000014230 14132474026 0015015 0 ustar 00root root 0000000 0000000 GeoPandas [](https://github.com/geopandas/geopandas/actions?query=workflow%3ATests) [](https://codecov.io/gh/geopandas/geopandas) [](https://gitter.im/geopandas/geopandas?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [](https://mybinder.org/v2/gh/geopandas/geopandas/master) [](https://zenodo.org/badge/latestdoi/11002815)
=========
Python tools for geographic data
Introduction
------------
GeoPandas is a project to add support for geographic data to
[pandas](http://pandas.pydata.org) objects. It currently implements
`GeoSeries` and `GeoDataFrame` types which are subclasses of
`pandas.Series` and `pandas.DataFrame` respectively. GeoPandas
objects can act on [shapely](http://shapely.readthedocs.io/en/latest/)
geometry objects and perform geometric operations.
GeoPandas geometry operations are cartesian. The coordinate reference
system (crs) can be stored as an attribute on an object, and is
automatically set when loading from a file. Objects may be
transformed to new coordinate systems with the `to_crs()` method.
There is currently no enforcement of like coordinates for operations,
but that may change in the future.
Documentation is available at [geopandas.org](http://geopandas.org)
(current release) and
[Read the Docs](http://geopandas.readthedocs.io/en/latest/)
(release and development versions).
Install
--------
See the [installation docs](https://geopandas.readthedocs.io/en/latest/install.html)
for all details. GeoPandas depends on the following packages:
- ``pandas``
- ``shapely``
- ``fiona``
- ``pyproj``
Further, ``matplotlib`` is an optional dependency, required
for plotting, and [``rtree``](https://github.com/Toblerity/rtree) is an optional
dependency, required for spatial joins. ``rtree`` requires the C library [``libspatialindex``](https://github.com/libspatialindex/libspatialindex).
Those packages depend on several low-level libraries for geospatial analysis, which can be a challenge to install. Therefore, we recommend to install GeoPandas using the [conda package manager](https://conda.io/en/latest/). See the [installation docs](https://geopandas.readthedocs.io/en/latest/install.html) for more details.
Get in touch
------------
- Ask usage questions ("How do I?") on [StackOverflow](https://stackoverflow.com/questions/tagged/geopandas) or [GIS StackExchange](https://gis.stackexchange.com/questions/tagged/geopandas).
- Report bugs, suggest features or view the source code [on GitHub](https://github.com/geopandas/geopandas).
- For a quick question about a bug report or feature request, or Pull Request, head over to the [gitter channel](https://gitter.im/geopandas/geopandas).
- For less well defined questions or ideas, or to announce other projects of interest to GeoPandas users, ... use the [mailing list](https://groups.google.com/forum/#!forum/geopandas).
Examples
--------
>>> import geopandas
>>> from shapely.geometry import Polygon
>>> p1 = Polygon([(0, 0), (1, 0), (1, 1)])
>>> p2 = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])
>>> p3 = Polygon([(2, 0), (3, 0), (3, 1), (2, 1)])
>>> g = geopandas.GeoSeries([p1, p2, p3])
>>> g
0 POLYGON ((0 0, 1 0, 1 1, 0 0))
1 POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))
2 POLYGON ((2 0, 3 0, 3 1, 2 1, 2 0))
dtype: geometry

Some geographic operations return normal pandas object. The `area` property of a `GeoSeries` will return a `pandas.Series` containing the area of each item in the `GeoSeries`:
>>> print(g.area)
0 0.5
1 1.0
2 1.0
dtype: float64
Other operations return GeoPandas objects:
>>> g.buffer(0.5)
0 POLYGON ((-0.3535533905932737 0.35355339059327...
1 POLYGON ((-0.5 0, -0.5 1, -0.4975923633360985 ...
2 POLYGON ((1.5 0, 1.5 1, 1.502407636663901 1.04...
dtype: geometry

GeoPandas objects also know how to plot themselves. GeoPandas uses
[matplotlib](http://matplotlib.org) for plotting. To generate a plot of our
GeoSeries, use:
>>> g.plot()
GeoPandas also implements alternate constructors that can read any data format recognized by [fiona](http://fiona.readthedocs.io/en/latest/). To read a zip file containing an ESRI shapefile with the [boroughs boundaries of New York City](https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm) (GeoPandas includes this as an example dataset):
>>> nybb_path = geopandas.datasets.get_path('nybb')
>>> boros = geopandas.read_file(nybb_path)
>>> boros.set_index('BoroCode', inplace=True)
>>> boros.sort_index(inplace=True)
>>> boros
BoroName Shape_Leng Shape_Area \
BoroCode
1 Manhattan 359299.096471 6.364715e+08
2 Bronx 464392.991824 1.186925e+09
3 Brooklyn 741080.523166 1.937479e+09
4 Queens 896344.047763 3.045213e+09
5 Staten Island 330470.010332 1.623820e+09
geometry
BoroCode
1 MULTIPOLYGON (((981219.0557861328 188655.31579...
2 MULTIPOLYGON (((1012821.805786133 229228.26458...
3 MULTIPOLYGON (((1021176.479003906 151374.79699...
4 MULTIPOLYGON (((1029606.076599121 156073.81420...
5 MULTIPOLYGON (((970217.0223999023 145643.33221...

>>> boros['geometry'].convex_hull
BoroCode
1 POLYGON ((977855.4451904297 188082.3223876953,...
2 POLYGON ((1017949.977600098 225426.8845825195,...
3 POLYGON ((988872.8212280273 146772.0317993164,...
4 POLYGON ((1000721.531799316 136681.776184082, ...
5 POLYGON ((915517.6877458114 120121.8812543372,...
dtype: geometry

geopandas-0.10.2/asv.conf.json 0000664 0000000 0000000 00000014130 14132474026 0016145 0 ustar 00root root 0000000 0000000 {
// The version of the config file format. Do not change, unless
// you know what you are doing.
"version": 1,
// The name of the project being benchmarked
"project": "geopandas",
// The project's homepage
"project_url": "http://geopandas.org/",
// The URL or local path of the source code repository for the
// project being benchmarked
"repo": ".",
// List of branches to benchmark. If not provided, defaults to "master"
// (for git) or "default" (for mercurial).
// "branches": ["master"], // for git
// "branches": ["default"], // for mercurial
// The DVCS being used. If not set, it will be automatically
// determined from "repo" by looking at the protocol in the URL
// (if remote), or by looking for special directories, such as
// ".git" (if local).
// "dvcs": "git",
// The tool to use to create environments. May be "conda",
// "virtualenv" or other value depending on the plugins in use.
// If missing or the empty string, the tool will be automatically
// determined by looking for tools on the PATH environment
// variable.
"environment_type": "conda",
"conda_channels": ["conda-forge", "defaults"],
// timeout in seconds for installing any dependencies in environment
// defaults to 10 min
//"install_timeout": 600,
// the base URL to show a commit for the project.
"show_commit_url": "http://github.com/geopandas/geopandas/commit/",
// The Pythons you'd like to test against. If not provided, defaults
// to the current version of Python used to run `asv`.
// "pythons": ["2.7", "3.3"],
// The matrix of dependencies to test. Each key is the name of a
// package (in PyPI) and the values are version numbers. An empty
// list or empty string indicates to just test against the default
// (latest) version. null indicates that the package is to not be
// installed. If the package to be tested is only available from
// PyPi, and the 'environment_type' is conda, then you can preface
// the package name by 'pip+', and the package will be installed via
// pip (with all the conda available packages installed first,
// followed by the pip installed packages).
//
"matrix": {
"pandas": [],
"shapely": [],
"pygeos": [],
"fiona": [],
"pyproj": [],
"rtree": [],
"matplotlib": [],
"descartes": []
},
// "numpy": ["1.6", "1.7"],
// "six": ["", null], // test with and without six installed
// "pip+emcee": [""], // emcee is only available for install with pip.
// },
// Combinations of libraries/python versions can be excluded/included
// from the set to test. Each entry is a dictionary containing additional
// key-value pairs to include/exclude.
//
// An exclude entry excludes entries where all values match. The
// values are regexps that should match the whole string.
//
// An include entry adds an environment. Only the packages listed
// are installed. The 'python' key is required. The exclude rules
// do not apply to includes.
//
// In addition to package names, the following keys are available:
//
// - python
// Python version, as in the *pythons* variable above.
// - environment_type
// Environment type, as above.
// - sys_platform
// Platform, as in sys.platform. Possible values for the common
// cases: 'linux2', 'win32', 'cygwin', 'darwin'.
//
// "exclude": [
// {"python": "3.2", "sys_platform": "win32"}, // skip py3.2 on windows
// {"environment_type": "conda", "six": null}, // don't run without six on conda
// ],
//
// "include": [
// // additional env for python2.7
// {"python": "2.7", "numpy": "1.8"},
// // additional env if run on windows+conda
// {"platform": "win32", "environment_type": "conda", "python": "2.7", "libpython": ""},
// ],
// The directory (relative to the current directory) that benchmarks are
// stored in. If not provided, defaults to "benchmarks"
// "benchmark_dir": "benchmarks",
// The directory (relative to the current directory) to cache the Python
// environments in. If not provided, defaults to "env"
"env_dir": ".asv/env",
// The directory (relative to the current directory) that raw benchmark
// results are stored in. If not provided, defaults to "results".
"results_dir": ".asv/results",
// The directory (relative to the current directory) that the html tree
// should be written to. If not provided, defaults to "html".
"html_dir": ".asv/html",
// The number of characters to retain in the commit hashes.
// "hash_length": 8,
// `asv` will cache wheels of the recent builds in each
// environment, making them faster to install next time. This is
// number of builds to keep, per environment.
// "wheel_cache_size": 0
// The commits after which the regression search in `asv publish`
// should start looking for regressions. Dictionary whose keys are
// regexps matching to benchmark names, and values corresponding to
// the commit (exclusive) after which to start looking for
// regressions. The default is to start from the first commit
// with results. If the commit is `null`, regression detection is
// skipped for the matching benchmark.
//
// "regressions_first_commits": {
// "some_benchmark": "352cdf", // Consider regressions only after this commit
// "another_benchmark": null, // Skip regression detection altogether
// }
// The thresholds for relative change in results, after which `asv
// publish` starts reporting regressions. Dictionary of the same
// form as in ``regressions_first_commits``, with values
// indicating the thresholds. If multiple entries match, the
// maximum is taken. If no entry matches, the default is 5%.
//
// "regressions_thresholds": {
// "some_benchmark": 0.01, // Threshold of 1%
// "another_benchmark": 0.5, // Threshold of 50%
// }
}
geopandas-0.10.2/benchmarks/ 0000775 0000000 0000000 00000000000 14132474026 0015653 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/benchmarks/__init__.py 0000664 0000000 0000000 00000000001 14132474026 0017753 0 ustar 00root root 0000000 0000000
geopandas-0.10.2/benchmarks/clip.py 0000664 0000000 0000000 00000000714 14132474026 0017156 0 ustar 00root root 0000000 0000000 from geopandas import read_file, datasets, clip
from shapely.geometry import box
class Bench:
def setup(self, *args):
world = read_file(datasets.get_path("naturalearth_lowres"))
capitals = read_file(datasets.get_path("naturalearth_cities"))
self.bounds = [box(*geom.bounds) for geom in world.geometry]
self.points = capitals
def time_clip(self):
for bound in self.bounds:
clip(self.points, bound)
geopandas-0.10.2/benchmarks/geom_methods.py 0000664 0000000 0000000 00000010055 14132474026 0020700 0 ustar 00root root 0000000 0000000 import random
import numpy as np
from geopandas import GeoSeries
from shapely.geometry import Point, Polygon, MultiPolygon
def with_attributes(**attrs):
def decorator(func):
for key, value in attrs.items():
setattr(func, key, value)
return func
return decorator
class Bench:
def setup(self, *args):
self.points = GeoSeries([Point(i, i) for i in range(100000)])
triangles = GeoSeries([Polygon([(random.random(), random.random())
for _ in range(3)])
for _ in range(1000)])
triangles2 = triangles.copy().iloc[np.random.choice(1000, 1000)]
triangles3 = GeoSeries([Polygon([(random.random(), random.random())
for _ in range(3)])
for _ in range(10000)])
triangles4 = GeoSeries([
MultiPolygon([
Polygon([(random.random(), random.random()) for _ in range(3)])
]) for _ in range(10000)])
triangle = Polygon([(random.random(), random.random())
for _ in range(3)])
self.triangles, self.triangles2 = triangles, triangles2
self.triangles_big = triangles3
self.multi_triangles = triangles4
self.triangle = triangle
@with_attributes(param_names=['op'],
params=[('contains', 'crosses', 'disjoint', 'intersects',
'overlaps', 'touches', 'within', 'geom_equals',
'geom_almost_equals', 'geom_equals_exact')])
def time_binary_predicate(self, op):
getattr(self.triangles, op)(self.triangle)
@with_attributes(param_names=['op'],
params=[('contains', 'crosses', 'disjoint', 'intersects',
'overlaps', 'touches', 'within', 'geom_equals',
'geom_almost_equals')]) # 'geom_equals_exact')])
def time_binary_predicate_vector(self, op):
getattr(self.triangles, op)(self.triangles2)
@with_attributes(param_names=['op'],
params=[('distance')])
def time_binary_float(self, op):
getattr(self.triangles, op)(self.triangle)
@with_attributes(param_names=['op'],
params=[('distance')])
def time_binary_float_vector(self, op):
getattr(self.triangles, op)(self.triangles2)
@with_attributes(param_names=['op'],
params=[('difference', 'symmetric_difference', 'union',
'intersection')])
def time_binary_geo(self, op):
getattr(self.triangles, op)(self.triangle)
@with_attributes(param_names=['op'],
params=[('difference', 'symmetric_difference', 'union',
'intersection')])
def time_binary_geo_vector(self, op):
getattr(self.triangles, op)(self.triangles2)
@with_attributes(param_names=['op'],
params=[('is_valid', 'is_empty', 'is_simple', 'is_ring')])
def time_unary_predicate(self, op):
getattr(self.triangles, op)
@with_attributes(param_names=['op'],
params=[('area', 'length')])
def time_unary_float(self, op):
getattr(self.triangles_big, op)
@with_attributes(param_names=['op'],
params=[('boundary', 'centroid', 'convex_hull',
'envelope', 'exterior', 'interiors')])
def time_unary_geo(self, op):
getattr(self.triangles, op)
def time_unary_geo_representative_point(self, *args):
getattr(self.triangles, 'representative_point')()
def time_geom_type(self, *args):
self.triangles_big.geom_type
def time_bounds(self, *args):
self.triangles.bounds
def time_unary_union(self, *args):
self.triangles.unary_union
def time_buffer(self, *args):
self.points.buffer(2)
def time_explode(self, *args):
self.multi_triangles.explode()
# TODO
# project, interpolate, affine_transform, translate, rotate, scale, skew
# cx indexer
geopandas-0.10.2/benchmarks/io.py 0000664 0000000 0000000 00000006172 14132474026 0016642 0 ustar 00root root 0000000 0000000 import os
import shutil
import tempfile
import warnings
import numpy as np
from shapely.geometry import Point
from geopandas import GeoDataFrame, GeoSeries, read_file, read_parquet, read_feather
# TEMP: hide warning from to_parquet
warnings.filterwarnings("ignore", message=".*initial implementation of Parquet.*")
format_dict = {
"ESRI Shapefile": (
".shp",
lambda gdf, filename: gdf.to_file(filename, driver="ESRI Shapefile"),
lambda filename: read_file(filename, driver="ESRI Shapefile"),
),
"GeoJSON": (
".json",
lambda gdf, filename: gdf.to_file(filename, driver="GeoJSON"),
lambda filename: read_file(filename, driver="GeoJSON"),
),
"GPKG": (
".gpkg",
lambda gdf, filename: gdf.to_file(filename, driver="GeoJSON"),
lambda filename: read_file(filename, driver="GeoJSON"),
),
"Parquet": (
".parquet",
lambda gdf, filename: gdf.to_parquet(filename),
lambda filename: read_parquet(filename),
),
"Feather": (
".feather",
lambda gdf, filename: gdf.to_feather(filename),
lambda filename: read_feather(filename),
),
}
class Bench:
params = ["ESRI Shapefile", "GeoJSON", "GPKG", "Parquet", "Feather"]
param_names = ["file_format"]
def setup(self, file_format):
self.ext, self.writer, self.reader = format_dict[file_format]
num_points = 20000
xs = np.random.rand(num_points)
ys = np.random.rand(num_points)
self.points = GeoSeries([Point(x, y) for (x, y) in zip(xs, ys)])
self.df = GeoDataFrame(
{
"geometry": self.points,
"x": xs,
"y": ys,
"s": np.zeros(num_points, dtype="object"),
}
)
self.tmpdir = tempfile.mkdtemp()
self.filename = os.path.join(self.tmpdir, "frame" + self.ext)
self.writer(self.df, self.filename)
def teardown(self, file_format):
shutil.rmtree(self.tmpdir)
class BenchFrame(Bench):
params = ["ESRI Shapefile", "GeoJSON", "GPKG", "Parquet", "Feather"]
param_names = ["file_format"]
def time_write(self, file_format):
with tempfile.TemporaryDirectory() as tmpdir:
out_filename = os.path.join(tmpdir, "frame" + self.ext)
self.writer(self.df, out_filename)
def time_read(self, file_format):
self.reader(self.filename)
class BenchSeries(Bench):
params = ["ESRI Shapefile", "GeoJSON", "GPKG"]
param_names = ["file_format"]
def setup(self, file_format):
super().setup(file_format)
self.filename_series = os.path.join(self.tmpdir, "series" + self.ext)
self.writer(self.points, self.filename_series)
def time_write_series(self, file_format):
with tempfile.TemporaryDirectory() as tmpdir:
out_filename = os.path.join(tmpdir, "series" + self.ext)
self.writer(self.points, out_filename)
def time_read_series(self, file_format):
GeoSeries.from_file(self.filename_series)
def time_read_series_from_frame(self, file_format):
GeoSeries.from_file(self.filename)
geopandas-0.10.2/benchmarks/overlay.py 0000664 0000000 0000000 00000004122 14132474026 0017705 0 ustar 00root root 0000000 0000000 from geopandas import GeoDataFrame, GeoSeries, read_file, datasets, overlay
import numpy as np
from shapely.geometry import Point, Polygon
class Countries:
param_names = ['how']
params = [('intersection', 'union', 'identity', 'symmetric_difference',
'difference')]
def setup(self, *args):
world = read_file(datasets.get_path('naturalearth_lowres'))
capitals = read_file(datasets.get_path('naturalearth_cities'))
countries = world[['geometry', 'name']]
countries = countries.to_crs('+init=epsg:3395')[
countries.name != "Antarctica"]
capitals = capitals.to_crs('+init=epsg:3395')
capitals['geometry'] = capitals.buffer(500000)
self.countries = countries
self.capitals = capitals
def time_overlay(self, how):
overlay(self.countries, self.capitals, how=how)
class Small:
param_names = ['how']
params = [('intersection', 'union', 'identity', 'symmetric_difference',
'difference')]
def setup(self, *args):
polys1 = GeoSeries([Polygon([(0, 0), (2, 0), (2, 2), (0, 2)]),
Polygon([(2, 2), (4, 2), (4, 4), (2, 4)])])
polys2 = GeoSeries([Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]),
Polygon([(3, 3), (5, 3), (5, 5), (3, 5)])])
df1 = GeoDataFrame({'geometry': polys1, 'df1': [1, 2]})
df2 = GeoDataFrame({'geometry': polys2, 'df2': [1, 2]})
self.df1, self.df2 = df1, df2
def time_overlay(self, how):
overlay(self.df1, self.df2, how=how)
class ManyPoints:
param_names = ['how']
params = [('intersection', 'union', 'identity', 'symmetric_difference',
'difference')]
def setup(self, *args):
points = GeoDataFrame(geometry=[Point(i, i) for i in range(1000)])
base = np.array([[0, 0], [0, 100], [100, 100], [100, 0]])
polys = GeoDataFrame(
geometry=[Polygon(base + i * 100) for i in range(10)])
self.df1, self.df2 = points, polys
def time_overlay(self, how):
overlay(self.df1, self.df2, how=how)
geopandas-0.10.2/benchmarks/plotting.py 0000664 0000000 0000000 00000004473 14132474026 0020075 0 ustar 00root root 0000000 0000000 import random
from geopandas import GeoDataFrame, GeoSeries
from shapely.geometry import Point, LineString, Polygon, MultiPolygon
import numpy as np
class Bench:
param_names = ["geom_type"]
params = [("Point", "LineString", "Polygon", "MultiPolygon", "mixed")]
def setup(self, geom_type):
if geom_type == "Point":
geoms = GeoSeries([Point(i, i) for i in range(1000)])
elif geom_type == "LineString":
geoms = GeoSeries(
[
LineString([(random.random(), random.random()) for _ in range(5)])
for _ in range(100)
]
)
elif geom_type == "Polygon":
geoms = GeoSeries(
[
Polygon([(random.random(), random.random()) for _ in range(3)])
for _ in range(100)
]
)
elif geom_type == "MultiPolygon":
geoms = GeoSeries(
[
MultiPolygon(
[
Polygon(
[(random.random(), random.random()) for _ in range(3)]
)
for _ in range(3)
]
)
for _ in range(20)
]
)
elif geom_type == "mixed":
g1 = GeoSeries([Point(i, i) for i in range(100)])
g2 = GeoSeries(
[
LineString([(random.random(), random.random()) for _ in range(5)])
for _ in range(100)
]
)
g3 = GeoSeries(
[
Polygon([(random.random(), random.random()) for _ in range(3)])
for _ in range(100)
]
)
geoms = g1
geoms.iloc[np.random.randint(0, 100, 50)] = g2.iloc[:50]
geoms.iloc[np.random.randint(0, 100, 33)] = g3.iloc[:33]
print(geoms.geom_type.value_counts())
df = GeoDataFrame({"geometry": geoms, "values": np.random.randn(len(geoms))})
self.geoms = geoms
self.df = df
def time_plot_series(self, *args):
self.geoms.plot()
def time_plot_values(self, *args):
self.df.plot(column="values")
geopandas-0.10.2/benchmarks/sindex.py 0000664 0000000 0000000 00000006640 14132474026 0017525 0 ustar 00root root 0000000 0000000 from shapely.geometry import Point
from geopandas import read_file, datasets, GeoSeries
# Derive list of valid query predicates based on underlying index backend;
# we have to create a non-empty instance of the index to get these
index = GeoSeries([Point(0, 0)]).sindex
predicates = sorted(p for p in index.valid_query_predicates if p is not None)
geom_types = ("mixed", "points", "polygons")
def generate_test_df():
world = read_file(datasets.get_path("naturalearth_lowres"))
capitals = read_file(datasets.get_path("naturalearth_cities"))
countries = world.to_crs("epsg:3395")[["geometry"]]
capitals = capitals.to_crs("epsg:3395")[["geometry"]]
mixed = capitals.append(countries) # get a mix of geometries
points = capitals
polygons = countries
# filter out invalid geometries
data = {
"mixed": mixed[mixed.is_valid],
"points": points[points.is_valid],
"polygons": polygons[polygons.is_valid],
}
# ensure index is pre-generated
for data_type in data.keys():
data[data_type].sindex.query(data[data_type].geometry.values.data[0])
return data
class BenchIntersection:
param_names = ["input_geom_type", "tree_geom_type"]
params = [
geom_types,
geom_types,
]
def setup(self, *args):
self.data = generate_test_df()
# cache bounds so that bound creation is not counted in benchmarks
self.bounds = {
data_type: [g.bounds for g in self.data[data_type].geometry]
for data_type in self.data.keys()
}
def time_intersects(self, input_geom_type, tree_geom_type):
tree = self.data[tree_geom_type].sindex
for bounds in self.bounds[input_geom_type]:
tree.intersection(bounds)
class BenchIndexCreation:
param_names = ["tree_geom_type"]
params = [
geom_types,
]
def setup(self, *args):
self.data = generate_test_df()
def time_index_creation(self, tree_geom_type):
"""Time creation of spatial index.
Note: requires running a single query to ensure that
lazy-building indexes are actually built.
"""
# Note: the GeoDataFram._sindex_generated attribute will
# be removed by GH#1444 but is kept here (in the benchmarks
# so that we can compare pre GH#1444 to post GH#1444 if needed
self.data[tree_geom_type]._sindex_generated = None
self.data[tree_geom_type].geometry.values._sindex = None
tree = self.data[tree_geom_type].sindex
# also do a single query to ensure the index is actually
# generated and used
tree.query(
self.data[tree_geom_type].geometry.values.data[0]
)
class BenchQuery:
param_names = ["predicate", "input_geom_type", "tree_geom_type"]
params = [
predicates,
geom_types,
geom_types,
]
def setup(self, *args):
self.data = generate_test_df()
def time_query_bulk(self, predicate, input_geom_type, tree_geom_type):
self.data[tree_geom_type].sindex.query_bulk(
self.data[input_geom_type].geometry.values.data,
predicate=predicate,
)
def time_query(self, predicate, input_geom_type, tree_geom_type):
tree = self.data[tree_geom_type].sindex
for geom in self.data[input_geom_type].geometry.values.data:
tree.query(
geom,
predicate=predicate
)
geopandas-0.10.2/benchmarks/sjoin.py 0000664 0000000 0000000 00000001630 14132474026 0017347 0 ustar 00root root 0000000 0000000 import random
from geopandas import GeoDataFrame, GeoSeries, sjoin
from shapely.geometry import Point, LineString, Polygon
import numpy as np
class Bench:
param_names = ['op']
params = [('intersects', 'contains', 'within')]
def setup(self, *args):
triangles = GeoSeries(
[Polygon([(random.random(), random.random()) for _ in range(3)])
for _ in range(1000)])
points = GeoSeries(
[Point(x, y) for x, y in zip(np.random.random(10000),
np.random.random(10000))])
df1 = GeoDataFrame({'val1': np.random.randn(len(triangles)),
'geometry': triangles})
df2 = GeoDataFrame({'val1': np.random.randn(len(points)),
'geometry': points})
self.df1, self.df2 = df1, df2
def time_sjoin(self, op):
sjoin(self.df1, self.df2, op=op)
geopandas-0.10.2/benchmarks/transform.py 0000664 0000000 0000000 00000001504 14132474026 0020240 0 ustar 00root root 0000000 0000000 from geopandas import GeoDataFrame, GeoSeries, read_file, datasets
import numpy as np
import pandas as pd
from shapely.geometry import Point
class CRS:
def setup(self):
nybb = read_file(datasets.get_path('nybb'))
self.long_nybb = GeoDataFrame(pd.concat(10 * [nybb]),
crs=nybb.crs)
num_points = 20000
longitudes = np.random.rand(num_points) - 120
latitudes = np.random.rand(num_points) + 38
self.point_df = GeoSeries([Point(x, y) for (x, y)
in zip(longitudes, latitudes)])
self.point_df.crs = {"init": "epsg:4326"}
def time_transform_wgs84(self):
self.long_nybb.to_crs({"init": "epsg:4326"})
def time_transform_many_points(self):
self.point_df.to_crs({"init": "epsg:32610"})
geopandas-0.10.2/ci/ 0000775 0000000 0000000 00000000000 14132474026 0014131 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/ci/envs/ 0000775 0000000 0000000 00000000000 14132474026 0015104 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/ci/envs/37-latest-conda-forge.yaml 0000664 0000000 0000000 00000000533 14132474026 0021676 0 ustar 00root root 0000000 0000000 name: test
channels:
- conda-forge
dependencies:
- python=3.7
# required
- pandas
- shapely
- fiona
- pyproj
- pygeos
# testing
- pytest
- pytest-cov
- pytest-xdist
- fsspec
# optional
- rtree
- matplotlib
- mapclassify
- folium
- xyzservices
- scipy
- geopy
- SQLalchemy
- libspatialite
- pyarrow
geopandas-0.10.2/ci/envs/37-latest-defaults.yaml 0000664 0000000 0000000 00000000563 14132474026 0021324 0 ustar 00root root 0000000 0000000 name: test
channels:
- defaults
dependencies:
- python=3.7
# required
- pandas
- shapely
- fiona
- pyproj
- geos
# testing
- pytest
- pytest-cov
- pytest-xdist
- fsspec
# optional
- rtree
- matplotlib
#- geopy
- SQLalchemy
- libspatialite
- pip:
- geopy
- mapclassify
- pyarrow
- folium
- xyzservices
geopandas-0.10.2/ci/envs/37-minimal.yaml 0000664 0000000 0000000 00000000663 14132474026 0017652 0 ustar 00root root 0000000 0000000 name: test
channels:
- defaults
- conda-forge
dependencies:
- python=3.7
# required
- numpy=1.18
- pandas==0.25
- shapely=1.6
- fiona=1.8.13
#- pyproj
# testing
- pytest
- pytest-cov
- pytest-xdist
- fsspec
# optional
- rtree
- matplotlib
- matplotlib=3.1
# - mapclassify=2.4.0 - doesn't build due to conflicts
- geopy
- SQLalchemy
- libspatialite
- pyarrow
- pip:
- pyproj==2.2.2
geopandas-0.10.2/ci/envs/37-pd10.yaml 0000664 0000000 0000000 00000000612 14132474026 0016762 0 ustar 00root root 0000000 0000000 name: test
channels:
- defaults
dependencies:
- python=3.7
# required
- pandas=1.0
- shapely
- fiona
- numpy=<1.19
#- pyproj
- geos
# testing
- pytest
- pytest-cov
- pytest-xdist
- fsspec
# optional
- rtree
- matplotlib
#- geopy
- SQLalchemy
- libspatialite
- pip
- pip:
- pyproj==3.0.1
- geopy
- mapclassify==2.4.0
- pyarrow
geopandas-0.10.2/ci/envs/38-dev.yaml 0000664 0000000 0000000 00000001355 14132474026 0017002 0 ustar 00root root 0000000 0000000 name: test
channels:
- conda-forge
dependencies:
- python=3.8
- cython
# required
- fiona
- pyproj
- geos
# testing
- pytest
- pytest-cov
- pytest-xdist
- fsspec
# optional
- rtree
#- geopy
- SQLalchemy
- libspatialite
- pyarrow
- pip:
- geopy
- mapclassify>=2.4.0
# dev versions of packages
- git+https://github.com/numpy/numpy.git@main
- git+https://github.com/pydata/pandas.git@master
- git+https://github.com/matplotlib/matplotlib.git@master
- git+https://github.com/Toblerity/Shapely.git@master
- git+https://github.com/pygeos/pygeos.git@master
- git+https://github.com/python-visualization/folium.git@master
- git+https://github.com/geopandas/xyzservices.git@main
geopandas-0.10.2/ci/envs/38-latest-conda-forge.yaml 0000664 0000000 0000000 00000001066 14132474026 0021701 0 ustar 00root root 0000000 0000000 name: test
channels:
- conda-forge
dependencies:
- python=3.8
# required
- pandas=1.3.2 # temporary pin because 1.3.3 has regression for overlay (GH2101)
- shapely
- fiona
- pyproj
- pygeos
# testing
- pytest
- pytest-cov
- pytest-xdist
- fsspec
# optional
- rtree
- matplotlib
- mapclassify
- folium
- xyzservices
- scipy
- geopy
# installed in tests.yaml, because not available on windows
# - postgis
- SQLalchemy
- psycopg2
- libspatialite
- geoalchemy2
- pyarrow
# doctest testing
- pytest-doctestplus geopandas-0.10.2/ci/envs/38-no-optional-deps.yaml 0000664 0000000 0000000 00000000262 14132474026 0021410 0 ustar 00root root 0000000 0000000 name: test
channels:
- conda-forge
dependencies:
- python=3.8
# required
- pandas
- shapely
- fiona
- pyproj
# testing
- pytest
- pytest-cov
- pytest-xdist
geopandas-0.10.2/ci/envs/39-latest-conda-forge.yaml 0000664 0000000 0000000 00000000757 14132474026 0021710 0 ustar 00root root 0000000 0000000 name: test
channels:
- conda-forge
dependencies:
- python=3.9
# required
- pandas
- shapely
- fiona
- pyproj
- pygeos
# testing
- pytest
- pytest-cov
- pytest-xdist
- fsspec
# optional
- rtree
- matplotlib
- mapclassify
- folium
- xyzservices
- scipy
- geopy
# installed in tests.yaml, because not available on windows
# - postgis
- SQLalchemy
- psycopg2
- libspatialite
- geoalchemy2
- pyarrow
# doctest testing
- pytest-doctestplus
geopandas-0.10.2/ci/scripts/ 0000775 0000000 0000000 00000000000 14132474026 0015620 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/ci/scripts/setup_postgres.sh 0000664 0000000 0000000 00000001362 14132474026 0021244 0 ustar 00root root 0000000 0000000 #!/bin/sh
set -e
if [ -z "${PGUSER}" ] || [ -z "${PGPORT}" ]; then
echo "Environment variables PGUSER and PGPORT must be set"
exit 1
fi
PGDATA=$(mktemp -d /tmp/postgres.XXXXXX)
echo "Setting up PostgreSQL in ${PGDATA} on port ${PGPORT}"
pg_ctl -D ${PGDATA} initdb
pg_ctl -D ${PGDATA} start
SOCKETPATH="/tmp/.s.PGSQL.${PGPORT}"
echo -n 'waiting for postgres'
while [ ! -e ${SOCKETPATH} ]; do
sleep 1
echo -n '.'
done
echo
echo "Done setting up PostgreSQL. When finished, stop and cleanup using:"
echo
echo " pg_ctl -D ${PGDATA} stop"
echo " rm -rf ${PGDATA}"
echo
createuser -U ${USER} -s ${PGUSER}
createdb --owner=${PGUSER} test_geopandas
psql -d test_geopandas -q -c "CREATE EXTENSION postgis"
echo "PostGIS server ready."
geopandas-0.10.2/codecov.yml 0000664 0000000 0000000 00000000243 14132474026 0015702 0 ustar 00root root 0000000 0000000 coverage:
status:
project:
default:
target: 95% # the required coverage value
threshold: 0.2% # the leniency in hitting the target
geopandas-0.10.2/constraints.txt 0000664 0000000 0000000 00000000013 14132474026 0016640 0 ustar 00root root 0000000 0000000 rtree>=0.8
geopandas-0.10.2/doc/ 0000775 0000000 0000000 00000000000 14132474026 0014303 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/doc/Makefile 0000664 0000000 0000000 00000013072 14132474026 0015746 0 ustar 00root root 0000000 0000000 # Makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
PAPER =
BUILDDIR = build
# Internal variables.
PAPEROPT_a4 = -D latex_paper_size=a4
PAPEROPT_letter = -D latex_paper_size=letter
ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source
# the i18n builder cannot share the environment and doctrees with the others
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source
.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext
help:
@echo "Please use \`make ' where is one of"
@echo " html to make standalone HTML files"
@echo " dirhtml to make HTML files named index.html in directories"
@echo " singlehtml to make a single large HTML file"
@echo " pickle to make pickle files"
@echo " json to make JSON files"
@echo " htmlhelp to make HTML files and a HTML help project"
@echo " qthelp to make HTML files and a qthelp project"
@echo " devhelp to make HTML files and a Devhelp project"
@echo " epub to make an epub"
@echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter"
@echo " latexpdf to make LaTeX files and run them through pdflatex"
@echo " text to make text files"
@echo " man to make manual pages"
@echo " texinfo to make Texinfo files"
@echo " info to make Texinfo files and run them through makeinfo"
@echo " gettext to make PO message catalogs"
@echo " changes to make an overview of all changed/added/deprecated items"
@echo " linkcheck to check all external links for integrity"
@echo " doctest to run all doctests embedded in the documentation (if enabled)"
clean:
-rm -rf $(BUILDDIR)/*
-rm -rf source/reference/*
html:
$(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html
@echo
@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
dirhtml:
$(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml
@echo
@echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml."
singlehtml:
$(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml
@echo
@echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml."
pickle:
$(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle
@echo
@echo "Build finished; now you can process the pickle files."
json:
$(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json
@echo
@echo "Build finished; now you can process the JSON files."
htmlhelp:
$(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp
@echo
@echo "Build finished; now you can run HTML Help Workshop with the" \
".hhp project file in $(BUILDDIR)/htmlhelp."
qthelp:
$(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp
@echo
@echo "Build finished; now you can run "qcollectiongenerator" with the" \
".qhcp project file in $(BUILDDIR)/qthelp, like this:"
@echo "# qcollectiongenerator $(BUILDDIR)/qthelp/GeoPandas.qhcp"
@echo "To view the help file:"
@echo "# assistant -collectionFile $(BUILDDIR)/qthelp/GeoPandas.qhc"
devhelp:
$(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp
@echo
@echo "Build finished."
@echo "To view the help file:"
@echo "# mkdir -p $$HOME/.local/share/devhelp/GeoPandas"
@echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/GeoPandas"
@echo "# devhelp"
epub:
$(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub
@echo
@echo "Build finished. The epub file is in $(BUILDDIR)/epub."
latex:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo
@echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex."
@echo "Run \`make' in that directory to run these through (pdf)latex" \
"(use \`make latexpdf' here to do that automatically)."
latexpdf:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo "Running LaTeX files through pdflatex..."
$(MAKE) -C $(BUILDDIR)/latex all-pdf
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
text:
$(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text
@echo
@echo "Build finished. The text files are in $(BUILDDIR)/text."
man:
$(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man
@echo
@echo "Build finished. The manual pages are in $(BUILDDIR)/man."
texinfo:
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
@echo
@echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo."
@echo "Run \`make' in that directory to run these through makeinfo" \
"(use \`make info' here to do that automatically)."
info:
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
@echo "Running Texinfo files through makeinfo..."
make -C $(BUILDDIR)/texinfo info
@echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo."
gettext:
$(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale
@echo
@echo "Build finished. The message catalogs are in $(BUILDDIR)/locale."
changes:
$(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes
@echo
@echo "The overview file is in $(BUILDDIR)/changes."
linkcheck:
$(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck
@echo
@echo "Link check complete; look for any errors in the above output " \
"or in $(BUILDDIR)/linkcheck/output.txt."
doctest:
$(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest
@echo "Testing of doctests in the sources finished, look at the " \
"results in $(BUILDDIR)/doctest/output.txt."
dash: html
rm -rf geopandas.docset
doc2dash --name=geopandas _build/html
geopandas-0.10.2/doc/environment.yml 0000664 0000000 0000000 00000001537 14132474026 0017400 0 ustar 00root root 0000000 0000000 name: geopandas_docs
channels:
- conda-forge
dependencies:
- python=3.9.7
- pandas=1.3.2
- shapely=1.7.1
- fiona=1.8.20
- pyproj=3.2.1
- rtree=0.9.7
- geopy=2.2.0
- matplotlib=3.4.3
- mapclassify=2.4.3
- sphinx=4.2.0
- pydata-sphinx-theme=0.6.3
- numpydoc=1.1.0
- ipython=7.27.0
- pillow=8.3.2
- mock=4.0.3
- cartopy=0.20.0
- pyepsg=0.4.0
- contextily=1.1.0
- rasterio=1.2.8
- geoplot=0.4.4
- sphinx-gallery=0.9.0
- jinja2=3.0.1
- doc2dash=2.3.0
- matplotlib-scalebar=0.7.2
# specify additional dependencies to reduce solving for conda
- gdal=3.3.2
- libgdal=3.3.2
- proj=8.0.1
- geos=3.9.1
- nbsphinx=0.8.7
- jupyter_client=7.0.3
- ipykernel=6.4.1
- myst-parser=0.15.2
- folium=0.12.0
- libpysal=4.5.1
- pygeos=0.10.2
- xyzservices=2021.9.1
- pip
- pip:
- sphinx-toggleprompt
geopandas-0.10.2/doc/make.bat 0000664 0000000 0000000 00000011767 14132474026 0015724 0 ustar 00root root 0000000 0000000 @ECHO OFF
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set BUILDDIR=build
set ALLSPHINXOPTS=-d %BUILDDIR%/doctrees %SPHINXOPTS% source
set I18NSPHINXOPTS=%SPHINXOPTS% source
if NOT "%PAPER%" == "" (
set ALLSPHINXOPTS=-D latex_paper_size=%PAPER% %ALLSPHINXOPTS%
set I18NSPHINXOPTS=-D latex_paper_size=%PAPER% %I18NSPHINXOPTS%
)
if "%1" == "" goto help
if "%1" == "help" (
:help
echo.Please use `make ^` where ^ is one of
echo. html to make standalone HTML files
echo. dirhtml to make HTML files named index.html in directories
echo. singlehtml to make a single large HTML file
echo. pickle to make pickle files
echo. json to make JSON files
echo. htmlhelp to make HTML files and a HTML help project
echo. qthelp to make HTML files and a qthelp project
echo. devhelp to make HTML files and a Devhelp project
echo. epub to make an epub
echo. latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter
echo. text to make text files
echo. man to make manual pages
echo. texinfo to make Texinfo files
echo. gettext to make PO message catalogs
echo. changes to make an overview over all changed/added/deprecated items
echo. linkcheck to check all external links for integrity
echo. doctest to run all doctests embedded in the documentation if enabled
goto end
)
if "%1" == "clean" (
for /d %%i in (%BUILDDIR%\*) do rmdir /q /s %%i
del /q /s %BUILDDIR%\*
goto end
)
if "%1" == "html" (
%SPHINXBUILD% -b html %ALLSPHINXOPTS% %BUILDDIR%/html
if errorlevel 1 exit /b 1
echo.
echo.Build finished. The HTML pages are in %BUILDDIR%/html.
goto end
)
if "%1" == "dirhtml" (
%SPHINXBUILD% -b dirhtml %ALLSPHINXOPTS% %BUILDDIR%/dirhtml
if errorlevel 1 exit /b 1
echo.
echo.Build finished. The HTML pages are in %BUILDDIR%/dirhtml.
goto end
)
if "%1" == "singlehtml" (
%SPHINXBUILD% -b singlehtml %ALLSPHINXOPTS% %BUILDDIR%/singlehtml
if errorlevel 1 exit /b 1
echo.
echo.Build finished. The HTML pages are in %BUILDDIR%/singlehtml.
goto end
)
if "%1" == "pickle" (
%SPHINXBUILD% -b pickle %ALLSPHINXOPTS% %BUILDDIR%/pickle
if errorlevel 1 exit /b 1
echo.
echo.Build finished; now you can process the pickle files.
goto end
)
if "%1" == "json" (
%SPHINXBUILD% -b json %ALLSPHINXOPTS% %BUILDDIR%/json
if errorlevel 1 exit /b 1
echo.
echo.Build finished; now you can process the JSON files.
goto end
)
if "%1" == "htmlhelp" (
%SPHINXBUILD% -b htmlhelp %ALLSPHINXOPTS% %BUILDDIR%/htmlhelp
if errorlevel 1 exit /b 1
echo.
echo.Build finished; now you can run HTML Help Workshop with the ^
.hhp project file in %BUILDDIR%/htmlhelp.
goto end
)
if "%1" == "qthelp" (
%SPHINXBUILD% -b qthelp %ALLSPHINXOPTS% %BUILDDIR%/qthelp
if errorlevel 1 exit /b 1
echo.
echo.Build finished; now you can run "qcollectiongenerator" with the ^
.qhcp project file in %BUILDDIR%/qthelp, like this:
echo.^> qcollectiongenerator %BUILDDIR%\qthelp\GeoPandas.qhcp
echo.To view the help file:
echo.^> assistant -collectionFile %BUILDDIR%\qthelp\GeoPandas.ghc
goto end
)
if "%1" == "devhelp" (
%SPHINXBUILD% -b devhelp %ALLSPHINXOPTS% %BUILDDIR%/devhelp
if errorlevel 1 exit /b 1
echo.
echo.Build finished.
goto end
)
if "%1" == "epub" (
%SPHINXBUILD% -b epub %ALLSPHINXOPTS% %BUILDDIR%/epub
if errorlevel 1 exit /b 1
echo.
echo.Build finished. The epub file is in %BUILDDIR%/epub.
goto end
)
if "%1" == "latex" (
%SPHINXBUILD% -b latex %ALLSPHINXOPTS% %BUILDDIR%/latex
if errorlevel 1 exit /b 1
echo.
echo.Build finished; the LaTeX files are in %BUILDDIR%/latex.
goto end
)
if "%1" == "text" (
%SPHINXBUILD% -b text %ALLSPHINXOPTS% %BUILDDIR%/text
if errorlevel 1 exit /b 1
echo.
echo.Build finished. The text files are in %BUILDDIR%/text.
goto end
)
if "%1" == "man" (
%SPHINXBUILD% -b man %ALLSPHINXOPTS% %BUILDDIR%/man
if errorlevel 1 exit /b 1
echo.
echo.Build finished. The manual pages are in %BUILDDIR%/man.
goto end
)
if "%1" == "texinfo" (
%SPHINXBUILD% -b texinfo %ALLSPHINXOPTS% %BUILDDIR%/texinfo
if errorlevel 1 exit /b 1
echo.
echo.Build finished. The Texinfo files are in %BUILDDIR%/texinfo.
goto end
)
if "%1" == "gettext" (
%SPHINXBUILD% -b gettext %I18NSPHINXOPTS% %BUILDDIR%/locale
if errorlevel 1 exit /b 1
echo.
echo.Build finished. The message catalogs are in %BUILDDIR%/locale.
goto end
)
if "%1" == "changes" (
%SPHINXBUILD% -b changes %ALLSPHINXOPTS% %BUILDDIR%/changes
if errorlevel 1 exit /b 1
echo.
echo.The overview file is in %BUILDDIR%/changes.
goto end
)
if "%1" == "linkcheck" (
%SPHINXBUILD% -b linkcheck %ALLSPHINXOPTS% %BUILDDIR%/linkcheck
if errorlevel 1 exit /b 1
echo.
echo.Link check complete; look for any errors in the above output ^
or in %BUILDDIR%/linkcheck/output.txt.
goto end
)
if "%1" == "doctest" (
%SPHINXBUILD% -b doctest %ALLSPHINXOPTS% %BUILDDIR%/doctest
if errorlevel 1 exit /b 1
echo.
echo.Testing of doctests in the sources finished, look at the ^
results in %BUILDDIR%/doctest/output.txt.
goto end
)
:end
geopandas-0.10.2/doc/nyc_boros.py 0000664 0000000 0000000 00000004472 14132474026 0016661 0 ustar 00root root 0000000 0000000 """
Visualizing NYC Boroughs
------------------------
Visualize the Boroughs of New York City with Geopandas.
This example generates many images that are used in the documentation. See
the `Geometric Manipulations ` example for more
details.
First we'll import a dataset containing each borough in New York City. We'll
use the ``datasets`` module to handle this quickly.
"""
import numpy as np
import matplotlib.pyplot as plt
from shapely.geometry import Point
from geopandas import GeoSeries, GeoDataFrame
import geopandas as gpd
np.random.seed(1)
DPI = 100
path_nybb = gpd.datasets.get_path('nybb')
boros = GeoDataFrame.from_file(path_nybb)
boros = boros.set_index('BoroCode')
boros
##############################################################################
# Next, we'll plot the raw data
ax = boros.plot()
plt.xticks(rotation=90)
plt.savefig('nyc.png', dpi=DPI, bbox_inches='tight')
##############################################################################
# We can easily retrieve the convex hull of each shape. This corresponds to
# the outer edge of the shapes.
boros.geometry.convex_hull.plot()
plt.xticks(rotation=90)
# Grab the limits which we'll use later
xmin, xmax = plt.gca().get_xlim()
ymin, ymax = plt.gca().get_ylim()
plt.savefig('nyc_hull.png', dpi=DPI, bbox_inches='tight')
##############################################################################
# We'll generate some random dots scattered throughout our data, and will
# use them to perform some set operations with our boroughs. We can use
# GeoPandas to perform unions, intersections, etc.
N = 2000 # number of random points
R = 2000 # radius of buffer in feet
#xmin, xmax, ymin, ymax = 900000, 1080000, 120000, 280000
xc = (xmax - xmin) * np.random.random(N) + xmin
yc = (ymax - ymin) * np.random.random(N) + ymin
pts = GeoSeries([Point(x, y) for x, y in zip(xc, yc)])
mp = pts.buffer(R).unary_union
boros_with_holes = boros.geometry - mp
boros_with_holes.plot()
plt.xticks(rotation=90)
plt.savefig('boros_with_holes.png', dpi=DPI, bbox_inches='tight')
##############################################################################
# Finally, we'll show the holes that were taken out of our boroughs.
holes = boros.geometry & mp
holes.plot()
plt.xticks(rotation=90)
plt.savefig('holes.png', dpi=DPI, bbox_inches='tight')
plt.show()
geopandas-0.10.2/doc/source/ 0000775 0000000 0000000 00000000000 14132474026 0015603 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/doc/source/_static/ 0000775 0000000 0000000 00000000000 14132474026 0017231 5 ustar 00root root 0000000 0000000 geopandas-0.10.2/doc/source/_static/binary_geo-difference.svg 0000664 0000000 0000000 00000001751 14132474026 0024164 0 ustar 00root root 0000000 0000000